COMPUTER SCIENCE EDUCATION:

SECURE SOFTWARE

By
JAMES FRANCIS CAIN IlI

Bachelor of Science in Electrical Engineering
University of Missouri - Rolla
Rolla, Missouri
1996

Master of Science in Computer Science
University of Missouri - Rolla
Rolla, Missouri
1999

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
December, 2010

COMPUTER SCIENCE EDUCATION:

SECURE SOFTWARE

Dissertation Approved:

Dr. Blayne E. Mayfield

Dissertation Adviser

Dr. John Chandler

Dr. George E. Hedrick

Dr. Marilyn Kletke

Outside Committee Member

Dr. Mark E. Payton

Dean of the Graduate College

ACKNOWLEDGMENTS

The author would like to thank several groups and many individuals for theorsapp
encouragement, far too many for the author to be able to name all who riglketiyediesbe
mentioned. The author’s friends, family, colleagues, employer, supenasdrgrofessors all
deserve immense thanks; the author would never have completed thislgwogmam without
their incredible assistance. A number of the author’s students, inckitithgse who consented
to participate in the human subject research, also deserve thanks fatisgppal encouraging
even as the author’s studies influenced and impacted their own studies.

A few individuals must be named for particular assistance, though. Dr. Bitgyfesid, Dr.
George Hedrick, Dr. John Chandler, and Dr. Marilyn Kletke all provideddasurable
assistance with laying the foundations for this dissertation and then fotusiagthor’s research
as members of the author's committee. Dr. Tim DeClue, Profkiteffall, and Dr. Baochuan
Lu provided tremendous support in reducing the author's workload during theheseathe
writing of the dissertation. The late Dr. Bill Warde served as auttans for statistical methods
to analyze the survey data. Dr. Troy Bethards served as a consultahti business theory.
Milton Austin, one of the author’s best friends and fellow OSU CS gradumtersf worked
tirelessly as a sounding board for eight years of the author’s brainsgor@arissa Barker, the
grammatical editor for the first draft of the dissertatiorsetiees recognition as well; may she
someday recover from reading such poor grammar and may she someday forgutbdhéor
all the mistakes he made in the subsequent revisions.

Finally, the author frequently has been heard to say over the past seeesdiLyrd willing, |
will yet finish this doctorate... before it finishes me!” Well, it istjabout finished, so let the last
but most important credit go to where it is most significantly due: thank yall Lor

TABLE OF CONTENTS

Chapter Page
O NV I 1 O N [0] P 1
[I. REVIEW OF LITERATURE.ottt 7
Section 1: Problem OVEIVIEWuuuuiiiiiiiiiiiiiiieee e e e e 7
Section 2: Historical Academic Approaches to Computer Securityccccccu.... 11
Section 2.1: INformation SECUILYceeviviiiiiiiiie e 12
Section 2.2: NetWOIrK SECUNLYcooiiiiiieiiiiiiiee e 18
Section 2.3: SYSIEM SECUNLYcceeeeeiiieeeeeeerr e 21
SeCtion 2.4: COAE SECUNMTY ...ccoiie e 25
Section 2.5: Computer Security for NON-MajorsS.............uueeeiiiiiiieeeeeeeneeeeeeennnnns 34
Section 3: Industry’s Buggy Code Theory............uuuuiiiiiiiiiieeei e 37
Section 3.1: Security-Aware Compilers to Combat Security Bugs.................. 38
Section 3.2: Better Education to Combat Security Bugscoovvveivivvennnnnnnn. 40
Section 4: Current Theories on Security in the Computer Science Curriculum....42
Section 4.1: Security Required in the Core Curriculumcccceeeeiiviiiinnnn. 43
Section 4.2: Security Early in the Curriculum ... 45
Section 4.3: Security Throughout the Curriculumcviiiiiiinnine, a7
Section 4.4: Ethical Hacking COUISES...........uuvuviiiiiiiiiiieeeeeeeeeeeeeeeeae s 49
Section 5: Related Educational Theory..............uuiiii 54
Section 6: Related BUSINESS TNEOIYocvvvviiiiiiiiiiiiie e e e 56
. METHODOLOGY ..ouiiiiiiiiiii ettt e e e et e e e et e e e et e e eaa e e eaan s 59
V. FINDINGS ...ttt bbbt e et e et e e e e e e aeeaeeeaaaanaans 64
Section 1: Anticipated FINAINGSooiiiiii e 64
Section 2: Actual FINAINGScooiiiiiiiiiiiei e eeeeeeeeenees 66

Chapter Page

V. FUTURE WORK ...ttt e e sttt e e e e e e e e e e aeaaeaeas 75
Section 1: Future WOork in Code SECUNLYccevvuuuiiuiiiiiiiiee e 75
Section 2: Future Work in Computer Science Curriculum.............ccccevvvvvvvivivinnnnn 77

V1. CONCLUSION. ...ttt ettt e e e e e aaaaaaeeaaaeasaaasannannsssreeeneeees 81

REFERENGCES ..ottt ettt e e e e e e e e e as 84

APPENDICES ...ttt ettt e e sttt et e e e aaeaae e e e e e e e e e e aannnnnnnareraeeeees 93
Appendix A: Informational Script on Human Subject Research....................o.... 93
Appendix B: Informational Handout on Human Subject Research....................... 95
Appendix C: SUNVEY INSTIUMENTccooi i 98
Appendix D: Course SYlabus...........oooviiiiiiicei e 104
Appendix E: Revised Course Schedule ... 107
Appendix F: Program 3 Starter COUE........uuuuiiiiieiei et e e e e e e 108
Appendix G: Program 4 Starter COUEuuuiiiiieieie et 110
Appendix H: Program 5 Starter COde.........coovviviiiiieiiiiiiiiiiieee e e e eeeee e 111
APPENTIX 1 SUIVEY DAlacooeeieeieeieeeeeee et e e 112

Table

4.1
4.2:
4.3:
4.4.
4.5;

1.1
1.2:
1.3:
1.4:
I.5:

LIST OF TABLES

Page

Pre-Test Results (Test Subjects vs Control Subjects)..........ccevvvviiiiiiiciiiennennn. 67
Control Subject Results (Post-Test VS Pre-Test).........cceevieiiiiiiiiii e 68
Test Subject Results (POSt-Test VS Pre-Test)cccveeiviiiee e 70
Post-Test Results (Test Subjects vs Control Subjects)oouvviiiiiiiiinnnnnn. 71
Improvement of Results from Pre-Test to Post-Test

(Test Subjects vs Control SUDJECES)coeeviiiiiiiiiiei e 72
Pre-Test Control SUDJECt Dataccccoeviiieiiiiiiiiiieiece e e e 113
Pre-Test Test SUDJECE DAtuuuuuuiiiiiieeieeeec e 114
Post-Test Control Subject Datacccooviiiviiiiiiiiccee e 115
Post-Test Test SUDJECE Dataccooeiiiiiiiiiiiii e 117
Answer Key and Unpaired Subject Dataccccevvvvvvveviviiiiiiiiiiee e 118

Vi

CHAPTER |

INTRODUCTION

As the Internet has increased greatly, the means both to accesglamtidbiote both code and
data, computer security problems have become significantly more raamghptoblematic. The
Internet is not the cause of all of the individual security issudgeoforld’s computer systems; it
merely magnifies the scope of the problem and the rate at which tlcaséystireats spread.
Often the Internet, in fact, can help increase the awareness dfysponislems and increase the

rate at which solutions for known problems can be devised and disseminated.

Security problems come in three basic categories: policy-oriented,rikegviented, and system
specific. Policy-oriented problems are studied in detail withirriinétion security courses.
Network-oriented problems are examined during network security coutther system-specific
problems are studied throughout system security courses. All of tleesiysproblems have
two common characteristics: they are caused by people and many traditemaksto solve

them have focused therefore on computer science education.

In computer science education, security continues to increase in imgodiao continued

growth in computer use and computer intercommunications. Even though existirty secu

problems continue to be solved, unless academia can continue to educate easlveucce
generation of students in security, these successive generations nfsslikeéey will replicate the
problems their predecessors already have solved. Education cannot preveytmetlems

altogether, but it may reduce significantly the frequency and magnitudaio problems.

Currently, security problems are considered to be out of hand. Acadesperately needs to
take corrective measures now, for the sake of both the immediate andriorfgture. Industry
is already attempting to handle security issues through continuing ietueffbrts in secure
coding in addition to more traditional areas of information security, netvectlity, and system
security. Itis based on this trend in industry that the author proposes aseddi®zus on

secure coding in computer science undergraduate programs.

The author proposes that all computer science undergraduates should béginehsed focus
in security immediately after they complete Computer Science I. ThislWwewdone through a
code-oriented secure software development course. The objectivesaniutse would be to
teach the importance of code security, to instruct in practical coglthgitjues for making
programs more secure, and to provide practice in these secure coding techmitggieroposed
course would teach students these secure coding techniques without intredycsngnificantly
more complex data structures or algorithms, leaving those topics for atrab@iomputer

Science |l course.

There are two notable rebuttals to the author’s proposal. Theefingttal is “Computer Science
is not programming!” Yet as Dr. Bjarne Stroustrup explains, this mayibatracademia’s and

industry’s peril:

“I find that CS professors often overreact to the inaccurate populgeiofahe
software developer as a lonely guy with ‘no life’ hacking code altnifo
counter, they cry ‘Computer Science is not programming! That's true csepur
but that reaction can lead to a serious weakening of programming slstbere
adopt the snobbish attitude ‘we don’t teach programming; we teach computer

science’ and leave practical software development skills untaught.” [67]

Unless academia chooses to require programming competence as agiteregu@Edmission into
undergraduate computer science programs, programming must continue to he Taiglgads
to the second rebuttal, which states that today’s undergraduateilcunrigiready is overloaded.
It can be argued that the computer science curriculum does not have roonhfan sncrease in
secure programming emphasis without some sort of corresponding dedreasgiestion of

what to decrease in order to offset this increase is outside thedfdbperesearch.

Every software developer, from the initial architects to the maintenstaff, must understand
security. Not every software developer has to bexpert in security, but they all need to be
competent. One mistake alone can open up an entire system to serious vulnerabilityccdéme a
granted by today’s Internet and portable data storage devices requekspdes to consider any
program on any computer system a potential security risk. A program that doegens¢tiarity
in mind from the start of the design should be considered completely unacceptkbleise, a
buggy program written by a weak coder should be considered just as greakofBath of

these problems are addressed by the author’s proposal.

An alternative to adding a dedicated security course is to integratgtgehroughout the
computer science curriculum. Some even have suggested integratinty skeughout each
computer science course rather than inserting it as a short seat@achafourse [36, 45, 69, 75].
Some have shown how this might be done even in Computer Science | and claim to have
accomplished this without detracting from the course’s other contengvieowit also has been
shown that Computer Science | already has accumulated many new topics gearsHel]. If
new topics continue to be added, it is only a matter of time before Compigac&| will
become so overloaded that it must be split into multiple courses or haundith@ual topics

further diluted each time a new topic is added.

A purely-integrated approach, where security is integrated into othesesdout no single course
is dedicated to security, is not the only way by which security histgricai been taught.
Academia has taught and continues to teach dedicated security courses tdaggmen and
graduate students. The author submits that a purely-integrated apgepaalell may be a grave
mistake. Students may misunderstand, and may believe that sexaripic of lesser
importance. A purely-integrated approach also may take time away frdnaditenal teaching

of programming fundamentals at the very beginning of the major.

If a student begins their study of security believing it is of leisgportance, because of its status
as a secondary topic in another course rather than being the primary tépiovai course, then
the student is less likely to pay security its due attention. Like\fia student does not spend
enough time focused on basic programming techniques they still may haveewettgydd

programming skills when they are required to write more complex software.

Put another way, does one ask a child who still needs training wheels dndpdiz to pull a

wheelie?

The author proposes letting students complete Computer Science | befcatteheyt to cover
any significant security content, but immediately after Comput@ng8eil has been completed
the student commences a focused study of security in a course on segtamming. The
author believes that the students need to be able to practice fodin€dmputer Science | level
of programming techniques while learning secure coding techniques thaliovilltheir code to
operate correctly, even when being subjected to malicious influencekerfuwte, Computer
Science | students do not contemplate “the impossible” as much as they <bauntddmplating
how to write code that can deal with “the impossible” should become their lfastiidents are

going to be able to create secure programs, then Bishop and Frincke assert:

“The final characteristic of robust programming is to assume that gitpes
events can occur. Impossible cases are rarely that; most often, thegedeh
an expectation that something in a particular environment will be highikebnl
Thus, when the environment changes - or a program moves - seemingly
impossible events can occur with regularity. This is a difficult conizeteach,

in that it requires a broad perspective on possible usage scenarios and a
willingness to be penalized, if necessary, to guard against unlikelyrences.
Student programmers must learn to identify the assumptions they do not
consciously realize they are making - a paradox. Once they’ve idettiifisel
assumptions, they must learn how far they can go in handling the associated

impossibility.” [7]

Authors from industry have written books that could be adapted for this sartl@fsecurity

course despite being written for an experienced, industrial audienc[138,34, 49].

At least for now, the author is unable to require his own students to takeate@decurity
course. Such a course would be added to an already overloaded curriculum, egrighwduld
displace other material if it were to be required. Even if it wererain a mere elective, it
doubtless would displace other electives within an individual student'®stutlhe author
consciously proposes a suboptimal solution to what the author believesnh intractable

problem.

CHAPTER Il

REVIEW OF LITERATURE

Section 1: Problem Overview

Computer security problems have existed since the dawn of the digital coemaug®, 57].
Site security - the control over the knowledge of the site and aoctmssite in which the
computer was located - was the principle concern before computers cadddssed remotely
and have data electronically transferred from computer to computer. S$itgysesmnains an
important portion of the overall set of computer security issuesiné bas been joined by
various other issues. Routine remote access to computers has made zeduboess much
easier to achieve. Today, it should be taken for granted that any compuieattassible from
any public network - particularly the Internet - is a likely tafgethackers. Routine transfers of
data between computers also have facilitated both unauthorized acctss spréad of
malicious software. Even computers that are isolated from networks aezahlé to infection
by malicious software on portable storage devices. These problentbetogigh the increasing
dependence on computers during both routine and critical activities, havet madesisary to

focus additional effort toward combating computer security problems.

Site security and hardware support for security still are validrmportant areas of study. They
generally ardeyond the scope of an academic computer science study of computer security,
though. Instead, this study focuses on the computer security problems related taesshbtid
by computer software. Whether by errors in design and coding or by user-perceived
shortcomings in features and usability, all non-trivial softwamapeerfect. Even trivial software,
such as a throwaway developmental prototype program or even a simple “Helth"W

program, can be considered a potential security problem if it either carnugeauthorized access
or can deny authorized access due to abuse or even just excessive use [49]. lImdeeculivial
computer software is a potential security problem and even somégdftisare can be a
potential security problem. While careful, skilled, and extensatentgmay find some problems,

testing rarely ever will locate all problems in a real worlolgpam [33, 34, 49, 77].

Software development, like so many other fields of business, operates undgemant-
imposed priorities and constraints. Historically, for many projectqribdties have been
features and time-to-market [35]. Constraints upon budgets and staffim¢jrhded the work on
the aspects of projects which management considerers to be oplésssr. Security too
frequently is given such a (lesser) priority. This is because secammonly is analyzed by
management using a Return-On-Investment prioritization system [#ifiGnt investments in
security may noseem to yield an obvious return on the investment required to create them unless
someone invests even more time and resources by reviewing log recordgyemd reporting
their findings to management. A better model for setting the priority omityetught be to
consider security like an insurance policy [49]. Any good business manager knobas tha
sufficient level of insurance is a necessity. Attempting to operater@elbssvithout sufficient
insurance may be possible for some period of time; however, when a majonpoaiiers,

insufficient insurance may destroy the company. Likewise, when a majoriglbtemputer

problem occurs, a sufficient level of security may prevent it from begpanproblem at all
whereas even just a single flaw in any critical component may doom thermonipa
management can be taught to think of security from the perspective @riosuthen security is

more likely to get proper attention in the future.

How can management be taught to think of proper security as being like prayp@nice? Most
managers are university-educated. In the software development industtynamagers were
either business management majors or computing majors who moved up intomemtage
positions as their careers progressed. One solution would be to reexasraaeicational
curricula that future managers are going through and adjust them ad tegoe those future

managers a more proper attitude toward computer security.

The developer’s own attitudes frequently both can compound and can explaiolitens of
management-imposed constraints. Too many developers simply ignore tht@apfatesecurity
problems in their projects [23]. They seem to believe, according to Westlzers, that security

is someone else’s problem [17]:

“[Pleople tend to believe they are less vulnerable to risks than Stfvetls

It might seem like security is best left to the experts: thodemdtjors, minors, concentrations,
and areas of emphasis in computer security, network security, informssiaraace, digital
forensics, and other similarly specialized areas. Security is notpusbkem to be dealt with by
the experts, though; security is everyone’s problem [26]. The factia fiagle security flaw in
a single program can leave not just a single system vulnerable, buigliytepen up all other

systems on the same network as well. While a small staff of seewpierts indeed may be a

very good investment for any sizable software development project thé individuals
associated with the project need to have a basic competence with sethistyncludes the
initial architects and designers, the coders, the testers, the heplogxperts, and even the

maintenance team.

Perhaps it is because of these priorities, constraints, and attitatlegcurity has been treated as
an afterthought in industry for so long [37]. Too often it has been somethingathlat be
primarily left to the testers, and even the users, to discover tddaresecurity. Once a security
flaw was reported a sufficient number of times to be considered more ghamere fluke or an
odd glitch, the maintenance teams quickly would be instructed to juspmg sort of patch that
would prevent further exploitation of the problem. Unfortunately, all too dftemiaintenance
teams do not have the glamour to attract the best talent. Even if themaat# teams do
understand the system that they are maintaining and the nature of they geobtém
sufficiently, the problem may not be easy to fix if it actually is dusoime of the more
fundamental assumptions in the software’s architecture and design. Manyh@srgre
discovering that it is not as economical to make massive changestlaeproject as it is to
design the project better and implement it more carefully from the §this habit of treating
security as an afterthought is beginning to change, though. Industry has raizbdy need to
integrate security throughout their software development procesgedH&®ever, industry is
not the only place that security has been treated as an afterthought. i&cadehone it as well

[69, 70].

Industry has begun to recognize that academia has not been preparing seftwimeets

properly to deal with security issues properly, and industry has begun thaakesponsibility

10

partially upon themselves [66]. Fortunately, academia has recognizaolihenpas well, and
knows that its graduates lack the knowledge of security issues thaitetbey4, 11, 51, 66, 78].
Unfortunately, knowledge of security issues alone is not enough. Too many students a
graduating without the skills to deal with security problems, even when theyvare of the

problems [78].

Section 2: Historical Academic Approaches to Computer Security

The reason so many students lack a sufficient security knowledge argkslsidue, in part, to
the fact that security coursework is not available in many univer§id. Several universities
gravely are lacking in any faculty who have a real interest iniggdet alone any faculty who
specialize in security [48, 69]. Numerous universities do not have eisnffnumber of faculty
members to teach security in addition to the other coursework that currerstiype included in
the curriculum. Neither do many universities have their curriculumtatacin such a way to
allow their students some time for security coursework to be taken. reitir@that do offer
security coursework normally do not offer said coursework until late inntergraduate
program or even the graduate level [51, 56, 69]. It is impossible to expstsoftware
developers, many of whom only have an undergraduate degree, to be competent in computer
security if security continues to be something generally left for gtadierel studies. If security
is required at some point in the undergraduate program, then some levepeteoee can be

assumed. Unfortunately, few universities require security courkewany level.

11

Too many universities that actually offer security coursework meifédy it aselective
coursework and do not require either their undergraduate students ordadestg students to
take any security coursework [26, 44, 50, 51, 54]. While the availability afiveeoursework
still may be better than not having the option to take any courseworguritget all, this still
results in significant numbers of undergraduate students, and even grstddants, having
insufficient exposure to security. In many cases, including that of therait is possible for
someone to complete computer science degree programs all the way up tlaodigictuding -
the doctoral level without taking a single course dedicated to comgataitg. While it should
be noted the author has made an extensive study of security as a portion of therdeetmeh
project and has taught a course on computer security, this does not sugggsway that the
average undergraduate student or graduate student similarly lacangnclication of security

coursework from their transcript will have any similar personal ssuafisecurity.

There are three primary approaches or subtopics most frequentlyctovareacademic study of
security: information security, network security, and system sg¢6fl]. Sometimes a course
on one of these three will be offered as a focused examination of that subtmupaiter
security. Other times, two or perhaps even all three of these sushtappibe combined into a
single course on security. Occasionally, another approach will be covenagl che of these
courses, though, that being a code-oriented approach to security, d@sstteethae other security
topics in that course. Lastly, there is without question a certaéhdéecomputer security that

can be and is being taught to non-majors [16].

Section 2.1: Information Security

12

Information security is the study of policies, procedures, and technolbgtesan be employed
to protect the confidentiality [9, 30, 40], availability [40], integrity [9, 80], authenticity [9,

30], and non-repudiation of information [28, 30]. Sometimes known as informaticar@ssu
[40], this area of security predates even the earliest parts oktbheyhdof computing. Information
security has been and continues to be a focus of incredible importancedm¢haind outside of

the computer world.

The objective ofnformation confidentiality is to ensure that no one can obtain understandable
information except those duly authorized to do so. This extends to infonnianon-volatile
storage, information in volatile memory, information in transit between campystems, and in
some cases even to information in transit inside a single computery tétdniques have been
developed to protect the confidentiality of information, but none prove rffeige than the
prevention of access to the information. If one is not able to accessdimadtibn remotely,

then other techniques are unnecessary; however, breakdowns in acaespalicies and
procedures routinely occur, particularly in transit, and it also is goitenon to attempt to
conceal the very existence of the information, also knovaeganography. The use of
steganography can be traced back at least 2,400 years in the writingsddtbe{a0], yet
information sometimes is discovered despite the best efforts tealanaherefore, it also is
quite common to attempt to obfuscate the information as well, also kncsypesraphy. The
use of cryptography can be traced back at least 2,000 years in the vaiitngslulius Caesar
[38]. Itis quite possible that steganography and cryptography date even fiatken history
than believed, and yet - despite their ancient roots - they remam @reonsiderable interest and

importance within the computer world.

13

The objective ofnformation availability is to ensure that information can be accessed by all
those duly authorized to do so. One of the earliest known techniques for engorimgtion
availability is the engraving of said information into stone displaggaublic places.
Unfortunately, this technique is in direct conflict with information aderfitiality and so cannot
be used with confidential information unless steganography, cryptograplseaitgty, or a
combination thereof also is employed. A more modern technique is the doplead
distribution of numerous portable copies of the information. Whitedtplication and
distribution technigue has been proven extremely successfustatithinformation, including
some documents well in excess of 2,000 years old, it clearly and quicklysfaiteeahnique for
the storage oflynamic information. When the information is of a dynamic nature, there must be
a reliable means for determining whether a copy of the information iatedtdnd updating the
outdated copy. An even better approach is to update preemptively all dutdptes without
delay once they become outdated. Particularly when dealing with dynamioaitifmm or even
just copies of static information, there also must be a means to émsimeegrity of the

information, something that remains a topic of study even to this day.

The objective ofnformation integrity is to ensure that information is not changed except by those
duly authorized to do so. One of the earliest known techniques for assuring trdormigrity

was to store the information on some sort of medium that could be written ahar, Wwhich

any attempt to edit the information would be immediately obvious. Engravingfthmation in
stone or writing the information in permanent (often slightly acidic3 mk papyrus or parchment
were some of the most common ancient techniques to ensure informatioryint€pe

boundaries of the information were often marked with either borders or daeetings and
salutations to prevent any additions from being prepended or appended. Any attdtapttie a

information would be obvious immediately and therefore reveal a lacieafrity. This same

14

technique remains important to this day and frequently is referrediie computer world as a
WORM (Write Once, Read Many) storage system [19]. While this systekswvell for static
information, it has difficulties with dynamic information unlessitonsidered acceptable to
create a new WORM record every time the information changes. D#spjti today’s
information-oriented world, some places consider WORM recordaisibagceptable, but
actually prudent or even legally required. In the case of dynamic infonrihat is not stored on
WORM devices, perhaps due to the frequency and volume of changes, more elabeastadsn
must be taken to ensure information integrity. In these cases, multijepsarequently are
used to allow comparison between copies in order to detect any failunésrmation integrity.
However, all of this assumes that physical storage of the informatlmirig dealt with
exclusively, rather than electronic transmission of that samemaf@n. In the comparison of
multiple geographically separated and frequently updated backups, thig isle@t the case.
The issues involved with the assurance of integrity in electrbnicahsmitted information are
substantially different. Error detection codes, error correction cogesrgotographic systems
are each currently in use for assuring the integrity of electibnicansmitted information.
These systems, as well as systems for updating, comparing, and synchraogjragphically
separated backups, all remain modern research topics of signifi@estrih the computer

world.

The objective ofnformation authenticity is to ensure that information was produced by those
who claim to have produced it. One of the earliest known techniques fangsatormation
authenticity was to have a mutually trusted agent deliver it from touper to the consumer.
This technique remains important to this day both in the computer watldeyond. Within the
computer world, the use of mutually trusted encryption protocols for thecgon of

communication sessions is very common to ensure that whatever the coreeined did

15

indeed come from the producer. Nonetheless, middle man attacks continue tovercaganst
communications sessions protected by widely trusted symmetric encryygtems. Another
early technique for assuring information authenticity was the uspe@fsanal mark, personal
signature, or personal seal. The required use of personal sigratfinedize financial
documents, and to make legal papers official, continues to the presentdzgnebe expected to
continue well into the foreseeable future. Likewise, the use ofbgignatures has become
common within the computer world to ensure the authenticity of digi@inrdtion both with
stored information and with transmitted information. These diggalksures are frequently
either an appended duplicate copy of the information or perhaps the only cbpyirdbtmation
in question, in either case, with the digitally signed portion having beeyptedwith an
asymmetric encryption system where the encrypting key is kept phbydte producer but the
decrypting key is made public to those who have legitimate need to Verifuthenticity of the
information. As the level of protection provided by older encryptions degradey, stored
copy either must be updated periodically by the information’s produtieiswonger, more
modern asymmetric encryptions or the level of assurance for the acitieitthe information
will decrease over time. This further necessitates continued aglgl, Biven perpetual research

into asymmetric encryption systems.

The objective ofnformation non-repudiation is to ensure that information cannot be disavowed
by those who produced it. One of the earliest known techniques for assuring fitflonnaen-
repudiation was the use of a receipt. The most common situation fosdlw# a receipt to ensure
information non-repudiation is almost certainly a sales receipt docingehe list of items sold
and the prices at which they were sold. In the case of an authentic remeiptfinalized sale,
this generally is considered sufficient legal proof of sale antethes of the sale to prevent the

seller from subsequently disavowing the sale or debating the terms ofehé\sather common

16

use of a receipt is the post office’s proof of delivery receipt. ddrismonly is used as legal
proof that the post office did indeed deliver the specified packet tpéudised recipient and
show when and where the delivery occurred. However, unlike the example of @ cailes a
post office receipt does not always make clear the contents of tket paquestion. Within the
computer world, log records can provide some assurance of informatioematiation. If the
authenticity and integrity of transmission logs can be assured, then thepuatiation of
information transmission may be assured as well, so long as the logs cufdticient details
about what it was that had been transmitted. Likewise, if the autheatid integrity of login
and activity logs can be assured, then the non-repudiation of informatiory lpeaérated may
be assured as well, if the logs contain sufficient details about theyactiguestion. From
another perspective, though, this area may be considered a special vahanhfofrtation
authenticity problem if a digitally signed receipt with sufficient detlout, or preferably a
complete copy of, the information in question is produced. The criticatetiffe being that the
aging of the digital signature would eventually weaken the digitahgige’s ability to ensure
non-repudiation, and therefore research into information non-repudiationkietontinue into

the foreseeable future.

Modern academic studies of information security typically include t#ofical topics such as
steganography, symmetric and asymmetric cryptography, data backupssys@mRM systems,
and digital signatures. They also include even more extensive studidiespnd procedures
such as access control, the storage of information in secure geodhpplisperse locations,
layered defenses [42], business continuity and disaster response,ideitimanagement [9].
Given the incredible amounts of data used and generated daily in modern doeigtydrtance
of information security cannot be overstated; however, a proper stufpwhation security

traditionally requires a database course prerequisite, and pathasfile systems course

17

prerequisite, in order to provide the necessary foundation in modern data séotagques. A
networks course prerequisite also is important for the study of infornssumity related to
information in transit through computer networks in order to provide the sagdsundation in

network hardware technologies and software communications protocols.

Section 2.2: Network Security

Network security is the study of policies, procedures, and technolbgiesain be employed to
protect computer networks and the connected systems from threats imdgiigitin the
network, in addition to those originating outside the network. Network sésypitynary
objectives include authentication of users attempting to accessttherk segments and their
associated systems, exclusion of malicious software and data fromwloeknetnd prevention of
snooping or modification of transmissions in the network. Common network seooigy
include authentication servers, gateway proxy servers, demilitadnes znetwork monitors,
anomaly detection systems, honey pots, firewalls, antivirus softwarentsplyavare software

[38, 64, 68].

The objective of the authentication of users is very important toarbat only authorized users
can access the network, and even then insure that they can access onlysteoseasyd network
segments that they are authorized to access. Some networks allow useasevbedn able to
log in to a system to access that segment of the network and public resduheesetwork,
including external access to the Internet, even if they logged in to themsysing a guest

account. These networks are basically public access networks, wihethtant or not, and the

18

systems connected to them should be considered to be at high security rigskne@tbeks will
not allow any users to access the network unless they have been augehyiaanetwork
authentication server, even if they were able to log in successfdlgystem on the network.
Others will go so far as to exclude any system for accessing the nemtibidaid system’s MAC
address is added to the authentication server’s list of systemsizedhoraccess the network.
These private networks only are more secure than public netwohlksdfithentication servers
and users’ authentication information can be kept secure. In the case edftomnrequests
originating from outside of the network, it is not uncommon to require authdotido a proxy
server at the network gateway in order to enter the network and aogesgstems therein. This
technique also can be used at the boundaries between segments of a netlarle that
significantly different security levels. It also increasinglypecoming common to set up a
demilitarized zone to contain network resources that need to be exposed to lower securityknetwor
segments or to external networks, including the Internet. This deinéilazone then would
have its access to the more secure internal network segmemngfsillg controlled to prevent
unauthorized access to the more secure network segment(s) [65]. adtéiss points between
different segments it is very common to have network monitors, sometitteabmacked

sniffers, and anomaly detection systems in use to detect policy violasievedlaas monitor
technical conditions on the network. When policy violations are detébdsometimes can be
traced back to authorized users attempting to do things which violaterketuolicy settings but
actually may be completely acceptable under organizational poliayexBmple, the author once
heard an engineer tell of the difficulties she encountered with assacastrol system while
trying to find technical data on a particular type of “screw” she proposexktm the machinery
she was designing. The author also has personal experience with web pamyesatishrough
Internet searches being analyzed and falsely classified as “pornograghybeked until the
author had a network administrator examine the site, confirm the false @oaitd/release the
block. However, not all policy violations are innocent. Many policy violatiane indeed

19

evidence of unauthorized activity, either by authorized users or by irgridgrsomehow have
penetrated the network. Some of these intruders utilize stolen ce¢slemtl others use forged
credentials but in either case, the ability sometimes to discaxerltl their policy violations or

other anomalous behavior is growing in popularity.

The objective of excluding of malicious software and data from the neta/gery important for
maintaining good technical conditions within a network. Even if theydaiatise any additional
harm to the network and its connected systems, viruses, worms, spyware, Tngas, ldpam,
and many other forms of malicious software and data all consume network dtmairhe very
least. If the network traffic containing these malicious programs aactcda be intercepted and
dropped at either the network’s exterior gateway or the boundaries betwssgnitsnts, then it
will minimize the amount of wasted bandwidth and the number of systems expossd thase
systems are vulnerable to that particular threat. Indeed, moshsyate vulnerable to denial of
service attacks and even more so to distributed denial of servicksatiEhese attacks can result
from the delivery of any sort of network traffic - be it a virus, spamyen seemingly innocent

web page requests in the case of a web server.

The objective of prevention of snooping or modification of transmitted paisketsy important
for assuring the confidentiality and integrity of information imsiathrough the network.
Encryption is one of the most common techniques to ensure the confitienfiatformation
against snooping during transit. Symmetric encryption systems usingkatvewed encryption
keys may prevent an outside system that has infiltrated the ketwor compromising the
confidentiality of information in transit, but they are virtually usglagainst snooping

perpetrated by a system authorized to share that network encryption keye Bession

20

encryptions are much more secure than shared network encryptions buetheyer private
and secure way to negotiate or even prearrange the session encryption keysngconfini
transmission packets to the minimal number of network segments rgdedsansfer the
information from source to destination also is helpful and is one of itthangrresults of the
replacement of older network hubs with more modern switches and routers. @sanm
encryption also is very useful for assuring information confidentialid is one of the most
common techniques to ensure the integrity of information against moidificiuring transit.
Asymmetric encryption also is highly effective for negotiating gévsession encryption keys in

a network where snooping otherwise would be a serious concern.

Reliable network security is a necessity for any network that wilbbeexted to the Internet, or
any other public network in any way. A proper study of network security gleaylires a
networks course prerequisite in order to provide the necessary foundatiowadnkrigardware

technologies and software communications protocols.

Section 2.3: System Security

System security is the study of how to protect a computer from both human and automated
exploitations. It includes the study of secure operating systems, lfgeartivirus programs,
antispyware programs, anomaly detection systems, log audits, softwat@gipaiad - in many

cases - even hacking tools and malware attack techniques [65].

21

The study of operating systems’ security features and charactesstio®iy important part of
system security. Certain operating systems are more secure than &bme operating systems
are designed with security as an important foundational principle. Mtstse operating
systems achieve their greater security due, in part, to carefulasabhtusers from other users
and processes from other processes. While heavily criticized by some@gsdrgi wasteful of
resources, this can be a very effective technique and is gaining pgpalsuitin be seen in the
growth of virtual machine usage. Some operating systems also can beansiderably more or
less secure, depending on how they are configured. Access permissionisuttepdudve a huge
potential impact upon a system’s security. The permissions set on uaifilds and folders can
be customized to limit which users and applications may access theenshivesd be set so that
the smallest number of users and applications are allowed access, Wigitarging access to all
those who have legitimate need. Types of access also can be custooiizatpsly those
particular permissions that individuals and applications actually neegtamted to them.
Additionally, overall permission of multiple accounts can be categbiite groups and then
customized either to authorize or to limit their activities and #tzess permissions on a system-
wide basis. Proper use of operating system provided permissions casigmafieant
improvements in security on a system-wide basis. Conversely, improperaparating system-
provided permissions can create significant vulnerabilities in $g@curia system-wide basis.
The security of the operating system is one of the most fundamentalirsswesall system

security.

The study of hardware and software firewalls is a very important paystefins security.
Firewalls are used for blocking unauthorized transmission into and out ofpaiEymBYy
limiting the transmission ports and protocols to a certain autlibliste many potential problems

will be prevented completely before they can ever occur. Alsae modern firewalls can be

22

tied in with antivirus software and antispyware software to scanciming packets for
malicious software and all outgoing packets for communications to known bathepyware
controllers. Anomaly detection systems also can be configured tohesnpackets attempting
to pass though the firewall in either direction for policy violations to prosiee greater defense

in depth for the system at the firewall border with the network.

The study of how to audit system logs is a very important part of systentyse€uequent
audits of the system logs also can reveal evidence that the systémciome a target of interest
to the outside even when it has not yet successfully been penetratedndmesfor unknown
users begin showing up in the logs, or if unsuccessful login attempts show up and are not
immediately followed by successful logins from those same accountsyemeslow and
sporadic penetration attempts may be uncovered. Furthermore, even sutmgissftiom an
authorized user may reveal unauthorized access, particularly ifigged connection source IP

addresses or times do not conform to established patterns for the user anquesti

The study of software update issues is a very important part of systerityseMany modern
software systems are capable of automatically updating theesssebyme even when they do not
have a user currently logged in. This frequently is accomplished by havisgftivare activate
and connect to an update server every so often to inquire if there are updidddea While
many users may enjoy not having to invoke manually their update routinesif@ystems,

these automatic update features actually can be both good and bad, dependinghensiistem
is being used, how the update features are configured, how critical the saftwathe system in
question, and how well the updates are tested prior to release. Someillsetsemain logged

in to their system when they are not currently using their systethe Hutomatic update features

23

- and perhaps even the operating system itself - are not configuregWtaiptiates while the user
is not logged in, it is likely that update routines may be triggered upotogsger If the user is
logging in to perform some time-critical work, it may be very inconveri@rdny number of
update routines even to begin checking for the need to update let alorly dotwaloading and
installing updates each time the user logs in. Users that have had too many badeegwith
such frequently will find ways to disable the automatic update systeney, flogvfrequency of
checking for updates, or leave themselves logged in to their systenthéyilare not using the
terminal and potentially even while they are away from the termirtaésd responses can result
in lower security as updates get delayed and can allow unattended and unlookelg¢o be
accessible to other individuals. For critical software, substantasian installing updates
unacceptably may extend windows of opportunity for system exploitation, evesaftgons to
the problems are well known and widely available. Unfortunately, not aVa@f updates are as
fully tested as they should be. A recent example of such was when an antivinfachaer
released an update which falsely identified and quarantined thaldvitindows XP Service
Pack 3 svchost.exe file as malware. This caused all such affedtehsys crash as soon as
they were rebooted [46]. Additional reboots would not solve their aiaskboot problem.
Computer support technicians were forced to visit and manually resttrefected machine
including at some rather large companies that experienced failure irajbetyrof their personal
computer systems [47]. This, and other similar problems with software sgdatemany
different vendors, has led some to question if one should install updates as soey are
available or if it might be better to prolong the potential risk ofatqtion in order to allow

other earlier adopters to test more fully the updates.

One of the most controversial historical aspects of system sesuaitjmovement towards

teaching more students how to hack and how to write malware [18]. It has beed point

24

though, that the best defenses are the ones that are constructed by those vitity must
understand the attack technigues that may be employed against thosesdéfetsed9]. While
this historically has been done in some academic settings, it hast matyeved universal
acceptance in academia and is met with particularly strongamsésin the administration, the
university’'s lawyers, and in the information technology support depattat many universities

[71].

Without reliable system security, all the best efforts towardnatigiinformation security and
network security are for naught. A proper course in system security eqtileast an operating
systems course prerequisite in order to provide the necessary foundation in ameonigirgs,

process scheduling, process management, and inter-process communications.

Section 2.4: Code Security

Code security is the study of well-known coding techniques that have sagihidiecurity
implications. Code security topics often include information leakaderddb protect data and
code, numeric overflow and underflow, buffer overflow, exception and error handlogg, r
conditions, environmental assumptions, issues of trust, usability issuesessardg high
execution privilege, command injection, SQL injection, string formatlks, pseudorandom
rather than truly random number generation, and weak cryptography [19, 33, 34]. Sbeseof t
issues are discussed as general design and coding issues in course€eugbuter Science |,

Computer Science Il, and Software Engineering. Others are discusseddesstly as generic

25

design and coding issues in any other courses and are therefore sometenégnassed at

those universities that do not teach code security coursework.

Information leakage historically has provided huge amounts of infamadgiunauthorized
recipients and, in many cases, lead to even more serious problems, bothnidgidésale of the
computer world. Information leakage can happen any time a program providesayuser
information other than that which is absolutely necessary for theaiaecomplish their
authorized work. Information leakage also can occur when those chargedoasittipg the
information incorrectly have authorized individuals to accessnmdton they have no need to
access, but that is more in the domain of information security than trade&ecurity.
Information leakage also can occur when computer storage deviageséiey users that should
not have the ability to read them, but that problem is more in the domainsrofatifin security
and system security than that of code security. Rather, the infomtedikage problem within
the domain of code security involves the program being designed and coded to provide
information to the user that it does not need to provide, including sucls gendjsplaying

unmasked passwords during login.

At first, the failure to protect data and code may sound as though it was relatednation
leakage very closely. Actually, this is not the case. In tHmrefbcode security, protection of
data deals with making data private to pieces of the same prograhtc aether programs which
share part of the owning program’s memory - that does not need to datqsarticular piece of
data. Protection of code, in the realm of code security, deals with makiogddémmutable
during its execution, and potentially making it unreadable to other preaaststde of the

operating system and security applications.

26

Numeric overflow and underflow normally are assumed simply not to happkeii programs

by far too many programmers. In many cases the operands in question mighttzenech®
prevent overflow or underflow from being possible in some way. However, insithations,
when the numeric result both will be output immediately to the user hed any overflow or
underflow would be obvious immediately, it might not be necessary to chreckeidlow or
underflow. If the numeric result either is stored or used in futdcelleions, then the code
needs to check for overflow and underflow. Fortunately, overflow and underfloveigreasy

to detect at the hardware level. Unfortunately, if they are not detewdeati@erroneous result is
then used in further calculations, it potentially can produce dissstesults in the case of critical
code. Even in less critical code, numeric overflow or underflow can lesttido code failures,

most obviously including buffer overflows, command injection, and SQL injection.

Buffer overflow is a very common problem in languages that do not autorhatieak the size

of an array and check to make sure accesses to the array are witionrie of the array. C
language - one of the common languages in use today - along with severd dadwtherwise
related languages, is susceptible to buffer overflows. Proponents ofethgsages rightly will
point out that susceptibility does not guarantee problems and that propéghedesnd coded
programs in these languages can be completely free of any buffeoawpréiblems; some will
go so far as to point out that the very lack of bounds checking should bh#ecedsadvantageous
for the sake of execution speed in that the time for bounds checkingpwile wasted in those
situations where the indexes somehow are constrained alwaysvittiall the array’s bounds.
Others will point out that it is a simple process to design and cool®pocind structure and a set
of routines to operate on it that will perform bounds checking if the ovéfoeauch is

considered acceptable. Furthermore, in the case of inlined and optsuiredtines, the

27

overhead actually may be partially if not completely optimized backfdheaesultant code if

the optimizer detects the code to be unnecessary.

Exceptions and errors are sometimes checked for in particular coohescand reported back to
the calling code for that code to deal with appropriately. Unfortunatelycuydarly when a
different coder is writing the calling code, not all calling code exanmreeseturned value to
determine if an exception or error occurred. In these situations, falseptissisnabout the
successful completion of the called routine may cause additional exteptid errors to
propagate further through the code. This potentially can lead to some dlsisgemingly benign,
for example, as the crash of a particular module of code. However, when tbigtiahmodule,
such as a security subroutine, the results truly can be disastrousoveigrexception and error

propagation potentially can lead to the exploitation of any other typecafity flaw.

Race conditions are some of the most difficult of all security flaveketect strictly through
testing. They can be difficult to test deliberately for due toithieg issues involved in getting
the exact interleaving needed to cause the race to produce obviously esrasedts. When
race conditions do occur, the resulting impact can be potentially insagtifpotentially severe,
or even cause human fatalities, as it was in the case of Theracl2®ffntial race situations
should be easy to find by manual inspection of source code when there are aallemyisiner
of different thread types, but as the number of CPU cores and pipelinesiedntincrease, the
number of threads in modern programs are similarly likely to increasellaslwa program with
a large number of different thread types, detection of some potential ractor@nstill should

be possible with compiler assistance.

28

Assumptions about the software environment in which a program may operéte aaother
difficult potential security flaw to detect strictly through testirigepending on how paths are
ordered, what the directories in the paths contain, and what is in teatonarking directory, a
program may work exactly as intended during all testing; however sligtitly different
environmental conditions, the same program may open up a host of potenti&y fieeys.

While most software developers may think of their code as being edjativeven completely
self-contained, any code that must make system calls is not trulyosedfined. Any calls to
other pieces of code that are not defined fully and statically witkicdlling code have the
potential to be exploited, either intentionally or accidentally, iéotheces of code by the same
name become substituted for the code that was intended to be called. Evewesisiphe
changes can produce unexpected results, varying from an incorrecorasuatime crash on the

mild extreme to a full-blown security breach in the worst case.

Even when the software environment is indeed as expected, there gtienssues of trust that
should be considered when interfacing with third-party software. Many laopeizrteams
license and include some third-party software as a portion of their fpro@cler to reduce costs
and to protect themselves from accusations of intellectual prapefty When such inclusions
are not integrated fully into the resultant project packagenbtgad deployed in parallel, risks

can be introduced by future updates to the third-party software.

Usability issues range from potentially insignificant to potelgtisdvere. Prospectively the most
serious of the security implications of usability issues are whedifffmulty using security

features and settings alienate users and administrators from usingwaeess available security

29

to its utmost. Fortunately, usability issues related to security shodletbetable during

extended end-user testing by observing the level of security usage by thduiseyshe tests.

Some programs execute with unnecessarily high levels of privilege. ¥éhile programs
indeed do need extensive privilege to operate correctly, few requiredtifl system
administrator privilege. All programs should have their proper executialege requirements
determined and documented at design time. This should be re-verified duriestithge and
deployment stages of their development, and their install routinekldf@austomized and
documented accordingly. Furthermore, some programs actually can bergattinto different
modules that require different levels of permissions, allowing each mmdoéeve its
permissions set as low as possible, and thereby further reducingstkeeirin the ultimate
example of problems that can occur in this area, some users - either kgawingt - do all of
their work in a root / system administrator privileged accountetheallowing all of the
programs they execute to inherit their root / system administeatel of privilege, even if the

programs themselves are able to run successfully with lower usiéegwilevels.

Command injection is one of the most hazardous categories of securiydiaevto its potential
to allow the complete takeover of the compromised system. Buffer@wsréire a notorious
mechanism for command injection, but routines for allowing commands to leslpgass shell or
even the operating system itself for execution also are poteatiaés for command injection.
One of the most subtle mechanisms for command injection is the manipulati@nextecution
environment, particularly the current working directory and possibly evgrathein such a way
as to substitute a Trojan Horse for a called external prograforandiroutine. Once a technique

for command injection is detected, a common tactic is then to open an indepenaéal

30

window (“xterm &” on most Unix-like systems) or file system window (“exptba modern
Windows systems) for the user to inject even more commands to run uspegrtiissions level
of the compromised program. Whatever the cause, command injection camnardqarehough

environmental sanitation and input data validation.

SQL injection, a variation on command injection, has been the plague of @éadgbtesns for
years. Many different database front end systems do not validate the# pmoperly before
passing them on into the code that does the actual database accessean dtiinpromise both

the confidentiality and the integrity of the information throughout saiabdate.

String format attacks are another variation on command injection. lbtieednes not validate
variables passed in to control the format of string output operationsjonalformat codes can
leak information and at least in FORTRAN, even order the shutdown ihe ggtem.
Fortunately, string format attacks easily are avoidable if tkers are willing to code a more
complex sequence of operations that determines what format is needbedrandtputs the string

with the appropriate formatting already hardcoded into the instruction.

Most developers have heard at some point or another that most computer-basectandem
generators are actually only pseudorandom. These generators are good efamighe¢@asual
human observer into thinking that they are random sequences but can expusertabstate of
their generator if their algorithm is known and if a sufficient numbeeaerated values can be
observed directly, or sometimes even just observed indirectly. Viibde generators are useful

and sufficient for entertainment and random simulation programs, theyeanbe depended

31

upon for anything that involves a true need for secrecy. Instead, cryptoghgg@tiong random
number generators and true entropy generators should be used when thereenged for
secrecy - when there is a need to be sure that the next number can newveictexigrased on

any prior observations.

Modern cryptography is based heavily in mathematics, and in many caspsnsela on having
access to a random number series of significant length. Cryptograpkteatig random number
generators and entropy generators are capable of generating thessefsarmbers, as are other
sources, but modern cryptographic systems are not invulnerable jussédoay use
cryptographically strong random number generators or entropy generators.nMnderforce
decryption technigues continue to advance in capability, reducing the Btodpgeviously
secure algorithms and key sizes. Algorithms must be re-examined cdgtiouasure their
continued validity in this ever-changing security environment. Furthermdseanot just the
programs that currently are in use that need to be updated periodicaljsdtiie encryptions of
data in long term storage. For example, it is very realistic to ettpgtatnedical records for
individuals born in the present should be kept confidential for more than a cgnemythe state
of modern medicine. Most encryption systems in use today certainly @k ldown before that
century is over, requiring the records to be either decrypted and gg#acwith a better system
or super-encrypted with a better system. If the records are supgptedc then access times
will suffer for all future read or write operations that will tbfre require multiple encrypts or
multiple decrypts. On the other hand, if the records are instead to be dédujigtand then re-
encrypted fully, then there is the potential for information leaklgimg that process. While
modern encryption systems definitely can reduce the likelihood of informatikage, except

for those that have been proven immune to even brute force quantum attacyss geshould be

32

assumed that modern encryption systems do not guarantee success lyutiaeenpt to reduce

the likelihood of information leakage.

Various computer security courses have started to include some covecage security as a
portion of the course and as it relates to the information security, keteurity, and / or
system security topics that the course focuses upon. An informatiortyseoursemight
discuss SQL injection attacks. A network security comiglt discuss which random number
generators are cryptographically strong and which are not. A systenritys coursenight talk
about buffer overflow attacks and command injection attacks. These tendexy Isemall
portions of those courses, though. They also tend not to be covered ftilltlabseé courses after
substantial amounts of time have been devoted to information securitprkeweurity, or
system security theory. As a result, the students may tend to focus omthtidn security,
network security, or system security theory as being the most impseunity topic in the
course. They may consider code security to be of lesser importanas, agkars to them as

not being important enough to attain its own course.

To date, the author has not been able to find a single academic courstnarttnés own course,
dedicated primarily - let alone exclusively - to code security. Ingustrthe other hand, seems
to be offering more and more code security continuing education courses follehe ¢

graduates in the industrial workforce.

33

A course on code security is uniqgue among the areas of computer security lsyuclhenputer
science majors in that the only prerequisite needed before such @ woutd be Computer

Science |.

Section 2.5: Computer Security for Non-Majors

Lastly, there is a certain amount of computer security that rightlying beught to non-majors.
Frankly, there are certain things that any modern computer user needs to knovoatputérc
security. Despite their considerable use of technology prior to eplieg typical college
freshman does not know what they need to know about computer security. Some i@siversit
offer computer literacy courses to non-computer science majors adwvehn these topics, among
others. Some computer science majors will take these computenlitenases, particularly if
they do not have an extensive prior technological background, but those computer isegms
that do not take a computer literacy course still need to cover the same exsegutity for non-

majors topics, perhaps even more than the non-majors themselves need to.

Some of the most important concepts that all computer users need to underdteuitts tea
creation, storage, updating, and reuse of usernames and passwords. Both ssardame
passwords should be created to be as unpredictable as possible if the usgishgsratheir
creation. The sole exception to this rule is in the predictablysshames that are publicly
released as a form of contact information, such as email addresses and wphdwaudresses.
Despite the need to have usernames and passwords as unpredictabliblas theysstill need to

be easy enough to remember that the user does not need to store them elsashexad$need

34

to be updated frequently enough to limit the window for exploitation in case she/qal is
compromised but not so frequently as to make them difficult to remember. Umgioézlic
usernames never should be reused from account to account and passwords ghobreesed
from account to account or from time to time. Likewise, trivial variatigyen unpredictable
usernames and passwords from account to account and from time to timshoeNeébe
allowed. Usernames and passwords also never should be shared betwesnt giiffividuals.
While these rules will not guarantee that username / passwordaamnst be broken, when
coupled with automatic lockouts after a certain number of failed login atitethese rules can

reduce the likelihood that username / password pairs will be broken vekiyquic

Limited access accounts should be used for most computer work and admisigtigtigged
accounts should be used only when absolutely necessary. Antivirusrepfintdspyware
software, and firewalls should be used in order to minimize the risk aitatfgn and hard drive
cleanup utilities should be used to minimize the damage that can be causecebgfslic
exploitation. All confidential information should be kept both encrypted andcedagk
elsewhere further to minimize the damage that can be caused bysfuloegsloitation. Publicly
accessible computers also should be rebooted both before and after use tdheecli@ede that
Trojan logins might be running before use and that keyloggers might haweédehation in

memory after use.

File and directory permissions should be set to restrict access as smadsile and shared
folders should be used as little as possible. File sharing programs shoetrioted as to the

folders they can share, if file sharing is allowed at all. Udsosraust understand the legal

35

environments in which they will be operating and that if their legal emviemts change, that

they need to become aware of their new legal environments.

Individuals also should attempt to limit the personal information thelpetately make available
via social networking sites to reduce the amount of information alailer social engineering
attacks. They also should know not to give out any personal information or actoumaiion
through communications that they did not initiate personally to avoid phigtsiregnail and
forged websites. In fact, the transmission of any personal informati@m te trusted and
verified destinations - should be avoided from publicly accessible compoteover wireless

networks if at all possible to avoid snooping, unless it is through the use ybtecsessions.

Lastly, even non-majors need to understand the importance of security begmgdésto
processes from the start. This principle actually goes beyond just tipaiteorworld and so is of
benefit to more than just those who work in areas related to the computriesduRegardless,
some non-majors someday will be called upon to act as subject mattes éapsoftware
development projects, and these non-majors above all must understaruirtpater security
must be incorporated into the computer software development process and desigtied i

software from the very start.

Computer security for non-majors requires Computer Literacy as a préequisorequisite and
frequently is taught as a portion of modern Computer Literacy courdessatuniversities that

offer such courses.

36

Section 3: Industry’s Buggy Code Theory

Industry is starting to become aware of a single commonality betweeaftathe security flaws,
that they are implemented as code. Some authors, including Ranum, aredhpefing out

that insecure code can be correctly viewed as simply being low quality, bodgy50, 56, 58].

"[Wlhy are we still treating security as a separate problem from qoaliy?

Insecure code is just buggy code!” [58]

Information security, network security, and system security coursgprmeide students with
some practice writing code, but as they dofaats on code, are not likely to improve the quality
of their students’ code significantly. Even if graduates are exgearfenation security theory,
network security theory, and system security theory, they stillrefaicate well known coding
errors that lead to security flaws if they are never taught thlbate coding errors happen to be.
Indeed some categories of errors, such as the buffer overflow, have been welioaader
decades yet continue to be replicated in modern software thereby causingmpuget security

problems.

While there is some momentum building in academia to view securitg ssullesign failures
and increase the emphasis on robust and secure design processes in soffwaesing classes,
it is industry that seems to discuss this buggy code theory the masif #ve also industry’s
attempts to cut corners to reduce costs that helps perpetuate tlom@tmore bugs. Still, the
point remains that coders should know better. After all, when a designer spibafian input
should be received for, say a phone number, a date, or a time, why should the desgteer hav

specify to the coder to make sure the buffer does not overflow and to make salidate the

37

received information? The coders should already know to protect tigaffes overflows, and
should not have to have that level of detail appended to each and every siriglequpst given
them by the designers! The coders may need to request information from tinemesiput
what localization rules to follow to validate phone numbers, dates, arng] 8inee those vary
from place to place. Coders should not have to have every input request they speeify that

the input needs to be validated, though; they should know to do that!

Section 3.1: Security-Aware Compilers to Combat Security Bugs

One idea to help reduce the problem of security bugs is to treat theyspmlslem in the same
way the optimization problem was handled in the past: ignore the coders atigetprablem
over to the computers themselves. This proposed solution would have devedbpeins
security-aware compilers and post-processors [58] to fix algorithmlicading mistakes in
similar ways to how optimizing compilers fix inefficiencies in sowrode [29, 43, 58]. This is
being considered because computer software is more methodical and m@tebiign
humans are. On the other hand, this idea has been criticized as computeedsfhet perfect

and since compiler warnings are often ignored by developers.

Software is very good at automating monotonous tasks and performing verg predisn an
especially methodical manner. These characteristics make sofiwappealing choice for
“looking over the shoulder” of coders to make sure that their code is as sepassile. Where
a coder might remember to put certain checks and safeguards into their codéthm$ime,

software is quite capable of finding and pointing out the times whenahgyt fto do so.

38

Software can be far more consistent than humans. If a development teannis tetrisse the
same standards, then they may produce code that generally is consstener, there still will
be variations within what different developers produce. When developars aking the same
version of the same security-aware compilers and post-processorsultiagéevel of security

should be far more consistent than if the security was being handled by halorens

Unfortunately, software is not a perfect solution for the securityi@mbThere are some
security problems that software will never be able perfectly to sglvself [29, 58]. In
particular, input validation will always require a human to specifytwiearules should be for
validating the data. Some argue that many of these sorts of problemaeasitywed by simply
returning warning messages to the developer at compile time inditagiisgcurity problems that
had been detected that could not be handled by the software and therefore reguired t

developer’s intervention.

Software issued warnings cannot be considered a fully acceptaltierseither. There are too
many documented instances where warnings are suppressed by defauluelbpeatdhas to do
extra work just to get extra criticism of said work - even simipdy of a compiler or post-
processor - then too many developers will not put in the extra work, asstimaingven know
how to invoke the issuance of the maximum possible list of warnings. Felpplengeuse well
known tools that have in some cases already existed for decades, suchhed briginally were
designed as general compilation and post-processing aids, rather thicadjyexs security
compilation and post-processing aids. Nonetheless, such tools can fisdreaade that could
be exploitable security flaws. If developers will not use tools sutihtasshy should anyone

assume that those same developers will use security-oriented campladi post-processing

39

aids? Some developers have even gone so far as deliberately to takéoaujopress not just
compile time warnings, but even deliberately suppress runtime warningspatbeotial security

flaws rather than correct the flaws.

Section 3.2: Better Education to Combat Security Bugs

Better security-aware compilers and post-processors would be veuy exsf if they were
imperfect, since software developers are imperfect and do matekesi§37]. These tools
would be useful if more developers actually used them, assuming of courtde tlievelopers do
not simply ignore the programs’ warning messages [58]. Indeed, some toolsthate=
potential security flaws, such as lint for example, have existegetos but are not universally

used [58].

“[A]lcademia and industry are going after symptoms, (teaching attelhitpies,
security technologies etc) and not after the cause of the sympteousréct

[sic] software.” [56]

While security experts do need to be very knowledgeable of attack techrsquarity
technologies, and many other related topics, Pothamsetty suggests tivaryaegeloper needs
to know everything related to these topics. Some security technologiessssecurity-aware
compilers and post-processors, should be a required part of every undergraduatercomput
science curriculum, but of the historical academic computer science elpgsda computer
security, the one that best fits with is code security. Even thent fiteds with a discussion of

compilation and debugging standards in the pursuit of quality code. Indeed, Taylormstet

40

that computer science students need to understand the importance of codénghaliuest for

code security.

“It is imperative to teach students that safe and reliable progranmsherently

more secure.” [70]

Then, and only then, are they likely to appreciate fully the value obthe they already have
and make proper use of them. Furthermore, history is full of examplesesfiihen the
extensive use of particular tools led to further and faster innovatidr iquality and
effectiveness of those very tools. Therefore, if the computer worldrig tirely on security-
aware compilers and post-processors, then it is going to have to etkieaigkiorce to use those

tools that are already available.

Knowing that academia is in no position to fix the educational deficientibese already in the
workforce, industry is increasing its own efforts through continuing eidumcepurses and
training [35, 66]. While some of these efforts focus on information $gcoeatwork security,
and system security, many of them also - or even instead - aggigaun code security, as

Ingham points out:

“Industry programmers are often unaware of the importance of desigruoé sec
systems, how attackers exploit programs, and how easy many exploitsvare. O
the last few years, the focus in industry has grown to include sechigty; t

change in focus translates into a need for programmers who can designtand wri
more secure programs. This need results in a demand for continuing education

classes on programming securely.” [35]

41

Security experts in industry also are writing books about code security [19, 32, 3®]. These
are not textbooks for academic use, but rather they are books writtendoeagpd industrial
developers [24, 32, 33, 34, 49]. These books have potential to improve the secure cigliofg ski
those already out in industry, but they are not written at the appropriatéletres traditional
undergraduate computer science major, and therefore are not idealessatdrcurrent
deficiencies in academia as they currently stand. However, these batkbeadapted for use
even in the freshman year of a computer science degree program if thewresuéficient number

of universities interested in having textbooks about code security.

Section 4: Current Theories on Security in the Computer Science Curriculum

Given the magnitude of the security problem and given the level of outcrjt avandustry, the
consumer base, and even in governmental regulatory organizations, iacaddietussing what
can be done to address the problem. Full solutions, while desirable, cuarentiyt seen as
being achievable quickly or perhaps as being achievable ever. Aeatienefore is searching
for any partial solutions that may be worth trying and evaluating. Four themegrominent at
this time. One theory holds that security should be a required portion of theoogpater
science curriculum. Another theory is that security studies nestdrtaearlier in the curriculum.
A third and rather radical theory is that security should be integratedach and every single
course in the computer science curriculum. A fourth theory, perhaps the most exsmiaf all,
is that ethical means of teaching hacking skills need to be promoted teptioe same types and
the same level of skills to those that defend computers from attack dastkes themselves

posses.

42

Section 4.1: Security Required in the Core Curriculum

Academia is beginning to realize that security needs to be a requited e core computer
science curriculum [26, 36, 44, 45, 48, 54, 66, 69, 70, 76, 78, 79]. While most compuies scie
majors likely will not specialize in security, academia is begigptd accept that all computer
science majors need to have a certain level of security competencyorAisipg as that might
sound, there still is not a consensus that code security needs to bedieapiit ought to be.

After all, it only takes one bug in one line of code in one program potgrttadipen up not just

one system, but every system on every network that is running that program.

While security, and code security even more so, might sound like unnecessaonadaisome
traditionalists, it should be recognized that at earlier pointseiistory of computer science, the
typical undergraduate study of computer science did not include some hapiasst now

required in the typical undergraduate degree. Not just “new” topi®bject-oriented
programming have been added to the required curriculum, but there was evewhdmtepics
such as operating systems and networks were not ever looked at until dwes gracduate
studies, yet now they are accepted as part of the core undergraduatescasgipate curriculum.
The time is overdue for security, and even code security, to be of the decprieecurriculum as

well. As Bishop and Frinke assert:

“The ability to write secure code should be as fundamental to a university

computer science undergraduate as basic literacy.” [8]

43

So since, as it has been stated, insecure code simply is incorbegigy code, does that mean
that academia is graduating incompetent coders? Even if not intentiomalig, éxactly what is
happening. The vast majority of the computer science majors graduatigigrtagde minimally
competent coders but are not fully competent coders. This situatinotdae permitted to

continue.

It most likely will be years before most universities requagusity as a portion of their core
computer science curriculum, let alone code security. Even then,\itidtilke over a decade to
graduate a significant enough number of these code security trainedigsaduaake up a
considerable percentage of active industrial coders. Worse yet, enghdhe still will be

billions of lines of insecure legacy code in use, due to the high cost ofingwtti Further, some
universities likely will continue not to require any security, arartgraduates still will continue
to perpetuate the production of buggy code so long as they code, unless industty ttare
deficiencies in their education. Why should industry be required to do so, thoughat &hd

Humphries explain this further:

“A growing trend among businesses is to send their inexperienced programm

to security “boot camps”. These boot camps provide an acceleratedtinatruc
medium for software developers to receive security training andicatith.

Although this is a commendable response it only sidesteps the issue. Campanie
have lowered their expectations of today’s college graduates and many now
require all new hires to go through this additional training. This traimirhg

delivers a greater financial burden, both for the company and the consumer. If the
development community wants to combat this problem then it's going to have to

start from the beginning, in colleges and universities.” [66]

44

Who is better at education, industry or an educational institution? Indesthdtcolleges and
universities that must step up and insure that their graduates are @shpetesign and code
secure software. That only can be done when academia, as a wholes regfujust security

coursework but specifically code security coursework of all computarcecstudents.

Section 4.2: Security Early in the Curriculum

Academia is beginning to realize that security, particularly codgigganust be started earlier
in the curriculum [36, 44, 45, 54, 69]. Students are getting too much practice woigirogs
amounts of insecure code before they get to upper level security coatsagtih talk about

code security. Once they do cover code security, if current curriculumdees, they will have
years of bad coding habits to break and not have as much time left before graduagak to b
those habits as they had to make those bad habits. Students would haweslessi¢ivelop their
bad habits and would have both more time and more academic guidance to help bedadkdthes
habits if code security were covered earlier in the undergraduate cospatee curriculum.

Taylor and Azadegan claim an early start is a necessity:

"[E]ducation must infuse secure coding and design principles early" [69]

Unfortunately, the current model for teaching code security - as a portiofowhation security,
network security, or system security - cannot be moved too much @athercurriculum due to
the prerequisites for those other security topics. Perhaps codeyseeads to be separated from
other security topics that must, due to their prerequisites, remaimialber ¢urriculum. Perhaps

code security needs to be moved into courses earlier in the curriculunnanage a course of

45

its own. The question then becomes how early code security can be offered amdlyoees it

need to be offered.

“It is the responsibility of universities to teach future computinggssibnals

secure and robust coding and design principles from the start.” [70]

Taylor and Azadegan suggest that academia need to start teaching catdefsmtithe very
first semester that an undergraduate student is taking any competeescoursework. While
certain authors claim to have even integrated some security into ComgietezeS0) and
Computer Science |, a true code security course is not likely to be vialbhleftentthe
completion of Computer Science I. Further, without a course of its own, codeyse@yihot

be understood properly and respected by many students as the topic of imghetitdrily is.

“Software security starts when learning the programming language.” [45]

When, though, are students considered by Marks and Stinson to be “learning the pisgramm
language™? The programming skills of students that have yet to etE@@dmputer Science |
may not mature enough for any discussion of security more than computer secunity-for
majors. When the students are taking Computer Science I, they argydtaféarn about linked
lists, stacks, and queues which is in turn continuing to help them withitigahe programming
language” and the full depths thereof. They have begun to move on from the vesyobasiw
to program and, though they still are learning more about how to program, théyaedsbegun
to learn about why we program the way we program. They are beginning to learauslge
compare and contrast data structures and algorithms and should thereéaéyb® learn to
compare and contrast algorithms and code from a security perspective. a$ iwallring this
stage of their education that a study of code security becomes viable ahtegint after the
completion of Computer Science I.

46

Section 4.3: Security Throughout the Curriculum

Perhaps one of the more radical recent ideas being considered to inprgear security is to
integrate security throughout the entire computer science curri¢@iymd8, 54, 69, 70, 76].
Each and every single course throughout the entire computer scienceleorivould
incorporate some aspect of security into the course. Therefagetther the required and
elective computer science courses would cover all of the securitg thpicthe student needed.
This would eliminate the need to have any introductory level or requitedes dedicated to
security; nonetheless, advanced courses that specialize in informatioitys@etwork security,
or system security likely still would exist at some universitiesrder to allow some students to
focus on security for their emphasis. It has been further suggestedctivéy should be
integrated throughout each of the individual courses that are foctusedily on other subtopics
of computer science, rather than just inserting a security module intouttse ¢he same way a
course might be inserted into a curriculum [36, 45, 69, 75]. Some universiteesVay
integrated security into Computer Science 0, Computer Science |, and Co8gatere Il [69,
72]. These integration theories may help significantly to solve theigeproblem but they

present problems of their own.

Students are more likely to recognize and understand the importancasobfeenphasis within
computer science when those areas have at least one course dedibated tif the faculty
does not think this is important enough to deserve a required course, why shouiddrabiss
important?’ might be exactly what some students would think, should acad&miatab teach
security exclusively in an integrated fashion. It also createst@dtecenarios for gaps in some

students’ security education in the not uncommon event that some stuaesfisrtfrom one

47

university to another in the middle of their undergraduate programs twiiliniversities that
appear to have similar courses required in their computer science underyceyree programs
distribute the various security topics the same way throughout their col¥ees@me topics like
network security, one likely could assume so; however, but for other tdgdsuifer overflow

and command injection attacks, for example, probably not.

If security is to be integrated into all courses in a computer sciengeutwm, it logically also
would impose a requirement for some level of security expertise upon lad fadulty as well as
time constraints upon all computer science courses. Not all facefters are security experts
or are even interested in security [48, 69]. Many faculty members algangue correctly that
their course does not have time to do justice to its primary topic, lettaldna¢h the primary
topic and a secondary focus upon security [36, 48]. Even if officially directedtdénsecurity
within their course, some faculty would even go so far as to claim ‘acad@®adom’ and then
teach only a token amount of security to satisfy the directive. In the erayld ine up to the
initiative of the individual faculty member to decide whether or not to gieairity its due
emphasis. It may be possible to overcome some of these problems by integahgdsurity
into some courses and not into others. Supposing that all of these new prahl&hixec
overcome, though, what then should be done about proposals to integrate prograngugggela
concepts throughout the curriculum [5]? Proposals also have been maegratensoftware
testing [1], team projects [61], ethics [63], robocode [10], HyperCaidiPone [25], and many
other topics throughout the computer science curriculum. Curriculum desighérave to
weigh the value of these various special topics that might be seddesintegration into and

throughout the computer science curriculum as they clearly cannot be iempdein

48

Section 4.4: Ethical Hacking Courses

Likely the most controversial idea currently being discussed reggsdicurity education is that
of ethically teaching hacking skills to undergraduate computer scierdenss [18]. While the
ideas of practicing attack and defense strategies have been acaepilitdry organizations for
thousands of years, those same ideas have not come into open acceptancerwiih cegiéans
being taught how to attack computers in academic settings, partidhiasky as young as the
traditional undergraduate student. Indeed, many claim that a large pgecehthe lapses in
computer ethics actually are perpetrated by those same students whowrlag able to obtain a
state-of-the-art education in hacking techniques by world-class sxpeamputer security.
Understandably, this idea has many academicians, their adminessageriors, and their

university’s information technology support department more than a bit undabiér

Despite these concerns, such classes have been taught to upper level untesgrauras and
graduate students for over a decade. This type of class freqgsegitign much more
supervision than the typical computer science courses taught in the gaartendats. Students
enrolled in this manner of course frequently are required to signesrjctive code of conduct
agreements before they can participate in the course. This sort ¢ etes normally is forced
to confine its hands-on exercises and experimentation to isolateduigsheent systems and

networks [12, 27].

One of the few things that appears to be universal in regards to &iigaig courses is that the

course must cover ethical and legal issues related to hacking [73]. ©ettécal basis has been

49

constructed to justify the teaching of hacking skills, it must be consttaiarefully within the
applicable legal boundaries to insure that the course and its studentssttaynaccidentally
beyond what is permitted into areas that would require the course to be shatabpwssibly

even lead to the prosecution of its participants.

Once the ethical and legal foundation is well established, then treeaam move on to simple
observation of the environment in which the students are being allowedko Sianple
identification of other machines on the same network segment quickly teadbwmork traffic
snooping, particularly - but not exclusively - of clear text packetgnEwncrypted packets can
still provide information about the existence of and associations of magdhiaddition to the
types of protocols they are using. In some cases, the types of protoc@snayprovide

further information about what operating systems and applications are in tigesemachines.

Once something is known about what operating systems and applications atdet@aiarget, it
is common to begin reviewing the well known list of exploits that histdyit@ve existed in
those operating systems and applications. While any good system adringitidteep their
systems updated to avoid patched historical vulnerabilities, itysuwdortunate - but also very
true - that not all systems have good system administrators. Manyiogssatems and
applications still may be found to use well known default passwords or mayrigktiohave

unsecured mechanisms for resetting the root / administrative passwords.

There are numerous automated attack tools that also can be employeanvithical hacking

course to aid in the detection of exploitable security flaws actuallg wdducing the amount of

50

detail that the students need to be taught about how to break into vartensssybk the
terminology of the hacking world, this is the difference between a trikehacd mere script
kiddies. While the script kiddies generally are not given the sagpect that a true hacker might
be given within that culture, the script kiddies are often jusapahie for conducting quality
penetration testing of a system or a piece of software as a true.h&bleeincreased training of
“script kiddies” within academia would provide an increased populatiskil#d penetration

testers for industry to test more thoroughly future software products.

Some of the easiest forms of automated attacks simply are repegtedttempts against both
known and guessed usernames. Such attacks frequently start with dictttaeky against the
password but then may move on to a full rainbow table attack, particuaely done against a
known username of interest. Such attacks easily should be detectable by netderk
DOS/DDOS protection systems due to the extreme repetition of network lggigsts, and
therefore should not be as effective a form of attack as it is. Howey previously stated, not

all systems have the quality of system administration that theyread.

For ethical hacking courses that teach their students to be truehahheckers rather than just
“script kiddies”, the skills covered typically include more low-lgmegramming, decompilation
and reverse engineering of executable code, analysis of memory angr remisénts, scripting,

and even the capture of malware to discover and dissect new exgloitjtezs.

Low-level programming skills are essential for anyone wanting to crastersized and

optimized machine executable code to try to inject into a system.o itatsbe a useful skill for

51

anyone attempting to disassemble device drivers in order to exploidrketards directly rather
than initially attacking the system as a whole. Finally, though diffaoudt time consuming, low-
level programming skills can allow one even to disassemble key compofiefdsed source /
proprietary operating systems and applications in order to try to find previmigipwn, yet

exploitable, security flaws.

Disassembled or even fully decompiled executable programs can providekiee with
significant information about the libraries and other externalrprog being depended upon, in
addition to the security precautions that are being taken with thendatédxternal pieces of
code might be returning. A full reverse engineering of a program’s secaritlye very time
consuming, but likely will expose security flaws that were not detectedhey more simple

means - including extensive penetration testing.

In some cases, though, a full reverse engineering of source code is n&d dcuinacker can
acquire sufficient data memory and register values from during programatiexe These values,
particularly if their changes can be observed, can provide significastiotoehow the

program’s security works, even if the code itself cannot be examined feewehacason.
Sandbox environments can be used to help obtain these memory and registeovahegdis.
Further, it might also be presumed that if one is able to observe mojagharemory dumps, if
one is able actually to read the memory directly during execution on a prgygtah rather than
just in a sandbox, that one also will be able to alter that same memoheagioytcompromise

that system.

52

Scripting skills are useful also to a hacker in order to allowcfasttion of customized automated
attack tools [62]. Indeed, the very source of the term “script kiddiesithiaource traced back to
these types of attack scripts, written by skilled hackers and then hdhtlethose who are able
to use them to find and exploit security flaws, even if they are theessigicapable of writing
such scripts themselves. Scripting skills are useful also favhite-hat hacker to be capable of
directly reading some of the various malicious programs that have bedéedcoger the years

using nothing but scripting, including the well known and notorious ILOVEYOU vir8 [1

In many cases, a new attack technique also may be observed whenudapgigce of malware
is examined that may not have been taught previously in that partthileal hacking course. It
therefore increasingly is common to teach how to capture example$wdnaan order to dissect
them and discover any new exploit techniques that they might be using. Suittep et
paying off, too; the Stuxnet worm that was first captured in July, 2010, is atpexéanple, and
is now being thought to be the world’s first nation-state created eydoéare weapon designed
to penetrate and sabotage a single specific industrial facilityg@ne ethical hacking courses
may even encourage their students to try to create new attack texhorgeven simply
recombine older techniques into more effective attacks. These techaiguiden tried out on
the isolated test environment systems and networks being used by tleearwltseir results are
evaluated. Many new and highly effective attack techniques may be developepsdich a
process, to the dismay of those who already might be uncomfortable with saahse in the
first place, but these experiments provide an invaluable leg up on findingsegfagainst such
attacks that likely would be developed someday by true black-hat haslemtsially. The
guestion of whether students should be similarly allowed to examine, modify, dodnyyrove
something as advanced and escape-prone as Stuxnet is a topic tikalyithérit very careful

consideration.

53

Section 5: Related Educational Theory

Educational psychology and instructional design theory both advocate atioepstid
feedback” approach to the teaching of critical and complex topics [3, 14, 1bjdént should
be guided to practice these critical and complex topics with suitaldevalison of their progress
and prompt feedback on both their successes and their failures. In theasstbsuaccess, they
should be told they have succeeded at the current level of expectationghéyftbave suitably
demonstrated mastery of the topic, they should be considered to have cothpligpedtion of
their education and allowed to move on. In those instances where failurengeohshough,
they should be given prompt feedback and further instruction on the topic in questivag#in
allowed to continue to practice under observation in pursuit of success andgtogrards
eventual mastery of the topic. Many educational psychologists and fitstalclesign theorists
hold that this repetition and feedback cycle, followed until the expeletgrees of success are
achieved, eventually will lead to mastery of the topic by those wilimdjable to follow the
process through to that end. While heavily used in primary education andagoshacation,

this theory is just as applicable to a four year undergraduate extucati

Educational psychology also holds that if unacceptable performantmanedito be repeated for
any period of time without appropriate feedback and correction, then thetsnalenome to
believe that level of performance to be fully acceptable. Any attemptrect the performance
in the future may be met with both confusion and resistance. The confusigrchk be
overcome only through more education, during which the student likelyskillagell, why didn’t
you teach me this correctly the first timel?’ The resistanedyliill take repetition to

overcome, perhaps even more repetition than it would have taken to teacatettatzle level of

54

performance correctly earlier on. The bad habit of substandard penf@mdl be harder to
break after it has become a practiced bad habit and even harder stéikaf lireas gone on long
enough to become second nature to the student. If the habit-modifying repetitiontdass no
long enough to overcome the second nature of the student, then said student mostlllapke
back into the bad habit in the future after they are no longer closely observed in that facet

of their performance.

The interaction of these repetition and feedback theories with codéeximr the area of the
feedback. If computer science students are allowed repeatedly to cbasttisubmit insecure
programs during the formative first few semesters of their compaience education without
ever being given feedback on the poor security qualities of the programs, tindiketieood of
learning and consistently using more secure coding techniques either kaen igrdecreased
significantly. If, however, the same students are given prompt and adesdiback about the
security qualities of their code and corrected, and then given fumdtasction in the case of any
failures, they are far more likely both to achieve mastery of code seandtconsistently

produce secure code for industry throughout their whole career.

Secure code is important but secure software designs are just asihpbr computer science
education, coding skills normally are used as part of the basisafiitg software design. If
secure coding is taught at the beginning of the computer science edubaimosybsequent
efforts to teach the student the importance of and techniques foe seftware design, most
likely in a Software Engineering course, should be much more successfullsthis another
application of the repetition and feedback theory. The repetition in questiowia more long

term form of repetition, but it still is valid repetition of setutheory, even if a slightly different

55

area of study within the overall topic of computer security theorylsdtia repetition of the
importance of security and it is at the same time providing a moraléiimpésm of feedback
for the student that they successfully have mastered a prevemgsqfisecurity theory. Even
though secure software design theory will have its own internal repketobfeedback cycles, it
serves as the culminating cycle for the majority of computer sEieagors that will not
specialize in security, while it serves as a second cycle fog thies will go on to advanced
studies in information security, network security, and / or systearigeewhich will, of course,

also of course have their own repetition and feedback cycles.

Either through its emphasis or its de-emphasis, all computer sciduncation has repetition and
feedback regarding computer security. If the next generations of corspigiece students are to
be any better at producing secure software than their predecessors rehthycare producing
buggy, insecure software out in industry, then security must receive rpestagd emphasis and

feedback in computer science education.

Further, there are some in the current generation of computer sciatertstthat will someday
go on to teach computing to future students; for them to have a better understésdirigyity
will help perpetuate and improved understanding of security. This in turn meassdbiaty

must be required of all computer science students as soon as that ispossibl

Section 6: Related Business Theory

56

Total Quality Management theory, from W. Edwards Deming correspondsheitbsue of code
quality, as well [41]. Deming theorized that product quality could be increasesrrs in
production could be reduced by keeping in conformance to well designed requirements and
through high quality worker training. The Total Quality Management prooegsfrovement
also involves a detailed examination of the entire production system, taidrntosfinish, in order
to locate areas of inefficiency and potential causes for errort Rase Analysis, which calls
for the root or most basic cause for a problem to be sought after, is asiotier and related

business theory [41].

The application of Total Quality Management theory and Root Cause Antdgsry to the
current state of computer security identifies computer softwaresgtds having inconsistencies
in security quality. These quality issues appear as though they are duwegdredesign and
coding. Thus it follows that the quality of the training of softwaneeligers, the requirements
they are meant to follow, and the conformance with those requirementorieedxamined in
order to find the most likely root causes for the quality issues. In thisypartsituation, though,
the software developers themselves are the ones who generate tled degairements they
follow and control how closely they conform to said requirements. Thus it weald that the
quality issues lay firmly in the training of - and consequently the peafocesnof - the software
developers. Therefore, the logical conclusion is that it is#arng of the software developers
which should be improved in order to fix the software security quality iskaesdustry

currently faces.

If the software developers can be trained better in regards to theampudf security, then said

developers likely are to pay more attention to it in their work. Istfevare developers can be

57

trained better in regards to the need to design programs so that theguaeefiom the start -
rather than trying to patch in security later - then they are maig ik do so. If the software
developers can be trained better in regards of which coding construsts and not to use, then
they are more likely to write higher quality code. If the software dpeesocan be trained better
in regards to the proper use of tools to aid in the creation of more secui@mspthen they are
more likely to use those tools. If the software developers can bedtiztter in regards to the
need for arguing that “Total Quality Management” demands they “invesinte and resources”
to “insure” the program is secure, then their managers are going to andetsty are talking
about sound business principles (TQM, investment, insurance), rather thsouisng

‘technobabble’ to pad their budget.

In the end, it is management that must decide whether computer security grobksirto be
solved and - if needed - decide how they need to be solved. If managemestadhe
conclusion that the academic preparation of their software developlees @t cause, then those
managers are more likely to try to hire more developers who are highly tarhjmecomputer
security, particularly code security, in the their future hires. urineersities that are requiring
security, particularly those universities requiring code sggar all of their computer science
undergraduate students naturally will develop a competitive advantagéose universities that
do not require as much security for their computer science undergradulstietst Considering
that some surveys suggest that the supply of domestic students intier@stesdiing an
undergraduate computer science major may continue to decline in thetoegrday legitimate
competitive advantage that a particular university’s computenceigepartment can develop

over other universities’ computer science departments should be considsirathle.

58

CHAPTER Il

METHODOLOGY

The author taught an introductory course in computer security to compietezesand computer
information science majors in the Department of Computer and Informatiencgs at
Southwest Baptist University in the spring 2010 semester. The cowsspmaved by
Southwest Baptist University to be taught as CIS-2953 (Special T&#care Software). The
course syllabus can be found in Appendix D. There were 23 students enrolled irrsecat dhie
beginning of the semester, 20 of whom successfully completed the courseurpbse of the

course was fivefold.

The first course goal was to expose the students to the importance af/sekhis was
accomplished by a series of case studies of historical securitsefail This goal should be a
portion of any serious introduction to security and is not unique from contemgoraputer

science courses in security. Therefore, it was not assessed.

The second course goal was to expose the students to the importance of seearltyia their
degree program as possible. This would leave them the maximum pdssgbterhaining in

their undergraduate program to watch for security implications anheiseecurity skills in

59

other courses. The course’s only prerequisite was Computer Sciends éndbled some
freshman level students to take the course. Unfortunately, due to the timaintadte author

was operating under, this second goal was not assessed as a portion of ritfe pesjeat.

The third course goal was to familiarize the students with commegarées of security-related
programming flaws. Industry has identified and categorized common se@laitser
programming flaws into several different groupings. The author dremagly from [34], and
covered 14 categories that a student coming directly from Compuegrc8dishould be able to

understand. This goal was the primary focus of the assessment.

The fourth course goal was to teach the students how to write secure taglgoal dealt more
with the software development process than the programming flaws mrietvieus goal. The

author drew primarily from [49]. This goal also has been assessed thithdissertation.

The fifth course goal was to teach the students how to write secure codetfeydrecame
accustomed to writing less secure code. Unfortunately, again due tm¢heotistraints the

author was operating under, this goal was not assessed as a portiomesietinish project.

The course was taught using the Java programming language. Javéaésideakchoice for a
course dealing with security-related programming flaws because aldmhandles memory,
pointers, strings, and exceptions. Either C or C++ would have been aqutefieoice of

language, due to the significantly larger number of creative misthggsllow with memory,

60

pointers, and strings. Despite this, the author was constrainedtavasia this research project
because of the choice only to require the completion of Computer Scierfoeel &gempting the
course. (Southwest Baptist University teaches Computer Science | jmdaualike Oklahoma
State University.) In the future, the author would like to experimenttedgtthing a course that
combines an introduction to security with an introduction to C language, butdhkt ave to

be a different project; unfortunately, the teaching of the C language would catailie

assessment of the course and is beyond the scope of this project.

The course generally ran as the author had expected it to run. Thereim@reemsions to the
expected course schedule, which can be found in Appendix E. These scheduls oizniye
were due to the inclusion of in-class code reviews of programs setrit students in the
course. The author removed any personally-identifable information froratth@tted programs
prior to the code reviews and allowed students to opt-out of having their coddypubtugh
annonomously, reviewed in class without any repercussions. None of the stegaesiad to
opt-out and these in-class code reviews were some of the most actiwaistdassions throughout
the entire semester. The first three programs were written cotyfigtdhe students. The last
three programs were based on code provided to the students by the author. etessef gtarter

code for programs four though six can be found in Appendix F through H respectively.

Assessment was collected in the form of a pre-test survey and an ideosictest survey given
to both the participating students and control populations not enrolled in the cbhessurvey
instrument can be found in Appendix C. The data obtained from the analysis wfvéngsan
be found in Appendix I. The pre-test was administered the first week afrtiester, and the

post-test was administered the last week - prior to finals. Battan in these in-class tests was

61

voluntary for both the students enrolled in the CIS-2953 course and the coptitaitjpms not
enrolled in the CIS-2953 course. The control populations were CIS-1154 (CompatereS|),
CIS-2213 (Introduction to System Analysis and Design), CIS-3323 (Database Mamagem
Systems Design), and CIS-4443 (Networks). These four courses wetedsadezerve as control
populations because they contain the vast majority of Southwest Baptistityis computer
science and computer information science majors and minors; they atsoh@sen to minimize
the number of impacted courses. There was not a cumulative review irSH29%3 course
before the post-test. In addition, the students were not specificgtiydted to review certain
topics in preparation for the post-test, as they would have been if ibviese upon which their

grade would be partially dependent.

Each pre-test was assigned a unique six digit pseudo-random number t@nmsuynaity.
Participants were instructed to record their assigned six digitdjesrandom number in a file
within their personal, private network drive space for reuse dummgast-test. The Southwest
Baptist University Information and Technology Services departmefurperd sufficient backup
maintenance of these network drives to insure against loss ofrtlrepedata between the pre-
test and post-test. This storage was deemed to be more securevthgnheastudents recorded
the numbers in notebooks or textbooks, where the author might accidentigisest tsome point
during the semester. To further insure anonymity, these numbers do not appderanyihin

this dissertation.

The pre-tests and post-tests were required to be administered by indiwtoalgere not a
“supervisor, teacher, or employer” in regards to any of the participstuitignts. This excluded

the entire faculty and staff of the author’s department and collegsganthers. The individuals

62

who were chosen to perform the task of administering the surveys were thev&iBaptist
University Director of Institutional Effectiveness and the SouthBegtist University
Assessment Coordinator, two individuals who, alongside other duties, poesixde for
overseeing faculty evaluations. The test answers were then typed hywSsiBaptist
University staff so that the author would not be able to identify jgaatits through recognition
of their handwriting, and the original answer sheets were never shownatotioe. The
participants were not asked to sign proof of informed consent in ordeui@ithat the author
would not be able to determine who volunteered to participate and who declinedcipatert
An informational script was read to the subjects, prior to the syri@ygorm them of their
rights. This script may be found in Appendix A. An informational handout also weisied for
the subjects to take with them in case they should desire further infomnastbut their rights
than was provided in the informational script. This handout may be found in Apgndihese
elaborate measures were required by and approved by the Southwest BaisityiiResearch

Review Board and the Oklahoma State University Institutional ReviewdBoa

63

CHAPTER IV

FINDINGS

Section 1: Anticipated Findings

The author expected the project’s primary assessment goal, involvingigrstanding of
security, to reveal five specific findings. The author expected thecpsosecondary assessment
goal, involving coding skills related to security, to reveal five verylairfindings to the findings

of the project’s primary assessment goal.

First, the author expected to find no statistically significant i@iffees between the performance
of the enrolled test subjects and the control subjects on the preAtgstifferences in
performance between these two populations on the pre-test were prajdatedue primarily to

the self selection of the two populations, based on their interests ingecurit

Second, the author expected to find no statistically significant diffesdvetween the
performance of the control subjects on the pre-test and the contraltsudehe post-test. Any

differences in performance between these two tests were projeichadilyrto be due to

64

information leakage from the test subjects, based on the rejdiiylet-knit nature of the
department’s small population, and secondly due to any security topics thabmigcidentally
covered in other computer science courses, which the control subjgbtdmenrolled in during

the time period of the study.

Third, the author expected to find statistically significant differsrostween the performance of
the test subjects on the pre-test and the test subjects on thegpogtrty differences in
performance between these two tests were projected to be due primtrédyQlS-2953 (Special
Topics: Secure Software) course that the test subjects wetkednn during the time period of
the study, and secondly due to any security topics that might incidentally dreddaw other
computer science courses the test subjects might be enrolled in durimgetiperiod of the

study.

Fourth, the author expected to find statistically significant diffeee between the performance
of the test subjects and the control subjects on the post-test. Amgniltis in performance
between these two populations on the post-test were projected to be duidypidntiae CIS-
2953 (Special Topics: Secure Software) that the test subjeewelled in during the time
period of the study and secondly due to the self selection of the two populatiedbakeir

interests in security.

Fifth, the author expected to find statistically significant diffeesnoetween the improvement of
performance of the test subjects and the control subjects on thegtastrpared to the pre-test.

Any differences in improvement of performance between these two populatitims post-test

65

over the pre-test were projected to be due primarily to the CIS-29534Spejics: Secure
Software) the test subjects were enrolled in during the time pdribe study and secondly due

to the self selection of the two populations based on their interestsunitysec

In addition, the author expected to observe differences in the percentageeof responses to
vary from answer to answer, and believed that analysis of such might proditiered findings.
The author expected that due to low population sizes, the significance efsaitg might not be
reliable, but was unable to mitigate this potential problem while ngrthie study at the chosen

location.

Section 2: Actual Findings

As shown in figure 4.1, the test subjects performed better than the conteditsudrj the multiple
choice section of the pre-test measuring the primary assessmeit\gaeaing the understanding
of security, but the difference was not statistically significditis was in line with the

anticipated finding in this area. This supports the author’s theory thatedtise two populations

being self-selected, any differences between them were not sadlfistignificant.

As shown in figure 4.1, the test subjects performed worse than the controtsohjéte coding
section of the pre-test which measured the secondary assessmemivgbahg coding skills

related to security, but the difference was not statisticallyfsignt. This was in line with the

66

anticipated finding in this area. This supports the author’s theory thatedtise two populations

being self-selected, that any differences between them were igitcstly significant.

Minimum | Maximum | Average | Standard
Score Score Score Deviation
Test Subjects
Multiple Choice Only 7% 47% 28.3% 10.7%
Code Problems Only 0% 33% 12.7% 16.6%
All Problems 6% 39% 25.7% 10.0%
Control Subjects
Multiple Choice Only 13% 40% 24.7% 8.0%
Code Problems Only 0% 33% 19.4% 16.8%
All Problems 11% 39% 23.8% 8.1%
Percent Difference 2 Tailed
of P-Value
Average Scores
Test Subjects vs Control Subjects
Multiple Choice Only 13% 0.21
Code Problems Only 42% 0.18
All Problems 7% 0.50

Table 4.1: Pre-Test Results (Test Subjects vs Control Subjatig)ercent difference as the
absolute value of the difference of the averages over the averageaeéthges [55]

As shown in figure 4.1, when the overall performance of the test subjectenvpared to the
overall performance of the control subjects in regards to all probidgiims the pre-test, the
percent difference in performance between the two populations wsabkadesit was for both the
multiple choice section and the coding section. In fact, the difference orrparice was less
statistically significant than that of either the multiple chom&tisn or the coding section. This
supports the author’s theory that, despite their being self-selectednyhdifferences between

the two populations were not statistically significant.

67

Minimum | Maximum | Average | Standard
Score Score Score Deviation
Pre-Test
Multiple Choice Only 13% 40% 24.7% 8.0%
Code Problems Only 0% 33% 19.4% 16.8%
All Problems 11% 39% 23.8% 8.1%
Post-Test
Multiple Choice Only 7% 33% 20.3% 7.2%
Code Problems Only 0% 33% 12.5% 16.5%
All Problems 6% 33% 19.0% 7.5%
Percent Difference 2 Tailed
of P-Value
Average Scores
Post-Test vs Pre-Test
Multiple Choice Only 18% 0.03
Code Problems Only 36% 0.13
All Problems 20% 0.01

Table 4.2: Control Subject Results (Post-Test vs Pre-Testpwitent difference as the absolute
value of the difference of the averages over the pre-test aviaBlg

As shown in figure 4.2, the control subjects performed worse on the multiple deaiton of the
post-test than on the multiple choice section of the pre-test, which reéakarmprimary
assessment goal that involved the understanding of security. This défengrerformance was
statistically significant. The author attributes the declinesitiopmance on the post-test
primarily to the times of the semester in which the two tests adirenistered. The pre-test was
administered during the first week of the semester, which typica#iyow stress period for most
students. Conversely, the post-test was administered during the ladiefe® finials, which
typically is an extremely stressful time for most students. Theadoes not know how this risk
could have been mitigated during the single semester duration of thistsbwdbrer, were a
multi-semester version of this study to be run, the author believessthef error could be

mitigated by administering the surveys at the same time during eachseftiesters.

68

As shown in figure 4.2, the control subjects did perform worse on the coding sdd¢tierpost-
test than on the coding section of the pre-test, which measured oine@gcassessment goal,
involving coding skills related to security; despite this, the wordenmeance was not

statistically significant. The author suspects the decline ilopeaince on the post-test to be due
primarily to the times of the semester in which the two tests adirenistered but notes it may

be instead simply due to error.

As shown in figure 4.2, when the overall performance of the control subjedipoobéems of
the post-test was compared to the overall performance of the conjesitsuin all problems of
the pre-test, the change in performance was more statisticallficgigt. This suggests the
author’s belief that the performance decline was not due to error, and @icsecadly due to
either the times of the semester in which the two tests weraatened or some other

undetected influence.

As shown in figure 4.3, the test subjects performed better on the multiple skoim of the
post-test than on the multiple choice section of the pre-test, which reeakarprimary
assessment goal, involving the understanding of security. This measureohpade was
statistically significant. This improvement was in line with #méicipated finding in this area; it
also suggests that this course goal was indeed achieved to some degrdahe magnitude of

the change was not as large as the author may have hoped.

As shown in figure 4.3, the test subjects performed almost exactly the sahsecmding section
of the post-test as on the coding section of the pre-test, which nebéseisecondary assessment
goal, involving coding skills related to security. This performance whstatistically

69

significant. The author believes that the lack of a statigtisahificant improvement by the test

subjects clearly indicates this course goal was not achieved.

Minimum | Maximum | Average | Standard
Score Score Score Deviation
Pre-Test
Multiple Choice Only 7% 47% 28.3% 10.7%
Code Problems Only 0% 33% 12.7% 16.6%
All Problems 6% 39% 25.7% 10.0%
Post-Test
Multiple Choice Only 13% 60% 34.0% 13.5%
Code Problems Only 0% 67% 12.7% 19.7%
All Problems 11% 61% 30.4% 13.8%
Percent Difference 2 Tailed
of P-Value
Average Scores
Post-Test vs Pre-Test
Multiple Choice Only 20% 0.05
Code Problems Only 0% 1.00
All Problems 19% 0.11

Table 4.3: Test Subject Results (Post-Test vs Pre-Test) st difference as the absolute
value of the difference of the averages over the pre-test a5l

As shown in figure 4.3, when the overall performance of the test subjectspoolddims of the
post-test was compared to their overall performance on all problems oéttesp the results on
the two different parts canceled each other out, producing a diffefeatcgas both smaller in
magnitude and not statistically significant. The author suspects ¢wsobithe results to be less

important than the two subcomponents that produce it.

70

As shown in figure 4.4, the test subjects performed better than the contedltsudrj the multiple
choice section of the post-test, which measured the primary asségg@ak involving the
understanding of security. This difference in performance was isttissignificant. This was
in line with the anticipated finding in this area. The improvementsalggests that this course

goal, indeed, was achieved.

Minimum | Maximum | Average | Standard
Score Score Score Deviation
Test Subjects
Multiple Choice Only 13% 60% 34.0% 13.5%
Code Problems Only 0% 67% 12.7% 19.7%
All Problems 11% 61% 30.4% 13.8%
Control Subjects
Multiple Choice Only 7% 33% 20.3% 7.2%
Code Problems Only 0% 33% 12.5% 16.5%
All Problems 6% 33% 19.0% 7.5%
Percent Difference 2 Tailed
of P-Value
Average Scores
Test Subjects vs Control Subjects
Multiple Choice Only 50% 0.00
Code Problems Only 2% 0.97
All Problems 46% 0.00

Table 4.4: Post-Test Results (Test Subjects vs Control Subjéttig)ercent difference as the
absolute value of the difference of the averages over the averageaeéthges [55]

As shown in figure 4.4, the test subjects performed better than the contealtsuinj the coding
section of the post-test, which measured the secondary assessmenvglvithg coding skills

related to security; however, the improvement was not statistgigtyficant. The author

71

suspects the lack of a significantly improved performance by the test®uinjdicates this

course goal was not achieved.

As shown in figure 4.4, when the overall performance of the test subjectspoolddims of the
post-test was compared to the overall performance of the control sutnjeall problems of the

post-test, a statistically significant difference stillsndbserved.

Minimum | Maximum | Average | Standard
Score Score Score Deviation
Test Subjects
Multiple Choice Only 7% 13% 5.7% 12.5%
Code Problems Only 0% 33% 0.0% 18.3%
All Problems 6% 22% 4.8% 12.9%
Control Subjects
Multiple Choice Only -7% -7% -4.4% 9.2%
Code Problems Only 0% 0% -6.9% 21.7%
All Problems -6% -6% -4.9% 8.9%
Percent Difference 2 Tailed
of P-Value
Average Scores
Test Subjects vs Control Subjects
Multiple Choice Only 1600% 0.00
Code Problems Only 200% 0.35
All Problems 19400% 0.01

Table 4.5: Improvement of Results from Pre-Test to Post-Test (legcE vs Control Subjects)
with percent difference as the absolute value of the differente @vierages over the average of
the averages [55]

As shown in figure 4.5, the test subjects performed better on the multiple skofmmns of the

post-test versus the pre-test, while the control subjects pedosrorse. This result was

72

statistically significant. While this first appears to be i fith the anticipated finding in this
area, the author considers this result tainted by the decline arrparfce of the control subjects,

and believes this finding to be unreliable.

As shown in figure 4.5, the test subjects performed almost exactly the saheecmaling
sections of the post-test over the pre-test, while the control ssipgdormed worse. In
addition, the differences were not statistically significant. Thiecalttelieves this finding to be

unreliable.

As shown in figure 4.5, when the overall performance improvement of the Igsttswon all
problems of the post-test was compared to the overall performance impnbwertiee control
subjects on all problems of the post-test, a statistically signifatiference still was observed.
While this first appears to be in line with the anticipated findingigdtea, the author considers
this result tainted by the decline in performance of the control sutgectfelieves this finding

to be unreliable.

In addition to verifying the anticipated findings related to the primary eooihslary assessment
goals, a detailed analysis of the frequency of correct response fo tatteidual answers

produced some supplementary, yet notable, findings.

While comparing the results of the pre-test and post test, thetlampeevement observed within

the test subjects was on answer 17D where eleven additional studedttheotxistence of a

73

potential race condition in the sample code. The improvement alscssutitge this component

of primary assessment goal was indeed achieved to some degree.

Additionally, there was a noticeable improvement with the test sslpbserved between the
pre-test and post-test on question 7, where several additional testsubjed that code-defect
risk analysis should begin before coding process begins. The improvdseesuiggests that this

component of primary assessment goal was indeed achieved to some degree.

Finally, there was also a noticeable improvement with the testtslmbserved between the pre-
test and post-test on answer 4D, where seven additional students notiee jdnad.util. Random
class should never be considered cryptographically strong. The immot/also suggests that

this component of primary assessment goal was indeed achieved to gpee de

74

CHAPTER V

FUTURE WORK

Section 1: Future Work in Code Security

As the author prepared to teach this course, certain problems arfus&jnately, the author
could not address these problems without overly complicating theaksekhe first issue
involved the programming language with which the course was to @ettalava hardly is an
ideal language for the course, yet it is the language the author wed foruse based on the

course’s prerequisite. As Dewar and Astrachan put it:

“It's not impossible to teach the fundamental principles using Java,dat it
difficult task. The trouble with Java is twofold. First it hidestéar much, and

there is far too much magic. Students using fancy visual integrated devetopme
environments working with Java end up with no idea of the fundamental
structures that underlie what they are doing. Second, the gigardiedgof Java
are a seductive distraction at this level. You can indeed put togethersisive

fun programs just by stringing together library calls, but this isxarcese with

dubious educational value.” [22]

75

C or C++ would be far better choices for teaching security, as Seawbes &ano, et al., have

noted:

“Although the flexibility and performance of C and C++ aren’t in question,

security has increasingly become an issue.” [59]

“The buffer overflow problem is easily taught using C/C++, but not so inmewe
languages such as Java and C#, which perform bounds checking on inputs. In
fact, these languages are designed to prevent buffer overflow vulitieabi his
brings up two questions. Why should we teach the buffer overflow problem if
newer languages are not susceptible? Furthermore, how should we tetwh it i

class uses a language such as Java?” [44]

The author always has wanted to introduce Southwest Baptist Utyistuslents to C and C++
earlier than the point at which it traditionally is taught, theirgugear. After all, the author
taught CS-2432 using C to students at Oklahoma State University who had wevampned
before and now Oklahoma State University is teaching CS-2433 in C and C+-istortbdevel
of students. Why could the author not teach a secure programming courseli€ €+atio

students who already knew how to program in Java from Computer Science 1?

Lastly, the author believes the best assessment of an elective seguaenming course similar
to the one used in this study - even when modified to use C and C++ as notedvabolkbe
though a department-wide pre-test survey at the beginning of the studenitsl semester in the
department, followed up by a post-test survey at the beginning of the studsn¢€rhester in

the department. A more effective mechanism for tracking which studashizaticipated in the

76

course and which students had not would have to be devised to pass the apprevalefdnt
human subject research oversight boards; this is due to the fatiuilipte students did not
retain their 6 digit pseudo-random number, even just for the duration of jugleasemester

class, and therefore had to be excluded from this study.

Section 2: Future Work in Computer Science Curriculum

Many possible solutions for the problem of computer security have beerigategtover the
years, and many more are likely to be investigated in the future. T dots not necessarily
propose any trulyew curriculum ideas, but ratherhgtrid of some elements contrived from
current curriculum theories and a code security course inspired by industryisdmatggtheory.
At the same time, the author clearly rejects certain other elerokand generally ignores other
elements of current curriculum theories as they are irrelevant smther’s curriculum

proposals.

The author believes that elective information security, netwoikisgcand system security
(including ethical hacking material) coursework really should bdabtaiat those universities
which offer graduate degrees in computer science. The author als@bdtiavall master's
degree students should be strongly encouraged, if not outright required togedduate level
security course that includes elements of information security, rlesgourity, system security,
ethics, and the law. The author believes that all doctoral studentd sleouquired to take such

a graduate level security course as well. The author also believesehptivat these graduate

77

level computer science curriculum issues are generally ignorable aotiext of the author’s

real curriculum proposals which focus on the undergraduate computer scigiaéuwr.

Security must become a required part of the computer science undergragietdum. It is
true that some elements of security should be integrated throughout theleorybut only as
they naturally fit. Security should not be forced into other courses simpliynioate the need
for removing any courses from the required curriculum in order to make roonequiaed
security course. Some courses, perhaps such as numerical analysis, mag aoy lmatural
security tie-ins and consequently may never introduce any securitthe@ther hand, software
engineering, operating systems, file systems, networks, and databasse@mong others -
have natural tie-ins and therefore should have some related sedegtaied into their content.

Many textbooks can be found that already explicitly provide for such itiggra

Security should be introduced as early in the curriculum as possibleritysfmunon-majors
should be integrated into whatever course functions as each univdritytiuction to Computer
Science course, be that a Computer Science 0 overview course or be thatradiimneat
Computer Science | course. Computer Science | should provide a solid foundatidgriradds
coding for future coursework in secure programming, but should not oveethg s security
focus for its design and coding topics. Rather, Computer Science | should apprigtiawies
coding from the perspectives of what is achievable in theory, whatgsidnal in practice, and
what is robust under general adverse conditions - rather than under attditions. Computer
Science | should be taught from the perspective of promoting robust code. elcaii@lycourses
can point out that more robust code equals more secure code and that lesodebegquals less

secure code. After Computer Science | the student, in the continuation gicapr@nalogy,

78

should be ready to have their training wheels taken off of their prograyskills bicycle and
start moving on to learning how to do more advanced things such as pull a wheeliearn or le
how to write a priority queue in Computer Science Il and learn abouesgmgramming in a

code security course.

An introduction to secure software development should be taught directly folltdvarsgudent’s
completion of Computer Science I. To do so immediately after Computer Scigifice |
minimize the time they have to develop and practice bad habits. The gemgn@Emming course
should include more advanced general computer security theory than thimiupremputer
security course for non-majors covered. It also would discuss sisigen and coding but
would stress the coding more than the design, under the assumptiondhatesogyn should be
further reinforced in the student’s future software engineering coarkewhe study of secure
coding should begin in the language the student used in Computer Science | anovihen o
include other similar languages as well. Specifically, the studedsnede taught what
common pitfalls exist in very simplistic and fundamental languages suchaaguage, due to
the creative problems that comparable languages allow that other, more taodeages such
as Java do not allow. The student should be given sufficient programssiggraents to

provide educationally sound repetition and feedback on their secure programitisng sk

A student should be taught the importance of security. Marks and Stinson shggssturity

may be one of the most important aspects of computer science:

“In today’s development environment, security is more important than éxecut

speed, user interface, or even time needed to write the code.” [45]

79

As long as academia continues to graduate students that have not been taugiurtaedenof
security, then security problems will continue to arise in an unneitgs$sgh rate in industry.
While security problems will likely never be completely eliminatbdirtfrequency and the
magnitude of their impact can be reduced. The impact of increasedysaporitexecution
speed can largely be mitigated by the rapid expansion of the number of CBAm@pelines
available to the standard personal computer. The demands of improvety sgruriuser
interfaces may require more careful limits on what can be displayed tyse a user’'s
permissions, but the techniques necessary to enforce such limitatimnghticode are well
known and easily implementable if enough time and careful attentiorkareitea program’s
design and coding stages. Additionally, students need to understandlthedgssms cannot be
designed and written “overnight” (either literally or figuratively)ec8rity must receive its just
due, even if that means convincing management to push back the release dateatrbad been
previously advertised. After all, it is far better to inform the publat the company took extra
time to make sure that the program’s security was done right, ratheéothglease buggy code

that causes the company’s customers major problems in the future.

The student should be taught how to use available tools that can help produce merecsksgur
whether these tools were designed to be security related tools or nallebeelly neigh-
impossible needs to be differentiated from the code-enforced truly irbf@asd the neigh-
impossible should actually be taught to be routinely expected given suffieédntorld usage.
Lastly, Bishop and Frinke suggest the student needs to learn not to trdt, tut rather to

assume that every user and every program is out to exploit their code.

“It has been said that in computer security, paranoia is not enough, but itis a

good place to start.” [7]

80

CHAPTER VI

CONCLUSION

At present, computer security problems are out of control. Something must hie dedece the
frequency and magnitude of the security problems that the world is expedge While a
complete and permanent solution is desirable, the problems are sewggh & make even

partial and temporary solutions worth trying.

Security-aware compilers and post-processors can help, but only if deselpese them
properly. Unfortunately, developers have spotty track records for liisiragnd other similar
general purpose compilation aids. This leads to doubt about the probajgleatea of security-
aware compilers and post-processors; which in turn leads to doubt ipdtegitial effectiveness
as a complete solution to the security problem. Despite this, it iklgpeaatial solution, and

therefore definitely worth pursuing.

Education is another area in which significant potential for improaemay be found. Industry
is pursuing considerable continuing education efforts to correct defieseincdheir developers’
academic preparations. While these educational initiatives in rgdarst clearly valid partial

solutions, they would have never been so necessary if the developersenagtirdee proper

81

education in computer security from academia.

Computer security, particularly code security, should be required as eadgsible, preferably
during the first year of the undergraduate computer science curriculumomgiuter science
majors must be competent coders, capable of and well practiced in wédtinge code, before
they graduate. In addition, all computer science majors must be aware of @osguutity’s

importance, particularly that of code security.

Security can be, and should be, integrated into certain other computee smearges, but only as
it naturally relates to the primary focus of said courses. Alsorigesbould have its own
courses that would reinforce the importance of security as an area @dgthputer science; this
also would allow students at universities that have multiple secunifyses to select security as
their area of emphasis. At the very least, every computer scienceleumrghould have and
require a code security course. Additionally, those universitiesitbat a student to focus on
security also should have elective information security, networkitgcsystem security courses,

or a combination thereof.

The author has taught an introductory security course with emphasidarsecurity over the
course of one semester. The students in the course ranged from secaterdezsaman,
straight out of Computer Science I, to seniors graduating at the end dadrtfester. While

results from the pre-test and post-test surveys completed by coursesswijecmixed, they
suggested that the course was at least partially successful.utlbetstdid seem to have a better

understanding of computer security but seem to have not improved as much with@atbt a

82

secure coding as the author had anticipated. The author feels thatpeiigon and feedback

on the writing of secure code will improve the course the next time iteisedf

The author also believes that a pre-test survey of a larger populatecootissemester
freshman, straight out of Computer Science |, and a post-test of thosetsdemessimmediately
prior to graduation would show a more accurate assessment of the impacatraiagitig such a
course or not taking such a course. To make such an assessment, though, wouldlaggeire a
student population than the author has close access to. It also woul@ iapphoximately half

of the subjects not taking such a course, in order that they may act as@wnabl group, and
the author would not think it best for any computer science student to skip sakimg course,
particularly just for the sake of researching the course’sampghe author considers the
computer security problem as better addressed with an imperfect sopytl@ddo more
students than a better solution applied to fewer students, even if isdalya few years of

research.

The author believes these proposals are not a perfect solution for thet pasputer security
problem. However, the author does believe that these proposals are a validgation.
While the author believes these proposals should be immediately andsaliyvenplemented,
the author recognizes the fact that this schedule is not a realistibifity, and expects that
additional research project implementations of these proposalsedtecopportunities for their

further refinement.

83

REFERENCES

[1] Adams, E., Barr, V., Fendrich, J., Leska, C., Thomas, B., Towhidnejad, M., Teaching
software testing throughout the curriculum, Proceedings of the 5th annual GEZ®&dstern
Conference, 178-180, 2000.

[2] Adhikari, R., Technology news: suspicions rise: has a cyberwardtag@10,
www.technewsworld.com/story/Stuxnet-Suspicions-Rise-Has-a-Cyb&taded-
70892.html?wlc=1285453582¢etrieved September 24, 2010.

[3] Astin, A., Student involvement a developmental theory for higher educa@iéa, 1
www.middlesex.mass.edu/TutoringServices/Astininvolvementrnetiieved July 5, 2010.

[4] Ayoub, R., Chin, A., Parberry, 1., A new model for a student cyber security ortjanjza
Proceeding of the 2nd annual conference on information security curricueiopi@ent, 12-15,
2005.

[5] Bailey, M., Injecting programming language concepts throughout the dumcACM
SIGPLAN Notices, 45, (11), 36-38, 2008.

[6] Bailey, M., Coleman, C., Davidson, J., Defense against the dark artsgBimgs of the 39th
SIGCSE technical symposium on Computer science education, 315-319, 2008.

[7] Bishop, M., Frincke, D., Teaching robust programming, IEEE Security ¥a&yj 3, (2), 54-
57, 2004.

84

[8] Bishop, M., Frincke, D., Teaching secure programming, IEEE Securitjv@dy, 54-56,
2005.

[9] Bogolea, B., Wijekumar, K., Information security curriculum creatiotase study,
Proceedings of the 1st annual conference on Information securityubwmidevelopment, 59-65,
2004.

[10] Bonakdarian, E., White, L., Robocode throughout the curriculum, Journal of Computing
Sciences in Colleges, 21, (3), 311-313, 2004.

[11] Brechner, E., Things they would not teach me of in college: what Micrasgdtapers lean
later, Companion of the 18th annual ACM SIGPLAN conference on object-oriented
programming, systems, languages, and applications, 134-136, 2003.

[12] Carlson, D., Teaching computer security, ACM SIGCSE Bulletin, 38, (2), 64-67, 2004.

[13] CERT, CERT advisory CA-2000-04 love letter worm, 2000, www.cert.org/adess G-
2000-04.htmlretrieved September 24, 2010.

[14] Chickering, A., Ehrmann, S., Implementing the seven principles: technologyeas2004,
www.fmtsystems.com/04-news/Impl-7-prin.pdétrieved July 5, 2010.

[15] Chickering, A., Gamson, Z., Seven principles for good practice in undergradiuataion,
1987, crunchie.tedi.ug.edu.au/blendedlearning/pdfs/fall198 tgtdeved July 5, 2010.

[16] CIS 1103 - Intro to Computing: Southwest Baptist University 2009 - 2010, New York: NY:
Pearson Custom Printing, 2009.

[17] Cook, J., What C.S. graduates don't learn about security concepts andstthitalds or -
"Every company has its share of damn fools. Now every damn fool has access pugecom
Proceedings of the 17th SIGCSE technical symposium on Computer scianagad 89-96,
1986.

85

[18] Cross, T., Academic freedom and the hacker ethic, Communications of MgbAC(6),
37-40, 2006.

[19] Daswani, N., Kern, C., Kesavan, Agundations of Security: What Every Programmer
Needs to Know, Berkeley, CA: Apress, 2007.

[20] Davern, P., Scott, M., Steganography: its history and its application to carbpsed data
files, citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.8482&rep=repl&type=pdf
retrieved July 9, 2010.

[21] DeClue, T., Computer science 1 - is this your father’'s Oldsmobile?]dthaal of
Computing in Small Colleges, 17, (4), 12-17, 2000.

[22] Dewar, R., Astrachan, O., CS education in the U.S.: heading in the wrong direction?
Communications of the ACM, 54, (7), 41-45, 20009.

[23] Futcher, L., von Solms, R., Guidelines for secure software development|@€ational
Conference Proceedings Series, 338, 56-65, 2008.

[24] Gallagher, T., Jeffries, B., Langauer, Hynting Security Bugs, Redmond, WA: Microsoft
Press, 2006.

[25] Grissom, S., iPhone application development across the curriculum, JofuBtathputing
Sciences in Colleges, 26, (1), 40-46, 2008.

[26] Harrison, W., Hanebutte, N., Alves-Foss, J., Programming education iratbktbe
Internet: a paradigm shift, Proceedings of the 39th Hawaii Internat@morderence on System
Sciences, 219b-219b, 2006.

[27] Herath, A., Herath, S., Goonatilake, R., Herath, S., Herath, J., Designing cofoprsics
courses using case studies to enhance computer security curriculal, doGoraputing Sciences
in Colleges, 25, (1), 2007.

86

[28] Hjelmas, E., Wolthusen, S., Full-spectrum information security educatiegrating B.Sc.,
M.Sc., and Ph.D. programs, Proceedings of the 3rd annual conference on Information secur
curriculum development, 5-12, 2006.

[29] Hoglund, G., Security band-aids: more cost-effective than “secud#rigfdEEE Software,
21, (6), 56 & 58, 2002.

[30] Holliday, M., Kreahling, Information security and computer systeméntegrated approach,
Proceedings of the 3rd annual conference on Information security curriculutopiegat, 58-
63, 2006.

[31] Horton, D., HyperCard throughout the curriculum, Journal of Computing Ssiénce
Colleges, 7, (5), 49, 1991.

[32] Howard, M., LeBlanc, DWriting Secure Code 2nd Ed., Redmond, WA: Microsoft Press,
2003.

[33] Howard, M., LeBlanc, D., Viega, 19 Deadly Sns of Software Security, New York, NY:
McGraw-Hill/Osborne, 2005.

[34] Howard, M., LeBlanc, D., Viega, 24 Deadly Sns of Software Security, New York, NY:
McGraw-Hill, 2010.

[35] Ingham, K., Implementing a successful secure coding continuing educatioaloanrfor
industry: challenges and successful strategies, Proceedingsi@tih€onference on Software
Engineering Education and Training Workshops, 25-25, 2006.

[36] Karam, O., Peltsverger, S., Teaching with security in mind, Proceedfitiys 47th Annual
Southeast Regional Conference, Article No. 68, 2009.

[37] Kumar, R., Pandey, S., Ahson, S., Security in coding phase of SDLC, 3rd International
Conference on Wireless Communication and Sensor Networks, 118-120, 2007.

87

[38] Kurose, J., Ross, KGomputer Networking: A Top-Down Approach 5th Ed., New York, NY:
Addison-Wesley, 2008.

[39] Lester, C., Jamerson, F., Incorporating software security into an undetgraditaare
engineering course, Proceedings of the 2009 Third International Conferenceirigm
Security Information, Systems and Technologies, 161-166, 2009.

[40] Lester, C., Narang, H., Chen, C., Infusing information assurance into an undergy@8ua
curriculum, Proceedings of the 2008 Second International Conference on Eme@inityS
Information, Systems and Technologies, 300-305, 2008.

[41] Levis, M., Helfert, M., Brady, M., Information quality management: ne\a¢ an evolving
research area, 2010, mitig.mit.edu/ICIQ/PDF/INFORMATION%20QUALYE20
MANAGEMENT%20--%20REVIEW%200F%20AN%20EVOLVING%20RESEARCH%20
AREA.pdf, retrieved July 8, 2010.

[42] Mader, A., Srinivasan, S., Curriculum development related to infasmaticurity policies
and procedures, Proceedings of the 2nd annual conference on Information seaucitjum
development, 49-53, 2005.

[43] Mancoridis, S., Software analysis for security, Frontiers &v&oe Maintenance, Sept. 28
2008-Oct. 4 2008, 109-118, 2008.

[44] Mano, C., DuHadway, L., Striegel, A., A case for instilling securitg asre programming
skill, 36th ASEE/IEEE Frontiers in Education Conference, 13-18, 2006.

[45] Marks, D., Stinson, M., Security trumps efficiency: putting it intodisiculum, Journal of
Computing Sciences in Colleges, 24, (4), 162-169, 2007.

[46] McAfee KnowledgeBase, McAfee DAT 5958 False Positive Error,
kc.mcafee.com/corporate/index?page=content&id=KB68mdrieved July 9, 2010.

88

[47] McCullagh, D., Buggy McAfee update whacks Windows XP PCs, news.cnet.com/8301-
1009 _3-20003074-83.htmietrieved July 9, 2010.

[48] McGraw, G., Silver bullet talks with Matt Bishop, IEEE SecurityP&vacy, 7, (6), 6-10,
2008.

[49] McGraw, G.Software Security: Building Security In, Upper Saddle River, NJ: Addison-
Wesley, 2006.

[50] Mead, N., Hough, E., Security requirements engineering for software systese studies
in support of software engineering education, Proceedings of the 19th ConferencavaneSoft
Engineering Education & Training, 149-158, 2006.

[51] Narasimhan, V., Das, M., Data and information security (DIS) for BS angrbtams: a
proposal, ACM SIGCSE Bulletin, 42, (4), 95-99, 2008.

[52] Neumann, P., Risks to the public, ACM SIGSOFT software engineering not&s, 2606.

[53] North, M., North, M., North, S., Security from the bottom-up: compliance a&igak and
the trend toward design-oriented web applications, Journal of Computec&cia Colleges, 26,
(4), 54-60, 2009.

[54] Null, L., Integrating security across the computer sciencecalurn, Journal of Computing
Sciences in Colleges, 21, (5), 170-178, 2004.

[55] Pierce, R., Percentage difference vs percentage error, wwgigfah.com/data/percentage-
difference-vs-error.htmketrieved September 25, 2010.

[56] Pothamsetty, V., Where security education is lacking, Proceeditigs 2hd annual
conference on information security curriculum development, 54-58, 2005.

89

[57] Randall, R., The COLOSSUS, citeseerx.ist.psu.edu/viewdoc/download®@dbit65.5075
&rep=repl&type=pdfretrieved July 9, 2010.

[58] Ranum, M., Security: the root of the problem, Queue, 3, (4), 44-49, 2004.

[59] Seacord , R., Secure coding in C and C++ of strings and integers, #€BEYS& Privacy,
5, (1), 74-76, 2006.

[60] Sexton, J., Establishing and undergraduate information assurance ditidorsecurity)
program at a small liberal arts college, Journal of Computing Sesieméolleges, 26, (2), 234-
240, 2008.

[61] Smarkusky, D., Smith, H., Team projects throughout the curriculum, JairGaimputing
Sciences in Colleges, 21, (5), 119-129, 2004.

[62] Snyder, R., Ethical hacking and password cracking: a pattern for indizethaecurity
exercises, Proceedings of the 3rd annual conference on Information sewurdylum
development, 13-18, 2006.

[63] Sorkin, S., Tupper, D., Beiderman, A., Harmeyer, K., Mento, B., Creating andhserd
multimedia technology program in a computer science department, JournahpfiGa
Sciences in Colleges, 20, (3), 32-44, 2003.

[64] Stallings, W.Data and Computer Communications 8th Ed., Upper Saddle River, NJ:
Prentice Hall, 2007.

[65] Stallings, W., Brown, L.Computer Security: Principlesand Practice, Upper Saddle River,
NJ: Prentice Hall, 2008.

[66] Stamat, M., Humphries, J., Trainiggeducation: putting secure software engineering back
in the classroom, Proceedings of the 14th Western Canadian Conferenceprti@pm
Education, 116-123, 2009.

90

[67] Stroustrup, B., Programming in an undergraduate CS curriculum, Proceedings.éth
Western Canadian Conference on Computing Education, 82-89, 2009.

[68] Tanenbaum, AComputer Networks 3rd Ed., Upper Saddle River, NJ: Prentice Hall, 1996.

[69] Taylor, B., Azadegan, S., Moving beyond security tracks: integratewgigein csO and cs1,
Proceedings of the 39th SIGCSE technical symposium on computer sciecaga(820-324,
2008.

[70] Taylor, B., Azadegan, S., Threading secure coding principles and ris&ianato the
undergraduate computer science and information systems curriculum, Proceéttieg3rd
annual conference on information security curriculum development, 24-29, 2006.

[71] Vaughn, R., Dampier, D., Warkentin, M., Building an information secudtication
program, Proceedings of the 1st annual conference on informatiortyseauticulum
development, 41-45, 2004.

[72] Weiss, R., Adding information assurance to the curriculum, Journal g @ Sciences
in Colleges, 24, (2), 46-48, 2006.

[73] Werner, L., Teaching principled and practical information sggulournal of Computing
Sciences in Colleges, 22, (1), 81-89, 2004.

[74] West, R., The psychology of security, Communications of the ACM, 53440, 2008.

[75] Whitman, M., Mattord, H., Designing and teaching information secauitgiculum,
Proceedings of the 1st annual conference on information securityutumni development, 1-7,
2004.

[76] Wilson, B., Aman, J., Bourget, J., Wanted: trained security spesjal@irnal of Computer
Sciences in Colleges, 26, (2), 50-55, 2008.

91

[77] Wysopal, C., Nelson, L., Zovi, D., Dustin, Ehe Art of Software Security Testing, Upper
Saddle River, NJ: Symantec Press, 2007.

[78] Yang, A., Computer security and impact on computer science education, Jéurnal o
Computing in Small Colleges, 18, (4), 233-246, 2001.

[79] Yasinsac, A., McDonald, J., Foundations for security aware softteastopment
education, Proceedings of the 39th Hawaii International Conference on SystareS, 219c-
219c, 2006.

92

APPPENDICES

Appendix A: Informational Script on Human Subject Research

Informational Script on Human Subject Research

(to be read to the students prior to testing)

Professor Cain is conducting a research project towards his doctardésl €€omputer Science
Education: Secure Software. The purpose of this research is to detdrengiect of his Special
Topics: Secure Software course on your knowledge of security.

Class time will be used to administer in-class pre-tests and ptsstaspectively at the beginning
and ending of the Spring 2010 semester. No personally identifiable infonmali be collected
during this study. Your handwritten answers will be typed by SBU staff, ahvglaint your
original answer sheets will be shredded. Anonymous data will be computeridzcedaypted

for storage. Statistical results derived from the data will la¢sanonymous but may be published
in the future by Professor Cain.

The records of this study will be kept private. Any written resultsdigtuss group findings and
will not include information that will identify you. Research recordhve stored securely and
only Professor Cain and individuals responsible for research overslghawa access to the
records. It is possible that the consent process and data collectibe wliserved by research
oversight staff responsible for safeguarding the rights and wellbeingplepeho participate in
research.

There are no known risks associated with this project which are gtteatethose ordinarily
encountered in daily life.

93

Your participation in this is voluntary. You may withdraw from participatioth@npre-test
and/or the post-test at any time prior to turning in the test in question wahppenalty or fear
of reprisal. If you wish to withdraw, please tell me.

Do NOT put your name anywhere on the test. You will have until the end ofdhkgstol
complete the test. When you complete the test, turn in the test to mgptheross the hall to
the computer lab. Create a file on your personal, private F drive. Save tlitgp8eliglo-random
number you find on the top of the first page of your pre-test information shéet filé for use
during the post-test.

Any guestions?

Please tear off and read the first two pages of the packet you have\sseatghis time. They
contain information about this study. You may retain these two pages. Afterwetelaa the
first two pages, write the 6 digit pseudo-random number found on the top ofthfye of your
pre-test information sheet onto the top of your test, and begin the test.

94

Appendix B: Informational Handout on Human Subject Research

Project Title:

Investigators:

Purpose:

Procedures:

Information on Human Subject Research

Computer Science Education: Secure Software

James Cain, Principal Investigator, Bachelor of Science in Elgctric
Engineering, Master of Science in Computer Science, Assistant Prafésso
Computer and Information Sciences at Southwest Baptist University, Ph.D
student in computer science at Oklahoma State University.

The purpose of this research is to determine the effect of his Spedied:Top
Secure Software course on your knowledge of security.

Class time will be used to administer in-class pre-tests and gtstréspectively
at the beginning and ending of the Spring 2010 semester. You will be allowed 50
minutes to complete the pre-test and 50 minutes to complete the post-test.

Risks of Participation:

Benefits:

There are no known risks associated with this project which are giteater
those ordinarily encountered in daily life.

You will be exposed to questions about computer security. These questions may
instill curiosity to further your study of computer security.

95

Confidentiality:

Compensation

Contacts:

No personally identifiable information will be collected during this study.
Handwritten answers will be typed by SBU staff, at which point ther@igi

answer sheets will be shredded. Anonymous data will be computerized and
encrypted for storage. Your pre-test results will be matched with yourgsbst-t
results via the pseudo-random number written on the top of each test.icStatist
results derived from the data will also be anonymous but may be published in the
future by the principle investigator.

The records of this study will be kept private. Any written resultsdistuss
group findings and will not include information that will identify you. Rersh
records will be stored securely and only researchers and indiviésplsnsible
for research oversight will have access to the records. It is po#isiblthe
consent process and data collection will be observed by research ovatedight
responsible for safeguarding the rights and wellbeing of people who petdicip
in research.

Participation in this study cannot be compensated.

If you have questions about your rights as a research volunteer, you may:contact

James Cain, Principal Investigator, 107 Gene Taylor National FreepEsée
Center, Bolivar, MO 65613, 417-328-1680 or jcain@sbuniv.edu

Dr. John Murphy, SBU RRB Chair, Wheeler Science Center, Bolivar, MO
65613, 417-328-1494 or jmurphy@sbuniv.edu

Dr. Shelia Kennison, OSU IRB Chair, 219 Cordell North, Stillwater, OK 74078,
405-744-3377 or irb@okstate.edu

96

Dr. Blayne Mayfield, Advisor, 100 Telecom Center, Stillwater, OK 74078, 405-
744-3471 or bem@cs.okstate.edu

Participant Rights:

Your participation in this is voluntary. You may withdraw from participation in
the pre-test and/or the post-test at any time prior to turning in thie tpsestion
without any penalty or fear of reprisal. Returning your completed tesaiedic
your willingness to participate in this research.

THIS PROJECT HAS BEEN REVIEWED BY THE SOUTHWEST BAPTIST UNBRSITY
RESEARCH REVIEW BOARD FOR RESEARCH AND RESEARCH-RELATED
ACTIVITIES INVOLVING HUMAN SUBJECTS (417) 326-1659.

97

Appendix C: Survey Instrument

For thefirst six questions, circlethe one best answer to each question.
1. What is wrong with the program shown below?

A. Incorrect execution privilege level; program should not be run with
administrative access to the entire system.

B. Internet Explorer 6 has security updates available that havetrimgreinstalled
but should be installed.

C. Internet Explorer 6 is obsolete and should be replaced with IhEetpkrer 7 or
8.

D. Information leakage.

E. None of the above.

Fil= Edt ‘“iew Favorites Tools Help

@Back - @ - \ﬂ lﬂ ;\J D:lPersonaIBar /.\: Search jlf Favarites {_‘) :-_;' = % r.g

This is a simple text file.

-

L

&] Dore 0 Inkernet

g Start == HP 100w (E:) =5 i) T8 PM

2. Sensitive data does not have to be encrypted if it is stored watepgiccount on a
computer with up-to-date operating system, anti-virus, anti-spywareirawalf
software.

A. True.
B. False.
3. Which is the greater risk:
A. A weak password.
B. A strong password taped to the bottom side of the keyboard.

4. Can thgava.util.Random class produce cryptographically strong random
sequences?

A. Yes.

98

B. Yes, if the seed can be kept secret.

C. Yes, if the seed can be kept secret and the attacker canarepés the
generated sequence.

D. No.

Can "home-grown" cryptographic systems provide excellent secuntygththeir

obscurity?

A. Normally, yes.

B. Normally, yes, if their keys and codebooks can be kept secure.

C. Normally, yes, if their keys, codebooks, source code, and byte code can be kept
secure.

D. Possibly, but not normally.

Use cases should be created for:

O 0 W

Every theoretically allowable use of the program.
Every theoretically possible use of the program.
Every realistically allowable use of the program.

Every realistically possible use of the program.

For all remaining questions, circle all correct answers. There may be more than one correct
answer for some questions. All java methods should be assumed to bein properly
constructed classeswith any required java libraries properly imported. Thecode provided
does not contain comments because thisis a test of code comprehension. |gnoreissues of
code style and focus on issues of code correctness.

7.

Where in the software development process should code-defect hslisaba

performed?

A. Stage 1: Problem Analysis and Use Case Design.
B. Stage 2: Architectural and Algorithm Design.

C. Stage 3: Code Implementation.

D. Stage 4: Testing.

E. Stage 5: Deployment.

n

Stage 6: Maintenance.

99

10.

11.

Risk-based testing should be:

mo o w »

Planned prior to coding.

Performed regularly throughout project deployment and maintenance.
More reliable than penetration testing.

A valid substituted for penetration testing.

None of the above.

Penetration testing:

A.

B.

C.

D.

Requires expert hacking skills.
Is best performed by hackers.
Is better at finding security flaws than risk-based testing.

None of the above.

What is the purpose of a code review?

A.

D.

E.

Keeping the team moving along the established timeline andngshe
waypoint production objectives are achieved.

Verifying the code adheres to the design plans.

Keeping the entire project team appraised on what others are dolrgg on t
project.

Finding and fixing bugs.

None of the above.

Are Java programs vulnerable to command injection attacks?

A.

B.

No, because Java programs are compiled prior to execution.

No, because Java programs are not interpreted but rathenarne a virtual
machine.

Yes, if they compile any code into byte code during their own execution.

Yes, if they bring extra classes into execution at the samseoth the same
virtual machine.

Yes, if user-specified data is sent to be interpreted by the opesgdiegn, the
shell, or any interpreters.

100

12. Are Java programs vulnerable to format string attacks?

A. Yes, if the code that translated the Java source code into laveolg was
written in a C-family language.

B. Yes, if the Java Virtual Machine running the Java byte code wasmin a C-
family language.

C. Yes, if the operating system was written in a C-family language
D. No.
13. Indicate which problem(s) exist in tBabbleSort method.
A. Numeric overflow or underflow.
B Exception not caught or thrown.
C. Ignored return value.
D Race condition.
E. Failure to protect stored data.
F. No problems exist in this code.

public boolean BubbleSort (int [] data)
if (data != null)
for (intj = 0; j < data.length; j++)
for (int k = 0; k < (data.length - 1); k++)
i{f (data [K] < data [k + 1])

int temp = data [K];
data [k] = data [k + 1];
data [k + 1] = temp;
}
}
}

return true;

}

else

{

return false;

}
}
14. Correct any problem(s) in tBaibbleSort method.

101

15. Indicate which problem(s) exist in tBearchForAllMatches method. Assume that
theBubbleSort method called in this problem is the one from problem 13.

A. Numeric overflow or underflow.
B. Exception not caught or thrown.
C. Ignored return value.

D. Race condition.

E. Failure to protect stored data.

n

No problems exist in this code.

public void SearchForAllMatches (int [] data, int t arget)

BubbleSort (data);
for (intj = 0; j < data.length; j++)

if (data [j] == target)

System.out.print ("Value " + target);
System.out.println (" found at array location "+);

}
}
}

16. Correct any problem(s) in t&=archForAllMatches method.

102

17. Indicate which problem(s) exist in thelly method and class data member
that the class it is in extends thieread class.

A. Numeric overflow or underflow.
B. Exception not caught or thrown.
C. Ignored return value.

D. Race condition.

E. Failure to protect stored data.

n

No problems exist in this code.

public static int total,
public int Tally (int update)

{

total = total + update;
return total;

}

18. Correct any problem(s) in thally method and class data member.

103

. Assume

Appendix D: Course Syllabus

CIS 2953 (Special Topics: Secur e Softwar €)

Required Text:
Howard, M., LeBlanc, D., Viega, 24 Deadly Sns of Software Security, New York, NY:

McGraw-Hill/Osborne, 2009. ISBN 978-0-07-162675-0

Recommended Texfon reserve in the SBU Library)
McGraw, G.,Software Security: Building Security In, Upper Saddle River, NJ: Addison-Wesley,

2006. ISBN 978-0-321-35670-3

Description:
A study of the most common security flaws in modern computer programs. Studedévelop

and refine secure programming techniques through correcting flaws iplexarograms and
creation of their own secure programs.

Prerequisite:
A student is required to have completed Computer Science I.

TENTATIVE COURSE SCHEDULE
Week Main Lecture Topics Required Text Recom. Text Assayis

1/24 “The Security Problem” Chapter 1 Pre-Test

1/31 Overflow & Underflow Chapter 7 Chapter 4 Prog. 1 assigned

217 Exceptions Chapter 9

2/14 Errors Chapter 11 Prog. 1 due, Prog. 2 assigned
2/21 Usability Chapter 14 Chapter 5

2/28 Information Leakage Chapter 12 Prog. 2 due, Prog. 3 assigned
3/7 Data Protection Chapter 17

3/14 Buffers Chapter 5 Chapter 8 Prog. 3 due, Prog. 4 assigned
3/21 Strings Chapter 6 Midterm Exam

4/4 Command Injection Chapter 10

4/11 Race Conditions Chapter 13 Chapter 7 Prog. 4 due, Prog. 5 assigned
4/18 Privilege Chapter 16

4/25 Passwords Chapter 19

5/2 Random Numbers Chapter 20 Chapter 6 Prog. 5 due, Prog. 6 assigned
5/9 Cryptography Chapter 21 Post-Test

5/16 Final Review FINAL EXAM & Prog. 6 due

104

Course Goals:
Students who successfully complete this course will:

. Know the importance of security in modern computer systems.

. Understand that buggy code is exploitable code.

. Be familiar with 14 of the 24 most common categories of securityetefmogramming
flaws.

. Be able to spot instances of these 14 categories of flaws in existmgrégrams and be
able to fix them.

. Be able to write Java programs that do not contain instances of thestedaries of
flaws.

Organization:

. There will be three lecture periods of 50 minutes each per week.
. There will be 6 Java programming assignments.

. There will be 1 midterm exam and 1 comprehensive final exam.
. There will be 1 pre-test and 1 post-test.

Class Grading:

The grades for this course will be based on the following percentaajalbven:
. 60% Programs

. 20% Midterm Exam

. 20% Final Exam

. 0% Pre-Test

. 0% Post-Test

Grading Scale:
Course grades will be determined by the following scale:

90% or greater
between 80% and 90%
between 70% and 80%
between 60% and 70%
below 60%

moOw®>

Program Submission:
Students are required to submit their source code for grading. Assighsubmitted in

executable form without source code will receive zero credit. remgythat fail to compile on
the Taylor 221 lab machines will also receive zero credit.

Program Code Authoring:
Students are responsible for writing their own code. Using another indisidade without the

prior consent of their professor, even when properly credited to the omgitnadr, will be
considered to be plagiarism. Co-authoring of code with another individualsdlbe
considered plagiarism. Students experiencing difficulty with codingrassigts are directed to
consult their professor for appropriate assistance.

105

Program 1:
Write a Java program that will accept integers from the camdnfine, add them up, and print out

their total to the screen. Make sure your code gets the corredhtiigéit of potential arithmetic
overflow and underflow.

Program 2:
Write a Java program that will accept integers from the camahtine, add them up, and print out

their total to the screen. Make sure your code gets the corredntiighit of potential arithmetic
overflow and underflow. Make sure your code cannot be crashed due to any particutzand
line parameters, including non-integer values.

Program 3:
Correct the information leakage problem(s) in the Java code providedecCamy other

problems in the code and make sure your code cannot be crashed by any parbmedaraf
user input, including obviously erroneous input.

Program 4:
Correct the buffer overflow problem(s) in the Java code provided. Camgother problems in

the code and make sure your code cannot be crashed by any particular choeemptiys
including obviously erroneous input.

Program 5:
Correct the race condition problem(s) in the Java code provided. Camgeather problems in

the code and make sure your code cannot be crashed by any particular choieempfiys
including obviously erroneous input.

Program 6:
Write a Java class that will perform a XOR cipher encryption. In adddiarconstructor and

any other methods you need, your class should contatnenypt method and ®ecrypt

method. Thdé&encrypt andDecrypt methods should each accept a single String class object
parameter and should each return a String class object. Make sureg®waannot be crashed

no matter what parameters are passed into your methods.

106

Appendix E: Revised Course Schedule

REVISED COURSE SCHEDULE
Week Main Lecture Topics Required Text Recom. Text Assigim
1/24 “The Security Problem” Chapter 1 Pre-Test
1/31 Overflow & Underflow Chapter 7 Chapter 4 Prog. 1 assigned
217 Exceptions & Errors Chapter 9 & 11 Chapter 5

2/14 Prog. 1 Code Review Prog. 1 due, Prog. 2 assigned
2/21 Usability & Leakage Chapt. 12 & 14

2/28 Prog. 2 Code Review Chapter 12 Prog. 2 due, Prog. 3 assigned
317 Data Protection Chapter 17

3/14 Buffers & Prog. 3 Chapter 5 Chapter 8 Prog. 3 due, Prog. 4 assigned
Code Review

3/21 Strings Chapter 6 Midterm Exam

4/4 Race Conditions Chapter 13 Chapter 7

4/11 Command Injection & Chapter 10 Prog. 4 due, Prog. 5 assigned
Prog. 4 Code Review

4/18 Privilege Chapter 16

4/25 Random Numbers Chapter 20

5/2 Cryptography & Chapter 21 Chapter 6 Prog. 5 due, Prog. 6 assigned
Prog. 5 Code Review

5/9 Passwords Chapter 19 Post-Test

5/16 Final Review FINAL EXAM & Prog. 6 due

107

Appendix F: Program 3 Starter Code

/l Program 3 starter code

// Starter Code By: James Cain (jcain@sbuniv.edu)
/I This is the required starter code for this assig

/I Assignment Description:

/I Read the following Java API descriptions:

I/l java.sun.com/javase/7/docs/apil/java/util/Random.
/l java.sun.com/javase/7/docs/apil/java/io/File.html
/l java.sun.com/javase/7/docs/api/java/util/Scanner
/l java.sun.com/javase/7/docs/api/javal/io/PrintStre
Il java.sun.com/javase/7/docs/api/java/lang/String.
I/l java.sun.com/javase/7/docs/apil/java/lang/Math.ht
/I Correct the information leakage problem(s) in th
// provided. Correct any other problems in the cod
// sure your code cannot be crashed by any particul
/I user input, including obviously erroneous input.

/I Algorithmic Description:

/ Whoever wrote this program should have told you
/I If you really cannot understand what this code d
Il therefore cannot do the assignment, ask your pro
/I explain it to you and he will.

/I Last comment: Don't you wish this wasn't the las

import java.util. Random;
import java.io.File;

import java.util. Scanner;
import java.io.PrintStream;
import java.lang.Math;

public class cis2953sp10p3 {

public static void main (String [] args) throws Exc

Random rand = new Random();

File infile = new File (args [0]);

File outfile = new File ("PasswordList.txt");

Scanner kbd = new Scanner (System.in);

Scanner Infile = new Scanner (infile);

PrintStream Oultfile = new PrintStream (outfile);

String uppers = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

String lowers = "abcdefghijkimnopgrstuvwxyz";

String digits = "0123456789";

String symbols = " ~1$%"&*()_+{}|:<>?/.,";][=-";

String total = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
"abcdefghijkimnopgrstuvwxyz" +
"0123456789 ~1$%"&*()_+{}|:<>?/.,!

outfile.setReadable (true, true);

System.out.print ("Minumum uppercase: ");

int Uppers = kbd.nextint ();

System.out.print ("Minumum lowercase: ");

int Lowers = kbd.nextint ();

108

nment.

html

.html
am.html

html

ml

e Java code
e and make
ar choices of

what it does.
oes and
fessor to

t comment?

eption{

A=

System.out.print ("Minumum digits: ");
int Digits = kbd.nextInt ();
System.out.print ("Minumum symbols: ");
int Symbols = kbd.nextInt ();
System.out.print ("Minumum total characters: ");
int Total = kbd.nextInt ();
char [] password = new char [Totall;
String user;
inti,j,k;
char temp;
while (Infile.hasNext()) {

user = Infile.next();

for (i=0; i < Uppers;i++) {

password [i] = uppers.charAt (Math.abs (
rand.nextint ()) % 26);

for (i = Uppers; i < (Uppers + Lowers); i ++) {
password [i] = lowers.charAt (Math.abs (
rand.nextint ()) % 26);
}

for (i = Uppers + Lowers;
i < (Uppers + Lowers + Digits); i ++) {
password [i] = digits.charAt (Math.abs (
rand.nextint ()) % 10);
}

for (i = Uppers + Lowers + Digits;
i < (Uppers + Lowers + Digits + Symbols); I ++) {
password [i] = symbols.charAt (Math.abs (
rand.nextint ()) % 26);
}

for (i = Uppers + Lowers + Digits + Symbols;
i < Total; i ++) {
password [i] = total.charAt (Math.abs (
rand.nextint ()) % 88);
}

for (i=0;i<1000;i++) {
] = Math.abs (rand.nextint ()) % Total,
k = Math.abs (rand.nextInt ()) % Total;
temp = password [j];
password [j] = password [K];
password [k] = temp;
}
System.out.printin (user + " " +
(new String (password)));
Outfile.printin (user + " " + (new String (pass word)));

}
}
}

109

Appendix G: Program 4 Starter Code

// Program 4 starter code

// Starter Code By: James Cain (jcain@sbuniv.edu)
/I This is the required starter code for this assig

/I Correct the buffer overflow problem(s) in the Ja
// provided. Correct any other problems in the cod
Il sure your code cannot be crashed by any particul
/[user input, including obviously erroneous input.

// Do not simply replace all of the character array

[/l Strings. Furthermore, you are not permitted to

/I Strings anywhere in this assignment.

/I Create a main method to test your code.

public class cis2953sp10p4 {

public char [] strcat (char [] destination, char []

/l This method concatenates the null-character term
/I characters within the destination character arra

/I characters from the null-character terminated ch
I/l the source character array and returns the desti

I/l character array. The behavior is exactly like t

I/l the C-language function "strcat". By correcting

// the student should gain an understanding of exac
/I C-language does wrong in the function "strcat" a
// functions in the string.h and stdio.h libraries.

// Find the integer value i such that the i-th ch
/I of the destination array is the first null cha
inti=0;
while (destination [i] !="\0") {
i++;
} /I while (destination [i] =0 {...
/I Copy the source array into the destination arr
/I overwriting the existing characters beginning
/I first null character within the destination ar
intj=0;
while (source [j] '="0" {
destination [i] = source [j];
i++;
jtt;
} /'while (source [j] I="0") {...
// Null-terminate the destination array after the
Il character concatenated into it from the source
destination [i] = \0';
/I Return the destination array
return destination;
} /I public char [] strcat (char [] destination,
/I char [] source) {...
} /I public class cis2953sp10p4 {...

110

nment.

va code

e and make
ar choices of

s with Java
use Java

source) {
inated

y with the
aracters in
nation

he behavior of
this code,

tly what

nd similar

aracter
racter

ay,
at the
ray

last
array

Appendix H: Program 5 Starter Code

/l Program 5 starter code
// Starter Code By: James Cain (jcain@sbuniv.edu)
/I This is the required starter code for this assig

/I Correct the race condition problem(s) in the Jav
Il provided. Correct any other problems in the code
// your code cannot be crashed by any particular ch
[/l input, including obviously erroneous input.

public class RetirementAccount {
private float Balance;
private float InterestRate;

public RetirementAccount () {
Balance = (float) O;
InterestRate = (float) O;

} // public RetirementAccount () {...

public float GetBalance () {
return Balance;
} // public float GetBalance () {...

public float GetRate () {
return InterestRate;
} /I public float GetRate () {...

public void Debit (float Amount) {
Balance = Balance - Amount;
} /I public void Debit (float Amount) {...

public void Credit (float Amount) {
Balance = Balance + Amount;
} /1 public void Credit (float Amount) {...

public void ApplyFee (float Amount) {
Balance = Balance - Amount;
} /I public void ApplyFee (float Amount) {...

public void ApplyInterest () {
Balance = Balance + (Balance * InterestRate);
} /I public void Applyinterest () {...

public void SetRate (float Rate) {
InterestRate = Rate;
} // public void SetRate (float Rate) {...
} /I public class RetirementAccount {...

111

nment.

a code
and make sure
oices of user

Appendix I: Survey Data

The tables in Appendix | are laid out with a numbered list of subjects corrésgoadhe
columns and the possible multiple choice answers and coding problem numbeszoratirey to
the rows. Each possible multiple choice answer is recorded as eitteted (denoted 1) or not
selected (denoted 0). Coding problems 14, 16, and 18 are recorded as eithedeomwésd (1)

or incorrect (denoted 0). Problems 16* and 18* are coding problems 16 and 18 rerasorded
either having any appaireattempt to do the problem (denoted 1) or not having any appairent

attempt to do the problem (denoted 0).

Tables 1.1 and 1.3 are numbered to show the pairing for control subjects that todkeboté-test
and the post-test. Likewise, tables 1.2 and 1.4 are numbered to show the paitasg $oibjects
that took both the pre-test and the post-test. The answer key and tkieatestsild not be
properly paired beween pre-test and post-test are listed in tablenexolumns in table 1.5 are
labeled for the answer key (denoted K, for “Key"), control subjectgsts-that could not be
paired with post-tests (denoted C, for “Control”), test subject ite-that could not be pair with
post-tests (denoted T, for “Test”), and post-tests that could not leel path pre-tests (denoted

P, for “Post”).

112

20
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
0
1
1
1
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1

OO0 0O0AdO0OAd 100010000 10d000 10000100000 d00POOT000O0O0AH100CO0AO0O0OOOO 4
010_100000101001000010100011000110001110011101100001000000100
0000 1010100014000 A0 H0000000O0Ad00000Hd0O 1010000100100 0O00OCOO A,
NoooododdoO0O0O—d0000d000d00—"d000dd000dodo0o@PO0dd00O0dddd0"1000O0O 0,
6001000101001000100100001111110000010011000000110000000011
5100000110001000100100001111011000100010000000100100010000
MlOOOOlO10000110001000000100100000010010001000000010000011
000 H00HOHO0OO 10O Hd0O0O0OH0OO0OdTdddoO0d0000O0OHO T 1000001000000 —"ddH0O 4
P 0000 A0 A0 1000000 dO0OO0dO 1000 dO0 1000000110000 1001000O000OH_,
NooOO100OHO0OH0O0O 1000001000000 A10H00000H0P TP HAOOOAOHOO0OO 4
1001000101001001000100111100001000110010101001011000000011
0CO00HOHOHOO—HO0OH00O0OH0OO—A—HO O A0000O0—H0O I T"T0000ddd100000CO0OH 4
00010010100 1000100010 AdO000000d10000HO TOOPOCOO0A00H10100000COH0 4
HO00O0OHOHOOHOO0OO0OO0OO0O—HOHOOOAdAdAAAAAAO0O OO A0 1T 7TO0O00O0O0O0AA100000O0O -
100000 HH000—"00O0O0AHOO0O0OA—"A—HAO AAHAO0O0O0OAAHO O 1O TOO0O0O"dTA10000O0O0O0O A
0000 HdAHA0O0OHO0O O 1000100 dO00dO0O0O A0 dddO00000d0P 1070000 dAd0100100CO0 O 4
A1O0O000O0OAdd000 1000100001000 400 Ad000dd 101100040 AdddA"10000C0O—H0 4
OCO0O00O0O0OAHOO00OO0O 400010001000 A000 100000100 100000014000 1000CO0OH
OO0 —HOOHOHHOOOHO0OO0OOAdO0OHOO 1O HOHOO0OO0OOHO0OP1OTO0000O0d00O0O—"d0000OH0
OO0 O0OHO0OHO0 OO0 10000 A00O0AdddO0OdOo 100000 dd0QP 1070000 "dd000"000OCOH
0OOH0O0OO0OdOHd0O0000O00000O0—Ad0OO0OTHOAOAdO0000O0HA0QQ I TOO000O0O0HdO0O1000000O0H

[N ONaRIT] a)]
ABCDEABABABCDABCDABCDABCDEFABCDEABCD%O OOM %3
AAdAdAddNNNTNITIITITIOUOOOODOOOONMNNMNNNNOOONNOSDD®D oo — -

01

1234567829

12C
12D
13A
13B
13E
13F
141101

<m
N N
—

10C
11B
11C
11D
11E

Table I.1 (part a) Pre-Test Control Subject Data

113

0000001000
000010000
0000001000
O+HO000O0 0000000
10000100000010000
010_0000000000000000
N~

11000000000010011

©O-—10O00Oo aiecleoloNoNe)

9 o coo
mOAUnUnunu1_nUnU0nUnU1_0ﬁunU‘I_
40000010000001000

10100000000010001
Moo-do-Ho ©o-HoHdo0o,500
NOOOOOH 000040 50«
—

HOOOOOl OO0O0O0O-H 00
0000110 coHoHdo 500
Hd00000H 041000500
Po00O00O0H,00000d4 00
PoodO0oo 00000, g0
~MNoooooo OCoOO0Oo0+H,00
60010100100000000
LWoooood coo0o0HOo 500
YSodooHdo 000+ 0 500

00000O0O0O

00

Table I.1 (part b) Pre-Test Control Subject Data

CO1000 1100001100000 O0 10 A ddTA 4101000000
CO1000-HO0OO0OO0OO0OO0O10010O00O0O1001000O0O-1O0O0CO0OO0CO 0O

8192021

mooo100110010000010001011101110000110
NOOTTOO0OO0O A 1000100001000 O0000O0OH1O0H0OO0OO0OOOHO
“000100110001000100100111000110000110
TO0O 1000010001000 10000 4100 A1 40100000 O
BOOO100110000100100001011101110000001
HOOO100110001000010001000100100000010
HOOO 10O Add1O0O0O0O 1000010100000 A A A 411000000
1001000101001000100100000100110000010
TO000 400 HddO0OH1H00000O010HOOOAATAO A1 H1O000O A0
90001001_10000100010100000100110000010
OO0 00 HOHOO10O0O0OO100-1H0000O0100Hd+HOOOOO 0O
OO0 00HdOHOO1000 010100010100 d100O0O0OA40O0
OO0 O0OO0Od1OHOO1O000O0O-100001001000 1100 O0OAHA0O00CO
O—-1HO0OO0OO0OO0OdHHO 10O 1000101000010 1001000 OHO 0O
0OO0O0O100HOHOO1TO0O0O0OOOTHOOO A A 1A 4101000000
OO0 d100d 1000010001010 00 101011000000
OO0 10010 d00O 100010010000 A4 10001000 AHA0O O

<Co0 QU0 OO0 0000 QWL OWCnOAO
A A AddANNONITIIITOOOODOOOONNMNNNNNOOGWONOW®WOO DO D

0

12345678

Table 1.2 (part a) Pre-Test Test Subject Data

114

92021

COd10001000H1000A1000 010000 ,0000+H0 500
o010 0000O0AHOOOAOOO0O0OODO _ OO0OHO0O 0O co-Hooo

—
fodo0oH00O0OHHH00O0+H00—H0O0_000O0O0 OOlOOOMMl
NI A 110100004100 00000H_00000A,00000, o0
m01110001010001000001 COdO0dO 100400 54+
WOOO 100000 HO 10000000 H _ 00000 H,00000d,00

TToOoAdA-d1000ddAd A 10000000
<t

OC0O0O0O0OH,00000d,5 00
HOHA 41000011 HO0O000O000O0H_ 00000 HA 04000050
BOlOOOOOOOllllOOlOOlO oOo+HO0O00oOo CoOOO0od, 00
HOlOOOOOOOlOOO100001000000100000010011
l110100010001100000011000001 010000001
MOlOlOl100001001100000010000 ©coo—Hoog 00
4011000010 —1000 4000100 000001000 —HO 5o«
91110010000100001000000000000000010000
80101000001100000000110000010000001000
70101000101100000000110100000010000011
61011000010100000001000000100000010011
50101000010010001000000010000000001010
41111000000100000001000100000000001010

30101000011001001001000100100010000001

01111100
000000O0O

000

21011000101001000001000000100001010011
A< 00 QWO AW OO0 WL < OOQWLWw <nmOOWL x X
COO0OO0O0OHAATAANNNNNMMMOMHOMNMITEUOOOWOWOWOONNNNNDN W O ©
AdAddddddddAddddddddAdAdd A AdAdAdAdAAAAAAAAAA A A

Table 1.2 (part b) Pre-Test Test Subject Data

22324

NoOOd100OO0Od10HO0O1400O0OH00O
Jv4oococodordoocoodooco-0
m00100101000010010
W.OOlOOOllOOOlOOOOl

800010010100100100

T o000 -HOHOHOOAOOOOH
Ndooocooddoood00O0—O
m00100010100100010
510000010100100010

410000011000010100

leNeNeR NoloR R NoloNoR NeNoNoR Nol
Y“ocoodoododooHdO0O0 OO
HlOOOOlOOlOlOOOOlO
OO 100010 HO0OOd10OAH00O
—HO0OO0OO0OO0OO0OHdOHOO0OOHOOHO
Too0oO0OHdo0O0OHOHOOHAOOOHO
® coHdoocodHoO0d0O0OO0O—O
OO0O-HOO0OOHOHd0OOHOO0OOOH
HOO0OOO0OOHOHOOdT0OO0OOHAO
HHOO0OO0OO0OO0Od1O0Od0O0Od10O0OH400
OCO0O1000Od0Od0O0OHd000O O
0OC0OO0Od00OHOAHOOHOOHOO
O10O00O0OAd1000O100AH00
0OCO0O1000Od0 1400 Hd000O O

<0 OWCONCOLCnO0ALCmnON
AHATANNONS T I T W0 WOLWLW0

01

12345678

Table 1.3 (part a) Post-Test Control Subject Data

115

22324

201000100001000000100100000100010000001000000100000001000
0000000001000 TOOOC00O0T0000O0 10000 A0 000040 0000 —+40 500
OO1001111010100011100111000001000110000000100000000001000
900011111111100010001001010000001000000111000000000001000
010_00010100000100001000100000001010000001000001000000001000
101000011000000100100110010000100000000110100000000010011
No-doo0ooodd0oc0HO0O0OO0OAdd0 I 110004400 H00H00000 00000 H 00000, 00
6000101001101000001001110001001000000001 COOO0O0H 00000, o0
5010011111101000001001000100001000100000 100000 0000 HO 4 o«
4010000110011000001001000000101000000001 10000000000, o
1O 0000 A0 A1d0000dd0000 0000010100000 0O0H_ 000000000040 4500
N OHO0O0OOt00OOOA0000d0C00 100001000100 H00HO #0000 A H00—0o0
2010011010111000001001000000100010000001 OO0OO0OO0OoOdH

OO OOA OO 000000 d0000 1000010000 —+100000d 00000
0000100111111000000111110001111001011110 "0 O0O0dHOo

11000000100010000010010000001001001000000000001

o oo
000001000

000001000
110010000
000001000

01101101

o
o
o

o

® 5 Hdo000dAdAdAdddAH10000 A0 T 1100 400000041000 10 001000 010000 5 o
P o000 dA04HHAO0 000 AHO @110 100001000 AH0O0HO0 00000 H 00000500
SN OO0 AA0 O HdH1000O0 100101000010 d0000H0000,00000H,00000d,00
© coodooodoodHdO000O0ddo T dT000 11010000400 Hd0 ,0000HdO0 440000500
P Q1000 HAdHd0O0d100000 1001010000 11000 1000010 ,010000,00000H, 00
Y o0oHOHdO A0 O HAH00 000 AddO 110001000400 410000001100 ,000900 500
300010111001100011101110010000001000000110010000000000011
NooodoodAdddOHd00 00 Ad0O 310000001000 4100000+ _ 100000 ,0000HO 4 o
“"<moo<omoouur<cnoowcnoosB8888S 80 UIARES 00 nmcn b oo ERR Kl
COOONNMNNNNNOOWOOOI DO AAddddddddddddAdddddAdddAdddAdAdAdAAAAAA A A A

Table 1.3 (part b) Post-Test Control Subject Data

116

OOlOOOl10000101000010111111110000110011100011000010100000
OOO100101000100010001110000110000010011100010001000100000
101001001000010100011000010001010000101000000010001000
Nood0000O0d00Hd0000d0d00dddddddd00000do " dd0dd000+d0"4000O0 -0 4
OO0 HOOAOA0O0OH00O0OO0OHAO0OOddddrdddddd00d000 T IT7000ddHd000O01000COCO-H
NOOO0OHOOHO0OHA0O0O0Od00O0OHdOAd00O0OdddOo0O0Od000O0OAdHO T 1100000 d00O0d00O0OOH_,
OO0 Hd0O0HdO0OHd0 01000100 d00dd00000d00000d0P I 110000701000 A100O0 O 4
0000010000100 0 A0 A0 0 dddAdAdOAdAd 100 A0 —HO0OP 1071000101000 1000O0OH_
oloOOO100110000100010001111100010000010011100100000010110000
NOOOHOOAH1OO0OO 1000100 H000OO0Od00O0O0 1000000 HOOOCTO00O00O0H400O010+H0O00OCOO 4
1000100 HdHd0000100 "0 000d0Oddddddd0000ddO I T 7TO0000COA10000O0OCOCOH
0CO0OO0O10O0OHOHO OO A0 O HAO0OOHO0OO0OO0OOAdHO A HO0OO0O0O0OO—HO0Od 110000100 A10000Od0
0001001100000 00 101000000 Add0000H0O0 1O 0004140001000 OOH
000 HdO0O0OA—10000 14000 A0 A0 0 dAddAdAdqdAAdO00O0d00O0 IO O0100O00O0O01T00O0COCOdH
0CO0OO0O10OO0OHOHOO A0 O HOOOAO0OO0OO0OO 1000000000100 10000000 A1000COO0O0O 100
OCO100O0OHdHA000O0 100010000 H00O0OAHO000O0OdHO0O 1O TOO0O0O0OAA100000O0O A
HO000O0OHOHOOHA0 OO HO0OOOO0OHA0OO A0 O AdHd00O0OHO A0 1T 170000O0A41400000O0—H0 4
COO0O100AdHO00O0 1000400 A0 0O AddddddO0Od0000 40000100000 +H0O0O10O0+H00O0OO
00000 HOHOOOAd0O0OHAO0 OO A0 ddddAddd 100000 —Hd0OdddOd1000CO0O0OO0CO10+400O0+HA0O
000100110000100010100111000110000100111100100000011100000
OO0 d0O0OAdd0000 400010100000 A0HOA00O0O0 A0 !

ABCDEABABABCDABCDABCDABCDEFABCDEABCD%%%
AAdAdAddNNNNITIITITIITIOOOODOOOONMNNMNNNNOONNNNODDD® A -

8192021

1
0
0
0

01101

123456789
00

—
(@)
o
—

10E 0O
11A0
11BO
11C1
11D 1
11E0
12A1
12B 0O
12C0
12D 0
13A1
13B1
13C0
13D 0
13E0
13F 0
14 0

117

Table 1.4 (part a) Post-Test Test Subject Data

92021

OddHd00 0000000
T0o0000H . _ O0O0O0OO0OHO

© o oo
dO0Hd0 000000400500
NOOOCOOH 1000050«
m0010100100100011
K OOCOCOCOH 10000050

i

40000000000010011
HOHO0 00O _ OO0 400 45 oo
™

Bod0000 00090050+
NO—+1OO00O0 0004005 oo
-

H__.nU‘I_.nUnU.nUnUOAUﬂunv—l_nunuo1_1_
0000010 100010011
d0000O0H 100000 0o
Po00O00O0d 00040050
VooooOo-Ho OCO0O0—"d00 50 o
MooooCod,HO0O0—Hd00 50«
CodoOodo 400 Ad0 45 o
Loo-HdO0Oo0o O+dO0O00Oo 00
YOoo0000o 0009005 u
MOodO0O0dOo A4 —dO0 A Hd0 5

000O00O

00

20101100010010011
A< OO LWL <mOO WL X X
LOUWOUOOMOWONNNNNNSOWO®
T A A A A A A A A A A A A A A

Table 1.4 (part b) Post-Test Test Subject Data

o
N OO0OO0O10O0O1O0OHHO0OO1T0O0000O0O1000T0O0O 1100110000 H00
N 100000101000 dTHOOOO1000O0OO0O100O0d1000O0CO O
NOO1000d0 1100000100100 00O01T0O0O-1000O0O0O 0O
pO1000O0A10000100010H0O0 A1 1000A 1000 A0
_I000010101000100010100111101011000010
_IOOO100110001000010100010100110000100
OO0Od1000HOHOOO1O0OO10O0O 10001000 OHOOOOOO HO
COOlOOOlOlOOOlOOO10010000101110000010
CO10001001100000100100101010010000100
Oooo0oo0odoHdO0OH0O0O100010001000"dd100d1H100000 O
Q001000 110010000010 100O0 101000100000 O
OUOO0O100O0HOH1O100O0O1000O01000 11000100 O100O0
COOlOOOlOlOO1000010100001011100100001
0O000dHOHOAHOOOO100 010000 A1 101000 AH0OO
mooo100110000100010100110100100000001

<o O0OUWLCON<C<O<<o 0O 0000 OULLCOOWCnOO
AAd A TdAdANNONTITIIOOODO COOONMNNMNNNNNGBGOOWDWOODO OO

Table 1.5 (part a) Answer Key and Unpaired Subject Data

118

[a
D.Oll1001000100000000110000100000100000
0100000001000110100000011000010010000
0001000001010001001000000100000010000
1_101000001111000001001000000000001010
1111000100111001100000110010000001000
01_01001000000110001000000000000001010
0100000010001000100000100000000010011
Cl11_100011000011000000000001 000010000

TTPPP

o
CO101000010001000001000000100000010000
CO111000111110000000110000010000001000
CO101000001000100001000000010000001000

—
Cll 000001010011001000100100110010000
Cl101000011000110100000000010000000001
1101000110111011000001110000000001010
CO101000111000100000110110001100110111
¥CoO0OOQOW<CcnOOQOWConOO<<CoOOWLL <mOOWLL <nmOOWLW * %
OO0 O0O0OTdTAdAddANNNNMNMMNMMMNMOMITLOOLLOWOLLONNNNNNSOD O
AdAdddddAddAdddAdddAdAdAddAdAdAAAAAAAAAA A A A A A A

Table 1.5 (part b) Answer Key and Unpaired Subject Data

119

VITA
James Francis Cain llI
Candidate for the Degree of
Doctor of Philosophy

Thesis: COMPUTER SCIENCE EDUCATION: SECURE SOFTWARE

Major Field: Computer Science
Biographical:
Education:

Completed the requirements for the Doctor of Philosophy in Computer Science
at Oklahoma State University, Stillwater, Oklahoma in December, 2010.

Completed the requirements for the Master of Science in Computer Science at
University of Missouri — Rolla, Rolla, Missouri in 1999.

Completed the requirements for the Bachelor of Science in Electrical
Engineering at University of Missouri — Rolla, Rolla, Missouri in 1996.

Experience:

Southwest Baptist University, Bolivar, Missouri: Instructor, 1999 — 2008,
Assistant Professor, 2008 — present.

Professional Memberships:

ACM & ACM Special Interest Group on Computer Science Education
IEEE & IEEE Computer Society

National Society of Professional Engineers

Upsilon Pi Epsilon Computer Science Honor Society

Consortium for Computing Sciences in Colleges

Professional Meetings Attended:
ACM Technical Symposium on Computer Science Education 2001, 2005-2008

Consortium for Computing Sciences in Colleges, Central Plains Conference
2000-2002, 2006-2010

Name: James Francis Cain Il Date of Degree: December, 2010
Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: COMPUTER SCIENCE EDUCATION: SECURE SOFTWARE

Pages in Study: 119 Candidate for the Degree of Doctor of Philosophy
Major Field: Computer Science

Scope and Method of Study: Computer Science Education Human Subject Research
Findings and Conclusions:

Computer security problems have been increasing significantly as theetritambeen
increasing the means to both access and to distribute both code and data. Attempts to
address these problems through computer science education by focusing ortimfiorma
security, network security, and system security have not been entirelysutcéée
security problems are serious enough at this time that both industry and academia a
looking for other solutions and even for other partial solutions. One of these proposed
partial solutions focuses the security investigations on the commonality thateseérl
software: code.

The author proposed that all computer science undergraduates should be required to take
a computer security course that focuses on code security early in their addatgr

program. The objectives of this course would be to teach the importance of code
security, to instruct in practical coding techniques for making programs emreesand

to provide practice in these secure coding techniques.

The author has taught an introductory security course with emphasis in codly seeur

the course of one semester during this research project. The students in theaocgede

from second semester freshman, straight out of Computer Science |, to seioasigga

at the end of that semester. While results from the pre-test and post-tess survey
completed by course subjects were mixed, they suggested that the courskeasis at
partially successful. The students did seem to have a better understanaimgpofer

security but seem to have not improved as much within the area of secure coding as the
author had anticipated. The author feels that more repetition and feedback on the writing
of secure code will improve the course the next time it is offered.

The author believes these proposals are not a perfect solution for the present computer

security problem. However, the author does believe that these proposals are a valid
partial solution.

ADVISER’S APPROVAL:_ Dr. Blayne E. Mayfield

