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CHAPTER I 
 
 

REVIEW OF LITERATURE 

 

 

Historical Aspects of Wheat 

Ranking second in cereal crops, wheat cultivation can be dated as far back as the 

civilizations of Egypt, Greece, and Rome. Botanists divided wheat into two 

classifications: 1) Triticum describing free-threshing wheats; and 2) Zea relating to hulled 

wheats (Caligari and Brandham, 2001). Of the genus Triticum, wheat makes up more 

than 500 species with a complicated genetics. Some of the species can be divided into 

diploid containing seven chromosomes; tetraploid with fourteen chromosomes; and 

hexaploid comprising twenty one chromosomes (Bajaj, 1990). Triticum aestivum, one of 

the hexaploid species, also known as bread wheats, accounts for almost all of the world’s 

consumption of wheat (Chung et al., 2003). 

Wheat cultivars can be hard or soft, red or white, and winter or spring. The terms hard or 

soft refer to the texture of the kernel, while grain color distinguishes between the 

pigmentation of the outer layer of the kernel, and winter and spring defines the season in 

which the wheat is grown (Atwell, 1997).  



 
 

 2

Endosperm and Seed Development 

Wheat, a member of the grass family, produces a fruit with one seed. The seed is 

surrounded by a nucellar tissue attached closely to the testa (seed coat) and protected by 

the pericarp, or fruit coat. It includes the embryo and the endosperm.  The endosperm is 

the nutritive tissue where the starch and proteins are stored. The endosperm comprises 

two main components: the aleurone layer and the inner endosperm cells. The outer layer 

of the endosperm is referred to as the aleurone, commonly known as the bran. 17% of the 

kernel weight is attributed to the bran (Brunkhort, 2007). The peripheral cells reside in 

the aleurone layer and have equal diameters in all directions. Within the peripheral cells, 

the prismatic cells are stretched radially toward the center of the kernel.  In turn, central 

cells reside in the prismatic cells and have no specific size and shape. The endosperm 

makes up 74.4-86.5% of the weight of the kernel. The cells are full of starch granules 

entrenched in a protein matrix. Gluten-forming Gliadins and glutenins (the storage 

proteins) of the wheat endosperm give wheat grain its unique properties. Milling strips 

the kernel of the embryo, aleurone, pericarp, and testa leaving the endosperm as the main 

component to flour (Berger, 1999). 

In the mature grain, the endosperm contains nutrients and hormones for the seed to 

germinate after sowing. The germination process begins with imbibitions (water 

absorption). The embryo sends out signals inducing hydrolytic enzyme synthesis in the 

aleurone.  Roots begin to grow in a matter of days (Berger, 1999). During germination, 

the coleoptiles, the sheath that surrounds and protects the shoot leaf, extends above the 

soil where the kernel was sown.  At this point, coleoptiles growth terminates. This step is 

followed by tillering and head differentiation (Simmons et al., 1995). Tillers are side 
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shoots formed at the base of the mainstem (Berger, 1999).  Growing conditions play a 

significant role in the number of tillers. In addition to the main shoot, a wheat plant 

produces three tillers. Not all tillers will produce grain. If the plant is fertilized more than 

needed or if it is naked, secondary tillers will form. Tillers that are likely to form grain 

emerge when the fourth, fifth, and sixth leaves appear (Simmons et al., 1995). Of 

significant importance during tillering is the initiation of heads which are microscopic at 

this point. During this phase, kernels are already forming and the stem starts to elongate. 

The next stage to follow is stem and head growth. The stem grows longer, and the last 

one, the peduncle, makes up a large proportion of the whole stem length. Some growth 

hormones retard elongation of the last two or three stems to stiffen the plant. At this time, 

as the stems are elongated, the head growth is rapid. The florets are ready to pollinate and 

get fertilized (Simmons et al., 1995). After fertilization, cell division is slow and so is 

differentiation. The embryo continues to grow in size and divide. Nutrients are 

transferred from the endosperm reserves to the embryo. During the grain filling period, 

the embryo is completely developed; however, it continues to receive endosperm 

reserves.  In about 40 days, the single cell has now become a plant.  During the harvest 

ripe stage, the grain loses water.  Color change of the grain is noticeable. Water content is 

meticulously observed so that the crop is harvested at ideal time (Berger, 2003; Simmons 

et al., 1995). 

 

Classification of Endosperm Proteins  

Wheat flour has been studied extensively for its unique properties. Without the addition 

of leavening, wheat flour demonstrates the desirable rheological properties of leavened 
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bread (Gianibelli et al., 2001). This unique trait lies primarily in the storage proteins that 

make up the endosperm of wheat along with starch to produce breads, pasta, and other 

food products that provide high calorie diet (Dupont, 2008).  It is the interactions of the 

molecular structure of these storage proteins that determine the quality of wheat (grain 

hardness and protein content) during the bread-making process (Bushuk, 1998). The 

endosperm protein of wheat is predominantly made up of gluten proteins. Gluten proteins 

are made up of gliadins and glutenins. The name prolamins is derived from the fact that 

gluten proteins are abundant in amino acids, proline, and glutamine. (Gianibelli et al., 

2001).   

Studies of wheat endosperm proteins began as early as the mid 16th century when Beccari 

isolated gluten.  However, it was not until the 20th century that cereal-seed proteins were 

classified into four groups based on sequential extraction and differential solubility 

(Osborne, 1907). An additional classification was added later in the century to divide 

glutenin as either soluble in diluted acetic acid or insoluble in this solvent (Chen and 

Bushuk, 1970). Albeit these classifications provide a fundamental approach to the 

differentiation of storage proteins, one must realize that these polypeptides overlap in 

their solubilities (Gianibelli et al., 2001). Other classifications based on chemical 

composition and biological functions have also been noted (Field et al., 1983).  For 

example, polymeric glutenins are different from monomeric gliadins in their disulfide 

bond capacity (Macritchie and John, 1992).   
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Polymeric Proteins—Glutenin 

Several studies have been conducted to determine the molecular weights of glutenin. 

Based on gel filtration, glutenins were found to have molecular weights exceeding twenty 

million Daltons (Huebner and Wall, 1976). The standards used in all measurements were 

globular proteins which are compactly folded unlike the glutenin polymers; therefore, the 

high results may be due to the calibration.  Heterogeneous and not compactly folded, 

glutenins are polymers linked by disulfide bonds. By studying their electrophoretic 

mobility in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) after 

the disulfide bonds are reduced, glutenins can be divided into four groups: A-, B-, C-, and 

D- regions (Gianibelli et al., 2001). The A- group makes up the high molecular weight 

glutenin subunit (HMW-GS) (Payne and Corfield, 1979). The B- and C- groups are 

related to γ- and α- gliadins (Payne and Corfield, 1979; Payne et al., 1985). The D- group 

is related to ω- gliadins (Jackson et al. 1983; Masci et al 1994). Unlike the A- group, the 

remaining groups correspond to low molecular weight glutenin subunits (LMW-GS) 

(Gianibelli et al., 2001). Several attempts have been made to purify glutenin fraction such 

as using a series of solvents primarily acetic acid (Bietz and Wall, 1975). Other 

approaches included the use of reverse phase high-performance liquid chromatography 

(RP-HPLC) method and sequential extraction of both HMW-GS and LMW-GS 

(Marchylo et al., 1989). Although HMW-GS components are quantitatively a smaller 

group, i.e. relatively smaller amount compared to other components, they are very 

important in bread-making in that they are essential in determining gluten elasticity 

(Tatham et al., 1985). Gluten elasticity defines the quality of bread (Gianibelli et al., 

2001). Additionally, the genetics of HMW-GS components was studied extensively to 
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better understand their relationship to the quality of bread processing (Payne and 

Corfield, 1979; Payne et al., 1987). Further studies have shown that HMW-GS 

components are less hydrophobic than LMW-GS using RP-HPLC (Anderson et al., 

1989). It is worth noting that although LMW-GS (B-, C-, and D-subunits) make up 

approximately 60% of all glutenins (Bietz and Wall, 1973), they have not been  the focus 

of research due to difficulty fractionating them on SDS-PAGE gel. LMW-GS overlap 

with gliadins and similar molecular weight polypeptides (Gianibelli et al., 2001).   

In addition to identifying HMW-GS, a numbering system using the mobility in SDS-

PAGE determines the location of the chromosomes of the genes (Payne and Lawrence, 

1983). The higher the number indicates the higher the mobility and vice versa. This   

numbering system does not seem to hold with newly identified subunits (Gianibelli et al., 

2001). Lew et al. (1992) suggested that a system based on sequences rather than mobility 

in SDS-PAGE is a better way to designate LMW-GS.   

Genes encoding HMW-GS are found on the long arms of group 1 chromosomes (1A, 1B, 

& 1D) (Bietz and Wall, 1975; Payne and Lawrence, 1983). These genes are located at 

Glu-1 loci and are known as Glu-A1, Glu-B1, and Glu-D1. Each locus containing two 

tightly linked genes encodes two types of HMW-GS, x- and y- types (Gupta and 

MacRitchie, 1994; Payne and Corfield, 1979). Some of the genes are silent, and most 

widespread wheat cultivars contain three to five HMW-GS.  Therefore, for the hexaploid 

wheats, they possess a minimum of a 1Bx, 1Dx, and 1Dy subunits. As for LMW-GS, 

genes are found on the short arms of chromosome 1AS, 1BS, and 1DS, respectively.  

These genes are located at Glu-A3, Glu-B3, and Glu-D3 loci (Gianibelli et a. 2001). 
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In addition to containing high levels of proline and glycine (12.6 and 8.8 mol%, 

respectively), HMW-GS have unusual abundance of glutamic acid (32.6 mol%) and low 

levels of lysine (0.9 mol%).  The glutamine residues form both intra and intermolecular 

hydrogen bonds, which may be related to elasticity in dough (Belton et al., 1994). 

Structurally, HMW-GS consist of one central repetitive domain with a regular spiral, and 

two non-repetitive terminal domains of α-helical structures (Miles et al., 1991; Shewry 

and Tatham, 1997). The central domain is hydrophilic, while the non-repetitive domains 

with N- and C- terminals contribute to hydrophobicity (Shewry et al., 1989).  These 

domains of the HMW-GS are believed to determine the gluten functionality (Gianibelli et 

al., 2001).  

 

Monomeric Proteins-Gliadins 

Gliadins, made up of heterogeneous single-chained polypeptides, are soluble in 70% 

alcohol and are divided into four groups based on their mobility in acid-PAGE 

electrophoresis.  The four groups consist of α-, β-, γ-, and ω- gliadins, with α- gliadins 

having the fastest mobility (Gianibelli et al., 2001). Amidation of 90% of glutamic and 

aspartic acid residues take place in α-, β-, γ- gliadins (Ewart, 1983; Kasarda et al., 1983). 

The ω- gliadins do not contain cysteine (Gianibelli et al., 2001).  Genes encoding for 

gliadins are found on the short arms of group 1 and 6 chromosomes (Clarke et al., 2000; 

Jones et al., 1982). Tightly linked, these genes are located at three homologous loci of 

group 1 chromosome: Gli-A1, Gli-B1, and Gli-D1 and group 6 chromosomes: Gli-A2, 

Gli-B2, and Gli-D2 (Gianibelli et al., 2001). In general, gliadins play a role in the 
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viscosity and extensibility of gluten, hence critical in providing bread with the ability to 

rise and maintain shape during baking.  

 

Characterization and relation to dough quality 

Due to their importance, several techniques were used to fractionate and analyze the 

wheat storage proteins.  It is  widely known that the protein composition is an important 

factor that determines the flour quality in addition to the protein quantity (Dupont and 

Altenbach, 2003). The quality of bread-making has been closely linked to HMW-GS 

(Gianibelli et al., 2001). According to Payne et al. (1981a), some allelic subunits had 

some effects on gluten quality. HMW-GS encoded at Glu-D1 locus (5+10) imparts good 

quality (Payne et al., 1987). This finding was also observed by (Gupta and MacRitchie, 

1994) in which they took it a step further and claimed that Glu-D1 alleles are the most 

significant for wheat quality. A quality score was first established by studying 84 

varieties where higher scores are correlated with good baking quality, while low scores 

are correlated to poor baking quality (Payne et al., 1987). Moreover, the relationship of 

the HMW-GS composition were also studied in the chapati bread making quality using 

Indian wheat cultivars (Srivastava et al., 2003), with the puffed height as an indicator of 

good chapati quality. The HMW-GS 5+10 were more desirable for good chapati quality, 

while 2+12 were associated with poor chapati quality; this is in agreement with earlier 

studies on bread making quality. The HMW-GS composition of the hard red spring wheat 

Triticum aestivum. L cv. Butte 86 was determined by SDS-PAGE as Glu-A1 2*, Glu-B1 

7+9, and Glu-D1 5+10 (Borneo and Khan, 1999). Gliadin and LMW-GS compositions 

have also been investigated in relation to dough properties. Although claims have been 
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made that gliadin alleles have a direct effect on bread-making quality, it has not generally 

been accepted.  What is now clear is that the effect on quality in terms of dough strength 

may be due to tight genetic linkage of LMW-GS to gliadins (Gianibelli et al., 2001). The 

allelic variation of the LMW-GS showed some effects on the bread making quality where 

Glu-B3 alleles showed an association with increase in dough strength, therefore, lower 

baking quality (Ikeda et al., 2006; Lukow et al., 2006). However, Gupta et al. (1994) have 

ranked allelic variations in order of quality contributions in relation to bread-making.  It 

was concluded that the effect of LMW-GS alleles on quality is more accurately 

quantified in combination with HMW-GS (Gupta et al., 1994). Where a combination 

between Glu-B3g alleles of LMW-GS and Glu-D1d alleles of HMW-GS was associated 

with extra strong dough characteristics (Funatsuki et al., 2006). 

 

Water stress vs. wheat 

Water stress or drought stress, an insufficient available water and soil moisture that affect 

the growth and metabolism of plants, is believed to affect the flour quality by lowering 

grain yield and damaging grain characteristics (Altenbach et al., 2003; Anwar et al., 

2007; van Ittersum et al., 2003). Studies investigated the effect of the water stress on 

different crops like durum, triticale, barley and different wheat varieties, and their 

response to the new environmental changes in term of yield. It was observed that durum 

and triticale were most affected while tall wheat and barley were less affected by water 

stress (Fischer and Maurer, 1978). Wheat grains yield has been reported to decrease up to 

45% due to water deficit stress (Schütz and Fangmeier, 2001). Noting that the water 

stress responses in wheat may vary among cultivars (Fischer and Maurer, 1978). Water 
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stress applied to wheat during early stages of grain development (1-14 DAA) showed a 

strong effect on grain filling by decreasing the final grain weight about 40% compared to 

15% for water stresses applied during 15-28 DAA. Grain falling number has increased 

with water stress applied during 15-28 DAA (Gooding et al., 2003). Gooding et al (2003) 

also noted that applying water stress at late stages of grain development results in 

increase of grain protein content because the total dry matter was affected more than the 

nitrogen. However, no effect was observed on the protein quality. Additionally, no 

significant change in the molar fractions of the HMW-GS appeared when wheat plants 

were grown under water stress (DuPont et al., 2007).  

Water stress appears to influence the grain development, therefore, the yield and flour 

quality. However, the whole picture of the water stress effect and the plant response is 

still not fully understood.  
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Abstract 

The storage proteins in wheat are essential in determining the viscoelastic properties in 

dough, thus the breadmaking quality. Biotic and abiotic stresses, including water stress, 

affect the wheat quality and yield. The objective of this study was to partially 

characterize the storage proteins of wheat grown under normal versus water stressed 

conditions. Wheat plants, Triticum aestivum cv Butte 86, were grown in a greenhouse 

under optimum and 30% water-stressed conditions. Both plant treatments received 

adequate nitrogen fertilization. Gliadin, low molecular weight- and high molecular 

weight-glutenin subunits (LMW-GS and HMW-GS) of mature wheat were differentially 

extracted with solvents. Proteins characterizations were obtained by their hydrophobic 

properties via reverse phase-high performance liquid chromatography (RP-HPLC), mass 

to charge ratio using capillary zone electrophoresis (CZE), molecular weight via sodium 

dodecyl sulfate-polyacrelamide gel electrophoresis (SDS-PAGE), and isoelectric point 

and molecular weight using two-dimensional gel electrophoresis. 

RP-HPLC and CZE profiles showed higher absorbance in the gliadins and LMW-GS 

fractions on stressed wheat compared to lower absorbance of the fractions from optimal 

wheat with an increase in subunit 5 and a decrease in subunit 10 in the stressed fraction 

of HMW-GS. 2-D gel electrophoresis, two protein spots in the optimal LMW-GS did not 

appear in the stressed fractions. Based on equal volume of extraction, higher relative 

amount of protein from RP-HPLC area of gliadins and LMW-GS of stressed compared to 

optimal fractions, while lower relative amount of protein concentration was observed in 

the stressed fractions of HMW-GS compared to optimal fractions, with the caveat that 

systematic errors in actual protein amount may occur. Water stress produced change in 
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the expression of HMW-GS 5+10 which are encoded by the gene Glu-D1 by 

upregulating the Glu-D1x and downregulating the Glu-D1y. 

 

1. Introduction 

Wheat (Triticum aestivum) is an important cereal grain worldwide with nutritional and 

economic significance, and adaptation to different environmental conditions (Ehrler et 

al., 1978; Marasas et al., 2003). It is relatively sensitive to water stress. Thus, an adequate 

water supply is needed for good yield (Alderfasi and Nielsen, 2001; Mishra et al., 1995; 

Panda et al., 2003). The bread making quality is linked to the quantity and quality of the 

storage proteins (gliadins and glutenins) which are responsible of the viscoelastic 

properties in dough (Booth and Melvin, 1979; Shewry et al., 1995).  The storage proteins 

are believed to be affected by genetic and environmental conditions including water 

stress.  

Water stress (inadequate available water and soil moisture) affects the growth and 

metabolism of plants resulting in damaging effects on the value of the grain by affecting 

yield and grain characteristics, and consequently  flour quality (Altenbach et al., 2003; 

Anwar et al., 2007; van Ittersum et al., 2003). Several research studies have been 

conducted on the effect of environmental stress including heat stress (Farrell and 

Kettlewell, 2007; Hays et al., 2007; Irmak et al., 2008; Kampinga et al., 1995), as well 

the nutrients and fertilizer conditions (Altenbach et al., 2002; Flaete et al., 2005; Wolf et 

al., 2002).  It has been reported that water stress affected wheat grains by lowering the 

yield up to 45% as well as crop quality (Schütz and Fangmeier, 2001). However, the 

molar fractions of the HMW-GS did not have significant changes when the plants were 
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grown under water stress (DuPont et al., 2007). It is suspected that when wheat plants 

grow under stressed conditions, the composition and ratio of gluten proteins are affected, 

thus influencing their flour properties and bread making performance.  

The hard red spring wheat T. aestivum cv. Butte 86 is also known as ND 597 and was 

originated  by North Dakota AES; USDA-ARS in 1986. This wheat cultivar is considered 

an improvement of the Butte cultivar in several aspects including protein content. It has 

HMW-GS components of Glu-A1 2*, Glu-B1 7+9, and Glu-D1 5+10. The objective of 

the present study was to compare the gluten protein profile of mature wheat plants grown 

under optimum and water stressed conditions. 

 

2. Experimental 

 

2.1. Procedure for Wheat Seeds Growth  

Triticum aestivum. L cv. Butte 86 wheat plants were grown in the Oklahoma State 

University greenhouse facilities.  Seeds were planted at a 1 cm depth in 1-gallon pots and 

using Metro-Mix 300 soil brand (American Plant Products and Services, Inc., Oklahoma 

City, OK). The plants were fertilized biweekly with Miracle Grow brand fertilizer, 

following manufacturer guidelines. The soil moisture was measured using a TDR 100 

Soil Moisture Probe (Spectrum, Plainfield, IL). Spikes were tagged with the date of 

anthesis and were harvested 60 days after anthesis (DAA). 
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2.2. Milling of harvested wheat 

Harvested wheat grains were milled using a Quadrumat Jr. Laboratory mill (C. W. 

Brabender, Instruments, Inc., South Hackensack, NJ) with fixed roll settings using AACC 

method 26-50.  

 

2.3. Fractionation of Gluten Proteins 

Gluten proteins fractions were extracted using modified procedure of Verbruggen 

et al., 1998). Flour defatting was carried out twice with chloroform 1:5 w/v ratio. The 

mixture was stirred for 1 h, filtered with filter paper number 4 (Whatman) and dried 

under the hood The gliadins were extracted with 5 ml 50% n-propanol (1:5 w/v ratio) 

stirred at room temperature for 30 min and centrifuged for 18 min at 2500xg and 4ºC 

(Sorvall RC 5C Plus, Sorvall Inc., Newtown, CT). The supernatant was speed vacuumed 

and the extraction step was repeated twice on the residue. The remaining pellet was 

mixed with 50% n-propanol and 1% DTT, stirred at room temperature for 30 min and 

centrifuged for 30 min at 10000xg and 20ºC.  This step was repeated twice. The 

supernatant containing glutenins was collected,  adjusted to 60% n-propanol and stored 

overnight at 4ºC to allow the HMW-GS to precipitate (Marchylo et al., 1989). After 

centrifugation for 30 min at 10000xg and 20ºC the remaining supernatant was adjusted to 

85% n-propanol and left overnight to allow the precipitation of the LMW-GS. The 

adjusted supernatant was centrifuged for 30 min at 10000xg and 20ºC.  HMW-GS and 

LMW-GS were collected, speed vacuumed and stored at -20ºC. 
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2.4. Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) 

A 10 mg sample (gliadin and glutenins extract) was dissolved in 1 ml 50% (v/v) 

n-propanol containing 1% (w/v) DTT. The solutions were sonicated for 45 min at room 

temperature for the gliadin and LMW-GS samples, and at 60ºC for the HMW-GS sample. 

After sonication, the samples were centrifuged at 735xg and filtered with a Titan 0.45 µm 

filter (Thermo Fisher, Waltham, MA). Samples were loaded into Vydac C18 column 

218TP54 (250 x 4.6mm I.D., 300Å particle size) (The Separations Group, Hesperia, CA). 

The analysis was carried out using Waters Alliance instrument (Waters, Milford, MA) 

equipped with a Waters 990 photodiode array detector. The separation was performed 

using a flow rate 1.0 mL/min at 25ºC for 40 min, with a linear gradient 25 to 80% (v/v) 

acetonitrile (ACN); water and ACN each containing 0.06 % (v/v) triflouro acetic acid 

(TFA). 

 

2.5. Capillary Zone Electrophoresis (CZE) 

The separation was performed using a P/ACE MDQ system of Beckman-Coulter 

(San Ramon, CA). Gliadin sample (10 mg) was dissolved in 1 ml 50% n-propanol and  

glutenins were dissolved in 50% n-propanol containing 1% DTT. The solutions were 

sonicated for 45 min at room temperature and filtered using a 0.45 µm filter. Samples 

were injected for 5 sec using a 15 KV applied voltage on 27 cm (20 cm to the detector, 50 

µm i.d.) using uncoated fused-silica capillary (Polymicro Technologies, Phoenix, AZ) at 

30ºC, and 200 nm UV absorbance. The phosphate glycine buffer pH 2.5 used for 
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separation contained 100 mM phosphate pH 2.5, 20% (v/v) acetonitrile, 0.4% (w/v) 

glycine and 0.05% (w/v) hydroxypropylmethylcellulose (HPMC). 

 

2.6. Sodium Dodecyl Sulphate – Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

The protein samples obtained by solvent fractionation were separated according to 

their apparent molecular weight using SDS-PAGE in a Bio-Rad PROTEAN II (Bio-Rad, 

Hercules, CA) electrophoresis equipment. The resolving gel was 10% acrylamide SDS-

PAGE for the HMW-GS and 12% acrylamide SDS-PAGE for the gliadin and LMW-GS. 

The running buffer contained 0.3% Tris base, 1.4% glycine and 1% SDS. Samples were 

solubilized in the sample buffer that was made up of 250 mM Tris HCl at pH 6.8, 5% 

sodium dodecyl sulphate (SDS), 1.0% bromophenol blue, 40% glycerol, and 10% DTT. 

The solubilized samples were boiled for 10 min and an aliquot of the supernatant loaded 

into the gel. 

The gels were stained overnight according to a modified method reported by Neuhoff et 

al (1985) with a solution containing 0.1% (w/v) Coomassie Brilliant Blue G-250, 2% 

(w/v) ortho-phosphoric acid 10% (w/v) ammonium sulfate as a dye stock prepared at least 24 

h before staining, where 80% (v/v) dye stock solution were mixed with 20% (v/v) methanol.  

Destaining was done with 1% acetic acid until all Coomassie particles are removed and the 

bands were clearly seen. 

 

2.7. 2-D Electrophoresis: 

Protein fractions were analyzed by 2-D gel electrophoresis according to Skylas et 

al (2000). Enriched extract samples (10 mg) were resuspended in 250 µl rehydration 
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buffer consist of 7 M urea, 2 M thiourea, 1% ASB-14, 40 mM Tris (Bio-Rad, USA), then 

applied to Immobiline DryStrip pH 6-11, 13 cm (GE Healthcare, UK) and covered with 

DryStrip Cover Fluid (GE Healthcare, UK). The analysis was performed using an 

IPGphore apparatus (Pharmacia Biotech, Sweden). Samples were rehydrated overnight 

with the rehydration buffer (16 hours) and Iso Electric Focusing (IEF) analysis was 

conducted using the following conditions: 500V for 1 hr, 1000V for 1 hr, and 8000V for 

2 hr. The samples were removed from the strip holder and equilibrated in two steps using 

equilibration buffer consisting of 6 M urea, 2% SDS, 50 mM Tris/HCl (pH 8.8), 30% 

glycerol, and water to make the volume up to 10 ml. In the first step the samples were 

reduced with 100 mg DTT for 10 min and in the second step the samples were alkylated 

with 250 mg iodoacetamide for 20 min. The strips were loaded on a 12% SDS-PAGE 

using 20cm BioRad PROTEAN II apparatus. The gels were stained with a colloidal 

Coomassie Blue G-250 staining stock solution containing: 0.1% (w/v) Coomassie 

Brilliant Blue G250, 2% (w/v) ortho-phosphoric acid and 10% (w/v) ammonium sulfate. 

It was resuspended with methanol 4:1 (v/v) dye stock solution/methanol and stained 

overnight. 

  

2.8. MALDI-TOF mass spectrometry 

The spots in the stained gels were excised and washed with 50% acetonitrile 

(ACN)/25 mM ammonium bicarbonate (pH 8.0) for 15 min to remove excess Coomassie 

Blue stain from the excised slices, then soaked in 100% ACN for 5 min followed by 

dehydration by Speed Vac (Thermo Savant SPD 2010, Needham Heights, MA) for 20-30 

min without temperature control. Slices were incubated overnight at 37°C in 10-15 µl 
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cold trypsin solution (sequencing grade modified trypsin, Promega, Madison, WI) 

prepared by dissolving 10-15 µg trypsin/ml of 25 mM ammonium bicarbonate pH 8.0 

and stored at -70°C. The slices were soaked in 30 µl 50% ACN/5% TFA at room 

temperature for 30-60 min, and gently shaken. The supernatants were transferred to clean 

tubes and soaked again with 50 µl (50% ACN/5% TFA) at room temperature for 30-60 

min and the supernatants were again collected and pooled with the first collected aliquots, 

followed by drying in a Speed Vac for 1h without temperature control. Each sample was 

reconstituted with 3.0 µl of 50% ACN/0.1% TFA for 30 min. Aliquots (0.6 µl) of the 

reconstituted samples were added to 0.6 µl of saturated matrix (alpha-cyano-4-hydroxy-

cinnamic acid) for mass spectral analysis (Voyager DE-PRO mass spectrometer, 

Farmingham, MA). 

  

2.9. Database search 

The peptide fragment mass spectra were obtained using Mascot software (Version 2.0.4, 

Matrix Science) to search protein sequences within a wheat database designed and 

collected by the core facility at Oklahoma State University. The estimated peptide masses 

are compared to experimental peptide masses in the database giving MOWSE (Molecular 

Weight Search) scores for matches that are based on probability (March and Todd, 2005). 

Search parameters included peptide mass tolerance of 100 ppm, with one maximum 

missed cleavage and variable modifications of Oxidation (M), Propionamide (C), Pyro-

glu (N-term Q), with significance threshold of 5% BP and monoisotopic mass value. 
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3. Results 

3.1. SDS-PAGE: 

The gluten protein samples were separated by their molecular weights on SDS-

PAGE. The gliadin bands ranged from around 28 to 60 kDa (Fig. 1), the LMW-GS 

ranged from around 28 to 55 kDa (Fig. 2) and the HMW-GS ranged from around 80 to 

130 kDa (Fig. 3). These results agreed with previously published data (Shewry et al., 

1986).  

The HMW-GS gel (Fig. 3) showed the same pattern for both stressed and optimal 

growing conditions samples, where the subunits 10 and 9 have the molecular weight ~80 

kDa, subunit 7 has the molecular weight ~95 kDa, and the subunits 2* and 5 have the 

molecular weight ~120-130 kDa. However, the stressed samples had fainted bands 

comparing to the optimal samples. There appear to be no differences in the LMW-GS and 

gliadin extracts (Fig. 1 & 2) of the stressed and optimal samples. About 12 bands 

(subunits) in the LMW-GS and 15 bands in the gliadin extract appear to be similar in 

both samples (stressed and optimum growing conditions). 

 

3.2. Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) 

The gliadin and glutenin extract samples were separated according to their surface 

hydrophobicity using RP-HPLC. The patterns of gliadin, LMW-GS and HMW-GS 

fractions are reported in Fig. 4, 5 and 6, respectively. Similar pattern but difference in 

peak height appeared in the profiles of gliadin and LMW-GS fractions from the 30% 

water stress wheat.  Higher peak heights appeared in the more hydrophobic peaks eluting 

between 25 to 34 min (Fig. 4 and 5) from the gliadin and LMW-GS fractions.  HMW-GS, 
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the most important components in terms of baking properties, appeared to be the most 

affected by the 30% water stress growing conditions (Fig. 6).  Five hydrophilic peaks, 

eluting between 3 to 8 min, and at least three peaks of medium hydrophobicity, eluting 

between 19 and 28 min, of the HMW-GS enriched fraction were prominent in the 30% 

water stress wheat. This suggests that these proteins were produced in relative high 

amount. Comparing to previous data, the peaks eluted between 3 and 8 min might 

correspond to the ω- gliadins and peaks eluted between 19 and 28 min might correspond 

to LMW-GS co extracted with the HMW-GS. 

By comparing our RP-HPLC results to previously published data (Blechl et al., 

2007; DuPont et al., 2007), the HMW-GS peaks were correspondent to the peaks eluted 

between 11 and 19 min. The medium-hydrophobicity peak eluting at about 11.7 min 

represent subunit 10. The peak eluting at about 14.8 min represents subunit 5. The peak 

eluting about 16.3 min represents subunit 9, and subunit 7 eluted at 17.5 min and subunit 

2* was  separated as a shoulder from the subunit 7 at 18.1 min in the optimal sample 

while it was better separated in the stressed sample, eluted at about 18.5 min. 

The total protein under the curve of RP-HPLC was determined in order to estimate the 

protein amount with detection wave length of 200 nm. Previous studies reported using the 

total area under RP-HPLC trace to estimate the protein amount using 210 nm (Dupont, 

2008) (Tables 5,6 and 9). The total area under the curve of Gliadin fraction from wheat 

grown under stressed conditions was 54.7% higher than Gliadin fraction from wheat 

grown under optimal conditions. While the total area under the curve of LMW-GS 

fraction from wheat grown under stressed conditions was 38.7% higher than LMW-GS 

fraction from wheat grown under optimal conditions. The total area under the curve of 
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HMW-GS fraction from wheat grown under stressed conditions was 18.7% higher than 

HMW-GS fraction from wheat grown under optimal conditions (Table 5). As for peak 

heights, HMW-GS 10 has decreased 56.7% in the stressed fraction while HMW-GS 5 has 

increased 56.0% in the same fraction.  While the HMW-GS 9 has decreased around 

14.2% in the stressed samples and HMW-GS 7 has increased about 7.3% (Table 6). 

 

 

3.3. Capillary Zone Electrophoresis (CZE) 

Gluten proteins from optimal and stressed wheat samples were separated 

according to their mass to charge ratio using capillary zone electrophoresis (CZE). It has 

been reported that acidic pH electrolyte buffer was optimum for separating cereal 

proteins (Bean and Lookhart, 2000; Lookhart and Bean, 1995). The phosphate buffer, pH 

2.5, used for gliadin and glutenin separation was freshly prepared. 

The gliadin extract showed around 27 peaks (Fig. 7 and 8), both optimal and 

stressed have the same peak patterns with some differences in the peak heights. Some 

minor protein peaks like 7 and 8 in the optimal sample appear decreased in the stressed 

samples.  LMW-GS (Fig. 9 and 10) extracts appear to resolve in about 22 peaks. The 

same pattern for all peaks was observed except for peaks 12, 13 and 18 which show 

slightly higher height in the stressed sample. Peak 15 eluting at 11.6 min was better 

separated in the optimal LMW-GS than the stressed sample. Both gliadins and LMW-GS 

electropherograms showed increase in the absorbance of stressed extracts compared to 

optimal extracts that indicate more protein was present in the stressed injected samples 

than optimal samples of gliadins and LMW-GS. 



 
 

 31

The HMW-GS extracts separated into around 17 peaks (Fig. 11-12) with higher 

absorbance in the optimal extract electropherogram compared to the stressed extracts. 

The small peaks 2 and 3 eluting at about 6.5 and 7 min, respectively were observed in the 

stressed sample but appear to be missing in the optimal growing condition sample. 

Another small peak, 5, eluting at about 7.2 min is well defined in the protein extract from 

wheat grown under optimal conditions and absent in the stressed sample.  

The total area under the curve of Gliadin fraction from wheat grown under stressed 

conditions was 103.5% higher than Gliadin fraction from wheat grown under optimal 

conditions. While the total area under the curve of LMW-GS fraction from wheat grown 

under stressed conditions was 4.5% higher than LMW-GS fraction from wheat grown 

under optimal conditions. The total area under the curve of HMW-GS fraction from 

wheat grown under stressed conditions was 50.3% lower than HMW-GS fraction from 

wheat grown under optimal conditions. (Table 7). The peak height of HMW-GS 10 has 

decreased about 80.2% in the stressed fraction while HMW-GS 5 has increased about 

162.0% in the same fraction.  While the peak height of HMW-GS 9 has decreased around 

53.6% in the stressed samples and HMW-GS 7 has decreased about 23.2%, and the 

HMW-GS 2* has decreased about 66.3%  (Table 8). 

 

3.4. 2-D Electrophoresis and MALDI-TOF mass spectrometry 

The protein separation by their isoelectric point and molecular weight was 

performed using two-dimensional gel electrophoresis followed by a modified colloidal 

Coomassie blue G-250 staining (Neuhoff et al., 1985).  This staining method is more 

reproducible and does not compromise the MALDI-TOF sensitivity. 



 
 

 32

Table 1 summarizes the number of protein spots excised from the 2-D gels, identified 

proteins and the percentage of identified proteins.  From the gliadin protein spots excised 

and analyzed, 39 and 54% were identified for optimal and stressed wheat, respectively. 

The HMW-GS identification rate was 75 and 56% for the optimal and stressed proteins, 

respectively. While the highest identification rate was in the LMW-GS 75 and 78% for 

optimal and stressed wheat, respectively. By comparing the spots between both stressed 

and optimal proteins, the gliadin gels showed the same spot patterns. In the LMW-GS the 

same pattern appeared with some differences where spots A12 and B12 in the optimal gel 

did not appear in the stressed. Moreover, four proteins spots C5, C6, C7, and C8 in the 

optimal gel did not also appear in the stressed gel that can be to poor separation. The 

HMW-GS results showed the same pattern. The overall MOWSE scores for all proteins 

identified were low (Tables 2, 3 and 4); except for the HMW-GS whose scores were 

higher. 

The same proteins with the same MW have been identified and matched to multiple 

proteins in the same fractions with different MOWSE score. The limited database 

available can be a reason of such results. 

 

4. Discussion 

Wheat storage proteins are generally considered the key components that determine the 

dough quality and therefore the breadmaking quality. It is also accepted that among these 

storage proteins, the HMW-GS provide the elasticity attributes to the dough (Tatham et 

al., 1985). Gluten elasticity defines the quality of bread (Gianibelli et al., 2001). 

Additionally, the genetics of HMW-GS components was studied extensively to better 



 
 

 33

understand their relationship to the quality of bread processing showing that the 

composition differences of the HMW-GS between cultivars exhibits differences in the 

baking quality (Payne and Corfield, 1979; Payne et al., 1987). The comparison in the 

SDS-PAGE profile of both the optimal and stressed wheat gluten fractions did not show 

differences in the subunits profiles (Fig. 1-3). Qualitatively, the RP-HPLC profile 

comparison between optimal and water stressed gluten fractions showed similar patterns 

of their gliadin, LMW-GS and HMW-GS, i.e. all major peaks are the same. Proteins 

peaks in all gluten fractions showed a height increase in the water stressed compared to 

the optimal samples. This agrees with the report of (DuPont et al., 2007) who found flour 

protein % increased in the water stressed wheat. The molar fractions proportion reported 

by DuPont et al., (2007) and Wieser and Zimmermann, (2000) on Butte 86 and several 

other varieties was in accordance of our data except for the subunits 2* and 9, which 

were reported to have a higher molar fraction proportion than the subunits 5 and 10. Our 

data showed that applying a 30% water stress to wheat plant results in a decrease of the 

subunit 10 in the stressed sample and increase in the subunits 2*, 7 and 5.  

Electropherogram analysis (CZE) showed qualitatively similar pattern in all proteins 

samples in both optimal and stressed. Qualitatively, higher absorbance was observed in 

the gliadins and LMW-GS fractions on stressed wheat compared to lower absorbance of 

the fractions from optimal wheat. Overall, electropherograms of HMW-GS fractions 

revealed higher absorption from the extraction of the wheat grown at optimal condition 

than to the stressed one. Using the report of Bean and Lookhart, (1999) and Sutton and 

Bietz, (1997) the subunit allelic composition of HMW-GS can be assigned to specific 

peaks. Peaks 12, 13, 15, 16, and 17 correspond to the subunits 10, 9, 7, 2*, and 5, 



 
 

 34

respectively (Fig. 19).  Our data suggest a decrease in the subunits 10, 9 and 2* in the 

stressed wheat sample and an increase of the subunit 5 compared to optimal sample. 

Comparing RP-HPLC and CZE data, the only agreement is on an increase in subunit 5 

and a decrease in subunit 10 in the stressed fraction of HMW-GS. Subunits 5 and 10 are 

encoded at Glu-D1 gene locus that is found on the long arms of group 1 chromosomes 

(Bietz and Wall, 1975; Payne and Lawrence, 1983). It contains two tightly linked genes 

encoding two types of HMW-GS, x- and y- types, where subunit 10 corresponds to y type 

and subunit 5 corresponds to x type (Gupta and MacRitchie, 1994; Payne and Corfield, 

1979). This suggests a correlation between water stress and Glu-D1 gene expression in 

upregulation of x type and downregulation of y type. Additionally, both data showed 

higher absorbance in gliadins and LMW-GS of stressed fractions compared to optimal 

fractions, suggesting more protein was present in the stressed samples, where about 80% 

of gliadin and LMW-GS proteins were affected. In the 2-D gel electrophoresis, two 

protein spots in the optimal LMW-GS did not appear in the stressed fractions. Spot A12 

was identified as Low molecular weight glutenin subunit group 11 type VI, while spot 

B12 was not identified by the database. 

In conclusion, our data suggest that water stress has an effect on gluten protein 

expression during endosperm development, where it produced an increase in gliadin and 

LMW-GS proteins, in addition to change in the expression of HMW-GS by upregulating 

the expression of Glu-D1x and downregulating the Glu-D1y.  
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Fig. 1. SDS-PAGE profile of Gliadin extracts of Triticum aestivum. L cv. Butte 86, wheat 

grown under 30% water stressed and optimum conditions 
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Fig. 2. SDS-PAGE profile of LMW-GS extracts of Triticum aestivum. L cv. Butte 86, 

wheat grown under 30% water stressed and optimum conditions 
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Fig. 3. SDS-PAGE profile of HMW-GS extracts of Triticum aestivum. L cv. Butte 86, 

wheat grown under 30% water stressed and optimum conditions 
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Fig. 4. RP-HPLC pattern of gliadin extracts of hard red spring wheat cv. Butte 86 grown 

under stressed and optimum conditions. Gliadins extracted from defatted flour using 50% 

(v/v) n-Propanol. Vydac C18 column, 250 x 4.6 mm i.d.; flow rate, 1.0 ml/min; linear 

gradient from 25 to 80% (v/v) acetonitrile in water containing 0.06% (v/v) trifluoroacetic 

acid; temperature 25°C for 40 min detection. 
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Fig. 5. RP-HPLC pattern of LMW-GS extracts of hard red spring wheat cv. Butte 86 

grown under stressed and optimum conditions. LMW-GS obtained after the extraction of 

gliadins by precipitation with 85% (v/v) n-Propanol containing 1% (w/v) DTT.  
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Fig. 6. RP-HPLC pattern of HMW-GS extracts of hard red spring wheat cv. Butte 86 

grown under stressed and optimum conditions. HMW-GS obtained after the extraction of 

gliadins by precipitation with 60% (v/v) n-Propanol containing 1% (w/v) DTT.  
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Fig. 7. Electropherogram of gliadin extracts of hard red spring wheat cv. Butte 86 

grown under optimum conditions. Gliadins extracted from defatted flour using 50% (v/v) 

n-Propanol. Samples were injected for 5 sec using a 15 KV applied voltage on 27 cm (20 

cm to the detector, 50 µm i.d.) using uncoated fused-silica capillary at 30ºC, and 200 nm 

UV absorbance. The phosphate glycine buffer pH 2.5 used for separation contained 100 

mM phosphate pH 2.5, 20% (v/v) acetonitrile, 0.4% (w/v) glycine and 0.05% (w/v) 

hydroxypropylmethylcellulose (HPMC). 
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Fig. 8.  Electropherogram of gliadin extracts of hard red spring wheat cv. Butte 86 grown 

under Stressed conditions. Gliadins extracted from defatted flour using 50% (v/v) n-

Propanol. 
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Fig. 9. Electropherogram of LMW-GS extracts of hard red spring wheat cv. Butte 86 

grown under optimum conditions. LMW-GS obtained after the extraction of gliadins by 

precipitation with 85% (v/v) n-Propanol containing 1% (w/v) DTT. 
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Fig. 10. Electropherogram of LMW-GS extracts of hard red spring wheat cv. Butte 86 

grown under stressed conditions. LMW-GS obtained after the extraction of gliadins by 

precipitation with 85% (v/v) n-Propanol containing 1% (w/v) DTT. 
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Fig. 11. Electropherogram of HMW-GS extracts of hard red spring wheat cv. Butte 86 

grown under optimum conditions. HMW-GS obtained after the extraction of gliadins by 

precipitation with 60% (v/v) n-Propanol containing 1% (w/v) DTT. 
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Fig. 12. Electropherogram of HMW-GS extracts of hard red spring wheat cv. Butte 86 

grown under stressed conditions. HMW-GS obtained after the extraction of gliadins by 

precipitation with 60% (v/v) n-Propanol containing 1% (w/v) DTT. 
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Fig. 13. 2-D gel electrophoresis of gliadin fractions, of hard red spring wheat cv. Butte 86 

grown under optimum conditions. 
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Fig. 14. 2-D gel electrophoresis of gliadin fractions, of hard red spring wheat cv. Butte 86 

grown under stressed conditions. 
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Fig. 15. The 2-D gel electrophoresis of  LMW-GS fractions, of hard red spring wheat cv. 

Butte 86 grown under optimum conditions. 
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Fig. 16. The 2-D gel electrophoresis of  LMW-GS fractions, of hard red spring wheat cv. 

Butte 86 grown under stressed conditions. 
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Fig. 17. The 2-D gel electrophoresis of  HMW-GS fractions, of hard red spring wheat cv. 

Butte 86 grown under optimum conditions. 
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Fig. 18. The 2-D gel electrophoresis of  HMW-GS fractions, of hard red spring wheat cv. 

Butte 86 grown under stressed conditions. 
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Fig. 19. CE comparison between HMW-GS from optimal and stressed wheat samples, 

with the subunits identification 
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Table 1 

Summary of gluten protein fractions identified by MALDI-TOF. 2-D electrophoresis 

protein spots excised from the gel, identified, and percentage of the identified protein 

spots. 

 Excised From Gel Identified % Identified 

Gliadin Optimal 26 10 38.5 
Gliadin Stressed 26 14 53.8 

LMW-GS Optimal 32 24 75.0 
LMW-GS Stressed 27 21 77.8 
HMW-GS Optimal 16 12 75.0 
HMW-GS Stressed 16 9 56.3 
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Table 2 

Protein identification of gliadin samples with theoretical molecular weight, isoelectric 

point and MOWSE score. 

Spot No. Protein name Theoretical MW/PI Score 

A1 Gamma gliadin 27188/8.94 8 
A2 Gamma gliadin 33871/8.72 10 
A7 Gamma gliadin 28940/8.48 14 
A8 Gamma gliadin 28940/8.48 8 
A9 Gamma gliadin 14289/9.11 5 
A11 Gamma gliadin 33967/6.92 7 
A12 Gamma gliadin 31431/8.72 10 
A13 Gamma gliadin 14289/9.11 9 
A14 LMW-glutenin subunit 43642/7.74 6 
A16 Gamma gliadin 28940/8.48 11 
B1 Alpha gliadin storage protein 29337/7.22 6 
B2 Gamma gliadin 28061/9.01 11 
B3 Gamma gliadin 35650/8.50 8 
B4 Gamma gliadin 14289/9.11 4 
B5 Gamma gliadin 14289/9.11 9 
B6 Gamma gliadin 14289/9.11 10 
B7 Gamma gliadin 28940/8.48 12 
B8 Omega gliadin 32783/8.24 7 
B9 Omega gliadin storage protein 38433/10.01 17 
B10 Alpha gliadin GLi-LM2-17 35195/7.62 6 
B11 Gamma gliadin 28061/9.01 14 
B12 Gamma gliadin 28940/8.48 9 
B14 LMW-glutenin subunit 43642/7.74 5 
B16 Gamma gliadin 28940/8.48 8 
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Table 3 

Protein identification of the LMW-GS samples with theoretical molecular weight to the 

PI and the MOWSE score. 

Spot No. Protein name Theoretical MW/PI Score 
A1 Low molecular weight glutenin subunit GF-2 33880/9.18 13 
A3 Low molecular weight glutenin subunit 20001/8.33 7 
A4 Low molecular weight glutenin subunit group 11 type VI 23939/9.06 7 
A5 Low molecular weight glutenin subunit 34549/8.49 8 
A7 S-type low molecular weight glutenin subunit 27777/8.51 12 
A8 Low molecular weight glutenin subunit 20001/8.33 6 
A9 S-type low molecular weight glutenin subunit 28920/8.52 5 
A10 Low molecular weight glutenin subunit 34549/8.65 6 
A11 Low molecular weight glutenin subunit 29905/8.55 10 
A12 Low molecular weight glutenin subunit group 11 type VI 23939/9.06 10 
B1 Low molecular weight glutenin subunit 34330/8.92 9 
B2 Low molecular weight glutenin subunit 29905/8.55 11 
B3 Low molecular weight glutenin subunit 24471/8.33 8 
B4 Low molecular weight glutenin subunit 44688/8.80 8 
B5 Low molecular weight glutenin subunit 44688/9.03 11 
B6 S-type low molecular weight glutenin subunit 27777/8.51 8 
B7 Low molecular weight glutenin subunit 44654/9.04 11 
B11 S-type low molecular weight glutenin subunit 27777/8.51 7 
C2 Low molecular weight glutenin subunit 44666/9.03 6 
C4 Low molecular weight glutenin subunit Glu-A3 42743/8.99 13 
C5 Low molecular weight glutenin subunit 31725/8.89 19 
C6 Low molecular weight glutenin subunit 33853/9.03 12 
C7 Low molecular weight glutenin subunit 33359/8.50 5 
C8 Low molecular weight glutenin subunit GF-2 33880/9.18 14 
E1 Low molecular weight glutenin subunit group 11 type VI 23939/9.06 6 
E2 Low molecular weight glutenin subunit 20001/8.33 7 
E4 S-type low molecular weight glutenin subunit 27777/8.51 12 
E5 S-type low molecular weight glutenin subunit 27777/8.51 11 
E6 S-type low molecular weight glutenin subunit 27777/8.51 6 
E7 S-type low molecular weight glutenin subunit 27777/8.51 8 
E8 Low molecular weight glutenin subunit 33853/9.03 7 
E9 Low molecular weight glutenin subunit 44654/9.04 6 
E10 Low molecular weight glutenin subunit GF-2 33880/9.18 5 
E11 Low molecular weight glutenin subunit 44666/9.03 14 
F1 Low molecular weight glutenin subunit 34330/8.92 8 
F2 Low molecular weight glutenin subunit 29905/8.55 10 
F5 Low molecular weight glutenin subunit 20472/7.81 7 
F6 S-type low molecular weight glutenin subunit L4-292 28920/8.52 4 
F7 Low molecular weight glutenin subunit 34475/8.71 6 
F8 Low molecular weight glutenin subunit 22987/8.35 13 
F9 S-type low molecular weight glutenin subunit L4-55 27777/8.51 5 
F11 Low molecular weight glutenin subunit 44688/8.80 7 
G1 Low molecular weight glutenin subunit 44666/9.03 8 
G3 Low molecular weight glutenin subunit group 12 type VI 44906/8.16 7 
G9 Low molecular weight glutenin subunit 34549/8.65 11 
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Table 4 

Protein identification of the HMW-GS samples with theoretical molecular weight 

isolectric point and MOWSE score. 

Spot No. Protein name Theoretical MW/PI score 

A1 Glutenin high molecular weight subunit 19908/8.85 43 
A2 Glutenin high molecular weight subunit 19908/8.85 56 
A3 Glutenin high molecular weight subunit 19908/8.85 58 
A4 Glutenin high molecular weight subunit 19908/8.85 10 
A6 HMW glutenin subunit 20730/5.15 13 
A7 HMW glutenin subunit 20730/5.15 10 
A9 Glutenin high molecular weight subunit 20972/8.46 6 
A10 High molecular weight glutenin  44315/8.30 10 
A11 High molecular weight glutenin subunit y 76156/6.34 4 
B1 HMW glutenin subunit 20730/5.15 7 
B2 Glutenin high molecular weight subunit 19908/8.85 15 
B3 HMW glutenin subunit 20730/5.15 12 
D1 Glutenin high molecular weight subunit 19908/8.85 29 
D3 Glutenin high molecular weight subunit 19908/8.85 60 
D4 Glutenin high molecular weight subunit 19908/8.85 19 
D6 Glutenin high molecular weight subunit 20972/8.46 5 
D7 Glutenin high molecular weight subunit 26267/7.66 7 
D9 Glutenin high molecular weight subunit 19908/8.85 11 
D10 High molecular weight glutenin  44315/8.30 32 
D11 Glutenin, low molecular weight subunit precursor 40994/9.04 11 
E1 Glutenin high molecular weight subunit 19908/8.85 12 
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Table 5.  

Total protein difference calculated by the absorbance at 210 nm using total area under the 

curve in the HPLC patterns  

 

 Sample 
Total area under 

the curve 
% increase 

HMW -Stressed 244270450.3 18.7 

HMW -Optimal 205797510.6 0 

LMW -Stressed 297646540.7  38.7 

LMW -Optimal 214636230.4 0 

Gliadin-Stressed 383461152.9  54.7 

Gliadin-Optimal 247895780.9 0 
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Table 6.  

HMW-GS Maximum absorbance calculated by peak height in RP-HPLC. 

Encoding Gene Subunit 
Height 

%Difference 
Optimal Stressed 

Glu-D1 
HMW -GS 10 406481.1 176010 -56.7 

HMW -GS 5 415808.9 648781.1 +56.0 

Glu-B1 
HMW -GS 9 558433.8 479057 -14.2 

HMW -GS 7 1074177 1152866 +7.3 

Glu-A1 HMW -GS 2*  N/A 371671.1 N/A 
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Table 7.  

Total protein difference calculated by the absorbance at 210 nm using total area under the 

curve in the CZE patterns 

 

 Sample 
Total area under 

the curve 
% increase 

HMW -Stressed 1236456 -50.3 

HMW -Optimal 2486764 0 

LMW -Stressed 4306952 4.5 

LMW -Optimal 4121400 0 

Gliadin-Stressed 1390371 103.5 

Gliadin-Optimal 683319 0 
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Table 8.  

HMW-GS Maximum absorbance calculated by peak height in CZE. 

 

Encoding 

Gene 
Subunit 

Height 
%Difference 

Optimal Stressed 

Glu-D1 
HMW -GS 10 10149 2013 -80.2 

HMW -GS 5 1038 2720 +162.0 

Glu-B1 
HMW -GS 9 13766 6387 -53.6 

HMW -GS 7 3554 2731 -23.2 

Glu-A1 HMW -GS 2* 9097 3070 -66.3 
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Table 9. 

The ratio and percentage of area under the HMW-GS curve compared to the total area in 

RP-HPLC curve. 

 

Subunit 
Ratio Percentage 

Stressed Optimal  Stressed Optimal 

10 1:28.7 1:6.8 3.5 14.7 

5 1:4.2 1:5.0 23.5 20.0 

9 1:9.1 1:6.0 11.0 16.6 

7 1:4.0 1:2.9 24.8   34.6 

2* 1:12.4 N/A 8.1 N/A 
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Abstract 

Bread wheat is an important crop worldwide. The global environmental change including 

the water deficit will affect the yield and quality of this grain. Membrane proteins are key 

factors in the protein synthesis pathway that determine the fate of the storage proteins and 

consequently the crop quality. The objective of this study was to identify proteins in 

Endoplasmic reticulum (ER) and Golgi complex (GC) expressed after 14 and 34 days 

after anthesis (DAA) under 30% water stress using a proteomic approach. 

Wheat plants, Triticum aestivum cv Butte 86, were grown in a greenhouse under 30% 

water-stressed condition and received adequate nitrogen fertilization. ER and GC were 

fractionated using sucrose gradient and analyzed by two-dimensional electrophoresis. 

Proteins were analyzed by peptide mass fingerprinting and identified with protein 

database.  

During early and late stages of development several starch synthesis proteins were 

identified accompanied with upregulation of the expression of stress and defense 

proteins. Dehydrin, Hsp26, Glutathione-S-Transferase, and receptor-like kinase among 

stress response proteins were good candidates to have an inhibition effect on starch 

synthesis enzymes that need to be further investigated. 
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1. Introduction 

Water stress or drought stress is one of the challenging environmental factors that affect 

the quality and yield of wheat, hence affecting the quality of bread-making (Gooding et 

al., 2003).  Several studies were conducted investigating the water stress effect on 

different aspect of the grain characteristics (Daniel and Triboï, 2002; Dupont and 

Altenbach, 2003; Guttieri et al., 2005; Saint Pierre et al., 2008; Singh et al., 2008). And it 

is known that seed storage proteins synthesis is regulated by nutrition (Shewry et al., 

1995), and that starch and protein accumulation depend on the water uptake in addition to 

cell wall extensibility (Berger, 1999).  

The wheat storage proteins are key components of determining the quality of dough and 

bread (Payne et al., 1987).Wheat storage proteins, known as gluten proteins, consist of 

two proteins, gliadins that give the viscosity attribute of dough and glutenin that gives the 

dough the elasticity attribute (Atwell, 1997). These proteins are abundant in amino acids, 

proline, and glutamine; hence, the name prolamins (Gianibelli et al. 2001).  The 

endoplasmic reticulum (ER) is the organelle where the secreted proteins are folded, 

sorted and assembled before sending to the Golgi Complex (GC) where they will be 

subjected to further folding, modifications and assembling. Changes in the membrane 

proteins or the pathway may lead to changes in the expressed proteins. 

Synthesized proteins will be subjected in ER to folding and assembling with the 

assistance of Protein disulfide isomerase (PDI). Also, it is in the ER where disulfide 

bonds are formed (Shewry et al., 1995). Due to the higher need of PDI at the early stages 

of development of wheat endosperm, PDI is present at elevated levels than those of 
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proteins (Roden et al., 1982).  Afterwards, the proteins are transferred to the GC to be 

modified and sorted in order to be stored in protein bodies. 

The aim of this study is to identify the proteins in ER and GC expressed during 14 and 34 

days after anthesis under 30% water stress using a proteomic approach. 

 

2. Experimental 

2.1. Procedure for Wheat Seeds Growth  

(Triticum aestivum. L) cv. Butte 86 wheat plants were grown in the Oklahoma 

State University greenhouse facilities.  Seeds were planted at a 1-cm depth in 1-gallon 

pots and using Metro-Mix 300 soil brand (American plant products and services, Inc. 

Oklahoma City, OK). The plants were fertilized bi-weekly with Miracle Grow brand 

fertilizer, following manufacturer guidelines. The soil moisture was measured using a 

TDR 100 Soil Moisture Probe (Spectrum, Plainfield, IL).  Spikes were tagged with the 

date of anthesis and were harvested 14 and 34 DAA. 

 

2.2. Fractionation of the ER and GC  

The ER and GC fractions were isolated according to (El-Osta, 2005) using a 

modified method of Morré and Andersson (1994). Developing wheat seeds (14 and 34 

DDA) were peeled individually to collect around 50 g of endosperm. Extraction buffer 

(100 ml) was added (1:2 ratio w/v) containing one tablet of Protease Inhibitor Cocktail 

per 10 ml (Roche Applied Science) and homogenized using a mortar and pestle. The 

extraction buffer consisted of 50 mM HEPES pH 7.4, 10 mM KCl, 1 mM EDTA, 10 mM 

ascorbic acid, 5 mM DTT, and 400 mM sucrose. Endosperm cells were homogenized 
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with mortar and pestle at 4°C for about 20 min. The suspension was filtered through four 

layered cheesecloth, and centrifuged at 1000xg for 10 min at 4°C using Sorval rotor ss-34 

fixed angle (Sorvall Kendro, Asheville, NC). The supernatant was loaded on top of a 

discontinous sucrose gradient step.  A 35-ml tube was used for the discontinuous sucrose 

gradient, where 6 ml of 37% (w/v) sucrose was layered first, topped with 10 ml 21.5% 

(w/v) sucrose. The top layer consisted of around 15 ml of the collected supernatant 

containing the microsomal fraction. The tubes were centrifuged using Beckman Swinging 

bucket rotor SW-28 (Beckman-coulter, Fullerton, CA), at 65000xg for 30 min at 4°C. 

The ER enriched fraction was collected from the inter-phase between the homogenate 

and 21.5% layers, while the GC enriched fraction was collected from the inter-phase 

between the 21.5% and 37.0% layers using a Pasteur long neck glass pipette. The 

enriched fractions were diluted with buffer consisting of 50 mM HEPES pH 7.4, 10 mM 

KCl, 1 mM EDTA, 10 mM ascorbic acid, and 5 mM DTT. The fractions were 

centrifuged at 53000xg for 20 min at 4°C using Beckman Swinging bucket rotor SW-28. 

The pellets containing the ER and GC enriched fractions were obtained separately and 

stored at -80° C for later use.  

 

2.3. Sodium Dodecyl Sulphate – Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 

Western blot 

Protein samples were solubilized in sample buffer made up of 250 mM Tris HCl at pH 

6.8, 5% sodium dodecyl sulphate (SDS) and separated by SDS-PAGE using Bio Rad 

mini protean II cell (Bio-Rad, Hercules, CA) electrophoresis equipment, using 12% 
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acrylamide SDS-PAGE resolving gel. The running buffer contained 0.3% Tris base, 1.4% 

glycine and 1% SDS.  

The separated proteins were transferred to PVDF membrane for 1-2 hour at 100 V using 

Bio Rad mini trans blot electrophoretic transfer cell. The free protein building sites were 

blocked with 5% dry skim milk in (PBS buffer) at room temperature. Blots were 

incubated overnight at 4°C with primary antibody. The proteins were re-blocked with 5% 

dry skim milk followed by incubation with secondary antibody at room temperature for 2 

hr. Subsequently, membranes were washed and developed with 5-Bromo-4-chloro-3-

Indolyl Phosphate/Nitroblue Tetrazolium (BCIP/NBT) with alkaline phosphatase. 

The antibodies used for detecting GC-enriched fraction with blotting were Rabbit 

polyclonal to 58K Golgi protein Formiminotransferase cyclodeaminase (FTCD) (Abcam, 

Cambridge, UK) and goat polyclonal to rabbit IgG (alkaline phosphatase) (Abcam, 

Cambridge, UK) as primary and secondary antibodies, respectively. As for ER-enriched 

fraction was detected with rabbit polyclonal antibody to Calreticulin (CRT) antibody 

(Novus Biological, Littleton, CO) and goat polyclonal to rabbit IgG (alkaline 

phosphatase) (Abcam, Cambridge, UK)  were used as primary and secondary antibodies, 

respectively. 

 

2.4. 2-D Electrophoresis: 

Protein fractions were analyzed by 2-D gel electrophoresis according to Skylas et 

al (2000). Enriched extract samples (10 mg) were resuspended in 250 µl rehydration 

buffer consist of 7 M urea, 2 M thiourea, 1% ASB-14, 40 mM Tris (Bio-Rad, USA), then 

applied to Immobiline DryStrip pH 6-11, 13 cm (GE Healthcare, UK) and covered with 
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DryStrip Cover Fluid (GE Healthcare, UK). The analysis was performed using an 

IPGphore apparatus (Pharmacia Biotech, Sweden). Samples were rehydrated overnight 

with the rehydration buffer (16 hours) and Iso Electric Focusing (IEF) analysis was 

conducted using the following conditions: 500V for 1 hr, 1000V for 1 hr, and 8000V for 

2 hr. The samples were removed from the strip holder and equilibrated in two steps using 

equilibration buffer consisting of 6 M urea, 2% SDS, 50 mM Tris/HCl (pH 8.8), 30% 

glycerol, and water to make the volume up to 10 ml. In the first step the samples were 

reduced with 100 mg DTT for 10 min and in the second step the samples were alkylated 

with 250 mg iodoacetamide for 20 min. The strips were loaded on a 12% SDS-PAGE 

using 20cm BioRad PROTEAN II apparatus. The gels were stained with a colloidal 

Coomassie Blue G-250 staining stock solution containing: 0.1% (w/v) Coomassie 

Brilliant Blue G250, 2% (w/v) ortho-phosphoric acid and 10% (w/v) ammonium sulfate. 

It was resuspended with methanol 4:1 (v/v) dye stock solution/methanol and stained 

overnight. 

  

2.5. MALDI-TOF mass spectrometry 

Protein spots in the stained gels were excised and washed with 50% acetonitrile 

(ACN)/25 mM ammonium bicarbonate (pH 8.0) for 15 min to remove excess Coomassie 

blue stain from the excised slices. The slices were soaked in 100% ACN for 5 min 

followed by dehydration in unheated Speed Vac (Thermo Savant SPD 2010, Needham 

Heights, MA) for 20-30 min. Dry slices were incubated overnight at 37°C in 10-15 µl 

cold trypsin solution (sequencing grade modified trypsin, Promega, Madison, WI) 

prepared by dissolving 10-15 µg trypsin / ml of 25 mM ammonium bicarbonate pH 8.0 
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and stored at -70°C. The slices were soaked in 30 µl 50% ACN/5% TFA at room 

temperature for 30-60 min and gently shaken. The supernatants were transferred to clean 

tubes and soaked again with 50 µl (50% ACN/5% TFA, v/v) at room temperature for 30-

60 min, and the supernatants were again collected and pooled with the first collected 

aliquots, followed by drying in unheated Speed Vac for one hour. Each sample was 

reconstituted with 3.0 µl of 50% ACN/0.1% TFA, v/v for 30 min. Aliquots (0.6 µl) of the 

reconstituted samples were added to 0.6 µl of saturated matrix (alpha-cyano-4-hydroxy-

cinnamic acid) for mass spectral analysis (Voyager DE-PRO mass spectrometer, 

Farmingham, MA). 

  

2.6. Database search 

The peptide fragment mass spectra were obtained using Mascot software (Version 2.0.4, 

Matrix Science) to search protein sequences within a wheat database designed and 

collected by the core facility at Oklahoma State University. The estimated peptide masses 

are compared to experimental peptide masses in the database giving MOWSE (Molecular 

Weight Search) scores for matches that are based on probability (March and Todd, 2005). 

Search parameters included peptide mass tolerance of 100 ppm, with one maximum 

missed cleavage and variable modifications of Oxidation (M), Propionamide (C), Pyro-

glu (N-term Q), with significance threshold of 5% BP and monoisotopic mass value. 
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3. Results 

3.1. ER 14DAA 

At this early stage of endosperm development (14 DAA), proteins appear to be larger 

than that of 34 DAA (Fig. 1 and 2). The total number of proteins excised from the 2-D 

gel was 96 spots. Out of the 96 spots, 79 proteins were identified by the database with 

82.3% identification match (Table 1). Several proteins known to have a role in the protein 

folding, assembly, and degradation appeared in this stage of endosperm development 

(Fig. 1). In addition, protein disulfide isomerase (PDI), an enzyme localized in the ER 

that catalyzes the formation and the rearrangement of the disulfide bonds during grain 

development, was identified in the following five spots 12, 13, 23, 24 and 77 with high 

MOWSE scores of 249, 188, 179, 62 and 95, respectively (Fig. 1).   

Spots 9, 10, 11 and 18 were identified as β-amylase which is an enzyme that exists in the 

grain before germination and at the early stages of endosperm development. α-amylase 

inhibitor (Fig. 1) which inhibits both the internal and external α-amylase activities 

(Täufel et al., 1997) were identified in spots 78, 79, and 93. 

Cyclophilin, a peptidyl prolyl (cis-trans) isomerase protein that catalyzes the isomeration 

of the peptide bonds is located in the ER and believed to have a role in protein folding 

(Shewry et al., 1995) was identified in three spots 26, 27 and 29 (Fig. 1). 

Heat-shock proteins were identified in spots 16, 22, and 58. Also, spots 63 and 86 (Fig. 1) 

were identified as resistance proteins. Spots 69 and 92 were identified as stress 

responsive protein and dehydrin, respectively. Dehydrin, a family of proteins, is related to 

environmental stress in which it is expressed in either cold or dehydration stages (Close, 

1997; Ismail et al., 1999).  Another family of proteins, puroindoline is believed to 
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contribute to grain texture (Gazza et al. 2008; Turnbull and Rahman, 2002).  Puroindoline 

B (15kDa protein) was identified in spot 96 (Fig. 1). 

 

3.2. ER 34DAA: 

The proteins harvested at later stage of development (34 DAA) showed smaller molecular 

weights compared to the 14 DAA proteins (Fig. 2), where 51 out of 53 spots in the gel 

were under 40 kDa (Table 2). Out of the 53 total protein spots excised from the 2-D gel, 

44 protein spots were identified by the database, which is equal to 83% identification 

match. 

 At this stage of development, some glutenin subunits start to appear. Spots 22 and 45 

were identified as high molecular weight subunits. Spot 51 corresponded to dehydrin 5 

which was also identified in the 14DAA gel. Spots 1 and 2 represent the highest 

molecular weight proteins in this gel. Spot 1 was identified as a limit dextrinase (LD) 

type starch debranching enzyme that catalyzes the hydrolysis of glucosidic branch 

linkages of α(1-6) (Repellin et al., 2008). Spot 2 corresponded to protein gigantea that is 

believed to have a role in the flowering control time in plants (Huq et al., 2000). Spot 42 

was identified as an α-amylase subfamily Amy2. 

Spots 5, 11, 13 and 36 were identified as pyruvate orthophosphate dikinase with 

MOWSE scores of 97, 58, 52 and 44, respectively. Two spots 37 and 38 with scores of 

77 (Fig. 2). 

Spot 30 was identified as putative synaptobervin, a membrane protein that plays a role in 

vesicle transportation in the cell and believed to also have a role in cytokinesis and cell 

elongation (Edamatsu and Toyoshima, 2003) 
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3.3. GC 14DAA: 

For the GC enriched proteins of 14 DAA, fewer spots were identified compared to ER 

enriched fractions (Fig. 3). From 60 spots excised and analyzed, 15 were identified which 

is equal to 25% (Table 3). Spot 4 was identified as cytochrome P450, a family of proteins 

that plays a role in the cell biosynthetic reactions including N-dealkylation, O-

dealkylation, S-Oxidation and hydroxylation. Cytochrome P450 can be detected in ER 

and golgi (Neve et al., 1996). 

Spots 1 and 36 were identified as pyruvate orthophosphate dikinase with scores of 66 and 

57 respectively, and were the most abundant proteins identified in this gel. Spot 5 

corresponded to protein disulfide isomerase precursor. Spot 32 was identified as cystatin, 

a cysteine protease inhibitor, while spot 25 corresponded to β-expansin 2 which plays a 

role in cell wall growth and found to have been expressed in the early stages of flowering 

(Gookin et al., 2003; Liu et al., 2007). 

 

3.4. GC 34DAA: 

From the 59 spots that were excised and analyzed, 27 spots were identified by the 

database which equals to 45.7% identification (Fig 4). At 34 DAA, the most abundant 

protein in GC was pyruvate orthophosphate dikinase the enzyme involved in glycolysis 

that catalyse the formation of PEP from pyruvate (Meyer et al., 1978).  This protein was 

also found in 14 DAA in spots 35, 39 and 40, with MOWSE scores of 36, 28, and 102 

respectively (Table 4). 
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Three spots were identified as ADP-glucose pyrophosphorylase, an ezyme involved in 

starch synthesis that catalyses the formation of ADP-glucose (Hui, 2006). Three ADP-

glucose phosphorylase subunites were identified, two small subunits and a large subunit 

corresponded to spots 37, 38, and 25, respectively.  As for spot 42, it was identified as 

calmodulin a calcium modulated protein that mediate several activities including 

transmembrane ion transportation (Lado et al., 1981). Spot 44 corresponded to 26.6 kDa 

heat-shock protein. 

The expansin protein a cell wall protein involved in cell wall expansion (Choi et al., 

2008) was also identified in this gel in spot 47, and a seed storage protein was identified 

in spot 48. Spot 51 corresponded to dimeric α-amylase inhibitor, while spot 56 is that of a 

protease inhibitor. Spot 59 was identified as a grain softness protein, and spot 58 

corresponded to puroindoline-b a protein which contributes to the grain texture as 

mentioned earlier. 

 

4. Discussion   

Wheat flour have rheological properties primarily due to the storage proteins (Dupont, 

2008; Gianibelli et al., 2001). Protein secretion follows a secretory pathway in which 

membrane proteins are assembled and folded in the endoplasmic reticulum and sorted in 

the Golgi complex which ends up in a vesicle that attaches to the plasma membrane 

(Glick and Malhotra, 1998).  Throughout the process, there are important factors that will 

dictate the protein synthesis, among them modifications such as structural changes due to 

environment (Lodish et al., 2003).  The focus of this study is to identify the proteins in 

ER and GC enriched fractions expressed at different stages of wheat endosperm 
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development, DAA under 30% water stress using a proteomic approach. El-Osta, (2005) 

showed that the highest enrichment fractionation yield was in 14 and 34 DAA; therefore, 

we studied the membrane proteins in both stages of development. Stressed wheat 

endosperms were fractionated through sucrose gradients in order to collect ER and GC 

enriched fractions according to El-Osta, (2005).   

The ER fractions of both stages of wheat development (14 and 34 DAA) were analyzed 

using 2-D gel electrophoresis. Ninety six spots were observed in the 14 DAA and 53 

spots in the 34 DAA gel.  Higher molecular weight proteins observed in the 2-D gel 

profile of the 14 DAA were more abundant in comparison to those of the 34 DAA.  The 

34 DAA proteins were more populated in molecular size smaller than 50 kDa with the 

exception of spots 1 and 2. The molecular weights of the proteins of 14 DAA ranged 

from 10-80 kDa in early and late stages. (Fig. 1 & 2).  The GC enriched fractions did not 

show major differences in molecular weight distribution (Fig. 3 & 4).  

Protein disulfide isomerase was expressed in the 14 DAA samples, but it was not 

detected in the 34 DAA. As suggested earlier, the protein synthesis in the ER is subjected 

to folding and assembling with the assistance of protein disulfide isomerase (PDI) during 

the early stages of development.  And it is in the early stages that PDI levels are elevated; 

hence, their levels maybe depleted at later stages in the ER. β-amylase appeared in the 

14DAA ER enriched fractions, while the α-amylase was observed in spot 42 in the 34 

DAA ER enriched fractions. 

In the ER-14 DAA gel, the protein disulfide isomerase was the most abundant protein in 

addition to α-amylase inhibitor and β-amylase (Table 1). These results agree with 

previously reported study (Skylas et al., 2000). In the ER-34 DAA gel, the most abundant 
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protein was pyruvate orthophosphate dikinase (Table 2).  In GC gels of both development 

stages, the most abundant protein was the pyruvate orthophosphate dikinase. This 

suggests that the expression of this protein continued during both stages of grain 

development (Tables 3 & 4). The pyruvate orthophosphate dikinase catalyzes the 

formation of PEP from pyruvate, and it was detected in a previously reported data in 

immature wheat grain (Meyer et al., 1978). 

The gigantea protein in the ER-34 DAA gel is a nucleoplasmically localized protein that 

has a role in controlling the flowering time in plants (Huq et al., 2000). The protein 

expansin appear to be expressed early after flowering and also in later development.  The 

appearance of both of these proteins is either due to contamination during the 

fractionation, or the limited database that provided the closest match; however, they may 

have a role in water stress response.  

Because the wheat was subjected to drought stress, some proteins were upregulated and 

some resistance and stress responsive proteins were detected in spots 63, 69, 86 and 92 in 

ER-14DAA (Table 1). The appearance of these proteins at this stage of the grain 

development appeared to be needed as a stress tolerance mechanism. Dehydrin, spot 92, 

is a protein that is expressed when plant is exposed to water deficit or cold stress. It was 

studied in several wheat cultivars under drought stress and it is speculated to be related to 

water stress tolerance (Lopez et al., 2003). Dehydrin was identified in ER gel for both 

stages 14 and 34 DAA. This observation appears to support the suggested role of plant 

defense response against water stress. This protein was not observed in both GC enriched 

samples. 
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Based on the relative limited wheat database available up to date, identification 

percentages of proteins in ER-14 and 34 DAA were much higher than those in GC-14 

and 34 DAA.  For ER-14 and 34 DAA, they were 82.3% and 83%, respectively.  As for 

GC-14 and 34 DAA were 25% and 45.7%, respectively. 

The identification MOWSE score had a wide range from 13 as the lowest in ER 14 DAA 

to 249 as the highest. In the ER 34 DAA, the MOWSE score ranged from 16 to 97. The 

GC 14 DAA has a lower scores ranging from 9 to 66, while the GC 34 DAA had scores 

ranging from 13 to 102.  

At the early stage of the endosperm development under 30% of water deficit stress, many 

stress resistant proteins were expressed in the ER. The dehydrin was expressed through 

early and late stages of development in the ER, but was not identified in the GC. The 

continuous expression of the dehydrin indicates that it is associated with the water stress 

tolerance response to protect the cell and membranes from dehydration. As for the known 

proteins related to the protein synthesis pathway, they were still expressed in the early 

stage of grain development. The low identification percentage and scores in this study 

were due to the limited database.  

The main functions of proteins identified in ER and GC fractions were protein synthesis, 

carbohydrate metabolism, nitrogen metabolism, signal transduction, growth/development, 

protein degradation, translation/transcription, stress/defense, and storage proteins.  

Protein synthesis and carbohydrate metabolism were the main processes in all ER and 

GC fractions of both early and late stages of endosperm development, noting that these 

processes were more dominant in ER than GC fractions. The highest number of 

stress/defense proteins was 7 proteins in ER 14 DAA, such as Hsp 26, F-box, cystatin and 
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dehydrin in addition to stress responsive proteins. The F-box is a water stress response 

protein that inhibit the stomatal closure  induced by Abscisic acid (Zhang et al., 2008). 

Plants under water stress releases Abscisic acid (ABA) in roots to increase the water use 

efficiency (WUE) by decreasing the loss of water with stomatal closure and increasing 

the photosynthesis, consequently, increase the carbon amount (King, 1976; Kriedemann 

et al., 1972). In ER 34 DAA, receptor-like protein kinase, a stress responsive protein has 

been reported to have a role in stress response (Vij et al., 2008). The protein kinase is 

known to have a role of modifying proteins activities. Vensel et al. (2005) has identified 

wheat endosperm proteins after 10 and 36 DAA. Comparing to his data we found that 

several stress/defense proteins identified in water stress fractions were not identified in 

optimal endosperm samples. 

In conclusion, Starch synthesis proteins were identified in wheat under water stress; 

however, it was reported that starch content in water stressed wheat is decreased causing 

low grain yield. Our data showed that stress response proteins were upregulated at early 

stage of development. This might suggest that the water stress response proteins have an 

inhibition effect on proteins involved on starch synthesis. 
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Fig 1. The 2-D gel electrophoresis of the ER-14 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions. 
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Fig 2. The 2-D gel electrophoresis of the ER-34 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions 
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Fig 3. The 2-D gel electrophoresis of the GC-14 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions. 
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Fig 4. The 2-D gel electrophoresis of the GC-34 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions. 
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Table 1. Protein identification of ER-14 DAA fraction of hard red spring wheat cv. Butte 

86 grown under stressed conditions, with theoretical molecular weight and MOWSE 

score. 

Spot Name Score Theoretical 

Mass 

1 ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit  25 18519 

2 P450 31 59520 

8 Elongation factor 1-beta  24 23073 

9 beta amylase  43 30872 

10 beta amylase  56 30872 

11 beta amylase  41 30872 

12 protein disulfide isomerase precursor  249 56406 

13 protein disulfide isomerase precursor  188 56594 

15 putative fatty acid desaturase TAZIP  26 35424 

16 heat shock protein HSP26  38 26482 

17 putative chromomethylase MTH2  27 10159 

18 beta amylase  30 30872 

19 Chloroplast 30S ribosomal protein S3 26 27546 

21 serpin  39 43091 

22 heat-shock protein  26 23070 

23 protein disulfide isomerase  179 41704 

24 protein disulfide isomerase  62 41704 

25 putative serine/threonine kinase  40 29422 

26 ER-localized cyclophilin  28 13586 

27 ER-localized cyclophilin  26 13586 

29 cyclophilin  29 18333 
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Table 1. (Continued) 
 
30 putative serine/threonine kinase  23 29422 

31 putative APETALA2 protein  37 15425 

32 putative serine/threonine kinase  40 29422 

33 putative serine/threonine kinase  32 29422 

35 chimeric SDH2-RPS14 protein  43 41027  

37 zinc finger protein  31 30176  

38 peroxidase 1  65 38799 

39 peroxidase 1 75 38799 

40 glyceraldehyde-3-phosphate dehydrogenase  77 36626 

41 glyceraldehyde-3-phosphate dehydrogenase  23 36626 

42 glyceraldehyde-3-phosphate dehydrogenase  63 36626 

43 phosphoenolpyruvate carboxylase  18 37221  

44 glyceraldehyde-3-phosphate dehydrogenase  49 36626 

45 cyclin dependent protein kinase  32 25658  

49 cytosolic 3-phosphoglycerate kinase  42 31315 

50 reversibly glycosylated polypeptide  47 41472 

51 ferredoxin-NADP(H) oxidoreductase  28 40206 

52 cytosolic malate dehydrogenase  48 35463 

53 cytosolic malate dehydrogenase  67 35463 

54 GSK-like kinase  33 43457     
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Table 1. (Continued) 
 
55 MYB transcription factor  22 29340     

56 MYB transcription factor  24 29340     

57 putative integral membrane protein that regulates cation conductance 20 24498 

58 heat shock protein HSP26  30 26482 

59 NADPH oxidase  22 29832  

60 avenin-like protein  28 32737  

61 nad9 27 33598 

62 polyphenol oxidase  31 32498 

63 putative resistance protein  47 54600     

64 MIKC-type MADS-box transcription factor WM10A  40 29010     

65 putative integral membrane protein that regulates cation conductance  45 24498 

66 27K protein  28 22758 

67 RGA2 27 21845 

68 CBFIVb-A20  25 23796 

69 stress responsive protein 26 22160 

70 RGA2 30 21845 

71 putative F-box protein  29 22383 

74 triosephosphat-isomerase  38 26786 

75 triosephosphat-isomerase 39 26786 

76 aspartate carbamoyltransferase  34 26094     

77 protein disulfide isomerase  95 11570 
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Table 1. (Continued) 
 
78 alpha amylase inhibitor 74 19621 

79 alpha amylase inhibitor 24 19621     

80 cystatin WC-1 35 15685 

82 DRP4 protein  32 8303 

84 ferredoxin precursor  33 16054 

85 Metallothionein-like protein  21 7371 

86 resistance protein  37 21857     

87 aquaporin 14 8179      

88 nitrate reductase 13  10135  

89 reverse transcriptase  26 9221      

90 Em protein  23 9981      

91 unnamed protein product  33 16092 

92 dehydrin  33 11521     

93 dimeric alpha-amylase inhibitor 25 13500 

94 eukaryotic translation initiation factor 3 subunit g 26 9223      

95 NBS-LRR type RGA  37 14814 

96 puroindoline B 22 15987 

 

 

 

 

 

 

 



 

 99

Table 2. Protein identification of ER-34 DAA fraction of hard red spring wheat cv. Butte 

86 grown under stressed conditions with theoretical molecular weight and MOWSE 

score. 

Spot Name Score Theoretical Mass 

1 limit dextrinase type starch debranching enzyme  38 105953 

2 gigantea 22 125887 

3 cytosolic small subunit ADP glucose pyrophosphorylase  53 51992 

4 receptor-like kinase  25 48839 

5 pyruvate orthophosphate dikinase  97 32558 

6 unknown 36 26148 

11 pyruvate orthophosphate dikinase  58 32558 

12 ethylene receptor-like protein  21 28536 

13 pyruvate orthophosphate dikinase  52 32558 

14 RGA2 25 21839 

15 small subunit ADP glucose pyrophosphorylase  55 52028 

16 aspartate carbamoyltransferase  24 26094 

17 putative cleavage stimulation factor subunit 1 30 45954 

18 gibberellin 3-oxidase 2-2 18 40329 

19 beclin 1 protein  19 56725 

21 glutathione-S-transferase 28e45  27 24766 

22 glutenin high molecular weight subunit  23 19908 

25 FLORICAULA/LFAFY-like protein  17 42670 

26 ribosomal protein L3B-2 30 44562 

27 uncoupling protein  26 30603 

28 glutathione transferase  21 25180 

29 20S proteasome beta 7 subunit  21 23687 
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Table 2. (Continued) 
 
30 putative synaptobrevin  24 24657 

31 putative ankyrin repeat protein  25 34054 

32 vesicle-associated membrane protein-associated protein  28 25729 

33 MADS-box transcription factor TaAGL27  16 27202 

35 ribosomal protein L3-A3 22 44555 

36 pyruvate orthophosphate dikinase  44 32558 

37 translationally controlled tumor protein  77 18794 

38 translationally controlled tumor protein  50 18794 

39 NBS-LRR type RGA  34 20082 

40 ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit  36 18519 

41 14-3-3 protein  45 29274 

42 alpha-amylase subfamily Amy2  23 3080 

43 ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit  31 19548 

44 W55b 24 6290 

45 high-molecular-weight glutenin subunit  26 15006 

46 putative beta-N-acetylhexosaminidase  20 5984 

47 cysteine protease  24 39182 

48 pathogenisis-related protein 1.1 22 17640 

49 rps1  35 19667 

50 ribosomal protein L17  30 15005 

51 dehydrin 5 30 11208 

52 adenine nucleotide translocator  37 35939 
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Table 3. Protein identification of GC-14 DAA fraction of hard red spring wheat cv. Butte 

86 grown under stressed conditions with theoretical molecular weight and MOWSE 

score. 

Spot Name Score Theoretical Mass 

1 pyruvate orthophosphate dikinase  66 32558 

2 putative APETALA2 protein  26 15425 

4 P450  17 59156 

5 protein disulfide isomerase precursor  48 56594 

6 ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit  20 18518 

14 pyruvate orthophosphate dikinase 57 32558 

21 14-3-3 protein  20 28361 

22 RGA 2  21 22011 

25 beta-expansin 2  25 28560 

32 cystatin 31 8532 

36 putative ankyrin repeat protein  21 34054 

49 glutathione S-transferase 1 9 24292 

50 adenine nucleotide translocator 25 35767 

52 putative L-ascorbate oxidase homolog  26 17744 

59  putative alanine aminotransferase  26 12196 
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Table 4. Protein identification of GC-34 DAA fraction of hard red spring wheat cv. Butte 

86 grown under stressed conditions with theoretical molecular weight and MOWSE 

score. 

Spot Name Score Theoretical Mass 

10 wheat 33K  17 10569 

25 ADP-glucose pyrophosphorylase large subunit  15 57772 

30 Ubiquitin-activating enzyme E1 3 16 116407 

35 pyruvate orthophosphate dikinase  36 32558 

36 ATP synthase beta subunit  70 59212 

37 cytosolic small subunit ADP glucose pyrophosphorylase  24 51992 

38 cytosolic small subunit ADP glucose pyrophosphorylase  80 51992 

39 pyruvate orthophosphate dikinase 28 32558 

40 pyruvate orthophosphate dikinase  102 32558 

41 thylakoid-bound ascorbate peroxidase  22 41240 

42 calmodulin TaCaM4-1 22 16821 

43 FIMBRIATA-like protein  28 42632 

44 26.6kDa heat-shock protein 21 26567 

45 GTP-binding protein  16 26729 

46 histone deacetylase HDAC2  27 33435 

47 expansin EXPB11 protein precursor  16 29865 

48 seed storage protein (154AA) 13 17225 

49 ubiquitin carrier protein 43 21112 
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Table 4. (Continued) 
 

50 Translationally-controlled tumor protein homolog (TCTP) 23 18794 

51 dimeric alpha-amylase inhibitor  20 13200 

52 kinase R-like protein  18 20261 

53 casein kinase-like protein  30 12826 

55 putative beta-N-acetylhexosaminidase  18 5984 

56 Bowman-Birk type proteinase inhibitor I-2B 25 6219 

57 glucosyltransferase 20 4560 

58 puroindoline-b 22 16628 

59 grain softness protein-1A  28 16924 
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Table 5. Summary of membrane proteins fractions identified by MALDI-TOF.   2-D 

electrophoresis protein spots excised from the gel, identified and  percentage of the 

identified protein spots. With the MOSWE score range. 

 Spots excised Spots Identified % identification MOWSE Score Range 

ER 14 DAA 96 79 82.3 % 13-249 
ER 34 DAA 53 44 83.0 % 16-97 
GC 14 DAA 60 15 25 % 9-66 
GC 34 DAA 59 27 45.7 13-102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 105

Table 6. 

The functions of the identified proteins of ER-14 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions 

Function Protein Spot 

Flowering Apetala2 31 

Carbohydrate metabolism Β-amylase 9,10,11,18 

 Glyceraldehyde-3-phosphate dehydrogenase  40,41,42,44 

 3-phosphoglycerate kinase 49 

 malate dehydrogenase 52,53 

 Triosephosphat-isomerase 74,75 

Protein synthesis/assembly Protein disulfide isomerase  12,13,23,24,77 

 Ribosomal protein 19 

 Cyclophilin 26,27,29 

 serine/threonine kinase 25,30,32,33 

 RGA2 67,70,95 

Photosynthesis Rubisco 1 

 P450 2 

 PEP-Carboxylase 43 

Grain texture Puroindoline B 96 

Storage proteins Avenin 60 

Nitrogen metabolism Aspartate carbamoyltransferase 76 

 Nitrate reductase 88 

Stress defense Hsp26 16,22,58 

 Resistance protein 63,86 

 Stress response protein 69 

 F-box 71 

 α-amylase inhibitor 78,79,93 

 Cystatin 80 

 Dehydrin 92 

 Serpin 21 

Lipid metabolism FA desaturase TAZIP 15 

Translation/Transcription Elongation factor 8 

 Zinc finger 37 

 MYB transcription factor 55,56 

 MADS-box 64 

 Reverse transcriptase  89 

 translation initiation factor 3 94 

Enzymatic browning Polyphenol oxidase 62 

Cell division Cyclin kinase 45 
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Table 7. 

The functions of the identified proteins of ER-34 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions 

Function Protein Spot 

Flowering Gigantea 2 

 Floricaula 25 

Carbohydrate metabolism Limit dextrinase 1 

 ADP glucose pyrophosphorylase 3,15,25 

 Pyruvate orthophosphate dikinase 5,11,13,36 

 α-amylase 42 

Protein synthesis/assembly RGA2 14,39 

 Ribosomal proteins 26,35,49,50 

 Ankyrin 31 

Photosynthesis Rubisco 40,43 

Storage proteins HMW-GS 22,45 

Nitrogen metabolism Aspartate carbamoyltransferase 16 

Signal transduction 14-3-3 41 

ATP interconversion Adenine nucleotide translocator 52 

Growth and development Gibberellin 3-oxidase 18 

 Beclin 1  19 

Translation/Transcription Cleavage stimulation factor 17 

 MADS-box 33 

 Tumor protein 37,38 

Stress defense Receptor-like kinase 4 

 Glutathione-S-transferase 21,28 

 Dehydrin 5 51 

Protein degradation 20S proteasome beta 7 subunit 29 

 Cysteine protease 47 

 Pathogenisis-related protein 1.1 48 

 
 
 
 

 
 

 
 

 
 

 



 

 107

 
Table 8. 

The functions of the identified proteins of GC-14 DAA fraction of hard red spring wheat 

cv. Butte 86 grown under stressed conditions 

Function Protein Spot 

Flowering Apetala2 2 

Cell Expansion β-expanisn 25 

Carbohydrate metabolism Pyruvate orthophosphate dikinase 1, 14 

Protein synthesis/assembly Protein disulfide isomerase precursor 5 

 RGA2 22 

 Ankyrin 36 

Photosynthesis Rubisco 6 

Signal transduction 14-3-3 21 

ATP interconversion Adenine nucleotide translocator 50 

Nitrogen metabolism Alanine aminotransferase 59 

Stress defense Glutathione S-transferase 1 49 

Protein degradation Cystatin 32 
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Table 9. 

The functions of the identified proteins of GC-34 DAA fraction of hard red spring wheat cv. Butte 86 

grown under stressed conditions 

Function Protein Spot 

Flowering FIMBRIATA-like protein  43 

Carbohydrate metabolism ADP-glucose pyrophosphorylase 25,37,38 

pyruvate orthophosphate dikinase  35,39,40 

Glucosyltransferase 57 

Cell expansion Expansin 47 

Grain texture Puroindoline-b 58 

Grain softness protein-1A  59 

Storage proteins Storage protein 48 

Signal transduction GTP-binding protein  45 

Histone deacetylase HDAC2  46 

Casein kinase-like protein  53 

Translation/Transcription Translationally-controlled tumor protein homolog 50 

Kinase R-like protein 52 

ATP interconversion ATP synthase beta subunit  36 

Stress defense Ubiquitin-activating enzyme E1 3 30,49 

Bowman-Birk type proteinase inhibitor I-2B 56 
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Findings and Conclusions: Based on equal volume of extraction, higher relative amount 
of protein from RP-HPLC area of gliadins and LMW-GS of stressed compared to optimal 
fractions, while lower relative amount of protein concentration was observed in the 
stressed fractions of HMW-GS compared to optimal fractions, with the caveat that 
systematic errors in actual protein amount may occur. Water stress produced change in 
the expression of HMW-GS 5+10 which are encoded by the gene Glu-D1 by 
upregulating the Glu-D1x and downregulating the Glu-D1y. During early and late stages 
of development several starch synthesis proteins were identified accompanied with 
upregulation of the expression of stress and defense proteins. Dehydrin, Hsp26, 
Glutathione-S-Transferase, and receptor-like kinase among stress response proteins were 
good candidates to have an inhibition effect on starch synthesis enzymes that need to be 
further investigated. 


