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CHAPTER 1

INTRODUCTION

1.1 Prologue

1.1.1 Floating point arithmetic and finite precision computation

Numbers that are not integers are usually represented in computers or calculators as “float-

ing point” numbers.

The floating point number system used in any computer has a base, a small integer.

The base used in most computers is two, although the floating point base used in IBM

mainframe computers (IBM 360, 370, 3090, etc.) is 16. The floating point base used in all

electronic hand calculators is ten.

Every floating point number is a fraction, either proper or improper. The numerator of

the fraction is the “mantissa” of the floating point number and the denominator is some

integral power of the base. The mantissa contains only a limited number of digits. All

commonly used floating point number systems can represent all small positive and negative

integers exactly, but they can represent most fractions and all irrational numbers with only

finite precision, that is, with some nonzero error.

Some operations in finite precision can introduce errors that would not occur in per-

fectly precise computation. For example, many results of floating point operations must be

rounded to fit into a floating point result. Related to this is the fact that a small number can

“fall off the end of a register” when it is added to, or subtracted from, a larger value in the

register. Thus, the result of ((1.0 + X) − 1.0) can be equal to zero in floating point arith-

metic, and often is, even when X is nonzero. When X is small enough in magnitude, the
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computed result is 0.0 when the correct result is X , a relative error of 1.0 or a percentage

error of 100%.

Relative error can be greatly magnified by “loss of leading significant digits due to

subtractive cancellation”. This is not an introduction of a new error, but can nevertheless

be important. It is discussed in textbooks on numerical computation.

1.1.2 The condition of linear systems

A numerical problem is said to be “ill-conditioned” if a small relative change in the num-

bers that specify the problem is capable of causing a large relative change in the exact

mathematical solution of the problem. Conditioning has nothing to do with the algorithm

being used to solve the problem.

Solving a set of n = 2 linear equations in two variables is an ill-conditioned problem if

the two lines representing the two equations are nearly, but not exactly, parallel. Obviously,

in this case, certain kinds of changes in one of the equations could cause the corresponding

line to shift in such a way as to cause the point of intersection of the two lines to move a

long distance.

Conditioning is measured by a “condition number” that is essentially the factor by

which an error in the specification of the problem can be magnified during the solution of

the problem. The condition number that is usually used with a system Ax = b of n linear

equations in n variables x[1], · · · , x[n] is

cond(A) = ‖A‖ · ‖A−1‖

[Wilkinson [29]], where ‖A‖ is a norm of the coefficient matrix A. Unfortunately this

definition is sensitive to the scaling of A. For example, the matrix

A =




1 0

0 1020


 .
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presents no problem in obtaining an accurate numerical solution even in finite precision

floating point arithmetic. However, cond(A) = 1020, indicating that unavoidable loss of

precision could occur in the solution of any system with this matrix of coefficients, which

is not true at all.

In this work we will investigate definitions of conditioning of matrices such that these

definitions are not affected by scaling.

1.1.3 Pivoting

In applying Gaussian elimination to solve a system of n linear algebraic equations in n

variables, it is necessary to use pivoting in order to guarantee to be able to solve any system

with a nonsingular matrix of coefficients [Forsythe & Moler [10]]. Pivoting also helps to

make Gaussian elimination more stable when solving a system using the finite precision

floating point arithmetic available in digital computers [Forsythe & Moler [10]]. A stable

algorithm is one that does not unnecessarily amplify any rounding errors that occur during

the solution process.

The most common kind of pivoting used is partial pivoting. In partial pivoting, a search

is carried out at each stage for the element of largest magnitude on or below the current

diagonal element. Then the equation containing the largest magnitude element in this col-

umn is exchanged with the equation containing the diagonal element before proceeding

with the current stage of elimination. It is now known [Foster [12], Wright [30]] that even

with partial pivoting, Gaussian elimination can be an unstable algorithm in a few practical

problems, but this is rare and the algorithm will continue to be widely used. Partial pivoting

requires time only O(n2), and this does not increase materially the total time required for

elimination, which is O(n3), on any sizable linear system.

Complete pivoting involves a search of the entire unreduced square portion of the coef-

ficient matrix, A. Complete pivoting is known to be, in a particular technical sense, a stable

algorithm in all cases [Wilkinson [29]]. To quote Wilkinson, “Complete pivoting is never a
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very poor strategy.” Complete pivoting requires time O(n3), and hence does increase mate-

rially the total time required for elimination. For this reason, the use of complete pivoting

is not common.

1.1.4 The stability of algorithms

An algorithm that solves every well-conditioned problem in its domain of application is

called “stable”. A stable algorithm never causes unnecessary amplification of relative er-

rors. An ill-conditioned problem requires amplification of relative errors and cannot be

solved reliably in finite precision arithmetic by any algorithm, stable or unstable, in the

sense that the exact solution can be affected greatly by tiny changes in the problem, caus-

ing the solution to be of limited use for practical applications.

1.1.5 Scaling

The choice of successive pivots is affected by the scaling of a linear problem. Also, it is

a fact that the accuracy of the numerical solution of the problem is not affected at all by

implicit scaling except as the scaling affects this order of pivoting.

Among the n! different orders (permutations) of pivoting, it is often true that some

permutations allow Gaussian elimination with partial pivoting (GEPP) to produce a stable

solution, whereas other permutations do not. Furthermore, a suitable rescaling of the coef-

ficient matrix A can cause GEPP to use any specified permutation of pivots. Therefore, the

use of GEPP without some effort to scale the problem satisfactorily can make the pivoting

process worthless.

For Gaussian elimination with partial pivoting, only the scaling of the equations makes

a difference in the order of selection of pivots. That is, the rows of the matrix A should be

properly scaled but the scaling of the columns is irrelevant. Wilkinson [29] recommended

dividing each linear equation by the coefficient of largest magnitude in that equation, so

that all elements a[i, j] of the matrix A will be lie in the interval [−1, +1] and every row
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of A contains at least one element of magnitude 1.0 . Recent researchers have tended to

discourage even this row scaling, calling it unnecessary. Wilkinson [29] and Forsythe and

Moler [10] showed, in our opinion, that scaling is necessary.

In addition to helping GEPP to choose a better permutation of pivots, there are at least

three other reasons to scale a problem before solving it. We will discuss all of these reasons

in the proposed dissertation.

In this work we will investigate a complete scaling of a general matrix A, that is, we

will seek to find diagonal matrices L and R such that the matrix LAR has all of its elements

in the interval [−1, +1], such that LAR has at least one element of magnitude 1.0 in every

row and in every column, and such that the element(s) of smallest magnitude in LAR are

as large in magnitude as possible.

1.1.6 The SCALGM scaling algorithm

We could achieve the first two objectives of scaling mentioned above by simply dividing

every row of A by its coefficient of largest magnitude, then doing the same for every column

of A. This procedure has at least three disadvantages, however. First, there is no reason

why we should scale the rows first and then the columns, and it can easily be verified that

scaling the columns first and then the rows can produce quite a different result. Second,

scaling the rows and then the columns, or vice versa, does not make the elements of smallest

magnitude in the scaled matrix as large as possible. Third, and most important, if the matrix

A is symmetric, either of these two algorithms will usually destroy the symmetry of A. This

is disastrous, as a linear system with a symmetric matrix can be solved in about half the

time required for a general nonsymmetric system, so that for practical computation it is

important to maintain any symmetry that may be present in A .

The basic operation of SCALGM consists of

1. Scale A by rows, then by columns, producing diagonal scaling matrices L1 and R1 .
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2. Scale A (the original matrix A) by columns, then by rows, producing new diagonal

scaling matrices L2 and R2 .

3. Compute L =
√

L1L2 and R =
√

R1R2 . L and R are the final scaling matrices for

this basic operation.

It is obvious that this operation preserves the symmetry of A, if A is in fact a symmetric

matrix. It is not obvious, and in fact not true, that it achieves the other objectives, of having

all scaled elements lie in [−1, +1], of having at least one element of magnitude in every

row and every column, and of causing the elements of smallest magnitude to be as large as

possible.

Call the above basic step “scale down” because the magnitudes of the elements in the

scaled matrix will be less than or equal to 1.0.

It is also possible to “scale up” by applying the above basic operation to the inverses

1/a[i, j] of the elements of a[i, j] that are not zero. If the resulting elements are reinverted,

the elements of the scaled matrix will now usually be greater than 1.0 in magnitude, and

never less than 1.0.

SCALGM consists in iterating these two operations: scale up, scale down; scale up,

scale down; etc. The final operation is always a “scale down”. It was observed by Chan-

dler [7] that this algorithm seemed always to converge, that it produces a scaled matrix

having its small elements fairly large (and possibly as large as possible), and that it pro-

duces elements of plus or minus 1.0 in many rows and columns of the resulting scaled

matrix.

This research has shown that some rows or columns may have no elements of magnitude

1.0 in them, and has amended SCALGM to remedy this drawback. In this research Chiang

will prove that SCALGM does in fact make the smallest elements of the scaled matrix as

large as possible. It is believed that some of the other (non-smallest) elements of LAR are

also as large as possible, but this is complicated and has not yet been proved.
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It is important to consider the diagonal matrices L and R, and not just the result LAR of

each step, for the following reason. If A is an m×n matrix it contains mn elements whereas

L and R together contain only m+n nonzero elements. SCALGM is susceptible to certain

methods for accelerating the convergence of the iterative process, and these acceleration

methods should be applied to as few quantities as possible, that is, to the m+n nonzero

elements of L and R rather than to the mn elements of LAR.

1.2 Preview of Our Study and Results

Matrix scaling or equilibration has been an important subject in the scientific computing

on linear algebraic systems. A linear algebraic system of m equations in n unknowns

xj, 1 ≤ j ≤ n,
n∑

j=1

aijxj = bi , 1 ≤ i ≤ m ,

is often written in matrix notation as

Ax = b .

where A = [aij] ∈ Rm×n and b ∈ Rm.

The definitions of the condition number and equilibration of matrices are given as be-

low and will be used later.

Definition 1.2.1 (Condition Number) For any nonsingular matrix A we define the con-

dition number of A, denoted by cond(A) or κ(A), to be the number ‖A‖ · ‖A−1‖. (The

condition number depends on the norm used.)

Definition 1.2.2 (Row Equilibrated) A matrix A ∈ Rm×n is row equilibrated if all its

rows have the same length in some norm.

Definition 1.2.3 (Column Equilibrated) A matrix A ∈ Rm×n is column equilibrated if

all its columns have the same length in some norm.
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Definition 1.2.4 (Equilibrated) A matrix A ∈ Rm×n is equilibrated if it is both row equi-

librated and column equilibrated.

The objective of scaling on matrices A is to find suitable row and column scale factors,

written as diagonal matrices, D and E, respectively, such that the scaled matrices DAE

satisfy the desired properties. For instances:

- Forsythe and Moler [10] present the motivation of scaling to make pivoting work

well.

- Berman, Parlett and Plemmons [3] give a necessary and sufficient condition for A

to be diagonally equivalent to an orthogonal matrix Q, and offer an algorithm that

either it produces positive diagonal matrices D and E such that DAE is orthogonal

or it fails if no such pair D, E exists. (Note: Every orthogonal matrix Q is really

orthonormal, the Euclidean norm of every column is unity, and hence is fairly well

scaled.)

- Bunch [5] presents an algorithm for any symmetric matrix A (with no null rows) such

that the scaled matrix DAE is equilibrated in the∞-norm.

- Curtis and Reid [8] propose an algorithm for scaling based on the assumption that

the given matrix can be scaled into the required form that all scaled matrix elements

are of comparable size. Thus, the usual pivotal strategies for Gaussian elimination

can be applied on the scaled matrix.

- Fulkerson and Wolfe [13] present a method for finding scale factors which minimize

the ratio of the matrix entry of largest absolute value to that of smallest non-zero

absolute value. They say it is believed that such a number is a useful condition

number.

- Rothblum, Schneider and Schneider [21] present an algorithm so that for a given

nonnegative symmetric matrix A and a positive vector r, it either finds a positive

8



diagonal matrix D such that B = DAD has row maxima prescribed by r or shows

that no such D exists.

- Parlett and Reinsch [20] present an algorithm based on the work of Osborne [19] on

balancing a matrix for calculation of eigenvalues and eigenvectors.

- Skeel [23] shows the effect of scaling on the stability of Gaussian elimination.

- The problem of optimal scaling of matrices with respect to the condition number κ

has been extensively studied, as seen in papers presented by Bauer [2], Braatz and

Morari [4], Businger [6], Forsythe and Strauss [11], Golub and Varah [14], McCarthy

and Strang [18], Rump [22], and Watson [28].

We present an iterative algorithm, called SCALGM, that works on any given nonzero

matrix A ∈ Rm×n to produce the row and column scale factors in the form of diagonal

matrices D and E, respectively, such that the scaled matrix DAE satisfies the properties

listed below:

P1: the maximum magnitude of elements in DAE is 1.

P2: the nonzero rows and columns of DAE are equilibrated in∞-norm.

P3: the ratio of the minimum magnitude of nonzero elements to the maximum magnitude

of elements in DAE is maximized.

In fact, property P3 holds for the SCALGM algorithm provided A is a nonzero matrix.

From the above properties, the range of the magnitude of nonzero elements in DAE is

within an interval [m, 1] for some m ∈ R depending on the given matrix A, and such that

m is maximized. We give numerical evidence as well as a theoretical proof for property

P3.
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CHAPTER 2

The SCALGM Algorithm

SCALGM takes the name from the geometric mean of the row and column scale factors.

The original SCALGM algorithm was invented by J. P. Chandler [7] and the basic idea is

described in Algorithm 1.

Algorithm 1 Original SCALGM(A)

1: Scale up by rows and then by columns
2: Scale up (the original matrix) by column and then by rows
3: Take the geometric mean of these two results
4: Scale down by rows and then by columns
5: Scale down (the original matrix) by columns and then by rows
6: Take the geometric mean of these two results

SCALGM can take any general real m × n matrix A ∈ Rm×n as its input, and then

return a scaled matrix S such that the ratio of the nonzero minimum magnitude to the

maximum magnitude of elements in S is maximized. However, S is not (row and column)

equilibrated. Now we call the original SCALGM algorithm as phase one, and append to

it another scaling method, namely phase two, which take the returned matrix from phase

one as its input, such that the returned scaled matrix by phase two preserves the maximum

ratio property as in phase one, and is equilibrated with∞-norm 1 of each nonzero row and

column.

Without loss of generality, we assume all elements of the matrices are nonnegative since

the row and column scale factors chosen in each iteration of the SCALGM algorithm are

based on the magnitudes of the elements in the involved matrices.
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2.1 Big Picture

The SCALGM algorithm consists of two phases of scaling. It takes any given matrix A ∈
Rm×n as its input, as shown in Figure 2.1. The first phase consists of two procedures,

ScaleUP ( ) and ScaleDown( ), which are performed sequentially during each iteration

until some criterion is met. The second phase just consists of one procedure ScaleDown( ),

which is the same one as used in the first phase and is performed repeatedly until some

criterion is met.

No

Phase two

Phase one

Stop

No

Yes

Yes
convergent?SA SScaleDown(U)U

bS

ScaleUp(S)

convergent?SScaleDown(bS)

Figure 2.1: Flowchart of the SCALGM algorithm

At the beginning, the algorithm takes the given matrix A as its input, assigns it into

another matrix S(0),

S(0) ← A ,

and then enters phase one for looping. In the kth (k ≥ 1) iteration of phase one, the

procedure ScaleUp( ) takes S(k−1) as its input to determine the row and column scale

factors and uses these factors to produce the scaled matrix U (k),

U (k) ← ScaleUp(S(k−1)) ,
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and so as to determine the maximum magnitude max(k) among all elements in U (k),

max(k) ← max{|uij| : U (k) = [uij]} .

Next, the procedure ScaleDown( ) is invoked by taking U (k) as its input to determine the

row and column scale factors and use them to produce the scaled matrix S(k),

S(k) ← ScaleDown(U (k)) ,

and thus to determine the minimum magnitude min(k) among all nonzero elements in S(k),

min(k) ← min{|sij| > 0 : S(k) = [sij]} .

Phase one repeats the process of calling procedures

ScaleUp(S(k−1)) and ScaleDown(U (k))

alternately until

lim
k→∞

(max(k) ·min(k)) = 1 ,

which is used as the criterion of convergence for phase one. That is, a tolerance is set for

phase one, which stops when

|max(k) ·min(k) − 1| < tolerance ,

for some sufficiently large iteration k.

The procedure PhaseOne( ) is summarized in Algorithm 2.

In phase two, the procedure ScaleDown( ) is called repeatedly. Phase two takes the

12



Algorithm 2 PhaseOne(A)
1: S ← A
2: repeat
3: U ← ScaleUp(S)
4: max U ← max{uij : U = [uij]}
5: S ← ScaleDown(U )
6: min S ← min{sij : S = [sij]}
7: until |max U ·min S − 1.0| <tolerance
8: return S

scaled matrix Ŝ which is returned from phase one as its input,

S(0) ← Ŝ ,

and repeatedly computes the scaled matrices as below,

S(k) ← ScaleDown(S(k−1)) ,

for k = 1, 2, . . . , until

S(k) → S entrywise as k →∞ .

Again a tolerance is set for phase two , which terminates when

max{|4s
(k)
ij | : S(k) − S(k−1) = [4s

(k)
ij ]} < tolerance ,

for some sufficiently large iteration k.

Algorithm 3 is the procedure of PhaseTwo( ).

Algorithm 3 PhaseTwo(S)
1: repeat
2: Ŝ ← S
3: S ← ScaleDown(Ŝ)
4: until max |S − Ŝ| < tolerance
5: return S

13



The overview of our scaling method SCALGM is given in Algorithm 4. The detailed

scenario of procedures ScaleUp( ) and ScaleDown( ) will be introduced in the following

sections.

Algorithm 4 SCALGM(A)
1: // Phase One
2: S ← A
3: repeat
4: U ← ScaleUp(S)
5: max U ← max{uij : U = [uij]}
6: S ← ScaleDown(U )
7: min S ← min{sij : S = [sij]}
8: until |min S ·max U − 1.0| <tolerance
9: // Phase Two

10: repeat
11: Ŝ ← S
12: S ← ScaleDown(Ŝ)
13: until max |S − Ŝ| < tolerance
14: return S

2.2 Scale Up Procedure

The purpose of the procedure ScaleUp( ) is to determine the row and column scale factors

depending on the input matrix and then scale the input matrix such that the magnitudes of

the nonzero scaled elements are greater than or equal to 1. Let S = [sij] ∈ Rm×n be the

input matrix of the procedure ScaleUp( ) and let U = [uij] be the output matrix as below:

U ← ScaleUp(S)

Thus, the maximum magnitude of elements in the scaled matrix, max |U | , is obtained and

will be used later to check for the convergence criterion. For each row and column of S,

there are two row and two column scale factors, as shown in Figure 2.2.

Let αi be the minimum magnitude of nonzero elements in the ith row of S, where 1 ≤
i ≤ m, and let βj be the minimum magnitude of nonzero elements in the jth column of S,

14



βj

δj

αiγi sij ith row

jth column

Figure 2.2: Scale up factors

where 1 ≤ j ≤ n . Thus,

αi ← min{|sij| > 0 : 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, and

βj ← min{|sij| > 0 : 1 ≤ i ≤ m}, for 1 ≤ j ≤ n.

Next, based on the αi′s and βi′s information, let γi be the minimum magnitude of nonzero

elements divided by their respective βi′s in the ith row of S, where 1 ≤ i ≤ m, and let δj

be the minimum magnitude of nonzero elements divided by their respective αi′s in the jth

column of S, where 1 ≤ j ≤ n. Thus,

γi ← min{|sij|
βj

> 0 : 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, and

δj ← min{|sij|
αi

> 0 : 1 ≤ i ≤ m}, for 1 ≤ j ≤ n.

Note that if there exists zero row or column vectors in S, we simply take their scale factors

for the row or the columns to be 1′s. That is,

15



αi, γi ← 1, if the ith row of S is a zero vector, and

βj, δj ← 1, if the jth column of S is a zero vector

Algorithm 5 for ScaleUp(S) is under the assumption that S does not contain any null rows

or columns, but these zero rows or columns are handled easily.

Algorithm 5 ScaleUp(S)
1: for row i← 1 to m do
2: αi ← min{|sij| > 0 : 1 ≤ j ≤ n}
3: end for
4: for column j ← 1 to n do
5: βj ← min{|sij| > 0 : 1 ≤ i ≤ m}
6: end for
7: for row i← 1 to m do
8: γi ← {|sij|/βj > 0 : 1 ≤ j ≤ n}
9: end for

10: for column j ← 1 to n do
11: δj ← min{|sij|/αi > 0 : 1 ≤ i ≤ m}
12: end for
13: for i← 1 to m do
14: for j ← 1 to n do
15: uij ← sij/

√
αiγiβjδj

16: end for
17: end for

Without the requirements of no null rows or columns in matrix S, we use the algorithm

below to find the row or column scale factor min. That is, if s = [s1, s2, · · · , sn] is any row

or column vector of S, then min = 1 provided s = 0, and otherwise min is the minimum

nonzero magnitude of elements in s.

2.3 Scale Down Procedure

The purpose of the procedure ScaleDown( ) is to find the row and column scale factors

depending on the input matrix, then scale the input matrix such that the magnitudes of the

scaled elements are less than or equal to 1. Let U = [uij] ∈ Rm×n be the input matrix of

16



Algorithm 6 FindNonzeroMin(s = [si])
1: for i← 1 to n do
2: if s[i] 6= 0 then
3: min← |s[i]|
4: start← i
5: break
6: end if
7: end for
8: if i = n + 1 then
9: min← 1

10: else
11: for i← start + 1 to n do
12: if |s[i]| > 0 and |s[i]| < min then
13: min← |s[i]|
14: end if
15: end for
16: end if
17: return min

the procedure ScaleDown( ) and let S = [sij] be the output as below:

S ← ScaleUp(U)

Thus, the minimum magnitude of the nonzero elements in the scaled matrix, min |S| , is

obtained and used with max |U | obtained from ScaleUp( ) to check for the convergence

criterion. For each row and column of U , there are two row and two column scale factors,

as shown in Figure 2.3.

bj

dj

uijaici ith row

jth column

Figure 2.3: Scale down factors

Let ai be the maximum magnitude of elements in the ith row of U , where 1 ≤ i ≤ m, and
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let bj be the maximum magnitude of elements in the jth column of U , where 1 ≤ j ≤ n .

Thus,

ai ← max{|uij| : 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, and

bj ← max{|uij| : 1 ≤ i ≤ m}, for 1 ≤ j ≤ n.

Next, based on the ai′s and bi′s information, let ci be the maximum magnitude of elements

divided by their respective bi′s in the ith row of U , where 1 ≤ i ≤ m, and let dj be the

maximum magnitude of elements divided by their respective ai′s in the jth column of U ,

where 1 ≤ j ≤ n. Thus,

ci ← max{|uij|
bj

: 1 ≤ j ≤ n}, for 1 ≤ i ≤ m, and

dj ← max{|uij|
ai

: 1 ≤ i ≤ m}, for 1 ≤ j ≤ n.

Note that if there exists zero row or column vectors in U , we simply take their scale factors

for the row or the columns to be 1′s. That is,

ai, ci ← 1, if ith row of U is a zero vector, and

bj, dj ← 1, if jth column of U is a zero vector

Algorithm 7 for ScaleDown(U) is under the assumption that U does not contain any null

rows or columns.

It is crucial to note that both ScaleUp and ScaleDown preserve the symmetry if the

input matrix is symmetric. Linear systems with symmetric coefficient matrices can be

18



Algorithm 7 ScaleDown(U)
1: for row i← 1 to m do
2: ai ← max{|uij| : 1 ≤ j ≤ n}
3: end for
4: for column j ← 1 to n do
5: bj ← max{|uij| : 1 ≤ i ≤ m}
6: end for
7: for row i← 1 to m do
8: ci ← max{|uij|/bj : 1 ≤ j ≤ n}
9: end for

10: for column j ← 1 to n do
11: dj ← max{|uij|/ai : 1 ≤ i ≤ m}
12: end for
13: for i← 1 to m do
14: for j ← 1 to n do
15: sij ← uij/

√
aicibjdj

16: end for
17: end for

solved twice as fast as general linear systems, so preservation of symmetry is a requirement

of any good scaling algorithm.

2.4 Remarks on Our Implementation

In our implementation, the given matrix A ∈ Rm×n is never copied in SCALGM: the

auxiliary storage required by SCALGM is O(m + n), not O(mn)! The scaled-up matrices

U and the scaled-down matrices S can be computed as needed but are never stored.
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CHAPTER 3

Convergence of the SCALGM Algorithm

Phase one and phase two are convergent in the SCALGM algorithm, as proved in Theorem

3.1.4 and Theorem 3.2.1, respectively. Phase one is the procedure of calling ScaleUp()

and ScaleDown( ) alternatively until the stopping criterion is met, and at this point the

magnitudes of all nonzero scaled elements are within an interval [m, 1] for some m > 0 and

such that m is maximized. Phase two is the procedure of calling ScaleDown( ) iteratively

until the scaled matrix converges entrywise. The final scaled matrix is row and column

equilibrated with∞-norm 1, which means each row and each column of the scaled matrix

must contain at least one element of unit magnitude.

Without loss of generality as considering the magnitudes of matrix elements, we may

assume matrix elements are nonnegative. Moreover, since the scaling of zero elements is

unchanged, we may assume all matrix elements are positive.

3.1 Phase One

Consider the diagram below of phase one in which A is the input matrix, Ŝ is the returned

scaled matrix, and U (k), S(k) are intermediate matrices in the kth iteration, called the scaled

up, scaled down matrix, respectively.

A = S(0)→ U (1) → S(1)︸ ︷︷ ︸
1st iteration

→ U (2) → S(2)︸ ︷︷ ︸
2nd iteration

→ · · · → Û → Ŝ

For each iteration k ≥ 1, all the elements in the scaled up matrix U (k) are bounded

below by 1 and all the elements in the scaled down matrix S(k) are bounded above by 1.
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Lemma 3.1.1 Let U (k) = [u
(k)
ij ], S(k) = [s

(k)
ij ] ∈ Rm×n

+ be the scaled up, scaled down

matrix, respectively, in the kth iteration of phase one. Then u
(k)
ij ≥ 1 and s

(k)
ij ≤ 1, for

k = 1, 2, · · · .

Proof. Let iteration k ≥ 1 be given and let U (k) = [u
(k)
ij ], S(k) = [s

(k)
ij ] be the scaled up

and scaled down matrices, respectively, in the kth iteration. Then, by Algorithm 7 of the

procedure ScaleDown( ) on U (k), for each u
(k)
ij , we have its row scale down factors a

(k)
i ,

c
(k)
i and column scale down factors b

(k)
j , d

(k)
j that satisfy the following inequalities:

a
(k)
i ≥ u

(k)
ij ,

b
(k)
j ≥ u

(k)
ij ,

c
(k)
i ≥ u

(k)
ij

b
(k)
j

, and

d
(k)
j ≥ u

(k)
ij

a
(k)
i

.

Thus,

c
(k)
i b

(k)
j ≥ u

(k)
ij , and

a
(k)
i d

(k)
j ≥ u

(k)
ij .

Hence,

s
(k)
ij ≡

u
(k)
ij√

a
(k)
i c

(k)
i b

(k)
j d

(k)
j

≤ 1

Similarly, it is straightforward to prove u
(k)
ij ≥ 1 by considering Algorithm 5 of the pro-

cedure ScaleUp( ) on S(k−1), where S(k−1) = [s
(k−1)
ij ] is the scaled down matrix in the

(k − 1)th iteration. Thus, for each s
(k−1)
ij , we have its row scale up factors α

(k−1)
i , γ

(k−1)
i
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and column scale up factors β
(k−1)
j , δ

(k−1)
j that satisfy the following inequalities:

α
(k−1)
i ≤ s

(k−1)
ij ,

β
(k−1)
j ≤ s

(k−1)
ij ,

γ
(k−1)
i ≤ s

(k−1)
ij

β
(k−1)
j

, and

δ
(k−1)
j ≤ s

(k−1)
ij

α
(k−1)
i

.

Thus,

γ
(k−1)
i β

(k−1)
j ≤ s

(k−1)
ij , and

α
(k−1)
i δ

(k−1)
j ≤ s

(k−1)
ij .

Hence,

u
(k)
ij ≡

s
(k−1)
ij√

α
(k−1)
i γ

(k−1)
i β

(k−1)
j δ

(k−1)
j

≥ 1 .

This completes the proof.

Lemma 3.1.2 Let k ≥ 2 and let U (k) = [u
(k)
ij ] be the scaled up matrix in the kth iteration

of phase one. Then u
(k)
ij ≤ 1

min(k−1) , for all i,j , where min(k−1) = min{s(k−1)
ij : all i, j}

and S(k−1) = [s
(k−1)
ij ] is the scaled down matrix in the (k − 1)th iteration.

Proof. Let k ≥ 2, S(k−1) = [s
(k−1)
ij ] be the scaled down matrix in the (k − 1)th iteration of

phase one, and min(k−1) = min{s(k−1)
ij : all i, j}. Then, by Algorithm 5, for each s

(k−1)
ij ,

the row scale up factors α
(k−1)
i , γ

(k−1)
i and the column scale up factors β

(k−1)
j , δ

(k−1)
j satisfy
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the following inequalities:

α
(k−1)
i ≥ min(k−1) ,

γ
(k−1)
i ≥ 1 ,

β
(k−1)
j ≥ min(k−1), and

δ
(k−1)
j ≥ 1 .

Also, by Lemma 3.1.1, we have

s
(k−1)
ij ≤ 1 .

Thus,

u
(k)
ij ≡

s
(k−1)
ij√

α
(k−1)
i γ

(k−1)
i β

(k−1)
j δ

(k−1)
j

≤ 1

min(k−1)
.

This completes the proof.

Lemma 3.1.3 Let k ≥ 1 and let S(k) = [s
(k)
ij ] be the scaled down matrix in the kth iteration

of phase one. Then s
(k)
ij ≥ 1

max(k) , for all i,j , where max(k) = max{u(k)
ij : all i, j} and

U (k) = [u
(k)
ij ] is the scaled up matrix in the kth iteration.

Proof. Let k ≥ 1, U (k) = [s
(k)
ij ] be the scaled up matrix in the kth iteration of phase one,

and max(k) = max{u(k)
ij : all i, j}. Then, by Algorithm 7, for each u

(k)
ij , the row scale

down factors a
(k)
i , c

(k)
i and the column scale down factors b

(k)
j , d

(k)
j satisfy the following

inequalities:

a
(k)
i ≤ max(k) ,

c
(k)
i ≤ 1 ,

b
(k)
j ≤ max(k), and

d
(k)
j ≤ 1 .
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Also, by Lemma 3.1.1, we have

u
(k)
ij ≥ 1 .

Thus,

s
(k)
ij ≡

u
(k)
ij√

a
(k)
i c

(k)
i b

(k)
j d

(k)
j

≥ 1

max(k)
.

This completes the proof.

Theorem 3.1.4 (Convergence of Phase One) Let U (k) and S(k) be the scaled up and

scaled down matrices, respectively, in the kth iteration of phase one, and let

min(k) = min{s(k)
ij : S(k) = [s

(k)
ij ]} and

max(k) = max{u(k)
ij : U (k) = [u

(k)
ij ]}

Then limk→∞(min(k) ·max(k)) = 1.

Proof. By Lemma 3.1.1 ∼ 3.1.3, we have:

1 ≤ u
(k)
ij ≤

1

min(k−1)
, for k ≥ 2, and

1 ≥ s
(k)
ij ≥

1

max(k)
, for k ≥ 1.

That is, 1
min(k−1) is an upper bound for every elements of U (k), for k ≥ 2, and 1

max(k) is a

lower bound for every elements of S(k), for k ≥ 1. Thus, we have

max(k) ≤ 1

min(k−1)
, for k ≥ 2 , and

min(k) ≥ 1

max(k)
, for k ≥ 1 .

Combining above inequalities, we have

min(k−1) ≤ 1

max(k)
≤ min(k) , for k ≥ 2 ,
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which implies

min(1) ≤ 1

max(2)
≤ min(2) ≤ 1

max(3)
≤ · · · .

Clearly, {min(k) : k = 1, 2, 3, · · · } is a nondecresing sequence and is bounded above by

1, and {max(k) : k = 2, 3, 4, · · · } is a nonincresing sequence and is bounded below by 1,

then there exists m and M ∈ R such that

lim
k→∞

min(k) = m , and

lim
k→∞

max(k) = M .

Moreover, by the Sandwich Theorem, we have

lim
k→∞

(min(k)max(k)) = 1 .

This completes the proof.

Example 3.1.5 (Convergence of Phase One) Consider A ∈ R4×4 as follows:

A =




0.12012 3.52725 0.01031 1.37877

0.97429 0.01533 0.27907 42.55476

24.79849 17.58030 0.82502 0.11058

40.54019 13.88618 1.49386 0.61834




.

Let Û and Ŝ be the scaled up and scaled down matrices, respectively, in the last iteration

of phase one. Then we have:

Û =




1.00000 198.96417 1.00000 18.61240

9.37977 1.00000 31.30212 664.32079

138.30021 664.32079 53.60666 1.00000

40.43269 93.83905 17.35855 1.00000



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and

Ŝ =




0.01678 1.00000 0.04114 0.09355

0.04714 0.00151 0.38567 1.00000

0.69510 1.00000 0.66047 0.00151

0.95018 0.66047 1.00000 0.00704




Note that maxÛ = 664.32079 and minŜ = 0.00151 with maxÛ ·minŜ = 1.0 .

Example 3.1.6 (Equilibration of Phase Two) Consider A ∈ R4×4 as follows:

A =




0.12012 3.52725 0.01031 1.37877

0.97429 0.01533 0.27907 42.55476

24.79849 17.58030 0.82502 0.11058

40.54019 13.88618 1.49386 0.61834




.

Let Ŝ = PhaseOne(A). Then:

Ŝ =




0.01678 1.00000 0.04114 0.09355

0.04714 0.00151 0.38567 1.00000

0.69510 1.00000 0.66047 0.00151

0.95018 0.66047 1.00000 0.00704




is not equilibrated in ∞-norm 1.00000 due to its 1st column. Let S = PhaseTwo(Ŝ).

Then:

S =




0.01766 1.00000 0.04114 0.09355

0.04961 0.00151 0.38567 1.00000

0.73154 1.00000 0.66047 0.00151

1.00000 0.66047 1.00000 0.00704




is equilibrated. Note that the minimum magnitude of elements in Ŝ and S is the same as

0.00151.
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3.2 Phase Two

Consider the diagram below of phase two in which Ŝ is the input matrix returned from

phase one, and S(k) is the resultant matrix after the kth iteration, the scaled down matrix

performed by the procedure ScaleDown( ) on S(k−1).

Ŝ = S(0)−→ S(1)︸ ︷︷ ︸
1st iteration

−→ S(2)︸ ︷︷ ︸
2nd iteration

−→ · · · −→ S

Theorem 3.2.1 (Convergence of Phase Two) Let Ŝ be the scaled matrix obtained from

the Phase One. Then the sequence of matrices

{S(k) : S(0) = Ŝ, S(k) = ScaleDown(S(k−1)) for k ≥ 1}

converges entrywise.

Proof. Since S(0) = [s
(0)
ij ] is the scaled down matrix returned from the phase one, by

Lemma 3.1.1, we have s
(0)
ij ≤ 1 for all i, j . Thus, for each s

(0)
ij , by Algorithm 7, the

corresponding row scale factors a
(0)
i , c

(0)
i and column scale factors b

(0)
j , d

(0)
j satisfy the fol-

lowing inequalities:

s
(0)
ij ≤ a

(0)
i ≤ 1 ,

s
(0)
ij ≤ b

(0)
j ≤ 1 ,

s
(0)
ij

b
(0)
j

≤ c
(0)
i ≤ 1 , and

s
(0)
ij

a
(0)
i

≤ d
(0)
j ≤ 1 . (3.1)

Thus,

s
(1)
ij ≡

s
(0)
ij√

a
(0)
i c

(0)
i b

(0)
j d

(0)
j

≤ 1 .
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Moreover,

s
(1)
ij ≥ s

(0)
ij since

√
a

(0)
i c

(0)
i b

(0)
j d

(0)
j ≤ 1 .

Continuing the same argument on the elements s
(k)
ij in S(k), for k ≥ 1, we can conclude

that

s
(k)
ij ≤ s

(k+1)
ij ≤ 1, for k ≥ 0 .

Therefore, {s(k)
ij : k ≥ 0} is monotone and bounded, and hence convergent. This completes

the proof.

By the proof of Theorem 3.2.1, we have the following Corollary immediately:

Corollary 3.2.2 Let {S(k) = [s
(k)
ij ] : S(0) = Ŝ, S(k) = ScaleDown(S(k−1)) for k ≥ 1}

be the sequence of matrices in Phase Two. Then for each (i, j) entry, {s(k)
ij : k ≥ 0} is

nondecreasing.

Theorem 3.2.3 (Row and Column Equilibrated in∞-norm) Let S = SCALGM(A).

Then every row and column of S contains at least one 1.0 .

Proof. By the proof in Theorem 3.2.1, we have the derivation of the (i, j) elements in

matrices from S(k) = [s
(k)
ij ] to S(k+1) = [s

(k+1)
ij ] in phase two that

s
(k+1)
ij ≡ s

(k)
ij√

a
(k)
i c

(k)
i b

(k)
j d

(k)
j

≤ 1 , for k ≥ 0 ,

where scale factors a
(k)
i , b

(k)
j , c

(k)
i , d

(k)
j ≤ 1. Since {s(k)

ij } converges, we have

lim
k→∞

√
a

(k)
i c

(k)
i b

(k)
j d

(k)
j = 1 .

In particular,

lim
k→∞

a
(k)
i = 1 = lim

k→∞
b
(k)
j ,

true for each i and j. By the choice of row scale factors a
(k)
i′s and column scale factors b

(k)
j′s ,
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this implies that each row and column of the convergent matrix S contains at least one 1.0 .

This completes the proof.

Theorem 3.2.4 Algorithm SCALGM preserves symmetry. That is, S = SCALGM(A) is

symmetric whenever A is symmetric.

Proof. Let A = [aij] ∈ Rn×n be symmetric with aij = aji for all i and j. By the choice of

scale factors on A, it is easy to see that the row [resp. column] scale up factors of aij are the

column [resp. row] scale up factors of aji. Thus, the geometric mean of row and column

scale up factors of aij is the same as that of aji and hence ScaleUp(A) is symmetric. This

proves the initial step. Next, let S(k) = [s
(k)
ij ] be the intermediate matrix derived from

A by the SCALGM algorithm. Suppose S(k) is symmetric by the induction hypothesis.

Then, by the choice of scale factors on S(k), no matter whether in procedure ScaleUp( )

or ScaleDown( ), the row [resp. column ] scale factors of s
(k)
ij are the column [resp. row]

scale factors of s
(k)
ji . Thus, the geometric mean of row and column scale factors of s

(k)
ij is

the same as that of s
(k)
ji and hence S(k+1) = Scale(S(k)) is symmetric. This completes the

proof by induction.

Example 3.2.5 Consider the following symmetric matrix A ∈ R5×5:

A =




4.5203873 2.9885969 1.9780225 0.0548313 64.2249838

2.9885969 0.0608930 19.3557172 0.1784661 2.9473931

1.9780225 19.3557172 1.3747245 0.1195760 0.0459842

0.0548313 0.1784661 0.1195760 0.1617764 4.7173173

64.2249838 2.9473931 0.0459842 4.7173173 25.9124215




.
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Let S = SCALGM(A). Then:

S =




0.0283972 0.0467028 0.0410815 0.0046896 1.0000000

0.0467028 0.0023671 1.0000000 0.0379700 0.1141589

0.0410815 1.0000000 0.0943942 0.0338118 0.0023671

0.0046896 0.0379700 0.0338118 0.1883792 1.0000000

1.0000000 0.1141589 0.0023671 1.0000000 1.0000000




is symmetric, too.

3.3 Maximum Ratio Property of SCALGM

We will prove SCALGM is capable of maximizing the ratio of the minimum nonzero mag-

nitude to the maximum magnitude of the elements in the resultant scaled matrix.

Notation 3.3.1 Let A = [aij] ∈ Rm×n be a nonzero matrix. We denote the ratio of the

minimum nonzero magnitude to the maximum magnitude of the elements in A to be ρA.

That is,

ρA ≡ min{|aij| > 0 : all i, j}
max{|aij| : all i, j} .

Clearly, 0 < ρA ≤ 1 by its own definition. The ratio number we defined here is reciprocal

to the ratio number defined in the paper of Fulkerson and Wolfe [13] as they present a

method for finding scale factors which minimize the ratio of the matrix entry of largest

absolute value to that of smallest non-zero absolute value. They say it is believed that such

a ratio number is a useful condition number.

Our numerical experiments on maximizing the ratio number ρA by scaling on A have

been brought to our attention that the numerical results agree with the results obtained from

the SCALGM algorithm.

Claim 3.3.2 (Maximum Ratio Property of SCALGM) Let A ∈ Rm×n be a nonzero ma-

trix and let S = SCALGM(A). Then ρS ≥ ρDAE for all diagonal matrices D and E.
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Numerical experiments as well as the theoretical proof of the maximum ratio property

of SCALGM will be discussed in the next sections.
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CHAPTER 4

Numerical Experiments on the Maximum Ratio Property

Given any nonzero matrix A ∈ Rm×n, there is a corresponding ratio number ρA as defined

in Notation 3.3.1. Our goal is to maximize the ratio number, from ρA to ρDAE , by finding

such diagonal matrices D and E, and then compare this experimental result ρDAE with

ρS , where S = SCALGM(A). Our numerical experiment is based on a heuristic approach

and the numerical results, obtained from Adaptive Simulated Annealing (ASA) [17], have

supported our assertion.

The purpose of these experiments was to support the conjecture that SCALGM maxi-

mizes the minimum element of the scaled matrix. Although we later proved this conjecture,

we present the experiments here for insights we believe they provide.

4.1 Objective Function

Let nonzero matrix A ∈ Rm×n be given. Define the objective function f : Rm+n → R as:

f(r1, · · · , rm, c1, · · · , cn) =
min{aij/(ricj) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
max{aij/(ricj) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

where r1, · · · , rm and c1, · · · , cn are row and column scaling factors of A, respectively.

Thus,

f(r1, · · · , rm, c1, · · · , cn) = ρDAE,

where D = diag(1/r1, · · · , 1/rm) and E = diag(1/c1, · · · , 1/cn). Our goal is to maxi-

mize the objective function f over the domain Rm+n, so we use the method of Adaptive

Simulated Annealing to approach the maximum value of f and then compare the results
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with that of the SCALGM algorithm. Since the method of Adaptive Simulated Annealing

(ASA) is used to minimize the objective function, we simply let

g ← −f ,

and use g as the objective function in ASA. Then the negative of the returned value, −g, is

the maximum value from the ASA search.

We choose

(r1, · · · , rm, c1, · · · , cn)← 1 ∈ Rm+n

as the starting point in the domain for the ASA search.

4.2 Numerical Results

Example 4.2.1 Consider A ∈ R5×4 as follows:

A =




0.0600657 0.0314488 0.0505425 0.3580263

31.3616505 1.7508878 0.3605699 4.7460253

0.0465615 0.2379094 0.0466107 50.8265669

0.3988647 2.4928637 0.2774323 0.9406760

7.2345614 34.9655153 6.2236013 47.1342023




.

Let S = SCALGM(A) and T = ASA(A), then we have:

S =




0.2303080 0.1251810 1.0000000 0.1068071

1.0000000 0.0579578 0.0593269 0.0117743

0.0117743 0.0624555 0.0608210 1.0000000

0.1541256 1.0000000 0.5531810 0.0282808

0.1993058 1.0000000 0.8847299 0.1010291




33



and

T =




0.2355454 0.0325978 0.2038492 0.1092359

1.0000000 0.0147569 0.0118248 0.0117743

0.0117743 0.0159021 0.0121226 1.0000000

0.1482661 0.2449352 0.1060663 0.0272056

0.2278995 0.2911438 0.2016402 0.1155234




We can see that ρS = minS = 0.0117743 = minT = ρT and S is equilibrated, but T is

not. The number of iterations in the SCALGM algorithm is 5 and the number of evaluations

on the objective function in ASA is 100262 . Also note that the second-smallest magnitude

of S is 0.0282808, which is larger than that of T , which is 0.0118248.

Example 4.2.2 Consider a symmetric A ∈ R5×5 as follows:

A =




0.0746825 1.0919649 53.7545583 10.3215426 2.4708322

1.0919649 42.0772536 0.0515623 15.9470032 1.3133666

53.7545583 0.0515623 74.3663876 92.8061326 0.1247173

10.3215426 15.9470032 92.8061326 0.9240242 0.7549703

2.4708322 1.3133666 0.1247173 0.7549703 12.1175272




.

Let S = SCALGM(A) and T = ASA(A), then we have:

S =




0.0019221 0.0270059 1.0000000 0.1538613 0.1138700

0.0270059 1.0000000 0.0009218 0.2284373 0.0581641

1.0000000 0.0009218 1.0000000 1.0000000 0.0041546

0.1538613 0.2284373 1.0000000 0.0079782 0.0201528

0.1138700 0.0581641 0.0041546 0.0201528 1.0000000



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and

T =




0.0011224 0.0171436 0.6348116 0.0542032 0.0320459

0.0248423 1.0000000 0.0009218 0.1267705 0.0257854

0.9198860 0.0009218 0.9999999 0.5549465 0.0018418

0.1076754 0.1737882 0.7607699 0.0033683 0.0067968

0.0293013 0.0162704 0.0011622 0.0031284 0.1240114




We can see that ρS = minS = 0.0009218 = minT = ρT and S is equilibrated, but T is

not. The number of iterations in the SCALGM algorithm is 3 and the number of evaluations

on the objective function in ASA is 100326 . Also note that S is symmetric but T is not and

the second-smallest magnitude of S is 0.0019221, which is larger than that of T , which is

0.0011224.

Example 4.2.3 Consider A ∈ R5×5 as follows:

A =




43.1439813 0.8087632 81.4332735 95.6318987 15.6605996

0.8087632 0.0968742 0.0801011 0.7368188 24.4376276

81.4332735 0.0801011 0.8900663 0.0379431 0.2939808

95.6318987 0.7368188 0.0379431 0.7466436 0.0219261

15.6605996 24.4376276 0.2939808 0.0219261 0.5210018




.

Let S = SCALGM(A) and T = ASA(A), then we have:

S =




0.0176014 0.0027546 1.0000000 1.0000000 0.0767602

0.0027546 0.0027546 0.0082120 0.0643237 1.0000000

1.0000000 0.0082120 0.3289976 0.0119427 0.0433729

1.0000000 0.0643237 0.0119427 0.2001161 0.0027546

0.0767602 1.0000000 0.0433729 0.0027546 0.0306809



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and

T =




0.1682435 0.0059742 0.9999731 0.9999970 0.3470527

0.0057901 0.0013137 0.0018058 0.0141450 0.9942430

0.9999878 0.0018632 0.0344178 0.0012494 0.0205154

1.0000000 0.0145948 0.0012494 0.0209358 0.0013029

0.3381898 0.9996554 0.0199912 0.0012697 0.0639382




We can see that ρS = minS = 0.0027546 > minT = ρT = 0.0012494 and S is

equilibrated, but T is not. The number of iterations in the SCALGM algorithm is 39 and

the number of evaluations on the objective function in ASA is 100359 . Also note that S

is symmetric but T is not and the second-smallest magnitude of S is 0.0082120, which is

larger than that of T , which is 0.0012697. SCALGM has produced much better results in

this case (minS > minT ) than ASA has.

Example 4.2.4 Consider A ∈ R15×6 as follows:

A =




39.1825004 65.4978133 2.0482634 57.5320599 0.8727561 0.0866749

0.0174157 0.1809213 4.8632161 5.6575103 0.0149143 0.2662696

0.1763694 11.0195404 0.7433910 67.0325689 0.0502083 0.0525480

99.7785982 7.0789378 40.9894436 0.3173076 97.3849539 60.3235253

12.4345575 21.2371584 0.0182033 1.3924923 0.0513201 27.5509926

0.0320970 0.0201085 18.0452977 6.5743054 0.0115688 0.1574914

56.9826977 0.0201479 2.8493551 2.7711917 11.3986891 4.2496192

73.7884126 0.0201038 0.4682885 0.5485364 0.0134761 2.3511967

2.8824512 0.0134463 0.1664398 1.1815007 0.4266600 0.1620873

0.7127229 0.0530533 0.0344227 1.2973887 7.3876290 0.1766576

0.3574435 23.7120526 0.3552317 0.0645017 1.5589028 0.4109612

1.0158471 0.8883048 0.8280001 0.0289451 0.0246166 0.0943812

12.3005614 0.0181642 0.1897420 0.0576021 0.9963737 0.2556982

13.5433903 0.0287200 0.3438184 0.0225416 3.3932683 14.6693574

0.3653704 0.0241846 77.8257591 1.2577048 3.1376826 5.7494783




.
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Let S = SCALGM(A) and T = ASA(A), then we have:

S =




0.2022233 1.0000000 0.0188295 0.5032417 0.0244160 0.0008312

0.0018163 0.0558176 0.9034115 1.0000000 0.0084313 0.0515963

0.0015524 0.2869354 0.0116552 1.0000000 0.0023955 0.0008594

0.1890178 0.0396705 0.1383097 0.0010188 1.0000000 0.2123255

0.1979246 1.0000000 0.0005161 0.0375656 0.0044279 0.8148107

0.0009986 0.0018507 1.0000000 0.3466558 0.0019510 0.0091039

0.9222430 0.0009646 0.0821418 0.0760145 1.0000000 0.1277916

1.0000000 0.0008060 0.0113042 0.0125993 0.0009900 0.0592040

1.0000000 0.0137999 0.1028514 0.6947038 0.8023478 0.1044809

0.0177981 0.0039192 0.0015311 0.0549098 1.0000000 0.0081966

0.0050957 1.0000000 0.0090204 0.0015585 0.1204643 0.0108855

0.3865736 1.0000000 0.5612409 0.0186684 0.0507779 0.0667328

1.0000000 0.0043684 0.0274760 0.0079367 0.4390763 0.0386236

0.4968968 0.0031171 0.0224690 0.0014017 0.6748384 1.0000000

0.0026357 0.0005161 1.0000000 0.0153769 0.1226912 0.0770620



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and

T =




0.1045794 0.6743718 0.0126958 0.2892120 0.0070063 0.0005793

0.0013276 0.0532030 0.8609357 0.8122788 0.0034196 0.0508254

0.0008192 0.1974358 0.0080183 0.5863837 0.0007014 0.0006111

0.2850180 0.0780049 0.2719110 0.0017071 0.8367017 0.4314725

0.1517802 1.0000000 0.0005160 0.0320133 0.0018842 0.8420805

0.0005304 0.0012818 0.6924670 0.2046056 0.0005750 0.0065163

0.4231624 0.0005772 0.0491395 0.0387599 0.2546026 0.0790216

0.9435393 0.0009917 0.0139061 0.0132108 0.0005183 0.0752822

0.2282907 0.0041082 0.0306128 0.1762434 0.1016371 0.0321445

0.0047214 0.0013558 0.0005296 0.0161872 0.1471967 0.0029303

0.0020291 0.5192682 0.0046831 0.0006896 0.0266175 0.0058417

0.0633027 0.2135379 0.1198242 0.0033972 0.0046139 0.0147269

0.4425750 0.0025211 0.0158542 0.0039035 0.1078271 0.0230367

0.2209158 0.0018072 0.0130241 0.0006925 0.1664798 0.5991590

0.0020208 0.0005160 0.9996329 0.0131017 0.0521976 0.0796264




We can see that ρS = minS = 0.0005161 ≈ minT = ρT = 0.0005160 and S is

equilibrated, but T is not. The number of iterations in the SCALGM algorithm is 5 and the

number of evaluations on the objective function in ASA is 100898 . Note that the second-

smallest magnitude of S is 0.0008060, which is larger than that of T , which is 0.0005183.
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CHAPTER 5

Theoretical Proof of the Maximum Ratio Property

5.1 Equivalence Relation

Define a relation “∼” in Rm×n as follows:

A ∼ B in Rm×n, if B = DAE

for some positive diagonal matrices D and E. Clearly, “∼” is an equivalence relation

in Rm×n as it satisfies the properties of reflexivity, symmetry, and transitivity. Thus, the

equivalence classes of∼ form a partition (a disjoint collection of non-empty subsets whose

union is the whole set) of Rm×n. Denote the equivalence class, for instance, as

[A] = {B ∈ Rm×n : B ∼ A},

or

[A] = {DAE ∈ Rm×n : D, E, positive diagonal matrices}

We can view the equivalence class [A] as the collection of all scaled matrices S resultant

from A, obtained by all two-sided diagonal scaling methods, in particular, including all

one-sided diagonal scaling methods in the case of either D = Im or E = In.

Theorem 5.1.1 is our Claim 3.3.2 and its proof will be given in next section.

Theorem 5.1.1 (Maximum Ratio Property of SCALGM) Let A ∈ Rm×n.

If S = SCALGM(A), then ρS ≥ ρB for all B ∈ [A], where the ratio number ρ is defined in

Notation 3.3.1.
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5.2 Proof of Maximum Ratio Property

Notation 5.2.1 Let A be a matrix in Rm×n. We denote pre(A) as the immediately prece-

dent matrix of A such that A is obtained from pre(A) by one step, either scaleUp or scale-

Down procedure, of the SCALGM algorithm.

M

1

pre(S)

M

column j

m

S

column j

row i row i
scale down

Figure 5.1: S and pre(S)

Lemma 5.2.2 (Refer to Figure 5.1) Let A ∈ Rm×n, S = SCALGM(A), and m = min S

with m ·M = 1. Then m is the (i, j) element of S if and only if 1 is the (i, j) element of

pre(S) and there exists M ’s in the ith row and the jth column of pre(S).

Proof. (⇒) Suppose m is the (i, j) element of S. Let uij be the (i, j) element of pre(S)

and let ai, ci the ith row scale factors and bj , dj the jth column scale factors of pre(S), as

determined in the SCALGM algorithm. Then we have:

1 ≤ uij, ai, bj ≤M,

and
1

M
≤ ci, dj ≤ 1 .

Thus,
1

M
≤

√
aicibjdj ≤M,
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and hence
1

M
≤ uij√

aicibjdj

= m ( =
1

M
)

implies
uij√

aicibjdj

=
1

M
.

Thus,

1 ≤ uij =
1

M

√
aicibjdj ≤ 1

M
M = 1

implies uij = 1 and
√

aicibjdj = M . Finally we have uij = 1, ai = bj = M , and

ci = dj = 1. The results follow.

(⇐) Suppose 1 is the (i, j) element of pre(S) and there exists M ’s in the ith row and

in the jth column of pre(S). Then, by the SCALGM algorithm, the scale down factors

ai = bj = M and ci = dj = 1. Thus, the (i, j) element of S is:

sij =
uij√

aicibjdj

=
1

M
= m.

The result follows.

M

U

1

m

pre(U)

m
row i

column j

row i

column j

scale up

Figure 5.2: U and pre(U)

Lemma 5.2.3 (Refer to Figure 5.2) Let A be a matrix in Rm×n, S = SCALGM(A), and

U = pre(S). Then M is the (i, j) element of U if and only if 1 is the (i, j) element of

pre(U) and there exists m’s in the ith row and the jth column of pre(U).
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Proof. (⇒) Suppose M is the (i, j) element of U . Let sij be the (i, j) element of pre(U)

and let αi, γi the ith row scale factors and βj , δj the jth column scale factors of pre(U), as

determined in the SCALGM algorithm. Then we have:

m ≤ sij, αi, βj ≤ 1,

and

1 ≤ γi, δj ≤ 1

m
.

Thus,

(
1

m
= ) M =

sij√
αiγiβjδj

≤ 1

m

implies
1

m
=

sij√
αiγiβjδj

.

Thus,

sij =
1

m

√
αiγiβjδj ≤ 1,

and

sij =
1

m

√
αiγiβjδj ≥ 1

m
m = 1

Thus sij = 1 and
√

αiγiβjδj = m. Finally, we have sij = 1, αi = βj = m and γi = δj = 1.

The results follow.

(⇐) Suppose 1 is the (i, j) element of pre(U) and there exists m’s in the ith row and

the jth column of pre(U). Then, by the SCALGM algorithm, the scale down factors αi =

βj = m and γi = δj = 1. Thus, the (i, j) element of U is:

uij =
sij√

αiγiβjδj

=
1

m
= M.
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Lemma 5.2.4 If m is the (i, j) element of S, then there are at least one 1’s in its corre-

sponding ith row and jth column.

Proof. The result immediately follows from Lemma 5.2.2 and the fact that the SCALGM

algorithm maps M onto 1, as illustrated in Figure 5.3.

m M

M

1scale down

S pre(S)

1

1

Figure 5.3: S and pre(S)

Lemma 5.2.5 If M is the (i, j) element of U , then there are at least one 1’s in its corre-

sponding ith row and jth column.

Proof. The result immediately follows from Lemma 5.2.3 and the fact that the SCALGM

maps m onto 1, as illustrated in Figure 5.4.

1

1

1 scale upM m

m

U pre(U)

Figure 5.4: U and pre(U)

Theorem 5.2.6 Let A ∈ Rm×n, Ŝ = PhaseOne(A), and S = PhaseTwo(Ŝ). Then the

minimum of nonzero magnitude of elements in Ŝ is the same as that in S.
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Proof. Let m be the minimum of nonzero magnitude of elements in Ŝ and m = |ŝij| for

some (i, j) element in Ŝ. Then, by Lemma 5.2.4, Lemma 3.1.1, and Algorithm 7, we

have its row scale down factors ai, ci and column scale down factors bj, dj that satisfy

ai = ci = bj = dj = 1. Thus, m is not changed after scaling. The same argument is

applied to the rest iterations of ScaleDown( ) in phase two. Also, by Corollary 3.2.2, no

any other element of magnitude will be scaled less than m. This completes the proof.

Definition 5.2.7 (CPEV) Let A = [aij] ∈ Rm×n with extreme absolute values:

min = min{|aij| > 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and

max = max{|aij| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

We say A has a closed path for its extreme absolute values min and max, or simply say

A has the CPEV property, if there exists distinct row indices i1, · · · , ik and distinct column

indices j1, · · · , jk, for some k ≥ 2, such that

|aipjp| = min, for 1 ≤ p ≤ k,

|aipjp−1| = max, for 1 ≤ p ≤ k, and

|ai1jk
| = max.

Example 5.2.8 Consider the matrices, as illustrated in the Figure 5.5 and Figure 5.6, are

the ones satisfying the CPEV property with extreme absolute values min and max.

Let A be a matrix with the CPEV property with extreme absolute values {min,max},
then under the geometric view of Definition 5.2.7, we can pick any element of A, say

A[i1][j1], with extreme absolute value, say min, as the starting point, then move along

its corresponding row or column, say column, to reach the element, say A[i2][j1], with

the extreme absolute value max, as the second point. Next, from A[i2][j1], move along

its corresponding row to reach the point, say A[i2][j2], with the extreme absolute value
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i1

i2

j1 j2

min

max min

max

Figure 5.5: Closed Path for k = 2

i1

i2

i3

i4

j1 j2 j3 j4

min

max min

max min

max min

max

Figure 5.6: Closed path for k = 4
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min. Continue this procedure of choosing points sequentially and alternately based on the

following paths of {row, column} and extreme absolute values of {min,max} to get back

to the starting point.

Example 5.2.9 Consider the following matrix A ∈ R10×4 that satisfies the CPEV prop-

erty with extreme values min = 0.00076 and max = 1:

A =




1.00000 0.99852 0.93902 0.11498

0.00118 1.00000 0.00096 0.01452

1.00000 0.00604 0.06724 0.00076

0.00309 1.00000 0.34584 0.00208

0.00187 0.02913 0.00076 1.00000

1.00000 0.01727 0.00544 0.00326

0.02198 0.01647 1.00000 0.00081

0.52561 1.00000 0.80994 0.00225

1.00000 0.00120 0.00225 0.00125

0.00076 0.21480 1.00000 0.74804




The closed path is:

A[10][1]→ A[3][1]→ A[3][4]→ A[5][4]→ A[5][3]→ A[10][3]→ A[10][1]

with row indices i1 = 10, i2 = 3 and i3 = 5, and column indices j1 = 1, j2 = 4 and j3 = 3.

Example 5.2.10 Consider the following matrix A ∈ R5×5:

A =




4.5203873 2.9885969 1.9780225 0.0548313 64.2249838

2.9885969 0.0608930 19.3557172 0.1784661 2.9473931

1.9780225 19.3557172 1.3747245 0.1195760 0.0459842

0.0548313 0.1784661 0.1195760 0.1617764 4.7173173

64.2249838 2.9473931 0.0459842 4.7173173 25.9124215




.
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Let S = SCALGM(A). Then:

S =




0.0283972 0.0467028 0.0410815 0.0046896 1.0000000

0.0467028 0.0023671 1.0000000 0.0379700 0.1141589

0.0410815 1.0000000 0.0943942 0.0338118 0.0023671

0.0046896 0.0379700 0.0338118 0.1883792 1.0000000

1.0000000 0.1141589 0.0023671 1.0000000 1.0000000




satisfies the CPEV property with extreme values min = 0.0023671 and max = 1. The

closed path is:

S[2][2]→ S[3][2]→ S[3][5]→ S[5][5]→ S[5][3]→ S[2][3]→ S[2][2]

with row indices i1 = 2, i2 = 3 and i3 = 5, and column indices j1 = 2, j2 = 3 and j3 = 5.

Definition 5.2.11 Let A = [aij] ∈ Rm×n with extreme absolute values:

min = min{|aij| > 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and

max = max{|aij| : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

We use the notation ρA = min
max

to denote the ratio of min to max of A.

Lemma 5.2.12 Let A = [aij] ∈ Rm×n with extreme absolute values min and max.

If x, y ∈ {|aij| > 0 : 1 ≤ i ≤ m, 1 ≤ n ≤ n}, then x
y
, y

x
≥ ρA

Proof. Result follows by Definition 5.2.11 that ρA = min
max

and that min ≤ x, y ≤ max.

Theorem 5.2.13 Let A = [aij] ∈ Rm×n with extreme absolute values min and max.

If A has the CPEV property, then the ratio of min to max of A is greater than or equal

to the ratio of min to max of RAC for all positive diagonal matrices R and C. That is,

ρA ≥ ρRAC for all positive diagonal matrices R and C.
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Proof. Suppose not. That is, there exists positive diagonal matrices R = diag(ri > 0 : 1 ≤
i ≤ m) and C = diag(cj > 0 : 1 ≤ j ≤ n) such that ρA < ρB, where B = [bij] = RAC =

[riaijcj]. Since A has the CPEV property, there exists distinct row indices i1, · · · , ik and

distinct column indices j1, · · · , jk that satisfy the conditions of Definition 5.2.7 and the

closed path formed by these indices is illustrated in Figure 5.7.

min max

max min

max
min

min

min

max

i1

i2

jkjk−1

ik−1

ik

i3

j1 j3j2

Figure 5.7: Closed path of A

Now, consider the corresponding column path in B from (i1, j1) to (i2, j1).

By Lemma 5.2.12, we have
|bi1j1|
|bi2j1|

≥ ρB,

which is equivalent to
|ri1ai1j1cj1|
|ri2ai2j1cj1|

≥ ρB > ρA =
min

max
.

Thus, we have

|ri1| > |ri2|,

since |ai1j1| = min and |ai2j1| = max. Apply the same argument to the remaining k − 1

column paths in B, we have

|ri2| > |ri3| > · · · > |rik | > |ri1|.

Then we get a contradiction that |ri1| > |ri1|. This completes the proof.
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Theorem 5.2.14 Let A = [aij] ∈ Rm×n. If S = SCALGM(A), then S has the CPEV

property.

Proof. Let S = [sij] and let m = min{|sij| > 0 : 1 ≤ i ≤ m, 1 ≤ j ≤ n} = |si1j1| for

some i1 and j1. Then, by Lemma 5.2.2, there exist i2 6= i1 and j2 6= j1 such that M is the

magnitude of the (i2, j1) and (i1, j2) elements in pre(S), as shown in Figure 5.8.

i1

i2

j1 j2

1 M

M u

Figure 5.8: pre(S)

Now, let u be the magnitude of the (i2, j2) element in pre(S). If u = 1, then |si2j2| = m,

as shown in Figure 5.9, and hence S has the CPEV property and the proof is done. If

scale down
i1

i2

j1 j2

1 M

M 1

i1

i2

j1 j2

m 1

1 m

Figure 5.9: pre(S) and S

u 6= 1, then, by Lemma 5.2.5, there exists i3 /∈ {i1, i2} and j3 /∈ {j1, j2} such that 1 is the

magnitude of the (i3, j2) and (i2, j3) elements in pre(S), as shown in Figure 5.10.

Now, let u be the magnitude of the (i3, j3) element in pre(S), as shown in Figure 5.11.

If u = M , then the magnitude of the (i3, j3) element of S is 1, as shown in Figure 5.12,

and hence S has the CPEV property and the proof is done. If u 6= M in pre(S), then we

consider pre(pre(S)), the immediately precedent matrix of pre(S). By Lemma 5.2.5, the
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i1

i2

j1 j2

1 M

M 6= 1 1

i3

j3

1

Figure 5.10: pre(S)

i1

i2

j1 j2

1 M

M 6= 1 1

i3

j3

1 u

Figure 5.11: pre(S)

i1

i2

j1 j2

1 M

M 6= 1 1

i3

j3

1

i1

i2

j1 j2

i3

j3

1

scale down

m 1

1 6= m m

mu = M

Figure 5.12: pre(S) and S
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magnitude of the (i3, j3) element in the pre(pre(S)) cannot be 1, as shown in Figure 5.13.

i1

i2

j1 j2

1 M

M 6= 1 1

i3

j3

1

i1

i2

j1 j2

i3

j3

m 1

1 6= m m

m

scale up

u 6= M 6= 1

Figure 5.13: pre(S) and pre(pre(S))

Moreover, by observing the (i3, j2) and (i2, j3) elements in pre(pre(S)) of magnitude

m. Lemma 5.2.4 implies there exists row index i4 /∈ {i2, i3} and column index j4 /∈ {j2, j3}
such that 1 is the magnitude of the (i4, j3) and (i3, j4) elements in pre(pre(S)), as shown

in Figure 5.14. In fact, we can assume i4 6= i1 and j4 6= j1, or we get a closed path in

pre(pre(S)) and the proof is done.

i1

i2

j1 j2

i3

j3

m 1

1 6= m m

m 6= 1

i4

j4

1

1

s

Figure 5.14: pre(pre(S))

Now, let s be the magnitude of the (i4, j4) element in pre(pre(S)). If s = m, then

there is a closed path in pre(pre(S)) and thus the proof is done. If s 6= m, consider the

(i3, j2) and (i2, j3) elements of the magnitude m in pre(pre(S)), then, by Lemma 5.2.2,

we have its immediately precedent matrix, as shown in Figure 5.15 that there exists M ’s as

the magnitude of the (i4, j3) and (i3, j4) elements in pre(pre(pre(S))).

By our assumption that the magnitude of the (i4, j4) element in pre(pre(S)) is s 6= m,
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scale down

i1

i2

j1 j2

i3

j3

m 1

1 6= m m

m 6= 1

i4

j4

1

1

s 6= m

i1

i2

j1 j2

i3

j3

1

i4

j4

pre(s)

1 M

6= 1M

1 6= M M

M

Figure 5.15: pre(pre(S)) and pre(pre(pre(S)))

the magnitude pre(s) of the (i4, j4) element in pre(pre(pre(S))) cannot be 1, and thus, by

Lemma 5.2.5, there exists i5 /∈ {i3, i4} and j5 /∈ {j3, j4} such that 1 is the magnitude of the

(i5, j4) and (i4, j5) elements in pre(pre(pre(S)) as shown in Figure 5.16.

i1

i2

j1 j2

i3

j3

1

i4

j4

1 M

6= 1M

1 6= M M

M pre(s) 6= 1 1

1

j5

i5

Figure 5.16: pre(pre(pre(S)))

In fact, we can assume i5 /∈ {i1, i2, i3, i4} and j5 /∈ {j1, j2, j3, j4}, otherwise if i5 ∈
{i1, i2} or j5 ∈ {j1, j2}, there there exists a closed path in pre(pre(pre(S)))) and hence in

pre(pre(S)).

Now, consider the graph formed by row i2 and column j2 and the graph formed by row

i4 and column j4, as shown in Figure 5.17. These two graphs have the same type of {1,M}
information, which is due to the magnitude of the (i3, j3) element for not being equal to

M .

Thus, we can continue this argument on the (i5, j5) element. Since the dimension of the
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i1

i2

j1 j2

i3

j3

1

i4

j4

1 M

6= 1M

1 6= M M

M 6= 1 1

1

j5

i5

Figure 5.17: pre(pre(pre(S)))

given matrix A is finite, there exists some k such that the magnitude of the (ik, jk) element

is M . Therefore, a closed path exists in some precedent matrix of S, and hence in S. This

completes the proof.

Corollary 5.2.15 (Claim 3.3.2) Let A = [aij] ∈ Rm×n and S = SCALGM(A). Then

ρS ≥ ρRAC for all positive diagonal matrices R and C.

Proof. It follows immediately from Theorem 5.2.13 and Theorem 5.2.14.
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CHAPTER 6

Condition Numbers

Conventionally the condition number of A ∈ Rm×m is defined to be

κp(A) = ‖A‖p · ‖A−1‖p ,

where 1 ≤ p ≤ ∞ and

‖A‖p = max
x6=0

‖Ax‖p
‖x‖p .

It can be shown that κp(A) ≥ 1 for any value of p. If κp(A) is small, A is said to be

well-conditioned; if κp(A) is large, A is ill-conditioned. If A is singular, it is customary to

write κp(A) =∞.

Throughout this chapter, unless specified, we simply denote κ(A) = κ2(A) for the 2-

norm condition numbers of matrices A and denote ‖ · ‖ = ‖ · ‖2 for the 2-norm of vectors

or matrices.

Let A ∈ Rm×n. The transpose of an m× n matrix A, written AT , is the n×m matrix

whose (i, j) entry is the (j, i) entry of A. .

If Q ∈ Rm×m is an orthogonal matrix, then ‖Q‖ = 1 since

‖Qx‖2 = (Qx)T (Qx)

= xT QT Qx

= xT x = ‖x‖2 ,

for all x. Thus, by the definition, we have ‖Q‖ = 1. Similarly, ‖Q−1‖ = 1 since Q−1 =
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QT . Therefore, κ(Q) = 1.

6.1 Measuring Linear Dependence by Angles

Let

A = [a1| · · · |an] ∈ Rm×n ,

where aj is the jth column vector of A with

aj =




a1j

...

anj




.

Let x = [x1, · · · , xn]T ∈ Rn×1, we may view Ax ∈ range(A) as

n∑
j=1

xjaj ∈ L(a1, · · · , an)

, where L(a1, · · · , an) is the linear span of the column vectors aj of A, or the linear space

spanned by the column vectors aj of A. In fact, range(A) = L(a1, · · · , an).

In this section, we will investigate this problem: Let A = [a1, · · · , an] ∈ Rm×n be

given. Denote the linear subspace

Sj = L(a1, · · · , aj−1, aj+1, · · · , an) ,

and let

θj(A) = ∠(aj,Sj)

be the angle between aj and Sj , as illustrated in Figure 6.1
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aj

Sj

θj

Figure 6.1: Angle θj between aj and Sj

Our goal is to find the minimum angle

θmin(A) = min{θj(A) : 1 ≤ j ≤ n},

and we believe the minimum angle θmin(A) contains the essential information pertaining

to the condition number κ(A) of any well scaled matrix A. If θmin = 90◦, the matrix is

optimally well-conditioned; as θmin → 0◦ the “true condition” increases without limit. In

the next section, we will discuss our approach for determining the orthogonal projector P

that projects aj onto the linear subspace Sj so as to find the angle θj by using the property

of the inner product:

aT
j (Paj) = ‖aj‖‖Paj‖ cos(θj)

6.1.1 Orthogonal Projectors

Now consider the least squares problem: Given a matrix A = [a1| · · · |an] ∈ Rm×n with

m ≥ n and a column vector b ∈ Rm×1, find x ∈ Rn×1 such that ‖Ax − b‖ is minimized.

Note that Ax = b might not have a solution for x as b might not in the range of A, which is

illustrated in Figure 6.2.

b

y = Ax

r = b− y

range(A)={Ax ∈ Rm : x ∈ Rn}

Figure 6.2: Solving x for minimizing ‖Ax− b‖
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In geometric view, our goal is to find x ∈ Rn such that Ax ∈ range(A) ⊂ Rm is the

closest point to b, and thus (b−Ax) ⊥ Ax. Therefore, we would like to find an orthogonal

projector P ∈ Rm×m that maps each given b ∈ Rm such that

Pb ∈ range(A) and

b− Pb ⊥ range(A) .

If A ∈ Rm×n with m ≥ n and has full rank (= n), then the set {a1, · · · , an} of column

vectors aj of A is linearly independent and we have

aj ⊥ (b− Pb), for all j ∈ {1, · · · , n} .

Thus, the inner products, aj
T (b− Pb) = 0 for all j ∈ {1, · · · , n}, imply that

AT (b− Pb) = 0 ∈ Rn×1,

which is equivalent to

AT b = AT Pb

= AT Ax ,

for some x ∈ Rn×1 since Pb ∈ range(A). Since A is of full rank by our assumption, AT A

is nonsingular, and hence we can rewrite above equation as

x = (AT A)−1AT b,

where (AT A)−1AT is called the pseudoinverse of A, and we denote

A† = (AT A)−1AT .
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Therefore,

y = Ax = A[(AT A)−1AT b] = AA†b,

where

P = AA† ∈ Rm×m

is the orthogonal projector which projects every vector b ∈ Rm×1 onto the subspace

range(A). Note that orthogonal projectors are not orthogonal matrices, but are always

symmetric matrices. In fact, every symmetric matrix is an orthogonal projector.

Another way of finding the orthogonal projector P can be based on the procedure below.

First, consider the simple case: Given a column vector b ∈ Rm and q ∈ Rm with ‖q‖ = 1,

as illustrated in Figure 6.3.

q

b r

(qT b)q

Figure 6.3: Pb = (qT b)q

Then, by the property of inner product of q and b, we have

qT b = ‖q‖‖b‖ cos(θ)

= ‖b‖ cos(θ)

= the magnitude of the component of b along q

where θ is the angle between q and b. If P is the orthogonal projector that maps vectors

onto the linear space L(q), then, in particular,

Pb = (qT b)q = q(qT b) = (qqT )b,
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and hence the orthogonal projector

P = qqT ∈ Rm×m .

Also, let

r = b− Pb = (Im − P )b,

which implies that (Im − P ) is the orthogonal projector that maps every vector b ∈ Rm

onto the space orthogonal to L(q).

Next, generalize the above case by considering given a column vector b ∈ Rm and a

set of orthonormal vectors {q1, · · · , qn} ⊂ Rm, which means qi ⊥ qj for all i 6= j and

‖qj‖ = 1 for all j. Let Q = [q1| · · · |qn]. Then Q ∈ Rm×n is an orthogonal matrix with

range(Q) = L(q1, · · · , qn) ⊂ Rm. From the given b and qj for j ∈ {1, · · · , n}, construct

v =
n∑

j=1

(qT
j b)qj ∈ L(q1, · · · , qn) ,

and then let

r = b− v ,

as illustrated in Figure 6.4:

b
r

v =
∑n

j=1(q
T
j b)qj

L(q1, · · · , qn)

Figure 6.4: r = b− v , Is r ⊥ v ?

Then,

r ⊥ qj, for all j
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since the inner product

qT
j r = qT

j (b− v) = qT
j b− qT

j v

= qT
j b− qT

j

n∑

k=1

(qT
k bk)qk

= qT
j b−

n∑

k=1

(qT
k bk)q

T
j qk

= qT
j b− (qT

j bj)q
T
j qj

= 0 .

Thus,

r ⊥ v

since the inner product

vT r =

[
n∑

j=1

(qT
j b)qj

]T

r

=
n∑

j=1

[
(qT

j b) qT
j r︸︷︷︸
0

]

= 0 .

Therefore, v is the image of b via an orthogonal projector. By the expression of v, we can

write

v =
n∑

j=1

(qT
j b)qj =

n∑
j=1

qj(q
T
j b)

=
n∑

j=1

(qjq
T
j )b =

[
n∑

j=1

(qjq
T
j )

]
b

= (QQT )b ,

where Q = [q1| · · · |qn] ∈ Rm×n is an orthogonal matrix. Therefore P = QQT ∈ Rm×m is
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the orthogonal projector that maps each b ∈ Rm onto the linear space L(q1, · · · , qn) ⊂ Rm

spanned by q1, · · · , qn .

By the above discussion, we conclude the following properties:

Property 6.1.1 If A = [a1| · · · |an] ∈ Rm×n has full rank n ≤ m, then the orthogonal

projector P that projects onto range(A) = L(a1. · · · , an) ⊂ Rm is

P = AA† ∈ Rm×m ,

where A† = (AT A)−1AT ∈ Rm×m is the pseudoinverse of A.

Property 6.1.2 If Q = [q1| · · · |qn] ∈ Rm×n is an orthogonal matrix, then the orthogonal

projector P that projects onto range(Q) = L(q1, · · · , qn) ⊂ Rm is

P = QQT .

It is well known that every matrix A ∈ Rm×n(m ≥ n), regardless of the rank of A,

has a full QR decomposition A = QR, and hence a reduced QR decomposition A = Q̂R̂,

where Q ∈ Rm×m, Q̂ ∈ Rm×n are orthogonal matrices and R ∈ Rm×n, R̂ ∈ Rn×n are

upper-triangular matrices. Moreover, if A is of full rank = n, then A has a unique reduced

QR decomposition A = Q̂R̂ with rjj > 0. Therefore, we have the following property:

Property 6.1.3 If A is of full rank and let A = Q̂R̂ be the reduced QR decomposition,

then:

(i). range(A) = range(Q̂), and

(ii). the orthogonal projector P that projects onto range(A) is

P = Q̂Q̂T .
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What if the given matrix A ∈ Rm×n is not of full rank, say rank(A) = k < n ≤ m.

The reduced QR decomposition still is our choice for the rank-deficient matrix as to how to

find an orthogonal matrix Q̂ ∈ Rm×k and an upper-triangular matrix R̂ ∈ Rk×k such that

A = Q̂R̂ and thus

range(A) = range(Q̂) .

By Property 6.1.3, the orthogonal projector P that projects vectors onto range(A) is

Q̂Q̂T ∈ Rm×m .

6.1.2 QR Decomposition

The QR decomposition is very important in numerical linear algebra and useful in its ap-

plications. Two well-known stable algorithms are Modified Gram-Schmidt Orthogonal-

ization (MGS) and Householder Triangularization as in Algorithm 8 and Algorithm 10,

respectively.

Algorithm 8 ReducedQRdecomposition(A) via Modified Gram-Schmidt Method
Require: Input A = [a1| · · · |an] ∈ Rm×n has full rank n ≤ m

1: for column j ← 1 to n do
2: vj ← aj

3: end for
4: for row i← 1 to m do
5: rii ← ‖vi‖
6: qi ← vi/rii

7: for column j ← i + 1 to n do
8: rij ← qT

i vj

9: vj ← vj − rijqi

10: end for
11: end for
12: return Q = [qj] and R = [rj]
Ensure: A = QR with Q ∈ Rm×n orthogonal and R ∈ Rn×n upper-triangular

In fact, we can modify Algorithm 8 as in Algorithm 9 to make it work for any input

A ∈ Rm×n with m ≥ n, regardless of the rank of A.

The important property of the QR decomposition is that for every matrix A ∈ Rm×n
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Algorithm 9 ReducedQRdecomposition(A) via Modified Gram-Schmidt Method
Require: Input A = [a1| · · · |an] ∈ Rm×n has rank k ≤ n ≤ m

1: for column j ← 1 to n do
2: vj ← aj

3: end for
4: for row i← 1 to m do
5: rii ← ‖vi‖
6: if rii = 0 then
7: qi ← 0
8: else
9: qi ← vi/rii

10: end if
11: for column j ← i + 1 to n do
12: rij ← qT

i vj

13: vj ← vj − rijqi

14: end for
15: end for
16: Q← [qj] ∈ Rm×n, R← [rj] ∈ Rn×n

17: Q̂← Q by removing zero columns of Q
18: R̂← R by removing zero rows of R
19: return Q̂ and R̂
Ensure: A = Q̂R̂ with Q̂ ∈ Rm×k orthogonal and R̂ ∈ Rk×n upper-triangular

Algorithm 10 QRdecomposition(A) via Householder Triangularization
Require: Input A = [a1| · · · |an] ∈ Rm×n

1: R← A
2: Q← I ∈ Rm×m

3: for column k ← 1 to n do
4: x← Rk:m,k

5: if ‖x‖ = 0 then
6: continue
7: end if
8: if x1 < 0 then
9: w ← x− ‖x‖e1

10: else
11: w ← x + ‖x‖e1

12: end if
13: w ← w/‖w‖
14: Rk:m,k:n ← Rk:m,k:n − 2w(wT Rk:m,k:n)
15: Q1:m,k:m ← Q1:m,k:m − 2(Q1:m,k:mw)wT

16: end for
17: return Q, R
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with m ≥ n, not necessary to be of full rank, has the QR decomposition, written as

A = QR,

satisfying that Q ∈ Rm×m is an orthogonal matrix and R ∈ Rm×n is an upper-triangular

matrix.

In particular, if A ∈ Rn×n is nonsingular, then by QR decomposition, we have A = QR

with Q ∈ Rn×n orthogonal and R ∈ Rn×n upper-triangular. Thus, let B = A−1 and since

QQT = I = QT Q , we have:

AB = I

⇒ QRB = I

⇒ RB = Q−1 = QT

Since R is upper-triangular, we can solve for B by back substitution easily by observing

(RB)[i][j] = (QT )[i][j]

= Q[j][i] .

i.e.,

n∑

k=1

rikbkj = qji

⇒ 0 +
n∑

k=i

rikbkj = qji

⇒ riibij +
n∑

k=i+1

rikbkj = qji

⇒ bij = (qji −
n∑

k=i+1

rikbkj)/rii
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This implies that for each column j of the matrix B = [bij], bij is ready to be computed

if bi+1,j, bi+2,j, · · · , bnj are known. The method of computing A−1 via QR decomposition

and back substitution is described in Algorithm 11.

Algorithm 11 Inverse(A) via QR Decomposition
Require: Input A ∈ Rn×n is nonsingular

1: Q,R← QRdecomposition(A) // Algorithm 8, 9 or 10
2: for column j ← 1 to n do
3: for row i← n to 1 step −1 do
4: sum← 0
5: for k ← i + 1 to n do
6: sum← sum + R[i][k] ·B[k][j]
7: end for
8: B[i][j]← (Q[j][i]− sum)/R[i][i] // Solve B for RB = QT by back substitution
9: end for

10: end for
11: return B

If A ∈ Rm×n (m ≥ n) has full rank n, then AT A ∈ Rn×n is nonsingular and hence by

Algorithm 11, the pseudoinverse A† of A can be computed via

A† = (AT A)−1AT

as in Algorithm 12.

Algorithm 12 PseudoInverse(A)
Require: Input A ∈ Rm×n has full rank n ≤ m

1: C ← AT A
2: B ← Inverse(C) // Algorithm 11
3: A† ← BAT

4: return A†

If A ∈ Rm×n has full rank n ≤ m, then the orthogonal projector P ∈ Rm×m that maps

onto range(A) can be obtained by Algorithm 13.

Let A = [a1, · · · , an] ∈ Rm×n be given with m ≥ n and let rank(A) = k. Matrix A

could have full rank if k = n, or be rank-deficient if k < n. No matter the former or the
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Algorithm 13 Projector(A)
Require: Input A ∈ Rm×n has full rank n ≤ m

1: A† ← PseudoInverse(A) // Algorithm 12
2: P ← AA†

3: return P

latter case, A always can be factored, via the reduced QR decomposition, into the form:

A = Q̂R̂,

where Q̂ = [q1, · · · , qk] ∈ Rm×k with Q̂T Q̂ = Ik and R̂ ∈ Rk×k upper triangular. Since

range(A) = L(a1, · · · , an) = L(q1, · · · , qk) ,

the orthogonal projector P ∈ Rm×m that projects onto range(A) is, by Property 6.1.2,

Q̂Q̂T ,

and the method is given in Algorithm 14.

Algorithm 14 Projector(A)
Require: Input A ∈ Rm×n, m ≥ n

1: Q̂, R̂← ReducedQRdecomposition(A) // Algorithm 9
2: P ← Q̂Q̂T

3: return P

6.1.3 Computing the Minimum Angle θmin

Let A = [a1| · · · |an] ∈ Rm×n be given with m ≥ n and A does not have to be full rank.

From the column vectors of A, we compute the angle θj between aj and

L(a1, · · · , aj−1, aj+1, · · · , an), as illustrated in Figure 6.5 .

Note that [a1| · · · |aj−1|aj+1| · · · |an] ∈ Rm×(n−1), denoted by Âj , is a submatrix of A
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aj

θj
L(a1, · · · , aj−1, aj+1, · · · , an)

Figure 6.5: Computing the angle θj

by removing the jth column vector from A, and thus

range(Âj) = L(a1, · · · , aj−1, aj+1, · · · , an) .

Now we are ready to use Algorithm 14 to find the orthogonal projector Pj ∈ Rm×m that

projects any vector onto range(Âj). In particular, for aj ∈ Rm, 1 ≤ j ≤ n, we have

(aj − Pjaj) ⊥ Paj .

Let θj = ∠(aj, Pjaj). Then 0 ≤ θj ≤ π/2 and by the property of inner product, we have:

aT
j (Pjaj) = ‖aj‖‖Pjaj‖ cos(θj) .

Solve for each θj and let θmin = min{θj : 1 ≤ j ≤ n}, then 0 ≤ θmin ≤ π/2. In

Algorithm 15, the returned θmin is measured in degrees, rather than radians, for easy to

read in human sense.

Consider A = [a1| · · · |an] ∈ Rn×n:

If θmin(A) = 0, then clearly, for some column vector aj of A, aj ∈ range(Âj), that is, aj

is a linear combination of other columns of A, and hence A is singular with κ(A) =∞.

If θmin(A) = π/2, then ai ⊥ aj for all i 6= j. Thus, we have:

AT A = diag(‖a1‖2, · · · , ‖an‖2),
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Algorithm 15 MinimumAngle(A)
Require: Input A = [a1| · · · |an] ∈ Rm×n with m ≥ n

1: π ← 4.0 · arctan(1.0)
2: θmin ← π/2
3: for column j ← 1 to n do
4: Â← [a1| · · · |aj−1|aj+1| · · · |an]

5: P ← Projector(Â) // Algorithm 14
6: θ ← arccos(aT

j (Paj)/(‖aj‖‖Paj‖))
7: if θ < θmin then
8: θmin ← θ
9: end if

10: end for
11: return θmin · 180/π // convert from radians to degrees

and hence, by Properties 6.2.2 and 6.2.4,

κ(A) =
max{‖a1‖, · · · , ‖an‖}
min{‖a1‖, · · · , ‖an‖} .

Next, consider A ∈ Rn×n and let S = [s1| · · · |sn] = SCALGM(A):

If θmin(S) = 0, then κ(S) =∞.

If θmin(S) = π/2, then, by Theorem 3.2.3 [Row and Column Equilibrated in∞-norm], we

have

1 ≤ min{‖s1‖, · · · , ‖sn‖} ≤ max{‖s1‖, · · · , ‖sn‖} ≤
√

n ,

since 0 ≤ |sij| ≤ 1, the upper bound
√

n for 2-norm of columns ‖sj‖ is attained if sj =

[1, · · · , 1]T , and the lower bound 1 for 2-norm of columns ‖sj‖ is attained if sj = some

unit vector. Thus,

κ(S) =
max{‖s1‖, · · · , ‖sn‖}
min{‖s1‖, · · · , ‖sn‖} ≤

√
n

The condition numbers κ(A) of badly scaled matrices A can be very large even when

θmin(A) = π/2. For instance,

A =




105 0

0 10−5


 ,
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we have θmin(A) = π/2 and κ(A) = 1010, but if S = SCALGM(A), then S is the identity

I2 with θmin(S) = π/2 and κ(S) = 1 .

In our experiments, if S = SCALGM(A), then there is a linear equation that describes

at least roughly the relation between the condition number κ(S) and the minimum angle

θmin(S) for all well-scaled matrices S.

6.2 Computing the 2-norm Condition Numbers

Notation 6.2.1 Let A ∈ Rm×n with m ≥ n. We denote Σ(A) the set of all singular values

σ of A and Λ(A) the set of all eigenvalues λ of A.

Our approach for computing the 2-norm condition numbers κ of the given matrix A ∈
Rm×m is based on the following well known properties:

Property 6.2.2 Let A ∈ Rm×n. Then

(i). Λ(AT A) = Λ(AAT ) ⊂ R.

(ii). AT A is orthogonally diagonalizable.

(iii). Σ(A) = Λ1/2(AT A), i.e., the singular values of A are the square roots of the eigen-

values of AT A.

Property 6.2.3 Let A ∈ Rn×n. If A = AT , then Σ(A) = |Λ|(A), i.e., the singular values

of A are the absolute values of the eigenvalues of A.

Property 6.2.4 Let A ∈ Rm×n with m ≥ n and let Σ(A) = {σ1, σ2, · · · , σn} with σ1 ≥
σ2 ≥ · · · ≥ σn ≥ 0 . Then

(i). ‖A‖ = σ1 .

(ii). If A is nonsingular, then ‖A−1‖ = 1/σn , and hence κ(A) = σ1/σn .

(iii). If A is of full rank = n < m, then the pseudoinverse A† of A is (AT A)−1AT with

‖A†‖ = 1/σn , and hence κ(A) = σ1/σn .
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Algorithm 16 is the outline of computing the 2-norm condition number of any given

matrix A ∈ Rm×n with m ≥ n .

Algorithm 16 ConditionNumber(A)
Require: Input A ∈ Rm×n with m ≥ n

1: B ← AT A
2: Λ← QT BQ // Property 6.2.2(ii)
3: Σ← Λ1/2 // Property 6.2.2(iii)
4: σ1 ← max Σ
5: σn ← min(Σr {0})
6: return σ1/σn

Definition 6.2.5 An upper-Hessenberg matrix H ∈ Rm×n is a matrix with zeros below the

first subdiagonal.

To implement line 2 of Algorithm 16, we apply Algorithm 17 on B to obtain

H1 ← Hessenberg(B) ,

where H1 ∈ Rn×n is upper-Hessenberg, and thus we have

H1 = QT
0 BQ0,

for some orthogonal matrix Q0 ∈ Rn×n, which can be obtained in Algorithm 17. Note that

B = AT A is symmetric, and hence so is H1. Therefore, the symmetric upper-Hessenberg

matrix H1 is tridiagonal.

Next, we perform QR decomposition on H1 such that

H1 = Q1R1,

where Q1 is orthogonal and R1 is upper-triangular. Thus, we can obtain H2 ∈ Rn×n as
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Algorithm 17 Hessenberg(A) via Householder Reduction
Require: Input A ∈ Rm×m

1: for column k ← 1 to m− 2 do
2: x← Ak+1:m,k

3: if x1 < 0 then
4: w ← x− ‖x‖e1

5: else
6: w ← x + ‖x‖e1

7: end if
8: w ← w/‖w‖
9: Ak+1:m,k:m ← Ak+1:m,k:m − 2w(wT Ak+1:m,k:m)

10: A1:m,k+1:m ← A1:m,k+1:m − 2(A1:m,k+1:mw)wT

11: end for
12: return A

follows:

H2 = QT
1 H1Q1 = (QT

1 H1)Q1

= R1Q1

This process,

Hi+1 = QT
i HiRi = RiQi,

is repeated for i = 1, 2, · · · until {Hi} converges to H . Let Q = Q0Q1Q2 · · · . Then we

have H = QT BQ and H is diagonal. By this orthogonal transformation on B, we have

Λ(H) = Λ(B). Algorithm 18 is the detailed one for Algorithm 16:

6.3 Best Estimated Interval

Notation 6.3.1 Denote Dn ⊆ Rn×n the set of n× n diagonal matrices with positive diag-

onal elements, and denote %(A) the spectral radius of A, i.e., the largest absolute value |λ|
of an eigenvalue λ of A:

%(A) = max{|λ| : λ ∈ Λ(A)}

The following theorem, due to Rump [22], gives us an estimated interval for the condi-
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Algorithm 18 ConditionNumber(A)
Require: Input A ∈ Rm×n with m ≥ n

1: B ← AT A
2: H ← Hessenberg(B) // Algorithm 17
3: repeat
4: Q, R← QRdecomposition(H) // Algorithm 10
5: H ← RQ
6: until H converges
7: Λ← diag(H)
8: Σ← Λ1/2 // Property 6.2.2(iii)
9: σ1 ← max Σ

10: σn ← min(Σr {0})
11: return σ1/σn

tion number of the optimal two-sided scaled matrix D1AD2 .

Theorem 6.3.2 Let nonsingular A ∈ Rn×n be given and let 1 ≤ p ≤ ∞. Define

µp := inf
D1,D1∈Dn

κp(D1AD2),

Then

µp ≤ %(|A−1| |A|) ≤ α2
p · µp

with αp := nmin{1/p, 1−1/p} . For p ∈ {1,∞} both inequalities are equalities. The left

bound is sharp for all p . For p = 2 the right inequality is sharp at least for the infinitely

many values of n where an n× n Hadamard matrix exists.

In particular, for p = 2, we have α = n1/2 and hence

µ ≤ %(|A−1| |A|) ≤ n · µ

⇒ %(|A−1| |A|)/n ≤ µ ≤ %(|A−1| |A|) .

In order to compute %(|A−1| |A|), Algorithm 19 presented by Hall and Porsching [15]
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is used in our experiments. Then we can compare this interval

[%(|A−1| |A|)/n , %(|A−1| |A|)]

with the condition number κ(S) of the scaled matrix S, performed by our SCALGM algo-

rithm.

Now, let S∗ be the optimal two-sided scaled matrix of A with κ(S∗) = µ as described

in Theorem 6.3.2, and let S be the scaled matrix of A, performed by SCALGM algorithm.

Then there exist D∗
1, D

∗
2, D1 and D2 ∈ Dn such that

S∗ = D∗
1AD∗

2 ,

S = D1AD2 .

Thus, S∗ ∼ S are in the same equivalence class [A], as “∼” is defined in Section 5.1 .

Instead of computing %(|A−1| |A|) to estimate µ = κ(S∗), we compute %(|S−1| |S|) to

estimate µ once S is obtained from SCALGM algorithm on A , since µ = µ(A) = µ(S) =

µ(S∗). In fact, the µ values are equal for all matrices in the same equivalence class. The

method we use to compute the estimated interval for the condition number of the optimal

two-sided scaled matrix is shown in Algorithm 20 .

Finally, in order to approach the condition number µ = µ(A) of the optimal two-sided

scaled matrix D∗
1AD∗

2 for some D∗
1, D

∗
2 ∈ Dn , we construct an objective function and

apply the pattern search method [9] [24] and its C code [7] on it to find the optimal scale

factors and so as to minimize the condition number. The experiment results are sampled in

the next section.

73



Algorithm 19 MaxEigenvalue(A)
Require: A = [aij] ∈ Rn×n is nonnegative and irreducible.

// Computing the maximal eigenvalue λ and eigenvector x
1: x← [1, · · · , 1]T ∈ Rn×1

2: repeat
3: for i← 1 to n do
4: the ith row sum Ri ←

∑n
j=1 aij

5: end for
6: max row sum R← max{Ri : i = 1, · · · , n}
7: min row sum r ← min{Ri : i = 1, · · · , n}
8: index set J ← {i : Ri = r}
9: for i← 1 to n do

10: bi ←
∑

j∈J aij

11: end for
12: choose µ such that Rµ = R
13: choose ν such that bν = min{bi : i ∈ J}
14: a← 4bµ

15: b← 2R− 6bµ − 2bν

16: c← R + r − 2bµ − 2bν

17: if a = 0 then
18: d← c

b

19: else
20: d← −b+

√
b2+4ac

2a

21: end if
22: for i← 1 to n do
23: if i ∈ J then
24: di ← d
25: else
26: di ← 1
27: end if
28: end for
29: D ← diag[d1, · · · , dn]
30: D ← D/‖D‖∞
31: x← Dx
32: A← D−1AD
33: until Ri converges to λ for all i = 1, · · · , n
34: return eigenvalue λ and eigenvector x
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Algorithm 20 OptimalInterval(A)
Require: Input A ∈ Rm×n is positive and has full rank n ≤ m

1: S ← SCALGM(A) // Algorithm 4
2: if m = n then
3: S† ← Inverse(S) // Algorithm 11
4: else
5: S† ← PseudoInverse(S) // Algorithm 12
6: end if
7: P ← S · S†
8: λ←MaxEigenvalue(P) // Algorithm 19
9: return interval [λ/m, λ]

6.4 Experimental Results

Let A = [a1| · · · |an] ∈ Rm×n be given and let θj = θj(A) be the angle, measured in

degrees, between the jth column vector aj of A and the linear subspace

L(a1, · · · , aj−1, aj+1, · · · , an) spanned by other columns of A. Denote θmin = θmin(A) =

min{θ1, · · · , θn}. In this section we will compare the condition number of some matrices

that have been scaled using SCALGM to an empirical formula

f(A) = 1.4(90/θmin(A))− 0.4

that we have found to be a reasonable, if rough, approximation for κ(A) in terms of the

minimum angle θmin(A) discussed above. All angles will be measured in degrees.

6.4.1 Some Examples

Example 6.4.1 Consider A ∈ R4×4 as follows:

A =




0.1480770 7.2100848 0.1305800 15.4921243

9.9878992 57.2956969 1.4177203 0.0343257

0.0175972 7.9973998 22.2709231 1.2756261

0.3718530 0.1517864 80.5274769 0.5036384



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Then, we have θ1 = 7.6290198, θ2 = 7.5595667, θ3 = 85.4822349, and θ4 = 47.8432547.

Thus, θmin(A) = 7.5595667. The 2-norm condition number κ(A) = 64.1742100, and

1.4(90/θmin(A))− 0.4 = 16.2676219.

Now, let S = SCALGM(A), then we have

S =




0.0155002 0.1315657 0.0021193 1.0000000

1.0000000 1.0000000 0.0220076 0.0021193

0.0050962 0.4037436 1.0000000 0.2278069

0.0297831 0.0021193 1.0000000 0.0248746




,

and we have θ1 = 15.8723160, θ2 = 15.0347404, θ3 = 49.5444269, and θ4 = 59.2475015.

Thus, θmin(S) = 15.0347404. The 2-norm condition number κ(S) = 8.0578672, and

observe 1.4(90/θmin(S)) − 0.4 = 7.9805903, which is very close to κ(S). The ratio ρ(S)

of min/max in magnitude is 0.0021193 . Also, observe that the closed path of min and max

in S is

S =




× × min max

× max × min

× × × ×
× min max ×




,

with S[1][3]→ S[1][4]→ S[2][4]→ S[2][2]→ S[4][2]→ S[4][3]→ S[1][3] .

The estimated interval for the condition number µ of the optimal two-sided scaled ma-

trix is [0.6306089, 2.5224355] .

Next. let T = PatterSearch(S), then we have

T =




0.1577278 0.5316732 0.0011684 2.1062209

1.8848862 0.7485433 0.0022474 0.0008268

0.0618953 1.9473666 0.6580056 0.5726785

0.9153895 0.0258673 1.6651569 0.1582436




,
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and we have θ1 = 61.1521800, θ2 = 53.8934825, θ3 = 62.2106164, and θ4 = 61.2947051.

Thus, θmin(S) = 53.8934825. The 2-norm condition number κ(T ) = 2.0020228, and ob-

serve 1.4(90/θmin(T ))−0.4 = 1.9379450, which is very close to κ(T ) and within the above

estimated interval. The ratio ρ(T ) of min/max in magnitude is 0.00082680/2.10622093 =

0.00039255 . Table 6.1 shows the summary from above results.

A S T
θ1 7.6290198 15.8723160 61.1521800
θ2 7.5595667 15.0347404 53.8934825
θ3 85.4822349 49.5444269 62.2106164
θ4 47.8432547 59.2475015 61.2947051

θmin 7.5595667 15.0347404 53.8934825
ρ - 0.0021193 0.00039255
κ 64.1742100 8.0578672 2.0020228

f(θmin) - 7.9805903 1.9379450

Table 6.1: Interval for µ:[0.6306089, 2.5224355]

Example 6.4.2 Consider A ∈ R4×4 as follows:

A =




0.0926612 17.0784926 0.3127063 12.7526810

1.7811361 54.0213344 1.4953060 14.7655003

0.3460217 0.0680433 0.2626770 0.0227214

1.3745248 45.1500312 0.0505958 1.4314422




Now, let S = SCALGM(A), then we have

S =




0.0243606 0.3890154 0.1082947 1.0000000

0.3805432 1.0000000 0.4208410 0.9409447

1.0000000 0.0170377 1.0000000 0.0195857

0.3513716 1.0000000 0.0170377 0.1091433




,
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Next. let T = PatterSearch(S), then we have

T =




0.1171181 0.6907233 0.4922486 1.4434180

1.0922594 1.0600407 1.1420381 0.8108517

1.1754749 0.0073965 1.1113581 0.0069121

0.9256365 0.9729141 0.0424350 0.0863229




,

The results for matrices A, S, and T regarding the angles θj , θmin, the ratio ρ of

min / max in magnitude, the 2-norm condition numbers κ, the values of the fitting function

f(θmin), as well as the estimated interval for the optimal condition number µ are summa-

rized in Table 6.2.

A S T
θ1 4.8352583 6.3541657 10.8802034
θ2 4.9049531 14.7800779 14.5441070
θ3 10.4000159 6.6880465 12.9141023
θ4 10.0054682 17.3776228 16.0505446

θmin 4.8352583 6.3541657 10.8802034
ρ - 0.01703767 0.00039255
κ 460.2705191 23.9129780 14.4856257

f(θmin) - 19.4295112 11.1806658

Table 6.2: Interval for µ:[3.6213799, 14.4855194]

Example 6.4.3 Consider A ∈ R6×3 as follows:

A =




4.2436341 0.0269694 0.0622383

0.0149600 10.8894167 49.9185153

2.3807229 0.0453816 0.4947489

0.0910166 0.0291091 0.0240973

0.3740146 0.2130833 0.2439024

0.0650553 0.1287199 0.0238598



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Now, let S = SCALGM(A), then we have

S =




1.0000000 0.0036574 0.0020965

0.0020965 0.8782185 1.0000000

1.0000000 0.0109700 0.0297065

1.0000000 0.1840528 0.0378462

1.0000000 0.3278651 0.0932186

0.8782185 1.0000000 0.0460428




,

Next. let T = PatterSearch(S), then we have

T =




1.0638298 0.0166244 0.0209650

0.0005098 0.9124348 2.2857143

1.7021277 0.0797817 0.4753033

0.0000696 0.0000547 0.0000248

0.0000696 0.0000975 0.0000610

0.5338714 2.5974026 0.2631015




,

The results for matrices A, S, and T regarding the angles θj , θmin, the ratio ρ of

min / max in magnitude, the 2-norm condition numbers κ, the values of the fitting function

f(θmin), as well as the estimated interval for the optimal condition number µ are summa-

rized in Table 6.3.

A S T
θ1 88.6713931 55.7560570 73.4727064
θ2 1.1215613 36.8741891 61.8206507
θ3 1.1215571 42.4600963 63.7554493

θmin 1.1215571 36.8741891 61.8206507
ρ - 0.00209650 0.00000953
κ 245.2917162 4.1852132 1.6924102

f(θmin) - 3.0170243 1.6381539

Table 6.3: Interval for µ:[0.3607154, 2.1642922]
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6.4.2 An approximate equation for condition numbers of well-scaled matrices

Let A ∈ Rn×n and let S = SCALGM(A). For some column j of S, let θj(S) is the angle

between the jth column of S and the linear subspace spanned by the remaining columns of

S, and thus let θmin(S) is the minimum angle among them.

Below is an approximate equation we have found from our experiments for the rela-

tion between the condition numbers κ(S) and the minimum angles θmin(S) for well-scaled

matrices S obtained from our scaling method, namely SCALGM algorithm.

κ(S) ≈ 1.4 · 90

θmin(S)
− 0.4 ,

where θmin(S) is measured in degrees.
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CHAPTER 7

Summary and Conclusions

We present an iterative algorithm, called SCALGM, that consists of two phases. The con-

vergence is proved in Theorem 3.1.4 and Theorem 3.2.1, respectively. SCALGM works on

any given nonzero matrix A ∈ Rm×n to produce the row and column scale factors in the

form of diagonal matrices D and E, respectively, such that the scaled matrix DAE satisfies

the properties listed below:

P1: the maximum magnitude of elements in DAE is 1. (Lemma 3.1.1)

P2: the nonzero rows and columns of DAE are equilibrated in the ∞-norm. (Theo-

rem 3.2.3)

P3: the minimum magnitude of nonzero elements in DAE is maximized. (Corollary 5.2.15)

Property P2 holds for any scaled matrix, in contrast to the algorithm presented by

Bunch [5] that works on any symmetric matrix A (with no null rows) such that the scaled

matrix DAE is equilibrated in the∞-norm. Property P3 holds for the SCALGM algorithm

provided A is a nonzero matrix. From the above properties, the range of the magnitude of

nonzero elements in DAE is within an interval [m, 1] for some m ∈ R depending on the

given matrix A, and m is maximized.

Our numerical results show SCALGM can make the condition number reasonably small

for badly scaled matrices. Moreover, for such m, we have:

P4: Algorithm SCALGM has the CPEV property. (Definition 5.2.7 and Theorem 5.2.14)

In particular, the minimum magnitude m of nonzero elements in DAE must occur

in a pair or more.
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Also, by SCALGM, DAE is symmetric whenever A is symmetric, thus we have:

P5: Algorithm SCALGM preserves symmetry. (Theorem 3.2.4)

Finally, an approximate equation is presented from our experiments for the relation

between the condition numbers κ(DAE) and the minimum angles θmin(DAE) for well-

scaled matrices DAE obtained from our scaling method SCALGM with S = DAE:

P6:

κ(S) ≈ 1.4 · 90

θmin(S)
− 0.4 ,

where θmin(S) is measured in degrees.

There is every reason to believe that application of SCALGM to a matrix before begin-

ning to apply an elimination method will:

• result in a good sequence of pivots,

• allow the diagnosis of any instability in the elimination process,

• help to prevent underflow or overflow, and

• give a smaller condition number that more realistically estimates the true condition

of the matrix.
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APPENDIX A

Listing of Source Code

Our numerical results are obtained from running the following source code written in

C/C++ by Chin-Chieh Chiang, Chandler [7] and Ingber [17].

For the results in Chapter 4, we use:

• asa_app.h

• asa.h

• scalgm_asa.cpp

• scalgm.cpp

• scalgm.h

• asa.c

• asa_usr_asa.h

For the results in Chapter 6, we use:

• lindep.cpp

• maxeigen.cpp

• projection.h

• scalgm.cpp

• lindep.h
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• maxeigen.h

• qrdecomp.cpp

• scalgm.h

• main.cpp

• projection.cpp

• qrdecomp.h

To ensure the accuracy of our source code, all the experimental results obtained from our

scource code agree with that from Maple 10. The source code is available upon request at

chiangc@cs.okstate.edu .
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