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CHAPTER ONE 

 

INTRODUCTION 

 

Throughout history information has been a critical component in decision making processes for entities.  

Without accurate and timely information, today’s average business would quickly close its doors as 

business revenue would decrease for lack of appropriate business strategy.  The ability to manage, retrieve, 

and capture knowledge from documents and/or data repositories is important to the viability of any 

business.  Discovering and defining relationships (e.g. trends, patterns, anomalies) across sets of 

information has become a rather common and needed task within all areas of business and industry.  

Entities needing this capability range from potentially small scale systems, such as a small elementary 

school library book management systems, to large scale systems, such as military government information 

systems servicing several international logistic depots.  Presently several methods have been designed to 

capture relationships across a collection of documents or within a single relation (table).  This is to assist 

the analyzing entity in discovering new correlations or anomalies that may prove beneficial in business 

decisions, medical discoveries, advances in information retrieval and organization, environmental 

management, aircraft maintenance management and the like.  The methods designed involve techniques 

based on clustering analysis, prediction models, anomaly detection algorithms and decision rules.  The 

demand for such techniques as well as the optimization of them have increased substantially as the volume 

that data entities are required to manage has increased over time.  Although several techniques have been 

explored, the task of making sense of data (i.e. uncovering relationships), whether the data is historical or 

currently acquired, still remains an issue.   Making sense of data, suggests both capturing and 

understanding what the data communicates either explicitly or implicitly.  This research addresses this issue 

as well as another unique problem.   Perhaps just as critical, yet increasingly more difficult to achieve, is 

the task of linking data sets that are considered disjoint.   
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Definition 1.0: A data set is defined as a collection of data items; such as, tuples, strings, numbers, etc., 

which represent some container of information.     

As a practical application, consider a fictitious company, Part-Mart, that sells auto parts.  This company 

contracts two different companies to supply their auto parts.  In making these parts, Company A refers to a 

“screw” as a “bolt” while Company B refers to a “screw” as a “metal component”.  Note both companies 

refer to the same object however with a different name assigned to it.  In addition let each company assign 

their own part numbers to the parts.  Company A eventually goes out of business and all its inventory 

documentation is lost.  Part-Mart Company, in an attempt to create a database to store the name 

associations of the parts from Company A and Company B in a table, is now presented with a problem.    In 

an effort to merge the data, Part-Mart soon discovers that there do not exist unique identifiers (e.g. primary 

keys, foreign keys) in any database tables to attempt a data integration step such as a SQL JOIN.  (The 

SQL JOIN clause is used whenever one has to select data from two or more tables in a relational database.   

To be able to use the SQL JOIN clause to extract data from two (or more) tables, one needs a relationship 

(common column value) between certain columns in these tables.)  

 

Definition 1.1:  A Data Integration Step is the process of merging multiple datasets (e.g. tables) into a 

single dataset. 

 

 Alternately, employees from either Part-Mart or Company B could perhaps sift through several part 

descriptions and associated schematics in attempts to associate part names and numbers.  Unfortunately, 

performing this entire task manually is not feasible when there are several parts in question (i.e. order of 

millions).  Such a task could take years.  How does one solve such a problem? How does one automate 

such a process?  Unfortunately many entities, particularly part manufacturers and logistic depots, are left in 

this dilemma, researching solutions to reconcile multiple sets of data that possess the characteristic of being 

disjoint.    

 

In this research, we introduce data mining and record linkage strategies to resolve the issue of discovering 

and identifying relationships between data items in disjoint sets.  Data mining can be defined as the process 
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of uncovering relevant information in structured data resident in large data repositories [36].  Although the 

data is found in large data repositories consisting of multiple tables generally the actual information 

processed by data mining algorithms are single tables of data.   In figure 1 an example of two tables with 

common field values is seen.  It is noted, the tables are not identical in size and information. 

 
CustomerID CarType 
10325 Chevy 
43565 Ford 
34245 Nissan 
 

Figure 1. Multiple relations with common field 

CustomerID First Last PhoneNo 
10325 Jack Frost 1234567 
43565 Sally Mae 7654321 
34245 John Doe 1234765 
 

 

 

 

 

 Conversely, multi-relational data mining (MRDM) uses multiple relations (tables) as datasets to discover 

or uncover patterns within the dataset.  MRDM begins by performing a data integration step on the multiple 

relation dataset.  The data integration step can be either a join or an aggregation operation.  These 

commands are made possible because the relations have a field in common.  Figure 1 illustrates two tables 

where the field CustomerId exists in both.  After the data integration step, the knowledge discovery process 

begins.  See figure 2 for an example of a traditional record linkage process.  

 

 

CustomerID CarType 
10325 Chevy 
43565 Ford 
34245 Nissan 
 

CustomerID First Last PhoneNo 
10325 Jack Frost 1234567 
43565 Sally Mae 7654321 
34245 John Doe 1234765 
 

Relationship 

CustomerID CarType First Last PhoneNo 
10325 Chevy Jack Frost 1234567 
43565 Ford Sally Mae 7654321 
34245 Nissan John Doe 1234765 

Algorithm 
Processes 

 

 

 

Step 1. 
Data Integration Step 

 

 
Step 2. 

Single Document  

 

 

 
Step 3. 

Discovery Process 
 (Pre-Process, Mining Process, Post-Process ) 

 

 Figure 2. Traditional linkage process 
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As previously suggested, in attempting to apply data mining techniques to multiple relations, a significant 

problem presents itself if there does not exist a mutual field among the tables to apply a data integration 

step.  Although there may be an implicit relationship between the relations, without the existence of a 

common field, the relations are still considered disjoint.  An implicit relationship can be characterized by a 

prior knowledge that one or more fields in a set of relations are related however there exists no explicit 

identifier in which to connect the two.   Figure 3 depicts a modern record linkage process. 

 

 
First Last PhoneNo 
Jack Frost 1234567 
Sally Mae 7654321 
John Doe 1234765 
 

CustomerID CarType 
10325 Chevy 
43565 Ford 
34245 Nissan 
 

Step 1. 
Multiple relations  

 

 

 

CustomerID CarType First Last PhoneNo 
10325 Chevy Jack Frost 1234567 
43565 Ford Sally Mae 7654321 
34245 Nissan John Doe 1234765 

Algorithm 
Processes 

Step 2. 
Discovery Process  

(Data Integration Step) 
 (Pre-Process, Mining Process, Post-Process ) 

 

 

 

 Step 3. 
Single Document 

 

 

 

Algorithm 
Processes 

Step 4. 
Discovery Process 

 (Pre-Process, Mining Process, Post-Process ) 

 

 

 
Figure 3. Modern linkage process 

  

 

Definition 1.2:  The process of integrating data sources (e.g. data records) that use different data formats 

and terminology to refer to the same entity (e.g. person, place, event) is referred to as record linkage. 

This research presents a set of novel data mining and record linkage approaches to assist in establishing 

explicit links between disjoint data resident in multiple relations. 
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CHAPTER TWO 

FORMAL PROBLEM 

2.1 Problem Description 

 

Although multi-relational data mining suggests the initial step of data integration in order to begin 

algorithmic application to discover new information, we present a unique data integration issue that 

remains prevalent in the information industry.  In the event that a common field is not present between two 

relations, the researcher must identify a set of fields in each relation which will give the most optimal 

opportunity to initiate a data integration step.  As the relations are disjoint, this implies that a data 

integration step based on a solution that solely compares relation field values for equivalency is not 

feasible.  As in traditional record linkage and data mining, several obstacles may present themselves.  This 

research deals primarily in the domain of machinery parts data, but it is noted that the problem can be 

generalized.  The issues being addressed in this research is formally defined as the MUDD classification 

problem.     We describe the problem as being distinguished by four vital elements,  

Element 1: Mapping processes,  
Element 2: Unreliability of data,  
Element 3: Domain specific data and  
Element 4: Disjoint data sets.   
 

M.U.D.D. is the acronym that best captures the four elements which exists together to characterize the core 

problem.   For clarity, in future sections, references to the disjoint sets and all involved data items will be 

addressed as the Data Field. 

 

Definition 2.0: Given the sets A, B, and C, where A ∩ B = ∅  and C contains data elements that reference 

elements in A and B, a Data Field is defined as the set D = (A U B U C). 

 

In the sections to follow a detailed explanation of the four elements will be presented.  A discussion of 
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element four, Disjoint data sets, will be discussed in section 2.2.  In section 2.3 and section 2.4, element 

three, Domain specific data, and element two, Unreliability of data, will be discussed respectively.  In 

section 2.5 we elaborate on element one, the Mapping processes.  Finally in section 2.6 we present a formal 

problem statement. 

 

2.2 Disjoint Property 

 

We begin with the description of element four, the very foundation of the problem.  Element four captures 

the central issue of the MUDD classification problem.  It is denoted by two existing disjoint data sets A and 

B, each of which contain data components such as records in a data source (i.e. document or database).   

Let an arbitrary data set, represented as a table T, be defined as,  

Τ: {t | t =  <a1,a2,….ak> where ai are fields within t} 

 

 

ΤkΤi

 

 

 

Set A Set B  
Figure 4. Disjoint Sets 

 

 

In figure 4, the two sets A (e.g. Τi) and B (e.g. Τk) are considered to be disjoint as they have no records ti or 

elements <ak> in common.  Let T1 = {t | t = <a1,a2,….an>}  and T2 = {t` | t`= <b1,b2,….bm>}.  Then T1 and 

T2 are considered disjoint if for every t ∈  T1 and t` ∈  T2, t ≠ t` and ai ≠ bj for any i, j in any given t and t`.  

Table I and Table II show an example of the two disjoints sets A and B expressed as tables.  Since the two 

sets are disjoint, the process of making the correct mapping between records ti in set A to records t`j in set B 

can become extremely complex.  Referring to Table I and Table II, in the event that an analyst attempts to 

map a record from set A to a record in set B, the analyst soon establishes that the records do not have an 

existing common field <ai> that can be used to create a direct record mapping or merge.   
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TABLE I. Sample Set A as a Table TABLE II. Sample Set B as a Table 

 
Part Description Quantity Age Part No. 

fuel support 1 13 xyx-ab-123 
front dump panel 7 9 89-43-wer 
 retractable arm 14 1 390-op3-78 

 

 

Part Description Quantity Age Part No. 
steel rod 4 12 ab-723 

forward covering 2 3 yu-343-33 
left fuel assembly 2 5 34t-443-2 

 

 

Attempting to do such a task manually could prove exhaustive if the record count is large.  A central issue 

lies in designing and implementing a process by which associations between records in both data sets can 

be efficiently and accurately acquired in an effort to determine a new set of probable record mappings 

which will ultimately yield a third set X.   The third set X can be likened to that of a set established after a 

(SQL) JOIN operation is applied between two tables with a common field.  However unlike a SQL JOIN 

where the operation is executed using at least one common field value found in both tables, this issue calls 

for a similar operation or operations that must be executed using at least one form of a 

relationship/association discovered and defined by the analyst as a result of careful analysis of the data.   

 

2.3 Domain Specific Property 

 

The third element is denoted as the domain specific property. This property suggests that the data being 

analyzed and processed is restricted to a certain corpus or related subject matter.  This deals with particular 

words, jargon and documentation methodologies used in a domain specific context.  Word preferences or a 

company’s adopted word usage standard can also be attributed to the existence of this property.  An 

example of a word in which its meaning is determined by the context or domain in which it is used is 

“nose”.  The term nose could identify a part of an airplane or a part of the face of an animal.  This research 

deals primarily with data as it is related to machinery parts and systems.   

 

Definition 2.1: We define the term Domain Object as being the primary entity that is described or 

referenced by elements in a Data Field.  (See definition 2.0 for a formal definition of Data Field.)  More 

specifically, the Data field is the collection of data items and the Domain Object is the entities the data 

items describe or reference.  As an example if the Data Field consisted of part descriptions that referenced a 
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Ford Mustang, the Data Field would be all part information (i.e. strings, numbers) while the Domain Object 

would be denoted as a Ford Mustang. 

2.4 Unreliability Property 

 

The second element of the MUDD Classification problem is the property of unreliable data.  This property 

suggests that the data in its natural state renders a high level of unreliability.  Information in such a state 

may be unstructured and difficult to understand when first viewed by the human eye; thus meaningless to a 

computer algorithm.    This second element also references a whole host of separate impediments that may 

otherwise be quickly eliminated by exhaustive human interaction.  Such obstacles include: 

1) misspelled words,  
2) missing/incomplete terms 
3) variations of word spellings,  
4) added, irrelevant, or ambiguous words,  
5) abbreviations of words, 
6) acronyms, 
7) synonyms, 
8) multiple uses of the same word and 
9) references to outside documents or figures.   
 

It is already known that the process of attempting to discover synonyms alone poses an extremely difficult 

semantic challenge within itself [18].   With the aforementioned obstacles, attempting to match words 

within data sets becomes increasingly difficult.  Figure 5 shows sample word variations and abbreviations 

of the words - building, message, housing and assembly. 

 
  1)    building  |  buildg  |  bldg 
  2)   message   | mess     | msg 
  3)    housing   | hsng     | hsg 
  4)   assembly  | asy       | assy 

Figure 5.  Sample word variations and abbreviations 

 

 

 

 

 

We note that one reason various word variations exist in documents is because different authors of 

documents tend to use a variation of words and word phrases to articulate their point.  Finally the 

categorization or structure of the data could prove unreliable as well.  For instance, if two disjoint sets are 

thought to consist of items (e.g. records) related to the category of “Automobile Fuel System”, the process 
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of relating the records from both sets would become even more difficult if 90% of the items in one of the 

sets were actually items which belonged to the “Automobile Electric System”.   

 

The English language and its word usages are extremely difficult to grasp in itself.  Some of these issues 

and ambiguities as it relates to word usages are rather astutely characterized in [49] where comedian 

George Carlen is quoted as saying, 

“The English Language. Have you ever wondered why foreigners have trouble with the 
English Language?. Let's face it. English is a crazy language. There is no egg in the 
eggplant. No ham in the hamburger. And neither pine nor apple in the pineapple. English 
muffins were not invented in England. French fries were not invented in France. We 
sometimes take English for granted. But if we examine its paradoxes we find that 
Quicksand takes you down slowly, Boxing rings are square. And a guinea pig is neither 
from Guinea nor is it a pig. If writers write, how come fingers don't fing. If the plural of 
tooth is teeth. Shouldn't the plural of phone booth be phone beeth, If the teacher taught, 
Why didn't the preacher praught. If a vegetarian eats vegetables. What does a 
humanitarian eat? Why do people recite at a play, Yet play at a recital? Park on 
driveways and Drive on parkways. You have to marvel at the unique lunacy. Of a 
language where a house can burn up as it burns down. And in which you fill in a form by 
filling it out. And a bell is only heard once it goes! English was invented by people, not 
computers, and it reflects the creativity of the human race (Which of course isn't a race at 
all) That is why when the stars are out they are visible, but when the lights are out they 
are invisible, and why it is that when I wind up my watch it starts, but when I wind up 
this observation, it ends.” 

 

2.5 Mapping Property 

 

Mapping is introduced as a property because to attempt to combat the MUDD Classification problem with 

a pure matching solution would soon prove useless as the Data Field is disjoint.  For this reason instead of 

exact or approximate matching, a mapping process must be considered.  The mapping property is 

categorized into four major areas of concern 1) mapping ambiguity, 2) many-to-one mapping, 3) 

hierarchical relationship mapping and 4) mapping validation. 

 

2.5.1  Mapping Ambiguity 

 

Mapping ambiguity occurs when two items appear to be related but there exists a level of uncertainty that 

prevents the mapping from being created.  More specifically, in the event that one does discover a probable 

mapping between items in both data sets (e.g. items may have similar descriptions), do the descriptions 
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actually refer to the same item?  This specific issue confronts companies like collection agencies.  As an 

example, collection agencies must determine if “Eugene W. Foster and Gene Foster are in fact the same 

person?   On the surface this seems like a simple question. But determining whether or not they are one and 

the same can require some comprehensive analysis. There are numerous Fosters in the U.S., so how do we 

determine if they are the same person? We must examine any and all common attributes available in the 

data store. This might include an account number, address, telephone number, birthday, or any other 

information available that might link them together. It is also important to note that any “similar” 

information found may not be stored in the same format. For example, a birthday on one file might be 

stored as mmddyy but as ddmmyyyy on another. The ability to dissect this information and boil it down to a 

common format is equally important as identifying it.” [35]  How does one solve such a problem if no 

common record attributes exist? 

 

2.5.2   Many-to- One Mapping 

 

The many-to-one property adds another dimension of difficulty.  With the presence of this issue, there 

exists no “process of elimination” property associated with the items in the problem domain.   More 

specifically, when and if an element τj of set A is found to map to an element τx in a set B, element τx can 

still be found to map to other items τi and τk in set A.  Such a relationship is termed many-to-one and serves 

to further intensify the problem.  See figure 6b.  Ideally one would hope to eliminate a previously used item 

as to have a one-to-one mapping.  See figure 6a. 

 

τk

τj

τi

τz

τy

τx

τk

τj

τi

τz

τy

τx
 

 

 

 
SET A SET B SET A SET B 

 Figure 6a. Figure 6b. 

Definition 2.2:  A many-to-one mapping is defined as, given two sets A and B, one or more elements in set 

A can map to at most one element in set B. 
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2.5.3  Hierarchical Relationship Mapping 

 

Additionally, although it may be thought that records in a set A, which consist of words or phrases, may 

have an associated record located in the set B; the record description in set B may not be an actual synonym 

or direct reference to an identical element in set A.  More specifically the correct record mapping may not 

be obtained simply by analyzing names or words for pure synonymous meanings.  Rather the correctly 

associated record in set B could be a reference to a larger component or system where the component 

described in set A resides.  Two records can reference the same object or both can potentially point to an 

item in an upper level of a relationship hierarchy.  For instance a record denoted as “power button” in set B 

could actually be associated to a record denoted as “computer monitor”.  A computer monitor is clearly not 

a power button; however a power button is a component of a computer monitor.  The hierarchy exists as 

power button is an item which can be found on a computer monitor.  Obviously such mappings would 

depend on the domain and characteristics of the data.   

 

2.5.4  Validation of Mapping 

 

Of course another issue is determining which words in the sets exhibit the most relevance.  Capturing the 

relevance of specific data items within the data sets places a data analyst or mapping algorithm in an 

optimal position to identify a correct mapping.  Additionally there must be some approach identified to 

quantify the relevancy of any particular data component as to have some mathematical basis to validate the 

results.   

 

2.6 Formal Problem Statement 

 

We formally state the MUDD Classification problem: 

Given two disjoint data sets A and B, consisting of domain specific and unreliable data, identify an 

automated process to link an element from set A to an element in set B. 
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CHAPTER THREE 

RECORD LINKAGE AND DATA MINING 

 

3.1 Overview of Record Linkage 

 

Record linkage alternately denoted as data linkage is the integration of information from multiple 

independent data sources.  Data linkage can be used to improve data quality and integrity, to allow analysis 

of data for new analytical studies, and to reduce costs and efforts in data acquisition [25,43,5].  Linkage 

techniques are used to link together records which relate to the same entity.  An entity is denoted as a 

student, patient, customer or any type of information representing something deemed important by a data 

analyst.   Record linkage techniques are extremely beneficial when links among one or more data sets are 

needed.  Typically records are linked using a common identifier such as social security numbers, birth date, 

marital status or sex.  The process of record linkage is simple when a common field exists among the data 

sets; however a unique identifier for each entity represented within the data sets is not always available.  

This makes linking data difficult if not impossible.  Records are sometimes compared to determine the 

likelihood or probability of being a direct link.  Many linkage techniques are founded in machine learning 

and data mining.  These two tools are often used to improve upon the accuracy of the linkage as to 

significantly reduce the man hours required to link large data sets [25,5].   

 

It is common for different organizations to employ different terminology such as codes or identifiers when 

referring to the same entity.  Several factors make creating and maintaining links among data entities 

difficult. These factors include, lack of a known standardized means of identifying the types of 

terminology, progression of time almost always ensures changes in terminology, changes of which are not 

usually reflected in historical data.  Record linkage is a reoccurring issue within many organizations.  Large 

applications such as database management systems and expert systems are continuously utilized to 
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integrate multiple information sources to assist in information restructuring efforts, knowledge discovery, 

decision making processes and statistical analysis.  

 

Linkage techniques are used in areas such as health administration, patient care, insurance claims and vital 

statistics data.  Many of the previously developed record linkage systems depend heavily on rules 

associated with specific fields within the data field being considered.  Furthermore, most of the rules are 

manually programmed for each type of field.   Unfortunately such systems are difficult to create and 

maintain because with the addition or modification of fields new rules must be identified and applied to the 

new information.   

 

There are two basic types of record linkage, deterministic and probabilistic. 

 

3.1.1 Deterministic Linkage 

 

Deterministic record linkage is a technique which attempts to link two or more files based on exact 

agreement of matching variables [43].  Examples of variable could be patient last name, marital status, and 

geographic location.  Typically, a link created by a deterministic linkage algorithm is made when an entire 

set or subset of identifiers agree between two records.    This method is said to decrease the number of 

uncertainties in the matches between two databases since only a complete match on a set of unique 

variables is accepted at the cost of lowering the linkage rate [25]. 

 

A common issue one finds with deterministic record linkage is that when two records agree on a specific 

field, there usually exists no additional information on whether that agreement increases or decreases the 

likelihood that the two records in fact refer to the same entity.  An example can be seen when two records 

agree on the last name, ColdFoster, and two records agree where Smith matches Smith.  Generally, these 

two sets of mappings would be treated with similar matching power, even though the likelihood of Smith 

matching is greater than that of ColdFoster.   
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3.1.2 Probabilistic Linkage  

 

Probabilistic Record linkage is a technique which attempts to link two or more files by utilizing computed 

probabilities of agreement and disagreement between a range of matching variables [43]   Probabilistic 

linkage was developed by researchers in response to an issue encountered in deterministic linkage.  

Researchers often encounter data sets where there exist no single set of identifiers which can be used to 

distinguish between truly linked records.   Probabilistic record linking assumes multiple pieces of 

identifying data can be used to calculate the probability that two records refer to the same entity.  Unlike its 

deterministic counterpart, this technique suggests that no single variable agreement between files can 

render a total match reliability.  In general, a formula is derived which generates a score for each record 

pair and based on the score identifies record pairs as matches, potential matches, and non matches. The 

formula incorporates weights specific to each of the data elements and scaling factors for many of the data 

elements. The weights reflect the relative importance of specific data elements in predicting a match. The 

scaling factors adjust the weights for a given record pair based on the “rarity” of the data value [5]. As an 

example, the last name “ColdFoster” would have a much larger scale factor than that of the last name 

“Smith” [30].  Probabilistic linkage maximizes linkage theoretically but may result in uncertainty for some 

potential links [25]. 

 

Whether deterministic or probabilistic linkage techniques are used, errors denoted as false positives and 

false negatives can be encountered. A false positive error occurs when a link is identified between two 

records when the records do not actually refer to the same entity.  A false negative error occurs when a link 

is not identified between two records when the records in fact refer to the same entity.   

 

3.2 Overview of Data Mining 

 

In solving the MUDD Classification problem, a form of knowledge capture method is explored.  

Knowledge capture can be described as the process of acquiring relevant nuggets of information by 

consulting computer programs, reference documents, databases, or human experts in an effort to obtain 
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knowledge that may prove vital to the function of current and future tasks.  Knowledge capture can be 

costly in respect to both time and money as a result of error proneness and inconsistencies [32].  The 

primary method of knowledge capture explored in this research is data mining 

 

Definition 3.0 : Data mining initially denoted as knowledge discovery in databases (KDD) is an automated 

knowledge capture process of analyzing, most notably, structured data in an effort to uncover hidden 

knowledge that is not otherwise captured from an in-depth reading of the data [36,38,41].   

 

Data mining techniques have become increasingly popular methods of use by data analysts today.  Data 

analysts attempt to discover new knowledge from past and present data sets in an effort to make 

preparations and choices that will ultimately affect future business decisions.  It poses the simple question 

of “what knowledge can we gain by looking at the data differently?”   The study of data mining involves 

techniques and algorithms that have been developed to identify patterns, trends, and relationships within 

single and/or multiple populations of data.  Such discoveries are vital in a decision making processes.  One 

begins with the raw data, processes it into relevant information, and stores it as to accumulate a store of 

knowledge.  Utilization and application of the acquired knowledge allows for effective decision making.  

Data mining has become an increasingly popular arena of research.  Business entities as well as research 

institutions have become trailblazers in this discipline.  Since the number of potential customers are finite, 

competition among corporations is extremely fierce and companies continually look for the edge that will 

give them the upper hand [35].  The design and implementation of business advantages, marketing 

strategies, system security, customer analysis and security options and data security are just a few of the 

many areas data mining techniques are being utilized. 

 

There are many necessary steps that enable the continuous flow of the data mining process.  Perhaps the 

most important and time consuming aspect of data mining is data preprocessing or preparation.  Data 

preprocessing involves data cleansing and the eliminating of inconsistencies among the data [38].  

Capturing quality data is the first and perhaps, most important step a company must take in achieving an 
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accurate view of its customer population [35].  It is said that 75 to 85 percent of the work in building 

models using data mining relates to the cleaning and preparation of data prior to a specific analysis [24]. 

 

Once the data preparation phase has been completed, one must determine the desired outcome of the future 

analysis.  This step is vital in determining which available data mining tool will be used.  In the event that 

there exist no feasible data mining tool to give the desired results, a new technique must be identified.   

Furthermore as stated in [38], obtaining results is not the difficult part, rather validating and making sense 

of the data seems to be the more difficult part. 

 

3.2.1  Challenges in Data Mining 

 

Although widely used, data mining does not go without its challenges.  Aforementioned in the section 

above, the challenge of validating and making sense of the resulting data presents some difficulties to 

analysts.  Additionally, some of the most familiar and research worthy issues surrounding the area of data 

mining are scalability and performance, high dimensionality, data ownership, data security and 

heterogeneous data [36].  Scalability and performance suggests being able to capture and process data in 

response to the increase of data as well as having the computing power necessary to process the data.  High 

dimensionality is an issue which deals with the large number of attributes associated with data.  This issue 

begins with the question of “How does one capture and make sense of the data?”  Data ownership and 

security involves issues which deal with distributed data that may not be readily accessible due to security 

constraints as well as a lack of data ownership.  Furthermore in the event access is granted to obtain data, 

secure communication must be maintained, the number of data transactions must be reduced to maintain 

efficiency, and any distributed data must be eventually consolidated into a comprehendible form.  

Heterogeneous and complex data suggests that the attributes associated with the data may not be of the 

same type which makes it difficult to make decisions of similarities or associations between the data [36]. 
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3.2.2  Data Mining Classifications 

 

There are at least four classifications of data mining - association rule mining, classification and prediction, 

cluster analysis, sequential pattern and time series [36].  It is assumed that all data mining techniques fall 

into at least one of the four categories.  Association rule mining serves to discover associations 

[correlations] between data that occur frequently within the data population being analyzed.  Classification 

and prediction is a process of classifying or modeling a group of data based on some defined characteristic 

shared by some of the members of the data population.  Once the model has been developed, it is then 

utilized to predict the classification of future data components where the classification remains unknown.  

Clustering analysis is a process which divides a population of data into subsets based on attributes of 

similarity.  The items found in clusters are more like the items in the same set and more unlike the items in 

others sets.  Sequential pattern and time-series consists of a collection of techniques which identify patterns 

or trends based on the occurrence of events represented by the data from a moment-to-moment or time-to-

time bases.  

 

3.3 Record Linkage and Data Mining Techniques 

 

There are many techniques used in the disciplines of record linkage and data mining.  We deal with the 

concept of matching terms as well as linking records.  It is noted that part of the process of linking records 

is the linking of terms within the records.  A few techniques that will be addressed deals with decision 

trees, statistical inference, neural networks, clustering and synonym discovery [36].  

   

3.3.1 Blocking 

 

Blocking is the process of dividing the records in the Data Field into individual blocks of records as to 

reduce the number of actual record pair comparisons.  There are several blocking methods used.  Standard 

Blocking is done by selecting a feature or combination of features to create what is called a block key.  

Blocks are then created and consist of records which have common block keys.  Hash Blocking is an 
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extension of standard blocking but the block key is hashed and the hashed record is placed in the 

appropriate block.  Canopy Clustering with TFIDF is a form of blocking where clusters are formed by 

randomly selecting a candidate record from the global set of candidate records and placing all other records 

within a certain threshold distance into the cluster or block.  In sorted neighborhood blocking, records are 

sorted based on some pre-defined criteria, such as first name values, and then a window of size x, where x 

is an integer that moves along the records [2].  Only records within the size of the sliding window are 

considered for comparison. 

 

There are defined metrics to measure the performance of blocking schemes.  First, the Reduction Ratio 

(RR) is represent as RR=1 – s/N where s is the number of record pairs produced by the blocking method, 

and N is the total possible number of record pairs (N = n x n), where n is the total number of records.  This 

metric measures the relative reduction in the number of record comparisons [2].    Another blocking 

performance metric is denoted as Pairs completeness (PC).  The formula is PC = sM/NM, where sM is the 

total number of matched record pairs in the set of records produced for comparison by the blocking method 

and NM is the number of true match record pairs in the entire data [2].   

 

3.3.2  Comparison Measures 

 

Comparison measures or string comparators are techniques used to compare strings to determine a measure 

of similarity.  They work very well when the intent is to identify two words that are the same despite minor 

typographical errors.  They assist in identifying potential abbreviations and acronyms.  They are normally 

based primarily on the measurement of character variations and positioning among multiple words.  These 

measures are not applicable when attempting to identify words that may be synonyms or aliases for one 

another.  Some comparison measures are discussed below. 

A.  Jaro’s Algorithm 

Jaro’s algorithm attempts to determine the number of characters or transpositions between two strings.  It 

uses formula 3.1 to compute a comparison score: 

      (c/l1 + c/l2 + (2c-t)/2c)/3          (3.1) 
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where c is the number of common characters, l1 and l2 are the lengths of the two strings, and t is the number 

of transposed characters. 

B.  Edit Distance and Hamming Distance 

There have been several approximate string matching algorithms contributed by researchers in the area of 

computer science [8].  Given two words of the same length, the number of positions with different 

characters is denoted as the Hamming distance.  This distance often used to compute a quality of match.  In 

addition the Levenshtein distance or editing distance measures the number changes required to change one 

word into the matching string.  The term changes refer to insertions, deletions, substitutions and 

transpositions.  Based on the number of changes required a quality of match value is computed.  The 

Hamming Distance string comparator is best used when attempting to determine the quality of match 

between strings that have a fixed length, such as social security numbers.  In contrast, the Edit Distance is 

best used with variable length strings such as first and last names. 

C.  N-grams 

In [3, 31], the authors use bi-grams and trigrams in the comparison of field values in an attempt to measure 

the closeness of values.  Bi-grams are two-letter consecutive combinations and trigrams are three letter 

consecutive combinations.  As an example the word “decrease” has the following trigrams “dec”, “ecr”, 

“cre”, “rea”, ”eas”,  and “ase”.  The number of bi-grams or trigrams common or uncommon among words 

is used to compute a measurement of quality of match.  One representation of the N-gram formula is  

1 – (2 * c)/l1 + l2           (3.2) 

where c is the number of letter combinations common to both strings, and l1 and l2 are the lengths of the 

two strings.  It has been shown that the N-Qram string comparator is most effective when the strings have 

minor typographical errors with N=2. 

D.  Soundex 

Phonetic matching attempts to associate words not necessarily by their spelling but by the way they sound 

[45].  It is conceivable that words that sound alike in many cases have a similar variation of spelling.  The 

SOUNDEX phonetic index is probably one of the most well-known encoding schemes used.  It was first 

used in an 1880 census [48].  Researchers, wanting to locate surnames quickly, encode names by assigning 

certain letters specific codes.  The letters A, E, I, O, U, W, Y, and H are disregarded in the encoding 
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scheme.  The final encoding of a word is called a SOUNDEX code.  Each code begins with a letter 

followed by three digits.  For example the code B-536 denotes the surname Bender.  The letter represents 

the first letter of the surname [48].  In using SOUNDEX codes one is able to group words like Smith and 

Smythe in the same category in the event of needed quick information extraction.  Such an encoding could 

be used to assist in determining various word usages and abbreviations.  This method is most effective 

when dealing with terms that are similar in sound. 

 

3.3.3  Other Techniques 

 

Decision trees are rule based structures used to classify data using data attributes which are filtered by 

decision rules.  The internal nodes of the structure denote the tests which are conducted on the input pattern 

and the leaf nodes denote the determined classification of the input pattern.  Example inputs could be a data 

record or collection of information.  Each test is determined to be mutually exclusive as to generate a 

definite outcome for a given input.   

 

Statistical inference deals specifically with statistical computations based on quantified characteristics of 

the data such a word frequency.  Latent Semantic Indexing (LSI) is an information retrieval method based 

on statistical mathematics.  It was designed to overcome such obstacles as polysemy and synonyms [19].  

LSI is capable of returning relevant information in cases where keywords have not been identified.  

Synonyms suggest the concept of using many names to represent a single object.  For instance the term 

“car” can also be referred to as “vehicle” or “auto”.  Polysemy suggests the concept of a single word having 

more than one meaning.  For example the word “Java” can refer to a computer programming language or 

“coffee”.  Whereas many common indexing algorithms attempt to locate a set of documents based on the 

occurrence of key words, LSI retrieves documents based on concepts (e.g. subject matter) contained in the 

documents [37].   By using concepts, LSI is able to retrieve documents based more on semantics versus 

pure occurrences of terms.  LSI utilizes a numerical analysis technique known as Singular Value 

Decomposition (SVD) to create concepts.  SVD decomposes a single matrix into three distinct matrices.  

The first matrix is a term by concept matrix.  The second matrix is a concept by concept matrix while the 
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third matrix is a concept by document matrix [37].   From these matrices one can index all the documents 

given in a particular concept. Some disadvantages of Latent Symantec Indexing is that it does not scale 

well, time consuming in reprocessing matrices, and difficulty in interpreting underlying reduced term space 

[37].  In our case the overall concept is known already; however the meanings and inferences of various 

terms and phrases within the document of records are not always known. 

 

Neural network algorithms are techniques which attempts to emulate decision making patterns of a human 

brain in an effort to learn vital information about the data being modeled.  Methods in neural networks 

attempt to learn by using a learning method called back-propagation or feed-forward [47].  The user filters 

input data through the neural network obtaining a result and an associated error value.  The input data is 

continuously filtered through the neural network, giving the network an opportunity to learn until either an 

output close to the known desired output is obtained or the algorithm ceases to learn additional information 

with each repeated run.  This phase is normally called training.  Once a network has been trained, the 

network is then ready to process data in which it has been trained for in the hopes of predicting accurate 

results.  More specifically, a neural network is able to predict an output pattern when it recognizes a given 

input pattern [44].  Neural networks are composed of simple elements operating in parallel.  The function 

of the network is determined largely by the connections between the input and output elements. A neural 

network can be trained to perform a particular function by adjusting the values of the connections (weights) 

between elements.  The learning ability of neural networks is based on the adjustment of weights. A 

particular set of data is input into the network and the output is compared with the expected output.  The 

difference between the two outputs is used to adjust the weights among the neurons. This process is usually 

repeated until the network output matches the target output. The quality of a neural network is determined 

by the quality of the data used to train it.  Training data consists of cases where the target outcome is 

known before hand.  As an example test data can be fed into a neural network such that the network will be 

able to distinguish matching records from those that do not.  Unfortunately, when there is little to no data to 

train the network, the network’s ability to recognize patterns is greatly decreased.  In this work, knowledge 

of an exact mapping expected for a given record is unknown and with each new record being processed the 

data needed to create the mappings is seen as unique.   
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In [3], the authors compute a quality of match for each field in a record by multiplying a relative weight 

times a computed quality of match field value.  This product is then added to the product of a second 

relative weight which is multiplied by a quality of match for phonetic matching.  The final composite value 

is then used to determine the overall probability of a record match.  The author suggests no systematic 

means of computing weight values only that the weights are relative to the string and phonetic matching of 

the field.  Phonetic matching suggests matching words that sound alike [45, 3]. 

 

Clustering is the process of grouping data with similar characteristics or qualities.   One goal of clustering 

is to find homogenous data subsets within a pool of data [30].  Measuring or quantifying the homogeneity 

is perhaps the vital ingredient necessary in clustering.  How does one quantify a single word?  What is the 

most optimal approach of doing so and does it change when the data set changes?  Inverse Document 

Frequency (IDF) is a weighting procedure commonly used.  It weights words based on their occurrences 

over a collection of documents.  Unfortunately, the distribution of words across a cluster of documents can 

vary greatly, thus rendering the IDF less effective or credible when selecting keywords [14].   The authors 

in [30] present a variant of discriminative clustering which represents text documents as probability 

distributions.  Discriminative clustering attempts to involve discriminative elements into the clustering 

process.  The text documents are used to form clusters and auxiliary keywords are use to optimize the 

clustering process.  In working with data in text documents the following definitions should be understood, 

• Term document frequency – the number of documents in which a term appears. 
• Term discrimination values – a measure of the effect of the addition of a term to a vector space on 

the similarities between documents 
• Good discriminator –term that tends to increase the distance between documents 
• Poor discriminator – term that tends to decrease the distance between documents 
• Indifference discriminator – term that when added renders no change in the distance between 

documents. 
 

The authors in [12] present what many suggest is the formal foundation for probabilistic record linkage 

[40].  They present a conditional probabilistic approach where they use the probability that a field agrees 

given that the record pair being evaluated is actually a match.  This probability is denoted as m.  Next they 

compute the probability that a field agrees given that the record pair being evaluated is not a match pair.  

This probability is denoted as u.   The computation for the weight corresponding to a matching field is 

log(mk/uk) and log((1-mk)/(1-uk)) for the weight corresponding to fields that do not match.  The sum of the 
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weights for individual fields is computed and the larger the weight the greater the probability that the two 

records are the same. The values mk and uk are estimated.  One popular method of estimating the unknown 

values is using algorithms like the Expectation-Maximization (EM) algorithm.   The basic formula for the 

two unknown values is below. 
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The value gu is computed in the same manner.  The unknown parameters mk, uk and p are computed in the 

maximization step.  The value p is defined as the proportion of the matched record pairs in the data set.  

The actual equations to estimate the unknown parameters are below. 
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In [25], the authors attempt to link data from three different databases using a deterministic linkage method.  

They analyzed three different combinations of four identifiers: (1) surname (i.e. surname at birth or marital 

surname as recorded in these three databases), sex and date of birth (i.e. month, day, and year of birth); (2) 
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first name, sex, and date of birth; (3) surname, first name, sex and date of birth. The common identifiers 

were formatted in the same way across the three databases.  Structured formatting included capitalizing 

letters, and removing blanks and dashes. The authors employed a SOUNDEX coding method to identify 

linkage between names that fail to match due to variant spellings of the names in the two databases [45, 

48]. Among the three approaches, approach one (surname, sex and date of birth) had the highest linkage 

rate (88.0%) compared to approach two (first name, sex and date of birth, 82.4% ) and approach three 

(surname, first name, sex and date of birth, 79.5% ) [25]. 

 

In [7], the authors begin with the premise that terms are similar if they tend to appear in the same 

documents within a corpora.  This can be represented by a term document matrix where each term is a 

vector and each document within the corpora is a dimension with entry values denoting if the term was 

present in a specific document or not.  The authors used the following similarity measure to compute the 

similarity between two words, 
jjii

jiji
⋅×⋅

⋅
=),cos( , where vector i represents the term vector for 

word i and vector j the term vector for word j and i·j is the inner product of i and j [7].  This measure is 

based on the assumption that the axes are orthogonal.  The author also used the Cluster measure as a 

comparison to the cosine measure. This measure provides an asymmetrical similarity relationship between 

two terms.  
|||| 1

),(
i

jijicluster ⋅
= , where ||i||1 is the sum of magnitudes of i’s coordinates [7].    Results 

indicated that the cluster measure performed better in proportion of relevant terms that weire selected (i.e. 

concept recall ratio), while the performances were similar when tested for the proportion of selected terms 

that were relevant (i.e. Concept precision ratio). 

 

In [9], the author presents a method for automatic thesaurus construction in an effort to modify queries sent 

to an information retrieval system.  They use a matrix similar to [7].  The matrix is structured such that the 

documents are vectors and the terms denote dimensions.  Term Frequency Inverse Document Frequency 

(TF-IDF) was utilized as a weighting metric for terms.  In [9] TF-IDF is described as the number of times a 

term appears in a document multiplied by the function of the inverse of the number of the documents the 
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term appears in.  It was determined that terms, which appeared in a single document often and not in many 

documents, have important weights [9].  

 

In [33] the authors use a graph constructed from a dictionary and assumes words are similar if they have 

common words in their definitions.  In constructing the graph each word x represents a vertex and an edge 

(x, y) represents a word y in the x’s definition. 

 

The authors in [6] introduce a graph-based algorithm to search large volumes of unstructured data.  A 

contextual network graph is created from a term-document matrix.  The creation of a term-document matrix 

is similar to the first step in Latent Semantic Indexing.  Each term represented in the matrix is said to be 

connected to all documents in which it occurs.  The value zero is recorded in the appropriate matrix 

position if the word is not present and a value indicating the word frequency is recorded otherwise.  The 

matrix is transformed into a bipartite graph connecting terms and documents with the word frequencies 

corresponding to the weights placed on the edges.  The search algorithm begins with a query word.  The 

node where the word resides is found in the contextual graph and an arbitrary energy amount is assigned to 

it.  The energy amount is divided between the neighboring nodes which are connected to the initial query 

node.  This process is repeated on each neighboring node until the energy amount reaches a pre-defined 

threshold.  Once the energy amount reaches the threshold, all nodes with energy deposits are sorted 

according to the energy.  The nodes with the most energy deposits are considered most relevant. 

 

The authors in [18] review different methods used to capture synonymy within documents.  Such methods 

include approximate matching algorithms, vocabulary mapping, editor-directed searches and exploiting 

source semantics (i.e. various naming conventions).  All these approaches were considered less than 

optimal by the authors.  Approaches which obtained author approval were the use of lexical algorithms, 

word level synonymy, and inferred phrase level synonymy.  An example of inferred phrase level synonymy 

can be seen in the following example.  Given two phrases “Relatives died” and “Relatives deceased”, by 

removing the common word “Relatives” from each phrase a possible synonym match is implied between 

“died” and “deceased”.    
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The authors in [13] present variations of approximate word matching as an approach to combat spelling 

variants, misspellings, etc. in the detection and categorization process of digital libraries.   This process 

consists of the following steps, 1) extract strings, 2) cluster strings, 3) review of strings (e.g. by human 

expert) and 4) make modifications that correspond to the reviewers analysis of the data.  The clustering 

algorithm used simply extracts some desired set of strings which meet an author-defined criterion and 

captures their frequency in the respective document.  If the distance between two strings meet a certain 

threshold then the strings are added to the cluster, otherwise one string is discarded.  The string in the 

cluster with the highest number of frequency is used as the description for the cluster.  The algorithm then 

attempts to pair up words in a way which would allow the sum of the edit distances to be minimized.  
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CHAPTER FOUR 

 

METHODOLGY 

 

4.1 Significance of Research 

 

In a typical classification problem there exists a set of defined classifications and a population of data 

elements that need to be classified into one of the defined classifications.  In this work we deal with two 

sets of data denoted as A and B.  We define the records in set B to be the unique classifications.   

 

Our work was done in conjunction with a business organization which specialized in the maintenance and 

distribution of aircraft parts.  See figure 7 for a general diagram of an aircraft [46].  Due to the significant 

decrease of aircraft parts across the U.S. military over past years, managing parts more efficiently has 

become a great necessity. The term ‘managing’ suggests having data resources available to predict events 

or determine a part’s use, such as the mission capability of a part or weapon system (i.e. aircraft).  The 

decrease of parts can be attributed to many factors, some of which are due to the downsize of military 

effort, use of aging aircraft where parts are no longer available, large financial cost associated with part 

manufacturing, and time required to manufacture new parts in a dynamic environment (i.e. war zone).  As a 

result of the decrease in parts, parts themselves have to be differently managed, preserved and well 

maintained, and repaired and reused.  To better illustrate the scenario, imagine if in the year 1980, a 

particular component we will denote as Widget180 was stocked heavily to the point that when this 

component failed on a vehicle XYZ, the mechanic could immediately throw it out and replace it with a new 

one.  Fast forward to 1990’s, the military is downsizing, the manufacturer of Widget180 is no longer in 

business and no historical performance data has been recorded over the years on the Widget180.  All 

performance data has been captured on vehicle XYZ.  Basically the fact that vehicle XYZ failed was 
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recorded but the exact reasons or parts that lead to the failure is not.  Imagine if for instance if either of 

these items failed, the engine, Widget180, axle, or some electrical component, the only data recorded was 

that vehicle XYZ failed.  Then instead of allocating money for the purchasing or repairing of a Widget180, 

a new vehicle XYZ is purchased.  This scenario illustrates the poor recording and acquisition maintenance 

data, which prevents an optimal analysis of parts and vehicles.  Furthermore millions of dollars are lost.  In 

order to effectively manage, maintain and reuse aircraft parts one must be aware of part related information 

and metrics.  As an example, part related information may consist of data associated with part breakdown, 

part supply, requisition, maintenance, reliability and sustainment.  Such information is generally resident in 

multiple remote data systems in heterogeneous or unreliable formats accessible and plagued with the 

problems mentioned in section 2.  There are several million parts associated with records and data elements 

that require individual observation in order for the mappings to be executed accurately.  Once mappings are 

captured effective analysis of data can be initiated.  Throughout the government and many businesses, there 

exists the need for a stable documented methodology expressed as a software solution that can capture 

input from various sources, analyze the information, discover new information, link related information, 

and from said information allow the necessary personnel to make intelligent decisions.   

 

Figure 7.  Diagram of airplane 
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4.1.1 Current Solution 

Before presenting our work, we briefly describe the solution as it is presently being applied in the business 

work environment today. Presently, company employees are manually performing the mappings by 

analyzing record descriptions and associated figures and images.  We note that this research is specific to 

the area of machinery parts.  Using aircraft parts as an example, employees commissioned with the 

responsibility of mapping records from one table to that of another table are faced with the time consuming 

task of analyzing part descriptions (and any included reference information) from both tables to try to 

determine the best possible mapping.  They must also refer to a part drawing or schematic to try to correlate 

the actual position of the part to that in which the description communicates.  In interviewing some of these 

employees they stated that between seventy and eighty percent of their time is spent examining schematics 

while the other twenty to thirty percent of the time is spent analyzing the part description.  Executing this 

process manually requires a huge number of man hours and more man hours suggests an increase in money 

and time to complete the effort. These are resources that could be saved or utilized in other areas, if the 

process were partially automated. 

 

4.2 Disjoint Factorization and Discovery Items 

 

In this section we present an approach to the selection and elimination of data elements denoted as 

Features.  We also present an approach to the construction of data elements denoted as Discovery Items.  

Definitions of unfamiliar terms are given throughout the document.  Table III depicts a sample record 

found in set B.  It shows the features and the associated feature values. 

 

 

 

 

 

SPOILER AND SPEED BRAKE ASSY14336AL0

Description Unitized Code 
(UC)

feature value 

TABLE III.  Example set B RECORD 
 

feature 
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Definition 4.0: A feature is an attribute or field in a relation (i.e. table) identified as relevant to the 

discovery process and its values are processed during the data processing step [36, 39]. 

“In credit card fraud, for instance, an important feature might be the location where a 
card is used. Thus, if a credit card is suddenly used in a country where it's never been 
used before, fraudulent use seems likely” [39].   
 

In specific medical related cases important features might consist of age, weight, and ethnicity. 

 

Definition 4.1: Disjoint Factorization (DF) is the process of decomposing objects (e.g. record fields) 

resident in data sets into smaller individualized elements.   

 

Depending on the type of object, the concatenation (in the case of strings) or product (in the case of 

numerical values) of the smaller individualized elements will yield the original object.  In this research we 

build upon the concept of Disjoint Factorization to develop methodologies to combat the MUDD 

classification problem.  It is noted that several of the linkage solutions described above utilized multiple 

fields from a relation to determine record agreement.  In figures 8a and 8b, we illustrate an application of 

DF using integer values. 

 

 

3 5 

2 

10 11x 

8 
 

 

 

 Set A 
Set B 

 Figure 8a.  Disjoint sets 

 

4    2 
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2    5 
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Set  C  Set D 

Figure 8b.  Disjoint Factorization with Pseudo-intersections 
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In figure 8a, the sets A and B are clearly disjoint.  With the application of disjoint factorization, we see in 

set C of figure 8b, the integer 8 is transformed into the values 4 and 2 and the integer 10 is transformed into 

the values 2 and 5.  In addition 11x is transformed into the terms 11 and x.  With these transformations 

pseudo-intersections can be created (see figure 8b).   

 

Definition 4.2: Given two disjoint sets A and B, an application of disjoint factorization can be applied on 

the elements in either set A or set B or both set A and set B, to create two new sets C and D where C ∩ D is 

not empty.  (Note: the elements of set A are used to create a set C and the elements of B are used to create a 

set D)  The newly intersecting elements are denoted as pseudo-intersections.  Pseudo-intersections are 

intersections of composite values or terms that are used to create legitimate relationships among the disjoint 

sets.  A pseudo-intersection is denoted by the symbol ∩.  Using our example in figure 8b, we obtain A ∩ B 

= C ∩ D = {2, 5, 3, x} where 3 and x are unique values; however x is identified as a term that can be 

substituted for the value 3.   Term substitutions can be realized in the case of synonyms or term aliases such 

as the two terms bolt and screw.  Although these terms are unique, in some domains the two can be used 

interchangeably. 

 

In this research, the principle of disjoint factorization is used with a record description consisting of one or 

more strings.  Preliminary tests revealed that attempting to process a record description as a whole data 

object proved uneventful.  By decomposing the description into subunits, pseudo-intersections among the 

data sets can be developed.  Pseudo-intersections help to establish relationships between the two sets.  They 

serve to increase the chances of creating mappings.  We expound on this more in future sections. 

 

In this research we deal specifically with data records with field values that describe aircraft machinery 

parts, namely part descriptions, part numbers, part quantity, etc.  We select the part description field from 

both sets to apply a disjoint factorization operation.  We eliminate the other fields and utilize only the 

description field as it is determined that the other fields yield little to no assistance in obtaining record 

mappings.  This process is called feature elimination. 
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Definition 4.3. Feature elimination is the process of removing irrelevant features from a Data Field in an 

effort to eliminate redundant, ambiguous, irrelevant data for the data processing step [36]. 

 

A data element is a string.  A record description consists of a set of explicitly ordered data elements. 

Definition 4.4: A classifier is a term used to describe a collection of data elements.  It is used to separate 

and organize data elements of a description into a distinct category.  

 

The data elements extracted after a disjoint factorization application can be associated with one of N 

defined classifiers.  Classifiers are defined by the data analyst.  It is noted that classifiers are synonymous 

with features.  The process of creating classifiers is done explicitly with the creation of the objects denoted 

as Discovery Items.    

 

 Definition 4.5: Discovery items are relevant criteria defined by the data analyst that must be identified 

during the mapping process in order to eliminate the number of comparisons needed to create accurate 

mappings among tuples in the disjoint data sets A and B. 

 

The defined discovery items should be used in the creation of classifiers because during the mapping 

process when specific classifier values are obtained they will give reference to at least one of the defined 

discovery items. Each feature should map to one of the Discovery Items.  Thus given a set of features F 

={f1, f2,…fn} and a set of Discovery Items D ={d1, d2, ..dm} there is a many to one relationship between sets 

F and D.  Given the following relationships {f1,f2} → {d1}, {f3} → {d2},  and {f4} →{d3}, it can be 

understood that features f1 and f2 can be used to reference d1 and f3 can used to reference d2.  As an 

example, a record description of an automobile part is  

Ford front driver side door window lever. 

The individual terms that compose the record description are denoted as data elements.  In the given record 

description there are seven data elements present.  When observing automobile parts and system 

specifications, one quickly realizes that an automobile is composed of several systems such as a fuel 

system, engine system, structure and doors, electrical system, light system, instrument control system, and 
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so forth.  Depending on the type of automobile, the system names or system part composition could vary as 

well.  The automobile system and sub-system names qualify as types of information that can be used as 

discovery items.  These are items one must identify in order to establish a mapping among two automobile 

parts records.  Example discovery items could be 1) Automobile make, 2) System of part and 3) Part name.  

During the processing step, if one is able to identify these three items from the description then establishing 

a mapping will become less difficult.  We define four classifiers for this example: Positional, Descriptive, 

Noun and Primary.   (These classifiers/features will be used throughout the remainder of the paper.)  

Positional classifiers consist of values which refer or give some evidence to the position of the part on the 

automobile (e.g. back, rear, front).  A Descriptive classifier is defined to capture any descriptive 

information about the part (e.g. red, aluminum).  These values are normally adjectives.  Noun classifiers are 

nouns within the description.  The Primary classifier captures the item of primary importance within a 

given record.  This term corresponding to a Primary classifier is generally the last noun in the record 

description.  In the example record description above the term lever is the primary object of concern.  This 

object is categorized as a Primary classifier value or Primary term.  In attempting to create a mapping for 

the above record, one would not look to associate a lever with a tire; rather attempts should be made to 

identify another record which deals with a lever or has some association with a lever.  All other terms in the 

record description serve as extra information that describes pertinent information about a part such as a 

part’s location and use.  When attempting to locate a record to link to this one, one would not want to begin 

analyzing records which have door or window as a Primary term, rather records having a Primary term 

lever or alternative terms for lever.   Using table IV, the positional, descriptive and noun classifiers give 

some idea of the appropriate equipment and system to initiate the mapping process. 

 

Table IV.  Classifiers and Associated values 

Positional Classifier Descriptive Classifier Noun Classifier Primary Classifier 

Front side,driver,Ford window,door Lever 

 

The Primary classifier value informs the specific type of part to reference (discovery item 3).  The Noun 

Classifier values give some information which references discovery item two, the system of the 
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automobile.  The noun classifier values also serve to eliminate other systems; for instance the fuel system, 

electric system, etc.  The positional and descriptive classifier values give a reference to the make of the 

vehicle and the type of lever the algorithm should look for.  In addition the classifiers serve to eliminate the 

irrelevant lever types and automobile models that do not meet the criterion communicated by the 

classifiers.   The features/classifiers are constructed by the researcher. The term feature and classifier can 

be used synonymously once the features are created. 

 

Definition 4.6:  Feature creation is the process of creating features from data in the Data Field. 

 

Determining the features of significance is vital in both record linkage and data mining.  Features denote 

the data components of a record that are most relevant to ensure the effectiveness of the mapping or 

analysis algorithm.  In [36], there are three basic ways noted to create features; construction, extraction and 

mapping.  Feature construction is the process of forming new features by combining or manipulating other 

features.  Feature extraction is the process of creating a new set of features from capturing data from the 

original data.  A popular example of this is the process of extracting certain types of edge information from 

photographs as a means to assist in classifying photographs.  Feature extraction techniques are regarded as 

domain-specific [36].  Feature mapping is the process of representing data differently to obtain new 

features.  Applying a Fourier transform to times series data inundated by noise can help to reveal any 

previously undetected periodic patterns.   

 

In the following section we present an approach to construct features based on a context free grammar.  

 

4.3 Grammar-Based Feature Construction 

 

The new features are constructed based on an analysis of the data population being processed.  To analyze 

the data population one could study the entire population record by record.  Alternately one could identify 

and study patterns communicated by the data population as well as relationships among various data 

elements. Grammars are tools that can be used to describe and analyze languages, generate languages, and 
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parse languages [26].  In our research, the set of all record descriptions in the Data Field is viewed as a 

language, L.  The record descriptions are synonymous with sentences in a language.   We develop an 

algorithm to generate a context free grammar (CFG) given a set of sentences as input.  We look to study the 

syntax of a subset of records from the language L to understand the structure of the records in the Data 

Field better.  The algorithm does not try to infer a grammar based on a finite set of strings S from a 

language.  Such an algorithm attempts to generate a grammar, G, as well as making the claim that G will 

generate a general language, L, which includes the strings, S, and excludes the strings in a language, L’.  

Algorithms of this type generally take Positive samples and Negative samples as input.  Positive samples 

are valid sentences in a language L.  Negative samples are invalid sentences of a language L and can 

properly be denoted and sentences in a language L’.  The algorithm uses the negative samples to assist it in 

generating valid production rules which will only form sentences similar to those found in the Positive 

sample. 

 

In this research standardized negative samples are not available as the naming convention of the records in 

the Data Field communicates little to no information about a formal standard or structure.    With little to no 

formal structure for the naming convention of the records, a reliable set of negative samples is difficult to 

obtain.  As a result the algorithm designed and implemented in this study generates a grammar based solely 

on the positive samples it receives as input.  For the language L consisting only of the strings, 

ab 
aabc 
aaabbc 
aaaabbbc 
 

The generated grammar is seen in Figure 9. 

 START → S1 | S2 | S3 | S4 
S1 → 9-3-11 
9 → aaa 
3 → ab 
11 → bbc 
S2 → 4-3-5 
4 → aa 
5 → bc 
S3 → 0-3-2 
0 → a 
2 → c 
S4 → 3 
 
Figure 9. Generated Context Free Grammar 
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In this section we present an algorithm to generate a context free grammar (CFG) which takes a language L 

(i.e. finite set of sentences) as input.  The algorithm was programmed in the Java programming language.  

The source code can be seen in Appendix A.  In this section we present pseudo-code with an overview of 

its operation.  In figure 10 a list of initial declarations are shown.   The variable COMB is a string array that 

holds all valid combinations of alphabet obtainable by the input sentences.  The string TMP_SENT_FORM 

is temporary storage that holds a newly constructed sentential form of a sentence being processed.  

NON_TERM and PRODUCTION are parallel arrays that hold the left and right side of a production rule 

respectively.  The string START_PROD contains the right side of the production rule associated with the 

start symbol of the CFG.   The structure SENTENCE is used to store three important pieces of information 

about a specific sentence in the input language L.  Each SENTENCE object stores 1) an input sentence in 

the text string, 2) a list of sentential forms, which are placed in the SENT_FORM string array and 3) a list 

of indices that correspond to values in the COMB string array.  The list of indices is stored in the P_LIST 

integer array.  

  

 
 
 
 
 
 
 
 
 

Fig

 

In order to understand the algorithm we

function GenerateCFG() shown in figu

Line 1: Read in sentences of
Line 2: Sort sentences by le
Line 3: FOR i=1 to n, (n is 
Line 4:   Identify all possi
Line 5:   Insert pattern com
Line 6: Sort items in array 
Line 7: CreateSententialForm
Line 8: BuildProductionList(
Line 9: TranslateRecursion()
Line 10: RemoveUnitProduction

Figu

 

String[] COMB  
String MP_SENT_FORM  T
String[] NON_TERM  
String[] PRODUCTION  
String START_PROD  
 
struct SENTENCE{ 
String text  
String[] SENT_FORM  
int[] P_LIST  
ure 10. Algorithm declarations 

}

 

 offer an explanation by example.  The algorithm begins with the 

re 11.   

 language in object SENTENCE[i] 
ngth in ascending order 
total number of sentences) 
ble pattern combinations in SENTENCE[i] 
binations in array COMB  
COMB 
s() 
) 
 
() 

 
re 11. Algorithm: GenerateCFG() 
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As sample input we use the three sentences: abc, bc and abcc.  In line 1 of figure 11, each sentence is read 

into a SENTENCE object.  Line 2 calls for the sentences to be sorted by length from shortest to largest.  The 

result of this operation yields the sentence order: bc, abc, abcc.  In lines 3-5, for each input sentence all 

valid string combinations that can be obtained are identified and stored in the string array COMB.  We 

denote the string combinations as patterns.  No duplicate patterns are stored in COMB.    In figure 12 it is 

seen that the input sentences yield corresponding patterns. 

 
bc := b, c, bc 
abc := a, b, c, ab, bc, abc 
abcc := a, b, c, ab, bc, cc, abc, bcc, abcc 

 
 
 
 

Figure 12. Resultant sentence patterns 
 
 

In line 6, the patterns are sorted by length in ascending order.  Using our example sentences the following 

patterns are stored in COMB{ a, b, c, ab, bc, cc, abc, bcc, abcc  }.  The function CreateSententialForms() in 

figure 13 is called next.   

 
Line 1: FOR i=1 to N 
Line 2:   FOR k=COMB.size to SIZE_TWO  
Line 3:     IF COMB[k] is substring of SENTENCE[i] 
Line 4:       Replace all occurrences of COMB[k] in SENTENCE[i] with the 
                value k (convert k to a string) and assign to TMP_SENT_FORM[x] 
Line 5:       Insert value k in P_LIST array 
Line 6:       FOR j=k-1 to SIZE_TWO 
Line 7:         Replace all occurrences of COMB[j] in TMP_SENT_FORM[x] with 
                  the value j (convert j to a string)  
Line 8:         IF TMP_SENT_FORM[x] has been completely transformed 
Line 9:           BREAK 
Line 10:       IF TMP_SENT_FORM[x] has been completely transformed AND 
                TMP_SENT_FORM is not in SENTENCE[i].SENT_FORM array 
Line 11:         Insert TEMP_SENT_FORM into SENTENCE[i].SENT_FORM array 
Line 12:         x++ 
 

Figure 13.  Algorithm: CreateSententialForms() 
 
 
This function is responsible for creating valid sentential forms of each input sentence by using the patterns 

stored in COMB.  In specific for each input sentence all valid patterns found in COMB that can be used to 

create the current input sentence when a substitution operation is applied are identified.  In line 1 a loop is 

used to process each of the N input sentences.  In line 2 a loop is used to initiate the processing for each 

input sentence.  The patterns in COMB having a length equal to the sentence being processed initiate this 
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process.  The iterations continue until the last pattern in COMB having a size two is reached.  Patterns in 

COMB of length one are not considered.  Patterns having a size of two are the last patterns to be considered.  

This is seen in line 2 and 6 as represented by the variable SIZE_TWO.  The variable SIZE_TWO holds the 

index of the last pattern of size two in the array.  If the pattern being processed (referenced by COMB[k] is 

a substring of the sentence being processed (referenced by SENTENCE[i]), all occurrences of the pattern 

found in the sentence is replaced with the index of the pattern in the vector COMB (line 4).  This process is 

called a transformation.  The pattern initiating the transformation is termed the primary combination. The 

index of each primary combination is stored in the integer array P_LIST (line 5).    When a transformation 

is initiated a sentential form of the sentence being processed is created.  The temporary sentential form is 

stored in the TMP_SENT_FORM array.  In line 6 a new loop is initiated starting with the next pattern that 

immediately follows the primary combination string retrieved from COMB[k].  This loop is started in order 

to maintain the position of the loop in line 2.  The action in line 7 occurs until the sentence in 

TEMP_SENT_FORM has been completely transformed or until the loop ends (line 9).  In the event that the 

input sentence has been completely transformed and the newly created sentential form has not already been 

seen, the sentential form is inserted in the SENT_FORM array found in the SENTENCE object associated 

with the input sentence being processed (line 11).  This process continues for the current sentence being 

processed until all patterns in COMB have been processed.  Once all patterns have been processed, the 

operations are repeated for the next input sentence.  Below in table V, VI and VII are the results of the 

transformation for each of the sample input sentences.  These new transformations are denoted as 

temporary sentential forms. Each sentence has a set of temporary sentential forms associated with them.  

Each set of sentential forms are stored in the SENT_FORM array in the SENTENCE object associated with 

the given input sentence.  It is noted that the valid sentential forms are created using the indices of the 

patterns found in COMB.  
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Table V.  Sentence ‘abcc’ sentential form 

Input Sentence = abcc 
SENT_FORM 

index 
COMB 
index 
(primary 

combination) 

SENT_FORM 
Value 

(No. denote COMB indices) 

1 9 9 
2 8 1-8 
3 7 7-3 
4 6 4-6 
5 5 1-5-3 

 
 

Table VI.  Sentence ‘abc’ sentential form 
 

Input Sentence = abc 
SENT_FORM 

index 
COMB 
index 
(primary 

combination) 

SENT_FORM 
Value 

(No. denote COMB indices) 

1 7 7 
2 5 1-5 
3 4 4-3 

 
 
 

Table VII. Sentence ‘ab’ sentential form 
 

Input Sentence = ab 
SENT_FORM 

index 
COMB 
index 
(primary 

combination) 

SENT_FORM 
Value 

(No. denote COMB indices) 

1 5 5 
 

 
The primary combination indices associated with each sentence are stored in the integer array P_LIST for 

future use.  See figure 14 for the contents of each sentence’s P_LIST array.  Note the values in P_LIST 

are stored in descending order. 

 
abcc.P_LIST ={ 9, 8, 7, 6, 5 } 
abc.P_LIST= { 6, 5, 4 } 
ab.P_LIST = { 5 } 

 
 
 
 

Figure 14.  Sentence P_LIST values 
 

 
Next the function BuildProductionList() shown in figure 15 is called.  This function builds the list of 

productions for the CFG.  The list is created by comparing the P_LIST values of the current longest input 

sentence, denoted by variable i, to that of the next shortest, denoted by j.  This executes by observing the 
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values in the respective P_LIST array in an effort to identify the smallest value common to both sentences.  

(NOTE: this is the process of looking for pattern commonality between multiple sentences).  The variable j 

in line 6 keeps a reference to the sentence that occurs immediately after the sentence referenced by variable 

i.  In line 3 the value at location index in P_LIST is assigned to the variable val_One.  The values in 

P_LIST are accessed from the end of the array to the beginning.  The variable k in line 7 is initially 

assigned the size of the P_LIST array in the SENTENCE[j]object and is used to index into its P_LIST.  

In line 9 the P_LIST values of SENTENCE[j] are compared to the values of SENTENCE[i].  If the 

values are equal the algorithm breaks out of the inner three loops (i.e. line 4, line 6, line 7) and begins 

creating productions in line 14.  Otherwise if the P_LIST value of SENTENCE[j] is greater than that of 

SENTENCE[i], the algorithm breaks out of the innermost loop (line 7); the value of j is decremented 

and the P_LIST comparisons begin again. 

 
Line 1: FOR i=N to 1 
Line 2:   index = SENTENCE[i].P_LIST.size 
Line 3:   val_One = SENTENCE[i].P_LIST[index] 
Line 4:   while(!FOUND OR index >0) 
Line 5:   index-- 
Line 6:   FOR j=(i-1) to 1 
Line 7:     FOR k=SENTENCE[j].P_LIST.  to 1 size

Line 8:       val_Two = SENTENCE[j].P_LIST[k] 
Line 9:       if val_One == val_Two || val_Two > val_One 
Line 10:         break 
Line 11:     if val_One == val_Two 
Line 12:       FOUND=true 
Line 13:       break        
Line 14:   NON_TERM[q]=”S” + x 
Line 15:   START_PROD=START_PROD + NON_TERM[q] + “|” 
Line 16:   PRODUCTION[q]= SENTENCE[i].SENT_FORM[index] 
Line 17:   q++  
Line 18:   x++ 
Line 19:   WHILE Tokenize(SENTENCE[i].SENT_FORM[index]) != NULL 
Line 20:     NON_TERM[q]=GetNextToken() 
Line 21:     Value=ConvertToInteger(NON_TERM[q]) 
Line 22:     PRODUCTION[q]=COMB[Value] 
Line 23:     q++ 
Line 24:   NON_TERM[q]=”S” + x 
Line 25:   START_PROD=START_PROD + NON_TERM[q] + ”|” 
Line 26:   PRODUCTION[q]= SENTENCE[j].SENT_FORM[k] 
Line 27:   q++ 
Line 28:   x++ 
Line 29:   WHILE Tokenize(SENTENCE[j].SENT_FORM[k]) != NULL 
Line 30:     NON_TERM[q]=GetNextToken() 
Line 31:     Value=ConvertToInteger(NON_TERM[q]) 
Line 32:     PRODUCTION[q]=COMB[Value] 
Line 33:     q++ 
Line 34:   j=0; 
Line 35:   BREAK 

Figure 15.  Algorithm: BuildProductionList() 
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If the algorithm reaches line 14, this suggests that SENTENCE[i] and SENTENCE[j] both have a 

sentential form that have a combination pattern in common.  In line 14 a non-terminal value is created.  The 

sentential forms are assigned a non-terminal value (e.g. Sx, where x is an integer value).  This is seen in 

lines 14 and 24.  The non-terminals beginning with S are assigned to the right-side of the start symbol as 

seen in lines 15 and 25.   The variable q keeps track of the number of productions, while the variable x 

keeps track of the number of non-terminals that begin with the letter S.  In line 19 the sentential form in 

SENTENCE[i] that was found to have a pattern in common with a sentential form in SENTENCE[j] is 

tokenized.  We note that all sentential forms associated with a sentence are stored as a string of numbers 

delimited by the ‘-‘ symbol.  Any symbol can be used as a delimiter.  For explanatory purposes we use the 

‘-‘ symbol.  In specific the numbers denote the indices of the patterns found in COMB.  Each number 

tokenized becomes a new non-terminal and is inserted in the non-terminal array NON_TERM in lines 20 and 

30.  In lines 21 and 31 the values are converted into an integer and the value is used to index into the COMB 

array to obtain a pattern.  This pattern string is assigned to the PRODUCTION array in lines 22 and 32.   

 

Using our example, comparing the values of P_LIST associated with sentences ‘abcc’ and ‘abc’, 5 is the 

lowest value common to both.  See table V and table VI for a view of the common sentential forms.  Thus 

the temporary sentential form 1-5-3 is used for abcc and temporary sentential form 1-5 is used for abc.  

This assignment creates a set of productions, where the newly assigned non-terminals appear on the left 

side and the sentential forms appear on the right.  In addition new productions rules are made using the 

non-terminals found in the sentential forms.  The non-terminals in the sentential forms are placed on the 

left side of a production and the pattern associated with it becomes the right side.  These new non-terminal 

values are actually the index values into COMB.  For instance, using COMB, the pattern at index 1 is a and 

the pattern at index 5 is bc. 

 
S1 → 1-5-3 
1 → a 
5 → bc 
3 → c 
S2 → 1-5 
START → S1 | S2  
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Comparing the values of P_LIST associated with sentences ‘abc’ and ‘bc’, again 5 is the lowest value 

common to both, so the temporary sentential form 1-5 is used for abc and temporary sentential form 5 is 

used for bc.  The sentential form 1-5 is already present in the production list so it is disregarded.  We add 

the following productions, 

S3 → 5 
START → S1 | S2 | S3 
 

Resulting productions are: 
 

S1 → 1-5-3 
1 → a 
5 → bc 
3 → c 
S2 → 1-5 
S3 → 5 
START → S1 | S2 | S3 

 
The function TranslateRecursion() shown in figure 16 processes the right side of all newly created 

productions to find forms common within other productions.  It is noted that all right side values are stored 

in the PRODUCTION array.  This step captures production rules that have a length greater that 1.   In each 

production a single term is separated by a ‘-‘ symbol.   Productions consisting of all terminal symbols are 

not considered.   A list of all productions previously used in this step is maintained. 

 

In the example productions, the right side of S2→1-5 is common in S1→ 1-5-3.  The right side 1-5 is 

replaced with non-terminal S2 in production S1→1-5-3 to yield the following result. 

 
S1 → S2-3 
1 → a 
5 → bc 
3 → c 
S2 → 1-5 
S3 → 5 
START → S1 | S2 | S3 

 
 
 
Line 1: FOR i=1 to PRODUCTION.size 
Line 2:   if PRODUCTION[i].length > 2 AND PRODUCTION[i] != all terminals 
Line 3:     FOR j=1 to PRODUCTION.size 
Line 4:       if (i !=  j) AND PRODUCTION[i] is a substring of PRODUCTION[j] 
Line 5:         Replace substring with NON_TERM[i] 
 

Figure 16.  Algorithm: TranslateRecursion() 
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This next function RemoveUnitProductions() is optional.  The pseudo-code for this function is not 

presented in this work; however the source code is listed in Appendix A.  This function removes unit 

productions. Unit productions are productions of the form α → β where α and β are both non-terminals.  In 

the example productions, S3→ 5 denotes a unit production so everywhere S3 is found the non-terminal 5 is 

substituted.  We have the resulting productions. 

 
S1 → S2-3 
1 → a 
5 → bc 
3 → c 
S2 → 1-5 
START → S1 | S2 | 5 
 

Once the grammar is constructed, we examine it in an attempt to identify patterns or correlations within the 

productions.  Using a subset of the disjoint records to create a grammar eliminates the task of observing 

millions of records.  Also when the data is limited in its reliability, this provides a means to create 

additional structure and reliability.   Features are defined based on the discovered patterns and correlations. 

 
4.4  Feature-Based Record Object 

 

Data records from both sets (i.e. disjoint sets) are translated to associate their data elements to the new 

features and to exclude the features eliminated during the feature elimination step.  All records are 

translated into a corresponding Feature-Based Record Object.   

 

Definition 4.7:  A Feature-based Record Object (RO) is an object corresponding to a data record, where 

the elements of the record are associated with specifically defined features or classifiers. 

 

There are two basic types of ROs, target record objects (TRO) and candidate record objects (CRO).  Let the 

data mapping algorithm be defined as a function F(x).  Given the function F(x) = y, x is a domain element 

and y is a range element.  The target record objects are elements of the domain and the candidate record 

objects are elements of the range.  Record Objects consist of feature values with corresponding weights.  

The following binary operations can be performed on record objects, union, intersection, and difference.   
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Definition 4.8: A Target Record Object (TRO) is a domain item containing target record classifier data, 

that maps to a specific candidate record object. 

Definition 4.9: A Candidate Record (CRO) Object is a range item which is mapped to a target record item. 

 

Definition 4.10: The Union of two record objects S and T denoted by (S U T) is the process of combining 

the classifier values from two Record Objects. 

 

Definition 4.11: The Intersection of two record objects S and T denoted by (S ∩ T) is the process of 

capturing the common classifier values from two Record Objects; this process yields a score. 

 

Definition 4.12: The Difference of two record objects S and T denoted by (S – T) is the process of 

removing from S the classifier items that are found in T. 

 

Given two sets A and B, set A contains all target record objects and set B consists of all candidate records, 

A={t1,t2,t3,…,tn} and B={c1,c2,c3,…,cm}.  Each object ti and ck consists of data elements which correspond 

to specific classifier values. As an example if there were four defined classifiers each element ti in A and ck 

in B consists of values associated with one of the four classifiers E1, E2, E3, and E4. See Table III for an 

example.  To access the list of values of a given classifier E1 we use the dot reference operator.  For 

example E1.values[i] references the ith value of classifier E1.   

 

We now discuss how to quantify the Record Objects so as to provide a means of evaluation and validation.  

Quantifying the contents of the record objects provides a mechanism for measuring and evaluating 

relationships among the different record objects.   Let there be a set of classifiers F={E1,E2,E3,..,En}, each 

classifier has an associated weight value wi.  There exists a set of weights W={w1,w2,w3,..,wn} where each 

wi corresponds to a classifier Ei in F.  The weight values will be used in computing a quality of match 

value.  Note the data elements associated with a specific classifier are denoted as classifier values or feature 

values.  After an application of a binary operation on two objects, a new Record Object is produced.  It is 

noted that each record object has a score which corresponds to the weights associated with the data 
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elements within the object.  The score is computed using the function Score(x), where x is a record object.  

The classifier values within an RO, along with defined weight values can be used to compute a value 

denoted as an Actual score.   

 

Definition 4.13: An Actual score is a numerical value assigned to a record object based on its feature 

values.  It is the sum of the weights wi times the number of classifier values associated with the classifier 

Ei, , where n equals the number of defined classifiers and E)(
0

.
.

∑
=

×
n

i
ii sizeEw i.size denotes the total 

number of values within the record object which corresponds to a classifier Ei.  A Target Actual score is 

associated with every TRO and a candidate actual score is associated with every CRO.  In figure 17 we 

express the target and candidate record objects with a Venn Diagram. 

 

Target 
Actual Score 

Candidate 
Actual Score 

 

 

 

 

 

 Figure 17. TRO and CRO represented as a Venn Diagram 

 

For explanatory purposes, Venn Diagrams will be used to communicate aspects of the linkage strategy.  

The target actual score and candidate actual score is computed using the Actual score formula previously 

mentioned.  A numerical value denoted as a Candidate Match Score is the total score associated with the 

classifier values in which a candidate record object has in common with the target record object.  See figure 

18 for an illustration.  See equation (4.1). 

 Candidate Match Object (CMO) = Target Record Object (TRO) ∩ Candidate Record Object (CRO)        (4.1) 
  Candidate Match Score = Score(CMO) 
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Candidate Record 
Object 

Target Record 
Object 

 

 

 

 

 
Figure  18. Candidate Match Score

 

The Insertion Score is the value associated with the remaining classifier items that must be added to the 

Candidate Match Score making the sum of the Insertion Score plus the Candidate Match Score equal to the 

Target Actual score.  See figure 19 for an illustration.  See equation (4.2). 

 Insertion Score = Score(Target Record Object – Candidate Match Object)          (4.2) 

 

Insertion Score 

Candidate Record 
Object 

Target Record 
Object 

Insertion 
Score  

 

 

 

 

 

 

 

 

 

 
Figure 19. Insertion Score 

 

The Deletion score is the value associated with the irrelevant classifier items that must be eliminated from a 

candidate record object.  These items have nothing in common with the items in the Target Record Object.  

See figure 20 for an illustration.  See equation (4.3). 
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 Deletion Score = Score(Candidate Record Object – Candidate Match Object)         (4.3) 

 

Candidate Record 
Object 

Deletion 
Score  

 

 
Target Record 

Object  

 

 

 

 Deletion Score 

 

 

 
Figure 20.  Deletion Score 

 

A score denoted as the Object Translation Score is the sum of the Insertion Score and Deletion Score.  See 

figure 21 for an illustration.   Specifically, the value of insertion and deletion operations applied during the 

translation process is denoted as Object Edit Distance or Object translation score, much like that of edit 

distances described in an approximate string matching algorithm.   Given a TRO with a target actual score 

ai, a probable CRO mapping with a computed Object translation score of zero indicates a CRO that maps 

directly to the TRO.  Furthermore, the closer a CRO’s object translation score is to zero the more likely that 

the CRO is the better mapping/classification for the TRO.   

 Object Translation Score =Score((TRO – CMO) U (CRO – CMO))            (4.4) 
                                            = Insertion Score + Deletion Score 
 
 

Object Translation 
Score  

 
Insertion Score Deletion Score 

 

 

 

Figure 21.  Object Translation Score 
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We present detailed explanations in two examples to follow.  In this first example, assume that a target 

record from set A is selected.  The record description is CHORD, UPPER, RIB, AIL. OUTBD,.. WING STA. 

729.00 (LH).  A candidate record from set B with the description SPOILER AND SPEED BRAKE ASSY is 

analyzed to determine its relevance.  See tables VIII and IX for a description of the complete records from 

each set.  An application of Disjoint Factorization is applied to the descriptions and the individual data 

elements are classified into one of the four defined features (i.e. classifiers).  See table X and table XI. 

 

 

 

 

 

 

REF 

Units 
Per 

Assy 

 

A 

Use 
Code 

12--9- 

XY
Code 

   

CHORD, UPPER, RIB, AIL. OUTBD,.. 
WING STA. 729.00 (LH)

 1239-33-2 53 

Description IHS 
Num 

Part 
Number 

Figure 
Index 

TABLE VIII.  Example set A RECORD 
 

 

 

 

SPOILER AND SPEED BRAKE ASSY 14336AL0 

Description Unitized Code 

TABLE IX.  Example set B RECORD 
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Primary 
Element  

 

 

 

 

 

BRAKE 

Primary 
Element 

 

 

 

 

. TABLE X.   Set A RECORD: CHORD, UPPER, RIB, OUTBD AIL.,..WING STA. 729.0
 

WING STATION 
729.00

Number 
Element

 

RIB, AILERON  UPPER, 
OUTBOARD,LEFTH

Noun Element Descriptor 
Element

Positional Element 

TABLE XI.  Set B RECORD: SPOILER AND SPEED BRAKE 
ASSEMBLY 

 

 

 

Number Element 

 

SPOILERSPEED 

Noun Element Descriptor 
Element 

Positional 
Element 
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The records are translated into Record Objects and their respective Actual scores computed.    In figure 22 

the number in the feature boxes denote the weight values associated with a specific feature.  For example 

the Primary Element has a weight of 9 and a Noun Element has a weight of 4.  The total value for the Noun 

Elements seen in the Target Record Object is 8.  This value is computed by multiplying the weight value 

times the number of available Noun elements 2.  In this example, the target actual score is 26 and the 

candidate actual score is 15.  See figure 22 for an illustration of the record objects.  The following scores 

are computed next. 

• Candidate Match Score = Score(Target ∩ Candidate) = 0 
• Insertion Score = Score(TRO – CMO) = 26 
• Deletion Score = Score(CRO -  CMO) = 15 
• Object Translation Score= Insertion Score + Deletion Score = 41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BRAKE 9 

Primary Element 

SPOILER 4 

Noun Element

SPEED 2 

Descriptor Element

3 

Positional Element 

CHORD 9 

Primary Element 

RIB, AILERON 4 

Noun Element 
2

Candidate
Target 

Descriptor Element

UPPER,OUTBOARD
LEFTHAND 

 3

Positional Element

Target Actual Score = (1*9)+(2*4)+(0*2)+(3*3) 
                       =9+8+0+9=26 

Candidate Actual Score = (1*9)+(1*4)+(1*2)+(0*3) 
            = 9+4+2+0=15 

Figure 22. Target Actual Score and Candidate Actual Score Computation 

The Candidate Record Object has no elements in common with the target record object so the Candidate 

Match score is zero.  To compute the Insertion Score it is noted that in order for the candidate object to 

have all the elements of the target object all the elements must be added or inserted into the candidate 

object.  The value of this operation is 26, yielding an insertion score of 26.  The candidate object must 
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remove all of its initial data elements as they yield no relationship to the elements in the target object.  The 

value of that operation is 15, yielding a deletion score of 15.  The result of the operations (i.e. translation) 

produces Insertion Score + Deletion Score = 41, yielding an Object translation score of 41. 

 

In the second example, we test the relevance of another record from set B denoted as RIB.  The record 

description elements are associated with the corresponding feature.  See table XII. 

 

 TABLE XII.  Set B RECORD: RIB 
 

 

 

Number Element 

  

RIB* RIB 

Noun Element Descriptor 
Element 

Positional 
Element 

Primary 
Element 

 

 

 

 

 

The element RIB appears in both the Primary element and Noun Element columns because we have 

identified a rule we denote as the One-Up Rule. 

 

Definition 4.14: The One-Up Rule states that if the Primary term in a candidate record does not match the 

primary term in the target record, but matches a Noun term in the target record, then classify the Primary 

term as a Noun term instead.   

 

The record is translated into a record object.  See figure 23 for an illustration. 
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3

Positional Element

2

Descriptor Element

RIB* 4

Noun Element

RIB 9

Primary Element
 

 

 

 

 

 

 

 

Figure 23. Candidate Record Object for record RIB  

 

Alone, the new record object RIB does not have a high Actual score.  It is possible to increase a Candidate 

Actual Score by adding additional feature values to a CRO.  This is done by applying the union operation 

on a CRO and another record object.  This is known as an Enhancement Step.  We introduce the concept of 

an Enhancement Step. 

 

Definition 4.15: An Enhancement Step is the process of adding additional information to a Candidate 

Object in an effort to boost its chance of being the top candidate for a mapping. 

 

Definition 4.16: Enhancement Data is any data related to a candidate record (CR) being processed that 

would provide vital information about the CR to enhance the quality of match score.   

 

Enhancement data can be located in the immediate data source or in an external data source.  Examples of 

enhancement data are document section headers, figure titles/headers related to the candidate record, 

documents referenced by the CR, and synonyms.  In figure 24 we provide an example of a scenario where 

the records are in a text document.  The records are preceded by a section header which gives some general 

description of the section and throughout the document, figures are present. 
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Figure XX. Figure Name/Description 

Record 5 
Record 6 
Record 7 

Figure 24. Example document with Enhancement Data 

Record 1 
Record 2 
Record 3 
Record 4 

1. Section Header 

 

 

 

 

 

 

 

 

 

The records in the document reference different figures as well as parts within the figures.  The figure 

header/description and section header can be used as enhancement data as they serve to add value or 

context to the records being processed.  The features defined during the feature construction phase add 

extreme flexibility to the mapping process which enables a nonrestrictive data processing step as it allows 

for new data elements to be merged into the data records mid-stream in an effort to provide better quality of 

match scores and thus optimal mappings.  Feature Enhancement Data can be identified both before and 

during the data processing step.  In order to be used the Enhancement Data is translated into a record 

object (RO) and merged with a candidate object during the discovery process.  The information that is 

identified beforehand is denoted as static checkpoints, while dynamic checkpoints are characterized by 

their ability to change over time. 

 

Definition 4.17: Static Check points are pre-defined data elements in pre-defined locations within a data 

source (e.g. table, document) where the data elements are identified as additional evidential information 

that can be utilized to enhance a Candidate Object’s probability of being mapped to a target object.  After 

considerable analysis of the data, static check points are identified by the researcher before the data 

processing step as areas which hold additional information that could prove vital to the mapping process.  

Examples of static check points could be 1) section headers in documents, 2) figure names/headers and 3) 

system names. 
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Definition 4.18: Dynamic Check points are data elements that are discovered throughout the data 

processing step and are identified as additional evidential information to be utilized to enhance a Candidate 

Object’s probability of being mapped to a target object.  An example of this may be new terms that are 

learned over time during the processing step such as synonyms or alternate word terms. 

 

An Enhancement step can be applied to the RIB record object.  It is known beforehand that this particular 

part RIB, denoted by the record, belongs to the aircraft system denoted as OUTBOARD AILERON 

ASSEMBLY.  We use the aircraft system information as Enhancement Data.  The system information is 

translated into a RO and the associated actual scores are computed.  See figure 25 for an illustration of the 

translation.  The record object RIB is enhanced using its system information.  See figure 26 for an 

illustration of the enhanced record object. 

 
• Candidate Actual Score  = Score(CRO U System Object)  
                                                  = Score(CRO_prime)  
                                                   = 8 + 3 = 11 
• Candidate Match Score = Score(TRO ∩ CRO_prime) = 11 
• Insertion Score = Score(TRO – CRO_prime) = 26 – 11 = 15 
• Deletion Score = Score(CRO_prime -  CMO) = 11 – 11 = 0 
• Object Translation Score= Insertion Score + Deletion Score = 15 + 0 = 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set B Record: RIB   SYSTEM: OUTBOARD AILERON ASSEMBLY 

Candidate System 

AILERON 9 

Primary Element 

AILERON 4

Noun Element

 2

Descriptor Element

OUTBOARD 3 

Positional Element 

 3

Positional Element

RIB* 4 
2

Descriptor Element
Noun Element 

RIB 9

Primary Element

Candidate Actual Score = (0*9)+(1*4)+(0*2)+(0*3) 
                           =0+4+0+0=4 Actual Score = (0*9)+(1*4)+(0*2)+(1*3) 

         =0+4+0+3=7 

Figure 25. Actual Score Computation of associated System record 
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OUTBOARD 3

Positional Element
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Descriptive Element 

RIB, AILERON 4

Noun Element

9

Primary Element

 

 

 

 

 

 

 

 

 

 

 

 

 

Candidate Actual Score = (0*9)+(2*4)+(0*2)+(1*3) 
                            =0+8+0+3=11 

Figure 26. Final Candidate Actual Score with the integrated Enhancement Data 

The resultant scores from our second example are computed above.  The Object Translation Score of the 

record RIB (i.e. 15) is closer to zero than that of the Object Translation Score of the record SPOILER AND 

SPEED BRAKE ASSY (i.e. 41).  As a result the candidate record RIB is more likely to be the mapping to 

the target record LEFTHAND OUTBOARD AILERON RIB UPPER CHORD than candidate record 

SPOILER AND SPEED BRAKE ASSY.  

 

4.5 Sum-Ordering Feature Weighting 

 

In this section we introduce a technique denoted as sum-ordering feature weighting using a percentage 

value approach.   It describes the computation of the weight values used in computing the Object values 

discussed earlier in section 4.4.  Let E1E2E3E4 be four distinct features (e.g. Positional, Descriptive, Noun, 

and Primary).  The researcher determines that the Primary feature should outweigh all others because it is 

the main term of importance in a record description.  Based on an intimate knowledge of the data 

population, the researcher is able to determine constraints between the features.  As an example we have 

identified that the following constraints should exist between the features.  In specific, E1.weight < E2.weight < 
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E3.weight < E4.weight., where E1.weight is the weight value assigned to the feature E1.  The Primary feature would 

correspond to E4.  The main objective of this sum-ordering feature weighting process is to identify weight 

values that do not disrupt the defined feature constraints.  When analyzing a group of potential candidate 

records, it is important to have an established rank among the features.  The predefined feature ranking 

helps to establish implicit rules which address how the algorithm is to determine which candidate record is 

most significant given any combination of feature values.  For example let E3 correspond to the feature 

denoted as Noun and E4 correspond to the feature denoted as Primary.   Let there be a target record door 

knob, where data element door is associated with the feature: Noun and knob is associated with the feature: 

Primary.  If two candidate records are encountered one being door and the other being knob, which record 

should be considered the most dominant?  By observation, a human could determine that the record knob is 

the most dominant, but an algorithm must have some defined way of making the same observation. In 

analyzing the record door, the One-Up rule (see definition 4.14 for explanation) must be used, thus the data 

element door is categorized as a Noun feature term (i.e. E3).  In analyzing the record knob, the element 

knob is categorized as a Primary feature term (i.e. E4).  Using the predefined feature ranking order where E3 

< E4, an algorithm has a quantitative means in determining the most dominant record, the record knob.  

 

In Table XIII an example is given where E1.weight =1,  E2.weight =2,  E3.weight=3 and   E4.weight =4.  The Phrase 

column indicates all the possible combinations of the features.  Each combination of features will yield a 

value when the associated weights are summed.  Each combination is summed and the values are ordered 

in descending order. 
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Table XIII.  Effects of incorrect feature weighting 

  E1=1   E2=2   E3=3   E4=4
Index Phrase Value 

1 E1E2E3E4 1+2+3+4 = 10 
2 E2E3E4 2+3+4 = 9 
3 E1E3E4 1+3+4 = 8 
4 E3E4 3+4 = 7 
5 E1E2E4 1+2+4 = 7 
6 E2E4 2+4 = 6 
7 E1E4 1+4 = 5 
8 E4 4 = 4 
9 E1E2E3 1+2+3 = 6 

10 E2E3 2+3 = 5 
11 E1E3 1+3 = 4 
12 E3 3 = 3 
13 E1E2 1+2 = 3 
14 E2 2 = 2 
15 E1 1 = 1 

 

From the constraints previously applied, the expected order of the feature combinations from highest 

priority to lowest priority is already known.  See the Phrase Column 2 in table XIV for the correct ordering.  

The task in weight creation is to make sure that the relationships between the summed weight values 

maintain the predefined constraints.  The Value column depicts the phrase combination values in 

descending order.  In table XIII the phrase combinations in indices 4 and 5 and 12 and 13 reveal that 

equivalent values are present.  This does not follow our constraints.  The Phrase combination in indices 8 

and 9 also reveal a phrase pair that does not follow the constraint rule as well.  Let B be the set of all 

combinations of N items taken 1, 2, 3,…,N items at a time.  The total number of different combination 

items can be determined by: 

 

= 2N   N! 
------- 
P!(N-P)! =

  N 

∑ 
P=1 

Total number of possible 
combinations of N items 

 

For example in Column 1 of table XIV listed are all the combinations of 3 items taken 1, 2 and 3 items at a 

time.  Given the defined relationship among the items (i.e. E1.weight < E2.weight < E3.weight) the items can be 

arranged such that the values of the combination will be in descending order.  See arrangement in Column 

2 of table XIV.  Using Column 2, the feature combination at index 1 should be greater than the combination 

at index 2, the combination at index 2 should be greater that the combination at index 3 and so forth. 
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Table XIV.  Incorrect versus Correct feature ordering  
 

Index Column 1 Column 2 
1 E2E3 E1E2E3
2 E1E2E3  E2E3
3 E1E2 E1E3
4 E1E3 E1E2
5 E1 E3
6 E3 E2
7 E2 E1

 
 

Definition 4.19: The Sum Relationship Rule (SRR) states that given a collection of N items E1E2E3….EN, 

with the strict constraints of E1.weight < E2.weight < E3.weight <….< EN.weight, where Ei.weight is a weight value 

associated with item Ei, there is a set X consisting of all combinations of the N items, where all elements of 

X can be arranged, summed and sorted in descending order.  

 

To satisfy the Sum Relationship Rule we introduce the Percentage Grid. See Table XV.  We first let each 

Ei.weight be represented by some constant CN. At this point N is unknown.  Selecting the appropriate 

constant C is done by first determining what percentage of the Record Object is to be represented by the 

Primary feature. 

Table XV.  Sample Percentage Grid 
 

  Column 1 Column 2 Column 3 Column 4 Column 5 
Row 1 1 2 4 8 16 
Row 2 1 3 9 27 81 
Row 3 1 4 16 64 256 
Row 4 1 5 25 125 625 
Row 5 1 6 36 216 1296 
Row 6 1 7 49 343 2801 

 

For clarity we denote the Primary feature as P.  We denote the remaining features as the set P`.  In our case 

P`={Noun, Positional, and Descriptive}.  The remaining features (e.g. Noun, Positional, and Descriptive) 

together will make up the residual percentage.    As an example if one selects the Primary feature to be 

valued at approximately 67 percent of any given Record Object; the remaining features together would be 

worth the remaining 33 percent of the Record Object.  See figure 27.  The weight value assignment is done 
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by using the values in table XV.   Using table XV, row 1 represents the constant C having the value 2.  In 

table XV, each value in a given row denotes the value of CN where N takes on the values 0 to 4.   

 
Record Object Percentage

Primary 
Feature

67%

Other 
Features

33%

Figure 14. Record Object Percentage 

 

Figure 27. Record Object Percentage 

 

 

 

 

 

 

 

 

 

For this example N ranges from 0 to 4, but practically N can be set to any integer value.  Row 2 represents 

the constant C having the value 3.  Row 3 represents the constant C having the value 4 and rows 4 and 5, 

the values 5 and 6 respectively.  Table XV serves as a table look-up for percentage values as well as 

specific weight values.  Next the values in column 1 are used as a numerator and the values of column 2 as 

a denominator to compute percentage values.  For instance to assign the Primary feature the approximate 

percentage of 67 and the other features P` the approximate percentage of 33, the constant C would take the 

value 3.  This is determined by Row 2 where column 1 has the numerator value 1 and column two has the 

denominator value of 3 which yields 1/3 or 33%.   If the preferred value for the P` is to be 25% (i.e. ¼) and 

the value of the Primary feature is to be 75% then the constant C would take the value of 4.  This strategy 

can be used when the total number of features constructed is greater than two.  In table XVI, we present the 

feature weight values using the constant C.  The weight values are E1.weight=1,   E2.weight=2, E3.weight=4 

and E4.weight=8.   It is seen that the values satisfy the Sum Relationship Rule.    
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Table XVI.  Sum Relationship Rule satisfied with valid weight values (C=2) 
 

E1=1   E2=2   E3=4   E4=8 
Index Phrase Value 

1 E1E2E3E4 1+2+4+8 = 15 
2 E2E3E4 2+4+8 = 14 
3 E1E3E4 1+4+8 = 13 
4 E3E4 4+8 = 12 
5 E1E2E4 1+2+8 = 11 
6 E2E4 2+8 = 10 
7 E1E4 1+8 = 9 
8 E4 8 = 8 
9 E1E2E3 1+2+4 = 7 

10 E2E3 2+4 = 6 
11 E1E3 1+4 = 5 
12 E3 4 = 4 
13 E1E2 1+2 = 3 
14 E2 2 = 2 
15 E1 1 = 1 

 

We present another example; let us assume a total of four features have been constructed and the data 

analyst wants to assign the Primary feature approximately 67% of the Record Object and P` the remaining 

33%.  To obtain 33% for the P` values, row 2 is used because 1 over 3 is approximately 33%.  Using table 

XV it is seen that the features in P` are assigned the values 1, 3, and 9.  The Primary feature is assigned the 

value of 27.    

 

To ensure that percentage values are accurate we validate them by a simple computation.  First we sum the 

four values, 1 + 3 + 9 + 27 = 40.  Our total Record Object is valued at 40.  The percentage of the RO that is 

occupied by the Primary feature is 27/40 = .675 or approximately 67%.  The remaining features occupy 

13/40 = .325 or approximately 33% of the RO.   Table XVII shows the feature weight values when the 

constant C=3. 

 

 

 

 

 

 

 59 
 



Table XVII.  Sum Relationship Rule satisfied with valid weight values (C=3) 
 

E1=1   E2=3   E3=9   E4=27 
Index Phrase Value 

1 E1E2E3E4 1+3+9+27 = 40 
2 E2E3E4 3+9+27 = 39 
3 E1E3E4 1+9+27 = 37 
4 E3E4 9+27 = 36 
5 E1E2E4 1+3+27 = 31 
6 E2E4 3+27 = 30 
7 E1E4 1+27 = 28 
8 E4 27 = 27 
9 E1E2E3 1+3+9 = 13 

10 E2E3 3+9 = 12 
11 E1E3 1+9 = 10 
12 E3 9 = 9 
13 E1E2 1+3 = 4 
14 E2 3 = 3 
15 E1 1 = 1 

 

 

Formula 4.5 is used to compute the percentage value for P` and formula 4.6 is used to compute the 

percentage value for the Primary feature. 

 
 N-1 

∑Ci

 i=0 
 

(4.5) 
 

  N 

∑Ci

 i=0 
 

 

    CN      

(4.6)  

∑Ci
  N 

 i=0 
 

 

In table XIII, there exist three instances that did not satisfy the Sum Relationship Rule, indices 4 and 5, 8 

and 9, and 12 and 13.  All three share a common characteristic.   

 

Case 1: In indices 12 and 13, index 12, the weight value of E3 should be greater than the sum of the weight 

values of E2 and E1.  This suggests that Cn should be greater than (Cn-1 +Cn-2).  
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Case 2: In indices 8 and 9, index 8, the weight value of E4 should be greater that the sum of the weight 

values of E3, E2 and E1.  This suggests that Cn should be greater than Cn-1 +Cn-2 + Cn-3.   

 

Case 3: In indices 4 and 5, index 4, the weight value of the sum of E3 and E4 should be greater that the sum 

of the weight values of E4, E2 and E1.  Since E4 is in both indices, we can disregard that value so we end up 

with case 1 again.  E3 should be greater that the sum of the weights of E2 and E1.   

 

All the above cases suggest that Cn should be greater than Cn-1 +Cn-2 + …+C0.   We can prove that the 

following is true, Cn  > Cn-1 +Cn-2 + …+C0  when C ≥ 2.  We begin first by defining the formula for 

Geometric Progression as: C0 + C1 + C2 + … + Cn-1 = 
1
1

−
−

C
Cn

.   

Proof:  If C > 2, then 

  C +
cn
1

 > 2 

=>  Cn+1 + 1 > 2Cn

=>  Cn+1 - Cn
  > Cn -1  

=>  Cn (C -1) > Cn -1  

=>  Cn > 
1
1

−
−

C
Cn

 

=>  Cn  > Cn-1 +Cn-2 + …+C0

Proposition 1.0: Given N items (E1, E2, E3,…,EN) having the relationship E1 < E2 < E3 <…< EN, weight 

values C0,C1,C2,…,CN-1 (where C is an integer greater than 1) can be assigned to each item respectively 

such that the Sum Relationship Rule is satisfied. 
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4.6 Feature-Based Data Rule Generation 

 

Data Rules are guidelines or condition statements, based on detailed or unique properties of data within a 

specific Data Space which help to govern the way an entity (e.g. humans or computer programs) can best 

process other data found in similar Data Spaces.  Data rules are generally captured as phrases similar to IF 

THEN condition statements and then transformed into statements in which the processing algorithm can 

understand.  A sample rule could be: “If the item description consists of the term ‘screw’ then add the item 

to set Y”.  Once characteristics and properties among the data within the Data Field are identified, 

developing data rules are made less difficult.  In specific, in this work a record description having each data 

element properly associated with a feature is the most basic form of a data rule.  As an example, given the 

record “front door knob screw”, the term front is classified in the feature category denoted as Positional, the 

terms door and knob are classified in the feature category denoted as  Noun, and the term screw is 

classified in the feature category denoted as  Primary.  In this example the feature category Description is 

left without a value.  The rule in figure 28, suggests that each collection of feature values be multiplied by 

its associated weight value to obtain the corresponding scores.   

  

[(Positional: front) (Noun: door AND knob) (Primary: screw)] 

Figure 28. Example feature based data rule 

 

Data rules are dynamically constructed as new information is learned about terms.  For example due to 

learning from previously processed records the system identifies the term forward as an alternate word for 

front and the term handle is determined to be an alternate word for knob, the data rule in figure 29 would be 

generated. 

 

[((Positional: front OR forward)) ((Noun: door AND (knob OR handle))) (Primary: screw)] 

Figure 29. Example feature based data rule using learned information 
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The rule in figure 29 suggests that either the term forward or front can be used as a Positional term.  The 

term door along with the term knob or handle can be used for the Noun term during the score 

computations.  In this sense each data rule generated is different as it is dependant on two elements.  First it 

is dependant on the record description and second it is dependant on the amount of knowledge learned to 

the present time of a record processing step.  In specific the data rule generated for a record A at the 

beginning of a linking session at time γ will be different from a data rule generated for the same record A if 

processed towards the end of a linking session at time γ`. The difference is marked by the amount of 

knowledge obtained during the time γ` − γ.  

  

4.6.1 Parts-Breakdown Blocking 

 

In this section we present a Parts-Breakdown blocking procedure. 

 

Definition 4.20 Blocking is the process of dividing the records in the Data Field into individual blocks of 

records as to reduce the number of actual record pair comparisons.  

 

The primary goal of blocking is to remove candidate records that obviously should not be considered as a 

mapping during the data processing step [2].  As an example if a target record description describes a 

component of an aircraft wing, then candidate records describing components of the aircraft’s nose landing 

gear should not be considered.  An advantage of blocking is that it can decrease the amount of time to 

process records as a result of only observing “relevant” records.  This leads to the decrease in the time it 

takes the linkage algorithm to make data mappings.  To make the record blocks, the blocking procedure is 

performed using a set of record attributes or features common to records in the Data Field.  As an example 

records could be separated and compared based on whether or not they have the same city and state value.  

We analyze the Domain Object in question; in this case an airplane.  We identify k different regions of the 

aircraft.   These k regions are identified by the researcher as main areas of the aircraft which are more likely 

to consist of parts that are restricted to the specific aircraft region.  For example the nose of an aircraft does 

not consist of wings or wing-specific parts, so the nose and wing areas of the aircraft could be valid regions 
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used during blocking. In figure 30 a tree-like structure denoted as a Parts-Breakdown Tree (PBT) is shown.  

The leaf nodes (i.e. bottom nodes) consist of a set of strings which correspond to the k main areas/partitions 

of the Domain Object (i.e. aircraft).  We denote this set as M={m1,m2,m3…, mk} where mi is a label 

corresponding to a partition and k is an integer value.  A set M’ represents a miscellaneous or unknown 

region.  It denotes the other areas of the Domain Object not captured by M.  The data rule describing the 

items in M’ is denoted as ⌐ (m1 ^ m2 ^ m3 ^ …^ mk).  Using figure 30 M={wing, engine, fuselage, tail, 

landing gear, nose}. The branch nodes (internal nodes) in the tree diagram consist of a set of indicators 

(strings) used to reference a unique item in M.  We denote this set as S={s1,s2,s3,…, sk} where si is a set of 

strings that reference an element mj in the set M where i=j.  For example in figure 30 it is seen that the 

indicators rudder, elevator, stabilizer, fin were determined to refer to the Tail section of the aircraft.  A set 

S’ represents the set of indicators that are not captured in S.  The data rule describing the items in S’ is 

denoted as ⌐ (s1 ^ s2 ^ s3 ^ …^ sk).  It is noted that the elements in M and S exist in the set denoted by the 

union of the Noun features and Primary features. The blocking process used is initiated by selecting and 

categorizing records based on the k partitions identified in M.  Record descriptions containing any of the 

terms found in label mi or the indicator si corresponding to mi are placed in a separate data block.  The 

indicator values should be relatively specific to a main area in M otherwise some records could be 

neglected as a result of being in the wrong data block.  For instance if there existed two blocks of data, 

block A and block B, and as a result of a weak blocking procedure, block A contains records that belong in 

block B.  In the event that a target record requires comparisons of block B, based on indicators, then the 

records in block A belonging to block B will never be processed. 
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NACELLE, EXHAUST 

WING ENGINE FUSELAGE TAIL LANDING GEAR NOSE 
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 Figure 30. Parts-breakdown Tree Structure 

 

Once the blocking process has been completed, the record comparisons are initiated.  The feature values 

from a target record are processed to determine which data block the record comparisons should begin.  As 

an example, given a record Inboard Aileron Trailing Edge, based on the Noun feature values Aileron and 

Edge it is determined that the candidate records should be obtained from the block associated with Wing 

area.  All records within the block denoted by Wing that include the terms Inboard, Aileron, Trailing, Edge 

or known synonyms or alias terms will be retrieved and processed to obtain a quality of match score. This 

step identifies the data block as well as a list of potential candidate records within the data block.   If by 

chance a candidate record Elevator Trailing Rib is placed in the Wing data block, the record will quickly be 

eliminated from the list of possible candidates because the PBT is also used in a filtering process.   

 

Definition 4.21 Filtering is the process of using predefined rules to eliminate or limit the acquisition of 

unwanted information.   

 

Filtering helps to refine the accuracy of the data processing step.  Filtering is done by checking all relevant 

feature values of a candidate record to ensure that indicator values associated with other data blocks are not 

present.  Using the target record Inboard Aileron Trailing Edge, belonging to the Wing section, and the 
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candidate record Elevator Trailing Rib, belonging to the Tail section, it is quickly determined that the 

candidate record should not be considered as a possible mapping because of the indicator value Elevator.   

 

4.7 Learning and Alternate Term Discovery 

 

In this work, a subject matter expert (domain expert) will validate the record links obtained in the linking 

process.  Many times a domain expert will be able to say with some degree of certainty if a record link is 

accurate or not.  The validated information will become historical data for use during future record 

linkages.  Stored data can be meaningless if not used appropriately.  In this section we present a means of 

capturing, recording, and utilizing the validated information from the record pairs to give the mapping 

algorithm additional information (i.e. dynamic check points) to be used in an enhancement step during the 

linking process.  We modify the 3-Dimensional Torus Data Structure (3DTDS) presented in [15], to 

develop a data structure which implicitly captures conditional probabilities.   A conditional probability is 

the probability of an event A given the occurrence of another event B.   The 3DTDS is introduced in [15] as 

a new structure possessing characteristics similar to that of a three-dimensional torus network topology.  It 

utilizes a special hash function to insert and retrieve elements.  The hash function used is similar to the 

function used in locating computing nodes within a typical torus network topology.  The data structure can 

be created using matrices, binary trees, or in a matrix-tree hybrid. Quality results have been seen when 

sorting and searching large data sets.  Review [15] for further explanation of the 3DTDS.  The structure 

presented in this research is denoted as Term Probability Structure. Formally the Term Probability structure 

Z is a five-tuple (F,Q,M,S,G,D), 

F is a set which consists of values associated with relevant features (i.e. NOUN U PRIMARY); 
Q is a set of row locations qi, where i=1,N; 
M is a mapping on F, FxF→qi; 
S is a mapping QxF→ I, where I is the set of integers; 
G is a set of elements {g1,g2,…gN} of type S; 
D is a set of distance values {d1,d2,…,dN} corresponding to a specific element gi in G where di→gj, i=j. 
 

We briefly present some benefits of the TPS then give examples of its function.  In section 4.3 we 

introduced a methodology for constructing features based on the syntax of records in the Data Field by 

using a context free grammar.  In contrast in this section we incorporate the concept of “context” to assist 
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in recording the frequency of word to word mappings.   We want to know the relationship between three 

terms.  In specific we want to know the probability of a term A mapping to a term B given that a term C 

appeared adjacent to term A in a record description.  If we only record the number of times a term A 

mapped to a term B, this information is helpful but we want to know to what extent or what other 

parameters work together to make this a valid case.  During the data processing step in the event that three 

candidate records have identical Object Translation scores, a decision must be made to determine which 

record should be selected.  Based on a record of historical mappings and related parameters, such values 

can be used to assist the mapping algorithm in making optimal decisions when there is a need to make a 

determination between multiple records or in determining if a certain record should be selected over 

another.  As result of mapping ambiguity, capturing the context is vital to this research (see section 2 for 

explanation of mapping ambiguity) as there are several records with identical or nearly identical Primary 

term values.  For instance the target records Inboard Aileron Rib and Horizontal Stabilizer Rib have the 

same Primary term, Rib.  Although these records have identical Primary terms, the candidate records that 

each one of the target records map to may not consist of the Primary term Rib.  As an example let us use 

the record Inboard Aileron Rib.  The purpose of the data structure is to capture the term that Rib maps to 

given that the term Aileron is adjacent to Rib in the description.  The level of adjacency is measured by a 

distance value.  As an example, the terms Aileron and Rib are considered to be at a distance of one unit 

apart.  Using the record Horizontal Stabilizer Rib, the purpose of the structure is to capture the term that 

Rib maps to given that the term Stabilizer is adjacent to Rib in the description.  The terms Stabilizer and Rib 

are considered to be at a distance of one unit apart.  It is noted that all distance values being measured 

denote the values in set D in the Term Probability Structure.  Each distance value is associated with an 

element gi in the set G.  In the previous examples the element g1 would consist of all values associated with 

the measured terms that have an adjacency distance of one, denoted by d1.  The structure can be used to 

capture relationships at varying distances.  For example to capture the relation at a distance of two units, let 

us use the record Horizontal Stabilizer Rib.   We would then use the structure (e.g. denoted as g2) to capture 

the term that Rib maps to given that the term Horizontal is at a distance of two (i.e. d2) from Rib in the 

description.  The adjacency distance being measured is determined by the data analyst.  Recording the 

frequency of such mappings serves as a knowledge base of historical data vital to assisting the data 
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mapping algorithm in making optimal mappings. The structure utilized implicitly captures conditional 

probabilities.  This is extremely beneficial because it provides quantitative justification for making 

mapping decisions.  Let X denote the probability that a term A will map to a term B and let Y be the 

probability that a term C occurs at a distance of N terms away from A, where N is an integer. As an 

example given the record Door Knob Screw, the terms Knob and Screw share a distance of one, thus N 

equals one.   In using the structure to capture a set of previously processed mappings, the conditional 

probability P(X|Y) (based on historical data) can be obtained and used to make an optimal mapping 

decision in the future. As more data is processed the probability values associated with a specific term will 

become dominant.   

 

In figure 31a the FxF mapping M is depicted.  It is noted that the data researcher must select the features 

and associated feature values that will be represented by F.  In this research, the Noun and Primary features 

were selected.  The elements A, B, C, and D are representative of terms in both the set of Primary and 

Noun elements which are taken from the disjoint set in the Data Field.  The value of location M[i][i] is 

equal to zero as it is assumed that a term will not be in the same record description.  As an example in 

figure 31a the values at M[0][0], M[1][1], M[2][2] and M[3][3] all have the value zero.  In figure 31a, the 

row denoted by M[1] corresponds to term A.  Thus,  

M[1][1] can be understood as an event when A is adjacent to A in a record;  
M[1][2] can be understood as an event when B is adjacent to A in a record; 
M[1][3] can be understood as an event when C is adjacent to A in a record;  
M[1][4] can be understood as an event when D is adjacent to A in a record. 
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As illustrated in figure 31a M[i][j] will yield an integer value denoting a row location in S (i.e. QxF).  We 

note there can be several elements S each of which is associated with a specific word distance between 

adjacent words.  S where word distance is one is pictured as the first matrix in figure 31b.   This matrix is 

denoted as g1.  The data analyst could define another element S in the set G to capture information 

associated with an adjacency word distance of 2.  Pictured in gray is g2 and g3 where the distance matrix is 

equal to two and three respectively.  Using figures 31a M[1][3] (i.e. event when term C is adjacent to term 

A in a record), the value references row location two in matrix g1 (word adjacency occurs at a distance of 

1).  The integer values in matrix gi indicate the number of times a Primary Element in M mapped to a 

specific Noun Element, where the set of Noun Elements compose the column values of gi.  See figure 31b 

for an illustration.  As an example, from the previously processed data, it can be deduced that the 

probability that term A maps to A given that it appears adjacent to term C in a record at a distance of one 

(i.e. P(X|Y) ) is   

               # of outcomes in X and Y        P(X ∩ Y)            4/21       
 P(X|Y) = ---------------------------------    =  ------------    =  ----------- =  4/7 = .57 = 57% 
                     # of outcomes in Y                P(Y)               7/21 

 

 

where, 

Event X = {Term A mapped to term A}. 

Event Y = {Term C was adjacent to A}. 

 

In essence this mechanism once applied will assist the linking algorithm to, 1) filter out records consisting 

of less dominate terms and 2) select records consisting of records deemed more dominate.  This tool will 

allow for discovery of synonyms and/or alternate terms.  Data from this mechanism will be used in the 

enhancement step as dynamic checkpoints.  As word synonyms and alternate terms become available, they 

can be utilized to strengthen the pseudo-intersections between disjoint sets.  Figure 32 illustrates a 

magnified view of the pseudo-intersection between the initial two disjoint sets. 
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 Figure 32. Items in initial disjoint sets mapped using a pseudo-intersection 

4.8 MUDD Classification Algorithm 

 

The MUDD Classification Algorithm is the result of the integration of the approaches described in the 

previous sections.  A pseudo-algorithm is listed in figure 33.  
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WHILE LOOP 1: i=1,X   (X=number of set A records to evaluate) 
 Step 1: Get set A Record 
 Step 2: Convert Record to Record Object 
 Step 3: Perform Enhancement step 
 Step 4: Compute Target Actual Value 
 Step 5: Feature Value Ordering 
 Step 6: Get List of potential mappings 
 Step 7: Compute Recommended Discovery Item (e.g. Equipment Code) 
WHILE LOOP 2: j=1,Y   (Y=number of Equipment codes to process) 
WHILE LOOP 3: k=1,Z  (Z=number of set B records to process) 
 IF ( set B record_EquipmentID == EquipmentCode[j] ) 
  Step 8: Convert set B_Record[k] to Candidate Object (CO) 

Step 9: Apply Rules 
       Step 10: Perform Candidate Object Enhancement Step 
  Step 11: Compute Object Translation Value 
  Step 12: Insert CO into MAPPING_LIST array 
 END IF 
END WHILE LOOP 3 
END WHILE LOOP 2 
 Step 13: Perform Minimum Sort on MAPPING_LIST array 
 Step 14: Output Top M records  (M=5, user defined) 
 Step 15: Perform Learning Step* 
 Step 16: Distance Tree* 
END WHILE LOOP 1 
 

Figure 33. MUDD Classification Algorithm 
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CHAPTER FIVE 

 

RESULTS 

5.1 Grammar-based Featured Construction 

 

In our research, a subset of the records in the Data Field were processed to generate a grammar in an 

attempt to discover any knowledge about the Data Field.  It was determined that in order to better observe 

the data,  production rules could be analyzed versus attempting to analyze the entire Data Field manually 

record by record.  A grammar captures any patterns or relationships within the records.  These patterns and 

relationships can then be used to assist a data analyst to construct features. Based on several thousand 

records processed, the following sentences were obtained,   

ananndnnnng 
anannnng 
nannnnn 
n 
annnnnng 
annn 
an 
aannn 
nannn 
anndanann 
nndcdanann 
aanng 
aann 
ananng 
nnnn 
andnng 
ngnnn 
anndng 
anndnng 
annnng 
nnnnnnn 
annnn 
aaanan 
anndnn 
annnnng 
aaannng 
nnn 
aanannn 
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These sentences make up the language P.  In the sentences, the letter ‘a’ denotes an occurrence of an 

adjective and the letter ‘d’ denotes the occurrence of a digit.  The letter ‘n’ denotes a noun and the letter ‘g’ 

denotes a type of noun that encompasses multiple parts/items.  For example the term ‘system’ is a noun but 

the term itself suggests the possible inclusion of multiple components.  In contrast, the term ‘wing’ is a 

noun that alone, does not suggest the inclusion multiple parts.  The grammar generated by our algorithm for 

language P can be found in figure 34. 

START → S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | S11 | S12 | S13 | S14 | S15 | 
S16 | S17 | S18 | S19 | S20 | S21 | S22 | S23 | S24 | S25 | S26 | S27 | S28 | S29 | S30   
 
S1 → 82 5 5 0 
82 → nndcd 
5 → an 
0 → n 
S2 →  5 11 5 5 0 
11 → nd 
S3 →  5 5 49 
49 → nnng 
S4 →  1 S27 6 2 
1 → a 
6 → nn 
2 → g 
S5 →  23 S27 2 
23 → ana 
S6 →  1 5 S29 
S7 →  7 5 20 
7 → aa 
20 → nng 
S8 →  0 5 37 
37 → nnnn 
S9 →  1 S27 9 
9 → ng 
S10 →  S27 S30 
S11 →  1 6 3 6 2 
3 → d 
S12 →  8 S27 0 
8 → na 
S13 →  7 5 5 
S14 →  1 6 3 6 
S15 →  1 S27 2 
S16 →  5 5 9 
S17 →  1 6 28 
28 → dng 
S18 →  24 6 2 
24 → and 
S19 →  23 6 2 
S20 →  5 16 
16 → nnn 
S21 →  1 5 9 
S22 →  9 S30 
S23 →  7 6 2 
S24 →  0 S29 
S25 →  1 S29 
S26 →  1 5 0 
S27 →  6 6 
S28 →  1 S30 
S29 →  5 6 
S30 →  6 0 

Figure 34. Generated CFG  

 73 
 



The grammar generated helps us to isolate patterns within the population of data in order to make an 

informed analysis of the Data Field.  Some of the characteristics analyzed are as follows, 

• frequency of specific patterns and sub-patterns 
• composition of patterns 
• relationship of terms within patterns ( terms beginning or end) 

 

We found that each record had to have at least one noun as ‘n’ was the most common pattern.  Each record 

ended with a noun denoted by either letter ‘g’ or ‘n’.  The total patterns ending in ‘n’ were greater than the 

number of patterns ending in ‘g’. The pattern consisting of ‘nn’ was the second most common pattern 

found throughout the grammar.  The pattern ‘nn’ suggests that throughout the Data Field nouns are used to 

modify other nouns; they often function like adjectives.  The third most common pattern found was ‘an’ 

which suggests that in the records, adjectives are used to describe nouns although not as often a nouns are 

used.  We were able to construct new features based on these observations.  From these observations as 

well as an analysis/awareness of how different adjectives were used throughout the Data Field, new 

features were constructed.  The features denoted as Primary, Noun, Positional, and Descriptive were 

constructed.  Each feature is given a weighted value.  The Primary feature indicates a set of noun values 

and was constructed based on the observation that all records must end with a noun term.  This term is 

considered the Primary Term of Observation (PTB).  The Noun feature indicates an additional set of noun 

values.  This feature was constructed on the basis that a larger number of nouns were used throughout the 

Data Field to add meaning to the PTB and/or other nouns within a record description.  The Positional and 

Descriptive features both indicate a set of adjectives.  Based on an analysis of some of the adjectives, the 

set of adjectives we divided into these two categories.   It was found that some adjectives such as 

“outboard” and “left-hand”, described the location or position of items on an aircraft whereas other terms 

like “hexagonal” and “diagonal” described specific characteristics of items.   Based on the observation of 

frequency within patterns as described above, weight values were assigned.   

 

5.2 Sum-Ordering Weighting 

 

In this research we selected the Primary feature to represent approximately 50% of the RO and the other 

features to represent the other 50%.  The values in row 1 were used as weights for the features (i.e. values 
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1, 2, 4, 8).  The percentage value of 50% was selected because we wanted the weight of a single Primary 

term to be as important as the appearance of a candidate object that did not have a Primary term but only 

had a Noun term, Positional term, and Descriptive term.  It was observed that if the weights are not 

allocated appropriately, a number of false positives will be obtained throughout the data processing step.  

We demonstrate a scenario of the acquisition of a false positive below.  Assume we have a target record 

object with the name Outboard Trailing Edge Rib and two candidate record objects (CRO), one with the 

name Inboard Rib (CRO_1) and the second Outboard Trailing Edge (CRO_2).  Let P` be valued at 25% 

(i.e. row 3) and the Primary feature be valued at 75%.  Using row 3 in the Percentage Grid, this suggests 

that the features have the following values, Primary feature: 64, Noun feature: 16, Positional feature: 4 and 

the Descriptive feature: 1.  Taking the terms in all the record objects and categorizing them into there 

appropriate feature we obtain the following list: 

Primary: Rib 
Noun: Edge 
Positional: Outboard, Inboard 
Descriptive: Trailing 
 
Now we proceed with the steps to compute the Object Translation Scores.  The actual value for the Target 

Record Object having the name Outboard Trailing Edge Rib is 85 (i.e. 64+16+4+1).  Candidate Record 

Object 1 (CRO_1) has an actual value of 68 (i.e. 64+4) because it has one primary term, Rib, and one 

Positional term, Inboard.  Candidate Record Object 2 (CRO_2) has an actual value of 21 (i.e. 16+4+1).  

We note the One-up Rule was used.  (Definition 4.14).  The Object Translation score (OTS) for CRO_1 is 

25 and 64 for CRO_2.  These OTS’s suggest that CRO_1 is more of a match than CRO_2, where although 

CRO_1 suggests that it is a Rib structure; however one of its description terms Inboard communicates that 

the particular structure Inboard Rib is in a different location on the aircraft than that of the Outboard 

Trailing Edge Rib.  As a result the algorithm would have identified the wrong type of Rib as the correct 

mapping.  CRO_2 should have rendered the better quality of match score because although the record does 

not communicate it is specifically a Rib structure, it does reference the appropriate area and position of the 

aircraft.  
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5.3 Algorithm Results 

 

Our experiments were conducted using a PC with a processor speed of 1.73 GHz and 2.0 GB of RAM.  The 

data was managed by the Oracle 9i Database Management System on a remote server.  See figure 35.  All 

programming was done in Java programming language because of its object oriented nature, portability and 

built-in functionality.   

 
Server w/ DBMS 

 

Internet 

• Tables 
• PDF files 
• Text files 

 

 

 

 

 

 User 
Figure 35.  Experiment Environment 

 

A number of tables were used to help prepare the data before it was processed by the data mapping 

algorithm.  The tables of major interest consisted of a General Dictionary, Knowledge Base, Figures, 

Section Headers.  A brief description of each is listed below. 

• General Dictionary - consists of words and major parts of speech. 
• Knowledge Base – consists of words and their known acronym, abbreviation and alias. 
• Figures – consists of figure ids and figure descriptions 
• Section Headers – section id and section descriptions 

 

The tables holding data from set A and B were similar in make-up.  Sample columns include part 

description, part number and a column corresponding to each feature (e.g. Primary, Positional, 

Description).  See table XVIII for a view of a partial table. 

Table XVIII.  Partial Table 
 

Part 
Id 

Part 
No. 

Figure 
Id 

Part 
Description 

Primary 
(feature 

1) 

Noun 
(feature 2) 

Positional 
(feature 3) 

Descriptive 
(feature 4) 

Number 
(feature 5) 
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There were minor variations in the tables.  The table containing the items from set A consisted of an 

additional field that corresponded to a figure item in the Figures table.  The records in set B did not have 

associated figure data.  There was part system information corresponding to the records in set B available.  

An additional field was created to capture this information in the table holding the set B records.  System 

information for the items in set A was not available.    All data is made available from several PDF 

documents.  The PDF files were converted to text files and cleaned and formatted in order to parse and 

populate the database tables.  The features were defined based on data rules discovered from the feature 

creation process and other data analysis.  The feature columns from both tables were populated by applying 

a Disjoint Factorization on the Part Description field and classifying each data component to a feature 

based on the data rules.  The data was normalized using information from the Knowledge Base (KB).  This 

KB table was populated using information obtained from subject matter experts (SME), analyzed aircraft 

manuals, and other documents. 

 

This research addresses several data issues, most of which are mentioned in chapter two; however, there 

was another obstacle that made the evaluation of the mapping process difficult.  There was not any training 

data or other reliable data available where with to compare our results.  For accuracy and verification we 

relied on a group of Air Force SMEs to observe the mapping results.  These persons observed the data 

results and gave an estimate as to percent of accuracy.  The SMEs estimated the accuracy of the algorithm 

to be between 70 to 80 percent.  This is extremely promising as there existed no sound algorithm to 

automate this process.   

 

For experimental purposes the MUDD algorithm was compared to the Expectation-Maximization-Based 

Probabilistic (EMP) algorithm (See Appendix B).  In comparing the two algorithms we wanted to see if the 

algorithms would agree on the mappings they selected and/or to what extent of agreement.  In the event of 

mapping disagreements, we wanted to identify the reasons for the disagreements.  We determined that by 

identifying these reasons we would discover information that would aid in making the MUDD algorithm 

better.   
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In conducting the experiment, the same blocking scheme was used for both algorithms and the same record 

pair combinations were processed by both algorithms.  For each record pair comparison a quality of match 

score was computed by each algorithm.  As an example in figure 36 the target record a1 is being compared 

to four candidate records, b1, b3, b7 and b11. For each comparison two scores are computed one for the 

MUDD algorithm and one for the EMP algorithm.  Once computed both scores were stored.   

 MUDD      EMP 
a1 b1

b11

b3

b7

 

 

 

Figure 36. Record Comparison  

The top five scores from each mapping iteration were saved.  A mapping iteration is defined as the single 

event of comparing the appropriate candidate records to a single target record.  As an example, if there are 

twenty-five target records then there would be twenty-five mapping iterations.  The resulting Object 

translation scores from the MUDD algorithm were sorted in ascending order first.  Note the lower the score 

the better the quality of match.  The lowest five scores were considered the top five most probable to map 

to the target record.  After the results for the MUDD algorithm were stored the scores for the EMP 

algorithm was sorted in ascending order.    We used the insertion sort algorithm for its stable characteristic. 

The term stable suggests that the algorithm maintains the relative order of the objects while the objects are 

being processed.  A stable algorithm was necessary because we realized that there were several record 

mappings with identical low scores.  In capturing records that were common to both algorithms we wanted 

to ensure that in the event that two candidate records having the same EMP quality of match score, where 

one is also one of the top five records selected for the MUDD algorithm and the other is not, that the right 

record was selected. In other words a record with the same score doesn’t get placed in front of it.  The 

candidate records with their corresponding scores are shown in table XIX.  The scores shown in this table 

are a result of one mapping iteration with a single target record.  The table shows the MUDD algorithm 

results sorted in ascending order.  The records b23, b1, b34, b5 and b7 are the top records for the MUDD 

algorithm.  Sorting the scores for the EMP algorithm yields the record order b5, b7, b23, b90, b1.  There are 
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multiple records with the value 18.345.  Using a stable sorting algorithm maintains the relative order of the 

records to ensure that other records with the value 18.345 do not get placed before the record b1. 

 

Table XIX.  Comparison of MUDD and EMP algorithm scores 

Record MUDD 
Score 

EMP 
Score 

b23 10 13.5 
b1 15 18.345 
b34 35 25.343 
b5 40 5.23 
b7 80 5.23 
b90 100 13.5 
b22 140 56.77 
b2 200 26.09 
b56 220 18.345 
b9 240 18.345 

 

In table XX we show the number of resulting records the algorithms had in common.  The column headers 

indicate the number of records common to both.  As an example the column labeled with the number five 

denotes the number of times that both algorithms had all five mapping results in common.   During this 

experiment, the algorithms had the same five resultant mappings 271 times or 3.7 percent of the time.  

73.22 percent of the time the algorithms had zero records in common.  The algorithms did not share a large 

percentage of the same results. 

Table XX.  Agreement Table 

Number of Common Records  
0 1 2 3 4 5 

Total 5359 593 510 300 286 271 
Percentage 73.22% 8.10% 6.96% 4.09% 3.90% 3.70% 

 

In tables XXI and XXII we capture three categories of mappings,  

1. Part-to-same part,  
2. Part-to-system and  
3. Part-to-different part.   
 

The part-to-same part mappings denote the number of resultant candidate records that had the same part 

name in the Primary feature value as the target record.  An example of this mapping is a target record Left 

Rib Bolt mapping to a candidate record Rudder Bolt.  The Primary feature values in both records were 

identical (i.e. Bolt).  The part-to-system mappings denote the number of resultant candidate records that 
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actually referenced a part system.  This type of mapping indicates that the target record mapped to a 

candidate record with a system description.  The part-to-different part mappings denote the number of 

resultant candidate records that had a different part name in the Primary feature value from that of the 

target record. 

 

 
Table XXI.  Empirical results for Category mappings (actual) 

 Part-to-Same 
Part 

Part-to-
System 

Part-to-Different 
Part 

Gaston 16787 10306 9319 
EM-Based 1323 14977 20112 

 

 

Table XXII.  Empirical results for Category mappings (percentages) 

 Part-to-Same 
Part 

Part-to-
System 

Part-to-Different 
Part 

Gaston 46.10% 28.30% 25.59% 
EM-Based 3.63% 41.13% 55.23% 

 

In our algorithm 46.10 percent of the mappings were to candidate records having the same part description 

in the Primary feature field whereas the EMP algorithm only mapped 3.63 percent of it results to candidate 

records with the same part.  55.23 percent of the results from the EMP algorithm mapped to candidate 

records with a different part description in the Primary feature field while this category yielded 25.59 

percent, the lowest percentage value, for our algorithm.  There was a significant difference in the mapping 

results of both algorithms.  We were able to identify at least five factors:  

1. Inappropriate weighting,  
2. Lack of enhancement data,  
3. Poorly cleaned data,  
4. Wrong feature classification and  
5. Insufficient String comparator. 
 

Applying the appropriate weight to the appropriate features proved extremely important.  From section 5.2 

we described why weighting is vital to the mapping process.  The weights serve to identify the degree of 

significance a feature has across a data set.  Misapplying weights causes a feature or a combination of 

features to have more significance than necessary.  This is what happened with the weighting of the EMP 

algorithm.  A subset of mappings from the new algorithm was used as input to the Expectation-
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Maximization (EM) algorithm to estimate the unknown value mk and uk.  Based on the EM algorithm the 

Noun, Positional and Descriptive features required the most weight.  This conclusion was made because in 

the majority of the mappings the Positional and Descriptive values matched despite the absence of the 

matching Primary values.  This left less weight to be distributed to the Primary feature.   

 

Unlike the Enhancement component of the MUDD algorithm, the EMP algorithm does not have a 

component where with to bring in extra data related to records.  This prevents the EMP algorithm from 

making optimal decisions in determining if a specific part should be mapped.  As an example there are 

multiple candidate records with the same description Rib; however each record corresponds to a specific 

system such as Outboard Aileron System or Inboard Aileron System.  Without the use of the associated 

system information an optimal match is only by happenstance.  The EMP algorithm will view the 

descriptions Rib, Outboard Aileron System, Inboard Aileron System as three different records instead of 

descriptions that complement each other.  There is no way for it to distinguish between records having 

identical part names but belonging to two entirely different aircraft systems. 

 

Poorly cleaned data caused noticeable problems during the mapping process.  Before processing the data, 

we attempted to remove all typographical errors and normalize the data by using standard names and 

formatting.  We discovered that some of the wrong mappings by the MUDD algorithm were a result of the 

poorly cleaned data.  The MUDD algorithm’s inability to combat typographical errors was due to the exact 

matching string comparison measure used.   

 

Incorrectly classifying terms in the wrong feature category causes significant problems because the 

incorrect weight value is assigned to the wrong term.   This can cause records to be ranked higher or lower 

than actual.  This issue is an extension of issue three, poorly cleaned data. 

 

We discovered that using the wrong string comparator prevented the MUDD algorithm from making some 

correct mappings.  For the MUDD algorithm a binary string comparator was used.  In specific if the feature 

values were an exact match then the weights associated with the feature was computed in the Object 
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Translation value calculation otherwise no value was attributed to the terms.  The Exact Matching 

technique was used because of the applications of data cleaning and data normalization to both data sets 

during the data preprocessing step.  The importance of the type of comparison measure used is realized 

when records appear as ‘WINGFLAP’ instead of as ‘WING FLAP’.  During the data preprocessing stage 

description one would be processed as one word.  In our research if a candidate record was ‘WING FLAP’, 

this phrase would get split into two words and placed into distinct feature categories.  Since the MUDD 

algorithm uses a binary comparison measure scheme ‘FLAP’ compared to ‘WINGFLAP’ would be 

considered unequal, whereas if a categorical scheme like Bi-grams were used a better measure of similarity 

could be obtained.   In the EMP algorithm we used the bi-gram string comparison measure.   The bi-gram 

measure computes a value between zero and one.  The closer the value is to zero the better the quality of 

match.  The threshold value of .375 was used to determine the measure of similarity between two terms.  If 

the bi-gram value was less than or equal to .375 then the two terms were consider equal else they were 

considered unequal. 

 

In an effort to optimize the mapping results the Conditional Probability structure was used.  We ran the 

experiment twice using the same population of records, one with the use of the structure and again without 

its use.  An apparent issue from the onset was the memory required for the utilization of the structure.  The 

components M and D required memory allocations proportionate to the total number of distinct values 

associated with the union of all Primary feature values and Noun Feature values.  Recall the component M 

is a matrix-type structure which holds the values of the states that serve as mappings into the Distance 

vector D.  The state values can be emulated using the GetState(PrimIndex, NounIndex) algorithm.  See 

figure 37.    

 
Algorithm GetState(int PrimIndex ,int NounIndex)  
state=(row*PLANE_SZ + col); 
IF (row!=0)  
  dec=row; 
  IF col > row AND col != row 
     state=state-dec; 
  Else 
    state=state-(dec -1 ); 
END IF 
return state; 
 

 

 

 

 

Figure 37. Component M Transformation 
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The formal parameters PrimIndex and NounIndex denote the indices corresponding to the index of the 

Primary feature term and the index of the Noun feature term adjacent to the Primary term.  Using these 

indices the value of the state location is returned.   

 

The structure performed as anticipated.  It recommended certain records over others based on the learned 

information from previous mappings.  We first captured the results of 1500 record mappings.  We set 1500 

as a threshold value.  When this threshold value was reached, records processed after that point were given 

additional weight based on its probability of being a match.  As an example given the target record 

Outboard Aileron Seal and candidate records Outboard Seal and Inboard Rib, the Primary feature values in 

the candidate records Seal and Rib each have probability of being a mapping.  This probability is computed 

using the historical data in the structure. If for instance records having a Primary feature value of Seal have 

a 70% probability and those having Rib as a Primary value have a 25%, then additional weight values 

corresponding to these percentages will be applied to each record’s Object translation score.  The additional 

weight is computed by multiplying the Primary feature weight by the probability value.  For the above 

example the added weight for the record having Seal as a Primary value is computed as (.70 * 8), where 8 

is the Primary feature weight and .70 is the probability.  Although the structure was able to recommend 

certain records over others, it was not able to distinguish between records with similar Primary feature 

values.  For instance given the target record Outboard Aileron Seal and candidate records Outboard Seal 

and Outboard Aileron System, Inboard Rib, Inboard Seal, Spoiler Seal and Rudder Seal, the Primary 

feature values in the candidate records Seal, System, and Rib each have probability of being a mapping.   

From our previously processed data, the records ending in Seal have the higher probability of being a 

mapping.  After applying the additional weight value, all the records ending in Seal are placed at the top of 

the list as most likely to be the match.  Using our example Outboard Seal, Inboard Seal, Spoiler Seal and 

Rudder Seal will be placed at the top.  Although these records refer to Seal, based on the other components 

of their descriptions the chance of Inboard Seal, Spoiler Seal and Rudder Seal being an actual mapping is 

unlikely.  This is a characteristic that the EMP algorithm suffered from.  As a result of using the structure, 

there was a mapping accuracy decrease.  More work must be done to the weighting process to address this 

issue. 
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CHAPTER SIX 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

In summary a record linkage approach was designed and implemented to address the four primary 

characteristics of the MUDD Classification problem, 

• Mapping processes,  
• Unique and unreliable data,  
• Domain specific data and  
• Disjoint data sets.   
 

Two disjoint sets A and B containing aircraft part data are identified.  The items in set B are defined as 

unique classifications in which elements from set A must map to.  In this research we introduced the 

concept of identifying discovery items which assist the data analyst in constructing relevant features from a 

single field in a relation for the data processing step.  In outlining the discovery items, the analyst was able 

to establish ranking order of importance among the features.  We introduced a new sum-order weighting 

approach to systematically compute weight values that correspond to the analyst-defined ranks and 

constraints established by the analyst.  We also introduced a learning mechanism that assists in recording 

and maintaining dynamic relationships among the data.  Learned data as well as the notion of checkpoint 

data was introduced which provides a means of enhancing the record data to generate a more dominate 

mapping candidate.  To establish a form of measurement and validation, a method of quantifying the 

relationships is presented.  In addition, a rule generation, blocking and filtering approach is presented.  

Below is an itemized list of methodologies and approaches proposed in order to combat the issues 

described in section 2. 

• New data linkage algorithm 
• Approach to Enhance mapping data using record objects 
• Grammar-based Feature Construction approach 
• Sum-Ordering Weighting approach 
• Part-Breakdown Blocking and Filtering approach 
• Conditional Probability Structure 
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For experimental purposes the MUDD algorithm was compared to the popular EM-based probabilistic 

record linkage algorithm.  The MUDD algorithm outperformed the EM-based algorithm; however our 

algorithm made incorrect mappings as a result of poorly cleaned data, incorrectly classified terms and the 

use of an inefficient string comparison model.   One difference between our approach and most traditional 

approaches is that each feature contained multiple values whereas in traditional record linkage solutions, 

per record there is normally a single value associated with each value.  As an example if one of the features 

of a record was Social Security Number (SSN) there is generally only one number associated with this 

feature instead of multiple numbers.  Our approach creates features from one record field; in this case the 

part description field.  In addition no training data was needed and external data was used to make optimal 

record mappings. 

 

For future efforts, we recommend using a categorical comparison measure such as bi-grams or Jaro’s 

algorithm.  Additional research must also be done in the area of the Conditional Probability Structure to 

ensure optimal decision making. 
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Appendix A 
 

/********************************************************** 
/** The following program automatically generates a context 
/** free grammar based on sample input sentences of a Language. 
/**The sentences are stored in a file designated by the user. The programs 
/**prints the original sentences, valid sentence combination patterns 
/** and the list of valid productions as output.  The file name of the sentences 
/** can be modified in the getLanguage() method. 
/** 
/** SAMPLE INPUT SENTENCES 
/** ab 
/** aabc 
/** aaabbc 
/** aaaabbbc 
/** 
/** 
/** SAMPLE PRODUCTIONS 
/**  S1->-9-3-11 
/** 9->aaa 
/** 3->ab 
/** 11->bbc 
/** S2->-4-3-5 
/** 4->aa 
/** 5->bc 
/** S3->-0-3-2 
/** 0->a 
/** 2->c 
/** S4->-3 
/** START->S1 | S2 | S3 | S4 | 
/********************************************************** 

 
import java.io.*; 
import java.util.*; 
 
public class CFG_Grammar{ 
 public static void main(String[] args) 
 { 
      int index=0; 
      String[] text; 
      Vector text1=new Vector(); 
      String[] perm=new String[1500];    //holds all possible pattern combinations of size N_size 
      sentenceNode[] sn=null; 
      getLanguage(text1);                     //call to read sentences into Vector array 
      text=sortLanguage(text1);           //call to sort sentences by sentence length 
      printLanguage(text);                      //call to print sentences of language 
  Vector comb=new Vector();          //holds all possible patterns assoicated with text 
  index=getLongSentence(text);       //get index of Longest sentence O(s) 

 89 
 



  int N_size=text[index].length();     //get size value 
  sn=createSentenceObject(sn,text);  //create Sentence Objects 
  
  /*submit longest sentence*/ 
  combination(N_size,perm);     //get all possible combinations of arbitrary string of size N_size and 

put in perm-gets TEMPLATE 
  
  for(int i=0;i<text.length;i++){ 
  getCombTransform(sn[i].sentence,perm,comb);   //based on combination(sub-patterns) template from 

previous function get all combinations of sentence 'text' 
                }//end LOOP 
 
  String[] text2=sortLanguage(comb);  //sorts total number of combinations 
  comb.clear(); 
  copyVector(comb,text2);             //copies combinations to  text string array 
      getProductions(sn,comb); 
  buildProductions(sn,comb);         //build production list 
 }//END main 
  
 public static sentenceNode[] createSentenceObject(sentenceNode[] sn,String[] text){ 
   sn=new sentenceNode[text.length];   //create nodes associated with each sentence 
      for(int i=0;i<sn.length;i++){ 
       sn[i]=new sentenceNode(text[i]); //insert sentences in structure O(s) 
      } 
      return sn; 
 }//END method 
 
 /** 
  * method reads in sentences of a Language L from a file 
  * O(s) s is the number of sentences 
  * @param text 
  */ 
 public static void getLanguage(Vector text){ 
  String sent=""; 
  try{ 
   File fp=new File("language1.txt");         //read file with Sample sentences 
   FileReader fr=new FileReader(fp); 
   BufferedReader br=new BufferedReader(fr); 
      sent=br.readLine(); 
      while(sent != null){ 
       text.add(sent); 
       sent=br.readLine(); 
      } 
  }catch(IOException e){} 
 }//END method 
  
  
 public static void Recursive(Vector p,Vector non){ 
    int flag=1; 
    int index=-1; 
 
    Vector list=new Vector(); 
  while(index != -999){ 
   flag=0; 
   if((index=findCommon(p,list,index+1)) == -999)break; 
   String nt=((String)non.elementAt(index)); 
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   String pat=((String)p.elementAt(index)); 
  for(int i=0;i<p.size();i++){ 
   if(i != index){ 
    String word=((String)p.elementAt(i)); 
    if(word.indexOf(pat)!= -1){ 
     word=word.replaceAll(pat,"-"+nt); 
     p.setElementAt(word,i); 
           flag=1; 
     } 
   } 
   
  } 
  if(flag==1)index=-1; 
 } 
  printProductions(non,p); 
} //END method 
  
  
 /** 
  * method searches the list of productions to find the minimum most specific pattern that has more than 
  * one nonTerminal element but is .  If the pattern found has already been used the search continues on for 
  * the next best production. 
  * O(p) where p is the number of discovered productions 
  * @param a 
  * @param list 
  * @param start 
  * @return 
  */ 
 public static int findCommon(Vector a,Vector list,int start){ 
 int min=99; 
 int index=-999; 
 int i=0; 
  for(i=start;i<a.size();i++){ 
  String pattern=((String)a.elementAt(i)); 
  if(list.contains(pattern))continue; 
  StringTokenizer st=new StringTokenizer(pattern,"-"); 
  int val=st.countTokens(); 
  if(val > 1 && val < min){ 
   min=val; 
   index=i; 
  } 
  } 
   
  if(index != -999) 
  list.add((String)a.elementAt(index)); 
      return index;  
 }//END method 
 
  
 /** 
  * method to copy contents of a String array into a vector array 
  * O(b), where b is length of String array 
  * @param a 
  * @param b 
  */  
 public static void copyVector(Vector a,String[] b){ 
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  for(int i=0;i<b.length;i++){ 
   a.add(b[i]); 
   System.out.println("["+i+"]"+b[i]); 
  } 
 }//END method 
  
  
 public static String[] sortLanguage(Vector text){ 
  String temp=""; 
  int len=0; 
  int len1=0; 
  String[] words=new String[text.size()]; 
  for(int i=0;i<text.size();i++){                 //sentences in temp structure 
   words[i]=((String)text.elementAt(i)); 
  } 
   
  for(int i=1;i<words.length;i++){ //O(s-1) where a is list of sentents 
   len=words[i].length(); 
   for(int j=0;j<i;j++){           //O(s) 
    len1=words[j].length(); 
    if(len < len1){ temp=words[i]; 
    /*SHIFT REMAINING VALUES*/ 
    for(int k=i;k>j;k--){        //O(s-i) 
     words[k]=words[k-1]; 
    } 
    words[j]=temp; 
    break; 
    } 
   } 
  } 
   
  return words; 
 }//END method 
  
  public static void printLanguage(String[] words){ 
     System.out.println("****BEGIN LANGUAGE******"); 
  for(int i=0;i<words.length;i++){ 
   System.out.println("SENTENCE["+i+"]"+words[i]); 
   } 
  System.out.println("****END LANGUAGE******\n"); 
 }//END method 
  
  
 /** 
  * method searches for the first occurance of a pattern combination of size two 
  * O(c) where c is the total possible number of pattern combinations computed based on  
  * the sentences 
  *    
  * @param comb 
  * @return 
  */ 
 public static int getSizeTwoPat(Vector comb){ 
    int index=0; 
  for(int i=0;i<comb.size();i++){ 
     if(((String)comb.elementAt(i)).length() > 1){ 
      index=i; 
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      break; 
     } 
       
   } 
  return index;  
 }//END method 
  
 /** 
  * method to find: given a sentence size X find the next sentence in the list that is lower 
  * O(s) where s is the total number of sentences 
  * @param sn 
  * @param index 
  * @return 
  */ 
 public static int getNextSizeDown(sentenceNode[] sn,int index){ 
     int size=sn[index].sent_len; 
     index--; 
  for(int i=index;i>=0;i--){//starts from position value denoted by index and decrements 
      int nextSize=sn[i].sent_len; 
   if(nextSize < size) return nextSize;   //returns the size of the sentence that is the next 

sentence size lower that the current sentence 
  }  
  return -1; 
 }//END method 
 
 
 /** 
  * method to find the first pattern combination of size sz, starts from the end of the list and goes backward 
  * O(c) where c is the number of pattern combination 
  *  
  * @param comb 
  * @param sz 
  * @return 
  */ 
 public static int getCombIndex(Vector comb,int sz){ 
  for(int i=comb.size()-1;i>=0;i--){ 
   String pat=(String)comb.elementAt(i); 
   if(pat.length()==sz)return i; 
  } 
  return -1; 
 }//END method 
  
  
 public static void buildProductions(sentenceNode[] sn,Vector comb){ 
     int len=sn.length; 
     int beginN_TermCt=1; 
     Vector NONTERM=new Vector(); 
     Vector prod1=new Vector(); 
     String start=""; 
     int nextInd=0; 
     int nextProd=0; 
     int val=0; 
     len--; 
  for(int i=len;i>0;i--){   //get sentence node  O(s) 
   int lastInd=sn[i].last.size();      //get size of storage which hold combination indices 
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   boolean found=false; 
  /*get last value*/ 
   while(!found && lastInd > 0){ 
    lastInd--; 
     val=((Integer)sn[i].last.elementAt(lastInd)).intValue(); 
    for(int j=i-1;j>=0;j--){  //get sentence node below it with the same value in 

its storage   
     int lastInd1=sn[j].last.size();  //get size of below node's storage 
     lastInd1--; 
     int val1=0; 
     for(int k=lastInd1;k>=0;k--){   //check to see if value VAL is in this 

storage 
     val1=((Integer)sn[j].last.elementAt(k)).intValue(); 
     if(val == val1 || val1 > val){nextInd=j; nextProd=k; break; } //either 

found match or 
// match is not in current 

sentence node 
     } 
      
     if(val == val1){found=true; break;} 
    nextInd=0; 
    nextProd=0; 
    } 
   } 
   String pd=""; 
   if(sn[i].prod.size()>=1) pd=(String)sn[i].prod.elementAt(lastInd);   //get curretnly 

processed production 
   else continue; 
   /**prod1 holds global productions*/ 
   if(!prod1.contains(pd)){ 
    NONTERM.add("S"+String.valueOf(beginN_TermCt)); 
    start=start+("S"+String.valueOf(beginN_TermCt)) +" | ";   //save all letter 

NONTERM for the  
//START symbol 

 
   prod1.add(pd); 
   StringTokenizer st=new StringTokenizer(pd,"-"); 
   while(st.hasMoreTokens()){                           //make additional productions from 

production pd i.e. 0-0-2-4 
    int value=Integer.parseInt(st.nextToken()); 
    if(!NONTERM.contains(String.valueOf(value))){ 
     NONTERM.add(String.valueOf(value)); 
     prod1.add(comb.elementAt(value)); 
    } 
   } 
    
   beginN_TermCt++; 
   } 
    
   /*do the samething for the common sentence NODE*/ 
   String pd1=""; 
   if(sn[nextInd].prod.size()>=1) pd1=(String) sn[nextInd].prod.elementAt(nextProd); 
   else continue; 
   if(!prod1.contains(pd1)){ 
    NONTERM.add(("S"+String.valueOf(beginN_TermCt))); 
    start=start+("S"+String.valueOf(beginN_TermCt)) +" | "; 
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   prod1.add(pd1); 
   StringTokenizer st=new StringTokenizer(pd1,"-"); 
   while(st.hasMoreTokens()){ 
    int value=Integer.parseInt(st.nextToken()); 
    if(!NONTERM.contains(String.valueOf(value))){ 
     NONTERM.add(String.valueOf(value)); 
     prod1.add(comb.elementAt(value)); 
    } 
   } 
   beginN_TermCt++; 
   } 
  } 
  NONTERM.add("START"); 
  prod1.add(start); 
  Recursive(prod1,NONTERM); 
 }//END method 
   
  
 public static void printProductions(Vector nTerm,Vector pd){ 
  System.out.println("\n****PRODUCTION LIST******"); 
  for(int i=0;i<nTerm.size();i++){    
   System.out.println((String)nTerm.elementAt(i)+"->"+(String)pd.elementAt(i)); 
  } 
 }//END method 
 
 /** 
  * method to get all possible valid productions of a sentence, productions are placed in a production vector 
  * and the index of the main combination pattern of the production is stored  
  * @param sn 
  * @param comb 
  */ 
 public static void getProductions(sentenceNode[] sn,Vector comb){ 
  int len=sn.length; 
  len--; 
  int index=getSizeTwoPat(comb);      //index of first pattern with length of 2 
         int sz=0; 
      int ind=0; 
  for(int i=len;i>=0;i--){       //current sentenceNOde being processed  O(s) 
   String sentence1=sn[i].sentence; 
   if((sz=getNextSizeDown(sn,i))!=-1) ind=getCombIndex(comb,sz);  //get index of first 

pattern in comb of 
// lenght sz  

   if(ind == -1) continue;//String sentence2=sn[i].sentence; 
   for(int j=ind;j>=index;j--){          //loop to traverse through patterns 
    String pat=(String)comb.elementAt(j);        //gets pattern from combination 
    String word=""; 
    if((word=checkPat(sentence1,pat,ind,comb,word)) != null){    //start from the 

first pattern of length 
// sz as not to leave out 

any 
     if(!sn[i].prod.contains(word)){ 
      sn[i].prod.add(word); 
      sn[i].setLast(j);                               //store the index of the 

combination pattern 
      // that was found in the sentence 

    } 
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    } 
   } 
    
  } 
 }//END method  
  
  
  
 public static String checkPat(String sentence,String pattern,int index, Vector comb,String newComb){ 
   
  int ind1=comb.indexOf(pattern); 
  int ind=sentence.indexOf(pattern);  //find out if pat is in sent 
  if(ind != -1)sentence=sentence.replaceAll(pattern,("-"+String.valueOf(ind1))); 
  else return null;  //pattern not found 
  
  for(int i=index;i>=0;i--){                          //scan remaining combination patterns 
   String p=((String)comb.elementAt(i)).trim(); 
   String replace="-"+String.valueOf(i); 
   sentence=sentence.replaceAll(p,replace);          //find and replace all occurances of the pattern 

with a symbol 
  } 
  newComb=sentence; 
   
  /*make sure new sentence has been completely transformed by checking to see if any letters remain*/ 
  for(int i=0;i<newComb.length();i++){ 
   if(isAlpha(newComb.charAt(i))) return null; 
  } 
  return newComb; 
 }//END method 
  
  
 /** 
  * method to determine is char is a LETTER 
  * O(1) 
  * @param c 
  * @return 
  */ 
 public static boolean isAlpha(char c){ 
  char start='a'; 
   char end='Z'; 
  if(((int)c) > ((int)start) && ((int)c)<((int)end))return true; 
  else return false; 
 }//END method 
  
 
 /** 
  * method to determine longest sentence in the list 
  * O(s) where s is the number sentences being processed 
  * @param a 
  * @return 
  */ 
 public static int getLongSentence(String[] a){ 
 int max=0; 
 int ind=0; 
  for(int i=0;i<a.length;i++){ 
   int len=a[i].length(); 
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   if( len > max){max=len; ind=i;} 
  } 
  return ind;  
 }//END method 
  
 /** 
  * method to get valid combinations of a sentence  
  * @param text 
  * @param perm 
  * @param comb 
  */ 
     public static void getCombTransform(String text,String[] perm, Vector comb){ 
 String word=""; 
 int index=0; 
 int old=0; 
 int textA_len=text.length(); 
  for(int i=0;i<perm.length;i++){  //O(p) where p is the list of valid combinations 
   if(perm[i] == null)break; 
   String curr=perm[i].trim(); 
   word=""; 
    
   for(int j=0;j<curr.length();j++){  //O(pl) where pl is the length of the current combination 
    char c=curr.charAt(j); 
    if(c != ' '){ 
     index=Integer.parseInt(String.valueOf(c));        //get integer value of character 
     if(j==0)old=index;                                //assign value of index to old if j==0 
     else if(index != old+1){word=""; break;}          //index values (index and old) 

should be 1 unit  
//value apart otherwise invalid 

combination           
     old=index;        

   //assign new value of index to old 
      
     if(index <= textA_len)                             //make sure value of index is not 

longer that the actual 
// value of the text 

     word=word+text.charAt(index-1); 
     else word=""; 
      
    } 
   } 
   if(!comb.contains(word) && !word.equals("")){            //insert combination word into vector if 

not a duplicate 
    comb.addElement(word); 
   } 
  } 
   
 }//END method 
  
  
  
 /** 
  * method to get valid combinations of a sentence  
  * @param text 
  * @param perm 
  * @param comb 
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  */ 
     public static void GetCombTransform(String text,Vector perm, Vector comb){ 
 String word=""; 
 int index=0; 
 int old=0; 
 int textA_len=text.length(); 
  for(int i=0;i<perm.size();i++){  //O(p) where p is the list of valid combinations 
   if(perm.elementAt(i) == null)break; 
   String curr=((String)perm.elementAt(i)).trim(); 
   word=""; 
    
   for(int j=0;j<curr.length();j++){  //O(pl) where pl is the length of the current combination 
    char c=curr.charAt(j); 
    if(c != ' '){ 
     index=Integer.parseInt(String.valueOf(c));        //get integer value of character 
     if(j==0)old=index;                                //assign value of index to old if j==0 
     else if(index != old+1){word=""; break;}          //index values (index and old) 

should be 1 unit 
// value apart otherwise invalid 

combination           
     old=index;        

   //assign new value of index to old 
      
     if(index <= textA_len)                             //make sure value of index is not 

longer that the actual 
// value of the text 

     word=word+text.charAt(index-1); 
     else word=""; 
      
    } 
   } 
   if(!comb.contains(word) && !word.equals("")){            //insert combination word into vector if 

not a duplicate 
    comb.addElement(word); 
   } 
  } 
   
 }//END method 
  
 /** 
  * method to get combination template by position values 
  * O(s'^2) 
  *  
  * @param MAX 
  * @param perm 
  * @return 
  */ 
 public static int combination(int MAX, String[] perm){ 
     int CurSize=1; 
     int code=0,test=0; 
     int[] template=new int[MAX]; 
     int permInt=0; 
  
     /*loop to get single values in combination (e.g. 1, 2, 3, 4)*/ 
     /**O(s') where s' is the size of the longest sentence being processed*/ 
     for(int i=0;i<MAX;i++){   
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      template[i]=i+1; 
      perm[permInt]=String.valueOf(template[i]); 
      permInt++; 
     } 
      
     /**O(1)*/ 
     for(int i=2;i<=MAX;i++){                           //size of current permutation 
      /*O(s')*/ 
      for(int j=0;j<MAX;j++){                        //No. of items in array 
       CurSize=1;                                 //size of items in current permutation 
       Integer dum=new Integer(template[j]);      //obtain first item of the permutation 
            code=0;                                    //FLAG 
            /*O(s')*/ 
         for(int k=0;k<MAX;k++){                    //no. to choose from 
                   if(template[k] > template[j]){          //current value should be greater than num in currently in permuation 
                    if(code==0){                        //first iteration 
                     perm[permInt]=dum.toString();   //concat digit onto permutation string 
                     test=k;                         //*captures index of first obtained index value in permutation 
                     code=1; 
                    } 
                    Integer dum2=new Integer(template[k]); 
                    perm[permInt]=perm[permInt]+" "+dum2.toString();         //*capture next value in permutation 
                    CurSize++; 
                   } 
                   if(CurSize == i){ 
                    CurSize=1; 
                    if((MAX-test)+1 >= i){k=test; code=0; }                   //reset variables 
                     permInt++;                                                ///increment permutation count 
                    
                   } 
         
       } 
      } 
       
     } 
     return permInt; 
    } 
 
}//END method 
 
 
class sentenceNode{ 
  Vector permArray; 
  Vector mapArray; 
  Vector buffer; 
  Vector prod; 
  String sentence; 
  int sent_len; 
  Vector last=new Vector(); 
  sentenceNode() { 
   permArray=new Vector();  
   mapArray=new Vector(); 
   buffer=new Vector(); 
   last=new Vector(); 
   prod=new Vector(); 
  } 
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  sentenceNode(String sentence) { 
   permArray=new Vector();  
   mapArray=new Vector(); 
   buffer=new Vector(); 
   prod=new Vector(); 
   last=new Vector(); 
   this.sentence=sentence; 
   this.sent_len=sentence.length(); 
  } 
  protected void setLast(int val) { 
   last.add(new Integer(val)); 
  } 
 
} 
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Appendix B 
 
 
import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileReader; 
 
public class EM_Driver{ 
 static double[][] TrainingData; 
 static int featureCt; 
 static BufferedReader in; 
  
 public static void main(String[] args){ 
  String filename="StatFile.txt"; 
  readTEXTData(filename); 
  EM_Linkage em=new EM_Linkage(TrainingData,5) /* 5=feature count*/ 
  System.out.println(" STARTING ITERATIONS!!"); 
  em.iteration(); 
  System.out.println(" ENDING ITERATIONS!!"); 
 } 
  
 public static void readTEXTData(String filename) 
   { 
     try {  
  File inFile =new File(filename); 
         in = new BufferedReader(new FileReader(inFile)); 
      } catch (Exception e) {} 
      int N = 0,d = 0; 
      try { 
         N = Integer.valueOf(in.readLine()).intValue(); 
         d = Integer.valueOf(in.readLine()).intValue(); 
         featureCt=d; 
      } catch (Exception e) {} 
 
      System.out.println("DIM: "+N+" "+d); 
      TrainingData = new double[N][d]; 
      try { 
        ParseData(in,TrainingData); 
        in.close(); 
      } catch (Exception e) {} 
   } 
  
  
 public static void ParseData(BufferedReader in,double[][] Data) throws Exception 
   { 
     int i,j,k; 
     String str; 
     StringBuffer word = new StringBuffer(); 
 
     for(i=0;i<Data.length;i++) 
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     { 
       str = in.readLine(); k = 0; 
       System.out.println(); 
       for(j=0;j<Data[i].length;j++) 
       { 
         word.setLength(0); 
         for(;k<str.length(); k++) 
           if(str.charAt(k) != ' ') break; 
         for(;k<str.length(); k++) 
         { 
           char c = str.charAt(k); 
           if(c == ' ') break; 
           word.append(str.charAt(k)); 
         } 
         Data[i][j] = Double.valueOf(word.toString()).doubleValue(); 
       //  if(Data[i][j] >= 0.0)Data[i][j]=.1; 
         System.out.print(Data[i][j]+ " "); 
       } 
     } 
   } 
} 
 
 
 
class EM_Linkage{ 
 double p;   //proportion of the matched record pairs |M|/N 
 double[] m; //match 
 double[] u; //non-match 
 double p_old;   //proportion of the matched record pairs |M|/N 
 double[] m_old; //match 
 double[] u_old; //non-match 
 int k;      //total number of features 
 int N;  //total number of record pairs 
 double[] g_m; 
 double[] g_u; 
 double[][] data; 
  
 EM_Linkage(double[][] Data,int featureCt){ 
  data=Data; 
  k=featureCt; 
  N=Data.length; 
  System.out.println("DATA SIZE "+data.length); 
  initialize(); 
 } 
  
 public void initialize(){ 
  m=new double[k]; 
  u=new double[k]; 
  m_old=new double[k]; 
  u_old=new double[k]; 
  g_m=new double[N]; 
  g_u=new double[N]; 
  for(int i=0;i<k;i++){ 
   m[i]=0.8; 
   u[i]=0.2; 
  } 
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  p=0.5; 
  printParameters(1); 
 } 
  
 public void iteration(){ 
  double threshold=100.0; 
  int interate=0; 
  while(threshold > 0.0000000005 ){ 
  interate++; 
 // System.out.println("getOldValue");  
  getOldValue(); 
 // System.out.println("expectation");  
  expectation(); 
  //System.out.println("maximization");  
  maximization(); 
  //System.out.println("compare");  
  threshold=compareOldNewValue(); 
 // System.out.println("print");  
  printParameters(interate); 
  } 
 } 
 public void printParameters(int iteration){ 
  System.out.println("ITERATION: "+iteration);  
  System.out.println("\nM");  
  for(int i=0;i<k;i++){ 
   System.out.print(m[i]+" "); 
  } 
   
  System.out.println("\nU"); 
  for(int i=0;i<k;i++){ 
   System.out.print(u[i]+ " "); 
  } 
  System.out.println("\nP:" +p); 
   
 } 
  
 public double compareOldNewValue(){ 
  double error=0.0; 
  for(int i=0;i<this.k;i++){ 
   error=error+(Math.abs(m[i] - m_old[i])); 
   error=error+(Math.abs(u[i] - u_old[i])); 
  } 
  error=error/10.0; 
  return error; 
 } 
  
 public void getOldValue(){ 
  for(int i=0;i<k;i++){ 
   m_old[i]=m[i]; 
   u_old[i]=u[i]; 
  } 
  p_old=p; 
 } 
  
 public void expectation(){ 
  /*compute G_m[]*/ 
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  for(int i=0;i<N;i++){ 
   g_m[i]=computeG_m(data[i]); 
  } 
   
  /*compute G_u[]*/ 
  for(int i=0;i<N;i++){ 
   g_u[i]=computeG_u(data[i]); 
  } 
 } 
  
 public void maximization(){ 
  /*compute M_k[]*/ 
  for(int i=0;i<k;i++){ 
   m[i]=computeM_k(data,g_m,i); 
  } 
   
  /*compute U_k[]*/ 
  for(int i=0;i<k;i++){ 
   u[i]=computeU_k(data,g_u,i); 
  } 
   
  /*compute P*/ 
  p=computeP(g_m); 
  
   
 } 
  
  
 public double computeG_m(double[] c_vector){ 
  double G_m=0.0; 
  double numerator=1.0; 
  double denominator1=1.0; 
  double denominator2=1.0; 
  
  /*compute numerator portion*/ 
  for(int i=0;i<k;i++){ 
  numerator=numerator * (Math.pow(m[i],c_vector[i]) * Math.pow((1.0-m[i]),(1.0-
c_vector[i]))); 
  } 
  numerator=p*numerator; 
   
  /*compute 1st part of denominator portion*/ 
  for(int i=0;i<k;i++){ 
   denominator1=denominator1 * (Math.pow(m[i],c_vector[i]) * Math.pow((1.0-
m[i]),(1.0-c_vector[i]))); 
  } 
  denominator1=p*denominator1; 
   
  /*compute 2nd part of denominator portion*/ 
  for(int i=0;i<k;i++){ 
   denominator2=denominator2 * (Math.pow(u[i],c_vector[i]) * Math.pow((1.0-
u[i]),(1.0-c_vector[i]))); 
  } 
  denominator2=(1.0 - p)*denominator2; 
   
  G_m=numerator/(denominator1 + denominator2); 
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  return G_m; 
 } 
  
 public double computeG_u(double[] c_vector){ 
  double G_u=0.0; 
  double numerator=1.0; 
  double denominator1=1.0; 
  double denominator2=1.0; 
   
  /*compute numerator portion*/ 
  for(int i=0;i<k;i++){ 
   numerator=numerator * (Math.pow(u[i],c_vector[i]) * Math.pow((1.0-u[i]),(1.0-
c_vector[i]))); 
  } 
  numerator=p*numerator; 
   
  /*compute 1st part of denominator portion*/ 
  for(int i=0;i<k;i++){ 
   denominator1=denominator1 * (Math.pow(u[i],c_vector[i]) * Math.pow((1.0-
u[i]),(1.0-c_vector[i]))); 
  } 
  denominator1=p*denominator1; 
   
  /*compute 2nd part of denominator portion*/ 
  for(int i=0;i<k;i++){ 
   denominator2=denominator2 * (Math.pow(m[i],c_vector[i]) * Math.pow((1.0-
m[i]),(1.0-c_vector[i]))); 
  } 
  denominator2=(1.0 - p)*denominator2; 
   
  G_u=numerator/(denominator1 + denominator2); 
  return G_u; 
 } 
  
  
  
 public double computeM_k(double[][] c_vector,double[] g_m,int k){ 
  double value=0.0; 
  double value1=0.0; 
  double M_k=0.0; 
  for(int i=0;i<N;i++){ 
   value=value+(c_vector[i][k] * g_m[i]);  /*compute numerator*/ 
   value1=value1+g_m[i];  /*compute denominator*/ 
  } 
  M_k=value/value1; 
  return M_k; 
 } 
  
 public double computeU_k(double[][] c_vector,double[] g_u,int k){ 
  double value=0.0; 
  double value1=0.0; 
  double U_k=0.0; 
  for(int i=0;i<N;i++){ 
   value=value+(c_vector[i][k] * g_u[i]);  /*compute numerator*/ 
   value1=value1+g_u[i];  /*compute denominator*/ 
  } 
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  U_k=value/value1; 
  return U_k; 
 } 
  
 public double computeP(double[] g_m){ 
  double value=0.0; 
  double P=0.0; 
  for(int i=0;i<N;i++) 
   value=value+g_m[i]; 
   
  P=value/(double)N; 
  return P; 
 } 
} 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 106 
 



VITA 
 

Billy D’Angelo Gaston 
 

Candidate for the Degree of 
 

Doctor of Philosophy 
 
 
Thesis:    CONSTRUCTING FEATURES AND PSEUDO-INTERSECTIONS TO MAP UNRELIABLE 

DOMAIN SPECIFIC DATA ITEMS FOUND IN DISJOINT SETS 
 
 
Major Field:  Computer Science 
 
Biographical: 
 

Personal Data:  Born in Montgomery, Alabama on July 7, 1976, the son of Mr. Billy Gaston and 
B. Marie McDaniel 

 
Education:  Graduated from Hanau American High School, Hanau, Germany, 1994; received 

Bachelor of Science in Computer Science/Mathematics from Langston University, 
Langston, Oklahoma in May 1998.  Received the Master of Science in Computer 
Science from Oklahoma State University in May 2001.  Completed the requirements 
for the Doctor of Philosophy in Computer Science at Oklahoma State University in 
May 2007.  

 
Experience:  Research Assistant, Langston University, Department of Mathematics/Physics 

1995 to 1997.  Teaching Assistant, Langston University, Department of Computer 
Science 1997 to 1998.  Head Teaching Assistant, Oklahoma State University, 
Department of Computer Science 1998 to 1999.  Research Associate, Oklahoma State 
University/Tinker Air Force Base 1999 to 2005.  Adjunct Instructor, Langston 
University, Department of Mathematics 2004.  Senior Software Engineer, Anautics, 
Inc. 2005 to 2007.  President/CEO, Anautics, Inc. 2007 to Present. 

 
 


