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CHAPTER I 
 

INTRODUCTION 
 

Zinc (Zn) and copper (Cu) are both transition molecules positioned at number 29 

and 30, respectively, in the periodic table of elements.  Zinc, first identified as an 

essential nutrient for animals in 1934 (Pond et al., 1995), is widely utilized in biologic 

systems in cell proliferation, particularly for protein and nucleic acid synthesis 

(Underwood, 1977).  Similarly, Zn is a constituent of a wide variety of metalloenzymes 

that include carbonic anhydrase, alkaline phosphatase and pancreatic carboxypeptidase, 

as well as a cofactor in several proteolytic enzymes, and is a binding component in the 

storage of insulin (Underwood, 1977; Aspinwall et al., 1997).  Because Zn is necessary 

for formation of proteins (Pond et al., 1995), it has been implicated as a requirement for 

proper function of both growth hormone and insulin-like growth factor-1 (MacDonald, 

2000).  Zinc is absorbed throughout the small intestine at 5 to 40% of intake, and 

absorption is regulated by the enterocyte (Pond et al., 1995).  Deficiency of Zn is 

generally characterized by growth retardation (Underwood, 1977; Pond et al., 1995) 

postulated to be caused by a decrease in thymidine kinase activity and subsequent DNA 

synthesis and cell division (Underwood, 1977).  This phenomenon is explained very well 

by Underwood (1977), and it is also suggested that this can be further exacerbated by the 

reduction in appetite common with Zn deficiency in laboratory animals. 
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Copper, first identified as an essential nutrient in 1928 (Pond et al., 1995), is also 

utilized in a wide variety of physiological functions such as immune response, lipid 

metabolism, oxidative stress, cardiovascular disorders and glucose metabolism (Davis 

and Mertz, 1987).  Both Cu and Zn have been implicated in the impairment of 

keratinization during deficiency (Underwood, 1977; Davis and Mertz, 1987), and hence 

the formation of hair, fur, wool and skin, which is the first line of defense for the immune 

system.   

Supplementation of Zn and Cu has been implicated as advantageous in a wide 

range of beef production settings. The purpose of the research conducted for the present 

dissertation was to evaluate the effects of Cu level and Zn level and source on 

performance and carcass merit of cattle fed high-concentrate diets.
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CHAPTER II 
 

REVIEW OF LITERATURE 
 

Zinc and Copper Status 
 

Knowledge of mineral status is important for any study designed to evaluate the 

effects of the mineral(s) in question.  Measurement of Zn and Cu status has focused 

primarily on blood and hepatic indices of Zn and Cu concentration.  While hepatic Cu 

concentration is influenced by dietary Cu levels and specific disease factors, 

modifications of dietary Zn cause only small changes in hepatic Zn concentration 

(Cousins, 1985).  Although the previous statement is characteristic of hepatic Cu and Zn 

for nonruminant species, aspects of hepatic mineral concentrations may differ for 

ruminants. 

The liver cytosol contains Zn- and Cu-binding proteins (Underwood, 1977).  

Ruminants appear to have a high capacity to bind Cu in the liver, as well as a low 

capacity for excretion (NRC, 1996).  Consequently, blood Cu levels do not rise in 

ruminants in response to the same extent as in rats (Davis and Mertz, 1987).  This fact is 

important to understand in experimental settings where blood levels are neither 

borderline for deficiency nor toxicity.  However, Cu concentrations consistently below 

0.6 µg/mL in whole blood or plasma are generally considered indicative of Cu deficiency 

in cattle and sheep.  Zinc is also largely stored for metabolism in the liver. While 
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measurements of blood or plasma Zn concentrations change reflective of oral Zn intake, 

their reliability as an index of Zn status is suspect, similar to Cu (NRC, 1996). 

Both Zn and Cu absorption are affected by dietary levels, and hence Zn and Cu 

status are influenced by diet.  When Zn and Cu status are low uptake is increased 

(Underwood, 1977; Davis and Mertz, 1987).  When Cu and Zn are needed by peripheral 

tissues they are released from the liver bound primarily to ceruloplasmin and albumin 

(Cousins, 1985).  Efflux of Cu and Zn from the liver depends specifically on intracellular 

factors that might favor retention of Cu and Zn within the cells, and the availability of 

ligands circulating to bind with these minerals from the liver (Cousins, 1985).  It is not 

clear which ligands are responsible for control of these changes, but albumin and amino 

acids in response to muscle catabolism have been implicated for Zn (Cousins, 1985).  In 

addition, glucocorticoids exert control over Cu metabolism.  Glucocorticoids increase Cu 

uptake by liver cells and increase Cu excretion from the liver bound to ceruloplasmin 

(Cousins, 1985).   

 
Immune Function 

Zinc has long been implicated in parakeratosis in animals reared in practical 

feeding operations, and likely led to intensive research of minerals in animal nutrition 

(Lueke, 1966).  Zinc and copper have been shown to play a major role in disease 

resistance and immune responsiveness in stressed feeder cattle.  For example, Chirase et 

al. (1994) found that an organic source of Zn reduced the recovery time for cattle 

challenged with an infectous bovine rhinotracheitis virus (IBRV).  Moreover, Ward and 

Spears (1997) showed that supplemental Cu (5 mg/kg of dry matter [DM]) increased DM 
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intake (DMI) during the receiving period, which is a critical time for shipping stressed 

calves.  During this receiving period it is imperative that calves are stimulated to establish 

adequate DMI.  Cole (1996) stated that although proper nutrition cannot prevent 

infection, proper nutrition can decrease the adverse effects of stress and enhance recovery 

from stressful periods.  Both Zn and Cu have been implicated in basic operation of 

immune function.   

Zinc. Because Zn is required by more than 200 enzymes as a functional 

component, and these enzymes affect most metabolic processes (MacDonald, 2000), it is 

inherent that function of the immune system will be affected by Zn status.  Protein 

formation is imperative for adequate immune status in times of infection for production 

of antibodies, lymphocytes and acute phase proteins.  Zinc is associated with the process 

of protein formation via the Zn finger domains that are used in the formation of a bridge 

between cysteine and histidine residues in the process of binding to specific DNA 

sequences (MacDonald, 2000).   

Zinc requirement for growth is listed by the NRC (1996) as 30 mg Zn/kg of DM; 

however, this requirement may be increased during stress to 75 to 100 mg Zn/kg of DM 

(NRC, 1996).  Orr et al. (1990) reported that serum Zn concentration decreased in 

response to market-transit stress and to challenge with IBRV.  While the decrease in 

serum Zn concentration corresponded with a reduction in DM (and thus Zn) intake that 

commonly occurs during periods of stress or infection, the decrease in serum Zn 

concentration after IBRV challenge was still present when DMI was held constant.  

Similar results were reported by Chirase et al. (1990, 1994), who reported lower serum 

Zn concentrations in response to IBRV challenge with both organic and inorganic Zn 
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sources.  In contrast, Nockels et al. (1993) reported an increase in serum Zn concentration 

when stress was simulated by administration of ACTH (every 8 h for 72 h) and removal 

of feed and water for 36 h.  The increase in serum Zn concentration, in contrast to 

previous work, was postulated to be caused by increased Zn released from catabolized 

muscle during the fasting period (Nockels et al., 1993).  During this period of elevated 

stress, when the requirement for Zn appears to be slightly elevated, retention of ingested 

Zn appears to be lowered.  Nockels et al. (1993) reported that although there was lower 

urinary and fecal excretion of Zn, retention of Zn was negative when fasting was 

followed by ACTH-induced stress.  These experimental conditions were designed to 

simulate those encountered by feeder calves that are purchased and transported to 

growing or finishing facilities.  The consequences of this type of management are not 

only a removal of feed and water, but also an increase in stress incurred by the animal, 

which could lead to increased morbidity and the need for increases in at least dietary Zn 

concentrations, if not absolute Zn requirements.   

It has been reported that during the acute phase response Zn is redistributed from 

the plasma to the liver and to lymphocytes (Beisel, 1995).  Zinc has been postulated to 

reduce localized infections via its high concentration in mucosal secretions, and during 

deficiency, barrier and nonspecific immunity are compromised (Shankar and Prasad, 

1998).  Nonspecific immunity can be of great importance in respiratory infection of 

stressed cattle due to the manifestation of infection via binding of viruses in the upper 

pulmonary tract.  These viruses subsequently cause damage to the pulmonary epithelium 

allowing potential bacterial pathogens access to the lung (Griffin, 1996).  In humans, Zn 

has been directly implicated in inhibiting the binding of the common cold virus to the 
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upper respiratory epithelium (Novick et al., 1996).  This is accomplished by 

administration of either Zn lozenges or nasal spray. Zinc ions bind to the virus at the sites 

it would normally bind to the epithelium, and reduces the viruses’ ability to bind to the 

epithelium (Novick et al., 1996).  In steers, Galyean (1995) reported supplementation 

with 100 mg Zn/kg of DM from organic or inorganic sources resulted in half as many 

steers treated for BRD than those receiving 30 mg Zn/kg of DM from ZnSO4, or those 

receiving 65 mg Zn/kg of DM (30 mg Zn/kg of DM from ZnSO4 plus 35 mg Zn/kg of 

DM from Zn methionine).  Similarly, Kegley et al. (2001) reported that calves fed 360 

mg of supplemental Zn/d had greater response to intradermal injection of 

phytohemagglutinin (PHA), suggesting greater cell-mediated immune response.  Engle et 

al. (1997) also observed greater response to PHA when calves were fed 40 mg Zn/kg of 

DM (from ZnSO4) vs.17 mg Zn/kg of DM (from the basal diet). 

Copper.  Similar to Zn, Cu has been implicated in the effectiveness of immunity.  

Copper has been suggested to have a strong anti-inflammatory effect (Davis and Mertz, 

1987) and to support the integrity of the host defense system (Failla and Hopkins, 1998).  

Ceruloplasmin is a Cu-containing acute phase protein whose secretion is increased by 

infection, inflammation, and ACTH and, it has been postulated to assist in oxidative 

stress (Cousins, 1985).  Due to the role of ceruloplasmin in Cu transport, it may play an 

important role in transport of Cu to inflammation sites for use as an antioxidant to 

prevent tissue damage (Stabel et al., 1993).  Stabel et al. (1993) reported lower 

ceruloplasmin activities in preruminant calves fed a milk replacer with < 1.0 mg Cu/kg of 

DM during a 30-d challenge period with IBRV and Mannheimia haemolytica. Another 

Cu-containing enzyme of oxidative importance is Cu, Zn-superoxide dismutase 
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(CuZnSOD).  This enzyme catalyzes superoxide radicals to the less oxidative hydrogen 

peroxide molecule and hence lessens the oxidative burden (Fridivich, 1975).  Normal 

respiration and the activity of phagocytic leukocytes increase the accumulation of 

superoxide radicals and SOD becomes important in reducing the damage to tissue that 

occurs during inflammation (Arthington, 1996).  Stabel et al. (1993) reported decreased 

liver CuZnSOD activity in calves supplemented with milk replacer that contained < 1.0 

mg Cu/kg of DM vs. Cu supplemented controls after a 30-d disease challenge.   

An early sign of Cu deficiency is neutropenia (Percival, 1995), in which the 

number of neutrophils are reduced in the circulating blood.  This can be of great 

importance because neutrophils are important for innate cell mediated immunity and 

initiating the inflammatory response, particularly in response to bacterial infection 

(Parham, 2000).  In contrast, Arthington et al. (1996) reported increased neutrophil 

numbers in response to bovine herpes virus-1 challenge in heifers supplemented with 

adequate levels of Mo to reduce Cu status, suggesting that even in periods of 

compromised Cu status, immune challenge will increase neutrophil concentration.  

Impairment of immunity has been observed in humans when indexes of Cu status are 

normal (Percival, 1998).  Similar situations exist in cattle when liver and blood indexes of 

Cu status are normal, but immune function on some level is impaired.  Xin et al. (1991) 

reported decreased bactericidal capacity of polymorphonuclear neutrophils when Cu 

status was decreased by Mo and S addition to the diet.  Polymorphonuclear neutrophils 

are among the most important phagocytes for defending the body against pathogenic 

microorganisms, and a reduction in Cu status can lead to increased susceptibility to 

disease (Xin et al., 1991). 
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While plasma Zn concentration is decreased in periods of immune challenge or 

stress, the opposite appears to be true for Cu.  Serum Cu has been reported to increase in 

response to disease challenge (Orr et al., 1990; Nockels et al., 1993; Chirase et al., 1994) 

and in steers that had experienced market-transit induced stress (Ward and Spears, 1999).  

These increases in serum Cu concentrations are likely due to the increase in 

ceruloplasmin and neutrophils that are present in the early stages of infection.     

 
Effects on Growth Performance – Zinc 

 

In addition to their positive effects for stressed cattle, Zn and Cu have been shown 

to influence performance of finishing cattle.  While it is common place for nutritionists to 

formulate supplements with Zn and Cu concentrations that exceed those suggested by the 

1996 NRC for both receiving and finishing cattle (Galyean, 2002), reported results for 

performance variables with these supplementation strategies are inconsistent.  As 

previously discussed, a relatively strong case has been made for Cu supplementation 

above recommended levels for enhancing immune function.  Supplementation of Zn 

above NRC (1996) appears to be due to the perceived performance or carcass advantages 

that can be gained. 

The NRC (1996) recommends 30 mg Zn/kg of DM consumed to satisfy 

requirements in most situations.  In situations that compare Zn deficient diets to controls 

or Zn repleted diets, there is generally a noticeable increase in DMI with Zn adequate 

diets or increased Zn levels in the diet for laboratory animals (Underwood, 1977).  This 

response, however, is not consistently observed in ruminants.  Several authors have 

reported no difference in DMI over a wide range of Zn concentrations and sources when 
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fed in pen-fed situations (Greene et al., 1988; Spears, 1989; Berrie et al., 1995; Engle et 

al., 1997; George et al., 1997).  Beeson et al. (1977) reported increases in DMI with 

supplemental Zn (0, 20, 40, 60, and 80 mg Zn/kg of DM) when cattle were fed on an 

individual basis, but no difference when cattle were group fed (0, 20, 60, 140, 320, and 

600 mg Zn/kg of DM).  Malcolm-Callis et al. (2000) reported a linear decrease in DMI 

with Zn concentrations from ZnSO4 at 20, 100, and 200 mg Zn/kg of DM, and higher 

intakes of DM when Zn methionine was fed vs. Zn polysaccharide complex during the 

initial 28-d of the feeding period.  When steers were fed Zn, Cu, Mn, and Co at 1 and 1.5 

times the NRC (1996) recommendations from organic minerals (Availa-4®, Zinpro, Eden 

Prairie, MN), or 1.5, 3 and 6 times the NRC (1996) recommendations from inorganic 

sources, DMI was decreased only when these minerals were fed at 6 times the 

recommended level (Rhoads et al., 2003).  This instance was also present during the first 

28-d of the feeding period when cattle should be at the greatest risk for respiratory 

infection (Rhoads et al., 2003).  The link to supplemental Zn source and stress or immune 

challenge is further illustrated by Chirase et al. (1991, 1994).  When steers were fed ZnO 

versus Zn methionine and challenged with IBRV, the decrease in DMI due to challenge 

with IBRV was lesser for steers supplemented with Zn methionine than for steers fed 

ZnO (Chirase et al., 1991; Chirase et al., 1994).  Longer-term differences in DMI were 

reported by Galyean et al. (1995) when steers were fed control (30 mg Zn/kg from ZnO), 

control + 35 mg Zn/kg from Zn methionine, control + 70 mg Zn/kg from ZnSO4, or

control + 70 mg/kg Zn from Zn methionine.  The authors noted greater DMI throughout 

the finishing period for all Zn supplemented treatments vs. controls (Galyean et al., 

1995).  The maintenance of Zn intake is particularly important in the initial phase of the 
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feeding period and coincides with intake responses when stress or illness is prevalent, 

leading to an assumption of better health status due either to increased DMI or more 

closely meeting the absolute requirement for Zn.  The maintenance of greater intakes 

throughout the finishing period seems to be harder to explain and much less consistent in 

its occurrence.   

 Average daily gain (ADG) has also met with inconsistency when measured over a 

range of Zn levels and sources.  Several authors have reported no differences for body 

weight (BW) or ADG over a range of Zn concentrations and sources and production 

situations (Beeson et al., 1977; Pond, 1983; Green et al., 1988; Berrie et al., 1995; Engle 

et al., 1997; Rhoads et al., 2003).  Few authors have reported significant differences for 

ADG that last the entire feeding period attributable to Zn source or concentration.  In a 

series of trials, Perry et al. (1968) reported greater ADG in steers fed ZnO supplemented 

diets (ranging from 124 to 346 mg Zn/kg of diet) vs. control diets with no supplemental 

Zn (ranging from 18 to 29 mg Zn/kg of diet) for feeding periods ranging from 84 to 202 

d.  In contrast, in an effort to define toxicity of Zn, Ott et al. (1966) reported a linear 

decrease in ADG with supplemental ZnO at 100, 500, 900, 1,300, 1,700, and 2,100 mg 

Zn/kg of diet.  Similarly, Malcolm-Callis et al. (2000) reported a linear decrease in ADG 

when Zn was supplemented at 20, 100, or 200 mg Zn/kg of DM from ZnSO4.

Several authors have reported increases in BW and ADG in the initial portion of 

the feeding period, which could speak to the enhanced immune status of experimental 

animals and a potential decrease in maintenance energy requirements.  Kegley et al. 

(2001) reported greater ADG for calves supplemented with a Zn amino acid complex vs. 

ZnSO4 or no supplemental Zn from d 14 to 28 of a receiving study.  Spears (1989) 
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reported higher ADG from d 0 to 56 of a 126-d feeding period for heifers supplemented 

with ZnO or Zn methionine at 25 mg Zn/kg of DM (basal diet contained 23.8 mg Zn/kg 

of DM).  In a study comparing level and source of Zn supplementation, Galyean et al. 

(1995) reported no difference in ADG during the receiving period (28 d) or the finishing 

period (161 d), but differences were noted when cattle were changed from a 65% 

concentrate diet to a 90% concentrate diet during the step-up protocol.  Steers that were 

supplemented with 70 mg Zn/kg of DM (from ZnSO4 or Zn methionine) had greater 

ADG than controls or those supplemented with 35 mg Zn/kg of DM from ZnSO4

(Gaylean et al., 1995).  The same steers that experienced increased ADG experienced half 

as much morbidity as those supplemented at lower levels of Zn concentration in the diet 

(Galyean et al., 1995).  Malcolm-Callis (2000) reported that steers supplemented with a 

Zn amino acid complex had greater ADG than those that consumed a Zn polysaccharide 

complex during the last 15 d of the feeding period.  Although not significant, Zn amino 

acid complex diets elicited 24% greater ADG than diets containing ZnSO4 (Malcolm-

Callis, 2000).  This increase in weight gain late in the feeding period could be linked to 

the ability of Zn to increase uptake of insulin-dependent metabolites (Shisheva et al., 

1992; Xioa-han et al., 2001), and the reduction in insulin sensitivity that occurs with 

increasing age, degree of fatness, and BW (Eisemann et al., 1997). 

 A large body of research has been conducted in murine models in an effort to 

define the interaction of Zn and insulin with respect to uptake of substrates by adipocytes.  

Sensitivity to insulin decreases in beef cattle with increasing age and fatness (Eismann et 

al., 1997), and could contribute to decreased gain efficiency typically observed in the late 

portion of the finishing phase.  Interestingly, Droke et al. (1993) reported serum insulin 
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levels were lowered in lambs fed a Zn deficient diet.  Insulin stimulates fatty acid 

synthesis by two direct mechanisms:  increasing glucose transport through the cell 

membrane, and decreasing activity of hormone sensitive lipase (Beitz, 1993).  Recently, 

Zn has been shown to increase the uptake of glucose and lipogenesis in murine models in 

vitro (Shisheva et al., 1992; Tang and Shay, 2001).  Shisheva et al. (1992) reported that 

the combination of Zn and insulin in media preparations exhibited an additive effect on 

glucose incorporation into lipids.  Additionally, Zn was effective in stimulating glucose 

oxidation by both glycolysis and the pentose phosphate pathway (Shisheva et al., 1992).  

Zinc appears to circumvent some effects of lowered insulin sensitivity in streptozocin 

induced diabetic rats by increasing glucose conversion into lipids to a greater degree than 

can be attributed solely to insulin (Shisheva et al., 1992).  Ilouz et al. (2002) reported that 

Zn ions at physiological concentrations (~15 µM) act as uncompetitive inhibitors of 

glycogen synthase kinase -3β, which attenuates insulin signaling, and further suggested 

that the increased glucose uptake is likely mediated through the insulin sensitive 

transporter GLUT 4.  Therefore, the insulin mimetic action of Zn substantiates the 

additive effect of Zn on increased fat deposition where glucose is a major precursor to fat 

synthesis in the adipocyte in the nonruminant.   

Similar to ADG, diverse results have been reported for Zn levels and sources in 

reference to measurements of gain efficiency.  Several authors have reported no 

differences is gain efficiency over a range of Zn levels and sources (Beeson et al., 1977; 

Greene et al., 1988; Berrie et al., 1995).  In contrast, Rhoads et al. (2003) reported greater 

kg ADG/kg DMI (gain efficiency) over the entire feeding period for steers that were fed 

inorganic mineral sources at 1.5 and 3 times NRC (1996) recommendations vs. those fed 
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inorganic mineral sources at NRC (1996) recommended levels.  The same authors noted 

no difference between organic and inorganic mineral sources fed at 1.5 times NRC 

(1996) recommendations (Rhoads et al., 2003).  Spears (1989) reported greater gain 

efficiency in response to Zn supplementation during the first 56 d, and that heifers 

supplemented with Zn methionine had lower plasma urea N concentrations than animals 

consuming ZnO on d 42.  The author suggested greater utilization of amino acids by 

heifers consuming Zn methionine as a potential cause for increased gain efficiency, but 

could not attribute this phenomenon strictly to Zn suggesting that increased dietary 

methionine might also elicit this response (Spears, 1989).  Malcolm-Callis et al. (2000) 

reported a linear increase in gain efficiency from d 56 to 84 as Zn concentration increased 

in the diet (20, 100, 200 mg Zn/kg of DM from ZnSO4), and increased gain efficiency 

from d 112 to 126 for steers fed a Zn amino acid complex vs. ZnSO4. Interestingly, fat 

thickness for steers supplemented with Zn amino acid complexes was greater than for 

steers supplemented with ZnSO4 (Malcom-Callis et al., 2000).  Although inconsistent, 

performance results in response to Zn source and level appear to be evident at either the 

beginning or the end of the feeding period.  These results suggest that performance 

enhancement near the beginning of the feeding period are likely linked to enhanced 

immune status during stress or disease challenge, and the associated decrease in 

maintenance energy requirement.  Conversely, the increase in performance, particularly 

gain efficiency, near the end of the feeding period might be linked to increased substrate 

utilization for fat deposition. 
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Effects on Carcass Merit – Zinc 

 
The effects of Zn on carcass characteristics have met with more consistent results.  

Although Zn is highly involved in protein synthesis, the majority of carcass results with 

increasing dietary Zn concentration or availability suggests that Zn has the greatest effect 

on fat deposition.  Galyean et al. (1995) reported no differences in carcass characteristics 

when cattle were fed no supplemental Zn, 35 mg Zn/kg of DM from Zn methionine or 70 

mg Zn/kg of DM from either ZnSO4 or from Zn methionine.  However, Malcolm-Callis 

(2000) reported greater external fat and yield grade for steers fed 20 vs. 100 mg Zn/kg of 

DM, and greater kidney, pelvic and heart fat (KPH) and external fat for calves fed 

organic (Zn amino acid complex and Zn polysaccharide complex) vs. those fed ZnSO4

with no effects on intramuscular fat deposition.  Greene et al. (1988) and Spears and 

Kegley (2002) reported increases in marbling and external fat thickness when organic Zn 

vs. control was fed.  Although ZnO and Zn methionine are apparently absorbed at similar 

rates (Spears, 1989), there appears to be differences in the way organic and inorganic 

sources of Zn are metabolized.  Spears (1989) reported that there was lower urinary 

excretion of Zn and a slower rate of decline in plasma Zn concentration for lambs given 

an oral dose of Zn methionine vs. those given ZnO.  The author further suggested that Zn 

absorbed as Zn methionine without modification may behave differently than the pool of 

Zn that is transported bound to albumin (Spears, 1989).  This difference in metabolism of 

Zn could partially explain enhanced gain efficiency and fat deposition in the late stages of 

the finishing period for cattle fed organic Zn. 

 The increase in both ADG and gain efficiency late in the finishing period could be 

due to the interaction of Zn in enhancing the ability of adipose cells to incorportate 
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substrates into stored fatty acids and triglycerides.  The primary substrates utilized as 

lipogenic precursors are lactate, acetate and glucose (Smith and Crouse, 1984).  Although 

glucose is not traditionally considered a highly utilized substrate in ruminants, it does 

appear to have importance in fat deposition, particularly in intramuscular adipocytes.  

Smith and Crouse (1984) reported that glucose was incorporated at a higher percent in 

intramuscular fat than in subcutaneous fat tissue when evaluated quantitatively.  The 

same authors stated that on an absolute basis there was more glucose incorporated into 

subcutaneous adipose tissue than intramuscular adipose tissue (Smith and Crouse, 1984).  

In in vitro models with rat adipocytes, concentrations of 10 µM of Zn have been reported 

to increase hexose uptake threefold over non-treated controls (Ilouz et al., 2002).  In 

murine models, Zn has been shown to increase glucose uptake in adipose cells both alone 

and additively in the presence of insulin.  Shisheva et al. (1992) reported that in vitro 

conversion of glucose to lipids was 138% of maximal stimulation when Zn and insulin 

were present in the media, and 71% of maximal stimulation when Zn alone was present 

in the media.  These comparisons were made considering media with no Zn or insulin to 

be 0%, and media with insulin only to be 100% (Shisheva et al., 2002).  Of particular 

importance was that Zn had a stimulatory affect on glucose utilization by rat adipocytes 

(both via glycolysis and the pentose phosphate pathway), with the greatest response of Zn 

via the pentose phosphate pathway (Shisheva et al., 2002).  When the same 

measurements were taken on rats that had streptozocin induced diabetes the effect of Zn 

alone was fivefold that of insulin (Shisheva et al., 2002).  Similarly, Tanaka et al. (2001) 

reported that Zn promoted adipogenesis in 3T3-L1 adipocytes with or without insulin 

using measurements of glycerol phosphate dehydrogenase activity as an indicator of 
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adipogenesis.  Although glucose has been established as an important substrate in 

adipogenesis for beef cattle, and the relationship with Zn can be clearly established, the 

greatest responses were observed when organic Zn sources were compared to ZnO.  It is 

also important to note that acetate and lactate are major contributors to carbons in 

deposited fatty acids, and current research does not illustrate the relationship between Zn 

and these substrates incorporation into fat depots.   

 
Effects on Growth Performance – Copper 

 
As with Zn, performance responses in relation to Cu concentration in the diet or 

Cu source used in the diet have produced inconsistent results.  Multiple authors have 

reported no difference in DMI in response to varied levels and sources of dietary Cu 

during both growing and finishing periods (Galyean et al., 1995; George et al., 1997; 

Engle and Spears, 2000a; Engle and Spears 2001; Lee et al., 2002).  Engle et al. (2000b) 

reported a decrease in DMI for steers fed 20 mg Cu/kg of DM from CuSO4, Cu citrate, 

Cu proteinate, or Cu chloride and for steers fed 40 mg Cu/kg from CuSO4 vs. control 

diets.  The authors attributed this decrease in DMI and subsequent decrease in ADG and 

gain efficiency to inhibition of ruminal fermentation from high dietary Cu.  Essig et al. 

(1972) reported decreased acetic, propionic, butyric, and total volatile fatty acid (VFA)

concentrations 2 h after feeding in response to supplementation with 1,600 mg Cu/kg of 

DM.  In contrast, when in vitro dry matter disappearance (IVDMD) was measured on 

diets with concentrations of 0, 10, or 20 mg Cu/kg of DM, no differences were reported 

in IVDMD, or concentrations of acetate, propionate, isobutyrate, butyrate, isovalerate, or 

valerate (Engle and Spears, 2000a).  Engle et al. (2000b) fed CuSO4 and reported greater 
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DMI over a 112-d finishing period when 10 and 40 mg Cu/kg of DM were supplemented 

vs. no supplemental Cu.  When Cu was fed below the NRC (1996) recommendation of 10 

mg Cu/kg of DM, Ward and Spears (1997) reported increased DMI during a 28-d 

receiving period in response to Cu supplementation of 5 mg Cu/kg of DM vs. no copper 

supplementation (the basal diet contained 5.2 mg Cu/kg of DM).  It appears from these 

data that increases in dietary Cu concentrations above NRC (1996) recommendations 

might increase DMI if the basal diet does not satisfy the animal’s requirements.  

However, it appears that high levels of Cu can inhibit ruminal function, especially if the 

Cu source is readily available to ruminal microbes.   

 Several studies have reported no differences for ADG when CuSO4 or Cu lysine 

was supplemented over controls in both receiving and finishing trials (Essig et al., 1972; 

Galyean et al., 1995; Engle and Spears, 2000a; Engle and Spears, 2001).  In contrast, 

Ward and Spears (1997) reported a tendency for 5 mg Cu/kg of DM from CuSO4 to 

increase ADG when supplemented to a diet below the NRC (1996) recommendation for 

Cu.  Engle and Spears (2000b) reported a decrease in ADG with 20 mg Cu/kg of DM 

from CuSO4, Cu citrate, Cu proteinate, or Cu chloride, and with 40 mg Cu/kg of DM 

from CuSO4 vs. unsupplemented controls.  The basal diet in this study contained 10.2 mg 

Cu/kg of DM.  The authors attributed the decreased performance to potential inhibition of 

ruminal fermentation due to high-dietary levels of Cu (Engle and Spears, 2000b).  

Researchers from the same laboratory (Engle et al., 2000) reported a tendency towards 

increased ADG for steers fed 10 or 40 mg Cu/kg of DM from CuSO4 vs. control diets 

with no supplemental Cu.  The basal diet in this study contained 9.9 mg Cu/kg of DM 

(Engle et al., 2000).  Lee et al. (2002) observed a tendency for higher ADG for steers 
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consuming 10 mg Cu/kg of DM from a Cu amino acid complex than for steers 

supplemented with 10 mg Cu/kg of DM from CuSO4, when the basal diet contained 7.1 

mg Cu/kg of DM.   

 Gain efficiency follows the same pattern of inconsistency with regard to Cu 

supplementation.  In several instances Cu supplementation has not affected gain 

efficiency over a range of Cu levels and sources in diets for both receiving and finishing 

cattle (Essig et al., 1972; Galyean et al.,1995; Engle et al., 2000b; Engle and Spears, 

2000b; Engle and Spears, 2001; Lee et al., 2002).  Engle and Spears (2000b) reported a 

decrease in gain efficiency when Cu was supplemented at 20 mg Cu/kg of DM from 

CuSO4, Cu citrate, Cu proteinate, and Cu chloride or 40 mg Cu/kg of DM from CuSO4

vs. non-supplemented controls.  The authors postulated inhibition of ruminal 

fermentation caused by high dietary Cu levels for lowered performance (Engle and 

Spears, 2000b).  When researchers from the same laboratory conducted a similar trial 

with CuSO4 supplementation at 10 or 20 mg Cu/kg of DM, no differences were observed 

with respect to performance (Engle and Spears, 2000a).  While performance responses to 

Cu supplementation are not consistent and their mechanisms are not clear, Lee et al. 

(2002) suggested that dietary Cu agonists (S, Mo, Zn, and Fe), environmental and health 

factors, and breed differences could possibly affect an animal’s response to Cu 

supplementation. 

 
Effects on Carcass Merit – Copper 

 
Copper supplementation at approximately 1.5 to 2 times NRC (1996) 

recommended levels has generally decreased the deposition of external fat (Ward and 
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Spears, 1997; Engle et al., 1998; Engle and Spears 2000a; Engle et al., 2000a; Engle et 

al., 2000b; Engle and Spears, 2001; Lee et al., 2002).  Engle and Spears (2000a) reported 

a decreased dressing percentage as well as a reduction in external fat with supplemental 

Cu, and postulated a reduction in fatty acid synthase as a potential causative factor.  

Research in poultry has indicated a decrease in fatty acid synthase with elevated levels of 

Cu (Konjufca et al., 1997).  Ward and Spears (1997) observed larger longissimus muscle 

areas and lower USDA Yield Grades with inclusion of levels of Cu to basal diets that 

were below NRC (1996) recommendations.  Engle et al. (2000a, 2000b) reported 

increased serum cholesterol concentrations and increased cholesterol concentrations in 

longissimus muscle of finishing cattle at both 10 and 20 mg Cu/kg of DM from CuSO4.

Supplemental Cu has also been observed to alter the fatty acid profile of longissimus 

muscle sections.  Concentrations of 18:2, 18:3, and total polyunsaturated fats have been 

increased with supplemental dietary Cu in finishing steers (Engle et al., 2000a, 2000b).  

Although Cu has been shown to clearly reduce subcutaneous fat deposition, there appears 

to be little if any effect on intramuscular fat deposition, marbling or USDA Quality Grade 

(Ward and Spears, 1997; Engle et al., 1998; Engle et al., 2000a; Engle et al., 2000b; 

Engle and Spears 2000a; Engle and Spears, 2001; Lee et al., 2002).  The mechanism of 

the effect of Cu on fat metabolism is still unproven and warrants further research. 

 
Conclusions 

 
Both Zn and Cu have been shown to influence beef cattle performance.  While 

both are intricately involved in immune function, the requirements recommended by 

NRC (1996) are set with animal growth as a goal.  Although this should encompass some 
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aspects of immune function, inherently the requirements for neutrophils immune 

response may be greater than those for maximal growth.  This is evidenced by reductions 

in immune function at levels of dietary or serum Zn and Cu that are not sufficiently low 

to cause a deficiency by current measurements.  Performance results for both Zn and Cu 

have met with varied response, and seem to reflect either the previous mineral status or 

how close the basal diet is to the animal’s requirement for the respective mineral.  If 

either Zn or Cu are marginally deficient in either the animal or the diet, supplementation 

will likely increase indices of performance.  It is plausible that high levels of Cu can 

inhibit ruminal function due to its microbicidal potential, but levels of Cu commonly 

included in diets should not have this negative effect.  Both Zn and Cu have effects on 

metabolism of fat although they appear to be opposite in nature.  While the mechanism 

for increasing adiposity by Zn appears to be its ability to increase glucose uptake, the 

mechanism for decreasing adiposity by Cu is not clear.
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CHAPTER III 
 

EFFECTS OF COPPER LEVEL AND ZINC LEVEL AND SOURCE ON FINISHING 
 

CATTLE PERFORMANCE AND CARCASS TRAITS 
 

L. J. McBeth, C. R. Krehbiel, D. R. Gill and C. K. Larson 
 

Abstract 

 
One hundred sixty heifers (BW = 317 ± 22 kg; Exp. 1) and 160 steers (BW = 341 ± 18

kg; Exp. 2) were fed for an average of 140 and 141 d, respectively, and used to evaluate 

the effects of Zn and Cu source and level in finishing cattle diets.  Experimental 

treatments were arranged in a 2 x 2 x 2 factorial with two levels (DM basis) of Cu (12 vs. 

24 mg/kg DM; CuL), two levels of Zn (80 vs. 360 mg/kg DM; ZnL), and two sources of 

Zn (ZnSO4 vs. AvailaZn; ZnS).  Interim weights were obtained every 28 d, and upon 

completion of the feeding period cattle were harvested and carcass measurements 

obtained.  In Exp. 1, ADG and GF were decreased from d 85 to 112 when Availa Zn vs. 

ZnSO4 was fed at 24 mg Cu/kg DM, whereas ADG and GF were similar when Availa Zn 

and ZnSO4 were fed at 12 mg Cu/kg DM (CuL x ZnS interaction, P = 0.04).  Heifers 

consuming 24 mg Cu/kg DM experienced decreased ADG (P = 0.02) and GF (P = 0.02)

and tended to have decreased DMI (P = 0.08) from d 0 to 27, but this effect was reversed 

in subsequent periods for ADG (P = 0.05) and GF (P = 0.05).  Over the entire feeding 
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period, heifers consuming 12 mg Cu/kg DM were more efficient (P = 0.04) than heifers 

fed 24 mg Cu/kg DM.  A significant interaction (CuL x ZnS; P = 0.02) resulted in heifers 

consuming Availa Zn at 12 mg Cu/kg DM, and ZnSO4 and Availa Zn at 24 mg Cu/kg 

DM having higher yield grades (YG) compared with ZnSO4 at 12 mg Cu/kg DM.  

Heifers fed 360 mg Zn/kg DM had greater (P = 0.04) 12th-rib fat depth (BF and tended to 

have higher YG (P = 0.08) than heifers fed 80 mg Zn/kg DM.  Similarly, heifers 

consuming Availa Zn tended (P = 0.06) to have higher YG than those consuming ZnSO4.

In Exp. 2, steers consuming ZnSO4 and Availa Zn at 12 mg Cu/kg DM and ZnSO4 at 24 

mg Cu/kg DM had greater ADG than steers that consumed Availa Zn at 24 mg Cu/kg 

DM from d 0 to 27 (CuL x ZnS interaction, P = 0.01).  Steers consuming Availa Zn and 

12 mg Cu/kg DM had greater (CuL x ZnS interaction, P = 0.02) ADG than those 

consuming Availa Zn and 24 mg Cu/kg DM from d 85 to 112.  From d 113 to the end of 

the feeding period steers consuming ZnSO4 and 12 mg Cu/kg DM, and Availa Zn and 24 

mg Cu/kg DM had greater (CuL x ZnS interaction, P = 0.03) ADG than those consuming 

Availa Zn and 12 mg Cu/kg DM.  From d 84 to 112 steers consuming Availa Zn with 12 

mg Cu/kg DM had greater (CuL x ZnS interaction, P = 0.02) GF than those consuming 

Availa Zn with 24 mg Cu/kg DM.  This effect was reversed in the subsequent period so 

that over the entire experiment, GF was not influenced by CuL x ZnS (P = 0.54).  Steers 

consuming 360 mg Zn/kg DM had greater BF (P = 0.03) and YG (P = 0.01) and tended 

to have greater HCW (P = 0.06) and dressing percent (P = 0.08) than steers consuming 

80 mg Zn/kg DM.  Steers consuming 80 mg Zn/kg DM had greater (P = 0.01) REA vs. 

360 mg Zn/kg DM.  Carcass characteristics were not affected (P > 0.10) by Zn source.  

Feeding combinations of Zn and Cu from different sources elicits differences that are 
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inconsistent, while Zn level and Cu level can effect both performance and carcass 

characteristics.   

Key Words: Copper Level, Finishing Cattle, Zinc Level, Zinc Source 

 
Introduction 

 
Zinc and Cu have been shown to play a major role in disease resistance and 

immune responsiveness in stressed feeder cattle.  For example, Chirase et al. (1994) 

observed that an organic source of Zn reduced the recovery time for cattle challenged 

with an infectious bovine rhinotracheitis virus (IBRV), and Stabel et al. (1993) showed 

that Cu concentrations were decreased in immune regulatory organs such as the liver, 

spleen, thymus and lung in cattle challenged with an IBRV.  In addition, several studies 

have shown improved performance in response to supplemental Zn (Galyean et al., 1995; 

Malcolm-Callis et al., 2000; Spears and Kegley, 2002).  Generally, increased 

performance was observed when supplemental Zn was compared against controls, and 

fewer studies have evaluated combinations of organic and inorganic sources of Zn.  

Supplemental Zn has also been observed to increase external fat deposition, marbling 

and/or percent of carcasses grading choice (Rust et al., 1985; Greene et al., 1988; Spears 

and Kegley, 2002). 

 Less information is available which has evaluated the effects of Cu on finishing 

cattle performance and carcass traits.  Ward and Spears (1997) investigated the long-term 

effects of dietary Cu and Mo on performance of cattle during receiving, growing, and 

finishing phases and on carcass characteristics at slaughter.  During the finishing phase, 

Cu-supplemented (5 mg/kg of DM) steers had greater ADG and GF.  In addition, Cu 
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supplementation increased carcass leanness and muscling without altering quality.  These 

data suggest that similar to Zn, Cu can improve efficiency of feed utilization and meat 

quality by feedlot cattle.  However, data evaluating the interaction between Zn and Cu are 

limited.  In a survey of feedlot consulting nutritionists, Galyean and Gleghorn (2002) 

reported mean dietary Zn levels of 74 mg/kg of DM, and mean dietary Cu levels of 14.75 

mg/kg of DM.  Accordingly, our diets were formulated at a level near (80 mg Zn/kg DM 

and 12 mg Cu/kg DM) or four (360 mg Zn/kg DM) and two (24 mg Cu/kg DM) times the 

amount currently fed by the feedlot industry.  We hypothesized that increasing Zn and Cu 

levels would interact to increase intramuscular fat deposition with minimal effects on 

performance.  Therefore, these experiments were designed to evaluate the effects of Cu 

level and Zn source and level on finishing cattle performance and carcass merit.   

 
Materials and Methods 

 
Experiment 1 

 
One hundred sixty crossbred heifers (initial BW = 317 ± 22 kg) were delivered to 

the Willard Sparks Beef Research Center near Stillwater, OK on November 21, 2000.  At 

processing, heifers were individually weighed, ear tagged, implanted with Component E-

H (Vet Life, LLC, Overland Park, KS), horn tipped as needed, vaccinated with IBR-PI3-

BVD-BRSV (BRSV Vac-4, Bayer Animal Health, Shawnee Mission, KS), and treated 

for control of external and internal parasites (Ivomec Plus, Merial Animal Health, Duluth, 

GA).  Heifers were re-implanted on day 85 with both Component E-H and Component T-

H.  After weighing and processing, heifers were blocked by weight into two blocks, and 

randomly assigned to 32 pens (5 head/pen; 16 pens/block).  Pens (4.6 x 12.2 m) were 
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partially covered and contained 4.6 m of bunk space with water basins positioned to 

supply water to two adjacent pens.  Heifers were fed for 140 d and harvested at Tyson 

Fresh Meats, Emporia, KS. 

 
Experiment 2  

 
One hundred sixty crossbred steers (initial BW = 341 ± 18 kg) were delivered to 

the Willard Sparks Beef Research Center near Stillwater, OK on July 12, 2001.  At 

processing, steers were individually weighed, ear tagged, implanted with Revalor-S 

(Intervet, Inc., Millsboro, DE), horn tipped as needed, vaccinated with IBR-PI3-BVD-

BRSV (F3Lp, Bayer Animal Health, Shawnee Mission, KS), and treated for control of 

external and internal parasites (Ivomec Plus, Merial Animal Health, Duluth, GA).  After 

weighing and processing, steers were blocked by weight into two blocks, and assigned 

randomly to pens (5 head/pen; 16 pens/block).  Pens (4.6 x 12.2 m) were partially 

covered and contained 4.6 m of bunk space with water basins positioned to supply water 

to two adjacent pens.  Steers were harvested by respective weight block with the heavy 

block being fed for 131 days and the light block being fed for 148 days.  All steers were 

harvested by Excel Corp., Dodge City, KS.   

 
Experiments 1 and 2 

 
For both experiments treatments included (DM basis):  1) 80 ppm ZnSO4, 12 ppm

AvailaCu (ZinPro Corp., Eden Prairie, MN); 2) 80 ppm ZnSO4, 12 ppm Availa Cu and 

12 ppm CuSO4; 3) 40 ppm ZnSO4, 40 ppm AvailaZn (ZinPro Corp., Eden Prairie, MN) 

and 12 ppm Availa Cu; 4) 40 ppm ZnSO4, 40 ppm Availa Zn, 12 ppm Availa Cu and 12 
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ppm CuSO4; 5) 360 ppm ZnSO4 and 12 ppm Availa Cu; 6) 360 ppm ZnSO4, 12 ppm

Availa Cu and 12 ppm CuSO4; 7) 160 ppm ZnSO4, 160 ppm Availa Zn and 12 ppm 

Availa Cu; and 8) 160 ppm ZnSO4, 160 ppm Availa Zn, 12 ppm Availa Cu and 12 ppm 

CuSO4. Basal diets were formulated to meet or exceed NRC (1996) nutrient 

requirements (Table 1).  Basal ingredients were identical with the exception of 

supplements that were formulated for each dietary treatment.  Supplement formulation 

was identical with the exception of Cu and Zn source and level that were added at the 

expense of wheat midds in the supplement (Table 2).  Monensin (33 mg/kg of the diet; 

Elanco Animal Health, Greenfield, IN) and tylosin (11 mg/kg of the diet; Elanco Animal 

Health, Greenfield, IN) were fed.  Cattle were gradually adapted to the final diet by 

offering approximately 60, 70 and 80% concentrate diets for 7, 7 and 7 d, respectively.  

All diets were fed ad libitum.  Heifers were fed once daily at 0800 and steers were fed 

twice daily at 0800 and 1400.  Feed refused was weighed every 28 days.  In addition, diet 

samples were collected and DM content of the diets and dietary ingredients were 

determined.  Diet and ingredient samples were composited by 28-d periods, allowed to 

air dry, and ground in a Wiley mill to pass a 1-mm screen.  Diet and ingredient samples 

were analyzed for N, ash (AOAC, 1990) and ADF (Goering and Van Soest, 1970).   

Cattle were weighed individually before feeding once every 28 d throughout the 

experiments.  Initial weight was analyzed as taken, whereas all interim weights were 

analyzed with a 4% pencil shrink.  Final live weight was calculated by dividing hot 

carcass weight by a common dressing percentage (Exp. 1 = 64%; Experiment 2 = 63%).  

Feed intake was measured and gain efficiency (GF) was calculated every 28 d.  Hot 

carcass weight (HCW) was determined following harvest, and carcasses were evaluated 
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by trained personnel after a 24-h chill for subcutaneous fat depth at the twelfth rib, 

longissimus muscle area (REA), percentage kidney, pelvic, and heart fat, yield grade 

(YG), marbling score, and quality grade (QG) (USDA, 1997). 

Liver biopsies were obtained via an incision between the 11th and 12th rib similar 

to procedures used by Swanson et al. (2000).  Liver biopsies were obtained prior to 

consumption of treatment diets at initiation of the experiments and samples of liver were 

obtained after evisceration postmortem.  Liver samples were collected into scintillation 

vials and analyzed for Zn and Cu concentrations (Michigan State University Animal 

Health Diagnostic Laboratory, East Lansing, MI).  All procedures were approved by the 

Oklahoma State University Animal Care and Use Committee. 

 
Statistics 

 
Because sex of animal and experiment were confounded, Exp. 1 and 2 were 

analyzed separately.  Cattle performance, carcass merit and liver mineral concentration 

data were analyzed using PROC MIXED (SAS Inst,. Inc., Cary, NC).  Class variables 

included in the model as fixed effects were pen and treatment, and weight replicate was 

included as a random effect.  The model included Cu level (12 vs. 24 mg Cu/kg DM), Zn 

level (80 vs. 360 mg Zn/kg DM), and Zn source (ZnSO4 vs. Availa Zn) and the 

appropriate interactions were conducted.  Pen was considered the experimental unit for 

all cattle performance and carcass data.  There were four replicates for each treatment.  

Treatment least squares means were calculated, and means were compared using the least 

significant difference method when protected by a F value (P < 0.05).  Carcass quality 

and yield grades as assigned by USDA (nonparametric variables) were examined on an 
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individual animal basis using the Chi-square analysis technique (SAS, 2004).  Results are 

discussed as significant if P < 0.05, and as tendencies if P < 0.06 to P < 0.10. 

 
Results 

 
No differences (P > 0.10) were observed in initial or final liver Cu or Zn 

concentrations for Exp. 1 or 2.  Initial Cu and Zn averaged 202.5 and 117.6 mg/kg of 

liver tissue, respectively, and final Cu and Zn averaged 267.5 and 160.2 mg/kg of liver 

tissue respectively for Trial 1.  Initial Cu and Zn averaged 180.2 and 127.2 mg/kg of liver 

tissue respectively and final Cu and Zn averaged 203.8 and 158.0 mg/kg of liver tissue 

respectively for Trial 2. 

 
Experiment 1 

 
No significant (P > 0.12) Cu level x Zn level x Zn source interactions were 

detected for initial or final weights, ADG, DMI, or GF (Appendix A – Table 1).  

Similarly, no differences (P > 0.17) were detected for performance variables for 

interactions of Cu level x Zn level (Appendix Table A-2) or for Zn level x Zn source 

(Appendix Table A-3).  Although ADG and GF were decreased (Cu level x Zn source 

interaction, P = 0.04) from d 85 to 112 when Availa Zn vs. ZnSO4 was fed with 24 mg 

Cu/kg DM, no differences (P > 0.22) were detected over the entire feeding period (Table 

3).  Heifers consuming 24 mg Cu/kg DM had lower ADG (P = 0.02) and GF (P = 0.02) 

and tended (P = 0.08) to have lower DMI from d 0 to 27 (Table 4); however, this 

response was reversed for ADG (P = 0.05) and GF (P = 0.05) from d 28 through 56.  

Over the entire feeding period, heifers consuming 12 mg Cu/kg DM were more (P =
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0.04) efficient than heifers consuming 24 mg Cu/kg DM.  Heifers consuming 360 mg 

Zn/kg DM had greater DMI from d 0 to 27 (P = 0.01) and d 28 to 56 (P = 0.05); 

however, over the entire feeding period DMI was not affected (P = 0.73) by dietary Zn 

level (Table 5).  No differences (P > 0.12) were observed for ADG, DMI, or GF when 

heifers were supplemented with ZnSO4 vs. Availa Zn (Appendix Table A-4). 

 Copper level x Zn level x Zn source (Appendix Table A-5) or Cu level x Zn level 

(Appendix Table A-6) interactions were not observed (P > 0.22) for carcass 

characteristics in Exp. 1.  However, there was a Cu level x Zn source interaction (P =

0.02) resulting in heifers fed Availa Zn with 12 mg Cu/kg DM, and ZnSO4 and Availa Zn 

with 24 mg Cu/kg DM having a greater YG compared with heifers fed ZnSO4 with 12 mg 

Cu/kg DM (Table 6).  There was also a Zn level x Zn source interaction (P = 0.03) for 

dressing percent (Table 7).  Carcasses from heifers fed ZnSO4 or Availa Zn at 80 mg 

Zn/kg DM and ZnSO4 at 360 mg/kg DM had a higher dressing percent than heifers fed 

Availa Zn at 360 mg Zn/kg DM.  In addition, heifers fed 12 mg Cu/kg DM had a greater 

(P = 0.03) dressing percent than those fed 24 mg Cu/kg DM (Table 8).  Heifers fed 360 

mg Zn/kg DM had greater subcutaneous fat (P = 0.04) and tended (P = 0.08) to have 

higher YG than heifers fed 12 mg Cu/kg DM (Table 9).  Heifers consuming Availa Zn 

had a higher (P = 0.02) YG than heifers consuming ZnSO4 (Table 10).   

 
Experiment 2 

 
No significant (P > 0.22) Cu level x Zn level x Zn source (Appendix Table A-8) 

or Cu level x Zn level (Appendix Table A-9) interactions were detected for initial or final 

BW, ADG, DMI or GF.  Steers that consumed ZnSO4 and Availa Zn with 12 mg Cu/kg 
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DM and ZnSO4 with 24 mg Cu/kg DM had greater (Cu level x Zn source interaction, P =

0.01) ADG from d 0 to 27 than steers that consumed Availa Zn with 24 mg Cu/kg DM 

(Table 11).  Similarly, steers consuming Availa Zn with 12 mg Cu/kg DM had greater 

(Cu level x Zn source interaction, P = 0.02) ADG than those consuming Availa Zn with 

24 mg Cu/kg DM from d 85 to 112.  In contrast, from d 113 to the end of the feeding 

period steers consuming ZnSO4 with 12 mg Cu/kg DM and Availa Zn with 24 mg Cu/kg 

DM had greater (Cu level x Zn source interaction, P = 0.03) ADG than steers consuming 

Availa Zn with 12 mg Cu/kg DM.  Over the entire feeding period, ADG was not affected 

(P = 0.52) by Cu level x Zn source.  Similar results were obtained for GF, and the Cu 

level x Zn source interaction was not significant (P = 0.54) over the entire feeding period 

(Table 11).  From d 0 to 27, steers that were fed ZnSO4 at 80 mg Zn/kg DM had greater 

(Zn level x Zn source, P = 0.03) ADG than steers fed Availa Zn (Table 12).  A similar 

response was observed for GF from d 0 to 27; steers that consumed ZnSO4 at 80 mg 

Zn/kg DM and Availa Zn at 360 mg Zn/kg DM had greater (Zn level x Zn source, P =

0.01) GF than steers consuming Availa Zn at 80 mg Zn/kg DM.  Steers fed ZnSO4 at 360 

mg Zn/kg DM were intermediate.  No differences (P > 0.12) due to Cu level, Zn level, or 

Zn source were observed for BW, ADG, DMI, or GF (Appendix Tables A-10, A-11 and 

A-12, respectively). 

There were no significant (P > 0.59) Cu level x Zn level x Zn source interactions 

observed for carcass characteristics (Appendix Table A-13).  Dressing percent tended (Cu 

level x Zn level, P = 0.09) to be greater for steers consuming 360 mg Zn/kg DM with 12 

mg Cu/kg DM vs. steers consuming 80 mg Zn/kg DM with 12 mg Cu/kg DM and 80 or 

360 mg Zn/kg DM with 24 mg Cu/kg DM (Table 13).  Dressing percent was greater (Cu 
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level x Zn source, P = 0.03) for steers consuming ZnSO4 with 12 mg Cu/kg DM than 

steers consuming Availa Zn with 12 mg Cu/kg DM or ZnSO4 with 24 mg Cu/kg DM 

(Table 14).  Longissimus muscle area was greater (Cu level x Zn source, P < 0.01) for 

steers consuming ZnSO4 with 24 mg Cu/kg DM than for steers consuming Availa Zn 

with 24 mg Cu/kg DM; steers consuming ZnSO4 or Availa Zn with 12 mg Cu/kg DM 

were intermediate.  Dressing percent tended (Zn level x Zn source; P = 0.10) to be greater 

for steers fed 360 mg Zn/kg DM from ZnSO4 vs. those consuming 80 mg Zn/kg DM 

from ZnSO4 (Appendix Table 14).  Dressing percent was also greater (P = 0.05) for 

steers consuming 12 mg Cu/kg DM vs. 24 mg Cu/kg DM (Appendix Table A-15).  Steers 

consuming 360 mg Zn/kg DM had greater 12th-rib fat depth (P = 0.03) and YG (P =

0.01) and tended to have greater HCW (P = 0.06) and dressing percent (P = 0.08) than 

steers consuming 80 mg Zn/kg DM (Table 15).  In contrast, steers consuming 80 mg 

Zn/kg DM had greater (P = 0.01) REA compared with steers fed 360 mg Zn/kg DM.  

Similar to Exp. 1, carcass characteristics were not affected (P > 0.20) by Zn source 

(Appendix Table A-16).   

 
Discussion 

 
The effects of Cu and Zn on performance have met with varying results and have 

generally been evaluated at levels below those investigated in the present experiments.  In 

the present experiments, DMI was not affected by Cu level, Zn level or Zn source when 

measured across the entire feeding period.  However, increasing Cu level from 12 to 24 

mg Cu/kg DM decreased DMI in heifers from d 0 to 27 and d 28 to 56.  Similar to the 

present Exp. 1, Engle and Spears (2000b) reported lower DMI over an 80-d feeding 
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period for steers supplemented with 20 or 40 mg Cu/kg DM vs. non-supplemented 

controls, and postulated that this might be caused by inhibition of ruminal fermentation 

from high dietary Cu.  Similarly, Essig et al. (1972) reported decreases in ruminal acetate, 

propionate, and total volatile fatty acid concentrations for steers fed 4.4 g Cu/100 kg BW 

vs. control steers.  In contrast, several authors have reported no change in DMI with Cu 

supplementation from 10 to 40 mg Cu/kg DM from both organic and inorganic sources 

(Engle and Spears 2000a; Engle and spears 2001; Lee et al., 2002).  In addition to DMI, 

decreased performance in response to the higher Cu level occurred during the adaptation 

period (d 0 to 27) when heifers were transitioning to the final high-concentrate diet, 

suggesting that higher levels of Cu may have inhibited ruminal function early in the 

finishing period in the present Exp. 1.    

The increase in DMI with increasing Zn from d 0 to 27 and d 28 to 56 in the 

present Exp. 1 might be due to the ability of Zn to enhance DMI during periods of stress 

or immune challenge.  Chirase et al. (1994) reported greater DMI for steers supplemented 

with Zn methionine vs. controls or steers supplemented with ZnO during an immune 

challenge with infectious bovine rhinotracheitis virus.  The increase in DMI early in the 

feeding period of the present Exp. 1 was countered by a decrease in DMI from d 113 to 

the end of the feeding period, and Zn level did not affect DMI across the entire feeding 

period.  In contrast, other authors have reported increased DMI with increasing Zn level 

in finishing diets.  Malcolm-Callis (2000) reported a linear increase in DMI with 20, 100, 

or 200 mg Zn/kg DM, and Galyean et al. (1995) reported greater DMI for steers 

supplemented with 70 or 105 mg Zn/kg DM vs. controls (35 mg Zn/kg DM).  Reasons for 

discrepancies among experiments are not clear. 
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A common result in the present experiments was decreased ADG with 

supplementation of an organic Zn source at the higher Cu level early in the finishing 

period (Exp. 2) and from d 85 to 112 (Exp. 1 and 2).  Decreased performance in both 

experiments was compensated for in previous or subsequent periods, and no Cu level x 

Zn level interactions were observed for the entire feeding period in either experiment.  

Galyean et al. (1995) reported that steers previously supplemented with Cu lysine 

responded favorably to Zn supplementation during transition to a high-concentrate diet 

vs. those not previously supplemented with Cu.  The mechanisms that affect the 

interactions of Cu and Zn are not readily apparent, and their effects on performance are 

inconsistent.  Zinc has been reported to decrease Cu uptake in the intestinal mucosa, but 

it is not clear if Zn competes directly with Cu for receptors (Cousins, 1985).  Competition 

for receptor sites might explain the decreased performance with 24 mg/kg DM Cu and the 

organic source of Zn. 

The interaction between Cu level and Zn level for dressing percent appears to be 

consistent with numerical differences in external fat and REA.  In the present 

experiments, dressing percent was generally greater when 360 mg Zn from ZnSO4 was 

fed, although interactions with Cu level were observed.  In Exp. 1 and 2, dressing percent 

was greater for cattle supplemented with the lower level of Cu.  This is inconsistent with 

several studies (Engle et al., 2000; Engle and Spears, 2000a; Engle and Spears, 2001) 

which have reported no difference in dressing percent when steers were fed Cu levels 

ranging from 10 to 40 mg Cu/kg DM.  In the present experiments there was no effect of 

Cu level on 12th-rib fat depth, which is also in contrast to previous reports.  Ward and 

Spears (1997) reported a decrease in 12th-rib fat depth with added dietary Cu.  Similarly, 
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Engle and Spears (2000a) reported a decrease in external fat depth when steers were fed 

10 or 20 mg Cu/kg DM vs. controls, and Engle and Spears (2001) and Engle et al. (2000) 

reported decreased 12th-rib fat depth for steers supplemented with 10 or 40 mg Cu/kg 

DM from CuSO4 compared with non-supplemented controls.   

In both the present Exp. 1 and 2, Zn level increased 12th-rib fat depth and YG 

was higher for steers and tended to be higher for heifers consuming 360 compared with 

80 mg Zn/kg DM.  Malcolm-Callis et al. (2000) reported quadratic increases in 12th-rib 

fat depth in response to 20, 100 or 200 mg Zn/kg DM.  Similarly, Greene et al. (1998) 

reported increased 12th-rib fat depth for steers supplemented with 360 mg Zn 

methionine/kg DM vs. controls.  These studies suggest that Zn supplementation at levels 

up to 360 mg Zn/kg DM will increase external fat deposition and potentially carcass 

weight.  In addition to increased 12th-rib fat depth, Greene et al. (1998) reported 

increased marbling and percent choice carcasses when steers were supplemented with 

360 mg Zn/kg DM from Zn methionine vs. ZnO.  Kegley and Spears (2002) reported 

increased marbling and quality grade for steers supplemented with either ZnO or Zn 

proteinate at 51 mg Zn/kg DM vs. controls (26 mg Zn/kg DM).  No differences in carcass 

quality were observed due to Zn source in the present experiments. 

Supplementation of Cu and Zn separately have been shown to have similar affects 

in enhancing immune response and growth performance in diets that are marginal in 

these elements or have vast differences in bioavailability.  However, there appears to be 

competition between Cu and Zn when both are supplemented at high levels from various 

sources, and further research is needed to clarify the importance of these interactions. 
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Implications 

 
Zinc and copper appear to alter carcass fat deposition independently of each other.  While 

the present study suggests that supplementation of zinc at 360 vs. 80 mg zinc/kg dry 

matter increases deposition of external fat, there appeared to be no affect on 

intramuscular deposition due to copper level, zinc level or zinc source in the present 

experiment.  Performance seems to be enhanced by supplemental Zn in the initial portion 

of the feeding period, however consistent results were not observed throughout the entire 

feeding period.  



42

LITERATURE CITED 

 
AOAC.  1990.  Official Methods of Analysis (15th Ed.) K. Herlich (Ed.).  Association of 

Official Analytical Chemists, Arlington, VA. 
 
Chirase, N. K., D. P. Hutcheson, G. B. Thompson, and J. W. Spears.  1994.  Recovery 

rate and plasma zinc an copper concentrations of steer calves fed organic and 
inorganic zinc and manganese sources with or without injectable copper and 
challenged with infectious bovine rhinotracheitis virus.  J. Anim. Sci. 75:212-219. 

 
Cousins, R. J.  1985.  Absorption, transport, and hepatic metabolism of copper and zinc:  

special reference to metallothionein and ceruloplasmin.  Physiol. Rev. 65:238-
309. 

 
Engle, T. E. and J. W. Spears.  2000a.  Dietary copper effects on lipid metabolism, 

performance, and ruminal fermentation in finishing steers.  J. Anim. Sci. 78:2452-
2458. 

 
Engle T. E., and J. W. Spears.  2000b.  Effects of dietary copper concentration and source 

on performance and copper status of growing and finishing steers.  J. Anim. Sci. 
78:2446-2451. 

 
Engle, T. E. and J. W. Spears.  2001.  Performance, carcass characteristics, and lipid 

metabolism in growing and finishing Simmental steers fed varying concentrations 
of copper.  J. Anim. Sci. 79:2920-2925. 

 
Engle, T. E., J. W. Spears, L. Xi, and F. W. Edens.  2000.  Dietary copper effects on lipid 

metabolism and circulating catecholamine concentrations in finishing steers.  J. 
Anim. Sci. 78:2737-2744. 

 
Essig, H. W., J. D. Davis, and L. J. Smithson.  1972.  Copper sulfate in steer rations.  J. 

Anim. Sci. 35:436-439.  
 
Gaylean, M. L., K. J. Malcolm-Callis, S. A. Gunter, and R. A. Berrie.  1995.  Effects of 

Zinc source and level and added copper lysine in the receiving diet on performance 
by growing and finishing steers.  Prof. Anim. Sci. 11:139-148. 

 
Galyean, M. L., and J. F. Gleghorn.  2002.  Summary of the 2000 Texas Tech University 

consulting nutritionist survey.  Proceedings 2002 Plains Nutrition Council 1-10.



43

Greene, L. W., D. K. Lunt, F. M. Byers, N. K Chirase, C. E. Richmond, R. E. Knutson 
and G. T. Schelling.  1988.  Performance and charcass quality of steers 
supplemented with zinc oxide or zinc methionine.  J. Anim. Sci. 66:1818-18. 

 
Goering, H. K., and P. J. Van Soest.  1970.  Forage fiber analyses (apparatus, reagents, 

procedures, and some applications).  Agric. Handbook No. 379, ARS – USDA, 
Washington, DC. 

 
Lee, S. H., T. E. Engle, and K. L. Hossner.  2002.  Effects of dietary copper on the 

expression of lipogenic genes and metabolic hormones in steers.  J. Anim. Sci. 
80:1999-2005. 

 
Malcolm-Callis, K. J., G. C. Duff, S. A. Gunter, E. B. Kegley, and D. A. Vermeire.  

2000.  Effects of supplemental zinc concentration and source on performance, 
carcass characteristics, and serum values in finishing beef steers.  J. Anim. Sci. 
78:2801-2808. 

 
NRC.  1996.  Nutrient Requirements of Beef Cattle (7th Ed.).  National Academy Press, 

Washington DC. 
 
Rust, S. R.  1985.  Effects of Zn Met and grain processing on performance of growing-

fattening steers. J. Anim. Sci. 61:482. (Abstr.). 
 
Spears, J. W., and E. B. Kegley.  1994.  Influence of zinc proteinate on performance and 

carcass characteristics of steers.  J. Anim. Sci. 72(Suppl. 1):407(Abstr.). 
 
Spears, J. W., and E. B. Kegley.  2002.  Effect of zinc source (zinc oxide vs. zinc 

proteinate) and level on performance, carcass characteristics, and immune response 
of growing and finishing steers.  J. Anim. Sci. 80:2747-2752. 

 
Suttle, N. F.  1991.  the interactions between copper, molybdenum, and sulfur in ruminant 

nutrition.  Annu. Rev. Nutr. 11:121-140. 
 
Swanson, K. S., N. R. Merchen, J. W. Erdman, Jr., J. K. Drackley, F. Orias, G. N. 

Douglas, and J. C. Huhn.  2000.  Technical note:  A technique for multiple liver 
biopsies in neonatal calves.  J. Anim. Sci. 78:2459-2463. 

 
USDA.  1997.  Official U.S. Standards for Grades of Carcass Beef.  AMS, USDA, 

Washington, DC. 
 
Ward, J. D., and J. W. Spears.  1997.  Long-term effects of consumption of low-copper 

diets with or without supplemental molybdenum on copper status, performance, 
and carcass characteristics of cattle.  J. Anim. Sci. 75:3057-3065. 

 



44

Table 3-1.  Dry matter and nutrient composition of basal finishing diets. 
 % of diet DM 

Rolled Corn 76.50 
Cotton seed hulls 10.00 
Yellow grease 3.00 
Supplementa 10.50 
 

Nutrientsa

DM, % as fed 87.65 
CP, % of DM 13.50 
ADF,% of DM 6.90 
Calcium, % of DM 0.52 
Phosphorus, % of DM 0.39 
Potassium, % of DM 0.57 
Magnesium, % of DM 0.15 
Sulfur, % of DM 0.16 
Manganese, mg/kg 43.3 
Cobalt, mg/kg 0.07 
Iron, mg/kg   121.5 
Selenium, mg/kg 0.16 

aContained (% DM basis):  soybean meal 47.7 (50.48), wheat midds (11.73), cottonseed meal 
(9.52), limestone 38% (8.57), urea (8.10), di-calcium phosphate (4.76), cane molasses (3.81), salt (2.38), 
Rumensin 80 (0.18), Tylan 40 (0.12), vitamin A-30,000 (0.11), manganous oxide (0.03), and CuSO4,
AvailaCu, ZnSO4, and/or Availa were included to meet total dietary treatment levels. 

aAll values are estimates based on NRC (1996) values for feedstuffs. 
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Table 3-2.  Dry matter composition of supplements. 

 Dietsa

Ingredientb 1 2 3 4 5 6 7 8

Soybean Meal 50.46 50.48 50.48 50.48 50.48 50.48 50.48 50.47 

Wheat Midds 11.73 11.69 11.52 11.48 11.10 11.05 10.06 10.02 

Cottonseed Meal 9.52 9.52 9.52 9.52 9.52 9.52 9.52 9.52 

Limestone 38% 8.57 8.57 8.57 8.57 8.57 8.57 8.57 8.57 

Urea 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.10 

Cane Molasses 3.81 3.81 3.81 3.81 3.81 3.81 3.81 3.81 

Dical 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76 

Salt 2.38 2.38 2.38 2.38 2.38 2.38 2.38 2.38 

Rumensin 80 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 

Tylan 40 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 

Vitamin A 30 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

Manganous Oxide 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

CuSO4 0.04  0.04  0.04  0.04 

Availa Cu 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

ZnSO4 0.16 0.16 0.08 0.08 0.79 0.79 0.40 0.40 

Availa Zn   0.29 0.29   1.43 1.43 

a1 = 80 mg/kg ZnSO4 and 12 mg/kg Availa Cu; 2 = 80 mg/kg ZnSO4, 12 mg/kg Availa Cu and 12 
mg/kg CuSO4; 3 = 40 mg/kg ZnSO4, 40 mg/kg AvailaZn and 12 mg/kg Availa Cu; 4 = 40 mg/kg ZnSO4,
40 mg/kg Availa Zn, 12 mg/kg Availa Cu and 12 mg/kg CuSO4; 5 = 360 mg/kg ZnSO4 and 12 mg/kg 
Availa Cu; 6 = 360 mg/kg ZnSO4, 12 mg/kg Availa Cu and 12 mg/kg CuSO4; 7 = 160 mg/kg ZnSO4, 160 
mg/kg Availa Zn and 12 mg/kg CuSO4; and 8 = 160 mg/kg ZnSO4, 160 mg/kg Availa Zn, 12 mg/kg 
Availa Cu and 12 mg/kg CuSO4.

bPercent of DM. 
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Table 3-3.  Effects of copper level and zinc source on cumulative feedlot performance by heifers  
(Exp. 1). 
 12 mg Cu/kg DM  24 mg Cu/kg DM  
Item ZnSO4 AvailaZn  ZnSO4 AvailaZn SEM CuL x ZnSa

Initial wt., kg 308 309 306 307 3 0.37 
Final wt., kg 511 515 518 505 6 0.18 
 
Daily gain, kg       
 d 0 - 27 1.49 1.40 1.19 1.32 0.13 0.15 
 d 28 - 56 1.40 1.42 1.69 1.48 0.09 0.22 
 d 56 - 84 1.24 1.33 1.32 1.37 0.11 0.87 
 d 85 - 112 1.44bc 1.49bc 1.56b 1.31c 0.07 0.04 
 d 113 - end 1.18 1.13 1.22 1.03 0.09 0.45 
 d 0 - end 1.35 1.35 1.39 1.30 0.06 0.22 
 
DM intake, kg/d       
 d 0 - 27 7.64 7.70 7.46 7.50 0.10 0.96 
 d 28 - 56 8.13 8.23 8.43 8.14 0.20 0.32 
 d 57 - 84 8.19 8.37 8.60 8.26 0.20 0.21 
 d 85 - 112 7.80 7.92 8.35 8.20 0.29 0.65 
 d 113 - end 7.14 7.20 7.64 7.28 0.20 0.31 
 d 0 - end 7.78 7.88 8.25 8.32 0.22 0.93 
 
Gain:feed       
 d 0 - 27 0.196 0.181 0.159 0.175 0.015 0.10 
 d 28 - 56 0.172 0.172 0.201 0.182 0.009 0.32 
 d 57 - 84 0.151 0.157 0.153 0.166 0.0112 0.76 
 d 85 - 112 0.184b 0.189b 0.188b 0.160c 0.008 0.04 
 d 113 - end 0.165 0.158 0.157 0.141 0.011 0.69 
 d 0 - end 0.173 0.171 0.169 0.157 0.007 0.25 

aProbability of an interaction between Cu level and Zn source. 
bcMeans in row with different superscripts differ, P < 0.10.
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Table 3-4.  Effect of copper level on cumulative performance by heifers (Exp. 1). 
 
Item 

 
12 mg Cu/kg DM 

 
24 mg Cu/kg DM 

 
SEM 

Cu 
levela

Initial wt., kg 309 306 2 0.45 
Final wt., kg 513 511 4 0.82 
 
Daily gain, kg     
 d 0 - 27 1.45 1.25 0.11 0.02 
 d 28 - 56 1.41 1.59 0.06 0.05 
 d 56 - 84 1.28 1.34 0.86 0.53 
 d 85 - 112 1.46 1.43 0.05 0.64 
 d 113 - end 1.15 1.12 0.07 0.74 
 d 0 - end 1.35 1.35 0.05 0.96 
 
DM intake, kg/d     
 d 0 - 27 7.67 7.48 0.07 0.08 
 d 28 - 56 8.18 8.28 0.14 0.59 
 d 57 - 84 8.28 8.43 0.14 0.46 
 d 85 - 112 7.86 8.27 0.21 0.18 
 d 113 - end 7.17 7.46 0.14 0.17 
 d 0 - end 7.83 8.28 0.16 0.05 
 
Gain:feed     
 d 0 - 27 0.189 0.167 0.014 0.02 
 d 28 - 56 0.172 0.191 0.006 0.05 
 d 57 - 84 0.154 0.159 0.001 0.58 
 d 85 - 112 0.186 0.174 0.005 0.11 
 d 113 - end 0.161 0.149 0.008 0.29 
 d 0 - end 0.172 0.163 0.006 0.04 

aProbablity of an effect of Cu level.
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Table 3-5.  Effect of zinc level on cumulative performance by heifers (Exp. 1). 
Item 80 mg Zn/kg DM 360 mg Zn/kg DM SEM Zn levela

Initial wt., kg 307 308 2 0.62 
Final wt., kg 509 515 4 0.33 
 
Daily gain, kg     
 d 0 - 27 1.30 1.40 0.11 0.21 
 d 28 - 56 1.48 1.52 0.06 0.68 
 d 56 - 84 1.32 1.30 0.09 0.84 
 d 85 - 112 1.41 1.48 0.05 0.29 
 d 113 - end 1.17 1.11 0.07 0.55 
 d 0 - end 1.33 1.36 0.05 0.52 
 
DM intake, kg/d     
 d 0 - 27 7.43 7.72 0.07 0.01 
 d 28 - 56 8.03 8.43 0.14 0.05 
 d 57 - 84 8.33 8.38 0.14 0.84 
 d 85 - 112 8.06 8.08 0.21 0.96 
 d 113 - end 7.49 7.14 0.14 0.10 
 d 0 - end 8.10 8.02 0.16 0.73 
 
Gain:feed     
 d 0 - 27 0.175 0.181 0.014 0.48 
 d 28 - 56 0.184 0.179 0.006 0.59 
 d 57 - 84 0.158 0.155 0.010 0.76 
 d 85 - 112 0.176 0.184 0.005 0.27 
 d 113 - end 0.156 0.155 0.008 0.92 
 d 0 - end 0.166 0.170 0.006 0.36 

aProbablity of an effect of Zn level. 
bcMeans within a row with different superscripts differ, P < 0.05. 
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Table 3- 6.  Effects of copper level and zinc source on carcass traits in heifers (Exp.1). 
 12 mg Cu/kg DM  24 mg Cu/kg DM  
Item ZnSO4 Availa Zn  ZnSO4 Availa Zn SEM CuL x ZnSa

HCW, kg 329 331 333 325 4 0.19 
Dressing % 64.68 64.55 64.47 63.65 0.24 0.16 
Ribeye area, cm2 94.28 88.10 89.77 90.86 2.23 0.19 
12th-rib fat, cm 1.45 1.67 1.65 1.66 0.09 0.17 
KPH 2.47 2.34 2.60 2.52 0.12 0.87 
Marblingb 430 435 455 443 18 0.61 
Yield grade 2.46d 3.01c 2.79c 2.79c 0.11 0.02 

aProbability of an interaction between Cu level and Zn source. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; 

slightly abundant = 700. 
cdMeans within a row with different superscripts differ, P < 0.05. 

 

Table 3-7.  Effects of zinc level and zinc source on carcass traits in heifers (Exp. 1). 
 80 mg Zn/kg DM 360 mg Zn/kg DM  
Item ZnSO4 AvailaZn ZnSO4 AvailaZn SEM ZnL x ZnSa

HCW, kg 326 329 336 328 4 0.20 
Dressing % 64.17d 64.24d 64.98c 63.95d 0.24 0.03 
Ribeye area, cm2 89.87 90.38 94.18 88.58 2.23 0.12 
12th-rib fat, cm 1.52 1.53 1.58 1.80 0.09 0.20 
KPH 2.52 2.53 2.55 2.33 0.12 0.34 
Marblingb 456 448 428 429 18 0.79 
Yield grade 2.60 2.73 2.64 3.08 0.11 0.15 

aProbability of an interaction between Zn level and Zn source. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; 

slightly abundant = 700. 
cdMeans within a row with different superscripts differ, P < 0.05. 

 



50

Table 3-8.  Effect of copper level on carcass traits in heifers (Exp. 1). 
Item 12 mg Cu/kg DM 24 mg Cu/kg DM SEM Copper La

HCW, kg 330 329 3 0.82 
Dressing % 64.62 64.06 0.20 0.03 
Ribeye area, cm2 91.18 90.32 1.58 0.70 
12th-rib fat, cm 1.56 1.66 0.07 0.22 
KPH 2.41 2.56 0.8 0.21 
Marblingb 432 449 12 0.35 
Yield grade 2.73 2.79 0.08 0.59 

aProbability of an effect of copper level. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400;  

modest = 500; moderate = 600; slightly abundant = 700. 
 

Table 3-9.  Effect of zinc level on carcass traits in heifers (Exp. 1). 
Item 80 mg Zn/kg DM 360 mg Zn/kg DM SEM Zinc La

HCW, kg 327 332 3 0.31 
Dressing % 64.21 64.47 0.17 0.29 
Ribeye area, cm2 90.13 91.38 1.58 0.58 
12th-rib fat, cm 1.52 1.69 0.07 0.04 
KPH 2.52 2.44 0.09 0.50 
Marblingb 452 429 12 0.19 
Yield grade 2.67 2.86 0.07 0.08 

aProbability of an effect of zinc level. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400;  

modest = 500; moderate = 600; slightly abundant = 700. 
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Table 3-10.  Effect of zinc source on carcass traits in heifers (Exp. 1). 
Item ZnSO4 Availa Zn SEM Zinc Sourcea

HCW, kg 331 328 3 0.51 
Dressing % 64.58 64.10 0.17 0.06 
Ribeye area, cm2 92.02 89.48 1.58 0.27 
12th-rib fat, cm 1.55 1.66 0.07 0.15 
KPH 2.53 2.43 0.08 0.40 
Marblingb 442 439 12 0.84 
Yield grade 2.62 2.90 0.09 0.02 

aProbability of an effect of zinc source. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400;  

modest = 500; moderate = 600; slightly abundant = 700. 
 

Table 3-11.  Effects of copper level and zinc source on cumulative feedlot performance by steers 
 (Exp. 2). 

12 mg Cu/kg DM  24 mg Cu/kg DM  
Item ZnSO4 AvailaZn  ZnSO4 AvailaZn SEM CuL x ZnSa

Initial wt., kg 342 342 342 340     14 0.72 
Final wt., kg 600 588 592 591     8 0.50 
 
Daily gain, kg       
 d 0 - 27 1.74b 1.93b 1.86b 1.65c 0.07 0.01 
 d 28 - 56 2.00 1.74 1.94 2.02 0.14 0.24 
 d 57 - 84 1.93 1.81 1.74 1.97 0.18 0.34 
 d 85 - 112 1.92bc 2.15b 2.08bc 1.78c 0.11 0.02 
 d 113 - end 1.60b 1.13c 1.36bc 1.62b 0.16 0.03 
 d 0 - end 1.84 1.76 1.80 1.79 0.06 0.52 
 
DM intake, kg/d       
 d 0 - 27 8.2 8.7 8.6 8.3 0.4 0.06 
 d 28 - 56 10.1 9.7 9.4 10.2 0.2 0.06 
 d 57 - 84 10.7 10.0 10.2 10.5 0.4 0.27 
 d 85 - 112 11.8 11.4 11.5 11.7 0.3 0.44 
 d 113 - end 11.2 10.7 11.1 10.6 0.5 0.95 
 d 0 - end 11.0 11.0 10.8 11.0 0.6 0.83 
 
Gain:feed       
 d 0 - 27 0.211bc 0.222b 0.217b 0.198c 0.010 0.02 
 d 28 - 56 0.198 0.177 0.207 0.198 0.012 0.61 
 d 57 - 84 0.179 0.181 0.170 0.188 0.018 0.60 
 d 85 - 112 0.163bc 0.190b 0.181bc 0.155c 0.010 0.02 
 d 113 - end 0.144bc 0.106c 0.120bc 0.151b 0.014 0.02 
 d 0 - end 0.168 0.160 0.166 0.163 0.011 0.54 

aProbability of an interaction between Cu level and Zn source. 
bcMeans within a row with different superscripts differ P < 0.05. 
deMeans within a row with different superscripts differ P < 0.10. 
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Table 3-12.  Effects of zinc level and zinc source on cumulative feedlot performance by steers (Exp. 2). 
 80 mg Zn/kg DM  360 mg Zn/kg DM  
Item ZnSO4 AvailaZn  ZnSO4 AvailaZn SEM ZnL x ZnSa

Initial wt., kg 342 342 342 340      14 0.64 
Final wt., kg 594 580 597 599      8 0.31 
 
Daily gain, kg       
 d 0 - 27 1.88b 1.71c 1.72bc 1.87bc 0.07 0.03 
 d 28 - 56 1.93 1.81 2.01 1.95 0.14 0.81 
 d 57 - 84 1.88 1.74 1.79 2.04 0.18 0.29 
 d 85 - 112 1.95 1.86 2.04 2.07 0.11 0.58 
 d 113 - end 1.42 1.39 1.54 1.36 0.16 0.65 
 d 0 - end 1.81 1.70 1.83 1.85 0.06 0.24 
 
DM intake, kg/d       
 d 0 - 27 8.5 8.6 8.4 8.4 0.4 0.96 
 d 28 - 56 9.6 9.8 9.9 10.1 0.3 0.88 
 d 57 - 84 10.5 9.7 10.3 10.7 0.4 0.19 
 d 85 - 112 11.7 11.1 11.6 11.8 0.3 0.10 
 d 113 - end 11.2 10.5 11.1 10.8 0.5 0.46 
 d 0 - end 10.8 10.7 10.9 11.4 0.6 0.40 
 
Gain:feed       
 d 0 - 27 0.221b 0.199c 0.207bc 0.221b 0.010 0.01 
 d 28 - 56 0.202 0.183 0.202 0.192 0.012 0.67 
 d 57 - 84 0.176 0.180 0.173 0.190 0.018 0.66 
 d 85 - 112 0.167 0.168 0.177 0.177 0.010 0.97 
 d 113 - end 0.124 0.133 0.139 0.124 0.014 0.39 
 d 0 - end 0.167 0.159 0.167 0.164 0.011 0.49 

aProbability of an interaction between Zn level and Zn source. 
bcMeans within a row with different superscripts differ P ≤ 0.05. 
deMeans within a row with different superscripts differ P ≤ 0.10. 
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Table 3-13.  Effects of copper and zinc level on carcass traits in steers (Exp. 2). 
 12 mg Cu/kg DM  24 mg Cu/kg DM  

Item 
80 mg 

Zn/kg DM 
360 mg 

Zn/kg DM 
80 mg 

Zn/kg DM 
360 mg 

Zn/kg DM 
 

SEM 
 

CuL x ZnLa

HCW, kg 369 378 368 374 6 0.75 
Dressing % 62.6 63.6c 62.5 62.6 0.3 0.09 
Ribeye area, cm2 81.3 80.2 82.1 79.5 1.9 0.25 
12th-rib fat, cm 1.56 1.65 1.42 1.72 0.09 0.26 
KPH 2.26 2.27 2.29 2.36 0.10 0.79 
Marblingb 429 449 440 446 24 0.65 
Yield grade 3.47 3.74 3.33 3.84 0.13 0.37 

aProbability of an interaction between Cu level and Zn level. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; 

slightly abundant = 700. 
cdMeans in a row with different superscripts differ P < 0.10.   
 

Table 3-14.  Effects of copper level and zinc source on carcass traits in steers (Exp. 2). 
 12 mg Cu/kg DM  24 mg Cu/kg DM  
Item ZnSO4 Availa Zn  ZnSO4 Availa Zn SEM CuL x ZnSa

HCW, kg 379 369 371 370 6 0.28 
Dressing % 63.5c 62.7d 62.3d 62.8cd 0.3 0.03 
Ribeye area, cm2 80.0de 81.5cd 82.2c 79.4e 1.9 < 0.01 
12th-rib fat, cm 1.67 1.54 1.60 1.55 0.09 0.66 
KPH 2.25 2.28 2.31 2.34 0.10 0.99 
Marblingb 441 438 447 439 24 0.84 
Yield grade 3.74 3.47 3.59 3.58 0.13 0.32 

aProbability of an interaction between Cu level and Zn source. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; 

slightly abundant = 700. 
cdeMeans within a row with different superscripts differ P < 0.05. 
 

Table 3-15.  Effect of zinc level on carcass traits in steers (Exp. 2). 
Item 80 mg Zn/kg DM 360 mg Zn/kg DM SEM Zinc La

HCW, kg 368 376 5 0.06 
Dressing % 62.6 63.1 0.2 0.08 
Ribeye area, cm2 81.7 79.9 1.9 0.01 
12th-rib fat, cm 1.49 1.69 0.06 0.03 
KPH 2.28 2.31 0.07 0.72 
Marblingb 435 447 22 0.37 
Yield grade 3.40 3.79 0.09 0.01 

aProbability of an effect of zinc level. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400;  

modest = 500; moderate = 600; slightly abundant = 700.
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Abstract 

 
Dietary Zn formulations for feedlot cattle are commonly between 50 and 80 

mg of supplemental Zn/kg of diet, and often may not consider Zn provided in basal 

ingredients.  Three trials were conducted to determine the effects of Zn source and 

level on performance and carcass characteristics of finishing steers.  In Trial 1, 336 

steers (avg initial BW = 349 ± 22 kg) were blocked by weight and fed for 130 d. 

Treatments included (DM basis): 1) 60 mg of Zn from ZnSO4/kg of diet (control); 2) 

control plus 30 mg of Zn from ZnSO4/kg of diet; 3) control plus 30 mg of Zn from 

ZINPRO100 Zn methionine/kg of diet; 4) control plus 30 mg of Zn from 



55

AvailaZn/kg diet; 5) control plus 60 mg of Zn from ZnSO4/kg of diet; and 6) control 

plus 60 mg of Zn from Availa Zn/kg of diet.  In Trial 2, 277 steers (avg initial BW = 

349 ± 22 kg) were blocked by weight and fed for either 151 or 166 d.  Treatments for 

Trial 2 were the same as for Trial 1 with the exception of Treatment 5, which 

contained control (60 mg of Zn from ZnSO4/kg) plus 60 mg of Zn from Zn 

methionine/kg of diet.  In Trial 3, 160 crossbred steers (avg initial BW = 320 kg ± 40) 

were blocked by weight and fed for 139 d.  Treatments were the same as Treatments 

1 through 4 of Trials 1 and 2.  In Trial 1, a trend for a linear increase (P = 0.07) in 

ADG was observed with increasing Zn level from d 0 to the end of the feeding 

period.  Dry matter intake increased (P = 0.03) linearly with increasing Zn level from 

d 0 to the end of the feeding period.  Steers consuming Availa Zn had greater (P =

0.02) GF than those consuming Zn methionine.  Steers consuming organic sources of 

Zn had greater (P = 0.02) marbling than steers consuming Zn from ZnSO4, and steers 

consuming Zn methionine had greater (P = 0.04) marbling than steers consuming 

Availa Zn.  Steers consuming Availa Zn had greater (P = 0.04) longissimus muscle 

area than steers consuming Zn methionine.  There was a linear increase (P = 0.04) in 

kidney, pelvic and heart fat (KPH) with increasing Zn level.  In Trial 2, 12th-rib fat 

tended (P = 0.09) to increase quadratically with increasing Zn level and tended (P =

0.08) to be greater for steers consuming Zn methionine vs. Availa Zn.  In Trial 3, feed 

efficiency was increased (P = 0.04) from d 0 to 56 for steers consuming Availa Zn vs. 

those consuming Zn methionine.  Our data suggest that increasing Zn level up to 120 

mg Zn/kg of DM and inclusion of an organic Zn source can enhance carcass quality, 

ADG and DMI in finishing cattle.   
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Introduction 

 
A review of 22 trials summarizing finishing performance and carcass merit of feedlot 

cattle (Anonymous, 2001) fed basal diets containing from 24 to 122 mg of Zn/kg of 

DM reported greater ADG (3.2%), greater gain efficiency (4.0%), and a tendency for 

more carcasses grading at least low Choice when cattle were supplemented with 

approximately 40 mg of additional Zn/kg of DM from a metal-amino acid complex, 

zinc methionine (Zinpro 100; Zinpro Corp., Inc., Eden Prairie, MN).  However, few 

data are available quantifying growth performance by feedlot cattle supplemented 

with a more recently developed Zn-amino acid complex, Availa Zn (Zinpro Corp., 

Inc.).  Malcolm-Callis et al. (2000) reported that performance by finishing steers was 

similar when ZnSO4, Availa Zn, or a Zn-polysaccharide complex was fed.  In 

contrast, Green et al. (1988) reported increased marbling, quality grade and kidney, 

pelvic and heart fat percent when Zn methione was supplemented vs. ZnO at 360 mg 

Zn/kg DM.  While it is common practice to utilize organic sources of Zn in feedlot 

diets (Galyean and Gleghorn, 2002) there is little literature addressing this practice. 

A survey of feedlot nutritional consultants (Glayean and Gleghorn, 2001) indicates 

that practical dietary Zn formulations for feedlot cattle are commonly between 50 and 

80 mg/kg of diet DM.  Data further suggest that formulation targets for Zn and other 

trace minerals often reflect desired supplemental mineral addition, likely because Zn 

and other trace minerals in basal ingredients can be variable in content and 

availability.  The objective of the present experiments was to evaluate the influence of 
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Zn source (ZnSO4, Zinpro 100, and Availa-Zn) and level on growth performance 

and carcass characteristics.  

 
Materials and Methods 

Experiment 1 

Approximately 550 crossbred yearling steers were delivered to CRI Feedlot 

near Goodwell, OK, on July 25, 2001.  Steers were owned by Harold Wooderson of 

Blackwell, OK.  On the morning of July 26, 336 steers (avg initial BW = 349 ± 22 

kg) were sorted and processed. At processing, steers were ear tagged, horn tipped as 

needed, implanted with Ralgro (Schering-Plough Animal Health, Union, NJ), 

vaccinated with IBR-PI3-BVD-BRSV (Titanium 5, Agri Laboratories, Ltd, St. Joseph, 

MO), vaccinated with a seven-way clostridial preparation (Vision 7, Intervet, 

Millsboro, DE), and treated for control of external and internal parasites (Ivomec-Plus 

injectable, Merial, Duluth, GA).  Steers received a second implant (Revalor-S, 

Intervet, Millsboro, DE) on day 56 of the finishing period.  After processing, 336 

steers were trucked to the Oklahoma Panhandle State University (OPSU) Research 

Center, Goodwell, OK.  On arrival, steers were weighed individually, blocked by 

weight into five weight blocks, and assigned randomly to 30 pens (24 pens of 12 

steers each and six pens of eight steers each). 

Treatments included (DM basis): 1) 60 mg of Zn from ZnSO4/kg of diet 

(control); 2) control plus 30 mg of Zn from ZnSO4/kg of diet; 3) control plus 30 mg 

of Zn from ZINPRO100 (Zinpro Corp., Inc., Eden Prairie, MN) Zn methionine/kg of 

diet; 4) control plus 30 mg of Zn from AvailaZn (Zinpro Corp., Inc., Eden Prairie, 
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MN)/kg diet; 5) control plus 60 mg of Zn from ZnSO4/kg of diet; and 6) control plus 

60 mg of Zn from Availa Zn/kg of diet.  Diets were formulated to meet or exceed 

NRC (1996) nutrient requirements (Table 1).  Monensin (33 mg/kg of diet; Elanco 

Animal Health, Greenfield, IN) and tylosin (11 mg/kg of diet; Elanco Animal Health, 

Greenfield, IN) were fed.  Steers were gradually adapted to the final diet by offering 

approximately 65, 75, and 85% concentrate diets for 7, 7 and 7 d, respectively.  The 

basal diet was purchased from Texas County Feed Yard, Guymon, OK by Mr. 

Wooderson.  Steers were fed twice daily at 0700 and 1300.  A premix containing 

ground corn and the appropriate treatment was top-dressed at a rate of 0.23 kg·hd-1·d-1 

at the evening feeding.  Feed refused was weighed every 28 d.  In addition, diet 

samples were collected, and DM content of the diets and dietary ingredients were 

determined.  Diet and ingredient samples were composited by 28-d periods, allowed 

to air dry, and ground in a Wiley mill to pass a 1-mm screen.  Diet samples and 

ingredients were returned to the Oklahoma State University campus and analyzed for 

N, ash (AOAC, 1990) and ADF (Goering and Van Soest, 1970).  Steers were weighed 

individually before feeding once every 28 d throughout the trial.  Initial weight was 

analyzed as taken, whereas all interim weights were analyzed with a 4% pencil 

shrink.  Final live weight was calculated by dividing hot carcass weight by a common 

dressing percentage (65%).  Feed intake was measured and gain efficiency was 

calculated every 28 d.  Steers were slaughtered at National Beef, Liberal, KS on 

December 4, 2001.  Hot carcass weight was determined following harvest, and 

carcasses were evaluated after a 24-h chill for subcutaneous fat depth at the 12th rib 
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(BF), longissimus muscle area (LMA), percentage kidney, pelvic, and heart fat 

(KPH), yield grade (YG), marbling score, and quality grade (USDA, 1997). 

Data for BW, DMI, ADG, GF and normally distributed carcass characteristics 

were analyzed as a randomized complete block design using the Proc Mixed 

procedure of SAS Release 8.02 (SAS Institute Inc., Cary, NC).  The model included 

treatment, and block was included as a random variable.  Pen served as the 

experimental unit.  There were 5 replicates for each treatment available for the 

analyses.  Pre-planned comparisons were: 1) linear Zn level; 2) quadratic Zn level; 3) 

inorganic vs organic Zn; and 4) Zn methionine vs Availa Zn.  Results are discussed as 

significant if P < 0.05, and as tendencies if P < 0.06 to P < 0.10. 

 
Experiment 2 

 
Two hundred seventy crossbred steers (avg initial BW = 349 ± 22 kg) were 

purchased from an order buyer and delivered to the WTAMU Research Feedlot on 15 

August 2001.  All procedures were reviewed and approved by the Amarillo-Area 

Cooperative Research, Education, and Extension Triangle Animal Care and Use 

Committee (protocol number 2001 – 08).  Animals were processed on arrival, and 

processing included:  individual identification;  individual BW determination;  

vaccination against viral antigens (IBR, PI3, BRSV, BVD; Titanium 5, Agri 

Laboratories, St. Joseph, MO) and Clostridial organisms (Vision 7 with Spur; 

Intervet, Inc., Millsboro, DE);  treatment for external and internal parasites (Cydectin; 

Fort Dodge Animal Health, Fort Dodge, IA);  excision of previous implant(s); and 

administering an initial implant (Ralgro, Schering-Plough Animal Health, Union, NJ).  
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All animals were fed a basal 55% concentrate diet at a common percentage of BW for 

8 d before initial BW was determined on 23 August 2001.  Six light steers were 

excluded from the study; therefore, 180 steers were blocked by BW and randomly 

assigned to treatments (5 pens/treatment, 9 steers/pen) on 24 August 2001. 

Treatments included: 1) 60 mg of supplemental Zn from ZnSO4/kg DM 

(control); 2) 90 mg of Zn from ZnSO4/kg DM; 3) control plus 30 mg of Zn from 

Availa Zn/kg DM; 4) control plus 30 mg of Zn from Zinpro 100/kg DM; 5) control 

plus 60 mg of Zn from Availa Zn/kg DM; and 6) control plus 60 mg of Zn from 

Zinpro 100/kg DM.  Zinc concentration in the positive control diet was selected to be 

representative of current industry formulations.  Reimplant date was adjusted across 

blocks to allow an average of 56 d of exposure to the initial implant and a similar 

number of days of exposure to the terminal implant.  Steers in the heaviest block 

(block 5) were weighed and reimplanted with Revalor-S (Hoechst Roussel Vet, 

Clinton, NJ) after 42 d and fed for 126 d.  Steers in blocks 3 and 4 were weighed and 

reimplanted with Revalor-S after 56 d and fed for 151 d, whereas steers in blocks 1 

and 2 were weighed and reimplanted with Revalor-S after 70 d and fed for 166 d.  All 

BW measurements were acquired using a single animal scale.  The scale was 

validated before each use using certified weights and calibrated as needed. 

Steers were adapted to 92% concentrate diets (Table 1) by feeding 70 and 

81% concentrate diets for 6 and 7 d, respectively.  Meal-form supplements were 

manufactured for each treatment using a stationary ribbon mixer (Model No. S-3;  H. 

C. Davis Sons Manufacturing Co., Inc., Bonner Springs, KS).  The ribbon mixer was 

cleaned between each batch using compressed air.  Samples of each Zn source were 
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assayed (described subsequently) for Zn before premixes were prepared, and 

laboratory results were used for formulation.  Diets were prepared once daily in a 

stationary paddle mixer (Model No. 84-8;  Roto-Mix, Inc., Dodge City, KS), and 

flushed with whole corn between each batch.  Samples of diets and dietary 

ingredients were collected weekly, DM determined, and samples composited to 28-d 

intervals.  As-fed diet composition was updated weekly.  Composited diet samples 

were dried (55°C for 48 h), ground to pass a 2-mm screen, and assayed for N by 

micro-Kjeldahl, EE (AOAC, 1990), ash (500°C for 16 h), ADF (Goering and Van 

Soest, 1970) and minerals by ICP (AOAC, 1990).   

Cattle were slaughtered at a commercial facility (IBP, Amarillo, TX).  Hot 

carcass weight was determined after slaughter.  Carcasses were evaluated after 

chilling for approximately 48 h for: LMA; BF; KPH; YG; marbling score; quality 

grade (USDA, 1997); and presence and severity of liver abscesses (Brink et al., 1990) 

by the Beef Carcass Research Center of West Texas A&M University.  Carcass-

adjusted final BW was determined by dividing hot carcass weight by the overall 

average dressing percentage.  Although carcass fatness seemed to differ numerically, 

final live BW of cattle in blocks 1 and 2 was likely influenced by the muddy pen 

conditions evident at that time.  Thus, carcass-adjusted performance is presented. 

Data for BW, DMI, ADG, GF and normally distributed carcass characteristics 

were analyzed as a randomized complete block design using the Proc Mixed 

procedure of SAS Release 8.02 (SAS Institute Inc., Cary, NC).  The model included 

treatment, and block was included as a random variable.  Pen served as the 

experimental unit.  There were 5 replicates for each treatment available for the 
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analyses.  Pre-planned comparisons included: 1) linear Zn level; 2) quadratic Zn 

level; 3) inorganic vs organic Zn; and 4) Zn methionine vs Availa Zn.  Results are 

discussed as significant if P < 0.05, and as tendencies if P < 0.06 to P < 0.10. 

 
Experiment 3 

 
One hundred sixty crossbred steers (avg initial BW = 320 kg ± 40) were 

delivered to the Willard Sparks Beef Research Center near Stillwater, OK on March 

14, 2003.  On arrival, steers were individually weighed and ear tagged.  On the 

following day, steers were horn tipped as needed, implanted with Revalor-S (Intervet, 

Millsboro, DE), vaccinated with IBR-PI3-BVD-BRSV (Titanium 5, Agri 

Laboratories, St. Joseph, MO), vaccinated with a seven-way clostridial preparation 

(Vision 7, Intervet, Millsboro, DE), and treated for control of external and internal 

parasites (Ivomec-Plus injectable, Merial, Duluth, GA).  Steers were blocked by 

initial BW into eight weight blocks.  Body weight (unshrunk) taken on the day of 

arrival (day 0) was considered initial weight.  Within block steers were assigned 

randomly to 4 pens (5 steers/pen; 8 pens/treatment). 

Treatments included: 1) 60 mg of supplemental Zn from ZnSO4/kg DM 

(control); 2) 90 mg of Zn from ZnSO4/kg DM; 3) control plus 30 mg of Zn from 

Availa Zn/kg DM; 4) control plus 30 mg of Zn from Zinpro 100/kg DM.  The basal 

diet is shown in Table 3, and was formulated to meet or exceed NRC (1996) nutrient 

requirements.  Monensin (33 mg/kg of diet) and tylosin (11 mg/kg of diet) were fed.  

Steers were gradually adapted to the final 90% concentrate diet by offering 65, 75, 

and 85% concentrate diets each for seven days.  Feed refused was weighed at 28-d 
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intervals and as needed (e.g., following inclement weather).  In addition, diet and 

ingredient samples were collected, and DM samples were composited by 28-d 

periods, allowed to air dry, and ground in a Wiley mill to pass a 1-mm screen.  Diet 

samples were analyzed for N, starch, ash (AOAC, 1990), ADF (Goering and Van 

Soest, 1970) and Zn by ICP (AOAC, 1990).  Interim unshrunk BW was determined at 

28-d intervals.  Steers were slaughtered at a commercial facility (Monfort, Cactus, 

TX).  Hot carcass weight, BF, KPH, LMA, marbling score, YG and quality grade 

were determined by the Beef Carcass Research Center of West Texas A&M 

University.     

Data for BW, DMI, ADG, GF and normally distributed carcass characteristics 

were analyzed as a randomized complete block design using the Proc Mixed 

procedure of SAS Release 8.02 (SAS Institute Inc., Cary, NC).  The model included 

treatment, and block was included as a random variable.  Pen served as the 

experimental unit.  Pre-planned comparisons were: 1) linear Zn level (60 vs 90 ppm); 

2) inorganic vs organic Zn; and 3) Zn Methionine vs Availa Zn.  Carcass data for 73 

carcasses were lost at harvest.  Therefore, data were analyzed for pens that had 

carcass information for no less than two animals per pen.  If this criterion was not met 

the pen was eliminated from the analyses.  Results are discussed as significant if P <

0.05, and as tendencies if P < 0.06 to P < 0.10. 
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Results  

 
Experiment 1   

 
Increasing Zn level tended (P = 0.08) to result in a linear increase in 

calculated final BW.  There was no difference in ADG from d 0 to 56 (Table 4).  

However, a trend (P = 0.07) for a linear increase in ADG was observed with 

increasing Zn level from d 0 to the end of the feeding period.  Dry matter intake 

tended (P = 0.06) to increase linearly with increasing Zn level from d 0 to 56, and 

increased (P = 0.03) linearly with increasing Zn level from d 0 to the end of the 

feeding period.  Steers consuming ZnSO4 tended (P = 0.10) to have greater GF 

compared with steers consuming organic sources of Zn from d 0 to 56.  During the 

same period steers consuming Availa Zn had greater (P = 0.02) GF than steers 

consuming Zn methionine.  In addition, there was a tendency (P = 0.09) for a similar 

effect from d 0 to the end of the feeding period.   

Hot carcass weight, KPH and YG were not affected by Zn level or source.  

Marbling scores tended (Linear effect, P = 0.10) to increase with increasing Zn level.  

In addition, steers consuming organic sources of Zn had higher (P = 0.02) marbling 

scores than steers consuming Zn from ZnSO4, and steers consuming Zn methionine 

had higher (P = 0.04) marbling scores than steers consuming Availa Zn with dietary 

Zn at 90 mg Zn/kg DM.  In contrast, steers consuming Availa Zn had greater (P =

0.04) LMA than steers consuming Zn methionine.  There was a tendency (P = 0.08)

for a linear increase in KPH with increasing level of Zn.  
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Experiment 2 

 
No differences (P > 0.10) were observed for BW, DMI or GF.  Average daily 

gain tended (P = 0.10) to be greater for steers consuming Availa Zn vs. Zn 

methionine.  Dressing percent increased (P = 0.02) linearly with increasing Zn levels 

(Table 5).  Steers consuming Zn methionine tended (P = 0.08) to have greater BF 

than steers consuming Availa Zn.  Similarly, BF tended (P = 0.09) to increase 

quadratically with increasing Zn level.   

 
Experiment 3 

 
No differences (P > 0.10) were observed for BW, ADG, DMI (Table 6) or 

carcass characteristics (Table 7).  Gain efficiency was increased (P = 0.04) from d 0 

to 56 for steers consuming Availa Zn vs. steers consuming Zn methionine (Table 6).  

 
Discussion 

 
Spears (1989) reported that apparent absorption of ZnO and Zn methionine 

appeared to be similar; however, urinary excretion of Zn was greater for ZnO 

suggesting that these two Zn sources may be metabolized differently.  Formation of 

insoluble, nonabsorbable complexes as well as antagonists of Zn absorption might 

influence Zn availability.  Regardless of differences in source, McCusker (1998) 

demonstrated that Zn plays an important role in animal growth by promoting cellular 

delivery of IGF from IGFBP 3 and 5.  Difference in utilization between organic and 

inorganic sources needs to be defined.   
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In Exp. 1 both ADG and DMI increased linearly with increasing Zn level; 

however, no differences in overall performance were observed for Exp. 2 and 3.  

Similar to Exp.1, Malcolm-Callis (2000) reported a linear increase in DMI with Zn 

levels of 20, 100, and 200 mg Zn/kg DM from ZnSO4 for a 112-d finishing period.  

The Zn levels utilized in their experiment were similar to those utilized in the present 

experiments; however, ZnSO4 was the only source used.  Galyean et al. (1995) 

reported increased ADG for a 161-d finishing trial for steers fed diets containing a 

basal diet plus 35 mg supplemental Zn/kg DM from Zn methionine, 70 mg 

supplemental Zn/kg DM from ZnSO4, and 70 mg supplemental Zn/kg DM from Zn 

methionine vs. steers fed the basal diet containing 30 mg supplemental Zn from 

ZnSO4. However, no differences were reported for DMI across the entire feeding 

period (Galyean et al., 1995).  Spears and Kegley (2002) reported increased DMI for 

steers fed two Zn proteinate sources vs. those fed ZnO.  Although results are 

inconsistent, these data generally suggest that increasing Zn above 30 mg/kg DM 

might increase DMI.  However, reasons for discrepancies among experiments remain 

unclear. 

Gain efficiency was greater for steers consuming Availa Zn than those 

consuming Zn methionine from d 0 to 56 in Exp. 1 and Exp. 3.  Malcolm-Callis et al. 

(2000) reported a tendency for greater GF for steers consuming organic Zn sources 

vs. ZnSO4 from d 84 to 112 of the finishing period, but no difference for the entire 

feeding period.  Similar to the present experiments, Spears and Kegley (2002) 

reported increased GF for steers consuming Zn proteinate vs. steers consuming ZnO.  

Other authors (Greene et al., 1998; Galyean et al., 1995) have reported no difference 
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in GF when steers were fed Zn levels well above the NRC (1996) recommended 

levels from both organic and inorganic Zn sources.   

Longissimus muscle area was increased for steers consuming Availa Zn vs. 

Zn methionine in Exp. 1.  Similarly, Spears and Kegley (2002) reported increased 

LMA for steers fed Zn proteinate vs. those fed ZnO.  However, other authors 

(Galyean et al., 1995; Greene et al., 1988; Malcolm-Callis et al., 2000) have reported 

no difference in LMA over similar ranges of Zn levels and Zn sources.  In Exp. 2, 

12th-rib fat tended to increase quadratically with increasing Zn level.  These results 

are similar to those reported by Malcolm-Callis et al. (2000) who reported a quadratic 

increase in 12th-rib fat when Zn was fed at 20, 100, or 200 mg Zn/kg DM from 

ZnSO4. There was also a tendency for a linear increase in marbling with increasing 

Zn level in the present Exp. 1.  This is consistent with results of Spears and Kegley 

(2002) who reported increased marbling when steers were supplemented with 51 mg 

Zn/kg DM from Zn proteinate or ZnO vs. control diets that contained 26 mg Zn/kg 

DM.  In contrast, Galyean et al. (1995) reported no differences in marbling with 

treatments (DM basis) including a basal diet with 30 mg Zn from ZnSO4, basal plus 

35 mg Zn from Zn methionine, basal plus 70 mg Zn from ZnSO4, or basal plus 70 mg 

Zn from Zn methionine.  Several authors have reported no differences in KPH when 

various levels and sources of Zn were supplemented (Galyean et al., 1995; Malcolm-

Callis et al., 2000; Spears and Kegley, 2002).  In contrast, Greene et al. (1998) 

reported that KPH was greater for steers fed Zn methionine vs. those fed ZnO or 

unsupplemented control diets.  Similarly, KPH tended to increase with increasing Zn 

level in the present Exp. 1. 
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In general, data suggest increased external and/or internal carcass fat is a more 

consistent response to supplemental Zn-amino acid complexes than altered growth 

performance at dietary concentrations between 80 and 280 mg of total Zn/kg of DM.  

The lower portion of this range coincides with dietary Zn concentrations fed to steers 

from which adipocytes demonstrated a dose-dependent increase in lipid synthesis 

from acetate when incubated with insulin (Archibeque et al., 2001).  While the effects 

of Zn level and Zn source have met with inconsistent results, there has been evidence 

linking Zn to fat deposition.  Recent Japanese work has suggested that serum Zn 

concentration was positively related to serum adipogenic activity (Tanaka et al., 

2001).  The same authors reported that the specific activity of glycerol phosphate 

dehydrogenase was increased by addition of Zn to the media of cultured 3T3-L1 cells 

without insulin and in the presence of insulin.  Shisheva et al. (1992) reported 

increases in glucose uptake by rat adipocytes both in the presence of Zn and insulin 

but the greatest response was in the presence of both Zn and insulin.  This enhanced 

substrate uptake by adipocytes in response to enhanced Zn status should be of 

particular importance in the later portion of the feeding period, because glucose 

metabolism of steers becomes less responsive to insulin as steers become older and 

fatter (Eismann et al., 1997).  Conversely, Greene et al. (1998) postulated that 

changes in quality and marbling score could be due to methionine provided with the 

chelated supplemental Zn.  In the present experiments, the added induction of 

marbling by Availa Zn (Zn bound to a non-specific amino acid) might suggest that 

other amino acids in addition to methionine might play a role in the increase in 

adiposity in the longissimus muscle. 
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Implications 

 Although results are inconsistent, zinc level and supplementation of organic 

zinc sources might enhance performance and carcass quality of finishing steers.  

While the relationship between zinc sources and levels is not clear, there appears to 

be an effect of zinc on carcass fatness at dietary concentrations between 80 and 280 

mg of total zinc/kg of dry matter.  The potential for improved carcass merit with 

increasing levels and organic sources of zinc warrants further research.  



70

LITERATURE CITED 

AOAC.  1990.  Official Methods of Analysis (15th Ed.) K. Helrich (Ed.).  Association 
of Official Analytical Chemists, Arlington, VA.  

 
Archibeque, S. L., G. S. Martin, G. E. Carstens, D. K. Lunt, and S. B. Smith.  2001.  

Insulin responsiveness of adipose tissue metabolism from steers supplemented 
with varying concentrations of zinc sulfate.  J. Anim. Sci. 79(Suppl. 1):86. 

 
Chirase, N. K., D. P. Hutcheson, G. B. Thompson, and J. W. Spears.  1994.  Recovery 

rate and plasma zinc and copper concentrations of steer calves fed organic and 
organic and inorganic zinc and manganese sources with or without injectable 
copper and challenged with infectious bovine rhinotracheitis virus.  J. Anim. 
Sci. 75:212-219. 

 
Eismann, J. H., G. B. Huntington, and D. R. Catherman.  1997.  Insulin sensitivity 

and responsiveness of portal-drained viscera, liver, hindquarters, and whole 
body of beef steers weighing 275 or 490 kilograms.  J. Anim. Sci. 75:2084-
2091.   

 
Goering, H. K., and P. J. Van Soest.  1970.  Forage fiber analyses (apparatus, 

reagents, procedures, and some applications).  Agric. Handbook No. 379, 
ARS< USDA, Washington, DC. 

 
Greene, L. W., D. K. Lunt, f. M. Byers, N. K. Chirase, C. E. Richmond, R. E. 

Knutson and G. T. Schelling.  1988.  Performance and carcass quality of 
steers supplemented with zinc oxide or zinc methionine.  J. Anim. Sci. 
66:1818-1823. 

 
Malcolm-Callis, K. J., G. C. Duff, S. A. Gunter, E. B. Kegley, and D. A. Vermeire.  

2000.  Effects of supplemental zinc concentration and source on performance, 
carcass characteristics, and serum values in finishing beef steers.  J. Anim. 
Sci. 78:2801-2808. 

 
McCusker, R. H.  1998.  Controlling insulin-like growth factor activity and the 

modulation of insulin-like growth factor binding protein and receptor binding.  
J. Dairy Sci. 81:1790-1800. 

 
Shisheva, A., D. Gefel, and Y. Shecter. 1992.  Preferential effects on desensitized 

adipocytes and induction of normoglycemia in streptozocin-induced rats.  
Diabetes 41:982-988.



71

Spears, J. W.  1989.  Zinc methionine for ruminants:  Relative bioavailability of zinc in 
lambs and effects of growth and performance of growing heifers.  J. Anim. Sci. 
67:835-843. 

 
Spears J. W., and E. B. Kegley. 2002.  Effect of zinc source (zinc oxide vs zinc 

proteinate) and level on performance, carcass characteristics, and immune 
response of growing and finishing steers.  J. Anim. Sci. 80:2747-2752.  

 
Tanaka, S., E. Takahashi, T. Matsui, and H. Yano.  2001.  Zinc promotes Adipocyte 

differentiation in vitro.  Asian-Aust. J. Anim. Sci. 14:966-969. 
 
USDA.  1997.  Official U.S. Standards for Grades of Carcass Beef.  AMS, USDA, 

Washington, DC.



72

Table 4-1.  Dry matter and nutrient composition of the finishing diet (Exp.1). 
Ingredients  

% of diet DM 
Steam flaked corn 81.0 
Corn silage 4.5 
Alfalfa hay 4.5 
Yellow grease 3.0 
Supplementa 7.0 
 

Nutrientsb

Dry matter, % as fed 77.1 
CP, % of DM 12.99 

 ADF, % of DM 4.77 
 Calcium, % of DM 0.49 
 Phosphorus, % of DM 0.31 
 Potassium, % of DM 0.56 
 Magnesium, % of DM 0.16 
 Sulfur, % of DM 0.15 
 Manganese, mg/kg of DM 39.8 
 Cobalt, mg/kg of DM 0.09 
 Iron, mg/kg of DM 49.9 
 Selenium, mg/kg of DM 0.15 
 Copper, mg/kg of DM 8.1 
 Zinc, mg/kg of DM 59.8 

aContained (% DM basis):  cottonseed meal (40.94), soybean meal 47.7 (28.57), limestone 38% 
(14.00), urea (10.00), salt (4.29), tallow (1.43), Rumensin 80 (0.29), Tylan 40 (0.14), zinc sulfate (0.17), 
vitamin A (0.10), manganous oxide (0.06), and copper sulfate (0.01). 

bAll values are estimate based on NRC (1996) values for feedstuffs. 
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Table 4-2.  Ingredient and chemical composition of the finishing diet (Exp.2). 
 

Ingredient composition, % of DM 
 

% of diet DM 
Whole shelled corn 79.25 
Cottonseed meal, solvent 41% 2.25 

 Supplementb 3.0 
 Cane molasses 5.0 
 Choice white grease 2.5 
 Alfalfa hay 8.0 
 
Chemical compositionc

CP, % of DM 13.2 
EE, % of DM 5.94 

 ADF, % of DM 6.70 
 Ash, % of DM 5.38 
 K, % of DM 0.84 
 Ca, % of DM 0.65 
 P, % of DM 0.30 
 Mg, % of DM 0.28 
 S, % of DM 0.28 
 Na, % of DM 0.15 
 Fe, mg/kg of DM 158 
 Zn, mg/kg of DM 89 
 Mn, mg/kg of DM 54 
 Cu, mg/kg of DM 18 

bProvided the following nutrients beyond basal ingredients: 0.2 mg of Co, 10 mg of Cu, 10 mg 
of Fe, 0.5 mg of I, 40 mg of Mn, 0.05 mg of Se, 2,300 IU of vitamin A, 15 IU of vitamin E, 30.9 g of 
monensin, and 11 mg of tylosin/kg of diet DM;  and 0.4% Ca, 0.06% K, 0.09% Mg, 0.06% S, 2.32% CP 
from urea, 0.25% NaCl, and 0.0075% mineral oil in the final diet. 

cDetermined analytically from weekly samples composited over the course of the study.



74

Table 4-3.  Dry matter and nutrient composition of the basal finishing diet (Exp.3). 
 

Ingredients 
 

% of diet DM 
Rolled corn 76.50 
Ground alfalfa 10.00 
Cane molasses 4.00 
Yellow grease 2.00 
Supplementa 7.50 
 
Nutrientsb

Dry matter, % as fed 87.91 
CP, % of DM 13.19 
ADF, % of DM 6.27 
NDF, % of DM 12.25 
Calcium, % of DM 0.68 
Phosphorus, % of DM 0.40 
Potassium, % of DM 0.77 
Magnesium, % of DM 0.18 
Sulfur, % of DM 0.18 
Manganese, mg/kg 36.2 
Cobalt, mg/kg 0.13 
Iron, mg/kg 126.5 
Copper, mg/kg 8.6 
Selenium, mg/kg 0.14 
Zinc, mg/kg 80.3 

aContained (% DM basis):  cottonseed meal (14.00), soybean meal 47.7 (42.00), limestone 38% 
(12.00), urea (8.00), salt (3.33),Wheat midds (13.16), Rumensin 80 (0.25), Tylan 40 (0.13), zinc sulfate 
(0.17), vitamin A (0.15), manganous oxide (0.003), dicalcium phosphate (6.67). 

bAll values are estimate based on NRC (1996) values for feedstuffs.
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Table 4-4. Effects of zinc level and zinc source on feedlot performance and carcass characteristics in steers (Exp.1).
60 mg/kg ZnSO4 60 mg/kg ZnSO4 Contrasts

ZnSO4
Availa Zn
Zn Methionine

60 mg/kg
ZnSO4

30 mg/kg
ZnSO4

30 mg/kg
Availa Zn

30 mg/kg
Zn Met

60 mg/kg
ZnSO4

60 mg/kg
Availa Zn SEMa

Linear
Znb

Quadratic
Znc

Inorganic
vs

Organicd
Zn Met vs
Availa Zne

BW, kg
Initial 346 347 347 347 346 347 11 1.00 0.37 0.25 0.82
d 56 454 464 461 456 462 458 11 0.14 0.37 0.49 0.33
Final 572 589 584 577 584 589 14 0.08 0.71 0.76 0.45

Daily gain, kg
d 0 - 56 1.96 2.13 2.07 1.98 2.11 2.03 0.06 0.13 0.53 0.34 0.28
d 0 – endf 1.74 1.87 1.82 1.77 1.83 1.86 0.05 0.07 0.77 0.88 0.44

DM intake, kg/d
d 0 - 56 9.60 10.12 9.98 10.55 10.39 10.14 0.34 0.06 0.45 0.41 0.16
d 0 - end 9.66 10.24 10.28 10.49 10.47 10.19 0.29 0.03 0.27 0.34 0.54

ADG:DMI
d 0 - 56 0.204 0.211 0.208 0.189 0.204 0.200 0.006 0.68 0.96 0.10 0.02
d 0 - end 0.180 0.182 0.178 0.169 0.175 0.183 0.004 0.87 0.32 0.39 0.09

Dressing % 65.0 65.2 65.7 65.8 64.9 66.3 0.5 0.31 0.73 0.03 0.78
Hot carcass wt., kg 374 386 382 378 382 385 9 0.06 0.64 0.76 0.44
Marblingg 382 399 391 424 388 422 11 0.10 0.40 0.02 0.04
External fat, cm 1.15 1.23 1.18 1.15 1.26 1.19 0.06 0.37 0.75 0.45 0.68
Ribeye area, cm2 93.1 96.2 96.1 92.5 95.0 95.8 1.3 0.12 0.74 0.97 0.04
KPH, % 1.31 1.41 1.38 1.44 1.43 1.48 0.07 0.08 0.97 0.37 0.52
Yield grade 2.41 2.45 2.38 2.49 2.52 2.44 0.11 0.61 0.81 0.78 0.46

aStandard error of the least squares means.
bSignificance level of linear contrast of Zn level.
c Significance level of quadratic contrast of Zn level.
dSignificance level of contrast of the average of 60 mg ZnSO4/ kg DM + 30 mg Availa® Zn/kg DM, 60 mg ZnSO4/kg DM + 30 mg Zn methionine/kg
DM, and 60 mg ZnSO4/kg DM + 60 mg Availa® Zn/kg DM vs. the average of 60 mg ZnSO4/kg DM, 90 mg ZnSO4/kg DM and 120 mg ZnSO4/kg DM.
eSignificance level of contrast of the 60 mg ZnSO4/kg DM + 30 mg Availa® Zn/kg DM vs. 60 mg ZnSO4/ kg DM + 30 mg Zn methionine/kg, DM.
fDays on feed per block.
gPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; slightly abundant = 700.
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Table 4-5. Effects of zinc level and zinc source on feedlot performance and carcass characteristics in steers (Exp.2).
60 mg/kg ZnSO4 60 mg/kg ZnSO4 Contrasts

Item
60 mg/kg

ZnSO4

30 mg/kg
ZnSO4

30 mg/kg
Zn Met

30 mg/kg
Availa Zn

60 mg/kg Zn
Met

60 mg/kg
Availa Zn SEMa

Linear
Znb

Quadratic
Znc

Inorganic
vs

Organicd
Zn Met vs
Availa Zne

BW, kg
Initial 325 325 325 325 325 326 12 0.73 0.49 0.47 0.40
d 56 437 435 435 439 436 435 6 0.80 0.91 0.71 0.71
Final 580 575 577 586 578 591 8 0.50 0.49 0.86 0.09

Daily gain, kg
d 0 - 56 1.90 1.87 1.86 1.92 1.87 1.87 0.06 0.72 0.88 0.74 0.59
d 0 - end 1.68 1.65 1.66 1.72 1.67 1.75 0.04 0.49 0.53 0.79 0.10

DM intake, kg/d
d 0 - 56 8.92 8.95 8.99 9.10 9.00 8.87 0.13 0.93 0.34 0.23 0.87
d 0 - end 9.95 9.82 9.74 9.95 9.79 1.01 0.22 0.78 0.47 0.71 0.12

ADG:DMI
d 0 - 56 0.212 0.208 0.208 0.212 0.210 0.210 0.006 0.78 0.78 1.00 0.73
d 0 - end 0.170 0.168 0.170 0.174 0.170 0.172 0.004 0.83 1.00 0.54 0.43

Dressing % 60.9 61.7 61.7 62.0 61.7 61.7 0.3 0.02 0.10 0.15 0.68
Hot carcass wt., kg 357 354 356 361 356 364 5 0.52 0.55 0.79 0.08
Marblingf 413 398 414 397 403 402 12 0.58 0.83 0.91 0.56
External fat, cm 1.12 1.12 1.01 1.18 1.23 1.25 0.09 0.13 0.09 0.15 0.16
Ribeye area, cm2 83.1 84.1 83.0 84.3 84.9 84.2 2.6 0.42 0.82 0.72 0.82
KPH, % 2.00 2.00 2.08 2.04 2.08 2.03 0.06 0.37 0.96 0.45 0.36
Yield grade 2.86 2.80 2.77 2.91 2.89 3.00 0.19 0.50 0.25 0.54 0.22

aStandard error of the least squares means.
bSignificance level of linear contrast of Zn level.
c Significance level of quadratic contrast of Zn level.
dSignificance level of contrast of the average of 60 mg ZnSO4/ kg DM + 30 mg Availa® Zn/kg DM, 60 mg ZnSO4/kg DM + 30 mg Zn methionine/kg
DM, and 60 mg ZnSO4/kg DM + 60 mg Availa® Zn/kg DM vs. the average of 60 mg ZnSO4/kg DM, 90 mg ZnSO4/kg DM and 120 mg ZnSO4/kg DM.
eSignificance level of contrast of the average of 60 mg ZnSO4/kg DM + 30 mg Availa® Zn/kg DM,and 60 mg ZnSO4/kg DM + 60 mg Availa® Zn/kg
DM vs. 60 mg ZnSO4/ kg DM + 30 mg Zn methionine/kg, DM, and 60 mg ZnSO4/ kg DM + 60 mg Zn methionine/kg, DM.
fPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; slightly abundant = 700.
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Table 4-6. Effects of zinc level and source on feedlot cattle performance (Exp.3).

60 mg/kg ZnSO4 Contrasts

Item 60 mg/kg
ZnSO4

30 mg/kg
ZnSO4

30 mg/kg
Availa Zn

30 mg/kg
Zn Met SEMa 60 vs. 90

mg/kgb
Inorganic vs

Organicc
Availa Zn vs Zn

methioninec

BW, kg
Initial 357 356 356 356 7 0.40 0.22 0.10
d 56 464 462 464 461 9 0.58 0.78 0.48
Final 596 589 589 598 10 0.47 0.84 0.19

Daily gain, kg
d 0 - 56 1.92 1.90 1.93 1.87 0.07 0.81 0.93 0.49
d 0 - end 1.72 1.68 1.68 1.74 0.04 0.58 0.74 0.17

DM intake, kg/d
d 0 - 56 10.08 9.99 9.83 9.90 0.29 0.46 0.41 0.83
d 0 - end 10.61 10.48 10.31 10.53 0.22 0.35 0.41 0.33

ADG:DMI
d 0 -56 0.190 0.191 0.197 0.189 0.004 0.56 0.42 0.04
d 0 - end 0.162 0.160 0.163 0.165 0.002 0.76 0.16 0.43

aStandard error of the least squares means.
bSignificance level of 60 mg Zn SO4/ kg DM vs the average of 90 mg ZnSO4/kg DM, 60 mg ZnSO4/kg DM + 30 mg Availa® Zn/kg DM, and 60 mg
ZnSO4/kg DM + 30 mg Zn methionine/kg DM.
cSignificance level of contrast of the average of 60 mg ZnSO4/ kg DM + 30 mg Availa® Zn/kg DM and 60 mg ZnSO4/kg DM + 30 mg Zn methionine/kg
DM, vs. the average of 60 mg ZnSO4/kg DM and 90 mg ZnSO4/kg DM.
dSignificance level of contrast of the 60 mg ZnSO4/kg DM + 30 mg Availa® Zn/kg DM vs. 60 mg ZnSO4/ kg DM + 30 mg Zn methionine/kg, DM.
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Table 4-7. Effects of zinc level and source on feedlot carcass characteristics (Exp.3).

60 mg/kg ZnSO4 Contrasts

Item 60 mg/kg
ZnSO4

30 mg/kg
ZnSO4

30 mg/kg
Availa Zn

30 mg/kg Zn
Met SEMa

60 vs. 90
mg/kgb

Inorganic vs
Organicc

Availa Zn vs Zn
Methionined

Pens 6 6 5 5
Animals 22 24 20 21

Dressing % 66.8 61.0 60.0 58.0 1.61 0.46 0.18 0.34

Hot carcass wt., kg 378 378 380 383 6 0.51 0.34 0.59

Marblinge 395 374 382 396 25 0.72 0.87 0.71

External fat, cm 1.43 1.69 1.38 1.39 0.12 0.65 0.16 0.95

Ribeye area, cm2 90.3 87.6 92.2 90.0 2.6 0.88 0.38 0.55

KPH, % 1.93 1.97 2.00 1.94 0.07 0.62 0.79 0.54

Yield grade 2.98 3.40 2.87 2.98 0.20 0.62 0.20 0.70
aStandard error of the least squares means.
bSignificance level of 60 mg Zn SO4/ kg DM vs the average of 90 mg ZnSO4/kg DM, 60 mg ZnSO4/kg DM + 30 mg Availa® Zn/kg DM, and 60 mg
ZnSO4/kg DM + 30 mg Zn methionine/kg DM.
cSignificance level of contrast of the average of 60 mg ZnSO4/ kg DM + 30 mg Availa® Zn/kg DM and 60 mg ZnSO4/kg DM + 30 mg Zn methionine/kg
DM, vs. the average of 60 mg ZnSO4/kg DM and 90 mg ZnSO4/kg DM.
dSignificance level of contrast of the 60 mg ZnSO4/kg DM + 30 mg Availa® Zn/kg DM vs. 60 mg ZnSO4/ kg DM + 30 mg Zn methionine/kg, DM.
ePractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; slightly abundant = 700.
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APPENDIX A

ADDITIONAL RESULTS FOR CHAPTER III

Appendix Table A-1. Effects of copper and zinc level and zinc source on cumulative feedlot performance by heifers (Exp. 1).
12 mg Cu/kg DM 24 mg Cu/kg DM

80 mg Zn/kg DM 320 mg Zn/kg DM 80 mg Zn/kg DM 320 mg Zn/kg DM
Item ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn SEM Pr > Fa

Initial wt., kg 306 311 309 307 304 306 309 308 4 0.72
Final wt., kg 499 519 523 512 515 504 521 506 9 0.28
Daily gain, kg

d 0 - 27 1.42 1.37 1.57 1.43 1.20 1.22 1.18 1.42 0.14 0.32
d 28 - 56 1.39 1.42 1.41 1.41 1.67 1.43 1.71 1.53 0.12 0.80
d 57 - 84 1.16 1.39 1.31 1.26 1.37 1.36 1.26 1.38 0.15 0.32
d 85 - 112 1.36 1.55 1.52 1.43 1.53 1.21 1.58 1.41 0.09 0.14
d 113 - end 1.14 1.09 1.21 1.18 1.18 1.26 1.26 0.80 0.13 0.14
d 0 - end 1.29 1.36 1.40 1.34 1.39 1.30 1.40 1.30 0.07 0.43

DM intake,
kg/d

d 0 - 27 7.46 7.57 7.81 7.83 7.44 7.25 7.47 7.76 0.15 0.18
d 28 - 56 7.89 8.29 8.37 8.16 8.19 7.76 8.67 8.52 0.28 0.26
d 57 - 84 7.96 8.34 8.42 8.40 8.73 8.31 8.47 8.21 0.28 0.50
d 85 - 112 7.56 8.05 8.05 7.79 8.69 7.95 8.01 8.45 0.42 0.12
d 113 - end 7.23 7.18 7.05 7.22 7.34 7.80 7.54 6.76 0.29 0.20
d 0 - end 7.62 7.88 7.94 7.88 8.48 8.41 80.3 8.23 0.31 0.52

Gain:feed
d 0 - 27 0.190 0.181 0.200 0.183 0.159 0.168 0.158 0.182 0.018 0.50
d 28 - 56 0.176 0.171 0.168 0.173 0.205 0.185 0.197 0.179 0.013 0.84
d 57 - 84 0.146 0.165 0.155 0.149 0.157 0.164 0.149 0.168 0.015 0.36
d 85 - 112 0.180 0.192 0.187 0.185 0.177 0.153 0.198 0.167 0.011 0.78
d 113 - end 0.158 0.152 0.172 0.163 0.151 0.163 0.164 0.120 0.016 0.24
d 0 - end 0.170 0.173 0.177 0.170 0.165 0.155 0.173 0.159 0.008 0.80

aProbability of an interaction between Cu level, Zn level, and Zn source.
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Appendix Table A-2.  Effects of copper and zinc level on cumulative feedlot performance by 
heifers (Exp. 1). 
 12 mg Cu/kg DM  24 mg Cu/kg DM  

Item 
80 mg 

Zn/kg DM 
320 mg 

Zn/kg DM 
80 mg 

Zn/kg DM 
320 mg 

Zn/kg DM 
 

SEM 
 
CuL x ZnLa

Initial wt., kg 309 308 305 308 3 0.50 
Final wt., kg 509 517 509 513 6 0.71 
 
Daily gain, kg       
 d 0 - 27 1.40 1.50 1.21 1.30 0.12 0.95 
 d 28 - 56 1.41 1.41 1.55 1.62 0.08 0.73 
 d 56 - 84 1.28 1.29 1.27 1.32 0.11 0.79 
 d 85 - 112 1..45 1.48 1.37 1.49 0.07 0.46 
 d 113 - end 1.12 1.19 1.22 1.03 0.09 0.17 
 d 0 - end 1.32 1.37 1.34 1.35 0.06 0.64 
 
DM intake, kg/d       
 d 0 - 27 7.52 7.82 7.34 7.62 0.10 0.87 
 d 28 - 56 8.09 8.26 7.97 8.59 0.20 0.27 
 d 57 - 84 8.15 8.41 8.52 8.34 0.20 0.29 
 d 85 - 112 7.80 7.92 8.32 8.23 0.29 0.74 
 d 113 - end 7.21 7.14 7.77 7.15 0.20 0.19 
 d 0 - end 7.75 7.91 8.44 8.13 0.22 0.30 
 
Gain:feed       
 d 0 - 27 0.186 0.192 0.164 0.170 0.015 0.98 
 d 28 - 56 0.174 0.171 0.195 0.179 0.009 0.83 
 d 57 - 84 0.156 0.151 0.160 0.158 0.012 0.93 
 d 85 - 112 0.186 0.186 0.165 0.182 0.008 0.27 
 d 113 - end 0.155 0.168 0.157 0.142 0.011 0.21 
 d 0 - end 0.171 0.173 0.160 0.166 0.007 0.69 
aProbability of an interaction between Cu level and Zn level. 
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Appendix Table A-3.  Effects of zinc level and zinc source on cumulative feedlot performance by 
heifers (Exp. 1). 
 80 mg Zn/kg DM  320 mg Zn/kg DM  
Item ZnSO4 AvailaZn  ZnSO4 AvailaZn SEM ZnL x ZnSa

Initial wt., kg 305 309 309 307 3 0.37 
Final wt., kg 507 511 522 509 6 0.18 
 
Daily gain, kg       
 d 0 - 27 1.31 1.30 1.37 1.42 0.12 0.69 
 d 28 - 56 1.53 1.43 1.56 1.47 0.09 0.94 
 d 56 - 84 1.27 1.37 1.28 1.32 0.11 0.73 
 d 85 - 112 1.45 1.38 1.55 1.42 0.07 0.64 
 d 113 - end 1.16 1.18 1.23 0.99 0.09 0.18 
 d 0 - end 1.34 1.33 1.40 1.32 0.06 0.41 
 
DM intake, kg/d       
 d 0 - 27 7.45 7.41 7.64 7.79 0.10 0.35 
 d 28 - 56 8.04 8.03 8.52 8.34 0.20 0.67 
 d 57 - 84 8.34 8.33 8.45 8.31 0.20 0.77 
 d 85 - 112 8.12 8.00 8.03 8.12 0.30 0.72 
 d 113 - end 7.48 7.49 7.30 6.99 0.20 0.44 
 d 0 - end 8.05 8.14 7.98 8.05 0.22 0.95 
 
Gain:feed       
 d 0 - 27 0.175 0.175 0.179 0.183 0.154 0.86 
 d 28 - 56 0.190 0.178 0.182 0.176 0.009 0.77 
 d 57 - 84 0.152 0.164 0.152 0.159 0.012 0.77 
 d 85 - 112 0.179 0.172 0.193 0.176 0.008 0.51 
 d 113 - end 0.154 0.157 0.168 0.142 0.011 0.20 
 d 0 - end 0.167 0.164 0.175 0.165 0.007 0.42 
aProbability of an interaction between Zn level and Zn source. 
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Appendix Table A-4.  Effect of zinc source on cumulative performance by heifers 
(Exp. 1). 

Item ZnSO4 AvailaZn SEM Zn sourcea

Initial wt., kg 307 308 2 0.72 
Final wt., kg 514 510 4 0.51 
 
Daily gain, kg     
 d 0 - 27 1.34 1.36 0.11 0.82 
 d 28 - 56 1.55 1.45 0.06 0.28 
 d 56 - 84 1.28 1.35 0.09 0.47 
 d 85 - 112 1.50 1.40 0.05 0.15 
 d 113 - end 1.20 1.08 0.07 0.24 
 d 0 - end 1.37 1.33 0.05 0.27 
 
DM intake, kg/d     
 d 0 - 27 7.54 7.60 0.07 0.60 
 d 28 - 56 8.28 8.18 0.14 0.63 
 d 57 - 84 8.39 8.32 0.14 0.70 
 d 85 - 112 8.08 8.06 0.21 0.96 
 d 113 - end 7.39 7.24 0.14 0.46 
 d 0 - end 8.02 8.10 0.16 0.71 
 
Gain:feed     
 d 0 - 27 0.177 0.179 0.014 0.87 
 d 28 - 56 0.186 0.177 0.006 0.33 
 d 57 - 84 0.152 0.161 0.010 0.33 
 d 85 - 112 0.186 0.174 0.005 0.15 
 d 113 - end 0.161 0.149 0.008 0.30 
 d 0 - end 0.171 0.164 0.006 0.12 
aProbablity of an effect of Zn source.
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Appendix Table A-5. Effects of copper and zinc level and zinc source on carcass traits in heifers (Exp.1)
12 mg Cu/kg DM 24 mg Cu/kg DM

80 mg Zn/kg DM 320 mg Zn/kg DM 80 mg Zn/kg DM 320 mg Zn/kg DM
Item ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn SEM Cu x ZnL x

ZnSa

HCW, kg 321 333 336 329 331 324 335 326 6 0.31
Dressing % 64.04 64.63 65.32 64.46 64.30 63.85 64.64 63.44 0.34 0.47
Ribeye
area, cm2 93.07 88.52 95.48 87.68 86.68 92.23 92.87 89.49 3.16 0.53
12th-rib fat,
cm 1.44 1.56 1.46 1.78 1.59 1.50 1.71 1.82 0.10 0.22
KPH 2.48 2.49 2.45 2.20 2.55 2.58 2.65 2.46 0.17 0.93
Marblingb 432 448 427 423 481 449 430 436 25 0.42
Yield grade 2.44 2.89 2.47 3.14 2.77 2.56 2.82 3.03 0.15 0.64

aProbability of an interaction between Cu level, Zn level, and Zn source.
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; slightly

abundant = 700.
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Appendix Table A-6.  Effects of copper and zinc level on carcass traits in heifers (Exp.1). 
 12 mg Cu/kg DM 24 mg Cu/kg DM  

Item 
80 mg 

Zn/kg DM 
320 mg 

Zn/kg DM 
80 mg 

Zn/kg DM 
320 mg 

Zn/kg DM 
 

SEM 
 

CuL x ZnLa

HCW, kg 327 333 327 330 4 0.70 
Dressing % 64.34 64.89 64.07 64.04 0.24 0.24 
Ribeye area, cm2 90.80 91.58 89.46 91.18 2.23 0.84 
12th-rib fat, cm 1.50 1.62 1.55 1.77 0.09 0.51 
KPH 2.49 2.33 2.56 2.56 0.12 0.53 
Marblingb 440 425 465 433 18 0.62 
Yield grade 2.67 2.80 2.66 2.92 0.11 0.56 

aProbability of an interaction between Cu level and Zn level. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; slightly 
abundant = 700. 
 

Appendix Table A-7.  Frequency distribution for various individual carcass measurements in heifers 
(Exp. 1)

12 mg Cu/kg DM  24 mg Cu/kg DM 
80 mg Zn/kg DM  320 mg Zn/kg DM  80 mg Zn/kg DM  320 mg Zn/kg DM 

ZnSO4 AvailaZn  ZnSO4 AvailaZn  ZnSO4 AvailaZn  ZnSO4 AvailaZn 
n 21 18 19 18 20 20 20 19 
USDA Quality Gradea

Prime 0 1 0 1 0 0 0 0 
 Choice 13 12 11 7 13 13 10 11 
 Select 8 5 8 10 7 7 10 8 
 Standard 0 0 0 0 0 0 0 0

USDA Yield Gradeb

One 2 2 0 1 3 2 2 1 
 Two 7 4 7 8 4 2 1 3 
 Three 12 11 8 7 12 12 12 9 
 Four 0 2 4 2 1 4 3 6 
 Five 0 0 0 0 0 0 2 0 

aChi square value = 11.10; Probability = 0.68. 
bChi square value = 39.46; Probability = 0.07.



85 

Appendix Table A-8. Effects of copper and zinc level and zinc source on cumulative feedlot performance by steers (Exp. 2).
12 mg Cu/kg DM 24 mg Cu/kg DM

80 mg Zn/kg DM 320 mg Zn/kg DM 80 mg Zn/kg DM 320 mg Zn/kg DM
Item ZnSO4 Availa Zn ZnSO4 Availa Zn ZnSO4 Availa Zn ZnSO4 Availa Zn SEM Pr > Fa

Initial wt., kg 342 343 342 341 342 342 341 339 14 0.95
Final wt., kg 599 577 600 599 589 583 595 599 11 0.72

Daily gain,
kg

d 0 - 27 1.84 1.85 1.63 2.00 1.92 1.57 1.81 1.73 0.10 0.69
d 28 - 56 1.95 1.69 2.04 1.80 1.91 1.93 1.98 2.11 0.20 0.86
d 57 - 84 1.91 1.64 1.95 1.98 1.85 1.83 1.64 2.10 0.26 0.80
d 85 - 112 1.94 2.00 1.89 2.30 1.97 1.72 2.19 1.84 0.15 0.32
d 113 - end 1.52 1.16 1.68 1.09 1.33 1.61 1.40 1.63 0.22 0.78
d 0 - end 1.85 1.68 1.84 1.84 1.78 1.72 1.82 1.86 0.08 0.74

DM intake,
kg/d

d 0 - 27 8.4 8.8 8.0 8.6 8.5 8.3 8.7 8.3 0.4 0.54
d 28 - 56 9.7 9.6 10.4 9.8 9.4 10.0 9.5 10.4 0.4 0.49
d 57 - 84 10.8 9.6 10.6 10.4 10.3 9.9 10.1 11.0 0.6 0.84
d 85 - 112 11.8 11.2 11.7 11.5 11.6 10.9 11.4 12.1 0.4 0.34
d 113 - end 11.3 10.7 11.0 10.7 11.1 10.3 11.2 11.0 0.6 0.85
d 0 - end 11.0 10.5 10.9 11.6 10.7 11.0 11.0 11.1 0.6 0.29

Gain:feed
d 0 - 27 0.217 0.211 0.205 0.233 0.225 0.187 0.209 0.209 0.011 0.90
d 28 - 56 0.200 0.172 0.195 0.182 0.205 0.194 0.209 0.202 0.017 0.79
d 57 - 84 0.175 0.174 0.183 0.187 0.177 0.185 0.163 0.192 0.023 0.77
d 85 - 112 0.164 0.178 0.161 0.201 0.170 0.158 0.192 0.153 0.015 0.22
d 113 - end 0.134 0.111 0.153 0.102 0.114 0.156 0.126 0.147 0.019 0.88
d 0 - end 0.168 0.160 0.168 0.161 0.166 0.158 0.166 0.168 0.012 0.58

aProbability of an interaction between Cu level, Zn level, and Zn source.
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Appendix Table A-9.  Effects of copper and zinc level on cumulative feedlot performance by 
steers (Exp. 2). 
 12 mg Cu/kg DM  24 mg Cu/kg DM  

Item 

80 mg 
Zn/kg 
DM 

320 mg 
Zn/kg DM  

80 mg 
Zn/kg DM 

320 mg 
Zn/kg DM 

 
SEM 

 
CuL x ZnLa

Initial wt., kg 342 342 342  340 14 0.68 
Final wt., kg 588 599 586 597 8 0.99 
 
Daily gain, kg       
 d 0 - 27 1.85 1.82 1.74 1.77 0.07 0.69 
 d 28 - 56 1.82 1.92 1.92 2.04 0.14 0.93 
 d 57 - 84 1.77 1.96 1.84 1.87 0.18 0.66 
 d 85 - 112 1.97 2.10 1.84 2.01 0.11 0.86 
 d 113 - end 1.34 1.38 1.47 1.51 0.16 0.99 
 d 0 - end 1.76 1.84 1.75 1.84 0.06 0.91 
 
DM intake, kg/d       
 d 0 - 27 8.6 8.3 8.4 8.5 0.4 0.33 
 d 28 - 56 9.7 10.1 9.7 9.9 0.3 0.80 
 d 57 - 84 10.3 10.3 1.01 10.5 0.3 0.82 
 d 85 - 112 11.5 11.6 11.3 11.7 0.3 0.53 
 d 113 - end 11.0 10.9 10.7 11.1 0.5 0.41 
 d 0 - end 10.7 11.3 10.8 11.0 0.6 0.61 
 
Gain:feed       
 d 0 - 27 0.214 0.219 0.206 0.209 0.010 0.87 
 d 28 - 56 0.186 0.188 0.199 0.205 0.012 0.86 
 d 57 - 84 0.175 0.185 0.181 0.177 0.018 0.67 
 d 85 - 112 0.171 0.181 0.164 0.173 0.010 0.94 
 d 113 - end 0.123 0.127 0.135 0.137 0.014 0.92 
 d 0 - end 0.164 0.164 0.162 0.167 0.011 0.56 

aProbability of an interaction between Cu level and Zn level. 
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Appendix Table A-10.  Effect of copper level on cumulative performance by steers 
(Exp. 2). 
Item 12 mg Cu/kg DM 24 mg Cu/kg DM SEM Cu levela

Initial wt., kg 342 341 14 0.72 
Final wt., kg 594 591   6 0.77 
 
Daily gain, kg     
 d 0 - 27 1.83 1.76 0.05 0.29 
 d 28 - 56 1.87 1.98 0.10 0.42 
 d 57 - 84 1.87 1.86 0.13 0.96 
 d 85 - 112 2.03 1.93 0.08 0.34 
 d 113 - end 1.36 1.49 0.11 0.42 
 d 0 - end 1.80 1.79 0.05 0.90 
 
DM intake, kg/d     
 d 0 - 27 8.5 8.5 0.4 0.95 
 d 28 - 56 9.9 9.8 0.2 0.76 
 d 57 - 84 10.3 10.3 0.3 0.96 
 d 85 - 112 11.56 11.52 0.2 0.86 
 d 113 - end 10.9 10.9 0.4 0.80 
 d 0 - end 11.0 10.9 0.5 0.85 
 
Gain:feed     
 d 0 - 27 0.217 0.207 0.009 0.14 
 d 28 - 56 0.187 0.202 0.010 0.19 
 d 57 - 84 0.180 0.179 0.014 0.95 
 d 85 - 112 0.176 0.168 0.007 0.44 
 d 113 - end 0.125 0.136 0.010 0.43 
 d 0 - end 0.164 0.164 0.011 0.94 

aProbablity of an effect of Cu level.
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Appendix Table A-11.  Effect of zinc level on cumulative performance by steers 
(Exp. 2). 
Item 80 mg Zn/kg DM 320 mg Zn/kg DM SEM Zn levela

Initial wt., kg 342 341  14 0.56 
Final wt., kg 587 598    6 0.16 
 
Daily gain, kg     
 d 0 - 27 1.80 1.79 0.05 0.98 
 d 28 - 56 1.87 1.98 0.10 0.41 
 d 57 - 84 1.81 1.92 0.13 0.54 
 d 85 - 112 1.91 2.05 0.08 0.19 
 d 113 - end 1.41 1.45 0.11 0.79 
 d 0 - end 1.75 1.84 0.05 0.15 
 
DM intake, kg/d     
 d 0 - 27 8.5 8.4 0.4 0.51 
 d 28 - 56 9.7 10.0 0.2 0.23 
 d 57 - 84 10.1 10.5 0.3 0.38 
 d 85 - 112 11.4 11.7 0.2 0.26 
 d 113 - end 10.8 11.0 0.4 0.63 
 d 0 - end 10.8 11.2 0.5 0.23 
 
Gain:feed     
 d 0 - 27 0.210 0.214 0.009 0.58 
 d 28 - 56 0.193 0.197 0.010 0.70 
 d 57 - 84 0.178 0.181 0.014 0.85 
 d 85 - 112 0.167 0.177 0.007 0.37 
 d 113 - end 0.129 0.132 0.010 0.82 
 d 0 - end 0.163 0.165 0.011 0.58 

aProbablity of an effect of Zn level. 
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Appendix Table A-12.  Effect of zinc source on cumulative performance by steers 
(Exp. 2). 

Item ZnSO4 Availa Zn SEM Zn sourcea

Initial wt., kg 342 341 14 0.77 
Final wt., kg 596 589    6 0.38 
 
Daily gain, kg     
 d 0 - 27 1.80 1.79 0.05 0.88 
 d 28 - 56 1.97 1.88 0.10 0.52 
 d 57 - 84 1.84 1.89 0.13 0.78 
 d 85 - 112 2.00 1.96 0.08 0.76 
 d 113 - end 1.48 1.37 0.11 0.50 
 d 0 - end 1.82 1.77 0.05 0.44 
 
DM intake, kg/d     
 d 0 - 27 8.4 8.5 0.4 0.68 
 d 28 - 56 9.7 10.0 0.2 0.46 
 d 57 - 84 10.4 10.2 0.3 0.62 
 d 85 - 112 11.6 11.4 0.2 0.40 
 d 113 - end 11.1 10.7 0.4 0.12 
 d 0 - end 10.9 11.0 0.5 0.64 
 
Gain:feed     
 d 0 - 27 0.214 0.210 0.009 0.53 
 d 28 - 56 0.202 0.187 0.010 0.19 
 d 57 - 84 0.175 0.185 0.014 0.50 
 d 85 - 112 0.172 0.173 0.007 0.94 
 d 113 - end 0.132 0.129 0.010 0.83 
 d 0 - end 0.167 0.162 0.011 0.19 

aProbablity of and effect of Zn Source.
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Appendix Table A-13. Effects of copper and zinc level and zinc source on carcass traits in steers (Exp.2)
12 mg Cu/kg DM 24 mg Cu/kg DM

80 mg Zn/kg DM 320 mg Zn/kg DM 80 mg Zn/kg DM 320 mg Zn/kg DM
Item ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn SEM Cu x ZnL x

ZnSa

HCW, kg 376 362 381 375 370 366 373 375 7 0.89
Dressing % 62.8 62.4 64.3 63.0 62.0 63.1 62.6 62.6 0.4 0.88
Ribeye
area, cm2 80.7 81.9 79.4 81.1 83.6 81.6 80.8 78.2 2.0 0.98
12th-rib fat,
cm 1.70 1.42 1.65 1.66 1.49 1.36 1.72 1.73 0.12 0.65
KPH 2.21 2.32 2.30 2.25 2.26 2.33 2.36 2.36 0.14 0.83
Marblingb 434 425 448 450 442 438 453 439 28 0.71
Yield grade 3.67 3.27 3.81 3.67 3.33 3.33 3.85 3.83 0.18 0.59

aProbability of an interaction between Cu level, Zn level, and Zn source.
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; slightly
abundant = 700.
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Appendix Table A-14.  Effects of zinc level and zinc source on carcass traits in steers (Exp. 2). 
 80 mg Zn/kg DM  320 mg Zn/kg DM  
Item ZnSO4 AvailaZn  ZnSO4 AvailaZn SEM ZnL x ZnSa

HCW, kg 373 364 377 375 6 0.38 
Dressing % 62.4d 62.7cd 63.4c 62.8cd 0.3 0.10 
Ribeye area, cm2 82.2 81.3 80.1 79.6 1.9 0.75 
12th-rib fat, cm 1.59 1.39 1.68 1.70 0.09 0.23 
KPH 2.24 2.32 2.33 2.30 0.10 0.58 
Marblingb 438 432 450 444 24 0.99 
Yield grade 3.50 3.30 3.83 3.75 0.13 0.65 

aProbability of an interaction between Zn level and Zn source. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400; modest = 500; moderate = 600; 
slightly abundant = 700. 
cdMeans within a row with different superscripts differ P < 0.10. 

 

Appendix Table A-15.  Effect of copper level on carcass traits in steers (Exp. 2). 
Item 12 mg Cu/kg DM 24 mg Cu/kg DM SEM Copper La

HCW, kg 374 371 5 0.52 
Dressing % 63.1 62.6 0.2 0.05 
Ribeye area, cm 2 80.8 80.8 1.9 0.94 
12th-rib fat, cm 1.61 1.57 0.06 0.72 
KPH 2.27 2.32 0.07 0.58 
Marblingb 439 443 22 0.78 
Yield grade 3.61 3.59 0.09 0.88 

aProbability of an effect of copper level. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400;  

modest = 500; moderate = 600; slightly abundant = 700. 
cdMeans within row with different superscripts differ P < 0.05. 
 

Appendix Table A-16.  Effect of zinc source on carcass traits in steers (Exp. 2). 
Item ZnSO4 AvailaZn SEM Zinc Sourcea

HCW, kg 375 369 5 0.20 
Dressing % 62.9 62.8 0.2 0.61 
Ribeye area, cm2 81.1 80.5 1.9 0.30 
12th-rib fat, cm 1.64 1.54 0.06 0.30 
KPH 2.28 2.31 0.07 0.77 
Marblingb 444 438 22 0.67 
Yield grade 3.67 3.53 0.09 0.29 

aProbability of an effect of zinc source. 
bPractically devoid = 100; traces = 200; slight = 300; small = 400;  

modest = 500; moderate = 600; slightly abundant = 700.
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Appendix Table A-17. Frequency distribution for various individual carcass measurements in steers (Exp. 2)

12 mg Cu/kg DM 24 mg Cu/kg DM

80 mg Zn/kg DM 320 mg Zn/kg DM 80 mg Zn/kg DM 320 mg Zn/kg DM

ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn ZnSO4 AvailaZn
n 20 20 19 18 20 19 18 20
USDA Quality Gradea

Choice 12 12 11 9 12 15 14 14
Select 8 8 8 9 7 4 4 6
Standard 0 0 0 0 1 0 0 0

USDA Yield Gradeb

Two 1 2 0 1 0 0 0 0
Three 6 10 14 11 7 8 6 6
Four 11 7 4 7 9 7 10 11
Five 2 1 1 0 3 4 2 3

aChi square value = 12.56; Probability = 0.56.
bChi square value = 25.82; Probability = 0.21.
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APPENDIX B 
 

ADDITIONAL RESULTS FOR CHAPTER IV 
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Table B-1. Effects of treatment and day on performance of feedlot performance in steers fed for 130 days (Exp.1).
60 ppm ZnSO4 60 ppm ZnSO4

Period
60 ppm
ZnSO4

30 ppm
ZnSO4

30 ppm
AvailaZn

30.ppm
ZnMet

60 ppm
ZnSO4

60 ppm
AvailaZn SEMa Trt Per Trt*Per

BW, kg
d 0 346 347 347 347 346 347 12 <0.001 <0.001 0.93
d 29 398 404 404 397 403 401
d 55 454a 464b 461b 456ab 462b 458ab

d 83 509a 527b 525b 516ab 524ab 521ab

d 112 556a 574b 571b 562ab 565ab 566ab

d 130 572a 590b 584ab 577ab 584ab 589b

Daily gain, kg
d 0 - 29 1.80 1.98 1.96 1.74 1.96 1.86 0.10 0.16 <0.001 0.06
d 29 - 55 2.15 2.30 2.19 2.26 2.28 2.21
d 56 - 83 1.94 2.23 2.28 2.14 2.21 2.23
d 84 - 112 1.63 1.63 1.61 1.59 1.43 1.55
d 113 - 130 0.89 0.86 0.71 0.83 1.06 1.28

DM intake, kg/d
d 0 - 29 9.23 9.66 9.34 9.76 9.89 9.35 0.33 <0.001 <0.001 0.99
d 29 - 55 10.00a 10.64ab 10.70ab 11.23b 10.96b 10.74ab

d 56 - 83 9.77a 10.44ab 10.74b 10.71b 10.69b 10.48ab

d 84 - 112 9.92 10.47 10.58 10.42 10.67 10.46
d 113 - 130 9.28 9.95 9.97 9.79 10.03 9.79

Feed:Gain
d 0 - 29 5.23 4.90 4.78 5.68 5.09 5.05 1.64 0.32 <0.001 0.14
d 29 - 55 4.66 4.68 4.89 4.97 4.83 4.88
d 56 - 83 5.08 4.70 4.71 5.02 4.87 4.70
d 84 - 112 6.08 6.42 6.58 6.61 7.59 6.74
d 113 - 130 10.67 14.60 19.86 13.07 10.03 7.97

aStandard error of the least squares means.
a,bMeans within a row with common superscripts do not differ.
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Table B-2. Effects of zinc level and zinc source on cumulative feedlot performance in steers fed for 130 days (Exp.1).
60 ppm ZnSO4 60 ppm ZnSO4 Contrasts

Item
60 ppm
ZnSO4

30 ppm
ZnSO4

30 ppm
AvailaZn

30 ppm Zn
Met

60 ppm
ZnSO4

60 ppm
AvailaZn SEMa

Zn Level
Linear

Zn Level
Quadratic

Inorganic
vs Organic

ZnMet
vs

Availa
Zn

Initial wt., kg 346 346 347 347 346 347 0.55 NS NS NS NS
Final wt., kg 572 590 584 577 584 589

Daily gain, kg
d 0 - 29 1.80 1.98 1.96 1.74 1.96 1.86 0.09 NS NS NS NS
d 0 - 55 1.96 2.13 2.07 1.99 2.11 2.03 0.05 NS NS NS NS
d 0 - 83 1.95 2.17 2.14 2.04 2.14 2.10 0.06 NS NS NS NS
d 0 - 112 1.87 2.03 2.00 1.92 1.96 1.96 0.05 NS NS NS NS
d 0 - 130 1.74 1.87 1.82 1.77 1.83 1.86 0.05 NS NS NS NS

DM intake, kg/d
d 0 - 29 9.24 9.66 9.34 9.76 9.88 9.34 0.25 NS NS NS NS
d 0 - 55 9.60 10.12 9.98 10.55 10.39 10.13 0.27 NS NS NS NS
d 0 - 83 9.65 10.23 10.24 10.60 10.49 10.26 0.25 NS NS NS NS
d 0 - 112 9.72 10.29 10.33 10.60 10.54 10.26 0.25 NS NS NS NS
d 0 - 130 9.66 10.24 10.28 10.49 10.47 10.19 0.25 NS NS NS NS

Feed:Gain
d 0 - 29 5.23 4.90 4.78 5.69 5.09 5.05 0.22 NS NS NS NS
d 0 - 55 4.91 4.75 4.82 5.30 4.92 5.02 0.12 0.64 0.93 0.07 0.01
d 0 - 83 4.96 4.73 4.78 5.20 4.90 4.90 0.10 0.66 0.84 0.23 0.01
d 0 - 112 5.21 5.07 5.15 5.51 5.39 5.26 0.09 0.30 0.60 0.25 0.01
d 0 - 130 5.57 5.49 5.63 5.92 5.72 5.49 0.02 0.81 0.33 0.33 0.07

aStandard error of the least squares means.



96

Table B-3. Effects of zinc level and source on feedlot cattle performance (Exp.3).
60 ppm ZnSO4 Contrasts

Item
60 ppm
ZnSO4

30 ppm
ZnSO4

30 ppm
Availa Zn 30 ppm

Zn Met SEM 60 vs. 90 ppm
Inorganic vs

Organic
Availa Zn vs Zn

Methionine
BW

Initial 786 783 783 783 14.7 -- -- --
d 28 900 894 897 892 18.0 0.37 0.66 0.54
d 56 1022 1018 1022 1014 19.2 0.62 0.81 0.50
d 86 1134 1127 1126 1129 21.2 0.50 0.73 0.83
d 112 1243 1220 1228 1227 22.9 0.16 0.71 0.95
d 139 1312 1297 1297 1317 22.5 0.47 0.84 0.19

Daily gain, kg
d 0 – 28 4.10 3.96 4.08 3.90 0.23 0.61 0.85 0.56
d 29 – 56 4.35 4.41 4.44 4.36 0.22 0.83 0.91 0.78
d 57 – 84 3.98 3.91 3.74 4.08 0.22 0.79 0.88 0.28
d 85 – 112 3.90 3.34 3.64 3.52 0.18 0.07 0.82 0.65
d 113 – 139 2.49 2.74 2.46 3.20 0.17 0.14 0.23 0.005
d 0 – 139 3.79 3.70 3.70 3.84 0.08 0.58 0.74 0.17

DM intake, lb/d
d 0 – 28 22.3 21.8 21.6 21.7 0.70 0.30 0.44 0.84
d 29 – 56 22.1 22.2 21.8 21.9 0.74 0.85 0.59 0.90
d 57 – 84 23.9 23.0 22.8 23.2 0.56 0.11 0.39 0.54
d 85 – 112 24.2 23.8 22.9 23.8 0.57 0.29 0.24 0.20
d 113 – 139 24.5 24.7 24.5 25.4 0.52 0.47 0.44 0.22
d 0 – 139 23.4 23.1 22.7 23.2 0.49 0.34 0.41 0.32

Feed:Gain
d 0 – 28 5.53 5.63 5.31 5.63 0.22 0.96 0.60 0.30
d 29 – 56 5.14 5.14 4.94 5.05 0.21 0.70 0.50 0.71
d 57 – 84 6.21 5.92 6.25 5.73 0.32 0.51 0.82 0.25
d 85 – 112 6.24 7.18 6.44 6.82 0.24 0.30 0.25 0.01
d 113 – 139 10.63 9.21 10.57 7.97 0.89 0.19 0.47 0.05
d 0 – 139 6.17 6.26 6.14 6.05 0.09 0.84 0.16 0.40
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