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CHAPTER |

PREDICTION UNCERTAINTY AND THE VALUE OF INCREASINGLY

SPATIALLY PRECISE NITROGEN NEEDSINFORMATION

Abstract

Nitrogen fertilizer is intensively used in crop agriculture in the UniteteStand many
researchers embrace the goal of improving nitrogen-use effietethey is, increasing
the proportion of nitrogen fertilizer that is actually used by the crop. Thixgnde
achieved by applying nitrogen fertilizer to match plant needs as thepvarypoth time
and space. Several different precision agriculture systems have beendlasigdress
this variability of nitrogen needs. Among these innovations are two whole-fistiehsy
that use midseason normalized difference vegetation index (NDVI) measures f
growing winter wheat to predict the amount of nitrogen the plants require to hesich t
plateau yield. The nitrogen fertilizer optimization algorithm (NFOAUSBVI data
from a nitrogen-rich strip and a check strip in the same field to determinatéhat
which the crop will cease to be responsive to nitrogen. The ramped strip systes appl
incrementally increasing nitrogen rates in a strip of plots just jgith@ting, and then
collects midseason NDVI readings to determine the rate at which cromsespeEases.
This paper is comprised of two sub-papers, the first of which uses datasets from

actual ramped strips from on-farm trials. The data used are the outpoth&@rogram



Ramp Analyzer 1.2, and include ramped strip recommendations, as well as NFOA
recommendations based on these ramped strips. These data are used to detern@ine whet
the ramped strip and NFOA recommendations are precise enough to detect spatial
variability of nitrogen needs within fields, among fields and among different esunti
within the state. The results show that the ramped strip recommendation ig a nois
measure of nitrogen needperhaps too noisy to be unambiguously profitable.

The second sub-paper uses data from trials at ten experiment station sites
throughout the state of Oklahoma. Different preplant nitrogen treatments weasslappl
replicated plots at these locations between 1998 and 2008, and midseason NDVI and
yield data were collected from each plot. These data are used to estipatsesst both
NDVI and yield to preplant nitrogen as a linear response-plateau. Bebause t
relationship between NDVI and yield is estimated with uncertainty and eetainear
response-plateau functional form is nonlinear in parameters, a new methodology
developed using Monte Carlo simulation to predict optimal topdress nitrogehastxs
on the NDVI data. This sub-paper also determines whether it is necessanpte sa
NDVI measures from each field, and how much precisiand profit—would be lost by
moving from site-specific (or field-specific) NDVI sampling to regiemel sampling. It
is determined that the NDVI-based nitrogen needs predictors developed in thiangape
imprecise, with the result that profits from region-level sampling andlgeiel sampling
are statistically indistinguishable. Furthermore, it is found that the regimhfield-based
sampling systems are no better than break-even with the historical extadgice to

apply preplant anhydrous ammonia at 90 kg.ha



Introduction

Crop agriculture in the United States and other developed nations intensively uses
nitrogen fertilizer (N) to increase yields. Expenditures on N account for 2B8%2%0 of
operating expenses for U.S. producers of wheat and corn, respectively (Uafesd St
Department of Agriculture, 2005). Many researchers have focused on improviseg N-
efficiency (NUE) in agriculture (e.g., Raun and Johnson, 1999; Greenhalgh and Faeth,
2001; Cassman et al., 1998). Raun and Johnson (1999) find that only 33% of N applied to
cereal crops worldwide is recovered in grain. Traditionally, N has bgsiedprior to
planting at a uniform rate selected to meet a yield goal based on hlst@ids.
However, Solie, Raun and Stone (1999) show that natural soil N content (inversely
related to crop requirements for N application) varies significanthyspatal scale of
approximately 1 m Additionally, many studies (e.g., Lobell et al., 2005; Mamo et al.,
2003; Washmon et al., 2002) find that crop response to N varies within and between
fields over time. In other words, potential yield and N requirements vary telypord
spatially within and between fields. This variability results from weatbpology, and
their combined effects on N deposition, mineralization, and volatilization. Precis
agriculture focuses on providing information to reduce uncertainty about N needs so
producers can improve profit margins by avoiding under- or over-application of N.
One innovation in precision agriculture is the sensor-based nitrogen fertilizer
optimization algorithm (NFOA) developed by Raun et al. (2002, 2005). The NFOA uses
midseason measures of normalized difference vegetation index (NDVIghmming
plants in a non-limiting, nitrogen-rich strip (NRS) to predict the midseason esgptir

application rate required by the crop. Additionally, Raun et al. (2008) have developed a



ramped strip (RS) technology to predict optimal N application rates fps ancluding
corn and wheat. This practice involves applying N at incrementally increasesgto
plots arranged in a strip. Such strips can be used to predict, either by visualonsprect
by using an optical reflectance sensor, the midseason, topdress N appliatiat
which crop response to N will cease. The goal of these technologies is to imprive NU
or reduce loss of N inputs to volatilization and rureffithout decreasing yields, so as
to improve producer profits. More than one RS or NRS may be used in a single field, but
it is recommended that producers place at least one strip in each field ea@riyaih
Edwards and Godsey, 2008). However, is it likely two fields “very close” to eheh ot
have similar N requirements? Or what about three such fields? In other wordss thieat i
optimal spatial scale at which to sample NDVI data from experimenizd 3 Should
fields be divided into management zones with a strip in each zone? Is one strip per field
sufficient? Or perhaps several strips spread throughout a county could provide an
accurate enough prediction for all fields within the county. A county-wide systarid
be especially valuable to producers who grow wheat for both grain and grazing, for
whom establishing an experimental strip might be prohibitively costly due toamam§
costs. The answers to questions about the optimal spatial scale of samplinidj Akso w
affected by the strength of the relationship between yields and the NDMliskad to
predict them. Despite reduction in uncertainty about spatial and temporaliitgrct
crop response, uncertainty remains an issue for the NFOA and RS techndagresat
of prediction error.

Babcock (1992) suggests that uncertainty results in the historic producer habit of

“over-applying” N at a uniform rate every year. He proposes chronic ovecaiogh



indicates that producers assume crop response to N follows a linear respbeese-pl
(LRP) functional form in which the plateau is uncertain. Tembo et al. (2008qusy
address uncertainty about plateau yields among fields and years. They develop an
analytical formula to determine the optimal application rate given intenadmor inter-
field variability of plateau yields. Both Babcock (1992) and Tembo et al. (2008) show
that the expected profit maximizing strategy given uncertainty abatgtgol yields is to
apply more N than the deterministic solution suggests. Therefore, inclusion of
uncertainty—especially prediction error in the relationship between NBY/eelds—
may be essential to accurately predicting the expected profit maxjmedseason,
topdress N application rate using the NFOA or RS. This means that predictiom ¢ner
predicted intercept and slope should be addressed in addition to plateau uncertainty to
improve N requirement prediction.

The remainder of this paper (following the theory section) is divided intouto s
papers, which use different datasets to explore sets of related questions aaut spa
variability of N requirements. The objectives of the first section are 1ajeocmae
whether N requirements as predicted by the RS and the NFOA vary by cotimityawi
single year and 2a) to determine how consistent (or repeatable) NFOA and RS
predictions are over time and space. The objectives of the second section are 1b) to
determine whether average plant N requirements for a large region vwaeahyb) to
develop a new process for including prediction error in the RS predictor and 3b) to
estimate the relative profitability of four different systems for chrgphl application

rates. These systems are:



a) a perfect predictor system that uses yield data directly to detetina
expected profit maximizing topdress N application rate;
b) the historical recommendation of 90 kg N'f@s preplant anhydrous
ammonia (NH);
C) a site-year-specific, NDVI-based predictor of topdress N rageinés
based on the process developed in objective (2b) above; and
d) a region-year-specific, NDVI-based predictor of topdress N requirement
based on the process developed in objective (2b) above.
The results will determine whether annual collection of state- or cowgl/N©VI
data—and subsequent dissemination of N recommendations based on theskatata
potential value for winter wheat producers in Oklahoma. Such regional N
recommendations, if accurate, might be especially beneficial to those adwecprwheat
for both grazing and grain, who would likely find the cost of fencing off an expetaine
strip in each field prohibitive. Notably, using a region-based system wouldl raotai
uncertainty about N requirements at any particular site. However, raimeseeking to
reduceuncertainty in N requirements predictions, this work seeks to account for

remaining uncertainty in the predictors, and thereby to reduam#hef prediction error.

Theory

Prior research indicates that output is a function of the most limiting inputfargs,and
Knapp, 1989; Berck and Helfand, 1990; Paris, 1992; Chambers and Lichtenberg, 1996;
Berck, Geoghegan, and Stohs, 2000; Monod et al., 2002). This functional form is known

as a linear response-plateau (LRP). Here, the most limiting input is aksubweeither



N or an unspecified input that is represented as a plateau level of output. However,
variables determining the intercept and plateau yields—such as N deposition,
mineralization and volatilizatier-are not known in advance at any given site in any
particular year (Mamo et al., 2003). Thus, producers face substantial ungentaint
choosing N application rates. Midseason collection of NDVI data from e&cbasih

year can reduce uncertainty caused by spatial and temporal varialoiever,

predicting yields based on NDVI introduces prediction error that has not yet been
addressed in the NFOA or RS methods. The following brief example illusti@ates
prediction error about the plateau (and only the plateau) affects the process tddexpec

profit maximization.

Brief Example: Expected Profit Maximization when the Plateau

Yield Is Predicted with Error

Suppose a LRP function of expected yield response to N has been predicted flar a sing
site-year based on NDVI data from a RS. For ease of exposition, assunie that a
parameters besides the plateau are predicted without-eanoadmittedly unrealistic
assumption. Figure I-1 illustrates the hypothetical LRP function. Figiiustrates the
resulting profit function. These two figures show that, when the plateau yield issknow
with certainty, the profit maximizing N application rate is 30 kg.l@bserve the slope

of the profit function before and after the optimal rate to see that under-applisat
relatively more costly than over-applying by the same amount due to the relateseqdr

N and wheat. However, because the plateau yield is predicted with erroosteef

under- or over-applying are not guaranteed—i.e., there is payhability that applying
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Figurel-3. Expected profit maximizing nitrogen application rate vs. standard
deviation of the plateau prediction error.
an additional kg of N will increase profits, and some probability that it wilf ordrease
costs. The rate that maximizespectegrofit is that at which the probability the crop
will use the last kg of N applied is the price of N divided by the price of wheat. Thi
fulfils the necessary condition that expected marginal revenue mustneapgahal cost
for an expected profit maximum. The N application rate at which this conditioatis
depends upon the variability of the plateau. In this case, it depends on the prediation err
in the plateau parameter.

Figure I-3 shows the schedule of expected profit maximizing N applicates ra
for varying levels of uncertainty about the plateau based on equation (14) in Teahbo et
(2008). As prediction error in the plateau parameter increases, higher N tappliates

are required to satisfy the necessary condition that expected marginaile eggrals



marginal cost. Note again that this example trealgthe error in the predictive
relationship between NDVI data and the yield plateau, assuming the otheepersaare
known with certainty. Prediction error in the intercept, slope and plateau paaofeter
predicted yield LRP functions will be jointly addressed by Monte Carlo stronlan the
procedures section, but consideration of these prediction errors is not conducive to

graphical analysis.
The Producer’s Decision Problem: Choosing the Expected
Profit Nitrogen Application System

A producer’s decision problem is to maximize expected profit under uncertainty
(from several sources) by choosing an N recommendation system. This problem can be

written as:

1) maxE[z, (Y(N )N = F (¢))].

where 7, is profit from systenk; y is yield; N, is the nitrogen rate recommended by
systenmk; ¢, is the information set used by systkiim making an N requirement
prediction; andF, is the function used by systdnto make a prediction based gp. An
expected profit maximizing producer will abandoformation setp, and adopt
information setg, only if:

2) E[7z, (Y(N)N; = F,(4))] < E[7,(Y(N,)N, = F,(¢,))] -

For example, imagine that information ggtprovides a more accurate prediction of N

needs than information séj, helping the producer to reduce N costs from over-

application, but that it provides this increaseduaacy at a cost that exceeds the expected
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N savings. In this case, the producer expects maf# from a less accurate predictor
due to the high cost of information, and will svaiitom ¢, tog,. Thus, improved

prediction accuracy attained by using field-spedriiformation rather than region-
specific information must be sufficient to offsketcost of the more spatially precise
information. In the case of NDVI-based predictgn®diction error will be determined by
multiple factors, including the strength of theatenship between midseason NDVI data
and yield, measurement and sampling error in citig¢he NDVI measures, as well as
the spatial scale of the data collected. So thetores arise: How do crop N
requirements vary among fields? Do they vary anreg@gns? Are they predictable

using NDVI data?

How Do Nitrogen Needs Vary Spatially, and What theelmplications?

That Crop N requirements vary temporally and spatisiwell established (Lobell et al.,
2005; Mamo et al., 2003; Washmon et al., 2002)hBgpatial and annual variability in N
requirements are related to weather and climasgpdfial variability of N requirements is
detectable for different regions (counties, sayhinia state, knowledge of this
variability could allow somewhat accurate predictad N requirements for fields within
the region. Accounting for both spatial and tempeftects, crop N response is assumed
to follow the form:

3) Yo :min(,b’o+,6’1Npit +V, +&,P+V +o +¢ +Ut)+upit ,

wherey,, is the yield on plop in field i in yeart; N, is the N application rate on plpt

pit

of field i in yeart; 5, and P are the estimated intercept and yield plateapecs/ely;

p, is the slope of N response; and @, are random effects for field, shifting the

11



intercept and plateau, respectivety;and o, are random effects for year, also shifting
the intercept and plateau, respectively; is a random disturbance from the mean; and

V,, o, &, v, andu are all independent and normally distributed witans of zero

pit

2 2 2

and variancew’, o, o, o, andc’, respectively. When the true parameters of

equation (3) are known, the uniform profit maximgiN requirement for fieldin yeart

(N,) can be expressed as follows:

(P+a)i +Ut _:Bo)/ﬂl ) if pc(P+a)i +Ut _ﬂo) > (P+a)i +Ut _:Bo)/ﬂl_ pa
0, otherwise,

4) N, :{
here p, and p, are the price of the crop and the cost of appljingespectively, and the
remaining symbols are previously defined. Becaleses, and g, are constant, the only
parameters changing N requirement from one sitetgeanother ares, anduv,.

If annual effects §,) on N requirements within a region are significantl large,

and if they can be predicted based on some infoomaet+—NDVI from RSs at
experiment stations, sayproducers may find a regional prediction of thiswaal effect
valuable. If the annual effects are large relato/éeld-specific effectsf ) on N
requirements, a field-specific information set nmay significantly improve producer
profit relative to a regional information set. Thegional predictions of N requirements

might be preferable.
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Sub-Paper 1: Spatial Variability, Repeatability and Noise in Predictions Made by

the Nitrogen Fertilizer Optimization Algorithm and the Ramped Strip

Data

The first dataset used (hereafter called “countglieata”) is comprised of on-farm trials
conducted in 2007. This dataset contains 268 obgens from on-farm trials of RSs in
15 counties in Oklahoma. Each observation includesounty in which the trial was
located, a RS recommendation, a NFOA recommenddherpredicted yield intercept
and plateau from the NFOA, and amounts of N actugiplied by the producer prior to
planting. The exact location of each strip withie tounty was not recorded. Table I-1
gives the number of observations, mean RS recomatiend mean NFOA
recommendation, and the mean predicted yield iepgrand plateau from the NFOA by
county. All of these measures are outputs of thgnam Ramp Analyzer 1.2 that fits a
linear response-plateau function to the NDVI datddtermine the N requirements if N is
to be applied at the Feekes 5 growth stage (Raah, @008). The N recommendations in
this dataset are used to determine whether thenm@enmdations of the NFOA and RS
technologies predict any consistent variabilitiNimequirements among counties. Also,
total rainfall data by county are provided from @ikbma Mesonet stations in or near
each county. Rainfall is low for some counties @gstis 58.29 cm) and high for other
counties (highest is 150.80 cm)

The second dataset (hereafter called “field-leath contains observations from
nine on-farm RS trials conducted in Canadian CoimB008. To create these data, two

pairs of RSs were applied in each field as topduesa-ammonium nitrate solution
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Tablel-1.

Dataset Two

Number of Observations, Mean Ramped Strip Nitrd@enommendation,
Mean Nitrogen Recommendations, and Mean Predidadd® Yield by County for

County Trials RS Rate NFOA NFOA NFOA Total
(kg ha') Rate Intercept Plateau Rainfall
(kgha') (kg ha') (kg ha) (cm)
Blaine 10 24538 € < 3448.70° 132.23
(6.01F (125.87)
Canadian 44 66.18 21517 2781.62°  3395.95  135.94
(7.19) (2.23) (71.76) (91.94)
Ellis 5 22.62 538 171091  1837.25° 58.29
(8.81) (1.64) (154.12) (150.71)
Grant 20 4777 22.68° 2893.63°  3648.15  103.73
(6.76) (3.80) (190.74) (209.50)
Greer 3 4517  15.68 1870.40 2273.60 77.137¢
(7.71) (3.88) (266.96) (358.34) (6.42)
Jackson 6 64.49 2240  2619.68  3178.00° 55.35
(21.51) (6.16) (130.69) (246.80)
Kingfisher 2 83.44 2352 2701.44 3944.64°  146.46
(22.96) (5.60) (739.20) (60.48)
Muskogee 83 60.75 26.21°  2925.95  3599.05 = 121.87
(4.77) (2.50) (70.85) (92.96)
Noble 19 67.61 2493 2639.90° 3355.76  150.80
(11.18) (3.04) (140.87) (152.51)
Nowata 15 58.54 29.277 3084.93°  4271.23° 108.43
(6.54) (3.59) (102.25) (133.21)
Okmulgee 5 60.70 17.47  2870.52°  3316.45  112.70 ©
(7.12) (4.05) (162.74) (241.04)  (27.84)
Ottowa 33 63.57/ 26.57  2643.20 332253  121.92
(4.78) (2.43) (59.50) (74.31)
Pawnee 10 77.62 3539  2461.54°  3423.84° 135.08
(20.43) (5.54) (136.95) (202.78)
Payne 5 88.48  40.77 3240.38"  4359.94° 137.03"'
(7.10) (16.61)  (352.27) (262.83) (4.89)
Wagoner 8 66.36 25.06  2872.80  3492.30° 111.89
(15.49) (3.77) (112.59) (175.43)

#0ne, two or three asterisks indicate statistigaliicance at the 0.10, 0.05 or 0.01
levels, respectively. The null hypothesis is tihat means are zero.
P Numbers in parentheses are standard errors.
¢ This variable is not available for observation8laine County.

4 This is the average measure from the three clddesonet stations.
® This is the average measure from the two Mesdatibss in Okmulgee County.
" This is the average measure from the three Mestakbns in Payne County.
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(UAN) after plant emergence. Paired strips wereartadmaking two adjacent passes
over the field with the RS applicator, so that th&es in the paired strips increase in
opposite directions. Each of the four strips waayaed with a hand-held Greenseeker
optical sensor three times during the growing seasmthree RS recommendations, three
NFOA recommendations, and three yield plateaudrgedcepts predicted by the NFOA
are available from each strip. It should be noked in this dataset (but not in the county-
level data) the predicted yield plateaus from i) are right censored at 6048 kg‘ha
(90 bu ad) even when the predicted intercept is above #vsll Such censoring may
mean that the NFOA predicts no N response even Wigeraw NDVI data clearly show

N response. Table I-2 lists the planting datessamsing dates for each field. The amount
of N applied by producers prior to sensing wasraobrded. These data are used to
determine how repeatable NFOA and RS recommendagicnover space and through

time within fields as a measure of how much naossgresent in the predictions.
Procedures

The important question of whether the NFOA and &®mmended N application rates
vary by county within a single year is addressedguthe county-level data. If different
counties have significantly different N requirenerand if these can be predicted by the
RS or NFOA, a regional N requirement predictionaysbased on NDVI may have
predictive value. To test for county-level effedtss following Tobit model is estimated:
K1 K-1
a+ﬂNjk+§5ka if rj’;:a+/3Njk+éaka+yjk>o

) Mk = K1
0 if r =a+pN; +> 6D, +u, <0
k=1
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Tablel-2. Planting Date and Sensing Dates for Each Fieldataget Three
Field Planting Date Sensing Dates
AC 11/6/2007 01/31/2008
AM 10/10/2007 02/01/2008
02/19/2008
03/11/2008
DE 10/14/2007 01/31/2008
02/19/2008
03/11/2008
JL 10/12/2007 01/31/2008
02/20/2008
03/11/2008
KM 10/5/2007 01/31/2008
02/19/2008
03/11/2008
LZ 10/9/2007 01/23/2008
01/31/2008
02/19/2008
RZ 10/12/2007 02/04/2008
02/19/2008
03/11/2008
SN 10/12/2007 02/04/2008
02/20/2008
03/11/2008
TZ 10/10/2007 01/31/2008
02/19/2008
03/11/2008

wherer, is the RS recommendation from strip at gitecountyk; « is the intercept
recommendationf is the effect of preplant N application on the ler8ommendation;
N, is the amount of preplant nitrogen applied atjsitecountyk; 5, is a fixed effect
affecting the mean N recommendation for couqtip, is an indicator variable equal to
one when county ik, and zero otherwisd is the number of countiessjfK is an index of

the crop’s predicted “need” for N at sjten countyk; , is a normally distributed

random deviation in predicted N requirements &tjsit countyk, with mean zero and
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varianceaj. Based on this model, a likelihood ratio testdedito test the null

hypothesis that county level variation in RS recandations does not exigte.,

o, =0,V k). At-testis used to determine whether preplant apmicatf N has any

impact on RS recommendations (whetlger 0). The estimation is done using PROC
QLIM in SAS. The above estimation in equation &japeated using the NFOA
recommendations as the dependent variable, andrpetiie hypothesis tests again to
determine whether NFOA recommendations vary by goun

The important questions of repeatability of RS Aif@A recommendations
across time and space are addressed using théefiellddata. Poor repeatability of these
recommendations at the same strip over time, orcloelation between
recommendations from two adjacent strips woulddati that the RS or NFOA
recommendations are too noisy to be useful in ptiedj N requirements at the single-
field level. Such noise could stem from either noeaient error or high spatial
variability within the field. To determine whethRS detects significant within-field

variability of N requirements, the following no-@rtept Tobit model is estimated:

J J
> 5D, if ry =>.6,D,+¢, >0
i= j=1
(6) rut - . * J
0 if ry =Y 6,D, +¢, <0
j=1

wherer; is the predicted optimal N application rate oipstin pairj on sensing date

o, is a fixed effect for paip;, D,

; Is an indicator variable equal to one for paand zero

otherwise;r; is a latent variable representing the level ofri¢l(ding residual and

ijt

applied N) the plants in strign pairj on sensing dateneed to reach the predicted
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plateau yield;e;, is a random error term distributed with mean zerd variances? ;

andJ is the number of strip pairs.
The first hypothesis tested is that N requiremeetljgtions from the RS do not
vary between pairs located within the same fiei@., 6, =9,,0, =J,,K ,0, ; =9;.

Rejection of this hypothesis would indicate thadicted N requirements from the RS
vary consistently by pair within each field. Faduo reject the hypothesis would indicate
either 1) that there is little variability of N negements between locations within a field
or 2) that the RS is not precise enough to detestariability. Next, the model is

restricted so that predicted N requirements dovaot by field—i.e.,s;, =6,,V j,y—to

determine whether the RS detects significant véitiabf N requirements between
fields. Equation (6) is then re-estimated usingNIR®©A predictions as the dependent

variable (., ) to determine whether the NFOA recommendationg gansistently within

ijt
and between fields.

Additionally, graphical analyses and correlatioefficients are used to determine
the strength and significance of the relationsbigsveen both RS and NFOA
recommendations from 1) strips in the same pahmesame sensing date, 2) different
pairs (mean recommendation) in the same fieldeas#ime sensing date, and 3) the same
strip at the second and third sensing dates. T¢wnsleand third sensing dates were
chosen because the second date is (usually) closEstkes 5-the growth stage at
which topdress N is normally applieeand because the third sensing date (usually in
March) is closest to harvest, and may thereforhbanost accurate. The correlation and

plot of the relationship between RS and NFOA recamaations at the same strip for the

same sensing date are also provided.
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Results

Based on the county-level data, results from equdb) are presented in table I-3. Here,
the predicted optimal topdress application ratédhnéeifrom the RS or the NFOA) is
modeled as a function of 1) the preplant N appbeatate for the field and 2) the county
in which the field is located. Notably, the mean ®8mmendation (64.01 kg N Hais
more than twice the mean recommendation from th@AlB1.14 kg N ha). The signs

of the g coefficients for the RS models are negative, wisatxpected because higher

preplant N applications reduce the need for todkesStudent’s-tests, however,
indicate that preplant N application has no stiafliy significant effect on predicted

topdress N requirements from the RS methad., the null hypothesig =0 cannot be
rejected. On the other hand, tffecoefficients for the NFOA models are not only

negative but are also statistically significantsésing NUE of 32% and 50% for
preplant and topdress N, respectively, one kfdfareplant N should reduce the need
for topdress N by 0.46 kg Habut the coefficients are much smaller: estimated
reductions of topdress needs range from 0.12 @ Kgzha' per additional kg Hhof
preplant N, depending on the model.

The likelihood ratio statistic to determine whetRS method recommendations
vary by county isLR =-2(991.16-99861) =14 90, and is distributed chi-square with
13 degrees of freedom. The chi-square criticaistiaiat the 0.10 level is 19.81, so the
test provides no evidence that RS recommendatiaryshby county. Similarly, no
evidence is found to indicate that NFOA recommeindatvary by county. The

likelihood ratio statistic for this test isR = —2(84585—-85250) =13.30, which is also
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Tablel-3. Ramped Strip and Nitrogen Fertilizer Optimizatiolg@ithm
Recommendations as Functions of Farmer-PractiqadrteNitrogen Rate and County
Nitrogen Fertilizer

Ramped Strip Optimization Algorithm
Recommendations Recommendations
Parameter Definition Unrestricted Restricted Unieltd  Restricted
a Intercept 71.2572 64.01" 27.18" 31.14"
(6.61F (3.69) (3.34) (1.86)
B Effect of -0.13 -0.12 -0.18" -0.227
Preplant (0.12) (0.10) (0.06) (0.05)
Nitrogen
5, Effect for -37.88 - -12.67 -
County 2 (18.79) (9.48)
5, Effect for -17.59 - 3.91 -
County 3 (9.80) (4.95)
o Effect for -25.03 - -0.58 -
County 4 (21.61) (10.90)
S, Effect for 6.00 - -1.04 -
County 5 (16.97) (8.69)
s Effect for 19.45 - 6.68 -
County 6 (26.08) (13.14)
5, Effect for -14.82 - 6.19 -
County 7 (8.21) (4.15)
S5, Effect for -6.88 - 4.95 -
County 8 (10.80) (5.45)
o Effect for -10.40 - 5.42 -
County 9 (10.90) (5.50)
S, Effect for -8.40 - -6.61 -
County 10 (17.06) (8.61)
Sy Effect for -6.58 - 1.71 -
County 11 (9.32) (4.71)
S,y Effect for 9.74 - 13.05 -
County 12 (12.63) (6.38)
Sy Effect for 17.19 - 13.58 -
County 13 (17.36) (8.76)
Oya Effect for -2.30 - 1.60 -
County 14 (13.90) (7.02)
o2 Error Variance 35.89 37.28" 18.10" 18.73"
! (1.81) (1.88) (0.92) (0.95)
Log Likelihood -991.16 -998.61 -845.85 -852.50

Notes: The unrestricted models allow the mean Nmeweendation to vary by county,
while the restricted models estimate a single nfeaall counties. Units are kg Ha
#One, two or three asterisks represent statistigaificance at the 0.10, 0.05 or 0.01
confidence levels, respectively.

P Numbers in parentheses are standard errors.

 No standard error is estimated because the pagametstricted.
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distributed chi-square with 13 degrees of freeddhus, neither the NFOA nor the RS
predicts any statistically significant variability N requirements by county. This does
not mean, however, thattualN requirements do not vary by county, nor do@sean
that this variability cannot be predicted using NRMta—only that it was not predicted
by the RS and NFOA methods used in the county-léate from 2007.

The issues of within- and between-field variabibfyN requirements are
addressed using the field-level data, which inctudigta from nine fields in Canadian
county in 2008. These data are used to estimatgiegy6), which models the predicted
optimal N application rate (from the RS or NFOA)aaiinction of the set of paired
adjacent strips in which the strip is located. €semated parameters of this equation for
the RS are contained in table I-4. The model wiin pffects allows the mean predicted
N requirement to be unique for each pair of adjastips, while the model with field
effects is restricted such that pairs in the sagld must have the same mean prediction,
and the pooled model assumes the same mean Newgunt for all strips in the dataset.

To determine whether field affects the N recomménddrom the RS, the field
effects model is tested against the pooled modegwslikelihood ratio test. The test

statistic (chi-square with 8 degrees of freedomhRs- —2(—47926+47343) =1166,

but the chi-square critical statistic at the 0.d¥el is 13.36, so the test provides no
evidence of variation in N requirements predictgdia RS among fields. Because
variation in N requirements among fields is weltdmented (see Lobell et al., 2005;
Mamo et al., 2003; Washmon et al., 2002), thisltéiely indicates that the RS
technology is not precise enough to detect thimbdity. The test to determine whether

mean N recommendations vary among pairs of adjateps compares the model with
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Tablel-4.

Strip Pair and Field

Mean Ramped Strip Recommendation, with and witlkaxed Effects for

Model
Parameter Definition Pair Effects  Field Effécts  Pooled
5, Fixed effect for 10.08 19.04 35.19"
pair 1 (21.18) (16.07) (3.42)
5, Fixed effect for 28.00 19.04 35.19"
pair 2 (21.18) (16.07) (3.42)
S, Fixed effect for 65.15" 48.91" 35.19"
pair 3 (12.23) (9.28) (3.42)
5, Fixed effect for 32.67 48.91" 35.19"
pair 4 (12.23) (9.28) (3.42)
S, Fixed effect for 59.36 49.75” 35.19"
pair 5 (12.23) (9.28) (3.42)
S, Fixed effect for 40.13" 49.75” 35.19"
pair 6 (12.23) (9.28) (3.42)
5, Fixed effect for 35.47" 23.07 35.19"
pair 7 (12.23) (9.37) (3.42)
S, Fixed effect for 10.40 23.07° 35.19"
pair 8 (12.54) (9.37) (3.42)
Sy Fixed effect for 26.88" 31.08" 35.19"
pair 9 (12.23) (9.28) (3.42)
S, Fixed effect for 35.28" 31.08" 35.19"
pair 10 (12.23) (9.28) (3.42)
S, Fixed effect for 35.47" 34.917 35.19"
pair 11 (12.23) (9.28) (3.42)
S5, Fixed effect for 34.35" 34.917 35.19"
pair 12 (12.23) (9.28) (3.42)
S, Fixed effect for 16.07 18.61° 35.19"
pair 13 (12.51) (9.49) (3.42)
5.4 Fixed effect for 21.72 18.61" 35.19"
pair 14 (12.48) (9.49) (3.42)
Sy Fixed effect for 24.64° 33.137 35.19"
pair 15 (12.23) (9.28) (3.42)
S Fixed effect for 41.63” 33.137 35.19"
pair 16 (12.23) (9.28) (3.42)
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Tablel-4. Mean Ramped Strip Recommendation, with and witlkaxed Effects for
Strip Pair and Field

Model

Parameter Definition Pair Effects  Field Effécts  Pooled
S, Fixed effect for 68.48" 47.25° 35.19"
pair 17 (12.33) (9.34) (3.42)

Sy Fixed effect for 26.69" 47.25" 35.19"
pair 18 (12.23) (9.34) (3.42)

o2 Variance of error 29.95 32.15° 34.05°
(2.18) (2.34) (2.48)

Log Likelihood -466.79 -473.43 -479.26

Note: Units are kg ha
4 This model is restricted such th&t=5,,5, = 3,,; = 55,K ,5,, = 5j5.

® This model is restricted such thgt= 6, = 5, =,K ,=5,,.

 One, two or three asterisks (*) indicate statatgignificance at the 0.10, 0.05 or 0.01
confidence level, respectively.
4 Numbers in parentheses are standard errors.

pair effects to the pooled mean model. The likadtheatio statistic, which is distributed

chi-square with 17 degrees of freedom|.R=-2(-47926+ 466.79) = 2494. Since the

likelihood ratio statistic is slightly greater thtre critical value—24.77 at the 0.10
confidence level—the test provides some evidenaerttean N recommendations vary
among pairs of strips in a consistent way. Howelecause yield data are not provided,
nothing can be said about the economic significari¢eis finding. What is surprising,
though, is that the statistical significance is stobnger. The inference is that
recommendations from two adjacent strips in a palgcted at random are only slightly
more homogeneous than readings from two randondgteel strips from different
pairs—perhaps on opposite sides of Canadian county. ddtatat RS predictions of N
requirements do not show strong spatial correlatithin pairs perhaps indicates that the

predictions are imprecise. The lack of precisionldde caused by measurement error,
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such as would occur if the person reading the stalked at an uneven pace while using
the handheld sensor. It should also be noted hlegbair effects model does not have a
significantly better fit than the field effects nedThe likelihood ratio statistic is

LR=-2(-47343+ 466.79) =1328, and is less than 14.64.e., the chi-square critical

statistic with 9 degrees of freedom at the 0.1@idence level. This means that the RS
detects no within field variability of N requirentsn

Table I-5 shows the mean N application rate reconutee by the NFOA with
and without fixed effects for strip pair and fielthe likelihood ratio test for field effects
compares the model with field effects to the poatextiel. The likelihood ratio statistic is

LR=-2(-35839+30165) =11348 with 8 degrees of freedom, which exceeds the chi-

square critical value of 20.09 at the 0.01 levéle Tikelihood ratio statistic to determine
whether pair effects improve the fit of the modsétive to field effects alone is

LR=-2(-30165+29212) =19.06, and is distributed chi-square with 9 degrees of

freedom, and is greater than the critical statastithe 0.10 level (16.92). Thus, the test
finds (marginal) evidence that different sets afguhstrips within the same field can
have significantly different N recommendatiensr that recommendations from adjacent
strips in the same pair are more homogeneous wanaindomly selected strips from
different pairs but within the same field. Howeude economic significance of this
finding is unknown because yield data are unavialebverify prediction accuracy.
Figures I-4 and I-5 show plots and correlationthefrecommendations from
strips in the same pair at the same sensing datBddkS and NFOA, respectively. Note

that the correlation between RS recommendatioms &djacent strips in figure 1-4 is
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Tablel-5. Mean Nitrogen Fertilizer Optimization Algorithm Reamendation, with
and without Fixed Effects for Strip Pair and Field

Model
Parameter Definition Pair Effects  Field Effécts  Pooled
5, Fixed effect for 7.28 10.64 16.11"
pair 1 (19.12) (15.47) (6.24)
5, Fixed effect for 14.00 10.64 16.117
pair 2 (19.12) (15.47) (6.24)
S, Fixed effectfor ~ -156.84 -46.00" 16.117
pair 3 (0.00) (17.01) (6.24)
5, Fixed effect for -30.53 -46.00" 16.117
pair 4 (16.83) (17.01) (6.24)
S, Fixed effect for 63.65 63.00" 16.117
pair 5 (11.04) (8.93) (6.24)
S, Fixed effect for 62.35" 63.00" 16.117
pair 6 (11.04) (8.93) (6.24)
5, Fixed effectfor ~ -156.84 -186.66 16.117
pair 7 (0.00) (0.00) (6.24)
S, Fixed effectfor ~ -156.84 -186.66 16.117
pair 8 (0.00) (0.00) (6.24)
Sy Fixed effect for 107.71" 81.48" 16.117
pair 9 (11.04) (8.93) (6.24)
S, Fixed effect for 55.25" 81.48" 16.117
pair 10 (11.04) (8.93) (6.24)
S, Fixed effect for 43.127 26.81" 16.117
pair 11 (11.04) (9.20) (6.24)
S5, Fixed effect for 9.86 26.81" 16.117
pair 12 (12.00) (9.20) (6.24)
S Fixed effect for 26.74° 39.94" 16.117
pair 13 (11.23) (9.06) (6.24)
5.4 Fixed effect for 53.94" 39.94" 16.117
pair 14 (11.15) (9.06) (6.24)
Sy Fixed effect for -29.28 -45.06" 16.117
pair 15 (16.63) (16.81) (6.24)
S Fixed effectfor ~ -156.84 -45.06" 16.117
pair 16 (0.00) (16.81) (6.24)
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Tablel-5. Mean Nitrogen Fertilizer Optimization Algorithm Reamendation, with
and without Fixed Effects for Strip Pair and Field

Model

Parameter Definition Pair Effects  Field Effécts  Pooled
S, Fixed effect for 45.36" 40.42" 16.11"
pair 17 (11.17) (8.99) (6.24)

Sy Fixed effect for 36.03" 40.42" 16.117
pair 18 (11.04) (8.99) (6.24)

o2 Variance of error 27.04 30.937 55.42"
(2.53) (2.89) (5.56)

Log Likelihood -292.12 -301.65 -358.39

Note: Units are kg ha
4 This model is restricted such th&t=5,,5, = 3,,; = 55,K ,5,, = 5j5.

® This model is restricted such thgt= 6, = 5, =,K ,= 5,,.
 One, two or three asterisks (*) indicate statatgignificance at the 0.10, 0.05 or 0.01

confidence level, respectively.
4 Numbers in parentheses are standard errors.
slightly negative, though not significant (p = 0.6Ihis result indicates that the RS is a
noisy predictor of N requirements. On the otherdhdine correlation between NFOA
recommendations from adjacent strips in figureig-8.56, and is statistically significant
(p < 0.01). Figure 1-6 shows the mean RS recomnted&om one pair of strips plotted
against the mean RS recommendation from the o#ieppstrips in the same field at the
same sensing date, while figure I-7 plots the NF&@#ommendations in the same
manner. The mean RS recommendations from paiteisame field have low
correlation (0.01) that it is not statistically sificant (p = 0.98). However, the mean
NFOA recommendations from the different pairs aghly (0.74) and significantly
correlated (p < 0.01).

Figures 1-8 and 1-9 show plots of recommendatidritie same strip at the second

sensing date (usually February) and the third sgraate (usually March) for the RS and

26



140 - o _

Correlation = -0.08
120 -
1001 o

80 -

(kg N ha')

40 ~ ¢

%
.
20 ¢ ¢ 104

Paired Ramped Strip Recommendation

0 20 40 60 80 100 120 140
Ramped Strip Recommendation

(kg N ha')

Figurel-4. Ramped strip recommendation at one strip vs. ramped
recommendation from the other strip in the samegidhe same sensing date.

NFOA, respectively. For the RS measures, the arogl is only 0.10, and is not
statistically significant (p = 0.57). The corretatifor the NFOA recommendations is
0.56, and is significant at the 0.01 confidenceleVhe plots and correlations in figures
I-4 through I-9 indicate that the RS recommendatiare not stable over time and space
within the same growing season. This result liketlicates that RS recommendations in
the field-level data do not very accurately repnésetual N requirements. However, the
relative spatial and temporal stability of the NF@&ommendations does not
necessarily mean that NFOA recommendations arenamg accurate than the RS

predictions. To explicitly determine whether NFO®egictions are accurate, production
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Figurel-5.  Nitrogen fertilizer optimization algorithm recomnd&tion at one strip vs.
nitrogen fertilizer algorithm recommendation frone tother strip in the same pair at the
same sensing date.
functions would have to be estimated using yiefghomse data (which were not
recorded) from the fields in the field-level datase

One reason why the NFOA recommendations show higpegial relatedness may
be the NFOA'’s propensity to predict optimal ratégero kg hd. The NFOA, as used in
the field-level dataset, restricts the predicteatgdu yield for each strip to be no greater
that 6048 kg hd Thus, in cases where the NFOA predicts a yigktaept greater than
6048 kg hd the predicted plateau yield is still no greatemti6048 kg ha, without

regard to NDVI response to N. However, if NDVI is@isy predictor of yield-i.e., if

the relationship between NDVI data and yields \saamong fields or by wheat variety
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Figurel-6. Mean ramped strip recommendation from one paitrgfssvs. mean

ramped strip recommendation from the other paihéxsame field at the same sensing

date.

then imposing this restriction on the plateau ymsdld bias the NFOA to predict that no

N should be applied when, in fact, it would be oyati to apply N in some quantity.
Figure 1-10 shows a plot of NFOA recommendatiorairegf RS

recommendations from the same strip at the sansengedate. Note that the NFOA often

recommends no application while the RS recommeoie ositive application rate (36

of 100 observations). This means that even when NiaYa indicate an N resporse

i.e., the average NDVI reading at one end of thp & different from the average NDVI

reading at the other erethe NFOA still assumes no N response by assumatighie

relationship between NDVI and yields is estimateth@ut error. However, the error
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Figurel-7. Mean nitrogen fertilizer optimization algorithm ceomendation from one
pair of strips vs. mean nitrogen fertilizer optiation algorithm recommendation from
the other pair in the same field at the same sgrdsatte.

variance may be large, or may be heteroskedastfctbat it increases for higher NDVI
readings, or may be unique to each field. Thuspsimg this type of restriction on a

plateau predicted with error may bias the NFOA mtexzhs toward zero. Perhaps this

problem could be solved by explicitly introducirgst error variance into the NFOA.

Conclusions

First and foremost, the results indicate that tBetéthnique for N requirements

prediction in growing winter wheat is likely tooisg to be useful in terms of accurately
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Figurel-8. Ramped strip recommendation from Mi-March vs. rathgteip
recommendation from the same strip in Mid-February.

and consistently predicting optimal N applicatiemdls. For example, the RS does not
detect any significant, consistent variability of@&guirements between counties, between
fields, or within fields (tables I-3 and I-4, resgpigely). Furthermore, RS
recommendations are neither 1) significantly cetexl with RS recommendations from
nearby strips (figure 1-4) nor steady across sendates (figure 1-8). These facts together
indicate that the RS technology requires contingiegelopment to address the sources

of noise that adversely affect the consistencysoptedictions.
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Figurel-9. Nitrogen fertilizer optimization algorithm recomnuation from Mid-
March vs. nitrogen fertilizer optimization algomthrecommendation from the same strip
in Mid-February.

The NFOA recommendations (as opposed to the R$nm@emdations) seem
more consistent with expectations about variabditi requirements between and
within fields (table I-5 and associated hypothéssts). NFOA recommendations are also
significantly correlated within pairs (figure I-8)jthin fields (figure 1-7) and across time
within the growing season (figure 1-9). Howevee tieason for this high correlation may
be the restriction on the plateau yield predictedhe NFOA. Because the plateau and

intercept are predicted based on the estimateti @wbr) relationship between NDVI

data and yields, the predictions are uncertainaBse of this estimation error, the NFOA
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Figurel-10. Ramped strip recommendation vs. nitrogen fertilgaimization
algorithm recommendation from the same strip astme sensing date.

occasionally predicts crop yields will be unrespeaso N (by capping the predicted

yield plateau) even when NDVI datae N responsive.

Ultimately, both the NFOA and RS methods used ¢ater these data are too

noisy to accurately predict crop N requirementsweleer, these techniques have been

and continue to be-used by producers (Raun et al., 2008). Producéng tie RS and

NFOA technologies do so because they believepitafitable. Perhaps these producers

are not using the technology precisely as intenBedexample, they may be integrating

farmer intuition into the process of choosing aapylication rate-using the NFOA or

RS in addition to rules of thumb they have alwagsdi It may be optimal to use a

combined information set that includes the oldr{far practice) and new (NFOA or RS)
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decision tools in the choice of N application rafEse results in this paper suggest
several potential avenues of related researchydima: 1) the creation of a formal
Bayesian framework that will allow producers touhp set of field-specific rules of
thumb, say, into the NFOA and RS methodologiesh@development of a framework
for including uncertainty (such as the error vacmof the relationship between NDVI
and yield) in the NFOA or RS methodologies, 3) okenproved estimation methods for
the ramped strip linear response-plateau functmas4) development of more accurate
measurement techniques for collecting NDVI dateof@sosed to walking with a
handheld sensor. Any of these pursuits (or seyaraly) might improve the accuracy of

midseason N requirements predictions based on $hand NFOA.

Sub-Paper 2: Prediction Uncertainty and the Value of Increasingly

Spatially Precise Sampling of Optical Reflectance Data

Data

The dataset used in this sub-paper consists ofiex@ets conducted at ten sites
throughout the state of Oklahoma between 1998 808.2The ten sites are located at the
Efaw, Haskell, Hennessey, Lahoma, Lake Carl BladkWwerkins, Stillwater, and Tipton
agricultural experiment stations. Table I-6 condaime specifics about N treatment levels,
replications, soil types, and dates for each locativhile the map in figure 1-11 shows
the locations of the sites. Each site-year hadaatlthree different levels of N treatment,
which differed across sites, and occasionally betwgears at the same location. The

number of replications at each N application ratees by site-year. NDVI measures for
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Tablel-6. Locations, Years, Soil Types, and Nitrogen Levais] Replications for
Experiments in Dataset One

Experiment
Station Years Soil Type Nitrogen Treatment Levktst{al)
Efaw 1 1999-2006 Easpur loam 0 45 90 179 269 5382

® B 6 B @ 3
Efaw 2 1999-2003 Easpur loam 0 56 90 123

k) (6 (6) (6)
Haskell 1999-2002 Taloka silt 0 112 168

loam 8) (@6) @

Hennessey 2000-2003 Shellabarger 0 56 90 123
sandy loam 3) (5) (6) (6)
Lahoma 1999-2008 Grant silt 0 22 45 67 90 112

loam ® @4 @4 @ @G @
Lake C.B. 2004, 2006 Port silt loam 0 50 100
4 @ @
Perkins ¥  1998-2006 Tellersandy O 56 112 168
loam B B 63 6
Perkins 2 1998 Tellersandy O 56 112 168
loam @ O ©
Stillwater ~ 1999-2006, Norge silt 0 45 90 134
2008 loam 8 @ 4 4)
Tipton 1998 Tipton silt 0 56 112 168
loam (12) (12) (12) (12)

 Rate not available in 2000.

P Numbers in parentheses are the number of remlitatt each rate each year.

¢ Numbers of replications are the same in 1998 Be&dins 2.

4 Rate not available in 2004, 2005, 2008.

each observation were collected around Feekes frstatie 5, and yield was measured
at harvest. These data are used to 1) determintharhgear has a significant impact on N
requirements across locations throughout the sfabklahoma, 2) determine the
relationship between NDVI information and the pagsens of the LRP functions yield
response to N, 3) create a framework for introdgitive uncertainty about this
relationship into a RS-type N requirements predictechniques, and 4) estimate the

relative profitability of the different N requiremeprediction systems described in the

introduction.
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Figurel-11. Map of experimental locations.

Based on local cooperative prices on February @49 2assumed prices of N

from UAN and NH are $1.10 kg and $0.57 kg, respectively. Custom application costs

for UAN are assumed to be $9.71*and custom application of NHs $20.49 ha

(Doye, Sahs and Kletke, 2007). The wheat pric®ig4kg"

RS application is assumed to take place early pfégting as topdress UAN.

Producers are advised to apply as many as 3 giipield, each measuring 3 m by 55 m
(0.0165 ha), starting at an application rate k§,a’, and increasing the application
rate in increments of 14.56 kg hauntil reaching the maximum rate that could pdgsib
be used by the plants (assumed to be 134 Ry Faus, the average N application rate in

the three RSs is 67 kg halt is also assumed that because the RSs aredmmgparately
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Tablel-7. Partial Budget for Creation and Use of Three Ranfteps in a 63 ha
field

Operating Input Units Price Quantity Cost
UAN kg 1.10 3.31 3.64
Road Time km 4,12 8 32.96
Coop Labor hr 17.50 2.50 43.75
Sensor ha 1.08 63.00 68.04
Producer Labor hr 17.50 2.50 43.75

Total Cost of RS Field 192.14

Total Cost of RS ha 3.04

from preplant N, the producer pays road time totaight km per field at $4.12 khfor

delivery of the RS applicator. It is assumed thatdustom application of the strips takes
2.5 hours of custom labor, and that the produder Epends 2.5 hours reading the three
strips with his own Greenseeker® sensor. Thustata cost of creating and using three
RSs is $192.14 per field, or $3.04Har a 63 ha field on a 1000 ha farm, where the cos

of the sensor is spread over the entire farm. TlbBles a partial budget for the creation

and use of the strips.

Procedures
Variability of Nitrogen Needs by Year and Location

One objective of this sub-paper is to quantify &&oin in N requirements by year and
experimental site. This is of interest becauseafaggional N requirement prediction
system to be of value, annual effects on N neettiwthe region must exist and be
predictable with some accuracy. Thus, tests féd#pecific and year specific effects on

N needs are conducted based on the following model:

N-1 N-1 N-1
(7)Y =min(By + BNy + D VD +&, P+ VD + D oD, +& +0,)+Uy,
i1 i1 i1
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Y, 1S yield on plotp of field i in yeart; j, is the intercept yieldp, is the crop N
response rateP is the expected yield plateay; and o, are fixed effects for field,
shifting the intercept and plateau, respectiv@y;is an indicator variable equal to one
for field i and zero otherwise;, andv, are random effects for yetralso shifting the

intercept and plateau, respectively; is a random disturbance; aagd v, andu, are

pit

from independent normal distributions with mean®znd variances?, o2, ando?,
respectively. The determination of whether platgald shifts randomly (and

independently of intercept yield) by year is madmg a likelihood ratio test with one
degree of freedom to test the restrictiofi = 0. Rejection of this restriction would be
evidence that accurate predictions of annual effectild be valuable information to
producers making a choice of N application ratdharegion for which the prediction
was made. The restriction, = w, =K ,=w, , = 16 also tested, wherl -1 is the
number of estimated field-specific plateau fixefibets in the model, to determine
whether the mean yield plateau varies by siteh@field-level, say). If this type of
variation of plateau yield is found, it will inditathat N requirements also vary by field,
which is expected on the basis of the literatu@b@ll et al., 2005; Mamo et al., 2003;

Washmon et al., 2002).

Defining a Predictive Relationship

This paper develops an N requirements predictigtesy based on the RS methodology
that accounts for two types of uncertainty: 1)reation uncertainty-or uncertainty

about the value of the parameters of NDVI respdodé—and 2) prediction
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uncertainty—or uncertainty in the predictive relationship betwéDVI response and
yield response to N. To this end, the following &tpns are estimated for each site-year:
8) Y, = min(G, + pyN,,R)+u, and

9 insey, = min(ery, + N, @) + 77,

wherey, is the measured yield on pian field-yeart; g, is the intercept yield for
field-yeart; g, is the yield response to N in field-ydarP, is the plateau yield in field-
yeart; u, is a normally distributed disturbance with mearoznd variances?, for plot
i in field-yeart; insey, is the measured NDVI on plotn field-year t;«, is the NDVI
intercept for field-yeat; «,, is the NDVI response to N for field-ye&rg, is the NDVI
plateau for field-yeat; and#, is a normally distributed disturbance with mearoznd
variancea; for ploti in field-yeart.

Of paramount interest is the accuracy with whighpharameters of equation (8)
can be predicted by the parameters of equation(@ther words, how do the LRP
functions of NDVI compare with the LRP functionsawtual yields? To answer this

guestion, seemingly unrelated regression is us&hid PROC MODEL to estimate the

following:

(10) Bo = Ao+ Mo + &,
(11) By = o+ 710, +1,, and
(12) P =p+pid +e,

where ,[?Ot, ,[;’lt and FA{ are the estimated parameters of the LRP respdngseldto N

application from equation (8)7,,, &, and;gt are the estimated parameters of the LRP
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response of NDVI to N application from equation; (2) and 4, are the intercept and
slope, respectively, of the relationship betweenNIDVI intercepts and the yield

intercepts;y, andy, are the respective intercept and slope of theioekhip between
the responses of yield and NDVI to N applicatign; and p, are the intercept and slope
of the relationship between the NDVI plateau areddyplateau; and,, r, ande are

random, correlated error terms with means zerovandnce-covariance matrix:

G&S‘ G&T Gae
(13) X=|o6, o, o,|® =X I,
G, G, ©

wheree . is then by n variance-covariance matrix for equation (10); vehey is then
by n variance-covariance matrix for equation (11); veher, is then by n variance-

covariance matrix for equation (12); the off-diagbelements are nonzero cross-model
correlation matrices of the contemporaneous eerong, and is ann by n identity

matrix. The parameters estimated in equationsh{@ugh (13) are used to determine the
optimal N application rates for 1) the field-ley&rfect predictor, 2) the field-level
NDVI-based predictor, and 3) the regional NDVI-lipeedictor, as well as to calculate
the net returns above N-related co¢tereafter simply called “net returns”) for each

prediction system.

! N-related costs as defined here include 1) theafgsurchasing N, 2) the cost of custom appliaatid N
and 3) the cost of any technology and/or experialesttip required any given system for predictihg t
optimal N application rate.
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The Perfect Prediction Nitrogen Rate

The perfect prediction N application rate for eaith-year is determined based on the
yield data. This rate produces the maximum possikpected profit for a topdress-only
N application system. However, because the truampaters of the LRP functions
estimated in equation (8) are unknown, and becidnesERP functional form is nonlinear
in parameters, the true optimal N application catenot be calculated deterministically
(Babcock, 1992). Babcock (1992) and Tembo et 8082, however, do not consider
uncertainty inall parameters of the LRP functional feraonly in the yield plateau. The
solution derived here is different, in that it acots for uncertainty in the intercept, slope
andplateau parameters. This work also differs froat tf the preceding authors by
considering parameter estimation uncertainty, retign uncertainty caused by annual
variability of the plateau. To account for estimatuncertainty, ten thousand Monte
Carlo observations are used to determine the esggeofit maximizing N application

rate for each site-year. These simulated obsensatice obtained by the process:
(14) B, =B, +Q,'z, andQ,Q,'= Q,,
Wherefijt is thej™ simulated 4 by 1 vector of LRP parameters forgitart based on the

estimation of equation (8}i.e., Bojt, ,[Ai’lit : If’jt : and&fjt; ﬁt is the 3 by 1 vector of LRP
parameter estimates for site-yéfmom equation (8)Q, Iis the 3 by 3 lower triangular
Cholesky decomposition matrix &2, , which is the 3 by 3 variance-covariance matrix of

parameter estimates for site-y&az ; is thej™ 3 by 1 vector of random deviates from a

standard normal distribution; =LK , J; andJ is ten thousand.
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The true (or perfect prediction) application rdtattmaximizes expected profit for
site-yeatt is then calculated based on the Monte Carlo obsiens generated in equation

(14) using the following maximization problem:

J maxminA.+A.N,FA’.,A-
(15) mNaXE(ﬂ'(Nt)) _ Z pc ( (BOJt ﬂl]t t ]t) /601’[) _ pn Nt _ paat,

=i J

where 7 is profit; N, is the uniform N application rate for site-yéamp, is the wheat
price; ,[Ai’ojt is thej™ simulated intercept coefficient for site-yea;[;’m is thej™ simulated
slope coefficient for site-year I5jt is thej™ simulated plateau coefficient for site-year
p, is the price of N from UAN solutionp, is the custom application cost for UAN

solution; ¢, is an indicator variable equal to oneNf > ; Dis ten thousand; and the

max function ensures that yield is always gredtantor equal to the intercept yield.
Nitrogen Needs Predictions by Site-Year

Next, the predicted economically optimal N applicatate must be predicted for each
site-year based on the available NDVI data. Thehous use to predict these application
rates differ from those of Raun et al. (2008) bgoamting for estimation uncertainty
about the estimated parameters in equation (9phatite parameters estimated in
equations (10) through (12). To begin the predicpoocess, ten thousand sets of Monte
Carlo simulated parameters are generated for etgchiear based on the parameter
estimates from equation (9). The process for géingrthese Monte Carlo simulations is
the same as that described in equation (14), anskid (as before) to account for

parameter estimation uncertainty. However, thesellsited parameters cannot be
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directly used to predict the expected profit mazimg N application rate because they
represent the response of expected NDVI measwatge(rthan yields) to N application.
To predict the economically optimal N applicati@er based on these LRP
functions of NDVI, the Monte Carlo simulated paraens based on equations (9) and
(14) must be converted to expected yield parametéis transformation is made using
the seemingly unrelated regression parameters astihin equations (10), (11) and (12),
where the parameters of the expected yield funsta@epend on the parameters of the
NDVI functions. However, the parameters descrilirggrelationships between the LRP
functions of NDVI and yield data asso estimated with error. Thus, Monte Carlo
simulation is again used to generate ten thousantbrs of simulated parameters based
on the joint normal distributions of the parametssmated in equations (10), (11), and

(12). These vectors are generated as follows:

(16) h, =2+Q'z,,andQQ'= (X'E7X)™

where i | Is thej™ simulated 6 by 1 vector of parameter estimatesdas the estimated
system in equations (10), (11) and @2%., Ao;, Ay;, 7o;+ 71+ Poj» @nd oy ; & is the

6 by 1 vector of estimated parameters from equafftf), (11) and (12)Q is the lower

triangular Cholesky decomposition X' 'X)™, which is the 6 by 6 variance-

covariance matrix of the parametersiinwhere:

X, 0 0
(17) X=/0 X, 0|andX*'=X'®]
0 0 X,

such thatX;, X, and X, are then by 2 matrices witim 1s anch N recommendations

from equations (10), (11) and (12); akid andl are defined in equation (13).
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Then, using the Monte Carlo simulated parameters gquation (16), the
simulated parameters of the LRP functions of NDMIdach site-yearsee equations (9)

and (14)—are transformed from NDVI parameters to expectett\yiiRP parameters as

follows:

(18) Boy = Aoj + A, Qg
(19) Eljt = Jo; +71j04y » and
(20) Py = Doy + Py

where ont, ﬁljt and I5jt are, respectively, tH& simulated intercept, slope and plateau
coefficients of the predicted expected yield LRRdlion for site-yeat; «,, , &,; and

(;Ejt are thg™ simulated intercept, slope and plateau coeffisiertspectively, of the LRP
function of NDVI measures for site-yetarioj, /flj, Yoi» 71 » Po; @nd p;; comprise the
j"™ simulated set of parameters relating LRP functfingeld and NDVI.EOjt, Eljt and

P, in place of 3, A, andP, in equation (15) to calculate the predicted exgect

profit maximizing N application rate.
Nitrogen Needs Predictions by Region-Year

The process for making region-year predictioneféconomically optimal N
application rate is similar to the process for obtay site-year predictions. To begin, data
from all sites in a given year are pooled to esténa

(21) insey, = min(a,, +a, N, ,¢,)+¢&,,
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whereinsey, is the NDVI measure on plotn yeary; «,,, «,,, ¢, are, respectively, the

intercept, slope, and plateau of the LRP respohBiD¥| measures to N application in

yeary; N, is the N application rate on ploin yeary; and ¢, is a stochastic error term

with mean zero and varianeg’ . The parameter estimates from equation (21) @ th

used with their estimated variance-covariance mabrsimulate ten thousand 4 by 1
vectors of parameters. These simulated parametetsaasformed to parameters of
expected yield LRP functions of N using the proasscribed in equations (18), (19)
and (20). Finally, these simulated parameters se€ to predict the optimal topdress N
application rate for the state-wide region in yeasing the maximization problem in

equation (15).

Calculation of Expected Yield and Expected Profit

Next, because one of the major objectives of thysep is to estimate the differences in
relative profitability between the perfect predictihe site-year-specific predictor, the
region-year predictor and the historically recomdezhextension rate, the expected yield

and expected profit are calculated for each systemach site-year as follows:

3 min(3,, + B N, P
(22) E[Y(NWI=2, Vo Jﬂ M B).
j=1
J pcmin(ﬁ'. + BN, P)
(23) Elz(NJI=2, R N\ P KT

=1 J
wherey is yield; N,, is the N application rate prescribed by syskefor site-yeat; ﬁojt

is thej™ simulated intercept coefficient of the yield resge function for site-yedr ﬁljt
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is thej™ simulated slope coefficient of the production fiimic in site-yeat; FA>jt is thej™
simulated yield plateau for site-ydar,, is an indicator variable equal to oneNf, > 0

and zero otherwisep, is the cost of acquiring and using the informasenfor system

k; k is either the region-year, site-year, historicdeasion rate, or perfect prediction

system; and all other symbols are previously deffine
Testing for Differences in Expected Profit, Expec¥eld, and
Nitrogen Application Rates

Based on the calculations of expected yields aafitpiin equations (23) and (24), and
the predicted economically optimal N applicatiotesafor each system and site-year,
paired differences tests are used to determinehghany statistically significant
differences exists between three systems in tefryiglds, profitability and N use. These

paired differences are calculated as:

(24) Do = ELY(Ng)I - E[Y(N, )], q=k

(25) D« = E[7(N )] - E[7(N,)], q=k,and

(26) D« = (Ng) = (Ny), q=k,

where D, is the difference between the expected yield fethmdsg andk in site-year

t; N, is the amount of N prescribed by systgin site-yeat; N, is the N application

rate prescribed by methddn site-yeat; Dg, is the difference of expected profit from

N

methodg andk for site-yeat; D, is the difference of the N application rates priésc

by methodsy andk for site-yeat; methodsj andk are two N application
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recommendation systems selected from the site-y@gign-year, historical extension,
and perfect predictor systems; and all other symam previously defined.

Because the student'sest relies on normality of the data, nonpararoetri
bootstrapping of these differences is performegsothe null hypothesis that the mean
paired differences of profits, yields and N appima rates are zero. This is done by
random sampling with replacement from the origseshple of observations on the 52
site-year§to create ten thousand random samples of 52 sitesyeach. Using the means
of the sample means and simulated standard errersstandard deviations of the sample
means)f tests are conducted to determine whether the/sde-region-year, or historical
extension recommendation system should be reconmeddnd expected profit
maximization.

Sensitivity analysis is performed to determine wikethe results are sensitive to
assumptions about NUE from topdress N applicabsrcompared with preplant N
application. NUE levels assumed for the purposeeoskitivity analysis are 32%, 45%
and 50%—with 32% being the average NUE for preplant N aggtions (Roberts, 2009;
Raun et al., 1999), 50% being the NUE for topdeggdications assumed by Raun et al.
(2005) and 45% being an intermediate level of NUliiese assumed levels of NUE
correspond to multiplying Monte Carlo simulatedpggarameters for topdress systems
by 1, 1.41 and 1.56, respectively, before solvimgtiie optimal N application rates and

proceeding with the calculation of expected prditsl yields.

2 The original sample contains 53 site-years; howeeriments were only conducted at one location
2007. As a result, a region-year N application dadt be calculated for the Lahoma site in 2007.
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Tablel-8.

Wheat Yield as a Function of Nitrogen ApplicatioithwSite- and Year-
Specific Effects on the Intercept and Plateau Yeld

Model
No Plateau No Plateau Fixed
Parameter  Definition Unrestricted Random Effects Effects
B, Expected 4144.997° 3699.72° 432757
intercept yield (196.52% (182.26) (172.44)
B, Crop response | 19.41° 19.30" 65.45 "
nitrogen (2.70) (1.79) (15.98)
P Expected yield 5522.14" 5535.95" 5243.81°
plateau (188.54) (175.22) (154.43)
o2 Variance of 631321.00° 677913.00° 729510.00°
error term (26599.00) (28651.00) (30954.00)
o2 Variance of 167307.00° 188344.00 144457.00°
’ intercept randor  (23791.00) (20907.00) (31221.00)
effects for year
o2 Variance of 170663.00° - 208312.00°
plateau random  (33424.00) (40004.00)
effects for year
o2 Variance of 51143301.00 38989411.000 61587700.00
intercept fixed  (9613634.00) (7422990.00)  (8685127.00)
effects for site
o2 Variance of 13124989.00 14357724.00 -
plateau fixed (1610810.00) (4374240.00)
effects for site
Log
Likelihood -9187.50 -9203.50 -9251.50

@ Three asterisks (*) indicate statistical significa at the 0.01 confidence level.
P Numbers in parentheses are standard errors.

Results

Table I-8 contains estimates of the parameters &quation (5), where wheat yield is a

function of site, year and the preplant N applmatiate. The unrestricted model allows
plateau and intercept yields to vary by site aratyd.e.,c>,0>,62,0> >0. The
model with no plateau random effects is restristech thato” = 0, limiting the model

so that the average plateau yield across all lmeatiloes not vary by year. The likelihood

ratio statistie— LR = —2(-920350+ 91875) = 32.00—is distributed chi-square with one
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degree of freedom, and exceeds the critical valtieesD.01 confidence level (6.64). This
result indicates that the average plateau yieldhferentire state of Oklahoma varies
consistently by year. The implication is that iésle annual effects on the plateau yield
are predictable over a large region, NDVI data ftooations (experiment stations, for
example) dispersed throughout the region wouldigevaluable information to all
producers therein. However, at the statewide lgkielyariability represented in the
annual plateau effects is only about 10% of thal fglateau variability—i.e.,

o,l(c,+0,)= 010. At the state level, annual effects have relagivitle (albeit

statistically significant) influence on N requiremg however, this may not be trivial.
For example, if a perfect predicteraccounting for both field and annual effeets
improves profit above the current practice by $héi(Roberts, 2009), a system that
perfectly predicts annual effects would improvefigdy about $0.70 KA It is also
possible that at smaller spatial resolutions, sischt the county level, annual effects
might play a relatively larger role in variation Mfrequirements.

The model with no plateau fixed effects is reséicsuch thaty, =0, V i —
meaning that there is no individual effect on tiaerage plateau yield for sitavithin the
state of Oklahoma. Givem, = ,@he restriction may also be expressearas- 0;

however, because the model is estimated with fefetts for site, the likelihood ratio
statistic has nine degrees of freedeire., the number of fixed effects estimated. The
likelihood ratio statistic for this test isR = —2(-925150+ 918750) = 12800, which
exceeds the chi-square critical value of 21.67catthg that the average plateau yield
over all years varies from site to site. Farmers Wave field-specific experience and

expectations could then adjust their expectatiand opdress N applications) annually
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based on midseason regional NDVI data collectegjatultural experiment stations and
disseminated by the Cooperative Extension Service.

Tables I-9 and 1-10 contain the estimated LRP patars for yield and NDVI
data as functions of preplant N for each site-yman equations (8) and (9), respectively.
Table I-11 displays the results from the annuakestvide estimation of the LRP function
of NDVI as a function of N from equation (21). Astad in these tables, some of the
estimated parameters have no standard errorsottiss because the data for some site-
years do not reach a plateau. In these cases, PROIXED estimated a linear model,
but generated a plateau equal to the expectedatielse maximum rate applied in the
data for these site-years. These estimates wigtantard errors are biased downward,
because they tell us only that the plateau is drgdo be greater than or equal to the
estimate. This is also the case for estimateseo§libpe given without standard errors. At
the Lahoma site in 2007, for instance, it appebksly” that no data points are found on
the slope of the production function. Figure I-ll@strates this type of data limitation. In
such instances, the estimate is a lower bound@mtpected value of the slope
parameter. The dashed lines show how the true ptiodufunction might deviate from
the estimated function, but exactly how the trupsldeviates from the parameter
estimated in PROC NLMIXED is uncertain. Additionalfor the Perkins 1 site in 2001
there are no standard errors for the interceptateau parameters. In this case, PROC
NLMIXED estimated the mean yield for the site-ydaurt failed to provide standard
errors because of data constraints. The fact thabiats occur on the plateau means

Monte Carlo simulation to account for estimatiormenainty is unnecessary because the
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Tablel-9. Estimated Wheat Yield Response to Nitrogen by $édar

Site Year Intercept Slope Plateau
Perkins 1 1998 1134.16° 8.30" 2102.70°
(132.79% (1.80) (131.46)
Perkins 2 1998 1316.98 1.22 1487.41"
(94.25) (1.30) (107.84)
Tipton 1998  2942.65 12.46" 5037.68"
(93.34) (0.43) (21.57)
Efaw 1 1999  1040.57 5.46 3068.36
(226.84) (1.50) (323.60)
Efaw 2 1999  2169.07 19.277 3514.67
(192.95) (4.22) (96.48)
Haskell 1999 1767.41 7.7T 2072.13"
(288.21) (182.28)
Lahoma 1999 1515.72 26.28" 4443.08
(116.66) (2.28) (181.36)
Perkins 1 1999 1077.20 12.717 2431.26°
(177.94) (4.49) (125.83)
Stillwater 1999 856.17 10.90° 1712.27"
(103.51) (4.00) (110.65)
Efaw 1 2000 911.11 26.84" 3384.06~
(380.28) (6.57) (294.56)
Efaw 2 2000 2246.40 -1.53 2160.87"
(579.52) (6.18) (415.54)
Haskell 2000 4262.17 -13.777 2719.13°
(212.53) (1.20) (212.53)
Hennessey 2000 383355 -0.29 3817.26°
(453.84) (4.84) (324.55)
Lahoma 2000 1944.08 25.03" 3515.75 "
(152.73) (6.09) (130.79)
Perkins 1 2000 2599.85 6.55 3333.56
(714.43) (14.72) (319.59)
Stillwater 2000 1120.71 17.05" 3414.03"
(83.13) (1.34) (96.79)
Efaw 1 2001 921.87 15.52 2024.16°
(215.47) (6.80) (112.53)
Efaw 2 2001  2693.37 8.80 3301.97"
(285.19) (6.23) (142.60)
Haskell 2001  3669.98 -6.77 3121.59"
(1368.34) (10.92) (387.02)
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Tablel-9. Estimated Wheat Yield Response to Nitrogen by $édar
Site Year Intercept Slope Plateau
Hennessey 2001 1951.38 7.017 2815.16
(184.75) (0.76) (91.34)
Lahoma 2001 1495.54 3.48 1651.35"
(201.16) (17.18) (142.25)
Perkins 1 2001 2602.95 -1.35 2602.1%
(1.09)
Stillwater 2001  1054.21 12.70 1636.39"
(142.89) (5.52) (142.89)
Efaw 1 2002 732.37 30.95" 2705.91"
(325.25) (10.26) (178.15)
Efaw 2 2002 1811.65 19.95" 3575.11"
(305.03) (6.67) (152.52)
Haskell 2002  3500.96 -13.98 3112.437
(938.17) (1.45) (262.23)
Hennessey 2002  3898.07 -10.177 2986.17"
(28.52) (2.44) (189.00)
Lahoma 2002 2711.78 16.54 3075.88"
(194.42) (122.96)
Perkins 1 2002 2711.83 155" 2971.97"
(192.26) (0.18) (161.91)
Stillwater 2002 961.60 16.037 2987.25"
(77.43) (1.54) (114.85)
Efaw 1 2003 107711 24.02" 3996.63"
(477.42) (8.25) (320.26)
Efaw 2 2003  2792.10 20.31" 4950.90"
(403.20) (6.03) (312.61)
Hennessey 2003  2337.13 14.67" 3760.42"
(256.09) (3.65) (166.31)
Lahoma 2003 2760.86 46.43" 5716.37
(209.35) (8.30) (177.55)
Perkins 1 2003  2796.69 12.81 3779.327
(190.99) (4.82) (135.05)
Stillwater 2003 1136.43 19.88" 2473.30°
(176.83) (6.86) (144.36)
Efaw 1 2004  2079.37 22.90 4132.65
(570.45) (18.01) (285.13)
Lahoma 2004  1871.40 29.23 2526.56
(313.47) (198.26)
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Tablel-9. Estimated Wheat Yield Response to Nitrogen by $édar

Site Year Intercept Slope Plateau
Lake C.B. 2004 2227.34 18.21° 4063.86
(248.19) (2.14) (32.38)
Perkins 1 2004 1936.32 19.77 3399.90"
(393.48) (9.93) (278.24)
Stillwater 2004 2080.99 -2.77 1895.02"
(2250.37) (28.29) (220.59)
Efaw 1 2005 1164.41 456 2845.72"
(210.37) (1.39) (300.10)
Lahoma 2005 1754.09 18.44" 2683.34"
(188.07) (7.27) (151.63)
Perkins 1 2005 3494.44 9.84 4021.48
(267.04) (178.03)
Stillwater 2005 1764.35 15.36 2223.53
(145.62) (118.90)
Efaw 1 2006 1081.14 8.05 2291.79°
(275.92) (4.77) (174.51)
Lahoma 2006 2229.78 4.03 2680.96
(199.48) (3.18)
Lake C.B. 2006 1277.42 37.69° 4377.41°
(291.04) (8.16) (291.04)
Perkins 1 2006 917.24 12.337 2053.63"
(113.69) (2.87) (80.39)
Stillwater 2006  1333.57 -5.64" 772.77
(0.17) (0.68) (40.72)
Lahoma 2007  2540.65 28.8T 3162.98"
(177.01) (129.27)
Lahoma 2008 2761.46 59.55 5525.64 "
(294.09) (11.73) (251.85)
Stillwater 2008  1381.12 15.99" 2697.59
(174.25) (4.31) (251.12)
Mean for all site-years 2004.70 13.19” 3071.95"
(124.73) (1.92) (139.93)

Note: Units are kg ha

#One, two, or three asterisks (*) indicate stat@tsignificance at the 0.10, 0.05 or 0.01
level, respectively.

P Numbers in parentheses are standard errors.

¢ Standard error cannot be estimated due to laditaf points on the slope or plateau.
The estimated parameter is biased downward.

d Standard errors for the intercept and plateamarestimated because all available data
are on the plateau.
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Tablel-10.

Scaled by a Factor of Ten Thousand

Estimated Wheat Optical Reflectance Response toddih by Site-Year,

Site Year Intercept Slope Plateau
Perkins 1 1998 595.56° 1.60" 804.24"
(24.825 (0.34) (25.90)
Perkins 2 1998 571.95 0.87 663.34"
(23.12) (0.58) (16.35)
Tipton 1998 693.77 1.18" 804.08"
(8.83) (2.23) (6.20)
Efaw 1 1999 383.81 3.347 618.43"
(32.08) (1.01) (16.04)
Efaw 2 1999 693.37 1.447 783.57"
(17.56) (0.38) (8.71)
Haskell 1999 619.21 2.2¢ 669.79"
(23.99) (15.17)
Lahoma 1999 615.96 2.04~ 785.83"
(13.21) (0.35) (14.55)
Perkins 1 1999 466.16 1.937 591.37
(23.44) (0.59) (16.48)
Stillwater 1999 553.76 3.5% 634.99°
(32.94) (26.90)
Efaw 1 2000 702.43 7.827 1488.30"
(93.12) (1.61) (72.13)
Efaw 2 2000 864.23 7.2F 891.76
(38.39) (15.67)
Haskell 2000 600.48 2.1¢ 625.01"
(37.85) (23.94)
Hennessey 2000 961.20 0.14 978.53"
(2.36) (0.22) (25.06)
Lahoma 2000 784.50 5.10" 1092.05°
(18.58) (0.74) (15.92)
Perkins 1 2000 652.11 3.99 770.827
(53.91) (31.12)
Stillwater 2000 558.14 7.19" 935.22"
(21.62) (0.84) (21.62)
Efaw 1 2001 627.63 2.46" 876.16
(37.81) (0.65) (25.37)
Efaw 2 2001 896.45 0.21 922.09”
(24.13) (0.36) (18.71)
Haskell 2001 674.80 0.36 822.37
(32.57) (0.31)



Tablel-10.

Scaled by a Factor of Ten Thousand

Estimated Wheat Optical Reflectance Response toddih by Site-Year,

Site Year Intercept Slope Plateau
Hennessey 2001 726.26 1.29" 912.5%
(48.56) (0.56)
Lahoma 2001 774.70 0.82 805.71"
(35.75) (2.78) (25.28)
Perkins 1 2001 834.69 o° 834.69
Stillwater 2001 677.06 2.76 824.16
(42.71) (1.65) (42.71)
Efaw 1 2002 537.19 2.39 649.67
(87.72) (2.77) (43.86)
Efaw 2 2002 638.31 1.797 742.28"
(14.87) (0.33) (7.43)
Haskell 2002 517.16 0.92 672.40"
(7.65) (1.25) (202.60)
Hennessey 2002 652.30 -0.39 616.92"
(0.01) (0.41) (29.23)
Lahoma 2002 753.81 4.24 843.41"
(48.93) (30.94)
Perkins 1 2002 721.90 0.35 834.69
(13.34) (0.13)
Stillwater 2002 448.76 3.717 692.68"
(13.06) (0.50) (13.03)
Efaw 1 2003 346.68 1.55" 670.93"
(37.06) (0.36) (33.83)
Efaw 2 2003 652.54 1.387 816.61"
(36.81) (0.55) (28.54)
Hennessey 2003 876.40 1.69 1073.04"
(70.44) (1.05) (54.63)
Lahoma 2003 570.00 9.00™ 860.00"
(1.39) (1.39) (11.94)
Perkins 1 2003 496.12 1.20" 684.12
(19.24) (0.18)
Stillwater 2003 391.54 3.717 648.51"
(25.24) (0.62) (25.72)
Efaw 1 2004 478.65 3.40 781.76
(81.33) (2.57) (40.64)
Lahoma 2004 598.04 10.32 757.59"
(85.90) (54.33)
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Tablel-10. Estimated Wheat Optical Reflectance Response toddih by Site-Year,
Scaled by a Factor of Ten Thousand

Site Year Intercept Slope Plateau
Lake C.B. 2004 418.32 2.20 639.75
(46.44) (9.16) (877.19)
Perkins 1 2004 480.82 117" 617.06
(14.34) (0.20) (15.70)
Stillwater 2004 727.06 -2.45 564.32"
(407.27) (5.12) (44.51)
Efaw 1 2005 497.75 2.29" 763.08"
(33.02) (0.57) (20.87)
Lahoma 2005 543.05 3.20" 735.75
(15.09) (0.59) (12.11)
Perkins 1 2005 471.63 1.337 669.34"
(21.72) (0.32) (26.93)
Stillwater 2005 550.07 1.66 699.18"
(2.92) (0.46) (38.05)
Efaw 1 2006 306.18 2.05 527.35
(50.30) (0.87) (31.81)
Lahoma 2006 484.41 4.78 564.29"
(30.91) (19.55)
Lake C.B. 2006 501.91 1.03 606.19"
(4.79) (0.80) (76.37)
Perkins 1 2006 268.27 2.20" 476.83"
(24.38) (0.62) (17.25)
Stillwater 2006 354.27 1.007 488.87"
(1.31) (0.29) (37.81)
Lahoma 2007 513.11 3.22" 597.96
(12.08) (0.93) (8.54)
Lahoma 2008 508.56 5.36 912.38"
(19.71) (0.53) (21.66)
Stillwater 2008 690.54 1.8% 771.927
(68.31) (55.78)
Mean for all site-years 594.78 2.56 756.87"
(21.08) (0.33) (23.49)

#One, two, or three asterisks (*) indicate stat@tsignificance at the 0.10, 0.05 or 0.01
level, respectively.

P Numbers in parentheses are standard errors.

¢ Standard error cannot be estimated due to laditaf points on the slope or plateau.
The estimated parameter is biased downward.

d Standard errors for the intercept and plateamarestimated because all available data
are on the plateau.
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Tablel-11.  Estimated Wheat Optical Reflectance Responsettoddin by Year,
scaled by a Factor of Ten Thousand

Yeaf Intercept Slope Plateau
1998 618.497 1.33"7 749.34"
(16.09§ (0.40) (11.19)
1999 576.33 2117 685.08"
(16.65) (0.74) (10.91)
2000 745.87 1.64" 1187.04°
(1.95) (0.23) (60.97)
2001 73174 1.81° 821.66
(19.02) (0.88) (11.80)
2002 646.57 0.45 767.48"
(18.50) (1.96) (80.44)
2003 537.63 3.49" 792.95°
(33.07) (0.82) (23.71)
2004 574.33 1.21 677.89"
(30.83) (0.82) (28.07)
2005 549.72 157" 739.717
(12.66) (0.21) (19.17)
2006 427.000 0.81° 534.13"
(21.20) (0.34) (30.34)
2008 597.96 3.40° 856.63"
(30.92) (0.80) (37.95)

Note: Units are kg ha
& A response function for 2007 is not estimated bseanly one site is available in this
ear.
Two or three asterisks (*) indicate statisticgingiicance at the 0.05 or 0.01 level,
respectively.
¢ Numbers in parentheses are standard errors.
mean is linear in parameters. Thus, the lack ofdstad errors for the plateau and
intercept in this site-year is not problematic.

The estimated relationships between the paramet®&BVI and yield
response-estimated in equations (10), (11) and +2ye presented in table I-12. Here,
the relationship describes how yield LRP functi@ngmeters (table 1-9) depend upon
midseason NDVI parameters (table I-10). The sidrie@estimated coefficients are as

expected-i.e., higher NDVI intercepts predict higher yiefdarcepts; higher NDVI

response (slope) predicts higher yield responsthagher NDVI plateaus predict high
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NDVI plateaus. Note based on the coefficients ofatimn for these relationshipg( in
table 1-12) that these relationships are very noi$yese parameters (and their variance-
covariance matrix) are used to convert LRP parameteNDVI response into expected
yield response through Monte Carlo simulation dbsdrin equations (18) to (20).
Nonparametrically bootstrapped means of the presdriN application rates, expected
yields, and return above N-related costs for egstem are displayed in table I-13,
assuming NUE of 32% for both preplant and topdeggsications. Notably, mean net
revenue is greatest for the historically recommerrdée of 90 kg N hafrom NH;, at
$639.92 hd, but this is only slightly greater than the $688h4" earned by the perfect
predictor. While N purchase costs are much lowetlfe historical rate-because it uses
NH; rather than UAN-N applicationcosts are much higher for the historical rate. The
increased application cost, along with a slightdytmoost for the perfect predictor system,
nearly cancels out any saving on N purchase fohigterical rate system.

Additionally, the mean recommended applicationg&be the field- and region-
based N requirements predictors are 88.92 and $4.h&', respectively—apparently
not much different from the historically recommedadaate. The field-based system does
appear to have some predictive power (though atis8tally significant) because it
achieves slightly higher yield than the historicgke while applying slightly less N.
However, the total costs of N purchase and apjpdicdor the two NDVI-based systems
are, respectively, $107.52 and $113.23-haelatively high compared to the analogous
costs of $71.79 Rafor the historical rate system. This differencerisnarily due to the
relative prices of topdress UAN ($1.10Rand preplant NE($0.57 kg"). It is possible

that the field- and region- based systems could sabstantially on N-related costs by
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Figurel-12. Plot of yield data and estimated production funcfiar Lahoma 2007.

using a split applicatier-i.e., some N applied preplant as N&khd some as topdress
UAN if the RS shows that the crop is responsivee iirfean UAN rate applied by the
perfect predictor system is 65.41 kg*haompared with about 90 kg héor either of the
NDVI-based systems, meaning that the NDVI-basetesys used in this paper over-
apply N substantially, as expected.

Table I-14 shows the nonparametrically bootstrappedns of the paired
differences of expected profits, expected N appboaand expected yield generated in
equations (24), (25) and (26). These results aortfirat the profitability difference
between the perfect predictor and the historidal istatistically insignificant, despite
the historical N application rate being on averag0 kg ha higher than the perfect

predictor rate. Recall from table I-3 that the feet predictor” fails to provide the

59



Tablel-12. Response of Yield Intercepts, Slopes and PlateaOptical Reflectance
Intercepts, Slopes and Plateau, Respectively, Bstirby Seemingly Unrelated

Regression
Parameter Definition Estimate
Ao Intercept of intercept response 480.85
(369.50§
A, Slope of intercept response 25583070
(59091.90)
R2 Coefficient of determination 0.15
Ve Intercept of slope response 765
(2.06)
7 Slope of slope response 217088740
(48025.00)
R? Coefficient of determination 0.24
2o Intercept of plateau response 1440723
(429.20)
21 Slope of plateau response 215697.40
(53847.50)
R2 Coefficient of determination 0.09

& Numbers in parentheses are standard errors.
P Three asterisks (*) represent statistical sigaifice at the 0.01 level.
maximum profit primarily because it is a topdregstem, using expensive UAN in place
of cheaper Nkl Additionally, the perfect predictor system isrsfgcantly (p < 0.01)
more profitable than either the field-based orrégion-based predictors by $35.14'ha
on average. The historically recommended applinatf®®0 kg N h# preplant is
significantly more profitable than both the fiekhd region-based predictors by
respective averages of $36.60 and $38.4"1 Bapected profits from the field- and
region-based systems are not statistically differen

Table I-15 displays the nonparametrically bootgiempmeans of the prescribed N
application rates, expected yields, and return aetddvelated costs for each system,
assuming that NUE is 32% for preplant N applicatiand 45% for midseason topdress
applications. Note that under this assumptionp#réect predictor system maximizes

expected profit compared to the other systemsqimrast to the results in table 1-13).
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Tablel-13. Noparametrically Bootstrapped Means of Net RetuResenues,
Nitrogen-Related Costs, Yields and Nitrogen ApglaaRates for Each Application
System, Assuming 32% Nitrogen-Use Efficiency fotiBdopdress and Preplant
Nitrogen Applications

System
Region-

Perfect Historical Field-Based Based
Revenue/Cost Predictor Rate Predictor Predictor
Net Revenue 638.46 639.92 603.32 601.51
($ ha') (33.82) (33.40) (33.56) (33.17)
Yield Revenue 717.51 711.71 713.88 714.73
($ ha') (35.19) (33.40) (33.74) (33.41)
NH3 Cost - -51.30 - -
($ ha')
Mean UAN Cost -71.85 - -97.81 -103.52
($ ha') (6.96) (2.73) (2.08)
NH; Application Cost - -20.49 - -
($ ha')
Mean UAN Application Cost  -7.10 - -9.71 -9.71
($ ha') (0.60) (0.00) (0.00)
Precision System Cost - - -3.04 -
($ ha')
Average Yield 2989.64 2965.46 2974.51 2978.05
(kg ha') (146.61) (139.19) (140.60) (139.23)
Mean UAN Rate 65.41 - 88.92 94.11
(kg ha) (6.33) (2.49) (1.89)

Note: All estimates are significant at the 0.01faence level.

This is because assuming topdress NUE of 45% suttsbaincreases the marginal
product of topdress N, while leaving the marginalduct of preplant N unchanged.
Under this assumption, the bootstrapped mean Ncapiph for each topdress system is
substantially reduced relative to those in tald&.-This occurs because an increase in
the marginal product of N means that not as muehrigquired to reach the plateau. Also
noteworthy is the result that expected yield f@r tibpdress systems has increased,

indicating that this increase in the marginal pichf N makes UAN application more
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Tablel-14. Nonparametrically Bootstrapped Means of Paireddb@fices of Expected

Profits, Expected Nitrogen Application Rates, axpécted Yields, Assuming 32%

Nitrogen-Use Efficiencies for Both Preplant and di@ss Nitrogen Applications
Expected Profit Expected Nitroge Expected

($ ha') Rate Yield
Difference (kg ha?) (kg ha)
Perfect Historical Rate  -1.46 -24.60° 24.18
Predictor i (5.31) (6.33) (26.33)
Perfect Field-Based 35.147° -23.51" 15.13
Predictor " Predictor (5.51) (5.91) (26.78)
Perfect Region-Based 36.95 -28.70" 11.58
Predictor " Predictor (5.69) (6.74) (27.36)
Historical Rate  Field-Based 36.60" 1.08 -9.05
" Predictor (2.61) (2.49) (13.15)
Historical Rate Region-Based 38.41" 4,117 -12.60
" Predictor (2.45) (1.89) (12.03)
Field-Based Region-Based 1.81 -5.18 -3.55
Predictor " Predictor (4.10) (3.28) (19.72)

#Numbers in parentheses are standard errors.
® Two or three asterisks (*) indicate statisticagsiicance at the 0.05 or 0.01 level,
respectively.
profitable than it otherwise would be, specificahlysite-years where the slope of the
response tpreplantN is small.

Table I-16 contains the bootstrapped means of éivegh differences of expected
profit, expected N application rate and expectetdyior each system, assuming 32%
and 45% NUE for preplant and topdress applicatidhsse results confirm that the
profitability difference of $24.98-favoring the perfect predictor system over the
historical recommendatienis statistically significant at the 0.01 confideneeel. The
perfect predictor system continues to be more fadai than the field- and region-based
systems. Notably, though the mean profit pairetethces between the historical rate
system and the field- and region-based systemsnc@nto be significant in favor of the
historical rate-$6.91 and $9.73 Harespectively-the differences are smaller in

magnitude compared to those in table I-15. Theltessho statistically significant
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Tablel-15. Noparametrically Bootstrapped Means of Net RetuResenues,
Nitrogen-Related Costs, Yields and Nitrogen ApglaaRates for Each Application
System, Assuming 32% and 45% Nitrogen-Use Effigyeioe Preplant and Topdress
Nitrogen Applications, Respectively

System
Field- Region-

Perfect Historical Based Based
Revenue/Cost Predictor Rate Predictor Predictor
Net Revenue 664.90 639.12 633.01 630.19
($ ha') (34.32) (33.40) (33.48) (33.14)
Yield Revenue 728.52 711.71 718.80 721.25
($ ha') (35.51) (33.40) (33.60) (33.48)
NH3 Cost - -51.30 - -
($ ha')
Mean UAN Cost -56.33 - -73.05 -81.35
($ ha') (5.57) (2.29) (2.48)
NH; Application Cost - -20.49 - -
($ ha')
Mean UAN Application Cost  -7.29 - -9.71 -9.71
($ ha') (0.58) (0.00) (0.00)
Precision System Cost - - -3.04 -
($ ha") (0.00)
Average Yield 3035.49 2965.46 2995.01 3005.19
(kg ha') (147.96) (139.19) (140.00) (139.52)
Mean UAN Rate 51.21 - 66.41 73.95
(kg ha') (5.06) (2.09) (2.25)

Note: All estimates are significant at the 0.01faence level.

difference between the field- and region-basedesystin terms of profitability, though
the region-based system applies more N by an az@fafi55 kg ha (p < 0.05).

The nonparametrically bootstrapped means of pitesetiN application rates,
expected yields, and return above N-related costedch system assuming 32% and
50% NUE for preplant and topdress N, respectivaalg,presented in table I-17. Here, the
field- and region-based predictors have returns¢hbl-related costs) very similar to the
returns from using the historical rate. The meaexgiected net revenue is slightly higher

for the field-based system and slightly lower fog tegion-based system. The costs of N
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Tablel-16. Nonparametrically Bootstrapped Means of Pairedddéfices of Expected
Profits, Expected Nitrogen Application Rates, axgétted Yields, Assuming 32% and
45% Nitrogen-Use Efficiencies for Preplant and Trgisd Nitrogen Applications,
Respectively

Expected Profit Expected Nitroge Expected

($ ha) Rate Yield
Difference (kg ha') (kg ha')
Perfect Historical Rate ~ 24.98% -38.79" 70.03
Predictor ) (5.43Y (5.06) (34.25)
Perfect Field-Based 31.907 -15.20" 40.48
Predictor " Predictor (5.72) (4.84) (32.38)
Perfect Region-Based 34.71" -22.75° 30.30
Predictor " Predictor (5.55) (5.80) (30.82)
Historical Rate  Field-Based 6.91 23.59" -29.55
" Predictor (2.96) (2.09) (16.56)
Historical Rate Region-Based 9.73" 16.05" -39.73
" Predictor (3.42) (2.25) (15.89)
Field-Based Region-Based 2.82 -7.55 -10.18
Predictor " Predictor (4.89) (3.39) (24.37)

@ 0ne, two or three asterisks indicate statistigaliicance at the 0.10, 0.05 or 0.01
confidence level, respectively.

P Numbers in parentheses are standard errors.

purchase and application for the historical, fietsed and region based systems
are$71.79, $76.89 and $84.54 heespectively. The field- and region-based systems
make up for their increased N expenditures (anddsée of the RS, in the case of the
field-based system) through increased yields reguftom higher NUE.

Table 1-18 presents the nonparametrically bootpdpneans of the paired
differences of expected profits, expected N appboarates and expected yields between
the four systems. Note that the perfect predigtetesn is expected to be more profitable
than all other systems by at least $31.72 laad that these differences are statistically
significant at the 0.01 confidence level. Additibpathe historical rate is higher than the

mean of any other system by at least 21.79 kg @ae problem with the field- and
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Tablel-17. Noparametrically Bootstrapped Means of Net RetuResenues,
Nitrogen-Related Costs, Yields and Nitrogen ApglaaRates for Each Application
System, Assuming 32% and 50% Nitrogen-Use Effigrdic Preplant and Topdress
Nitrogen Applications, Respectively

System
Region-

Perfect Historical Field-Based Based
Revenue/Cost Predictor Rate Predictor Predictor
Net Revenue 671.84 639.12 640.10 638.01
($ ha') (34.09) (33.40) (33.54) (33.18)
Yield Revenue 734.11 711.71 720.03 722.55
($ ha') (34.64) (33.40) (33.66) (33.50)
NH3 Cost - -51.30 - -
($ ha')
Mean UAN Cost -54.79 - -67.18 -74.83
($ ha') (5.28) (2.12) (2.29)
NH; Application Cost - -20.49 - -
($ ha')
Mean UAN Application Cost  -7.48 - -9.71 -9.71
($ ha') (0.56) (0.00) (0.00)
Precision System Cost - - -3.04 -
($ ha") (0.00)
Average Yield 3058.81 2965.46 3000.14 3010.62
(kg ha") (144.33) (139.19) (140.27) (139.57)
Mean UAN Rate 49.81 - 61.07 68.03
(kg ha') (4.80) (1.93) (2.08)

Note: All estimates are significant at the 0.01faence level.

region-based systems as developed in this papeatishey always recommend some
level of N application. This is evident because magplication costs for these systems,
regardless of assumptions about NUE are $9.71($ee tables 1-13, I-15 and I-17). As a
result, field- and region-based methods used h@oly substantial N in cases where the
true expected profit maximizing N rate is actuakyo. This results in a substantial
increase in N costs relative to the perfect predisystem without a commensurate

increase in yield (because yield reaches a plaemany sites at 65 kg N fa
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Tablel-18. Nonparametrically Bootstrapped Means of Paireddb@fices of Expected
Profits, Expected Nitrogen Application Rates, axgétted Yields, Assuming 32% and
50% Nitrogen-Use Efficiencies for Preplant and Tigisd Nitrogen Applications,
Respectively

Expected Profit Expected Nitroge Expected

($ ha) Rate Yield

Difference (kg ha') (kg ha')
Perfect Historical Rate 31.92 -40.18" 93.35
Predictor i (5.39) (4.80) (34.14)
Perfect Field-Based 31.74"7 -11.26° 58.67
Predictor " Predictor (5.57) (4.52) (31.07)
Perfect Region-Based 33.83" -18.21° 48.19
Predictor " Predictor (5.21) (5.46) (29.41)
Historical Rate  Field-Based -0.18 28.93" -34.68

" Predictor (3.03) (1.93) (16.75)
Historical Rate  Region-Based 1.91 21.97 -45.16"

" Predictor (3.48) (2.08) (16.12)
Field-Based Region-Based 2.09 -6.96 -10.48
Predictor " Predictor (4.85) (3.13) (24.24)

@ 0ne, two or three asterisks indicate statistigaliicance at the 0.10, 0.05 or 0.01
confidence level, respectively.
P Numbers in parentheses are standard errors.

Also noteworthy is that the value of a perfect ot syster—i.e., the profit
difference between the perfect predictor and tlcerse most profitable systems
highly dependent on NUE. If NUE for topdress apmtiiens is the same as for preplant
applications (32%), a perfect prediction of topdrBisrequirements has no value (see
table 1-15). On the other hand tables I-17 and inticate that the value of a perfect
predictor given 45% and 50% NUE is $24.98 or $3ha¥% respectively. Thus, the value

of a perfect predictor of topdress N requiremeststriongly dependent on the true NUE

for topdress applications.
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Conclusions

One important finding of this research is thathistorical extension recommendatien
i.e., 90 kg N ha as NH—is statistically indistinguishable from the “perfgredictor”
topdress application system using UAN, primarilguleng from relative costs of UAN
($1.10 kg') and NH; ($0.56 k@'). The value of a perfect predictor, or the mean
difference between the perfect predictor and tleersdbest method, is found to be
highly dependent on assumptions about NUE. Theavala perfect predictor is $31.92
ha' if NUE is 50% for topdress and 32% for preplanHewever, if NUE is 32% for
both topdress and preplant N, the perfect prediwdsrno value relative to the historical
extension advice. Because the assumption aboutd#emms to be so critical, continued
research should be dedicated to determining hodrésg and preplant NUE correlate
with each other and with NDVI data.

The site-year- and region-year-specific predicbarsed on midseason NDVI
measures are poor predictors of actual N requiresnm&mxpected profits from these two
systems are also statistically indistinguishal#gardless of assumptions about NUE.
This is likely due to the large amount of stateticoise in the relationship between
NDVI and yield. The methods used in this paperased on the RS method of N
requirements prediction, but do not follow the sgrecedures in making prediction. For
example, the data used here are not collected dival RSs, but from plots at
experiment stations. Additionally, the RS contaimae N treatment levels than the data
used here. The experimental data used in this phpeever, include several replications
of each treatment level at different plots. Addiatly, the data used to make the

predictions come from the same plots as the d&d tesestimate the yield functions and
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calculate profits. That is, all models are estirdatesample, which should be an
advantage to the NDVI-based predictors. Surprigingbwever, these advantages do not
translate into improved profits for the site-yead aegion-year N requirements predictors
relative to the historical extension advice, refgssl of assumptions about NUE.

While evidence supports the hypothesis that N requents vary by year and
location (table 1-8 and associated hypothesis)tasiis variability must be detectable and
predictable for use in N application decisions. §ithe question of whether NDVI-based
predictions of N needs vary together by time amafion is of great importance.
However, the NDVI-based systems in this paper daletect such variability. Despite
accounting for only a small portion of the varidlibf crop N requirements, however, an
accurate regional prediction system might stilk@ase profits for producers because the
N requirements information would be provided fréelmarge.

Also, it should be noted that the cost of the seaad establishing a RS is small
relative to the other variables that determineifabiiity of the field- and region-based
systems. The cost of using the RS technology ih &ald is different, though, for
producers who grow wheat for both grazing and grama these might prefer a region-
based prediction system. Based on the resultbia tdl3, the optimal strategy may be to
use a split application in which some N is apppeeplant as Nkland then NDVI data
are used midseason to determine whether the clbpegpond to additional N. Doing so
could save substantial N purchase costs for a perday replacing some UAN with
NHs, and potentially eliminating the need for UAN mnse years. The optimal level of
preplant N in a split application system that Us&8/1 data to predict topdress N rates

could be determined by a grid search based onrtitiption functions and predictions in
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this paper. However, the results of such a gridcbeaould be fragile to assumptions
about NUE.

An experiment that does not depend on assumptiomst &NUE should be
conducted. An example of such an experiment istloaeapplies varying levels of
preplant NH to randomized, replicated plots in fields at saldifferent sites throughout
the state, and then superimposes varied ratesdsieason topdress UAN on those same
plots at random, including some topdress rateschas®ptical sensing methods. The
experiment would be conducted for several yeard vavuld collect both optical
reflectance and yield data from the plots. The arpental data could then be used to
determine the relative profitability of strategteat apply different rates of preplant BiH
prior to sensing and topdress UAN application, aB as the relative profitability of
strategies that predict N requirements based on INIatA sampled at different spatial
resolutions to make N requirement predictions.

Finally, previous studies have shown that deterstimN needs prediction
systems predict N requirements much lower thangBek. Biermacher et al. (2008)
found that the NFOA recommended an average of @#$ ha' for 19 different site-
years, whereas the NDVI-based methods used ipépuisr (based on the ramped strip
technology) recommend an average application faéaut 90 kg ha. Roberts (2009)
found that addressing parameter uncertainty aloaeiicluding prediction error)
increases the predicted N requirements from the Alffém 30.38 to 42.13 kg N Ha
Thus, the noise in the predictive models and ther @f estimation mean that the optimal

level of N application is higher than what has bpesdicted previously by deterministic
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algorithms. This means that under uncertainty,rgg/on N purchases will be eroded to

reduce the risk of relatively costly yield losses.

70



CHAPTERII

THE EFFECT OF PARAMETER UNCERTAINTY ON NITROGEN

RECOMMENDATIONS FROM NITROGEN-RICH STRIPS

AND RAMPED STRIPSIN WINTER WHEAT

Abstract

This paper estimates the relative profitabilityfair different optical reflectance-based
predictors of crop needs for topdress nitrogenieaipbn to winter wheat. The data come
from randomized experimental plots on which nitrogeplication levels varied, from
which midseason optical reflectance data and wyiebt measures were collected. These
data are used to approximate data from nitrogdnmstigps (in which nitrogen is applied
at a nonlimiting rate) and from ramped strips inakmitrogen is applied at
incrementally increasing rates on plots arrangealstrip. Two of the optical
reflectance-based prediction systems are basdaeamttogen-rich strip method, which
uses the nitrogen fertilizer optimization algoritidleveloped by Raun et al. (2002). The
other two are based on the ramped strip method.oDtiee two nitrogen-rich strip
systems accounts for the effect of parameter eBamancertainty in making

predictions, while the other does not. Similarlglyoone of the two ramped strip systems

accounts for parameter uncertainty. We assumepdaotenitrogen application rate of 34
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kg ha' for all four systems mentioned above, and thatéiemmended rates from the
optical reflectance-based prediction systems goéegpas topdress urea-ammonium
nitrate solution. It is also assumed that topdn#segen applications are 1.52 times as
efficient as preplant applications.

The profitability of the above systems is also aklted relative to the historical
extension advice to apply 90 kg has preplant nitrogen. Additionally, the maximum
value of a perfect nitrogen needs prediction systecalculated by estimating the
profitability of two different perfect predictorabed on the yield data, one of which
accounts for parameter uncertainty, while the otloes not.

The results indicate that given 2009 prices andrapfions about nitrogen use
efficiency from midseason topdress nitrogen appboa, the optimal strategy to
maximize expected profit is to follow the histotieatension advice. Provided anhydrous
ammonia is available for preplant application, gtrategy is more profitable than the
most profitable optical reflectance-based predictipstem by $18.74 HaAlthough the
extension advice applies an average of 22.52 kgggh hd more than the optimal rate,
the unused nitrogen is applied as relatively inespe anhydrous ammonia, rather than
urea-ammonium nitrate solution. Ultimately, thettiical extension advice is more
profitable than the optical reflectance-based uteds for two reasons: 1) because
anhydrous ammonia is about half the price of ureazanium nitrate solution; and 2)
because the extension advice avoids topdress apphiacosts altogether. Results are
similar when the same estimation is conducted asguno increase in nitrogen-use
efficiency from topdress relative to preplant mifeo applications. However, when

anhydrous ammonia is unavailable, and preplanmgein must be applied as dry urea,
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there are no significant differences between thereston recommendation and the
optical reflectance-based predictors. This chaageimarily due to the high price of
urea, which is nearly double that of anhydrous ammo

Parameter uncertainty has an effect on the trueaeg profit maximizing
nitrogen rate which is greater than the deternigsiy calculated rate by 4.73 kg 'ha
However, even accounting for estimation uncertaimtye parameters of the optical
reflectance-based predictors does not significantdgease their profitability relative to
the extension advice. This result indicates thinagion uncertainty is relatively
unimportant as a source of prediction error. Tlotiser sources of prediction error should
be studied further, including uncertainty aboutrlationship between optical

reflectance measures and the true crop responsgduiparameters.
Introduction

Long-term experiments conducted on the Magrudes ptoStillwater, Oklahoma have
shown that application of nitrogen fertilizer Ngither from commercial sources or
from manure—can increase yields of hard red winter wheat bwbeh 150% and 300%
as compared to the check plot, on which no N has beplied for more than 100 years
(Edmeades, 2003). These and other long-term treals shown that N application can
significantly increase yields and profits. For arste, based on a long-term trial at
Lahoma, Oklahoma-and based on observation of actual farmer behastioe
Oklahoma Cooperative Extension Service has histlyicecommended applying 0.033
kg N ha' per kg of yield goal for winter wheat (Arnall, Edvds and Godsey, 2008).

Commercial nitrogen fertilizer (N) is an essenéidment of crop agriculture, accounting
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for approximately 28% of annual operating expendgifor winter wheat cultivation
(United States Department of Agriculture, 2005)daidnally, research shows that
applied commercial N accounts for between 40% &9d 6f food output in the United
States (Stewart et al., 2005).

Raun and Johnson (1999) estimate that 67% of aphlis lost through leaching,
runoff, and volatilization because application dnescorrespond to plant needs either
spatially or temporally. In effect, an average 8¥%of N expenditures is not recovered in
grain. Improved nitrogen-use efficiency (NUE) natyooffers increased producer profits
but also environmental benefits, such as redudfautrophication in the Gulf of
Mexico and decreased emissions of nitrous oxig@veerful greenhouse gas (see
Bongiovanni and Lowenberg-DeBoer, 2004; Faeth ark@halgh, 2000; Scavia, Jdsti
and Bierman, 2004). To address the need for imprdile¢E, Raun et al. (2002)
developed a nitrogen fertilizer optimization alglonn (NFOA). This algorithm is used to
predict the uniform N application rate that will ximize NUE so that farmers can avoid
applying unnecessary N that cannot be recoveratégrop. The NFOA uses midseason
optical reflectance imaging (ORI) data from a Nargtrip (NRS) applied prior to
planting, as well as from an untreated adjaceit str which the producer may or may
not have applied some preplant N. The whole-fieRE\system strives to maximize NUE
without reducing crop vyields, thereby enabling progrs to avoid unnecessary N
expenditures while maintaining or even increasiiedpg. Whole-field N requirements
predictors like the NRS system should be partitylaseful in areas where within-field

variability of N requirements is low.
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Two different whole-field N requirement predictisgstems are in use for winter
wheat in Oklahoma, including the aforementioned NigSem, as well as a ramped strip
(RS) system using small experimental plots arramgettips with incrementally
increasing N application rates (Arnall, Edwards @watisey, 2008). Both systems assume
that grain yield is a function of the most limitingput, so that yield responds linearly to
N application until the crop response ceases doghr constraining variables, such as
rainfall. Using in-season ORI measures from the MR®ie ramped strip, each system
predicts the midseason topdress N applicationatatenich yield will reach a plateau.

Why might the NRS and RS systems make differerdiptions of the optimal N
rate for any given site-year? The answer lies enassumptions made by the different
prediction systems. Both assume the yield interaggtthe yield plateau vary between
sites and across years. The NRS system uses dalyrdian the untreated strip (or farmer
pre-plant rate) and the non-limiting NRS in the NE@eveloped by Raun et al. (2002).
The NFOA assumes a site-year invariant crop regpmnopdress N, based on the
percent N in grain and the average NUE for topdikeagplications. If the restriction on
the slope imposed by the NFOA is accurate, the BHp#oach could be superior to the
RS system. However, if crop N response varies ogmtly between site-years, the RS
approach may be superior because it actually esinihe slope of the N resporise.
Raun et al. (2005) indicate that NUE for a topdiesgoplication is between 50% and

70%, but NUE is not constant across time and s@acshown by Arnall et al. (2009).

% In this paper, data used to approximate recomniemgafrom the NRS and RS come from randomized
experimental plots that differ from the actualptrused in practice in terms of size and the nurabisr
treatment rates used. Thus, the approach usedbelct under- or overestimate the accuracy of tle tw
approaches. Additionally, because all data useth@sed on preplant N applications, we are forced to
assume that crop response to topdress N is propattio preplant N response. This could potentiaiks
our results in favor of the ramped strip method.
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Based on the LRP functional form, underestimatoge(estimating) NUE for a
particular site-year will lead to an N requirempradiction that is greater (less) than the
true optimal topdress N application. Arnall et(@009) show that NUE for a preplant N
application can be predicted based on the respmfrS&1 measures to N application.
They point out that NUE depends upon a number oébke factors—e.g., temperature
and rainfal—which can have an impact on N mineralization andtization. Thus,
midseason applications can reasonably be expeotashly to increase NUE by reducing
early season N losses but also to reduce variabiliNUE across time by attenuating
early-season interaction between N fertilizer aidatic variables.

Inclusion of parameter uncertainty in the predicgwocesses for the NRS and RS
systems might also lead to changes in predictadhapN application rates. Babcock
(1992) examines “explanations for farmers ‘overigimg’ nitrogen fertilizer,” despite
the increase in yield variability associated withieiilizer. Babcock discusses several
sources and types of uncertainty, including “estiomauncertainty,” or the uncertainty
inherent in any estimated relationship, such agld-yesponse function. He indicates
that uncertainty can also arise due to misspetificaf functional form, weather, and
the unknown amount of N present in the solil attitine of N application. Babcock also
discusses specifically the linear response-platieB&) functional form (which is
assumed by the NRS and RS prediction systems)inde that when the plateau is
considered uncertain (while the slope and interoéfiie LRP function remain constant),
producers will increase N applications relativéhie deterministically calculated
optimum if marginal revenue when N is binding isrenthan twice the price of N. Past

literature supports the use of functional formswaat from the von Liebig hypothesis to
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model agricultural production (e.g., Paris and Kna®89; Berck and Helfand, 1990;
Paris, 1992; Chambers and Lichtenberg, 1996). Tezhlb (2008) model uncertainty
and expected profit maximization when the crop oesp plateau varies randomly by site
or year. The analysis presented in this paper dersiestimation uncertainty abaulit
parameters of the LRP functional form, rather tbaly the plateau, and uses Monte
Carlo integration to solve for the expected profaximizing level of N application. To
date, uncertainty inherent in parameter estimdtamsinot been fully considered for the
LRP functional form, though such estimation unaatjamay have substantial effects on
maximization of expected profits because the mdebnlinear.

Historical evidence shows that unambiguously pabfe agricultural innovations
are typically adopted rapidly, as was the widespresse of commercial N fertilizer in the
early Twentieth Century. Glyphosate tolerant soyisesere shown early on to be
profitable compared to conventional seed (RobBgsdergrass and Hayes, 1999), and
were speedily adopted by produeetiacreasing from zero to more than 85% of U.S.
soybeans acres between 1996 and 2006 (Castle, 8Mdetalroy, 2006). Other
innovations have not been so widely adopted, sa@naual soil testing, which takes
place on less than 10% of agricultural land in @&laa (Raun et al., 2005). The use of
NRS and RS N requirement predictors has also falosdadoption, implying that these
technologies may not be profitable in all casesrf@acher et al. (2006) determined,
based on yield data from long-term trials at Lah@mnd Altus, Oklahoma, that the
maximum possible benefit of a sensor-based prétisgplication system is between $22
and $31 h3, relative to the conventional 90 kg N h&8iermacher et al. (2009) found

that use of the NFOA with actual ORI data from grayplants was less profitable than
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applying 45 kg ha as preplant anhydrous ammonia @\H heir results indicate that the
NFOA effectively determines whether plants areesiriy from N stress, but that
recommended midseason application rates from tl@ANfay be too low when plant
are suffering N stress. The conclusion to be driram Biermacher et al. (2006) and
Biermacher et al. (2008) is that optical sensinghogs have the potential to bring about
large increases in profit, but that the NFOA regsiisignificant adjustment to improve its
accuracy as a N requirements predictor.

The objectives of this study are to determine 1¢thver NUE for preplant N
varies by site-year, 2) whether either the RS oENE&chnology is unambiguously more
profitable than applying 90 kg Hapreplant, and 3) whether inclusion of parameter
uncertainty improves the predictive capacitieshefNRS and/or RS technologies. This
paper estimates the relative profitability of tbé#dwing seven whole-field prediction
systems:

1) a “perfect predictor” system that uses the patidn function estimated from actual
yields and in each site-year in conjunction wité tieterministic or “plug-in”
method to determine the optimal rate of topdreg¢kdXeafter called PPD),

2) a“perfect predictor” that uses the same pradodunction as in system (1) above,
but accounts for uncertainty about the estimateéseoproduction function
parameters (hereafter called PPU) to determinephienal topdress N rate,

3) the RS system described above (hereafter dalkidl),

4) a modified version of the RS systems that actsofam uncertainty about yield
given no top-dress treatment, maximum possiblalyahd the rate at which yield

responds to additional N application (hereafteleciihe RSU system),
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5) the NRS system (hereafter called NRSD) descritn&hun et al. (2002),

6) a modified version of the aforementioned NR&ey that accounts for uncertainty
about the estimated maximum possible yield, as agethe yield given no top-dress
treatment (hereafter called the NRSU system), and

7) the historical extension recommendation (heeeaéferred to as the ER system) of
90 kg N h& from anhydrous ammonia (NHprior to planting, based on a yield
goal of 2727 kg hHa

N is assumed to be applied as anhydrous ammonig) @34 kg h# prior to planting to
avoid early season N stress (Arnall, Edwards ands@&gn 2008). The ORI-based systems
then are used to predict how much additional Mif) should be applied as topdress
UAN. The results will inform further developmentmithods to predict economically
optimal crop N requirements using midseason ORd,datd determine (given these
assumptions) whether one of the five ORI-based oustishould be recommended to

producers over the others.
Theory

A producer’s goal is to maximize expected profitdposing one of the five alternative
N application rate prediction systems. This probtam be expressed mathematically as

follows:

1) maxE[z, (Y(N., T[T, = F ()]

where 7, is the profit from systerk; y is yield, N, is the amount of preplant N applied
by systenk; T, is the amount of topdress N applied by syskerfi, is a function used

by systenk to make the N requirement predictiafy; is the information set used by
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systemk; and k = PPD, PPU, NRSDQ NRSU, ER. Thus, the profit maximizing producer

will choose the strategy with the highest expegterdit. Here, the expected return for

each of the five methods is:

2) E(7) = PE[Y(N, . T)] = PNy = Pr T = 6y Par — P

where p, is the price of the cropp,,, is the price of pre-plant Np; is the price of
topdress N, is a binary variable that indicaté&s > ; @,; is the custom application
cost for topdress N; ang,, is the fixed cost of using methé&gdincluding the cost of

creating and analyzing an experimental strip, dbagethe acquisition and custom

application costs for preplant N required by metkod

Data

The data for this study come from experiments cotatlat ten sites located throughout
the state of Oklahoma between 1998 and 2008. Theiteess are located at the Efaw,
Haskell, Hennessey, Lahoma, Lake Carl Blackweltkids, Stillwater, and Tipton
agricultural experiment stations. Table II-1 congaihe specifics about N treatment
levels, replications, soil types, and dates foheaqerimental location, while the map in
figure II-1 shows the locations of the experimessitds. Each site had at least three
different levels of N treatment, which differed &iye, and occasionally between years at
the same site. The number of replications at eaapplication rate varies by site-year.
ORI measures for each observation were colleciaahar Feekes growth stage 5, and
yield was measured at harvest. These data aregagedvide application

recommendations based on the RSD, RSU, NRSD, ai@lN\dystems.
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Tablell-1. Locations, Years, Soil Types, and Nitrogen Levais] Replications for
Experiments
Experiment
Station Years Soil Type Nitrogen Treatment Levktst{a®)
Efaw 1 1999-2006 Easpurloam 0 45 90 179 269 53¢
® @ @ @ @ @
Efaw 2 1999-2003 Easpurloam 0 56 90 123
3 6 () (6)
Haskell 1999-2002 Talokasilt O 112 168
loam (8) ae) @
Hennessey 2000-2003 ShellabargerO 56 90 123
sandy loam (3) (5) (6) (6)
Lahoma 1999-2008 Grant silt 0 22 45 67 90 112

loam ® @4 ¢ @ @ @
Lake C.B. 2004,2006 Portsiltloam 0 50 100
4 @ @
Perkins £  1998-2006 Teller sandy O 56 112 168
loam & B B 6
Perkins 2 1998 Teller sandy 0 56 112 168
loam @ © ©
Stillwater ~ 1999-2006, Norge silt 0 45 90 134
2008 loam (8) 4 @ @
Tipton 1998 Tipton silt 0 56 112 168
loam (12) (12) (12) (12)

 Rate not available in 2000.

P Numbers in parentheses are the number of remlitatt each rate each year.
¢ Numbers of replications are the same in 1998 Beadtins 2.

4 Rate not available in 2004, 2005, 2008.

The NRS is the area of each site on which the maxirN rate was applied. The
ramped strips here are approximated by the diffdesels of N applied on randomized
plots. The prototype ramped strip applicator treet been developed typically applies
more different levels of N than available in thegabket, but there is no theoretical
advantage to having more than three design p@msn two treatment levels are on the
slope and one is on the plateau (Richter and Bno@08). Note also that the Efaw 2,

Hennessey, and Lahoma experiments do not includiedahat equals or exceeds the

maximum N rate that would be applied to the NR&8r The Stillwater experiment also
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Figurell-1. Map of experimental locations.

suffers from the same issue in 2004, 2005, and.ZD@&s, in these instances, estimates
of the plateau yield may be biased downward duadio of treatment levels high enough
to reach the plateau. However, this limitation doesaffect the analysis of the relative
profitability of the five N needs prediction mettsdecause all prediction systems will
suffer from the same constraint on the plateawyestimation in any given site-year.

In sample bias may also cause overestimation cdi¢haracy of the predictive
systems because both predicted and actual estiofates production functions must be
made based on data from the same observationsmBEaiss that the data will not capture
the variability of N response that might be founithu an entire field. Also, the data

come from small plots relative to the entire fieddlarge NRS would actually capture
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more within-field variability than is representegthe plots in these data, as would a
large RS. Also, the mechanism used for opticakotfince sensing may be important.
Readings from a small handheld sensor might ndtuioajas much variability as readings
from an array of sensors, again under-representitingn field variability. Conversely,
use of a handheld sensor might increase measurementn NDVI data.

Based on local cooperative prices on February Q@9 2this paper assumes N
from UAN 28-0-0 costs $1.10 KgN from urea costs $0.99 kgand N from anhydrous
ammonia (NH) costs $0.57 K§ Custom application costs for UAN are assumeceto b
$9.71 hd, custom application for dry urea is priced at $ha’, and custom application
of NHz is 20.49 hd (Doye, Sahs and Kletke, 2007). The wheat pri&9ig4 kg

The dimensions of the NRS are assumed to be 198803 m (1.59 ha), and the
non-limiting N application rate (from N${lis 134 kg ha. It is assumed the NRS is
custom-applied simultaneously with 34 kg N'tgreplant N, and thus the NRS simply
requires an extra pass over the center of the dipfdying an additional 100 kg N ha
The cost of using the NRS includes the extra cbbiHy for application to the NRS,
custom application costs of Nfbr the NRS, 1.5 hours of producer labor to read th
NRS, and the cost of the sensor. A GreenSeeker@BrAdcan be acquired from NTech
Industries for $4,995.00. Assuming a 5-year usigtifor the sensor and PDA, a
depreciation rate of 20%, a 1,000 ha farm, and lba6f&eld, the cost of owning and
operating the sensor is $1.00'ha’. The total cost of a NRS is $212.07 per field, or
$3.37 hd. Table II-2 contains a partial budget for the timraof a NRS.

The RS is typically applied early after plantingtag-dress UAN 28-0-0.

Producers are advised to apply 3 strips per feddh measuring 3 m by 55 m (0.0165
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Tablell-2.  Partial Budget for Creation and Use of a NitrogeahFStrip on a 63 ha
Field

Operating Input: Units Price Quantity Cost
NHs kg 0.57 160.00 91.20
NH3 Application ha 20.49 1.59 32.58
Sensor ha 1.00 63.00 63.00
Producer Labor hr 17.50 1.50 20.25

Total Cost of NRS field 207.03

Total Cost of NRS ha 3.29

Tablell-3. Partial Budget for Creation and Use of Three Ranftegs on a 63 ha
Field

Operating Input Units Price Quantity Cost
UAN Kg 1.10 3.31 3.64
Road Time $ ki 4.12 8 32.96
Coop Labor $ ht 17.50 2.50 43.75
Sensor $ Ha 1.00 63.00 63.00
Producer Labor $ Hr 17.50 2.50 43.75

Total Cost of RS $ field 187.10

Total Cost of RS $ ha 2.97

ha), starting at an application rate of 0 kg ,tend increasing the application rate in
increments of 14.56 kg Hauntil reaching the maximum rate that could pdgdie used
by the plants (assumed to be 134 kg)hahus, the average N application rate in the RS
is 67 kg hd. Because the RS is applied separately from pret-plait is assumed the
producer pays road time totaling eight km per fa®4.12 krit for delivery of the RS
applicator. It is assumed that the custom appboatif a RS takes 2.5 hours of custom
labor, and that the producer later spends 2.5 heading the three strips with his own
Greenseeker® sensor and PDA. Thus, the totaloé@sRS is $187.10 per field, or $2.97
ha'. Table 11-3 is a partial budget for the creatiowl aise of a RS.

In the baseline case, midseason topdress UAN isreeskto be more efficient
than preplant NElor early-season UAN. In-field use of the RS methssumes the

plateau application rate found in the RS can beipteld by the ratio of preplant N use
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efficiency (NUE) to topdress NUE. This ratio is 8/3.5 = 0.66 (Solie, 2009).
Multiplying the preplant plateau application ratethis ratio is equivalent to multiplying

the response when N is limiting by 1-52e, topdress N is 1.52 times more efficient.

Procedures

Space-Time Variability of Crop Response

One question germane to any ORI-based midseasequirement prediction system is
how much crop N response varies across time argespae findings of Arnall et al.
(2009) indicate that NUE for preplant N is variali®wever, they do not specifically
guantify this variability. This is done by estinragithe following model:

3 Ve =min{a +Vv, + (B+0, )N, ,P+V, +®} + &,

wherey, is yield on plot in site-yeat; « is the intercept yieldy, is a random effect
shifting the intercept for site-yegrg is the slope of N response, is a random effect
that changes the slope of N response for sitetyddy is the amount of preplant N
applied on plot in site-yeat; P is the plateau yieldep, is a random effect on the

plateau for site-yedr ¢, is a random disturbance for planh site-yeat; andv,, v,, o,

and ¢, are assumed to be distributed normally and indegaty, with respective means

2 2
V’O-u’

zero, and variances o’,ando?, respectively. A restricted model is also
estimated in which the slope of N response doesargtacross site-years.e.,

o’ =0—and use a likelihood ratio test to determine whethis restriction is true. The
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estimated mean slopé and variances’ are then used to generate a 95% confidence

interval for N response (and NUE) for preplant aggilons across all site-years.
Expected Profit Maximizing Application Rates froerfect Predictors

In addition to estimating the relative profitabjilibf the NRSD, NRSU, RSD, and RSU
prediction methods, the profitability of each ORisked system is calculated relative to
two “perfect predictors” so that the component s@std revenues can be compared
across the systems. This process begins with egtimaf the yield response function for
each site-year in PROC NLMIXED in SAS as follows:

4) Yo = Min{eg + SNy Py} + €4

wherey, is yield on plot in site-yeat; «,, is the intercept yield for site-yetgiven no
preplant N applicationg,, is the yield response to preplant N for site-yaahen N is
non-limiting; N, is the pre-plant N application rate on plat site-yeat; B, is the
plateau yield for site-yedrand ¢, is a normally distributed disturbance with a vace

specific to siteyeart.

To account for uncertainty about the estimatedrpatars of the production
function for each site-year, Monte Carlo simulati®msed to generate ten thousand
observations from the multivariate-normal distribatof the parameter estimates from

equation (4). Each observation is generated asvel|
() Boi =Bo + Qo 'Z;, such thaQ,Q,,'= Q,
wheref}0 i« s thejth simulated 3 by 1 vector of parameter estimatesiferyeatt; ﬁm is

the 3 by 1 vector of parameter estimates for ssi@tyfrom equation (4)Q,, Is the 4 by
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4 lower triangular Cholesky decomposition€Qf, , which is the 3 by 3 covariance matrix
of the parameters estimated in equation #4)is thej™ 3 by 1 vector of randomly

generated deviates from a standard normal distoilbuj =1, K , J; J equals ten
thousand; and the 0 subscript indicates that thenpeters are estimated based on pre-
plant N response. Occasionally, a standard errumnatebe estimated for either the slope
or plateau of the production function for a sitedydue to data limitations. In such cases,
the parameter is considered a constant, and tlee panameters are used for the Monte
Carlo simulation. Such estimation problems arewdised further in the results and
conclusions sections.

To estimate the expected profit maximizing topdieésgoplication rate,
parameters estimated and simulated in equatioren@}5) must be adjusted because a)
it is assumed that all prediction systems applk@# ha' as preplant Nk and b) it is
also assumed that the marginal product of midsetmgmitess UAN is 1.52 times that of

preplant NH due to an increase in NUE. To account for thees@ntioned assumptions,

the following adjustments are made based on th’(ﬂ)l&/égjt :

(6) ;= max(ming + By 34 ﬁo;r ), &, ), and

(7 Buye = 1528y

where &, is thej" simulated yield at the pre-plant rate of 34 kg masite-yeat; &,

is thej™ simulated yield when no N is applied in site-ygap,, is thej™ simulated N
response to pre-plant NHor site-yeatrt; I3Ojt is thej™ simulated plateau-yield in site-

yeart; and ,Bljt is thej™ simulated response to midseason topdress UANitiysart;
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j=1K ,J; andJ equals ten thousand. The max and min functionsquation (6)
prevent predicted yield at 34 kg N“h&rom being greater than the plateau yield or less
than the intercept when no N is applied. Theseaicéshs impose the constraints that
yield can never be higher than the plateau yield that slope of the LRP function is
always greater than or equal to zero.

Parameter estimates of the average yield giverg3#k of preplant N from NH,

and for the yield response to topdress UAN forgéert (a, and ﬁlt, respectively) are

found by taking the means e?zfljt and ,éljt from equations (6) and (7). These parameter

estimates are used in conjunction with the site-peaduction function estimates from
equation (4) to determine the optimal topdress W&pldlication rate using the

deterministic PPU method. This rate is found usiregformula®

(8) -|-D — (Ism _&n)//én if pc(lsm _&ﬂ) > (Ism _&ﬂ)/lélt + Par
t 0 otherwise,

whereT.” is the deterministically calculated PPU optimadcess N application rate for
site-yeart; p, is the price of wheatp,; is the cost of custom application of UAIFAP;,'t is

the estimated plateau yield;, is the estimated yield at 34 kg hpre-plant NH; Blt is

the estimated response to topdress UAN; an@®tieperscript means that the N
application rate is calculated using the deterrtimisethod. Recall, however, that
Babcock (1992) points out that when the plateauncertain, this deterministic method
of solving for expected profit maximizing N rateimadequate in the case of the LRP

functions because the functional form is non-linegyarameters. Here, estimation

* Note that when determining the actual or prediebguiected profit maximizing topdress N application
rate, no information about expenditures on prepiarg needed.
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uncertainty in the estimated intercept and slope&ch site-year are considered in
addition to uncertainty of the plateau yield.

To account for estimation uncertainty in the partmse a nonlinear programming
problem is formulated and solved to maximize expaqrofit from topdress UAN
application for each site-year based on the Momido®bservations generated from

equations (4), (5), (6) and (7). The maximizatioolgem to solve for the PPU rate is:

1 p, min@,, + B, TY, P,
9 maxE[z(T")] =3 P. Ny Jﬁl’t LY
t j=1
st
0<TY <120

where 7 is return above topdress N cost"; is the expected profit maximizing rate of
topdress N application from UAN in site-ygaaccounting for parameter uncertainfy;
is the price of wheatp; is the price of UAN;¢, is a binary variable that equals one if
T” >0, and zero otherwise; thé superscript indicates that the solution accoumts f

parameter uncertainty; and all other symbols aggipusly defined. The solutions are

obtained using PROC NLP in SAS.

Predicted Expected Profit Maximizing Applicationt&afrom Ramped Strip Predictors

To predict expected profit maximizing N applicati@tes based on the RSD and RSU
methods, ORI data must first be converted to exgokegields, commonly called “yield
potential” in the literature (Raun et al., 2002020 This conversion is needed because
the ORI data are not directly comparable to yielthdn terms of estimating (or

predicting) yield response. The equation used tkentlais conversion is:
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(20) E(y,) = yp, =59000exp@5820insey, )
wherey, is yield on plot in site-yeat; yp, yield potential on plot in site-yeat;
insey, is the ORI measure from ploin site-yeat; and 590.00 and 258.20 are the

parameters used by the NFOA (Raun, 2008). Oncedmgersion of ORI data has been
completed, predicted yield response functions stienated for each site-year following
the estimation and simulation procedures in eqoat{d), (5), (6) and (7), but
substituting expected yields from equation (10jhasdependent variable. Then for each
site-year, the expected profit maximizing UAN apation rate based on the RSD
methodis calculated as in equation (8), and the prediofgamal rate based on the RSU
method is calculated as in equation (9), but uiegpredicted, rather than actual,

estimates of the N response production functiong#ch site-year.

Predicted Expected Profit Maximizing Applicationt&afrom

Nitrogen Rich Strip Predictors

The information set and the function used to pteitiie expected profit maximizing
topdress N application rate based on an NRS ieréift from that used by the RSD and
RSU systems. The NRS is used in conjunction withexk strip, where the producer has
applied some amount of preplant N (assumed to bey3&'). Additionally, methods
that use an NRS assume that the slope of the Mmesps constant across time and
space.

Producers are also assumed to apply 34 kg Nakare-plant Ng However,

none of the experimental sites in the dataset drechupreplant rate of 34 kg-haso the
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ORI measure thatould have been collected for each site-year must lbdigtesl, given
the assumed preplant rate. This is done by fitghasing the function:

(11) insey, = min[e, + SN, ,R]1+¢,,

whereinsey, is the ORI measure on ploin site-yeat; «, is the intercept of ORI for
site-yeart given no preplant N applicatiorg, is the response of ORI measures to
preplant N for site-yedar N, is the amount of preplant N applied on plot site-yeat;

P is the ORI plateau for site-yearand ¢, is a normally distributed random error term

with a variance specific to site-ydar
Next, the average ORI from the farmer practice kistdp is estimated using
Monte Carlo simulation. Ten thousand Monte Carlserbations based on the parameters

of equation (11) are generated by the followingcpss:

(12) Bow = Bo + Qo 'Z » SUCh thatQ, Q"= R,

whereﬁOkt is thek” simulated 4 by 1 vector of parameter estimatesiferyeat; ﬁm IS
the 4 by 1 vector of parameter estimates for ssi@tyfrom equation (11)Q,, is the 4
by 4 lower triangular Cholesky decomposition€®f, , which is the 4 by 4 covariance
matrix of the parameters estimated in equation; (21)s thek™ 4 by 1 vector of

randomly generated deviates from a standard natis@ibution; k =1, K , K; K
eqguals ten thousand; and the 0 subscript indiths#the parameters are estimated based
on preplant N response. The average ORI measuea gie farmer practice of applying

34 kg N h&d as anhydrous ammonia is then predicted as:

. p A ~ ~ R
insef = Inse){t = max[mmbOkt +34180kt' POkt]! aokt]

(13) K K
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whereinsey” is the predicted average ORI measure given 34 kg Npreplant in site-
yeart; insey” is thek" simulated ORI measure for site-y&at,,, Sy, Py are the

first three elements of the vectﬁgkt from equation (12); and the max and min functions
ensure that the mean farmer practice ORI measu ggeater than the mean plateau
ORI measure. The simulated standard errdnséy" is the standard deviation of
insey”. Yield potential (or expected yield) at the farrpeactice level of N application

is then calculated for each site-year as:

(14) yp" =59000exp@5820insey "),

where yp'® is the expected yield at the rate of 34 kg N peeplant for site-year

inse){P comes from equation (13); and the parametersudtean (14) are the same as in
equation (10).

The average ORI measure from the NRS is estimatied only the ORI data
from plots where the maximum preplant N rate wadiag in each site-year. Thus, the

ORI measure from the NRS for each site-year isnetéid as:

(15) insey"™ = u, +¢,,

whereinsey is the ORI reading for platat the maximum preplant rate applied in
site-yeatt; g, is the mean of the ORI measures at the maximuplgreapplication rate
applied in site-yedr;, and ¢, is a normally distributed stochastic disturbaraeploti in

site-yeart. Based on equation (15) the average ORI measuretfie NRS is:

(16) insey"™ = 4.,
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where 4, is simply the point estimator of the mean of ORdasures at the maximum

preplant N application rate applied in site-yedrhe estimated yield potential for the

NRS is calculated as:

(17) yp™™ = min[max@yp™, ypI" RI2Y), 7000],

where ypM is the mean yield potential for the NRS in sitenyte 7,000 kg ha is
assumed to be the maximum possible plateau yielifder wheat in Oklahoma (Raun
et al., 2005);yp™ is the mean yield potential for the farmer praetibeck strip; and

RI2Y is anadjustedresponse index based on the response index udeduyet al.
(2005). Raun (2008) indicates that*” is calculated as:

(18) RI2 = 169(insey™ /insey”) - 070.

The predicted expected profit maximizing UAN apation rate prescribed by the NRSD

method is then calculated based on the NFOA destily Raun et al. (2002, 2005)

using the equation:

MAX Fp 05 . MAX FP MAX FP / 05
- — if — > — — 4
(19) T°- (YR™ - YR )/ 00239 P (YR™ —yR")>(yn"™" —yR") 00239 P
0 otherwise,
whereT,"” is the NRSD predicted expected profit maximiziogdress UAN application

rate; ypM*

is the yield potential estimate for the NRS i-gieart from equation (17);
yp” is the estimated yield potential at 34 kg N lpme-plant for site-yearfrom

equation (14); 0.5 is the expected NUE from a nadea topdress UAN application
(Raun et al., 2005); 0.0239 is the percentage iof tNe grain multiplied by a conversion

constant (Raun et al., 2005). Note that the NFGauia®s a constant slope of 20.92 kg
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wheat h# for an increase of 1 kg N fan the topdress N application ratée.,
0.5/0.0239
To determine the effects of parameter uncertaintgxpected profit

maximization—i.e., to obtain predictions for the NRSU metheithe variances ofyp™

X

and yp"™ must be accounted for, as well as the covariaateeden them. In practice,

the covariance betweeyp™ and ypM** for a particular site-year would not be known

because the two parametesg~ and yp**

) are not estimated jointly in a single
equation. To determine a plausible covariancedaatbe assumed for all field years, the
following model is estimated:

(20) insey, = min[a + N, ,P] + ¢, ,

whereinsey, is the ORI measure on ploin site-yeat; « is the intercept ORI measure;
£ is the response of ORI measures to preplant Nagtion; N, is the amount of
preplant N applied on plotin site-yeat; P is the plateau ORI measure; axdis a

normally distributed error term with mean zero aadances’ . Ten thousand Monte

Carlo observations for each site-yearinsey]” andinsey”” are then created following

the process:

insey; } _ { insey]”

insey™ | | insey™

0-2 O . 3
(21) l: }LQ;zj , such thaQ,Q, = Q, and Q, ={ i &’P}

2
Os;p Owmaxt

® Because equation (20) is used only to estimatedkariance of the intercept and plateau estimétes,
resulting parameter estimates are not presenteisinvork. Suffice it to say the estimated covac&an

(J& IS) is -1.16E-15.
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Whereinse){tP is thej™ simulated observation of the ORI reading fromfdérener
practice in site-yedr insey,"" is thej"" simulated observation of the ORI reading from

the NRS in site-yedr Q, is the 2 by 2 lower triangular Cholesky decompositnatrix;

z; is a 2 by 1 vector of deviates from a standardnabdistribution; €2, is the estimated

covariance matrix of parameter estimates for s#i@ry o, is the simulated standard
error of the estimated farmer practice ORI readangsite-yeat, which comes from
equation (13); o, IS the standard error of the mean ORI reading fiteer\NRS for

site-yeatt, estimated in equation (169, , is the covariance between the estimated

intercept and plateau parameters from equation (R6)LK ,J; Jis ten thousand; and

all other symbols are as defined previously. Thautated ORI observations from
equation (21) are then transformed to yield po#tigtir expected yield) data using the

parameters from equation (10) as follows:
(22) yp;; =59000expR5820insey;”) , and
(23) ypi™ = min[max(yp;”, yp} RI%"), 7000]

where yijtP is thej™ simulated observation on yield potential giverreplant N

application rate of 34 kg Hdor site-yeat; yp}™* is thej" simulated observation on

yield potential in the NRSRI$" = 169(insey™* /inseyf”) - 070 is thej" simulated

observation on the adjusted ORI response indegitietyeart; and all other symbols are
defined as previously.
Based on this Monte Carlo simulated dataset, thesong programming problem

is used to predict the expected profit maximizingalé based on the NRSU method:
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3, p, min(yp;” + (05/0.0239T,”, ypi™*)
E U — c J J
(24) max [7(T)] Zl 3
- pTTtU - paTgt
s.t
0<TY <120

whereT” is the optimal topdress N application rate preidty the NRSU method for

site-yeatt; &, is a binary variable equal to on€Tif’ > 0; and all other symbols are

defined the same as previously. The NRSU predexpeécted profit maximizing N
application rate for each site-year is calculatasklol on equation (24) using PROC NLP

in SAS.

Calculation of Expected Yields and Expected Returns

After solving for the expected profit maximizingcapredicted expected profit
maximizing N application rates for each predictsystem in each site-year, differences
are calculated between the systems in terms adgjieitrogen application rates and

profits. The expected yield given each predictorgach site-year is calculated as:

2 max[min@,, + By, T, Py )y MiN@, + Boy Ny, Py,
(25) E[y(Nk’Tkt)]:z [ming,;, + A1 T thJ) (@i + Boi Nk, Poy)]
1

wherey is yield; T,, is the topdress N application rate prescribedylstesnk for site-year
t; N, is the preplant N application rate prescribedystesnk for site-yeat; and alll

other symbols are as defined in (6) and (7). BEtguereturns above the costs of N
acquisition, application, and prediction technol@greafter called net revenues) are

calculated for each site-year as:
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. P, max[minaljt + /éljtTkt’ Isol't ) min(&Ojt + Boje Ny Isoj't )
E[z(N,. Tl =
(26) =1 N

- pTTkt - paT§kt — P>

where ,, is a binary variable equal to oneTlif > ; @, is the fixed cost of using

methodk, including the costs of pre-plant N and preplarggglication and (if required
by systenk) the cost of an RS or NRS; the application systégnare the PPD, PPU,
RSD, RSU, NRSD, NRSU, and ER systems; and all atyrabols are as defined
previously.

Next, paired differences are calculated for expgkptefits, expected yields and

total N application rates for each site-year. Thedeulations are:

(27) Dai = E[Y(Ng, Ty )1 = E[Y(N,, T )], q#Kk

(28) D« = El7(N, T,)] - E[7(N,, T,)], qg=Kk

(29) Die = (Ng +T) — (N, +T,), q=k

where D}, D7, and Dy, are the differences of expected yields, expea®dns, and

total N applications between methaglandk for site-yeat; N, and N, are the preplant
N application rates prescribed by methqdmdk, respectivelyT,, andT, are the

topdress N applications rates prescribed by meth@aslk, respectively, for site-yedy
andq andk are 1) the PPD method, 2) the PPU method, 3) 812 Rethod, 4) the RSU
method, 5) the NRSD method, 6) the NRSU method) the ER method of N
requirement prediction.

These paired-differences are used to determinexjpected differences in yields,

profits, and total N application rates betweengé&een systems. Rather than conducting a
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student’s test, which relies on normally distributed paidgiflerences, nonparametrically
bootstrapped means and standard errors of thedgdifferences of yields, returns, and N
application rates are used. This is done by ranslmmpling with replacement from the
original 53 site-years to create 10,000 samplés3dfite-years each, and taking the
means of the sample meanst-#&st is then applied to the bootstrapped means and
standard errors to determine whether the differebeéween the systems are statistically
significant.

The process described in the procedures sectibemsrepeated to determine how
sensitive the results are to changes in assumptimes alternative scenario assumes that
all preplant N must come from dry urea, rather tham NHs, while in the other scenario
assumes there is no increase in NUE from a topttegsplication relative to a preplant

application.

Results

The parameter estimates from equation (3) are piredén table II-4. The unrestricted
model allows crop N response to vary across sigesyavhile the restricted model
assumes N response is invariant to site-year. ikakhlood ratio statistic to test this

restriction isLR = -2(-90415+ 906900) = 27.5, which exceeds the chi-square critical

value with one degree of freedom at the 0.01 sigante level (6.64). The null
hypothesis can thus be rejected, leading to thelgsion that the rate at which winter
wheat responds to preplant N varies significanylgite-year. The estimated slope
parameter is 13.28 kg wheat per kg N, and the negiaf site-year random effects on the

slope is 89.88; thus the 95% confidence interviattie expected slope for any given site-
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year is1053< S, <16 02 where g, is the slope of N response for site-yedrhe

implication of this result is that the assumptidm@onstant slope for all site-years may
cause prediction error when using the NFOA to miteniptimal topdress N application
rates. However, crop responsddpdressN may be less variable than that estimated here
because N applied midseason is less likely to &tetdovolatilization or runoff before it

can be used by the plants.

Estimates of the actual LRP response functionshafawto N application from
equation (4) for each site-year are presentecbie 1&5. The estimates in the columns
under “Response to Preplant Nitrogen” are estimasaay the LRP functional form in
SAS PROC NLMIXED. The intercept and slope in th& t&vo columns are adjusted for
the application of 34 kg HalNH; pre-plantand for the assumed topdress NUE of 0.50.
As is noted in table 1I-5, some of the estimatepeeters have no standard errors. This
occurs because the data for some site-years deadt a plateau. In these cases, PROC
NLMIXED estimated a linear model, but generatedadgau equal to the expected yield
at the maximum rate applied in the data for théseygars. These estimates without
standard errors are biased downward, becausedhes only that the plateau is
expected to be greater than or equal to the estirfats is also the case for estimates of
the slope given without standard errors. At thedma site in 2007, it appears “likely”
that no data points are found on the slope of thdyztion function. Figure II-2
illustrates this type of data limitation. In thesstances, the estimate is a lower bound on
the expected value of the slope parameter. Theeddstes show how the true
production function might deviate from the estingiafienction, but exactly how likely the

slope is to be higher or lower than the paramedttmated in PROC NLMIXED cannot
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Tablell-4. Unrestricted and Restricted Linear Response-Pldtaaations of Wheat
Yield as a Function of Nitrogen Application with iklbom Parameters for Site-Year
Estimates
Parameter Definition Unrestricted Restriéted
a Yield intercept 1862.91° 1974.27°
(76.68§ (74.78)
Y;; Nitrogen response 13.78 18.68"
(0.97) (1.45)
P Yield plateau 3235.93 3092.16°
(209.94) (92.99)
o2 Variance of site-year ~ 549216.00° 596678.00°
intercepts (63465.00) (76819.00)
o2 Variance of slope by 89.88" -
site-year (11.46)
o2 Variance of plateau by  849818.00° 675736.00°
site-year (204510.00) (98987.00)
o2 Variance of error 398045.00 435674.00°
(17807.00) (19104.00)
Log
Likelihood -9041.50 -9069.00

%1n the restricted model the rate of crop respaase is restricted to be constant across
time and spacei.e., 2 =0.
® Three asterisks indicate significance at the (20dl.

¢ Numbers in parentheses are standard errors

be determined. Note also that for the Perkinseligi2001 there are no standard errors
for the intercept or plateau parameters. In thie cRROC NLMIXED estimated the
mean yield for the site-year, but failed to provadi@ndard errors because of data
constraints. The fact that all points occur onglaeau means that no Monte Carlo
simulation is necessary because the mean is lingarameters. Thus, the lack of
standard errors for the plateau and interceptignsite-year is not problematic. Table 11-6

contains the estimated predictions of the prodadiimction parameters based on the RS
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Tablell-5. Estimated Wheat Yield Response to Nitrogen by Béar (kg hd)
Response to Response to
Preplant Nitrogeh Topdress Nitrogéh
Location Year Intercept Slope Plateau Intercept Slope
Perkins 1 1998 1134.2%° 8.30° 2102.74° 1413.22° 12.58"
(132.779 (1.80)  (131.31) (92.76) (2.73)
Perkins 2 1998 1317.07 1.22  1487.45" 1358.81" 1.84
(94.24) (1.30) (107.72) (70.13) (1.98)
Tipton 1998 2935.56 12.65  5062.48 3360.64  19.17"
(93.45) (0.43) (20.38) (94.57) (0.66)
Efaw 1 1999 1040.74 5.46  3068.47" 1224.28" 8.28"
(226.18) (1.50) (323.25) (190.75) (2.27)
Efaw 2 1999 2169.75 19.277 3514.70° 2816.67°  29.19"
(192.74) (4.22) (96.28) (112.42) (6.39)
Haskell 1999 1768.76 7.7F  2072.38 1947.74°  11.68
(288.46) (182.19) (226.15)
Lahoma 1999 1515.33 26.28" 4443.15" 2398.26°  39.81°
(116.71) (2.28)  (181.26) (76.65) (3.46)
Perkins 1 1999 1077.36 12.717 2431317 1504.52° 19.26
(177.51) (4.48)  (125.40) (127.99) (6.97)
Stillwater 1999  856.21 10.90° 1712.317 1222.49°  16.51
(103.45) (4.00) (110.48) (112.42) (6.06)
Efaw 1 2000 911.47 26.847 3384.16" 1813.15°  40.66
(380.23) (6.58)  (294.25) (251.52) (9.96)
Efaw 2 2000 2238.16 -1.44  2157.28° 2290.417  -2.19
(579.50) (6.18)  (415.06) (510.02) (9.37)
Haskell 2000 4196.11  -13.247 2712.317 4196.11° -20.05"
(342.80) (1.16)  (212.27) (342.80) (1.76)
Hennessey =~ 2000 3834.75 -0.30 3818.00° 388596  -0.45
(453.78) (4.84) (324.21) (389.98) (7.33)
Lahoma 2000 1944.72 25.02° 3515.79" 2784.92°  37.91°
(152.57) (6.09)  (130.53) (152.61) (9.23)
Perkins 1 2000 2595.37 6.72  3349.30° 2914.42°  10.18
(717.43) (14.80)  (320.53) (473.60) (22.42)
Stillwater 2000 1120.70 17.05° 3414.03" 1693.60° 25.83"
(82.93) (1.34) (96.49) (94.26) (2.02)
Efaw 1 2001 922.02 15.52° 2024.20" 1444.13° 2351
(215.41) (6.80)  (112.39) (169.24)  (10.31)
Efaw 2 2001 2693.64 8.80 3302.01" 2990.96°  13.33
(284.51) (6.22) (142.12) (165.32) (9.43)
Haskell 2001 3671.78 -6.79  3121.73 3729.64 -10.28
(1365.35) (10.90)  (385.81)  (1273.98) (16.51)
Hennessey = 2001 1946.76 7.047 2815.15°  2183.37° 10.67"
(185.85) (0.77) (91.11) (187.39) (1.16)
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Tablell-5. Estimated Wheat Yield Response to Nitrogen by Béar (kg hd)
Response to Response to
Preplant Nitrogeh Topdress Nitrogéh
Location Year Intercept Slope Plateau Intercept Slope
Lahoma 2001 1478.61 4.06 1660.92° 1609.78" 6.15
(201.51) (17.24)  (142.35) (161.70)  (26.11)
Perkins 1 2001 2602.04 -1.35  2602.04 2602.04 -2.05
(1.09) (1.66)
Stillwater 2001 1054.34 12.70° 1636.44" 1453.42"  19.24
(142.81) (5.52)  (142.68) (133.56) (8.37)
Efaw 1 2002 732.68 30.947 2705.97" 1772.32°  46.88"
(325.21) (10.27)  (177.95) (256.69)  (15.56)
Efaw 2 2002 1811.94 19.94" 3575.16" 2482.00° 30.21°
(304.84) (6.67) (152.27) (177.87)  (10.10)
Haskell 2002 3501.86  -13.99 3112.527 3504.77° -21.19
(938.58) (7.45)  (262.09) (931.44) (11.29)
Hennessey =~ 2002 407050 -11.74" 3006.29°  4070.50° -17.79"
(27.88) (2.43)  (188.36) (27.88) (3.68)
Lahoma 2002 2711.54 16.54 3076.05" 3055.35°  25.06
(194.98) (123.15) (116.73)
Perkins 1 2002 2712.02 155" 2972.02" 2754.83" 2.34"
(192.23) (0.18)  (161.73) (182.74) (0.27)
Stillwater 2002 961.67 16.03"7 2987.29°  1500.18" 24.28"
(77.42) (1.55) (114.73) (57.42) (2.34)
Efaw 1 2003 1077.56 24.027 3996.74" 1884.67°  36.39"
(477.36) (8.25)  (319.92) (315.96)  (12.51)
Efaw 2 2003 2792.4% 20.30° 4951.01" 3474717  30.76"
(403.15) (6.03) (312.27) (247.42) (9.14)
Hennessey = 2003 2337.38 14.97° 3760.48 2840.21° 22.67"
(256.06) (3.65)  (166.13) (155.65) (5.45)
Lahoma 2003 2761.06 46.427 5716.43° 4320.91° 70.34"
(209.32) (8.31) (177.36) (213.50)  (12.59)
Perkins 1 2003 2796.88 12.81° 3779.36" 3227.337 19471
(190.97) (4.82)  (134.91) (137.43) (7.31)
Stillwater 2003 1136.60 19.877 2473.35" 1804.27°  30.11°
(176.81) (6.86)  (144.20) (192.42)  (10.40)
Efaw 1 2004 2079.91 22.88  4132.75" 2876.84"  34.67
(570.38) (18.03)  (284.82) (435.75)  (27.32)
Lahoma 2004 1871.81 20.23  2526.83" 2494.10°  44.28
(313.71) (198.14) (187.90)
Lake C.B. 2004 2227.58 18.20° 4063.87" 2839.27° 27.58"
(248.15) (2.14) (32.35) (258.30) (3.24)
Perkins 1 2004 1936.71 19.76  3400.00" 2600.53" 29.94
(393.43) (9.94) (277.93) (278.81)  (15.06)
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Tablell-5. Estimated Wheat Yield Response to Nitrogen by Béar (kg hd)

Response to Response to

Preplant Nitrogeh Topdress Nitrogéh

Location Year Intercept Slope Plateau Intercept Slope

Stillwater 2004 2083.09 -2.79  1895.09" 2414.14 -4.23

(2250.01) (28.29)  (220.35)  (1839.38) (42.87)

Efaw 1 2005 1164.61 456  2845.82° 1317.927 6.91"

(210.34) (1.39)  (299.78) (176.90) (2.11)

Lahoma 2005 1754.27 18.43° 2683.39" 2364.13° 27.9%

(188.05) (7.27)  (151.47) (164.96)  (11.02)

Perkins 1 2005 3494.79 9.84  4021.72° 3779.16°  14.9f
(267.25) (177.92) (221.90)

Stillwater 2005 1764.54 15.36  2223.70° 217424  23.2F
(145.73) (118.83) (106.79)

Efaw 1 2006 1081.40 8.05 2291.85" 1354.89° 12.20

(275.89) (4.77) (174.342)  (185.58) (7.23)

Lahoma 2006 2230.05 4.02  2680.96 2370.28" 6.10

(199.72) (3.16) (141.41) (4.82)

Lake C.B. 2006 1277.70 37.68" 437751 2543.71" 57.09”

(291.00) (8.17)  (290.73) (216.95)  (12.38)

Perkins 1 2006 917.34 12.337 2053.65" 1331.58" 18.68"

(113.68) (2.87) (80.30) (81.99) (4.35)

Stillwater 2006 1333.57 5.647  772.78" 1333.57° -8.54"

(0.017) (0.68) (40.67) (0.17) (1.03)

Lahoma 2007 2540.88 28.8Ff 3163.16° 3157.96°  43.64
(177.15) (129.19) (124.89)

Lahoma 2008 2761.74 59.54" 5525.72° 4758.76°  90.21"

(294.05) (11.75)  (251.57) (288.55)  (17.80)

Stillwater 2008 1381.78 15.99" 2697.67" 1918.22"°  24.227

(147.22) (4.32) (250.85) (127.64) (6.54)

Mean for all site-year2006.22" 13.19" 3073.16  2473.86  19.98"

(125.30) (1.92)  (140.05) (125.55) (2.91)

& Parameters and standard errors are estimatedRROE NLMIXED in SAS.

® Parameters and standard errors are estimated hieMiarlo Simulation using PROC
IML in SAS.

¢ One, two, or three asterisks (*) indicate statatsignificance at the 0.10, 0.05 or 0.01
level, respectively.

4 Numbers in parentheses are standard errors.

© Standard error cannot be estimated due to laditaf points on the slope or plateau.
The estimated parameter is biased downward.

" Standard errors for the intercept and plateamatrestimated because all available data
are on the plateau.
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for each site-year. Standard errors for some @etlgstimates are missing due to the
same data limitations described above.

Table II-7 displays the predicted yields at therfar practice preplant application
level of 34 kg h# (i.e., the intercept) and the predicted yield friva maximum rate
applied in the experiment for each site-year basethe NRS (or the plateau), calculated
in equations (14) and (17). In two instances, stechérrors for the intercept cannot be
estimated because of the same data limitationgliballowed estimation of standard
errors for some parameters in tables II-5 and IkGwo other instances standard errors
cannot be estimated for the plateau because thex bppnd on the plateau from equation
(21) is binding.

Table 11-8 displays the nonparametrically bootghegpmeans of expected
revenues and costs over all site-years for eadbrayd hese estimates indicate that, on
average, the system expected to be most profi(abide from the perfect predictors) is
the ER system, or the historical extension reconufaéon of 90 kg N Ha The four
prediction methods based on ORI data all earn ¢egeeturns above N related costs
between $612.90 HgRSD system) and $623.60 hgRSU system) where N-related
costs include N acquisition and application cosats @ needed) the cost of creating a RS
or NRS. The ER system, on the other hand, earespected return of $642.45ha
However, based on the results in table 1I-8, ihferred that the ER system does not have
the advantage of increased yields relative to tBe) Bnd NRSU methods, but instead
attains relatively higher profits by using relativenexpensive NH, rather than using

UAN.
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Figurell-2. Plot of yield data and estimated production funcfar Lahoma 2007.

To test for differences in expected profits, expddtields, and total N application
rates between systems, the null hypothesis thah#dsan paired difference is zero over all
site-years is tested. The bootstrapped means qlined differences between all systems
for expected yield, N application rate, and expegiefit are presented in table 11-9. The
mean of the paired-differences in expected prefitieen the RSU and ER systems is -
$18.85 hd, meaning that for any given site-year, the EResysis expected to be more
profitable than the RSU system by $18.85.HEhis result is statistically different from
zero at the 0.01 significance level. Note also Mhapplication rates for the ER system
are always significantly higher than those of atheosystem by at least 10.23 kg'ha

Yet, the profits of the ER system are always sigaiftly higher than any
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Tablell-6. Midseason Predicted Wheat Yield Response to Nitr@pesed on the
Ramped Strip Method

Response to Topdress

Response to Pre-plant Nitroden Nitroger?

Location  Year Intercept Slope Plateau Intercept Slope
Perkins1 1998 2780.65 ¢ 14.64 4556.02° 3272.56° 22.18"
(265.23)  (3.59) (267.92) (185.21) (5.44)

Perkins 2 1998 2601.47" 7.85 3345.327 2868.37" 11.90
(191.86) (4.83) (138.43) (137.05) (7.31)
Tipton 1998 3649.34" 7.957  4985.08° = 3916.54" 12.05"
(54.79) (0.13) (32.82) (54.98) (0.20)
Efaw 1 1999 1663.23° 12.90°  3011.21" 2096.78" 19.55"
(192.82) (3.32) (124.44) (127.42) (5.03)
Efaw 2 1999 3636.35  12.74°  4469.20° 4064.31" 19.30”
(201.66) (4.40) (102.89) (117.03) (6.66)
Haskell 1999 2905.44" 4.037  3580.39° 3040.79° 6.10"
(112.57) (0.19) (81.45) (112.76) (0.29)
Lahoma 1999 2898.13"  18.29°  4500.94" 3512.83" 27.72"
(106.16) (2.82) (119.37) (76.10) (4.27)

Perkins1 1999 2015.49°  10.42 2741.47" 2364.79" 15.79
(185.46) (4.66) (133.82) (131.08) (7.07)

Stillwater 1999 2499.07°  14.5Z 3149.95" 2942.00" 21.99

(211.66) (174.31) (177.10)

Efaw 1 2000 2474.01 21580 31619.20° 9725.74"  326.96
(4252.64) (73.27)  (3361.26) (2811.59) (111.01)

Efaw 2 2000 5378.49" 6.77°  6209.10" 5602.27" 10.26"
(257.01) (0.37) (215.52) (251.36) (0.56)
Haskell 2000 2738.66 3.06°  3250.08" 2840.89" 4.63"
(139.80) (0.21) (107.12) (138.87) (0.31)

Hennessey 2000 7053.89" 2.82 7372.74° 7149.16° 4.28
(108.12) (1.61) (85.54) (67.42) (2.44)
Lahoma 2000 4600.88° 70.79°  10166.41" 6979.50°  107.26
(281.30) (7.47) (316.29) (201.65) (11.32)

Perkins1 2000 3559.74" 7.51 4658.93" 3817.00° 11.38
(500.18) (6.89) (559.10) (365.39) (10.45)
Stillwater 2000 2801.92° 44.20°  7020.79° 4287.07" 66.97"
(262.29) (5.21) (396.97) (194.15) (7.90)
Efaw 1 2001 2979.90° 25.47°  5808.81" 3835.71" 38.59"
(504.87) (8.70) (345.58) (333.77) (13.18)

Efaw 2 2001 5857.00° 8.94 6341.28" 6083.65" 13.54

(438.45) (180.54) (361.27)

Haskell 2001 3401.51" 4177  4098.37° 3541.15° 6.31"
(170.63) (0.26) (129.67) (170.15) (0.39)
Hennessey 2001 3776.63°  18.85  6085.94  4409.69" 28.56
(526.41) (2.75) (189.13) (533.57) (4.17)
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Tablell-6. Midseason Predicted Wheat Yield Response to Nitr@pesed on the
Ramped Strip Method

Response to Topdress
Response to Pre-plant Nitroden Nitroger?
Location  Year Intercept Slope Plateau Intercept Slope

Lahoma 2001 4537.59° 8.30 4902.24" 4794.60° 12.58
(419.53)  (16.81) (366.59) (304.53) (25.27)

Perkins1 2001 5147.71" 0.76  5269.05" 5162.53" 1.14™
(357.89) (0.12) (344.26) (350.91) (0.18)
Stillwater 2001 3498.39°  29.31 5208.68" 4458.19° 44.40

(448.18) (17.24)  (457.32) (437.70)  (26.12)

Efaw 1 2002 2494.26°  17.36 3399.27" 3053.07" 26.30
(590.34)  (18.56) (301.19) (375.59) (28.12)

Efaw 2 2002 3084.92° 16.04°  4010.71 3623.79° 24.30"
(120.76) (2.63) (61.61) (70.26) (3.99)
Haskell 2002 2316.347 6.44°  3394.45" 2532.71" 9.76"
(175.97) (0.56) (82.64) (177.01) (0.85)
Hennessey 2002 4220.91° -10.41"  3034.3%" 4220.91° -15.77"
(46.81) (3.41) (247.43) (46.81) (5.16)
Lahoma 2002 4405.97°  50.74 5543.69" 5470.47" 76.88
(609.39) (388.45) (368.07)
Perkins1 2002 3802.37" 3817 444117 3930.42° 577"
(109.02) (0.14) (87.58) (109.11) (0.21)
Stillwater 2002 1885.44°  22.84°  3532.97" 2652.93" 34.61°
(73.11) (2.81) (74.60) (79.23) (4.26)
Efaw 1 2003 1440.55" 8.127  3461.78" 1713.30° 12.30"
(243.77) (2.37) (227.07) (189.98) (3.58)
Efaw 2 2003 3089.91" 21.17 4569.47" 3799.65° 32.00°
(429.42) (9.36) (219.09) (249.14) (14.18)
Hennessey 2003 6376.15  28.20°  9823.25° 7315.847 4272”7

(1109.66)  (5.05)  (493.01)  (1106.04) (7.65)

Lahoma 2003 2633.94° 84.77°  5720.81" 5362.76 128.43"
(211.70)  (18.00) (152.75) (386.68) (27.27)

Perkins1 2003 1964.74° 7977  3301.55" 2232.63" 12.08”
(117.98) (0.54) (27.98) (119.37) (0.81)

Stillwater 2003 1609.17°  22.71°  3240.08" 2372.03" 34.40”
(206.13) (5.08) (214.35) (150.72) (7.70)

Efaw 1 2004 2241.05°  25.63 4598.48" 3102.42° 38.83
(626.89)  (10.80) (404.56) (413.97) (16.36)

Lahoma 2004 3204.68°  59.88 4542.88" 4478.26° 90.7Z
(625.31) (398.89) (377.76)

Lake C.B. 2004 1711.71° 13.89"  4047.73 2178.55" 21.05
(174.12) (2.65) (119.18) (4.02)

Perkins1 2004 2051.15° 7.247  2940.91° 2294.53" 10.98™
(137.19) (1.89) (153.35) (96.57) (2.86)
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Tablell-6. Midseason Predicted Wheat Yield Response to Nitr@pesed on the
Ramped Strip Method

Response to Topdress

Response to Pre-plant Nitroden Nitroger?
Location  Year Intercept Slope Plateau Intercept Slope
Stillwater 2004 4099.19° -19.35°  2789.97° 4099.19" -29.31°
(381.92) (1.89) (259.23) (381.92) (2.87)
Efaw 1 2005 2116.86° 16.69  4300.82" 2677.57 25.28"
(278.66) (4.80) (179.84) (184.17) (7.27)
Lahoma 2005 2465.40°  19.71°  4061.97" 3127.69° 29.86"
(118.42) (3.07) (126.11) (81.54) (4.65)
Perkins1 2005 2012.52° 8.30°  3298.69" 2291.56° 12.58"
(110.87) (1.61) (140.08) (79.91) (2.44)
Stillwater 2005 2513.35  16.61 3379.27° 3034.40° 25.17
(252.06) (9.70) (257.20) (233.00) (14.69)
Efaw 1 2006 1292.66" 9.05 2425.94" 1598.83" 13.71
(288.09) (4.96) (185.92) (192.38) (7.52)
Lahoma 2006 2140.47°  20.0f 2588.77" 2570.54" 30.3F
(193.42) (123.38) (117.11)
Lake C.B. 2006 2187.44° 6.69 2861.93 2412.79" 10.14°
(194.16) (2.96) (133.42) (4.48)
Perkins1 2006 1205.94" 7.077  2073.49° 1443.37° 10.71"
(103.44) (1.43) (115.63) (72.83) (2.16)
Stillwater 2006 1459.09° 6.18°  2285.87 1666.71" 9.36
(151.87) (0.74) (52.49) (153.93) (1.13)
Lahoma 2007 2233.67  20.11° 277227 2748.78" 30.47"
(79.02) (6.08) (57.01) (73.09) (9.21)
Lahoma 2008 2256.17°  43.787  6382.98" 3727.27° 66.34"
(184.04) (3.66) (306.67) (123.24) (5.55)
Stillwater 2008 3791.70°  20.4G 4705.53" 4318.23° 30.92
(583.49) (480.53) (469.85)
Mean 3033.27 20.987  4905.13" 3713.75° 31.78"
(177.58) (4.05) (563.13) (223.27) (6.82)

& Parameters and standard errors are estimatedRRI@E NLMIXED in SAS.

P Parameters and standard errors are estimated bieMarlo Simulation using PROC
IML in SAS.

¢ One, two, or three asterisks indicate statissmaiificance at the 0.10, 0.05, or 0.01
level, respectively.

4 Numbers in parentheses are standard errors.

® Standard error cannot be estimated due to laditaf points on the slope or plateau.
The estimated parameter is biased downward.
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Tablell-7.

Nitrogen-Rich Strip Method

Predicted Production Function Parameters by Sita-Ysing

Location Year Intercept Plateau
Perkins 1 1998 3158.61° 4396.29°
(142.38% (204.96)
Perkins 2 1998 2789.74 3245.98"
(120.84) (193.33)
Tipton 1998 3920.44 472357
(64.29) (41.54)
Efaw 1 1999 2130.78 3103.77°
(140.53) (285.14)
Efaw 2 1999 4007.73 4250.35"
(105.93) (151.69)
Haskell 1999 3330.12 3631.90°
(131.29) (12.69)
Lahoma 1999 3457.61 4343.03°
(85.27) (36.29)
Perkins 1 1999 2327.63 2684.95"
(101.69) (53.40)
Stillwater 1999 3050.16 2185.08
(213.49) (611.85)
Efaw 1 2000 7233.88 6971.97"
(1168.10) (235.44)
Efaw 2 2000 5907.51 6168.73"
(240.61) (180.63)
Haskell 2000 2970.80 3424.40°
(185.00) (48.05)
Hennessey 2000 714651 7000.06
(94.97)
Lahoma 2000 6972.21 7000.00
(336.26)
Perkins 1 2000 4335.67 4466.65
(351.40) (603.75)
Stillwater 2000 4662.74 6169.02"
(285.55) (169.71)
Efaw 1 2001 3703.58 4704.04°
(241.03) (186.22)
Efaw 2 2001 6087.57 6223.40°
(234.25) (161.51)
Haskell 2001 3486.51 4256.58"
(223.60) (43.16)
Hennessey 2001 4322760 5347.30"
(372.65) (622.55)
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Tablell-7. Predicted Production Function Parameters by Sita-Using
Nitrogen-Rich Strip Method
Location Year Intercept Plateau
Lahoma 2001 4793.77 4401.71°
(990.92) (779.20)
Perkins 1 2001 5091.45 5209.31"
(622.93)
Stillwater 2001 4344.78 3867.74°
(527.81) (905.34)
Efaw 1 2002 2959.99 3411517
(538.97) (400.82)
Efaw 2 2002 3584.36 3928.78"
(80.63) (49.81)
Haskell 2002 2442.06 3514.90°
(218.68) (294.66)
Hennessey 2002 317942 2752.40°
(466.97)
Lahoma 2002 5229.09 4619.83"
(421.34) (811.98)
Perkins 1 2002 3924.09 4331.71°
(104.29) (65.88)
Stillwater 2002 2597.13 3480.327
(95.76) (82.63)
Efaw 1 2003 1657.90 3984.21"
(124.64) (227.45)
Efaw 2 2003 3594.90 4572.98"
(211.22) (143.29)
Hennessey 2003 6614.33 6995.83"
(746.31) (39.45)
Lahoma 2003 5439.80 5984.23"
(168.69) (92.23)
Perkins 1 2003 2201.01 3365.56
(84.42) (182.54)
Stillwater 2003 2240.46 3180.17"
(107.86) (428.03)
Efaw 1 2004 2769.48 3960.31"
(466.55) (561.43)
Lahoma 2004 4221.74 3472.1%3°
(599.98) (692.61)
Lake C.B. 2004 2672.53 3585.14
(2062.01) (1134.89)
Perkins 1 2004 2262.26 2962.85"
(59.32) (270.42)
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Tablell-7.  Predicted Production Function Parameters by Sita-sing

Nitrogen-Rich Strip Method

Location Year Intercept Plateau
Stillwater 2004 6876.53 1493.38
(9775.84) (1313.15)

Efaw 1 2005 2607.52 4424147
(148.06) (60.88)

Lahoma 2005 3167.18 4089.44"
(116.69) (48.20)

Perkins 1 2005 2240.86 3316.89"
(91.27) (26.05)

Stillwater 2005 2823.04 4152.00°
(91.17) (113.19)

Efaw 1 2006 1561.72 2014.65"
(135.37) (509.69)

Lahoma 2006 2537.69 2305.14°
(128.96) (165.15)

Lake C.B. 2006 2363.95 2942.79"
(136.73) (157.59)

Perkins1 2006 1429.13 2412.33"
(65.29) (269.00)

Stillwater 2006 1607.07 3266.03"
(35.32) (107.41)

Lahoma 2007 2764.37 2829.27"
(61.32) (140.48)

Lahoma 2008 3496.81 5459.05 "
(128.52) (70.97)

Stillwater 2008 4181.77 4044.30°
(750.20) (981.71)

Mean 3669.43 4125.06°
(209.44) (183.22)

Note: All parameters and standard errors are ettonasing Monte Carlo simulation.
@ One, two, or three asterisks indicate statissmaiificance at the 0.10, 0.05, or 0.01

level, respectively.
P Numbers in parentheses are standard errors.

¢ The standard error could not be estimated bedhesgpper bound on the plateau from

equation (21).

4 The standard error could not be estimated bedhasdessian from equation (12) is not

positive definite.

111



AN

Tablell-8.

Nonparametrically Bootstrapped Means and Standamd<€of Expected Net Revenue, Expected Yield Regen

Expected Nitrogen- and Precision-Related Costspfin Application Rates and Yields for Each Syséasuming All Preplant
Nitrogen from Anhydrous Ammonia

System
Revenue/Cost PPU PPD RSD RSU NRSU NRSD ER
Net Revenue 655.72 648.71 612.90 623.60 622.98 613.69 642.45
($ ha') (33.28) (32.88) (31.72) (32.94) (32.91) (33.37) (32.73)
Yield Revenue 739.48 727.57 711.24 724.67 721.28 697.97 714.24
($ ha') (33.667 (32.73) (32.61) (33.22) (33.62) (34.26) (32.73)
NH; Cost -19.38 -19.38 -19.38 -19.38 -19.38 -19.38 -51.30
($ hat)
Mean UAN Cost -37.11 -31.85 -47.07 -50.34 -46.34 -33.42 0.00
($ ha') (4.60) (4.35) (4.73) (5.01) (4.46) (4.16)
NH3 ,?\pplication Cost -20.49 -20.49 -20.49 -20.49 -20.49 -20.49 -20.49
($ ha)
Mean UAN Application Cost  -6.78 -7.15 -8.43 -7.89 -8.79 -7.70 0.00
($ ha') (0.61) (0.58) (0.45) (0.52) (0.39) (0.54)
Precilsion System Cost 0.00 0.00 -2.97 -2.97 -3.29 -3.29 0.00
($ ha)
Average Yield 3081.16 3031.53 2963.52  3019.45 3005.35 2908.21 2975.98
(kg ha’) (140.23) (136.38) (135.88)  (138.41) (140.09) (142.74) (136.37)
Mean UAN Rate 33.74 28.95 42.79 45.77 42.13 30.38 0.00
(kg ha®) (4.18) (3.96) (4.30) (4.56) (4.05) (3.78)

Note: All estimates are significantly differentfinazero at the 0.01 confidence level.
& Numbers in parentheses are standard errors.
® Numbers without standard errors are constants.



ORI-based predictors by at least $18.85. Hehis result stems from the much lower cost
of NHjs relative to UAN

Additionally, the results indicate that the corregpected profit maximizing N
application rate (PPU system recommendation) isifgigntly greater than that derived
from the deterministic method (PPD system) by 43@a’, and that expected profits at
the PPU rate are higher by $7.01*h@ihus, parameter estimation uncertainty has a
significant effect on the expected profit maximgiN application rate, as well as on the
optimal expected profit. The RSU system (which aote for uncertainty) also performs
significantly better (at the 0.05 confidence lewbBn the deterministic RSD system by
$10.69 hd, without applying significantly more N (see tabl®). Thus, evidence
suggests that accounting for estimation uncertaiatyimprove predictive accuracy in
the case of the ramped strip by increasing expaatddi by 55.93 kg ha (significant at
the 0.01 confidence level) without significantlgieasing N application rates. Even so,
the RSU system falls short of the perfect prediclePU) by $32.12 Ha and short of
the ER system by $18.85haAlso noteworthy is that the NRSU system attaizeeted
yields greater than the NRSD system by an averb@eé.n3 kg hd. However, the
increase in expected profits ($9.29'his not quite significant at the 0.10 confidence
level because the NRSU system applies 11.75 Rgrtare UAN than the NRSD system.

The decrease in profit between the PPU systemrenBR system is $13.27 ha
per year, which is the maximum value of a perfeetiictor. Because the ER system is
the best method available for expected profit ma&aiion, this value is the amount by
which a perfect predictor of economically optimapdress N application can increase

expected profits. In other words, a producer whaliap 90 kg N ha as preplant N
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Tablell-9. Nonparametrically Bootstrapped Means and Standaaidof the Paired
Differences Assuming All Preplant Nitrogen from#mrous Ammonia

Variable
Expected
Expected Profit Nitrogen Rate Expected Yield
Difference ($ ha') (kg ha') (kg ha')
PPU-PPD 7.01 479" 49.63"
(1.35) (1.22) (10.68)
PPU-RSD 42.81 -9.05 117.64"
(6.72) (5.29) (38.36)
PPU-RSU 32.17 -12.03° 61.71
(4.24) (4.60) (25.60)
PPU-NRSD 42.03 3.35 172.95"
(7.14)" (4.23) (41.82)
PPU-NRSU 32.73 -8.39 75.82"
(4.26) (4.21) (26.54)
PPU-ER 13.27 -22.26" 105.18"
(4.99) (4.18) (33.31)
PPD-RSD 35.80 -13.84™ 68.01
(6.64) (5.10) (36.25)
PPD-RSU 25.17 -16.82" 12.08
(4.24) (4.62) (24.41)
PPD-NRSD 35.02 -1.43 123.31"
(7.02) (4.28) (40.46)
PPD-NRSU 25.72 -13.18" 26.18
(4.33) (4.32) (26.65)
PPD-ER 6.26 -27.05" 55.54
(5.33) (3.96) (33.68)
RSD-RSU -10.69 -2.98 -55.93"
(4.39) (2.67) (16.89)
RSD-NRSD -0.79 12.41° 55.30
(9.74) (4.11) (49.14)
RSD-NRSU -10.08 0.66 -41.83
(7.56) (4.11) (37.71)
RSD-ER -29.54" -13.217 -12.47
(7.27) (4.30) (38.22)
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Tablell-9. Nonparametrically Bootstrapped Means and Standaaidof the Paired
Differences Assuming All Preplant Nitrogen from#mrous Ammonia

Variable
Expected
Expected Profit Nitrogen Rate Expected Yield

Difference ($ ha') (kg ha') (kg ha')
RSU-NRSD 9.91 15.38" 111.23

(7.25) (4.05) (41.85)
RSU-NRSU 0.61 3.63 14.10

(4.96) (3.66) (25.64)
RSU-ER -18.85 -10.23° 43.46

(5.81) (4.56) (31.06)
NRSD-NRSU -9.29 -11.757 -97.13"

(5.59) (1.68) (26.63)
NRSD-ER -28.76 -25.62" -67.77

(7.97) (3.78) (42.43)
NRSU-ER -19.46 -13.87" 29.36

(4.87) (4.05) (29.53)

@ The difference of nitrogen rate is the mean paifiéférence of the total nitrogen
applications from each system in each site-year.

P One, two, or three asterisks indicate statissiiificance at the 0.10, 0.05, or 0.01
level, respectively.

“Numbers in parentheses are standard errors.

each year in September would be willing to pay mwethan $13.27 Haper year for the
technology needed to use the PPU system descnlibisipaper.

Table 11-10 shows the nonparametrically bootstrappeans and standard errors
of the revenues and costs for each of the seveéamsgsassuming that all preplant N must
come from dry urea, rather than pliost notably, the ER system appears to be less
profitable than the RSU and NRSU systems in tresmado. The ER system no longer
has the advantage of using the relatively lessresipe NH;, and is now required to

derive all N from dry urea, which is nearly the gapnice as UAN solution used by the

topdress systems. Note that the yield revenuethareame as those in table 11-8, because
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N application rates have not changed. The costegflant N for all systems increases by
a factor of 1.74 when urea is used in place of;Nidwever, the high cost of preplant N
application is halved by applying dry urea insteétliH;. Optimal and predicted
topdress rates are unaffected by assumptions congehe source of preplant N.

Table 11-11 contains the nonparametrically boofgted means and standard errors of the
paired profit differences between the various taoh systems given all preplant N
must be applied as dry urea instead okNbhder this scenario, the paired differences
show the ORI-based predictors are all statistidaldak-even with the ER system. The
paired differences show that, while the differenaesnot statistically significant, the
RSU and NRSU systems are on average more profifadfethe ER system by $4.67’ha
and $3.19 h, respectively.

The RSU system in this scenario is more profitétide the RSD system by
$10.69 hd, again indicating that in the case of the RS telgy, accounting for
parameter estimation uncertainty improves the vafube predictor. This difference is
significant at the 0.05 confidence level. SinceR81J system does not apply
significantly more N than the RSD system (see tdi¢, the result suggests that
accounting for uncertainty improves the accuracthefpredictors. The ORI-based
predictors and the ER system all fall short ofabémal profit by at least $32.12 fa-
the paired difference between the PPU and RSUrgstRegardless of the availability of
NH3, yield losses cause a large share of the phulity losses of all other systems
relative to the PPU system, though all systemsg@®RSD) apply significantly more
total N than the PPU system (see the paired diftexg in table 11-9). The concomitant

decrease in expected yields and increase in avéraggplication rates indicates all these
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Tablell-10. Nonparametrically Bootstrapped Means and Standaaidof Expected Net Revenue, Expected Yield Regen
Expected Nitrogen- and Precision-Related Costspfin Application Rates and Yields for Each Syséasuming All Preplant

Nitrogen from Dry Urea

Revenue/Cost PPU PPD RSD RSU NRSU NRSD ER
Net Revenue 652.74 645.73 609.92 620.62 619.13 609.84 615.95

($ ha') (33.28% (32.88) (31.72) (32.94) (32.91) (33.37) (32.73)
Yield Revenue 739.48 727.57 711.24 724.67 721.28 697.97 714.24

($ ha') (33.66) (32.73) (32.61) (33.22) (33.62) (34.26) (32.73)
Urealcost -33.66 -33.66 -33.66 -33.66 -33.66 -33.66 -89.10
($ ha)

Mean UAN Cost -37.11 -31.85 -47.07 -50.34 -46.34 -33.42 0.00

($ ha') (4.60) (4.35) (4.73) (5.01) (4.46) (4.16)
UrealAppIication Cost -9.19 -9.19 -9.19 -9.19 -9.19 -9.19 -9.19
($ ha)

Mean UAN Application Cost -6.78 -7.15 -8.43 -7.89 -8.79 -7.70 0.00

($ ha') (0.61) (0.58) (0.45) (0.52) (0.39) (0.54)

Precilsion System Cost 0.00 0.00 -2.97 -2.97 -4.16 -4.16 0.00
($ ha)

AverageYield 3081.16 3031.53 2963.52 3019.45 3005.35 2908.21 2975.98
(kg ha’) (140.23) (136.38) (135.88) (138.41) (140.09) (142.74) (136.37)
Mean UAN Rate 33.74 28.95 42.79 45.77 42.13 30.38 0.00
(kg ha') (4.18) (3.96) (4.30) (4.56) (4.05) (3.78)

Note: All estimates are significantly differentifnazero at the 0.01 confidence level.

&Numbers in parentheses are standard errors.
b Numbers without standard errors are constants.



Tablell-11. Nonparametrically Bootstrapped Means and Standaaidof Paired
Differences in Profits Given All Preplant Nitroggom Dry Urea

Expected Profit

Difference ($ ha)
PPU-PPD 7.01°
(1.35)
PPU-RSD 42817
(6.72)
PPU-RSU 32.12"
(4.24)
PPU-NRSD 42.90
(7.14)
PPU-NRSU 33.60°
(4.26)
PPU-ER 36.79"
(4.99)
PPD-RSD 35.80"
(6.64)
PPD-RSU 25.11"
(4.24)
PPD-NRSD 35.89"
(7.02)
PPD-NRSU 26.59"
(4.33)
PPD-ER 29.78"
(5.33)
RSD-RSU -10.69
(4.39)
RSD-NRSD 0.08
(9.74)
RSD-NRSU 9.21
(7.56)
RSD-ER -6.02
(7.27)
RSU-NRSD 10.78
(7.25)
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Tablell-11. Nonparametrically Bootstrapped Means and Standaaidof Paired
Differences in Profits Given All Preplant Nitroggom Dry Urea
Expected Profit

Difference ($ ha)
RSU-NRSU 1.48
(4.96)
RSU-ER 4.67
(5.81)
NRSD-NRSU -9.29
(5.59)
NRSD-ER -6.11
(7.97)
NRSU-ER 3.19
(4.87)

Note: Only paired-differences in expected profits shown. Paired differences for the
other variables are the same as in table 11-9.

@ One, two, or three asterisks indicate statissmaiificance at the 0.10, 0.05, or 0.01
level, respectively.

P Numbers in parentheses are standard errors.

systems have a tendency to over-apply when N iseeded and under-apply when it is
needed.

Table II-12 contains the nonparametrically boofgted means of expected
revenues and costs for each of the seven systeamsag that topdress N midseason is
no more efficient than preplant N applicatiene., NUE for both preplant and topdress
applications is 33%. These results show that withloeiassumption of a large
improvement in NUE for topdress N as opposed tplpre N, the ER system is more
profitable than even the PPU system on average2(864a’ vs. $637.72 H3. This is
partially because the ER system reduces averagedkase costs relative to the PPU
system by $11.65 Haby using only NH instead of using a split N application of
preplant NH and topdress UAN. The ER system also avoids teeaf@ustom UAN

application, thus saving another $6.05 halative to the PPU system. However,
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expected revenue from grain sales for the PPUmsystdigher than that of the ER
system by $12.97 Halargely offsetting the cost savings on N purcherse application
Ccosts.

Table 11-13 displays the mean paired differencesxpiected profits, total N
application rates, and yields between the sevaemsgs revealing that the profitability
difference of $4.72 haper year between the PPU and ER systems is nististly
significant, though the ER systasstatistically more profitable than the PPD syshgm
$11.04 hd at the 0.05 confidence level. Ultimately, thesites show that if crop
response to topdress UAN is the same as crop respompreplant N the ER system is
more profitable than any of the ORI-based predichyrat least $35.53 fa-the paired
difference between the PPU and RSU systems. Additiof interest is the finding that
the RSU system is more profitable than its deteistimcounterpart by an average of
$10.22 hd, without applying significantly more N on averaghpwing yet again that
accounting for parameter uncertainty improves tiweigcy of RS-based predictions of
the economically optimal N application rate. Howewyen with this improved
prediction accuracy, the ER system is still sigraifitly more profitable than the RSU

system by $35.53 Ha(p = 0.01).
Conclusions

The findings of this research indicate that apgy® kg N ha, which is the historical
extension advice for Oklahoma, is the method withtiighest expected profit. However,

this result is sensitive to the assumption N idiadms NH prior to planting. Because
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Tablell-12. Nonparametrically Bootstrapped Means and Standaaidof Expected Net Revenue, Expected Yield Regen

Expected Nitrogen- and Precision-Related Costspfin Application Rates and Yields for Each Sysé&suming No Increase in
Nitrogen-Use Efficiency

System
Revenue/Cost PPU PPD RSD RSU NRSU NRSD ER
Net Revenue 637.72 631.41 596.70 606.92 600.35 597.90 642.45
($ ha') (33.29% (33.17) (32.23) (32.60) (33.24) (33.45) (32.73)
Yield Revenue 727.21 724.24 709.20 714.11 712.26 699.90 714.24
($ ha') (34.38) (32.93) (32.35) (32.95) (34.07) (34.38) (32.73)
NH; Cost -19.38 -19.38 -19.38 -19.38 -19.38 -19.38 -51.30
($ ha')
Mean UAN Cost -43.57 -45.45 -61.22 -57.20 -60.31 -51.14 0.00
($ ha') (5.69) (5.57) (6.41) (6.45) (6.07) (5.93)
NH3 ,?\pplication Cost -20.49 -20.49 -20.49 -20.49 -20.49 -20.49 -20.49
($ ha)
Mean UAN Application Cost -6.05 -7.51 -8.43 -7.15 -8.43 -7.70 0.00
($ ha') (0.65) (0.55) (0.45) (0.59) (0.45) (0.54)
Precilsion System Cost 0.00 0.00 -2.97 -2.97 -3.29 -3.29 0.00
($ ha)
Average Yield 3030.04 3017.67 2954.98 2975.47 2967.74 2916.25 2975.98
(kg ha’) (143.26) (137.22) (134.79) (137.27) (141.95) (143.27)  (136.37)
Mean UAN Rate 39.61 41.32 55.66 52.00 54.83 46.49 0.00
(kg ha®) (5.17) (5.06) (5.83) (5.86) (5.52) (5.39)

Note: All estimates are significantly differentfinazero at the 0.01 confidence level.
& Numbers in parentheses are standard errors.
® Numbers without standard errors are constants.



Tablell-13. Nonparametrically Bootstrapped Means and Standant<of the Paired
-Differences Assuming No Nitrogen-Use Efficiencgriease from Midseason

Application
Expected
Expected Profit Nitrogen Rat& Expected Yield
Difference ($ hat) (kg ha) (kg ha')
PPU-PPD 6.32 -1.72 12.37
(1.20) (3.19) (16.09)
PPU-RSD 41.02 -16.05 75.05
(6.62) (6.40) (38.24)
PPU-RSU 30.80 -12.39 54.56
(4.59) (5.43) (29.09)
PPU-NRSD 39.87 -6.88 113.79°
(6.53) (6.12) (41.81)
PPU-NRSU 37.37 -15.27 62.30
(5.46) (5.92) (33.52)
PPU-ER -4.72 -16.39" 54.05
(4.56) (5.17) (30.28)
PPD-RSD 34.70 -14.34 62.68
(6.68) (5.99) (33.93)
PPD-RSU 24.49 -10.68 42.19
(4.81) (5.21) (24.66)
PPD-NRSD 33.51 -5.17 101.47°
(6.69) (5.86) (38.07)
PPD-NRSU 31.05 -13.51 49.93
(5.67) (5.76) (30.03)
PPD-ER -11.04 -14.68" 41.68
(4.88) (5.06) (29.58)
RSD-RSU -10.22 3.66 -20.49
(3.85) (3.73) (14.98)
RSD-NRSD -1.20 9.17 38.74
(8.81) (5.35) (48.66)
RSD-NRSU -3.65 0.83 -12.75
(7.91) (5.15) (42.79)
RSD-ER -45.74 -0.34 -21.00
(7.29) (5.83) (36.46)
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Tablell-13. Nonparametrically Bootstrapped Means and Standant<of the Paired
-Differences Assuming No Nitrogen-Use Efficiencgriease from Midseason
Application

Expected
Expected Profit Nitrogen Rat& Expected Yield

Difference ($ hat) (kg ha) (kg ha')
RSU-NRSD 9.02 551 59.23

(6.92) (4.97) (42.59)
RSU-NRSU 6.57 -2.83 7.74

(5.93) (4.61) (34.93)
RSU-ER -35.53 -4.00 -0.51

(6.16) (5.86) (31.18)
NRSD-NRSU -2.45 -8.34" -51.49

(2.56) (1.33) (13.56)
NRSD-ER -44.55 -9.51 -59.74

(7.71) (5.39) (42.17)
NRSU-ER -42.09 -1.17 -8.25

(6.38) (5.52) (35.07)

The difference of nitrogen rate is the mean paidliéférence of the total nitrogen
applications from each system in each site-year.
® Numbers in parentheses are standard errors.
“One, two, or three asterisks indicate statisticalifcance at the 0.10, 0.05, or 0.01
level, respectively.
NHj3 is much less expensive than urea or UAN, the higstioextension recommendation
entails significantly less expenditure on N thay ahthe ORI-based systems in this
analysis. Additionally, the ORI-based systems nexjaisplit application, which means
that producers must pay for preplant applicatiohNdg, as well as midseason topdress
application of UAN.

Evidence also indicates that estimation uncertaios have a significant effect
on expected profit maximization using linear resg@plateau functions, in that the true

expected profit maximizing N application rate ages4.73 kg hahigher than the rate

found using the deterministic approach. Howevespanting for parameter estimation
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uncertainty in the ORI-based prediction methodslipces mixed results. While
accounting for parameter uncertainty significamthproves the profitability of the RS
technology, the improvement for the NRS technolisggmall and not statistically
significant. Notably, inclusion of estimation uniz@nty in the prediction process does
not result in greater expected profits than thateeaed by the historical extension
recommendation. Importantly, this result indicdtest the bulk of prediction error is not

a result of estimation uncertainty, but perhapalte$rom uncertainty about the
relationship between the optical reflectance messand the true parameters of the yield
response functions.

Based on equation (3), the estimated marginal ptaafupreplant N in table 11-4
is 13.28 kg wheat for each additional kg of N. Téstimate translates to 32% NUE on
average, assuming no over-application. Anothemesé of crop response to preplant N
in table II-5, which provides estimates of the prctibn function parameters for each
site-year. The estimated marginal product is 1Bdl@heat per additional kg of-Nthe
mean of the response function slopes for all séi@y. This estimate also corresponds to
about 32% NUE, which is similar to the 33% foundRaun and Johnson (1999).

One limitation of this study is that it assumes NigB3% for preplant N
applications, and 50% for midseason topdress aipits. Yet, these assumptions are
not accurate in all cases, as one of the key fgglin this paper is that the marginal
product of preplant N varies significantly by sytear (see table 11-4 and associated
hypothesis test). Based on the parameters of theated response functions to preplant
N in table 1I-5, crop response to topdress N messimulated for each site-year using the

above assumptions about NUE. The mean of thesdagedicrop response rates is 19.98
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kg wheat per additional kg of N, which correspotalabout 48% NUE, which is close to
50%. The assumption of 50% NUE implies that averagp response to midseason
topdress N application is one and a half timesctbp response to preplant N. The
accuracy of this assumption is crucial to the gbdf the NFOA to accurately predict
profit maximizing N application rates. If the margl product of topdress UAN varies
significantly by site-year, for example, this véiidgy should be quantified and integrated
into the NFOA and RS technologies

The expected profit maximizing strategy for winmdreat producers in Oklahoma
is to apply 90 kg N Haas preplant NE This result stems primarily from the relatively
low cost of NH. However, when NElis not available, the optical reflectance-based
predictors are statistically break-even with thetdncal extension rate in terms of profit,
while applying significantly less total N. The rexa N application rates would result in
reduced environmental impacts on surface and graater quality.

A few changes might reduce costs associated wétloptical reflectance-based
prediction systems. For example, preplant appbecatate of 34 kg N hhas NH
assumed in this paper may not be optimal. By irsinggthis rate a producer could
decrease the need for topdress UAN, which couldedse the total costs because;H
cheap relative to UAN, and because some midseadbhdpplication costs would be
eliminated. Also, topdress application costs cdnddvoided by combining UAN and
herbicide applications. However, this prospect seantenable because weeds need to be
sprayed in December, while optical reflectance-d&$eequirement predictions are not
made until February. Additionally, many producdready make split applications

without using optical reflectance-based predictiaften applying substantial N as
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preplant NH, and applying more N as UAN later in the seasahdfcrop is doing well.
The optical reflectance-based predictors may bftabte for producers who already use
split applications with some amount of preplantdiri NHs, urea, or ammonium nitrate.
In other words, some producers already prefer Bpdipplication systems, likely because
they have found split applications to be profitabtaat is, the historical extension advice
to apply 90 kg N Haprior to planting may not be the appropriate bematk. Another
issue relating to benchmarks is that many wintezatiproducers in Oklahoma produce
dual purpose wheat for both grazing and grain. Marthese producers use split N
applications, using preplant N for forage produtiémd midseason topdress UAN
application for grain production. However, the optireflectance-based prediction
methods require that wheat forage be present wkgerienental strips are measured, and
therefore would require that producers incur furttasts to exclude cattle from the RS or
NRS.

Future efforts to improve optical reflectance-baSe@quirements prediction
methods should focus on quantifying and incorpngatincertainty in the nitrogen-rich
strip and ramped strip technologies. Sources oémainty include uncertainty about the
relationship between optical reflectance data hedrue parameters of the production
functions, as well as uncertainty about post-opseasing weather. Post-sensing weather
may be especially important in dry land winter wiy@aduction. Also particularly
beneficial to Oklahoma producers would be adaptataf the optical sensing methods

that are easily compatible with the production wéldourpose winter wheat.
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CHAPTER 11

PREFERENCES FOR ENVIRONMENTAL QUALITY
UNDER UNCERTAINTY
The following chapter has been published in therjalEcological Economicand

appears in this dissertation with the journal’shpesion.

Abstract

Although the expected effects of environmental@es and interventions are rarely
known with certainty, stated preference surveyslyaglicit preferences over uncertain
environmental outcomes. This article presents aogbiresults challenging the view that
ignoring such uncertainty during preference eliotais of no consequence so long as
people only care about final environmental stalée. evidence presented indicates
measured preferences for final environmental stavester quality in this casedepend
on whether people choose between final statesteebe lotteries over final states. In
contrast to the typical finding for monetary lotésy; this paper shows significant under-

weighting of low probability events related to wateality.

I ntroduction

Stated preference methods such as contingent iaiwatd conjoint analysis are widely
used by environmental economists to carry outlsesefit analysis, analyze the welfare

effects of environmental degradation or improvemand prioritize resource allocation.
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The National Oceanic and Atmospheric Administrafamel has recommended (though
other formats can be used) that contingent valnaiovey instruments ask study
participants whether they would vote in favor gegerendum that, if passed, would raise
taxes by a given amount and (typically with 100%aisty) would improve a public

good by a certain increment (Arrow et al., 1993nitarly, in conjoint analysis, people
are asked to choose, rate, or rank competing sosr@argoods, environmental or
otherwise, that differ in terms of the levels ofesl attributes, where there is usually no
explicit uncertainty about the level of an attriutithin a scenario (See Green et al.,
1972). Unfortunately, real-world decisions, espécighere environmental processes are
concerned, are rarely as simple.

Even after extensive study and modeling, theréni®st always some degree of
uncertainty about the effects of environmentalges and interventions. For example,
uncertainty persists, despite extensive researdtmeaneling, about the link between
global warming and hurricane intensity (and acéat kvaves, etc.), as well as whether
greenhouse gas reduction policies can reverse@warthe global warming trend (and by
association, reduce various climatic perils) a thie date (Curry et al., 2006; Lovelock,
2006). These uncertainties arise because modabsasictions of reality, do not
perfectly capture the characteristics of the bigitat and economic systems they are
designed to mimic. This is especially true in tasecof systems where environmental
outcomes or states of environmental quality depgeavily on stochastic events, such as
rain fall, run-off, light conditions, changing lande patterns, etc.

What is the consequence of ignoring this underlyingertainty when conducting

stated preference surveys? One answer is thatuswelntainty is of no consequence for
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the practice of stated preference analysis. Indstaheconomic models, people's utilities
are often assumed to depend only on the finalstdtthe environment, health, and/or
wealth. Under such an assumption, economists gastadelfare measures for
uncertainty in the effect of a policy on the enaimeent after a survey.

Another view is that the underlying uncertainty htiglter preferences for an
environmental amenity. Such a situation might aieseeveral reasons. First, several
studies show that people's decisions are influebged“certainty-effect” whereby
people overweight outcomes that are consideredineslative to outcomes that are
probable (Kahneman and Tversky, 1979). This eftettpically captured by arguing that
people distort probabilities using non-linear weiigd rules as in Kahneman and
Tversky's (1979) prospect theory or Quiggin's (3982k-dependent expected utility
theory. That is, people transform the probabilitym event into a decision weight. The
typical argument is that people over-weight lowhaioility events and under-weight
medium to high probability events (Tversky and FI895; Prelec, 2000). If people do
not weight probabilities linearly, then the utiliby a policy option cannot be determined
simply by multiplying the utility of end-states ltye probabilities of achieving the end-
state; instead, one must multiply the utility oflestates by the decision weights
associated with the end-states. To confound thigishese decision weights might be
good- and context-specific. Furthermore, Bleichretddl. (2001) show that risk
preference elicitation approaches that do not obfdr nonlinear probability weighting
often provide biased estimates of people's ufilihction parameters.

Another factor that might cause people to view @rirenmental amenity

differently in the presence of uncertainty is backind risk. Background risk refers to a
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non-insurable, exogenous risk that will not be ke=b until after a particular decision is
made. Several papers have investigated the effeadependent, additive background
risks on risk taking behavior. Gollier and Pra@4®) and Eeckhoudt et al. (1996)
investigated the conditions under which the addit or increase in, background risk
causes a utility maximizing individual to make moomservative choices in risky
situations. Other authors, such as Diamond (1984 )uiggin (2003), argue that
addition of independent background risks mightease risk taking behavior. While
there is no universal agreement on the directich@fnticipated effect of background
risk on risk aversion, it is clear that most expetit indeed have some effect. In a stated
preference survey, the endogenous variable isdtsop's choice, rating, or ranking over
alternative environmental/wealth/health outcomesotucing uncertainty over
outcomes effectively adds an exogenous backgraskdhat cannot be resolved at the
time of the rating, ranking, or choice. As argugdaeckhoudt et al. (1996) in general,
and by Eeckhoudt and Hammitt (2001) in the convéxthe value of statistical life,
addition of this background risk might be expedtediter preferences for environmental
outcomes.

Since the studies of McFadden (1973) and Hanen@84j1random utility theory
has become the dominant paradigm for modeling iddal choice when carrying out
environmental valuation. However, there are suirylg few applications of random
utility models dealing with environmental issuesvhich natural uncertainty is included
in the underlying outcomes. Starmer (2000) reviesageral approaches for introducing
a stochastic process into the theories of individeaision making under risk, but as he

makes clear, there is no consensus on the mosi@pie approach. Strictly speaking,
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expected utility theory and other such theoriemaividual behavior under risk are
deterministic theories. This suggests a potenyiathesis of the models of individual
decision making under risk and random utility thygavhich results in a random expected
utility model.

A few previous empirical studies have considereckuainty in environmental
outcomes (e.g., Edwards, 1988; Cameron, 2005). @en{2005) elicited subjective
probabilities from undergraduate economics studentietermine the effects of the
subjects' prior knowledge and expectations for alerchange on their willingness-to-pay
(WTP) to avoid climate change. Edwards (1988) feduwore on uncertainty with regard
to policy outcomes; however, both Cameron (2008)Edwards (1988) estimated option
value—or the value that respondents place on thierofo use particular resources in the
future—given the underlying uncertainty. McConretlbl. (1995) estimated a random
utility model where there was uncertainty in th@eoted catch that an angler could
expect to observe. A few other studies have ingastd preferences under uncertainty in
the context of rationing public goods via lotterfesy., Boxall, 1995; Scrogin and
Berrens, 2003). None of this prior research attechpt introduce uncertainty in the
context of stated preference methods, where prbgtaboutcomes must be explicitly
introduced into the survey design. Furthermoreyiptes research has not investigated
the effect of uncertainty on elicited preferenaesich is an important issue given that
the vast majority of contingent valuation and camjstudies are conducted by asking
people to make choices over final environmentat@uies. Finally, previous studies
have not considered the consequences of non-fmmebability weighting on valuation

estimates.
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This article determines whether explicitly inclugiancertainty in the
environmental outcomes influences estimates of lp&opreferences for water quality in
a stated preference survey. In particular, a splple design is used where one group of
respondents was presented with a choice-baseditbgjestion where they were asked
to choose one of two lake states of nature theyt pregerred, where each description of
the lake differed by several quality attributese Tther group of respondents received a
similar choice-based conjoint question, excepuimity attributes in each of three lake
alternatives were only known with some probabilitiie two null hypotheses explicitly
tested in this research are 1) that presence bapiiistic outcomes does not affect
people's WTP to move, with certainty, from one dud¢vel to another, and 2) that
respondents linearly weight the probabilities afaifing the various end states of nature.
In fact, valuation estimates implied by the twovayrformats are substantially different;
additionally, significant non-linear weighting ofgiabilities—especially underweighting

of low probability events-is detected.

Background

To investigate these issues, recreationists’ pmebess were elicited for two different
environmental conditions at Tenkiller Ferry Res@rve man-made lake near Tulsa,
Oklahoma—historically known for its crystal-cleaatsrs. The lake and the tail waters of
the dam are popular destinations for recreationgleas, as well as participants in myriad
types of aquatic recreation, including scuba divifigis application was particularly well
suited for analysis for several reasons. Therarngently a controversy (and lawsuit)

between the states of Oklahoma and Arkansas ralataarient run-off from excess land
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application of poultry litter up-stream of the lakethe Lower lllinois River watershed.
Due to resulting high nutrient concentrations i@ Water column, blooms of blue-green
algae (cyanobacteria) have become frequent irattee In fact, Peridiniopsis polonicum,
a species of blue-green alga which could cause fwsti kills in trout downstream, was
found in Tenkiller Lake in 1986 (Nolen et al., 198®set et al., 2002).

However, predicting specific algal bloom eventpasticularly difficult and the
likelihood of an algal bloom occurring depends ligaan other stochastic events, such
as rain fall, run-off, and light conditions (Sorani997). Lathrop et al. (1998) were,
however, able to determine the average probaloign algal bloom on any given
summer day for lake Mendota in Wisconsin basedistofical phosphorus concentration
data for the lake. They also calculated, basedhenlata and hydrologic models, the
phosphorus load reductions required for variouslgewf control on the probability of a
bloom. Thus, it appears that prediction relatethéoaverage water quality is about the
best available when it comes to such highly staghasents, even when vast amounts of
data are available. The difficulty is that the effeeness of any intervention aimed at
reducing the chance of an algal bloom is uncertean.example, policies could be
enacted to reduce or eliminate the use of poutter las an agricultural fertilizer, which
would reduce phosphorus concentrations in resultingoff. However, because a) litter
use is stochastically related to nutrient concéiotna in run-off and b) nutrient
concentrations in run-off are stochastically relatealgal blooms in downstream lakes,
the ultimate effect of any policy or interventianstochastic. In terms of water levels in

the lake, intervention strategies might includeaedepment of dams or reservoirs that
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affect the water level at Tenkiller; however, besmtactors such as rainfall are
stochastic, lake water levels are inherently stsiha

The random utility model of McFadden (1973) is usedddress these issues,
such that the overall utility of a choice altermatis assumed to depend systematically on
the attributes of the alternative, while factorshservable to the econometrician are
accounted for in a stochastic error term. Peogeasumed to choose the alternative
yielding the highest level of utility. Typicallyhe attributes included in the systematic
portion of the utility function are assumed to lm@Wwn with certainty; however, in this
application, the situation is also considered imcila choice alternative has only a
probability of possessing some attribute. This apphn is entirely consistent with random
utility theory, recognizing that the probabilitytiwiwhich an outcome results from a
choice alternative is simply another attributehef thoice.

To clarify the issues at hand, assume lake at&ilavels are known with
certainty, and let individuals random utility from visiting lakgbe written as:

(2) V; =a; + p(Bloom) + y(Level) + A(Cos) + ¢; ,
where Bloom is a dichotomous variable that takes/tilue of 1 if an algal bloom is on
the lake, Level refers to the lake water level,t@@fdividuali's cost to visit the lakes

is the level of disutility received if a bloom oesunote: the utility of no bloom is

normalized to zero)y is the marginal utility of water level, is the marginal utility of
income, «; is a fixed level of utility associated with albhetr attributes of lakg and;

is a stochastic error term.
Assuming the utility parameters in equation (1gferences for lake attributes

could be measured by some stated preference metierg respondents chose, rated, or
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ranked lakes that differed in terms of whetheraoiyl was present, a given water level,
and cost. Given these data and the assumptiopensan will visit lake j for sure, WTP

to remove an algal bloom from the lake could sini@ycalculated as /1. However,

as previously stated, virtually any interventiomad at reducing algal blooms could not,
under any reasonable cost, eliminate all algalrokdl hus, an analyst might instead be
interested in calculating willingness-to-pay toued the chance of an algal bloom on any
given day from say 30% to 20%, in which case tlrepgeson, per-visit benefit of the
policy might be calculated as (0.3—0Q(2)3/4) . This figure is derived by assuming
people utilize expected utility theory to evaluatecomes where the utility of an

outcome is simply multiplied by the probabilitytbiat outcome. For example, if the

chance of an algal bloomRs, then utility of an optiof is:

(2) V; =a; + B;B(Bloom) + y(Level) + A(Cos) + ¢; .
However, as alluded to previously, explicitly inding uncertainty in the decision
making task might influence the valuation meaduBeppose a person were asked to

evaluate lak¢ with a P, chance of a bloom andR chance of lake water Leyednd
(@- PR ) chance of water LevelAssuming individual uses decision weights as prospect
theory asserts, individuds random utility from visiting lakgcan be written as:

2 V; =< + 7(P;) 8 (Bloom) + z(P,_) 7" (Level)
®) +[1-7z(P)]y" (Level,) + 2’°(Cosh + ¢ .

® It is often useful to draw a distinction betweba toncepts of “uncertainty” and “risk,” where foemer
refers to the case of unquantifiable indetermirafgyotential outcomes, while “risk” refers to tHeuation
in which probabilities of achieving different outoes are known. Under this distinction, it wouldrbere
precise to say that risk, rather than uncertaimag, been included in the decision making task. For
expositional convenience, the term uncertaintysisduin the text, but it should be clear in thisteghthat
probabilities can be assigned to events.
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where 7 is a probability weighting function and the supers UC refers to marginal
utilities when measured over uncertain outcomeaifagpte that the utility of a non-
bloom is normalized to zero). Now, consider a pess@/TP to reduce the chance of an

algal bloom on any given day from 30% to 20%, wh&hiven by the expression
(7 (0.3) - 7 (02))(— B“° / 2°°) . Comparing this term to the WTP derived undercse

of certainty, it is clear that valuation measureghndiverge in one of two ways: either
because the probability weighting function is nioedir in probabilities (i.e.,

[7(0.3) — 7 (0.2)] # [0.3—0.2]) or because people's preferences change whearthey

aware of the background risk (e.@.° = B or 1°° = 1).

Methods

To examine these issues, two survey instruments designed: one that asked
respondents to state their preferences for cestattomes and one that incorporated
uncertainty about the outcomes. Respondents raiydecgived one of the two
instruments. Regardless of the treatment to whicimdividual was assigned, they were
asked to choose which lake they most preferredsig where each lake option differed
by three attributes: algal bloom status, the wiatezl, and a user fee that would be added
to either camping or day use fees. The three atetbwere varied as follows:

Algal bloom status: Varied at two levels: Yes or ¢dwresponding to the presence

or absence or an algal bloom, respectively.

Water level: Varied at five levels: normal, 2 fidae normal, 5 ft below normal, 8

ft below normal, and 10 ft below normal.

User fee: Varied at five levels: $0, $2, $4, $6] 48.
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In the treatment with no uncertainty, a full facdbdesign was created that
combined all levels of every attribute with levefsevery other attribute. This produced
5x5x2=50 possible lake descriptions. On each sup&yple were asked to answer four
binary choice questions, where they chose whekiegrpreferred lake option A or lake
option B. For each survey, 8 of the 50 lake desiong from the full factorial were
randomly chosen to construct the survey (4 disaietéce questionsx2 options each=8
lake descriptions). Lusk and Norwood (2005) shotirad this random assignment of
profiles from the full factorial both within andrass choices and surveys performed well
in terms of efficiency of resulting WTP estimatEgyure IlI-1 shows an example of one
of the choice questions with certainty.

For the choice tasks with uncertainty, two addgicaitributes were intorduced:
the probability of an algal bloom (varied at 10®@%, 50%, 10% and 0%) and the
probability of water level being either normal,t2dw, 5 ft low, 8 ft low, or 10 ft low
(varied at 100%, 90%, 50%, 10% and 0%). This mézare were essentially four
attributes, each varied at five levels, makingleféctorial design of 625 possible
combinations. Because the full factorial was ratagge in this case, it was possible that
a random assignment of profiles to choice task$tmpgoduce less than desired results.
Thus, a sub-set of profiles was selected fromulddctorial to minimize the D-
efficiency criterion (Lusk and Norwood, 2005). larpcular, 17 unique combinations

were selected from the full factorial, which genedaa D-efficiency score of 81.53.
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For a typical trip to Tenkiller Lake, which of the following
options would you prefer? (Please check only the box below
your preferred option.)

Attribute Option A Option B

Algae Bloom Status Bloom No Bloom

Water Level 2 teet below normal Normal level
level

User fee $6 user fee $2u ser fee

I would choose . . . - -

Figurelll-1. Choice card from survey without uncertainty.

Rather than specifying a probability for all fivaigr levels and to simplify the decision
task, resulting experimental design was used tigmssprobability to a particular water
level and then the remaining probability (i.e., om@us the probability) was assigned to
the normal water level. In cases where both lelvafgpened to be normal, one of the
other four water levels was randomly chosen. Aténcertainty case, each person was
asked to answer four discrete choice questiongonetruct the four questions, 8 of the
17 selected lake descriptions were randomly asgigmeption A or B to create each
survey. Five persons otherwise unrelated to thidystvho held degrees ranging from
high school diploma to doctor of philosophy weresdted independently multiple times
to improve the ease of understanding of the suinva&yument before the authors settled

on the final versions of the surveys as implemented
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In addition to options A and B, a constant thirdi@p was included in the
uncertainty version, labeled as #tatus quavhich was identical across all questions. An
example of one of the choice questions with untdstés provided in figure 111-2. A
status quamption was included in the survey designed witbewtainty, but is absent
from the survey with certain outcomes. The ratienalthat, in reality, thetatus quas
uncertain and the presentation @ftatus quapption in the uncertainty version is
consistent with this fact. To include a certsiatus quapption in the certain version of
the survey would have been confusing to respondentise outcomes could not have
been known with certainty prior to making the tfljhwus, to present the most realistic
choice descriptions to respondents meant incluastgtus quaption in the uncertainty
version, but not the certainty survey version. teghis difference between the two
versions of the survey, there is no confound inganmg marginal utilities across the
two approache&In particular, the econometric approach used &epéicitly accounts
for the effect of atatus qudoy estimating alternative-specific constants fag bption

relative to norstatus qualternatives.

" There are both conceptual and empirical reasobslteve that including status quaption in the
uncertainty but not the certainty version shouldehao effect on estimated marginal utilities. First
conceptually, the multinomial logit rests on thewmption of independence of irrelevant alternat{Vigy.
This means that the estimated utility of an optioes not depend on the presence or absence of other
alternatives. If IlA holds (as it does in theseajatemoving thetatus quamption has no effect on
estimated marginal utilities of the other includadn-alternative specific) attributes. Second, eingily,
several studies have confirmed that includiatatus quband “none” options have virtually no effect on
the marginal utilities of attributes included irhet options (e.g., Carlsson et al., 2007). Finalig,

empirical results in this article suggest there mastatus quddias in the uncertainty version of the survey.
8 This approach is actually very similar to the maapers published recently combining revealed and
stated preferences. Such studies jointly estimatigimal utilities of product attributes across dafzes
(revealed and stated), while allowing the altensatipecific constants to vary by data type (notenyrof

the stated preference data sources inclustatas qumption, whereas the revealed preference data fjo no
This is exactly the approach taken here. Margitiifies of environmental attributes are jointlytiesated,
while the alternative-specific constants (one ofolihrelates to thstatus qudn the uncertainty version)
vary across data types (certainty and uncertaifityys, the approach used here is fully consistétht thve
recommendations of experts such as Louviere €2@00) for handling alternative-specific constants
(including “none” and Status quboptions) when pooling data.
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For a typical trip to Tenkiller Lake, which of the following
options do you prefer? (Please check only the box below your

preferred option.)

Option A

Option B

Option C: Status
Quo

50% chance of
algae bloom

10% chance of
algae bloom

50%6 chance of
algae bloom

50% chance of
water level 8 teet
below normal

50% chance of
normal water level

100% chance of
water level 2 teet
below normal

0% chance of
normal water level

10% chance of
water level 5 feet
below normal

90% chance of
normal water level

$2 user fee

$2 user fee

SO user fee

|

]

]

Figurelll-2. Choice card from survey with uncertainty.

Data were collected through in-person interviewsioa at Tenkiller Ferry Reservoir.

Four undergraduate student interviewers with pguerience in conducting outdoor

recreation surveys were recruited from Northeas&ate University in Tahlequah,

Oklahoma. Only recreationists 18 years of age @erolvere eligible to complete the

survey. The interviews were conducted at Army CaofdSngineers camp grounds

associated with the laRdnterviewers approached lake visitors and reqaetsiey

° This means that many of the respondents wouldylixe campers. Further, since only respondents who
were currently at the lake were eligible to beued, the sample may be subject to some avidis/ bia
However, data were collected over Memorial Day vegek a time in which those who visit less frequentl
are more likely to visit. More importantly, thistiate focuses on comparing elicited preferencesssctwo
treatments, certainty and uncertainty. Becaussdh#le characteristics (campers, Memorial Day
weekend, etc.) are held constant across treattientypothesis test of interest is unconfounded.
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complete a short survey. Upon acceptance, inteereexplained several key issues,
such as the detrimental effects of algal bloomstwan algal bloom is, and that the user
fee would be charged in addition to fees currecttigrged for camping and other
activities. After completing the four discrete ateiguestions, participants completed
several additional questions about the purposthér lake visit, knowledge of algal

blooms, and socio-demographic information.

Results

Data collection took place on May 27-29, 2006. ialtof 239 usable surveys were
obtained: 126 in the uncertain outcomes treatmaahtld3 in the certain outcome
treatment. Table IlI-1 provides descriptive statstor the sample. On average,
participants visited Tenkiller Lake about 22 tinieshe past year. Most of the
participants (59%) were male and had an averagefé@#® The characteristics of
respondents were very similar across the two treatsn thus, it is unlikely that
differences in factors such as income and prewtiservance of algal blooms could
explain observed differences in preferences adreatments. In the total sample, only
about 22% reported having actually observed arl Bigam on Tenkiller Lake,
while39% had never seen one, and the remainingd@8%ot know whether they had
ever seen one at the location. However, more asedswof the lake were more likely to
be aware of water quality problems (the Pearsorelation coefficient between having
seen an algal bloom and the number of trips a refgad took to Tenkiller last year was

0.32).
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Tablelll-1. Summary Statistics of Survey Samples

Variable  Definition Certainty Uncertainty  Full Sample
(n=113) (n=126) (n=239)
Visit Visitor days last year 21.00 22.67 21.95
(32.10% (33.80) (33.00)
Zipdist Distance from 74.84 60.35 66.16
respondent’s zip code to (76.45) (48.62) (61.71)
Tenkiller Lake
Age Respondent’s age in years 39.80 38.60 39.15
(13.30) (13.50) (13.40)
Gender 1 if respondent is male, Oif 0.60 0.57 0.59
female
HHsize Total number of persons 3.77 3.70 3.74
living in household (1.80) (1.80) (1.80)
Grpsize Total number of persons 3.94 3.45 3.68
traveling in thevehicle this (2.80) (1.80) (2.30)
trip
Seen 1 if respondent has ever 0.21 0.23 0.22
seen an algal bloom,
otherwise 0
Nseen 1 if respondent has never 0.42 0.37 0.39
seen an algal bloom,
otherwise 0
Cfish 1 if respondent fished on 0.58 0.57 0.58
current trip, otherwise 0
Atrout 1 if respondent is aware of 0.55 0.58 0.57
trout fishing area,
otherwise 0O
Ftrout 1 if respondent ever fishes 0.20 0.20 0.20
trout area, otherwise 0
Ctrout 1 if respondent fished tro 0.05 0.09 0.07
on current trip, otherwise 0
Ntrout Number of trout fishing 1.05 1.40 1.23
trips per year (3.10) (5.60) (4.60)
Law 1 if respondent aware of 0.65 0.67 0.66
litter lawsuit between AR
and OK, otherwise 0
Edu 1if less than H.S. 2.74 2.71 2.73
2 if H.S. diploma (0.84) (0.93) (0.89)
3 if some college
4 if BS/BA or higher
Inc Annual household income$53,325.40  $55,696.23  $54,561.47

in US dollars

($35,609.88) ($41,780.24) ($38,884.63)

& Numbers in parentheses are standard deviations.
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To empirically estimate the models in equations-(3)), the error terms- ¢, —were

assumed to be distributed iid type | extreme valdech produces the familiar

. : . - : R
multinomial logit (MNL) model, where the probabjliof choosing option] =€ /Ze :

=

Rather than treating the marginal utility of wdtarel as a single constant, as in
equations (1)—(3), a more flexible representatsoallowed by estimating dummy
variables for each water level relative to the tiliefow normal level, the utility of which
has been normalized to zero.

The first column of results in table IlI-2 reporesults of a MNL fit to the choice
data over certain outcomes. A likelihood ratio tesifirms the overall significance of the
regression at the 0.01 level. Results are consigiiéim expectations. People dislike algal
blooms, prefer higher water levels, and dislikeifeeases. All parameters are
statistically significant except the alternativessific constant for option A relative to
option B and the 8 ft below normal water level tiglato the 10 ft below normal level.
The next column of results in table IlI-2 pertainghe MNL fit to the choice data over
uncertain outcomes. As an initial investigatiorg, #stimation assumes people weight
probabilities linearly: that is, it is assumed peaghoose the alternative that generated
the highest expected utility as shown in equat®ro( in equation (3), withr(P) = P. A
likelihood ratio tests indicates the overall modedignificant at the 0.01 level. For this
model, the alternative-specific constants are egéchrelative to option C — tlstatus
guooption. That the alterative-specific constantsraxesignificantly different from zero
means that there is mtatus qudias in this application (i.e., differences irriatite

levels fully explain people's choices between ak#ves). The signs of the other
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Tablelll-2. Preferences for Algal Bloom and Water Level: Mutimal Logit
Estimates

Models
Parameter Parameter Choicesover Choicesover Joint® Choicesover
Definition Certain Uncertain Uncertain
Outcomes®  Outcomes® Outcomes’
oA Constant A — 0.151 ) 0.126
certain (0.107¥ (0.096)
an™® Constant A — ] -0.226 -0.044  0.012
uncertain (0.177) (0.139) (0.190)
ag™ Constant B — ) -0.114 0.076  0.115
uncertain (0.181) (0.140) (0.189)
B Disutility of algal -0.736™ -1.1077  -0.78%  -0.930"
bloom (0.164) (0.208) (0.174) (0.213)
Vnormal Utility of normal 1.560" 0.956 1.354°  0.800°
water level (0. 237) (0.477) (0.275) (0.288)
Y2low Utility of water 1.162° 0.614 0.930 0.677
level 2 ft low (0.249) (0.483) (0.225) (0.318)
Vslow Utility of water 0.799" 0.479 0.716  0.449
level 5 ft low (0.240) (0.519) (0.240) (0.380)
V8low Utility of water 0.277 -0.762 0.108 -1.054
level 8 ft low (0.229) (0.651) (0.185) (0.708)
A Cost/Fee -0.190° -0.085 -0.123  -0.075
(0.033) (0.028) (0.019) (0.028)
Scale Scale of error term - i 1.15G )
(0.262)
& Probability *e
han 6.725
weighting - - - (1.188)
parameter
’ weighiing. - - . oo
param eter (0' 183)
N’ 452 504 956 504
LLF -257.71 -497.19 -762.29 -493.33

#Model assumes linear probability weighting.

P Model assumes linear log odds probability weigdntin

¢ Numbers in parentheses are standard errors.

4 One asterisk or two asterisks represent statisiigaificance at the 0.05 or 0.01 level,
respectively.

¢ Significance is evaluated against a null hypothesparameter equivalent to 1.

"N is the number of choice experiments.
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variables are as expected, but utility derived ftbm?2, 5 and 8 ft below normal water
levels are not statistically different than thatided from the 10 ft below normal level.

At this point, one might be tempted to comparectbefficient estimates across
the first and second columns of results; howewvedjscrete choice models the estimated
parameters are confounded with the error varighceletermine whether the preference
parameters from the two models are significantfiedent from each other, one must
control for differences in variance across the tigatments (Swait and Louviere, 1993).
To test whether the change in treatment truly chasghift in preferences (and not just a
shift in variance) the two data sets were combfoe@stimation of a joint model, while
estimating a separate relative scale param@tarthis case, the scale parameter for the
choices over uncertain outcomes was set to onethanstale parameter for choices over
certain outcomes is estimated as an additionalgaeameter (Louviere et al., 2000).

Table IllI-2 shows the results of this estimationenthe column titled Joint
Model. The estimated scale parameter is 1.15. Becdne scale is inversely related to
the error variance, this implies a higher variancenoise” in the treatment where
choices were made over uncertain outcomes. Whalater “noise” is to be expected
when people choose over uncertain outcomes dire toigher level of difficulty
associated with answering such questions, unceyrtiaad no significant effect on the
scale parameter in this case. In fact, becausestiteated scale of the error is not
significantly different than one, it is possibledompare parameters directly across the
first two columns of results in table 111-2. Doisg makes it clear that people were more

averse to algal blooms, less sensitive to chamyesier level, and were less price-

19 Alternative specific constants were not pooleddse they are estimated relative to different base
categories. Thus the test for preference homogeaeibss treatments is a test for equality of pesfees
for algal bloom, lake level, and user-fee only.
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sensitive when choosing over uncertain outcomesipared to choosing over certain
outcomes.

The null hypothesis of equivalence of the prefeesracross the two data sets
(controlling for differences in variance) can bstéel by comparing the likelihood
function in the third column of results in tablé 2l with the sum of the likelihood
functions in the two prior columns of results (Laere et al., 2000). In particular, the
likelihood ratio test statistic is: —2(—762.29+2B7+497.19)=14.78, which is distributed
chi-square with six degrees of freedom. The 95%cafichi-square value with six
degrees of freedom is 12.59. Thus, hypothesis wélgareferences is rejected when
people answered stated preference questions avaincand uncertain outcomes.

Although the null hypothesis of preference homoggraeross the two treatments
can be rejected, it may be possible that the yfiit final outcomes (algal bloomand
water level) are identical, but that non-linearability weighting causes a distortion in
estimated parameters. To investigate this issuoplp@re assumed to evaluate uncertain

outcomes as in equation (3) utilizing the followingighting function:

d:w

@) P = Sy

where 7 is the decision weighP is the probability of an algal bloom or particuweater

level, andé and¢ are parameters relating to the shape of the piitigakeighting

function. This weighting function is the so-calleg odds weighting function and has
been used by Goldstein and Einhorn (1987), TveaskiyFox (1995), and others. The

function is flexible enough to allow under- or oweeighting of low or high probability
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events and collapses to linear probability weightins =1 and ¢ =1.** The last column

of results in table IlI-2 reports the results aktmodel. Of interest here is whether the
inclusion of the two parameters in the probabiMgighting function significantly

increases the maximum value of the likelihood fiorc{note: ¢ and o were effectively
restricted to unity in the second column of resuitiable 111-2). The likelihood ratio test
is —2[49333+ 49719 = 773~ y>. The 95% critical chi-square value with two degree

of freedom is 5.991. The null hypothesis that ezfdine parameters of the probability
weighting function is equal to one can thereforedjected at the 95% confidence level.
This implies that allowing for non-linear probatyliveighting significantly improves the
overall explanatory power of the mod@l.

The relative magnitudes of the two parameters atdithat respondents over-
weighted probabilities of likely events and undaphéed the probabilities of unlikely
events. Figure 1lI-3 shows a plot of the estimaiembability weighting function. The
graph shows that respondents essentially treategrabability up to about 0.35 as 0 and
treated all probabilities greater than about 0.Z,asith a high degree of non-linearity in
probability weighting between probabilities of @dd 0.7. The shape of this probability
function differs from what most researchers inggging choices between monetary
prospects have found. The typical finding is thegle overweight the probability of an
unlikely event and underweight the probability dikely event (Goldstein and Einhorn,

1987; Tversky and Fox, 1995; Gonzalez and Wu, 1998)vever, Humphrey and

" The probability weighting functions proposed bglec (1998) and Tversky and Kahneman (1992) were
also considered. In all cases, the results ardasimith regard to the shape of the function anddyness of

fit

2 The null hypothesis of equivalent preferencesssthe two survey treatments given nonlinear
probability weighting was also tested. This hypethavas rejected at the 0.05 level of significafides
likelihood ratio statistic for this test is 13.98stributed chi-square with six degrees of freedom.
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Figurelll-3. Estimated probability weighting function.

Verschoor (2004) used the common consequence &ffeetermine that behavior of

rural Ugandans, Indians and Ethiopians in expertaidotteries is best described by an

S-shaped probability weighting function, like theecestimated in this paper. They posit

that low education levels may have some impactrobability weighting. At this point it

is difficult to say with certainty why such a digent result was found in this analysis,

but one possible answer relates to the changenmaiio Previous studies involve choices

of monetary gambles, but this article investigdies respondents view the probabilities
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of stochastic events, such as algal blooms andiésdets, which depend in large part
upon weather events. Probabilities associatedwadither forecasting (or similar events)
are representations of epistemic uncertainty (basgarior experience or expertise),
whereas probabilities associated with a gamble, (@xperiments wherein the outcome is
decided by a role of the dice) are representattbinsetaphysical uncertainty (Allhoff,
2005). Indeed, the probability weighting functidrow/n in Fig. 3 is consistent with the
way many view weather events. For example, if tie¢éearologist suggests the chance of
rain is 20% tomorrow, most of us are likely to ledakie umbrella at home—treating 20%
as if it were 0%. Similarly, if the newscaster annces the chance for rain tomorrow is
75%, most of us will pack an umbrella—treating 7&%4f it were 100%.
Results in table 111-2 show clear differences ispenses to choices over certainty and
those over uncertainty with regard to fit and fumcal form; however, the bottom-line is
whether the inclusion of uncertainty has any eftdataluation estimates such as WTP.
Table 11I-3 presents WTP estimates for the modetssv in table 111-2. There is a drastic
difference in WTP to avoid an algal bloom betwdssmodels under certainty and
uncertainty. People were willing to pay three tirttes amount to eliminate an algal
bloom when answering questions over uncertain ouésoas compared to those over
certain outcomes. People were also willing to payeno avoid 10 ft below normal
water levels (except for the 8 ft below normal lgwvehen answering questions over
uncertain outcomes as compared to those over ceticomes.

Figure IlI-4 presents three WTP curves that repre®é€T P to reduce the
probability of an algal bloom from one to any let»etween one and zero. Note that the

vertical intercepts of these WTP curves corresgortie WTP for removal of algal
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Tablelll-3. Willingness-to-Pay Estimates

Choices over Choices over
Uncertain Outcomes Uncertain Outcomes

Willingness-to- Choices over (assuming linear (with probability
Pay for .. .2 Certain Outcomes probability weighting) weighting function)
removal of algal $3.87" $13.08 $12.37
bloom (0.95¥ (4.84) (5.32)
normal water leve x

$8.24 $11.30 $10.64
vs. 10 ft. below (1.78) (7.23) (5.55)
normal
water level 2 ft. )
below normal vs. $6.11 $7.26 $9.00
10 feet below (1.46) (6.90) (6.13)
normal
water level 5 ft. )
below normal vs. $4.20 $5.66 $5.97
10 feet below (1.38) (6.62) (5.54)
normal
water level 8 ft.
below normal vs. $1.46 -$9.01 -$14.05
10 feet below (1.24) (7.66) (9.89)

normal

& Units are in dollars per visit to Lake Tenkiller.

P One asterisk or two asterisks indicate statissigaiificance at the 0.05 or 0.01 level,
respectively.

¢ Numbers in parentheses are standard errors c@dulaing the delta method.

bloom estimates in table IlI-3, and that all thceeves converge at a WTP of zero where
the probability of an algal bloom is one becausgppeare not willing to pay any amount
unless the probability is reduced from the refeegmaint of one. The straight solid line
and the straight dashed line represent the WTResuterived from the models without

and with uncertainty, respectively. The inversen&ped WTP curve is derived from the

model under uncertainty with probability weightiragnd indicates that because
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recreationists view a 30% chance of a bloom aséalig equivalent to a 0% chance of a
bloom, they are willing to pay approximately theneeamount ($12.40 per visit) to
reduce the probability of a bloom from 1 to eitbe3 or 0. Similarly, because a 70%
chance of a bloom is viewed as equivalent to a 160&hce of a bloom, they are not

willing to pay anything for a reduction in the peddlity of a bloom from 1 to 0.7.

Conclusions

Recreationists at Tenkiller Lake seem to view raayithe probability of an algal bloom
as quite an urgent issue relative to regulatiowater levels. This urgency is indicated by
the relatively high WTP estimates for bloom avoiciagiven by the models

incorporating uncertainty, and also by the fact #proximately 66% of respondents are
aware of the lawsuit regarding chicken litter rufino the Lower lllinois River

watershed. The reason for the divergence in rigkigeity may be due to lower than
normal water levels over the past several yearmglwhich Oklahoma has suffered
drought conditions. Richardson et al. (1987) sugthes familiarity with an outcome

may desensitize individuals to the risk of its acence. Water levels have been as low as
low as 10 or 8 ft below normal for weeks at a tiseing late summer and fall at
Tenkiller Lake, but the level was at normal pooltbe day of the survey. Under

such circumstances, lake users are likely to redefihat constitutes an acceptable
outcome. On the other hand, algal blooms are velgtiess common, and are currently
surrounded by a good bit of legal controversy mrigion. This risk of algal blooms,

therefore, may be viewed by the general publie@as &cceptable.
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Figurelll-4. Willingness-to-pay to reduce the probability ofadgal bloom.

This article provides evidence to show that indasof risk in the modeling of consumer
preferences for environmental goods significantigds the results of stated choice
models. Generally, recreationists show greater \When the estimate includes
abatement of uncertainty of outcomes. Inclusioaraf state uncertainty in the estimation
process promotes a more realistic, albeit more t@mphoice for each respondent, and

may thereby better approximate choice behavioeah situations.

152



Furthermore, the use of a probability weightingdtion in the model estimation
may better inform the policy making process of stakders' WTP for environmental
results that are included in the range of feagblecy outcomes, such as average water
guality levels. Outcomes described by extreme @eevaater quality levels (very close to
1 or O probability of a bloom on any day) are ofiigieasible and ecologically
undesirable; thus, policy-relevant WTP estimatdklikely be those that apply to
attainable outcomes, or midrange probabilities.

One possible factor contributing to differencesnsstn WTP measures elicited
under certainty and uncertainty is that when thegghquestion is more complex,
consumers more critically evaluate the tradeoftsvben the attributes that vary among
the options. Furthermore, the perception of a dudiséic (or risky) outcome may make
respondents uncomfortable, such that at somergidavels of risk they are more willing
to pay for a marginal change toward a comfortadell of risk. In effect, they ultimately
express WTP for a reasonable hope that conditiolhbevdesirable on any particular day
they may choose to visit the lake. Lastly, perheen in the certain case respondents do
not actually believe the outcomes will occur widhtainty. That is, they may respond to
the choice questions by assigning subjective pridbas to the outcomes in the
experiment. To the extent this phenomenon exptamslivergence in WTP across
treatments, it would lend even more credibilitylie notion that practitioners should
explicitly incorporate uncertainty into contingesatiuation and conjoint questions so the
degree of uncertainty can be experimentally maatedl across choice questions, and
econometric techniques can be used to determinextieat to which people under- or

over-weight probabilities.
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