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CHAPTER I 

INTRODUCTION 

Bovine respiratory disease (BRD) is the most common and detrimental disease of beef 

cattle production during the post-weaning phase, causing approximately 75% of morbidity and 

over 50% of mortality in feedlots (Smith, 1998).  Despite extensive research conducted over 

several years, BRD continues to result in the greatest economic loss to the beef industry.  

Although mortality due to BRD is a concern, morbidity of cattle most likely costs the industry 

more considering the expenses associated with medications, labor involved with treatment, 

premature culling due to chronic conditions, and the expense of reduced performance during and 

after the illness (Smith, 1998; Gagea et al., 2006). 

Bovine respiratory disease is a multi-factorial disease.  Environmental conditions, 

stressors, and active infection with a number of respiratory viruses can predispose cattle to 

pneumonia caused by several bacterial pathogens (Czuprynski et al., 2004).  Predominant 

pathogens isolated from feedlot cattle suggest a viral/bacterial synergism between bovine viral 

diarrhea virus (BVDV), which predisposes cattle to a secondary bacterial infection with 

Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycobacterium bovis .  

It is believed that the high prevalence of beef cattle herds infected with BVDV around the world 

may be a consequence of the ability of noncytopathic BVDV (ncpBVDV) to establish lifelong 

infections after in utero infection during early pregnancy, and thus generate a reservoir of 

persistently infected (PI) animals (Charleston et al., 2001). 

Due to the detrimental effect of BVDV leading to secondary bacterial infections, the 

overall objective of the work presented herein was to determine the effects of timing of BVDV 
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exposure relative to a M. haemolytica challenge on short-term animal performance, immune 

response, and cytokine expression in economically important tissues of beef cattle.
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CHAPTER II 

LITTERATURE REVIEW 

Bovine Respiratory Disease 

Bovine respiratory disease is the most costly beef cattle disease in the United States.  

Costs associated with BRD prevention, treatment, morbidity, and mortality have been estimated 

from $13.90 (Snowder et al., 2006) to $15.57 (Faber et al., 1999) per animal.  Babcock et al. 

2009 indicated that BRD costs the beef industry more than $690 million annually.  Decreased 

performance and poor carcass merit were associated with a decline of $23.23, $30.15, and 

$54.01 in carcass value when comparing cattle never treated to cattle treated once, twice, or three 

or more times, respectively, for clinical signs of BRD (Schneider et al., 2009). 

Bovine respiratory disease results from a complex, multi-factorial interaction of stressors, 

animal susceptibility, and respiratory pathogens.  The infectious agents (i.e., pathogens) related 

to BRD are found everywhere among cattle populations.  Usually, one or a combination of 

stressors are necessary to initiate BRD (Cusack et al., 2007).  Frequently, bacterial pneumonia is 

preceded by a viral respiratory infection.  Bovine viral diarrhea virus, bovine herpesvirus-1 

(BHV-1), also known as infectious bovine rhinotracheitis virus (IBRV), parainfluenza type 3 

virus (PI3V), bovine respiratory syncytical virus (BRSV), Mycoplasma bovis, M. haemolytica, 

Pasteurella multocida, and Haemophilus somnus are the viruses and bacteria frequently 

associated with BRD.  However, among the infectious agents, BVDV and M. haemolytica are the 

predominant pathogens isolated from BRD in feedlot cattle at necropsy (Fulton et al., 2005; 

2006b; Katsuda et al., 2008).   
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Incidence of BRD has been reported in many studies with variability from 5% to 66% in 

feedlot cattle (Snowder et al., 2006).  A report by Schneider et al. 2009 suggested, that the  

incidence of BRD increases sharply after 5 days of arrival to feedlots and can remain high until 

approximately 80 days on feed.  A recent study analyzed records from 5,976 cattle and showed 

that 105 cattle died (1.43%) in the feedlot; 49% of deaths were associated with BRD, 40% of 

deaths were due to reasons not related to BRD, and 11% of deaths were connected to 

undetermined causes.  An earlier study revealed that only 35% of steers received treatment for 

BRD from birth to harvest, whereas 72% had pulmonary lesions evident at slaughter (Wittum et 

al., 1996).  A survey conducted in Australia showed that 68, 13, 57 and 27% of cattle entering 

the feedlot were serologically positive for BVDV, BHV1, PI3V and BRSV, respectively.  All 

animals that were serologically negative at arrival were retested at harvest and 94, 76, 78 and 

71% sero-converted to BVDV, BHV1, PI3V and BRSV, respectively.  Only 10.3% of the cattle 

that serologically converted to one or more respiratory viruses had clinical signs detected 

(Cusack et al., 2003).  These data indicate that there is continued need for research studying 

management practices with potential for preventing risk of BRD, and providing methods for 

early and objective diagnosis of this disease. 

Impact of BRD on Animal Performance. The effects of BRD on subsequent 

performance in feedlot cattle have been investigated with varying results.  It seems logical that 

animals that remain healthy during the entire feeding period would perform better than calves 

that suffered from BRD.  Incidence of BRD in the feedlot has been reported to decrease average 

daily gain (ADG) during both the acclimation period (0.37 ± 0.03 kg/d) and the overall testing 

period (0.07 ± 0.01 kg/d; Schneider et al., 2009).  Reports for a 28-day receiving period indicated 

that ADG was 0.23 kg/d (Smith, 1998) and 0.14 kg/d (Bateman et al., 1990) lower for calves that 
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became sick compared with calves that remained healthy.  Citing health records, Bateman et al. 

(1990) and Wittum et al. (1996) reported that calves treated for BRD had 0.06 kg/d lower ADG 

than those not treated.  A Canadian report (Morck et al., 1993) showed that calves experiencing a 

single episode of BRD had 0.18 kg/d lower ADG than those remaining healthy, and those sick 

two or more times had 0.33 kg/d lower ADG.  The association between ADG and pulmonary 

lesions at harvest in feedlot cattle has been reported (Wittum et al., 1996).  A decrease in ADG 

of 0.07 kg/d during the feeding period was associated with pulmonary lesions found at slaughter 

(Wittum et al., 1996).  In addition, steers with presence of lung lesions had lower performance 

and carcass traits, including ADG, hot carcass weight (HCW), internal fat, and marbling scores 

compared with steers without lesions.   

Interestingly, lung lesions were observed in almost an equal number of steers that 

received treatment for BRD (33%) and steers not treated (29%; Gardner et al., 1999).  However, 

the greatest loss of production has been observed in cattle that had active bronchial lymph nodes 

at harvest (Gardner et al., 1999; Schneider et al., 2009).  There is often a discrepancy between 

records of cattle treated for BRD and lung lesions at slaughter.  Not all treated cattle will have 

lung lesions at slaughter and not all healthy cattle will be free of lung lesions.  In steers treated 

for BRD, 78% had pulmonary lesions, whereas 68% of steers not treated also had pulmonary 

lesions (Wittum et al., 1996).  Data from 1,665 cattle records revealed that 64.4% of cattle 

harvested had lung lesions (Schneider et al., 2009).  The authors did not find influence of 

presence of lung lesions on performance and carcass traits considered in this study.  However, 

incidence of BRD decreased HCW and marbling score by 8.16 ± 1.38 kg and 0.13 ± 0.04 

marbling units, respectively, in treated cattle (Schneider et al., 2009). 
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Stress Factors. The effects of mixing calves at the auction barn, transportation, 

castration, and sorting at the feedyard may increase the incidence of BRD as a result of either 

commingling with unfamiliar cattle or by increasing the chance of contacting pathogens 

(Snowder et al., 2006; Rice et al., 2008).  A study conducted at Oklahoma State University 

showed that calves from a single ranch origin had greater ADG than calves commingled at the 

feedlot or calves coming from an auction barn (Step et al., 2008).  Weaning management 

program (weaned on the ranch or weaned and vaccinated on the ranch) did not have an effect on 

ADG.  During the first 45 days after arrival at the feedlot, dry matter intake (DMI) was not 

affected by cattle origin. In addition, weaning and vaccination management pre- and post-arrival 

to the feedyard did not affect gain efficiency. Calves from a single source ranch were less likely 

to be treated for BRD than calves coming from an auction market.  Calves from a single source 

and retained on the ranch for 45 days were healthier and consequently had lower health costs 

than calves coming from an auction market or weaned and immediately shipped to the feedlot 

(Step et al., 2008).  These data suggest that preconditioning programs can decrease the incidence 

of BRD. 

 

Bovine Viral Diarrhea Virus 

Bovine viral diarrhea virus is a single stranded RNA virus member of the genus 

Pestivirus and the family Flaviviridae (Baker, 1995; Baule et al., 2001).  Bovine viral diarrhea 

virus has been classified into biotypes and genotypes.  Biotypes are based on their ability to 

induce a cytopathic effect in cell culture.  There are two biotypes for BVDV: cytopathic and 

noncytopathic (Fulton et al., 2006).  The noncytopathic biotype is the most common virus 

isolated from acute infections, while the cytopathic biotype is commonly found, together with 
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the noncytopathic biotype, in animals suffering from mucosal disease (MD).  Mucosal disease 

occurs in PI animals with a noncytopathic biotype that become super-infected with a cytopathic 

biotype strain (Baule et al., 2001).  In North America there are two genotypes based on antigenic 

characteristics: BVDV1 and BVDV2, and recently divided subgenotypes BVDV1a, BVDV1b, 

BVDV2a, and BVDV2b (Fulton et al., 2006).  Noncytopathic BVDV and BVDV1 genotypes 

were the most commonly isolated from cattle, which died from fibrinous pneumonia causes.  In 

addition, BVDV1 is the most common strain involved in acute respiratory disease of cattle in 

association with M. haemolytica and P. multocida (Robert et al., 2002).  

Role of BVDV in Feedlot Cattle Health.  Studies have suggested that persistently 

infected (PI) cattle are the main source of BVDV for surrounding susceptible cattle.  Persistently 

infected cattle are calves that were infected in utero between 42 to 125 d of their gestation 

period.  Persistently infected calves shed virus in all secretions throughout their lives.  Fulton et 

al. (2005) reported that the primary BVDV strain in PI calves was BVDV1b, and 64.4% of cattle 

seroconvert to BVDV1b after being exposed (Fulton et al., 2005).  Although seroconversion has 

been reported, Booker et al. (2008) reported that the presence of PI calves in feedlot pens does 

not always have a negative effect on animal health or performance.  Supporting this finding, 

Elam et al. (2008) reported that exposure to a PI calf either for a short period (60 h) or for the 

entire feeding period (125 d) did not affect overall performance (BW, DMI, ADG and gain 

efficiency) in calves previously vaccinated, freshly weaned, and transport-stressed compared 

with non-exposed calves. A recent study by Hessman et al. (2009) analyzed the data from 15,348 

cattle in 167 lots occupying 172 pens. The authors reported that the presence of BVDV PI cattle 

within pens resulted in an increase in cost of production caused by negative effects of the BVDV 

disease, an increased number of deaths, and diminished animal performance.  However, when 
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the performance data was analyzed individually, they observed that some of the BVDV PI cattle 

penmates had acceptable performance and health outcomes. 

The contradictory results among previous experiments could be due to the vaccination 

and prophylactic management programs used.  For example, Fulton et al. (2005) commingled 

vaccinated with non-vaccinated calves, and calves were vaccinated 3 days prior to exposure to PI 

calves with either a modified live or killed viral vaccine.  In the experiments of Booker et al. 

(2008) and Elam et al. (2008), all cattle were vaccinated with a modified live viral vaccine and 

received metaphylaxis.  Therefore, one could speculate that less pathogenic effects were 

observed in the latter two experiments due to the vaccination program used and differences in 

health protocols followed. 

Impact of BVDV on Secondary Infections.  The importance of bacterial–viral synergism 

or interactions in BRD has been recognized for several years (Baker, 1995).  It seems clear that 

viral-induced immune suppression is a significant factor that permits both viruses and bacteria to 

establish in the lungs, and there is increasing understanding of the details of the underlying 

mechanisms that are involved.  In addition, psychological stressors on respiratory viral infections 

in mice lend credence to the possibility that similar complex interactions occur among the 

psychological, physical, and nutritional stressors associated with weaning and transport in calves.  

A disease model of BHV-1 respiratory infection followed by aerosol challenge with M. 

haemolytica produced clinical signs of the disease and a mortality rate of 30 to 70% (Hodgson et 

al., 2005).  A combination of weaning and shipping immediately prior to BHV-1 infection and 

M. haemolytica challenge resulted in twofold greater mortality due to BRD (80%) in calves 

experiencing the combination of social reestablishment and transport compared with 

transportation alone (Hodgson et al., 2005).  Analysis of gene expression in peripheral blood 
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mononuclear cells (PBMC) from calves following BHV-1 infection showed increased 

production of interferon (IFN), toll-like receptor 2 (TLR2) and TLR4.  In addition, changes 

related with lipid metabolism, ion transport, and cell growth were observed (Hodgson et al., 

2005). It was suggested that increased levels of serum corticosteroids enhanced 

immunosuppression as a consequence of the viral-bacterial synergy that resulted in fatal BRD 

following infection by M. haemolytica (Hodgson et al., 2005). 

BVDV Immunosuppression.  As mentioned co-infections of viruses and bacteria are 

important in the pathogenesis of BRD (Baker, 1995).  Bovine viral diarrhea virus is a virus that 

can cause respiratory disease on its own (Fulton et al., 2005), and can also make animals more 

susceptible to bacterial infections (Baker, 1995).  Acute BVDV in cattle shows transient 

immunosuppression as a result of the virus’ predilection for cells that play critical roles in the 

host immune system.  During the initial infection the virus has major effects on thymic and 

follicular T-lymphocytes, as well as follicular B-lymphocytes, often resulting in a severe decline 

in circulating numbers of lymphocytes and suppression of functional activities of these cells.  

Similarly, granulocytes and monocytes are highly susceptible to BVDV infections; BVDV 

infection results in a decrease in numbers and suppression of function (Brewoo et al., 2007).  In 

addition, BVDV infection may have an important impact on cell-mediated immunity by inducing 

changes in the proportions of lymphocyte subpopulations in blood.  The proportions of cytotoxic 

T-lymphocytes (CD8+) and helper T-lymphocytes (CD4+) decrease, while the workshop cluster 

1 (WC1+) cells are considered to be unaffected by BVDV infection (Brodersen and Kelling, 

1999).  Cytotoxic T-lymphocytes secrete molecules that destroy the cell to which they have 

bound by cytotoxic effects on somatic infected cells.  Helper T-lymphocytes are essential for 

both the cell-mediated and antibody-mediated branches of the immune system. These CD4+ cells 
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bind to antigen presented by antigen-presenting cells (APCs) like phagocytic macrophages and 

dendritic cells and can help B cells make antibodies against pathogens (Janeway et al., 2005).  

Fikri et al. (2000) described WC1+ cells as a major subset of bovine γδT-cells that express a 

bovine species-specific cell surface molecule and play an important role in the early stages of 

infection.  

The impairment effects produced by acute BVDV infection occurred within 10 days of 

infection, with initial hyperplasia of the germinal centers of all lymphoid organs followed by 

lymphoid depletion (Baule et al., 2001).  In addition, BVDV diminishes humoral antibody 

production, depresses monocyte chemotaxis, and compromises the myeloperoxidase antibacterial 

system in polymorphonuclear leukocytes (Cusack et al., 2003).  An experiment in calves showed 

that total leukocytes, neutrophils, and lymphocytes decreased in calves inoculated with BVDV 

(Gånheim et al., 2005).  In contrast, calves challenged with M. haemolytica had an increased 

number of leukocytes and neutrophils, while lymphocyte count decreased.  However, calves that 

received the BVDV administration followed by M. haemolytica 5 days later had significantly 

lower total leukocyte and lymphocyte (remained lower throughout the experiment) counts.  In 

addition, the numbers of CD8+, CD4+, and WC1+ lymphocytes decreased significantly after 

compared with before inoculation mainly in the BVDV and BVDV/M. haemolytica groups.  The 

lower values were most pronounced in the BVDV/M. haemolytica group (Gånheim et al., 2005).  

It appears that BVDV enhances secondary colonization of the lungs by other BRD pathogens and 

exacerbates the pulmonary pathology they generate. The direct cytopathic effects of BVDV in 

the airways result in acute cattarrhal inflammation in the nasal cavity and trachea, and focal 

intralobular interstitial pneumonia (Baule et al., 2001). 

Timing of Bacterial Challenge Following BVDV Inoculation.  Gånheim et al. (2003) 
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observed significant differences in clinical signs and acute phase response, as measured by the 

acute phase proteins haptoglobin (Hp), serum amyloid A (SAA), and fibrinogen in calves 

infected with BVDV and M. haemolytica compared with calves infected with the infectious 

agents independently, emphasizing the importance of co-infections. Clinical signs were also 

recorded and were most severe in the BVDV/M. haemolytica group. The signs were mild to 

moderate in the BVDV group, while no or very mild signs were observed in the M. haemolytica 

group.  The authors concluded that BVDV had a marked suppressive effect on several important 

lymphocyte subpopulations, which resulted in a poor immune response to M. haemolytica 

infection with negative effects on the clinical outcome.   

In addition, timing of bacterial challenge relative to PI BVDV exposure may play a role 

BRD pathogenesis.  Burciaga-Robles et al. (2009) reported low antibody production to M. 

haemolytica leukotoxin in cattle previously infected with BVDV 12 hours prior to M. 

haemolytica challenge.  In addition, neutrophil concentrations were decreased by BVDV in 

steers exposed to PI BVDV cattle.  Zhang et al. (1997) observed that lymphocyte subset 

differentiation showed a significant reduction in the CD4+ T-cell concentration in relation with 

CD8 in calves infected with bovine immunodeficiency virus.  This coincided with a rapid 

replication of bovine immunodeficiency virus, suggesting immunosuppression during the three 

to seven weeks post bovine immunodeficiency virus inoculation.  In addition, antibody 

production in response to vaccination with BVDV and herpes virus-1 was dcreased from days 11 

to 65 and from days 9 to 35, respectively (Zhang et al., 1997).  Based in these studies we could 

speculate that virus infection produces immunosuppression compromising the immune response 

to a secondary infection. 

Mannheimia Haemolytica 
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Mannheimia haemolytica is a Gram-negative, non-motile, non-spore forming, 

fermentative, oxidative-positive, facultative anaerobic coccobacillus and member of the family 

Pasteurellaceae, genus Mannheimia (Rice et al., 2008).  Mannheimia haemolytica lives in the 

nasopharynx and tonsils of healthy cattle as a commensal organism, where it preserves a 

symbiotic relationship with its host (Deshpande et al., 2002; Narayanan et al., 2002; Rice et al., 

2008).  However, when animals experience stress due to shipping or other causes, M. 

haemolytica multiplies rapidly, reaches the lungs during inhalation, and sets up an active 

infection of the alveolar epithelium (Narayanan et al., 2002).  Mannheimia haemolytica is the 

principal bacterium isolated from respiratory disease in feedlot cattle (Rice et al., 2008). 

Serotype 1 and lately serotype 6 have been the most frequently isolated serotypes from bovine 

pneumonic lungs (Davies et al., 2001; Deshpande et al., 2002; Ewers et al., 2004).  An earlier 

study suggested that M. haemolytica serotype 2 (less pathogenic) switched to serotype 1 (more 

pathogenic) in 80 to 100% of the pnemonia cases (Corbiel and Gogolewski, 1985). Mannheimia 

haemolytica causes extensive economic losses to the global cattle industry, and particularly in 

North America (Deshpande et al., 2002; Rice et al., 2008), Germany (Ewers et al., 2004), and 

Japan (Katsuda et al., 2008). Characteristic lesions for this disease result from the strong influx 

of neutrophils accompanied by accumulation of fibrin, finally causing necrosis of the alveolar 

spaces (Ewers et al., 2004). 

Many studies have attempted to understand the mechanisms associated with the M. 

haemolytica switch from commensal to pathogen.  Cold stress and transportation were 

demonstrated to cause an incremental increase in cortisol levels with inhibition of lymphocyte 

blastogenesis (Rice et al., 2008). The complement system is a major effecter system in innate 

immunity, and its activation by the classical, alternative or lectin pathways generates opsonins, 
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inflammatory mediators and cytolytic protein complexes.  Complement immune response is 

thought to be compromised in calves coming from auction barns, and the compromised immune 

system could alter the M. haemolytica equilibrium with the host (Rice et al., 2008).  If viral and 

bacterial agents break down the antimicrobial barrier of β-defensins within the host and serous 

and mucous secretions within the respiratory tract, M. haemolytica will pass from a commensal 

microorganism to pathogenic bacteria (Rice et al., 2008). 

Physical Barriers. The respiratory epithelial surface constitutes the first line of defense 

against the pathogens of BRD.  It provides mechanical, chemical and microbiological barriers to 

infection (Janeway et al., 2005). The pathogens attempt to establish an infection by adhering to 

and colonizing surfaces.  The respiratory epithelium secretes mucus, which coats the pathogens 

preventing their adherence. More importantly, the pathogens are expelled in the flow of mucus 

driven by the constant upward movement of the epithelial cilia.  The surfactant proteins A and D 

that bathe the lung epithelial surfaces coat the surfaces of pathogens and make them more 

susceptible to phagocytosis by macrophages and neutrophils (Srikumaran et al., 2007).  

Mannheimia haemolytica may overcome the clearance mechanism through the ability to break 

down mucus via neurominidase or extracellular proteases, making the mucus less viscous.  

Compromised adherence to mucus could increase colonization (Corbiel and Gogolewski, 1985). 

Therefore, damage to the epithelium would be clearly advantageous for the pathogens 

(Srikumaran et al., 2007). 

After serotype 1 strains have colonized the bovine upper respiratory tract they replace 

other serotypes by mechanisms unknown to date (Ewers et al., 2004).  Ultimately, bacteria reach 

alveolar spaces leading to the beginning of an inflammatory cascade by M. haemolytica 
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leukotoxins (LKT) and lipopolysaccharide (LPS), causing activation of the complement system 

and release of cytokines (Ewers et al., 2004). 

Phagocytosis.  When the microorganisms cross the natural barriers and begin to replicate 

within the lung tissue of the host they are immediately recognized by the alveolar macrophages 

(AM) also called resident macrophages (Janaway et al., 2005). Macrophages are located in the 

submucosal tissues, and are the first cells that encounter the pathogens (Liggitt, 1985). 

Macrophages continuously mature from blood monocytes that leave the circulation and migrate 

into various tissues (Srikumaran et al., 2007). Neutrophils, also known as polymorphonuclear 

neutrophils (PMN), are abundant in blood and not present in healthy tissue. Both AM and PMN 

play a central role in innate immunity to recognize, ingest and destroy many pathogens. 

Macrophages recognize pathogens by means of their cell-surface (Janaway et al., 2005).  

Toxins of Mannheimia haemolytica.  Mannheimia haemolytica serotype 1 produces a 

variety of virulence factors that play an important role during the pathogenesis of bovine 

pneumonic pasteurellosis.  Among these, LKT and LPS have recently been demonstrated to be 

the primary virulence factors of the pneumonia pasteurellosis pathogenesis (Rice et al., 2008).  

The M. haemolytica leukotoxin is a member of the family of exotoxins produced by gram-

negative bacteria called repeats in toxins (RTX).  The LKT production increments are a result of 

the bacterial growth being higher during the logarithmic phase when the pulmonary disease is 

taking effect.  The toxin is a protein that can occur singly or as a polymer, and it has specific 

toxic effects on ruminant leukocytes, mainly PMN, with wide pathological effects resulting in 

acute fibrinous pleuropneumonia (Deshpande et al., 2002; Narayanan et al., 2002). 

Recent evidence suggests that M. haemolytica LKT binding to bovine leukocytes is 

mediated by the β2-integrin CD11a/CD18, which subsequently induces activation and death of 
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these cells (Leite et al., 2003).  The β2-integrins have a common β-subunit, CD18, which 

associates with three distinct β chains, CD11a, CD11b, and CD11c, to generate three different 

β2-integrins, CD11a/CD18 (LFA-1), CD11b/CD18 (Mac-1), and CD11c/CD18 (CR4), 

respectively.  Mannheimia haemolytica LKT binds to all three β2-integrins confirming that 

bovine CD18 is necessary to mediate LKT-induced cytolysis of ruminant leukocytes (Jeyaseelan 

et al., 2000; Deshpande et al., 2002; Dassanayake et al., 2007). 

Leukotoxins of Mannheimia haemolytica.  Binding LKT to CD18 stimulates signaling 

events leading to elevation of intracellular [Ca2+], tyrosine phosphorylation of the cytosolytic 

domain of CD18, and cytolysis of bovine leukocytes (Jeyaseelan et al., 2000; Dassanayake et al., 

2007; Lawrece et al., 2008).  Once LKT of M. haemolytica utilizes the cell adhesion molecule 

LFA-1 to cause activation and cytolysis of neutrophils and macrophages in the alveolar spaces, it 

triggers the production and accumulation of proinflammatory mediators with a continuous intra-

alveolar replication of M. haemolytica.  These events result in an uncontrollable inflammatory 

response leading to lung injury that is characteristic of bovine pneumonic pasteurellosis 

(Jeyaseelan et al., 2000).  Lymphocyte function-associated antigen 1 is a binding receptor for M. 

haemolytica that allows pore-forming on the lymphocyte’s membrane surface (Lally et al., 

1997), leading to the initiation of cytolysis with increasing intracellular [Ca2+] (Lawrence et al., 

2007).  Increased LFA-1 expression by PMN exposed to LKT and LPS was associated with 

increased LKT binding and cell death (Leite et al., 2003). Leukotoxin activity against target cells 

is dose-dependent.  As the LKT concentration increases the cell damage goes from respiratory 

burst to degranulation and apoptosis. Apoptosis is due to membrane pore formation damage 

(Narayanan et al, 2002). 
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Lipopolyssaccharide (LPS).  Lipopolysaccharide is a component of gram-negative 

bacteria outer membrane and is considered an endotoxin.  Lipopolysaccharide as well as LKT 

increases intracellular [Ca2+] via phospholipase C and protein tyrosine kinase signal 

transduction pathways.  Activation of both signal transduction pathways leads to a calcium-

dependent activation of transcription factor NFκB.  Activation of NFκB leads to increased 

expression and secretion of interleukin (IL)-1β and tumor necrosis factor α (TNFαααα) suggesting 

that these proinflammatory cytokines play an important role in lung injury in pneumonic cattle 

(Yoo et al., 1995).  Studies from 1985 through 2009 support that outer membrane protein A and 

lipoprotein 1 contribute to adherence of M. haemolytica to bovine respiratory epithelial cells 

(Kisiela and Czuprynski, 2009).  Lipoprotein 1 is a portion of the center of the LPS molecule 

which results in lung tissue damage and toxicity.  Endotoxins activate the complement of 

coagulation cascades leading to vessel dilation.  Vascular permeability and coagulation leads to 

accumulation of inflammatory cells, edema, and both intravascular and extravascular fibrin in the 

lung.  Endotoxin also activates granulocytes and macrophages which leads to protection against 

bacteria that contain endotoxins and to increased tissue damage (Corbiel and Gogolewski, 1985). 

Lipopolysaccharide and Cytokine Production.  Both TNFα and IL-1β mRNA 

expression in bovine alveolar macrophages are stimulated by the production of LPS coming from 

M. haemolytica (Yoo et al., 1995).  Calves challenged intratracheally with M. haemolytica had 

increased concentrations of TNFα that reached a peak 2 h after inoculation but returned to 

undetectable levels after an additional 4 h (Horadagoda et al., 1994; Yoo et al., 1995).  Similar 

results were observed in macrophage cell cultures where expression of TNFα and IL-1β reached 

a peak 1 h after LPS stimulation and returned to undetectable levels after 24 h.  This experiment 

also showed that gene expression of cytokines is LPS dose dependent (Yoo et al., 1995).  These 



 17

results support a role for LPS from M. haemolytica in the induction of inflammatory cytokines in 

bovine pneumonic pasteurellosis.  Other experiments have indicated that LKT main effects were 

in bovine monocytes, with minor effects on alveolar macrophages releasing cytokines IL-1 and 

TNFα (Stevens and Czuprynski, 1995).  These authors suggested the formation of a complex 

synergism between LKT and LPS.  Exposure of bovine PMN to LKT or LPS induces expression 

of inflammatory cytokines, which in turn can increase LFA-1 expression and conformational 

activation (Leite et al., 2003). 

Cytokines 

Interferons are antiviral proteins produced by cells in response to viral infection (Janeway 

et al., 2005).  Interferon is also considered the most important innate immune defense antiviral 

cytokine (Chase et al., 2004).  The production of α/β-IFN is the first line of defense from the 

host against viral infections during the double-replication (dsRNA) phase (Iqbal et al., 2004).  In 

vitro studies have shown that neither cpBVDV nor ncpBVDV infection induces IFN response in 

cell cultures, and induction of IFN-stimulated genes has been blocked by paramyxovirus (Chen 

et al., 2007).  In contrast to in vitro studies, trials developed in calves infected with ncpBVDV 

showed strong α/β and γ IFN response in gnotobiotic animals.  The response was related to low 

concentrations of transforming growth factor-β (TGF-ββββ) in serum.  Therefore, it appears that 

immunosuppression by ncpBVDV is not caused by low IFN response or high levels of TGF-β in 

vivo (Carleston et al., 2001).  The α/β IFN have three major functions.  First, they induce 

resistance to viral replication in uninfected cells by activating genes that cause the destruction of 

mRNA and inhibit the translation of viral and some host proteins.  Second, they enhance major 

histocompatability I (MHC I) expression in somatic cells, consequently improving their 

resistance to natural killer (NK) cells.  They may also stimulate synthesis of MHC I molecules in 
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newly virus-infected cells, thus making them more susceptible to killing by CD8, cytotoxic T 

cells.  Third, they activate NK cells, which then kill virus-infected cells selectively (Peterhands 

et al., 2003; Janaway et al., 2005).  

The action of toll-like receptors (TLR) is to activate phagocytes and tissue dendritic cells 

in response to insults by secreting chemokines and cytokines, and to express the co-stimulatory 

substances that in turn will activate adaptive immunity (Janaway et al., 2005).  Toll-like receptor 

4 on macrophages signals the presence of LPS when LPS associates with CD14, the macrophage 

receptor for LPS (Janaway et al., 2005).  The binding of bacterial LPS activates TLR4 on 

macrophages.  Toll-like receptors are built of transmembrane receptors that contain extracellular 

leucine-rich repeat (LRR) motifs and an internal toll/interleukin-1 receptor (TIR) domain, which 

is essential for the activation of NFκB.  Myeloid differentiated gene 88 (MyD88) interacts with 

IL-1 receptor associated kinase (IRAK) and TNF receptor-associated factor 6 (TRAF6) which in 

turn activate NFκB and MAPKs.  Then COX-2 and pro-inflammatory cytokines are activated 

(Lee et al., 2003; Janaway et al., 2005).  Ultimately, the activation of TLR4 by LPS stimulates 

macrophages to produce important cytokines such as TNFα, IL-8, IL-1β, IL-6 and IL-12.  

Tumor necrosis factor-α is an inducer of local inflammatory response that helps to contain 

infections; it also has systemic effects, many of which are harmful.  Interleukin-8 is also 

involved in the local inflammatory response and is a chemotactic for monocytes, neutrophils and 

T lymphocytes to the site of infection (Zhu et al., 2003).  Interleukin-1β, IL-6 and TNFα have a 

crucial role in inducing the acute-phase response in the liver and induce fever, which favors 

effective host defense. The cytokine IL-12 is essential in many immune activities including 

activation and production of IFNγ and NK cells, and favors the differentiation of CD4 T cells 
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into the Th1 subset during an adaptive immune response (Lafleur et al., 2001; Janaway et al., 

2005). 

Cytokines Released by Phagocytes. Cytokines produced by macrophages contribute to 

host defense by elevation of body temperature, which is caused mainly by TNFα, IL-1β, and IL-

6, termed endogenous pyrogens.  Fever is generally beneficial to host defense; most pathogens 

grow better at lower temperatures and adaptive immune responses are more intense at elevated 

temperatures.  These cytokines act on the hypothalamus, altering the body’s temperature 

regulation, and on muscle and fat cells, altering energy mobilization to increase body 

temperature (Janaway et al., 2005).  Cytokines TNFα, IL-1β, and IL-6 activate hepatocytes to 

synthesize acute phase proteins (APP), and bone marrow endothelium to release neutrophils.  

The APP act as opsonins, whereas the disposal of opsonized pathogens is augmented by the 

enhanced recruitment of the neutrophils from the bone marrow. 

Acute Phase Proteins 

The acute phase response is a set of reactions which occur as an early protection 

mechanism of the host against infection.  Pathogens are encountered by macrophages, and then 

macrophages release cytokines (IL-1, IL-6 and TNFα) which travel via the bloodstream to the 

liver, where they stimulate liver cells to initiate APP synthesis (Janaway et al., 2005).  Both Hp 

and SAA are APP that have been studied in cattle (Nikunen et al., 2007).  Haptoglobin 

concentrations in healthy cattle are often undetectable but during an acute phase response bovine 

haptoglobin can increase 50 ± 100 fold, making it the most prominent APP in cattle.  Serum 

amyloid-A is a moderate APP in cattle increasing around 2 ± 5 fold during an acute phase 

response (Heegaard et al., 2000).  Serum amyloid-A is considered a rapid bovine APP in 

response to M. haemolytica infections (Horadagoda et al., 1994).  The acute phase response is 
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thought to be beneficial to the injured organism with the aim of restoring the disturbed 

physiological homeostasis (Heinrich et al., 1990).  However, Nikunen et al. (2007) mentioned 

that functions of APP in host defense during inflammation are not fully understood (Nikunen et 

al., 2007).  Some imitate the actions of antibodies, but unlike antibodies, these proteins have 

broad specificity for pathogen-associated molecular patterns (Janaway et al., 2005).   

Heinrich et al. (1990) described that the acute phase response is characterized by 

localized changes such as the aggregation of platelets and clot formation, dilatation and leakage 

of blood vessels, accumulation of leukocytes, and activation of stromal cells to release biological 

response modifiers.  The release of mediators by resident and infiltrating cells then results in the 

initiation of systemic responses, including fever, leukocytosis, activation of complement and 

clotting systems, alterations in the plasma concentration of trace minerals, and changes in liver 

metabolism, including the production of APP (Heinrich et al., 1990). Alternatively, measurement 

of the acute phase response may reflect the severity of the disease process and serve as a 

prognostic indicator. Assessment of the acute phase response during BRD could be a valuable 

aid in the diagnosis and prognosis of this condition (Godson et al., 1996). 

 

Conclusions 

Several immune evasion/immunosuppressive strategies have been developed by the 

pathogens of BRD.  These mechanisms developed by one pathogen not only help that pathogen, 

but also the others, resulting in exacerbation of the disease.  For example, when innate immune 

function is compromised with BVDV infection, it leads to dysfunction of leukocytes that in turn 

causes immunosuppression and allows M. haemolytica to migrate to the lungs, proliferate, 

elaborate the virulence determinants and cause disease.  Infection of the cells of the immune 
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system by BVDV, inhibition of proliferation of the cells by BVDV, and induction of apoptosis 

compromise the orchestration of the immune response against the pathogens.  Production of 

IFNs is the first line of defense from the host against viral infections, and it appears that 

immunosuppression by ncpBVDV does not result from lack of IFN response.  Cytolysis of all 

the subsets of leukocytes by M. haemolytica leukotoxin eliminates the cells that are critical for 

mounting the innate and adaptive immune responses. In addition, it results in the release of the 

toxic chemicals that cause acute damage to the pulmonary epithelium.  

Bovine respiratory disease is indeed a complex disease syndrome. The severity of the 

disease and the rate of mortality in a herd very likely depend on the host immune system, 

microorganism pathogenesis and abundance, and the number of pathogens infecting the animals 

concurrently.  The complex etiology and the multitude of immune evasion strategies developed 

by these pathogens probably explain the failure of vaccines to provide complete protection 

against this disease complex.  Given the complex etiology of BRD attributed to BVDV and M. 

haemolytica, it is unlikely that any single strategy will be completely effective in preventing the 

disease.  A combination of more definitive diagnostic methods, more efficacious vaccines, 

improved therapeutic agents and better management practices will be needed, and the search for 

solutions is likely to involve researchers for some time to come.
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ABSTRACT:   

Objectives - To determine the effects of timing of an intratracheal Mannheimia haemolytica 

challenge relative to 72-hour exposure to bovine viral diarrhea type 1b (BVDV1b) persistently 

infected calves (PI) on serum antibody production, total and differential white blood cell count 

(WBC), clinical signs, and performance of feedlot steers. 

Animals, Procedures and Experimental Design - Twenty-four steers (initial BW = 276 ± 31 

kg) were randomly allocated to one of three treatments (eight animals/treatment) in a randomized 

complete block design.  Treatments were: 1) steers not challenged with BVDV or M. 

haemolytica (CON); 2) steers intratracheally challenged with M. haemolytica 84 hours after 

being exposed to calves PI with BVDV1b for 72 hours (LateCh); and 3) steers intratracheally 

challenged with M. haemolytica 12 hours after being exposed to calves PI with BVDV1b for 72 

hours (EarlyCh).   

Results - Delaying the M. haemolytica challenge for 84 hours after exposure to calves PI with 

BVDV increased clinical attitude of BRD and the acute phase response compared with delaying 

M. haemolytica challenge for 12 hours after BVDV exposure. The increased clinical and acute 

phase response were associate with decreased did not affect short-term performance. 

Conclusions - Timing of BVDV exposure relative to a M. haemolytica challenge influences 

immune response in growing beef cattle. 

Clinical Relevance - Understanding the physiological changes in morbid animals will lead to 

improved strategies for decreasing severity and economic losses associated with BRD. 

Key Words - Herd health-beef, Bovine respiratory tract disease, Bovine viral diarrhea virus, 

Immunity to bacteria 
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INTRODUCTION 

Bovine respiratory disease (BRD) is the most common and economically detrimental 

disease of cattle during the post-weaning period, causing approximately 75% of morbidity and 

over 50% of mortality in feedlots (Smith, 1998).  Regardless of extensive research conducted 

over several years, BRD remains the most detrimental disease in the beef cattle industry.  

Although mortality due to BRD is a concern, morbidity of cattle most likely costs the industry 

more considering the expenses associated with medications, labor involved with treatment, 

premature culling due to chronic conditions and the expense of decreased performance and 

carcass quality during and after the illness (Smith, 1998; Gardner et al., 1999; Gagea et al., 

2006).  Bovine respiratory disease is a multi-factorial disease that involves environmental 

conditions and other stressors, and active infection with a number of respiratory viruses could 

predispose cattle to pneumonia from several bacterial pathogens (Czuprynski et al., 2004).  A 

predominant viral/bacterial synergism that exists between pathogens isolated from feedlot cattle 

includes bovine viral diarrhea virus (BVDV), which can predispose cattle to a secondary 

bacterial infection including Mannheimia haemolytica.  It is believed that the high prevalence of 

beef cattle herds infected with BVDV around the world may be a consequence of the ability of 

noncytopathic BVDV (ncpBVDV) to establish lifelong infections after in utero infection during 

early pregnancy, and thus generate a reservoir of persistently infected (PI) animals (Charleston et 

al., 2001). 

A recent experiment evaluated the effects of an intratracheal challenge with M. 

haemolytica with or without previous exposure (72 hours) to steers PI with BVDV1b (Burciaga-

Robles et al., 2009a).  We observed changes in serum antibody production, total and differential 

white blood cell count (WBC), cytokine concentrations, and blood gases consistent with an 
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immune challenge in beef cattle.  Exposure to calves PI with BVDV type 1b and intratracheal 

challenge with M. haemolytica resulted in decreased antibody production to M. haemolytica 

leukotoxin and increased serum concentrations of IFNγ, IL-1β and TNFα, suggesting that 

exposure of naïve calves to PI calves increases potential for secondary infections and detriment 

to animal health and performance.  Decreased rectal temperature and lymphocytes were observed 

from 36 to 72 and 18 to 96 hours, respectively, after the M. haemolytica challenge in steers that 

were exposed to steers PI with BVDV1b.  Therefore, we hypothesized that steers exposed to 

BVDV 1b for 72 hours, and challenge with M. haemolytica 84 hours latter would have a lower 

immune responses than steers receiving the M. haemolytica challenge immediately (12 hours) 

after exposer to BVDV 1b.  Our objective was to determine the effects of timing of BVDV 

exposure relative to a M. haemolytica challenge on animal performance and immune response in 

growing beef cattle. 

 

MATERIALS AND METHODS 

Animals   

All procedures were approved by the Oklahoma State University Institutional Animal 

Care and Use Committee (Protocol# AG0616).  A total of 24 Angus crossbred steers (initial BW 

= 276 ± 31 kg) were housed at the Nutrition Physiology Research Center, Oklahoma State 

University, Stillwater to determine the effects of timing of bacterial challenge relative to viral 

exposure on performance and immune response in receiving cattle.  All animals were considered 

clinically healthy and were seronegative to all pathogens involved in the study as determined 

with paired serum samples collected 14 days apart prior to the start of the experiment.  

Treatments  
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The 24 steers were randomly allocated to one of three treatments (8 steers/treatment) 

arranged as a randomized complete block design.  Treatments were: 1) steers not challenged with 

BVDV or M. haemolytica (CON); 2) steers intratracheally challenged with M. haemolytica 84 

hours after being exposed to calves persistently infected (PI) with BVDV1b for 72 hours 

(LateCh); and 3) steers intratracheally challenged with M. haemolytica 12 hours after being 

exposed to calves PI with BVDV1b for 72 hours (EarlyCh).  To facilitate sample collection, 

steers were blocked by body weight (BW) into 2 groups of twelve and the challenge procedures 

and sample collections were staggered by a 2 week interval between periods.  Steers exposed to 

the calves PI with BVDV were transported approximately 3.2 km to the Willard Sparks Beef 

Research Center, Stillwater, OK where they were commingled in a 6 × 10.8 m pen with 2 steers 

previously confirmed as being PI with BVDV1b via immuohistochemistry and genotyping 

(Fulton et al., 2006).  The PI subtype was determined by sequencing the 5’-untranslated region.  

Steers not exposed to calves PI with BVDV1b were not transported the short distance to prevent 

risk of exposure to the virus.  For both the EarlyCh and LateCh groups, the length of exposure to 

the PI calves was 72 hours.  After the time of BVDV exposure, calves were returned to the 

Nutrition Physiology Research Center where they remained for the remainder of the experiment.  

Steers challenged with M. haemolytica received 10 mL of a solution containing 6 × 109 CFU of 

M. haemolytica serotype 1 that was reconstituted and grown prior to the challenge as described 

by Mosier et al. (1998).  Steers not challenged with M. haemolytica (CON) were intratracheally 

dosed with 10 mL of a phosphate–buffered saline (PBS) solution (pH 7.4; Sigma Aldrich, St. 

Louis, MO).  Inoculation with the M. haemolytica culture or PBS solution was performed as 

described by Dowling et al. (2002) with modifications as described by Burciaga-Robles et al. 
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(2009a).  Challenge with M. haemolytica occurred on the same day for all appropriate treatment 

groups beginning at 0800.   

The experiment consisted of 24 days during which the animals were kept in individual 

pens (3.7 × 3.7 m) with the exception of days 0 to 4.  During those days, animals were placed in 

metabolic stanchions to allow for the challenge procedures and collection of blood samples 

(Burciaga-Robles et al., 2009a).  During the experiment, steers were offered feed at 3% of the 

BW; feed was delivered twice daily.  The diet (Table 1) was formulated to meet or exceed 

nutrient requirements (NRC, 1996).  Animals were weighed on day -7, 0, 4, and 17.  Average 

daily gain was calculated using body weight and days on feed and gain-to-feed was calculated 

using dry matter intake for the corresponding periods. 

Sample Collection 

Rectal Temperature, Respiration Rate, and Subjective Clinical Attitude Score.  Rectal 

temperatures were recorded using a digital veterinary thermometer (GLA M-500; GLA 

Agricultural Electronics, San Luis Obispo, CA) and respiration rates were measured by counting 

flank movements for 1 min with a stopwatch as described by Legates et al. (1991).  In addition, 

all steers were monitored by trained personnel throughout the length of the experiment for 

clinical signs of morbidity.  The clinical evaluation used has been described by Step et al. (2008). 

Briefly, the subjective criteria included depression (e.g., hanging head, sunken eyes, arched back 

and difficulty getting up from lying down), abnormal appetite, and respiratory signs (e.g., 

labored breathing).  Based on the severity of signs, the evaluator assigned a numeric score 

ranging from 1 to 4, where 1 was assigned for mild, 2 for moderate, 3 for severe, and 4 for 

moribund (steer would not rise from recumbency or assistance was needed).  Rectal temperature, 
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respiration rate, and subjective clinical attitude score were recorded prior to BVDV exposure and 

at -96, -2, 2, 4, 6, 8, 12, 18, 24, 36, 48, 72 and 96 hours following the M. haemolytica challenge. 

Serum Haptoglobin. Blood samples (Clott activator, Becton Dickinson Vacutainer 

Systems, Franklin Lakes, NJ) were collected via jugular venipuncture with an 18 × 1 gauge 

needle (-96 -2, 2, 6, 12, 18, 24, 36, 48, 72, 96 and 168 hours following the 0 hour M. haemolytica 

challenge).  Samples collected were allowed to clot for 24 hours at 4oC. After the clotting time, 

chilled blood samples were centrifuged at 3,000 × g at 4oC for 20 min.  Serum was harvested in 2 

mL centrifuge tubes and stored at -20oC until further analyses were performed.  Once all the 

serum samples were collected, a Bovine Haptoglobin ELISA test (Immunology Consultants Lab, 

Portland OR) was used to determine the haptoglobin concentration of each serum sample.  Prior 

to the analysis, serum samples were diluted 1:10,000 in Tris-buffered saline with Tween 20 (pH 

4.0; Sigma-Aldrich, St Louis, MO).  The intra- and inter-assay coefficients of variation were 

below 5%. 

Hemogram. Blood samples (EDTA, Becton Dickinson Vacutainer Systems) were 

collected via jugular venipuncture with an 18 guage needle at -168, -96, -12, -2, 6, 18, 72, 96, 

168 and 336 hours following the M. haemolytica challenge.  Samples were immediately 

submitted to a commercial lab (Antech Diagnostics, Stillwater, OK) for total and differential 

white blood cell count determination, total red blood cells, total platelets, hemoglobin, 

hematocrit, mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) 

concentration. 

Mannheimia haemolytica Antibodies.  Serum samples from day -7, 0, 4, 7, and 14 were 

used to determine antibodies to whole bacterial cell (WC) and leukotoxin (LKT) for a formalin 

killed M. haemolytica serotype 1 by an ELISA test as described by Confer et al. (1995; 1996).  
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Antibody responses were expressed as nanograms of immunoglobulin binding based on a set of 

IgG standards on each plate. The intra- and inter-assay coefficients of variation were below 5%. 

Bovine Viral Diarrhea Virus Antibodies. Serum samples from days -7, 0, 4, 7, 14, 28 and 

42 were submitted to the Oklahoma Animal Disease and Diagnostic Laboratory where a virus 

neutralization test in Madin–Darby bovine kidney cell monolayers in 96-well microtiter plates 

was used to quantify virus-neutralizing antibodies to BVDV.  The viruses used were CP 

BVDV1a (singer strain), CP BVDV1b (TGAC 8HB), and CP BVDV2a (125-C).  A 1:4 dilution 

was the lowest tested, and titers of less than 1:4 were considered negative. 

Statistical Analyses 

The experiment was designed as a randomized complete block; animal served as the 

experimental unit.  Data for BVDV antibody titers, M. haemolytica whole cell and leukotoxin 

antibody titers, rectal temperature, clinical attitude score, and haptoglobin concentrations were 

analyzed using repeated measures analysis of the MIXED procedure of SAS with a non-

structured covariance structure and slice output option (SAS Inst., Inc., Cary, NC).  The model 

for all variables included the main effects of treatment (CON, EarlyCh and LateCh) and their 

interactions with time.  When a EarlyCh and or LateCh × time interaction was significant (P < 

0.05), the slice output option was used to determine the time points at which the time effect was 

different across treatments.  Least squares means were separated using the pdiff statement of 

SAS. 

 

RESULTS 

Body weight was not affected (P > 0.67) by timing of M. haemolytica challenge in 

relation to BVDV exposure (Table 2).  From day 0 to 4, EarlyCh and LateCh steers had lower (P 
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= 0.0004) ADG than CON steers.  From day 5 to 17, LateCh steers compensated and had greater 

(P = 0.01) ADG than CON and EarlyCh steers.  Across the entire period, EarlyCh steers had 

lower (P = 0.03) ADG than CON and LateCh steers.  From day 0 to 4, dry matter intake (kg/d) 

was greatest (P = 0.0005) for CON steers, intermediate for LateCh steers, and lowest for EarlyCh 

steers.  In addition, exposure to steers PI with BVDV for 72 hours decreased (P = 0.02) dry 

matter intake as a percent of BW from day 0 to 4, regardless of timing of M. haemolytica 

challenge.  From day 0 to 4, gain:feed was lower (P = 0.001) for steers exposed to steers PI with 

BVDV compared with CON steers.  Across the entire experiment, gain:feed was greatest (P = 

0.03) for CON steers, intermediate for LateCh steers, and lowest for EarlyCh steers. 

There was a treatment × time interaction (P < 0.0001) for BVDV antibody titers (Figure 

1).  Antibody titers increased across time for steers exposed to steers PI with BVDV, and on d 28 

and 42, BVDV antibody titers were greater (P < 0.05) for steers exposed to BVDV compared 

with CON steers.  In addition, BVDV antibody titers were greater (P < 0.05) for LateCh 

compared with EarlyCh steers.  There was a treatment × time interaction (P < 0.0001) for M. 

haemolytica whole cell (Figure 2a) and leukotoxin (Figure 2b) antibodies.  Antibody titers for M. 

haemolytica whole cells and leukotoxin increased across time for steers challenged with M. 

haemolytica, and were greater on d 7 and 14 following M. haemolytica challenge compared with 

CON steers.   

 Rectal temperatures were greater for challenged steers from 4 to 72 hours following the 

challenge compared with CON steers (treatment × time interaction, P < 0.0001; Figure 3).  In 

addition, rectal temperature was greater for LateCh compared with EarlyCh steers from 12 to 18 

hours after the M. haemolytica challenge.  Subjective clinical attitude score responded with a 

treatment × time interaction (P < 0.0001; Figure 4).  Challenged steers had a greater subjective 
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clinical attitude score than CON steers beginning at 4 (LateCh) or 12 (EarlyCh) hours post M. 

haemolytica challenge, and continuing through 96 h.  In addition, subjective clinical attitude 

score was greater for LateCh compared with EarlyCh steers from 8 to 96 hours after the 

challenge.  Similar to rectal temperature and clinical attitude score, haptoglobin concentrations 

responded with a treatment × time interaction (P < 0.0001; Figure 5).  Haptoglobin 

concentrations were greater for steers exposed to steers PI with BVDV and challenged with M. 

haemolytica from 18 to 168 h following the challenge, and were greater (P < 0.05) for LateCh 

compared with EarlyCh steers from 48 to 96 hours after the M. haemolytica challenge. 

 There was a treatment × time interaction (P = 0.007) for total white blood cells (Figure 

6a).  Steers in the LateCh group had lower (P < 0.05) white blood cells at -24 and -2 hours of M. 

haemolytica challenge, whereas steers in the EarlyCh group had lower (P < 0.05) white blood 

cells at 72 and 96 hours after M. haemolytica challenge compared with steers on the remaining 

treatments.  Both EarlyCh and LateCh steers had greater (P < 0.05) total white blood cells than 

CON steers 18 hours after M. haemolytica challenge.  There was a BVD × MH interaction (P = 

0.02) for neutrophils (Figure 6b).  Neutrophils were lower (P < 0.05) in CON and LateCh steers 

compared with EarlyCh steers at -12 hours, and remained lower for LateCh steers at time -2 

hours.  Similar to the total white blood cells, both EarlyCh and LateCh steers had greater (P < 

0.05) total white blood cells than CON steers 18 hours after M. haemolytica challenge.  At 96 

hours after M. haemolytica challenge, EarlyCh steers had lower (P < 0.05) neutrophils than CON 

and LateCh steers.  Lymphoctes were lower (P < 0.05) for LateCh steers beginning at -12 hours, 

and for EarlyCh steers beginning at -2 hours compared with CON steers (Figure 6c).  

Lymphocytes remained lower (P < 0.05) through 72 hours for LateCh and 96 hours for EarlyCh 

steers compared with CON. 
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Monocytes, eosinophils, and basophils were not affected (P > 0.20) by exposure to 

BVDV and challenge with M. haemolytica (Table 3).  Similarly, hematocrits, hemoglobin, mean 

corpuscular volume, and mean corpuscular hemoglobin were not affected (P > 0.22) by 

treatments.  Concentration of platelets were greatest (P = 0.001) for CON, intermediate for 

EarlyCh, and lowest for LateCh. Red cells tended (P = 0.08) to be affected by treatments. 

 

DISCUSSION 

Experiments have evaluated the effects of PI BVDV calves in feedyards as a main source 

of BVDV infection among sero-negative cattle within pens.  Fulton et al. (2005) used vaccinated 

and non-vaccinated calves exposed to calves PI with BVDV1b to determine infection with 

BVDV in the feedyard.  When a PI animal was included in a pen, seroconversion occurred in 

70% to 100% of non-vaccinated penmates (Fulton et al., 2005).  Our results confirm those of 

prior studies demonstrating that PI calves can serve as a natural method of challenge to sero-

negative BVDV steers for immunological studies.  In addition, we confirmed that PI BVDV1b 

calves can serve as an effective source of infection to healthy animals as an experimental model 

(Burciaga-Robles et al., 2009a).  We detected seroconversion to BVDV1b for all steers exposed 

to PI calves.  Similar results have been observed using intranasal inoculation of BVDV type 2 in 

young calves (Archambault et al., 2000) and with calves infected with BVDV type 1 (Kelling et 

al., 2007). 

Multiple products and components of M. haemolytica serotype 1 have been proposed as 

virulence factors.  However, LKT and lipopolysaccaride (LPS) are considered the most 

important factors in the pathogenesis of these bacteria (Rice et al., 2008).  In the present 

experiment serum concentrations of M. haemolytica whole cell antibodies and M. haemolytica 
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LKT antibodies were increased across time for both EarlyCh and LateCh groups. However, there 

was no effect of timing M. haemolytica challenge in relation to BVDV exposure between 

EarlyCh and LateCh treatments.  Using a similar challenge model, Burciaga-Robles et al. 

(2009a) reported that M. haemolytica LKT antibodies increased over time, and on d 7, 14, and 28 

were greatest for steers challenged with M. haemolytica, lowest for steers not challenged with M. 

haemolytica, and intermediate for steers exposed to BVDV1b followed by an intratracheal 

challenge with M. haemolytica. 

Morbidity resulting from BRD decreased feedlot performance, potentially due to the 

febrile response that is known to accelerate protein and energy metabolism (Jim et al., 1993), and 

also the decrease in dry matter intake could decrease growth rate associated with BRD 

(Thompson et al., 2006).  Schneider et al. (2009) reported that BRD decreased ADG during both 

the acclimation period (4 to 6 weeks; 0.37 ± 0.03 kg) and for the overall test period (0.07 ± 0.01 

kg).  Smith (1998) reported that for the first 28 days of a receiving period ADG was 0.23 kg 

lower for calves that became sick compared with healthy calves. In addition, calves treated for 

BRD had 0.06 kg lower ADG than those not treated (Bateman et al., 1990).  In the present 

experiment, ADG was decreased for EarlyCh whereas LateCh steers appeared to compensate 

from days 5 through 17.  Reasons for this difference are unclear, but may suggest that a decrease 

in ADG occurs when a secondary bacterial infection occurs within 24 hours of BVDV exposure.  

Dry matter intake expressed as kg/d and as a percentage of body weight were decreased from day 

0 to 4 for both EarlyCh and LateCh groups following M. haemolytica challenge; however, the 

greatest depression in dry matter intake (kg/d) occurred in the EarlyCh group.  As rectal 

temperature, clinical attitude score, and haptoglobin concentration were greater for the LateCh 

compared with the EarlyCh group, it appears that the depression in dry matter intake is most 
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likely driving the performance results observed in the present experiment, and not differences 

associated with clinical signs or immune response.   In support, gain efficiency was decreased 

from days 0 to 17 both EarlyCh and LateCh steers compared with CON, but was lowest for the 

EarlyCh steers. 

Increased body temperature (or fever) and depression are part of the clinical signs of 

acute BRD infection. Burciaga-Robles et al. (2009a) reported no effect of exposure to steers PI 

with BVDV on rectal temperature during the first 24 hours following an intratracheal M. 

haemolytica challenge.  However, from 36 to 72 hours animals exposed to steers PI with BVDV 

had a higher rectal temperature compared with animals that received only M. haemolytica and 

controls.  In the present experiment, rectal temperatures were elevated from 4 to 72 hours after 

M. haemolytica challenge.  A similar study observed that all calves infected with BVDV had a 

mildly affected general appearance and an elevated body temperature (>39.5ºC) 7 days post 

infection (Gånheim et al., 2005).  In their experiment, only two of the calves in the M. 

haemolytica group were mildly depressed and three had a rise in body temperature (>39.5ºC) the 

day after inoculation. However, the most severe clinical signs were observed in calves 

challenged with both BVDV and M. haemolytica.  All calves had fever and depression which 

started 1 to 3 days post M. haemolytica or 6 to 8 days after BVDV inoculation, and lasted for 3 to 

11 days (Gånheim et al., 2005).  These results indicate a viral-bacterial synergism on alteration 

of body temperature and clinical attitude.  We did not detect significant alterations in rectal 

temperature or clinical attitude in steers exposed to PI BVDV calves until following the M. 

haemolytica challenge.  Rectal temperatures went up to >40ºC at 4 hours after M. haemolytica 

challenge and peaked at 6 and 8 h; peak temperatures were >40.7ºC and >41.3ºC for EarlyCh 

and LateCh steers, respectively. Clinical attitude score was also increased soon (4 hours) after M. 
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haemolytica challenge, closely related to rectal temperatures.  The greater and more extended 

increase in rectal temperature and clinical attitude score for LateCh compared with EarlyCh 

steers suggests that timing of immunosuppression due to BVDV in relation to bacterial challenge 

may alter the severity of response to the disease.   

Haptoglobin is one of several proteins produced by the liver of cattle during the acute-

phase response, and is not detectable in the serum of healthy animals (Wittum et al., 1996).  We 

observed significant changes in serum haptoglobin concentrations after challenge with M. 

haemolytica, with a more pronounced effect for the LateCh group from 48 to 96 hours of the 

experiment.  Similarly, Gånheim et al. (2003) observed significant differences in clinical signs 

and haptoglobin in calves infected with both BVDV or M. haemolytica compared with calves 

infected with the individual infectious agents, emphasizing the importance of co-infections. A 

study using 1 to 2 week old calves intranasally infected with bovine respiratory syncytial virus 

(BRSV) showed elevated serum haptoglobin concentrations peaking at 7 to 8 days after 

inoculation.  The elevation of haptoglobin concentrations corresponded to the severity of clinical 

signs and the presence of lung lesions (Heegaard et al., 2000).  It is important to mention that in 

the experiment of Heegaard et al. (2000) P. multocida was isolated from lungs at necropsy.  

However, the secondary bacterial infection was not correlated with elevation of haptoglobin. Our 

study shows that timing of the bacterial challenge relative to BVDV exposure may be important 

in production of Hp. The controversy between our results and the observations of Heegaard et al. 

(2000) may be due to the pathogenesis of bacteria involved, pathogen doses, and timing of M. 

haemolytica (12 or 84 hours) following exposure to PI BVDV calves. 

Archambault et al. (2000) reported that BVDV inoculation induced leukopenia, mainly 

due to a decrease in lymphocytes, but also in neutrophils and monocytes, although the decrease 
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in monocyte numbers was not significant.  In the present experiment, total white blood cells were 

decreased at -12 and -2 hours relative to M. haemolytica challenge for the LateCh steers, and a 

not significant tendency at 96 hours after M. haemolytica challenge for the EarlyCh steers.  

Similar to Archambault et al. (2000), in our study the decrease in white blood cells was mainly 

due to the reduction of lymphocyes as a result of exposure to BVDV.  It appears from the present 

experiment that the decrease in total white blood cells and lymphocytes was related to the timing 

of BVDV exposure, although timing of BVDV exposure did not influence the subsequent 

response to challenge with M. haemolytica.  Similarly, Burciaga-Robles et al. (2009a) reported 

that neutrophils increased in response to M. haemolytica challenge and lymphocytes decreased in 

response to exposure to BVDV, but there was not a BVDV exposure × M. haemolytica 

interaction.  In contrast, Gånheim et al. (2005) reported that lymphopenia was more severe in 

calves with dually inoculated BVDV and M. haemolytica, which was associated with more 

severe clinical signs.  Differences in challenge procedures and age and weight of the calves may 

explain differences among experiments. 

In conclusion, total white blood cells and lymphocytes were decreased by BVDV 

exposure and neutrophils were increased by the bacterial challenge.  Delaying the M. 

haemolytica challenge for 84 hours after exposure to calves PI with BVDV increased rectal 

temperature, clinical severity score, and serum haptoglobin concentrations compared with 

delaying M. haemolytica challenge for only 12 hours after BVDV exposure.  However, the 

increased clinical and acute phase response did not affect short-term performance, which 

appeared to be driven by the greater decrease in dry matter intake for EarlyCh steers.  However, 

it should be noted that long-term effects of BVDV on animal performance have been reported 
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(Burciaga-Robles et al., 2009b), and differences observed early in the feeding period may not 

reflect the potential for long-term consequences of BVDV. 
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1Westway Feed Products, New Orleans, LA. 

2Elanco Animal Health, Indianapolis, IN. 

3All values are from laboratory analyses and are presented on a 100% DM basis (except 

DM).

Table 1. Composition of diets (DM basis) 
Ingredient, % of diet Diet 

Corn dent 46.6 
Dried corn distillers grain 9.0 
Alfalfa hay 40.0 
Synergy 19-141 1.00 
Wheat midds 1.12 
Limestone, 38% 1.27 
Dicalcium phosphate 0.25 
Salt 0.33 
Manganous oxide 0.003 
Zinc sulfate 0.020 
Potassium chloride 0.260 
Magnesium oxide 0.110 
Vitamin A-3,000 0.003 
Vitamin E-50% 0.002 
Rumensin 802 0.018 
Tylan 402 0.010 

  
Nutrient, % DM basis3  
   DM, % 89.3 

NEm, Mcal/kg 1.79 
NEg, Mcal/kg 1.12 
NDF, % 26.5 
Crude fat, % 3.89 
Crude protein, % 14.8 
Ca, % 1.05 
P, % 0.38 
K, % 1.10 
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Table 2. Effects of PI BVDV exposure and M. haemolytica intratracheal challenge on performance in beef steers. 
 Treatments1  

Item CON EarlyCh LateCh SEM P - value 
BW, kg      

Initial 270 275 283 17.67 0.67 
d 0 282 294 290 16.53 0.77 
d 4 291 287 280 16.64 0.77 
d 17 305 299 309 12.24 0.84 

ADG, kg      
d 0 to 4 2.21a -1.51b -2.62b 0.74 0.0004 
d 5 to 17 1.14a 0.88b 2.26c 0.31 0.01 
d 0 to 17 1.39a 0.32b 1.12a 0.27 0.03 

DMI, kg/d      
d 0 to 4 6.58a 5.13b 5.80c 0.24 0.0005 
d 5 to 17 6.38 6.06 6.72 0.31 0.33 
d 0 to 17 6.42 5.84 6.36 0.22 0.15 

DMI, %BW      
d 0 to 4 2.31a 1.81b 1.85b 0.13 0.02 
d 5 to 17 2.51 2.08 2.26 0.17 0.49 
d 0 to 17 2.19 2.02 2.16 0.14 0.39 

Gain:Feed, kg/kg      
d 0 to 4 0.32a -0.31b -0.50b 0.14 0.001 
d 5 to 17 0.17a 0.12b 0.33c 0.05 0.01 
d 0 to 17 0.22a 0.04b 0.17c 0.05 0.03 

1CON steers not challenged with BVDV or M. haemolytica; LateCh steers intratracheally challenged with M. haemolytica 84 
hours after being exposed to calves PI with BVDV1b for 72 hours and EarlyCh steers intratracheally challenged with M. haemolytica 
12 hours after being exposed to calves PI with BVDV1b for 72 hours. 

a,b,cWithin a row means with different superscripts are different (P < 0.05). 



 54

 
Table 3. Effects of PI BVDV exposure and M. haemolytica intratracheal challenge on hemogram of beef steers 
 Treatments1  P-value 

Item CON EarlyCh LateCh SEM Treatment  Treatment × 
hour 

Monocytes/µL 344.2 378.6 355.6 46.5 0.77 0.87 
Eosionphils/µL 238.5 304.9 207.2 48.8 0.30 0.73 
Basophils/µL 124.1 102.4 100.1 10.3 0.20 0.02 
Hematocrit, % 33.66 33.11 33.45 1.01 0.73 0.99 
Hemoglobin, g/100 mL 12.26 11.89 12.07 0.29 0.45 0.79 
Mean corpuscular volume, fL 37.71 37.28 38.6 0.79 0.22 0.84 
Mean corpuscular hemoglobin, % 13.83 13.52 13.93 0.20 0.35 0.99 
Platelets, 103/µL 649a 566b 478c 31.7 0.001 0.62 
Red cells, 106/µL 8.80 8.83 8.43 0.22 0.08 0.01 

1CON steers not challenged with BVDV or M. haemolytica; LateCh steers intratracheally challenged with M. haemolytica 84 
hours after being exposed to calves PI with BVDV1b for 72 hours and EarlyCh steers intratracheally challenged with M. haemolytica 
12 hours after being exposed to calves PI with BVDV1b for 72 hours. 

a,b,cWithin a row means with different superscripts are different (P < 0.05). 
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Figure 1. Serum concentrations of bovine viral diarrhea virus (BVDV) neutralization antibody 

titers in calves exposed to steers PI with BVDV for 72 hours followed by an intratracheal 

challenge on d 0 with 6 × 109 CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 

(LateCh) hours after BVDV exposure compared with non-exposed or challenged steers (CON). 

There was a treatment × time interaction (P < 0.0001; SEM= 8.60). Values plotted represent 

Least squares means ± standard error of the mean, calculated for 8 animals per experimental 

group. a,bWithin day, Least squares means with different letters are different (P < 0.05). 

Figure 2. Serum concentration of M. haemolytica whole cell antibodies (Figure 2a) and 

M. haemolytica leukotoxin antibodies (Figure 2b) in calves exposed to steers PI with BVDV for 

72 hours followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica 

serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-

exposed or challenged steers (CON).  There was a treatment × time interaction (P < 0.009; SEM 

= 0.293; Figure 2a) for M. haemolytica whole cell antibodies, and a treatment × time interaction 

(P < 0.02; SEM = 0.135; Figure 2b) for M. haemolytica leukotoxin antibodies.  Values plotted 

represent Least squares means ± standard error of the mean, calculated for 8 animals per 

experimental group for both M. haemolytica whole cell antibodies and for M. haemolytica 

leukotoxin antibodies. a,bWithin day, Least squares means with different letters are different (P < 

0.05). 

Figure 3. Rectal temperature of calves exposed to steers PI with BVDV for 72 hours 

followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica serotype 1 

(MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-exposed or 

challenged steers (CON).  There was a treatment × time interaction (P < 0.0001; SEM = 0.06). 

Values plotted represent Least squares means ± standard error of the mean, calculated for 8 
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animals per experimental group. a,b,cWithin a day, Least squares means with different letters are 

different (P < 0.05). 

Figure 4. Clinical attitude score of calves exposed to steers PI with BVDV for 72 hours 

followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica serotype 1 

(MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-exposed or 

challenged steers (CON).  There was a treatment × time interaction (P < 0.0001; SEM = 0.08). 

Values plotted represent Least squares means ± standard error of the mean, calculated for 8 

animals per experimental group. a,bWithin a day, Least squares means with different letters are 

different (P < 0.05). 

Figure 5. Serum haptoglobin concentrations in calves exposed to steers PI with BVDV 

for 72 hours followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica 

serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-

exposed or challenged steers (CON).  There was a treatment × time interaction (P < 0.0001; 

SEM = 95.76). Values plotted represent Least squares means ± standard error of the mean, 

calculated for 8 animals per experimental group. a,b,cWithin a day, Least squares means with 

different letters are different (P < 0.05). 

Figure 6.  Total white blood cell (Figure 6a), neutrophil (Figure 6b) and lymphocyte 

(Figure 6c) counts in calves exposed to steers PI with BVDV for 72 hours followed by an 

intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica serotype 1 (MH) 12 

(EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-exposed or challenged 

steers (CON).  There were treatment × time interactions (P < 0.007, SEM = 0.66, Figure 6a; P < 

0.0001, SEM = 312.24, Figures 6b; and P < 0.03; SEM = 350.54; Figure 6c).  Values plotted 

represent Least squares means ± standard error of the mean, calculated for 8 animals per 
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experimental group. a,bWithin a day, Least squares means with different letters are different (P < 

0.05). 
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ABSTRACT:  Few studies have evaluated the effects of Mannheimia haemolytica 

challenge following exposure to calves persistently infected (PI) with bovine viral 

diarrhea virus (BVDV). We hypothesized that immunosuppression following exposure to 

BVDV could alter the response to a secondary bacterial infection in growing beef steers.  

Our objective was to determine the effects of two different timings of an intratracheal 

Mannheimia haemolytica (MH) serotype 1 challenge following short-term exposure (72 

hours) to BVDV type 1b on serum concentrations of cytokines and gene expression of 

cytokines in subcutaneous fat (SCF) and longissimus dorsi muscle (LM) in growing beef 

steers.  Eighteen steers (initial BW = 269.46 ± 31.32 kg) were randomly allocated to one 

of three treatments (six animals/treatment) in a randomized complete block design.  

Treatments were: 1) steers not challenged with BVDV or M. haemolytica (CON); 2) 

steers intratracheally challenged with M. haemolytica 84 hours after being exposed to 

calves PI with BVDV1b for 72 hours (LateCH); and 3) steers intratracheally challenged 

with M. haemolytica 12 hours after being exposed to calves PI with BVDV 1b for 72 

hours (EarlyCH).  Blood samples were collected during the first 336 hours for serum 

cytokine analysis and LM and SCF biopsies were collected from -168, 12, 24, 48 and 72 

hours relative to MH challenge.  Serum concentrations of IFNγ (P<0.007), TNFα 

(P<0.0001), and IL-6 (P=0.014) were increased in LateCh steers compared to CON and 

EaryCh steers.  Expression of TLR4, NFκB, TNFα and IL-6 in LM were upregulated 

(P<0.02) for EarlyCh steers compared with LateCh and CON steers. Similarly, TLR4 

(P<0.03) and IL-6 (P<0.02) were upregulated in SCF for EarlyCh and LateCh steers 

compared with CON steers.  No significant differences were found for gene expression of 

TNFα and NFκB in SCF. We conclude that the differences in gene expression profiles in 
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LM and SCF and an increment in serum cytokine concentrations during induction of the 

acute phase protein response to pathogens commonly associated with BRD could 

ultimately decrease animal growth and carcass quality in growing beef steers. 

Keywords: beef cattle, bovine respiratory disease, Mannheimia haemolytica, cytokines, 

gene expression. 

 

INTRODUCTION 

Bovine viral diarrhea virus (BVDV) and Mannheimia haemolytica are pathogens 

involved in bovine respiratory disease (BRD).  BVDV type 1b is the most common virus 

isolated from calves arriving at feedlots (Fulton et al., 2005), and M. haemolytica 

serotype 1 is the most common bacteria isolated from lungs of cattle suffering from BRD 

(Katsuda et al., 2008).  Lipopolysaccharide (LPS) is a component of the outer membrane 

of M. haemolytica, which is recognized by Toll-like receptor 4 (TLR4) inside the host.  

TLR4 triggers an immune response with production of proinflammatory cytokines 

interleukin (IL)-6 and tumor necrosis factor α (TNFα).  An increase in protein 

catabolism appears to be mediated in part by pro-inflammatory cytokines.  Nuclear factor 

kappa B (NFκB) transcription factor, a major determinant of inflammatory gene 

expression, is activated by LPS in adipocytes and this induction is coupled to the 

production of IL-6 and TNFα (Jacobi et al., 2004).  Bacterial infection stimulates the 

production of a large amount of the proinflammatory cytokines interleukin-1 (IL-1), IL-

6, and TNFα, by macrophages/monocytes and neutrophils (Matsumura et al., 2000).  

Subsequently, a wide variety of pathologic and host defense reactions are induced, such 

as fever, pain and synthesis of acute-phase proteins (Matsumura et al., 2000).  Innate 
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immunity generally includes macrophages and neutrophils.  However, recent findings 

have implicated adipocytes and myofibers as participants in innate immunity (Gabler and 

Spurlock, 2007). We developed a model to simulate a natural infection of BRD by 

exposing seronegative calves to steers persistently infected (PI) with BVDV type 1b 

followed by an intratracheal M. haemolytica challenge. Few studies have been conducted 

in vivo to evaluate the effects of BRD immune response on gene expression in myofibers 

and adipose tissue.  The objective of our experiment was to evaluate the effects of timing 

of M. haemolytica following BVDV exposure on pro-inflammatory cytokine serum 

concentrations and gene expression in longissimus dorsi muscle and subcutaneous fat in 

growing steers. 

 

MATERIALS AND METHODS 

Animals   

All procedures for the present experiment were approved by the Oklahoma State 

University Institutional Animal Care and Use Committee (Protocol# AG0616).  A total of 

18 Angus crossbred steers (initial BW = 269.46 ± 31.32 kg) were housed at the Nutrition 

and Physiology Research Center, Oklahoma State University, Stillwater to determine the 

effects of viral exposure and bacterial challenge with pathogens that have been associated 

with BRD on pro-inflammatory cytokine serum concentrations and gene expression in 

longissimus dorsi muscle and subcutaneous fat in growing steers.  All animals were 

considered clinically healthy and were seronegative to all pathogens involved in the study 

as determined with paired serum samples collected 14 d apart prior at the start of the 

experiment.  
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Treatments  

The 18 steers were allocated to one of three treatments (6 steers/treatment) 

arranged as a randomized complete block design.  Treatments were: 1) steers not 

challenged with BVDV or M. haemolytica (CON); 2) steers intratracheally challenged 

with M. haemolytica 84 hours after being exposed to calves PI with BVDV1b for 72 

hours (LateCh); and 3) steers intratracheally challenged with M. haemolytica 12 hours 

after being exposed to calves PI with BVDV1b for 72 hours (EarlyCh).  To facilitate 

sample collection, steers were blocked by body weight into 2 groups of twelve and the 

challenge procedures and sample collections were staggered by a 2 week interval 

between periods.  Steers exposed to the calves PI with BVDV were transported 

approximately 3.2 km to the Willard Sparks Beef Research Center, Stillwater, OK where 

they were commingled in a 6 × 10.8 m pen with 2 steers previously confirmed as being 

PI with BVDV1b via immuohistochemistry and genotyping (Fulton et al., 2006).  The PI 

subtype was determined by sequencing the 5’-untranslated region.  Steers not exposed to 

steers PI with BVDV1b were not transported the short distance to prevent risk of 

exposure to the virus or other potential respiratory pathogens.  For both the EarlyCh and 

LateCh groups, the length of exposure to the PI calves was 72 hours.  After the time of 

BVDV exposure, calves were returned to the Nutrition Physiology Research Center 

where they were housed for the remainder of the experiment.  Steers challenged with M. 

haemolytica received 10 mL of a solution containing 6 × 109 CFU of M. haemolytica 

serotype 1 that was reconstituted and grown prior to the challenge as described by Mosier 

et al. (1998).  Steers not challenged with M. haemolytica (CON) were intratracheally 

dosed with 10 mL of a phosphate–buffered saline (PBS) solution (pH 7.4; Sigma Aldrich, 
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St. Louis, MO).  Inoculation with the M. haemolytica culture or PBS solution was 

performed as described by Dowling et al. (2002) with modifications as described by 

Burciaga-Robles et al. (2009).  Challenge with M. haemolytica occurred on the same day 

for all appropriate treatment groups beginning at 0800. 

The experiment consisted of 24 days during which the animals were kept in 

individual pens (3.7 × 3.7 m) with the exception of days 0 to 4.  During those days, 

animals were placed in metabolic stanchions to allow for the challenge procedures and 

collection of blood and biopsy samples (Burciaga-Robles et al., 2009).  During the 

experiment, steers were offered feed at 3% of the body weight delivered twice daily.  The 

diet was formulated to meet or exceed nutrient requirements (NRC, 1996). 

Sample Collection 

Blood samples (Clot activator, Becton Dickinson Vacutainer Systems, Franklin 

Lakes, NJ) were collected via jugular venipuncture with an 18 gauge × 1 inch needle at -

168 -12, -2, 2, 6, 12, 18, 24, 36, 48, 72, 96 and 168 hours following the 0 hour M. 

haemolytica challenge.  Samples collected were allowed to clot for 24 hours at 4oC. After 

the clotting time, chilled blood samples were centrifuged at 3,000 × g at 4oC for 20 min.  

Serum was harvested in 2 mL centrifuge tubes and stored at -20oC until further analyses 

were performed.   

Tissue biopsies were collected from the longissimus dorsi muscle (LM) and 

subcutaneous fat (SCF) of steers at -168, 12, 24, 48 and 72 hours relative to M. 

haemolytica challenge.  Steers were restrained in metabolism stanchions, hair was 

removed from each biopsy site, and 8 mL of a commercial solution containing 20 mg/mL 

of lidocaine HCl were injected at each biopsy site with local anesthetic at least 10 min 
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before the surgical procedure.  The biopsy site was surgically scrubbed with a 

commercially available iodine solution (Betadine Surgical Scrub, Purdue Products, 

Stamford, CT) followed by a rinse with a 70% isopropyl solution.  A 1-cm incision was 

made along the dorsal area of the thoracic and lumbar region with a sterile scalpel.  

Tissue was collected (1.0 g) from the LM utilizing a sterile Bergstrom biopsy needle 

(approximately 10 cm long and 4 mm internal diameter).  Subcutaneous fat biopsies were 

taken by dissecting tissue (approximately 100 mg) through a 2.5 cm skin incision around 

the sacrococcygeal region.  After collection, tissues were quickly placed in an RNase-free 

polyethylene tube and snap-frozen in liquid N and later stored at -80ºC until processed 

for analysis.  All biopsies were taken from separate incisions made at least 10 cm apart to 

minimize the potential effect of the previous biopsy on gene expression.  In addition, for 

SCF the biopsy site was alternated between the left and right side of the animal with each 

subsequent biopsy taken.  For LM, all biopsies were collected from the right side of the 

animal.  The incisions were closed with a sterile non-absorbable Braunamide suture 

(Braun, Bethlehem, PA).  All steers were monitored for swelling for 24 to 48 hours after 

the biopsy and sutures were removed from each incision site 10 days after the surgical 

procedure. 

Laboratory Analyses 

Serum Cytokines.  Before cytokine analysis, all serum samples were diluted 1:1 

in Tris-buffered saline with Tween 20 (pH 8.0; Sigma-Aldrich).  After samples were 

diluted, cytokine [interferon γ (IFNγ), IL-6, and TNFα] concentrations in serum were 

measured in duplicate with commercially available ELISA kits (IFNγ and IL-6, Pierce 

Protein Research Products, Thermo Scientific, Rockford, IL; TNFα, R&D, Minneapolis, 
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MN) with reagents provided by the manufacturer unless otherwise specified.  Briefly, 96 

well plates (Microtiter 96-well plates, Thermo Scientific, Waltham, MA) were coated 

overnight at room temperature with the appropriate bovine specific coating antibody in 

Tris-buffered saline with Tween 20 (pH 8.0; Sigma-Aldrich).  After the incubation, the 

coating solution was aspirated followed by the addition of 300 µL of ELISA ultra block 

solution (AbD Serotec, Raleigh, NC) to each well, and incubated at room temperature for 

1 hour.  This step was followed by aspiration of the blocking solution, addition of 100 µL 

of samples or standards to wells, and incubation at room temperature for 1hour.  

Following sample incubation, standards and samples were aspirated and a three-step 

wash was performed using a manual plate washer (Nunc Immuno Plate 12; Thermo 

Fisher Scientific, Rochester, NY).  Three hundred microliters of ELISA wash buffer 

(AbD Serotec) were added during each wash followed by aspiration.  Following the 

initial three-step wash, the appropriate detection antibody [biotin-labeled antibody in 

Tris-buffered saline with Tween 20 (pH 8.0; Sigma-Aldrich)] was added to each well and 

incubated for 1 hour at room temperature, followed by the three-step wash as described 

before.  Following the washing step, 100 µL of horse radish peroxidase-labeled streptavid 

in Tris-buffered saline with Tween 20 (pH 8.0; Sigma-Aldrich) were added to each well 

and incubated at room temperature for 30 min, followed by a final three-step wash. 

For the colorimetric determination of cytokines, 100 µL of 3,3’,5,5’-

tetramethylbenzidine substrate solution were added to each well and incubated for 20 min 

at room temperature followed by the addition of 100 µL of stop solution (0.16 M sulfuric 

acid) and optical density was measured at 450 and 550 nm using a plate reader 

(Multiskan Spectrum; Thermo Scientific, Waltham, MA).  Detection limits for the 
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cytokine procedures were: 2,000 to 31 pg/mL for IFNγ; 5,000 to 78 pg/mL for IL-6; and 

8,500 to 133 pg/mL for TNFα based on maximum and minimum concentrations of the 

recombinant bovine cytokine standards, respectively.  Concentrations of cytokines in 

serum samples were calculated by subtracting the 450 nm absorbance from the 550 nm 

absorbance to account for any optical imperfections in the plates.  Then, readings were 

subtracted from the blank and a 4-point parameter logistic method standard curve was 

developed for each plate to calculate the concentrations of the cytokine in each sample.  

All intra-assay coefficients of variation were lower than 5% and inter-assay coefficients 

of variation below 7.5%.  

RNA Extraction and Reverse-Transcription Polymerase Chain Reaction.  Total 

RNA was recovered from LM and SCF tissues using Trizol reagent (Invitrogen, 

Carlsbad, CA, USA) with modifications.  Approximately 25 to 30 mg of LM and SCF 

tissue were hand ground with a mortar and pestle in 1 mL of Trizol.  All contents in the 

mortar were transferred to a 2 mL centrifuge tube and centrifuged at 12,000 × g for 10 

min.  The supernatant was extracted (avoiding the fat layer) and placed into a new 

centrifuge tube (1.5 mL).  The extracted supernatant was incubated for 5 min at room 

temperature (15 to 25°C) to ensure the complete dissociation of nucleoprotein complexes.  

Chloroform (0.2 mL/mL of Trizol) was added and tubes were shaken for 15 s and 

incubated for 10 min at room temperature (15 to 25°C).  Tubes were centrifuged at 

12,000 × g for 15 min at 2 to 8°C, and the aqueous phase was transferred to a new tube 

and precipitated with isopropanol (0.5 mL/mL of Trizol).  Contents were mixed by 

inversion and incubated for 5 to 10 min at room temperature, centrifuged at 12,000 × g 

for 10 min at 2 to 8°C, and supernatant discharged.  Pellets were rinsed with 75% ethanol 
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(1 mL ethanol/mL of Trizol) and stored at -80°C for at least 30 min or overnight.  Tubes 

were spun at 12,000 × g for 30 min, the pellet wased with 70% ethanol and resuspended 

in diethyl pyrocarbonate (DEPC) water.  

A 1% agarose gel with ethidium bromide was used to determine the quality of the 

RNA.  The quantity was determined using a Nanodrop™ ND-100 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE).  Thereafter, 1 µg of RNA was reverse-

transcribed using QuantiTect Reverse Transcription (QIAGEN, Valencia, CA) for 

cDNA synthesis with integrated removal of genomic DNA contamination.  The cDNA 

was then used as the template for real-time qRT-PCR. 

Quantitative Two-Step Real-Time RT-PCR.  Differential expression of genes 

(TLR4, TNFa, NFκB and 18s rRNA as a housekeeping gene) in LM was quantified 

following the two-step qRT-PCR reaction for FastStart Universal SYBR Green Master 

ROX (Roche Applied Science, Mannheim, Germany) using a iCycler iQ Real Time PCR 

System (BioRad, Milpitas, CA).  Thermal cycling conditions were 95ºC for 10 min 

followed by 38 repetitive cycles of 94ºC for 15 s, 60ºC for 15 s annealing temperature, 

and 72ºC for 20 s.  Immediately following RT-PCR, a melt curve analysis was conducted 

by bringing the reaction to 95ºC for 1 min, 55ºC for 1 min, then increasing the 

temperature by 0.5ºC from 55ºC to 94.5ºC.  Primers (Table 1) were designed using the 

Primer Quest interface of Integrated DNA Technologies, Inc (Coralville, IA). Interleukin-

6 was quantified in LM using TaqMan probes, as described below.  

Expression analysis of genes in SCF and IL-6 in muscle were performed by two-

step qRT-PCR. A ribosomal 18S rRNA control kit (Applied Biosystems, Inc., Foster 

City, CA) was used as a housekeeping gene to normalize samples for any variation in 
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RNA loading (Voge et al., 2004; Spicer and Aad, 2007).  Based on preliminary 

optimization results, 120 ng total cDNA in duplicate wells were amplified in a total 

reaction volume of 20 µL consisting of 300 nM forward primer, 300 nM reverse primer, 

and 200 nM fluorescent (FAM/TAMRA) probe for TLR4 and TNFα target genes; 50 nM 

of 18S rRNA primers and 100 nM of the 18S rRNA VIC-labeled probe.  PerfeCta 

Multiplex qPCR Supermix (QUANTA BIOSCIENCE, Gaithersburg, MD) master mix 

at 20 µL final volume reaction was used.  Primers and probes (Table 1) for NFκB and IL-

6 were supplied in the TaqMan Regents kit from Applied Biosystems with TAMRA 

quencher.  Thermal cycler conditions for PCR were 50°C for 2 min, 95°C for 3 min, 

followed by 45 cycles of 95°C for 15 sec, and 65°C for 60 sec for annealing/extend data 

collection.  Primers and fluorescent probes for TLR4 and TNFα were designed using 

Primer Express software (Applied Biosystems Inc.) and the Primer Quest interface of 

Integrated DNA Technologies, Inc. using the criteria as described by Grado-Auir (2008).  

Quantification of Target Gene Expression.  Relative quantification of target 

gene expression was evaluated using the comparative threshold cycle method (Aplied 

Biosystems, 2001). As previously described (Voge et al., 2004; Aad et al., 2006), the 

abundance of mRNA was estimated setting an arbitrary threshold (CT) on the FAM or 

VIC curves in the geometric portion of the RT-PCR amplification plot after examining 

the log view.  Then, the ∆CT was determined by subtracting the 18S rRNA CT from the 

target gene CT value. The ∆∆Ct was normalized to the average of the ∆Ct at time point 

zero of the control group. The fold change was calculated using the 2–∆∆CT method 

(Applied Biosystems, 2001). 
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Statistical Analysis   

Data for serum cytokines and the ∆Ct from the comparative threshold cycle 

method were analyzed using a repeated measures analysis of the MIXED procedure of 

SAS (2003), with a non-structured covariance structure and slice output option (SAS 

Inst., Inc., Cary, NC).  For all cytokine and ∆Ct data, values from serum and biopsy 

samples collected before (-168 hours) steers were exposed to steers PI with BVDV were 

used as a covariate.  The slice output option for both serum cytokines and fold change 

was used to determine the time points at which there were differences among treatments.  

 

RESULTS 

There were treatment × time interaction (P < 0.0001) for serum IFNγ 

concentration (Figure 1a).  Serum IFNγ concentrations were greater at -12, -2 and 2 hours 

(P < 0.01) for LateCh steers than CON and at -12 hours compared with EarlyCh steers.  

There was a treatment × time interaction (P < 0.0001) for serum TNFα concentration 

(Figure 1b).  Serum TNFα concentrations were greater (P < 0.05) at -12, 36, 72 and 96 

hours compared with the EarlyCh steers and at 36, 72 and 96 hours compared with the 

CON steers.  There was a treatment × time interaction (P < 0.0001) for serum IL-6 

concentration (Figure 1c).  Serum IL-6 concentrations (P < 0.05) were greater in LateCh 

steers at 36, 48, and 72 hours compared with EarlyCh and at 36 and 72 hours compared 

with CON steers. Overall there were no significant differences (P > 0.10) in serum 

cytokine concentrations for EarlyCh steers compared with CON steers.  

Gene expression of TLR4 in LM was up-regulated (P < 0.0001) for EarlyCh 

steers compared with CON and LateCh steers (Figure 2a).  Greater (P < 0.05) expression 
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of TLR4 was observed at 12, 24, 48, and 72 hours following M. haemolytica challenge.  

Similar results were observed for NFκB (P < 0.003; Figure 2b), TNFα (P < 0.0001; 

Figure 2c) and IL-6 (P < 0.009; Figure 2d) in LM for EarlyCh compared with CON and 

LateCh steers. 

Gene expression of TLR4 in SCF was up-regulated (P < 0.01) for EarlyCh and 

LateCh steers compared with CON steers at 48 and 72 hours after M. haemolytica 

challenge (Figure 3a).  In addition, expression was greater (P < 0.05) for EarlyCh 

compared with LateCh steers at 24, 48 and 72 hours. Gene expression of NFκB and 

TNFα in adipose tissue did not differ (P > 0.10) among treatments (data not shown).  

Expression of IL-6 in adipose tissue was up-regulated (P = 0.02) for EarlyCh and LateCh 

steers compared with CON steers at 24, 48, and 72 hours and at 12 hours following M. 

haemolytica challenge for LateCh compared with EarlyCh and CON steers. 

 

DISCUSSION 

Serum Cytokine Response 

Interferon-γγγγ. Interferons are cytokines produced by mammalian cells in response 

to viral infection or other stressors (Loo and Gale, 2007).  Interferon-γ is induced by a 

unique set of stimuli and is produced only by T lymphocytes and natural killer (NK) 

cells. Stimulation of T cells results in the induction of IFNγ mRNA. Similarly, Franchini 

et al. (2006) observed that once ncp BVDV infection takes place in host T lymphocytes, 

dendritic cells are stimulated to produce IFNγ.  To investigate whether the cellular 

antiviral response was impaired by ncp BVDV infected cells, Baigent et al. (2002) used 

cell cultures to determine the effect of blocked transcriptional responses to α/β IFN.  
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They showed that pre-existing infection of cells with ncp BVDV was not able to produce 

α/β IFN when stimulated with a secondary virus.  This also demonstrated that NFκB 

induction by a second viral infection was not compromised by the previous infection of 

cells with ncp BVDV.  In our study, IFNγ (Fig 1a) serum concentrations were elevated 

soon after PI BVDV exposure for LateCh steers at -12, -2 and 2 h and decreased soon 

after M. haemolytica challenge.  Our results are in agreement with reports in the 

literature, which have shown increases in IFNγ concentrations after viral infection (Loo 

and Gale, 2007).  In contrast, there was no increase in IFNγ for EarlyCh steers after 

exposure to steers PI with BVDV and throughout the remainder of the experiment.  

Reasons for this lack of response are unclear, but may suggest an interaction between 

timing of exposure to BVDV and M. haemolytica challenge, which cannot be determined 

from the present experiment. 

Tumor necrosis factor-αααα. Bacterial infection stimulates the production of pro-

inflammatory cytokines such as IL-1, IL-6, and TNFα by macrophages/monocytes and 

neutrophils.  Subsequently, a wide variety of pathologic and host defense reactions are 

induced, such as fever, pain, synthesis of acute phase proteins, decrease in serum levels 

of iron, and granulocytosis (Matsumura et al., 2000).  Our results are in agreement with 

previous results in that bacterial infection (M. haemolytica) resulted in a gradual increase 

in serum TNFα concentrations in LateCh steers.  Because we used M. haemolytica, 

which is a gram-negative bacteria that produces leukotoxins (LKT) and contains 

lipolpolysacharide (LPS) in its outer membrane, we presume that TNFα elevation could 

be affected by LKT, LPS or both.  Our results agree with those reported by Vels et al. 
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(2009) in healthy dairy cows that responded with an increased TNFα concentration in 

plasma after LPS administration.   

In contrast, no significant changes in serum TNFα concentrations were observed 

for EarlyCh steers in the present experiment.  An in vitro study with bovine bone 

marrow-derived macrophages infected with ncp BVDV and cp BVDV showed a 

decreased production of TNFα upon stimulation with LPS (Alder et al., 1996). Alder et 

al. (1996) concluded that decreased production of TNFα in infected macrophages might 

contribute to the well-documented immunosuppression in animals infected with BVDV. 

Perhaps steers in the EarlyCh group were more immunosuppressed than LateCh steers at 

the time of M. haemolytica challenge in the present experiment, resulting in no increase 

in cytokine concentrations. 

Interleukin-6.  A recent experiment implicated myocytes as a source of pro-

inflammatory cytokines in the presence of bacterial LPS (Borge et al., 2009).  Both 

TNFα and IL-6 in muscle interstitial fluid and plasma were elevated by LPS.  

Concentration of TNFα in plasma was 6 times higher than muscle interstitial fluid at 30 

and 90 min after LPS administration.  As was expected there were no significant 

elevations in serum IL-6 concentrations before M. haemolytica challenge in the present 

experiment.  However, after challenge serum IL-6 concentrations for LateCh steers were 

increased.  Our results agree with those reported by Burciaga-Robles et al. (2009) where 

serum concentrations of IL-6 were higher for steers challenged with M. haemolytica than 

controls.  Another study conducted by Yong-Woon et al. (2007) demonstrated that 

plasma TNFα and IL-6 levels increased by LPS injection in rats at 0.5 and 2 h, and at 2 
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and 4 h, respectively.  Similar to TNFα, there were no significant changes in serum 

concentrations of IL-6 for EarlyCh steers throughout the experiment compared with CON 

and LateCh steers.  Lack of response might be attributed to the immunosuppression 

effects of ncp BVDV on cytokine production (Alder et al., 1996) related to the timing of 

MH challenge. 

In general, our results are in agreement with reports cited in the literature. 

However, time and duration of cytokine response differ from results where LPS 

administration has been used.  We speculate that the differences could be related to our 

intratracheal challenge with live bacteria (M. haemolytica), giving residential 

macrophages the opportunity to respond before bacteria gets into the bloodstream.  Also, 

time is needed for bacteria to replicate inside the lungs, giving a longer-term response. In 

contrast, most studies used parenteral administration of LPS, resulting in an acute 

response.  We presume that LPS via parenteral administration would be rapidly 

inactivated locally or in the bloodstream with less chance to reach other tissues (muscle 

and fat) that might respond with cytokine production (IL-6 and TNFα). 

 

Gene Expression in LM and SCF 

TLR4.  In the battle against infection, the host recruits components of both the 

innate and adaptive arms of the immune system. Toll-like receptors mediate the 

activation of cells of the innate immune system, leading to dynamic functions including 

direct antimicrobial activity, induction of cytokine secretion, triggering dendritic cell 

maturation, and triggering apoptosis.  Furthermore, Krutzik and Modlin (2004) suggested 

that TLR activation is capable of modulating the adaptive immune response with a bias 
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towards a Th1 T-cell response. Krutzik and Modlin (2004) used ncp BVDV or cp BVDV 

to infect bovine monocytes resulting in upregulation of TLR3 1 hour after inoculation 

with ncp BVDV, but not with cp BVDV-infected monocytes, TLR7 expression 

dominated at 24 hours of infection with both BVDV strains. Gabler and Spurlock (2007) 

investigated the response to LPS administration in pigs, two sequential injections with 10 

and 2.5 µg of LPS/kg of BW 23 hours apart resulted in a marked down regulation of 

TLR4 at the protein level in adipose tissue of the challenge group compared with control 

pigs.  The results of our study showed upregulation of TLR4 in muscle (Figure 2a) and 

fat (Figure 3a) for challenged steers compared with CON steers.  Upregulation of TLR4 

in muscle was greater for EarlyCh than LateCh steers.  Due to our experimental design, 

we were unable to elucidate whether the upregulation effect was produced by BVDV or 

MH challenge or both.  Due to timing of M. haemolytica challenge following PI BVDV 

exposure we assume we missed the time effect produced by BVDV on gene expression of 

TLR4 in muscle for the LateCh steers.  However, immunosuppression caused by BVDV 

could have depressed muscle’s ability to produce an immune response against M. 

haemolytica challenge through upregulation of TLR4.  In addition, fat may response 

slower than muscle to a BVDV insult, which might explain the lack of upregulation of 

TLR4 in fat observed for the EarlyCh group, while LateCh showed significant 

upregulation at 12 hours.  

Innate immunity is typically considered to involve macrophages and neutrophils. 

However, recent findings implicate adipocytes and myofibers as participants in innate 

immunity. Studies with cell culture of adipocytes and myoblasts indicate expression of 

Toll-like receptors in response to bacterial LPS by producing TNFα and IL-6, classical 
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pro-inflammatory cytokines (Lin et al., 2000; Frost et al., 2003). Pasare and Medzhitov 

(2004) mentioned that the importance of activation of resident macrophages through 

TLRs allows the production of various cytokines (IL-1, IL-6, TNF, etc.) and chemokines 

[(kemokine C-1 (KC-1) and monocyte chemoattractant protein-1 (MCP-1)], which 

collectively orchestrate the acute inflammatory response to infection. Matsumura et al 

(2000) showed that a single intraperitoneal administration of LPS in mice resulted in 

TLR2 mRNA upregulation in brain, heart, lung, liver, and kidney tissues, and down 

regulation in spleen.  In the same experiment, TLR4 mRNA was decreased in brain, 

increased in heart and lungs, and not changed in the liver, kidney, or spleen.  In 

agreement with these previous studies, we also showed that TLR4 is expressed in somatic 

tissues (muscle and fat) in addition to macrophages and neutrophils. 

NFκκκκB.  Nuclear transcriptional factor kappa B (NFκB) is an ubiquitous rapid 

response transcription factor in cells involved in immune and inflammatory reactions, and 

exerts its effect by expressing cytokines, chemokines, cell adhesion molecules, growth 

factors, and immunoreceptors (Lee and Burckart, 1998).  The induction of the immune 

cascade and NFκB by LPS requires initiation of TLR4.  Adipocytes are an important 

source of proinflammatory cytokine production (Ajuwon et al., 2004) by the effect of 

stimulation of NFκB that consequently would induce IL-6 and TNFα production (Berg et 

al., 2004).  Our results for NFκB in muscle (Fig 2b) showed a similar pattern as TLR4, 

with significant expression across time from 12 to 72 h and greater expression at 72 hours 

after M. haemolytica challenge. Based on our results and results reported in the literature, 

we could assume that initial activation of TLR4 functions as a pivotal activation of NFκB 

in muscle tissue.  Lack of increased expression of NFκB in muscle for LateCh steers 
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could be related to the lack of expression of TLR4 in this tissue. Although TLR4 was 

upregulated in fat tissue for both EarlyCh and LateCh steers (Fig 3a and 3b, 

respectivately) compared to the CON, there were no significant differences in expression 

of NFκB. 

TNFαααα..  Tumor necrosis factor α is a biologically active, pleiotropic cytokine 

produced mainly by macrophages.  TNFα plays a physiologically important role in the 

activation of the immune response by modulating the production and activity of an array 

of cytokines (Adler et al., 1996).  TNFα has been hypothesized to be an important 

mediator of the septic response (Cooney et al., 1999).  Borge et al. (2009) used qtRT-

PCR to measure TNFα and IL-6 gene expression in skeletal muscle and showed 

upregulation of these cytokines in animals with LPS administration compared with 

controls. Their experiment supports the theory that myocytes play an important role in the 

immune defense mechanisms of the host against pathogens by producing 

proinflammatory cytokines. Our results showed a significant upregulation of TNFα in 

muscle for EarlyCh steers.  In contrast, significant down regulation for LateCh steers was 

observed from 12 to 24 h and at 72 h.  As mentioned above, activation of TLR4 is needed 

to begin an enzymatic cytoplasmic cascade that will activate NFκB, which in turn would 

trigger TNFα and IL-6 production.  This may explain why, when upregulation of TLR4 

and NFκB in muscle was present in EarlyCh steers, TNFα was upregulated in the same 

group following the same pattern of TLR4 and NFκB.  There was no significant 

upregulation of TNFα in fat for EarlyCh or LateCh treament groups compared with CON 

steers. 
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IL-6.  Interleukin-6 is considered a pleiotropic cytokine with multiple functions in 

both immune and non immune cells.  This interleukin is a proinflammatory cytokine that 

plays a pivotal role during pathogenic infection, injury and trauma.  Initially, it was 

believed that IL-6 was only synthesized by macrophages and lymphocytes; more recently 

skeletal muscle (Frost et al., 2003) and fat (Weisberg et al., 2003) have become 

recognized as sources of this cytokine. Weisberg et al. (2003) showed that adipocytes are 

a source and target of proinflammatory cytokines (TNFα and IL-6).  In addition, Ross et 

al. (2002) reported that proinflammatory cytokines (IL-1b, PG-E2, TNFα and IL-6) are 

generated by vascular cells.  Leibel et al. (1997) reported that macrophage cells isolated 

from fat expressed TNFα and IL-6 in greater quantities than the non-macrophage cell 

population.  Our data agree with these previous reports where IL-6 was expressed in 

muscle and fat tissues in response to pathogen insults (BVDV and M. haemolytica).  We 

observed that upregulation of IL-6 in muscle (Fig 2d) for the EarlyCh steers following the 

same pattern of TLR4 and NFκB.  In contrast, no upregulation of IL-6 in muscle for the 

LateCh steers was present.  As previously mentioned, activation of TLR4 would 

influence the upregulation of proinflammatory cytokines (TNFα and IL-6).  We also 

observed upregulation of IL-6 in fat tissue (Fig 3b) for both EarlyCh and LateCh groups.  

In agreement with our results, Frost et al. (2003) demonstrated that LPS via 

intraperitoneal injection in mice was able to significantly increase serum concentrations 

of IL-6, and IL-6 mRNA 100-fold in muscle.  Frost et al. (2003) also observed that IL-6 

protein was increased by direct stimulus of LPS to C2C12 myoblasts (6- to 8-fold) and 

IL-6 mRNA (5- to 10-fold).  Borge et al. (2009) concluded that muscle cells appear to be 
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an important source of these cytokines during endotoxemia, and are likely to contribute 

significantly to the cytokine concentrations in plasma.  

We conclude that BRD pathogens (BVDV and M. haemolytica) involved in this 

study are playing an important role in gene expression of cytokines expressed in muscle 

and fat tissues.  Differences in gene expression profiles in LM and SCF and serum 

cytokine concentrations in response to pathogens commonly associated with BRD could 

ultimately decrease animal growth and carcass quality in growing beef steers. 
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Table 1.  Primers and probes used in this study for determination of TLR4, NFκB, TNFα, and 
IL-6 
Target gene Acc. No. Classification Sequence 5’ – 3’/ABI commercial assay1 
Primers used in LM2  
TLR4 NM_174198 Forward 

Reverse 
GCT GGA CCT GAG CTT TAA CTA CCT 
GTG GTT TAG GCC CTG AAA TGT GTC 

NFκB TC244499 Forward 
Reverse 

CTG ATG ATT TGC TGG CAC AAG GAG 
CCT CGT AGT TGT CCA TGA GGG TTT 

TNFα AF011926 Forward 
Reverse 

ACG TTG TAG CCG ACA TCA ACT CTC 
AGT AGA TGA GGT AAA GCC CGT CAG 

IL-6 X57317 Assay1 Bt03211903_m1 
  
Primers and probes used in SCF2  
TLR4 NM_174198 Forward 

Reverse 
Probe 

GGG AGC CTT TTC TGG GCT ATC 
GCC ACA TTA AGC TCT TTC AAG TTT T 
AAG CTG GTG GCC GTG GAG ACA AAC 

TNFα AF011926 Forward 
Reverse 
Probe 

TCT ACC AGG GAG GAG TCT TCC A 
CTG CCC AGA CTC GGC ATA GT 
CAG TGC TGA GAT CAA CCT GCC GGA 

NFκB TC244499 Assay1 Bt03272779_m1 
IL-6 X57317 Assay1 Bt03211903_m1 

1ABI, Applied Biosystems  
2LM, Longissimus dorsi muscle; SCF, subcutaneous fat 
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Fig 1a. Serum concentrations of IFNγ in calves exposed to steers PI with BVDV for 72 
hours followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica 
serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-
exposed or challenged steers (CON). There was a significant treatment × time interaction (P < 
0.0001; SEM = 17.19). Values plotted represent Least squares means ± standard error of the 
mean, calculated for 8 animals per experimental group. a,bWithin day, Least squares means with 
different letters are different (P < 0.05). 
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Fig 1b. Serum concentrations of TNFα in calves exposed to steers PI with BVDV for 72 

hours followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica 
serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-
exposed or challenged steers (CON). There was a significant treatment × time interaction (P < 
0.0001; SEM = 358.05). Values plotted represent Least squares means ± standard error of the 
mean, calculated for 8 animals per experimental group. a,bWithin day, Least squares means with 
different letters are different (P < 0.05). 
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Fig 1c. Serum concentrations of IL-6 in calves exposed to steers PI with BVDV for 72 

hours followed by an intratracheal challenge on d 0 with 6 × 109 CFU of M. haemolytica 
serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV exposure compared with non-
exposed or challenged steers (CON). There was a significant treatment × time interaction (P < 
0.0001; SEM = 403.36). Values plotted represent Least squares means ± standard error of the 
mean, calculated for 8 animals per experimental group. a,bWithin day, Least squares means with 
different letters are different (P < 0.05). 
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Fig 2a. Gene expression of Toll-like receptor-4 (TLR4) in longissimus dorsi muscle (LM) 
in calves exposed to steers PI with BVDV for 72 hours followed by an intratracheal challenge on 
d 0 with 6 × 109 CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours 
after BVDV exposure compared with non-exposed or challenged steers (CON). There was a 
significant treatment × time interaction (P < 0.0001; SEM = 0.28). Values plotted represent Least 
squares means ± standard error of the mean, calculated for 6 animals per experimental group. 
a,b,cWithin day, Least squares means with different letters are different (P < 0.05). 
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Fig 2b. Gene expression of NFκB in longisimus dorsi muscle (LM) in calves exposed to 

steers PI with BVDV for 72 hours followed by an intratracheal challenge on d 0 with 6 × 109 
CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV 
exposure compared with non-exposed or challenged steers (CON). There was a significant 
treatment × time interaction (P < 0.003; SEM = 0.36). Values plotted represent Least squares 
means ± standard error of the mean, calculated for 6 animals per experimental group. a,b,cWithin 
day, Least squares means with different letters are different (P < 0.05). 
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Fig 2c. Gene expression of TNFα in longissimus dorsi muscle (LM) in calves exposed to 

steers PI with BVDV for 72 hours followed by an intratracheal challenge on d 0 with 6 × 109 
CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV 
exposure compared with non-exposed or challenged steers (CON). There was a significant 
treatment × time interaction (P < 0.0001; SEM = 0.33). Values plotted represent Least squares 
means ± standard error of the mean, calculated for 6 animals per experimental group. a,b,cWithin 
day, Least squares means with different letters are different (P < 0.05). 
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Fig 2d. Gene expression of interleukin-6 (IL-6) in longissimus dorsi muscle (LM) in 

calves exposed to steers PI with BVDV for 72 hours followed by an intratracheal challenge on d 
0 with 6 × 109 CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after 
BVDV exposure compared with non-exposed or challenged steers (CON). There was a 
significant treatment × time interaction (P < 0.009; SEM = 0.63). Values plotted represent Least 
squares means ± standard error of the mean, calculated for 6 animals per experimental group. 
a,b,cWithin day, Least squares means with different letters are different (P < 0.05).  
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Fig 3a. Gene expression of Toll-like receptor-4 (TLR4) in adipose tissue of calves 

exposed to steers PI with BVDV for 72 hours followed by an intratracheal challenge on d 0 with 
6 × 109 CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV 
exposure compared with non-exposed or challenged steers (CON). There was a significant 
treatment × time interaction (P = 0.02; SEM= 0.62). Values plotted represent Least squares 
means ± standard error of the mean, calculated for 6 animals per experimental group. a,b,cWithin 
day, Least squares means with different letters are different (P < 0.05).   
 
 



 102

 
 
 

 
 

Fig 3b. Gene expression of interleukin-6 (IL-6) in adipose tissue of calves exposed to 
steers PI with BVDV for 72 hours followed by an intratracheal challenge on d 0 with 6 × 109 
CFU of M. haemolytica serotype 1 (MH) 12 (EarlyCh) or 84 (LateCh) hours after BVDV 
exposure compared with non-exposed or challenged steers (CON). There was a significant 
treatment × time interaction (P = 0.02; SEM= 0.70). Values plotted represent Least squares 
means ± standard error of the mean, calculated for 6 animals per experimental group. a,b,cWithin 
day, Least squares means with different letters are different (P < 0.05). 
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Scope and Method of Study: The Objective was to determine the effects of timing of an 
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intratracheally challenged with M. haemolytica 84 hours after being exposed to 
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challenged with M. haemolytica 12 hours after being exposed to calves PI with 
BVDV1b for 72 hours (EarlyCh).  In the second experiment we used 18 steers of 
the original 24.  Our objective was to determine the effects of two different 
timings of an intratracheal M. haemolytica (MH) serotype 1 challenge following 
short-term exposure (72 hours) to BVDV type 1b on serum concentrations of 
cytokines and gene expression of cytokines in subcutaneous fat (SCF) and 
longissimus dorsi muscle (LM) in growing beef steers. 

Findings and Conclusions: Delaying the M. haemolytica challenge for 84 hours after 
exposure to calves PI with BVDV increased clinical attitude of BRD and the 
acute phase response compared with delaying M. haemolytica challenge for 12 
hours after BVDV exposure. The increased clinical and acute phase response did 
not affect short-term performance, which appeared to be driven by the greater 
decrease in dry matter intake for EarlyCh steers. For the second experiment we 
concluded that the differences in gene expression profiles in LM and SCF and an 
increment in serum cytokine concentrations during induction of the acute phase 
protein response to pathogens commonly associated with BRD could ultimately 
decrease animal growth and carcass quality in growing beef steers. 

 


