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CHAPTER I 

 

INTRODUCTION 

Background 

The acreage of corn in the Texas and Oklahoma Panhandles has been increasing 

during the past several years. The total acres of harvested corn, irrigated and non-

irrigated, in the Texas Panhandle increased from 527,000 acres in 2001 to 858,000 acres 

in 2010. The acreage of irrigated corn increased from approximately 519,000 acres in 

2001 to almost 840,000 acres in 2010 (shown in figure I-1). In the same time period, the 

agricultural land used for irrigated harvested corn in the Oklahoma Panhandle increased 

from 107,000 acres in 2001 to 118,500 acres in 2008 (figure I-2).  

 

Figure I-1. Acres of Harvested Corn in Texas Panhandle, 2001 – 2010 

  
Source: National Agricultural Statistics Service, 2011. 
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Figure I-2. Acres of Irrigated Harvest Corn in Oklahoma Panhandle, 2001- 2008 

        
Source: National Agricultural Statistics Service, 2011. 

 

Over the past several years, the number of confined animal feeding operations 

(cattle, and swine) in the Texas and Oklahoma Panhandle areas have also increased in 

both number of animals and in the size of firm. Since year 1991, the number of swine 

operations in the Oklahoma Panhandle have increased following the removal of 

restrictions on corporate farms in Oklahoma Senate Bill 518 (Regno et al., 2002). In the 

year 2010, the swine population in Oklahoma was 2,350,000 head (NASS, 2011). The 

crop and livestock operations have become major sources of regional growth bringing 

monetary benefits to residents. However, the confined livestock operations have created 

large quantities of animal waste in dry and liquid forms. The two states, Texas and 

Oklahoma, are among the top 20% of animal waste producing areas (Green Media 

Toolshed, 2011). The current swine population in Oklahoma, 2,350 thousand head 

(NASS, 2011), can produce up to 30 thousand tons of nitrogen per year. Table I-1 shows 

an approximate amount of nitrogen excretion per year in Oklahoma computed based on 

the proportion number of swine in each production stage (NRCS, 1998).  
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Table I-1. Nitrogen Excretion from Swine per Year by the Stage of Production 

Production 

Stage 

Weight 

(lb/head) 

Nitrogen 

Produces
a
 

(lb/head/year) 

Swine Number and Nitrogen Produced by Production  Stage 

Proportion of 

Head
b
 

Number 

(1,000 Head) 

Nitrogen 

(lb/year) 

Proportion of 

Head 
b
 

Number 

(1,000 Head) 

Nitrogen 

(lb/year) 

Nursery pig 35 7.3 10 235 1,715,500 15 353 2,573,250 

Growing pig 65 11 20 470 5,170,000 15 352 3,877,500 

Finishing pig 200 33 20 470 15,510,000 30 705 23,265,000 

Gestating sow 275 26 20 470 12,220,000 10 235 6,110,000 

Sow 375 37 20 470 17,390,000 20 470 17,390,000 

Boar 350 33 10 235 7,755,000 10 235 7,755,000 

Total 
  

100 2,350 
59,760,500 

(29,880.25)
c
  

2,350 
60,970,750 

(30,485.375)
c
 

Notes: 
a  

The excretion value of nitrogen based on the livestock waste facilities handbook, MidWest Plan Service, NRCS. 1998. 
b
  The proportion of swine in each production stage to the total number of swine population in Oklahoma for year 2010, 2,350 thousand head (NASS, 2011). 

  
c  

Total amount of nitrogen excreted in tons per year .   
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The benefit of animal manure is from the nutrients available for plant growth such 

as nitrogen, phosphorus, potassium, and organic matter. The percent availability of N 

varies from 30 to 80 percent depending on the source of the manure and application 

strategy. Plant available nutrients in swine effluent can range from 30 to 50 percent 

during the first year following application (Zhang, 2009). However, lack of management 

and improper over use of animal manure could harm an environment in areas such as soil, 

water, and air quality. Nitrogen in swine effluent is mostly in the ammonium form (

NNH 4 ) which can be volatilized during storage and application. Typically, the lagoon 

effluent in the Panhandles is applied to cropland through irrigation systems, thus subject 

to volatilization loss during and/or after the field application. 

Wu et al. (2003a) developed a mechanistic model to simulate water infiltration 

and ammonia volatilization (NH3) during and after the irrigation event. In the study, Wu 

et al. (2003a) used the mechanistic model to estimate the rate of ammonia volatilization 

and the cumulative amount of N loss from the swine effluent in the state of Oklahoma 

during an application based on hourly Mesonet weather data. The model uses hourly 

temperature, solar radiation, humidity, and wind speed values for up to 192 hours after 

the event to simulate the amount of N loss. Researchers found ammonia losses were 

higher during May and July than during March. The validation of the ammonia 

volatilization model is shown in Figure I-3. The sensitivity of cumulative ammonia loss 

to temperatures and wind speed also can be seen in Figures I- 4.  
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Figure I-3. The Validation of The Ammonia Volatilization Model at Goodwell, 

Oklahoma in May, July, September, and March of 1998 and 2000 

        

 Source: Wu, J., D.L. Nofziger, J.G. Warren, and J.A. Hattey. 2003a. ―Modeling Ammonia Volatilization 

from Surface Applied Swine Effluent.‖  Soil Sci. Soc. America J. 67(1): 1-11. 

 

Figure I-4. The Sensitivity of Cumulative Distribution of Hourly Ammonia 

Volatilization to Temperature and Wind Speed 

         
    Source: Wu, J., D.L. Nofziger, J.G. Warren, and J.A. Hattey. 2003a. ―Modeling Ammonia Volatilization 

from Surface Applied Swine Effluent.‖  Soil Sci. Soc. America J. 67(1): 1-11. 
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Problem 

Figure I-4 shows that the changes in temperature and wind speed affect the level 

of simulated cumulative N volatilization over a period of one week following application 

(168 hours). The application of lagoon effluent during times followed by high wind, high 

temperatures, and low humidity will have increased ammonia N volatilization. The 

climate factors, temperature, wind speed, solar radiation, and humidity are varied though 

the time of the day, and the most favorable times are expected to occur at night. At the 

beginning of the time window for application, a producer must determine whether to 

apply effluent under current conditions or wait until conditions are more favorable. If an 

application is postponed and more favorable weather conditions do not occur, the 

producer incurs a loss of corn grain yield or must apply a more expensive commercial 

fertilizer. The loss of nitrogen can be expensive. If producers compensate for the nitrogen 

loss by adding more effluent, it may contribute to excessive applications of phosphorus. 

Attempts to compensate for the nitrogen loss can also result in excessive runoff of 

nutrients to streams and lakes and ultimately to the Gulf of Mexico. Sawyer et al.(1943) 

reported that the nuisance algal bloom and aquatic weeds in the shallow downstream 

areas of the Madison lakes, Waubesa and Kegonsa lakes were generated from excessive 

nitrogen and phosphorus applications and subsequent runoff. As a result, the management 

practices of swine effluent application to cropland should be considered.  

 The problem of evaluating the amount of N volatilization from applying at any 

point in time is much more complicated than assumed in the simple example above. This 

is because the actual N loss depends not only on the current weather but also on the air 

temperature, wind speed, relative humidity, and solar radiation that occur for up to eight 
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days (192 hours) following the application. Simple simulation using historical weather 

data can help in determining whether there are significant differences in ammonia losses 

by the hour of the day or the time of the month that the application occurs. Unfortunately, 

they do not really help the producer determine if the current time is really the best time to 

apply or not. Initially, the favorable weather was expected to occur at night and/or early 

morning, but our preliminary estimates (shown in Table I-2) indicate that the range of 

values for temperature, wind speed, relative humidity, and solar radiation are highly 

variable throughout the day.  Table I-2 presents the mean average of hourly temperature, 

wind speed, relative humidity, and solar radiation obtained from Mesonet. The range of 

cumulative N volatilization after 1 hour, 24 hours, and 192 hours by hour of application 

using the data for April 1- May 15, 1994-2010 is also presented in Table I-3.  
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Table I-2. Mean and Range of Hourly Temperature, Wind Speed, Humidity, and Solar Radiation for April 1-May 15,  

1994-2010 

Hour of  Application  Air Temperature    Relative Humidity    Wind Speed    Solar Radiation 

the day Time (C) 

 

(%) 

 

(m/s) 

 

  (W/M^2)   

    Mean Min  Max    Mean Min  Max    Mean Min  Max    Mean Min  Max  

1 1:00 9.36 -7.8 23.9 

 

69.89 11 100 

 

5.71 0.1 20.6 

 

0.8 0 38.3 

2 2:00 8.77 -8.3 22.8 

 

71.99 11 100 

 

5.58 0.4 19.7 

 

0 0 0.3 

3 3:00 8.24 -8.3 22.2 

 

73.48 13 100 

 

5.48 0.7 18.0 

 

0 0 0 

4 4:00 7.74 -8.9 21.7 

 

74.86 10 100 

 

5.35 0.4 18.0 

 

0 0 0 

5 5:00 7.33 -9.4 20.6 

 

75.75 18 100 

 

5.26 0.1 18.1 

 

0.8 0 11.0 

6 6:00 7.37 -9.4 20.6 

 

75.91 13 100 

 

5.28 0.7 18.6 

 

39.7 0 170.0 

7 7:00 9.37 -7.8 22.8 

 

70.54 12 100 

 

5.81 0.4 17.5 

 

176.1 4 359.0 

8 8:00 12.04 -6.1 27.2 

 

61.36 10 100 

 

6.77 0.4 18.9 

 

354.0 4 604.5 

9 9:00 14.38 -6.1 29.4 

 

53.48 6 100 

 

7.18 0.9 20.6 

 

529.7 13 816.1 

10 10:00 16.32 -6.1 32.8 

 

47.27 6 100 

 

7.19 0.7 22.8 

 

675.6 15 986.9 

11 11:00 17.86 -5.6 35.0 

 

42.62 4 99 

 

7.19 0.8 21.5 

 

780.0 13 1196.9 

12 12:00 19.11 -4.4 35.6 

 

38.96 3 99 

 

7.20 0.4 22.5 

 

823.2 11 1265.7 

13 13:00 20.11 -3.3 36.7 

 

36.12 3 100 

 

7.25 0.9 21.0 

 

810.9 0 1275.0 

14 14:00 20.80 -3.3 38.9 

 

34.34 3 100 

 

7.40 1.3 19.7 

 

740.8 0 1198.0 

15 15:00 21.15 -3.3 38.3 

 

33.15 3 100 

 

7.50 0.9 18.9 

 

627.5 0 1007.0 

16 16:00 21.11 -2.8 37.8 

 

33.12 3 99 

 

7.53 0.8 19.3 

 

469.9 0 886.0 

17 17:00 20.55 -3.3 37.2 

 

34.34 3 99 

 

7.51 0.7 17.0 

 

300.3 0 713.0 

18 18:00 19.13 -3.9 35.0 

 

37.88 3 100 

 

6.80 1.0 18.8 

 

136.5 1 559.1 

19 19:00 16.19 -4.4 33.9 

 

46.03 5 100 

 

6.08 0.9 19.7 

 

26.8 0 494.8 

20 20:00 13.81 -6.1 28.9 

 

53.18 7 100 

 

5.87 0.4 19.2 

 

11.6 0 482.3 

21 21:00 12.58 -6.7 26.7 

 

57.77 8 100 

 

5.91 0.7 16.5 

 

9.4 0 396.6 

22 22:00 11.70 -6.7 26.7 

 

61.21 9 100 

 

5.88 0.5 17.0 

 

7.5 0 325.5 

23 23:00 10.84 -7.2 25.6 

 

64.54 10 100 

 

5.77 0.4 17.0 

 

5.4 0 248.1 

24 0:00 10.01 -7.2 25.0 

 

67.31 10 100 

 

5.78 0.4 18.3 

 

2.9 0 146.8 
Note: The average temperature, wind speed, relative humidity, and solar radiation obtained from Mesonet, Oklahoma at Goodwell station 
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Table I-3. Summary Statistics of Average N Volatilization follows Effluent Application for April 1-May 15, 1994-2010 by 

Wu's model 

Hours  Application 1 hour after application (lbs/acre)
a
   24 hour after application (lbs/acre)   192 hour after application (lbs/acre) 

 
Time Mean SD Min  Max  % 

b
 

 
Mean SD Min  Max  %

b
 

 
Mean SD Min  Max  %

b
 

1 1:00 1.0 1.1 0.03 12 0.7 

 

18.0 11.0 1.1 53 12.0 

 

58.3 12.2 21.3 85 38.9 

2 2:00 0.9 0.9 0.03 6 0.6 

 

18.1 11.1 1.1 53 12.1 

 

58.5 12.2 21.4 85 39.0 

3 3:00 0.8 0.7 0.03 5 0.5 

 

18.2 11.2 1.2 54 12.1 

 

58.8 12.3 21.5 87 39.2 

4 4:00 0.7 0.7 0.03 5 0.5 

 

18.4 11.4 1.2 55 12.3 

 

59.1 12.4 21.6 87 39.4 

5 5:00 0.7 0.7 0.02 6 0.5 

 

18.7 11.7 1.2 57 12.4 

 

59.6 12.5 21.6 88 39.7 

6 6:00 0.8 0.7 0.04 5 0.5 

 

19.0 12.0 1.2 58 12.7 

 

60.1 12.7 21.7 89 40.1 

7 7:00 1.1 1.1 0.07 8 0.8 

 

19.5 12.4 1.2 61 13.0 

 

60.7 12.9 21.8 91 40.5 

8 8:00 1.8 1.7 0.06 15 1.2 

 

20.1 12.8 1.1 64 13.4 

 

61.3 13.1 21.8 92 40.8 

9 9:00 2.5 2.4 0.07 19 1.7 

 

20.6 13.2 1.1 65 13.8 

 

61.7 13.3 21.9 94 41.1 

10 10:00 3.2 3.1 0.09 21 2.1 

 

21.1 13.6 1.1 65 14.1 

 

62.1 13.5 21.9 95 41.4 

11 11:00 3.8 3.8 0.08 22 2.5 

 

21.6 13.8 1.1 66 14.4 

 

62.3 13.6 22.0 96 41.5 

12 12:00 4.4 4.4 0.10 22 3.0 

 

22.0 13.9 1.0 70 14.6 

 

62.4 13.7 22.0 97 41.6 

13 13:00 5.0 5.0 0.06 27 3.3 

 

22.2 13.9 1.1 72 14.8 

 

62.4 13.8 22.1 97 41.6 

14 14:00 5.4 5.3 0.09 28 3.6 

 

22.4 13.7 1.1 71 14.9 

 

62.2 13.8 22.2 97 41.4 

15 15:00 5.6 5.4 0.10 28 3.7 

 

22.2 13.4 1.1 70 14.8 

 

61.7 13.7 21.5 96 41.1 

16 16:00 5.4 5.1 0.10 27 3.6 

 

21.7 12.9 1.1 67 14.5 

 

60.9 13.5 20.7 94 40.6 

17 17:00 4.7 4.4 0.13 24 3.2 

 

20.9 12.2 1.1 65 13.9 

 

59.9 13.2 20.0 92 39.9 

18 18:00 3.3 3.1 0.10 20 2.2 

 

19.7 11.4 1.1 58 13.2 

 

58.6 12.9 19.4 90 39.1 

19 19:00 2.2 2.2 0.09 18 1.5 

 

18.8 10.9 1.1 53 12.5 

 

57.7 12.6 19.1 88 38.4 

20 20:00 1.8 2.1 0.07 19 1.2 

 

18.5 10.8 1.1 52 12.3 

 

57.4 12.5 19.0 87 38.2 

21 21:00 1.6 2.0 0.05 19 1.1 

 

18.4 10.8 1.1 53 12.2 

 

57.3 12.5 19.0 87 38.2 

22 22:00 1.5 1.9 0.04 19 1.0 

 

18.3 10.9 1.1 53 12.2 

 

57.2 12.5 19.0 87 38.2 

23 23:00 1.4 1.8 0.03 19 0.9 

 

18.2 10.9 1.1 53 12.2 

 

57.3 12.5 19.0 87 38.2 

24 0:00 1.2 1.5 0.04 17 0.8   18.1 11.0 1.1 53 12.0   58.2 12.1 21.3 85 38.8 
a
 The average cumulative N volatilization at hour following the time of application, which were estimated  by using the mechanical model (Wu et al, 2003). 

b
 mean percent lost of cumulative N volatilization from 150 pound of nitrogen. 

.
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Figure I-5. The Average Cumulative N Volatilization after 192 Hours Following 

an Application (lbs/acre) by Hour of Application for April 1-May 15, 1994-2010  
 

 

A visual view of this statistical data (figure I-5) indicates the mean nitrogen losses 

by the 192’nd hour are nearly the same regardless of the hour of application. The mean 

losses average 38 to 42 percent of the nitrogen applied. It was initially hypothesized that 

the swine effluent model would identify the favorable application time based upon the 

historical weather data. On the other hand, our results show the minimum loss values 

after 192 hours are less than 37 percent of the mean losses. With a five year average price 

per pound of urea nitrogen fertilizers for periods 2006-2010 (National Agricultural 

Statistics Service, 2011), the difference between the minimum and the mean loss is about 

$19.50 per acre while the difference between the minimum and the maximum N loss is 

almost $34.80 per acre. Figure I-5 above implies there is considerable variation around 

the mean, and the range of hourly weather conditions (Table I-2) also confirms there is 

considerable variability in the weather from one day to the next. The preliminary analysis 

points out that the historical data alone is insufficient for the purpose of achieving the 
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problem described above. However, Figure I-5 indicates that the producers might be able 

to use forecast information to identify a favorable five to eight day window to determine 

the time for effluent application.  

 An application of Bayesian methods can be used to include forecast information 

into the decision-making process to improve an accuracy of the outcome under 

uncertainty. Buchanan (1982) explains how forecasts are incorporated into the investor’s 

decision under the Bayesian methods. The author discussed that the likelihood of the 

forecast inflation rate can help to increase the money outcome. Under this method, the 

expected value of the outcome is estimated by considering the prior and the posterior 

probabilities of the inflation rate, which occur in each state of nature. Currently, Mesonet 

provides hourly weather forecasts of temperature, wind speed, humidity, and solar 

radiation for the current day and for 3.5 days ahead. While the producer can observe the 

current weather, a substantial portion of the ammonia loss also depends on the weather 

which occurs up to eight days following the application. A research question is, ―What is 

the value of using forecast information to reduce the uncertainty associated with weather 

in the eight days (192 hours) following an effluent application in the Panhandle?‖  The 

Mesonet weather forecast data could be used to provide the producer with an estimate of 

the amount of ammonia N that will volatilize during and following the application over a 

3.5 day period. The decision of the producer is then to apply the effluent given the 

expected loss from the current forecast or wait until a later date with a more favorable 

forecast.  

 A hypothesis in our study is that the probability of obtaining a more perfect time 

for swine effluent application in the following period can be derived from historical 
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weather data and forecast weather data. Under an uncertain condition, the BSDP method 

incorporates weather forecasts into producers’ decisions in the context of a probabilistic 

framework, which can increase the accuracy of the expected ammonia loss. The optimal 

application giving the nitrogen of 150 pound per acre for the 45 days application horizon 

can be determined by stochastic dynamic programming optimization (SDP).Thus, the 

Bayesian formulation was applied to the SDP model to determine the best 48 potential 

hours for a 128 acre effluent application. 

 

Study’s Objectives, Hypotheses, and Justification 

Objectives 

1. To determine the most efficient time to apply swine effluent through a central 

pivot irrigation system for covering an entire corn field (128 acres) during the 

post-planting season from April 1 to May 15. 

2. To determine the economic value of including weather forecasts into the 

producer’s decision for two application methods. 

- Six-hour day and/or night time application method; and 

- Twelve-hour-daytime-only application method.  

3. To illustrate the economic benefit of the optimal application between the two 

alternative methods:  

- Six-hour day and/or nighttime application method; and 

- Twelve-hour daytime-only application method. 
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Justification of the Study 

 In the study, Bayesian Stochastic Dynamic Programming (BSDP) will be used to 

determine the optimal time of swine effluent application for corn producers. The 

producers face with the decision of whether to apply the effluent at the current time or 

wait for more favorable time during the post-planting season. To aid in the application 

with the restriction of effluent nitrogen required for plant growth, the producers may use 

weather forecasts that are available on the Mesonet site as basic information for decision 

making. This forecast information can be applied through the Bayesian method. Although 

this method is a complex process, there is an economic benefit to the producer. The 

forecast value can evaluate in terms of nitrogen cost which the producers need to 

purchase for compensating the loss of nitrogen from the effluent application. 

The Oklahoma Mesonet currently posts 3.5 day (84 hours) forecasts of hourly 

temperature, wind speed, humidity, and solar radiation. The Mesonet has also developed 

a special program (called Fire Prescription Planner) that incorporates the forecast data 

with the fire control. This program provides a model for a weather-based decision, which 

aids farmers and/or ranchers in the area of specific ranges of values for fire danger and 

smoke dispersion variables (Mesonet, 2011). Thus, a process of using weather forecast 

data to estimate ammonia loss from a current effluent application can also be added to the 

Oklahoma Mesonet site. The Mesonet program could supply three useful pieces of 

information to the producer. The first would use forecast weather to estimate ammonia 

loss occurring over the next 192 hours after a current application. The second would be 

an estimate of ammonia loss from an application made 192 hours previously using actual 

weather data since the time of application. Thirdly, the program would show the forecast 
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of ammonia loss made 192 hours previously. The second and third items provide a 

measure of forecast accuracy in estimating ammonia loss. 

 

Assumptions of the Study and Data Sources 

Study Assumptions 

 In each production year, corn producers in Panhandle areas were assumed to apply the 

swine effluent to a 128 acre corn field during the post-planting period, April 1- May 15. 

A ¼ mile central pivot sprinkler irrigation system is commonly used by producers to 

apply the effluent. For corn yields of 200 bushels per acre, the 240 pounds of nitrogen is 

required per acre. Out of this amount, the producer applies 150 pounds of N from the 

swine effluent application. The producer will add the remaining 90 pounds plus an 

additional N to replace the nitrogen loss from effluent application by using commercial 

nitrogen fertilizer (J.G. Warren, December 2011). The effluent is combined with fresh 

water and applied through a center pivot sprinkler irrigation system. There is 

approximately one acre inch of water applied during effluent application. It is assumed 

that 48 hours are required to complete the irrigation of effluent to cover a 128 acre corn 

field with the rate of 150 pounds of nitrogen. Since the producer uses the nitrogen from 

these two sources, swine effluent and commercial fertilizer, the costs on water and diesel 

would remain the same and do not affect the producer revenue.  

Without considering weather forecasts, the producer is assumed to apply the 

effluent as soon as possible after planting (first 48 hours) to avoid the expected high 

temperatures in the later periods. The level of ammonia volatilization that occurred from 



 

15 

 

the lagoon effluent application was expected to vary by times of the day and periods of 

application. Hence, the objective of the producer is to find the most efficient time for 

effluent application with gives the minimum amount of ammonia volatilization. In the 

study, we assume that there were two application methods for operating center pivot 

sprinkler systems; one is the six-hour day and/or night application method. With this 

method, the producer continuously operated the irrigation system for six hours at each 

time of application. The alternative method is to continuously operate the irrigation 

system for 12 hours during only the daytime. It is assumed these two application 

strategies do not affect the crop yield growth. The labor cost for turning on and off the 

irrigation system was not considered in this study. It is also assumed that the field was 

irrigated prior to planting. 

It was assumed that the producer could observe weather forecasts on temperature, 

wind speed, humidity, and solar radiation for the current hour and for 192 hours ahead 

from the Mesonet sites. Under the six-hour day and/or night time application method, the 

producer was assumed to make his/her decision every six hours based on observed 

weather forecasts. For the twelve-hour daytime-only application, the producer made the 

decision at every morning of the day (i.e., at 6:01 am). Further, the cost of nitrogen 

fertilizer which the producer purchased for compensating the amount of nitrogen lost 

from effluent application was used to determine the value of forecasts. In the study, the 

nitrogen cost was assumed to be equal to five-year average price of nitrogen fertilizer in 

the urea form ($/lbs). Also, there was no transportation cost added to the effluent cost 

because we assume that the effluent was only used on farm. 
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Data Sources 

The hourly weather data for air temperature, wind speeds, relative humidity, and 

solar radiation observed at the Goodwell, Mesonet station, in Texas county, Oklahoma, 

were collected for the years 1994 through 2010. The hourly weather data were gathered 

for April 1- May 23 for each year. These seventeen years of daily-hourly weather data 

were used in estimating the cumulative N volatilization (192 hours or 8 days after the 

event) for each hour time step of the application using the mechanical model developed 

by Wu et al. (2003a). This generated more than 18,000 estimates of simulated nitrogen 

losses. The simulated N losses were used to compute the probability distributions of 

actual ammonia loss (the prior probability). The archive of the forecast weather on 

temperature, wind speeds, and relative humidity were available at the meteorological 

consulting company, Weatherbank, Inc., in Edmond, Oklahoma (Eric Freier, 30 May 

2011). This forecast weather was for Guymon (National Weather Service), Texas county 

and available only from years 2005-2010. The six years of forecast data were used to 

estimate the nitrogen losses using Wu’s model (2003a).  

 With the loss of nitrogen from effluent application, the producer will need to 

purchase the commercial fertilizer to compensate this loss. In the study, the prices of 

nitrogen fertilizer in the form of urea (44-46% N) were used as the compensated cost. 

The five-year average price of nitrogen fertilizer from 2006-2010 (shown in Table I-4) is 

$0.50 per pound. (National Agricultural Statistics Service, 2011).  
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Table I-4. The prices of urea with 44-46% nitrogen for 2006-2010 
 

Year Price per ton ($) Price per pound ($) 

2006 362 0.39 

2007 453 0.49 

2008 552 0.60 

2009 486 0.53 

2010 448 0.49 

Average Price 460.20 0.50 
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II.  

 

 

 
 

 

CHAPTER II 

 

LITERATURE REVIEW 

Swine Effluent Application  

 Metcalfe et al. (2001) conducted a survey of the swine producers in Oklahoma to 

investigate the land application and the handling practices of swine waste. Researchers 

reported that the two irrigation methods, irrigation guns and pivot irrigation systems, 

were the common application methods in the area. The irrigation guns and the pivot 

irrigation were used for 52% and 39% of the manure application to the cropland, 

respectively. They found 28% of the lagoon effluent was applied to the cropland during 

the spring season, 53% applied during summer, 19% applied during fall, and 2% applied 

during the winter.  

 

Ammonia Volatilization Issues 

Much of the nitrogen in anaerobically digested swine effluent is generally in the 

ammonium form )( 4

NH , which can convert to ammonia gas, NH3, and volatilize to the 

air during or after field application (Liu et al., 1997). Several researchers have studied the 

volatilization of nitrogen from liquid manure during and after application. Warren (2001) 

reported that 23 to 48 percent of NH3 from liquid manure was lost to the air within a few 

days after field application of fallow cropland in the Oklahoma Panhandle area. The 



 

19 

 

height of the wheat and/or corn canopy has a significant effect in reducing the NH3 

volatilization. Safley et al. (1992) found the ammonia volatilization from swine effluent 

application during sprinkler irrigation varied from 13.9 - 37.3 percent. 

Further, previous researchers have identified the factors that affect the level of 

ammonia N volatilization. Apsimon et al. (1987) reported that the amount of NH3 flux 

from ground to the atmosphere following liquid manure application was high during 

conditions of low humidity, high winds, and high temperatures. The level of NH3 flux 

was high during the first day of application and its volatilization speed rapidly declined 

over the following day. Yang et al. (2003) reported that the level of NH3 flux after cattle 

slurry was sprayed on the surface was 110 µg N m
-2

s
-1 

during the first day of application. 

This NH3 volatilization dropped to 6.1 µg N m
-2

s
-1 

on the fifth day following the 

application. 

 

Ammonia Volatilization Models 

Ham (2010) has developed a mechanistic model to measure ammonia emission 

from cattle pens in the Texas Panhandle and in the northeast Colorado area (Greeley 

County). The model used hourly weather data (temperature and wind speed), soil 

chemistry and roughness as the input variables to estimate the amount of NH3 flux using 

a convective transport equation. The researcher found the emission amount of NH3 flux is 

highly correlated with temperature at the pen surface, and the amount of midday flux was 

increased by 30 percent when the soil pH increased from 7.6 to 7.8. The results also show 

that the level of NH3 flux in the lower wind speeds and temperatures in the area of 

northeast Colorado was on average 27% lower than fluxes measured in the Texas 

Panhandle.  



 

20 

 

Wu et al. (2003a) developed a mechanistic model to use in simulating the water 

infiltration and ammonia volatilization (NH3) during the irrigation event. The model was 

designed to simulate the evaporation and ammonia volatilization from the soil surface, 

and also the ammonia transport and transformation of ammonia N in the soil profile 

during and after an application. This simulation model used hourly climate measure of 

temperature, wind speed, humidity, and solar radiation to estimate the loss of ammonia N 

over a period of 192 hours after application. The model estimated the ammonia N 

concentration profile based on the ammonia transport and transformation. The model 

included sub-models that simulated water flow, heat flow, and the transport and 

transformation of ammonia N in the soil profile. The water and heat flow models 

provided information on soil moisture and temperature, which were needed for the 

calculation of parameters in the transport and transformation models. The rate of 

ammonia volatilization from the soil surface was determined by the concentration of 

ammonia N in the soil surface. Because of the complexities of the processes involved, the 

transport and transformation model was derived based on the following six assumptions; 

1. the soil pH was not affected by the current application of liquid manure (swine 

effluent); 

2. the transformation reactions among the ammonia N species reached 

equilibrium instantaneously;  

3. the mineralization of organic N, and the immobilization and nitrification 

processes were insignificant N pathways compared to the volatilization loss for 

the short time of interest;  

4. the adsorption-desorption reactions followed linear equilibrium isotherms;  
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5. the convective movement of soil air was insignificant; therefore, the transport 

of gaseous ammonia in soil was controlled by diffusion; and  

6. the transport of aqueous ammonia N was controlled by the convection-

dispersion process.  

Wu et al. (2003b) also developed the sub-model to calculate the ammonia 

volatilization and water evaporation from the sprinkler droplet. The model was derived 

from the mass and energy balance in a droplet based on observed changes in the 

ammonia concentration during the flight of the droplets from the sprinkler to the soil 

surface. In the study, researchers found that the model gave an acceptable estimation of 

the ammonia volatilization when compared to the field experiment data. The validation of 

the model was previously mentioned in Figure 4. Consequently, the mechanistic model 

(Wu et al., 2003a) is used in our study to estimate the rate of ammonia volatilization and 

by the cumulative amount of N volatilization loss from the swine effluent application 

based on historical and forecast hourly weather data. 

 

Application of Dynamic Programming (DP) in Agricultural Decision  

 Burt and Allison (1963) have explained the formulation of dynamic programming 

(DP) in farm management decisions. They examined the optimal decision of farmers in 

the Great Plains area, and the state of Kansas using the DP to justify the optimal choice 

between planting continuous wheat, or leaving the land fallow. The study assumed that 

the soil moisture would be accumulated when farmers left the field fallow and planted 

wheat in another year. The acre-inches of soil moisture at the root zone for each planting 

time were identified as a state variable which was divided into five levels. The results 
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suggested that the farmers should leave the land fallow to accumulate the moisture for 

another year when the soil moisture is less than 2 inches. The results also showed the 

long-run expected return per year under optimal policy ($25.60) was higher than the 

continuous wheat ($22.56), and alternating fallow and wheat ($19.45). Epperson et al. 

(1993) have examined the optimal irrigation thresholds for six maize irrigation strategies 

in the state of Georgia using dynamic programming (DP). Six possible thresholds were 

given for each of five maize growth vegetative stages. Researchers reported that the use 

of DP improved farm average net returns of all irrigation strategies at each growth stage. 

Further, the irrigation water consumption was reduced when DP was employed as 

compared to fixed irrigation thresholds; especially for strategy 1 (varied depth trigger), 

strategy 3 (deep depth trigger), and strategy 4 (water- holding capacity). The mean water 

application for strategies 1, 3, and 4 were only 8.38, 6.02, and 8.92 cm while the water 

applications for the fixed irrigation required up to 24.03, 23.91, and 25.35 cm, 

respectively.  

 Previous researchers have utilized a stochastic dynamic programming (SDP) to 

determine the optimal timing of irrigation under risky conditions. Zavaleta et al. (1980) 

determined the optimum irrigation strategies and the effect of fuel curtailment under 

dynamic and stochastic environment using the stochastic open-loop feedback control. 

The authors reported that the use of irrigation water applied on the grain sorghum field 

under the stochastic case (random climatic values and uncertain energy curtailments) had 

a higher mean value than the perfect knowledge case, i.e., the producer knew the weather 

pattern of rainfall, solar radiation, and temperature. The water used in irrigation under the 

stochastic case was increased by 20-30% during periods 3 through 8. Such studies lead to 
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the question of whether incorporation of forecast data could lead to more efficient 

resource use. 

The Incorporation of Weather Forecast through the Bayesian method  

Previous researchers have applied the Bayesian method to improve the decision 

making. This method can help to reduce the uncertainty of the outcome by including 

available forecast information into the decision. Cai et al. (2009) have investigated the 

accuracy of weather forecasts for estimating the reference evapotranspiration (ET0). In 

their study, the weather forecast of daily temperatures, wind grade, and solar radiation 

were used to estimate the parameters of the reference evapotranspiration (ET0) equation 

for wheat in China. The authors concluded that the reference evapotranspiration (ET0) 

prediction from weather forecast data could be used for making real time irrigation 

schedules. Moreover, the simulation of the soil water balance for wheat production using 

the ET0 from weather forecast messages was sufficiently accurate when compared to the 

observed values. Also, Baquet et al. (1976) have evaluated the economic value of frost 

forecast information to orchard producers in Jackson County, Oregon. The authors 

incorporated the Bayesian method (i.e., using prior, and forecast information) into the 

producer’s decision to determine an appropriate frost protection strategy. Researchers 

found that the average daily value of a frost forecast was $5.39 per acre when the orchard 

producer used prior probabilities of the nighttime temperature provided by the U.S. 

Weather Service. In a Bayesian format, the forecast value was increased to $8.57 per day 

per acre. The value of $3.18 per day per acre ($8.57 -$5.39) was contributed from 

including the prior probabilities and frost forecast information in the decision making of 

orchardists.  
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Application of Bayesian Stochastic Dynamic Programming to the Decision Making 

The Bayesian stochastic dynamic programming (BSDP) was used to investigate 

the performance of the Skagit Hydropower System, SHS, (Kim et al., 1997). In the study 

the seasonal flow forecasts were incorporated into decision making to find the optimal 

release policies to supply the energy to the residents in the Seattle area. The researchers 

compared the average annual gains generated from energy production using the BSDP 

model with other alternative stochastic dynamic programming models. The three 

alternative models include: 1) Deterministic dynamic programming (DDP); 2) Stochastic 

dynamic programming with no hydrologic state variable (SDP-N) and; 3) Stochastic 

dynamic programming that incorporated only the current month’s inflow as a hydrologic 

state variable (SDP-Q).  Researchers reported that the optimal release policies that 

included the seasonal flow forecasts for the snowmelt season as the hydrologic state 

variable (BSDP) resulted in a higher average annual gain than other SDP models for all 

given sets of factors. These factors included a reservoir capacity, a portion of SHS energy 

demand, and the energy price ratios.  

Mjelde et al. (1988) have also determined the value of seasonal climate forecasts 

in a dynamic agricultural production system (corn production) in East-Central Illinois. 

Researchers found that the effects of forecasts on decision making were sensitive to 

forecast characteristics and economic conditions—i.e., interest rate, input cost, and output 

price. The results showed an expected net return received from using information on the 

climate forecasts was higher than the return based on only historical prior knowledge. 

With known climate forecasts, producers can reduce their input use and lower the cost of 

production over the crop year. Further, the timeline information affected the value of 
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forecasts; the expected value of the late spring forecast with a corn price of $2.83 per 

bushel was $3.39 per acre per year when forecasts was received in the fall. On the other 

hand, the expected value was only $3.01 per acre per year for forecasts received in early 

spring. This indicates that a less accurate forecast received earlier may have greater value 

than the more accurate forecast received just prior to the time of decision. 

Wilks et al. (1997) have utilized Bayesian Stochastic Dynamic Programming 

(BSDP) to determine the optimal daily irrigation for lettuce in a humid climate, New 

York State, using precipitation forecasts. Researchers reported that the daily irrigation 

was unnecessary during the growing period, 62 days (1 May through 15 July) when the 

probability of next day rainfall was high. However, the daily irrigation was required with 

the probability of the next day rainfall, regardless of today’s forecast, was zero. Also, the 

economic value to the producer from using a two day precipitation forecast (day-1 and 

day-2) was higher than using only the 50 percent available-water criterion. These 

economic values (using day -1 and day -2 forecasts) were $900 per hectare for a large 

farm operation, and $1,000 per hectare for a family farm operation.  

Gowing et al. (2001) have applied the BSDP to determine real-time scheduling of 

supplemental irrigation for potatoes over the wet, average, and dry years using rainfall 

weather forecasts. They reported that the irrigation decision made without considering 

weather forecasts (SDP) resulted in a higher irrigation cost than when using weather 

forecasts (BSDP). In the wet year (1992), the water use was reduced by 44.8 and 72.4 

percent at a highest and lowest irrigation cost when the producer included weather 

forecasts into the decision process. The profit from irrigation using weather forecast data 

(BSDP) was also higher than the profit obtained from irrigation without weather forecast 
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(SDP) in the average year. Overall, the previous research indicates that there might be the 

potential use of forecast information in decision making to improve the benefit of the 

producer in many agricultural fields. 
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III.  

 

 

 
 

 

CHAPTER III 

 

METHODOLOGY 

Conceptual Framework  

The climatic conditions, i.e., temperature, wind speed, relative humidity, and solar 

radiation at the time of application and for 192 hours (8 days) following the application 

are factors that affect the amount of ammonia volatilization. Therefore, the operating time 

of the irrigation system is important for producers to meet crop nutrient requirement and 

improves their benefits.  

The operation of center pivot sprinkler irrigation for spreading the lagoon effluent 

in the Panhandle area can be explained as follows. Hourly weather data for both forecast 

and actual weather data were used to simulate ammonia loss over the 45 day period from 

April 1 to May 15. Conceptually, it would be possible to start and stop the application on 

an hourly basis. However, it was assumed the producer would be unlikely to start and 

stop the pivot operation for less than a six-hour period. Another problem was related to 

the limited number of weather forecasts for infrequent low or high ammonia loss events. 

This caused a problem in constructing the Markov transition matrices. The method used 

to approach both problems was to pool data by time period over several days. Regression 

analysis was used to test whether the length of aggregation period was such that the mean 
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ammonia loss from one period was significantly different from the mean of the next 

period.  

Representative Application Situation 

 The typical field application of lagoon effluent to corn in the Panhandle area 

occurs from April to the middle of June, approximately around 15 days after planting (J. 

Wu, 12 May 2011). In this region, the producers commonly use sprinkle and/or furrow 

irrigation systems to apply the swine effluent. The effluent is combined with fresh water 

and applied through a center pivot sprinkler irrigation system. The center pivot system is 

assumed to have a pumping capacity of 2,460 liters per minute (650 gallons/min.) and a 

radius of 500 meters in length. The irrigation system is operated as a circle (J.G. Warren, 

December 2010). For 200 bushels of corn yield growth per acre, the producer needs to 

apply 240 pounds of nitrogen. These amounts are obtained from two nitrogen sources, 

swine effluent and commercial fertilizer (J.G. Warren, December 2011). The producer 

applies 150 pounds nitrogen through the lagoon effluent application, and adds the 90 

pounds of commercial N fertilizer. 

The level of ammonia N volatilization from the effluent application can be 

affected by the temperatures, relative humidity, and wind speed (Zupancic, 1999). Thus, 

the amount of N volatilized in each segment of a quarter section corn field is affected by 

the weather conditions occurring during and after each application time. For instance, the 

volatilization loss of N in the first segment of the field depends on the weather conditions 

occurring in the 192 hour period beginning at the time of application and continuing for 

the next 192 hours. The volatilization of ammonia N from the second segment will 
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depend on the weather conditions beginning at that hour of application. Figure III-1 

illustrates field coverage divided into one-hour segments. 

 

Figure III-1. Schematic for Pivot Irrigation System 

 

        

 

 

The application horizon for swine effluent, April 1-May 15, was divided into 

periods following the two application strategies that are: 

1. 180 periods for the six-hour day and/or night application method; and 

2. 45 periods for the twelve- hour daytime-only application method.  

For the method 1 above, the producer must find 48 hours (not necessarily continuous), 

eight application times (6 hours/application) of favorable weather in order to apply the 

effluent to a 128 acre pivot irrigated field. With method 2, the producer needs to make 

four applications (12 hours/application) out of the 45 hour periods. The above problem 

Area covered by the first hour of application (approximately 2.66 acres) 

Area covered by the second  

hour of application (2.66 acres) 

Quarter Section of a Corn Field  

(160 acres, 128 acres irrigated) 
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requires that the producer be able to recognize whether the current time is optimal for an 

application or whether it is better to wait for another time. The solution for the most 

efficient time can be found by applying the stochastic dynamic programming (SDP) to 

the problem.  

 

Ordinary Stochastic Dynamic Programming Problem (SDP) 

A simple example can be used to illustrate the application of SDP to the solution 

of the current problem. Suppose the producer had two periods in which to apply the 

effluent and exact weather conditions are unknown until the beginning of each period. 

However, assume the range of weather conditions is known and definite with known 

probabilities on each day. The exact amount of ammonia loss from an application at each 

weather condition is assumed to be known. The probability of each type of weather 

occurrence and the amount of ammonia volatilization associated with each weather 

condition can be used in decision making. The producer’s objective function with the 

minimum of the total expected N volatilization can be defined as 

dp

s

s

ss

dp LLLMinimize ,1

_
5

1,1 )*)(Pr()1(    

where, 
s

pL  is the ammonia N volatilization that occurs from the weather condition s (S=1, 

2, …, 5) in period p (p=1), p

sL )Pr( is the probability of each type of weather occurrence, 

and d  is the choice variable which takes a value of one when the producer decides to 

apply, and d = 2 when the producer decides to wait for next period (p=2). 

If the weather conditions, the amount of ammonia lost, and the probabilities of 

each day weather condition for each period are given in Table III-1, the problem can be 
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solved by using SDP optimization. When the season begins, the expected losses for 

effluent applied in periods 1 and 2 are 24.2, and 33.44 lbs/acre, respectively. SDP can be 

used to reflect the producer’s actions upon finding out the actual weather condition in 

period 1. The SDP problem can be solved for the optimal application decision by starting 

from the last period and moving backward to the first period. Begin with period 2. If the 

producer arrives in period 2 and has not applied the effluent, the producer must apply the 

effluent regardless of the weather. Before actually knowing the weather in period 2 the 

producer can determine the expected ammonia loss as 33.44 lbs/acre calculated by 

multiplying the probability of each weather condition by the amount of loss if that 

weather condition occurs. This expected loss can then be used to help in decision making 

for period 1. Assume the producer is at the beginning of period 1 and simply observes the 

weather that exists at that time. Given the weather that is occurring in period 1, the 

producer will compare the loss from the actual weather in period 1 with the expected loss 

from waiting until the second period. If the loss from the first period is greater than the 

expected loss from waiting, the producer waits. For example, if the weather in period 1 is 

very bad and the producer applies, the producer will lose 80 lbs/acre. This amount of N 

lost is higher than expected by applying in the next period (33.44 lbs/acre), so the 

producer should wait. The optimal decision for each additional state of weather in period 

1 is determined the same way. The optimal decisions are to apply in period 1 if the 

weather is average or above and wait until period 2 if the weather is below average or 

bad. 

 

 



 

32 

 

Table III-1. Example for Two Period Problem of Ammonia N Volatilization for 

Ordinary Stochastic Dynamic Programming Model 
 

Day Type of 

Weather 

Condition 

 

Probability N lost 

for Each 

Weather 

Condition 

 

Expected 

loss 

occurring in 

period 1 

Expected loss 

occurring 

in period 2 
Period 1 

(Pr1) 

Period 2 

(Pr2) 

Very Good  0.10 0.07 2 
(0.10*2) 

= 0.20 

(0.07*2) 

= 0.14 

Above Average  0.20 0.23 10 2.00 2.30 

Average  0.30 0.25 20 6.00 5.00 

Below Average  0.20 0.25 40 8.00 10.00 

Very Bad  0.10 0.20 80 8.00 16.00 

Total Expected 

Loss (lbs/acre) 

   24.20 33.44 

 

 

Incorporation of Weather Forecast 

Unfortunately, the producer cannot estimate the ammonia loss from an application 

until 192 hours later unless the forecast information is used. The major benefit from 

incorporating weather forecasts in the decision making is to decrease the variance of the 

ammonia lost from unknown weather. This can reduce the total expected amount of 

ammonia volatilization over the planting season. Bayesian methods were applied to the 

study to increase the accuracy of the expected amount of ammonia volatilization. This 

method uses the estimated N losses from using weather forecasts in the Wu model along 

with the losses from historical weather data (actual weather) to estimate probability 

distributions of ammonia losses. The distributions include the joint probability of forecast 

ammonia loss and the actual loss, the probability of forecast occurrence, and the posterior 

probability. All of these probabilities were used to estimate the expected ammonia 
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volatilization for each period of application, and applied to stochastic dynamic 

optimization (SDP). The probability distributions were computed in an Excel 

spreadsheet, which will be clearly asserted in the methodological section. 

 

Procedure 

 A diagram representing the model of this study is shown in Figure III-2. Several 

steps were preformed to achieve the study’s objectives. The first component of the steps 

is data collection and econometric estimation of the forecast solar radiation, which was 

not available. A second component is the simulation of ammonia volatilization and 

statistical analysis to test for differences in the mean levels of ammonia volatilization by 

time and period of application. This was done to allow aggregation of hourly and daily 

simulations. The third step involved the calculation of probability distributions and the 

expected amount of ammonia losses under the Bayesian Approach. The final step is to 

determine the optimal time of effluent application over the application horizon using 

Bayesian stochastic dynamic programming (BSDP), and illustrate the value of weather 

forecast. 
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Figure III-2. Flow Diagram Representing the Study  
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Simulation of Ammonia Volatilization for Historical Weather Data 

The input data for Wu’s model for hourly air temperature, wind speeds, relative 

humidity, and solar radiation for April 1 through May 15 between periods 1994 to 2010 

were obtained from Goodwell, Oklahoma’s Mesonet site. This data was used to estimate 

the cumulative amount of N volatilized up to 192 hours after application. The simulation 

gave more than 18,000 observations of the estimated N volatilization from the set of 

historical weather data.  

Econometric Estimation of Simulated Ammonia N Volatilization 

The simulated ammonia volatilization obtained from Wu’s model was applied to 

an econometric model to perform statistical tests for significant differences in the amount 

of ammonia N volatilization. This was done to permit aggregation of hourly and daily 

measurements into groups. The mean levels of loss were assumed to be influenced by 

three main factors—the times of day that the application was made, the period of the 

month, and the interaction between the hour of application and time period during the 

application window. These assumptions were tested by using the GLM procedure in SAS. 

Several models were estimated with the intent to determine if there were significant 

differences in the amount of ammonia volatilization from an application made at one 

hour of the day as compared to the next hour. When there were no significant differences, 

the data were aggregated. Both five and seven day periods were considered. The total 

amount of N volitalized after 192 hours was regressed against discrete variables 

representing the time of day that application was made and the time period. The response 

function of the mean ammonia N loss was defined as 
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kptkpt

P

p

K

k qpt

P

p p

K

k ktkkpt PdATPdATL      
)*()2(

1 1110
 

where kptL is the mean level of ammonia losses occurring during an application at time k 

(k =1,… K) in period p (p = 1,…, P) in year t, ATkt and Pdpt  represent the dummy 

variables for time and period of application, respectively, qpk and ,,0  are the 

parameters to be estimated, and ),0(~ 2

 Nkpt is the random error term. The random 

error term is assumed to be independent and normally distributed.   

The parameter estimates were used to determine periods with similar means that 

could be grouped. The statistical tests were performed under following null hypotheses: 

1. The hypotheses testing for significance by times of the day are: 

0:

0:

1

0





k

k

H

H





 

2. The hypotheses testing for significance by periods of the season are: 

0:

0:

1

0





p

p

H

H

 

3. The hypotheses testing for significance of interaction terms between time and 

period are: 

0:

0:

1

0





q

q

H

H





 

The coefficients of mean differences in ammonia loss between hours of the day 

and periods (days) of application are expected to be zero. The coefficients of the 

interaction term were not significantly different from zero. Analysis of the results in 

terms of significant differences indicated most of the variation could be captured by 
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dividing the day into four, six-hour application periods, and by dividing a six-week 

window into nine, five-day periods. The four six-hour application periods were midnight 

to 6:00 am, 6:00 am to 12:00 noon, 12:00 noon to 6:00 pm, and 6:00 pm to midnight. The 

parameter estimates of the three main effects for two application methods, six-hour-day 

and night application, and twelve-hour daytime-only, are reported in Tables III-2 and III-

3, respectively.  

Table III-2. The Statistical Results for the Differences in Cumulative N Volatilization 

by Six-hour and Five-day periods 

Variable df F-value p-value 

Time (6 hours, 4 applications/day) 3 133.47 <.0001 

Period (5 day periods) 8 783.00 <.0001 

Time x Period 24 0.40 0.9963 

Note: These results indicate that the interaction terms between time and period variables are not 

significantly different from zero at the 1 percent significance level. 

 

Table III-3. The Statistical Results for the Differences in Cumulative N Volatilization 

by Twelve-hour Daytime-only and Five-day periods 

Variable df F-value p-value 

Period (5 days, 9 periods) 8 368.91 <.0001 

  

 The p-values of the interaction terms for the six-hour day and night application 

method is 0.996 which is not significantly different from zero. As a result, the interaction 

terms were removed from each estimation model, and equation 1 becomes; 

kptpt

P

p p

K

k ktkkpt PdATL     110)'2(  

 After the interaction term was removed from the model, the remaining variables 

were used to estimate for the different levels of mean ammonia N volatilization by time 

and period using class statement in GLM procedure (SAS Institute Inc, 2003). The 
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parameter estimates for the six-hour day and night application strategy are reported in 

Table III-4. 

Table III-4. The Parameter Estimates of the Differences in Simulated Cumulative 

N Volatilization after 192 Hours for Six-Hour Application Periods by Time and 

Date of Application Using Hourly Recorded Mesonet Data at Goodwell Oklahoma 

from 1994 to 2010 as Estimated with GLM Procedure in SAS 

Variable Parameter 
Parameter 

Estimate
b
 

Standard 

Error 
t-value p-value 

Intercept
a
 μ0 69.769 (0.2859) 244.03 <0.0001 

 Time Dummy Variables     

12:01 – 6:00 am μ1 1.564 (0.2334) 6.70 <0.0001 

6:01 am-12:00 pm μ2 4.244 (0.2334) 18.18 <0.0001 

12:01-6:00 pm μ3 3.444 (0.233) 14.75 <0.0001 

      

Period Dummy Variables     

April 1-5 
1  -21.82 (0.350) -62.31 <0.0001 

April 6-10 
2  -19.51 (0.350) -55.70 <0.0001 

April 10-15 
3  -12.62 (0.350) -36.05 <0.0001 

April 16-20 
4  -13.77 (0.350) -39.31 <0.0001 

April 21-25 
5  -14.64 (0.350) -41.82 <0.0001 

April 26-30 
6  -14.35 (0.350) -40.98 <0.0001 

May 1-5 
7  -9.96 (0.350) -28.46 <0.0001 

May 6-10 
8  -3.75 (0.350) -10.71 <0.0001 

a
 Represents expected loss from an application between May 11-15 from 6:00 pm to midnight. 

b 
Estimated from 18,359 observations. 

 

All parameter estimates for the dummy variables for the three applications (i.e., 

midnight to 6:00 am, 6:00 am to 12:00 noon, 12:00 noon to 6:00 pm) and eight periods 

are statistically significant at the 1 percent level. The signs of the parameters were as 
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expected. The mean levels of ammonia volatilization increased during day of application 

period. The mean losses from applications made between 6am and 6pm were 

significantly greater than applications made between 6pm and midnight. However, the 

differences between the means were still less than 4.3 lbs of N per acre. In the case of the 

twelve-hour daytime-only application method, the parameter estimates of period dummy 

variables are reported in Table III-5.  

Table III-5. The Parameter Estimates of the Differences in Simulated Cumulative 

N Volatilization after 192 Hours for Twelve-hour Daytime-only by Date of 

Application Using Hourly Recorded Mesonet Data at Goodwell Oklahoma from 

1994 to 2010 as Estimated with GLM Procedure in SAS 

Variable Parameter 
Parameter 

Estimate
b
 

Standard 

Error 
t-value p-value 

Intercept
a
 μ0 73.96 (0.366) 210.08 <0.0001 

      
Period Dummy Variables     

April 1-5 
1  -22.16 (0.518) -42.76 <0.0001 

April 6-10 
2  -20.15 (0.518) -38.87 <0.0001 

April 10-15 
3  -12.91 (0.518) -24.91 <0.0001 

April 16-20 
4  -13.97 (0.518) -26.96 <0.0001 

April 21-25 
5  -14.98 (0.518) -28.90 <0.0001 

April 26-30 
6  -14.75 (0.518) -28.46 <0.0001 

May 1-5 
7  -10.60 (0.518) -20.45 <0.0001 

May 6-10 
8  -4.05 (0.518) -7.82 <0.0001 

a
 Represents expected loss from an application between May 11-15 from 6:00 am to 6:00 pm. 

 b 
Estimated from 9,179 observations. 

 

The p-values for dummy variable of periods 1-8 are smaller than 0.0001 and have 

negative signs. These indicate the mean level of ammonia N volatilization of the periods 

1-8 are statistically lower than period 9. The mean ammonia loss is increasing over time 
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from period 1 (April 1-5) through period 9 (May 6-10). Historical weather records 

indicate the first 10 days of April are the most favorable for effluent application and the 

period from May 6-10 are the least favorable for effluent application. 

The results above show there are significant differences in ammonia volatilization 

for 12-hour daytime only by period of application as compared to the application made 

from May 11-15 which is incorporated in the intercept. Hence, the pair-wise comparison 

method was performed to test for a significant difference of ammonia loss between each 

pair of applications (i.e.,  1 vs  2, etc.) using PDIFF option in GLM procedure (SAS 

Institute Inc, 2003).This method compares the mean level of ammonia losses occur 

between two different applications at a time. Under the null hypothesis, the parameters of 

dummy variables for each two applications are assumed to be equal (μ1=μ2, μ2=μ3, etc.), 

as well as the parameters of the nine periods (
3221 ,  , etc.). Tables III-6 and III-7 

present the statistical results of the comparison of ammonia N volatilization between the 

four six-hour applications and nine periods. All parameters in the statistic tests were 

considered at α = 1% level. 

Table III-6. The Statistical Comparison of Ammonia Volatilization by Times of 

Application for Six-hour Day or Night Application Method Estimated with GLM 

Procedure in SAS 

Application time 
p-value 

12:01- 6:00 am 6:01am-12:00 pm 12:00-6:00 pm 6:01pm-12:00am 

12:01- 6:00 am  <.0001 <.0001 <.0001 

6:01 am-12:00 pm <.0001  0.0006 <.0001 

12:01-6:00 pm <.0001 0.0006  <.0001 

6:01 pm-12:00 am <.0001 <.0001 <.0001  
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Table III-7. The Statistical Comparison of Ammonia Volatilization by Periods of the Post-planting Season for Six-hour Day 

or Night Application Method as Estimated with GLM Procedure in SAS 

Period of 

Application 

 

p-value 

1 2 3 4 5 6 7 8 9 

1  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

2 <.0001  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

3 <.0001 <.0001  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

4 <.0001 <.0001 <.0001  0.012 0.0957 <.0001 <.0001 <.0001 

5 <.0001 <.0001 <.0001 0.012  0.3977 <.0001 <.0001 <.0001 

6 <.0001 <.0001 <.0001 0.0957 0.3977  <.0001 <.0001 <.0001 

7 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  <.0001 <.0001 

8 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  <.0001 

9 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  

Note: The shaded portion of Table III-7 shows there are insignificant differences of the cumulative N losses after 192 hours for the application between those 

three periods (at 1% level). 
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Results report that there are significant differences in ammonia volatilization 

between times of the day and periods of application. The mean levels of ammonia loss 

were also found to be different from one period to another; except for periods 4-6. The 

loss occurs from application during period 4 is found to be insignificantly different from 

periods 5 and 6. Also, the loss that occurred from application during period 5 was not 

significantly different from that in period 6. Tables III-8 and III-9 present the least square 

means of ammonia volatilization for six-hour day or night application method. 

 

Table III-8. Least Squares Means of Cumulative N Volatilization after 192 Hours 

by Time of Application for Six-hour Day or Night Application Method Estimated 

with the GLM Procedure in SAS 

Time of Application  LSMEANS (lbs/acre) p-value 

12:01 am-06:00 am 59.07 <0.0001 

06:01 am-12:00 pm 61.75 <0.0001 

12:01pm-06:00 pm 60.95 <0.0001 

06:01 pm-12:00am 57.50 <0.0001 
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Table III-9. Least Squares Means of Cumulative N Volatilization after 192 Hours 

by Periods of Application for Six-hour Day or Night Application Method Estimated 

with GLM Procedure in SAS 

Period of Application LSMEANS  

(lbs/acre) 
p-value 

Period Date/Month 

1 April 1-5 50.26 <0.0001 

2 April 6-10 52.58 <0.0001 

3 April 11-15 59.46 <0.0001 

4 April 16-20 58.32 <0.0001 

5 April 21-25 57.44 <0.0001 

6 April 26-30 57.73 <0.0001 

7 May 1-5 62.12 <0.0001 

8 May 6-10 68.33 <0.0001 

9 May 11-15 72.08 <0.0001 

 

For the twelve-hour daytime-only application method, the results also suggest that 

there the significant differences in mean ammonia volatilization by period of application. 

However, the N volatilization that occurred from application during period 4 was not 

significantly different from that in periods 5 and 6. And the volatilization that occurred 

from applications in period 5 was not significantly different from an application in period 

6. The comparison of ammonia volatilization by periods of application for twelve-hour 

daytime-only application method is reported in Table III-10. The least square means of 

cumulative ammonia N volatilization after 192 hours after application for the twelve-hour 

daytime application are also reported in Table III-11.  
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Table III-10. The Statistical Comparison of Ammonia Volatilization by Periods for Twelve-hour Daytime-only Application 

Method as Estimated with GLM Procedure in SAS  

Period of 

Application 

 

p-value 

1 2 3 4 5 6 7 8 9 

1  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

2 <.0001  <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

3 <.0001 <.0001  0.01 <.0001 <.0001 <.0001 <.0001 <.0001 

4 <.0001 <.0001 0.01  0.053 0.134 <.0001 <.0001 <.0001 

5 <.0001 <.0001 <.0001 0.053  0.660 <.0001 <.0001 <.0001 

6 <.0001 <.0001 <.0001 0.134 0.660  <.0001 <.0001 <.0001 

7 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  <.0001 <.0001 

8 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  <.0001 

9 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001  

Note: The shaded portion of Table III-10 shows there are insignificant differences for the cumulative N losses after 192 hours for the application between those 

three periods (at 1% level). 
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Table III-11. Least Squares Means of Cumulative N Volatilization by Period for 

Twelve-Hours Daytime Application Method as Estimated with GLM Procedure in 

SAS 

Period of Application LSMEANS  

(lbs./acre) 
p-value 

Period Date/Month 

1 April 1-5 51.80 <0.0001 

2 April 6-10 53.81 <0.0001 

3 April 11-15 61.05 <0.0001 

4 April 16-20 59.99 <0.0001 

5 April 21-25 58.99 <0.0001 

6 April 26-30 59.21 <0.0001 

7 May 1-5 63.37 <0.0001 

8 May 6-10 69.91 <0.0001 

9 May 11-15 73.96 <0.0001 

 

Overall, the results indicate the amount of ammonia N volatilized increases from 

the beginning to the end of the application period. Also, applications made between 

6:00pm and midnight had lower losses than other times of the day. This gives the support 

to our study’s assumption about the number of application periods over the planting 

horizon. The season in the study was categorized into periods based on the estimated 

results above. Under the six-hour application method, the planting horizon was divided 

into 180 periods which the effluent can be applied during both day and night times. For 

the twelve-hour daytime application method, the producer is assumed to operate the 

sprinkler irrigation system only during the daytime from 6:01 am through 6:00 pm. Thus, 

there are 45 periods under the twelve-hour daytime-only application method. Further, the 

results obtained from this section were used as the initial assumption for computing the 



 

46 

 

probability distributions of ammonia volatilization, which will be applied to the Bayesian 

stochastic dynamic framework 

 

Simulation of Ammonia Volatilization for Forecast Weather Data 

In similar approach to simulation with historical weather data, an archive of the 

forecast weather on temperature, wind speeds, and relative humidity for April 1- May 15 

from 2005 through 2010 was obtained from the meteorological consulting company, 

Weatherbank, Inc. (Eric Freier, 30 May 2011). This data was used to estimate the 

cumulative N volatilization at 192 hours after an application. However, the estimates of 

solar radiation for forecast weather data are not available either from the Weatherbank, 

Inc. (Eric Freier, 30 May 2011) or in the published forecast of the Mesonet site. Thus, a 

statistical analysis was performed to estimate this forecast variable to use in Wu’s 

simulation model. The steps of estimating the predicted values of solar radiation are 

explained as follows. 

 

Estimation of Predicted Solar Radiation 

The first step is to find the relationship between the climatological variables that 

are available on the Mesonet site. These variables include solar radiation, temperature, 

percentage of relative humidity, percentage of cloud cover, and possible maximum 

sunshine. The actual solar radiation or global solar radiation is the total amount of sun’s 

energy that reaches to the earth’s surface at any particular time. The amount of radiation 

reaching the ground is generally less than the amount of energy measured at the top of the 

earth’s atmosphere (Griffiths et al., 1980). The radiation at the top of the atmosphere can 

be diffused, absorbed, and/or scattered during travel through the earth’s atmosphere to the 



 

47 

 

surface. The diffusion and scattering can be caused by the amount of water vapor, cloud, 

dust, and air molecules (EERE, 2011). The assumption was made that the relation 

between ―forecast‖ solar radiation and forecast temperature, degree of cloudiness, and 

wind speed would be the same as between measured solar radiation, measured 

temperature, wind speed, and degree of cloudiness. An econometric model was used to 

investigate the relationship among those climate variables. This estimation was done 

based on the historical weather data. Table III-12 reports the results of the correlation 

coefficients for solar radiation.  

The parameter estimates report that there is the negative correlation between the 

actual solar radiation and the percentage of humidity ( 0001.0P ). There is also the 

negative correlation between the actual solar radiation and the percentage of cloud cover 

( 0001.0P ). These imply the presence of humidity and/or a cloudy day cause less solar 

radiation from the top of the earth’s atmosphere reached to the ground.  

Table III-12. Summary Statistic for Correlation Coefficients of Solar Radiation and 

Climate Variables 

Variable 

Pearson Correlation Coefficients 

Clear Day 

Radiation 

Actual 

Solar 

Radiation 

Humidity 

(%) 

Cloud 

Cover (%) 

Possible 

Maximum 

Sunshine 

(%) 

Clear Day Solar Radiation 1.000* 0.618* -0.115* 0.001 -0.001 

Actual Solar Radiation  1.000* -0.291* -0.234* 0.234* 

Humidity (%)   1.000* 0.436* -0.436* 

Cloud Cover (%)    1.000* -1.000* 

Possible Maximum 

Sunshine (%) 
    1.000* 

* indicates there is a significant correlation among the variables at 1% significant level  
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Based on the significant correlations among the climate variables, a regression 

model was developed to find the estimators for predicting the values of forecast solar 

radiation. The regression model was estimated as follows 
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where SRijt is the ratio of the difference between clear day solar radiation and the actual 

solar radiation to the amount of clear day solar radiation (i.e., the proportion of the 

radiation prevented from reaching to the soil surface) at hour i of week j in year t, RH 

represents the percentage of relative humidity, PMSun represents the percentage of 

possible maximum sunshine, Hit , and Wjt are indicators for hourly and weekly dummy 

variables, respectively, ),0(~ 2

 Nijt is the random error term. Solar radiation at the top 

of the atmosphere was calculated by using a formula supplied by the Mesonet group (J.D. 

Carlson, June 2, 2011). The parameters a1, a2, βi, and Wj were estimated using GLM 

procedure in SAS (SAS Institute Inc, 2003)—we expect the parameters a1, and a2 to be 

positive, which indicates the less amounts of solar radiation can reach to the soil surface 

when the percentages of relative humidity and cloud cover are high. The parameter 

estimates for the ratio of the difference between clear day solar radiation and the actual 

solar radiation are reported in Table III-13. 
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Table III-13. Parameter Estimates for the Solar Radiation Estimated with GLM 

Procedure in SAS 

Variable Parameter 
Parameter 

Estimate 

Standard 

Error 
t-value p-value 

Humidity (%) a1 0.122 (0.0355) 3.43 0.0006 

1-%Maximum Sunshine a2 0.349 (0.0181) 19.22 <0.0001 

      

Hourly Dummy Variables     

6:00 am. β1 0.271 (0.0298) 9.09 <0.0001 

7:00 am. β2 0.146 (0.0289) 5.04 <0.0001 

8:00 am. β3 0.070 (0.0280) 2.49 0.013 

9:00 am. β4 0.024 (0.0269) 0.87 0.383 

10:00 am. β5 0.019 (0.0251) 0.77 0.442 

11:00 am. β6 0.024 (0.0237) 1.03 0.302 

12:00 pm. β7 0.039 (0.0226) 1.71 0.087 

1:00 pm. β8 0.051 (0.0220) 2.32 0.020 

2:00 pm. β9 0.068 (0.0215) 3.16 0.001 

3:00 pm. β10 0.084 (0.0213) 3.92 <0.0001 

4:00 pm. β11 0.118 (0.0212) 5.57 <0.0001 

5:00 pm. β12 0.194 (0.0212) 9.16 <0.0001 

6:00 pm. β13 0.296 (0.0213) 13.94 <0.0001 

7:00 pm. β14 0.505 (0.0220) 22.98 <0.0001 

      

Weekly Dummy Variables     

Week 1 
1  0.067 (0.0173) 3.89 0.0001 

Week 2 
2  0.048 (0.0166) 2.89 0.0038 

Week 3 
3  0.057 (0.0166) 3.45 0.0006 

Week 4 
4  0.075 (0.0165) 4.50 <0.0001 

Week 5 
5  0.078 (0.0167) 4.62 <0.0001 

Week 6 
6  -0.043 (0.0166) -2.57 0.010 

Note: Number of observations 4210 
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The parameter estimates for the weekly dummy variables, weeks 1- 5, were 

statistically and significantly different from week 7 at the 1 percent level and have the 

positive signs. This indicates there are higher percentages of relative humidity and cloud 

cover during week 1 through week 5 than in week 7. However, the percentages of relative 

humidity and cloud cover during week 6 were not significantly different from those in 

week 7. The results also show the parameter estimates for the hourly dummy variables 

were positive and significant at the 1 percent level; except for the dummy variables for 

08:00 am - 01:00 pm. The results indicate there are higher percentages of relative 

humidity and cloud cover during 06:00 - 07:00 am, and during 03:00-07:00 pm portions 

of the day )0001.0( P , especially during week 1-5 (April 1-  May 5). This implies that 

there was a smaller proportion of the solar radiation at the top of the earth’s atmosphere 

that reached the soil surface during the hours between 06:00-07:00 am, and the hours 

between 03:00-07:00 pm each day than during the hours between 8:00 am and 2:00 pm. 

This is especially true during weeks one through five than in week six. )0001.0( P .  

The parameter estimates (reported in Table III-13) were used to predict the values 

of the ratio of the difference between clear day solar radiation and the solar radiation of 

forecast weather data. The values of forecast solar radiation were then derived by 

rearranging terms of equation (3), which gave 

  ijtjtjitiijtijtijtijt CDSRWHPMSunaRHaCDSRFSR *)1()'3( 21  
 

where FSRijt is the forecast solar radiation at hour i of week j in year t, CDSRijt is the clear 

day solar radiation measure at the same hour, RH and PMSun represent the percentage of 

relative humidity and possible maximum sunshine, respectively, Hit  is the dummy 

variable for hour i , and Wjt is an indicator for weekly dummy variables. The parameters 
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a1, a2, βi, and Wj  are obtained under the estimation of equation (3). The predicted values 

of solar radiation were then combined with other climate forecast data that occured at the 

same time period to simulate the ammonia N volatilization using Wu’s model (2003a). 

There were 6,480 observations of N loss estimated from the set of forecast weather data. 

While the statistical analysis results of historical weather data, reported in Table 

III-4, shows there is a variation of ammonia loss by the time of application, the hourly 

weather forecast data are also available on the Mesonet sites. As a result, the likelihood 

of forecast weather occurrence in terms of ammonia loss would become relevant 

information for the producer to determine the time for spreading the effluent. Figure III-3 

presents the comparison of cumulative N volatilization at 192 hours after application 

estimated from historical and forecast weather data for period 2005-2010.     A visual 

view from Figure III-3 indicates there were the frequencies of forecast ammonia losses 

that fell below and/or above the level of ammonia losses estimated for given actual 

weather at the same time period. For instance, when the actual of ammonia loss was 60 

lbs, the forecast ammonia losses were between 40-90 lbs.  
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Figure III-3. The comparison of cumulative N volatilization at 192 hours after 

application estimated from historical and forecast weather data for April 1-May 15, 

2005-2010 

 

These results indicate that the volatilization of ammonia nitrogen is random and 

contingent on the weather conditions, which implies Bayesian methods could provide a 

means to incorporate forecast information into decision making. However, there are 

several steps required to implement the Bayesian methods into the stochastic dynamic 

programming (SDP) model to determine the best time of effluent application. The steps 

to incorporate the simulated ammonia losses from forecast weather data to the problem of 

effluent application includes; 

1. Construct the prior probability distribution of ammonia losses estimated 

from the historical (actual) weather data for April 1-May 15, 1994-2010; 

2. Determine the joint probability distribution of forecast ammonia loss and 

the actual loss for each class mean level of the weather conditions. This 

probability was constructed as the probability matrix by using the 

simulated ammonia losses from forecast weather data for only years 2005-
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2010, as well as the estimated losses from the actual weather data from the 

same period; 

3. Calculate the probability of forecast ammonia loss for each class mean level of 

forecast predicted loss; 

4. Determine the posterior probability distribution of ammonia loss for each class 

mean level of loss. This probability was calculated by using the three  

probability distributions obtained from the previous steps (1-3); 

5.  Estimate the expected ammonia loss for each class mean level of forecast 

weather conditions; 

6. Derive the Markov Transition matrix stating the probability of the forecast for 

the next period conditional upon the currently received forecast. 

The steps of revising the past weather and forecasts information in the producer’s 

decision can be described as follows. 

 

Step 1: Computation of Prior Probability Distribution of Ammonia Loss  

The prior distribution is the probability of actual ammonia loss that occur at each 

class mean level of loss during each period of application. The computation was 

performed by summarizing the ammonia losses simulated from historical weather data 

into the class mean ranges. In the study, the simulated losses were categorized into 14 

classes with an increment of a six pound class per-acre of loss (18-23.99, 24-29.99, etc.). 

The next step is to find the frequency of the losses that fall into each category. Table III-14 

shows the frequency distribution of simulated ammonia losses by five-day period from 

April 1 to May 15 for the twelve-hour daytime-only application method. 
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Table III-14. Frequency Distribution of Simulated Ammonia Volatilizations after 192 Hours for the Twelve-hour Daytime-

only Application by Five Day Period Using Hourly Recorded Mesonet Weather Data at Goodwell, Oklahoma from 1994 to 2010 

Loss 

Level 

Class Range of 

Loss (lbs/acre) 

 

Class means, 
_

L (lbs/acre) 

Simulated N Losses Occurred from Applications Made between 6:01 am to 6:00pm by 

Five Day Period at Each Class Range of Loss 

April 1-5 April 6-10 April 11-15 April 16-30
a
 May 1-5 May 6-10 May 11-15 

1 18-24 21 52 48 0 0 0 0 0 

2 24-30 27 26 12 12 39 0 0 0 

3 30-36 33 36 87 6 116 0 0 0 

4 36-42 39 97 59 75 64 0 0 0 

5 42-48 45 156 66 135 191 34 0 4 

6 48-54 51 148 245 69 512 167 8 22 

7 54-60 57 198 172 179 654 228 123 30 

8 60-66 63 204 135 154 653 227 226 89 

9 66-72 69 55 99 141 371 177 271 263 

10 72-78 75 46 37 139 308 68 221 313 

11 78-84 81 2 28 73 129 80 98 180 

12 84-90 87 0 26 37 23 30 56 82 

13 90-96 93 0 6 0 0 9 16 33 

14 96-102 99 0 0 0 0 0 1 4 

Total Number of Observation 1,020 1,020 1,020 3,060 1,020 1,020 1,020 

a
 According to our statistical results, the simulated ammonia loss data of the five day periods for April 16 to 30 were aggregated into only 1 group.  
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The frequency of losses shown in Table III-14 was then used to compute the 

historical prior probability of actual ammonia loss that occurs at each class mean level for 

each 5 day period. The prior probability can be calculated as follows;  

(4) 
kp

s

kp

kp

s

n

A
L )Pr(  

 

where kp

sL )Pr( is the prior probability of ammonia loss occurs during application time k 

in period p that fall in the class mean loss of s (s = 1, 2, …, S; S=14), 
s

kpA is the frequency 

or number of times that actual ammonia loss occurs in the class mean loss of s, and nkp is 

the total number of simulated N losses in the same time period (shown in the shade 

portion of Table III-14 above). For example, the prior probability of loss  occurs at class 

mean loss of 18-24 lbs/acre (Table III-15) from applications made during the first five 

day period, April 1-5, is 0.051 (52 ÷ 1020). Table III-15 reports the prior probability for 

each class mean level of ammonia loss by 5 day period for the twelve-hour daytime-only 

application method. The prior probabilities for the six-hour day and night time 

application method were done following the same process.  
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Table III-15. The Prior Probability Distribution of Ammonia Losses for the Twelve-hour Daytime-only Application by Five 

Day Period from April 1 to May 15 

Loss 

Level 

Class Range of 

Loss (lbs/acre) 

 

Class means, 
_

L (lbs/acre) 

Prior Probability of Loss, Pr(L), at Each Class Range of Loss from Applications Made 

between 6:01 am to 6:00pm by Five Day Period  

April 1-5 April 6-10 April 11-15 April 16-30 May 1-5 May 6-10 May 11-15 

1 18-24 21 0.051 0.047 0 0 0 0 0 

2 24-30 27 0.026 0.012 0.012 0.013 0 0 0 

3 30-36 33 0.035 0.085 0.006 0.038 0 0 0 

4 36-42 39 0.095 0.058 0.074 0.021 0 0 0 

5 42-48 45 0.153 0.065 0.132 0.062 0.033 0 0.004 

6 48-54 51 0.145 0.240 0.068 0.167 0.164 0.008 0.022 

7 54-60 57 0.194 0.169 0.175 0.214 0.224 0.121 0.029 

8 60-66 63 0.200 0.132 0.151 0.213 0.223 0.222 0.087 

9 66-72 69 0.054 0.097 0.138 0.121 0.174 0.266 0.258 

10 72-78 75 0.045 0.036 0.136 0.101 0.067 0.217 0.307 

11 78-84 81 0.002 0.027 0.072 0.042 0.078 0.096 0.176 

12 84-90 87  0.025 0.036 0.008 0.029 0.055 0.080 

13 90-96 93  0.006 0 0 0.009 0.016 0.032 

14 96-102 99  0 0 0 0 0.001 0.004 

Sum Total 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Note: The prior probability of losses for each class mean level of each 5 day period from applications during April 16 to 30 is the same based on the statistical 

analysis results. 
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Step2: Calculation of the Joint Forecast Loss and Actual Loss Probability Matrix 

 The first step to construct the joint probability matrix is to classify the simulated 

N losses from forecast weather data (for April 1- May 15, 2005-2010) into classes with 

an increment of an eight pound class per-acre of loss--0-7.99, 8-15.99, …, and 80-87.99. 

There were 11 classes chosen for the forecast ammonia loss. The simulated N losses from 

historical weather data for April 1- May 15, 2005-2010 were also categorized into 14 

classes with an increment of a six pound class per-acre of loss--18-23.99, 24-29.99, etc. 

Eight pound classes were used for the forecast data because the forecast data period 

2005-2010 was shorter than the actual weather data period 1994-2010. These two data 

sets were used to compute the joint probability of forecast loss iZ  and the actual loss L
s
 

for each class mean level of loss,
 

)|Pr( si LZ . The step was done by counting the frequency 

of ammonia losses that occurred at each class mean level during each application time. 

This was readily accomplished by aligning the nitrogen loss occurring from the actual 

weather data with the nitrogen loss from the forecast weather data by the same year, day 

of year, and hour of application. The Excel pivot table was then used to obtain the 

frequency distribution of forecast loss for each class of nitrogen loss estimated from 

actual weather data. For example, level 8 in Table III-16 represents actual loss levels 

from 60 to 66 lbs/acre for one of application periods. These losses were estimated to 

occur given the actual weather occurred during the forecast period to probability of the 

forecast given the actual ammonia loss. Assume there are the total of nkp estimated losses 

from the actual weather during the application time k in period p, and that A
s
 observations 

fell in the class means of loss L
s
. During the forecast period for an application time k in 

period p, there are 
i

sF  
observations of estimated forecast ammonia loss that fall in the 
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same class range of the given actual loss L
s
. The joint probability of forecast loss iZ  

given the actual loss L
s 
during application time k in period p, denoted by 

kp

si LZ )|Pr( , can 

be calculated as follows;  

kp

s

i

s

kp

si

A

F
LZ 













)|Pr()5(  

 The tabulations were done for all classes of the forecast weather predicted losses. 

A schematic of the frequency distribution matrix is presented in Table III-16.  



 

 

 

5
9
 

Table III-16. The Probability Matrix of Ammonia Loss by Class Means Level of Loss for Applications during Time k 

Loss Level Forecast, Z
i
 1 2 3 4 5 6 7 8 9 10 11 

Sum 
Actual, L

s
 

Class Range 

of Loss 

(lbs/acre)  

Probability Distribution of Forecast Losses for the Level of Loss from Actual weather 

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 18-24 
11

1 / AF  12

1 / AF  13

1 / AF  14

1 / AF  15

1 / AF  16

1 / AF  17

1 / AF  18

1 / AF  19

1 / AF  110

1 / AF  111

1 / AF  1 

2 24-30 21

2 / AF  
22

2 / AF  
23

2 / AF  
24

2 / AF  
25

2 / AF  
26

2 / AF  
27

2 / AF  
28

2 / AF  
29

2 / AF  
210

2 / AF  
211

2 / AF  1 

3 30-36 31

3 / AF  
32

3 / AF  
33

3 / AF  
34

3 / AF  
35

3 / AF  
36

3 / AF  
37

3 / AF  
38

3 / AF  
39

3 / AF  
310

3 / AF  
311

3 / AF  1 

4 36-42 41

4 / AF  
42

4 / AF  
43

4 / AF  
44

4 / AF  
45

4 / AF  
46

4 / AF  
47

4 / AF  
48

4 / AF  
49

4 / AF  
410

4 / AF  
411

4 / AF  1 

5 42-48 51

5 / AF  
52

5 / AF  
53

5 / AF  
54

5 / AF  
55

5 / AF  
56

5 / AF  
57

5 / AF  
58

5 / AF  
59

5 / AF  
510

5 / AF  
511

5 / AF  1 

6 48-54 61

6 / AF  
62

6 / AF  
63

6 / AF  
64

6 / AF  
65

6 / AF  
66

6 / AF  
67

6 / AF  
68

6 / AF  
69

6 / AF  
610

6 / AF  
611

6 / AF  1 

7 54-60 71

7 / AF  
72

7 / AF  
73

7 / AF  
74

7 / AF  
75

7 / AF  
76

7 / AF  
77

7 / AF  
78

7 / AF  
79

7 / AF  
710

7 / AF  
711

7 / AF  1 

8 60-66 81

8 / AF  
82

8 / AF  
83

8 / AF  
84

8 / AF  
85

8 / AF  
86

8 / AF  
87

8 / AF  
88

8 / AF  
89

8 / AF  
810

8 / AF  
811

8 / AF  1 

9 66-72 91

9 / AF  
92

9 / AF  
93

9 / AF  
94

9 / AF  
95

9 / AF  
96

9 / AF  
97

9 / AF  
98

9 / AF  
99

9 / AF  
910

9 / AF  
911

9 / AF  1 

10 72-78 101

10 / AF  
102

10 / AF  
103

10 / AF  
104

10 / AF  
105

10 / AF  
106

10 / AF  
107

10 / AF  
108

10 / AF  
109

10 / AF  
1010

10 / AF  
1011

10 / AF  1 

11 78-84 111

11 / AF  
112

11 / AF  
113

11 / AF  
114

11 / AF  
115

11 / AF  
116

11 / AF  
117

11 / AF  
118

11 / AF  
119

11 / AF  
1110

11 / AF  
1111

11 / AF  1 

12 84-90 121

12 / AF  
122

12 / AF  
123

12 / AF  
124

12 / AF  
125

12 / AF  
126

12 / AF  
127

12 / AF  
128

12 / AF  
129

12 / AF  
1210

12 / AF  
1211

12 / AF  1 

13 90-96 131

13 / AF  
132

13 / AF  
133

13 / AF  
134

13 / AF  
135

13 / AF  
136

13 / AF  
137

13 / AF  
139

13 / AF  
139

13 / AF  
1310

13 / AF  
1311

13 / AF  1 

14 96-102 141

14 / AF  
142

14 / AF  
143

14 / AF  
144

14 / AF  
145

14 / AF  
146

14 / AF  
147

14 / AF  
1410

14 / AF  
149

14 / AF  
1410

14 / AF  
1411

14 / AF  1 
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Assume the period was for April 1 to 5. The estimated losses from the actual and 

forecast weather data are used to construct a frequency distribution of forecast ammonia 

losses for a level of actual N loss. The next step is to find the distribution of all ammonia 

losses generated from forecast weather data for April 1 to 5 when the actual losses were 

between 60-66 lbs/acre. Table III-17 reports the frequency distribution for April 1 to 5 for 

the twelve-hour daytime-only application method. 
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Table III-17. The Frequency Matrix of Ammonia Loss by Class Means Level of Loss for Applications during April 1 to 5 for the 

Twelve-hour Daytime-only Application Method 

Loss Level Forecast, Z
i
 1 2 3 4 5 6 7 8 9 10 11 

Sum 
Actual, L

s
 

Class Range 

of Loss 

(lbs/acre) 

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 18-24    2 23 1      26 

2 24-30  
 

  7 4      11 

3 30-36      3      3 

4 36-42      34 1     35 

5 42-48     1 38 13 2    54 

6 48-54      23 17 1    41 

7 54-60       16 23 2   41 

8 60-66       6 44 21   71 

9 66-72       6 13 8   27 

10 72-78        12 13   25 

11 78-84        2    2 

12 84-90             

13 90-96             

14 96-102             
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The frequency distribution in each row is converted to a probability distribution 

by dividing by the total observation for each row. For instance, the joint probability 

distribution of the forecast ammonia loss of 48-56 lbs/acre and the given actual loss of 

60-66 lbs/acre is equal to 0.085 (6÷71). A schematic of the probability matrix of 

ammonia losses for this first 5 day period (April 1 to 5) is presented in Table III-18. The 

joint probability obtained follows equation (5) was used to compute the probability of 

occurrence of the forecast N loss, which will be described in the following section. 
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Table III-18. The Probability Matrix, )|Pr( si LZ , of Ammonia Losses by Class Means Level of Loss for the Applications during 

April 1 to 5 for the Twelve-hour Daytime-only Application Method 

Loss Level Forecast, Z
i
 1 2 3 4 5 6 7 8 9 10 11 

Sum 
Actual, L

s
 

Class Range 

of Loss 

(lbs/acre) 

Probability Distribution of Forecast Losses for the Level of Loss from Actual weather  

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 18-24    0.0769 0.885 0.038 0 0 0   1 

2 24-30  
 

  0.636 0.364 0 0 0   1 

3 30-36     0 1.000 0 0 0   1 

4 36-42     0 0.971 0.029 0 0   1 

5 42-48     0.018 0.704 0.241 0.037 0   1 

6 48-54      0.561 0.415 0.024 0   1 

7 54-60       0.390 0.561 0.049   1 

8 60-66       0.085 0.620 0.296   1 

9 66-72       0.222 0.481 0.296   1 

10 72-78        0.480 0.520   1 

11 78-84        1.000 0   1 

12 84-90             

13 90-96             

14 96-102             
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Step 3: Deriving the Probability of a Forecast for Each Level of Ammonia Loss  

The revision of the past information in terms of the likelihood of occurrence can 

help to improve the accuracy of the outcome (Buchanan, 1982). The probability of 

forecast for the ith loss, )Pr( iZ , is shown in the last row of Table III-19 below. The 

probability of forecast occurrence for each class level of loss can be calculated as 

kp

s

kp

sS

s

i

kp

i LLZZ )Pr(*)|Pr()Pr()6(
1 

  

where 
kp

si LZ )|Pr( is the joint probability of forecast loss iZ  and the actual loss L
s
 

occurring during application time k in period p (as defined in Tables III 16), kp

sL )Pr( is 

the prior probability vector of ammonia loss from actual weather occurring at each class 

mean level of loss during time period p, kp

iZ )Pr( is a prior probability weighted sum of 

the joint probability of forecast ammonia loss iZ and the actual loss L
s
 for ith forecast 

predicted loss. Table III-19 presents the tabulation for computing this probability of 

forecast ammonia, kp

iZ )Pr( . 
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Table III-19. The Probability of Forecast Ammonia Losses, )Pr( iZ , for Each Class Means Level of Forecast Predicted Loss 

for Applications during Time k 
Loss 

Level  
Forecast, Z

i
 1 2 3 4 5 6 7 8 9 10 11 

Sum 
Actual,L

s
 

Class Range 

of loss 

(lbs/acre) 

0-8 8-16 

16
-2

4 

24
-3

2 

32
-4

0 

40
-4

8 

48
-5

6 

56
-6

4 

64
-7

2 

72
-8

0 

80-88 

1 18-24 )/( 11

1 AF *Pr(L
1
) )/( 12

1 AF *Pr(L
1
) . . . . . . . . )/( 111

1 AF *Pr(L
1
)  

2 24-30 )/( 21

2 AF *Pr (L
2
) )/( 22

2 AF *Pr (L
2
) . . . . . . . . )/( 211

2 AF *Pr (L
2
)  

3 30-36 )/( 31

3 AF *Pr (L
3
) )/( 32

3 AF *Pr (L
3
) . . . . . . . . )/( 311

3 AF *Pr (L
3
)  

4 36-42 . . . . . . . . . . .  

5 42-48 . . . . . . . . . . .  

6 48-54 . . . . . . . . . . .  

7 54-60 . . . . . . . . . . .  

8 60-66 . . . . . . . . . . .  

9 66-72 . . . . . . . . . . .  

10 72-78 . . . . . . . . . . .  

11 78-84 . . . . . . . . . . .  

12 84-90 . . . . . . . . . . .  

13 90-96 . . . . . . . . . . .  

14 96-102 )/( 141

14 AF *Pr (L
14
) )/( 142

14 AF *Pr (L
14
) . . . . . . . . )/( 1411

14 AF *Pr (L
14
)  

Probability of Forecast )Pr( 1Z  )Pr( 2Z  . . . . . . . . )Pr( 11Z  1 

Note:  1) )Pr( sL is the prior probability of ammonia loss for each class of actual loss as computed follows equation (4). 

  2) The probability of losses for each class mean of forecast loss is shown in the shaded portion, and the sum of probabilities of all class levels must be equal to one. 
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For example, the probability of receiving a forecast with a predicted loss of 24-32 

lbs/acre from applications during April 1-5 is equal to 0.004. Table III-20 reports the 

probability of forecast loss occurrence for each ith class of forecast predicted loss for 

applications during April 1 to 5 for the twelve-hour daytime-only application method. 
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Table III-20. The Probability of the Occurrence of Ammonia Losses for Each Class Level of Forecast Predicted Loss for the 

Applications during April 1 to 5 for the Twelve-Hour Daytime-only Application Method 
Loss 

Level  
Forecast, Z

i
 1 2 3 4 5 6 7 8 9 10 11 

Sum 

Actual, L
s
 

Class Range 

of Loss 

(lbs/acre) 

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 18-24    0.004 0.045 0.002 0 0 0    

2 24-30     0.016 0.009 0 0 0    

3 30-36     0 0.035 0 0 0    

4 36-42     0 0.092 0.003 0 0    

5 42-48     0.0028 0.108 0.037 0.006 0    

6 48-54      0.081 0.060 0.004 0    

7 54-60       0.076 0.109 0.009    

8 60-66       0.017 0.124 0.059    

9 66-72       0.012 0.026 0.016    

10 72-78        0.022 0.024    

11 78-84        0.002     

12 84-90             

13 90-96             

14 96-102             

Probability of Forecast    0.004 0.064 0.327 0.205 0.293 0.108   1.000 

Note: 1) )Pr( sL is the prior probability of ammonia loss for each class of actual loss as computed follows equation (4). 

  2) The probability of losses for each class mean of forecast loss is shown in the shaded portion, and the sum of probabilities of all class levels must be equal to one.
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Step 4: Derivation of the Bayes Posterior Probability Distribution for Each Level of 

Forecast Nitrogen Loss 

The posterior probability is the conditional probability of actual ammonia loss 

when a forecast of ammonia loss is received, denoted by kp

is ZLg )|( . The posterior 

probability distribution for each class mean level of forecast predicted loss can be 

calculated as;  

(7) 
kp

i

kp

s

kp

si

kp

is

Z

LLZ
ZLg

)Pr(

)Pr(*)|Pr(
)|( 

 

 

where, kp

is ZLg )|( is the posterior probability of actual ammonia loss s

kpL  during 

application time k in period p given the forecast loss
 

iZ , kp

sL )Pr(  is the prior probability 

distribution calculated from the losses with actual weather in the same time period, 

kp

si LZ )|Pr( is the joint probability of loss from weather forecasts iZ and actual ammonia 

loss sL , and kp

iZ )Pr( is the probability of occurrence of a forecast ammonia loss iZ . That 

is for forecast class i, the individual posterior probabilities are obtained by dividing each 

element (gsi) in column i of the joint conditional matrix, )Pr(*)|Pr( s

kp

si LLZ , by its’ 

column total,
 kp

iZ )Pr( . Table III-21 presents the scheme for calculating the posterior 

probability for each class mean level of ammonia loss. Table III-22 also reports the 

posterior probabilities and the expected amount of ammonia losses for each class level of 

forecast predicted loss for applications during April 1 to 5 for the twelve-hour daytime-

only application method. 
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Table III-21. The Posterior Probability and the Expected Ammonia Loss for Each Class Means Level of Forecast Predicted 

Loss for the Applications during Time k 
 

Loss 

Level 
Forecast, Z

i
 

1 2 3 4 5 6 7 8 9 10 11 

Actual, L
s
 

Class Range 

of Loss 

(lbs/acre) 
0-8 8-16 

16
-2

4 

24
-3

2 

32
-4

0 

40
-4

8 

48
-5

6 

56
-6

4 

64
-7

2 

72
-8

0 80-88 

1 18-24 )/( 11

1 AF *Pr(L
1
)/Pr (Z

1
) )/( 12

1 AF *Pr(L
1
)/Pr (Z

2
) . . . . . . . . )/( 111

1 AF *Pr(L
1
)/Pr (Z

11
) 

2 24-30 )/( 21

2 AF *Pr (L
2
) /Pr (Z

1
) )/( 22

2 AF *Pr (L
2
)/Pr (Z

2
) . . . . . . . . )/( 211

2 AF *Pr (L
2
)/Pr (Z

11
) 

3 30-36 )/( 31

3 AF *Pr (L
3
) /Pr (Z

1
) )/( 32

3 AF *Pr (L
3
)/Pr (Z

2
) . . . . . . . . )/( 311

3 AF *Pr (L
3
)/Pr (Z

11
) 

4 36-42 . . . . . . . . . . . 

5 42-48 . . . . . . . . . . . 

6 48-54 . . . . . . . . . . . 

7 54-60 . . . . . . . . . . . 

8 60-66 . . . . . . . . . . . 

9 66-72 . . . . . . . . . . . 

10 72-78 . . . . . . . . . . . 

11 78-84 . . . . . . . . . . . 

12 84-90 . . . . . . . . . . . 

13 90-96 . . . . . . . . . . . 

14 96-102 )/( 141

14 AF *Pr (L
14

)/Pr (Z
1
) )/( 141

14 AF *Pr (L
14
) )/Pr(Z

2
) . . . . . . . . )/( 1411

14 AF *Pr(L
14
)/Pr (Z

11
) 

Expected N Loss
 )( 1ZE  )( 2ZE  . . . . . . . . )( 11ZE  

Note:  1) The shaded portion of Table III-21 shows the expected amount of ammonia N losses, E(Z
i
) for each class mean of forecast predicted loss. 

   2) The value of expected losses was computed from equation (8) below. 
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Table III-22. The Posterior Probability and the Expected Ammonia Loss for Each Class Means Level of Forecast Predicted 

Loss for the Applications during April 1 to 5 for the Twelve-Hour Daytime-only Application Method 
Loss 

Level  
Forecast, Z

i
 1 2 3 4 5 6 7 8 9 10 11 

Sum 

Actual, L
s
 

Class Range 

of Loss 

(lbs/acre) 

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 18-24    1.000 0.703 0.006 0 0 0    

2 24-30     0.253 0.028 0 0 0    

3 30-36     0 0.108 0 0 0    

4 36-42     0 0.282 0.013 0 0    

5 42-48     0.044 0.328 0.180 0.019 0    

6 48-54      0.248 0.294 0.012 0    

7 54-60       0.371 0.373 0.876    

8 60-66       0.083 0.425 0.547    

9 66-72       0.058 0.089 0.148    

10 72-78        0.074 0.217    

11 78-84        0.007     

12 84-90             

13 90-96             

14 96-102             

Probability of Forecast    21.00 23.58 42.86 54.03 61.81 65.97    

Note:  1) The shaded portion of Table III-22 shows the expected amount of ammonia N losses, E(Z
i
) for each class mean of forecast predicted loss. 

  2) The value of expected losses was computed follows equation (8) 
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Step 5: Estimation of Expected Ammonia Loss in terms of Forecast Data  

 The expected amount of ammonia loss for each class mean of the forecast weather 

can be estimated based on the known posterior probabilities in equation (7) above; that is 

kp

isS

s

s

kp

i ZLgLZE )]|(*[)()8(
1

_

 
  

where 
kp

iZE )( is the expected ammonia loss from applying the effluent following a given 

forecast weather condition i  in place during application time k in period p, 
_
sL is the 

midpoint of actual ammonia loss in class s (lbs/acre), and kp

is ZLg )|( is the posterior 

probability. The shaded portion of Tables III-21 and III-22 present the expected amount 

of ammonia loss for each class mean of forecast weather. 

The calculations above allow the producer to estimated loss
kp

iZE )( on each date 

(period and time of application). However, the producer also needs information on the 

likelihood of the next forecast given that forecast 
kp

iZE )( has been received for the SDP 

optimization model.  

 

Step 6: Stochastic Process of Deriving the Probability of the Next Forecast Loss 

given the Forecast of Current Ammonia Loss 

The view of estimated ammonia losses from forecast weather data (in Figure III-3) 

also indicates there is a small deviation between the amounts of ammonia lost from an 

application made from one hour to the next. This suggests that the amount of losses occurs 

under weather conditions in the future applications (six hours or 12 hours later) are 

unlikely to change greatly from the lost obtained in the current application. In other words, 
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the probability of loss occurrence in the future period is related to the loss in the current 

period. The Markovian property states that for any given present state, the conditional 

probabilities of the future state is determined by only the present and are independent of 

the past (Buchanan, p.189-195,1982). The expected ammonia loss for each class mean of 

forecast weather in the future application is assumed to be given by the future forecast 

probability. The expected ammonia loss follows a Markovian stochastic process. The 

mean levels of forecast ammonia loss can be used as a second state variable to identify 

the probability of ammonia loss and the movement from one period to the next. The 

transition probability of the expected loss moving from one period to the next is defined 

as 

)|Pr()...,,,|Pr()9( 1211

i

k

i

k

i

K

iii

k ZZZZZZ    

where )|Pr( 1

i

k

i

k ZZ 
is the probability of occurrence of ith ammonia loss for the application 

during time k+1 given the ith loss in application time k. This conditional probability 

describes the Markov process of forecast ammonia loss which moving from state i in 

application time k to the ith state in the next application, k + 1. 

The transition probability matrix was computed using the empirical probability 

distribution function. The first step is to classify the state variable of the current stage and 

the next stage into 11 classes with an increment of eight pound class per acre of loss--0-

7.99, 8-15.99, …, and 80-87.99. The next step is to align the nitrogen loss which occurred 

in the first period of application (e.g., midnight to 6:00 am) with the nitrogen loss from the 

forecast weather data in the next period (e.g., 6:00am to 12:00 noon). Then use the Pivot 

table in Excel to obtain the probability distribution of forecast ammonia loss for each 

class mean of forecast weather in the future application. Assume the producer makes a 
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decision choice d in current time k corresponding to a certain level of ammonia loss. The 

choice variable d takes a value of one when the producer decides to apply, and d = 2 

when the producer decides to wait for the later time. Also, there is the probability 

distribution of ammonia loss that occurs in each state i

kZ 1 (i 
 
= 1, 2,…, 11) of the next 

application (k+1). The transition probability of forecast ammonia loss from one 

application to the next is defined as 

)(),|Pr()10( 111 ,
dpdZZZZ i

kk

i

k

i

K

i

k

F

k k  
 

where, 

andp i

kk ,10 1,    




  
11

1 1, 1)(
I

i

i

kk dp
 

The scheme of the transition probabilities can be shown as Table III-23. The sum 

of transition probabilities for each state of nature in each period (sum across the row) must 

be equal to 1. However, there is a different transition matrix for each period of 

application relative to the decisions made. All probabilities may not exist in all states, 

depending on the times and periods of the application. This is because the weather 

becomes warmer from April through May 15.  
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Table III-23. Markov Transition Probability Matrix Moving from Application Time k =1 to Application Time k+1 Given Decision d 

State Z
i
 k+1 1 2 3 4 5 6 7 8 9 10 11 

Sum 
State Z

i
 k 

Forecast 

Mean Loss 

(lbs/acre) 

0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8 11p (d) 12p (d) 13p (d) 
14p (d) 15p (d) 16p (d) 17p (d) 18p (d) 19p (d) 110p (d) 

111p (d) 1 

2 8-16 21p (d) 22p (d) 23p (d) 
24p (d) 25p (d) 26p (d) 27p (d) 28p (d) 29p (d) 210p (d) 

211p (d) 1 

3 16-24 31p  (d) 32p  (d) 33p  (d) 34p  (d) 35p  (d) 36p  (d) 37p  (d) 38p  (d) 39p  (d) 310p  (d) 311p  (d) 1 

4 24-32 41p  (d) 42p  (d) 43p  (d) 
44p  (d) 45p  (d) 46p  (d) 47p  (d) 48p  (d) 49p  (d) 410p  (d) 

411p  (d) 1 

5 32-40 51p  (d) 52p  (d) 53p  (d) 54p  (d) 55p  (d) 56p  (d) 57p  (d) 58p  (d) 59p  (d) 510p  (d) 511p  (d) 1 

6 40-48 61p  (d) 62p  (d) 63p  (d) 64p  (d) 65p  (d) 66p  (d) 67p  (d) 68p  (d) 69p  (d) 610p  (d) 611p  (d) 1 

7 48-56 71p  (d) 72p  (d) 73p  (d) 74p  (d) 75p  (d) 76p  (d) 77p  (d) 78p  (d) 79p  (d) 710p  (d) 711p  (d) 1 

8 56-64 81p  (d) 82p  (d) 83p  (d) 84p  (d) 85p  (d) 86p  (d) 87p  (d) 88p  (d) 89p  (d) 810p  (d) 811p  (d) 1 

9 64-72 91p  (d) 92p  (d) 93p  (d) 94p  (d) 95p  (d) 96p  (d) 97p  (d) 98p  (d) 99p  (d) 910p  (d) 911p  (d) 1 

10 72-80 101p (d) 102p (d) 103p (d) 104p (d) 105p (d)  106p (d) 107p (d) 108p (d) 109p (d) 1010p (d) 1011p (d) 1 

11 80-88 111p  (d) 112p  (d) 113p  (d) 
114p  (d) 115p  (d) 116p  (d) 117p  (d) 118p  (d) 119p  (d) 110p  (d) 

1111p  (d) 1 
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In the study, there is different empirical transition probability matrix used for each 

specific application strategy. For the six- hour day and night application method (with 

180 periods over the planting horizon), there were 45 transition probability matrices 

applied to the BSDP optimization model. The probability was used to identify the 

probability of loss moving from any current state to another. There were only 17 

transition probability matrices uses in the optimization model under the twelve- hour 

daytime-only application (reported in Appendix A). Table III-24 presents the transition 

probability for each class mean level of losses that moving from application in the first 

twelve-hour application (6:00 am to 6:00 pm of April 1) to the next twelve-hour application 

(April 2). For instance, there is 90 percent chance that the producer will incur the loss 

between 32-40 lbs/acre in the next applications during twelve-hour of April 2 (6:00am to 

6:00pm) if the producer obtained the loss between 32-40 lbs/acre in the current 

application, April 1. 
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Table III-24. Markov Transition Probability of Forecast Ammonia Losses Moving from Applications during Twelve-hour Daytime 

of April 1 to the Next Day (April 2) 

State being in the next 

twelve- hour (April 2) 

1 2 3 4 5 6 7 8 9 10 11 

Sum Current 

State 

(April 1) 

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32    1 0 0 0 0 0    

5 32-40    0.050 0.900 0.050 0 0 0   1.000 

6 40-48    0 0.089 0.835 0.076 0 0   1.000 

7 48-56    0 0.106 0.106 0.426 0.362 0   1.000 

8 56-64    0 0.011 0.022 0.133 0.634 0.200   1.000 

9 64-72    0 0 0 0 0.296 0.704   1.000 

10 72-80             

11 80-88             
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Optimization Model 

Formation of the Bayesian Stochastic Dynamic Programming Problem 

The objective of the SDP model is to solve for the optimal decision of effluent 

application in each application period which gives the minimum amount of the total 

ammonia loss. The producer will compare the ammonia loss that occurs in the current 

period with the loss that he/she will receive in the future period. The expected losses 

obtained from the Bayesian formulas can be used as the producer expected cost from the 

decision made. There are eleven possible levels of ammonia loss that can occur in each 

period with the probability of )Pr( iZ in this study. The loss in the future period is 

dependent on the probability of loss that moving from the current period as indicated by 

the Markov transition probability. The Bayesian stochastic dynamic programming 

(BSDP) model then used to determine the optimal action of the effluent application by 

considering the amount of nitrogen lost that follows from the current probability 

distribution. The model employs the eight-day weather forecasts to use as a secondary 

state variable to indicate the transition probability of ammonia loss. The BSDP 

optimization model attempts to visualize the value of including weather forecasts in the 

decision making. The producer’s objective function under the BSDP model can be 

defined as  

121 1,, )(*)()()11(   k

iK

k

i

kkdk

i ZEdpZEMinimize
 

 

Subject to:    21ord 
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where k

iZE )( is the expected ammonia loss (lbs/acre) from applying the effluent at the 

following receipt of a forecast of ammonia loss for the current application time k, 

)(1, dp i

kk  is the transition probability of ammonia loss moving from state i in the current 

period to ith loss level of the future period, d is the choice variable which takes the value 

of one if the producer decides to apply the effluent under the current forecast loss Z
i
, and 

2d  when the producer waits for more favorable weather. 

Two Alternative Methods for Swine Effluent Application  

We tested two irrigation methods to apply the lagoon effluent. These two 

alternative methods are defined based on the starting hour of the sprinkler irrigation 

system and the duration of observing new weather forecasts. The two methods are a six-

hour day and night application and twelve-hour daytime-only application. With the six-

hour application method, the producer is assumed to make the decision every six hours 

based upon 198 hours observed weather forecasts (i.e., 6 hours plus 192 hours after an 

application). The producer applying in six-hour periods must make eight applications 

during the 180 possible periods to apply the effluent to the 128 acres corn field. 

Alternatively, the producer will make a decision each morning at 6:01 am after observing 

weather forecasts over the next 204 hours (i.e., 12 hours plus 192 hours after an 

application) when he/she operates the sprinkler irrigation only during twelve- hour 

daytime. Similarly, the producer must select four application periods out of 45 periods for 

this twelve-hour daytime-only method. 
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Solution of Bayesians Stochastic Dynamic Programming Models (BSDP) 

The optimal solution of effluent application is determined using Dynamic 

Programming Application (Kennedy, 1986). The program is formulated as a Visual Basic 

Application combined with an Excel spreadsheet for the data entry (see Appendix B). 

The solution for each BSDP model is obtained by using backward recursion starting from 

the last period and moving backward to the beginning period. The optimal results list the 

optimal action under each possible weather condition at each stage or point in time, along 

with the expected amount of total N loss if the optimal actions are followed.  

 

Value of Weather Forecasts 

Expected Ammonia Loss from BSDP Optimization 

The total amount of ammonia loss given in the solution of BSDP model is the 

total loss occurring from the decision made in the current period plus the losses that 

expected to occur from all future applications. There are different levels of total ammonia 

loss depending on weather conditions that are predicted to occur in the first period. In 

other words, the producer will incur the loss that corresponding to the probability of 

weather forecasts in the first period. Therefore, the total expected loss from applying the 

effluent to cover a 128 acre corn field can be calculated as the weighted sum of the total 

expected ammonia loss for all possible levels of initial forecast loss, that is  

 

     
I

i dk

iK

k k

ii

kkdk

i ZZEdpZELossExpectedTotal
1 ,121 11,, )Pr(*)(*)()()12(
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In the study, the total expected amount of ammonia loss for the two application strategies 

will be estimated based on the optimal solution of each BSDP model. 

Base Solution: Ammonia Loss without Using Forecast Information 

 With the ignorance of the weather forecasts, the producer is assumed to finish the 

effluent application to cover an entire field at the beginning of the planting season (first 

fourty-eight hours) because this will give the lowest expected loss. At a particular time of 

application, there is a set of ammonia losses that associated with all observed weather 

conditions. Suppose the weather conditions during the first period result in ammonia 

losses between  L
1
, L

2
, …, L

s 
, and the ith loss has whose probabilities follow the historical 

(prior) probability distribution Pr (L
s
). The expected amount of ammonia loss incurred in 

this application period is  

)Pr(*)()13(
1

s

k

S

s

s

kk LLLE  
  

where  E(L)k is the expected amount of ammonia loss (lbs/acre) from applying the 

effluent at given weather conditions in period k (k=1). This expected loss is calculated 

from multiplying the probability of each level of loss by the amount of ammonia loss. For 

this base application with the six-hour operation, the total expected amount of ammonia 

loss from the application to cover a 128 acre field is the sum of all expected losses from 8 

applications during April 1-2. Under the twelve-hour-daytime-only application, the total 

expected loss without forecast information is equal to the sum of all expected losses from 

4 applications during April 1- 4  
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Economic Benefit of Using Weather Forecasts 

The economic benefit from using the weather forecast is the difference between 

the total expected losses obtained from the BSDP and the expected losses from 

application without using forecast information. This economic benefit can be evaluated in 

terms of the cost of nitrogen fertilizer which the producer will purchase to compensate of 

the loss of nitrogen from the effluent application. The monetary value of weather 

forecasts is the difference between cost of nitrogen that the producer incurs under the 

BSDP method and the cost from application schedules without using forecast 

information. The five-year average price of nitrogen fertilizer (shown in Table I-4, 

Chapter I) is used to evaluate the value of forecasts. The comparison of the forecast 

values between the two application methods are also illustrated in this study. 
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IV.  

 

 

 
 

 

CHAPTER IV 

 

FINDINGS 

Validation of Mechanistic Model and Input Data Estimation 

 The first step of this study was to simulate the cumulative amount of ammonia N 

volatilization at 192 hours following effluent application using a mechanistic model 

developed by Wu.et al with actual hourly Mesonet weather data. (2003a). The model 

estimation was consistent with the field experimental data conducted at Oklahoma State 

University Panhandle Research Station, Oklahoma (Warren, 2001; Zupancic et al., 1999) 

as addressed in Chapter I.  The temperature, wind speed, relative humidity, and solar 

radiation variables were used as input data for the simulation model. The Wu model 

requires hourly solar radiation as an input.  However, estimates of solar radiation are not 

included in published forecasts. Econometric estimation was used to estimate this 

variable. The parameters of the solar radiation defined in equation 2 (Chapter III) were 

estimated using the GLM procedure in SAS. The results were reported in Table III-13 

(Chapter III). Those results were used to predict the values of the solar radiation and 

applied to the Wu’s model to simulate the ammonia volatilization for forecast weather 

data.  
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Econometric Estimation for the Differences in Simulated Cumulative N 

Volatilization 

The assumptions of the significant differences in the amount of ammonia 

volatilization by six-hour of the day and periods of application were tested by using the 

GLM procedure in SAS. The results (reported in Table III-6 to III-9, Chapter III) indicate 

there are significant differences in mean levels of ammonia volatilization between each 

six-hour of the day period (April 1-5) to the next. As a result, the application horizon in 

the study was divided into 180 periods under the six-hour day or night application 

method. Out of these periods, the producer needs to find 8 favorable periods (48 hours) to 

apply the effluent to cover a 128 acre field. When the sprinkler irrigation system was 

operated only during twelve-hour daytime periods (6:00 am to 6:00 pm), the application 

horizon was divided into 45 periods. The 4 periods are required for the producer to make 

applications under this method. The prior distribution and posterior probability of ammonia 

volatilization were also computed based upon those reported results in Chapter III.  

 

Bayesians Stochastic Dynamic Optimization Results 

 The objective of Bayesians stochastic dynamic programming (BSDP) is to solve 

for the optimal time of effluent application which minimizes the total expected ammonia 

volatilization such that the entire 128 acre field is covered. The analysis uses forecast 

weather conditions to indicate the random process of N volatilization which change 

relative to the weather that occurs during a 192 hour period following the application. 

The distribution of N volatilization was calculated using an empirical PDF method as 

described in a previous chapter. The total expected amount of ammonia volatilization is 
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used to compare the economic benefit when the producer uses weather forecasts (BSDP 

model) and when the producer just begins application from April 1. (The April first date 

was established above as the most favorable application time based on historical records).  

To evaluate the economic benefit of weather forecasts, the application method is 

defined in three ways: 1) the six-hour day or night application; 2) the twelve-hour 

daytime-only application; and 3) the base solution to always apply during the first forty- 

eight hours. The six-hour application period was arbitrarily assumed to be the shortest 

period for which the producer was willing to start and stop the pivot. The twelve-hour 

daytime-only period was used to test or measure the loss from forgoing nighttime 

applications. The third method is used when the producer does not incorporate weather 

forecast into his/her decision, and is used as the base solution. The optimal solutions for 

application strategies 1 and 2 were solved using backward recursion of dynamic 

programming (DP). The DP routine is run iteratively until the final solution for each 

period is reached. The final solution represents the minimum amount of total expected 

ammonia volatilization. This total loss is the expected loss obtained from the first action 

made in period 1, plus the expected loss for all future applications, which made to apply 

150 lbs of nitrogen per acre to the entire corn field. Table IV-1 presents the sample of the 

optimal action for each period of the twelve-hour daytime application method, which is 

obtained from the BSDP model.  

These optimal solutions reflect the producer’s actions upon the stage or point in 

time and the number of applications remaining. At the first period (April 1) with the 4 

applications remaining (no effluent has not been applied), the producer would apply if the 

forecast loss was less than 40 lbs/acre. After the first application has been made in period 1, 
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the decision of the producer in the next period (April 2) follows the right side of Table 

IV-1. If there are 3 applications remaining, the producer decided to apply the effluent 

when the range of forecast loss was below 32-40 lbs/acre. After these two applications 

were made, the producer has 2 remaining applications need to be applied. When the 

producer arrived period 3 with 2 applications remaining, the producer will applied the 

effluent if the forecast loss was less than 32-40 lbs/acre as shown in left side of Table  

IV-1 (Contd). When the producer arrived at period 4 (April 4) and has one application 

that needs to be made, the producer decision follows the right side of Table IV-1 (Contd). 

The application would be made if the loss was less than 32-40 lbs/acre. On the other 

hand, if the producer arrived in period 42 (May 12) and has not applied any effluent, the 

producer must apply the effluent regardless of the weather. This is because of the limited 

time remaining. The optimal or only action when there is limited time to complete the 

remaining applications is defined as A* in table IV-1  
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Table IV-1. The Optimal Action Obtained from the BSDP model for the Twelve-hour Daytime-only Application Method 

  Decision Made for Each Class of Forecast Loss by the Number of  Remaining Application 

 
4 Applications Remaining 

 

3 Applications Remaining 

Range of Loss (lbs/acre) 

2
4
-3

2
 

3
2
-4

0
 

4
0
-4

8
 

4
8
-5

6
 

5
6
-6

4
 

6
4
-7

2
 

7
2
-8

0
 

8
0
-8

8
 

  2
4
-3

2
 

3
2
-4

0
 

4
0
-4

8
 

4
8
-5

6
 

5
6
-6

4
 

6
4
-7

2
 

7
2
-8

0
 

8
0
-8

8
 

Application Date/ Loss Level 4 5 6 7 8 9 10 11 
 

4 5 6 7 8 9 10 11 

April 1 A A W W W W     

       

    

April 2 A A W W W W     

 

A A W W W W     

April 3 A A A W W W     

 

A A A W W W     

April 4 A A A W W W     

 

A A A W W W     

April 5 A A A W W W     

 

A A A W W W     

April 6   A A A W W W   

 

  A A A W W W   

April 7   A A A W W W   

 

  A A A W W W   

April 8   A A A W W W   

 

  A A A W W W   

April 9   A A A W W W   

 

  A A A W W W   

April 10   A A A W W W   

 

  A A A W W W   

. 
 

. . . . . . 
  

 
. . . . . . 

 . 
 

. . . . . . 
  

 
. . . . . . 

 . 
 

. . . . . . 
  

 
. . . . . . 

 May 11         A A A A 

  

      A A W W 

May 12         A* A* A* A* 

  

      A A A A 

May 13 

    

A* A* A* A* 

  

      A* A* A* A* 

May 14 

    

A* A* A* A* 

     

A* A* A* A* 

May 15         
A* A* A* A* 

          
A* A* A* A* 

Note:  1) ―A‖ defines the producer’s decision of applying the swine effluent and ―W indicates when the producer decided to wait for more favorable time. 

2)The shade portion of Table IV-1 indicates no forecasts of those amounts were received on those dates. 

 3) * Indicates application required because of the limited time remaining. 
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Table IV-1 (Contd). The Optimal Action Obtained from the BSDP model for the Twelve-hour Daytime-only Application 

Method 

  Decision Made for Each Class of Forecast Loss by  the Number of  Remaining Application 

 
2 Applications Remaining 

 

1 Applications Remaining 

Range of Loss (lbs/acre) 

2
4
-3

2
 

3
2
-4

0
 

4
0
-4

8
 

4
8
-5

6
 

5
6
-6

4
 

6
4
-7

2
 

7
2
-8

0
 

8
0
-8

8
 

  2
4
-3

2
 

3
2
-4

0
 

4
0
-4

8
 

4
8
-5

6
 

5
6
-6

4
 

6
4
-7

2
 

7
2
-8

0
 

8
0
-8

8
 

Application Date/ Loss Level 4 5 6 7 8 9 10 11 
 

4 5 6 7 8 9 10 11 

April 1 

       

  

         April 2 

       

  

         April 3 A A W W W W 

 

  

         April 4 A A A W W W 

 

  

 

A A W W W W 

  April 5 A A A W W W 

 

  

 

A A A W W W 

  April 6 

 

A A A W W W   

 

A A A W W W 

  April 7 

 

A A A W W W   

  

A A W W W W 

 April 8 

 

A A W W W W   

  

A A W W W W 

 April 9 

 
A A W W W W   

  

A A W W W W 

 April 10 

 

A A W W W W   

  

A A W W W W 

 . 
 

. . . . . . 
  

 
. . . . . . 

 . 
 

. . . . . . 
  

 
. . . . . . 

 . 
 

. . . . . . 
  

 
. . . . . . 

 May 11         A A W W 

  

. . . . . . 
 

May 12         A A W W 

     

A W W W 

May 13 

    

A A A A 

     

A A W W 

May 14 

    

A* A* A* A* 

     

A A A A 

May 15         A* A* A* A* 

     

A* A* A* A* 
Note: 1) ―A‖ defines the producer’s decision of applying the swine effluent and ―W indicates when the producer decided to wait for more favorable time.  

 2) The shade portion of this table indicates no forecasts of those amounts were received on those dates.  

 3) * Indicates application required because of the limited time remaining 
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In this study, there were six possible levels of loss observed to occur in the first 

period, which are given by the probability )Pr( iZ . Before the producer has received a 

forecast, the total expected loss incurred by the producer is equal to the probability 

weighted sum of total expected losses from all six possible levels of N losses in period 1. 

The total expected losses for six-hour day or night application and the twelve-hour 

daytime-only application methods are reported in Table IV-2. The value of 4,853 lbs.(the 

shaded portion in Table IV-2) represents the total expected amount of ammonia losses 

obtained when the sprinkle irrigation system was operated follows the six-hour day and 

night time strategy and the optimal decisions following record of forecast information are 

made. The expected loss is 5,779 lbs. if the effluent was applied only during the daytime 

and the optimal post forecast decisions are made. Although, the two application methods 

have included forecast information in the producer’s decision, there is an advantage from 

employing the six-hour application method since it is more flexible and allows 

application during nighttime (6:00pm to midnight and midnight to 6:00 am periods). The 

difference of 926 lbs (5,779 -4,853) is the reduced amount of nitrogen losses when the 

producer has more choices to operate the center pivot sprinkler irrigation system during 

both day and night time. 
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Table IV-2. The Total Expected Ammonia Volatilization from Swine Effluent Application for Each Class Range of Forecast 

Loss Obtained under BSDP Model 

 Loss 

Level* 

 

Class 

Range of 

Loss, iZ  
(lbs/acre) 

 

Six-hour day or night application Twelve-hour daytime-only 

Mean Days 

to 

Complete 

Application 

Probability 

of Forecast, 

)Pr( iZ , 

 in Period 1 

Total 

Expected 

Loss (lbs), 

E(Z
i
) 

Weight  

Average 

of 

Expected  

Loss (lbs) 

Mean Days 

to 

Complete 

Application 

Probability 

of Forecast,

)Pr( iZ ,  

in Period 1 

Total 

Expected 

Loss (lbs), 

E(Z
i
) 

Weight 

Average 

of Expected 

Loss (lbs) 

1 0-8         

2 8-16         

3 16-24         

4 24-32 7.0 0.012 3,330 40 4.0 0.004 2,688 10 

5 32-40 10.0 0.074 3,785 280 4.5 0.064 3,165 203 

6 40-48 16.0 0.416 4,648 1,934 

 

9.5 0.328 5,163 1,693 

7 48-56 18.5 0.199 5,106 1,016 16.0 0.204 5,889 1,203 

8 56-64 20.5 0.295 5,296 1,562 20.0 0.292 6,600 1,924 

9 64-72 20.5 0.004 5,368 21 

 

22.5 0.108 6,904 746 

10 72-80         

11 80-88         

 Sum  1  

 

4,853 

 

 1  

 

5,779 

 
Note: 1) There were eight applications required for six hour-day and night application method, and four applications required for the daytime application method. 

 2) The mean days to complete application were obtained from the thousand of simulations. 

 3) *There were only 6 possible levels of  N loss observed to occur in the first period (April 1-5). 
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The dynamic programming provides only information on the optimal decision for 

each stage and state, and the value of nitrogen loss from all ways following the decisions. 

Simulation was used to validate the decision rules given by this BSDP model and to 

derive competition times if the optimal decisions were followed. The decision rules from 

the BSDP were tested for each initial weather forecast by one thousand simulations. The 

mean simulated values of nitrogen loss were essentially equal to the optimal values 

reported in dynamic programming model. These simulations were made in an Excel 

spreadsheet, and generated based on the transition probability of ammonia loss. Table IV-

3 reports the range of total expected ammonia loss for each initial level of loss associated 

with the weather forecasts, which obtained from the thousand runs of simulations. 

Results are heavily dependent upon the first forecast. If the forecast received on 

April 1 was very favorable, 24-32 lbs of N lost per acre (and would only be received one 

percent of the time), then the expected loss for completing all eight applications was 

3,326 lbs given this forecast (Table IV-3). The range of the total expected ammonia 

losses for a quarter section range between 2,774 lbs. and 5,799 lbs (with 1.2 percent 

chance), when the producer applied effluent follows the six-hour application method. The 

expected nitrogen loss increases over the six-week period, so the presence of favorable 

application weather in the April 1-5 period is important. However, if the first forecast is 

for a loss of N between 64-72 lbs/acre (received 0.4 percent of the time), the optimal 

decision is to wait for a more favorable forecast, and the expected total loss of nitrogen 

upon receiving an unfavorable first forecast (64-72 lbs/acre) is 5,349 pounds with a range 

from 2,817 to 8,050 lbs for the entire 128 acre field. This is due to the weather conditions 

that become warmer from the beginning through the end of the season. When the effluent 
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was applied only during twelve-hour daytime, the total expected ammonia losses are 

varied between 2,804- 9,216 lbs if the forecast received on April 1 was unfavorable, 64-

72 lbs of N lost per acre (10.8 percent chance). The case where loss from following the 

twelve-hour daytime-only application is less than for the six-hour day and night method 

occurs only in the case of initial forecasts of loss less than 40 lbs per acre. These forecasts 

occur less than 8.6 and 6.8 percent of the time for the six and twelve hour application 

methods, respectively. There were too few observations to reliable estimate the Markov 

forecast transmission matrices in these cases. 
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Table IV-3. The Range of Total Expected Ammonia Volatilization from Swine Effluent Application for Each Class Range of 

Weather Forecast of Period 1 (April 1) 

Loss 

Level 

Class Range,
iZ (lbs/acre) 

Six-hour Day or Night Application Method Twelve-hour Daytime-only Application Method 

Probability 

of Forecast 

Means N 

Loss 

SD N 

Loss 

Min N 

Loss 

Max N 

Loss 

Probability 

of Forecast 

Means N 

Loss 

SD N 

Loss 

Min N 

Loss 

Max N 

Loss 

1 0-8           

2 8-16           

3 16-24           

4 24-32 0.012 3,326 32 2,774 5,799 0.004 2,688 0 2,688 2,688 

5 32-40 0.074 3,773 54 2,865 7,234 0.064 3,129 14 2,771 6,885 

6 40-48 0.416 4,683 73 2,813 7,590 0.328 5,147 38 2,771 8,698 

7 48-56 0.199 5,070 70 2,817 8,000 0.204 5,849 51 2,771 9,216 

8 56-64 0.295 5,322 67 2,898 7,815 0.292 6,588 40 2,771 8,872 

9 64-72 0.004 5,349 61 2,817 8,050 0.108 6,941 32 2,804 9,216 

10 72-80           

11 80-88           

  1.000 4,853*  2,774 8,050 1.000 5,779*  2,688 9,216 

Note: 1) There were eight applications required for six hour-day and night application method, and four applications required for the daytime application 

method. 

2) The total expected ammonia losses were obtained from the thousand runs of different simulations, which made in an Excel spreadsheet. 

      3) There were only 6 possible levels of  N loss observed to occur in this first application period (April 1-5). 

4) *Represents the weighted sum of the total expected ammonia loss for all possible levels of forecast loss calculated follows equation (12). 
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There is an average of 7 days to complete all application when the initial 

favorable 24-32 lbs/acre (level 4) is received and the producer operated the irrigation 

system with the six-hour day and night time application method. On the other hand, the 

producer required an average of 20.5 days to complete all application when the forecast 

loss was 64-72 lbs/acre. This is because of the producer extended his/her application to 

wait for more favorable weather. With the twelve-hour daytime application method, an 

average of 4 days was required to complete all applications when the favorable 24-32 lbs 

of N lost was received. A similar reliability problem occurs when infrequent very high 

forecast loss are received. Table IV-4 reports the mean days to complete all applications 

for each class of initial forecast loss for two application methods.  
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Table IV-4. The Mean Average Days of Completing All Application for Each Class of Initial Forecast Ammonia Loss 

Loss 

Level 

Forecast Class 

Range, iZ , in 

Period 1 

Six-hour Day or Night Application Method Twelve-hour Daytime-only Application Method 

Probability of 

Receiving 

Forecast 

Mean Days to Complete All 

Application
b
  Probability of 

Receiving 

Forecast
a
 

Mean Days to Complete All 

Application
b
 

Means  Min  Max  Means  Min  Max  

1 0-8 0    0    

2 8-16 0    0    

3 16-24 0    0    

4 24-32 0.002 7.0 2 45 0.001 4.0 4 4 

5 32-40 0.018 10.0 2 45 0.016 4.5 4 30 

6 40-48 0.120 16.0 3 45 0.096 9.5 5 44 

7 48-56 0.171 

 

18.5 3 45 0.161 16.0 5 44 

8 56-64 0.287 20.5 3 45 0.241 20.0 5 44 

9 64-72 0.307 20.5 4 45 0.345 22.5 6 44 

10 72-80 0.086    0.128    

11 80-88 0.006    0.013    

    2 45   4 44 

Note: 1) The probability of receiving forecast is the probability of occurrence in each class mean level of ammonia loss over the 45 days period. 

2) The mean days to complete all application to cover 128 acre corn field for each class level of loss in the first period. These values were obtained from     

the thousand runs of simulation, which done in Excel spreadsheet. 

3) There were only 6 possible levels of  N loss observed to occur in this first application period (April 1-5). 
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Figure IV-1 presents the probability distribution of the number of six-hour periods 

required to complete all applications for the 128 acre corn field following receipt of the 

initial forecast. A view from Figure IV-1 (a) shows in the rare event the producer receives 

the very favorable forecast of 32 lbs per acre or less (1.2 percent chance), the producer 

has 65 percent chance of completing all applications in 10 days. Conversely, only 16 

percent of the time that the producer will complete all applications in 10 days when the 

unfavorable forecast between 64-72 lbs per acre of N lost is received (0.4 percent 

chance), the producer completed the applications at a later point in the planting season. 

When the producer received the most event forecast loss of 48 lbs or less (42 percent 

chance), the producer has 19 percent chance of completing all applications in these 10 

days. Under the twelve-hour daytime-only application method, there is an 85-100 percent 

chance that the producer could complete all applications within 4 days when the initial 

favorable forecast of 40 lbs per acre or less was received (0.4 percent chance). However, 

mean application times extended from 16 to 22 days and actual times did reach the end of 

the season when the forecast loss in period 1 was between 40-48 lbs/acre or higher. 

Figure IV-1 (b) shows the distribution of the number of a period complete application 

under the twelve-hour daytime-only application method. 
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Figure IV-1. The Probability Distribution of Application Period for Completing the 

Application of Swine Effluent Given 150 lbs of Nitrogen per Acre 

 

a) Six-hour day and night method (8 applications are required from 180 periods) 

       

 

b) Twelve-hour daytime-only application method (four applications are required  

from 45 period)
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Method 3: Ammonia Volatilization without Using Forecast Information 

When weather forecasts are not included in the decision making, the producer was 

assumed to begin an application from the first day of planting season (April 1) and 

continued apply until complete all applications (48 hours). Under the six-hour day and 

night time application strategy, the producer started the pivot in the early morning of 

April 1 and stopped at midnight of April 2. When the producer applied the effluent only 

twelve-hour daytime, the pivot sprinkler irrigation was operated for 4 days from April 1 

to April 4. The expected ammonia loss without using weather forecasts in each period is 

the sum product of the probability of each weather condition and the amount of N loss. 

Table IV-5 presents the prior probability of ammonia loss and the expected loss for each 

class of loss from applications during April 1-5. 
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Table IV-5. Prior Probability of Ammonia Loss for Each Class of Weather Conditions for Application Made During April 1-5 

Loss Level 

Class 

Range 

(lbs/acre) 

Class        

Means Loss 

(lbs/acre) 

Application Time of The Day 

Six-hour Day or Night Application Method 
Twelve-hour 

Daytime-only 

12:01-6:00am 6:01am-12:00pm 12:01-6:00pm 6:01pm-12:00am 6:01 am – 6:00 pm 

1 18-24 21 0.047 0.036 0.067 0.071 0.051 

2 24-30 27 0.023 0.035 0.016 0.035 0.026 

3 30-36 33 0.041 0.035 0.035 0.051 0.035 

4 36-42 39 0.157 0.078 0.112 0.190 0.095 

5 42-48 45 0.114 0.157 0.149 0.104 0.153 

6 48-54 51 0.212 0.143 0.147 0.206 0.145 

7 54-60 57 0.212 0.200 0.188 0.182 0.194 

8 60-66 63 0.143 0.216 0.184 0.102 0.200 

9 66-72 69 0.051 0.053 0.055 0.049 0.054 

10 72-78 75 
 

0.047 0.043 0.006 0.045 

11 78-84 81 
  

0.004 0.004 0.002 

12 84-90 87 
  

   

13 90-96 93 
  

   

14 96-102 99 
  

   

Total Expected loss (lbs) 794 839 820 763 1,659 

Note:  1) The total expected loss for each six-hour application time computed as the sum product of the probability of each loss level in that application time   

       and its respective means loss. This expected N was volatilized from an application to covers a 16 acre corn field.  

  2) The total expected loss for the twelve-hour daytime-only application is the volatilization from an application such that the 36 acres were covered. 
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With the constraint of fourty-eight hours to apply to all 128 acres, the total expected loss 

obtained from the base application with the six-hour day and night method is equal to the sum of 

the expected losses from applications made during six-hour time of April 1 and 2. The total 

expected loss of these two days is 6,432 pounds (3,216 lbs/day x 2 days). Table IV-6 reports the 

expected loss from applications made during each six-hour of each five-day period. When the 

producer applied the effluent only during the twelve-hour daytime, the total expected loss was 

6,636 pounds (1,659 lbs/day x 4 days) for the 128 acre corn field. This total loss is the sum of the 

expected losses from 4 applications of April 1 to April 4. The expected ammonia loss from 

applications made during twelve-hour daytime of each five-day period is reported in Table IV-7. 

The results reported in Tables IV-6 and IV-7 also indicate that the level of ammonia losses tends 

to increase over the period of application from April 1 through May 15. 
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IV-6. Expected Ammonia Loss (lb./acre) from Applications Made during Each Six-hour of the Day by Each Five-day 

Period 

Application Time 

The Expected N Loss by Days of Application 

April  May 

1-5 6-10 11-15 16-20 21-25 25-30  1-5 5-10 11-15 

12:01-6:00am 794 824 940 915 915 915  983 1,081 1,138 

6:01am-12:00pm 839 866 983 957 957 957  1,020 1,124 1,188 

12:01-6:00pm 820 859 969 942 942 942  1,006 1,114 1,178 

6:01pm-12:00am 763 814 915 885 885 885  960 1,056 1,109 

Total Expected Loss    

(lbs/day) 
3,216 3,363 3,807 3,699 3,699 3,699  3,969 4,375 4,613 

Note: The total expected loss is the sum of N losses from all six-hour application of the day. This total expected loss volatilized from applications in 

each day of each five-day periods such that the 64 acre corn field are covered. 
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Table IV-7.  Expected Ammonia Loss for Covering a 128-Acre Corn Field from 

Applications during Each Five-day Period under the Twelve-hour Daytime-only 

Application Method 

Application Time Total Expected Loss 

from 128 acres (lbs) Period Month/Date  

1 April 1-5 6,636 

2 April 6-10 6,900 

3 April 11-15 7,808 

4 April 16-20 7,600 

5 April 21-25 7,600 

6 April 25-30 7,600 

7 May 1-5 8,104 

8 May 5-10 8,952 

9 May 11-15 9,464 

 
a
 The expected loss occurring from twelve-hour daytimes application during particular day of each five-

day periods such that the 32 acres were covered. 

 
 

Economic Value of Weather Forecasts 

Figure IV-2 presents the comparison of nitrogen losses from effluent application 

using weather forecasts (BSDP model) and without using weather forecasts. The results 

report that the amount of nitrogen loss occurred from applications without using weather 

forecasts is higher than the loss obtained under the BSDP model. The nitrogen loss of 

1,579 pounds (6,432 -4,853 lbs) were reduced when the producer applied the effluent 

upon the favorable weather forecasts using the six-hour day and night application 

method. In the case of the twelve-hour daytime-only method, the nitrogen losses was also 

reduced by 857 pounds (6,636 -5,779 lbs).  
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Figure IV-2. Total Expected Ammonia Loss for Covering a 128-Acre Corn Field 

Obtained from With and Without Weather Forecast for Two Application Methods  
 

 
 

The amount of nitrogen loss can be converted to monetary values to the producer, 

which he/she can save from using the available information of weather forecasts. The 

monetary values were computed as the cost of commercial nitrogen fertilizer that the 

producer needs to purchase to apply to the corn field in order to have a sufficient amount 

of nutrient required (150 lbs/acre). With the nitrogen price is $0.50 per pound and 

weather forecasts were completely ignored, the producer incurs the cost of $3,216, and 

$3,317 for six-hour day and night application method and twelve-hour daytime-only 

method, respectively. The nitrogen costs are decreased to $2,427 if one includes the 

probability of weather forecasts to the decision making of effluent application by using 

the six-hour day or night application method. The cost from application using the twelve-

hour daytime-only application method was also reduced to $2,891. Figure IV-3 shows the 

comparison of nitrogen fertilizer cost at the N price of $0.50 pound per acre for a quarter 

section of corn field between two alternative application methods. 
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 Figure IV-3. The Comparison of Nitrogen Fertilizer Cost per 128 Acre Corn Field 

between Application Methods  
 

 

 

The sensitivity analysis of the BSDP model results was also implemented to 

consider the effect of the increase in the price of the nitrogen commercial fertilize from 

$0.25 to $0.50 to $0.75 per pound. Table IV-8 presents the summary of the expected 

nitrogen cost at each nitrogen price for the two application methods. With the five-year 

average price per pound of urea nitrogen fertilizer, $0.50, the value of weather forecasts 

was $789 per quarter section ($3,216 - $2,427). This value was gained when the producer 

making decision from observing the new weather forecasts every six hours. When the 

effluent was applied only during the daytime, the nitrogen cost was reduced by $426 

($3,317 - $2,891). There is $464 ($2,891 - $2,427) difference in the nitrogen cost when 

the producer determined the time of effluent application every six hours instead of every 

morning. When the nitrogen fertilizer price was increased from $0.50 to $0.75 per pound, 

the values of forecast increased to $1,184 and $640 per quarter section for the six-hour 
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day and night and twelve-hour daytime-only application methods, respectively. These 

results suggest that the higher level of nitrogen fertilizer price could increase the value of 

weather forecasts. 
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Table IV-8. The Expected Cost of Nitrogen Fertilizer for 128 Acres of a Corn Field under Two Application Methods  

Method of 

Application 

Without Weather Forecast With Weather Forecast 

Expected 

Loss 

(lbs/quarter) 

Nitrogen Cost per Quarter 

by Price of N ($/lbs) 
Expected 

Loss 

(lbs/quarter) 

Nitrogen Cost per Quarter 

by Price of N ($/lbs) 

N = $0.25 N = $0.50
*
 N = $0.75 N = $0.25 N = $0.50* N = $0.75 

Six-hour Day/Night 6,432 1,608 3,216 4,824 4,853 1,214 2,427 3,640 

Twelve-hour Daytime 6,634 1,659 3,317 4,976 5,779 1,445 2,891 4,336 

Note: 1) The expected losses used for calculating the cost of nitrogen were obtained from the optimal solutions of the Bayesian Stochastic Dynamic 

Programming. 

          2) The cost of nitrogen fertilizer was computed as the value nitrogen lost from effluent application to cover a 128 acre corn field. 

          3) * Represents the five-year average price per pound of nitrogen in urea form (from 2006 to 2010).  
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CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATION 

Summary 

The objectives of this study were to determine the most efficient time to apply 

swine effluent with minimum ammonia volatilization, and to evaluate the economic value 

of using weather forecasts. The lagoon effluent was assumed to be applied by a pivot 

irrigation system to a quarter section of a corn field (128 acres). Two application methods 

were composed. One is the six hour- day and night application, and another method is the 

twelve-hour daytime-only application. The application horizon was the 45 day period 

from April 1- May 15. Over the application period, the producer must determine the most 

efficient 48 hours to apply the effluent to the entire 128 acres at the rate of 150 pounds of 

nitrogen per acre. Bayesian Stochastic Dynamic Programming (BSDP) was used to find 

the optimal action of application when weather forecasts were included into the decision 

process. When the producer did not use forecast information, the lagoon effluent was 

assumed to be applied during the first fourty-eight hours of the planting season (i.e. April 

1-4 upon the method of application). The total amounts of ammonia volatilization under 

BSDP models were used to compare with the losses from application without using 

forecasts. It was expected that the ammonia volatilization obtain under the BSDP models 

would be less than the amount of losses under the application without incorporating 
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weather forecasts. The reduced amount of ammonia volatilization was used to illustrate 

the monetary value of weather forecasts. The comparison was made for both application 

methods: six-hour day and night time and twelve-hour daytime-only. 

Conclusions 

The statistic analysis was performed to test the hypotheses for significant 

differences of ammonia volatilization by the time of application using econometric 

model. The parameter estimates under the econometric models were consistent with the 

study’s assumption. There was evidence of the difference in levels of ammonia 

volatilization by hours of the day and periods of application. The probability distributions 

of ammonia volatilization, used in the decision making, were computed under the 

empirical PDF approach based on the statistic results. Also, the transition probabilities 

were computed and used to indicate the Stochastic process of ammonia volatilization to 

use in the BSDP optimization model. 

The comparison of the expected ammonia loss from optimal applications under 

the BSDP model with the application without using weather forecasts indicated that the 

amount of N volatilization can be reduced when the producer include forecasts into 

his/her decision. The total ammonia volatilization was reduced by 25% and 15 % under 

the six-hour application method and twelve-hour daytime-only method. The economic 

benefit gains of using weather forecasts were approximately $790 and $430 per quarter 

section of a corn field. This reduced cost of nitrogen fertilizer can be used to demonstrate 

the monetary value of weather forecasts (dollars/quarter section of corn field) to the 

producers. Additionally, the advantage of observing weather forecasts every six hours 

compared to the daily decision was almost $470 per quarter section of field higher. 
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However, this benefit was calculated without considering the additional cost of effluent 

application. Intuitively, a higher labor cost would be incurred if the producer operates the 

pivot sprinkler during both day and night times. This is because there is the cost of 

turning on and off the irrigation system. 

 

Recommendations 

The value of using weather forecasts indicated from the study would recommend 

the producers in the Panhandle areas to consider the forecast information to determine the 

most efficient time of effluent application. The results of this study give the guideline that 

the special program can be developed from using the Mesonet’s forecast data to provide 

base information for the farmer’s decision. This program can be written to read the 

forecast data and provides the estimates of nitrogen lost under each forecast weather 

conditions. However, the hourly forecast data of the Mesonet sites may be limited to 

eighty-four hours. Unfortunately, there was not enough time to test the value of limiting 

forecast data to 84 hours. However, the most of ammonia losses have occurred within the 

first 84 hours. The value of the 84 hour forecast should be determined. 

In addition the Wu model does require further efforts to improve estimate of 

nitrogen losses under a crop canopy height because the length of canopy can affect the 

amount of N volatilization from the irrigation. Also, the cost of labor for operating the 

pivot sprinkler irrigation should be considered in the future research to determine the 

advantage between using the two application strategies, six-hour day and night 

application and twelve-hour daytime-only application. 
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APPENDIX A-TRANSITION PROBABILITY MATRIC OF AMMONIA 

VOLATILIZATION 

The transition probability is used to identify the probability of ammonia loss and 

the movement of loss from one period to the next. This probability was computed 

following the empirical probability distribution function. The computation was 

accomplished with the Pivot table in Excel spreadsheet. In this study, there were 45 

transition matrices applied to the dynamic programming model under the six-hour day or 

night times application method (180 periods of application). There were only 17 

transition probability matrices used in the optimization model for the twelve-hour 

daytime-only application method (45 periods of application). The transition probabilities 

of the expected loss moving from one period to the next for the twelve-hour daytime-only 

application method are reported in Table 1 through 17. 
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Appendix Table 1. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During April 1 to April 5 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32    1 0 0 0 0 0   1.000 

5 32-40    0.050 0.900 0.050 0 0 0   1.000 

6 40-48    0 0.089 0.835. 0.076 0 0   1.000 

7 48-56    0 0.106 0.106 0.426 0.362 0   1.000 

8 56-64    0 0.011 0.022 0.133 0.634 0.200   1.000 

9 64-72    0 0 0 0 0.296 0.704   1.000 

10 72-80             

11 80-88             
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Appendix Table 2. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of April 5 and April 6  

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32     1.000       1.000 

5 32-40     0.600 0.400      1.000 

6 40-48      0.656 0.344     1.000 

7 48-56      0.169 0.785 0.046    1.000 

8 56-64       0.077 0.410 0.513   1.000 

9 64-72        0.217 0.633 0.150  1.000 

10 72-80             

11 80-88             
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Appendix Table 3. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During April 6 to April 10 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40     0.368 0.631      1.000 

6 40-48      0.714 0.286     1.000 

7 48-56      0.163 0.721 0.116    1.000 

8 56-64       0.094 0.406 0.500   1.000 

9 64-72        0.069 0.724 0.207  1.000 

10 72-80          1.000  1.000 

11 80-88             
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Appendix Table 4. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of April 10 and April 11 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40      1.000      1.000 

6 40-48      0.722 0.173 0.090 0.015   1.000 

7 48-56      0.287 0.639 0.065 0.009   1.000 

8 56-64      0.073 0.053 0.537 0.337   1.000 

9 64-72        0.360 0.400 0.240  1.000 

10 72-80      0.166 0.200  0.200 0.367 0.067 1.000 

11 80-88             
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Appendix Table 5. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During April 11 to April 15 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      1.000      1.000 

7 48-56       0.828 0.171    1.000 

8 56-64       0.010 0.978 0.011   1.000 

9 64-72        0.047 0.952   1.000 

10 72-80          1.000  1.000 

11 80-88          0.166 0.833 1.000 

 



 

 

 

1
1
9

 

Appendix Table 6. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of April 15 and April 16 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      0.444 0.556     1.000 

7 48-56      0.053 0.719 0.228    1.000 

8 56-64       0.307 0.693    1.000 

9 64-72        0.160 0.520 0.320  1.000 

10 72-80        0.250  0.750  1.000 

11 80-88          0.600 0.400 1.000 
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Appendix Table 7. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During April 16 to April 20 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      0.364 0.636     1.000 

7 48-56      0.135 0.573 0.292    1.000 

8 56-64       0.112 0.531 0.357   1.000 

9 64-72        0.049 0.707 0.244  1.000 

10 72-80         0.343 0.571 0.086 1.000 

11 80-88          1.000  1.000 
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Appendix Table 8. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of April 20 and April 21 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      0.400 0.600     1.000 

7 48-56      0.158 0.526 0.316    1.000 

8 56-64        0.525 0.475   1.000 

9 64-72        0.053 0.816 0.131  1.000 

10 72-80         0.455 0.545  1.000 

11 80-88          1.000  1.000 
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Appendix Table 9. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During April 21 to April 25 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      0.538 0.462     1.000 

7 48-56      0.400 0.500 0.100    1.000 

8 56-64       0.088 0.842 0.070   1.000 

9 64-72       0.007 0.149 0.731 0.113  1.000 

10 72-80         0.676 0.324  1.000 

11 80-88             
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Appendix Table 10. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of April 25 and April 26 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      0.214 0.786     1.000 

7 48-56       0.839 0.161    1.000 

8 56-64       0.048 0.920 0.032   1.000 

9 64-72       0.012 0.268 0.720   1.000 

10 72-80         0.593 0.407  1.000 

11 80-88             
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Appendix Table 11. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During April 26 to April 30 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48      0.520 0.480     1.000 

7 48-56      0.414 0.483 0.103    1.000 

8 56-64       0.031 0.536 0.433   1.000 

9 64-72       0.031 0.198 0.521 0.250  1.000 

10 72-80         0.100 0.900  1.000 

11 80-88             
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Appendix Table 12. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of April 30 and May 1 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48       1.000     1.000 

7 48-56       0.542 0.424 0.034   1.000 

8 56-64       0.129 0.371 0.500   1.000 

9 64-72        0.192 0.747 0.061  1.000 

10 72-80        0.020 0.540 0.440  1.000 

11 80-88             
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Appendix Table 13. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During May 1 to May 5 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48             

7 48-56       0.368 0.579 0.053   1.000 

8 56-64        0.566 0.434   1.000 

9 64-72        0.163 0.641 0.196  1.000 

10 72-80         0.429 0.571  1.000 

11 80-88             
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Appendix Table 14. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of May 5 and May 6 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48             

7 48-56        0.857 0.143   1.000 

8 56-64       0.128 0.479 0.393   1.000 

9 64-72        0.176 0.613 0.211  1.000 

10 72-80         0.421 0.579  1.000 

11 80-88             
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Appendix Table 15. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During May 6 to May 10 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48             

7 48-56       0.520 0.480    1.000 

8 56-64        0.233 0.767   1.000 

9 64-72        0.090 0.800 0.110  1.000 

10 72-80        0.094 0.656 0.250  1.000 

11 80-88             
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Appendix Table 16. Markov Transition Probability of Forecast Ammonia Losses Moving from Twelve-hour between 

Application of May 10 and May 11 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48             

7 48-56        1.000    1.000 

8 56-64        0.378 0.622   1.000 

9 64-72        0.123 0.735 0.103 0.039 1.000 

10 72-80         0.135 0.730 0.135 1.000 

11 80-88             
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Appendix Table 17. Markov Transition Probability of Forecast Ammonia Losses Moving from One Day to the Next for the 

Twelve-hour Daytime Application During May 11 to May 15 

State being in the next 

twelve- hour  
1 2 3 4 5 6 7 8 9 10 11 

Sum 
Current 

State  

Forecast N 

Loss (lbs/acre) 
0-8 8-16 16-24 24-32 32-40 40-48 48-56 56-64 64-72 72-80 80-88 

1 0-8             

2 8-16             

3 16-24             

4 24-32             

5 32-40             

6 40-48             

7 48-56             

8 56-64        0.551 0.449   1.000 

9 64-72        0.068 0.651 0.226 0.055 1.000 

10 72-80         0.197 0.724 0.079 1.000 

11 80-88          0.824 0.176 1.000 
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APPENDIX B-BAYESIAN STOCHASTIC DYNAMIC  

PROGRAMMING OPTIMIZATION 

The Dynamic Programming Application of J. Kennedy (1986) was used to solve 

the optimal solution for effluent application. The input data were generated in an Excel 

spreadsheet and applied to optimization application. Figure 1 shows the excel spreadsheet 

for data entry used in Dynamic Programming. Also, the optimization of the application for 

two alternative methods can be illustrated in Figure 2 and Figure 3. 
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Appendix Figure 1. The Excel Spreadsheet of Input Data Entry for Bayesian Stochastic Dynamic Programming Optimization  

180 Stage 8 Applications 

Effluent Problem 

 

Maximum 

Applications # 8 

 

9 1 2 3 4 5 6 7 8 9 10 11 

180 Stages 

  

Num Forcecasts 11 1 1 

           

0 Discount Rate % 

 

Num of Markov  

Matric 45 1 2 

           S Determistic/Stochastic Max No of  States 89 1 3 

           

N 

Constant Returns for All  

Stages? Last Data Row 29575 1 4 0 0 0 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

N Presence of Decision Lables 

   

1 5 0 0 0 0.00 0.61 0.39 0.00 0.00 0.00 0.00 0.00 

Stage State Decision Return Next State Probability 1 6 0 0 0 0.00 0.00 0.76 0.24 0.00 0.00 0.00 0.00 

180 1 1 -1000 89 1  1 7 0 0 0 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 

180 2 1 -1000 89 1 

 

1 8 0 0 0 0.00 0.00 0.00 0.00 0.68 0.32 0.00 0.00 

180 3 1 -1000 89 1 

 

1 9 0 0 0 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

180 4 1 -1000 89 1 

 

1 10 

           180 5 1 -1000 89 1 

 

1 11 

           180 6 1 -1000 89 1 

 

2 1 

           180 7 1 -51.78 89 1 

 

2 2 

           180 8 1 -63.077 89 1 

 

2 3 

           180 9 1 -69.503 89 1 

 

2 4 

           180 10 1 -72.521 89 1 

 

2 5 0 0 0 0.14 0.86 0.00 0.00 0.00 0.00 0.00 0.00 

180 11 1 -83.109 89 1 

 

2 6 0 0 0 0.00 0.10 0.85 0.06 0.00 0.00 0.00 0.00 

 

-1 

     

2 7 0 0 0 0.00 0.00 0.17 0.69 0.14 0.00 0.00 0.00 

179 8 1 -57.784 89 1 

 

2 8 0 0 0 0.00 0.00 0.04 0.13 0.57 0.26 0.00 0.00 

179 8 2 0 7 0.16 

 

2 9 0 0 0 0.00 0.00 0.00 0.00 0.42 0.58 0.00 0.00 

179 8 2 0 8 0.6 

 

2 10 

           179 8 2 0 9 0.24 

 

2 11 
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Appendix Figure 2. The Dynamic Programming Routine for Optimization Application for Six-hour Day and Night Times 

Application Method 
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Appendix Figure 3. The Dynamic Programming Routine for Optimization Application for Twelve-hour Daytime-only 

Application Method 

 



 

135 

 

The stochastic optimization solves for an optimal solution in each application 

period. The stochastic process of the forecast ammonia losses moving from one period to 

the next follows the transition probability. The optimization takes approximately 45 

minutes for each application method to find the optimal solution over the application 

horizon.  
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Scope and Method of Study: The purpose of this study was to determine the most 

efficient time to apply swine effluent corn production in the Texas and Oklahoma 

Panhandle area. The effluent was assumed to be applied to a 128-acre corn field 

by a central pivot sprinkler irrigation system between April 1 and May 15. It was 

assumed that 48 hours were required to complete the application with the rate of 

150 pounds nitrogen per acre. The mechanistic model developed by Wu et al. 

(2003a) was used to estimate the ammonia volatilization over the 192-hour period 

following application. Hourly weather forecast data were used in a Bayesian 

stochastic dynamic programming model to find the optimal time periods for 

effluent application. Markov transition matrices tracked the changes in forecast 

frequency from one day to the next. Total expected ammonia losses when 

applications were made with and without using weather forecasts were compared. 

The monetary values of the weather forecasts were estimated as the cost of 

additional nitrogen fertilizer to replace the nitrogen lost from nitrogen 

volatilization.  

 

Findings and Conclusions: The simulated ammonia loss from the actual hourly weather 

data showed that 35% of ammonia applied would be lost when the application 

was made between April 1-5. The expected loss increased to 50% when the 

application was delayed until May 11-15. The expected nitrogen loss was reduced 

to 25% when the producer made an application only upon receiving a favorable 

weather forecast and was willing to operate the pivot for a six-hour period either 

day or night. If the producer applied effluent on a 12-hour day time only schedule 

but applied only after receiving a favorable forecast, the expected loss declined 

from 35 % to 30%. With nitrogen at $0.50 per pound, the value of the forecast 

information for a 128 acre corn field was $780 and $430 for the six-hour 

application and twelve-hour daytime-only application methods, respectively. 

There was a benefit of $463 for the 128-acre corn field from applying the effluent 

on a flexible six-hour day and/or night method as opposed to the 12-hour daytime 

only schedule. It is recommended the Wu model be incorporated into the 

Oklahoma Mesonet system using forecast weather data to provide producers with 

real time forecasts of nitrogen losses from effluent application.  


