
A NEW PHYLOGENETIC TREE MODEL

FOR FUZZY CHARACTERS

By

ANDY (WINGHANG) AUYEUNG

Bachelor of Science

University of Central Oklahoma
 Edmond, Oklahoma

2000

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
May, 2005

COPYRIGHT

By

ANDY (WINGHANG) AUYEUNG

May, 2005

ii

A NEW PHYLOGENETIC TREE MODEL

FOR FUZZY CHARACTERS

Thesis Approved:

Blayne E. Mayfield

Thesis Adviser

John P. Chandler

G. E. Hedrick

Ulrich Melcher

A. Gordon Emslie

Dean of the Graduate College

iii

PREFACE

Computer Science began as an extension of the study of Mathematics to

investigate the mechanisms of mathematical computation. Modern Computer Science

often involves the transition from a problem in some domain, to a mathematical model,

and subsequently to a computer-based solution. A good transition requires both an

effective description and an efficient representation of the application. This dissertation

proposes a new phylogenetic tree model, called fuzzy phylogeny. Fuzzy phylogeny is an

extension of a classic phylogenetic model, called perfect phylogeny. The motivation and

the detail definition of fuzzy phylogeny are first explained. Then, an algorithmic solution

that transforms the fuzzy phylogeny problem to its perfect phylogeny counterpart is

presented. Next, relaxation problems of fuzzy phylogeny are proposed and the

complexities are studied. Finally, the relaxation problems are solved by three approaches

and empirical analyses are performed.

iv

ACKNOWLEDGMENTS

First, I thank my advisor, Dr. Blayne Mayfield for his guidance. His patience and

comfort have made this academic pursuit pleasant. I also wish to thank the members of

my dissertation committee; each provided me many valuable comments and suggestions,

Dr. John Chandler, Dr. George Hedrick and Dr. Ulrich Melcher. I want to especially

thank Dr. Ulrich Melcher for his mentoring and assistance beyond the dissertation. I

thank the Department of Computer Science of Oklahoma State University for the

financial support and teaching opportunities I have received. Also, this dissertation is

impossible without the finest academic environment the Department offers. I thank

Rachel Monn, Tammy Davis and David Monismith for proof reading of my dissertation.

I thank my family, my grandfathers, my grandmothers, my mother, my brother,

sister and other family members for their love and support. I also thank my loyal

companions, Casa and DD, who have been the most wonderful pets in the world. I thank

the many loving people from the First United Methodist Church in Still water: Pastor Stan

Warfield, Pastor Steven Roach, Ron and Karel Payne, Joe and Glenell Owens, the

Davis’s (Ed, Tammy, Kelsey and Kyla), Troy and Jana Rosenkranz, and every member

of the church. I wish to thank my brother and sister in Christ, Stephen Hobson and Rachel

Monn for their friendship and care.

Finally, I thank the Lord God Almighty for making everything possible.

v

TABLE OF CONTENTS

Chapter Pages

CHAPTER 1 INTRODUCTION .. 1

1.1 BACKGROUND ... 1
1.2 MOTIVATION ... 2
1.3 SUMMARY OF RESULTS... 3
1.4 ORGANIZATION ... 4

CHAPTER 2 REVIEW OF THE LITERATURE .. 5

2.1 ULTRAMETRIC TREE.. 5
2.2 ADDITIVE TREE ... 8
2.3 PERFECT PHYLOGENY ... 10
2.4 GENERALIZED PERFECT PHYLOGENY... 14
PHYLOGENETIC NETWORK .. 17
2.6 PHYLOGENETIC TREE MODELS FOR CONTINUOUS CHARACTERS .. 20

CHAPTER 3 FUZZY PHYLOGENY .. 21

3.1 FUZZY PHYLOGENY... 21
3.2 PROPERTIES OF FUZZY PHYLOGENY .. 23
3.3 TRANSFORMATION .. 25

CHAPTER 4 THE RELAXATION PROBLEMS .. 28

4.1 MOTIVATION ... 28
4.2 THE LARGEST COMPATIBLE SUBSET PROBLEM ... 29
THE ADJUSTMENT PROBLEM FOR PERFECT PHYLOGENY .. 30
4.4 THE ADJUSTMENT PROBLEM FOR FUZZY PHYLOGENY .. 30
4.5 THE COMPLEXITIES ... 32
4.6 THE COMPLEXITY OF THE LCS PROBLEM.. 33
4.7 THE COMPLEXITY OF THE APP PROBLEM.. 34
4.8 THE COMPLEXITY OF THE OPTIMAL AFP PROBLEM... 35

CHAPTER 5 A BRUTE-FORCE APPROACH.. 38

5.1 THE SEARCH SPACE .. 38
5.2 THE BRUTE-FORCE ALGORITHM.. 41
THE ENUMERATED TREE... 43
5.4 CORRECTNESS ... 44
5.5 THE COMPACT (ENUMERATED) TREE ... 48
CONCLUSION ... 49

CHAPTER 6 AN ALGORITHMIC APPROACH.. 51

6.1 A SPECIAL CASE ... 51
THE SPECIAL CASE ALGORITHM ... 52
6.3 THE GENERAL CASE.. 59
6.4 THE GENERAL ALGORITHM... 59

vi

6.5 CONCLUSION ... 62

CHAPTER 7 A HEURISTIC APPROACH .. 64

7.1 HEURISTICS ... 64
7.2 THE PARTICLES ALGORITHM... 64
7.3 THE H-ALGORITHM ... 69
7.4 CONCLUSION ... 71

CHAPTER 8 THE PERFORMANCE ANALYSIS .. 73

8.1 SIMULATED BIOLOGICAL DATA .. 73
8.2 EMPIRICAL STUDIES... 75
8.3 RESULTS.. 76
8.4 DISCUSSION... 79

CHAPTER 9 FUTURE WORK.. 83

9.1 THE ENHANCED ALGORITHM .. 83
9.2 MORE RELAXATION PROBLEMS .. 84
↵� ... 85
9.3 CONFIDENCES OF THE SOLUTIONS ... 85

CHAPTER 10 CONCLUSIONS ... 87

REFERENCES ... 89

APPENDIX A ... 94

vii

LIST OF TABLES

Table Page

8.3.1 THE TIME ANALYSIS OF THE BF-ALGORITHM……………………...…………….……...94

8.3.2 THE TIME ANALYSIS OF THE G-ALGORITHM…………………………………………….94

8.3.3 THE TIME ANALYSIS OF THE H-ALGORITHM…………………………………………….95

8.3.4 THE QUALITY ANALYSIS OF THE H-ALGORITHM……………………………………….95

viii

LIST OF FIGURES

Figure Page

2.1 A 5 ×� 5 MATRIX M AND ITS ULTRAMETRIC TREE T………………………………………….6

2.2 A 4 ×� 4 MATRIX M AND ITS ADDITIVE TREE T…………………………………………………9

2.3.1 AN EXAMPLE OF A 5 ×� 4 {0,1} MATRIX M AND ITS PP-TREE……………………………..11

2.3.2 AN EXAMPLE OF CONSTRUCTING A PP-TREE THROUGH THE SET OF
KEYWORDS……………………………………………………………………………………………….13

2.4 AN EXAMPLE OF GENERALIZED PERFECTPHYLOGENY.…………………………………15

2.5A AN EXAMPLE OF PHYLOGENETIC NETWORK……………………………………………..17

2.5B AN EXAMPLE OF DISJOINTED RECOMBINATION…………………………………………17

3.1 AN EXAMPLE OF A 5 ×� 4 [0,1] MATRIX M WITH ITS FP-TREE AND THE {0,1}MATRIX M’
FROM M WITH ITS PP-TREE………………………………………………………………………….22

3.3 AN EXAMPLE OF A 5 ×� 4 [0,1] MATRIX M, Φ(M) AND THE PP-TREE OF Φ(M)…………...26

4.2 AN EXAMPLE OF A LCS PROBLEM INSTANT M AND A POSSIBLE SOLUTION M’…….29

4.3 AN EXAMPLE OF AN APP PROBLEM INSTANT M AND A POSSIBLE SOLUTION M’…..30

4.4 AN EXAMPLE OF AN OPTIMAL AFP PROBLEM INSTANT M AND A POSSIBLE
SOLUTION M’….…………………………………………………………………………………………31

5.1.1 THE CONCEPT OF MAPPING THE INFINITE SET _

M
S TO THE FINITE SET IS ………39

5.1.2 THREE MATRICES
_

M , THEIR IMAGE I AND THE ORDERS OF THE
CHARACTERS……………………………………………………………………………………………40

5.2 AN EXAMPLE OF A 4 ×� 1 MATRIX M WITH ADJUSTABLE RANGE 2R = 0.4 AND ITS
L……….42

5.3 THE ENUMERATED TREE OF THE EXAMPLE IN FIGURE 5.2……………………………..43

5.4.1 AN EXAMPLE OF AN ADJUSTED MATRIX
_

M FROM A FIXED-CONFIGURATION BY
THE REVERSE MAPPING……………………………………………………………………………...45

ix

5.4.2 ORDER X IS A REFINEMENT OF ORDER Y AND ORDER Y IS A REFINEMENT OF
ORDER Z………………………………………………………………………………………………….46

5.5 THE EQUIVALENT COMPACT TREE OF THE ENUMERATED TREE IN FIGURE
5.3……..49

6.2.1 THE TWO DISJOINT SPANNING SUBSETS LX , RX , AND THE LABELED EDGE

L……….……………………………………………………………………………………………………52

6.2.2 VIEWING THE N-TH COLUMN AS OBJECTS ON A [0,1] INTERVAL…………………….53

6.2.3 THE IMPROVED DATA STRUCTURE L’………………………………………………………54

6.2.4 THE TWO POINTS 1p , 2p DURING THE K-TH ITERATION……………………………...56

6.4.1 AN ILL USTRATION OF THE SEARCH SPACE OF THE BF-ALGORITHM AND THE G-
ALGORITHM…………………………………………………………………………………………….60

6.4.2 THE ENUMERATED TREE OF THE G-ALGORITHM………………………………………61

7.2.1 AN ILL USTRATION OF RANDOM M OTIONS AND COLLISIONS OF
PARTICLES………………………………………………………………………………………………65

7.2.2 THE PSEUDO-CODE OF THE PARTICLES ALGORITHM………………………………….66

8.1 A FP-TREE AND THE DIVERGENCE OF THE OBJECTS……………………………………..74

8.3.1 THE TIME ANALYSIS OF THE BF-ALGORITHM……………………………………………77

8.3.2 THE TIME ANALYSIS OF THE G-ALGORITHM……………………………………………..77

8.3.3 THE TIME ANALYSIS OF THE H-ALGORITHM……………………………………………..78

8.3.4 THE QUALITY ANALYSIS OF THE H-ALGORITHM………………………………………..78

9.1 AN ILL USTRATION OF THE ENUMERATED TREE FOR THE E-ALGORITHM………….84

1

Chapter 1 Introduction

1.1 Background

The study of phylogenetics involves the identification of evolutionary relationships

between species [50,58,59]. Among different phylogenetic models, trees are the most

widely used due to their simplicity and effectiveness [18,23,31,43]. When constructing a

phylogenetic tree, distances [51] and characters [52,53] are the two most common

measurements. In distance-based models, the phylogenetic tree is constructed from a set

of (non-negative) pair-wise distances between species. Ultrametric trees [31] and additive

trees [13,33] are two well-known examples of this model. In character-based models, the

phylogenetic tree is constructed according to the presence or absence of the characters

observed from the species. Perfect phylogeny [19,20] is one of the classical character-

based models. In this model, there are only two states for each character: zero, where the

character is absent; and one, where it is present. The perfect phylogeny problem is to

verify whether a given set of species with a set of characters forms a phylogenetic tree

and, if it does, to construct the corresponding phylogenetic tree. Dan Gusfield [30]

describes an O(mn) time algorithm for this problem where m is the number of species and

n is the number of characters. In addition, this algorithm is proven to be asymptotically

optimal in time. Extended models from perfect phylogeny have been suggested, such as

generalized perfect phylogeny [1,2,12,36,37] and phylogenetic network [56]. In the

2

generalized perfect phylogeny model, each character has finite, multiple states. Kannan

and Warnow [37] describe an O(nmr 222) algorithm for this problem where the number

of states of the characters (r) is fixed. However, this problem has been proven to be NP-

hard in general. In phylogenetic networks, merging sub-trees is allowed. Wang, et al.

[56] propose an O(3n) algorithm for a restricted version of this problem. However, this

problem also is proven to be NP-hard in general. Models for continuous characters also

exist [21,24,42]. Examples of models of this kind include the Brownian Characters

Motion model [14,40,41], the Gap Coding method [44,55] and the Manhattan Metric

Parsimony model [22,38].

1.2 Motivation

All previous perfect phylogeny based models assume the states of the characters

are discrete. However, fuzzy boundaries between species and degrees of character

development commonly are found in nature [10,26,27]. Fuzzy boundaries refer to the

ambiguous definition between the presence and absence of a character, and degrees of

character development refer to the various expression levels of a character. These

phenomena show the need for a more relaxed model. This dissertation proposes the fuzzy

(perfect) phylogeny model that extends the perfect phylogeny model to allow fuzzy

memberships of the characters. The conservation of properties in the new model then is

proven. This dissertation also shows how the fuzzy phylogeny problem can be

transformed to the perfect phylogeny problem so that it can be solved using previously

developed algorithms, such as Gusfield’s algorithm [30].

3

Although the fuzzy phylogeny problem theoretically is equivalent to the perfect

phylogeny problem, the introduction of the fuzziness of characters naturally raises the

question about uncertainty due to the imprecision of the experimental measurement

and/or the range of incompatibili ty tolerance. The problem of uncertainty can be

addressed by permitting adjustments to the experimental character values within a

predefined range or window. But this still l eaves the adjustment problem for fuzzy

phylogeny, that is, how much should the experimental character values be adjusted. The

adjustment problem is carefully analyzed and is proven to be NP-hard.

1.3 Summary of Results

This dissertation presents both theoretical and empirical results on the fuzzy

phylogeny model and its problems. First, the fuzzy phylogeny model is analyzed. It is

proven that the perfect phylogeny problem is a subset of the fuzzy phylogeny problem

both in terms of decidabili ty and tree construction. Next, the transformation Φ
�

 is

introduced to solve the fuzzy phylogeny problem. The transformation Φ
�

 converts a fuzzy

phylogeny problem into its perfect phylogeny counterpart, so that a fuzzy phylogeny

problem can be solved using algorithms for the perfect phylogeny problem, such as

Gusfield’s algorithm [30].

Second, the adjustment problem of fuzzy phylogeny is analyzed. The adjustment

problem (as well as the adjustment problem for perfect phylogeny) is proven to be NP-

hard. Three algorithms then are proposed to solve the adjustment problem, namely the

BF-algorithm, the G-algorithm and the H-algorithm. The BF-algorithm and the G-

algorithm are both exact algorithms where the optimali ty of the solution is guaranteed.

4

The BF-algorithm reduces the unaccountably infinite solution space to a finite solution

space of equivalence classes. The BF-algorithm is intuitive; however, it is impractical due

to its slow performance. The G-algorithm is an improvement over the BF-algorithm such

that invalid solution space is pruned off. The G-algorithm is practical for small instances.

However, due to the complexity of the adjustment problem, the G-algorithm is

impractical for large instances. On the other hand, the H-algorithm has the aim of fast

performance, where solutions are found in seconds, even for large instances.

Furthermore, the H-algorithm produces quality solutions for small to medium instances.

1.4 Organization

The remainder of the dissertation is organized as follows. In Chapter 2, the

phylogenetic tree models are overviewed, including ultrametric trees, additive trees,

perfect phylogeny, generalized perfect phylogeny, phylogenetic network and other

models for continuous characters. Within Chapter 3, the fuzzy phylogeny model is

introduced and defined. Furthermore, the model is analyzed, and the transformation from

a fuzzy phylogeny to a perfect phylogeny is presented. The adjustment problem is

proposed and formulated in Chapter 4. In Chapter 5, the BF-algorithm is proposed and

explained. The G-algorithm is discussed in Chapter 6, and the H-algorithm is presented in

Chapter 7. In Chapter 8, the empirical studies of the proposed algorithms are shown.

Chapter 9 discusses future work related this research. Finally, Chapter 10 provides

concluding remarks of the dissertation.

5

Chapter 2 Review of the Literature

2.1 Ultrametric Tree

The ultrametric tree model [31] is based upon the theory of the molecular clock.

This theory suggests that the mutation rate in the genome is constant over time. The

implication is that all (present) species deviated from their common ancestor at an equal

rate. Therefore, an ultrametric tree is a tree in which all l eaves in all sub-trees are of equal

distance from their (sub-tree) roots. Below is the definition of the ultrametric tree.

Let X be a set of objects (species), and each x ∈ X is associated with a unique

integer from the set S = {1, 2, …, m}, where m = |X|. Let M be an m × m symmetric

matrix of positive real numbers with zeros along the diagonal. Each entry M[i,j] is the

evolutionary distance between species i and j. An ultrametric tree for M is a rooted tree T

that satisfies all of the following conditions:

1. T contains m leaves, each of which is labeled by a unique number s ∈ S;

2. each internal node of T is labeled using a value M[i,j], where 1 ≤ i, j ≤ m and has at

least two children;

3. along any path from the root to a leaf, the numbers labeling internal nodes strictly

decrease;

4. for any two leaves i and j in T, M[i,j] is the label of the lowest common ancestor of i

and j in T.

6

A matrix is said to be ultrametric if it has an ultrametric tree. Furthermore, the

ultrametric tree problem is as follows. Given a matrix M, one wants to determine whether

there is an ultrametric tree for M and to construct T if it exists. Figure 2.1 is an example

of a matrix M and its ultrametric tree T. The ultrametric property can be described by

Lemma 2.1.

Lemma 2.1:

An m × m symmetric matrix M of positive real numbers with zeros along the

diagonal is ultrametric if and only if for any three indices i, j and k (1 ≤ i, j, k ≤ m), the

maximum of M[i,j], M[i,k] and M[j,k] is non-unique.

Proof:

(if) Let T be the ultrametic tree for M. Then for any three leaves i, j and k, one of the

following is true:

Figure 2.1: A 5 × 5 matrix M and its ultrametric tree T.

7

a) if all three leaves have the same lowest common ancestor (that is, M[i,j] = M[i,k] =

M[j,k]) then the lemma holds.

b) if all three leaves do not have the same lowest common ancestor, then two of the

nodes, say i and j, must have a lower common ancestor. Since the tree is ultrametric,

M[i,k] = M[j,k] > M[i,j], therefore the lemma holds.

(only-if) Let M be an m × m ultrametric matrix; then an ultrametric tree T can be

constructed as follows. For any 1 ≤ i < j ≤ m, i and j are leaves in T, and the entry M[i,j]

describes the internal nodes on the path (root, i) (i.e. the path from the root node to the

leaf i). In addition, the relative locations of the other n-1 leaves are fixed. Therefore, the

ultrametric tree T can be recursively built by constructing the branches of the path (root,

i). Furthermore, for any j, k in one sub-tree, M[i,j] = M[i,k] ≥ M[j,k] and for any j, l in

different sub-tree, M[i,l] = M[j,l] ≥ M[i,j]; thus a valid ultrametric tree T must exist.

8

↵

Lemma 2.1 suggests a recursive algorithm that attempts to build an ultrametric tree

T from a matrix M. If T can be built successfully, the algorithm accepts M and returns T.

Otherwise, it rejects M. This algorithm has a run-time complexity of O(
2m) where m is

the number of objects.

2.2 Additive Tree

The ultrametric tree model is an idealized model. In practice, most matrices are

not ultrametric. Therefore, the additive tree model [18,31,33] was proposed by [13]; this

model makes weaker assumptions about distances. If a matrix M is ultrametric, then it

also is additive. Unlike an ultrametric tree, an additive tree is an unrooted tree. In

addition, the additive tree model allows internal nodes to be labeled by objects. That is,

some species can be the ancestors of others. The definition of the additive tree is as

follows.

9

Given an m × m symmetric matrix M of positive real numbers with zeros along

the diagonal, an additive tree T built from M is an edge-weighted tree with at least m

nodes, where exactly m distinct nodes are labeled with i (1 ≤ i ≤ m), such that for every

pair of labeled node i, j, the path (i, j) has a total weight of exactly M[i,j].

A matrix is additive if it has an additive tree. The additive tree problem is similar

to the ultrametric problem, and is as follows. Given a matrix M, one wants to determine

whether there is an additive tree T for M and constructs T if it exists. Figure 2.2 is an

example of a matrix M and its additive tree T.

A constructive algorithm can be used to solve this problem. First, two arbitrary

objects x and y are chosen to form the initial single-edged tree. Then, for 3 ≤ z ≤ m, one

more object z is inserted into the tree at a point p that satisfies the following linear

equations.

Figure 2.2: A 4 × 4 matrix M and its additive tree T.

10

M[x,y] = M[x,p] + M[y,p]

M[x,z] = M[x,p] + M[z,p]

M[y,z] = M[y,p] + M[z,p]

The constructive algorithm was introduced by Buneman [13] to solve the additive

tree problem. Later, Jotun Hein [33] further improved the algorithm by using the deepest

point algorithm in finding insertion points. In conclusion, the additive tree problem can

be solved in O(2m) time. Moreover, the additive tree problem can also be solved in

O(2m) by mapping it to a corresponding ultrametric tree problem [31].

2.3 Perfect Phylogeny

In perfect phylogeny [19,20,23], the phylogenetic tree is constructed according to

the divergence of different characters of the objects. Specifically, there are only two

states for each characters: zero, where the character is absent; and one, where it is present

(i.e. c(x) ∈ {0, 1}).

Let M be an m × n matrix, with m = |X| and n = |C| where X is the set of objects and

C is the set of characters. Each entry where M[i,j] ∈ {0, 1} represents the presence of the

character j in object i. A phylogenetic tree for perfect phylogeny is called a PP-tree and a

PP-tree T for the matrix M is a rooted tree that satisfies:

11

1. each object labels exactly one node in T;

2. each edge is labeled by at least one of the n characters and each character labels at

most one edge;

3. each internal node is either labeled by at least one object or has more than one child;

4. for any object x at node i, the path (root, i) defines exactly all characters x has.

Therefore, a matrix is called a perfect phylogeny if it has a PP-tree. The perfect

phylogeny problem is as follows. Given a matrix M, determine whether M has a PP-tree

T, and if so, construct T. An example of a matrix M and its PP-tree T are shown in Figure

2.3.1. Lemma 2.3 describes the perfect phylogeny property in terms of the matrix M.

Lemma 2.3:

Figure 2.3.1: An example of a 5 × 4 {0,1} matrix M and its PP-tree.

12

Let nvvv ,...,, 21 be the column vectors decomposed from M. The matrix M is a

perfect phylogeny if and only if for every pair of column vectors pv and qv the set of

objects that has character p and q are either disjoint or one contains the other.

Proof:

(only if) Let pv and qv be two column vectors such that the sets of objects that

has character p and q are overlapped. Specifically, there exists three objects x, y and z,

such that M[x,p] = 1, M[x,q] = 0, M[y,p] = 1, M[y,q] = 1, M[z,p] = 0 and M[z,q] = 1.

Therefore, z must be an ancestor of x,y, and x must also be an ancestor of y,z, which is a

contradiction.

(if) Let M be a matrix as described above; Gusfield’s algorithm [30] constructs a

valid PP-tree (Gusfield’s algorithm is explained in detail below).

↵

Lemma 2.3 describes the condition that the perfect phylogeny property is

violated. That is, there are two characters p and q and three objects x, y and z, such that x

has exactly p, y has exactly q, while z has both p and q. Although Lemma 2.3 suggests an

algorithm to solve the decision problem of perfect phylogeny, a straightforward

implementation requires O(2mn) time. In fact, faster algorithms exist. Dan Gusfield

describes an algorithm that runs in O(mn) time. Note that Gusfield’s algorithm is

asymptotically optimal in time. This statement is true because any algorithm requiring

less than O(mn) time to solve the decision problem of perfect phylogeny can be proven

invalid with a contradictory argument.

13

Gusfield’s algorithm is as follows. Since each column vector in M can be viewed as

a binary number, one can create a matrix M’ that is the matrix M in sorted descending

order of the vectors. Then, define the keyword for an object x as the string that is

comprised of all the characteristics x has, in left to right order of M’ . Furthermore, define

Figure 2.3.2: An example of constructing a PP-tree through the set of
keywords.

14

K to be the set of keywords. Then, the PP-tree T can be constructed from K as follows.

Chose the first keyword k from K, and construct a linear tree T. For 2 ≤ k ≤ m, expand T

by k and reject M if a cycle is created. Note that since M’ is sorted, each keyword must

follow the order of the current T (starting from the root node). In other words, M (and M’)

is a perfect phylogeny if and only if T has no cycles. M’ (and K) can be obtained in

O(mn) time by a radix sort. In addition, the PP-tree can be constructed from K also in

O(mn) time. Thus, Gusfield’s algorithm requires O(mn) time. Figure 2.3.2 shows an

example of a matrix M, its sorted image M’ , the set of keywords K and the PP-tree T.

2.4 Generalized perfect phylogeny

Generalized perfect phylogeny [1,2,12,29,36,37] extends perfect phylogeny by

allowing for multiple state characters. Due to the generalization, a more careful

interpretation of the tree is required. In the phylogenetic tree T, each root of a sub-tree is

the ancestor of its descendent nodes, and each edge represents a state transition of a

character. The transition is denoted by a pair <c, is > where c is the character and is is the

destination state. Therefore, every object is a descendent of the root (of T), which is

defined to have zeros in all characters. The model further assumes each transition occurs

uniquely. That is, each <c, is > can at most label one edge in T. Therefore, the characters

of a leaf i can be obtained by applying the transitions along the path (root, i). Notice this

interpretation is also true for perfect phylogeny; however the interpretation in the last

section is much simpler.

A phylogenetic tree for Generalized Perfect Phylogeny is called a GP-tree, and a

GP-tree T for a matrix M is a rooted tree that satisfies:

15

1. each object labels exactly one node in T;

2. each non-zero character state in M labels exactly one edge;

3. each internal node is either labeled by at least one object or has more than one child;

4. for any node i, the path (root, i) defines the transitions in characters of i.

Thus, the following is the generalized perfect phylogeny problem. Given a matrix

M, determine whether M has a GP-tree T, and if so, construct T. Figure 2.4 shows an

example of the matrix M, the characters’ states and the GP-tree. This problem is indeed

NP-complete in general. Kannan and Warnow [37] describe an algorithm (KW

algorithm) that solves this problem when the maximum number of states r is fixed. The

KW algorithm is based on the following definitions and lemmas.

Definition 2.4.1:

A subset X’ ⊂ X is called a cluster if for every character c, at most one state of c

is shared by X’ and X - X’ in M.

↵

Figure 2.4: An example of generalized perfect phylogeny.

16

Definition 2.4.2:

A cluster X’ is called a proper cluster if there is some character c for which X’

does not share any state of c with X - X’ in M.

↵

Lemma 2.4.1:

Let T be a GP-tree for a matrix M; then for every sub-tree T’ of T; if X’ is the set

of objects in T’ , then X’ is a proper cluster.

↵

Lemma 2.4.2:

A matrix M is a generalized perfect phylogeny if and only if there exists a set of

proper clusters for M.

↵

Therefore, the KW invokes the dynamic programming technique to find the set of

proper clusters for M. In addition, a preprocessing of sorting the proper clusters is

performed to reduced the number of potential clusters. As a result, the KW algorithm

requires O(222 mnr) time so that if the number of states r is fixed as a constant, the

problem can be solved in polynomial time of m and n.

17

2.5 Phylogenetic Network

The phylogenetic network [56] is motivated by the recombination mechanism

often found in viruses and bacteria where genetic material is transferred from one

organism to another. Therefore, phylogenetic network extends perfect phylogeny to allow

merging between sub-trees. The merging is formulated as a pair of special edges called

recombination edges. In this model, each node in the tree either has a regular parent edge

Figure 2.5: (a) An example of phylogenetic network (b) An example of
disjointed recombination.

18

or a pair of recombination parent edges that allow the node to inherit all the 1-state from

both parents.

Therefore, the phylogenetic network problem is as follows. Given a matrix M,

find a phylogenetic network for M such that it minimizes the number of recombination

edges. An example of a matrix M that is not a perfect phylogeny but is a phylogenetic

network is shown in Figure 2.5a. Figure 2.5b illustrates the disjoint structure versus the

non-disjoint structure. This problem is also NP-complete in general. However, Wang et

al. [56] propose an O(3n) algorithm for a restricted version of this problem, where all

recombinations are disjoint.

Definition 2.5:

A phylogenetic network is restricted, if in any merged path of a recombination

node, there is no node that is in the merged path of a different recombination node.

↵

Lemma 2.5:

Let pv be the p-th column vector of M, and pO is the set of objects that has

character p. Two sets, pO and qO , are conflicted if their objects overlap. A matrix M has

a restricted phylogenetic network if and only if it satisfies:

a) every iO and jO are not conflicted; or

b) if iO and jO are conflicted,

19

b1) for any k ∉ { i, j}, if kO and iO are conflicted then kO ∩ iO = iO ∩ jO and if kO

and jO are conflicted then kO ∩ jO = iO ∩ jO .

b2) if two conflicted pairs (iO , jO) and ('kO , ''kO) have identical intersections, i.e., iO ∩

jO = 'kO ∩ ''kO , then either

b2.1) (iO , 'kO) and (jO , ''kO) are conflicted pairs and (iO , ''kO) and (jO , 'kO) are

not conflicted pairs; or

b2.2) (iO , ''kO) and (jO , 'kO) are conflicted pairs and (iO , 'kO) and (jO , ''kO) are not

conflicted pairs.

b3) for any conflicted pair (kO , lO), if kO ∩ lO ≠ iO ∩ jO , then either kO ∩ lO and

iO ∩ jO are disjoint or one contains the other.

b3.1) kO ∩ lO and iO ∩ jO are disjoint: then there exists distinct jmiO , and

lmkO , , i.e. jmiO , ≠ lmkO , .

b3.2) kO ∩ lO ⊃ iO ∩ jO : then there exists a character mc satisfying,

b3.2.1) mc is not conflicted with any character and

b3.2.2) iO ⊆ mO and jO ⊆ mO and

b3.2.3) mO ⊆ kO ∩ lO .

↵

As a result, if a matrix M has a restricted phylogenetic network T, then T can be

constructed as follows.

20

1. construct PP-trees for those iO ∩ jO ’s not contained in any other kO ∩ jO ’s.

2. ignore those species used in Step 1 and repeat Step 1 for other iO ∩ jO ’s until no

conflicted pair exists.

3. connect those PP-trees using recombination edges.

2.6 Phylogenetic Tree Models for Continuous Characters

The use of continuous characters to infer phylogenetic trees was introduced in

[21,24,42]. There are three methods where the phylogenetic tree can be constructed from

a set of continuous characters. The first method is to estimate the similarity distances

between the objects from the set of continuous characters. One popular model of this

method is the Brownian Characters Motion model [14,40,41]. The second method is to

discretize the continuous characters into ordered, multiple stated characters. For example,

the Gap Coding method [44,55] first converts the set of continuous characters into

ordered, discrete states according to the discontinuity of the experimental data

distribution. The third method is an extension of the parsimony model [31] where the tree

is constructed based on the minimum transition of characters. Manhattan Metric

Parsimony [22,37] is an example of models of this method.

21

Chapter 3 Fuzzy Phylogeny

3.1 Fuzzy Phylogeny

Although discrete stated characters provide a simple abstraction of characters,

valuable information could be lost during the discretization of the experimental data. In

addition, fuzzy boundaries between species and degrees of character development are

indeed often found in nature [10,26,27]. Therefore, this dissertation proposes a new

phylogenetic model that allows the representation of such fuzziness, called fuzzy

(perfect) phylogeny. Fuzzy phylogeny is an extension of perfect phylogeny where the

binary membership function [45] (i.e. c(x) ∈ {0,1}) is replaced by a fuzzy membership

function (i.e. c(x) ∈ [0,1]). In the fuzzy membership function, c(x) = 0 represents the total

absence of the character, c(x) = 1 represents the maximal expression of the character, and

c(x) = z, for some 0 < z < 1, represents the partial expression of the character.

Furthermore, if c(1x) > c(2x), then 1x has a higher expression on character c than 2x .

Now to distinguish the binary membership function and the fuzzy membership function,

let cF denote the fuzzy membership function that is associated with a character c. Then

Val(cF) is defined to be the set of distinct values of cF (x), for cF (x) > 0 and ∀x ∈ X. Let

L be the set of labels c-val, such that c ∈ C and val ∈ Val(cF). In other words, L is the set

containing all possible labels where each label is a character c concatenated with a

22

distinct value in Val(cF). The following is the definition of the fuzzy phylogenetic tree

(FP-tree).

Given an m × n matrix M where each entry M[i, j] ∈ [0, 1], a FP-tree of M is a

rooted tree T with m’ leaves (where m’ ≤ m) that satisfies the following conditions:

1. each object labels exactly one node in T;

2. each leaf node must be labeled by at least one object;

3. each label in L labels exactly one edge, and each edge has at least one label;

Figure 3.1: An example of a 5 × 4 [0,1] matrix M with its FP-tree and the {0,1}matrix
M’ from M with its PP-tree.

23

4. each internal node is either labeled by at least one object or has more than one child;

5. for any object x at node i, the path (root, i) contains labels that include but do not

exceed the maximum values of)(xFc , c;

6. for any two labeled edges pe and qe , if pe and qe are describing the same character

and pe ’s value < qe ’s value, then pe must be an ancestor edge of qe ;

Thus, the fuzzy phylogeny problem is that given a [0,1] matrix M, one needs to

determine whether there is a FP-tree T for M, and if so, construct T. Figure 3.1 shows an

example of a [0,1] matrix M with its FP-tree and the discretized matrix M’ from M (with

threshold = 0.5) with its PP-tree.

3.2 Properties of Fuzzy Phylogeny

Since fuzzy phylogeny is extended from perfect phylogeny, it is important for the

following two properties to hold. First, if a matrix M is a perfect phylogeny, it must be a

fuzzy phylogeny too. (To clarify, M itself is a {0,1} matrix, and there is no discretization

involved.) Second, if T is the PP-tree for matrix M, then the FP-tree T’ for M (by the first

property, it must exists) must be the same as T. These two properties indeed hold in fuzzy

phylogeny,

Property 1:

If a matrix M is a perfect phylogeny, then M is also a fuzzy phylogeny.

Property 2:

24

Let M be a {0,1} matrix that is a perfect phylogeny, then its PP-tree T is also the

FP-tree for M.

Proof:

To show that Property 1 is true, it is sufficient to show that Property 2 is true.

Furthermore, Property 2 is true because Φ
�

(M) = M when M is itself a {0,1} matrix.

Therefore, the PP-tree T is also the FP-tree for M.

↵

Uniqueness of the phylogenetic tree is important to a phylogenetic tree model. A

phylogenetic tree model is called unique if for any input M, there is only one valid

phylogenetic tree T for M. These models have an advantage of providing an unambiguous

solution for each input. Note that although uniqueness is a good feature of a phylogenetic

tree model, it should be the outcome of a biological theory, not the goal in designing the

model. Lemma 3.2 below proves the uniqueness of the fuzzy phylogeny model.

Lemma 3.2

The fuzzy phylogeny model is unique.

Proof:

The proof approaches the lemma by looking at the uniqueness of the sub-trees of

T and then by running a recursion that reduces the height of these sub-trees. For instance,

T is unique if and only if i) the objects at the root node and the child edges of the root

node are unique and ii) every sub-tree rooted at a child of the root node is unique

(similarly for every sub-tree). Finally, a sub-tree with height zero must be unique, and

that closes the proof. Assuming the converse, then there are two FP-trees T and T’ for M,

25

where T ≠ T’ . For every internal node i in T and the corresponding internal node i’ in T’

(so, node i and i’ are the root nodes of T and T’ respectively, for the base case), then:

case 1 (the objects at i differ from the objects at i’): if there is an object x that labels i but

x does not label i’ , then x must be at a descendent node j of i’ . Let l be a label that is

found on the path (i’ ,j), then x expresses l in T’ , but not in T. That creates a contradiction

to that T and T’ are FP-tree for the same matrix.

case 2 (the objects at i the same as the objects at i’): if there exists an edge qe that is a

child edge of i but not of i’ , then (a) qe is either not in T’ or (b) is below another edge pe .

For (a), an object x below qe in T has character q, but x does not have character q in T’ ;

that is a contradiction. For (b), there must be a node 1x that has character q but not p in T,

and a node 2x that has both character q and p in T’ however, there is a node 3x that has

character p but not q in T’ which must also be in T. This situation violates Lemma 2.3, so

there is a contradiction.

↵

3.3 Transformation

The fuzzy phylogeny model provides an effective platform to construct the

phylogenetic tree from non-binary data. In fact, its computation is theoretically

equivalent to that of perfect phylogeny. Below shows how the fuzzy phylogeny problem

can be transformed to the perfect phylogeny problem counterpart.

The number of distinct values d is defined as, d = ∑
∈Cck

|Val(kF)|. There is a

transformation Φ
�

 that converts an m × n matrix M to an m × d matrix M’ , and it is as

26

follows. Given M, it decomposes M into n column vectors, nvvv ,...,, 21 , each with length

m. Then, it transforms each kv , where 1 ≤ k ≤ n, to an m by |Val(kF)| matrix 'kM . Finally

it concatenates all 'kM to form M’ . Each column j in 'kM corresponds to a distinct value

in Val(kF) and 'kM [i,j] = 1 if)(ik xF ≥ the distinct value of column j; it is equal to zero

otherwise.

The correctness of the transformation Φ
�

 to solve the fuzzy phylogeny problem

can be shown with Lemma 3.3.1 and Lemma 3.3.2. Given a matrix M, M’ can be created

Figure 3.3: An example of a 5 × 4 [0,1] matrix M, Φ
�

(M) and the PP-tree of

Φ(M).

27

in O(md) time. Since the perfect phylogeny problem can be solved in O(mn) time [30],

the fuzzy phylogeny problem can then be solved in O(md) time. Furthermore, because d

≤ mn, it can be described with O(nm2) time. An example of the transformation is shown

in Figure 3.3.

Lemma 3.3.1:

Let Φ
�

(M)=M’ , then M is a fuzzy phylogeny if and only if M’ is a perfect

phylogeny.

↵

Lemma 3.3.2:

Let Φ
�

(M)=M’ ; then the PP- tree T’ for M’ is the FP-tree T for M.

Proof:

If M’ is a perfect phylogeny, the PP-tree T’ is also the FP-tree for M. For any

object x in a node l in T’ , the path (root, l) has the maximum value of each character of x.

In addition, for any l, all l abels that have smaller values must be in the path (root, l), and

they must be in a decreasing order on the path. Conversely, the “only-if” direction is

similar because T can be used for M’ also.

↵

28

Chapter 4 The Relaxation Problems

4.1 Motivation

There are two approaches for building phylogenetic trees, namely constructive

[17] and structural [31]. The constructive approach assumes the experimental data fully

obey the evolutionary hypothesis and constructs the phylogenetic tree heuristically. This

approach is often efficient due to its simplicity. However, a phylogenetic tree would be

generated even when the experimental data is invalid (i.e. it does not obey the underlying

hypothesis). On the other hand, the structural approach first requires the experimental

data to obey the underlying hypothesis and rejects the data if it does not. This approach

guarantees the consistency between the phylogenetic tree and the experimental data, yet it

often rejects the “almost valid” data that has been perturbed by natural causes.

This dissertation focuses on the structural approach due to its theoretical

importance. (Note that the constructive approach is important mainly in applications.) For

the structural approach, an “add-on” relaxation is often introduced to repair the data that

is perturbed by natural causes. In this chapter, two relaxation problems for perfect

phylogeny are presented, namely the Largest Compatible Subset problem [6,7,16] (the

LCS problem) and the Adjustment problem for Perfect Phylogeny (the APP problem).

After that, the Adjustment problem for Fuzzy Phylogeny (the AFP problem) is proposed,

29

which is the target problem for the dissertation. Finally, the complexities of the relaxation

problems are investigated.

4.2 The Largest Compatible Subset Problem

Recall that the perfect phylogeny problem is that given a matrix M, determine

whether M is a perfect phylogeny (i.e. M has a PP-tree). The Largest Compatible Subset

[6,7,16] (LCS) problem is a relaxation problem that can be added on to the perfect

phylogeny problem. The goal of the LCS problem is to discard the minimum number of

characters such that the remaining data is a perfect phylogeny. The formal definition of

the LCS problem is as follows. Given an m × n {0,1} matrix M, find an m × n’ matrix M’

by removing columns from M, such that n’ is maximized and M’ is a perfect phylogeny.

Notice that for any matrix M, there exists an M’ with n’ ≥ 1. Therefore, a variation of the

problem may also require n’ ≥ k for some predefined k. Figure 4.2 is an example of M

and a possible M’ .

Figure 4.2: An example of a LCS problem
instant M and a possible solution M’.

30

4.3 The Adjustment Problem for Perfect Phylogeny

The Adjustment problem for Perfect Phylogeny (APP problem) is another

relaxation problem for perfect phylogeny. Instead of discarding inconsistent characters,

the APP problem repairs the inconsistent entries in the matrix (i.e M[i,j]). The formal

definition of the APP problem is as follows. Given an m × n {0,1} matrix M, find an m ×

n matrix M’ by flipping entries of M (i.e. 0→1 or 1→0), such that the number of flips f is

minimized and M’ is a perfect phylogeny. Again, for any matrix M, there exists an M’

since one can turn M into any m × n {0,1} matrix. Therefore, a variation of the problem

may limit f ≤ k, for some predefined k. Figure 4.3 is an example of M and a possible M’ .

4.4 The Adjustment Problem for Fuzzy Phylogeny

The Adjustment problem for the Fuzzy Phylogeny (AFP problem) is a proposed

relaxation problem for fuzzy phylogeny. In addition, this is the target problem of this

dissertation. This problem is an extension of the APP problem. Therefore, the AFP

problem is to repair the inconsistent entries in the [0,1] matrix. However, the adjustment

Figure 4.3: An example of an APP problem
instant M and a possible solution M’.

31

is no longer in binary (i.e. 0→1 or 1→0); rather it is a mapping from [0,1]→[0,1]. The

formal definition is as follows. Given an m × n [0,1] matrix M, find an m × n [0,1] matrix

M’ such that the total adjustment a =∑∑
= =

−
m

i

n

j

jiMjiM
1 1

|],['],[| is minimized and M’ is a

fuzzy phylogeny.

Similarly, for any matrix M, there exists an M’ since one can turn M into any m ×

n [0,1] matrix. Therefore, in this dissertation, two variations of the AFP problem are

studied. They will be called the AFP problem and the optimal AFP problem in the

following text. Figure 4.4 is an example of M and a possible M’ for the optimal AFP

problem with r = 0.1.

Definition of the AFP problem:

Given an m × n [0,1] matrix M and a value r ∈ [0,1], find a matrix M’ such that

|M[i,j]-M’ [i,j]| ≤ r and M’ [i,j] ∈ [0,1], for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and M’ is a fuzzy

phylogeny. (Note that the value 2r is called the adjustable range.)

4.4 An example of an optimal AFP problem instant M and a possible
solution M’.

32

↵

Definition of the optimal AFP problem:

Given an m × n [0,1] matrix M and a value r ∈ [0,1], find a matrix M’ such that

|M[i,j]-M’ [i,j]| ≤ r and M’ [i,j] ∈ [0,1], for 1 ≤ i ≤ m and 1 ≤ j ≤ n, M’ is a fuzzy

phylogeny, and the total adjustment a is minimized.

↵

4.5 The Complexities

The complexity of a problem often plays an important role in an algorithm’s

development [15,34]. For instance, if problem A is an NP problem, assuming that N ≠

NP, then it is unwise to search for a polynomial algorithm that solves A exactly. As a

result, alternatives might be investigated, such as heuristic algorithms or fast

implementations, to solve small problem instants. In this section, the complexities of the

three relaxation problems, the LCS problem, the APP problem and the optimal AFP

problem, are studied.

In order to investigate the complexities of the relaxation problems, it is criti cal to

understand the transformation technique. The transformation technique provides an easy

way to show that a problem is in a complexity class C. Let problem B be a C problem

where C is a complexity class. Then, problem A is also a C problem if there exists a pair

of transformations, α� () β
�
(), such that α� (b) transforms b (an instant of B) to a (an instant

of A) and β
�
(s) transforms s (a solution for a) to t (a solution for b). Furthermore, α� () and

β
�
() are both below C.

33

The transformation technique is used to investigate the complexities of the three

relaxation problems. Specifically, the question is whether the problems are in P or NP

(again, assuming that N ≠ NP). Therefore, the following theorem (Theorem 4.5) is used.

Theorem 4.5:

Let problem B be an NP-hard problem; then problem A is also an NP-hard

problem if there exists a pair of polynomial time transformations, α� () β
�
(), such that α� (b)

transforms b (an instant of B) to a (an instant of A) and β
�
(s) transforms s (a solution for

a) to t (a solution for b).

↵

4.6 The Complexity of the LCS problem

Vertex cover [15,32,45] is a classic problem in graph theory [17,57]. A vertex

cover of a graph G=(V, E) is a set V’ ⊆ V such that if (u, v) is an edge of G, then either u

∈ V’ or v ∈ V’ (or both). The vertex cover problem (VC problem) is to find a vertex

cover that minimizes |V’ |. In addition, the vertex cover problem is proven to be an NP-

hard problem.

In order to show the NP-hardness of the LCS problem, a variation of the VC

problem is used. Instead of f inding a minimized |V’ |, this variation is to find a maximized

|U’ | such that if (u, v) is an edge of G, then either u ∉ U’ or v ∉ U’ (or both). This

variation is equivalent to the original VC problem because U’ = V – V’ . Therefore, this

variation is now referred as the VC problem in the following text.

34

With Lemma 2.3, the α� () transformation can be as follows. Given a graph

G=(V,E), a {0,1} matrix M is created so that for every vertex u ∈ V, there is a

corresponding column u’ in M and two columns u’ and v’ have overlapping objects if and

only if the two corresponding vertices u and v are adjacent (i.e. (u,v) ∈ E). Therefore, the

β
�

() transformation is as follows. Let M’ be a solution to a LCS problem instant M = α� (G).

Then, the solution to the VC problem instant G is the set U’ = {u ∈ V | u’ is in M’}. As a

result, Theorem 4.6 is true since α� () and β
�

() are both within polynomial time.

Theorem 4.6:

The LCS problem is an NP-hard problem.

↵

4.7 The Complexity of the APP problem

The NP-hardness of the APP problem can be shown in a similar manner, and the

α� () transformation is as follows. Given a graph G=(V,E), a 1)(2 2 +− nn × n {0,1} matrix

M is created where n = |V|. Each of the first nn −2 rows is associated with an ordered

pair (u,v) of V (note: one row for (u,v) and one row for (v,u)). Furthermore,

M[index(u,v),u] = 1 if (u,v) ∈ E and M[index(u,v),w] = 0, ∀w ≠ u, where index(u,v) is the

row number that is associated with the order pair (u,v). Next, the first nn −2 rows are

repeated. Finally, M[1)(2 2 +− nn ,w] = 1, for 1 ≤ w ≤ n.

As a result, the β
�

() transformation is as follows. Let M’ be a solution to an APP

problem instant M = α� (G). The maximum vertex cover for G is the set U’ = {u ∈ V |

35

M[1)(2 2 +− nn ,u] = 1}. Therefore, Theorem 4.7 is true since α� () and β
�

() are both within

polynomial time.

Theorem 4.7:

The APP problem is an NP-hard problem.

↵

4.8 The Complexity of the optimal AFP problem

Due to Theorem 4.7, it can be shown that the optimal AFP problem is also an NP-

hard problem. To show that the optimal AFP problem is NP-hard, it is sufficient to

show that a subset of the optimal AFP problem is NP-hard. Specially, let sub-AFP be

the set of the optimal AFP problem instants where M is a {0,1} matrix and r = 1. Lemma

4.8 shows that if Ψ
�

 is an algorithm that solves the APP problem, then Ψ
�

 also solves the

problem instant of sub-AFP. Therefore, the optimal AFP problem is an NP-hard

problem.

Lemma 4.8:

For any problem instant M ∈ sub-AFP, if there exists a solution M’ , then there is

a {0,1} matrix M’’ such that M’ ’ is another solution for M and a’ ≥ a’ ’ where a’ is the

total adjustment of M’ and a’ ’ is the total adjustment of M’’ .

Proof:

Case 1: if M’ is a {0,1} matrix, then M’’ = M’ and a’ = a’ ’ .

36

Case 2: if M’ is not a {0,1} matrix, then there is a {0,1} matrix M’’ such that for

every two objects i and j,

1. if i > j in u’ (in M’), then i ≥ j in u’’ (in M’’);

2. if i = j in u’ , then i = j in u’’ ;

3. if i < j in u’ , then i ≤ j in u’’ .

In addition, a’ ≥ a’’ and M’’ is a solution to M (i.e. M’ ’ is a fuzzy phylogeny and

|M[i,j] -M’’ [i,j] | ≤ r , but since r = 1, it is true for every M’ ’). Let iu = M[i,u], iu' =

M’ [i,u’] and iu '' = M’’ [i,u’’]. Then, a’ = ∑∑
∈ =

−
Mu

m

i
ii uu

1

|'| and a’’ = ∑∑
∈ =

−
Mu

m

i
ii uu

1

|''| . Then

M’’ is created as follows. Let k ∈{ iu' } for 1 ≤ i ≤ m; if iu < k, then iu '' = 0, else iu '' = 1,

so that the total adjustment of u is minimized. Without loss of generali ty, assume iu ≤ ju

if i < j. Also, assume that 1 ≤ x ≤ k ≤ y ≤ m for some x and y, iu = 0 where 1 ≤ i < x, iu = 1

where x ≤ i < k, iu = 0 where k ≤ i < y, iu = 1 where y ≤ i ≤ m. Then the total adjustment

of u’ is ∑
=

−
m

i
ii uu

1

|'| = ∑
−

=

1

1

'
x

i
iu + ∑

−

=

−
1

'1
k

xi
iu + ∑

−

=

1

'
y

ki
iu + ∑

=

−
m

yi
iu'1 while the total adjustment

of u’’ is k - 1 - i + j - 1 - k = j - i – 2. As a result, the total adjustment of u’’ ≤ the total

adjustment of u’ ; otherwise there must exist a k’ ∈{ iu' } that yields a total adjustment less

than that of k, which is a contradiction.

Finally, due to the transformation Φ
�

 and Lemma 2.3, it can be shown that M’’ is a

fuzzy phylogeny, and that closes the proof.

↵

37

Theorem 4.8:

The optimal AFP problem is an NP-hard problem.

↵

38

Chapter 5 A Brute-force Approach

5.1 The Search Space

Recall from Chapter 3 that given an m × n matrix M, where each element M[i,j] is

in the interval [0,1], one can verify whether M is a fuzzy phylogeny through the

transformation Φ
�

. Let φ be a function that verifies whether a matrix is a fuzzy phylogeny

(i.e. φ(M)={ yes, no}). Then, to solve the (optimal) AFP problems, a naïve brute-force

algorithm invokes φ on each
_

M , where
_

M is a matrix that is within the adjustable range

2r of M (i.e. |M[i,j]-
_

M [i,j]|≤r, ∀ i,j, 1≤i≤m, 1≤j≤n). However, this algorithm may never

terminate because the number of possible
_

M is infinite (except for the trivial cases).

However, it is not diff icult to see that the infinite set of
_

M (i.e. _

M
S = {

_

M | |M[i,j]-

_

M [i,j]|≤r, ∀ i,j, 1≤i≤m, 1≤j≤n}) can be mapped to a finite set of Φ
�

(
_

M) images (i.e.

)(
_

M
S

Φ
 = { Φ

�
(

_

M) |
_

M ∈ _

M
S }). In other words, Φ partitions _

M
S into equivalent classes,

each of which can be represented by Φ
�

(
_

M), where
_

M is any member of the equivalent

class. Furthermore, I = Φ
�

(
_

M) is called the image of
_

M (also IS =
)(

_

M
S

Φ
). Figure 5.1.1

depicts the concept of the mapping. Therefore, the transformation Φ
�

 allows brute-force

39

algorithms to search the finite set IS , instead of the infinite set _

M
S . As a result, this

brute-force approach is guaranteed to terminate and produce the correct answer.

It is important to understand the relationship between the infinite set _

M
S and the

finite set IS . In fact, I only depends on the orders of the values in
_

M . Figure 5.1.2 gives

an example of three
_

M that yield the same I. Figure 5.1.2 also shows the orders of each

character of
_

M . In other words, for each column (that specifies a character) in
_

M , the

validity depends on the relative positions of the objects on the development path. In the

discussion below, the term order is used to mean the order of how the objects lay on the

Figure 5.1.1: The concept of mapping the infinite set _

M
S to the finite set IS .

40

path. In addition, each group in the order is called a rank. Therefore, the order of

character 3 in Figure 5.1.2 has two ranks, where a, c are at rank 1 and b is at rank 2.

Figure 5.1.2: Three matrices
_

M , their image I and the orders of the characters.

41

Therefore, to solve the AFP problem, one invokes φ on each I and quits when one

valid solution (i.e. an I that is a perfect phylogeny) is found. In addition, one also needs to

map the image I back to a [0,1] matrix. To solve the optimal AFP problem, however, one

needs to search the entire IS set by brute-force to find an I that yields the minimum

adjusted M’ . (See Section 4.4 for the definitions of the problems.)

5.2 The Brute-force Algorithm

The key step of this brute-force method is to enumerate the elements in IS and to

find the [0,1] matrix M’ that yields a given I (it is called the reverse mapping). This

chapter describes the algorithms for the enumeration and the reverse mapping, when M is

an m × 1 matrix (i.e. it is a vector). Then, the enumeration of an arbitrary size M can be

obtained by combining results from the columns of M. This algorithm is called the

(Brute-Force) BF-algorithm.

In order to enumerate the elements in IS , a data structure is needed. Let L be a

sequence of sets, where each element of L has an associated value. In addition, each

member of the set is a 2-tuple <label, count>, such that label is one of the objects’ names

and count is the objects’ adjustable range, in terms of the number of elements in the

sequence.

The mechanism to translate a matrix M with adjustable range 2r to the data

structure L is as follows. First, the set of threshold values Thres is computed. Thres is a

finite set of values that is suff icient to yield all possible orders. For each value in M, it

produces three threshold values, M, M-r and M+r. However, for any threshold value that

is greater than one, it is replaced by one, and similarly if it is less than zero, it is then

42

replaced by zero. (The reason that above values are chosen this way will be revealed later

by Lemma 5.4.1.) Therefore, Thres is the union of these three threshold values of each

value in M. Then, the length of L is |Thres|; that is the number of distinct threshold

values. In addition, the associated values of L are the distinct threshold values arranged in

ascending order. Finally, for each object x, a 2-tuple is created and placed in the set at

where the element (of L) is associated with x’ s leftmost value (i.e. Max(0,M[i]-r)), and

count is the distance from its rightmost value (i.e. Min(M[i]+r,1)) in terms of the number

of elements in the sequence. Figure 5.2 shows an example of a matrix M, an adjustable

range 2r and the corresponding L. Moreover, each variation of this L is called a

configuration, and the L just described is called the initial configuration.

Figure 5.2: An example of a 4 × 1 matrix M with adjustable range 2r = 0.4 and

its L.

43

5.3 The Enumerated Tree

The goal of the enumeration is to generate all possible configurations. It is done in

a recursive fashion. A configuration that has at least one 2-tuple which its count>0 is

called non-fixed (it is called fixed otherwise). A non-fixed configuration that has n non-

fixed 2-tuple can be expanded to configurations that have n-1 non-fixed 2-tuple by fixing

one 2-tuple at each possible element of L. Figure 5.3 depicts the configuration expansion

as an enumerated tree. Actually, the tree is similar to a search tree. The root of the tree is

the initial configuration of L. The children of an internal node are the different

Figure 5.3: The enumerated tree of the example in Figure 5.2.

44

configurations that are expanded from this internal node. Each level down the tree, the

child fixes one more 2-tuple. Therefore, all fixed configurations are at the leaf of the tree

and are used to define possible orders.

5.4 Correctness

Now, one needs to show the BF-algorithm indeed generates all possible images I

and correctly retrieves an M’ from the image I. The enumerated tree has already shown

how all possible configurations are generated. Therefore, the question remaining is

whether the definition of the data structure L correctly captures all possible orders of M

with the adjustable range 2r. Lemma 5.4.1 shows that for any two arbitrary values in M, L

captures all possible orders. As a result, one can show that all possible orders can indeed

be generated in general by applying Lemma 5.4.1 recursively.

Lemma 5.4.1:

Let a and b be two values in M; L captures all possible orders of a and b.

Proof:

Without loss of generality, we first assume that a≤b. Then, there are three cases of

how the two adjustable intervals are arranged (i.e. the intervals [Max(a-r,0),Min(a+r,1)]

and [Max(b-r,0),Min(b+r,1)]. To complete the proof, one configuration for each order in

each case is provided.

Case 1 (disjoint): If the two intervals are disjoint, there is only one order (i.e. a→b). The

initial configuration of a and b yields this order.

45

Case 2 (uniquely intersected): If the two intervals have a unique intersection, there are

two possible orders (i.e. a→b and ab). The initial configuration of a and b yields a→b

and the configuration that contains a+r and b-r yields ab, since that is the uniquely

intersection of the two intervals.

Case 3 (overlapped): If the two intervals are overlapped, there are three orders (i.e. a→b,

b→a and ab). The configuration that contains a-r and b+r yields a→b; and the

configuration that contains b-r and a+r yields b→a. For the order ab, if a=b, then the

initial configuration yields this order. Otherwise, if a<b, then a+r=b+r’ , for some –r≤

r’≤r, since the two intervals are overlapped.

↵

5.4.1 An example of an adjusted matrix
_

M from a fixed-configuration by the reverse
mapping.

46

After an image I is enumerated in the form of a configuration, one needs to find the

corresponding adjusted matrix
_

M (i.e. Φ
�

(
_

M) = I). The reverse mapping retrieves
_

M as

follows.
_

M [i] is the associated value of the set of where object i is located. Figure 5.4.1

gives an example of a fixed configuration and its
_

M . However, the next question is

whether the M’ produced by the reverse mapping minimizes the total adjustment (i.e.

∑
=

m

i 0

|M[i]-
_

M [i]|).

Before discussing the reverse mapping, the concept of refinement should be

discussed. An order X is called a refinement of an order Y, if every rank of X is a subset

of some rank of Y, and for any two objects a and b, if a→b in Y, then a→b in X. (Note

that any order is a refinement of itself.) Figure 5.4.2 illustrates the concept of

5.4.2 Order X is a refinement of order Y and order Y is a refinement of
order Z.

47

refinements. The refinement property is as follows. Let W and V be columns with order X

and Y respectively, where X is a refinement of Y. If M is a matrix that contains column W

and M is a fuzzy phylogeny, then when substituting W by V, M is still a fuzzy phylogeny.

The refinement property assures that the order X can be replaced by an order Y,

for some Y in the enumerated tree. The next property, the minimum property (Lemma

5.4.2), says that the total adjustment of Y from the reverse mapping is the same as the

minimum adjustment of X. Therefore, the enumeration and the reverse mapping together

guarantee that the BF-algorithm finds the correct answer for the optimal AFP problem

(and the AFP problem).

Lemma 5.4.2:

Given an enumerated tree, if X is an order (represented by a configuration) in this

tree, then there exists an order Y also in this tree, such that X is a refinement of Y and

min(X)=reverse(Y), where min(X) is the minimum adjustment of X and reverse(Y) is the

total adjustment of Y from the reverse mapping.

Proof:

The proof is done by an induction on the number of objects in M. When there is

one object, then there is only one order, and the initial configuration requires zero

adjustment. Therefore, min(X)=reverse(Y) holds. Assuming n-1 objects are on threshold

values and their orders are obeyed, the n-th element must be on an interval where the two

ends are threshold values, say [p,q] such that there is no object on (p,q). Since there is no

object on (p,q), placing the n-th element on {p,q} yields the same order. In addition,

48

placing the n-th element on any value on (p,q) must result in a larger adjustment.

Therefore, it holds for the n-th case.

↵

5.5 The Compact (Enumerated) Tree

Further optimization can be done to improve the performance of searching the

enumerated tree. A natural implementation of the BF-algorithm may search the

enumerated tree in the depth-first order. Therefore, a stack-like structure is required to

store the internal nodes during the search. However, this scheme may require very large

storage. Actually, a compact representation can be used to reduce the storage

requirement. Notice that, for each internal node, there are count child nodes. Instead of

stacking up all count child configurations, one can stack up a compact configuration that

can be used to generate these child configurations later. Therefore, each internal node

now has two child nodes. One is that it fixed the rightmost 2-tuple to be at its rightmost

element, and the other is that it has the same configuration as its parent except that the

rightmost 2-tuple only has count-1. The semantic is that this 2-tuple can only move to the

right at most count-1 elements, because the configuration that it moves to the right count

elements has already been enumerated. In fact, what the optimization does is replace the

enumerated tree by an equivalent enumerated binary tree (called compact tree). Figure

5.5 shows the equivalent compact tree of the enumerated tree in Figure 5.3.

49

5.6 Conclusion

In conclusion, the BF-algorithm provides a way to solve the (optimal) AFP

problem by the brute-force approach. It also explains the complexity of the problems and

how the data structure L can be used to enumerate the images. However, the brute-force

approach may be impractical when the problem size is large due to its slow performance.

In the next chapter, a new algorithm will be introduced. This algorithm requires further

analysis on the structure of the fuzzy phylogenetic tree and actively searches for valid

Figure 5.5: The equivalent compact tree of the enumerated tree in Figure 5.3.

50

solutions (i.e. M’ that is a fuzzy phylogeny). As a result, better performances are

expected.

51

Chapter 6 An Algorithmic Approach

6.1 A Special Case

Before solving the (optimal) AFP problems in general, it is helpful to first look at

some special cases. This section discusses a simpler problem, which is a special case of

the optimal AFP problem. (See Section 4.4 for the definitions of the problem.) Given an

m × n [0,1] matrix M with an adjustable range 2r, assume the m × n-1 sub-matrix N (that

is the matrix M multiplied by the n × n-1 identity matrix) is a fuzzy phylogeny, and find

an m × n matrix M’ , such that M’ [i,j]=M[i,j], ∀i,j, 1≤i≤m and 1≤j≤n-1, |M’ [k,n]-

M[k,n]|≤r, ∀1≤k≤m, M’ is a fuzzy phylogeny, and the total adjustment is minimized.

In other words, given the first n-1 columns of M form a fuzzy phylogeny, one

wants to adjust only the values of the n-th column (within the adjustable range 2r) such

that M is a fuzzy phylogeny. Since this problem is a special case of the optimal AFP

problem, the BF-algorithm described in Chapter 5 can be used to solve this problem.

However, this special condition (i.e. only one column can be adjusted) not only

dramatically reduces the complexity of the problem but also makes it possible to solve

the problem more efficiently. The algorithm that solves this problem is explained in detail

below and is called the (Special Case) SC-algorithm.

52

6.2 The Special Case Algorithm

Since the m × n-1 sub-matrix N is a fuzzy phylogeny, N defines a FP-tree T. In

order for M’ to be a fuzzy phylogeny, the n-th column must obey the structural

information inferred from N. In fact, any valid FP-tree T’ of M’ must be a refinement of

T. A tree T’ is a refinement of a tree T, if for every two nodes u and v, u is an ancestor

node of v in T, then u is also an ancestor node of v in T’ . In other words, the n-th column

is compatible with the sub-matrix N (i.e. M’ is a fuzzy phylogeny) if and only if it obeys

the structural information from N. Therefore, the SC-algorithm attempts to adjust the n-th

column according to N. If there is no valid adjustment, the SC-algorithm rejects M.

Otherwise, the SC-algorithm returns the minimum adjusted M’ . In the text below, the

structural information is called restrictions.

Figure 6.2.1: The two disjoint spanning subsets LX , RX , and the

labeled edge l.

53

The first task is to understand the concept of restrictions. In fact, it is easier to

understand restrictions in terms of the FP-tree. Since the m × n-1 sub-matrix N is a fuzzy

phylogeny, N defines a FP-tree T. For any valid FP-tree T’ of M’ , T’ must be a refinement

of T. Furthermore, the n-th column refines T following exactly one path. (A strict

interpretation of the definition of the FP-tree.) Lemma 6.2.1 proves this observation. Let

k be the number of nodes in T; then there are k possible paths of where the n-th column

resides.

Let l+ denotes an edge on the path P in T; then each edge l+ separates the set of

objects X into two disjoint spanning subsets LX and RX where RX contains objects of X

that is at a descendent node of l+ (thus, LX = X - RX). Figure 6.2.1 is an example of the

edge l+ on the path and the two disjoint spanning subsets LX and RX . Therefore, each

edge in T enforces one restriction. (The two terms, edge and restriction, may be used

interchangeably in the following text if the context is clear.) Lemma 2.3 (see Section 2.3)

stays that if a matrix is a (perfect or fuzzy) phylogeny, then no two edges separate X in an

overlapping manner. Therefore, if l is an edge in T, then the n-th column cannot infer any

Figure 6.2.2: Viewing the n-th column as objects on a [0,1]
interval.

54

edge such that it overlaps with l in how X is to be separated. This observation is proven in

Lemma 6.2.2. On the other hand, let l- denote an edge that is not on P in T, then the set of

descendent objects of l- (Y) must be at the same rank. This observation is directly derived

from Lemma 2.3 and transformation Φ
�

.

Moreover, the relationship between the restrictions and the adjustable range of the

n-th column is as follows. First, the different values of M[i,n] (1≤i≤m) can be understood

as the positions of the objects on a [0,1] interval. Let l+ be an edge in T (for N) and l+

separates X into LX and RX , then there must be a boundary on this interval that

separates LX and RX , so that no item can be moved across this boundary. Figure 6.2.2

depicts the overlapping with the point p and q where p represents the rightmost position

of the objects in RX and q represents the leftmost position of the objects in RX . Finally,

Figure 6.2.3: The improved data structure L’ .

55

let l- be an edge that has a set of descendent objects Y; then M[y,n] are the same for all y

∈ Y.

In the SC-algorithm, the data structure L is improved so that it represents the

restrictions on the objects. This improved data structure is called L’ in order to

distinguish it from L. In L’ , each 2-tuple is now a 3-tuple < lcount, label, rcount> where

lcount is the object’s left adjustable range; rcount is the object’s right adjustable range. In

addition, each element (representing a point in [0,1]) is associated with a flag that is the

number of boundary points at this element. As a result, let f be the flag of an element;

then there are f+1 subset each hold a range of objects between the boundary points.

(These subsets are called the boundary subsets in the follow text.) Figure 6.2.3 shows the

structure of L’ .

Using the data structure L’ , the SC-algorithm iteratively applies the restrictions.

For the l- restrictions, the set of objects Y that are restricted to have the same value is

replaced by a new 3-tuple (if valid) where the lcount is)(lcountMax
Yy∈

 and rcount is

)(rcountMin
Yy∈

. Then the path P is invalid if lcount > rcount.

For the l+ restrictions, the mechanism can be explained as follows. For the first

(k=1) iteration (i.e. no l+ restriction has been enforced), each object in LX moves to its

far left while each object in RX moves to its far right. Then, The SC-algorithm scans L’

from left to right to check whether the boundary point b exists. If b does not exist, return

with a rejection. Otherwise, the flag at q (the leftmost position of the objects in RX) is

incremented. Furthermore, for any object on q, it is placed in the boundary subsets

accordingly.

56

Now, for the k iteration (k>1), since all restrictions are compatible with each

other, the boundary point of the k-th restriction must occur between two boundary points

1p , 2p and 1p ≥ 2p , such that objects before 1p are in LX and objects after 2p are in

RX . However, objects in [1p , 2p] can either be in LX or RX . Figure 6.2.4 depicts the

boundary point for the k-th iteration. Furthermore, Lemma 6.2.3 proves this observation.

Due to Lemma 6.2.3, the insertion for the k-th boundary point is as follows. Since the

objects before 1p and after 2p are already in order, only objects in [1p , 2p] are of

concern. The SC-algorithm again first moves all objects in LX to its far left and all

objects in RX to its far right (also moves the boundary points if necessary). Then, a new

boundary point is inserted at q, and L’ is again scanned to ensure its validity.

Finally, at the end of the last iteration, if the remained adjustable range is unique,

then the solution is just the reverse mapping of L’ . On the other hand, if the remained

adjustable range is non-unique, the SC-algorithm finds the minimum adjusted M’ as

follows. The SC-algorithm scans L’ from left to right and one object at a time. For the

first object (k=1), all the boundary points are moved to their far right, and the first object

Figure 6.2.4: The two points 1p , 2p during the k-th iteration.

57

is placed at the minimum distance from its original position (i.e. M[i,n] where i is the first

(left most) object in L’). For the k-th object (k>1), since the adjustment of the first k-1

objects is minimized, the position of the k-th object (that minimizes the adjustment of the

first k objects) can then be computed. As a result, the SC-algorithm finds and returns the

minimum adjusted M’ (after the reverse mapping).

Lemma 6.2.1:

Let M be an m × n [0,1] matrix and N be the m × n-1 [0,1] sub-matrix of M. Then,

if the FP-tree T’ for M and the FP-tree T for N exist, T’ is a refinement of T. Furthermore,

T’ refines T by exactly one path (i.e. there exists an unique path P, so that every new edge

(edges in T’ -T) is on P).

Proof:

Assume the contrast, there are two objects x and y such that x is a descendent of y

in T while y is a descendent of x in T’ . Then Φ
�

(M) violates Lemma 2.3; that is a

contradiction of that T’ exists. Furthermore, a direct interpretation of the definition of FP-

trees concludes that T’ refines T by exactly one path.

↵

Lemma 6.2.2:

The n-th column is compatible with (the restriction of) the edge l+ of a FP-tree T

(i.e. M’ is a fuzzy phylogeny) if and only if there exists a boundary at point b∈[0,1] such

that either [0,b) contains only objects in LX and (b,1] contains only objects in RX or the

opposite (i.e. [0,b) contains only objects in RX and (b,1] contains only objects in LX).

58

Proof:

If the boundary point b exists, then no edge inferred from the n-th column will

overlap with LX and RX . Therefore, according to Lemma 2.3, the n-th column is

compatible with l.

On the other hand, if b does not exist, then there is an interval [q,p] ⊆ [0,1], with

p>q, such that [q,p] infers an edge that overlaps with the separation of LX and RX .

Thus, it is incompatible with the edge l.

↵

Lemma 6.2.3:

At iteration k>1, assume that there is a valid adjustment, then there exist two

points 1p and 2p , 1p ≥ 2p , such that for any object x before 1p (i.e. x is in [0,p)), x must

be in LX ; and any object x after 2p (i.e. x is in (p,1]) must be in RX . Furthermore, there

is no boundary point on the interval (1p , 2p).

Proof:

Assume the contrast, for every 1p and 2p , either [0,p) contains object(s) in RX

or (p,1] contains object(s) in LX (or both). Then, there does not exist a new boundary

point that separates X into LX and RX . However, it contradicts with the assumption.

Therefore, 1p and 2p must exist.

↵

59

6.3 The General Case

The BF-algorithm from Chapter 5 solves the (optimal) AFP problems by

enumerating and verifying each possible solution. Although the BF-algorithm solves the

problems exactly, it is expected to be slow. On the other hand, the SC-algorithm solves

the special case of the (optimal) AFP problems where the m × n-1 sub-matrix N is already

a fuzzy phylogeny. The SC-algorithm actively searches for a valid solution; thus, fast

performances are expected. Although the SC-algorithm requires the sub-matrix N is

already a fuzzy phylogeny and cannot be used in general case, it has made invalidation

detection possible. In the next section, a new algorithm is introduced. This algorithm

combines the techniques used in the BF-algorithm and the SC-algorithm, such that it

solves the (optimal) AFP problems exactly in general and actively searches only for valid

answers. This algorithm is called the (General) G-algorithm, and it is presented in detail

below.

6.4 The General Algorithm

The idea of the G-algorithm is as follows. Similar to the BF-algorithm, the G-

algorithm enumerates all possible configurations. However, by using the concepts of the

SC-algorithm, for the k-th column, the G-algorithm only enumerates configurations that

are compatible to the k-1 previously selected configurations. In order words, the G-

algorithm terminates the branch of enumeration once the m × k sub-matrix is determined

to be invalid (i.e. the remained adjustable range is undefined). Due to the technique of

invalidation detection, the G-algorithm reduces a significant portion of the search space

60

over the BF-algorithm. As a result, fast performances are expected. Figure 6.4.1

illustrates the search space of the BF-algorithm and of the G-algorithm. Therefore, to

solve the AFP problem, the G-algorithm quits when one valid solution is found. To solve

the optimal AFP problem; however, the G-algorithm searches the entire solution space

and returns the minimum adjusted M’ .

Figure 6.4.1: An illustration of the search space of the BF-algorithm and the G-
algorithm.

61

The key for the G-algorithm is to enumerate configurations with restrictions

enforced. The SC-algorithm iteratively reduces the adjustable range of the n-th column so

that it obeys the set of restrictions from N. This technique is again used in the G-

algorithm. Therefore, the discussion in this section is focused on how the possible

configurations are enumerated from the data structure L’ .

Given an instance of L’ , the G-algorithm enumerates configurations as follows.

First, the root of the enumerated tree is again called the initial configuration and is the

Figure 6.4.2: The enumerated tree of the G-algorithm.

62

configuration where each 3-tuple moves to its far left. In addition, all boundary points are

also moved to their far left accordingly. Then, for each non-fixed configuration, two child

nodes are generated. One is that it fixed the rightmost 3-tuple to be at its rightmost

element, and the other is that it has the same configuration as its parent except that the

count of the rightmost 3-tuple is decremented by 1. The enumeration is indeed very

similar to the enumeration in the BF-algorithm with the consideration of also moving the

boundary points. Figure 6.4.2 depicts the enumerated tree for the G-algorithm.

6.5 Conclusion

In conclusion, the SC-algorithm actively searches for a valid solution, instead of

passively verifying all possible solutions. Therefore, better performances are expected. In

fact, unlike the BF-algorithm (that is expected to run in super-polynomial time), the SC-

algorithm runs in polynomial time due to the special condition. Although the SC-

algorithm does not solve the problems in general, the G-algorithm solves the problems in

general by repeatedly applying the SC-algorithm, which results in a better performance

(than the BF-algorithm). In fact, the G-algorithm combines the techniques used in the

BF-algorithm and the SC-algorithm. It explores the entire solution space by enumeration

and at the same time efficiently searches only for valid answers by detection of invalidity.

Therefore, the G-algorithm is an improvement over the BF-algorithm. However, due to

the complexity inherited from the problems, the performance of the G-algorithm may still

be slow for some instances. Therefore, in the next chapter, a heuristic algorithm is

proposed. Unlike the BF-algorithm and the G-algorithm that search the solution space

systematically, this new algorithm attempts to search the solution space heuristically.

63

Such approach may result in better performance; however its successfulness and

optimality are not guaranteed.

64

Chapter 7 A Heuristic Approach

7.1 Heuristics

The G-algorithm is an improvement over the BF-algorithm because it reduces the

search space by pruning off invalid solutions. However, due to the inherited complexity

of the problems, slow performance may still occur for some problem instances.

Therefore, in this chapter, a heuristic algorithm called the (Heuristic) H-algorithm is

introduced that serves as an alternative of the exact algorithms to the (optimal) AFP

problems (i.e. the BF-algorithm and the G-algorithm). Firstly, the H-algorithm extends

the definition of valid solutions so that many of the “second class” solutions are now of

interest. Secondly, due to the new definition, the H-algorithm searches for solutions by a

different approach that offers fast performance even in the case of high complexity

problem instances. Thirdly, although the H-algorithm is expected to find a near-optimal

solution, it does not guarantee the optimali ty of the solution. Finally, the H-algorithm is,

in fact, an application of a new general purpose searching technique. This new searching

technique is called the Particles Algorithm and is discussed in detail i n this chapter.

7.2 The Particles Algorithm

The Particles Algorithm is a new general purpose searching technique that models

after physical properties of particles. Imagine a container that contains various small

particles. Due to the random motion of the particles, small particles will colli de and

65

Figure 7.2.1: An illustration of random motions and collisions of
particles.

66

combine to form a compound (a big particle) if it is stable. Similarly, big particles will

colli de to form a bigger particle. After some time, the container is expected to contain a

significant amount of big sized particles. The idea of particle colli sions is ill ustrated in

Figure 7.2.1.

The analogy between the particle colli sions and solution searching is as follows.

Often, a solution to a problem consists of multiple elements, A, B, …,N, and each

element has various instances, for example, A={ 1a , 2a , …, ka }. Therefore, an instance of

an element can be thought of a particle in a container. Then, a solution can be seen as a

compound (a big particle) that consists of exactly n particles each from an element. The

random motion of the particles creates colli sions that combine particles to form a big

particle if it is stable. This mechanism is parallel to combining two partial solutions of a

problem if the resulted (partial) solution is valid. Under suitable conditions, the small

particles are expected to interact and form the desired products. Therefore, with careful

design, one can also expect the Particles Algorithm to produce desired solutions to the

problem. The Particles Algorithm is presented as pseudo-code in Figure 7.2.2.

Particles Algorithm
{

initialize the container with particles
while (terminating condition has not been met)
{

simulate coll isions and merge particles if it is stable
}

return the best particle
}

Figure 7.2.2: The pseudo-code of the Particles Algorithm.

67

The important concepts of the Particles Algorithm are discussed in this chapter.

However, the implementation details are beyond the scope of this chapter. Therefore, the

discussion is limited to the general functionali ty and the possible strategy. The Particles

Algorithm involves a series of parameters: the number of particles, the initial particles,

the colli sion rate, the terminating condition and the colli sion mechanism. Furthermore,

each parameter is discussed in detail below.

Number of particles

 The number of particles is the number of “building blocks” to solutions in the

container. The more particles in the container initially, the more big particles are

expected at the end. However, more particles also require longer computational time to

simulate the colli sions. Therefore, the number of particles in the container should be

proportional to the complexity of the problem, such that it is suff icient and efficient to

search for good solutions.

Initial particles

The initial particles determine the upper bound of the quali ty of solutions unless

injections of new particles or transformations of particles are allowed later in the process.

Therefore, the initial particles must cover the good portion of the solution space (if not

the entire solution space). In addition, it is possible to optimize the initial particles to

some known particles (i.e. known (partial) solutions) so that the prior knowledge can be

incorporated in the search.

The collision rate

The colli sion rate defines the number of colli sions in an iteration. Assume that at

any moment, one particle can at most colli de with one other particle. Then, the maximum

68

colli sion rate should define a “ total colli sion” . Let the colli sion rate be a value ∈ [0,1],

then colli sion rate = 1 means that all particles (except when the number of particles is an

odd number) will colli de with one another. Similarity, colli sion rate = 0 means that there

will be no colli sion undertaken. However, the colli sion rate does not need to be a fixed

parameter. In fact, the idea of temperatures can very well cooperate with the Particles

Algorithm to vary the colli sion rate. The idea of temperatures is to vary the colli sion rate

according to the temperature of the environment. When the temperature is high, the

random motions of the particles are rapid and therefore result in high colli sion rate. On

the other hand, when the temperature is low, it results in low colli sion rate. This idea

allows the Particles Algorithm to either escape or focus on local optima by varying the

colli sion rate.

The terminating condition

The terminating condition is usually motivated by two concerns, the user-defined

condition and the convergence of solutions. The user-defined condition is a limit that the

user imposed (e.g. time limit). Therefore, the Particles Algorithm must return a solution

when the condition is reached (e.g. when the time is up). The convergence of solutions is

the situation where the quali ty of the solutions remains settled in a significant number of

iterations. Then, the Particles Algorithm returns the best solution because it is unlikely

that a better solution would be found in further searching.

The collision mechanism

The colli sion mechanism perhaps is the most interesting and flexible component

of the Particles Algorithm. The colli sion mechanism should define how particles colli de,

for example, one-to-one colli sions or multi -way colli sions; random colli sions or

69

colli sions that are based on some molecular attractions; merging only colli sions or

colli sions that breaks up big particles … etc.

The Particles Algorithm itself is a very interesting topic that opens the doors of

various researches. The Particles Algorithm, although it is a new technique (as far as the

author is aware of), shares various concepts of other search techniques, such as the

Genetic Algorithm [28] and the Simulated Annealing [39]. All three techniques use the

natural computing paradigm [49] to solve complex problems where possible solutions to

a problem is represented as a natural entity (an individual) and the search for the optimal

solution is simulated as a natural event. These techniques navigate the solution space by

different principles according to the natural models behind the techniques. Most natural

computing techniques require an individual to be a full solution to the problem. In

Particle Algorithm, however, a particle is a partial solution to the problem. That in turn

allows the algorithm to simultaneously search for good partial solutions to the problem

and find for good partial solutions to combine.

7.3 The H-algorithm

The H-algorithm is an application of the Particles Algorithm to the (optimal) AFP

problems. (See Section 4.4 for the definitions of the problems.) With the H-algorithm,

acceptable solutions can be obtained even in the case where the BF-algorithm and the G-

algorithm reject the matrix. Furthermore, the H-algorithm, although considers, but it does

not visit the entire solution space. As a result, fast performance is expected.

Before the discussion of the H-algorithm, new definitions for solutions are

needed. Throughout the chapters, the term optimal solution has been used to mean the

70

minimum adjusted matrix M’ (from M and 2r) that is a fuzzy phylogeny. In addition, the

term valid solution has been used to mean a matrix M’ (adjusted from M and 2r) that is a

fuzzy phylogeny. Now, define a reduced matrix of an m × n matrix M as the m × k matrix

K resulting from the removal of any n-k columns from M. Furthermore, define an

adjusted reduced matrix of an m × n matrix M as the [0,1] m × k matrix that is adjusted

from K by at most r where K is a reduced matrix of M and 2r is the adjustable range of M.

As a result, a new term, acceptable solution, is introduced to mean a matrix K’ that is an

adjusted reduced matrix of M’ and is a fuzzy phylogeny. Finally, an acceptable solution

K’ (an m × k matrix) is called a k-acceptable solution where k is the number of columns of

K’ (and it is the number of characters it used to infer the fuzzy phylogeny).

All in all, the term (k-)acceptable solution is introduced to describe solutions that

use less than all n characters to infer the fuzzy phylogeny. Some of the experimental data

of characters may deviate beyond the expected deviation (which is captured by the

concept of the adjustable range). Also, some characters are poorly chosen and are

actually not suitable to be used to infer the fuzzy phylogeny. The term (k-)acceptable

solution allows an algorithm to return a solution under these circumstances. As a result,

the H-algorithm solves another variation of the AFP problem, called the relaxed AFP

problem.

Definition of the relaxed AFP problem:

Given an m × n [0,1] matrix M and a value r ∈ [0,1], find an m × n’ matrix M’

where n ≤ n’ , such that each column j’ in M’ is associated with an unique column j in M,

71

|M[i,j] -M’ [i,j’] | ≤ r and M’[i,j’] ∈ [0,1], for 1 ≤ i ≤ m and 1 ≤ j’ ≤ n’ , M’ is a fuzzy

phylogeny, and the total adjustment a is small .

↵

The H-algorithm views each configuration as one particle, and a particle is stable

if and only if no two configurations are of the same type (i.e. they are both configurations

of character i) and the matrix K’ which that particle corresponds to is a fuzzy phylogeny.

Notice that each stable particle is, in fact, an acceptable solution. The H-algorithm

initializes the container with randomly generated configurations and simulates one-to-one

colli sions between the particles. In addition, the colli sions are simulated based on random

motions. Therefore, if two particles colli de and they are compatible, then they will

combine and form a big particle; otherwise, the colli sion is ineffective. At the end of all

iterations, the H-algorithm returns the “best” particle in the container. The best particle is

the k-acceptable solution that has the maximum k, and in the case of a tie, the best

particle is the one that has the minimum total adjustment.

7.4 Conclusion

The three algorithms, the BF-algorithm, the G-algorithm and the H-algorithm,

solve the (optimal or relaxed) AFP problems in different ways. The BF-algorithm is the

first attempt to solve the problems. It uses Lemma 5.4.1 to divide the infinite solution

space into a finite number of equivalent classes. Then by using the brute-force method,

the BF-algorithm exhaustively enumerates the possible solutions and verifies their

correctness and optimality. The BF-algorithm is intuitive and solves the problems

72

exactly. However, due to the exhaustive enumeration, the BF-algorithm is expected to

have slow performances.

On the other hand, the G-algorithm uses the techniques from the SC-algorithm

that prunes off invalid search space once the partial solution is determined to be invalid.

The G-algorithm not only reduces the search space over the BF-algorithm but also solves

the problems exactly. The G-algorithm is expected to have fast performances in general.

However, due to the inherited complexity of the questions, slow performance may still

occur in the high complexity problem instances.

Therefore, the H-algorithm is proposed to provide an alternative over the BF-

algorithm and the G-algorithm. The H-algorithm is an application of a new general

purpose searching technique called the Particles Algorithm. The H-algorithm extents the

definition of valid solutions to cover more “second class” solutions. The H-algorithm

heuristically searches for good solutions and is expected to have fast performances even

in the case of high complexity problem instances.

In the next chapter, an empirical study of the three algorithms is presented. The

study compares the algorithms in different dimensions and then discusses and concludes

the experimental results.

73

Chapter 8 The Performance Analysis

8.1 Simulated Biological Data

To analyze the performances of different proposed methods, simulated biological

data are used. The performance analyses consist of both positive data and negative data.

Positive data is a matrix that is a fuzzy phylogeny. Negative data is a matrix that is not a

fuzzy phylogeny. The simulation of negative data is trivial. An m × n matrix M is

generated where each M[i,j] is uniformly chosen from [0,1]. If M is occasionally a fuzzy

phylogeny, it will simply be discarded. Notice that the adjustable range 2r is not required

when generating negative data.

To simulate positive data, an evolutionary model of fuzzy characters is used. The

model is compatible with the fuzzy phylogeny model. Over time, it simulates the

character development of the objects. Therefore, at the beginning, every object is

primitive and does not have any character. This is depicted by the root node of the FP-

tree. Then, a divergence occurs and divides the objects into two groups, which is depicted

by the two child nodes of the root node. A divergence is an evolutionary event where

some objects develop a degree of a character while other objects remained unchanged.

These evolutionary events repeat over time and further divide the objects into smaller

groups. Figure 8.1 shows an example of a FP-tree and the divergence of objects.

In order to simulate different frequencies and rates of character development, each

character is associated with two values, weight and rate; each of which is uniformly

74

chosen from [0,1]. For each divergence, a character is chosen randomly according to the

weights. In addition, the development increment is chosen randomly from a Gaussian

[9,25] distribution with mean = rate and variance = 2)
2

(
rate

. Next, the division of the

groups is chosen in uniform; each object has equal chance to go to either group.

Furthermore, the occurrence of divergence is chosen randomly among the current

leaf nodes. Finally, the frequency of divergence is chosen uniformly from [n,m). The

term n is the number of characters, which is an obvious lower bound of the frequency of

divergence. The term m is the number of objects, so m-1 is the number of divisions

required to separate the m objects. Notice that the rate of the character development is

chosen randomly. Therefore, normalization is required after the tree is generated. The

Figure 8.1: A FP-tree and the divergence of the objects.

75

normalization replaces the expression value M[i,j] by
],[

],[

1
jiMMax

jiM
m

i =

. Thus, all expression

values are between [0,1].

Now, positive data is generated. To simulate the experimental errors and other

biological noises, the values in M are to be deviated. As a result, for each M[i,j], there is a

probability deviation_pr that a deviation will be injected, in which the deviation is chosen

randomly from a Gaussian distribution with mean = 0 and variance = 2)
2

(
r

. If the

deviation is beyond the adjustable range 2r, then it is replaced by M[i,j]+r or M[i,j]-r

accordingly.

The simulation of positive data ensures the matrix M is adjustable to a fuzzy

phylogeny with respect to the adjustable range 2r. In addition, the original matrix, the

matrix before the injection of deviations, provides a referenced matrix M’ (and a FP-tree).

The advantage of using simulated data is that the performance analyses can be conducted

in various parameters, such as the number of objects, the number of characters, and the

adjustable range. In fact, it is impractical (or even impossible) to collect real biological

data satisfying the dimensions of all parameters.

8.2 Empirical studies

With the simulated data, it is possible to conduct empirical studies on the

proposed algorithms. This section explains analyses that are designed to evaluate the

performances. Specifically, the time analysis assesses the computational time required for

an algorithm and the quality assesses the quality of the solution from an algorithm. (Note

that the performance of an algorithm is subjected to the implementation). The time

76

analysis is performed to all three algorithms (the BF-algorithm, the G-algorithm and the

H-algorithm); however the quali ty analysis is performed only on the H-algorithm (since

the BF-algorithm and G-algorithm both solve the (optimal) AFP problems exactly).

All three algorithms are implemented in JAVA [35] using J2SE 1.4.2. In addition,

the empirical studies are conducted in a DELL machine with a 1GHz Intel processor and

256MB RAM running Windows XP. The testing data are generated according to the

simulation discussed in Section 8.1. In addition, the set of parameters are as follows. Let

m be the number of objects, then, the number of characters n =

2

m
; the one-sided

adjustable range r =

 +)

4

1
(

4

1

m
random

m
 where random(k) is uniformly distributed over

[0,k]; the deviation probabili ty deviation_pr = 0.8. Finally, each reported result is an

average of ten trials.

8.3 Results

Performance of the Brute-force Algorithm

The time analysis is conducted on the BF-algorithm solving both the AFP

problem and the optimal AFP problem. There are three series of tests, “Positive” denotes

the AFP problem using positive data, “Positive Optimal” denotes the optimal AFP

problem using positive data and “Negative” denotes the AFP problem using negative

data. Notice that, there is no “Negative Optimal” because it is expected to be the same as

“Negative” . Figure 8.3.1 shows the time analysis of the three tests of the BF-algorithm on

a logarithmic scale. In addition, zeros are arbitrarily reset to one in the logarithmic plot.

The data of results can also be found in Table 8.3.1 in Appendix A.

77

Figure 8.3.1: The time analysis of the BF-algorithm.

Figure 8.3.2: The time analysis of the G-algorithm.

78

Figure 8.3.3: The time analysis of the H-algorithm.

Figure 8.3.4: The quality analysis of the H-algorithm.

79

Performance of the General Algorithm

The time analysis is conducted on the G-algorithm, solving both the AFP problem

and the optimal AFP problem. There are again three series of tests, “Positive”, “Positive

Optimal” and “Negative”. Figure 8.3.2 shows the time analysis of the three tests of the G-

algorithm on a logarithmic scale. In addition, zeros are arbitrarily reset to one in the

logarithmic plot. The data of results can also be found in Table 8.3.2 in Appendix A.

Performance of the Heuristic Algorithm

The parameters to the H-algorithm are selected for the best results. The

parameters are as follows. The termination condition termination = 30 (i.e. the best

solution remains in termination iterations); the colli sion rate coll_rate = 0.7; the number

of particles size = 100 (note that size is the number of particles for each kind. i.e. the total

number of particle is n x size).

Both time analysis and quali ty analysis are conducted on the H-algorithm solving

the relaxed AFP problem. There are only two series of tests, “Positive” and “Negative”.

Figure 8.3.3 shows the time analysis of the G-algorithm on the two series, and Figure

8.3.4 shows the quali ty analysis of the G-algorithm on the two series. The data of results

can also be found in Table 8.3.3 and Table 8.3.4 in Appendix A.

8.4 Discussion

Discussion on the Brute-force Algorithm

The BF-algorithm is the first attempt to solve the (optimal) AFP problems. The

correctness and termination of the algorithm is guaranteed; however, it is expected to be

slow due to the complexity of the problems. Figure 8.3.1 shows a consistent result that

80

the computational time increases rapidly in a small i nterval. When m = 4, the BF-

algorithm (in general) terminates in less than a second. However, it takes almost two

hours to terminate when m = 6. Furthermore, the computational time quickly becomes

infeasible to measure when m = 8.

Among the three series, “Positive”, “Positive Optimal” and “Negative” , there are

only slight differences in their performance. The similar behavior between the two series,

“Positive Optimal” and “Negative”, are expected. It is because of that the BF-algorithm

would have to brute-force all possible solutions for either series before termination.

However, a closer look at the two series reveals that “Positive Optimal” has a slight

advantage over “Negative” . The slight advantage is indeed due to the content of the data

(i.e. the matrix M). A biologically simulated matrix M is expected to have fewer distinct

values than a randomly generated matrix M’ ; therefore the BF-algorithm takes longer to

compute M than M’ . On the other hand, when comparing “Positive” with “Positive

Optimal” , the BF-algorithm quits when one valid solution is found and examines all

possible solutions, respectively. Therefore, “Positive” is expected to yield a better

performance than “Positive Optimal” . Due to the scale of the plot, this fact is not obvious

in Figure 8.3.1. However, it can be concluded from Table 8.3.1.

In conclusion, although the correctness and termination are guaranteed in the BF-

algorithm, the computational time requires is infeasible in practice size. Furthermore,

there is littl e difference in performance regardless of the type of the data and the problem

(optimal or not). It indicates that the BF-algorithm is not taking full advantage of the

structure of the data. These observations are indeed consistent with theoretical prediction.

Discussion on the General Algorithm

81

The G-algorithm is the second attempt to solve the (optimal) AFP problems. The

correctness and termination of the algorithm is again guaranteed. Figure 8.3.2 shows a

significant improvement of the G-algorithm over the BF-algorithm. For instance, the G-

algorithm takes less than one second when m = 8 while the time required in the BF-

algorithm is already infeasible. However, due to the complexity of the (optimal) AFP

problems, the computational time still quickly increases with m.

Among the three series, “Positive”, “Positive Optimal” and “Negative” , there is

much difference in their performance. There are clear distinctions in performance with

the order, “Positive Optimal” > “ Positive” > “Negative” . Since the G-algorithm prunes

off invalid solutions once they are detected, performance distinctions are very evident.

Most noticeably, “Negative” terminates quickly because all solutions are invalid. Again,

“Positive” terminates quicker than “Positive Optimal” because of the early termination.

In conclusion, the G-algorithm not only guarantees the correctness and

termination, but it also has a significant improvement on the computational time over the

BF-algorithm. Furthermore, the G-algorithm takes full advantage of the structure of the

data and reduces computational time when possible. Finally, these observations are also

consistent with theoretical prediction.

Discussion on the Heuristic Algorithm

The H-algorithm is the third attempt to solve the (optimal) AFP problems.

Actually, it solves the relaxed AFP problem, which is a variation of the optimal AFP

problem. The correctness and termination of the algorithm are not guaranteed nor

required in the H-algorithm. The goal is to retrieve a “good” solution quickly. Figure

8.3.3 shows that the G-algorithm only takes seconds to retrieve the solution. For

82

instance, it takes about three to six seconds to retrieve solution when m = 30. Similarly,

due to the number of distinct values, “Positive” again has a slight advantage over

“Negative” .

Figure 8.3.4 shows how the quali ty of the solutions decreases with increasing m,

where quali ty = (
n

n'
 x 100%). The H-algorithm retrieves solution with quali ty = 100%

when m ≤ 10. Notice that these solutions are also solutions to the AFP problem since n’ =

n. In addition, the H-algorithm retrieves a solution with quali ty ≥ 50% when m ≤ 22.

Then the quali ty decreases steadily when m > 22.

In conclusion, the H-algorithm does not guarantee the optimali ty of the solution;

however, it offers a virtually instant retrieval of solution with reasonably good quali ty.

When m ≤ 10, the H-algorithm actually solves the AFP problem. However, it only takes

less than one second, compared to about half an hour for the G-algorithm. The H-

algorithm is a good alternative to solve the (optimal) AFP problem. Furthermore, it is

possible that the quali ty of the solutions can be increased by compromising the

computational time (which is virtually instant currently), by adjusting the parameters to

the H-algorithm.

83

Chapter 9 Future Work

9.1 The Enhanced Algorithm

By using the data structure L (and L’), configurations are enumerated in a tree

fashion. However, the G-algorithm reveals that two configurations 1c and 2c impose the

same phylogenetic information (structurally) if they have the same order of objects.

Furthermore, the G-algorithm also shows how to obtain the minimum adjustment given a

particular order of objects. Therefore, it is possible to further reduce the solution space by

partitioning configurations that impose the same phylogenetic information into

equivalence classes. In other words, instead of enumerating all possible combinations of

configurations, one wants to enumerate all possible permutations of configurations. This

algorithm is temporarily called the (Enhanced) E-algorithm.

The E-algorithm should only enumerate configurations with unique order.

Therefore, the enumeration scheme needs to be modified. In fact, the modification is

simple. Recall from Chapter 6 that a non-fixed configuration in the enumerated tree

expands into two children. One is that the rightmost element is moved to its far right

position, and the other one is that the rightmost element has count-1. It is not difficult to

see that both children might have the same order of objects. Therefore, in the E-

algorithm, instead of moving the rightmost element, the first (from right to left) element

that creates an order change is moved. Figure 9.1 depicts the enumerated tree for the E-

algorithm. This way, all leaf configurations of the enumerated tree would have unique

84

order of objects. As a result, the solution space is further reduced, and the optimality of

the algorithm is reserved. Finally, given a particular order of objects, the minimum

adjusted configuration (that has the same order) can be obtained using similar scheme as

the G-algorithm (see Section 6.2). The E-algorithm is expected to further improve the

performance from the G-algorithm. With a good choice of implementation platform, the

author also expects that the (optimal) AFP problem could be solved within a good

practical range.

9.2 More Relaxation Problems

The (optimal) AFP problems suggest a new angle to phylogenetic tree

constructions. Recall from Chapter 4 that there are two main approaches for building

phylogenetic trees: one heuristically constructs the phylogenetic tree without a validity

check on the experimental data, and the other one requires the experimental data to

follow a tight definition. The (optimal) AFP problems offer a medium of the two, in

Figure 9.1: An illustration of the enumerated tree for the E-
algorithm.

85

which it requires a validity check on the experimental data and also provides a relaxed

definition of the phylogenetic model.

For instance, relaxation problems can easily be formulated for the ultrametric tree

and additive tree models. Here two possible formulations are suggested. Furthermore,

these two formulations are called the AUP problem and the AAP problem respectively.

Definition of the AUP problem:

Given an m × n symmetric matrix M where each entry M[i,j] ∈ [0,∞] and a value r

∈ [0, ∞], find a matrix M’ such that |M[i,j]-M’ [i,j]| ≤ r and M’ [i,j] ∈ [0, ∞], for 1 ≤ i ≤ m

and 1 ≤ j ≤ n, and M’ is ultrametric.

↵

Definition of the AAP problem:

Given an m × n symmetric matrix M where each entry M[i,j] ∈ [0,∞] and a value r

∈ [0, ∞], find a matrix M’ such that |M[i,j]-M’ [i,j]| ≤ r and M’ [i,j] ∈ [0, ∞], for 1 ≤ i ≤ m

and 1 ≤ j ≤ n, and M’ is additive.

↵

9.3 Confidences of the Solutions

The concept of the adjustable range r allows us to construct the phylogenetic tree

with imperfect data values. In addition, the concept of the total adjustment provides an

elementary method to assess how confidently M’ infers the true evolutionary relationship.

A better measurement could be introduced that assesses the confidence of T, not M’ .

Below are three possible formulations of the problems.

86

1. Let AM be the set of M’ that is adjustable to a fuzzy phylogeny, and let TM be the set

of FP-tree topologies induced from AM. Given M and r, compute the size of TM (i.e.

|TM|).

2. Let S be the space where M is within the adjustable range, and let s be the subspace of

S that yields T. The confidence of T is that, conf(T) = sizeOf(s)/sizeOf(S). Given M, r and

a FP-tree topology T, find conf(T).

3. Given M and r, find a FP-tree topology T, such that conf(T) is maximized.

87

Chapter 10 Conclusions

The study of phylogenetics involves the identification of evolutionary

relationships between species. Perfect phylogeny is one of the classical character-based

models. In this model, there are only two states for each character, zero, where the

character is absent, and one, where it is present. The perfect phylogeny problem is to

verify whether a given set of species with a set of characters form a phylogenetic tree,

and if it does, construct the corresponding phylogenetic tree. Dan Gusfield describes an

O(mn) time algorithm for this problem where m is the number of species and n is the

number of characters. In addition, this algorithm is proven to be asymptotically optimal

in time.

All previous perfect phylogeny based models assume the states of the characters

are discrete. However, fuzzy boundaries between species and degrees of character

development are commonly found in nature. Fuzzy boundaries refer to the ambiguous

definition between presence and absence of a character and degrees of character

development refer to the various expression levels of a character. These phenomena show

the need for a more relaxed model. This dissertation proposes the fuzzy (perfect)

phylogeny model that extends the perfect phylogeny model to allow fuzzy memberships

of the characters. The conversation of properties in the new model is then proven. This

dissertation also shows how the fuzzy phylogeny problem can be transformed to the

perfect phylogeny problem so that it can be solved by previously developed algorithms,

such as Gusfield’s algorithm. Due to the fuzziness of characters, two relaxation problems

88

for the fuzzy phylogeny are proposed, namely the AFP problem and the optimal AFP

problem. However, the problems are proven to be NP-hard.

Three algorithms are then proposed to solve the adjustment problem, namely the

BF-algorithm, the G-algorithm and the H-algorithm. The BF-algorithm and the G-

algorithm are both exact algorithms where the optimality of the solution is guaranteed.

The BF-algorithm reduces the unaccountably infinite solution space to a finite solution

space of equivalent classes. The BF-algorithm is intuitive; however, it is impractical due

to its slow performance. The G-algorithm improved from the BF-algorithm so that

invalid solution space is pruned off. The G-algorithm is practical for small instances.

However, due to the complexity of the problem, the G-algorithm is impractical for large

instances. On the other hand, the H-algorithm is proposed with the aim for fast

performances where solutions are found in seconds even for large instances. Furthermore,

the H-algorithm produces quality solutions for small to medium instances.

Finally, future works for this research is discussed. The E-algorithm further

improves the G-algorithm by preventing redundant configurations that impose the same

phylogenetic information. Relaxation problems to other phylogenetic models are also

suggested for future investigation. Moreover, possible problems that assess the

confidence of a phylogenetic tree are introduced.

89

REFERENCES

[1] Agarwala, R. and Fernandez-Baca, D., “A Polynomial-Time Algorithm for Perfect
Phylogeny Problem when the Number of Character States is Fixed,” SIAM Journal of
Computing, 23(6): 1216-1224, 1994.

[2] Agarwala, R. and Fernandez-Baca, D., “Simple Algorithms for Perfect Phylogeny and
Triangulating Colored Graphs,” International Journal of Foundation of Computer
Science, 7(1): 11-22, 1996.

[3] Altschul, S. F., The Statistic of Sequence Similarity Score,
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-html.

[4] Auyeung, A., “A New Phylogenetic Tree Model for Fuzzy Characters,” In
Proceedings of The International Conference on Information Technology, IEEE
Computer Society, Las Vegas, Nevada, 2005.

[5] Auyeung, A. and Abraham, A., “Estimating Genome Reversal Distance by Genetic
Algorithm,” The IEEE Congress on Evolutionary Computation, pp. 1157-1161,
2003.

[6] Auyeung, A. and Abraham, A., “The Largest Compatible Subset Problem for
Phylogenetic Data,” The Genetic and Evolutionary Computation Conference, 2004.

[7] Auyeung, A. and Abraham, A., “The Role of Simulated Evolutions in
Bioinformatics,” ISE Book Series on Evolutionary Machine Design: Methodology and
Applications, Nova Science Publishers, New York, 2004.

[8] Auyeung, A. and Melcher, U., “Evaluation of Protein Sequence Alignment using
Structural Information,” In Proceedings of The International Conference on Information
Technology, IEEE Computer Society, Las Vegas, Nevada, 2005.

[9] Bain, L. J. and Engelhardt, M., Introduction to Probabili ty and Mathematical Statistics
2nd Edition, Duxbury Thomson Learning, 1992.

[10] Barlow-Irick, P., Barriers to Making Order out of Chaos: Species with Fuzzy
Boundaries, http://www.largocanyon.org/science/species/intro.htm.

[11] Berg, J. M., Tymoczko, J. L. and Stryer, L., Biochemistry 5th Edition,
 W.H. Freeman and Company New York, 2002.

90

[12] Bonet, M., Phillips, C., Warnow, T. J. and Yooseph, S., “Constructing Evolutionary
Trees in the Presence of Polymorphic Characters,” SIAM Journal of Computing, 29(1):
103-131, 1999.

[13] Buneman, P., “The Recovery of Trees from Measures of Dissimilarity ,” In
Mathematics in the Archaeological and Historical Sciences, F. R. Hodson, D. G. Kendall
and P. Tautu (Eds), pp. 387-395. Edinburgh University Press, 1971.

[14] Chakraborty, R. and Nei, M., “Genetic Differentiation of Quantitative Characters
between Populations or Species. I. Mutation and Random Drift,” Genetical Research, 39:
303-314, 1982.

[15] Cormen, T. H., Leiserson, C. E. and Rivest, R. L., Introduction to Algorithms,
McGraw-Hill Book Company, 2000.

[16] Day, W. and Sankoff, D., “Computational Complexity of Inferring phylogenies by
Compatibili ty,” Systematic Zoology, 35(2): 224-229, 1986.

[17] Diestel, R., Graph Theory, Springer Verlag, 2000.

[18] Durbin, R., Eddy, S., Krogh, A. and Mitchison, G., Biological Sequence Analysis –
Probabili stic Models of Proteins and Nucleic Acids, Cambridge University Press, 2002.

[19] Estabrook, G. F., Johnson, C. and McMorris, F. R., “A Mathematical Foundation for
Analysis of Cladistic Character Compatibili ty,” Math Bioscience, 29: 181-187, 1976.

[20] Estabrook, G. F. and McMorris, F. R., “When are Two Qualitative Taxonomic
Characters Compatible,” Journal of Mathematical Biology, 4: 195-200, 1977.

[21] Falconer, D. S. and Mackay, T. F., Introduction to Quantitative Genetics 4th Ed.,
Longman Scienctific and Technical, Harlow, U.K., 1996.

[22] Farris, J. S., “Methods for Computing Wagner Trees,” Systematic Zoology, 19: 83-
92, 1970.

[23] Felsenstein, J., Inferring Phylogenies, Sinauer Associates, Sunderland,
Massachusetts, 2004.

[24] Fisher, R. A., “The Correlation between Relatives on the Supposition of Mendelian
Inheritance,” Transactions of the Royal Society of Edinburgh, 52: 399-433, 1918.

[25] Frank, H. and Althoen, S. C., Statistics Concepts and Applications, Cambridge
University Press, 1994.

91

[26] Giannattasio, R. B. and Spooner, D. M., “A Reexamination of Species Boundaries
between Solanum megistracolobum and S. toralapanum (Solanum sect. Petota, series
Megistacroloba): Morphological Data,” Systematic Botany, 19(1):89-105, 1994.

[27] Giannattasio, R. B. and Spooner, D. M., “A Reexamination of Species Boundaries
and Hypothesis of Hybridization Concerning Solanum megistracolobum and S.
toralapanum (Solanum sect. Petota, series Megistacroloba): Molecular Data,” Systematic
Botany, 19(1):106-115, 1994.

[28] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Professional, 1989.

[29] Goldberg, L. A., Goldberg, P. W., Philli ps, C. A., Sweedyk, E. and Warnow, T.,
”Minimizing Phylogenetic Number to Find Good Evolutionary Tree,” Discrete Applied
Mathematics, 71: 111-136, 1996.

[30] Gusfield, D., “Eff icient Algorithm for Inferring Evolutionary History,” Networks,
21:19-28, 1991.

[31] Gusfield, D., Algorithm on Strings Trees, and Sequences – Computer Science and
Computational Biology, Cambridge University Press, 1997.

[32] Halperin, E., “ Improved Approximation Algorithm for the Vertex Cover Problem in
Graphs and Hypergraphs,” SIAM Journal of Computing, 31(5): 1608-1623, 2002.

[33] Hein, J. J., “An Optimal Algorithm to Reconstruct Trees from Additive Data,”
Bulletin of Mathematical Biology, 51(5): 597-603, 1989.

[34] Hopcroft, J. E., Motwani, R. and Ullman, J. D., Introduction to Automata Theory,
Languages, and Computation, 2nd Edition, Addison Wesley, 2001.

[35] Horstmann, C. S. and Cornell , G., Core JAVA 2. Sun Microsystems, 1999.

[36] Kannan, S., Lawler, E. and Warnow, T., “Determining the Evolutionary Tree
,” Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
475-484, 1990.

[37] Kannan, S. and Warnow, T., “A Fast Algorithm for the Computation and
Enumeration of Perfect Phylogenies when the Number of Character States is Fixed,”
Proceeding of the Sixth Annual ACM of Symposium on Discrete Algorithms, 595-603,
1995.

[38] Kluge, A. G. and Farris, J. S., “Quantitative Phyletics and the Evolution of anurans,”
Systematic Zoology, 18: 1-32, 1969.

92

[39] Laarhoven, P. J. M. V. and Aarts, E. H. L. Simulated Annealing: Theory and
Applications, Kluwer Academic Publishers, 1987.

[40] Lande, R. 1976., “Natural Selection and Random Genetic Drift in Phenotypic
Evolution,” Evolution, 31: 442-336, 1976.

[41] Lynch, M. and Hill , W. G., “Phenotypic Evolution by Neutral Mutation,” Evolution,
40: 915-935, 1986.

[42] Lynch, M. and Walsh, B., Genetics and Analysis of Quantitative Traits. Sinauer
Associates, Sunderland, Massachusetts, 1998.

[43] Maddison, D. R., Schulz, K. S., Wheeler, T., Frumkin, J., Roy, R. and Maddison, W.
P., The Tree of Life Web Project, http://tolweb.org/tree/.

[44] Mickevich, M. F. and Johnson, M. S., “Congruence between Morphological and
Allozyme Data in Evolutionary Inference and Character Evolution,” Systematic Zoology,
25: 260-270, 1976.

[45] Paschos, V. T., “A Survery of Approximately Optimal Solution to Some Covering
and Packing Problems,” ACM Computing Surveys, 29(2): pp. 171-209, 1997.

[46] Pedrycz, W. and Gomide, F., An Introduction to Fuzzy Sets: Analysis and Design,
MIT Press, 1998.

[47] Pevzner, P. A., Computational Molecular Biology An Algorithmic Approach, MIT
Press, 2001.

[48] Russell , P. J., iGenetics, Benjamin Cummings, 2002.

[49] Russell , S. J. and Norvig, P., Artificial Intelli gence: A Modern Approach, 2nd

Edition, Prentice Hall , 2002.

[50] Saccone, C. and Pesole, G., Handbook of Comparative Genomes, Principles and
Methodology, Wiley-Liss, 2003.

[51] Sankoff , D., “Edit Distance for Genome Comparison based on Non-local
Operations,” The Third Annual Symposium on Combinatorial Pattern Matching,
644:121-135, 1992.

[52] Sankoff , D., Cedergren, R. and Abel, Y., “Genomic Divergence through Gene
Rearrangement,” Molecular Evolution: Computer Analysis of Protein and Nucleic Acid
Sequences, 26:428-438, 1990.

93

[53] Sankoff , D., Leduc, G., Antoine, N., Paquin, B., Lang, B. and Cedergren, R., “Gene
Order Comparisons for Phylogenetic Inference: Evolution of the Mitochondrial
Genome,” Proceedings of the National Academy of Science USA, 89:6575-6579, 1992.

[54] Tao, J., Ying, X. and Zhang, M. Q., Current Topics in Computational Molecular
Biology, MIT Press, 2002.

[55] Thiele, K. The Holy Grail of the perfect character: The Cladistics Treatment of
morphometric data. Cladistics, 9:275-304. 1993.

[56] Wang, L., Zhang, K. and Zhang, L., “Perfectly Phylogenetic Networks with
Recombination,” Proceeding of the Sixteenth Annual ACM Symposium on Applied
Computing, 46-50, 2001.

[57] West, D. B., Introduction to Graph Theory, Prentice Hall , 2000.

[58] Wheeler, Q. D. and Meier, R., Species Concepts and Phylogenetic Theory,
Columbia University Press, 2000.

[59] Wiens, J. J., Phylogenetic Analysis of Morphological Data, Smithsonian Institution
Press, 2000.

94

APPENDIX A

Table 8.3.2: Experimental results of the time analysis of the G-algorithm.
m is the number of objects and the time is recorded in seconds.

Table 8.3.1: Experimental results of the time analysis of the BF-algorithm.
m is the number of objects and the time is recorded in seconds.

95

Table 8.3.4: Experimental results of the quality analysis of the H-algorithm.
m is the number of objects and the quality is measured in percent n’ /n.

Table 8.3.3: Experimental results of the time analysis of the H-algorithm.
m is the number of objects and the time is recorded in seconds.

VITA

Andy (Winghang) Auyeung

Candidate for the Degree of

Doctor of Philosophy

Dissertation: A NEW PHYLOGENETIC TREE MODEL FOR FUZZY CHARACTERS

Major Field: Computer Science

Biographical:

Personal Data: born in Hong Kong, China on October 3, 1977.

Education: Received Bachelor of Science in Computer Science from the
University of Central Oklahoma in May 2000. Completed the Requirements
for the Doctor of Philosophy with a major in Computer Science at
Oklahoma State University in May 2005.

Experience: Employed by Oklahoma State University, Department of Computer
Science as a graduate assistant, 2000-2004.

Name: Andy (Winghang) Auyeung Date of Degree: May, 2005

Institution: Oklahoma State University Location: Still water, Oklahoma

Title of Study: A NEW PHYLOGENETIC TREE MODEL FOR FUZZY
CHARACTERS

Pages in Study: 95 Candidate for the Degree of Doctor of Philosophy

Major Field: Computer Science

Abstract: The study of phylogenetics involves the identification of evolutionary
relationships between species. Perfect phylogeny is one of the classical character-based
models. In this model, there are only two states for each character: zero, where the
character is absent; and one, where it is present. All previous perfect phylogeny based
models assume the states of the characters are discrete. However, fuzzy boundaries
between species and degrees of character development are commonly found in nature.
These phenomena show the need for a more relaxed model. This dissertation proposes the
fuzzy (perfect) phylogeny model that extends the perfect phylogeny model to allow fuzzy
memberships of the characters. In this dissertation, the fuzzy phylogeny model is studied,
including its properties and algorithmic solution. Due to the fuzziness of characters, two
relaxation problems for the fuzzy phylogeny are proposed, namely the Adjustment
problem for Fuzzy Phylogeny (AFP problem) and the optimal AFP problem. However,
the problems are proven to be NP-hard. So, two super-polynomial algorithms, namely,
the BF-algorithm and the G-algorithm, are introduced to provide exact solutions to the
(optimal) AFP problem. Moreover, to provide a practical solution to the (optimal) AFP
problem, a sub-optimal algorithm called the H-algorithm is also introduced. Finally,
future work for this research is discussed. That includes improvement on algorithms,
other relaxation problems, and formulations of problems that assess the confidence of a
phylogenetic tree.

ADVISER’S APPROVAL: Blayne E. Mayfield

