NEW TANDEM REACTIONS INVOLVING NUCLEOPHILIC AROMATIC SUBSTITUTION

By
JAMES ERVIN SCHAMMERHORN III

Associates of Science
Murray State College
Tishomingo, Oklahoma 2003
Bachelor of Science in Chemistry
Oklahoma State University
Stillwater, Oklahoma 2006
Submitted to the Faculty of the
Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

May, 2011

NEW TANDEM REACTIONS INVOLVING NUCLEOPHILIC ARMOMATIC SUBSTITUTION

Thesis Approved:

Dr. Richard Bunce
Thesis Adviser
Dr. K. Darrell Berlin

Dr. Ziad El-Rassi

Dr. Nicholas Materer

Dr. Andrew Mort

Dr. Mark E. Payton
Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. R. A. Bunce, my research advisor, my graduate committee chairman and my friend. I have learned many valuable lessons working alongside him in his research laboratory. His ability to teach both organic theory and laboratory techniques have been instrumental in my research at Oklahoma State University. I am immensely thankful for his support, guidance and patience to me during the course of this research. His unique sense of humor always makes me laugh and makes it a joy to come to lab.

I would also like to thank my committee members, Drs. K. D. Berlin, Z. El Rassi, N. F. Materer, and A. J. Mort their acceptance to be on my committee. Their insights into research and graduate life have been invaluable during my graduate career. I am especially grateful to Dr. Berlin for sharing his wealth of organic chemistry knowledge with me during the course of my research. Also, to Dr. Materer, for his keen ability to address the heart of any problem has kept me focused as a graduate student.

A special mention of thanks is extended to Dr. Benson and his student Jessica Hubbard for the X-ray crystallography studies on some of the molecules synthesized during the course of this study. Thanks are also due to Drs. M. A. Eastman and G. BellEunice for their assistance with the NMR facilities and guidance in NMR experiments conducted in this research.

I also thank Dr. Baskar. Nammalwar and Todd Harrison of the Bunce research group along with Travis James for their friendship and support, making it a pleasure to come to work. Baskar has never hesitated to help in answering any questions I have had about organic chemistry and Travis has always indulged me in healthy debate about life's challenges.

I would like to thank the Department of Chemistry for providing a teaching assistantship to me during my studies at OSU. Thanks also to Carolyn, Cheryl, Karen and Bob in the Chemitry Department office for their assistance over the years.

The most sincere thanks and gratitude are extended to my parents Jim and Glenda, and my sister Lydia for all the encouragement and prayers they have given me during my time at OSU. Through times of medical troubles and emotional hardship their love and support has guided me throughout my graduate career. Thank you.

TABLE OF CONTENTS

Chapter Page
I. REVIEW OF TANDEM $\mathrm{S}_{\mathrm{N}} A r$ REACTIONS 1
Introduction 1
Tandem $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Amination-Reduction Reaction 2
Synthesis of Tricyclic Substituted Oxazolidinones 3
Synthesis of Functionalized Carbazoles 4
Synthesis of Unsymmetrical Diphenyl Ethers 5
Synthesis of 3,6-disubstituted 1H-pyrazolo[3,4-b]pyridines 6
Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 7
II. 6-NITRO-1,2,3,4-TETRAHYDROQUINOLINE-4-CARBOXYLIC ESTERS AND 7-NITRO-3,4-DIHYDROQUINOXALINE-1(2H)-CARBOXYLIC ESTERS BY A TANDEM REDUCTIVE AMINATION-S ${ }_{N} A r$ REACTION 9
Introduction 9
Results 12
Synthesis of Precursors 12
Conducting the Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 15
Conclusion 19
Experimental Section 21
Methyl 2-Fluoro-5-nitrophenylacetate (9) 21
Methyl N-(2-Fluoro-5-nitrophenyl)carbamate (15) 22
Representative Alkylation Procedure for the Ester. 23
Methyl 2-(2-Fluoro-5-nitrophenyl)-4-pentenoate (10) 23
Methyl 2-(2-Fluoro-5-nitrophenyl)-4-methyl-4-pentenoate (11) 23
Representative Alkylation Procedure for the Amide 24
Methyl N-(2-Fluoro-5-nitrophenyl)- N -(2-propenyl)carbamate (16). 24
Methyl N-(2-Fluoro-5-nitrophenyl)- N-(2-methyl-2-propenyl)carbamate (17). 25
1-Chloro-2-(2-methyl-2-propenyloxy)-4-nitrobenzene (21) 25
Representative Ozonolysis Procedure 26
Methyl 2-(2-Fluoro-5-nitrophenyl)-4-oxobutanoate (12) 26
Methyl 2-(2-Fluoro-5-nitrophenyl)-4-oxopentanoate (13) 27
Methyl N-(2-Fluoro-5-nitrophenyl)- N-(2-oxoethyl)carbamate (18) 27
Methyl N-(2-Fluoro-5-nitrophenyl)- N-(2-oxopropyl)carbamate (19) 28
1-(2-Chloro-5-nitrophenoxy)-2-propanone (22) 28
Representative Procedure for Reductive Amination $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Cyclizations 29
Chapter Page
(\pm)-Methyl 1-Benzyl-6-nitro-1,2,3,4-tetrahydroquinoline-4- carboxylate (23a) 29
(\pm)-Methyl 1-Hexyl-6-nitro-1,2,3,4-tetrahydroquinoline-4- carboxylate (23b) 30
(\pm)-Methyl 1-Isobutyl-6-nitro-1,2,3,4-tetrahydroquinoline-4- carboxylate (23c) 30
(\pm)-Methyl 1-Cyclohexyl-6-nitro-1,2,3,4-tetrahydroquinoline-4- carboxylate (23d) 31
Methyl 4-Benzyl-7-nitro-3,4-dihydroquinoxaline-1 2 H)-carboxylate (25a) 31
Methyl 4-Hexyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (25b) 32
Methyl 4-Isobutyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (25c) 32
Methyl 4-Cyclohexyl-7-nitro-3,4-dihydroquinoxaline-1(2H)- carboxylate (25d) 33
(\pm)-Methyl 4-Benzyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)- carboxylate (26a) 33
(\pm)-Methyl 4-Hexyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)- carboxylate (26b) 34
(\pm)-Methyl 4-Isobutyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)- carboxylate ($\mathbf{2 6 c}$) 35
(\pm)-Methyl 4-Cyclohexyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)- carboxylate (26d) 35
(\pm)- N-Benzyl-1-(2-chloro-5-nitrophenoxy)-2-propanamine (28) 36
III. SYNTHESIS OF HIGHLY SUBSTITUTED 1,2,3,4- TETRAHYDROQUINOLINES VIA A TANDEM IMINE ADDITION-S ${ }_{N} A r$ REACTION 37
Introduction 37
Results 41
Synthesis of Precursors 41
Conducting the Tandem Imine Addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 44
Mechanism for the Tandem Imine Addition-S $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 56
Synthesis of 2,3-Dihydroquinolinone-3-carboxylate 59
Alkylation-Decarboxylation of Tandem Product 60
Synthesis of Trialkyl Substituted 2,3-Dihydroquinolinone 63
Conclusion 65
Experimental 67
2-Fluoro-5-nitrobenzaldehyde (24) 67
2-Fluoro-5-nitrobenzoic Acid (25) 68
Representative Procedure for the β-Ketoesters 69
tert-Butyl 3-(2-Fluoro-5-nitrophenyl)-3-oxopropanoate (28) 69
Ethyl 3-(2-Fluoro-5-nitrophenyl)-3-oxopropanoate (29) 70
Representative Procedure for the Tandem Imine Addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction with β-Ketoesters and Aromatic Imines 71
Chapter Page
tert-Butyl (\pm)-1-Benzyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline- 3-carboxylate (33) 71
tert-Butyl (\pm)-1-Hexyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline- 3-carboxylate (34) 72
tert-Butyl (\pm)-1-Isobutyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline- 3-carboxylate (35) 72
tert-Butyl (\pm)-1-Cyclopropyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydro- quinoline-3-carboxylate (36) 73
tert-Butyl (\pm)-1-Allyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline- 3-carboxylate (37) 73
Ethyl (\pm)-1-Benzyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3- carboxylate (38) 74
Ethyl (\pm)-1-Hexyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3- carboxylate (39) 75
Ethyl (\pm)-1-Isobutyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3- carboxylate (40) 75
Ethyl (\pm)-1-Cyclopropyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydro- quinoline-3-carboxylate (41) 76
Ethyl (\pm)-1-Allyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3- carboxylate (42) 76
tert-Butyl (\pm)-1-Benzyl-2-(4-methoxyphenyl)-6-nitro-4-oxo-1,2,3,4- tetrahydroquinoline-3-carboxylate (43) 77
tert-Butyl (\pm)-1-Benzyl-2-(4-fluorophenyl)-6-nitro-4-oxo-1,2,3,4- tetrahydroquinoline-3-carboxylate (44) 78
tert-Butyl (\pm)-1-Benzyl-2-(4-trifluoromethylphenyl)-6-nitro-4-oxo-1,2,3,4- tetrahydroquinoline-3-carboxylate (45) 78
Ethyl (\pm)-1-Benzyl-2-(4-methoxyphenyl)-6-nitro-4-oxo-1,2,3,4- tetrahydroquinoline-3-carboxylate (46) 79
Ethyl (\pm)-1-Benzyl-2-(4-fluorophenyl)-6-nitro-4-oxo-1,2,3,4-tetrahydro- quinoline-3-carboxylate (47) 80
Ethyl (\pm)-1-Benzyl-2-(4-trifluoromethyphenyl)-6-nitro-4-oxo-1,2,3,4- tetrahydroquinoline-3-carboxylate (48) 80
Representative Procedure for the Tandem Imine Addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction with β-Ketoesters and Aliphatic Imines 81
tert-Butyl (\pm)-1-Benzyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline- 3-carboxylate (51) 81
tert-Butyl (\pm)-1-Hexyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline- 3-carboxylate (52) 82
tert-Butyl (\pm)-1-Isobutyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydro- quinoline-3-carboxylate (53) 83
tert-Butyl (\pm)-1-Cyclopropyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydro- quinoline-3-carboxylate (54) 83
tert-Butyl (\pm)-1-Allyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline- 3-carboxylate (55) 84
Chapter Page
Ethyl (\pm)-1-Benzyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3- carboxylate (56) 84
Ethyl (\pm)-1-Hexyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3- carboxylate (57) 85
Ethyl (\pm)-1-Isobutyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3- carboxylate (58) 86
Ethyl (\pm)-1-Cyclopropyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydro- quinoline-3-carboxylate (59) 86
Ethyl (\pm)-1-Allyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3- carboxylate (60) 87
1-Phenyl- N-(propan-2-ylidene)methanamine (63) 88
tert-Butyl 1-Benzyl-6-nitro-4-oxo-2-phenyl-1,4-dihydroquinoline-3- carboxylate (64) 88
tert-Butyl (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4- tetrahydroquinoline-3-carboxylate (65) 89
(\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline -3-carboxylic acid (66) 89
(\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydro- quinoline (67) 90
Structure Elucidation of (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl- 1,2,3,4-tetrahydroquinoline (67) 91
1-Benzyl-3-methyl-6-nitro-2-phenylquinolin-4(1 H)-one (68) 91
Structure Elucidation of 1-Benzyl-3-methyl-6-nitro-2-phenylquinolin- 4(1 H)-one (68) 92
REFERENCES 94
APPENDICES 103
Crystal Data and Structure Refinement for (\pm)-1-Benzyl-3-methyl-6-nitro-4- oxo-2-phenyl-1,2,3,4-tetrahydroquinoline (67) 103
Fractional Atomic Coordinates and Isotropic or Equivalent Isotropic Displacement Parameters for (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl- 1,2,3,4-tetrahydroquinoline (67) 105
Atomic Displacement Parameters for (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2- phenyl-1,2,3,4-tetrahydroquinoline (67) 107
Geometric Parameters for (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl- 1,2,3,4-tetrahydroquinoline (67) 108
Crystal Data and Structure Refinement for 1-Benzyl-3-methyl-6-nitro-2- phenylquinolin-4(1 H)-one ($\mathbf{6 8}$) 111
Fractional Atomic Coordinates and Isotropic or Equivalent Isotropic Displacement Parameters for 1-Benzyl-3-methyl-6-nitro-2-phenylquinolin- 4(1 H)-one (68) 113
Atomic Displacement Parameters for 1-Benzyl-3-methyl-6-nitro-2- phenylquinolin-4(1H)-one (68) 116

Chapter
Geometric Parameters for 1-Benzyl-3-methyl-6-nitro-2-phenylquinolin-4(1H)one (68)
.119

LIST OF TABLES

Table Page Chapter II

1. Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction to Prepare Tetrahydroquinolines 16
2. Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction to Prepare Dihydroquinoxalines 18
Chapter III
3. Synthesis of β-Ketoesters 42
4. Initial Tandem Imine- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 45
5. Tandem Reaction Using Various Primary Amines 49
6. Tandem Reaction Using Various Aromatic Aldehydes 50
7. Tandem Reaction Using Various Acetaldehyde Imines 54
8. Synthesis of 2,3-Dihydroquinolinone $\mathbf{6 4}$ 60

LIST OF FIGURES

Figure Page
Chapter I

1. Benzylamines by a Tandem $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$-Amination Reduction 3
2. Synthesis of Linezolid Analogs by a Tandem $\mathrm{S}_{\mathrm{N}} 2-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 4
3. Synthesis of Functionalized Carbazoles by a Tandem Cross Coupling- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 5
4. Synthesis of Unsymmetrical Diphenyl Ethers by a Tandem Deprotection- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction 6
5. Synthesis of 3,6-Disubstituted $1 H$-pyrazolo[3,4- b]pyridines 7
6. Synthesis of 2,3-Dihydro-1H-indoles and 1,2,3,4-Tetrahydroquinolines7
Chapter II
7. Tetrahydroquinoline SARM Candidates 10
8. Synthesis of (E)-Tetrahydroquinolines 10
9. Biologically Active Dihydrobenzoxazines 11
10. Needed Substrates for Tandem Reaction 12
11. Preparation of the Tetrahydroquinoline Precursors 13
12. Preparation of the Dihydroquinoxalone Precursors 14
13. Preparation of the Dihydrobenzoxazine Precursors 15
14. Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction to Prepare Tetrahydroquinolines 16
15. Ring Closure of Ketone Precursor 17
16. Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction to Prepare Dihydroquinoxalines 18
17. Attempted Synthesis of Dihydrobenoxazine 19
Chapter III
18. Retrosynthesis of Imine Addition- S_{N} Ar.Reaction 38
19. Badorrey's Tandem Mannich-Michael Reaction. 38
20. Jaber's One-pot Reaction Using Samarium Diiodide 39
21. Raw's Synthesis of Pyridines Using Tethered Imine-enamines 40
22. Lu's Copper-catalyzed Three-component Reaction 41
23. Synthesis of β-Ketoesters 42
24. Imine Generation in Hexanes 44
Figure Page
25. Initial Tandem Imine-S $\mathrm{N}_{\mathrm{N}} \mathrm{Ar}$ Reaction 45
26. Tandem Imine- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction to Give 33 47
27. Tandem Reaction Using Various Primary Amines 48
28. Tandem Reaction Using Various Aromatic Aldehydes 50
29. Attempted Tandem Reaction Using Acetaldehyde 51
30. Tandem Reaction Using Acetaldehyde 52
31. Tandem Reaction Using Various Acetaldehyde Imines 53
32. Attempted Tandem Reaction Using Acetophenone 55
33. Attempted Tandem Reaction Using Pure Imine of Acetone 56
34. Tandem Imine Addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Mechanism 57
35. Alternative Mechanisms 58
36. Synthesis of 2,3-Dihydroquinolinone 64 59
37. Alkylation and Decarboxylation of $1,2,3,4$ Tetrahydroquinoline 61
38. X-ray of $\mathbf{6 7}$ 62
39. Synthesis of 2,3-Dihydroquinolinone $\mathbf{6 8}$ 63
40. X-ray of $\mathbf{6 8}$ 64

CHAPTER I

REVIEW OF TANDEM $\mathrm{S}_{\mathrm{N}} A r$ REACTIONS

Introduction

Tandem reactions are processes that involve the sequential occurrence of multiple organic reactions in a single laboratory operation. This advantage allows tandem reactions to diminish the operating cost and reduce the waste produced in an organic synthesis by minimizing the amount of solvents and reagents consumed as well as the number of purifications performed a synthesis. Many tandem reactions offer the advantage of forming several bonds through a high atom economy sequence to generate complex molecules. ${ }^{1}$ With the public's growing concern over environmental issues and a fear that chemistry could negatively influence the ecological balance, scientists must not only be focused on what to synthesize, but how it is synthesized. By minimizing the amount of side products, solvent consumption and decrease in the number of synthetic steps, tandem reactions can provide economic and ecological benefits when employed in an organic synthesis.

Tandem reactions have been reported extensively in the synthetic chemistry literature. ${ }^{2}$ Tandem reactions have been divided into several groups based on the first step of the mechanism in the reaction. These groups have included anionic, radical, pericyclic, photochemical and transition metal induced processes. Furthermore, new
methods are being reported which have included Suzuki cross couplings ${ }^{3}$ and microwave assisted reactions. ${ }^{4}$ Until recently, nucleophilic aromatic substitution $\left(\mathrm{S}_{\mathrm{N}} \mathrm{Ar}\right)$ reactions have been sparsely utilized in tandem processes.

The $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction can provide a convenient method for addition of heteroatom and carbon groups onto aromatic rings during a tandem reaction. This is accomplished through displacement of an activated aromatic halide by nucleophiles such as amines, alcohols and carbanions. These nucleophiles can come from the initial reagent used to start the tandem reaction or as an intermediate during the tandem process. There are relatively few literature examples of $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions being used in a tandem sequence. The following section gives a representative sampling of the transformations that have been reported.

Tandem $\mathbf{S}_{\mathbf{N}} \mathbf{A r}$ Amination-Reduction Reaction

Singaram and co-workers ${ }^{5}$ developed a novel tandem $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ amintation-reduction reaction through the use of lithium N, N-dialkylaminoborohydride (LAB) reagents. When 2-halobenzonitriles $\mathbf{1}$ were treated with various alkyl substituted LAB reagents, it resulted in the formation of the corresponding 2-(N, N-dialkylamino)benzylamines $\mathbf{3}$. In this reaction the LAB reagents first act as a nucleophile, resulting in a $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, followed by the evolution of BH_{3} and the lithium halide salt. The BH_{3} then reduces the aryl substituted nitrile to the benzylamine functional group. The authors studied the effects of differing the halide with the use of N, N-dimethylaminoborohydride (2) as the LAB reagent. It was found that the 2-chloro and 2-fluorobenzonitriles gave primarily the tandem products $\mathbf{3}$, but when the compound contained a bromine, the reaction gave
mainly the nitrile-reduction product, 2-bromobenzylamine (4). These observations were also seen for other alkyl substituted LAB reagents during the study.

X $=$ F Major
$\mathrm{X}=\mathrm{F}$ Minor
$\mathrm{X}=\mathrm{Cl}$ Major
$\mathrm{X}=\mathrm{Cl}$ Minor
$\mathrm{X}=\mathrm{Br}$ Minor
$\mathrm{X}=\mathrm{Br}$ Major
3

Figure 1. Benzylamines by a tandem $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ amination-reduction.

Synthesis of Tricyclic Substituted Oxazolidinones

A class of tricyclic substituted oxazolidinones, which are similar in structure to the synthetic antibiotic linezolid (5), ${ }^{6}$ have been studied for their antibacterial properties. These have included activities against Gram-positive bacteria and vancomycin-resistant enterococci. ${ }^{6}$ Selvakumar and co-workers ${ }^{7}$ utilized a tandem $\mathrm{S}_{\mathrm{N}} 2-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction in an approach to synthesize second generation, conformationally constrained, sulfur- and nitrogen-containing analogs of linezolid. Using an aromatic substituted L-prolinol derivative 6 the authors were able to react either thioacetic acid/ KOH or $\mathrm{H}_{2} \mathrm{NMe}$ to give the corresponding tricyclic tandem products $\mathbf{7}$ and $\mathbf{8}$, respectively. The nitro group was then utilized in the production of the oxazolidinone ring to give the desired conformationally constrained analogs of linezolid 9 and $\mathbf{1 0}$.

5
Linezolid

6

7 ($\mathrm{X}=\mathrm{S}$) 42\%
$8(\mathrm{X}=\mathrm{NH}) 38 \%$

Figure 2. Synthesis of linezolid analogs by a tandem $\mathrm{S}_{\mathrm{N}} 2-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

Synthesis of Functionalized Carbazoles

The carbazole ring system has been shown to exhibit many biological activities. ${ }^{8}$ Both synthetic and naturally occurring carbazole derivatives have presented antimicrobial/anti-inflammatory properties and an ability to inhibit the CDK-5 enzyme. Jean and co-workers ${ }^{3}$ were able to develop a tandem cross coupling- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction that utilized a Suzuki type reaction to make functionalized carbazole ring systems. By using aniline-derived boronic esters $\mathbf{1 1}$ and a variety of substituted dihalobenzenes 12, a microwave-assisted, palladium-catalyzed Suzuki reaction provided diaryl intermediates. These intermediates then underwent an intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to produce
functionalized carbazoles $\mathbf{1 3}$ in modest to excellent yields. N-Methylsulfonyl anilines and dihalobenzenes bearing electron-withdrawing groups were essential for the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ portion of the tandem reaction.

Figure 3. Synthesis of functionalized carbazoles by a tandem cross coupling- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

Synthesis of Unsymmetrical Diphenyl Ethers

Xu and co-workers ${ }^{9}$ developed an environmentally green, $\mathrm{K}_{2} \mathrm{CO}_{3}$-mediated tandem deprotection- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ appoarch to the synthesis of unsymmetrical diphenyl ethers by using an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ($[\mathrm{Bmim}] \mathrm{BF}_{4}$), as the solvent for the reaction. The authors were able to recover and reuse this solvent for subsequent reactions without loss of efficacy. The tandem reaction was initiated by deprotection of a phenyl methanesulfonate $\mathbf{1 4}$ using anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. Subsequently, the newly formed phenol underwent a $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction in the presence of an activated fluorobenzene 15 to give the substituted diphenyl ether 16. Using this method the authors were able to make a large number of unsymmetrically substituted diphenyl ethers in moderate to good yields. However, the reaction had to be run at high temperatures and the substituents were limited to electron withdrawing groups.

Figure 4. Synthesis of unsymmetrical diphenyl ethers by a tandem deprotection $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

Synthesis of 3,6-disubstituted-1H-pyrazolo[3,4-b]pyridines

Zhong and co-workers ${ }^{10}$ were able to prepare various 3,6-disubstituted- 1 H -pyrazolo[3,4-b]pyridines $\mathbf{2 0}$ via a tandem sequence involving a $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction followed by a hydrazine initiated $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$-pyrazole formation. The synthesis began by preparation of tandem precursors, 2,6-difluoro-3-ketopyridines 19. This was accomplished by deprotonation of 2,6-difluoropyridine $\mathbf{1 7}$ using n-butyllithium at - $60^{\circ} \mathrm{C}$, followed by quenching with a variety of Weinreb amides 18. A series of 3,6 -disubstituted- $1 H$ -pyrazolo[3,4-b]pyridines $\mathbf{2 0}$ were then prepared from the 2,6-difluoro-3-ketopyridines in moderate to good yields. The tandem reaction sequence begins by a selective nucleophilic substitution of the 6-fluoride in N, N-dimethylacetamide (DMA). This is followed by hydrazine substitution of the 2-fluoride and pyrazole formation. These transformations all occurred in a one-pot operation using very mild conditions (0° to $\left.25^{\circ} \mathrm{C}\right)$. A variety of nitrogen-, oxygen- and sulfur-containing nucleophiles were utilized in the initial nucleophilic substitution of the 6-fluoro to expand the number of potential compounds possible by this tandem reaction sequence.

Figure 5. Synthesis of 3,6-disubstituted-1H-pyrazolo[3,4-b]pyridines.

Tandem Reductive Amination- $\mathbf{S}_{\mathbf{N}} \mathbf{A r}$ Reaction

Recently Bunce and Nago developed a set of conditions that would generate 5-nitro-2,3-dihydro- $1 H$-indoles through a tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. ${ }^{11}$ Using this methodology the authors were also able to synthesize 6-nitro-1,2,3,4tetrahydroquinolines. ${ }^{12}$ Both reports used easily synthesized fluorobenzene derivatives bearing appropriately placed carbonyl side chains $\mathbf{2 1}$ and 22. The addition of a primary amine and sodium cyanoborohydride initiated a reductive amination reaction. The amine containing intermediates then underwent a intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. The authors were able to generate a series of 5-nitro-2,3-dihydro- 1 H -indoles products $\mathbf{2 3}$ when $\mathrm{n}=1$ and, a series of 1-alkyl-6-nitro-1,2,3,4-tetrahydroquinolines 24 when $\mathrm{n}=2$.

Figure 6. Synthesis of 2,3-dihydro-1H-indoles and 1,2,3,4-tetrahydroquinolines.
In both cases, it was found that branching at the α-carbon of the primary amines greatly reduced the yields of the final tandem products. This was believed to be caused by an increase in steric hindrance of the incoming amine. This steric hindrance led to the
isolation of uncyclized compounds in the cases of cyclohexyl- and tert-butylamines which were unable to complete the tandem reaction to form the corresponding heterocycle products.

6-NITRO-1,2,3,4-TETRAHYDROQUINOLINE-4-CARBOXYLIC ESTERS AND 7-NITRO-3,4-DIHYDROQUINOXALINE-1(2H)-CARBOXYLIC ESTERS BY A TANDEM REDUCTIVE AMINATION-S ${ }_{N} A r$ REACTION

Introduction

Earlier work in our laboratory included the development of a tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to prepare tetrahydroquinolines. ${ }^{12}$ It was envisioned that this tandem reaction could be expanded to include ester-substituted 1,2,3,4tetrahydroquinolines and 3,4-dihydroquinoxalines. Tetrahydroquinolines have shown useful activities in the treatment of inflammatory diseases such as asthma. ${ }^{13}$ A recent report has revealed that certain 2-substituted-6-nitro-1,2,3,4-tetrahydroquinolines promote increased bone mineral density in rats and thus may have potential for the treatment of osteoporosis. ${ }^{14}$ These compounds include the SARM candidates ${ }^{15}$ S-40503 (1), and 2-methyl-2-(8-nitro-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-4-yl)propan-1-ol (2) that bind to the androgen receptor with nanomolar affinity.

1
S-40503

2
2-methyl-2-(8-nitro-3a,4,5,9b-tetrahydro3 H -cyclopenta[c]quinolin-4-yl)propan-1-ol

Figure 1. Tetrahydroquinoline SARM candidates.
In addition, dihydroquinoxaline derivatives have been shown to express useful activity as anticancer drugs ${ }^{16}$ and as cell adhesion agents. ${ }^{17}$ Mukhopadhyay showed that (E)-tetrahydroquinoxaline $\mathbf{4}$ could be formed through a regio- and stereoselective palladium-catalyzed heterocyclization of tosylamide $\mathbf{3}$ with aryl iodides. ${ }^{18}$ The cyclization takes place in good yields using $\mathrm{Pd}(\mathrm{OAc})_{2}$ as the catalyst in the presence of $\mathrm{Bu}_{4} \mathrm{NBr}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$.

Figure 2. Synthesis of (E)-tetrahydroquinoxalines.

The tandem reductive amination $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction may provide a new route to $3,4-$ dihydrobenzoxazines. Dihydrobenzoxazines have demonstrated activity as antihypertensives with (S)- N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-3,4-dihydro-4-methyl-2 H -1,4-benzoxazine-8-carboxamide ${ }^{19}(\mathbf{5})$ and neuroprotective agents including S24429 (6) and S24718 (7). ${ }^{20}$

5
(S)-N-(1-azabicyclo[2.2.2]oct-3-yl)-6-chloro-3,4-dihydro-4-methyl-2H-1,4-benzoxazine-8carboxamide

6
S 24429

7
S 24718

Figure 3. Biologically active dihydrobenzoxazines.

To synthesize the 1,2,3,4-tetrahydroquinolines, 3,4-dihydroquinoxalines and 3,4dihydrobenzoxazines with a tandem reductive amination $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$, reaction the substrates required should be trisubstituted aromatic systems, bearing a 3-oxo side-chain at C 1 , a F (or Cl) at C 2 and a NO_{2} group at C 5 (see Figure 4). This system could then undergo the tandem reaction with a primary amine.

Figure 4. Needed substrates for tandem reaction.

The electronic nature of the atom linkage at the C 1 position was anticipated to be a critical factor for success in the final $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ ring closure. While the alkyl side chain of the tetrahydroquinoline precursors should not pose a problem, the alkylamino group in the dihydroquinoxaline precursors and the alkoxy side chain in the dihydrobenzoxazines precursor would deactivate the ring toward the final $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ cyclization by creating an electron rich aromatic system. In the dihydroquinoxaline precursors, the electron donating character of the nitrogen could be decreased by altering the side-chain nitrogen as a carbamate. Derivatization, however, would not be possible in the case of the dihydrobenzoxazine precursors, and we anticipated difficulties in the ring closure step using these substrates.

Results

Synthesis of Precursors

The precursors needed for synthesizing the 1,2,3,4-tetrahydroquinolines were prepared from methyl 2-fluoro-5-nitrophenylacetate (9) which was available by esterification of 2-(2-fluoro-5-nitrophenyl)acetic acid (8). ${ }^{21}$ The acidity of the benzylic CH allowed for deprotonation and allylation α to the aromatic ring. Thus, alkylation using 3-iodo-1-propene or 3-iodo-2-methyl-1-propene generated $\mathbf{1 0}$ and 11, respectively. Ozonolysis ${ }^{22}$ then converted the side-chain double bonds to the necessary carbonyl containing precursors $\mathbf{1 2}$ and $\mathbf{1 3}$, respectively.

Figure 5. Preparation of the tetrahydroquinoline precursors.

The 3,4- dihydroquinoxaline precursors were generated from 2-fluoro-5-
nitroaniline (14). First, the amine group of the aromatic ring was converted to a methyl carbamate (15) using pyridine and methyl chloroformate. Conversion to the carbamate decreases the electron donating character of the nitrogen that would tend to deactivate the ring toward the final $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ cyclization. Deprotonation of the carbamate NH allowed alkylation by 3-iodo-1-propene or 3-iodo-2-methyl-1-propene to generate $\mathbf{1 6}$ and 17, respectively. The side-chain double bonds were then subjected to ozonolysis resulting in the desired nitrogen precursors 18 and 19.

$16\left(\mathrm{R}^{1}=\mathrm{H}\right) \quad 84-89 \%$
$18\left(\mathrm{R}^{1}=\mathrm{H}\right)$
$17\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right)$
$19\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right)$

Figure 6. Preparation of the dihydroquinoxaline precursors.

Lastly, a dihydrobenzoxazine precursor was also prepared. Unfortunately the 2-fluoro-5-nitrophenol was not commercially available and attempts to generate it by a Schiemann reaction ${ }^{23}$ failed. Thus commercial 2-chloro-5-nitrophenol 20 was used instead. ${ }^{24}$ The phenol was deprotonated using $\mathrm{K}_{2} \mathrm{CO}_{3}$ and alkylated with 3-iodo-2-methyl-1-propene to give 21. Ozonolysis again converted the side-chain double bond to the necessary ketone precursor $\mathbf{2 2}$.

20
21

Figure 7. Preparation of the dihydrobenzoxazine precursor.

Conducting the Tandem Reductive Amination- $\mathbf{S}_{\mathrm{N}} \mathbf{A r}$ Reaction

Once the substrates were available, investigation of the tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction was initiated. Beginning with the synthesis of tetrahydroquinolines, the aldehyde precursor $\mathbf{1 2}$ was the first substrate to be examined. Reaction conditions were based on the work of Bunce and Nago. ${ }^{12}$ The reaction was carried out by dissolving 1.00 eq of the carbonyl compound $\mathbf{1 2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ and adding 1.20 eq of benzylamine. The solution was stirred for 30 min , followed by addition of a total of 1.40 eq of $\mathrm{NaBH}_{3} \mathrm{CN}$ in three approximately equal portions over 30 minutes. The use of excess $\mathrm{NaBH}_{3} \mathrm{CN}$ insured that the reductive amination reaction would occur allowing for the subsequent nucleophilic aromatic substitution. The target molecule 23a was isolated after workup in a yield of 90%. A series of primary amines was then used in the tandem reaction to give products $\mathbf{2 3 b} \mathbf{- d}$. The results from these reactions are given in Table 1.

Figure 8. Tandem reductive amination $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to prepare tetrahydroquinolines.

R^{2}	product	yield (\%)
$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{2 3 a}$	90
$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{2 3 b}$	74
$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{2 3 c}$	89
$c-\mathrm{C}_{6} \mathrm{H}_{11}$	23d	70

Table 1. Tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to prepare tetrahydroquinolines.

The ketone precursor $\mathbf{1 3}$ for the tetrahydroquinolines was reacted in the same manner. Unlike the aldehyde precursor, the ketone precursor introduced an additional stereocenter at the 2 position of the ring in the final product. It was our hope that the product would exhibit a preferred orientation in the formation of the stereocenters. However, the first reaction with benzylamine yielded a mixture of inseparable cis and trans stereoisomers $\mathbf{2 4 a}$ and $\mathbf{2 4 b}$. Based on this result, further reactions were not pursued with the ketone precursor 13.

Figure 9. Ring closure of ketone precursor.

Continuing to develop the tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, the dihydroquinoxaline precursors $\mathbf{1 8}$ and 19 were treated in the same manner with the series of primary amines to give the products 25a-d and 26a-d, respectively. In the case of the ketone precursor 19the lack of stereoselectivity that plagued the tetrahydroquinoline analog was no longer a factor. Reactions with the aldehydes generally gave lower yields than the ketones. This is because the aldehyde precursor 18 generally yielded 5-20\% of the simple reductive amination product in addition to the ring-closed product. Adjustment of the reaction conditions and stoichiometry of reagents had little effect on this outcome. In addition, when the R group of the amine was a secondary alkyl group, the yields were diminished in both cases as demonstrated in Table 2.

$$
\begin{array}{ll}
\mathbf{1 8}\left(\mathrm{R}^{1}=\mathrm{H}\right) \\
\mathbf{1 9}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}\right) & \mathbf{2 5 a}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right) \\
& \mathbf{2 5 b}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right) \\
& \mathbf{2 5 c}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=i-\mathrm{C}_{4} \mathrm{H}_{9}\right) \\
& \mathbf{2 5 d}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=c-\mathrm{C}_{6} \mathrm{H}_{11}\right) \\
& \\
& \mathbf{2 6 a}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right) \\
& \mathbf{2 6 b}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=n-C_{6} \mathrm{H}_{13}\right) \\
& \mathbf{2 6 c}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=i-C_{4} \mathrm{H}_{9}\right) \\
& \mathbf{2 6 d}\left(\mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=c-C_{6} \mathrm{H}_{11}\right)
\end{array}
$$

Figure 10. Tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to prepare dihydroquinoxalines.

R^{1}	R^{2}	product	yield (\%)
H	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{2 5 a}$	52
H	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{2 5 b}$	62
H	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{2 5 c}$	55
H	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	$\mathbf{2 5 d}$	36
CH_{3}	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{2 6 a}$	83
CH_{3}	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{2 6 b}$	69
CH_{3}	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{2 6 c}$	75
CH_{3}	$c-\mathrm{C}_{6} \mathrm{H}_{11}$	$\mathbf{2 6 d}$	57

Table 2. Tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to prepare tetrahydroquinoxalines.

Finally, an attempt to close a dihydrobenzoxazine ring using the oxygencontaining precursor $\mathbf{2 2}$ with benzylamine was made. From this substrate, we observed only the simple reductive amination product $\mathbf{2 8}$ (46\%), along with recovered starting
material (28%); none of the desired product 27 was formed. In an attempt to facilitate closure of the simple reductive amination product $\mathbf{2 8}$, the reaction was rerun at $50^{\circ} \mathrm{C}$. However, none of the ring-closed product was formed from the reaction. This is presumably due to the unfavorable electronics created by the electron donating ether group on the aromatic ring. Unfortunately the less reactive chlorine group could not be replaced with the more electronegative fluorine group as the fluoronitroaromatic substrate was not commercially available and could not be prepared by the Schiemann reaction. ${ }^{23}$

Figure 11. Attempted synthesis of dihydrobenzoxazine.

Conclusion

A tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction was developed to synthesize 1,2,3,4tetrahydroquinolines bearing an ester functional group at the 4 position. The nitrogen analogs, 3,4-dihydroquinoxalines, bearing carbamate protection at N 1 , has also been prepared. However, the oxygen-containing 3,4-dihydrobenzoxazines were not available by this method. It is, thus, essential for the reactants to contain an electron deficient aromatic system bearing a donating group in order for the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to occur. In the case where electron deficiency was not possible, the reaction failed to close the heterocyle in the final step.

The reaction is also sensitive to steric hindrance in the amine. When the amine had an alkyl group branched α to the amine N , the reaction yields were reduced. Though the current approach to the tetrahydroquinoline systems is not as diastereoselective as the earlier-reported reduction-reductive amination, ${ }^{22}$ it does offer a relatively direct route to the title compounds.

Experimental Section

All reactions were run in dry glassware under N_{2}. The saturated $\mathrm{NH}_{4} \mathrm{Cl}$, saturated $\mathrm{NaCl}, 5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and 0.5 M HCl , used in work-up procedures refer to aqueous solutions. Reactions were monitored by TLC on silica gel GF plates (Analtech 21521).

Preparative separations were performed by one of the following methods: (1) flash column chromatography on silica gel (grade 62, 60-200 mesh) containing UVactive phosphor (Sorbent Technologies UV-05) packed into quartz columns or (2) PTLC on $20-\mathrm{cm} \times 20-\mathrm{cm}$ silica gel GF plates (Analtech No 02015). Band elution for all chromatographic separations was monitored using a hand-held UV lamp. Melting points were uncorrected. IR spectra were run as thin films on NaCl disks. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} at 300 MHz and 75 MHz , respectively, using $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ as the internal standard; coupling constants (J) are given in Hz . Mass spectra (EI/DP) were obtained at 70 eV .

Methyl 2-Fluoro-5-nitrophenylacetate (9).

A solution of 2-fluoro-5-nitrophenylacetic acid (8) $)^{25}(5.00 \mathrm{~g}, 25.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(100$ mL) containing 2 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was refluxed for 24 h , and then cooled, concentrated, poured into ice water and extracted with ether (3x). The combined ether extracts were washed with $5 \% \mathrm{NaHCO}_{3}(2 x)$ and saturated $\mathrm{NaCl}(1 \mathrm{x})$, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to give the ester as a light yellow oil that slowly crystallized. The crude solid was triturated with 1% ether in pentane and filtered
to give $9(4.74 \mathrm{~g}, 89 \%)$ as a light yellow solid; mp $52-55^{\circ} \mathrm{C}$: IR: $1743,1529,1350,1250$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.22(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ (s, 3 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR: $\delta 169.7,164.6(\mathrm{~d}, J=257.9 \mathrm{~Hz}), 144.1,127.5(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 125.1$ $(\mathrm{d}, J=10.7 \mathrm{~Hz}), 123.1(\mathrm{~d}, J=18.3 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 34.0$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}) ; \mathrm{MS}: m / z 213\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FNO}_{4}$: C, $50.70 ; \mathrm{H}, 3.76$; N, 6.57. Found: C, $50.73 ; \mathrm{H}, 3.77 ; \mathrm{N}, 6.53$.

Methyl N-(2-Fluoro-5-nitrophenyl)carbamate (15).

To a stirred solution of 2-fluoro-5-nitroaniline (14) (5.00 g, 32.0 mmol$)$ in pyridine (50 mL)at $0^{\circ} \mathrm{C}$ was slowly added methyl chloroformate ($3.35 \mathrm{~g}, 2.74 \mathrm{~mL}, 35.4 \mathrm{mmol}$) over 30 min . The reaction was stirred for 2 h with gradual warming to $22{ }^{\circ} \mathrm{C}$. The crude reaction mixture was added to water and ether extracted (3x). The combined ether extracts were washed with 0.5 MHCl (4x), water (1x) and NaCl (1x) and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to give a brown powder. Trituration of this solid with ether gave $\mathbf{1 5}(5.75 \mathrm{~g}, 91 \%)$ as tan crystals; $\mathrm{mp} 116-118{ }^{\circ} \mathrm{C}\left(\mathrm{lit}^{26} \mathrm{mp} 116-118\right.$ ${ }^{\circ} \mathrm{C}$). IR: 3401, 1740, 1533, 1348, $1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.08(\mathrm{br} \mathrm{d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (ddd, $J=9.1,4.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3$ H); ${ }^{13} \mathrm{C}$ NMR: $\delta 154.9(\mathrm{~d}, J=254.1 \mathrm{~Hz}), 153.1,144.7,127.5(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 118.9(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=22.1 \mathrm{~Hz}) ; \mathrm{MS}: m / z .214\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{FN}_{2} \mathrm{O}_{4}$: C, 44.86; H, 3.27; N, 13.08. Found: C, 44.77; H, 3.31; H, 13.16.

Representative Alkylation Procedure for the Ester: Methyl 2-(2-Fluoro-5-nitrophenyl)-4-pentenoate (10).

The general procedure of Makosza and Tyrala was followed. ${ }^{27}$ In a $100-\mathrm{mL}$, threenecked, round-bottomed flask, a solution of $9(1.07 \mathrm{~g}, 5.00 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(10$ $\mathrm{mL})$ was added to a suspension of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(5.80 \mathrm{~g}, 42.0 \mathrm{mmol})$ and 18-crown-6 $(10 \mathrm{mg})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$. To the resulting red mixture was added $1.01 \mathrm{~g}(0.55$ $\mathrm{mL}, 6.00 \mathrm{mmol}$) of 3-iodo-1-propene. The reaction was stirred under reflux for 6 h and then cooled to $22{ }^{\circ} \mathrm{C}$ and filtered to remove the solids. The solids were washed with ether and the filtrate was concentrated under vacuum. The remaining oil was purified by flash chromatography on a $30 \mathrm{~cm} \times 2 \mathrm{~cm}$ silica gel column eluted with 5-10\% ether in hexanes to give $\mathbf{1 0}(1.15 \mathrm{~g}, 91 \%)$ as a light yellow oil. IR: $1738,1646,1529,1350,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.30(\mathrm{dd}, J=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{ddd}, J=9.0,4.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{ddt}, J=17.0,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1$ H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 171.9,164.0(\mathrm{~d}, J=257.9$ $\mathrm{Hz}), 144.4,133.7,127.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 124.8(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, $118.2,116.5(\mathrm{~d}, J=25.1 \mathrm{~Hz}), 52.5,43.5,36.3 ; \mathrm{MS}: m / z 253\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FNO}_{4}$: C, 56.92; H, 4.74; N, 5.53. Found: C, 56.99; H, 4.77; N, 5.49.

Methyl 2-(2-Fluoro-5-nitrophenyl)-4-methyl-4-pentenoate (11).

Ester $11(1.20 \mathrm{~g}, 90 \%)$ was prepared as above from $9(1.07 \mathrm{~g}, 5.00 \mathrm{mmol})$ and 3-iodo-2-methyl-1-propene $(1.09 \mathrm{~g}, 6.00 \mathrm{mmol})$ isolated asa light yellow oil. IR: $1738,1651,1533$,
$1350,1248 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 8.32(\mathrm{dd}, J=6.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.88$ (dd, $J=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 172.2$, $164.0(\mathrm{~d}, J=257.1 \mathrm{~Hz}), 144.3,141.1,127.5(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 125.5(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 124.6$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=25.9 \mathrm{~Hz}), 113.5,52.5,42.0,40.3,22.0 ; \mathrm{MS}: m / z 267\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{4}$: C, 58.42; H, 5.24; N, 5.24. Found: C, 58.49; H, 5.26; N, 5.18 .

Representative Alkylation Procedure for the Amide: Methyl \boldsymbol{N}-(2-Fluoro-5-nitrophenyl)- N -(2-propenyl)carbamate (16).

In a $50-\mathrm{mL}$, three-necked, round-bottomed flask was placed $60 \% \mathrm{NaH}$ in mineral oil $(0.24 \mathrm{~g}, 6.00 \mathrm{mmol})$ which was washed with hexanes (3 x) and suspended in dry DMF $(15 \mathrm{~mL})$. To the stirred suspension at $22{ }^{\circ} \mathrm{C}$ was slowly added a solution of $\mathbf{1 5}(1.07 \mathrm{~g}$, 5.00 mmol) in dry DMF (5 mL). Stirring was continued for 30 min and a solution of 3-iodo-1-propene ($1.01 \mathrm{~g}, 0.55 \mathrm{~mL}, 6.00 \mathrm{mmol}$) in dry DMF (1 mL) was added. The reaction was stirred for 8 h at $22{ }^{\circ} \mathrm{C}$, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether (3x). The combined ether extracts were washed with $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (1x) and saturated $\mathrm{NaCl}(1 \mathrm{x})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum. The crude yellow oil $16(1.19 \mathrm{~g}, 93 \%)$ was spectroscopically pure and was used directly in the next reaction. IR: $1718,1643,1528,1348,1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.20(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{t}, J=8.9 \mathrm{~Hz}, 1$ H), 5.86 (ddt, $J=17.4,10.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 161.2(\mathrm{~d}, J=261.1 \mathrm{~Hz}), 155.0$,
144.1, 132.4, $130.2,125.7(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 118.7,117.1(\mathrm{~d}, J=23.2$ Hz), 53.5, 52.7; MS: $m / z 254\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{4}$: C, 51.97; H, 4.36; N, 11.02. Found: C, 51.89; H, 4.39; N, 11.18 .

Methyl N-(2-Fluoro-5-nitrophenyl)- N-(2-methyl-2-propenyl)carbamate (17).

Ester $\mathbf{1 7}(1.18 \mathrm{~g}, 88 \%)$ was prepared as above from $\mathbf{1 5}(1.07 \mathrm{~g}, 5.00 \mathrm{mmol})$ and 3-iodo-2-methyl-1-propene $(1.09 \mathrm{~g}, 6.00 \mathrm{mmol})$ isolated asa yellow oil. IR: $1723,1659,1533$, $1348,1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.18(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.78$ (s, 1 H), $4.26(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 162.0(\mathrm{~d}, J=261.0 \mathrm{~Hz})$, $155.2,144.1,140.1,130.1,125.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 124.2(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=$ $23.5 \mathrm{~Hz}), 114.0,55.7,53.5,19.9 ; \mathrm{MS}: m / z 268\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{4}$: C, 53.69; H, 4.89; N, 10.44. Found: C, 53.58; H, 4.86; N, 10.52.

1-Chloro-2-(2-methyl-2-propenyloxy)-4-nitrobenzene (21).

To a $100-\mathrm{mL}$, three-necked, round-bottomed flask, a solution of 2- chloro-5-nitrophenol $(\mathbf{2 0})^{24}(0.87 \mathrm{~g}, 5.00 \mathrm{mmol})$ in 10 mL of dry acetone was added to a suspension of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(5.80 \mathrm{~g}, 42.0 \mathrm{mmol})$ in dry acetone $(25 \mathrm{~mL})$. To the resulting mixture was added 3-iodo-2-methyl-1-propene ($1.09 \mathrm{~g}, 6.00 \mathrm{mmol}$). The reaction was stirred under reflux for 6 h , then cooled to $22{ }^{\circ} \mathrm{C}$ and filtered to remove the solids. The solids
were washed with ether and the filtrate was concentrated under vacuum. The remaining oil was purified by flash chromatography on a $30 \mathrm{~cm} \times 2 \mathrm{~cm}$ silica gel column eluted with 5-10\% ether in hexanes to give $21(0.98 \mathrm{~g}, 92 \%)$ as a light yellow oil that solidified on standing; mp 59-60 ${ }^{\circ} \mathrm{C}$. IR: 1652, $1528,1353 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.80(\mathrm{dd}, J=8.5,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=1.3,0.9 \mathrm{~Hz}, 1$ H), $5.07(\mathrm{dd}, J=2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 154.4,147.1$, $139.0,130.4,116.3,113.94,113.93,108.1,73.0,19.2$, MS: $m / z 227,229\left(c a 3: 1, \mathrm{M}^{+}\right)$ Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}_{3}$: C, 52.75; H, 4.40; N, 6.15. Found: C, 52.81; H, 4.44; N6.11.

Representative Ozonolysis Procedure: Methyl 2-(2-Fluoro-5-nitrophenyl)-4-

 oxobutanoate (12).The general procedure of Bunce and co-workers was adapted. ${ }^{22}$ In a $250-\mathrm{mL}$, roundbottomed flask, a solution of $\mathbf{1 0}(1.00 \mathrm{~g}, 3.95 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(100 \mathrm{~mL})$ was ozonized at $-78^{\circ} \mathrm{C}$ until TLC indicated complete consumption of the starting material. Excess ozone was purged with a stream of dry N_{2}, and dimethyl sulfide ($5.00 \mathrm{~g}, 5.91 \mathrm{~mL}, 80.6$ mmol) was added. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$, and acetic acid (5 mL) was added. The solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then warmed to $22^{\circ} \mathrm{C}$ and stirred for 8 h . The reaction was concentrated, diluted with ether, washed with $5 \% \mathrm{NaHCO}_{3}$ (3x) and saturated $\mathrm{NaCl}(1 \mathrm{x})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the ether gave $\mathbf{1 2}(0.94 \mathrm{~g}, 93 \%)$ as a light yellow oil that solidified on standing; mp $63-64{ }^{\circ} \mathrm{C}$. The crude product was spectroscopically pure and was used directly in the next reaction. IR: 2842, 2731, 1738,

1724, 1530, 1350, $1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=8.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=18.8,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91 (dd, $J=18.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 198.0,171.3,163.8(\mathrm{~d}, J=257.9 \mathrm{~Hz})$, $144.4,127.0(\mathrm{~d}, J=16.8 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}) .125 .3(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 116.9(\mathrm{~d}, J=$ $24.4 \mathrm{~Hz}), 52.9,45.3,38.2$; MS: $m / z 255\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}_{5}$: C, 51.76; H, 3.92; N, 5.49. Found: C, 51.81; H, 3.93; N, 5.45.

Methyl 2-(2-Fluoro-5-nitrophenyl)-4-oxopentanoate (13).

Ester $\mathbf{1 3}$ ($0.96 \mathrm{~g}, 95 \%$) was prepared as above from $\mathbf{1 1}(1.00 \mathrm{~g}, 3.75 \mathrm{mmol})$ isolated asa yellow oil. IR: $1738,1717,1533,1350,1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.19(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=8.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dd}, J=18.8,8.8 \mathrm{~Hz}, 1$ H), $2.80(\mathrm{dd}, J=18.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 204.7$, 171.7, $163.9(\mathrm{~d}, J=$ $258.6 \mathrm{~Hz}), 144.6,127.4(\mathrm{~d}, J=17.5 \mathrm{~Hz}), 125.6(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 125.1(\mathrm{~d}, J=9.9 \mathrm{~Hz})$, $116.7(\mathrm{~d}, J=24.4 \mathrm{~Hz}), 52.8,45.1,39.5,29.8 ; \mathrm{MS}: m / z 269\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{FNO}_{5}$: C, 53.53; H, 4.46; N, 5.20. Found: C, 53.61; H, 4.44; N, 5.11.

Methyl N -(2-Fluoro-5-nitrophenyl)- N -(2-oxoethyl)carbamate (18).

Ester $\mathbf{1 8}(0.85 \mathrm{~g}, 84 \%)$ was prepared as above from $\mathbf{1 6}(1.00 \mathrm{~g}, 3.95 \mathrm{mmol})$ isolated asa yellow oil. IR: 1713, 1533, 1352, $1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
$8.21(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 196.2$, $161.4(\mathrm{~d}, J=260.8 \mathrm{~Hz}), 155.0,144.0,130.1,125.7,124.6(\mathrm{~d}, J=8.9 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=$ $23.2 \mathrm{~Hz}), 59.1,53.9$; MS: $m / z 256\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 46.88; H, 3.54; N, 10.93. Found: C, 47.02; H, 3.59; N, 10.82.

Methyl N-(2-Fluoro-5-nitrophenyl)- N-(2-oxopropyl)carbamate (19).

Ester $19(0.90 \mathrm{~g}, 89 \%)$ was prepared as above from $17(1.00 \mathrm{~g}, 3.73 \mathrm{mmol})$ isolated asa yellow solid; $\mathrm{mp} 98-100{ }^{\circ} \mathrm{C}$. IR: $1718,1533,1348,1256 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 8.37$ (br s, 1 H), 8.18 (ddd, $J=9.2,4.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{br}$ s, 3 H), $2.20(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR: $\delta 202.0,161.5(\mathrm{~d}, J=260.8 \mathrm{~Hz}), 155.0,144.1,130.3$, $126.1,124.5(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 117.1(\mathrm{~d}, J=23.2 \mathrm{~Hz}), 58.9,53.8,26.8 ; \mathrm{MS}: m / z 270\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 48.89; H, 4.10; N, 10.37. Found: C, 48.92; H, 4.10; N, 10.36 .

1-(2-Chloro-5-nitrophenoxy)-2-propanone (22).

Ester 22 ($0.95 \mathrm{~g}, 94 \%$) was prepared as above from $21(1.00 \mathrm{~g}, 4.38 \mathrm{mmol})$ isolated asa yellow solid; mp $85-87{ }^{\circ} \mathrm{C}$. IR: $1728,1525,1348 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.86$ (dd, $J=8.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR: $\delta 202.7,153.6,147.1,130.8,130.5,117.3,107.9,73.4,26.7 ;$ MS: $m / z 229$, 231 (ca 3:1, M^{+})

Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClNO}_{4}$: C, 47.06; H, 3.49; N, 6.10. Found: C, 47.11; H, 3.52; N, 6.07.

Representative Procedure for Reductive Amination-S $\mathbf{S A}_{\mathbf{N}} \mathbf{A r}$ Cyclizations: (\pm)-Methyl 1-Benzyl-6-nitro-1,2,3,4-tetrahydroquinoline-4-carboxylate (23a).

The procedure of Bunce and Nago was used. ${ }^{28}$ In a $50-\mathrm{mL}$, one-necked, round-bottomed flask, a solution of $\mathbf{1 2}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and benzylamine ($51 \mathrm{mg}, 0.52 \mathrm{~mL}, 0.47$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(4 \mathrm{~mL})$ was stirred for 30 min , and $\mathrm{NaBH}_{3} \mathrm{CN}(21 \mathrm{mg}, 0.33 \mathrm{mmol})$ was added. This was followed by two additional portions of $\mathrm{NaBH}_{3} \mathrm{CN}(7 \mathrm{mg}, 0.11 \mathrm{mmol})$ at 12 h intervals. Stirring was continued for 48 h , and the crude reaction mixture was added to saturated NaCl and extracted with ether (3x). The combined ether extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under vacuum and purified by PTLC using 20\% ether in hexanes. Band 1 gave 23a ($114 \mathrm{mg}, 90 \%$) as a yellow oil. IR: $1734,1522,1348 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: δ $8.06(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.89$ (apparent $\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.44$ (dddd, $J=12.6,4.8,3.7$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dq}, J=13.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{ddt}, J=13.5,11.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 173.2,149.8,136.7,136.0,129.0,127.5,126.7,126.1,125.5,117.1,110.2,55.0$, 52.5, 46.7, 42.1, 23.4; MS: $m / z 235\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 66.26; H, 5.52; $\mathrm{N}, 8.59$. Found: C, 66.33; H, 5.56; N, 8.51 .
(\pm)-Methyl 1-Hexyl-6-nitro-1,2,3,4-tetrahydroquinoline-4-carboxylate (23b).

Racemic ester 23b ($92 \mathrm{mg}, 74 \%$) was prepared as above from 12 ($100 \mathrm{mg}, 0.39 \mathrm{mmol}$) and hexylamine ($47 \mathrm{mg}, 0.062 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow solid; $\mathrm{mp} 60-62{ }^{\circ} \mathrm{C}$. IR: 1735, 1522, $1346 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.02(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=9.9, \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ (apparent $\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{td}, J=12.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 3 \mathrm{H})$, $2.33(\mathrm{dq}, J=13.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{ddt}, J=13.6,11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.33(\mathrm{~m}, 6 \mathrm{H}), 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}: \delta 173.3,149.5,135.9,126.9,125.5$, 116.7, 109.5, 52.4, 51.7, 46.2, 41.9, 31.5, 26.6, 26.2, 23.2, 22.5, 13.9; MS: $m / z 249$ $\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.75; H, 7.50; N, 8.75. Found: C, 63.74; H, 7.51; N, 8.73.

(\pm)-Methyl 1-Isobutyl-6-nitro-1,2,3,4-tetrahydroquinoline-4-carboxylate (23c).

Racemic ester 23c (101 mg, 89\%) was prepared as above from $\mathbf{1 2}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and isobutylamine ($34 \mathrm{mg}, 0.047 \mathrm{~mL}, 0.47 \mathrm{mmol}$)isolated asa yellow oil. IR: 1735, 1522, $1347 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.02(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}$, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81($ apparent $\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{td}, J=11.7,3.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.36(\mathrm{dm}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{ddd}, J=23.6,14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{dq}, J$ $=13.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (nonet, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.98 (ddt, $J=13.6,11.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}$), $0.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 173.3,149.8,135.9$, $126.9,125.3,116.7,109.9,59.4,52.4,47.4,42.0,26.7,23.2,20.2,20.1 ;$ MS: $m / z 249$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 61.64; H, 6.85; N, 9.59. Found: C, 61.75; H, 6.88; N, 9.53.

(\pm)-Methyl 1-Cyclohexyl-6-nitro-1,2,3,4-tetrahydroquinoline-4-carboxylate (23d).

 Racemic ester 23d ($87 \mathrm{mg}, 70 \%$) was prepared as above from $12(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and cyclohexylamine ($47 \mathrm{mg}, 0.054 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow solid; $\mathrm{mp} 73-75$ ${ }^{\circ} \mathrm{C}$. IR: $1735,1511,1326 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.01(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (apparent $\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{dm}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1$ H), $3.36(\mathrm{td}, J=12.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dq}, J=13.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.69$ (complex, 6 H), 1.62-1.30 (complex, 3 H), 1.26-1.09 (complex, 2 H); ${ }^{13} \mathrm{C}$ NMR: $\delta 173.2$, 149.7, $135.6,126.9,125.5,117.5,109.6,57.4,52.3,42.3,38.8,29.7,29.4,25.9,25.7,25.5$, 23.5; MS: m/z $318\left(\mathrm{M}^{+}\right)$.Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 64.13; H, 6.97; N, 8.80. Found: C, 64.17; H, 6.99; N, 8.76 .

Methyl 4-Benzyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (25a).

Ester $\mathbf{2 5 a}$ ($66 \mathrm{mg}, 52 \%$) was prepared as above from $\mathbf{1 8}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and benzylamine ($51 \mathrm{mg}, 0.052 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow solid; $\mathrm{mp} 102-103{ }^{\circ} \mathrm{C}$. IR: 1709, 1522, $1330 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.41$ (br s, 1 H$), 7.86(\mathrm{dd}, J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38-7.25 (complex, 3 H), 7.18 (d, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2$ H), $3.92(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}: \delta 154.3$,
$143.4,136.9,135.7,129.1,127.7,126.2,123.1,122.2,120.7,110.1,54.7,53.5,49.2$, 40.7; MS: $m / z 236\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 62.39; H, 5.20; $\mathrm{N}, 12.84$. Found: C, 62.42; H, 5.23; N, 12.81.

Methyl 4-Hexyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (25b).

Ester 25b ($78 \mathrm{mg}, 62 \%$) was prepared as above from $\mathbf{1 8}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and hexylamine ($47 \mathrm{mg}, 0.062 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow oil. IR: 1710, 1522, 1331 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{HNMR} \delta 8.35(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38$ (apparent $\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.63 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.40-1.28 (complex, 6 H), 0.90 (distorted $\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 155.1,143.1,136.2,125.5,122.3,120.8,109.3,53.5,51.6$, 48.8, 40.5, 31.5, 26.6, 26.3, 22.6, 14.0; MS: $\mathrm{m} / \mathrm{z} 250\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 59.81; H, 7.17; N, 13.08. Found: C, 59.90; H, 7.14; N, 12.99.

Methyl 4-Isobutyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (25c).

Ester 25c ($63 \mathrm{mg}, 55 \%$) was prepared as above from $\mathbf{1 8}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and isobutylamine ($34 \mathrm{mg}, 0.047 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow oil. IR: 1709, 1524, $1328 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.92$ (dd, $\left.J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.61(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.51(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~d}, 2 \mathrm{H}, J$
$=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.14$ (nonet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 154.4$, $143.4,136.3,122.6,122.1,120.9,109.8,59.5,53.5,50.1,40.4,26.8,20.3 ;$ MS: $m / z 250$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 57.34; H, 6.48; N, 14.33. Found: C, 57.27; H, 6.44; N, 14.38.

Methyl 4-Cyclohexyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (25d).

Ester $\mathbf{2 5 d}(45 \mathrm{mg}, 36 \%)$ was prepared as above from $\mathbf{1 8}(100 \mathrm{mg}, 0.39 \mathrm{mmol})$ and cyclohexylamine ($47 \mathrm{mg}, 0.054 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow oil. IR: 1710, 1518, $1329 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.33(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{tt}, J=11.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{t}, J$ $=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.70($ complex, 5 H$), 1.58-1.32($ complex, 3 H$), 1.20(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 154.2,143.4,135.9,123.3,122.4,120.9,109.5,57.1,53.4,42.2,40.7,29.4$, 25.7, 25.5; MS: $m / z 319\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 60.18; H, 6.58; $\mathrm{N}, 13.17$. Found: C, $60.31 ; \mathrm{H}, 6.62 ; \mathrm{N}$, 13.05.

(\pm)-Methyl 4-Benzyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate

 (26a).Racemic ester 26a (110 mg, 83\%) was prepared as above from $\mathbf{1 9}$ ($105 \mathrm{mg}, 0.39 \mathrm{mmol}$) and benzylamine ($51 \mathrm{mg}, 0.52 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow solid; $\mathrm{mp} 101-103$
${ }^{\circ} \mathrm{C}$. IR: $1710,1520,1348 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.81(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1$ H), 7.39-7.24 (complex, 3 H), 7.15 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70$ $(\mathrm{d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{br} \mathrm{d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3$ H), $3.80(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=13.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $154.8,142.9,136.8,136.1,129.0,127.6,125.9,122.9,122.1,120.1,110.5,54.3,53.6$, 52.9, 45.8, 17.6; MS: $m / z 250\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 63.34; H, 5.57; N, 12.32. Found: C, 63.29; H, 5.58; N, 12.35 .
(\pm)-Methyl 4-Hexyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)-carboxylate (26b).

Racemic ester 26b ($90 \mathrm{mg}, 69 \%$) was prepared as above from 19 ($105 \mathrm{mg}, 0.39 \mathrm{mmol}$) and hexylamine ($47 \mathrm{mg}, 0.062 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow oil. IR: 1710,1522 , $1353 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=13.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.27$ $(\mathrm{m}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=13.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.28$ (complex, 6 H$), 1.20$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (distorted $\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 154.7,142.4$, 135.9, $122.4,122.0,120.2,109.3,53.7,53.4,49.7,45.5,31.5,26.7,26.6,22.5,17.6,13.9 ;$ MS: $m / z 264\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 60.90; H, 7.46; N, 12.54. Found: C, 61.01; H, 7.49; N, 12.49. (26c).

Racemic ester 26c ($90 \mathrm{mg}, 75 \%$) was prepared as above from 19 ($105 \mathrm{mg}, 0.39 \mathrm{mmol}$) and isobutylamine ($34 \mathrm{mg}, 0.047 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow solid; mp 109-110 ${ }^{\circ} \mathrm{C}$. IR: $1709,1521,1354 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1$ H), $6.56(\mathrm{~d}, ~ J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=13.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~m}, 1$ H), 3.46 (dd, $J=14.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=13.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=14.8$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.964(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.960$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 154.8,142.4,136.0,122.2,121.8,120.2,109.9,56.9$, 53.9, 53.4, 45.2, 26.6, 20.1, 16.6; MS: $m / z 264\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 58.63; H, 6.84; N, 13.68. Found: C, 58.59; H, 6.82; N, 13.73.
(\pm)-Methyl 4-Cyclohexyl-3-methyl-7-nitro-3,4-dihydroquinoxaline-1(2H)carboxylate (26d).

Racemic ester 26d (74 mg, 57\%) was prepared as above from 19 ($105 \mathrm{mg}, 0.39 \mathrm{mmol}$) and cyclohexylamine ($47 \mathrm{mg}, 0.054 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asa yellow oil. IR: 1709, 1511, $1346 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.50(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=9.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=$ $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{tt}, J=11.4$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=13.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.62$ (complex, 5 H$), 1.60-1.32$ (complex, 3 H), $1.21(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 154.7,141.8,135.9$,
$122.6,121.6,120.4,110.3,58.0,53.4,47.3,45.9,31.1,29.6,26.0,25.9,25.5,19.5 ; \mathrm{MS}:$ $m / z 318\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 61.26; H, 6.91; N, 12.61. Found: C, 61.39; H, 6.94; N, 12.51.
(\pm)-N-Benzyl-1-(2-chloro-5-nitrophenoxy)-2-propanamine (28).

Racemic amine 28 ($58 \mathrm{mg}, 46 \%$) was prepared as above from $22(90 \mathrm{mg}, 0.39 \mathrm{mmol})$ and benzylamine ($51 \mathrm{mg}, 0.52 \mathrm{~mL}, 0.47 \mathrm{mmol}$) isolated asan oil. IR: $3321,1525,1345 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR: $\delta 7.78(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 1 H), 7.39-7.20 (complex, 5 H), 4.12 (m, 2 H), 3.97 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (d, $J=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $154.6,147.2,140.2,130.3,128.4,128.1,127.9,127.0,116.3,107.7,73.7,51.2,51.1$, 17.2,; MS: m/z 320, 322 (ca 3:1, M^{+}).

CHAPTER III

SYNTHESIS OF HIGHLY SUBSTITUTED 1,2,3,4-TETRAHYDROQUINOLINES VIA A TANDEM IMINE ADDITION-S ${ }_{N} A r$ REACTION.

Introduction

It was envisioned that highly substituted 1,2,3,4-tetrahydroquinolines could be made through a tandem, imine addition $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. The retrosynthesis depicted in Figure 1 illustrates how a variety of 1,2,3,4-tetrahydroquinolines $\mathbf{1}$ might be produced from a β-ketoester 2 and a variety of imines $\mathbf{3}$. The imines could be prepared from the corresponding aldehyde and amine. As with other tandem reactions involving nucleophilic aromatic substitution ($\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$) reactions, the β-ketoester has a nitro group incorporated in the structure to activate the aromatic ring towards nucleophilic substitution. Generation of the enolate of the β-ketoester may be necessary to initiate the imine addition portion of the tandem reaction. A non-nucleophilic base would be required to generate the enolate as the activated aromatic ring would be sensitive to nucleophilic bases, such as 1° or 2° amines, alkoxide or hydroxide. This tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction presents an opportunity to generate a large library of highly substituted 1,2,3,4-tetrahydroquinolines quickly from readily available starting materials.

Figure 1. Retrosynthesis of imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

Examples of tandem reactions using imines as reactants are relatively sparse in the literature, and many require the use of a Lewis acid or catalyst to facilitate the reaction. Badorrey and coworkers ${ }^{29}$ have developed a diastereoselective tandem Mannich-Michael reaction for the synthesis of piperidine ring systems. Under zinc-iodide catalyzed conditions the authors were able to react Danishefsky's diene (4) with an N benzylimine 5, derived from protected (R)-glyceraldehyde, providing a new approach to the homochiral piperidine 6. To achieve acceptable yields the reaction required the use of acetonitrile as the solvent and the presence of zinc iodide as a Lewis acid. The stereoselectivity was attributed to the complex between the chelation of zinc iodide and the chiral imine.

Figure 2. Badorrey's tandem Mannich-Michael reaction.

Jaber and co-workers ${ }^{30}$ have reported a one-pot cascade reaction that uses samarium diiodide as a precatalyst. The reaction started by reacting cyclopentenone 7 and silyl ketene acetal $\mathbf{8}$ in the presence of a suspension of samarium diiodide ($10 \mathrm{~mol} \%$) in methylene chloride to give the Michael adduct 9. After 30 minutes, ethyl glyoxalate (N - p-anisyl) imine (10) was added to the reaction causing a Mukaiyama reaction to give the disubstituted cyclopentanone adducts $\mathbf{1 1}$ and $\mathbf{1 2}$ in an isolated yield of 50% with a 70/30 diastereomeric ratio of $\mathbf{1 1 / 1 2}$.

Figure 3. Jaber's one-pot reaction using samarium diiodide.

Another example of a tandem reaction using imines has been carried out by Raw and coworkers ${ }^{31}$ to used tethered imine-enamines to convert 1,2,4-triazines into highly substituted pyridines through a series of cascading reactions. The tandem reaction began with a Diels-Alder reaction between a disubsituted 1,2,4-triazine $\mathbf{1 3}$ and the imineenamine $\mathbf{1 4}$ to give the intermediate 15. Subsequent bond rearrangements and
eliminations then led to intermediate 16. A final elimination-rearomatization gave the disubstituted pyridine products $\mathbf{1 7}$ in moderate to excellent yields.

15

Figure 4. Raw's synthesis of pyridines using tethered imine-enamines.

Lu and coworkers ${ }^{32}$ have developed a copper-catalyzed three-component reaction that furnished a new class of N -sulfonyl-2-alkylidene-1,2,3,4-tetrahydropyrimidines $\mathbf{1 8}$ in moderate to good yields. The CuBr-catalyzed addition of sulfonyl azide 20 to phenylacetylene 19 formed ketenimine intermediate 21. This intermediate then underwent cyclization initiated by nucleophilic addition of the α, β-unsaturated imine $\mathbf{2 2}$ to give the tetrahydropyrimidine product $\mathbf{1 8}$.

Figure 5. Lu's copper-catalyzed three-component reaction.

Results

Synthesis of Precursors

The needed substrates for the tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction were synthesized as illustrated in Figure 6. The synthesis began by nitrating the commercially available 2-fluorobenzaldehyde (23) to give 2-fluoro-5-nitrobenzaldehyde (24). The aldehyde functional group was oxidized using freshly prepared Jones reagent ${ }^{33}$ to afford the corresponding carboxylic acid 25. Several attempts were made to acylate Meldrum's acid using the acid chloride $\mathbf{2 6}$ derived from $\mathbf{2 5}$ by the method of Yonemitsu and coworkers. ${ }^{34}$ The reaction, however, failed to give the desired product. It was found that acylation was possible by reacting the acid chloride 26 with the dianion of alkyl hydrogen malonate 27 at low temperature. ${ }^{35}$ This sequence of reactions consistently gave the desired β-ketoesters 28 and 29 in acceptable yields, presented in Table 1. When both 28 and 29 were analyzed by ${ }^{1} \mathrm{H}$ NMR, it was discovered that the enol was the preferred
tautomer as evidenced by the broad singlet at $\delta 12.8$, corresponding to the hydrogen bonded OH of the enol. This, we believed, would not be an issue as the enol should also deprotonate to give the needed enolates.

Figure 6. Synthesis of the β-ketoesters.

starting material	R	product	yield
	t-Bu	28	94\%
	Et	29	72\%

Table 1. Synthesis of the β-ketoesters.

At the start of this project there were concerns about using an imine as a reactant in the tandem reaction. First, the imine $\mathrm{C}=\mathrm{N}$ is easily hydrolyzed and could degrade back to its starting aldehyde and amine in the presence of excess water. If the degradation
occured, then the proposed tandem reaction would not be possible. Additionally, the amine formed from the degradation could undergo a $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with the aromatic ring of the β-ketoesters 28 and 29. These problems should be avoidable by using stabilized imines under anhydrous conditions for the tandem reaction.

Benzaldehyde (30) and its derivatives are known to form stable imines. ${ }^{36}$ These imines are stabilized by conjugation between the $\mathrm{C}=\mathrm{N}$ and the aromatic ring, which allows the imines to be isolated and used in reactions. Many studies have been conducted on the stability of these types of imines in aqueous solutions. ${ }^{37}$ Aromatic imines have been generated by several methods, from simple condensation between an aldehyde and an amine ${ }^{38}$ to the pyrolysis of alkyl azides. ${ }^{39}$ It was our plan to use the simplest set of conditions and a minimal workup. This would reduce the possibility of decomposing the imine and keep the synthesis of the 1,2,3,4-tetrahydroquinoline relatively straightforward.

To develop the optimum conditions for imine formation, benzaldehyde ($\mathbf{3 0}$) and benzylamine (31) were selected for generating the aromatic imines. The ability to see both of these reactants on a TLC plate would enable accurate monitoring of the reaction progress. It was found that mixing a 1:1.2 ratio of $\mathbf{3 0}$ and $\mathbf{3 1}$ in hexanes produced a new spot on the TLC plate with complete consumption of the starting amine. It is essential not to have excess amine present, as this could result in an undesirable $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ side reaction between the amine and the aromatic ring of the β-ketoesters $\mathbf{2 8}$ and 29. The imine $\mathbf{3 2}$ was isolated by removal of the solvent and water under vacuum using a rotary evaporator followed by use of a high vacuum pump. The structure was confirmed by ${ }^{1} \mathrm{H}$ NMR and the imine was used immediately in the next reaction.

Figure 7. Imine generation in hexanes.

Conducting the Tandem Imine Addition- $\mathbf{S}_{\mathbf{N}} \mathbf{A r}$ Reaction

Once the needed substrates were acquired, an investigation into the tandem imine addition $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction was initiated. The results are summarized in Table 2. As discussed earlier, it was believed that the enolate of $\mathbf{2 8}$ would be necessary for addition to the imine. In the first attempt of the tandem reaction, one equivalent of oil-free, NaH (washed three times with hexanes) was used to generated the enolate of $\mathbf{2 8}$ in anhydrous N, N-dimethylformamide (DMF), followed by the addition freshly prepared imine 32. This resulted in a complex mixture that could not be separated. In hopes that a milder base would produce fewer side reactions, the second attempt used one equivalent of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ to generate the enolate of 28, followed by addition of fresh imine $\mathbf{3 2}$. The reaction was worked up and separated using preparative thin layer plate chromatography, but afforded only a minimal yield of the desired product 33.

33

Figure 8. Initial tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

reaction conditions	results
Enolate generation with NaH followed by imine addition.	Complex mixture
Enolate generation with anhydrous	
$\mathrm{K}_{2} \mathrm{CO}_{3}$ followed by imine addition.	Low yield of $\mathbf{3 3}$ isolated
Addition of $\mathbf{3 2}$ to solution of $\mathbf{2 8}$ followed by anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$.	Solution changed color before base addition and yield of $\mathbf{3 3}$ increase
Addition of $\mathbf{3 2}$ to solution of $\mathbf{2 8}$ without adding anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$.	High yield of $\mathbf{3 3}$ formed with minimal purification

Table 2. Initial tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction.

It was thought that generating the enolate in the presence of an imine would decrease the possibility of side reactions and improve the yield of $\mathbf{3 3}$. This was accomplished by adding the base to the reaction last. When freshly prepared imine $\mathbf{3 2}$
was added to an anhydrous DMF solution of β-ketoester 28, followed by addition of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$, the yield of $\mathbf{3 3}$ increased significantly. During this run, we noticed the solution underwent a color change after $\mathbf{3 2}$ was added to the reaction and before the base was added. This led us to believe that the enolate of $\mathbf{2 8}$ may not be needed to initiate the tandem reaction. To test this hypothesis, freshly prepared imine 32 was added to an anhydrous DMF solution of the β-ketoester 28. The solution instantly turned bright yellow upon this addition. After 6 hours the reaction was worked up using saturated NaCl solution and methylene chloride to yield the desired 1,2,3,4-tetrahydroquinoline 33 as a yellow solid. $\mathrm{A}^{1} \mathrm{H}$ NMR of the sample showed the reaction required minimal purification, and the product was isolated as the enol tautomer as evidenced by the presence of an enolic OH at $\delta 12.60 \mathrm{ppm}$.

It was found that the imine formation, and subsequent tandem cyclization to form 1,2,3,4-tetrahydroquinolinones, could be conducted in the same reaction vessel. This procedure eliminated isolation of the imine from the method, making the synthesis more efficient. This was accomplished by reacting benzaldehyde (30) and benzylamine (31) together in a 1:1.2 ratio in anhydrous DMF to generate the imine 32. The reaction was monitored by TLC until all of the benzylamine (31) was consumed. At this point, one equivalent of $\mathbf{2 8}$ was added and the color instantly changed to a bright yellow color. The reaction was allowed to stir for 6 hours and was then worked up to isolate the product 33 as a yellow solid in a 90% yield. The product was triturated with a small amount of ether and the product required no further purification.

33
Figure 9. Tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction to give 33.

Once these conditions were established, an array of substrates was used to expand the scope of the tandem reaction. First, aromatic imines were formed by reacting a variety of primary amines with benzaldehyde (30) in a 1:1.2 ratio in anhydrous DMF. Once the aromatic imines were formed in solution, the β-ketoesters $\mathbf{2 8}$ and 29 were added to the reactions. The reactions were worked up and the products were isolated and purified by trituration with ether to provide the pure compounds 33-37 and 38-42, respectively. The yields for these reactions are given in Table 3.

$28\left(\mathrm{R}^{1}=t-\mathrm{Bu}\right)$
$29\left(\mathrm{R}^{1}=\mathrm{Et}\right)$

$$
\begin{aligned}
& \mathbf{3 3}\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right) \\
& \mathbf{3 4}\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right) \\
& \mathbf{3 5}\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=i-\mathrm{C}_{4} \mathrm{H}_{9}\right) \\
& \mathbf{3 6}\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right) \\
& \mathbf{3 7}\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) \\
& \mathbf{3 8}\left(\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right) \\
& \mathbf{3 9}\left(\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right) \\
& \mathbf{4 0}\left(\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=i-\mathrm{C}_{4} \mathrm{H}_{9}\right) \\
& \mathbf{4 1}\left(\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right) \\
& \mathbf{4 2}\left(\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)
\end{aligned}
$$

Figure 10. Tandem reaction using various primary amines.

R^{1}	R^{2}	product	yield (\%)
t-Bu	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{3 3}$	90
t-Bu	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{3 4}$	93
t-Bu	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{3 5}$	95
t-Bu	$c-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathbf{3 6}$	79
t-Bu	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathbf{3 7}$	75
Et	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{3 8}$	89
Et	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{3 9}$	98
Et	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{4 0}$	72
Et	$c-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathbf{4 1}$	85
Et	$\mathrm{CH}_{2} \mathrm{CH}^{2}=\mathrm{CH}_{2}$	$\mathbf{4 2}$	97

Table 3. Tandem reaction using various primary amines.

Next, a number of substituted benzaldehydes was reacted as above with benzylamine (31) to generate a series of imines to be used in the synthesis. The reactions were monitored by TLC, and again, once the aromatic imines were formed, the β ketoesters 28 and 29 were added to the reaction giving a yellow color change. The reactions were worked up and the products were isolated and purified by trituration with ether to give the desired products $\mathbf{4 3 - 4 5}$ and $\mathbf{4 6 - 4 8}$, respectively. The yields for these reactions are given in Table 4.

$$
\begin{aligned}
& 28\left(\mathrm{R}^{1}=t-\mathrm{Bu}\right) \\
& 29\left(\mathrm{R}^{1}=\mathrm{Et}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 43\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{3}=\mathrm{OCH}_{3}\right) \\
& 44\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{3}=\mathrm{F}\right) \\
& 45\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{3}=\mathrm{CF}_{3}\right) \\
& \mathbf{4 6}\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{3}=\mathrm{OCH}_{3}\right) \\
& \mathbf{4 7}\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{3}=\mathrm{F}\right) \\
& 48\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{3}=\mathrm{CF}_{3}\right)
\end{aligned}
$$

Figure 11. Tandem reaction using various aromatic aldehydes.

R^{1}	R^{3}	product	yield (\%)
$t-\mathrm{Bu}$	H	$\mathbf{3 3}$	90
$t-\mathrm{Bu}$	OMe	$\mathbf{4 3}$	82
$t-\mathrm{Bu}$	F	$\mathbf{4 4}$	97
$t-\mathrm{Bu}$	CF_{3}	$\mathbf{4 5}$	92
Et	H	$\mathbf{3 8}$	89
Et	OMe	$\mathbf{4 6}$	73
Et	F	$\mathbf{4 7}$	92
Et	CF_{3}	$\mathbf{4 8}$	55

Table 4. Tandem reaction using various aromatic aldehydes.

Following the success of the tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction using N benzylimines of aromatic aldehydes, it was believed that the tandem reaction might be extended to include the use of imines derived from aliphatic aldehydes. This would greatly expand the scope of the tandem imine addition $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. The established procedure was first attempted using acetaldehyde (49) and benzylamine (31). These substrates were reacted in a 1:1.2 ratio in anhydrous DMF followed by the addition the β ketoester 28, resulting in an immediate color change. Unlike the previous cases the reaction required purification using preparative thin layer chromatography. The major band from the plate was determined to be the free amine addition product $\mathbf{5 0}$ from the simple $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction of $\mathbf{2 8}$ with $\mathbf{3 1}$.

50
Figure 12. Attempted tandem reaction using acetaldehyde.

As discussed earlier, this type of problem was a concern when using nonstabilized imines. An investigation of the literature showed that stable aliphatic imines had been formed in solution by using $4 \AA$ molecular sieves in the reaction. ${ }^{40}$ Based on
this report, we modified the procedure to include the use of $4 \AA$ molecular sieves when generating aliphatic imines. Thus, benzylamine (31) and acetaldehyde (49) were reacted in a 1:1.2 ratio in anhydrous DMF in the presence of $4 \AA$ molecular sieves. The β ketoester 28 was added to the reaction, and the solution turned dark yellow instantly. The reaction was worked up and purified using thin layer chromatography to afford the desired 1,2,3,4-tetrahydroquinolinone 51 in a yield of 92%.

51

Figure 13. Tandem reaction using acetaldehyde.

Using the new conditions, a variety of acetaldehyde imines could be used in the tandem reaction. The β-ketoesters 28 and 29 were added to the reactions, causing an instant change in the color of the solutions. The reactions were worked up; products were isolated and purified using thin layer chromatography to give the desired targets 51-55 and 56-60, respectively. The yields for these reactions are given in Table 5.

$28\left(\mathrm{R}^{1}=t-\mathrm{Bu}\right)$
$51\left(\mathrm{R}^{1}=t\right.$ - $\left.\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right)$
$29\left(\mathrm{R}^{1}=\mathrm{Et}\right)$
$52\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$
$53\left(\mathrm{R}^{1}=t\right.$-Bu, $\left.\mathrm{R}^{2}=i-\mathrm{C}_{4} \mathrm{H}_{9}\right)$
$54\left(\mathrm{R}^{1}=t\right.$-Bu, $\left.\mathrm{R}^{2}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right)$
$55\left(\mathrm{R}^{1}=t-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$
$56\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{Ph}\right)$
$57\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{2}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$
$58\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{2}=i-\mathrm{C}_{4} \mathrm{H}_{9}\right)$
$59\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{2}=c-\mathrm{C}_{3} \mathrm{H}_{5}\right)$
$60\left(\mathrm{R}^{1}=\mathrm{Et}, \quad \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$

Figure 14. Tandem reaction using various acetaldehyde imines.

R^{1}	R^{2}	product	yield (\%)
t - Bu	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{5 1}$	92
t-Bu	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{5 2}$	97
t - Bu	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{5 3}$	81
t - Bu	$c-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathbf{5 4}$	75
t-Bu	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathbf{5 5}$	65
Et	$\mathrm{CH}_{2} \mathrm{Ph}$	$\mathbf{5 6}$	96
Et	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	$\mathbf{5 7}$	94
Et	$i-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathbf{5 8}$	89
Et	$c-\mathrm{C}_{3} \mathrm{H}_{5}$	$\mathbf{5 9}$	95
Et	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathbf{6 0}$	95

Table 5. Tandem reaction using various acetaldehyde imines.

In an effort to further expand the scope of the newly developed tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, we endeavored to determine if a ketone could be used to generate trisubstituted imines. This would result in 1,2,3,4-tetrahydroquinolines with geminal disubstitution at the C 2 position of the ring. The reaction was first attempted with acetophenone (61) as the ketone, as this would provide a stabilized aromatic imine. Following the conditions established earlier for aromatic imines, $\mathbf{3 1}$ and $\mathbf{6 1}$ were reacted in a $1: 1.2$ ratio followed by the addition of 28. The only product isolated from the reaction was the free amine addition product $\mathbf{5 0}$ observed previously. Several attempts to modify the reaction conditions, including addition of molecular sieves, increased reaction
temperature and solvent changes, did not result in the desired product. It is believed that the addition of the methyl group in the imine caused steric hindrance and prevented the initial imine addition step of the tandem reaction. This allowed the imine the opportunity to hydrolyze back to benzylamine (31), which then reacted with the aromatic ring of the β-ketoester 28 giving the observed product 50.

50
Figure 15. Attempted tandem reaction using acetophenone.

To reduce the amount of steric hindrance in the reaction, attempts were made to use the N-benzyl imines $\mathbf{6 3}$ derived from acetone in a tandem reaction. Following the procedure established for aliphatic imines, the imine of derived from acetone (62) and benzylamine (31) was generated in anhydrous DMF using $4 \AA$ molecular sieves, followed by the addition of $\mathbf{2 8}$. However, only the free amine addition product $\mathbf{5 0}$ was isolated from the reaction, and none of the desired heterocycle was formed. In a final attempt to generate the geminal dimethyl-substituted 1,2,3,4-tetrahydroquinoline, pure imine $\mathbf{6 3}$ was prepared and used for the tandem reaction. Acetone (62) and benzylamine (31) were
reacted together in benzene using a dean-stark trap to remove the water produced from the reaction, followed by vacuum distillation to give the pure imine 63 . However, when $\mathbf{6 3}$ was added to a anhydrous DMF solution of 28, only the free amine addition product 50 was isolated. Again, it is believed that steric hindrance prevented the initial imine.

50
Figure 16. Attempted tandem reaction using pure imine of acetone.

Mechanism for the Tandem Imine Addition-S $\mathbf{S}_{\mathbf{N}} A r$ Reaction

There are two conceivable pathways the reactants could follow when generating 1,2,3,4-tetrahydroquinolinones. The first possibility is a proposed tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, the mechanism of which is illustrated in Figure 17. Electrons from the enol oxygen shift through the enol double bond and attack the electron deficient carbon of the imine double bond, increasing electron density on the nitrogen with a subsequent proton transfer. The resulting amine nitrogen is then in a position to displace the fluoro group on the aromatic ring, giving the keto form of the final product. The keto group then undergoes tautomerization to give the isolated product 33.

33

Figure 17. Tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ mechanism.

The second mechanism involves two possible pathways, both depicted in Figure 18. In each, an imine is not included in the pathway, but rather the starting amine and aldehyde. Pathway A begins with an aldol condensation between the benzaldehyde (30) and the β-ketoester 28 to give the intermediate 28a. This could then undergo a tandem Michael addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction with benzylamine (31) to give the heterocyclic product 33. There are a number of problems with this pathway: first, the aldol condensation reaction is relatively slow when compared to the $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction between an amine and the activated aromatic ring; second, based on research in our laboratory the tandem Michael addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ requires an increase in reaction temperature and reaction time. ${ }^{41}$ Pathway B assumes that the $S_{N} A r$ reaction will occur first between the β-ketoester 28 and benzylamine (31) to give the free amine addition intermediate $\mathbf{5 0}$, which has been seen
before from the failed tandem reaction presented in Figures 15 and 16. This intermediate would then undergo a tandem aldol condensation-Michael addition reaction with benzaldehyde (30) to give the final product 33.

50
Figure 18. Alternative mechanisms.

To determine the possibility of pathway B , the intermediate $\mathbf{5 0}$ was generated and isolated by reacting the β-ketoester 28 with benzylamine (31). This intermediate was reacted with one equivalent of benzaldehyde (30) and stirred for 3 days at $50^{\circ} \mathrm{C}$, however, none of the desired product $\mathbf{3 3}$ was isolated. This led us to conclude that the imine is necessary for generating the 1,2,3,4-tetrahydroquinolinone and follows the mechanism presented in Figure 17.

Synthesis of 2,3-Dihydroquinolinone-3-carboxylate

In an attempt to elaborate the tandem products, it was thought that the 1,2,3,4tetrahydroquinolinone ring structure could be converted to the corresponding 2,3dihydroquinolinones through a double bond migration reaction. Using 33 as a test case, a number of literature procedures were tried in the effort to produce a double bond between carbons C 2 and C 3 . The first reaction attempts used benzoquinone oxidizing agents chloranil and 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) ${ }^{42}$ in an effort to generate the desired compound 64. However, only starting material was recovered from these reactions. The use of Br_{2} and $\mathrm{Et}_{3} \mathrm{~N}^{43}$ also failed to give the desired product. In a final try, MnO_{2} was added in a 10-fold excess ${ }^{44}$ as the oxidizing agent and product $\mathbf{6 4}$ was isolated in a 57% yield after 3 days.

Figure 19. Synthesis of 2,3-dihydroquinolinone 64.

reagents	results
Chloranil	recovered starting material
2,3-Dichloro-5,6- dicyanobenzoquinone (DDQ) Br_{2}, then $\mathrm{Et}_{3} \mathrm{~N}$	recovered starting material
MnO_{2}	no recovered starting material or product

Table 6. Synthesis of 2,3-dihydroquinolinone 64.

Alkylation-Decarboxylation of Tandem Product

The tandem imine addition $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction provides a convenient method for making a multitude substituted 1,2,3,4-tetrahydroquinolinones. It was imagined that these products might be elaborated by introducing additional substitution onto the tetrahydroquinolinone ring. An alkyation-decarboxylation procedure at the C 3 position of the ring would increase the versatility of the tandem reaction products, providing a convenient route to trisubstituted 1,2,3,4-tetrahydroquinolinones.

The 1,2,3,4-tetrahydroquinolinone $\mathbf{3 3}$ was used as an example case for the alkylation procedure. Deprotonation of the enol 33, with potassium carbonate and alkylation with methyl iodide gave product $\mathbf{6 5}$ as the only product in a 94% yield. The stereochemistry of this alkylation would be anticipated to give the trans isomer based on the studies of Zimmerman and co-workers. ${ }^{45}$ This is because the CH_{3} approaches from the less hindered side of the structure, opposite of the C 2 phenyl. The tert-butyl ester was converted to the corresponding carboxylic acid (66) using $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. Decarboxylation
then provided a quick and efficient route to highly substituted (\pm)-1-benzyl-3-methyl-6-nitro-2-phenyl-2,3-dihydroquinolin-4(1H)-one (67). To determine the stereochemistry about the C 2 and C 3 positions, an X-ray analysis of $\mathbf{6 7}$ was conducted. As seen in Figure 21, the phenyl and methyl substituents have the cis orientation, resulting from the protonation on the face opposite of the C2 phenyl. ${ }^{45}$

Figure 20. Alkylation and decarboxylation of 1,2,3,4-tetrahydroquinoline.

(\pm)-1-benzyl-3-methyl-6-nitro-2-phenyl-2,3-dihydroquinolin-4(1 H)-one
67

Figure 21. X-ray of 67.

Synthesis of Tri-alkyl Subsituted 2,3-Dihydroquinolinone.

In an attempt to further derivatize the trisubstituted 1,2,3,4-
tetrahydroquinolinone, 67 was converted to the corresponding 2,3-dihydroquinolinone 68 through a double bond migration reaction. Using the previous method for the synthesis of $\mathbf{6 4}, \mathrm{MnO}_{2}$ was used as the oxidizing agent to give the product $\mathbf{6 8}$ was isolated in a 51% yield after 3 days. An X-ray crystal structure was obtained to confirm the position of the double bond.

Figure 22. Synthesis of 2,3-dihydroquinolinone 68.

1-benzyl-3-methyl-6-nitro-2-phenylquinolin-4(1H)-one
68

Figure 23. X-ray structure of 68.

Conclusion

A new tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction involving in situ-generated imines has been developed for the preparation of highly substituted 1,2,3,4-tetrahydroquinolinone-3-carboxlates in high yields. When using aromatic imines, the tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction occurred spontaneously, without added base or catalyst. In the case of non-aromatic imines the tandem reaction was still spontaneous, but, the addition of molecular sieves was required to generate the aliphatic imines. Though imines of benzaldehyde derivatives and acetaldehyde proved effective in the tandem reaction, attempts to use ketones in the synthesis towards germinal substituted 1,2,3,4-tetrahydroquinolinone-3-carboxlates were unsuccessful.

The tandem imine addition $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction contains a number of desirable aspects. First, the tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction is a very atom-economical reaction, using nearly every atom from the substrates in the final structure. Second, very few synthetic steps are required to achieve highly complex molecular structures. The use of tandem reactions minimizes the number workup steps and the amount of waste generated during the synthesis. Third, by incorporating the imine generation into the design of the tandem reaction, a large number of highly complex structures can be achieved in a limited number of steps.

To expand on the usefulness of the tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction, the tandem products were converted to highly substituted 2,3-dihydroquinolinone and 1,2,3,4- tetrahydroquinolinones. The latter were accomplished by a double bond migration reaction and an alkylation-decarboxylation sequence, respectively. These
provide convenient methods towards similar known biologically active heterocyclic systems. ${ }^{13-15}$

Experimental

All reactions were run in dry glassware under N_{2}. The saturated $\mathrm{NH}_{4} \mathrm{Cl}$, saturated $\mathrm{NaCl}, 5 \% \mathrm{NaHCO}_{3}, 5 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ and 0.5 M HCl , used in work-up procedures refer to aqueous solutions. Liquid reagents were measured using a Socorex $10-100 \mu \mathrm{~L}$ autopipeter. Reactions were monitored by TLC on silica gel GF plates (Analtech No 21521).

Preparative separations were performed by one of the following methods: (1) flash column chromatography on silica gel (grade 62, 60-200 mesh) containing UVactive phosphor (Sorbent Technologies UV-05) packed into quartz columns or (2) P TLC on $20-\mathrm{cm} \times 20-\mathrm{cm}$ silica gel GF plates (Analtech No 02015). Band elution for all chromatographic separations was monitored using a hand-held UV lamp. Melting points were uncorrected. IR spectra were run as thin films on NaCl disks. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} at 300 MHz and 75 MHz , respectively, using $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$ as the internal standard; coupling constants (J) are given in Hz. Low resolution mass spectra (EI/DP) were obtained at 30 eV .

2-Fluoro-5-nitrobenzaldehyde (24).

To a 500 mL three-necked, round-bottomed flask 2-fluorobenzaldehyde 23 (14.5g, 117 mmol) was added dropwise using an addition funnel over 1 h to a solution of 11.0 g of NaNO_{3} in 108.7 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0{ }^{\circ} \mathrm{C}$: The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h and the solution was poured into a 1-L separatory funnel containing approximately 200 mL of ic, and was extracted twice with 200 mL portions of ether. (Caution should be
used during this workup as ether will evaporate rapidly causing increased pressure in the separatory funnel.) The combined ether layers were washed with water (2x), NaHCO_{3} (1x), saturated $\mathrm{NaCl}(1 \mathrm{x})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and removal of the solvent under vacuum gave a pale yellow solid. Recrystallization using minimal ether and hexanes yielded the desired product $24(16.5 \mathrm{~g}, 84 \%)$ as white needle-like crystals with a mp of 59 $-60{ }^{\circ} \mathrm{C}\left(\mathrm{lit} .{ }^{46} 60-61{ }^{\circ} \mathrm{C}\right)$.

2-Fluoro-5-nitrobenzoic Acid (25).

2-Fluoro-5-nitrobenzaldehyde 24 ($8.40 \mathrm{~g}, 53.2 \mathrm{mmol}$) was dissolved in 75 mL of acetone in a $500-\mathrm{mL}$ round-bottomed flask. Fresh Jones reagent ${ }^{33}(\sim 3 \mathrm{~mL})$ was added dropwise using an addition funnel over a 30 min period until a red-oragne color persisted. The reaction was stirred for an additional 1 h . An aqueous solution of $10 \% \mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to the reaction until the red-orange color dissipated. The solution was poured into a 1-L separatory flask containing about 200 mL of water and extracted twice with 200 mL portions of ether. The combined ether layers were washed with water (2 x), saturated NaCl (1x) and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and removal of the solvent under vacuum gave a pale white solid. Recrystallization from ether gave the product $\mathbf{2 5}(8.56 \mathrm{~g}, 93 \%)$ as a white crystalline solid, mp 140-142 ${ }^{\circ} \mathrm{C}$ (Aldrich Catalog 142-144 ${ }^{\circ} \mathrm{C}$).

Representative Procedure for the $\boldsymbol{\beta}$-Ketoesters: tert-Butyl 3-(2-Fluoro-5-nitro-phenyl)-3-oxopropanoate (28).

To a $250-\mathrm{mL}$ round-bottomed flask 3.28 mL of SOCl_{2} was added to a solution of 2-fluoro-5-nitrobenzoic acid $25(4.76 \mathrm{~g}, 25.7 \mathrm{mmol})$ in 100 mL of benzene. The reaction was heated to reflux using an oil bath for 12 h and then concentrated under vacuum to give the acid chloride $\mathbf{2 6}$ as a clear oil that crystallized when stored in the freezer. This acid chloride was not characterized but was used directly in the next step.

In a dry $500-\mathrm{mL}$ three necked, round-bottomed flask equipped with a magnetic stirrer, an, addition funnel and a rubber septum, tert-butyl hydrogen malonate ($8.81 \mathrm{~g}, 55 \mathrm{mmol}$) and a catalytic amount of 2, '-bipyridine were dissolved in 250 mL of freshly distilled tetrahydrofuran. The reaction vessel was cooled to $-30^{\circ} \mathrm{C}$ using a dry ice-acetone bath. At this temperature, one equivalent of n-butyllithium (55 mmol) was added dropwise using a syringe over a period of 30 min . Constant stirring was required to prevent a solid mass from forming. The reaction was warmed to $-10^{\circ} \mathrm{C}$ using a salt water ice bath. At this temperature, a second equivalent of n-butyllithium (55 mmol) was added dropwise using a syringe over 30 min until a red color persisted for 5 min .

The reaction was cooled to $-78^{\circ} \mathrm{C}$ using a dry ice-acetone bath. The acid chloride $\mathbf{2 6}$ was dissolved in 25 mL of freshly distilled THF, and the solution was added over a 30 min period to the reaction using an addition funnel. The reaction was stirred for 30 min at -78 ${ }^{\circ} \mathrm{C}$ and then an additional 30 min at $-10^{\circ} \mathrm{C}$ using a salt water-ice bath. The reaction was poured over approximately 200 mL of ice in a 1-L separatory funnel containing 3 equivalents of conc. HCl . The aqueous layer was extracted twice with 200 mL portions
of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layers were washed with $\mathrm{NaHCO}_{3}(1 \mathrm{x}), \mathrm{NH}_{4} \mathrm{Cl}$ (1x), saturated $\mathrm{NaCl}(1 \mathrm{x})$, and dried over MgSO_{4}. The drying agent was filtered and the solvent was removed under vacuum to yield a red solid. Column chromatography using silica and 1% ether in hexanes yielded the enol of β-ketoester $28(6.86 \mathrm{~g}, 94 \%)$ as a white solid: mp 79-81 ${ }^{\circ} \mathrm{C}$; IR: $1613,1536,1349 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 12.9(\mathrm{bs}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=$ $6.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{dt}, J=9.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 1.55$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR: $\delta 172.7,163.6(\mathrm{~d}, J=265.1 \mathrm{~Hz}), 162.8,144.4,127.0(\mathrm{~d}, J=11.2 \mathrm{~Hz})$, $125.4(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 117.6(\mathrm{~d}, J=14.6 \mathrm{~Hz}) 82.2,28.2$; MS: $m / z .283\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{FNO}_{5}$: C, 55.12; H, 4.98; N, 4.94. Found: C, 55.08; H, 4.99; N, 4.93.

Ethyl 3-(2-Fluoro-5-nitrophenyl)-3-oxopropanoate (29).

Ester 29 ($6.51 \mathrm{~g}, 72 \%$) was prepared as above from $25(6.41 \mathrm{~g}, 35.4 \mathrm{mmol})$ isolated as a white solid; mp 60-61 ${ }^{\circ} \mathrm{C}$; IR: $1645,1622,1493,1350 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.75(\mathrm{~s}, 1 \mathrm{H})$, $8.81(\mathrm{dm}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dt}, J=9.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=9.3,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.91(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 172.8,163.7$ $(J=265.4 \mathrm{~Hz}), 163.2,144.4,127.3(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 125.4(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 117.7(\mathrm{~d}, J=$ $25.8 \mathrm{~Hz}), 94.2(\mathrm{~d}, J=14.9 \mathrm{~Hz}), 61.0,14.2 ; \mathrm{MS}: m / z .255\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{FNO}_{5}$: C, $51.71 ; \mathrm{H}, 3.95 ; \mathrm{N}, 5.49$. Found: C, $51.69 ; \mathrm{H}, 3.92$; N, 5.48 .

Representative Procedure for the Tandum Imine Addition-S $\mathbf{S}_{\mathbf{N}} \mathbf{A r}$ Reaction with $\boldsymbol{\beta}$ Ketoesters and Aromatic Imines: tert-Butyl (土)-1-Benzyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (33).

In a $100-\mathrm{mL}$ round-bottomed flask, benzylamine $31(0.59 \mathrm{~g}, 5.50 \mathrm{mmol})$ and benzaldehyde 30 ($0.63 \mathrm{~g}, 5.90 \mathrm{mmol}$) were stirred together in 3 mL of anhydrous DMF at room temperature for 6 h . Solid tert-butyl 3-(2-fluoro-5-nitro-phenyl)-3-oxopropanoate (28) ($1.59 \mathrm{~g}, 5.6 \mathrm{mmol}$) was added directly to the reaction, resulting in an instantaneous color change from colorless to yellow. Stirring for an additional 6 h gave a yellow precipitate. The reaction was added to a 1-L separatory funnel containing 50 ml of water and extracted two portions of $15 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated $\mathrm{NaCl}(1 \mathrm{x})$, dried over anhydrous MgSO_{4}, and concentrated under vacuum to give a yellow solid. Tritration with minimal ether afforded the desired product 33 (2.52 $\mathrm{g}, 90 \%$) as a yellow powder; $\mathrm{mp} 163-165^{\circ} \mathrm{C}$; IR: $1655,1634,1504,1321 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 10 \mathrm{H})$, $6.37(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, 1H), 1.36 (s 9 H); ${ }^{13} \mathrm{C}$ NMR: $\delta 169.8,160.3,150.6,142.0,137.7,135.2,128.9,128.6$, 128.5, 128.4, 127.7, 126.9, 126.4, 121.9, 115.2, 110.9, 98.4, 82.9, 63.0, 52.3, 28.0; MS: $m / z .367\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 70.73; H, 5.72; N, 6.11. Found: C, 70.89; H, 5.76; N, 6.08.

tert-Butyl (\pm)-1-Hexyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3carboxylate (34).

Racemic ester 34 ($122 \mathrm{mg}, 93 \%$) was prepared as above from $28(82 \mathrm{mg}, 0.30 \mathrm{mmol})$, hexylamine ($307 \mathrm{mg}, 0.30 \mathrm{mmol}$) and benzaldehyde ($38 \mathrm{mg}, 0.36 \mathrm{mmol}$) isolated yellow solid; mp $151-152{ }^{\circ} \mathrm{C}$: IR: $1659,1505,1317 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 5 \mathrm{H}), 6.43(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s}$, $1 \mathrm{H}), 3.21$ (complex, 2H), 1.41 (s, 9H), 1.27 (m, 8H), 0.86 (complex, 3 H); ${ }^{13} \mathrm{C}$ NMR: δ 169.7, 160.2, 150.2, 142.7, 136.8, 128.7, 128.4, 128.3, 126.8, 122.0, 114.4, 109.8, 98.0, 82.7, 63.2, 49.5, 31.3, 28.0, 26.4, 26.2, 22.4, 13.9; MS: $m / z 381\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 69.01; H, 6.19; N, 6.19. Found: C, 69.07; H, 6.13; N, 6.14.

tert-Butyl (\pm)-1-Isobutyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-

 carboxylate (35).Racemic ester 35 ($407 \mathrm{mg}, 95 \%$) was prepared as above from 28 ($285 \mathrm{mg}, 1.01 \mathrm{mmol}$), isobutylamine ($74 \mathrm{mg}, 1.01 \mathrm{mmol}$) and benzaldehyde ($128 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 134-135 ${ }^{\circ} \mathrm{C}$: IR: $1721,1652,1506,1321,1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.48$ $(\mathrm{s}, 1 \mathrm{H}), 8.57(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=9.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 5 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~s} \mathrm{1H}), 3.29(\mathrm{dd}, J=14.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.5,9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $169.7,160.5,150.9,142.1,128.6,128.5,128.3,126.7,122.3,115.1,110.4,98.1,82.8$, 56.2, 28.2, 26.3, 20.11, 20.10; MS: $m / z 385\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 67.91; H, 6.65; N, 6.60. Found: C, 68.01; H, 6.58; N, 6.64.
tert-Butyl (\pm)-1-Cyclopropyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3carboxylate (36).

Racemic ester 36 ($57 \mathrm{mg}, 79 \%$) was prepared as above from $28(50 \mathrm{mg}, 0.177 \mathrm{mmol})$, cyclopropylamine ($10 \mathrm{mg}, 0.177 \mathrm{mmol}$) and benzaldehyde ($23 \mathrm{mg}, 0.21 \mathrm{mmol}$) isolated as a yellow solid; $\mathrm{mp} 175-176{ }^{\circ} \mathrm{C}$: IR: $1655,1494,1322,1291 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.5$ (s, $1 \mathrm{H}), 8.6(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=9.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 160.3,151.7$, $140.8,138.5,129.9,128.4,128.2,128.0,126.8,121.3,116.4,112.7,99.2,82.6,61.6$, 29.8, 28.1, 10.9, 7.9; MS: m/z $408\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 67.63; H, 5.92; N, 6.86. Found: C, 67.60; H, 6.00; N, 6.85.
tert-Butyl (\pm)-1-Allyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3carboxylate (37).

Racemic ester 37 ($54 \mathrm{mg}, 75 \%$) was prepared as above from $28(50 \mathrm{mg}, 0.177 \mathrm{mmol})$, allylamine ($10 \mathrm{mg}, 1.00 \mathrm{mmol}$) and benzaldehyde $(23 \mathrm{mg}, 0.21 \mathrm{mmol})$ isolated as a yellow solid; $\mathrm{mp} 155-156{ }^{\circ} \mathrm{C}$: IR: $1728,1656,1504,1320,1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.56$ (s, 1H), $8.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 5 \mathrm{H}), 6.45(\mathrm{~d}, J=$
$9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57($ complex, 1 H$), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J=17.1,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{dd}, J=17.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.7,160.2,150.3$, $142.3,137.5,131.3,128.6,128.5,128.4,127.0,121.9,117.8,114.7,110.5,98.2,82.8$, 63.0, 51.7, 28.1; MS: $m / z 367\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{5}\right)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 67.63; H, 5.92; N, 6.86. Found: C, 67.61; H, 6.03; N, 6.83.

Ethyl (\pm)-1-Benzyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-

 carboxylate (38).Racemic ester 38 ($383 \mathrm{mg}, 89 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.0 \mathrm{mmol}$), benzylamine ($107 \mathrm{mg}, 1.00 \mathrm{mmol}$) and benzaldehyde ($127 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp $160-162{ }^{\circ} \mathrm{C}$: IR: $1657,1632,1504,1317,1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.57$ (s, 1H), $8.81(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{dd}, J=9.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 10 \mathrm{H}), 6.60(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}) 4.72(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~m}$, 2H), 1.37 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.9,160.7,150.7,137.8,135.1,129.0$, $128.8,128.6,128.5,127.8,126.8,126.3,122.2,114.9,110.9,97.2,62.6,61.1,52.3,13.9$; MS: $m / z 339\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 69.76; H, 5.15; N, 6.51. Found: C, 69.71; H, 5.13; N, 6.48.

Ethyl (\pm)-1-Hexyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (39).

Racemic ester 39 (415 mg , 98\%) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), hexylamine ($99 \mathrm{mg}, 1.00 \mathrm{mmol}$) and benzaldehyde ($128 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 141-142 ${ }^{\circ} \mathrm{C}$: IR: $1659,1633,1505,1315 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.30$ (s, $1 \mathrm{H}), 8.58(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 5 \mathrm{H}), 6.47(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.25(\mathrm{~m}, 9 \mathrm{H}), 0.88$ (complex, 3 H$) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.8,160.6,150.4,142.6,137.0,128.9$, $128.6,128.3,126.4,122.3,114.3,109.9,96.9 .0,62.7,61.0,49.7,31.3,26.5,26.4,22.5$, 14.0, 13.9; MS: $m / z 353\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 67.91; H, 6.65; N, 6.60. Found: C, 68.07; H, 6.53; N, 6.54

Ethyl (\pm)-1-Isobutyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3carboxylate (40).

Racemic ester 40 ($284 \mathrm{mg}, 72 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), isobutylamine ($73 \mathrm{mg}, 1.00 \mathrm{mmol}$) and benzaldehyde ($127 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 136-138 ${ }^{\circ} \mathrm{C}$: IR: $1657,1632,1504,1315,1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.28$ (s, 1H), $8.58(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 5 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}) 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{dd}, J=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=$ $14.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=6.3 \mathrm{~Hz} .3 \mathrm{H}), 0.94$ (d, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.8,160.8,151.0,141.9,137.1,128.7,128.5,128.3$, $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.65; H, 6.10; N, 7.07. Found: C, 66.60; H, 6.05; N, 7.04.

Ethyl (\pm)-1-Cyclopropyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3carboxylate (41).

Racemic ester 41 ($324 \mathrm{mg}, 85 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), cyclopropylamine ($57 \mathrm{mg}, 1.00 \mathrm{mmol}$) and benzaldehyde ($127 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp $184-186{ }^{\circ} \mathrm{C}$: IR: $1658,1633,1494,1320 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 12.30(\mathrm{~s}$, $1 \mathrm{H}), 8.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 5 \mathrm{H}), 6.98(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.21($ complex, 1 H$), 1.22(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), $0.95(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.9,160.7,151.8,140.6,138.5,128.5,128.3,128.1$ 126.6, 121.4, 116.1, 112.8, 97.9, 61.2, 29.9, 14.0, 10.8, 7.9; MS: m/z $380\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.31; H, 5.30; N, 7.36; Found: C, 66.40; H, 5.24; N, 7.30.

Ethyl (土)-1-Allyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate

 (42).Racemic ester 42 ($368 \mathrm{mg}, 97 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), allylamine ($57 \mathrm{mg}, 1.00 \mathrm{mmol}$) and benzaldehyde $(127 \mathrm{mg}, 1.20 \mathrm{mmol})$ isolated as a
yellow solid; mp 179-180 ${ }^{\circ} \mathrm{C}$: IR: $1653,1629,1504,1309,1256 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.35$ (s, 1H), $8.60(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 5 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddt}, J=17.1,10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.20(\mathrm{~d}, J=10.3,1 \mathrm{H}), 4.18(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{dd}, J=17.1,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{dd}, J=17.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.9,160.5$, $150.5,142.1,137.6,131.2,128.8,128.6,128.5,126.9,122.1,117.9,114.5,110.6,97.1$, 62.5, 61.1, 51.7, 14.0; MS: $m / z 380\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.31; H, 5.30; N, 7.36; Found: C, 66.40; H, 5.24; N, 7.30 .

tert-Butyl (\pm)-1-Benzyl-2-(4-methoxyphenyl)-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (43).

Racemic ester 43 ($96 \mathrm{mg}, 82 \%$) was prepared as above from 28 ($68 \mathrm{mg}, 0.24 \mathrm{mmol}$), benzylamine ($26 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($39 \mathrm{mg}, 0.29 \mathrm{mmol}$) isolated as a yellow solid; mp 161-164 ${ }^{\circ} \mathrm{C}$: IR: 2838, $1655,1633,1510,1320 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.56(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}$, $7 \mathrm{H}), 6.8(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.8,160.1$, $159.6,150.5,137.7,135.3,134.4,128.9,128.6,128.2,127.7,126.4,121.9,115.1,113.8$, 110.9, 98.6, 82.8, 62.3, 55.3, 53.2, 28.1; MS: $m / z 397\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 68.84; H, 5.78; N, 5.73; Found: C, 68.70; H, 5.74; N, 5.69.

tert-Butyl (\pm)-1-Benzyl-2-(4-fluorophenyl)-6-nitro-4-oxo-1,2,3,4-

 tetrahydroquinoline-3-carboxylate (44).Racemic ester 44 (171 mg 97\%) was prepared as above from 28 ($105 \mathrm{mg}, 0.37 \mathrm{mmol}$), benzylamine ($26 \mathrm{mg}, 0.37 \mathrm{mmol}$) and 4-fluorobenzaldehyde ($55 \mathrm{mg}, 0.44 \mathrm{mmol}$) isolated as a yellow solid; $\mathrm{mp} 165-166{ }^{\circ} \mathrm{C}$: IR: $1655,1602,1506,1321 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.58(\mathrm{~s}$, $1 \mathrm{H}), 8.63(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~m}, 8 \mathrm{H}), 6.97(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.39(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.9,162.7(\mathrm{~d}, J=245.0 \mathrm{~Hz}) 160.4,150.4$, $142.0,138.0,135.1,129.0,128.6(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 127.8,127.0,126.4,122.0,115.2(\mathrm{~d}, J=$ $16.6 \mathrm{~Hz}), 115.1,111.0,98.3,83.0,62.2,52.4,28.1 ; \mathrm{MS}: m / z 385\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 68.06; H, 5.29; N, 5.88; Found: C, 68.07; H, 5.27; N, 5.79.
tert-Butyl (\pm)-1-Benzyl-2-(4-trifluoromethylphenyl)-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (45).

Racemic ester 45 ($200 \mathrm{mg}, 92 \%$) was prepared as above from $28(117 \mathrm{mg}, 0.41 \mathrm{mmol})$, benzylamine ($44 \mathrm{mg}, 0.41 \mathrm{mmol}$) of and 4-trifluoromethylbenzaldehyde ($86 \mathrm{mg}, 0.50$ mmol) isolated as a yellow solid; $\mathrm{mp} 161-163{ }^{\circ} \mathrm{C}$: IR: 1659, 1506, $1407,1321 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.62(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $169.4,160.7,150.4,145.7,138.1,134.5,130.6(\mathrm{q}, J=32.6 \mathrm{~Hz}) 129.0,128.8,127.9$,
127.2, 126.4, 125.6, $123.7(\mathrm{q}, ~ J=260 \mathrm{~Hz}), 122.0,115.1,111.1,97.8,83.3,62.4,52.7$, 28.1; MS: $m / z 435\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 63.87; H, 4.79; N, 5.32; Found: C, 63.67; H, 4.65; N, 5.25 .

Ethyl (\pm)-1-Benzyl-2-(4-methoxyphenyl)-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (46).

Racemic ester 46 ($336 \mathrm{mg}, 73 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), benzylamine ($107 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 4-methoxybenzaldehyde ($163 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 120-121 ${ }^{\circ} \mathrm{C}$: IR: 2838, $1658,1510,1317,1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=9.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~m}$, $7 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 2 \mathrm{H}), 3,78(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $169.9,160.4,159.7,150.6,137.7,135.2,134.2,129.0,128.8,128.0,127.7,126.3,122.1$, $114.8,113.9,110.9,97.4,65.8,61.9,55.2,52.1,13.9 ; \mathrm{MS}: m / z 369\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 68.84; H, 5.78; N, 5.73; Found: C, 68.70; H, 5.74; N, 5.69.

Ethyl (\pm)-1-Benzyl-2-(4-fluorophenyl)-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (47).

Racemic ester 47 ($413 \mathrm{mg}, 92 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), benzylamine ($107 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 4-fluorobenzaldehyde ($149 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; $\mathrm{mp} 134-135{ }^{\circ} \mathrm{C}$: IR: $1660,1633,1602,1506,1317,1255 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 12.38(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ $(\mathrm{m}, 7 \mathrm{H}), 6.97(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=16.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ 169.7, $162.6(\mathrm{~d}, J=247.3), 160.6,150.5,137.9(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 135.0,129.1,128.9$, $128.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 127.8,126.4,122.2,115.6(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 114.8,111.0,97.1$, 61.8, 52.3, 13.9; MS: $m / z 357\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}_{5}$: C, 66.96; H, 4.72; N, 6.25; Found: C, 66.87; H, 4.65; N, 6.21 .

Ethyl (土)-1-Benzyl-2-(4-trifluoromethyphenyl)-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (48).

Racemic ester 48 ($273 \mathrm{mg}, 55 \%$) was prepared as above from $29(255 \mathrm{mg}, 1.00 \mathrm{mmol})$, benzylamine ($107 \mathrm{mg}, 1.00 \mathrm{mmol}$) and 4-trifluoromethylbenzaldehyde ($209 \mathrm{mg}, 1.20$ mmol) isolated as a yellow solid; $\mathrm{mp} 165-166{ }^{\circ} \mathrm{C}$: IR: $1660,1633,1504,1317 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.42(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J$ $=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.6 \mathrm{HZ}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=16.6 \mathrm{HZ}, 1 \mathrm{H}), 4.18(\mathrm{q}$,
$J=7.1 \mathrm{HZ}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{HZ}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.6,161.0,150.5,145.5,138.1$, $134.8,130.6(\mathrm{q}, J=32.6 \mathrm{~Hz}), 129.0,128.9,127.9,127.1,126.4,125.7(\mathrm{q}, J=3.7 \mathrm{~Hz})$, $123.8(\mathrm{q}, J=272.3 \mathrm{~Hz}), 122.2,114.8,111.2,96.6,62.0,61.3,52.6,13.9 ; \mathrm{MS}: m / z 407$ $\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 62.65; H, 4.25; N, 5.62; Found: C, 62.67; H, 4.15; N, 5.55.

Representative Procedure for the Tandum Imine Addition-S $\mathbf{S}_{\mathbf{N}} \mathrm{Ar}$ Reaction with $\boldsymbol{\beta}$ -

Ketoesters and Aliphatic Imines: tert-Butyl (\pm)-1-Benzyl-2-methyl-6-nitro-4-oxo-

1,2,3,4-tetrahydroquinoline-3-carboxylate (51).

In a $100-\mathrm{mL}$ round-bottomed flask, benzylamine ($\mathbf{3 1}$) ($37 \mathrm{mg}, 0.35 \mathrm{mmol}$) and acetaldehyde (49) ($20 \mathrm{mg}, 0.44 \mathrm{mmol}$) were stirred together with ca. 25 mg of $4 \AA$ molecular sieves in 3 mL of DMF at room temperature for 6 h . tert-Butyl 3-(2-fluoro-5-nitro-phenyl)-3-oxopropanoate (28) (100 $\mathrm{mg}, 0.35 \mathrm{mmol}$) was added directly as the solid and stirred for 5 min to give a yellow to red solution. The molecular sieves were filtered from the reaction through a pad of Celite ${ }^{\circledR}$, and the filtrate was added to a separatory funnel containing 50 mL of water and extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated $\mathrm{NaCl}(1 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum to give a yellow solid. Purification by column chromatography over silica using $5-10 \%$ ether in hexanes afforded the desired product (51) (128 mg, 92\%) as a yellow solid; mp $145-147{ }^{\circ} \mathrm{C}$: IR: $1655,1505,1317 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.54$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}), 6.41(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.71(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}$, 9H), 1.26 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.6,160.5,150.3,137.6,135.7,128.9$, 128.0, 127.7, 126.4, 121.7, 115.7, 111.8, 99.1, 82.4, 55.0, 53.3, 28.2, 20.6; MS: m/z 305 $\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 66.65; H, 6.10; N, 7.07; Found: C, 66.67; H, 6.15; N, 7.05.

tert-Butyl (\pm)-1-Hexyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-

 carboxylate (52).Racemic ester 52 (186 mg, 97\%) was prepared as above from 28 ($140 \mathrm{mg}, 0.50 \mathrm{mmol}$), hexylamine ($50 \mathrm{mg}, 0.50 \mathrm{mmol}$) and acetaldehyde $(27 \mathrm{mg}, 0.60 \mathrm{mmol})$ isolated as a yellow solid; mp $86-87{ }^{\circ} \mathrm{C}$: IR: $1656,1505,1316 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.28(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=6.4$ Hz, 1H), 3.53 (complex, 1H), 3.23 (complex, 1H), 1.66 (m, 2H), 1.56 (s, 9H), 1.35 (m, $6 \mathrm{H}), 1.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~m} \mathrm{3H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.6,160.6,150.1,136.9$, $128.2,122.0,115.2,110.7,98.6,82.3,54.6,49.6,31.4,28.3,27.3,26.5,22.6,20.8,13.9$; MS: $m / z 319\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 64.59; H, 7.74; N, 7.17; Found: C, 64.67; H, 7.53; N, 7.05.
tert-Butyl (\pm)-1-Isobutyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (53).

Racemic ester 53 ($144 \mathrm{mg}, 81 \%$) was prepared as above from 28 ($140 \mathrm{mg}, 0.50 \mathrm{mmol}$), isobutylamine ($37 \mathrm{mg}, 0.50 \mathrm{mmol}$) and acetaldehyde $(26 \mathrm{mg}, 0.60 \mathrm{mmol})$ isolated as a yellow solid; mp $135-136{ }^{\circ} \mathrm{C}$: IR: $1651,1602,1505,1317 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.26$ (s, $1 \mathrm{H}), 8.52(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=9.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=14.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.4,9.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.03 (complex, 1H), $1.55(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.6,160.8,150.4,136.9,128.1,122.1,115.4,111.1$, 98.6, 82.3, 56.6, 55.1, 28.3, 26.7, 20.1, 19.9; MS: $m / z 319\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 62.97; H, 7.23; N, 7.73; Found: C, 62.77; H, 7.30; N, 7.65.
tert-Butyl (\pm)-1-Cyclopropyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (54).

Racemic ester 54 ($260 \mathrm{mg}, 75 \%$) was prepared as above from 28 ($283 \mathrm{mg}, 1.00 \mathrm{mmol}$), cyclopropylamine ($57 \mathrm{mg}, 1.00 \mathrm{mmol}$) of and acetaldehyde ($53 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp $142-143{ }^{\circ} \mathrm{C}$: IR: $1654,1507,1322 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.26(\mathrm{~s}, 1 \mathrm{H})$, $8.49(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~m}, 1 \mathrm{H}), 0.97$ $(\mathrm{m}, 1 \mathrm{H}), 0.78(\mathrm{~m}, 1 \mathrm{H}), 0.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.6,160.2,151.9,138.4,127,7$, $121.2,116.5,113.0,100.2,82.3,53.3,29.4,28.3,18.8,10.5,7.5 ; \mathrm{MS}: m / z 346\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 62.42; H, 6.40; N, 8.09; Found: C, 62.40; H, 6.50; N, 8.10.

tert-Butyl (\pm)-1-Allyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-

 carboxylate (55).Racemic ester 55 ($226 \mathrm{mg}, 65 \%$) was prepared as above from 28 ($283 \mathrm{mg}, 1.00 \mathrm{mmol}$), allylamine ($57 \mathrm{mg}, 1.00 \mathrm{mmol}$) and acetaldehyde ($53 \mathrm{mg}, 1.00 \mathrm{mmol}$) isolated as a yellow solid; mp 99-100 ${ }^{\circ} \mathrm{C}$: IR: $1656,1631,1505,1321 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.31(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~m}, 1 \mathrm{H})$, $5.30(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=$ $17.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=17.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR: $\delta 169.6,160.3,150.2,137.2,132.2,128.0,121.6,117.7,115.2,111.3,98.9$, 82.4, 54.8, 52.4, 28.2, 27.8; MS: m/z $346\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 62.42; H, 6.40; N, 8.09; Found: C, 62.47; H, 6.53; N, 8.05.

Ethyl (土)-1-Benzyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (56).

Racemic ester 56 ($352 \mathrm{mg}, 96 \%$) was prepared as above from $29(255 \mathrm{mg}, 1.00 \mathrm{mmol})$, benzylamine ($107 \mathrm{mg}, 1.00 \mathrm{mmol}$) and acetaldehyde ($53 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 157-159 ${ }^{\circ} \mathrm{C}$: IR: 1660, 1631, $1507,1316 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.21$ (s,
$1 \mathrm{H}), 8.54(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=9.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~m}, 5 \mathrm{H}), 6.44(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.8,161.0,150.3,137.6,135.7,128.9$, 128.2, 127.7, 126.4, 121.9, 115.4, 111.9, 97.8, 60.9, 54.7, 53.2, 20.7, 14.1; MS: m/z 277 $\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 65.21; H, 5.47; N, 7.60; Found: C, 65.17; H, 5.35; N, 7.55.

Ethyl (\pm)-1-Hexyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (57).

Racemic ester 57 ($339 \mathrm{mg}, 94 \%$) was prepared as above from $29(255 \mathrm{mg}, 1.00 \mathrm{mmol})$, hexylamine ($99 \mathrm{mg}, 1.00 \mathrm{mmol}$) and acetaldehyde ($53 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 78-80 ${ }^{\circ} \mathrm{C}$: IR: $1658,1631,1505,1312 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.11(\mathrm{~s}, 1 \mathrm{H})$, $8.51(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{dt}, J=7.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dt}, J=7.8,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 9 \mathrm{H}), 1.23(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~m} 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $169.8,161.2,150.2,137.0,128.4,122.3,115.0,110.8,97.4,60.9,54.2,49.7,31.4,28.3$, 27.4, 26.5, 22.5, 20.9, 14.3, 13.9; MS: $m / z 319\left(\mathrm{M}^{+}-\mathrm{C}_{5} \mathrm{H}_{11}\right)$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 62.97; H, 7.23; N, 7.73; Found: C, 62.67; H, 7.13; N, 7.65.

Ethyl (\pm)-1-Isobutyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (58).

Racemic ester 58 (297 mg, 89\%) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), isobutylamine ($73 \mathrm{mg}, 1.00 \mathrm{mmol}$) and acetaldehyde $(53 \mathrm{mg}, 1.20 \mathrm{mmol})$ isolated as a yellow solid; mp $139-140^{\circ} \mathrm{C}$: IR: $1657,1630,1505,1311 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.10(\mathrm{~s}, 1 \mathrm{H})$, $8.53(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{q}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=14.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=14.4,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05($ complex, 1 H$), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.8,161.3,150.4,137.0,128.2$, $122.3,115.1,111.2,97.3,60.9,56.6,54.7,26.7,20.1,19.9,19.8,14.2 ;$ MS: $m / z 291$ $\left(\mathrm{M}^{+}-\mathrm{C}_{3} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 61.07; H, 6.63; N, 8.38; Found: C, 61.12; H, 6.53; N, 8.45.

Ethyl (土)-1-Cyclopropyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (59).

Racemic ester 59 ($303 \mathrm{mg}, 95 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), cyclopropylamine ($57 \mathrm{mg}, 1.00 \mathrm{mmol}$) and acetaldehyde ($53 \mathrm{mg}, 1.20 \mathrm{mmol}$) isolated as a yellow solid; mp 161-162 ${ }^{\circ} \mathrm{C}$: IR: $1656,1635,1495,1318 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.10(\mathrm{~s}$, $1 \mathrm{H}), 8.49(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.1), 1.24(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.10(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~m}, 1 \mathrm{H}), 0.80(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.6,160.7,151.9$,
$138.4,127,8,121.4,116.2,113.1,98.9,60.9,53.0,29.4,18.8,14.3,10.4,7.6 ; \mathrm{MS}: m / z$ $318\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 60.37; H, 5.70; N, 8.80; Found: C, 60.47; H, 5.53; N, 8.65.

Ethyl (\pm)-1-Allyl-2-methyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate (60).

Racemic ester 60 ($300 \mathrm{mg}, 94 \%$) was prepared as above from 29 ($255 \mathrm{mg}, 1.00 \mathrm{mmol}$), allylamine ($57 \mathrm{mg}, 1.00 \mathrm{mmol}$) and acetaldehyde $(53 \mathrm{mg}, 1.00 \mathrm{mmol})$ isolated as a yellow solid; mp 128-130 ${ }^{\circ} \mathrm{C}$: IR: $1662,1629,1567,1492,1337 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.16$ $(\mathrm{s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.85(\mathrm{ddt}, J=17.4,10.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=16.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $16.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 169.8$, $160.9,150.2,137.4,132.1,128.2,121.9,117.9,115.0,111.5,97.7,54.3,52.4,21.1$, 14.2; MS: $m / z 318\left(\mathrm{M}^{+}\right)$.

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 60.37; H, 5.70; N, 8.80; Found: C, 60.47; H, 5.53; N, 8.65.

1-Phenyl- N-(propan-2-ylidene)methanamine (63)

To a $250-\mathrm{mL}$ round-bottomed flask equipped with a Dean-Stark trap was added benzylamine ($\mathbf{3 1})(0.50 \mathrm{~g}, 4.66 \mathrm{mmol})$ and acetone $(0.35 \mathrm{~g}, 6.00 \mathrm{mmol})$ in 100 mL of benzene. The reaction was refluxed for 24 h , and solvent was removed to afford an oil. Vacuum distillation gave 63 as a colorless oil bp $64-67^{\circ} \mathrm{C}, 1.2 \mathrm{~mm}$, IR: 1666, 1493, 1373 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.30(\mathrm{~m}, 5 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ $168.1,140.2,128.3,127.7,126.9,126.4,55.3,29.3,18.7$.
tert-Butyl 1-Benzyl-6-nitro-4-oxo-2-phenyl-1,4-dihydroquinoline-3-carboxylate (64).

In a $100-\mathrm{mL}$ round-bottomed flask was dissolved $300 \mathrm{mg}(0.65 \mathrm{mmol})$ of $\mathbf{3 3}$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this was added 3 g of MnO_{2}, and the reaction was stirred for 3 days. ${ }^{44}$ The reaction was worked up by filtering out the solid through a pad of Celite ${ }^{\circledR}$ followed by column chromatography using 30% ether/hexanes to afford 178 mg of $\mathbf{6 4}$; $\mathrm{mp} 89-91{ }^{\circ} \mathrm{C}$: IR:1725, 1630, 1612, 1525, $1343 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.33(\mathrm{~d}, J=2.9,1 \mathrm{H}), 8.30(\mathrm{dd}, J=$ $9.5,2.9,1 \mathrm{H}), 7.38(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 173.3$, $164.0,152.6,143.8,143.6,134.7,132.0,130.3,129.2,128.7,128.5,128.1,126.6,125.3$, 123.5, 122.2, 118.8, 82.1, 52.5, 27.5; MS: m/z. $365\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 71.04; H, 5.30; N, 6.14; Found: C, 70.58; H, 5.43; N, 6.05 .

tert-Butyl (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (65).

In a $250-\mathrm{mL}$ round-bottomed flask, tert-butyl (\pm)-1-benzyl-2-phenyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate ($\mathbf{3 3})(1.00 \mathrm{~g}, 5.50 \mathrm{mmol})$ was stirred with 2.00 g of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 0.6 mL of $\mathrm{CH}_{3} \mathrm{I}$ in 100 mL of acetone for 1.5 h . The reaction was filtered through a pad of Celite ${ }^{\circledR}$ to remove the solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. Water $(200 \mathrm{~mL})$ was added to the filtrate, and the mixture was extracted twice with 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with saturated $\mathrm{NaCl}(1 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to yield $\mathbf{6 5}(2.15 \mathrm{~g}, 99 \%)$ as a yellow solid; mp 142-144 ${ }^{\circ} \mathrm{C}$: IR: 1723,1686 , 1605, 1508, $1315 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 8.91(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=9.4,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{~m}, 10 \mathrm{H}), 6.82(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.25$ $(\mathrm{d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 189.7,168.1,153.0,138.5$, $135.3,130.3,129.0,128.8,128.1,126.9,125.5,116.9,113.4,82.2,71.9,58.5,53.5,27.2$, 22.8; MS: $m / z 381\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 71.17; H, 5.97; N, 5.93; Found: C, 71.58; H, 5.73; N, 6.05.

(\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline-3-

 carboxylic acid (66).tert-Butyl (\pm)-1-benzyl-3-methyl-2-phenyl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinoline-3carboxylate (65) ($0.210 \mathrm{~g}, 0.44 \mathrm{mmol})$ was stirred with approximately 1 mL of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 1.5 h in a $100-\mathrm{mL}$, round-bottomed flask. The reaction was added to water
and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed with saturated NaCl (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to yield the desired product as a yellow solid, which was used without purification in the next reaction; $\mathrm{mp} 78{ }^{\circ} \mathrm{C}$ dec: IR: 3500-2417, 1758, 1606, $1510,1317 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 12.31(\mathrm{bs} 1 \mathrm{H}), 8.87(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=9.4$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~m} \mathrm{10H}), 6.94(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: $\delta 197.7,170.5,153.4,138.5$, $134.9,134.7,132.2,129.6,129.3,128.6,127.6,126.9,125.9,114.7,113.1,69.3,53.9$, 53.8, 25.3;
(\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4-tetrahydroquinoline (67).

The carboxylic acid (66) from the previous reaction was heated as a solid in a 100 mL round-bottomed flask with an oil bath at $80^{\circ} \mathrm{C}$ for 45 min until gas evolution ceased to yield 67 ($165 \mathrm{mg}, 100 \%$ over two steps); mp $158-161^{\circ} \mathrm{C}$: IR: $1690,1605,1509,1320 \mathrm{~cm}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta 8.74(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=9.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 8 \mathrm{H}), 7.07$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (quintet, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR: δ 193.1, 153.8, 137.7, 135.7, 130.3, 129.2, 129.0, 128.9, 128.0, 127.4, $126.2,126.0,124.2,118.1,112.2,68.5,53.6,45.2,10.8 ; \mathrm{MS}: m / z .281\left(\mathrm{M}^{+}-\mathrm{C}_{7} \mathrm{H}_{7}\right)$.

Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 74.18; H, 5.41; N, 7.52; Found: C, 74.58; H, 5.33; N, 7.35 .

Structure Elucidation of (\pm)-1-Benzyl-3-methyl-6-nitro-4-oxo-2-phenyl-1,2,3,4tetrahydroquinoline (67).

Crystals of $\mathbf{6 7}$ were obtained as yellow square rods by vapor diffusion of diethyl ether into a solution of 67 in methylene chloride. A specimen measuring $0.72 \times 0.13 \times 0.11$ mm was mounted on a nylon loop. X-ray intensity data were measured at 296 K on a Bruker SMART APEX II diffractometer. Graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$, fine-focus sealed tube) was used with the CCD detector placed at 6.0 cm . Data frames were collected in a series of ϕ and ω scans with 0.5° and 90 -second exposure times. Data integration employed the Bruker SAINT software package. ${ }^{47}$ Data were corrected for absorption effects using SADABS multi-scan technique. The structure was solved by direct methods and refined by full-matrix least squares on F^{2} using the Buker SHELXTL software suite. The H atoms were placed in calculated positions and allowed to ride on their carrier atoms with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and with $U_{\text {iso }}=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for CH and CH_{2}. Refined Formula: $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{r}=372.41$, Monoclinic, space group $P 2_{1} / \mathrm{c}$, a $=10.2866$ (15) $\AA, b=14.519$ (2) $\AA, c=13.425$ (2) $\AA, \alpha=90^{\circ}, \beta=107.804(5)^{\circ}, \gamma=$ $90^{\circ}, V=1909.0(5) \AA^{3}, Z=2, D_{\mathrm{x}}=1.296 \mathrm{Mg} \mathrm{m}^{-3}, \mu=0.09 \mathrm{~mm}^{-1}, T=296 \mathrm{~K}, 4741$ independent reflections $\left(R_{\text {int }}=0.040\right), 3123$ reflections with $I>2 \sigma(I)$, Final $R\left[F^{2}>\right.$ $\left.2 \sigma\left(F^{2}\right)\right]=0.044, w R\left(F^{2}\right)=0.125$.

1-Benzyl-3-methyl-6-nitro-2-phenylquinolin-4(1H)-one (68).

In a $100-\mathrm{mL}$ round-bottomed flask was dissolved $67(100 \mathrm{mg}, 0.26 \mathrm{mmol})$ in 40 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. To this was added 1.00 g of MnO_{2} and the reaction was stirred for 3 days. The
MnO_{2} was removed by filtering the reaction through a pad of Celite ${ }^{\circledR}$ followed by column chromatography on silica gel using 30% ether in hexanes to afford 51 mg of $\mathbf{6 8} ; \mathrm{mp} 160-$ $162{ }^{\circ} \mathrm{C}$. IR: $1735,1626,1608,1520,1339 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta 9.36(\mathrm{~d}, J=2.74 \mathrm{~Hz}, 1 \mathrm{H})$, $8.26(\mathrm{dd}, J=9.34,2.74 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 10 \mathrm{H}), 6.91(\mathrm{~d}, J=9.34 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s} 2 \mathrm{H})$, 1.87 (s, 3H); ${ }^{13} \mathrm{C}$ NMR: $\delta 177.0,152.3,143.6,143.0,135.3,134.1,129.7,129.3,129.1$, $127.9,127.8,125.9,125.2,124.6,123.8,120.7,118.2,52.8,30.3 ; \mathrm{MS}: m / z .279\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{7} \mathrm{H}_{7}$).

Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 71.04; H, 5.30; N, 6.14; Found: C, 70.58; H, 5.43; N, 6.05 .

Structure Elucidation of 1-Benzyl-3-methyl-6-nitro-2-phenylquinolin-4(1H)-one

 (68).Crystals of $\mathbf{6 8}$ were obtained as yellow square rods by vapor diffusion of diethyl ether into a solution of $\mathbf{6 8}$ in methylene chloride. A specimen measuring $0.28 \times 0.15 \times 0.10$ mm was mounted on a nylon loop. X-ray intensity data were measured at 296 K on a Bruker SMART APEX II diffractometer. Graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA$, fine-focus sealed tube) was used with the CCD detector placed at 6.0 cm . Data frames were collected in a series of ϕ and ω scans with 0.5° scan widths and 30second exposure times. Data integration employed the Bruker SAINT software package. ${ }^{47}$ Data were corrected for absorption effects using SADABS multi-scan technique. The structure was solved by direct methods and refined by full-matrix least squares on F^{2} using the Buker SHELXTL software suite. The H atoms were placed in
calculated positions and allowed to ride on their carrier atoms with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and with $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for CH and CH_{2}. Refined Formula: $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}, M_{r}=370.39$, Monoclinic, space group $P 2{ }_{1} / \mathrm{c}, a=7.3207$ (12) $\AA, b=18.984$ (3) $\AA, c=26.804$ (4) \AA, α $=90^{\circ}, \beta=96.715(4)^{\circ}, \gamma=90^{\circ}, V=3699.6(10) \AA^{3}, Z=8, D_{\mathrm{x}}=1.330 \mathrm{Mg} \mathrm{m}^{-3}, \mu=0.09$ $\mathrm{mm}^{-1}, T=296 \mathrm{~K}, 7575$ independent reflections $\left(R_{\mathrm{int}}=0.081\right), 3498$ reflections with $I>$ $2 \sigma(I)$, Final $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048, w R\left(F^{2}\right)=0.132$.

REFERENCES

1. (a) Trost, B. M., Atom Economy-A Challenge for Organic Synthesis:

Homogeneous Catalysis Leads the Way. Angew Chem Int Ed Eng 1995, 34 (3), 259-281;
(b) Trost, B., The Atom Economy--a Search for Synthetic Efficiency. Science 1991, 254 (5037), 1471-1477.
2. (a) Tietze, L. F., Domino Reactions in Organic Synthesis. Chem Rev 1996, 96 (1), 115-136; (b) Hall, N., Chemists Clean Up Synthesis With One-Pot Reactions. Science 1994, 266 (5182), 32-34; (c) Posner, G. H., Multicomponent One-pot Annulations Forming 3 to 6 Bonds. Chem Rev 1986, 86 (5), 831-844; (d) Wasilke, J.-C.; Obrey, S. J.; Baker, R. T.; Bazan, G. C., Concurrent Tandem Catalysis. Chem Rev 2005, 105 (3), 1001-1020.
3. Jean, D. J. S.; Poon, S. F.; Schwarzbach, J. L., A Tandem Cross-coupling/S S_{N} Ar Approach to Functionalized Carbazoles. Org Lett 2007, 9 (23), 4893-4896.
4. (a) Grieco, P.; Cai, M. Y.; Liu, L.; Mayorov, A.; Chandler, K.; Trivedi, D.; Lin, G. X.; Campiglia, P.; Novellino, E.; Hruby, V. J., Design and Microwave-assisted Synthesis of Novel Macrocyclic Peptides Active at Melanocortin Receptors: Discovery of Potent and Selective hMC5R Receptor Antagonists. J Med Chem 2008, 51 (9), 27012707; (b) Xu, H.; Li, H. F., One-pot Microwave-assisted Tandem Deprotection of

Arylmethanesulfonates $/ \mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction for $\mathrm{K}_{2} \mathrm{CO}_{3}$-mediated $\mathrm{C}($ Aryl)-O Bond Formation. Z Naturforsch B 2007, 62 (9), 1183-1186.
5. Thomas, S.; Collins, C. J.; Cuzens, J. R.; Spiciarich, D.; Goralski, C. T.;

Singaram, B., Aminoborohydrides. 12. Novel Tandem S_{N} Ar Amination-reduction Reactions of 2-Halobenzonitriles with Lithium N,N-Dialkylaminoborohydrides. J Org Chem 2001, 66 (6), 1999-2004.
6. Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E., Synthesis and Antibacterial Activity of U-100592 and U-100766, Two Oxazolidinone Antibacterial Agents for the Potential Treatment of MultidrugResistant Gram-Positive Bacterial Infections. J Med Chem 1996, 39 (3), 673-679.
7. Selvakumar, N.; Reddy, B. Y.; Kumar, G. S.; Khera, M. K.; Srinivas, D.; Kumar, M. S.; Das, J.; Iqbal, J.; Trehan, S., Synthesis of Novel Tricyclic Oxazolidinones by a Tandem $\mathrm{S}_{\mathrm{N}} 2$ and $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction: SAR Studies on Conformationally Constrained Analogues of Linezolid. Bioorg Med Chem Lett 2006, 16 (16), 4416-4419.
8. (a) Hsu, M.-J.; Chao, Y.; Chang, Y.-H.; Ho, F.-M.; Huang, L.-J.; Huang, Y.-L.;

Luh, T.-Y.; Chen, C.-P.; Lin, W.-W., Cell Apoptosis Induced by a Synthetic Carbazole Compound LCY-2-CHO is Mediated Through Activation of Caspase and Mitochondrial Pathways. Biochem Pharmacol 2005, 70 (1), 102-112; (b) Potterat, O. P., C.: Bolek, W.;

Wagner, K.; Ke, C.; Ye, Y.; Gillardon, F., Pharmazie 2005, 60; (c) Roy, M. K.; Thalang, V. N.; Trakoontivakorn, G.; Nakahara, K., Mahanine, a Carbazole Alkaloid from Micromelum Minutum, Inhibits Cell Growth and Induces Apoptosis in U937 Cells

Through a Mitochondrial Dependent Pathway. British Journal of Pharmacology 2005, 145 (2), 145-155.
9. Xu, H.; Ye, F.; Dai, H. L., Anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$-mediated Tandem Deprotection of (Un)substituted Phenyl Methanesulfonate/ $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reactions to Construct Unsymmetrical Diphenyl Ethers in an Ionic Liquid. Chinese J Chem 2008, 26 (8), 1465-1468.
10. Zhong, Y. L.; Lindale, M. G.; Yasuda, N., An Efficient Access to 3,6Disubstituted $1 H$-pyrazolo [3,4-b]pyridines via a One-pot Double $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction and Pyrazole Formation. Tetrahedron Lett 2009, 50 (20), 2293-2297.
11. Bunce, R. A.; Nago, T.; White, B., (\pm)-1,2-Dialkyl-5-nitro-2,3-dihydro-1HIndoles by a Tandem Reductive Amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reaction. J Heterocycl Chem 2009, 46, 629-634.
12. Bunce, R. A.; Nago, T., 6-Nitro-1,2,3,4-tetrahydroquinolines by a Tandem Reductive Amination- S_{N} Ar Reaction. J Heterocycl Chem 2008, 45, 1155-1160.
13. Little, J. D.; Ghosh, S.; Harrison, S.; Elder, A. E.; Renou, C. C.; Carson, K. G. World Patent WO 2006091674 ; Chem Abstr., 2006, 145, $292886 .$.
14. Hanada, K.; Furuya, K.; Yamamoto, N.; Nejishima, H.; Ichikawa, K.; Nakamura, T.; Miyakawa, M.; Amano, S.; Sumita, Y.; Oguro, N., Bone Anabolic Effects of S-40503, a Novel Nonsteroidal Selective Androgen Receptor Modulator (SARM), in Rat Models of Osteoporosis. Bio. Phar. Bul. 2003, 26, 1563-1569.
15. Thevis, M., Mass Spectrometry in Sports Drug Testing: Characterization of Prohibited Substances and Doping Control Analytical Assays. Wiley and Sons: New York City, 2010; p 360.
16. Milne, J.; Normington, K. D.; Milburn, M. World Patent WO 2006094210; Chem. Abstr. 2006,145, $306763 .$.
17. Bourzat, J.-d.; Commercon, A.; Filoche, B. J. C.; Harris, N. V.; Pallin, T. D.; Stuttle, K. A. J. World Patent WO 0039103; Chem. Abstr. 2000, 133, 89546.
18. (a) Mukhopadhyay, R. K., Nitya G;, A Highly Regio- and Stereoselective Novel Route To (E)-2-Alkyl (Aryl)idene-1,2,3,4-tetrahydroquinoxalines Through a PalladiumCatalysed Arylation and Concurrent Heteroannulation Process. Synlett 2001, 2001 (7), 1143-1145; (b) Zeni, G.; Larock, R. C., Synthesis of Heterocycles via PalladiumCatalyzed Oxidative Addition. Chem Rev 2006, 106 (11), 4644-4680.
19. Kuroita, T.; Sakamori, M.; Kawakita, T., Design and Synthesis of 6-Chloro-3,4-dihydro-4-methyl-2H-1,4-benzoxazine-8-carboxamide Derivatives as Potent Serotonin-3 (5-HT3) Receptor Antagonists. Chem Pharm Bull 1996, 44, 756-64.
20. (a) Largeron, M.; Mesples, B.; Gressens, P.; Cecchelli, R.; Spedding, M.; Le, R. A.; Fleury, M. B., The Neuroprotective Activity of 8-Alkylamino-1,4-benzoxazine Antioxidants. Eur J Pharmacol 2001, 424, 189-194; (b) Largeron, M.; Lockhart, B.; Pfeiffer, B.; Fleury, M.-B., Synthesis and in Vitro Evaluation of New 8-Amino-1,4benzoxazine Derivatives as Neuroprotective Antioxidants. J Med Chem 1999, 42, 50435052.
21. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R., Vogel's Textbook of Practical Organic Chemistry. 5th ed.; Longman Scientific and Technical: New York, NY: 1989.
22. Bunce, R. A.; Herron, D. M.; Johnson, L. B.; Kotturi, S. V., Diastereoselective synthesis of substituted tetrahydroquinoline-4-carboxylic esters by a tandem reductionreductive amination reaction. J Org Chem 2001, 66, 2822-2827.
23. Roe, A., Preparation of Aromatic Fluorine Compounds from Diazonium Fluoborates. The Schiemann Reaction. Org. Reactions 1968, (5), 193-228.
24. Potashman, M. H.; Bready, J.; Coxon, A.; DeMelfi, T. M., Jr.; DiPietro, L.; Doerr, N.; Elbaum, D.; Estrada, J.; Gallant, P.; Germain, J.; Gu, Y.; Harmange, J.-C.; Kaufman, S. A.; Kendall, R.; Kim, J. L.; Kumar, G. N.; Long, A. M.; Neervannan, S.; Patel, V. F.; Polverino, A.; Rose, P.; Van, d. P. S.; Whittington, D.; Zanon, R.; Zhao, H., Design, Synthesis, and Evaluation of Orally Active Benzimidazoles and Benzoxazoles as Vascular Endothelial Growth Factor-2 Receptor Tyrosine Kinase Inhibitors. J. Med. Chem. 2007, 50, 4351-4373.
25. Bunce, R. A.; Nago, T.; Sonobe, N.; Slaughter, L. M., Benzo-fused Heterocycles and Carbocycles by Intramolecular $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ and Tandem $\mathrm{S}_{\mathrm{N}} 2-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Reactions. J Heterocycl Chem 2008, 45, 551-557.
26. Schirmer, U.; Becker, R.; Wuerzer, B. m-Anilideurethanes and Herbicidal Compositions Containing Them. 406871(Patent), 1981.
27. Makosza, M.; Tyrala, A., Reactions of Organic Anions. 133. Alkylation and the Knoevenagel Condensation of Nitrobenzylic Sulfones and Nitriles. Synth Commии 1986, 16, 419-23.
28. Bunce, R. A.; Nago, T., 6-Nitro-1,2,3,4-tetrahydroquinolines by a Tandem Reductive Amination-S ${ }_{\mathrm{N}}$ Ar Reaction. J Heterocyclic Chem 2008, 45 (4), 1155-1160.
29. Badorrey, R.; Cativiela, C.; Diaz-de-Villegas, M. D.; Galvez, J. A., Study of the Reaction of Imines Derived from (R)-Glyceraldehyde with Danishefsky's Diene. Tetrahedron 1999, 55 (24), 7601-7612.
30. Jaber, N.; Assie, M.; Fiaud, J. C.; Collin, J., Tandem Reactions Catalyzed by Lanthanide Iodides. Part 1: Tandem Mukaiyama-Michael Iminoaldol Reactions. Tetrahedron 2004, 60 (13), 3075-3083.
31. Raw, S. A.; Taylor, R. J. K., Highly substituted pyridines via tethered imineenamine (TIE) methodology. Chem Commun 2004, (5), 508-509.
32. Lu, W.; Song, W. Z.; Hong, D.; Lu, P.; Wang, Y. G., Copper-catalyzed One-pot Synthesis of 2-Alkylidene-1,2,3,4-tetrahydropyrimidines. Adv Synth Catal 2009, 351, 1768-1772.
33. Eisenbraun, E. J., Organic Syntheses. John Wiley and Sons: 1973; Vol. V, p 310.
34. Oikawa, Y.; Sugano, K.; Yonemitsu, O., Meldrum's Acid in Organic Synthesis. 2.

A General and Versatile Synthesis of β-Keto Esters. The Journal of Organic Chemistry 1978, 43 (10), 2087-2088.
35. Domagala, J. M.; Bridges, A. J.; Culbertson, T. P.; Gambino, L.; Hagen, S. E.; Karrick, G.; Porter, K.; Sanchez, J. P.; Sesnie, J. A., Synthesis and Biological Activity of 5-Amino- and 5-Hydroxyquinolones, and the Overwhelming Influence of the Remote N1-Substituent in Determining the Structure-activity Relationship. Journal of Medicinal Chemistry 1991, 34 (3), 1142-1154.
36. Crugeiras, J.; Rios, A.; Riveiros, E.; Richard, J. P., Substituent Effects on the Thermodynamic Stability of Imines Formed from Glycine and Aromatic Aldehydes:

Implications for the Catalytic Activity of Pyridoxal-5'-phosphate. J Am Chem Soc 2009, 131 (43), 15815-15824.
37. (a) Willi, A. V.; Robertson, R. E., A Kinetic Study of the Hydrolysis of Benzalanine. Can. J. Chem. 1953, 31, 361-376; (b) Reeves, R. L., p-

Trimethylammoniumbenzylidene-p'-hydroxyaniline Chloride in Aqueous Solution from pH 1 to 11.5. J Am Chem Soc 1962, 84 (17), 3332-3337; (c) Godoy-Alcantar, C.; Yatsimirsky, A. K.; Lehn, J. M., Structure-stability Correlations for Imine Formation in Aqueous Solution. J Phys Org Chem 2005, 18 (10), 979-985; (d) Saggiomo, V.; Lüning, U., On the Formation of Imines in Water--A Comparison. Tetrahedron Lett 2009, 50 (32), 4663-4665; (e) Xiang, Y. Z.; Meng, Q. Q.; Li, X. N.; Wang, J. G., In Situ Hydrogen from Aqueous-methanol for Nitroarene Reduction and Imine Formation Over an Au$\mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$ Catalyst. Chem Commun 2010, 46 (32), 5918-5920.
38. March, J.; Smith, M. B., March's Adanced Organic Chemistry. 5 ed.; John Wiley and Sons: New York City, 2001; p 1185-1187.
39. March, J.; Smith, M. B., March's Adanced Organic Chemistry. John Wiley and Sons: New York City 2001; p 1412-1413.
40. Westheimer, F. H.; Taguchi, K., Catalysis by Molecular Sieves in the Preparation of Ketimines and Enamines. The Journal of Organic Chemistry 1971, 36 (11), 15701572.
41. (a) Bunce, R. A.; Lee, E. J. In Ester- and Ketone-substituted (\pm)-1-Alkyl-6-nitro-1,2,3,4-tetrahydroquinolines by a Tandem $S_{N} A r$-Michael Reaction, 2010; (b) Bunce, R. A.; Nago, T. In Steric Requirements in the Synthesis of 2,3-Dihydro-4(1H)-quinolinones by the Tandem Michael- $S_{N} A r$ Reaction, 2010; pp MWRM-356; (c) Bunce, R. A.; Lee, E.
J., Ester- and Ketone-substituted (\pm)-1-Alkyl-6-nitro-1,2,3,4-tetrahydroquinolines by a Tandem $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$-Michael Reaction. J. Heterocycl. Chem. 2010, 47, 1176-1182; (d) Bunce, R. A.; Nago, T., 1-Alkyl-2,3-dihydro-4(1H)-quinolinones by a Tandem Michael- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ Annulation Reaction. J. Heterocycl. Chem. 2009, 46, 623-628.
42. (a) Black, D. S.; Kumar, N.; Mitchell, P. S. R., Synthesis of Pyrroloquinolines as Indole Analogs of Flavonols. J. Org. Chem. 2002, 67, 2464-2473; (b) Asahina, Y.;

Araya, I.; Iwase, K.; Inuma, F.; Hosaka, M.; Ishizaki, T., Synthesis and Antibacterial Activity of the 4-Quinolone-3-carboxylic Acid Derivatives Having a Trifluoromethyl Group as a Novel N-1 Substituent. J. Med. Chem. 2005, 48, 3443-3446.
43. Huang, T.-S.; Yale, T. J.; Martin, A. R., Tetracyclic phenothiazines. II.

Antibacterial Evaluation of 3-Oxo-3H-pyrido[3,2,1-kl]phenothiazine-2-carboxylate. J. Med. Chem. 1969, 12, 705-7.
44. (a) Sawada, M.; Yamada, H.; Furukawa, Y.; Chong, C.; Fukuda, F.; Tanaka, T.; Takai, Y.; Hanafusa, T.; Misumi, S., El and FAB Mass Spectra of Some Fused Ring 1,3-Dialkyl-1,3,5-triazine-2,4(1H,3H)-dione Derivatives. Structural Effects on EIMS Fragmentations and an Application of FABMS Quantitative Measurements to Kinetics. Nippon Kagaku Kaishi 1986, 560-8; (b) Kondo, H.; Sakamoto, F.; Kawakami, K.; Tsukamoto, G., Studies on Prodrugs. 7. Synthesis and Antimicrobial Activity of 3Formylquinolone Derivatives. J. Med. Chem. 1988, 31, 221-5; (c) Miyamoto, H.; Yamashita, H.; Tominaga, M.; Yabuuchi, Y. Preparation of 3-Formyl-4-oxoquinolines as Antimicrobial agents. 552466(Patent), 1990; (d) Cociorva, O.; Li, B.; Szardenings, K.; Fukuda, Y.; Nomura, M.; Seto, S.; Yumoto, K.; Okada, K.; Nakamura, A. Preparation of Aminoquinolones as GSK-3 Inhibitors. 1064545(Patent), 2007.
45. (a) Zimmerman, H. E., Kinetic Protonation of Enols, Enolates, and Analogs. The Stereochemistry of Ketonization. Acc. Chem. Res. 1987, 20, 263-8; (b) Zimmerman, H. E.; Wang, P., Intramolecular Proton Transfer. Org. Lett. 2002, 4, 2593-2595; (c) Zimmerman, H. E.; Wang, P., Inter- and Intramolecular Stereoselective Protonation of Enols. J. Org. Chem. 2002, 67, 9216-9226; (d) Zimmerman, H. E.; Wang, P., The α Effect in the Stereochemistry of Kinetic Ketonization of Enols. J. Org. Chem. 2003, 68, 9226-9232; (e) Zimmerman, H. E.; Cheng, J., Control of Proton Transfer: Intramolecular vs Intermolecular. Org. Lett. 2005, 7, 2595-2597; (f) Zimmerman, H. E.; Cheng, J., Control of Stereoselective Protonation of Enols. J. Org. Chem. 2006, 71, 873-882; (g) Zimmerman, H. E.; Pushechnikov, A., The Stereochemistry of Allenic Enol Tautomerism - Independent Generation and Reactivity of the Enolates. Eur. J. Org. Chem. 2006, , 3491-3497.
46. Gale, D. J. W., J. F. K. Preparation of Sole Polymethine Astrazon Dyes. , Aust. J. Chem. 1970, 23, 1063.
47. (a) Westrip, S. P., PublCIF: software for editing, Validating and Formatting Crystallographic Information Files, J. Appl. Cryst. 2010, 43, 920-925; (b) Sheldrick, G. M., Acta Cryst. 2008, (A64), 112-122; (c) Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. Mercury: Visualization and Analysis of Crystal Structures, J. Appl. Cryst. 2006, 39, 453-457; (d) Farrugia, L. J. ORTEP-3 for Windows - a Version of ORTEP-III with a Graphical User Interface (GUI), J. Appl. Cryst. 1997, 30, 565; (e) Bruker (2008). APEX2 and SAINTPlus. Bruker AXS Inc., M., Wisconsin, USA; (f) Bruker (2001). SADABS. Bruker AXS Inc., M., Wisconsin, USA.

APPPENDICES

CRYSTAL DATA AND STRUCTURE REFINEMENT FOR (\pm)-1-BENZYL-3-

 METHYL-6-NITRO-4-OXO-2-PHENYL-1,2,3,4-TETRAHYDROQUINOLINE (67)

Labelling scheme used for refinement of the compound

Crystal data	
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$	$F(000)=784$
$M_{r}=372.41$	$101(2)$
Monoclinic, $P 2_{1} / c$	$D_{\mathrm{x}}=1.296 \mathrm{Mg} \mathrm{m}$
Hall symbol: -P 2 ybc	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$a=10.2866(15) \AA$	Cell parameters from 4741 reflections
$b=14.519(2) \AA$	$\theta=2.1-28.3^{\circ}$
$c=13.425(2) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$\beta=107.804(5)^{\circ}$	$T=296 \mathrm{~K}$
$V=1909.0(5) \AA^{3}$	Square rod, yellow
$Z=4$	$0.72 \times 0.13 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART APEX II diffractometer	4741 independent reflections
Radiation source: fine-focus sealed tube	3123 reflections with $I>2 \sigma(I)$
graphite	$R_{\text {int }}=0.040$
Detector resolution: 83.33 pixels mm^{-1}	$\theta_{\max }=28.3^{\circ}, \theta_{\min }=2.1^{\circ}$
ϕ and ω scans with κ offsets	$h=-13 \rightarrow 13$
Absorption correction: multi-scan $(S A D A B S ;$ Bruker, 2001 $)$	$k=-19 \rightarrow 18$
$T_{\min }=0.940, T_{\max }=0.990$	$l=-17 \rightarrow 17$
29379 measured reflections	

Refinement

Refinement on F^{2}	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$	Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.125$	H-atom parameters not refined
$S=1.02$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0507 P)^{2}+0.3644 P\right]$ where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
4741 reflections	$(\Delta / \sigma)_{\max }<0.001$
253 parameters	$\Delta\rangle_{\max }=0.18 \mathrm{e} \AA^{-3}$
0 restraints	$\Delta\rangle_{\min }=-0.15 \mathrm{e} \AA^{-3}$

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R -factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R- factors based on ALL data will be even larger.

FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC OR EQUIVALENT ISOTROPIC DISPLACEMENT PARAMETERS FOR (\pm)-1-BENZYL-3-

METHYL-6-NITRO-4-OXO-2-PHENYL-1,2,3,4-TETRAHYDROQUINOLINE (67)

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	0.84872 (11)	0.08608 (7)	0.69911 (9)	0.0444 (3)
C2	0.77001 (13)	0.00045 (9)	0.69363 (11)	0.0431 (3)
H2	0.6734	0.0180	0.6729	0.052*
C3	0.78890 (14)	-0.06152 (9)	0.60661 (11)	0.0449 (3)
H3	0.7573	-0.0255	0.5419	0.054*
C4	0.93834 (14)	-0.07929 (9)	0.62432 (11)	0.0462 (3)
C4A	1.02434 (13)	0.00376 (9)	0.65157 (10)	0.0423 (3)
C5	1.15598 (14)	0.00170 (10)	0.64500 (10)	0.0477 (3)
H5	1.1901	-0.0522	0.6251	0.057*
C6	1.23628 (14)	0.07907 (11)	0.66780 (11)	0.0514 (4)
C7	1.18453 (16)	0.16163 (11)	0.69206 (12)	0.0567 (4)
H7	1.2385	0.2143	0.7040	0.068*
C8	1.05469 (15)	0.16563 (10)	0.69842 (12)	0.0521 (4)
H8	1.0202	0.2214	0.7132	0.063*
C8A	0.97219 (13)	0.08583 (9)	0.68283 (10)	0.0417 (3)
C1	0.79149 (15)	0.16967 (9)	0.72869 (11)	0.0481 (3)
H1A	0.8622	0.2010	0.7828	0.058*
H1B	0.7197	0.1528	0.7582	0.058*
C11	0.73349 (13)	0.23568 (9)	0.63886 (12)	0.0475 (3)
C12	0.7230 (2)	0.32758 (12)	0.65934 (16)	0.0787 (5)
H12	0.7529	0.3483	0.7281	0.094*
C13	0.6687 (3)	0.38972 (14)	0.5794 (2)	0.1017 (8)
H13	0.6631	0.4518	0.5949	0.122*
C14	0.6232 (2)	0.36066 (15)	0.4780 (2)	0.0867 (6)
H14	0.5861	0.4025	0.4244	0.104*
C15	0.6325 (2)	0.27003 (15)	0.45599 (16)	0.0789 (5)
H15	0.6017	0.2497	0.3870	0.095*
C16	0.68789 (18)	0.20786 (12)	0.53593 (13)	0.0656 (4)
H16	0.6944	0.1461	0.5198	0.079*
C21	0.80118 (14)	-0.04741 (9)	0.79944 (11)	0.0458 (3)
C22	0.93358 (17)	-0.06631 (11)	0.86172 (12)	0.0587 (4)
H22	1.0069	-0.0470	0.8402	0.070*

C23	$0.9579(2)$	$-0.11326(13)$	$0.95485(13)$	$0.0697(5)$
H23	1.0471	-0.1262	0.9949	0.084^{*}
C24	$0.8517(2)$	$-0.14083(12)$	$0.98858(14)$	$0.0720(5)$
H24	0.8685	-0.1718	1.0519	0.086^{*}
C25	$0.7202(2)$	$-0.12274(12)$	$0.92876(16)$	$0.0752(5)$
H25	0.6477	-0.1415	0.9516	0.090^{*}
C26	$0.69477(17)$	$-0.07656(11)$	$0.83438(13)$	$0.0611(4)$
H26	0.6052	-0.0651	0.7941	0.073^{*}
C31	$0.70126(17)$	$-0.14768(11)$	$0.58841(14)$	$0.0623(4)$
H31A	0.6076	-0.1308	0.5772	0.093^{*}
H31B	0.7313	-0.1871	0.6485	0.093^{*}
H31C	0.7094	-0.1796	0.5280	0.093^{*}
O4	$0.98439(12)$	$-0.15461(7)$	$0.61428(10)$	$0.0672(3)$
N6	$1.37607(14)$	$0.07422(13)$	$0.66627(11)$	$0.0677(4)$
O61	$1.45000(13)$	$0.14153(12)$	$0.69692(12)$	$0.0978(5)$
O62	$1.41522(12)$	$0.00257(11)$	$0.63471(11)$	$0.0861(4)$

ATOMIC DISPLACEMENT PARAMETERS FOR (\pm)-1-BENZYL-3-METHYL-6-NITRO-4-OXO-2-PHENYL-1,2,3,4-TETRAHYDROQUINOLINE (67)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0452(6)$	$0.0387(6)$	$0.0542(7)$	$0.0013(5)$	$0.0225(5)$	$0.0022(5)$
C2	$0.0384(6)$	$0.0421(7)$	$0.0506(8)$	$0.0004(5)$	$0.0164(6)$	$0.0049(6)$
C3	$0.0463(7)$	$0.0447(7)$	$0.0429(7)$	$-0.0032(6)$	$0.0123(6)$	$0.0020(6)$
C4	$0.0521(8)$	$0.0441(8)$	$0.0444(7)$	$0.0017(6)$	$0.0176(6)$	$-0.0010(6)$
C4A	$0.0420(7)$	$0.0448(7)$	$0.0414(7)$	$0.0020(6)$	$0.0148(5)$	$0.0035(6)$
C5	$0.0450(7)$	$0.0578(9)$	$0.0425(7)$	$0.0077(6)$	$0.0167(6)$	$0.0066(6)$
C6	$0.0381(7)$	$0.0720(10)$	$0.0454(8)$	$-0.0019(7)$	$0.0145(6)$	$0.0066(7)$
C7	$0.0542(9)$	$0.0608(10)$	$0.0562(9)$	$-0.0175(7)$	$0.0187(7)$	$-0.0009(7)$
C8	$0.0549(8)$	$0.0457(8)$	$0.0596(9)$	$-0.0052(6)$	$0.0232(7)$	$-0.0007(7)$
C8A	$0.0423(7)$	$0.0427(7)$	$0.0416(7)$	$0.0002(5)$	$0.0151(6)$	$0.0043(6)$
C1	$0.0512(8)$	$0.0448(8)$	$0.0530(8)$	$0.0031(6)$	$0.0229(7)$	$-0.0025(6)$
C11	$0.0395(7)$	$0.0428(8)$	$0.0625(9)$	$0.0002(6)$	$0.0192(6)$	$0.0008(6)$
C12	$0.0907(14)$	$0.0508(10)$	$0.0832(13)$	$0.0117(9)$	$0.0098(10)$	$-0.0067(9)$
C13	$0.1131(18)$	$0.0507(11)$	$0.126(2)$	$0.0198(11)$	$0.0138(15)$	$0.0090(12)$
C14	$0.0724(12)$	$0.0755(14)$	$0.1042(17)$	$0.0083(10)$	$0.0151(11)$	$0.0367(12)$
C15	$0.0814(13)$	$0.0852(14)$	$0.0658(12)$	$-0.0005(10)$	$0.0160(10)$	$0.0181(10)$
C16	$0.0788(11)$	$0.0536(10)$	$0.0631(11)$	$0.0014(8)$	$0.0199(9)$	$0.0036(8)$
C21	$0.0531(8)$	$0.0397(7)$	$0.0490(8)$	$-0.0002(6)$	$0.0221(6)$	$0.0003(6)$
C22	$0.0570(9)$	$0.0686(10)$	$0.0491(9)$	$-0.0045(7)$	$0.0143(7)$	$0.0075(7)$
C23	$0.0768(11)$	$0.0736(11)$	$0.0516(9)$	$-0.0004(9)$	$0.0092(8)$	$0.0086(8)$
C24	$0.1037(15)$	$0.0624(11)$	$0.0542(10)$	$0.0036(10)$	$0.0307(10)$	$0.0135(8)$
C25	$0.0905(14)$	$0.0707(12)$	$0.0824(13)$	$0.0058(10)$	$0.0533(11)$	$0.0212(10)$
C26	$0.0609(9)$	$0.0598(10)$	$0.0726(11)$	$0.0080(7)$	$0.0350(8)$	$0.0146(8)$
C31	$0.0623(10)$	$0.0563(9)$	$0.0661(10)$	$-0.0126(7)$	$0.0164(8)$	$-0.0037(8)$
O4	$0.0652(7)$	$0.0491(6)$	$0.0876(8)$	$0.0053(5)$	$0.0239(6)$	$-0.0123(6)$
N6	$0.0420(7)$	$0.1069(13)$	$0.0528(8)$	$-0.0037(8)$	$0.0125(6)$	$0.0088(8)$
O61	$0.0524(7)$	$0.1372(13)$	$0.1030(11)$	$-0.0311(8)$	$0.0226(7)$	$-0.0107(9)$
O62	$0.1236(12)$	$0.0894(9)$	$0.0180(7)$	$0.0242(6)$	$0.0009(9)$	

GEOMETRIC PARAMETERS FOR (\pm)-1-BENZYL-3-METHYL-6-NITRO-4-OXO-2-PHENYL-1,2,3,4-TETRAHYDROQUINOLINE (67)

N1-C8A	1.3530 (16)	C1-C11	1.513 (2)
N1-C1	1.4561 (17)	C11-C12	1.373 (2)
N1-C2	1.4732 (17)	C11-C16	1.377 (2)
C2-C21	1.5248 (19)	C12-C13	1.382 (3)
C2-C3	1.5333 (19)	C13-C14	1.364 (3)
C3-C4	1.504 (2)	C14-C15	1.359 (3)
C3-C31	1.517 (2)	C15-C16	1.385 (2)
C4-O4	1.2155 (16)	C21-C26	1.382 (2)
C4-C4A	1.4739 (19)	C21-C22	1.390 (2)
C4A-C5	1.3840 (18)	C22-C23	1.378 (2)
C4A-C8A	1.4217 (18)	C23-C24	1.364 (3)
C5-C6	1.372 (2)	C24-C25	1.371 (3)
C6-C7	1.390 (2)	C25-C26	1.386 (2)
C6-N6	1.4460 (19)	N6-O61	1.229 (2)
C7-C8	1.365 (2)	N6-O62	1.236 (2)
C8-C8A	1.4135 (19)		
C8A-N1-C1	121.61 (11)	N1-C8A-C4A	120.50 (12)
C8A-N1-C2	121.22 (11)	C8-C8A-C4A	117.85 (12)
C1-N1-C2	117.08 (10)	N1-C1-C11	113.85 (11)
N1-C2-C21	112.47 (11)	C12-C11-C16	117.54 (15)
N1-C2-C3	109.73 (10)	C12-C11-C1	119.47 (15)
C21-C2-C3	113.76 (11)	C16-C11-C1	122.99 (13)
C4-C3-C31	114.34 (12)	C11-C12-C13	121.1 (2)
C4-C3-C2	109.98 (11)	C14-C13-C12	120.43 (19)
C31-C3-C2	113.51 (12)	C15-C14-C13	119.43 (19)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	122.61 (13)	C14-C15-C16	120.2 (2)
O4-C4-C3	123.43 (13)	C11-C16-C15	121.32 (17)
C4A-C4-C3	113.93 (11)	C26-C21-C22	117.85 (14)
C5-C4A-C8A	120.11 (12)	C26-C21-C2	119.52 (13)
C5-C4A-C4	119.42 (12)	C22-C21-C2	122.58 (12)
C8A-C4A-C4	120.46 (12)	C23-C22-C21	121.05 (15)
C6-C5-C4A	120.15 (13)	C24-C23-C22	120.32 (17)
C5-C6-C7	120.70 (13)	C23-C24-C25	119.73 (16)
C5-C6-N6	119.37 (15)	C24-C25-C26	120.33 (16)

C7-C6-N6	119.93 (14)	C21-C26-C25	120.70 (16)
C8-C7-C6	120.22 (14)	O61-N6-O62	123.41 (15)
C7-C8-C8A	120.69 (14)	O61-N6-C6	118.20 (16)
N1-C8A-C8	121.64 (12)	O62-N6-C6	118.38 (15)
C8A-N1-C2-C21	90.78 (14)	C5-C4A-C8A-C8	4.90 (19)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 21$	-85.76 (14)	C4-C4A-C8A-C8	-174.14 (12)
C8A-N1-C2-C3	-36.92 (16)	C8A-N1-C1-C11	76.78 (16)
C1-N1-C2-C3	146.54 (12)	C2-N1-C1-C11	-106.70 (13)
N1-C2-C3-C4	55.74 (14)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	-156.22 (15)
$\mathrm{C} 21-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-71.24 (14)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 16$	24.84 (19)
N1-C2-C3-C31	-174.73 (12)	$\begin{aligned} & \mathrm{C} 16-\mathrm{C} 11-\mathrm{C} 12- \\ & \mathrm{C} 13 \end{aligned}$	0.0 (3)
C21-C2-C3-C31	58.30 (16)	C1-C11-C12-C13	-179.04 (18)
C31-C3-C4-O4	7.4 (2)	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-$ C14	0.5 (4)
C2-C3-C4-O4	136.46 (14)	$\begin{aligned} & \mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14- \\ & \mathrm{C} 15 \end{aligned}$	-0.4 (4)
C31-C3-C4-C4A	-174.63 (12)	$\begin{aligned} & \mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15- \\ & \mathrm{C} 16 \end{aligned}$	-0.1 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	-45.54 (15)	$\begin{aligned} & \mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16- \\ & \mathrm{C} 15 \end{aligned}$	-0.5 (2)
O4-C4-C4A-C5	13.6 (2)	C1-C11-C16-C15	178.49 (15)
C3-C4-C4A-C5	-164.42 (12)	$\begin{aligned} & \mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16- \\ & \mathrm{C} 11 \end{aligned}$	0.5 (3)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}$	-167.37 (13)	N1-C2-C21-C26	131.53 (14)
C3-C4-C4A-C8A	14.62 (18)	C3-C2-C21-C26	-102.93 (15)
C8A-C4A-C5-C6	-0.5 (2)	N1-C2-C21-C22	-50.84 (18)
C4-C4A-C5-C6	178.51 (12)	C3-C2-C21-C22	74.69 (17)
C4A-C5-C6-C7	-3.6 (2)	$\begin{aligned} & \mathrm{C} 26-\mathrm{C} 21-\mathrm{C} 22- \\ & \mathrm{C} 23 \end{aligned}$	0.5 (2)
C4A-C5-C6-N6	176.52 (12)	C2-C21-C22-C23	-177.13 (15)
C5-C6-C7-C8	3.1 (2)	$\begin{aligned} & \mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23- \\ & \mathrm{C} 24 \end{aligned}$	-1.1 (3)
N6-C6-C7-C8	-176.94 (13)	$\begin{aligned} & \mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24- \\ & \mathrm{C} 25 \end{aligned}$	0.9 (3)
C6-C7-C8-C8A	1.4 (2)	$\begin{aligned} & \mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25- \\ & \mathrm{C} 26 \end{aligned}$	-0.1 (3)
C1-N1-C8A-C8	3.0 (2)	$\begin{aligned} & \mathrm{C} 22-\mathrm{C} 21-\mathrm{C} 26- \\ & \mathrm{C} 25 \end{aligned}$	0.3 (2)
C2-N1-C8A-C8	-173.38 (12)	C2-C21-C26-C25	178.01 (15)

$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-178.49(12)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26-$ C 21	$-0.5(3)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$5.13(19)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 6-\mathrm{O} 61$	$-172.90(14)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 1$	$173.21(13)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 6-\mathrm{O} 61$	$7.2(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-5.3(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 6-\mathrm{O} 62$	$6.8(2)$
$\mathrm{C} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 1$	$-173.67(12)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{N} 6-\mathrm{O} 62$	$-173.13(14)$
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 1$	$7.29(19)$		

Two views of (67)

CRYSTAL DATA AND STRUCTURE REFINEMENT FOR 1-BENZYL-3-METHYL-6-NITRO-2-PHENYLQUINOLIN-4(1H)-ONE (68)

Labelling scheme used for refinement of the compound

Crystal data	
$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$	$F(000)=1552$
$M_{r}=370.39$	$D_{\mathrm{x}}=1.330 \mathrm{Mg} \mathrm{m}$
-3	
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Hall symbol: -P 2 ybc	Cell parameters from 7575 reflections
$a=7.3207(12) \AA$	$\theta=1.9-26.4^{\circ}$
$b=18.984(3) \AA$	$\mu=0.09 \mathrm{~mm}^{-1}$
$c=26.804(4) \AA$	$T=296 \mathrm{~K}$
$\beta=96.715(4)^{\circ}$	Shard, yellow
$V=3699.6(10) \AA^{3}$	$0.28 \times 0.15 \times 0.10 \mathrm{~mm}$
$Z=8$	

Data collection

Bruker SMART APEX II diffractometer	7575 independent reflections
Radiation source: fine-focus sealed tube	3498 reflections with $I>2 \sigma(I)$
graphite	$R_{\text {int }}=0.081$
Detector resolution: 83.33 pixels mm^{-1}	$\theta_{\max }=26.4^{\circ}, \theta_{\min }=1.9^{\circ}$
ϕ and ω scans with κ offsets	$h=-9 \rightarrow 9$
Absorption correction: multi-scan $S A D A B S$ (Bruker, 2001)	$k=-23 \rightarrow 16$
$T_{\min }=0.976, T_{\max }=0.991$	$l=-33 \rightarrow 31$
45838 measured reflections	

Refinement

Refinement on F^{2}	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$	Hydrogen site location: inferred from neighbouring sites
$w R\left(F^{2}\right)=0.132$	H-atom parameters not refined
$S=0.98$	$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0519 P)^{2}+0.1781 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
7575 reflections	$(\Delta / \sigma)_{\max }<0.001$
505 parameters	$\Delta\rangle_{\max }=0.14 \mathrm{e} \AA^{-3}$
0 restraints	$\Delta\rangle_{\min }=-0.17 \mathrm{e} \AA^{-3}$

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R -factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R- factors based on ALL data will be even larger.

FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC OR EQUIVALENT ISOTROPIC DISPLACEMENT PARAMETERS FOR 1-BENZYL-3-METHYL-6-NITRO-2-PHENYLQUINOLIN-4(1H)-ONE (68)

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
N1A	-0.0529 (2)	0.23303 (10)	-0.00425 (7)	0.0497 (5)	
C2A	-0.0326 (3)	0.30546 (12)	0.00048 (9)	0.0497 (6)	
C3A	-0.0083 (3)	0.33853 (12)	0.04562 (9)	0.0499 (6)	
C4A	-0.0053 (3)	0.29893 (12)	0.09134 (9)	0.0512 (6)	
C4AA	-0.0451 (3)	0.22362 (12)	0.08545 (8)	0.0454 (5)	
C5A	-0.0597 (3)	0.18285 (13)	0.12764 (9)	0.0542 (6)	
H5A	-0.0429	0.2032	0.1594	0.065*	
C6A	-0.0991 (3)	0.11252 (14)	0.12243 (9)	0.0561 (6)	
C7A	-0.1243 (3)	0.08039 (13)	0.07559 (10)	0.0618 (7)	
H7A	-0.1515	0.0326	0.0728	0.074*	
C8A	-0.1087 (3)	0.12010 (13)	0.03346 (9)	0.0576 (6)	
H8A	-0.1248	0.0990	0.0019	0.069*	
C8AA	-0.0685 (3)	0.19222 (12)	0.03770 (9)	0.0472 (6)	
C1A	-0.0234 (3)	0.19819 (12)	-0.05200 (8)	0.0564 (6)	
H1A1	0.0568	0.1580	-0.0442	0.068*	
H1A2	0.0414	0.2309	-0.0715	0.068*	
C11A	-0.1930 (3)	0.17284 (11)	-0.08476 (9)	0.0534 (6)	
C12A	-0.1671 (4)	0.13803 (13)	-0.12868 (10)	0.0761 (8)	
H12A	-0.0488	0.1320	-0.1374	0.091*	
C13A	-0.3158 (5)	0.11223 (16)	-0.15957 (11)	0.0938 (10)	
H13A	-0.2973	0.0897	-0.1894	0.113*	
C14A	-0.4896 (5)	0.11940 (16)	-0.14687 (13)	0.0931 (10)	
H14A	-0.5893	0.1008	-0.1674	0.112*	
C15A	-0.5157 (4)	0.15419 (16)	-0.10368 (12)	0.0838 (9)	
H15A	-0.6340	0.1594	-0.0948	0.101*	
C16A	-0.3684 (4)	0.18160 (13)	-0.07309 (9)	0.0675 (7)	
H16A	-0.3885	0.2063	-0.0443	0.081*	
C21A	-0.0470 (3)	0.34714 (11)	-0.04724 (8)	0.0510 (6)	
C22A	-0.2189 (3)	0.36206 (13)	-0.07160 (9)	0.0615 (7)	
H22A	-0.3232	0.3443	-0.0593	0.074*	
C23A	-0.2364 (4)	0.40332 (13)	-0.11421 (10)	0.0692 (7)	
H23A	-0.3526	0.4133	-0.1305	0.083*	

C24A	-0.0833 (4)	0.42964 (13)	-0.13259 (10)	0.0698 (7)	
H24A	-0.0958	0.4571	-0.1615	0.084*	
C25A	0.0879 (4)	0.41550 (13)	-0.10844 (10)	0.0669 (7)	
H25A	0.1916	0.4337	-0.1209	0.080*	
C26A	0.1074 (3)	0.37421 (12)	-0.06561 (9)	0.0599 (6)	
H26A	0.2239	0.3647	-0.0492	0.072*	
C31A	0.0148 (4)	0.41726 (12)	0.05038 (10)	0.0750 (8)	
H31A	0.0307	0.4301	0.0853	0.113*	0.50
H31B	-0.0925	0.4402	0.0339	0.113*	0.50
H31C	0.1210	0.4316	0.0350	0.113*	0.50
H31D	0.0088	0.4379	0.0175	0.113*	0.50
H31E	0.1320	0.4277	0.0689	0.113*	0.50
H31F	-0.0815	0.4363	0.0677	0.113*	0.50
O4A	0.0252 (2)	0.32635 (9)	0.13352 (6)	0.0727 (5)	
N6A	-0.1184 (3)	0.07021 (15)	0.16727 (10)	0.0758 (7)	
O61A	-0.1144 (3)	0.10018 (12)	0.20774 (8)	0.0997 (7)	
O62A	-0.1405 (3)	0.00701 (13)	0.16238 (9)	0.1175 (8)	
N1B	0.5350 (2)	0.27874 (10)	0.16217 (7)	0.0523 (5)	
C2B	0.5447 (3)	0.34572 (12)	0.14161 (9)	0.0509 (6)	
C3B	0.5183 (3)	0.35775 (12)	0.09143 (9)	0.0518 (6)	
C4B	0.4776 (3)	0.30075 (13)	0.05656 (10)	0.0529 (6)	
C4AB	0.4529 (3)	0.23157 (12)	0.07939 (9)	0.0479 (6)	
C5B	0.3994 (3)	0.17425 (13)	0.04839 (9)	0.0554 (6)	
H5B	0.3798	0.1799	0.0137	0.066*	
C6B	0.3759 (3)	0.10982 (13)	0.06940 (10)	0.0578 (6)	
C7B	0.4044 (3)	0.09883 (13)	0.12080 (10)	0.0628 (7)	
H7B	0.3876	0.0544	0.1341	0.075*	
C8B	0.4575 (3)	0.15426 (13)	0.15156 (9)	0.0594 (6)	
H8B	0.4778	0.1474	0.1861	0.071*	
C8AB	0.4820 (3)	0.22208 (12)	0.13141 (9)	0.0497 (6)	
C1B	0.5931 (3)	0.26597 (12)	0.21614 (8)	0.0583 (6)	
H1B1	0.6607	0.3069	0.2299	0.070*	
H1B2	0.6772	0.2263	0.2192	0.070*	
C11B	0.4395 (3)	0.25123 (12)	0.24759 (9)	0.0540 (6)	
C12B	0.2629 (3)	0.27454 (14)	0.23456 (10)	0.0731 (8)	
H12B	0.2328	0.2985	0.2044	0.088*	
C13B	0.1295 (4)	0.26256 (16)	0.26606 (12)	0.0852 (9)	

H13B	0.0108	0.2793	0.2572	0.102^{*}	
C14B	$0.1699(4)$	$0.22653(16)$	$0.30995(11)$	$0.0841(9)$	
H14B	0.0791	0.2179	0.3307	0.101^{*}	
C15B	$0.3459(5)$	$0.20319(15)$	$0.32302(11)$	$0.0856(9)$	
H15B	0.3751	0.1789	0.3530	0.103^{*}	
C16B	$0.4799(4)$	$0.21526(13)$	$0.29223(10)$	$0.0697(7)$	
H16B	0.5989	0.1990	0.3015	0.084^{*}	
C21B	$0.5837(3)$	$0.40577(12)$	$0.17742(8)$	$0.0560(6)$	
C22B	$0.7615(4)$	$0.42954(13)$	$0.19050(9)$	$0.0667(7)$	
H22B	0.8591	0.4066	0.1782	0.080^{*}	
C23B	$0.7949(4)$	$0.48672(15)$	$0.22147(10)$	$0.0778(8)$	
H23B	0.9149	0.5019	0.2306	0.093^{*}	
C24B	$0.6515(6)$	$0.52146(15)$	$0.23901(11)$	$0.0882(10)$	
H24B	0.6746	0.5609	0.2593	0.106^{*}	
C25B	$0.4752(5)$	$0.49882(17)$	$0.22703(11)$	$0.0895(9)$	
H25B	0.3788	0.5221	0.2397	0.107^{*}	
C26B	$0.4403(4)$	$0.44084(15)$	$0.19586(10)$	$0.0759(8)$	
H26B	0.3200	0.4255	0.1873	0.091^{*}	
C31B	$0.5289(4)$	$0.43038(13)$	$0.06906(10)$	$0.0768(8)$	
H31G	0.5057	0.4274	0.0331	0.115^{*}	0.50
H31H	0.6492	0.4497	0.0784	0.115^{*}	0.50
H31I	0.4384	0.4603	0.0814	0.115^{*}	0.50
H31J	0.5565	0.4642	0.0955	0.115^{*}	0.50
H31K	0.4130	0.4419	0.0502	0.115^{*}	0.50
H31L	0.6238	0.4313	0.0472	0.115^{*}	0.50
O4B	$0.4620(2)$	$0.30779(9)$	$0.01016(7)$	$0.0702(5)$	
N6B	$0.3157(3)$	$0.05041(14)$	$0.03641(11)$	$0.0773(7)$	
O61B	$0.2910(3)$	$0.06085(11)$	$-0.00890(9)$	$0.0986(7)$	
O62B	$0.2858(4)$	$-0.00533(11)$	$0.05574(9)$	$0.1232(9)$	

ATOMIC DISPLACEMENT PARAMETERS FOR 1-BENZYL-3-METHYL-6-NITRO-2-PHENYLQUINOLIN-4(1H)-ONE (68)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1A	0.0604 (11)	0.0483 (12)	0.0408 (12)	-0.0036 (9)	0.0073 (8)	-0.0066 (10)
C2A	0.0515 (13)	0.0469 (15)	0.0508 (16)	-0.0024 (11)	0.0066 (11)	-0.0027 (13)
C3A	0.0534 (13)	0.0463 (14)	0.0489 (16)	-0.0010 (10)	0.0010 (11)	-0.0050 (13)
C4A	0.0477 (12)	0.0568 (16)	0.0480 (16)	0.0063 (11)	0.0013 (11)	-0.0064 (14)
C4AA	0.0392 (11)	0.0536 (15)	0.0434 (15)	0.0032 (10)	0.0050 (10)	0.0020 (13)
C5A	0.0470 (13)	0.0658 (17)	0.0496 (16)	0.0019 (11)	0.0042 (11)	-0.0009 (14)
C6A	0.0490 (13)	0.0643 (18)	0.0552 (17)	0.0014 (12)	0.0076 (11)	0.0144 (15)
C7A	0.0626 (15)	0.0542 (16)	0.0682 (19)	-0.0055 (12)	0.0054 (13)	0.0044 (15)
C8A	0.0637 (15)	0.0556 (17)	0.0529 (17)	-0.0061 (12)	0.0044 (12)	-0.0036 (14)
C8AA	0.0458 (12)	0.0500 (15)	0.0457 (15)	-0.0024 (10)	0.0049 (10)	0.0000 (13)
C1A	0.0703 (15)	0.0529 (15)	0.0489 (15)	0.0013 (12)	0.0189 (12)	-0.0045 (12)
C11A	0.0713 (16)	0.0459 (14)	0.0436 (15)	-0.0045 (12)	0.0094 (12)	-0.0004 (12)
C12A	0.103 (2)	0.0690 (19)	0.0585 (19)	-0.0080 (16)	0.0201 (16)	-0.0178 (16)
C13A	0.145 (3)	0.079 (2)	0.055 (2)	-0.017 (2)	0.001 (2)	-0.0203 (16)
C14A	0.115 (3)	0.087 (2)	0.071 (2)	-0.027 (2)	-0.018 (2)	0.0023 (19)
C15A	0.0774 (19)	0.099 (2)	0.073 (2)	-0.0130 (16)	-0.0017 (16)	0.0049 (19)
C16A	0.0735 (17)	0.0718 (18)	0.0565 (17)	-0.0040 (14)	0.0046 (14)	-0.0046 (14)
C21A	0.0608 (14)	0.0466 (14)	0.0455 (15)	-0.0035 (11)	0.0065 (12)	-0.0021 (12)
C22A	0.0633 (16)	0.0616 (17)	0.0592 (17)	-0.0064 (12)	0.0056 (13)	0.0066 (14)
C23A	0.0742 (18)	0.0653 (18)	0.0653 (19)	0.0014 (14)	-0.0033 (14)	0.0087 (15)
C24A	0.097 (2)	0.0578 (17)	0.0542 (17)	0.0006 (15)	0.0073 (16)	0.0075 (14)
C25A	0.0800 (18)	0.0585 (17)	0.0650 (18)	-0.0085 (13)	0.0205 (15)	0.0045 (14)
C26A	0.0625 (15)	0.0581 (16)	0.0598 (17)	-0.0037 (12)	0.0100 (12)	0.0022 (14)
C31A	0.0930 (19)	0.0567 (18)	0.075 (2)	-0.0027 (14)	0.0063 (15)	-0.0120 (14)
O4A	0.0976 (13)	0.0695 (12)	0.0476 (11)	0.0096 (9)	-0.0059 (9)	-0.0119 (9)
N6A	0.0776 (15)	0.082 (2)	0.0666 (19)	-0.0024 (13)	0.0053 (13)	0.0216 (17)
O61A	0.1293 (18)	0.1081 (18)	0.0621 (14)	0.0031 (13)	0.0126 (12)	0.0222 (13)
O62A	0.169 (2)	0.0785 (17)	0.1058 (19)	-0.0197 (15)	0.0191 (15)	0.0277 (14)
N1B	0.0569 (11)	0.0529 (13)	0.0469 (12)	-0.0048 (9)	0.0053 (9)	0.0040 (11)
C2B	0.0510 (13)	0.0509 (15)	0.0513 (16)	-0.0029 (11)	0.0074 (11)	-0.0001 (13)
C3B	0.0536 (13)	0.0514 (15)	0.0514 (16)	-0.0055 (11)	0.0101 (11)	0.0040 (13)
C4B	0.0440 (12)	0.0620 (17)	0.0532 (17)	-0.0028 (11)	0.0085 (11)	0.0031 (14)
C4AB	0.0371 (11)	0.0566 (15)	0.0505 (16)	-0.0019 (10)	0.0066 (10)	-0.0014 (13)

C5B	$0.0469(13)$	$0.0624(17)$	$0.0569(16)$	$-0.0017(11)$	$0.0065(11)$	$-0.0060(14)$
C6B	$0.0546(14)$	$0.0517(16)$	$0.0672(19)$	$-0.0029(12)$	$0.0074(12)$	$-0.0114(15)$
C7B	$0.0656(15)$	$0.0494(16)$	$0.073(2)$	$-0.0048(12)$	$0.0058(13)$	$0.0022(15)$
C8B	$0.0632(15)$	$0.0571(17)$	$0.0573(16)$	$-0.0037(12)$	$0.0052(12)$	$0.0019(14)$
C8AB	$0.0449(12)$	$0.0496(15)$	$0.0544(16)$	$-0.0043(11)$	$0.0055(11)$	$-0.0029(13)$
C1B	$0.0606(14)$	$0.0580(16)$	$0.0540(16)$	$-0.0039(12)$	$-0.0034(12)$	$0.0046(13)$
C11B	$0.0605(15)$	$0.0522(15)$	$0.0476(15)$	$-0.0043(11)$	$-0.0002(12)$	$-0.0003(12)$
C12B	$0.0612(16)$	$0.097(2)$	$0.0586(18)$	$-0.0054(14)$	$-0.0031(14)$	$0.0161(15)$
C13B	$0.0619(17)$	$0.115(3)$	$0.077(2)$	$-0.0080(16)$	$0.0046(16)$	$0.009(2)$
C14B	$0.093(2)$	$0.094(2)$	$0.069(2)$	$-0.0171(18)$	$0.0251(17)$	$0.0026(18)$
C15B	$0.104(2)$	$0.087(2)$	$0.068(2)$	$0.0027(18)$	$0.0170(18)$	$0.0210(17)$
C16B	$0.0770(18)$	$0.0692(18)$	$0.0621(19)$	$0.0071(14)$	$0.0046(15)$	$0.0135(15)$
C21B	$0.0721(16)$	$0.0496(15)$	$0.0475(16)$	$-0.0001(13)$	$0.0122(12)$	$0.0014(12)$
C22B	$0.0805(18)$	$0.0638(17)$	$0.0590(17)$	$-0.0192(14)$	$0.0211(14)$	$-0.0097(14)$
C23B	$0.109(2)$	$0.071(2)$	$0.0552(19)$	$-0.0291(18)$	$0.0192(16)$	$-0.0096(16)$
C24B	$0.156(3)$	$0.0560(19)$	$0.052(2)$	$0.003(2)$	$0.011(2)$	$-0.0032(15)$
C25B	$0.123(3)$	$0.081(2)$	$0.065(2)$	$0.041(2)$	$0.0133(19)$	$-0.0042(18)$
C26B	$0.087(2)$	$0.0716(19)$	$0.069(2)$	$0.0185(15)$	$0.0079(15)$	$-0.0002(16)$
C31B	$0.0883(18)$	$0.0688(19)$	$0.074(2)$	$-0.0107(15)$	$0.0100(15)$	$0.0105(16)$
O4B	$0.0863(12)$	$0.0767(13)$	$0.0485(11)$	$-0.0071(9)$	$0.0112(9)$	$0.0021(10)$
N6B	$0.0823(16)$	$0.0656(18)$	$0.082(2)$	$-0.0031(13)$	$-0.0002(14)$	$-0.0123(17)$
O61B	$0.1338(18)$	$0.0835(15)$	$0.0768(15)$	$-0.0167(12)$	$0.0049(13)$	$-0.0209(13)$
O62B	$0.196(2)$	$0.0545(14)$	$0.1107(19)$	$-0.0221(15)$	$-0.0177(16)$	$-0.0018(13)$

GEOMETRIC PARAMETERS FOR 1-BENZYL-3-METHYL-6-NITRO-2-PHENYLQUINOLIN-4(1H)-ONE (68)

N1A-C8AA	1.381 (3)	N1B-C8AB	1.383 (3)
N1A-C2A	1.387 (3)	N1B-C2B	1.391 (3)
N1A-C1A	1.479 (3)	N1B-C1B	1.479 (3)
C2A-C3A	1.356 (3)	C2B-C3B	1.356 (3)
C2A-C21A	1.497 (3)	C2B-C21B	1.496 (3)
C3A-C4A	1.436 (3)	C3B-C4B	1.438 (3)
C3A-C31A	1.508 (3)	C3B-C31B	1.509 (3)
C4A-04A	1.241 (2)	C4B-O4B	1.243 (3)
C4A-C4AA	1.464 (3)	C4B-C4AB	1.469 (3)
C4AA-C5A	1.385 (3)	C4AB-C5B	1.397 (3)
C4AA-C8AA	1.404 (3)	C4AB-C8AB	1.397 (3)
C5A-C6A	1.369 (3)	C5B-C6B	1.366 (3)
C6A-C7A	1.389 (3)	C6B-C7B	1.385 (3)
C6A-N6A	1.466 (3)	C6B-N6B	1.469 (3)
C7A-C8A	1.374 (3)	C7B-C8B	1.365 (3)
C8A-C8AA	1.402 (3)	C8B-C8AB	1.416 (3)
C1A-C11A	1.513 (3)	C1B-C11B	1.509 (3)
C11A-C16A	1.367 (3)	C11B-C12B	1.373 (3)
C11A-C12A	1.382 (3)	C11B-C16B	1.379 (3)
C12A-C13A	1.379 (4)	C12B-C13B	1.382 (3)
C13A-C14A	1.361 (4)	C13B-C14B	1.363 (4)
C14A-C15A	1.366 (4)	C14B-C15B	1.369 (4)
C15A-C16A	1.378 (3)	C15B-C16B	1.373 (3)
C21A-C22A	1.378 (3)	C21B-C26B	1.383 (3)
C21A-C26A	1.384 (3)	C21B-C22B	1.383 (3)
C22A-C23A	1.378 (3)	C22B-C23B	1.371 (3)
C23A-C24A	1.370 (3)	C23B-C24B	1.369 (4)
C24A-C25A	1.369 (3)	C24B-C25B	1.363 (4)
C25A-C26A	1.383 (3)	C25B-C26B	1.387 (4)
N6A-O62A	1.216 (3)	N6B-O62B	1.209 (3)
N6A-O61A	1.222 (3)	N6B-O61B	1.223 (3)
C8AA-N1A-C2A	119.98 (19)	C8AB-N1B-C2B	119.90 (19)
C8AA-N1A-C1A	119.22 (19)	C8AB-N1B-C1B	118.95 (19)

C2A-N1A-C1A	119.83 (19)	C2B-N1B-C1B	121.01 (19)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}$	122.8 (2)	C3B-C2B-N1B	122.6 (2)
C3A-C2A-C21A	120.4 (2)	C3B-C2B-C21B	120.2 (2)
N1A-C2A-C21A	116.72 (19)	N1B-C2B-C21B	117.2 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	120.4 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	120.8 (2)
C2A-C3A-C31A	122.4 (2)	C2B-C3B-C31B	122.7 (2)
C4A-C3A-C31A	117.2 (2)	C4B-C3B-C31B	116.5 (2)
O4A-C4A-C3A	122.8 (2)	O4B-C4B-C3B	123.9 (2)
O4A-C4A-C4AA	121.3 (2)	O4B-C4B-C4AB	120.8 (2)
C3A-C4A-C4AA	115.9 (2)	C3B-C4B-C4AB	115.4 (2)
C5A-C4AA-C8AA	119.6 (2)	C5B-C4AB-C8AB	119.5 (2)
C5A-C4AA-C4A	119.4 (2)	C5B-C4AB-C4B	119.2 (2)
C8AA-C4AA-C4A	121.0 (2)	C8AB-C4AB-C4B	121.3 (2)
C6A-C5A-C4AA	119.8 (2)	C6B-C5B-C4AB	119.5 (2)
C5A-C6A-C7A	121.6 (2)	C5B-C6B-C7B	122.2 (2)
C5A-C6A-N6A	119.3 (3)	C5B-C6B-N6B	118.9 (2)
C7A-C6A-N6A	119.0 (2)	C7B-C6B-N6B	118.9 (2)
C8A-C7A-C6A	119.2 (2)	C8B-C7B-C6B	118.9 (2)
C7A-C8A-C8AA	120.4 (2)	C7B-C8B-C8AB	120.7 (2)
N1A-C8AA-C8A	121.2 (2)	N1B-C8AB-C4AB	119.6 (2)
N1A-C8AA-C4AA	119.4 (2)	N1B-C8AB-C8B	121.3 (2)
C8A-C8AA-C4AA	119.4 (2)	C4AB-C8AB-C8B	119.1 (2)
N1A-C1A-C11A	116.84 (18)	N1B-C1B-C11B	115.38 (18)
C16A-C11A-C12A	118.6 (2)	C12B-C11B-C16B	118.7 (2)
C16A-C11A-C1A	123.9 (2)	C12B-C11B-C1B	122.7 (2)
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	117.5 (2)	C16B-C11B-C1B	118.6 (2)
C13A-C12A-C11A	120.2 (3)	C11B-C12B-C13B	120.2 (2)
C14A-C13A-C12A	120.6 (3)	C14B-C13B-C12B	120.8 (3)
C13A-C14A-C15A	119.2 (3)	C13B-C14B-C15B	119.1 (3)
C14A-C15A-C16A	120.7 (3)	C14B-C15B-C16B	120.6 (3)
C11A-C16A-C15A	120.6 (3)	C15B-C16B-C11B	120.6 (3)
C22A-C21A-C26A	119.6 (2)	C26B-C21B-C22B	118.9 (2)
$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	118.9 (2)	C26B-C21B-C2B	120.0 (2)
C26A-C21A-C2A	121.4 (2)	C22B-C21B-C2B	121.0 (2)
$\mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}$	120.1 (2)	C23B-C22B-C21B	120.5 (3)
$\mathrm{C} 24 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}$	120.3 (2)	C24B-C23B-C22B	120.0 (3)
$\mathrm{C} 25 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}$	120.1 (2)	C25B-C24B-C23B	120.7 (3)

C24A-C25A-C26A	120.2 (2)	C24B-C25B-C26B	119.7 (3)
C25A-C26A-C21A	119.8 (2)	C21B-C26B-C25B	120.2 (3)
O62A-N6A-O61A	122.9 (3)	O62B-N6B-O61B	123.7 (3)
O62A-N6A-C6A	118.5 (3)	O62B-N6B-C6B	118.1 (3)
O61A-N6A-C6A	118.6 (3)	O61B-N6B-C6B	118.2 (3)
$\begin{aligned} & \mathrm{C} 8 \mathrm{AA}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}- \\ & \mathrm{C} 3 \mathrm{~A} \end{aligned}$	6.9 (3)	$\begin{aligned} & \mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}- \\ & \mathrm{C} 3 \mathrm{~B} \end{aligned}$	-5.4 (3)
$\begin{aligned} & \mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}- \\ & \mathrm{C} 3 \mathrm{~A} \end{aligned}$	-161.7 (2)	$\begin{aligned} & \mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}- \\ & \mathrm{C} 3 \mathrm{~B} \end{aligned}$	170.2 (2)
$\begin{aligned} & \mathrm{C} 8 \mathrm{AA}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}- \\ & \mathrm{C} 21 \mathrm{~A} \end{aligned}$	-170.47 (18)	$\begin{aligned} & \mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}- \\ & \mathrm{C} 21 \mathrm{~B} \end{aligned}$	173.81 (19)
$\begin{aligned} & \mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}- \\ & \mathrm{C} 21 \mathrm{~A} \end{aligned}$	20.9 (3)	$\begin{aligned} & \mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}- \\ & \mathrm{C} 21 \mathrm{~B} \end{aligned}$	-10.6 (3)
$\begin{aligned} & \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}- \\ & \mathrm{C} 4 \mathrm{~A} \end{aligned}$	-1.0 (3)	$\begin{aligned} & \mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}- \\ & \mathrm{C} 4 \mathrm{~B} \end{aligned}$	0.2 (3)
$\begin{aligned} & \mathrm{C} 21 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}- \\ & \mathrm{C} 4 \mathrm{~A} \end{aligned}$	176.34 (19)	$\begin{aligned} & \mathrm{C} 21 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}- \\ & \mathrm{C} 4 \mathrm{~B} \end{aligned}$	-178.95 (19)
$\begin{aligned} & \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}- \\ & \mathrm{C} 31 \mathrm{~A} \end{aligned}$	179.6 (2)	$\begin{aligned} & \mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}- \\ & \mathrm{C} 31 \mathrm{~B} \end{aligned}$	-180.0 (2)
$\begin{aligned} & \mathrm{C} 21 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}- \\ & \mathrm{C} 31 \mathrm{~A} \end{aligned}$	-3.1 (3)	$\begin{aligned} & \mathrm{C} 21 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}- \\ & \mathrm{C} 31 \mathrm{~B} \end{aligned}$	0.8 (3)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}- \\ & \mathrm{O} 4 \mathrm{~A} \end{aligned}$	176.5 (2)	$\begin{aligned} & \mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}- \\ & \mathrm{O} 4 \mathrm{~B} \end{aligned}$	-175.9 (2)
$\begin{aligned} & \mathrm{C} 31 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}- \\ & \mathrm{O} 4 \mathrm{~A} \end{aligned}$	-4.1 (3)	$\begin{aligned} & \mathrm{C} 31 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}- \\ & \mathrm{O} 4 \mathrm{~B} \end{aligned}$	4.3 (3)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}- \\ & \mathrm{C} 4 \mathrm{AA} \end{aligned}$	-4.9 (3)	$\begin{aligned} & \mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}- \\ & \mathrm{C} 4 \mathrm{AB} \end{aligned}$	4.7 (3)
$\begin{aligned} & \mathrm{C} 31 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}- \\ & \mathrm{C} 4 \mathrm{AA} \end{aligned}$	174.53 (19)	$\begin{aligned} & \mathrm{C} 31 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}- \\ & \mathrm{C} 4 \mathrm{AB} \end{aligned}$	-175.14 (19)
$\begin{aligned} & \mathrm{O} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 5 \mathrm{~A} \end{aligned}$	3.9 (3)	$\begin{aligned} & \mathrm{O} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 5 \mathrm{~B} \end{aligned}$	-4.3 (3)
$\begin{aligned} & \mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 5 \mathrm{~A} \end{aligned}$	-174.75 (18)	$\begin{aligned} & \mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 5 \mathrm{~B} \end{aligned}$	175.19 (18)
$\begin{aligned} & \mathrm{O} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{AA} \end{aligned}$	-176.1 (2)	$\begin{aligned} & \mathrm{O} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{AB} \end{aligned}$	175.7 (2)
$\begin{aligned} & \mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{AA} \end{aligned}$	5.2 (3)	$\begin{aligned} & \mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{AB} \end{aligned}$	-4.8 (3)
$\begin{aligned} & \mathrm{C} 8 \mathrm{AA}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A} \end{aligned}$	-0.8 (3)	$\begin{aligned} & \mathrm{C} 8 \mathrm{AB}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B} \end{aligned}$	0.1 (3)
$\begin{aligned} & \mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}-\mathrm{C} 5 \mathrm{~A}- \\ & \mathrm{C} 6 \mathrm{~A} \end{aligned}$	179.22 (19)	$\begin{aligned} & \mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 5 \mathrm{~B}- \\ & \mathrm{C} 6 \mathrm{~B} \end{aligned}$	-179.87 (19)
C4AA-C5A-C6A-	0.3 (3)	$\mathrm{C} 4 \mathrm{AB}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-$	-0.4 (3)

C7A		C7B	
$\begin{aligned} & \mathrm{C} 4 \mathrm{AA}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}- \\ & \mathrm{N} 6 \mathrm{~A} \end{aligned}$	-178.65 (19)	$\begin{aligned} & \mathrm{C} 4 \mathrm{AB}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}- \\ & \mathrm{N} 6 \mathrm{~B} \end{aligned}$	178.70 (19)
$\begin{aligned} & \mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}- \\ & \mathrm{C} 8 \mathrm{~A} \end{aligned}$	0.3 (3)	$\begin{aligned} & \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}- \\ & \mathrm{C} 8 \mathrm{~B} \end{aligned}$	0.1 (3)
$\begin{aligned} & \text { N6A-C6A-C7A- } \\ & \text { C8A } \end{aligned}$	179.2 (2)	$\begin{aligned} & \mathrm{N} 6 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}- \\ & \mathrm{C} 8 \mathrm{~B} \end{aligned}$	-179.0 (2)
$\begin{aligned} & \mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}- \\ & \mathrm{C} 8 \mathrm{AA} \end{aligned}$	-0.3 (3)	$\begin{aligned} & \mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}- \\ & \mathrm{C} 8 \mathrm{AB} \end{aligned}$	0.4 (3)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{~A} \end{aligned}$	173.13 (19)	$\begin{aligned} & \mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}- \\ & \mathrm{C} 4 \mathrm{AB} \end{aligned}$	5.1 (3)
$\begin{aligned} & \mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{~A} \end{aligned}$	-18.1 (3)	$\begin{aligned} & \mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}- \\ & \mathrm{C} 4 \mathrm{AB} \end{aligned}$	-170.59 (18)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}- \\ & \mathrm{C} 4 \mathrm{AA} \end{aligned}$	-6.4 (3)	$\begin{aligned} & \mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{~B} \end{aligned}$	-175.23 (19)
$\begin{aligned} & \mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}- \\ & \mathrm{C} 4 \mathrm{AA} \end{aligned}$	162.32 (18)	$\begin{aligned} & \mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{~B} \end{aligned}$	9.1 (3)
$\begin{aligned} & \mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}- \\ & \mathrm{N} 1 \mathrm{~A} \end{aligned}$	-179.8 (2)	$\begin{aligned} & \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B} \end{aligned}$	-179.97 (18)
$\begin{aligned} & \mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \mathrm{AA}- \\ & \mathrm{C} 4 \mathrm{AA} \end{aligned}$	-0.2 (3)	$\begin{aligned} & \mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B} \end{aligned}$	0.0 (3)
$\begin{aligned} & \text { C5A-C4AA- } \\ & \text { C8AA-N1A } \end{aligned}$	-179.71 (18)	$\begin{aligned} & \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{AB}-\mathrm{C} 8 \mathrm{~B} \\ & \hline \end{aligned}$	0.4 (3)
$\begin{aligned} & \mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{AA}-\mathrm{N} 1 \mathrm{~A} \end{aligned}$	0.3 (3)	$\begin{aligned} & \mathrm{C} 4 \mathrm{~B}-\mathrm{C} 4 \mathrm{AB}- \\ & \mathrm{C} 8 \mathrm{AB}-\mathrm{C} 8 \mathrm{~B} \end{aligned}$	-179.63 (19)
$\begin{aligned} & \mathrm{C} 5 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{AA}-\mathrm{C} 8 \mathrm{~A} \end{aligned}$	0.8 (3)	$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}-$ N 1 B	179.7 (2)
$\begin{aligned} & \mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4 \mathrm{AA}- \\ & \mathrm{C} 8 \mathrm{AA}-\mathrm{C} 8 \mathrm{~A} \end{aligned}$	-179.24 (18)	$\begin{aligned} & \mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 8 \mathrm{AB}- \\ & \mathrm{C} 4 \mathrm{AB} \end{aligned}$	-0.7 (3)
$\begin{aligned} & \text { C8AA-N1A-C1A- } \\ & \text { C11A } \end{aligned}$	85.1 (2)	$\begin{aligned} & \mathrm{C} 8 \mathrm{AB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}- \\ & \mathrm{C} 11 \mathrm{~B} \end{aligned}$	-75.8 (3)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}- \\ & \mathrm{C} 11 \mathrm{~A} \end{aligned}$	-106.2 (2)	$\begin{array}{\|l} \mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}- \\ \mathrm{C} 11 \mathrm{~B} \end{array}$	108.5 (2)
$\begin{aligned} & \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}- \\ & \mathrm{C} 16 \mathrm{~A} \end{aligned}$	1.3 (3)	$\begin{aligned} & \mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}- \\ & \mathrm{C} 12 \mathrm{~B} \end{aligned}$	-25.3 (3)
$\begin{aligned} & \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}- \\ & \mathrm{C} 12 \mathrm{~A} \end{aligned}$	-177.8 (2)	$\begin{aligned} & \mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}- \\ & \mathrm{C} 16 \mathrm{~B} \end{aligned}$	157.4 (2)
$\begin{aligned} & \mathrm{C} 16 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A} \\ & \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A} \end{aligned}$	-0.7 (4)	$\mathrm{C} 16 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-$ $\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	0.6 (4)
$\begin{aligned} & \mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}- \\ & \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A} \end{aligned}$	178.5 (2)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}-$ $\mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}$	-176.7 (2)
$\begin{aligned} & \mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}- \\ & \mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A} \end{aligned}$	-1.3 (4)	$\begin{aligned} & \mathrm{C} 11 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}- \\ & \mathrm{C} 13 \mathrm{~B}-\mathrm{C} 14 \mathrm{~B} \end{aligned}$	-1.1 (4)
$\begin{aligned} & \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 \mathrm{~A}- \\ & \mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A} \end{aligned}$	1.7 (5)	$\begin{aligned} & \mathrm{C} 12 \mathrm{~B}-\mathrm{C} 13 \mathrm{~B}- \\ & \mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B} \end{aligned}$	1.1 (4)

$\begin{aligned} & \mathrm{C} 13 \mathrm{~A}-\mathrm{C} 14 \mathrm{~A}- \\ & \mathrm{C} 15 \mathrm{~A}-\mathrm{C} 16 \mathrm{~A} \end{aligned}$	-0.2 (5)	C13B-C14B- C15B-C16B	-0.6 (5)
$\begin{aligned} & \mathrm{C} 12 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}- \\ & \mathrm{C} 16 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A} \end{aligned}$	2.1 (4)	$\begin{aligned} & \mathrm{C} 14 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B}- \\ & \mathrm{C} 16 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B} \end{aligned}$	0.1 (4)
$\begin{aligned} & \mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}- \\ & \mathrm{C} 16 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A} \end{aligned}$	-177.0 (2)	$\begin{aligned} & \mathrm{C} 12 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}- \\ & \mathrm{C} 16 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B} \end{aligned}$	-0.1 (4)
$\begin{aligned} & \mathrm{C} 14 \mathrm{~A}-\mathrm{C} 15 \mathrm{~A}- \\ & \mathrm{C} 16 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A} \end{aligned}$	-1.7 (4)	$\begin{aligned} & \mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}- \\ & \mathrm{C} 16 \mathrm{~B}-\mathrm{C} 15 \mathrm{~B} \end{aligned}$	177.3 (2)
$\begin{aligned} & \mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 22 \mathrm{~A} \end{aligned}$	-97.7 (3)	$\begin{aligned} & \mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 26 \mathrm{~B} \end{aligned}$	89.7 (3)
$\begin{aligned} & \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 22 \mathrm{~A} \end{aligned}$	79.8 (3)	$\begin{aligned} & \mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 26 \mathrm{~B} \end{aligned}$	-89.5 (3)
$\begin{aligned} & \mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 26 \mathrm{~A} \end{aligned}$	78.5 (3)	$\begin{aligned} & \mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 22 \mathrm{~B} \end{aligned}$	-86.8 (3)
$\begin{aligned} & \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 26 \mathrm{~A} \end{aligned}$	-104.0 (2)	$\begin{aligned} & \mathrm{N} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 22 \mathrm{~B} \end{aligned}$	94.0 (3)
$\begin{aligned} & \mathrm{C} 26 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A} \end{aligned}$	0.4 (4)	$\mathrm{C} 26 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}-$ $\mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}$	0.4 (4)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A} \end{aligned}$	176.7 (2)	$\begin{aligned} & \mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B} \end{aligned}$	176.9 (2)
$\begin{aligned} & \mathrm{C} 21 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}- \\ & \mathrm{C} 23 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A} \end{aligned}$	0.1 (4)	$\begin{aligned} & \mathrm{C} 21 \mathrm{~B}-\mathrm{C} 22 \mathrm{~B}- \\ & \mathrm{C} 23 \mathrm{~B}-\mathrm{C} 24 \mathrm{~B} \end{aligned}$	-1.1 (4)
$\begin{aligned} & \mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}- \\ & \mathrm{C} 24 \mathrm{~A}-\mathrm{C} 25 \mathrm{~A} \end{aligned}$	-0.5 (4)	$\begin{aligned} & \mathrm{C} 22 \mathrm{~B}-\mathrm{C} 23 \mathrm{~B}- \\ & \mathrm{C} 24 \mathrm{~B}-\mathrm{C} 25 \mathrm{~B} \end{aligned}$	1.6 (4)
$\begin{aligned} & \mathrm{C} 23 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}- \\ & \mathrm{C} 25 \mathrm{~A}-\mathrm{C} 26 \mathrm{~A} \end{aligned}$	0.5 (4)	$\begin{aligned} & \mathrm{C} 23 \mathrm{~B}-\mathrm{C} 24 \mathrm{~B}- \\ & \mathrm{C} 25 \mathrm{~B}-\mathrm{C} 26 \mathrm{~B} \end{aligned}$	-1.4 (4)
$\begin{aligned} & \mathrm{C} 24 \mathrm{~A}-\mathrm{C} 25 \mathrm{~A}- \\ & \mathrm{C} 26 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A} \end{aligned}$	0.0 (4)	$\begin{aligned} & \mathrm{C} 22 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 26 \mathrm{~B}-\mathrm{C} 25 \mathrm{~B} \end{aligned}$	-0.1 (4)
$\begin{aligned} & \mathrm{C} 22 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 26 \mathrm{~A}-\mathrm{C} 25 \mathrm{~A} \end{aligned}$	-0.5 (3)	$\begin{aligned} & \mathrm{C} 2 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B}- \\ & \mathrm{C} 26 \mathrm{~B}-\mathrm{C} 25 \mathrm{~B} \end{aligned}$	-176.7 (2)
$\begin{aligned} & \mathrm{C} 2 \mathrm{~A}-\mathrm{C} 21 \mathrm{~A}- \\ & \mathrm{C} 26 \mathrm{~A}-\mathrm{C} 25 \mathrm{~A} \end{aligned}$	-176.7 (2)	$\begin{aligned} & \mathrm{C} 24 \mathrm{~B}-\mathrm{C} 25 \mathrm{~B}- \\ & \mathrm{C} 26 \mathrm{~B}-\mathrm{C} 21 \mathrm{~B} \end{aligned}$	0.6 (4)
$\begin{aligned} & \mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 6 \mathrm{~A}- \\ & \mathrm{O} 62 \mathrm{~A} \end{aligned}$	-174.9 (2)	$\begin{aligned} & \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 6 \mathrm{~B}- \\ & \mathrm{O} 62 \mathrm{~B} \end{aligned}$	-176.0 (2)
$\begin{aligned} & \mathrm{C} 7 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 6 \mathrm{~A}- \\ & \mathrm{O} 62 \mathrm{~A} \end{aligned}$	6.1 (3)	$\begin{aligned} & \mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 6 \mathrm{~B}- \\ & \mathrm{O} 62 \mathrm{~B} \end{aligned}$	3.1 (3)
$\begin{aligned} & \mathrm{C} 5 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{N} 6 \mathrm{~A}- \\ & \mathrm{O} 61 \mathrm{~A} \end{aligned}$	6.3 (3)	$\begin{aligned} & \mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 6 \mathrm{~B}- \\ & \mathrm{O} 61 \mathrm{~B} \end{aligned}$	0.9 (3)
$\begin{aligned} & \text { C7A-C6A-N6A- } \\ & \text { O61A } \end{aligned}$	-172.7 (2)	$\begin{aligned} & \mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{N} 6 \mathrm{~B}- \\ & \mathrm{O} 61 \mathrm{~B} \end{aligned}$	180.0 (2)

VITA

James Ervin Schammerhorn III
Candidate for the Degree of
Doctor of Philosophy

Thesis: NEW TANDEM REACTIONS INVOLVING NUCLEOPHILIC AROMATIC SUBSTITUTION

Major Field: Chemistry
Biographical:
Personal Data: Born in Oklahoma City, Oklahoma, to James and Glenda Schammerhorn, Citizenship: USA

Education: Completed the requirements for the Associates of Science at Murray State College, Tishomingo, Oklahoma in May, 2003 (CRC award for Outstanding Freshman Chemistry Student); Completed the requirements for the Bachelor of Science in Chemistry at Oklahoma State University, Stillwater, Oklahoma in May, 2006 (Outstanding Graduating Chemistry Senior).

Experience: Graduate Teaching Assistant, Dept. of Chemistry, OSU, Fall, 2006present; Teaching Assistant, Dept. of Chemistry, OSU, Fall, 2005-Spring 2006; Storeroom Attendant, Dept. of Chemistry, OSU, Fall, 2003-Fall 2004; Chemistry Storeroom Attendant, Murray State College, Fall, 2001-Spring 2003

Professional Memberships: American Chemical Society, Phi Lambda Upsilon Chemistry Honor Society, Golden Key Honor Society, Phi Theta Kappa Honor Society

of Study: NEW TANDEM REACTIONS INVOLVING NUCLEOPHILIC AROMATIC SUBSTITUTION

Pages in Study: 123

Candidate for the Degree of Doctor of Philosophy

Major Field: Chemistry

Scope and Method of Study: The synthesis of 6-nitro-1,2,3,4-tetrahydroquinoline-4carboxylic esters and 7-nitro-3,4-dihydroquinoxaline-1 2 H)-carboxylic esters employing a tandem reductive amination $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction is described. In addition, a tandem imine addition $-\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction allowing the preparation of highly substituted 1,2,3,4-tetrahydroquinolines is also reported.

Findings and Conclusions: The development of a new route to nitro-substituted tetrahydroquinoline-4- carboxylic esters and dihydroquinoxaline-1(2H)carboxylic esters is based on a tandem reductive amination- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reaction. In this sequence, an electron deficient aromatic ring is critical to the final $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ ring closure. The reaction is also sensitive to steric hindrance in the amine, with primary amines giving the highest yields. Though the current approach to the tetrahydroquinoline systems is not as diastereoselective as our earlier-reported reduction-reductive amination, it does offer a relatively direct route to the title compounds.

The development of a tandem imine addition- $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ annulation reaction has afforded a new approach to 1,2,3,4-tetrahydroquinolinone-3-carboxylate esters. A series of 1-alkyl-2-aryl-6-nitro-4-oxo-1,2,3,4-tetrahydroquinolinone-3carboxylate esters have been generated by reacting an imine with a β-ketoester substituted at C3 by a 2-fluoro-5-nitrophenyl group. Variation in the final product is possible through changes in the structure of the imine and potentially by altering the electron-withdrawing group on the aromatic acceptor. The imines are formed by reacting a 1:1.2 ratio of a primary amine unbranched α to the nitrogen with an aldehyde derivative in N, N-dimethylformamide for 6 hours. The β ketoester is then added to initiate a spontaneous tandem reaction to produce the substituted 1,2,3,4-tetrahydroquinolinone-3-carboxylate esters in 73-89\% yields. The reaction occurs without the need for added base or heat. Future work will include determining conditions that can support the use of other imines to broaden the scope of the process.

ADVISER'S APPROVAL: Dr. Richard A. Bunce

