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CHAPTER I 
 

INTRODUCTION AND LITERATURE SEARCH 

 

1.1 Introduction 

 The adulteration of illicit methamphetamine (MA) with nicotinamide (NIC) has 

become so prevalent in the United States that researchers must now consider the 

possibility that NIC may possess some ability to enhance the psychostimulant effects of 

MA.  A one month study of purported MA samples submitted to the Tulsa Police 

Department Forensic Laboratory demonstrated that over 95% of the samples with MA 

contained some portion of NIC (unpublished data). The purpose of this series of studies is 

to examine NIC’s metabolic and neurochemical ability to enhance the psychostimulant 

effects of MA.  

 

1.2 History of methamphetamine   

L. Edeleano (Edeleano, 1887) reportedly first synthesized the compound known 

as amphetamine (AMP) in 1887.  Some speculate that it may have been the German 

chemist, R. Leuckart, that may have previously synthesized AMP accidentally, while 

experimenting with his now famous benzene chemistry (Leuckart, 1885), but that 

remains to be proven.  It is difficult to pinpoint its origin because of the variety of names 

associated with this compound early in its history.  The molecule
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known today as AMP was named by Gordon Alles, who is credited for the discovery of 

its molecular structure circa 1933.  The word “amphetamine”, which is an abbreviation of 

its lengthy chemical name, Alpha-Methyl-PHenyl-EThyl-AMINE (Alles, 1933a) has 

also been referred to as phenylisopropylamine, benzpropaminum phosphoricum, 

desoxynorephedrine (Moffat, 1986), and many other synonymous names making 

historical literature searches very difficult. Regardless of the discoverer, after the 

synthesis of AMP in the late 1800’s, research remained dormant until around the early 

1930’s.   

Ephedrine was discovered by Carl Schmidt and K. K. Chen, who were looking for 

a substitute for adrenaline to be used as an anti-asthmatic (Schmidt and Chen, 1924).  

Chen was curious about Chinese herbal medicine, especially ma huang.  He and Lilly 

chemists quickly isolated ephedrine and verified that it would widen bronchial passages.  

Since adrenaline could not be taken orally, as well as having severe side effects, 

ephedrine seemed vastly preferable. The rarity of ma huang sent chemists searching for 

synthetic ephedrine and sometime in the 1930’s one of them stumbled onto AMP 

(Snyder, 1996).  This was believed to be Alles, Priness, and Miller, as clinical 

observations were published as early as 1930 (Priness et. al., 1930).  The ability of AMP 

to raise blood pressure, constrict blood vessels, and dilate the small bronchial sacs, 

encouraged Smith, Kline, and French (now known as Smith, Kline, and Beecham) to 

market the Benzedrine inhaler in 1932 (Fancett and Bush, 1998).  The 

sympathomimetic effects and respiratory stimulant effects of AMP were described in 

1933 (Alles, 1933a,b) and later used to treat narcolepsy in 1935 (Prinzmetal and 

Bloomberg, 1935).  
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Furthermore, an editorial published in the Journal of American Medical 

Association (JAMA) in 1936 described a study that had just been completed by 

researchers in the Department of Psychology at Minnesota University.  The study 

provided data that showed students using Benzedrine while studying for final exams 

scored higher and reported that it provided them with the pep they needed.  Increased 

energy along with Charles Bradley’s discovery of paradoxical effect of AMP on 

hyperactive children (Gainetdinov and Caron, 2001) led to a tablet form of Benzedrine
in 1937.  Soon after the Benzedrine tablets reached society, there were publications on 

the potential for abuse (Galdston, 1940).  By 1946, a report generated by the 

pharmaceutical industry noted thirty-nine different disorders for which Benzedrine was 

listed as a recommended treatment (Tyler, 1995).  The abuse of the inhalers reached such 

alarming levels that in 1949 the AMP in the inhalers was replaced with propylhexedrine, 

a drug with weaker stimulant properties (Winger et al., 1992). 

The wide use of inhalers and newfound tablet formulation led to an increase in 

recreational AMP usage during the 30’s and 40’s.  It appears that recreational usage made 

it easier for some people to manage their lives during times of war, and the Great 

Depression.  In addition to the thirty plus disorders for which it was listed as a treatment, 

people recognized it acted as an appetite suppressant and it was subsequently used 

successfully to treat obesity in 1940 (Ersner, 1940).  The increased energy along with its 

appetite suppressant properties made it very appealing to members of society. 

The original identification and isolation of MA is fairly vague and controversial 

within the literature.  It, like AMP, has been referenced by numerous names, including: 

phenylisopropylamine, benzpropaminum phosphoricum, and desoxynorephedrine. 
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Tatetsu states that Nagai extracted MA, the N-methyl derivative of amphetamine, from a 

crude drug in 1888 (Tatetsu, 1959).  Emde, Connell, and many other researchers (Emde, 

1929; Connell, 1962; Brill and Hirose, 1969; Kramer, 1967) have given credit to the 

Japanese chemist, Ogata (Ogata, 1919), for first synthesizing MA in 1919.  Some believe 

both are incorrect, citing that Schmidt first synthesized MA by the reduction of ephedrine 

via chloro- and bromo-ephedrines (Schmidt, 1914; Skinner, 1990).  Whether MA was 

extracted by Nagai or synthesized by Ogata or Schmidt, MA as we know it today 

remained dormant in medicine and society until about 1940.  

Many of the original literature articles beginning in the 1940’s refer to MA and 

AMP together as amphetamines.  It is difficult to distinguish where the literature begins 

to merge them and where they again separate.  The two drug’s nomenclature, molecular, 

and pharmacological similarity has made it difficult to separate the two from a historical 

perspective.  Not only are the two agents named similarly, they offer many of the same 

effects.  It is worthy noting that most historical reviews of either MA or AMP cite many 

of the same references, thus, making it harder and harder to trace back to a single origin.   

Today, the scientific literature is much better at separating the two compounds. 

Though there is not an official chemical class of compounds recognized to be 

amphetamines, members of society and the scientific community commonly refer to 

AMP and MA as amphetamines, most likely because of their similar physiological and 

psychostimulant effects.  Depending upon the source from which information is cited, the 

term ‘amphetamines’ could mean amphetamine, MA, or both.  

AMP was first placed on sale in Sweden in 1938, three years after its introduction 

into the practice of medicine in the U. S.  Though sales were small, the potential for 
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abuse was recognized early.  In 1939, Sweden placed amphetamines on a list of drugs 

available only by prescription, a step the U. S. did not take until 1954 (Gunnar, 1969).  

By 1942, Swedish physicians were prescribing it to 3% of the population (Gunnar, 1969). 

A study in 1942 produced results that statistically showed people were using the drug 

responsibly (Goldberg, 1968).  In 1944 the prescribing of amphetamines was placed 

under even more severe restrictions. 

It seems AMP and MA integrated themselves into society circa World War I. 

During World War II, MA was widely distributed to promote fighting spirits among the 

Japanese soldiers.  Numerous stories have been told about Kamakazi pilots ingesting 

toxic levels of MA prior to their military missions.  Some speculate that their 

effectiveness and accuracy would have been much better if it had not been for the 

extremely high levels of MA in their systems.  In addition, Hitler was said to have been 

unable to function without daily injections of MA (Tyler, 1995).   

Before 1945, substance abuse in Japan was not a substantial problem, with the 

exception of alcoholism and a few opium abusers.  Yet, from 1945 to 1956, Japan 

suffered from the new problem of stimulant abuse (Kato, 1990).  During the war and 

many years after, the stimulant of choice became MA.  After the war, the military cleared 

its large surplus of MA by flooding the civilian marketplace with ampules of MA, 

marketed as a mood-elevating drug.  In Japan, MA was known as Wake-amine (Tatetsu, 

1959), awaking drug, philopon, pervitin, and phenylmethylaminopropane (Brill and 

Hirose, 1969).  Its abuse rapidly spread throughout Japan.  In a 1948 study, it was 

estimated that 5% of the males between the age of 16 and 25 were addicted to AMP 
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(Konuma, 1994).  The high rate of addiction was mainly attributed to the lack of laws 

prohibiting the use and sale of this substance.  

It is interesting to see that in spite of wartime issues, MA found its way to 

England around 1940, the same year it gained popularity in Japan.  The German 

government recognized its strong potential for abuse and had it listed as a potential drug 

of abuse by 1941 (Kalant, 1966).  Japan, however, did not pass legislation until 1949, 

when a law to control the awaking drugs was enacted.  An additional law, the Stimulants 

Control Law, was passed in 1951 and nicknamed the “Awakening Drug Control Law”. 

Further amendments in 1954 and 1955, together with a vigorous policy of enforcement, 

began to slow the abuse of MA.  Some sources say AMP and MA abuse peaked for the 

first time in 1950 and 1951, and it was not until 1958 that Japan saw a true decrease in 

the number of users (Kato, 1990).  It then peaked again in 1963 and once again in 1970.  

The 1970 epidemic lasted 16 years (Kato, 1990).  Some will say AMP and 

methylphenidate (also included in these Stimulant Control Law) were rarely abused in 

Japan (Suwaki, 1991; Brill and Hirose, 1969).  There have been many publications 

dealing with the various amphetamine/MA problems in Japan during and after the war 

(Kato, 1990; Morimoto, 1957; Nagahama, 1968; Tatetsu, 1959).    

In 1914, the U.S. federal government (Harrison Act) classified cocaine as a 

narcotic, even though it is not, and outlawed it.  The American Heritage Dictionary

(1997) defines a narcotic as inducing sleep or stupor; causing narcosis, none of which are 

characteristics similar to the effects of cocaine.  Still, it was not until the early 1920’s that 

a decline was seen.  Some will speculate that this decline was more likely due to the 

acceptance and substitution of AMP rather than the legislation.   Cocaine use continued 
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to decline slowly throughout the 1960’s.  Originally, AMP was appealing to the cocaine 

user because of its similar high, and because it was legal.  More significantly, AMP and 

MA were inexpensive.  Cocaine use stayed extremely low in the U.S. until all of the 

amphetamines became illegal without a prescription.  

Starting in 1947, the abuse of Benzedrine inhalers was well documented.  By 

1949, efforts to replace AMP with propylhexedrine, a less addictive chemical substitute, 

were well under way (Winger et al., 1992).  During the rise to popularity, oral 

amphetamines inundated our military and became extremely popular among civilians, 

including, students, truck drivers, homemakers attempting to lose weight, and 

recreational drug users.  In the United States, AMP tablets were available without a 

prescription until 1954 (Smith, 1969) and in 1959 the FDA banned the use of all 

Benzedrine inhalers, except under use of a physician (Anglin et al., 2000).  The tolerant 

and sometimes humorous view of central nervous system (CNS) stimulants, specifically 

amphetamine, became clear with the release of Harry “The Hipster” Gibson’s hit song in 

1944, “Who put the Benzedrine in Mrs. Murphy’s Ovaltine?”   

As the American public continued to abuse the oral pep teasers, Benzedrine
(amphetamine) and Methedrine (methamphetamine), the American soldiers took the 

first step in the historical trend of pharmacological synergism.  This was the planned 

combination of AMP and heroin, originally used to treat depression, to produce an effect 

different and greater than the two independent drug effects.  The combination of a CNS 

stimulant like AMP, MA, or cocaine and heroin, later would be referred to as 

“speedballing”, marking the first documented intravenous (IV) use of amphetamine/MA 
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by Americans.   Even President John F. Kennedy was known for having a physician 

inject him several times a day with AMP to combat fatigue (Witkin, 1995). 

 In the late 1950’s, some physicians in San Francisco prescribed AMP and/or MA 

injections for treatment of heroin addiction.  This becomes historically interesting 

because Sigmund Freud’s first dispersal of cocaine was to his friend, Dr. von Fleischl-

Marxow, so he could get along without morphine.  Doctors were allegedly prescribing 

AMP injections for the same reason.  One Methedrine user questioned Dr. Smith, a 

physician in the Haight-Ashbury district in San Francisco, California about this (Smith, 

1969): “Then there was a doctor...who would write anything for anybody at anytime and 

he was making $7 a visit and on the day we went down there he wrote almost 400 

prescriptions at $7 a head…He made $2,800 that one day and they used to make caravans 

down there and even from [Los Angeles] to his place. You’d get within two blocks of his 

office and you’d start seeing people you knew all over.” 

During the late 1950’s and 1960’s in the Bay area, the use of Methedrine as a 

substitute for heroin lead to the increasing levels of violence and the beginning of MA 

abuse in the United States (Smith, 1969). “Splash”, AMP hydrochloride injected IV, 

emerged as a small self-contained drug culture in California.  Intravenous use of 

amphetamines then spread across the U.S. and hit an all time high in the early 1960’s, 

when Methedrine became known as “speed”.  

In 1962, the federal, state, and local law enforcement agencies began to utilize the 

Drug Abuse Control Act of 1962 to crackdown on injectable AMP and MA sold in 

pharmacies. This increased enforcement, most likely due to the distribution of injectable 

amphetamines without prescriptions, with crudely forged prescriptions, or with bogus 
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telephone orders from people posing to be doctors.  “Script-writers” were doctors who, 

for the price of an office visit, would prescribe people with their drug of choice: 

amphetamine.  This rise in widespread abuse may have been responsible for the removal 

of Desoxyn (amphetamine) ampules (Abbott Labs) from the market.  Additionally, in 

July of 1963, Burroughs Wellcome withdrew Methedrine (methamphetamine) ampules 

from pharmacies but continued production for hospitals as adjuncts to surgical anesthesia. 

Some speculate this may have led to the rise in infection rates, believed to have arisen 

from non-sterile ampules of injectable amphetamines sold on the streets (Smith, 1969; 

Anglin et. al., 2000).  

In 1963, the American Medical Association (AMA) Council on Drugs, while 

recognizing the great potential for abuse of amphetamines, stated “at this time, 

compulsive abuse of the amphetamines [constitutes] a small problem [in the United 

States]”. 

Although many signs of abuse were being seen across the world, AMP was still 

looked upon as a useful and relatively safe agent, although toxic effects and dependence 

tendencies were being described (Kalant, 1966).  In 1966, the AMA Committee on 

Alcoholism and Addiction and the AMA Council on Mental Health took note of the high 

quantities of AMP available throughout the United States.   It was no longer being abused 

just on the West Coast. Studies showed AMP and MA traffic even in the more central 

portions of the United States, like Oklahoma City (Griffith, 1966).  Researchers warned 

of the extent and dangers of using amphetamines (Griffith, 1966; Lemere, 1966) and in 

1967 Kramer described the typical pattern of abuse (Kramer, 1967).  Still, AMP 

prescriptions reached 31 million in 1967 (Anglin, 2000).  An amendment in 1965 
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required more stringent record keeping, which the drug dealers were able to circumvent 

by having the amphetamines shipped to Mexico and then transported back to the U.S.  

This was similar to the diversion tactics observed with morphine and the Harrison Act of 

1914.  According to the Schaffer Library of Drug Policy (http://www.druglibrary.org), 

the Harrison Act of 1914 specifically provided that manufacturers, importers, 

pharmacists, and physicians prescribing narcotics should be licensed to do so, at a 

moderate fee.  

Although MA ran rampant throughout California, probably the most famous 

usage of MA was in the Haight-Ashbury district in San Francisco, California.  During the 

1960’s, substantial numbers of rebellious, mostly white middle-class young people, 

moved into this area of California and became known as “hippies”.  Illicit drug use, 

strange hair, and weird clothing appeared to come with this life-style.  Speed, as all 

amphetamines were now referred to, began to take the place or was being used in 

combination with other drugs often abused, like LSD and mescaline. The conversion 

from the original drugs of choice, LSD and marijuana, to the amphetamines was 

facilitated by the anti-marijuana and anti-LSD campaigns at the time.  Eventually, the 

speed users pushed the people looking for love and mind-expansion out of the area and 

many other drug-kick seeking people moved in (Smith, 1969).  This prompted celebrity 

intervention, and Timothy Leary, the Beatles, and the Mothers of Invention warned 

against the dangers of speed (Le Dain Commission, 1970).  

 1.2.1 Illicit production of amphetamine and methamphetamine. Regardless of 

the bad publicity, the popularity of the AMP and MA grew exponentially.  Before the 

Federal Drug Abuse Control Amendments of 1965, supplies of both AMP and MA were 
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plentiful. Enforcement of the 1965 amendment finally dried up the low-priced legal 

supplies; doing this inadvertently opened the door for profitable illicit manufacturing 

operations.  Illicit AMP and MA producing laboratories, known as “speed labs”, no 

longer had to compete with diverted legal tablets that were priced at wholesale, which 

could be as low as thirteen to fourteen tablets for a dollar (Smith, 1969).  Now that there 

was decreased pharmaceutical availability and increased enforcement of tablet diversion, 

it made it not only convenient but also necessary to clandestinely produce AMP and MA.  

The many biker gangs in California that were accused of introducing the 

amphetamines into the psychedelic 60’s, and creating unwelcome violence, were now 

some of the number one suppliers (Miller, 1997; Lucas, 1997). 

Illicit MA laboratories emerged in late 1962 (Anglin et. al., 2000).  The Drug 

Abuse Control Act of 1962 crackdown no doubt triggered this onset and the 1965 

reduction in pharmaceutical diversion just accelerated the rise of illicit speed producing 

labs.   

The rise of speed labs during the 1960’s is well documented in “Love Needs 

Care” by David Smith and John Luce, published by Little and Brown (1970).  This was 

documentation of the problems within the Haight-Ashbury Free Clinic, during the late 

60’s.  “The Speed Culture” by Lester Grinspoon and Peter Hedblom, and “Licit and Illicit 

Drugs” by Edward Brecher (1972) also helped document and discuss various aspects of 

drug abuse, especially MA.  Brecher’s book gives one of the best historical looks at the 

common drugs of abuse. 

In the beginning, clandestine manufacturing methods were very complex and did 

not yield good quality MA.  By the 70s, the most popular method of MA synthesis 
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utilized phenyl-2-propanone, methylamine, mercuric chloride, and aluminum metal in 

alcohol (Anglin et al., 2000).  Another method attempted to use an acetaldehyde/ 

methylamine reaction that was refluxed with benzylmagnesium chloride. This was 

believed to have been a bad recipe taken from an underground publication titled “Whole 

Drug Manufacture’s Catalog Transmittal” by Chewbacca Darth in which the order of 

chemical addition varies from the correct synthesis procedure.  Another popular and 

successful method used a Leuckart reaction, refluxing phenyl-2-propanone with either 

methylamine and formic acid or N-methylformamide to form the N-formylMA 

intermediate and then refluxing the intermediate with hydrochloric acid to form MA.  

Other methods included the combining of phenyl-2-propanone and methylamine and 

reducing the intermediate 1-phenyl-2-methyliminopropane to MA and reacting phenyl-2-

propanone and methylamine in the presence of sodium cyanotrihydroborate at a slightly 

acidic pH, resulting in MA formation (Frank, 1983). The aforementioned techniques all 

yield a racemic mixture of MA, which contained both dextro (d) and levo (l) optical 

isomers.  

Both AMP and MA laboratories used the Leuckart reaction, refluxing phenyl-2-

propanone with ammonium formate or formamide then adding hydrochloric acid and 

refluxing again to produce a racemic product.  In 1981, DEA reports 90% of the AMP 

and MA labs were using the Leuckart method (Frank, 1983).  Large-scale production 

went on for years until the Controlled Substance Act of 1970 (Public Law 91-513) 

regulated the production of amphetamines in the United States.  This did not seem to 

phase the large-scale operations that had been established in California.  R.S. Frank gives 
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an excellent look into the various methods of MA synthesis in his publication titled, “The 

Clandestine Drug Laboratory Situation in the United States” (Frank, 1983). 

A review of the various synthesis methods and essential chemicals employed in 

clandestine labs in the 1970’s and 80’s revealed that most manufacturing methods used 

the same precursor chemical, phenyl-2-propanone.  Government officials postulated that 

regulation of this very essential chemical would help reduce the number of speed labs, a 

number that was continuing to rise every year throughout the 70’s and 80’s.  So, on 

February 11, 1980, phenyl-2-propanone was regulated as a schedule II controlled 

substance under the U.S. Controlled Substance Act (Frank, 1983).  This forced 

individuals to obtain the phenyl-2-propanone on the black market and served to be 

beneficial in the prosecution of many clandestine laboratories.  

The control of phenyl-2-propanone and its complicated methods of MA synthesis 

led illicit MA producers to investigate additional synthesis techniques.  By 1983, a new 

method utilizing l-ephedrine instead of phenyl-2-propanone as the precursor was used to 

produce MA (Frank, 1983).  This method became so popular it was openly being 

advertised in magazines like “High Times” by 1983.  During this time, the most 

commonly applied clandestine laboratory conversions of l-ephedrine to MA involved 

converting the l-ephedrine into its chloro analogue by a reaction with SOCl2, PCl5 POCl3,

or PCl3, then the chloro analogue was reduced by catalytic hydrogenation resulting in 

MA production (Allen and Kiser, 1987).  The l-ephedrine was shown as converted to the 

inverted stereoisomer configuration in the final product.  d-MA could therefore be 

synthesized through an alternate anchimeric assistance mechanism via l-ephedrine (Allen 

and Kiser, 1987).  This was a highly improved final product, no longer generating a 
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racemic mixture, but it was specifically producing the d isomer, resulting in a more pure 

and potent form of MA. 

This may have been a step backwards from a public health perspective because 

the illicit phenyl-2-propanone methods produced a racemic mixture of MA that required 

IV administration to avoid severe adverse reactions, like tremors and stomach cramps 

(Potter and Kolbye, 1996).  Even though the new methods reduced the need for needles 

and their associated health problems (hepatitis B, hepatitis C, HIV), it also made MA 

usage more appealing to several groups of individuals that may have been deterred by the 

previously required IV administration. 

The years of 1979 and 1980 resulted in an explosion in the number of speed labs.  

The DEA and State level narcotics enforcers became proficient in tracking labs and 

showed an eleven-fold increase in lab busts (U.S. General Accounting Office Report 

GGD-82-8, 1981; Frank, 1983).  Originally limited to outlaw motorcycle groups, the new 

and improved synthesis techniques expanded the typical MA user to include average 

college students, young professionals, minorities, and women (Potter and Kolbye, 1996; 

Lucas, 1997; Anglin et al., 2000).  

As a result of the high demand for MA, large illicit laboratories were centered in 

Texas and California.  These locations had easy access to Mexico for all of the necessary 

precursor chemicals, whether those were the illicit phenyl-2-propanone chemicals or the 

more recent ephedrine/pseudoephedrine methods.  These large labs were becoming 

intimately associated with outlaw motorcycle gangs and appeared as no surprise that the 

big four gangs--Hells Angels, Bandidos, Pagans, and Outlaws--were known to finance 

and run large distribution operations (Parsons, personal communication).  The synonym 



15

“crank”, which is one of the most common slang terms for MA used today, originated 

with the motorcycle gangs, for they transported bulk MA in the crankcases of the 

motorcycles (Adair, personal communication).    

Intensified enforcement efforts targeting bikers, along with the new simpler 

production methods (popularized in Southern California), caused the northern center of 

production to move south.  MA was said to have then settled in the San Diego area, 

which increased Mexican trafficking (Morgan and Beck, 1997).  Large amounts of MA, 

as well as precursors, were smuggled from Mexico to California and then moved east 

towards the southwest and Mid-western states. 

The ephedrine method was further modified to use chemicals that could be 

obtained easily and legally.  Common chemicals associated with the illicit production of 

MA include methanol (HEET), pseudoephedrine (Pseudo 60’s), organic solvents 

(charcoal lighter fluid), iodine, red phosphorous, sodium hydroxide (Red Devil Lye), and 

hydrochloric acid (Muriatic acid).  

The hydriodic acid (HI)/ red phosphorus method, more commonly referred to as 

the ephedrine reduction method, was originally popularized in the United States in 

Southern California (Anglin et al., 2000).  By 1982, scientific literature (Fieser and 

Fieser, 1967; Buehler and Pearson, 1970) well documented the use of red phosphorus and 

HI to reduce carbonyl groups, nitrites, halides, and alcohols.  Who knew that its inception 

into the world of illicit MA production would tote MA into becoming known as the illicit 

drug of the 90’s and beyond?  The new and improved clandestine synthesis techniques 

allowed a person to purchase all the essential chemicals to produce MA at the local 

hardware store and pharmacy.  These methods utilized red phosphorus, which could be 



16

legally obtained from chemical supply houses, extracted out of matchbook striker plates, 

or obtained from the striker plates on signal flares.  

Red phosphorous is no longer available for purchase by average citizens from 

chemical supply houses.  It is a listed precursor and requires specific paperwork for 

purchase.  Iodine was also readily available at local farm and garden stores in its required 

crystalline form or could be purchased as the liquid tincture and easily converted to 

crystals with a simple method involving the addition of hydrogen peroxide.  Iodine, 

although still available for purchase, has rapidly seen the effects of supply and demand.  

One would be astonished at the price of iodine crystals today, that is, if one were able to 

find them in stock.  

The remainder of the synthesis involved the isolation of the final product via 

liquid-liquid extraction with any number of organic solvents.  Gassing the product with 

hydrochloric acid gas to isolate the user-friendliest form, d-MA HCl, finally completes 

the synthesis process.  Seemingly overnight, the precursors had switched from illicit P2P 

to either l-ephedrine or d-pseudoephedrine, both available in over-the-counter cold 

medications.  The ease in obtaining chemicals made it tremendously easy for the average 

person to produce MA and this news spread fast across the United States.  

Simultaneously, another surge of MA was occurring across the Pacific.  The 

1980’s brought large quantities of highly pure d-MA hydrochloride from Far East sources 

like the Philippines, Japan, Korea, and Taiwan to Hawaii (Mack, 1990; Laider and 

Morgan, 1997).  This form of MA would rapidly dominate the Hawaiian Islands and 

Southern California.  Almost simultaneously, the Mexican distributors would embrace 

this form of MA and begin full-scale production.  This new smokable form of MA was 
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called “ice” and its domination of Hawaii, Southern California, and the Pacific Coast 

(Su’a, 1989) would only be the beginning.  

In 1989, a clandestine laboratory was seized in Vacaville, California.  Ephedrine, 

a known precursor used in the manufacturing of MA, was found on site. The other 

chemicals usually seen at ephedrine conversion laboratories were not found.  Instead, 

found were tetrahydrofuran, ammonium chloride, lithium metal, and ammonia gas.  A 

notebook with several methods of MA synthesis was also discovered along with these 

unusual chemicals. 

One of the methods described a novel route to reduce ephedrine to MA using the 

above listed chemicals, a method that seemingly had not been reported in literature (Ely 

and McGrath, 1990).  Further investigation into the methodology marked this lab as the 

first clandestine laboratory to employ the use of Birch reduction.  As described in Ely and 

McGrath (1990), lithium metal, anhydrous ammonia, and ephedrine are combined in 

order to generate a reaction that will reduce ephedrine or pseudoephedrine to MA.  This 

type of reaction was first described in literature in 1945 (Birch, 1945).  Although none of 

the published articles (Birch, 1945; Augustine, 1968; Hall et al., 1971; Hall and Lipsky, 

1971; Small et al., 1975) specifically mention the production of MA, the validity of this 

method in the production of MA has been well proven in society today. 

The latest methods seen today at the Tulsa Police Department Forensic 

Laboratory for producing MA involve the combination of iodine with hypophosphorus 

acid, orthophosphorous acid flakes, or some have even tried phosphoric acid 

(unpublished data).  The hypophosphorus acid method has been shown to produce 

approximately four times the amount of hydriodic acid, which as described before, is 
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responsible for the reduction of ephedrine and pseudoephedrine to MA (Ma et al., 2001).  

The use of the phosphoric acid derivative has become more popular today mainly due to 

the increased amount of enforcement that has been devoted to the diversion of red 

phosphorus.  Some of these methods are new enough that the mechanism of action has 

yet to be published.  One would postulate that the phosphorus within these acids is 

somehow associating with iodine to produce hydroiodic acid, a known chemical used in 

MA synthesis. 

D-methamphetamine was the most prominent form of MA during the late 1980’s 

and remains so today (Potter and Kolbye, 1996; Parsons, 2003; Adair, 2003).  Methods of 

manufacturing continue to change; the one thing that has remained the same is that each 

new method continues to selectively produce the d isomer of MA. 

 

1.3 Physical properties of methamphetamine  

MA, a chiral drug, displays stereoselective differences in biological action.  There 

are three types of MA: dextromethamphetamine (d-MA), levomethamphetamine (l-MA), 

and the racemic mixture of d and l-methamphetamine (dl-MA).  D-MA is the most potent 

and widely used in the United States today (Potter and Kolbye, 1996).  One should note 

that throughout the remainder of this dissertation, the abbreviation MA is to be 

considered the d-MA form, unless otherwise noted. 

Pure d-MA hydrochloride is a white bitter tasting crystalline substance.  Its 

molecular weight [C10H15N] is 149.24 with a pKa of 9.87 at 25 º C (Baselt, 2000), and 

has a melting point of 170-175ºC (Merek Index, 1989).  Structural similarity to 

endogenous catecholamines, epinephrine, norepinephrine, and dopamine, give rise to the 



19

pharmacological activity of MA and other AMP derivatives.  The similarity in chemical 

structures between MA and the catecholamines is significant for understanding the 

sympathomimetic properties of MA (Figures 1-1 and 1-2).  The mechanism of action of 

MA can be inferred from the actions of the catecholamines that are structural analogues 

(Biel, 1970; Miller et al., 1989).  This will be discussed in more depth in the 

neurochemical sections of this dissertation. 
 

(+)-Methamphetamine   S(+)-Methamphetamine (d-Methamphetamine)  
 

Figure 1-1. Comparison of racemic methamphetamine to d-methamphetamine. 
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Figure 1-2. Structural comparison of various phenylethylamines, catecholamines, and 
nicotinamide. * denotes chiral carbon. 
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1.4 Administration 

 As described earlier, the most popular form of MA abused today is the 

dextrorotatory enantiomer, not the racemic mixture (Figure 1-1).  Unlike racemic MA, d-

MA can be ingested orally, snorted, smoked, or injected.  D-MA has been shown to be 

absorbed easily through the gut (Linden et al., 1985).  It has two distinct advantages over 

the racemic form.  First, the preferred method of ingestion is not injection.  Second, the 

more pure d form is the most potent and results in fewer adverse side effects (Potter and 

Kolbye, 1996).  

 Oral abuse of MA nowadays is almost nonexistent.  Users today elect the speed 

and intensity of the “rush” that accompanies MA via smoking and injecting or 

“shooting”.  Effects are almost immediate with the injection or smoking of the drug, 

whereas they occur approximately five minutes after snorting and twenty minutes after 

oral ingestion (Anglin et al., 2000).  The kinetics associated with oral (Cook et al., 1992), 

smoking (Cook et al., 1993), and the injection of MA (Mendelson et al., 1995; Shappell 

et al., 1996; Hutchaleelaha et al., 1994; and Hutchaleelaha and Mayersohn, 1996), have 

been studied in a variety of models.  

It is interesting to note that MA has greater CNS efficacy than d-amphetamine, 

presumably because of increased CNS penetration (Lake and Quirk, 1984; Derlet and 

Heischober, 1990; Beebe and Walley, 1995).  MA is readily absorbed across surfaces of 

the nasophrarynx, tracheobronchial tree, gastrointestinal tract, and vagina (Caldwell, 

1980; Linden et al., 1985).  Peak plasma concentrations occur within minutes of smoking 

or injecting versus about three hours with oral ingestion.  Because of the high lipid 

solubility, extensive extravascular distribution is seen particularly in the brain, liver, 
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kidney, and lung. The peak effect is reached at approximately 18 minutes after being 

smoked, and 17 minutes post-injection, and is maintained for several hours (Perez-Reyes 

et al., 1991; Cook et al., 1993). 

 

1.5 Clinical effects 

 The sympathomimetic and respiratory stimulant effects of the amphetamines were 

described as far back as the early 1930’s (Alles, 1933a,b).  Stimulant effects were found 

to be useful as early as 1935 with one of the first successful treatments of narcolepsy 

(Prinzmetal and Bloomberg, 1935).  Treatments include obesity (Ersner, 1940), attention 

deficit disorder and Parkinson’s (Whalen and Henker, 1980; Gainetdinov and Caron, 

2001). None of these uses are nearly as recognized today as MA’s ability to generate 

euphoria and pleasant stimulation in humans 

 MA is a sympathetic and CNS stimulant.  Prominent CNS activity distinguishes it 

from other sympathomimetic agents and accounts for its high potential of abuse (Linden 

et al., 1985).  MA is abused for its ability to induce many desired effects, which include 

euphoria, decreased fatigue, increased alertness, improved emotions, increased self-

esteem, improved libido and sexuality, weight loss, improved self-confidence, increased 

initiative, motor, and speech activities (Gawin and Ellinwood Jr., 1988; Cho, 1990; 

Albertson et al., 1999).  In addition to the many desired effects, MA has numerous 

unpleasant side effects (Table 1-1).  In order to achieve the above desired effects, drug 

users will inevitably consume toxic levels of MA.  The reason being, MA’s toxic effects 

are merely an extension of its therapeutic action.  Hypothermia, seizures, and muscular 

abnormalities, may occur from CNS-induced abnormalities or rhabdomyolysis (Allen and 
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Cantrell, 1998).  Stereotypical movements that are fidgety, jerky, and random are 

common as is bruxism, teeth grinding (Miller et al., 1989).  Increasing doses lead to 

anxiousness, slurred, rapid, and incoherent speech. 

 In toxic doses, MA induces agitation, anxiety, hallucinations, delirium, psychosis, 

seizures and death.  CNS disorders induced by MA, which most likely lead to death, 

include cerebrovascular accidents due to hemorrhage or vasospasm and cardiac events 

(Kalant and Kalant, 1975).  Previously, when the racemic MA injectors of the 1960’s 

would overdose, they experienced shakes, tremors, cramps, and then heart attack or 

stroke.  The current d-MA abusers that overdose do so without any warning signs. 

A lethal dose of d-MA may have only one warning sign, high temperature (104°F
or above) prior to heart attack or stroke (Potter and Kolbye, 1996).  The rise in 

temperature is caused by the vasoconstricting properties of the drug, stimulation of the 

hepatic metabolism of fat and glucose, and the agitation and muscle rigidity produced by 

overdose (Mack, 1990).  Cardiovascular problems, such as, chest pain, palpitations, and 

dyspnea, are even common with sub toxic doses of d-MA (Lam and Goldschlager, 1988; 

Bashour, 1994; Furst et al., 1990; Albertson et al., 1999).  The most common presenting 

complaints are nausea, vomiting, headache, palpitations, anxiety, restlessness, or 

nervousness (Saxena and Kingston, 1982; Ekins and Spoerke, 1983). 

 Physiological actions that mimic adrenergic drug responses occur with every use. 

Rise in blood pressure, pulse rate, and pupillary dilation are seen with even the smallest 

doses (Miller et al., 1989).  Hyperkalemia and hypokalemia have also been reported, 

most likely due to impaired or enhanced intracellular uptake of potassium caused by 

alpha- or beta-adrenergic stimulation, respectively (Williams et al., 1984).  Hypertension  
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Table 1-1. Desired and undesired effects of methamphetamine usage. 

 Desired Effects    Undesired Effects ______

Euphoria      Aggressiveness 

Improved emotions    Cardiac arrhythmias  

Improved energy-decreased fatigue  Hallucinations- auditory* 

Improved libido and sexuality  Hallucinations- visual*  

Increased alertness    Insomnia  

Increased initiative    Irritability 

Increased self esteem    Psychosis 

Self-confidence    Rhabdomyolysis  

Weight loss     Seizures, Stroke, Tremors 

*Although hallucinations are a desired effect of some drugs such as LSD, peyote, 

psilocybin, 3,4-methylenedioxyAMP and 3,4-methylenedioxymethamphetamine, the 

hallucinations associated with AMP and MA are generally due to ‘AMP psychosis’ and 

are not considered desirable. 
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and reflex bradycardia have also been attributed to alpha-adrenergic activity (Pentel, 

1984).  Cardiovascular effects manifest frequently as tachycardia and hypertension (Lam 

and Goldschlager, 1988; Lucas et al., 1986).  Initially an increase in cardiac output is 

seen and then a reflexive drop from increased peripheral resistance of the 

vasoconstrictive effects. 

Orthostatic hypertension (more severe in supine then sitting or standing) has also 

been observed (Miller et al., 1989), as well as acute and dramatic choreoarthetoid 

disorder triggered by MA (Rhee et al., 1988; Sperling and Horowitz, 1994).  Many 

abusers experience respiratory complications. Although the exact incidence and 

prevalence have not been established, pulmonary hypertension has long been reported in 

MA users, as demonstrated by IV, intranasal, and oral MA users as far back as the 1960’s 

(Derlet et al., 1990; Albertson et al., 1995; Arnett et al., 1976; Robertson et al., 1976; 

Lewman, 1972; Schaiberger et al., 1993). 

Dehydration can usually be detected by the dry mucous membranes but 

confirmation lies with laboratory testing.  Dry mouth, pale skin, and cool skin from 

peripheral vasoconstriction may occur also (Miller et al., 1989).  Although metabolic 

hyperactivity usually leads to polyuria, increased urinary sphincter tone and inhibitory 

effect on sympathetic nerve supply to the bladder and bowel have resulted in urinary 

retention and constipation (Linden et al., 1985; Miller et al., 1989).  Renal failure and 

hyperthermia have been associated with MA toxicity (Ginsberg et al., 1970; Foley et al., 

1984) along with hepatocellular damage (Jones et al., 1994). 

Susceptibility to the many toxic effects of MA varies greatly among individuals. 

Ingestion of as little as 1.5 mg/kg has proven fatal (Zalis and Parmley Jr., 1963; Potter 



26

and Kolbye, 1996), whereas, tolerant individuals have been known to inject as much as 

15,000 mg per day (Kramer, et al., 1967).  Thus, toxicity is more accurately assessed by 

clinical symptomology than by drug dosage.  

 

1.6 Pattern of abuse 

Toxic effects are most commonly associated with the typical binge usage that 

most MA abusers follow.  Upon initial administration (either smoking or intravenous), 

the person experiences an increase in heartbeat, pulse, and blood pressure.  Associated 

with these physiological changes comes a feeling of euphoria, which may last from five 

to 30 minutes.  This rush is followed by the period of being “high”, which usually lasts 

from four to 16 hours. 

As the abuser begins to come down from the high, he/she will inject or smoke 

more MA to maintain the alertness and overall good feelings associated with the high.  

During subsequent administrations of the MA, the euphoria decreases until even IV 

administration does not result in any euphoria.  At this point, nothing the person does will 

improve their mood or take away the feeling of neediness.  This phase is the most 

characteristic of all and is referred to as “tweaking”.  At this point, the subject becomes 

extremely paranoid, restless, and violent.  This is the result of the user going without 

sleep for up to 10 or 15 days, while injecting upwards of 10 to 20 times per day. 

Additionally, the user begins to display many of the psychological effects 

associated with toxic levels of MA, and many unpleasant CNS symptoms, such as, 

agitation, anxiety, hallucinations, delirium, and psychosis set in (Wilson et al., 1996; 
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Zalis and Parmley, 1963; Conci et al., 1988).  “Tweakers” are usually high intensity 

abusers that can be recognized almost immediately by a trained eye. 

Severe weight loss, central pallor (pale center of face), uncontrolled sweating, loss 

of personal hygiene with fairly characteristic body odor, bad teeth (usually gray and then 

eventually turning black), and numerous open sores on their skin are characteristic of a 

MA abuser.  The sores are a result of excessive scratching due to the “crank bugs” that 

the users have experienced--a form of hallucination in which the individual feels bugs 

crawling on their skin.  It is this phase of abuse that has brought so much attention to the 

high rate of MA abuse. 

The extreme paranoia MA users experience is often associated with violence.  As 

described by Potter (1996), one article taken from USA Today (Sept. 7, 1995) reads: 

 

“’Meth’ Use in the 90’s: A Growing ‘Epidemic’”  

 

“Stimulant Fuels Many in the ‘Fast Lane’” 

 

“When Eric Smith tossed his 14-year-old son’s head out his van window into a New 

Mexico highway he thought he was disposing of a demon.  But Smith’s grisly act last 

July was just another bizarre outburst blamed on MA….” 

 

“Experts are not surprised by the…brutality of the Smith case. ‘That is really pretty mild 

compared to the kind of cases we’re seeing’ in California, says Ron Siegel, a UCLA 
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psychotherapist who studies as many as five meth murders a week. We’re seeing 

everything from serial killing to necrophilia.’” 

 

The above-mentioned is just one event that demonstrates the state of mind that is 

now referred to as “AMP psychosis”.  This psychosis adds visual and auditory 

hallucinations to the already unbearable paranoia and agitation that is associated with MA 

abuse, thus usually ending in hysteria or possibly worse, as described.   

 After experiencing the euphoria, high, and tweaking phases, the MA user will 

inevitably crash--a one- to three-day period where the user sleeps.  This period of sleep is 

reportedly without awakenings. During many Tulsa Police Department (TPD) search 

warrants, the suspects that are in this phase of the MA abuse cycle must be carried to the 

police car in order to be transported. The suspects are often unable to be awoken (Adair, 

Personal Communication).  Eventually, after a period of time, the user will be back to a 

normal state—one slightly different than the normal self prior to the MA binge.  Usually, 

this person will remain MA free for days before the cycle repeats itself.  As the binge 

frequency increases, the time spent MA free in the normal phase decreases. 

According to Dr. Alex Stalcup, Medical Director of the New Leaf Treatment 

Center in Concord, California, 93% of the abusers in treatment facilities will return to 

MA abuse (Potter and Kolbye, 1996).  So what causes this addiction? 
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1.7 Neurochemistry of addiction 

One of the most challenging problems in the neurobiology of drug addiction is to 

understand why individuals abuse drugs.  Many have set out to identify certain brain 

chemistry that may predispose some people to becoming drug abusers.  Although there is 

no conclusive evidence of any such chemistry, researchers have identified one very 

prospective system.   

 1.7.1 Dopamine hypothesis. By the early 1990’s, evidence suggested many, if 

not all, drugs of abuse, including psychostimulants, act through mechanisms involving 

the brain neurotransmitter dopamine (DA) and the neural systems it regulates (Wise and 

Bozarth, 1987).  Dopamine is a biogenic amine neurotransmitter that has been shown to 

mediate cardiovascular, renal, hormonal, and central nervous systems through the 

stimulation of alpha- adrenergic, beta-adrenergic, and dopaminergic receptors (Velasco 

and Luchsinger, 1998).  A review by Michael Bardo (1998) summarized the multiple 

lines of research that have demonstrated the mesolimbic dopaminergic system’s input in 

neurochemical drug reward.  

To affect its target cells, dopamine interacts with specific receptors on the target-

cell surfaces. Dopamine receptor subtypes fall into two families; the D1-like family, 

which includes D1 and D5 receptor subtypes and the D2-like family, which includes 

receptor subtypes D2, D3, and D4 (Neve and Neve, 1997; Robinson, 1997).  D1- like 

receptors are coupled to Gs and thus stimulate adenlyate cyclase to produce the 

intracelluar second messenger cAMP.  cAMP  in turn activates cAMP -dependent protein 

kinase, which phosphorylates numerous substrates, including calcium channels and other 
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intracellular signaling components.  D2-like receptors are coupled to Gi/Go and thus 

inhibit adenylate cyclase and also activate inwardly rectifying potassium channels. 

The amount of overall activation of the D1-like and D2-like receptors determines 

the state of the target cell.  Additionally, there are D2 autoreceptors on the dopaminergic 

terminals themselves (Le Moine and Bloch, Khan et al., 1998).  D2-like receptors have 

been suggested to be more essential for the enabling role of behavior (Drago et al., 1994; 

Xu et al., 1994). The Bardo review (1998) discusses the D2-like receptors and possible 

D1-like receptor role in drug reward.  Evidence of the specific D4 receptor in the reward 

system is still an open question, even though findings from Rubinstein et al. (1997) have 

indicated that it modulates normal, coordinated, and drug stimulated motor behaviors, as 

well as the activity of nigrostriatal dopamine neurons. 

Dopaminergic receptors are not evenly distributed throughout the brain.  The 

striatum (STR) has a high density of D1 and D2 receptors with localized D3 in the ventral 

STR (also known as the nucleus accumbens), and lower levels of D4 and D5 (Mansour 

and Watson, 1995; Bordet et al., 1997).  The nucleus accumbens (ACC), seems to be the 

key zone that mediates the rewarding effects (Robbins and Everitt, 1999).  It too contains 

a high density of D1-like and D2-like dopaminergic receptors.  

The dopamine hypothesis is evidenced by several sources (Volkow et al., 1999; 

Bardo, 1998; Rubinstein et al., 1997).  Briefly, rats will self-administer tiny injections of 

AMP into their ACC by repetitively pushing a lever.  The rats give themselves more of 

the AMP when their dopamine receptors are partially blocked pharmacologically, 

suggesting a drive to self-regulate the dopamine level.  This has been evidenced with MA 

as well, by the systemic administration of DA antagonists increasing the self-
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administration of MA (Woolverton, 1986).  The repetitive behavioral acts that lead to the 

drug effects are assumed to be rewarding, this being an example of positive 

reinforcement.  

If dopamine is massively depleted using a neurotoxin like 6-hydroxydopamine 

then, despite the recuperative capacity of the dopamine system (ability to synthesis DA 

once the stores are released), the rats no longer self-administer amphetamine.  This is 

presumably because, in the absence of dopamine, these drugs lose their reinforcing 

properties (Wise and Bozarth, 1987).  The dopaminergic system’s reinforcing responses 

to psychostimulation have been successful in linking similar responses in rat to things 

seen in humans (Volkow et al., 1999; Bardo, 1998; Rubinstein et al., 1997). 

 1.7.2 Dopamine synthesis. Dopamine belongs to a group of neurotransmitters 

called catecholamines.  These are single amine groups with a nucleus of a catechol 

(benzene ring with two adjacent hydroxyl groups) and a side chain of ethylamine or one 

of its derivatives (Vallone et al., 2000).  Dopamine is found in neurons of both the central 

and peripheral nervous systems. Since the pioneering studies of Blaschko (1957), 

dopamine has also been recognized as an important neurotransmitter in the mammalian 

brain.  

 Dopamine is mainly synthesized in the presynaptic area of the neuron from l-

tyrosine.  L-tyrosine is transported across the blood-brain barrier into the dopamine 

neuron where it is converted to dihydroxyphenylalanine (l-DOPA) by tyrosine 

hydroxylase--the rate-limiting step in the synthesis of dopamine.  Once formed, l-

aromatic amino acid decarboxylase (DOPA decarboxylase) very rapidly converts l-

DOPA to dopamine (Cooper et al., 1996) where it can be stored until it is summoned for 
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release.  Dopamine constitutes about 80% of the catecholamine content of the brain 

(Vallone et al., 2000). 

 

Tyrosine    ▬(tyrosine hydroxylase)� l-DOPA  

l-DOPA    ▬(l-aromatic amino acid decarboxylase)� Dopamine 

 

1.7.3 Dopamine release. Dopamine release is a calcium-dependent mechanism.  

Calcium is used along with cyclic adenosine monophosphate (cAMP) to activate the 

tyrosine hydroxylase responsible for the dopamine production and for its subsequent 

release. Depolarizing stimuli evoke dopamine release mainly from vesicular pools but 

newly synthesized dopamine can also be released from cytoplasmic pools (McMillen and 

Shore, 1980).  AMP has been used to demonstrate the release of both “stored” and 

“newly synthesized” dopamine (Chiueh and Moore, 1975) but the maintenance of the 

AMP induced release of dopamine is dependent upon the newly synthesized pool.  

 Once released, dopamine interacts with specific membrane receptors to produce 

its effects (Figure 1-3).  Dopamine neurotransmission has been implicated in processes as 

diverse as muscle rigidity, hormonal regulation, thought disorder, and addiction (Jackson 

and Westlind-Danielsson, 1994; Missale et al., 1998; Emilien et al., 1999).  Peripheral 

dopamine receptors mediate changes in blood flow, glomerular filtration rate, sodium 

excretion and catecholamine release (Missale et al., 1998; Emilien et al., 1999).  Since 

peripheral receptors have not been liked to addiction or reinforcement properties, this 

dissertation will focus primarily on the central dopaminergic system in the brain. 
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Figure 1-3. Representation of a dopaminergic synapse.  During normal neuronal 
communication, dopamine is released by a neuron into the synapse (the small gap 
between neurons).  The dopamine (orange star symbols) then binds with specialized 
proteins called "dopamine receptors" (blue cylinders) on the neighboring neuron, thereby, 
sending a signal to that neuron.  The signal is terminated by the dopamine being taken 
back up into the original neuron by the dopamine transporter (red cylinders). Courtesy of 
http://www.drugabuse.gov/Teaching. 
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1.7.4 Central dopaminergic systems. There are three/four brain areas which 

synthesize dopamine and give rise to the central axonal pathways (Figure 1-4): (1) The 

nigrostriatal pathway, joining the substantia nigra to the striatum, involved in 

extrapyramidal motor functions (Carlsson 1988); (2) the mesolimbic and mesocortical 

pathways which are separate but generally discussed together.  The mesolimbic originates 

in the ventral tegmental area (VTA) and terminates in the limbic area (nucleus 

accumbens and olfactory tubercle).  The mesocortical pathway also originates in the VTA 

but terminates in the cortical structures. These systems together are responsible for the 

cognitive functions, motivation, and indirectly for motor activity (Missale et al., 1998; 

Emilien et al., 1999).  (3) The tubular/infundibular pathway from the hypothalmus to the 

hypophysis, regulating neuroendocrine function (Missale et al., 1998; Emilien et al., 

1999).  In general, dopaminergic neurons join the frontal cortex with the septum, 

striatum, and nucleus accumbens (Hantraye, 1998). 

1.7.5 Dopamine and addiction.  By the early 1990’s, converging evidence 

suggested that many (if not all) drugs of abuse act through mechanisms involving 

dopamine and the neural systems it regulates (Wise and Bozarth, 1987).  It was 

acknowledged that such drugs could influence other neurochemical systems, but many of 

these primary responses lead to seconday effects involving dopamine (Robbins and 

Everitt, 1999). 

 A region at the base of the striatum, the ACC, is the key zone that mediates the 

rewarding effects of drugs such as AMP and cocaine (Figure 1-4).  Evidence for this 

‘dopamine hypothesis’ came from several sources as described by Wise and Bozarth 

(1987).  Neuropharmacological studies have established the mesolimbic system (Figure 
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1-4) as a major neuronal substrate of the reinforcement processes involved in chronic 

psychostimulant self-administration in humans and rats (Hoebel et al., 1983; Carboni et 

al., 1989; Koob and Le Moal, 1997; Nesler and Aghajanian, 1997).  This hypothesis is 

most certainly not universally accepted. For example, opiates also seem to have 

reinforcing effects mediated by dopamine-independent mechanisms in the ACC (Koob 

and Le Moal, 1997).  Due to the fact that psychostimulants, like AMP and MA, have 

previously demonstrated their reinforcing abilities within the mesolimbic system, more 

specifically within the STR and ACC, the following studies will reside within those two 

areas of interest.   
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Figure 1-4. Representation of the major dopamine pathways (mesolimbic, mesocortical, 
and nigrostriatal) within the human brain.  Striatum (STR); Ventral Tegmental Area 
(VTA).  Courtesy of http://www.drugabuse.gov/Teaching.   
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 1.7.6 Common properties of the dopaminergic receptor subtypes.  Dopamine 

exerts its effects by binding to specific membrane receptors that belong to the 

superfamily of transmembrane domain G-protein coupled receptors (Cooper et al., 1996).  

It seems that each of the dopamine receptors conforms to the general structure of many 

G-protein coupled receptors.  These are known to have seven membrane spanning-helices 

lined by protein loops with an extracellular amino terminus (Figure 1-5) (Vallone et 

al.,2000).  The helices are bundled together in the membrane to form the ligand-binding 

site; information on the residues is available (Baldwin et al., 1997; Coley et al., 2000).  

1.7.6.1 Dopamine receptor genes. Five distinct dopamine receptors have been 

isolated, characterized, and subdivided into two subfamilies, D1-like and D2-like, based 

on physiological or biochemical responses.  The D1-like subfamily includes the D1 and 

D5 receptors, while the D2-like includes the D2, D3, and D4 receptors.  The difference in 

the two subfamilies homologies in the extracellular domain provides a structural basis for 

their pharmacological selectivity. 

D1-like receptors have short third intracellular loops and long carboxyl terminal 

tails, whereas, the D2-like receptors have long third intracellular loops and short carboxyl 

terminal tails.  The significance of this is that it appears to be functionally related to the 

receptor/G-protein interaction.  It is the third intracellular loop of these receptors that is 

thought to be important in the interaction of receptor and G-proteins.  For the D2-like 

receptors, there are short and long variants (D2S and D2L) of the third intracellular loop, 

with the long form having a 29 amino acid insertion in the loop (Figure 1-5) (Giros et al., 

1989). 
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D2-like receptor variants have shown some differences in their abilities to couple 

with or activate G-proteins (Cravchik et al., 1996; Guiramand et al., 1995).  Splice 

variants of the D3 receptor encoding nonfunctional proteins have also been identified 

(Jackson et al., 1994).  Furthermore, there are polymorphisms within the D4 receptor 

loops; variants have yet to demonstrate differences in the binding of ligands or coupling 

to G-proteins (Kazmi et al., 2000).  

 1.7.6.2 Dopamine receptor expression. Dopaminergic ligands easily 

discriminate between the D1-like and D2-like receptor subfamilies.  Subfamily receptors 

can be defined by using selective agonists, antagonists, or specific radioligands.  D1-like 

receptors are defined by SKF38393, SCH 23390, and [I125]SCH23982 and D2-like 

receptors are characterized by quinpirole, sulpiride, and [3H]raclopride, respectfully 

(http://www.tocris.com).  Most of them do not clearly differentiate between members of 

the same subfamily.  For example, the D1-like receptor agonist and antagonist, SKF38393 

and SCH 23390, have similar affinities for both D1 and D5 receptors (Vallone et al., 

2000).    

 1.7.6.3 D1-like receptor subfamily. The D1 and D5 receptors are classified as 

members of the D1-like subfamily because of their similar amino acid sequences.  The D1

receptor differs structurally from the D2 in several ways.  The distribution of D1 receptors 

corresponds to the projection regions of dopaminergic neurons. Thus, the highest 

amounts of D1 receptors are found in the STR, ACC and olfactory tubercle (Cooper et al., 

1996).  The D5 receptors are more restricted and expressed at much lower levels.  The 

function of the D5 receptor is still unknown; it is less abundant than the D1 receptor and 

has a different distribution in the brain, being found in highest amounts in the 
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hippocampus and hypothalamus, with lower amounts in the STR and frontal cortex 

(http://www.tocris.com).  The effects mediated by D1 receptors in humans have been 

shown to control movement, cognitive function, and cardiovascular function.  D1-like 

receptors have been shown to be exclusively postsynaptic (Civelli et al., 1991). 

 D1-like receptors are coupled to Gs and thus stimulate adenylate cyclase--the 

enzyme that converts adenosine triphosphate (ATP) to the intracellular second messenger 

cAMP.  The cAMP in turn activates cAMP-dependent protein kinase A, which 

phosphorylates numerous substrates, transcription factors, and other intracellular 

signaling components (Tiberi and Caron, 1994; Cooper et al., 1996; Berke and Hyman, 

2000).  D1-like receptors have also been shown to modulate both directly and indirectly 

the level of intracellular Ca+2 and inhibit K+ currents in striatal neurons (Cote et al., 1981; 

Onali et al., 1981; Kitai and Surmeirer, 1993; Missale et al., 1998). 

In the STR, D1 receptor, stimulation leads to phosphorylation of ion channels 

(including calcium, sodium, and potassium and NMDA receptors), with complex effects 

on cell firing that depend in part on the activation state of the neuron (Surmeier and Kitai, 

1993; Hernandez-Lopez et al., 1997; Cepeda et al., 1998; Cantrell et al., 1999).  Although 

D1 receptors have been shown to play a role in addiction, they are believed to play a 

greater role in learning (Beninger and Miller, 1998).  

 1.7.6.4 D2-like receptor subfamily. Similarly, D2, D3 and D4 receptors share 

substantial homology; therefore, they are classified as members of the D2-like subfamily. 

Postsynaptic D2-like receptors are predominantly expressed in the STR, limbic areas 

(ACC, olfactory tubercle), hypothalamus and pituitary (Cooper et al., 1996).  This 

receptor is also expressed in the substantia nigra and in the ventral tegmental area (VTA), 
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which indicate that D2 receptors also have a presynaptic location (Vallone et al., 2000).  

Since the pioneering research of Carlsson (1988), it has been clear that the activity of 

dopaminergic neurons in the midbrain can be modulated by the release or the exogenous 

application of dopamine.  These presynaptic receptors were termed "autoreceptors" and 

are important in maintaining dopaminergic activity in the nigrostriatal and mesolimbic 

dopamine systems (Vallone et al., 2000; Leviel 2001; Glickstein and Schmauss 2001). 

According to Vallone et al. (2000), the D2-like subtypes are predominantly found in the 

dopamine rich areas of the brain but also in the retina, kidney, vascular system, and 

pituitary gland.  Additionally, the D2L subtype has been shown to be more common than 

the D2S subtype (Figure 1-5) (Vallone et al., 2000).   

 The D3 and D4 subtypes are much less abundant and have a different distribution. 

The D3 receptors are located predominantly in the islands of Calleja, a few septal nuclei, 

hypothalmus, and distinct region of the thalamus and cerebellum (Jackson et al., 1994). 

In addition, the D3 receptor location in the substantia nigra is also indicative of a 

presynaptic function.  The D4 appears to be highly expressed in the frontal cortex, 

amygdala, olfactory bulb, hippocampus, hypothalmus, and mesenchephalon (Jackson et 

al., 1994; Oak et al., 2000; Rubinstein et al., 2001).  

 D2-like receptors are coupled to Gi/Go and thus inhibit adenylate cyclase and also 

activate an inwardly rectifying potassium channel (Missale et al., 1998; Emilien et al., 

1999; Berke and Hyman, 2000).  Signaling through Gi leads to the inhibition of adenylate 

cyclase (Senogles, 1994; Ghahremani et al., 1999).  D2 and D3 have been described as 

inhibitor of adenylate cyclase/cAMP, with D3 showing less efficiency than D2 and D4

inhibiting cAMP accumulation in the retina (Missale et al., 1998).  Signaling through Go 
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leads to the inhibition of calcium channels (Liu et al., 1994).  The D2 receptor modulation 

of intracellular calcium concentration is believed to play an important role in dopamine 

biosynthesis (Braun and Schulman, 1995). 

 As discussed previously, the D2 receptor exists in two isoforms: D2S and D2L, 

generated by alternative splicing (Dal Toso et al., 1989; Giros et al., 1989).  There are 

also indications about different functions and different G-protein coupling, but the 

selectivity has yet to be defined (Usiello et al., 2000; Montmayeur et al., 1993; Senogles 

et al., 1990).  It has been demonstrated that the 29 aa insertion of the D2L isoform confers 

a greater affinity for the binding of Gi2 (Guiramand et al., 1995; Montmayeur et al., 

1993) with respect to the D2S isoform (Liu et al., 1994).  A clear definition of the 

selectivity of the D2 receptor has not yet emerged.  It appears that D2 receptors are 

tonically (continuously) stimulated by basal levels of dopamine and this tonic activity is 

important in normal motor activity (Berke and Hyman, 2000). 

 



42

 

Figure 1-5. Scheme of the structures of the DA D2 receptor isoforms.  The D2L specific 
amino acid insertion is indicated together with potential sites.  Potential amino-acid 
residues involved in N-glycosylation, PKA phosphorylation, palmitoylation, and agonist 
binding is also shown.  This figure was reproduced from Vallone et al. (2000). 
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 1.7.7 Dopamine metabolism. The extracellularly released dopamine and its 

physiological effects are terminated by the re-uptake of dopamine into the pre-synaptic 

neuron by the Na+ and Cl--dependent dopamine transporter (Reith et al., 1997; Drago et 

al., 1998; Kuhar, 1998), or by metabolic inactivation by monoamine oxidase  (MAO) or 

catechol-O-methyltransferase (COMT) (Kopin, 1985; Westerink and Spaan, 1982). 

Released dopamine is either converted to dihydroxyphenylacetic acid (DOPAC) by 

interneuronal MAO after reuptake or to homovanillic acid (HVA) extraneuronally by 

COMT and MAO (Kopin, 1985; Westerink and Spaan, 1982).  

 1.7.8 Dopamine transporter protein (DAT).  The dopamine transporter, or 

carrier, is located on the plasma membrane of nerve terminals and is responsible for 

transporting dopamine across the membrane.  By taking up synaptic DA into the neuron, 

it plays a critical role in terminating DA neurotransmission and in maintaining DA 

homeostasis in the CNS (Giros et al., 1996; Jones et al., 1998a,b). 

 Since the cloning of the DAT back in the early 1990s  (Giros et al., 1991; Kilty et 

al., 1991; Shimada et al., 1991; Usdin et al., 1991), major advances have been made in its 

characterization.  Though no X-ray crystallographic or high-resolution structural 

information is available for the topological assignments of the transporter, hydropathy 

analysis predicts a topology with 12 transmembrane segments connected by alternating 

extracellular and intracellular loops with the N- and C-terminals located in the cytosol 

(Chen et al., 1998).  These 12 transmembrane domains have been arranged in a circular 

arrangement forming a pore (Edvardsen and Dahl, 1994). 

The human and rat DAT, and many others, are functionally dependent on the 

presence of external sodium and chloride (Kilty et al., 1991; Giros et al., 1991,2,4; 
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Vandenbergh et al., 1992; Eshleman et al., 1995).  Studies have demonstrated that the 

interactions of ions with the DAT are considerably more complex than the simple picture 

of 2 Na+ ions and one Cl- ion being co-transported with one DA molecule (Chen et al., 

1999; Earles and Schenk, 1999; Li and Reith, 1999). It has also been demonstrated that 

glycosolation of the DAT is important in plasma membrane expression (Lin et al., 1999) 

and DAT phosphorylation plays a role in transport protein sequestration (Zhu et al., 1997; 

Pristupa et al., 1998) and down-regulation of transport activity (Huff et al., 1997; Zhang 

et al., 1997).  

Many substances such as AMP and MA structurally resemble DA and can be used 

as substrates for the DAT and can be transported by the DAT (Jones et al., 1998a,b; 

Miller et al., 1999).  Studies show that the DAT requires molecules that possess a phenyl 

ring with a primary ethylamine side chain for optimal activity (Meiergerd and Schenk, 

1994).  It is proposed that the catechol appears to mediate the recognition of the substrate, 

whereas the amine side chain facilitates the conformational change of the transporter that 

results in movement of DA across the membrane.  Yet, compounds without a phenolic 

hydroxyl group such as AMP and MA can bind to the carrier and be transported with the 

same Vmax as DA (Chen and Justice, 2000).  The phenethylamine structure, therefore, 

seems to be the most important structural element required by the DAT.  

1.7.9 Effects of methamphetamine on the dopaminergic system.  The ability of 

MA to alter the dopaminergic response within the STR and ACC has been extensively 

investigated (Brown et al., 2000; Krueger, 1990; Schmidt and Lovenberg, 1985; Wagner 

et al., 1980; Raiteri et al., 1979; Fumagalli et al., 1998; Fleckenstein et al., 1997; Bennett 

et al., 1997; Jones et al., 1986; Ricaurte et al., 1982,84).  MA triggers the release of DA 
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from the cytosol to the extracelluar space by means of reverse transport through the DAT, 

in addition to the normal release mechanism, exocytosis (Sulzer et al., 1995; Jones et al., 

1998; Schmitz et al., 2002).  Two models have been proposed to explain the role for 

dopamine in the actions of MA.  

1.7.9.1 Exchange diffuse model. In the exchange diffusion model (Fisher and 

Cho, 1979; Mundorf et al., 1999), MA acts as a substrate for the DAT (Sonders et al., 

1997) and reverses the transporter’s conformation so that net dopamine efflux occurs 

(Jones et al., 1999).  This model predicts cytosolic dopamine to be decreased by MA and 

MA administration induces extraneuronal dopamine oxidation (Seiden and Vosmer, 

1984).  Unfortunately, this model does not explain the oxidation of extraneuronal 

dopamine and its specificity for dopaminergic terminals rather than the expected 

nonspecific damage that should occur in all neighboring neurons, not just dopaminergic 

ones.  

1.7.9.2 Weak base model. In the weak base model (Sulzer et al., 1995), MA acts 

via both the DAT and the vesicular monoamine transporter to promote the collapse of 

vesicular proton gradients, redistributing dopamine from synaptic vesicle to the cytosol 

(Mundorf et al., 1999), while preventing vesicular reuptake of cytosolic dopamine by 

destroying the driving force for vesicular dopamine accumulation (Maron et al., 1983), 

thus, predicting MA will increase cytosolic levels of dopamine, leading to dopamine 

oxidation within the neuronal cytosol (Cubells et al., 1994; Lavoie and Hastings, 1999; 

Lotharius and O’Malley, 2001). Regardless of the model, both agree that DAT plays an 

important role in MA neurotoxicity.  Larson et al. (2002) demonstrated the ability of 

nomifensine and amfonelic acid, two DAT inhibitors, to offer neuroprotection. 
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Regardless of which model one chooses to accept, the mechanism of action of 

AMP and MA appears to be fairly complex.  Amphetamine and MA enter the neuron 

either through plasma membrane monoamine transporters or by diffusion (Seiden et al., 

1993).  Once inside the neuron, the drug enters vesicles via the neuronal vesicular 

monoamine transporter and/or by diffusion, and reduces the vesicular pH gradient (Sulzer 

et al., 1995).  

Amphetamine and MA are weak bases and, when transported into dopamine 

vesicles, they impair the proton gradient thereby inhibiting the sequestration of dopamine 

(Sulzer et al., 1995; Sulzer et al., 1993), thus, producing a redistribution of vesicular 

monoamines from vesicles to the cytoplasm, from where monoamines are transported to 

the extracellular space by reversal of the plasma membrane DAT (Sulzer et al., 1995).  

Furthermore, AMP and MA are both potent inhibitors of the intracellular enzyme MAO 

and thereby decrease dopamine metabolism (Seiden et al., 1993).  Experiments in DAT 

knockout mice (Jones et al., 1998) clearly support this model of action and illustrate that 

although the DAT is pivotal, other processes are required. 

 Using animal models or pharmacological approaches, it has been possible to 

demonstrate that selective lesions of the ACC (Vallone et al., 2000) or blocking of 

dopamine receptors by D1 or D2-like antagonists, attenuated the reward effects caused by 

AMP in rats or mice (Feldman et al., 1997).  Various studies utilizing genetically 

engineered mice have provided insights into the involvement of dopamine receptors and 

their link to abuse (Drago et al., 1996; Miner et al., 1995).  It appears that the D1 receptor 

is not as closely linked to the rewarding properties as previously believed; therefore, the 
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current studies will focus on the receptors most closely linked to addiction, the D2

receptors. 

 A large body of evidence exists in looking at the effects of MA on the 

dopaminergic system, especially targeting the STR and ACC.  It has been demonstrated 

in rats that MA administration can result in long-lasting decreases in DA levels, tyrosine 

hydroxylase activity, and DA uptake sites in the brain (Ricaurte et al., 1982; Seiden and 

Ricaurte, 1987; Gibb et al., 1994; Cass, 1997).  Many studies have produced data that 

demonstrates a modification in the DAT function, which may be associated with both the 

altered uptake and release of dopamine (Ricaurte et al., 1982; Seiden and Ricaurte, 1987; 

Gibb et al., 1994; Cass, 1997; Bennett et al., 1997; Kokoshka et al., 1998; Kimmel et al., 

2000). 

Most studies will agree that that there is a decrease in the DAT binding in the 

STR and ACC with a decrease in affinity (Km) without change in the maximal velocity 

of uptake/transporter density (Vmax) (Kimmel et al., 2000; Kokoshka et al., 1998; 

Bennett et al., 1997).  Kim et al. (2000) has reported that their group studies revealed a 

decrease in Vmax without a change in Km. 

Previously, studies were unable to show similar effects in the ACC (Cass, 1997; 

Kokoshka et al., 1998).  More recently, studies have been able to demonstrate the same 

decrease in DAT binding within the ACC that is seen in the STR (Kimmel et al., 2000). 

These findings offer an excellent foundation of information to build upon.  Not 

only is there a deluge of information within the brain areas of interest, these studies 

provide justification of an animal model, the Sprague-Dawley rat, and a series of 

neurochemical methodologies in which to study and characterize neurochemical changes 
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associated with MA administration (Ricaurte et al., 1982; Seiden and Ricaurte, 1987; 

Gibb et al., 1994; Cass, 1997; Bennett et al., 1997; Kokoshka et al., 1998; Kimmel et al., 

2000).  With this knowledge, the stage is set for additional neurochemical 

characterization of MA effects with NIC co-administration with respect to reward and 

addiction. 

1.7.10 Other neurotransmitters.  The neurotoxic and addictive effects of MA 

have been linked to several neurochemical factors, including serotonin (Schmidt and 

Lovenburg, 1985; Johnson, et al., 1994; Farfel and Seiden, 1995; Cass, 1996), oxygen 

radical formation (Fleckenstein, et al., 1997), and as discussed previously, the 

dopaminergic system (Schmidt and Lovenburg, 1985; Delle Donne, and Sonsalla, 1994; 

Cass, 1996; Fleckenstein, et al., 1997; Bennett, et al., 1997; Fumagalli, et al., 1998; 

Callahan, et al., 1998; Kim, et al., 2000).  In contrast to the vital role associated with 

dopamine and addiction, Bardo (1998) also reviewed another catecholamine 

neurotransmitter, norepinephrine, but was unable to show any major role in addiction. 

Additionally, a review (Bardo, 1998) of serotonin, acetylcholine, amino acids, and other 

neuroactive peptides still supports the original hypothesis-- the use of dopamine to assess 

MA’s neurochemical link to addiction and neurotoxicity.  

1.8 Animal model 

The role of dopamine and its neurochemical characteristics in response to MA has 

been well documented (Wagner, et al., 1979; Ricaurte, et al., 1980; Segal and Kuczenski, 

1997a, 1997b; Schmidt et al., 1985; Fumagalli et al., 1998; Bardo, 1998).  In the past, the 

study of the pharmacological and toxicological effects of MA utilized many animal 
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models.  These models include guinea pigs (Lewander, 1971; Wagner, et al., 1979), mice 

(Fumagalli, et al., 1998; Jones, et al., 1998), cats (Chiueh and Moore, 1974), monkeys 

(Seiden et al., 1975), and humans (Volkow, et al., 2001a; Volkow, et al., 2001b), and, 

most commonly, rats (Wagner, et al., 1979; Ricaurte, et al., 1980; Ricaurte, et al., 1982; 

Ricaurte, et al., 1984; Peat, et al., 1983; Schmidt and Lovenberg, 1985; Zaczek, et al., 

1989; Krueger, 1990; Green, et al., 1992; Melega, et al., 1995; Wagstaff, et al., 1996; 

Segal and Kuczenski, 1997a,b; Fleckenstein, et al., 1997; Bennett, et al., 1997; and Kim, 

et al., 2000).  The use of numerous animal and human models has substantiated 

researchers‘ belief that MA addiction is somehow linked to and can be studied through 

the dopaminergic system.  

 

1.9 Methamphetamine dosage   

 Multiple high-dose administrations of MA have been shown to cause persistent 

decreases in central dopamine uptake and dopamine transporter protein (DAT) binding in 

rodents, non-human primates, and perhaps humans (Wagner et al., 1980; Villemagne, 

1998; Kim et al., 2000).  Various dosing regimens have been used successfully in rats for 

studying the effects of MA on the dopaminergic system.  Sandoval et al. (2000) 

compared four injections of 2 to 10 mg/kg s.c., given in 2-hour  intervals to mice and rats, 

to compare similarities and differences.  10 mg/kg has been shown to cause a dose 

dependent decrease in [3H]dopamine uptake in striatal synaptosomes, prepared from mice 

and rats one hour after administration and within 24 hours after last MA treatment.  The 

dopamine transport activity partially recovered, whereas ligand binding to the dopamine 

transporter was reduced similarly at one and 24 hours (Sandoval et al., 2000).  Similar 
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results had previously been demonstrated with 5 mg/kg MA in the same dosing regimen 

(Cass, 1997), and a dose of 15 mg/kg was shown to produce similar effects (Fumagalli, et 

al., 1998).  

 One thing to consider is frequency of the administration. If AMP or MA is used 

repeatedly, some acute effects may diminish (tolerance), while others are enhanced 

(sensitization).  Animals given several drug injections spaced out at intervals of a day or 

more tend to show sensitized locomotor activity and stereotypy, progressing with each 

injection, these being most appropriate for behavioral studies.  Animals given the drug 

continuously through an osmotic pump or by closely spaced injections show a diminished 

locomotor response to a subsequent challenge (Post, 1980; Kuribara, 1996).  Sensitized 

locomotor activity can persist in rats for over a year after the end of drug administration 

(Paulson, et al., 1991).  One must, therefore, be careful to select the most appropriate 

dosing regimen for one‘s study.  

 The current studies utilized one day of either MA, NIC, COMBO, or saline 

injections (3 X 5 mg/kg i.p., 3 hours apart).  On either one-hour post last injection 

(1hrPT) or seven-day post last injection (7dayPT), rats were sacrificed and tissue samples 

taken as described in chapter III.  This dosing regimen is believed to model an overdose 

by a naïve drug user.  The regimen produced visible behavioral effects indicating 

psychostimulant effects without causing any premature deaths in the experimental 

animals.  Additionally, this model has been used in characterizing acute and chronic 

neurochemical consequences of MA administration (Davidson et al., 2004). 

 



51

1.10 Enzymatic metabolism 

1.10.1 Methamphetamine metabolism. Upon administration and distribution, 

MA is continually eliminated in an unchanged form.  Under normal circumstances, up to 

43% of a dose is eliminated unchanged in the 24-hour urine, with approximately 4-7% 

cleared as AMP (Basalt, 2000).  Contrary to most belief, AMP is not the major metabolite 

of MA, primarily because it only accounts for less than 20% of the administered MA 

(Cho, 1990); however, it is the major active metabolite. 

Metabolism generally occurs in the liver by enzymes whose activity and 

distribution will be discussed in the next section.  About 15% of the MA is excreted as p-

hydroxyMA (figure 1-6) and the remainder of the dose is accounted for as minor amounts 

of the same metabolites found after AMP administration (figure 1-7) (Caldwell et al., 

1972).  Amphetamine has demonstrated significant deactivation during metabolism, 

primarily by deamination to phenylacetone, which is subsequently oxidized to benzoic 

acid and excreted as glucuronide and glycine conjugates.  A small amount of AMP is 

oxidized to norephedrine, which along with its parent compound, AMP, are p-

hydroxylated to form p-hydroxynorephedrine and p-hydroxyamphetamine.  Many of 

these metabolites are pharmacologically active and may contribute to the effects of the 

drug, especially during chronic usage. 

Amphetamine is generally metabolized and excreted as 0.9% phenylacetone, 16-

28% as hippuric acid, 4% as benzoylglucuronide, 2% as norephedrine, 0.3% as 

conjugated p-hydroxynorephedrine, and 2-4% as conjugated p-hydroxyAMP (Beckett 

and Rowland, 1965; Becket et al., 1969; Basalt 1996).  MA has been shown to generate 

higher proportions of the pharmacologically active p-hydroxymetabolites than AMP 
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(10% in MA and less than 0.4% in amphetamine) (Yamada and Yoshimura, 1989; Cho, 

1990). 

In humans, the serum concentration peaks vary with differing amounts of oral 

administration.  A maximum blood concentration was seen around one hour after a single 

oral dose of 10 mg (Lebish et al., 1970).  A 12.5 gm oral dose resulted in a peak 

concentration at approximately 2.5 hours (Driscoll et al., 1971) and a 30 mg dose resulted 

in an average peak serum concentration between three to five hours and was maintained 

for up to 12 hours later (Shappell et al., 1996). 

The fairly complex metabolism and excretion of MA in humans result in a fairly 

long half-life (approximately 10-12 hours) (Cho et al., 2001; Cho, 1990; Shappell et al., 

1996).  Urinary excretion of the unchanged drug is pH dependent.  Urinary acidification 

decreases half-life and alkalinization increases the half-life.  For every one-unit increase 

in urinary pH, there is an average seven-hour increase in plasma half-life (Drug Facts and 

Comparison, 1997).  During urinary acidification, plasma elimination is shortened, and 

total clearance is increased as well (Beckett and Rowland, 1965).  This has also been 

shown with AMP (Beckett et al., 1969) and is similar with MA (Beckett and Rowland, 

1965).   Though the elimination half-lives in humans and rats are quite different, they do 

share similarity and predictability, as discussed by Cho (1990).  Furthermore, dosing 

regimens can be modified in rats to mimic human abuse patterns.   
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Figure 1-6. Metabolism of amphetamine schematic. Reproduced with modification from 
Feldman et al., Fundamentals of Neuropsychopharmacology, Sinauer Associates, Inc. 
(1999). 
 

Methamphetamine 
(46%) 

p-OH MA (15%) 
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 1.10.2 Enzymatic drug metabolism. Metabolism is the mechanism of 

elimination of drugs and foreign compounds from the body and controls the levels of 

other desirable compounds, such as vitamins.  Metabolism of drugs is complex, with 

many drugs being metabolized by multiple enzyme systems.  Enzymes involved in 

metabolism are present in many bodily tissues (gastrointestinal tract, lung, nasal mucosa, 

kidney, blood, skin, and blood cells) (Krishna and Klotz, 1994); however, the liver is the 

principal site of drug metabolism. 

For many drugs, metabolism occurs in two phases.  Phase I reactions are 

catalyzed by a super family of mixed function monooxygenase enzymes, known as the 

cytochrome P450 system.  This occurs in liver microsomes, located in the endoplasmic 

reticulum of liver cells or hepatocytes, where the drug is made more hydrophilic by the 

formation of a new or modified functional group or a cleavage.  Most of the time, these 

simple modifications are enough to increase solubility facilitating elimination through the 

kidneys (in urine) and the liver (in bile).  Phase II metabolism involves conjugation, 

many times after their activation by Phase I enzymes.  Phase I and Phase II enzymes 

acting in concert convert hydrophobic compounds to more hydrophilic compounds that 

can be readily eliminated.  

 1.10.3 Cytochrome P450 system. The most important enzyme system of Phase I 

metabolism is cytochrome P450, a microsomal superfamily of isoenzymes that transfer 

electrons and thereby catalyze the oxidation of many drugs.  The electrons are supplied 

by NADPH-cytochrome P-450 reductase, a flavoprotein that transfers electrons from 

NADPH (the reduced form of NIC-adenine dinucleotide phosphate) to CYP.  There are 

many good review articles on the Cytochrome P450 system (Kraemer and Maurer, 2002; 
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Snawder and Lipscomb, 2000; Meyer, 1996; Kivisto and Kroemer, 1997; Tucker, 1994; 

Wrighton and Stevens, 1992). 

Briefly, CYP’s are membrane bound proteins with an approximate weight of 

50kD that contain a heme moiety.  They are found along with other mixed function 

oxygenases in the endoplasmic reticulum of the liver.  CYP enzymes are well known for 

their role in the metabolism of compounds of a rather non-polar nature (Azenbacher and 

Anzenbacherova, 2001).  All the known CYP enzymes bind two atoms of oxygen, mainly 

O2, but sometimes the -O-O- moiety of a peroxide structure.  The binding of these to the 

heme portion of the enzyme provides the necessary properties for the splitting of the 

dioxygen molecule.  Hence, in most cases, a hydroxylated product is formed, with the 

general monooxygenase reaction catalyzed by a CYP enzyme expressed as, where RH is 

the substrate: 

 

RH + NADPH + H+ + O2                        ROH + NADP+ + H2O 

 

The complete reaction scheme may be much more complex.  The main alterations that 

occur involve a wide range of chemical reactions, including aromatic hydroxylation, 

aliphatic hydroxylation, oxidative N-dealkylation, oxidative O-dealkylation, S-oxidation, 

reduction, or hydrolysis (Gunaratna, 2000). 

1.10.4 Drug interactions. CYP enzymes metabolize the majority of presently 

available pharmaceutical agents, including illicit MA (Lin et al., 1995, 1997).  It is 

believed that only five of the hundreds of known CYP enzymes are responsible for 

approximately 95% of the hepatic CYP-mediated oxidations (Wrighton and Stevens, 



56

1992).  According to Guengerich (1996), human liver CYP2D6 and CYP3A4 participate 

in the oxidative biotransformation of ~80% of commercially available drugs. 

Within the human population, genetic or hereditary factors are significant factors in drug 

metabolism (Van der Weide, 1999).  Variability associated with the CYP enzyme system 

within each individual can cause marked responses.  According to Gunaratna (2000), 

there are three general polymorphic groups of CYP enzyme individuals:a)  Extensive 

metabolizers: Normal individuals;  

b) Poor metabolizers (PM): Individuals that show complete absence of enzyme 

 activity; and 

c) Ultra extensive metabolizers: Individuals showing enhanced enzyme expression. 

 Also, it appears that metabolism decreases with age and clearances of certain 

drugs are different in men and women (Sotanieui, et al., 1997).  Hormones have been 

shown to influence the activity of CYP enzymes (Tanaka, 1983).  Environmental factors 

such as diet, smoking, alcohol consumption, and concomitant drug therapy, also 

influence the outcome of drug metabolism (Badyal and Dadhich, 2001).    

 1.10.5 Enzyme inhibitors. Enzyme inhibitors function in different ways.  The 

competitive inhibitors compete with the substrate for the same active site and the non-

competitive inhibitors bind to the enzyme substrate complex or to the heme-group.  The 

third type, irreversible inhibitors, inactivate the enzyme either by heme or protein 

binding.  Enzyme inhibition can lead to higher systemic levels of a drug causing 

enhanced efficacy or toxicity.  When several CYP enzymes are responsible for 

metabolizing the same drug, administration of an enzyme inhibitor will not have a 

significant effect, since the drug has an alternate metabolic pathway.  
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 1.10.6 Enzyme induction. Drug interactions involving enzyme induction are not 

as common as inhibition-based interactions.  The most common mechanism is 

transcriptional activation leading the increased synthesis of CYP proteins (Dossing et al., 

1983).  Metabolism of the affected drug is increased leading to decreased intensity and 

shorter duration of drug effects.  The classic examples of induction are with chronic 

alcohol consumers and the decreased effectiveness of oral contraception, while women 

are taking certain antibiotics (i.e. macrolides).   

 

1.11 Cytochrome P450 

 1.11.1 Cytochrome P450 nomenclature. Currently, there are about 30 human 

cytochrome P450 enzyme alleles present in humans (Chang and Kam, 1999), designated 

by a root symbol CYP, followed by an Arabic number for family, a letter for subfamily, 

and another Arabic number for the specific gene.  For example CYP3A4 is a cytochrome 

P450 enzyme, belonging to family 3 and subfamily A.  The last number 4 refers to the 

sequence of discovery.  Enzymes in the 1A, 2B, 2C, 2D, and 3A subfamilies are 

important in mammalian metabolism; CYP1A2, CYP2C9, CYP2C19, CYP2D6, and 

CYP3A4 are considered the most important in human metabolism (Gunaratna, 2000).  

1.11.2 CYP1A subfamily.  The human CYP1A subfamily consists of two 

members, CYP1A1 and CYP1A2.  CYP1A2 is mainly expressed in the liver, while 

CYP1A1 is primarily expressed in extrahepatic tissues.  CYP1A1 is expressed at very 

low levels (Guengerich 1991; McKinnon et al., 1991; Raunio et al., 1995; Pelkonen et al., 

1998) and participation in drug metabolism in vivo is not considered here.  The expressed 

CYP1A2 represents about 15% of total CYP enzymes in the human liver (Pelkonen and 
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Breimer 1994; Shimada et al., 1994).  There is some variability between individuals in 

the human liver CYP1A2 enzyme levels (Shimada et al., 1994).  Because of the large 

interindividual variation in CYP1A2 activities, the in vivo testing of this enzyme has been 

quite difficult to evaluate (Kunze and Trager, 1993) and will not be considered for study 

here.  Pelkonen et al. (1998) reviewed substrates and their enzyme kinetic parameters; 

CYP1A2 substrates included theophylline, caffeine, olanzapine, ondansentron, 

paracetamol, phenacetin and propranolol.  

1.11.3 CYP2D subfamily.  The human genome includes only one functional gene 

in the CYP2D subfamily, namely CYP2D6 (Nelson et al., 1996).  Though two CYP2D7 

pseudogenes and two pseudogenes of CYP2D8 (Heim & Meyer 1992; Nelson et al., 

1996) exist, they will not be covered in this study. 

CYP2D6 represents 1 to 5% of the total P450 enzymes (Pelkonen & Breimer 

1994; Shimada et al., 1994; Pelkonen et al., 1998).  About 7-10 % Caucasians and up to 

30% of Chinese are PMs for this enzyme (Heim & Meyer 1992; Kroemer and 

Eichelbaum, 1995).  One common feature of CYP2D6 substrates is that they contain at 

least one basic nitrogen atom at a distance of 5 or 7Å from the oxidation site.  Secondly, 

there is a planar hydrophobic area near the oxidation site, and thirdly, the substrates 

exhibit a negative molecular electrostatic potential above the planar part of the molecule 

(Koymans et al., 1992; Strobl et al., 1993; de Groot et al., 1997).  

The drugs known to be substrates for this enzyme include antiarrhythmic and 

other cardiovascular drugs, β-adrenergic blocking agents, tricyclic antidepressants, 

neuroleptics and many other commonly used therapeutical agents (Cholerton et al., 

1992).  Dextromethorphan O-demethylation, debrisoquine 4-hydroxylation, and bufuralol 
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1’-hydroxylation are the mostly used in vitro models.  Of these substrates, debrisoquine is 

also employed in in vivo studies as a CYP2D6 model substance (Pelkonen et al., 1998, 

and references therein).  

As a reference inhibitor for CYP2D6, quinidine is widely used in drug 

metabolism studies.  It is a specific and potent inhibitor with an inhibitory constant, Ki, of 

0.06 µM for CYP2D6, and the CYP next in sensitivity, CYP3A4, has a Ki value around 

10 µM (Broly et al., 1989; Bourrie et al., 1996).  CYP2D6’s role in MA metabolism is 

reviewed in several articles (Lin 1995, 1997; Kraemer and Maurer, 2002).  Due to the 

numerous drugs on the market that are metabolized by CYP2D6 and its proven 

involvement of MA metabolism, it will be examined for suspected drug-drug 

interactions.  

1.11.4 CYP2C subfamily.  The CYP2C subfamily is the second most abundant 

CYP protein in the human liver, representing about 20% of the total P450 (Shimada et al., 

1994).  This subfamily consists of three active members in the human liver, namely 

CYP2C8, CYP2C9, and CYP2C19.  Of these, CYP2C9 and CYP2C19 are characterized 

as polymorphically expressed (Goldstein and de Morais, 1994; Gill et al., 1999).  

CYP2C8 will not be considered for drug metabolic importance, since it is expressed at 

very low levels in the human liver.  

 CYP2C9 is the major CYP2C isoform in the human liver (Goldstein & de Morais, 

1994), and it has been shown to be genetically polymorphic with at least three different 

alleles that produce differently active protein.  The functional consequences of these 

polymorphisms are not yet clear, although CYP2C9 has a major role in the metabolism of 

many clinically important, weakly acidic drugs, such as S-warfarin (Rettie et al., 1992), 
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tolbutamide, phenytoin (Doecke et al., 1991), sulphamethoxazole (Cribb et al., 1995), 

many of the non-steroidal anti-inflammatory compounds (Leeman et al., 1993), and 

celecoxib (Tang et al., 2000).  The frequencies of the two variant alleles, CYP2C9*2 and 

CYP2C9*3, have been reported to range from 7 to 19% in Caucasian populations (Furuya 

et al., 1995; Sullivan-Klose et al., 1996; Stubbins et al., 1996). 

With CYP2C19, the genetic polymorphism leads to the PM phenotypes exhibiting 

less active or completely inactive S-mephenytoin 4’-hydroxylase.  This PM phenotype is 

produced by at least two major, and several minor, variant alleles of CYP2C19 

(Goldstein & de Morais, 1994) and, consequently, CYP2C19 substrates are not 

metabolized as expected (Pelkonen et al., 1998).  The deficiency of the 4’-hydroxylation 

pathway of S-mephenytoin occurs in 2 to 5% of the Caucasian population (Relling et al., 

1990).  This deficiency may lead to accumulation of certain drugs and to in vivo 

concentrations exceeding the therapeutic level and producing unexpected toxic effects. 

Since there are no selective CYP2C19 inhibitors and there has been no speculation to its 

activity with MA metabolism, CYP2D19 will not be used for these studies.  

1.11.5 CYP3A subfamily. The CYP3A subfamily represents about 30% of the 

total P450 content in the human liver (Shimada et al. 1994; Pelkonen and Breimer, 1994), 

although the levels of the protein may vary 40-fold among individuals (Guengerich, 

1995).  This subfamily consists of three members (Nelson et al., 1996).  CYP3A4, one of 

these three members, is the most abundant CYP enzyme in the human liver and it is 

expressed in several tissues, but the expression in the liver and in the small intestine is of 

major interest in view of the metabolism of drugs and other xenobiotic chemicals 



61

(Guengerich 1999; Dresser et al., 2000).  For this reason, CYP3A4 will be the only 

member of this subfamily used in these studies.  

CYP3A4 participates in the metabolism of about half of the drugs in use today 

(Bertz and Granneman, 1997).  For example, testosterone 6β -hydroxylation, midazolam 

1’- and 4-hydroxylations, nifedipine oxidation, and erythromycin N-demethylation are 

catalyzed by this enzyme.  The known substrates of CYP3A4 vary in size from small 

molecules, such as acetaminophen to cyclosporin A (Guengerich, 1999).  In addition to 

the substrates listed above, CYP3A4 participates in the metabolism of progesterone and 

andostenedione (Waxman et al., 1991), cortisol, quinidine, diltiazem, lidocaine, 

lovastatin, troleandomycin, warfarin, and triazolam (Guengerich and Shimada, 1991; 

Wrighton and Stevens, 1992). 

CYP3A is inducible by many drugs, for example, rifampicin, dexamethasone, 

carbamazepine and phenobarbital type inducers (Pelkonen et al., 1998).  The induction of 

CYP3A has an effect on interindividual variation and has been shown to affect both 

bioavailability and drug-drug interactions (Guengerich, 1999). The inhibitors of CYP3A 

have a wide variety of chemical structures; for example, azole-type fungicides, 

ketoconazole and itraconazole are potent inhibitors.  Ketoconazole also inhibits other 

CYPs than CYP3A4, but at a concentration of 1 µM it is relatively selective for CYP3A4 

(Newton et al., 1994; Baldwin et al., 1995).   Since CYP3A4 plays such an important role 

in xenobiotic metabolism, its activity may not be very simple in nature; conclusions 

drawn on the basis of only one substrate or inhibitor should be regarded as tentative.  

Although literature has not shown CYP3A4 to participate in MA metabolism, its 
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overwhelming presence in the liver and ability to metabolize so many other drugs, qualify 

it as a strong candidate for drug-drug interactions and will be examined. 

 

1.12 Metabolism studies  

1.12.1 Methods for studying metabolism in vitro and in vivo.

Pharmacological/toxicological metabolism studies generally consist of animal and/or 

human tissue-derived in vitro studies followed by animal studies.  Studies are conducted 

in hope of establishing an appropriate animal model that can be used to extrapolate 

results to humans.  Various in vitro methods have been developed by employing human 

tissue-derived systems (Wrighton et al., 1993), usually done by utilizing liver 

preparations from humans and trying to find the test species that most closely resembles 

human metabolism (Yuan et al., 1999).  The two systems used in the present studies are 

liver microsomes and human cDNA-expressed enzymes in host cell microsomes, both of 

which will be discussed briefly here.  

1.12.2 cDNA-expressed enzymes.  Drug-metabolizing enzymes are available 

commercially as cDNA-expressed enzyme systems.  In these preparations, an individual 

enzyme is produced within a variety of systems including: bacteria (Gillam et al., 1993), 

yeast (Guengerich et al., 1991a; Peyronneau et al., 1992), mammalian cell lines 

(Guengerich, 1995b), and baculovirus systems (http://www.gentest.com; Asseffa et al., 

1989).  The expression of human liver CYPs in a variety of artificial systems has become 

easier, due to the rapid development of recombinant DNA techniques (Gonzalez et al., 

1991).  
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Since cDNA-expressed enzymes can be studied in isolation from other hepatic 

enzymes, they have become a valuable tool when initially assessing the metabolism of 

certain drugs and drug combinations.  In the past, detection of multiple metabolites 

generally required novel, highly sensitive mass spectrometry tools, whereas cDNA-

expressed systems can utilize the conventional measurement of fluorescence metabolite 

production for multiple enzymes (see, for example, http://www.gentest.com).  cDNA-

expressed CYPs can also be used in the high throughput screening kit (HTS) 

methodology when the goal is to screen large numbers of compounds in a short amount 

of time (White, 2000). 

Still, the biotransformation of a drug or drugs by a single CYP does not 

necessarily accurately depict its participation within an in vivo situation.  cDNA-

expressed CYP enzymes lack the whole complement of hepatic enzymes, and the in vivo 

predictive value of the data obtained from expressed enzyme systems has been debated 

(Rodriguez 1999).  cDNA-expressed enzymes have been used to study MA analogues in 

vitro (Ramamoorthy et al., 2002) and will be used in these studies because they are 

commercially available (http://www.gentest.com), rapid, inexpensive technique that can 

be used to determine the role CYP2D6 and CYP3A4 in the metabolism of a MA.  

1.12.3 Liver microsomes.  Liver microsomes are fractionated from subcellular 

organelles by differential ultracentrifugation.  Microsomes are formed from smooth 

endoplasmic reticulum during tissue homogenization (Boobis, 1995).  A microsomal 

fraction from human liver contains a full complement of P450 enzymes, which makes it a 

suitable tool for studying inhibitory CYP interactions (Kremers, 1999).  Microsomes are 

relatively easy to prepare, and enzymatic activities are stable during prolonged storage 
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(Beaune et al., 1986; Yamazaki et al., 1997), if the original tissue is correctly handled and 

frozen immediately after excision (Kremers, 1999). 

The validation of assay procedures between different laboratories in this respect 

has led to less inter-laboratory variation in the same assays (Boobis et al., 1998; Kremers, 

1999).  Liver microsomes can be easily and inexpensively produced from rats or obtained 

from commercially available sources, like the Gentest Corp. (http://www.gentest.com). 

Gentest even offers human liver microsomes.  In rats, microsomes can be used to assess 

in vivo changes that may have occurred over a prescribed dosing regimen.  Utilizing 

microsomes generally requires specific substrates and inhibitors, which will be discussed 

below. 

1.12.4 Human hepatocytes. The utilization of human primary hepatocytes was 

not used in these studies because sufficient liver samples are quite difficult to obtain and 

hepatocytes are difficult to preserve for later use.  Some successful attempts to 

cryopreserve primary hepatocytes have been described (Guillouzo et al., 1995).  A 

prolonged culture method has also been published, in which hepatocytes are maintained 

for over 30 days (Kono et al., 1997), preserving some of their drug-metabolizing 

activities and inducibility, instead of the standard for up to one week.  Although difficult 

to obtain and maintain, hepatocytes contain the full compartment of Phase I and Phase II 

enzymes, and the whole metabolite pattern can be detected in incubations with 

hepatocytes, such that, induction of drug-metabolizing enzymes and possible toxic 

effects, can also be elucidated (Ferrini et al., 1997; Li et al., 1997; Maurel 1996; Morel et 

al., 1990). 
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1.13 High throughput inhibition assays 

Animal studies are quite expensive, although necessary, and because of the 

marked differences in the drug-metabolizing enzymes between humans and animals, it is 

reasonable to perform in vitro testing to select the appropriate species best able to 

characterize human metabolism for any drug of interest.  The use of human tissue-derived 

in vitro systems in affinity screening and metabolic studies gives fairly accurate 

information about the in vivo situation with the compound under study.  Commercially 

available kits dedicated to the development and study of in vitro analysis of drug 

metabolism and toxicity can be purchased from BD Gentest Corp. 

(http://www.gentest.com).   This company’s kits are internationally recognized as leaders 

in the cytochrome P450 cDNA-expressed and in vitro drug metabolism techniques and 

supplies. 

1.13.1 Selection of appropriate probes and inhibitors.

1.13.1.1 CYP2D6/CYP2D2 fluorescent probes. A non-fluorescent probe 3-[2-

(N,N-diethyl-N-methylamino)ethyl]-7-methoxy-4-methylcoumarin (AMMC), which 

produces a fluorescent metabolite, 3-[2-(N,N-diethyl-N-methylamino) ethyl]-7-hydroxy-

4-methylcoumarin (AHMC), has been used as a specific CYP2D6 probe in liver 

microsomes (Chauret et al., 2001) and cDNA expressed CYP2D6 enzymes 

(http://www.gentest.com).  Furthermore, this same probe has successfully been used as a 

selective probe for the CYP2D2 enzyme in rat microsomes (Stresser et al., 2002), 
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providing a single probe that can be used to assess both human/cDNA expressed 

CYP2D6 and rat liver microsomes. 

1.13.1.2 CYP2D6/CYP2D2 selective inhibitor.  Quinidine has been proven to be 

a potent inhibitor for CYP2D6, even though it is also metabolized via CYP3A4 (Bourrie 

et al., 1996).  Quinidine will be used in these studies because it is a portion of the 

commercially available high throughput inhibition kits to be used from BD Gentest Corp 

(http://www.gentest.com). 

1.13.1.3 CYP3A4 fluorescent probe. A nonfluorescent 7-benzyloxy-4-

trifluoromethylcoumarin (BFC), which produces a fluorescent metabolite, 7-benzyloxy-

4-trifluoromethylcoumarin (HFC), has been used as a specific CYP3A4 probe in liver 

microsomes (Stresser et al., 2002) and cDNA expressed CYP3A4 enzymes 

(http://www.gentest.com), providing a single probe that can be used to assess both 

human/cDNA expressed CYP3A4 and rat liver microsomes. 

1.13.1.4 CYP3A4 selective inhibitor.  There are many selective inhibitors for 

CYP3A4 of which ketoconazole is the most widely used, even though it also affects other 

CYPs (Schmider et al., 1995; Bourrie et al., 1996).  Ketoconazole will be used as the 

selective inhibitor for CYP3A4 in these studies because it is a portion of the 

commercially available high throughput inhibition kits to be used in this study available 

from BD Gentest Corp (http://www.gentest.com). 

1.14 Animal studies 

Even with cytochrome P450 cDNA-expressed enzymes and commercial kits, 

some testing has to be performed on animals. Human-derived in vitro systems are 
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increasingly reducing the number of animals needed for such testing.  For the time being, 

animal tests are still necessary, but careful planning and effective use of the in vitro 

methodology can reduce the use of such, although a direct link between human CYP2D6, 

the primary human MA metabolizing CYP enzyme, and one of the various forms of the 

rat CYP2D, has not been established.  Sprague-Dawley and Dark Agouti rats have both 

been successfully used as animal models in studying the metabolism of MA and other 

similar analogues in humans (Stresser et al., 2002; Ramamoorthy et al., 2002; Kraemer 

and Maurer, 2002; Chauret et al., 2001; Delaforge et al., 1999; Tyndale et al., 1999; 

Chow et al., 1999; Lin et al., 1995; Matsunaga et al., 1989).  

 

1.15 Human abuse pattern 

As discussed prior, MA has become the homemade drug of choice.  Legal 

constraints have increased the cost and decreased the availability of substances used to 

make MA. Therefore, MA producers have found additional ways to increase their profit 

and the amount of product to be distributed.  One way this is accomplished is by diluting 

the final product, illicit MA, with a cheaper legal substance. According to Sgt. Harold 

Adair, if a MA cook were to produce one ounce of essentially pure MA, it would have a 

street value of approximately $1,500 in Tulsa, Oklahoma (Adair, 2003).  If a person were 

to take that ounce and add four ounces of “Super B”, a vitamin supplement primarily 

consisting of vitamin B3, he would have a total of five ounces of substance that could be 

sold as MA. 

The purity of this product is approximately 20% MA, which could be sold for 

approximately $800 to $1,500 an ounce, with a return of $4,000 to $7,500.  This process 
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is referred to as “cutting” or “stepping on” the product and is routinely done.  This 

method of boosting one’s profit is not new to the drug scene; it has been used for many 

years.  The one thing that has become perplexing is that drugs, such as cocaine, are cut 

with numerous compounds such as baking powder, talc, benzocaine, procaine, lidocaine, 

caffeine, and many other white powders.  In Tulsa, Oklahoma, MA is almost solely cut 

with NIC. 

It is very rare for a sample of illicit MA to be identified in the Tulsa Police 

Department’s forensic laboratory that has anything other than NIC used as the cutting 

agent.  Most samples contain what are considered to be synthesis by-products.  Yet, it is 

extremely rare to find the presence of any diluents common to cocaine or heroin in a 

sample of MA.  A one month series of studies conducted within the Tulsa Police 

Department forensic laboratory demonstrated the ratio of illicit MA samples to be 

anywhere from 3 to 97% MA (unpublished data).  The average that was calculated from 

samples taken over that month was determined to be 55% MA, with the remainder being 

mainly NIC and a few other trace impurities.   

 When speaking to known MA abusers and discussing the reason they elect to use 

NIC to cut their MA, the answers inevitably vary.  Some speak of NIC’s solubility in 

water and how everything goes into solution quickly (Bilyeu, personal communication).  

It has also been said, using NIC to cut MA prevents “sticky needle” (Doe, personal 

communication).  This term generally refers to an increased amount of friction generated 

by the plunger in a syringe that has previously or repetitively been used to administer 

illicit MA.  Others state that NIC changes to the same color of the illicit MA, preventing 

the detection of “cut dope” with the naked eye and that using a supplement with NIC 
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gives the dope “longer legs”, which means it made the effects last longer (Harp, personal 

communication).  Harp compared the lasting effects to another cutting agent that is rarely 

used, which she referred to as “MSN”.  She went on to say that on average a person 

would pay about $15-25 for a bottle of Super B or Vitablend, which contain 

approximately 100 gm of NIC.  The usage of vitamin B3 as the primary agent used to cut 

MA would not be so perplexing if it was a cheap substance.  It is relatively expensive, 

compared to the other known cutting agents seen in cocaine and heroin.  Additionally, the 

reports of altered solubility and enhanced effects have caused the lab to investigate the 

underling mechanism it may possess in enhancing MA’s psychostimulant effects.  

 

1.16 Vitamin B-3 

Vitamin B-3 (B3) exists as the amide in nature, in NIC adenine dinucleotide 

(NAD).  Vitamin B-3 comes in two basic forms: niacin (nicotinic acid) and 

niacinamide/nicotinamide (NIC).  Pure NIC and niacin are synthetics.  Originally, it was 

made from nicotine, a poison produced in tobacco plants, but when nicotine is simplified 

by chemically opening one of the six carbon rings, it becomes B3 (Hoffer 1989).  

Vitamin B-3 is made in the body from the amino acid tryptophan.  Since the body makes 

Vitamin B-3, it does not meet the classic definition of a vitamin, which is defined as a 

substance that cannot be made.  It really should have been classified with the amino 

acids, but the long usage of the term has given it permanent status as a vitamin.  

 One of the best-known vitamin deficiency diseases is pellagra.  More accurately, 

it is a tryptophan deficiency disease, since tryptophan also can cure the early stages of the 

disease.  Pellegra was an endemic in the southern United States until the beginning of 



70

World War II, and can be described by the four D’s: dermatitis, diarrhea, dementia, and 

death.  In the early stages it resembles more of the schizophrenias, and it is very difficult 

to distinguish between the two.  The dementia is a late stage phenomenon.  The only 

method used by early doctors was to give their patients a small amount of niacin.  If they 

recovered, they diagnosed them as having pellagra; if they did not, they referred to it as 

schizophrenia.   

 Vitamin B-3 has previously been used in lowering high cholesterol and in 

elevating high-density lipoprotein cholesterol levels (Brown, 1995), alleviating 

hypoglycemia (Shansky, 1981), treating anxiety (Vescovi et al., 1987; Bruce et al., 1992), 

and therapeutically for the treatment of schizophrenia (Hawkins et al., 1970) and other 

psychiatric disorders.  Vitamin B-3 is needed to metabolize alcohol and has been shown 

to be of use to alcoholics (Cleary, 1985, 1986).  It has been shown to be therapeutic and 

may help stop alcoholics from drinking, and with the treatment of alcohol-associated 

depression (O’Halloren, 1961; Smith, 1974; Replogle and Eicke, 1988). 

NIC, the safer and a more selective form of B3, has also demonstrated its ability 

to improve alcohol metabolism in animals (Eriksson, 1974).  Vitamin B-3 has 

demonstrated its ability to work in the brain similar to drugs, such as, benzodiazepines, 

which are used to treat anxiety (Bruce et al., 1992).  Nicotinamide itself has also been 

recognized for its ability to improve the withdrawal from benzodiazepine abuse (Vescovi 

et al., 1987).  

 It is interesting to note, in regards to MA, B3 has been shown to improve tardive 

dyskinesia (Tkacz, 1984) and to benefit recovery rates of individuals with schizophrenia 

(Hawkins et al., 1970).  Tardive dyskinesia and schizophrenia-like symptoms are two 
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common phenomena closely associated with MA abuse.  Some theorize that B3 relieves 

the body of chronic stress and allows it to carry out routine repair functions more 

efficiently.  The current recognition of hyperoxidation--the formation of free radicals--as 

one of the most damaging processing in the body leading to tissue damage at the cellular 

and tissue levels, has offered a more scientific explanation.  

All living tissues, which depend upon oxygen for respiration, have to protect 

themselves against free radicals.  Antioxidants, such as, vitamin C, vitamin E, beta-

carotene, selenium, and others protect the body and rid it of the damage causing free 

radicals.  NIC is thought to enhance the body’s ability to deal with stress and oxidative 

damage, and has been demonstrated by the significant inhibition of oxidative damage 

induced by reactive oxygen species generated in rat brain mitochondria (Kamat and 

Devasagayam, 1999).  More specifically, one may consider NIC a potent antioxidant 

capable of protecting the cellular membranes in the brain, which are highly susceptible to 

being oxidized, against oxidative damage induced by reactive oxygen species.  

 In addition to antioxidant activity, NIC’s neuroprotective effects via energy 

repletion have been shown by the reduction of malonate, a mitochondrial respiratory 

chain blocker that depletes striatal ATP (induced lesions in rats), with additive 

effectiveness when combined with coenzyme Q (Schultz and Beal, 1995).  Also, local 

administration of NIC after multiple doses of MA rescued dopamine neurons from 

damage, as evidenced by prevention/attenuation of MA induced tissue dopamine 

depletions (Stephans et al., 1998).  The most interesting studies with respect to NIC and 

MA’s combinational usage, perhaps, are the ones that demonstrate the attenuation of 
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AMP and MA induced STR DA depletion in rats when pretreated with NIC (Huang et al., 

1997; Wan et al., 1999).     

 

1.17 Significance 

 The historical abuse of MA, and more specifically d-MA, has been substantially 

documented in the previous sections, supported with ample literature citations.  The 

physical properties, various routes of administration, dosages, purity, pharmacology, 

neurochemistry, and metabolism also have been discussed in detail.  The typical pattern 

of abuse from MA’s clandestine production to its sale on the street has been established, 

along with recent news that clearly demonstrates the violence and urgency to further 

understand MA abuse. 

A review of MA’s pharmacology and toxicology clearly demonstrates the drug’s 

potent addictive and neurotoxic effects, as evidenced by long-lasting alterations in the 

dopaminergic system--the best-established and most widely agreed upon neurochemical 

evidence in the literature today.  MA has been recognized as a potent psychostimulant 

drug for decades.  Over the years it has been diluted with numerous chemicals in order to 

generate a higher profit margin in illicit sales.  The most recent and almost exclusive 

substance used as an adulterant is NIC (vitamin B3). Knowing that using NIC is not the 

most economical way to dilute MA leads one to believe there are possibly other aspects 

influencing the choice of cutting agents.  If it is not availability or economics dictating 

the cutting agent, there must be some improvement in desired effects.  

It was such consideration that initiated the hypothesis that is to be tested:  Vitamin 

B-3, more specifically NIC, while co-administered with MA, provides an enhancement in 
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psychostimulant effects, somehow providing a more desirable experience for the user. 

This study, therefore, will seek to identify any metabolic and/or neurochemical changes 

associated with the co-administration of NIC and MA that may provide enhancement of 

desirable psychostimulant effects.  
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Chapter II 

 

PRELIMINARY STUDIES 

 

2.1 Dose Ratio Determination 
 

2.1.1  Introduction.   In order to provide an understanding as to the composition 

of illicit MA, a total of 54 MA samples, previously identified by the Tulsa Police 

Department’s forensic laboratory, were analyzed.  MA seized from clandestine 

laboratories was excluded from this data under the assumption that it had not been 

processed for sale; it did not represent the typical street quality MA. 

2.1.2 Chemicals.  MA, NIC, sodium carbonate, and methanol were all purchased 

from the Sigma Chemical Corporation (St. Louis, MO). 

2.1.3  Methods.  A rapid and reliable method for determining the ratio of MA to 

NIC in illicit drug samples was used to analyze unknown samples. Stock solutions of 

MA (10 mg/ml) and NIC (10 mg/ml) were prepared in methanol and were serially diluted 

into five separate sample vials.  These vials contained ratios of 10:0, 7.5:2.5, 5.0:5.0, 

2.5:7.5, and 0:10 MA:NIC mixtures.  Each vial was then made basic with one drop of 

sodium carbonate.  For unknown samples, 10 mg of each unknown sample was dissolved 

in 1.5 ml of methanol and made basic with one drop of sodium carbonate. 

Each sample was analyzed utilizing a Hewlett Packard (HP) 6890 gas 

chromatograph (GC) connected to a HP5973 mass spectrometer (MS).  A split injection 
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(50:1) of 1 µl was made onto an Agilent Ultra 1 capillary column (12 meter x 0.2 

µm x 0.33 µm).  Injection port temperature 250ºC; He carrier gas, column temperature 

programmed to hold at 115ºC for 1.5 minutes then ramped from 115ºC to 280ºC @ 35ºC 

/min, and then held at 280ºC for 4.21minutes.  

The prepared concentration curve indicated an approximately equal ratio of 

chromatographic response between MA and NIC.  Therefore, the area under the curve 

(AUC) of the MA peak was directly compared to the AUC of the NIC peak and used to 

determine the ratio of MA to NIC.  Identification was made based on mass spectral data 

and the known retention times for MA and NIC standards (Figures 2-1 thru 2-3). 

2.1.4 Results.  Utilizing methods described above, 54 samples were run over 

the course of one month.  Preliminary results indicate the percentage of MA in street 

quality MA ranges from 3 to 97% with the remainder of sample being attributed to NIC.  

The mean percentage of MA found was 57.14+29.22% and the median of samples 

studied was 54.50% MA and, thus, NIC was 45.50%.  As evidenced by the large standard 

error, the ratio of MA to NIC varies greatly, as seen in figure 2-4.  In order to simplify 

mathematical calculations, and because of the large variability, the following studies will 

utilize a 50:50 mixture of MA:NIC (COMBO).  
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Figure 2-1. Gas Chromatograph demonstrating separation of methamphetamine (1.7 
min) and nicotinamide (2.6 min) This chromatograph represents a 2:1 ratio of MA to NIC 
which would be reported as 66% MA and 33% NIC 
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Figure 2-2. Mass spectrum of methamphetamine. 
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Figure 2-3. Mass spectrum of nicotinamide. 
 

Figure 2-4. Composition and frequency distribution of illicit MA samples. 
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2.2  Phase solubility analysis 
 

2.2.1 Introduction. It has been demonstrated that it is possible to increase the 

aqueous solubility of some lipid soluble drugs by the addition of NIC (Lim and Go, 

2000).  The following studies were established in order to determine if NIC could 

increase the aqueous solubility of MA.  If so, further studies will be conducted in order to 

determine the effect on the kinetics and distribution of MA within the body.  

 2.2.2. Chemicals. MA, NIC, hydrochloric acid, ammonium hydroxide, n-

butylchloride, and methanol were all purchased from the Sigma Chemical Corporation 

(St. Louis, MO).  N-propylamphetamine was purchased from Alltech-Applied Science 

Laboratories (State College, PA). 

2.2.3 Methods. Phase solubility analysis was carried out using a slight 

modification to a method published by Lim and Go (2000).  Briefly, excess MA was 

added to a phosphate buffered saline (PBS) (pH=7.4) with a constant ionic strength or a 

solution of PBS that had various concentrations of NIC with an internal standard, 1 

mg/ml n-propylamphetamine.  Each tube was sealed, rotated for 15 minutes at room 

temperature, and then centrifuged for five minutes at 3000 rpm.  A known amount of 

PBS (0.2 ml) supernatant was then drawn off and added to a tube. The pH was adjusted 

to 10.0 with ammonium hydroxide, 5 ml of n-butylchloride added, and the tube was 

rotated for 15 minutes at room temperature, and then centrifuged for 5 minutes at 3000 

rpm.  Finally, the organic layer was transferred to another tube containing 100 µl of

methanol-HCl solution (99:1; v/v).  The solution was vortexed and then evaporated to 

dryness under nitrogen.  The residue was then reconstituted in 50 ul of methanol-
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ammonia hydroxide (99:1/ v/v) and run on the GC-MS.  At least five replicates were 

carried out for each determination at room temperature (23°C).   

 Each sample was analyzed utilizing a Hewlett Packard (HP) 6890 gas 

chromatograph (GC) connected to a HP5973 mass spectrometer (MS).  A split injection 

(50:1) of 1 µl was made onto an Agilent Ultra 1 capillary column (12 meter x 0.2 µm x

0.33 µm).  Injection port temperature 250 ºC; He carrier gas, column temperature 

programmed to hold at 115 ºC for 1.5 minutes then ramped from 115 ºC to 280 ºC @ 

35ºC/min, and then held at 280 ºC for 4.21minutes 

2.2.4 Results. No significant change in solubility was noted.  Unlike other 

water/PBS insoluble substances, like halofantrine (Lim and Go, 2000), an increase in the 

solubility of MA in PBS by addition of NIC may not be possible.  Unlike the other water 

insoluble drugs that have been made more soluble in aqueous solutions with NIC, MA is 

already extremely soluble in PBS, water, and other physiological solutions (Basalt, 

1996).  Since the solubility was not significantly altered, the studies herein will 

investigate alternate ways that NIC might alter the pharmacological profile of MA.  One 

possible way this could be done is by either increasing or decreasing the rate of MA 

metabolism through the cytochrome P450 system.  This will be discussed in detail in 

future sections. 

2.3 Brain Permeability  
 

2.3.1 Introduction.  Initial in vivo studies were done to determine the effect 

NIC has on MA distribution within the rat brain.  Studies will provide general 

information as to whether NIC increases, decreases, or does not change the amount of 

MA reaching the rat brain when administered i.p.   
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2.3.2 Chemicals. Certified 1mg/ml standards of (+)-amphetamine HCl and (+)-

MA was purchased from Cerilliant (Cerilliant, Round Rock, TX).  N-propylamphetamine 

HCl was purchased from Alltech-Applied Science Laboratories (State College, PA).  

Methanol, 1-chlorobutane, hydrochloric acid, sodium carbonate, ammonia hydroxide, and 

pentafluoropropionic anhydride (PFPA) were purchased from Sigma Chemical 

Corporation (St. Louis, MO).  
2.3.3 Methods. Male Sprague-Dawley rats were injected i.p. with 10 mg/kg of 

either MA, NIC, or COMBO.  After 30 minutes, they were decapitated and brains 

removed.  The nucleus accumbens and striatum were dissected out, weighed, and added 

to a 10 ml screw cap glass tube.  This material was homogenized with a tissue tearer and 

made basic (pH >10) with 1 ml of sodium hydroxide (6 M), after adding 125 ng of ISTD. 

The samples were then extracted with 3 ml of 1-chlorobutane on a rotary wheel for 15 

minutes.  The samples were then centrifuged at approximately 3000 rpm (900 g) and the 

organic layer transferred to a 5 ml conical screw top tube, which contained 100 µl of

methanol-HCl mixture (99:1; v/v), vortexed for 15 seconds, and evaporated to dryness at 

40ºC under nitrogen.  To the dry extract, 50 µl of PFPA was added, and then vortexed for 

15 seconds, capped, and heated at 90ºC for 30 minutes.  After cooling, the derivatized 

extract was evaporated to dryness at 40ºC under nitrogen.  The residue was reconstituted 

with 50 µl of methanol-ammonium hydroxide mixture (99:1; v/v), of which 2 µl was 

injected into the GC-MS. 

 A HP6890 GC connected to a HP5973 MS was used with splitless injection of 2 

µl onto an Agilent Ultra 1 capillary column (12m x 0.2 mm x 0.33 mm) injection port 

temperature 250 C; He carrier gas, column temperature programmed from 80-180 ºC @ 
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10/min, 180-280 ºC @ 40 ºC /min.  The MS transfer line, 280 ºC.  The mass spectrometer 

was set up for selected ion monitoring (SIM) of 3 ions characteristic of MA at a specific 

retention time.  The timing and selected ion components were established using full 

scanning mode of derivatized standards prior to optimizing the SIM and establishing the 

timed events (unpublished data).  The amount of MA in each sample was quantified 

utilizing HP ChemStation Software on the GC-MS and a four point standard curve.  

2.4.4 Results.  The studies described above indicate that NIC decreases the 

amount of MA reaching the brain.  As seen in figure 2-5, the amount of MA reaching the 

brain is significantly decreased with NIC co-administration.  Utilizing an unpaired t test, 

statistical difference was determined between the two means with a P = 0.0045 

(GraphPad Prism).  Further studies isolating specific areas of the brain and looking at the 

metabolite distribution will be required to formulate a more reliable estimation about 

NIC’s ability to alter MA distribution.  Generally, kinetic studies are done on the drug of 

interest and its metabolites concurrently, in order to gain a better understanding as to the 

distribution and any significant changes that may occur, which is outside the scope of this 

project and will not be done herein.  
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Figure 2-5. Effects of NIC on MA concentration within the brain 30 minutes post i.p. 
injection. Rats received one injection of either MA or COMBO and were decapitated 30 
minutes post injection. Columns represent means (µg/mg  brain [original wet weight]) 
±SEM of determinations in six rats. * Values are means that differ significantly from MA 
treated rats (p < 0.05). 
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2.4  CYP assay development-instrument evaluation  
 

2.4.1 Introduction.  The sensitivity of the fluorescence plate scanner can 

profoundly affect high throughput assay performance.  The fluorescent plate scanner 

sensitivity must, therefore, be evaluated in order to determine if the particular 

fluorescence plate scanner being used will provide adequate sensitivity to accurately 

determine the IC50 values that are to be calculated from procedures proposed. An 

extended standard curve was performed for both fluorescent metabolite standards, 

CYP2D6 (AHMC) and CYP3A4 (HFC), in order to determine and confirm the linearity 

of the assay.  

2.4.2 Chemicals.  MA, NIC, and methanol were all purchased from the Sigma 

Chemical Corporation (St. Louis, MO).  High throughput CYP2D6 and CYP3A4 

inhibition assays were purchased from BD Biosciences Gentest™ (Woburn, MA).  

2.4.3 Methods.  The determination of the fluorescent plate scanner’s sensitivity 

and the standard curves were generated according to the procedures described in 

literature contained within the high throughput enzymatic assays that were purchased 

from Gentest BD BioScience.  These methods are also described online at 

http://www.gentest.com.  Using the prepared standard curves, the excitation/emission 

filters were replaced one at a time and the curve rescanned.  This allowed the researcher 

to determine the best combination of available filters to maximize the sensitivity and 

meet the signal to noise requirements.  The high throughput assays will be discussed in 

detail in the materials and methods chapter.  

 Several assays were run according to the literature contained within the purchased 

high throughput enzymatic assays.  This data were used to determine approximate IC50 
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values for both the drugs of interest.  Additional studies were carried out with serial 

dilutions of 1:2 rather than the suggested 1:3, in order to provide a more accurate 

measurement of the IC50 values of interest.   

2.4.4 Results.  It was determined that the 405nm/535nm filters would be able to 

replace both the recommended 409nm/530nm excitation/emission wavelengths for the 

CYP3A4 and the 390nm/460nm for the CYP2D6 assay.  Furthermore, the assay kits were 

run with success, evidenced by positive control curves seen in figures 2-6 and 2-7. 
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Figure 2-6. CYP3A4-Ketaconazole positive control curve. Calculated IC50 value of 100 
nM. 
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Figure 2-7. CYP2D6-Quinidine positive control curve. Calculated IC50 value of 40 nM. 
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Chapter III 

 

ALTERATION OF METHAMPHETAMINE METABOLISM BY 

CYTOCHROME P4502D ISOZYMES WHEN CO-ADMINISTERED WITH 

NICOTINAMIDE 
 

3.1  Introduction. 

Incidence of MA use has risen steadily from 1990 (164,000 new users) until 2000 

(344,000 new users) (U.S. DHHS, 2001).  Biotransformation of drugs is complex, with 

many drugs being metabolized by multiple enzyme systems.  Generally, drug metabolism 

occurs in a two-step process. 

The first step is Phase I biotransformation.  Oxidation predominates in Phase I 

and is facilitated by a super family of mixed function mono-oxygenase enzymes termed 

cytochromes P450 or CYP.  Phase II biotransformation involves some form of 

conjugation reaction which generally follows Phase I. CYP enzymes metabolize the 

majority of currently available pharmaceutical agents, including illicit MA (Lin et al. 

1995; 1997).  It is believed that only five of the hundreds of known CYP enzymes are 

responsible for approximately 95% of the hepatic CYP-mediated oxidations (Wrighton 

and Stevens, 1992).  It is the significant involvement of CYP in that vast majority of drug 

metabolism that makes its mechanism of particular interest to researchers.  Inhibition of 

CYP mediated metabolism is often of major concern when dealing with new drugs or
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other drugs with narrow therapeutic ranges. Additionally, alterations within the CYP 

enzymes give rise to yet another mechanism to alter a drug’s pharmacological response.  

Previous characterization of the enzymatic nature of MA metabolism has 

demonstrated the urinary excretion products of this compound to include amphetamine 

(AMP), the demethylated product, and the 4-hydroxy derivative (4-OH MA) (Caldwell et 

al., 1972).  These types of reactions have been shown to be catalyzed by CYP2D 

enzymes (Billings et al., 1978; Cho et. al., 1975; Smith, 1986).  Wright et al. (1977) and 

Florence et al. (1982) have further documented the metabolism of AMP and MA by liver 

microsomes.  More recently, the specific metabolism of MA in rats by CYP2D2 (Lin et 

al., 1995) and in humans by CYP2D6 (Lin et al., 1997) has been elucidated.  

In this study, the effects of MA, NIC, and COMBO on human CYP3A4 and 

CYP2D6 Supersomes and isolated rat liver microsomes at 1hrPT and 7dayPT were 

investigated.  The metabolism of HFC or AMMC to their fluorescent metabolites was 

used as index reactions of CYP3A4 and CYP2D6, respectfully.  The drugs screened were 

MA, NIC, and their COMBO.  

Given the importance of drug metabolism in determining the magnitude of the 

effect(s) of a drug, reduced MA metabolism, due to NIC co-administration, may 

favorably impact the abused psychostimulant properties seen with individuals using MA. 

Our main objective was first to use commercially available high-throughput P450 assays 

to test the effects of MA, NIC, and/or COMBO exposure on the activities of the isozymes 

responsible for MA metabolism. Successful in vitro studies lead the investigators to 

modify the commercially available kits in order to assess these compounds utilizing 
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RLM.  The use of RLM allowed investigators to conduct in vivo metabolism studies and 

to look at speculated liver function changes after drug administration. 

 

3.2 Materials and methods 

 3.2.1 Drugs and chemicals. MA hydrochloride, NIC, and the other chemicals 

utilized in the buffer solutions were purchased from either Sigma Chemical Corporation 

(St. Louis, MO) or Fisher Chemical Company (Denver, CO).  High throughput inhibitor 

screening (HTS) kits, CYP2D6/AMMC and CYP3A4/BFC, were purchased from Gentest 

Corporation BD Biosciences (http://www.gentest.com).  Each P450 HTS kit provides all 

the necessary components including: insect cell microsomes (Supersomes®) prepared 

from human baculovirus insect cell expressing CYP3A4 or CYP2D6 individual 

cytochromes, fluorescent P450 substrate, positive control inhibitor, metabolite standard, 

NADPH regenerating system, reaction buffer, stop reagent, control membrane protein, 

and instructions for measuring IC50, which can be calculated and used as a basis for 

comparison between a series of tested components. 
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 3.2.1.1 HTS Kit Substrates.  A nonfluorescent probe 3-[2-(N,N-diethyl-N-

methylamino)ethyl]-7-methoxy-4-methylcoumarin (AMMC), which produces a 

fluorescent metabolite, 3-[2-(N,N-diethyl-N-methylamino) ethyl]-7-hydroxy-4-

methylcoumarin (AHMC), was used with human baculovirus cell expressed CYP2D6 

Supersomes® and rat liver microsomes.   

 

Figure 3-1. AMMC structure. AMMC is demethylated by human CYP2D6 to the 
fluorescent product AHMC. 
 

Figure 3-2. AHMC structure. AHMC is the fluorescent product of AMMC 
demethylation by CYP2D6. 
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The nonfluorescent 7-Benzyloxy-4-(trifluoromethyl)-coumarin (BFC) is 

dealkylated by CYP3A to 7-Hydroxy-4-(trifluoromethyl)-coumarin (HFC) and was used 

with human baculovirus cell expressed CYP3A4 Supersomes®.  Both AMMC and BFC 

were included in the purchased HTS kits from GENTEST Corp. and BD Biosciences 

(http://www.gentest.com). 

 

Figure 3-3. BFC structure. BFC is dealkylated by human CYP3A to the fluorescent 
product 7-HFC. 
 

Figure 3-4. 7-HFC structure. 7-HFC is the fluorescent product of BFC demethylation by 
CYP3A4. 
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 3.2.2 In vitro inhibition study.  Methanol was used to make stock solutions of 

MA, NIC, and the COMBO. CYP2D6/AMMC and CYP3A4/BFC high throughput 

inhibitor screening kits were purchased from BD Gentest (http://www.gentest.com).  

These commercially available kits utilize Supersomes, which have baculovirus-insect-

cell-expressed human cytochromes P450. 

The CYP3A4/BFC experiments were carried out as described in the kit’s 

instruction sheet.  The CYP2D6/AMMC assay followed the kit instructions with only a 

few modifications.  Briefly, assays were conducted in black 96-well top reading plates 

(Corning Costar, Cambridge, MA).  Each set of 12 wells in a row was used for one 

inhibition curve.  NADPH-Cofactor mix (0.19 ml) was added to well 1 of each row and 

0.1 ml to each of the remaining wells 2-12.  Ten microliters of one of the drug stock 

solutions or the positive control solution was added to well 1 of each row.  Rows 1 and 2 

were positive control, 3 and 4 MA, 5 and 6 NIC, and 7 and 8 were the COMBO drug 

combination.  Serial dilution of 0.1 ml was made starting in column 1 and carried out 

through column 8 for each of the rows.  The excess 0.1 from well 8 was removed and 

discarded. Wells 9 and 10 contained no inhibitor and rows 11 and 12 were blanks for 

fluorescence (stop solution was added before the enzyme). 

After the substrate and inhibitor addition, the plates were prewarmed to 37°C. 

Incubations were initiated by the addition of 0.1 ml prewarmed enzyme/substrate mixes 

to all wells but rows 11 and 12 (final incubation volume of 0.2 ml).  Incubations were 

carried out for 30 minutes (CYP3A4) and for 60 minutes (CYP2D6) at which point a stop 

solution was added.  
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After addition of stop solution, prewarmed enzyme/substrate mix was added to 

wells 11 and 12 in all rows.  Crespi et al. (1997) previously demonstrated linear 

metabolite formation for these two assay procedures.  Fluorescence in each well was 

measured using a Bio tek Synergy HT plate reader (Bio tek Instruments, Winooski, 

Vermont, U.S.A).  The CYP3A4 metabolite, HFC, was measured at excitation/emission 

wavelengths of 405nm/530nm and the CYP2D6 metabolite, AHMC, at 405nm/535nm.  

 

3.2.3 In vivo inhibition study.   

 3.2.3.1 Animals.  Male Sprague-Dawley rats (Harlan Sprague-Dawley 

Laboratories, Madison, WI: 200-300 g) were group housed and allowed access to food 

and water ad libitum in a room with temperature control (23+2°C) and a 12-hour 

light:dark cycle.  The rats were transferred to individual cages for the initial injection 

regimens and remained individually housed for the duration of the experiment, one hour 

or seven days post last injection (1hrPT or 7dayPT, respectfully).  Over the course of the 

experiment, all animals experienced the same environmental conditions. 

 3.2.3.2 Injections. Rats received one intraperitonal (i.p.) injection every two 

hours for a total of three injections.  Each injection was made in the lower left quadrant of 

the rat abdomen. This area was chosen because other than the small intestines there are 

no vital organs present in the vicinity.  In contrast, the lower right abdomen additionally 

contains the caecum, and the upper abdominal area houses the liver, spleen, and stomach.  

A commercially available restraining device was used in order to prevent the unnecessary 

stress of prolonged handling. 
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 3.2.3.3 Drug treatment. Rats were randomly assigned to one of four treatment 

groups: The first group received three injections of MA (5 mg/kg/injection, i.p.); the 

second group received three injections of NIC (5 mg/kg/injection, i.p.); the third group 

received three injections of a (50:50) MA:NIC combination (5 mg of MA and 5 mg  

NIC/kg/injection, i.p.); and the control group received three 0.1 ml saline injections (i.p.) 

All drug concentrations were calculated as the free base. Additionally, the concentration 

of MA in the MA and COMBO treatment groups was the same, 5mg/kg/injection.  

Drug solutions were prepared in isotonic saline at a concentration of 10 mg/ml; 

rats would receive between 0.1 and 0.15 ml of solution per injection, depending upon 

their weight.  In order to simplify the dosage calculation, rats weighing from 200-233 gm 

received 0.1 ml, 234-266 g received 0.12 ml, and 267-300 gm received 0.15 ml of the 

prescribed drug solution.  This resulted in the administration of approximately 

5mg/kg+0.7mg/kg of rat per injection.  Upon completion of drug treatment, 1hrPT or 

7dayPT, rats were euthanized utilizing carbon dioxide, and decapitated with the brains 

removed for dissection (see chapter 4) and the livers removed as described below.  

 3.2.3.4 Liver dissection. Upon completion of drug treatment, 1hrPT and 7dayPT 

rats were euthanized, decapitated after brief exposure to a CO2 chamber, and a partial 

hepatectomy was performed.  The rat liver is composed of four lobes with the median and 

left lateral lobes comprising approximately 70% of the liver.  The third lobe is the right 

lateral lobe that partially overlaps the median lobe on the right side.  The smallest lobe is 

the caudate lobe, which surrounds the abdominal portion of the esophagus.  The liver 

lobes are bound together by folds of the peritoneum that constitute the suspensory 

ligaments of the lobes (Waynforth and Flecknell, 1992).  The two largest lobes of the 
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liver (median and left lateral lobes) were harvested from each rat.  These weighed on 

average approximately 10 gm together.  

In order to obtain the described liver lobes, a midline ventral abdominal skin 

incision was made extending from the xiphoid cartilage about half the distance towards 

the base of the tail.  A similar incision was made in the abdominal muscles.  The rat was 

positioned with a small bolster under the thorax causing the liver to fall away from the 

diaphragm.  The suspensory ligament attaching the liver to the diaphragm--the falciform 

ligament--was cut toward the posterior vena cava with blunt-ended scissors.  At this 

point, the median and left lateral lobes were retracted from the rats’ abdominal cavity 

with two gloved fingers and severed with a pair of blunt-ended scissors.  The two lobes 

were placed in a 50 ml plastic tube and stored frozen (-80°C) until liver enzyme studies 

were performed at a later date. 

 3.2.3.5 Microsomal preparation.  Microsomes were prepared from excised 

Sprague-Dawley rat livers at 1hrPT or 7dayPT.  Microsomal fractions were prepared as 

described in Nelson et al. (2001) with slight modifications.  Briefly, frozen (-80°C) rat 

livers weighing approximately 10 g were thawed in homogenizing buffer (0.1 M 

potassium phosphate (pH 7.4) and 0.25 M sucrose), minced with scissors, and then 

placed in 30 ml of homogenization buffer.  Homogenization was completed with 10 

strokes at 900 rpm using a mechanically driven Teflon pestle in a glass homogenizer. 

Nuclei and mitochondria were removed by centrifugation at 9,000 g for 20 min in 

a Beckman Avanti J-25 refrigerated centrifuge at 4°C using a Beckman JA-14 rotor.   The 

homogenate was transferred to a 50 ml centrifuge tube and spun at 100,000 g for 60 min 

in a Beckmen L7-55 refrigerated centrifuge using a Beckman Ti-45 rotor. The 
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microsomal pellet was resuspended in 20 ml of incubation buffer (0.1 M potassium 

phosphate (pH 7.4), 0.25 M sucrose, 1 mM EDTA, 5% glycerol) and used immediately, 

or stored frozen (-80°C) until time of assay.  Florence et al. (1982) demonstrated that the 

activity of washed microsomes could be stored at – 80ºC for up to 30 days without loss of 

activity. 

3.2.3.6 Protein analysis. Protein analysis was completed with the commercially 

available BioRad Protein Assay kit from BioRad (BioRad Life Science Group, 

Richmond, CA).  The BioRad Protein Assay is based on the method of Bradford (1976) 

and is a simple and accurate procedure for determining the concentration of solubilized 

protein.  It involves the addition of an acidic dye (Coomassie Brilliant Blue G-250) to 

protein solution, and subsequent measurement at 595 nm with a spectrophotometer or 

microplate reader.  Comparison to a standard curve of bovine serum albumin (BSA) 

provides a relative measurement of protein concentration.  Each synaptosomal and 

microsomal solution used in experimentation was assayed for protein concentration for 

standardization.  

3.2.3.7 Inhibition studies. The 96-well plate assay, as described above, was used 

to evaluate the inhibitory potential of MA, NIC, COMBO, or saline on drug regimen 

treated rats using the inhibition of a very well characterized CYP2D6 inhibitor and 

AMMC as a probe.  Livers from 4 rats in each group were pooled to form a rat liver 

microsomal (RLM) preparation.  Pooled RLM were used in order to test all components 

under identical and reproducible conditions.  The above prepared RLM from 1hrPT and 

7dayPT were utilized in the high throughput inhibitor screening kits instead of the human 
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CYP2D6 Supersomes®. Quinidine, a well-characterized CYP2D6-selective inhibitor, 

was used as the appropriate inhibitor for enzyme investigation. 

In addition, the CYP2D6-selective fluorescent probe AMMC was used to quantify 

enzyme metabolism.  This probe displayed high selectivity in rat CYP2D2 isoform for 

AMMC demethylation (a substrate selective for CYP2D6 in human liver microsomes) 

(Stresser et al., 2002).  By utilizing the CYP2D6 selective probe and inhibitor (AMMC 

and quinidine, respectfully), the investigators did not feel it necessary to isolate and 

quantify the amount of specific CYP isoforms present in the RLM. 

Multiple inhibitor concentrations were tested to generate quantitative inhibition 

parameters.  Inhibition curves were generated by the amount of CYP3A4, CYP2D6, or 

RLM enzyme mediated fluorescent product generated (RFU) per microgram of protein 

expressed as a percentage of the control sample plotted against the log concentration of 

inhibitor.  Human baculovirus cell expressed CYP3A4 and CYP2D6 Supersomes data 

represents the average of samples run in duplicate with an N = 6. Each value in the rat 

microsomal studies represents an N = 4 RLM pooled and run in quadruplicate.   

 3.2.3.8   Statistical Analyses. The enzyme parameters used to evaluate inhibition 

are the IC50 values (inhibitor concentration that causes a reduction in enzyme activity by 

50%).  Acquired data from the HTS assays was exported as Excel spreadsheets and 

analyzed using nonlinear regression to determine IC50 values.  One-way ANOVA with 

Bonferroni post tests, or Dunnetts post test was performed on the calculated IC50 values 

in the CYP3A4 and CYP2D6 Supersome® studies, and two-way ANOVA with 

Bonferroni post tests were used to compare the rat liver microsome studies IC50 values. 
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All statistical analysis was done using GraphPad Prism version 4.00 for Windows, 

GraphPad Software, San Diego California USA, http://www.graphpad.com. 

3.3 Results 

 3.3.1  Inhibition of human CYP3A4 Supersomes®.  CYP3A4 high throughput 

inhibition assay kits were used to rapidly screen for potential inhibition of CYP3A4 

catalytic activity.  The 96 well plate assay, as described above, was used to evaluate the 

inhibition potential (4 µM to 10 mM) of MA, NIC, and their COMBO using BFC as a 

probe.  The human CYP3A4 Supersomes studies yielded a net fluorescence signal in the 

range of 3000-4000 relative fluorescence units (RFU).  The effects of MA, NIC, or the 

COMBO on BFC dealkylase activity studied using human baculovirus insect cell, 

expressed CYP3A4 isozymes yielded the following calculated IC50 values  6 mM, >10 

mM, 5 mM, respectfully (figure 3-5).  These values compared to the ketoconazole IC50 

(0.1 µM) suggest little to no inhibition within physiologically relevant drug concentration 

ranges.  The observed IC50 for ketoconazole is in agreement with other reported IC50 

values [0.08 µM] in similar high throughput studies (Crespi et al., 1997) and human liver 

microsomal studies [0.2 µM] (Baldwin et al., 1995). 
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Figure 3-5. CYP3A4 Supersome inhibition curves. Representative inhibition curves 
(4µM to 10 mM) for MA, NIC, and COMBO using BFC as a probe. Results are 
expressed as Percent Control (RFU/mg protein) and Percent Inhibition (RFU/mg protein) 
with the mean ± S.E.M of six experiments performed in duplicate. Curves corresponding 
to the MA and COMBO inhibition curves were found to be significantly different from 
the NIC inhibition curve (P<0.001); however, there was no difference seen between the 
MA and COMBO inhibition curves.  
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 3.3.2 Inhibition of human CYP2D6 Supersomes®.  CYP2D6 high throughput 

inhibition assay kits were used to rapidly screen for potential inhibition of CYP2D6 

catalytic activity.  The 96 well plate assay, as described above, was used to evaluate the 

inhibition potential (1.4 µM to 180 µM) of MA, NIC, and their COMBO using AMMC 

as a probe.  The human CYP2D6 Supersomes® studies yielded a net fluorescence signal 

in the range of 3000-4000 relative fluorescence units (RFU).  The results yielded the 

following calculated IC50 values 31 µM, > 180 µM, 40 µM, respectfully (figure 3-6).  

These values compared to quinidine IC50 (40 nM), a potent CYP2D6 inhibitor, suggest 

the possibility that MA and COMBO treatments may possess an inhibitory potential 

within a physiologically relevant drug concentration range which is in the nanomolar to 

micromolar range (Basalt, 2000). The observed IC50 of quinidine is in agreement with 

other reported IC50 values utilizing high throughput studies for quinidine inhibition of 

CYP2D6 [10 nM] (Crespi et al., 1997). 



101

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5
0

50

100

Combination

Pe
rce

nt
Co

nt
ro

l

Log[Inhibitor, M]

MA

0

50

100

NIC

PercentInhibition

Figure 3-6. CYP2D6 Supersome inhibition curves. Representative inhibition curves (1.4 
to 180µM) for MA, NIC, and COMBO using AMMC as a probe. Results are expressed 
as Percent Control (RFU/mg protein) and Percent Inhibition (RFU/mg protein) with the 
mean ± S.E.M of six experiments performed in duplicate. Curves corresponding to the 
MA and COMBO inhibition curves were found to be significantly different from the NIC 
inhibition curve (P<0.001); however, there was no difference seen between the MA and 
COMBO inhibition curves.  
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 3.3.3 Inhibition of rat microsomes 1 hour and 7 days post treatment regimen.  

CYP2D6 high throughput inhibition assay kits were modified as described above and 

used to determine the inhibition of CYP2D6 catalytic activity in RLM.  The 96 well plate 

assays were used to evaluate the inhibitory potential (3.9 to 500 nM) of MA, NIC, and 

COMBO treated rat livers using AMMC as a probe.  The liver microsome studies yielded 

a net fluorescence signal in the range of 5000-6200 relative fluorescence units (RFU). 

The results of the 1hrPT rat liver microsomes yielded the following calculated IC50 

values for saline, MA, NIC, and COMBO: 103 µM, 0.8 µM, 86 µM, and 32 µM, 

respectively (figure 3-7).  The results of the 7dayPT rat liver microsomes yielded the 

following calculated IC50 values for saline, MA, NIC, and COMBO: 110 µM, 11 µM, 75 

µM, and 57 µM respectively (figure 3-8).  The findings from both of the RLM studies can 

be seen in figure 3-9.  A summary of these IC50 values along with the previous sections 

IC50 values are summarized in table 3-1.
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Figure 3-7. Rat Liver Microsomes 1 Hour PT inhibition curves. Representative 
quinidine inhibition curves (3.9 to 500 nM) were used to evaluate the metabolic potential 
of MA, NIC, and COMBO treated rat livers using AMMC as a probe. Results are 
expressed as Percent Control (RFU/mg protein) and Percent Inhibition (RFU/mg protein) 
with the mean ± S.E.M of four experiments performed in duplicate. Curves 
corresponding to the MA (P<0.001) and COMBO (P<0.05) inhibition curves were found 
to be significantly different from the saline treatment group’s inhibition curve. There was 
no difference seen between the NIC and Saline or between the MA and the COMBO 
treatment groups. 
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Figure 3-8. Rat Liver Microsomes 7 days PT inhibition curves. Representative quinidine 
inhibition curves (3.9 to 500 nM) were used to evaluate the metabolic potential of MA, 
NIC, and COMBO treated rat livers using AMMC as a probe. Results are expressed as 
Percent Control (RFU/mg protein) and Percent Inhibition (RFU/mg protein) with the 
mean ± S.E.M of four experiments performed in duplicate. The curve corresponding to 
the MA (P<0.01) was found to be significantly different from the saline treatment group’s 
inhibition curve. Additionally, the MA and COMBO treatment groups were found to be 
significantly different (P<0.01) as the COMBO group returned to levels similar to the 
Saline control values. There was no difference seen between the COMBO or NIC groups 
and Saline.  
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Figure 3-9. IC50 values (-LogIC50) from rat liver microsome studies. A) 1hrPT RLM 
studies (B) 7dayPT RLM studies (C) Both 1hrPT and 7dayPT values. The above-
calculated IC50 values were determined from inhibition curves seen in figures 3 and 4. 
IC50 values were significantly different than saline control value (a p < 0.001; b p < 0.01; 
c p < 0.05) and from each other as indicated  (** p < 0.01) and evaluated by ANOVA 
(n=4) .
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Table 3-1. 50% inhibitory concentrations (IC50). The listed IC50 values were determined 
from inhibition curves seen in figures 1-4. The IC50 values of MA and COMBO were 
significantly different than NIC (* p < 0.001) as evaluated by ANOVA (n=6). The IC50 
values were significantly different than saline control values (a p < 0.001; b p < 0.01; c p <
0.05) and each other as indicated (** p < 0.01) and evaluated by ANOVA (n=4).  
 
CYP3A4- Supersomes 
Methamphetamine            6 ± 0.5 mM*

Nicotinamide                              >10 mM 
Combination             5 ± 0.6 mM*

CYP2D6- Supersomes 
Methamphetamine            31 ± 4.1 µM*

Nicotinamide                             >180 µM
Combination             40 ± 6.0 µM*

Rat Liver Microsomes-1 Hour Post Treatment 
Saline         103 ± 20.0  µM 
Methamphetamine        0.8 ± 0.25  µMa

Nicotinamide                      86 ± 8.70  µM 
Combination          32 ± 28.0  µMb

Rat Liver Microsomes-7 Days Post Treatment 
Saline          110 ± 10.0 µM 
Methamphetamine          11 ± 8.40 µMc, ** 
Nicotinamide            75 ± 10.0 µM  
Combination           97 ± 3.70 µM** 
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3.4 Discussion 

The elimination of foreign compounds from the body and the control of levels of 

other compounds in the body, such as drugs, is known as metabolism.  Metabolism of 

drugs is complex, with many drugs being metabolized by multiple enzyme systems. 

Enzymes involved in metabolism are present in many tissues (gastrointestinal tract, lung, 

nasal mucosa, kidney, blood, skin, and blood cells) within the body; however, the liver is 

the principal site of drug metabolism.  

For many drugs, metabolism occurs in two stages.  Phase I reactions are catalyzed 

by a super family of mixed function monooxygenase enzymes, known as the cytochrome 

P450 system.  This occurs in liver microsomes, located in the endoplasmic reticulum of 

liver cells or hepatocytes, where the drug is made more hydrophilic by the formation of a 

new or modified functional group or a cleavage.  Most of the time, these simple 

modifications are enough to increase solubility facilitating elimination through the 

kidneys (in urine) and the liver (in bile).  Phase II metabolism involves conjugation and 

many times occurs after the alteration by Phase I enzymes.  Acting in concert, Phase I 

and Phase II enzymes convert hydrophobic compounds to more hydrophilic compounds 

that can be readily eliminated. 

The Phase I metabolism of MA by CYP-mediated enzymes generates two 

pharmacologically active metabolites, amphetamine (Basalt, 2000) and the para-hydroxy 

derivative (p-OH MA) (Caldwell et al., 1972).  CYP2D enzymes have been shown to 

catalyze these types of reactions (Billings et al., 1978; Cho et. al., 1975; Smith, 1986).  

N-Demethylation of MA has been reported to occur primarily by CYP enzymes (Baba et 
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al., 1988), but may also occur via flavin-containing monooxygenases (Yamamda et al., 

1984; Lawton et al., 1994).  

Upon administration, MA is continually eliminated in an unchanged form.  Under 

normal circumstances, up to 43% of a dose is eliminated unchanged in the 24-hour urine, 

with less than 20% cleared as amphetamine (Basalt, 2000).  Contrary to most belief, 

amphetamine is not the major metabolite of MA, primarily, because it accounts for less 

than 20% of the administered MA (Cho, 1990); it is however the major active metabolite.  

About 15% of the MA is excreted as p-OH MA and the remainder of the dose is 

accounted for as minor amounts of the same metabolites found after amphetamine 

administration, such as phenylacetone, norephedrine, benzoic acid, hippuric acid, 

benzoylglucuronide, p-hydroxynorephedrine, and p-hydroxyamphetamine (Caldwell et 

al., 1972; Cho, 1990). 

The fairly complex metabolism and excretion of MA in humans result in a fairly 

long half-life (approximately 10-12 hours) (Cho, 1990; Cho et al., 2001; Shappell et al., 

1996).  Urinary excretion of the unchanged drug is pH dependent.  Urinary acidification 

decreases half-life and alkalinization increases the half-life.  For every one-unit increase 

in urinary pH, there is an average seven-hour increase in plasma half-life (Drug Facts and 

Comparison, 1997).  During urinary acidification, plasma elimination is shortened, and 

total clearance is increased as well with amphetamine and MA (Beckett and Rowland, 

1965).  Though the elimination half-lives in humans and rats are quite different, they do 

share similarity and predictability as discussed by Cho (1990).  Furthermore, dosing 

regimens can be modified in rats to mimic human abuse patterns, which have been 

utilized in these studies.   
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The aim of this study was to evaluate the inhibitory effects of MA, NIC, and 

COMBO utilizing a novel and selective high throughtput assay which utilized 

recombinant human CYP3A4 Supersomes®.  The human CYP3A4 Supersomes®

inhibition curves can be seen in figure 3-5 and the results of the calculated IC50 in table 3-

1. Our findings indicate that neither MA, NIC, nor the COMBO drug group affect the 

metabolism of BFC a specific probe used to assess CYP3A4 metabolism.  

The second set of studies was a repeat of the first, except the assays utilized 

recombinant human CYP2D6 Supersomes®.  The 96 well plate assay, as described 

above, was used to evaluate the inhibitory potential of MA, NIC, and COMBO using 

AMMC, a highly selective probe toward CYP2D6 enzymes (Crespi et al., 1999).  It has 

been demonstrated by Chauret et al. (2001) that CYP2D6 is the only observable human 

P450 enzyme involved in the metabolism of AMMC.  All other human CYP450 enzymes 

tested yielded <1% 3-[2-(N,N-diethylamino)ethyl]-7-hydroxy-4-methylcoumarin 

(AHMC) fluorescent metabolite relative to CYP2D6.  These observations imply minimal 

contribution of other enzymes to AMMC demethylation to AHMC under similar 

conditions.  The human CYP2D6 Supersomes® inhibition curves can be seen in figure 3-

6 and the results of the calculated IC50 values in table 3-1.  The results yielded the 

following calculated IC50 values 31 µM, > 180 µM, 40 µM, respectfully.  

 Statistical analysis utilizing a one-way ANOVA with Bonferonni post tests 

indicated significant drug effects (F(2,43)  = 0.3108; p<0.001) for NIC vs. MA and 

COMBO.  In summary, MA and COMBO were significantly different from NIC, which 

is as expected because it appears CYP2D6 is not a primary metabolizing enzyme of NIC.  

Additionally, there was no significant difference demonstrated between MA and 
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COMBO.  At this time, there is no indication of NIC altering the metabolism of MA via 

the human CYP2D6 isozyme.   

It has been hypothesized that there is an added or synergistic inhibitory interaction 

with MA and NIC co-administration.  If the metabolism of the affected drug were 

decreased, this would indicate an increase in intensity and increased duration of drug 

effects.  These interactions have been studied and will be discussed.  Levy hypothesized 

that all drugs that are metabolized to a significant degree by the same enzyme are 

inhibited by inhibitors of that enzyme and display the same spectrum of interactions 

(Levy, 1995).  According to Levy’s hypothesis, if NIC is metabolized by the CYP2D6 

enzyme system it could potentially interact with other CYP-catalyzed metabolism. 

The recombinant human CYP2D6 Supersomes® studies did not identify any 

inhibitory interaction between NIC and CYP2D6.  Therefore, one would not speculate 

any combined effects.  IC50 values of >10 mM (CYP3A4 Supersomes) and > 180 µM

(CYP2D6 Supersomes) indicate no direct inhibitory effect on CYP3A4 or CYP2D6 

activity.  These results clearly demonstrate that direct inhibition of CYP3A4 or CYP2D6 

by NIC is not the source of an interaction.  Additional studies are necessary to determine 

if an alteration of CYP expression may be responsible for their interaction.  Drug 

interactions involving enzyme induction are not as common as inhibition-based 

interactions; the most common enzyme induction mechanism is transcriptional activation 

leading the increased synthesis of CYP proteins (Dossing et al., 1983).  

During the final portion of these studies, rats were injected with one of four drug 

treatment regimens, as described above, and 1hrPT or 7dayPT the rat livers were 

harvested and microsomes were isolated for the present studies.  Unlike humans, which 
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express a single CYP2D enzyme (CYP2D6), six CYP2D isoforms (CYP1/2/3/4/5/18) 

have been identified in rats (Gonzalez et al., 1987; Matsunaga et al., 1989,00; Kawashima 

et al., 1996). 

Stressor et al. (2002) investigated human and rat isoform catalytic selectivity 

among a panel of fluorescent substrates.  In these studies, they concluded that rat 

CYP2D2 and human CYP2D6 displayed complete selectivity with low concentrations of 

AMMC with little or no activity contributed from CYP3A isoforms, CYP1A2, or 

extrahepatic enzymes, thereby, making AMMC an appropriate probe to investigate 

human CYP2D6 mediated reactions in rats via the rat CYP2D2 isozyme.  Additionally, 

Chauret et al. (2001) has published AMMC as a selective probe for CYP2D6 in human 

liver microsomes. 

The 1hrPT inhibition curves can be seen in figure 3-7 and the results of the in vivo 

calculated IC50 values in table 3-1.  A two-way ANOVA (time by treatment group) of the 

rat liver microsomal studies demonstrated significant time and treatment affect, (F(1,24)  =

6.14; p = 0.02) and  (F(3,24)  = 16.99; p<0.0001) respectfully; however, they failed to show 

an overall interaction within the ANOVA, (F(3,24)  = 2.43; p = 0.09).   

Rat liver microsomal studies demonstrated significant inhibition as compared to 

saline control values in the 1hrPT MA (p<0.001) and 1hrPT COMBO ( p<0.05). 

Additional analysis with a one-way ANOVA and Newman-Kuels (NK) post hoc testing 

demonstrated a significant difference between the MA and COMBO treated groups 

(p<0.05). However, there was no statistical difference observed between the 1hrPT MA 

and COMBO treated RLM groups utilizing the two-way ANOVA with Bonferroni post 
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hoc testing.  This most likely is due to the conservative nature of the Bonferroni test 

when used in a two-way ANOVA.  

The 7dayPT inhibition curves can be seen in figure 3-8 and the results of the in 

vivo calculated IC50 values in table 3-1.  Rat liver microsomal studies demonstrated 

significant inhibition in the 7dayPT MA group (p<0.05); no difference was seen between 

the COMBO and the saline control group RLM as seen in the 1hrPT studies. There was 

in fact a significant difference demonstrated between the MA and COMBO treated 

groups (p<0.01) illustrating the differential effects 7dayPT when MA is co-administered 

with NIC. 

Graphical representation of the IC50 values (-logIC50 vs. time) can be seen in 

figure 3-9.  The 1hrPT studies demonstrated a 50% inhibition of log IC50 values, which is 

represented by 100-fold difference between the MA and saline IC50 values and a 30% 

inhibition of log IC50 values, which is represented by 3 fold difference between the 

COMBO and saline IC50 values.  The 7dayPT studies demonstrated a 35% inhibition of 

log IC50 values, which is represented by 10-fold difference between the MA and saline 

IC50 values.  

The observation of the COMBO treated group liver functions returning to control 

level indicate that the CYP2D-mediated liver functions had returned to the normal saline 

control level.  Based upon these observations, one can infer that the NIC treatment may 

enhance the return of CYP2D-mediated metabolic function to normal.  One should note 

that although statistical significance was not demonstrated between the MA and COMBO 

group in the 1hrPT studies when using the two-way ANOVA with Bonferroni post hoc 

analysis.  There was an apparent difference in their inhibitory ability represented by a 
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15% inhibition of log IC50 values, which is represented by a 30 fold difference between 

the two treatments IC50 values. This difference was statistically significant when analyzed 

with a more liberal test.  One could speculate that the inhibitory effect of MA in vivo is 

blunted when co-administered with NIC and substantiated  statistically with the more 

appropriate test. A comparison of the two statistical methods utilized about would 

demonstrate that the Bonferroni is a much more conservative test especially when utilized 

in a two-way ANOVA. Utilizing the one-way ANOVA with a more liberal post hoc test 

and finding a significant difference between the MA and COMBO treated groups at the 

1hrPT time point would bring up two questions; one, statistical vs. clinical significance 

and two, liberal vs. conservative testing.  To be conservative one must infer that there is 

no significant difference seen with the combination of MA and NIC at 1hrPT; however, 

additional testing could be done to establish the clinical relevance.   A 30 fold difference 

in IC50 value is a relatively large difference and may possess some clinical significance.  

In order to explain these finding one may consider the possibility that NIC serves 

to increase transcriptional activation of the CYP2D6 (human) and/or CYP2D2 (rat) 

enzymes leading to the increased synthesis of CYP proteins leading to decreased intensity 

and shorten the duration of drug effects as described by Dossing et al. (1983).  This type 

of alteration could explain the return of CYP2D function seen at 7dayPT as compared to 

the MA treatment group, which is still experiencing inhibition.   

NIC has been shown to block lesions produced by the mitochondrial toxin 

malonate (Beal et al., 1994). NIC has also been shown to attenuate MA toxicity (Huang 

et al., 1997; Stephans et al., 1998). Because NIC is the precursor molecule for the 

electron carrier NAD, its administration would be expected to increase the number of 
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reducing equivilants available for mitochondrial oxidative phosphorylation, improving 

mitochondrial energy production. If the inhibition of MA metabolism is a consequence of 

energy depletion, improving mitochondrial energy production, NIC should at least 

attenuate such deficits. This is clearly demonstrated at the 7dayPT time point where the 

COMBO group has returned to saline control values. Additionally, this can be speculated 

at the 1hrPT time point although the reliability as to the statistical vs. clinical significance 

may still be debated.  

One should note that the CYP2D6 Supersome data IC50 values of MA and 

COMBO are very similar to those observed in the RLM studies.  Stresser et al. (2002) 

demonstrated that the AMMC probe displayed high selectivity in rat CYP2D2 isoform 

for AMMC demethylation (a substrate selective for CYP2D6 in human liver microsomes) 

and, thus, is an appropriate choice for the comparison of two different isoforms in two 

different species. 

Previous research indicates that the two different isoforms described have very 

similar functions in the metabolism of MA (Lin et al., 1997).   AMMC, therefore, was 

utilized in order to quickly examine liver enzyme function after a drug treatment regimen.  

Clinical studies utilizing human liver microsomes after a standardized drug treatment 

regimen would produce the best in vivo data; the invasive procedures necessary to 

complete such an experiment would most likely prevent any such studies.  

Surprisingly, the RLM studies did not demonstrate alterations in CYP activity in 

the presence of NIC. This data, coupled with the social pattern of abuse currently 

observed in the United States, does not explain why Americans adulterate illicit MA with 

NIC and not other less expensive more available alternatives.  There must be some 
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underlying reason for this pattern of specific adulteration.  Based upon the current 

pharmacokinetic studies, there is no overwhelming evidence that would indicate that NIC 

co-administration enhances MA’s pharmacological effects significantly enough to drive 

the population to solely use NIC as the adulterant of choice.  Additionally, recombinant 

human CYP2D6 enzyme studies, compared to RLM studies, failed to show any 

significant difference in the metabolic inhibition between MA and the COMBO.   

The completion of the current studies has lead the investigator to consider that 

NIC may enhance the transcriptional activation of the CYP2D6 (human) and/or CYP2D2 

(rat) enzymes leading to the increased synthesis of CYP proteins, thus, leading to 

decreased intensity and shorter duration of drug effects. A decreased intensity may allow 

the user to maintain a more steady state of alteration without the extreme ups and downs 

associated with typical MA. Another possibility is that the decrease in metabolic 

inhibition prevents as much MA from making it to the brain and therefore increasing the 

users desire to administer more MA in order to maintain the state of euphoria.  The 

shorter duration of drug effect would also explain the increased frequency of 

administration. However, this theory was not able to be evaluated at this time because 

this set of studies utilized the same amount on RLM CYP protein in each assay. A more 

specific method of quantifying the amount of human CYP2D6 or rat CYP2D2 needs to 

be employed in order to make this determination.    

Additional studies may address the possibility that the addition of NIC may 

somehow prevent the buildup of toxic metabolites or alter the metabolic cascade, 

allowing increased production of the pharmacologically active molecules and/or more 
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rapid elimination of inactive intermediates or toxic compounds.  Yet, in order to further 

understand the possible interaction between MA and NIC, future studies will be required.  

 In conclusion, NIC by itself has little or no inhibitory effect on the CYP isoforms 

tested within this study.  The mechanism that is speculated to cause drug interactions 

between co-administered MA and NIC is not related to direct CYP inhibition by NIC but 

is speculated to be by the alteration in the amount or activity of the CYP proteins that are 

present or perhaps related to the increased number of reducing equivalents available for 

the production of mitochondrial energy production.  Further evaluation is needed to 

reveal the mechanisms of NIC-induced drug interaction and to offer a better 

understanding as to the common illicit combination of the two. 
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Chapter IV 
 

DOPAMINERGIC CHANGES ASSOCIATED WITH ILLICIT  
 

METHAMPHETAMINE ABUSE WHEN CO-ADMINISTERED WITH THE  
 

COMMON ADULTERANT, NICOTINAMIDE. 
 

4.1 Introduction 

MA’s popularity has continued to rise since 1990 (U.S. DHHS, 2001).  

Adulteration of illicit MA with NIC has become so prevalent in the United States, 

researchers must now consider the possibility that NIC may possess some ability to 

enhance MA’s psychostimulant effects.  One of the most challenging problems in 

studying the neurobiology of drug addiction is the difficulty in scientific quantification of 

perceived drug reward.  

There is evidence that high or repeated doses of MA induce long-term deficits in 

basal ganglia neurotransmission, both in rodents and humans, mainly affecting the 

dopaminergic system (Seiden et al 1976; Ricaurte et al 1980; Marek et al. 1990).  It has 

been shown that MA has the ability to alter DA synthesis (Gibb and Kogan, 1979; 

Schmidt et al., 1985), DA transport (Schmidt and Gibb, 1985; Marek, 1990) and DA 

receptors (O’Dell et al., 1993).  Substantial animal data now implicate the ACC within 

the striatum as a critical target in the mechanism of action in all drugs of abuse, including 

MA (Robinson and Berridge, 1993; White and Kalivas, 1998; McLeman et al., 2000).  

Additional studies conducted have indicated that MA initiation of pleasure and reward is 

controlled in the mesolimbic and striatal dopaminergic systems (Roberts and Vickers 
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1984; Woolverton 1986; Bardo 1998).  Knowing this, along with studies that 

demonstrated D2 receptors helped to predict response to psychostimulants in humans by 

favoring pleasant response (Volkow et al., 1999), allowed us to focus our studies on two 

brain regions (STR and ACC) and on a specific receptor subclass, the D2 receptors.  

In the present study, we utilized neuropharmacological studies to investigate the 

effects of NIC co-administered with MA (vs. MA only) in rats to determine (1) if there 

were any alterations in the release of DA, (2) if the treatment modified DA D2 receptors, 

and (3) if there were any concomitant alterations in DA transport or transporter 

density/number.  These studies compared two separate time points: 1hrPT and 7dayPT. 

We believe that the illicit adulteration of MA with NIC enhances the psychostimulant 

effects of MA by either enhancing DA release, attenuating DA uptake, or altering the 

number of DA receptors or their binding affinity.  We feel the results will reveal 

differential dopaminergic changes between MA and the co-administration of MA with 

NIC.  

 

4.2 Materials and methods 

 

4.2.1 Animals and treatments.  Adult male Sprague-Dawley rats (200-300 g; 

bread in house) were housed at 23°C with a 12 hour alternating light /dark cycle.  Food 

and water were provided ad libitum. On the day of the experiment, rats were randomly 

assigned to one of four treatment groups.  Each group would receive one injection every 

2 hours for a total of three injections.  The first group received MA (5 mg/kg/injection, 

i.p.), the second group received NIC (5 mg/kg/injection, i.p.), the third group received a 
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(50:50) MA:NIC combination (5 mg of MA and NIC/kg/injection, i.p.) (COMBO), and 

the control group received three 0.1 ml saline injections, i.p.  All drug concentrations 

were calculated as the free base. 

Drug solutions were prepared in sterile isotonic saline at a concentration of 10 

mg/ml; therefore, rats would receive between 0.1 and 0.15 ml of solution per injection, 

depending upon their weight.  One hour, or seven days, post last injection (1hrPT and 

7dayPT, respectfully), the rats were sacrificed by rapid decapitation.  The brains were 

removed immediately and STR and ACC dissected out on an ice-cooled dish.  Upon 

completion of the dissection, the STR and ACC were either used immediately for 

functional assays or stored frozen (-80ºC) until used in the binding assays.   

 4.2.1.1 Dissection. Immediately after decapitation, the brains were removed from 

the skull by cutting the skin and head muscles to expose the skull.  Then, one tine from a 

set of sharp scissors was held on a vertical plane and inserted into the foramen magnum 

at the rear base of the skull cavity just below the midsagittal suture.  The bone was cut 

along the suture above the dura mater.  The temporal and occipital bones of the skull 

were lifted and removed utilizing a stainless steel straight cranial rongeur.  The brain was 

lifted with an ice-cold spatula to expose the optic nerves, which were then severed.  The 

brain was removed with a portion of the spinal cord still intact.  

Once removed, the brain was immediately placed ventral side up in an ice-cold 

metal (zink:nickel alloy) brain matrix dissecting mold with 1 mm increment cutting slots 

(Harvard Instruments, Holliston, MA).  In order to remove the section of interest, one ice-

cold razor blade was inserted 4 mm posterior to the most anterior portion of the brain and 

the other blade inserted 4 mm posterior to the first blade (figure 4-1).  Once the section of 
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interest was removed, the striatum (consisting of the caudate and putamen nuclei) and 

nucleus accumbens were dissected out using a set of ice-cold razor blades and a set of 

finely curved forceps (figure 4-2).  The regions of interest were either used immediately 

for functional assays or frozen and stored at -80° C for future binding studies.  Bardsley 

and Bachelard (1981) provide a review of the rat brain anatomy needed for this specific 

technique. 
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Figure 4-1. Ventral view of the rat brain with examples of vertical section locations. 
Reproduced with slight modification from Bardsley and Bachelard (1981). 
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Figure 4-2. Cross section of  rat brain thru section A of figure 3-1. Dissection included a 
brain section from cut A (figure 3-1) where once identified the accumbens and striatum 
(caudate and putamen nuclei) could be removed. Key: C-Cortex, CC-corpus callsoum, 
CN-striatum (caudate and putamen nuclei), S-Septal nuclei, A-Accumbens, ac-anterior 
commissure. Reproduced with slight modification from Bardsley and Bachelard (1981). 
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4.2.2 Drugs.  MA hydrochloride, NIC, dopamine, 1-(2-Diphenylmethoxyethyl)-4(3-

phenylpropyl) piperazine (GBR-12935), 1-(2-(Bis-4-flurophenyl) methoxy)ethyl)-4-(3-

phenyl-2-propenyl) piperazine (GBR-12909), and the other chemicals utilized in the 

buffer solutions were purchased from either Sigma Chemical Corporation (St. Louis, 

MO) or Fisher Chemical Company (Denver, CO).  Pargyline hydrochloride and 

nomifensine maleate were purchased from Research Biochemicals International (Natick, 

MA).  [7,8-3H]Dopamine (spec. act. 50.0 Ci/mmol) was purchased from Amersham 

Bioscience.  [3H]GBR12935 (spec. act. 45.0 Ci/mmol) and raclopride, [methoxy-3H] 

(spec. act. 80.3 Ci/mmol) were purchased from Perkin Elmer Life Science (Boston, MA).  

 4.2.3 Synaptosomal preparation.  Isolated nerve terminals, synaptosomes were 

prepared as described by Fleckenstein et al. (1999) with minor modifications.  Once the 

STR and ACC were separated, each was separately homogenized in 20 volumes of 0.32 

M sucrose using 10 up and down strokes of a pre-chilled Teflon-glass homogenizer at 

900 rpm.  Homogenate was then centrifuged at 1,000 X g for 11 minutes at 4°C to 

remove cellular debris.  The supernatant obtained was centrifuged again at 22,000 X g for 

11 minutes at 4°C.  The pellet obtained in the latter centrifugation contains the 

synaptosomal fraction because apart from synaptosomes, it has also been shown to 

contain myelin and free mitochondria (Garcia-Sanz et al., 2001).  This pellet was 

suspended in the appropriate assay buffer (see text) for the day’s functional experiments.  

Once the appropriate amount of fresh synaptosomes were acquired for the day, 

the remainder of solution containing the excess synaptosomes was centrifuged again at 

22,000 X g for 11 minutes at 4°C and that pellet was stored in 0.32 M sucrose at -80°C
until binding studies could be completed.  Protein analysis was completed with the 
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commercially available Bio-Rad Protein Assay kit from BioRad (BioRad Life Science 

Group, Richmond, CA).  The Bio-Rad Protein Assay is based on the method of Bradford 

(1976) and is a simple and accurate procedure for determining the concentration of 

solubilized protein.  

 4.2.4 [3H]Dopamine uptake. Synaptosomes were prepared as described above.  

The fresh synaptosomal pellet was resuspended in uptake assay buffer by gentle 

homogenization.  Uptake assay buffer consisted of 25 mM Hepes, 120 mM NaCl, 5 mM 

KCl, 2.5 mM CaCl, 1.2 mM MgSO4, 10 mM glucose, 1 mM ascorbic acid, and 5 µM

pargyline (pH 7.4).  Cold saturation studies were prepared by adding a 400 µl aliquot of 

the synaptosomal tissue with either 50 µl of assay buffer (total binding), 50 µl of 10 µM

manzindol (non-specific binding), or 50 µl of dopamine ranging from 0.34 to 17,000 nM. 

All concentrations reported are the final reaction vial concentrations and all reaction vials 

were run in duplicate. 

Uptake reactions were initiated by addition of 50 µl of [3H]dopamine (0.5 nM 

final concentration) to each of the tubes.  Once the reaction was initiated, samples were 

allowed to go to equilibrium by incubating at room temperature (22°C) for 15 minutes. 

Dopamine uptake was terminated by rapid filtration with the Brandel Tissue Harvester 

(Gaithersburg, MD) and three separate 5 ml washing (approximately 15 seconds total) 

with ice-cold 0.9 % NaCl solution onto Whatman GF/B glass-fiber filter paper previously 

soaked for 1 hour in 0.03% polyethyleneimine solution. 

The remaining radioactivity trapped in filters was determined using a Beckman 

LS1801 scintillation counter (40-50% efficiency) with Scintiverse scintillation fluid 

(Fisher, Pittsburg, PA).  Protein analysis was completed with the commercially available 
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Bio-Rad Protein Assay kit from BioRad (BioRad Life Science Group, Richmond, CA). 

Total uptake was considered the amount of uptake without any unlabelled dopamine 

present and nonspecific binding was determined with mazindol (10µM).  Specific uptake 

was defined as total (or test sample) binding – nonspecific binding.  The resulting cold 

saturation data was analyzed with a nonlinear computer-fitting program to estimate 

apparent Vmax (transporter density) and IC50 values.  Best-fit models were determined 

by the F test (Munson and Rodbard, 1980).  This data was analyzed by two-way analysis 

of variance (ANOVA) (Winer, 1971), followed by Bonferroni post hoc comparison 

where appropriate.  Results were considered significant when P was < 0.05. All data 

analysis was performed using GraphPad Prism version 4.00 for Windows, (GraphPad 

Software Inc., San Diego, CA). 

 4.2.5 [3H]GBR12935 binding assay.  Previously stored frozen (-80°C) 

synaptosomes from the dopamine uptake studies were reconstituted in binding buffer. 

Binding buffer consisted of 50mM Tris-HCl, 120 mM NaCl, and 0.01% BSA at pH 7.4.  

Cold saturation studies were prepared by adding a 400 ul aliquot of the synaptosomal 

tissue with either 50 µl of binding buffer (total binding), 50 µl of 5 µM GBR 12909 (non-

specific binding), or 50 µl of GBR12935 ranging from 0.01nM to 5µM.  All 

concentrations reported are the final reaction vial concentrations and all reaction vials 

were run in duplicate. 

Binding was initiated by addition of 50 µl of [3H]GBR12935 (5 nM) to each of 

the tubes and allowing them to achieve equilibrium by incubating at room temperature 

(22°C) for 60 minutes.  Incubation was terminated by rapid filtration with the Brandel 

Tissue Harvester (Gaithersburg, MD), and three separate 5 ml washing (approximately 5 
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seconds per wash) with ice-cold wash buffer solution onto Whatman GF/B glass-fiber 

filter paper previously soaked for 1 hour in 0.03% polyethylenimine solution.  The wash 

buffer used in the binding experiments was ice-cold 50 mM Tris-HCl buffer (pH=7.4). 

Radioactivity trapped in filters was counted using a liquid scintillation counter, as 

described above.  Protein content was measured using a purchased BioRad Protein assay 

(BioRad Life Science Group, Richmond, CA). 

The resulting cold saturation data was analyzed with a nonlinear computer-fitting 

program to estimate Bmax (transporter density) and IC50 values.  Best-fit models were 

determined by the F test (Munson and Rodbard, 1980).  This data was analyzed by two-

way ANOVA (Winer, 1971), followed by Bonferroni post hoc comparison, where 

appropriate.  Results were considered significant when P was < 0.05.  All data analysis 

was performed using GraphPad Prism version 4.00 for Windows, (GraphPad Software 

Inc., San Diego, CA). 

 4.2.6 [3H]Raclopride binding.  Due to the lower concentration of D2-like 

receptors in the tissue of interest, crude synaptosomes were prepared as described above. 

Breifly, previously frozen tissue (-80°C) from the release studies was thawed to room 

temperature on ice.  Once the tissue was at room temperature, the tissue was 

homogenized in 5 ml of binding buffer (50 mM Tris-HCl, 120 mM NaCl at pH=7.4), 

using 10 up and down strokes of a pre-chilled Teflon-glass homogenizer at 900 rpm. The 

homogenate was centrifuged at 1,000 x g for 10 min. in a Beckman Avanti J-25 

refrigerated centrifuge at 4° C using a Beckman JA-25.15 rotor.  The supernatant 

obtained was diluted to 12 ml with binding buffer and stored on ice, until use. 
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Cold saturation studies were prepared by adding a 400 ul aliquot of the 

synaptosomal tissue with either 50 µl of binding buffer (total binding), raclopride (10µM) 

(non-specific binding), or 50 µl of unlabelled raclopride ranging from 0.01nM to 5µM. 

All concentrations reported are the final reaction vial concentrations, and all reaction 

vials were run in duplicate.  Binding was initiated by addition of 50 µl of 5 nM

raclopride, [methoxy-3H] (spec. act. 80.3 Ci/mmol) to each of the tubes, allowing them to 

achieve equilibrium by incubating at room temperature (22° C) for 60 minutes. 

The binding was terminated by filtration under reduced pressure with a Brandel 

Tissue Harvester (Gaithersburg, MD) and three separate 5 ml washing (approximately 5 

seconds per wash) with ice-cold 50 mM Tris-HCl buffer (pH=7.4) solution onto 

Whatman GF/B glass-fiber filter paper previously soaked for 1 hour in 0.03% 

polyethylenimine solution.  Analysis of the radioactivity trapped in the filters was 

accomplished by Beckman LS1801 scintillation counter (40-50% efficiency).  A portion 

of the synaptosomal solution was assayed for protein concentration using the 

commercially available Bio-Rad Protein Assay kit from BioRad (BioRad Life Science 

Group, Richmond, CA). 

Total binding was considered the amount of uptake without any unlabelled 

raclopride present, and nonspecific binding was determined with raclopride (10µM).  

Specific binding was defined as total (or test sample) binding – nonspecific binding.  The 

resulting cold saturation data was analyzed with a nonlinear computer-fitting program to 

estimate Bmax (receptor density) and IC50. Best-fit models were determined by the F test 

(Munson and Rodbard, 1980).  This data was analyzed by two-way ANOVA (Winer, 

1971), followed by Bonferroni post hoc comparison where appropriate.  Results were 
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considered significant when P was < 0.05.  All data analysis was performed with 

GraphPad Prism version 4.00 for Windows, (GraphPad Software Inc., San Diego, CA). 

 4.2.7 [3H]Dopamine release.  Brains were removed rapidly and STR and  ACC 

dissected out on an ice-cooled dish from male Sprague-Dawley rats, after designated 

treatment regimen and decapitation, as described above.  STR and ACC were dissected 

and sliced into 400 µm slices with a McIlwain Tissue Chopper (Mickle Laboratory 

Engineering Co., Gomshall, Surrey).  Slices were suspended in a 50 nM [3H]DA solution 

of modified Krebs–HEPES uptake buffer consisting of 120 mM NaCl, 5 mM KCl, 2.5 

mM CaCl2, 1.2 mM MgSO4, 25 mM HEPES, 10 mM glucose, 1 mM ascorbic acid, 0.1 

mM pargyline; pH adjusted to 7.4 with NaOH) for 30 minutes at 37º C.  

Approximately 5-10 slices in a 200 µl aliquot were deposited between two 

Whatman GF/B glass-fiber filter discs within a chamber of a Brandel (Gaitherburg, MD) 

superfusion apparatus.  Tissue slices were perfused for 30 minutes at a flow rate of 0.6 

ml/min. in a wash out stage using release buffer.  Release buffer is uptake buffer 

containing an additional 10 µM of nomifensine and 1 µM domperidone.  These drugs 

were included in all subsequent steps to prevent reuptake of, and feedback inhibition, by 

released [3H]DA. 

A low, stable baseline of basal release (approximately 1%/min.) was established. 

After 8 minutes (fraction 4), tissue was stimulated to release [3H]DA by a 2 minute 

exposure to 30 mM KCl.  The perfusion solution was returned to the non-stimulating 

releasing buffer for an additional 16 minutes, allowing the [3H]DA release to return to the 

basal level.  Fractions of release buffer containing [3H]DA were collected at 2 minute 
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intervals in scintillation vials and, finally, the filter discs and tissue were collected from 

each of the chambers.   

The remaining [3H]DA content in tissue and discs was assessed at the end of each 

experiment by treating the remaining tissue and discs with 1 ml of 0.2 M HCl and 

incubation for one hour at room temperature to extract the remaining radioactivity.  

Under similar experimental conditions, the released radioactivity has been shown to be 

primarily dopamine (Werling et al., 1988).  Released radioactivity was determined by 

liquid scintillation spectroscopy.  Release was calculated as fractional release as 

calculated as described in Bennett et al. (1997) and defined as: 

Fractional Release (%): 
 

c.p.m. in each fraction               X 100 
c.p.m. in all collected fractions + c.p.m. in remaining tissue and discs  
 

The peak analysis focused on the highest amount of fractional release being seen 

in fraction number 6; the peak release of [3H]DA (fraction 6) was used to compare 

treatment groups for the statistical analysis.  The AUC or area under the curve analysis 

was done utilizing the sum of fractions 5-9 which would approximate an (AUC for the 

total amount of [3H]DA released in response to the stimulus.  Finally, the basal release 

analysis took the average amount of basal release calculated as the sum of fractions 1-4 

and compared it for statistical difference. Data were expressed as fractional release (%) in 

all three of the analysis (peak, AUC, and basal release studies). 
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The highest amount of fractional release was seen in fraction number 6.  The peak 

release of [3H]DA (fraction 6) was used to compare treatment groups for the statistical 

analysis.  Additional data analysis was done utilizing the sum of fractions 5-9, which 

would approximate an area under the curve (AUC) for the total amount of [3H]DA 

released in response to the stimulus. 

Finally, each of the treatment groups’ AUC was compared to the average saline 

(control) treated groups AUC and reported as percent of control.  Statistical significance 

was determined by utilizing a two-way ANOVA (Winer, 1971), followed by Bonferroni 

post-hoc comparison.  Statistical significance was assumed at P values less than 0.05.  All 

data analysis was performed using GraphPad Prism version 4.00 for Windows, 

(GraphPad Software Inc., San Diego, CA), and all data were analyzed prior to 

transformation to percent control for graphical representation.  
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 4.2.8 Competition analysis. Nonlinear regression analysis was used to fit the 

data to equations that minimize the sum of squares of the relative distances of the data 

points to the curve in order to obtain binding parameters.  Relative distances are used 

rather than absolute distances largely due to the bulk of the error being attributed to 

pipetting, which means the standard deviation of replicate measurements will be on 

average a constant fraction of the amount of binding. In contrast, other experiments 

which may include scatter or where the standard deviation is not related to the amount of 

binding would preferably utilize equations that minimize the sum of squares of the 

absolute distance.  One should, therefore, only utilize weighting by relative distances 

when analyzing total binding data (Motulsky, 1999). 

Competition analysis data was entered into GraphPad Prism version 4.00 for 

Windows, (GraphPad Software Inc., San Diego, CA).  The F-test was run to determine 

the best-fit value, which determined if the data best matched a one or two-site model.  

Our data was best fit to the one-site model.  The one-site model states that if the 

radioligand and competitor both bind reversibly to the same binding site, binding at 

equilibrium follows this equation:  

 

X is the logarithm of unlabelled drug concentration and Y is the response. 

BOTTOM is the Y value at the bottom of the plateau; TOP is the Y value at the top of the 

plateau, and LogEC50 is the X value when the response is halfway between TOP and 

BOTTOM. LogEC50 is the logarithm of the EC50, the concentration that gives a response 

halfway between TOP and BOTTOM.  The variable LogEC50 is the concentration of 
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competitor required to compete for half the specific binding.  EC50 (effective 

concentration producing a response halfway between the top and bottom) is generally 

used with sigmoidal curves, whereas, IC50 (inhibitory concentration producing a response 

halfway between the top and bottom) is a more specific term used in competition 

analysis.  In this case either can be used, though IC50 is more descriptive of the studies 

and thus more appropriate.  

In the specific instance of cold saturation experiments, the bottom plateau of the 

binding curve is equal to nonspecific binding.  As described above, the concentration of 

unlabeled drug that produces radioligand binding halfway between the upper and lower 

plateaus is called the IC50 (inhibitory concentration 50%).  The top plateau of the binding 

curve is equal to radioligand binding in the absence of the competing unlabeled drug.  

The Top value was converted from cpm to fmol using the GraphPad prism 

radioligand calculator (GraphPad Software, San Diego California USA, 

(http://www.graphpad.com).  The conversion of cpm to molar units is done using the 

following equations:  

 
cpm/ml x dpm/____cpm x Ci/2.2 x 1012dpm x mmol/ ___Ci x 1000mL/L x 1 
mol/1000mmol= ____mol/L 
 

The determined molar value (i.e. fmol) was then divided by the concentration of 

protein in the synaptosomal preparation (mg of protein), in order to estimate the total 

number of DA D2 receptors (Raclopride studies) or dopamine transporter protein 

(GBR12935 studies) sites in the tissue being studies.  The Bmax occurs when all of the 

receptors/transporters are occupied by radioactive drug.  The Bmax values in our studies 

are reported as fmol/mg of protein.  Generally, the Bmax cannot be determined from 
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competition studies.  Bmax values can be determined if the labeled and unlabeled ligand 

are the same; the term apparent Bmax in used in the text to identify that the Bmax was 

not directly determined from saturation analysis.  

 Saturation analysis is used to determine the dissociation constant (Kd ) and Bmax. 

Kd is the equilibrium dissociation constant.  It is equal to the concentration of radioactive 

ligand required to occupy 50% of the receptors.  With a known Kd, one can determine the 

Ki, Bmax, and fractional occupancy.  Ki is the equilibrium dissociation constant for a 

competitive inhibitor of the receptor.  Note: The competitive inhibitor can be an agonists 

or an antagonist. It is referred to as a competitive inhibitor because its value is determined 

by measuring the ability of the unlabeled drug to compete with a radiolabeled drug for 

the receptor.  The Ki value for an unlabeled drug should be the same as the Ki value 

obtained if the drug is labeled.  The Ki can be calculated from the EC50 using the Kd value 

determined in saturation studies using the Cheng-Prusoff equation (1973) where:  

 
Ki = EC50/ 1+ [ligand]/Kd

In order to confirm that the completed studies targeted a representative sample of 

the receptor of interest’s total population, the fractional occupancy should be calculated 

and reported for each experiment where appropriate.  The law of mass action predicts the 

fractional receptor occupancy at equilibrium as a function of ligand concentration. 

Fractional occupancy is considered the fraction of all receptors that are bound to ligand 

and is defined as:  

 

Fractional Occupancy  = [Ligand x Receptor]/Total Receptor] 
 = [Ligand x Receptor]/[Receptor] +[Ligand x Receptor] 
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This equation is not useful, because the concentration of unoccupied receptor, 

[Receptor], is usually not known.  One can rearrange the equation to be useful.  

 
Fractional occupancy  = [Ligand]/[Ligand] + Kd

Since our studies were looking to determine a difference between several drug 

treatment regimens, instead of characterizing a specific receptor or transporter, saturation 

analysis was not used.  We used IC50 values as an approximation of Kd.

The Prism software determined the EC50 which is equivalent to IC50 under our 

conditions and apparent Bmax values for each of the curves.  The software was then used 

to average the IC50 values and determined and presented as the mean ± the standard error  

of the mean (S.E.M).  Data are considered significant at P < 0.05.  All statistical analysis 

were done using GraphPad Prism version 4.00 for Windows, GraphPad Software, San 

Diego California USA, http://www.graphpad.com.  Upon completion of the nonlinear 

regression, the appropriate experimental values were statistically analyzed utilizing the 

two–way ANOVA (treatment vs. time) with Bonferonni post test using GraphPad Prism 

version 4.00 for Windows, GraphPad Software, San Diego CA.  All statistical analysis 

were performed on untransformed data.   

4.3 Results  

 4.3.1 [3H]Dopamine uptake.  It has previously been reported that a single 

administration of MA decreased striatal [3H]DA uptake to 63-72% of control values in 

striatal synaptosomes prepared one hour after drug administration (10mg/kg)  (Metzger et 

al., 1998a).  Similar to a single administration, multiple high-dose injections (i.e. four 
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10mg/kg injections at 2 hr intervals) of MA decreased [3H]DA uptake to 30% of control 

values.   

The competitive inhibition of [3H]DA uptake into STR and ACC synaptosomes 

was examined over a concentration range of 0.34 to 17,000 nM of unlabelled dopamine. 

Results presented in figures 4-3 and 4-4 demonstrate the competitive inhibition curves 

generated with synaptosomes from each of the treatment groups at 1hrPT and 7dayPT.  

Cold saturation studies failed to demonstrate an alteration in the IC50 values between any 

of the treatment groups or time points (figure 4-5). 

Results presented in figure 4-6 and table 4-1 demonstrate that our 1hrPT regimen 

reduced MA and COMBO treated STR and ACC [3H]DA uptake to 60%, 58%, 71% and 

74% of control values, (MA-STR, COMBO-STR, MA-ACC, COMBO-ACC) 

respectfully.  [3H]DA uptake returned to control values at the 7dayPT time point as 

demonstrated by the values of control 96%, 83%, 92%, and 85%, respectfully (figure 4-6 

and table 4-1).  One should note that the COMBO treated groups in both STR and ACC 

did not return to the 90+% control values, as seen in the MA treated groups. A significant 

difference was determined to be present between the MA and COMBO treated groups at 

the 7dayPT time point (p < 0.05). This difference was not observed in the ACC brain 

region. A comparison of the apparent Vmax values can be seen in figure 4-7.  Table 4-1 

compares the maximum specific [3H]DA uptake (apparent Vmax) and the percent of 

control values in the STR and ACC at 1hrPT and 7dayPT.  

Our studies most closely resembled the results of Metzger et al. (1998a), where 

they observed an IC50 value of 63±8 nM for the single administration of MA compared to 

our results, which yielded 78±15 nM in the STR and 85±13 nM in the ACC. No 
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correlation was observed between the calculated IC50 values and the ability of the agents 

to alter dopamine uptake after administration in vivo. Furthermore, no difference was 

observed between the MA and COMBO treated values in either brain region or time 

points 

 Specific uptake was defined as total (or test sample) binding–nonspecific binding.  

The resulting cold saturation data was analyzed with a nonlinear computer-fitting 

program to estimate apparent Vmax (transporter density) and IC50 values.  Best-fit 

models were determined by the F test (Munson and Rodbard, 1980).  This data was 

analyzed by two-way analysis of variance (ANOVA) (Winer, 1971), followed by 

Bonferroni post hoc comparison, where appropriate.  Results were considered significant 

when P was < 0.05.  The apparent Vmax and IC50 values were determined and 

statistically analyzed from original data prior to being transformed to percent of control 

for graphical representation. All data analysis was performed using GraphPad Prism 

Version 4.00 for Windows, (GraphPad Software Inc., San Diego, CA). 
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Figure 4-3. Dopamine uptake in the STR. Dopamine uptake studies were performed and 
competitive inhibition curves generated for the treatment groups listed. Results were 
obtained from fresh STR synaptosomal preparations over a concentration range of 0.34 to 
17,000 nM of unlabelled dopamine. Data represents the mean (±SEM) of four 
independent experiments, each conducted in duplicate. (A) 1hrPT (B) 7dayPT 
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Figure 4-4. Dopamine uptake in the ACC. Dopamine uptake studies were performed 
and competitive inhibition curves generated for the treatment groups listed. Results were 
obtained from fresh synaptosomal ACC preparations over a concentration range of 0.34 
to 17,000 nM of unlabelled dopamine. Data represents the mean (±SEM) of four 
independent experiments, each conducted in duplicate. (A) 1hrPT (B) 7dayPT 
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Figure 4-5.  [3H]Dopamine uptake IC50 values. [3H]Dopamine uptake IC50 values as 
determined from nonlinear regression analysis expressed as molar equivalent at the 
1hrPT and 7dayPT. Each bar represents the mean (±SEM) of 4 samples run in duplicate. 
(A) STR (B) ACC 
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Figure 4-6. [3H]Dopamine uptake as percent of control (%) at the 1hrPT and 7dayPT. (** 
p < 0.01; * p < 0.05) $ denotes difference between the MA and COMBO treated groups 
(p < 0.05) at the 7dayPT STR time point. Each bar represents the mean (±SEM) of 4 
 samples run in duplicate. (A) STR (B) ACC 
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Figure 4-7. [3H]Dopamine uptake apparent Vmax values expressed as specific uptake 
(fmol/mg of protein/min) at the 1hrPT and 7dayPT. (* p<0.05; ** p<0.01) $ denotes 
difference between the MA and COMBO treated groups (p<0.05) at the 7dayPT STR 
time point. Each bar represents the mean (±SEM) of 4 samples run in duplicate. (A) STR 
(B) ACC 
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Table 4-1. Uptake Apparent Vmax Values (fmol/mg protein/min); Percent of Control 
and GBR Apparent Bmax Values (fmol/mg protein); Percent of Control Data represent 
the mean±SEM of four independent experiments, each conducted in duplicate. Astricks 
indicate difference between the identified group and the saline control group (*p<0.05; 
**p<0.01; ***p<0.001) $ indicates difference between MA and COMBO treated groups 
at the 7dayPT time point (p<0.05). 
 
[3H]DA Uptake Data 
 Vmax-Specific uptake   Percent of control 

(fmol/mg protein/min)  (%)   
Treatment   1hrPT    7dayPT  1hrPT   7dayPT    
Striatum 
Saline    3318±139  3218±346  100±4.2  100±10.6  
MA    1997±352** 3105±278  $ 60±10.6  94±8.4 
NIC    3345±329 3674±223 99±7.1  112±6.8 
COMBO   1934±237** 2663±157  $ 58±7.1  81±1.7 
 
Nucleus Accumbens 
Saline    1594±168 1635±196 100±10.5 100±12.0   
MA    1137±94* 1509±135 71±5.9  92±8.2 
NIC    1786±108 1455±75  112±6.8  89±4.6 
COMBO   1178±66* 1393±52  73±4.1  85±3.2 
 



143

4.3.2 [3H]GBR12935 binding.  The potent and selective dopamine uptake 

inhibitor [3H]GBR12935 was utilized to detect changes in the density of the DAT on rat 

STR and ACC membranes.  Cold saturation curves (figures 4-8 and 4-9) from 

membranes of 1hrPT and 7dayPT animals were examined over a concentration range of 

0.01nM to 5µM GBR12935.  Cold saturation studies failed to demonstrate an alteration 

in the IC50 values between any of the treatment groups or time points (figure 4-10).  The 

1hrPT regimen reduced MA and COMBO treated STR and ACC [3H]GBR12935 

maximum specific binding to 54%, 51%, 61% and 67% of control values, respectfully 

(figure 4-11).  The [3H]GBR12935 binding appeared to return to control values at the 

7dayPT time point, as demonstrated by the values of control 94%, 102%, 100%, and 

101%, respectfully.  Our studies revealed apparent Bmax values, in accordance with 

previous reports from the literature (e.g. Janowsky et al., 1986; Page et al., 2000).  

Results presented in figure 4-12 and table 4-2 represent the transformed data from 

figure 4-8 and figure 4-9 which demonstrate the changes in the DAT density expressed as 

% control (fmol/mg protein).  A comparison of the [3H]DA uptake and [3H]GBR12935 

binding studies is presented in table 4-3.  The resulting cold saturation data was analyzed 

with a nonlinear computer-fitting program to estimate apparent Bmax (transporter 

density) and IC50 values.  Best-fit models were determined by the F test (Munson and 

Rodbard, 1980).  This data was analyzed by two-way analysis of variance (ANOVA) 

(Winer, 1971), followed by Bonferroni post hoc comparison, where appropriate, before 

data transformation to percent of control for clarity of presentation.  Results were 

considered significant when P was < 0.05.  All data analysis was performed using 

GraphPad Prism Version 4.00 for Windows, (GraphPad Software Inc., San Diego, CA). 
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Figure 4-8. [3H]GBR12935 binding curves in the striatum. [3H]GBR12935 binding 
curves were performed and competitive inhibition curves generated for the treatment 
groups listed. Results were obtained from fresh STR synaptosomal preparations over a 
concentration range of 0.01nM to 5µM of unlabelled GBR12935. Data represents the 
mean (±SEM) of four independent experiments, each conducted in duplicate. (A) 1hrPT 
(B) 7dayPT 
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Figure 4-9. [3H]GBR12935 binding curves in the nucleus accumbens. [3H]GBR12935 
binding curves were performed and competitive inhibition curves generated for the 
treatment groups listed. Results were obtained from fresh ACC synaptosomal 
preparations over a concentration range of 0.01nM to 5µM of unlabelled GBR12935. 
Data represents the mean (±SEM) of four independent experiments, each conducted in 
duplicate. (A) 1hrPT (B) 7dayPT 
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Figure 4-10. [3H]GBR12935 binding IC50 values. [3H]GBR12935 binding IC50 values as 
determined from nonlinear regression analysis expressed as molar equivalent at the 
1hrPT and 7dayPT. Each bar represents the mean (±SEM) of 4 samples run in duplicate. 
(A) STR (B) ACC 
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Figure 4-11. [3H]GBR12935 binding apparent Bmax values expressed as maximum 
specific binding. [3H]GBR12935 binding values (apparent Bmax) as determined from 
nonlinear regression analysis expressed as maximum specific binding (fmol/mg of 
protein) at the 1hrPT and 7dayPT. (** p < 0.01; ***p < 0.001) Each bar represents the 
mean(±SEM) of 4 samples run in duplicate. (A) STR (B) ACC
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Figure 4-12. [3H]GBR12935 binding values (apparent Bmax) as determined from 
nonlinear regression analysis expressed as percent of control (%) at the 1hrPT and 
7dayPT. (** p < 0.01; ***p < 0.001) Each bar represents the mean (±SEM) of 4 samples 
run in duplicate. (A) STR (B) ACC. 
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Table 4-2. GBR binding data. Bmax-Specific binding (fmol/mg protein); Percent of 
control (%) 
 

Bmax-Specific binding   Percent of control 
(fmol/mg protein)     

Treatment   1hrPT  7dayPT   1hrPT    7dayPT   
Striatum 
Saline    5456±77  4897±88  100±3.2  100±8.5  
MA    2951±244*** 4911±256 61±1.5  94±5.8 
NIC    4955±74  4878±384 93±2.5  96±3.5  
COMBO   2781±225*** 4948±80   66±9.1  102±10.3 
 
Nucleus Accumbens   
Saline    2837±90  2704±230 100±1.4  100±1.8   
MA    1739±43*** 2550±156 54±4.4  100±5.2 
NIC    2647±72  2607±96  91±1.3  99±7.8 
COMBO   1895±257** 2775±28  51±4.1  100±1.6 
 

Table 4-3. Dopamine uptake and GBR binding comparison. The comparison of mean ± 
SEM values from four independent experiments, each conducted in duplicate for 
dopamine uptake and GBR12935 binding. The data has been expressed as percent of 
control after 1hrPT regimen. Dopamine uptake and binding was significantly different 
from controls (*p < 0.05; **p < 0.01; ***p < 0.001) as evaluated by ANOVA. (n = 4)  
 
Treatment   STR Uptake STR Binding  ACC Uptake ACC Binding  
 1hrPT  1hrPT  1hrPT  1hrPT 
MA   60±10**  54±4*  71±6***  61±1*** 
COMBO  58±7**  51±4*  74±4***  67±9**  
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4.3.3 [3H]Raclopride binding.  The potent and selective antagonist of dopamine 

D2 receptors, [3H]Raclopride, was used to detect changes in the density of the D2

receptors on rat STR and ACC membranes.  Cold saturation curves (figures 4-13 and 4-

14) from membranes of 1hrPT and 7dayPT animals were examined over a concentration 

range of 0.01nM to 5µM unlabelled raclopride.  Cold saturation studies failed to 

demonstrate an alteration in the IC50 values or apparent Bmax values between any of the 

treatment groups or time points (figure 4-15 and figure 4-16).  Results presented in figure 

4-17 and table 4-4 represent the transformed data from figures 4-13 and 4-14 and 

demonstrate the approximate density of DA D2 receptors present on the membranes 

expressed as % control (fmol/mg protein).  

Our finding s were not consistent with Bennett et al., 1997, where they 

demonstrated approximately a 40% reduction in [3H]raclopride binding sites, which 

reportedly represented the DA D2/D3 receptors present in midbrain cell cultures, one 

week after five days of cell culture treatment with 10 µM MA.  This value was noted to 

represent the entire D2/D3 receptor population in the midbrain cultures, including the 

autoreceptors on dopaminergic cells. However, our studies were in agreement with 

studies done by Dewar et al. (1989), where they observed a Bmax value of 364±20.3 

fmol/mg protein in rat caudate-putamen, compared to our results, which yielded 372±42 

fmol/mg protein in the STR and 253±24 fmol/mg protein in the ACC.  Additionally, the 

IC50 values that were determined in our studies (16±6 nM) were in accordance with 

others reported in Kohler et al. [26 nM] (1985).   



151

 The presented data was analyzed with a nonlinear computer-fitting program to 

estimate apparent Bmax and IC50 values.  Best-fit models were determined by the F test 

(Munson and Rodbard, 1980).  This data was analyzed by two-way analysis of variance 

(ANOVA) (Winer, 1971), followed by Bonferroni post hoc comparison, where 

appropriate, before data transformation to percent of control for clarity of presentation.  

Results were considered significant when P was < 0.05.  All data analysis was performed 

using GraphPad Prism Version 4.00 for Windows, (GraphPad Software Inc., San Diego, 

CA). 
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Figure 4-13. [3H]Raclopride binding in the striatum. [3H]Raclopride binding studies 
were performed and competitive inhibition curves generated for the treatment groups 
listed. Results were obtained from fresh STR synaptosomal preparations over a 
concentration range of 0.01nM to 5µM of unlabelled raclopride. Data represents the 
mean ± SEM of four independent experiments, each conducted in duplicate. (A) 1hrPT 
(B) 7dayPT 
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Figure 4-14. [3H]Raclopride binding in the nucleus accumbens. [3H]Raclopride binding 
studies were performed and competitive inhibition curves generated for the treatment 
groups listed. Results were obtained from fresh ACC synaptosomal preparations over a 
concentration range of 0.01nM to 5µM of unlabelled raclopride. Data represents the 
mean ± SEM of four independent experiments, each conducted in duplicate. (A) 1hrPT 
(B) 7dayPT 
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Figure 4-15. [3H]Raclopride binding IC50 values. [3H]Raclopride binding IC50 values as 
determined from nonlinear regression analysis expressed as molar equivalent at the 
1hrPT and 7dayPT. Each bar represents the mean (±SEM) of 4 samples run in duplicate. 
(A) STR (B) ACC 
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Figure 4-16. [3H]Raclopride apparent Bmax values expressed as maximum specific 
binding. [3H]Raclopride apparent Bmax values as determined from nonlinear regression 
analysis expressed as maximum specific binding (fmol/mg of protein) at the 1hrPT and 
7dayPT. Each bar represents the mean (±SEM) of 4 samples run in duplicate. (A) STR 
(B) ACC 
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Figure 4-17. [3H]Raclopride apparent Bmax values expressed as percent control. 
[3H]Raclopride binding values (apparent Bmax) as determined from nonlinear regression 
analysis expressed as percent of control (%) at the 1hrPT and 7dayPT. Each bar 
represents the mean (±SEM) of 4 samples run in duplicate. (A) STR (B) ACC 
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Table 4-4. Raclopride binding data.  
 

Bmax-Specific binding   Percent of control 
(fmol/mg protein)   (%)   

Treatment   1hrPT  7dayPT   1hrPT    7dayPT   
Striatum 
Saline    464±10   372±42   100±2  100±11  
MA    409±8      297±56  89±2  80±15 
NIC    379±15  306±80  92±4  83±17  
COMBO   454±5      394±15   98±1  100±4 
 
Nucleus Accumbens   
Saline    210±5  253±24  100±3  100±11   
MA    226±4  201±42  107±2  80±16 
NIC    238±10  182±37  103±5  80±15 
COMBO   224±6  262±26  106±3  103±10 
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4.3.4 [3H]dopamine release.  The final studies sought to determine the effects of 

the various drug treatments on the release profile of the STR and ACC tissue slices.  The 

DA release potential was assessed in both brain regions at 1hrPT and 7dayPT time points 

by preloading each set of tissue slices with [3H]DA.  The slices were then perfused for 30 

minutes at a flow rate of 0.6 ml/min. in a wash out stage using release buffer.  

A low, stable baseline of basal release (approximately 1%/min.) was established. 

After eight minutes (fraction 4), tissue was stimulated to release [3H]DA by a two-minute 

exposure to 30 mM KCl.  The perfusion solution was returned to the non-stimulating 

releasing buffer for an additional 16 minutes, allowing the [3H]DA release to return to the 

basal level.  Fractions were collected in two-minute increments.  Release was reported as 

fractional release as previously described in Chapter 2.  

Data were expressed as radioactivity released during the collection interval 

(fractional release, percent).  The highest amount of fractional release was seen in 

fraction number 6.  The peak release of [3H]DA (fraction 6) was used to compare 

treatment groups for the statistical analysis.  Additional data analysis was done utilizing 

the sum of fractions 5-9, which would approximate an area under the curve (AUC) for the 

total amount of [3H]DA released in response to the stimulus.  Finally, each of the 

treatment groups’ AUC was compared to the average saline (control) treated group’s 

AUC and reported as percent of control.  Statistical significance was determined by 

utilizing a two-way ANOVA (Winer, 1971), followed by Bonferroni post-hoc 

comparison.  Statistical significance was assumed at P values less than 0.05.  All data 

analysis was performed using GraphPad Prism Version 4.00 for Windows, (GraphPad 
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Software Inc., San Diego, CA).  All data were analyzed prior to transformation to percent 

control for graphical representation.  

While the overall incorporation of [3H]DA should be lower in MA and COMBO 

treated animals, because of the decrease in [3H]DA uptake demonstrated in the DAT 

studies, this does not effect the fractional DA release, which is a ratio of the counts in the 

fraction to the total counts in the tissue.  The reduction in [3H]DA release observed after 

MA or COMBO treatments would not depend on the amount of incorporation of [3H]DA 

into the cell, but the ratio of that released to that remaining in the cell.  

[3H]DA release stimulated by KCl (30mM) was 24% and 34% (STR and ACC, 

respectfully) of total radiolabeled DA in the saline treated brain slices, which will be used 

as the control value (figure 4-18 and table 4-5).  In STR, the 1hrPT MA and COMBO 

treated tissue released 17% and 10% of the loaded [3H]DA, a 30% and 60% reduction 

from control values, respectfully (figure 4-18A).  Similar decreases were observed in 

ACC tissue with 1hrPT MA and COMBO treated ACC tissue values being 17% and 

12%, a 50 and 65% reduction from control values, respectfully (figure 4-18B).  The 

observed decreased [3H]DA release appeared to be a temporary event in that both STR 

and ACC tissue release values returned to control values at the 7dayPT time point.  

The peak fractional release values are presented in figure 4-18, figure 4-19, and 

table 4-5.  In addition to the peak release values, figure 4-20, figure 4-21  and table 4-5 

also represent the sum of fractions 5-9, which represents the total amount of [3H]DA 

released in response to the stimuli.  The sum of fractions 5-9 [3H]DA release stimulated 

by KCl (30mM) in the saline treated tissue was 24% and 34% (STR and ACC, 

respectfully) of the total radiolabeled DA.  A reduction of 31% and 32% was seen at the 
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1hrPT in STR and ACC in the MA treated rats, and a 52% and 48% reduction in the 

COMBO treated rats, respectfully. These values also returned to control values at the 7-

day time point. The author utilized the total release (sum of fractions), instead of the peak 

release, to form an opinion about the outcome of the data, because it offers a more 

uniform measurement of the [3H]DA release.   

 The basal levels of [3H]DA release were reported in figure 4-22 as percent of 

fractional [3H]DA release. Figure 4-19 is the basal levels of [3H]DA release expressed as 

percent of control with the summary of the basal release data presented in table 5-5. 

Statistical differences were seen in both MA and COMBO treated groups in both STR 

and ACC at the 1hrPT time point. These differences were not seen in any of the groups at 

the 7dayPT time point as the basal release in both groups in both brain regions returned to 

the control value.    
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Figure 4-18. Evoked [3H]dopamine release expressed as percent of fractional 
[3H]dopamine release.  Peak fractional [3H]DA release (expressed as percent of fractional 
[3H]DA release) either at 1hrPT or 7dayPT. Releasing agent was 30 mM KCl. [3H]DA 
release was significantly decreased 1hrPT but not 7dayPT. (** p < 0.01; *** p < 0.001 = 
statistically different from the control group; $ = statistically different from each other, p 
< 0.05) Each bar represents the mean (±SEM) of 4 samples run in duplicate. (A) STR (B) 
ACC 
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Figure 4-19. Evoked peak fractional [3H]dopamine release expressed as percent of 
control.  Peak fractional [3H]DA release (expressed as percent of control) either at 1hrPT 
or 7dayPT. Releasing agent was 30 mM KCl. [3H]DA release was significantly decreased 
1hrPT but not 7dayPT. (** p < 0.01; *** p < 0.001 = statistically different from the 
control group; $ = statistically different from each other, p < 0.05) Each bar represents the 
mean (±SEM) of 4 samples run in duplicate. (A) STR (B) ACC 
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Figure 4-20. Sum of fractions 5-9 evoked [3H]dopamine release expressed as percent of 
fractional [3H]dopamine release. Sum of fractions 5-9 [3H]DA release (expressed as 
percent of fractional [3H]DA release) either at 1hrPT or 7dayPT. Releasing agent was 30 
mM KCl. [3H]DA release was significantly decreased 1hrPT but not 7dayPT. (*** p < 
0.001) Each bar represents the mean (±SEM) of 4 samples run in duplicate. (A) STR (B) 
ACC 
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Figure 4-21. Sum of fractions 5-9 evoked [3H]dopamine release expressed as percent of 
control. Sum of fractions 5-9 [3H]DA release (expressed as percent of control) either at 
1hrPT or 7dayPT. Releasing agent was 30 mM KCl. [3H]DA release was significantly 
decreased 1hrPT but not 7dayPT. (*** p < 0.001) Each bar represents the mean (±SEM) 
of 4 samples run in duplicate. (A) STR (B) ACC 
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Figure 4-22. Basal [3H]dopmaine release expressed as percent of fractional 
[3H]dopamine release. Basal [3H]DA release (expressed as percent of fractional [3H]DA 
release) either at 1hrPT or 7dayPT. Releasing agent was 30 mM KCl. [3H]DA release 
was significantly increased at 1hrPT but not 7dayPT (*** p < 0.001). Each bar represents 
the mean (±SEM) of 4 samples run in duplicate.(A) STR (B) ACC 
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Figure 4-23.  Basal [3H]dopamine release expressed as percent of control. Basal [3H]DA 
release (expressed as percent of control) either at 1hrPT or 7dayPT. Releasing agent was 
30 mM KCl. [3H]DA release was significantly increased at 1hrPT but not 7dayPT (*** p 
< 0.001). Each bar represents the mean (±SEM) of 4 samples run in duplicate. (A) STR 
(B) ACC 
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Table 4-5. Comparison of evoked dopamine release and basal dopamine release. 
 
Fractional Release Values 
 

Fraction 6 (%) Sum of Fractions 5-9 (%) Percent of Control (%)
Treatment  1 hour    7 days 1 hour    7 days  1 hour    7 days 
Striatum 
 
Saline   24±1.6   30±1.6  46±4.8   54±1.8   100±6.5  99±5.2 
MA   17±0.9**,$ 30±0.4 32±1.0**  56±1.2   70±3.8  98±1.4 
NIC   26±0.5  33±0.9 48±4.1  57±1.7  106±2.0  108±2.8 
COMBO   10±1.7***,$ 30±1.1 22±2.8***  58±2.0   41±6.9  101±3.6 
 
Nucleus Accumbens   
 
Saline   34±2.8  32±1.7 48±3.0  56±4.0  100±8.2  100±5.3 
MA   17±1.0***  28±0.8 33±3.7***  54±1.5  49±3.1  87±2.8 
NIC   32±0.4  28±2.1 47±2.2  50±3.7  95±1.3  90±6.5 
COMBO   12±2.8***  33±3.7 25±4.1***  55±3.2  37±8.5  103±11.6 
 
Basal Release Values 
 Mean Basal Release of Fractions 1-4 (%) Percent of Control (%)
Treatment   1 hour    7 days  1 hour    7 days  
Striatum 
Saline    1.4±0.06   1.66±0.10   99±5.6  100±14 
MA    2.2±0.07*** 1.85±0.16  173±10.1  85±8.1 
NIC    1.4±0.21  1.54±0.07  85±9.6  84±3.3 
COMBO    2.2±0.23*** 1.86±0.08  159±13.1  102±9.7    
 
Nucleus Accumbens 
 
Saline    1.21±0.06  1.68±0.24  100±4.5  100±6.0 
MA    2.09±0.12*** 1.43±0.14  164±5.0  111±9.6 
NIC    1.03±0.12  1.42±0.05  101±15.2  93±4.4 
COMBO    1.93±0.16** 1.72±0.16  158±16.7  112±4.9 
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4.4 Discussion 

The reinforcing or addictive effects of MA are closely associated with their ability 

to enhance DA transmission within the mesocorticalimbic DA system, which extends 

from the ventral tegmental area to terminal regions in the nucleus accumbens (Kuhar et 

al., 1991; Roberts et al., 1977).  Transport into the presynaptic terminal is the primary 

mechanism for terminating the effects of released DA (Giros et al., 1996).  The majority 

of biochemical and pharmacological studies characterizing DA transport in the rat brain 

have utilized synaptosomes obtained primarily from the dorsal STR with few from the 

nucleus accumbens (Williams and Steketee, 2004).  Substantial animal data now 

implicate the nucleus accumbens as a critical target in the mechanism of action of all 

drugs of abuse, including MA (Robinson and Berridge, 1993; White and Kalivas, 1998; 

McLeman et al., 2000).   

The current studies were designed to examine the ability of MA co-administered 

with NIC to alter the release of DA, modify DA D2 receptors, and to identify any 

concomitant changes in DA transport or transporter number not only in the STR, but also 

the ACC.  Results presented in Table 4-1 demonstrate that [3H]DA uptake into STR and 

ACC synaptosomes, prepared from rats decapitated one hour after MA and COMBO 

treatment (three 5mg/kg i.p. injections in two hour increments), was decreased by 40% in 

STR and 30% in ACC, without modification of the apparent affinity (data not shown). 

Additionally, studies utilizing STR and ACC synaptosomes, prepared from rats 

decapitated 7 days after MA administration (described above), appeared to return to 

normal and did not deviate from control values. However, in the STR, the rats receiving 

the COMBO treatment did not return to normal saline values at the 7dayPT. There was a 
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significant difference between the MA and COMBO treated animals which received the 

same amount of MA in each injection. Therefore, one can infer that the co-administration 

of the two drugs together prevented the uptake from returning to normal. The ACC 

region showed no significant difference between the MA and COMBO treated animals at 

the 7dayPT and all values essentially reached the level of the saline control group.  

Similar studies by Fleckenstein et al. (1997) demonstrated that similar effects are 

unrelated to residual levels of MA introduced by the treatment, as evidenced by the 

findings that MA concentrations in the synaptosomal preparations were less than 1% of 

the concentration required to decrease synaptosomal [3H]DA accumulation by 50% 

(Fleckenstein et al, 1997a;b). 

The functionality of the DAT in each of the tissues (STR, ACC) at two different 

time points (1hrPT and 7dayPT) was assessed by determining IC50 values and the 

apparent (Vmax).  The Vmax indirectly assesses the specific rates of [3H]DA uptake.  

There was no difference in receptor affinity, as demonstrated indirectly by the constant 

IC50 values, which did not differ significantly from control values.  A 40% and 42% 

reduction in specific [3H]DA uptake was observed one hour after the last MA 

administration in STR and ACC, respectfully.  The alterations in the apparent Vmax 

values as seen in figure 5-5 and reported in table 5-1 indicated a decrease in the specific 

rate of transport.  Similar findings were reported by Nakayama et al. (1993), which 

demonstrated a 36% reduction in specific [3H]DA uptake in the STR 7 days after the last 

MA administration. These findings were determined after an increasing dose paradigm of 

MA lasting over one week.  This data lead us to believe that the initial decreases we 
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observed with multiple doses on a single day may be sustained for up to a week, with a 

more chronic administration schedule.  

The number of transport sites was found to be decreased, in addition to the 

alteration of specific [3H]DA uptake velocity changes.  This was evidenced utilizing the 

highly selective dopamine uptake inhibitor GBR12935.  Results of the 1hourPT MA and 

COMBO treated animals [3H]GBR12935 binding studies revealed a 46% and 29% 

reduction of transporter density in STR and ACC, respectfully.  These are similar 

proportions to reductions seen in the uptake studies (Table 4-3) and to previously 

reported values (29% reduction in STR GBR12935 binding 7 days post last MA 

administration) by Nakayama et al. (1993).  

The decrease in [3H]DA transport along with the modification of DAT protein 

density would indicate that a modification of the expression of the DAT had taken place. 

MA has previously been shown to rapidly and reversibly decrease the dopamine 

transporter activity.  This change has been attributed to high doses of MA and its ability 

to promote free radical formation and inactivate the DAT thru oxidative events 

(Fleckinstein et al., 1997b; 1999).  Our studies do not further elucidate the mechanism of 

this change; they do show that MA-induced dopaminergic changes in [3H] DA uptake 

and DAT density as demonstrated by specific [3H] DA uptake and GBR12935 binding 

studies are not altered significantly with the co-administration of NIC. Furthermore, our 

studies provide data to substantiate similar reductions in [3H] DA uptake and DAT 

density within two separate areas of the rat brain, the STR and ACC.  

Regulation of DA transport function involves many factors, including 

phosphorylation or glycosylation of transporter protein, alteration of the membrane 
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potential, the fluidity state of the membrane, or modification of sulfhydryl groups 

(Povlock et al., 1996); all of which would alter transporter affinity.  Our findings, which 

demonstrate a decrease in transport velocity (Vmax) and density of transporter sites 

(Bmax) with no change in affinity (apparent IC50), leads us to believe that the transporter 

modification seen in our studies are not likely in response to the above listed factors. 

Bennett et al. (1997) reported transporter function studies that contradicted our 

findings.  The Bennett group demonstrated alterations in DA uptake involving transporter 

affinity for the substrate DA, and not changes in the number or rate of transporter sites. 

Their findings observed after MA treatment were admittedly reported as results not 

typical of a neurotoxic response, which would have resulted in a reduction in Vmax and 

Bmax, which is what our findings suggested.  It is important to note the Bennett et al. 

(1993) studies were based upon data utilizing cell culture and our data is from rat brain 

synaptosomes.  The controversial nature of these studies indicates the need to further 

understand the mechanism of DAT alteration in response to MA administration.  

[3H]Raclopride was used to examine the DA D2 receptor subtypes within the STR 

and ACC.  The substituted benzamine drug has been shown to be a potent and selective 

antagonist of the DA D2 receptors.  In vitro studies have shown that [3H]raclopride binds 

with high affinity and with a low proportion of non-specific binding to rat striatal 

homogenates (Kohler et al., 1985).  Kohler et al. (1985) demonstrated that the regional 

distribution of DA D2 receptors to be greater in STR than ACC.  Our [3H]raclopride 

binding studies revealed no significant changes in either IC50 or apparent Bmax values at 

1hrPT or 7dayPT.  These findings suggest no alteration to DA D2 receptor number, which 

contradicts work published by Bennett et al. (1997).  Bennett’s group reported a reduced 
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response to quinpirole, the DA D2 receptor agonist, after MA treatment indicating that 

there were modifications in the DA D2 receptors.  Their group subsequently found these 

changes to be due to down regulation (Bennett et al., 1997). 

Persistently elevated DA levels are known to down regulate/desensitize both pre- 

and post-synaptic receptors and may be responsible for DAT modifications, as well.  We 

speculate that the controversial results are due to the length of exposure to MA.  Our 

studies utilized one day of multiple doses in rats followed by examination at 1hourPT and 

7dayPT time points.  The other studies collected their data from cell cultured 

mesencephalic cells and exposed the cells to MA for five days.  Differential treatment 

regimen most likely explains the differences seen in our results.  It should become 

obvious that the mechanism of MA to alter the dopaminergic system changes with length 

of exposure.  The current DA D2 receptor studies yielded no significant changes or 

findings and it is thought that the above-described dosing regimens do not alter the 

receptors at either time point observed.  Additional time points may need to be addressed 

to complete our understanding of DA receptor regulation. 

The majority of non-human primate studies support the view that MA induced 

neurotoxicity accounts for reduced DAT binding (Villemagne et al., 1998).  More 

recently, human studies have found that detoxified MA users have reduced DAT 

(Volkow et al., 2001a; Sekine et al., 2001) and DA D2 receptor (Volkow et al., 2001b) 

binding in the caudate, putamen, and ACC, all of which are areas associated with 

psychostimulants, addiction, and pleasurable response.  DAT and DA D2 receptors are 

two of the most important proteins controlling extracellular DA concentrations (Torres et 

al., 2003; Schmitz et al., 2002).  Previous reports have demonstrated enhanced drug-
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induced extracellular levels of DA are associated with reinforcement (Vezina, 2004).  

Examining changes in DA D2 and DAT function associated with MA and COMBO 

dosing regimens would most likely identify differences that would affect MA’s 

psychostimulant effects.  

The final set of studies compared the MA, NIC, and COMBO treatment regimens, 

with respect to [3H]DA release in the STR and ACC at 1hrPT and 7dayPT.  Under 

experimental conditions used in the present study, release of preloaded [3H]DA appears 

to be of neuronal origin and to have physiological relevance.  Although the radioactivity 

measured in the collected fractions may consist of a mixture of neurotransmitters and 

metabolites, the amount of tritium released from rat brain slices has been previously 

shown to represent a close estimation of the release of labeled or endogenous DA release 

(Parker and Cubeddu, 1985; Herdon and Nahorski, 1987). Furthermore, the release of 

metabolites, during the superfusion, was inhibited by the presence of the monoamine 

oxidase inhibitor pargyline in the superfusion buffer (Zumstein et al., 1981).  

The stimulated release of DA from nerve terminals can take place by a number of 

mechanisms.  The primary mode of release is by depolarization-evoked exocytosis from 

the vesicular pool, in which depolarization of the terminal membrane activates voltage-

dependent Ca++ channels; the resulting influx of extracellular Ca++ then mediates the 

release process (Raiteri et al., 1978; Prince et al., 1996; Dobrev and Andreas, 1997). 

Depolarization can be produced by increasing the concentration of extracellular K+, 

which alters the membrane potential by an amount determined by the Nernst equation. 

This method was used in our studies to evoke the release of the preloaded [3H]DA. 

Dopamine can also be released from the cytoplasmic pool (Kalivas and Duffy, 1991; 
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Heeringa and Abercrombie, 1995).  Amphetamine and MA have also been shown to 

produce reversal of the dopamine transporter, which causes DA efflux from the nerve 

terminal (Pifl et al., 1995; Giros et al., 1996) 

The results of our studies demonstrate the ability of MA and COMBO treatment 

to alter the release of [3H]DA from nerve terminals in the STR and ACC.  Analysis of the 

amount of [3H] DA released at its peak (fraction 6), after release triggered by 30 mM 

KCl, demonstrates a statistically significant 30% and 59% decrease from control values 

at 1hrPT in STR and ACC, respectfully.  Additionally, statistical difference was 

determined between the MA and COMBO treatment groups.  Additional analysis of the 

total amount of [3H]released (fractions 5-9) in response to the stimulus fails to show a 

difference between the two treatment groups, yet, still demonstrates the difference 

between each of the treatment groups and the control values. 

Data from the 1hrPT ACC studies is similar to the STR studies, in that the MA 

and COMBO treatment groups reduce [3H] DA release to 51% and 63%, respectfully. 

Both the STR and ACC studies show that [3H]DA release returns to control values at the 

7dayPT time point (figure 4-18, figure 4-19, and table 4-5).  The investigator believes 

that the difference found between the MA and COMBO treated groups in the 1hrPT STR 

fractional release studies most likely represents a more rapid rise in [3H] DA release, and 

that the sum of fractions 5-9 confirms that there is difference between control values but 

not between the two treatment groups (table 4-3).  

Previous research has shown sub chronic exposure to amphetamine reduces basal 

concentrations of DA in the ACC (Rossetti et al., 1992; Weiss et al., 1992, 1997; Gerrits 

et al., 2002).  Under the experimental conditions of the present study, basal release of 
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[3H]DA was noted to be increased in MA and COMBO treated animals at the 1hrPT time 

point.  The MA and COMBO treatments in the STR and ACC were elevated 73% (MA-

STR), 59% (COMBO-STR), 64% (MA-ACC), and 58% (COMBO-ACC) (table 5-3).  

The aforementioned studies are not extensive enough to elucidate the mechanism for the 

rise in basal [3H]DA release seen with MA and COMBO treated animals.  The authors 

can conclude, based upon the 7dayPT data that, whatever the cause, it is reversible. 

Admittedly, it is difficult to speculate on the cause of the increase in basal 

[3H]DA release.  The overall data generated with the current studies represents a 

reduction in DAT function and density at 1hrPT with the return to normal at 7dayPT. 

This would lead most to postulate a reduction in basal [3H]DA release; that is not the 

case.  The demonstrated changes at 1hrPT with return to normal at 7dayPT in the DAT 

and [3H]DA release studies leads one to believe there may be an association between the 

two.  The observed decrease in DAT activity with an increase in basal [3H]DA release in 

the studies falls short of explanation.  Mechanisms whereby MA decreases the DAT 

activity have not been elucidated fully, though MA-induced hyperthermia has been 

associated with similar changes (Metzger et al., 2000).  Further studies will be needed not 

only to elucidate the mechanism of DAT alteration, but also to determine the changes 

associated with basal DA release.  

In conclusion, these studies examined DAT density and function, DA D2 receptor 

binding, and [3H]DA release in two brain regions at two separate time points and were 

unable to substantiate our hypothesis that the co-administration of NIC would enhance 

the psychostimulant effects produced by MA.  Future studies proposed will examine the 
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ability of MA to decrease the reactive oxygen species produced by MA administration, in 

hope of finding a neuroprotective effect associated with NIC and MA co-administration.  
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Chapter V 

 

DISCUSSION 

 

5.1 Introduction  

 The studies previously described utilized well-established enzyme inhibitor kits to 

identify alterations within two major CYP450 enzymes, CYP3A4 and CYP2D6. 

Additionally, two dopaminergic brain regions were investigated using [3H]DA uptake, 

[3H]GBR-12935 binding, and [3H]raclopride binding to assess DA uptake, DAT density, 

and DA D2-like receptor density changes, respectfully.   These studies were used to 

identify neurochemical and metabolic changes associated with the co-administration of 

NIC and MA.  

 The first set of studies helped to substantiate human CYP2D6 and rat 

CYP2D2 as the primary metabolic enzymes of MA. Additionally, these studies 

demonstrated that CYP3A4, one of the other major human metabolic enzymes, played 

little role, if any, in the metabolism of MA. Furthermore, metabolic changes associated 

with the co-administration of these two drugs resulted in the COMBO treated animals 

metabolism returning to control values significantly faster than when administered MA 

alone.  

 Neuropharmacological studies demonstrated alterations in DA uptake and the 

density of the DAT protein. Yet, no changes were seen in the D2-like DA receptor 

density.  Studies investigating the release of DA demonstrated alterations in the evoked 

DA release and basal DA release.  The neuropharmacological and metabolic changes 
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associated with NIC when co-administered with MA vs. MA alone can be summarized as 

a prolonged decrease in functional [3H]DA uptake within the STR, a decrease in the 

evoked [3H]DA released, and a decrease in the inhibitory action on the CYP2D2 isozyme 

in rat liver as demonstrated by the COMBO treatment group displaying a more rapid 

return to saline control values then the MA treatment group.  This set of studies has 

demonstrated pharmacological changes associated with NIC co-administration but has 

also lead the investigator to consider more indirect mechanisms of psychostimulant 

enhancement. Additionally, one may consider the possibility that NIC instead of 

psychostimulant enhancement may prevent adverse effects from occurring. 

 

5.2 Methodological considerations and results  

 5.2.1 Drug composition. The entire premise of this project is that illicit MA is 

not a pure substance.  Adulteration of street drugs to increase profit is not a new concept 

to law enforcement.  Essentially, a person can either purchase, or make a certain amount 

of illicit drug, and then dilute it with a cheaper non-controlled substance and 

tremendously increase their profit margin.  Over the course of one month, 54 drug 

samples provided by the Tulsa Police Department forensic laboratory that had previously 

been identified as compounds containing MA were examined.  These street-grade drugs 

were analyzed for the presence of various adulterants or secondary substances. 

Only one adulterant was identified with a frequency of occurrence that exceeded 

95%.  NIC was the most common secondary product found in the MA samples that were 

tested.  Other substances found included a variety of phthalate compounds, which are 

used as plasticizers and have been observed in many of the illicit drug samples previously 
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examined. Trace amounts of these compounds are commonly found in drug samples that 

have been previously stored in plastic bags (unpublished observation). Phthalates act as 

fixatives for perfume, slowing down evaporation and making the scent linger longer.  

Consumer and industrial applications range from making nail polish flexible and 

screwdriver handles less brittle to helping make the time-release coatings on numerous 

pharmaceutical products.  In addition, they help make lubricants, adhesives, weather 

stripping, and safety glass (http://www.phthalates.org).  It is our belief that these are not 

adulterants, per se, but more likely contaminants that have been leached out of the plastic 

bags, or other containers the drugs have been stored in.  

 MA samples seized from MA lab sites were not included in our analysis because 

this MA did not represent the average quality of illicit MA commonly distributed to the 

average user.  It is our belief that MA from clandestine labs has yet to be diluted and 

would skew our data; therefore, it was not included in our sample analysis. Our studies 

indicate a bimodal distribution of MA sample composition with one peak at 30-60% MA 

and the other peak at 80-100% MA.  The statistics indicate a mean of approximately 57% 

MA with a mode of approximately 55%.  After looking at a plot of our data, we were 

confident that we could approximate illicit MA composition with a 50:50 mixture 

(MA:NIC).  As previously discussed, the quality of MA that one acquires on the street 

depends on the illicit manufacturing process and the number of times and amounts it is 

adulterated.  

 5.2.2 Animal model.  The Sprague-Dawley rat has been successfully used to 

investigate suspected metabolic and dopaminergic alterations for decades.  Of the three 

main rat strains--Wister albino, Sprague-Dawley albino, and Long Evans (aka Lister 
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Hooded)--rats, the most common species used in the investigation of MA-induced  

metabolic and dopaminergic alterations is the Sprague-Dawley rat (Fischer and Cho, 

1979; Krueger, 1990; Fleckenstein et al., 1999; Brown et al., 2000; Garcia-Sanz et al., 

2001; Mazei et al., 2002; Davidson et al., 2005). 

Additionally, Law and Moody (1994) observed differences in amphetamine 

metabolism in Dark Agouti rats previously found to be due to their absence of CYP2D 

enzymes (Al-Dabbagh et al., 1981).  Several in vitro models studying the dopaminergic 

changes associated with MA administration have been published (Metzger et al., 2000; 

Sandoval et al., 2001; Davidson et al, 2005).   Decades of supported research, along with 

the availability of the Sprague-Dawley rats through a breeding colony at Oklahoma State 

University-Center for Health Sciences, led investigators to utilize the Sprague-Dawley 

rats for all of the current studies, when an animal model was needed.   

5.2.3 Dose and dosing paradigm.  Over the last decade or so, many different 

dosing paradigms have been used to study the effect of MA on the dopaminergic system.  

Cho et al., (2001) has documented the relevance of pharmacokinetic parameters of MA in 

Sprague-Dawley rats, finding that the half-life (t1/2 ) of MA in humans is approximately 

12 hours and 70 minutes in rats, respectfully.  With respect to half-lives, an interval of 

one day (about 20 70-minute half-lives) between injections in rats is equivalent to about 

10 days (about 20 12-hour half-lives) between injections in humans (Cho et al., 2001). 

Many studies have looked at the dopaminergic response to a single MA 

administration with doses ranging from 0.3 mg/kg to 15 mg/kg (Miller et al., 2005; 

Bustamante et al., 2002).  Other studies have looked at dopaminergic changes associated 

with constant infusion using minipumps (Bustamante et al. 2002; Davidson et al., 2005).  
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The majority of studies looking at the dopaminergic systems and neurotoxicity utilized a 

dosing regimen where rats were given 10 mg/kg, four injections two-hour intervals (Cass, 

1997; Kokoshka et al., 2000; Metzger et al., 2000; Riddle et al., 2002).  Such a treatment 

regimen is very helpful in documenting toxicity, both neurochemical and behavioral. 

Our initial studies utilized the standard 10 mg/kg, four injection two-hour interval 

dosing regimen.  Our mortality rate (~50%) was fairly high in the MA and COMBO 

treated rats in the 1hrPT, and especially the 7dayPT groups; a recent literature search 

revealed similar findings in other studies.  Cass (1997) reported that in the 10 mg/kg, four 

injection, two-hour interval studies some MA treated rats became lethargic and lost 

postural control during the treatment period, and that they had to be placed on cold packs 

for 15 to 20 minutes, to reduce their body temperature and to decrease mortality rates.   

Davidson et al. (2005) reported a similar mortality rate and indirectly criticized authors 

for not reporting the additional care required to prevent similar mortality rates.  We 

decided to reduce the dose and number of injections, and lengthen the dosing interval 

early on, because of our high mortality rates.  The final dosing regimen chosen was 5 mg 

of MA/kg (MA),  5 mg of NIC/kg  (NIC), or a mixture that included 5 mg/kg of MA and 

5 mg of NIC /kg (COMBO), or 0.1 ml of 0.9% saline solution.  The injections were given 

three times at 2 hour intervals. According to Cho et al. (2001) as described above, this 

dosing regimen would approximate a human using MA every 2.5 days, or approximately 

three times per week. 

After thorough consideration, we believe this dosing paradigm would more 

appropriately fit the average MA user, who normally does not ingest neurotoxic levels of 

MA, which, along with very recent research (Davidson et al., 2005), helped us 
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substantiate such.  Davidson et al. (2005) is the first documented use of this dosing 

regimen.  His group describes single day dosing regimens as good models of overdose in 

the naïve non-tolerant user (Davidson et al., 2005), a claim that would not go without 

criticism.  Nevertheless, this dosing regimen proved to be adequate for our studies, as we 

observed many dopaminergic and metabolic changes we can attribute to the MA and 

COMBO administration. 

5.2.4 High throughput kits.  Cytochromes P450 are the principle enzymes for 

the oxidative metabolism of drugs and other xenobiotics.  Among the CYP450 enzymes, 

five forms, CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4, appear to be the ones 

most responsible for drug metabolism (Spatzenegger and Jaeger, 1995).  Inhibition of 

CYP450-mediated metabolism is often the cause of many drug interactions (Murray, 

1992).  In the past, the ability to assess the ability of a drug to alter CYP450 metabolism 

often required high performance liquid chromatography (HPLC) separation for 

metabolite quantitation, with a relatively time consuming and labor intensive assay. 

The availability of HTS kits for CYP450 inhibition using cDNA-expressed 

enzymes or liver microsomes have tremendously increased the efficiency of the CYP450 

inhibition studies (Parkinson, 1996).  The good correlation of results obtained using 

recombinant CYP (rCYP) enzymes with fluorometric assays and the HPLC assays has 

been previously compared and it was determined that there is not much loss in data 

quality in the use of HTS assays, further validating the use of easier and less expensive 

rCYP HTS kits (Masimirembwa et al., 1999; Bapiro et al., 2001).  Knowing this, and 

based on previous studies published on the CYP450 metabolism of MA (Lin et al., 1997; 

Cho et al., 1999), our investigators elected to purchase HTS inhibitor screening kits 
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containing insect cell microsomes (Supersomes®) prepared from human baculovirus 

insect cell expressing CYP2D6 and CYP3A4 individual cytochromes from GENTEST 

Corp. and BD Biosciences (http://www.gentest.com). 

5.2.4.1 CYP3A4.  The aim of this study was to evaluate the inhibitory effects of 

MA, NIC, and COMBO utilizing a novel and selective HTS assay that utilized 

recombinant human CYP3A4 Supersomes®.  The human CYP3A4 Supersomes®

findings demonstrated that the compounds under investigation did not significantly 

inhibit CYP3A4-mediated metabolism.  Our studies are in line with a review published 

by Cho et al. (1999), who described the various CYP enzymes that have been shown to 

participate in the metabolism of MA, including various isoforms of CYP2B, CYP2C, 

CYP2D, and flavin-containing monooxygenase (FMO).  We concluded that this isoform 

was not a major metabolizing enzyme of the compounds of interest. 

5.2.4.2 CYP2D6.  Inhibition of CYP2D6-mediated metabolism by MA, NIC, and 

COMBO drug treatments was determined using the novel nonfluorescent probe AMMC. 

Chauret et al. (2001) reported the use of AMMC as a specific CYP2D6 probe in human 

liver microsomes.  Chauret’s group demonstrated that CYP2D6 is the only observable 

P450 enzyme involved in the metabolism of AMMC.  All other CYP450 enzymes tested 

yielded <1% AHMC fluorescent metabolite relative to CYP2D6.  These observations 

imply minimal contribution of other enzymes to AMMC demethylation to AHMC under 

similar conditions. 

Additionally, Stressor et al. (2002) tested the isoform selective probe, AMMC, in 

rat liver microsomes and discovered that Sprague-Dawley rat CYP2D2 also displayed 

high selectivity for AMMC demethylation.  Based upon the previous findings that rat 
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CYP2D2 and human CYP2D6 displayed complete selectivity with low concentrations of 

AMMC, we concluded that our studies tested the inhibition of the specific CYP enzymes 

of interest, CYP2D2 (rat) and CYP2D6 (human).  This probe proved to be a scientifically 

reliable and economically feasible way to compare metabolic alterations in the human 

rCYP and in vivo RLM.   

Our in vitro studies yielded IC50 values that suggest the possibility that MA has 

the ability to inhibit metabolism via the CYP2D6 isozymes within a physiologically 

relevant drug concentration range.  Upon completion of the rCYP studies, rats were 

injected with one of four drug treatment regimens, as described above, and 1hrPT or 

7dayPT rat livers were harvested and microsomes isolated for the present studies.   

A two-way ANOVA (time by treatment group) of the rat liver microsomal studies 

demonstrated significant time and treatment affect, (F(1,24)  = 6.14; p = 0.02) and  (F(3,24)  =

16.99; p<0.0001) respectfully; however, they failed to show an overall interaction within 

the ANOVA, (F(3,24)  = 2.43; p = 0.09).  Rat liver microsomal studies demonstrated a 

significant inhibition in the 1hrPT MA (p<0.001) and 1hrPT COMBO (p<0.05), as 

compared to the saline control group.  The 7dayPT revealed that the MA treatment group 

was the only group that differed statistically from the saline control group (p < 0.05). 

Thus demonstrating a return to control value for the COMBO treated group. A significant 

difference between the MA and COMBO treated groups (p < 0.05) was seen using the 

two-way ANOVA with Bonferroni post testing. There was no statistical difference 

observed between the 1hrPT MA and COMBO treated RLM groups when using the two-

way ANOVA with Bonferroni post hoc testing.  However, a slightly more liberal 

statistical method utilizing a one-way ANOVA with Newman-Kuels (NK) post tests 
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resulted in a significant difference between the MA and COMBO treated rat groups at 

1hrPT. The NK testing has been successfully used in several journal articles in similar 

situations to determine the difference between groups (Wan et al., 1999). This difference 

leads the investigator to believe that there may be a significant difference in the treatment 

groups, though the ultra-conservative testing parameters did not find it.  

The observation of the COMBO treated group CYP2D liver enzyme functions 

returning to control level indicate that the CYP2D-mediated liver functions have returned 

to normal.  Based upon these observations, one can infer that the NIC treatment may 

enhance the return of CYP2D-mediated metabolic function to normal.  NIC has been 

shown to block lesions produced by the mitochondrial toxin malonate (Beal et al., 1994). 

NIC has also been shown to attenuate MA toxicity (Huang et al., 1997; Stephans et al., 

1998). Because NIC is the precursor molecule for the electron carrier NAD, its 

administration would be expected to increase the number of reducing equivilants 

available for mitochondrial oxidative phosphorylation, improving mitochondrial energy 

production. If the inhibition of MA metabolism is a consequence of energy depletion, 

NIC should at least attenuate such deficits by improving mitochondrial energy 

production. This is clearly demonstrated at the 7dayPT time point where the COMBO 

group has returned to saline control values. Additionally, this can be speculated  and 

supported statistically with the one-way ANOVA with NK post tests at the 1hrPT time 

point but not with the more conservative two-way ANOVA with Bonferroni post testing. 

Thus, the statistical vs. clinical significance may still be debated. 

Though the present studies are not extensive enough to elucidate a specific reason 

for this effect, the author speculates that NIC may serve as a precursor improving 
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mitochondrial energy production and returning the metabolic rate to normal more rapidly. 

An additional theory to consider may address an increase in transcriptional activation of 

the CYP2D6 (human) and/or CYP2D2 (rat) enzymes leading to the increased synthesis of 

CYP proteins, which also would lead to a more rapid return to normal enzyme function, 

decreasing the intensity and shortening the duration of drug effects, as described by 

Dossing et al. (1983).  Furthermore, either of these alterations could explain the return of 

CYP2D function seen at 7dayPT, as compared to the MA treatment group, which is still 

experiencing inhibition.  The energy related theory would be more plausible if the 

difference seen at the 1hrPT time point is a true difference as the author expects.  

Levy (1995) hypothesized that all drugs that are metabolized to a significant 

degree by the same enzyme are inhibited by inhibitors of that enzyme and display the 

same spectrum of interactions.  According to Levy’s hypothesis, if NIC is metabolized by 

the CYP2D6 enzyme system it could potentially interact with other CYP-catalyzed 

metabolism.  The recombinant human CYP2D6 Supersomes studies did not identify any 

inhibitory interaction between NIC and CYP2D6. IC50 values of >10 mM (CYP3A4 

Supersomes) and > 180 µM (CYP2D6 Supersomes) indicate no inhibitory effect on 

CYP3A4 or CYP2D6 activity.  These results clearly demonstrate that inhibition of 

CYP3A4 or CYP2D6 by NIC is not the source of an interaction. 

MA and COMBO treatments both resulted in the inhibition of CYP2D2-mediated 

drug metabolic reactions in the rat groups at the 1hrPT time point and clear differences 

were seen in the 7dayPT between the MA and COMBO treatment groups. One can 

speculate that the same would be true with humans, because of the known selectivity of 

the AMMC probe used, along with previous research that documents the involvement of 
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CYP2D6 in MA metabolism (Lin et al., 1997).  The observation that MA associated 

inhibition of CYP2D2 metabolism is still present at 7dayPT provides sufficient evidence 

that the inhibition is not due to residual MA being present in the RLM.  This also 

concludes that the inhibition seen is not a direct competitive inhibition but some 

modification that is present up to seven days after the last administration.  It appears from 

our data that the co-administration of NIC speeds the recovery of drug-induced inhibition 

to control levels, as evidenced by the COMBO treated group 7dayPT results.  

Our experiments have identified the inhibitory potential of MA and COMBO 

treatment in RLM.  In order to elucidate the mechanism of this inhibition, further 

investigation needs to be done.  The exclusion of direct competitive inhibition as a 

mechanism for the inhibition, as evidenced by the reduced inhibition at 7dayPT in the 

MA treated groups, leads us to believe that the NIC serves to increase the NAD resulting 

in an increase in the reducing equivilants improving energy production and improving the 

CYP-mediated metabolism. Another theory to consider is that the CYP protein 

expression may be altered. Future studies may include NAD studies to determine if there 

is a correlation between NAD and CYP2D function when exposed to MA and COMBO 

treatment. Other studies may focus on a quantitative measure of CYP2D2 protein at 

1hrPT and 7dayPT time points, in order to correlate the amount of inhibition with the 

amount of CYP2D protein present.  This was not done in our studies, as we used the total 

amount of protein in the microsomes. 

We are confident that NIC either evokes an increase in reducing potential or is 

responsible for a rapid increase in production of CYP enzyme protein, as we do not 

believe NIC is responsible for CYP enzyme metabolic rate induction.  Future studies 
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studies will assist in providing a conclusive decision about the 7dayPT time point and its 

degree of inhibition.  In addition to the hypothesis that NIC increases the rate of recovery, 

the other possibility is that it prevents the extent of inhibition in the first place.  This is 

evidenced in the 1hrPT studies, where the MA treated groups IC50 was 0.8 µM and the 

COMBO groups IC50 was 32 µM.  If the NIC in the COMBO treated group decreased the 

amount of inhibition from occurring in the beginning, then the recovery rate could be the 

same and the COMBO treated group would return to control values before the MA 

treated group.  It is this uncertainty that will require the CYP2D2 protein studies to 

further our knowledge and assist us with identifying the mechanism responsible for these 

changes.  Additionally, one may want to consider dose response studies with the MA and 

COMBO treated groups, to determine if the amount of inhibition is dose dependent.  

 5.2.5 Neuroadaptation invoved in addiction. Methamphetamine has a 

molecular site of action at the monoamine transporters, in particular the DAT. Although 

MA binds to three monoamine transporters, DA, 5HT, and norepinephrine (NE), it is the 

action at the DATs that are most central to both the motor activating and reinforcing 

(rewarding) properties of the psychostimulants (Giros et al., 1996). 

 MA acts as a false substrate and is transported into the cytoplasm engaging a 

heteroexchange mechanism which results in the reverse transport of DA from the 

cytoplasm to the extracellular space (Kuczenski, 1983). Thus, in addition to increasing 

interstitial DA levels by inhibiting the reuptake of synaptic DA that has been released via 

normal Ca++-dependent exocytosis, MA transport promotes additional release of DA via 

reversal of the DAT. Upon transport into synaptic vesicles, MA is thought to act as a 

weak base and degrade the proton gradient that supplies the co-transport ion for 
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sequestering DA in vesicles (Sulzer et al, 1995). Confronted with a collapsing proton 

gradient, the extravesicular cytosolic DA concentration rises dramatically and contributes 

to reverse transport into the extracellular space. This mechanism appears to be most 

relevant to the releasing properties of MA (Liang and Rutledge, 1982).  

 Psychostimulants primarily suppress the firing of the STR and ACC when tested 

using anesthetized animals [see White (1996) for review]. This effect is primarily 

mediated by enhanced stimulation of DA receptors. MA administration alters the 

excitability of neurons by a number of actions. Increased extracellular DA levels 

potentate the ability of the endogenous transmitters to modulate specific ion channels. 

DA as described above can enhance or reduce inwardly rectifying K conductance 

depending on D1 or D2 class of receptor. Such effects can reduce the excitability of the 

STR and ACC neurons thus altering the reinforcing/addictive properties of the drug.  

 Acute MA administration elevates extracellular DA not only in DA terminal 

fields but also within somatodendritic regions in the midbrain (Kalivas et al, 1989). The 

subsequent stimulation of D2 somatodendritic autoreceptors results in three interrelated 

cellular changes: (i) a decrease in DA release and synthesis (Wolf and Roth, 1987) (ii) 

hyperpolarization and inhibition of DA cell firing (White, 1996), and (iii) an increase in 

velocity of DA transport (Welch and Justice, 1996). Under normal conditions, all three 

effects of DA autoreceptor stimulation would decrease the availability of DA in the 

synaptic cleft. Given that MA has exerted direct effects on the DAT function and thereby 

increased synaptic DA levels, autoreceptors activation under these circumstances results 

from the enhanced extracellular DA levels. For MA in particular, the transporter-reversal 

mediated release of DA at the nerve terminals effectively shunts the neuron from impulse 
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control, thereby preventing any role by autoreceptor stimulation to decrease extracellular 

DA content. Moreover, the increase in transporter velocity would likely amplify the 

transport of MA and thereby facilitate release.  This increase in extracellular 

somatodendritic DA concentration provides profound stimulation of autoreceptors, and 

rendering long-loop feedback inhibition essentially redundant (White et al., 1995).  

 Repeated administration of MA produces a variety of alterations in DA neurons. 

Most of the changes are relatively transient and are clearly not involved in the 

maintainence and expression of behavioral sensitization or other persistent behavioral 

changes. However, it has been suggested by other investigators that such transient 

neuroadaptations may be necessary to trigger other alterations that are responsible for the 

maintenance and expression of addictive behaviors (White, 1996). Transient 

neuroadaptations that have been identified include DA autoreceptor subsensitivity (Gao 

et al., 1998), reduction of G protein levels (Striplin and Kalivas, 1993), and enhanced 

basal levels of extracellular DA (Kalivas and Duffy, 1993). Each of these suggest 

enhanced basal activity of DA neurons, potentially altering mechanisms involved in DA 

release and post-synaptic DA receptor sensitivity (White and Wolf, 1996). 

 In addition to the alterations in pre-synaptic DA function described above, there 

are a number of neuroadaptations in the intrinsic function of neurons. Among the first 

attempts at identifying changes in the brain that accompany MA administration was the 

study of DA receptor changes. Despite years of study, the consensus has been reached is 

that, with rare exception, measures of DA receptor affinity and density are seldomly 

altered for extended periods of time in animals that have received repeated 

psychostimulants including MA (Self and Nestler, 1995).   This does not imply that 
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transmission through DA receptors is unaltered by MA addiction. Such measures simply 

reflect an effective homeostatic process by which DA receptors adapt not only to levels 

and frequency of ligand occupancy but also to internal information regarding levels of 

signal processing. Previous reports of DA receptors both pre- and post-synaptically  

report enhanced responses (Wolf et al., 1994). However, these changes are not always 

accompanied by alterations in DA receptor density, but perhaps reflect enhanced DA 

receptor signaling. These could include but are not limited to adenylyl cyclase, PKA, g 

proteins, or cAMP formation. The remaining sections will discuss our findings and their 

relavence within the so called model for addictive neuroadaption .  

5.2.6 Dopamine uptake and [3H]GBR12935 binding.  Synaptosomes are the 

simplest brain-tissue preparation that preserves the functional activity of the pre- and 

post-synapsis, thus, they have been proven to be very useful in studying different events, 

including uptake, storage, synthesis and release of neurotransmitters (Hebb and 

Whittaker, 1958; Whittaker, 1993).  Analysis of [3H]DA uptake along with 

[3H]GBR12935 binding studies showed significant decrease in apparent Vmax and Bmax 

with no change in IC50 values, respectfully, in MA and COMBO-treated rat STR and 

ACC at the 1hrPT time point. These values indicated that DA uptake was functionally 

reduced equally in the MA and COMBO treated rats at 1hrPT and that this reduction in 

DA may be due to a decreased number of uptake sites.  The significant reduction of 

[3H]GBR12935 binding sites in the STR and ACC seen in MA treated animals returned 

to control levels at the 7dayPT time point.  However, the apparent Vmax of the COMBO 

treated animal rat group in the STR remained decreased significantly (p < 0.05) from the 

MA treated group in the STR which returned to control value.  Current and previous 
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[3H]DA uptake and [3H]GBR12935 binding studies indicate that binding sites are highly 

associated with the DA uptake site (Janowsky et al., 1986; Andersen, 1987; Nakayama et 

al., 1993).  This data indicates that the single day multi-administration treatment with the 

sole MA only administratoin regimen (3 X 5mg/kg i.p., 2hr apart) does not create a long-

lasting decrease in DA uptake sites.  However, the co-administration  with NIC causes a 

reduced DAT velocity at the 7 day post last injection treatment time point in STR.  The 

significant reduction of [3H]GBR12935 binding sites in the STR and ACC seen in MA 

treated animals returned to control levels at the 7dayPT time point. The decrease in DA 

uptake initially results in an increased amount of DA within the neuronal synapse. 

However, over time the DA will be degraded by metabolic enzymes within the cleft and 

not recycled resulting in an overall decrease in the amount of available DA within the 

dopaminergic neuron. Thus the DA within the dopaminergic neuron will be regulated by 

the synthsis of dopamine from its tyrosine precursor. This may result in a decrease in the 

amount of available DA needed for basal dopaminergic activity or perhaps result in less 

DA being released when the neuron is activated and thus drive the user to desire 

additional MA use. The intial DA increase within the synapse accompanied with the 

delayed uptake seen in COMBO treated animals may indicate a possible additional 

addictive property resulting from the co-administration of MA and NIC. The mechanism 

by which this alteration occurs is unable to be described at this point. However, one 

theory will be described in the following section on evoked and basal DA release.  

To our knowledge, only one other group has published work utilizing a similar 

dosing regimen.  Davidson et al. (2005) described this single day dosing paradigm as a 

good model for overdose in the naïve non-tolerant abuser.  A recent postmortem study 
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reported that chronic MA users had significantly decreased levels of DAT in the caudate 

and putamen (Wilson et al., 1996).  McCann et al. (1998) utilized the first PET study to 

examine MA abusers and showed that chronic MA abusers DAT ([11C]WIN-35,428) 

binding in the caudate and putamen was reduced even after three years of abstinence. 

These results provided a very good case to support MA-induced neurotoxicity. 

There is a large body of evidence from non-human primates showing MA-

induced neurotoxicity with various doses of MA and different dosing regimens.  For 

instance, Villemange et al. (1998) demonstrated reduction of DAT binding.  More 

recently, human studies have found detoxified MA abusers to reduce DAT (Volkow et 

al., 2001b; Sekine et al., 2001) and DA D2 receptor binding in the caudate, putamen, 

ACC, and prefrontal cortex (Volkow et al., 2001b).  

Dopamine D2 receptors and DAT protein are two of the most important 

mechanisms controlling extracellular DA concentration (Schmitz et al., 2001; Torres et 

al., 2003).  Changes in these proteins were used as markers to quantitate MA 

psychostimulant effects.  Our studies focused on two brain regions, the STR and ACC, 

because of previous research and their known link to addiction and pleasurable effects. 

Additionally, our choice of examining the DA terminal region was influenced by studies 

showing a loss of DA function in the dorsolateral STR, but with relative sparing in the 

ACC following chronic MA treatment (Paulson and Robinson, 1996; Harvey et al., 

2000).  This ACC sparing purportedly related to a lower density of DAT sits (Broening et 

al., 1997), a hypothesis supported by protective effects of DAT blockers (Rothman et al., 

2000) and DAT knockout (Fumagalli et al., 1998).  As seen by Robinson and Becker, our 

data supported previous research that showed relative sparing in the ACC. We found no 
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significant changes between MA and the COMBO drug treatment regimens within the 

ACC.  We did find that the MA and COMBO treated groups responded essentially the 

same with in the ACC. Our [3H]DA uptake and  [3H]GBR12935 binding studies 

demonstrated lower levels of DAT functionality and quantity; the changes we observed 

were proportionate to each region and returned to control values within one week.  

Wagner et al. (1980) reported that MA treatment caused an irreversible decrease 

in the number of DA uptake sites in the rat STR, and proposed that these deficits were 

indicative of nerve terminal degeneration.  This has been referred to as “amphetamine 

neurotoxicity” and has previously been shown to deplete STR DA (Robinson and Becker, 

1986).  Our studies did not demonstrate long-term depletion and, therefore, would not 

consider neurotoxic levels.  This data helps substantiate our dosing paradigm, as we did 

not want to reproduce an extreme MA, only the typical user.  On the other hand, almost 

all chronic MA abusers build up to high doses gradually, as they develop tolerance to the 

autonomic effects of the drug.  

There is a certainly an association between the different treatment regimens and 

the various dopaminergic effects that have been observed.  Intermittent treatment with 

low doses or gradual escalating treatment with AMP produced long-lasting changes in 

behavior (Robinson and Camp, 1987).  Gradually escalating the doses of MA has been 

shown to produce enhancement of stereotypical behavior with subsequent challenge dose 

seven days later (Ichikawa, 1988).  Simultaneously, an increase of extracellular DA in the 

STR was observed using in vivo microdialysis.  Robinson et al. (1988) reported elevated 

extracellular DA in the nucleus accumbens, after treatment with an escalating dose of 

AMP.  While continuous MA administration produces the MA neurotoxicity syndrome, 
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repeated intermittent, or gradually escalating doses, which still produce behavioral 

sensitization, do not result in the depletion of DA brought about by the degeneration of 

DA terminals, but rather enhance the extracellular concentration of dopamine (Ellison 

and Eison, 1983; Robinson and Becker, 1986).  

Though our studies did not utilize microdialysis methods, nor did we specifically 

determine the amount of extracellular DA, one can postulate that the decrease in DAT 

function and density in addition to MA-induced DA release would indicate an increase 

concentration of extracellular DA, which would agree with previous studies utilizing the 

repeated intermittent or gradually escalating dose models (Ellison and Eison, 1983; 

Robinson and Becker, 1986).  Our theory has previously been documented with an 

observed rise in extracellular DA and its metabolites 3,4-dihydroxyphenylacetic acid 

(DOPAC) and homovanillic acid (HVA) utilizing in vivo microdialysis with single and 

repeated MA administration by Bustamante et al. (2002).  

It has been well documented that MA induces the release of DA from presynaptic 

dopaminergic neurons (Kuczenski, 1983). As the amount of DA rises within the synapse, 

several neurological changes occur simultaneously. These studies have demonstrated that 

after a series of MA or COMBO administrations the ability of the presynaptic neurons to 

take up the excess DA previously released is diminished. The alteration in function of the 

DAT subsequently results in a rise in the concentration of DA within the synapse. In both 

the MA and COMBO treated animals at the 1hrPT time point a reduction of both DAT 

function and density is seen. However, the significant finding is at the 7dayPT time point 

where the rat previously treated with MA alone returns to normal DA functional uptake 

and DAT density, and the COMBO treated rats functional DA uptake remains 
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suppressed.  This finding suggests that in the COMBO treated rats the levels of DA 

within the neurons’ synapse will be higher than the MA treated rats due to a decrease in 

the uptake of the excess DA.  The increase in DA within the synapse may illicit a longer 

duration of dopaminergic action and result in the depletion of DA within the presynaptic 

terminal leading the MA user to desire additional drug to supplement the synaptic cleft.    

5.2.7 Dopamine release.  The in vitro dopamine release was analyzed using 

radioactive [3H]DA.  Although the radioactivity measured in the collected fractions may 

consist of a mixture of neurotransmitters and metabolites, the amount of tritium released 

from rat brain slices has been previously shown to represent a close estimation of the 

release of labeled or endogenous DA release (Parker and Cubeddu, 1985; Herdon and 

Nahorski, 1987).  Furthermore, the release of metabolites during the superfusion was 

inhibited by the presence of the monoamine oxidase inhibitor pargyline in the superfusion 

buffer (Zumstein et al. 1981).  In order to avoid error resulting from possible differences 

between the different sets of experiments, tissues from experimental animals and control 

rats were always analyzed simultaneously.  The release was stimulated by 30 mM KCl. 

High K+-stimulated release of dopamine in vitro is thought to reflect the in vivo release 

evoked by depolarization (Ochi et al., 1995).  It is believed that the potassium ions 

directly induce exocytosis, due to depolarization of nerve endings.  

MA is believed to serve as a substrate for the DA transporter and, thereby, acts as 

a competitive inhibitor of DA uptake (Liang and Rutledge, 1982).  Once inside the cell, 

MA interacts with synaptical vesicles and increases cytoplasmic DA levels, promoting 

reverse-transport of DA through the plasma membrane transporter (Sulzer and Rayport, 

1990).  Low concentrations of MA cause redistribution of DA from the synaptic vesicles 
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to the cytosol (Sulzer and Rayport, 1990; Sulzer et al., 1992) and promotes significant 

release of DA and can, but does not always, produce overt signs of neurotoxicity.  Lower 

concentrations are capable of inducing neuronal adaptations that result in altered 

dopaminergic function; i.e., reduced DA uptake (Bennett et al., 1993), and signs of 

oxidative stress (Cubells et al., 1994).    

The results of the present study indicate that the KCl stimulated release of 

dopamine in MA and COMBO treated rats was significantly decreased at the 1hrPT time 

point in both STR and ACC.  Previous studies are in agreement with the decrease in 

release (Bennett et al., 1997). Their was a significantly decreased amount of DA released 

from the COMBO treated rats at the 1hrPT time point in STR. The amount of decrease 

was essentially the same in ACC. This may be due to the reduced amount of DA uptake 

seen in the STR neurons when previously treated with the COMBO regimen as described 

earlier. A dercrease in uptake causes a decrease in the amount in the neuron available for 

release. The decrease in DA release was not seen at the 7dayPT time point.  As described 

above, MA is believed to induce the release of DA thru reverse transport in the DAT 

protein.  The prior exposure to MA or COMBO drug treatment is believed to deplete the 

vesicular and cytoplasmic pools of DA; there is a decreased amount of DA available for 

release at the 1hrPT time point.  The author believes that during the course of the week, 

DA levels are replenished and that is why no decrease is seen at the 7dayPT time point.  

This theory accounts for the reduction in release seen at the 1hrPT time point, with return 

to control values at one week. 

The release data from the single fraction (fraction 6) revealed a significant 

difference between the MA and COMBO drug treatments.  This would agree with the 
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significant difference in MA and COMBO observed in the uptake studies described in 

chapter 4. The release data was analyzed with the AUC method, allowing examination of 

the total amount of DA released, not just the maximum release point. The significant 

reduction of evoked DA released between the MA treated group and the COMBO treated 

group in the STR is believed to be related to the significant increase in basal DA efflux 

seen with increased levels of NADP as described originally by Pearl et al. (2000). The 

resulting decrease in the amount of evoked DA from the COMBO treated rats may 

simply be due to the fact that the available stores have been depleated by the increase in 

basal DA released. This theory was examined by looking at the basal DA release prior to 

KCL evoked stimulation and statistically analyzing the difference between the MA and 

COMBO treated groups. Contrary to the studies by Pearl et al. (2000), we did not find a 

difference between MA and COMBO treated animals. We did find a significant 

difference between MA and COMBO treated groups and the saline control in both STR 

and ACC.  

We observed an increase in the basal release of DA within the MA and COMBO 

treated specimens.  This may help explain the decrease in evoked release.  An increase in 

basal DA release would deplete the cytoplasmic and vesicular DA storage pools.  It is 

also possible that the DA transport function can be altered directly or indirectly by 

pretreatment of MA and COMBO drug treatment, and the changes we observed are a 

consequence of transporter modification by one of the previously listed factors, including 

phosphorylation, glycosylation, membrane potential, or sulfhydryl group alteration.  

Alternatively, MA and COMBO, by promoting enhanced cytoplasmic DA levels, could 

have forced the transporter to operate in a ‘reverse’ manner; i.e., to expel DA.  If the 
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transporter were  transporting DA out of the cell, this may have necessitated the higher 

substrate concentration to force transport in the ‘inward’ direction, resulting in an 

increased amount of basal DA release until the cytoplasmic DA levels returned to normal.  

 5.2.8 [3H]Raclopride binding experiments. The intermittent nature of drug 

administration appears to be necessary for sensitization to occur, although several studies 

have reported a lack of sensitization following subchronic intermittent administration 

(Segal and Kuczenski, 1992; Wolf et al., 1994).  MA binging by humans does not 

necessarily correlate with the dosing schedule used to ‘sensitize’ rats to subsequent doses 

of MA, but rather that binging occurs over a several day (average of 5) period involving 

repeated administrations of MA, during which time users forgo food and sleep (Miller, 

1991).  Humans use as much as 10-20mg/kg of MA over a 24-hour period to maintain a 

constant drug level (Goodman and Gilman, 1985), which is relatively easy to achieve due 

to the long half-live (approximately 12 hours) of MA (Cook et al., 1991).  Our studies 

were done to mimic a several day binge, as described above, based upon the comparison 

of MA half-lives in rats and human.  

 We observed a reduction in [3H]raclopride binding to the DA D2 receptors 

indicating that there were modifications in the DA D2 receptor density rather than 

affinity, as demonstrated by an altered Kd and constant IC50. This is most likely due to an 

indirect effect of MA promoting endogenous DA release, which subsequently increases 

DA D2 receptor binding to shut down release.  Similar alterations in presynaptic DA D2

receptors have been reported to occur following AMP and MA pretreatment, which 

resulted in autoreceptor downregulation/desensitization (Seutin et al., 1991; Yamamada 

et al., 1991).  Persistently elevated DA levels, as demonstrated by the increase in basal 
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DA release, may also be responsible for downregulation of the DA D2 receptors, which 

would result in alterations in dopaminergic activity and local intracellular cAMP/PKA 

levels, as reported by Bennett et al. (1997).  

 Our data most closely resembles previous studies that utilized PET imaging to 

measure DA D2 sites (Volkow et al., 2001b).  PET studies have been shown to mainly 

represent postsynaptic DA D2 receptors (Hume et al., 1996).  Davidson et al. (2005) 

specifically looked at pre-synaptic autoreceptors and found that their results did not 

correspond to previous PET studies.  Davidson et al., (2005) reported the differences may 

correspond to the possibility that there are fewer DA D2 autoreceptors in the rats but, 

functionally, there is no difference in autoreceptor control of DA release, at least under 

their experimental conditions.  This can be explained by the large receptor reserve for DA 

autoreceptors, and this has been shown for inhibition of DA release (Yokoo et al., 1988), 

DA neuronal firing (Cox and Waszczak, 1990), and DA synthesis (Bohmaker et al., 

1992).  They also made note of transient nature of sutoreceptor subsensitivity in the rat, 

which may only be evident in the first week after amphetamine injection withdrawal, 

previously demonstrated (Ellinwood and Lee, 1983; Lee and Ellinwood, 1989; Wolf et 

al., 1993; Davidson et al., 2005).  This leads us to speculate that our findings suggest that 

DA neurons respond to MA and COMBO treatment by altering DA D2 receptor number 

(presumably both pre- and post-synaptic).  
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5.3 Conclusion 

 The historical abuse of MA has been substantially documented in the previous 

chapters with ample literature citations.  The physical properties, various routes of 

administration, dosages, purity, pharmacology, neurochemistry, and metabolism have 

been discussed in detail.  The typical pattern of abuse from MA’s clandestine production 

to its sale on the street has been established, along with recent news that clearly 

demonstrates the violence and urgency to further understand MA abuse.  

A review of MA’s pharmacology and toxicology clearly demonstrates the drugs 

potent addictive and neurotoxic effects, as evidenced by long-lasting alterations in the 

dopaminergic system, the best-established and most widely agreed upon neurochemical 

link to addition in literature today. 

MA has been recognized as a potent psychostimulant drug for decades. Over the 

years it has been diluted with numerous chemicals, in order to generate a higher profit 

margin in illicit sales.  Today, the adulterant NIC has become almost exclusive with the 

dilution of MA, as evidence with over 95% of the samples submitted to the Tulsa Police 

Department forensic laboratory containing between 3 and 97 % NIC (unpublished data).  

Knowing that using NIC is not the most economical way to dilute MA leads one to 

believe there are possibly other aspects influencing the choice of this cutting agent.  If it 

is not availability or economics dictating the cutting agent, there must be some 

improvement in desired effects.  

 It is this line of thinking that initiated the hypothesis that was tested.  NIC, co-

administered with MA, provides an enhancement in MA’s psychostimulant effects 

somehow providing a more desirable experience for the user.  Previous researchers have 
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briefly looked at the interaction of these two agents but never compared their co-

administration.  A recent literature search only identified two papers that addressed the 

use of MA and NIC together.  In these papers, pretreatment with high doses of NIC was 

shown to attenuate AMP and MA induced STR DA depletion in rats (Huang et al., 1997; 

Wan et al., 1999).  Our studies were unable to demonstrate similar results.  We observed 

MA and COMBO treated group induced alterations in DA uptake, DA release, and 

CYP2D-mediated metabolism. Additionally, significant differences were noted between 

MA and COMBO treated animals in the STR that leads the investigator to believe there is 

some psychostimulant enhancement when these drugs are co-administered.  The 

difference between MA and COMBO in the STR uptake coupled with the decreased 

evoked DA release in the STR signifys a significant difference between the MA and 

COMBO dosing regimen. The co-administration of these compounds reduces the DA 

taken up into the dopaminergic neurons leaving the synapse DA concentration higher 

longer which leads to a significant reduction in the evoked DA release. The combination 

of these two effects can offer one theory as to the increase in psychostimulant effects 

based on our current knowledge of DA addiction. However, the increase in metabolic 

activity seen in the CYP2D enzymes does not match these findings. Therefore, in order to 

gain a better understanding as to how these factors work in concert more research must 

be done. Further research will better our understanding as to the how these finding fit 

together and as to how they affect the psychostimulant effects and addictive potential of 

MA when co-adminstered with NIC.  

We must conclude that under our experimental conditions, the co-administration 

of NIC with MA does not produce overwhelming evidence to synergistic metabolic or 
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dopaminergic changes. However, the studies provide an introduction as to the 

understanding of changes associated with MA and NIC co-administration. Additional 

studies must be completed to identify possible behavioral changes associated  co-

adminstration or other possible mechanisms for our proposed enhancement.  
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Scope and Method of Study: The adulteration of illicit methamphetamine (MA) with 

 nicotinamide (NIC) has become so prevalent in the United States that researchers 
 must now consider the possibility that NIC may possess some ability to enhance 
 the psychostimulant effects of MA.  The purpose of this project was to evaluate 
 the metabolic and dopaminergic sequelae of MA, NIC, and their co-
 administration (COMBO). The effects of MA, NIC, and their COMBO on human 
 CYP3A4 and CYP2D6 Supersomes and isolated rat liver microsomes (RLM) at 
 1hr and 7 days post last treatment (1hrPT, 7dayPT, respectfully) was investigated 
 with commercially available kits.  The dopaminergic changes were evaluated by 
 measuring [3H] dopamine uptake, [3H] dopamine release, dopamine receptor 
 binding ([3H] raclopride), and dopamine transporter binding ([3H] GBR12935) at 
 1hrPT and 7dayPT in two different brain regions, the striatum (STR) and 
 nucleus accumbens (ACC).  

 
Findings and Conclusions: We observed MA and COMBO treated group induced 
 alterations in DA uptake, DA release, and CYP2D-mediated metabolism. Our 
 RLM studies demonstrated significant inhibition with a more rapid return to 
 normal with COMBO treatment. The dopaminergic studies revealed characteristic 
 changes within both brain regions with the COMBO treated group producing a 
 sustained reduction in DA uptake over the MA group in STR. The COMBO also 
 resulted in a significant decrease in the amount of KCL evoked DA released in the 
 STR while both MA and COMBO treatment resulted in an increased amount of 
 basal DA release in both brain regions. Under our experimental conditions, the 
 co-administration of NIC with MA does not produce overwhelming evidence to 
 synergistic metabolic or dopaminergic changes. However, the studies provide an 
 introduction as to the understanding of changes associated with MA and NIC co-
 administration. 
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