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CHAPTER I 
 
 

INTRODUCTION 

 

 

The beef cattle industry in the United States of America is supplied largely 

by a cow-calf production system dominated by many medium and small 

producers.  In order to make a profit those producers must have very efficient 

cows on their ranches.  An efficient cow is one that calves and weans a calf 

every 12 months.  Reproduction is a major factor that influences the profitability 

of a ranch.  In addition, breeding and genetic programs should be focus on 

improving the quality of weaned calves to meet the expectations of modern beef 

industry standards. 

Low reproduction efficiency causes major economic losses to the livestock 

industry because of a reduction in the calf crop.  The major case of inefficiency is 

a prolonged postpartum anestrus in beef cows.  Suckling and nutrition are the 

two major factors that influence the length of postpartum anestrus.  Other minor 

factors such as presence of bull, breed and age at calving are also associated 

with postpartum anestrus.  

The effect of nutrition on postpartum reproduction is dependant on 

whether nutritional deficiencies occur before or after calving.  Restricted nutrient 

 1



 2

intake before calving results in thin cows at parturition, a prolonged postpartum 

anestrous period, and fewer cows in estrus during the breeding season.  In 

contrast, greater energy intake before calving decreases the interval from calving 

to estrus, ovulation, and pregnancy.  Greater nutrient intake prepartum also 

increases the percentage of cows exhibiting estrus during the breeding season. 

Body condition is a useful indicator of energy status and potential 

rebreeding performance.  The amount of body fat is positively correlated with the 

BCS in beef cows and heifers.  When the amount of energy and protein is less 

than required, body fat is mobilized and BCS of cows and heifers decreases.  

Changes in body condition and body weight affect rebreeding performance.  

Nutrient intake and body fat stores have a decisive role in the secretion of 

hormones that regulate reproduction.  If sufficient body stores of fat are not 

presented, pituitary hormones are not secreted after calving and estrous cycles 

are not established during the breeding season.  Metabolic compounds and 

hormones, such as insulin and insulin-like growth factor-I, may indicate to the 

hypothalamus and/or pituitary as to the energy status of the cow.  Insulin may 

potentiate the steroidogenic response to gonadotropins on the ovary and it may 

act on the pituitary to increase sensitivity of gonadotropes to GnRH.  Inadequate 

nutrient intake affects the growth of the dominant follicle in cattle, and insulin may 

mediate the effects of acute changes in nutrient intake on follicular dynamics. 

Suckling influences the secretion of gonadotropins and may delay 

ovulation.  This contributes to an extended postpartum anestrus period, resulting 

in a decrease reproductive efficiency.  Secretion of LH is reduced in suckled beef 
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cows and cyclic ovarian activity is suppressed during the early postpartum 

period.  Nutrient intake and body energy reserves also influences the ovarian 

response to alteration of the suckling stimulus.  The effect of short term calf 

separation (48 h) on ovarian function of cows is influenced by BCS and thin cows 

may not respond and body energy reserves influence the onset of ovarian activity 

after early weaning.   

A better understanding of the hypothalamus–pituitary- ovary axis, is 

necessary to improve reproduction efficiency in beef cows, and how it is 

controlled by the energy status of the cow.  In addition, knowing the role of 

metabolic compounds and hormones, as insulin and insulin-like growth factor-I, 

in the reproduction process in beef cows is also needed. 



CHAPTER II 
 
 

REVIEW OF LITERATURE 
 
 
 

Introduction 
 
 

 
Prolonged postpartum anestrus in beef cows reduces the calf crop and 

causes major economic losses to the livestock industry.  It is well established that 

nutrition has a profound influence on reproductive performance of domestic 

ruminants (Hammond, 1949; Robinson, 1996; Wettemann et al., 2003) and the 

effects have been reviewed extensively in dairy and beef cows (Short et al., 

1990; Beam and Butler, 1999, Wettemann et al., 2003) with special emphasis on 

the period from calving to the first postpartum estrus.  The major factors that 

control the length of postpartum anestrus are suckling and nutrition, with minor 

effects attributed to presence of a bull, breed, and age at calving (reviewed by 

Short et al., 1990; Wettemann et al., 2003).  
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Postpartum Reproduction of Beef Cows 
 

Nutrition and reproduction 
 
 

Nutritional effects on postpartum reproduction in beef cows have been 

well documented by the classical work of Wiltbank et al. (1962) and Dunn et al. 

(1969).  Several detailed reviews have assessed the importance of nutrition on 

reproduction (Dunn and Kaltenbach, 1980; Short and Adams, 1988; Randel, 

1990, Butler, 2000; Wettemann et al., 2003; Hess et al., 2005).  The influence of 

nutrition on postpartum reproduction is dependant on whether the nutritional 

deficiency occurs before or after calving, and thus nutritional management during 

gestation and after calving are of major concern. 

 

Follicular growth after calving 

Secretion of FSH occurs within five days after parturition in beef cows 

(Schallenberger, 1985; Crowe et al., 1998).  Follicular waves are established in 

beef cows within 10 to 20 d after parturition, and multiple follicular waves of 

growth can occur before the first postpartum ovulation (Murphy et al., 1990).  The 

diameter of dominant follicles increases with successive waves until ovulation 

(Murphy et al., 1990, Stagg et al., 1995).  In dairy cows, Beam and Butler (1999) 

indicated that the first postpartum dominant follicle has three possible fates: 

ovulation, atresia and turnover (followed by new wave emergence) or formation 

of a follicular cyst.  A principal component of folliculogenesis is the secretion of 

LH during the early postpartum period.  Inadequate pulsatile release of LH is 
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associated with follicular turnover and anestrus; moderate LH pulsatility is 

associated with ovulation; and extreme LH pulsatility, and lack of an LH surge, is 

associated with the development of cystic ovaries (Silvia et al., 2002). 

 

Factors influencing postpartum reproduction 

Prepartum nutrition 

 
 Restricted nutrient intake before calving results in thin cows at parturition, 

a prolonged postpartum anestrous period, and less cows in estrus during the 

breeding season (Wiltbank et al., 1962; Bellows and Short, 1978; Dunn and 

Kaltenbach, 1980; Wright et al., 1987).  In contrast, greater protein and energy 

intake before calving, decreases the interval from calving to estrus and ovulation 

(Perry et al., 1991) and to pregnancy (Dunn et al., 1969).  Greater nutrient intake 

prepartum also increases the percentage of cows exhibiting estrus during the 

breeding season (Corah et al., 1975; Spitzer et al., 1995) and increases 

pregnancy rates (Selk et al., 1988; Marston et al., 1995). 

 Body condition is a useful indicator of energy status and potential 

rebreeding performance (Dunn and Kaltenbach, 1980; Dziuk and Bellows, 1983; 

Randel, 1990).  Multiparous cows with greater body condition before or at calving 

have greater pregnancy rates than thin cows (Warnick et al., 1981; Rutter and 

Randal, 1984; Rakestraw et al., 1986; Richards et al., 1986; Selk et al., 1988; 

Osoro and Wright, 1992).  Nutrient requirements during the prepartum period 

may differ depending on body condition and body weight of cows entering the 

last third of gestation (DeRouen et al., 1994).  There is a negative correlation 
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between body condition score (BCS) at calving and duration of postpartum 

anestrus (Richards et al., 1986; Wright et al., 1987, 1992), and cows calving with 

moderate BCS (5), had greater pregnancy rates regardless of BCS at six months 

of gestation (Morrison et al., 1999).  First service conception rates were not 

effected, but overall pregnancy rates were less for thin cows compared with cows 

in moderate BCS at calving (Lake et al., 2004). 

 Inadequate nutrient intake has an adverse effect on ovarian function 

(Rasby et al., 1986) and alters follicular growth (Webb et al., 2004).  Thin 

Hereford cows (BCS ≤4) had reduced ovarian, corpora lutea and follicular fluid 

weights compared with cows that had moderate to good body condition (Rasby 

et al., 1986).  Perry et al. (1991) found that cows which consumed greater energy 

before calving had a greater number of large follicles after calving.  Dietary intake 

may influence oocyte quality (Krisher, 2004).  The magnitude and duration of a 

negative energy balance deficit in dairy cows during lactation is a major factor 

controlling follicular growth (Beam and Butler, 1999; Butler, 2000). 

 

Postpartum nutrition 

Inadequate nutrient intake after calving has detrimental effects on 

postpartum reproduction.  The benefits of increased energy intake after calving 

are most apparent when cows calve with thin BCS (Wiltbank et al., 1962; Dunn 

and Kaltenbach, 1980; Spitzer et al., 1995).  Wiltbank et al. (1964) found that the 

interval from calving to the first estrus may be shortened when cows calve in thin 

BCS and are fed greater amounts of energy after calving.  Increasing dietary 
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intake increased weight and BCS and decreased the interval to the first normal 

luteal phase (Lalman et al., 2000).  Primiparous beef cows that calved with a 

BCS of 4 or 5 and were fed to gain 0.90 kg/d for the first 71 d postpartum, had 

shorter intervals to first postpartum estrus and ovulation, and a larger dominant 

follicle at the first estrus, compared with cows fed to gain 0.45 kg/d (Ciccioli et al., 

2003).  If cows calved in a very good body condition in the fall of the year, and 

nutritient intake was inadequate after calving, fewer cows exhibited estrus during 

the first 70 d after calving (Raskestraw et al., 1986).  In a review by Randel 

(1990), conception rates at the first service ranged from 38 to 62% for energy 

restricted cows and from 66 to 84 % for well-fed cows.  Pregnancy rates for cows 

fed diets with restricted energy after calving were from 50 to 76 % compared with 

87 to 92 % for well-fed cows.  Dietary energy intake after calving may not affect 

the length of the postpartum interval if cows calve with adequate body energy 

reserves and maintain adequate BCS during lactation (Richards et al., 1986; 

Marston et al., 1995; Spitzer et al., 1995; Stagg et al., 1998). 

Follicular development after calving can be effected by postpartum 

nutrition.  Inadequate energy after calving decreased rate of appearance of small 

(5.0 to 7.9 mm) and large (≥10mm) follicles, and a greater percentage of cows 

that received greater amounts of energy ovulated by 150 d post partum (Perry et 

al., 1991).  Postpartum energy intake did not influence the interval to detection of 

the first dominant follicle, but the number of dominant follicles undergoing atresia 

before the first ovulation was greater for cows that received a low energy diet 

(Stagg et al., 1995).  Restricted nutrient intake during the early postpartum period 
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depresses LH pulsatility and decreased the size of the largest follicle, indicating a 

delay in the establishment of functional dominance in underfed cows (Grimard et 

al., 1995).  A negative energy balance in postpartum dairy cows impacts the 

population of ovarian follicles and the functional competence of the dominant 

follicle (Beam and Butler, 1999).  Growth rate of the dominant follicle and 

concentrations of insulin and IGF-I in plasma were greater in cows fed a high 

energy compared with cows fed a low energy diet (Armstrong et al., 2001).  

Undernutrition during the early postpartum period may alter gene expression in 

preantral follicles, which will result in abnormal mature follicles that produce low 

quality oocytes or form corpora lutea with abnormal function. These altered 

functions may cause decreased fertility (Webb et al., 2003).  Lack of follicular 

waves after calving is not the limiting factor for the onset of estrus and ovulation 

(Wettemann et al., 2003). 

 

Suckling 

Cyclic ovarian activity is suppressed during the early postpartum period in 

suckled beef cows (reviewed by Edgerton, 1980; Williams, 1990).  Secretion of 

LH is reduced in suckled anovulatory beef cows compared with cows exhibiting 

normal estrous cycles (Humphrey et al., 1983) and the maximum diameter of 

anovulatory dominant follicles is smaller than during ovulatory estrous cycles 

(Perry et al., 1991).  Continuous suckling delays ovulation and contributes to a 

long postpartum anestrous period, resulting in decreased reproductive efficiency 

(Wettemann, 1994). 
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The primary mechanism by which suckling, and the presence of a calf, 

delays ovarian function is through reduced secretory pulses of LH (Short et al., 

1972; Short et al., 1990; Williams, 1990).  Suckling delayed the onset of LH 

secretion in cows (Williams et al., 1982), whereas suppression of the suckling 

stimulus after 20 to 30 d post partum, increased LH secretion after calving (Stagg 

et al., 1998).  The inhibition of LH secretion by suckling is controlled by GnRH-

secreting neurons (Williams et al., 1983). 

 The effect of altering the suckling stimulus on LH secretion has been 

evaluated (Griffith and Williams, 1996; Mackey et al., 2001).  If suckling occurs 

two or three times a day, the duration of ovarian acyclicity is longer, plasma LH 

concentrations are decreased, and sensitivity of the hypothalamic-hypophyseal 

axis to the inhibitory effects of estradiol on LH are increased compared with cows 

with weaned calves (Acosta et al., 1983; Short et al., 1990; Williams, 1990).  

Secretion of GnRH is inhibited in continuously suckled cows, compared with 

cows suckled once a day (Zalesky et al., 1990).  Acute weaning of suckled 

anestrous beef cows is characterized by a rapid increase in pulsatile LH 

secretion within 48 to 96 h (Shively and Williams, 1989).  The increase in LH 

secretion is initially accompanied with a rapid decrease in content of GnRH within 

the hypothalamus, followed by an increase (Malven et al., 1986).  Short-term calf 

removal (Smith et al., 1979) and early weaning (Bellows et al., 1974) increase 

serum concentrations of LH and decrease the postpartum anestrous interval.  

The increase in LH in serum at calf separation can be markedly attenuated by 

the premature return of calves; an interval of 144 h of separation maybe required 
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for cows to respond to temporary weaning (Cutshaw et al., 1991).  A greater 

suckling intensity, induced by twins (Sinclair et al., 1994) or by adoption of a 

foster calf (Wettemann et al., 1978), and suckling more than once daily extends 

the postpartum anovulatory period (Lamb et al., 1999). 

Nutrient intake and body energy reserves influence the ovarian response 

to alteration of the suckling stimulus.  Early weaning or once-daily suckling after 

65 d post partum did not shorten the length of the anovulatory interval of 

primiparous beef cows that calved with moderate BCS (≥5) and were fed to 

maintain BCS until breeding (Bell et al., 1998).  The effect of short term calf 

separation (48 h) on ovarian function of cows is influenced by BCS and thin cows 

may not respond (Wettemann et al., 1986).  Body energy reserves influence the 

onset of ovarian activity after early weaning (Bishop et al., 1994). 

Maternal identification of a cow’s own calf influences the response to 

suckling (Williams and Griffith, 1995).  This indicates that maternal recognition of 

a calf (maternal-offspring bond) is required to inhibit LH release and ovulation 

(Silveira et al., 1993).  Removal of a cow’s natural calve resulted in the expected 

increase in serum LH concentrations and pulse frequency within 48 h, and 

suckling by foster calves every 6 h for 4 d did not prevent the increase in LH.  

However, suckling by a cow’s own calf at 6 h intervals maintained the 

suppressed secretion of LH which is typical of suckled, anovulatory cows 

(Williams and Griffith 1995).  Postpartum intervals to onset of luteal activity for 

cows with weaned calves and for cows suckling foster calves were similar, and 

both were markedly shorted compared with cows suckling their own calves. 
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Vision and olfaction meditate the suckling-inhibition of LH secretion in 

cattle (Griffith and William, 1994).  Repression of a cow’s visual and olfactory 

senses blocked recognition of her calf and released the cow from the suckling-

mediated inhibition of LH secretion (Griffith and Williams 1996).  Consequently, 

the maternal-offspring bond is essential for the suckling-induced anovulation, and 

cows can use both olfactory and visual cues to identify their calves (Williams and 

Griffith, 1995). 

Endogenous opioid peptides may mediate the suckling-inhibition of LH 

secretion in postpartum beef cows (Myers et al., 1989).  Suckled anestrous cows 

had greater concentrations of opioid receptors in the preoptic-basal forebrain 

area than suckled cyclic cows (Trout and Malven, 1988).  Administration of an 

opioid antagonist (naloxone) increased LH secretion in suckled cows (Whisnant 

et al., 1986), and the ability of opioids to inhibit LH secretion may decrease with 

days after parturition (Whisnant et al., 1986b). 
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Estrous cycles 
Endocrine regulation 

 The duration of bovine estrous cycles averages 21 d, with a normal range 

of 18-26 d (Asdell et al., 1949; Woody et al., 1965; Swanson et al., 1972).  

Estimates of the duration of estrus range from 3 to 28 h in dairy (Allrich, 1994; Xu 

et al., 1997; Dransfield et al., 1998) and beef cows (White et al., 2002).  Duration 

of estrous expression could be due to hypothalamic sensitivity to threshold 

concentrations of estradiol, which may differ among cows (Darwash et al., 2001).  

Concentrations of estrogens in plasma increase during proestrus (Wettemann et 

al., 1972) and progesterone concentrations are greatest during the 15 d of the 

luteal phase (Henricks et al., 1970; Swanson et al., 1972). 

Waves of follicular growth occur at regular intervals during the estrous 

cycle, with two to four distinct cohorts of follicles emerging during the cycle.  

Each follicular wave has an inherent lifespan of 7 to 10 d as it progresses 

through emergence, selection, dominance and atresia or ovulation (Fortune et 

al., 1991).  The emergence of each new wave is stimulated by a transient   

(1 to 2 d) increase in plasma FSH (Adams et al., 1992; Sunderland et al., 1994; 

Stagg et al., 1998) with selection of a follicle occurring during decreasing 

concentrations of FSH in plasma.  The dominant follicle suppresses FSH 

secretion until the follicle either ovulates or becomes atretic.  The first or 

subsequent dominant follicle of the cycle is capable of producing sufficient 

estrogen to induce estrus and subsequently ovulation.  Ovulatory surges of LH 

and FSH occur at behavioral estrus in most domestic farm animals.  Estrogen 

and progesterone govern gonadotropin release through positive and negative 
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feedback on the hypothalamus and anterior pituitary.  The preovulatory surge of 

LH is initiated by the positive feedback of increased concentrations of estradiol 

on the hypothalamus and anterior pituitary (Beck and Convey, 1977; Kesner et 

al., 1981).  Progesterone from the corpus luteum during the luteal phase of the 

estrous cycle suppresses the ovulatory surge of LH (Rahe et al., 1980; Walters et 

al., 1982).  

Estradiol-17β in the absence of progesterone is the primary signal to the 

hypothalamus that induces estrus in cattle (Blache et al., 1991).  Administration 

estradiol benzoate induces behavioral estrus in ovariectomized cows (Asdell      

et al., 1945; Carrick and Shelton, 1969), and immunization against estradiol 

prevents expression of estrus in beef heifers (Martin et al., 1978). When 

progesterone reaches a threshold concentration early in the luteal phase, it 

inhibits the occurrence of estrus (Vailes et al., 1992).  Intensity of estrus 

expression may be not related to either dose or blood concentrations of estradiol-

17β (Coe and Allrich, 1989).  However dose of estradiol may influence the 

duration of estrus (Reames et al., 2005).  

Estradiol is secreted by preovulatory follicles in the ovary (Ireland and 

Roche, 1982; Ireland and Roche, 1983).  Measurement of plasma estradiol in the 

utero-ovarian vein verified that a single large antral follicle was responsible for 

increased concentration of estradiol during proestrus and estrus in cows (Ireland 

et al., 1984).  Felck (1959) first proposed the “two-cell theory” where both thecal 

and granulosal cells of rat ovarian follicles were involved in the production of 

estradiol.  Under the influence of gonadotropins, steroidogenesis occurs in two 
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cell types: the LH-responsive theca interna and the FSH-responsive granulosa 

cells (Fortune and Armstrong, 1978; Fortune and Armstrong, 1997).  Luteinizing 

hormone acts via LH-receptors on the thecal cells to increase production of 

cAMP which activates genes that encode for cholesterol side-chain cleavage, 

17α-hydroxylase, and C17,20 lyase which are required for androgen synthesis 

(Erickson et al., 1985).  Increased enzyme activity (17α-hydroxylase) occurs as 

bovine follicles mature (Rodgers et al., 1986).  Androstenedione is the principal 

aromatizable steroid produced through the Δ5 pathway by bovine theca cells 

(Lacroix et al., 1974; Fortune, 1986).  Androgens produced by theca cells diffuse 

across the follicular basement membrane to be utilized as substrate in estrogen 

biosynthesis by granulosa cells (Baird, 1977).  Bovine granulosa cells supply 

progesterone to the thecal cells for androgens synthesis (Fortune, 1986).  

Androgen aromatization is regulated by FSH in granulosa cells (Dorrington et al., 

1975).  Aromatase activity is absent in immature, hypophysectomized rats but 

can be induced by FSH (Armstrong and Papkoff, 1976). Dieleman and 

Blankenstein (1984) found aromatization decreases approximately 14 h after the 

preovulatory LH surge in cows. 

Frequent low amplitude pulses of LH occur during the follicular phase of 

the bovine estrous cycle (Rahe et al., 1980).  Frequency of LH pulses is less, but 

amplitude is greater during the progesterone dominated luteal phase (Rahe et 

al., 1980).  Estradiol increases synthesis and secretion of LH from the anterior 

pituitary gland at estrus.  Increased serum concentrations of estradiol and 

luteinizing hormone occur concurrently during proestrus (Wettemann et al., 1972; 
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Echternkamp and Hansel, 1973; Chenault et al., 1975; Lemon et al., 1975).  

Basal concentration of LH begins to increase 5-6 d prior to estrus, with a 

preovulatory surge of LH occurring near the onset of estrus (±3 h; Henricks et al., 

1970; Swanson and Hafs, 1971; Chenault et al., 1975).  Anterior pituitary content 

of LH and FSH reach maximal concentrations between d 18 to 20 of the estrous 

cycle, when concentrations of estradiol are increasing (Hackett and Hafs, 1969).  

Pituitary content of LH and FSH decreased 89 and 73%, respectively, from d 18 

to 2 of the subsequent estrous cycle.  In the absence of steroid feedback, 

pituitary and plasma concentrations of LH are negatively correlated (- 0.88) in 

ovariectomized heifers (Swanson et al., 1971). 

The preovulatory surge of LH is maximal for 6 to 10.6 h (Henricks et al., 

1970; Swanson and Hafs, 1971; Chenault et al., 1975).  Kesner et al. (1981) 

suggested that estradiol induces the LH surge in cows by increasing the 

sensitivity of the bovine anterior pituitary to GnRH and by increasing secretion of 

GnRH through an ultra positive feedback loop.  Estradiol initially reduces the 

ability of the anterior pituitary to release LH either by decreasing responsiveness 

of the gonadotropes to GnRH or by reducing GnRH release in cows.  

Concentrations of LH are reduced several hours (10 to 15 h) prior to the LH 

surge, although the anterior pituitary is capable of responding to exogenous 

GnRH.  This indicates that estradiol reduces GnRH release below the threshold 

concentration that normally induces LH release.  Secretion of GnRH resumes 

about 12 h after estradiol stimulation and induces a LH surge (Kesner et al., 

1981).  Maximum LH concentrations occurred when the diameter of the dominant 
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follicle is the greatest in dairy heifers, prior to first estrus (Swanson et al., 1972).  

Exogenous estradiol treatment of ovariectomized cows and heifers (Short et al., 

1973; Beck and Convey, 1977; Imakawa et al., 1986), and ovariectomized ewes 

(Moss et al., 1981; Kasa-Vubu et al., 1992) induced LH release similar to an 

endogenous preovulatory surge. 

 

Estrous behavior 

The first postpartum ovulation in beef cows frequently is not preceded by 

estrous behavior (Wettemann, 1980; Short et al., 1990; Ciccioli et al., 2003).  

Estrus is usually expressed prior to the second ovulation in the majority of cows 

(King et al., 1976; Perry et al., 1991; Ciccioli et al., 2003; Looper et al., 2003).  A 

transitory increase in concentrations of progesterone commonly preceded the 

first pubertal (Rutter and Randel, 1986) and postpartum estrus in beef cows 

(Perry et al., 1991b; Werth et al., 1996; Looper et al., 2003).  Treatment with 

estradiol benzoate, after short-term progesterone treatment, increases the 

estrous response of anestrous cows (McDougall et al., 1992; Fike et al., 1997).   

It is likely that short-term transient luteal activity must precede the first 

postpartum estrus.  Progesterone, acting on neural centers, may enhance the 

effect of estradiol on estrous behavior.  Maximal concentrations of estradiol 

produced during late pregnancy may induce a refractory state to estradiol in the 

brain, which is reversed by progesterone exposure (Carrick and Shelton, 1969).  

Treatment of anestrous cows with progesterone, increased synthesis of LHβ 

mRNA in the anterior pituitary (Looper, 1999), LH secretion (Anderson et al., 
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1996), and number of LH receptors and concentrations of estradiol within the 

largest follicle (Inskeep et al., 1988).  This sequence of events could stimulate 

estrus and ovulation. 

 

Detection of estrus 

Expression of estrous behavior can be altered by numerous factors such 

as the number of cows expressing estrus (Helmer and Britt, 1985; Floyd, 2001), 

age of the cow (Mathew et al., 1999), environmental temperature (Gwazdauskas, 

1985; White et al., 2002), or days after calving (Pennington et al., 1986).  

Detection of estrus by human observation has been the method of choice to 

identify cows in estrus and time to inseminate (Foote, 1975; Lehrer et al., 1992).  

Numerous factors such as housing arrangement, milk yield, floor surface, feet 

and leg problems and estrus status of herd mates effect the expression of estrus 

(Senger, 1994).   

Low to moderate estrous detection efficiencies achieved on most farms 

reflect inadequate methods, but short duration of estrus with few mounts 

received could also be a problem.  Estrous detection aids have been developed 

to assist observation; some of these include mount detectors, tail chalk, teaser 

bulls or androgenized cows with chinball markers, and video recordings 

(Macmillan and Curnow, 1977; Sawyer et al., 1986; Senger, 1994).  Recent 

advances in detection methods include automated methods such as pedometry 

and rump mounted, pressure-sensitive electronic mount detection devices 
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(Pennington et al., 1986; Senger, 1994; Stevenson et al., 1996; White et al., 

2002).  

Marking the tail heads of cows with paint or a livestock marker has been 

used as an effective indicator of estrus (Foote, 1975; Macmillan and Curnow., 

1977).  When an estrous cow is mounted by other cows or bulls, the paint is 

either partially or totally removed.  Efficiencies of estrous detection using tail 

paint vary from 44 to 96% (Macmillan and Curnow, 1977, Sawyer et al., 1986). 

The use of pedometers to monitor activity of cows was first reported by 

Kiddy (1977).  When cows are in estrus, their physical activity increases (Farris, 

1954, Reimers et al., 1985).  Lehrer et al. (1992) reviewed the effectiveness of 

pedometry-aided detection of estrus (when comparing with visual observation) 

and found that the accuracy of detection of estrus using pedometry varied from 

22 to 100%, and that efficiency of visual observation varied from 60 to 100% . 

Electronic estrous detection systems are important tools for researchers to 

investigate duration of estrous, onset of estrus expression, mounting frequency, 

breed effects on behavior, synchronized estrous expression, and time of AI 

relative to esxpression of estrus (Rae et al., 1999).  The HeatWatch system 

(DDx, Inc., Denver CO), is an automated mount monitoring system that consists 

of individual rump-mounted mount detectors that transmit the occurrence of each 

mount (time and duration of mount) via radio signal to a receiver.  A buffer then 

stores the mount data, until accessed with a computer, using HeatWatch 

software (Nebel et al., 1995; Xu et al., 1997; White et al., 2002).  
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Stevenson et al. (1996) compared the effectiveness of the HeatWatch 

system to twice daily visual observation for estrous detection in beef heifers.  The 

HeatWatch system increased the efficiency of estrous detection by 37% (100% 

vs 73%) over visual observation.  In a similar study, Borger et al. (1996) 

compared the efficiency and accuracy of twice daily visual observation to 

HeatWatch in 74 mature beef cows.  The use of the HeatWatch system improved 

the efficiency of estrous detection compared with visual observation (91.1% vs 

65.8%, respectively).  The accuracy of estrous detection by HeatWatch and 

visual observation were 87.5% and 91.5%, respectively.   
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Role of the Insulin-Like Growth Factor System in the Ovary 

 

The insulin-like growth factor-I system 

The insulin-like growth factor (IGF) system is composed of the IGF-I and 

IGF-II peptides, six structurally homologous high-affinity IGF binding protein 

(IGFBPs), IGFBP-specific proteases, a family of IGFBP-related (low affinity) 

proteins, and two IGF receptors (Hwa et al., 1999).  The IGF system is the most 

extensively studied growth factor systems in the ovary (Poretsky et al., 1999).  

Insulin-like growth factor-I and IGF-II, are mitogenic, and antiapoptotic peptides 

that promote differentiation and also have insulin-like metabolic effects mediated 

by binding to specific high-affinity membrane receptors.  The type I IGF receptor 

mediates the metabolic and growth promoting actions of IGF-I and IGF-II at 

target cells through the tyrosine kinase pathway.  The type II IGF receptor is 

important in IGF-II turnover and may mediate signals involved in angiogenesis or 

other processes.  Insulin-like growth factors circulate bound primarily to IGFBP-3, 

as well as other IGFBPs, that prolong their half lives and also facilitate 

transcapillary transport to tissues.  Locally produced IGFBPs modulate (mostly 

inhibit) IGF actions at target cells and some have IGF independent actions.  

Insulin-like growth binding proteins have up to two orders of magnitude greater 

affinities for the IGFs than do the IGF receptors. Insulin-like growth factor binding 

proteins-specific proteases, that have been identified in a variety of cell types and 

in body fluids, decrease the affinities of specific IGFBPs for IGF peptides.  A 
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group of IGBP proteases are members of matrix metalloproteinase (MMP), 

metzincin, and serine protease superfamilies (Hwa et al., 1999). 

 

Expression of IGF and IGF Receptor  

During folliculogenesis in the human, IGF expression is follicle stage-

specific and is compartmentalized.  Insulin-like growth factor-II mRNA is 

expressed in theca and perifollicular vessels of all follicles (El-Roeiy et al., 1993).  

In small antral follicles of normal ovaries, IGF-II mRNA and protein are expressed 

in granulosa and thecal cells.  Although IGF-II is in atretic antral follicles, 

expression by thecal cells is minimal (Poretsky et al., 1999). 

 

Actions of IGF-I and -II in the ovary 

A number of functions in the ovary are either modulated by IGF-I alone or 

in concert with gonadotropins.  For the most part in the rat, IGF-I acts on 

granulosa cells to amplify actions of gonadotropins (Grimes et al., 1994; Jia et 

al., 1986), and IGF-I may also stimulate interstitial cells (Cara et al., 1988; 

Magoffin et al., 1990).  In humans, the in vitro effects of IGF-I on granulosa and 

theca cells have been investigated, eventhough the endogenous ligand in human 

ovaries is IGF-II.  Estradiol stimulates synthesis of IGF-I and IGF-II by human 

granulosa and granulosa-luteal cells (Poretsky et al., 1999).  Maturation of 

immature human oocytes in vitro is augmented by IGF-I (Gomez et al., 1993) and 

IGF-I is antiapoptotic in follicles.  Apoptosis of granulosa and luteal cells within 

the follicle is enhanced by IGFBPs (Chun et al., 1994).  The percentages of 
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ovine, porcine, rabbit and rat granulosa cells that express P450 side chain 

cleavage enzyme are increased by IGF-I in synergy with FSH (Urban et al., 

1994).  Insulin-like growth factor-I stimulates estradiol and progesterone 

secretion by porcine granulosa cells in vitro (Balwant et al., 1997).  Furthermore, 

IGF-I increases estradiol and progesterone secretion alone or in combination 

with FSH in murine, bovine, ovine and caprine follicles (Campbell et al., 1995; 

Gong et al., 1994), and IGF-I can enhance the expression of FSH receptor in 

granulosal cells (Minegishi et al., 2000). 

 

Insulin-Like Growth Factors in Follicular Fluid and Serum 

 Constituents within follicular fluid (FF) of the human Graffian follicle 

originate from both the circulation and local intraovarian production. (Van Dessel 

et al., 1996).  Concentrations of IGF-I are similar in follicular fluid from estrogen- 

vs androgen-dominant follicles and concentrations are not correlated with 

follicular size.  Follicular fluid IGF-II is primarily from local intraovarian production 

of granulosa and perhaps theca cells, in addition to some contribution from the 

circulation. 
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Insulin-Like Growth Factor Binding Proteins: Expression and Action within 

the Ovary 

Six high-affinity IGFBPs have been identified, and expression of mRNA for 

five IGFBPs have been detected in the human ovary (El-Roeiy et al., 1994).  

Expression of IGFBP-1 mRNA occurs in granulosa cells of dominant follicles as 

well as in the corpora lutea.  Follicular expression of mRNA for IGFBP-2, -3, -4 

and -5 was detected in human thecal cells from small antral follicles and 

dominant follicles (Poretsky et al., 1999).  During the human menstrual cycle 

expression of IGFBP is dependent on the functional status of the follicle as 

androgen-dominant follicles (high A:E ratio) have greater concentrations of 

IGFBP-2 and IGFBP-4 compared with healthy estrogen-dominant follicles 

(Cataldo and Giudice, 1992).  Insulin-like growth factor binding protein-4 is a 

potent inhibitor of FSH and IGF-II stimulated granulosa cell steroidogenesis 

(Mason et al., 1998).  Greater concentrations of IGBPs decrease intrafollicular 

levels of bioavailable IGFs, which contribute to atresia in androgen-dominant 

follicles (Poretsky et al., 1999). 

 

Regulation of Ovarian IGF Binding Proteins 

Granulosa cell secretion of IGFBP is inhibited by gonadotropins and 

insulin-like peptides, which enhances IGF availability and gonadotropin action 

within the follicle (Poretsky et al., 1999).  Chandrasekher et al. (1995) found that 

modulation of IGF action is also influenced by IGFBP proteases that decrease 

the binding of IGFBPs to IGFs.  An IGFBP-4 protease is present in estrogen-
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dominant follicular fluid of humans, but not in androgen-dominant follicular fluid.  

Protease activity for IGFBP-4 also occurs in dominant follicles of bovine (Rivera 

et al., 2001), porcine (Besnard et al., 1997), and ovine (Mazerbourg et al., 1999) 

ovaries.  Insulin-like growth factor-4 is highly conserved in bovine, ovine, human, 

mouse, and rat ovarian follicles (Poretsky et al., 1999).  Conover et al. (1999) 

found that the IGFBP-4 protease in human ovarian follicular fluid is pregnancy-

associated plasma protein-A (PAPP-A), which is a large dimeric glycoprotein with 

a molecular weight of 44 kD (Oxvig et al., 1993).  Pregnancy-associated plasma 

protein-A is an active enzyme (Lawrence et al., 1999) and IGFBP-4 is its only 

substrate.  Granulosa cells from small follicles (≤ 8mm) secrete less PAPP-A, 

whereas granulosa cells from dominant follicles (≥ 9mm) secrete greater 

amounts of PAPP-A (Chandrasekher et al., 1995).  
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Metabolic hormones and postpartum reproduction 

 
Insulin 
 

Insulin is a regulator of carbohydrate, fat and protein metabolism 

(Poretsky et al., 1999) and is important in the regulation of thermogenesis 

(Rothwell and Stock, 1988).  However, the role of insulin on reproduction is not 

fully understood. Insulin is secreted by the pancreas and may cross the blood-

brain barrier.  The most direct route for peripheral circulatory insulin to enter the 

cerebrospinal fluid is via passage across the “blood-cerebrospinal fluid barrier” 

(Schwartz et al., 1992).  Insulin receptors have been identified in the 

hypothalamus (Adamo et al., 1989), however fasting, diabetes and obesity do not 

influence the content of insulin receptors in the brain as observed in peripheral 

tissues such as the liver (Havrankova et al., 1979).  

Infusions of insulin directly into the ventral hypothalamus of rats reduce 

food intake and body weight (McGowan et al., 1990).  The ability of centrally 

admininstered insulin to reduce food intake is attenuated when animals are 

metabolizing more fat relative to carbohydrates (lipolytic as opposed to lipogenic, 

Arase et al., 1988).  Food deprivation suppresses concentrations of insulin in 

blood of rats (Schwartz et al., 1992), and feed restriction results in reduced 

plasma concentrations of insulin in cattle (Richards et al., 1989; Bossis et al., 

1999). 

Insulin influences secretion of gonadotropins by effects on the 

hypothalamus and pituitary through modulation of GnRH neuronal activity in 

response to metabolic status (Van Houten et al., 1979).  Release of GnRH is 
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increased eight-fold by low concentrations of insulin, but this only occurs when 

glucose is available (Arias et al., 1992; Hileman et al., 1993; Dhuyvetter and 

Caton, 1996).  Intraceroventricular infusion of insulin to ovariectomized diet-

restricted ewes, increases concentrations of LH, indicating that insulin is a 

component of hypothalamic mechanisms regulating secretion of LH (Daniel et al., 

2000).  Beef heifers on a greater nutrient intake, had greater concentrations of 

insulin and LH in serum, and reach puberty at a younger age, compared with 

animals on restricted nutrient intake (Yelich et al., 1996). 

 Insulin may potentiate the steroidogenic response to gonadotropins on the 

ovary (Davoren and Hsueh, 1984; Willis et al., 1996) and may act on the anterior 

pituitary to increase sensitivity of gonadotropes to GnRH (Soldani et al., 1994).  

Insulin is an important signal mediating nutritional effects on follicular dynamics in 

cattle (Webb et al., 2004).  McCann and Hansel (1986) found that abnormal 

pituitary and luteal functions in fasted heifers were associated with concurrent 

fasting-induced changes in insulin and glucose metabolism.  In addition, 

ovulatory increases in plasma insulin and IGF-I concentrations were more 

pronounced during the preovulatory period in cattle offered a high energy diet 

(Armstrong et al., 2001).  Insulin receptors are present in granulosa, thecal and 

stromal cells in humans and other animals (Poretsky and Kalin, 1987; El-Roeiy et 

al., 1993; Samoto et al., 1993) and insulin enhances luteal cell steroidogenesis in 

vitro (Spicer et al., 1993; Moniaux et al., 1994).  Bovine granulosa in culture cells 

are critically dependent on the presence of physiological concentrations of insulin 

(Glister et al., 2001).  Insulin stimulates proliferation and steroidogenesis of 
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bovine granulosa cells in vitro (McArdle et al., 1991; Spicer and Echternkamp, 

1995; Gutierrez et al., 1997b) and increases progesterone production (Staples et 

al., 1998).  Insulin is a potent stimulator of FSH-induced estradiol secetion by 

bovine granulosa cells (Spicer et al., 1994), and insulin infusion during a 

superovulatory regime in cattle increased intrafollicular concentrations of 

estradiol in large graafian follicles by five-fold and increased the diameter of large 

follicles (Simpson et al., 1994).  There is correlation between diet-induced 

increases in circulating concentrations of insulin with increased estradiol 

production by cultured granulosa cells from small antral (1 to 4 mm) follicles 

(Armstrong et al., 2002b).  Restricted nutrient intake decreases circulating 

concentrations of insulin in cows (Richards et al., 1989b; Armstrong et al., 1993; 

Bossis et al., 1999; Armstrong et al., 2001) and granulosa cells from nutritionally 

induced anoestrous cows have the capacity to respond to insulin in vitro 

(Hamilton et al., 1999). 

Inadequate nutrient intake affects the growth of dominant follicle (Murphy 

et al., 1991) in cattle, and insulin may mediate the effects of acute changes in 

nutrient intake on follicular dynamics (Webb et al., 2004).  Decreased 

concentrations of insulin in plasma after calving are associated with a negative 

energy balance and decreased fertility of dairy cows (Beam and Butler, 1999; 

Butler, 2000).  Administration of insulin increases follicular growth by increasing 

the number of small follicles and reducing the number of atretic follicles in swine 

(Matamoros et al., 1991). Treatment of primiparous sows with insulin increases 

the percentage in estrus (Whitley et al., 2002).  Infusion of insulin into beef 
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heifers increased the diameter of the dominant follicle (Simpson et al., 1994) and 

ovulation rate in energy-deprived beef heifers (Harrison and Randel, 1986).  

Follicular recruitment can be enhanced by insulin.  Insulin concentrations are 

greater in heifers fed twice maintenance, with no carryover after the diet was 

changed, and the increase in number of small follicles was positively associated 

with circulating insulin (Gutierrez et al., 1997). Insulin concentrations can be 

affected by BCS at calving.  Ciccioli et al. (2003) found that concentrations of 

insulin in plasma during 7 wk before the first estrus were greater for cows with a 

BCS 5 at calving compared with cows with BCS 4, however postpartum nutrition 

did not affect concentrations of insulin before estrus for cows with a greater 

nutrient intake. 

The initiation of the first ovulation is delayed in dairy cows selected for 

high genetic merit for milk yield and is associated with reduced concentration of 

insulin in plasma (Butler, 2000).  Gong et al. (2002) found that feeding a diet that 

increased plasma concentrations of insulin in dairy cows increased the proportion 

of cows that ovulated within 50 days of calving, reduced the interval from calving 

to first ovulation, and tended to reduce the intervals from calving to first service 

and to conception.  Concentrations of insulin in follicular fluid of dairy cows fed a 

corn grain diet are 26 % greater than in their counterparts fed corn gluten meal 

(Landau et al., 2000).  The content of insulin in follicles was significantly affected 

by follicular status; preovulatory follicles had greater insulin concentrations than 

subordinate follicles.  Therefore, nutrient intake can effect intrafollicular insulin 

contents and might influence reproductive status of the animals. 
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Insulin may facilitate production of IGF-I by the liver (Keisler and Lucy, 

1996).  Increased insulin and a concominant decrease in growth hormone (GH) 

is an important relationship to consider when evaluating nutritional impacts on 

reproduction (Hawkins et al, 2000).  The functional relationship between insulin 

and GH with respect to reproduction appears to be anabolic in nature (Hess et 

al., 2005). 

 

Insulin-like growth factor –I 
 
 The somatotropic axis has been implicated as a mediator of metabolic 

status to the central nervous system (Keisler and Lucy, 1996).  Insulin-like growth 

factor-I, is a mitogenic GH dependent serum peptide with structure and functions 

closely related to insulin and IGF-II.  IGF-I increases granulosal cell proliferation 

and steroidogenesis in cattle, sheep and pigs (Spicer and Echternkamp, 1995).  

Insulin-like growth factor-I may act via autocrine, paracrine, and/or endocrine 

mechanisms (Armstrong and Benoit, 1996).  The liver is the main source of 

systemic IGF-I and GH is the primary regulator of hepatic IGF-I gene expression 

and secretion (Etherton and Bauman, 1998).  Expression of the IGF-I gene 

occurs in granulosal cells (Hernandez et al., 1989; Wang et al., 1997).  Murphy et 

al. (1987) subjected the total RNA from rat ovaries to a liquid 

hybridization/RNAase protection assay to establish the ovary as a site of IGF-I 

production.  Porcine ovarian follicles and corpora lutea also express mRNA for 

IGF-I (Gadsby et al., 1996).  Cellular localization studies have established that 

granulosal cells are the major ovarian cell type that express the IGF-I mRNA 
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(Wathes et al., 1995; Leeunberg et al., 1996; Bao and Garverick, 1998; Ge et al., 

2000).  Treatment of ewes with recombinant GH significantly increased secretion 

of IGF-I by ovarian follicles in vitro, indicating that IGF-I gene expression in 

ovaries may be modulated by GH (Gong et al., 1996).  

 Insulin-like growth binding proteins (IGFBPs) constitute a heterogenous 

group of at least six distinct proteins capable of binding IGFs, with affinities in 

range of 10-10 to 10-9 M.  Functions of the IGFBPs are to transport IGFs from the 

circulation to the peripheral tissues, to maintain a reservoir of IGFs in the 

circulation, to potentiate or to inhibit IGFs, and to maintain IGF-independent 

biological effect (Stewart et al., 1996).  Concentrations of plasma or follicular 

IGFBPs change during folliculogenesis.  Concentrations of IGFBP-3 are similar in 

dominant follicles when compared with healthy subordinate follicles (Nicholas et 

al., 2002), however, concentrations of IGFBP-2, -4 and -5 are significantly less in 

dominant follicles than in subordinate follicles (Monget et al., 1993; Cwyfan-

Hughes et al., 1997; Armstrong et al., 1998; Mihm et al., 2000; Spicer et al., 

2001).  Changes in the steady-state concentration of IGFBPs in follicular fluid 

result from a combination of changes in gene expression (Armstrong et al., 1998) 

and proteolysis (Rivera et al., 2001; Spicer et al., 2001). 

 Insulin-like growth factor-I is associated with physiological processes such 

as onset of puberty (Jones, et al., 1991; Yelich et al., 1996), postpartum anestrus 

(Roberts et al., 1997; Beam and Butler, 1997, 1998; Stagg et al., 1998) and first 

postpartum estrus (Ciccioli et al., 2003).  Concentrations of IGF in plasma have 

been associated with the onset of lactation (Taylor et al., 2004).  Concentrations 
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of IGF-I in plasma during the prepuberal period were significantly related to IGF-I 

plasma during the start of the first lactation, and heifers that had lower IGF-I 

concentrations had delayed ovulation and altered reproductive function during 

the first lactation (Taylor et al., 2004).  Decreased concentrations of IGF-I are 

associated with delayed puberty in cattle (Granger et al., 1989) and increased 

postpartum anestrous intervals (Rutter et al.; 1989; Nugent et al., 1993).  

Concentrations of IGF-I are reduced in nutritionally anestrous cows (Richards et 

al., 1991) and in short-term (48 h) fasted heifers (Spicer et al., 1992).   Serum 

IGF-I in humans is reduced in patients with protein-calorie malnutrition (Soliman 

et al., 1986) and minimal serum IGF-I in chronically malnourished individuals can 

be normalized by nutritional rehabilitation (Thissen et al., 1994).  Concentrations 

of IGF-I in adolescents with anorexia nervosa are reduced and the amount of 

weight deficit is negatively correlated with plasma IGF-I (Counts et al., 1992).  

Decreased concentrations of IGF-I in serum of fasted obese men are correlated 

with the decrease in excretion of urinary urea, suggesting that concentrations of 

IGF-I in serum may be an indicator of nitrogen loss (Clemmons et al., 1981). 

 Changes in systemic concentrations of IGF-I are associated with ovarian 

activity in dairy cows (Webb et al., 1999).  Concentrations of IGF-I in plasma are 

positively correlated with body energy reserves and amount of feed intake (Rutter 

et al., 1989; Bishop et al., 1994; Vandehaar et al., 1995; Yelich et al., 1996; 

Bossis et al., 2000; Armstrong et al., 2001; Rausch et al., 2002).  Concentrations 

of IGF-I were greater in heifers with greater nutrient intake during the 10 weeks 

before puberty (Yelich et al., 1995).  Radcliff et al. (2004), found that greater 
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nutrient intake by Holstein heifers increased serum concentrations of IGF-I and 

decreased serum GH.  Negative energy balance during early lactation (Spicer et 

al., 1990; Vicini et al., 1991; Sharma et el., 1994; Kobayashi et al., 1999; 2002), 

chronic (Richards et al., 1991, 1995; Bossis et al., 1999) or acute nutritional 

restriction (Armstrong et al., 1993; Armstrong et al., 2001; White et al., 2001; 

Kobayashi et al., 2002), and 48-h fasting (Spicer et al., 1992; Amstalden et al., 

2000) reduce plasma concentrations of IGF-I in cattle.  Decreases in plasma 

IGF-I were associated with acute nutrient restriction during the periparturient 

period in dairy cows (Kobayashi et al., 2002).  Concentration of IGF-I 7 wk before 

the first estrus were greater in postpartum cows with greater nutrient intake 

(Ciccioli et al., 2003). 

 The majority of IGF-I in follicular fluid is derived from the systemic 

circulation in ruminants, (Leeuwenberg et al., 1996), therefore the availability of 

IGF-I to follicles is reduced when plasma concentrations are reduced (Schoppee 

et al., 1996).  In consequence, this may result in a failure of the dominant follicle 

to ovulate in the early postpartum period (Beam and Butler, 1999).  Most reports 

indicate that follicular concentrations of IGF-I are not influenced by nutrient intake 

(Spicer et al., 1991; 1992).  However, if nutritionally induced anestrous cows are 

infused with 2 μg of GnRH every hour, concentrations of IGF-I in follicular fluid 

increase (Hamilton et al., 1999) and cows resumed ovarian activity (Vizcarra et 

al., 1997). 

 Overall, undernutrition increases GH secretion in cattle (Armstrong et al., 

1993; Bossis et al., 199) and concentrations of IGF-I in plasma and hepatic IGF-I 
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mRNA are decreased (VanderHaar et al., 1995).  This is probably due to an 

insulin-dependent down-regulation of the GH receptor (Thissen et al., 1994; 

Kobayashi et al., 1999; Butler et al., 2003).  

 The biovailability of IGF-I in plasma and its clearance from serum is 

controlled by IGFBP (Thissen et al., 1994).  Peripheral concentrations of IGFBPs 

are regulated by feed intake in cattle, and IGFBP-3 in plasma is positively 

correlated with dietary intake (Rausch et al., 2002) and increased growth rate 

(Vestergaard et al., 1995).  Insulin-like growth factor binding protein-2, is 

associated with inadequate nutritional status (Armstrong and Benoit, 1996). In 

dairy cows, 2 d of feed restriction increased IGFBP-2, and IGFBP-3 was not 

altered (McGuire et al., 1995).  Restricting heifers to 54% of maintenance for 84 

d increased plasma IGFBP-2 by 79%, but plasma IGFBP-3 was not altered 

(Vanderharr et al., 1995).  Roberts et al. (1997) found that concentrations of 

IGFBP-2 in serum of beef cows at 2 wk post partum was diminished, and 

concentrations of IGFBP-3 increased in cows that resumed estrus by 20 wk post 

partum compared with anestrous cows.  However, ewes fed a lower plane of 

nutrition had greater amounts of IGFBP-2, and ewes in thin body condition (≤ 3) 

had decreased plasma concentrations of IGFBP-3 and -4 compared with ewes in 

good (>3) body condition (Snyder et al., 1999).  Increased dietary energy 

decreases the steady-state concentration of mRNA encoding IGFBP-2 and -4 in 

small antral follicles, which in turn increases the bioavailability of locally produced 

IGF-II and systemically derived IGF-I in follicles (Webb et al., 2003; Armstrong et 

al., 2003).  Expression of mRNA for IGFBPs occurs in the ovary (Bao and 
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Garverich, 1998) and IGFBP-2, -3, -4 and -5 have been detected in the ovarian 

follicular fluid of beef cows (Funston et al., 1996).  Fasting increases mRNA for 

IGFBP-1 and -2 in the liver of rats (Tseng et al., 1992) and also increases 

peripheral concentrations of IGFBP-1 and -2 (Orlowski et al., 1990; Murphy et al., 

1991). Fasting increased plasma concentrations of IGFBP-I (Busby et al., 1988; 

Baxter et al., 1993) and IGFBP-2 (Clemmons et al., 1991; Smith et al., 1995). 
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Other metabolic signals that regulate reproduction 

Leptin 

 Leptin is derived from the Greek term ‘leptos’ which means thin (Zeiba et 

al., 2005).  In 1994, the gene for the protein was cloned and sequenced from 

both mice and humans.  Leptin is a 16- kDa protein produced and secreted from 

adipocytes (Zhang et al., 1994).  Leptin has a central role in the regulation of 

body energy homeostasis (appetite, energy expenditure, nutrient partitioning 

between tissues and body composition), cell differentiation and proliferation 

(Kershaw et al., 2004), regulation of metabolism (Baile et al., 2000), reproduction 

(Chehab et al., 1996), immune and renal functions (Cioffi et al., 1996), 

angiogenesis (Sierra-Honigmann et al., 1998), blood pressure control (Frühbeck, 

1999), and bone formation (Ducy et al., 2000). 

 Concentrations of leptin and expression of adipocyte ob mRNA are 

strongly correlated with estimates of obesity, total fat mass, percent body fat, and 

body mass index (Ahima and Flier, 2000).  Leptin gene expression has been 

detected in adipose tissue (Chilliard et al., 2001), pituitary glands (Yonekura et 

al., 2003), mammary glands (Bonnet et al., 2002), fetal tissues (Muhlhausler et 

al., 2003), rumen, abomasum and/or duodenum (Yonekura et al., 2002), and 

muscle (Wang et al., 1998).  In ruminants, leptin may be involved in stress 

responses, as it modulates the hypothalamic-pituitary-adrenal axis (Heiman et 

al., 1997), and leptin receptors have been identified in the adrenal medulla and 

cortex (Cao et al., 1997). 
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Frisch (1980) suggested that the amount of body fat could in some way 

trigger initiation of reproductive function in female rats and humans.  Leptin 

regulates reproductive function (Cunningham et al., 1999; Keisler et al., 1999) 

and signals the adequacy of energy stores for reproduction by interacting with 

different target organs in the hypothalamic-pituitary-gonadal axis (Frühbeck et al., 

1998). 

Leptin receptors are localized in several reproductive tissues (reviewed by 

Spicer et al., 2001), including testis of mice (El-Hefnawy et al., 2000), ovine 

anterior pituitary and hypothalamic regions (Dyer et al., 1997), and the 

neuroendocrine reproductive axis in monkeys (Finn et al., 1998).  Leptin 

treatment accelerated onset of puberty and behavioral estrus in lean mice 

(Chehab et al., 1997) and prevents the delay in puberty induced by food 

restriction (Cheung et al., 1997).  Leptin inhibited weight gain in fed rats but 

prevented the delay in puberty that occurs with nutrient restriction (Gruaz et al., 

1998).  Serum concentrations of leptin and IGF-I, and gene expression for leptin, 

increased as heifers approached puberty (Garcia et al., 2002).  Serum 

concentrations of leptin change with stage of the menstrual cycle in women 

(Teirmaa et al., 1998); concentrations are greater in mid-luteal plasma compared 

with during the follicular phase (Hardie et al., 1997), and concentrations of leptin 

decrease after menopause (Rosenbaum et al., 1996). 

Leptin receptors have been found on neuropeptide Y (NPY) neurons in the 

hypothalamus (Finn et al., 1998).  Neuropeptide Y is a 36-amino acid 

neuropeptide that is involved in food intake and neuroendocrine control 
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(Houseknecht and Portocarrero, 1998).  NPY is a potent stimulator of feed intake 

and inhibitor of gonadotropin secretion (McShane et al., 1992; Kalra and Kalra, 

1996).  Leptin receptors have been found on NPY neurons in the hypothalamus 

(Finn et al., 1998).  Leptin has been proposed as a metabolic signal to the central 

nervous system that control pulsatile LH release (Barash et al., 1996), and 

intraventricular administration of leptin decreases NPY and can restore LH 

secretion (Shwartz et al., 1996; Ahima et al., 1999).  

Plasma concentrations of leptin are positively related with nutrient intake 

in mature gestating cows (Lents et al., 2005) and increased postpartum nutrient 

intake increased BCS and concentrations of leptin in lactating beef cows (Ciccioli 

et al., 2003). 

 

Nonesterified Fatty Acids 

Degree of negative energy balance is positively correlated with non-

esterified fatty acids (NEFA) in plasma of dairy cows (Canfield and Butler, 1990; 

Staples et al., 1990) and beef cows after calving (Richards et al., 1989b) and in 

beef heifers (Bossis et al., 1999).  Plasma NEFA were similar during the first 2 to 

3 weeks post partum in dairy cows with ovulatory or anovulatory first-wave 

dominant follicles (Beam and Butler, 1997, 1998).  Nonesterified fatty acids are 

indicators of energy status in pregnant beef cows (Russel and Wright, 1983).  

Plasma nonesterified fatty acids were greater in cows with greater fat deposition 

during the last 4 wk of pregnancy (Guedon et al., 1999).  Concentrations of 
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NEFA during 7 wk before estrus were greater in cows with greater BCS comarted 

with thinner cows (Ciccioli et al., 2003). 

 

Glucose 

Concentrations of glucose in plasma of dairy cows during the first 3 to 4 

weeks postpartum (Beam and Butler, 1997, 1998) are usually minimal compared 

with later weeks of lactation.  The ovary uses glucose as a source of energy 

(Rabiee et al., 1999).  Inadequate concentrations of glucose in plasma due to 

feed restriction or fasting is associated with decreased LH pulsatility in sheep 

(Clarke et al., 1980), monkeys (Chen et al., 1992) and cows (Yelich et al., 1996).  

Minimal LH pulse frequency during negative energy balance may result from 

inhibition of the hypothalamic GnRH pulse generator by inadequate energy.  

Plasma concentrations of glucose were positively correlated with frequency of LH 

pulses in prepuberal heifers fed two different levels of nutrition (Yelich et al., 

1996).  Glucose may also have a role during the breeding period as greater 

glucose concentrations before insemination are associated with a greater 

conception rate (Forshell et al., 1991; Pehrson et al., 1992).  Nutritional 

restriction in beef cows and loss of weight and BCS are associated with reduced 

concentrations of glucose in plasma (Richards et al., 1989a; Rutter and Mann, 

1991; Grimard et al., 1995).  Concentrations of glucose in plasma are reduced 

during restriction of nutrient intake prior to cessation of ovulation (Richards et al., 

1989b; Bossis et al., 1999).  Vizcarra et al. (1996) found that cows with a BCS of 
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6 at calving had greater concentrations of glucose during the subsequent 

breeding season than cows that calved with a BCS of 4 or 5. 
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Summary 

 

An understanding of the endocrine mechanisms that control postpartum 

anestrus is essential to decrease the interval from calving to conception.  It is 

well established that nutrition has a profound influence on reproductive 

performance of domestic ruminants with special emphasis on the period from 

calving to the first postpartum estrus.  Many factors influence the length of 

postpartum anestrus; suckling and nutrition are major factors while minor factors 

are presence of bull, breed and age at calving.  The effect of nutrition on 

postpartum reproduction is dependant on whether the nutritional deficiencies 

occur before or after calving and thus nutritional management during gestation 

and after calving are of major concern. 

The functions of metabolic hormones during the reestablishment of 

ovarian activity such as the insulin-like growth factor system, insulin, nonsterified 

fatty acids and leptin have been studied.  Inadequate nutrient intake affects the 

growth of the dominant follicle in cattle.  Insulin may as well mediate the effects 

of acute changes in nutrient intake on follicular dynamics.  Concentrations of 

steroids should reflect steroidogenic capacity in cows with different nutrient 

intake.  Thus, metabolic hormones may exert a direct effect on the ovary and 

could mediate the effects of nutrient intake on reproductive function (Wettemann 

and Bossis, 2000). 

The first postpartum estrus in beef cows is usually preceded by a transient 

increase in plasma progesterone and is followed by a normal luteal phase.  The 
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ability of the dominant follicles to produce estradiol is limited during the 

postpartum anovulatory period. 

 Therefore, the objectives of this research are:  1) to determine the effect of 

post partum nutrition on: concentrations of insulin, IGF-I, progesterone, 

androstenedione, estradiol, IGF-I binding proteins (IGFBP) in follicular fluid (FF) 

of dominant follicles (DF) and abundance of mRNA for IGFBP -4, -5, aromatase 

and pregnancy-associated plasma protein-A in granulosal cells of DF, and 2) to 

determine if treatment with GnRH or estradiol influences the onset of first estrus 

and luteal activity of postpartum anestrous beef cows. 

 



CHAPTER III 
 
Influence of postpartum nutrition of primiparous beef cows on insulin-like 

growth factor-I , insulin and insulin-like growth factor binding proteins in 

plasma and follicular fluid, and mRNA for aromatase, insulin-like growth 

factor binding proteins -4 and -5 and pregnancy-associated plasma protein-A  

 

ABSTRACT 

Effects of nutrition on insulin-like growth factor-I (IGF-I) and insulin in plasma and 

dominant follicles (DF) were evaluated at 72 ± 2d  and at 56 ± 9 d (experiment 1 

and experiment 2 respectively) after calving in anovulatory primiparous Angus x 

Hereford cows (Exp 1 n= 12; Exp 2 n= 28).  Body condition score (BCS = 1 

emaciated, 9= obese) at calving was 4.5 ± 0.1 in experiment 1 and 4.8 ± 0.2 in 

experiment 2.  Cows were stratified based on BCS at calving and randomly 

assigned to one of two postpartum nutritional treatments: maintain (M), 2.27 kg of 

a 40% CP supplement per day and ad libitum hay; or gain (G), ad libitum access 

to a 50 % concentrate diet and hay.  Estrus was monitored with electronic mount 

detectors (HeatWatch) and blood samples were collected twice a week starting 

at 30 d postpartum.  Ovarian follicles were evaluated daily by ultrasonography 

commencing at 42 d (Exp. 1) or 30 d (Exp. 2) after calving.  Body condition score 

at aspiration of the DF was greater for H (5.1 ±0.3 and 4.8 ± 0.2) than M (4.5 ± 

43
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0.1 and 4.3 ± 0.3 in Exp.1 and 2, respectively) cows and postpartum interval to 

estrus with luteal activity was longer for M cows (132 ± 2 and 95 ± 24) than for H 

(109.7 ± 15.2 and 80 ± 11d, in Exp. 1 and 2, respectively).  Maximum size of DF 

was influenced by nutritional treatment in Exp. 1 (12.2 ± 0.4 and 11.1 ± 0.7 mm; 

G and H cows, respectively) but it was not influenced by nutritional treatment 

(13.2 ± 1.6 mm) in Exp. 2.  Postpartum interval to luteal activity increased in 

cows with lower body condition score at calving. Concentrations of IGF-I in FF 

were greater for H (34.4 ± 7.0 and 34.0 ± 10.7 ng/ml) than M (24.0 ± 3.7 and 23.6 

± 8.5 ng/ml, for Exp. 1 and 2, respectively) cows and plasma concentrations of 

IGF-I prior to aspiration were also greater in G (36.6 ± 3.5 and 33.6 ± 11.7 and 

ng/ml) than in M (24.7 ± 4.6 and 18.6 ± 8.2 ng/ml, for Exp. 1 and 2) cows.  

Concentrations of insulin in FF and plasma were greater for G than M cows in 

Exp. 1 and Exp 2.  In Exp. 2, concentrations of IGFBP-4 and -5 in plasma were 

30% greater (P <0.01) in G than M cows.  Concentrations of IGFBP-4 and -5 in 

FF were 68 and 48%, respectively, greater (P <0.05) for G than M cows.  

Concentration of IGFBP-2 and -5 in plasma at follicular aspiration were positively 

correlated with follicle size (P <0.05).  BCS at calving was positively correlated 

with IGFBP-2, -4 and -5 in plasma at aspiration of follicles.  Concentration of IGF-

I in plasma at aspiration and in FF was positively correlated with IGFBP-3 and -4 

in FF.  Abundance of mRNA for aromatase, IGFBP-4 and -5, and for pregnancy-

associated plasma protein-A were not affected by treatment.  These results 

indicate that concentrations of IGF-I and insulin in FF are influenced by nutritional 

intake and may be related to follicular function. Changes in follicular fluid IGFBP 
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concentrations, rather than local translational regulation, may have a role in 

dietary induced changes in postpartum follicular growth.  

Key Words: Follicle, IGF-I, Ovary, Postpartum Beef Cows 
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INTRODUCTION 

 

Nutrient intake and body energy reserves are major regulators of ovarian 

function in beef cows (Richards et al., 1989; Wettemann and Bossis, 2000).  

Prolonged restriction of dietary energy intake by cows results in loss of body 

weight and body condition, and cessation of estrous cycles (Richards et al., 

1989).  Body condition score (BCS) is an indicator of the nutritional status of cow 

and increased BCS is required for the resumption of estrous cycles in 

nutritionally induced anovulatory heifers (Bossis et al., 2000).  Cows calving with 

thin BCS (≤ 4) have longer intervals to first estrus (Spitzer et al., 1995; Lents et 

al., 2000) compared with cows with a BCS ≥ 5.  The interval from calving to first 

estrus is longer for heifers fed a low energy diet after calving compared with 

heifers fed a high energy diet (Spitzer et al., 1995; Ciccioli et al., 2003).  

Metabolic hormones may exert a direct effect on the ovary and could mediate the 

effects of nutrient Intake on reproductive function (Keisler and Lucy, 1996; 

Wettemann and Bossis, 2000).  Feed restriction increases concentrations of GH, 

and greater nutrient intake increases plasma concentrations of insulin-like growth 

factor-I (IGF-I), insulin and leptin in cows (Ciccioli et al., 2003; Lents et al., 2005).  

Amount of insulin-like growth factor-I binding proteins in plasma may be related 

to the postpartum anovulatory period in beef cows (Roberts et al., 1997; White, 

2004). 

The objectives of this study were to evaluate the effects of nutrient intake 

of primiparous cows after calving on: 1) concentrations of insulin, IGF-I, 

progesterone, androstenedione, estradiol, IGF-I binding proteins (IGFBP) in 
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follicular fluid (FF) of dominant follicles (DF) and 2) abundance of mRNA for 

IGFBP-4 , -5, aromatase and pregnancy-associated plasma protein-A in 

granulosal cells of DF, and 3) relationship of IGF-I and insulin in plasma and 

follicular fluid. 

 

MATERIALS AND METHODS 

 
 
Animals and Experimental Protocol  
 

The Institutional Animal Care and Use Committee of Oklahoma State 

University approved all animal-related procedures used in this study. 

Angus x Hereford primiparous cows, were maintained on dormant native 

grass pasture during the last third of gestation and were supplemented with 1.6 

kg/d (as-fed basis) of a 38 % CP soybean meal-based supplement (1.9 cm 

pellet) to maintain BW so they would calve with a (BCS; 1= emaciated, 9= obese; 

Wagner et al., 1988) of 4 or 5.  Body weight and BCS were determined after 

cows were denied access to feed and water for 16 h each month, from 60 d 

before to 150 d after parturition.  The BCS at calving was the last BCS recorded 

prior to calving and the first weight recorded after calving was used to determined 

BW changes during treatments.  Two experiments were conducted and the only 

difference between experiments 1 and 2 was the days after calving that ovarian 

function was evaluated. In experiment 1, DF were aspirated an average of 70 ±  

2 d after calving, and in experiment 2, aspiration was on 56 ± 9 d after calving. 

Cows in experiments 1 and 2 calved in February and March of two successive 

years (n = 12 and n = 28 respectively). 
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At calving, cows were stratified by calving date and BCS and randomly 

assigned to nutritional treatments.  Cows were fed to maintain (M) body weight or 

to gain (G) 0.5 kg/d.  Maintain cows were supplemented with 2.27 kg/d (as-fed 

basis) of a 38 % CP supplement and G cows had free access to a high-energy 

feed (1.61 Mcal NEm/kg DM, 0.90 Mcal NEg/kg DM, and 11.1% CP).  The ration 

was composed (% DM) of rolled corn (39.7%), ground alfalfa pellets (35.5%), 

cottonseed hulls (22%), cane molasses (2.5%) and salt (0.3%).  After (65 days) 

nutritional treatments, all cows were maintained in the same pasture and fed the 

M diet until the first postpartum, estrus. 

 

Ovarian Function and Estrous Behavior 

Experiment 1. Size of the ovarian follicles was evaluated daily by 

transrectal ultrasonography (7.5 MHz probe; Aloka 500V, Corometrics Medical 

Systems, Wallingford, CT) commencing at 42 d post partum.  Ultrasonography 

images were recorded with a VHD recorder (Panasonic PV-V4520; Matusushita 

Electric Corp. of America, Secuucus, NJ) and viewed at a later time to confirm 

the size of DF.  Size of follicles was calculated as the mean of the longest and 

shortest diameters (Pierson and Ginther, 1988).  At 70 ± 2 d after calving, when 

growth of DF plateaued (< 0.8 mm increase in diameter in 24 h), follicular fluid 

(FF) was obtained by transvaginal ultrasound-guided follicular aspiration.  Briefly, 

epidural anesthesia was induced with 5 mL of 2% lidocaine, then the ovary was 

hold against the vaginal wall, and a vaginal 5 –MHz probe; Aloka 500V, 

Corometrics Medical Systems, Wallingford, CT) was used to guide an 18 G, 55 
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cm needle (Cook Veterinary Products, Spencer, IN) to puncture the follicle and 

aspirate the FF to a 3 mL syringe.  Follicular fluid was placed in 5 mL cryogenic 

polypropylene conical vials on ice for 10 min and then centrifuged at 2000 x g for 

7 min to separate fluid and granulosa cells.  Follicular fluid and granulosa cells 

and stored in 5 mL cryogenic polypropylene conical vials.  TRIzol (500 μL; 

Invitrogen Corp., Carlsbad CA) was added to vials containing granulosa cells.  

Follicular fluid and granulosa cells were immediately frozen in liquid nitrogen, and 

FF was stored at -20 oC and granulosa cells were stored at -80 oC until analyzed. 

Estrous behavior was monitored using a radiotelemetric pressure sensitive 

device (HeatWatch, DDx Inc., Denver, CO) attached to the rump of cows at 30 d 

post partum.  Onset of estrus was defined as the first of two mounts received 

within 4 h.  The end of estrus was defined as the last mount received with a 

mount received 4 h before and without receiving a mount during the next 12 h. 

Concentrations of progesterone were used to determine luteal activity. 

Onset of luteal activity was determined when plasma samples had ≥ 0.5 ng/mL of 

progesterone in 2 consecutive samples after first behavioral estrus. 

Experiment 2. Methods used to evaluate ovarian function and estrous 

behavior described for experiment 1 were used for experiment 2 with the 

exception that transvaginal ultrasonography was started at 30 d  after calving and 

DF were aspirated at 56 ± 9 d after calving. 
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Blood Sampling 

Blood samples were obtained on Monday and Thursday of each week 

from 4 wk after calving to 3 wk after first estrus.  Cows had access to feed and 

water prior to sampling.  Caudal vein blood was collected in vacutainers (10 mL) 

containing EDTA (0.1 ml of a 15% solution).  Tubes were immediately placed on 

ice, centrifuged (2500 x g for 15 min) at 4 oC within 3 h after collection, and 

plasma was recovered and stored at -20 oC until hormones and IGFBP were 

quantified. 
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Radioimmunoassays (RIAs) 

 
 Concentrations of insulin, IGF-I and progesterone, were quantified in 

plasma samples.  Insulin, IGF-I, androstenedione, progesterone and estrogen 

were quantified in FF. 

Concentrations of insulin in plasma and FF were quantified with a solid 

phase RIA for human insulin (Coat-A-Count Insulin kit, Diagnostic Products 

Corp., Los Angeles, CA; Bossis et al., 1999) using bovine pancreatic insulin as 

the standard (Sigma Chemical Co., St. Louis, MO) and 0.2 mL sample volume. 

The intraassay CV was 6.7 %.  Concentrations of IGF-I in plasma and FF were 

quantified by RIA (Echternkamp et al., 1990). The intraassay CV was 7.2 % after 

acid-ethanol extraction (16 h at 4 oC).  Plasma and FF concentrations of 

progesterone were quantified with a solid phase RIA (Coat-A-Count 

Progesterone kit, Diagnostic Products Corp.; Vizcarra et al., 1997). The 

intraassay CV was 5.8% for plasma and 7.2 % for FF.  Concentrations of 

estradiol 17-β in FF were quantified by RIA according to the method of Spicer 

and Enright (1991); the intraassay CV was 10.4 %.  Concentrations of 

androstenedione were quantified according to the method of Stewart et al. 

(1996); the interassay CV was 11.0 %. 
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Ligand Blotting 
 

Relative amounts of IGFBP in FF were assessed by one-dimensional 

SDS-PAGE as previously described (Stewart et al., 1996; Spicer et al., 2001).  

To summarized, 4 μl of FF was mixed with 21 μl of Laemmli sample buffer (Bio-

Rad, Hercules, CA) and heat-denature (3 min at 100 oC).  Samples were 

separated on 12% polyacrylamide gel 8 h at constant current (27 amperes) and 

varying voltage (36 volts for 8 h and 82 volts for 2 h).  Following separation, 

proteins were transferred to nitrocellulose paper (Midwest Scientific, St. Louis, 

MO) for 2.5 h, and ligand-blotted for 12 h with 125I-IGF-I and 125I-IGF-II (1:1) at 4 

oC.  Gels were washed and exposed to X-ray film for 48 h at -80 oC.  Intensity of 

protein bands was determined using scanning densitometry (Molecular Analyst, 

Bio-Rad) and values are expressed as arbitraty densitometric units (ADU/4 μl).   

 

mRNA Analyses 

 Lysed granulosa cells were transferred to 1.5 mL eppendorf tubes and  

0.1 mL of chloroform (Sigma Chemical Co., St. Louis MO) was added, then each 

sample was vortexed for 15 sec.  Following a 3 min incubation at 22 oC, samples 

were centrifuged (3,500 x g) for 30 min at 4 oC.  The upper aqueous phase was 

transferred to a new eppendorf tube and RNA was precipitated by addition of 

0.25 mL of isopropyl alcohol (Pierce Chemical Company, Rockford, IL).  Samples 

were gently mixed and then incubated at 22 oC for 10 min, followed by 

centrifugation at 3,500 x g for 10 min at 4 oC.  The supernatant was removed, the 

RNA pellet was washed with 0.5 mL of 75 % ethanol, and the sample was 
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centrifuged at 3,500 g and 4oC as before for 5 min.  The ethanol supernatant was 

removed and the RNA pellet was dried for 5 min at 22o C.  The RNA was then 

dissolved in 0.03 mL of buffer (10 mM Tris-Cl, 1 mM EDTA; pH 7.4).  Total RNA 

was quantified using the Nanodrop® ND-1000 Spectophotometer (NanoDrop 

Technologies, Inc., Montchanin, DE, USA) to determine the concentration of the 

total RNA extracted and to determine the amount of protein contamination.  

Optical density at 260 nm was used to quantify concentrations of RNAs.  The 

260/280 nm ratio was calculated to measure the amount of protein contamination 

which was close to two for all the samples.  Samples were aliquoted and stored 

at -80 oC until analyzed for mRNA for aromatase, IGFBP-4, -5 and PAPP-A. 

 

Quantitative RT-PCR.  

Primer Express TM software (Foster City, CA) was used to make primers and 

probes for quantitative RT-PCR as described by Voge et al. (2004). GenBank 

accession numbers that were used for PCR analysis of aromatase, IGFBP-4, 

IGFBP-5, and PAPP-A are in Table 1.  High resolution electrophoresis was used 

to document that transcripts produced were of the molecular size predicted 

(Santiago et al., 2005). 

Fluorescent real-time quantitative RT-PCR was used to determine mRNA 

expression for aromatase, IGFBP-4 and -5, and PAPPA-A in bovine granulosa 

cells.  Expression was quantitated using a one-step RT-PCR reaction following 

the manufacture’s specifications with modifications for Taqman® Gold RT-PCR 

 



 54

kit (P/N N808-0233; PE Biosystems, Foster City, CA) as described by Santiago 

et al. (2005).  

Quantification of gene expression for aromatase, IGFBP-4 and -5 and 

PAPP-A mRNA expression was accomplished using the comparative threshold 

cycle (Ct) method (Hettinger et al., 2001; Ross et al., 2003 and Santiago et al., 

2005). 

 

Statistical Analyses 

Data were analyzed as a completely randomized design with a 2 x 2 

factorial treatment structure, using PROC MIXED (SAS Inst., Inc., Cary, NC).  

The model included the effect of BCS at calving and treatment as main effects, 

and the first order interaction. Pearson correlations were calculated to determine 

relationships among variables (PROC CORR, SAS). 
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RESULTS 

EXPERIMENT 1 

 
Prepartum BW and early postpartum BW were similar for G and M cows, 

however, at aspiration (72 ± 2 d post partum) G cows weighed 30 kg more that M 

cows (Figure 1; P < 0.05). 

Body condition score was similar for G and M cows at calving, however, 

BCS at aspiration of the DF (72 d) was greater for G (5.1 ± 0.4) than M (4.4 ± 

0.2) cows (Figure 2; P <0.003).  BCS was positively correlated with follicle size 

and IGF in FF (r = 0.75; P < 0.01 and (r = 0.60; P < 0.04; respectively (Table 4). 

Days at aspiration of the DF were similar for both treatments (G, 72.8 ± 

2.0 d; M, 71.3 ± 2.0 d).  Maximum size of DF was greater (P < 0.007) for G (12.2 

± 0.4 d) than M (11.1 ± 0.7 d) cows (Figure 3).  Interval after calving to luteal 

activity was longer for M cows (132.2 ± 12.8 d) compared with G (109.7 ± 15.2 

d).  Postpartum interval to luteal activity was negatively correlated (r= - 0.58; P < 

0.05: Table 4) with BCS at aspiration. 

Plasma concentrations of IGF-I prior to aspiration were greater in G (36.6 

± 3.5 ng/ml) than in M (24.7 ± 4.6 ng/ml) cows (P < 0.01; Figure 4). 

Concentrations of IGF-I in FF were also greater for G (35.1 ± 8.2 ng/ml) 

compared with M (23.9 ± 3.4 ng/ml) cows (P < 0.01; Figure 5).  IFG-I before 

aspiration was positively correlated (r= 0.68; P < 0.01; Table 6) with insulin FF.  

Concentrations of insulin in FF were greater (P < 0.008) for G (1.28 ± 

0.27) than M (0.85 ± 0.16 ng/ml) cows, and G cows had greater (P < 0.01) insulin 

in plasma (1.40 ± 0.43) than M (0.80 ± 0.26 ng/ml) (Figure 6).  
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Concentrations of IGFBP-2, -3 and -5 in follicular fluid were not influenced 

by treatment.  Concentration of IGFBP-4 and -5 in follicular fluid were greater in 

G than M cows (P < 0.03; Figure 7).  IGFBP-3 was positively correlated with 

IGFBP-5 and IGFBP-4 (r= 0.85; P < 0.001 and r= 0.79; P < 0.002, respectively; 

Table 5). 

Concentrations of progesterone in FF were greater (P < 0.05) for G (56.83 

± 4.56 ng/mL) compared with M (49.74 ± 5.29 ng/mL) cows.  Androstenedione 

and estradiol in FF were not influenced (P > 0.10) by treatment (Table 2 ).  

Abundance of mRNA for aromatase, IGFBP-4 and -5, and pregnancy-

associated plasma protein-A were not affected by treatment (Table 7).  
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EXPERIMENT 2 

Body weights 2 wk before calving and 2 wk after calving were similar for G 

and M cows, however, at aspiration (56 ± 9 d post partum) G cows weighed more 

that M cows (Figure 8; P < 0.05).  Body condition score of H and M cows were 

similar at calving, however, BCS at aspiration of the DF was greater for H (4.8 ± 

0.2) than M (4.3 ± 0.3) cows (Figure 9; P < 0.01). 

Days after calving at aspiration of the DF were similar for G (56.6 ± 9.2 d) 

and M, (55.3 ± 8.5 d) cows.  Maximum size of DF was not influenced by 

nutritional treatment (13.2 ± 1.6 mm; P = 0.13).  Postpartum interval to luteal 

activity was longer for M cows (95 ± 24) than for H (80 ± 11d; P < 0.05).  Interval 

from calving to luteal activity was negatively correlated (r = -0.47; P < 0.01) with 

BCS at aspiration of DF. 

Concentrations of IGF-I in plasma 1 wk prior to aspiration of DF and at 

aspiration were greater (P < 0.01; Figure 10) in H compared with M cows (33.6 ± 

11.7 ng/mL vs 18.6 ± 8.2 ng/mL).  Concentrations of IGF-I in FF were also 

greater (P < 0.01; Figure 11) for H than M cows (34.0 ± 10.7 ng/mL vs 23.6 ± 8.5 

ng/mL).  Concentration of IGF-I in plasma and follicular fluid of G cows were 

correlated (r= 0.62; P = 0.02) but in M cows the correlation was not significant (r 

= 0.26; P = 0.35; Figure 12).  BCS at aspiration was positively correlated with 

IGF-I in FF (r = 0.46, P <0.01; Table 8), and IGF-I in plasma was positively 

correlated with FF IGF-I (r = 0.61; P <0.01) (Table 8). 

Similarly to concentrations of IGF-I, insulin in FF was greater (P < 0.05) for 

G (1.59 ± 0.22 ng/mL compared with M cows (0.97 ± 0.17 ng/mL) and H cows 
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had greater (P < 0.01) insulin in plasma (1.61 ± 0.17 ng/mL) than M (0.97 ± 0.17 

ng/mL). Concentration of insulin in plasma and follicular fluid of G (r= 0.68; P = 

0.0004; Figure 13) and M cows (r = 0.66; P = 0.0003; Figure 13) were correlated. 

Concentrations of IGFBP-4 and -5 in plasma were 30% greater in G 

compared with M cows (P < 0.01; Figure 14).  Concentrations of IGFBP-4 and -5 

in FF were 68 and 48%, respectively, greater (P <0.05; Figure 15) for G 

compared with M cows.  Concentrations of IGFBP-2 and -3 in plasma and FF 

were not influenced by treatment.  FF IGFBP- 3 was correlated positively with 

IGFBP-2, IGFBP-5 and IGFBP- 4 (r= 0.40; P < 0.04; r= 0.41; P < 0.03 and r= 

0.42; P < 0.03, respectively; Table 9).  Concentration of IGFBP-2 and -5 in 

plasma at follicular aspiration were positively correlated with follicle size (P < 

0.05).  BCS at calving was positively correlated with IGFBP-2, and -3 (r= 0.58; P 

< 0.001 and (r= 0.60; P < 0.001; Table 10).  Concentrations of IGF-I in plasma at 

aspiration were positively correlated with IGFBP-3 (r= 0.01; P < 0.01; Table 10).   

Concentrations of progesterone, androstenedione, and estradiol in FF 

were not influenced (P > 0.10) by treatment (Figures 16, 17, 18). 

Abundance of mRNA for aromatase IGFBP-4 and -5, aromatase, and 

pregnancy-associated plasma protein-A were not affected by treatment (Table 7). 
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Discussion 

 

Experiments 1 and 2 were conducted under similar conditions in 

consecutive years. The main difference between the experiments was that 

follicles were aspirated on d 72 after calving in Exp. 1, and on d 56 in Exp. 2. 

The two experiments allowed evaluation of the effect of duration of nutritional 

treatments and days after calving on factors contributing follicular growth. 

Reduced nutrient intake is associated with loss of body weight and 

BCS, decreased luteal activity, and cessation of estrous cycles (Richard et 

al., 1989; Bishop and Wettemann, 1993; Vizcarra et al., 1997).  In the current 

experiments, weights prepartum and early after calving were similar for G and 

M cows, however, at aspiration in both experiments, G cows weighed more 

and had greater BCS compared with M cows (P < 0.005). 

Increased postpartum nutrient intake induced fat deposition in G cows 

in both experiments.  High-energy diets after calving increase fat deposition in 

mature cows (Perry et al., 1991; Stagg et al., 1995), primiparous cows 

(Ciccioli et al., 2003) and in growing heifers (Yelich et al., 1995).  Increased 

BCS is required for the resumption of estrous cycles in nutritionally induced 

ovulatory heifers (Bossis et al., 2000) and cows (Richards et al., 1989). 

Primiparous cows on greater energy intake, compared with moderate energy 

intake after calving, partitioned a greater proportion of net energy to grow 

maternal tissue (Lalman et al., 2000).  
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Increased nutrient intake influenced some reproductive characteristics 

and metabolic hormones.  Maximum size of DF was influenced by nutritional 

treatment in Exp. 1, but not in Exp. 2.  Other studies (Armstrong et al., 2001; 

Murphy et al., 1991; Rutter and Manns, 1991; Lucy et al., 1992; Rhodes et al., 

1995), also found that nutrient restriction decreased maximum size of DF. 

Cows fed rations supplying 100 % of energy requirements had more large 

follicles than cows fed low energy diets, and size of the largest follicle was 

greater in cows that received 100 % of energy requirement compared with 

cows that were fed 70 % of energy requirements (Grimard et al., 1995).  

Maximum size of bovine preovulatory dominant follicles was decreased in 

energy restricted cows at the first postpartum estrus (Ciccioli et al., 2003) and 

Hereford x Friesian heifers fed to gain for 10 wk had larger preovulatory DF 

compared with heifers that maintained or lost BW (Spicer et al., 1991).  In 

Exp. 2, DF were aspirated at 56 d after calving, about 50 d before the 

expected first ovulation, and follicles were aspirated when growth plateaued.  

In contrast Ciccioli et al., 2003 measured preovulatory follicles. 

Aspiration of DF at 56 d after calving in the second experiment could 

account for the lack of effect of nutritional treatment on follicle size.  Similar to 

our results, increased energy, fat intake, or BCS did not alter size of bovine 

DF during postpartum anovulation or at the first postpartum ovulation (Stagg 

et al., 1995; Beam and Butler, 1998; White, 2004).  Spicer et al. (1986) found 

that size of the DF did not differ between 7 and 56 d postpartum in suckled 

beef cows.  Ovarian follicular development resumes 1 to 2 wk after calving in 
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beef cows (Murphy et al., 1990), but the interval to the first ovulation, is 

prolonged due to the failure of successive DF to ovulate (Stagg et al., 1995). 

Postpartum interval to luteal activity was longer for M cows than for G 

in both experiments, and was negatively correlated with BCS at aspiration.  

Increased postpartum feed intake decreased the interval from calving to first 

estrus of primiparous cows (Ciccioli et al., 2003), and increased postpartum 

energy intake increased the number of cows in estrus during the breeding 

season (Spitzer et al., 1995).  Nutritional management prepartum can also 

affect onset of ovarian activity in beef cows.  Reduced energy intake 

prepartum delays the onset of estrus (Wiltbank et al., 1962; Dunn et al., 

1969), and BCS at calving influenced pregnancy rates and postpartum 

interval to estrus in cows (Richards et al., 1986; Selk et al., 1988).  In other 

studies (Wright et al., 1987; Whittier et al., 1988; Stagg et al., 1998), greater 

postpartum nutrient intake had no effect on the duration of the postpartum 

anovulatory interval.  These discrepancies in the effect of nutrition on length 

of postpartum anestrus may be related to the many factors that influence 

reproduction in addition to nutrient intake, such as parity, breed, lactation, 

environment and endocrine status (Dunn and Kaltenbach, 1980). 

Concentrations of IGF-I in plasma prior to aspiration of DF were 

greater in G than M cows in both experiments.  Similarly, concentrations of 

IGF-I in plasma were directly related to nutrient intake in primiparous cows 

(Lalman et al., 2000; Ciccioli et al., 2003) and heifers (Yelich et al., 1996).  

Ciccioli et al. (2003) found that concentrations of IGF-I, and insulin did not 
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change during the 7 wk before first estrus in primiparous postpartum cows 

that were previously fed a high or moderate nutrient intake.  Thus nutritional 

status (energy and protein intake relative to requirements) partially controls 

the synthesis and secretion of IGF-I (Thissen et al., 1994).  Differences of the 

effect on nutrient intake on plasma IGF-I between studies could be due to the 

interval after calving at which nutrient intake was restricted. 

Concentrations of IGF-I in FF were greater for G compared with M 

cows, and there was a positive relationship between concentration of IGF-I in 

plasma and IGF-I in FF in both experiments.  Follicular dominance is 

associated with greater IGF-I concentrations in the FF of cattle (Webb et al., 

1999).  In the first experiment, concentrations of IGF-I in plasma and FF were 

positively correlated within M and G cows, however in the second experiment, 

the relationship was significant only in G cows.  Rutter and Manns (1991) 

found concentrations of IGF-I in FF were not influenced by follicle size, dietary 

treatment, or day post partum at ovariectomy.  Concentrations of IGF-I in FF 

were positively correlated with BCS.  In these experiments, cows with greater 

BCS had greater energy and protein intake, so it cannot be determined if 

greater concentration of IGF-I in FF are stimulated by body fat reserves or 

nutrient intake. 

Reduced nutrient intake uncouples the GH:IGF-I axis (Thissen et al., 

1994).  Inadequate nutrient intake increases GH secretion in cattle 

(Armstrong et al., 1993; Bossis et al., 1999) and serum concentrations of IGF-

I and hepatic IGF-I mRNA are decreased (Vandehaar et al., 1995), probably 
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due to an insulin-dependant down-regulation of the GH receptor (Thissen et 

al., 1994; Kobayashi et al., 1999; Butler and Butler, 2001).  Dietary restriction 

results in a loss of IGF-I responsiveness to exogenous GH treatment (see 

review by McGuire et al., 1992).  The loss of responsiveness to GH in dietary 

restricted cattle may be due in part to decreased hepatic binding sites for GH 

(Breier et al., 1988).  Increased GH in plasma is proposed to be associated 

with decreased negative feedback of IGF-I on hypothalamic-pituitary 

regulation of GH secretion resulting in increased pituitary synthesis and 

secretion of GH (Kirby et al., 1993). 

Concurrent with increased concentrations of IGF-I in plasma, 

concentrations of insulin in plasma were greater for G than M.  This is in 

agreement with previous studies (Lalman et al., 2000; Ciccioli et al., 2003) in 

primiparous beef cows.  In both experiments, G cows had greater insulin in 

follicular fluid than M cows.  Similarly, Landau et al. (2000) found that 

concentration of insulin in FF of cows fed a high energy diet was 26 % greater 

than in their counterparts fed corn gluten meal.  Insulin and IGF-I are potent 

stimulators of progesterone secretion by bovine corpora lutea (Spicer and 

Echternkamp, 1995), and both hormones act synergistically with 

gonadotrophins to increase granulosal cell proliferation (Spicer and 

Echternkamp, 1995) and to enhance steroidogenesis in bovine granulosal 

(Spicer et al., 1993) and thecal cells (Spicer and Echternkamp, 1995; Spicer 

and Stewart, 1996). 
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Concentrations of progesterone, androstenedione, and estradiol in FF 

were not influenced by treatment.  In contrast, White et al (2003) found that 

DF from the first follicular wave of an estrous cycle had 3.4-fold more 

estradiol and 7.6-fold greater androstenedione in FF than DF of anovulatory 

mature beef cows.  In the current experiments DF was aspirated at least 50 d 

before the first postpartum ovulation.  Similar to the anovulatory cows 

reported by White et al. (2003), DF of our cows produced minimal 

concentration of estradiol and androstenedione and were responsive to 

increase insulin and IGF-I associated with greater nutrient intake. 

Insulin-like growth factor-I and its binding proteins have an integral 

function in energy metabolism and have been implicated as metabolic 

mediators of nutritional regulation of the reproductive axis in bovine females 

(Zulu et al., 2002).  Concentrations of IGFBP-4 and -5 in plasma were 30 % 

greater in G than M cows in experiment 2 and concentrations of IGFBP-4 and 

-5 in FF were 68 % and 48 %, respectively, greater for G than M cows in 

experiment 2.  Concentrations of IGFBP-2 and -3 in plasma and FF were not 

influenced by treatment.  These results are contrary to the findings of Roberts 

et al. (1997), where amounts of IGFBP-2 in plasma at wk 2 post partum were 

greater and IGFBP-3 concentrations were less in cows that were anovulatory 

compared with cows that ovulated sooner after calving.  Morevoer, greater 

undegradable intake protein (UIP) supplementation was associated with 

increased low-molecular weight IGFBP compared with supplementation with 

less UIP (Kane et al., 2004).  Treatment of nutritionally induced anovulatory 
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beef cows with GnRH did not alter concentrations of IGFBP-5, 4, 3, or 2 in 

follicular fluid of large (5> mmm) or small (< 5 mm follicles) (Hamilton et al., 

1999; Prado et al., 2002).  Thus concentrations of IGFBPs in follicles may not 

change in response to gonadotropin stimulation of postpartum anovulatory 

cows. 

Follicular growth and development are associated with decreased 

amounts of IGFBP-2, -4, and -5, whereas follicular atresia is characterized by 

increases in the relative abundance of these proteins (Echternkamp et al., 

1994; de la Sota et al., 1996; Monget et al., 1996; Stewart et al., 1996; Mihm 

et al., 2000).  Selection of DF is associated with increased granulosa cell 

aromatase activity followed by increased cAMP response to LH in follicular 

fluid (Rhodes et al., 2001).  In addition, binding proteins may be important in 

the physiological regulation of FSH actions, probably by influencing the 

bioavailability of IGF-I or IGF-II and stimulating FSH-induced estradiol 

production by granulosa cells (Gutierrez et al., 1997).  Proteolysis of specific 

IGFBP contribute to diminished binding activity in follicular fluid from humans 

(Chandrasekhar et al., 1995; Conover et al., 2001) and domestic species 

(Mazerbourg et al., 2000; Rivera et al., 2001; Spicer et al., 2001).  Reduced 

concentrations of IGFBP-4 in preovulatory and dominant bovine follicles are 

associated with the presence of an IGFBP-4 protease (Mazerbourg et al., 

2000; Rivera and Fortune, 2001; Spicer et al., 2001).  In nutritionally induced 

anovulatory cows, IGF-I in FF is reduced, and IGF-I is necessary to activate 

pregnancy-associated plasma protein-A (PAPP-A), which is a zinc dependent 
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metalloproteinase that may be responsible for IGFBP proteolysis 

(Mazerbourg et al., 2001; Monget et al., 2003).  The amount of IGFBP activity 

in follicles is a result of production, synthesis and degradation, specifically 

degradation for IGFBP-4.  

Concentration of IGFBP-2 and -5 in plasma at follicular fluid aspiration 

were positively correlated with follicle size and BCS in Exp. 2(P < 0.05).  In 

addition, BCS at calving was positively correlated with IGFBP-4 in plasma at 

the time of aspiration of follicles.  Concentrations of IGF-I in plasma at 

aspiration and in FF were positively correlated with amounts of IGBP-3 and -4 

in FF. 

Abundance of mRNA for aromatase, IGFBP-4 and -5, and pregnancy 

associated plasma protein–A were not affected by treatment in experiments 1 

and 2.  White et al. (2004) found that anovulatory and ovulatory cows had DF 

with similar amounts of aromatase mRNA in granulosa cells.  Tian et al. 

(1995) found that aromatase mRNA in preovulatory DF did not increase with 

estradiol secretion.  Amounts of mRNA for PAPP-A in DF were also similar for 

ovulatory cows and anovulatory cows with a postpartum interval > 58 d or < 

58 d (White et al., 2004). 

Variations in metabolic and endocrine function during negative balance 

of dairy cows are well documented, however this is the first study to 

determine the effect of greater nutrient intake after calving on insulin and 
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IGFBPs in DF and plasma.  These results add to our understanding of 

nutritional influences on follicular growth and maturation. 
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Implications 

 

Increased postpartum nutrient intake of primiparous beef cows increased 

BCS and increased concentrations of IGF-I and insulin in FF and plasma at 

56 and at 72 d after calving.  The nutritionally induced increased in 

concentrations of IGF-I and insulin could have direct and/or indirect effects on 

the length of the postpartum anestrous interval without affecting size of DF or 

concentrations of steroid hormones in FF.  In addition, endocrine changes in 

DF may be associated with increased pregnancy rates at the first postpartum 

estrus in cows that receive greater nutrient intake.  Although nutrient intake 

before calving has a greater effect on reproductive performance of 

primiparous cows compared with nutrient intake after calving, greater energy 

intake after calving can decrease the duration of postpartum anestrous and 

increase pregnancy rate during the breeding season. 
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Table 1. Primers and probes sequences and optimal reaction condition for target 
genes. 

 

Gene Sequence 
GeneBank
Accesion 

No. 

Aromatase 

FWD Primer 5’ CCTGGCCTGGTGCGC (bp 645 to 659) 

REV Primer 5’ TCCAGCCTGTCCAGATGCTT (bp 690 to 709) 

Probe 5’ GGTGACCATCTGTGCTGATTCCATCA(bp 661 to 687) 

Z32741 

IGFBP-4 

FWD Primer 5’ GAGGAAAGAATGTGTATGTGCCTGATG  (bp 1733 to 1757) 

REV Primer 5’ GACCACAAACGGAGGAGGAA (bp 1808 to 1827) 

Probe 5’ CATGCTGGGAGGTGAGGGACTTATCTATCTGG (bp 1772 to 1799) 

S52770 

IGFBP-5 

FWD Primer 5’ GTTTGCCTGAACGAAAAGAGCTA (bp 193 to 215)  

REV Primer 5’ CGAGTAGGTCTCCTCTGCCATCT (bp 275 to 295) 

Probe 5’ AGCCAAGATCGAAAGAGACTCCCGTGAGV (bp 225 to 252) 

S52657 

PAPP-A 

FWD Primer 5’ CAGATGTTGAGCAGCCCTGTAA (bp 557 to 578) 

REV Primer 5’ GGGTTGACGGCTGAATTGG (bp 602 to 620) 

Probe 5’ CCAGCCCGCACCTGGAGC (bp 581 to 600) 

AF421141 
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Table 2.  Concentrations of androstenedione, estradiol and progesterone (ng/mL) 

in follicular fluid of dominant follicles aspirated at 72 d postpartum. 
 
 

Treatment n Androstenedione  Estradiol  Progesterone  

High 6 42.1 ± 5.2  145.8 ± 59.89 56.83 ±4.56 a

Moderate 6 43.4 ± 4.9 119.1 ± 11.89  49.74  ± 5.29 b

 
a, b Means in a column with different superscripts differ P < 0.05 
 
 
 
 
 
 

 

 



Table 3.  Quantitative RT-PCR Analysis of gene expression for aromatase, PAPP-A, IGFBP-4 and IGFBP-5 
in granulosa cells of dominant follicles aspirated at 72 d after calving. 

 

Gene Treatment Target Gene 
Cta

18 S 
Ct ΔCt

b ΔΔCt
c Fold 

Difference 

Aromatase Gain 24.70 ± 0.93 23.54 ± 1.03 1.15 ± 0.71 -2.08 ± 0.71 1.68 ± 0.57 

 Maintain 27.02 ± 1.21 25.59 ± 1.33 1.43 ± 0.93 -1.80 ± 0.92 1.00 ± 0.73 

IGFBP-4 Gain 29.59 ± 1.10 24.37 ± 0.95 5.21 ± 1.16 -5.35 ± 1.16 1.00 ± 1.10 

 Maintain 31.56 ± 1.69 28.64 ± 1.45 2.92 ± 1.77 -7.65 ± 1.77 4.65 ± 1.69 

IGFBP-5 Gain 32.43 ± 0.73 24.58 ± 1.02 7.85 ± 0.80 -2.99 ± 0.80 1.05 ± 0.57 

 Maintain 37.06 ± 1.17 29.23 ± 1.56 7.83 ± 1.22 -3.02 ± 1.22 1.00 ± .088 

PAPP-A Gain 23.51 ± 1.18 24.42 ± 0.90 -0.90 ± 0.66 -3.25 ± 0.66 1.76 ± 0.55 

 Maintain 25.22 ± 1.57 26.26 ± 1.20 -1.03 ± 0.87 -3.38 ± 0.87 1.00 ± 0.73 
 

aCt = cycle that its amplification plot crossed an arbitrary threshold assigned  
        in the log-linear range of amplification. 
bΔtCt= Ct for target gene – Ct for normalization control, 18S. 
cΔΔCt = Mean ΔCt – highest mean ΔCt 

Fold difference =  2-ΔΔC 
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Table 4. Partial correlation coefficients, among BCS at calving, BCS at aspiration, IGF before aspiration, IGF at aspiration 
follicle size, post partum interval, IGF follicular fluid (FF), androstenedione (A4), estradiol (E2), and progesterone 
(P4) in follicular fluid (FF) at 72 d aspiration in postpartum primiparous cows in Exp. 1. 

 

 BCS at 
Aspiration 

IGF before 
Aspiration 

IGF at 
Aspiration 

Follicle 
size 

Post partum 
interval IGF FF A4 FF E2 FF P4 FF  

0.53 0.30 0.47 0.54 -0.31 0.63 0.12 -0.02 0.42 BCS at 
Calving 0.08 0.35 0.12 0.07 0.32 0.03 0.71 0.95 0.17 

0.49 0.63 0.60 -0.58 0.75 -0.28 0.29 0.43 BCS at 
Aspiration  

0.10 0.03 0.04 0.05 0.01 0.39 0.36 0.17 
0.68 0.44 -0.42 0.63 -0.16 0.34 0.67 IGF before 

Aspiration   
0.01 0.15 0.17 0.03 0.62 0.29 0.02 

0.58 -0.22 0.95 -0.18 0.68 0.31 IGF at 
Aspiration    

0.05 0.49 <.0001 0.58 0.01 0.33 
-0.28 0.61 0.22 0.32 0.36 Follicle size     
0.38 0.03 0.48 0.31 0.24 

-0.34 0.18 0.32 -0.54 Post partum 
interval      0.28 0.57 0.32 0.07 

-0.09 0.49 0.40 IGF FF       
0.79 0.10 0.20 

-0.28 -0.12 A4 FF        
0.38 0.71 

-0.14 E2 FF         
0.66 
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Table 5. Partial correlation coefficients, among insulin follicular fluid (FF), insulin plasma, follicular fluid (FF), insulin-like 
growth factor binding protein (IGFBP) IGFBP-3, IGFBP-2, IGFBP-5, IGFBP-4, and plasma IGFBP-3, IGFBP-2, 
IGFBP-5 and IGFBP-4 at 72 d aspiration in postpartum primiparous cows in Exp. 1. 

 

 Insulin 
Plasma 

FF 
IGFBP-3

FF 
IGFBP-2

FF 
IGFBP-5

FF 
IGFBP-4

Plasma 
IGFBP-3

Plasma 
IGFBP-2

Plasma 
IGFBP-5

Plasma 
IGFBP-4

0.34 0.38 0.04 0.52 0.30 -0.15 0.20 0.48 -0.09 Insulin 
FF 0.28 0.23 0.90 0.08 0.34 0.65 0.54 0.11 0.78 

0.17 0.08 0.28 0.20 -0.26 0.21 0.36 0.33 Insulin 
Plasma  

0.60 0.80 0.39 0.53 0.41 0.52 0.24 0.29 
0.29 0.85 0.79 0.003 0.26 0.26 0.01 FF 

IGFBP-3   0.36 <0.001 0.002 0.99 0.42 0.41 0.98 
0.12 0.50 0.46 0.42 0.20 -0.19 FF 

IGFBP-2    0.71 0.10 0.14 0.18 0.54 0.55 
0.72 -0.01 0.46 0.36 0.30 FF 

IGFBP-5     0.01 0.96 0.13 0.25 0.35 
-0.01 0.20 0.50 0.10 FF 

IGFBP-4      0.97 0.52 0.10 0.76 
0.18 0.16 -0.45 Plasma 

IGFBP-3       
0.57 0.61 0.14 

0.15 0.51 Plasma 
IGFBP-2        

0.64 0.09 
0.06 Plasma 

IGFBP-5         
0.85 
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Table 6. Partial correlation coefficients, among insulin follicular fluid (FF), insulin plasma, FF IGFBP-3, FF IGFBP-2, FF 
IGFBP-5, FF IGFBP-4, plasma IGFBP-3, plasma IGFBP-2, plasma IGFBP-5, plasma IGFBP-4, BCS at calving, 
BCS at aspiration, IGF before aspiration, IGF at aspiration, follicle size, post partum interval, IGF-I follicular fluid 
(FF), androstenedione (A4), estradiol (E2) and progesterone (P4) in follicular fluid (FF) at 72d aspiration in 
postpartum primiparous cows in Exp. 1. 

 
  Insulin 

FF 
Insulin 
Plasma 

FF 
IGFBP-3

FF 
IGFBP-2

FF 
IGFBP-5

FF 
IGFBP-4 

Plasma 
IGFBP-3

Plasma 
IGFBP-2

Plasma 
IGFBP-5

Plasma 
IGFBP-4

0.34 0.06 0.19 0.34 0.12 -0.07 -0.03 0.28 -0.48 -0.21 BCS at 
Calving 0.28 0.85 0.56 0.29 0.71 0.83 0.94 0.38 0.11 0.50 

0.55 0.56 0.31 0.38 0.28 0.05 0.12 0.30 0.20 -0.13 BCS at 
Aspiration 0.07 0.06 0.33 0.22 0.38 0.87 0.72 0.34 0.54 0.70 

0.68 0.46 0.61 0.12 0.79 0.51 -0.13 0.39 0.43 0.15 IGF before 
Aspiration 0.01 0.14 0.03 0.72 0.002 0.09 0.68 0.21 0.17 0.65 

0.72 0.31 0.46 0.16 0.55 0.29 0.12 0.10 0.31 -0.13 IGF at 
Aspiration 0.01 0.32 0.13 0.63 0.07 0.36 0.71 0.77 0.33 0.69 

0.53 0.65 0.20 -0.07 0.23 -0.08 -0.24 0.24 0.05 0.11 Follicle size 0.07 0.02 0.53 0.84 0.48 0.80 0.44 0.44 0.87 0.73 
-0.42 -0.29 -0.32 -0.19 -0.36 -0.18 0.44 -0.48 -0.10 -0.43 Post partum 

interval 0.17 0.36 0.31 0.55 0.26 0.59 0.15 0.11 0.77 0.16 
0.74 0.40 0.41 0.34 0.47 0.29 0.10 0.18 0.22 -0.13 IGF-I FF 
0.01 0.19 0.19 0.28 0.12 0.37 0.77 0.57 0.50 0.68 
-0.02 0.20 -0.55 -0.15 -0.51 -0.23 -0.52 -0.27 -0.15 0.08 A4 FF 0.94 0.53 0.07 0.64 0.09 0.47 0.08 0.40 0.63 0.81 
0.21 0.20 0.10 -0.17 0.25 -0.07 0.43 -0.13 0.28 -0.14 E2 FF 0.51 0.52 0.75 0.60 0.43 0.84 0.16 0.69 0.38 0.65 
0.62 0.23 0.35 0.35 0.54 0.29 0.03 0.82 0.30 0.19 P4 FF 
0.03 0.47 0.26 0.26 0.07 0.35 0.93 0.001 0.35 0.55 
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Table 7. Quantitative RT-PCR Analysis of gene expression for aromatase, PAPP-A, IGFBP-4 and IGFBP-5 in granulosa 
cells of dominant follicles aspirated at 56 d after calving. 
 

Gene Treatment Target Gene 
Cta 

18 S 
Ct ΔCt

b ΔΔCt
c Fold 

Difference 

Aromatase Gain 29.54 ±0.90 24.59 ±0.49 4.94 ± 0.80 -3.47 ±0.80 1.15 ± 0.40 

 Maintain 29.21 ± 0.95 22.93 ±0.52 6.27 ± 0.85 -3.14 ±0.85 0.99 ± 0.42 

IGFBP-4 Gain 37.68 ±0.41 26.92 ± 0.45 10.76 ±0.42 -4.02 ± 041 1.0 ± 0.18 

 Maintain 36.58 ± 0.49 26.54 ± 0.54 10.08 ±0.50 -4.7 ± 0.49 1.17 ± 0.21 

IGFBP-5 Gain 28.91 ±1.10 24.83 ±0.53 4.08 ±1.11 -7.72 ±1.11 1.00 ± 0.82 

 Maintain 25.77 ± 1.17 23.22 ±0.56 2.54 ±1.18 -9.25 ±1.18 2.28 ± 0.87 

PAPP-A Gain 28.91 ±1.10 22.10 ±0.52 6.81±1.11 -7.72 ±1.11 1.00 ± 0.79 

 Maintain 25.76 ± 1.17 20.43 ± 0.55 5.33 ±1.18 -9.20±1.18 2.19 ± 0.84 

 
Cta = cycle that its amplification plot crossed an arbitrary threshold assigned  
        in the log-linear range of amplification. 
ΔCt

b = Ct for target gene – Ct for normalization control, 18S. 
ΔΔCt

c
 = Mean ΔCt – highest mean ΔCt 

Fold difference = 2-ΔΔCt 
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Table 8. Partial correlation coefficients, among BCS at calving, BCS at aspiration, IGF before aspiration, IGF at aspiration 
follicle size, post partum interval, IGF follicular fluid (FF), androstenedione (A4), estradiol (E2), and progesterone 
(P4) in follicular fluid (FF) at 56 d aspiration in postpartum primiparous cows in Exp. 2. 

 

 BCS at 
Aspiration 

IGF before 
Aspiration 

IGF at 
Aspiration 

Follicle 
size 

Post partum 
interval IGF FF A4 FF E2 FF P4 FF 

0.31 0.07 -0.10 0.15 -0.28 -0.10 -0.11 0.07 0.10 BCS at 
Calving 0.11 0.73 0.61 0.43 0.15 0.60 0.58 0.73 0.62 

 0.46 0.35 0.30 -0.47 0.46 0.07 -0.06 0.01 BCS at 
Aspiration  0.01 0.07 0.13 0.01 0.01 0.72 0.75 0.94 

  0.82 0.45 -0.26 0.48 -0.12 0.14 -0.15 IGF before 
Aspiration   <.0001 0.02 0.18 0.01 0.53 0.49 0.43 

   0.18 -0.03 0.61 -0.04 0.23 -0.13 IGF at 
Aspiration    0.35 0.87 0.001 0.84 0.24 0.50 

    -0.32 -0.09 0.12 0.17 -0.13 Follicle 
size     0.09 0.64 0.54 0.39 0.50 

     -0.31 0.09 -0.13 0.04 Post 
partum 
interval      0.10 0.65 0.51 0.84 

      -0.04 -0.07 -0.13 IGF FF       0.84 0.74 0.51 
       0.25 -0.06 A4 FF 
       0.21 0.77 

E2 FF         -0.11 
         0.57 
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Table 9. Partial correlation coefficients, among insulin follicular fluid (FF), insulin plasma, follicular fluid (FF), insulin-like 
growth factor binding protein (IGFBP) IGFBP-3, IGFBP-2, IGFBP-5, IGFBP-4, and plasma IGFBP-3, IGFBP-2, 
IGFBP-5 and IGFBP-4 at 56 d aspiration in postpartum primiparous cows in Exp. 2. 

 

 Insulin 
Plasma 

FF 
IGFBP-3 

FF 
IGFBP-2 

FF 
IGFBP-5 

FF 
IGFBP-4 

Plasma 
IGFBP-3 

Plasma 
IGFBP-2 

Plasma 
IGFBP-5 

Plasma 
IGFBP-4 

0.85 0.03 0.25 0.17 0.21 -0.10 0.02 0.15 0.21 Insulin 
FF <.0001 0.89 0.21 0.40 0.28 0.60 0.91 0.45 0.28 

 0.12 0.20 0.18 0.00 -0.04 0.02 0.03 0.04 Insulin 
Plasma  0.54 0.30 0.35 1.00 0.84 0.92 0.86 0.83 

  0.40 0.41 0.42 0.02 0.31 0.33 -0.04 FF 
IGFBP-3   0.04 0.03 0.03 0.93 0.10 0.09 0.84 

   0.72 0.51 0.05 -0.06 0.03 -0.18 FF 
IGFBP-2    <.0001 0.01 0.78 0.75 0.86 0.37 

    0.60 -0.19 -0.11 -0.04 -0.08 FF 
IGFBP-5     0.001 0.34 0.56 0.83 0.69 

     -0.33 -0.01 0.39 0.21 FF 
IGFBP-4      0.08 0.97 0.04 0.29 

      0.55 0.11 -0.07 Plasma 
IGFBP-3       0.002 0.58 0.74 

       0.48 0.26 Plasma 
IGFBP-2        0.01 0.17 

        0.60 Plasma 
IGFBP-5         0.001 
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Table 10. Partial correlation coefficients, among insulin follicular fluid (FF), insulin plasma, FF IGFBP-3, FF IGFBP-2, FF 
IGFBP-5, FF IGFBP-4, plasma IGFBP-3, plasma IGFBP-2, plasma IGFBP-5, plasma IGFBP-4, BCS at calving, 
BCS at aspiration, IGF before aspiration, IGF at aspiration, follicle size, post partum interval, IGF-I follicular fluid 
(FF), androstenedione (A4), estradiol (E2) and progesterone (P4) in follicular fluid (FF)at 56d aspiration in 
postpartum primiparous cows in Exp. 2. 

 

 Insulin 
FF 

Insulin 
Plasma

FF 
IGFBP-

3 

FF 
IGFBP-

2 

FF 
IGFBP-

5 

FF 
IGFBP-

4 

Plasma 
IGFBP-

3 

Plasma 
IGFBP-

2 

Plasma 
IGFBP-

5 

Plasma 
IGFBP-

4 
-0.05 -0.10 -0.02 -0.13 -0.28 -0.14 0.60 0.58 0.28 0.17 BCS at 

Calving 0.79 0.61 0.94 0.51 0.16 0.48 0.001 0.001 0.15 0.37 
0.35 0.24 -0.06 0.12 0.12 0.28 0.04 0.19 0.04 0.26 BCS at 

Aspiration 0.07 0.23 0.78 0.56 0.56 0.15 0.85 0.33 0.84 0.18 
0.39 0.36 0.33 0.23 0.26 0.19 0.35 0.35 0.15 0.01 IGF before 

Aspiration 0.04 0.06 0.08 0.24 0.18 0.34 0.06 0.07 0.46 0.97 
0.26 0.38 0.49 0.18 0.26 0.15 0.24 0.31 0.06 -0.03 IGF at 

Aspiration 0.18 0.05 0.01 0.36 0.18 0.43 0.22 0.11 0.76 0.87 
0.23 0.12 0.04 0.44 0.29 0.07 0.30 0.12 0.04 0.02 Follicle size 0.24 0.56 0.84 0.02 0.14 0.74 0.12 0.56 0.86 0.90 
-0.16 -0.10 -0.05 -0.17 -0.16 -0.31 0.01 -0.01 -0.40 -0.22 Post partum 

interval 0.43 0.63 0.80 0.39 0.42 0.11 0.95 0.97 0.04 0.27 
0.26 0.20 0.35 0.16 0.10 0.45 -0.13 0.20 0.25 0.16 IGF-I FF 0.19 0.30 0.07 0.42 0.62 0.02 0.50 0.30 0.20 0.42 
0.20 0.29 -0.22 0.16 -0.21 -0.10 -0.10 -0.26 -0.20 -0.18 A4 FF 0.30 0.14 0.26 0.40 0.29 0.62 0.60 0.18 0.31 0.37 

E2 FF -0.003 0.07 <0.001 -0.05 -0.15 -0.07 0.10 0.01 0.19 0.07 
 0.99 0.73 1.00 0.81 0.45 0.74 0.62 0.96 0.32 0.73 

-0.06 -0.10 -0.15 0.12 0.27 -0.02 0.03 -0.01 -0.21 0.17 P4 FF 0.78 0.61 0.44 0.53 0.17 0.93 0.89 0.95 0.27 0.39 
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Figure 1. Body weight of primiparous cows prepartum (-14 d), early postpartum 
(14 d), late postpartum (56 d), and at aspiration of dominant follicles 
(72 d; P < 0.05). 
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Figure 2. Effect of postpartum nutrition of beef cows on BCS at follicular  

aspiration a, b means with different superscripts differ (P < 0.003). 
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Figure 3.  Effect of postpartum nutrition of beef cows on size of dominant follicles  

     72 d after calving (P < 0.007). 
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Figure 4.  Effect of postpartum nutrition of beef cows on concentration of IGF-I in 

plasma 1 wk before (SE ± 0.6;  a,b P < 0.001) and follicular aspiration at 
72 d after calving  (SE ± 2.55; c, d P < 0.01). 
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Figure 5.  Effect of postpartum nutrition of beef cows on concentrations of IGF-I  
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in follicular fluid at 72 d after calving (SE ± 2.3; P < 0.01). 
 

 



 84

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

FF Plasma

In
su

lin
 n

g/
m

Gain

Maintain
a

b

c

d

Figure 6:  Effect of postpartum nutrition of beef cows on concentrations of insulin  
in plasma and follicular fluid at 72 d after calving. 
a, b Bars with different letters within FF differ (P <0.008). 
c,d Bars with different letters within FF differ (P <0.017). 
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Figure 7.  Influence of postpartum nutrition of primiparous beef cows on  
concentrations of IGF-I binding proteins (IGFBP) -3, -2, -5 and -4 in 
follicular fluid at 72 d after calving.  
a, b Bars with different letters within a binding protein (BP) differ 
(P < 0.03). 
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Figure 8.  Body weight of primiparous cows prepartum (-14 d), early postpartum 

(14 d) and at aspiration of dominant follicles (56 days; P < 0.05). 
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Figure 9: Effect of postpartum nutrition of beef cows on BCS at follicular 
aspiration.  
a,b Bars with different superscripts differ (P < 0.001). 
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Figure 10. Effect of postpartum nutrition of beef cows on IGF-I in plasma 1 wk 
prior to and at the time of follicular aspiration (SE ± 2.5).  
a,b Bars with different superscripts within a week differ (P < 0.01). 
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Figure 11: Effect of postpartum nutrition of beef cows on IGF-I in follicular fluid  
(SE ±2.7). 
a,b Bars with different superscripts differ (P < 0. 01). 
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Figure 12. Relationship between IGF-I in plasma and follicular fluid.  
 
Equation for ♦ Gain cows           IGF-IFF= 14.98 + 0.56 * IGF-I Plasma            P = 0.02       
Equation for ♦ Maintain cows    IGF-IFF = 19.15 + 0.22 * IGF-I Plasma           P = 0.35             
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Figure 13. Relationship between Insulin in plasma and follicular fluid  

 
Equation for ♦ Gain cows: Insulin Plasma  = 0.6223 + 0.6233 * Insulin FF P <0.0004   
Equation for ♦ Maintain:     Insulin Plasma  = 0.2436 + 0.8576 * Insulin FF P <0.0003  
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Figure 14. Influence of postpartum nutrition of primiparous beef cows on  
concentrations of IGF-I binding proteins (IGFBP) -2 (SE ± 1.1),  
-3 (SE ± 2.9), -4 (SE ± 0.1) and -5 (SE ± 0.4) in follicular fluid at 72 d 
after calving.  
a,b Bars with different letters within a binding protein (BP) differ (P < 0.05). 
c,d Bars with different letters within a binding protein (BP) differ (P < 0.01). 
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Figure 15. Influence of postpartum nutrition of primiparous beef cows on  
concentrations of IGF-I binding proteins (IGFBP) -2 (SE ± 2.0),  
-3 (SE ± 6.8), -4 (SE ± 0.3) and -5 (SE ± 1.1) in follicular fluid at  
56 d after calving.  
a,b Bars with different letters within a binding protein (BP) differ P < 0.05) 
c,d Bars with different letters within a binding protein (BP) differ (P < 0.01) 
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Figure 16. Effect of postpartum nutrition of beef cows on progesterone in 
 follicular fluid at 56 d after calving (SE ± 30.4; P > 0.30).  
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Figure 17: Effect of postpartum nutrition of beef cows on androstenedione 
 in follicular fluid (SE ± 38.1; P > 0.30) 
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Figure 18.  Effect of postpartum nutrition of beef cows on estradiol in follicular 
fluid (SE ± 30.4; P > 0.30). 

 

 

 



CHAPTER IV 
 

Influence of GnRH and estradiol on estrus and luteal activity of postpartum 

anestrous beef cows 

 

ABSTRACT 

The effect of treatment of postpartum anestrous beef cows with gonadotropin 

releasing hormone (GnRH) or estradiol on onset of first estrus and luteal activity 

was evaluated.  Thirty-four cows were assigned based on body condition at 

calving and calving date to one of three treatments: GnRH, estradiol cypionate, 

or control.  Ovarian follicles were evaluated by ultrasonography on two 

consecutive days at 40.5 ± 2.3 days) days after calving.  Blood samples were 

collected twice a week, starting at 30-d after calving, and samples were taken on 

the day before treatment (d -1), d 0, d 3, d 6, and every 3 or 4 d until d 22 to 

determine luteal activity.  Estrus was monitored with electronic mount detectors 

(HeatWatch) from d 30 until d 70 after calving.  During 1 to 10 d after treatment, 

more GnRH cows (67%) had luteal activity than estradiol cows (25%), or control 

cows (0%).  Treatment with GnRH increased (P < 0.01) the percentage of cows 

with luteal activity 11 to 20 d after treatment.  Percentage of cows detected in 

estrus within 6 d after treatment was greater (P < 0.05) for estradiol (58%) than 

   97
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GnRH (18%) or control cows (0%), and was similar for GnRH and control cows.  

The number of cows in estrus during 7 to 20 d after treatment was not influenced 

by treatment.  Body condition score at calving did not influence the effect of 

treatment on estrus and luteal activity.  Treatment of postpartum anestrous cows 

with GnRH initiated luteal activity without estrus, and treatment with estradiol 

increased the incidence of estrus without altering luteal activity.  

Key Words: Estradiol, Estrus, GnRH, Luteal Activity, Postpartum Beef Cows 
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INTRODUCTION 

 A major cause of reduced reproductive efficiency in beef cows is an 

extended anestrous period after calving (Wettemann et al., 1980; Short et al., 

1990, Wettemann et al., 2003).  Cows must conceive within 85 d after calving to 

achieve the optimal 12 mo calving interval.  Inadequate body condition score 

(BCS) at calving reduces pregnancy rates (Selk et al., 1988; Richards et al., 

1989, Ciccioli et al., 2003).  The number of follicular waves before the first 

ovulation was increased in thin cows (Murphy et al., 1990; Stagg et al., 1995).  

The first postpartum estrus in beef cows is usually preceded by a transient 

increase in plasma progesterone and is followed by a normal luteal phase (Perry 

et al., 1991; Looper et al., 2003).  Treatment of anestrous cows with 

gonadotropin releasing hormone (GnRH) results in short-lived corpora lutea (CL; 

Kesler et al., 1980; Wettemann, 1982).  The ability of dominant follicles to 

produce estradiol is limited during the postpartum anovulatory period (Spicer et 

al., 1986), and treatment of beef cows with estradiol did not alter the postpartum 

anestrous interval (Day et al., 1990).  An understanding of the endocrine 

mechanisms that control postpartum anestrus is essential to decrease the 

interval from calving to conception.  The objective of this study was to determine 

if treatment with GnRH or estradiol influences the onset of first estrus and luteal 

activity of postpartum anestrous beef cows. 
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MATERIALS AND METHODS 

Body condition score (BCS; 1= emaciated, 9= obese; Wagner et al., 1988) 

of mature Hereford and Hereford x Angus anestrous cows was determined at 

calving and cows were classified as < 5 or ≥ 5. Thirty-two cows were stratified 

based on BCS and calving date, to one of three treatments; gonadotropin-

releasing hormone (GnRH, 100 μg, i.m.; Cystorelin, Abbott Laboratories; n=11), 

estradiol cypionate (E; 1 mg; Pharmacia & Upjohn, n=12) or saline (control; i.m.; 

n=9).  Ovaries of each cow were scanned by ultrasonography (Aloka 500-V 

ultrasound equipment with a 7.5-MHz probe; Corometrics Medical Systems, 

Wallingford, CT) on two consecutive d commencing at 40.5 ± 2.3 d after calving.  

Ultrasonography images were recorded with a VHD recorder (Panasonic PV-

V4520; Matusushita Electric Corp. of America, Secuucus, NJ) and viewed at a 

later time to confirm the size of DF.  Size of follicles was calculated as the mean 

of the longest and shortest diameters (Pierson and Ginther, 1988).  Cows with a 

follicle at least 8 mm on the first day that increased in diameter by at least 0.5 

mm on the second day, were assigned to treatment.  Blood samples were 

collected twice a week before treatment, starting at 30 d after calving.  Blood 

samples were collected on the day before treatment (d -1), d 0, d 3, d 6 and twice 

weekly until d 22 after treatment.  Caudal vein blood was collected in vacutainers 

(10 mL) containing EDTA (0.1 ml of a 15% solution).  Tubes were immediately 

placed on ice, centrifuged (2500 x g for 15 min) at 4 oC within 3 h after collection, 
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and plasma was recovered and stored at -20 oC until progesterone was 

quantified.  Presence of luteal activity was determined when the concentration of 

progesterone was greater than 0.5 ng/mL.  Estrus was monitored with electronic 

mount detectors (HeatWatch, DDx Inc., Denver, CO) from d 30 until d 70 

postpartum and was defined as cows that received two or more mounts within 4 

h (White et al., 2003).  None of the treated cows exhibited estrus or had luteal 

activity before treatment.  Only 7 of 39 cows had luteal activity before treatment 

and they were removed from the study. 

 

Statistical Analysis 

Percentage of cows in estrus within 6 d after treatment, and percentage 

with luteal activity during d 1 to 10 and d 11 to 20 after treatment were analyzed 

as a completely randomized design with a 2 x 3 factorial treatment structure 

using a generalized linear model (PROC GENMOD; SAS Inst., Inc., Cary, NC).  

The model included the effect of BCS at calving (< 5 or ≥ 5) and treatment as 

main effects, and the first order interaction.  When treatment effects were 

significant, Fisher's exact test was used to compare response variables among 

treatments.  
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RESULTS 

Body condition score at calving did not influence the effect of treatment on 

estrus and luteal activity (P > 0.10, Table 1).  Means for the responses of thin (< 

5 BCS) and moderate BCS (≥ 5) cows are reported.  

Treatment of postpartum anestrous cows with estradiol increased the 

percentage of cows in estrus within 6 d after treatment (Figure 1).  More cows 

treated with estradiol were in estrus within 6 d after treatment (58 %; P < 0.01) 

compared with cows treated with GnRH (18 %) or controls (0%).  Treatment of 

cows with GnRH did not influence the percentage of cows in estrus compared 

with controls (P > 0.10).  

 The percentage of cows that had luteal activity within 10 d after treatment 

was greater (P < 0.01) for GnRH cows (66.7%) compared with cows treated with 

estradiol (33%), or control (0%) cows (Figure 2).  The luteal response was similar 

(P > 0.10) for control and estradiol cows.  The percentage of cows detected in 

estrus during d 7 to 20 d after treatment was not influenced by treatment (Table 

2).  In contrast, the percentage of cows with luteal activity during 11 to 20 d after 

treatment was greater (P < 0.01) for GnRH (66.7%) compared with estradiol 

(33.3%) or control (20%) cows. 

Size of the dominant follicle at treatment of cows did not influence the response 

whether the dominant follicle was ≥ 11 mm in diameter or < 11 mm in diameter, 

the estrus and luteal responses were similar (Table 3).  
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DISCUSSION 

Treatment of anestrous beef cows with GnRH initiated short luteal activity 

without estrus, indicating that GnRH caused an ovulatory surge of LH.  

Treatment with GnRH (100 μg) induces ovulation and luteinization of follicles in 

postpartum anestrous beef cows (Troxel et al., 1980; Wettemann et al., 1982).  

Infusion of GnRH (2 μg every hour for 13 d) in nutritionally induced anovulatory 

cows, stimulated LH secretion and induced resumption of luteal activity within 12 

d in 75 % of the cows (Bishop and Wettemann, 1993; Vizcarra et al., 1997).  

Prado et al. (2002) quantified the dynamics of follicular growth in short- and long-

term nutritionally induced anovulatory cows treated with GnRH.  Concentrations 

of insulin-like growth factor-I were greater in large vs small follicles in cows that 

were anovulatory for 4 wk, but not in cows that were anovulatory for 18 wk.  The 

percentage of cows initiating a new follicular wave was 75 % and 17 % for 

GnRH- and saline treated cows, respectively, during the 5-d treatment (Prado et 

al., 2002).   

Release of gonadotropins in response to GnRH could vary due to several 

factors such as the reproductive status of the animal (Moss et al., 1981) or 

number of receptors in ewes (Moss et al., 1981) and cows (Wettemann et al., 

1982; Looper et al., 2003).  Wettemann et al. (1982) determined that the pituitary 

of postpartum suckled anestrous beef cow is responsive to GnRH and that 

maximum concentrations of LH in plasma occur about 2 hr after treatment.  
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Increases in sensitivity of the pituitary gland to GnRH and an increase secretion 

of GnRH are required for an ovulatory surge of LH in ewes (Nett et al., 1984).  

Wise et al. (1984) demonstrated that the density of GnRH receptors on 

gonadotropes determines their ability to respond to GnRH.  Reduction of GnRH 

receptor numbers in ovariectomized ewes influenced tonic release of LH and 

maximal release was not affected unless the number of GnRH receptors was 

reduced by more than 50% (Wise et al., 1984).  Number of GnRH receptors was 

increased in ovariectomized cows treated with estrogen (Looper et al., 2003).  

Furthermore, Rispoli and Nett (2005) indicated that regulation of GnRH receptor 

gene expression is influenced by many factors including steroid hormones, 

inhibin, activin and GnRH.  These results indicate that pituitary responsiveness to 

GnRH is related to the number of receptors for GnRH.   

Treatment with estradiol increased the incidence of estrus without altering 

luteal activity.  Plasma concentration of estradiol is minimal during the luteal 

phase of the bovine estrous cycle (Wettemann et al., 1972; Glencross et al., 

1973; Echternkamp and Hansel, 1973), increase during proestrus, and mediate 

the preovulatory LH release (Echternkamp and Hansel, 1973).  Nancarrow et al. 

(1977), found that the positive feedback of estradiol on LH secretion was 

inhibited during the early postpartum period, however by the third week after 

calving most cows responded to treatment with estradiol and exhibited both 

estrus and an ovulatory surge of LH.  There was a tendency for the time from 

estradiol treatment to maximal release of LH to be longer, and the maximum LH 

concentration to be less, in the early postpartum period than at later times 
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(Nancarrow et al., 1977).  Most cows with suckling calves do not exhibit estrus or 

release LH in response to estradiol at 40 d after calving (Radford et al., 1978) 

whereas, estradiol induced an ovulatory-like surge of LH in most ovariectomized 

cows (Short et al., 1973; Short et al., 1979).  When postpartum anestrous cows 

were implanted with estradiol, the incidence of short estrous cycles was reduced 

if ovulation occurred during the period of administration (Day et al., 1990).  

Ovariectomized cows (Forrest et al., 1981; Kesner and Covey, 1982) respond to 

exogenous estradiol, with preovulatory-like surges of LH.  Schoenemann et al. 

(1985) found that estrogen can increase pituitary concentrations of LH.  Estradiol 

induced a preovulatory-like surge of GnRH in the cerebrospinal fluid of 

ovariectomized cows, which was associated with a LH surge (Gazal et al., 1998).  

Looper et al. (2003), demonstrated that treatment of nutritionally induced 

anovulatory cows with estradiol, increased estradiol concentrations in plasma 

and increased the frequency and amplitude of LH pulses. 

Venzke (1953), attempted to induce estrus and ovulation in ewes during 

the anestrous season by a single injection of estradiol cyclopentylpropionate.  

Although estrus was induced, ovulation did not occur.  Similarly, estrous behavior 

was not induced in prepuberal heifers (Gonzalez-Padilla et al., 1975b) and in 

heifers (Swanson and McCarthy, 1978) treated with estradiol.  Reames et al. 

(2005) found that if ovariectomized cows were treated with minimal doses of 

estradiol, the timing of onset of estrus was delayed relative to the time of the LH 

surge.  Surges of LH were induced in ovariectomized cows when estradiol was 
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continuously infused in amounts to maintain concentrations of estradiol at 3 to 12 

pg/mL. These amounts mimic concentrations that occur during proestrus. 

Our results indicate that follicles did not ovulate in response to estradiol 

and probably the brain is refractory, and an ovulatory surge of LH is not induced 

at this stage postpartum in anestrous beef suckling cows.  However, GnRH 

treatment induced ovulation or luteinization of dominant follicles, without estrous 

behavior.   

 

IMPLICATIONS 

Further studies are needed to determine factors that regulate GnRH neuron 

response to estradiol.  Although the pituitary of postpartum anestrous beef cows 

is responsive to GnRH and releases LH, the hypothalamus probably does not 

respond to estradiol and release GnRH.  Estrus can be induced in postpartum 

cows by treatment with estradiol but ovarian function is not initiated. 
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Table 1. Influence of BCS at calving on estrus (1-6 d), and luteal activity (1-10 d) 

after treatment of postpartum anestrous beef cows with estradiol or 
GnRH. 
 

 Estrus Luteal Activity 

Treatment < 5 a > 5 < 5 > 5 

Control 0 0 0 0 

Estradiol 58 60 28 40 

GnRH 17 20 83 60 
 

a Body Condition Score 
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Table 2. Incidence of estrus and luteal activity in postpartum beef cows within d 

1-20 after treatment with estradiol or GnRH. 
 

Treatment Cows, no 
Estrus during d 7-

20  
 after trt, % 

Luteal activity  
d  11-20 after trt, %

Control 9 40.0 20.0a

Estradiol 12 16.7 33.3a

GnRH 11 25.0 66.6b

 

    a,b means in column with different superscript differ (P < 0.01) 
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Table 3.  Influence of size of dominant follicle on estrus (%) during 1 to 6 d after 
treatment and luteal activity (%) within 10 d after treatment of anestrous 
beef cows with estradiol or GnRH. 

 Estrus LA 

Treatment < 11 mm ≥ 11 mm < 11 mm ≥ 11 mm 

Saline 0 0 0 0 

ECP 8.3 66.7 0 25 

GnRH 25 33.3 25 41 
 



 110

 

0

20

40

60

80

100

Control Estradiol GnRH

 c
ow

s,%

a

a

b

 
Figure 1:  Incidence of estrus in postpartum beef cows within 6 d after 

treatmentwith estradiol or GnRH a, b Means differ (P < 0.01). 
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Figure 2.  Luteal activity in postpartum beef cows within 10 d after treatment 
with estradiol or GnRH. a, b Means differ (P < 0.01). 



CHAPTER V 
SUMMARY AND CONCLUSIONS 

 Effects of nutrition on insulin-like growth factor-I (IGF-I) and insulin in 

plasma and dominant follicles (DF) were evaluated in two experiments at 72 ± 2d 

and at 56 ± 9 d after calving in anovulatory primiparous Angus x Hereford cows. 

Body condition score (BCS) at calving was 4.5 ± 0.1 in experiment 1 and 4.8 ± 

0.2 in experiment 2.  Cows were stratified based on BCS and calving date and 

randomly assigned to one of two nutritional treatments at calving: maintain (M), 

2.27 kg of a 40% CP supplement per day and ad libitum hay; or gain (G), ad 

libitum access to a 50 % concentrate diet and hay.  Body condition score at 

aspiration of the DF was greater for H than M cows and postpartum interval to 

luteal activity was longer for M cows than for H.  Maximum size of DF was 

influenced by nutritional treatment at 72 d after calving but not at 56 d.  

Concentrations of IGF-I in FF were greater for H than M cows and plasma 

concentrations of IGF-I prior to aspiration were also greater in G than in M cows. 

Concentrations of insulin in FF and plasma were greater for G than M cows.  

Concentrations of IGFBP-4 and -5 in plasma were 30% greater (P<0.01) in G 

than M cows.  Concentrations of IGFBP-4 and -5 in FF were 68 and 48%, 

respectively, greater for G than M cows and concentration of IGFBP-2 and -5 in 

plasma at follicular aspiration were positively correlated with follicle size.  BCS at  
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calving was positively correlated with IGFBP-2, -4 and -5 in plasma at aspiration 

of follicles.  Concentration of IGF-I in plasma at aspiration and in FF was 

positively correlated with IGFBP-3 and -4 in FF.  Abundance of mRNA for 

aromatase, IGFBP-4 and -5, and for pregnancy-associated plasma protein-A 

were not affected by treatment.   

 The effect of treatment of postpartum anestrous beef cows with 

gonadotropin releasing hormone (GnRH) or estradiol on onset of first estrus and 

luteal activity was evaluated.  Thirty-four cows were assigned based on body 

condition at calving and calving date to one of three treatments: GnRH, estradiol 

cypionate, or control.  During 1 to 10 d after treatment, more GnRH cows had 

luteal activity than estradiol cows, or control cows.  Treatment with GnRH 

increased the percentage of cows with luteal activity 11 to 20 d after treatment.  

Percentage of cows detected in estrus within 6 d after treatment was greater for 

estradiol than GnRH or control cows, and was similar for GnRH and control 

cows.  The number of cows in estrus during 7 to 20 d after treatment was not 

influenced by treatment.  Body condition score at calving did not influence the 

effect of treatment on estrus and luteal activity.  Treatment of anestrous beef 

cows with GnRH initiated short luteal activity without estrus, indicating that GnRH 

caused an ovulatory surge of LH.   

Treatment with estradiol increased the incidence of estrus without altering 

luteal activity. Our results indicate that follicles did not ovulate in response to 

estradiol and probably the brain was refractory and an ovulatory surge of LH was 

not induced at this stage postpartum in anestrus beef suckling cows  
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 In conclusion, concentrations of IGF-I and insulin in FF may be related to 

follicular functions and changes in follicular fluid IGFBP concentrations rather 

than local translational regulation may have a role in dietary induced changes in 

postpartum follicular growth.  The nutritionally induced increases in 

concentrations of IGF-I and insulin could have direct and/or indirect effects on the 

length of the postpartum anestrous interval.  In addition, endocrine changes in 

DF may be associated with increased pregnancy rates at the first postpartum 

estrus in cows that receive greater nutrient intake. 

 Further studies are needed to determine factors that regulate secretion of 

GnRH in response to estradiol.  Although the pituitary of postpartum anestrous 

beef cows is responsive to GnRH and releases LH, the hypothalamus does not 

respond to estradiol and release GnRH. 

 Elucidaton of (1) the mechanisms by which nutrient intake and body 

energy reserves regulate hypothalamo-hypophyseal-ovarian function in beef 

cows and (2) factors that influence the effects of estradiol on behavioral estrus 

and the ovulatory surge of LH, will result in development of management 

systems and/or treatments to decrease the interval from calving to conception in 

beef cows. 
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