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 This Dissertation is presented in the Journal of Animal Science style and format, 

as outlined by the Oklahoma State University graduate college style manual.  The use of 

this format allows the individual chapters to be suitable for submission to scientific 

journals.  Two papers have been prepared from the data collected to partially fulfill the 

requirements for the Ph.D. degree.  Each paper is complete with an abstract, introduction, 

materials and methods, implications, and literature cited section.  These two papers are 

chapters III and IV. 
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Chapter I 

Introduction 

 Wheat pasture is one of the most important forage resources in the southern Great 

Plains.  Its importance is due to many factors, including the high forage quality that 

allows for exceptional ADG of stocker cattle grazing wheat, as well as a protein or 

energy supplement to dormant range or hay diets.  Wheat forage is commonly grazed 

from approximately October or November, to early March (dual-purpose winter wheat) 

or as late as May if a grain crop is not desired.  A popular ionophore, monensin sodium 

(trade name Rumensin®, Elanco Animal Health, Inc., Indianapolis, IN), has been shown 

to be effective in reducing bloat and improving ADG of stocker cattle grazing wheat 

pasture.   

 The goal of the research contained in this dissertation was to measure some the 

effects of monensin on site and extent of wheat forage digestion, as well as the evaluation 

of different delivery mechanisms for providing monensin to stocker cattle grazing wheat 

pasture.  Chapter II provides a review of literature on intake and digestibility of wheat 

forage, and how supplements and monensin influence these variables.  Additionally, an 

overview of the response to monensin-containing supplements on wheat pasture is 

included and attempts are made to find general trends in the data.  Also, a novel analysis 

of two recent trials on wheat pasture is presented and discussed relative to mineral and 

monensin supplementation on wheat pasture.  Chapter III investigates the effects of 
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energy and/or mineral supplements with and without monensin on supplement intake and 

conversion, and growth performance of steers grazing winter wheat pasture.  Chapter IV 

investigates the effects of three levels of monensin on site and extent of forage digestion 

and utilization and rumen kinetics and fermentation.  Chapter V provides a brief 

summary of the research reported in this dissertation.  
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Chapter II 

Review of Literature 

Introduction 

Since 2001, between 1.8 and 3.7 million head of cattle grazed small grain pastures 

annually in Kansas, Oklahoma, and Texas (USDA-NASS, 2001 to 2007).  Others have 

estimated that this number is much greater, with as many as 6 million head of cattle 

grazing wheat annually in the entire southern Great Plains region (Horn, 1984; Horn, 

2006).  Based on these numbers the importance of wheat pasture in the American beef 

cattle industry is obvious.  It is a critical component in the staging of cattle in the feeding 

system, adding rapid gain to cattle outside the feedlot in preparation for fattening.  

Because of the high quality of wheat forage, it is a unique forage that poses special 

advantages and challenges.  One advantage of wheat forage is its ability to sustain 

excellent ADG of stocker cattle and its occasional use as a protein supplement for cattle 

consuming lower quality forages.  The primary health problem of stocker cattle grazing 

wheat pasture is frothy bloat.  The effects of monensin on growth performance, intake 

and digestion, and metabolic disorders will be discussed. 

Wheat Forage Composition and Quality 

 Forage quality can most accurately be assessed by the level of animal 

performance that is achieved when consuming a given forage.  This premise is generally 

applied in situations where forage availability is not limiting and nutrients other than 
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protein and energy are supplied to correct known deficiencies.  The ADG of cattle 

grazing wheat forage is a testament to its high quality, with ADG greater than 1.0 kg 

common with only mineral supplementation (Horn, 2006).  The exceptional quality of 

wheat forage makes it unique compared with many forages.  Wheat forage is generally 

high in CP, commonly ranging from 20 to 30 % (Horn, 1984; Croy, 1984; Reuter and 

Horn, 2000).  Based on figures reported by Horn (1984) and Reuter and Horn (2000), the 

CP content of wheat forage is not static, but rather it is high early in the grazing season, 

decreases during the dormant phase in the middle of the winter, and then increases as the 

plant resumes growth in early spring.  If followed to maturity, the forage portion of wheat 

declines in quality as grain is produced and the plant repartitions nutrients from stems and 

leaves into grain production.  This quadratic shape to wheat forage CP is characteristic of 

many other nutrients in the wheat plant, including digestibility (measured in-vitro), NDF, 

and ADF (Horn, 1984; Reuter and Horn, 2000).  Wheat forage is typically very 

digestible.  In-vitro measures by Reuter and Horn (2000) suggest that wheat forage is 

upwards of 80 % digestible.  Horn (1984) reported in-vitro digestibilities that differed in 

magnitude from Reuter and Horn (2000), but were still excellent with values in excess of 

70 %.   

 Mineral content of wheat forage is also variable.  Stewart et al. (1981) found that 

the macro minerals (Ca, P, K, Mg) either held constant or increased from December to 

March.  In contrast to native range forages, or even perennial forage crops, wheat 

pastures are typically fertilized annually at planting and again later in the growing season 

if necessary.  Because of the short term nature of the crop (annual wheat), fertilization 

schemes potentially impact the mineral content of wheat forage.  Therefore, it is 
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recommended that actual mineral analyses be conducted on wheat forage that is to be 

grazed.  This is probably a good management practice for other nutrients as well, 

especially in the case of formulating specific supplements for given locations and 

conditions.   

Supplementation of Cattle Grazing Wheat Forage 

 Despite the high quality of wheat forage, and excellent ADG with cattle grazing 

wheat forage, supplementation of wheat forage is potentially beneficial to balance 

nutrients and improve efficiency of forage utilization.  Hogan (1982) reported that when 

the digestible OM (DOM) to CP ratio (DOM:CP) was greater than 3, there is a need for 

additional energy to improve efficiency of ruminal ammonia utilization.  A common 

DOM:CP for wheat forage would be 3.6 (assuming DOM = 80 % and CP = 22 %).  

Moore et al. (1999) approached this nutrient imbalance with slightly different variables.  

Moore et al. (1999) found that forage TDN:CP ratios less than 7 indicate a deficit of 

energy in relation to N.  With a wheat forage TDN of 73 % (NRC, 1996) and CP of 22 %, 

wheat forage has a TDN:CP ratio of 3.3.  Regardless of the approach taken, it is apparent 

that some form of supplemental energy is needed to better utilize the excess CP in wheat 

forage.  For this reason, a great deal of research has been conducted to investigate the 

effects of energy supplementation on growth performance of cattle grazing winter wheat 

pasture (Horn et al., 2005; Horn, 2006).   

 Richardson et al. (1976) found that monensin had a protein sparing effect in 

concentrate diets.  Bergen and Bates (1984) and Schelling (1984) also indicate that 

monensin can spare protein from degradation in the rumen, and allow more true feed N to 

reach the small intestine.  This is one of the mechanisms by which monensin is believed 
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to improve efficiency when included in diets.  Because of its potential for impacting N 

utilization, the effects of monensin inclusion in supplements for cattle grazing wheat 

pasture has been extensively examined.  An overview of these results is presented later in 

this review.   

 As with most forages, the mineral profile of wheat forage is not in ideal balance 

for production.  Horn (2006), using the mineral concentrations reported by Stewart et al. 

(1981), found that wheat pasture was marginally adequate for phosphorus and 

magnesium, excessive for potassium, and deficient for calcium (based on a 225 kg steer 

gaining 1.0 kg/d).  For the less studied micro minerals, evidence suggests that copper 

should be included in wheat pasture mineral supplements as well (Horn, 2006).  It is a 

good animal husbandry practice to provide a free-choice mineral supplement to cattle 

grazing wheat pasture.  This supplement should be high in Ca, and relatively low in P and 

K.  Mineral supplements also provide a means for delivery of feed additives such as 

monensin or poloxalene.  A database presented later in this review will give an indication 

of the importance of feeding supplemental minerals to cattle grazing wheat pastures, as 

well as additional advantages that can be gained by including monensin in the mineral 

supplement. 

Forage Intake 

 Many factors influence the amount of forage an animal will consume.  Mertens 

(1994) posed the following question regarding forage intake:  “Does intake determine 

animal performance (intake as an input) or does animal performance determine intake 

(intake as a response)?”  Most likely forage intake is a convergene of these two 
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dichotomies.  Therefore, when assessing forage intake, we must account for physiological 

animal factors, as well as physical and chemical composition of the plant material.   

 Animal Factors Affecting Forage Intake.  Mertens (1994) discussed in great detail 

many non-forage factors that influence intake.  One point of emphasis was that intake is 

regulated both in the short- and long-term.  Short-term regulation involves mechanisms to 

initiate and cease meals, while long-term regulation of intake involves BW regulation and 

performance of the animal over its entire lifetime.  Obviously, the culmination of many 

short-term signals leads to the long-term outcome.  Citing numerous studies, mostly from 

the early 1970’s, Mertens (1994) stated that over the long-term, animals will balance 

energy comsumed with energy expenditures in order to maintain relatively constant BWs.  

Evidence of this is that mature animals with low production requirements maintain a 

fairly constant BW, rather than gaining weight indefinitely.  As a “safety buffer”, animals 

have the capacity to store energy reserves in the form of glycogen and fat to be utilized 

when intake restrictions occur.  As nutritionists, we formulate rations to meet long-term 

production goals, therefore, the long-term factors of intake are what we focus on.  

Mertens (1994) considered three mechanisms to be of greatest importance relative to non-

forage factors controlling intake:  physiological regulation, physical limitation, and 

psychogenic modulation.   

 Many animal factors contribute to the physiological regulation of intake.  These 

factors include the species, sex, physiological state (maintenance, growth, pregnancy, and 

lactation), size, body shape, and health status (Mertens, 1994).  Many of these factors are 

inputs in the NRC (1996) intake prediction models.  Mertens (1994) indicated that 

physiological regulation of intake involves equilibrating energy input with the animal’s 
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energy demand.  Other factors must come into play to determine intake.  Without any 

further qualification, an animal would continue to consume a given feedstuff indefinitely 

to match its energy needs.  Obviously there is a physical limit to how much an animal can 

consume.  For example, as energy demand increases with increasing milk production, a 

feed of higher energy content must be provided or maximal production cannot be 

achieved.  Eventually, body energy reserves will be utilized and eventually other 

physiological processes, such as reproduction, will cease, so that nutrients can be used for 

essential metabolic functions.  The concept of eating to meet energy demands is believed 

to be the dominanant response when feeding energy dense, concentrate-based rations, 

such as those fed in feedlots.  These diets typically have high grain content and little 

physical bulk, allowing voluntary intake to be greater than would be expected with 

forages. 

 It is generally accepted that physical distention of the reticulorumen is the major 

factor limiting intake of forages (Campling and Balch, 1961; Balch and Campling, 1962; 

Allen, 1996).  It is believed that while many forages are readily accepted by the animal, 

due to the low energy content and bulky nature of forages, animals are physically unable 

to consume and digest bulky forages at levels sufficient to achieve desirable levels of 

performance. 

 If ruminal fill or distention limits intake of a low energy, bulky feedstuff, the rate 

at which ruminal contents are passed through the rumen becomes vitally important for the 

initiation of another meal.  A decrease in retention time is a result of increased particulate 

passage rate, which tends to increase with increases in feed intake (Owens and Goetsch, 

1988; Allen, 1996).  While rumen contents are comprised of both liquid and particulate 
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matter, the rate at which each fraction leaves the rumen is different (Owens and Goetsch, 

1988).  The liquid passage rate, generally referred to as “dilution rate”, ranges from 4 to 

10 %/h.  Mean particulate passage rates for roughages generally range from 1 to 6 %/h.  

An early indication of the relationship between passage rate and voluntary intake came 

from Campling et al. (1961).   In their study, total tract retention time of stained particles 

decreased as daily intake of hay increased.   

 Wheat forage is of minimal physical bulk, and high in water content (Horn, 1984; 

Reuter and Horn, 2000).  Therefore, physical bulk is likely not a major contributor to 

intake regulation of wheat forage.  In this regard, wheat forage is likely most similar to a 

concentrate diet, in which energy balance factors contribute to regulating intake.  Other 

authors have found that high quality pastures are similar to concentrate feeds and intake 

may be limited by nutrient balance (Fisher et al., 1990; Poppi et al., 1990).  Horn et al. 

(1981) found that wheat forage intake averaged nearly 3.0 % BW.  Branine and Galyean 

(1990) found that wheat forage intake ranged from 2.4 to 3.5 % BW throughout the 

grazing season.  Supporting these high intakes are high passage rates.  Branine and 

Galyean (1990) measured liquid dilution rates in excess of 10 %/h.  Estimating the forage 

intake of free grazing animals is so difficult that all of the commonly used methods have 

limitations and consist of various compromises that may introduce error (Minson, 1990; 

Owens and Hanson, 1992).  Horn et al. (1981) found that a factor contributing to the 

complication of measuring wheat forage intake is fecal ash contamination.  Fecal ash 

content of steers grazing wheat pasture were in excess of 40 %, indicating a significant 

amount of soil consumed while grazing, and a need to express wheat forage intakes on an 

OM basis, rather than a DM basis (Horn et al., 1981).     
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Forge allowance influences how much wheat forage an animal will consume.  

Redmon et al. (1995) found that wheat forage intake declined rapidly as forage allowance 

fell below a plateau level (20 to 24 kg DM·100 kg BW-1
·d-1.  Fieser et al. (2006) found 

that ADG of steers declined rapidly below a plateau of around 700 kg DM/100 kg BW.  

Regardless of whether intake is an input or a response, these reports indicate that forage 

allowance is a major factor that influences wheat forage intake.  However, it is unclear if 

this is an animal factor (animals cease grazing when the return of energy consumed is not 

greater than energy expended), or a plant factor of mass where forage mass influences 

grazing time. 

The third intake regulation factor discussed by Mertens (1994) is psychogenic 

modulation.  This is defined as the regulation of food intake involving the animal’s 

behavioral response to inhibitory or stimulatory factors in the feed or feeding 

environment.  While psychogenic responses probably play a vital role in the regulation of 

intake, the effects are difficult to quantify.  Factors associated with the psychogenic 

regulation include such things as palatability of the feedstuff, social behaviors, or 

responses to external stimuli.  An example of this is when an animal that appears to be 

extremely distended begins a meal when fresh feed is offered, despite the visual 

appearance that intake should have ceased.   

Plant Factors Affecting Forage Intake.  Because of the importance of physical fill 

and energy consumption on voluntary intake of forages, plant composition plays a critical 

role.  Due to ease of measurement relative to animal factors, much effort has been 

directed at predicting intake based on forage composition.  Blaxter et al. (1961) found 

that when feeding three different qualities of hay, voluntary intake decreased with 
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increasing crude fiber content.  From similar studies, Van Soest (1965) also concluded 

that voluntary intake was inversely related to the fiber content of the forage.  Van Soest 

(1965) showed that voluntary intake decreased quadratically with increasing cell wall 

content (NDF).  This correlation was especially strong with grasses.  Lippke (1980) 

found that DM and OM intakes were negatively correlated (R2 = 0.86) with ADF content 

of the forage.   

This relationship between fiber values and intake supports the idea that bulk 

density does not play a major role in intake regulation of wheat forage.  Low levels of 

NDF and ADF in wheat forage (Reuter and Horn, 2000) agree with the previously 

mentioned high forage intakes, and are in agreement with the exceptional ADG observed 

in cattle grazing wheat pasture.   

Effect of Monensin on Wheat Forage Intake.  Bergen and Bates (1984) found that 

part of the mechanism by which monensin works is to reduce intake of the diet without 

sacrificing performance, thereby improving efficiency.  However, that conclusion was 

based on grain-based diets.  Monensin does not appear to affect forage intake of cattle 

grazing wheat pasture (Horn et al., 1981; Davenport et al., 1989, Branine and Galyean, 

1990).  Schelling (1984) suggested that depressed intake due to monensin is either not 

present or much more subtle in cattle on forage-based diets than high-concentrate diets.   

Forage Digestibility 

 Forage Digestion in the Ruminant.  As discussed with intake, forage digestion 

also relies on both animal and plant factors.  Microbial activity in the rumen has a more 

direct influence on digestibility than on intake.  Across a wide variety of forage types and 

maturities, the rumen is the major site of fiber digestion (Galyean and Owens, 1991).  
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After reviewing numerous studies, Merchen and Bourquin (1994) concluded that ruminal 

digestion is responsible for at least 90 % of total tract cellulose digestion.  While the 

majority (60 %) of hemicellulose digestion takes place in the rumen (Merchen and 

Bourquin, 1994).  The remainder of fiber digestion takes place postruminally, as 

essentially no fiber digestion takes place in the small intestine (Merchen and Bourquin, 

1994).   

 Fermentation in the rumen is the result of microbial activity, which converts 

components of the diet to products that are useful (volatile fatty acids, microbial protein, 

B-vitamins) and useless or potentially harmful (CH4, CO2, ammonia, nitrate) to the host 

animal (Owens and Goetsch, 1988).  The bacterial species responsible for digestion of 

roughages and concentrates differ, and have different optimal ruminal environments.  

One critical aspect of the rumen environment is the pH.  Typically the rumen maintains a 

slightly acidic pH, in the range of 5.5 to 7.2 (Owens and Goetsch, 1988).   Concentrate-

based diets result in pH values on the low end of that range due to the large amount of 

fermentable material, while forage diets generally support pH values closer to the upper 

end of that range.  Cellulolytic bacteria can be inhibited whenever the pH falls below 6.0 

(Owens and Goetsch, 1988).  In this regard, wheat forage is more similar to concentrates 

that forages.  Rumen pH of cattle grazing wheat forage is typically around 6.0 (Davenport 

et al., 1989; Branine and Galyean, 1990).   

 Ruminants are able to derive energy from forage-based diets in the form of by-

products of microbial digestion.  According to Owens and Goetsch (1988), VFAs provide 

50 to 85 % of the metabolizable energy used by the animal when consuming a forage 
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based diet.  Typically, rumen pH and VFA concentrations are inversely related, i.e. low 

rumen pH indicates high VFA concentrations.     

 Another desirable product of microbial fermentation is microbial protein flowing 

out of the rumen and into the small intestine where it is metabolized.  Maximizing the 

amount of microbial protein flowing out of the rumen will minimize the amount of 

microbial protein that is necessary to meet particular animal requirements.  Maximization 

of microbial protein synthesis is also particularly important because it is a high quality 

protein, with a well-balanced amino acid profile (Merchen and Titgemeyer, 1992).  

Forages of lower digestibility will produce lower levels of microbial protein, because 

microbial production is a function of the amount of OM digested in the rumen (Merchen 

and Bourquin, 1994).  Wheat forage has been reported to result in very high microbial 

efficiency, with Vogel (1988) reporting microbial efficiency values as high as 38.9 (g of 

bacterial N/kg of OM truly fermented it the rumen) in early spring.  Beever et al. (1987) 

also reported high microbial efficiency values for a high quality forage (white clover), 

near 30 (g of bacterial N/kg of OM truly fermented it the rumen) for primary growth and 

regrowth.   

 Plant Factors Affecting Forage Digestibilty.  The primary plant factors affecting 

forage digestibility are protein and the cell wall constituents.  Van Soest (1965) 

concluded that chemical composition of the plant is much more closely related to 

digestibility than to voluntary intake.  Lippke (1980) showed that as forages increased in 

physiological maturity the NDF and ADF fractions increased correspondingly.  Merchen 

and Bourquin (1994) stated that this increase in plant maturity and fiber content is 

indicative of a reduction in leaf to stem ratio.  In wheat forage, NDF and ADF increase in 
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the fall with advancing age of the plant (Horn, 1984).  The slowing of growth during 

winter, coupled with continuous defoliation by grazing results in an increased proportion 

of stem, prior to an increase in wheat plant growth as temperatures rise in spring and 

stimulate tillering which reduces fiber again (Horn, 1984).   Blaxter et al. (1961) found 

that apparent digestibility of forages decreased as crude fiber content increased.  This 

negative relationship between fiber content and digestibility is widely accepted (Merchen 

and Bourquin, 1994).   

 Effect of Monensin on Wheat Forage Digestibility.  The rumen is the primary site 

where monensin effects digestibility.  Monensin generally does not effect in-vitro 

digestibility of wheat forage (Davenport et al., 1989; Branine and Galyean, 1990).  In one 

trial reported by Horn et al. (1981), monensin had no effect on apparent wheat forage 

digestibility, and in the other trial monensin reduced OM digestibility by less than 2 %.  

Two of the most classic and consistent effects of monensin are reduced methane 

production and increased proportions of propionate in the rumen (Bergen and Bates, 

1984; Schelling, 1984).  Methane and CO2 are useless products of microbial fermentation 

that serve as lost energy and propionate is the most energetically efficient VFA produced 

in the rumen (Owens and Goetsch, 1988).  Monensin has been shown to reduce gas and 

methane production in wheat forage diets (Horn et al., 1981; Min et al., 2005).  Horn et 

al. (1981) and Davenport et al. (1989) reported that monensin increases the molar 

proportion of propionate of cattle grazing wheat pasture.  These two factors (reduced gas 

production and increased propionate) result in retention of more feed energy by the 

animal.   
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Effect of Monensin on Wheat Pasture Bloat 

 Frothy bloat is a major cause of mortality (2 to 3 %) in wheat pasture stocker 

cattle (Horn et al., 1977).  The specific cause of wheat pasture bloat has not been 

identified (Horn, 2006).  Min et al. (2005) suggest that dietary protein and low ruminal 

pH are critical factors in the etiology of wheat pasture bloat.  Most of the research 

relative to wheat pasture bloat has focused on feed additives that reduce bloat, such as 

poloxalene and ionophores.  Monensin has been shown to improve ADG of cattle grazing 

wheat pasture (Horn et al., 2005; Horn, 2006) and decrease incidence and severity of 

wheat pasture bloat (Grigsby, 1984; Branine and Galyean, 1990; Paisley and Horn, 

1998).  Often the only evidence of bloat on wheat pasture is a dead animal.  Monensin 

appears to reduce the incidence of sub-clinical (or non-lethal) cases of bloat, which may 

result in more normal metabolic function and allow for normal intake and digestibility of 

wheat forage. 

Overview of Monensin-Containing Supplements for Steers Grazing Winter Wheat 

Pasture 

A large database was constructed of the known trials involving monensin 

supplementation of steers grazing wheat pasture.  All studies were conducted at 

Oklahoma State University.  The individual experiments date back to 1990, and include 

self-limiting, monensin-containing energy supplements, hand-fed, monensin-containing 

energy supplements, and monensin-containing mineral mixtures.  The studies and the 

pertinent details of each are summarized in Table 1.  Supplement intakes ranged from 

essentially zero (no energy supplement, mineral mixture intakes less than 0.2 kg·hd-1
·d-1) 

to almost 2.25 kg·hd-1
·d-1 for self-limiting energy supplements.  Inclusion criteria for the 
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database included properly designed controls, generally a non-medicated mineral 

compared with a monensin-containing energy supplement.  In some cases negative 

controls (no supplementation) were included, but studies were only included in the 

database if a positive control (free-choice mineral mixture) was also included.  Energy 

supplement intake ranged from 0.40 to 2.28 kg·hd-1
·d-1.  Mineral mixture intake ranged 

from 45 to 236 g·hd-1
·d-1, and was strongly influenced by monensin inclusion in the 

mineral mixture.  For steers receiving monensin-containing supplements (either energy or 

mineral mixtures), monensin intake averaged 152 mg·hd-1
·d-1, and ranged from 83 to 258 

mg·hd-1
·d-1.  Daily gains were increased an average of 13.3 % by energy and/or mineral 

supplementation with monensin.  Supplement conversion (kg of supplement/kg of 

additional ADG compared with positive control) averaged 13.7, but was highly variable 

(standard deviation = 15.7).  However, the median value (where as many observations 

were above as below) was just 7.5, indicating the often excellent conversion of 

monensin-containing energy supplements on wheat pasture.  Because of the production 

oriented nature of this database, further statistical analysis could not be performed due to 

the confounding nature of the treatments (lack of energy supplements without monensin 

and vice-versa within the same study).  However, a scatter plot was constructed (Figure 

1) to visualize the change in ADG (percent change in ADG compared with the non-

medicated mineral mixture).  Figure 2 is the same data, but a surface plot was 

constructed using the G3GRID procedure of SAS (SAS Inst., Inc., Cary, NC).  These 

figures provide a visual basis for evaluating the different supplementation programs.  The 

smoothed surface plot (Figure 2) indicates that higher levels of monensin increase the 

improvement in ADG.  Additionally, the highest increases in ADG appear to be at a 
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moderate level of energy supplement, around 0.91 kg·hd-1
·d-1.  However, caution must be 

exercised when evaluating this figure because of the confounded nature of the 

experiments.   

Non-Medicated and Monensin-Containing Mineral Mixtures for Steers Grazing 

Winter Wheat Pasture 

A four year database consisting of data collected by Gibson (2002) and data from 

Chapter III of this dissertation was constructed and analyzed to determine the effects of 

non-medicated and monensin-containing mineral mixtures on mineral mixture intake and 

growth performance of steers grazing winter wheat pasture.  Pasture means from 4 

experiments (2 years from Gibson (2002); 2 years from the present dissertation) were 

first combined to one data set, and observations for treatments besides the negative 

controls (no supplementation; NC), free-choice, non-medicated mineral mixture (MIN), 

and the free-choice, non-medicated mineral mixture with monensin added at a rate of 

1,785 mg/kg (RMIN) were deleted.  The NC and MIN treatments were represented in 14 

pastures across the 4 experiments, while RMIN was represented in 16 pastures.  This 

resulted in 148 steers on NC, 126 steers receiving MIN, and 143 steers receiving RMIN.  

Initial BW of steers across all 4 experiments was 254 ± 22 kg.  All experiments were 

conducted at the Oklahoma State University Wheat Pasture Research Unit near Marshall, 

OK.  The data were then analyzed using the MIXED procedure of SAS (SAS Inst., Cary, 

NC) with a model statement that included the main effect of treatment and the 

Satterthwaite procedure was used to determine degrees of freedom.  For the data set 

combining all 4 experiments, the random statement included the effect of experiment and 

block nested in experiment.  Protected (P ≤ 0.05) Fisher’s LSDs were used to separate 
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treatment LS means.  Mineral mixture and monensin intakes are presented (Table 2) as 

raw means and standard deviations without further statistical analysis. 

Addition of monensin to MIN reduced mineral mixture intake by 67% (from 209 

to 68 g·steer-1·d-1), and by at least 100 g·steer-1·d-1 in each year.  Averaged across the four 

experiments, monensin intake from RMIN was 121 mg·steer-1·d-1.   

The free-choice mineral mixtures had an effect (P < 0.01) on ADG (Table 3).  

Across these four separate experiments, MIN increased (P < 0.01) ADG by 0.11 kg/steer 

(15 % increase) compared with NC.  The addition of monensin to the mineral mixture (at 

1,785 mg/kg) further increased (P < 0.01) ADG by 0.10 kg/steer (12 % increase) 

compared with MIN.  Therefore, the additional ADG realized when offering a free-

choice, monensin-containing mineral as compared with no supplement was 0.21 kg/steer 

(30 %).  This increase in ADG was even more impressive given that mineral intake was 

reduced by two-thirds with monensin.  These data indicate that providing supplemental 

minerals free-choice to steers grazing wheat pasture improves performance.  The degree 

to which ADG is improved is dependent on the mineral content of the forage and the 

amount of available forage to sustain a given level of ADG.  The effects of monensin 

appear to act independent of this possible correction in mineral balance, as ADG is 

improved by the same amount above MIN, that MIN improved ADG compared with NC.  

Additionally, this data set shows that despite the variability encountered in wheat pasture 

grazing from year to year (lack of difference in ADG in 2004-2005), mineral and 

monensin supplementation increased ADG during most years.   
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Conclusions 

 Wheat forage is a tremendous forage resource that is unique among forages.  

However, the high quality nature of wheat pasture does make its use challenging.  In 

many regards, the digestion of wheat forage is more similar to concentrates than forages.  

Despite its high quality, supplementation of wheat pasture with energy sources, mineral 

mixtures, and monensin has improved performance of cattle grazing winter wheat forage.   

Mineral supplementation appears to be critical to balancing a wheat forage diet and 

allowing for optimal growth.  Additonally, mineral supplements make an ideal carrier for 

monensin and other additives because of their ease of handling and regular intake.  

Despite the negative effect that monensin has on intake of mineral mixtures, the 

improvement in ADG from monensin appears to be additive to that of the non-medicated 

mineral mixtures.  All of the individual effects of monensin, such as increased forage 

digestibility, reduced methane loss, increased ruminal propionate concentrations, and 

reduced incidence and severity of bloat work in concert to produce the consistent 

improvements in ADG of cattle on wheat pasture.   
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Table 1.  Effects of energy, mineral, and monensin supplementation on ADG and supplement conversions 

Reference Treatments1 

Energy 
Supp. 

Intake2 
Mineral Mixture 

Intake3 
Monensin 

Intake4 
ADG, 

kg 
Delta ADG, 

kg5 
Delta ADG, 

%6 
Supp. 

Conversion7 

MIN · 54 0 0.80 · · · 
Horn et al., 1990 Energy + 

Monensin 
1.65 · 258 1.04 0.24 30.1 6.49 

MIN · 95 0 1.10 · · · 
Horn et al., 1992 Energy + 

Monensin 
1.47 · 244 1.32 0.22 19.8 4.44 

MIN · 109 0 1.05 · · · 
Beck et al., 1993 Energy + 

Monensin 
0.91 · 150 1.25 0.20 19.5 4.44 

MIN · N/A · 0.97 · · · 

Starch-based 
Energy + 
Monensin 

1.91 · 168 1.00 0.03 2.8 70.10 

Fiber-based 
Energy + 
Monensin 

1.94 · 170 1.07 0.10 10.3 19.44 
Horn et al., 1995 (Exp. 1) 

Fiber-based 
Energy + 
Monensin 

(Free-choice) 

2.26 · 199 1.02 0.05 5.1 45.23 

MIN · N/A 0 0.89 · · · 
Horn et al., 1995 (Exp. 2) Energy + 

Monensin 
1.76 · 155 1.07 0.19 21.0 9.46 

MIN · N/A 0 0.99 · · · 

Starch-based 
Energy + 
Monensin 

1.08 · 95 1.11 0.12 12.4 8.81 Horn et al., 1995 (Exp. 3) 

Fiber-based 
Energy + 

1.66 · 146 1.16 0.17 17.4 9.63 
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Monensin 

Energy 2.28 · 0 1.36 · · · 
Paisley and Horn, 1996 Energy + 

Monensin 
0.65 · 108 1.41 0.05 3.7 · 

MIN · N/A 0 1.04 · · · 

Milo + 
Monensin 

0.93 · 124 1.09 0.06 5.7 15.85 Horn et al., 1997 

Midds/Hulls + 
Monensin 

1.06 · 140 1.07 0.04 3.5 29.13 

MIN · 136 0 1.15 · · · 
Paisley et al., 1998 Energy + 

Monensin 
0.83 · 183 1.33 0.18 15.4 4.69 

NC · · 0 0.55 · · · 

MIN · 213 0 0.60 0.05 · · Gibson, 2002    (Year 1) 

RMIN · 45 83 0.74 0.14 22.6 · 

NC · · 0 1.04 · · · 

MIN · 236 0 1.16 0.12 · · Gibson, 2002    (Year 2) 

RMIN · 68 125 1.23 0.07 5.9 · 

MIN · 132 0 1.33 · · · 
Fieser et al., 2003 

Energy + 
Monensin 0.40 · 143 1.45 0.11 8.5 3.56 

MIN · 122 0 1.18 · · · 

Energy 0.68 · 0 1.28 0.10 8.9 6.52 

Energy + 
Monensin 

0.68 · 100 1.37 0.20 16.6 3.49 

Fieser et al., 2005 (early 
period) 

Energy + 
Monensin 0.68 · 184 1.36 0.19 15.8 3.66 
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MIN · 195 0 1.00 · · · 

Energy 0.68 · 0 1.09 0.09 9.1 7.50 

Energy + 
Monensin 

0.68 · 100 1.05 0.05 5.5 12.50 

Fieser et al., 2005 (late 
period) 

Energy + 
Monensin 

0.66 · 194 1.13 0.13 13.2 5.03 

NC · · 0 0.49 · · · 

MIN · 195 0 0.55 · · · 

RMIN · 73 129 0.72 0.11 19.8 · 

Energy + 
RMIN 

0.91 91 160 0.81 0.14 25.6 6.45 

Fieser et al., 2007 (Year 
1) 

Energy + 
Monensin 

0.91 · 150 0.89 0.21 38.0 4.35 

NC · · 0 0.87 · · · 

MIN · 186 0 1.09 · · · 

RMIN · 82 146 1.15 0.22 5.8 · 

Energy + 
RMIN 

0.91 77 137 1.15 0.06 5.8 14.29 

Fieser et al., 2007 (Year 
2) 

Energy + 
Monensin 

0.91 · 150 1.13 0.05 4.6 18.18 

Average8,9  1.14 124 152   13.3 13.7 

Standard Deviation  0.55 60 42   8.9 15.7 

Minimum  0.40 45 83   2.8 3.5 

Maximum  2.28 236 258   38.0 70.1 

Median  0.91 109 148   11.3 7.5 
1MIN = free-choice, non-medicated mineral mixture; Energy + Monensin = monensin-containing energy supplement, generally corn, milo, wheat middling, or 
soybean hull based; NC = negative control, no supplemental nutrients; RMIN = monensin-containing free-choice mineral mixture. 
2kg·hd-1

·d-1. 
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3g·hd-1
·d-1. 

4mg·hd-1
·d-1. 

5Change in ADG compared with positive control (MIN). 
6Change in ADG expressed as a percentage of the positive control (MIN). 
7Supplement Conversion = kg of as-fed supplement/kg of additional gain compared with MIN. 
8Average ADG of MIN = 0.98. 
9Monensin intake of monensin-containing supplements. 
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Table 2.  Intake of free-choice mineral mixtures with and without monensin, and 
monensin intake from the monensin-containing mineral of steers grazing winter 
wheat pasture in 4 separate years and overall1  

Year MIN2 RMIN2 Monensin3 

2000-015 213 ± 50 45 ± 9 83 ± 17 

2001-025 236 ± 59 68 ± 9 125 ± 16 

2004-056 195 ± 14 73 ± 14 129 ± 22 

2005-066 181 ± 27 82 ± 9 148 ± 18 

Combined 209 ± 45 68 ± 18 121 ± 29 
1means ± SD 
2MIN = non-medicated, free choice mineral mixture; RMIN = free-choice mineral mixture with 1,785 mg 
monensin/kg; MIN and RMIN intake g·steer-1

·d-1 
3Monensin intake from RMIN, mg·steer-1

·d-1. 
4from Gibson (2002). 
5from Fieser et al. (2007). 
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Table 3.  Effect of mineral supplementation and mineral supplementation with 
monensin on ADG of steers grazing winter wheat pasture in 4 separate years and 
overall1  

Year NC2 MIN2 RMIN2 SEM3 P-value4 

2000-015 0.31b 0.41ab 0.54a 0.060 0.04 

2001-025 1.09c 1.18b 1.23a 0.012 < 0.01 

2004-056 0.56 0.60 0.75 0.085 0.09 

2005-066 0.86b 1.09a 1.15a 0.043 0.01 

Combined 0.71c 0.82b 0.92a 0.173 < 0.01 
1lsmeans for each individual year and combined. 
2NC = negative control; MIN = non-medicated, free choice mineral; RMIN = free-choice mineral mixture 
with 1,785 mg monensin/kg. 
3n = 12 for Gibson, 2002; n = 10 for Fieser et al., 2007. 
4Observed significance level for the main effect of treatment. 
5calculated from data of Gibson, 2002. 
6calculated from data of Fieser et al., 2007. 
a,b,cMeans within a row with different superscripts differ (P < 0.05). 
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Figure 1.  Scatter plot of 16 trials showing the percent change in ADG compared with the control, in 
which a monensin-containing supplement was fed to cattle grazing wheat pasture.  PCT_CHG_ADG 
= percent change in ADG; SUPP_IN_KG = amount of energy supplement consumed (kg·head-1

·d-1; 0 
SUPP_IN = mineral supplement); MONENSIN_IN = daily monensin intake (mg·head-1

·d-1).   
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Figure 2. Smoothed surface plot of 16 trials showing the percent change in ADG compared with the 
control, in which a monensin-containing supplement was fed to cattle grazing wheat pasture.  
PCT_CHG_ADG = percent change in ADG; SUPP_IN_KG = amount of energy supplement 
consumed (kg·head-1

·d-1; 0 SUPP_IN = mineral supplement); MONENSIN_IN = daily monensin 
intake (mg·head-1

·d-1).   
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Chapter III 

 

Effects of Energy and/or Mineral Supplementation in Combination with Monensin on 

Performance of Steers Grazing Winter Wheat Pasture 

B. G. Fieser*, G. W. Horn*, and J. T. Edwards† 

Departments of *Animal Science and †Plant and Soil Sciences, Oklahoma Agricultural 
Experiment Station, Stillwater 

 

ABSTRACT:      A 2-yr study was conducted during the 2004-2005 (YR1) and 2005-

2006 (YR2) winter wheat grazing seasons to determine the effects of different 

supplementation strategies and delivery methods on supplement intake and growth 

performance of steers grazing winter wheat pasture (YR1:  n = 253, initial BW 255 ± 25 

kg; YR2:  n = 116, initial BW 287 ± 14 kg).   Five treatments were 1) negative control 

(NC), no supplemental nutrients; 2) free-choice, non-medicated mineral (MIN); 3) free-

choice, medicated mineral with 1,785 mg monensin/kg mineral mixture (RMIN); 4) 

RMIN and soybean hulls (SH/RMIN); 5) a soybean hull-based energy supplement 

containing 165 mg monensin/kg (GRNGOLD).  Energy supplements were hand-fed on 

alternate days (average daily intake = 0.91 kg/steer).  Inclusion of monensin in the free-

choice mineral mixture decreased intake of the mineral mixture by 63% in YR1 and 55% 

in YR2 when no other supplement was offered.  Consumption of RMIN provided 

between 129 and 161 mg monensin/steer on average, while GRNGOLD provided 150 mg 
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monensin/day.  Compared to NC, MIN did not affect ADG in YR1 (P = 0.38), but 

increased (P = 0.01) ADG by 0.22 kg/steer in YR2.  Conversely, ADG of RMIN steers 

was greater (P = 0.03) than MIN during YR1 (0.72 vs. 0.55 kg/steer), but not different (P 

= 0.35) in YR2.  Providing supplemental energy increased ADG by 0.13 kg/steer in YR1, 

compared with RMIN, but no increase in ADG was observed in YR2.  No difference (P > 

0.24) was observed in ADG between SH/RMIN and GRNGOLD in either year.  

Conversion of the energy supplements was excellent in YR1, resulting in an additional kg 

of BW gain for each 3.1 kg of supplement consumed.  However, due to smaller increases 

in ADG with the energy and monensin supplements in YR2, supplement conversion for 

YR2 averaged 17.6.  The absence of a difference (P > 0.24) in ADG between steers that 

received SH/RMIN and GRNGOLD suggests that the method of delivery (separate 

packages vs. a single package) for energy, monensin, and mineral supplementation is not 

important.  

Key Words:  energy supplementation, mineral supplementation, monensin, wheat pasture 

Introduction 

Growing cattle on winter wheat pasture is an important facet of the beef cattle 

industry in Oklahoma and the southern Great Plains, with as many as 6-7 million cattle 

grown on wheat pasture annually.  Supplementation of stocker cattle grazing wheat 

pasture serves to 1) improve efficiency of production by correcting nutrient deficiencies, 

2) provide feed additives such as ionophores, antibiotics, and(or) bloat preventatives, 3) 

substitute for forage to increase stocking rate or stretch available forage supplies; and 4) 

enhance cattle management (Lusby and Horn, 1991; Horn and Paisley, 1999; Horn et al., 

2005; Horn, 2006).  Because of the large amounts of rumen degradable N in wheat forage 
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and to decrease the incidence/severity of bloat, much of our previous research (Horn et 

al., 2005) focused on developing self-limited and hand-fed monensin-containing energy 

supplements for growing cattle on wheat pasture.  The hand-fed supplement has been 

designated the Oklahoma Green Gold supplementation program, and the specifications of 

the supplement were reported by Horn (2006).  With higher fuel and labor costs, our 

recent approach (Gibson, 2002) has been to deliver monensin via a free-choice mineral 

mixture.  The objective of this study was to compare strategies for delivering 

supplemental minerals, energy, and monensin with regard to supplement intake and steer 

growth performance.  Additionally, a new strategy for supplementation on wheat pasture, 

in which monensin was provided in a free-choice mineral mixture and supplemental 

energy was provided in the form of an energy commodity feedstuff (soybean hulls) was 

investigated. 

Materials and Methods 

Study Site and Treatments 

One hundred forty ha of clean-tilled winter wheat at the Oklahoma State 

University Wheat Pasture Research Unit near Marshall, OK (OSUWPRU) was divided 

into 18 pastures during the winter wheat grazing seasons of 2004-2005 (YR1) and 2005-

2006 (YR2).  All pastures were planted to hard red winter wheat (Triticum aestivum, 

variety Jagalene; AgriPro, Berthoud, CO) on September 3 and 4, 2004, and September 6 

and 7, 2005.  Pastures were seeded at the rate of 134 kg/ha and were fertilized prior to 

planting according to soil test results.  Nitrogen, P, and K were applied in amounts for 

production goals of 3360 kg of forage DM/ha and a 3360 kg/ha wheat grain crop.  Five 

treatments were:  (1) negative control (NC), no mineral or any other supplement; (2) free-
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choice non-medicated mineral (MIN1); (3) free-choice, medicated mineral containing 

1,785 mg monensin/kg (RMIN); (4) RMIN and soybean hulls (SH/RMIN); (5) a 

monensin-containing, energy supplement formulated to the Oklahoma Green Gold 

supplement specifications containing 165 mg monensin/kg (GRNGOLD; Horn et al., 

2005; Horn, 2006).  Energy supplements were hand-fed at the rate of 1.81 kg/steer every 

other day to achieve a target average daily intake of 0.91 kg/steer.  Both supplements 

were fed in pelleted form (0.5 cm pellet).  Each year pastures were blocked by location 

within the wheat field (4 blocks) and treatments were randomly assigned within block 

with the restriction that no treatments were in adjacent pastures.  One block had only 3 

pastures and the RMIN, SH/RMIN, and GRNGOLD treatments were randomly assigned 

within that block.  Steer BW gain was measured from November 5, 2004, to February 4, 

2005 (91 d) and from November 15, 2005, to March 8, 2006 (113 d).  During the YR1 

grazing season, steers continued grazing until February 22, 2005, when wheat reached the 

first-hollow stem stage of maturity, as is recommended in a dual-purpose winter wheat 

system (Redmon et al., 1996; Fieser et al., 2006a).  However, due to low forage 

availability (result of cumulative effects of very wet weather and tromping of wheat by 

steers), steer growth performance after February 4, 2005 was not used in BW gain 

analysis in the YR1 dataset. 

Cattle 

YR1.  Two hundred fifty-three predominantly black, crossbred steers (initial BW 

255 ± 25 kg) originating from a single ranch in north-central Nebraska (Ainsworth), 

grazed winter wheat pastures in YR1.  All steers were shipped directly from the ranch of 

                                                
1 Mineral mixtures in 2004-2005 and 2005-2006 (both MIN and RMIN) were manufactured by ADM 
Alliance Nutrition, Inc., Quincy, IL, and North American Nutrition Companies, Inc., Lewisburg, OH, 
respectively. 
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origin and had not been previously co-mingled with cattle of any other source.  Within 24 

h of arrival, all steers were weighed and vaccinated for infectious bovine rhinotracheitis, 

bovine virus diarrhea, parainfluenza 3, bovine respiratory syncytial virus (Titanium™ 5, 

Agri Laboratories, LTD., St. Joeseph, MO), as well as treated with an injectable de-

wormer (Ivomec® Merial LTD., Duluth, GA).  From arrival until turnout on wheat 

pasture, all steers were held in a drylot and fed bermudagrass hay and a 40% CP, 

Deccox®- (Alpharma, Inc., Fort Lee, NJ) containing supplement at the daily rate of 0.91 

kg/steer.  Steers were stratified by arrival weight and allotted to pastures to minimize 

differences in BW between pastures at the initiation of the experiment.  All steers were 

weighed and implanted with Component® E-S with Tylan® (VetLife, West Des Moines, 

IA) on the day they were placed on wheat pasture (November 5, 2004).  To minimize risk 

of bloat at turnout, the initial BW was taken when steers were “full” and a 2% pencil-

shrink was used to determine initial BW.  Subsequent BW measures were taken 

following an overnight withholding of feed and water on February 4 and 22, 2005.  

Eighteen steers (1 steer/pasture) were added on December 2, 2004, but were not included 

in BW gain determination.  These additional steers were added to utilize the excess 

forage available prior to turn-out and during the early part of the grazing season, in 

accordance with forage clipping data (i.e. adjustments in stocking densities were made to 

maintain similar forage allowances for all pastures within a block).  The weighted 

average stocking density for all pastures over the course of the 91-d experimental grazing 

period during YR1 was 1.74 steers/ha. 

YR2.  One hundred sixteen predominantly black, crossbred steers (initial BW = 

287 ± 14 kg) originating from a single ranch in northeast Colorado (Yuma), grazed 
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winter wheat pastures in YR2.  Cattle shipping, feeding, and vaccination protocol was the 

same as described previously for YR1.  Steers were weighed “full” and implanted with 

Component® E-S with Tylan® (VetLife, West Des Moines, IA) at turnout (November 

15, 2005).  Initial BW was calculated with a 2% “pencil” shrink as described previously.  

Subsequent BW measures were taken on December 22, 2005, and February 10 and 

March 8, 2006, following an overnight withholding of feed and water.  Originally, 155 

steers were turned out on November 15, 2005, but 33 steers (approximately 2 steers/ 

pasture) were removed on December 22, 2005, based on declining forage availability.  

Additionally, on February 10, 2006, two steers were removed from pastures 1, 9, and 18 

based on clipping data indicating lower forage availability in these pastures than other 

pastures within their block.  The weighted average stocking density for all pastures 

during the 113-d experimental grazing period of YR2 was 0.94 steers/ha. 

Sample Collection and Preparation 

Wheat forage mass was determined by hand clipping forage to ground level inside 

0.19 m2 quadrants (10 random locations within each pasture).  Clipping was done on 4 

dates within each grazing season, October 28, and December 15, 2004, and January 25 

and February 22, 2005 for YR1; and November 10, and December 14, 2005 and January 

24 and March 7, 2006 for YR2.  At collection, care was taken to ensure minimal soil 

contamination of the forage samples.  Clipped samples were dried to a constant weight in 

a forced air oven at 50°C and weighed for DM determination.  Forage mass was 

calculated by taking the g DM per 0.19 m2 from the clipped sample and extrapolating that 

to kg DM on a per hectare basis in each pasture.  Forage allowance was calculated as kg 

DM/steer and kg DM/100 kg BW.  This was determined using the number and BW of 
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steers in each pasture on the date of clipping or weigh date in closest proximity to the 

clipping date.  The November 10, 2005 and March 7, 2006, forage samples were retained 

for characterization of forage quality.  Forage samples were composited by pasture within 

clipping date.  During each year, energy supplements and mineral mixtures were sampled 

weekly.  All supplement and mineral mixture samples were composited monthy within 

each year and analyzed for monensin concentration at a commercial laboratory (Eurofins 

Scientific, Memphis, TN).  At the end of each year, supplement samples were 

composited.  Composited forage and supplement samples were ground to pass through a 

2-mm screen in a Wiley mill (Thomas Scientific, Philidelphia, PA) for determination of 

DM, OM, CP, NDF, ADF, EE, neutral detergent insoluble CP (NDICP), and acid 

detergent insoluble CP (ADICP), as well as macro- and micro-minerals.  Total digestible 

nutrient value was determined according to the equations of Weiss et al. (1992).   

Laboratory Analyses 

Dry matter and ash content were determined by oven drying at 100°C for 24-h, 

followed by ashing at 500°C for 6-h in a muffle furnace.  A combustion method (Leco 

CN-2000, St. Joseph, MI) was used in accordance with AOAC (1996) to determine N 

content.  Forage and supplement NDF, ADF, and ADL concentrations were determined 

sequentially as described by Van Soest et al. (1991), without the addition of sodium 

sulfite, using an Ankom200 Fiber Analyzer and F57 filter bags (Ankom Technology, 

Macedon, NY).  Neutral detergent insoluble CP and ADICP were determined by 

performing non-sequential NDF and ADF procedures and removing the residue from the 

filter bags and determining N concentration of the residue by the combustion method 

described above.  Ether extract concentration was determined at a commercial laboratory 
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(SDK Laboratories, Hutchinson, KS).  Mineral content (Ca, P, Mg, K, S, Na, Zn, Fe, Mn, 

and Cu) of wheat forage, supplements, and mineral mixtures was also determined at a 

commercial laboratory (Servi-Tech Laboratories, Dodge City, KS).   

Supplements and Mineral Mixtures 

Ingredient and nutrient composition of the energy supplements (soybean hulls and 

GRNGOLD) is shown in Table 1.  Rumensin® 80 (Elanco Animal Health, Indianapolis, 

IN) was added to the GRNGOLD supplement to result in a target monensin concentration 

of 165 mg monensin/kg supplement on an as-fed basis (AF).  Actual analyzed 

concentration of monensin in the GRNGOLD supplement was 155 ± 4 mg monensin/kg 

on an as-fed basis for YR1, and 150 ± 12 mg monensin/kg in YR2.  Formulated 

monensin concentration of RMIN was 1,785 mg monensin/kg mineral mixture (AF).  

Actual analyzed concentrations were 1,914 ± 225 and 1,680 ± 117 mg monensin/kg 

mineral mixture (AF) for YR1 and YR2, respectively.  Because the analyzed monensin 

concentrations were considered to be within the analytical error for monensin 

determination, the formulated monensin concentrations from RMIN and GRNGOLD 

were used to calculate monensin intake for the RMIN, SH/RMIN, and GRNGOLD 

treatments.  Mineral composition of the mineral mixtures, soybean hulls, and GRNGOLD 

supplement is shown in Table 2.  Mineral mixtures were fed in covered feeders (one 

feeder per pasture); whereas energy supplements were fed in 3.7-m long round bottom 

feeders, with bunk space greater than 0.30 m/steer.  Both mineral feeders and feed bunks 

were located near the water source in each pasture.  Mineral mixture intake was 

determined weekly by weighing unconsumed mineral and adding fresh mineral mixture 

prior to returning to feeders.   
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Statistical Analyses 

Individual steer growth performance measures were averaged by pasture (pasture 

= experimental unit) and analyzed as a randomized complete block design using the 

MIXED procedure of SAS (SAS Inst., Cary, NC), with pasture location within the field 

used as the blocking factor.  The model included the main effect of treatment and used 

the Satterthwaite procedure to determine degrees of freedom.  Due to the very different 

environmental conditions between YR1 and YR2, each year was analyzed independently 

using the following non-orthogonal contrast statements:  1)  NC vs. MIN; 2)  MIN vs. 

RMIN; 3 RMIN vs. average of SH/RMIN and GRNGOLD; and 4) SH/RMIN vs. 

GRNGOLD.  Average daily gain least squares means were adjusted using a covariate (P 

< 0.01) of forage allowance on February 4, 2005 in YR1 (forage allowance at end of BW 

gain measures).  Ending forage allowance was considered as a covariate during YR2, but 

not used (P = 0.44).  Forage allowance measures, nutrient concentrations, and supplement 

and mineral intakes are presented as means and standard deviations without further 

statistical analysis. 

Results and Discussion 

Forage Availability and Quality 

Temperature and rainfall data for the 2 years of this study, as well as “normal” 

temperatures and precipitation, are shown in Table 3.  Monthly average temperature in 

each of the 2 years was generally at or above the “normal” monthly average temperature.  

These 2 years were drastically different with regard to total precipitation.  The first year 

(YR1) was characterized by excessively wet conditions early in the growing season, 

while YR2 was one of the most significant drought seasons in Oklahoma history, with 
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only 18 mm of precipitation from November through the end of February (most of the 

duration of the grazing season).  In YR1, August, October, and November were 

particularly wet, with at least 100 mm of total precipitation in each month.  However, the 

next 4 months (remainder of grazing season) received only 129 mm of total precipitation.   

Stocking rate, forage mass and forage allowances are shown in Table 4.  Forage 

mass averaged 849 kg DM/ha during YR1, and just 644 kg DM/ha in YR2.  Rainfall prior 

to planting and following planting produced exceptional fall forage growth prior to turn-

out in YR1.  However, due to the cloudy and wet conditions, wheat growth was lethargic 

and trampling due to wet soil conditions occurred, resulting in rapidly declining forage 

mass during YR1.  Compounding this effect was that the wet conditions prevented timely 

gathering and removal of steers from pasture to reduce stocking rates and increase forage 

allowance.  Therefore, forage allowance declined rapidly during this grazing season.  The 

drought-like conditions that persisted from planting through cattle removal during YR2 

prevented substantial growth of wheat forage during the grazing season.  In contrast to 

YR1, we were able to remove steers in accordance with clipping data to maintain 

consistent forage allowances.  Similar forage allowances were observed on average for 

the two years (170 and 191 kg DM/100 kg BW for YR1 and YR2).  Despite being able to 

manage forage allowance in YR2, neither year provided abundant available forage.  

Fieser et al. (2006b) found that peak individual steer performance (ADG) occurred at an 

average forage allowance of near 700 kg DM/100 kg BW, much above the forage 

allowances we were able to achieve during this two-year experiment.   

 Wheat forage nutrient composition from the beginning and end of the YR2 

grazing season is shown in Table 5.  Wheat was at stages 3 and 6 on Feeke’s growth 
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scale (Large, 1954) at the time of the November and March clipping dates, respectively.  

Because of the low amount of available forage and the monoculture of wheat, steers had 

minimal opportunity for selectivity grazing.  Therefore, despite the forage samples being 

“whole plant” we feel these samples provided a realistic estimation of diet quality.  Crude 

protein declined from 28.6% in November, to 22.8% in March.  These values are typical 

of CP content of wheat forage, in which values of 25 to 30% are common (Horn, 1984).  

Our values are comparable at similar points in time with data reported by Reuter and 

Horn (2000) from before the grazing season and after approximately 100 days of grazing.  

All cell wall constituents (NDF, ADF, and ADL) increased numerically from the 

November to March clipping dates.  With several cool season grasses, Morrison (1980) 

found that both lignin and hemicellulose concentrations increased with advancing 

maturity.  Also, our values are similar to cell wall component values reported by Horn 

(1984).  No estimates of NDICP or ADICP were found in the literature for wheat forage.  

The calculated TDN values (67.2 and 62.5% for November and March, respectively), are 

less than reported by the Beef Cattle NRC (1996) for vegetative wheat forage (73% 

TDN), but are close to estimates for cool-season grasses in the Dairy Cattle NRC (2001; 

66.6% TDN).  Our measured TDN and CP values indicate a TDN:CP ratio of 2.3 and 2.7 

for November and March, respectively.  Based on the critical level of 7.0 determined by 

Moore et al. (1999), our values indicate a shortage of digestible energy relative to CP. 

 All macro-minerals measured declined (Ca, P, Mg, K, and S), or did not change 

(Na) in concentration from November to March.  This pattern is consistent with Stewart 

et al. (1981) in which Ca, P, K, and Mg in winter wheat forage remained fairly constant 

or declined from October to March.  Beck (1993) reported average mineral 
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concentrations of 0.45 % Ca, 0.31% P, 1.91% K, 0.26% Mg, 23 ppm Zn, 4.8 ppm Cu, 

and 0.20 ppm Se.  Using the Level 1 model of the Beef Cattle NRC (1996), a 287 kg 

Angus steer (similar BW and breed type to our steers at beginning of YR2) consuming 

5.2 kg of wheat forage DM and gaining 1.0 kg/d has the following mineral requirements 

(relative to DMI):  0.64 % Ca, 0.32 % P, 0.10 % Mg, 0.60 % K, 0.04 % Na, 0.15 % S, 10 

ppm Cu, 50 ppm Fe, 20 ppm Mn, and 30 ppm Zn.  By comparing these requirements with 

our measured forage composition, all minerals are adequate without supplementation 

except Ca (- 0.18%), P (- 0.14%), Cu (- 3 ppm) and Zn (- 5 ppm).  Because these 

requirements are expressed relative to DMI, if DMI is less than the estimated amount (5.2 

kg DMI), or ADG is greater than 1.0 kg/steer, other mineral deficiencies could exist. 

Mineral Mixture and Supplement Intake 

Intake of MIN is shown in Figure 1.  Average daily intake of MIN was 193 

g/steer during YR1 and 183 g/steer in YR2.  During the last 4 weeks of the YR1 grazing 

season, MIN was hand-fed daily at the rate of 181 g/steer.  This was done to control 

increasing levels of MIN consumption, which had been increasing throughout the grazing 

season and topped 300 g·steer-1·d-1 the previous week (week 9).  During YR2, steers had 

continuous access to MIN for the duration of the grazing season.  In both years, MIN 

intake increased steadily from turn-out until about 8 to 10 weeks into the grazing season.  

Daily mineral mixture intake greater than 180 g/steer is likely more than economically 

feasible in production settings.  While intake of MIN was high, it is less than the 2-yr 

average daily intake of 227 g/steer reported by Gibson (2002) for a non-medicated, free-

choice mineral mixture.  High MIN intake in our studies may be due to the location of the 

mineral feeder near the only water source in each pasture, as well as near a wind break 
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where steers spent time loafing.  Additionally, pasture size ranged from 7.3 to 9.7 ha, so 

steers were in much closer proximity to mineral feeders than they might be in more 

extensive production environments. 

 Intake of RMIN is shown in Figure 2.  For the monensin-containing mineral, 

intake was slightly greater in YR2, than YR1.  Daily intake of RMIN averaged 72 g/steer 

in YR1 and 83 g/steer in YR2.  Therefore, daily monensin intake averaged 129 and 147 

mg/steer in YR1 and YR2, respectively.  This is less than the target consumption of 

monensin from this mineral formulation, which was designed to provide 200 mg 

monensin to each steer daily (112 g/steer daily RMIN intake).  Average daily intake of 

RMIN was generally greatest after turn-out in each year, and gradually declined through 

the remainder of the grazing season.  The addition of monensin to the mineral mixture 

decreased daily intake of the mineral mixture by 121 g/steer in YR 1 (63% reduction), 

and 100 g/steer in YR2 (55% reduction).  Steers on the RMIN treatment had the greatest 

variation in intake of the three treatments offered a free-choice mineral mixture with an 

average CV of 39% (43% and 35% in YR1 and YR2).  Similar to our data, Gibson (2002) 

found that monensin included in a mineral mixture at 1,785 mg/kg decreased daily intake 

of the mineral mixture by 139 g/steer (62% reduction in intake).   

 Intake of RMIN when fed in conjunction with soybean hulls is shown in Figure 

3.  Average daily intake of RMIN was 90 g/steer in YR1 and 77 g/steer in YR2, when 

1.81 kg of soybean hulls was also provided every other day.  At these RMIN intakes, 

daily monensin intake averaged 161 and 137 mg/steer in YR1 and YR2, respectively.  

This indicates that when bunk-feeding soybean hulls every other day, intake for RMIN is 

essentially unchanged as compared with offering RMIN alone (18 g·steer-1·d-1 difference 
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in YR1 and 6 g·steer-1·d-1 difference in YR2).  However, the coefficient of variation for 

monensin intake averaged 29.5% when soybean hulls were fed and 39.5% when RMIN 

was fed alone.  Soybean hull intake is not shown graphically, because average daily 

intake did not deviate from the target of 0.91 kg/steer.  The daily amount of soybean hulls 

fed was readily consumed in a single feeding bout.  

 Intake of the GRNGOLD supplement met our target daily intake of 0.91 kg/steer 

in each year.  Based on visual observations, rate of consumption of GRNGOLD was 

slower than soybean hulls, but the entire amount of supplement offered was consumed on 

the same day, occasionally in more than a single feeding bout.  With complete 

consumption of GRNGOLD, daily monensin intake was also at the target level of 150 

mg/steer.  This is similar to the amount of monensin consumed in RMIN/SH (i.e., less 

than 13 mg monensin·steer-1·d-1 difference between SH/RMIN and GRNGOLD in either 

year).  Therefore, similar intakes of supplemental energy and monensin were achieved 

whether fed as a single supplement, or as separate packages.  Fieser et al. (2003 and 

2005) fed energy supplements containing about 43% ground corn and 44% soybean hulls 

with increased concentrations of monensin in order to decrease the amount of supplement 

fed as compared with the GRNGOLD.  With monensin concentrations of 352 (Fieser et 

al., 2003) and 293 mg/kg of supplement (Fieser et al, 2005), supplement intakes averaged 

89% and 95%, respectively, of the targeted amounts of 0.45 and 0.68 kg/d. 

Steer Performance 

Growth performance of steers is shown in Table 6.  Initial BW of the steers was 

relatively large, and ADG during YR1 was substantially less than the 1.0 kg commonly 

observed for steers fed MIN at the OSUWPRU (Kaitibie et al., 2003).  Treatment 
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influenced ADG (P < 0.01) in both years.  In YR1, MIN did not increase ADG (P = 0.38) 

as compared with the NC, but did increase ADG (P = 0.01) by 0.22 kg in YR2.  The 

increased ADG by MIN in YR2 is possibly due to correction of a slight mineral 

deficiency in wheat pasture as previously discussed.  Because of the lower ADG in YR1, 

wheat forage alone may have adequately met the mineral requirements without MIN for 

the observed level of performance.  A two-year wheat pasture study reported by (Gibson, 

2002) also included the NC, MIN, and RMIN treatments.  If data of that study is included 

with this study (i.e., combined four-year data set), MIN increased ADG (P < 0.01) of 

steers grazing wheat pasture from 0.71 to 0.82 kg (Horn et al., unpublished data). 

 Addition of monensin to the mineral mixture increased (P = 0.03) ADG by 0.17 

kg in YR1, but did not influence ADG (P = 0.35) in YR2.  In the study by Gibson (2002), 

addition of monensin to the mineral mixture increased ADG (P < 0.05) by 0.14 kg (from 

0.38 to 0.52 kg/steer) during the first year, and by 0.06 kg (from 1.16 to 1.22 kg/steer, P 

<0.05) during the second year.  For the combined four-year data set, RMIN increased 

ADG by 0.10 kg (P < 0.01) as compared with MIN (Horn et al., unpublished data).  

Brazle and Laudert (1998) reported that a monensin-containing mineral mixture increased 

(P < 0.05) ADG of steers on native grass by 0.09 kg (from 1.12 to 1.21 kg/steer) as 

compared with a non-medicated mineral mixture.  These three studies (Brazle and 

Laudert, 1998; Gibson, 2002; and the present study) suggest that adding monensin to a 

mineral mixture may be more effective when the achievable ADG under the given 

conditions is low or restricted.  In contrast, when achievable ADG is higher (in excess of 

1.0 kg/steer), indicative of greater forage and energy intake, the relative response to the 

addition of monensin to a mineral mixture is decreased. 
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Daily gains were increased (P = 0.05) by providing supplemental energy in 

addition to the monensin-containing mineral mixture (i.e., contrast of RMIN vs. 

SH/RMIN and GRNGOLD) in YR1; however, this contrast was not significant (P = 0.87) 

in YR2.  An explanation for the lack of response to the additional energy as soybean hulls 

or GRNGOLD, which was predominantly soybean hulls, in YR2 could be an actual 

dilution of overall dietary energy intake due to supplementation.  Because the calculated 

TDN value of the supplements was less than the calculated TDN of wheat forage (62.4, 

57.8, and 64.9% average TDN for soybean hulls, GRNGOLD, and wheat forage, 

respectively), the supplements may have decreased overall dietary energy intake.  

However, the TDN of byproduct feeds like soybean hulls is highly variable and often 

under estimated.  Additionally, our calculated TDN for wheat forage is lower than other 

digestibility estimates for wheat forage (Reuter and Horn, 2000).  Lippke et al. (2000) 

found that supplementing steers on wheat pasture with cottonseed hulls and cottonseed 

hulls plus corn decreased OM digestibility and did not increase OM intake.  Cravey et al. 

(1992) reported substitution ratios for wheat pasture averaged 0.86 for high-starch and 

high-fiber, monensin-containing energy supplements (i.e., each kg of supplement 

decreased forage DMI by 0.86 kg).  In the studies conducted by Cravey et al. (1992), 

forage allowances were low and averaged 104 kg DM/100 kg BW.  Fieser and Vanzant 

(2004) reported a substitution ratio of 0.61 for either cracked corn or soybean hulls for 

growing steers fed vegetative fescue hay (17.4 % CP).   

The lack of a difference (P > 0.24) in ADG between steers that received 

SH/RMIN and GRNGOLD suggests that the method of delivery (separate packages vs. a 

single package) for energy, monensin, and mineral supplementation is not important.   
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While not included in our contrasts, the GRNGOLD supplement increased ADG 

by 0.34 kg in YR1, as compared with MIN, but a similar response was not observed in 

YR2.  In three out of 4 studies reported by Horn et al. (2005), the monensin-containing 

energy supplements very consistently increased ADG of growing cattle on wheat pasture 

by about 0.18 kg as compared with MIN.  Rouquette et al. (1982) reported that a 

monensin-containing ground corn supplement (220 mg monensin/kg) fed at a level of 

0.91 kg/d to growing cattle on rye/ryegrass pastures increased ADG by 0.21 kg as 

compared with MIN.  In our studies that lead to the GRNGOLD supplementation 

program, the energy supplements consisted of about 65% ground sorghum grain and 21% 

wheat middlings.  A combination of energy feedstuffs may provide a more favorable 

synchrony with regard to rates of ruminal starch and(or) OM fermentation and the crude 

protein fractions of wheat forage.  This may result in a more consistent weight gain 

response to supplementation as compared with a high-fiber commodity feedstuff like 

soybean hulls.  Horn et al. (1995) supplemented growing cattle on wheat pasture with 

high-starch (79% ground corn) or high-fiber (47% soybean hulls and 42% wheat 

middlings) energy supplements, and type of supplement did not influence (P > 0.45) 

ADG.  However, mean daily supplement consumption was 0.65% BW which is much 

higher than the targeted intake for GRNGOLD. 

Supplement Conversion 

Supplement conversion, expressed as kg of as-fed supplement divided by kg of 

additional ADG compared with MIN, is shown in Table 6.  Supplement conversions 

were excellent in YR1 and were 3.5 and 2.7 for SH/RMIN and GRNGOLD, respectively.  

Because of the much smaller ADG response to the energy supplements in YR2 these 
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conversions were much higher.  In previous work, conversions for the GRNGOLD 

supplement, containing about 65% ground sorghum grain and 21% wheat middlings and 

fed at the same rate as the present study, have been much more consistent and ranged 

from 4.4 to 5.2 (Horn et al., 2005).  At similar supplement intakes to this study, 

calculated supplement conversions of 3.9 and 4.9, respectively, for 141 and 170 days 

grazing were observed by Rouquette et al. (1982).  A modification of the GRNGOLD 

supplement in which the amount fed was cut in half (i.e., 0.91 kg every other day vs. 1.82 

kg every other day and monensin intake was similar to the current study) resulted in 

supplement conversion of 3.6 (Fieser et al., 2003).  However, rate of consumption of the 

supplement was slowed which would be of concern on days of inclement weather.  Fieser 

et al. (2005) found that increasing daily monensin intake from 100 to 188 (target of 200) 

improved supplement conversion from 5.2 to 3.9.  In one year of the study reported by 

Horn et al. (1981), addition of 110 mg/kg of monensin to an energy supplement fed at a 

daily rate of 0.91 kg/head to light weight heifers grazing wheat pasture decreased 

supplement conversion from 9.8 to 4.3.  Additional data is needed relative to the effect of 

forage mass and(or) allowance on conversion of energy supplements fed to growing 

cattle on wheat pasture.  However, in general the data indicate that supplement 

conversion is improved as the amount of supplement fed is decreased and that the effect 

of monensin on supplement conversion is important in evaluating the economics of 

supplementation programs.  

Implications 

Delivery of efficacious amounts of technologies such as ionophores, antibiotics, 

bloat-preventive compounds, etc. is a very real and important challenge in beef cattle 
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grazing programs.  Inherent with this challenge is the development of specific 

supplementation programs which include amount and type of supplement to be fed.  In 

this study, inclusion of monensin in a free-choice mineral mixture reduced intake of the 

mineral mixture by about 60%, while increasing ADG by an average of 0.12 kg/steer.  

Three different delivery methods that included a free-choice monensin-containing 

mineral mixture, the same free-choice monensin-containing mineral mixture plus hand-

fed soybean hulls (SH/RMIN), and a hand-fed monensin-containing, soybean hull-based 

energy supplement (GRNGOLD) resulted in monensin intakes of about 146 mg/d with 

very small differences for monensin intake among delivery methods.  The absence of a 

difference (P > 0.24) in ADG between steers that received SH/RMIN and GRNGOLD 

suggests that the method of delivery (separate packages vs. a single package) for energy, 

monensin, and mineral supplementation is not important.  Relative cost of products, 

location and accessibility of pastures, fuel costs, and opportunity cost for labor all 

influence decisions relative to method of delivery of technologies in grazing programs. 
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Table 1.  Ingredient and nutrient composition of energy supplements 

Item Soybean hulls1 GRNGOLD1 
Ingredient composition2   

Soybean hulls, % 95.0 87.3 

Cane molasses, % 5.0 5.0 
Dicalcium phosphate, 
% 

- 3.00 

Limestone, % - 3.00 

Salt, % - 1.25 

Magnesium oxide, % - 0.25 

Copper sulfate, % - 0.025 

Vitamin A-30,000, % - 0.10 

Rumensin 80, %3 - 0.09 

 2004-2005 2005-2006 

Nutrient composition2 
Soybean 

hulls1 GRNGOLD1 
Soybean 

hulls1 GRNGOLD1 
DM, % 91.0 92.3 90.9 92.2 

OM, % 93.6 89.0 93.3 87.2 

CP, % 14.1 12.8 13.3 12.6 

NDF, % 58.7 55.1 61.7 56.6 

ADF, % 48.2 41.6 47.1 42.9 

ADL, % 4.1 3.8 4.0 3.8 

EE, % 2.2 1.9 2.2 1.8 

NDICP, %4 2.9 2.8 3.3 3.3 

ADICP, %5 1.1 0.9 1.1 0.9 

TDN, %6 63.1 58.6 61.6 57.0 

Monensin, mg/kg7 - 155 ± 4 - 150 ± 12 
1Soybean hulls fed at the rate of 1.81 kg/steer every other day as part of SH/RMIN treatment; 
GRNGOLD = monensin-containing (165 mg monensin/kg), energy supplement fed at the rate of 1.81 
kg/steer every other day. 
2All values expressed on  DM basis. 
3Rumensin® 80 (176 g monensin/kg) added to result in a target monensin concentration of 165 mg 
monensin/kg. 
4NDICP = neutral detergent insoluble CP. 
5ADICP = acid detergent insoluble CP. 
6Calculated as described by Weiss et al. (1992). 
7Monensin concentration analyzed on as-fed basis. 



 

Table 2.  Mineral composition of supplements1,2 

 2004-2005 2005-2006 

Mineral MIN RMIN 
Soybean 

hulls 
GRNGOLD MIN RMIN 

Soybean 
hulls 

GRNGOLD 

Ca, % 10.84 10.39 0.76 2.27 11.75 11.05 0.68 2.81 

P, % 6.26 6.03 0.15 0.68 6.50 6.57 0.15 0.85 

Mg, % 0.86 0.97 0.26 0.37 0.43 0.51 0.24 0.40 

K, % 0.96 0.99 1.53 1.42 0.88 0.91 1.38 1.36 

S, % 0.68 0.70 0.14 0.16 0.60 0.61 0.14 0.18 

Na, % 10.13 9.83 0.02 0.51 9.18 9.28 0.01 0.49 

Zn, ppm 3,961 4,710 46 44 2,958 3,078 42 47 

Fe, ppm 5,290 5,227 661 885 4,332 4,479 612 1,090 

Mn, ppm 6,166 6,627 40 55 2,083 2,474 37 67 

Cu, ppm 899 1,438 5 45 767 817 5 79 
1Supplements:  MIN = non-medicated, free-choice mineral mixture; RMIN = free-choice mineral mixture with 1,785 mg monensin/kg; Soybean Hulls 
= soybean hulls fed at 1.81 kg every other day as part of SH/RMIN; GRNGOLD = monensin-containing (165 mg monensin/kg) energy supplement fed 
at 1.81 kg every other day. 
2All values expressed on a DM basis. 
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Table 3.  Monthly mean temperatures and total precipitation during the 2004-2005 
and 2005-2006 winter wheat growing seasons near Marshall, OK 

 Mean temperature, °C Total precipitation, mm 

Item 2004-2005 2005-2006 “Normal”1 2004-2005 2005-2006 “Normal”1 

August  25 27 27 100 262 66 

September2 23 24 23 42 90 86 

October  17 16 13 110 68 76 

November  9 11 8 114 1 61 

December  4 2 4 15 4 43 

January  2 7 2 66 12 28 

February  6 4 2 36 1 38 

March  10 11 9 12 53 76 

April  15 19 16 19 64 81 

May  20 22 20 84 107 122 

June  26 26 23 117 129 112 

July 27 29 30 122 22 64 
1”Normal” temperature and precipitation is average from 1971-2000 for Marshall, OK (Logan Co., OK; 
Oklahoma Climate Data, http://climate.ocs.ou.edu/). 
2Planting dates:  September 3 and 4, 2004 and September 6 and 7, 2005. 
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Table 4.  Standing forage DM and forage allowance during the 2004-2005 and 
2005-2006 winter wheat grazing seasons 

Clipping Date 2004-2005 

Item 
October 28, 

2004 
December 
15, 2004 

January 
25, 2005 

February 
22, 20051 

Average 

No. pastures 18 18 18 18 18 

Stocking Rate, 
steers/ha 

1.65 1.77 1.65 1.65 1.742 

Forage mass, kg 
DM/ha 

1,506 ± 130 1,073 ± 316 566 ± 173 253 ± 66 849 ± 131 

Forage 
allowance, kg 
DM/steer 

915 ± 79 605 ±178 319 ± 97 156 ± 42 499 ± 72 

Forage 
allowance, kg 
DM/100 kg BW 

362 ± 32 -3 100 ± 27 50 ± 13 170 ± 15 

Clipping Date 2005-2006 

 
November 
10, 2005 

December 
14, 2005 

January 
24, 2006 

March 7, 
2006 

Average 

No. pastures 18 18 18 18 18 

Stocking Rate, 
steers/ha 

1.11 0.87 0.83 0.83 0.942 

Forage mass, kg 
DM/ha 

619 ± 121 902 ± 152 498 ± 110 560 ± 108 644 ± 92 

Forage 
allowance, kg 
DM/steer 

560 ± 108 816 ± 137 577 ± 142 676 ± 127 657 ± 91 

Forage 
allowance, kg 
DM/100 kg BW 

190 ± 38 258 ± 44 151 ± 36 165 ± 31 191 ± 27 

1Steer performance measures reported through February 4, 2005, due to insufficient forage after 
February 4, 2005. 
2Weighted average stocking rate. 
3No steer BW measure taken to coincide with December 15, 2004 clipping date. 
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Table 5.  Nutrient composition of wheat forage at beginning (November) and end 
(March) of the 2005-2006 winter wheat grazing season 

 Clipping Date 

Nutrient1 November  20052,3 March 20062,4 

DM, % 92.2 ± 1.0 93.5 ± 0.7 

OM, % 86.4 ± 0.9 86.2 ± 2.4 

CP, % 28.6 ± 0.5 22.8 ± 1.1 

NDF, % 45.5 ± 1.4 50.0 ± 1.0 

ADF, % 19.5 ± 1.9 23.7 ± 0.7 

ADL, % 2.1 ± 0.2 2.9 ± 0.5 

EE, % 3.7 ± 0.1 3.2 ± 0.2 

NDICP, %5 9.9 ± 0.8 8.9 ± 0.6 

ADICP, %6 0.61 ± 0.15 0.70 ± 0.24 

TDN, %7 67.2 ± 1.1 62.5 ± 3.4 

Ca, % 0.55 ± 0.03 0.38 ± 0.02 

P, % 0.22 ± 0.01 0.15 ± 0.02 

Mg, % 0.33 ± 0.02 0.22 ± 0.01 

K, % 3.22 ± 0.25 1.49 ± 0.16 

S, % 0.31 ± 0.01 0.24 ± 0.01 

Na, % 0.04 ± 0.02 0.04 ± 0.01 

Zn, ppm 27 ± 2 23 ± 2 

Fe, ppm 426 ± 75 1016 ± 374 

Mn, ppm 310 ± 52 254 ± 48 

Cu, ppm 8.0 ± 0.7 5.7 ± 0.7 
1All values expressed on a DM basis. 
2n = 18 pastures per clipping date. 
3Feeke’s growth scale 3. 
4Feeke’s growth scale 6. 
5NDICP = neurtal detergent insoluble CP. 
6ADICP = acid detergent insoluble CP. 
7Calculated as described by Weiss et al. (1992).  



 

Table 6.  Steer growth performance and supplement conversions of steers grazing winter wheat pasture during the 2004-2005 and 2005-
2006 winter wheat grazing season1 

 Treatment2   Contrast3 

Item NC MIN RMIN SH/RMIN 
GRN 

GOLD SEM4 
P-

value5 

NC 
vs. 

MIN 
MIN vs. 
RMIN 

RMIN vs. 
SH/RMIN 

& 
GRNGOLD 

SH/RMIN 
vs. 

GRNGOLD 

2004-2005            

No. of pastures 3 3 4 4 4       

Initial BW, kg 258 256 253 255 254 1.4      

Final BW, kg 304 305 320 327 325 8.9      

ADG, kg/steer 0.49 0.55 0.72 0.81 0.89 0.053 < 0.01 0.38 0.03 0.05 0.24 

Supp. conversion6    3.5 2.7       

2005-2006            

No. of pastures 3 3 4 4 4       

Initial BW, kg 287 288 287 286 287 2.5      

Final BW, kg 385 411 417 416 415 5.5      

ADG, kg/steer 0.87 1.09 1.15 1.15 1.13 0.048 < 0.01 0.01 0.35 0.87 0.77 

Supp. conversion6    14.7 20.5       
1Least squares means by treatment. 
2NC = negative control; MIN = non-medicated, free-choice mineral; RMIN = free-choice mineral mixture with 1,785 mg monensin/kg; SH/RMIN = RMIN mineral 
mixture and soybean hulls fed at the rate of 1.81 kg/steer every other day; GRNGOLD = monensin-containing (165 mg monensin/kg), energy supplement fed at the 
rate of 1.81 kg/steer every other day.   
3Observed significance levels for comparison contrasts. 
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4Most conservative standard error of the mean. 
5Observed significance level for the main effect of treatment. 
6Calculated as kg of as-fed energy supplement per kg of additional gain over steers receiving MIN. 
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YR1 = 193 ± 47 g·steer-1·d-1 (CV = 24 %)
YR2 = 183 ± 69 g·steer-1·d-1 (CV = 38 %)

 

Figure 1.  Average daily intake (mean ± SD) of MIN (free-choice, non-medicated 

mineral mixture), measured weekly during the 2004-2005 (YR1) and 2005-2006 (YR2) 

winter wheat grazing seasons. 
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Figure 2.  Average daily intake (mean ± SD) of RMIN (free-choice, monensin-containing 

mineral mixture; 1,785 mg monensin/kg), measured weekly during the 2004-2005 (YR1) 

and 2005-2006 (YR2) winter wheat grazing seasons. 
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Figure 3.  Average daily intake (mean ± SD) of RMIN (free-choice, monensin-containing 

mineral mixture; 1,785 mg monensin/kg),when offered  in conjunction with 1.81 kg 

soybean hulls fed every other day during the 2004-2005 (YR1) and 2005-2006 (YR2) 

winter wheat grazing seasons. 
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Chapter IV 

Effect of Monensin on Intake, Digestibility, Nutrient Flow, and Rumen Kinetics of Steers 

Grazing Winter Wheat Pasture 

B. G. Fieser and G. W. Horn 

Department of Animal Science, Oklahoma Agricultural Experiment Station, Stillwater 

 

ABSTRACT:  This study was conducted to determine the effects of monensin on intake, 

digestibility, rumen kinetics, and VFA concentrations of steers grazing winter wheat 

pasture.  Fifteen ruminally and duodenally cannulated crossbred steers (initial BW 227 ± 

21 kg) were used in a crossover design.  The three treatments were:  (1) control (0 mg 

monensin·steer-1
·d-1; 0); (2) 100 mg monensin·steer-1

·d-1 (100); and (3) 200 mg 

monensin·steer-1
·d-1 (200).  Monensin was delivered daily in gelatin capsules via rumen 

cannula.  Forage intake, digestibility, and nutrient flows were determined using marker 

based techniques (Cr2O3 as an external marker and indigestible NDF as an internal 

marker).  Wheat pasture samples were of characteristically high quality (CP = 25 %, NDF 

and ADF = 39.6 and 17.4 %, respectively).  Stocking density was fixed at 1.79 steers/ha, 

and forage allowance averaged 935 kg DM/100 kg BW.  Organic matter intake (OMI) 

and digestible OMI were not affected (P ≥ 0.64) by monensin, and averaged 2.57 and 

2.15 % BW, respectively.  Duodenal flow of OM, microbial OM, NDF, ADF, total N, 

non-ammonia N, microbial N, and feed N were all  not affected (P ≥ 0.21) by treatments.  
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True ruminal OM digestion was increased (P = 0.05) from 54.2 % to 62.3 % by 

monensin.  Ruminal NDF digestion increased (P = 0.04) from 73.4 % to 81.3 % with 

monensin.  Ruminal ADF digestion was also increased (P = 0.04) with monensin (72.2 

vs. 79.7 %, for control and monesin, respectively).  Level of monensin did not affect (P ≥ 

0.74) ruminal OM, NDF, or ADF digestibility.  Monensin tended (P = 0.10) to increase 

ruminal forage N digestion, from 67.5 % to 75.2 % and 74.5 % for 0, 100, and 200, 

respectively).  Microbial efficiency averaged 25.5, and was not affected (P = 0.68) by 

treatment.  Total tract digestion of OM, NDF, ADF, and N were minimally affected (P ≥ 

0.07) by treatment.  Ruminal methane production tended (P = 0.09) to be decreased by 

monensin, while the acetate:propionate ratio was reduced (P = 0.04) by monensin.  Molar 

proportion of propionate was not different (P = 0.25) between 0 and 100 mg 

monensin·steer-1
·d-1.  However, 200 mg monensin·steer-1

·d-1 increased (P ≤ 0.04) the 

ruminal molar proportion of propionate.  These data indicate that increased NDF and 

ADF digestion, with lower methane production and higher ruminal propionate 

concentrations from monensin dosing are at least partially responsible for the improved 

energy status and growth performance of cattle receiving monensin and grazing winter 

wheat pasture.   

Key Words:  wheat pasture, monensin, intake, digestibility 

Introduction 

As many as 6 million head of cattle graze winter wheat pasture in the southern 

Great Plains annually (Horn, 1984; Horn, 2006).  These cattle represent a significant 

number of cattle being prepared for entry into feedlots for finishing.  Wheat pasture is 

characterized by high moisture content, and highly digestible and fermentable 
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carbohydrates and protein (Horn, 1984).  Due to the high quality of wheat forage, ADG 

of cattle grazing wheat pastures is often excellent, assuming adequate forage allowances.  

Unfortunately, metabolic disorders such as bloat can be problematic when grazing wheat 

pasture.  Horn et al. (2005) and Fieser et al. (2007) have shown monensin to be an 

effective additive to supplement programs to improve ADG in cattle grazing wheat 

pasture, and improve the utilization of supplements fed on wheat pasture.  Additionally, 

monensin has been shown to be effective in reducing the incidence and severity of bloat 

in cattle grazing wheat pasture (Branine and Galyean, 1990; Paisley and Horn, 1998; Min 

et al., 2005).  Horn et al. (1981) reported that monensin increases rumen molar proportion 

of propionate, as is characteristic of monensin in feedlot diets (Richardson et al., 1976).  

One of the possible mechanisms for the effectiveness of monensin in improving 

performance of cattle grazing wheat pasture is improved N utilization, as monensin has 

been shown to do in concentrate based diets (Bergen and Bates, 1984; Schelling, 1984).  

However, to this point, the effect of monensin on N degradation, and site and extent of 

other nutrients, has not been investigated in cattle grazing wheat pasture.  Therefore, the 

objective of this study was to characterize the site and extent of digestion of OM, N, 

NDF, and ADF, as well as microbial efficiency of steers grazing wheat pasture.  

Additionally, ruminal fluid kinetics and VFA concentrations were measured.   

Materials and Methods 

Animals, Study Site, and Treatments 

 Experimental and surgical protocols were approved by the Oklahoma State 

University Animal Care and Use Committee (protocol number AG50372).  Fifteen Angus 

crossbred steers (initial BW 227 ± 21 kg) were used in a crossover design.  Ruminal and 
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double-L duodenal cannulas (Streeter et al., 1991) had been surgically placed in each 

steer prior to the study.  The steers continuously grazed one winter wheat (Triticum 

aestivum; variety 2174) pasture (8.94 ha) at the Oklahoma State University Wheat 

Pasture Unit in Stillwater, OK, for 127 d, from November 5, 2003, to March 11, 2004.  

The wheat field was planted on September 9, 2003, at a seeding rate of 134 kg/ha, with 

97 kg N/ha applied as anhydrous ammonia immediately prior to planting.  The study 

consisted of three 18-d periods.  The first period began on November 17, 2003, with 

subsequent periods starting on January 12 and February 23, 2004.   

 The 3 treatments were:  (1) control, no monensin (0); (2) 100 mg monensin·steer-

1
·d-1 (100); and 200 mg monensin·steer-1

·d-1 (200).  A pre-mix was created using 1.29 kg 

Rumensin® 80 (Elanco Animal Health, Indianapolis, IN; 17.6 % monensin activity), and 

5.51 kg ground corn.  Calculated monensin concentration of the pre-mix was 33.5 mg/g 

of pre-mix.  Actual analyzed monensin concentration of the pre-mix was 32.3 ± 2.4 mg 

/g, which is within the analytical error of the procedure (Woodson-Tenent Laboratories, 

Memphis, TN).  The pre-mix was weighed into gelatin capsules, 3.0 g pre-mix/capsule 

100 and 6.0 g/capsule for 200.  Steers were hand-fed a non-medicated mineral mixture 

formulated for cattle grazing winter wheat pasture (Wheat Pasture Pro Mineral, Land 

O’Lakes Farmland Feed, LLC., Shoreview, MN)2 at a rate of 113 g mineral mixture·steer-

1
·d-1.   

Sampling Procedures 

Days within each period were broken down as follows:  d 1 to 7, adaptation to 

monensin dosing (monensin administered daily during each period); d 8 to 14, adaptation 

                                                
2 Wheat Pasture Pro Mineral; Land O’Lakes Farmland Feed, LLC.  Shoreview, MN.  Guaranteed analysis:  
Ca 15.0 – 17.0%; P 4.0%; NaCl 18.5 – 22.0%; Mg 5.5%; K 0.1%; Zn 2350 ppm; Mn 2000 ppm; Cu 650 
ppm; I 65 ppm; Se 22 ppm; Vit. A 220,462 IU/kg. 
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to chromic oxide (Cr2O3, 10 g·steer-1
·d-1; Cr2O3 dosed daily from d 8 to 18); d 15 to 17, 

fecal grab and duodenal sample collection; d 18 rumen fluid sampling.  During the 

sample collection time (d 15 to 18) steers were confined to the 2.87 ha nearest the barn to 

facilitate gathering and minimize interruptions in grazing.  Monensin and Cr2O3 were 

administered via rumen cannula daily at 0800 and 1600 (Cr2O3 only) in a gelatin capsule 

(monensin capsule described above; 5 g Cr2O3/capsule).  Duodenal (approx. 300 

g/sample) and fecal (approx. 400 g/sample) samples were collected twice daily, at 12-h 

intervals, with the collection time advanced 4-h each day.  This resulted in a duodenal 

and fecal sample obtained every 4-h of a 24-h period.  At 0800 on d 18, each steer was 

dosed with Co-EDTA (500 ml; Uden et al., 1980) via rumen cannula for determination of 

rumen fluid kinetic measures.  Rumen fluid was collected on d 18 at 0, 4, 8, 12, 16, and 

24-h after dosing.  Also on d 18, prior to dosing and 12-h post-dosing, 500 g samples of 

ruminal contents were collected from each steer, combined with 500 ml of a solution of 

cold, 10% formalin in physiological saline and frozen for subsequent isolation of ruminal 

bacteria. 

On d 14, forage mass and diet quality samples were collected from 6 random 

locations within the pasture.  Wheat forage mass was determined by hand clipping forage 

to ground level inside 0.19 m2 quadrants.  Diet quality samples were obtained by hand 

plucking the upper portion of the plant, in an effort to simulate the forage steers were 

consuming.  This was considered an accurate estimation due to the homogenous nature of 

the clean tilled wheat field.  Forage samples were dried to a constant weight in a forced 

air oven at 50°C and weighed for DM determination.  Forage mass was calculated by 
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taking the g DM per 0.19 m2 from the clipped sample and extrapolating that to kg DM/ha.  

Forage allowance was calculated as kg DM/steer and kg DM/100 kg BW.   

From each fecal grab sample, 200 g of wet fecal matter was sub-sampled, 

transferred to a convection drying oven, and dried to a constant weight at 50°C.  Diet 

quality and fecal samples were ground to pass through a 2-mm screen in a Wiley Mill 

(Arthur A. Thomas, Philadelphia, PA).  Duodenal samples were blended (Waring Pro® 

WPB05 Blender, Waring Consumer Products, East Windsor, NJ) to achieve a 

homogeneous sample, and 200 g sub-samples from each collection time were composited 

within period and frozen for later lyophilization.  Ruminal fluid samples were collected 

from the center of the rumen and strained through 8 layers of cheesecloth.  A portable pH 

meter (Orion Model 720, Thermo Electron Corporation, Beverly, MA), with a 

combination electrode, was used to determine pH immediately after the sample was 

strained.  Following pH measurement, rumen fluid samples (100 ml) were acidified with 

1 ml of 7.2 N H2SO4 and frozen for later analyses.   

Laboratory Procedures 

 Forage, fecal, and duodenal samples were analyzed in duplicate for DM and OM 

by oven drying at 100°C for 24-h, followed by ashing at 500°C for 6-h in a muffle 

furnace.  A combustion method (Leco CN-2000, St. Joseph, MI) was used in accordance 

with AOAC (1996) to determine N content of forage, fecal, duodenal samples, and rumen 

bacteria isolates.  Neutral detergent fiber and ADF were determined sequentially 

according to Van Soest et al. (1991), with the exclusion of sodium sulfite and decalin 

from the procedure, using an Ankom200 Fiber Analyzer (Ankom Technology, Macedon, 

NY).  Ash-free, indigestible NDF (INDF) was used as an internal marker to calculate 
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digestibility of wheat forage and determined by an in-situ method.  Indigestible NDF was 

determined by weighing 1.2 g of forage sample or 1.0 g of fecal sample (sample 

size:surface area = 10 to 12 mg/cm2; Vanzant et al., 1998) into heat-sealed, nitrogen-free 

polyester in-situ bags (5 x 10 cm, 50 ± 15 m pore size, Ankom Technology, Macedon, 

NY).  Bags were placed in a large nylon mesh bag and weighted to prevent floating 

above the rumen mat of the in-situ steer.  The in-situ steer was fed a ground alfalfa and 

prairie hay diet (50:50) blended to ensure nitrogen would not be limiting in the diet.  

Bags remained in the rumen for 96-h, at which time they were removed and rinsed with 

tap water until rinse water ran clear.  Bags were then processed for NDF determination as 

described previously.  Isolation of rumen bacteria was accomplished by processing 

thawed, formalin-preserved rumen contents through a blender, and then strained through 

2 layers of cheese cloth prior to centrifugation.  Ruminal bacteria were isolated and 

prepared for analysis by differential centrifugation as described by Bock et al. (1991).  

Ruminal bacteria and duodenal samples were analyzed for purine concentration as a 

marker for the calculation of microbial N flow to the small intestine and efficiency of 

microbial protein synthesis, using high pressure liquid chromatography (HPLC; Hewlett-

Packard Series II 1090 Liquid Chromatograph, Agilent Technologies, Palo Alto, CA), as 

described by  Makkar and Becker (1999).  Ruminal VFA concentrations were determined 

by deproteinizing 4 ml of ruminal fluid with 1 ml of 25% meaphosphoric acid (Erwin et 

al., 1961) and centrifuging at 20,000 x g for 15 min.  Individual VFA were separated by 

gas chromatography (Perkin Elmer Autosystem, 9000 series, Norwalk, CT) with 8 

ml/min flow rate of ultrahigh-purity He as a carrier gas and 2-ethylbutyric acid as an 

internal standard.  Rumen fluid ammonia N concentration was determined 
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colorimetrically as described by Broderick and Kang (1980).  Lyophilized duodenal 

samples were reconstituted to 3% DM in 0.1 N HCl, mixed, and centrifuged at 20,000 x g 

for 20 min. (Hannah et al., 1991).  The supernatant was analyzed for ammonia N by the 

procedure of Broderick and Kang (1980).  Chromium concentrations of fecal and 

duodenal samples were quantified by inductively coupled plasma spectrometry (ICP; 

Spectro Ciros ICP Spectrometer, Spectro Analytical Instruments, Kleve, Germany) using 

the sample digestion procedure described by Williams et al. (1962).  Rumen fluid 

samples were centrifuged (15,000 x g for 10 min.) and analyzed for Co concentration by 

ICP.   

Calculations 

 Forage OM intake and digestibility were calculated using a dual-phase marker 

method with Cr2O3 as an external marker and INDF as the internal marker.  Fecal OM 

output and duodenal flow of OM was calculated based on marker ratios using Cr.  Forage 

digestibility was calculated as described by Hungate (1966), and intake was expressed as 

the ratio of fecal output to forage indigestibility.   Microbial OM and microbial N leaving 

the abomasum were calculated using purines as a microbial marker (Zinn and Owens, 

1986).  Organic matter fermented in the rumen was considered equal to OM intake minus 

the difference between the amounts of total OM reaching the duodenum and microbial 

OM reaching the duodenum.  Apparent feed N that escaped to the small intestine was 

considered equal to total N leaving the abomasum minus NH3-N and microbial N, and 

included endogenous contributions.  Rumen fluid dilution rate was calculated by 

regressing the natural logarithm of Co concentrations against sampling times (Warner 

and Stacy, 1968).  Fluid volume was calculate by extrapolating the log curve to time zero, 



 

 78 

taking the inverse natural log, and dividing by initial Co dose.  Fluid flow rate (L/h) was 

calculated by multiplying fluid dilution rate by volume, and ruminal fluid turnover time 

was calculated as the inverse of fluid dilution rate (Galyean, 1997).  Methane production 

was calculated based on the theoretical fermentation balance of Wolin (1960), as 

described by Owens and Goetsch (1988). 

Statistical Analyses 

 Data were analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, 

NC) for a crossover design.  A variable was constructed to identify the sequence in which 

treatments were applied to steer (6 sequences) across periods.  The model included terms 

for sequence, treatment, and period, and the Kenward-Roger method was used to 

calculate degrees of freedom.  Steer within sequence was treated as a random effect.  

Fermentation characteristics were analyzed using a model including the above terms and 

random effects, as well as period*steer within sequence as a repeated measure, and 

grouped within period.  The error covariance of repeated measures was modeled with an 

autoregressive correlation structure.  Despite period being a significant (P ≤ 0.01) effect, 

least squares means are reported by treatment, and pooled across periods.  This was done 

because dosing took place at 0800 during each period, but grazing times and day length 

were changing across periods.  Protected (P ≤ 0.05) Fisher’s LSD were used to separate 

treatment means.  Nutrient composition and forage allowance data are presented as raw 

means and standard deviations, with no further statistical analysis. 
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Results and Discussion 

Wheat Forage Composition and Forage Allowance 

 Nutrient composition of wheat forage is shown in Table 1.  Standing wheat 

forage DM was between 25.3 and 31.8 % (average 28.2 ± 3.1 %) during the grazing 

season.  This low DM content is characteristic of wheat pasture during fall and winter 

grazing (Horn, 1984).  Reuter and Horn (2000) observed similar DM content of standing 

forage, ranging from 17.5 to 40.6 % between mid-November and mid-March.  Forage 

OM concentration ranged from 90.0 % in period 3 to 91.2 % in period 1 (average 90.7 ± 

0.7 %).  Forage CP content ranged from a low of 22.0 % during period 2 to a high of 29.3 

% in period 3, with an average CP concentration of 25.6 ± 3.7 %.  Crude protein values 

of 20 to 30 % in wheat pasture are common (Croy, 1984; Horn, 1984; Reuter and Horn, 

2000).  Ash-free NDF and ADF averaged 39.6 ± 2.7 and 17.4 ± 0.6 %, respectively.  

Horn (1984) noted a similar pattern where NDF and ADF increased in the late fall with 

advancing maturity of the plant.  Slowed plant growth, combined with grazing 

defoliation, increases the proportion of stem in wheat plants during the winter.  Upon 

resumption of rapid forage growth as spring temperatures increased (around February) a 

subsequent reduction in NDF and ADF concentration is expected until tillering and seed 

head development (Horn, 1984).  Other cool season annual small grain forages, such as 

barley and oats, have similar NDF (37.6 to 39.5 %) and ADF (22.8 to 24.3 %) values 

(Francia et al., 2006).    

 Stocking density and forage allowance during the three grazing periods are shown 

in Table 2.  Stocking density was held constant across the grazing season at 1.79 

steers/ha.  Forage allowance averaged 935 ± 339 kg DM/100 kg BW.  The lowest forage 
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allowance was observed during period 3, with a forage allowance of 692 kg DM/100 kg 

BW.  Fieser et al. (2006) found that maximum individual animal ADG occurred at a 

forage allowance of 709 kg DM/100 kg BW on winter wheat pasture.  The forage 

allowance observed during the present study was sufficient to allow for ad-libitum intake 

of grazed wheat forage. 

Forage and Nutrient Intake and Digestibility 

 Forage and nutrient intake, duodenal nutrient flow, and site and extent of 

digestion data are shown in Table 3.  Organic matter intake (OMI) was not affected (P = 

0.74) by monensin, and averaged 2.57 % BW.  Similarly, digestible OMI was not 

affected (P = 0.64) by monensin, with an average of 2.15 % BW.  Horn et al. (1981) and 

Branine and Galyean (1990) also found that monensin did not alter wheat forage intake 

(with monensin dosage of 200 and 170 mg monensin·steer-1
·d-1, respectively).  

Additionally, Davenport et al. (1989) reported no change in forage intake of steers 

grazing winter wheat pasture using a monensin ruminal delivery device that provided 100 

mg monensin·steer-1
·d-1.  Gallardo et al. (2005) found that dairy cows grazing alfalfa 

pastures also did not reduce intake in response to monensin (335 mg monensin·cow-1
·d-1 

from a controlled release capsule).  Potter et al. (1986) reported an average reduction of 

3.1 % (average of 12 trials) in intake of harvested forages when monensin was fed.  

However, this reduction in intake is not reported relative to BW.  In a classic monensin 

study, Dinius et al. (1976) found no effect of monensin on forage (orchardgrass hay) 

intake across a range of monensin intakes (0, 11, 22, and 33 ppm in the total diet).  As 

suggested by the preceding publications, Schelling (1984) reported that depressed intake 
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due to monensin is either not present or much more subtle in cattle on forage-based diets 

than high-concentrate diets.   

 Absolute intakes (g/d) of OM, digestible OM, NDF, ADF, and N were not 

affected by monensin (P ≥ 0.39).  Similarly, no differences (P ≥ 0.21) attributable to 

monensin were detected for OM, microbial OM, NDF, ADF, total N, NH3-N, microbial 

N, or feed N flows to the duodenum (g/d).  In addition, fecal excretion of OM, NDF, 

ADF, and N were not different (P ≥ 0.57) among treatments.  However, true ruminal OM 

digestibility (OMD) was increased (P = 0.05) with monensin.  True ruminal OMD was 

54.2 % for the control steers, and was increased (P ≤ 0.05) by 15 % with inclusion of 

monensin (62.3 % with monensin).  No difference (P = 0.74) was detected between the 

100 or 200 mg monensin/d treatments, 61.7 vs. 62.9 %.  Andersen (1988) reported true 

ruminal OMD of mature wheat forage to be 54.9 %, and immature wheat forage of 77.9 

%.  Ruminal OMD of perennial ryegrass ranged from 65 to 67 %, across a variety of 

harvest dates (Beever, 1984).  Beever et al. (1987) found that inclusion of monensin (250 

mg/d) to a diet of fresh-cut perennial ryegrass did not affect ruminal OMD (55.6 and 53.6 

for control and monensin treatments, respectively).   

 Ruminal NDF digestibility (NDFD) was also increased (P = 0.04) by monensin.  

Ruminal NDFD was 73.4 % for steers receiving no monensin, and was increased (P ≤ 

0.03) nearly 11 % by including monensin.  No difference (P = 0.92) was observed 

between the two monensin levels relative to ruminal NDFD, averaging 81.3 % for 100 

and 200.  Ruminal ADF digestibility (ADFD) responded similarly to ruminal NDFD.  

Addition of monensin increased (P ≤ 0.03) ruminal ADFD by 10 % over no monensin (0 

= 72.2 % ruminal ADFD).  No difference (P = 0.97) was observed between monensin 
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levels for ruminal ADFD, averaging 79.7 % for monensin treatments.  In agreement with 

our observed increase in ruminal NDFD, Deswysen and Ellis (1988) found that monensin 

(100 mg·heifer-1
·d-1) increased ruminal NDFD in corn silage-based diets.  Conversely, 

Faulkner et al. (1985) found no influence of monensin on ruminal NDFD when included 

in a corn stalk-based diet at levels up to 36.6 mg monensin/kg diet.  To emphasize the 

variation in ruminal fiber digestion response to monensin, Fredrickson et al. (1993) 

reported decreased 96-h NDF disappearance in steers grazing native blue grama range 

with a monensin ruminal delivery device (100 mg·heifer-1
·d-1).  Monensin has been 

shown to have no effect on ruminal cellulose digestion (Beever et al., 1987) or rate of 

ruminal cellulose disappearance (Ricke et al., 1984), in cattle grazing perennial ryegrass 

and sheep on an alfalfa-based diet, respectively.  Spears (1990) suggested that the 

chemical and/or physical properties with different diets influence the effect of ionophores 

on fiber digestibility.  Increased ruminal fiber digestion could be explained by recent 

work from our laboratory, in which Prevotella sp. and Bacillus sp. were the predominant 

microbial populations when supplementing monensin (200 mg·steer-1
·d-1) on wheat 

pasture (Fernando et al., 2005).  Both of these species of bacteria have been shown to 

have a demonstrated activity on xylan (Prevotella sp.) or xylanase activity (Bacillus sp.; 

Collins et al., 2005).  Using dairy cows fed a timothy hay and soybean meal diet, Yang 

and Russell (1993) found that the number of carbohydrate fermenting bacteria was not 

significantly altered by monensin.  However, monensin did numerically increase the 

estimated number of carbohydrate fermenting bacteria and inhibit highly active amino 

acid fermenting bacteria (Yang and Russell, 1993).   
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 Ruminal feed N digestibility tended (P = 0.10) to be increased with monensin.  

This numerical increase was about 7.4 percentage units.  Our ruminal feed N digestibility 

with monensin (average 74.9 %) is similar to the DIP values reported by Reuter and Horn 

(2000) for wheat forage using a Streptomyces griseus 48-h in vitro procedure (76.9 ± 2.4 

%).  We did not observe the classical “protein sparing” effect of monensin in which 

dietary protein degradation in the rumen is reduced (Bergen and Bates, 1984; Schelling, 

1984).  Bergen and Bates (1984) observed increased ruminal escape of feed protein by 

feeding monensin.  However, these studies utilized concentrate- or corn silage-based 

diets (Bergen and Bates, 1984).  In other work on a high CP forage (white clover; 

Trifolium repens cv. Blanca; 25 % CP), Beever et al. (1987) found that monensin did not 

alter rumen degradability of feed N (average 84.0 % rumen degraded).  It is possible that 

when grazing forages with CP values in excess of 25 %, that are highly ruminally 

degraded, but have a short rumen retention time, the protein sparing effect of monensin is 

minimized by the abundance of ruminally available N.   

 Microbial efficiency (g bacterial N/kg of OM truly fermented in the rumen) was 

not affected (P = 0.68) by monensin.  These microbial efficiency estimates were 

relatively high, averaging 25.5 across all treatments.  This high microbial efficiency value 

is common in high quality forages.  Vogel (1988) reported microbial efficiency values as 

high as 38.9 in steers grazing wheat pasture in the early spring.  Beever et al. (1987) 

found microbial efficiency of white clover diets to be 30.4 when unsupplemented.  

Additionally, Beever et al. (1987) did not find an impact of monensin on microbial 

efficiency.  In contrast to our observations, Van Nevel and Demeyer (1977) found that 

monensin reduced microbial efficiency in vitro.  In our in vivo data, monensin shifted 
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both factors that contribute to microbial efficiency, bacterial N and OM truly fermented 

in the rumen.  Because both of these values moved in the same direction and similar 

amounts, no net effect was observed relative to microbial efficiency. 

 Postruminal OM and N digestibility tended (P = 0.09) to be reduced with 

monensin addition.  This is likely a function of these factors having higher ruminal 

digestion, allowing for the possibility of greater postruminal fermentation.  No effect (P ≥ 

0.84) was seen on postruminal NDFD or ADFD.  Mean posturminal ADFD values were 

negative.  However, these negative values were not different from zero (P ≥ 0.27).  While 

NDFD means were positive, they were also not different from zero (P ≥ 0.10).  This 

suggests that essentially no postruminal NDF or ADF digestion was taking place. 

 Apparent total tract digestion of OM and N were not influenced (P ≥ 0.73) by 

monensin supplementation, and averaged 81.8 and 80.4 % for OM and N, respectively.  

Conversely, monensin tended (P ≤ 0.10) to increase total tract digestion of NDF and 

ADF.  This is likely a residual effect of the increased NDFD and ADFD observed 

ruminally with monensin, because, as stated previously, essentially no NDF or ADF 

digestion was detected posturminally.  Poos et al. (1979) found that apparent digestibility 

of DM and ADF was reduced by monensin when added to a ground corn cob-based diet 

supplemented with concentrates.  Similarly, Deswysen and Ellis (1988) did not find 

evidence of a monensin effect on apparent NDF digestion.  Faulkner et al. (1985) 

observed increases in apparent DM and NDF digestibility at low levels (6.1 to 12.2 ppm) 

of monensin, and at higher levels (36.6 ppm) values were similar to the control treatment.  

Dinius et al. (1976) found no effect of monensin (up to 33 ppm) on DM, CP, or fiber 

digestibility.  In contrast to our study, Ruiz et al. (2001) found no effect of monensin on 
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apparent digestibility of DM, and a tendency of increased apparent N digestibility with 

monensin in dairy cows consuming a fresh orchardgrass diet.  However, Ruiz et al. 

(2001) did not see an effect of monensin on NDF digestibility.  Similar to our findings, 

Poos et al. (1979) did not observe an alteration in apparent N digestibility with monensin.  

As discussed previously, the extreme variation in intake and chemical composition of 

forages likely contributes to the variation observed in response to monensin effects on 

nutrient digestion.   

Rumen Fluid Kinetics and Fermentation Products 

 Rumen fluid characteristics are shown in Table 4.  Rumen fluid dilution rate was 

extremely rapid, with an average of 14.9 %/h, and was not influenced by monensin (P = 

0.35).  Monensin has been shown previously to have no effect on liquid dilution rate on 

wheat pasture (Davenport et al., 1989; Branine and Galyean, 1990).  Fluid dilution rates 

of between 8.3 and 11.1 %/h (Davenport et al., 1989) and 7.9 and 11.1 %/h (Branine and 

Galyean, 1990) have been reported on wheat pasture.  On a lower quality forage (corn 

stalks and supplement), Faulkner et al., 1985 were also unable to detect a change in liquid 

dilution rate due to monensin.  The rapid liquid dilution rates are indicative of the high 

microbial efficiency values we measured.  Prigge et al. (1978) found that microbial 

protein synthesis increased as liquid dilution rate increased.  This relationship is 

confirmed by Owens and Goetsch (1988).  Monensin also did not alter (P ≥ 0.20) rumen 

liquid flow rate, liquid volume, or liquid turnover time. 

 All time dependent measures (pH, NH3-N, total VFA, acetae:propionate ratio, 

methane production, and molar proportions of individual VFA) failed to show a 

treatment*time interaction (P ≥ 0.09).  While these variables were sensitive to time (P < 
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0.01), the time factor was based on our initial dosing time and did not account for timing 

of grazing bouts.  Additionally, the effects of time were generally a degree of magnitude, 

and did not affect treatment ranking (lack of treatment*time interaction).  Therefore, 

effects for these variables are reported as lsmeans across time for each of the dietary 

treatments (Table 4).  Monensin influenced (P = 0.01) rumen pH. However, the range in 

mean rumen pH values was from 5.9 to 6.1, meaning it was probably of little biological 

consequence.  Because of its high rumen degradability and solubility, low rumen pH is 

characteristic of cattle grazing wheat forage.  Davenport et al. (1989) and Branine and 

Galyean (1990) reported rumen pH of wheat pasture cattle ranging from 5.7 to 6.3.  

Branine and Galyean (1990) found that monensin increased rumen pH (from 6.0 to 6.3) 

in one of three time periods they investigated.  Similarly, Horn et al. (1981) reported an 

increase in rumen pH from 6.22 to 6.75 (at 4-h post dosing) with the addition of 

monensin.  However, by 24-h post-dosing this effect was not significant.  Min et al. 

(2005) found no effect of monensin on rumen pH out to 22 d of feeding monensin to 

steers on wheat pasture.   

 One of the classic modes of action for monensin is reduced rumen N digestibility, 

generally characterized by reduced rumen NH3-N concentrations (Bergen and Bates, 

1984; Schelling, 1984; Russell and Strobel, 1989).  Our results were somewhat 

inconclusive, with 100 increasing rumen NH3-N, compared to either 0 or 200.  This is 

consistent with the tendency we observed for monensin to increase feed N digestion in 

the rumen.  Neither Horn et al. (1981) nor Davenport et al. (1989) observed an impact of 

monensin on rumen NH3-N in steers grazing wheat pasture.  In agreement with our data, 

Branine and Galyean (1990) observed increased ruminal ammonia 2 and 8 h after feeding 
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monensin to steers grazing wheat pasture in late April.  Conversely, at 2- and 23-h post 

feeding, steers receiving monensin had reduced ruminal ammonia (Branine and Galyean, 

1990).  At all other collection times there was no effect of monensin on ruminal ammonia 

(Branine and Galyean, 1990).  With perennial ryegrass and white clover, Beever et al. 

(1987) were unable to detect a reduction in ruminal NH3 with monensin.  Ruiz et al. 

(2001) found a similar pattern, with a numerical reduction in rumen ammonia.  Similarly, 

Poos et al. (1976) reported numerical reductions in rumen ammonia with monensin.  

These reports not only provide evidence for the potential of monensin to reduce ruminal 

ammonia values, but also the variable nature of the rumen ammonia concentrations, with 

numerous reductions observed, but significance not detected due to high variance.  Yang 

and Russell (1993) found that monensin reduced ruminal ammonia concentrations as well 

as the number of amino acid fermenting bacteria in the rumen.  However, the daily 

monensin dose for cows used by Yang and Russell (1993) was 350 mg·steer-1
·d-1 (0.51 

mg monensin/kg BW).  In the present study, the 200 mg·steer-1
·d-1 dose provided only 

0.40 mg monensin/kg BW.  At our levels, 100 and 200 mg monensin·cow-1
·d-1, the 

monensin may not be able to counteract the load of rumianlly degradable N from wheat 

forage.   

 Another classic response to monensin is reduced losses to methane gas (Bergen 

and Bates, 1984; Schelling, 1984).  Monensin tended (P = 0.09) to decrease methane 

production, which ranged from 0.62 mol methane/mol of glucose equivalent fermented 

for control steers, to 0.60 for steers receiving 200 mg monensin·steer-1
·d-1.  Based on our 

values, 200 mg monensin·steer-1
·d-1 reduced methane production by 3.2 %.  Horn et al. 

(1981) found that monensin reduced gas production (CO2 + CH4) in steers grazing wheat 
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pasture by between 5 and 8 %.  The reduction in gas production specific to methane was 

between 8 and 15 % (Horn et al., 1981).  Min et al. (2005) found that monensin reduced 

methane production per g or forage by roughly 50 % in-vitro.  Additionally, Min et al. 

(2005) showed that cumulative hourly gas production for monensin after 3-h was less 

than the control.   

 Our highest dose of monensin tended (P = 0.06) to reduce total VFA 

concentration, compared with 0 and 100.  Other studies on wheat pasture have failed to 

show an effect of monensin on total VFA concentration (Davenport et al., 1989; Branine 

and Galyean, 1990).  Horn et al. (1981) found that monensin reduced total VFA 4 h post-

dosing, but at 24 h post-dosing this reduction was no longer significant.  Ruiz et al. 

(2001) also found a small numerical reduction in total VFA by adding monensin to the 

diet.  Acetate:propionate ratio (A:P) responded to out treatments (P = 0.04).  The highest 

dose of monensin reduced (P = 0.01) A:P compared with 0.  The 100 treatment was 

intermediate (P ≥ 0.11) between the control and 200.  Horn et al., (1981) also found 

reduced A:P when monensin was fed to steers grazing winter wheat pasture.  

Acetate:propionate ratios calculated from the data of Davenport et al. (1989) indicate that 

monensin reduced A:P of steers on wheat pasture from 3.2 to 3.0.  The theoretical 

fermentation balance equations developed by Wolin (1960) suggest that a reduction in 

A:P, results in a reduction in methane production.   Based on the direct measures of Horn 

et al. (1981) it appears that this balance holds true on wheat pasture.   

 Molar proportions of acetate, valerate, isobutyrate, and isovalerate were 

unaffected (P ≥ 0.32) by treatment.  The only individual VFA influenced by monensin 

was propionate (P = 0.01).  Molar proportion of propionate was not different (P = 0.25) 
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between 0 and 100, but was increased (P ≤ 0.04) by 200.  The increase in propionate 

apparently came at the expense of butyrate, which tended (P = 0.17) to decrease with 

monensin dosing.  Perhaps the most consistent and important response observed with 

including monensin in ruminant diets is a shift in molar proportions of VFA  toward 

greater amounts of propionate (Dinius et al., 1976; Richardson et al., 1976; Ipharraguerre 

and Clark, 2003).  Horn et al. (1981) reported increased ruminal molar proportions of 

propionate of steers grazing wheat pasture with 200 mg monensin·steer-1
·d-1.  This 

increase in propionate was more distinct 4-hr after feeding, but still detectable 24-h after 

feeding monensin.  Davenport et al. (1989) reported increased propionate proportions 

(from 19.2 to 20.3 mol/100 mol) with 100 mg monensin·steer-1
·d-1 for steers grazing 

wheat pastures from early February through early April.  This small, but significant (P < 

0.05), increase is comparable to what we observed in the present study, and at similar 

molar proportions of propionate.  Conversely, Branine and Galyean (1990) did not report 

any alteration in molar proportion of propionate for steers on wheat pasture (170 mg 

monensin·steer-1
·d-1).  However, in 2 out of 3 periods, butyrate was reduced (P < 0.05), 

and a numerical increase in propionate was observed (Branine and Galyean, 1990).   

Implications 

Monensin increased ruminal OM, NDF, and ADF digestibility of cattle grazing 

winter wheat pasture, without a reduction in OM intake or liquid dilution rate.  Monensin 

dosage (100 or 200 monensin·steer-1
·d-1) did not affect these variables.  However, higher 

monensin dosage may be necessary to alter some fermentation products, as only 200 mg 

monensn·steer-1
·d-1 effected the acetate:propionate ratio and the molar proportion of 

propionate.  These digestion and fermentation effects are indicative of monensin 
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improving the energy status of cattle, and are possible mechanisms for the improved 

performance of cattle fed monensin on wheat pasture.     
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Table 1.  Dry matter and nutrient composition of wheat forage 
 Period1  
Nutrient composition2 1 2 3 Average 
Standing forage DM3 25.3 ± 0.83 31.8 ± 2.57 28.1 ± 1.42 28.2 ± 3.10 
OM 91.2 90.9 90.0 90.7 ± 0.7 
CP 25.6 22.0 29.3 25.6 ± 3.7 
NDF, ash-free 37.2 42.5 39.2 39.6 ± 2.7 
ADF, ash-free 16.8 18.0 17.4 17.4 ± 0.6 
1Pasture clipping done on d 15 of each period.  Period 1 = Dec. 1, 2003.  Period 2 = Jan. 26, 2004.  Period 3 
= March 8, 2004. 
2Expressed as a percentage of the DM. 
3Expressed as a percentage on an as-fed basis. 
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Table 2.  Stocking density and standing forage characteristics 
 Period1  
Item 1 2 3 Average 
No. of steers2 16 16 16  
Stocking density, steers/ha 1.79 1.79 1.79  
Forage mass, kg DM/ha 5,361 ± 547 4,082 ± 676 4,225 ± 440 4,556 ± 707 
Forage allowance, kg 
DM/steer 

2,996 2,280 2,361 2,546 ± 392 

Forage allowance, kg DM/100 
kg BW 

1,322 790 692 935 ± 339 
1Pasture clipping done on d 15 of each period.  Period 1 = Dec. 1, 2003.  Period 2 = Jan. 26, 2004.  Period 3 
= March 8, 2004. 
2Number of steers includes 15 steers on treatment and 1 “extra” steer. 
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Table 3. Effect of monensin on nutrient intake, duodenal flow, microbial efficiency, 
and site and extent of digestion of steers grazing winter wheat forage 
 Monensin dosage, mg·steer-1

·d-1   
Item 0 100 200 SEM1 P-value2 
OMI, % BW 2.57 2.52 2.63 0.151 0.74 
Digestible OMI, % BW 2.14 2.09 2.22 0.138 0.64 
Intake, g/d      

OM 7,564 7,293 7,955 513.4 0.43 
Digestible OM 6,374 6,104 6,762 468.0 0.39 
NDF 3,009 2,904 3,175 203.8 0.40 
ADF 1,321 1,274 1,391 89.7 0.41 
N 353.3 337.0 371.6 25.15 0.42 

Flow to duodenum, g/d      
OM 2,932 2,679 2,575 169.1 0.22 
Microbial OM 12.5 10.9 11.2 0.69 0.21 
NDF 588.7 479.8 471.1 52.61 0.21 
ADF 265.2 227.1 219.0 21.63 0.27 
Total N 219.6 195.5 194.9 13.14 0.25 
Nonammonia N 206.2 182.2 182.4 12.42 0.23 
Microbial N 119.8 106.9 108.2 6.87 0.34 
Feed N 86.3 75.3 74.2 7.43 0.39 

Ruminal digestion, %      
OM, true 54.2b 61.7a 62.9a 2.69 0.05 
NDF 73.4b 81.5a 81.1a 2.55 0.04 
ADF 72.2b 79.6a 79.8a 2.33 0.04 
Feed N 67.5 75.2 74.5 2.78 0.10 
Microbial efficiency3 24.7 24.8 27.1 2.77 0.68 

Fecal excretion, g/d      
OM 1,183 1,190 1,193 66.7 0.99 
NDF 413.0 403.4 385.3 24.50 0.57 
ADF 247.6 236.4 232.6 14.81 0.62 
N 56.3 57.0 56.7 3.11 0.98 

Postruminal digestion, %      
OM 58.9 53.3 52.0 2.32 0.09 
NDF 15.8 9.3 15.5 9.50 0.84 
ADF - 7.4 - 10.6 - 8.9 9.79 0.97 
N 73.8 69.8 69.8 1.46 0.09 

Total tract digestion, %      
OM 81.5 81.9 82.1 0.58 0.73 
NDF 83.8 84.4 85.3 0.53 0.07 
ADF 77.6 79.0 79.6 0.73 0.10 
N 80.0 80.3 80.8 0.79 0.76 

1n = 44. 
2Probability of a greater F-value for the main effect of treatment (monensin dosage). 
3Microbial efficiency = g of bacterial N/kg of OM truly fermented in the rumen.   
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a,bWithin a row, means without a common superscript letter differ (P ≤ 0.05). 
 

 

Table 3 cont. 
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Table 4.  Effect of monensin on ruminal fluid kinetics, fermentation products, and 
VFA of steers grazing winter wheat pasture 
 Monensin dosage, mg·steer-1

·d-1   
Item 0 100 200 SEM1 P-value2 
Ruminal fluid kinetics      

Liquid dilution rate, %/h 15.2 15.3 14.2 0.87 0.35 
Liquid flow rate, L/h 6.5 5.9 6.0 0.31 0.20 
Liquid volume, ml/kg BW 147.0 132.2 140.4 9.83 0.48 
Liquid turnover time, h 6.9 6.8 7.2 0.43 0.54 

pH 6.0ab 5.9b 6.1a 0.04 0.02 
NH3-N, mM 22.5b 26.3a 23.4b 0.98 0.01 
Methane production3 0.62 0.61 0.60 0.005 0.09 
VFA concentration, mM 111.7 111.6 105.3 2.71 0.06 
Acetate:propionate 3.4a 3.2ab 3.1b 0.08 0.04 

mol/100 mol 
Acetate 64.1 63.9 63.4 0.51 0.52 
Propionate 19.5b 20.0b 20.8a 0.33 0.01 
Butyrate 12.7 12.3 12.1 0.26 0.17 
Valerate 1.3 1.3 1.3 0.04 0.32 
Isobutyrate 1.1 1.1 1.0 0.03 0.76 
Isovalerate 1.4 1.4 1.5 0.05 0.37 

1n = 44. 
2Probability of a greater F-value for the main effect of treatment (monensin dosage). 
3Methane production = mol methane/mol of glucose equivalent fermented. 
a,bWithin a row, means without a common superscript letter differ (P ≤ 0.05). 
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Chapter V 

Summary and Conclusions 

A major goal of stocker cattle producers is to maximize ADG while maximizing 

the utilization of available forage.  Energy and mineral supplementation with monensin is 

one of the methods that has been investigated to accomplish this goal.  The research 

reported in this dissertation was conducted to evaluate supplementation programs and the 

specific effects of monensin on site and extent of wheat forage digestion.   

A performance study was conducted over two grazing seasons to determine the 

effects of different supplementation programs on supplement intake and steer growth 

performance of stocker calves on wheat pasture.  Five treatments were evaluated, a 

negative control, a free-choice, non-medicated mineral mixture, a monensin-containing, 

free-choice mineral mixture, soybean hulls and a monensin-containing, free-choice 

mineral mixture offered separately, and a monensin-containing, energy supplement.  

Steer growth response due to treatment was not consistent between years.  In the first 

year the non-medicated mineral mixture did improve ADG compared with steers on the 

negative control.  However, the monensin-containing mineral mixture did improve ADG 

compared with the non-medicated mineral mixture and negative control.  The separate 

package supplement was not different from the monensin-containing, energy supplement, 

but they did out perform the monensin-containing mineral mixture treatment.  In year 

two, the non-medicated mineral mixture improved ADG compared with the negative 
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control.  The monensin-containing supplements (mineral and energy) did not improve 

ADG compared to the non-medicated mineral mixture.   

In addition to the performance study, a companion digestion study was conducted 

to determine the effect of monensin on site and extent of digestion and nutrient flow of 

steers grazing wheat forage.  Three treatments were evaluated:  control (no monensin), 

100 mg·steer-1
·d-1, and 200 mg·steer-1

·d-1 were dosed via rumen cannula daily.  Intake and 

apparent digestibility was not altered by dosing with monensin.  However, ruminal 

digestion of NDF and ADF was improved with monensin, but no differences were 

observed between monensin levels.   Microbial protein flow to the duodenum and 

microbial efficiency were not affected by monensin.  Monensin decreased 

acetate:propionate ratio compared with the control treatment.  Rumen molar proportion of 

propionate was increased with the highest dose of monensin compared with the control.   

 In conclusion, steers gained better when receiving monensin in one of two years.  

Based on the literature, this increased ADG response to monensin (observed in the one 

year) is typical of monensin in steers grazing wheat pasture.  Lack of a response to 

monensin supplementation is not unprecedented, but is rarely observed.  There does not 

appear to be a difference in the delivery method of monensin, in an energy supplement or 

fed in a mineral mixture and a separate energy supplement.  Monensin seems to improve 

the growth performance of cattle grazing wheat pasture by improving fiber digestion, and 

increasing the amount of propionate in the rumen fermentation, while also tending to 

reduce the amount of energy lost as methane gas. 
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