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CHAPTER I

I. INTRODUCTION

Past years have seen the introduction of new and difficult optimization problems.
Many creative algorithms have been devised to solve these problems. Such algorithms
include components from fields including evolution, biology, chemistry, and ecology.
These fields have inspired researchers to devise algorithms with names such as Genetic
Algorithms, Differential Evolution, Ant Colony Systems, and Particle Swarms [Goldberg
1989, Price et al. 2005, Dorigo and Stiitzle 2004, Kennedy and Eberhart 1995]. Still, the
main driving force behind this creativity is to solve optimization problems that are
considered hard or intractable quickly and efficiently.

This work's purpose is to conceptualize slime mold as a viable optimization
algorithm, provide evidence of its usefulness, and introduce modifications and possible
improvements to the existing slime mold optimization algorithm. The final product of
this work will be an algorithm capable of solving a vast array of single-objective
optimization problems to optimal or near optimal values in a reasonable amount of time.
Study of Dictyostelium discoideum (Dd), a popular slime mold in biological literature,
was necessary to devise the optimization algorithm presented in this work [Kessin 2001].

Before discussing Dd, it is important to understand the problem that will be
undertaken. The focus of this work is solving numerical single objective function
optimization problems; therefore, a definition of the problem is provided here. Within a
single objective optimization problem, it is assumed that there exists a function f or set of
piecewise functions {f7,[] ,f,} that define a single function fthat need not be continuous.
From here on the(se) function(s) will be referred to as an objective function. It is also
assumed that the objective function is composed of a set of variables {x;,[] ,X,} that form
the search (or decision) space. These variables will be referred to as the decision
variables. Typically, it is assumed that these variables are constrained to some area and
that one or more maxima or minima exist for the objective function. The solution to such
an optimization problem is, without loss of generality, the minimization of the objective
function. The optimum value /* for a function f can be expressed formally as follows:

=M™, x™ ) such that

FE= LM XM <L (X Xy s X))

O{x;, %500 X, }



within the bounds of the search space. Minimization may be used without loss of
generality because minimizing [ f{x) is equivalent to maximizing f(x). l.e. any
maximization problem may be turned into one of minimization [Deb 2001].

Many methods exist to solve an optimization problem for a single objective
function. Given a function that is continuous and has a first and second derivative, its
minimum can be found directly. Many problems exist in real life, which however, do not
meet these qualifications. Therefore, more advanced methods are necessary to solve
problems that are not continuous or do not have a derivative. Methods such as Steepest
Descent, Newton(s method, Levenberg-Marquardt, and others make use of the first or
second derivative or a compromise between the two, to progressively or quickly move
close to a local minimum by moving opposite direction of the gradient or via the Hessian
toward a solution [High 2005]. Other existing classical methods offer a direct search
within the bounds of the space in an attempt to find a solution. Most classical methods
are not guaranteed to find a global optimum unless some criterion is met (such as a
continuous function with multiple derivatives or a function of low order, i.e. quadratic)
[Corne et al. 1999]. Such methods typically find only a local optimum for most problems
and can typically be improved by using multiple starting points for the algorithms.

Artificial Intelligence (Al) inspired methods have been implemented in the past
50 1160 years to offer differing methods with different advantages to solve the
optimization problem. Most Al inspired methods are based on some man-made or
biological process that occurs in the real world. Many of these methods are population
based as well. Genetic algorithms try to mimic the real life process of crossover and
mutation that occurs when cells undergo meiosis [Goldberg 1989, Mitchell 1998]. Ant
colony systems make use of the idea of pheromones that ants use to follow each other to
a food source [Dorigo and Stiitzle 2004]. Simulated annealing was inspired by the
process of heating and cooling metal then reheating it to make metal stronger [Chen
1997]. Particle swarm algorithms use the idea of bird flocking [Kennedy and Eberhart
1995]. Each of these algorithms yielded interesting and promising results. Still research
is ongoing and often Al inspired algorithms are only used when direct approaches and
algorithms such as Steepest Descent and Levenberg-Marquardt are inefficient or fail
[Corne et al. 1999]. Provided this short history of optimization, we go on to discuss
Dictyostelium discoideum and its uses as a model for numerical optimization.

In this dissertation, the lifecycle of Dictyostelium discoideum (Dd) is presented as
a model for numerical optimization. Before discussing this model, the lifecycle is
explained. Dd is an amoeba that can undertake a complex lifecycle involving several
stages. Such amoebae begin their life from binary fission [Jthe splitting of one cell into
two. These amoebae are vegetative; that is, they forage in their environment. Vegetative
Dd typically live in peat and humus and they eat bacteria such as Escherichia coli that
live in such environments. Once vegetative amoebae expend the resources in their area
(i.e. the bacteria), they begin to starve. After a 4 to 6 hour period of starvation, Dd enter
a new stage in their lifecycle. One of the starving amoebae begins to emit a pheromone
called cyclic Adenosine Monophosphate (CAMP). This amoeba is referred to as a
pacemaker [Kessin 2001]. Provided there are a number of the same amoebae within the



same localized area (a 1 cm’ area), a signal cascade begins [Dallon and Othmer 1997].
Other starving amoebae are stimulated to release cAMP and move toward the pacemaker.
This phase of the Dd lifecycle is referred to as aggregation. The signal cascade of the
aggregative phase draws amoebae in the locality of the pacemaker near it. The attraction
of the amoebae toward a cAMP gradient is so strong that [streams[Jare formed. As the
amoebae are moving toward the pacemaker in streams, they begin to release cellulose,
which has a slimy consistency. The amoebae move closer and closer toward the
pacemaker until they form a mound. Amoebae within the mound enclose themselves in
cellulose and self-organize into a head and a tail. Once self-organization is complete the
group of amoebae is a slug. The slug head directs movement of the tail toward a light
source. Movement toward a light source is with the intent of moving all amoebae within
the slug to the top of the soil or humus they previously inhabited. As the slug reaches a
lit area, it culminates to form a fruiting body. Members of the slug's tail die to form a
stalk, and members of the head climb the stalk to form spores at the top of the stalk. At
this point, the fruiting body is almost like a dandelion. Various environmental factors
cause the spores to be removed from the fruiting body and distributed to new locations in
the environment. These include spores being eaten by worms and birds and being
redistributed in their droppings. Another environmental factor allowing for redistribution
is that spores may be washed away by rain or blown away by wind. Once a spore has
been dispersed in the environment, upon germination it becomes a vegetative amoeba
again, and the Dd lifecycle begins anew [Kessin 2001, Segel 2001].

Literature shows three different classes of studies of the Dd lifecycle using
computational models. These are educational simulations, biological simulations, and
discrete optimization tasks. Many of the educational simulations in literature are quite
simple. While very informative, they present a simulation of only a portion of the Dd
lifecycle [Jusually the aggregative, mound, and slug stages. Both the simulations
presented by Resnick [1994] and Matthews [2002] present 2D simulations of the slime
mold lifecycle starting with starving, randomly dispersed amoebae and allow them to
aggregate and form slugs using simulated cAMP that is deposited on a 2D cellular
automaton. The only difference between the two algorithms is the implementation. The
Resnick [1994] slime mold simulation was implemented in StarLogo as an example of
parallelism whereas the Matthews [2002] simulation was implemented in Java as an
example of a cellular automaton. In comparison to the biological simulations, Matthews!|
and Resnick(s simulations appear quite simple.

Of the biological simulations, the earliest reviewed in this work is that of Glazier
and Graner [1993]. In 1993, they proposed a Cellular Automata (CA) model for cell
sorting and differentiation. This is of particular importance because later models for the
slug phase of Dictyostelium discoideum, such as those of Maree and Hogeweg, use cell
sorting as a major portion of their simulation [2001]. The models of Segel [2001] and
Maree, Panfilov, and Hogeweg [1999, 2001] take from the Glazier and Graner model to
form a hybrid CA/Partial Differential Equation (PDE) model to allow for visualization of
Dd movement during the mound, slug, and fruiting body stages of the Dd lifecycle. More
recent work presented by Erban and Othmer [2007] provides insight into the use of PDEs
to model the movement of amoebae during the aggregative stage, and suggests that



movement under the conditions where no chemical stimulus exists occurs at random.
Movement of amoebae during the vegetative stage is assumed to follow similar equations
to those presented in the work of Erban and Othmer, though on a smaller scale [2007].

Few efforts outside of educational studies or biological simulations have focused
on the use of Dd or other slime molds as an optimizer. In fact, the author does not know
of any numerical optimization algorithms based upon slime molds other than his own
[Monismith and Mayfield 2008]. Existing studies of slime molds as optimizers focus on
its uses as a discrete optimizer. Rothermich presents a study of slime mold as an
optimizer for a resource allocation problem for an information ecosystem in his thesis
[2002]. Rothermich(s [2002] model is primarily based upon the educational simulations
of Resnick [1994]. Another researcher, Yokoi, in 1995, devised a slime mold based
optimization algorithm for the traveling salesman problem. His model is based upon the
Potts Hamiltonian like the biological simulation of Glazier and Graner [1993]. Although,
it appears to work well, no follow up work has been based upon it. Another interesting
effort at optimization using slime molds exists, although it is not computer based. In
2000, Nakagaki was able to get a live slime mold of the genus Physarum polycephalum
to find its way through a maze to food using the shortest path. Each of these examples
shows that slime molds have the potential to be optimizers.

Figure 1.1: Slime Mold from Fort Worth, TX, possibly Physarum.

To investigate slime mold as a numerical optimizer, the cellular slime mold Dd
was chosen for study. Its lifecycle exhibits two of the key elements of an evolutionary
algorithm [Jexploration and exploitation [Goldberg 1989]. The first stage of this
lifecycle [Ithe vegetative stage, in which, individual amoebae search for food, can be
contrasted with exploration. Amoebae in this stage follow folate gradients in a search for
bacteria (food) [Pollitt et al. 2006]. Similarly, in many optimization algorithms such as



the Downbhill Simplex Algorithm, Evolutionary Strategy, and Pattern Search, movement
in a downhill and explorative manner is performed at the beginning of a search [Corne et
al. 1999, Spendley et al. 1962, Hooke and Jeeves 1961]. Once Dd amoebae deplete their
food source, they begin to starve. Several hours after starvation, Dd amoebae emit cAMP
in an effort to aggregate [Marée et al. 1999 [Migration[]. The combination of a directed
search algorithm such as PSO and a nearest neighbor data structure upon which a virtual
attractant representing cAMP may be stored closely mimic the movement seen during the
aggregative phase. Next, amoebae join together tightly in a mound and shield themselves
from the rest of the environment with a slime sheath [Marée et al. 1999 [Phototaxis[]
Kessin 2001]. This life stage could be mimicked in a numerical optimization algorithm
as the formation of a data structure representing multiple individual search agents with
similar goals. Thereafter, in biology, the mound becomes a slug that moves the amoebae
toward a lit area where a fruiting body may be formed [Marée et al. 1999 [Phototaxis![;
Segel 2001, Kessin 2001]. An analogous structure in optimization would be the
aforementioned mound data structure with movement attributed to all its members.
Finally, biological amoebae are redistributed in the environment as spores [Kessin 2001,
Segel 2001]. Similarly, a slime mold numerical optimization algorithm could relocate the
members of a slug data structure and reset their movement to that of vegetative
individuals.

This dissertation includes a detailed study of the elements that were briefly
discussed above. The literature review presented herein provides a detailed view of the
lifecycle of Dd. The biology of Dd is reviewed first. Next, the educational simulations
by Resnick [1993] and Matthews [2002] are presented. In conjunction with these
simulations, a review of cellular automata (CAs) is provided [Ilachinski 2001]. The
biological simulations of Dd for each portion of its lifecycle are discussed in detail. Both
the educational and biological simulations give rise to the necessity of one additional
tool. This is the e-Approximate Nearest Neighbor (e-ANN) algorithm [Arya and Mount
1998]. Additionally, in the literature review, existing optimization algorithms are
discussed. These include classical algorithms, direct search algorithms, and evolutionary
algorithms. In particular, Differential Evolution (DE), Particle Swarm Optimization
(PSO), a Real Coded Genetic Algorithm (RCGA), Pattern Search, Downhill Simplex, and
Razor Search are presented in detail [Price et al. 2005, Corne et al. 1999, Kennedy and
Eberhart 1995, Coello Coello and Lechuga 2002, Herrera et al. 1998, Hooke and Jeeves
1961, Spendley et al. 1962, Bandler and MacDonald 1969]. After completing the
literature review, the steps used to convert Dd from a lifecycle to an algorithm are shown.
The Slime Mold Optimization Algorithm is then defined.

Following the explanation of the Slime Mold Optimization Algorithm, several
updates to the Vegetative, Mound, and Slug states are introduced that allow for new
variations of the existing algorithm. These include replacing the Vegetative state with
modified versions of the Razor Search and Downhill Simplex algorithms. Furthermore, a
new form for the slug is introduced that is closer to the true biological form. With the
Slime Mold Optimization Algorithm and its variants defined, results are introduced. To
illustrate the value of the Dd lifecycle as an optimization algorithm, results from this
algorithm for a sizeable function suite are provided [Monismith and Mayfield 2008].



Comparisons are made between the Slime Mold Optimization Algorithm and existing
Evolutionary Algorithms (EAs) including DE, PSO, and RCGA. Comparisons are also
made to the Hooke-Jeeves Pattern Search Algorithm. Thereafter, results from the
variants of the Slime Mold Optimization Algorithm are presented. These results are
compared against the EAs and the original Slime Mold Optimization Algorithm. Results
as presented are competitive with those of the RCGA and PSO algorithms, but the DE
results are significantly better than most of those obtained from the Slime Mold
Optimization Algorithm. Analysis of the results includes discussion of averages of
minimum objective function values obtained from the algorithms, average runtimes, and
error of results. Following analysis and comparisons, possible future works are
presented. These include updates to improve the existing algorithm, the addition of
population dynamics to the Slime Mold Optimization Algorithm, and the need for
theoretical study of the algorithm to verify its efficacy [Monismith and Mayfield 2008].



CHAPTER II

II. REVIEW OF LITERATURE

Optimization using slime mold as its basis requires multi-disciplinary study.
First, a study of existing optimization algorithms is necessary to provide background,
insight, and inspiration. The algorithms studied are of the same class as the one being
created. They are all direct search algorithms of one form or another that do not require
the computation of a derivative [Corne et al. 1999]. Many of these algorithms have taken
inspiration from biology, and they serve as a natural starting point for the creation of a
new optimization algorithm based in biology [Passino 2005]. Next, study of the
organism Dictyostelium discoideum (Dd) is necessary as it is the basic unit of the type of
slime mold that will be scrutinized. Its lifecycle will be dissected to illustrate the portions
necessary for building an optimization algorithm [Kessin 2001]. Finally, simulations of
the slime mold are investigated. Existing biological simulations that use both cellular
automata and differential equations are discussed [Glazier and Graner 1993, Erban and
Othmer 2007, Maré¢e et al. 1999 [Migration[] Marée et al. 1999 [Phototaxis[] Dallon and
Othmer 1997, Marée and Hogeweg 2001, Segel 2001]. Educational simulations of slime
molds provide some insight as to how a slime mold optimization algorithm might be
created, and initial trials for optimization with slime mold and previous works build the
final foundation for a slime mold optimization algorithm [Resnick 1994, Matthews
2002]. Thus, the literature review for this work is divided into three sections:
Optimization, Biology of Dd, and Slime Mold Simulations.

Section 2.1 Optimization Algorithms

In this section, several existing single-objective numerical optimization
algorithms will be discussed. These algorithms have provided both inspiration and new
ideas for the author's work. Since the focus of this work is to explore numerical
optimization in a generalized sense, discussion of numerical optimization algorithms that
are derivative-based will be omitted. Such algorithms include Steepest Descent,
Newton's Method, Levenberg-Marquardt Method, and many others [Corne et al. 1999,
Passino 2005]. The discussion of algorithms in this chapter will include Direct Search
methods and Evolutionary Algorithms.



Direct Search methods refer to those optimization methods that do not require
computation of a derivative [Hooke and Jeeves 1961]. Rather, these methods rely on
some type of heuristic to search for an optimum value. Such heuristics typically rely on
moving in the direction of a peak (for maxima) or a valley (for minima). This can be
accomplished by random exploration, pattern based movement, or combinations thereof.
Since these methods do not rely on the computation of a derivative, they can solve
optimization problems that are not differentiable. Direct Search methods often use only a
single starting point or very few starting points. As a result, these methods often become
trapped in local optima like derivative-based methods. So when using these methods
many programmers run a direct search algorithm from multiple starting points and choose
the best result [Hooke and Jeeves 1961, Spendley et al. 1962, High 2005].

Evolutionary Algorithms (EAs) refer to a class of optimization algorithms that
draw inspiration from nature and typically make use of a population that uses cooperation
or competition to search for an optimum function value [Corne et al. 1999]. These
algorithms are similar to Direct Search algorithms in that they typically do not require
computation of a derivative during the search. These algorithms are, however, more
advanced than direct search in that they use populations of starting points, hereafter
referred to as individuals, that work together to search for an optimum objective function
value. The heuristics used in an Evolutionary Algorithm vary widely and may include
ideas such as population dynamics, genetic evolution, population evolution, bird flocking,
etc. Each of these algorithms all, however, has the following similarities: an EA starts
with a population of individuals that are initialized in some random fashion, the algorithm
iterates and allows some or all of the individuals contribute toward the search, and the
best objective function value is retained after each iteration. EAs build on this basic
outline and can be very simple or quite complex depending upon the heuristic used
[Arabas et al. 1994, Corne et al. 1999, Passino 2005, Price et al. 2005].

Included in this chapter are several existing Direct Search and Evolutionary
Algorithms. First, the Pattern Search of Hooke and Jeeves is discussed along with the
transformations to it to create the Razor Search algorithm. Next, the Simplex Algorithm
of Hext and Spendley is considered. These direct search algorithms are considered in a
later chapter for use in the first stage of the author's Slime Mold Optimization Algorithm.
Next, evolutionary algorithms are discussed. These include a Real-Coded Genetic
Algorithm, the Particle Swarm Optimization Algorithm, and Differential Evolution.
These will be used both for comparisons and inspirations to the author's algorithm in later
chapters.

Section 2.1.1 Pattern Search

The Pattern Search algorithm was one of the first optimization algorithms that
allowed for optimization without computation of a derivative. This is one of the
algorithm's main advantages over classical approaches. Search for a minimum or
maximum function value is performed by exploring in multiple directions (i.e.
dimensions) using a fixed or varying step size. The algorithm makes use of a direction
vector to decide whether to search forward or backward by one step in each dimension.



Once a suitable direction is achieved, the algorithm attempts a pattern step. That is, a
second move is made in the same direction as the successful move. The reason for doing
so is heuristic. Given the fact that a successful move was made in a particular direction,
it is reasonable to assume that continuing to search in the same direction might yield
positive results (i.e. the move should be at least partially in the direction opposite the
gradient) [Hooke and Jeeves 1961]. A variant of this method exists using a line search in
the pattern move direction. The line search attempts to find the best value in that
direction, so a different pattern move in a different direction will be necessary on the next
iteration of the algorithm [High 2005].

The pattern search method of Hooke and Jeeves is detailed below in Algorithm
2.1: PatternSearch. This algorithm iterates until either a convergence criterion is
met or until a fixed number of objective function evaluations has occurred. Initially, a
starting point X, is selected and evaluated as fy; then, iterations begin. During iteration,
the starting point and starting objective function value are both copied into temporary
variables, and an exploration is performed. If the exploration succeeds, a pattern move is
attempted by determining the search direction, 6, and moving further in that direction
[Hooke and Jeeves 1961]. Further explorations and pattern moves are attempted as long
as the results of such moves are significant (i.e. they pass the Bell-Pike Test) and
progress toward better function values [Bell and Pike 1966]. Once a pattern move fails,
the magnitude of the search, denoted as 0, is decreased by a factor of a. Note that a is a
constant in the range (0, 1) and is typically set to a value between 0.1 and 0.2. Iterations
continue until the convergence criterion is met or until the maximum number of function
evaluations has been met [Hooke and Jeeves 1961]. Pseudocode for the pattern search
algorithm is provided below.

Algorithm 2.1: PatternSearch

mv
X X g (copyx pandf gintoxandf)
f fo
Explore(ref f, x)

While (f < f o and numEvals < MAX_EVALS and Bell-Pike Test Passes),
e) X—X o (compute the direction of the valley)

X o X
X Xo+ 6
f o f

Evaluate f(x) and count the evaluation.

Explore(ref f, x)

Perform the Bell-Pike Test for progress.
End while.

If(f < f 0)
fo f
X o X
Else If(not converged and numEvals < MAX_EVALS),
5 5* «
End if.



While not converged and numEvals < MAX_EVALS.

During pattern search it is necessary to search for a good direction in which to
move. Exploration in multiple directions allows for such movement. In Algorithm 2.2:
Explore, a vector S is initialized to one and used to indicate the direction of an
exploratory move using the values 1 or -1 to denote a positive or negative direction along
each dimension. Movements are attempted in the direction of each dimension, one
dimension at a time, using this module. After a movement is attempted, the module
checks to see if the move improved the previous function value. If the move was indeed
an improvement, that move is saved and the next dimension is tested. Otherwise, a move
is made in the opposite direction and tested for improvement. This move is saved if it is
an improvement; however, in the case of a move forward or backward resulting in no
improvement in function value, both moves are ignored and the next dimension is tested
[Hooke and Jeeves 1961]. Pseudocode for the Explore module is provided below.

Pattern search is an effective search algorithm when searching for an optimum in
a function that is singly modal. Problems occur with this algorithm in multi-modal
functions. Using a poor starting point may result in the function being trapped within
local minima. Multiple starting points may alleviate this problem; however, minima that
lie along a line or point with a narrow opening angle may have a low probability of being
found. For many functions, whether differentiable or not, using pattern search with
multiple starting points will deliver optimal or near optimal results as long as reasonable
step sizes are used [Hooke and Jeeves 1961, High 2005].

Algorithm 2.2: Explore (ref f 0, X)

For | =1to NUM_DIM
S 1
End for.

For1=1to NUM_DIM,
Xi=x i+Si*] o]
Evaluate f at x.

If(F<f o),
fo f

Else,
S | -S
X X;+2*S P * | o) |
Evaluate f at position x.
If(f<f o)
f o f
Else,
X Xi -S i*| 3]
End if.
End if.
End for.
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Section 2.1.2 Razor Search

Razor search is an extension of the "Direct Search" method of Hooke and Jeeves
[1961]. Razor search attempts to improve upon the Pattern Search method by allowing
for random search in a different direction once direct search does not yield improved
results. This method is interesting because it can make direct search effective on
functions with an extremely narrow opening angle to a minimum. In such functions, it
can be quite difficult to achieve optimization using non-classical methods such as genetic
algorithms, particle swarm, ant colony optimization, etc. Razor search is divided into
four major parts. These are the Razor Search module itself and three additional modules
to perform a modified version of the pattern search of Hooke and Jeeves. These
additional modules perform the pattern search via the use of a main module and two
additional modules to perform the exploration move and to find a reliable starting point
for a pattern move [Bandler and MacDonald 1969].

In razor search, first, the objective function is evaluated at a starting point. This
point may be chosen at random. Pattern search is performed at this starting point.
Additionally, criteria are set for the maximum number of iterations k and reductions in
the current minimum step size € using the formula below.

€ < &nn EVK (2.1)

Note that 7 is a constant that is set heuristically, and ey, is the smallest step size that may
be taken during a pattern search. Furthermore, if a finishing criterion is not met, the
program iterates until a finishing criterion is met or until a fixed number of iterations has
been completed; whichever comes first. During an iteration, a point nearby the last best
point found is generated using the following formula:

X « x, + plRand(1,-1) £, (2.2)

Where x contains the generated point, x is the variable containing the last best point, p is
a scaling factor, ¢ is the minimum magnitude of the current move, and Rand(1,-1) is a
pseudorandom number generator that produces values between 1 and -1 with uniform
probability. Using this new point, a pattern search is conducted in a different direction.
If the results of the pattern search yield a better function value, the new value is saved.
Additionally, a new valley (search) direction € is computed using the following formula:

0« x,—x. (2.3)
Thereafter, a pattern move is performed using this direction. So long as this pattern move
is beneficial, additional pattern moves are performed and the best location and function

value are updated. Finally, the finishing criterion is checked. If the finishing criterion is
not satisfied and the maximum number of iterations has not been expended, the program
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continues iterating [Bandler and MacDonald 1969]. Pseudocode for Razor Search is
provided in Algorithm 2.3: RazorSearch.

Algorithm 2.3: RazorSearch

* K
€ €nin n

Evaluate f  ( atit is initial position x 0-
PatternSearch(x o, ref f 0)

If the finishing criterion is satisfied,
End program.
End if.

Forj=1to K,
Obtain a new position x in a random direction using (Eq. 2.3).
Evaluate x and store its result in f.
£ ¢/ n (Decrease the smallest allowable step size)
5 x=x ol

If x is out of bounds,
F o
End if.

PatternSearch(x, ref f)

If(f<f o)
f o f
S) X=X o
X o X
Else,
f fo
S) X=X o
End if.
conv2 true

While(conv2),

X Xo+ 6
5 I el 2
PatternMove(ref f, x, x 0)
If (f<f o)
f o f
X 0 X
Else,
conv2 false
End if.
End while.

If the finishing criterion is satisfied,
End program.
End if.
End for.
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The Pattern Search method used as part of Razor Search is used in place of the
second call to Algorithm 2.2: Explore in the Hooke and Jeeves Pattern Search [1961].
As a method of determining the step size, the magnitude of the search direction, 6,
denoted as ¢ is used when an exploratory or pattern move is performed. This value is
also used as the stopping criteria for the pattern search in conjunction with &, which is the
smallest allowable step size. This is the main difference between the Pattern Search of
Hooke and Jeeves and the one used here. While the pattern search iterates, first an
exploration is performed using copies of the point and function value passed in as
parameters. Then, so long as the exploration is beneficial, the direction of the valley is
computed and pattern moves are performed in that direction. If the move is not
beneficial, the magnitude of the exploration is decreased. Iteration for pattern search
continues until the magnitude of the exploration becomes too small (less than ¢) [Bandler
and MacDonald 1961].

During Razor Search exploration is necessary to achieve reasonable pattern
moves and improvements in objective function values. This exploration is, in fact,
performed in the same fashion as that of Algorithm 2.2: Explore. Therefore, the
exploration module presented in Section 2.1.1 will be used again here as part of the
Pattern Search for Razor Search presented in Algorithm 2.4 [Hooke and Jeeves 1961].

Algorithm 2.4: PatternSearch(x o, reff 0)

VWhile (5> ¢),
X X g (copyx oandf intoxandf)
f fo
Explore(f, x)

If (f<f 0):

While (f < f o)
e) X=X o (compute the direction of the valley)
X 0 X
X Xo+ 6
) | o]l 2 (computethe magnitude of the step)
PatternMove(f, x, x 0)
End while.
Else,
o 5* «
End if.
End while.

The pattern move module presented below serves to find a suitable exploration
move for use in a following pattern move. Obviously, the method used in Razor Search
for a pattern move is slightly different than that of Hooke and Jeeves [1961]. Notably, a
variable m is used to provide three tries at possible explorations. Algorithm 2.5:
PatternMove starts by assigning m  a value of one. Thereafter, J is compared to ¢ to
ensure the exploration size is large enough. Next, a loop begins that will cycle at most
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three times. In this loop the objective function is evaluated at its current position. Then,
an exploration move is attempted [Bandler and MacDonald 1969]. If the exploration
succeeds (i.e. the move was an improvement and passes the Bell-Pike Test), the method
returns because of its success [Bell and Pike 1966, Bandler and MacDonald 1969].
Otherwise, the value of m is checked. If m is one and the previous move was
unsuccessful, the current pattern is not immediately thrown away. Rather, m is set to two
and a move closer to the base point is attempted by decreasing the variable 6. If this
closer move is unsuccessful, m is set to three and a move in the opposite direction is
attempted. If the third try fails, the method is terminated [Bandler and MacDonald 1969].

Algorithm 2.5: PatternMove (ref f 0, X, X o)

m 1

f( &< ¥)
Return;
End if.

While (true)
Evaluate f at position x
Explore(f, x)

If(f<f 0)
For 1 =1to NUM_DIM,
If( |x i =X oi|>10 °|xql)
f o f
Return.
End if.
End for.
End if.
If(m=1)
m 2
o 512
X Xo+05* o
If ( 53< ¢)
Return;
End if.
Else if (m = 2)
m 3
S -S
X Xo—05* o
Else
Return;
End if.
End while.
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Section 2.1.3 Simplex Method

The Simplex Method of Spendley, Hext, and Himsworth is another direct search
algorithm [1962]. It makes use of a geometric shape known as a simplex to perform
numerical optimization. The shape of a simplex depends upon the dimensionality of the
function as a simplex consists of N+1 points, where N is the number of dimensions in the
objective function being considered. Creation of a simplex starts by choosing a base
point x©. Then N additional points are created based upon the formula below. Note that
j represents a dimension; i represents the index of the point in question; and both i and j
are in the range [1, NV].

{x5‘°)+51 j=i

(i) —
: 0) .
X; +0, j#I

Xpo =

(2.4)

These N+1 points form the simplex. Spendley, Hext, and Himsworth suggest J; and d, be
chosen such that all points are equidistant from the base point x9[1962]. For atwo
dimensional objective function, the result is a simplex that is a triangle. For a three
dimensional function the result is a tetrahedron. To ensure the points are equidistant, the
following formulas may be used.

_(N+D"*+N-1

N2

_(VD -

NA2

The user may multiply both d; and , by a constant « to scale the distances between these
points up or down; however, this constant should be the same for all points created as
part of the simplex and may cause unexpected results during optimization [Spendley et al.
1962].

5 2.5)

5, 2.6)

15



X3

Centroid

x;

Original Simple

x;
New Simplex

(x[])gew:v x] El x2)

Figure 2.1: Simplex example [High 2005].

The objective function is evaluated at all N+1 points in the simplex, and the point
that has the worst objective function value in the simplex is marked as the new base
point, x”. The simplex is then reflected about this worst point. The centroid of the
remaining points, where 7 is in the range [1, V], is computed as follows.

1Y
X =ﬁ2x() (2.7)
i=1

The base (i.e. worst) point is then reflected about the centroid using the following
formula.

Llew) = () +A(x, _x(O)) (2.8)

A symmetric reflection is typically used and may be achieved by setting A to 2.
Reflection typically moves the new base point in the direction of a valley. This occurs
because moving away from the worst point in a simplex is typically at least partially in
the opposite direction of the gradient. To perform optimization via the Simplex
Algorithm, this process is repeated until either the simplex reflects back upon itself or a
single point within the simplex is repeated for M iterations, where M is defined in the
formula below.

M =1.65N +0.05N*? (2.9)

Once the one of the aforementioned criteria is met, the size of the simplex is reduced
(typically by half) and iteration continues. Iteration stops when the simplex becomes too
small or the number of iterations surpasses a preset limit [Spendley et al. 1962].
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Many variations upon the Simplex Algorithm exist. One of the most famous is
the Nelder-Mead method. This method allows for both expansion and contraction of a
simplex and is an excellent optimizer for some functions with low dimensionality
[Torczon 1989]. Unfortunately, this optimizer fails in certain circumstances. In her
dissertation, Virginia Torczon proved that the Nelder-Mead method fails on functions
with a high degree of multidimensionality [1989]. For example, the Nelder-Mead
method may fail on a 32-dimensional sphere function. Therefore, even though the
Spendley [1962] method may converge to a local minimum, the simplex used therein will
not collapse when used for general purpose optimization.

Algorithm 2.6: Simplex

Choose a base point.
Create the initial simplex using formulas (2.4),(2.5), and (2.6).
Evaluate and store f(x) at all simplex points.

While(numlterations < MAX_ITERATIONS)
Find the simplex point j with the worst objective function value.
Swapx @ andx O .
Obtain the centroid using formula (2.7).
Create x ™" using formula (2.8).
Evaluate and store f(x (new) y,

iffex M) =fx @),
Decrease the size of the simplex and continue.
Else if repetitions for any simplex point are greater than M,
Decrease the size of the simplex and continue.

Else,
x © x (new)
End if.
Retain the best objective function value.
End while.

Section 2.1.4 Genetic Algorithm

A Genetic Algorithm is an algorithm based upon population evolution. The
theory behind population evolution is that fit individuals are selected to mate and during
mating their genes are recombined and mutated to produce offspring. The best or fittest
of these offspring survive to pass on their genes to a new generation. The same concepts
are used in a Genetic Algorithm for optimization. For numerical optimization, an
individual may be represented as a location within the search space and the
corresponding objective function value [Goldberg 1989, Mitchell 1998, Passino 2005].
Many options then exist to "evolve" a population of individuals toward an optimal
objective function value. In a Real-Coded Genetic Algorithm, individuals are selected
from the population to produce children. Such individuals can be recombined in many
ways. Typically this involves random selection from a subspace near or in between the
locations of the parents. Mutation can be achieved by adding a small random value to the
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children. Finally, survival of the fittest can be realized by only retaining the children
with the best objective function values [Herrera 1998, Mitchell 1998]. To better visualize
the real-coded Genetic Algorithm, an example algorithm is provided.

P I ad,
(p
ad, d, ord,
d; /}\
&
I od, P2

Figure 2.2: a-Blend Crossover Operator (BLX-a), redrawn from [Tsutsui et al. 1999].

The example of a real-coded GA presented in Algorithm 2.7: RealCodedGA
includes four basic components of a GA: selection, recombination, mutation, and elitism
(survival of the fittest) [Goldberg 1989]. First, tournament selection was used to choose
parent individuals. Parents were chosen by comparing two randomly chosen individuals
and selecting the one with the better fitness value. After choosing two parents, two
children were produced by recombination [Goldberg 1989, Mitchell 1998]. For
simplicity, the same number of children as parents is created in the example algorithm.
The probability of recombination may be set near 60% for the algorithm presented in this
work, though values between 50% and 95% will definitely be effective. During
recombination, a real-coded crossover operator named the a-Blend Crossover (BLX-a)
operator is used [Herrera et al. 1998]. This crossover operator creates a bounding box
using the locations of the two parents to form bounds. The bounding box is extended to a
size of 1.a times the distance between the locations of the two parents. Note that a is in
the range [0,1), and if a is equal to zero the crossover is referred to as Arithmetic
Crossover. So, if a = 0.5, the bounding box would be 1.5 times the distance between the
parents in each dimension [Herrera et al. 1998]. An example of this is shown in Figure
2.2 above [Tsutsui et al. 1999]. In Algorithm 2.7: RealCodedGA, each pair of children
is chosen from random locations within this bounding box. A mutation operator may be
applied to the children after recombination. With, for example, a 0.5% probability, the
mutation operator adds a small random value to a child [Herrera et al. 1998]. Once a
generation is completed, a child population and a parent population exist. Pairs of
parents that were not recombined are retained in the next generation. Children are
compared to their parents, and those that exhibit better fitness are retained in the new
population otherwise, their parents are retained [Goldberg 1989, Mitchell 1998].

These steps are performed on a population of a fixed size (e.g. 100 individuals),

which is updated over a fixed number of generations (e.g. 1000 generations) or for a
fixed number of function evaluations (e.g. 200,000 function evaluations). Each of the
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choices above builds a simple genetic algorithm that works quite well for single objective
optimization [Goldberg 1989, Mitchell 1998]. That is not to say that this algorithm is
without deficiencies. The GA algorithm presented here has difficulties with functions
that have narrow opening angles to minima. Moreover, the crossover operator presented
here may cause the algorithm to ignore dimensions in the search space; however,
different arithmetic crossover operators exist that correct this problem [Herrera et al.
1998, Kita et al. 1999, Takahashi and Kita 2001]. Even with these deficiencies, for most
problems the GA provides a simple, yet efficient comparison algorithm and will be used
as such in the results section of this work.

Algorithm 2.7: RealCodedGA

| nitialize a random location and evaluate the function value at that
location for each individual in a parent population of size NP.
Archive the best individual in the parent population.

For the number of generations,
For i =1 to floor(NP/2),
Select a pair of parents to form children using a
tournament selection.
Create a pair of children by performing recombination on
the parents with a fixed probability (e.g. 60%).
If a pair of children was created,
Perform mutation on the children with a fixed
probability (e.g. 0.5%).
Evaluate the function values of the children.
Add the children to the child population.
Else,
Add the parents to the child population.
End if.
End for.

Fori=1to NP,
If child[i].fitness < parent][i].fithess)
parent[i] child[i]
End if.
End for.
End for.

Section 2.1.5 Particle Swarm Algorithm

Creation of the Particle Swarm Optimization (PSO) algorithm was inspired by
bird flocking and the "boids" simulation by C. W. Reynolds [1987]. Kennedy and
Eberhart discovered that simulated bird flocking could be used for optimization purposes
[1995]. The PSO algorithm makes use of a population of "birds" that are called particles.
These particles consist of current and personal best locations and objective function
values. Particles typically have a velocity as well. A population of particles mimics
some of the properties of bird flight such as following a leader and individuality.
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Particles follow the leader by moving in the direction of the particle with the best
objective function value. They also exhibit individuality by moving in the direction of
their personal best objective function value. Based on these properties, the PSO algorithm
has been adapted to discrete and continuous optimization in both single and multi-
objective functions [Kennedy and Eberhart 1995, Coello Coello and Lechuga 2002].

Numerical Particle Swarm Optimization makes use of a population of particles
that start with uniformly distributed, randomly selected locations from the search space of
a particular problem. Each of these points is moved about the decision space via the
formulas below.

Vi(t+1) = x( vi(t) + crrand(0,1)(Peest i(t) Txi(t)) + corand(0,1)(goest(t) Ixi(1)))  (2.10)
xi(t+1) = xi(0) + vi(t+1) 2.11)

In the formulas above, x;(?) is the location of particle i within the state space at time ¢, y is
a constant used to avoid exorbitant velocity, v;(?) is the velocity of particle i at time ¢,
Poest i(t) 1s the personal best location of particle 1 at time t, gpesi(t) 1 the global best
location at time t, and ¢; and c; are constants determined heuristically. With each time
step, the position and the velocity of each particle is updated with respect to the formulas
above. In addition, with each time step, the personal best of each particle is updated as
necessary. Similarly, is the global best is updated for the entire set of particles [Kennedy
and Eberhart 1995, Clerc and Kennedy 2002].

An example implementation of PSO similar to that of Algorithm 2.8:
ParticleSwarmOptimization could make use of 100 particles that are updated
through 1000 iterations. The standard PSO formula explained above for gp.ss may be
used. In this formula, constants may be set to ¢; = 2 and ¢, = 2 as recommended by
Kennedy and Eberhart [1995]. Smaller values such as ¢; = 0.2 and ¢, = 0.2 may be
chosen to allow for additional exploration of the search space over the published
constants [Coello Coello and Lechuga 2002]. The constant y should be set to a number
slightly less one such as 0.9 to allow for exploration and to prevent explosion of the
population. This constant may be decreased as the algorithm converges to allow for
smaller and finer movements near an optimal function value [Clerc and Kennedy 2002].
Like any stochastic optimizer, this one does, however, have problems finding minima in
narrow valleys and in regions where there is an extremely low probability of finding a
minimum. Even so, implementation of the algorithm as described above results in a
decent optimizer with few deficiencies.

Algorithm 2.8: ParticleSwarmOptimization

| nitialize random values for each particle.
Compute the p pest foOr each particle.
Findtheg et from the set of particles.

For the number of iterations,
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For each particle i,
- Evaluate the following formulas:
vi(ttl) = x(v i+ ci-rand(0,1)  (Poesti (—x (D) +
¢ 2-rand(0,1)  -(gpest () —Xx (1))
Xi(t+l)=x @O +v (t+1).
-Evaluate the function value for particle i.
-If the new function value for particle i is
better than particle i's pbest, update particle
i's pbest.
End for.

Update the g  ,eq if Nnecessary.
End for.

Section 2.1.6 Differential Evolution

Differential Evolution (DE) is a population-based Evolutionary Algorithm (EA)
that was created by Kenneth Price and Rainer Storn [Corne et al. 1999]. Much like other
Evolutionary Algorithms, it makes use of mutation, recombination, and selection. The
main difference between this algorithm and other EAs is that it uses the difference
between two randomly selected vectors (i.e. Xy [ 1X;) for mutation. Much of the rest of
the algorithm is quite similar to other EAs. It is important to note, however, that discrete
recombination is used in the version of DE presented in this work, and selection based
upon the better function value is used to determine whether a parent or a child vector is
retained in the population [Price et al. 2005]. The details of this algorithm are described
below.

Initialization of the Differential Evolution algorithm begins with a population of
fixed size NP. In this population, each individual i is initialized to a uniformly
distributed random location within the search space, and its objective function value is
evaluated and stored within that individual. Additionally, a temporary individual is
created for use when creating "child" individuals. Differential Evolution iterates for a
fixed number of generations or until some finishing criteria is met. During each
generation, a "child" is created for each individual 7 in the population. This is done by
selecting 3 individuals at random from the population. These individuals, indexed 7/, 72,
and r3, are used in combination for both mutation and recombination. Indices are chosen
such that »/ Cr2 Cr3 Ci. Mutation occurs by the formula listed below.

temp, = p> +FUp) - p7*) (2.12)

Note that j represents a dimension, 7/, r2, and 3 are indices, and F represents a mutation
factor in the range (0,1+). Recombination, as noted before, is discrete. This
recombination is performed using a crossover factor CR. CR is a constant probability
factor in the range [0,1) used to make a decision whether to keep the value from
dimension j of the parent i or to use the mutated value for dimension j from equation
(2.12). In this work, at least one dimensional value within the child will contain a
mutated value. After a child vector is created, its objective function value is evaluated.
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If the child vector has a better function value that the parent with index i, the child
replaces the parent. Otherwise, the parent is retained. This process occurs for each
individual i within the population over a number of generations or until some finishing
criterion is met [Price et al. 2005].

The DE algorithm, presented as Algorithm 2.9: DifferentialEvolution
below, is one version (DE/rand/1/bin) presented in [Corne et al. 1999]. Reasonable
values for the constant F' range between 0.4 and 0.9 as indicated by graphs in [Corne et
al. 1999]. Similarly, the decent values for the crossover constant CR range from 0.8 to
1.0, and the population size should be between 2 to 100 times the number of dimensions
in the problem with 20 times the number of dimensions typically working best. Finally,
the number of generations should be set to a reasonably large number such as 1000. This
algorithm works quite well as a general purpose optimizer so long as initialization is
uniform over the search space and parameters are set appropriately [Price et al. 2005].

Algorithm 2.9: DifferentialEvolution

| nitialize a population "pop" of NP individuals each with a random
location.

Compute and store the objective function at each location.

Create an individual called temp.

For the number of generations,
For each individual i,
Choose 3 unique individuals at indices r1, r2, and r3 from
the population at random.

Assign j a random value between 0 and NUM_LOC-1, inclusive.

For k =0to NUM_LOC-1,
If(rand(0,1) < CR | k=NUM_LOC-1),
templj] pop[r3].location[j] +
F - (pop[ri].location[j] — pop[r2].location[j]);
Else
templj] popli].location[j];
End if.

Ensure templj] is within the bounds of the problem
specification.

j (i + 1) mod NUM_LOC;
End for.

Compute the fitness of temp.

If(temp.fitness < pop[i].fitness),
popli].fitness temp.fitness;
popli].location temp.location;
End if.
End for.
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Archive the individual with the best fitness.
End for.

Section 2.2 Biology

In this section we discuss the biological aspects of slime mold. A commonly
studied slime mold is the species Dictyostelium discoideum. Dd is of biological interest
because it is one of a small group of amoeba that exhibit self-organizing behavior. This
interest in Dd and other amoeba with self-organizing behavior exists in biological
communities because these organisms exhibit behavior that represents a step between
multicellular organisms (e.g. animals) and single celled organisms like bacteria and non-
organizing amoeba [Kessin 2001]. Slime molds have also provided interest to computer
scientists. The self-organizing behavior of slime mold lends itself to easily implemented
parallel systems and to cellular automata [Resnick 1994, Matthews 2002].
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Figure 2.3: Lifecycle of Dictyostelium discoideum
[Brown and Strassman 2009]. Image used under the terms of the Creative Commons Attribution 3.0.

Computer scientists have built simple interactive models of slime mold in the past 15
years, and a few have attempted to use slime mold for discrete optimization [Rothermich
2002].

The lifecycle of Dd will be studied to better understand this amoeba and how it
and other amoeba like it form slime molds. Dd takes on a number of states in its life
cycle, as shown in the figure above. When food is readily available, Dd exists in a
vegetative state. It uses pseudopods for its movement and forages for bacteria and
decaying materials such as logs. In the absence of live food, Dd may attempt to attract
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food by releasing folic acid, a typical nutrition source for bacteria. Dd act as individuals
in this stage of their lifecycle and exhibit no self-organizing or swarm-like behavior.
They may also procreate in this stage by binary fission or they may hibernate as a
microcyst (small group of dormant cells) or macrocyst (large group of dormant cells)
[Kessin 2001]. This stage of the Dd lifecycle is relatively uninteresting when compared
to the other stages.

Dd exhibit cooperative swarm-like behavior only upon starvation. During
extended starvation, Dd amoebae release a chemical called cyclic Adenosine
Monophosphate ((AMP). This chemical is like a pheromone and attracts the amoebae.
Movement of the amoeba is opposite the gradient of cAMP and detection of this chemical
during starvation causes a Dd amoeba to release additional cAMP [Dallon and Othmer
1997, Kessin 2001, Erban and Othmer 2007]. When released in a group of starving
amoeba, cCAMP causes the nearby amoeba to initiate a signaling cascade that causes a
streaming effect toward the first amoeba, called a pacemaker, which released cAMP.
This step is referred to as aggregation [Kessin 2001, Erban and Othmer 2007]. Dd move
in streams toward this pacemaker until a mound is formed. Dd amoebae in the mound
engulf themselves in slime to provide protection for the group [Kessin 2001]. The Dd
also organize themselves into motile slug with a head and a tail, which represent the
amoeba that will form a stalk and spores respectively [Marée et al. 1999 [Migrationl ]
Marée et al. 1999 [Phototaxis[] Kessin 2001]. The slug moves toward a light source so a
fruiting body consisting of a stalk and spores may be formed. Spores from the fruiting
body are eaten and deposited as waste by animals or deposited by wind [Kessin 2001,
Pollitt 2006]. Stimulus from a food source causes these spores to activate as new
vegetative cells [Kessin 2001]. Each of these steps is elaborated upon in this section,
beginning with the vegetative state and ending with the fruiting body state [Kessin 2001].
In further sections their simulations and applications will be discussed.

Section 2.2.1 Vegetative Amoebae

Vegetative amoebae are individual amoebae that are independent and have little
or no interaction with other amoebae in the environment. When Dd are vegetative, they
exist in soil, humus, and decaying logs. Dd hunt bacteria in these environments as they
are as much as 1000 times bigger than their prey. Dd may also eat yeast. In most cases,
Dd hunt their bacterial prey by detecting folate gradients. They do so because folate
(Vitamin B9) is a common food source of bacteria. Dd even possess the ability to emit
folate to attract their prey [Kessin 2001, Pollitt 2006, Erban and Othmer 2007].
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Figure 2.4: Example of amoeboid cell movement.
Redrawn from [Kessin 2001].

Movement of these amoebae is similar to the movement in some mammal cells
such as leukocytes (white blood cells). This is one of the reasons that Dd is well studied.
During movement Dd amoebae may move at a speed up to 20 pm/min [Dallon and
Othmer 1997, Erban and Othmer 2007]. Movement is achieved through the use of
pseudopods. These pseudopods are similar to arms, but they have chemical sensitivity at
the ends and are also capable of adhering to surfaces at the ends. Movement is typically
preceded by sensory perception. First, an amoeba receives a signal such as stimulus from
a folate gradient. Dd are able to ascertain the approximate direction of a gradient across
their cell bodies. Depending on the type of signal, the amoeba may decide to move in the
direction of the gradient or to move opposite it. If, for example, the initial stimulus was
folate, the amoeba would decide to move opposite or nearly opposite the folate gradient.
Dd have a similar response to cyclic Adenosine Monophosphate (cAMP). Ammonia
elicits a movement in the direction of the gradient, to direct Dd away from this noxious
substance [Kessin 2001, Marée and Hogeweg 2001]. After ascertaining the appropriate
direction of movement, the amoeba then extends a pseudopod, which has the appearance
of a protrusion [Kessin 2001].

The pseudopod adheres to a surface in the direction of the stimulus or opposite it
depending upon the type of stimulus. Chemotactic sensors at the end of the pseudopod
provide additional sensory information. Depending on the type of signal and the
direction of movement, the amoeba may decide to move in that direction or to retract the
pseudopod. During movement, a Dd amoeba contracts its body wall in the direction of
the pseudopod. Thereafter, the tension in the direction of the pseudopod in conjunction
with cell motility would cause the amoeba to de-adhere from its previous location and
move toward the new location. An example of the movement previously described is
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shown in the figure above. It is important to note that such movement may not occur if
detection of a negative stimulus occurs at the end of the protrusion [Kessin 2001].
Interestingly, several versions of the simplex optimization method described in section
2.1.3 have been based upon this type of movement [ Torczon 1989].

Of further interest are the differing stages of life Dd may enter in response to
environmental stimuli while in the vegetative state. The first of these is the microcyst. A
microcyst is an amoeba that is encapsulated in cellulose. It is in most cases dormant and
is formed in response to multiple conditions. These are the simultaneous presence of
starvation and either increased osmotic pressure (too much water in the environment) or
ammonia (a negative stimulus) [Kessin 2001, Marée and Hogeweg 2001]. These stimuli
cause a Dd amoeba to form a cellulose coating in place of its cell wall and to go dormant
until environmental conditions are more suitable. The second of these life stages is the
macrocyst. This stage is typically elicited by two or more well fed amoebae that are of
different sexual types. The cells fuse together and form a large cyst with a cellulose wall.
Additional amoebae may be attracted to join the cyst prior to formation of the cellulose
wall by the cyst's release of cAMP. The cells within the macrocyst reproduce to form
new Dd amoeba through meiosis. The third and final life stage vegetative Dd may enter
is the aggregation stage [Kessin 2001]. Entrance into this stage will be described in the
next section.

Section 2.2.2 Aggregation

Aggregation is initiated by starvation of a group of Dd that are in close proximity.
It is the first step that Dd take involving self-organizing activity. The self organizing
activity taken on by amoebae is multi-faceted. First, amoebae must realize that they are
starving. Next, one amoeba, referred to as a pacemaker, must begin signaling that it is
starving. Other nearby amoebae follow suit by aggregating toward the pacemaker. A
cascading signaling process then occurs causing more and more starving amoebae to
aggregate. Finally, the aggregate realizes when to shut off the signal when enough
amoebae converge [Kessin 2001]. The details of each of these steps are quite interesting
and are explained in this subsection.

Aggregation is initiated by a single Dd amoeba called a pacemaker within 6 to 10
hours after starvation. The aggregative process occurs over a 1 cm’ area in which as
many as one million Dd amoebae may exist. Pacemaker amoebae occur at a frequency of
1 in 1000 to 10000 amoebae; however, the mechanism by which an amoeba is chosen to
be a pacemaker is unknown [Dallon and Othmer 1997, Kessin 2001]. It is known that the
amoeba chosen as the pacemaker begins to emit a chemical called cyclic adenosine
monophosphate (¢CAMP). This chemical is a normal attractant of Dd amoebae. While the
pacemaker is emitting cAMP, other starving Dd within close proximity of the pacemaker
become highly receptive to cAMP. This receptivity is initiated by a genetic factor that
initiates this receptivity in response to starvation [Kessin 2001]. Note that without the
existence of a pacemaker, movement of Dd amoebae may be aberrant during starvation
[Pollitt 2006].
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Figure 2.5: Example of cAMP waves and amoeboid cell movement during aggregation.
Redrawn from [Kessin 2001]

The genetic factor that causes high receptivity to cAMP also causes amoebae to
extend their pseudopods in the direction of cAMP (i.e opposite a cAMP gradient) at a
high frequency (approximately 95% of the time) [Erban and Othmer 2007]. The cAMP
emitted by the pacemaker disperses over a small (in terms of micrometers) area only
attracting amoebae in its immediate vicinity. This is only enough cAMP to attract a few
amoebae. To form a mound, the amount of cAMP dispersed must cover a larger area (1
cm’), and, as expected, starving Dd within the vicinity of the pacemaker move toward the
pacemaker and begin releasing cAMP [Dallon and Othmer 1997, Kessin 2001]. This
process repeats with starving Dd further from the pacemaker. Because detection of
cAMP by Dd degrades cAMP, the process of aggregation occurs in waves as shown in
the figure below [Dallon and Othmer 1997, Kessin 2001].

cAMP waves continue outward from the pacemaker in a progressive fashion as
shown in the figure above. The directedness of the waves also causes amoebae to
aggregate as in streams as shown above. The process of signal uptake, movement, and
further expression of cAMP increases the amount of cAMP in an area exponentially. The
expression of cAMP eventually may become too high and attract too many Dd. To
prevent this occurrence, Dd amoebae employ a genetic cell counting factor which enables
them to stop expressing as much cAMP when a significant number of cells begin
aggregating to form a mound. The expression and exponential growth of a chemical by
cells until equilibrium or a limiting factor is reached is also known as the signal
transduction pathway (STP) [Dallon and Othmer 1997, Kessin 2001, Erban and Othmer
2007].
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Section 2.2.3 Mound

The third stage in the slime mold lifecycle is the mound. As the aggregation stage
ends, Dd amoebae are located in close proximity to each other. There are typically
thousands of amoebae in close proximity in a group that is so tightly packed that it looks
like a mound. As the amoebae aggregated toward the pacemaker they also began to
excrete a slime-like substance consisting of cellulose and a glycoprotein. This substance
is used to form a sheath that will encapsulate the amoebae within the mound. The sheath
serves several purposes: it protects the mound from nematodes (predators of Dd); it
serves to conserve the volume of the mound; and it also allows for containment of
signaling molecules pertinent to the mound’s movement when it becomes a slug [Kessin
2001].

While in the mound, amoebae also begin organizing themselves. The Dd
amoebae sort themselves into two different types: prestalk and prespore. These types
obviously determine whether a particular amoeba will become a spore or will die to
become part of the stalk of the fruiting body. These two types always occur at a rate of
1/5 prestalk and 4/5 prespore. The way that amoebae are chosen to become prestalk or
prespore is also quite interesting. The fittest amoebae are always chosen to become
spores [Segel 2001, Kessin 2001]. These amoebae are those that had previously led a
good life; that is, they consumed a large amount of resources. Unfortunately, those
amoebae that did not eat as much are chosen to be prestalk, and interestingly those
amoebae that were the result of binary fission (asexual reproduction from one cell
splitting into two) are also chosen to be prestalk because they appear to have eaten less
during their lifetimes [Segel 2001]. Organization has a second purpose that is even more
interesting. Prestalk amoebae move toward one end of the mound to become a head in
the slug stage. They become sensitive to light and particular chemicals. They are also
able to send chemical messages to the prespore amoebae that make up the tail of the slug.
The mound becomes a mobile slug once amoeboid organization is complete [Savill and
Hogeweg 1997, Marée et al. 1999 [Migration[] Marée et al. 1999 Phototaxis!] Kessin
2001, Marée and Hogeweg 2001].

Section 2.2.4 Slug

The slug stage of the Dd lifecycle is quite interesting. It is of particular interest to
biologists because the slug has the outside appearance of a multicellular organism, but is
not actually a multicellular organism. This stage in the Dd lifecycle represents an
intermediate ecological step between a single celled organism and a multicellular one
[Kessin 2001]. The slug is an aggregate of individual amoebae that are self-organizing.
These amoebae are organized into a head and tail. Of great interest to biologists are the
movement of the slug and its reactions to various environmental stimuli [Savill and
Hogeweg 1997, Marée et al. 1999 [Migration[] Marée et al. 1999 [Phototaxis] Marée
and Hogeweg 2001, Kessin 2001]. These interesting facets of the slug stage will be
discussed in this subsection.
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We know that the slug is divided into a head and tail, but of particular interest is
the composition of these portions of the slug and their reactions to various stimuli. The
head is composed of 1/5 of the amoebae within the slug. It consists solely of prestalk
amoebae, and these amoebae direct the movement of the slug. The amoebae in the head
move in a scroll wave (vortex) pattern and primarily react to light (phototactic) and
chemical (chemotactic) stimuli [Marée et al. 1999 [Migration[] Marée et al. 1999
"Phototaxis[] Kessin 2001]. The head directs movement toward light in an attempt to
ensure amoebae are in an open area when culmination and formation of the fruiting body
occurs. Chemotactic movement primarily occurs to move the slug away from noxious
chemicals such as ammonia [Marée and Hogeweg 2001, Segel 2001, Kessin 2001]. The
head directs the movement of the remaining 4/5 of amoebae by emitting cAMP signals.
All of these tail amoebae are prespore cells. Since the slug is encapsulated in cellulose
and glycoproteins, the cAMP signals will only stimulate cells within the slug. This
causes directed movement of the tail amoebae in a column-like fashion. This movement
is similar to the treads of a tank [Kessin 2001].

Timely movement of the slug toward an area where culmination may occur is
essential as the amoebae within it are expending resources without the ability to eat. The
amount of time required for such migration may be a matter of hours or days; however, if
a suitable area cannot be found, all amoebae within the slug may perish. Some
experiments have indicated continued slug movement toward a light source until death.
This can occur if the light source is continually moved away from slug. Thus, stability
within the slug's environment is essential for formation of the fruiting body [Kessin
2001].

Section 2.2.5 Fruiting Body and Spore Dispersal

The fruiting body is the final self-organizing stage that starving Dd amoebae
undertake. During this stage, prestalk amoebae, which were the head of the slug, slow
their movement and reorganize themselves into a stalk. As each prestalk amoeba
becomes part of the stalk, it dies. While prestalk amoebae are becoming stalk, the
prespore amoebae also reorganize themselves. The prespore amoebae surround the
prestalk amoebae as they become the stalk, and slowly climb the stalk. As they climb,
the prestalk amoebae undergo metamorphosis that changes them from amoebae to spores.
These spores are then eaten by nematodes or other animals and are deposited in new
locations. Spores may also be blown away by wind, eaten and redeposited in the
droppings of birds or nematodes, or washed away [Kessin 2001].

The fruiting body stage begins with culmination, the point at which movement of
the slug stops movement and begins formation of the fruiting body. According to Kessin,
the exact cause for culmination is unknown, but it is suggested that possible build-up of
ammonia from developing prespore cells causes the expression of two genes (ecmA and
ecmB) known to be expressed during culmination [2001]. Once the slug culminates, it
begins to form a shape similar to a Mexican Hat. During formation of the Mexican Hat,
the head, which contains prestalk cells, begins to point vertically, and the prespore cells
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move beneath the head to form a mound-like structure. The mound centers itself beneath
the prestalk amoebae. Thereafter, prestalk amoebae from the head move down through
the center of the prespore mound. Prestalk cells then extend downward through the
mound of prespore amoebae. The prespore cells also begin moving up the stalk as it is
being formed. Once the prestalk cells reach the bottom of the prespore mound, they
begin to form a basal disc along with rearguard cells. This disc anchors the stalk to the
ground. The stalk continues extending upwards and thinning. As prestalk amoebae take
their place in the stalk, they die. Prespore amoebae move toward the top of the stalk and
metamorphosis to spores (dormancy) by encapsulating themselves [Kessin 2001].

Copyright, M.J. Grimson & R.L. Blanton, Biological
Sciences Electron Microscopy Laboratory, Texas Tech
University [Grimson and Blanton 2009].

Figure 2.6: Example of a Fruiting Body.

The Dd lifecycle does not end with the fruiting body. Spores are dispersed so the
vegetative stage may begin anew. Dispersal typically happens in one of two ways.
Infrequently, spores may be dispersed by wind; although this is not considered by many
researchers to be a normal cause of spore dispersal. More often, spores are eaten by the
natural predators of Dd [Tnematodes. Nematodes are small worms, and they will eat Dd
amoebae and Dd spores. Interestingly, Dd spores pass through the digestive tract of
nematodes without disruption or degradation. Eaten spores are deposited as waste from
nematodes allowing for their dispersal. After dispersal, spores must be germinated to
activate spores to become vegetative amoebae [Kessin 2001]. In the next section,
simulations of slime molds in various forms are discussed. In particular, a continuation
of the biological discussion is provided in the next section in the form of biological
simulations of the different stages of the lifecycle.
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Section 2.3 Slime Mold Simulations

In this section the means to transform Dictyostelium discoideum (Dd) from
biology to simulation and later to an optimization algorithm are discussed. This process
is neither simple nor easy. We know from the previous section that there are many steps
to the Dd lifecycle from single celled amoeba to fruiting body. Simulations for each of
these portions of the lifecycle exist and vary in complexity, but most share common
traits. Many models employ a grid or lattice on which Dd exist or where portions of the
cell surface are modeled. Most allow this grid or lattice to be a cellular automaton and
allow amoeba to interact with it if it is the world in which they exist. Models of cell
surfaces allow for interactions between amoeba surfaces (i.e. between CAs) and for self
interactions. Some model amoeba as CAs or a combination of some CA/PDE/statistical
model. In this section, we first investigate some of these models, and then we move to
educational models for additional study.

Biological studies involving simulation of Dd are quite diverse. These studies
include those of single celled amoeba and their vegetative movement, aggregative
movement, mound formation, slug chemotaxis and phototaxis, and fruiting body
formation. Each of these will be discussed in this section. Additionally, several
educational studies of Dd as CA have been made. Resnick introduced a model of
aggregation and slug formation to teach high school students about parallelism using the
StarLogo language. Matthews also created an educational model of Dd. His model is
intended to provide an example of how CAs work. Both of these models will also be
discussed in this section even though these models primarily deal with the aggregation
and slug states. Discussion of many of these models necessitates preliminary information
on CA.

So, in this section we will first discuss CA, including a formalism for the types of
CAs used in the rest of this work. Then, we will discuss existing models for differing
portions of the Dd lifecycle. Next, the educational models will be discussed. Initial
suggestions will be made about how Dd could be used as an optimization algorithm.
Finally, the nearest neighbor and approximate nearest neighbor algorithms will be
discussed in the context of their possible use in Dd simulations. These algorithms will be
used in the next chapter as part of the presented optimization algorithm.

Section 2.3.1 Cellular Automata

So, what is a cellular automaton? The answer is a complicated one because so
many variations of CAs exist. In fact, there is no single formalism to define all CA.
Nevertheless, CAs do share some traits. They are automata and are deterministic and
typically discrete in both space and time. CAs were invented by John von Neumann. He
conceived them in the 1950s as a tool to model biological systems. Since then they have
been used as such, but they have also been used for many other systems. On the same
note, most CAs share five traits that are explained in Ilachinskils book on CA [2001].
For informational purposes those traits are listed here.
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* A grid/lattice of cells (typically 1, 2, or 3-Dimensional)

* Homogeneous cells (all cells share the same properties)

* Interactions between individual cells are only local (referred to as neighborhood)
* Cells take on only discrete values or states

* Update of cell states is based upon a set of rules

So, knowing these facets of a CA, a formalism for CAs used in this work will be created.
This will serve as the basis for the CAs that will be described throughout this work
[TNlachinski 2001].

To provide the formalism for the CAs used in this work, we will divide the CA
into several parts similar to those listed above. These parts are provided in the list below.

* State space

* Rules

* Neighborhood

* Boundary conditions
e Starting State

In our description, the state space will be first to be described. Then, we will describe
cell locations, states, and boundaries. Finally, we will discuss neighborhoods and rules to
complete the formalism [Ilachinski 2001].

We know that a CA uses a lattice or grid as its state space. It is also know that
these spaces are of low dimensionality. Furthermore, this grid may be viewed as a
discrete space. As such, it may be bounded or infinite. The space may also be toroidal,
have holes, etc. The locations within the grid will be referred to as cells. Their values
will be taken from a discrete set. These value may be anything, but since they are
discrete, they may be mapped to the range 0, 1, [1, g, without loss of generality. Thus,
we may define a set I to contain this range.

F=1{01,..q (2.13)

This set of values will serve as the possible values each cell may take on [Ilachinshi
2001, Monismith and Mayfield 2008].

Given our set of values, we may now investigate cell locations. A cell location is
a discrete location in the grid. This location may be represented as a tuple that typically
indicates the location along each dimension of the grid; for example, a tuple may be listed
as (1, J, k, [1). Each of these locations represents a cell that may take on a location from
the set I' at each discrete time step. We denote single cells as 6 using a tuple to denote
their location and a time t to denote their value at the current time step. A formal
definition of ¢ is provided below.

O, OO (2.14)
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Now the grid, Z, also referred to as the state space, may be defined as the set containing
all cells ;- as shown below.

Z={0n 0 ) (2.15)

Note that the bounds of this space may be defined as necessary to the problem in
question. They may be limits upon the number of cells along each dimension,
intermittent limits, etc. These bounds will be referred to as B. Discussion of bounds will
always be specific to the problem in question and as such will not be discussed further
here [Ilachinski 2001, Monismith and Mayfield 2008].

Of additional importance are the local interactions between each cell.
Relationships between each cell 6;; - are defined first by a neighborhood. As the word
implies, these neighborhoods typically consist of relationships between nearby grid
locations. These may be applied to any N-dimensional CA. Typically, two different
types of neighborhoods are used with CAs. These are called von Neumann and Moore
neighborhoods. A Neumann neighborhood only uses the immediate nearest neighbors as
the neighborhood for each cell. An example is shown in Figure 2.7 below.

Figure 2.7: 1-D and 2-D von Neumann neighborhoods.
Grey cells are the neighborhoods of black cells
Redrawn from [Auer and Norris 2001].

A Moore neighborhood uses as neighbors the cells with centers within distance nHD of
the center of the cell in question. Note that z 1s an integer with value greater than or
equal to one, and D is the number of dimensions in the state space. Examples of the
Moore neighborhood are provided in the figure below. The neighborhood used in a CA
in this section will be referred to as N [Ilachinski 2001, Monismith and Mayfield 2008]

Now, we will discuss rules. Rules for a CA determine the update of the entire CA
grid ¥ with each discrete time step. Rules must also take into account the neighborhood
and dimensionality of the state space used. A single rule will be denoted as ¢. Rules
work as mappings. They typically map a group of cell values (e.g. those from a
neighborhood) to a single cell value as shown below.

@:TxIx. . xI - T (2.16)
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In many cases ¢ is a function; however, this is not required. Rules may be grouped
together into a set that represents all possible rules for a CA. This set will be denoted as
®, and it will be used to complete our formalism [Ilachinski 2001, Monismith and
Mayfield 2008].

Figure 2.8: Moore Neighborhoods.
1-D Moore neighborhood and 2-D Moore neighborhoods of size one and two, respectively.
Grey cells are the neighborhoods of black cells [Auer and Norris 2001].

We may now complete our formalism for the CA. We have defined the state
space (grid), X, the neighborhood, N, the set of rules, @, and boundaries, B. A starting
state however, has not yet been defined. This is the set of initial values for all cells. We
will denote the starting state as S and it will be defined as shown below.

S={0,,, (0.} (2.17)

Given this definition, the basic formalism for the CAs used in this work may be
constructed. A CA, C, may be defined as a combination of a state space X,
neighborhood, N, rules, @, boundaries, B, set of values for each cell, I', and starting state
S as shown below.

C={5B,®S, N, (2.18)

This concludes the discussion of the formalism. In the next section, existing models of
Dd will be discussed [Ilachinski 2001, Monismith and Mayfield 2008].

Section 2.3.2 Biological Simulations

Computer simulations and formulaic representations of the movement and
formation of key steps in the Dd lifecycle have been of great interest to the biological
community in the past 50 years. The reasoning behind such interest is that these
simulations allow biologists to verify that their models of movement and chemical uptake
are correct and to compare them against biological observations. Such simulations are
available for all portions of the Dd lifecycle, but particular interest has been paid to the
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aggregative, slug, and fruiting body stages as many of the mechanisms present in these
stages of the Dd lifecycle are highly correlated with the mechanisms of human cell
interaction and motility. Modeling of the vegetative stage is lumped together with the
aggregative stage in the work of Erban and Othmer because the mechanics used in both
the vegetative and aggregative stages are extremely similar [2007]. Models of these two
stages are by PDEs. The mound, slug, and aggregative stages have been modeled in
several different studies including those of Marée and Hogeweg [2001], Savill and
Hogeweg [1997], and Segel [2001]. Dispersion, on the other hand, is not well studied
from a modeling perspective. The relatively chaotic aspects of dispersion, including
wind, rain, and birds, effectively prevent any model, other than random relocation of
amoebae, from being accurate. Because of the importance of such models to the
biological community and the possibility of obtaining insight into their use or
modification as a part of a numerical optimization algorithm, the primary focus of this
subsection will be the study of biological simulations of Dd amoebae.

The first of the simulations investigated in this subsection are the cell taxis
models of Erban and Othmer. Recall that taxis is the movement of a cell in response to a
stimulus. As previously noted, Dd exhibits taxis in response to chemical stimuli such as
cAMP, referred to as chemotaxis. This response is available to Dd amoebae because they
are able to sense chemical gradients across their cell walls. Using this sensor information
Dd amoebae are able to ascertain the correct direction of motion. Erban and Othmer note
that during chemotaxis Dd undergoes four stages of movement. These are first extending
a pseudopod at the amoebals front edge, then, attaching to a substrate, next, squeezing its
cytoplasm forward through contraction of the cell body, and finally detaching its tail from
the substrate to squeeze the rest of the cell body toward the pseudopod's location. Their
model of this movement is through a series of partial differential equations, some of
which are presented here, in brief.

With the description of motion, we may go on to discuss how motion may be
modeled in a formulaic sense. First, it is important to note that eukaryotic cells such as
amoebae and some mammalian cells move on a substrate (surface) by modifying the
shape of their cell bodies, e.g. by extending a pseudopod. During this movement volume
and density of the cell as a whole is conserved. Thus, any equation representing
amoeboid cell movement must take this into account. Erban and Othmer note this fact
from previous works when defining a formula for cell movement [2007]. They define
cell movement based upon the flux of a cell (its change in volume over time) as in the
formula below.

j=-DUn+nu, (2.19)

In this formula, j is the amoeboid cellls flux, D is the diffusion constant of the chemical
stimulus, 7 is the density of the amoeba, and u. is the velocity of the amoeba. Since an
amoebals velocity is dependent upon the presence and gradient of a chemical signal, the
velocity u, may be defined as shown below.

u, = x(S)0S (2.20)
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In the equation above, S represents the chemical stimulus and () is the function
representing the amoebals sensitivity to chemical stimulus. Since cell density is
conserved if we assume no change in osmotic pressure and no cell death, the flux
equation may be differentiated to present a formula for conservation of density as shown
below.

%%=Duxm—nmsﬁm) (2.21)

Erban and Othmer explain that an additional formula for the change in distribution of the
chemical stimulus may be necessary in addition to the equation above [2007].

To completely model the Dd and chemical stimulus environment, much additional
information is required. Work presented by Erban and Othmer shows that with the
inclusion of equations to represent the position, velocity, and chemical signal strength, it
is possible to produce a velocity transport jump equation that represents most of the
factors Dd amoebae and like cells encounter in their environments as they chemotaxis
[2007]. Such extended equations include internal Dd variables and chemical stimulus
evolution equations. Furthermore, Erban and Othmer derive simplified equations to
simulate the movement of amoebae in the presence of a chemical stimulus such as cAMP
[2007]. The extended equations are beyond the scope of this work; however, the
simulation equations from the Erban and Othmer paper are presented below [2007].

dx _ v _m-v

@, My 2.22
i dr T, 222)
dg _US(x,1)—¢ (2.23)
dt r '

a

In the equations above, x represents the position of the amoeba, v represents its velocity,
g represents the amoeba/s internally sensed gradient of the signal, 7, represents the decay
rate of the chemical signal, and z, represents the time necessary for the amoeba to orient
itself toward the signal. Since Dd and other cell types occasionally exhibit random errors
in the sensing of chemical stimuli, a small percentage of movements in the model are
purposefully random [Erban and Othmer 2007]. Additionally, the model is useless to
represent Dd in the presence of no chemical stimulus. In fact, Dd amoebae are assumed
to extend pseudopods randomly if no stimulus is available [Pollitt 2006, Erban and
Othmer 2007].

Of the models used for the mound and slug stages, that of Glazier and Graner
appears to hold the most merit in a classical sense [1993]. It is often cited and used or
modified to build models for mound formation and slug movement. This 2-D model was
created in 1993 to provide solid evidence that only portions of the Dd cell body need be
used to model the cell sorting that occurs during Dd mound formation and between
animal cells. The Glazier and Graner [1993] model makes use of a discrete Potts
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Hamiltonian equation to represent the total surface energy of a single amoeboid cell as
represented on a lattice. Note that the Potts Hamiltonian is typically used to model
magnetic spins on a lattice. This Hamiltonian attempts to represent many amoebae or
other types of cells as groups of like spins on a lattice. In the Glazier and Graner [1993]
model usually only two different types of cells are considered such as prespore and
prestalk amoebae. This equation is presented below.

Hpp = 2 J @0 D), 10 JO) W= O o) +

(i,/),(i',j') neighbors

A Z(G(U) - AT(O’))2 IzB(Ar(a))

spins o

(2.24)

In the equation above, the Hamiltonian, Hp,s, represents the total surface energy of a
lattice point, 6(i,j) represents the spin of one lattice site (which amoeba it belongs to),
t(o) represents the cell type associated with the spin ¢ (e.g., prespore or prestalk), J(t, t[)
represents the surface energy between different cell types, a(o) is the area (number of
lattice sites) occupied by the amoeba, A, is the number of lattice sites amoebae of type ©
should occupy, and A is a Lagrange multiplier used to indicate the strength of the
conservation of volume. ®(x) = {0, x <0; 1, x 7 0}is a step function used to turn the area
constraint on or off as a third cell type with no area constraint is used to represent the
lattice in the Glazier and Graner model [1993].

Glazier and Graner [1993] implemented a simulation of their model using three
cell types. The first two types referred to as light and dark types have high and low
surface energies, respectively. The third type has no area constraint and is used to
represent the area upon which the amoebae exist (i.e. the lattice). Note that this third type
is actually a cellular automaton (CA), and the other types are automata that interact with
the CA. Lattice sites occupied with a light or a dark cell contained a number
corresponding to the unique spin of that particular cell. As shown in Figure 2.9, use of
these spins allowed for edges between different cells to be identified. Simulation of this
model is actually quite simple. A large number of lattice sites are selected at random, and
their spins are switched to a neighboring spin located within a Moore neighborhood
according to an annealing schedule. This schedule is based upon the Hamiltonian in
Equation 2.24. Results of the Glazier and Graner [1993] simulation show that the
differing surface tensions between light and dark cells causes those of each type to
migrate toward one another and bundle with like types, effectively allowing for cell
sorting without any centralized form of intelligence. More recent simulations make use
of Potts Hamiltonian equation as part of a CA and a PDE model to create a 3D
representation of the slug and fruiting body stages of the slime mold life cycle [Savill and
Hogeweg 1997, Marée et al. 1999 [Migration[] Marée et al. 1999 Phototaxis[] Marée
and Hogeweg 2001, Segel 2001]. Both the Erban and Othmer model [2007] and the
Glazier and Graner model [1993] provide interesting cues for future work, which will be
discussed in Chapter 4.
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Figure 2.9: Amoebae as modeled by Glazier and Graner [1993].
Section 2.3.3 Educational Simulations

Two educational studies of slime mold have been previously noted in this chapter.
Those noted were Matthews' [2002] study from Generation5.org and Resnick's [1993]
study in Turtles, Termites, and Traffic Jams. Resnick [1993] employed a parallel version
of Logo called StarLogo in his work, and Matthews [2002] used Java along with a visual
interface in his work. The examples provided in both studies are similar in form and
application. Therefore, we will only discuss one in this section. Since Matthews'
example is more detailed, we will discuss it and formalize his model [2002]. This model
will divide the slime mold and its environment into a state space with cells and
neighborhoods and will include rules by which amoeba may update this space and exist
within it.

The models used by both Resnick [1993] and Matthews [2002] are cellular
automata and begin with a state space (i.e. environment) for the slime mold to live in and
modify. This state space is two dimensional in both models and is represented as a
toroidal space. One may visualize this space as a grid or image as shown in the figure
below, with sides that wrap around. Amoebae populate this state space and interact with
it. As one might expect, this state space is a cellular automaton and may be updated at
discrete time steps; i.e. it will be updated after every amoeba in the state space takes one
step [Resnick 1993, Ilachinski 2001, Matthews 2002]. Additionally, if a grid is used as
the state space it will be bounded to a fixed size.

The model used by both Matthews [2002] and Resnick [1993] assumes that the
amoebae have already begun starvation. At this point in the lifecycle, it is known that
amoebae deposit cAMP. Matthews' [2002] model assumes that the state space is
represented as a color image. Note that RGB values for color images each range from
zero to 255 as triples with zero representing the absence of a color and 255 representing
the full intensity of a color. Empty cells are represented as black, i.e. the triple (0, 0, 0).
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Cells containing an amoeba are represented as red, (255, 0, 0). Amoebae interact with
their world by depositing cAMP, but different amounts may be deposited in different
locations. Therefore, it makes sense to allow amoebae within our state space to deposit
cAMP within cells in the search space. cAMP values could be represented by arbitrary
values, but since Matthews is using an image to represent the state space, cAMP values
are allowed to range from 0 to 255 and will be represented as green [2002]. If an amoeba
is located in a cell that contains cAMP, only the color green will show (i.e. cAMP will
not be shown in this case). Additionally, at most one amoeba may occupy a single cell at
any given time step [Matthews 2002].

Figure 2.10: Example grid for slime mold state space.
Redrawn from [Monismith and Mayfield 2008]

A number of rules are employed to make the slime mold state space appear to act
as a real slime mold world. First, it is assumed that amoebae move one from one cell to
another cell in the Moore neighborhood of size one in a single time step. An amoeba
may not move into a cell that is occupied by another amoeba. This movement occurs at
random in the simulation if there is no cAMP in the Moore neighborhood. If there is
cAMP in the Moore neighborhood of an amoeba, that amoeba moves to the empty cell
containing the most cAMP (verify). If there are no empty neighboring cells, the amoeba
cannot move. Amoebae deposit cAMP at their previous location after each move. The
amount that they deposit is a fixed integer. Because cAMP values will be displayed as
green with their values ranging from zero to 255, adding cAMP to a cell should be done
using a small integer value x in the range [2, 10]. Formally, each cell that contained an
amoeba in the previous time step is updated according to the formula below, where £ is
the maximum cAMP value for a cell.

o, () +x, result<k

(2.25)
k, result >k

o, (t+]) :{
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cAMP is also assumed to evaporate from every cell after each time step. Evaporation
should be slower than deposit, so less cAMP is assumed to evaporate than is deposited.
Matthews implemented evaporation using the following formula.

o .(t)-1Lo (t)>0
o (¢+1y=] 7O 7O
"/ 0, og.,;=0

(2.26)

Note that once there is no more cAMP within a cell, no more evaporation may occur.
The last rule that is used within the state space is a spreading rule. It is assumed that
cAMP spreads from one cell to another after each time step. This is related to the
dissipation and evaporation that occurs with cAMP in the wild. To implement cAMP
spreading, a smoothing operator is applied to the Moore neighborhood of every cell. The
operator works by averaging all the cAMP values in the Moore neighborhood of a cell,
including the value in that cell. This allows a portion of every cell's cAMP to spread out
over its Moore neighborhood. In areas where there is a high concentration of cells
containing cAMP, this will have little effect, but in those areas where there are low
concentrations of cAMP, smoothing will attract amoeba and cause them to form mounds.
The smoothing operator rule is defined below.

g+l r+l 1
—0. (1), result<k
o, (t+])= [;1,;19 w @ (2.27)
k, result > k&

The smoothing operator has another interesting effect. On the outer edges of mounds, a
cAMP gradient is formed. This effect can be seen in the images below as a green halo
surrounding a group of amoeba. The gradient on the outer edges of a mound causes the
mound to attract additional amoeba toward it. Movement of the amoebae within the
mound eventually causes the mound to eventually move like a slug [Matthews 2002,
Monismith and Mayfield 2008].

The images below depict different time steps in Matthews' simulation of the slime
mold [2002]. The first image depicts the starting state consisting of starving amoebae,
which are all colored red. Empty space is shown as black. These amoebae begin
moving, making one move per time step and depositing cAMP along the way. After 100
time steps, small mounds are formed. After 1000 time steps, few individuals are left.
The small mounds have generated large halos of cAMP that engross groups of amoebae.
At times 5000 and 10,000, the small mounds have joined together to form slugs.
Eventually, all of the slugs will join together to form a single slug in this simulation.

The educational simulation provided here may be formalized to provide added
insight as to the process of creating a CA-based simulation of a population. Such
simulations involve two major parts [la world in which the amoeba exist and the amoeba
themselves. We will refer to the world as /7 and the set of amoeba as A. First, the world
consists of a state space X consisting of all the cells in which the amoebae exist. The
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world also has limiting boundaries B that define the size and shape of the space
[Mlachinski 2001, Monismith and Mayfield 2008].

Figure 2.11: Example from James Matthews' Slime Mold Program.
Results from time steps T =1 through T =10000 [Matthews 2002].

Additionally, the world uses a Moore Neighborhood, », and a set of local values for each
cell, T, that are in the discrete range [0,255]. Finally, the world has a starting state, S,
with all cells being initially set to zero and rules that apply to it alone; those being the
evaporative and smoothing rules explained above, which could be included in a set ©.
Each of these properties defines a world I that fits the definition of a CA as explained in
section 2.3.1.

W ={,B®,5,N, (2.28)
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The world is, however, uninteresting without amoebae that will interact with it and
deposit cAMP. Therefore, amoebae must be defined and formalized as well as an
addition to the CA, W. Note that an amoeba may exist within a cell in the state space,
and 1t has additional rules to interact with the state space. As explained above, each
amoeba deposits cAMP with each time step; it also attempts to move to another cell in its
neighborhood after each time step; lastly, only one amoeba may exist in one cell at any
given point in time. These rules may be contained within a set R. Each amoeba has a
location within the state space denoted as L and an initial location denoted as L. Thus, a
single amoeba a; may be defined as follows below.

a; ={R,L,L,} (2.29)

The set of amoeba A that interacts with the world # may then be defined as follows
below.

A={a,..) (2.30)

Thus, the complete CA for the slime mold world and its amoeba would consist of a set
containing the world /7 and the set of amoebae 4.

Slime Mold CA = {W, A} (2.31)

With this formalism, one can easily construct a simulation of a slime mold [Ilachinski
2001, Monismith and Mayfield 2008].

Section 2.3.4 Moving to Optimization

In this final section of chapter 2, initial attempts to convert the lifecycle of Dd to a
numerical optimization algorithm are discussed in brief. The first attempt made by the
author was completely based upon the algorithm presented in the previous section
[Matthews 2002]. This implementation was somewhat effective, but introduced several
problems. The first of these problems was the use of a grid as an overlay onto the search
space of the objective function. In short, this approach proves effective for functions of
low dimensionality; however, it is quite obvious that this approach requires O(nd)
operations at minimum where n is the least number of cells along one dimension of the
CA and d is the dimensionality of the search space [Lu and Yen 2003, Yen and Lu 2003].
Grids using an adaptive size may work, but the same problems will be faced, only on a
slightly smaller scale.

A slightly faster approach to the grid problem would be to use a sparse 1-
dimensional grid based upon uniformly distributed initial search locations. This can be
accomplished by producing a grid based upon a nearest neighbor algorithm. This process
limits the number of operations performed upon the grid with each iteration to O(kn)
where k is the number of neighbors of each grid point, and n is the number of grid points.
This process has an cost of O(kdn®) operations for a naive implementation where n is the
number of initialization points, d is the dimensionality of the problem, and k is the
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number of neighbors. This process is also costly because the grid locations may need to
be reassessed after several iterations [Arya et al. 1998]. A less costly grid can be created
using the e-Approximate Nearest Neighbor algorithm. This algorithm has a lower
initialization cost of O(dn log(n)), making it more suitable for use as part of an
optimization algorithm. Thus, in this section the nearest neighbor and approximate
nearest neighbor algorithms will be discussed to better familiarize the reader with them
[Arya et al. 1998, Mount and Arya 2006].

First, the nearest neighbor algorithm is investigated. This algorithm is a brute
force algorithm used to find the nearest neighbors of all the points in a set. Any distance
measure may be used in the algorithm; however, we will only consider the L, distance
measure in this work. The L, distance measure is defined as follows below.

dist = =311, [¥ (5, =)’ (232)

The nearest neighbor algorithm is quite simple. Given a set S of n vectors, all with the
same dimensionality, the user of the algorithm chooses an integer value k that must be in
the range [1, n]. Typically, k& is chosen to be less than or equal to D, the dimensionality
of each vector. The algorithm then ascertains the k vectors from S that are closest in
distance to each of the n vectors in S, using the prescribed distance measure. The brute
force method of doing this is to compute the distance from each vector to every other
vector in the set and store the distances in a table. Then for each vector v in the set S,
choose the k& vectors with the shortest distances to v [Arya et al. 1998].

Algorithm 2.10: K_NearestNeighbors(k, S)

Create a table T of distances from each vector to every other vector.
Create an array L of size S.size containing empty lists.

For each vectorvin S,
Fori=0to k-1,
Find the nearest vector x to v using T.
Add x to L[v].
Mark x as used.
End for.
End for.

Because the time costs of the k-nearest neighbor algorithm are high, many
attempts have been made to improve upon it. The e-Approximate Nearest Neighbor (-
ANN) algorithm of Mount and Arya has proven to be an effective algorithm for finding
neighbors in a reasonable amount of time, and the authors of the algorithm have provided
a package form so that researchers need not go to the trouble of recreating this complex
algorithm [Mount and Arya 2006]. Therefore, discussion of this algorithm will be
limited to a short description of the data structures used, benefits, and fallacies.

43



The e-ANN algorithm offers substantial time savings over the naive nearest
neighbor algorithm through the use of box-decomposition trees and allowances for
nearest neighbors to be approximated. Box-decomposition trees are similar to KD-trees
and allow for partitioning of a space based upon its dimensionality and the number of
points that lie within the space. Partitions are made along each dimension to divide sets
of points, and data structure linkages are made between divisions to indicate divisions
when neighbors are to be found. Divisions in the tree are made until the number of points
contained within each node is few. Doing so allows for a search for neighbors in the tree
to be executed quickly. Actual creation of a box-decomposition tree is more complicated
than the previous discussion, but the discussion is enough for the reader to grasp an
understanding of how e-ANN works. After creation of the tree, the algorithm may
ascertain the k approximate nearest neighbors of any given point. These neighbors are
referred to as approximate because the algorithm searches for neighbors within a
hypersphere of radius (1 + €)*r, where r is the distance to the nearest neighbor of the
point in question. Using this property, e-ANN can find the k approximate nearest
neighbors of a point with relatively good accuracy for spaces having upwards of 16
dimensions [Arya et al. 1998, Mount and Arya 2006].

In the next chapter, the creation of the Slime Mold Optimization Algorithm will be
discussed [Monismith and Mayfield 2008]. Results and some comparisons to existing
algorithms will also be provided. Continuing work on this optimization algorithm will be
discussed in a further chapter. Consequently, each of the previously discussed topics is of
importance to the creation, testing, or comparison to the algorithm that will be discussed
in the next chapter and to future work to be completed upon the algorithm.
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CHAPTER III

III. SLIME MOLD OPTIMIZATION ALGORITHM

In the previous chapter, discussion of the lifecycle of Dictyostelium discoideum
(Dd) and simulations thereof was provided. Additionally, many examples of existing
optimization algorithms were reviewed. This information laid the groundwork for the
discussion of a new optimization algorithm. In this chapter, the move is made from
biology and simulation to an algorithm capable of numerical optimization. Here the
Slime Mold Optimization Algorithm is presented and discussed in detail. This algorithm
uses a multi-step process for optimization with each step being related to a stage in the
lifecycle of Dd [Monismith and Mayfield 2008].

Briefly, the portions of the Slime Mold Optimization Algorithm are presented
below. This algorithm is able to solve single objective optimization problems using a
multi-step approach mimicking the lifecycle of the slime mold [Monismith and Mayfield
2008]. The approach begins with the vegetative state, which allows for directed random
movement of agents representing amoebae. This movement is similar to that of a slug
searching for food along a folate gradient [Kessin 2001]. These agents, referred to as
amoebae, search for new personal optima within the search space of an optimization
problem. Before amoebae begin moving, their initial locations are stored and used as the
nodes in a grid [Monismith and Mayfield 2008]. This grid and the linkages between its
nodes are built using the e-Approximate Nearest Neighbor (e-ANN) algorithm [Arya et
al. 1998]. The vegetative stage ends when a significant number of amoeboid agents have
difficulty finding new optima. At this point amoebae enter the aggregative state. They
begin depositing an arbitrary amount of "cAMP" (represented as an integer value) at each
node (i.e. cell) within the grid. Cells are attracted in the direction of their personal best
and in the direction of the nearest cAMP source. These amoebae are drawn toward a
pacemaker amoeba that is chosen as the best location within the group [Monismith and
Mayfield 2008].
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Algorithm 3.1: Slime Mold Optimization Algorithm

1. For each amoeba,

2 Assign the amoeba a random location within the search space.

3 Evaluate the objective function at that location.

4 Initialize the amoebals personal best objective function value and location.

5. Set the amoeba!s state to VEGETATIVE.

6. End for.

7. Archive the best objective function value from the population of amoebae.

8. Input the locations of each amoeba to e-ANN and create a mesh based on the results.
9. For each time step ,

10. For each amoeba,

11. Switch (Amoeba state)

12. Case VEGETATIVE: VegetativeMovement; End Case.
13. Case AGGREGATIVE: Aggregation; End Case.

14. Case MOUND: MoundFormation; End Case.

15. Case SLUG: SlugMovement; End Case.

16. Case DISPERSAL: Dispersal; End Case.

17. End switch.

18. End for.

19. Convert an aggregate to a mound if such an aggregate exists.
20. Convert a mound to a slug if a mound exists.

21. Disperse any slugs that have not updated their personal bests for a significant

amount of time.
22. Update the grid if necessary.
23. End for.

Once most of the aggregative amoebae are densely populated about the
pacemaker, these agents are allowed to enter the mound stage. The mound stage
encompasses the formation of a new data structure relating all the previously aggregative
amoebae to each other through the use of another e-ANN grid. This grid separates the
mound from the other elements of the population that may be in different states. After
this data structure is created, all amoebae within the mound are converted to the Slug
state. In the slug state, amoebae are limited to make smaller movements in relation to the
size of the slug and distances between each of its members. After improvements fail for
a number of time steps, the amoebae within the slug are dispersed randomly through the
search space. Their states are set back to vegetative and the cycle begins again
[Monismith and Maytield 2008]. Pseudocode for the Slime Mold Optimization
Algorithm is provided above in Algorithm 3.1.

This chapter provides a detailed discussion of the slime mold optimization
algorithm. It is based upon existing algorithms including stochastic random search,
particle swarm, and e-ANN [Corne et al. 1999, Kennedy and Eberhart 1995, Arya et al.
1998]. The algorithm provides a multi-tiered approach to solve single objective
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optimization problems. Detailed discussion of this algorithm begins with its initialization
and the data structures used therein, including the e-ANN grid. Additionally, each of the
stages of the Dd lifecycle, as used in the algorithm, is described. We start with the
vegetative stage to describe the random search used. Next, the data structure and
methodology used for the aggregative state are provided. Finally, the data structure for
the mound stage and movement for the slug stage are detailed. Results for the slime
mold optimization algorithm and their analysis are provided in the final section of this
chapter [Monismith and Mayfield 2008].

Section 3.1: Initialization and Preliminary Data Structures

The Slime Mold Optimization Algorithm begins, much like other EAs, with
initialization. Initialization includes several key data structures: an e-Approximate
Nearest Neighbor tree that will represent the grid, a population of amoebae, a list of
mounds, a list of pacemakers, the individual amoebae, and an archive [Corne et al. 1999,
Monismith and Mayfield 2008]. Additionally, various calculations are made and random
number generators are initialized. These steps are detailed in this section.

Initialization begins with the amoebae themselves, but before their initialization
can be discussed their structure must be described. An amoeba is represented as an
object, and as such it has many important member variables and methods. Since an
amoeba is a representation of an individual in an evolutionary algorithm it has as it[s
most important parts a search space location and an objective function value [Corne et al.
1999]. Each amoeba also has a personal best location and a personal best objective
function value [Kennedy and Eberhart 1995]. In addition to the normal EA individual
variables, each amoeba includes a grid position and a state. These are used to denote the
amoebals position in the e-ANN grid and its current functional state, which may be
VEGETATIVE, AGGREGATIVE, MOUND, SLUG, or DISPERSIVE. Amoebae each
contain additional variables pertinent to their current state. These indicate movement via
pseudopodia and [hunger! Jin the vegetative state; time spent aggregating in the
aggregative state; and velocity in the slug state [Kennedy and Eberhart 1995, Kessin
2001, Monismith and Mayfield 2008]. State specific variables will be discussed in detail
in respective sections later in this chapter.
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Amoeba

-f double

-x double [

-f_bes! double

-x_besl double [
-localSearchTime int
-mealCount int

-state int
-pseudopodFunctionValue double [
-pseudopodLocatior double [][]
-aggregationTime int

-velocity double [

-sigma double [

-moundTime int
-MIN_SEARCH_TIME int consl
-NUM_PSEUDOPODIA int consi

+isStarving() : bool

+changeState(in Parameter1 int) : void

+localSearch() : int

+aggregateSearct (in Parameter1 double [ in Parameter2 double []) : int
+mound(in Parameter1 double [ in Parameter2 double []) : void
+computeSporeLocation(in Parameter1 double [ in Parameter2 double []) : void

Figure 3.1: UML diagram of the Amoeba object.

Given the data structure for each amoeba, population initialization can be
examined. The population is an array of amoebae. Its size is fixed at initialization. Each
amoeba in the population is initialized with a random starting location chosen from a
uniform distribution, and its objective function value is computed. Likewise the personal
bests are set based upon the initialization values. Each amoebals state is initialized to
vegetative, and its grid position is set to be the same as its index in the population array.
All other amoeba variables are initialized to zero or empty [Monismith and Mayfield
2008].

After the amoeba population has been initialized, several additional steps must be
taken to ensure proper functionality during iteration. First, an array is created to allow
for counting of amoebae at each e-ANN grid point during aggregation. This will allow
for an aggregate (mound) to be created once a size threshold has been met. Additionally,
an array is created to contain the initial amoeba positions. This array of positions is used
to initialize the e-ANN data structure and to retain the locations for this data structure
throughout the runtime of the program. Indices of each data point relate to a grid
position. These indices also match with the previously created aggregation count array.
After the e-ANN data structure has been initialized, approximate nearest neighbors may
be found. These neighbors may be used to compute the average distance between data
points along each dimension. They may also be used to direct movement during the
aggregation phase when cAMP is being deposited at positions in the grid. Finally, an
archive is created, and the best position from the initial population is stored within the
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archive [Monismith and Mayfield 2008]. Thereafter, the iteration portion of this
evolutionary algorithm begins.

Section 3.2: Vegetative Search

Iteration of the slime mold optimization algorithm begins with the vegetative
search. This search is based upon the vegetative state of the Dd amoeba. Vegetative
amoebae are independent agents that search for food. Models of their movement when
searching for food are abundant. These range from simple random movement to
complicated statistical models or differential equations. Choosing a search strategy to
represent the vegetative stage of the Dd lifecycle thus includes many possibilities [Kessin
2001, Erban and Othmer 2007]. These choices include directed random search, simplex
search [Spendley et al. 1962], and variants of direct search, especially that of [Hooke and
Jeeves 1961]. Each of these can be or is shaped to represent the type of search carried
out by a live amoeba. That is, these types of searches can represent searching for food
independently via the use of a pseudopod, and they are good at finding local minima. For
the slime mold optimization algorithm, a directed random search will represent the
vegetative search [Monismith and Mayfield 2008]. Other search variants will be
considered in the next chapter.

Initial reading about slime molds from a modeling perspective presented
movement during the vegetative state as a directed random search for food [Matthews
2002, Resnick 1994]. Information about amoebae and their movement, however,
indicates otherwise. Amoebae have pseudopods that they extend to perform a search for
food. Modeling the exact movement of an amoeba is a difficult task, though. Thus, the
approach used here is a directed random search that is intended to represent pseudopod
extension. Additionally, amoebae transition from a vegetative state to an aggregative
state. This transition is made through starvation. An adequate representation of
starvation from the standpoint of numerical optimization is time spent searching. The
ratio of updates to personal bests to time spent searching is a good representation of an
amoebals [food![ lintake [Monismith and Mayfield 2008].

We now provide a run through of the steps taken by an amoeba during its
vegetative state. Using a fixed number of pseudopodia, the directed random search

chooses a new location for a psuedopod along each dimension using the formula below
[Corne et al. 1999, Monismith and Mayfield 2008].

pop,(t).pseudopod,.x; = ¢ IN(O1) E, (d, ) + pop, (t-1)x,, (3.1)

This formula is evaluated for each pseudopod & of an amoeba. In the formula above,
E;(dneighbor) 18 the average distance to a neighbor along dimension j, and the constant ¢
may be reduced as time progresses. After each pseudopod has been created, the result
popi(t).pseudopody.fis evaluated for each pseudopod. Performing this search for each
pseudopod is equivalent to performing a local search about the amoeba, which is what a
real amoeba does with its pseudopodia. Once the objective function has been evaluated,
the best result from the pseudopodia is compared to popi(f).f , the best objective function
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value for the amoeba, and, if Ehe best pseudopod result is better than popi(7).f , it replaces
popi(t)f . Likewise, popi(f).x 1is replaced with the search space location of the best
pseudopod [Monismith and Mayfield 2008].

Provided with all the pseudopodia and their results, we must determine if the
amoeba is starving and obtain new values for the amoebals location and objective
function value, i.e. popi(?).f and pop;(f).x, respectively. These values are chosen either at
random or using a roulette wheel. The decision between making a random move and a
roulette wheel is based upon a probability p. With probability p, a pseudopod is chosen
at random for a move, and with probability 1 [Ip, a pseudopod is chosen based upon the
strength of its objective function value to replace popi(?).f and popi(f).x. Additionally,
with every time step, the local search time counter is incremented. If one of the
pseudopodia provided an improvement to popi(f)./ and popi(f).x , then a [ineal Jcounter
is incremented to indicate that the amoeba was [fed! /during that time step. The use of
these counters allows for starvation to be determined by a formula. Starvation may be
represented as the ratio of the time the amoeba has spent without improvement (i.e.
without a meal) to the total time spent searching. We can decide if an amoeba is starving
via the probability equation below [Arabas et al. 1994, Yen and Lu 2003, Monismith and
Mayfield 2008].

t .
x< unimproved
P( Uiitetime J (3-2)
gx)=lLfor0<x<],

In the equation above, which is employed for an amoeba after it has searched for a fixed
number of time steps, X is a random variable with uniform distribution g(x), funimproved 15
the time spent without a meal and #izime 1S the total time spent performing local searches.
Provided x is less than the ratio above, the amoeba is determined to be starving;
otherwise, the amoeba is assumed to be well fed. Once an amoeba is starving, its state is
changed to AGGREGATIVE [Monismith and Mayfield 2008].

Algorithm 3.2: Vegetative Movement

1. popi(t).localSearchTime  popi(t).localSearchTime + 1

2. For each pseudopod £,

3. For each dimension j,

4. popi(t).pseudopody.x;  c*Ei(dncighbor) *N(0,1) + popi(t-1).x;

5. Ensure that the result above is within the bounds of the problem space.
6. End for.

7. popi(t).pseudopody.f  f(popi(t).pseudopody.x)

8. Retain the best pseudopod as popi(t).pseudopod.f* and its location as

0. popi(t).pseudopod .x*.

10. End for.

11. If ( popi(?).pseudopod.f* < popi(t).f*)
12.  popi(t).f*  popi(f).pseudopod. f*
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13.  popi(H).x*  popi(t).pseudopod.x*

14.  popi(t).mealCount  pop;i(t).mealCount + 1

15. End if.

16. If (rand(0,1) <p)

17. Select a pseudopod, n, by its fitness fusing a roulette wheel.
18. Else,

19. Select a pseudopod with index 7, at random.

20. End if.

21. popi(t).f  popi(t).pseudopod,.f

22. popi(t).x  popi(t).pseudopod,.x

23. If (rand(0,1) < (popi(t).localSearchTime - popi(t).mealCount)/popi(t).localSearchTime
24. and popi(t).localSearchTime > MIN_SEARCH_TIME),

25. Change the state of the amoeba to AGGREGATIVE.

26. Update the amoebals grid location using the e-ANN grid.
27. End if.

Algorithm 3.2: Vegetative Movement, provided above, details the sequence of
events that occur during vegetative movement. To recap, this algorithm allows for a
local search by one amoeba. That amoeba searches in a fixed number of directions for at
least MIN_SEARCH_TIME time steps. If a pseudopod is an improvement over the
personal best of the amoeba in question, the best location, popi(¢).x*, and objective
function value, popi(?).f*, are updated. Update in the position of the amoeba is provided
through random selection of a pseudopod with probability p and selection of a pseudopod
by roulette wheel with probability p-1. Starvation occurs when the local search time has
surpassed the minimum starvation age, MIN  SEARCH_TIME, and a random variable is
less than the ratio of lack of meals to local search time, i.e. Eq. (2) is met. Provided these
circumstances, the amoeba is converted to the AGGREGATIVE state and its e-ANN grid
location is recorded [Monismith and Mayfield 2008].

Section 3.3: Aggregative Search

Aggregative search is the first state in which amoebae are involved in a
cooperative effort. This state begins with a search for the nearest grid location with the
most cAMP. Once this location is found, it is tagged for use while searching. Next, the
search begins. The aggregative search allows amoebae to move in a directed fashion
toward the area with the most cAMP. Amoebae make movements in a similar fashion to
particle swarm following their own personal bests and being attracted to the area with the
most cAMP. As amoebae in this state move, they drop cAMP on the grid [Resnick 1994,
Matthews 2002, Monismith and Mayfield 2008]. The closer they are to reaching a
minimum, the more cAMP is dropped. Once enough amoebae have aggregated about a
single location, the aggregate becomes a mound. Cells that exist in an aggregative state
for too long a time will revert to the vegetative state. The steps of the aggregative state
are discussed in detail below [Monismith and Mayfield 2008].
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At the beginning of an aggregative search step, a search must be made for the
nearest grid location with a large amount of cAMP. To do so, an e-ANN search is made
for the nearest neighbors about the closest grid point to the amoebals current location,
popi.x. An example of an e-ANN grid is provided below.

Figure 3.2: Approximate Nearest Neighbor Mesh,
2-D with 4 neighbors per node [Monismith and Mayfield 2008].

Next, out of these nearest neighbors a search is made for the grid location with the most
cAMP. This location is tagged for later use. After finding the largest cAMP source, a
move is made [Monismith and Mayfield 2008].

Making a move during the aggregative phase is a multi-step process. It is quite
similar to the process used during particle swarm, as both velocity and position update
formulae are used. First, the elapsed aggregation time is incremented. Next, a velocity is
computed based upon the direction of the cAMP source and the direction of the previous
best location found. A small value from a normally distributed pseudorandom number
generator is added to this velocity to protect against a null velocity. The formula for
velocity update is provided below [Kennedy and Eberhart 1995, Monismith and Mayfield
2008].

pop[ (t + 1)'Vj = cl [pop[ (t)'vj + CZ [(gridbesticAMPiNeighbor (t)‘xj - popi (t)xj) +

YN (O.D) (3.3)

¢; Mpacemaker (t).x, = pop,(1).x,) + ¢, I, (d s
In this formula the velocity for amoeba i at dimension j is represented as popi(?).v; for
time ¢. The grid location containing the amoebals neighboring e-ANN grid point is
provided as gridyest camp Neighbor-Xj(?) at dimension j. The location of the best aggregating
amoeba is represented as pacemaker xj(t) at dimension j and time ¢. The average distance
between grid locations along dimension j is represented as Ej(dneighvbor). Constants ¢y, ¢z,
c3, and ¢4 are set to values less than one to reduce the population explosion effect that
may occur when using particle swarm formulae. After the new velocity has been
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computed, the velocity is used to update the current position. The formula for position
update is provided below [Kennedy and Eberhart 1995, Monismith and Mayfield 2008].

pop,(t +1).x; = pop,(t).x, + pop,(t +1).v, (3.4)

At this point the algorithm must ensure that the new location is within the bounds of the
problem space. If it is not, the location must be adjusted to the bounds of the space along
the appropriate dimension. The location may then be evaluated using the objective
function to provide a new objective function value. Provided the new objective function
value is a new personal best for the amoeba, the personal best for that amoeba is updated,
and the maximum amount of cAMP is deposited at the closest grid location. If a new
personal best is not found, cAMP proportional to the strength of the amoebals new
objective function value is deposited at the nearest grid location. The formula for cAMP
deposit at a grid location is provided below [Matthews 2002, Monismith and Mayfield
2008].

(t+1).
grid, (t).cAMP + ¢ U norm M
pop,(t+1).1°*

grid (t +1).cAMP = (3-5)
k, grid,(t +1).cAMP 2 k.

B grid, (¢t +1).cAMP<k

In this formula, we see that the grid update is provided based upon the ratio of the
amoebals personal best to its current location. The maximum amount of cAMP in that
may be deposited in a single state space location at a particular time step is provided as
the constant ¢, and the total amount of cAMP at a grid location may not exceed the
constant k& [Matthews 2002, Monismith and Mayfield 2008].

Once a new location for the amoeba has been found, the grid is updated, and
transition to another state must be considered. Amoebae can transition to the mound state
if two conditions are met. First, there must be at least as many amoeba in the
AGGREGATIVE state as there are possible neighbors at one particular grid location.
Next, the amoebae must pass the following formula test.

p[x < grid . (t).aggregateCount - minAggrega teCountJ

aggregateCountThreshold (3.6)

g(x)=Lfor0<x<l.

In the equation above, x is a random variable with distribution defined by g(x).
Additionally, minAggregateCount is the fewest number of amoebae that may exist as an
aggregate, and aggregateCountThreshold is the preferred minimum number of amoebae
that may exist as an aggregate. This is calculated as the population size (number of
amoebae) divided by the number of neighbors and causes formula (3.6) to have little
effect when large numbers of neighbors are used. gridi(t).aggregateCount is the current
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number of amoebae that exist at position 7 in the grid. If the criterion above is met, a
mound is created at the grid location in question. All amoebae within the vicinity of the
grid location are converted to the MOUND state, and a data structure for the mound is
created. If said criteria are not met, the group of aggregating amoebae are not converted
to the mound state. Amoebae that stay in the aggregative state for too long a time and for
which the following criterion is met are reverted to the vegetative state.

[gridi(t).aggregateCount < j
X

pop, (t).aggregationTime (3.7)

g(x)=Lfor0<x<1

In the equation above, x is a random variable with distribution defined by g(x). This
allows for the amoebae to continue with further local searches and gives them a chance to
join another aggregate [ Arabas et al. 1994, Yen and Lu 2003, Monismith and Mayfield
2008].

Algorithm 3.3: Amoeba Aggregation

1. Find the grid location nearest the amoebals current location, pop;(¢).x in the e-ANN
tree and store said location in pop;(¢).gridLocation

2. Performing the previous search also yields the amoeba's nearest neighbors in the grid.
Determine which of those neighbors has the most cAMP. Retain the index of that
neighbor as neighbor WithMostCAMP.

3. If more than one neighbor has the same amount of cAMP as the previously chosen
neighbor, choose one of the neighbors with the largest amount of cAMP at random,
and store that grid location(s index as neighborWithMostCAMP.

4. popi(t).aggregationTime  popi(t).aggregationTime + 1

5. Evaluate equations (3.3) and (3.4) for each dimension of the decision space.

6. Determine the amount of cAMP to deposit using equation (3.5), and deposit that
amount of cAMP at grid index neighborWithMostCAMP.

7. 1If the new objective function value is a personal best, update popi(t).f*.

8. If the personal best of popi(f) has been updated check to see if the archive should be
updated as well.

9. If popi(?) fails either equation (3.6) or (3.7), revert to the VEGETATIVE state.

10. Otherwise, increment the aggregate count at grid index neighbor WithMostCAMP.

Section 3.4: Slime Mold World

Up to this point, references have been made to the grid, but it has not been
discussed in detail. The grid is a cellular automaton that is the focal point for interaction
between aggregating amoebae. This interaction is facilitated by the deposit of cAMP on
the grid and its spread and evaporation similar to that explained in Section 2.3.3
[Matthews 2002]. Therefore, updates to these equations will be provided. Moreover, in
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this section the data structure used to create the grid and the modifications to the grid
update functions will be provided.

The base unit of the cellular automaton is the cell. Cells of the state space in this
work are represented as an object with a number of attributes [Ilachinski 2001]. For the
algorithm in this work, these include a cAMP value, a neighborhood derived from the e-
Approximate Nearest Neighborhood, a location within the bounds of the problem space,
and a count of the number of amoebae attempting to aggregate at a given cell.
Additionally, constants are provided as a part of this data structure to place upper and
lower limits on the cAMP values and the aggregate count [Monismith and Mayfield
2008]. A UML diagram of this structure is presented below.

Cell

+x double [

+aggregateCount int

+CAMP int

+neighborhooc int [

+k int static const

+minAggregateCouni int static const
+maxAggregateCouni int static const
+updateNeighborhooc (inout newNeighborhooc int [])
+update_cAMP(in new_cAMP int)
+updateLocatior (inout newLocatior double [])
+updateAggregateCouni(in newCouni int)

Figure 3.3: UML diagram of the Cell data structure.

The helper methods provided in the UML diagram above allow for the update of cells as
needed by the amoebae and the automaton.

The Cellular Automaton (CA), which may be referred to as the Slime Mold
World, consists of a grid of cells, represented as an array, with its neighborhood
represented based upon data obtained from an e-ANN tree [Monismith and Mayfield
2008]. After its construction, the e-ANN tree may be queried to find the approximate
nearest neighbors of each cell [Mount and Arya 2006]. During initialization of the slime
mold optimization algorithm, locations are stored in the e-ANN data structure as an array
in the same order they are stored in the grid, which is also an array. Thus, their array
indices are the same. Therefore, initialization of the neighborhood via e-ANN queries is
straightforward (it only requires the index values returned be stored in the corresponding
grid location. A UML diagram of the Slime Mold CA is provided below.

SlimeMoldCA

-grid Cell [

-kdTree ANN_kdtree

+updateCellcAMP(in pos int in cAMP int)
+getCell(in pos int): Cell

+updateWorld()

Figure 3.4: UML diagram of the Slime Mold CA data structure.
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In the diagram above, functions to update the grid are provided. Of the provided
functions, the first serves to allow the amoebae to update the amount of cAMP 1n a cell
by depositing it during the aggregative state. The next function allows for access to the
values of particular cell. The last function allows for update of the entire CA via the
evaporation and spreading functions explained in section 2.3.3 [Matthews 2002].
Evaporation for the CA is carried out using the formula below.

id (1 +1).cAMP grid (t).cAMP -1, grid,(t).cAMP >0 53)
ria . C = .
o 0, grid,(t).cAMP =0

The formula above allows for the slow removal of cAMP from the grid via evaporation in
the same manner as the evaporation formula of section 2.3.3 [Matthews 2002, Monismith
and Mayfield 2008]. The formula for spreading or smoothing of cAMP, which is also
quite similar to that of the previous chapter, is provided below.

1 & . .
grid,(t +1).cAMP = m; grid, ;,(¢).cAMP, grid (t +1).cAMP < k

k, otherwise (3.9)

, grid (t).neighborhood ,, j <q
hGi)=1. Ay

Note that in the formula above, g represents the number of neighbors used in the
algorithm, and the function A(j) allows for computation of the indices of the approximate
nearest neighbors, which are needed to complete the smoothing function. This formula is
different than the smoothing formula of section 2.3.3 in only one aspect; it makes use of
the CA[S e-ANN information to allow for update of cAMP [Matthews 2002, Monismith
and Mayfield 2008].

Section 3.5: Mound Formation

At the end of the aggregative stage, Dd amoebae begin to form a mound. These
amoebae encapsulate themselves in a slime sheath, thus separating them from the rest of
the world [Kessin 2001]. For the slime mold optimization algorithm, mound formation is
represented as the formation of the data structure to encapsulate a group of aggregating
amoebae that will later emulate the slug stage of Dd. Since mound formation is
represented by the formation of a single data structure, this step in the algorithm only
requires one time step. For mound formation to begin, a cell and group of amoebae must
meet the criterion of formula 3.6. In form, this data structure is much like the
neighborhood, CA, and population of the entire slime mold algorithm because it is simply
a smaller version of the automata in which the main population exists [Monismith and
Mayfield 2008].

During formation of the mound, there are several important initialization steps
that must be taken before conversion to the slug state. To amortize the costs of creating
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e-ANN trees across iterations, only one mound is created per time step. To create the
mound, first, a search is made for the grid location (cell) with the largest number of
associated amoebae. The number of amoebae in the aggregative state at this grid location
is tested using formula 3.6. Provided this grid location satisfies formula 3.6, each
amoeba in the aggregative state that is associated with that grid location has its state
changed to the mound state. The mound data structure is then created including a
reference to each of these amoebae as part of the data structure. Continuing with the
mound formation, an amoeba is chosen from the members of the mound to become the
head of the slug. The amoeba chosen as the head is the amoeba with the best function
value out of all the amoebae that are part of the mound. During the slug stage, the head
of the slug will be represented as the amoeba with the best objective function value. The
location of this amoeba will be used in a particle swarm formula to drive other amoebae
in the slug (i.e. the members of the tail) toward better objective function values
[Monismith and Maytield 2008].

The last part of forming the mound involves creating a neighborhood for the
amoebae of the mound to move about when they become part of the slug. This
neighborhood may be represented as an e-Approximate Nearest Neighborhood, with the
e-ANN tree, which is either a KD-tree or Box Decomposition Tree, as the key data
structure of the neighborhood [Arya et al. 1998]. The new neighborhood that is created is
separate from that of the main population of the slime mold optimization algorithm;
although, it functions in a similar manner. Just like the e-ANN data structure of the main
algorithm, this data structure is used as a mesh overlaid on the decision space. The main
purpose of this mesh is to compute distances between amoebae within the mound and to
establish a quick means of locating an amoebals neighbors while in the slug stage. An
example of the mesh used for the mound and slug stages is presented below in
conjunction with the mesh used for the population of all amoebae.

Figure 3.5: Approximate Nearest Neighbor Mesh and Mound Mesh (inner mesh), 2-D with 4
neighbors per node [Monismith and Mayfield 2008].

Above, in Figure 3.5, the smaller mesh represents the mound and the larger mesh
represents the mesh for the entire population of amoebae. This figure also shows that
there are no linkages between the mound and population meshes [Monismith and
Mayfield 2008].
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Once the necessary pieces for the mound data structure are intact, it may be used
as part of the slug. The mound consists of a population of amoebae, a mesh representing
neighborhoods, and the average distance between mesh locations. It is quite similar to
the data structures used for the main population [Monismith and Mayfield 2008]. In the
next section, when it is used as the attributes of the slug its functionality will become
quite different than that of the population as a whole.

Algorithm 3.4: Mound Formation

1. If there are any aggregating amoebae and gridmaxaggind-aggregateCount >
numNeighborsFind the grid location nearest the amoebals current location, popi(t).x
in the e-ANN tree and store said location in pop;(f).gridLocation

2. Performing the previous search also yields the amoebals nearest neighbors in the grid.
Determine which of those neighbors has the most cAMP. Retain the index of that
neighbor as neighbor WithMostCAMP.

3. If more than one neighbor has the same amount of cAMP as the previously chosen
neighbor, choose one of the neighbors with the largest amount of cAMP at random,
and store that grid location|(s index as neighborWithMostCAMP.

4. popi(t).aggregationTime  popi(t).aggregationTime + 1

5. Evaluate equations (3.3) and (3.4) for each dimension of the decision space.

6. Determine the amount of cAMP to deposit using equation (3.5), and deposit that
amount of cAMP at grid index neighborWithMostCAMP.

7. 1If the new objective function value is a personal best, update popi(z).f*.

8. If the personal best of popi(f) has been updated check to see if the archive should be
updated as well.

9. If popi(?) fails either equation (3.6) or (3.7), revert to the VEGETATIVE state.

10. Otherwise, increment the aggregate count at grid index neighbor WithMostCAMP.

Section 3.6: Slug Search

From a biological perspective, once Dd mound formation is complete, Dd
amoebae have organized themselves into two separate and equally important sections.
These are the head and tail of the slug. The head and tail allow for the slug to become
motile. Amoebae in the head emit cAMP to direct motility in the tail [Hogeweg and
Savill 1997, Marée et al. 1999 [Migration! ] Marée et al. 1999 [Phototaxis[] Marée and
Hogeweg 2001, Kessin 2001]. The equations of such movement, however, are still being
researched by the author. Therefore, slug movement for the Slime Mold Optimization
Algorithm is simplified. Instead of using multiple amoebae for the head, a single amoeba
is used. The remaining amoebae in the slug perform similar movements to those used in
the aggregative stage, with some modification [Monismith and Mayfield 2008]. This
section details the slug data structure and the search methodology therein.
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The slug object consists of the mound structure discussed in the previous section
and two important update methods. The first of these is a method to update the e-ANN
mesh, for which two possible implementations are presented. One of these is based upon
the change in spread of the amoeba populating the slug, and the other simply updates the
mesh and its associated tree with each time step. The second is a method to provide
information about the slug to the amoebae that are part of it as they move. This method
is necessary because the amoebae operate independently using the slug data structure
only as a means of communication. The information provided includes the average
distance between slug members based upon the e-ANN mesh, the location of the amoeba
representing the head of the slug, and the location of the approximate nearest neighbor
with the best current objective function value. This search includes the aforementioned
information, which is used as part of a search formula similar to equations 3.3 and 3.4
[Monismith and Mayfield 2008]. The two methods described above are presented below
in detail.

In many aspects, the search methodology for the slug is similar to that used by the
individual amoebae of the slime mold world. It makes use of an e-ANN mesh for a
nearest neighbor search and it makes use of a population, although the population is
smaller than that of the main population and a slightly different nearest neighbor search.
The slug search also makes use of particle swarm formulae for its movement. There are
some slight differences between the amoebae of the slug and the amoebae of the entire
slime mold world. First, the slug population is isolated from the rest of the slime mold
world. Thus, there are no cAMP interactions between members of the slug and the rest of
the world population. Instead, interactions only occur between members of the slug.
During each time step, each member of the slug is given an opportunity to move from its
current location to a new one. Before movement begins, an approximate best neighbor is
found using the slug(s e-ANN tree that was created in the mound stage. The best
neighbor and head of the slug are used together as part of a particle swarm velocity
formula as described below.

slug, (1 +1).v; = ¢, [slug (0).v; + ¢, [(SIUG . innneighsor (DX ; —slug (t).x;) + (3.10)
c3 |l‘s‘lughead (t)x/ - Slug[ (t)xj) + C4 lI‘j (dneighbor) U\/(O’l) .

In the formula above, the velocity for the ith amoeba of the slug along dimension ; of the
search space at time ¢ is represented as s/ug;(z).v;. Similarly, the location for the same
amoeba in the objective function space is represented as s/ug;(t).x;. The locations of the
head amoeba and best neighboring amoeba are represented using the same notation but
with the subscripts head and bestANNNeighbor, respectively. To recap, the head amoeba
is the amoeba within the slug having the best objective function value and corresponding
location. The average distance to a neighboring amoeba along dimension j is represented
as Ej(dyeighvor) [Kennedy and Eberhart 1995, Coello Coello and Lechuga 2002, Monismith
and Mayfield 2008]. Since the Clerc and Kennedy work has shown that large constants
for PSO equation will cause population explosion, constants c;, c,, ¢3, and ¢, are chosen
such that they sum to one to prevent amoebae from overshooting the coverage area of the
slug by a large distance [2002]. This formula allows for the amoeba to move both in the
direction of its best neighbor and the slugls pacemaker with slight jitter from the random
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component to continue movement during those cases where the positions of an amoeba
and its neighbor or the head might be one and the same. The position update formula is
presented below. It allows for the update of the position of the amoeba using the velocity
formula above.

slug, (¢ +1).x; = slug (¢).x; +slug,(t +1).v, (3.11)

This formula is the same as equation 3.4 and serves the same purpose. Once the location
vector, slugi(t+1).x, has been computed, its dimensional values are compared to the
bounds of the decision space along each dimension. Any dimensional value of
slugi(t+1).x that falls outside of the decision space bounds is clamped to the bound.
Thereafter, the objective function is evaluated at s/ugi(#+1).x and its result is stored in
slugi(t+1).f. Such movement occurs for each amoeba that is part of the slug [Kennedy
and Eberhart 1995, Monismith and Mayfield 2008].

Although equations (3.10) and (3.11) are similar to (3.3) and (3.4), their purposes
are quite different. The equations of this section serve along with the e-ANN mesh to
provide a dense search that exploits the coverage area of the slug. Conversely, equations
3.3 and 3.4 serve as a middle ground to drive amoebae from the exploration search as
explained in section 3.2 toward an area that should be exploited because a possible
minimum exists in that location [Goldberg 1989, Mitchell 1998, Corne et al. 1999].

The second method tied to the slug stage is the e-ANN mesh update method. This
method is necessary to locate the approximate nearest neighbors of the amoebae within
the slug. When implementing the algorithm, the author devised two different methods
for locating neighbors of an amoeba. For the first method, the e-ANN data structure is
recalculated with each time step. By updating this data structure after each time step, the
location of each amoeba within the slug corresponds exactly to the locations of the nodes
of the kd-tree within the e-ANN data structure. Since these nodes are the points from
which nearest neighbors are computed, the neighborhood of the amoebae within the slug
is exact. The location of the best nearest neighbor is found by querying the e-ANN tree
for each amoebals approximate nearest neighbors then choosing the one with the best
current objective function value. This method accurately assesses the locations of the
amoebae but is quite costly in terms of system resources. When using the method above,
the e-ANN data structure must be recomputed after each time step for each slug that is
used in the algorithm. Due to this problem, a second method is presented that is similar
to the method used in Section 3.3 for the aggregate. In this method, the same e-ANN tree
is used for several time steps before being updated. Amoebae within the slug must
update their positions with respect to the e-ANN tree so that requests during a search for
the nearest neighbor produce the correct result. This same principle is used with the ¢-
ANN tree of Section 3.3; however, the current version of the algorithm does not include
cAMP deposit. Rather, it simply picks the best nearest neighbor amoeba. Update of the
e-ANN tree is necessary when the positions of the amoebae within the slug significantly
differ from those in the e-ANN tree. To check for a significant change, the centroid and
standard deviation of the points within the slug are computed. These values are then used
to compare the centroid of the e-ANN mesh to the centroid of the points. If a significant
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change has occurred, the e-ANN tree is updated to the current locations of the slug
amoebae. An example of a formula that may be used to make this comparison is
presented below.

p(x < || ﬂSlug £-ANN /'[SlugAmoebae ||]

USlug £-ANN

(3.12)
f(x)=1 for0<x<1

In the formula above, the distance between the centroid of the slugls e-ANN mesh and
the slugls amoebae (computed as means) is normalized by the standard deviation of the
slug(s e-ANN mesh. Thus, the formula causes an update to the mesh as the distance
between the centroids of the points nears the standard deviation of the e-ANN mesh
[Monismith and Mayfield 2008].

As the slug moves, two important values are tracked. The first of these factors is
the number of time steps that the slug has spent moving. The second is the number of
updates to the best result obtained by the slug. These variables can be used to determine
when the slug data structure should be disposed. The reasoning behind this is simple [las
the number of updates to the slug becomes fewer, the need for dense search over the
coverage area of the slug lessens. A simple formula to decide when to end the slug stage
is presented below.

p(x S Number of slug best updatesj

Time spent in the slug stage (3.13)

f(x)=1 for0<x<1

The author(s implementation of the slime mold optimization algorithm allows for a
constant number of updates to any particular slug before the above formula is used
[Monismith and Maytield 2008].

In nature, the end of the slug stage is followed by the beginning of culmination,
i.e. formation of a fruiting body. The members of the tail of the slug would then die to
form the stalk of the fruiting body, and members of the head would crawl up the stalk to
be dispersed to new locations as spores [Kessin 2001, Segel 2001]. A simplification of
these processes for optimization purposes is to restart the algorithm for all members of
the slug. This means that each member of the slug is dispersed (i.e. randomly distributed)
throughout the search space once the slug stage is complete. That is, once equation
(3.13) is satisfied, members of the slug revert to the vegetative state and are placed at
random positions in the search space. They do, however, retain a memory of their
personal bests as obtained during all the previous stages of their lifecycles. These
amoebae begin searching for new optima and continue to follow through the slime mold
lifecycle [Monismith and Mayfield 2008].
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Section 3.7: Slime Mold Optimization Algorithm

Having explained how each of the stages in the slime mold optimization
algorithm work, we can now explain how they are put together. We first review
initialization detailing its importance during the algorithm. After initialization, iteration
begins. For a fixed number of iterations, each amoeba is given an opportunity to perform
operations based upon its current state. Additionally, data structures including mounds
and slugs are updated at the end of each iteration, if necessary. Update to the mesh, as
described in section 3.4 is also performed at the end of each iteration [Monismith and
Mayfield 2008]. We further elaborate upon the composition of the algorithm in this
section.

During initialization a fixed number of amoebae data structures, as described in
section 3.1, are allocated and initialized to random locations. Their objective function
values are then evaluated, and the current location and objective function value is stored
as the best location and objective function value, respectively, for each amoeba.
Thereafter, the e-ANN algorithm is used to create a mesh based upon the initial locations
of each amoeba with a fixed number of neighbors for each vertex of the mesh. Each
vertex in this mesh corresponds to one amoebals location. These vertices are also used as
locations at which cAMP may be stored during the aggregative state. Each amoebals
counters are initialized to zero and each amoebals state is initialized to VEGETATIVE.
After each amoeba is initialized and the e-ANN data structure has been created, the best
location in the population is archived [Monismith and Mayfield 2008].

After initialization is complete, iteration begins. A fixed number of objective
function evaluations is used during the Slime Mold Optimization Algorithm. This value
is chosen heuristically. Once per iteration, each amoeba is given a chance to perform an
operation based upon its current state of VEGETATIVE, AGGREGATIVE, MOUND,
SLUG, or DISPERSIVE. Amoebae archive new global bests as necessary after executing
the actions appropriate to their states. While an amoeba is in a particular state it performs
appropriate actions corresponding to its state. That is, if an amoeba is in the vegetative,
aggregative, or slug state, it moves according to the appropriate equations for that state.
Amoebae in the dispersive state act slightly differently [Ithey are relocated to a new
random position. Amoebae in the mound state perform no actions as they are to be
incorporated into a data structure. Therefore, there must be some action performed after
iteration [Monismith and Maytield 2008].

Several actions are carried out after each iteration. During an iteration, every
amoeba is allowed to carry out its own state based action appropriate to its state. The
actions executed after an iteration are to deal with the creation and destruction of data
structures as amoebae aggregate, form a mound, move as a slug, and are ultimately
dispersed to restart their lifecycle. So, the first of these steps after iteration is to take the
world location at which there is the highest concentration of aggregating amoebae, and to
decide if those amoebae need to be converted from an aggregate to a mound. This
decision is made using equation 3.7. If the aggregate passes equation 3.7, the cell within
the aggregate having the best objective function value is chosen as the pacemaker and all
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amoebae in the aggregative associated with the world position with the highest
concentration of amoebae are converted to the MOUND state. Finally, a mound is
created at that location. The next step taken after iteration is an update of the slugls e-
ANN data structure. Depending on the type of implementation this either occurs after
each iteration or after the iteration during which the slug has made significant movement.
Thereafter, the kd-tree contained within the slugs e-ANN data structure is reformulated
based upon the current locations of the amoebae within the slug. After mound creation
and slug updates are considered, any slugs that have existed for more than a fixed number
of iterations and have not had updates to their personal bests according to equation 3.13
are cleared. Then, the archive that is maintained to keep track of the overall bests
throughout the algorithm is updated, if necessary. Finally, the slime mold world is
updated. These updates are performed according to equations 3.8 and 3.9, which cause
evaporation and smoothing to occur. Thus a number of important actions are carried out
after each iteration [Monismith and Mayfield 2008].

So far we see that we have an algorithm with multiple stages [ Ithose being
Vegetative, Aggregative, Mound, Slug, and Dispersal states. We have also seen that the
algorithm also makes use of a grid based on the e-ANN algorithm and that it requires
several ancillary data structures to facilitate the aggregative, mound, and slug stages
[Monismith and Mayfield 2008]. Having a full description of the algorithm, we move on
to variants of the algorithm in Chapter 4 and testing, results, and analysis in Chapter 5.
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CHAPTER 1V

IV. VARIATIONS ON THE SLIME MOLD OPTIMIZATION ALGORITHM

Genetic algorithms, particle swarm optimization, and differential evolution have
all led to many variants [Goldberg 1989, Arabas et al. 1994, Mitchell 1996, Clerc and
Kennedy 2002, Coello Coello and Lechuga 2002, Price et al. 2005]. For example, there
are many variations on the recombination operator in genetic algorithms [Goldberg 1989,
Herrera et al. 1998]. A first look at the Slime Mold Optimization Algorithm along the
same lines would be view it as a heuristic for building an evolutionary algorithm. The
lifecycle of Dd, when used as a model for an optimization algorithm, lends itself to many
possible variants. A top level look at the algorithm is provided in the figure below.

Vegetative State Initial search algorithm using many
individuals

Aggregative State Force individuals that are no longer fruitful
to converge around a [best location!|

Mound State Converging individuals are grouped
together as part of a data structure

Slug State Make use of another search algorithm for
the individuals in the data structure
designed to exploit their area of coverage

Dispersal State Reset the members of the slug data
structure

Table 4.1: List of states from the Slime Mold Optimization Algorithm
[Monismith and Mayfield 2008].

Using this strategy, a variety of search algorithms could be substituted for those used in
the vegetative and slug states. For the vegetative state, two such methods are presented.
These include the use of the Razor Search Method and the Downhill Simplex Method in
place of the random search methodology presented in section 3.2 [Bandler and
MacDonald 1969, Spendley et al. 1962]. For the slug state a method using Differential
Evolution is presented to use in place of the method in section 3.6 [Price et al. 2005].
Each of these modifications is discussed and elaborated upon in this chapter. Discussion
of testing methods and results is provided in Chapter 5.

64




Section 4.1: Variations on the Vegetative State

The original Slime Mold Optimization Algorithm makes use of a directed random
search for the vegetative state. While this search is simple and attempts to model the
pseudopod-based movement of actual Dd amoebae, it is lacking in several aspects
[Monismith and Mayfield 2008]. First, the distribution used in the random search is not
amenable to rotation in the contours of the search space. This search methodology turns
out to be similar to Evolutionary Strategy and faces the same limitations because of its
distribution [Corne et al. 1999]. One possible improvement to it is to modify the strategy
to take the covariance of the distribution into account when performing a search. Since
this methodology may be quite time consuming, it is prudent to consider other search
strategies that make movements similar to amoebae [Corne et al. 1999].

In this section, in an attempt to address some of the deficiencies of the original
vegetative state, two variations on the vegetative state are presented. These include the
use of the Downhill Simplex Algorithm for the first variant, and the Razor Search
Algorithm for the second variant. These two algorithms were presented previously in
Chapter 2. The use of such algorithms in the Slime Mold Optimization Algorithm
requires modification for use in a single timestep. Thus, in the following subsections the
modified versions of the timestep-based Downhill Simplex Algorithm and Razor Search
Algorithm are provided [Spendley et al. 1962, Bandler and MacDonald 1969].
Furthermore, the reasoning for the use of such algorithms is presented.

Section 4.1.1: Downhill Simplex for the Vegetative State

The Downhill Simplex search presents an interesting option for use in the
vegetative state because simplex movement is amoeboid. A simplex is a hyper-triangle,
so it consists of D+1 points, where D is the number of dimensions. Another point is
added to the simplex by reflecting the worst point in the simplex about the centroid of the
other D points. Before the next timestep, the worst from the old simplex is discarded to
create a new simplex. This movement is similar to the pseudopod movement that real
amoebae use, wherein amoebae are able to measure a gradient across their body wall and
make movement opposite that direction. One caveat we must consider is that real
amoebae occasionally make mistakes when searching [Spendley et al. 1962]. Thus, to
allow for the new algorithm to more closely match Dd movement and to allow some
randomness that may allow escape from local minima, the Simplex search used as part of
the Slime Mold Optimization Algorithm allow for incorrect movements to be made
occasionally (5% of the time) [Erban and Othmer 2007].

To use the Downhill Simplex Algorithm in the vegetative state, several
modifications are made to it. First, to fit in the timestep-based approach used in the
Slime Mold Optimization Algorithm, the Simplex Algorithm is cut down to what
amounts to a single timestep. This is effectively one simplex step. That is, determination
of the worst point, the centroid of the remaining points, and movement opposite the
direction of the worst point through the centroid. Algorithm 4.1 details the necessary
steps to make one simplex step, and is quite straightforward. These involve determining
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whether to make a random move or an actual simplex move, finding the centroid of the
points, ensuring the new point is not out of bounds, counting for repeats, decreasing the
simplex size if necessary, and finally keeping track of any new personal or global bests
[Spendley et al. 1962, Monismith and Maytield 2008].

Algorithm 4.1: Vegetative Simplex Movement

1. popi(t).localSearchTime  popi(f).localSearchTime + 1

2. IfRand(0.007 1.0) <0.95,

3. Find the centroid of all simplex points, simplexPointso p, except the worst point.

4. Else

5. Find the centroid of all simplex points, simplexPointso p except for a randomly
chosen point, and swap that point with simplexPoints.

6. EndIf.

7. Do

8. isOutOfBounds  false

9. Find x"*¥ (This is based on Formula 2.8)

10.  Ifx""is outside the search space

11. 1sOutOfBounds  true

12. AOA/2

13.  EndIf

14. While (isOutOfBounds)

15. Reset Lif L C2

16. oldSimplexPoints  simplexPoints

17. simplexPointsy X"

18. Compute the objective function result

19. Find the new worst point in the simplex and swap it with simplexPoints

20. Count any repeats

21. If any repeats have occurred more than M times or if the newly created point, X", is
equal to oldSimplexPoints,

22. Decrease the simplex size.

23. End if.

24. If the size must be decreased,

25. Compute a new set of simplex points of the appropriate size and evaluate their
objective function values.

26. Reset the repeat counts.

27. Find the worst point in the simplex and swap it with simplexPoints,.

28. End if.

29. If an improvement was made,

30.  popi(t).mealCount  popi(t).mealCount + 1
31. Retain the improvement

32. End If.
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Section 4.1.2: Razor Search Algorithm for the Vegetative State

Razor Search is an interesting algorithm that will be investigated for use in the
Vegetative State. This algorithm is interesting because it allows for both step based
movement like that of the Hooke and Jeeves Pattern Search and random movement when
Pattern Search stalls. Often, such random movements can be made along a narrow
valley, if one exists in the solution space. This search is also similar to amoeboid
movement because it allows for step based movement to be made in a direction near the
opposite of the gradient in many objective functions [Hooke and Jeeves 1961, Bandler
and MacDonald 1969, Kessin 2001]. Promising results are apparent upon testing of this
algorithm, as will be shown in Chapter 5.

To use this algorithm in the vegetative state, modifications must be made to the
Razor Search algorithm. These modifications are similar to those used in the previous
section for the Simplex Algorithm. That is, Razor Search must be modified for use on a
timestep basis. In its form as presented in Algorithm 2.3, the method is ill suited for use
in the Slime Mold Optimization Algorithm. Of particular importance is the lack of short
iterative units that would correspond to single timesteps. As shown below in Algorithm
4.2, the modification involves dividing Razor search into several steps. The first of these
involved is a Pattern Search based upon Algorithm 2.1 and limited to a small fixed
number of iterations (e.g. 100). This step, though sometimes cumbersome in terms of
performance, accounts for one timestep. The second step in the Vegetative State Razor
Movement starts a typical razor search iteration as would be used in Algorithm 2.3. In
this step, a random location is obtained based upon the end point of the previous pattern
search. Thereafter, the third step begins. In the third step, another pattern search is
performed from the previous random move. This is done to test the random move for
effectiveness. The fourth step begins after the pattern search is complete. In this step, a
valley direction is ascertained and a pattern move is attempted in the direction of the
valley. Then, the fifth step begins. In the fifth step pattern moves are attempted to
exploit the direction of movement toward the valley until such movement is no longer
fruitful. Once movement is no longer fruitful, the algorithm returns to the second step
where timestep based Razor Search movement begins again [Bandler and MacDonald
1969, Monismith and Mayfield 2008].

Algorithm 4.2: Vegetative Razor Movement

popi(t).localSearchTime  popi(t).localSearchTime + 1

Switch ( RazorState )
Case 0: (in 1st pattern search)
Run one pattern search iteration based on Algorithm 2.1.
If the first pattern search is complete,
Set RazorState to 1.

Nk W=
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8. End If.

9. Break.

10. Case 1: (beginning a Razor Search iteration)

11. Get a random location using equation (2.2).

12. Change RazorState to 2.

13. Break.

14. Case 2: (running a [test[ /Pattern Search as part of the Razor Search iteration)
15. Run one Pattern Search iteration based on Algorithm 2.1.

16.  If the pattern search is complete,

17. Set RazorState to 3.

18.  EndIf.

19. Break.

20. Case 3: (Once the pattern search is complete perform pattern moves)

21. Find the new valley direction using equation (2.3)

22.  Perform one Pattern Move using Algorithm 2. .

23. Change RazorState to 4.

24. Break.

25. Case 4: (Exploit the direction of movement by performing more pattern moves)
26.  Perform a Pattern Move using Algorithm 2. .

27. If the Pattern Move yielded no improvement to the objective function value,
28. Change RazorState to 1.

29.  EndIf.

30. Break.

31. End Switch.

32. If an improvement to the objective function value was made,
33.  popi(t).mealCount  popi(t).mealCount + 1

34.  Retain the improvement

35. End If.

Section 4.2: Variations on the Slug State

The form of the slug state as presented in sections 3.4 [16 is quite different from
what is presented in biology. The main reasons for this difference were lack of
inspiration and limited biological research on the part of the author. As a quick fix, the
data structure created in the mound state was originally based upon the structure of the
aggregative state. This data structure and the related equations were used to ensure
amoeba movement during the slug state was similar to movement during the biological
aggregative state over a localized area [Monismith and Mayfield 2008]. To ensure a
better correlation with what is found in nature, heavy modification was made to this
portion of the algorithm. Implementation includes a search methodology that focuses on
both the biological head and tail elements. Recall from section 2.2.4 that the head of the
slug consists of 1/5 of the slug's population and the remaining 4/5 of the amoebae
compose the tail [Kessin 2001]. The modifications to the slug stage in the Slime Mold
Optimization Algorithm include this construct.
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Slug Head
1/5 of amoebae in the slug
Slug Tail
4/5 of amoebae in the slug

Simplified example of communication during slug movement
Arrows indicate possible lines of communication between amoebae

Figure 4.1: Modification to the slug state.

The focus of this portion of research is to modify the slug to better follow
equations in biology literature. To do so, the slug will be divided into a head and tail.
The Dd slug head consists of the 1/5 of the slug population that are to become spores.
Recall from Chapter 2 that these are the best fed amoebae from the mound [Kessin 2001].
An analogous formation for optimization purposes is a head consisting of the 1/5 of the
slug population with the best objective function values. These individuals should direct
the movement of the remainder of the slug, i.e. the tail. A simple way of doing this
would be to let the head perform a search that can accurately determine the contours of
the search space and allow the tail to perform a dense search of the area behind the head
to ensure nearby minima are found. Forcing the amoebae in the tail to follow the head is
simple, Equations similar to those used in the PSO are sufficient to elicit such movement
[Janson and Middendorf 2005]. Choice of the proper movement in the head may prove
much more difficult. Using Differential Evolution or a Genetic Algorithm should be
suitable for the search being carried out by the head; therefore, DE will be tested for use
in the head as part of this work. Another more interesting improvement to the head
would be to try to implement the chaotic whorl movement used by real Dd slugs to move
toward light [Kessin 2001, Marée et al. 1999 [Phototaxis[]. The author is currently
researching the whorl movement; thus, such research will not be included as part of this
work.
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4.2.1 Differential Evolution

Replacement of the original slug algorithm with the Differential Evolution
algorithm is quite simple. To start, a single instance of the DE algorithm may be used for
each slug member (an amoeba with index [i). This algorithm begins by choosing three
random slug members (amoebae with indices al, a2, and a3). These amoebae are
assumed to be passed as parameters to Algorithm 4.3 as shown below. As in the standard
DE algorithm, a random index, representing dimension k, is chosen to begin application
of the DE algorithm to the amoebals location. A random value is tested against the
crossover probability, CR, to cause either a crossover with a mutation factor F or to keep
the original location along dimension k. Next, the algorithm ensures the new location for
dimension k is not out of bounds. This process is repeated for each dimension k. At least
one dimension in the new location is forced to include a crossover as shown in Algorithm
4.3. Finally, the algorithm computes a result based upon the new location and updates
the location only if the new location results in a better objective function value.
Additionally, the personal best of the amoeba with index (i is updated if necessary.
Although use of this portion of the DE algorithm does not fit directly into the scope of the
movement shown in Figure 4.1, it will be used in the next section as part of the head
movement for the slug [Price et al. 2005, Monismith and Mayfield 2008].

Algorithm 4.3: DE (Used for Head Movement)

1. Parameters: al, a2, a3 : Integer

2. j  Rand(0CI D 1)

3. fork OtoD I,

4. if(rand(0.0C1 1.0) <CR or k=D [11)

5. temp;  popai(t).x; + F - (popar(t).x; LIpopas(t).x;)
6. else

7. temp;  popi(t).x;

8. End if.

9. Ensure temp; is not out of bounds.

10. j (G+1)modD

11. End for.

12. tempF  f(temp)

13. If ( tempF < popi(t).f)

14.  popi(t+l).f tempF

15. popi(t+1).x  temp

16. End If.

17. Update the personal best of pop;(t+1) if necessary.

4.2.2 DE + Followers

The DE + Followers slug search algorithm is a heavily modified version of the
slug search as explained in sections 3.4 [13.6. It begins with creation of the slug data
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structure through the mound stage. The slug is initialized to the appropriate size and
number of nearest neighbors, and a new sizing algorithm to determine the best head and
tail sizes is applied. During the Mound stage, as amoebae are added to the slug, the DE +
Followers algorithm inserts amoebae into the head and tail. During the slug search phase,
instead of using the PSO equations, DE is used for the head of the slug, and a simple
following algorithm is applied to force the tail amoebae to follow the amoebae pursuing
the DE strategy in the head [Monismith and Mayfield 2008]. Details are presented for
this algorithm in this subsection.

Creation of the slug begins at the end of the aggregative phase as presented in
Chapter 3. Upon satisfaction of equation (3.6), the slug object is created based upon a
number of amoebae that have aggregated at a particular grid location. The [mormal!
operations for slug initialization may be carried out at that point (i.e. memory allocation
for the e-ANN tree and array of slug amoebae) [Monismith and Mayfield 2008].
Additionally, the head and tail may be sized. The preferred sizes for the head and tail are
1/5 of the amoebae in the slug for the head and 4/5 of the amoebae in the slug for the tail
[Kessin 2001]. Issues may occur when there are too few amoebae within the slug. For
example, the DE algorithm requires at least four locations to work. Thus there must be at
least four amoebae in the head. Moreover, the slug must contain at least four amoebae,
and in the case where there are less than twenty amoebae in the slug the numbers of
amoebae in the head and tail must diverge from the biological requirements. To deal
with this issue, the algorithm allows for a larger head than tail when there are too few
members in the slug to meet the 1:4 head tail ratio. Additionally, initialization may be
performed for head and tail counts and memory for the head and tail amoebae used when
adding amoebae to the head and tail of the slug [Kessin 2001, Price et al. 2005].
Algorithm 4.4 briefly indicates the necessary instructions to determine the size of the
head and tail.

Algorithm 4.4: DE + Followers Slug Movement (Head and Tail Sizing)

1. headCount 0, tailCount O

2. If 0.2 * slugSize < numNeighbors

3 headSize  numNeighbors

4 tailSize  slugSize [lnumNeighbors
5. else

6 headSize 0.2 * slugSize

7. tailSize  slugSize [TheadSize

8. EndIf.
9. Allocate memory for head, tail, and centroids

The next part of the DE + Followers slug update is to add amoebae to the head
and tail. This occurs in the mound stage after the slug object has been created. The
mound algorithm from Chapter 3 is used to add these amoebae to the slug [Monismith
and Mayfield 2008]. Additionally, amoebae must be placed in the data structures
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representing the head and tail. Initially, the head and tail are empty. Amoebae are placed
in the head until it is filled. Once the head data structure is full, the algorithm attempts to
replace amoebae in the head one at a time, moving the worst amoebae to the tail. A short
algorithm to add amoebae to the head and tail is provided below as Algorithm 4.5.

Algorithm 4.5: DE + Followers Slug Movement (Adding amoebae to the Head and Tail)

1. If headCount < headSize

2 headAmoebae[headCount]  pop;
3 headCount  headCount + 1

4. Else

5. worstAmoeba  pop;

6 worstPosition -1

7 forj 0[] headSize [11

8. if headAmoeba[j].f < popi(t).f

9. worstPosition

10. End if.

1. End for.

12. End if.

13. If worstPosition != -1

14. tailAmoebae[tailCount] headAmoebae[worstPosition]
15.  headAmoeba[worstPosition]  pop;

16. Else

17. tailAmoeba[tailCount]  pop;

18. End if.

19. tailCount  tailCount + 1

DE based movement was provided in section 4.2.1, and that same movement as
shown in Algorithm 4.3 may be used for members of the slug(s head. To complement
this movement, an additional algorithm is provided below for tail movement. Amoeboid
tail movement is driven by two factors. The first of these is the direction of the head.
This is determined by the difference between the centroid of the head and the centroid of
the tail. This value is normalized and then scaled by the average distance between all
members of the slug. The second factor used is the nearest neighbor direction. Each
amoeba has a nearest neighbor, and the one closest to the tail direction is used to aid in
the computation of each tail amoebals new location. These two factors are multiplied by
a random value, each scaled by half, and added to the amoebals old location to determine
its new location. Algorithm 4.6 provides the details for amoeboid tail movement.

Algorithm 4.6: DE + Followers Slug Movement (Tail Movement)

1. Find the nearest neighbor, with index nn, in the direction nearest the TailDirection.
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2. Compute the NearestNeighborDirection as the distance between popi(t).x and

POPun(t).x

forj 00D

4. popi(t+1).x;  popi(f).x; + 0.5 * Rand(0.0L1 1.0) * Ej[dsugneighbor] * TailDirection;
+ 0.5 * Rand(0.0L) 1.0) * NearestNeighborDirection;
Ensure that pop;i(¢+1).x; is within bounds.

End for.

7. Compute the new objective function value and update personal best if necessary.

(98]
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Lastly, as part of the Slime Mold Optimization Algorithm, each slug must be
updated after all amoebae have completed one timestep(s worth of movement. The
majority of updates for the slug presented in this section follow similar algorithms as that
of the original slug update algorithm [Monismith and Maytield 2008]. There is, however,
one additional update that is required for the slug, as presented in this section. Before
continuing to another iteration of amoeboid movement, the centroids for the members of
the head and tail must be found. Once these values are determined, the general direction
of tail movement is ascertained and normalized so it may be used in subsequent
amoeboid movement. Algorithm 4.7 details the necessary updates for DE + Followers
slug movement.

Algorithm 4.7: DE + Followers Slug Movement (Slug Update)

1. Compute centroids of the head and tail as headCentroid and tailCentroid.
Compute the tail direction (referred to as tailDirection) as the difference between the
head and tail centroids.

3. Normalize tailDirection by the square root of its dot product.

Section 4.3 Conclusion

In this chapter, several modifications to the Slime Mold Optimization Algorithm
were introduced. These included modification to the vegetative state to allow for the use
of the Downhill Simplex and Razor Search algorithms as vegetative search algorithms
[Spendley et al. 1962, Bandler and MacDonald 1969]. Additionally, the slug state was
modified to allow for use of Differential Evolution as a search algorithm and to allow for
DEIs use as part of a slug containing a head and a tail [Kessin 2001, Price et al. 2005]. In
the following chapter, results for the algorithms presented in Chapter 3 and those
presented in this chapter will be provided and analyzed.
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CHAPTER V

V. RESULTS AND ANALYSIS

In this chapter, results are provided for the Slime Mold Optimization Algorithm.
Before discussing results, the test equations and testing procedures are discussed. Next,
the Slime Mold Optimization Algorithm, as presented in Chapter 3, is tested against a
large function suite provided in the Objective Function Appendix (Appendix A). This
first round of testing is carried out using different numbers of amoebae, pseudopods,
neighbors, and function evaluations. Analysis of results is presented, and results are then
compared against those of existing algorithms, including Hooke Jeeves (HJ), DE, RCGA,
and PSO. Thereafter, results for variations on the Slime Mold Optimization Algorithm
are presented. These include replacement of the vegetative state with the Razor Search
and Downhill Simplex algorithms. Additionally, results for the DE + Followers method
(as described in section 4.2) using both Razor Search and the standard vegetative search
are provided. Comparisons are provided for each modified algorithm using the same
criteria as the standard slime mold optimization algorithm.

Section 5.1: Test equations and testing procedures

The first portion of the results includes testing each of the optimization algorithms
over a variety of parameters using many objective functions. The objective functions
include variation in dimensionality and contours, some feature high levels of
multimodality, discrete steps, or minima that are cut off at a bound. Additionally,
parameters for the Slime Mold Optimization Algorithm are varied so comparisons within
the algorithm may be made. Furthermore, direct comparisons are made to results from
other algorithms such as Differential Evolution, Particle Swarm Optimization, and Real-
Coded Genetic Algorithms. Performing such a comparison as part of this work will give
a better feel for the strengths and weaknesses of the slime mold optimization algorithm.
Therefore, the focus of this section includes a discussion of the various test functions
used, the method of testing functions using varying parameters, and comparisons to
variations of the slime mold optimization algorithm and other existing algorithms.

The test function suite used in this work includes functions with varying degrees
of difficulty including multi-modality, variation in dimensionality, discrete steps, and
minima cut off at bounds. The reader is referred to the Objective Function Appendix
(Appendix A) for formulae, bounds, and optimal objective function values and locations
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for the functions to be optimized. A list of these functions is also provided in Table 5.1.
Of the functions, several are included which are unimodal and present little difficulty to
general optimizers. These are the DeJong or Spherical Contours function which is a
simple parabolic function that slopes downward toward a single optimum, the Easom
function, which is a Gaussian centered at (7, ), and the functions S1, S2, and S3 which
are downward sloping functions of two variables that are have a minimum at a bound
[Chen 1997, GEATbx 2007, Choi and Mayfield 2009]. Each of these functions should

present little difficulty to a general optimizer.

The McCormic, Goldstein and Price, Bohachevsky, Engvall, Branin rcos, and Six
Hump Camel functions all present multiple modes. These functions are smooth, but
include local and global minima across their search spaces. As such they are slightly
more difficult to optimize than unimodal functions. Likewise, the Rosenbrock function
and the Downhill Step Function are slightly more difficult to optimize than the Spherical
Contours or Easom functions. Classical optimization methods may not work on these
functions; therefore, the use of direct search methods such as EAs, Pattern Search, or
Downhill Simplex is necessary [Chen 1997, GEATbx 2007]. Thus, it is expected that the
Slime Mold Optimization Algorithm should have little difficulty in optimizing the
functions above even as variations in dimensionality and bounds are introduced.

Rosenbrock 2D (1) | McCormic (2) Box and Betts (3) Goldstein (4) Easom (5) Mod. Rosenbrock
12D (6)
Mod. Rosenbrock Bohachevsky (8) Powell (9) Wood (10) Beale (11) Engvall (12)
22D (7)
DelJong 2D (13) Rastrigin 2D (14) Schwefel 2D (15) Griewangk 2D (16) | Ackley (17) Langermann (18)
Michaelewicz (19) | Branin (20) Six Hump Camel Osborne 1 (22) Osborne 2 (23) Mod. Rastrigin 2D
(21) (24)
Mineshaft 1 (25) Mineshaft 2 (26) Mineshaft 3 (27) Spherical Contours | S1 (29) S2 (30)
32D (28)
S3(31) Downbhill Step (32) | Salomon 2D (33) Whitley 2D (34) 0Odd Square 2D Storn Chebyshev
(35) 9D (36)
Rana 2D (37) Rosenbrock 10D Rosenbrock 30D Mod. Rosenbrock Mod. Rosenbrock Mod. Rosenbrock
(38) 39) 1 10D (40) 130D (41) 210D (42)
Mod Rosenbrock 2 | Spherical Contours | Rastrigin 10D (45) | Rastrigin 30D (46) | Schwefel 10D (47) | Schwefel 30D (48)
30D (43) 10D (44)
Griewangk 10D Griewangk 30D Salomon 10D (51) Salomon 30D (52) 0Odd Square 10D Whitley 10D (54)
49) (50) (53)

Whitley 30D (55)

Rana 10D (56)

Rana 30D (57)

Table 5.1: Objective Functions Used

Testing of the Slime Mold Optimization Algorithm will also involve many
functions that are more difficult than those explained above. The Rastrigin, Schwefel,
Griewangk, and Ackley(s Path functions all present different variants of a pincushion
function. That is they all have high numbers local minima that make the function appear
as if it is a pincushion that has been molded to a particular form. Rastrigin(s function is a
pincushion overlaid upon a parabola as is the Griewangk function, although it has a
tighter pincushion [Price et al. 2005]. The Ackley!s Path function has a Gaussian
conformation with a pincushion applied to it, and the Schwefel function has an almost
random appearance to its pincushion [Price et al. 2005]. Since these functions have
multiple minima they offer many positions in which an optimizer may become trapped,
but since there are always other [pins(](i.e., minima) nearby, a good optimizer will be




able to escape these traps that lie throughout the search space. The Modified
Langermann|s function also presents multiple minima that are located in a close space,
and thus, optimizers act similarly when working upon it [Chen 1997, Price et al. 2005].
The Wood, Beale, and Powell functions are all deceptively simple. For example, though
the Powell function appears simplistic, Chen notes that it has a singular Hessian matrix at
its minimum [1997]. These functions each present combinations of parabolic functions
of varying powers. Instead of creating a pincushion landscape, they create a landscape
with a few valleys that cause Direct Search methods to sometimes become trapped within
a valley that is a local minimum [Chen 1997]. Two other functions that offer similar
effects with different conformations are also included. These are the Michaelewicz and
Mineshaft 3 functions. The Michaelewicz function offers a few minima that are hidden
within nearly flat valleys, and the Mineshaft 3 function offers two extremely narrow
Gaussian minima that are shaped like mineshafts and located within a flat plane. Both of
these functions provide some difficulty to direct search methods and EAs because they
offer locations far from the actual minima at which such optimizers may become trapped
[GEATbx 2007, Monismith and Mayfield 2008]. Though the functions explained above
present a moderate amount of difficulty to EAs, many such algorithms are able to
optimize these functions provided enough time.

The next group of functions that will be tested on the Slime Mold Optimization
Algorithm are quite difficult to optimize. The first pair of difficult functions is a pair of
modified versions of Rosenbrock!(s function. Such modification in the function changes
the nearly planar valley of the original function to an edge via square root and absolute
value operators. Using these operators yields two functions [/a [flat ground bent knife
edgelfunction and a 'hollow ground bent knife edge[ function. Since the optimum in
both of these functions lies along an edge within a valley having a narrow opening angle,
stochastic methods that are unable to correctly judge contours may take an infinite
amount of time to reach the optimum or may converge incorrectly [Chen 1997]. Next,
the discussion of difficult functions includes a group of functions that the author has
modified and developed. These are the Mineshaft 1, Mineshaft 2, and Modified Rastrigin
functions, and they were crafted using root functions for Mineshaft 1 and Modified
Rastrigin and a Gaussian for Mineshaft 2. The low order roots and the narrow Gaussian
cause these functions to exhibit minima that are located at the bottom of areas with
extremely narrow openings, which makes optimization very difficult [GEATbx 2007,
Monismith and Mayfield 2008]. Two other interesting functions are the Osborne 1 and 2
functions, which are least squares problems of 5 and 11 dimensions respectively. In his
thesis, Chen notes that these functions may provide difficulty to stochastic optimizers,
and the reason for such difficulty is as of yet unknown [1997]. In unpublished work, the
author has verified that the Osborne functions do indeed prove difficult to optimize with
both RCGAs and PSO algorithms. Several additional functions are included for testing
from [Price et al. 2005]. These are Salomon's function, Whitley's function, Storn's
Chebyshev function, the Odd Square function, and the Rana function. These functions
are noted for their difficulty, high multimodality, and many of them may be scaled to
varying degrees of dimensionality. The reader is directed to the Objective Function
Appendix for formulae and 3D views (where applicable) of the functions described
above.
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The functions explained above will be used as part of a suite to test the Slime
Mold Optimization Algorithm. Testing of the algorithm will be based upon several
factors Ovariation in the number of amoebae, maximum number of iterations, and
number of neighbors. The results provided are the averages of the smallest objective
function values obtained during attempts at finding the true minima over a fixed number
of trials or runs of a particular optimization algorithm. Unless otherwise denoted, these
averages will be over 100 runs or trials of an algorithm and the generic term, [tesult(]
will refer to such an average. In addition, relative error is used to compare the Slime
Mold Optimization Algorithm, its variants, the Hooke Jeeves algorithm, and
Evolutionary Algorithms. Relative error is defined as the difference between an
approximate and actual value divided by the actual value [Abramowitz and Stegun 1972].
The formula for the relative error between an actual minimum f* and an approximate
minimum fe* 1s provided below.

k- £k
Relative Error = Ve ®2/71 (5.1)

|/

The percent error may also be calculated by multiplying the relative error by 100
[Abramowitz and Stegun 1972]. When f/* = 0, it is impossible to calculate the relative
error. In that case, adding one to both the estimated minimum and true minimum allows
for calculation of the relative error. Such calculation is used because doing so is
equivalent to calculating the absolute error [Abramowitz and Stegun 1972]. Graphs in
the latter sections of this chapter include variations in error of high orders of magnitude.
To deal with this a variant of relative error called Log of Scaled Relative Error was
devised and is defined below.

o e F S
LSRE =log| “Ler L 141 (5.2)

| f*]

The LSRE is the logarithm of one plus the relative error. This is needed to avoid taking
the logarithm of zero when dealing with exact estimates of minima.

First, results for the algorithm, as presented in Chapter 3, will be provided with
objective function evaluations limited to maximums of 100,000, 500,000, and 1,000,000
evaluations, respectively. Additionally, the algorithm will be tested by varying the
number of amoebae in the population using the values 50, 100, 250, and 500 as
population sizes. Within those results, the number of neighbors will be varied as a fixed
four neighbors, the number of search space dimensions limited to a maximum of 10
neighbors, 2 times the number of search space dimensions with no limit, and the square
of the search space dimensions. Furthermore, selected population sizes of 50 and 500
will be tested using the original algorithm using a maximum of 500,000 evaluations while
allowing the number of pseudopods to vary from 2 to 10 in steps of two. Results from
these runs will be graphed to show the effect of varying population size and objective
function evaluation limits on each set of algorithm parameters. The reason for such
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testing is to evaluate the effect of varying parameters so that the number of function
evaluations needed to optimize the various objective functions explained above [Price et
al. 2005, Monismith and Mayfield 2008].

The next portion of the testing procedures involves comparison of the slime mold
algorithm[s results against those of the Hooke Jeeves Pattern Search, DE, PSO, and
RCGA. Each of the four algorithms will be tested on all the functions presented in the
Objective Function Appendix. This testing will include limitations of 100,000, 500,000,
and 1,000,000 objective function evaluations, respectively. The specific versions of the
Evoluationary Algorithms planned for use are the DE current-to-rand algorithm with
fixed values for the F and K parameters, the standard PSO algorithm, and an RCGA
algorithm with a 90% crossover rate and a 0.5% mutation rate [Price et al. 2005, Kennedy
and Eberhart 1995, Herrera et al. 1998]. These EAs will have population sizes of 200
(DE), 100 (PSO), and 500 (RCGA). Such sizes were used because of their effectiveness
on the Objective Function Appendix. Code for the EAs was written by the author.
Results from the Hooke Jeeves algorithm will be provided using starting step sizes of
10% of the distance across the bounds of the objective functions, and the step size
reduction factor will be set to 0.2. Additionally, each trial of the Hooke Jeeves Pattern
Search used 100 randomly chosen starting locations from which the algorithm was
allowed to start. The best result out of the 100 was used as the result for each trial of the
algorithm. This implementation was used as a way to simulate having a population like
an EA. Code for this algorithm was provided by John Chandler and updated by the
author for use in this work. Results from these algorithms using similar limits on
function evaluations should provide a reasonable basis for comparison to the Slime Mold
Optimization Algorithm.

The final portion of the testing procedures includes testing the variants of the
Slime Mold Optimization Algorithm. There are four of these variants to be tested, and
each will be tested using the same parameters as the Original Algorithm where
applicable. This includes limitations of 100,000, 500,000 and 1,000,000 objective
function evaluations, amoeba population sizes of 50, 100, 250, and 500, and the same
four neighbor settings as listed above. The variants to be tested are Slime Mold
Optimization Algorithms (SMOAs) with 1) a vegetative state that makes use of the
Downhill Simplex Algorithm (Simplex SMOA), 2) a vegetative state that makes use of
the Razor Search Algorithm (Razor SMOA), 3) a slug state that makes use of the DE +
Followers algorithm (HTDE-SMOA), and 4) both a vegetative state using the Razor
Search Algorithm and a slug state using the DE + Followers Algorithm (HTDER-
SMOA). Results as explained above will be explained in the following sections and their
graphs are provided in the appendices.

Section 5.2 Original Algorithm Results
In this section results from the version of the Slime Mold Optimization Algorithm
as presented in Chapter 3 are presented. This algorithm will also be referred to as the

"Original AlgorithmJor [SMOA [lin this section and thereafter. Results for the Original
Algorithm are presented as tables in Appendix B1. Likewise similar tables are presented
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in Appendices B2 and B3 for the standard deviations of the results and the runtimes of
each test. Results are shown for 57 objective functions, all of which are presented in the
Objective Function Appendix (Appendix A). For each objective function, 48 results are
presented. These results are divided into three groups of 16 representing the tests of the
SMOA with limits of 100,000, 500,000, and 1 million objective function evaluations,
respectively. Each set of 16 is further divided into sets of four using population sizes of
50, 100, 250, and 500 amoebae (denoted as A50, A100, A250, and A500 in graphs and
tables), respectively. Each of these sets of four uses one of the four neighbor strategies as
numbered here: N1) four neighbors, N2) the number of decision variables limited to a
maximum of ten neighbors, N3) two times the number of decision variables with no limit,
and N4) the square of the number of decision variables. As an example, one point might
represent 100,000 objective function evaluations with a population size of 250 (A250)
and use neighbor strategy N1) four neighbors.

for Average Objective Function Value
for the Slime Mold Optimization Algorithm

Log of Scaled Relative Emor
&

Objective Function

Figure 5.1: Log of Scaled Relative Error for Original SMOA using the best of the average results
across parameter variations.
Refer to Table 5.1 for names corresponding to function numbers.

Before comparing results between parameter variations of the original algorithm,
the overall performance of the algorithm is considered. That is, assuming the user of the
algorithm had knowledge of appropriate parameters, how would said user!(s results
appear. A first look at the best of our average results shows mediocre to good
performance on low dimensional functions. Among the functions where the algorithm
performed well are Rosenbrock (1), Rastrigin (14), Griewangk (15), Schwefel (16),
Mineshaft 3 (27), and many other functions. In particular, the algorithm performs well
on any function that is not of very high dimensionality or of very high difficulty as shown
in Figure 5.1. The algorithm/s performance on more difficulty functions such as the
Powell (9), Wood (10), Osborne (22, 23), Mineshaft 1 (25), and Modified Rastrigin (24)
functions is particularly poor. Many of the results appear to be approaching the optima,
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but the algorithm needs more objective function evaluations to reach the optima. For
example, in the appendices, one can see progress being made toward the minima for the
32D Spherical Contours (28), Storn Chebyshev (36), and Odd Square (35) functions. It
appears as if many more evaluations are needed to reach optima on these functions.

Next, the algorithm[s performance across the various evaluation limits is
discussed. Such performance is as expected. The SMOA shows its best results at the
1,000,000 evaluation limit, mid-range results are at the 500,000 evaluation limit, and the
worst results show up at the 100,000 evaluation limit. An example of this can be seen for
Rosenbrock!s function in Figure 5.2. Moreover, results become more consistent
according to their standard deviation as evaluations are increased, but the time cost of the
algorithm significantly increases as the evaluation limit is increased. What is odd is that
improvement between the 100,000 and 500,000 limits and between the 500,000 and
1,000,000 limits is not always as strong as should be expected. This indicates the need
for modification to the algorithm as currently designed. One possible change that could
be made to the SMOA is to force the slug stage to retain the current global best within
one of its members. This would effectively force all amoebae in the slug to move toward
the current global best.

Average Objective Function Value for Original SMOA Rosenbrock (1)
Varying Population Size and Neighbor Strategy
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Figure 5.2: Original SMOA results from Rosenbrocks function (f* = 0) across evaluations,
population sizes, and neighbor strategies.

Another interesting parameter of the SMOA is the number of amoebae used in
algorithm. This parameter has strong effects on both results and runtimes. For objective
functions of many dimensions, runtime costs increased as the number of amoebae were
increased. The opposite was often true for objective functions of fewer dimensions. This
occurred because the time cost in using the slug state with an objective function of few
dimensions was quite low because of the small number of neighbors used, even in
comparison to the cost associated with the vegetative state. In contrast, with a high
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dimensional function, using many amoebae causes the slug state to become costly in
terms of CPU usage because of the large number of links between neighbors.

Performance changes across by varying population size are quite noticeable
across all evaluation limits. Of additional interest is that functions most affected (i.e.
requiring more CPU time) were those that are difficult to optimize and/or of high
dimension (5+). Lower population sizes improved results and standard deviations for the
following functions: Goldstein, Powell, Wood, Langerman, Michaelewicz, Osborne 1 &
2, Modified Rastrigin, Mineshaft 1 & 2, Spherical Contours 10D & 32D, Storn
Chebyshev (9D), Rana, Rosenbrock 10D & 30D and its modifications, Griewangk 10D &
30D, Rastrigin 10D & 30D, Schwefel 10D & 30D, Salomon 10D & 30D, Odd Square
10D & 30D, and Whitley 10D & 30D. An example of this for the 10D Spherical
Contours function is provided in Figure 5.3. Note that all of the aforementioned

Average Objective Function Value for Original SMOA Spherical Contours 10D (44)
Varying Population Size and Neighbor Strategy
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Figure 5.3: Original SMOA results from Spherical Contours Function 10D (f* = 0) across
evaluations, population sizes, and neighbor strategies

functions listed may present considerable difficulty to optimization algorithms based on
their dimensionality and/or multiple minima. Occasionally, one particular population
size was best. This tendency can be seen in the Beale and Engvall functions.
Additionally, there is a tendency for results to flatten across parameter variations with
higher number of objective function evaluations (500k and 1M). This is to be expected
because as results improve in many optimization algorithms, they tend to stabilize as they
near optima. Such tendency can be seen in Figure 5.2 for Rosenbrock's function.
Results for the Wood and Powell functions reversed their performance with respect to
population size at the 100,000 and 1,000,000 evaluation limits. This is, however, not
worth much merit since an optimum was not reached, and both results and standard
deviations for these functions improved as population size was increased. Lastly, many
objective functions that would be considered [easy[to optimize were relatively
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unaffected by change in population size, especially at higher evaluation limits. This is to
be expected because in many cases the number of evaluations was more than sufficient to
produce reasonable results.

Objective function values provide much insight into the performance of the Slime
Mold Optimization Algorithm. There are, however, limits to how well performance can
be judged based upon this one indicator. To better gauge performance in functions where
there are many local minima, it is helpful to look at the distance between the decision
space values obtained from an optimization algorithm and the decision space values of
the actual minima. This will be referred to as the [érror in x[! In Figure 5.4, the error in
x is presented for the Griewangk function. From the box plots presented, it is easy to see
that the Original SMOA falls between 20 and 70 units away from the actual minimum.

Error in x for Griewangk 10D (49)
500k Evaluations with 4 Neighbors
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Figure 5.4: Error in x for Griewangk 10D Function (49) using 4 neighbors and 500,000 evaluations.

Looking at Figure 5.5 in conjunction with Figure 5.4, it is clear that the objective function
values produced by the Original SMOA are nearing the actual minima of zero at decision
space location (0,[1 0). Since it is known that the Griewangk function has many local
minima, one can assume that the Original SMOA was caught in an area of local minima
near the true minimum

Next, performance across neighborhood strategies is discussed briefly.
Performance from varying neighbor strategies is more straightforward than that of
varying population size. Simply put, increasing the number of neighbors has a tendency
to improve performance (result and standard deviation) as the number of evaluations is
increased and with higher dimensionality and difficulty of the objective function. Such
improvement comes with a cost of increased runtime as the dimensionality of the
objective function is increased. This should not come as a surprise since more neighbors
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will provide more information when attempting to optimize functions of higher
dimensions.

Average Objective Function Value for Original SMOA Greiwangk 10D (49)
Varying Population Size and Neighbor Strategy
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Figure 5.5: Original SMOA results from Griewangk Function 10D (f* = 0) across evaluations,
population sizes, and neighbor strategies

Another of the parameters that was varied to ascertain performance was the
number of pseudopods. For this set of parameters, the algorithm was fixed at a limit of
500,000 evaluations and was tested using each of the four neighbor strategies with
population sizes of 50 and 500 amoebae. Performance from modifying number of
pseudopods shows little variation. Perhaps slight preference is indicated for very few (2)
or many (10+) pseudopods. Results, standard deviations, and runtimes for varying the
number of pseudopods may be seen in Appendices C1, C2, and C3, respectively. Of
more interest is that the results, regardless of the number of pseudopods show a definite
preference for a smaller population size when optimizing high dimensional functions
using a 500,000 evaluation limit.

The last of the data considered for the Original algorithm is its runtime. Runtimes
for SMOA are provided in Appendix B3. Note that these runtimes are averaged over the
100 trials that were used for each objective function. The algorithm was executed as a 9
thread process with one [server[ thread and each of a number of [client[ /threads running
one instance of the SMOA with a particular parameter set. This program ran on a 1U
Dell PowerEdge 1950 III with dual quad-core Intel E5430 processors. This was one node
of the OSU Supercomputer called Pistol Pete. Run times ranged from less than 0.08sec
for a 100,000 evaluation run of SMOA on function S1 to just over 6.5min for a 1,000,000
evaluation run of SMOA on the Storn Chebyshev (9D) function. The high cost
associated with the Chebyshev function is due to a high amount of recursion and iteration
required for its evaluation. Most runs of SMOA cost between 0.1sec and 10sec for
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functions of low dimensionality and between 10sec and 6.5min for functions of high
dimensionality (e.g. 9D [132D).

Section 5.3 Comparisons between the Original Algorithm, HJ, DE, RCGA, and PSO

In this section, comparisons between the Hooke Jeeves, DE, RCGA, and PSO
algorithms and the best of the average results from the original SMOA are discussed.
This is done to get a baseline for the performance of the SMOA versus existing EAs.

One might wonder why comparisons are not made against existing derivative-based
classical algorithms (e.g. Steepest Descent). For such algorithms, it is not possible to test
the entire function set to classical algorithms because many of them lack derivatives (e.g.
Storn Chebyshev, Odd Square, Modified Rosenbrock 1, etc.). Such algorithms typically
offer a better cost to performance ratio on differentiable functions as well. One direct
search algorithm, Hooke Jeeves Pattern search is tested against the SMOA. Since this
algorithm is different from EAs in that it does not have a population, a population-based
heuristic is used whereby many Hooke Jeeves trials are used with starting points scattered
randomly about the decision space. This was done to ensure fairness against EAs,
because direct search algorithms using single starting points may become trapped in local
minima. Even with such a population-based heuristic, direct search algorithms are
typically not very costly in terms of run time. EAs also offer the possibility of global
optimization, but this is often at the cost of hundreds of thousands or millions of objective
function evaluations. Therefore, it is prudent to compare such algorithms based on fixed
limits on evaluations.

Comparison of the algorithms begins with a look at the average performance from
each of the algorithms. Such comparisons can be made easily by comparing the best of
the average results from Appendix B1 against those of Appendix H1 at the 1,000,000
evaluation limits. These comparisons are also provided in a graph below using LSRE.
Hooke-Jeeves performs surprisingly well on the function suite. It outshines the EAs on
all but a few functions: Easom, Griewangk, Modified Rastrigin, Odd Square, Salomon,
and Rana. Hooke-Jeeves, just like many of the EAs seems to have the most difficulty in
areas where the minimum objective function value is hidden along a line or curve having
a narrow opening angle. DE shows the best performance of the EAs on most functions in
the entire suite, but even it fails to optimize several objective functions including the
Michaelewicz, Mineshaftl, Odd Square 2D and 10D, Modified Rosenbrock 1 10D and
30D, Rastrigin 10D and 30D, Schwefel 10D and 30D, Whitley 10D and 30D, and Rana
30D functions. In fact, out of the aforementioned functions the optimum of only one
(Michaelewicz) is found by one of the EAs [IPSO. PSO, RCGA, and SMOA all have
worse performance than DE, but they perform in a similar fashion, each finding minima
for about half the functions in the suite. All methods need more objective function
evaluations to take on many of the high dimensional functions. There are, however,
slight differences between the minima the algorithms find. SMOA has more obvious
difficulty with high dimensional functions than any other algorithm. It even has the
poorest performance on the 10D Spherical Contours function. PSO seems to have more
problems with functions with minima [hidden( lon flat planes. This problem has to do
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with its design as PSO relies on velocity to move about. RCGA doesn/t seem to have any
overall problems other than that it seems to be taking longer to reach optima, especially
as the search space gets larger. Again this is simply due to the algorithm(s design.
RCGA is actually a semi-random search, and with a larger search area, the search time
will be increased.

Log of Scaled Relative Error

for Average Objective Function Value
for SMOA, EAs, and Hooke Jeeves

Log of Scaled Relative Error

|
I |

JJL,_

Objective Function

Figure 5.6: LSRE for Original SMOA, EAs, and Hooke Jeeves for Average Objective Function
Values.

Given the comparisons in performance, it is also prudent to compare standard
deviations and runtimes. The standard deviations of results were excellent for most
results of EAs and Hooke-Jeeves, i.e. they were near zero for results near minima.
SMOA also showed reasonable results standard deviations, but those standard deviations
for results near minima were not as close to zero as those produced by the other EAs.

For the entirety of the results considered in this section, standard deviations for poorer
results were quite large. Such standard deviations are actually good because they indicate
all of the algorithms have not converged on any location [Ithe algorithms were still
searching for minima when an evaluation limit was reached. Next runtimes for these
algorithms are considered. These are not easily comparable as Hooke-Jeeves, PSO, and
RCGA all ran as single processes on 1U on 1 core of 1 processor on the OSU
Supercomputer with no context switching, SMOA ran on the same equipment as noted in
the previous section, and DE results were produced as part of a process having 40 threads
on the author(s home computer, which has 1 processor with 2 cores. Obviously
comparing these runtimes against each other could lead to false assumptions because of
the overhead associated with context switching.
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Section 5.4 Results from Modifying the Slime Mold Algorithm

As noted in previous sections, four major variants of the SMOA were created.
These are first, two algorithms that replace the vegetative state with the Downhill
Simplex (Simplex SMOA) and Razor Search (Razor SMOA) algorithms, respectively,
and two other algorithms that make use of a new slug state, those being the
DE+Followers (HTDE-SMOA) and DE+Followers with Razor Search Vegetative State
(HTDER-SMOA) algorithms. All of these algorithms provide at least some benefit over
the SMOA; however, in some cases they may perform worse. In this section, the
performance of these algorithms is explained.

First, the Simplex SMOA is analyzed. On first look, its performance appears to
be quite good on many objective functions such as the Modified Rosenbrock 1 function,
but occasionally the results are quite poor even for some [ easier! Jobjective functions
such as the 2D Rosenbrock function. On closer analysis it becomes clear that the
Simplex SMOA is highly dependent on population size and neighborhood strategy. With
more difficult objective functions often a smaller population size with a reasonable
neighbor strategy works well. Occasionally, with simpler high dimensional functions, a
larger population size is more beneficial as with the 10D Spherical Contours function.
The method is significantly faster than any of the other SMOA methods, but it is also the
most sensitive to changes in population size and neighborhood strategy.

Average Objective Function Value for Simplex SMOA Rosenbrock (1)
Varying Population Size and Neighbor Strategy
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Figure 5.7: Simplex SMOA results from Rosenbrock(s function (f* = 0) across evaluations,
population sizes, and neighbor strategies.

The HTDE-SMOA method seems to be quite stable. It is fairly consistent across
most parameters changes, though there are slight variations that occur from parameter
changes. The algorithm reacts better to having more neighbors with objective functions
with higher dimensionality. Note the performance on the Storn Chebyshev function in
Figure 5.9. For simpler functions, especially those with lower dimensionality, a smaller
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population size seems to improve results. In comparison to the Original SMOA, many
similarities are present. Varying evaluation limits often produces similar improvements
and standard deviations are also quite similar, though improved.

Average Objective Function Value for Simplex SMOA Mod Rosenbrock 1 (6)
Varying Population Size and Neighbor Strategy
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Figure 5.8: Simplex SMOA results from Modified Rosenbrock 1 function (f* = 0) across evaluations,
population sizes, and neighbor strategies.

Average Objective Function Value for HTDER SMOA Storn Chebyshev (36)
Varying Population Size and Neighbor Strategy
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Figure 5.9: HTDER SMOA results from Storn’s Chebyshev function (9D, f* = 0) across evaluations,
population sizes, and neighbor strategies.

Improvement to this algorithm is seen when the Razor Search is added in place of
the vegetative search defined in Chapter 3. The Razor SMOA produces results similar to
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those of the Original SMOA. It seems offer little performance boost over the Original
algorithm on its own, but when added to the HTDE-SMOA significant improvements to
results are visible. With this change to the vegetative state, the new algorithm is referred
to as HTDER-SMOA. Results from this algorithm are better overall with a larger
population size for objective functions of low dimensionality with a generous number of
neighbors (i.e. neighbor strategy 3 or 4). Interestingly in many of the same situations,
using very few neighbors and a small population (e.g. neighbor strategy 2 with 50
amoebae) also work well for simple functions of low dimensionality. For objective
functions of many dimensions, results improve when using few neighbors and a moderate
population size (e.g. neighbor strategy 2 with 100 or 250 amoebae). The HTDER-SMOA
generally produces quality results with reasonable standard deviations for functions of
dimension less than ten and is even able to near the optimum on the Storn Chebyshev
(9D) function. More objective function evaluations would be necessary to improve its
performance on the difficult, high dimensional functions in the suite.

Section 5.5 Comparisons to the Original Algorithm and other EAs

To simplify this section, the best of the averages at the 1,000,000 evaluation limit
from the Original Algorithm, HTDE, HTDE-Razor, Razor, and Simplex algorithms were
compared against each other and against the methods mentioned in Section 5.3. Initial
observations are made from Figure 5.10. First, comparing the SMOA algorithms against
themselves, it is obvious that the HTDE-Razor and Simplex SMOAs provide the best
overall quality. The Original SMOA, HTDE SMOA, and Razor SMOA provide a
slightly lower level of quality with slight variations between results. None of the
algorithms work particularly well on the higher dimensional functions, but the HTDE and
HTDE-Razor algorithms do tend to perform consistently and are better on the Storn
Chebyshev (9D), Osborne 1 and 2, and many of the high dimensional functions. The
Simplex SMOA tends to have varying performance that limits it, especially on some of
the easier functions such as the 2D Rosenbrock function, but occasionally has excellent
performance on objective functions with high dimensionality such as the 10D and 30D
Griewangk functions and those with high difficulty like the 2D Modified Rosenbrock
functions.
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Log of Scaled Relative Error
for Average Objective Function Value
for SMOA Variants
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Figure 5.10: LSRE for all SMOA methods across all objective functions.

Next, comparisons are made of the best average results at the 1,000,000
evaluations limit to the EAs covered in Section 5.2 and to the Hooke Jeeves Pattern
Search (HJ). Such comparison is made through Figure 5.10. The results show two
obvious winners based upon average result: DE and Hooke Jeeves. Aside from this, the
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Figure 5.11: LSRE for all optimization methods across all objective functions.
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next best quality in results where the algorithms work well is provided by RCGA, PSO,
HTDE-SMOA, HTDER-SMOA, and the Original SMOA. Poorer performance is seen in
all of these algorithms in functions of both higher dimensionality (esp. those of 30+
dimensions) and high difficulty. Time performance for Slime Mold algorithms may be a
problem in comparison to other EAs. Unless context switching is having a significant
effect on the time results of the various SMOAs, they appear to utilize as much as 5 to 10
times more CPU time than RCGA or PSO.
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CHAPTER VI

VI. CONCLUSION

Section 6.1 Concluding Remarks

In the previous chapters, Slime Mold was taken from biology to simulation to an
optimization algorithm. Review of existing Evolutionary Algorithms and Direct Search
was provided as was review of the biology of Dictyostelium discoideum and its
simulation. Educational simulation of the Slime Mold and several additional topics
including Cellular Automata and Approximate Nearest Neighbors were reviewed as well.
Portions of educational simulation, biological simulation, existing EAs, and existing
Direct Search methods were combined to form the Slime Mold Optimization Algorithm.
This algorithm was discussed in detail with special attention paid to its relation to the
lifecycle of Slime Molds. The Slime Mold Optimization Algorithm was divided into
states with each one being related to part of the Slime Mold lifecycle. Thereafter,
variations on the algorithm(s vegetative, mound, and slug states were introduced. The
vegetative state modifications were based upon two Direct Search methods [1Downhill
Simplex and Razor Search. The modification to the mound and slug states was based
upon biology and the Differential Evolution algorithm.

Using the many variations of the Slime Mold Optimization Algorithm (SMOA),
results were generated. Results from each algorithm were provided for a variety of
parameters including limits on objective function evaluations, various population sizes,
different numbers of nearest neighbors, and various numbers of pseudopods for the
Original algorithm. For Original SMOA, results improved when using more objective
function evaluations, and they varied depending on the population size and number of
nearest neighbors. Generally, better results were produced for more difficult objective
functions with smaller population sizes (e.g. 50 or 100) and a generous number of nearest
neighbors (e.g. two times the dimension of the objective function). Easier objective
functions often yielded good results regardless of parameter choice. Results for objective
functions with many dimensions were poor, though they improved as the limit on
evaluations was increased. When comparing the Original algorithm to RCGA, PSO, and
DE, results from RCGA and PSO were similar to those of the Original SMOA, whereas
DE yielded much better results. Unfortunately, the SMOA seems to have much greater
time requirements than DE, RCGA, or PSO. It is expected that further refinement of the
Original SMOA to include a slug state that always uses the global best as a pacemaker
will improve results.
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Results from the variants of the SMOA were quite interesting. Overall, adding
the DE+Followers (HTDE) strategy for the Slug State improvement over the Original
algorithm as did the SMOA using the Downhill Simplex for the Vegetative State
(Simplex SMOA). The Simplex SMOA, did however, perform quite poorly on some of
the easier objective functions, such as Rosenbrock's function. The Razor Search for the
Vegetative State (Razor SMOA) provided about the same level of performance as the
Original SMOA; however, when combined with DE+Followers (referred to as HTDER-
SMOA), significant improvements were seen. All of these algorithms were quite costly
in terms of CPU usage, but they did provide similar, and sometimes better in the case of
HTDER-SMOA and Simplex SMOA, performance to PSO and RCGA.

Section 6.2 Future Work
Section 6.2.1 Further Variants on the Vegetative State

Many further variations on the vegetative state, aside from those presented in
Chapter 4, are possible. The current vegetative and aggregative state equations are
similar to the work of Erban and Othmer [2007]. The discretization of their functions
suggests a function similar to the Particle Swarm Optimization functions with a random
component to allow for incorrect movements, which is currently implemented in the
Slime Mold Optimization Algorithm. A more interesting modification to the algorithm
would be to replace the equations and data structure of the vegetative and aggregative
states with a structure similar to that of the Glazier and Graner model [1993]. To
implement this model multiple data points would be used to represent a single amoeba.
The structure used should be similar to that used in the Downhill Simplex, but it would
be slightly flexible in size and contain more data points to ensure such flexibility.
Knowing that the Nelder-Mead Simplex is prone to collapse, the volume of this new data
structure must be loosely conserved and the structure must retain data points in all
dimensions of the search space, i.e. there must exist a set of coordinates within the data
structure that span the entire search space [Torczon 1989]. Movement of this structure
should follow that shown in Figure 2.4, where several data points would protrude from
the main structure to search in a preferred direction. Were that direction an improvement
in the structure’s favor, the points would be moved in said direction with the rest of the
structure to follow. Movements in flat directions or in a worse direction would follow an
annealing schedule. Once implemented, an analysis of this structure will be needed. It
should be evaluated alone, as a population, and finally as part of the Slime Mold
Optimization Algorithm in the vegetative and aggregative states. Additionally,
comparisons between the original algorithm and the modified one will be necessary.

Section 6.2.2: Population dynamics

Variants of GAs and PSO algorithms often allow for the population to vary in
size. Such variations are implemented through the use of operators that allow for birth
and/or death of individuals [Arabas et al. 1994, Lu and Yen 2003, Yen and Lu 2003].
Birth operators for GAs vary greatly. They include simple crossover operators such as
the a-blend operator [Herrera 1998] and more complex ones such as the Unimodal
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Normal Distribution Crossover (UNDX) and the Blend Crossover with Principal
Components Analysis (BLXPCA) operators of Takahasi [2001]. Hybrid GA/PSO
algorithms may also include such operators. As shown in Chapter 2, even DE includes a
birth operator to create a fixed population of children [Price et al. 2005]. Recent research
has shown that DE has been modified to include a dynamic population with success
[Huang et al. 2006]. Death operators for population based EAs allow the population size
to be reduced. Existing operators are typically two pronged. Such operators often make
use of an aging operator and a likelihood function. The aging operator counts the number
of time steps (iterations) for which an individual has existed in the population. After a
fixed number of time steps the individual(s continued existence in the population is
contingent upon a likelihood function. This function is often based upon the number of
iterations spent searching versus the number of updates said individual has made to its
personal best or the population(s global best. For many of such death operators, an
individual is exempted from the likelihood function test if it is elite (i.e. the best of the
population). This exemption is not necessary if an archive is used to record the best
objective function values from the population [Arabas et al. 1994, Yen and Lu 2003].

Since GAs, PSO algorithms, and DE algorithms are population based and may
allow for creation (procreation) and removal (aging) of individuals from the population
and the Dd lifecycle includes birth and death, it follows that addition of birth and death
operators to the Slime Mold Optimization Algorithm may be useful. With respect to
birth operators, the Dd lifecycle allows for two different types of procreation. The first is
an asexual birth referred to as binary fission or mitosis, which is the splitting of one
amoeba into two. Procreation of this sort occurs after an amoeba has eaten numerous
meals and becomes large enough to divide [Kessin 2001]. An algorithmic representation
of this birth operator would be to allow for one amoeba to split into two after obtaining a
certain number of new personal bests. The second type of Dd procreation is sexual and
may be referred to as meiosis. Meiosis occurs when two Dd amoebae merge to form a
macrocyst with a cellulose cell wall. This macrocyst emits cAMP much like the slug.
Other amoebae are attracted to the macrocyst, and they are forced to become part of it
because of their attraction to cAMP. Once a sufficient number of amoebae join the
macrocyst, the contents of those cells are recombined and used to form new amoebae.
Thereafter, the cellulose wall of the macrocyst bursts and new amoebae erupt out of it
[Kessin 2001]. As of yet, the author has not determined an appropriate use for this
construct. Amoeboid death in the slime mold optimization algorithm provides for several
possibilities. The first of these is aging, which may be applied during the vegetative
state after a fixed number of time steps. A likelihood function may be applied after
amoebae have existed for a fixed number of time steps to determine if such amoebae
should be removed from the population [Arabas et al. 1994, Monismith and Mayfield
2008]. Toward the end of the aggregative state, those amoebae that do not join a mound
may be subjected to additional scrutiny for removal from the population. Additionally,
before the dispersive state, Dd amoebae that are part of the tail of the slug die [Kessin
2001]. This may be implemented in the algorithm as well by forcing the 4/5 of the
amoebae in the tail of the slug to be removed from the population before dispersal
[Arabas et al. 1994, Kessin 2001, Monismith and Mayfield 2008]. For this portion of
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future work, reasonable comparisons could be between the base algorithm, the algorithm
with the improvements of Sections 4.1 and 4.2, and the above proposed changes.

Section 6.2.3: Theoretical Research of Slime Mold Optimization

Several topics are of interest to the author with respect to theoretical research on
Slime Mold Optimization and Evolutionary Algorithms in general. These topics are,
however, only of interest as future research and not as part of the dissertation research.
The first of these topics is research on the convergence of the Slime Mold Optimization
Algorithm. It may prove interesting to investigate if the algorithm meets the criteria
necessary to allow for convergence in an Evolutionary Algorithm and then to see if
convergence may be proven outright or if it is objective function specific like DE
[Rudolph 1996, Zaharie 2002]. Similarly, a study of the relationships between different
evolutionary algorithms could be quite interesting. Particle Swarm Optimization and
Differential Evolution share many similarities. Additionally, PSO and estimation theory
share similarities. We would like to answer two questions in regards to the previous
statements. Is DE a generalization of PSO and is PSO a special case of the estimation
theory component referred to as a particle filter? Once answers to these questions are
available, we would like to address them to the Slime Mold Optimization Algorithm to
determine if the algorithm is unique or simply a specialization or generalization of
another algorithm.
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APPENDIX A: OBJECTIVE FUNCTION APPENDIX

The Razor Search Algorithm, Real-Coded Genetic Algorithm, Particle Swarm
Algorithm, Differential Evolution Algorithm, and Slime Mold Optimization Algorithm
will be tested on a suite of 36 functions. These functions test different limitations of
optimization algorithms. Some of the functions listed below contain plateaus, narrow
valleys/peaks, and multiple local minima. Some functions lack derivatives, gradients, or
Hessians especially near or at a global minimum. Some contain multiple global minima.
Finally, some functions include a disproportionately large search area.

1. Generalized Rosenbrock's Function [Price et al. 2005]

Objective Function

FX)= 21000, =37 +(x,=)?)

Feasible Region -30<x, <30
Global Minima f(..,)=0
Number of Global Minima 1

Function Images

csEEyEELS

2. McCormic's Function [Madsen 2008]

Objective Function

f(x) =sin(x, +x,) +(x, =x,)* =1.5x, +2.5x, +1

Feasible Region —-1.5<x,<4,-3<x,<4
Global Minima f(—0.54719,-1.54719) = -1.9133
Number of Global Minima 1
Function Images
BI A :
N A ; /
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3. Box and Betts Exponential Quadratic Sum Function [Madsen 2008]

Objective Function 10
! @)=Y g(x)?
i=l

g(x) =exp(—0.1i .&;) —exp(—0.1i [I,) — x, [{exp(—0.17) — exp(—i))

Feasible Region 09<x,x<12,9<x,<11.2
Global Minima f(1,10,1)=0
Number of Global 1
Minima

No function images are provided because its graph would be 4-dimensional.

4. Goldstein and Price Function [GEATbx 2007]

Objective Function Sf(x) =[1+(x, +x, +1)° 19— 14x, +3x7 —14x, +6 &, [k, +3x;)]0
[30+(2x, —3x,)” [18 —32x, +12x7 +48x, =36 &, [k, +27x))]

Feasible Region x,,x, U[2,2]
Global Minima f(0,-1)=3
Number of Global 1
Minima

Function Images

5. Easom's Function [GEATbx 2007]

Objective Function S (x) = =cos(x,) [Bos(x,) exp(=((x, = 77)° +(x, = 7))
Feasible Region —-100 < x,,x, <100
Global Minima f(n,n)=-1
Number of Global Minima 1

Function Images
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6. Generalized Modified Rosenbrock's Function 1 [Chen 1997]
Flat Ground Bent Knife Edge Function

Objective Function

fx)= Z(lOOEUX,-+1 —x; [+(1-x,)%)

Feasible Region -30<x, £-30
Global Minima f(1,..H)=0
Number of Global Minima 1

Function Images

120
Yoo -1
-l
tcm| .
p

s S

7. Generalized Modified Rosenbrock's Function 2 [Chen 1997]
Hollow Ground Bent Knife Edge Function

Objective Function

S = Z(IOO Al x =X [+(1=x,)%)

Feasible Region -30<x, <30
Global Minima f(1,...1)=0
Number of Global Minima 1

Function Images
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8. Bohachevsky's Function [Chen 1997]

Objective Function

f(x)=x{ +2x; —0.3cos(37®,) —0.4cos(47x,) +0.7

Feasible Region —2000 < x;,x, <2000
Global Minima £(00,00=0
Number of Global Minima 1
Function Images
\ v K g

9. Powell's Function [Chen 1997]

Objective Function f(x) = (x, +10x,)> +50x, —x,)* +(x, —2x,)* +10Qx, — x,)*
Feasible Region —-2000 < x;,x,,x;,x, <2000
Global Minima £(0,0,0,0)=0
Number of Global 1
Minima

No function images are provided because its graph would be 5-dimensional.

10. Wood's Function [Chen 1997]

Objective Function F(x)=1000x, =x7)* +(1=x,)* +90[x, —=x*)* +(1-x;)* +

10.1%[(x, = 1)> +(x, 1)1 +19.8 {x, — 1) {x, 1)

Feasible Region —-2000 < x,,x,,x;,x, <2000
Global Minima fLLLD) =0
Number of Global 1
Minima

No function images are provided because its graph would be 5-dimensional.
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11. Beale's Function [Chen 1997]

Objective Function

f(x)=(1.5=-x Wl -x,))*+(2.25-x, Wl -x3))’
+(2.625-x, {1 -x3))°

Feasible Region —2000 < x,,x, <2000
Global Minima 3,05 =0
Number of Global Minima 1
Function Images

12. Engvall's Function [Chen 1997]

Objective Function

f(x)=x +x5 +2x) &) —4x, +3

Feasible Region —2000 < x,,x, <2000
Global Minima f(1,0)=0
Number of Global Minima 1
Function Images
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13. Generalized DeJong's (Spherical Contours) Function [Price et al. 2005]

Objective Function

f)=x
i=1
Feasible Region -10<x,,...,x, <10
Global Minima £(0,...,0) =0
Number of Global Minima 1
Function Images

||||||

14. Generalized Rastrigin's Function [Price et al. 2005]

Objective Function

f(x)=10n+ i(xf ~10cos(27x,))

i=1
Feasible Region -10<x,,...,x, <10
Global Minima £(0,...,0) =0
Number of Global Minima 1

Function Images
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15. Generalized Schwefel's Function [Price et al. 2005]

Objective Function

00223 (= sin(yx)

Feasible Region -500 < x,,...,x, <500
Global Minima f(—418.983,...,—418.983) = 420.968746
Number of Global Minima 1
Function Images
Tl aARd - M.,A & L
AN 28 A !
. .'0“ ‘u“ =)
' Ay il &
' LA A : 'vww

16. Griewangk's Function [GEATbx 2007]

Objective Function

X; z X
= =1 |cos(—)+1
~ 4000 |_1| Ji
Feasible Region - 600 < x, <600
Global Minima £(0,...,00 =0
Number of Global Minima 1

Function Images

J,A f')')i""’%l"b m

Al
! (TR

u«“
R
N

—
0

108




17. Ackley's Path Function [GEATbx 2007]

Objective Function | 1
f(x) =—20exp| — 0.25 - exp[Zcos@nxi)j +20+e
= niz

n=2
Feasible Region -32.768 < x,,x, <32.768
Global Minima £(0,0)=0
Number of Global 1

Minima

Function Images

18. Modified Langermann's Function based on [Chen 1997]

Objective Function m 1 n
f(x)==> | ¢, lxp| == (x, = 4,,)* |Bos| Y (x,= 4, ;)
=l Y/ = k = "
m=5n=5
A and c are provided in [Chen 1997].
Feasible Region -10<x,,...,x,, <10
Global Minima £(??7)=-1.5 (assumed minimum)
Number of Global 1

Minima

No function images are provided because its graph would be 6-dimensional.

19. Michaelewicz's Function [GEATbx 2007]

Objective Function . 2\
f(x)= —Z sin(x;) Ein(z’ Dci”J
i=1

n,m=10
Feasible Region 0<Xx,.,x,STT
Global Minima f(777)=-9.66
Number of Global Minima 1

No function images are provided because its graph would be 11-dimensional.
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20. Branin's rcos Function [GEATbx 2007]

Objective Function f(x)=a(x,—bx] +cx,—d)* +e(1- f)cos(x,) +e
51 5 1
a=1,b=—,c=—,d=6,e=10, f =—
ArT T d 8
Feasible Region -5<x,<10, 0sx, <15
Global Minima f(-n,12.275) = 0.397887

£(71,2.275) = 0.397887
£(9.42478,2.475) = 0.397887

Number of Global Minima 3

Function Images

21. Six Hump Camel Back Function [GEATbx 2007]

Objective Function 2 X 22
f(x)=(4-2.1x; +?1)x1 +x,x, + (=4 +4x;)x;

Feasible Region —3<x,<3,-2<x,<2
Global Minima £(—0.0898,0.7126) = -1.0316
£(0.0898,—0.7126) = —-1.0316
Number of Global Minima 2

Function Images

22. Osborne's Function 1 [Chen 1997]

Objective Function 33 s
f(x) = Z((x1 +x, exp(—x,Z,) + x; exp(=xt,)) — ;)
i=l
t=10G-1)
Values for y are provided in [Chen 1997].
Feasible Region 0<x,x,x,,x<3,-3<x,<0
Global Minima £(0.3753,1.9358,-1.4647,0.01287,0.02212) = 5.46¢ -5
Number of Global Minima 1
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No function images are provided because its graph would be 6-dimensional.

23. Osborne's Function 2 [Chen 1997]

Objective Function

65

f)=3

=1 X; exp(—x, (¢,

(xl exp(—xstl.) +tx, exp(—x6 (ti Xy )2) +
_xlo)2

+x, exp(—xg (¢, — x“)z)) - yi)z
t=10(G-1)
Values for y are provided in [Chen 1997].

Feasible Region 0< X500 X6, X9 <3, 0<x, <5,
4<x,<7,2<x,<5,3<x,<6
Global Minima £(1.3100,0.4315,0.6336,0.5993,0.7539,
0.9056,1.3651,4.8248,2.3988,4.5689,
5.6754) =0.0402
Number of Global Minima 1

No function images are provided because its graph would be 12-dimensional.

24. Modified Rastrigin's Function
Based upon Rastrigin(s Function from [Price et al. 2005].

Objective Function

f(x)=20+x +x3 —10(cos(27x, ) +cos(27x, )) +

40((7-x)" +(3-x,)%)

Feasible Region -10<x,,x, <10
Global Minima £(0.9978,3) =60.79317
Number of Global Minima 1
Function Images
2N - N P
W m m ‘“'
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25. Mineshaft Function 1 [Monismith and Mayfield 2008]

Objective Function

F(x) = cos(x) +(7—x)'5 +2(5-x)

4
35

Feasible Region 0<x<10
Global Minima f(5)=1.3805
Number of Global Minima 1

Function Image

26. Mineshaft Function 2 [Monismith and Mayfield 2008]

Objective Function £(x) = cos(x) - o 71000(x-2)°
Feasible Region -10< x,,x, <10
Global Minima £(2.000454648) = —1.41635352
Number of Global Minima 1

Function Image
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27. Mineshaft Function 3 [Monismith and Maytield 2008]

Objective Function fx)=-5 [g~1000Cx -0.5)2-1000(x,=0.3)> _ 7 (320000 ~0.8)2-2000(x, —1.3)>
Feasible Region —2<Xx,,x,<2
Global Minima f(0.8,1.3) =7
Number of Global 1
Minima

Function Images

i

28. S1 [Choi and Mayfield 2009]

Objective Function

f()=(x=1)" Qx-2)°

Feasible Region -10<x<10
Global Minima fM=0,f(2)=0
Number of Global Minima 2

16000

14000

12000

10000

8000

6000

4000

2000

29. S2 [Choi and Mayfield 2009]

Objective Function

f(x,x,)=2.0+(x, —0.7)°

Feasible Region -10< x,,x, <10
Global Minima f(x,,0.7)=2.0
Number of Global Minima Infinite

;,




30. S3 [Choi and Mayfield 2009]

Objective Function

f(x,,x,) =2.0+(x, —=0.7)* —arctan(x,)

Feasible Region -10<x,,x, <10
Global Minima £(10,0.7) =0.5289
Number of Global Minima 1

o

31. Downhill Step Function [Price et al. 2005]

Objective Function

_ floor(10(10 — exp(—xl2 - 3x§ )

X,,X,) =
S(x,x,) 10
Feasible Region -10<x,,x, <10
Global Minima £(0,0)=9
Number of Global Minima

i

32. Salomon/s Function [Price et al. 2005]

Objective Function

f(x)==cos(27|x[)) +0.1] x| +1

=i
Ix[=,>x]
=0

Feasible Region —100 < x, <100
Global Minima £(0,...,00=0
Number of Global Minima 1
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10000

33. Whitley Function [Price et al. 2005]

Objective Function

D-1D-1

SR i
1= 33 Grog ~eos,0+D

Yyu =100, =x7)" +(1-x,)’

Feasible Region —-100<x, <100
Global Minima f(l...)=0
Number of Global 1
Minima

Function Images

34. Odd Square Function [Price et al. 2005]

Objective Function

f(x)= —exp(%) [¢os(d ) Eél + 0.02 Lh J

d+0.01

d= \/D [nax((x, =b,)*)

h= /Dz_l(xj %

Feasible Region —5m<x,<5m j=0,1,..,D-1, D<20, £=0.01
Global Minima f(x*)=-1.14383, x* =many solutions near b
b=[1.0,1.3,0.8,-04,-1.3,1.6,-0.2,-0.6,0.5, 1.4,
1.0,1.3,0.8,-0.4,-1.3, 1.6, -0.2, -0.6, 0.5, 1.4]
Number of Global Many minima near b
Minima

Function Images
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35. Storn(s Chebyshev Function [Price et al. 2005]

Objective Function

SX)=pi+p2tDp3

-d)’ ifu<d Dl 4
X - (u ) 1T u ' , u :zx] m1'2)D—1—]’
0 otherwise =0

(v=d) ifv<d D .
= , v x. [(—-1.2 ’,
P2 {0 otherwise ]Z:(; i H12)

(w, =1)> if w, >1

) . RS A
(w, +1)° ifw, <-1, wk:ij [é?—lj ,
0 otherwise /=0

P

=Y pis k=0l..,m, m=32[D,
k=0

72.661 for D=9
d=T,,12)=

10558.145 for D =17
T,,(z)=2zO,(z)-T,_(z), D>0and odd,
Ii(2)=1, Ti(2) =z

Feasible Region -2”<x;<2”,j=0,1,.,D-1,D>1and odd

Global Minima f(x*)=0
[128,0,-256,0,160,0,-32,0,1] for D =9

x*=1[32768,0,-131072,0,212992,0,-180224,
0,84480,0,-21504,0,2688,0,—128,0,1] for D =17.
Number of Global 1
Minima
Function Images
»
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36. Rana Function [Price et al. 2005]

Objective Function

f(x)= DZ_IX ; B3In(@) [80S(B) + X 11 moa p LEOS(@) Bin( ),

J=0

a =\/| X(j+1)ymod D +1_xj |

ﬂ:\/l X(snmoap T1HX; |

Feasible Region =512<x, <512
j=0,L,.,D-1
D>1
Global Minima f(x*)=-511.708,
x,*=-512
Number of Global 1
Minima

Function Images

B0 .fom0

-------
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