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PREFACE 

Carbon nanotubes, a new synthetic form of carbon, are hollow tubes from 0.4 to 

tens of nanometers in diameter composed of carbon atoms. These tiny tubes have been a 

subject of a close interest of researchers worldwide due to their unique properties. For 

example, individual carbon nanotubes can work as nanometer scale transistors and 

wires, which makes possible constructing electronic devices compared to the size of 

single molecules. Being a 100 times stronger and 5 times lighter than steel, carbon 

nanotubes can be used as reinforcement to produce strong and light-weight composites. 

However, nanotubes mix poorly with other compounds as well as have a low adhesion 

to anything other than themselves, which prevents utilizing this material at its full 

advantage. This problem is being solved by modifying the surface of nanotubes with 

different molecules. As of today, numerous methods to overcome the immiscibility of 

carbon nanotubes have been found, although many of them are complicated and may 

never be used on a large scale. In this work several easy and potentially scalable 

methods were chosen for the incorporation of carbon nanotubes with polymers and their 

efficiency was studied toward producing electrically conductive composites. Such 

composites can be used in production of sensors and electrostatic dissipative materials. 

The percolation threshold, a minimum content of nanotubes needed to conduct the 

electric current through the sample, was used as a measure of efficiency of each 

method. Single-walled carbon nanotubes produced by different techniques were used to 
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compare their ability to disperse in polymers. The results of this study will assist 

engineers in development of new composite materials with carbon nanotubes. 
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CHAPTER I 
PROPERTIES AND PROSPECTIVE APPLICATIONS OF CARBON NANOTUBES 

 

Introduction 

 Carbon is one of the most abundant elements in the universe.1 A unique ability of 

carbon atoms to form strong bonds not only with other elements but also with themselves 

account for a tremendous variety of carbon compounds in nature. Because of this 

property, the idea of existence of molecules composed only of carbon atoms has occupied 

scientists for a long time. Although the possibility of formation of such structures has 

been predicted theoretically in 1973,2 it was not until 1985 when the first spherical 

molecules containing 24 to 70 atoms of carbon had been obtained experimentally.3,4 The 

name “fullerenes” was given to these compounds after the American architect R. 

Buckminster Fuller. Following the discovery of carbon nanotubes, a cylindrical analogue  

of fullerenes, by Iijima in 19915 this type of structures was recognized as a new allotropic 

form of carbon. 

 Carbon atoms in nanotubes exist in the sp2 hybridized form, composing a 

hexagonal grid rolled into a cylinder, so that these structures are often described as 

“rolled-up graphene sheets,6,7 although this is not the way they are formed. Carbon 

nanotubes grow on a metal catalyst in a grass-like fashion using carbon generated either 

by vaporization of graphite by laser8 or electric arc5 or by disproportionation of 
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carbon monoxide at high temperature.9 Other methods include pyrolysis of methane or 

methanol in the presence of a catalyst.10,11 Carbon nanotubes can be both single-walled 

and multi-walled. The latter consist of several coaxial layers inserted into each other. In 

the present work, I will discuss only single-walled carbon nanotubes (SWNT) so the term 

“single-walled” in most cases will be omitted.  

 Physical properties of carbon nanotubes. Physical properties of carbon 

nanotubes are primarily defined by their chiral indexes n and m, which indicate the 

direction of “rolling” of the graphene sheet as well as the diameter of a tube.7,12 Due to 

the quantum confinement, the electron orbitals in a nanotube are associated in bands that 

are symmetrically located above and below the Fermi level.6 However, the nanotubes for 

which (n-m) = 3q, where q is integer, possess some electron density at the Fermi level, 

allowing metallic type of electrical conductivity for these tubes which are therefore called 

“metallic” while the others are called “semiconducting”.7,13 

The distance between bands on the energy scale is defined by chiral indexes. The 

electron transition between the bands results in specific absorption of light in the region 

between 300 and 1800 nm for most nanotubes.14 Metallic tubes exhibit a single peak 

corresponding to M11 transition and semiconducting tubes reveal two peaks due to S11 

and S22 transitions. Strong absorption of carbon nanotubes in the near-infrared part of the 

spectra holds promise in utilizing this material for the photoinduced destruction of cancer 

cells in the human body.15 

The presence of two bands in the semiconducting SWNT makes possible the 

fluorescence of these nanotubes in the near-infrared area of the spectra.16 Fluorescence is 

normally observed for individually dispersed nanotubes, because one metallic nanotube 
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in a bundle quenches the fluorescence of semiconducting nanotubes. Due to such an 

effect nanotubes can be used as fluorescent labels for the imaging in biology, since most 

biological tissues are transparent to the NIR light.17 

 Carbon nanotubes as nanometer size semiconductors are actively explored toward 

applications in the nanoscale electronic devices. Fabrication of a logic circuit and a ring 

oscillator based on a single SWNT by the researchers from IBM demonstrated that 

electronic devices on the nanometer scale can be produced with carbon nanotubes.18 

SWNT also show competitive characteristics as field effect transistors19 as well as 

materials for flat panel displays.20  

 Electrical transport in carbon nanotubes shows ballistic conductivity with 

quantum behavior.21 The resistance of the individual single-walled metallic nanotubes is 

independent on their length for tubes under 1 µm, whereas the semiconducting nanotubes 

have a series of large barriers to conduction along their length.22 Resistance of individual 

metallic tubes, measured by Skakalova at al,23 was found to be about one order of 

magnitude lower than that of semiconducting tubes. Therefore, metallic tubes carry most 

of the current in bulk carbon nanotube material. 

 Tensile strength of individual single-walled carbon nanotubes was found to be 

between 22 and 55 GPa, depending on the applied method, and the Young’s modulus 

reached the value of 1.25 TPa.24 Such mechanical properties make nanotubes the 

strongest synthetic material ever known. That’s why CNT is the most considered material 

for the “space elevator” idea to create the physical connection between the ground and a 

space orbiter.25 Unfortunately, the use of the full advantage of the high mechanical 

strength of nanotubes is limited by a number of factors. First is the poor miscibility of 
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nanotubes with other materials and there are also defects in the tubes.26 The strongest 

SWNT composite created so far had the tensile strength of about 1.8 GPa while 

containing 60% of SWNT in polyvinyl alcohol.27 

 Chemical properties of carbon nanotubes. Carbon atoms in nanotubes exist in 

the sp2 hybridization state and, as in graphite, are located at equal distance from each 

other, which at some point resembles polyaromatic compounds. However, in most 

chemical reactions carbon nanotubes exhibit properties typical for alkenes. For example, 

reaction with organic peroxides results in addition of the in-situ generated radicals to 

nanotubes.28 Reaction with sec-butyllithium leads to an addition to SWNT and formation 

of carbanions on their surface.29 Carbon nanotubes undergo fluorination and 

hydrogenation in which fluorine and hydrogen covalently attach to carbon.30 Fluorinated 

nanotubes become capable of reacting with Grignard reagents and alkyllithium to graft 

different functionalities on the surface.30 

Reactions of carbon nanotubes with strong oxidants, such as concentrated nitric 

and sulfuric acids, result in oxidation of some carbon atoms into carbonyls and 

carboxyls.31 The reactivity of the SWNT toward oxidation is inversely related to their 

diameter due to the increased strain in the small tubes.32 Oxidation of carbon nanotubes is 

a widely used procedure for functionalization of this material, since addition of 

carboxylic groups to the surface opens vast possibilities for further chemistry.33 

Nanotubes have been found to participate in Diels-Alder34 and dipolar 

cycloaddition35 reactions in which they act as a dienophile but not as a diene. Addition of 

carbenes36 and osmium tetroxide37 has also been reported which are typical reactions for 
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alkenes. The Bingel reaction, which is specific for fullerenes, is possible for carbon 

nanotubes as well.38 

 Composite materials of carbon nanotubes. The plastics industry is the main 

area where carbon nanotubes are so far being commercialized. According to the business 

report by Global Industry Analysts, the global market for the CNT composites was worth 

$43 million in 2006, which was more than 80% of the entire CNT industry.39 In the next 

5 years this sector is expected to grow by the factor of 10 to reach $451.2 million net 

worth by 2011. Research on polymeric composites of CNT experiences growth as well. 

According to the SciFinder publication statistics, the share of papers on this subject has 

increased from 1 % in 2000 to 5 % in 2007 of total number of publications on carbon 

nanotubes.40 

Addition of carbon nanotubes into polymers increases tensile and compressive 

strength and tensile modulus,41 which is useful for manufacturing of strong and 

lightweight construction materials. Electrical conductivity of polymers increases over 

several orders of magnitude by addition of 0.1 – 1 % of SWNT.42 Polymeric composites 

of CNT show piezoresistivity,43 non-linear I-V characteristics,44 and optomechanical 

response45 which offers possibility for developing new sensors and actuators. At the same 

time, carbon nanotubes are poorly miscible within polymers and generally insoluble in 

solvents, posing a challenge for utilizing this material at its full advantage. Therefore, the 

main objective of the present research is to investigate the methods for the efficient 

incorporation of nanotubes into polymeric composites. 
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CHAPTER II 

GRAFTING OF POLY(VINYLBENZYL TRIMETHYLAMMONIUM CHLORIDE) TO 

SINGLE-WALLED CARBON NANOTUBES 

 

Abstract 

Single-walled carbon nanotubes were functionalized by 

poly((vinylbenzyl)trimethylammonium chloride) (PVBTMA) through the in-situ radical 

polymerization. The resulting aqueous dispersions were stable for as long as 7 months 

without precipitation and consisted principally of individual carbon nanotubes and small 

bundles, according to atomic force microscopy tests. The material, after purification, 

contained 34% of a polymer by weight. Raman scattering spectra of the material, 

compared with those of pristine SWNT, suggested covalent bonding of polymer chains to 

the nanotube surface. Small changes in Raman and UV-VIS-NIR spectra of the SWNT 

after functionalization indicated that electronic structure of nanotubes was not disrupted 

significantly. Ability of the synthesized material to undergo layer-by-layer deposition 

with negatively charged moieties has been demonstrated. 



 11 

Introduction 

Layer-by-layer deposition (LBL) is a versatile method of producing composite 

materials via the consecutive deposition of layers of different moieties from aqueous 

solutions driven by electrostatic interaction.1 Great advantages of this method include the 

ability to combine together the materials that cannot be combined by any other methods 

as well as the ability to produce a composite with desired properties by controlling the 

structure during the deposition. A number of new materials containing carbon nanotubes 

has been developed recently using LBL. Combination of SWNT with porphyrins allowed 

the photovoltaic composites with high quantum yield.2 Scaffolds for healing nerve tissue 

have been produced by co-deposition of nanotubes and poly(acrylic acid).3 The 

multilayer films of SWNT with polyaniline and polyvinyl alcohol produced by LBL 

exhibited dependence of electrical resistance on pH and mechanical stress, which makes 

them applicable as strain and corrosion sensors.4 Incorporation of oxidized nanotubes 

with poly(ethylene imine) using layer-by-layer deposition increased the tensile strength 

of the composite by a factor of 20 with respect to the neat polymer.5 The nanotube 

loading in this material was 50 % by weight. 

 In order to be used in layer-by-layer deposition, carbon nanotubes have to be 

dispersed in water. The most common approach to dispersing nanotubes is the use of 

surfactants.6 However, due to the adsorption-desorption equilibrium, the presence of free 

surfactant in solution is required to keep it adsorbed on the surface of nanotubes. The 

more surfactant is added, the higher the concentration of suspended nanotubes.7 Hence, 

the use of the surfactant-stabilized nanotube dispersions in LBL will result in the 

undesired addition of surfactant in the final composite.  
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 Covalent functionalization of nanotubes can solve the problem of adsorption by 

permanently binding of the desired moieties to the surface of SWNT. Either positive or 

negative charge can be created on nanotubes by addition of the compounds containing 

amine or carboxyl groups via different functionalization procedures.8,9 In this approach, 

one unit of charge per one covalent bond with the nanotube is usually created. Therefore, 

in order to obtain the sufficient charge on the tube, its surface has to be heavily 

functionalized, which alters electronic and mechanical properties of the nanotubes.10,11 To 

avoid this problem, nanotubes can be functionalized with polyelectrolytes, in which case 

as many as 100 units of charge can be permanently attached to a nanotube by creating 

only a single bond with a carbon atom of the tube. Such idea was utilized in 

functionalization of SWNT with poly(sodium styrenesulfonate),12 where the resulting 

composites formed aqueous dispersions stable for several months, and the electronic 

properties of the nanotubes were practically unchanged.  

 The objective of this work was to covalently graft a cationic polyelectrolyte to 

carbon nanotubes in order to provide a water-soluble composite of nanotubes with 

preserved electronic properties for use in layer-by-layer process. Some applications of the 

multilayer composites especially require the positive charge on nanotubes. For example, 

for the tissue implants, the surface of the composite has to possess positive charge in 

order for the negatively charged cell membrane to bind to the SWNT fibers.3 

 

Experimental 

Materials and Methods. Single-walled carbon nanotubes in the form of a 22 mg/g 

aqueous gel were obtained from Southwest Nanotechnologies Inc., Norman, OK. The 
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VBTMA-Cl monomer (mixture of meta- and para- isomers) was purchased from Aldrich. 

The VA-044 initiator (2,2’-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride) was 

obtained from WAKO Pure Chemical Industries Ltd. Bath sonication was carried out in a 

FS20 ultrasonic cleaner 70W 42KHz (Fisher Scientific). Low speed centrifugation of 

SWNT/polymer dispersions was performed on an IEC EXD centrifuge (IEC, Needham, 

MA). Ultracentrifugation was performed on a Beckman L8-70M centrifuge with Ti75 

rotor. Ultrafiltration was performed in an Amicon-8400 ultrafiltration cell (Millipore) 

under 10 psi pressure. Atomic force micrographs were obtained using a Multimode 

Nanoscope IIIa SPM (Digital Instruments, Santa Barbara, CA) operating in the tapping 

mode. The samples were prepared by applying a drop of suspension on a mica chip for 1 

min, followed by rinsing with water and drying in nitrogen flow. The Raman 

measurements were carried out using a Coherent Argon-ion laser operating at an 

excitation wavelength of 514.5 nm. The laser power was 1.0 mW; the time for a scan was 

60 s. The back-scattered light was analyzed using a SPEX 500M single grating 

spectrometer with a liquid nitrogen cooled charge coupled detector (CCD). The samples 

were prepared by applying a drop of a suspension on a clean silicon surface followed by 

drying at 75 °C to yield a solid surface coating. Such a procedure was repeated 10 times 

for each sample. UV-VIS spectroscopy in the wavelength range of 190 – 1100 nm was 

performed on a HP 8453 spectrophotometer (Hewlett Packard). Thermogravimetric 

analyses were performed using a TGA50/50H analyzer (Shimadzu) in nitrogen 

atmosphere at a scan rate of 10 °C/min.  

In-situ Polymerization of VBTMACl and SWNT. A 100 mL Schlenk flask containing 

4.0 g of VBTMACl monomer, 40 mg of carbon nanotubes and 65 mL of deionized water 
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were sonicated for 30 min, followed by stirring for 4 h. Then, 48 mg of VA-044 was 

added, and the mixture was degassed by vacuum pump and refilled with nitrogen 3 times. 

The flask was sealed under vacuum, and the synthesis was carried out in a thermostated 

oil bath at 75 °C with stirring. After 48 h, the reaction was stopped by cooling to room 

temperature and opening the flask to air. 

The mixture was diluted to 500 mL with water, bath sonicated for 1 h, and 

centrifuged at 5000g for 6 h. The homogenous black supernatant was removed. The black 

sediment was redispersed in water by stirring, and the procedure was repeated two more 

times. The combined supernatants were concentrated by ultrafiltration through a 0.45 µm 

cellulose acetate membrane until the volume decreased to 100 mL. The concentrated 

suspension was centrifuged at 200000g for 2 h in order to precipitate SWNT-

PVBTMACl. The transparent solution of residual free polymer was decanted. The 

precipitate was redispersed in water, and the procedure was repeated two more times. 

Part of the final black precipitate was vacuum dried at 100 °C for 48 h for TGA, and the 

rest was dispersed in 100 mL of water at 0.2 g/L by 30 min of bath sonication. 

Synthesis of PVBTMACl.  A 100 mL Schlenk flask containing a solution of 4.0 g of 

VBTMACl in 65 mL of deionized water was degassed by vacuum pump and refilled with 

nitrogen 3 times. The flask was sealed under vacuum, and the synthesis was carried out in 

a thermostated oil bath at at 75 °C with stirring. After 48 h, the reaction was stopped by 

cooling to room temperature and opening the flask to air. The polymer was isolated by 

rotary evaporation under vacuum followed by drying in vacuum for 12 h at room 

temperature. 
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Dispersion of SWNT in PVBTMACl. A 2 g/L aqueous solution of the PVBTMACl and 

4 mg of SWNT were dispersed in 50 mL of this solution by bath sonication for 1 h 

followed by centrifugation at 5000g for 6 h. The supernatant was decanted and the 

sample for optical absorption was taken. The rest of the material was subjected to 3 

cycles of ultracentrifugation, according to the procedure described above, for the 

purification of the grafted SWNT. The final SWNT material was redispersed in 20 mL of 

water by 30 min bath sonication. 

Layer-by-layer Assembly. A 0.05 g/L aqueous solution of purified SWNT-PVBTMACl 

was used for the deposition. SWNT grafted with poly(sodium styrenesulfonate) (SWNT-

PSS) were synthesized according to the published procedure12 and used in a form of the 

0.05 g/L aqueous solution. Poly(acrylic acid) (PAA), MW = 450,000 and 

poly(diallyldimethyl ammonium chloride) (PDDA), MW = 400,000, were purchased from 

Aldrich and used in the form of 10 g/L aqueous solutions with pH adjusted to 7.0. The 

3x5” microscopic glass substrate was cleaned by a 15 min bath sonication in acetone, 

followed by 15 min boiling in sodium carbonate, followed by rinsing in water. The clean 

slide was coated with a layer of PDDA by immersing it in the solution of this polymer for 

15 min, followed by washing with water 3x1 min. The SWNT-PSS vs. SWNT-PVBTMA 

LBL film was made by subsequent immersing the slide in the solution of each nanotube 

material for 60 min, followed by washing with water 2x1 min and immersing in the 

solution of the other nanotube material. The SWNT-PVBTMA vs. PAA LBL film was 

made by subsequent immersing of the slide in the PAA solution for 10 min followed by 

washing with water 3x1.5 min and immersing the slide in the SWNT-PVBTMACl 

solution for 60 min, followed by washing with water 2x1 min. The slide was dried in a 
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gentle nitrogen flow before being immersed in the SWNT or PAA solutions. The growth 

of the film was monitored by measuring the optical absorption of the slide at 400 nm. The 

60 min deposition time was chosen by comparing the various times in the SWNT versus 

PSS experiments. The absorption of the film increased with the deposition time under 60 

min, and no noticeable increase was observed for times longer than 60 min. 

 

Results and Discussion 

 The synthetic procedure for grafting PVBTMA to SWNT is presented in  

Scheme 1.  

 

Scheme 1. Experimental procedure. 

CH

CH2N
+
(CH3)3Cl

-

+

VA-044

water, 75 0C

CH

H2C

CH2

CH2N+(CH3)3Cl-

n

SWNT  

 

Figure 1 compares the TGA analysis of the purified SWNT-PVBTMACl 

composite alone with the TGA of pristine SWNT and pure polymer, which allows the 

estimation of the SWNT:PVBTMACl ratio in the composite to be 66:34 by weight. 

Recalculated into molecular weight this ratio gives one monomer unit per 28 atoms of 

carbon of the SWNT. This ratio is close to that for the highly functionalized SWNT from 

the reaction with in-situ generated diazonium compounds.10 Unlike those materials which 
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lose all the band features in the UV-VIS spectra, this material has its spectrum practically 

unchanged, as seen in Figure 2. Low changes in the UV-VIS spectra indicate that useful 

properties of carbon nanotubes, such as electrical conductivity, are preserved in the 

SWNT-PVBTMACl material. A 15 nm red shift in the maximum of the S11 peak for the 

[6,5] nanotube in the functionalized sample, compared to the sample of dispersed SWNT 

can be explained by interaction of the SWNT surface with water due to its low coverage 

with polymer.6 The grafted sample used for the spectral analysis contained 0.1 g/L 

SWNT and 0.05 g/L of the polymer, compared to the 0.08 and 2.0 g/L for the dispersed 

sample, respectively. 
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Figure 1. TGA analysis of the pristine SWNT, PVBTMA and SWNT-PVBTMA grafted 

material in a nitrogen atmosphere. 
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Figure 2. UV-VIS absorption of the SWNT-PVBTMA in water, dispersion of SWNT in 

the 2 g/L solution of the PVBTMA and pristine SWNT in DMF. The peaks #1 and #3 

correspond to the S22 and S11 transitions for the [6,5] nanotube, the peak #2 corresponds 

to the S22 transition for the [7,5] nanotube. 

 

 Small changes in the optical absorption spectra correlate with the small changes in 

the Raman spectra of the SWNT after functionalization, as seen in Figure 3. The intensity 

of the D-band (ID) at 1320 cm -1 (arising due to defects in the structure of the nanotube 

sidewall) in respect to the intensity of the G-band (IG) 1590 cm-1 (corresponding to the 

stretching vibrations of the sp2 carbons) is used as an estimation of the fraction of the sp3 

hybridized carbon atoms.13 The ID/IG ratio is increased from 0.1 to 0.13 after the in-situ 

polymerization due to addition of some polymer molecules to nanotubes. Such an 
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increase is very low compared to other functionalization procedures reported in literature, 

where the the ID:IG ratio typically increases by the factor of 5-20.9,10,14 
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Figure 3. Raman spectra of the pristine SWNT, SWNT-PVBTMA and SWNT dispersed 

with PVBTMA. 

 

 Despite its low weight fraction, the attached polymer homogeneously disperses 

SWNT in water. Figure 4 contains the picture of the SWNT samples grafted and 

physically dispersed with PVBTMACl, both subjected to the same ultracentrifugation 

purification. Both samples contained 0.04 g/L of nanotubes. The sample from the 

physical mixture fails to disperse since almost all of the polymer was washed out, 

whereas the grafted sample forms a visually uniform dispersion. The AFM analysis of 

this sample in Figure 5 shows mostly individual nanotubes and small bundles under 10 

nm in diameter. The clumps seem on the micrograph were also observed in AFM of the 

pristine material. According to the high resolution SEM, (see Figure 4 in Chapter 4) these 
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particles correspond to aggregates of short nanotubes. The solubility limit of the 

functionalized SWNT was tested by dissolution of the nanotubes retrieved after 

centrifugation in different volumes of water. The dispersions were visually homogeneous 

for the concentrations as high as 0.5 g/L. Above this limit, the dispersions were too dark 

for observation. The best samples containing 0.1 g/L of the functionalized SWNT in 

water have been stable for 7 months without precipitation and only a partial aggregation 

occurred after 2.5 years (November, 2007). 

 

Figure 4.  SWNT 0.04 g/L in water, from in-situ polymerization (left) and from physical 

dispersion with polyelectrolyte (right) after 3 cycles of ultracentrifugation. 

 

The yield of the functionalized material calculated from the gravimetric results 

was only 50% after low speed centrifugation. This suggests that nanotubes were not 

functionalized uniformly. The synthetic mixture contained visible aggregates of SWNT 

so that only outer tubes of the bundles reacted most while the inner tubes were 

functionalized to a much lower degree. However, the rejected material could be recycled 

for the next synthesis. 
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Figure 5. AFM image and size distribution of the SWNT-PVBTMA composite deposited 

on mica chip. 

 

Layer-by-layer films were created by alternating deposition of SWNT-PVBTMA 

vs. SWNT-PSS and SWNT-PVBTMA vs. PAA. Figure 6 shows the increase in optical 

density of the films during the deposition. The previous studies have shown that 

absorption of the polyelectrolytes in the LBL films is negligible, and an increase in 

optical density occurs primarily due to the increased nanotube content in the film.15 The 

results show that the growth rate of the film built from the oppositely charged nanotubes 

is slow compared to the SWNT vs. PAA film. The SWNT-PVBTMACl complex 

0%

5%

10%

15%

20%

25%

30%

<1.5 1.5 - 3 3 - 5 5 - 10 >10  nm

Diameter

n
u
m

b
e
r 
%

0%

10%

20%

30%

40%

50%

60%

50 - 500 nm 500 nm - 1 um 1 - 1.5 um

Length

n
u
m

b
e
r 
%



 22 

contained 34 % of polyelectrolyte while the SWNT-PSS had only 30 % of PSS, 

according to TGA. Low surface charge and relative rigidity of nanotubes accounted for 

the low efficiency of the deposition process in this system. In the SWNT versus PAA 

system, in contrast, the steady film growth at the reasonable rate, compared to similar 

experiments reported in literature,15 was observed. Presumably, PAA provided a flexible 

cushioning layer for the nanotube layer to sufficiently absorb onto the surface of the film.  

 

 

Figure 6. UV-VIS absorption of the growing LBL films. 

 

Conclusions 

 In-situ polymerization of VBTMA-Cl in the presence of carbon nanotubes 

resulted in the covalent attachment of the growing polymer chains to nanotubes. The 

degree of such an attachment is relatively low, which preserves the electronic properties 

of nanotubes and at the same time allows reasonably good solubility in water at a very 

low content of the polyelectrolyte. The LBL deposition of this material with PAA has 
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shown the ability of the SWNT-PVBTMA to form multilayer films which will be 

especially useful for the processes where low surfactant content, pristine electronic 

structure, and positive charge of nanotubes are important. This material has been studied 

at the laboratory of Dirk Guldi, University of Erlangen, Germany, toward interaction with 

porphyrin and fabrication of photovoltaic coatings, and a manuscript is currently being 

prepared.16 
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CHAPTER III 

 GRAFTING OF POLYSTYRENE TO SINGLE-WALLED CARBON NANOTUBES 

 

Abstract 

 Single-walled carbon nanotubes were covalently grafted with polystyrene via in-

situ free radical polymerization. Short time oxidation of nanotubes with diluted nitric acid 

prior to polymerization increased the yield of functionalized material from 19 % to 35 % 

due to the splitting of the bundles and increase of the surface area in the SWNT. The 

resulting materials contained 26–33 % of polystyrene by weight for different samples and 

had higher solubility in THF and DMF compared to the pristine nanotubes, while the 

changes in electronic structure were negligible as judged by Raman spectroscopy. 

Polystyrene composites have been prepared by solution mixing using the functionalized 

nanotubes. 
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Introduction 

 Addition of carbon nanotubes in polymers increases tensile and compressive 

strength, tensile modulus, glass transition temperature, electrical, and thermal 

conductivity of the resulting composites.1,2,3 However, incorporation of carbon nanotubes 

(CNT) into a polymer matrix is a challenge due to poor miscibility of nanotubes with 

polymers and the generally low dispersibility of CNT in solvents. There are three classes 

of techniques for preparation of polymeric composites of CNT: melt blending, solution 

mixing, and in-situ polymerization.4 The latter two methods have shown the best results 

due to a good homogenization of nanotubes and polymer in solution. Dispersion of 

nanotubes in the solvents is achieved via modification of their surface by either a 

covalent or a noncovalent approach. Polymeric dispersants have been successfully used 

for noncovalent functionalization of nanotubes. Poly(4-vinylpyridine) dispersed SWNT 

in alcohols.5 PEO-PDMS-PEO6 copolymer solubilized nanotubes in toluene. Alkyl-

substituted poly(phenylene vinylene)7 and poly(phenylene ethynylene)8 have been found 

efficient for obtaining homogeneous dispersions of carbon nanotubes in chloroform. The 

noncovalent approach is simple and straightforward. However, the main drawback of this 

method is that the composite will always contain the dispersing agent, which may alter 

the properties of the polymer. 

 The covalent approach allows grafting of various compounds to nanotubes, even 

those that normally don’t have a strong adhesion to them. In the experiments of Dyke and 

Tour,9 addition of 49% by weight of 4-chlorophenyl groups to SWNT via diazonium 

chemistry increased solubility of the functionalized nanotubes in organic solvents by an 

order of magnitude. Covalent grafting of various moieties to nanotubes has been achieved 
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also via nitrene addition,10 azomethyne ylide addition,11 and addition of polymer radicals 

during in-situ polymerization,12 as well as via esterification and amidation of the 

carboxylic groups on oxidized nanotubes.13 In all of these reactions, efficient solubility of 

nanotubes in organic solvents was achieved. As discussed above, the principal problem of 

the covalent functionalization is distortion of electronic structure of carbon nanotubes.  

 The advantages of non-covalent and covalent functionalization can be combined 

by grafting polymers to carbon nanotubes. Long chains attached to nanotubes can keep 

them dispersed due to a steric repulsion,6 for which a small number of chains on the 

surface is needed. As a result, the polymer-functionalized nanotubes demonstrate high 

solubility in solvents with a low degree of functionalization.13 For example, in the 

experiments of Qin, the molecules of polystyrene grown from the surface of SWNT by 

ATRP polymerization allowed stable dispersions of the functionalized material in DMF 

and THF, while only 1 polymer chain per 240 carbon atoms was attached.14 

 If the polymer-functionalized carbon nanotubes are to be used in polymeric 

composites, it is very important that the attached polymer is miscible with the host 

polymer. In the most cases, different polymers are poorly miscible with each other,15 so 

the attached polymer even though providing a high solubility for nanotubes, might force 

such into a separate fraction as the solvent evaporates during the composite preparation. 

The objective of this work was to study the incorporation of the polymer-functionalized 

carbon nanotubes in polystyrene, so the best choice for the polymer to graft to nanotubes 

is polystyrene too.  Grafting by in-situ free radical polymerization is a simple and 

potentially scalable process which was successfully applied in the past for grafting 
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poly(sodium 4-styrenesulfonate),16 poly(4-vinylpyridine)12 and poly(vinylbenzyl 

trimethylammonium chloride) to SWNT. 

 

Experimental 

Materials. Purified HiPco™ single-walled carbon nanotubes, batch #P0340, were 

purchased from Carbon Nanotechnologies Inc., Houston, TX. TGA analysis in air found 

15 % residue at 800 °C, which accounts for 10% of iron catalyst in the material. Styrene 

was obtained from Acros Organics and purified by passing through basic alumina. AIBN 

(2,2’-azobisisobutyronitrile) was obtained from Aldrich and purified by recrystallization 

from methanol. N,N-Dimethylformamide (DMF) was obtained from Pharmco and dried 

over anhydrous potassium carbonate. All other chemicals were purchased from Aldrich 

and used as received. 

Instruments and measurements. Ultrasonication was performed using a Fisher FS-30 

160W 3QT ultrasonic cleaner or a Microson XL-2000 22 KHz ultrasonic cell disruptor. 

The solutions were filtered under vacuum using a glass cell and 0.45 µm porous PTFE 

membranes. Raman spectra in the range of 1200–1800 cm-1 were acquired in 

backscattering geometry using a Jobin-Yvon U1000 double grating spectrometer and an 

Argon ion laser, 514.5 nm (2.41 eV), at an intensity of 16.2 kW/cm2, focused through a 

0.80 NA objective (Olympus). The scattered light was analyzed using an electronically 

cooled photomultiplier tube (Hamamatsu 943-02). Data were taken with a 0.5 cm-1 step 

size and 1.5 s integration time in photon counting mode. The samples were prepared by 

applying a suspension on a clean silicon surface followed by drying at 100 °C to yield a 

solid surface coating. Atomic force micrographs were obtained using a Multimode 
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Nanoscope IIIa SPM (Digital Instruments, Santa Barbara, CA) operating in the tapping 

mode. The samples were prepared by applying a drop of a DMF or THF suspension on a 

mica chip (10 min for DMF and 1 min for THF), followed by removing the liquid and 

drying the substrate in the nitrogen flow. To estimate the size distribution, lengths and 

heights of at least 100 tubular objects from 2 or more images taken from different spots 

of the substrate were measured. Thermogravimetric analyses were performed using a 

Shimadzu TGA50/50H instrument in nitrogen. The optical microscopy of the films was 

performed on a Leica DM IRB optical microscope at 100x magnification. The UV-VIS 

spectra were obtained on a Cary-5000 UV-VIS-NIR spectrometer in the wavelength 

range of 200–2000 nm. Scanning electron microscopy was performed on a JEOL JSM 

6400 Scanning Electron Microscope operating at 27 kV accelerating voltage.  

In-situ functionalization of SWNT with polystyrene. For this experiment both pristine 

(SWNTP) and oxidized (SWNTO) nanotubes were used. The outline of the experiments is 

presented in Scheme 1. Oxidation of SWNT was performed according to the previously 

reported procedure, by bath sonication in 8 M HNO3 for 60 min followed by washing out 

the acid and redispersion of the solid in DMF by bath sonication.17 Either SWNTP or 

SWNTO in the amount of 50 mg were dispersed in 50 mL of DMF by bath sonication for 

60 min, followed by stirring for 12 h and tip-sonication for 15 min at 5 W immediately 

prior to synthesis. The dispersion was mixed with 6.5 g of styrene and 100 mg of AIBN 

(molar ratio of [styrene]:[AIBN]:[SWNT carbon] ≈ 100:1:6.5)  and transferred to a 100-

mL Schlenk flask equipped with a stirring bar. The flask was degassed by 3 freeze-pump-

thaw cycles. Degassing is a crucial step and has to be done thoroughly. Oxygen in the 

system greatly reduces the yield of the functionalized nanotubes. The flask was immersed 
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in a thermostated oil bath at 75 °C under stirring. After 48 h, the mixture was cooled to 

room temperature, vacuum-filtered through a 0.45 µm PTFE membrane and washed on 

the filter with 30 mL of chloroform to remove the free polystyrene. The washing was 

repeated several times until the addition of 5 drops of filtrate to 10 mL of methanol 

resulted in no cloudiness, indicating that little or no soluble polystyrene remained, giving 

the samples SWNTP-PS and SWNTO-PS (Scheme 1). During the washing, the solid was 

covered with the solvent at all times and was never allowed to dry, since the dry mat of 

SWNT is extremely difficult to disperse homogeneously in solvents. The solid from the 

filter was dispersed in 500 mL of THF by bath sonication for 1 h, followed by 

centrifugation at 5000g for 1 h. The supernatant was decanted. The precipitate was 

subjected to one more cycle of dispersion-centrifugation. The supernatants from the two 

cycles were combined, vacuum-filtered through the 0.45 µm PTFE membrane, and the 

solid was dried at 100 °C until constant mass, giving the samples SWNTP-PS-sup and 

SWNTO-PS-sup respectively. The outline of the experiments is presented in Scheme 1. 
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Scheme 1. Experimental procedure 

 

 

Mixing SWNT with a separately synthesized polystyrene (control experiment). In 

order to evaluate the ability of polystyrene to disperse carbon nanotubes, the samples of 

both pristine and oxidized HiPco SWNT were mixed with a sample of polystyrene that 

was synthesized separately. For the synthesis, 8.7 g of styrene and 138 mg of AIBN 

(molar ratio of [styrene]:[AIBN] = 100:1) were dissolved in 60 mL of DMF in a 100-mL 
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Schlenk flask equipped with a stir bar, the mixture was degassed by 3 freeze-pump-thaw 

cycles, and polymerization was carried out in an oil bath at 75 °C under stirring for 24 h. 

The solid was isolated by precipitation in 300 mL of methanol, filtering and drying in 

vacuum to a constant mass of 4.6 g. The SEC molecular weights were MN = 9600 and 

MW/MN = 1.7. A 40 mL sample of 0.5 g/L DMF dispersion of SWNT was mixed with 2 g 

of the synthesized polystyrene by 30 min bath sonication, followed by stirring at 75 °C 

for 48 hours. The mixture was filtered and washed with chloroform according to the 

procedure described above. The solid was redispersed in 200 mL of THF by 60 min of 

bath sonication, followed by centrifugation at 5000g for 60 min. All nanotubes 

precipitated during centrifugation of both pristine and oxidized samples. 

Composites of functionalized SWNT and polystyrene. SWNTO-PS in the form of the 

0.5 g/L dispersion in DMF was used for composites. Typically 5–50 mL of this 

dispersion was diluted with DMF by 1:10 and bath sonicated for 60 min. The 20 g/L 

solution of polystyrene in DMF was prepared separately. The dispersion of SWNT was 

mixed with the solution of polystyrene in a ratio yielding the required proportion of 

nanotubes and polystyrene. The mixture was stirred for 1 h, followed by bath sonication 

for 30 min. The resulting mixture was precipitated by pouring into a 10-fold volume of 

water vigorously mixed with a mechanical stirrer followed by filtration, washing the solid 

with water and methanol and drying at 110 °C for 1 h. 

 Samples for electrical conductivity measurements were pressed into 15x15x0.5 

mm pieces using a heat press and a custom made picture frame mold. The sample in the 

mold was heated up to 175 °C followed by applying the 10,000 psi pressure for 1 min, 

releasing the pressure, taking the mold out of the press, and cooling it on the bench. Thin 
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films (50 ± 10 µm) of the composites for microscopy and spectroscopy were pressed by 

sandwiching between two steel plates using the same press and conditions. 

 

Results and Discussion 

 In-situ polymerization of styrene in the presence of SWNT was expected to attach 

polystyrene chains to the carbon atoms on the surface of nanotubes. The mild nitric acid 

oxidation of nanotubes significantly increased the solubility of the resulting material in 

DMF and decreased the diameter of bundles,17 thus providing the larger surface area for 

the reaction with polymer radicals. We used the oxidized nanotubes for the synthesis in 

anticipation that the expanded surface area would increase the degree of functionalization 

of this material. 

 Figure 1 contains the Raman spectroscopy results for the different SWNT 

materials. As in the previous chapter, the intensity of the D-band (ID) at 1320 cm -1 

(arising due to sp3 defects in the structure of the nanotube sidewall) with respect to the 

intensity of the G-band (IG) 1590 cm-1 (corresponding to the longitudinal stretching 

vibrations of the sp2 carbons) was used to confirm the covalent attachment of polystyrene 

to nanotubes. The results are presented in Table 1.  

 Figure 2 shows the AFM micrographs of pristine and oxidized SWNT before and 

after the synthesis. Length and diameter distribution within bundles in different samples 

is presented in Figure 3, and results for the average length and diameter are included in 

Table 1.  



 35 

1200 1300 1400 1500 1600 1700 1800

A

In
te

n
s
it
y
, 
n
o

rm
a

liz
e

d

cm
-1

 SWNT
P

 SWNT
P
-PS

 SWNT
P
-PS-sup

1200 1300 1400 1500 1600 1700 1800

B

In
te

n
s
it
y
, 

n
o

rm
a

liz
e

d

cm
-1

 SWNT
O

 SWNT
O
-PS

 SWNT
o
-PS-sup

 

Figure 1. Raman spectra using 514.5 nm excitation of the pristine (A) and oxidized (B) 

SWNT before and after in-situ polymerization.  

 

It was difficult to deposit sufficient amount of pristine and functionalized pristine 

nanotubes on the hydrophilic mica chips, presumably due to a high hydrophobicity of 

these materials. In order to have at least 100 objects for statistics, 6 images from the 

different spots of the substrates were used. The oxidized and functionalized oxidized 
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nanotubes, in contrast, deposited easily, providing a large number of objects for the 

measurements. The polystyrene functionalized oxidized SWNT were found to assemble 

into long fibrous structure during deposition from dispersion onto mica, as seen in Figure 

2D. Presumably, the presence of both hydrophilic and hydrophobic moieties on the 

surface of these nanotubes was responsible for such an assembly. 

 

Table 1. Characterization of the SWNT materials 

TGA and gravimetry AFM Raman  
Sample SWNT*, mg SWNT:PS**, % <L>, 

nm 
<d>, 
nm 

ID:IG*** 

SWNTP 50.0 - 890 8.0 0.20±0.0
5 

SWNTP-PS 50.0 73:27 700 4.9 0.20±0.0
5 

SWNTP-PS-sup 9.5 68:32 550 4.2 0.30±0.0
5 

SWNTO 50.0 - 690 6.1 0.28±0.0
5 

SWNTO-PS 50.0 74:26 820 7.5 0.25±0.0
5 

SWNTO-PS-sup 17.5 67:33 730 7.7 0.29±0.0
5 

*Weight of SWNT in the sample, by gravimetry and TGA 
**Weight fractions of SWNT and PS in the sample, by TGA 
***Average for 3 spectra acquired from different spots of the sample was calculated 
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Figure 2. AFM of the SWNT samples: pristine (A), oxidized (B), pristine after in-situ 

polymerization (C) and oxidized after the in-situ polymerization (D). 
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Figure 3. Size distribution within nanotube bundles in the samples. 

 

 According to the Raman spectral data, there was no change in ID/IG after the 

synthesis with pristine nanotubes, but the supernatant after centrifugation showed a 50% 

increase in this parameter. The nanotubes in dry pristine material are entangled and 

bundled, resulting in the presence of large aggregates in the reaction mixture. The tubes 

on the outside of the bundles are exposed to the reagent whereas the inner tubes are 

hindered and may react to a lesser degree. Sonication breaks the bundles and 

centrifugation should precipitate the less functionalized fraction of the sample, leaving 

the more functionalized part in solution. According to TGA results (Table 1), the samples 
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SWNTP-PS-sup and SWNTO-PS-sup contained more polystyrene which suggests that 

nanotubes in these materials had a higher degree of functionalization.  

 There was a problem using Raman spectroscopy to detect covalent functionalization 

in the experiment with the oxidized SWNT sample. Small deviations in the ID/IG ratio do 

not provide for a confident evidence of such functionalization. The best evidence of the 

covalent functionalization is the solubility of the resulting material SWNTO-PS in THF 

(0.05 g/L), while oxidized nanotubes SWNTO could not be dispersed in this solvent with 

addition of the separately synthesized polystyrene in the control experiment.  

 The oxidized SNWT, after the PS grafting, were more soluble in THF than the 

pristine SWNT grafted with PS so that 17.5 mg of SWNTO-PS-sup was separated by 

centrifugation, giving a yield of 35 %. The first supernatant contained 11.0 mg of the 

SWNT, corresponding to the concentration of 22 mg/L in THF. The sample of this 

solution has been stable for 2 months to date without precipitation. Functionalization of 

pristine nanotubes resulted in only 9.5 mg of SWNTP-PS-sup separated by centrifugation, 

giving a yield of 19 %. Mild nitric acid oxidation is known to effectively break up the 

aggregates and decrease the diameter of bundles,17 as it will be shown in Chapter 4, thus 

providing a higher surface area of the SWNT for reaction with polystyrene radicals. Since 

the absolute value of the ID/IG of the supernatant fractions was the same in both 

experiments, we can assume that the degree of functionalization was approximately 

equal. However, the smaller bundles and higher surface area in the oxidized sample made 

it possible to functionalize more nanotubes. 

Covalent functionalization was expected to exfoliate bundles of nanotubes, 

decreasing their diameter, as reported in literature.16,18 This effect was indeed observed in 
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the reaction of pristine nanotubes. The average diameter of bundles in the samples 

SWNTP-PS and SWNTP-PS-sup was 4.9 nm and 4.2 nm, respectively, in contrast to 8.0 

nm for the pristine sample. In the case of oxidized SWNT, on the contrary, SWNT 

bundles after functionalization became even larger, 7.5 nm for SWNTO-PS and 7.7 nm 

for SWNTO-PS-sup, in contrast to 6.1 nm for the starting material. We can exclude 

contribution of the layer of attached polystyrene to the increased bundle diameter in these 

two samples, since the polymer content was nearly the same in all functionalized 

samples. The lengths of the bundles in the functionalized oxidized nanotubes SWNTO-PS 

and SWNTO-PS-sup increased as well in respect to the starting sample SWNTO, mostly 

due to a larger fraction of objects with the length of 1.5 µm or more. Figure 4 shows long 

yarns of the nanotubes in the SWNTO-PS sample that at closer examination appeared to 

be shorter bundles connected by the ends. The surface of these nanotubes has both 

hydrophilic carboxylic groups19 and hydrophobic polystyrene molecules. The surface of 

mica is highly hydrophilic. A much larger number of tubes on the surface was observed 

for the functionalized oxidized nanotubes (Figures 2D and 4) compared to the 

functionalized pristine nanotubes (Figure 2C), suggesting that surface of the bundles of 

SWNTO-PS and SWNTO-PS-sup should be hydrophilic as well. We assume that during 

the deposition on mica the core-shell structure of bundles with polystyrene chains inside 

and oxidized SWNT surface outside may be formed, accounting for the larger bundles in 

these materials.  

 

 
B 
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Figure 4. AFM of the SWNTO-PS sample on Mica chip. The close-up image shows the 

connection between different bundles. 

 

 The sample SWNTO-PS was used for the preparation of composites with 

polystyrene because of the higher yield of the functionalized nanotubes in this sample. 

Stable uniform dispersions in DMF at concentration as high as 100 mg/L can be obtained, 

whereas for oxidized nanotubes before functionalization only a 30 mg/L concentration 

could be achieved. Figure 5 shows the SEM images of the composite containing 1.3 % 

SWNT in polystyrene. Image A was taken from the surface that was sputter-coated with 

Au/Pd and shows only morphology of the surface. Images B and C were taken on the 

same spot of the sample before it was coated and reveal the uniformly distributed 

bundles. This technique allows imaging nanotubes located up to 50 nm beneath the 
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surface.20 The concentration of nanotubes has to be above the percolation threshold in 

order to effectively dissipate electrons in the SEM. Electrical properties of the composites 

will be discussed in Chapter 5 of this work. 
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Figure 5. Scanning electron microscopy of the 1.3 % SWNT composite in polystyrene. A 

– coated with Au/Pd surface; B, C – uncoated surface. 
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Conclusions 

 Attachment of a very low amount of polystyrene to carbon nanotubes can make a 

noticeable difference in their solubility in organic solvents. Dispersion state of nanotubes 

in the reaction is critical for the efficiency of the functionalization. Since nanotubes do 

not ideally dissolve in any of the solvents but rather form colloidal dispersions of bundles 

of different size, the functionalization is dependent on the accessibility of the SWNT 

surface to the reagent during the reaction. Therefore, the greater the nanotubes are 

dispersed initially, the more efficiently they will react. Better dispersion of oxidized 

nanotubes in DMF resulted in a higher yield of the functionalized material. Interestingly, 

the degree of covalent attachment was not higher for this sample. In other words, more 

polystyrene did not attach to nanotubes, but polystyrene attached to more nanotubes. 
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CHAPTER IV 

OXIDATION OF SINGLE-WALLED CARBON NANOTUBES WITH NITRIC ACID 

 

   Abstract 

 Oxidation of single-walled carbon nanotubes with nitric acid increases their 

dispersability in water, methanol, and N,N-dimethylformamide (DMF). Two oxidation 

protocols, sonication in 8 M HNO3 at 40 °C and reflux in 2.6 M HNO3, have been 

examined. SWNT produced by CoMoCat, HiPco and Pulsed Laser Vaporization 

(PLV) methods have been evaluated. A noticeable increase in dispersability occurred 

already after one hour of sonication for all types of nanotubes and 2–4 hours of reflux for 

different types of nanotubes. Longer treatments resulted in little further improvement in 

solubility. Stable uniform dispersions in DMF of CoMoCat SWNT at concentrations as 

high as 0.4 g/L have been achieved without the use of surfactants or additional chemical 

functionalization. Raman spectroscopy showed covalent functionalization of the SWNT, 

which effect was higher for the reflux procedure. At the same time oxidation resulted in 

shortening of nanotubes and an overall loss of material. The effect of oxidation on 

properties of nanotubes depended on the type of material. The shortening and 

functionalization was the highest for CoMoCat SWNT and the lowest for PLV SWNT 

due to a difference in nanotube diameter. The reflux procedure was found to be more 

destructive to nanotubes than the sonication procedure. 
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Introduction 

 Oxidation of carbon nanotubes has become a basic technique for their chemical 

modification.1 Carboxylic groups created on the CNT surface as a result of oxidation2-4 

provide opportunity to attach different molecules of interest5-8 or seed precursors for the 

“grafting-from” polymerization.6,9,10 Chemically modified carbon nanotubes can be 

further  dissolved in different solvents5,11-13 or incorporated into a polymer matrix.7,14,15 

When we first observed the increased dispersability of nanotubes oxidized with nitric 

acid in some polar solvents, we directed the effort to a study of this effect with the aim of 

utilizing the oxidized nanotubes in preparation of polymeric composites by solution 

processing without further chemical modification. Oxidation is known to damage 

nanotubes resulting in structural defects,4 shortening of tubes,16 accumulation of 

carbonaceous impurities,17 disappearance of small diameter nanotubes,18-20 and an overall 

loss of material.17,21 Therefore the objective of this project was to find the oxidation 

procedure allowing a higher dispersability of nanotubes with minimal structural damage. 

 According to the literature, nitric acid has been the most frequently utilized agent 

for oxidation of carbon nanotubes. Various techniques involving HNO3 can be resolved 

into two basic approaches: (1) treatment with boiling diluted (2 to 3 M) nitric acid for 16 

to 48 hours,2,4,16,22 and (2) treatment with a mixture of concentrated nitric and sulfuric 

acids (usually 1:3 by volume) in an ultrasonic bath for 3 to 5 hours.2,4,7,8,23 

 Procedures employing piranha solution (96% H2SO4, 30% H2O2 by volume),24 

ozone,25 H2O2,
20 and KMnO4

4 have been reported also, but they have not been used as 

frequently as the nitric acid procedures.  
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 Treatment of nanotubes with dilute nitric acid was first introduced by A. 

Rinzler,16 primarily as a purification procedure for the material produced by laser 

vaporization. Nanotubes were refluxed in 2.6 M HNO3 for 45 hours. Such a treatment 

reduced metal content and improved separation of amorphous carbon from nanotubes 

during the next step of cross-flow filtration. This procedure, being less destructive than 

the concentrated acid treatment, was adopted by many other researchers with some 

modifications in temperature and time.9,17,26-28 However, the effect of diluted nitric acid 

on different SWNT material has not been sufficiently studied. 

 Treatment with the mixture of concentrated sulfuric and nitric acids, as well as the 

treatment with piranha solution (mixture of sulfuric acid and hydrogen peroxide), were 

first introduced by Liu2 as the methods for shortening of nanotubes. The shortening rate 

of the PLV SWNT was estimated to be 130 nm/hour for H2SO4/HNO3 and 200 nm/hour 

for piranha during a bath sonication. Both of these solutions as well as single 

concentrated H2SO4, HNO3 or H2O2, were found to selectively eliminate smaller 

diameter nanotubes from the material.18-20 Concentrated acids have shown a specific 

selectivity toward small metallic tubes19 whereas hydrogen peroxide destroyed 

preferentially small semiconducting nanotubes.20 

 Owing to carboxylic acid groups, oxidation should make carbon nanotubes more 

soluble in polar solvents. Although partial solubility of SWNT in water after oxidation 

has been mentioned in the literature,23,26,29 to our knowledge, the effect of oxidation on 

solubility has not been studied in detail. Here we report the increase in solubility of 

nanotubes in DMF, water and methanol after a short time of oxidation by a dilute nitric 

acid. The treatment allows dissolving nanotubes without dispersing agents, which can 
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simplify the preparation of nanotube-based composites and coatings. We also show that 

carboxylation of the nanotube surface during acid treatment is always accompanied by 

cutting and etching of the nanotubes. The experimental results presented in this Chapter 

can assist researches in finding a balance between increasing useful effect and destroying 

the nanotubes. 

 

Experimental 

 Materials. Single-walled carbon nanotubes produced by CoMoCat,30 HiPco31 and 

pulsed laser vaporization (PLV)32 processes were used in this work. CoMoCat nanotubes 

in the form of a 2% aqueous gel, grade S-P94-02gel, batch # OSU-A-007, purified by the 

basic (alkali) protocol33 were obtained from Southwest Nanotechnologies, Inc., Norman, 

OK. As-produced HiPco material in the form of a puffy fibrous powder, lot # R0488, was 

obtained from Carbon Nanotechnologies, Inc., Houston, TX. Laser Oven SWNT in the 

form of a black powder, batches ## JSC-334, 335 and 338, purified by the soft-baking 

protocol,34 were obtained from NASA Johnson Space Center, Houston, TX. All the 

solvents were obtained from Pharmco and Spectrum and dried over anhydrous potassium 

carbonate. All other chemicals were obtained from Sigma and Aldrich.  

 Instruments and measurements. Ultrasonication was performed using a Fisher 

FS-30 160W 3QT ultrasonic cleaner or a Microson XL-2000 22 KHz ultrasonic cell 

disruptor. Centrifugation was performed on an IEC EXD centrifuge (IEC, Needham, 

MA). UV-VIS absorption in the range of 400–1100 nm was analyzed using a HP8453 

spectrophotometer (Hewlett Packard) and glass cells. Filtration of the solutions was done 

using a vacuum glass filtration cell and 0.45µm porous PTFE membranes. Atomic force 
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micrographs were obtained using a Multimode Nanoscope IIIa SPM (Digital Instruments, 

Santa Barbara, CA) operating in the tapping mode. The samples were prepared by 

applying a drop of a suspension on a mica chip for 10 min, followed by removing the 

excess liquid and drying the chip in the nitrogen flow. For the size distribution, lengths 

and heights of 100 or more objects from 2 or 3 different spots of the substrate were 

measured. Raman measurements were carried out using a Coherent He-Ne laser 

operating at an excitation wavelength of 633 nm. The laser power varied from 0.89 to 3.0 

mW for different samples; the time for a scan was 60 s. The solid samples were prepared 

by filtering the DMF solutions using 0.2 µm PTFE membranes. The back-scattered light 

was analyzed using a Jobin Yvon LabRam 600 single grating spectrometer with a CCD 

detector. Thermogravimetric analysis was performed on a Shimadzu TGA50/50H 

instrument. Samples were analyzed in the range of 20–800 °C in air flow at the scan rate 

of 5 °/min. 

 Oxidation of carbon nanotubes by 8 M nitric acid with sonication. For this 

experiment all SWNT materials were first dispersed in DMF at concentration of 0.5 g/L 

by bath sonication for 40 min at 40–50 °C. In a typical procedure, 20 mL of the 0.5 g/L 

DMF dispersion of SWNT was filtered, and washed on the filter with 10 mL of methanol 

and 10 mL of water. The solid was transferred into 20 mL of 8 M HNO3 in a glass vial, 

and the mixture was bath sonicated at 40–50 °C for a time ranging from 30 min to 5 

hours. The mixture was diluted 1:2 with deionized water and filtered using a 0.45 µm 

PTFE filter. The solid was washed on the filter with water until the filtrate was neutral, 

washed with 10 mL of methanol and 10 mL of DMF and redispersed in 20 mL of DMF 

by bath sonication for 60 min. The filtrates from CoMoCat and HiPco nanotubes were 
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colorless, but the filtrate from PLV nanotubes was gray. AFM analysis of the filtrate has 

indicated presence of nanotubes. 

 Oxidation of carbon nanotubes by 2.6 M nitric acid at reflux. For this 

experiment all SWNT materials were used as received. In a typical procedure, 20 mg of 

the material was transferred into a round bottom flask filled with 40 mL of 2.6 M HNO3 

and equipped with a stir bar and a reflux condenser. The flask was immersed in an oil 

bath at 120 0C to boil the solution. For each material, a series of the samples was 

oxidized for different time ranging from 1 to 12 hours. After boiling the mixture was 

cooled to room temperature and filtered. The solid was washed on the filter with water 

until the filtrate was neutral, washed with 10 mL of methanol and 10 mL of DMF and 

redispersed in 40 mL of DMF by bath sonication for 60 min. The filtrates from all the 

nanotube materials were colorless. 

 Material balance. To estimate the loss of nanotubes during oxidation, 50 mg 

samples of all types of nanotubes were oxidized for different time using either of the 

described above protocols. The solids were filtered and dried at 100 0C to constant mass. 

The content of metal oxide and residual moisture was measured by TGA in air. 

According to the manufacturers the nanotube materials contained carbon and metal 

residue which was Mo in CoMoCat, Fe in HiPco and Co, Ni and Y in the weight ratio of 

1:1:5 in PLV materials. For the calculations it was assumed that upon heating to 800 0C 

in the TGA experiment all carbon was converted into volatile oxides and the ashes 

contained MoO3 from CoMoCat, Fe2O3 from HiPco and Co3O4 + NiO + Y2O3 from PLV 

materials. 
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 Dispersability of oxidized SWNT. Carbon nanotubes in solvents never form true 

solutions but rather colloidal dispersions containing both individual tubes of various 

length and bundles consisting of various number of tubes. At higher concentrations 

bundles tend to form 3-dimensional aggregates.35 The scientific literature describes a 

number of different methods for the evaluation of solubility of carbon nanotubes33,36-38. 

However, neither the term “solubility” nor a standard method for its determination has 

been established for this material. Here we define soluble nanotubes as a visually uniform 

dispersion in a solvent for a time of 2 hours or longer. We define the solubility as the 

highest weight percent of nanotubes that can be dispersed in 1 L of a solvent and no 

suspended particles can be visually observed. To evaluate the solubility, a dispersion of 

oxidized nanotubes was diluted with a solvent in 10 mL glass vials to yield a series of 

concentrations from 0.01 to 0.2 mg/L. Each vial was sonicated by the tip sonicator at 10 

W for 15 min at room temperature and left on the bench for 2 hours, and the dispersions 

were examined for the presence of visible particles. The dispersions with concentration 

of ≥0.1 g/  L appeared black, so they were transferred into a 2 mm glass cell for better 

observation. The highest concentration of SWNT with no visible particles was used as a 

solubility value for a certain solvent. These values of the solubility are good for 

comparison among our samples and may vary from the values determined by other 

methods. In our samples at the solubility limit a black solid was visible on the bottom of 

the vial beginning about 3-4 hours after preparation, while the supernatant liquid 

remained homogeneous. The optical absorption of the dispersions left on the bench for 10 

days reduced by 20–30 %. In the samples above the solubility limit, aggregation occurred 

in a few minutes after sonication, so the limit could be clearly established. 
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Results and Discussion 

 Overview of the results. Figure 1 reports solubility of three different types of 

nanotubes in DMF, methanol, and water after oxidation. The sonication protocol 

significantly increases solubility of all nanotubes after 1 hour. Longer treatment resulted 

only in a moderate solubility increase. The reflux procedure requires 2–4 hours to 

achieve the same effect.  
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Figure 1. Solubility of oxidized nanotubes in the solvents: A – DMF; B – methanol; C – 
water. 
 

Raman spectra in Figure 2 suggest chemical functionalization of the nanotubes as a result 

of nitric acid treatment. The degree of functionalization can be estimated by the relative 

intensity of the D-band (ID) (arising due to defects in the structure of the nanotube 

sidewall) in respect to the intensity of the G-band (IG) (corresponding to the stretching 

vibrations of the sp2 carbons).39  

 

Figure 2. Raman spectra of the oxidized SWNT. The spectra have been normalized to 
the intensity of the G-band. 
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The appearance of polar groups on the surface of SWNT is responsible for the changes in 

solubility. AFM analyses revealed that oxidation increased the number of individual 

tubes and small bundles in solution (Figure 3). At the same time, oxidation leads to the 

shortening of nanotubes as can be seen in Figure 4. Prolonged treatment results in loss of 

nanotube material which is shown in Figure 5. 

 

Figure 3. Diameter distribution for all 3 types of SWT before and after sonication in 8 M 

HNO3 for 60 min, measured by AFM. 

 

Figure 4. Length distribution within SWNT samples after oxidation, measured by AFM. 
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Figure 5. Material balance of nitric acid oxidation of SWNT, calculated from TGA. 
 

The results of the AFM, Raman and TGA analyses for different samples of oxidized 

SWNT are presented in Table 1. 

 

Table 1. Results of the AFM, Raman and TGA analyses for the SWNT samples. 

TGA SWNT 
material 

Oxidation 
conditions 

AFM 
Average 

length, nm 

Raman 
ID/IG 

Ratio of 
carbon/metal, 

% 

Total material 
loss after 

oxidation, % 

Pristine 820 0.05 92.0/8.0 - 
Sonic 1 h 620 0.12 94.0/6.0 2.0 
Sonic 4 h 480 0.14 94.2/5.8 4.0 
Reflux 2 h 370 0.44 97.0/3.0 15.5 

CoMoCat 

Reflux 12 h 290 0.4 97.0/3.0 21.8 
Pristine 950 0.05 80.0/20.0 - 
Sonic 1 h 540 0.065 89.0/11.0 10.0 
Sonic 4 h 460 0.08 91.5/8.5 14.0 
Reflux 4 h 570 0.22 97.0/3.0 18.0 

HiPco 

Reflux 12 h 400 0.4 98.0/2.0 35.0 
Pristine 975 0.07 94.0/6.0 - 
Sonic 1 h 790 0.08 95.0/5.0 1.0 
Sonic 3 h 930 0.09 95.0/5.0 2.0 
Reflux 3 h 645 0.15 94.4/5.6 19.2 

PLV 

Reflux 12 h 680 0.18 95.0/5.0 24.4 

 

 Solubility of oxidized nanotubes. Zhang4 investigated the effect of chemical 

oxidation on the structure of SWNTs  using 3:1 concentrated H2SO4 (98 wt %)/HNO3 (16 

M) mixtures, diluted HNO3 (2.6 M), and KMnO4 and found that such oxidative 

procedures predominately create carboxylic acid functionalities on nanotubes. In the 
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work of Hu29 the amount of carboxylic groups in SWNT refluxed in 3 M and 7 M HNO3 

was estimated by titration to be 6-11 % by mol, depending on the concentration of acid 

and time of treatment. The higher solubility of oxidized nanotubes in polar solvents 

should be attributed to the presence of the carboxylic groups. Changes in the ID/IG ratio in 

Raman spectra also suggest that chemical functionalization took place in all of the 

nanotube materials. However, in spite of continuous increase of this factor in HiPco and 

PLV nanotubes with the treatment time, the highest changes in solubility in DMF were 

observed in the first 3-4 hours of reflux or after 1 hour of sonication procedures, while 

longer treatment had only a little effect on solubility. This effect cannot be explained 

only by Raman spectroscopic results. It should be recalled that all pristine nanotubes 

contained some structural defects such as sp3 carbons and localized double bonds, which 

are probably attacked first during oxidation. These defect sites have already contributed 

to the D-band so their oxidation should not increase its intensity. That’s why both HiPco 

and PLV nanotubes oxidized for 1 hour by sonication protocol were already soluble in 

water despite a very low increase in the ID/IG. Hence, at the beginning of the process 

nitric acid facilitates exfoliation of bundles and oxidation of defects, thus giving the 

significant increase in solubility in DMF. Longer treatment moderately affects solubility 

mainly due to addition of new carboxylic groups to the sidewalls.  

 Solubility in water should be depended upon the presence of the charged groups 

at the nanotube sidewall. The results on solubility of oxidized SWNT in water correlate 

with the Raman spectra. CoMoCat material has the highest increase in ID/IG after 2 hours 

of reflux which results in the corresponding increase in solubility in water. For the PLV 

material the same effect is observed after 3 hours of reflux. In HiPco nanotubes, the D-
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band grows proportionally to the time of reflux and therefore the solubility of this 

material in water grows linearly as well.  

 Despite a much higher degree of functionalization of the refluxed CoMoCat 

nanotubes, as judged by Raman spectra, there was no corresponding improvement in 

solubility in water for the refluxed samples compared to the sonicated samples. We 

attribute this phenomenon to the non-uniform distribution of the charged groups along 

the tubes. If the attack of nitric acid on the sidewalls breaks C-C bonds and introduces the 

carboxylic acid groups, oxidation may propagate from this site resulting in cutting the 

tube and having the charged functional groups on the edges of the cut. Shorter tubes have 

a higher fraction of functional groups on the ends, while aggregation may still be possible 

by stacking of the sidewalls. Unlike CoMoCat, HiPco nanotubes reveal linear increase in 

solubility in water and methanol with reflux time, which complies with a linear increase 

in D/G ratio of Raman spectra. A greater diameter of HiPco tubes than of CoMoCat tubes 

makes this material more stable against oxidation. If breaking the sidewall and 

introduction of an oxygen atom does not always result in cutting, we should expect more 

functional groups on the sidewalls of HiPco tubes and higher solubility in water. 

 Effect of nitric acid treatment on different types of nanotubes. Although nitric 

acid shortens and functionalizes all types of SWNT, each type reacts to a different extent. 

CoMoCat nanotubes express significant changes in the ID/IG in both sonication and reflux 

procedures, from 0.05 to 0.14 after 5 hours in sonication and to 0.4 after 12 hours in 

reflux. HiPco nanotubes are much less affected by acid in sonication, ID/IG changes from 

0.05 to 0.08 after 4 hours, but the effect of reflux is more pronounced, from 0.05 to 0.4 

after 12 hours. The sample refluxed for 24 hours showed even higher D-band intensity. 
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The PLV nanotubes were the least reactive in both procedures, judging by the ID/IG 

increase from 0.07 to 0.09 after 3 hours of sonication and to 0.18 after 12 hours of reflux. 

Similar results were obtained by optical absorption, as seen in Figure 6. In the CoMoCat 

samples, the interband transition peaks gradually diminished during 4 hours of 

ultrasonication in 8 M HNO3 and completely disappeared after 1 hour of reflux in 2.6 M 

nitric acid. The UV-VIS spectra of HiPco material was practically unaffected by 

sonication protocol, and it took 12 hours of reflux to noticeably decrease the intensity of 

optical features in the spectra of these nanotubes. The spectra of the PLV samples were 

nearly unchanged in both protocols. Both Raman and UV-VIS absorption results suggest 

that the reactivity toward oxidation decreases in the row: CoMoCat > HiPco > PLV. This 

correlates with the average diameter of nanotubes in the samples, 0.8 nm for CoMoCat40, 

1.0 nm for HiPco,41 and 1.3 nm for PLV.42  
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Figure 6. Optical absorption of the DMF dispersions of different SWNT samples. 

 

The higher reactivity of smaller diameter nanotubes has been reported in the 

literature which has been explained by higher strain induced in the small nanotubes that 

leads to a greater chemical reactivity.18,19,41,43 Figure 7 presents the RBM region of the 

Raman spectra of the oxidized CoMoCat SWNT. The peaks at 335, 309 and 285 cm-1, 

corresponding to [6,4], [6,5] and [7,5] nanotubes,44 are significantly reduced already after 

a short time of oxidation by refluxing HNO3, indicating the preferential functionalization 

of these smaller diameter nanotubes respect to the other species in the sample. According 

to Jorio,44 [6,5] and [7,5] nanotubes compose about 60% of the CoMoCat material (the 

peak of the [6,5] nanotube is not intense due to lack of resonance under 633 nm laser). 
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The Raman spectra of HiPco and PLV materials did not show a noticeable change in 

relative intensity of the RBM peaks after HNO3 treatment.  
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Figure 7. RBM region of Raman spectra of oxidized CoMoCat SWNT. The labeled 
peaks correspond to the nanotubes: 1 - [6,4]; 2 – [6,5]; 3- [7,5]. 
 

 Zhang4 proposed a mechanism of oxidation of the nanotube lattice in which acid 

initially attacks the defect sites such as localized double bonds and seven-membered 

rings. Stronger oxidation conditions facilitate addition to the six-membered rings as well. 

Further oxidation leads to breaking the graphene structure at the already generated active 
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sites and cutting the nanotube. According to Zhang the last two steps are possible only 

for strong oxidants such as concentrated nitric acid or KMnO4. In contrast, our Raman 

and AFM analyses show that diluted nitric acid is also capable of breaking into the 

graphene structure and cutting the nanotubes. In small CoMoCat tubes, the maximum 

amount of new functionalities is probably introduced after 1.5 hours of sonication and 

after 2 hours of reflux, and further treatment results in cutting the tubes along these active 

sites. HiPco nanotubes, being larger in diameter and less reactive, seem to be more stable 

against cutting and allow accumulation of more defects at the sidewalls. PLV nanotubes, 

being the largest in the series, appear to be the most stable against oxidation. Compared 

to HiPco and CoMoCat materials, the covalent functionalization of the PLV nanotubes in 

significantly lower, as judged by Raman spectroscopy. Analyzing the PLV samples by 

AFM, it was noticed that the average length of the PLV tubes decreased during the first 

phase of oxidation but increases during the longer treatment. The length distribution 

(Figure 4 E and F) shows that such an increase was caused by disappearance of the short 

nanotubes in the mixture. In the other two materials, on the contrary, oxidation always 

results in a steady increase of the fractions of short tubes. The oxidative shortening of 

SWNT can occur by two mechanisms: breaking tubes into pieces and etching of tubes 

from the ends. If the first mechanism dominates, the material will have the fractions of 

short tubes increased, as it happens in CoMoCat and HiPco samples. In the PLV tubes, 

oxidation more likely proceeded by etching of the ends the tubes, since this material was 

found to be more stable against destruction of the sidewall lattice.  

 Shortening and loss of nanotubes during oxidation. Hu17 found that reflux in 3 

M and 7 M nitric acid for 12-48 hours led to an accumulation of carbonaceous impurities 
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and to the overall loss of material. The material loss increased with increased time of 

treatment or concentration of acid or temperature.17,21,27 For the as-prepared Electric Arc 

SWNT, reflux in 3 M HNO3 for 12 hours resulted in the loss of 31% of the material, 7% 

of which was carbon.17 In our experiments, reflux in 2.6 M HNO3 for 12 hours led to the 

35% loss of as-prepared HiPco SWNT, 16% of which was carbon (Figure 5 and Table 1) 

Figure 5 also shows that sonication protocol is less destructive to nanotubes and results 

primarily in dissolution of metal residue and only in an insignificant loss of carbon. For 

HiPco SWNT the effect of 4 hours of either sonication or reflux was nearly identical. The 

next 8 hours of reflux resulted in a loss of the extra 15% of the material while the 

solubility in DMF increased only by 30%. At the same time, AFM analysis has shown 

the 30% decrease in average length of nanotubes for this period of time. For the 

CoMoCat SWNT, higher solubility in DMF and higher degree of functionalization were 

accompanied by greater shortening and loss of nanotubes. Therefore, if one chooses the 

oxidation conditions, the reasonable duration of treatment has to be considered. For 

instance, for the purposes of solubility the sonication protocol is preferable for all types 

of nanotubes, because less SWNT material is degraded to amorphous carbon material. 

 

Conclusions 

 Based on the experimental data, the following conclusions can be made: 

1. Mild nitric acid oxidation results in decreased diameter of bundles and increased 

solubility of single-walled carbon nanotubes in polar organic solvents and water. The 

major increase in solubility occurs after a short time of treatment (1 hour in sonication 
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and 2 to 4 hours in reflux) while a longer treatment time increased solubility only a slight 

amount. 

2. Oxidation leads to shortening of nanotubes. The larger diameter PLV nanotubes were 

shortened less than HiPco and CoMoCat SWNT. 

3. The reactivity of nanotubes toward oxidation appears to be inversely proportional to 

their diameter. PLV material was the least reactive due to the highest average diameter of 

tubes and the CoMoCat material has shown the highest reactivity. Within this material 

the smaller diameter nanotubes were found to react faster than others.  

4. The reflux oxidation procedure is more destructive to nanotubes than the sonication 

procedure. Greater shortening and material loss were observed in the refluxed nanotubes 

whereas the gain in solubility compared to sonication protocol was minimal for most of 

the samples. 

 Oxidation of nanotubes is an important step toward further chemical 

functionalization. Functionalization is very useful in preparation of polymer composites 

of nanotubes with the goal of increasing mechanical strength or electrical conductivity of 

the polymer. Both of these properties are highly dependent on the nanotube length. 

Therefore the length control during oxidation is important. Based on the Raman 

spectroscopy and AFM microscopy, the most rational procedures for oxidation of 

nanotubes would be the following: 

- CoMoCat SWNT: sonication in 8 M HNO3 for 1.5 hours. The reflux procedure is 

especially harmful for this material.  
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- HiPco SWNT: reflux in 2.6 M HNO3 for 4 hours. Reflux allows a higher degree 

of functionalization, however, the duration should not exceed this time to 

minimize shortening and material loss.  

- PLV SWNT: sonication in 8 M HNO3 for 12 hours is preferred if high solubility, 

long average length and small material loss are important. 

Since every commercial SWNT material is a unique mixture of various types of 

nanotubes, the stepwise oxidation with monitoring of the size and structure by AFM 

and Raman is the best method for finding the right conditions for the process. In the 

current research, SWNT oxidized by sonication protocol were utilized for the 

preparation of composites with polystyrene by solution processing. Electrical 

properties of the composites are reported in Chapter IV of this dissertation. 
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CHAPTER V 

COMPOSITES OF SWNT AND POLYSTYRENE: PREPARATION AND 

ELECTRICAL PROPERTIES 

 

Abstract 

Composites of single-walled carbon nanotubes and polystyrene have been prepared using 

three different materials: HiPco, CoMoCat and Pulsed Laser Vaporization (PLV) 

SWNT. Two methods of incorporation of nanotubes in the polystyrene matrix have been 

explored: (1) evaporation of the chloroform solutions of SWNT non-covalently 

functionalized with poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)] 

(PmPV) and polystyrene; and (2) coagulation of the DMF solutions of nitric acid 

oxidized SWNT and polystyrene in water. Electrical conductivity of the resulting 

composites with different loading of nanotubes has been measured. The percolation 

threshold for conductivity was 0.17-0.3 weight % SWNT for the evaporated materials 

and 0.5-0.8 weight % for those made by coagulation due to a lower aspect ratio of the 

bundles of oxidized nanotubes. The composites of HiPco SWNT had the highest 

conductivity at the plateau region among the three materials. The conductivity versus 

SWNT loading obeyed the power law with the critical exponent of 2.0-4.8 for different 

samples. This parameter was higher for the composites of oxidized nanotubes. 
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Introduction 

Carbon nanotubes are novel synthetic materials possessing a number of 

exceptional physical properties, such as high mechanical strength, high electrical and 

thermal conductivity, as well as unique optical and electronic properties. All such 

properties make carbon nanotubes unrivaled for a wide range of applications. Electrical 

conductivity of individual bundles of metallic carbon nanotubes reaches the value of 104 

S/cm1 which is close to that of metals (59x104 S/cm for copper and 9.9x104 S/cm for 

iron), while the density of nanotubes is much lower. These properties make carbon 

nanotubes excellent candidates to incorporate with polymers for production of conductive 

composites for electrostatic dissipative materials as well as other useful components in 

electronics. 

 The percolation theory suggests that the conductivity σ of a composite depends 

on the volume fraction of a filler f through the following equation:2  

    σ = C(f – fc)
β
,     (1) 

where fc is the volume fraction at the percolation threshold, C is a constant, and β is the 

critical exponent which reflects percolation mechanism. The theoretical value of β for the 

three-dimensional isotropically random binary systems has been estimated to be 1.6-2.3,4 

Sometimes volume fraction is substituted by mass fraction. Since in the nanotube-

polymer composite the electric current is carried out only through the network of 

nanotubes, one should expect that the better the nanotubes are distributed in the polymer, 

the lower the fraction of them is needed for the percolation. Hence, in order to achieve a 

high electrical conductivity at low CNT loadings, a small bundle size and a uniform 

distribution of nanotubes in the composites are important.  
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 Table 1 summarizes the data on the electrical properties of the nanotube-polymer 

composites published in the literature since 1998 and shows different approaches for the 

preparation of composites. The term “plateau region” in this table refers to the region of 

the log(σ) versus mass fraction plot where the changes of the log(σ) become minimal. 

Literature data suggest that the percolation threshold fc is dependent both on the type of 

nanotubes and polymer and on the preparation method. The lowest fc values have been 

achieved for the epoxy resin composites, probably because of the low viscosity of this 

material. Based on Table 1, three basic approaches to the preparation of composites can 

be described: blending of nanotubes with the molten polymer, polymerization of the 

monomer in the presence of nanotubes, and mixing nanotubes and polymer in solution, 

followed by retrieving the solid via different ways. The latter two methods show the 

better results because such allow the better distribution of nanotubes in the polymer 

matrix. The composites prepared by spin-coating or casting of thin films from solutions 

generally revealed lower percolation threshold than those prepared by coagulation. 

However, the casting method is capable of obtaining only thin films of the composite and 

is good only for testing but not for practical materials. For larger amount of material with 

uniform orientation of nanotubes the solvent can be removed by evaporation (or boiling) 

under vacuum. This method is most efficient for a volatile and low-boiling solvent such 

as chloroform. In the case of a high-boiling solvent, evaporation takes a long time and 

nanotubes aggregate as the dispersion becomes more concentrated. For such a solvent, 

coagulation of dispersion into a large amount of a non-solvent is preferable because rapid 

removal of the solvent leaves the nanotubes “trapped” inside of the polymer particles.  
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Table 1. Electrical properties of different carbon nanotube – polymer composites.* 

Nanotub
es 

Polymer Method of 
preparation 

Weight percent 
at the 
percolation 
threshold, % 

Conductivity 
at the plateau 
region, S/cm 

Referenc
e 

MWNT epoxy 
resin 

mixing with resin 
followed by curing 

0.0025 10
-3

 Sandler
5
 

PLV and 
HiPco 
SWNT 

epoxy 
resin 

mixing with resin 
followed by curing 

PLV: 0.0052 
%(vol) 
HiPco:0.0085 
%(vol) 

Laser: 10
-6

 
HiPco: 10

-7
 

Brynning
6
 

HiPco 
SWNT 

PS (PPE 
addition) 

spin-coating from 
solution 

0.045 0.05 - 0.1 Ramasub
ramania
m

7
 

CVD 
SWNT 

epoxy 
resin 

mixing with resin 
followed by curing 

0.05 10
-4 

Gojny
8
 

PLV 
SWNT 

polyimide in-situ polymerization 0.05 10
-7 

Ounaies
9
 

HiPco 
SWNT 

PC (PPE 
addition) 

spin-coating from 
solution 

0.11 2.0 - 5.0  Ramasub
ramania
m

7
 

MWNT polyimide in-situ polymerization 0.15 %(vol) 10
-3 

Jiang
10

 

HiPco 
SWNT 

PMMA casting from solution 0.17 10
2
 (for the 

SOCl2 doped 
CNT) 

Skakalov
a

11
 

CoMoCat 
SWNT 

PS-co-PI mixing of aqueous 
emulsions of CNT 
and polymer 

0.2 10
-6 

Ha
12

 

HiPco 
SWNT 

PBT in-situ polymerization 0.2 n/a Nogales
1

3
 

EA 
SWNT 

PS casting from solution 0.27 10
-5 

Chang
14

 

EA 
SWNT 

PS mixing of aqueous 
emulsions of CNT 
and polymer 

0.3 10
-3 

Grossior
d

15
 

HiPco 
SWNT 

PMMA coagulation from 
solution 

0.39 10
-4 

Du
16

 

EA and 
HiPco 
SWNT 

PC coagulation from 
solution and blending 
in extruder 

0.8 (for 
coagulation), 
1.7 (for 
blending) 

10
-2 

Hornbost
el

17
 

MWNT PP high shear mixing in 
molten polymer 

1.5 10
-3 

Seo
18

 

MWNT LLDPE mixing in molten 
polymer 

2 10
-2 

Gorrasi
19

 

MWNT PE blending in extruder 7.5 10
-6 

McNally
20

 

EA 
SWNT 

PmPV spin-coating from 
solution 

8.4 10
-3 

Coleman
21

 
* Abbreviations: PLV – pulse laser vaporization, EA – electric arc discharge, CVD – chemical vapor 
deposition, PS – polystyrene, PPE – poly(phenyleneethynylene), PC – polycarbonate, PMMA – 
poly(methyl methacrylate), PI – polyisoprene, PBT – poly(butylene terephtalate), PP – polypropylene, 

LLDPE – linear low density polyethylene, PE – polyethylene, PmPV – poly(p-phenylenevinylene-co-2,5-

dioctoxy-m-phenylenevinylene). 
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 In the present work three types of single-walled carbon nanotubes were used, 

produced by HiPco,22 CoMoCat23 and Pulse Laser Vaporization24 (PLV) protocols to 

prepare composites with polystyrene by two different methods. First, the nanotubes were 

dispersed in chloroform with the aid of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-

phenylenevinylene)] polymer (PmPV). Ability of this copolymer to form stable 

dispersions of SWNT in chloroform at concentrations as high as 1.2 g/L has been 

demonstrated by Star.25 Chen26 has used a poly(phenyleneethynylene) (PPE), a 

copolymer similar to PmPV, for solubilizing SWNT in chloroform and has shown that 

this polymer is more efficient than PmPV for the small diameter nanotubes. 

Ramasubramaniam7 utilized the PPE polymer to prepare composites with polystyrene by 

spin-coating. In the present work, rotary evaporation under vacuum was employed to 

remove the chloroform from the composite.  

 The second method of composite preparation was precipitation of the mixture of 

polystyrene and a dispersion of the nanotubes (oxidized by nitric acid) from DMF into 

water. We have shown in Chapter 3 that sonication of nanotubes in 8 M nitric acid for 60 

min significantly increased their solubility in DMF while preserving the electronic 

structure of nanotubes. 

 
Experimental 

Materials. Single-walled carbon nanotubes produced by CoMoCat,23 HiPco22 and 

pulsed laser vaporization (PLV)24 processes were used in this work. CoMoCat nanotubes 

in the form of a 2% aqueous gel, grade S-P94-02gel, batch # OSU-A-007, purified by the 

basic (alkali) protocol27 were obtained from Southwest Nanotechnologies, Inc., Norman, 
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OK. As-produced HiPco material in the form of a puffy fibrous powder, lot # R0488, was 

obtained from Carbon Nanotechnologies, Inc., Houston, TX. Laser oven SWNT (PLV) in 

the form of a black powder, batch # JSC-338, purified by the soft-baking protocol28 was 

obtained from NASA Johnson Space Center, Houston, TX. PmPV copolymer was 

obtained from Aldrich. The molecular weight and polydispersity, as estimated by SEC 

chromatography using THF and polystyrene standards, were 3700 g/mol and 1.4, 

respectively. A sample of polystyrene of industrial grade, Mw = 2x105, Mw/Mn = 3.6, was 

used for composites. All the solvents were obtained from Pharmco and Spectrum and 

were dried over anhydrous potassium carbonate. All other chemicals were obtained from 

Sigma and Aldrich.  

Instruments and measurements. Ultrasonication was performed using a Fisher 

FS-30 160W 3QT ultrasonic cleaner or a Microson XL-2000 22 KHz ultrasonic cell 

disruptor. Filtration of the solutions was done using a vacuum glass filtration cell and 

0.45 µm porous PTFE or PP membranes. Atomic force micrographs were obtained using 

a Multimode Nanoscope IIIa SPM (Digital Instruments, Santa Barbara, CA) operating in 

the tapping mode. The samples were prepared by applying a drop of a suspension on a 

mica chip for a short time (10 min for DMF solutions and 10 sec for CHCl3 solutions), 

followed by removing the liquid and drying the substrate in the nitrogen flow. Electrical 

conductivities were tested by two-probe method using a Keithley 610C Electrometer and 

a specially constructed resistivity chamber. The samples of composites were pressed into 

15x15x0.5 mm pieces using a heat press and a custom made picture frame mold. The 

sample in the mold was heated up to 175 °C, followed by applying the 10,000 psi 

pressure for 1 min, releasing the pressure, taking the mold out of the press and cooling it 
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on the bench. Cooling the sample under continuous pressure showed no difference in the 

conductivity. Pressing the samples at 140 °C was also tested but resulted in the lower 

conductivity values, probably because the higher viscosity of the polymer prevented the 

sufficient homogenizing of the sample during the pressing. Two plastic pieces for each 

sample were prepared. Each piece was measured in 6 spots (3 spots on each side) 

resulting in 12 data points for each sample. In order to calculate the percolation threshold, 

the equation (1) was transformed into a linear form of y = ax+b by taking logarithms of 

the two parts:  

log(σ) = β*log(m-mc) + log(C)    (2) 

In this equation, the volume fraction of the filler is substituted by mass fraction, assuming 

the equal density for all SWNT materials. The values for mc, β, and C were calculated 

from the linear regression analysis. Thin films (50 ± 10 µm) of the composites for 

microscopy and spectroscopy were pressed using the same press and conditions. Optical 

microscopy of the films was performed on a Leica DM IRB optical microscope at 100x 

magnification. The UV-VIS spectroscopy of the films and organic dispersions was 

obtained on the Cary-5000 UV-VIS-NIR spectrometer in the wavelength range of 200-

2000 nm. Thermogravimetric analyses were performed using a Shimadzu TGA50/50H 

instrument in air. Scanning electron microscopy was performed on a JEOL JSM 6400 

Scanning Electron Microscope operating at 20-30 kV accelerating voltage. The samples 

were not coated by metal. 

Solubility of SWNT in chloroform with the aid of PmPV. PmPV copolymer 

was soluble in THF, toluene, and chloroform and poorly soluble in DMF. Among all the 

solvents, only chloroform allowed stable dispersions of carbon nanotubes. To estimate 
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solubility of SWNT, stock dispersions containing 0.5 g/L of nanotubes and PmPV at the 

concentration of 0.5, 1.0, 1.5 and 2.0 g/L in chloroform were sonicated in bath for 60 min 

and stirred for 24 hours. All of the dispersions looked black. Observation through a 2 mm 

glass cell revealed small suspended particles. These stock dispersions were diluted with 

chloroform, yielding a series of dispersions with the SWNT concentration from 0.01 to 

0.3 g/L and were transferred to 12 mL glass vials. The vials were immersed into water at 

20 °C, sonicated by tip-sonicator for 15 min at the power of 15 W and left for 2 hours, 

after which time the liquid was examined for the presence of visible particles. If particles 

were not observed, the solution was considered to be uniform. For some of the uniform 

solutions, a black sediment was formed on the bottom after 8-10 hours. The sediment 

could be redispersed simply by shaking of the vial. For the solutions where concentration 

of nanotubes was much lower than the solubility limit, the uniform dispersion could be 

obtained by diluting the stock dispersion and vigorous shaking of the liquid for 5-6 sec, 

whereas for the SWNT concentrations close to the solubility limit always required 

sonication to make the dispersion uniform. For the solutions above the solubility limits, 

the longer sonication (up to 40 min) did not help to make them uniform. 

SWNT/PmPV/PS composites. A stock dispersion containing 0.5 g/L of SWNT 

and 2.0 g/L of PmPV in chloroform was diluted by 1:5 with chloroform and sonicated in 

bath for 60 min. Water in the bath was replaced frequently in order to avoid heating of 

the dispersion. A 40 g/L solution of polystyrene in chloroform was prepared separately. 

The dispersion of SWNT was mixed with the solution of polystyrene in a ratio yielding 

the required proportion of nanotubes and polystyrene. The mixture was stirred for 1 hour 

followed by sonication by tip-sonicator for 15 min at 15 W at room temperature. The 
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mixture was replaced into a 250 mL round-bottom flask and the solvent was evaporated 

on the rotary evaporator. Residual solvent was removed under vacuum at 50 °C for 60 

min. The final solid was dried at 110 °C for 1 hour.  

Composites of oxidized SWNT and polystyrene. The nanotubes were oxidized 

by sonication in 8 M nitric acid for 60 min, followed by washing out the acid according 

to the previously reported procedure.29 Oxidized nanotubes were dispersed in DMF at 0.5 

g/L by sonication for 1 hour and stirring for 24 hours. The resulted dispersion was diluted 

with DMF by 1:10 and sonicated in bath for 60 min. Water in the bath was replaced 

frequently in order to avoid heating of the dispersion. The 20 g/L solution of polystyrene 

in DMF was prepared separately. Dispersion of SWNT was mixed with solution of 

polystyrene in a ratio, yielding the required proportion of nanotubes and polystyrene. The 

mixture was stirred for 1 hour, followed by sonication in bath for 30 min. The resulted 

mixture was precipitated by pouring into a 10-fold volume of water vigorously mixed 

with a mechanical stirrer, followed by filtration, washing the solid with water and 

methanol, and drying at 110 °C for 1 hour. 

Composites of the polystyrene-functionalized SWNT and polystyrene. The 

sample of oxidized HiPco SWNT functionalized with polystyrene and separated from the 

unattached polymer (sample SWNTO-PS from Chapter II B) in the form of 0.5 g/L 

dispersion in DMF was used for the composites. Composites were prepared by the 

solution mixing procedure identical to the described above for the composites of oxidized 

SWNT and polystyrene. 
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Results and Discussion 

Composites of SWNT/PmPV/polystyrene. Figure 1 shows the solubility of 

different nanotubes in chloroform in the presence of PmPV. For the concentrations of 

SWNT and PmPV below the lines, the dispersions were uniform while for the 

concentrations above the lines they had visible suspended particles. These dispersions 

were obtained by diluting a more concentrated stock dispersion. Attempts to disperse 

nanotubes starting with low concentrations of SWNT and PmPV have failed. For 

example, dilution of the mixture of 0.5 g/L HiPco SWNT and 2 g/L of PmPV by 1:5 with 

chloroform, followed by 15 min of sonication, resulted in a uniform dispersion. However, 

dispersing 10 mg of HiPco and 40 mg of PmPV in 100 mL of chloroform did not result in 

uniform dispersions regardless of the sonication time, while the final concentration of 

components in both mixtures was the same. We attribute this phenomenon to adsorption 

of PmPV on the surface of SWNT. Adsorption is generally described by the Langmuir 

isotherm, where the surface coverage GP (amount of solute adsorbed per unit of 

adsorbent) increased with the increased concentration of solute C in accordance with the 

equation:30 

   GP = GPSbC/(1+bC),     (3) 

We have estimated that concentrations of PmPV in chloroform of 0.5 g/L and higher 

were sufficient for obtaining uniform dispersions of SWNT after dilution, which indicates 

sufficient adsorption of the copolymer. Figure 1 also suggests that in order to increase 

concentration of nanotubes in dispersion, while keeping the dispersion uniform, the ratio 
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of PmPV to SWNT has to be increased too. Approximately, increasing the concentration 

of SWNT by 2 fold requires increasing the concentration of PmPV by 4 fold. 
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Figure 1. Dependence of the solubility of the SWNT in chloroform on concentration of 
the PmPV copolymer in the mixture. 
 

 

Figure 2 presents AFM micrographs of pristine and PmPV-functionalized 

nanotubes. The length and height distribution of bundles in the AFMs measured by 

Section Analysis is given in Figure 3. In the PmPV-functionalized samples over 80% of 

the bundles were less than 10 nm in diameter with averages of 3.3 nm for HiPco, 3.1 nm 

for CoMoCat and 4.6 nm for PLV SWNT.  
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Figure 2. AFM of the pristine and PmPV-functionalized SWNT. A, C, E: pristine HiPco 

(A), CoMoCat (C) and PLV (E). B, D, F: PmPV-functionalized HiPco (B), CoMoCat (D) 

and PLV (F). 
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Figure 3. Length and diameter distribution in the samples of SWNT-PmPV, calculated 

from AFM. 

 

The AFM of HiPco SWNT shows almost entirely tubular objects. Globular 

particles appear on the images of the CoMoCat and PLV materials in both pristine and 
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functionalized form, which suggests that these particles arise initially from the pristine 

materials. According to the manufacturer’s information the PLV sample contained 20% 

to 25% of amorphous carbon, which was supported by TGA and SEM. TGA and SEM of 

the HiPco and CoMoCat SWNT did not provide an evidence for the presence of 

amorphous carbon in these CNT materials. High resolution SEM presented in Figure 4 

revealed that globular particles in the CoMoCat SWNT are composed of aggregates of 

short nanotubes. 

 
 

Figure 4. SEM of typical pristine HF-washed CoMoCat SWNT. Bottom image – zoomed 

area in the rectangle. Courtesy of Prof. D. E. Resasco, University of Oklahoma. 

 

Figure 5 shows optical and Scanning Electron micrographs of the SWNT-PmPV-

polystyrene composites. On the optical microscopic images of the HiPco composite the 

black tubular objects 5-10 µm long and about 1 µm thick can be attributed to the 
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aggregates of nanotubes. As for the CoMoCat and PLV composites, large aggregates of 

5–20 µm in size appeared. SEM images show that such aggregates are composed 

primarily of nanotubes. These results point out that SWNT are not distributed evenly 

throughout the sample. The SEM of the composites was performed on the non-coated 

samples, which allowed imaging nanotubes inside the polymer matrix. However, due to 

scattering of electrons by the solid, only nanotubes located 50 nm and less from the 

surface could be observed in this microscopy technique, as suggested by Loose.31 

 

Figure 5. Optical microscopy (A, D, G) and SEM (the others) images of the SWNT-
PmPV-PS composites of HiPco (A, B, C), CoMoCat (D, E, F) and PLV (G, H, I) 
materials. 
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Figure 6 (A, B, C) shows the optical absorption spectra of the PmPV-

functionalized nanotubes acquired from solutions and from solid films of composites. 

The spectra were normalized at 800 nm for CoMoCat, 100 nm for HiPco, and 1300 nm 

for PLV, because of an absence of major interband transition peaks at these wavelengths 

for the corresponding materials. The sharpness of the peaks, expressed as the height to 

width ratio indicated the dispersion state of nanotubes, bundling reduces the sharpness.32 

The peaks from solid films appeared as sharp and distinct as those from solutions which 

indicated that there was no significant aggregation of nanotubes during the evaporation of 

chloroform. This is surprising considering the aggregates seen on the optical 

micrographs. As the SEM images suggest, the nanotubes in the aggregates are packed 

loosely and are not in a close contact with each other. This should allow the individual 

tubes to still reveal their absorption features.  
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Figure 6. Optical absorption of the PmPV-functionalized SWNT in chloroform 

dispersions and in solid PS composites. A, D – HiPco, B, E - CoMoCat, C, F - PLV. 
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Composites of oxidized SWNT in polystyrene. We prepared composites of 

the oxidized SWNT and polystyrene by precipitation of DMF dispersions into water. 

Evaporation of the solvent failed for this material. Slow evaporation of DMF resulted in 

premature aggregation of nanotubes as the solution concentrated.  Dry composite material 

obtained by precipitation appeared as agglomerates of small particles. Therefore the 

quality of mixing during the molding affected the conductivity results significantly. We 

have found that pressing the samples at 175 °C greatly increased their conductivity 

compared to pressing at 140 °C, presumably due to a better fusing of particles at higher 

temperature. Figure 7 shows the AFM images of the oxidized nanotubes deposited from 

the DMF dispersions and optical microscopy of the composite films containing 0.6 wt % 

of the same nanotubes.  

 

 

Figure 7. AFM of the oxidized SWNT and SEM of the composites of 0.6% SWNT in 

polystyrene. A, B – HiPco; C, D – CoMoCat; E, F – PLV. 
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The length and height distribution of bundles in the SWNT oxidized by 60 min of 

sonication in 8 M HNO3 has been presented in Chapter IV (Figures 3 and 4). In the 

section analysis of the AFM images over 80% of tubular objects had heights 10 nm and 

less, but the average diameter was higher than that in the PmPV-functionalized samples. 

Small globular particles appeared on the AFM image of HiPco tubes compared to the 

pristine sample in Figure 2A and a certain increase in number of these particles for the 

oxidized CoMoCat sample suggest some accumulation of amorphous carbon after the 

oxidation procedure. The measurements of length revealed a moderate shortening of 

nanotubes compared to the PmPV dispersed materials that were subjected only to a brief 

sonication. Optical micrographs of the composites of oxidized SWNT looked very similar 

to those for the PmPV-functionalized composites, small tubular particles in HiPco 

composites and large globular agglomerates in CoMoCat and PLV composites werw 

observed. HiPco material was the most stable against aggregation regardless of the way 

the composite was prepared.  

 Optical absorption spectra of the coagulated composites, presented in Figure 6 (D, 

E, F), similar to the PmPV-functionalized material, did not show a decrease in the 

interband transition peaks intensities, which is an indicator that the coagulation procedure 

was not accompanied by a noticeable bundling of nanotubes. According to Itkis,33 

amorphous carbon accumulated in the material should decrease the relative area under the 

peaks, which was not the case for our slightly oxidized material, as can be judged by the 

UV-VIS spectra. 

Electrical conductivity of the SWNT composites. Figures 8, 9 and 10 report 

electrical conductivity of the polystyrene composites of the SWNT materials studied in 
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this work. The results for the percolation threshold, as well as critical exponent β and 

prefactor C of the equation (1), are summarized in Table 2 and combined with the 

measurements of diameter and length of nanotubes obtained from AFM. The composites 

prepared with the aid of PmPV had a lower percolation threshold than the composites of 

oxidized nanotubes. These results don’t correlate with SEM or optical microscopy. 

Instead, one should closely analyze the size of bundles measured by AFM. 
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Figure 8. Electrical conductivity of the composites of SWNT in polystyrene with the 
presence of PmPV. Standard deviation was calculated with 95% confidence. 
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Figure 9. Electrical conductivity of oxidized SWNT in polystyrene. 
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Figure 10. Electrical conductivity of the HiPco SWNT in PS. 
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Table 2. Size of nanotubes and calculated parameters for the equation σ = C(m-mc)
β 

SWNT Average 
diameter 
d, nm 

Average 
length L, 
nm 

Aspect 
ratio, L/d 

percolation 
threshold mc, 
weight % 

critical 
exponent β 

prefactor 
C 

HiPco-PmPV 3.2   734 230 0.17 2.0 1.2*10-7 
HiPco 
oxidized 

4.4   540 122 0.4 2.9 4.8*10-4 

HiPco 
functionalized 
with PS 

 

7.5 

 

  820 

 

109 

 
 
0.8 

 
 
4.0 

 
 
1.9*10-3 

CoMoCat-
PmPV 

3.1   690 223 0.3 2.0 3.9*10-6 

CoMoCat 
oxidized 

4.2   620 148 0.5 4.8 7.6*10-2 

PLV-PmPV 4.6 1020 222 0.17 4.1 0.4 
PLV oxidized 5.8   790 136 0.4 4.5 8.8*10-3 

 

According to the calculations, the percolation threshold in the system of 

conducting cylinders depends upon the aspect ratio of the cylinders.34 The oxidized 

nanotubes have both a smaller aspect ratio and larger diameter of bundles than the PmPV 

dispersed materials. Consequently, the percolation threshold for oxidized SWNT is 

higher than that for the corresponding PmPV-wrapped nanotubes. However, there is no 

correlation between the aspect ratio and percolation threshold between different nanotube 

types within the series. HiPco and PLV materials have the same mc value in each series 

regardless of the large aggregates on the optical micrographs of the PLV composites. 

CoMoCat material stands alone in having the higher percolation threshold. For this issue 

one should take in account differences the size of nanotubes in different materials. The 

average diameter of individual nanotubes is 0.8 nm for CoMoCat,35 1.0 nm for HiPco36 

and 1.3 for PLV.37 A bundle of CoMoCat SWNT should contain more nanotubes than the 

bundle of HiPco or PLV SWNT of the same size, which makes the density of the 
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CoMoCat bundles higher. Since the percolation threshold is volume dependent while we 

are measuring mass, this will increase the mass fraction of this material needed for 

percolation. From this point of view, the PLV nanotubes should have the lowest density 

and the lowest mc. Probably the noticeable fraction of the low aspect ratio amorphous 

carbon in the PLV sample suppresses its performance.  

Comparison of the composites made from the HiPco SWNT processed by 

different methods shows that the sample covalently functionalized with polystyrene had 

the highest percolation threshold. The 2–fold increase in this factor compared to the 

oxidized SWNT does not correlate with only a 10% change in the aspect ratio of the 

nanotube bundles. Therefore, it is not the aspect ratio that is responsible for the higher 

percolation threshold of the PS-functionalized composites, but most probably the 

presence of the polystyrene chains permanently bound to the SWNT surface may prevent 

nanotubes from getting into a good contact between each other during the preparation of 

the composites. One may argue that the PmPV dispersed SWNT also should have a layer 

of the PmPV polymer at their surface in composites. However, this layer is not insulating. 

Electrical conductivity of neat PmPV is 2*10-12 S/cm,21 which is 6 orders of magnitude 

higher than that of polystyrene. We presume that the density of the PS grafted to SWNT 

was low, as judged by Raman and TGA results in Chapter II B, so nanotubes can still 

come in contact. However, more nanotubes are required to build a continuous percolation 

network. Unfortunately, there are no data in the literature on electrical conductivity of the 

polymer grafted carbon nanotubes. Presumably, the dense coverage of the SWNT surface 

with an insulating polymer such as polystyrene should completely prevent the electrical 

current throughout the composite. 
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The critical exponent for the PmPV functionalized HiPco and CoMoCat 

nanotubes was 2.0, which is in a good agreement with the calculated value of 1.6 – 2.0.3,4 

The value for β reported in literature varies from 1.25 to 7.5512 and is generally lower for 

the thin films obtained by solution casting (see Table 1). Kogut and Straley38 have shown 

that the critical exponent can increase for the composite systems whose elements have a 

distribution of conductivity and its deviation from the theoretical value β0 can be 

expressed by the formula: 

   )1/(0 ααββ −+=      (4) 

where α is a parameter defining the distribution of conductivity. Vionnet-Menot39 has 

proposed that α relates to the tube to tube electron transport efficiency. The nitric acid 

treatment that we utilized is known to introduce defects along the sidewalls40 which 

should change electronic properties of nanotubes. Previously we have found that such 

changes increased in the row of PLV – HiPco – CoMoCat.29 The highest degree of 

chemical functionalization of CoMoCat SWNT induced by oxidation should alter the 

electron transport properties of this material the most which was probably the reason for 

the biggest change in the value of β between the two series. According to our previous 

study,29 the PLV SWNT was practically unaffected by the 60 min sonication in acid 

which can explain the smallest change in β for this material. In the series of composites 

made from different HiPco materials the higher critical exponent was found for the PS-

functionalized samples, which is the result of increased tube to tube resistance as was 

explained by Vionnet-Menot.39  
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 While the percolation threshold relates to the geometry of the nanotube bundles, 

the conductivity of the composites at the plateau region has to depend upon conductivity 

of the nanotube material itself. We have found that HiPco SWNT had the highest and 

CoMoCat – the lowest conductivity of the composites above the percolation threshold for 

both series. CoMoCat has a narrow distribution of nanotubes by type and contains about 

9% of metallic SWNT by weight.41 There are no such estimation for HiPco and PLV in 

literature. Presumably, HiPco material, having a large variety of different types of 

tubes,42 contains more metallic tubes than CoMoCat and therefore should be more 

conductive. 

 

Conclusions 

The PmPV copolymer is a good stabilizing agent for organic dispersions of 

carbon nanotubes. Preparation of composites via rapid evaporation of the SWNT 

dispersions is more efficient method than coagulation. This technique eliminates the need 

for pre-treatment of nanotubes and allows the solvent recycling. The minimal damage of 

nanotubes during the evaporation method preserves the high aspect ratio allowing the 

lower percolation threshold. The main drawback of this method is the presence of the 

PmPV copolymer in the composites which may change the mechanical properties of the 

host polymer. The use of oxidized SWNT simplifies the composite content. However, the 

nitric acid treatment shortens the nanotubes, decreasing the aspect ratio. Our results show 

that the aspect ratio of nanotube bundles affects the percolation threshold value of the 

composites. We have found that the electrical conductivity at the plateau region depends 
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on the type of SWNT material, which we attribute to the differences in the fraction of the 

metallic nanotubes in these materials. This fraction is probably the highest in HiPco 

SWNT.  

The exponent β as a factor related to the electron transport through the nanotubes 

was higher for the composites of oxidized SWNT due to the larger amount of the 

structural defects in the nanotubes as a result of nitric acid oxidation. Since the CoMoCat 

nanotubes are highly vulnerable to the oxidation, the increase in β for this material was 

the highest. The PLV nanotubes, being the most stable to the acidic treatment, expressed 

the smallest changes in the critical exponent. This phenomenon has been studied mostly 

theoretically, but more experimental results are needed to better explore the relations 

between the structure of SWNT and the exponent β in the composites. 

The polystyrene functionalized HiPco nanotubes, despite a higher solubility and 

an ideal compatibility of the attached molecules with the host polymer, exhibited lower 

electrical conductivity compared to the SWNT processed by other two methods. Attached 

insulating polymer prevented contact and charge transfer between nanotubes, resulting in 

a lower electrical conductivity of the samples. Evidently, this technique should not be 

used for preparation of conductive polymeric composites of SWNT. 
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CHAPTER VI 

CONCLUDING REMARKS 

 

In this work different methods of dispersing carbon nanotubes in solvents were 

studied. Moreover, investigations were made on the mild nitric acid oxidation, covalent 

functionalization with polystyrene, and non-covalent functionalization with 

poly(phenylene vinylene). Effects of the physical properties of different SWNT materials 

on the electrical properties of the resulting polystyrene composites were studied. Length 

and diameter of the nanotube bundles, degree of functionalization of SWNT, functional 

groups on the surface of nanotubes, tube-to-tube contact, and ratio of metallic to 

semiconducting tubes in the material affected the properties of the nanotube containing 

composites. A lower aspect ratio of the oxidized SWNT due to the oxidative shortening 

resulted in a higher percolation threshold for the electrical conductivity of the 

composites. Covalent attachment of polystyrene to SWNT reduced the conductivity of 

the composites since the polymer chains immobilized on the nanotube surface prevented 

sufficient contact between tubes. A higher fraction of metallic tubes in HiPco material led 

to a higher conductivity of the corresponding polystyrene composites compared to those 

made with other SWNT materials. 

Since such properties as mechanical strength, chemical reactivity and electron 

transport are strongly dependent on the specific chirality and diameter of nanotubes, there 

is a tube type which ultimately defines the properties of the composite material. 
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This correlation seems evident, although it is not often taken in account, especially in the 

area of Material Science and Engineering, as a study of the literature reveals. Every 

synthetic method for producing of SWNT results in a mixture of tens of different types of 

tubes, while a large scale separation technique is not available. Carbon nanotube 

materials produced by different methods are composed of the same types of tubes, but in 

different proportions, not to mention variations in length, which accounts for differences 

in the properties of these materials. In this work it was shown that for the development of 

new nanotube-enabled materials, the content of the SWNT sample is a very important 

factor to consider. If high electrical conductivity of the composite is a goal, the sample 

with a high fraction of metallic nanotubes is preferable. If carboxylic groups are to be 

created on the SWNT for further functionalization, the oxidation protocol has to be mild 

for the sample where small tubes prevail, since the same conditions may moderately 

oxidize one SWNT material and completely destroy another. If mechanical reinforcement 

is sought, longer nanotubes will give the greater effect.  

Moreover, the very term “carbon nanotubes”, similar to such terms as “alkanes” 

or “waxes”, has to be interpreted not as a certain chemical compound but as a class of 

compounds that possess both mutual and structurally dependent chemical properties. As 

the present work clearly shows, such an understanding is important not only in the 

physics of carbon nanotubes but in all other areas of carbon nanotube science and 

technology.
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