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ABSTRACT:  

 

First essay determines the optimal lake levels for Lake Tenkiller that maximizes 

the total net economic benefits derived from both marketed and non-marketed uses under 

stochastic inflows. It was found that for Lake Tenkiller when recreational benefits are 

included, it is beneficial to maintain the lake level at around 634 feet above mean sea 

level until mid-August, and then start drawing down for hydropower generation.  

Second essay assists the proposed biorefinery by determining if it can reduce the 

overall year-to-year variability in switchgrass biomass production by strategically 

selecting a portfolio of land to be leased to meet the required feedstock demand of the 

biorefinery. It was found that strategically selecting land to lease would reduce both the 

expected costs of switchgrass feedstock and the number of forced shutdown days.  

Third essay estimates the farm-gate breakeven price of switchgrass relative to 

wheat production, which is the dominant crop in Oklahoma. The breakeven price of 

switchgrass is determined with (social) and without (private) considering selected 

external environmental consequences. Results suggest that the farm-gate breakeven price 

of switchgrass from the private landowners’ perspective is higher than from the social 

planners’ perspective when environmental consequences are considered.  
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I. CHAPTER I 

INTEGRATED RESERVOIR MANAGEMENT 

UNDER STOCHASTIC INFLOWS: A CASE STUDY OF LAKE TENKILLER 

Abstract 

This study is primarily concerned with the planning and management of a 

multipurpose reservoir. An economic optimization model using non-linear programming 

is developed and solved to maximize the net economic benefits derived from the different 

use of lake/reservoir water under uncertainty. Marketed urban and rural water supply and 

hydropower generation and non-marketed lake recreation uses are considered directly in 

the maximization problem, while flood control and downstream releases are incorporated 

as constraints. A mass balance equation is used to model the dynamics of lake hydrology. 

Unlike most studies including non-market benefits, both the value of a visitor day and the 

number of visitors are function of lake level. Results show that for Lake Tenkiller when 

recreational benefits are included, it is beneficial to maintain the lake level at around 634 

feet above mean sea level (famsl) until mid-August, and then start drawing down for 

hydropower generation. A sensitivity analysis is also performed with different values of 

visitor day and peak electricity prices. However, the results show benefit to protecting 

recreational uses for all different scenarios making the conclusion robust. Although many 

reservoirs such as Tenkiller Ferry Dam were originally created for marketed uses such 

hydropower and flood control, these results illustrate the importance of considering non-

market benefits in lake management.
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Introduction 

In the United States, and the southwest in particular, water supplies are 

intensively used and expected to experience increasing year long and seasonal pressures. 

In Oklahoma, seasonal and long-term droughts such as 2006 and 2011 highlighted the 

potential conflicts between the planned uses for reservoirs such as irrigation and 

increasingly popular recreational uses (OWRB 2011). Reservoirs in semi-arid areas such 

as Oklahoma are key to buffering the impacts of drought. Similar to many other semi-arid 

states, Oklahoma is currently updating its legislation, based on the findings of the 2011 

comprehensive water management plan (OWRB 2011), to consider the impact of climate, 

demographic and economic changes. Unfortunately, the effects of management plans on 

recreational values are largely ignored (OWRB 2011). The water management problem is 

challenging for policy makers because water markets are absent or do not operate 

efficiently. Water managers face the question of how much water should be allocated 

among competing marketed uses such as hydroelectric power generation and municipal 

and industrial water uses versus how much water should be stored for non-marketed 

recreational uses. The optimization model employed in this study can aid water managers 

in efficiently allocating reservoir water among multiple uses so that the total net 

economic benefits to all sectors of society are maximized.  

Optimization models that partially address the problem of surface water allocation 

have been employed for several decades. Ward and Lynch (1996) used an integrated 

optimal control model to evaluate the allocation of New Mexico’s Rio Champa basin 

water between lake recreation, in-stream recreation, and hydroelectric power generation 

and found that water released for hydropower generation yielded higher benefits than 
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managing lake volumes for recreational uses. Chatterjee et al. (1998) determined the 

optimal release pattern of reservoir water for irrigation and hydropower production in the 

western United States. They showed that water should be released if the value of 

releasing water for hydropower generation and irrigation is higher than the value of 

storing water for other purposes. Hanson et al. (2002), using contingent valuation, 

estimated the impact of water level changes on recreational values and found that during 

the summer, when the recreational benefits are valued most, a higher lake level should be 

maintained. Changchit and Terrell (1993) proposed a model for multipurpose reservoir 

operation systems under stochastic inflows and solved it using the chance-constrained 

goal programming (CCGP) methodology that allows the reservoir manager to rank and 

allocate water among various uses according to their relative values. However, economic 

benefits are not considered in their study.  

These studies do not simultaneously consider both the marketed (hydropower 

generation, municipal and industrial water use, irrigation, and other uses) and non-

marketed recreational values in reservoir management under uncertainty. The present 

study uniquely considers the economic benefits derived from hydropower generation; 

recreational, municipal and industrial use; flood control level; and downstream releases in 

a single model, while inflows are considered to be stochastic.  

The main objectives of this study, given stochastic inflows to the reservoir, are to 

(1) determine the average monthly lake level and release pattern of water from the 

reservoir that would maximize the net total economic benefits, (2) compare the changes 

in the economic benefits and the lake level between cases when recreational values are 

directly included in the objective function as opposed to cases where recreational values 
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are calculated after the optimization, and (3) determine the sensitivity of optimal lake 

levels to the changes in the value of electricity prices and the value of a visitor day. 

Study Site 

In 1953, the United States Army Corps of Engineers (USACE) completed the 

Tenkiller Ferry dam (Figure I-1) on the Illinois River in northeastern Oklahoma that was 

constructed for the purposes of flood control and hydropower generation. According to 

USACE (2009), Lake Tenkiller is one of the outstanding lakes in Oklahoma because of 

its clean water and abundant recreational facilities. It has water related recreational 

activities such as skiing, hiking, sailing, and fishing that attract a huge number of visitors 

every year. With a depth of 165 feet and clear water, it is also very popular among scuba 

divers, but the predominant use is swimming and boating. The lake has a shoreline of 

about 130 miles and a surface area of 12,650 acres. The total volume of water in the lake 

is 654,231 acre-feet (ac-ft) at the normal lake level of 632 famsl (feet above mean sea 

level). The maximum possible lake elevation is 667 famsl, and the maximum depth at the 

normal lake level is 165 feet (USACE 2010c). Lake levels have varied between 620 

famsl and 653 famsl over the period from 1979 through 2010 (USACE 2010b, 2010c).  

Methods 

Both the hydrologic and economic characteristics of the model are shown in the 

schematic representation (Figure I-2). The total stochastic inflows of water was 

distributed among marketed (urban and rural water supply and hydropower) and non-
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marketed
1
 (recreational) uses derived from a travel cost model. The economic benefits 

derived from recreational uses were obtained by multiplying the visitor day by the value 

of a visitor day. Economic benefits of hydropower production were obtained by 

multiplying the amount of hydropower produced based on the water released for this 

purpose and the head of the reservoir, that is, the average lake level above the turbine by 

price of electricity. Economic benefits arising from urban and rural water supply uses 

depend on consumer surplus plus producer surplus derived from monthly/weekly water 

demand (the area below the demand curve and above the supply curve). 

Mathematical Model 

A non-linear programming model developed for the Broken Bow reservoir in 

Oklahoma (Mckenzie 2003) was modified to allocate Lake Tenkiller water among 

competing uses given stochastic monthly or weekly inflows, on-peak and off-peak water 

demand for hydroelectricity, urban and rural water supply uses, and recreational uses for 

the year 2010. The Frontline Risk Solver (Fylstra 2010) was used to solve the model. 

Total net expected economic benefits were maximized over a year period by controlling 

monthly/weekly releases for hydroelectric power generation and urban and rural water 

supply uses. The limited capacity of the Risk Solver limited problem size. Therefore, 

stochastic inflows were modeled monthly except during June, July, and August, where 

they were modeled on a weekly basis. A mass balance equation was used to determine 

                                                           
 

 

1
 In this study, non-market valuation is limited to only “use values”. A more extensive study could include 

“non-use values” such as existence value, bequest values and option values. Thus, restricting the study to 

“use values” suggests more conservative results. 
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the monthly/weekly level and volume of water in the lake given the inflows and outflows. 

The model was specified as: 

Maximize: 

))()(()(
1

tt

T

t

t
r

URBRBEHBETBE 


;           (1) 

where E(TB) is the expected total economic benefits for the year 2010, E(HBt) is the 

expected hydroelectric power generation benefits in month/week t, E(RBt) is the expected 

recreational benefits in month/week t, r is the amount of water releases, and URBt is the 

urban and rural water supply benefits in month/week t and T is the combinations of 

month and week for the year 2010. 

According to USACE (2010c), the top of the flood pool for Lake Tenkiller is 667 

famsl. Flood risk management in the model is implicitly considered by always 

maintaining the lake level below 645
2
 famsl. An upper bound of 645 famsl was imposed 

on the lake level to maintain flood control capacity. The reservoir mass balance equation 

(Mckenzie 2003) determines the ending monthly/weekly reservoir volume from the 

beginning volume plus expected inflows (including precipitation); less outflows 

(hydropower generation releases and other releases), and evaporation: 

 Vt+1=Vt + E(It) − Ot − Et                 (2) 

Vmin ≤ Vt ≤ Vmax, Omin ≤ Ot ≤ Omax, Vt, It, Ot ≥ 0;         (3) 

where Vt+1 is the volume of water in the reservoir in month/week t+1, Vt is the volume of 

                                                           
 

 

2
 An 8 to 10 feet rise of lake level above the normal pool of 632 famsl results in the picnic area being under 

water. Therefore, in this study a conservatively maximum flood pool level was considered at 645 famsl. 
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water in the reservoir in month/week t, E(It) is the expected inflow of water to the 

reservoir in month/week t, Ot is the outflows of water from the reservoir in month/week t, 

Et is the evaporation of water from the reservoir in month/week t, Vmin is the minimum 

volume of water in the reservoir, Vmax is the maximum volume of water in the reservoir, 

Omin is the average minimum historical outflows of water from the reservoir, and Omax is 

the average maximum historical outflows of water from the reservoir. The bounds on the 

downstream releases are to protect minimum flows to the trout fishery on the lower 

Illinois River, which is maintained ten miles below the dam. 

Monthly inflows were tested to determine if they could be modeled lognormal 

distributions (Wang et al. 2005). The acceptability of using the lognormal function to 

represent reservoir inflows over the October 1979 - May 2010 (USACE 2010a, 2010b) 

period was confirmed with the Kolmogorov-Smirnov goodness of fit test (Phillips 1972). 

Simulated average monthly/weekly inflows and their standard deviations were compared 

against the historical monthly/weekly inflows means and standard deviations (Table I-1). 

Hydropower Generation Benefits 

The economic benefits arising from hydroelectric power generation were obtained 

by multiplying the amount of electricity produced in each period by the price of 

electricity (USEIA 2010) for that particular period. Southwestern power administration 

(SWPA) delivered the total amount of hydroelectricity generated by Lake Tenkiller to the 

not-for-profit Oklahoma municipal electric systems at a rate of 2.8 cents per kilowatt-

hour (SWPA 2007). However, in this study, both average wholesale and retail monthly 

electricity prices were used (USEIA 2010). The peak and normal average wholesale and 

retail hydroelectric prices were used in this study (Table I-2). Whether incremental 
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amounts of electricity should be valued at the wholesale or retail price depends on the 

marginal costs of distribution. If the marginal distribution cost is very low, the retail price 

serves as an upper bound. If the marginal distribution cost is very high, the wholesale 

price serves as the lower bound for electricity values. The assumption was that all 

electricity generated between 3 pm through 7 pm during the summer of June, July and 

August was sold at a peak rate that was $0.02 per kilowatt hour (OEC 2010) above the 

wholesale or retail market price for that particular period.  

The OLS regression method was used to estimate the hydroelectric power 

generation equation (ReVelle 1999) based on the daily water releases, lake level 

(effective head) data (USACE 2010a, 2010b), and the amount of electricity produced 

over the period of January 1995 through December 2000 (USACE 2000). The estimated 

equation was as follows: 

MWt = 0.232457(Headt)(Qrelt);       

                   (1152)         R
2
 = 0.99.                      (4) 

 

where MWt is the megawatt hour (MwH) of electricity generated in period t, Qrelt is the 

water (ac-ft) released in period t, and Headt, is the head (famsl) in period t. The estimated 

coefficient above was significant at the 5% confidence level (t-value in parenthesis). 

Urban and Rural Water Supply Benefits 

The water demand model required monthly consumption values for a mixture of 

municipalities and rural water districts. Annual water consumption values are readily 

available for municipalities (OLM 2008). Attempts to survey rural water districts in the 

area were unsuccessful at the state level (OWRB 2011). However, monthly water 

treatment plant operation reports from 2001 through 2007 were obtained from the 
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Oklahoma department of environmental quality (ODEQ 2008). These reports were from 

Muskogee, Muldrow, Sallisaw, Gore, Eufaula, and Roland. The cities selected are those 

where water consumption by the population served by each city could be separated from 

the service area of rural water districts and matched with the quantity of water referenced 

in the water treatment reports. Then, a monthly per-capita water demand model (Borland, 

1998) was estimated using SAS PROC MIXED (Littell et al. 2008). The city and annual 

variables were considered to be random. 

The estimated monthly per capita water demand (gallons) equation based on the 

mean population was as follows: 

 

Qm,c= 5.23 Jan + 4.49 Feb + 4.74 Mar + 4.52 Apr + 5.07 May + 5.41 Jun + 6.74 Jul  + 

               (7.82)         (6.71)         (7.09)          (6.76)         (7.58)           (8.1)         (10.08)  

6.76 Aug + 5.86 Sep + 5.58 Oct + 4.96 Nov + 4.95 Dec + 1.24 Popc;              

(10.12)       (8.78)         (8.34)         (7.41)          (7.41)         (4.15)    x
2
 = 372.30.       (5) 

where Qm,c is the per capita water demand (in thousand gallons) in city c in a particular 

month m; Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec are the dummy 

variables (January through December), which took one for a particular month and zero 

for other months; and Popc is the relative population (Pop/mean Pop) of a particular city 

c. All of the estimated coefficients above were significant at the 10% confidence level (t-

value in parenthesis). 

The price of water (Pm) was rounded to $3 per thousand gallons, which was equal 

to pumping costs estimated from EPANET2 simulation model (EPA 2008); plus 

administrative costs (OML 2008). The summer and winter price elasticities (ρm) were 
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considered as −0.25 and −0.04 respectively obtained from IWR Main (Davis et al. 1987). 

Monthly proposed water demand
3
 by the 27 water districts, including urban areas of 

Tahlequah, Gore, Vian, Sequoyah, and Fort Gibson (USACE 2001), and in counties 

surrounding Lake Tenkiller was derived by multiplying the estimated monthly per capita 

water demand by the total population served under these water districts (Figure I-3). 

During the summer of June through September, the urban and rural water demand is at its 

peak mainly because of lawn irrigation. The combined demand was approximately five 

million gallons per day. The consumer surplus
4
 derived from urban and rural water 

supply was calculated by integrating the price flexibility form of the demand function. 

ttt

Q

tt dQQCS
t

)(
0

   ;              (6) 

where CSt is the consumer surplus in month/week t, αt is the (Pt – δt Qt) intercept of the 

inverse demand function, and δt is the (Pt /Qt)(1/ρt) slope of the inverse demand function. 

The total welfare derived from urban and rural water supplies was obtained by 

subtracting the supply (pumping) cost from the consumer surplus to find the net 

consumer surplus.  

Lake Recreational Benefits 

In this study, the assumption that the number of monthly lake visitors was 

dependent on deviations of the lake from its normal level of 632 famsl was tested using 

monthly data from 1955 through 2010. Monthly visitor data from the period of 1975 

                                                           
 

 

3
 The proposed water demand by the Lake Tenkiller and its surrounding area was much less than the supply 

reallocated using 1958 WSA (Water Supply Act) authority.  
4
 Consumer surplus is the area under the demand curve.  
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through 2010 were obtained from USACE (2010a). Secondary data over the period of 

1955 through 1974 published by Badger and Harper (1975) were also used. A quadratic 

relationship between the number of visitors and the deviations in the lake level above and 

below its normal level was estimated by regressing the number of monthly visitors 

against the deviation from the normal lake level for the same periods using maximum 

likelihood estimation. The estimated regression equation used in this study was: 

 

Vm,t = 86302 + 105821 Apr + 260192 May + 288535 Jun + 335015 Jul + 218473 Aug 

               (5.38)              (13.12)             (8.88)             (11)                (7.22) 

+ 130746 Sep + 718 ALkLvm + 13001 LvJun +1401 Tsumrt – 236 LvJn
2 

      (6.67)           (1.11)                 (2.07)              (1.91)         (-1.22)  

 

– 1186 LvJly
2 

– 236 LvAug
2
;
     

 

   (−2.99)        (−1.22)             2logLR = 17146.30.  
       

             (7) 
 

where Vm,t was the number of visitors in a month m for a particular year t; Apr, May, Jun, 

Jul, Aug and Sep were the dummy variables which were one in the indicated month and 

zero otherwise; Tsumrt was the time trend for the summer June, July, and August (the 

number of visitors in other months did not vary significantly over time) for the year t, 

with 1955 as year one; ALkLvm was the difference between the actual and normal lake 

level (632 famsl) for the month m; LvJun was the discrete variable to test if visits to the 

lake in June were more sensitive to the lake level than in other months; LvJn
2
, LvJly

2
, 

LvAug
2
 was the squares of the difference between the actual and normal lake levels (632 

famsl) for the months of June, July, and August respectively. The only significant trend 

in the number of visitors was during June, July, and August. The estimated coefficient for 

time trend variable Tsumrt 1401, allows for increased number of visitors by 1401 per year 

compared to reference year 1955. All of the estimated coefficients above were significant 



 12 

at the 10% confidence level (t-value in parenthesis).  

The number of monthly visitors was found to increase with the lake level until it 

reached the normal level of 632 famsl in June, July, and August, mainly because the 

visitors were sensitive to the lake level for Lake Tenkiller when engaged in water based 

activities such as swimming, boating, and scuba diving because exposed shoreline is less 

attractive and hinders access. As implied by the quadratic lake level terms in equation 6, 

the number of visitors began to decline when the lake level increased above 632 famsl 

during the months of June, July and August. Any lake level below the normal pool would 

reduce boat accessibility and marinas, while any level above the normal pool might result 

in vulnerability to flash floods and increase navigational hazards. The effect of the lake 

level on visitors in July is stronger than in June or August (Figure I-4). The actual 

number of visitors had been adjusted upward to account the on average increase in 

number of visitors in the summer by year and compared it to the estimated number of 

visitors for the year 2010. Finally, monthly visits provided by the USACE were used as 

total single day visits in the value calculation. For Lake Tenkiller on average; each visitor 

spends a single day at the lake (USACE 2010a).  

According to USACE economic guidance memorandum (Carlson, 2009) based on 

the unit day value method, the value of a visitor day ranges between $3.54 and $10.63 for 

general recreation. However, Gajanan et al. (1998) found that the economic value of lake 

recreation derived from motor boating and waterskiing ranges between $9.85 and $45.61, 

and it varies across different ecoregions in the United States. Boyer et al. (2008) 

estimated the recreational value of Lake Tenkiller as part of a larger random utility travel 

cost model for all lakes in Oklahoma and found the value of a visitor day to Lake 
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Tenkiller was around $191, the highest value for any Oklahoma lake. Badger and Harper 

(1975), using the travel cost method, found that the value of a visitor day at Lake 

Tenkiller was $4.67, which is equivalent to around $24 in 2010 prices. However in this 

study, conservatively two low values for a visitor day were used. The lower value used 

was $10 per visitor day (Carlson 2009) while the upper value used was $50 per visitor 

day about one-fourth the value estimated by Boyer et al. (2008). 

An additional study by Roberts et al. (2008) had shown that the willingness to pay 

for a visitor day at Lake Tenkiller declined by $0.82 for each foot the lake was below the 

normal level. The value of a visitor day was decreased in the model from $50 and $10 

(when the lake level was 632 famsl or more), to $43 and $3 per day (when the lake level 

was 624 famsl or less; Figure I-5 and Figure I-6). Total recreational benefits were 

calculated by multiplying the visitor day (obtained from the estimated number of visitors) 

by the value of a visitor day at the indicated lake level. Different recreational benefits are 

derived from different lake levels for the month of August 2010 (Table I-3). This study is 

also unique because both the number of visitors and the value of a visitor day vary with 

the level of the reservoir reflecting that both the quantity of visitors and the quality of 

those visits change with a decrease in recreational value due to lower than normal lake 

levels. Without this adjustment, most studies may overestimate recreational benefits. 

Results 

Effect of Including Recreation as an Optimizing Variable 

The effect of explicitly including or not including recreational benefits in the lake 

management optimization function (objective 2) and its impact on the net economic 
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benefits were measured by comparing two scenarios. In the first scenario, economic 

benefits were maximized with respect to releases for hydropower generation and public 

water supply uses only. Recreational benefits were calculated post optimization from 

resulting lake levels. In the second scenario, net economic benefits were maximized with 

respect to recreation, hydropower generation, and public water supply. Hydropower was 

assumed to be sold at the peak retail electricity prices (Table I-2), and the base visitor day 

was assumed to be worth $50 in both scenarios. Net annual economic benefits were 

$206.97 million when optimized with respect to hydropower and public water supply use, 

and recreational benefits were determined after the optimization (Table I-4). When 

recreational benefits were directly considered in the economic optimization model 

(scenario 2), the net annual economic benefits were $218.10 million. The estimated 

annual gain of $11.13 million from the lake resource was approximately 5.40 percent. 

Recreational benefits were increased by $11 million, or 10%, while the value of 

hydropower generation declined by $0.47 million (Figure I-6). The ratio of the increase 

in recreational benefits per dollar of hydropower loss was 23 to 1. Public water supply 

uses remained essentially unchanged between scenarios 1 and 2, because in the case of 

Lake Tenkiller, the proposed demand for domestic water use is much more inelastic than 

the demand for recreational and hydropower generation use. 

When focusing on hydropower generation in scenario 1, the optimal strategy was 

to raise the lake level from the normal 632 to 645 famsl (Figure I-8) to increase head and 

power generation during the summer when both hydropower price and demand were at 

their peak. However, when recreational uses was considered (scenario 2) in the objective 

function, the optimal strategy was to maintain levels slightly above the normal pool of 
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632 famsl from May through mid-August and maximize visitor numbers during the 

summer. Of note is the fact that historical levels are very close to the scenario 2 level in 

May and June but are lower from July through October. These results indicate that the 

current management strategy does not strictly maximize hydropower production. 

The model was then used to calculate the net economic benefits given the 

historical average lake levels (Figure I-8). The purpose was to estimate the net total 

economic benefits that would be obtained in the year 2010 if the lake level were 

constrained to average historical lake levels in the period from 1979-2010 with estimated 

2010 visitor numbers and public water demands. The finding was that for the year 2010, 

total annual economic benefits derived from the average historical lake level would be 

around $216.39 million, which was about $2.6 million lower than in scenario 2, which 

explicitly considered recreational benefits in the objective function. That is, the historical 

(1979-2010) level was near optimal, (Figure I-8), except for July through October. One of 

the reasons for these levels is the early draw down to meet the peak electricity demand. 

Though not shown, a note-worthy fact is that optimal lake levels obtained under 

stochastic optimization are higher and much closer to the historical level than the level 

obtained under deterministic optimization. This result occurs because with lognormal 

inflows, the mean inflow is greater than the more likely median inflow. Releasing more 

water under the expectation of receiving a mean inflow would increase the number of 

years when the actual level was below normal. The optimal stochastic lake level from 

June through mid-July is almost identical to the average historical level. 
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Sensitivity of Optimal Lake Level to Recreational Values and Electricity Prices 

In addition, the model was solved with three different combinations of values for 

a visitor day and peak electricity prices. These combinations were: (i) $50 value of a 

visitor day – peak retail hydroelectricity prices, (ii) $10 value of a visitor day – peak 

retail hydroelectricity prices and (iii) $10 value of a visitor day – peak wholesale 

hydroelectricity prices. These reflect scenarios 2, 3, and 4 respectively. The optimal 

number of visitors and the amount of hydropower produced under 2, 3, and 4 are around 

the same (Table I-5). Even when recreation is valued at $10 per day and electricity is 

priced at peak retail rates, little increase occurs in hydropower production when the 

electric prices were increased from wholesale to retail, and the value of a visitor day was 

decreased from $50 to $10. The optimal August lake level remains above the average 

historical August level for all three scenarios (Figure I-9). However, maintaining a 

normal lake level of around 632 famsl during the summer of June, July, and August for 

Lake Tenkiller was beneficial to maximize both the recreational and hydropower 

generation benefits, since any lake level above and below the normal lake level of 632 

famsl would definitely reduce the number of visitors and their total value for the resource 

for those months. By contrast, in the model where hydroelectric power generation 

benefits were the main concern of the management (lake recreational benefits were not 

included in the objective function), then the regulator would maximize market benefits by 

increasing the lake level (head) above the turbine and releasing water during the summer 

when the electricity price was at its peak. The results show that during June, July, and 

August, when the number of visitors was at its peak, the lake level should be maintained 

two to three feet above the normal lake level of 632 famsl, and some of the releases for 
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hydroelectric power generation should be shifted to the spring and fall periods. The 

scenario 2 results predict around 241,018 more visitors compared to scenario 1, if the 

lake level were maintained slightly above the normal level through mid-August (Figure I-

10). The main increase of 188,118 visitors was predicted to occur in July. 

As the level is lowered from 637 to 636 famsl, an additional 13.70 thousand ac-ft 

of water are released and $114.70 thousand dollars of electricity are generated. Also, as 

the lake level is lowered toward normal (from 637 to 636 famsl), the number of visitors 

increases, adding $28.70 thousand in recreational benefits for total economic benefits of 

$143.40 thousand, which is the change in the value of electricity produced plus the gain 

in the number of visitor days multiplied by $10 per day (Table I-6). The total value of 

economic benefits derived from the lake resource continues to increase though by smaller 

amounts until the lake level has reached 632 famsl. At this level, the predicted number of 

August visitor days is maximized at 392,260 (Table I-3). However, as the level is 

lowered below 632, the value of the visitor day declines (Figure I-6). While the decline 

from $10 per day at 632 famsl to $9.18 at 631 famsl seems small, the value of total 

recreational benefits at 631 famsl is obtained by multiplying 391,940 visitors by $9.18 

(Table I-3). Thus, the value of recreational benefits declines by $333,036 for each one 

foot decline between 632 and 631 famsl, which is three times greater than the value of 

additional electricity generated. Thus for Lake Tenkiller, the finding is that total 

economic benefits derived from the lake resource are maximized by maintaining the lake 

level two to three feet above normal in June and July and reducing the level to the normal 

lake level of 632 famsl by mid-August. Including recreational values as a variable in the 
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optimization indicates a higher than historical level should be maintained during July and 

August to increase recreational benefits. 

Conclusion and Discussion  

The results hold importance for rural communities dependent on tourism for 

increasing local income because although neither urban nor rural water supply use nor 

recreational use were considered to be the primary uses when the dam was constructed, 

the recreational values have become substantial (USACE 2009). The results show the 

value of electricity that could be generated by releasing more water and lowering the lake 

level below the normal level of 632 famsl in the summer period is more than offset by 

reduced recreational benefits. This result differs from the results obtained by Ward and 

Lynch (1996) for reservoirs in New Mexico. This difference is in part because the 

number of monthly summer visitors to Lake Tenkiller varies from 400 thousand to over 

500 thousand and, in part, because the head above the turbines is lower for Lake 

Tenkiller than for the Rio Chama Basin of New Mexico. The optimal management plan is 

also influenced by the head of the reservoir. If the reservoir had higher elevation (head) 

over the turbine, then the value of hydroelectric power generation would increase relative 

to lake recreational benefits. The results indicate that the average lake level maintained 

over the years 1979-2010 would provide near optimal benefits for 2010 except for mid-

July through October. Therefore, the suggestion for Lake Tenkiller is that the releases for 

hydropower generation should be delayed until mid-August. 

The economic optimization model developed and used in this study is able to test 

several different management policies. This type of model could be used to identify the 

economic impacts of different types of allocation patterns by controlling the releases. The 
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model’s ability to allocate water among multiple uses over different time periods under 

stochastic inflows and to change the optimal usage pattern under different conditions 

makes it a unique and valuable tool for governmental policy analysis. The modeling 

approach used in this study may be useful for policy makers to compare different 

management scenarios and compare the impact of each strategy on the net economic 

benefits. This usemodel can help water managers and policy makers test different water 

management policies and implement them while managing a reservoir for multiple 

resource users. 
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Table I-1. Simulated average monthly inflows and standard deviation compared with 

historical average inflows and standard deviation (1979-2010). 

Historical Inflow (ac-ft) 

  

Simulated 

Inflow 

(ac-ft) 

Month Average 

Standard 

Deviation   Average 

Standard 

Deviation 

Jan  109,190 103,977 

 

109,034 101,854 

Feb 109,935 79,689 

 

109,839 78,741 

Mar 164,909 116,659 

 

164,752 115,131 

Apr 165,468 122,134 

 

165,377 121,443 

May 150,209 124,650 

 

150,330 125,042 

Jun week 1 26,041 20,695 

 

26,021 20,510 

Jun week 2 26,495 28,011 

 

26,442 27,310 

Jun week 3 33,492 55,420 

 

33,534 54,739 

Jun week 4 23,753 43,666 

 

23,627 40,694 

Jul week 1 18,046 26,716 

 

17,966 25,274 

Jul week 2 12,774 16,508 

 

12,756 16,033 

Jul week 3 8,484 6,621 

 

8,494 6,748 

Jul week 4 9,127 10,060 

 

9,117 9,854 

Aug week 1 7,366 10,104 

 

7,521 12,792 

Aug week 2 8,855 9,634 

 

8,835 9,374 

Aug week 3 6,753 5,829 

 

6,760 5,876 

Aug week 4 4,927 3,052 

 

4,924 3,031 

Sep 42,178 50,478 

 

42,098 49,152 

Oct 67,228 110,225 

 

67,620 114,918 

Nov 92,538 95,267 

 

92,449 94,092 

Dec 116,470 117,299   116,310 115,115 
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Table I-2. Wholesale and wholesale peak and retail and retail peak. 

Month 

 

Wholesale 

electricity 

price  

Wholesale 

peak 

electricity 

price  

Retail 

electricity 

price 

Retail peak  

electricity price 

Jan $0.05 $0.05 $0.07 $0.07 

Feb $0.05 $0.05 $0.08 $0.08 

Mar $0.04 $0.04 $0.07 $0.07 

Apr $0.04 $0.04 $0.07 $0.07 

May $0.04 $0.04 $0.07 $0.07 

Jun $0.05 $0.07 $0.07 $0.07 

Jul $0.05 $0.07 $0.08 $0.10 

Aug $0.06 $0.08 $0.08 $0.10 

Sep $0.04 $0.04 $0.08 $0.10 

Oct $0.03 $0.03 $0.07 $0.07 

Nov $0.03 $0.03 $0.07 $0.07 

Dec $0.04 $0.04 $0.07 $0.07 
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Table I-3. Visitor day (number of visitors), value of a visitor day starting at $10, and 

recreational benefits for different lake levels for the month of August 2010. 

Lake level 

(famsl) 

Visitor day 

(number of visitors) 

Value of a visitor 

day Recreational benefits 

638 380,770 10.00 $3,807,700 

637 384,280 10.00 $3,842,800 

636 387,150 10.00 $3,871,500 

635 389,390 10.00 $3,893,900 

634 390,990 10.00 $3,909,900 

633 391,940 10.00 $3,919,400 

632 392,260 10.00 $3,922,600 

631 391,020 9.18 $3,589,564 

630 389,150 8.36 $3,253,294 

629 386,630 7.54 $2,915,190 

628 383,480 6.72 $2,576,986 
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Table I-4. Comparison of total economic benefits from Lake Tenkiller when recreational 

values were, and were not, included in the objective function for 2010. 

Recreational values in 

objective function***  

Recreational values not in objective. 

function*** 

Recreation
*
 benefits                  

$ 126,902 

Recreation
*
 Benefits                     

$ 115,302 

Hydropower
**

 benefits              

$ 6,679 

Hydropower
**

 benefits                 

$ 7,149 

Rural water supply (RWS)        

$ 84,518 

Rural water supply (RWS)           

$ 84,518 

Total benefits (with recreation 

in objective function)                    

$ 218,099 

Total benefits (without 

recreation in objective 

function)                   $ 206,969 

*Recreation valued at $50 per visitor day when lake level is 632 feet and above; **Hydropower valued at 

the average monthly retail peak electricity price; ***values in thousand US dollars  
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Table I-5. Sensitivity of the estimated number of monthly visitors and hydropower 

production to changes in the value of a visitor day from $50 per visitor day to $10 per 

visitor day from $50 per visitor day to $10 per visitor day when hydropower is valued at 

2010 wholesale or retail peak electricity prices. 

  Visitors     Hydropower-generation  

Scenario 2 3 4  2 3 4 

Value of a 

visitor day $50 $10 $10 

 

$50 $10 $10 

Monthly 

electricity 

price Retail Retail Wholesale 

 

Retail Retail Wholesale 

Month Number 

 

MwH 

Jan 86,302 86,302 86,302 

 

9,235 9,198 9,234 

Feb 86,302 86,302 86,302 

 

8,455 8,417 8,454 

Mar 86,302 86,302 86,302 

 

11,130 11,140 11,129 

Apr 191,597 191,597 191,597 

 

8,917 8,937 8,917 

May 345,555 345,555 345,555 

 

13,716 13,717 13,712 

Jun week 1 104,851 104,839 104,840 

 

3,144 3,165 3,143 

Jun week 2 104,779 104,768 104,772 

 

1,813 1,784 1,812 

Jun week 3 105,595 105,583 105,591 

 

2,797 2,818 2,794 

Jun week 4 105,568 105,561 105,567 

 

3,391 3,356 3,387 

Jul week 1 123,920 123,932 123,916 

 

1,459 1,551 1,458 

Jul week 2 124,237 124,237 124,237 

 

2,098 2,119 2,096 

Jul week 3 124,180 124,175 124,181 

 

614 618 613 

Jul week 4 123,982 123,972 123,981 

 

419 325 419 

Aug week 1 92,913 92,910 92,913 

 

385 386 385 

Aug week 2 92,827 92,822 92,827 

 

582 584 581 

Aug week 3 93,009 93,008 93,009 

 

127 116 127 

Aug week 4 92,420 92,430 92,420 

 

731 581 731 

Sep 215,739 215,755 215,766 

 

2,520 2,524 2,518 

Oct 86,219 86,256 86,244 

 

2,485 2,557 2,483 

Nov 86,302 86,302 86,302 

 

9,301 9,656 9,293 

Dec 86,302 86,302 86,302 

 

9,494 9,520 9,485 

Total 2,558,899 2,558,909 2,558,926 

 

92,812 93,068 92,769 
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Table I-6. Effect of releasing water to create a one foot decline in the lake level from 637 

to 630 famsl on hydropower values and recreational benefits for August of 2010. 

Level 

Volume 

of 

release 

(ac-ft) 

Changes in 

hydro-electric 

value* 

Change in 

number of 

visitors 

Changes in 

recreational 

benefits** 

Total change 

in net 

economic 

benefits 

637-636 13,722 $114,723 2,870 $28,700 $143,423 

636-635 13,524 $113,905 2,240 $22,400 $136,305 

635-634 13,335 $113,139 1,600 $16,000 $129,139 

634-633 13,153 $112,410 950 $9,500 $121,910 

633-632 12,979 $111,726 320 $3,200 $114,926 

632-631 12,811 $111,074 -1,240 -$333,036 -$221,962 

631-630 12,650 $110,461 -1,870 -$336,270 -$225,809 
*electricity is valued at $0.10 per kilowatt hour; ** value of a visitor day at $10 
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Figure I-1. Lake Tenkiller and its surrounding areas in northeast Oklahoma. 
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  Figure I-2. Schemetic representation of the optimization model. 
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Figure I-3. Predicted urban and rural water demand (ac-ft) for each month for Lake 

Tenkiller and its surrounding area for the year 2010. 
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Figure I-4. Number of predicted versus actual visitors adjusted to 2010 visitors by adding (2010-year reported)*1401 to 

the reported number of visitors (in thousands) to Lake Tenkiller by lake level for the months of Jun, Jul, and Aug in 

2010. 
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Figure I-5. $50 value of a visitor day at Lake Tenkiller adjusted as a function of lake level. 

 

  

$0

$10

$20

$30

$40

$50

$60

610 620 630 640 650

V
al

u
e

 o
f 

vi
si

to
rs

 d
ay

  

Lake level (fasml) 



 
 

34 

 

 
Figure I-6. $10 value of a visitor day at Lake Tenkiller adjusted as a function of lake level. 
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Figure I-7. Tradeoff between the loss in hydroelectric power generation values versus gain in 

lake recreational values when recreational values were included in the objective function for year 

2010 (in million US dollars). 
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Figure I-8. Comparison between average historical monthly/weekly lake levels for Lake 

Tenkiller from 1979-2010 with the optimal lake levels for 2010 when recreational values were 

and were not included in the optimization model. 
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Figure I-9. Optimal lake level with recreational values included in the model for the year 2010 

when (i) value of a visitor day is $50 and retail peak price of hydropower; (ii) value of a visitor 

day is $10 and retail peak price of hydropower; and (iii) value of a visitor day is $10 and 

wholesale peak price of electricity. 
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Figure I-10. Comparison of optimal number of monthly visitors for Lake Tenkiller when 

recreational benefits were, and were not, included in the objective function for the year 2010 

with the average historical monthly visitor. 

 

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N
u

m
b

e
r 

o
f 

vi
si

to
rs

  

Month 

Average actual visitors

Optimal projected 2010 visitors with recreation values

Optimal projected 2010 visitors without recreation values



 
 

41 

II. CHAPTER II 

 

 MANAGING EXPECTED SWITCHGRASS BIOMASS YIELD VARIABILITY BY 

STRATEGICALLY SELECTING LAND TO LEASE 

Abstract 

Cellulosic biorefineries that plan to use switchgrass exclusively will encounter year-to-

year variability in feedstock production. The objective of this research is to determine the 

optimal quality, quantity, and location of land to contract while considering the spatial and 

temporal variability of switchgrass biomass yield. A model is developed and used to determine 

the land to contract for several levels of the opportunity cost of idling the biorefinery for lack of 

feedstock. In the region the expected net present value of considering switchgrass yield 

variability when selecting land to contract for a 2,000 Mg/day biorefinery is over $11 million for 

ten year contracts discounted at 10%. 

Introduction 

In anticipation of an economically viable feedstock production and conversion system, 

the U.S. Energy Independence and Security Act of 2007 included a provision that by 2022, that 

if produced, 16 billion gallons of cellulosic biofuels be marketed (USDA 2011). The U.S. 

Department of Energy’s (2011) billion ton update estimates that for a price of $55 to $66 per Mg, 

5 to 13 million hectares (ha) could be bid into production of perennial grasses for biorefinery 

feedstock by 2022. To-date the standard paradigm for evaluating the economics of cellulosic
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biofuels has followed the pattern used to evaluate grain ethanol. However, producing, harvesting, 

storing, and delivering cellulosic biomass from a dedicated perennial energy crop such as 

switchgrass and converting it to biofuel is fundamentally different than producing and marketing 

corn grain, and producing ethanol from grain. The infrastructure for corn grain was well 

developed prior to implementation of public policies designed to increase the production of fuel 

ethanol. Initially, the quantity of corn used by ethanol plants relative to total global corn 

production was relatively small. In bumper crop years as well as short crop years, corn ethanol 

biorefinery managers could bid corn grain from alternative uses. When the proportion of the corn 

crop that they required to meet their capacity requirements was relatively small, except for 

having to pay a higher price for feedstock, they did not have to be overly concerned about the 

risk of idling the biorefinery due to a short crop. A similar feedstock production and delivery 

infrastructure does not exist for the anticipated cellulosic biomass biorefineries. 

Prior to investing in a cellulosic biorefinery, prudent investors would expect assurance 

that a flow of feedstock that meets the quality standards of the facility will be available at a cost 

that provides a high probability of a good investment. The first biorefinery in a region will not be 

able to rely on spot markets to procure feedstock since spot markets do not exist. One potential 

strategy would be for the biorefinery to engage in long term contracts with growers or land 

owners. Since switchgrass is a perennial and the annual harvestable biomass yield is uncertain, 

land owners are much more likely to be willing to contract for land area to seed to switchgrass 

than for delivering a prespecified quantity every year. Another alternative would be for the 

biorefinery to engage in long term land leases with land owners and for the biorefinery to 

manage the harvest and delivery of feedstock. In either case biorefinery management would be 
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required to identify and contract for a sufficient quantity of land or production in the vicinity of 

the biorefinery to provide for the planned feedstock needs.  

Prior studies have ignored the potential consequences of biomass spatial and temporal 

yield variability on cellulosic biorefinery economics (Brechbill and Tyner 2008; Duffy 2007; 

Epplin et al. 2007; Kaylen et al. 2000; Kazi et al. 2010; Khanna, Dhungana and Brown 2008; 

Mapemba et al. 2007; Mapemba et al. 2008; Mondzozo et al. 2011; Nienow et al. 1999; Perrin et 

al. 2008; Tembo et al. 2003; U.S. Department of Energy 2011; Wright et al. 2010; Wu, Sperow 

and Wang 2010). Switchgrass yields vary from year-to-year. If all land that is contracted for 

production is in close proximity to the biorefinery, in bad weather years, yields across the region 

may be low and insufficient to meet the needs of the biorefinery. In this case the biorefinery will 

be forced to shut down for a period of time. Each idled day for lack of feedstock will have 

economic consequences. The net opportunity cost of a forced idle day will depend on the lost 

revenue as well as on production costs that cannot be avoided.  

In good weather years, yields may be greater than expected and more biomass may be 

produced than can be processed. In most regions mature biomass switchgrass would have limited 

alternative uses and the cost to bale is likely to exceed its value except for biorefinery feedstock. 

In years of excess production, the best strategy for fields distant from the biorefinery may be to 

mow the switchgrass and to leave the material in the field to build organic matter. If yields across 

fields within the potential biorefinery supply shed are not highly correlated, a biorefinery might 

attempt to reduce overall year-to-year variability in feedstock production by strategically 

selecting a portfolio of land to contract. The optimal land contracting strategy will depend on the 

cost of idling the plant relative to the cost of contracting for more land than required for an 

average production year. 
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The biorefinery could plan to maintain a storage reserve from which biomass may be 

retrieved in low production years. However, there are a number of issues associated with 

maintaining the quality of switchgrass biomass for an extended period of time. Larson et al. 

(2010), using data from a switchgrass storage experiment, found storage dry matter losses of 

30% for a rectangular solid bale of switchgrass that was covered with a tarp and stored for 360 

days. The cost and efficiency of conversion for systems such as enzymatic hydrolysis depend on 

the characteristics of the feedstock. Maintenance of feedstock quality over an extended period of 

time would require expensive storage facilities, added handling costs, and carry a substantial risk 

of loss from fire. Additionally, managing consecutive bad weather years could be challenging 

and require a large investment.   

This study is designed to address both year-to-year switchgrass yield variability and 

within year yield variability across the supply shed of a potential cellulosic biomass biorefinery. 

It is designed to establish an initial baseline under the assumption that maintenance of a strategic 

storage reserve would be impractical. The objective is to determine the quantity, location, and 

class of land to contract (a) for an average switchgrass production year; (b) to ensure that in each 

production year the area under contract will produce sufficient feedstock to fully provide for the 

needs of the biorefinery even in the worst case (based on historical weather data) year; (c) to 

determine the tradeoff between the quantity of contracted land and the daily cost of idling the 

biorefinery; and (d) to determine the value of considering spatial and temporal switchgrass 

biomass yield variability when selecting land for contracting. 

The remainder of this paper is organized as follows. First, we present conceptual models 

constructed to address the objectives. Second, we present data sources and data necessary to 

solve the models along with the steps and data used to validate and calibrate a biophysical 
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simulation model. The simulation model is used to generate empirical switchgrass biomass yield 

distributions based on historical weather and soils for each of three land classes for thirty 

counties. Third, the empirical yield distributions based on fifty years of historical weather data 

and other data are incorporated into the models which are solved to fulfill the study objectives.  

Conceptual Models for Economic Optimization 

Three models are presented. First, a traditional model designed to minimize the cost to 

meet the expected annual biorefinery requirements based on average switchgrass yields (model 

1) is described. Second, an enhanced model designed to identify the optimal quantity, quality, 

and location of land to contract to ensure that a sufficient quantity of feedstock can be delivered 

even in the worst expected production state of nature (based on historical weather) is presented 

(model 2). Third, a model is developed that enables determination of the tradeoff between the 

opportunity costs of closing the biorefinery as a result of insufficient feedstock and the quantity 

of contracted land considering the yield variability (model 3). The second and third models 

encompass both spatial (across land class and across counties within each year) and temporal 

(across years) biomass yield variability. 

Model 1 – Identifying Land to Contract Based on Average Switchgrass Yields 

In model 1, the objective function is optimized subject to available land, average 

switchgrass biomass yields, and the annual biorefinery requirements. The objective is: 

  

 

 
I

i

J

j

ijij

I

i

J

j

ijij

I

i

J

j

ij
XTXL,XB

XTXBXLCmin 
,

    
 

  (1) 

where, C is the average costs ($) per year of contracting land, producing, harvesting, and 

transporting a fixed quantity of biomass to a predetermined location to meet the biorefinery 
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demand; λij is the production cost ($/ha/year) for amortized establishment costs, land rent, 

fertilizer, mowing, and raking costs in county i for land class j; XLij is the quantity (ha) of land 

class j leased for switchgrass production in county i; β is the cost ($/Mg) of baling and stacking 

switchgrass biomass; XBij is the quantity (Mg) of switchgrass baled and stacked in county i from 

land class j;
 ij  is the cost ($/Mg) of loading and transporting switchgrass biomass from county i 

and land class j to the biorefinery; XTij is the quantity (Mg) of switchgrass biomass transported 

from county i and land class j to the biorefinery.   

Equation (1) is minimized subject to the following set of constraints. 

jiXL ijij ,                      (2) 

Equation (2) imposes land constraints where ij  is the quantity (ha) of land class j in county i 

available for contracting from current use for conversion to switchgrass production. 

                     (3) 

Equation (3) balances the quantity baled with the quantity produced; is the mean switchgrass 

biomass yield (Mg/ha/year) in county i from land class j over T years.  

jiXBXT ijij ,
                                 (4) 

Equation (4) balances the quantity transported with the quantity baled. 


i j

ijXT                        (5) 

Equation (5) imposes the requirement that the quantity transported to the biorefinery fulfills the 

annual switchgrass feedstock requirement, denoted by the scalar δ (Mg/year).  

0,, ijijij XTXBXL                      (6) 

Equation (6) is included to restrict the choice variables to be nonnegative. 
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Model 1 is designed to select the optimal (least-cost) location (county), quality (land 

class), and quantity of land on which to establish switchgrass to fulfill the biorefinery’s annual 

requirement under the restrictive assumption that the average yield will be obtained on each land 

class in each county and each year. If yields are normally distributed and perfectly correlated 

across the land classes and counties in the supply shed, in half of the years the land identified by 

the model for contracting would produce more than the biorefinery could process. Alternatively, 

in the other half of the years, production from the contracted land would be insufficient to meet 

the annual needs and the biorefinery would have insufficient feedstock to operate at full capacity 

throughout the processing season (year).   

Rather than contract land based on average yields, the biorefinery could choose to 

contract sufficient land so that even in the expected worst case production situation, adequate 

feedstock would be produced to enable the biorefinery to operate at full capacity in each year. 

While the true worst case production situation cannot be known, historical data may be used to 

generate yield distributions. To the extent that the generated yield distributions capture future 

yield variability and are available for each land class and county in the supply shed, a model may 

be formulated to identify which land to contract to ensure that the biorefinery could operate at 

full capacity even in poor feedstock production years. Model 2 includes constraints that require 

biorefinery requirements to be fulfilled for each possible state of nature based on available 

historical yield distributions and to determine which land should be contracted to minimize the 

cost to deliver feedstock. 

Model 2 – Identifying Land to Contract to Fulfill Requirements in all States of Nature 

Model 2 recognizes that yield from each land class in each county will differ in each state 

of nature but that for each state of nature the fixed demands of the biorefinery must be met. The 
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model is designed to identify the location (county), quality (class), and quantity of land to 

contract. Every parcel that is contracted must be mowed in every year. However, for each year, 

depending on production, a unique combination of the contracted hectares may be optimally 

raked and baled. Thus, transportation flows may differ every year. The model is designed to 

compute the minimum expected cost over the T states of nature. The T states of nature are 

assumed to represent the complete yield distribution for each land class and each county. The 

objective function follows: 

     (7) 

where, EC is the expected costs ($) per year of renting land, producing, harvesting, and 

transporting biomass to a predetermined location to meet the biorefinery demand in each of the T 

states of nature; γij is the production cost ($/ha/year) including amortized establishment costs, 

land rent, fertilizer, and mowing costs in county i for land class j; ρ is the cost ($/ha) to rake 

mowed biomass into a windrow for baling (γij  =  λij − ρ); XRtij is the quantity (ha) of land class j 

raked in year t in county i. A choice variable for raking is introduced, since by assumption all of 

the land that is contracted must be mowed once per year. However, raking is required only for 

biomass that must be baled to fulfill the annual requirements. In years when production exceeds 

requirements, the excess production is mowed and left in the field to decompose. Since the cost 

of raking depends on the area (ha) of land raked while the cost to bale is a function of yield 

(Mg), raking and baling activities are considered separately. 

T is the number of states of nature (years) for which historical yields are available; XBtij is 

the quantity (Mg) of switchgrass baled and stacked in year t in county i from land class j; XTtij is 
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the quantity (Mg) of switchgrass biomass transported from county i and land class j to the 

biorefinery in year t. 

Equation (7) is minimized subject to the following constraints: 

jiXL ijij ,
        

             (8) 

jiXLXR ijtij ,                      (9) 

Equation (9) restricts the area (ha) raked to be less than or equal to the area under contract. In a 

given year, only the quantity of biomass required to fulfill the needs of the biorefinery will 

optimally be raked. The area raked may differ in each state of nature.   

jitXRXB tijtijtij ,,                   (10) 

Equation (10) restricts the quantity to be baled in year t from land class j in county i to be no 

more than the yield (αtij) in year t from land class j in county i times the area raked. 

jitXBXT tijtij ,,
                  (11) 

Equation (11) balances the quantity baled with the quantity transported to the biorefinery from 

land class j in county i for each year t.
 

tXT
i j

tij                      (12) 

Equation (12) imposes the constraint that the quantity transported to the biorefinery fulfills the 

annual switchgrass feedstock requirement in every year.  

0,,, tijtijtijij XTXBXRXL                  (13) 

Equation (13) restricts the choice variables to be nonnegative. 

Model 2 imposes the requirement that a sufficient quantity of land be contracted so that 

even in the most unfavorable weather production situation biomass will be produced to enable 

the biorefinery to operate at full capacity for the entire year. This requires contracting for and 
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paying for more land than would be required in all except the most extreme bad weather year. An 

alternative would be to contract for less land and in years when production was less than 

sufficient, to idle the plant when feedstock is not available. The net cost of a forced idle day will 

depend on the lost revenue as well as on unavoidable production costs. However, this strategy 

would reduce the quantity and cost of land that is contracted for switchgrass production.  

Model 3 – Identifying Tradeoff Between Contracting for Too Much Land versus Producing 

Too Little Feedstock 

Model 3 is designed to determine the economic tradeoffs that result from contracting for 

less land resulting in some forced idle days in some years. The objective function follows:  

 (14) 

EAC includes the expected annual cost ($) of not meeting the biorefinery demand as well as the 

average costs per year of contracting land, producing, harvesting, and transporting biomass to the 

biorefinery; ν is the penalty (opportunity cost) ($/Mg) of not delivering sufficient feedstock to 

meet biorefinery requirements; XSt is the quantity (Mg) of switchgrass less than the biorefinery 

capacity that is not available for processing in year t (shortage). Other variables are as previously 

defined. 

The model includes the following constraints: 

jiXL ijij ,                          (15) 

jiXLXR ijtij ,
                        (16) 

jitXRXB tijtijtij ,,                         (17) 
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jitXBXT tijtij ,,
               (18) 

Equations (15-18) are as previously defined. 

tXSXT t

i j

tij                           (19) 

For a given year, equation (19) permits the annual biorefinery capacity to be relaxed by the 

quantity XSt (Mg).  

                 (20)  

The total shortage quantity (Mg) across all years that may be permitted is constrained to a level, 

φ, as shown in equation (20). If the value of φ is set equal to zero, the model will identify 

sufficient land to be contracted to deliver δ Mg of feedstock in every year and Model 3 will 

provide the same solution as Model 2. To allow for average feedstock shortages that would result 

in one shutdown day per year, the value of φ may be set equal to one times the daily capacity 

times the number of states of nature that make up the empirical switchgrass yield distributions.    

The value of φ may be changed in combination with the value of ν in equation (14) to trace out 

the tradeoff between land area contracted and the cost to idle the biorefinery.   

tXEXSXR tttij

i j

tij                            (21) 

Equation (21) balances the yield in each year. In years when production exceeds biorefinery 

requirements, XEt tracks the quantity (Mg) of excess production and will be greater than zero. In 

years when production is short of biorefinery requirements, XSt tracks the shortage quantity (Mg) 

and will be greater than zero.   

0,,,,, tttijtijtijij XEXSXTXBXRXL                        (22) 
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Equation (22) restricts the choice variables to be nonnegative. 

Study Area and Data Requirement 

A number of sources were used to obtain parameter values required by the models. A 

biorefinery was assumed to be located near Okemah in Okfuskee County, Oklahoma (Figure II-

1). Based on estimates provided by Kazi et al. (2010) and Wright et al. (2010), the biorefinery 

daily requirement of feedstock was set equal to 2,000 Mg. Assuming down time required for 

maintenance and allowing for 350 days of operation per year, the annual feedstock requirement 

(δ) was set at 700,000 Mg. 

Production practices budgeted to estimate the cost of switchgrass establishment, 

maintenance, and harvest were based on a no-till establishment system (Turhollow and Epplin 

2012). Switchgrass was assumed to be seeded, established, but not harvested, in year one. From 

years two onward it was assumed to be fertilized with 78 kg of nitrogen per hectare per year and 

harvested once per year. It was assumed that one condition of the land contract is that the land 

owner would be responsible for the cost of any phosphorus and potassium fertilizer and lime 

necessary for adequate pH, and adequate soil levels of phosphorus and potassium prior to 

switchgrass establishment (Haque, Epplin, and Taliaferro 2009). The switchgrass biomass is 

assumed to be harvested (baled) once per year. Table II-1 includes estimates of switchgrass 

production and harvest costs.  

The quantity of available land with soil suitability ratings of class I, II, and III in each 

county was determined from the USDA NRCS Land Survey Geographic (SSURGO) database. 

The study was limited to land classes I-III based on the assumption that other land classes would 

not be suitable for economically viable production and harvest of switchgrass biomass. The 

quantity of land (XLij) assumed to be available for contracting by the biorefinery was set equal to 
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10% of the total quantity of each land class in each county. In the 30 county region 9% of the 

class I-III land is class I, 28% is class II, and 63% is class III. The USDA (2011) cash rental rate 

which is a market based estimate of the opportunity cost of land was used as the land rental cost. 

The estimated land cost for each land class (I, II, and III) for each county was obtained by 

extrapolating the USDA cropland rental values using equation (23). Land rent cost for each land 

class in each county was estimated to be: 

)(





j

ijij

j

iij

ijij
X

X





                         (23) 

where, ωij is the rental cost of a hectare of land in county i and land class j; ij is the potential 

wheat yield in county i and land class j as reported in the SSURGO data base, and; Xij is the 

available hectares of land in county i and land class j; i  is the USDA reported cropland rental 

rate for the county i. 

Transportation costs (τij) were calculated based on an equation modified from data reported by 

Wang (2009).  

ijij D1983.08796.0                     (24)
 

where ij  is the estimated costs ($/Mg) for loading and transporting a Mg of switchgrass dry 

matter from land class j of county i to the biorefinery. Dij is the one way distance (km) between 

the centroid of land class j of county i and the biorefinery. The centroid of each land class in each 

county was determined and the nearest town to the corresponding land class centroid was 

obtained via GIS (Figure II-2). Road distance between the town and the biorefinery was obtained 

from Google maps (maps.google.com). 
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Estimating Switchgrass Biomass Yield Distributions 

Switchgrass historical yields are not available. However, a proxy for historical yields may 

be simulated by a calibrated and validated biophysical plant growth simulation model if field 

trial yield data and historical weather data are available. The Environmental Policy Integrated 

Climate (EPIC) model (Williams, Jones, and Dyke 1984; Mondzozo et al., 2010) was calibrated 

for switchgrass yields using EPIC v 0509 and validated against switchgrass biomass field trial 

yield data obtained from three locations in the region: Chickasha, Haskell, and Stillwater 

(Fuentes and Taliaferro 2002; Haque, Epplin, and Taliaferro 2009). Calibration and validation of 

switchgrass yields were performed for each of three different soil types: McLain silt loam, 

Taloka silt loam and Kirkland silt loam on which the field experiments were conducted. Soil 

related information for these land types including bulk density, water, clay, sand and silt content, 

organic carbon concentration, calcium carbonate content, saturated conductivity, and cation 

exchange capacity were obtained from the SSURGO land database. The field trial data used to 

validate the calibrated results were obtained from a single annual harvest. Daily weather data of 

solar radiation, maximum temperature, minimum temperature, relative humidity, wind velocity, 

and precipitation for each of the three sites for each year for which data were available were 

obtained from the MESONET (2011) and NOAA (2011) weather data archives. 

The calibrated EPIC model was used to simulate switchgrass biomass yields (αtij) for 50 

states of nature (1962-2011) (t = 1..50) for three land classes (class I, II, and III) (j = 1..3) for 

each of 30 counties (i = 1..30). The soil classification within each land class with the most 

hectares in the county was used in the EPIC simulation to represent the specific land class. In 

other words, it was assumed that all soil types in the county within a particular class produced 

identical yields in each simulated year. Historical weather data for each county were obtained 
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from the NOAA (2011) for years 1962 through 2011 and supplemented with data from local 

weather stations (MESONET, 2011). Thus, proxies for empirical yield distributions that 

contained 50 observations were produced for each county and each land class.   

Cost of Idling the Biorefinery 

The net amount of revenue lost due to not delivering a Mg of feedstock that could be 

processed will depend on the lost revenue as well as on the variable production costs that can be 

avoided. If it is assumed that none of the biorefinery operating costs can be avoided, lost revenue 

from not producing biofuel will depend on the net market price of biofuel. From January of 2010 

through December of 2011, the Iowa weekly average ethanol price ranged from $0.38 to $0.78 

per liter (Agricultural Marketing Resource Center 2012). These prices were influenced to some 

extent by public policies that provided subsidies and mandates. Ethanol contains less energy 

(75,700 Btu) per gallon than unleaded gasoline (115,000 Btu) (U.S. Department of Energy 

2009). When relatively low volumes of ethanol are blended with gasoline, it has value as an 

oxygenate in addition to its energy value. However, when used in greater proportions in engines 

with compression ratios designed for unleaded gasoline, the lower Btu content results in a 

proportionately lower mileage. If direct subsidies for ethanol are eliminated, and if ethanol 

production exceeds the quantity required for ten percent blends, the marginal value of ethanol 

could be expected to be based on its energy content relative to gasoline. Based on the reference 

case for crude oil price for 2016 of $120 per barrel, as projected by the U.S. Energy Information 

Administration (2012), an ethanol price based on energy equivalence would be $0.55 per liter. 

For a conversion rate of 375 liters per Mg, and a wholesale biofuel price of $0.55 per liter the 

penalty charges for not processing feedstock derived from the lost revenue would be $206 per 

Mg. This provides an estimate of the value of ν in equation (14). Since some of the operating 
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costs may be avoided if the biorefinery is idled, this can be interpreted as an upper bound 

estimate of the penalty for not processing one Mg of feedstock.  

EPIC Model Calibration and Validation 

Productivity, growth, longevity, and adaptation traits of switchgrass primarily depend on 

the geographical location of their origin. Based on the latitude and longitude of origin, 

switchgrass is broadly classified into two ecotypes, upland and lowland. Lowland ecotype 

varieties are more compatible to the southern latitude or southern part of the U.S. due to their 

ability to adapt to the longer growing season and warmer climatic conditions. Upland varieties 

are widely adapted in the northern part of the U.S. due to their greater potential to survive in the 

colder conditions of northern latitudes (Casler et al. 2007). 

Lowland ecotype switchgrass yields were calibrated using EPIC v 0509 and validated 

against switchgrass biomass field trial yield data obtained from three locations: Chickasha, 

Haskell, and Stillwater (Fuentes and Taliaferro 2002; Haque, Epplin, and Taliaferro 2009). 

Calibration and validation of switchgrass yields were performed for each of the three different 

soil types: McLain silt loam, Taloka silt loam and Kirkland silt loam on which the field 

experiments at Chickasha, Haskell and Stillwater were conducted. Soil related information for 

these land types including bulk density, water, sand and silt content, organic carbon 

concentration, calcium carbonate content, saturated conductivity and cation exchange capacity 

were obtained from the SSURGO land database. The field trial data used to validate the 

calibrated results obtained from a single annual harvest. Single harvest management practices 

starting from the second year, as conducted in the field experiments, were used to calibrate the 

EPIC model. Daily weather data of maximum temperature, minimum temperature, precipitation, 
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solar radiation, relative humidity and wind speed for each location were obtained from 

MESONET (2011) and NOAA (2011).  

Calibration required adjustments to the EPIC crop parameter (CROPCOM crop file in 

EPIC v 0509). Timing of leaf decline (DLAI, EPIC v 0509 crop parameter acronyms), and 

maximum leaf area index (DMLA) were adjusted to 0.75 and 6, respectively. Leaf area decline 

after anthesis (RLAD), rate of decline in biomass energy after anthesis (RBMD) and plant 

maturity (RWPC2) were adjusted to 0.1, 0.1 and 0.3, respectively (Thomson et al. 2009).  

The Chickasha and Haskell field trials included three lowland ecotype switchgrass cultivars: 

Alamo, Kanlow and PMT 279. Measured yields of these cultivars were averaged and compared 

to the simulated yields. The Stillwater trials included only Alamo. EPIC simulated switchgrass 

yields were compared against the actual switchgrass yields (Figure II-3). The simulated yields 

explained 67% of the variation in the measured yields for the 10 years (1994-2000 and 2003-

2005). However, the model did not closely predict the Chickasha yields recorded for 1995. When 

the 1995 Chickasha observation was dropped, the R
2
 increased to 0.84. By this measure, the 

model was assumed to have successfully captured the switchgrass biomass yield response and 

yield variation and was assumed to be calibrated (Table II-2 and Table II-3). 

Results 

Model 1 was solved under the assumption that the average of the 50 simulated yields is 

produced in each state of nature on each land class in each county. Results obtained from the 

optimization model find that a biorefinery located near Okemah with an annual switchgrass 

feedstock requirement of 700,000 Mg will require 50,128 ha with an estimated delivered 

switchgrass feedstock cost of $60.07 Mg
-1

 (Table II-4). Total annual feedstock cost is estimated 

to be $42,049,000. However, if these 50,128 ha were contracted, based on the simulated yield 
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distributions, in 24 of the 50 states of nature, the total yearly biomass demand would not be met. 

In the worst state of nature from a switchgrass biomass yield perspective, the plant would be 

forced to idle for 85.4 days. On average the plant would be shut down for 29.5 days during those 

24 of 50 years when the contracted land produced insufficient feedstock. The average number of 

shut down days across the entire distribution of 50 years is 14.2.  

The results of Model 1 also provide insight regarding the potential for consecutive “bad” 

and “good” production seasons. Based on the 50 years of simulated distributions, there was one 

period extending over five years during which production from the land identified for contracting 

land would not have been sufficient to meet the biorefinery’s annual requirements. This finding 

suggests that maintaining a storage reserve is not likely to be practical for this region. Table II-5, 

shows that the biorefinery would optimally contract for land class I, II, and III in Creek, Hughes, 

McIntosh, Okfuskee, Okmulgee, Pittsburg, and Seminole counties, while land class I and II 

would be contracted in Lincoln County, and only land class I in Pottawatomie County (Figure II-

4). These findings follow from the assumption that the 50 years of data appropriately represents 

the entire switchgrass yield distribution.  

Model 2 is designed to locate the optimal (least-cost) quantity of land from each land 

class and county to contract to ensure that 700,000 Mg be produced and delivered in each state of 

nature. If the biorefinery management chose to attempt to lease sufficient land so that the 

required feedstock would be available for each year, then 60,492 ha would be contracted, 

resulting in an increase relative to model 1 in the average cost of delivered feedstock from 

$60.07 to $64.17 Mg
-1

. The total average annual feedstock cost would increase by 6.8% from 

$42,049,000 to $44,919,000. The difference in estimated average annual cost between model 1 

and model 2 of $2,870,000 ($4.10/Mg of biorefinery capacity) could be interpreted as the annual 
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cost of a self insurance policy to attempt to prevent idling the biorefinery due to insufficient 

feedstock.  

Table II-4 also shows the annual cost for the “best” and the “worst” switchgrass biomass 

production year from among the 50 years in the distributions. Based on model 2, 60,492 ha 

would be contracted. However, in the most favorable weather year, only 42,485 ha would be 

required to produce the 700,000 Mg required. By assumption, production from the remaining 

18,007 contracted hectares would be mowed but not raked and baled. Since less land is required 

to be raked and total transportation distance is reduced, average estimated cost to deliver 

feedstock in this “best” weather year is $62.80/Mg. In the “worst” weather state of nature all 

60,492 contracted ha must be harvested and the estimated cost to deliver is $67.18/Mg. Figure II-

5 shows that harvesting costs (including mowing, raking and baling activities) drives the entire 

production activity. 

Table II-6 provides a listing of the optimal quantity of land to contract for each county 

and land class to ensure that 700,000 Mg can be delivered for each state of nature (model 2). 

Column 2 of table II-6 shows the proportion of years based on the yield distributions during 

which some biomass from each county that contains contracted land is baled and transported. By 

this measure, production from the contracted Johnston county land would be required only 2% of 

the time. 

Table II-7 shows the relative change in quantity and location of land contracted if the 

model is solved to meet the 700,000 Mg requirement in each state of nature rather than an 

average of 700,000 Mg. The same quantity and quality of land is optimally contracted in Creek, 

Hughes, Okfuskee, Okmulgee, Pittsburg, Pottawatomie, and Seminole counties for both models 

1 and 2. Additional land would be leased in Coal (999 ha), Haskell (65 ha), Johnston (107 ha), 
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Latimer (740 ha), Muskogee (4,623 ha), Oklahoma (3,472 ha), and Wagoner (5,218 ha) counties. 

However, less land would be contracted in Lincoln (2,895 ha) and McIntosh (1,965 ha) counties 

(Figure II-4). The net additional hectares of land are required to ensure that in the worst case 

situation, the biorefinery can operate at capacity. As noted, for those states of nature in which 

production from the total contracted hectares exceeds biorefinery requirements, it is assumed that 

excess production would be mowed and left in the field to decompose and build organic matter. 

The total quantity of switchgrass baled and transported is constant (700,000 Mg) across years. 

However, the location of fields to bale and biomass to transport varies from year-to-year. 

Table II-8 includes a correlation matrix for switchgrass yields in the counties and for those land 

classes for which optimally contracted land is different between model 1 and model 2. As 

expected, the highest yield correlations are across land classes within county: 0.95 between land 

class I and II in Oklahoma County; 0.79 between land class I and III in Wagoner County; 0.65 

between land class II and III in McIntosh. Also, as might be expected the lowest correlation (-

0.10) is between the most distant counties, Latimer and Oklahoma. When yield variability is 

ignored (model 1), land is not optimally contracted in either Latimer or Oklahoma County. 

Differences in yield across space provide an opportunity for a biorefinery to strategically 

contract land to manage spatial variability.  

In model 3, the value of ν in equation (14) is a measure of the cost of not processing one 

Mg of switchgrass due to insufficient feedstock production on the contracted land. An idled plant 

relinquishes the opportunity to process. The total cost for not processing depends on the value of 

the products not produced and sold minus the variable production costs that can be avoided if the 

biorefinery is idled. For a conversion rate of 375 liters per Mg for each $0.25 per liter biofuel 

value the penalty from the lost revenue would be $93.75 per Mg. Since there are other costs 
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associated with processing that can be avoided, this can be interpreted as an upper bound 

estimate of the revenue lost for not processing. 

Results from model 1 can be used to compute an upper value for the parameter φ in 

equation (20). Based on model 1, if the biorefinery elected to contract for land based on average 

yields it would average 14.2 days per year of required idling due to insufficient feedstock. For a 

2,000 Mg/day biorefinery this would be an average annual shortage of 28,400 Mg. This value 

can be multiplied by the number of states of nature in the yield data set (in this case 50) to obtain 

an upper value for φ (1,420,000 Mg).   

For a given level of φ the level of ν can be parameterized to determine the tradeoff 

between the cost of not processing a Mg of switchgrass and the optimal quantity of land to 

contract. Results are reported in table II-9 and shown in figure II-6. For a biofuel price of $0.50 

per liter and a conversion rate of 375 liters per Mg, every Mg not processed represents a lost 

opportunity to gain $187.5 in revenue. For this situation the biorefinery would optimally lease 

53,379 ha. This would result in an average of 2.97 days per year during which the biorefinery 

would be idled due to insufficient feedstock. The average annual cost of leasing the land and 

producing, harvesting, and delivering the feedstock would be $43,057,150. The average annual 

opportunity cost of the lost revenue from insufficient feedstock would be $694,013. Dividing the 

delivered feedstock costs by the average processed quantity of 694,013 Mg, results in a cost 

estimate for the delivered switchgrass feedstock of $62.04 per Mg. This 53,379 ha can be 

compared to the 60,492 ha that would be required to ensure that adequate feedstock be produced 

in every year to prevent any shut down time. The opportunity cost of closing the biorefinery 

would have to increase to $960 per Mg before it would be optimal to contract for the 60,492 ha 

that would be required to insure against a feedstock shortage shutdown.   
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An estimate of the value of identifying and strategically contracting land can be 

determined by comparing the findings of model 1 with those of model 3. Model 1 identified 

50,128 ha for contracting. However, as noted, if these 50,128 ha were contracted, based on the 

simulated yield distributions, in 24 of the 50 states of nature, yield would be less than sufficient 

to meet the needs of the biorefinery. The total annual feedstock cost estimate for model 1 of 

$42,049,000 follows from the assumption that the yield would be the same from each hectare in 

each year and that exactly 700,000 Mg would be delivered to the biorefinery in each state of 

nature. However, if the 50,128 ha were contracted, in years when production exceeded 

biorefinery requirements, the excess amount would not be raked, baled, or transported. The 

actual transportation flows and costs would be different in each year. In years when production 

on the 50,128 contracted ha is less than 700,000 Mg, all contracted hacteres would be harvested. 

Based on the simulated yield distributions, on average, only 671,694 Mg would be produced on 

the contracted ha. The average cost to deliver the feedstock would be $40,671,330 (table II-10) 

rather than $42,051,000 (table II-4) because in high yield years fewer hectares need to be raked 

and total transportation distances are less, and in low yield years, fewer Mg are available for 

baling and less total feedstock is available for transportation.  

If the net cost of idling the biorefinery as a result of insufficient feedstock were $0.50 per 

liter not produced, then the estimated annual cost of downtime that would result from contracting 

the 50,128 ha would be $5,307,375. The average annual cost of feedstock plus downtime cost 

would be $45,978,705 (table II-10). If, on the other hand, the biorefinery elected to take account 

of switchgrass yield variability (model 3) when identifying and contracting for land, the average 

annual cost of feedstock plus downtime would be $44,170,359. The difference between these 

two values ($1,808,346) is an estimate of the annual value of considering spatial and temporal 
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yield variability when selecting land to contract. Since the useful life of a biorefinery is expected 

to exceed 10 years, land contracts to produce feedstock could also be expected to be for at least 

10 years, similar to 10-15 year Conservation Reserve Program land contracts (Osborn, Llacuna 

and Linsenbigler 1995). For a 10 year contract and a discount rate of 10% the present value of 

considering spatial and temporal yield variability when selecting land to lease for a single 2,000 

Mg per day biorefinery in the region exceeds $11 million (Table II-10). There is a clear tradeoff 

between the biorefinery downtime costs and the optimal quantity of land to lease (Figure II-7). 

As more land is leased, the average number of days per year that the plant will be idled declines 

(Figure II-7).  

Conclusion and Discussion 

Much has been made about the anticipated cost reductions expected to be achievable with 

the n
th

 relative to the first cellulosic biorefinery with a specific technology (Kazi et al. 2010; 

Wright et al. 2010). However, these analyses have failed to consider that unlike cookie cutter 

corn ethanol plants that can procure a flow of feedstock by simply offering a price premium for 

corn grain relative to the local elevator, each cellulosic biorefinery will need to pay careful 

attention to feedstock procurement. Transportation costs can be expected to limit the 

procurement region for a biorefinery. Biomass yield from perennial grasses varies considerably 

across regions and across years (Sala et al. 1988). Based on the findings presented for the region 

evaluated, failure to consider spatial and temporal yield variability could be quite costly. If the 

initial biorefineries locate in regions with less biomass yield variability the n
th

 biorefinery may 

be located in a region with more yield variability and greater feedstock cost. The modeling 

system presented herein is generalizable to other regions and to other perennial dedicated energy 
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crops such as miscanthus and short rotations woody crops. The value of strategically selecting 

land to contract will vary across regions and across species.  

For the region of the study the optimal strategy resulted in contracting for more land than 

would be required in most years. Since it was assumed that the value of excess feedstock would 

be less than the cost of harvest, it was assumed to be mowed and the sequestered carbon left in 

the field. However, no value was assigned to the environmental benefit of producing this 

biomass.  

If the provisions of the 2007 U.S. Energy Independence and Security Act are to be 

fulfilled, the production of dedicated energy crops such as switchgrass may be required. 

Development of feedstock production could be expected to develop simultaneously with 

biorefinery construction. A biorefinery designed to process switchgrass feedstock could engage 

in long term contracts designed to fulfill its feedstock needs. The models presented in this paper 

address the spatial and temporal variability of switchgrass biomass yield, issues which prior 

studies of dedicated energy crop production have not considered. 

Models based on average production do not account for the opportunity cost incurred by 

the biorefinery for not producing and selling products in those years when biomass production 

from contracted land is not sufficient to enable the biorefinery to operate at production capacity. 

A fully vertically integrated system may reduce the variability of feedstock cost but cannot 

eliminate it.  

The simulated yield distributions reveal that for the region of the study it would be 

difficult to manage a storage reserve from which biomass may be retrieved in low production 

years. Based on the 50 years of historical weather used to simulate yields, there was one period 

extending over five years during which production from the land identified for contracting would 
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not have been sufficient to meet the biorefinery’s annual requirements. Given the expense 

required to maintain switchgrass biomass quality while in storage, maintaining and using a 

feedstock storage reserve is not likely to be practical for this region.   

Results of the model suggest that (in the absence of government imposed distortions) a 

cost-efficient switchgrass feedstock biorefinery system could engage in long term contracts with 

land owners to lease a sufficient quantity of land to provide for feedstock needs prior to, or 

simultaneously with, construction of a biorefinery.  

Land could be leased in a manner similar to what occurred when millions of hectares 

were converted from cropland and enrolled in the Conservation Reserve Program (CRP). The 

difference being that the biorefinery rather than the government would be the lessee and would 

be responsible for paying the leasing cost. The CRP was established in 1985. USDA provided 

CRP participants with an annual per hectare rent and half the cost of establishing a permanent 

land cover (usually grass or trees) in exchange for 10 or 15 year leases. During the first three 

enrollment periods in 1986, more than three million ha were contracted. Within two years after 

the 1985 legislation, nine million U.S. ha were under contract (Osborn, Llacuna and Linsenbigler 

1995). If an economically competitive biorefinery technology is developed, entrepreneurs could 

prepare a field-to-fuel business model and contract and convert millions of ha from current use to 

the production of a perennial dedicated energy crop in a relatively short period of time. 

Companies may be reluctant to contract for sufficient quantities of land to provide for 

feedstock needs. Public opinion may not support conversion of 50,000 ha in a region from 

existing use to the production of a dedicated energy crop. The probability of successful rent 

seeking behavior on behalf of the biorefinery may be reduced if it becomes clear that production 

of perennial grass feedstock is more akin to harvesting CRP lands than farming conventional 
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annual crops. Public officials may place impediments limiting the ability of biorefineries to lease 

large tracts of land.  However, ambiguities as to what determines feedstock quality and how to 

provide a flow of feedstock throughout the year are likely to be resolved much more quickly if 

the annual payment to the land owner is set. Leased land would enable the biorefinery to manage 

feedstock quality and to manage harvest and transportation to optimize the field to biofuel 

system. 

Public policy could be implemented to facilitate contracting between land owners and 

biorefineries by enabling the use of the USDA Farm Service Agency and USDA Natural 

Resources and Conservation Service infrastructure to identify suitable land for contract. Since 

land owners may be skeptical of contracting with a startup, given the history of bankruptcies in 

ethanol businesses, additional policies could be implemented to enable the USDA to provide an 

insurance mechanism to facilitate contract insurance. Experts from USDA’s Risk Management 

Agency could contribute to designing insurance to mitigate moral hazard issues. 

If an economically viable system for converting biomass from dedicated perennial 

species to biofuels is developed, in the absence of government intervention, because of the 

potential efficiencies from coordinated harvest, storage, and delivery, market forces are likely to 

drive the system toward vertical integration. The structure of the industry is more likely to 

resemble U.S. timber production and harvest and delivery than the atomistic U.S. grain 

production system.  

An innovative model was introduced that enables determination of the tradeoff between 

the opportunity costs of closing the biorefinery as a result of insufficient feedstock and the 

quantity of contracted land considering both spatial and temporal switchgrass biomass yield 

variability. The model was used to determine the optimal quantity of land to lease as a function 
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of the net cost of closing the biorefinery due to insufficient feedstock. For a 10 year land contract 

and a discount rate of 10% the present value of considering spatial and temporal yield variability 

when selecting land to lease for a single 2,000 Mg per day biorefinery in the region exceeds $11 

million. 

The value of considering spatial and temporal switchgrass yield variability when 

selecting land to lease will differ across regions. The models may be used to determine the value 

for other regions. 
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Table II-1. Estimated annual production and harvesting costs of switchgrass. 

Item Unit Quantity Price unit Costs 

   

$ $/ ha 

Establishment costs ha 1.00 

 

394.45 

Land rental ha 1.00 variable variable 

Establishment costs, amortized for 10 

years at 6.5% $ 

 

0.065 variable 

Nitrogen kg 78.00 1.23 95.94 

Annual Maintenance costs $ 1.00 

 

9.63 

Mowing ha 1.00 

 

30.97 

Raking ha 1.00 

 

18.89 

Baling, 681 kg dry biomass rectangular 

bale kg variable 28.89 variable 

Total costs $     variable 

 

Source: Turhollow, A.F. and F.M. Epplin.  “Estimating Region Specific Costs to Produce and 

Deliver Switchgrass.” Chapter 8 in Switchgrass: A Valuable Biomass Crop for Energy.  ed. 

Andrea Monti, New York: Springer Publishing Co. 2012. 
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Table I-2. Comparison between measured and simulated lowland ecotype switchgrass yields. 

 

Measured Yields Simulated Yields 

Mean (Mg ha
-1

) 14.68 14.41 

St. Dev. 4.29 4.16 

Maximum (Mg ha
-1

) 23.10 21.81 

Minimum (Mg ha
-1

) 7.28 7.57 

 

Table II-3. EPIC model switchgrass validation results. 

Mean absolute percentage error 

(MAPE) 12.23% 

Coefficient of determination (R
2
) 0.66 

Relative Error (Rel. Error) 0.02 
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Table II-4. Total annual feedstock costs (land contracted, production, fertilization, harvest, and 

transportation), average cost to deliver switchgrass, area leased, and average area harvested to 

deliver switchgrass. 

 

Total 

Feedstock 

Costs ($/yr) 

Average Cost 

to Deliver 

Switchgrass 

($/Mg)) 

Land 

Contracted 

(ha) 

Area  Harvested 

(ha) 

Result from model 1 

Average Yield 42,051,000 60.07 50,128 
a 

Results from model 2: Insure 700,000 Mg in Every State of Nature 

Average  44,919,000 64.17 60,492 50,023 

Best yield year 43,960,000 62.80 60,492 42,485 

Worst yield year 47,026,000 67.18 60,492 60,492 
 

a
 In years with average or below average yields the entire contracted area would be harvested. 

However, in years with above average yields, if the biomass has no alternative use, some 

contracted area would not be harvested.  
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Table II-5. Land contracted by county and by land class assuming average yield is achieved and 

ignoring year-to-year switchgrass yield variability (model 1). 

 County Land Class I Land Class II Land Class III 

 

hectares 

Creek 1,337  3,647  3,842  

Hughes 329  2,645  6,348  

Lincoln 251  2,895  

 McIntosh 14  1,413  552  

Okfuskee 774  1,057  3,154  

Okmulgee 544  3,003  5,139  

Pittsburg 142  2,744  5,938  

Pottawatomie 669  

  Seminole 120  1,329  2,242  

Total  4,180 18,733 27,215 

 

Note: Area contracted for a specific land class and county was restricted to be no more than 10% 

of the existing quantity. 
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Table II-6. Land contracted by county and by land class to ensure that 700,000 Mg can be 

delivered for each state of nature (model 2).
 a
 

 

Proportion of years when 

biomass is raked, baled 

and transported 

Land Class I Land Class II 

Land Class 

III  

County hectares 

Coal 0.14 

 

999  

 Creek 1.00 1,337 3,647  3,842  

Haskell 0.38 65  

  Hughes 1.00 329  2,645  6,348  

Johnston 0.02 107  

  Latimer 1.00 

 

740  

 Lincoln 0.90 251  

  McIntosh 1.00 14  

  Muskogee 0.82 

  

4,623 

Okfuskee 1.00 774  1,057  3,154  

Oklahoma 0.36 590  2,882  

 Okmulgee 1.00 544  3,003  5,139  

Pittsburg 1.00 142  2,774  5,938  

Pottawatomie 1.00 669  

  Seminole 1.00 120  1,329  2,242  

Wagoner 0.46 773  

 

4,445  

Total  5,715 19,076 35,731 
a
 For those counties and land classes for which land is optimally contracted, all available land is 

contracted except that only 46% of Muskogee County class III land is contracted.   
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Table II-7. Change in quantity of land optimally contracted as determined by model 1 and model 

2 (model 2 value minus model 1 value). 

County 

Land Class I 

(ha) 

Land Class II 

(ha) 

Land Class III 

(ha) 

Coal 

 

999 

 Creek * 
a
 * * 

Haskell 65 

  Hughes * * * 

Johnston 107 

  
Latimer 

 

740 

 
Lincoln * -2,895 

 
McIntosh * -1,413 -552 

Muskogee 

  

4,623 

Okfuskee * * * 

Oklahoma 590 2,882 

 Okmulgee * * * 

Pittsburg * * * 

Pottawatomie * 

  Seminole * * * 

Wagoner 773   4,445 

    a 
An * indicates that the same quantity of land was selected for contracting by both  

models 1 and 2.



 
 

Table II-8. Correlation matrix for switchgrass yield for counties and land classes for which a different quantity of land is optimally 

contracted between models 1 and 2.   

    County 

County 

 

Coal Haskell Johnston Latimer Lincoln McIntosh McIntosh Muskogee Oklahoma Oklahoma Wagoner Wagoner 

  Land 

Class 

II I I II II II III III I II I III 

Coal II 1.00 

           Haskell I 0.24
a
 1.00 

          Johnston I 0.45 0.42 1.00 

         Latimer II 0.14 0.13 0.19 1.00 

        Lincoln II 0.17 0.52 0.12 0.13 1.00 

       McIntosh II 0.37 0.22 0.36 0.20 0.33 1.00 

      McIntosh III 0.22 0.19 0.18 0.36 0.42 0.65 1.00 

     Muskogee III 0.39 0.41 0.17 0.17 0.25 0.30 0.23 1.00 

    Oklahoma I 0.06 0.46 0.31 -0.02 0.26 0.30 0.23 0.04 1.00 

   Oklahoma II 0.08 0.47 0.27 -0.10 0.24 0.27 0.19 0.09 0.95 1.00 

  Wagoner I 0.11 0.51 0.07 0.27 0.31 0.25 0.15 0.30 0.32 0.29 1.00 

 Wagoner III 0.16 0.58 0.11 0.13 0.34 0.20 0.12 0.50 0.26 0.28 0.79 1.00 

 

a
 The correlation coefficient of switchgrass yield between land class II of Coal County and land class I of Haskell County is 0.24. 

7
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Table II-9. Biofuel price, corresponding revenue lost for not processing switchgrass feedstock, the number of days in an average year 

the biorefiney is forced to be idle, average cost to deliver switchgrass, and quantity of contracted land. 

Net Biofuel 

Price ($/liter) 

Lost Net 

Revenue (ν) 

($/Mg not 

processed)
a
 

Forced 

downtime 

(average 

days/year) 

Land 

Contracted 

(ha) 

Average 

Annual  

Shortage 

(Mg)
b
 

Average 

Annual 

Delivered 

Feedstock 

(Mg) 

Annual cost 

of Forced 

Downtime 

($/yr) 

Annual Cost 

of Delivering 

Feedstock 

($/yr) 

Cost / Mg 

Delivered 

φ =1,420,000
b
 

0.1 37.5 14.15 49,464 28,306 671,694 1,061,475 40,511,170 60.32 

0.2 75 14.15 49,464 28,306 671,694 2,122,950 40,511,170 60.32 

0.3 112.5 6.86 51,465 13,727 686,273 1,544,288 41,953,190 61.13 

0.4 150 4.24 52,198 8,488 691,512 1,273,200 42,611,090 61.62 

0.5 187.5 2.97 53,379 5,987 694,013 1,122,563 43,057,150 62.04 

0.6 225 1.94 54,212 3,879 696,122 872,775 43,470,000 62.45 

1.2 450 0.32 55,813 631 699,369 283,950 44,445,260 63.55 

2.56 960 0 60,492 0 700,000 0 44,919,930 64.17 

φ =1,000,000 

0.1 37.5 10 51,092 20,000 680,000 750,000 41,287,740 60.72 

0.2 75 10 51,092 20,000 680,000 1,500,000 41,287,740 60.72 

0.3 112.5 6.86 51,465 13,727 686,273 1,544,288 41,953,190 61.13 

φ =500,000 

0.1 37.5 5 51,923 10,000 690,000 375,000 42,402,630 61.45 

0.2 75 5 51,923 10,000 690,000 375,000 42,402,630 61.45 

0.3 112.5 5 51,923 10,000 690,000 375,000 42,402,630 61.45 

0.4 150 4.24 52,198 8,488 691,512 1,273,200 42,611,090 61.62 
 

a
 Here ν from model 3 (equation 14) is assumed to be equal to the lost sales revenue from not processing as a result of insufficient 

feedstock.   
b
 Constraint equation (20) from model 3 limits total biomass shortage across all years to a level, φ. The average annual shortage is φ/T.  

The initial level of φ was set equal to the average shortage per year as computed by model 1 times T.   

 

7
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Table II-10. Estimated value of strategically selecting land to lease if the net cost of 

failure to deliver feedstock is $187.50 per Mg. 

Forced 

downtime 

(average 

days/year) 

Land 

Contracted 

(ha) 

Average 

Annual  

Shortage 

(Mg)
b
 

Average 

Annual 

Delivered 

Feedstock 

(Mg) 

Estimated 

Annual 

cost of 

Forced 

Downtime 

($/yr) 

Annual 

Cost of 

Delivering 

Feedstock 

($/yr) 

Average 

Annual Cost 

of Feedstock 

Plus 

Downtime 

($/yr) 

Model 1 

14.15 50,128 28,306 

 

671,694  5,307,375 40,671,330 45,978,705 

Model 3 

2.97 53,379 5,987 694,013 1,113,209 43,057,150 44,170,359 

       Model 1 Value Minus Model 3 Value 

11.18 -3,251 22,319 -22,319 4,194,166 -2,385,820 1,808,346 

  

Value of Strategically Selecting Land to Contract  

  

Discount 

Rate 

 

Contract 

Length (yr) 

 

Present 

Value 

  

0.10 

 

10 

 

$11,111,505 

  

0.10 

 

15 

 

$13,754,426 

  

0.15 

 

10 

 

 $9,075,672 

    0.15   15   $10,574,070 
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Figure II-1. Map showing the Oklahoma counties selected for potential switchgrass 

production 
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Figure II-2. Map of the centroids of land class I, II, and III in each of the thirty Oklahoma 

counties. Potential biorefinery location is indicated by ▲. 
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Figure II-3. Simulated and measured lowland ecotype switchgrass yields for the three 

location of Oklahoma over the year 1994 through 2000 and 2003-2005. 
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Land Leased Under Average Switchgrass Yield (model 1) 

 

Land Leased to Ensure Sufficient Feedstock in Each Production Year (model 2) 

 
Figure II-4. Location and land class optimally contracted by county. (Symbols randomly 

assigned within counties.) 
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Figure II-5. Land rent, production costs, harvest costs, and transportation costs of one Mg 

of switchgrass 

.  
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Figure II-6. Tradeoff between the cost ($/Mg) of downtime due to insufficient feedstock 

and the optimal quantity of land to lease 
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Figure II-7. Tradeoff between the average biorefinery forced downtime days per year for 

lack of feedstock and the quantity of contracted land. 
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III. CHAPTER III 

 

IMPACT OF ENVIRONMENTAL VALUES ON THE BREAKEVEN PRICE OF 

SWITCHGRASS 

 

Abstract 

This study estimates the farm-gate breakeven price of switchgrass relative to 

wheat production, which is the dominant crop in Oklahoma. The breakeven price of 

switchgrass is determined both from the perspective of the private landowners’ and from 

the social perspective where selected external environmental consequences are included. 

Results suggest that the farm-gate breakeven price of switchgrass from the private 

landowners’ perspective is higher than from the social perspective when environmental 

consequences are considered. The environmental benefits (selective) derived from 

switching to bioenergy crop production are greatest on the most erodible land. 

Introduction 

With increased prices of fossil fuels and concern over environmental degradation 

there has been increased interest in finding alternative sources of energy. Part of this 

interest has focused on renewable bioenergy, which is expected to have fewer negative 

environmental consequences than hydrocarbon fuels. The U.S. Energy Independence and 

Security Act (EISA) of 2007 include a target level of 16 billion gallons of cellulosic 

ethanol by 2022. Among the many potential dedicated energy crops, switchgrass
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has promise due to its ability to grow on many different types of soil under diverse 

climatic conditions. The US-EPA (2010) used the Forestry and Agriculture Optimization 

Model (FASOM) to predict that by 2022, it would be economically feasible to produce 

around 0.9 billion gallons of ethanol from switchgrass biomass feedstock. The FASOM 

model also projected that most of the switchgrass used to produce the feedstock for the 

0.9 billion gallons of ethanol would be grown in Oklahoma replacing wheat and hay 

production (U.S. EPA, p. 286-287).  

Switchgrass can generate greater biomass yields with relatively less chemical 

fertilizer than annual non-legume crops. This is because in the fall, nutrients are 

translocated to its deep rhizomes. If the biomass harvest is delayed until the fall after the 

nutrients have translocated, they will not be removed. A perennial energy crop like 

switchgrass can also increase soil organic matter and provide a cover that reduces soil 

erosion relative to continuous cropping. There are additional environmental benefits from 

reduced nitrogen and phosphorous runoff and carbon sequestration.  

The U.S. Conservation Reserve Program (CRP) was established in 1985. Under 

the CRP program highly erodible land was removed from agricultural production and 

trees or grasses were planted to reduce soil erosion (Mapemba et al., 2007). CRP 

participants were paid an annual land rental value and half the cost of establishing a 

permanent land cover (usually trees and grasses) in exchange for 10- or 15-year leases on 

land previously used to grow crops. One of the major goals of the CRP was to reduce soil 

erosion. As of January 2012, more than 12 million hectares were under USDA CRP 

contract at an average cost of $141/ha/year or a total cost of almost $1.7 billion per year 

(U.S. Department of Agriculture, Farm Service Agency, 2012). Allowing some of these 
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lands to produce energy crops like switchgrass, would reduce the government CRP 

expenditure while maintaining at least some of the benefits such as reduced soil erosion, 

reduced nitrogen and phosphorous loss and sequester carbon. In anticipation of the 

establishment of a technology for converting cellulosic biomass into economically 

competitive bio-products, the CRP was amended by the 2002 Farm Bill to permit 

biomass harvesting of CRP grassland subject to restrictions (Farm Security and Rural 

Investment Act (FSRIA) of 2002, U.S. Department of Agriculture, 2003). 

The projected potential for switchgrass production in Oklahoma raises several 

research questions. First, what net price for switchgrass would be required to bid land 

away from wheat production to switchgrass production? Second, what are the expected 

changes in soil erosion, fertilizer (nitrogen and phosphorous) runoff, and soil organic 

carbon from converting wheat production land into switchgrass production?  

In this research study, the farm-gate price of switchgrass is estimated from the 

view of the private landowner and from the view of social planner by including selected 

environmental impacts. Specifically, the long-term environmental consequences resulting 

from replacing no-till wheat production by switchgrass production can be obtained 

through the reduction in soil erosion, nitrogen and phosphorous runoff and through 

changes in soil organic carbon (SOC). The monetary values to these environmental 

consequences are added to consider the abatement costs associated with the reduction of 

agricultural runoff caused from wheat and switchgrass production. This study will also 

estimate the potential environmental benefits derived from replacing no-till wheat 

production to switchgrass production and discuss the importance of a program such as 
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conservation reserve program to incentivize switchgrass production from the soil 

planners’ perspective. 

Several studies have estimated the production costs of switchgrass feedstock. The 

production cost is used as the farm-gate breakeven price, which includes all the costs 

associated with the production of switchgrass. Mooney et al. (2009) determined the 

breakeven price of switchgrass for four different locations in Tennessee. They found that 

the farm-gate breakeven price of switchgrass based on 10-year production contracts was 

$46 Mg
-1

 for an average yield of 17.7 Mg ha
-1

 and $69 Mg
-1

 for an average yield of 8.5 

Mg ha
-1

. Khanna, Dhungana and Brown (2008) estimated the Illinois farm-gate 

breakeven price of switchgrass to be $98 Mg
-1

 with average yields of 9.42 Mg ha
-1

. 

Epplin et al. (2007) estimated the cost of producing switchgrass under two alternative 

scenarios: (1) the land-lease alternative and (2) the farmer-contract. Under the land-lease 

alternative, the cost of switchgrass production including the cost of land lease, harvest 

and storage for the 55 counties of Oklahoma was $40.65 Mg
-1

. The study assumed an 

eight-month harvest system. The cost increased to $58.15 Mg
-1

 when the harvest window 

was restricted to two months per year. In Tennessee, based on farmer bids to produce 

switchgrass, the cost of producing switchgrass ranged from $39.67 Mg
-1

 to $60.30 Mg
-1

 

assuming that an average yield of 15.70 Mg ha
-1

 could be obtained. McLaughlin and 

Kszos (2005) estimated U.S. farm-gate prices of switchgrass of $30.31 Mg
-1

, and $44.00 

Mg
-1

 for average yields of 11.4 Mg ha
-1

, and 9.4 Mg ha
-1

 respectively. The agricultural 

sector model POLYSIS was used in the study. However, these studies did not consider 

the environmental consequences of producing switchgrass relative to existing land use 
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and also did not place any monetary value on those consequences while estimating the 

farm-gate breakeven price of switchgrass.  

Nelson, Ascough II, and Langemeier (2005) discussed the environmental 

consequences of converting conventional crop land to switchgrass. They used the soil and 

water assessment tool (SWAT) to determine the environmental outcomes of switchgrass 

production. They simulated switchgrass yields and other commodity crop yields and 

estimated the farm-gate breakeven price of switchgrass. Graham, Downing and Walsh 

(1996) used the environmental policy integrated climate (EPIC) model to predict 

switchgrass and other alternative crop yields and their associated environmental 

outcomes. They determined the farm-gate breakeven price of switchgrass by comparing it 

to the production of other alternative crops. Both of these studies found that switchgrass 

production reduced soil erosion and nutrient loss compared to annual crops. King, 

Hannifan, and Nelson (1998) also found that switchgrass production reducted soil erosion 

and nutrient loss. However, these studies did not attach any monetary value to the 

environmental benefits derived from converting to switchgrass production while 

estimating the farm-gate breakeven price of switchgrass.  

The primary objective of this study is to determine the site-specific farm-gate 

breakeven price of switchgrass under two scenarios: (1) from the profit maximizing 

private landowners’ perspective where environmental issues are not considered; and (2) 

from social planner’s perspective where selected environmental variables (soil loss, 

nitrogen and phosphorous loss, and changes in SOC) are valued. The secondary objective 

was to estimate the expected yield of switchgrass and wheat (major alternative crop) and 

the environmental outcomes including nitrogen loss, phosphorous loss, soil loss and 



 
 

92 

changes in soil organic carbon (SOC) on alternative soil classes over a multi-county area. 

Furthermore, this study will also estimate the selective site-specific environmental 

benefits derived from producing switchgrass. 

Conceptual Framework  

This study integrates the environmental consequences and economic feasibility of 

producing switchgrass. The landowners’ decision regarding shifting into a long-term 

investment such as switchgrass by replacing an existing annual crop mainly depends on 

the relative expected returns per hectare. Factors like the expected yield of switchgrass, 

production costs, agricultural policy program (subsidy) and the price of the switchgrass 

determine the profitability. The objective of the landowners/ farmers is assumed to be 

maximization of the net expected returns subject to availability of land, and is as follows: 

  
)(max E

i
RiAi; ),( swi       (1) 

        s.t.     Ai L         (2) 

                   Ai 0         (3) 

where, E(π) is the expected net returns derived from either producing wheat (w) or 

producing switchgrass (s); Ai is the acreage of crop i (wheat or switchgrass); Ri is the 

expected net returns per hectare, after incurring the abatement costs associated with the 

removing of agricultural runoff derived from producing crop i; L  is the quantity of land 

available for switchgrass production. However, in the case of switchgrass, no formal 

market exists for the product. Therefore, the price of switchgrass is estimated from the 

returns of the best alternative crop, which in this case is assumed to be wheat. 
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An integrated framework, which combines the economic model and 

environmental model, will be discussed. This study is divided into three sections: (1) a 

biophysical simulation model: the EPIC model was used to simulate the expected yield of 

switchgrass and wheat along with the environmental outcomes including (a) total soil loss 

(Mg ha
-1

), (b) nitrogen loss (kg ha
-1

), (c) phosphorous loss (kg ha
-1

), and (d) changes in 

SOC (kg ha
-1

); (2) an economic model is used to estimate the farm-gate breakeven price 

of switchgrass from the perspective of the profit maximizing landowners without valuing 

the environmental consequences based on the returns derived from the alternative crop, 

wheat; and (3) the farm-gate breakeven price of switchgrass is estimated from the social 

planner perspective valuing the environmental consequences. The schematic diagram in 

figure III-1 represents the integrated framework of the economic and environmental 

model.  

Study Region and Data Requirement 

This study examined switchgrass production in counties surrounding proposed 

potential biorefinery to be located near Okemah in Okfuskee County, Oklahoma. This 

plant is assumed to have an annual switchgrass feedstock requirement of 700,000 Mg. 

Models in chapter II, determined the location and land classes where land would 

optimally be leased: Coal (class II), Creek (class (I, II, III), Haskell (class I), Hughes 

(class I,II, III), Johnston (class I), Latimer (class II), Lincoln (class I, II), McIntosh (class 

I, II, III), Muskogee (class III), Okfuskee (class I, II, III), Oklahoma (class I, II), 

Okmulgee (class I, II, III), Pittsburg (class I, II, III), Pottawatomie (class I), Seminole (I, 

II, III), and Wagoner (class I, III). Therefore in this study, the farm-gate breakeven price 
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of switchgrass with and without valuing the selected environmental consequences would 

be estimated for the identified counties and land classes (Figure III-2). 

Data were obtained from several sources. Historical weather information was 

obtained from NOAA and Mesonet (2011). Soil information for each land class (I, II, and 

III) of each county was obtained from USDA, NRCS SSURGO soil database (2011). 

Table III-1 shows the Universal Soil Loss Equation (USLE) related attributes for each 

land class of each county (USDA-NRCS 2007). Production costs of switchgrass were 

obtained from table II-1 of chapter II, while cost of wheat production was taken from the 

Oklahoma State University (OSU), Agricultural Economics Enterprise Budget (2012) 

information (Table III-2). The price of wheat (in Mg) was obtained from the FAPRI 

baseline model (2012). The sources of the values of environmental outcomes were listed 

in table III-3. 

Methodology  

This study has three parts. In the first part, the EPIC model was used to simulate 

the biophysical plant growth process to obtain the expected yield, the amount of soil 

erosion, the effect of the soil erosion on crop yields, the amount of nitrogen lost through 

percolation, surface runoff and with sediment, the amount of phosphorous in surface 

runoff and with sedimentation, and changes in SOC for each class or soil type. In the 

second part budgeting was used to estimate the producers’ profit from wheat production. 

The profit from wheat production was then used as the opportunity cost of land in 

switchgrass production. Net returns earned above the current wheat production plus fixed 

and variable costs associated with switchgrass production divided by the switchgrass 

yield gives the breakeven price. In the last section, the monetized value of the selected 
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environmental variables was added to the private owner values considered in part two. 

An economic value was assigned to estimates of (a) off-site damage cost due to soil 

erosion, (b) nitrogen loss due to erosion, (c) phosphorous loss due to erosion, and (d) 

changes in the quantity of soil organic carbon. Comparing these two prices, the selected 

environmental consequences to the surrounding counties and land class types of the 

proposed biorefinery are estimated.  

EPIC Model Yield Validation  

The expected yields and the environmental outcomes including soil loss, nitrogen 

and phosphorous loss, and changes in SOC for wheat and switchgrass production  is 

simulated using the Environmental Policy Integrated Climate (EPIC) model (Williams, 

Jones, and Dyke, 1984). However, prior to simulation the model was calibrated and 

validated. The detailed steps associated with the calibration and validation of switchgrass 

were explained in chapter II.  

Wheat yields, using the daily weather at the experimental locations of Apache 

(2010-12), Kildare (2008-12), Homestead (2008-2011), and El Reno (2007-09) was 

simulated in EPIC and compared to experimental field trial data obtained from respective 

OSU experiment sites (2012). Calibration and validation of no-till grain only wheat 

yields were performed for each of the four different soil types. The Hollister silt loam, 

Tabler silt loam, Canadian fine sandy loam, and Pond creek silt loam were the respective 

soils on which the field experiments at Apache, Kildare, Homestead, and El Reno were 

conducted. Soil related information for these land types including bulk density, water, 

sand and silt content, organic carbon concentration, calcium carbonate content, saturated 

conductivity and cation exchange capacity were obtained from the SSURGO land 
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database (2011). Daily weather values of maximum temperature, minimum temperature, 

precipitation, solar radiation, relative humidity and wind speed for each location were 

obtained from MESONET (2012). The management plan in the simulation (similar to 

that used in the field experiments that produced the empirical data), included planting in 

October and harvesting in June, and applying 47 kg/ha of ammonium polyphosphate 

solution (10-34-0) along with 57 kg/ha of urea (46-0-0) before planting was used in 

EPIC. The calibration and validation results for no-till grain only wheat yields are shown 

in Table III-4, Table III-5, and Figure III-3 respectively. 

EPIC Model Soil Erosion Validation 

Soil erosion may be estimated by the Universal Soil Loss Equation (USLE). The 

USLE (Wischmeier and Smith, 1978) equation is expressed as: 

    A=R*K*LS*C*P    (4) 

where, A represents average annual soil loss (tons per acre); R represents the potential of 

the rain in a particular area to produce erosion; K is the erodibility factor; LS represents 

the combined effect of slope length (L) and steepness (S); C represents the type of tillage 

and cropping system used; and P represents the reduction in erosion from the support 

practice factor including contour farming, cross-slope farming, buffer strips, strip 

cropping, and terraces.  

In this study, site-specific annual soil loss is estimated based on the USLE 

equation and used to validate the EPIC simulated site-specific soil losses. Table III-1, 

includes the K and LS values used in this estimation. Based on the geographic location of 

the study region, an R-factor of 180 obtained from Cooper (2011) is used. The erodibility 

factor of each site-specific land class type (K) is obtained from the SURGO soil database 
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(2011). The LS factor is obtained based on the slope length (Storm et al., 1996) and the 

soil steepness gradient (%) from the LS table published by the Institute of Water 

Research, Michigan State University (2002). A C factor of 0.05 for no-till operation is 

obtained from the soil conservation manual published through the Agronomy Department 

of Purdue University (Franzmeier, and Steinhardt, 2009). The P factor is considered to be 

1.0 assuming no special practices including contour farming are used (Franzmeier, and 

Steinhardt, 2009). Based on this information, an annual soil loss estimate was derived for 

no-till wheat production using the USLE equation for each county and each land class or 

soil type (Table III-1). Soil loss for no-till switchgrass production is estimated by revising 

the C-factor to 0.005 (Schwartz et al., 2012, Table III-1). The erodibility index (EI) based 

on the field office technical guide of NRCS, USDA, (1996) is estimated by dividing 

erodibility (R*K*LS) by the soil loss tolerance (T) and is expressed as: 

 
T

R*K*LS
EI =      (5) 

Soil loss derived for both no-till wheat and switchgrass production for each 

county and each soil type is simulated in EPIC based on the site-specific soil slope length 

and soil slope gradient information and validated against the estimated site-specific soil 

loss (Table III-6, Table III-7, Figure III-4, and Figure III-5).  

EPIC Model Simulation 

After the yields and the soil loss for both no-till wheat and switchgrass production 

are calibrated and validated, the calibrated models were used to simulate wheat and 

switchgrass yields and environmental outcomes based on 50 years of daily weather 

information. Each year’s data was considered as a state of nature. The EPIC simulation 
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for switchgrass was performed with the assumption that wheat production land was 

converted to switchgrass production and on every tenth year switchgrass was replanted. 

Ten different 50 year random weather scenarios were generated based on a unique 

random number generator seed used in the EPIC control table (EPIC CONT) for each 

location. Each of these random weather scenarios was used to simulate a 50-year yield 

distribution along with the environmental outcomes derived from wheat and switchgrass 

production in each county and each land class type. After each of these 10 random 

distributions of wheat and switchgrass yields and environmental outcomes are simulated 

for each county and each land class, all the 10 observations for each of the 50 states of 

nature are averaged to estimate the expected switchgrass and wheat yields and 

environmental outcomes (soil loss, nitrogen loss, phosphorous loss, and changes in SOC) 

for each county and each land class type. 

Economic Model 

The farm-gate breakeven price of switchgrass is estimated based on the returns 

from the best alternative crop, which is wheat production. Site-specific enterprise budgets 

based on the detailed field operations for both crops were prepared for each county and 

each land class (Table II-1 and Table III-2). The foregone profit from the best alternative 

use, wheat production, was considered as the opportunity cost of the land for each land 

class (I, II, and III) and for each county. However, the rental rate above the net returns 

derived from wheat production would be paid (Fewell, Bergtold, and Williams, 2011) in 

order to encourage landowners to produce switchgrass. Therefore, in this study it is 

assumed that an additional extrapolated USDA (2011) cropland rental rate above the 

opportunity costs of the land derived from the forgone wheat production would be paid to 
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the landowners/ farmers. Since the switchgrass and wheat production costs were not 

inflated, a real rate of interest was used as the discount rate with the assumption that all 

prices will change as per as the general inflation rate (Campbell and Brown, 2009). In the 

U.S., the average real rate of interest over the last 15 years was 4% (World Bank, 2012). 

Therefore, a discount rate of 4% was used in this study. 

The farm-gate breakeven price of switchgrass to the profit maximizing landowner 

is the price of switchgrass that would at least ensure the landowner the equivalent return 

from the existing best alternative wheat production on the land. The net present value 

derived from wheat production in each county and in each soil type from the profit 

maximizing landowners’ perspective is estimated using the following equation: 
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where E(NPVPw,c,s ) is the expected private profit maximizing land owners’ net present 

value derived from wheat production for county c and land class type s; Pi,w is the price of 

wheat w in year i; E(Yi,w,c,s) is the expected wheat yield w for the i
th

 year and for county c 

and land class type s; VCi,w,c,s is the entire production cost including the establishment 

costs, fertilizer costs, and harvesting costs of wheat production w in i
th

 year for county c 

and land class type s; and r is the market discount rate. 

The net present value derived from wheat production in each county and in each 

soil type from the social planners’ perspective is estimated using the following equation: 
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where E(NPVSw,c,s ) is the expected social planners’ net present value derived from wheat 

production w for county c and land class type s; the additional terms Ni,w,c,s and Pi,w,c,s are 

the quantity of nitrogen and phosphorous runoff in kg/ha derived from wheat production 

for the i
th

 year and for county c and land class type s; SLi,w,c,s is the quantity of soil loss in 

Mg/ha derived from wheat production for the i
th

 year and for county c and land class type 

s; α, β are the abatement costs of nitrogen and phosphorous runoff respectively; and λ is 

the damage costs associated with the soil loss.  

The net present value derived from switchgrass production in each county and in 

each soil type from the profit maximizing landowners’ perspective is estimated using the 

following equation: 
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where E(NPVPg,c,s ) is the expected private profit maximizing land owners’ net present 

value derived from wheat production for county c and land class type s; BEPg,c,s is the 

private profit maximizing land owners’ farm-gate breakeven price of switchgrass g for 

county c and land class type s; E(Yi,g,c,s) is the expected wheat yield w for the i
th

 year and 

for county c and land class type s; VCi,g,c,s is the entire production cost including the 

establishment costs, fertilizer costs, and harvesting costs of wheat production w in i
th

 year 

for county c and land class type s; LCc,s.is the extrapolated USDA (2011) cropland rental 

rate for county c and land class type s. 

The net present value derived from switchgrass production in each county and in 

each soil type from the social planners’ perspective is estimated using the following 

equation:
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where E(NPVSg,c,s ) is the expected social planners’ net present value derived from 

switchgrass production for county c and land class type s; BESg,c,s is the social planners’ 

farm-gate breakeven price of switchgrass g for county c and land class type s; SLi,g,c,s is 

the quantity of soil loss in Mg/ha derived from switchgrass production for the i
th

 year and 

for county c and land class type s; Ci,g,c,s is the changes in the quantity of soil organic 

carbon Mg/ha derived from switchgrass production for the i
th

 year and for county c and 

land class type s; λ is the damage costs associated with the soil loss; δ is the assumed 

carbon credit given to the landowner/ farmer for sequestering carbon by producing 

switchgrass; and other variables are previously defined. 

The landowner/farmer would be indifferent between producing either wheat or 

switchgrass only when the net present value derived from producing wheat would be 

identical to the net present value derived from producing switchgrass. Therefore, farm-

gate breakeven price of switchgrass derived from private profit maximizing land owners’ 

perspective is estimated by equating equation 6 and equation 8, and solving for BEPg,c,s, 

and farm-gate breakeven price of switchgrass derived from social planners’ perspective is 

estimated by equating equation 7 and equation 9, and solving for BESg,c,s respectively. 

Environmental Analysis 

The environmental analysis portion of this study deals with determining the 

differences in soil erosion, nitrogen and phosphorous runoff, and the changes in soil 

organic carbon that would occur from converting traditional wheat production land into 

energy crop (switchgrass) production. The EPIC model was used to simulate site-specific 
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50 states of nature distribution of environmental outcomes including nitrogen loss, 

phosphorous loss, off-site soil erosion and changes in SOC derived from switchgrass and 

wheat production for each of the ten different random weather scenerios for each 

location. Site-specific simulated expected environmental outcomes were then estimated 

for each county and each land class type surrounding the proposed hypothetical 

biorefinery location (mentioned in chapter II). 

Now the most crucial part of this study is to estimate the societal benefits derived 

from the changes in the selected environmental outcomes derived from converting wheat 

production land into switchgrass production. Each of the environmental outcomes 

including soil loss, fertilizer runoff, and soil organic carbon loss would certainly cause 

environmental damages to the surrounding watershed and to the atmospheric carbon 

cycle. Therefore, these environmental outcomes have associated with some damage costs 

including both monetary costs and non-monetary costs such as loss in recreational values. 

On the other hand, in order to reduce the environmental damages, the government or the 

private individual could incur certain treatment costs. The optimal level of abatement 

occurs where the sum of the treatment and damage costs are minimum, that is, where the 

marginal damage costs equal marginal treatment costs.  

Several previous studies have estimated the costs associated with the removal of 

agricultural runoff including nitrogen and phosphorous; and the off-site damage costs of 

soil erosion. Gerlach and DeSimone (2005) estimated the abatement costs of nitrogen in 

Maryland using enhanced nutrient technique and found the abatement was $13 kg/ha, 

Zivojinovich (2010) suggested that in case nitrogen is removed using the algal turf 

scrubber in Florida then the abatement costs was $55 kg/ha. Ribaudo et al. (2010) did a 
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study for the entire United States and estimated the abatement costs of nitrogen of $6.37 

using wetland restoration; Rabotyagov et al. (2010) focused their study on the upper 

Mississipi River basin, the major contributor of nutrients to the Gulf of Mexico hypoxic 

zone, estimated that in order to reduce the nitrogen loading by 30%, the abatement costs 

of $6.67 needs to be incurred through nutrient’s reductions including nitrogen from 

agricultural fields.  

Similarly, non-point sources phosphorous removals were estimated in several 

existing literature including Johansson and Randell (2003), Johansson et al. (2004), 

Keplinger et al. (2003). In another study, Ancev et al. (2006) estimated the shadow price 

where marginal phosphorous abatement costs and marginal damage costs from 

phosphorous pollution for the Eucha-Spavinaw, Oklahoma is equal, ranges from $14.16 

to $70.17 kg/ha under different scenarios. In fact, visitors may be willing to pay more 

than the opportunity or abatement costs incurred in phosphorous runoffs (Roberts, Boyer, 

and Lusk, 2008). Off-site soil damage costs including the non-monetary recreational 

values were estimated in several previous studies (Pimentel et al., 1995; Ribaudo, 1986; 

and Huszer and Piper, 1986).  

In this study, the cost of nitrogen abatement is assumed to be $6.37 per kg; 

phosphorous abatement costs is assumed at $25.83 per kg; and off-site damage costs of 

soil erosion is assumed at $3.15 per Mg (all these values are inflated by 2012 CPI, 2012). 

According to Bloomberg new energy finance (Doan, 2012), the carbon credits are 

auctioned between the ranges of $12 to $15 per Mg by California Air Resources Board; 

therefore, the value of carbon credit was assumed to be $15 per Mg of SOC for this 

study. 
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Each of the environmental outcomes was then multiplied by the abatement 

/damage costs of that particular environmental consequence. After the environmental 

consequences of switchgrass and wheat production were valued, then the budgeting 

technique was used to estimate the site-specific expected internal plus selected external 

returns and costs derived from switchgrass and wheat production over the 50 states of 

nature. Equating equation 7 and equation 9, and solving for BESg,c,s the site-specific farm-

gate breakeven price of switchgrass was estimated for the social planners’ perspective 

(on-farm plus selected environmental consequences).  

Results 

The EPIC model predicts that there will be a significant reduction in nitrogen loss, 

phosphorous loss and soil loss if no-till wheat production is replaced by switchgrass 

production. The site-specific reduction in nitrogen loss in average year ranges from 23.51 

kg/ha at Hughes land class I to 68.54 kg/ha at Hughes land class III, the reduction in soil 

loss ranges from 0.40 Mg /ha on land class II in Lincoln County to 2.71 Mg /ha in 

Hughes County on lass III, and the reduction in phosphorous loss ranges from 0.02 kg/ha 

on land class II in Latimer County to 1.89 kg/ha in McIntosh County on land class III 

derived from replacing no-till wheat production with switchgrass production (Table III-

8). These results confirm that potential for reducing soil, nitrogen, and phosphorus runoff 

when converting from no-till wheat to switchgrass is greater on land, which is more 

prone to erosion.  

Beyond reducing the runoff, the production of switchgrass can also sequester 

more SOC, in an average year the site-specific SOC accumulation ranges from 122.10 

kg/ha on land class III in Hughes County to 531.41 kg/ha also in Hughes County on land 
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class I (Table III-8). However, the changes in SOC are greater on land class I compared 

to land class II and III, which increase with the plant biomass. The average reduction in 

soil loss, reduction in nitrogen loss, reduction in phosphorous loss, derived from 

switchgrass production on land class I is lower compared to the reduction in soil, nitrogen 

and phosphorous losses on land class II and III (Figure III-6). Land class III with slope 

gradient of 4% in Hughes County, McIntosh County, and Pittsburg County (Table-III-1) 

have the greatest environmental benefits derived from replacing no-till wheat production 

with switchgrass production. On the other hand, switchgrass produced on land class I 

sequesters more carbon than that produced on land class II and class III (Figure III-6). 

Therefore, converting land class III from wheat to switchgrass production is associated 

with greater reduction in runoff and thus more beneficial from the societal perspective 

compared to converting class I, and class II land.  

The site-specific farm-gate breakeven price of switchgrass derived from the profit 

maximizing private landowner’s (internal returns and cost) perspective ranges from $37 

per Mg (Pottawatomie County land class I) to $66 per Mg (Johnston County land class I) 

(Table III-9). Switchgrass produced on land class III of each county has higher farm-gate 

breakeven price compare to the switchgrass produced on land class I and land class II, 

due to lower yields. However, when the selected environmental consequences are valued 

and considered (on-farm plus environmental benefits) in the estimation of the site-

specific farm-gate breakeven price of switchgrass then the breakeven price reduces and 

ranges from $11 per Mg (Hughes County land class III) to $39 per Mg (Johnston County 

land class I). The average farm-gate breakeven price of switchgrass derived from private 

landowners’ perspective increases as the average yields decrease from good quality soil 
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to lower quality soil. However, when selected environmental outcomes are valued then 

the average farm-gate breakeven price of switchgrass decreases from good quality soil to 

lower quality soil. The selected environmental benefits derived from converting from 

wheat to switchgrass production on lower quality soil offsets the revenue loss due to 

lower yields on the lower quality soil.  

Replacing no-till wheat production in Hughes County on land class III has the 

greatest reduction in runoff and at the same time has the lowest SOC accumulation (Table 

III-8). However, the benefits derived reducing runoff exceeded the benefits derived from 

lower accumulation of SOC in Hughes County land class III compared to land class I and 

land class II of the same county, resulting in the lowest farm-gate breakeven price of 

switchgrass in Hughes County land class III. As mentioned earlier, land class III of 

Hughes County, McIntosh County land class III and Pittsburg County land class III with 

slope gradient of 4% has the highest reduction of runoffs derived from replacing no-till 

wheat production by switchgrass production, also has the lowest farm-gate breakeven 

price of switchgrass $11 /Mg, $13 /Mg, and $13 /Mg, respectively (Table III-9) from the 

societal perspective. The changes in SOC is highest in land class I compared to land class 

II and III (Figure III-6) which increase with the plant biomass  

The difference between the farm-gate breakeven prices of switchgrass derived 

from the private profit maximizing landowner’s (internal returns and cost) perspective 

and derived from the societal (on-farm plus selected environmental benefits) perspective 

(Table III-9) range from $13 per Mg at Latimer County land class I to $46 per Mg at 

Pittsburg County land class III. As expected these differences are highest for land class 

III of Hughes County, McIntosh County land class III and Pittsburg County land class III. 
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When multiplied with the average yields of 11 Mg/ha, the environmental benefits derived 

from replacing no-till wheat to switchgrass on those erodible land would be on an 

average $495 /ha per year. The environmental benefits derived from leasing land for 

switchgrass production is estimated by multiplying these differences with the average 

yields per hectares and the hectares of land leased for each land class and in each county 

(Table III-9). The environmental benefit ranges from $5,652 for 14 ha of McIntosh 

County land class I to $3.47 million of Hughes County’s 6,368 ha of land class III. In an 

average year, around $26 million environmental benefits could be derived to the society 

with the assumption that no more than 10% of the cropland converted from the 

production of no-till wheat to switchgrass on 65,382 ha used to produce feedstock for a 

biorefinery that required 700,000 Mg/year. On average, land class III has the highest 

environmental benefits (Figure III-7). Therefore, converting the most erodible land from 

wheat to the production of switchgrass has the greatest potential environmental benefits. 

Therefore, any public policies designed to incentivize feedstock production might best 

serve the interest of society by including land quality considerations. 

A sensitivity analysis of the site-specific breakeven price of switchgrass is also 

performed (Table III-10). It is found that none of the results significantly change when 

(a) the discount rate is increased from 4% to 8%; (b) when the expected wheat price is 

doubled; (c) when the land rental values are doubled. Farm-gate breakeven price of 

switchgrass derived from the profit maximizing landowner perspective are higher than 

the farm-gate breakeven price of switchgrass derived from the societal perspective under 

all scenarios. In all scenarios, the difference between the farm-gate breakeven prices 

derived from private profit maximizing landowner perspective and societal perspective is 
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greatest for the land class or soil type III, suggesting that more benefits would accrue to 

society from the conversion of the most erodible wheat production land into switchgrass 

production. 

The farm-gate breakeven price of switchgrass derived from only internal costs is 

greater than the farm-gate breakeven price of switchgrass derived from on-farm plus 

environmental benefits. Converting land from no-till wheat production to switchgrass 

production would reduce nitrogen loss, phosphorous loss, and soil loss and increase soil 

organic carbon. 

Conclusion and Discussion 

This study finds that compared to no-till wheat production, perennial energy crop 

(switchgrass) production has the potential to reduce nitrogen and phosphorous runoff, 

reduce soil loss, and increase sequestration of SOC. This study finds that switchgrass 

production has environmental benefits over no-till wheat production. The economic 

differences in the environmental benefits between switchgrass production and no-till 

wheat production were determined by placing monetary values on the environmental 

benefits which included nitrogen loss, phosphorous loss, soil loss and changes in SOC. 

Valuing environmental benefits derived from switchgrass production reduces the site-

specific farm-gate breakeven price of switchgrass. The difference between the farm-gate 

breakeven prices of switchgrass derived from the private profit maximizing landowner’s 

(internal returns and cost) perspective and derived from the societal (on-farm plus 

selected environmental benefits) perspective has been highest at $46 per Mg at Pittsburg 

County land class III and lowest at $13 per Mg at Latimer County land class I. 

Switchgrass production results in relatively greater environmental benefits when it is 
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used to replace wheat grown on the most highly erodible land (land class III). These 

differences in environmental consequences and potential benefits to society should be 

considered if public policies are used to incentivize switchgrass production. The sites 

with the slope gradient of 4% within the study area (Hughes County land class III, 

McIntosh County land class III and Pittsburg County land class III) have an average 

annual environmental benefit of $495/ ha derived for reducing the agricultural runoff by 

converting no-till wheat production into switchgrass production. Therefore, the policy 

maker may bid the erodible land form the existing no-till wheat production for 

switchgrass production with initializing a program similar to that of the conservation 

reserve program. 

By public policy, land included in the CRP is required to have an erodibility index 

equal to or greater than eight (USDA-FSA, 2012). According to the estimated erodibility 

index using equation 2, Hughes County land class III, McIntosh County land class III, 

and Pittsburg County land class III would qualify for inclusion in the CRP. Interestingly, 

results show that when environmental benefits are considered the farm-gate breakeven 

price of switchgrass is lowest in those counties.  

Accounting for the potential of planting wheat on some other land to offset the 

wheat production from the land converted to switchgrass further complicates the 

problem. The worldwide adjustment in land use in response to the conversion of the 

marginal land from its pre-switchgrass activity needs to be considered. Therefore, 

additional work will be required to consider the indirect land use issue. 
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Table III-1. Site-specific USLE attributes and the estimated soil loss. 

County LC 

Slope 

(%) 

Hydrologic 

group 

Tolerance 

Factor (T) 

Erodibility 

Factor (K) 

Slope 

Length 

(m) LS§ 

A* 

Wheat 

(Mg/ha) 

A* 

Switchgrass 

(Mg/ha) 

CREK LC-I 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

HASK LC-I 1 B 5 0.43 182.4 0.19 1.65 0.16 

HUGH LC-I 1 B 5 0.37 182.4 0.19 1.42 0.14 

JOHN LC-I 0.5 B 5 0.37 182.4 0.1 0.75 0.07 

LINC LC-I 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

McIN LC-I 0.5 B 5 0.37 182.4 0.1 0.75 0.07 

OKFU LC-I 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

OKLA LC-I 0.5 B 5 0.32 182.4 0.1 0.65 0.06 

OKMU LC-I 1 B 5 0.37 182.4 0.19 1.42 0.14 

PITS LC-I 1 B 5 0.37 182.4 0.19 1.42 0.14 

POTT LC-I 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

SEMI LC-I 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

WAGN LC-I 1 B 5 0.32 182.4 0.19 1.23 0.12 

COAL LC-II 2 B 5 0.37 152 0.39 2.91 0.29 

CREK LC-II 2 B 5 0.32 152 0.39 2.52 0.25 

HUGH LC-II 2 B 5 0.32 152 0.39 2.52 0.25 

LATI LC-II 1 B 5 0.37 182.4 0.19 1.42 0.14 

LINC LC-II 0.5 B 5 0.2 182.4 0.1 0.40 0.04 

McIN LC-II 2 B 5 0.43 152 0.39 3.38 0.34 

OKFU LC-II 0.5 B 5 0.32 182.4 0.1 0.65 0.06 

OKLA LC-II 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

OKMU LC-II 2 B 5 0.37 152 0.39 2.91 0.29 

PITS LC-II 2 C 5 0.43 152 0.39 3.38 0.34 

SEMI LC-II 0.5 C 5 0.43 182.4 0.1 0.87 0.09 

CREK LC-III 2.5 C 3 0.24 152 0.55 2.66 0.27 

HUGH LC-III 4 C 5 0.43 121.6 0.86 7.46 0.75 

McIN LC-III 4 B 3 0.28 152 0.86 4.85 0.49 

MUSK LC-III 2 C 4 0.43 121.6 0.39 3.38 0.34 

OKFU LC-III 0.5 B 5 0.20 182.4 0.1 0.40 0.04 

OKMU LC-III 1 B 3 0.32 182.4 0.19 1.23 0.12 

PITS LC-III 4 B 5 0.32 121.6 0.86 5.55 0.55 

SEMI LC-III 2 B 3 0.24 152 0.39 1.89 0.19 

WAGN LC-III 1 C 4 0.43 182.4 0.19 1.65 0.16 

Source: USDA-NRCS SURGO soil database (2011). 
§
 LS is the length-slope coefficient,

 
*A is the soil erosion, A=R*K*LS*C*P  
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Table III-2. Estimated annual production and harvesting costs of wheat. 

Item Unit Quantity  Price Unit Cost 

   

$ $/ha 

Seed kg/ha 62 0.60 37 

Fertilizer 

         Nitrogen  kg/ha 62 1.23 76.26 

     Phosphorous kg/ha 24 1.32 31.68 

Pesticide 

         Roundup ultra l/ha 3.52 5.4 19.0 

     Maverick l/ha 20.7 567.5 27.4 

Insecticide 

         Dimethoate l/ha 0.88 12.47 10.94 

Insurance ha 1 17.28 17.28 

Operating capital $ 6.50% 203.65 13.23 

Spraying ha 4 13.46 53.84 

Dry fertilizer spreader ha 1 10.42 10.42 

No-till drill ha 1 32.65 32.65 

Combine ha 1 52.91 52.91 

Total costs       382.61 

 

Source: OSU Enterprise Budget Software (2012) 

 



 

Table III-3. Estimated costs of nitrogen, phosphorous abatement, off-site soil damage costs 

Nitrogen abatement costs         Year    Location                      Method                                                     Costs ($/kg) 

Zivojnovich 2010 Florida Algal Turf Scrubber $55.00  

Gerlach, and DeSimone 2005 Maryland Enhanced Nutrient Removal $13.00  

Ribaudo et al.  2010 USA Wetlands Restoring $6.37  

Rabotyagov et al. 2010 

Upper Mississipi 

river basin 

Control of Nitrogen use in agricultural 

sector $6.67 

Phosphorous abatement costs 

Johansson, and Randall 2003 USA Phosphorous Index Efficient Targeting $20.63  

Keplinger et al. 2003 Texas TMDL $31.00 

Johansson et al. 2004 Minnesota Frontier Approach $26.80 

Ancev et al. 2006 Oklahoma 

Shadow price of marginal demage 

costs  $38.37 

Off-site soil damage costs 

Pimental et al.  1995 USA 

 

$2.94  

Ribaudo  1986 US Southern Plains 

 

$1.60  

Huszer and Piper 1986 New Mexico   $1.45  

1
16
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Table III-4. Measured and simulated no-tillage grain only wheat yields. 

 

Measured Yields Simulated Yields 

Mean (Mg ha
-1

) 2.70 2.65 

St. Dev. 0.96 0.70 

Maximum (Mg ha
-1

) 4.71 4.18 

Minimum (Mg ha
-1

) 1.35 1.59 

 

Table III-5. EPIC model wheat yields validation results. 

Mean absolute percentage error 

(MAPE) 24.46% 

Coefficient of determination (R
2
) 0.64 

Relative Error (Rel. Error) 0.02 

 

Table III-6. Estimated and simulated soil loss derived from no-till grain-only wheat 

production. 

 

Wheat Switchgrass 

USLE 

Estimated 

Soil Loss 

EPIC 

Simulated 

Soil Loss 

 

USLE 

Estimated 

Soil Loss 

EPIC 

Simulated 

Soil Loss 

Mean (Mg ha
-1

) 1.99 1.77 0.20 0.14 

St. Dev. 1.62 1.23 0.16 0.10 

Maximum (Mg ha
-1

) 7.46 5.81 0.75 0.51 

Minimum (Mg ha
-1

) 0.42 0.40 0.04 0.02 

 

Table III-7. EPIC model soil loss validation results. 

 

Wheat 

 

Switchgrass 

Mean absolute percentage error 

(MAPE) 34% 

 

39% 

Coefficient of determination (R
2
) 0.83 0.88 

Relative Error (Rel. Error) 0.10 0.27 
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Table III-8. Site-specific soil loss, nitrogen loss, phosphorous loss, reduction and changes 

in soil organic carbon (SOC) derived from replacing no-till wheat production with 

switchgrass production. 

County Land Class 

(LC) 

Slope 

(%) 

Soil loss 

Reduction 

(Mg ha
-1 

yr
-1

) 

Nitrogen loss 

Reduction 

(kg ha
-1 

yr
-1

) 

Phosphorous 

loss 

Reduction 

 (kg ha
-1

yr
-1

) 

Changes in 

SOC (kg 

ha
-1

 yr
-1

) 

Creek LC-I 0.5 1.4 43.6 0.8 158.2 

Haskell LC-I 1 1.3 46.4 0.9 390.9 

Hughes LC-I 1 0.8 23.5 1.3 531.4 

Johnston LC-I 0.5 1.3 38.3 1.0 367.3 

Lincoln LC-I 0.5 0.8 33.7 0.7 231.7 

McIntosh LC-I 0.5 1.4 41.0 0.4 524.8 

Okfuskee LC-I 0.5 1.2 37.8 0.7 156.0 

Oklahoma LC-I 0.5 0.4 33.6 0.4 412.3 

Okmulgee LC-I 1 1.2 31.4 1.2 467.8 

Pittsburg LC-I 1 1.2 34.0 0.4 419.4 

Pottawatomie LC-I 0.5 1.1 33.4 0.9 395.1 

Seminole LC-I 0.5 2.0 41.0 1.3 241.2 

Wagoner LC-I 1 0.8 29.1 0.7 157.8 

Coal LC-II 2 2.0 39.8 0.9 302.4 

Creek LC-II 2 1.2 43.6 1.0 151.9 

Hughes LC-II 2 1.0 36.0 1.3 261.0 

Latimer LC-II 1 0.5 25.7 0.0 294.5 

Lincoln LC-II 0.5 0.4 25.1 0.6 336.6 

McIntosh LC-II 2 3.0 59.5 1.4 404.8 

Okfuskee LC-II 0.5 0.6 25.9 0.1 319.9 

Oklahoma LC-II 0.5 0.9 44.4 0.7 309.6 

Okmulgee LC-II 2 1.7 52.4 1.2 326.4 

Pittsburg LC-II 2 2.3 47.7 0.7 209.0 

Seminole LC-II 0.5 0.9 41.0 1.3 241.2 

Creek LC-III 2.5 3.0 52.2 1.4 210.8 

Hughes LC-III 4 5.5 68.5 1.3 122.1 

McIntosh LC-III 4 3.4 66.0 1.9 290.2 

Muskogee LC-III 2 3.3 29.1 0.7 194.2 

Okfuskee LC-III 0.5 0.5 25.9 0.1 279.9 

Okmulgee LC-III 1 1.5 31.1 0.5 432.9 

Pittsburg LC-III 4 3.7 63.2 1.5 154.1 

Seminole LC-III 2 1.9 55.2 1.5 135.9 

Wagoner LC-III 1 1.3 56.2 1.1 137.8 
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Table III-9. Site-specific farm-gate breakeven price of switchgrass with (social) and 

without (private) valuing the environmental outcomes, the differences between them, 

hectares of land leased in each land class and each county, and the corresponding 

environmental benefits 
County Land Class 

(LC) 

Slope 

(%) 

Private 

(/Mg)  

Social 

(/Mg)  

Diff. 

(/Mg)  

Land 

(ha) Env. Benefit 

Creek LC-I 0.5 $48 $25 $23 1,337 $470,180 

Haskell LC-I 1 $53 $28 $24 65 $28,472 

Hughes LC-I 1 $49 $30 $19 329 $99,123 

Johnston LC-I 0.5 $66 $39 $27 107 $51,403 

Lincoln LC-I 0.5 $53 $36 $18 251 $75,644 

McIntosh LC-I 0.5 $51 $24 $26 14 $5,652 

Okfuskee LC-I 0.5 $50 $32 $18 774 $252,815 

Oklahoma LC-I 0.5 $54 $36 $19 590 $200,654 

Okmulgee LC-I 1 $49 $27 $22 544 $192,701 

Pittsburg LC-I 1 $53 $33 $20 142 $49,768 

Pottawatomie LC-I 0.5 $37 $20 $17 669 $211,861 

Seminole LC-I 0.5 $54 $32 $22 120 $44,981 

Wagoner LC-I 1 $52 $34 $18 773 $252,212 

Coal LC-II 2 $51 $34 $16 999 $275,298 

Creek LC-II 2 $51 $16 $34 3,647 $1,422,695 

Hughes LC-II 2 $50 $28 $23 2,645 $934,153 

Latimer LC-II 1 $50 $37 $13 740 $163,834 

Lincoln LC-II 0.5 $55 $37 $18 2,895 $815,349 

McIntosh LC-II 2 $56 $18 $38 1,413 $743,870 

Okfuskee LC-II 0.5 $52 $38 $15 1,057 $253,309 

Oklahoma LC-II 0.5 $56 $34 $22 2,882 $1,070,551 

Okmulgee LC-II 2 $52 $19 $33 3,003 $1,467,664 

Pittsburg LC-II 2 $55 $32 $24 2,774 $1,065,487 

Seminole LC-II 0.5 $54 $32 $22 1,329 $498,166 

Creek LC-III 2.5 $56 $12 $44 3,842 $1,757,661 

Hughes LC-III 4 $56 $11 $45 6,348 $3,472,148 

McIntosh LC-III 4 $58 $13 $45 552 $290,040 

Muskogee LC-III 2 $54 $37 $17 4,623 $1,181,251 

Okfuskee LC-III 0.5 $53 $39 $14 3,154 $715,647 

Okmulgee LC-III 1 $54 $30 $24 5,139 $1,773,843 

Pittsburg LC-III 4 $58 $13 $46 5,938 $3,056,363 

Seminole LC-III 2 $57 $26 $31 2,242 $898,225 

Wagoner LC-III 1 $55 $26 $29 4,445 $2,075,663 

Total      $25,866,681 
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Table III-10. Sensitivity analysis of the site-specific breakeven price per Mg of 

switchgrass. 

 Breakeven Price Private Landowners Perspective 

                                                       Land Class I           Land Class II         Land Class III 

Discount rates 4% $51.47 $52.96 $55.76 

Discount rate double (8%) $53.63 $55.22 $57.86 

Wheat Price double $107.65 $111.96 $118.41 

Land rent double $55.64 $57.34 $59.92 

 Breakeven Price Societal Perspective 

Discount rates 4% $30.45 $29.54 $22.87 

Discount rates double (8%) $29.91 $29.03 $22.40 

Wheat Price double $88.28 $86.59 $85.58 

Land rent double $34.58 $33.65 $27.09 

Differences b/w Private Landowner and Societal Perspective Breakeven Price 

Discount rates 4% $21.03  $23.41 $32.89 

Discount rates double (8%) $23.72  $26.19 $35.46 

Price double $19.37  $25.37 $32.83 

Land rent double $21.06  $23.69 $32.83 
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Figure III-1. Flowchart of the integrated economic and environmental model. 
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Figure III-2. Land to be converted to switchgrass to support a hypothetical biorefinery at 

Okemah, Oklahoma. 
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Figure III-3. Simulated and measured no-till grain-only wheat yields for four Oklahoma 

locations. 
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Figure III-4. Simulated and estimated soil loss derived from no-till wheat production. 

 

 
Figure III-5. Simulated and estimated soil loss derived from switchgrass production. 
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Figure III-6. Average per year reduction in soil loss, nitrogen loss, phosphorous loss, and 

changes in SOC between land class I (LC I), land class II (LC II), and land class III (LC 

III).  
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Figure III-7. Total environmental benefits derived to society from a potential biorefinery 

established at Okemah, Okfuskee, Oklahoma. 
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APPENDIX 

GAMS Code for Chapter II Model 3 

 

$OFFUPPER OFFSYMXREF OFFSYMLIST OFFUELLIST OFFUELXREF 

OPTIONS LIMROW=0, LIMCOL=0; 

OPTION OPTCR = 0.0000; 

option lp=minos; 

OPTION RESLIM=1000000; 

OPTION ITERLIM=5000000; 

SETS 

C Counties 

/ATOK, CANA, CLEV, COAL, CREK, GRAV, GRAD, HASK, HUGH, JOHN, 

LOGN, LINC, McCL, McIN, MURR, MUSK, NOBL, OKFU, OKLA, OKMU 

OSAG, PAWN, PYNE, PITS, PONT, POTT, LATI, SEMI, TULS, WAGN / 

L land class 

/CLS1, CLS2, CLS3/ 

T Time periods 

/year1*year50/ 

Table LandRent(C,L) Rental costs of land $ per hectare 'No Class1 type soil for ATOK COAl 

& LATI' 

$ondelim 

$include F:\PhD_Proposal\Rent.csv 

$offdelim 

; 

Scalar  LF "Standard Life" /10/; 

Scalar  ESTCST "Establishment costs without land rent"/394.45/; 

*/Turhollow, A.F. and F.M. Epplin.  "Estimating Region Specific Costs to Produce and 

*/Deliver Switchgrass." 

*/Chapter 8 in Switchgrass: A Valuable Biomass Crop for Energy.  ed. Andrea Monti, New 

*/York: Springer Publishing Co. 2012 

Scalar R "Amortization Rate"/0.065/; 

Parameter AMORTCOST(C,L) Total amortization costs of per hectare land; 

AMORTCOST(C,L)=((LandRent(C,L)+ESTCST)*((1+R)**LF*R))/((1+R)**LF-1); 

Scalar NIT "Nitrogen applied Kg per hectare"/78/; 

Scalar PN "Price of Nitrogen $ per Kg"/1.23/; 

Scalar AM "Annual maintainence cost per hectare" /9.63/ 

Scalar MOW "Cost of Mowing per hectare"/30.97/; 

*/Turhollow, A.F. and F.M. Epplin.  "Estimating Region Specific Costs to Produce and 

*/Deliver Switchgrass." 

*/Chapter 8 in Switchgrass: A Valuable Biomass Crop for Energy.  ed. Andrea Monti, New 

*/York: Springer Publishing Co. 2012 

Parameter LNDCST(C,L) Total production costs per hectare; 

LNDCST(C,L)=AMORTCOST(C,L)+LandRent(C,L)+PN*NIT+AM+MOW; 

Parameter PRDCST(C,L) Total production costs per hectare EXCLUDING LAND RENT; 

PRDCST(C,L)=AMORTCOST(C,L)+PN*NIT+AM; 

Scalar RAK "Cost of Raking per hectare" /18.89/; 

Scalar Bal "Cost of Baling per hectare"/28.89/; 

Table DIS(T,C,L)  

*/Distance form Centriod of Soil Class in County C Soil class L  to the biorefinery 

*/location in Km 'No Class1 type soil for ATOK COAl & LATI' 

      ATOK.CLS1      ATOK.CLS2     ATOK.CLS3     CANA.CLS1     CANA.CLS2     CANA.CLS3 

Year1         0        145.85        145.85        167.76        167.76        167.76 

Year2         0        145.85        145.85        167.76        167.76        167.76 

Year3         0        145.85        145.85        167.76        167.76        167.76 

Year4         0        145.85        145.85        167.76        167.76        167.76 

Year5         0        145.85        145.85        167.76        167.76        167.76 

Year6         0        145.85        145.85        167.76        167.76        167.76 

Year7         0        145.85        145.85        167.76        167.76        167.76 

Year8         0        145.85        145.85        167.76        167.76        167.76 

Year9         0        145.85        145.85        167.76        167.76        167.7
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Year10        0        145.85        145.85        167.76        167.76        167.76 

Year11        0        145.85        145.85        167.76        167.76        167.76 

Year12        0        145.85        145.85        167.76        167.76        167.76 

Year13        0        145.85        145.85        167.76        167.76        167.76 

Year14        0        145.85        145.85        167.76        167.76        167.76 

Year15        0        145.85        145.85        167.76        167.76        167.76 

Year16        0        145.85        145.85        167.76        167.76        167.76 

Year17        0        145.85        145.85        167.76        167.76        167.76 

Year18        0        145.85        145.85        167.76        167.76        167.76 

Year19        0        145.85        145.85        167.76        167.76        167.76 

Year20        0        145.85        145.85        167.76        167.76        167.76 

Year21        0        145.85        145.85        167.76        167.76        167.76 

Year22        0        145.85        145.85        167.76        167.76        167.76 

Year23        0        145.85        145.85        167.76        167.76        167.76 

Year24        0        145.85        145.85        167.76        167.76        167.76 

Year25        0        145.85        145.85        167.76        167.76        167.76 

Year26        0        145.85        145.85        167.76        167.76        167.76 

Year27        0        145.85        145.85        167.76        167.76        167.76 

Year28        0        145.85        145.85        167.76        167.76        167.76 

Year29        0        145.85        145.85        167.76        167.76        167.76 

Year30        0        145.85        145.85        167.76        167.76        167.76 

Year31        0        145.85        145.85        167.76        167.76        167.76 

Year32        0        145.85        145.85        167.76        167.76        167.76 

Year33        0        145.85        145.85        167.76        167.76        167.76 

Year34        0        145.85        145.85        167.76        167.76        167.76 

Year35        0        145.85        145.85        167.76        167.76        167.76 

Year36        0        145.85        145.85        167.76        167.76        167.76 

Year37        0        145.85        145.85        167.76        167.76        167.76 

Year38        0        145.85        145.85        167.76        167.76        167.76 

Year39        0        145.85        145.85        167.76        167.76        167.76 

Year40        0        145.85        145.85        167.76        167.76        167.76 

Year41        0        145.85        145.85        167.76        167.76        167.76 

Year42        0        145.85        145.85        167.76        167.76        167.76 

Year43        0        145.85        145.85        167.76        167.76        167.76 

Year44        0        145.85        145.85        167.76        167.76        167.76 

Year45        0        145.85        145.85        167.76        167.76        167.76 

Year46        0        145.85        145.85        167.76        167.76        167.76 

Year47        0        145.85        145.85        167.76        167.76        167.76 

Year48        0        145.85        145.85        167.76        167.76        167.76 

Year49        0        145.85        145.85        167.76        167.76        167.76 

Year50        0        145.85        145.85        167.76        167.76        167.76 

+ 

            CLEV.CLS1      CLEV.CLS2    CLEV.CLS3   COAL.CLS1  COAL.CLS2    COAL.CLS3 

Year1         137.58        137.58        113.51        0        121.5        121.5 

Year2         137.58        137.58        113.51        0        121.5        121.5 

Year3         137.58        137.58        113.51        0        121.5        121.5 

Year4         137.58        137.58        113.51        0        121.5        121.5 

Year5         137.58        137.58        113.51        0        121.5        121.5 

Year6         137.58        137.58        113.51        0        121.5        121.5 

Year7         137.58        137.58        113.51        0        121.5        121.5 

Year8         137.58        137.58        113.51        0        121.5        121.5 

Year9         137.58        137.58        113.51        0        121.5        121.5 

Year10        137.58        137.58        113.51        0        121.5        121.5 

Year11        137.58        137.58        113.51        0        121.5        121.5 

Year12        137.58        137.58        113.51        0        121.5        121.5 

Year13        137.58        137.58        113.51        0        121.5        121.5 

Year14        137.58        137.58        113.51        0        121.5        121.5 

Year15        137.58        137.58        113.51        0        121.5        121.5 

Year16        137.58        137.58        113.51        0        121.5        121.5 

Year17        137.58        137.58        113.51        0        121.5        121.5 

Year18        137.58        137.58        113.51        0        121.5        121.5 

Year19        137.58        137.58        113.51        0        121.5        121.5 

Year20        137.58        137.58        113.51        0        121.5        121.5 

Year21        137.58        137.58        113.51        0        121.5        121.5 

Year22        137.58        137.58        113.51        0        121.5        121.5 

Year23        137.58        137.58        113.51        0        121.5        121.5 

Year24        137.58        137.58        113.51        0        121.5        121.5 

Year25        137.58        137.58        113.51        0        121.5        121.5 

Year26        137.58        137.58        113.51        0        121.5        121.5 

Year27        137.58        137.58        113.51        0        121.5        121.5 
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Year28        137.58        137.58        113.51        0        121.5        121.5 

Year29        137.58        137.58        113.51        0        121.5        121.5 

Year30        137.58        137.58        113.51        0        121.5        121.5 

Year31        137.58        137.58        113.51        0        121.5        121.5 

Year32        137.58        137.58        113.51        0        121.5        121.5 

Year33        137.58        137.58        113.51        0        121.5        121.5 

Year34        137.58        137.58        113.51        0        121.5        121.5 

Year35        137.58        137.58        113.51        0        121.5        121.5 

Year36        137.58        137.58        113.51        0        121.5        121.5 

Year37        137.58        137.58        113.51        0        121.5        121.5 

Year38        137.58        137.58        113.51        0        121.5        121.5 

Year39        137.58        137.58        113.51        0        121.5        121.5 

Year40        137.58        137.58        113.51        0        121.5        121.5 

Year41        137.58        137.58        113.51        0        121.5        121.5 

Year42        137.58        137.58        113.51        0        121.5        121.5 

Year43        137.58        137.58        113.51        0        121.5        121.5 

Year44        137.58        137.58        113.51        0        121.5        121.5 

Year45        137.58        137.58        113.51        0        121.5        121.5 

Year46        137.58        137.58        113.51        0        121.5        121.5 

Year47        137.58        137.58        113.51        0        121.5        121.5 

Year48        137.58        137.58        113.51        0        121.5        121.5 

Year49        137.58        137.58        113.51        0        121.5        121.5 

Year50        137.58        137.58        113.51        0        121.5        121.5 

+ 

           CREK.CLS1     CREK.CLS2    CREK.CLS3    GRAV.CLS1     GRAV.CLS2     GRAV.CLS3 

Year1         51.19        51.19        51.19        165.09        165.09        165.09 

Year2         51.19        51.19        51.19        165.09        165.09        165.09 

Year3         51.19        51.19        51.19        165.09        165.09        165.09 

Year4         51.19        51.19        51.19        165.09        165.09        165.09 

Year5         51.19        51.19        51.19        165.09        165.09        165.09 

Year6         51.19        51.19        51.19        165.09        165.09        165.09 

Year7         51.19        51.19        51.19        165.09        165.09        165.09 

Year8         51.19        51.19        51.19        165.09        165.09        165.09 

Year9         51.19        51.19        51.19        165.09        165.09        165.09 

Year10        51.19        51.19        51.19        165.09        165.09        165.09 

Year11        51.19        51.19        51.19        165.09        165.09        165.09 

Year12        51.19        51.19        51.19        165.09        165.09        165.09 

Year13        51.19        51.19        51.19        165.09        165.09        165.09 

Year14        51.19        51.19        51.19        165.09        165.09        165.09 

Year15        51.19        51.19        51.19        165.09        165.09        165.09 

Year16        51.19        51.19        51.19        165.09        165.09        165.09 

Year17        51.19        51.19        51.19        165.09        165.09        165.09 

Year18        51.19        51.19        51.19        165.09        165.09        165.09 

Year19        51.19        51.19        51.19        165.09        165.09        165.09 

Year20        51.19        51.19        51.19        165.09        165.09        165.09 

Year21        51.19        51.19        51.19        165.09        165.09        165.09 

Year22        51.19        51.19        51.19        165.09        165.09        165.09 

Year23        51.19        51.19        51.19        165.09        165.09        165.09 

Year24        51.19        51.19        51.19        165.09        165.09        165.09 

Year25        51.19        51.19        51.19        165.09        165.09        165.09 

Year26        51.19        51.19        51.19        165.09        165.09        165.09 

Year27        51.19        51.19        51.19        165.09        165.09        165.09 

Year28        51.19        51.19        51.19        165.09        165.09        165.09 

Year29        51.19        51.19        51.19        165.09        165.09        165.09 

Year30        51.19        51.19        51.19        165.09        165.09        165.09 

Year31        51.19        51.19        51.19        165.09        165.09        165.09 

Year32        51.19        51.19        51.19        165.09        165.09        165.09 

Year33        51.19        51.19        51.19        165.09        165.09        165.09 

Year34        51.19        51.19        51.19        165.09        165.09        165.09 

Year35        51.19        51.19        51.19        165.09        165.09        165.09 

Year36        51.19        51.19        51.19        165.09        165.09        165.09 

Year37        51.19        51.19        51.19        165.09        165.09        165.09 

Year38        51.19        51.19        51.19        165.09        165.09        165.09 

Year39        51.19        51.19        51.19        165.09        165.09        165.09 

Year40        51.19        51.19        51.19        165.09        165.09        165.09 

Year41        51.19        51.19        51.19        165.09        165.09        165.09 

Year42        51.19        51.19        51.19        165.09        165.09        165.09 

Year43        51.19        51.19        51.19        165.09        165.09        165.09 

Year44        51.19        51.19        51.19        165.09        165.09        165.09 

Year45        51.19        51.19        51.19        165.09        165.09        165.09 

Year46        51.19        51.19        51.19        165.09        165.09        165.09 
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Year47        51.19        51.19        51.19        165.09        165.09        165.09 

Year48        51.19        51.19        51.19        165.09        165.09        165.09 

Year49        51.19        51.19        51.19        165.09        165.09        165.09 

Year50        51.19        51.19        51.19        165.09        165.09        165.09 

+ 

           GRAD.CLS1     GRAD.CLS2    GRAD.CLS3    HASK.CLS1     HASK.CLS2     HASK.CLS3 

Year1         190.1        190.1        190.1        109.43        141.53        141.53 

Year2         190.1        190.1        190.1        109.43        141.53        141.53 

Year3         190.1        190.1        190.1        109.43        141.53        141.53 

Year4         190.1        190.1        190.1        109.43        141.53        141.53 

Year5         190.1        190.1        190.1        109.43        141.53        141.53 

Year6         190.1        190.1        190.1        109.43        141.53        141.53 

Year7         190.1        190.1        190.1        109.43        141.53        141.53 

Year8         190.1        190.1        190.1        109.43        141.53        141.53 

Year9         190.1        190.1        190.1        109.43        141.53        141.53 

Year10        190.1        190.1        190.1        109.43        141.53        141.53 

Year11        190.1        190.1        190.1        109.43        141.53        141.53 

Year12        190.1        190.1        190.1        109.43        141.53        141.53 

Year13        190.1        190.1        190.1        109.43        141.53        141.53 

Year14        190.1        190.1        190.1        109.43        141.53        141.53 

Year15        190.1        190.1        190.1        109.43        141.53        141.53 

Year16        190.1        190.1        190.1        109.43        141.53        141.53 

Year17        190.1        190.1        190.1        109.43        141.53        141.53 

Year18        190.1        190.1        190.1        109.43        141.53        141.53 

Year19        190.1        190.1        190.1        109.43        141.53        141.53 

Year20        190.1        190.1        190.1        109.43        141.53        141.53 

Year21        190.1        190.1        190.1        109.43        141.53        141.53 

Year22        190.1        190.1        190.1        109.43        141.53        141.53 

Year23        190.1        190.1        190.1        109.43        141.53        141.53 

Year24        190.1        190.1        190.1        109.43        141.53        141.53 

Year25        190.1        190.1        190.1        109.43        141.53        141.53 

Year26        190.1        190.1        190.1        109.43        141.53        141.53 

Year27        190.1        190.1        190.1        109.43        141.53        141.53 

Year28        190.1        190.1        190.1        109.43        141.53        141.53 

Year29        190.1        190.1        190.1        109.43        141.53        141.53 

Year30        190.1        190.1        190.1        109.43        141.53        141.53 

Year31        190.1        190.1        190.1        109.43        141.53        141.53 

Year32        190.1        190.1        190.1        109.43        141.53        141.53 

Year33        190.1        190.1        190.1        109.43        141.53        141.53 

Year34        190.1        190.1        190.1        109.43        141.53        141.53 

Year35        190.1        190.1        190.1        109.43        141.53        141.53 

Year36        190.1        190.1        190.1        109.43        141.53        141.53 

Year37        190.1        190.1        190.1        109.43        141.53        141.53 

Year38        190.1        190.1        190.1        109.43        141.53        141.53 

Year39        190.1        190.1        190.1        109.43        141.53        141.53 

Year40        190.1        190.1        190.1        109.43        141.53        141.53 

Year41        190.1        190.1        190.1        109.43        141.53        141.53 

Year42        190.1        190.1        190.1        109.43        141.53        141.53 

Year43        190.1        190.1        190.1        109.43        141.53        141.53 

Year44        190.1        190.1        190.1        109.43        141.53        141.53 

Year45        190.1        190.1        190.1        109.43        141.53        141.53 

Year46        190.1        190.1        190.1        109.43        141.53        141.53 

Year47        190.1        190.1        190.1        109.43        141.53        141.53 

Year48        190.1        190.1        190.1        109.43        141.53        141.53 

Year49        190.1        190.1        190.1        109.43        141.53        141.53 

Year50        190.1        190.1        190.1        109.43        141.53        141.53 

+ 

           HUGH.CLS1     HUGH.CLS2    HUGH.CLS3    JOHN.CLS1     JOHN.CLS2     JOHN.CLS3 

Year1         63.56        63.56        63.56        190.22        167.37        167.37 

Year2         63.56        63.56        63.56        190.22        167.37        167.37 

Year3         63.56        63.56        63.56        190.22        167.37        167.37 

Year4         63.56        63.56        63.56        190.22        167.37        167.37 

Year5         63.56        63.56        63.56        190.22        167.37        167.37 

Year6         63.56        63.56        63.56        190.22        167.37        167.37 

Year7         63.56        63.56        63.56        190.22        167.37        167.37 

Year8         63.56        63.56        63.56        190.22        167.37        167.37 

Year9         63.56        63.56        63.56        190.22        167.37        167.37 

Year10        63.56        63.56        63.56        190.22        167.37        167.37 

Year11        63.56        63.56        63.56        190.22        167.37        167.37 

Year12        63.56        63.56        63.56        190.22        167.37        167.37 

Year13        63.56        63.56        63.56        190.22        167.37        167.37 
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Year14        63.56        63.56        63.56        190.22        167.37        167.37 

Year15        63.56        63.56        63.56        190.22        167.37        167.37 

Year16        63.56        63.56        63.56        190.22        167.37        167.37 

Year17        63.56        63.56        63.56        190.22        167.37        167.37 

Year18        63.56        63.56        63.56        190.22        167.37        167.37 

Year19        63.56        63.56        63.56        190.22        167.37        167.37 

Year20        63.56        63.56        63.56        190.22        167.37        167.37 

Year21        63.56        63.56        63.56        190.22        167.37        167.37 

Year22        63.56        63.56        63.56        190.22        167.37        167.37 

Year23        63.56        63.56        63.56        190.22        167.37        167.37 

Year24        63.56        63.56        63.56        190.22        167.37        167.37 

Year25        63.56        63.56        63.56        190.22        167.37        167.37 

Year26        63.56        63.56        63.56        190.22        167.37        167.37 

Year27        63.56        63.56        63.56        190.22        167.37        167.37 

Year28        63.56        63.56        63.56        190.22        167.37        167.37 

Year29        63.56        63.56        63.56        190.22        167.37        167.37 

Year30        63.56        63.56        63.56        190.22        167.37        167.37 

Year31        63.56        63.56        63.56        190.22        167.37        167.37 

Year32        63.56        63.56        63.56        190.22        167.37        167.37 

Year33        63.56        63.56        63.56        190.22        167.37        167.37 

Year34        63.56        63.56        63.56        190.22        167.37        167.37 

Year35        63.56        63.56        63.56        190.22        167.37        167.37 

Year36        63.56        63.56        63.56        190.22        167.37        167.37 

Year37        63.56        63.56        63.56        190.22        167.37        167.37 

Year38        63.56        63.56        63.56        190.22        167.37        167.37 

Year39        63.56        63.56        63.56        190.22        167.37        167.37 

Year40        63.56        63.56        63.56        190.22        167.37        167.37 

Year41        63.56        63.56        63.56        190.22        167.37        167.37 

Year42        63.56        63.56        63.56        190.22        167.37        167.37 

Year43        63.56        63.56        63.56        190.22        167.37        167.37 

Year44        63.56        63.56        63.56        190.22        167.37        167.37 

Year45        63.56        63.56        63.56        190.22        167.37        167.37 

Year46        63.56        63.56        63.56        190.22        167.37        167.37 

Year47        63.56        63.56        63.56        190.22        167.37        167.37 

Year48        63.56        63.56        63.56        190.22        167.37        167.37 

Year49        63.56        63.56        63.56        190.22        167.37        167.37 

Year50        63.56        63.56        63.56        190.22        167.37        167.37 

+ 

 

 

 

             LOGN.CLS1     LOGN.CLS2   LOGN.CLS3     LINC.CLS1     LINC.CLS2    LINC.CLS3 

Year1         169.68        169.68        169.68        78.79        91.02        91.02 

Year2         169.68        169.68        169.68        78.79        91.02        91.02 

Year3         169.68        169.68        169.68        78.79        91.02        91.02 

Year4         169.68        169.68        169.68        78.79        91.02        91.02 

Year5         169.68        169.68        169.68        78.79        91.02        91.02 

Year6         169.68        169.68        169.68        78.79        91.02        91.02 

Year7         169.68        169.68        169.68        78.79        91.02        91.02 

Year8         169.68        169.68        169.68        78.79        91.02        91.02 

Year9         169.68        169.68        169.68        78.79        91.02        91.02 

Year10        169.68        169.68        169.68        78.79        91.02        91.02 

Year11        169.68        169.68        169.68        78.79        91.02        91.02 

Year12        169.68        169.68        169.68        78.79        91.02        91.02 

Year13        169.68        169.68        169.68        78.79        91.02        91.02 

Year14        169.68        169.68        169.68        78.79        91.02        91.02 

Year15        169.68        169.68        169.68        78.79        91.02        91.02 

Year16        169.68        169.68        169.68        78.79        91.02        91.02 

Year17        169.68        169.68        169.68        78.79        91.02        91.02 

Year18        169.68        169.68        169.68        78.79        91.02        91.02 

Year19        169.68        169.68        169.68        78.79        91.02        91.02 

Year20        169.68        169.68        169.68        78.79        91.02        91.02 

Year21        169.68        169.68        169.68        78.79        91.02        91.02 

Year22        169.68        169.68        169.68        78.79        91.02        91.02 

Year23        169.68        169.68        169.68        78.79        91.02        91.02 

Year24        169.68        169.68        169.68        78.79        91.02        91.02 

Year25        169.68        169.68        169.68        78.79        91.02        91.02 

Year26        169.68        169.68        169.68        78.79        91.02        91.02 

Year27        169.68        169.68        169.68        78.79        91.02        91.02 

Year28        169.68        169.68        169.68        78.79        91.02        91.02 

Year29        169.68        169.68        169.68        78.79        91.02        91.02 
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Year30        169.68        169.68        169.68        78.79        91.02        91.02 

Year31        169.68        169.68        169.68        78.79        91.02        91.02 

Year32        169.68        169.68        169.68        78.79        91.02        91.02 

Year33        169.68        169.68        169.68        78.79        91.02        91.02 

Year34        169.68        169.68        169.68        78.79        91.02        91.02 

Year35        169.68        169.68        169.68        78.79        91.02        91.02 

Year36        169.68        169.68        169.68        78.79        91.02        91.02 

Year37        169.68        169.68        169.68        78.79        91.02        91.02 

Year38        169.68        169.68        169.68        78.79        91.02        91.02 

Year39        169.68        169.68        169.68        78.79        91.02        91.02 

Year40        169.68        169.68        169.68        78.79        91.02        91.02 

Year41        169.68        169.68        169.68        78.79        91.02        91.02 

Year42        169.68        169.68        169.68        78.79        91.02        91.02 

Year43        169.68        169.68        169.68        78.79        91.02        91.02 

Year44        169.68        169.68        169.68        78.79        91.02        91.02 

Year45        169.68        169.68        169.68        78.79        91.02        91.02 

Year46        169.68        169.68        169.68        78.79        91.02        91.02 

Year47        169.68        169.68        169.68        78.79        91.02        91.02 

Year48        169.68        169.68        169.68        78.79        91.02        91.02 

Year49        169.68        169.68        169.68        78.79        91.02        91.02 

Year50        169.68        169.68        169.68        78.79        91.02        91.02 

+ 

            McCL.CLS1     McCL.CLS2     McCL.CLS3     McIN.CLS1    McIN.CLS2    McIN.CLS3 

Year1         149.09        166.47        166.47        64.59        85.77        85.77 

Year2         149.09        166.47        166.47        64.59        85.77        85.77 

Year3         149.09        166.47        166.47        64.59        85.77        85.77 

Year4         149.09        166.47        166.47        64.59        85.77        85.77 

Year5         149.09        166.47        166.47        64.59        85.77        85.77 

Year6         149.09        166.47        166.47        64.59        85.77        85.77 

Year7         149.09        166.47        166.47        64.59        85.77        85.77 

Year8         149.09        166.47        166.47        64.59        85.77        85.77 

Year9         149.09        166.47        166.47        64.59        85.77        85.77 

Year10        149.09        166.47        166.47        64.59        85.77        85.77 

Year11        149.09        166.47        166.47        64.59        85.77        85.77 

Year12        149.09        166.47        166.47        64.59        85.77        85.77 

Year13        149.09        166.47        166.47        64.59        85.77        85.77 

Year14        149.09        166.47        166.47        64.59        85.77        85.77 

Year15        149.09        166.47        166.47        64.59        85.77        85.77 

Year16        149.09        166.47        166.47        64.59        85.77        85.77 

Year17        149.09        166.47        166.47        64.59        85.77        85.77 

Year18        149.09        166.47        166.47        64.59        85.77        85.77 

Year19        149.09        166.47        166.47        64.59        85.77        85.77 

Year20        149.09        166.47        166.47        64.59        85.77        85.77 

Year21        149.09        166.47        166.47        64.59        85.77        85.77 

Year22        149.09        166.47        166.47        64.59        85.77        85.77 

Year23        149.09        166.47        166.47        64.59        85.77        85.77 

Year24        149.09        166.47        166.47        64.59        85.77        85.77 

Year25        149.09        166.47        166.47        64.59        85.77        85.77 

Year26        149.09        166.47        166.47        64.59        85.77        85.77 

Year27        149.09        166.47        166.47        64.59        85.77        85.77 

Year28        149.09        166.47        166.47        64.59        85.77        85.77 

Year29        149.09        166.47        166.47        64.59        85.77        85.77 

Year30        149.09        166.47        166.47        64.59        85.77        85.77 

Year31        149.09        166.47        166.47        64.59        85.77        85.77 

Year32        149.09        166.47        166.47        64.59        85.77        85.77 

Year33        149.09        166.47        166.47        64.59        85.77        85.77 

Year34        149.09        166.47        166.47        64.59        85.77        85.77 

Year35        149.09        166.47        166.47        64.59        85.77        85.77 

Year36        149.09        166.47        166.47        64.59        85.77        85.77 

Year37        149.09        166.47        166.47        64.59        85.77        85.77 

Year38        149.09        166.47        166.47        64.59        85.77        85.77 

Year39        149.09        166.47        166.47        64.59        85.77        85.77 

Year40        149.09        166.47        166.47        64.59        85.77        85.77 

Year41        149.09        166.47        166.47        64.59        85.77        85.77 

Year42        149.09        166.47        166.47        64.59        85.77        85.77 

Year43        149.09        166.47        166.47        64.59        85.77        85.77 

Year44        149.09        166.47        166.47        64.59        85.77        85.77 

Year45        149.09        166.47        166.47        64.59        85.77        85.77 

Year46        149.09        166.47        166.47        64.59        85.77        85.77 

Year47        149.09        166.47        166.47        64.59        85.77        85.77 

Year48        149.09        166.47        166.47        64.59        85.77        85.77 
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Year49        149.09        166.47        166.47        64.59        85.77        85.77 

Year50        149.09        166.47        166.47        64.59        85.77        85.77 

+ 

            MURR.CLS1    MURR.CLS2     MURR.CLS3    MUSK.CLS1     MUSK.CLS2     MUSK.CLS3 

Year1         136.68        156.7        156.7        136.68        101.38        94.41 

Year2         136.68        156.7        156.7        136.68        101.38        94.41 

Year3         136.68        156.7        156.7        136.68        101.38        94.41 

Year4         136.68        156.7        156.7        136.68        101.38        94.41 

Year5         136.68        156.7        156.7        136.68        101.38        94.41 

Year6         136.68        156.7        156.7        136.68        101.38        94.41 

Year7         136.68        156.7        156.7        136.68        101.38        94.41 

Year8         136.68        156.7        156.7        136.68        101.38        94.41 

Year9         136.68        156.7        156.7        136.68        101.38        94.41 

Year10        136.68        156.7        156.7        136.68        101.38        94.41 

Year11        136.68        156.7        156.7        136.68        101.38        94.41 

Year12        136.68        156.7        156.7        136.68        101.38        94.41 

Year13        136.68        156.7        156.7        136.68        101.38        94.41 

Year14        136.68        156.7        156.7        136.68        101.38        94.41 

Year15        136.68        156.7        156.7        136.68        101.38        94.41 

Year16        136.68        156.7        156.7        136.68        101.38        94.41 

Year17        136.68        156.7        156.7        136.68        101.38        94.41 

Year18        136.68        156.7        156.7        136.68        101.38        94.41 

Year19        136.68        156.7        156.7        136.68        101.38        94.41 

Year20        136.68        156.7        156.7        136.68        101.38        94.41 

Year21        136.68        156.7        156.7        136.68        101.38        94.41 

Year22        136.68        156.7        156.7        136.68        101.38        94.41 

Year23        136.68        156.7        156.7        136.68        101.38        94.41 

Year24        136.68        156.7        156.7        136.68        101.38        94.41 

Year25        136.68        156.7        156.7        136.68        101.38        94.41 

Year26        136.68        156.7        156.7        136.68        101.38        94.41 

Year27        136.68        156.7        156.7        136.68        101.38        94.41 

Year28        136.68        156.7        156.7        136.68        101.38        94.41 

Year29        136.68        156.7        156.7        136.68        101.38        94.41 

Year30        136.68        156.7        156.7        136.68        101.38        94.41 

Year31        136.68        156.7        156.7        136.68        101.38        94.41 

Year32        136.68        156.7        156.7        136.68        101.38        94.41 

Year33        136.68        156.7        156.7        136.68        101.38        94.41 

Year34        136.68        156.7        156.7        136.68        101.38        94.41 

Year35        136.68        156.7        156.7        136.68        101.38        94.41 

Year36        136.68        156.7        156.7        136.68        101.38        94.41 

Year37        136.68        156.7        156.7        136.68        101.38        94.41 

Year38        136.68        156.7        156.7        136.68        101.38        94.41 

Year39        136.68        156.7        156.7        136.68        101.38        94.41 

Year40        136.68        156.7        156.7        136.68        101.38        94.41 

Year41        136.68        156.7        156.7        136.68        101.38        94.41 

Year42        136.68        156.7        156.7        136.68        101.38        94.41 

Year43        136.68        156.7        156.7        136.68        101.38        94.41 

Year44        136.68        156.7        156.7        136.68        101.38        94.41 

Year45        136.68        156.7        156.7        136.68        101.38        94.41 

Year46        136.68        156.7        156.7        136.68        101.38        94.41 

Year47        136.68        156.7        156.7        136.68        101.38        94.41 

Year48        136.68        156.7        156.7        136.68        101.38        94.41 

Year49        136.68        156.7        156.7        136.68        101.38        94.41 

Year50        136.68        156.7        156.7        136.68        101.38        94.41 

+ 

            NOBL.CLS1      NOBL.CLS2     NOBL.CLS3    OKFU.CLS1    OKFU.CLS2    OKFU.CLS3 

Year1         186.03        186.03        181.82        35.73        35.73        35.73 

Year2         186.03        186.03        181.82        35.73        35.73        35.73 

Year3         186.03        186.03        181.82        35.73        35.73        35.73 

Year4         186.03        186.03        181.82        35.73        35.73        35.73 

Year5         186.03        186.03        181.82        35.73        35.73        35.73 

Year6         186.03        186.03        181.82        35.73        35.73        35.73 

Year7         186.03        186.03        181.82        35.73        35.73        35.73 

Year8         186.03        186.03        181.82        35.73        35.73        35.73 

Year9         186.03        186.03        181.82        35.73        35.73        35.73 

Year10        186.03        186.03        181.82        35.73        35.73        35.73 

Year11        186.03        186.03        181.82        35.73        35.73        35.73 

Year12        186.03        186.03        181.82        35.73        35.73        35.73 

Year13        186.03        186.03        181.82        35.73        35.73        35.73 

Year14        186.03        186.03        181.82        35.73        35.73        35.73 

Year15        186.03        186.03        181.82        35.73        35.73        35.73 
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Year16        186.03        186.03        181.82        35.73        35.73        35.73 

Year17        186.03        186.03        181.82        35.73        35.73        35.73 

Year18        186.03        186.03        181.82        35.73        35.73        35.73 

Year19        186.03        186.03        181.82        35.73        35.73        35.73 

Year20        186.03        186.03        181.82        35.73        35.73        35.73 

Year21        186.03        186.03        181.82        35.73        35.73        35.73 

Year22        186.03        186.03        181.82        35.73        35.73        35.73 

Year23        186.03        186.03        181.82        35.73        35.73        35.73 

Year24        186.03        186.03        181.82        35.73        35.73        35.73 

Year25        186.03        186.03        181.82        35.73        35.73        35.73 

Year26        186.03        186.03        181.82        35.73        35.73        35.73 

Year27        186.03        186.03        181.82        35.73        35.73        35.73 

Year28        186.03        186.03        181.82        35.73        35.73        35.73 

Year29        186.03        186.03        181.82        35.73        35.73        35.73 

Year30        186.03        186.03        181.82        35.73        35.73        35.73 

Year31        186.03        186.03        181.82        35.73        35.73        35.73 

Year32        186.03        186.03        181.82        35.73        35.73        35.73 

Year33        186.03        186.03        181.82        35.73        35.73        35.73 

Year34        186.03        186.03        181.82        35.73        35.73        35.73 

Year35        186.03        186.03        181.82        35.73        35.73        35.73 

Year36        186.03        186.03        181.82        35.73        35.73        35.73 

Year37        186.03        186.03        181.82        35.73        35.73        35.73 

Year38        186.03        186.03        181.82        35.73        35.73        35.73 

Year39        186.03        186.03        181.82        35.73        35.73        35.73 

Year40        186.03        186.03        181.82        35.73        35.73        35.73 

Year41        186.03        186.03        181.82        35.73        35.73        35.73 

Year42        186.03        186.03        181.82        35.73        35.73        35.73 

Year43        186.03        186.03        181.82        35.73        35.73        35.73 

Year44        186.03        186.03        181.82        35.73        35.73        35.73 

Year45        186.03        186.03        181.82        35.73        35.73        35.73 

Year46        186.03        186.03        181.82        35.73        35.73        35.73 

Year47        186.03        186.03        181.82        35.73        35.73        35.73 

Year48        186.03        186.03        181.82        35.73        35.73        35.73 

Year49        186.03        186.03        181.82        35.73        35.73        35.73 

Year50        186.03        186.03        181.82        35.73        35.73        35.73 

+ 

            OKLA.CLS1     OKLA.CLS2      OKLA.CLS3     OKMU.CLS1    OKMU.CLS2   OKMU.CLS3 

Year1         125.65        118.08        118.08        41.72        41.72        41.72 

Year2         125.65        118.08        118.08        41.72        41.72        41.72 

Year3         125.65        118.08        118.08        41.72        41.72        41.72 

Year4         125.65        118.08        118.08        41.72        41.72        41.72 

Year5         125.65        118.08        118.08        41.72        41.72        41.72 

Year6         125.65        118.08        118.08        41.72        41.72        41.72 

Year7         125.65        118.08        118.08        41.72        41.72        41.72 

Year8         125.65        118.08        118.08        41.72        41.72        41.72 

Year9         125.65        118.08        118.08        41.72        41.72        41.72 

Year10        125.65        118.08        118.08        41.72        41.72        41.72 

Year11        125.65        118.08        118.08        41.72        41.72        41.72 

Year12        125.65        118.08        118.08        41.72        41.72        41.72 

Year13        125.65        118.08        118.08        41.72        41.72        41.72 

Year14        125.65        118.08        118.08        41.72        41.72        41.72 

Year15        125.65        118.08        118.08        41.72        41.72        41.72 

Year16        125.65        118.08        118.08        41.72        41.72        41.72 

Year17        125.65        118.08        118.08        41.72        41.72        41.72 

Year18        125.65        118.08        118.08        41.72        41.72        41.72 

Year19        125.65        118.08        118.08        41.72        41.72        41.72 

Year20        125.65        118.08        118.08        41.72        41.72        41.72 

Year21        125.65        118.08        118.08        41.72        41.72        41.72 

Year22        125.65        118.08        118.08        41.72        41.72        41.72 

Year23        125.65        118.08        118.08        41.72        41.72        41.72 

Year24        125.65        118.08        118.08        41.72        41.72        41.72 

Year25        125.65        118.08        118.08        41.72        41.72        41.72 

Year26        125.65        118.08        118.08        41.72        41.72        41.72 

Year27        125.65        118.08        118.08        41.72        41.72        41.72 

Year28        125.65        118.08        118.08        41.72        41.72        41.72 

Year29        125.65        118.08        118.08        41.72        41.72        41.72 

Year30        125.65        118.08        118.08        41.72        41.72        41.72 

Year31        125.65        118.08        118.08        41.72        41.72        41.72 

Year32        125.65        118.08        118.08        41.72        41.72        41.72 

Year33        125.65        118.08        118.08        41.72        41.72        41.72 

Year34        125.65        118.08        118.08        41.72        41.72        41.72 
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Year35        125.65        118.08        118.08        41.72        41.72        41.72 

Year36        125.65        118.08        118.08        41.72        41.72        41.72 

Year37        125.65        118.08        118.08        41.72        41.72        41.72 

Year38        125.65        118.08        118.08        41.72        41.72        41.72 

Year39        125.65        118.08        118.08        41.72        41.72        41.72 

Year40        125.65        118.08        118.08        41.72        41.72        41.72 

Year41        125.65        118.08        118.08        41.72        41.72        41.72 

Year42        125.65        118.08        118.08        41.72        41.72        41.72 

Year43        125.65        118.08        118.08        41.72        41.72        41.72 

Year44        125.65        118.08        118.08        41.72        41.72        41.72 

Year45        125.65        118.08        118.08        41.72        41.72        41.72 

Year46        125.65        118.08        118.08        41.72        41.72        41.72 

Year47        125.65        118.08        118.08        41.72        41.72        41.72 

Year48        125.65        118.08        118.08        41.72        41.72        41.72 

Year49        125.65        118.08        118.08        41.72        41.72        41.72 

Year50        125.65        118.08        118.08        41.72        41.72        41.72 

+ 

            OSAG.CLS1     OSAG.CLS2      OSAG.CLS3     PAWN.CLS1   PAWN.CLS2    PAWN.CLS3 

Year1         171.56        171.56        171.56        144.79       144.79        144.79 

Year2         171.56        171.56        171.56        144.79       144.79        144.79 

Year3         171.56        171.56        171.56        144.79       144.79        144.79 

Year4         171.56        171.56        171.56        144.79       144.79        144.79 

Year5         171.56        171.56        171.56        144.79       144.79        144.79 

Year6         171.56        171.56        171.56        144.79       144.79        144.79 

Year7         171.56        171.56        171.56        144.79       144.79        144.79 

Year8         171.56        171.56        171.56        144.79       144.79        144.79 

Year9         171.56        171.56        171.56        144.79       144.79        144.79 

Year10        171.56        171.56        171.56        144.79       144.79        144.79 

Year11        171.56        171.56        171.56        144.79       144.79        144.79 

Year12        171.56        171.56        171.56        144.79       144.79        144.79 

Year13        171.56        171.56        171.56        144.79       144.79        144.79 

Year14        171.56        171.56        171.56        144.79       144.79        144.79 

Year15        171.56        171.56        171.56        144.79       144.79        144.79 

Year16        171.56        171.56        171.56        144.79       144.79        144.79 

Year17        171.56        171.56        171.56        144.79       144.79        144.79 

Year18        171.56        171.56        171.56        144.79       144.79        144.79 

Year19        171.56        171.56        171.56        144.79       144.79        144.79 

Year20        171.56        171.56        171.56        144.79       144.79        144.79 

Year21        171.56        171.56        171.56        144.79       144.79        144.79 

Year22        171.56        171.56        171.56        144.79       144.79        144.79 

Year23        171.56        171.56        171.56        144.79       144.79        144.79 

Year24        171.56        171.56        171.56        144.79       144.79        144.79 

Year25        171.56        171.56        171.56        144.79       144.79        144.79 

Year26        171.56        171.56        171.56        144.79       144.79        144.79 

Year27        171.56        171.56        171.56        144.79       144.79        144.79 

Year28        171.56        171.56        171.56        144.79       144.79        144.79 

Year29        171.56        171.56        171.56        144.79       144.79        144.79 

Year30        171.56        171.56        171.56        144.79       144.79        144.79 

Year31        171.56        171.56        171.56        144.79       144.79        144.79 

Year32        171.56        171.56        171.56        144.79       144.79        144.79 

Year33        171.56        171.56        171.56        144.79       144.79        144.79 

Year34        171.56        171.56        171.56        144.79       144.79        144.79 

Year35        171.56        171.56        171.56        144.79       144.79        144.79 

Year36        171.56        171.56        171.56        144.79       144.79        144.79 

Year37        171.56        171.56        171.56        144.79       144.79        144.79 

Year38        171.56        171.56        171.56        144.79       144.79        144.79 

Year39        171.56        171.56        171.56        144.79       144.79        144.79 

Year40        171.56        171.56        171.56        144.79       144.79        144.79 

Year41        171.56        171.56        171.56        144.79       144.79        144.79 

Year42        171.56        171.56        171.56        144.79       144.79        144.79 

Year43        171.56        171.56        171.56        144.79       144.79        144.79 

Year44        171.56        171.56        171.56        144.79       144.79        144.79 

Year45        171.56        171.56        171.56        144.79       144.79        144.79 

Year46        171.56        171.56        171.56        144.79       144.79        144.79 

Year47        171.56        171.56        171.56        144.79       144.79        144.79 

Year48        171.56        171.56        171.56        144.79       144.79        144.79 

Year49        171.56        171.56        171.56        144.79       144.79        144.79 

Year50        171.56        171.56        171.56        144.79       144.79        144.79 

+ 
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            PYNE.CLS1     PYNE.CLS2     PYNE.CLS3    PITS.CLS1    PITS.CLS2     PITS.CLS3 

Year1         120.07        120.07        143.12        89.39        75.34        75.34 

Year2         120.07        120.07        143.12        89.39        75.34        75.34 

Year3         120.07        120.07        143.12        89.39        75.34        75.34 

Year4         120.07        120.07        143.12        89.39        75.34        75.34 

Year5         120.07        120.07        143.12        89.39        75.34        75.34 

Year6         120.07        120.07        143.12        89.39        75.34        75.34 

Year7         120.07        120.07        143.12        89.39        75.34        75.34 

Year8         120.07        120.07        143.12        89.39        75.34        75.34 

Year9         120.07        120.07        143.12        89.39        75.34        75.34 

Year10        120.07        120.07        143.12        89.39        75.34        75.34 

Year11        120.07        120.07        143.12        89.39        75.34        75.34 

Year12        120.07        120.07        143.12        89.39        75.34        75.34 

Year13        120.07        120.07        143.12        89.39        75.34        75.34 

Year14        120.07        120.07        143.12        89.39        75.34        75.34 

Year15        120.07        120.07        143.12        89.39        75.34        75.34 

Year16        120.07        120.07        143.12        89.39        75.34        75.34 

Year17        120.07        120.07        143.12        89.39        75.34        75.34 

Year18        120.07        120.07        143.12        89.39        75.34        75.34 

Year19        120.07        120.07        143.12        89.39        75.34        75.34 

Year20        120.07        120.07        143.12        89.39        75.34        75.34 

Year21        120.07        120.07        143.12        89.39        75.34        75.34 

Year22        120.07        120.07        143.12        89.39        75.34        75.34 

Year23        120.07        120.07        143.12        89.39        75.34        75.34 

Year24        120.07        120.07        143.12        89.39        75.34        75.34 

Year25        120.07        120.07        143.12        89.39        75.34        75.34 

Year26        120.07        120.07        143.12        89.39        75.34        75.34 

Year27        120.07        120.07        143.12        89.39        75.34        75.34 

Year28        120.07        120.07        143.12        89.39        75.34        75.34 

Year29        120.07        120.07        143.12        89.39        75.34        75.34 

Year30        120.07        120.07        143.12        89.39        75.34        75.34 

Year31        120.07        120.07        143.12        89.39        75.34        75.34 

Year32        120.07        120.07        143.12        89.39        75.34        75.34 

Year33        120.07        120.07        143.12        89.39        75.34        75.34 

Year34        120.07        120.07        143.12        89.39        75.34        75.34 

Year35        120.07        120.07        143.12        89.39        75.34        75.34 

Year36        120.07        120.07        143.12        89.39        75.34        75.34 

Year37        120.07        120.07        143.12        89.39        75.34        75.34 

Year38        120.07        120.07        143.12        89.39        75.34        75.34 

Year39        120.07        120.07        143.12        89.39        75.34        75.34 

Year40        120.07        120.07        143.12        89.39        75.34        75.34 

Year41        120.07        120.07        143.12        89.39        75.34        75.34 

Year42        120.07        120.07        143.12        89.39        75.34        75.34 

Year43        120.07        120.07        143.12        89.39        75.34        75.34 

Year44        120.07        120.07        143.12        89.39        75.34        75.34 

Year45        120.07        120.07        143.12        89.39        75.34        75.34 

Year46        120.07        120.07        143.12        89.39        75.34        75.34 

Year47        120.07        120.07        143.12        89.39        75.34        75.34 

Year48        120.07        120.07        143.12        89.39        75.34        75.34 

Year49        120.07        120.07        143.12        89.39        75.34        75.34 

Year50        120.07        120.07        143.12        89.39        75.34        75.34 

+ 

            PONT.CLS1      PONT.CLS2     PONT.CLS3     POTT.CLS1   POTT.CLS2   POTT.CLS3 

Year1         152.21        127.57        127.57        63.05        97.9        97.9 

Year2         152.21        127.57        127.57        63.05        97.9        97.9 

Year3         152.21        127.57        127.57        63.05        97.9        97.9 

Year4         152.21        127.57        127.57        63.05        97.9        97.9 

Year5         152.21        127.57        127.57        63.05        97.9        97.9 

Year6         152.21        127.57        127.57        63.05        97.9        97.9 

Year7         152.21        127.57        127.57        63.05        97.9        97.9 

Year8         152.21        127.57        127.57        63.05        97.9        97.9 

Year9         152.21        127.57        127.57        63.05        97.9        97.9 

Year10        152.21        127.57        127.57        63.05        97.9        97.9 

Year11        152.21        127.57        127.57        63.05        97.9        97.9 

Year12        152.21        127.57        127.57        63.05        97.9        97.9 

Year13        152.21        127.57        127.57        63.05        97.9        97.9 

Year14        152.21        127.57        127.57        63.05        97.9        97.9 

Year15        152.21        127.57        127.57        63.05        97.9        97.9 

Year16        152.21        127.57        127.57        63.05        97.9        97.9 

Year17        152.21        127.57        127.57        63.05        97.9        97.9 

Year18        152.21        127.57        127.57        63.05        97.9        97.9 
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Year19        152.21        127.57        127.57        63.05        97.9        97.9 

Year20        152.21        127.57        127.57        63.05        97.9        97.9 

Year21        152.21        127.57        127.57        63.05        97.9        97.9 

Year22        152.21        127.57        127.57        63.05        97.9        97.9 

Year23        152.21        127.57        127.57        63.05        97.9        97.9 

Year24        152.21        127.57        127.57        63.05        97.9        97.9 

Year25        152.21        127.57        127.57        63.05        97.9        97.9 

Year26        152.21        127.57        127.57        63.05        97.9        97.9 

Year27        152.21        127.57        127.57        63.05        97.9        97.9 

Year28        152.21        127.57        127.57        63.05        97.9        97.9 

Year29        152.21        127.57        127.57        63.05        97.9        97.9 

Year30        152.21        127.57        127.57        63.05        97.9        97.9 

Year31        152.21        127.57        127.57        63.05        97.9        97.9 

Year32        152.21        127.57        127.57        63.05        97.9        97.9 

Year33        152.21        127.57        127.57        63.05        97.9        97.9 

Year34        152.21        127.57        127.57        63.05        97.9        97.9 

Year35        152.21        127.57        127.57        63.05        97.9        97.9 

Year36        152.21        127.57        127.57        63.05        97.9        97.9 

Year37        152.21        127.57        127.57        63.05        97.9        97.9 

Year38        152.21        127.57        127.57        63.05        97.9        97.9 

Year39        152.21        127.57        127.57        63.05        97.9        97.9 

Year40        152.21        127.57        127.57        63.05        97.9        97.9 

Year41        152.21        127.57        127.57        63.05        97.9        97.9 

Year42        152.21        127.57        127.57        63.05        97.9        97.9 

Year43        152.21        127.57        127.57        63.05        97.9        97.9 

Year44        152.21        127.57        127.57        63.05        97.9        97.9 

Year45        152.21        127.57        127.57        63.05        97.9        97.9 

Year46        152.21        127.57        127.57        63.05        97.9        97.9 

Year47        152.21        127.57        127.57        63.05        97.9        97.9 

Year48        152.21        127.57        127.57        63.05        97.9        97.9 

Year49        152.21        127.57        127.57        63.05        97.9        97.9 

Year50        152.21        127.57        127.57        63.05        97.9        97.9 

+ 

        LATI.CLS1    LATI.CLS2     LATI.CLS3    SEMI.CLS1     SEMI.CLS2    SEMI.CLS3 

Year1         0        43.38        143.38        55.59        55.59        47.51 

Year2         0        43.38        143.38        55.59        55.59        47.51 

Year3         0        43.38        143.38        55.59        55.59        47.51 

Year4         0        43.38        143.38        55.59        55.59        47.51 

Year5         0        43.38        143.38        55.59        55.59        47.51 

Year6         0        43.38        143.38        55.59        55.59        47.51 

Year7         0        43.38        143.38        55.59        55.59        47.51 

Year8         0        43.38        143.38        55.59        55.59        47.51 

Year9         0        43.38        143.38        55.59        55.59        47.51 

Year10        0        43.38        143.38        55.59        55.59        47.51 

Year11        0        43.38        143.38        55.59        55.59        47.51 

Year12        0        43.38        143.38        55.59        55.59        47.51 

Year13        0        43.38        143.38        55.59        55.59        47.51 

Year14        0        43.38        143.38        55.59        55.59        47.51 

Year15        0        43.38        143.38        55.59        55.59        47.51 

Year16        0        43.38        143.38        55.59        55.59        47.51 

Year17        0        43.38        143.38        55.59        55.59        47.51 

Year18        0        43.38        143.38        55.59        55.59        47.51 

Year19        0        43.38        143.38        55.59        55.59        47.51 

Year20        0        43.38        143.38        55.59        55.59        47.51 

Year21        0        43.38        143.38        55.59        55.59        47.51 

Year22        0        43.38        143.38        55.59        55.59        47.51 

Year23        0        43.38        143.38        55.59        55.59        47.51 

Year24        0        43.38        143.38        55.59        55.59        47.51 

Year25        0        43.38        143.38        55.59        55.59        47.51 

Year26        0        43.38        143.38        55.59        55.59        47.51 

Year27        0        43.38        143.38        55.59        55.59        47.51 

Year28        0        43.38        143.38        55.59        55.59        47.51 

Year29        0        43.38        143.38        55.59        55.59        47.51 

Year30        0        43.38        143.38        55.59        55.59        47.51 

Year31        0        43.38        143.38        55.59        55.59        47.51 

Year32        0        43.38        143.38        55.59        55.59        47.51 

Year33        0        43.38        143.38        55.59        55.59        47.51 

Year34        0        43.38        143.38        55.59        55.59        47.51 

Year35        0        43.38        143.38        55.59        55.59        47.51 

Year36        0        43.38        143.38        55.59        55.59        47.51 

Year37        0        43.38        143.38        55.59        55.59        47.51 
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Year38        0        43.38        143.38        55.59        55.59        47.51 

Year39        0        43.38        143.38        55.59        55.59        47.51 

Year40        0        43.38        143.38        55.59        55.59        47.51 

Year41        0        43.38        143.38        55.59        55.59        47.51 

Year42        0        43.38        143.38        55.59        55.59        47.51 

Year43        0        43.38        143.38        55.59        55.59        47.51 

Year44        0        43.38        143.38        55.59        55.59        47.51 

Year45        0        43.38        143.38        55.59        55.59        47.51 

Year46        0        43.38        143.38        55.59        55.59        47.51 

Year47        0        43.38        143.38        55.59        55.59        47.51 

Year48        0        43.38        143.38        55.59        55.59        47.51 

Year49        0        43.38        143.38        55.59        55.59        47.51 

Year50        0        43.38        143.38        55.59        55.59        47.51 

+ 

            TULS.CLS1     TULS.CLS2     TULS.CLS3      WAGN.CLS1   WAGN.CLS2    WAGN.CLS3 

Year1         107.91        115.19        113.79        102.84       127.79        127.79 

Year2         107.91        115.19        113.79        102.84       127.79        127.79 

Year3         107.91        115.19        113.79        102.84       127.79        127.79 

Year4         107.91        115.19        113.79        102.84       127.79        127.79 

Year5         107.91        115.19        113.79        102.84       127.79        127.79 

Year6         107.91        115.19        113.79        102.84       127.79        127.79 

Year7         107.91        115.19        113.79        102.84       127.79        127.79 

Year8         107.91        115.19        113.79        102.84       127.79        127.79 

Year9         107.91        115.19        113.79        102.84       127.79        127.79 

Year10        107.91        115.19        113.79        102.84       127.79        127.79 

Year11        107.91        115.19        113.79        102.84       127.79        127.79 

Year12        107.91        115.19        113.79        102.84       127.79        127.79 

Year13        107.91        115.19        113.79        102.84       127.79        127.79 

Year14        107.91        115.19        113.79        102.84       127.79        127.79 

Year15        107.91        115.19        113.79        102.84       127.79        127.79 

Year16        107.91        115.19        113.79        102.84       127.79        127.79 

Year17        107.91        115.19        113.79        102.84       127.79        127.79 

Year18        107.91        115.19        113.79        102.84       127.79        127.79 

Year19        107.91        115.19        113.79        102.84       127.79        127.79 

Year20        107.91        115.19        113.79        102.84       127.79        127.79 

Year21        107.91        115.19        113.79        102.84       127.79        127.79 

Year22        107.91        115.19        113.79        102.84       127.79        127.79 

Year23        107.91        115.19        113.79        102.84       127.79        127.79 

Year24        107.91        115.19        113.79        102.84       127.79        127.79 

Year25        107.91        115.19        113.79        102.84       127.79        127.79 

Year26        107.91        115.19        113.79        102.84       127.79        127.79 

Year27        107.91        115.19        113.79        102.84       127.79        127.79 

Year28        107.91        115.19        113.79        102.84       127.79        127.79 

Year29        107.91        115.19        113.79        102.84       127.79        127.79 

Year30        107.91        115.19        113.79        102.84       127.79        127.79 

Year31        107.91        115.19        113.79        102.84       127.79        127.79 

Year32        107.91        115.19        113.79        102.84       127.79        127.79 

Year33        107.91        115.19        113.79        102.84       127.79        127.79 

Year34        107.91        115.19        113.79        102.84       127.79        127.79 

Year35        107.91        115.19        113.79        102.84       127.79        127.79 

Year36        107.91        115.19        113.79        102.84       127.79        127.79 

Year37        107.91        115.19        113.79        102.84       127.79        127.79 

Year38        107.91        115.19        113.79        102.84       127.79        127.79 

Year39        107.91        115.19        113.79        102.84       127.79        127.79 

Year40        107.91        115.19        113.79        102.84       127.79        127.79 

Year41        107.91        115.19        113.79        102.84       127.79        127.79 

Year42        107.91        115.19        113.79        102.84       127.79        127.79 

Year43        107.91        115.19        113.79        102.84       127.79        127.79 

Year44        107.91        115.19        113.79        102.84       127.79        127.79 

Year45        107.91        115.19        113.79        102.84       127.79        127.79 

Year46        107.91        115.19        113.79        102.84       127.79        127.79 

Year47        107.91        115.19        113.79        102.84       127.79        127.79 

Year48        107.91        115.19        113.79        102.84       127.79        127.79 

Year49        107.91        115.19        113.79        102.84       127.79        127.79 

Year50        107.91        115.19        113.79        102.84       127.79        127.79 

; 

Scalar FXCT "Fixed cost of transportation $ per Mg"/0.8796/; 

Scalar VRCT "Variable cost of transportation $ per Mg"/0.1983/; 

PARAMETER TRNSCST(T,C,L) "Transportation cost in $ per dry Mg truck"; 

TRNSCST(T,C,L) = (FXCT + VRCT*DIS(T,C,L)); 

Table TOTLAND(C,L) Hectare of land by county and land class   
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*/10 percent of the total land in each soil class type is used 

$ondelim 

$include F:\PhD_Proposal\Land.csv 

$offdelim 

; 

Table AnYld(T,C,L) Annual EPIC simulated biomass yield by county land class (Mg per ha) 

          ATOK.CLS1  ATOK.CLS2     ATOK.CLS3  CANA.CLS1     CANA.CLS2     CANA.CLS3 

Year1         0        19.2         16.08        18.58        17.59        11.52 

Year2         0        15.67        12.66        13.31        10.12         9.85 

Year3         0        17.03        15.72        15.75        15.12        12.94 

Year4         0        19.38        17.1         17.53        16.47        14.8 

Year5         0        20.78        16.3         16.95        16.64        12.95 

Year6         0        15.89        13.47        17.34        14.92        14.5 

Year7         0        16.2         12.29        17.87        16.57        14.25 

Year8         0        18.33        11.73        14.12        13.03        10.11 

Year9         0        15.94        13.98        14.14        12.28        12.24 

Year10        0        20.19        17.44        15.75        13.33        11.39 

Year11        0        17.02        13.92        11.47        10.58        10.07 

Year12        0        20.15        14.21        17.5         17.48        12.51 

Year13        0        19.15        16.44        17.77        15.52        12.66 

Year14        0        20.2         14.46        18.11        16.52        12.5 

Year15        0        17.2         14.51        17.71        10.96         9.76 

Year16        0        12.56        11.18        16.81        15.22        13.11 

Year17        0        12.57        11.87        12.97        11.21         9.75 

Year18        0        18.66        14.62        16.74        15.71        12.76 

Year19        0        11.66        10.21        12.65        11.13         7.92 

Year20        0        16.73        15.69        16.6         15.44        13.56 

Year21        0        15.86        13.2         17.42        15.68        11.04 

Year22        0        13.54        12.5         14.9         14.67        10.59 

Year23        0        15.74        12.16        17.33        13.37         8.75 

Year24        0        15.83        11.03        18.77        16.14        10.6 

Year25        0        16.05        12.39        18.4         16.89        13.18 

Year26        0        17.47        13.21        18.06        16.36        12.49 

Year27        0        11.76         8.64        17.4         12.5          7.08 

Year28        0        20.82        14.14        19.31        18.31        16.89 

Year29        0        14.35         8.14        16.77        14.06         7.91 

Year30        0        18.15        10.63        18.97        16.84        14.43 

Year31        0        19.2         12.85        18.25        18.16        14.02 

Year32        0        18.15        14.7         16.96        16.1         13.69 

Year33        0        19.57        12.03        18.07        16.81         9.59 

Year34        0        15.49        10.93        14.44        14.09        13.48 

Year35        0        19.22        12.63        16.8         16.8         13.19 

Year36        0        16.85         8.4         14.48        13.36        12.34 

Year37        0        11.26         6.85        15.99        11.15         5.93 

Year38        0        16.67        12.99        16.6         16.18        10.61 

Year39        0        13.13        11.79        16.27        13.4          9.2 

Year40        0        18.7         11.95        18.46        16.56        12.06 

Year41        0        18.77        11.06        13.02        11.12        10.08 

Year42        0        17.2         15.37        14.25        12.82         9.82 

Year43        0        19.98        15.79        13.47        12.57        10.35 

Year44        0        15.84        11.46        17.16        17.14        14.75 

Year45        0        13.4          9.62        17.4         14.36         9.9 

Year46        0        17.66        11.32        18.25        18.06        13.97 

Year47        0        21.12        12.86        19.53        18.12        12.53 

Year48        0        18.22        11.99        14.79        14.69        11.96 

Year49        0        17.63        16.57        18.41        15.52        10.46 

Year50        0        12.91        11.05        11.66         7.68         7.4 

+ 

           CLEV.CLS1     CLEV.CLS2    CLEV.CLS3  COAL.CLS1  COAL.CLS2     COAL.CLS3 

Year1         17.91        17.56        14.74        0        16.83        11.63 

Year2         14.61        12.36         9.78        0        18.01         9.96 

Year3         16.67        15.79        13.52        0        16.59        11.87 

Year4         19.07        18.83        16.46        0        17.66         9.82 

Year5         20.83        19.77        17.23        0        19.78        11.88 

Year6         20.03        17.6         15.35        0        14.32        13.11 

Year7         19.52        19.48        17.64        0        14.97        14.01 

Year8         18.9         17.97        15.22        0        15.63        12.21 

Year9         16.87        15.36        12.98        0        16.29        11.72 

Year10        18.19        16.77        13.95        0        18.5         15 

Year11        14.9         13.36        11.2         0        18.23        11.19 

Year12        20.68        20.57        18.51        0        12.88        11.53 
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Year13        19.48        18.51        15.45        0        17.58        15.68 

Year14        19.76        19.74        14.99        0        18.02        15.73 

Year15        19.55        17.14        13.66        0        17.72        13.04 

Year16        20.01        13.51        10.65        0        16.69        11.1 

Year17        19.75        17.36        14.79        0        19.58        9.55 

Year18        18.16        18.12        13.43        0        17.6         12.45 

Year19        19.98        17.25        13.38        0        19.13        12.85 

Year20        16.32        15.65        12.51        0        14.58        11.6 

Year21        18.04        16.81        10.48        0        12.98        11.76 

Year22        17.25        17.2         13.71        0        18.89        10.29 

Year23        19.29        18.55        15.18        0        17.4          9.92 

Year24        19.18        18.87        16.74        0        18.36        14.02 

Year25        18.41        17.48        15.64        0        14.87        13.54 

Year26        18.1         17.09        15.36        0        15.05        12.37 

Year27        18.92        16.38        12.32        0        18.47         8.1 

Year28        17.29        16.82        14.09        0        15.01        13.4 

Year29        17.03        16.78        12.67        0        12.84         8.9 

Year30        17.32        16.4         15.49        0        12.97        10.18 

Year31        19.4         18.28        17.9         0        13.3         12.55 

Year32        16.89        16.39        15.46        0        13.87        13.36 

Year33        18.62        17.25        14.9         0        13.5         12.69 

Year34        15.54        12.11        11.72        0        16.63        13.44 

Year35        18.74        18.62        17.65        0        15.9         14.22 

Year36        16.26        15.63        14.41        0        17.02        11.58 

Year37        16.7         11.62         9.01        0        14.92         7.04 

Year38        19.36        18.13        14.93        0        17.32        13.38 

Year39        17.84        12.73        11.84        0        15.45         9.7 

Year40        19.92        18.29        16.75        0        18.89        12.38 

Year41        19.91        16.8         16.13        0        17.97        11.59 

Year42        19.53        13.63        10.56        0        18           13.03 

Year43        20.67        13.43        10.79        0        17.67        11.75 

Year44        20.03        13.66        12.94        0        18.95        12.2 

Year45        16.14        14.65        12.27        0        14.33         8.3 

Year46        18.15        17.55        13.77        0        18.23        13.28 

Year47        19.15        16.3         14.78        0        19.77        13.81 

Year48        17.29        13.5         11.21        0        12.86        12.21 

Year49        18.91        12.9         10.39        0        15.72        12.56 

Year50        15.13        9.51          7.8         0        14.66         9.48 

+ 

           CREK.CLS1     CREK.CLS2     CREK.CLS3    GRAV.CLS1   GRAV.CLS     GRAV.CLS3 

Year1         14.99        11.89         8.89        14.7         14.7         14.54 

Year2         16.22        10.44         9.95        13.41        13.41        12.71 

Year3         16.52        12.42        12.1         12.04        12.04        11.59 

Year4         17.92        11.07        10.8         14.1         14.1         13.63 

Year5         18.67        13.5         13.04        13.13        13.13        12.77 

Year6         18.68        13.91        12.45        13.79        13.79        12.66 

Year7         17.35        12.65        11.17        17.21        17.21        17.16 

Year8         17.82        10.58        10.25        16.94        16.94        16.82 

Year9         13.57        10.15         9.61        13.65        13.65        12.36 

Year10        19.09        14.86        11.13        17.23        17.23        16.68 

Year11        16.9          8.04         7.62        16.18        16.18        13.1 

Year12        14.69        12.14        11.61        16.71        16.71        16.01 

Year13        15.3         14.58        13.27        16.23        16.23        16.21 

Year14        16.41        13.93        13.9         13.67        13.67        12.35 

Year15        17.42        11.2         10.71        17.27        17.27        17.27 

Year16        15.23         9.28         7.73        15.67        15.67        15.5 

Year17        14.46         8.8          7.7         12.73        12.73        11.86 

Year18        18.61        11.77        11.42        16.38        16.38        15.13 

Year19        12.6          9.33         9.01        13.54        13.54        12.63 

Year20        14.11        10.54        10           16.67        16.67        16.49 

Year21        16.7         10.58         8.92        16.4         16.4         15.41 

Year22        15.92         8.55         8.16        16.2         16.2         14.01 

Year23        17.03        10.43         9.81        16.96        16.96        15.19 

Year24        15.92         9.89         9.45        14.62        14.62        14.3 

Year25        15.34        10.55        10.38        14.38        14.38        13.55 

Year26        15.53        10.5          9.98        15.3         15.3         14.69 

Year27        16.52         6.32         6.21        14.86        14.86        14.31 

Year28        17.83        14.38        14.06        17.46        17.46        17.42 

Year29        14.23         6.25         5.66        13.87        13.87        12.05 

Year30        17.22        13.37        12.41        16.79        16.79        15.83 

Year31        14.91        14.11        13.31        17.71        17.71        16.9 
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Year32        15.78        10.58         8.93        16.49        16.49        16 

Year33        18.98        15.16        14.89        17.52        17.52        15.66 

Year34        13.64        13.19         9.41        11.85        11.85        10.47 

Year35        17.88        11.72        10.52        15.69        15.69        15.36 

Year36        17.34        12.42        12.37        16.42        16.42        15.51 

Year37        12.64         5.77         4.73        12.31        12.31        11.71 

Year38        16.73        13.13        11.57        17.92        17.92        17.86 

Year39        15.35        10.17         9.74        13.14        13.14        13.02 

Year40        16.28        11.31        10.94        17.72        17.72        17.61 

Year41        16.18        11.76        11.09        17.05        17.05        16.98 

Year42        18.4         16.52        14.68        17.14        17.14        17.09 

Year43        18.09        10.65        10.11        19.51        19.51        19.51 

Year44        17.44        15.58        11.23        17.13        17.13        15 

Year45        17.09         9.8          9.07        13.06        13.06        12.24 

Year46        15.73        15.47        13.66        16.06        16.06        13.24 

Year47        15.45        12.86        12.04        16.88        16.88        16.46 

Year48        14.21        10.99        10.27        16.49        16.49        16.24 

Year49        16.87        14.72        14.37        16.19        16.19        15.57 

Year50        14.14         8.46         7.86        12.05        12.05        10.24 

+ 

 

 

 

           GRAD.CLS1     GRAD.CLS2    GRAD.CLS3     HASK.CLS1   HASK.CLS2     HASK.CLS3 

Year1         18.76        18.76        18.16        19.16        17.95        17.95 

Year2         14.04        14.04         9.32        17.34        8.71          8.71 

Year3         13.98        13.98        12.81        18.11        12.56        12.56 

Year4         17.56        17.56        16.23        20.76        15.82        15.82 

Year5         17.04        17.04        15.71        19.92        14.49        14.49 

Year6         15.46        15.46        13.46        20.95        17.87        17.87 

Year7         13.7         13.7         12.69        17.38        16.09        16.09 

Year8         13.98        13.98        12.88        18.91        12.53        12.53 

Year9          7.59         7.59         6.12        15.54        13.87        13.87 

Year10        10.86        10.86         9.31        19.16        18.4         18.4 

Year11        12.17        12.17        10.79        18.77        13.73        11.13 

Year12        17.39        17.39        15.84        18.68        13.48        13.48 

Year13        16.08        16.08        13.61        17.09        14.87        14.87 

Year14        17.34        17.34        17.22        17.71        16.54        16.54 

Year15        18.53        18.53        13.16        19.06        17.21        17.21 

Year16        14.36        14.36        12.44        17.64        14.02        14.02 

Year17        13.66        13.66        12.14        17.47        11.7         11.7 

Year18        16.11        16.11        14.54        17.1         14.97        14.97 

Year19        11.41        11.41        10.32        15.71        12.37        12.37 

Year20        15.87        15.87        14.49        15.94        15.64        15.64 

Year21        18.77        18.77        17.83        17.82        17.07        17.07 

Year22        14.46        14.46        11.6         16.81        13.64        12.09 

Year23        17.05        17.05        12.52        18.61        17.59        17.59 

Year24        15.13        15.13        14.8         17.3         15.99        15.99 

Year25        15.5         15.5         13.92        16.31        13.49        13.49 

Year26        16.9         16.9         15.31        16.95        15.82        15.82 

Year27        18.17        18.17        12.7         18.52        14.42        14.42 

Year28        16.45        16.45        16.41        18.16        16.33        16.33 

Year29        14.8         14.8         14.54        14.36        10.83        10.83 

Year30        17.12        17.12        15.38        18.55        14.73        14.73 

Year31        16.99        16.99        13           19.75        18.16        18.16 

Year32        15.17        15.17        12.04        15.06        14.8         14.8 

Year33        17.76        17.76        13.27        19.86        19.01        18.17 

Year34        12.71        12.71        10.35        12.31        10.68        10.68 

Year35        16.18        16.18        15.77        19.2         14.17        14.17 

Year36        16.25        16.25        14.35        18.37        16.1         16.1 

Year37        14.4         14.4         10.86        16.89        13.06        13.06 

Year38        16.04        16.04        13.84        16.53        16.16        16.16 

Year39        12.05        12.05         9.48        18           14.11        14.11 

Year40        16.65        16.65        13.01        18.42        15.47        15.47 

Year41        14.49        14.49        11.13        18.73        15.84        15.84 

Year42        15.87        15.87        13.82        18.34        16.38        16.38 

Year43        14.83        14.83        12.75        18.35        16.09        16.09 

Year44        15.83        15.83        14.46        18.67        16.71        15.02 

Year45        13.64        13.64        12.21        17.67        14.37        14.37 

Year46        17.13        17.13        15.99        18.74        17.82        17.82 

Year47        19.08        19.08        18.47        17.8         17.26        17.26 
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Year48        16.56        16.56        15.58        16.12        11.8         11.8 

Year49        16.04        16.04        14.12        18.31        16.62        16.62 

Year50        11.38        11.38         8.31        15.53        10.06        10.06 

+ 

           HUGH.CLS1     HUGH.CLS2    HUGH.CLS3    JOHN.CLS1    JOHN.CLS2     JOHN.CLS3 

Year1         16.54        16.37        15.29        17.06        16.35        10.49 

Year2         16.5         16.07        11.77        18.52        12.01         7.88 

Year3         15.47        15.26        13.01        15.52        13.79        11.18 

Year4         16.27        16.16        14.15        16.87        15.69        11.71 

Year5         16.04        15.93        13.18        18.64        17.12        11.41 

Year6         16.86        16.01        14.28        18.22        16.16        10.25 

Year7         16.57        15.45        13.17        16.58        14.6         13.8 

Year8         18.26        17.74        16.08        19.1         17.82        12.14 

Year9         16.54        16.38        14.85        17.34        15.41        10.48 

Year10        18.47        18.17        16.65        19.25        18.91        13.73 

Year11        17.15        17.13        13.22        18.53        15.35        11.49 

Year12        17           16.36        14.39        16.11        14.42        13.59 

Year13        15.17        14.57        13.64        16.93        16.9         14.01 

Year14        14.88        12.58        10.61        20.05        18.08        15.03 

Year15        19.21        17.07        11.8         16.34        14.61        10.7 

Year16        17.26        17           15.46        17.55        14.71        11.04 

Year17        14.94        14.61        12.57        21.02        15.15        13.1 

Year18        15.13        14.92        13.15        19.56        19.03        12.36 

Year19         9.88         9.67         8.97        19.55        12.16         9.72 

Year20        15.75        15.41        14.46        15.27        15.21        14.06 

Year21        13.71        12.75        10.16        19.99        16.88        11.85 

Year22        16.76        16.47        15.13        18.55        13.76        10.95 

Year23        17.65        17.61        14.99        18.25        15.7         11.3 

Year24        14.54        14.53        12.86        17.37        14.2         12.68 

Year25        16.42        16.28        14.48        17.3         16.95        12.86 

Year26        17.15        16.92        15.52        17.16        16.24        13.97 

Year27        17.07        17.06        12.44        19.43        15.11         8.91 

Year28        17.82        17.63        17.6         17.58        15.61        12.01 

Year29        12.79        11.24        10.35        13.83        13.23         6.34 

Year30        14.09        13.48        12.07        17.53        16.06        13.56 

Year31        12.63        11.66        10.08        20.79        17.33        11.1 

Year32        14.33        13.58        12.42        16.88        15.34        13.26 

Year33        19           18.82        16.19        17.57        17.37        11.92 

Year34        16.02        15.37        13.15        16.41        13.28        12.36 

Year35        15.43        14.32        12.6         20.76        15.23        11.51 

Year36        17.36        17.27        15.88        18.59        15.05         9.7 

Year37        15.79        15.22         9.67        16.35        11.4          7.06 

Year38        16           14.45        12.21        17.87        14.59        11.79 

Year39        16.43        16.03        12.83        16.86        11.19        10.06 

Year40        16.4         16.02        13.48        19.16        17.76        12.89 

Year41        16.63        16.61        15.3         17.79        16.59        15.23 

Year42        17.72        17.71        15.36        19.05        16.68        11.62 

Year43        16.86        15.01        12.77        21.14        18.38        14.29 

Year44        16.62        16.55        16.18        18.89        17.4         13.52 

Year45        13.48        13.38        11.11        15.52        13.32         8.01 

Year46        16.38        16.29        11.5         18.86        18.32        11.84 

Year47        17.32        16.97        15.01        20.05        17.54        14.44 

Year48        15.76        14.65        12.63        15.38        13.95        11.67 

Year49        16.2         15.78        15.09        17.39        16.57        12.42 

Year50        12.14        10.48         9.84        15.66        11.89        10.1 

+ 

           LOGN.CLS1     LOGN.CLS2    LOGN.CLS3    LINC.CLS1    LINC.CLS2     LINC.CLS3 

Year1         18.38        17.95        15.95        18.49        16.96        11.26 

Year2         15.88        15.04        14.86        15.38        10.9          9.77 

Year3         16.9         13.64        10.8         18.68        18.41        15.55 

Year4         15.94        12.6         10.36        19.9         18.9         13.73 

Year5         17.99        15.73        13.03        17.58        13.82        10.8 

Year6         19.24        18.16        17.96        19.99        18.85        13.85 

Year7         14.14        12.98        12.86        18.2         15           12.11 

Year8         17.91        16.95        15.91        17.71        15.52        11.66 

Year9         13.08        10.58        10.01        13.17        12.44        10.77 

Year10        15.84        14.85        14.42        18.83        17.98        12.58 

Year11        12.96        12.52        12.18        15.21        12.37         7.84 

Year12        19.37        18.44        16.32        17.24        15.57        13.52 

Year13        18.88        18.69        18.07        19.35        16.2         15.24 

Year14        18.85        18.39        15.7         19.52        17           11.36 
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Year15        15.77        10.84        10.08        20.22        15.11        12.23 

Year16        14.76        12.53        11.6         14.65        12.78        10.77 

Year17        13.85        12.66        12.03        15.96        14.74        12.22 

Year18        17.64        15.7         14.74        18.91        16.91        14 

Year19        12.62        11.71        10.12        12.7         11.64         9.2 

Year20        14.65        12.04        11.05        14.67        13.74        12.17 

Year21        16.66        14.86        10.63         9.62         9.61         8.58 

Year22        11.8         11           10.81        17.54        16.95        11.28 

Year23        16.05        11.34         9.37        17.18        16.88        11.72 

Year24        17.07        16.89        15.3         15.75        12.58        11.15 

Year25        15.63        14.9         11.9         17.85        17.21        13.87 

Year26        16.67        16.03        14.63        19.95        18.4         13.86 

Year27        14.88        10.81         8.95        19.55        12.06         7.15 

Year28        19.64        19.6         18.54        20.06        20.04        17.97 

Year29        15.1         13.51         8.93        14.99        12.52         8.35 

Year30        13.33        11.63        11.46        19.44        18.58        16.57 

Year31        19.62        17.32        15.15        15.04        14.36        13.59 

Year32        16.27        15.52        12.65        13.47        12.78        12.71 

Year33        17.78        14.69        13.72        18.74        16.16        15.32 

Year34        13.48        10.49         9.07        11.85        10.87        10.2 

Year35        18.68        18.38        17.35        19.49        19.4         13.61 

Year36        17.87        15.02        14.7         18.46        18.37        13.99 

Year37        14.55        12.84        10.45        15.66        14.56         7.79 

Year38        17.47        15.1         15.01        18.68        16.68        12.83 

Year39        16.87        14.14        12.32        18.61        14.44         9.95 

Year40        17.15        16.58        14.06        18.89        16.32        15.3 

Year41        18.49        17.37        16.58        19.43        18.16        14.21 

Year42        18.59        16.18        15.16        18.65        17.95        16.17 

Year43        18.93        17.9         17.34        18.76        16.8         11.34 

Year44        18.44        17.46        17.18        20.11        19.53        13.84 

Year45        15.71        14.51        13.94        16.71        14.56        10.22 

Year46        15.52        14.91        12.91        16.27        12.23        10.41 

Year47        19.79        19.68        16.45        18.87        17.54        12.18 

Year48        17.17        16.5         15.75        16.32        16.09        13.01 

Year49        17.24        13.31        12.51        18.69        17.21        13.05 

Year50        12.56         8.87         8.14        13.02         8.65         8.35 

+ 

           McCL.CLS1     McCL.CLS2    McCL.CLS3    McIN.CLS1    McIN.CLS2     McIN.CLS3 

Year1         17.68        15.66        11.84        16.32        16.32        14.01 

Year2         16.91        11.89         8.79        16.7         16.7         10.67 

Year3         15.58        13.98        12.01        14.53        14.53        13.4 

Year4         18.4         17.59        12.72        15.15        15.15        13.48 

Year5         17.38        13.65        12.16        17.42        17.42        16.06 

Year6         17.29        16.8         15.28        15.37        15.37        14.83 

Year7         19.67        19.58        16.51        14.65        14.65        12.05 

Year8         18.02        17.74        12.67        16.4         16.4         14.32 

Year9         16.17        13.45        10.58        15.28        15.28        10.97 

Year10        18.29        16.85        13.18        15.8         15.8         14.96 

Year11        17.62        11.92         7.72        15.69        15.69        10.51 

Year12        18.92        17.22        14.93        16.23        16.23        14.64 

Year13        18.02        17.94        13.66        15.58        15.58        15.14 

Year14        14.75        12.77        12.1         16.57        16.57        15.98 

Year15        19.65        15.92        11.63        16.73        16.73        14.84 

Year16        14.74        10.22         9.67        15.77        15.77        15.27 

Year17        13.58        12.97        10.73        15.7         15.7         11.93 

Year18        12.85        12.29         9.29        18.93        18.93        15.58 

Year19        12.53        10.46         7.53        15.48        15.48        12.83 

Year20        16.68        15.04        12.47        15.93        15.93        13.14 

Year21        19.43        18.89        13.8         14.38        14.38        13.46 

Year22        14.51        11.6          9.23        15.75        15.75        13.97 

Year23        10.45        10.27         7.76        14.24        14.24        12.44 

Year24        14.11        12.74        10.72        18.36        18.36        14.61 

Year25        16.52        14.2         12.54        15.43        15.43        15.03 

Year26        16.7         15.78        12.89        16.9         16.9         16.21 

Year27        16.78        11.28         5.33        17.66        17.66        12.19 

Year28        20.55        20.24        18.12        17.86        17.86        14.57 

Year29        17.49        16.64         8.87        13.43        13.43        12.79 

Year30        19.46        17.45        14.35        15.85        15.85        13.35 

Year31        20.2         18.44        13.74        13.07        13.07        10.53 

Year32        17.78        15.18        14.68        16.21        16.21        13.25 

Year33        12.77        12.72        10.46        15.45        15.45        13.39 
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Year34        13.94        12.71        10.03        14.22        14.22        14.11 

Year35        18.26        18.24        14.29        17.12        17.12        15.15 

Year36        17.4         16.44        13.67        18.35        18.35        17.77 

Year37        14.83        10.96         6.98        14.59        14.59        10.79 

Year38        18.63        16.68        12.87        13.32        13.32        12.37 

Year39        15.54        12.91         9.29        13.86        13.86        13.75 

Year40        19.67        18.6         13.1         13.31        13.31        13.03 

Year41        19.12        18.8         15.02        16.11        16.11        12.48 

Year42        19.48        17.99        14.72        18.09        18.09        16.34 

Year43        19.24        17.92        13.55        17.96        17.96        14.22 

Year44        19.45        15.11        10.87        17.85        17.85        14.36 

Year45        16.73        14.06        10.49        11.83        11.83         9.79 

Year46        14.59        12.4         11.08        16.54        16.54        15.31 

Year47        20.67        18.81        14.44        16.34        16.34        16.07 

Year48        16.77        15.27        12.8         16.43        16.43        16.29 

Year49        17.68        17           11.65        14.79        14.79        11.92 

Year50        14.29         8.59         8.5         11.4         11.4         10.65 

+ 

            MURR.CLS1    MURR.CLS2    MURR.CLS3    MUSK.CLS1   MUSK.CLS2     MUSK.CLS3 

Year1         17.75        17.68        12.37        15.9         15.89        15.83 

Year2         17.47        11.79         8.28        14.94        14.64        14.02 

Year3         15.52        14.86        12.96        16.27        16.1         16.04 

Year4         16.98        15.14        10.64        17.31        17.31        17.3 

Year5         18.06        14.75        13.17        18.3         16.89        16.13 

Year6         19.23        17.32        11.88        18.77        18.24        17.37 

Year7         18.1         17.36        14.7         16.4         14.82        13.7 

Year8         18.18        16.09        10.78        17.62        17.53        17.43 

Year9         17.22        14.39        10.53        17.47        17.29        16.95 

Year10        19.64        18.77        12.69        17.97        17.95        17.59 

Year11        18.85        15.79        11.63        18.48        17.85        17.79 

Year12        17.81        16.72        16.28        13.83        12.47        11.45 

Year13        18           16.22        14.25        15.26        15.04        13.73 

Year14        19.51        16.54        14.46        17.84        17.58        17.16 

Year15        18.28        13.25        11.07        16.18        15.88        14.91 

Year16        16.44        13.28        11.51        17.76        17.58        17.41 

Year17        16.53        15.14        12.71        18.31        17.66        17.66 

Year18        20.32        17.56        14.49        16.48        15.87        15.77 

Year19        12.83        11.59         9.85        15.21        13.35        13.04 

Year20        17.46        16.31        13.56        16.94        16.33        14.71 

Year21        14.49        14.06        12.17        15.07        14.66        14.15 

Year22        15.65        13.13        11.74         8.75         8.46        8.04 

Year23        18.79        15.83        10.72        14.98        14.79        14.7 

Year24        16.45        16.09        10.4         18.39        17.75        17.62 

Year25        17.53        15.06        11.71        16.83        15.13        13.73 

Year26        17.6         16.85        12.9         16.44        16.17        15.6 

Year27        18.38        13.49         8.05        17.19        17.06        16.24 

Year28        18.97        18.92        15.46        14.41        12.73        11.4 

Year29        16.03        15.31         8.62        15.27        15.1         12.68 

Year30        16.03        15.52        15.24        17.12        16.96        15.76 

Year31        20.11        19.84        13.82        11.86        10.12        8.42 

Year32        17.71        16.89        14.34        15.09        14.7         14 

Year33        18.39        16.82        14.14        18.14        17.77        16.35 

Year34        15.93        14.01        12.91        11.5         10.63        10.59 

Year35        19.03        18.88        15.23        17.74        17.65        17.01 

Year36        18.28        18.16        11.85        16.56        16.56        16.29 

Year37        14.9         11.69         7.77        15.4         15.33        14.89 

Year38        18.97        18.84        14.77        13.5         12.21        10.95 

Year39        17.71        11.76         8.73        16.25        16.05        15.42 

Year40        19.12        17.29        12.15        16.82        16.74        16.45 

Year41        18.49        17.03        15.48        16.43        16.07        15.86 

Year42        19.64        19.25        15.23        16.46        16.42        15.97 

Year43        20.45        16.4          9.8         17.48        17.32        14.77 

Year44        18.88        16.96        14.34        17.06        17.05        16.23 

Year45        15.58        13.03         7.58        16.17        15.99        15.81 

Year46        17.4         14.6         13.01        17.71        15.78        15.3 

Year47        21.07        16.62        13.9         15.91        14.47        13.36 

Year48        17.09        16.98        12.32        14.35        14.09        13.86 

Year49        17.37        15.33         9.98        16.76        16.73        16.03 

Year50        12.7         10.84         9.07        14.05        13.89        13.75 

+ 

           NOBL.CLS1      NOBL.CLS2   NOBL.CLS3    OKFU.CLS1    OKFU.CLS2     OKFU.CLS3 
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Year1         16.92        16.23        10.65        20.3         19.12        19.12 

Year2         15.88        13.77        12.55        19.18        16.51        16.51 

Year3         15.61        13.73        12.25        20.19        20.01        20.01 

Year4         14.39        12.13         9.54        22           16.42        16.42 

Year5         14.09        13.15        10.5         21.83        17.36        17.36 

Year6         16.55        15.52        14.17        21.95        19.49        19.49 

Year7         14.42        13.14        12.32        19.1         18.85        18.85 

Year8         18.8         18.8         16.56        20.56        16.48        16.48 

Year9         13.18        11.17         8.05        18.41        18.38        18.38 

Year10        16.86        15.83        13.08        20.6         20.55        20.55 

Year11        14.55        13.04         9.54        19.41        16.47        16.14 

Year12        17.31        17.22        12.2         18.14        16.84        16.84 

Year13        16.83        16.61        14.94        20.07        20.01        20.01 

Year14        15.98        14.09        13.47        17.81        16.75        16.75 

Year15        16.39        10.26         9.41        21.03        14.91        14.91 

Year16        15.68        15.08        11.56        18.96        18.57        18.57 

Year17        12.85        10.74         8.65        15.6         13.28        13.28 

Year18        16.32        14.06        11.09        20.74        19.88        19.88 

Year19        14.93        14           10.23        14.64        11.9         11.9 

Year20        15.7         13.57        12.71        19.22        18.27        18.27 

Year21        14.5         12.67         8.33        19.83        18.4         18.4 

Year22        15.99        13.58         8.37        15.35        14.85        13.79 

Year23        15.44        10.41         5.15        17.75        16.49        16.49 

Year24        16.43        15.74        11.97        16.69        14.73        14.73 

Year25        17.99        15.97        13.54        19.81        15.23        15.23 

Year26        13.88        12.69         8.45        19.46        18.42        18.42 

Year27        15.81        11.59         7.35        16.68        16.58        16.58 

Year28        15.4         15.37        14.95        18.19        17.21        17.21 

Year29        15.17        13.21         8.39        15.14        14.47        14.47 

Year30        14.31        10.96        10.67        17.46        17.23        17.23 

Year31        18.83        18.64        15.35        12.82        11.04        11.04 

Year32        15.67        14.82        11.86        14.52        12.39        12.39 

Year33        16.69        16.34        10.6         15.41        13.83        12.96 

Year34        14.88        12.81        12.04        10.99        10.12        10.12 

Year35        16.87        14.24        13.75        17.08        16.95        16.95 

Year36        18.34        16.58        12.92        18.4         17.56        17.56 

Year37        11.89        10.15         6.63        13.85        12.31        12.31 

Year38        14.92        13.6         13.53        14.65        13.34        13.34 

Year39        13.77        13.22         9.68        15.85        15.49        15.49 

Year40        15.16        13.69        10.58        19.29        17.72        17.72 

Year41        17.48        16.9         15.16        16.63        15.86        15.86 

Year42        18.1         15.66        12.93        18.77        18.68        18.68 

Year43        19.34        16.11         9.84        17.83        15.77        15.77 

Year44        16.73        15.33        12.61        18.47        18           16.96 

Year45        15.05        12.87         7.98        17.36        15.22        15.22 

Year46        15.08        13.54        12.75        17.81        15.41        15.41 

Year47        17.56        14.94        13.02        15.83        12.51        12.51 

Year48        16.25        13.67        11.13        14.02        11.67        11.67 

Year49        18.11        15.45        11.36        16.62        14.1         14.1 

Year50         9.13         5.89         5.6         13.93        10.23        10.23 

+ 

           OKLA.CLS1     OKLA.CLS2     OKLA.CLS3    OKMU.CLS1   OKMU.CLS2    OKMU.CLS3 

Year1         18.57        18.13        17.88        17.49        17.06        17.04 

Year2         18.01        17.88        12.24        16.43        16.14        11.24 

Year3         17.87        17.74        15.72        16.99        16.39        10.77 

Year4         15.84        15.61        13.61        18.53        18.46        15.54 

Year5         18.26        17.83        17.19        14.83        13.39        10.29 

Year6         16.43        16.28        14.42        18.53        18.49        14.26 

Year7         18.45        18.22        17.03        18.18        17.22        15.33 

Year8         19.33        19.21        18.45        19.17        19.1         11.62 

Year9         16.88        16.33        14.16        15.1         15.03        13.22 

Year10        17.8         16.63        15.41        17.75        17.61        16.62 

Year11        14.16        13.59        12.52        16.67        16.54         9.58 

Year12        17.06        16.14        15.78        12.65        10.45        10.32 

Year13        19.16        18.48        17.12        16.95        16.79        15.65 

Year14        16.45        14.61        12.78        17.97        17.61        16.87 

Year15        16.99        16.8          9.47        17.25        17.25        11.91 

Year16        17.5         16.97        15.13        16.51        16.22        12.86 

Year17        16.61        16.05        14.21        16.84        14.39        11.56 

Year18        18.76        18.74        17.14        18.86        18.83        15.11 

Year19        14.86        14.62        11.88        14.77        14.76        11.55 
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Year20        18.17        17.27        15.14        17.76        17.69        16.13 

Year21        19.41        19.01        17.72        16.77        15.44        12.23 

Year22        18.15        18.05        14.31        14.67        13.14        10.67 

Year23        18.22        18.09        11.81        17.97        17.96        11.55 

Year24        18.08        17.61        14.61        17.22        15.43        11.06 

Year25        16.51        15.67        13.7         13.58        11.8         10.08 

Year26        17.96        17.38        17.07        17.3         17.16        15.09 

Year27        18.86        18.63        12.99        18.41        18.31        12.69 

Year28        20.78        20.09        19.09        20.24        17.83        15.3 

Year29        16.49        15.23        14.63        16.33        14.73        12.14 

Year30        17.94        17.76        16.91        17.5         17.24        15.32 

Year31        19.51        17.99        16.18        19.25        17.61        15.37 

Year32        16.14        15.05        13.6         16.41        14.67        12.85 

Year33        18.7         18.46        13.68        16.91        16.71        15.42 

Year34        14.37        13.4         10.22        10.92        10.34        10.32 

Year35        18.09        17.22        14.22        16.15        15.9         15.71 

Year36        18.61        18.53        15.16        13.92        13.74        12.56 

Year37        15.32        15.15         9.62        14.9         14.61        10.34 

Year38        17.64        17.59        17.35        10.85         9.98        9.48 

Year39        18.09        17.93        13.25        13.05        13           11.84 

Year40        19.83        19.64        18.08        16.02        14.72        14.14 

Year41        19.63        18.25        17.22        14.97        13.88        13.55 

Year42        19.43        19.31        15.66        15.93        15.63        15.2 

Year43        17.15        16.62        14.64        15.41        15.21        11.14 

Year44        19.54        19.03        15.9         17.68        17.59        17.01 

Year45        15.89        15.87        13.3         15.63        15.57        10.62 

Year46        18.38        17.15        15.68        17.11        15.5         12.06 

Year47        17.68        17.32        16.35        11.53        10.14         9.72 

Year48        17.78        17.47        17.2         15.03        14.52        14.37 

Year49        17.14        16.55        15.9         17.84        17.4         16.03 

Year50        15.15        15.14        11.78        13.45        13.36         9.75 

+ 

           OSAG.CLS1     OSAG.CLS2     OSAG.CLS3    PAWN.CLS1   PAWN.CLS2    PAWN.CLS3 

Year1         18.42        18.38        12.82        18.67        18.66        13.7 

Year2         18.42        12.36         9.05        16.57        10.46         9.7 

Year3         16.46        15.15        13.93        14.75        13.2         12.73 

Year4         20.32        17.94        15.39        17.32        16.05        14.05 

Year5         16.09        13.13        12.86        13.24        12.25        10.58 

Year6         17           16.96        15.8         19.06        18.43        15.8 

Year7         16.07        15.13        13.95        17.61        15.36        12.59 

Year8         20.15        18.7         14.07        19.64        18.14        15.58 

Year9         17.43        15.45        12.26        14.46        11.93         9.39 

Year10        17.05        16.19        12.24        17.15        16.85        15.36 

Year11        19.31        18.61        13.82        16.43        14.45        12.29 

Year12        17.98        17.86        12.09        17.35        17.03        12.82 

Year13        19.38        19           15           19.68        18.01        14.65 

Year14        14.53        13.3         11.74        16.31        16.25        13.08 

Year15        17.99        14.79        12.24        17.19        12.13        10.31 

Year16        17.88        16.69        12.67        16.32        14.98        11.98 

Year17        18.46        14.53        10.92        15.71        14.3         12.08 

Year18        17.73        17.4         14.61        15.28        12.85        10.5 

Year19        15.93        13.22         9.55        15.84        13.85         9.61 

Year20        16.12        13.97        12.5         14.26        12.53        11.01 

Year21        18.67        15.81         9.22        17.93        15.73        12.18 

Year22        15.99        15.64        10.4         15.83        15.78        10.79 

Year23        17.25        14.4          9.85        16.45        13.58         8.95 

Year24        18.08        16.24        10.75        18.44        18.06        13.72 

Year25        19.46        18.62        12.85        18.78        16.79        13.72 

Year26        17.49        16.46        14.88        16.9         15.32        11.96 

Year27        15.21        13.87         7.93        17.53        14.04         7.95 

Year28        11.61        10.71        10.42        17.33        15.17        12 

Year29        13.74        12.52        11.54        19.99        16.22        11.05 

Year30        17.02        15.79        13.53        16.42        12.82        11.25 

Year31        15.05        13.48        12.57        18.74        18.69        15.22 

Year32        12.13        11.83        10.13        16           15.25        13.89 

Year33        16.46        15.21        14.11        18.4         17.76        13.1 

Year34        16.84        15.93        10.83        17.93        17.22        14.36 

Year35        19.67        15.15        12.45        18.06        15.19        12.56 

Year36        13.89        12.76        11.84        14.47        13.93        12.46 

Year37        14.6         13.3         11.06        15.5         13.05        7.06 

Year38        14.38        13.72        12.38        14.74        13.96        13.37 
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Year39        11.31        10.07         7.99        16.58        15           10.41 

Year40        19.85        16.1         11.89        17.93        14.98        11.25 

Year41        16.91        16.01        15.19        18.26        16.84        16.62 

Year42        15.98        14.98        12.34        16.85        16.37        13.29 

Year43        14.75        12.66        10.02        15.91        13.76        11.99 

Year44        17.86        17.17        12.68        17.62        17.14        15.29 

Year45        17.18        15.21         9.2         17.31        16.63        11.63 

Year46        16.33        15.5         11.35        14.85        12.6         10.18 

Year47        16.19        15.14        13.03        13.11        12.17        11.68 

Year48        15.42        15.18        12.15        16.06        15.79        11.06 

Year49        20           18.88        14.16        19.56        18.4         15.25 

Year50        13.69         8.9          8.35        13.74         9.45         7.05 

+ 

           PYNE.CLS1     PYNE.CLS2    PYNE.CLS3    PITS.CLS1    PITS.CLS2     PITS.CLS3 

Year1         17.51        17.51        12.13        18.66        18.44        14.31 

Year2         16.77        16.77        12.63        17.56        17.55         9.26 

Year3         15.68        15.68        11.58        16.25        16.2         12.01 

Year4         15           15           12.29        18.61        18.6         14.59 

Year5         16.94        16.94        12.55        20.04        18.9         11.25 

Year6         18.06        18.06        15.74        17.94        17.8         14.77 

Year7         14.61        14.61        10.9         16.92        15           14.72 

Year8         17.75        17.75        13.21        19.07        17.74        10.84 

Year9         12.59        12.59         8.97        16.9         15.93        12.56 

Year10        15.49        15.49        12.42        15.86        13.34        10.18 

Year11        13.83        13.83        10.03        19.36        19.19        11.48 

Year12        13.33        13.33        12.52        16.96        14.3         12.18 

Year13        16.85        16.85        15.59        15.12        13.8         11.95 

Year14        13.2         13.2         12.01        17.71        16.16        14.1 

Year15        16.72        16.72         8.67        17.83        16.17        14.52 

Year16        17.03        17.03        14.33        17.23        16.23        10.75 

Year17        12.78        12.78        10.6         17.34        16.64         9.4 

Year18        16.99        16.99        11.77        17.35        16.63        13.24 

Year19        16.14        16.14         9.19        14.8         14.01         9.18 

Year20        18.4         18.4         13.54        18.67        18.63        13.97 

Year21        16.39        16.39        10.94        15.58        13.98        12.21 

Year22        15.98        15.98         8.8         16.34        15.93         9.13 

Year23        16.52        16.52         8.98        17.71        17.54        10.14 

Year24        16.49        16.49        12.83        17.89        17.48        13.75 

Year25        16.24        16.24        11.6         16.91        15.33        13.91 

Year26        16.6         16.6         11.87        17.55        16.51        15.46 

Year27        17.13        17.13         7.8         18.14        17.47         6.95 

Year28        17.04        17.04        15.46        17.07        16.21        15.88 

Year29        15.01        15.01        10.22        14.65        11.11        10.51 

Year30        17.54        17.54        12.95        18.95        18.23        13.56 

Year31        16.02        16.02        14.08        15.18        13.31        11.83 

Year32        14.37        14.37        10.1         16.22        15.57        11.84 

Year33        18.76        18.76        12.85        20.12        18.09        14.83 

Year34        12.13        12.13        10.06        15.73        15.11        12.5 

Year35        18.44        18.44        13.04        17.77        17.26        12.14 

Year36        17.46        17.46        11.99        19.2         18.31        12.54 

Year37        14.21        14.21         5.97        15.3         14.28         7.79 

Year38        16.19        16.19        12.47        16.97        16.31        13.62 

Year39        15.11        15.11         9.97        17.88        17.85        11.03 

Year40        17.68        17.68        12.23        18.74        17.36        14.28 

Year41        17.84        17.84        14.55        18.75        16.83         8.64 

Year42        16.29        16.29        12.17        20.55        20.01        13.44 

Year43        17.11        17.11        10.2         18.26        17.47        11.77 

Year44        17.52        17.52        14.47        19.46        17.83         9.99 

Year45        13.38        13.38         7.14        15.11        14.62         8.36 

Year46        13.25        13.25        12.73        17.4         16.94        16.08 

Year47        16.31        16.31        10.3         20.6         19.29        11.4 

Year48        16.7         16.7         12.72        16.5         14.86        14.76 

Year49        14.93        14.93        13.18        17.27        16.38        12.61 

Year50        11.07        11.07         7.68        14.43        14.33        10.47 

+ 

            PONT.CL       PONT.CLS2   PONT.CLS3    POTT.CLS1    POTT.CLS2    POTT.CLS3 

Year1         15.75        15.61        11.11        17.94        15.85        11.18 

Year2         15.81        13.98         9.44        17.79        12.63        10.35 

Year3         15.29        12.36        11.29        18.59        18.22        14.84 

Year4         16.91        14.19        10.68        20.34        17.87        13.01 

Year5         17.82        15.61        13.01        20.73        17.71        13.97 
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Year6         15.34        14.06        12.28        19.06        16.21        12.88 

Year7         18.17        18.15        15.55        19.57        18.76        14.17 

Year8         21.4         19.66        13.42        19.53        15.83        10.33 

Year9         16.67        15.62        10.34        16.77        13.86        11.29 

Year10        17.93        16.37        14.82        19.98        17.87        13.02 

Year11        18.12        14.01        10.52        17.79        13.01         9.84 

Year12        13.64        12.93        10.11        18.74        17.57        16.32 

Year13        17.59        15.41        13.94        19.25        18.26        13.23 

Year14        17.81        14.19        13.49        15.85        14.4         13.79 

Year15        18.7         12.78        10.6         20.55        16.18        12.98 

Year16        17.39        16.64        14.35        17.84        15.21        12.52 

Year17        16.75        13.95        10.43        18.87        15.72        12.15 

Year18        20.03        17.48        14.23        18.59        18.55        13.31 

Year19        11.27        10.76         9.98        20.03        19.11        12.6 

Year20        17.96        16.87        15.95        16.92        16.04        13.51 

Year21        13.32        11.16        10.75        13.82        11.29        10.7 

Year22        17.69        16.07        11.2         16.98        16.8         11.14 

Year23        17.66        12.59         7.56        18.65        17.3         11.9 

Year24        16.29        16.18        11.63        20.13        17.76        14.07 

Year25        16.8         15.13        11.1         15.18        14.12        13.67 

Year26        18.2         17.13        10.93        18.93        16.14        15.14 

Year27        16.24        10.29         4.72        16.83        14.58         7.46 

Year28        18.01        17.15        15.68        18.19        15.16        13.88 

Year29        15.26        14.49         6.9         13.06        12.69         8.97 

Year30        18.6         18.58        15.99        17.33        15.07        14.3 

Year31        14.04        13.88        11.64        19.39        17.35        15.74 

Year32        16.64        15.9         12.09        16.47        15.64        14.93 

Year33        17.82        15.58        14.82        17.89        16.96        12.41 

Year34        14.35        12.8         10.19        16.28        14.46        12.11 

Year35        15.73        15.46        13.18        19.46        17.75        15.8 

Year36        17.96        16.48        12.09        16.22        15.35        14.02 

Year37        15.17        12.93         7.64        14.71        11.72         6.08 

Year38        18.81        18.72        15.2         18.41        18.22        13.12 

Year39        15.32        11.64         8.28        16.28        13.14        10.65 

Year40        17.05        14.24         9.17        18.66        17.79        12.98 

Year41        17.74        15.57        13.97        18.02        15.49        10.94 

Year42        18.04        14.94        11.4         18.29        17.16        14.33 

Year43        19.02        16.68        11.31        19.4         19.04        14.76 

Year44        17.3         16.37        12.12        19.39        19.32        12.92 

Year45        12.38        10.65         7.75        16.24        14.03         9.39 

Year46        15.83        13.04        12.16        17.35        16.8         12.92 

Year47        16.99        15.8         13.57        20.57        18.93        14.59 

Year48        14.01        13.79        12.55        17.86        13.71        12.46 

Year49        16.47        15.89        12.57        17.83        17.46        13.3 

Year50        11.94        10.02         8.7         13.43        8.07          7.14 

+ 

        LATI.CLS1    LATI.CLS2    LATI.CLS3    SEMI.CLS1    SEMI.CLS2     SEMI.CLS3 

Year1         0        17.1         12.82        18.85        18.85        14.01 

Year2         0        13.37         8.35        19.81        19.81        12.56 

Year3         0        15.72        11.01        17.98        17.98        12.18 

Year4         0        18.8         13.19        18.14        18.14        12.32 

Year5         0        19.32         9.24        20.5         20.5         13.96 

Year6         0        18.67        14.36        21.29        21.29        14.6 

Year7         0        18.34        14           18.55        18.55        14.25 

Year8         0        19.27        13.64        20.51        20.51        13.08 

Year9         0        18.68        13.16        18.12        18.12        13.77 

Year10        0        18.8        13.89         19.09        19.09        16.17 

Year11        0        15.85         8.93        18.86        18.86        10.57 

Year12        0        17.97        16.84        18.38        18.38        14.44 

Year13        0        19.42        17.44        18.94        18.94        13.75 

Year14        0        19.02        13.53        16.6         16.6         14.21 

Year15        0        17.66        14.49        19.78        19.78        11.86 

Year16        0        18.04        14.23        15.91        15.91        11.64 

Year17        0        17           13.62        13.79        13.79         9.6 

Year18        0        17.74        13.21        19.16        19.16        14.8 

Year19        0        15.89        12.49        13.71        13.71        10.67 

Year20        0        16.01        14.09        18.06        18.06        14.82 

Year21        0        16.5         12.24        14.8         14.8         10.96 

Year22        0        12.45         9.12        16.4         16.4          8.79 

Year23        0         9.03         8.84        16.58        16.58         8.78 

Year24        0        19.87        14.22        14.6         14.6         10.72 
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Year25        0        18.87        13.48        14.01        14.01        11.84 

Year26        0         9.14         8.05        16.58        16.58        10.34 

Year27        0        10.15         9.87        15.35        15.35         4.5 

Year28        0        12.19         9.17        18.82        18.82        15.97 

Year29        0        17.7         11.63        12.56        12.56         9.23 

Year30        0        17.94        12.96        17.27        17.27        13.47 

Year31        0        17.49        15.24        16.28        16.28        16.01 

Year32        0        17.68        13.61        16.15        16.15        10.68 

Year33        0        15.87        10.58        18.74        18.74        11.67 

Year34        0        16.91        13.24        13.75        13.75        12.91 

Year35        0        18.86        15.33        18.37        18.37        14.18 

Year36        0        17.18        14           18.2         18.2         13.57 

Year37        0        13.06         9.05        15.68        15.68         7.26 

Year38        0        16.07        11.6         17.93        17.93        12.86 

Year39        0        13.62        11.05        17.92        17.92        10.9 

Year40        0        18.33        13.97        18.89        18.89        13.41 

Year41        0        17.21        10.02        17.6         17.6         13.29 

Year42        0        18.44        15.69        18.76        18.76        15.92 

Year43        0        18.51        13.64        18.65        18.65        11.16 

Year44        0        14.3          8.87        17.83        17.83        11.88 

Year45        0        15.69        10           16.29        16.29         7.58 

Year46        0        18.08        14.39        16.57        16.57        12.66 

Year47        0        20.23        16.22        18.96        18.96        12.73 

Year48        0        17.31        14.52        16.04        16.04        12.63 

Year49        0        14.2         10.6         14.9         14.9         12.12 

Year50        0        12.74         9.94        13.48        13.48         9.41 

+ 

           TULS.CLS1     TULS.CLS2    TULS.CLS3    WAGN.CLS1    WAGN.CLS2     WAGN.CLS3 

Year1         18.26        18.26        16.96        18.01        17.63        17.56 

Year2         14.45        14.45        14.37        17.49        17.49        17.48 

Year3         15.37        15.37        14.6         17.74        17.62        17.54 

Year4         17.16        17.16        14.3         18.84        18.77        18.67 

Year5         18.6         18.6         14.24        21.43        21.14        20.85 

Year6         18.02        18.02        15.26        22.5         22.5         22.5 

Year7         17.39        17.4         13           19.46        18.71        17.69 

Year8         18.45        18.46        14.33        20.58        20.53        20.51 

Year9         14.77        14.74        12.63        18.82        18.17        18.09 

Year10        14.57        14.58        13.98        19.76        19.74        19.45 

Year11        16.13        16.13        14.54        18.44        18.07        18.02 

Year12        18.27        18.27        17.13        20.07        19.81        18.78 

Year13        19.71        19.71        15.96        19.44        19.11        18.93 

Year14        15.53        15.54        14.97        17.47        17           16.45 

Year15        16.21        16.21        15.85        19.39        19.02        18.74 

Year16        15.5         15.5         13.98        17.44        17.38        17.09 

Year17        13.55        13.54        11.76        15.46        14.97        14.74 

Year18        16.69        16.7         16.52        19.21        19.02        17.97 

Year19        12.05        12.05        11.99        17.41        17.21        16.92 

Year20        17.34        17.34        15.55        19.52        19.51        19.23 

Year21        13.52        13.53        12.16        17.48        17.13        16.54 

Year22        13.28        13.28        11.32        17.68        17.17        15.86 

Year23        15.43        15.43        14.22        18.47        18.37        18.21 

Year24        18           18           15.56        20.38        16.95        15.8 

Year25        15.26        15.26        14.49        16.45        15.96        15.41 

Year26        18.93        18.93        14.61        18.7         18.61        18.15 

Year27        17.23        17.23        12.74        18.14        18.04        16.02 

Year28        17.26        17.26        17.22        19.52        18.46        17.21 

Year29        13.34        13.4          9.88        18.96        15.86        12.29 

Year30        12.39        12.42        11.24        19.27        19.08        19.05 

Year31        18.08        18.17        17.99        18.22        16.21        14.04 

Year32        14.39        14.38        11.15        16.03        15.85        15.61 

Year33        17.24        17.24        11.23        19.88        19.08        17.42 

Year34        17.29        17.29        15.74        15.67        13.97        12.23 

Year35        17.89        17.91        11.56        19.29        19.19        19.05 

Year36        16.06        16.06        10.35        16.16        16.09        15.8 

Year37        14.01        14.01         7.56        16.91        16.79        15.65 

Year38        14.47        14.46        12.64        15.27        14.73        14.68 

Year39        13.68        13.68         9.24        12.79        12.66        12.23 

Year40        15.35        15.35         8.59        20.34        19.96        19.69 

Year41        16.89        16.89         9.23        19.19        19.09        17.54 

Year42        16.49        16.49         9.07        18.49        18.32        16.79 

Year43        16.83        16.83         8.32        17.92        17.01        15.53 
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Year44        15.87        15.87        13.8         18.93        18.87        18.27 

Year45        16.09        16.09        16.22        18.47        18.17        17.58 

Year46        15.61        15.61         9.46        18.22        18.08        18.08 

Year47        13.97        13.96         8.2         17.56        15.33        12.93 

Year48        13.08        13.08         6.82        15.79        13.79        12.48 

Year49        16.75        16.82         7.15        19.08        18.99        18.5 

Year50        14.02        14.02         6.77        15.69        14.39        14.14 

; 

Scalar AvgTgT Average annual required target in Mg/700000/; 

Scalar YrTgt Yearly Target in Mg/700000/; 

Scalar Penalty cost of not processing one Mg /187.5/; 

 

*/375 liters per Megagram of switchgrass feedstock 

*/ wholesale ethanol price @ $2.14 per Gallon 

*/http://www.ams.usda.gov/mnreports/lswethanol.pdf) around $0.5 /lites 

*/ Penalty costs:$ .57*375 = $214/Mg 

 

Variables 

OBJ                        Objective Function 

X(C,L)                     Hectares of land by county and land class 

RAKING(T,C,L)              Hectares of land Raked 

BALING(T,C,L)              Megagram Bailed 

TRANSPORT(T,C,L)           Megagram Transportated 

Short(T) 

Exces(T) 

Positive Variables 

X(C,L),RAKING(T,C,L),BALING(T,C,L),TRANSPORT(T,C,L),Short(T), Exces(T); 

Equations 

COST                        Production costs 

LAND(C,L)                   Resource Constraints 

AvgTARGET(T)                Average Target Constraints 

RAKACTIVITY1(C,L)           Raking Constraints Year 1 

RAKACTIVITY2(C,L)           Raking Constraints Year 2 

RAKACTIVITY3(C,L)           Raking Constraints Year 3 

RAKACTIVITY4(C,L)           Raking Constraints Year 4 

RAKACTIVITY5(C,L)           Raking Constraints Year 5 

RAKACTIVITY6(C,L)           Raking Constraints Year 6 

RAKACTIVITY7(C,L)           Raking Constraints Year 7 

RAKACTIVITY8(C,L)           Raking Constraints Year 8 

RAKACTIVITY9(C,L)           Raking Constraints Year 9 

RAKACTIVITY10(C,L)          Raking Constraints Year 10 

RAKACTIVITY11(C,L)          Raking Constraints Year 11 

RAKACTIVITY12(C,L)          Raking Constraints Year 12 

RAKACTIVITY13(C,L)          Raking Constraints Year 13 

RAKACTIVITY14(C,L)          Raking Constraints Year 14 

RAKACTIVITY15(C,L)          Raking Constraints Year 15 

RAKACTIVITY16(C,L)          Raking Constraints Year 16 

RAKACTIVITY17(C,L)          Raking Constraints Year 17 

RAKACTIVITY18(C,L)          Raking Constraints Year 18 

RAKACTIVITY19(C,L)          Raking Constraints Year 19 

RAKACTIVITY20(C,L)          Raking Constraints Year 20 

RAKACTIVITY21(C,L)          Raking Constraints Year 21 

RAKACTIVITY22(C,L)          Raking Constraints Year 22 

RAKACTIVITY23(C,L)          Raking Constraints Year 23 

RAKACTIVITY24(C,L)          Raking Constraints Year 24 

RAKACTIVITY25(C,L)          Raking Constraints Year 25 

RAKACTIVITY26(C,L)          Raking Constraints Year 26 

RAKACTIVITY27(C,L)          Raking Constraints Year 27 

RAKACTIVITY28(C,L)          Raking Constraints Year 28 

RAKACTIVITY29(C,L)          Raking Constraints Year 29 

RAKACTIVITY30(C,L)          Raking Constraints Year 30 

RAKACTIVITY31(C,L)          Raking Constraints Year 31 

RAKACTIVITY32(C,L)          Raking Constraints Year 32 

RAKACTIVITY33(C,L)          Raking Constraints Year 33 

RAKACTIVITY34(C,L)          Raking Constraints Year 34 

RAKACTIVITY35(C,L)          Raking Constraints Year 35 

RAKACTIVITY36(C,L)          Raking Constraints Year 36 

RAKACTIVITY37(C,L)          Raking Constraints Year 37 

RAKACTIVITY38(C,L)          Raking Constraints Year 38 

RAKACTIVITY39(C,L)          Raking Constraints Year 39 

RAKACTIVITY40(C,L)          Raking Constraints Year 40 
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RAKACTIVITY41(C,L)          Raking Constraints Year 41 

RAKACTIVITY42(C,L)          Raking Constraints Year 42 

RAKACTIVITY43(C,L)          Raking Constraints Year 43 

RAKACTIVITY44(C,L)          Raking Constraints Year 44 

RAKACTIVITY45(C,L)          Raking Constraints Year 45 

RAKACTIVITY46(C,L)          Raking Constraints Year 46 

RAKACTIVITY47(C,L)          Raking Constraints Year 47 

RAKACTIVITY48(C,L)          Raking Constraints Year 48 

RAKACTIVITY49(C,L)          Raking Constraints Year 49 

RAKACTIVITY50(C,L)          Raking Constraints Year 50 

BALACTIVITY(T,C,L)          Baling Constraints 

TRANSPORTACTIVITY(T,C,L)    Transportation Constraints 

QtShort(T)                  Used to determine level of shortage for each state of nature 

MaxDev 

; 

* The Opt*Sum(T,Short(T))/100000 is added to the objective function to illustrate how 

* a penalty for shortages may be imposed for each Mg based on the conversion rate. 

* The Sum of the total shortage over the 50 states of nature is(50*2,000 tons/day) 

provides an estimate of the upper bound 

* average number of shut days per year is 16 days obtained from model 1 (solved for avg. 

yield). 

* Total allowable shortage for 50 years 50*2000*14.2 =1420000. 

 

COST..OBJ =E= 

(SUM((C,L),LNDCST(C,L)*X(C,L))+RAK*SUM((T,C,L),RAKING(T,C,L)/50)+BAL*SUM((T,C,L),BALING(T

,C,L)/50)+ 

SUM((T,C,L),TRNSCST(T,C,L)*TRANSPORT(T,C,L)/50)+sum(t,short(t)/50)*(Penalty)); 

LAND(C,L)..X(C,L)=L=TOTLAND(C,L); 

AvgTARGET(T)..SUM((C,L),TRANSPORT(T,C,L))=G=700000-short(t); 

MaxDev..sum(t,short(t))=L=00000; 

QtShort(T)..  700000 - SUM((C,L),AnYld(T,C,L)*Raking(t,C,L)) - short(T)+ Exces(T) =e= 0; 

RAKACTIVITY1(C,L)..RAKING('Year1',C,L) - X(C,L) =L= 0; 

RAKACTIVITY2(C,L)..RAKING('Year2',C,L) - X(C,L) =L= 0; 

RAKACTIVITY3(C,L)..RAKING('Year3',C,L) - X(C,L) =L= 0; 

RAKACTIVITY4(C,L)..RAKING('Year4',C,L) - X(C,L) =L= 0; 

RAKACTIVITY5(C,L)..RAKING('Year5',C,L) - X(C,L) =L= 0; 

RAKACTIVITY6(C,L)..RAKING('Year6',C,L) - X(C,L) =L= 0; 

RAKACTIVITY7(C,L)..RAKING('Year7',C,L) - X(C,L) =L= 0; 

RAKACTIVITY8(C,L)..RAKING('Year8',C,L) - X(C,L) =L= 0; 

RAKACTIVITY9(C,L)..RAKING('Year9',C,L) - X(C,L) =L= 0; 

RAKACTIVITY10(C,L)..RAKING('Year10',C,L) - X(C,L) =L= 0; 

RAKACTIVITY11(C,L)..RAKING('Year11',C,L) - X(C,L) =L= 0; 

RAKACTIVITY12(C,L)..RAKING('Year12',C,L) - X(C,L) =L= 0; 

RAKACTIVITY13(C,L)..RAKING('Year13',C,L) - X(C,L) =L= 0; 

RAKACTIVITY14(C,L)..RAKING('Year14',C,L) - X(C,L) =L= 0; 

RAKACTIVITY15(C,L)..RAKING('Year15',C,L) - X(C,L) =L= 0; 

RAKACTIVITY16(C,L)..RAKING('Year16',C,L) - X(C,L) =L= 0; 

RAKACTIVITY17(C,L)..RAKING('Year17',C,L) - X(C,L) =L= 0; 

RAKACTIVITY18(C,L)..RAKING('Year18',C,L) - X(C,L) =L= 0; 

RAKACTIVITY19(C,L)..RAKING('Year19',C,L) - X(C,L) =L= 0; 

RAKACTIVITY20(C,L)..RAKING('Year20',C,L) - X(C,L) =L= 0; 

RAKACTIVITY21(C,L)..RAKING('Year21',C,L) - X(C,L) =L= 0; 

RAKACTIVITY22(C,L)..RAKING('Year22',C,L) - X(C,L) =L= 0; 

RAKACTIVITY23(C,L)..RAKING('Year23',C,L) - X(C,L) =L= 0; 

RAKACTIVITY24(C,L)..RAKING('Year24',C,L) - X(C,L) =L= 0; 

RAKACTIVITY25(C,L)..RAKING('Year25',C,L) - X(C,L) =L= 0; 

RAKACTIVITY26(C,L)..RAKING('Year26',C,L) - X(C,L) =L= 0; 

RAKACTIVITY27(C,L)..RAKING('Year27',C,L) - X(C,L) =L= 0; 

RAKACTIVITY28(C,L)..RAKING('Year28',C,L) - X(C,L) =L= 0; 

RAKACTIVITY29(C,L)..RAKING('Year29',C,L) - X(C,L) =L= 0; 

RAKACTIVITY30(C,L)..RAKING('Year30',C,L) - X(C,L) =L= 0; 

RAKACTIVITY31(C,L)..RAKING('Year31',C,L) - X(C,L) =L= 0; 

RAKACTIVITY32(C,L)..RAKING('Year32',C,L) - X(C,L) =L= 0; 

RAKACTIVITY33(C,L)..RAKING('Year33',C,L) - X(C,L) =L= 0; 

RAKACTIVITY34(C,L)..RAKING('Year34',C,L) - X(C,L) =L= 0; 

RAKACTIVITY35(C,L)..RAKING('Year35',C,L) - X(C,L) =L= 0; 

RAKACTIVITY36(C,L)..RAKING('Year36',C,L) - X(C,L) =L= 0; 

RAKACTIVITY37(C,L)..RAKING('Year37',C,L) - X(C,L) =L= 0; 

RAKACTIVITY38(C,L)..RAKING('Year38',C,L) - X(C,L) =L= 0; 

RAKACTIVITY39(C,L)..RAKING('Year39',C,L) - X(C,L) =L= 0; 

RAKACTIVITY40(C,L)..RAKING('Year40',C,L) - X(C,L) =L= 0; 
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RAKACTIVITY41(C,L)..RAKING('Year41',C,L) - X(C,L) =L= 0; 

RAKACTIVITY42(C,L)..RAKING('Year42',C,L) - X(C,L) =L= 0; 

RAKACTIVITY43(C,L)..RAKING('Year43',C,L) - X(C,L) =L= 0; 

RAKACTIVITY44(C,L)..RAKING('Year44',C,L) - X(C,L) =L= 0; 

RAKACTIVITY45(C,L)..RAKING('Year45',C,L) - X(C,L) =L= 0; 

RAKACTIVITY46(C,L)..RAKING('Year46',C,L) - X(C,L) =L= 0; 

RAKACTIVITY47(C,L)..RAKING('Year47',C,L) - X(C,L) =L= 0; 

RAKACTIVITY48(C,L)..RAKING('Year48',C,L) - X(C,L) =L= 0; 

RAKACTIVITY49(C,L)..RAKING('Year49',C,L) - X(C,L) =L= 0; 

RAKACTIVITY50(C,L)..RAKING('Year50',C,L) - X(C,L) =L= 0; 

BALACTIVITY(T,C,L)..BALING(T,C,L)-(AnYld(T,C,L)*RAKING(T,C,L))=L=0; 

TRANSPORTACTIVITY(T,C,L)..TRANSPORT(T,C,L)-BALING(T,C,L)=L=0; 

*AvgYield.. Sum((C,L),AvgYld(C,L)*X(C,L)) =G= 0; 

 

*The 700,000 is the quantity needed for each state of nature if the facility runs 

*350 days per year and requires 2,000 tons per day. 

*This equation is used to compute Short(T).  In states of nature with Excess production 

*Exces(T) will be greater than zero.  No penalty need be applied for excess production. 

*In the objective function, the Short(T) values may be summed across all states of nature 

*and divided by 50 states of nature and 2000 tons per day to obtain an estimate of the 

*average number of days per year that the plant will be idle if the solved plan is 

*implemented. 

 

MODEL RETURNS/ALL/; 

SOLVE RETURNS USING LP MINIMIZING OBJ; 

Display X.L; 

Display Raking.L; 

Display Transport.L; 

Display Baling.L; 

Display Obj.L; 

parameter Landleased Total hectares of land leased ; 

Landleased=SUM((C,L),X.L(C,L)) ; 

display Landleased; 

parameter Raked Average hectares of land raked ; 

Raked=SUM((T,C,L),Raking.L(T,C,L))/50 ; 

display Raked; 

parameter Totbaled Average Mg of switchgrass baled per year ; 

Totbaled=SUM((T,C,L),Baling.L(T,C,L))/50 ; 

display Totbaled; 

parameter Transported total Mg of switchgrass transported ; 

Transported=SUM((T,C,L),Transport.L(T,C,L))/50 ; 

display Transported; 

Display Short.L ; 

display exces.l; 

*Years and quantity with quantity short of 700000 

Parameter IdleAvg; 

IdleAvg = Sum(T,short.L(T))/100000 ; 

*total feedstock demand  for 50 states of nature 50*2000 = 100000 

Display IdleAvg; 

Parameter CostPerYr; 

CostPerYr  =   (Obj.L)/700000; 

*CostPerYr  =   (Obj.L)/(700000*50); 

Display CostPerYr; 

Parameter ShtAvg; 

ShtAvg = Sum(T,short.L(T))/50 ; 

Display ShtAvg; 

 



 

VITA 

 

Deepayan Debnath 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis:    THREE ESSAYS: RESERVOIR MANAGEMENT; SWITCHGRASS LAND 

LEASING; AND ITS ENVIRONMENTAL IMPACT 

 

 

Major Field:  Agricultural Economics 

 

Biographical: 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Agricultural 

Economics at Oklahoma State University, Stillwater, Oklahoma in December, 

2012. 

 

Completed the requirements for the Master of Science in Agricultural 

Economics at Oklahoma State University, Stillwater, OK in 2009. 

  

Completed the requirements for the Master of Arts in Economics at University 

of Kalyani, West Bengal, India in 2005. 

 

Completed the requirements for the Bachelor of Arts in Economics at 

University of Kalyani, West Bengal, India  in 2003. 

 

Experience:  11/07-Present   Graduate Research Assistant, Department of 

     Agricultural Economics, Oklahoma State  

     University 

 

  10/06-03/07  Instructor, Ace Academy, 

     West Bengal, India 

 

  09/05-05/07  Sales Manager, M/S Debnath Oil Mill, 

     West Bengal, India 

 

 

Professional Memberships: Agricultural & Applied Economics Association, 

European Association of Environmental and Resource Economists, 

North America Lake Management Society 


