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CHAPTER I 

 

INTRODUCTION 

 

Risk analysis has been extensively studied to address and resolve the issues related to   

risk assessment, risk characterization, risk communication, risk management, and 

risk-related policies [26, 27]. Risk analysis can be formally defined by a science that 

deals with probabilistic and statistical risk evaluation. Probabilistic or statistical risk 

assessment can be defined as an analysis methodology employed in science and 

engineering where risk can be evaluated by its probabilistic behaviors [26]. Therefore, 

risk analysis is a methodology to provide a way to assess, manage and forecast risks 

in probabilistic processes in an integrative manner. Risk analysis is the topic of this 

study with focus on data with turbulent trends. 

The Ad-Hoc Risk Management System (ARMS) [1] has been developed as a base tool 

for statistical modeling and analysis of data, and forecast of risky events or events 

with a turbulent nature as a primary focus. The ARMS is based on the Multiple 

Regression with a Scaled Dummy Variable (MRSDV) Model [1], and primarily aims 

at such events as critical network security breaches, terror events and financial market 

turbulence, to mention a few. MRSDV provides a capability to identify a spiky 

pattern in historical data and is extensible to make a forecast on spiky events in the 
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future based on the historical trend. However, MRSDV limits itself due to a few 

drawbacks such as no efficient method for parameter estimation, no adequate test 

scheme for evaluation of model goodness-of-fit, and no solid criterion between risky 

and non-risky events. 

In order to address and resolve the drawbacks and issues in MRSDV, the Multiple 

Regression with a Dependent Dummy Variable (MRDDV) Model [2] has been 

developed by employing the following three techniques: a dependent dummy variable 

technique, the Ordinary Least Square (OLS) method for efficient parameter 

estimation, and the coefficient of determination ( )2R  as a test scheme for evaluation 

of model goodness-of-fit. MRDDV employs the multiple regression method which 

manipulates the quantitative independent variable and the qualitative independent 

variable, along with a dependent dummy variable in order to establish a solid 

definition and criterion for a risk state. Based on the risk state, the MRDDV method is 

capable of detecting likelihood of risky events. The MRDDV is extended to be able to 

compute the likelihood of such risky events by a probability with respect to the 

distribution of the estimated values of the dependent dummy variable in the 

regression model. The MRDDV assigns a dummy binary value (e.g., 0 or 1) to its 

dependent dummy variable as a criterion function, such that 1 is assigned if the value 

of an independent variable, either the quantitative or qualitative variable, intersects a 

threshold value set by the user. However, this limits its extensibility to a probabilistic 

exploration of the risk process by a risky event with poor model goodness-of-fit. In 

order to improve the level of model goodness-of-fit for risky events without any loss 

of generality, and also to resolve the detectability or observability of risky events hit 
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in a distributed manner observed far away from the threshold value of interest in 

MRDDV, in this study, it is proposed that the values of the dummy dependent 

variable be adjusted to the values determined by a new criterion function in which the 

threshold or criterion value is defined by degree of difference between adjacent data 

values instead of a single threshold value every data value is compared against. This 

way, the risky or turbulent events can be detected and observed as an event that 

reveals an abrupt change in the value of the process at any period over lifetime of the 

process. Therefore, an event that intersects a threshold value yet without revealing an 

abrupt change in value will not be identified as a risky event by using ordinary 

MRDDV while it will be identified as a risky event by using the new proposed 

approach.  

The new MRDDV with the adjustment in the criterion function for determining the 

dependent variable value is referred to as Multiple Regression with Adjusted Dummy 

Variable (MRADV). Both MRDDV and MRADV can be extended to be able to 

measure the probability for a risky event to occur; MRDDV provides an insight into 

the likelihood for such event to go beyond a certain threshold value while MRADV 

traces distribution of abrupt changes in values of the random variable of interest. 

The probabilistic MRADV, referred to as MRADVP , can be implemented in two different 

ways such as Observation-Driven Method (ODM), in which the probability is 

measured based on the estimated values of the dependent adjusted variable; and 

Input-Driven Method (IDM), in which the probability of the risk of concern is traced 

based on both the estimated independent quantitative and qualitative random 
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variables. The effectiveness and computational efficiency of MRADVP  is demonstrated 

by comparing it against Copula based method to compute joint probability. 

The novelty of the proposed MRADVP is that by using traditional methods such as 

Copula-based probabilistic modeling and analysis method, the probability density  

functions for the quantitative independent variable and qualitative independent 

variable can only find a joint probability without being able to take into account their 

joint-impact on a common figure of merit such as the dependent dummy or adjusted 

variable; while MRADVP or MRDDVP can effectively take into account and evaluate the 

joint-impact of the two independent random variables with respect to a threshold 

value which is determined by the user by using a criterion function. The criterion 

function can be set simply to be based on the value of the quantitative independent 

random variable as is in MRDDVP ; based on the changing-rate in the values of the 

variable as is in MRADVP ; or based on a composite function to involve both the 

quantitative and qualitative independent random variables. Hence, a method to 

evaluate the joint-impact is made possible by the multiple regression process in 

MRDDVP or MRADVP during which the individual impact from the qualitative independent 

random variable is made visible to the dependent random variable either implicitly (if 

the qualitative independent random variable did not participate in the criterion 

function) or explicitly (if the qualitative independent random variable is included in 

the criterion function as an explicit variable). Ultimately it will be made possible to 

predict the likelihood for an event (or a risky event) of interest (particularly, such as 

an event with an abrupt or spiky turbulence in its value) to occur with reference to  
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other events that are independent contributors to the occurrence of the risky 

turbulence in the primary event, which otherwise may stay hidden from other 

traditional prediction methods. 

Lastly, in this dissertation, a method is developed that can facilitate the extension of the 

Multiple Regression with Dependent Dummy Variable (MRDDV) Model to provide a 

way of estimating the likelihood of any event of concern or interest by probability. 

MRDDV Model employs a dependent dummy variable as an observation in its 

regression model with respect to the quantitative independent variable and the 

qualitative independent variables as primary inputs for estimation. The purpose of the 

dependent dummy variable in MRDDV is to provide an effective way of representing 

the quantitative measure of the status of the event of concern with respect to a certain 

criterion function, such as a binary measure (e.g., 0 or 1) or forward differences of 

dependent variable values. Therefore, MRDDV can facilitate the process of 

identifying the quantitative relationship among the random variables in the model by 

using the regression-based estimation. However, MRDDV lacks the ability to readily 

provide information on how likely an event of concern is to occur, which could be 

best manipulated by employing probability-based estimation. In this context, a 

method, namely Logit Transformation, is employed to facilitate the probabilistic 

manipulation of MRDDV. By using Logit Transformation method, the estimated 

dependent dummy variable can be transformed from a non-probabilistic domain (e.g., 

the estimated value could be out of valid probabilistic range, 0 to 1) into a 

probabilistic one so the expected value of the dependent dummy variable can be 

evaluated as a probabilistic measure. Applying this Logit Transformation to original 
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MRDDV model, we specify three procedures as follows: i) a variable )1Pr( == iyP as 

a probability of dependent dummy variable )( iy  takes 1, ii) set ( ))1(log PP −  equal to 

right hand side of original MRDDV model, and iii) arrange the formula in terms of 

P . Then we can get the Logit Transformation-based MRDDV model. The Logit 

Transformation-based MRDDV [4] is validated by applying to historical financial 

data.  

The remainder of this dissertation is organized as follows: In chapter II, literature 

related to risk analysis is reviewed, previous works are also introduced. The basic 

principles, methodologies and details of the proposed model are described in chapter 

III. The performance of the proposed method is evaluated in chapter IV. In the final 

chapter, remarks and conclusion are presented.  
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CHAPTER II 

 

LITERATURE REVIEW 

 

ARMS [1] is introduced and employed as a base tool for risk analysis and 

management as it can provide an integrated process of risk management and 

assessment in the fields in which an integrated risk analysis and forecast is exigently 

required to tolerate or avoid any consequential undesirable impact. Thus, the 

objective of ARMS is to estimate/predict possible outcomes that are inestimable and 

unpredictable directly from the observations in a data space. In order to estimate and 

predict the situations in advance, not only historical data but also the intelligence of 

experts in the field is essential. The basic process of risk analysis is to construct a model 

to estimate or forecast events in a given environment. Traditional estimation theory such 

as regression-based estimation method and reliability distribution-based estimation 

method can perform estimation in an ad hoc manner, however they cannot perform 

properly and adequately under real risky events or situations because they calculate 

the estimator or make a forecast based only on historical data which is a quantitative 

variable.  

In [1], a statistical model for predicting abnormal spikes in a data space has been 

proposed. Based on the proposed statistical model in [1], an Ad-hoc Risk 
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Management System (ARMS) was developed and the proposed ARMS facilitates 

statistically and computationally the process to develop an alert system against 

unexpected and disastrous events such as terror attack and abrupt stock market 

fluctuation, to mention a few. One of the most important issues in ARMS is the 

timing when to watch and warn against the risk. 

The statistical model proposed in [1] is referred to as the Multiple Regression with 

Scaled Dummy Variable (MRSDV), and it addresses and resolves how to model and 

forecast the time of risky events. MRSDV evaluates a set of data in which a spike-

pattern is introduced as a sign of a risky event. In general, traditional estimation 

theories [5, 6, 7] can not readily manipulate the estimation adaptively in a changing 

environment. Estimation models may be used for an ad-hoc risk management by using 

multiple regression and the Weibull distribution-based approach [3] as well as various 

time series models [12], however, they can not perform properly and adequately under 

real risky situations because they calculate its estimator or forecasting value based 

only on the historical data which is a quantitative variable. MRSDV model 

manipulates the estimation with respect to both the quantitative independent variable 

and qualitative independent variable, in which the qualitative variable is surveyed by 

using a method such as k-point scaling to introduce and generate a dummy variable 

[1, 8, 9, 11]. MRSDV is used as the basic statistical method of the proposed model [5, 

6, 7]. In [1], MRSDV was compared with the conventional methods that forecast an 

event based only on historical data, to show the effectiveness of the proposed 

predicting method using scaled dummy variables, in terms of accuracy and precision. 
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MRSDV in [1] has left some unanswered questions. As can be seen in [1], MRSDV is 

able to capture a spike pattern of two homogeneous data well if there exists one. 

However, MRSDV model can not effectively provide a way to specify or set a 

criterion of risk/ non-risk because it is not readily possible to derive a probabilistic 

measure of the likelihood of an event of concern or interest with respect to a given 

criterion or threshold value based on the regression model estimated in MRSDV, and 

does not support an efficient parameter estimation because the OLS (Ordinary Least 

Square) method can not be applied to nonlinear regression model such as MRSDV [5, 

7]. In order to overcome these limitations of [1], a dependent dummy variable 

technique has been proposed in [2], where the MRDDV (Multiple Regression with 

Dependent Dummy Variable) Model was developed. MRDDV Model also employs 

the multiple regression method and manipulates the estimation with respect to both 

the quantitative independent variable and qualitative independent variable as in 

MRSDV. However in MRDDV, instead of introducing a scaled dummy variable and 

qualitative variable, a technique is proposed to introduce a dummy variable which is 

dependent of the quantitative and qualitative variables in order to set a criterion for 

evaluating a risk state. Furthermore, MRDDV facilitates its parameter estimation by 

employing the Ordinary Least Square (OLS) method. Also, in [2], a technique for 

model goodness-of-fit test was presented. 

MRDDV model employs the multiple regression method which runs between the 

quantitative independent variable and the qualitative independent variable, with 

dependent dummy variable technique to set the criterion of risk state. It improved the 

criterion for risk state, parameter estimation method and test scheme for model 
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goodness-of-fit than MRSDV Model, and also attempts to represent risk level based 

on probability. Traditionally, probabilistic risk modelling and analysis has been 

conducted by defining a joint distribution in terms of marginal and conditional 

distributions for the model’s random variables such as in copula [10, 13-18]. Copula 

is a technique to construct the joint distribution function between independent 

variables. In this study, a probabilistic approach of estimated response of Adjusted 

MRDDV Model is proposed in two different views such as Observation Driven 

Method (ODM) and Input Driven Method (IDM). Risk management is a human 

activity which integrates recognition of risk, risk assessment and developing 

strategies to manage it.   

The basic aspect of risk analysis is constructing the model to estimate or forecast events 

in related environment. There are several facets of risk analysis in the literature. In 

financial market risk measurement, there is the technique of context modelling based on 

Value-at-Risk (VaR). It suffers from major drawbacks. The log-normal modelling of the 

returns does not take into account the observed fat tail distribution and the non-

stationality of the financial instruments sever the efficiency of the VaR predictions. The 

technique of context modelling is applied to estimate the VaR by conditioning the 

probability density function on the present context [21]. Based on Markowitz’s portfolio 

selection model that includes proportional transaction costs in the presence of initial 

holdings for the investor, there is a risk minimization model that is a portfolio 

optimisation module (PORTOPT) that computes the income produced by the portfolio 

during the horizon period and computes market value at the end of the horizon [22]. Also, 

there is a transaction method for risk mapping which allows one to compute confidence 
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intervals for estimates, without any assumption on data distribution, except that inputs 

should be independently and identically distributed. RRCM (Ridged Regression 

Confidence Machine) gave a good numerical performance only with ‘iidness (identical 

and independent)’ of data coordinates [23]. In risk analysis, finally, the use of 

probabilistic techniques to address variability and uncertainty in risks is introduced, 

focused on how better characterization of the variability and uncertainty in the risk 

assessment lead to better risk communication [24]. 

In this study, ARMS is adopted as it is the mixed feature of risk management and risk 

assessment, in the fields too sensitive to tolerate risks that might result in severe 

disaster. There are several example scenarios to which a risk management system 

could be applied to forecast and avoid disaster.  One such example is the field of 

terrorism. The basic aspect of risk analysis is constructing the model to estimate or 

forecast events in related environment. 
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CHAPTER III 

 

METHODOLOGY 

 

This dissertation presents a statistically-based yet probabilistically-concluded 

approach to modeling and evaluation of likelihood for events of interest to occur with 

a focus on risky events. The risky events of interest in this study are the ones with a 

turbulent nature in the distribution of values of data, which can be commonly found in 

the events in the fields such as financial market, homeland security, or safety/mission 

critical systems, to mention a few. In such events, it is critical to make a timely, 

practical and accurate forecast for the likelihood of the events of interest to occur. 

There have been a couple of methods developed, i.e., Multiple Regression with a 

Scaled Dependent Variable (MRSDV) [1] and Multiple Regression with a Dependent 

Dummy Variable (MRDDV) [2]. They are both multiple regression method-based, in 

which a quantitative and a qualitative variables are employed to represent inputs 

along with an output variable to represent the consequence of the inputs on the 

observation through the regression process. What distinguishes MRSDV and 

MRDDV is the function that determines the values for the dependent variable in their 

models, referred to as criterion function. Using a criterion function, the dependent 

variable in MRSDV may result in an infinite positive range, while that in MRDDV 
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may result in a binary output such as 0 or 1, respectively. The new approach proposed 

in this study is based on a new criterion function applied into the multiple regression 

process, referred to as Multiple Regression with an Adjusted Dependent Variable 

(MRADV). In MRADV, the adjustment on the dependent variable is made by 

determining the value of the dependent variable based on the absolute values of the 

forward difference of adjacent data values in the quantitative random variable in order 

to improve the model goodness-of-fit. Furthermore, based on the multiple regression 

model in the proposed MRADV, a probabilistic-based model, referred to as MRADVP , is 

proposed in order to derive the probability of risk (or an event of interest) to occur 

without relying on traditional way of assuming or establishing probability density 

functions of the random variables in the model, thereby guiding the users to a more 

practical and realistic evaluation of the likelihood of an event of interest to occur. 

Extensive simulations and thorough interpretation of the results is conducted and 

presented to demonstrate the validity of the proposed approach by comparing it 

against the traditional copula-based approach in its computing joint probability.  

Lastly, in this dissertation, a method is presented, that can facilitate the extension of the 

Multiple Regression with Dependent Dummy Variable (MRDDV) Model to provide a 

way of estimating the likelihood of any event of concern or interest by probability. 

MRDDV Model employs a dependent dummy variable as an observation in its 

regression model with respect to the quantitative independent variable and the 

qualitative independent variable as primary inputs for estimation. The purpose of the 

dependent dummy variable in MRDDV is to provide an effective way of representing 

the quantitative judgment of the status of the event of concern with respect to a 
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certain criterion function, such as a binary judgment (e.g., 0 or 1) or forward 

differences of independent variable values, to mention a few. MRDDV can facilitate 

the process of identifying the quantitative relationship among the random variables in 

the model by using the regression-based estimation. However, MRDDV lacks the 

ability to readily provide information on how likely an event of concern is to occur, 

which could be best manipulated by employing probability-based estimation. In this 

context, a method, namely Logit Transformation, is employed to facilitate the 

probabilistic manipulation of MRDDV. By using Logit Transformation method, the 

estimated dependent dummy variable can be transformed from a non-probabilistic 

domain (e.g., the estimated value could be in the range beyond 0 or 1) into a 

probabilistic one so the expected value of the dependent dummy variable can be 

evaluated as a probabilistic measure. The various models are described in the 

following subsections. 

 

3.1 MRSDV Model 

 

In this section, we describe the statistical model, referred to as Multiple Regression 

with Scaled Dummy Variable (MRSDV) is detail. A numerical simulation result is 

provided to verify the practicality and effectiveness of the proposed method in 

Chapter IV. The theoretical foundation for MRSDV model using k-point scaling as its 

dummy variable can be expressed as follows. 

 

                  ij
n

j

n

j ijij
n

j ij
n

j ijij xxxxy εγβαα ++++= ∑ ∑∑∑ = === 1 1 2111 211 110                  (3.1) 
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where ijy  : risk function (response) 

    ijx1 : quantitative independent variable (jth observation in ith time period)  

    ijx2 : qualitative independent variable (jth mean from ith experts group)  

    0α : intercept of the model 

    1α : coefficient of quantitative variable ( parameter of ith time perioid) 

    1β : coefficient of qualitative variable (parameter of ith experts group) 

    1γ  : coefficient of product of quantitative and qualitative variable (parameter of  

           ith interaction between historical data and dummy data) 

     i   : time lag 

   ijε   : error term 

 

3.1.1. Stepwise selection of quantitative variable 

 

To conduct MRSDV model, firstly, we have to select the variable to fit the response 

adequately. Hence, we have to find out the variable highly correlated with the 

response. For example, the expense-amount of terror group, the number of their phone 

calls or reservation of air or ground transportation have to be found out as an 

independent variable highly correlated with the terror occurrence. At this point we 

need a reasonable variable selection method. For MRSDV model we adopt stepwise 

regression that is an automatic variable selection procedure based on F-testing method 

[5]. There are three major approaches such as  i) forward selection involves starting with 

no variables in the model, trying out the variables one by one and including them if they 
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are statistically significant. ii) backward elimination involves starting with all possible 

variables and testing them one by one, and deleting any of them if they are not 

statistically significant. iii) stepwise selection tests at each stage for variables to be 

included or excluded based on forward selection and backward elimination.   

 

3.1.2. Dummy variable 

 

To include the qualitative variable which is observed or collected by nominal scale or 

k-point scaling in MRSDV model, a dummy variable is introduced. 

For example, let y  be the sales amount of beverage in certain soccer game, 1x  be the 

number of tickets sold out and 2x  be the quality of the game, then the regression model 

can be expressed as follows;  

 

εβββ +++= 22110 xxy  

 

where 2x  = 0   if it is not the game of top rankers, 

                  =1   if it is the game of top rankers 

 

Here we refer the variable 2x  as the dummy variable and its response function is as 

follows. 

110)( xyE ββ +=           if 02 =x  

1110 )( xβββ ++=        if 12 =x  
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3.1.3. Standardization of variable 

 

In  case of MRSDV as well as multiple regression, we have to standardize the 

observation because they may have different bases. As a result of this, in general, the 

normalized variable has variance 1 [1, 2]. 

Assume, for example, multiple regression with two independent variables which have 

different bases as follows; 

 

εβββ +++= 22110 xxy  

 

where  y: sales amount (value) 

           1x : advertise amount (value) 

           2x : store size (square feet) 

 

Here we have to standardize  21 ,, xxy  respectively such that; 

 

2
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where   s: standard deviation of y 

             y : mean of y 

            1s : standard deviation of 1x  

            1x : mean of 1x  
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            2s : standard deviation of 2x  

            2x  : mean of 2x  

 

Then, new regression model can be derived as follows, with standardization with same 

base. 

**
2

*
2

*
1

*
1

*
0

* εβββ +++= xxy  

 

This is the MRSDV model in two variables. 

 

3.1.4. Risk management in MRSDV model 

 

The objective of ad hoc risk management is to predict an outcome that is significantly 

different from the observations in a data space. To predict the situations in  advance, not 

only historical data but also the knowledge and intelligence of experts in that field are 

prerequisite. Now, we introduce a technique to insert these information to MRSDV 

model. 

 

3.1.5. SWOT analysis of qualitative variables 

 

Making a decisive prediction is always difficult because there is a significant gap 

between yes and no. Here we propose a simple tool to make the prediction easier in 

complicated circumstances, which is referred to as SWOT (Strength, Weakness, 

Opportunity and Threat) analysis [8]. An adjusted SWOT analysis is used in the 
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proposed MRSDV model as shown in Figure 3.1 switching the terminology 

‘Opportunity’ to ‘no threat’. Figure 3.1 shows the implementation of the proposed 

adjusted SWOT and explain it by using the SWOT map. 

 

        strong 
 
                  100 alert area 
 c = 90 
 
 watch area 
 
 
               x  c = 50 
 
 
                                                                                                                    normal 
 
 
                       0 

           weak           100                       
x
σ

                             0 

                            no threat                                               threat 
 

                             Figure 3.1:  Adjusted SWOT Map 

 

In figure 3.1, assume that x  is the k-point scale value of view on possibility of terror 

or some sensitive event observed by experts in the field. x is the mean and 
x
σ  is the 

coefficient of variation of x’s. Note that the c value is the parameter which is the 

boundary point of each area and should be estimated from the past data including the 

real event occurred. Then, we can render the black area of the adjusted SWOT map in 

Figure 3.1 as the alert state and the grey area as the watch state for a risky event. 

 

 

                            
                            
                            
                            
                            
                            
                            
                            
                            
                           



 20

3.1.6. Procedure of MRSDV model 

 

If the adjusted SWOT map reveals the alert state, and the correlation between ix1  and 

ix2 , shows a value higher than 90%, we can render it is a terror state. At that point, 

MRSDV model must show a steep increase, because the slope of variable ix1  is 

changed from iα  to iiγα  as follows. 

 

iiiiii xxxxy εγβαα ++++= 21121110           ( ) iii xy εβγαα ++++= 11110   

 

And, the organization of observed data for MRSDV model is shown in Table 3.1. 

 

Table 3.1: Organization of observed data for MRSDV model. 
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This procedure for MRSDV model is shown in Figure 3.2 below. 

 
 
 
 
 
 
 
             Dummy variable 
 

 
 
   

 
 
 
 
 
 
 

 

Figure 3.2:  Procedure of MRSDV Model 

 

The MRSDV Model depends on the correlation between ix1  and ix2  such as 

 

i) If 121 ),( cxxcorr < , then 02 =x   110 xy αα +=  

ii) If 121 ),( cxxcorr ≥  and ∑ =
>

n

j j cx
1 02 , then 12 =x  

 11110 )()( xy γαβα +++=  

 

0c  and 1c  are threshold values determined based on the information from experts 

and control the effect of qualitative variable ( 2x ), such that, when 02 =x , the 

qualitative variable becomes ineffective; and, when 12 =x , it becomes effective 

revealing a spike. 

Historical data Qualitative data

Variable selection 
(select highly correlated 
variable of concern) 

Adjusted SWOP map 
(identify alert, watch 
or normal state) 

     MRSDV model 
(finally decide yes or no 
for terror or something) 

Standardize the observation
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3.2  MRDDV model 

 

As described previously, an ad hoc risk management system (ARMS) is a frame work 

composed of statistical model and surveyed field data for forecasting. The primary 

concern in ARMS is dynamically forecasting or predicting a risky state. MRSDV 

model is insufficient in estimating parameters and lacks fitness test of model and 

criterion of risk and non-risk states, even though it grasps the spike pattern from 

actual data. Therefore, we proposed a dependent dummy variable technique, Ordinary 

Least Square (OLS) method, and fitness test scheme for the proposed model. We also 

propose a new ’risk plane’ for practical use, which is used as threshold criterion of 

risk.  

One of the most important issues in the ARMS is the timing when to watch and warn 

against risk. The MRSDV model runs between the quantitative independent variable 

and scaled qualitative independent variable by using dummy variable technique, in 

which the qualitative variable is surveyed by using k-point scaling method [1, 8, 9]. 

The proposed MRDDV (Multiple Regression with Dependent Dummy Variable) 

model, basically,  applies the multiple regression method which runs between the 

quantitative independent variable and the qualitative independent but not dummy 

variable (it is different from the MRSDV model). It also uses dependent dummy 

variable technique to set the criterion of risk state and the concept of Ordinary Least  

Square (OLS) to estimate its parameter [5, 7].  
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3.2.1. Dependent dummy variable 

 

In this section, we review the concept of dummy variables. There are two methods in 

dummy variable theory: one is setting independent variable as a dummy variable and 

another is setting dependent variable as a dummy variable, which gets the value 0 or 1 

[2]. In MRDDV model, dependent variable is set as a dummy variable. Assume, for 

example, simple linear regression model with dependent dummy variable as follows; 

 

iii xy εββ ++= 110  

 

where x  stands for personal income (value), and y  stands for insurance contract. The 

value of y is either 0 (for no insurance) or 1 (for insurance). 

 

The expected response is such that; 

 

iii pxyE =+= 10)( ββ  

 

where ip  is the probability for iy = 1. 

 

As shown above, the expected response with respect to dependent dummy variable, 

represents the probability of occurrence. That means, in this example, that the 

probability of insurance/ no insurance is changing according to the increase/ decrease 
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of personal income. The importance of dummy variable is that we can get the 

outcome such as 0 or 1 and success or failure etc. 

 

3.2.2. Stepwise selection of quantitative variable 

 

To build MRDDV model, firstly, we have to select the variable to fit the 

response adequately. Hence, we have to find out the variable highly correlated 

with the response by using stepwise selection technique [5]. For example, the 

expense-amount of terror group, the number of their phone calls or reservation 

of air or ground transportation have to be found out as an independent 

variable highly correlated with the terror occurrence. The reasonable solution 

for this may be intuitive selection of variables according to experience, or by 

using variables from similar research already conducted. In statistics theory, 

there are three kinds of variable selection such as forward selection, backward 

deletion and stepwise selection. For MRDDV model, this stepwise selection 

will be adopted to find out the variable that has a high correlation with the 

outcome of risky event.  

 

3.2.3. Standardization of variable 

 

In case of MRDDV, standardization of all variables is essential because they 

may have different numerical bases or weights if they are some observed 

qualities. 
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Assume, for example, two independent variables that have different bases, in 

multiple regression, are as follows: 

 

iiii xxy εβββ +++= 22110  

 

where y is sales amount (value), 1x  is advertised amount (value) and 2x is 

store size (square feet) 

 

Applying standardization technique to 21 ,, xxy  respectively, we can get the 

results such as; 
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where ys : standard deviation of y , y : mean of y , 1s : standard deviation of 1x ,  

1x : mean of 1x , 2s : standard deviation of 2x , 2x : mean of 2x  

 

Then, the new regression model can be derived with standardized bases as 

follows: 
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3.2.4 Analytic modelling of MRDDV 

 

The theoretical foundation for MRDDV model with two independent variables will be 

introduced in this section. 

Let’s assume the dependent variable as a dummy variable in multiple regression. 

Then, it becomes the MRDDV Model, and represented as follows; 

 

                             iiii exxy +++= 22110 βββ ,  1,0=iy                                          (3.2)                      

 

where, 

      

 i  : number of data points and 2≥i    

iy  : response function represented by dummy variable          

ix1 : quantitative independent (ith observation in historical data category)   

ix2 : qualitative independent variable (ith mean of experts group) 

iβ : parameter to be estimated 

ie : error term 

 

Note that the criterion function for generating iy  in MRDDV, is given as follows. 
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In MRDDV Model, the dependent variable y  can take the value 1 with a 

probability of success p , or the value 0 with probability of failure pq −= 1 , 

where 10 << p . This type of variable is called a Bernoulli variable as follows: 

                                            ( )
⎪
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⎪
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⎧

=

=−
=

1

01

yforp

yforp
yP                                            (3.3) 

Therefore probability density function can be written 

( ) yy ppyf −−= 11)(  

And the corresponding distribution function is 
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Expected Value of y, i.e., pxxyPyPyE =++==×+=×= 22110)1(1)0(0)( βββ , is 

obtained from Formula in Table 3.1 and this formula implies that the expected 

response of y  is the probability that y becomes 1, i.e., 1=y . However, estimator 

( ) 22110
ˆˆ xbxbbyEy ++==  is not proper to an estimated value p̂  of p  in some 

cases, because it violate the definition of probability 1)(0 ≤=≤ pyE . To overcome 

this violation, Logit Transformation is introduced in section 3.4. 
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3.2.5. Response function 

 

By setting 0)( =ieE , the formula (3.2) is represented as follows; 

 

                                          iii xxyE 22110)( βββ ++=                                             (3.4) 

       

As variable iy  takes only 0 or 1 for its value, the variable iy  is a Bernoulli random 

variable such as in Table 3.1.  

 

Table 3.2: Probability Distribution of Bernoulli 

----------------------------------------------------------- 

  iy                        probability 

----------------------------------------------------------- 

           0              iii qpyP =−== 1)0(  

1                ii pyP == )1(  

----------------------------------------------------------- 

iiii pyPyPyE ==×+=×= )1(1)0(0)(  

----------------------------------------------------------- 

 

iiii pxxyE =++= 22110)( βββ  is obtained from Table1 and this formula implies that, 

as independent variables ix1  and ix1  are varying in their domain, the expected 

response of iy  means the probability that 1=iy . 
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3.2.6. Parameter estimation of MRDDV model 

 

In MRDDV model, OLS (Ordinary Least Square) estimator for β is unbiased and, 

furthermore, if the number of observations is large enough, then this model has 

asymptotically Normal distribution. Parameter estimation for this proposed MRDDV 

model based on OLS (Theorem A.1 in the Appendix) is as follows; 

 

                                                   yXXXb ′′= −1)(                                                  (3.5) 

 

where     b : vector of estimated values of β  

             X : matrix of observations of independent variable 

       X ′ : transpose of matrix X  

        1)( −′XX  : inverse matrix of )( XX ′  

  y : matrix of observation on dependent variable  

  

                 1  11x   21x                  0              0b  

     X =     1  12x   22x        y =    0      b =   1b  

                 :     :      :                   :               2b  

                 1  nx1   nx2                 1  

note: y  is a vector of 0s and 1s. 
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3.2.7. Coefficient of determination on MRDDV model 

There are several methods to check the precision of fitness such as MSE (Mean 

Square Error), F-test and 2R  (Coefficient of determination). In MRDDV model, 2R  is 

the major criterion to check the goodness of fit of the estimator or predictor where 
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3.3 MRADV Model 

 

MRADV can provide a method to resolve the first two issues with the MRDDV 

Model, i.e., unavailability of efficient method to achieve i) a better model goodness-

of-fit and ii) probabilistic approach to represent the dependent variable. 

Firstly, in order to improve the model goodness-of-fit of MRDDV Model, an 

adjustment made by switching the dependent variable (i.e., iy ), which is represented 

by a dummy value (e.g., 0 or 1) in MRDDV Model, to the absolute value of the 

difference between the adjacent current and previous data values, i.e., difference 

between the ith  and thi )1( −  data points, that is, the criterion function in MRADV as 

follows. 

                                                     )1(11 −−= iii xxy                                                

 

Thus, the criterion function in MRADV that is the absolute value of the forward 

difference is not only a representation of a scalar quantity of the fluctuation, but it 
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also reduces the coefficient of determination value ( )
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Note: the term ( )xxbyy −=− 1ˆ  above is proved in Theorem A.3 in the Appendix. 

 

This result is namely the definition of coefficient of correlation ( )xyρ . And, it is 

obvious that the degree of coefficient of correlation of MRADV is higher than that of 

MRDDV, because the criterion function of MRADV, )1(11 −−= iii xxy , is generated 

from ix  whereas that in MRDDV is given as 10 oryi = . 
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After the parameter estimation, the regression estimator iŷ  of iy  can be obtained as 

follows. 

 

                                                                                                                             (3.7)                          

     

where, 

i) iŷ : regression estimator of iy  

ii) ib : estimated parameter for iβ ’s, respectively. 

 

 Next, in order to address and resolve the other issue of the MRDDV Model, i.e., an 

inefficient way of establishing a criterion for risky and non-risky events, MRADV 

model employ, the concept of probability, for an event of interest to occur with 

respect to a criterion. Note that the manipulation of the criterion establishment in the 

proposed method is as adaptive and manageable as the user needs it to be. The 

novelty of the proposed method is that it provides an efficient way to facilitate the 

process to evaluate a probabilistic characteristic based on statistical regression-based 

estimation of the data, which ultimately will enable the users to make a probabilistic 

prediction based on the estimated historical trend of the data. Therefore, it will be 

possible to seamlessly bridge the gap between the data-driven statistical analysis of 

the data and its probabilistic projection of the trend of the data without making a 

major assumption, e.g., probability density function, which is a known-major cost in 

traditional straightforward-probabilistic approaches. 

iii xbxbby 22110ˆ ++=
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The proposed Probabilistic MRADV is developed in two different approaches, i.e., 

Observation ( iŷ ) -Driven Method (ODM) and Input ( 1x  and 2x ) -Driven Method 

(IDM). The ODM computes probability of the event of interest based on observation 

data, i.e., iŷ , with respect to a threshold value chosen from the range of the estimated 

iŷ , which serves as the solid criterion value queried from the user within the range of 

iŷ .  Likewise, the IDM computes probability based on the input variables, i.e., 1x  and 

2x  with respect to the corresponding criterion values that can be computed based on 

the functional relationship between 1x , 2x  and iŷ , i.e., mapping of the criterion 

threshold value on the range of iŷ  onto the corresponding values on the range of 1x  

and 2x , respectively. Thus, the probabilities measured independently by ODM and 

IDM against the same set of data are supposed to be in full agreement and this fact 

will be used for a verification purpose of the correctness of the computation for the 

probability of the events of interest in this study. 

 

3.3.1 ODM Approach to MRADVP  

 

In order to demonstrate how to derive the probability of an event of interest based on 

the dependent variable for observation (i.e., ODM) with the proposed adjustment, 

assume the observation ( iŷ ) represented by a dependent variable follows the normal 

distribution with mean of 
n

yn

i i
y
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yn
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without loss of generality ( )2
ˆˆ ,~ˆ yyNy σμ . Then, the ODM Model for MRADVP can be 

represented as follows. 

 

                                                                                                                             (3.8) 
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The constant c is a threshold value to be determined by the user in order for MRADVP to 

manipulate the computation for the probability with respect to the criterion value 

within the range of iŷ . Figure 3.3 shows a graph of an ODM of MRADVP with respect 

to iŷ  against a data set, where the x axis represents the range of iŷ  versus the 

probability density on the y axis. 
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Figure 3.3: ODM of MRADVP with respect to iŷ  as highlighted by the shaded area. 

 

3.3.2 IDM Approach to MRADVP  

 

In the previous section 3.3.1, ODM was proposed to demonstrate how to compute the 

probability of an event of interest to occur with respect to a threshold value as given 

by a constant, i.e., c, based on the values and the range of a dependent variable for the 

observation; and in this section it will be shown how to derive the probability based 

on the values of the independent variables, i.e., 1x  (quantitative independent variable) 

and 2x  (qualitative independent variable), which is supposed to be in full agreement 

with the probability derived from iŷ  with respect to the threshold value. It is a 

reverse-transformation process from the threshold value in the range of iŷ  back on to 

1x  and 2x  to find the corresponding values in their range, respectively since iŷ  
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and 1x , 2x  have been through a common multiple regression and estimated in the 

same context. 

IDM can be distinguished from ODM such that ODM enables the users to compute 

the probability post to estimation on the multiple regression; while IDM can provide a 

way to compute the probability prior to estimation on the multiple regression, but in 

order to share the equivalent criterion obtained from the threshold value, c which is 

supposed to be based on a value in the range of iŷ  and transformed on to the range of 

1x , 2x , hence IDM also needs the criterion values to be passed on to it from the 

estimated dependent variable iŷ . 

The equivalence between the probability values obtained through ODM and IDM will 

be used as a tool to validate the computational correctness by showing they are in full 

agreement mathematically and statistically. 

As ODM-based probability can be expressed by )ˆ( 22110 cxbxbbyP ≤++=                   

under the assumption of normal distribution on ŷ , the IDM can be expressed by 

assuming the bivariate normal form of 1x  and 2x , and using the transformation of 

22110ˆ xbxbby ++=  as follows. 

 

 

                                                                                                                         (3.9) 
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where, 

 

 

 

 

Note that the threshold value c is taken into account in the range of 2x  with respect to 

1x  such that 
2

110
2 b

xbbc
x

−−
= , and vice versa in order to compute MRADVP . 

The IDM-based MRADVP can also be expressed by assuming the univariate normal form 

of 1x  and 2x , and using the fact that 22110 xbxbb ++  is the linear combination of 1x  

and 2x . The following property can be obtained from the Theorem A.2 in the 

Appendix. 
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where  

            i)  

           ii)  

           iii)  c is a threshold value 

 

The bivariate normal form in copula based method [16] and the univariate normal 

form in ODM-based method are equivalent in terms of their probabilities by the 

probabilistic property )( 22110 cxbxbbP ≤++ . The bivariate normal form in formula 

(3.8), provides an efficient way to visually plot the graph of joint probability of 1x  

and 2x .  

 

3.3.3 Equivalence between ODM and IDM 

 

From Equations (3.9) and (3.10), it is shown that ODM and IDM approaches compute 

equivalent results for MRADVP . 

From Equation (3.9), the following was obtained  

 

 

 

and from Equation (3.10), an equivalent was obtained as follows. 
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Notice that both ŷ  in equation (3.9) and u  in equation (3.10) represent 

22110 xbxbb ++  as was shown in the previous sections. 

In general, there is no known effective way to compute an integral in the form of 

 

 

 

that is needed to compute MRADVP  , because the anti-derivative of 

 

 

 

can not be readily computed by employing any standard algebraic method. Hence, in 

this study, the table of the approximate values of this integral for various values are 

used as given in Table A.1 in the Appendix, and if needed more precise values can be 

approximated by using the method of interpolation [5]. 

 

3.3.4 Relation with Copula 

 

In order to compute joint probability of 1x  and 2x , we employ Copulas. 

A copula is a function [ ] [ ]1,01,0: 2 →C  which satisfies the following conditions [10]: 
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Based on the Sklar’s Theorem [10], the copula model of interest can be derived as 

follows. 

Let X and Y be random variables with joint distribution function H and marginal 

distribution function F and G , respectively. Then, there exists a copula C  such that 

 

                                            ( ) ( ) ( )( )yGxFCyxH ,, = , for all yx,  in ℜ                       (3.11) 

     

Conversely, given a copula C and distributions F and G, the function H defined by 

equation (3.11) is a bivariate distribution with margins F and G. 

In particular, if X and Y are extended real valued random variables, defined 

on a common probability space, with individual distribution XF  and YF  and 

joint distribution YXF , , then there is a  copula YXC ,  such that 

( ))(),(),( ,, vFuFCvuF YXYXYX = . If  XF  and YF are continuous, YXC ,  is unique. It is 

referred to YXC ,  as a copula of X and Y. The copula of two random variables 

thus reveals their dependence structure.  

In addition, Gaussian Copula is defined as the following copula: 

 

( ) ( )( )ρ|,),( 11 vuGvuC −− ΦΦ=  
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where 
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The MRADVP  model in consideration to compare with  Gaussian Copula is as follows. 
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Note that in the above MRADVP , N(c) can be calculated by using Table A.1 in the 

Appendices, which is the calculation of standard normal distribution. 

In order to make the copula be comparable with MRADVP  in the context of IDM-based 

method which is equivalent to ODM-based, the threshold value c is transformed into 

the context of copula such that the variables u and v in the copula are transformed as 

follows. 
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3.4 Logit Transformation-based MRDDV Model 

 

In this section, firstly, MRDDV Model is reviewed and Logit Transformation is 

introduced. Next, original MRDDV Model is transformed in Logit form, namely 

Logit Transformation-based MRDDV Model, and compared with original MRDDV 

Model in term of risk probability. 

Let’s assume the dependent variable as a dummy variable in multiple regression. 

Then, it becomes the MRDDV Model in equation ( 3.2 ). 

 

Estimator ( ) 22110
ˆˆ xbxbbyEy ++==  is not proper to an estimated value p̂  of 

p  in some cases, because it violate the definition of probability 1)(0 ≤=≤ pyE . To 

overcome this violation, Logit Transformation is introduced in next section. 

 

3.4.1 Logit Transformation 

 

To overcome the violation of probability definition to estimate ( ) ( )1== yPyE  in 

original MRDDV Model, we employed Logit Transformation defined as follows:  

 

Definition: Logit Transformation 

 

                                 Logit (p) = 

⎪
⎪
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⎪⎪
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otherwiseundefined

pif
p

p

,

10,
1

log
                     (3.13) 
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Applying this transformation to original MRDDV Model, we specify a variable p 

above, as a probability of dependant dummy variable ( iy ) takes 1 in original 

MRDDV Model. 

 

3.4.2 Logit Transformation-based MRDDV Model 

 

Original MRDDV Model can be expressed in terms of Logit as follows:         
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And, it can be arranged in terms of ii pyP == )1(  as follows: 
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Then, it becomes the Logit Transformation-based MRDDV Model as follows: 
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where, 

i  : number of data points and 2≥i    

iy  : response function represented by dummy variable i.e. 0 or 1          

ix1 : quantitative independent (ith observation in historical data category)   

ix2 : qualitative independent variable (ith mean of experts group) 

iβ : parameter to be estimated 

 ie : residuals 

 

3.4.3 Parameter Estimation 

 

In Logit Transformation-based MRDDV Model, the parameter is estimated by MLE 

(Maximum Likelihood Estimation) as follows: 
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Then, we can get the estimator sbi '  by solving the equations by equating the partial 

differentials to zero: 
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sbi '  can be computed using by SAS (Statistical Analysis System) package [32], we 

employ those results from SAS in this study. 

After parameter estimation in Logit Transformation-based MRDDV Model, the 

estimator ( ) ( )1ˆˆ == ii yPyE  is provided as follows: 
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where, 

i) ( )iyÊ  is a regression estimator of ( )iyE  

ii) ib ’s are the results of parameter estimation for iβ ’s, respectively 

Formula (3.15) in previous section, is a risk probability of Logit Transformation-

based MRDDV Model, ( ) ( )
( ) i

ii

ii
i p

xbxbb
xbxbb

yE ˆ
exp1

expˆ
22110

22110 =
+++

++
= , and it runs between 0 

and 1.  
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CHAPTER IV 

 

SIMULATIONS 

 

4.1 Evaluation of MRSDV Model 

 

The theoretical model presented in the previous sections provides a basic 

understanding of the performance impact of ad hoc risk management system. 

However, the model uses somewhat unidentified c value and observation with outlier. 

In this section, we use an artificial data set to evaluate MRSDV model. 

We simulate the MRSDV model with the simplest form; 

 

exxxxy ++++= 21121110 γβαα , 

 

where 1x  is quantitative variable and 2x  is qualitative variable 

 

For our simulation, let us assume that ‘E’ be a critical event to be predicted using the 

above model. Let us further assume that qualitative variable represents a property f(t) 

and the qualitative variable represent the property g(t). Then f(t) is an activity 
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associated to the event E and g(t) is qualitative knowledge associated to the event E. 

We also assume the data shown in Tables 4.1 and 4.2 for our analysis. 

 Firstly, let’s think about the data shown in Table 4.1 which are randomly generated 

and assume 1x  = f(t) shown in Table 4.1 and which represent the stable state till time 

7, but in time 8, it increases 3 times versus previous time.  

 

Table 4.1: Sample Data Set of Quantitative Variable 

 

 

 

 

The fitted equation is represented such as; 

 

 14155 xy +=  ,               before standardization  

     1230.003.1 x+−= ,     after standardization                                                       (4.1) 

 

Next, let’s also think about the data shown in Table 4.2 and assume 2x  be the 

knowledge represented by means of k-point scaling method with k=100 (that is 

equivalent with percentage) from 10 experts. 

 

 

 

 

time 1 2 3 4 5 6 7 8 9 10 

f(t) 156 207 200 176 111 193 190 666 250 184 
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Table 4.2: Sample Data Set of Qualitative Variable 

 

 

This data set in Table 4.2 plots on the adjusted SWOT map, is shown in Figure 4.1. In 

this SWOT map, we can see 1 to 7 is in stable state but time 8 is in alert state. It is 

a symptom of the occurrence of event “E”. 

 
           100                           alert area  
            
   
                                                                                          watch area  
 
 
              x  
 
                                                                                           normal 
 
 
             0  
              

              100                 
x
sx                     0          

 

Figure 4.1  Interpretation of SWOT Map 

 

time 1 2 3 4 5 6 7 8 9 10 

mean of k-point 

scaling ( x ) 

6.9 3.0 7.4 6.4 5.4 4.4 6.6 90.6 10.3 5.7 

variance of k-

point scaling ( xs ) 

8.05 2.38 9.68 6.88 3.36 5.16 8.30 3.23 10.21 6.43 

 
 
 
 
 
 
 
                                   ... 
                 1 ~ 7        . . . . 

              8   .
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Now, we standardize the observation of quantitative variable and calculate the 

correlation between two variables to apply qualitative variable as a dummy 

form. The result of this calculation is shown below; 

 

 11110 230.0794.0)( xxy +=++= αβα ,      if corr ( 1x , 2x ) < 0.9                     (4.2) 

    111110 728.0794.0)()( xx +=+++= γαβα ,        if corr ( 1x , 2x ) ≥  0.9         (4.3) 

 

Finally, the comparison of equations (4.1), (4.2) and (4.3) is shown in Figure 

4.2. 

 

Figure 4.2: Comparison of Multi-Linear Model and MRSDV Model           

 

(2): REGRESSION with historical data and dummy data lowly correlated 

(1): REGRESSION with historical data only                                                                          

(3): MRSDV model with historical data and dummy data highly correlated            

      

(1) 

(2) 

(3) 
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As seen in Figure 4.2 multiple regression (2) is not capable of predicting the 

critical point t = 8, where as when the qualitative term is introduced, the jump 

at t = 8 becomes obvious. The MRSDV model is very sensitive because the 

knowledge which is represented as a qualitative variable surveyed by means 

of k-point scaling method, is reflected as a dummy variable to MRSDV. 

The MRSDV Model depends on the correlation between ix1  and ix2  such as 

 

i) If 121 ),( cxxcorr < , then 02 =x   exy ++= 110 αα  

ii) If 121 ),( cxxcorr ≥  and ∑ =
>

n

j j cx
1 02 , then 12 =x  

                                                      exy ++++= 11110 )()( γαβα  

 

0c  and 1c  are threshold values determined based on the information from experts 

and control the effect of qualitative variable ( 2x ), such that, when 02 =x , the 

qualitative variable becomes ineffective; and, when 12 =x , it becomes effective 

revealing a spike. 
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Figure 4.3: Example plotting of results; MRSDV: blue line, SR: red line  

 

The key advantage of MRSDV model is practical to estimate and/ or predict against 

the risk using  not only historical data but also the knowledge and intelligence of 

experts in field. We also provide the theoretical model to merge these knowledge and 

intelligence with historical data by means of dummy variable. The modelling effort 

also shows, if we accumulate the related data, the parameter of MRSDV model can 

become stable. This indicates the proposed MRSDV model is a powerful tool to 

predict unforeseen events. The simulation study also shows the superiority of 

MRSDV model than traditional multiple regression only with historical data. The 

drawbacks of MRSDV model are: 

 

i) MRSDV Model lacks criterion of risk/ non-risk: MRSDV Model can catch the 

spike pattern under the control of qualitative variable without any definite risk 

criterion. 

121 ),( cxxcorr ≥

01 2 cxn

j j >∑ =
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ii) MRSDV Model has no available dependent variable ( iy ) to use in its  model: 

actually, in risky event or severe disaster, there is no actual data  available as a 

response. 

iii) MRSDV Model is inefficient in its parameter estimation: as shown in  MRSDV 

Model, parameters are mutilated from the original after estimation such as from 1α  

to 11γα , which may cause a deviation of the estimator from the true result. This 

may eventually result in an error on estimator of response function ( iŷ ), and 

further result in an inaccurate model fitness. 

 

4.2. Evaluation of MRDDV Model  

 

The theoretical model presented in Chapter III provides a basic understanding 

of the performance impact of ad-hoc risk management system by using 

MRDDV model. In this section, a simple form of MRDDV model is used to 

evaluate it by simulation. The following model is used: 

 

                                      iiii exxy +++= 22110 βββ ,    1,0=iy                               (4.4) 

 

where      i : number of observations 

              iy : risk function with response 0 or 1 

             ix1 : quantitative variable 

             ix2 : qualitative variable 
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             iβ : coefficient of each variable 

              ie : error 

 

There are two kinds of simulation such as i) conceptual approach between response 

function between independent variables, and ii) practical approach with actual 

industry data with respect to response function.  

Firstly, we have two assumptions for conceptual approach such as: 1) ix1  is the 

independent quantitative variable selected through the stepwise procedure. 2) 100 is 

selected for k value of k-scaling in independent qualitative variable. There are two 

distinct cases that occur namely “hit case” and “no hit case”. In the first case, the 

regression line meets the risk plane and in the second case, it does not. The data set 

shown in Table 4.3 and Table 4.4 are randomly generated for this simulation. We also 

discuss how the results can be used for prediction. 

 

4.2.1. Conceptual Approach 

 

4.2.1.1 Hit case 

 

A. General estimation of hit case 

 

In Table 4.3, we represent the observation for response function ( iy , dependent 

dummy variable) , running expenses ( ix1 , independent quantitative variable), field 
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data ( ix2 , independent qualitative variable) and the standardization results ( *
1ix , *

2ix ) 

of two independent variables, respectively. 

  

Table 4.3: Sample Data Set for Hit Case  

 

 

i 

 

 

Running 

Expenses  

( ix1 ) 

Stand- 

ardized 

( *
1ix ) 

Field  

Data  

( ix2 ) 

Stand- 

ardized 

( *
2ix ) 

Response 

Function 

( iy ) 

Probability

 

( ip̂ ) 

1 156 -.52 11.4 -.65 0 .28 

2 207 -.14 30.2 -.16 0 .38 

3 200 -.19 22.2 -.18 0 .37 

4 176 -.37 18.4 -.35 0 .33 

5 111 -.86  8.0 -.79 0 .22 

6 193 -.24 19.0 -.32 0 .35 

7 190 -.27 16.4 -.43 0 .33 

8 567 2.59 85.6 2.55 1 1.00 

 

The estimation for iβ  by the method of OLS (Ordinary Least Square) and 2R  

(coefficient of determination) are 
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The coefficient of determination 2R ranges from 0 to 1.  12 =R  means the model is a 

perfect fit. In this simulation, MRDDV model fits data (historical and field data) at 

the level 67% since 67.2 =R . Also, the estimated response function is  

  

                                                 *
2

*
1 11.12.41.)( xxyE ++=                                      (4.5) 

 

The result is shown in Figure 4.4. In this case, the expected response hits the 

risk plane.    

 

                              Figure 4.4: Hit Case on MRDDV Model 
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B.   Prediction based on hit case 

 

To use, the model for prediction, we need conditions that can be used to 

predict anticipated risk. The condition that we propose is “the response 

function crossing the risk plane”. Therefore, the pair ( ix1 , ix2 ) for which the 

response function is greater than or equal to 1, indicates a risky event. For example, if 

the input for Formula (4.5) is 2.84 for *
1x  and 2.74 for *

2x  which is the value after 

standardization of 600 for ix1  and 90 for ix2 , respectively, then the response is 1.05 

and exceeds 1. The result is shown in Figure 4.5. This case can be predicted as a risky 

event.  

 
 

Figure 4.5: Prediction based on Hit Case 

 

4.2.1.2 No hit case 

 

A. General estimation of no hit case 
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In Table 4.4, we represent the observations of a “no hit” case. It would be a 

special case of hit case with the same data from time1 to time7 of hit case. In 

this case, y  is 0 vector, b  by the method of OLS (Ordinary Least Square) should be 

0 vector. So, the response function is  

 

                                                  0)( =yE                                                              (4.6) 

 

Table 4.4: Sample Data Set for No Hit Case 

 

 

i 

 

Running 

Expenses ( ix1 )

Field  

Data ( ix2 )

Response 

Function ( iy ) 

1 156 11.4 0 

2 207 30.2 0 

3 200 22.2 0 

4 176 18.4 0 

5 111   8.0 0 

6 193 19.0 0 

7 190 16.4 0 

 

This result is shown in Figure 4.6. The response function in this case cannot meet the 

risk plane. 
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Figure 4.6: No Hit Case on MRDDV Model 

 

B. Seeding for no hit case 

 

In the “no hit case”, the conditions of risk cannot be applied as we described 

earlier because that case requires one observation with 1=iy . To overcome this 

problem, we can inject the artificial data set including the value 1 for response 

function ( iy ) as a seed to activate the model. For example, if we inject the data set of 

time 8 of hit case as the 8th data set of no hit case, then we have exactly same 

simulation result with the hit case. Furthermore, this technique enables the user to 

define the risky event injecting both independent variables (historical data and field 

data) artificially if there is no actual risky event data. 

 

4.2.2 Practical Approach 

 

In this section, MRDDV Model is evaluated via simulation with actual industry data 

on the term of estimated response function ( ŷ ).  
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The data sets are from the financial sector as Dow Jones Industrial Average as 

quantitative variable ( 1x ) and Dow Jones-AIG Commodity Index as a qualitative 

independent variable ( 2x ). The data sets are based on the daily closing price, and they 

are over the time period from Feb. 1, 2007 to Apr. 30, 2007.  

 

 

Figure 4.7: Comparison between historical data (Dow Jones) with risk in MRDDV 

 

Figure 4.7 shows the comparison between historical data in the top figure and the 

estimated response of MRDDV model in the bottom figure. The estimated response ( hy ) 

represents the risks by tracing effectively the historical data in reverse way as shown in 

the highlighted by oval. But it lacks of probabilistic measure because it shows negative 

value in some intervals. 
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4.3 Experimental Study on MRADV Model 

 

In this section, the efficiency and effectiveness of the proposed ODM and IDM-based 

MRADVP  computations will be demonstrated against an extensive set of data in the 

financial sector through extensive experimental simulations. Note that since ODM 

and IDM-based approaches are equivalent, ODM-based is chosen for the comparison 

for more efficient computation purpose. The primary purpose of using the data from 

the financial sector is that the trend of the data in the field is known to be one of the 

data sets that has historically exercised good examples of the turbulent market, which 

is the kind of risky events of interest in this study. 

MRADVP  is evaluated with respect to various threshold values in its full possible given 

range under the assumption of Gaussian Distribution. The primary simulation tool to 

be used is Matlab. For the ODM-based case as shown in Figure (3.3), MRADVP  is 

plotted versus the estimated observation ( ŷ ) values; and for the IDM-based case, 

MRADVP  is plotted versus the inputs 1x  and 2x  values as shown in Figure (4.8). 

The data sets from the financial sector to be used for the extensive experimental 

simulations are collected from [29, 30, 31] as follows: 

 

• Dow Jones Industrial Average as quantitative independent variable ( 1x ) 

• Dow Jones-AIG Commodity Index as a qualitative independent variable ( 2x )  
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Figure 4.8: A Joint Density of 1x (DJI) and 2x (DJC) by Bivariate Normal Distribution 

 

 

Figure 4.9: Contour Diagram of 1x  and 2x . 

 

Figure 4.8 shows a joint density of 1x  and 2x  depicted in probabilistic way by IDM-

based MRADVP  model that is given below:  
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In Figure 4.9, the contour diagram of Figure 4.8 is shown and the highlighted straight 

line represented by 
2

110
2 b

xbbc
x

−−
=  is an user’s input by deciding the level of 

threshold value c to determine the range for 2x ; and the area highlighted by the oval 

is a spatial representation of MRADVP  with respect to 2x . Once threshold value c is 

decided, the risk probability can be computed efficiently by ODM-based MRADVP  as 

follows: 

 

 

 

Due to the fact both IDM and ODM-based methods reach equivalent probabilistic 

values. The probability can be simply provided by using threshold value c as an input 

constant in the Table A.1 in the Appendix. To compute joint probability of 1x  and 2x , 

we either employ conventional Copula method or other joint probability 

approaches. 

 

4.4 Simulation with Logit Transformation-based MRDDV Model 

 

In this section, comparative study between original MRDDV Model and Logit 

Transformation-based MRDDV Model is conducted on the term of risk probability. 

The probabilistic model presented in the previous section, provide a basic 
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understanding of the risk probability and the models investigated in this study are 

listed as follows: 

Logit Transformation-based MRDDV Model 

 

                                     ( ) ( )
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ii
i xbxbb

xbxbb
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22110
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=                                        (4.9) 

where  

)1()( == ypyE   where 
⎪⎩

⎪
⎨
⎧

<−

≥−
=

−

−

3000

3001

)1(11

)1(11

ii

ii

xxif

xxif
y  

 

The data sets from the financial sector in Table A.2, Appendix are collected from [13] 

with the properties as follows: 

 

• Dow Jones Industrial Average as quantitative independent variable ( 1x ) 

• Dow Jones-AIG Commodity Index and 10-years Treasury Note as a qualitative 

independent variable ( 2x ), for two different cases, respectively. 

 

                         Table 4.5 Summary of Financial Data Set 

Index \  Statistics Mean Variance 

Dow Jones Industrial Average 4.2723e+003 1.2008e+004 

Dow Jones-AIG Commodity Index 167.2807 25.4332 

10-years Treasury Note 4.6784 0.0106 
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The data sets are based on the daily closing price, respectively, and they are over the 

time period from Jan. 1, 2007 to Dec. 31, 2007. The main statistics of those data sets 

are summarized in Table 4.5. In this simulation, Matlab is used as a major tool to 

evaluate Logit Transformation-based MRDDV Model and SAS statistical package is 

either used to estimate the parameter and results is shown in Table 4.6. 

 

                                Table 4.6: Financial Parameter Estimation 

 

 

 

 

 

Figure 4.10: Historical data of Dow Jones Industrial Index (DJI) 
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Figure 4.11: Estimated response of Logit Transformation-based MRDDV – DJI*DJC 

 

 

Figure 4.12: Comparison between history of DJI (top) and Logit MRDDV – DJI*DJC 

 

    

Figure 4.13: Density of Logit Transformation based MRDDV  – DJI*DJC                               
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Figure 4.14: Estimated response of Logit Transformation-based MRDDV – DJI*TRX 

 

 

Figure 4.15: Comparison between history of DJI (top) and Logit MRDDV – DJI*TRX 

 

    

Figure 4.16: Density of Logit Transformation based MRDDV – DJI*TRX   
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Figure 4.10 shows the historical feature of Dow Jones Industrial Index (DJI), and 

Figure 4.11 - Figure 4.13 show the simulation result for the DJI and Dow Jones AIG 

Commodity Index (DJC). Figure 4.11 represents the estimated value of )(yE , that is 

the estimated probability computed by using the Logit Transformation-based 

MRDDV model, i.e., )1(ˆ =yP , and this estimated value runs between 0 and 1. Figure 

4.12 demonstrates a comparison between historical Dow Jones data and their 

estimated probability by using the Logit Transformation-based MRDDV for the DJI 

and DJC data, and Figure 4.13 shows the probability density function of them. In the 

same manner, Figure 4.14 - 4.16 demonstrate the results for the DJI and 10 Treasury 

Note (TRX) data.  

In Figure 4.11 and 4.14, the estimated response lines drawn by the Logit 

Transformation-based MRDDV model represent the risks as estimated in probability 

such that the high probability indicates stable or relatively low chance to turn into a 

risky state. Notice that, as a demonstration of effectiveness of the proposed model, in 

Figure 4.12, at the time period around 230, the risk probability computed by the 

model shows a high-spike and its corresponding actual index value drastically 

dropped. Notice another demonstration as shown in Figure 4.15, at the time period 60 

through 150, the risk probability shows a stable and low value-trend and its actual 

index values are moderately increasing.  

Figure 4.13 and 4.16 show that the density of Logit Transformation-based MRDDV 

model is positive in the given domain as an evidence of correctness of the model. 
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CHAPTER V 

 

CONCLUSION 

 

This dissertation has presented a statistically-based yet probabilistically-concluded 

and computationally-implemented approach to modeling and evaluation of likelihood 

for events of interest to occur with a focus on risky events. The risky events of 

interest in this study are the ones with a turbulent nature in the distribution of values 

of data, which can be commonly found in the events in the fields such as financial 

market, homeland security, or safety/mission critical systems, to mention a few. In 

such events, it is critical to make a timely, practical and accurate forecast for the 

likelihood of the events of interest to occur. Two of the methods proposed in this 

study, i.e., Multiple Regression with a Scaled Dependent Variable (MRSDV) and 

Multiple Regression with a Dependent Dummy Variable (MRDDV) are multiple 

regression method-based, in which a quantitative and a qualitative variables are 

employed to represent inputs and along with an output variable to represent the 

consequence of the inputs on the observation through the regression process. What 

distinguishes MRSDV and MRDDV is the function that determines the values for the 

dependent variable in their models, referred to as criterion function. Using a criterion 

function, the dependent variable in MRSDV may result in an infinite positive range, 
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while that in MRDDV may result in a binary output such as 0 or 1, respectively. 

Another approach proposed in this dissertation is based on a new criterion function 

applied into the multiple regression process, referred to as Multiple Regression with 

an Adjusted Dependent Variable (MRADV). In MRADV, the adjustment on the 

dependent variable is made by determining the value of the dependent variable based 

on the absolute values of the forward difference of adjacent data values in the 

quantitative random variable in order to improve the model goodness-of-fit. 

Furthermore, based on the multiple regression model in the proposed MRADV, a 

probabilistic-based model, referred to as MRADVP , has been proposed in order to derive 

the probability of risk (or an event of interest) to occur without relying on traditional 

way of assuming or establishing probability density function of the random variables 

in the model, thereby guiding the users to a more practical and realistic evaluation of 

the likelihood of an event of interest to occur. Lastly, in this dissertation, a method 

has been presented that can facilitate the extension of the Multiple Regression with 

Dependent Dummy Variable (MRDDV) Model to provide a way of estimating the 

likelihood of any event of concern or interest by probability. MRDDV Model employs 

a dependent dummy variable as an observation in its regression model with respect to 

the quantitative independent variable and the qualitative independent variables as 

primary inputs for estimation. The purpose of the dependent dummy variable in 

MRDDV is to provide an effective way of representing the quantitative measure of 

the status of the event of concern with respect to a certain criterion function, such as a 

binary measurement (e.g., 0 or 1) or forward differences of dependent variable values, 

to mention a few. Therefore, MRDDV can facilitate the process of identifying the 
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quantitative relationship among the random variables in the model by using the 

regression-based estimation. However, MRDDV lacks the ability to readily provide 

information on how likely an event of concern is to occur, which could be best 

manipulated by employing probability-based estimation. In this context, a method, 

namely Logit Transformation, has been employed to facilitate the probabilistic 

manipulation of MRDDV. By using the Logit Transformation method, the estimated 

dependent dummy variable can be transformed from a non-probabilistic domain (e.g., 

the estimated value could be in the range beyond 0 or 1) into a probabilistic one so the 

expected value of the dependent dummy variable can be evaluated as a probabilistic 

measure. The results from the Logit Transformation-based MRDDV have been 

extensively compared with the history of actual financial data in order to demonstrate 

the efficiency and effectiveness of the proposed approaches. 
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APPENDICES 

 

Theorem A.1:  Parameter estimation in MRDDV model 
   
MRDDV model is defined as iiii exxy +++= 22110 βββ ,  1,0=iy       
  
where, i   : number of data points and 2≥i    
            iy  : dependent dummy variable          
            ix1 : quantitative independent variable       
            ix2 : qualitative independent variable  
           iβ : parameter to be estimated 
            ie : error term 
 
 then, estimated parameter is yXXXb ′′= −1)(  
 
where     b : vector of estimated values of β  
             X : matrix of observations of independent variable 

       X ′ : transpose of matrix X  
        1)( −′XX  : inverse matrix of )( XX ′  

  y : matrix of observation on dependent variable   
 
 
Proof 
 

i) To estimate the parameter iβ   by Least Square Method: 
 

( )∑ ∑= =
−−−==

n

i

n

i iiii xxyeS
1 1

2
22110

2 βββ  
 

ii) S  can be represented by matrix as follows: 
 

 ( ) ( ) βββββ XXyXyyXyXyee ′′+′′−=−′−=′ 2  
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where, ′e  is a transpose matrix of e  and 
 

                        1  11x    21x                      0                       1e                   0β  

            X =     1  12x   22x          y =      0            e  =     2e        β  =  1β       

                         :     :      :                          :                        :                    2β  

1 nx1   nx2                      1                       ne  

 

iii) Differentiate ee′  with respect to  β  , then solve it by letting 0 :  

 022 =′+′−=
∂

′∂ β
β

XXyXee  

 yXbXX ′=′         where b  is an estimator of β  

 yXXXb ′′= −1)(  
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Theorem A.2:  Property of normal random variables 1x  and 2x  

   If 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

2

1

2

21211

2

1 ,~
x

xxxxx

x

x

sym
N

x
x

σ

σσρσ

μ

μ   

    then, ⎟
⎠
⎞

⎜
⎝
⎛ ++++++

21212121 21
22

2
22

121022110 2,~ xxxxxxxx bbbbbbbNxbxbb σσρσσμμ  

Proof 

   i)
1

)( 1 xxE μ= , 
2

)( 2 xxE μ=  

21 2102211022110 )()()( xx bbbxEbxEbbxbxbbE μμ ++=++=++  

   ii) [ ] [ ]222 ))(()(2))(()( xExxExExExExV +−=−=  

        22222 ))(())((2)())(()()(2)( xExExExExExExE +−=+−=  

        22 ))(()( xExE −=  

    Note: )()()(),cov( 212121 xExExxExx −= , 
21

21

),cov(),( 21
21

xx
xx

xxxxcorr
σσ

ρ ==   

   iii) 
1

)( 1 xxV σ= , 
2

)( 2 xxV σ=  

       [ ] [ ]( )222110
2

2211022110 )()( xbxbbExbxbbExbxbbV ++−++=++   

)()()(2)(2)(2 2
2

2
2

2
1

2
12121220110

2
0 xEbxEbxxEbbxEbbxEbbb +++++=              

    )]()()()(2)(2)(2[ 2
2

2
2

2
1

2
12121220110

2
0 xEbxEbxExEbbxEbbxEbbb +++++−  

[ ] [ ] [ ])()()(2))(()())(()( 212121
2

2
2
2

2
2

2
1

2
1

2
1 xExExxEbbxExEbxExEb −+−+−=  

212121 21
22

2
22

1 2 xxxxxx bbbb σσρσσ ++=  
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Theorem A.3:  In simple regression model exy ++= 10 ββ ,  

                                             ( )xxbyy −=− 1ˆ  

where,  y : dependent variable          
            x  : independent variable       
           iβ : parameter to be estimated 
            e : error term 
            ŷ : estimator of y        
            y : mean of y        
            1b : estimator of 1β        
            x : mean of  x    
             

 Proof 

i) exy ++= 10 ββ                             ( transformation) 

   )( 1110 xxex ββββ −+++=         ( add and subtract same term x1β   ) 

   exxx +−++= )()( 110 βββ          ( substitute x10
*
0 βββ +=   )  

   exx +−+= )(1
*
0 ββ  

ii) )(ˆ 1
*
0 xxbby −+=                          ( estimation i) ) 

   )(1 xxby −+=                           ( yx =+= 10
*
0 βββQ  ) 

iii) ( )xxbyy −=− 1ˆ  
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Table A.1: Probability table of standard normal 

dzzzf
z

∫ ∞− ⎭
⎬
⎫

⎩
⎨
⎧−= 2

2
1exp

2
1)(
π

 

 
Area between 0 and z 

 
 

z  0.00  0.01  0.02  0.03 0.04 0.05 0.06 0.07 0.08  0.09  
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 
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2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 
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Table A.2: Financial Sector Data 

 
i) Dow Jones Industrial Average (DJI)  is one of several stock market indices, 

created by nineteenth-century Wall Street Journal editor and Dow Jones & 
Company co-founder Charles Dow. It is an index that shows how certain 
stocks have traded.  
 

ii) Dow Jones-AIG Commodity Index (DJC) is designed to be a highly liquid and 
diversified benchmark for the commodity futures market. The Index is 
composed of futures contracts on 19 physical commodities and was launched 
on July 14th, 1998. 

 
iii) 10-Year Treasury Note (TNX) is a debt obligation issued by the U.S. Treasury 

that has a term of more than one year, but not more than 10 years. 
 

 

SET DATE RANGE 

Start Date: Jan
 

1 2007

End Date: Dec
 

31 2007

 

 Daily  

 Weekly  

 Monthly  

 Dividends Only 
 

Get Prices
 

 
 
 

Close price adjusted for dividends and splits 

Date DJI DJC TNX 

31-Dec-07 13,264.82 184.96 4.03 

28-Dec-07 13,365.87 184.77 4.10 

27-Dec-07 13,359.61 185.57 4.20 

26-Dec-07 13,551.69 185.38 4.28 

24-Dec-07 13,550.04 182.97 4.21 

21-Dec-07 13,450.65 183.03 4.17 
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20-Dec-07 13,245.64 180.80 4.03 

19-Dec-07 13,207.27 181.37 4.07 

18-Dec-07 13,232.47 179.72 4.12 

17-Dec-07 13,167.20 180.10 4.19 

14-Dec-07 13,339.85 180.65 4.23 

13-Dec-07 13,517.96 180.97 4.17 

12-Dec-07 13,473.90 183.29 4.08 

11-Dec-07 13,432.77 179.55 3.99 

10-Dec-07 13,727.03 178.22 4.15 

7-Dec-07 13,625.58 178.34 4.12 

6-Dec-07 13,619.89 178.10 4.00 

5-Dec-07 13,444.96 176.22 3.91 

4-Dec-07 13,248.73 176.56 3.89 

3-Dec-07 13,314.57 176.52 3.89 

30-Nov-07 13,371.72 177.25 3.97 

29-Nov-07 13,311.73 179.20 3.94 

28-Nov-07 13,289.45 179.38 4.03 

27-Nov-07 12,958.44 181.27 3.94 

26-Nov-07 12,743.44 184.02 3.85 

23-Nov-07 12,980.88 184.24 4.01 

21-Nov-07 12,799.04 181.85 4.02 

20-Nov-07 13,010.14 182.35 4.05 

19-Nov-07 12,958.44 179.98 4.08 

16-Nov-07 13,176.79 181.76 4.15 

15-Nov-07 13,110.05 180.40 4.16 

14-Nov-07 13,231.01 183.10 4.27 

13-Nov-07 13,307.09 180.22 4.26 

12-Nov-07 12,987.55 182.01 4.21 

9-Nov-07 13,042.74 184.53 4.22 

8-Nov-07 13,266.29 183.56 4.27 



 84

7-Nov-07 13,300.02 183.67 4.33 

6-Nov-07 13,660.94 184.92 4.36 

5-Nov-07 13,543.40 182.27 4.32 

2-Nov-07 13,595.10 184.19 4.29 

1-Nov-07 13,567.87 182.53 4.36 

31-Oct-07 13,930.01 183.52 4.47 

30-Oct-07 13,792.47 180.43 4.38 

29-Oct-07 13,870.26 182.79 4.38 

26-Oct-07 13,806.70 180.60 4.39 

25-Oct-07 13,671.92 179.22 4.35 

24-Oct-07 13,675.25 176.48 4.33 

23-Oct-07 13,676.23 176.61 4.41 

22-Oct-07 13,566.97 177.34 4.39 

19-Oct-07 13,522.02 179.05 4.40 

18-Oct-07 13,888.96 180.13 4.50 

17-Oct-07 13,892.54 178.51 4.55 

16-Oct-07 13,912.94 178.78 4.66 

15-Oct-07 13,984.80 178.97 4.67 

12-Oct-07 14,093.08 176.94 4.69 

11-Oct-07 14,015.12 177.21 4.66 

10-Oct-07 14,078.69 175.43 4.65 

9-Oct-07 14,164.53 173.33 4.65 

8-Oct-07 14,043.73 172.12 4.64 

5-Oct-07 14,066.01 175.73 4.64 

4-Oct-07 13,974.31 177.22 4.52 

3-Oct-07 13,968.05 176.60 4.54 

2-Oct-07 14,047.31 176.49 4.53 

1-Oct-07 14,087.55 178.08 4.56 

28-Sep-07 13,895.63 178.25 4.58 

27-Sep-07 13,912.94 179.71 4.57 
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26-Sep-07 13,878.15 177.43 4.62 

25-Sep-07 13,778.65 176.71 4.61 

24-Sep-07 13,759.06 177.84 4.62 

21-Sep-07 13,820.19 177.21 4.63 

20-Sep-07 13,766.70 177.18 4.67 

19-Sep-07 13,815.56 175.80 4.52 

18-Sep-07 13,739.39 175.11 4.48 

17-Sep-07 13,403.42 174.54 4.47 

14-Sep-07 13,442.52 172.32 4.46 

13-Sep-07 13,424.88 171.74 4.48 

12-Sep-07 13,291.65 172.48 4.41 

11-Sep-07 13,308.39 170.24 4.36 

10-Sep-07 13,127.85 168.60 4.32 

7-Sep-07 13,113.38 167.12 4.37 

6-Sep-07 13,363.35 166.85 4.50 

5-Sep-07 13,305.47 166.91 4.47 

4-Sep-07 13,448.86 167.04 4.56 

31-Aug-07 13,357.74 165.57 4.54 

30-Aug-07 13,238.73 165.10 4.50 

29-Aug-07 13,289.29 164.43 4.55 

28-Aug-07 13,041.85 163.54 4.53 

27-Aug-07 13,322.13 163.99 4.60 

24-Aug-07 13,378.87 164.41 4.63 

23-Aug-07 13,235.88 163.14 4.62 

22-Aug-07 13,236.13 161.95 4.62 

21-Aug-07 13,090.86 161.06 4.59 

20-Aug-07 13,121.35 161.70 4.63 

17-Aug-07 13,079.08 164.21 4.67 

16-Aug-07 12,845.78 161.68 4.60 

15-Aug-07 12,861.47 167.33 4.71 
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14-Aug-07 13,028.92 167.80 4.73 

13-Aug-07 13,236.53 168.14 4.78 

10-Aug-07 13,239.54 167.60 4.78 

9-Aug-07 13,270.68 167.52 4.79 

8-Aug-07 13,657.86 168.27 4.86 

7-Aug-07 13,504.30 167.84 4.74 

6-Aug-07 13,468.78 167.52 4.73 

3-Aug-07 13,181.91 169.60 4.70 

2-Aug-07 13,463.33 170.39 4.75 

1-Aug-07 13,362.37 170.82 4.76 

31-Jul-07 13,211.99 172.45 4.77 

30-Jul-07 13,358.31 171.46 4.80 

27-Jul-07 13,265.47 170.30 4.79 

26-Jul-07 13,473.57 168.74 4.78 

25-Jul-07 13,785.79 169.58 4.90 

24-Jul-07 13,716.95 169.46 4.94 

23-Jul-07 13,943.42 170.20 4.96 

20-Jul-07 13,851.08 173.48 4.96 

19-Jul-07 14,000.41 174.26 5.03 

18-Jul-07 13,918.22 172.81 5.01 

17-Jul-07 13,971.55 169.80 5.08 

16-Jul-07 13,950.98 171.10 5.04 

13-Jul-07 13,907.25 174.54 5.11 

12-Jul-07 13,861.73 173.51 5.12 

11-Jul-07 13,577.87 173.29 5.08 

10-Jul-07 13,501.70 173.30 5.04 

9-Jul-07 13,649.97 171.74 5.16 

6-Jul-07 13,611.68 171.63 5.20 

5-Jul-07 13,565.84 170.84 5.14 

3-Jul-07 13,577.30 170.10 5.05 
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2-Jul-07 13,535.43 170.48 5.00 

29-Jun-07 13,408.62 169.67 5.03 

28-Jun-07 13,422.28 168.61 5.12 

27-Jun-07 13,427.73 168.95 5.07 

26-Jun-07 13,337.66 168.52 5.10 

25-Jun-07 13,352.05 170.25 5.08 

22-Jun-07 13,360.26 170.89 5.14 

21-Jun-07 13,545.84 172.40 5.16 

20-Jun-07 13,489.42 173.57 5.12 

19-Jun-07 13,635.42 173.57 5.09 

18-Jun-07 13,612.98 176.10 5.14 

15-Jun-07 13,639.48 176.48 5.17 

14-Jun-07 13,553.73 174.80 5.22 

13-Jun-07 13,482.35 172.17 5.20 

12-Jun-07 13,295.01 171.29 5.25 

11-Jun-07 13,424.96 172.27 5.14 

8-Jun-07 13,424.39 169.82 5.12 

7-Jun-07 13,266.73 173.07 5.10 

6-Jun-07 13,465.67 173.74 4.97 

5-Jun-07 13,595.46 174.81 4.98 

4-Jun-07 13,676.32 175.56 4.93 

1-Jun-07 13,668.11 174.03 4.96 

31-May-07 13,627.64 172.72 4.89 

30-May-07 13,633.08 171.44 4.88 

29-May-07 13,521.34 170.08 4.88 

25-May-07 13,507.28 172.37 4.86 

24-May-07 13,441.13 170.47 4.86 

23-May-07 13,525.65 171.58 4.86 

22-May-07 13,539.95 171.88 4.83 

21-May-07 13,542.88 174.82 4.79 
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18-May-07 13,556.53 173.27 4.80 

17-May-07 13,476.72 173.47 4.76 

16-May-07 13,487.53 172.81 4.71 

15-May-07 13,383.84 173.23 4.71 

14-May-07 13,346.78 172.29 4.69 

11-May-07 13,326.22 173.44 4.67 

10-May-07 13,215.13 171.10 4.65 

9-May-07 13,362.87 171.77 4.67 

8-May-07 13,309.07 172.01 4.63 

7-May-07 13,312.97 172.85 4.64 

4-May-07 13,264.62 174.17 4.64 

3-May-07 13,241.38 173.75 4.67 

2-May-07 13,211.88 172.41 4.65 

1-May-07 13,136.14 173.10 4.64 

30-Apr-07 13,062.91 173.21 4.63 

27-Apr-07 13,120.94 173.56 4.70 

26-Apr-07 13,105.50 171.72 4.68 

25-Apr-07 13,089.89 173.85 4.65 

24-Apr-07 12,953.94 171.69 4.62 

23-Apr-07 12,919.40 173.49 4.65 

20-Apr-07 12,961.98 172.30 4.67 

19-Apr-07 12,808.63 171.61 4.67 

18-Apr-07 12,803.84 171.88 4.65 

17-Apr-07 12,773.04 172.12 4.69 

16-Apr-07 12,720.46 172.73 4.74 

13-Apr-07 12,612.13 174.35 4.76 

12-Apr-07 12,552.96 173.92 4.74 

11-Apr-07 12,484.62 173.86 4.74 

10-Apr-07 12,573.85 173.88 4.72 

9-Apr-07 12,569.14 172.42 4.74 
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5-Apr-07 12,560.83 173.48 4.67 

4-Apr-07 12,530.05 172.90 4.65 

3-Apr-07 12,510.93 170.74 4.66 

2-Apr-07 12,382.30 171.47 4.64 

30-Mar-07 12,354.35 171.96 4.65 

29-Mar-07 12,348.75 172.33 4.63 

28-Mar-07 12,300.36 170.84 4.62 

27-Mar-07 12,397.29 169.62 4.61 

26-Mar-07 12,469.07 169.46 4.59 

23-Mar-07 12,481.01 168.98 4.61 

22-Mar-07 12,461.14 169.71 4.59 

21-Mar-07 12,447.52 167.18 4.52 

20-Mar-07 12,288.10 166.62 4.55 

19-Mar-07 12,226.17 166.57 4.57 

16-Mar-07 12,110.41 166.73 4.55 

15-Mar-07 12,159.68 166.57 4.54 

14-Mar-07 12,133.40 166.21 4.52 

13-Mar-07 12,075.96 166.12 4.49 

12-Mar-07 12,318.62 167.24 4.55 

9-Mar-07 12,276.32 167.84 4.59 

8-Mar-07 12,260.70 169.67 4.51 

7-Mar-07 12,192.45 169.20 4.50 

6-Mar-07 12,207.59 167.47 4.53 

5-Mar-07 12,050.41 165.93 4.52 

2-Mar-07 12,114.10 168.08 4.51 

1-Mar-07 12,234.34 169.76 4.56 

28-Feb-07 12,268.63 171.01 4.55 

27-Feb-07 12,216.24 171.98 4.51 

26-Feb-07 12,632.26 173.50 4.63 

23-Feb-07 12,647.48 173.39 4.68 
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22-Feb-07 12,686.02 172.19 4.73 

21-Feb-07 12,738.41 169.84 4.69 

20-Feb-07 12,786.64 167.12 4.68 

16-Feb-07 12,767.57 168.27 4.69 

15-Feb-07 12,765.01 166.75 4.71 

14-Feb-07 12,741.86 165.69 4.73 

13-Feb-07 12,654.85 166.69 4.81 

12-Feb-07 12,552.55 163.86 4.80 

9-Feb-07 12,580.83 167.39 4.78 

8-Feb-07 12,637.63 166.36 4.73 

7-Feb-07 12,666.87 164.50 4.74 

6-Feb-07 12,666.31 165.48 4.76 

5-Feb-07 12,661.74 165.36 4.81 

2-Feb-07 12,653.49 165.11 4.83 

1-Feb-07 12,673.68 164.82 4.84 

31-Jan-07 12,621.69 166.09 4.83 

30-Jan-07 12,523.31 164.70 4.88 

29-Jan-07 12,490.78 160.60 4.89 

26-Jan-07 12,487.02 163.55 4.88 

25-Jan-07 12,502.56 162.38 4.87 

24-Jan-07 12,621.77 163.97 4.81 

23-Jan-07 12,533.80 164.88 4.80 

22-Jan-07 12,477.16 161.30 4.76 

19-Jan-07 12,565.53 160.41 4.77 

18-Jan-07 12,567.93 157.37 4.75 

17-Jan-07 12,577.15 158.61 4.79 

16-Jan-07 12,582.59 158.29 4.75 

12-Jan-07 12,556.08 159.56 4.77 

11-Jan-07 12,514.98 156.80 4.74 

10-Jan-07 12,442.16 157.30 4.68 
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9-Jan-07 12,416.60 155.88 4.66 

8-Jan-07 12,423.49 157.07 4.66 

5-Jan-07 12,398.01 157.95 4.65 

4-Jan-07 12,480.69 159.21 4.62 

3-Jan-07 12,474.52 161.17 4.66 
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