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ABSTRACT

The modeling o f stress-strain behavior o f geomaterials, such as soils, is key to the 

accurate analyses o f complicated geotechnical engineering structures. Traditional 

elastoplastic modeling concepts, characterized by a single yield surface, however, limit 

our ability to model complex stress-strain responses. In this dissertation, a novel 

modeling concept called the Middle Surface Concept (MSC), is developed using multiple 

pseudo yield surfaces. The MSC is first developed to model saturated sand behavior 

under monotonie triaxial loading conditions and then extended to the general stress space. 

Single element model predictions are compared to laboratory tests results for three 

different types o f sands subjected to various loading conditions and reasonable 

comparisons are obtained. In order to implement the general stress space MSC sand 

model into a finite element method, the consistent tangent stiffiiess matrix is developed 

and the model is numerically integrated using the generalized trapezoidal rule. Some 

useful restrictions in terms of Poisson's ratio for various flow rules used in constitutive 

models for granular materials are also developed. The MSC sand model is implemented 

into a fully coupled computer code, DYSAC2, and predictions are made for a centrifuge 

model subjected to base shaking. Reasonable comparisons between DYSAC2 predictions 

and centrifuge model test results are obtained validating the performanee of the MSC 

sand model in boundary value problems. Finally, the MSC is expanded to model 

unsaturated sand or silt behavior under triaxial monotonie loading conditions. Two 

pseudo yield surfaces are utilized to model the effects o f suction on the stress-strain 

behavior o f unsaturated sands and silts.
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Chapter 1 

Middle Surface Concept and Its Application to 

Elastoplastic Behavior of Saturated Sands

1.1 Introduction

Although it has been well known that the behavior of sands varies with both 

density and confining pressure, most o f the currently available constitutive models do not 

properly take the effects o f density and confining pressure into consideration. Most o f the 

currently available constitutive models treat a sand with different densities as different 

materials with different set o f model constants (Lade, 1977; Vermeer, 1978; Poorooshasb 

and Pictruszczak, 1986; Wang et al., 1990; Crouch and Wolf, 1994). This type o f 

approach raises questions regarding appropriateness o f model constants during loading 

paths that cause volume and therefore density change. A unified way to take into account 

the density and confining pressure, first introduced by Wroth and Bassett (1965) and 

generalized and validated by Been and Jefferies (1985), opened up a new avenue to 

incorporate the effects of density and confining pressure into constitutive modeling of 

sands. In the above mentioned works an attempt was made to represent the sand behavior 

by using the difference in void ratio between the current void ratio and the void ratio at 

the critical state under the current confining pressure. This difference in void ratio was 

named the “state parameter” by Been and Jefferies (1985). Been and Jefferies' (1985) 

experimental results and subsequent applications o f this concept by others validated this 

postulate (Been et al., 1986, 1987; Carriglio et al., 1990; Collins et al., 1992; Yu, 1994,



1996). The explicit incorporation of the state parameter concept into constitutive models 

can be seen in Bardet (1986), Jefferies (1993), and Wood et al. (1994) and more recently 

in Manzari and Dafalias (1997), Yu (1998), Gajo and Wood (1999a, 1999b), and Li and 

Dafalias (2000). Although the state parameter concept presented an attractive way to 

incorporate the effect o f density and confining pressure in a unified way, the explicit 

incorporation o f the state parameter concept into a constitutive model presented number 

o f implementation difficulties. For instance, Bardet (1986) used the state parameter only 

within his dilatancy rule. Jefferies (1993) and Wood et al. (1994) limited their models 

only to the cases with constant confining pressure loading paths rendering the model not 

useful for practical applications. Manzari and Dafalias (1997) presented a comprehensive 

model that incorporated the state parameter and avoided number o f problems encountered 

by previous models; however, they still had to resort to special techniques and restrictions 

to handle loading along a constant stress ratio path under certain conditions. For example, 

Manzari and Dafalias (1997) had to add special restrictions to avoid predicting initial 

dilation o f looser than critical samples under certain loading conditions. In Yu’s state 

parameter model, an extended Cam Clay model is used to represent the behavior o f sand 

(Yu, 1998). Furthermore, this model requires the definition of a normal consolidation line 

for sand. It is difficult to define a unique normal consolidation line for sands and the Cam 

Clay model is not well suited to model the behavior o f sands, especially for cyclic 

loading paths. In Gajo and Wood's model (1999a, 1999b), locating the so-called “image” 

stress is a difficult task. Moreover, in their model, at the end of loading, there is no 

guarantee that the void ratio will reach the value at the critical state. Another problem 

with Gajo and Wood's (1999a, 1999b) model is that their yield surface is curved in the



stress ratio (q/p) effective mean normal stress (p) plot. Although the actual yield surface 

for sands maybe somewhat curved, the specific functional form in the Gajo and Wood's 

(1999a, 1999b) model may not be justifiable. The above described models encountered 

difficulties in incorporating the state parameter because of two reasons. If the state 

parameter is used as a hardening parameter, the confining pressure involved in the 

definition o f the state parameter is difficult to handle through hardening in the classical 

elastoplasticity theory. This is the reason that Jefferies (1993) and Wood et al. (1994) 

only considered constant confining pressure loading paths. Secondly, if  the state 

parameter is included in the plastic modulus, it is difficult to render the response to end at 

the critical state. It should be noted that the above mentioned problems with the inclusion 

of the state parameter into constitutive models within the critical state soil mechanics 

framework has nothing to do with the state parameter concept or the critical state 

concept. The problems are related to the modeling techniques used in these models.

In order to easily incorporate the state parameter concept into a constitutive model 

for sands within the framework of critical state soil mechanics, an original modeling 

technique is presented in this chapter. The concept presented is straightforward and 

avoids the above mentioned problems encountered by the previous models. The model 

constants are also easy to calibrate. In the first part o f the development, the model is 

developed for monotonie loading conditions within the triaxial stress space. Yang and 

Muraleetharan (2002, 2003) also presented the triaxial stress space development o f this 

model for saturated sands.



1.2 Theory

As stated above, the proposed constitutive model uses the critical state and the 

state parameter concepts for sands. Although there is a lot of debate about the critical 

state for sands (Been and Jefferies, 1985; Poulos, 1981), in this chapter, it is assumed that 

a unique critical state line exists for sands both in terms of stress ratio and void ratio. The 

state parameter is defined as the difference in void ratio between the current void ratio 

and the void ratio at the critical state under the current confining pressure.

Since it is difficult to incorporate the state parameter into the model and make the 

response reach the critical state at the end o f loading with one yield surface, the task is 

divided between three yield surfaces. Among these three yield surfaces, only one yield 

surface represents the true response o f a material and the other two yield surfaces are 

used to assist the true yield surface to incorporate the state parameter and bring the 

response path to the critical state at the end o f loading. These three yield surfaces are not 

completely independent. They all start from the same initial state and are linked through 

some common quantities and conditions. The true yield surface is a combination o f the 

other two yield surfaces. This is the central concept of the proposed model. The two yield 

surfaces other than the true yield surface are named “pseudo yield surfaces”. The one 

serving to assist the tiue response to reach the critical state is called the “first pseudo 

yield surface” and the other one assisting the true yield surface to include the effects of 

the state parameter on the hardening response is called the “second pseudo yield surface”. 

The responses represented by these two pseudo yield surfaces are named “pseudo 

responses”. The true yield surface lies between these two pseudo yield surfaces and hence



this concept is named the "Middle Surface Concept (MSC)". It is worth noting that all 

these three yield surfaces have their own stress and strain states during any point in a 

loading path. Only the stress and strain states for the true yield surface represent the true 

response o f a material. These three yield surfaces also have all the features defined in the 

classical plasticity theory. That is, they all have their own hardening rules and flow rules 

and all satisfy the consistency condition. The main difference from the classical plasticity 

theory is that these yield surfaces are linked by selected common quantities and 

conditions.

Although similar concepts have been used in the past to obtain the true response 

as a combination of several different responses (for example, Kabilamany and Ishihara, 

1990; Desai, 1974; Park and Desai, 2000), what is unique about MSC is the careful 

selection o f hardening and flow rules and common quantities between the three yield 

surfaces to separate the modeling demands caused by number of unique concepts such as 

the state parameter and the critical state into manageable subtasks. The motivations for 

the above mentioned works and the MSC are also quite different. For example, 

Kabilamany and Ishihara (1990) were interested in splitting the response between various 

physical mechanisms such as a consolidation mechanism and three shear mechanisms. 

The Disturbed State Concept (DSC) used by Desai and his coworkers (Desai, 1974; Park 

and Desai, 2000) is motivated by the concept of damage and describes the true behavior 

as a combination of behavior o f two states, intact and ultimate (or fully adjusted) states. 

Elastoplastic concepts are only applied to the intact state. On the other hand, MSC is 

motivated by the need to have flexibility in modeling number of unique concepts and 

uses the elastoplasticity theory consistently, and provides a framework to incorporate



more than two pseudo responses, if  necessary. Furthermore, Kabilamany and Ishihara 

(1990) and Park and Desai (2000) models use parameters that depend on density o f a 

sand, and they suffer from difficulties described previously.

1.2.1 Pseudo Yield Surfaces

The first pseudo yield surface that makes the stress ratio reach the critical state at 

the end of loading, takes the following form;

( Id )

(Z. = M — (1. 2)

where, or. and , respectively, are the hardening parameter and plastic deviatoric strain

for the first pseudo yield surface; M  is the critical stress ratio; a is a model constant; 

and p, and g , , respectively, represent the first pseudo effective isotropic and deviatoric 

stresses in the triaxial stress space. The shape o f the yield surface for sands represented 

with equation (1.1) is linear in p-q plot, which has been validated by Tatsuoka and 

Ishihara (1974) and widely accepted as a simplified yield function for sands (Wood et al., 

1994; Manzari and Dafalias, 1999; Li and Dafalias, 2000). This type o f  yield function 

cannot, however, predict the plastic deformation under constant stress ratio loading paths. 

Given the fact that relatively small plastic deformation occurs for sands during constant 

stress ratio loading, the yield function given by equation (1.1) is a reasonable simple 

approximation. If needed, a cap can be easily added to the yield surface similar to 

Vermeer (1978) and Wang et al. (1990).



The hardening parameter represented by equation (1.2) takes the form of Vermeer 

(1978) that guarantees that the stress ratio will approach the critical state value M  when 

the deviatoric plastic strain is large. The plastic modulus for the first pseudo yield surface 

can be obtained using the classical plasticity theory as follows:

where, for convenience, the deviatoric part o f the plastic strain increment direction is set 

to unity here and in derivation o f other plastic moduli presented later.

The second pseudo yield surface takes the following form and incorporates the 

state parameter:

-0^2=0 (14)

^ 2  =  M  e x p ( - ^ i(y j  (1 .5 )
( < 2 + a)

where, is the state parameter for the second pseudo yield surface, which is defined 

together with for the first pseudo yield surface and xj/ for the true yield surface as:

- (^ r^  /;)r^ )) (% = h 2) (1.6)

In equation (1.4), a 2  is the hardening parameter for the second pseudo yield surface, and

P 2  and ^ 2 , respectively, represent the second pseudo isotropic and deviatoric stresses in

the triaxial stress space. In equation (1.5) is a strength hardening parameter related to

the state parameter and is the plastic deviatoric strain for the second pseudo yield

surface. Parameter a is the same parameter as used for the first pseudo yield surface. 

From equation (1.5), one can see that the plastic modulus for the second pseudo yield 

surface differs from that o f the first one because o f the inclusion o f the state parameter

7



( ^ 2  • For example, loose sands with positive state parameter values will have a lower 

plastic modulus for the second pseudo yield surface compared to that for the first pseudo 

yield surface. Thus, the definition of the plastic modulus for the second pseudo yield 

surface takes into account the effects o f the state parameter on the stress-strain response. 

In order to avoid the direct inclusion of the state parameter in the hardening rule, the 

definition of the second pseudo yield surface starts with the plastic modulus rather than 

the hardening parameter . The hardening parameter is not known until the flow 

rule is defined as deseribed later. In equation (1.6), e. and are the current void ratio 

and void ratio at the critical state under the current effective confining pressure for these 

three yield surfaces. Once the reference pressure, , is fixed the quantities and X

are model constants related to the eritical state line on the e-ln p plot. Other equations can 

also be used to represent the eritical state line on the e-ln p plot, for example, see Li and 

Wang (1998).

1.2.2 True Yield Surface

Based on the pseudo yield surfaces the true yield surface can be defined. Before 

formulating the true yield surface, it is necessary to establish the links between the true 

yield surface and the pseudo yield surfaces. It is proposed that these three yield surfaces 

have the same confining pressure and plastic deviatoric strain at any point during loading, 

which in turn implies that increments in confining pressure and plastic deviatoric strain 

are also same throughout the loading, i.e., p  -  = p^,  and

dp = dp  ̂ = dp 2 , dsj^ = -  ds^^ • The proposition that the confining pressure and



plastic deviatoric strain are the same for all three yield surfaces produees the additional 

four equations necessary to solve the system of equations. However, the choice o f these 

quantities and not the others produces a simplified and physically more meaningful 

model. The definition o f the same plastic deviatoric strain between the pseudo yield 

surfaces leads to the fact that the plastic moduli o f these two yield surfaces differ only by 

tbe state parameter o f the second yield surface (see eqs. (1.3) and (1.5)). This fits the 

original objective of delegating the task o f including the effects o f the state parameter to 

the second pseudo yield surface. The definition o f the same confining pressure between 

the three yield surfaces simplifies the implementation of the model, especially for the 

general stress space. In addition, these three yield surfaces will have a common initial 

state and links between their hardening parameter and state parameter relationships. The 

link between the hardening parameters will be used to define the plastic modulus for the 

true yield surface and the link between the state parameters will be used to define the 

flow rule for the true yield surface. The link between the hardening parameters is 

presented first. The true yield surface’s hardening parameter is defined as:

The true yield surface is defined as:

/  = q / p - a  ^ 0  (1.8)

In equation (1.7), 6 is a model constant determining, based on the value o f the plastic 

deviatoric strain, how much the hardening parameter for the true yield surface depends on 

the hardening parameter for the first pseudo yield surface or the second pseudo yield 

surface. The larger the deviatoric plastic strain, the closer the tme stress response to the



first pseudo response, and the stress ratio approaches the critical state (eqs. (1.1) and

(1.2)). The plastic modulus for the true yield surface can be obtained using equations 

(1.7), (1.3) and (1.5) as described below.

Differentiating both sides o f equation (1.7), one can obtain:

Consistency condition gives:

— + — dor = 0 (1.10)
d<j da

Setting the deviatoric part o f the plastic strain increment direction to unity, the deviatoric 

plastic strain increment is:

1 df
ds^ ~ — ——d a  ( 1.11)

From equations (1.8), (1.10) and (1.11), the following relationship can be obtained:

da=^Kpde^  (1.12)

Similarly for the pseudo yield surfaces:

d a ,= K ^ ,d s ^  (1.13)

Substituting equations (1.12), (1.13) and (1.14) into equation (1.9), the plastic modulus 

for the true yield surface can be obtained as:
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If one substitutes equations (1.2), (1.3) and (1.5) into equation (1.15), can be also 

written as:

(6,4-6:;): 0  4-6:; 6,4^,=; (a 4-6^^): (6 + 6:;):

+ {M -k^^|/2)-

(1.16)

6 -Har; (a 4-6;^):

The derivation o f the flow rules is presented next. The flow rules for the pseudo 

yield surfaces will be defined first. The flow rules must he able to bring the void ratio for 

the true response to the critical state and incorporate the effects of the state parameter (for 

example, Li et ah, 1999). Guided by these requirements the flow rules for the pseudo 

yield surfaces are defined as:

6), = - = / ; , )  (1.1T7)

Z); = = yf(Ajr HitzV/z - 9z /j?) (1 1!*)
ae^

where, A and are the model constants for the description of dilatancy, and if/ 2  are

the state parameters corresponding to the pseudo yield surfaces, and t  f  {i = 1, 2) are

plastic volumetric strains. Throughout this chapter and this thesis, volumetric contraction 

is taken positive and volumetric expansion is taken negative. The inclusion o f state 

parameter into the flow rule was first introduced by Manzari and Dafalias (1997) and was 

further validated by Li et al. (1999) and Li and Dafalias (2000). The approach to 

incorporate the confining pressure and void ratio, in a different way, into the flow rule 

can be seen in Faruque et al. (1992). For loose sands under larger confining pressures 

having larger positive state parameter values, equations (1.17) and (1.18) give larger
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positive dilatancy ratios indicating larger volumetric contraction. In contrast, for dense 

sands under smaller confining pressures having larger negative state parameter values, 

the above two equations give larger negative dilatancy ratios indicating larger volumetric 

expansion. Thus, the effects of confining pressure and density for sands are incorporated 

in the above defined flow rules. In addition, the definition o f the flow rule for the first 

pseudo yield surface (eq. (1.17)) guarantees that its state parameter will approach zero as 

its stress ratio approaches the critical state at the end of loading and therefore ensures its 

void ratio will reach the critical state.

The determination of the flow rule for the true yield surface is pursued through 

establishing the relationship between the state parameters o f the three yield surfaces. 

Similar to equation (1.7), the link between the state parameter for the true yield surface 

and those for the pseudo yield surfaces is defined as:

g"" c
= ---------------  (1.19)c + e ;  c + f f

where, c is a model constant defining how much the true state parameter depends on the 

state parameter for the first or second pseudo yield surface. In equation (1.19), during the 

later stages of loading, for larger , the true state parameter y/ approaches the first 

pseudo and therefore the critical state (eq. (1.17)). In order to obtain the flow rule for 

the true yield surface, differentiating both sides o f equation (1.19) gives;

(..20 ,

Substituting the differential form of the state parameter expressions in equation (1.6) and 

the relationship de = -(1 + e^')de^ into equation (1.20), one can obtain:
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c 1 c
( 1.21)

 ̂— ; , . ,\2c + e ;  -  (1 + e*) (c + f f ) '

The fact that these three yield surfaces have a common confining pressure is used in 

deriving equation (1.21). The volumetric strain increments in equation (1.21) are 

composed of elastic and plastic parts and elastic volumetric strain increments depend on 

the confining pressure and its increment. Confining pressure and its increment are same 

for all the yield surfaces and therefore the elastic parts of volumetric strain increments in 

equation (1.21) will vanish. As a result, equation (1.21) can be expressed as:

<  . . 1 c

(1.22)

Dividing both sides o f equation (1.22) with the common plastic deviatoric strain 

increment and using the flow rules for the pseudo yield surfaces in equations (1.17) and 

(1.18), one can obtain the flow rule for the true yield surface as:

The formulation presented above implies that plastic deformation occurs from the 

beginning o f loading and this is a reasonable assumption for sands. In order to calculate 

the elastoplastic behavior, the elastic behavior is defined as follows (Manzari and 

Dafalias, 1997):

==,dp//f. (1.2/1)

d s ‘. = dq. /(3G J (z = true, 1, 2) (1.25)
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where, and afgj,. represent isotropic and deviatoric parts of elastic strain increments,

and represent elastic bulk and shear modulus, respectively. These moduli are

defined as:

JC, = jRTo ( f /]?.,)" (1 26)

c;, = Gfolp/f?.,)" (isry)

where, K^, and n are model’s elastic constants, is the atmospheric pressure used

as the reference pressure.

In summary, the plastic moduli o f the three yield surfaces are given by equations

(1.3), (1.5) and (1.15); flow rules are represented by equations (1.17), (1.18) and (1.23); 

and hardening rules are given by equations (1.12)-(1.14). The elastic behavior is 

represented with equations (1 ,24)-(1.27). Within the framework of the classical 

elastoplasticity theory and two common quantities (confining pressure and plastic 

deviatoric strain) between the three yield surfaces, the stress-strain relationship for the 

three yield surfaces can be obtained.

1.3 Model Performance

The performance of the model is investigated under variety o f conditions using 

the model constants given in Table 1,1. First, a dense sand with a negative initial state 

parameter under a constant confining pressure loading is considered. The initial void ratio 

and the confining pressure used are 0.66 and 40 kPa, respectively. The corresponding 

value of the initial state parameter is -0.13. Model simulations under a constant confining 

pressure (40 kPa) and drained loading conditions are shown in Figure 1.1. In Figure 1.1, 

the first pseudo deviatoric stress-strain response is always below the critical state value
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and reaches the critical state value at the end of loading. On the other hand, the second 

pseudo deviatoric stress-strain response ends up above the critical state at the end of 

loading and has a stiffer initial response compared with the first one due to the effect of 

the negative initial state parameter value. The combination o f the two pseudo responses 

makes the true response reach the critical state value along with the first pseudo response. 

As far as the volumetric response is concerned, the first pseudo void ratio reaches the 

critical state at the end o f loading through dilation. This can be seen from the zero state 

parameter value at the end of the loading for the first pseudo response. The second 

pseudo response has a larger dilation than the first one and ends up with a positive state 

parameter value at the end of the loading. The true response is closer to the second 

pseudo response during the early stages o f loading. With increasing axial strain, the true 

response moves away from the second pseudo response and approaches the first pseudo 

response and finally reaches the critical state as intended during the development of the 

model.

In order to demonstrate the model’s capabilities under varying confining 

pressures, simulation of a conventional triaxial drained compression test was carried out 

and the results are shown in Figure 1.2. In this simulation the axial strain is increased 

while keeping the radial stress constant at 40 kPa. This results in confining pressure 

changing during the loading. The initial void ratio and the state parameter values are 

again 0.66 and -0.13, respectively. From Figure 1.2, it can be seen that the model 

performs equally well under varying confining pressure conditions.

Simulations for a constant confining pressure loading with a positive initial state 

parameter value representing a loose sand are shown in Figure 1.3. The initial void ratio
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and the confining pressure are taken as 0.89 and 40 kPa, respectively. The corresponding 

value of the initial state parameter is 0.1. Model constants given in Table 1.1 are again 

used. As shown in Figure 1.3, the second pseudo deviatoric stress-strain response for e = 

0,89 lies below the first pseudo response. However, for e = 0.66 the second pseudo 

response lies above the first pseudo response (Figure 1.1). Since the first pseudo response 

is not controlled by the state parameter, this response is the same for both e = 0.89 and 

0.66. By comparing Figures 1.1 and 1.3 one can also see the differences in the volumetric 

responses and evolution o f state parameters between negative and positive initial state 

parameter values. The volumetric response with positive initial state parameter reaches 

the critical state through contraction. In contrast, the volumetric response with negative 

initial state parameter reaches the critical state through dilation. The simulations 

presented in Figures 1.1-1.3 demonstrate the model’s capability under variety o f loading 

and initial conditions.

It is worth noting that this model works equally well under more complicated 

loading paths as well as above mentioned loading paths. It has been known that excessive 

volumetric dilation and softening may occur, which brings the soil to an unstable state, in 

certain state parameter models for sands under some particular loading paths (Manzari 

and Dafalias, 1997). I'herefore, special numerical techniques have to be used to deal with 

such problems. However, in this model, the true stress ratio always lies between the two 

pseudo stress ratios (eq. (1.7)), and the two pseudo stress ratios can serve the purpose of 

bounding the softening to a limited degree. In addition, the true volumetric change is 

mainly dependent on the first pseudo’s when the plastic deviatoric strain is relatively
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large (eq. (1.23)). The first pseudo yield surface won’t develop excessive volumetric 

dilation as the first pseudo stress ratio is always lower than the critical state stress ratio.

The parameters required to describe the stress-strain behavior using this model are 

a, b, for hardening, and A, c, kj  for dilatancy, the elastic parameters K q, G q, h , and

the critical state parameters À, M  and . .  The roles of the parameters specific to the

proposed model ( a, b. A:,, A, c, ) will be described below. The model constants are 

given in Table 1.1 unless specified. The initial void ratio and the confining pressure used 

in the parametric study are 0.66 and 40 kPa, respectively. The corresponding value o f the 

initial state parameter is -0.13. The confining pressure is held constant at 40 kPa 

throughout the loading for all the simulations in the parametric study. Various values of 

model parameters a, b, k ,, A, c, used in the parametric study are listed in Table 1.2. 

The roles o f a, b. A:, on the hardening response are shown in Figure 1.4. In Figure 1.4, the 

stiffness and strength can be reduced by increasing the value of a and decreasing the 

values of k̂  and b . However, these three model constants control the stress-strain 

behavior in different ways. Model constant a influences both the first and the second 

pseudo responses. Model constant A, influences the true response through its effect on 

the second pseudo response. Constant b influences the true response by specifying how 

fast the true response moves from the second pseudo response to the first pseudo 

response. The smaller the value o f b the quicker the true response will reach that o f the 

first pseudo response. The constant a has a greater influence than A, and b in changing 

the stiffness and strength. The parameters a, b. A, have little effect on the volumetric 

response.
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The effects o f parameters A, c, on the volumetric response are shown in 

Figures 1.5 and 1.6. These parameters have little influence on the deviatoric stress-strain 

response. Figure 1.5 shows that larger values o f A and kj cause larger dilation for dense 

sands with negative initial state parameter values. The parameter influences the 

behavior through the state parameter. The value o f k^ also determines the position o f the 

phase transformation lines. Increasing the value o f A not only increases dilation but also 

increases the initial contraction when the stress state is below the phase transformation 

line. However, increasing the value of kj will lower the phase transformation line and 

leads to smaller contraction and larger dilation. Similar to the role o f the hardening 

parameter h , parameter c determines how fast the volumetric response reaches the 

critical state. Evolution o f the state parameter values corresponding to the volumetric 

responses in Figure 1.5 are shown in Figure 1.6. It can be seen from Figure 1.6 that larger 

values of A and k^ and a smaller value o f c make the state parameter reach zero at a 

faster rate.

1.4 Calibration and Validation

In this section, the determination o f the critical state line will be first described 

followed by the calibration o f the parameters specific to this model ( a, b, k^, A, c, kj ) and

comparisons between simulations and experimental data. Laboratory tests conducted on 

Nevada sand (Arulmoli et al., 1992), Toyoura sand (Verdugo and Ishihara, 1996) and 

Oklahoma #1 sand (Kmeid, 2003) are used for calibration and predictions.
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Nevada sand (D50  = 0.15 mm) has a maximum dry density o f 17.33 k N I m^, a 

minimum dry density o f 13.87 k N / , and a specific gravity of 2.67. Monotonie triaxial

tests with different densities and confining pressures under drained and undrained loading 

conditions are available (Arulmoli et ah, 1992). Drained tests were carried out under 

constant confining pressures. The tests were mainly performed on samples with relative 

densities (Dr) of 40% and 60% under confining pressures of 40, 80 and 160 kPa. The 

void ratios corresponding to Dr = 40% and Dr = 60% are 0.740 and 0.660, respectively. 

The Toyoura sand has a maximum void ratio of 0.977, a minimum void ratio of 0.597, 

and a specific gravity o f 2.65. A series o f conventional drained triaxial tests were carried 

out with different void ratios ranging from 0.810 to 0.996 under constant lateral stresses 

o f 100 kPa and 500 kPa (Verdugo and Ishihara, 1996). Triaxial undrained tests were 

carried out with void ratios ranging from 0.735 to 0.907 under different initial confining 

pressures varying from 0.1 MPa to 3 MPa. The drained and undrained conventional 

triaxial compression tests on Oklahoma # 1 sand under relatively high initial effective 

confining pressures ranging from 300 psi (2 Mpa) to 5950 psi (41 Mpa) were performed 

by Kmeid (2003). Experimental results showed that sands in this range o f large confining 

pressures were susceptible to grain crushing during shearing. In contrast to the broad 

range of confining pressures in the tests, the range of porosities is narrow, from 0.37 to 

0.44.

1.4.1 Determination of the Critical State Line

Since the state parameter is defined based on the critical state line the 

determination of the critical state line is an important task. There is a lot o f debate about
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the critical state line for sands. Some argue that there is no unique critical state line for 

sands (Konrad, 1990; Riemer and Seed, 1997). Some argue that there is a unique critical 

state line (Poulos, 1981). Others even proposed that the critical state exists only for the 

stress ratio and not in the confining pressure-void ratio space (Vaid et al., 1990; Mooney 

et al., 1998). These controversies mainly resulted from the complexity o f sand behavior 

and testing difficulties. Measuring critical state for sands is a difficult task due to the 

problems such as localization. The uniqueness o f the critical state for sands is, however, 

assumed in the development o f the proposed model.

Critical state lines for Nevada sand for stress ratio and in the confining pressure- 

void ratio space are shown in Figure 1.7. The critical state line for Nevada sand for stress 

ratio has a slope (M) of 1.3. It has been observed by various researchers that the critical 

state line in the confining pressure and void ratio space is curved. ITie slope o f the critical 

state line increases with the confining pressure and there is usually a break point from 

which the slope o f the critical state line in the confining pressure and void ratio space 

increases sharply (Been et al., 1991; Yamamuro and Lade, 1997; Li and Wang, 1998). In 

this chapter, the critical state line in the confining pressure and void ratio space for 

Nevada sand is assumed to be bilinear (for example. Been et al., 1991). The first part is a 

flat line with the critical state void ratio o f 0.78 for confining pressures smaller than 160 

kPa. This part is determined from drained tests for different initial void ratios and 

confining pressures. The second part is represented by line with a slope o f 0.04 for 

confining pressures larger than 160 kPa. This portion is determined from the undrained 

tests. The initial state parameters values o f -0.043 and -0.12, respectively, can be
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obtained for Dr = 40% and Dr = 60% from the critical state line shown in Figure 1.7(a) 

for confining pressures less than 160 kPa.

The critical state line for Toyoura sand can be represented by

where g , ,  À. and ^  are material constants and is the atmospheric pressure, used for

normalization (Li and Dafalias, 2000). These parameters together with the critical stress 

ratio slope M  are obtained from drained test results for Toyoura sand and are shown in 

Table 1.1.

The slope o f the critical state line in p ~ q  space for Oklahoma #1 sand is 

obtained by averaging the stress ratios o f four drained tests at the end of loading. Its 

critical state line in I n p ~ e  space is represented with a straight line, and the 

corresponding parameters and À are obtained by using two drained test results at the

end of loading. These parameters are listed in Table 1.1. It should be noted that the slope 

X (0.178) for the critical state line in I n p - e  space is larger than the values used for 

other two sands. This is attributed to the grain erushing behavior o f sands under relatively 

large confining pressures, which causes dramatic compression during shearing.

1.4.2 Model Calibration

From equation (1.7), it can be seen that the second pseudo yield surface plays a 

dominant role in the true hardening response when the plastic deviatoric strain is 

relatively small compared with the value o f the parameter h . In this case, parameters 

a and play the main role in determining the hardening response. Given two test results
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with different initial state parameters, a and can be determined by trial and error 

procedure through comparing their hardening responses during the early stages of 

loading. The stiffiiess and strength can be reduced by increasing the value o f a and 

decreasing the value o f A,. In the same way, A and kj  can be determined through 

examining the volumetric responses for two different initial state parameters during the 

early stages o f loading. Increasing the value o f A will increase both the volumetric 

contraction and dilation, and increasing will increase the dilation and decrease the 

contraction. For a loose sand, the undrained response will give the best estimation o f the 

values of A and k^ because pore pressure increase during undrained test is much more 

pronounced and easier to measure than the volume change during drained test for a loose 

sand. The parameters A, and Aj control the difference in responses for two different state 

parameter values, since they are the only parameters directly related to sand’s state 

parameters in this model. Constant b influences the true response by specifying how fast 

the deviatoric stress-strain true response moves from the second pseudo response to the 

first pseudo response. The smaller the value of b the quicker the true response will reach 

that o f tl\e first pseudo response. Similarly the parameter c determines how fast the 

volumetric response reaches the critical state. A smaller value of c will bring the 

volumetric response faster to the critical state. Therefore parameters b and c can be 

obtained through curve fitting by examining the responses during later stages of loading. 

Parameter b mainly controls the later stages o f the hardening response including peak 

value. The peak of the hardening response includes the value of peak deviatoric stress 

and the position. Parameters a, b, and A, have little effect on the volumetric behavior and
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parameters A, c, and have little effect on the stress-strain response. This separation 

helps the calibration process and is one o f the strengths of the proposed model.

The model parameters for Nevada sand are obtained from drained test results at 

relative densities o f 40% and 60% shown in Figures 1.8 and 1.9. It should be noted that 

when the confining pressure is smaller than 160 kPa for Nevada sand, the state parameter 

is independent o f confining pressure, as described above. The parameters for Toyoura 

Sand are obtained by using drained test results under 500 kPa lateral stress for void ratio 

o f 0.96 shown in Figure 1.12, and under 100 kPa lateral stress for void ratio o f 0.831 

shown in Figure 1.11. The two cases correspond to the largest and smallest state 

parameters among all the drained tests examined for Toyoura sand. The model 

parameters for Oklahoma # I sand are obtained by using drained test results under the 

initial confining pressure o f 500 psi (3.4 MPa) and 1500 psi (10.3 MPa), respectively, 

shown in Figure 1.16. All the values o f the model parameters for Nevada sand, Toyoura 

sand and Oklahoma #1 sand obtained using this calibration procedure are listed in Table 

1. 1.

1.4,3 Model Validation

Stress-strain and volumetric responses for Nevada sand with Dr o f 40% and 60% 

under drained loading conditions are shown in Figures 1.8 and 1.9, respectively. Denser 

sands have a stiffer hardening response, higher peak value and larger dilation as shown in 

Figure 1.9, as opposed to looser sand responses shown in Figure 1.8. For example, the 

peak strength for Dr of 40% under 160 kPa confining pressure is 220 kPa, compared to 

270 kPa for Dr of 60% under 160 kPa confining pressure. Denser sands also show a
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much more pronounced softening following the peak deviatoric stress. In Figure 1.9, 

under 160 kPa confining pressure, softening brings the deviatoric stress down to 240 kPa 

from the peak strength o f 270 kPa. The sample for Dr o f 40% experiences 3% volumetric 

expansion, compared with 5% volumetric expansion for Dr o f 60%. In addition, a 

considerable amount o f volumetric contraction can be observed for Dr o f 40% during the 

early stages o f loading. The model reflects the above phenomena very well. The model 

predictions shown in Figures 1.8 and 1.9 indicate that the volumetric response is 

independent of the confining pressures. The reason for these predictions is that the critical 

state line was assumed a fiat line for confining pressures below 160 kPa (Figure 1.7).

This assumption implies that for confining pressures smaller than 160 kPa the initial state 

parameter value is independent o f confining pressures and depends only on the initial 

void ratio. It is quite obvious that confining pressures greater than 160 kPa will yield 

different initial state parameter values even when the initial void ratio is a constant and 

consequently will lead to volumetric responses that depend on confining pressures. The 

model predictions and conventional undrained compression test results for Nevada sand 

with Dr of 60% is shown in Figure 1.10. The pore water pressure in Figure 1.10 

decreases throughout the loading due to the plastic volumetric expansion, whieh resulted 

in the increase of effective confining pressure and deviatoric stress. In general, the test 

results and model simulations are in good agreement.

The drained and undrained triaxial test results and model predictions for Toyoura 

sand are shown in Figures 1.11-1.15. The comparisons between test results and model 

predictions again show a good agreement. The tests cover a wide range of confining 

pressures varying from 100 kPa to 3000 kPa and void ratios varying from 0.907 to 0.735,
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which correspond to a wide range of state parameters. For the drained tests in Figures 

1.11 and 1.12, denser sands experience stiffer stress-strain response, higher peak strength 

and larger volumetric expansion. For the undrained tests in Figures 1 .13-1 .15 , denser 

sands under smaller initial confining pressures show greater pore water pressure decrease 

than looser sands under higher initial confining pressures. It is worth noting that even for 

the densest sand with a void ratio of 0.735 in Figure 1.13, a considerable amount o f pore 

water pressure increase can be observed during the early stages o f loading when the 

initial confining pressure is very high (for example, 3000 kPa). This is in accordance with 

the state parameter concept in which the combination of void ratio and confining pressure 

determines sand behavior. In Figure 1.15, in which the void ratio is very high (0.907), 

liquefaction (zero confining pressure) can be observed.

Figures 1.16 shows the test results and predictions for Oklahoma #1 sand under 

drained loading conditions for the initial confining pressures from 500 psi (3.5 MPa) to 

2000 psi (13.8 MPa). It can be seen that predictions and test results are in a reasonable 

good agreement. Larger confining pressures lead to larger shear strength and larger 

compression. It should be noted that the measured deviatoric stress and volumetric 

evolutions for relatively large initial confining pressures, for example at 1500 psi (10 

MPa) and 2000 psi (14 MPa), are not stable and continue increasing at a constant rate 

even when the axial strain reaches 30%. This is caused by the continuous sand grain 

crashing under relatively large confining pressures. The volumetric strain evolutions are 

available only for the tests under initial confining pressures of 500 psi (3.5 MPa) and 

1500 psi (10 MPa) in Figure 1.16 because the data acquisition system didn’t operate 

properly under initial confining pressures o f 1000 psi (6.9 MPa) and 2000 psi (14 MPa).
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Figures 1.17-1.22 show the undrained test results and predictions under initial effective 

confining pressures varying from 300 psi (2.1 MPa) to 5950 psi (41 MPa). Both test 

results and predictions show that under smaller confining pressures the pore water 

pressures increase first, followed by a decrease, such as in Figures 1.17 and 1.18. 

Correspondingly, the effective confining pressures decrease first, followed by an increase. 

This results from the negative state parameters under smaller confining pressure. Under 

higher confining pressures, the pore water pressures increase throughout loading, which 

results in effective confining pressure decreasing throughout loading, such as in Figures 

1.19 -  1.22. This results from the positive state parameters under higher confining 

pressures. It should be noted that the predicted deviatoric stresses experience greater 

softening than the measured ones under larger confining pressures. This discrepancy is 

likely due to the grain crushing o f sands and corresponding localization o f samples 

during shearing.

1.5 Conclusions

A novel modeling technique named the “Middle Surface Concept (MSG) ” is 

presented to take into account the state parameter and the critical state concepts within 

the classical elastoplasticity theory. By dividing the modeling task between two pseudo 

yield surfaces the difficulties faced by previous models in incorporating the state 

parameter and achieving the critical state are avoided. The true response is a combination 

o f the two pseudo responses. The true yield surface lies between the two pseudo yield 

surfaces and hence the name Middle Surface Concept. All three yield surfaces share a 

common confining pressure, plastic deviatoric strains and their increments, and are
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further linked by relationships relating the hardening and dilatancy rules. The model 

parameters are meaningful, easy to calibrate, and are independent o f the density o f a 

sand.

The application of this concept to the monotonie loading of saturated sands within 

the triaxial space is presented. The model is shown to be capable o f modeling various 

loading conditions and capturing unique features such as softening of dense sands 

following the peak deviatoric stress under drained loading. Reasonable comparisons 

between model predictions and laboratory test results are achieved for three different 

sands.

ITie Middle Surface Concept is quite general and can be applied to materials other 

than sand in that it can model more than one unique concept by dividing the task among 

multiple pseudo yield surfaces.
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Table 1.1. Model Constants for Model Performance, Nevada Sand, Toyoura Sand and
Oklahoma #1 Sand

Model
performance

Nevada sand Toyoura sand Oklahoma 
#1 sand

Elasticity
Go(kPa) SxlO'* 2.0x10" 2.0x10" 2.0x10"

^o(kPa) 3x10"* 2.0x10" 2.0x10" 2.0x10"
n 0.6 0.6 0.5 0.6

Critical
state

M 1.30 1.30 1.27 1.3

À 0.025 0 (p<160 kPa) or 
0.04 (p>160 kPa)

0.019 0.178

r̂ef 0.760 0.780 0.934 1.0135

.Pr9r(kPa)or ^ 160 160 0.7 1000

Hardening
and

softening

a 0.0010 0.0025 0.0045 0.0035

K 3.0 4.0 4.0 6
b 0.05 0.06 0.04 0

Dilatancy
A 1.0 0.8 0.7 0.8
k. 6 11 6 4
c 0.050 0.002 0.002 0

Table 1.2. Various Values o f Model Parameters Used in the Parametric Study

Hardening and Softening Dilatancy

a K b A c

0.001 0.01 0.05 3 6 9 0.002 0.01 0.05 1 2 3 3 6 12 0.002 0.01 0.05
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Chapter 2

General Stress Space Implementation of the Middle Surface Concept (MSC) for

Saturated Sands

2.1 Introduction

In addition to the characteristics o f sand response in monotonie triaxial loading 

conditions, described in Chapter 1, in general stress space considerable plastic 

deformation occurs during unloading and reloading. For example, during unloading, after 

the loading path crosses the phase transformation line, the volumetric contraction is so 

large that liquefaction or cyclic mobility may occur under undrained conditions (Ishihara 

et ah, 1975). In addition, sand is an assemblage o f particles and therefore the fabric -  

particle contact orientations -  o f a sand influences its stress-strain behavior significantly. 

A typical sand in the field or a sand sample prepared in the laboratory has an anisotropic 

fabric. That is, the particle contact orientations have a preferential direction. Even for an 

initially isotropic sand, an anisotropic fabric is produced during shearing. This type of 

anisotropy is called the stress-induced anisotropy. A significant portion o f stress-induced 

anisotropy remains even after unloading. It has been observed (Oda, 1972; Arthur et ah, 

1986; Dean, 2003) that, although initially there were very little differences, shearing 

along different directions following a loading-unloading cycle gives different responses 

in terms of hardening and volumetric change. In this Chapter, extending the MSC sand 

model in monotonie triaxial conditions, the application o f the MSC incorporating the 

effects of fabric anisotropy and cyclic loading response to general stress space is
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presented. All the model parameters under monotonie loading conditions remain the same 

for the general stress space. This general stress space implementation provides further 

insights into the MSC and highlights its versatility as a general material modeling 

concept. Reference

2.2 Theory

The MSC was originally developed with three yield surfaces for triaxial 

monotonie loading conditions in Chapter 1. Among these three yield surfaces, one is the 

true yield surface and the other two are pseudo yield surfaces used to represent the 

critical state concept and the effects o f the state parameter. In the original development, 

the true yield surface lies in between two pseudo yield surfaces and hence the name the 

“Middle Surface Concept”. It is, however, not necessary for the MSC to have exactly 

three yield surfaces and the true yield surface doesn’t necessarily have to lie in between 

the pseudo yield surfaces. In the general stress space model, four yield surfaces 

composed o f one true yield surface and three pseudo yield surfaces are used. The first 

pseudo yield surface is used to represent the critical state concept o f soils and unloading 

and reloading plastic deformation. The second pseudo yield surface is used to represent 

the development of fabric anisotropy. The influence o f fabric anisotropy on sand 

behavior is represented with the combination of the first and second pseudo yield 

surfaces. The third pseudo yield surface is used to represent the effect o f the state 

parameter on the hardening and softening response. Based on the test results (Tatsuoka 

and Ishihara, 1974), all the yield surfaces in the present model have a cone shape in the 

general stress space. In order to represent the differences in sand response along different
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loading directions under isotropic fabric condition, some model parameters are made to 

depend on the Lode angle. In view o f the fact that the state parameter significantly affects 

the dilataney ratio, the phase transformation lines for all the pseudo yield surfaces are 

made to depend on their state parameters.

Common features o f all the yield surfaces are first introduced and then specific 

details of different yield surfaces are developed. Following standard notations, the bold 

characters denote tensors.

For all the yield surfaces, the stress and strain rates consist o f hydrostatic part and 

deviatoric part and are given as:

à=^s + p l  (2.1)

g = g + (2.2)

where p  and denote hydrostatic part of stress and strain, respectively, and s and e 

denote deviatoric part o f stress and strain tensors, respectively. The quantity I is the 

second-order isotropic tensor. All the yield surfaces have the shape o f a cone in the 

general stress space and given by:

f - [ { s - p a ) : { s - p a ) f ' ^  - m p  = Q (2.3)

where a denotes the position of the axis of the cone and mp is the radius o f the cone, m 

is a relatively small constant and all the yield surfaces share the same value of m . In

accordance with the classical elastoplasticity theory, the plastic strain rate é ’’ for all the 

yield surfaces is defined as:

é ” + (2 .4)
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L = ^ ( ^ à )  (2.3)

where é'’ , denote the deviatoric and hydrostatic parts o f the plastic strain rate,

respectively; R  denotes the direction o f the plastic strain rate; denotes the plastic 

modulus; L  denotes the loading index; and ( ) denotes Macauley brackets. When L is

positive, (Z) is equal to L . When L  is negative, (L) is zero. In the classical 

elastoplasticity theory, all the yield surfaces satisfy the consistency condition, given as;

= + = 0 (2.6)

Usually, it is convenient to develop the formulations for cone type of yield 

surfaces on the stress ratio n-plane where the stress ratio is denoted hy r = s ! p  (see for 

example, Manzari and Dafalias, 1997). The deviatoric part o f the normal to the yield 

surface on the stress ratio n plane is:

» = —  (2.7)
m

where « is a unity tensor. Correspondingly, the normal to the yield surface is:

^ = n - - N l  (2.8)
a r  3

where N  = n : r . The loading index L  can be rewritten as:

L = - ^ ( p n :  r ) - - ^ ( n :  s - N p )  (2.9)

The associative flow rule can be used for the deviatoric part of the plastic strain rate on 

the stress ratio 7t-plane and R  can be rewritten as:
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R ^ n  + ~ D l  (2.10)

where D  denotes the dilatancy ratio. Aceording to equations (2.4) and (2.10), the 

deviatoric part and hydrostatic part o f the plastic strain rate can be split as:

(2d l )

fj» (2d2)

The consistency condition represented with equation (2.6) can be rewritten as:

n : r  = n : à  (2.13)

The elastic responses for the true and three pseudo yield surfaces are defined as:

(2 .4 )

(2 .5 )

where e ' and gj are the deviatoric and hydrostatic parts o f the elastic strain, respectively. 

K  and G are bulk and shear modulus, respectively, and are defined as:

= (2 1 6 )

(3 = (2.17)

where, , Gq and are elastic model parameters, and p^, is the atmospheric pressure 

used as the reference pressure.

2.2.1 Pseudo Yield Surfaces

The first pseudo yield surface employs the bounding surface concept to represent 

cyclic loading response and the critical state behavior. The bounding surface is chosen as
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a cone in the general stress space with its axis as the hydrostatic stress axis. Its radius is 

M'p^, where denotes the hydrostatic stress for the first pseudo yield surface. M '  

represents the critical state stress ratio M  minus the radius o f the yield surface m on the 

stress ratio n-plane. The plastic modulus for the first pseudo yield surface is defined 

based on </,, the distance tensor, on the stress ratio ti-plane, between «, and the 

projection o f the first pseudo stress state ( /*, ) on the bounding surface, where a, denotes 

the center o f the first pseudo yield surface. Figure 2.1 shows the relative positions of the 

first pseudo yield surface, the bounding surface, and the definition of rf, on the stress 

ratio 7i-plane. The projection of the first pseudo stress state ( r, ) on the bounding surface 

is obtained using the normal « ,. The first pseudo plastic modulus is defined as:

where, a is a model constant and M'j is the diameter of the bounding surface on the 

stress ratio n-plane. denotes the trace o f the product o f </, and « , , that is,

: /I, = ) . According to the above definition, the closer the a, is to the projection

o f r, on the bounding surface, the smaller the plastic modulus is. «, can approach but 

never go beyond the bounding surface so that the critical state behavior o f sands can be 

represented. On the other hand, relatively large distance between a, and the projection o f 

»•, on the bounding surface gives larger plastic modulus, such as during unloading.

Similar definitions o f bounding surface and plastic modulus can be found in Wang et al. 

(1990) and Manzari and Dafalias (1997). What is unique about the current definition of 

bounding surface is that the radius of the bounding surface is a constant M ' . This fixed
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bounding surface definition can avoid the difficulties associated with controlling the 

evolution o f the bounding surface under complicated loading conditions, such as constant 

stress ratio loading and eyclic simple shear loading.

In order to determine the dilatancy ratio for the first pseudo yield surface, a 

dilatancy surface is developed. The radius o f the dilatancy surface on the stress ratio n- 

plane is + where is a model constant and is the state parameter for the 

first pseudo yield surface given together with those for the true and other pseudo yield 

surfaces as:

-  ^ c r i  O' = tme, 1,2,3) (2.19a)

(2.191))

where e. denotes the void ratio and denotes the void ratio on the critical state line

under the current confining pressure for a particular yield surface; À , , and are

model parameters for defining the critical state void ratio. There are alternative 

formulations for the critical void ratio. For example, Li and Dafalias (2000) used:

Cor = )f (2.1!9c)

where ^ is a model parameter. The dilatancy surface is also illustrated in Figure 2.1. The 

dilatancy ratio is defined based on the distance tensor c, between the center o f the first 

pseudo yield surface and the projection o f the first pseudo stress state on the dilatancy 

surface. The dilatancy ratio is given as:

19, =v4c, C2.:zo)

where, yl is a model constant and ĉ  = Cj : n , . From Figure 2.1 and equation (2.20), it 

can be seen that, when a, is inside o f the dilatancy surface, Z), is always positive and
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represents volumetric contraction. When a, is outside o f the dilatancy surface, the sign of 

Z), depends on the loading direction. For example, during the triaxial compression, when 

a, goes outside o f the dilatancy surface, the directions o f ĉ  and », are opposite and 

gives negative c^, representing volumetric dilation. On the other hand, for unloading 

following the triaxial compression, when the stress point is outside the dilatancy surface, 

the directions o f ĉ  and n̂  are the same and gives positive c , , representing volumetric 

contraction. In this case, c, is larger than that for the initial triaxial compression loading 

and leads to larger volumetric contraction. This is consistent with the test results by 

Pradhan and Tatsuoka (1989). Similar to the formulation of the dilatancy ratio under 

monotonie loading conditions in Chapter 1, the dilatancy ratio in equation (2.20) is 

dependent on the state parameter. As described above, the stress ratio for the first pseudo 

yield surface will eventually reach the critical state at the end of loading.

Correspondingly, the above defined dilatancy surface will coincide with the bounding 

surface and leads to a state parameter value of zero indicating that the void ratio has 

reached the critical state. The evolution of the hardening parameter for the first pseudo 

yield surface will be defined together with the true hardening parameter in a later section.

The second pseudo yield surface is designed to capture the influence of 

anisotropic fabric o f sands. A sample of sand is an assembly of numerous particles, and 

the distribution o f particle contacts, also named fabric, may not be the same along 

different directions. This anisotropic fabric, named the initial anisotropy, may be set in a 

sand sample during the course o f deposition in the field or sample preparation in the 

laboratory. Anisotropic fabric can also result during the course o f loading. Such 

anisotropic fabric resulting from loading is called the stress-induced anisotropy. Both
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initial and stress-induced anisotropy are represented with the second pseudo yield surface. 

The influence o f anisotropic fabric on the stress-strain behavior o f sands will be 

represented by modifying the first pseudo yield surface using the second pseudo yield 

surface, which will be described in a later section. It was discovered that the stress- 

induced anisotropic fabric can be best represented with the plastic deviatoric strain 

(Arthur et al., 1986; Calvetti et al., 1997). Arthur et al.'s (1986) tests involved a change in 

major principal stress direction for reloading following the initial loading and unloading 

to zero deviatoric stress. They found that the reloading behavior was greatly influenced 

by the previously incurred changes in the particle contact distribution that was related to 

the plastic deviatoric strain incurred during the previous loading. Calvetti et al. (1997) 

studied the stress-induced anisotropy more thoroughly using both analytical and 

experimental techniques under complex loading conditions including continuous rotation 

o f the principal stress direction. They concluded that the variation o f contact distribution 

in a granular material could be approximately represented by the incremental strain tensor 

with plastic deviatoric strain increment playing the main role. In accordance with above 

studies, the second pseudo hardening parameter is defined as:

a ,  = M '-----^ (2. 21)

where a and M '  are the same model constants as in the first pseudo yield surface, and 

I I denotes the magnitude o f a tensor. denotes the initial anisotropy, which becomes

zero for the initially isotropic samples. The flow rule for the second pseudo yield surface 

is defined similar to that for the first pseudo yield surface and is given as:

T), = zic, (2.220
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where A is the same model constant as in the first pseudo yield surface, ,

where is the distance tensor between and the projection o f the second pseudo 

stress state on the second pseudo dilatancy surface with the radius o f M ' + k 2 ( / / 2 on the 

stress ratio n-plane. The selection of this specific form for the second pseudo yield 

surface will be validated in a later section.

The third pseudo yield surface is designed to take into account the effect o f the 

state parameter on the hardening response. The combination of the third and the first 

pseudo yield surfaces can be used to represent the softening response for dense sands 

during the later stages o f loading. The effect o f the state parameter is incorporated into 

the plastic modulus for the third pseudo yield surface given by:

(2.23)

where A, is a model constant and is the plastic modulus for the first pseudo yield

surface. Because the state parameter for medium dense and dense sands is usually 

negative, from equation (2.23), the plastic modulus for the third pseudo yield surface is 

larger than that for the first pseudo yield surface. In contrast, loose sands with a positive 

state parameter will have a smaller plastic modulus for the third pseudo yield surface than 

that for the first one. Similar to the first and second pseudo yield surfaces, the dilatancy 

ratio for the third pseudo yield surface is defined as:

T>3 = Ac^ (2.24)

where Cj = Cj : . C3 denotes the distance tensor between « 3  and the projection of the

third pseudo stress state on the third pseudo dilatancy surface with the radius of 

M ' + ^ 2 ^ 3  on the stress ratio Tt-plane. The hardening parameter for the third pseudo yield
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surface will be defined in a later section together with the hardening parameters for the 

first pseudo and true yield surfaces.

2.2.2 Construction of the True Yield Surface

The true yield surface will be next constructed by using the three pseudo yield 

surfaces and various links between the yield surfaces. The links should be selected to 

make the problem solvable and minimize the computational effort. In addition, the 

selection of links is supposed to assist these three pseudo yield surfaces and their 

combinations to fulfill their designed functions. In this MSC sand model, at the beginning 

o f loading, all the yield surfaces share the same initial conditions. During the course of

loading, there are two types o f links corresponding to purely elastic response when stress

points are inside the yield surfaces and elastoplastic response when stress points are on 

the yield surfaces. The links for elastoplastic response are introduced first. For 

elastoplastic loading, the links consist of certain common quantities shared by all the 

yield surfaces and relationships between their dilatancy ratios, hardening rules, and 

plastic moduli. The common quantities for the elastoplastic response are selected as the 

hydrostatic stress p  and the plastic deviatoric strain tensor e ’’ , that is:

P = Pi = Pi = Pi  (2.25)

e ‘’ =eC = e [ = e l  (2.26)

Since all the yield surfaces are defined on the stress ratio { r  = s ! p )  7i-plane a common

p  can significantly reduce the computational effort. In addition, is a scalar and easy

to manipulate. The reason to select the same e'’ for all the yield surfaces is that the 

accumulated deviatoric plastic strain is the basis to construct the links between the
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hardening rules and dilatancy rules as described subsequently. From equations (2.26) and 

(2.11), it is evident that the deviatoric part of the normal to all the yield surfaces and the 

loading indices for all the yield surfaces are the same, given as:

«  =  n ,  =  «2 ~  "3  ( 2 . 2 7 )

Z  =  Z j  =  Z .2 =  Z -3 ( 2 . 2 8 )

From equations ( 2 . 2 7 )  and ( 2 . 2 8 ) ,  another advantage for selecting the same e ’’ ean be 

seen. The same e ’’ for all the yield surfaees results in the same n and L for all the yield 

surfaces thereby reducing the computational effort.

The eonstruetion o f the true yield surface is composed of two steps. The first step 

is to modify the first pseudo yield surface by using the second pseudo yield surface. The 

second step is to develop the formulations for the true yield surface based on the 

modified first pseudo yield surface and the third pseudo yield surface. The first step is 

described in this section. After incorporating the influence o f the second pseudo yield 

surface, the first pseudo yield surface is renamed “the modified first pseudo yield 

surface.” Recall that the first pseudo yield surface is designed to represent the critical 

state behavior, and unloading and reloading plastic deformation o f sands. The second 

pseudo yield surface is designed to describe the evolution of the anisotropic fabric of 

sands. The modified first pseudo yield surface retains the functions o f the first pseudo 

yield surface, and at the same time, represents the effects of anisotropic fabric on sand 

behavior. The hardening parameter for the modified first pseudo yield surface is denoted 

by a , 2 , where the subscript “ 12” refers to the quantities for the modified first pseudo 

yield surface.

The modified first pseudo plastic modulus is defined as:
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(229»)

h ^ K P T — ^ ,  (2 M b)
|(«2 -« i2 ) :« |

The modified first pseudo dilatancy ratio is defined as;

D , 2  = v4ci2 + / û | ( « 2  - « , 2 ) :«] (2.30a)

jfo ==/:rD2 (2 3(H))

For the first term on the right hand side o f equations (2.29a) and (2.30a), the definitions 

o f c/ , 2  Cj2 are similar to d, and c , . d ,2  = dj 2  : n where d ,2  represents the distance 

tensor between «j2 and the projection of the modified first pseudo stress state on the 

bounding surface, c,; - c „  •'« where c ,2  represents the distance tensor between « 1 2  and 

the projection o f the modified first pseudo stress state on the modified first dilatancy 

surface. The second term on the right hand side o f equations (2.29a) and (2.30a) 

represents the influence of the second pseudo yield surface, and therefore, the effect of 

fabric anisotropy on sand behavior. In equations (2.29b) and (2.30b), A, and /ij are 

model constants. It is the relative distance between the hardening parameters o f the 

second and the modified first pseudo yield surfaces, « 2  “  ®i2 > that plays the key role for 

representing the effects o f fabric on sand behavior. If the effects o f the fabric are ignored, 

the modified first pseudo yield surface is identical to the first pseudo yield surface. The 

incorporation o f the effect o f the second pseudo yield surface into the first pseudo yield 

surface doesn’t affect the ability o f the modified first pseudo yield surface to reach the 

critical state at the end o f loading, because the second pseudo yield surface also reaches 

the critical state at the end of loading. Because the modified first pseudo yield surface is

68



used to replace the first pseudo yield surface, the plastic modulus for the third pseudo 

yield surface in equation (2.23) is changed to:

(2.31)

To demonstrate how the effects o f fabric are represented by using equations (2.29) 

and (2.30), without the loss of generality, consider the responses for drained triaxial 

compression loading, followed by unloading to zero deviatoric stress and reloading along 

triaxial compression and extension. The influence o f the fabric anisotropy ean be clearly 

demonstrated by comparing the responses for the first pseudo and the modified first 

pseudo yield surface. In this example, the hydrostatic stress remains constant, and the 

initial state of the fabric is assumed to be isotropic so that only the effect o f stress- 

induced anisotropy is considered. Figure 2.2 shows the simulated responses from the first, 

second and the modified first pseudo yield surfaces, where the elastic responses are 

neglected. Figures 2.2 (a) and (b) show the hardening responses and volume changes, 

respectively, for initial compression loading and unloading. Figures 2.2 (c) and (d) show 

the hardening responses and volume changes, respectively, for compression reloading 

and extension reloading. Note that all the yield surfaces share the same plastic deviatoric 

strain.

During the initial triaxial compression in Figure 2.2 (a), the second pseudo 

hardening response goes up along the hyperbolic curve represented by equation (2.21). 

Although an anisotropic fabric is created during the initial triaxial compression loading, 

this fabric has little influence on the modified first pseudo response. The reason is that the 

first, second and modified first pseudo hardening responses are almost identical and 

« 2  -  « 1 2  is negligible. The nearly identical hardening responses can be explained by
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comparing the plastic moduli between the first pseudo, the second pseudo and the 

modified first pseudo yield surfaces. For the triaxial compression loading, the plastic 

modulus for the second pseudo yield surface can be rewritten in the form of the first and 

modified first pseudo yield surfaces by using equations (2.9), (2.11), (2.13) and (2.21), 

given as:

where denotes the distance between and the projection of the second pseudo stress

state on the bounding surface. Comparison o f equations (2.18), (2.29) and (2.32) shows 

that , Kp 2  and are almost identical, given the relatively small values of

and i/ , 2  for initial triaxial compression loading. The same argument applies to the 

volumetric changes that are almost identical for all the three pseudo yield surfaces as 

shown in Figure 2.2 (b).

During the unloading, the second pseudo yield surface goes down along the same 

hyperbolic curve until zero deviatoric stress is reached by the first and the modified first 

pseudo yield surfaces in Figure 2.2 (a). At this point, the deviatoric plastic strain is not 

zero, indicating the existence o f anisotropic fabric. In Figure 2.2 (a), the modified first 

pseudo yield surface moves down at a faster rate than the second pseudo yield surface. 

Correspondingly, a large distance tensor “  ®i2 directed upward is induced between the 

second pseudo and the modified first pseudo yield surfaces. As n is directed downward, 

(a 2  -  « 2 2  ) ■ « is negative. From equations 2.29 (a) and (b), this negative value hinders 

the downward movement o f the modified first pseudo yield surface by decreasing its 

plastic modulus compared with that for the first pseudo yield surface. As for the plastic
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volumetric change during unloading, the large distance between the second pseudo yield 

surface and its phase transformation line gives a considerable volumetric contraction 

represented with D j . Thus, the inclusion of in equations 2.30 (a) and (b) 

significantly increases the volumetric contraction for the modified first pseudo yield 

surface compared with that for the first pseudo yield surface as shown in Figure 2.2 (b).

Following the unloading to zero deviatoric stress, separate reloading is carried out 

along triaxial compression and extension. The second pseudo yield surface still moves 

upward and downward, respectively, corresponding to compression and extension 

reloading along the same hyperbolic curve. For the triaxial compression reloading, the 

second pseudo yield surface lies above the modified first pseudo yield surface as shown 

in Figure 2.2 (c). -  a ,, and n are both directed upward and their product is positive.

Therefore, the second pseudo yield surface enhances the hardening of the modified first 

pseudo response compared with that for the first pseudo yield surface as shown in Figure

2.2 (c). During the triaxial compression reloading, the second pseudo yield surface is 

usually above its phase transformation line and leads to negative Dj  indicating 

volumetric dilation. Thus, the inclusion o f Dj into the modified first pseudo dilatancy 

rule in equation (2.30) reduces its volumetric contraction, compared with that for the first 

pseudo yield surface in Figure 2.2 (d). In contrast, for the triaxial extension reloading, the 

second pseudo yield surface lies below the modified first pseudo yield surface in Figure

2.2 (c). « 2  -  « 1 2  and n have opposite direetions and their product is negative. This 

hinders the hardening response o f the modified first pseudo yield surface, compared with 

that for the first pseudo yield surface as shown in Figure 2.2 (c). Similar to unloading, the 

relatively large volumetric contraction from the second pseudo yield surface and large
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distance (a^ -  )  : n significantly increase the volumetric contraction for the modified

first pseudo yield surface, compared with that for the first pseudo yield surface as shown 

in Figure 2.2 (d). It should be noted that, during the course o f reloading, the modified first 

pseudo yield surface keeps approaching the second pseudo yield surface and the distance 

between them keeps decreasing. It indicates that the effects o f anisotropic fabric on the 

reloading response keep decreasing until the modified first pseudo yield surface meets the 

second pseudo yield surface, where the effects o f anisotropic fabric disappear. The 

decrease o f the anisotropic fabric effects with the increase o f reloading has been verified 

in experimental studies (Arthur et al., 1980).

From the above example and equations (2.29) and (2.30), it is evident that the 

effects of anisotropic fabric depend on (a^ -  aj^ )  : n and D j . The negative 

(a2  -  ttj2  ) : n and positive hinder the hardening response and enhance the plastic 

volumetric contraction during the unloading and extension reloading. In the case of 

undrained loading condition, if the initial triaxial compression loading is large enough 

(for example, goes over the phase transformation line), the reduction o f the hardening 

response and increase o f the plastic volumetric contraction by the second pseudo yield 

surface during the unloading and extension reloading may induce liquefaction.

The true yield surface is developed based on the modified first pseudo and the 

third pseudo yield surfaces, and lies in between them. The true hardening parameter 

together with the hardening parameters for the modified first and the third pseudo yield  

surfaces is defined as:
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K
à  = (jL)  ̂ (2.3'*)

«12 = &2 « (2.35)

« 3  = «  (2.36)

where è is a model constant and is a scalar, representing the accumulated plastic 

deviatoric strain. In equation (2.33), the true hardening parameter is close to the third 

pseudo hardening parameter during the early stages of loading when is relatively 

small. Recall that the third pseudo hardening response depends on the state parameter. 

Thus, the effeet of the state parameter on the true hardening response is reflected during

the early stages of loading. During the later stages of loading, where ̂ ^ i s  relatively

large, the true hardening parameter approaches the modified first pseudo hardening 

parameter as shown in equation (2.33). As the modified first pseudo stress ratio is 

designed to reach the critical state at the end o f loading, it brings the true stress ratio to 

reach the eritical state. In equations (2.35) and (2.36), the modified first and third pseudo 

hardening parameters are related with the true hardening parameter through two scalars 

g ,2  and g 3 , respectively. This can significantly reduce the computational effort without 

affecting their designed functions, because two tensors « , 3  and are simplified and 

replaced with two scalars g ^ 2  and g , . In addition, as «,3 , « 3  and a  remain along the

same direction on the stress ratio tt -plane, their evolutions are easier to control.

Differentiating both sides o f equation (2.33), one can obtain:

“  ^  ( b + ^ ' Ÿ
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where, is the magnitude o f the plastic deviatoric strain rate tensor. Multiplying by n 

the both sides of equation (2.37) and using equation (2.13), one can obtain:

Using equations (2.9), (2.11) and common quantities for all the yield surfaces, one can 

obtain the plastic modulus tor the true yield surface from equation (2.38) as:

Differentiating both sides o f equations (2.35) and (2.36), along the same line as the above 

given derivation, one can obtain:

( 4
p  (a : n)

è i  = - 7 7 : : : ;  pi ~ SiKp ) (f = l 2, 3) when a : n ^ 0  (2.40)

It should be noted that, in equation (2.40), when the product o f a  and n is close to zero, 

the progress of g .  is difficult to control. Under these circumstances, without affecting the 

overall performance o f the model, g, is assumed not to change.

The dilatancy ratio for the true yield surface is determined through a relationship 

between the state parameters o f the true, modified first, and the third pseudo yield 

surfaces as given by:

where c is a model constant. In equation (2.41), the true state parameter approaches that 

o f the modified first pseudo yield surface as the accumulated plastic deviatoric strain 

increases. As described above, the state parameter for the modified first pseudo yield 

surface reaches zero at the end of loading. Correspondingly, it also brings the true state
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parameter to zero. This indieates that the true void ratio reaches the critical state at the 

end of loading together with that for the modified first pseudo yield surface. 

Differentiating equation (2.41), with the definition o f state parameters in equation (2.19), 

one can obtain:

^ -^ c r=  “ T 7  ( ^ 1 2  -  ^crll ) + j,p (^3 ~ . , pp ̂ 2  ( ^ 1 2  ~ (2.42a)e + # c + g'^ (c + g ‘̂ )

é. = -(1 + 6q) £^. (/ = true,12,3) (2.42b)

where is the initial void ratio. Because all the yield surfaces share the same

hydrostatic stress, the elastic part o f volumetric strain rate and the critical state void ratio 

are the same for all the yield surfaces in equation (2.42a). Canceling the elastic part of 

volumetric changes and the critical state void ratios on both sides o f equation (2.42a) and 

dividing equation (2.42a) with the magnitude o f deviatoric plastic strain rate é'’ , one can 

obtain the dilatancy ratio for the true yield surface as:

-- (Vu -- P ,)  C2 43)

There are three pseudo dilatancy surfaces, three pseudo state parameters, and 

three pseudo flow rules in the formulation presented above. All o f them are used to 

represent the dependence o f volumetric change on the state parameter. It was found that 

the flow rule for the modified first pseudo yield surface alone can represent the state 

parameter dependence o f the volumetric change, except for extremely loose or dense 

sands. Therefore, for the sands with a normal relative density, the dilatancy ratio for the 

true yield surface can be simplified to be equal to that for the modified first pseudo yield 

surface, given as:
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Z) = /)i2 (2.44a)

According to equations (2.41) and (2.43), this leads to

£>3 = D̂ 2 (2.44b)

(y, =%y,2 C2.44c)

y/ — y/̂ 2 (2.44d)

Further simplification can be made without greatly affecting the functions of the pseudo 

yield surfaces by replacing the second pseudo dilatancy surface with the dilatancy surface 

for the modified first pseudo yield surface. Thus, there is only one dilatancy surface, the 

modified first pseudo dilatancy surface, in the simplified version o f the model 

formulation.

It is well known that sand response is different along different loading directions 

even for initially isotropic fabric condition, such as different responses in triaxial 

compression and extension. In order to reflect this difference, some model constants are 

made to depend on the Lode angle, given as:

& = g ( ^ , c j g ^  (2.4Sa)

(2.45c)

where Qg represents a model constant that depends on the Lode Angle 6 ,  and g , 

denote the value o f that model constant in triaxial compression and extension, 

respectively. The Lode angle at any stress state is defined as:
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COS 3 0

J  =

S —

r = r - a

3 V3 ' s
2

1 / 2

trr

\ 1 /3

trr

(2.46a)

(2.46b)

(2.46c)

(2.46d)

where J  and S  are the second and third invariants o f the stress tensor. By calibrating 

the model parameters based on triaxial compression and extension test results, it was 

found that the model parameters a (for hardening response), (for volumetric change), 

and M  (for eritieal stress ratio) are those that depend on the Lode angle the most.

The above described is the formulation for elastoplastic response. The problem is 

not eomplete until the links between various yield surfaces are defined in purely elastic 

response. For the elastie response when the stress paths move inside yield surfaces, in 

addition to the same hydrostatic stress as described in equation (2.25), it is proposed that 

all the yield surfaces have the same deviatoric stress tensor rate, which is given as:

s = ŝ 2 ~ ^2 ~ (2.47)

Beeause all the yield surfaces share the same hydrostatic stress, the same rate of 

deviatorie stress tensor, and the same radius o f yield surface, following the elastic 

response, the true and all the pseudo stress paths will reaeh the same position on their 

respeetive yield surfaces, and share the same « . This is eonsistent with the proposition of 

the same n for all the yield surfaces in the elastoplastic response.
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2.3 Model Prediction

The proposed model is used to predict the responses o f two different types of 

sands, Nevada sand and Toyoura sand, under cyclic triaxial and simple shear loading 

conditions (Arulmoli et al., 1992; Uchida and Stedman, 2001). The model parameters in 

Chapter 1 are used for predictions except A, and representing the effects of stress- 

induced anisotropy and Fq representing the effects o f the initial anisotropy. Because the 

densities o f the tested samples are in the normal range, the simplified model described 

above is used. can be calibrated by comparing the triaxial test results in which the 

loading is applied along different angles with respect to the particle contact orientation 

angle of the sample. Alternatively, Fq can also be obtained by using indirect methods 

such as electrical methods (Arulmoli et ah, 1985; Dafalias and Arulanandan 1979). Due 

to the lack o f test results for Nevada sand, F^ is set zero for the predictions presented 

here. The calibration of \  and was performed by using the undrained cyclic loading 

response. During the early stages o f cyclic loading, the induced plastic deviatoric strain is 

relatively small, resulting in relatively small anisotropic fabric. With increasing number 

of cycles, the induced plastic deviatoric strain begins to increase producing a relatively 

large anisotropic fabric. Therefore, the calibration of A, and can be made during the 

later stages o f cyclic loading. The parameter A, is responsible for the effect o f fabric on 

the stiffiiess. The parameter is responsible for the effect of fabric on the volumetric 

change and is reflected by the decrease in effective confining pressure in cyclic undrained 

loading.
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Table 2.1 lists all the model constants for Nevada sand under triaxial stress space 

and general stress space. The conversion o f the model parameters from triaxial stress 

space to general stress space is given in the Appendix I. In addition to the model 

parameters calibrated in Chapter 1, A, and are calibrated by using the test result for 

relative density of 60% under the initial confining pressure of 80 kPa, shown in Figure 

2.3. The test results and predictions for cyclic triaxial undrained loading for a sample 

with a relative density o f 40% and an initial confining pressure of 80 kPa are shown in 

Figures 2.5 and 2.6, respectively. Good comparisons between the model predictions and 

test results are achieved for both 40% and 60% relative densities using the same set o f  

model parameters. The magnitude of deviatoric stress change in these two tests is about 

the same, around ±30 kPa, and as expected, the sample with a 40% relative density 

reaches liquefaction in fewer number o f cycles than the 60% relative density sample. The 

proposed model captures this dependence o f liquefaction potential on the relative density 

o f sands very well.

For the Nevada sand with a relative density o f 60%, in addition to the model 

predictions with the true yield surface shown in Figure 2.4, the predicted responses using 

only the first pseudo and modified first pseudo yield surfaces are also shown in Figures 

2.7 and 2.8, respectively. These predictions are shown in order to demonstrate the roles o f 

the second and third pseudo yield surfaces during undrained cyclic loading. Comparing 

Figures 2.7 and 2.8, one can identify the influence o f the second pseudo yield surface on 

undrained cyclic response. During the early stages o f cyclic loading, the responses 

represented with the first and modified first pseudo yield surfaces are almost identical 

because the deviatoric plastic strain is relatively small, resulting in smaller anisotropic
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fabric. With the increase in number o f cycles, the deviatoric plastic strain increases and 

the role o f the seeond pseudo yield surface becomes greater. Consequently, liquefaction 

is reached by using the modified first pseudo yield surface as shown in Figure 2.8. In 

contrast, the effective confining pressure doesn’t reach zero when using the first pseudo 

yield surface as shown in Figure 2.7. As shown in Figure 2.2, larger contraction predicted 

by the modified first pseudo yield surface during unloading and extension reloading is the 

reason for the sample reaching liquefaction as shown in Figure 2.8. From Figure 2.7, it 

can also be seen that, although the liquefaction is not reached by using the first pseudo 

yield surface, the axial strain keeps increasing. This results from the different plastic 

modulus between compression and extension loading. This considerable strain value 

increase is unrealistic considering the fact that liquefaction is not reached. Comparing 

Figures 2.8 and 2.4, one can see the effect o f the third pseudo yield surface on the 

undrained cyclic loading response. In effective p-q space, the difference between with 

and without the third pseudo yield surface is not very significant. However, the axial 

strain predicted with the inclusion of the third pseudo yield surface is smaller than 

otherwise and simulates the test results better during the early stages o f loading. This is 

because the inclusion of a negative state parameter in the third pseudo plastic modulus 

enhances the hardening response.

Predictions aie also made for undrained cyclic simple shear response for Nevada 

sand with relative densities o f 40% and 60% under an initial axial stress o f 80 kPa. The 

test results and predictions for a sample with a relative density of 60% are shown in 

Figures 2.9 and 2.10, respectively. The tests results and predictions for a sample with a 

relatively density o f 40% are shown in Figures 2.11 and 2.12, respectively. The
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magnitude of the applied shear stress is ±13 kPa for the sample with a 60% relative 

density, and ±8 kPa for the sample with a 40% relative density. Since it is difficult to 

measure the static lateral pressure coefficient for simple shear tests, a typical value of 0.6 

is assumed at the start o f shearing. The same model parameters as for the triaxial loading 

predictions given in Table 2.1 are used again. Again, the model predictions agree 

reasonably well with the test results. Similar to triaxial loading conditions, the looser 

sand is predicted to have a larger liquefaction potential than the denser sand under simple 

shear conditions. Under the applied shear stress o f ±13 kPa, it takes 6 cycles for the 

sample with 60% relative density to reach liquefaction. Under the shear stress of ±8 kPa, 

it takes 5 cycles for the sample with 40% relative density to reach liquefaction.

Uchida and Stedman (2001) performed cyclic triaxial undrained loading tests on 

Toyoura sand. In each test, certain magnitude o f cyclic axial strain is applied in each 

cycle until the liquefaction is reached. The test results and predictions for a sample with a 

50% relative density under an initial confining pressure of 200 kPa subjected to 1 % axial 

strain change are shown in Figures 2.13 (a) and (b), respectively. The test results and 

predictions for a sample with a 50% relative density under an initial confining pressure o f 

400 kPa subject to 0.6% axial strain change are shown in Figure 2.14 (a) and (h), 

respectively. The test results and predictions for a sample with a 30% relative density 

under an initial confining pressure o f 400 kPa subject to 1% axial strain change are 

shown in Figure 2.15 (a) and (b), respectively. All the model parameters except A, and 

^ 2  are obtained from monotonie triaxial tests described in Chapter 1. The model 

parameters A, and are calibrated using the test results with relative density of 50% 

under initial confining pressure o f 200 kPa, shown in Figure 2.13. All the model
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parameters are listed in Table 2.2. It should be mentioned that the model constants for 

triaxial extension are assumed to be identical to those for triaxial compression due to lack 

o f triaxial extension test results. Equation 2.19 (c) is used to define the critical void ratio 

for Toyoura sand. As shown in Figures 2 .13 -2 .1 5 , the predictions agree very well with 

the test results. In addition, the fact that the looser Toyoura sand under higher confining 

pressure has a greater liquefaction potential is captured well by the model. While it takes 

5 cycles for the sample with a relative density o f 50% to reach liquefaction in Figures 

2.13 and 2.14, it takes as few as 2 cycles for the sample with a relative density of 30% to 

reaeh liquefaction in Figure 2.15.

2.4 Conclusions

The Middle Surface Concept for saturated sand modeling under monotonie 

loading conditions is extended to model sand behavior in general stress space. Three 

pseudo yield surfaces are used to represent the well known response features o f sands 

such as state parameter and fabric dependence, critical state behavior, and large 

volumetric contraction during unloading. The true yield surface is constructed based on 

these three pseudo yield surfaces through the appropriate selection o f links between 

various yield surfaces. Only two more model parameters are added to the monotonie 

triaxial formulation to extend the model to the general stress space. This shows that 

although multiple yield surfaces are used, appropriate selection o f links between various 

yield surfaces help to keep the model simple. The good agreement between model 

predictions and test results on two types o f sands under a variety o f loading conditions 

proves the capability of the proposed model. The successful application of the proposed
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model to represent the behavior of sands in general stress space demonstrates that it is 

indeed possible to use MSC to represent a complex material behavior by dividing 

different response features into different pseudo yield surfaces without overloading a 

single yield surface. The expansion o f MSC to model the behavior o f other materials 

seems promising.
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Table 2.1. Model Constants for Nevada Sand

Nevada Sand General Space Triaxial Space

Elasticity
Go(kPa) 20x10* 2.0x10*
f^o(kPa) 2.0x10* 2.0x10*

«0 0.6 0.6

Critical
State

M  {comp) 1.06 1.30
M  {ext) 0.63 0.78

Pi 0 (p<160 kPa) or 
0.04 (p>160 kPa)

0 (p<160 kPa) or 
0.04 (p>160 kPa)

r̂ef 0.78 0.78

160 160

Hardening
and

Softening

a {comp) 0.0031 0.0025
a {ext) 0.0012 0.001

K 4.0 4.0
b 0.07 0.06

Dilatancy
A 0.8 0.8

lc2  {comp) 9.0 11

{ext) 082 1.0

Anisotropic
Fabric

K 163 200

hj 1.5 1.2
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Table 2.2. Model Constants for Toyoura Sand

Toyoura Sand General Space Triaxial Space

Elasticity
Go(kPa) 2X)xl04 2.0x10"
%o(kPa) 2X)xl04 2.0x10"

«0 0.5 0.5

Critical
State

M 1.04 1.27
À 0.019 0.019

0.934 0.934

0.7 0.7

Hardening
and

Softening

a 0TW55 0.0045
K 4.0 4.0
b 0.049 0.04

Dilatancy
A 0.7 0.7
K 4.9 6

Anisotropic
Fabric

K 163 200

hi 1.22 1.0
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Figure 2.4: undrained cyclic triaxial test predictions for Nevada sand
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92



40 -1

§
I

-40

measured

20 40 60
effective confining stress (kPa)

(a)

80 100

- 0.2

-0.4

- 0.6

liquefaction

0 2 3
time (second)

(b)

Figure 2.5: undrained cyclic triaxial test results for Nevada sand
with a relative density o f  40% (initial confining stress =  80 kPa)
(test data after Arulmoli et al., 1992)

93



40  -1
prediction

u•c
2C3
I

-40

0 20 8040 60 100
effective confining stress (kPa) 

(a)

- 0.2

liquefaction.S -0.4

2
- 0.65

30 1 2
time (second)

(b)

Figure 2.6: undrained cyclic triaxial test predictions for Nevada sand
with a relative density o f  40% (initial confining stress =  80 kPa)

94



40 - ,

S3

I
U•C
I
I

0 -

-40

prediction with the 1st pseudo Y.S.

20 40 60
effective confining stress (kPa)

(a)

~ r
80

“ 1
100

0

■2

4

0 5 10 15 20
time (second)

(b)

Figure 2,7: undrained cyclic triaxial test predictions for Nevada sand
with a relative density o f  60% using the first pseudo yield surface

95



40 -1

a
I

I

0 -

-40

prediction with the modified 1st pseudo Y.S.

20 40 60
effective confining stress (kPa)

(a)

~ r
80 100

•SC3

■SCtJ

%

time (second)

(b)

0

5

-10

0 15 205 10

0.1

0

- 0.1

- 0.2

-0.3

8 120 4
time (second)

(c)

Figure 2.8: undrained cyclic triaxial test predictions for Nevada sand
with a relative density o f  60% using the modified first pseudo yield surface

96



cq

I

20 -1

-20

measured

“ I '-----------------1----------------- '----------------- r

20 40 60
effective axial stress (kPa)

80 100

(a)

I

10

0

-10

0 2 4 6 8 10
time (second)

(b)
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with the relative density o f  60% (initial axial stress = 80 kPa)

98



10 -1

C3
22

s

-10

measured

“ I '-----------------1----------------- '----------------- r

20 40 60
effective axial stress (kPa)

80 100

(a)

&

I

5

liquefaction0

5

62 40
time (second)

(b)

Figure 2.11; undrained cyclic simple shear test results for Nevada sand
with the relative density o f  40% (initial axial stress = 80 kPa)
(test data after Arulmoli et al., 1992)

99



10

-S

S

-10

prediction

~T~
20 40 60

effective axial stress (kPa)

(a)

80 100

I

-5

liquéfaction

time (second)

(b)

Figure 2.12: Undrained cyclic simple shear test predictions for Nevada sand
with the relative density o f  40% (initial axial stress = 80 kPa)

100



I
I
I

100 - I

0 -

-100

measured

50
 1 ' 1--------

100 150
effective confining stress (kPa)

(a)

200 250

100 prediction

-100

50 2500 100 150 200
effective confining stress (kPa)

(b)

Figure 2.13: undrained cyclic triaxial test results and predictions for Toyoura sand 
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Chapter 3

Single Element Numerical Implementation of the MSC Sand Model for 

Finite Element Applications 

3.1 Introduction

A constitutive model is normally formulated in the infinitesimal form. To solve 

practical engineering problems, the constitutive formulations must be numerically 

implemented. Therefore, it is essential to investigate whether a model is suited for the 

numerical implementation. In the case o f the MSC, although all the yield surfaces are 

developed within the frame work o f classical elastoplasticity theory, the MSC model is 

different than classical elastoplasticity models in that there are multiple hardening rules 

and flow rules. Specifically, in the simplified version o f the MSC sand model, there are 

three hardening rules and flow rules. In addition, the hardening rule and flow rule are not 

only the function o f stress states and hardening parameters, but also the function o f total 

strain and plastic strain. ITie investigation o f the numerical implementation o f the MSC 

sand model for a single element or an individual Gauss point in the finite element method 

is one of the objectives o f this chapter.

The numerical implementation in a single element consists o f two steps, the 

numerical integration and the development of the consistent tangent stiffness matrix 

(Owen and Hinton, 1980; Simo and Hughes, 1998). There are various techniques for the 

integration o f constitutive equations (Wilkins, 1964; Rice and Tracy, 1973; Ortiz and 

Popov, 1985; Ortiz and Simo, 1986; Simo & Taylor, 1986). Of particular interest is the

104



generalization o f these integration techniques introduced by Ortiz & Popov (1985). They 

categorized these integration techniques into the generalized trapezoidal and generalized 

mid-point rules. For the generalized trapezoidal rule, a  = 0 corresponded to the explicit 

integration; a  = 1 / 2  corresponded to the mean-normal integration; a  = 1 coincided with 

the closest point projection algorithm. For the accuracy of the integration by the 

generalized trapezoidal rule, they derived that a  = 1 / 2  led to the second order accuracy 

while other values o f a  led to the first order accuracy. For the stability o f the generalized 

trapezoidal rule, they derived that a  > 1/2 led to unconditional stability for von Mises 

models, and a  = 1 was the only value o f a leading to unconditional stability for tbose 

loading surfaces with comers. Their propositions about the integration accuracy 

corresponding to different values o f a were verified by using a simple numerical 

example. A perfectly plastic von Mises model was used in their example with the strain 

increment o f a single step applied as the input condition, so that analytically exact stress 

increment could be obtained. The exact stress increment was used to compare with the 

stress increment computed through the numerical integrations with different values o f a . 

The results o f their numerical examples showed that for small strain increments optimal 

accuracy was obtained for a  = 1/2. In contrast, when large strain increments were used, 

higher values o f a led to better accuracy. Because the trapezoidal rule has the general 

nature and some conclusions have been drawn on it, in this chapter, it will be used to 

integrate the MSC sand model. On the other hand, the elastic moduli were assumed to be 

constant in the original trapezoidal rule. This assumption is appropriate for metals, but 

not for soils. Usually, the elastic moduli for soils depend on the confining pressure. In 

this chapter, the original trapezoidal rule will be expanded to consider the dependence of
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elastic moduli on the confining pressure. In addition, as described above, the integration 

accuracy corresponding to different values of a  was verified only by using a relatively 

simple example by Ortiz & Popov (1985). To apply the trapezoidal rule to solve praetical 

engineering problems, the investigation o f the integration accuracy for different values o f 

a  in relatively complicated eases is desirable. To this end, the effects o f different values 

o f a on the integration accuracy will be analyzed by using the MSC model under various 

complicated loading eonditions.

Another step in the numerical implementation o f a model is the development of 

the stiffness matrix for a Gauss point. The continuum tangent stiffiiess matrix was 

commonly used until the introduction o f the consistent tangent stiffiiess matrix (Simo and 

Taylor, 1985; Braudel et al., 1986). Unlike the continuum tangent stiffness matrix, the 

consistent tangent stiffness matrix is consistent with the integration algorithm of the 

constitutive model, and preserves the quadratic rate o f asymptotic convergence of 

iterative solution schemes based upon Newton’s method in the global finite element 

program. Subsequent applications of the consistent tangent stiffness matrix in many 

models proved its superiority to the continuum tangent stiffness matrix (Boija, 1990; 

Borja, 1991; Hashash and Whittle, 1992; Macari et al., 1997; Jeremic and Sture, 1997; 

Manzari and Prachathananukit, 2001). However, the development o f the eonsistent 

tangent stiffness matrix is more difficult than that for the continuum tangent stiffiiess 

matrix, and there are no closed-form solutions for many models. Consequently, 

approximate techniques have been developed for some models to obtain tbe elosed-form 

consistent tangent stiffiiess matrix. Other models have resorted to numerieal teehniques to 

develop the consistent tangent stiffness matrix. Due to the comprehensive nature o f this
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MSC sand model, it is impossible to come up with the closed-form consistent tangent 

stiffness matrix. Therefore the consistent tangent stiffiiess matrix is developed 

numerically.

3.2 Numerically Implemented Formulations of the MSC Sand Model

The detailed formulations for the MSC sand model are presented in Chapter 2. In 

this section the equations of the model that have to he integrated are briefly described. 

The quantities with the subscript 12, 2 and 3 represent those for the modified first pseudo 

yield surface, the second and third pseudo yield surfaces, respectively. The quantities 

without the subscript represent those for the true yield surface.

Elastic Relationship

p = K X = K X G , - 8 : )  (3.1)

s = 2 G ,è = = 2 G X ê -ê :')  (3.2)

where p and denote the hydrostatic stress and strain, respectively; and s and e

represent the deviatoric stress and strain tensors, respectively. The superscripts e and p 

denote the elastic and plastic parts o f the strain, respectively. The bold-faced symbols 

denote tensors. and G , denote the elastic bulk and shear moduli, respectively, which 

are defined as :

K . = (3.3a)
Pa,

G . = G o ( - ^ ) - °  (3 .3b)

107



where K^, G^, and are the elastic model parameters, and p ,̂ denotes the atmospheric 

pressure.

Yield Surface

f  -  [(s -  pa) : (s -  pa)]'  ̂ -  mp = 0 (3.4)

where a  denotes the hardening parameter. The yield surface has the shape of a cone in 

the general stress space, and its radius is m on the stress ratio n plane, which is a 

relatively small constant.

Hardening Rule and Plastic Modulus

The hardening rule for the true yield surface is defined as:

a  = A(—^)n (3.5)
P

where Â denotes the loading index, n is a unit tensor and represents the normal to the 

yield surface, which is given as:

n -  —  (3.6a)
m

r  = — (3.6b)
P

K denotes the plastic modulus, which is defined as:

(3.7a)
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Kp3 = exp(-k,v)K pi2 (3.7c)

d ,2 = M -  m - a , 2  : n (3.7d)

a 2 = M ----- :—r (3.7e)
a + e H

In equation (3.7a), Kp,2  and Kp  ̂ are the plastie moduli for the modified first pseudo and 

the third pseudo yield surfaces, and and a  3 are their hardening parameters, 

respectively. denotes the accumulated plastic deviatoric strain and b is a model 

parameter. In equation (3.7b), the first part o f Kpjj involves the bounding surface

concept. The radius o f the bounding surface is M-m, where M denotes the critical stress 

ratio. M j-2m  represents the diameter o f the bounding surface. The distance o f a  , 2  to the 

bounding surface is denoted b y d ^ , which is defined in equation (3.7d). a is a model 

parameter. Due to the use o f the bounding surface coneept, the unloading and reloading 

plastic deformation can be represented by Kp,2 . In addition, as the radius o f the bounding 

surface is M-m, the stress ratio is ensured to reach the critical state at the end of loading. 

The second part of Kp, 2 involves the influence of the second pseudo yield surfaee or the

fabric anisotropy. Its hardening parameter represents the evolution o f the fabric 

anisotropy, which is defined in equation (3.7e). The effect of fabric anisotropy on the 

hardening response is dependent o n (a 2 -  a j2 ) : n , which is the relative distance between 

a , 2 and a^. h, is a model parameter. In equation (3.7c), Kpj is related to Kp,2 by 

exp(-k,vi/), where k, is a model parameter. \\> denotes the state parameter, given by:

V = e - e „  (3.8a)
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Scr = e , e f  - ^ l n ( p / p ^ f ) (3 .8b)

where, e is the eurrent void ratio and e„ is the void ratio at the critical state under the 

current confining pressure, ê ^̂ , , and X are the model parameters used to define the

void ratio at the critical state. It is worth noting that the inclusion of \j/ into Kpj enables 

the model to represent the effect o f the state parameter on the hardening response, 

a , 2 and a 3 are related to a  by:

®12 ~ êl2®

«3  = g 3 «

(3.9a)

(3.9b)

Where g,j and g 3 are two scalars. Thus, a , 2  and are simplified, and replaced by two 

scalars, with respect to a . The evolutions o f g,; and gj are defined as:

A
312 (a  ;n)

K pl2 K .

g u = 0

gn

when a  : n < (an)„j„

when a  : n > (an)„j„

8 3

A
( a :n )

K P3
■ 8 3 when a  : n > (an)„

8 3 = 0  when a  : n <  (an)^;„

(3.10a)

(3.10b)

(3.11a)

(3.11b)

In equations (3.10) and (3.11), in order to avoid numerical difficulties, g , 2 and g, remain 

constant when a  : n is smaller than (an)^j„ , which is a relatively small value.

Flow Rule

The flow rules for the volumetric and deviatoric plastic strain are defined as:

èP =  AD (3 .12)
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é P = A n  (3.13)

D is the dilatancy ratio, which is defined as:

D = Di2 = D , + C 2 D 2 (3.14a)

D, = A ( M - m  + k 2 \ ( / - a , 2 :n) (3.14b)

D 2 = A ( M - m  + k 2 H^-a2  :n) (3.14c)

C 2 = h 2 |(ai2 - t t 2 ) :n| (3.14d)

From equations (3.14b) and (3.14c), it can be seen that D, and Dj are defined based on 

the distance between a , 2 , a 2 and the dilatancy surface with the radius of M -  m + k 2 \|/, 

respectively. C; represents the degree o f the effect o f D j . A and k 2 are model 

parameters. The incorporation o f state parameter into the dilatancy surface can represent 

the effect o f the state parameter on the dilatancy ratio. In addition, with the stress ratio 

approaching the critical state, the dilatancy surface approaches the bounding surface. As a 

result, the state parameter approaches zero, which indicates that the void ratio approaches 

the critical state. Similar to the definition o f the plastic modulus in equation (3.7), the 

effect of the sand fabric anisotropy on the dilatancy ratio depends on (a 2 -  a , 2 ) : n in 

equation (3.14d), where h j is a model parameter.

Lode Angle Dependence

In order to represent the Lode angle dependence, some model parameters are 

made to be a fimction o f the Lode angle. The Lode angle 0 is defined as:

cos30
3 V3

3

(3.15a)
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I \l/2

J \l/3
S = l - t r r

(3.15b)

(3.15c)

r  = r - a  (3.15d)

The model parameters that depend on the Lode angle are defined as;

Q8=g(6)Qc (3.16a)

“  (l + c . ) - ( l - c . ) c o s 3 e  

% = ~  (3.16c)
Vc

where Q@ represents those model constants that are dependent on the Lode Angle 0 . 

and Qg denote the model constants for triaxial compression and extension, respectively. 

The model parameters a, and M are chosen to depend on the Lode angle in this model.

3.3 Numerical Implementation of the Constitutive Relations

3.3.1 Global Problem

In this section, the MSC sand model is numerically implemented to simulate the 

responses o f sand samples under triaxial and simple shear loadings. The considered 

sample corresponds to a single Gauss point in the finite element method. Assume the 

stress increment is given in each step and the problem can he described as;

F = An -  A5(Ae) = 0 (3.17)

where Ao denotes the total stress increment given as the input condition, and As denotes 

the strain increment, which needs to he solved. AS represents the stress increment
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computed based on Ae . It should be noted that in some cases the input condition is a 

combination o f stress and strain increments. This can also be considered similar to 

equation (3.17). Usually, there is not an analytical solution of Ae for nonlinear 

elastoplastic problems. Instead, the iterative numerical technique is required to solve the 

above problem. The most commonly used numerical technique is Newton-Raphson 

algorithm, which is given as:

d(As) = F (3.18)
0AE

where F represents the error of the stress increment, and d(AE) represents the error o f the 

strain increment in the iteration process. According to equation (3.17), equation (3.18) 

can be further written as:

(I .+ -^ ;^ )d (A E ) = F (3.19a)
oAs

I ,  = F(1,1,1,0,0,0)'^ ® (1,1,1,0,0,0) (3.19b)

In order to consider the pore water pressure, the effective stress increment in equation

(3.19) is expressed with A S '. denotes the consistent tangent stiffness matrix. I„

denotes the part o f the stiffness matrix caused by the pore water pressure. F represents 

the bulk modulus o f water and is set to be 2.2 x 10^ kPa, which is much larger than the 

bulk modulus of the soil skeleton. Under drained conditions, F is equal to zero. It should 

be noted that the solution o f the consistent tangent stiffness matrix usually is more 

complicated than that for the so-called continuum tangent stiffness matrix D ^, given by: 

F R F Tf^ep  _  ^ ijm n  mn ^ k i r s ^ r s

^Üki “  ^  .T  F R  ̂  ̂ ^
p mn^mnrs^rs
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where E denotes the elastic stiffness matrix, R  denotes the plastic flow direction, L 

denotes the normal to the yield surface, and Kp is the plastic modulus. Because it is

simpler to develop the continuum tangent stiffness matrix than the consistent tangent 

stiffness matrix, the continuum tangent operator is used to replace the consistent one in 

many cases. However, the use o f the continuum tangent stiffness matrix deteriorates the 

quadratic rate of convergence in the Newton-Raphson iterative solution scheme. In this 

chapter, the consistent tangent stiffness matrix is employed.

According to the finite element method, the strain increment is passed down from 

the global program to a subroutine. In the subroutine, based on the strain increment, the 

constitutive relations are integrated and all the elastoplastic quantities in the new step, 

including A S ' , are computed. Following the integration, the consistent tangent stiffness 

matrix is developed in the subroutine. Finally, the computed stress increment AS' and 

the consistent tangent stiffness matrix are returned to the global program. In the global 

program, AS' and the consistent tangent stiffness matrix are used to compute the new 

strain increment. The iteration process ceases when the errors of the stress and strain 

increments are smaller than the allowable ones.

3.3.2 Numerical Integration

The integration is performed by using the generalized trapezoidal rule. It is 

assumed that step n represents the last step and all the quantities at this step are known. 

With the strain increments Ae  ̂ and Ae are passed down from the global program, the

quantities at step n+I are to be solved. In this MSC sand model, the constitutive relations 

needed to be integrated are the elastic relations in equations (3.1) and (3.2), the hardening
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rule for the true yield surface in equation (3.5), the hardening rules for two pseudo yield 

surfaces in equations (3.10) and (3.11), and the flow rules in equations (3.12) and (3.13). 

In addition, the eonsistency condition expressed in equation (3.4) needs to be satisfied at 

step n+1. The results of the integration are given as follows. The subscript “n+1” 

referring to the quantities for n+ 1  step is omitted for clear demonstration.

R, -  p -
K-o(l~ao)

P::
(Ae, -A6P) + p , ,

i-aO

1

1-aO

R 2 = s - s„ - ^ [(1 - a )p f  + ap '°](A e-A e") = 0
P a t

R 3 = [(s -  pa) : (s -  pa)]z -  mp = 0

R . - a - a  - A
Ko K.

( l - a ) ( - ^ n ) , + a ( - ^ a )
P P

=  0

R; = Ae; -  a[(1 - a)D„ + a ü ]  = 0 

R 5 = Ae’’ -  A[(1 - a)n„ + an] -  0

R 7

R.

K pl2 K pl2

Kp3 Kp3
: [ g 3 « - ( g 3 « ) n ] - ^  = 0

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

In equations (3.21)-(3.28), a  denotes the integration parameter. a  = 0 indicates the 

explicit integration, and a  = 1 indicates the fully implicit integration or the closest point 

projection technique. It should be noted that in the original trapezoidal rule (Ortiz and 

Popov, 1985) the elastic moduli are constant, which is applicable to metals, and the 

trapezoidal integration is not carried out on the elastic relations. On the other hand, the
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elastic moduli for sands depend on the confining pressure, and the trapezoid integration is 

applied to the elastie relations in equation (3.22). This is an expansion o f the original 

trapezoidal rule. The unknown quantities needed to be solved in the above equations are

expressed in an array X = {p, s, A, a, As^, Ae’’, gj2 , gj }^. The above system of equations

is highly nonlinear if  one recalls the definition of D and Kp and the dependence of some

model parameters on the Lode angle in the above section. Therefore, numerical 

techniques must be used to solve the system of equations. The most widely used 

technique is Newton-Raphson algorithm, which is described as:

AX = R  (3.29)
a x

X i , i = X j + A X  (3.30)

R  is defined as: R  = [ r , ,  R j, R 3 , R 4 , R j, R^, Ry, Rg]^, which is equivalent to the

error, in the iteration process. The differentiation o f R  with respect to X is given in the 

appendix II. The initial value of X is determined by the so-called elastic predictor, given

as Xg = [p, s, A „, t tp , 0, 0, g |2„, gj„ f , where p and s are determined only from the elastic

stress-strain relation, and A^ is the loading index for the last time step. The criteria to

judge the cessation of the iteration process are given as:

M < t o l l  or, (3.31a)
| | x | |

|R,|
' " < t o l 2  (3.31b)
m

where || || represents the length of a vector. Equation (3.31b) corresponds to the error for 

the consistency condition.
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3.3.3 The Development of the Consistent Tangent Stiffness Matrix

After the integration o f the model constitutive relations and the solution o f the 

resulted nonlinear equations, the consistent tangent stiffiiess matrix expressed in equation

(3.19) can be developed based on equations (3.21)-(3.28). From the above definition of 

the constitutive relations and the dependence o f some model parameters on the Lode 

angle, it can be seen that there is no an analytical solution available for the consistent 

tangent stiffness matrix. Instead, the consistent tangent stiffness matrix is developed 

numerically. Differentiating equations (3.21)-(3.28) gives;

dR = ^ d X  + ^ d e ,  + ^ d e  = 0 (3.32)
o X  oe^ oe

It should be noted that and e are considered as two variables in addition to X in 

equation (3.32). dX can be written as:

dX = {dp, ds, dgP, de^, dA, da, dg,2 , d g j f  (3.33)

Rearranging equation (3.32) leads to:

From equation (3.34), dX can be expressed according to de^ and de by using the

„ dR  . 
inverse o f — , given as:

oX  08., 06
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In equation (3.35), the first two elements dp and ds in dX can be expressed according to

ds^ and d e . Thus, the consistent tangent stiffness matrix —  can be obtained. It is worth
ds

noting that, although the numerical technique is used to develop the consistent tangent 

stiffness matrix, the procedure is not complicated in that has already been developed 

in the solution o f integrated constitutive relations in equation (3.29).

3.4 Numerical Examples

In this section, the above described numerical solution technique is examined by 

several examples. The stress-strain responses o f Nevada sand with a relative density of 

60% under conventional triaxial and simple shear loadings in drained and undrained 

conditions are simulated. The model constants for Nevada sand are listed in Table 2.1. 

The focus of this section is to investigate the effectiveness o f this numerical procedure 

and the effects of various values o f a  on the integration accuracy. The allowable relative 

error for R  in equation (3.31a) in the local iteration is chosen to be 10“^. The other 

allowable local error in equation (3.31b) is set to be zero. The relative errors for Ao and 

A e  in the global iteration a re lO ^ . If one considers the relative large value o f | | x | | , the 

actual error in the local iteration is usually larger than that in the global iteration. The 

maximum numbers o f global and local iteration are chosen to be ten. To examine the 

performance of the consistent tangent operator, the stress increment is applied as the 

input condition in all the four loading conditions considered.

In the triaxial drained and undrained loadings, the radial stress remains constant at 

80 kPa and the axial stress keeps increasing until the failure o f the sample characterized
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by very large strain values. It should be noted that it is the axial stress, rather than the 

confining pressure, which remains constant. This can result in continuous change of the 

confining pressure in the drained loading simulation so that the use o f the trapezoidal rule 

in the elastic relations can be investigated. The fully implicit integration procedure with 

a  = 1 is used for the simulations. The input axial stress increment at each step is 20 kPa, 

which is a very large value compared with the radial stress o f 80 kPa. Figure 3.1 shows 

the evolutions of the deviatoric stress and volumetric change with the deviatoric strain in 

drained loading. The mark of a star in Figure 3.1 and other three following figures 

denotes the position beyond which convergence doesn’t occur with the input of relatively 

large stress increments. In this case, relatively small stress increments or strain increment 

inputs are used beyond the symbol o f star. Figure 3.2 shows the evolutions of the 

deviatoric stress and pore water pressure with the deviatoric strain in undrained triaxial 

loading. For the simple shear simulations under drained and undrained conditions, the 

axial stress remains constant at 80 kPa. The static lateral pressure coefficient is set to be 

0.6 at the start of the loading, which is a typical value for sands. The lateral strain remains 

at zero throughout the simulation and the shear stress keeps increasing until the failure of 

the sample characterized by a large strain value. Similar to the triaxial loading 

simulations, the fully implicit integration procedure with a  = 1 is used. The shear stress 

increment at each step is 3 kPa, which is a large value considering only 12 loading steps 

are required to reach the symbol o f the star. Figure 3.3 shows the evolutions o f shear 

stress and volumetric strain with the shear strain in drained loading. Figure 3.4 shows the 

evolutions o f shear stress and pore water pressure with the shear strain in undrained 

loading.
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The above four predictions indicate that this numerical procedure performs very 

well in both global and local parts. Table 3.1 illustrates the number o f global iterations 

used to reach the allowable global errors for the four predictions before the symbol o f star. 

The number o f global iteration by using the continuum tangent operator is also listed in 

Table 3.1 for comparisons. The fully implicit integration is also employed for the 

continuum tangent operator. From Table 3.1, it can be seen that despite the large 

magnitude o f the stress increments at each step, the proposed numerical procedure leads 

to a high convergence rate. In most cases, it requires only four or five iterations to reach 

the allowable errors. On the other hand, the continuum tangent operator leads to a lower 

convergence rate than that for the consistent one. Especially for the drained simple shear 

simulation, the computed stress and strain errors are still larger than the allowable errors 

e ven after ten iterations. For the local iteration, the Newton's iterative procedure to solve 

the system of integrated constitutive equations also leads to a high convergence rate. 

Consider the fourth step o f loading in the drained triaxial loading simulation, where the 

axial stress is increased from 140 kPa to 160 kPa. The evolution o f the relative errors of 

R  in the local iterations is shown in Table 3.2. One can see that it takes only four or five 

local iterations for the relative error o f R  to reduce from an order o f 10“' to 10“*.

The effects o f a  on the integration accuracy are investigated with a  equal to 0.5, 

0.75 and 1.0, respectively, with various magnitudes o f stress increments. The reason to 

select these values of a  is to ensure the stability o f the numerical simulation because 

a  > 0.5 leads to unconditional stability for this problem. The investigation of a effects is 

limited to the loading path before the symbol o f star. Exact solutions cannot be obtained 

analytically for this model under the loading conditions considered. Instead, the exact
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solutions are approximated by using the predictions obtained with a very small magnitude 

o f stress increment for each of the three values o f a . The solutions are named exact 

numerical solutions. The stress increment values used are 0.2 kPa for drained and 

undrained triaxial loadings, and 0.025 kPa for drained and undraind simple shear loadings. 

The errors of the simulations compared with the exact numerical solutions, are defined as:

k
^  exact I

Int - error =   (3.36)
T \ y  Ij Iexact I

where x denotes the quantity to be examined. In the drained triaxial loading, x represents 

the deviatoric strain and volumetric strain, respectively. In the undrained triaixal loading,

X represents the deviatoric strain and pore water pressure, respectively. In the drained 

simple shear loading, x represents the shear strain and volumetric strain, respectively. In 

the undrained simple shear loading, x represents the shear strain and pore water pressure, 

respectively, x ^ ^  represents the numerical exact value. Given a very small step for the

exact numerical solution, x , ^  at any stress is obtained by the interpolation between two

adjacent values, k denotes the number o f loading steps in equation (3.36).

The integration errors for different values o f a  are shown in Figure 3.5 to Figure

3.8 for the drained triaxial, undrained triaxial, drained simple shear and undrained simple 

shear loadings, respectively. In these figures, x-axis represents the ratio between the 

considered loading increment magnitude and that used to develop the exact numerical 

solution, y-axis represents the error defined in equation (3.36). Figures 3.5 to 3.8 show 

that all the integration errors decrease with the decreasing magnitude o f stress increment. 

Overall, the difference o f the integration errors between various a  in Figure 3.5 to Figure

3.8 is that at larger loading increments, the errors for larger a are smaller than those for

121



smaller a . In contrast, for smaller loading increments, the errors for smaller a are 

smaller than those for larger a . This is consistent with the postulates by Ortiz and Popov 

(1985). Speeifically, while a  = 1 leads to an approximately linear decrease of the errors 

with the decrease of loading increments, a  = 0.5 leads to a higher order error deerease. 

This verifies the postulate by Ortiz and Popov (1985) that a  = 0.5 leads to the second 

order accuracy. It is worth noting that the differenee o f the integration errors between 

various a  for undrained loadings in Figures 3.6 and 3.8 are not as significant as that for 

drained loadings in Figures 3.5 and 3.7. In addition, for undrained simple shear loading in 

Figure 3.8, smaller a doesn’t lead to smaller errors at smaller loading increments than 

those for larger a . This is probably related to the bulk water modulus in undrained 

loadings, which is much larger than soil skeleton modulus. The relatively large bulk 

water modulus lessens the effects of a on the integration error.

3.5 Conclusions

MSC sand model is numerically implemented within the fi*amework o f the finite 

element method. The numerical implementation is carried out in a single Gauss point, 

which consists of the numerical integration and the development o f the eonsistent tangent 

stiffhess matrix. The theoretical analysis and numerical examples in this chapter show 

that, although the MSC is different than the classical elastoplasticity modeling techniques, 

the MSC and its corresponding sand model are well-suited to numerical techniques used 

in finite element methods.

The well known generalized trapezoidal integration technique is employed to 

perform the integration o f the model. The originally proposed trapezoidal rule (Ortiz and
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Popov, 1985) is expanded in this problem to incorporate the dependence o f the elastic 

moduli on the stress state. The numerical examples under various complicated loading 

conditions with this comprehensive model substantiate and reconfirm the effects of 

various a  on the integration accuracy proposed originally (Ortiz and Popov, 1985). This 

will contribute to the wider application o f this integration rule to solve real engineering 

problems.
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Table 3.1. The Convergence of Global Iteration 

(a) Triaxial Loading Simulations

Load No. Axial Stress Number o f Global [terations (Triaxial)
Drained Undrained

Consistent Continuum Consistent Continuum
1 100 5 7 5 8
2 120 5 8 5 8
3 140 5 8 5 8
4 160 5 8 5 8
5 180 5 8 5 7
6 200 5 11* 5 6
7 220 5 8 4 6
8 240 6 8 4 5
9 260 5 9 4 5
10 280 5 9 4 4
11 300 5 9 4 4
12 320 6 9 5 5
13 340 8 10 4 5

* allowable error wasn't reached (the error in strain was 1.2e-4)

(b) Simple Shear Simulations

Load No. Shear Stress Number of Global Iterations (Simple Shear)
Drained Undrained

Consistent Continuum* Consistent Continuum
1 3 5 1.9e-4; 9.8e-5 5 6
2 6 5 l.Oe-3; 2.7e-4 5 7
3 9 4 1.7e-3;3.5e-4 5 7
4 12 5 2.9e-3; 4.6e-4 5 7
5 15 5 4.7e-3; 5.6e-4 5 8
6 18 5 7.0e-3; 6.2e-4 5 9
7 21 5 9.7e-3; 6.9e-4 5 8
8 24 5 1.2e-2;8.4e-4 5 9
9 27 6 1.4e-2; l.le-3 6 10
10 30 6 1.3e-2; 1.2e-3 6 10
11 33 6 3.6e-3; 4.0e-4
12 36 7 6.5e-2; 4.4e-5

* allowable error wasn't reached, listed are stress and strain errors after 10 iterations
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Table 3.2. The Convergence o f Local Iterations for Drained Triaxial Simulation at the 4* 

step.

Global Iteration No. 2
Local Iteration No. I 2 3 4 I 2 3 4 5

Error o f R 0.11 2.9e-4 8.6e-6 6.2e-8 0.36 4.2e-3 l.Ie-5 I.3e-6 2.2-8
Global Iteration No. 3 4
Local Iteration No. I 2 3 4 5 1 2 3 4 5

Error of R 0.39 5.4e-3 4.8e-6 3.7e-6 3.7e-8 0.4 5.6e-3 7.4e-6 I.7e-6 I.7e-8
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Figure 3.1: the simulation for conventional drained triaxial loading
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Figure 3.2: the simulation for conventional undrained triaxial loading
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Chapter 4

Solution Existence Conditions for 

Elastoplastic Constitutive Models of Granular Materials

4.1 Introduction

Classical elastoplasticity theory was initially developed based on the assoeiated 

flow rule, in whieh the direction o f plastic strain rate eoincides with the normal to the 

yield surface. However, it was found that the assoeiated flow rule is not applieable to 

many materials, such as granular materials, and a non-assoeiated flow rule needs to be 

used for these materials (Chen & Baladi, 1985). Unlike the associated flow rule, the use 

of a non-assoeiated flow rule may encounter the problems o f instability, bifureation, 

violation o f the thermodynamic laws, non-uniqueness, and nonexistenee o f solutions even 

in the strain hardening regime (Drucker, 1959; Mroz, 1963, 1966; Mandel, 1964; Maier 

& Hueckel, 1979). Most o f their studies and the subsequent efforts were focused on the 

plastic modulus (Runesson & Mroz, 1989; Ottosen & Runesson, 1991; Klisinski et al., 

1992). Among all these problems brought by non-assoeiated flow rules, the solution 

nonexistence is the most eritical. For example, in the load deformation boundary value 

problems within the framework o f the finite element method, even if  the solution doesn’t 

exist at a single Gauss point, it may result in the global failure o f the computations. Maier 

& Hueckel (1979) studied the eonditions for solution existenee under various conditions 

when the stress or strain rate is given. They postulated that a solution doesn’t exist if  the 

plastie modulus is below a critieal value in the strain hardening regime when the strain
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rate is given. This critical plastic modulus was derived for mixed stress and strain 

controlled loading conditions by Klisninski et al. (1992), Nova (1994) and Mroz & 

Rodzik(1995).

While most o f the research efforts on the solution existence for non-assoeiated 

flow rule models were focused on the plastic modulus, this chapter is aimed at 

investigating the effects o f different flow rules and elastic stress-strain relationship on the 

solution existence under strain controlled loadings. Because it is the non-assoeiated 

nature of flow rules that brings the problems, investigation of the flow rules is of 

particular significance. In this chapter, the original Rowe’s and Roscoe’s flow rules and 

their modified versions for granular materials are considered (Rowe et al., 1962, 1964, 

1969; Roseoe et al., 1963; Manzari & Dafalias, 1997; Wan & Guo, 1999). It will also be 

shown that the elastic stress-strain relationship is as important as the flow rules in 

analyzing the solution existence problem. The elastic stress-strain relationship is 

characterized by the Poisson’s ratio in this chapter. Both isotropic and anisotropic 

elasticity are investigated. The analysis is performed in the strain hardening regime on the 

models with Drucker-Prager’s yield functions that are widely used to represent granular 

materials.

4.2 Conditions for the Solution Existence

In classical elastoplasticity theory, the total strain rate G. can be decomposed into 

an elastic part and plastic part, given as:

Êÿ=Ê; +G;  (4T)
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where a superposed dot indicates the rate and the superscripts e and p  denote the elastic 

and plastic parts, respectively. The elastic stress-strain relationship can be expressed as: 

(fÿ ==JSûwGL (4.2)

where the fourth-order tensor represents the elastic tangent moduli for an isotropic 

material, defined as:

(4 3)

where K  and G denote the elastic bulk and shear moduli, respectively, ô̂ . denotes 

Kronecker delta. The plastic strain rate is defined as:

é ; = { i ) R „  (4.4)

where i  denotes the loading index, and denotes the direction of s f . ( ) denotes

Macauley brackets. When X is positive, {Xj = X , and indicates the plastic deformation 

occurs. When X is negative, (iCj is zero, and indicates that there is no plastic 

deformation. The evolution of hardening parameter ay  is defined as:

=(%.)&* (4.5)

hy denotes the direction o f à  y . Furthermore, the process o f loading and deformation 

needs to satisfy Kuhn-Tucker conditions, given as:

^ > 0 .  f ( a y , a y ) < Q ,  X f ( a y , a y )  = Q (4.6)

where /  denotes the yield surface, which is a function of stress states and hardening 

parameters. Here, only one hardening parameter ay  is used for the sake o f simplieity.

When X is zero, the material experiences only elastic deformation. /  ean be zero or
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negative. Zero /  indicates that stress state moves on the yield surface, called the neutral 

loading. Negative /  indicates that stress state moves towards inside o f the yield surface, 

called unloading. When Â, is positive, the material experiences both elastic and plastic 

deformation. In this case, /  must be zero, which is called the consistency condition, 

written as:

When i  is positive, by using equations (4.1), (4.2), (4.4), (4.5), (4.7), one can 

obtain the tangent elastoplastic stiffness tensor Dy ,̂ and the compliance tensor ,

given as:

(Tp = (4.8ai)

P Q y

(4.9b) 

(410)

(4JU)

= 04 12)
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L̂ j denotes the normal to the yield surfaee. If is the same as R y , the flow rule is

associated. On the other hand, if  Ly is different than Ry , the flow rule is non-assoeiated.

Kp denotes the plastic modulus. Positive indicates strain hardening, and negative

Kp indicates strain softening. In this chapter, the analysis is restricted within the regime

of strain hardening.

Any solution of stress and strain rates must satisfy Kuhn-Tucker eonditions,

which involve /  and X . By using equations (4.1), (4.2), (4.4), (4.5), (4.7), one can also

obtain i , in terms o f the stress or strain rate, given as:

\
K

(4J15)
P

(4.16)
B

Assume à  y is known, the yield surface is convex, the stress state is on the yield surfaee,

and Kp is positive. Equation (4.15) is used to determine 1 . If the stress rate is positioned

outside o f the yield surfaee, the product o f Ly and à y is positive, so that X is positive.

According to Kuhn-Tueker eonditions, /  needs to be zero. On the other hand, if  the 

stress rate is positioned inside o f the yield surfaee, the product o f Ly and à  y is negative,

so that X is also negative. According to Kuhn-Tucker eonditions, X is reset to zero. 

Meanwhile, f  is negative beeause the stress state tends to move inside o f the yield 

surfaee. Zero X and negative /  satisfy Kuhn-Tucker eonditions.
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Consider the strain controlled loading under the same assumptions as in the stress 

controlled loading. Equation (4.16) is used to determine i . in equation (4.16) ean

be denoted by â*., which is equivalent to à  y in equation (4.15), in terms of the

determination o f i . Two cases need to be considered in terms o f the value of B in 

equation (4.16). When B is positive, it is equivalent to , and the determination of i  

is identical to that for stress controlled loadings. Kuhn-Tucker conditions are always 

satisfied. The situation becomes complicated when B  is negative. If à* is directed inside

o f the yield surface, the product o f Ly and à*, is negative. As B  is negative, i  is

positive. According to Kuhn-Tueker eonditions, /  is zero. This suggests that the 

material experience the strain softening although AT is still positive. Furthermore, 

assume X is zero and the plastic deformation doesn’t happen. Because à*, is directed

inside of the yield surface, /  is negative. The zero X and negative /  also satisfy Kuhn- 

Tucker conditions. Therefore, there are two solutions corresponding to negative B when 

à*y is directed inside o f the yield surface. Consider B is negative and 6* is directed

outside o f the yield surfaee. In this ease, the product o f Ly and d*. is positive, whieh 

results in negative X . This doesn’t satisfy Kuhn-Tucker conditions. As a result, X is reset 

to zero. Because d* is directed outside o f the yield surfaee, /  is positive. The positive

/  violates Kuhn-Tucker conditions. Therefore, when B is negative and d* is directed 

outside of the yield surface, there is no admissible d ^ . In another word, the elastoplastic 

solution doesn’t exist.
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From the above discussion, the key to the solution existence under strain 

controlled loadings is to ensure positive 5  . For associated flow rules, R̂ j is the same as

Ly , and the product o f Ly , Ey^ , and R^i is positive. With a positive in the strain 

hardening regime, B  is always positive. However, for granular materials characterized 

with non-associated flow rules, the product of Ly , Ey^,, and is not necessarily

positive. The conditions of the solution existence for the granular material models 

characterized with Drucker-Prager’s yield surfaces are investigated below.

4.3 Solution Existence Conditions for Granular Material Models

4.3.1 Granular Material Models

Drucker-Prager’s yield function is widely used to represent gianular material 

behavior. It is expressed as:

/  =

nl/2
- m - 0  (4.17)

where p  and Sy denotes the hydrostatic and deviatoric parts of the stress state, 

respectively, ay  denotes the kinematic hardening parameter, and m denotes the isotropic 

hardening parameter. Equation (4.17) represents a cone in the principal stress space, 

where mp is the radius o f the cone and represents its axis position. It is convenient to

develop the model formulations on the stress ratio n -plane, where the quantity is Sy /  p . 

The flow rules can be expressed in terms of the hydrostatic and deviatoric parts of the 

plastic strain rate, and é f , respectively, given as:
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É ' = j É f / , + <  (4.18a)

êf=ÂZ) (418b)

êf = Xriy (4.18c)

where D  denotes the dilataney ratio between the hydrostatic part and deviatoric part of 

the plastic strain rate. Positive D  indicates the plastic volumetric contraction, and 

negative D  indicates the plastic volumetric expansion, ly is a second-order isotropic

tensor, riy represents the normal to the yield surface projected on the stress ratio n -plane, 

defined as:

ny = ( r y ~ a y ) / m  (4.19a)

r, (4.19b)
P

It should be noted that the associated flow rule is employed on the stress ratio % plane, 

but not for the hydrostatic plastic strain rate. The normal to the yield surface Ly and the

plastic strain rate direction Ry can be written as:

L i j = n y - ^ N I y  (4.20a)

N  = n.yVy (4.20b)

+ (4.21)

Substitution o f the above model formulations for granular materials into the 

expression for B in equation (4.12) leads to:

^  = Æ^+2G-ÆOAr (4.22)
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In elasticity theory, K  and G can be expressed as;

K  = ------------ (4.23a)
: y i - 2 v ;

G = — - —  (4.23b)
:y i+ v ;

where E  denotes Young’s modulus, and v denotes Poisson’s ratio. denotes the

plastic modulus and can be determined by any hardening rule. Compared with elastic 

moduli, the plastie modulus is negligible during most o f the loading paths for granular 

materials. Accordingly, B  can be approximated by B  , written as:

B ^ 2 G - K D N  (4.24)

For associated flow rule, D  is equal to negative N , and B becomes,

=::2(7 H JCAfZ 04.25)

In this case, B is always positive. However, it is well known that non-associated flow

rules apply to granular materials, whieh indicates B  is not necessarily positive. The 

widely used flow rules for granular materials are Rowe’s and Roscoe’s flow rules, and 

those modified based on them. Rowe et al. (1962, 1964, 1969) developed the stress- 

dilatancy relations for triaxial compression, extension conditions and plane strain 

condition, under the assumption of the minimum energy criterion. Roscoe et al. (1963) 

developed the flow rule under triaxial eonditions on the basis o f the energy dissipation. 

Thereafter, many flow rules were developed based on them, in order to appropriately 

represent the effects o f confining pressures, void ratios and fabric anisotropy on the 

dilatancy ratio of granular materials (Wan & Guo, 1999; Dafalias & Manzari, 1997; 

Manzari & Dafalias, 1999). It is worth noting that most o f the flow laws were originally
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developed under triaxial loading conditions. Under triaxial loading conditions, and r.. 

hold the same direction, which results in the largest value o f N  in equation (4.20).

According to the expression of B in equation (4.24), triaxial loading conditions are the 

most or nearly most critical condition among all the possible loading paths. Therefore,

the examination of B for various flow rules will be performed under triaxial loading 

conditions.

Under triaxial loading conditions, the deviatoric parts o f stress and strain states 

can be represented by:

g = a , -Og (4.26a)

Ÿ' = fL26b)

n.j expressed in the form of a vector {«u- « 2 2  >” 3 3 ' ” 1 2 ' ” 23 >” 3 1 F  is ̂ { 2 , - 1 , - 1 ,  0, 0, O}̂
v6

and {- 2,1,1,0,0, o}^ for triaxial compression and extension, respectively.
V6

Correspondingly, N  and D  become,

A  = ± - ^ — (+: com pression;extension) (4.27)
3 p

2 è”
D = (+; com pression;extension) (4.28)

B  becomes,

" 1  2 8^ g
B = E

(l  + v )  9 ( \ - 2 v ) j ' ’ p  

where E  and v are used to replace K  and G .
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4.3.2 Examination of Rowe’s and Roscoe’s Flow Rules

Rowe’s flow rule under triaixal compression conditions was originally given as:

—  = (4.30a)

C = (4.30b)

where <j>„ denotes the angle o f friction between particles. Equation (4.30) can be 

rewritten as:

Q

<  = _  —  ^
~ ( \ ~ C ) ^ + ( \  + 2C)

(4.31)

Substituting equation (4.31) into equation (4.29), one can obtain B , given as:

B = (4.32a)
a

+ c (4.32b)

(/ = 2 C r 3 - ^ ;  + 2 ^  + 3 (4.32c)

a = C + 2 (4.32d)

b — —2(C — \ ) ( \  + x )  (4.32e)

c = ^ n  + 2C;% (4.32f)

l - 2 v
x = - ------  (4.32g)

1 + v
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C is always greater than unity and q / p  is usually smaller than 3, which indicates d  is

positive. As a result, B and B* share the same sign. B* represents a parabolic equation 

with the stress ratio as the variable. This parabolic equation is concave upward as shown

in Figure 4.1. A part of 5  ’ is below zero only if,

y  = 6̂  _  4oc > 0 (4.33)

Substitution o f equations (4.32d), (4.32e) and (4.32f) into equation (4.33) leads to:

y  = a -¥b*x +c > 0 (4.34a)

a* = c * = ( C - \ f  (4.34b)

b* = -2 (C ^  +1C + 1) (4.34c)

y > 0 is satisfied when x<x^  or x > Xj, where x, and X; are two solutions o f y = 0 , 

which is shown in Figure 4.2. According to the formulations of x and C , x can never 

exceed x^ as far as granular materials are concerned. In summary, given a granular 

material with a specific friction of angle or C , the existence of a solution is dependent on 

its Poisson’s ratio represented by x . The Foisson’t ratio corresponding to x, is called the 

critical Poisson’s ratio v ^ , expressed as:

v„ = (4.35)
2 + x,

Substituting x. into equation (4.32), one can obtain the critical stress ratio 

( q /  corresponding to (Note: this critical stress ratio is different than that in the 

critical state soil mechanics). When the Poisson’s ratio for a granular material is greater 

than or X <  X , , 5* is susceptible to be negative. In this case, B* is negative when 

q /  p  is between ( q  /  p \  and ( q /  p ) 2 , which are two solutions of B* = 0 . ( q /  p)^,,  as
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a reference value, is larger than ( q / . In Figure 4.3 the critical Poisson’s ratios and 

the stress ratios corresponding to various angles o f friction are given. Figure 4.4 shows 

the evolution o f B* with the increase o f the Poisson’s ratio when the angle o f friction is 

50 degree. Figure 4.3 shows that the critical Poisson’s ratio decreases and the critical 

stress ratio increases with the increase of friction angles. For granular materials, the angle 

o f friction between particles usually ranges from 10 to 40 degrees. This indicates that the 

corresponding critical Poisson’s ratio ranges from 0.5 to 0.4, in Figure 4.3. In view of the 

fact that the Poisson’s ratio for granular materials normally is between 0.2 and 0.3, a 

normal Poisson’s ratio doesn’t cause the problem with solution nonexistence when the 

original Rowe’s flow rule is employed.

Rowe’s flow rule under triaxial extension loading conditions can be expressed as,

3rc-v+r2c+i/^
=  ^  (4.36)

- r c - V " + 2 + C  
3

Along the same line as for the triaxial compression, the critical Poisson’s ratio and 

critical stress ratio under extension conditions can also be determined as a function o f the 

angle of friction. It is found that the critical Poisson’s ratio for extension under a 

particular angle o f friction is the same as that for compression. But the critical stress ratio 

for extension is smaller than that for compression, which as shown in Figure 4.3. The 

smaller critical stress ratio for extension is consistent with the fact that the extension 

shear strength is smaller than that under compression.

Roscoe’s flow rule under triaxial conditions can be written as:
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^  =  (4 .37)

where M  denotes the critical stress ratio in the critical state soil mechanics. Usually, M  

for triaxial compression is larger than that for extension, q and ÿ ’’ are positive for 

triaxial compression and negative for extension. Substitution of equation (4.37) into (4.29) 

leads to:

B  = ^KB*  (4.38a)

B* + (4.38b)

where x  is the same as in Rowe’s flow rule in equation (4,32g). Similar to Rowe’s flow 

rule, a part o f 5* is negative, when the following condition is satisfied:

jc < -----  (4.39)
18

A critical Poisson’s ratio can be obtained, when x  = M ^ / 1 8 . I f  the Poisson’s ratio of a 

material is greater than the critical one, the material is susceptible to solution 

nonexistence. Substituting the critical Poisson’s ratio into equation (4.38), one can obtain 

the corresponding critical stress ratio, ( q / = M / 2 .  Figure 4.5 illustrates the critical 

Poisson’s ratios and stress ratios for various values o f M  . In Figure 4.5, the critical 

Poisson’s ratio decreases and the critical stress ratio increases with the increase of M . 

Comparing Figures 4.3 and 4.5, one can see that M  is equivalent to (|)̂  as far as the

existence o f a solution is concerned. This is consistent with the fact that the critical stress 

ratio M  in the critical state soil mechanics is dependent on the angle o f friction between

particles. The evolution of B* with the Poisson’s ratio for Roscoe’s flow rule is similar to
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that for Rowe’s flow rule in Figure 4.4. M  for granular materials usually ranges from 0.5 

to 2.0 under triaxial compression and extension conditions. This indicates the 

corresponding critical Poisson’s ratio ranges from 0.5 to 0.35 in Figure 4.5, which is 

above the normal Poisson’s ratios for granular materials. Therefore, Roscoe’s flow rule 

usually doesn’t cause the solution nonexistence problem.

4.3.3 Examination of Modified Rowe’s and Roscoe’s Flow Rules

The volumetric change o f granular materials is affected by many factors, such as 

the inherent anisotropy, stress-induced anisotropy, confining pressure and void ratio. For 

example, when a sand is subjected to shearing, lower confining pressure and void ratio 

lead to greater tendency o f volumetric expansion than higher confining pressure and void 

ratio. It is well known that anisotropic fabric in granular materials is produced during the 

process of deposition or sample preparation. In addition, when the granular material is 

subject to shearing, anisotropic fabric is produced even if  the material initially has an 

isotropic fabric. After removal o f the shear force, a significant amount o f fabric 

anisotropy may still remain. Figure 4.6 shows the effects o f fabric anisotropy on the 

volumetric change under triaxial loading condition. In Figure 4.6, the sample initially has 

an anisotropic fabric. The fabric in the horizontal direction represented by F33 is stronger

than that in the vertical direction represented by F’j , When the sample is subject to

triaxial loading, the compression causes greater volumetric contraction than that under 

extension due to the fabric anisotropy, shown in Figure 4.6. Although Rowe’s and 

Roscoe’s flow rules are concise and widely used in constitutive models for granular 

materials, they are highly idealized and can not appropriately represent the dependence o f
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volumetric change on the fabric, confining pressure and void ratio. This is reflected in 

equations (4.31), (4.36) and (4.37), in which the confining pressure, void ratio and fabric 

anisotropy are not included. To incorporate the effects o f confining pressure, void ratio 

and fabric anisotropy on the volumetric change, various modifications have been made 

based on the original Rowe’s and Roscoe’s flow rules. These modified flow rules were 

developed so that lower confining pressures and void ratios lead to greater tendeney of 

volumetric expansion. In addition, many modified flow rules incorporate the effects of 

fabric anisotropy illustrated in Figure 4.6. Without loss of generality, consider two typical 

flow rules modified based on Rowe’s and Roscoe’s flow rules, respectively (Wan & Guo, 

1999; Manzari & Dafalias, 1997; Dafalias & Manzari, 1999).

The flow rule by Wan & Guo (1999) ineorporates the void ratio, confining 

pressure and fabric anisotropy through energy dissipation considerations at grain contaets 

during macroscopic deformations. Their flow rule under triaixal compression conditions 

can be expressed as:

—  = (4.40a)

C* = t o « V 4 5 ° + ( 4 . 4 0 b )

sin (j)̂  = ——  /  sin^^ (4.40c)

= ĉro e x p [ - ( p / K , r "] (4.40d)

where F33 and F,, represent the fabrie eomponents in the principal stress directions as

shown in Figure 4.6. denotes the true plastic shear strain, e and denote the 

current void ratio and the void ratio at the critical state under the current confining
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pressure, respectively. % , a  are the parameters related to the fabric anisotropy, a  is the 

parameters related to the void ratio and confining pressure, and are the

parameters for the void ratio at the critical state, is the modified (j)„, and is equivalent 

to (|)„ in terms o f the determination o f the critical Poisson’s ratio and corresponding stress 

ratio. When the effects o f fabric anisotropy, void ratio and confining pressure are ignored, 

(|)y is equal to (()„ and Equation (4.40) becomes the original Rowe’s flow rule. Figure 4.3

originally designed for (])„ is also applicable to (j)̂  . From equation (4.40), it can be seen 

that (j)̂  increases with the increase o f void ratio, confining pressure and fabric anisotropy 

F 33 / F , , , which results in the decrease of critical Poisson’s ratio.

The volumetric changes o f several types of sands under various conditions were 

predicted by Guo (2000) using Equation (4.40). Critical Poisson’s ratios and stress ratios 

for this flow rule are determined using Figure 4.3 in this section. The effects o f void 

ratios and confining pressures on the volumetric changes of Sacramento River Sand and 

Toyoura under triaxial compression were investigated using the flow rule given in 

Equation (4.40). The model parameters are listed in Table 4.1. From the void ratios, 

confining pressures and the model parameters in Table 4.1, (|)y can be determined. From

(j)^, the critical Poisson’s ratios and stress ratios can be determined in Figure 4.3. The

results are shown in Tables 4.2 and 4.3, for these two sands under various conditions. It 

should be noted that the evolution o f  the void ratio is ignored for the determination o f  the 

critical Poisson’s ratio because the solution nonexistence usually occurs during the early 

stages of shearing. Tables 4.2 and 4.3 show that the critical Poisson’s ratio decreases with 

the increase o f confining pressures and void ratios. However, the computed critical
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Poisson’s ratios are still above the normal Poisson’s ratios for granular materials. The 

reason is that only the effects o f confining pressure and void ratios are considered for 

these two sands, but the fabric anisotropy effect is not considered. The effect o f fabric 

anisotropy, as well as the confining pressure and void ratio, is considered in Ottawa Sand 

using Equation (4.40). The parameters for this flow rule are listed in Table 4.4. 

Volumetric changes were predicted under the confining pressure of 200 kPa for various 

void ratios and initial fabric anisotropies. The corresponding critical Poisson’s ratios and 

stress ratios are listed in Table 4.5. It can be seen that the critical Poisson’s ratios are 

quite low and within the range of normal Poisson’s ratios for granular materials under 

some conditions. For example, v^ is as low as 0.236 when the void ratio is 0.735 and 

F33 / is 1.53. v^ is 0.321 when the void ratio is 0,65 and F33 /F ,, is 1.75. It should 

be noted that the corresponding critical stress ratios are quite high under these two 

conditions, at 1.9 and 1.4, respectively. However, the higher the (j)̂  is, the more sensitive

B* is to the Poisson’s ratio. Consider the case in which the void ratio is 0.735 and

F 33 /F j, is 1.53. Compared with v ^  at 0.236, when the Poisson’s ratio o f Ottawa Sand is

chosen as 0.3, the solution doesn’t exist when the stress ratio is higher than ( q /  pX  at 

1 . 1 .

The modification o f the original Roscoe’s flow rule by Manzari & Dafalias (1997) 

and Dafalias & Manzari (1999) under triaxial compression conditions is given as, 

gf a
—  = A (M  + k^ f  )  (4.41a)
Ÿ" F

=  (4.41b)
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V f ( 4 4 1 c )

^ = .4on+ ( / . ' « ) ;  (4.41d)

where ^f denotes the state parameter, which is the difference between the current void 

ratio and the void ratio at the critical state under the current confining pressure. /  

denotes the fabric tensor. It is postulated that A inereases only when the material 

experiences volumetric dilation, k ,  A^, , X and Ç are model parameters. If  k  is

zero, Aq is unity and the fabric anisotropy effect is ignored, the flow rule in Equation 

(4.41) becomes the original Roscoe’s flow rule. Along the same line as in the original 

Roscoe’s flow rule, it can be derived that the material is susceptible to solution 

nonexistence, when

X < ------ (4.42a)
18

M* = 4 a (  M (4.42b)

M*  is equivalent to M  in the original Roscoe’s flow rule as far as the critical Poisson’s 

ratio is concerned. The critical stress ratio corresponding to the critical Poisson’s ratio is 

( M  + k \ ^ ) /2 .  The dependence o f the critieal Poisson’s ratio and stress ratio on M* is 

also illustrated in Figure 4.5. Similar to the modified Rowe’s flow rule, equation (4.42) 

indicates that the critical Poisson’s ratio decreases with the increase o f void ratio, 

confining pressure and fabric anisotropy, and the critical stress ratio increases with the 

increase o f void ratio and confining pressure.

This modified Roscoe’s flow rule was applied to predict Nevada Sand and 

Toyoura Sand in Chapter 1. The model parameters related to the volumetric change are
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listed in Table 4.6. The behavior for medium dense and dense Nevada Sand was 

predicted under various confining pressures in this study. The critical Poisson’s ratios and 

stress ratios for these medium dense, dense sands, together with the sand at the maximum 

porosity are determined from Figure 4.5 and shown in Table 4.7. It can be seen that 

higher void ratios lead to lower critical Poisson’s ratios. For the maximum porosity, the 

critical Poisson’s ratio is as low as 0.32. The Poisson’s ratio for Nevada Sand in this 

model is 0.125, which is much lower than the critical one. Therefore, the behavior of 

Nevada Sand predicted with this model is not susceptible to solution nonexistence. The 

critical Poisson’s ratios and stress ratios for Toyoura Sand under various confining 

pressures and void ratios are shown in Table 4.8. The same conclusions as for Nevada 

Sand can be drawn for Toyoura Sand. The minimum critical Poisson’s ratio in the Table 

4.8 is 0.4 when the void ratio is 0.833 and the confining pressure is 3 MPa. The minimum 

critical Poisson’s ratios for Nevada Sand and Toyoura Sand are 0.32 and 0.4 in Tables 4.7 

and 4.8, which are higher than the normal Poisson ratios for granular materials. However, 

the effect o f fabric anisotropy has not been considered for these two sands. If the fabric 

anisotropy is considered, the critical Poisson’s ratios will be smaller than those shown in 

Tables 4.7 and 4.8.

4.3.4 Consideration of Elastic Anisotropy

The fabric anisotropy influences not only the plastic flow o f granular materials, 

but also their elastic properties. Correspondingly, some models incorporate the elastic 

anisotropy (Nemat-Nasser & Balendran, 1992). The effects of elastic anisotropy on the

155



critical Poisson’s ratio and solution existence are discussed in this section. Under triaxial 

isotropic conditions, the elastic stiffness matrix can be written as:

(4.43a)
<̂11 "G H  H

à  22 H  G H £ 2 2

.^33. H  H  G .^33.

G =

H  =

n  + v ; o - 2 v ;  

Ev

Under triaxial eonditions, the cross anisotropy, in which the horizontal stifftiess is 

different than the vertical stiffness, is the most common occurrence. One form of the 

elastic stiffness matrices representing the cross anisotropy can be written as:

(4.43b)

(4.43c)

cr,

a 22

'33

G H  H  

p / /  PG p //  

p ff p /f  pG
'2 2

'33

(4.44)

where p is an anisotropy parameter. When P is greater than unity, it indicates the 

horizontal stiffness is greater than the vertical one. In contrast, when p is smaller than 

unity, the vertical stiffness is greater than the horizontal one. It should be noted that there 

are many other forms to express the elastic anisotropy (Graham & Houlsby, 1983). The 

expression in equation (4.44) is used for the sake of clearly demonstrating the effects o f 

elastic anisotropy on the solution existence.

Consider Rowe’s flow rule under triaxial compression conditions. Substituting the 

anisotropic elastic stiffness matrix, Rowe’s triaxial compression flow rule into the 

expression o f B in equation (4.12) and ignoring the plastic modulus, one can obtain.
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? K
^  (4.45a)

d

B* = a ' ( ~ f +  b ' ( - )  + c (4.45b)
P P

a' = & 2P + u r c  + 2 ;  + -  v n  -  C A  (4.45c)
3 j

6 ' = r 4 p - 2 C - p C - i ;  + (p C  + 2 p - 4 C  + U% (4.45d)

c ' = ^ r p + 2 % 2 c + i ; j c + 3 r c - i x i - p ;  (4 .4 5 e)

where AT, J  , x , C are the same as those for the isotropic elasticity in equation (4.32). 

When p is unity, a , b' and c become a , b and c in equation (4.32). Along the same 

line as for the isotropic elasticity, the critical Poisson’s ratio and stress ratio for the 

anisotropic elasticity can be determined as a function o f P as well as the friction angle, 

which are illustrated in Figure 4.7. It can be seen that when P is larger than unity, which 

indicates stronger stiffriess in the horizontal direction than in the vertical one, its critical 

Poisson’s ratio and stress ratio are smaller than those with isotropic elasticity. In contrast, 

smaller P leads to larger critical Poisson’s ratio and stress ratio. Recall P is equivalent to

F 33 /F „  for the plastic flow. While stronger stiffness in the horizontal direction reduces

the critical Poisson’s ratio through plastic flow rule during triaxial compression, it further 

reduces the critical Poisson’s ratio through anisotropic elasticity.

4.4 Conclusions and Discussions

The solution existence is discussed for granular material models with Drucker- 

Prager’s yield surfaces. The emphasis is placed on the effects of various flow rules and
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elastic stress-strain relationships. It is found there exists a critical Poisson’s ratio during 

strain controlled loading. When the Poisson’s ratio o f a material is above the critical 

Poisson’s ratio, the constitutive model is susceptible to solution nonexistence. For the 

original Rowe’s and Roscoe’s flow rules, the critical Poisson’s ratio is higher than the 

normal Poisson’s ratios for granular materials, and the material doesn’t have solution 

nonexistence problem. On the other hand, for the modified Rowe’s and Roscoe’s flow 

rules, the eritical Poisson’s ratio is lower than that for the original Rowe’s and Roscoe’s 

when the void ratio and eonflning pressure are relatively high and fabrie anisotropy is 

considered. In addition, when the anisotropic elasticity is used, the fabric anisotropy may 

further reduce the critical Poisson’s ratio. Therefore, special attention should be paid to 

the selection of Poisson’s ratio under these conditions, to ensure the solution existence.

In complicated load deformation boundary value problems within the fi-amework 

of the finite element method, the void ratio, confining pressures and fabric o f granular 

materials may be subject to dramatic changes. Medium dense and dense materials can 

evolve to loose ones during loading. Therefore, to ensure the solution existence under any 

condition, the material Poisson’s ratio should be selected below the critical Poisson’s 

ratio under the worst possible condition. For example, for Nevada sand represented with 

the modified Roscoe’s flow rule without consideration o f fabric anisotropy, the Poisson’s 

ratio should be chosen below 0.3, which corresponds to its maximum void ratio. If the 

effects o f fabric anisotropy on the flow rule and elastic relationship are considered, its 

Poisson’s ratio should be further reduced.
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Table 4.1; Modified Rowe’s Flow Rule Parameters for Sacramento River Sand and 

Toyoura Sand (After Guo, 2000)

Sand Type ĉrO ^c(M pa) <t>„ a
Sacramento River Sand 1.03 22.139 0.7075 34 1.2828

Toyoura Sand 0.933 15.54 0.8046 31 1.3

Table 4.2: The Critical Poisson’s Ratios and Stress Ratios for Sacramento River Sand 

Under Various Conditions with Modified Rowe’s Flow Rule are After Guo, 2000)

0̂ 0.61 0.87
Po(Mpa) 0.1 0.3 1.05 2 0.1 0.2 0.45 1.27 2

([)/ 17.1 17.7 19.4 21.2 27.6 28.1 29.2 32.3 34.7

0.485 0.484 0.481 0.477 0.460 0.459 0.455 0.449 0.436

0.333 0.345 0.383 0.424 0.578 0.585 0.618 0.673 0.765

Table 4.3: The Critical Poisson’s Ratios and Stress Ratios for Toyoura Sand Under 

Various Conditions with Modified Rowe’s Flow Rule {e^, are After Guo, 2000)

Po(Mpa) 0.1 0.5

0̂ 0.831 0.917 0.996 0.81 0.886 0.96

4"/ 26.9 31.0 35.0 27.7 31.5 35.5

0.462 0.450 0.435 0.460 0.448 0.433
0.560 0.665 0.773 0.580 0.678 0.787
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Table 4.4: M odified R o w e’s F low  R ule Parameters for Ottawa Sand (A fter Guo, 2000)

ĉrO ^cr(Mpa) a X a

0.75 11.23 0.6467 33 1.926 0.004 0.004

Table 4.5: The Critical Poisson’s Ratios and Stress Ratios for Ottawa Sand Under 

Various Conditions with Modified Rowe’s Flow Rule ( gg, F33 / F,, are After Guo, 2000)

(^0 0.65 0.735
0.75 1 . 0 1.33 1.75 0.75 0 . 8 6 1 . 0 1.16 1.33 1.53

<|)/ 20.9 28.5 39.3 56.5 26.9 31.3 37.2 44.5 53.4 67.5

0.477 0.458 0.418 0.321 0.462 0.449 0.427 0.393 0.342 0.236
0.417 0.60 0.896 1.467 0.560 0.673 0.835 1.055 1.354 1.904

Table 4.6: Modified Roscoe’s Flow Rule Parameters for Nevada Sand and Toyoura Sand

Sand Type M X ;?,^(kPa) k A

Nevada Sand 1.30
0 ( p  < 160kPa) 

0 .04(p>160kP a) 0.78 160 1 1 0 . 8

Toyoura Sand 1.27 0.019 0.934 0.7 6 0.7
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Table 4.7: The Critical Poisson's Ratio and Stress Ratio for Nevada Sand Under Various 

Conditions with Modified Roscoe’s Flow Rule

0̂ 0.661 0.737 0.887 (maximum Cg )

Ro(kPa) 40-160 40-160 0-160

M* 0 0.740 2.215
0.5 0.477 0.320

0 0.414 1.238

Table 4.8: The Critical Poisson’s Ratio and Stress Ratio for Toyoura Sand Under Various 

Conditions with Modified Roscoe’s Flow Rule

0̂ 0.831 0.996 0.810 0.960 0.735 0.833

;?o(kPa) 100 100 500 500 3000 3000

M* 0.641 1.469 0.734 1.487 1.095 1.587

^cr 0.483 0.415 0.478 0.413 0.452 0.402

0.383 0.878 0.439 0.889 0.654 0.948
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Figure 4.1 ; B* -  q/p and the conditions for solution existence
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Figure 4.2: y-x(v) and the conditions for solution existence
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Chapter 5

Modeling the Stress-Strain Behavior of Unsaturated Soils 

Using the Middle Surface Concept

5.1 Introduction

The elastoplastic constitutive models for unsaturated soils are usually developed 

based on the models for saturated soils and by incorporating the effects o f matric suction,

5 (pore air pressure minus pore water pressure) (Bishop & Blight, 1963; Gens & Potts, 

1982; Alonso et ah, 1990; Josa et ah, 1992; Fredlund & Rahardjo, 1993; Wheeler & 

Sivakumar, 1995). O f particular interest is the model proposed by Alonso et ah (1990). 

This model was established in mean net pressure { p ') ~  deviatoric stress { q ) -  matrie 

suction ( s ) space. The mean net pressure was defined as the total mean pressure { p )  

minus the pore air pressure. In p ' -  q space, the Modified Cam Clay model was used.

In -  .S' space, the load-collapse (LC) curve was introduced. The LC curve describes the 

variation of the plastic volumetric strain with the change of mean net pressure and suction. 

In addition, the critical state line was made to depend on matric suction. This model can 

predict many response characteristics o f unsaturated soils, such as the collapse due to 

wetting, and increase o f shear strength and modulus with suction. In recent years, most of 

the elastoplastic constitutive models for unsaturated soils are developed within the 

framework proposed by Alonso et ah (1990).

However, the Modified Cam Clay model is not suitable for many soils. Saturated 

sands and silts are good examples o f soils that won’t fit into a framework based on the
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Modified Cam Clay model. First, these soils don’t have a unique normal consolidation 

line. Instead, the slopes o f their normal consolidation lines vary with their relative 

densities. Second, the yield surface for dense sands is approximately linear in 

p ' - q  space, whereas it is an ellipse for clays. Third, their hardening parameters can be 

best represented by the plastic deviatoric strain instead of the plastic volumetric strain. 

Fourth, the large dilation o f dense sands cannot be predicted appropriately by using the 

Modified Cam Clay model. Therefore, it is necessary to develop the models for 

unsaturated sands or silts based on frameworks other than the Cam Clay type of models.

The objective o f this chapter is to develop a constitutive model for unsaturated 

sands in p ' - q - s  space based on a typical saturated sand model by using the Middle 

Surface Concept (MSC) to incorporate the effects o f matric suction. Three pseudo yield 

surfaces are used in the MSC unsaturated sand model presented here. The first pseudo 

yield surface involves a typical saturated sand model with a linear yield surface and 

plastic deviatoric strain hardening in p ' - q  space. The normal consolidation line and the 

corresponding LC curve are not used in this model. The other two pseudo yield surfaces 

are used to incorporate the effects o f suction in s - q  space. The s - q  space is selected 

to represent the effects o f suction, instead o f p ' -  s space, in order to avoid the 

difficulties in using the plastic volumetric strain hardening and a normal consolidation 

line for sands. The true response is developed by combining the pseudo responses 

produced by these three pseudo yield surfaces. In this chapter, the model is limited to 

triaxial monotonie loading conditions and the elastic response is not considered for 

simplicity. The model is shown to be capable of representing many characteristics o f
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unsaturated sands and silts. The reference to this model can also be made to Yang and 

Muraleetharan (2003).

It should be pointed out here that the choice o f stress measures to represent the 

behavior o f unsaturated soils is still undergoing considerable research. Furthermore, a 

theoretical framework to rigorously include the soil-water characteristic curve (SWCC) 

into the elastoplastic behavior is needed. For example, the concept by Muraleetharan and 

Wei (2003) provided insight into appropriate stress measures and a rigorous framework 

to incorporate the SWCC. The model presented in this paper is developed using 

p ', q, and s as stress measures and doesn’t explicitly consider the water content. 

However, the concepts presented by Muraleetharan and Wei (2003) can be easily 

incorporated with the MSC concepts to develop an appropriate model for unsaturated 

sands and silts.

5.2 Model Formulations

5.2.1 The Pseudo Yield Surface in p ’ ~ q  Space

This pseudo yield surface is for saturated sands. While the comprehensive 

formulations can be found in Chapter 1 and 2, a simplified saturated sand model is used 

here. This model is developed within the framework of the critical state soil mechanics 

and incorporates the concept o f the state parameter (Been and Jefferies, 1985). The 

subscript “ 1” is used for the quantities in this space. The pseudo yield surface is given as: 

f \  — 9] ^P  ~ ^  (5.1)

where is the pseudo deviatoric stress, and a , denotes the pseudo hardening parameter, 

which is defined as:
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a , = M , - ^  (5.2)
a, + y f

where yf denotes the pseudo plastic deviatoric strain. M, denotes the critical stress ratio 

for saturated conditions and a, is a hardening model parameter. The evolution of the 

pseudo plastic strain is defined as:

4 f = A  (5.3)

= A A  (5.4)

D, = (5.5)

where T, denotes the pseudo loading index. In equation (5.3), the flow direction in the 

deviatoric part is set to unity, denotes the pseudo volumetric plastic strain, and 

£)] denotes the pseudo dilatancy ratio. Aj and /c, are model parameters for volume 

change. Equation (5.5) shows thatZ), depends on the pseudo state parameter \|/,, which is 

defined as:

Yi = e , (5.6a)

^  Z'' /  )  (5.6b)

where e, denotes the pseudo void ratio, and denotes the pseudo void ratio at the

critical state under the current mean net pressure, and A. are model parameters

defining the critical state under saturated conditions. According to the above defined flow 

rule, when the pseudo stress ratio /  p ' is above the phase transformation line

represented by M, + , the sand experiences volumetric dilation. In contrast, when

q̂  /  p ' is below the phase transformation line, the sand experiences volumetric
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contraction. Relatively loose sands are characterized with higher phase transformation 

line, and relatively dense sands have a lower phase transformation line. In addition, the 

flow rule defined in equation (5.3)-(5.6) guarantees that the pseudo void ratio reaches the 

critical state for saturated conditions together with the pseudo stress ratio at the end of 

loading.

5.2.2 The Pseudo Yield Surfaces in 5 -  ^ Space

Similar to the pseudo yield surface in p  - q  space, the pseudo yield surface in 

s - q  space is also developed within the framework o f the critical state soil mechanics 

and the state parameter concept. The subscript “s” is used for the quantities in this space. 

The shape of the pseudo yield surfaces in 5  -  ^ space is also linear, and the pseudo 

plastic deviatoric strain is the hardening parameter. Because the shear strength due to 

suction is bilinear as shown in Figure 5.1, two pseudo yield surfaces are used in this 

space. The use o f two pseudo yield surfaces also facilitates the representation o f the peak 

of the deviatoric stress followed by strain softening during shearing when suction is 

relatively large. It is proposed that these two pseudo yield surfaces share the same pseudo 

plastic deviatoric strain and suction. Their yield surfaces and hardening rules are given as:

( '1  = 1,2; (5.7)

a .  = M., (5.8)

where and â ,. denote the deviatoric stresses and hardening parameters for the two 

pseudo yield surfaces, respectively, yf denotes the pseudo plastic deviatoric strain, and

176



denotes the hardening model parameter. denotes the critical stress ratios for the 

two sections, respectively, which are shown in Figure 5.1.

Based on Figure 5.1, the shear strength due to suction can be expressed as:

when s < (5.9a)

q{ = c{  + M j2 ^ when s>  Sq (5.9b)

where denotes the air entry value. Usually, is equal to Af, for the saturated 

condition. The deviatoric stress q  ̂is developed based on q̂  ̂and q^j in terms of y f , 

defined below:

whens<$Q  (5.10a)

g , =  e i? )(-6 ,y r  + (1 -  9 2̂ +  c / ;  w A e / z ( 5 . 1 0 b )

where is a model parameter. In equation (5.10b), when s>  andyf is smaller, q^ is

close to q^y. On the other hand, when yf becomes-larger, q^ starts to approach q^^ + c { .

Because q̂  ̂ is larger than q^  ̂ + , the strain softening due to suction can be represented

this way.

The definitions o f the flow rules for these two pseudo yield surfaces are similar to 

that for the first pseudo yield surface and are given below:

(5.11)

( '  =  1,2 ;  (5.12)

-  a ,,  ;  (5.13)

where denotes the pseudo loading index. eU and D^. denote the plastic volumetric 

strain and dilatancy ratios for these two pseudo yield surfaces. and are the model
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parameters for volume change. In equation (5.13), it can be seen that, similar to the first 

pseudo yield surface, D^. also depend on the pseudo state parameter \|/ ,̂., which is defined

as:

V =  l  2 ;  (5.14a)

(5.14b)

where ê . denotes the pseudo void ratios, and denotes the pseudo critical state void 

ratio, is a constant equal to is usually larger than in p  - q  space,

which leads to smaller than v|/,. Correspondingly, the increase o f volumetric dilation 

with suction under shearing with constant suction can be represented this way. is

obtained by combining and terms of y f , given as:

+ (l-e:GPr-c,yr (515)

where is a model parameter. Similar to , during the early stage o f loading when yf 

is relatively small, E^ is closer to E^, . With the increase of yj", starts to approach 

E^ 2  • Generally, the volumetric contraction represented by E^, is larger than that o f E^^

during the early stages o f loading. Therefore, during shearing, E^ first shows volumetric 

contraction followed by dilation.

5.2.3 The Development of the True Response
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The true response is developed by using these pseudo responses through the links 

between them. It is worth noting that the true yield surface exists but can’t be defined 

explicitly. It is proposed that all the yield surfaces share the same initial conditions 

consisting o f the same initial stress and void ratio. During the course o f loading, all the 

yield surfaces experience the plastic deformation and the relationships o f elastoplastic 

quantities betv/een various yield surfaces are defined as:

Y^=Yf=Yr (5.16)

q ^ q i+ q s  (5.17)

(5.18a)

^ = q i ^ ( q (  + q { )  (5 .1 8b)

Equation (5.16) indicates that all the yield surfaces share the same plastic deviatoric 

strain. Equation (5.17) indicates that the true deviatoric stress q is carried by both g, and 

q ^ , respectively. From the common plastic deviatoric strain and the definitions o f q̂  and 

q^ in equations (5.1) and (5.7), it can be seen that larger suction leads to larger q^. On 

the other hand, larger p ' leads to larger . In equation (5.18), q (  and q f  denote the 

shear strengths in p ' - q  and s — q spaces, respectively, q f  is defined in equation (5.9), 

and q (  is equal to M ^ p ' . Because q (  and q{ depend on p '  and s , respectively, 

equation (5.18) indicates that larger suction leads to larger contribution o f to the true 

volume change . On the other hand, larger p ' leads to larger contribution of 8 ,̂ to 8^ . 

Rewriting equation (5.18), one can obtain: 8^ = + P("8^ As described

previously, the dilation represented by is usually larger than that o f ef, under
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constant suction shearing. As a result, unsaturated sands have a larger dilation tendency 

under constant suction shearing than that for saturated sands. It is worth noting that 

equation (5.18) can lead to the critical state void ratio for the true response, which is 

given as:

= k . / l  +P(^re/s ~ r̂e/1 JI~ ~ H  P '^  Pre/J (5-19)

Equation (5.19) is consistent with test results regarding the eritical state void ratio for 

unsaturated sands. Beeause is usually larger than and p increases with suction,

a larger suction leads to a larger reference critieal state void ratio and smaller slope o f the 

critical state line.

The above formulations can also simulate the wetting process. Consider the 

reduction o f the suction at a constant stress ratio, where p '  and g  are held constant. The

decrease o f suetion leads to the decrease o f g ^  and the increase of g ,  while g  is constant. 

For relatively loose sands, where g, /  p '  is more likely to be below its phase 

transformation line, the increase o f g, may lead to volumetric contraction in p  -  g  space. 

Although the volumetric expansion may happen in 5  -  g space at the same time, the 

decrease o f p with the deerease o f the suetion reduces the role o f in ef expressed in 

equation (5.18). Therefore, the collapse phenomenon can be represented this way. On the 

other hand, for relatively dense sands, where g ^  /  p '  is more likely to be above its phase 

transformation line, the increase o f g, resulted from the reduction o f the suction may lead 

to volumetric expansion.

5.3 Model Calibration and Prediction
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The model calibration can be divided into p ' - q  space to capture the saturated 

behavior and s — q space to capture the effects o f suction, respectively. The calibration of 

the model parameters a , , A^, A:,, M ,, X, and in p ' - q  space can be performed 

using saturated soil testing and the details of this calibration procedure can be found in 

Chapter 1. In the s - q  space, and can be obtained by examining the

influence of the suction on the critical state. The model parameter can be calibrated by 

examining the response under constant suction shearing during the early stages of loading. 

The parameter mainly controls the peak o f the deviatoric stress and strain softening

and can be obtained by examining the later stages o f loading. The parameters and 

control the volumetric change during the early stages o f loading. The parameter 

mainly controls the evolution of volumetric change during the later stages o f loading. A^, 

and can be obtained by curve fitting process.

The model developed is used to simulate the response of an unsaturated 

compacted Aeolian silt under conventional triaxial compression loading with constant 

suction (Cui and Delage, 1996). The model parameters are listed in Table 5.1, and the 

initial void ratio for the tested samples is 0.62. Due to lack o f sufficient test results for the 

critical void ratio, X is set to zero. This is a reasonable assumption in view of the fact that 

X is relatively small under small confining pressures. The test results and predictions 

under a constant cell pressure o f 50 kPa for various values o f suctions are shown in 

Figure 5.2. Because p ' undergoes dramatic change during the course o f shearing, p is 

computed by using the value of p ' at the critical state to better represent the volumetric 

change. The test results and predictions agree reasonably well. Larger suction values lead
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to larger shear strength and stiffiiess. The deviatoric stress reaching a peak value followed 

by strain softening to the critical state can be clearly seen for 800 kPa suction. As shown 

in Figure 5.2, larger suetion values also lead to larger volumetric expansion in the later 

stages o f shearing.

Although no test results are available, the model is used to simulate the wetting 

process. A sample with a suction value o f 400 kPa and a cell pressure 50 kPa is sheared 

to a stress ratio of 0.94. Then while keeping q and p ' constant the suction is reduced 

from 400 kPa to zero. The same model parameters as given in Table 5.1 are used. 

Volumetric contraction and the evolutions o f g, and due to the suction reduction are 

shown in Figure 5.3. Although the total deviatoric stress q remains constant, the decrease 

o f suction leads to the decrease o f q^ and the increase of g , . Because q̂  /  p ’ is lower 

than the phase transformation line, the loading in p ' - q  space leads to the volumetric 

contraction in p ' - q  space. On the other hand, the decrease of q  ̂ and s causes the 

volumetric expansion in s - q  . Meanwhile, p decreases with the decreasing suction, 

which decreases the role o f and increases the role o f G  ̂ in the true volumetric change 

Gy . Therefore, the total effect is volumetric contraction as shown in Figure 5.3. It is

worth noting that wetting may cause volumetric dilation for relatively dense silt under 

exactly same loading condition as described above. If a sample with a lower void ratio of 

0.43 is considered under the same loading condition as above, a decrease in suction will 

cause volumetric dilation as shown in Figure 5.4. This is because the stress ratio q̂  /  p ' 

is higher than the phase transformation line for a dense silt.
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5.4 Conclusions

A constitutive model for unsaturated sands is proposed within the framework of 

the Middle Surface Concept (MSC). The multiple response characteristics o f unsaturated 

sands are represented by using a yield surface in the p ' - q  space and two yield surfaces 

in the s - q  space. The normal consolidation line and volumetric strain hardening for 

sands are not used. Instead a linear yield surface and plastic deviatoric strain hardening 

that are more suitable for predicting the response o f sands are used. The model is shown 

to predict many response characteristics o f unsaturated sands such as the increase of 

shear strength and stiffness with the suction. The model predictions are validated in a 

limited manner using triaxial test results for Aeolian silt. The model also predicts increase 

o f volumetric dilation with the increase in suction under a constant suction shearing. The 

typical response during wetting process is also successfully predicted. O f particular 

interest is that this model can predict the dilation o f dense sands during the course of 

wetting under certain loading conditions.
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Table 5.1. The Model Parameters for Aeolian Silt

p ' - q  space 5 - q space

fl, A K M, 1 r̂efl Pref A bs K z ' r̂efs

0.001 1.0 15 1.0 0 0.5076 100 0.015 1.0 10 40 50 1.0 0.1 0.6959

c

S,

Figure 5.1. Shear Strength Due to Suction
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Chapter 6

Application of the MSC Based Sand Model in Dynamic Boundary Value Problems 

6.1 Introduction

The objective o f this chapter is to examine the performance o f the MSC sand 

model in boundary value problems to extend its application to practical engineering 

problems. The numerical integration of the MSC sand model and the development of 

consistent tangent stiffness matrix in a single element, as described in Chapter 3, is 

implemented into a fully coupled finite element program DYSAC2 (Muraleetharan et al., 

1988, 1997). A centrifuge model test from the VELACS project (Arulanandan & Scott, 

1993) is used to investigate the predictions made by DYSAC2 together with the MSC 

sand model.

6.2 The Fully Coupled Finite Element Method (FEM)

The fully coupled analysis procedure used in the predictions is based on the finite 

element solution o f the dynamic governing equations for a saturated porous media (soil 

skeleton and pore fluid). The details o f this formulation and numerical implementation 

are given in Muraleetharan et al. (1994). The two-dimensional numerical implementation 

o f the formulation resulted in the computer code DYSAC2 (Muraleetharan et al. 1988, 

1997). Four-noded isoparametric elements with reduced integration for the fluid bulk 

modulus terms are used in DYSAC2. Nodal variables per node are two soil skeleton and 

tow fluid displacements. A three-parameter time integration scheme called the Hilber-
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Hughes-Taylor a-m ethod (Hilber at al. 1977) is used, together with a predictor/multi­

corrector algorithm, to integrate the spatially discrete finite element equations. This time 

integration scheme provides quadratic accuracy and desirable numerical damping 

characteristic to damp the high frequency spurious modes. The MSC model time 

integration and the consistent tangent stiffness development, as described in Chapter 3, 

are performed within a subroutine.

6.3 Prediction for a Centrifuge Model Test

6.3.1 Model Test Specification

Model No. 3 (Scott et al., 1993) in a series o f centrifuge model tests conducted for 

the VELACS project is used to examine the performance of DYSAC2 together with the 

MSC sand model. VELACS is a project about Verification of Liquefaction Analysis by 

Centrifuge Studies (Arulanandan & Scott, 1993). In Model #3, a water-saturated layer o f 

sand deposited as shown in Figure 6.1 in a laminar box was subjected to base motion.

The two halves o f the box contained loose and dense sand with relative densities o f 40% 

and 70%, respectively. The line o f separation was vertical through the center o f the box. 

The depth o f soil was approximately equal to 22 cm (model) or 11 in (prototype). The 

specimen container was a rectangular box constructed of aluminum laminae designed to 

move freely on top o f each other. The laminar box provided a behavior closer to the one­

dimensional shear deformation for the soil. A rubber bag molded to the inside dimensions 

o f the laminar box was used to contain the soil and water in the box. The sand was placed 

in the rubber bag by pluviating dry sand into the model box.
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After the specimen was prepared, the centrifuge was started and slowly brought 

up to 50g and run for about 10 minutes. Afterwards, an earthquake like base motion, as 

shown in Figure 6.2, was applied to the box base. The longitudinal component of base 

motion (x-direction) was the major direction o f shaking. The peak vertical acceleration 

(y-direction) was less than 25% of the peak longitudinal acceleration and the transverse 

direction o f shaking was negligible.

A total of 23 transducers were used in the test. Input base accelerations and 

acceleration-time histories along the height o f the soil column were measured with seven 

accelerometers. Pore pressures at different locations inside the soil mass were measured 

with ten pore pressure transducers. Six displacement LVDT transducers along the height 

and at the top of the soil columns were used to measure lateral deformations and 

settlements. Figure 6.1 shows the locations of transducers and accelerometers installed in 

the box.

The experiment was performed mainly to investigate effects o f major differences 

in densities o f neighboring sand columns on their dynamic response, particularly, their 

liquefaction susceptibility and post-liquefaction behavior. Soil densification is widely 

used in practice as a mitigation measure to reduce the negative influences o f liquefaction 

on stability and settlement o f structures supported on potentially liqueftable soils. The 

results o f this experiment can be used to study how deep and how far the densification 

should be made to minimize the adverse effects o f liquefaction.
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6.3,2 Predictions and Test Results

To model the test, the box is divided into 162 elements as shown in Figure 6.3. 

The base o f the box is fixed to the ground and no vertical water flow is allowed along the 

base. The nodes on either side o f the box are tied up with their adjacent nodes. The tied 

up nodes have the same movements in order to model the one-dimensional shearing 

deformation of the soil. Along both sides of the box no horizontal water flow is allowed.

The model parameters for Nevada sand used in the predictions are calibrated in 

Chapter 2. The same set o f  model parameters are used for the sands with both 40% and 

70% relative densities in this problem. From the prediction o f triaxial undrained cyclic 

loading test and simple shear undrained cyclic loading tests in Chapter 2, it can be seen 

that softening takes place during the later stages o f loading when the effective confining 

pressure approaches zero. It is found that the softening results from relatively large value 

of model parameters h, and h ^ . The substantial softening may cause numerical 

problems in boundary value problems. To avoid this problem, the values o f h, and h^ 

should be reduced compared with those in Chapter 2. The reduction o f h, and h^ values 

doesn’t influence the overall predictions o f boundary value problems because the 

softening usually takes place when the effective confining pressure is very small, 

however, it provides numerical stability. For example, the softening takes place at 

effective confining pressure o f 17 kPa when the initial confining pressure is 80 kPa in the 

triaxial undrained cyclic loading prediction shown in Figure 2.4. In addition, the effective 

confining pressure below which softening takes place usually decreases with decreasing 

initial confining pressure.

193



In boundary value problems for sands, an important issue is the representation of 

liquefaction or eyelic mobility. Representation of liquefaction is a complicated problem 

and there are many techniques available. It is beyond the scope o f this paper to 

thoroughly investigate this problem. Instead, a simple procedure is used to provide 

numerical stability for the liquefied soil. In this procedure, a cut-off effective confining 

pressure o f 1 kPa is used. When the effective confining pressure reduces below the cut­

off value, the liquefied element is shifted to be purely elastic from elastoplastic element. 

In this case, the elastic shear moduli are very small as they are determined based on the 

small cut-off confining pressure. The elastoplastic behavior is resumed from the purely 

elastic behavior when the effective confining pressure in the element increases above the 

cut-off value.

The measured results and DYSAC2 predictions for the excess pore water 

pressures, accelerations, and displacements at various locations are shown in Figures 6.4-

6.13. All the results and predictions are presented in the prototype scale. Figures 6.4-6.6 

show the excess pore water pressure time histories at the bottom, middle and top levels in 

the box. The overall trends o f water pressure development and dissipation are similar 

between the measured results and predictions. The development o f water pressure at the 

top level is faster than at other levels and makes sands liquefy quickly. In addition, 

although the development o f water pressure is slower in dense sands than that in loose 

sands in a single element, the difference o f water pressure development is slight between 

dense and loose sands in the laminar box due to the movement o f water from loose sand 

to dense sand. These phenomena are captured well in the predictions. Figures 6.7-6.9 

show the water pressure contours at t = 5, 7.5 and 10 seconds for the predictions, which
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correspond to the start o f shaking, the middle o f shaking and the start o f liquefaetion 

(excess pore water pressure = initial effective vertical stress), respectively. Figure 6.7 

shows that at the start o f shaking smaller water pressure is developed on the dense side 

than that on the loose side. Particularly on the far end of the dense side, the pore water 

pressure is negative. This is consistent with the laboratory test results on dense and loose 

sands. Figure 6.7 also shows that the pore water pressure is relatively small compared 

with those at other times. Figure 6.8 shows the pore water pressure contour in the middle 

of shaking at 7.5 seconds. It can be seen that pore water pressure at this time is much 

larger than those at 5 seconds. Below the middle level o f the box, the difference o f water 

pressure values between dense and loose sides is distinct. On the loose side below the 

middle level, a large area o f soil mass has the pore water pressure around 55 kPa. On the 

dense side below the middle level, most areas have the pore water pressure around 40 kPa. 

The water pressure difference between dense and loose sides will cause pore water to 

flow from loose side to dense side. Figure 6.9 shows the water pressure contours at 10 

seconds right before the liquefaction. It is interesting that the water pressure contour is 

distinctly divided into multiple layers characterized with various pore water pressures. 

Similar to the water pressure contour at 7.5 seconds, the pore water pressure is higher on 

loose side than on dense side. It is worth noting that there are some discrepancies 

between the measured and predicted pore water pressures in Figures 6.4-6.6. The 

predicted water pressure is larger than the measured values. The liquefaetion is measured 

only at the top level o f the box. However, the whole box o f sand is predicted to liquefy. 

This discrepancy may be caused by the determination o f coefficient o f permeability for 

Nevada sand. Experimental evidence shows that the coefficient of permeability for sands
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decreases with decreasing effective confining pressure. However, a constant coefficient, 

5.7 X10'^ m/s was used throughout the prediction. This value may correspond to 

relatively large confining pressures. Another possible reason for this discrepancy may 

come from the movement of water pressure transducers during shaking. Another 

discrepancy between measured and predicted pore water pressures is that larger 

fluctuation o f water pressure is predicted after the sand liquefies than that in the measured 

results. This may be caused by the assumption of elastic material when sand reaches 

liquefaetion. The frequent transition between elastic behavior and elastoplastic behavior 

around liquefaction causes larger fluctuations in water pressure. In addition, pore 

pressure transducers used may not have been able to capture the high frequency response.

Figures 6.10 and 6.11 show the measured and predicted acceleration time 

histories for loose and dense sands at the top level o f the box. The predicted accelerations 

are higher than the measured ones. The exact reasons are not clear. There are several 

possible explanations. First, the larger predicted accelerations may be caused from the 

frequent transition between elastoplastic and purely elastic materials. Second, the 

accelerometers may have undergone substantial movement or rotations during strong 

shaking.

Figure 6.12 shows the measured and predicted lateral displacements at various 

levels of the box. Figure 6.13 shows the measured and predicted settlements at the top of 

the box. The predicted and measured lateral displacements agree well. Positive lateral 

displacements toward the side o f dense sand take place. The displacement increases with 

the increasing height. However, as shown in Figure 6.13, the measured settlements are 

larger and stabilize earlier than the predicted ones. The smaller predicted settlements may
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be attributed to the plain strain assumption, which gives more restriction to the settlement 

o f sands than that in the laminar box. The longer predicted stabilization time may be due 

to the continuous elastic compression o f sands at the top level during post-liquefaction. In 

the model, the elastic modulus at the top level, where the confining pressure is relatively 

small, may be smaller than the real one. While the water drains at the top level, the 

increase o f effective confining pressure brings large elastic compression o f sands at the 

top level in the prediction. Careful investigation o f elastic modulus o f Nevada sand at 

small confining pressures is needed.

6.4 Conclusions

The MSC saturated sand model is implemented into a fully coupled FEM program 

DYSAC2 to analyze boundary value problems. In this model, different characteristics of 

sand behavior are represented by different pseudo yield surfaces. This makes it possible 

to use one set o f model parameters to represent a sand with different relative densities. 

The applicability o f the model to solve boundary value problems is verified by predicting 

a centrifuge model test. A reasonable comparison is achieved between test results and 

predictions.
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Figure 6 .6 : the measured and predicted p.w.p. at the top level in
the centrifuge model (test data after Scott et al., 1993)
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Figure 6.9: pore water pressure contours at t = 10 seconds
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Figure 6.10: the measured and predicted acc. at the top level for loose sand in
the centrifuge model (test data after Scott et al., 1993)
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Figure 6.12(a): the measured and predicted lateral displacement in
the centrifuge model (test data after Scott et al., 1993)
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Figure 6.13: the measured and predicted settlement in the centrifuge model
(test data after Scott et al., 1993)
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APPENDIX I: Conversion of the Model Parameters From Triaxial Space to General 

Stress Space

The subscript “t” and “g” are used to identify the parameters in the triaxial space 

and the general stress space, respectively. The model formulations and parameters in 

triaxial space can be found in Yang and Muraleetharan (2003). The elasticity parameters 

and the critical state void ratio parameters are identical in these two spaces.

In the triaxial space, the formulations and quantities are listed as follows: 

4

n -  {2 , - 1 , - 1 , 0 , 0 , 0 }

(A l)
p  l / 3 f a ,+ 2 0 ] ^

e f = e f  + 2 e f (A3)

Y f = 2 / 3 ( E r C A 3 )

r  = ~ -  ( A 4 )

(A5)

In general stress space under triaxial compression loading, the quantities and 

formulations are as follows:

(A6)

'  = (2 ''3 '- I / ' S , - 1 / 3 , 0 ,() ,0}  ̂ (,4/7)
1 /3 (0 , + 2 O3 )
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Comparing r\ and ||r||, one can obtain,

VkT* = V:Z/^3 jkf' (/ll())

In view o f the fact that M  + is used to determine the volumetric change, one can 

obtain,

t*  == ( / I I 1)

Considering the same plastic deviatoric and volumetric strain rates are induced in the 

triaxial space and general stress space when the stress rate is given, one can obtain,

(A12)

D ^ = V 2 7 3 D ' (A13)

From the relationship in equation (A 12) and the formulations of the plastic moduli in the 

triaxial space and general stress space, one can obtain,

a ^ = 4 ï 7 l a '  (AM)

f)* = (/ll:5)

k f  =k[ (A16)

h ^ - -^ 4 2 n h [  (A17)

From the relationship in equation (A 13) and the formulations of the dilataney ratio in the 

triaxial space and general stress space, one can obtain,

/f* == Jt' (vUIS)

= Vif/lz/:; (/119)

215



APPENDIX II: the Computation of
a x

11 = , R 2 , I I 3 , R 4 , R e , II 7 , &8ST ; x  = {p, s, A ,a ,A s ^ ,  A e P , g , 2 , g j f

% Ri R , R 3 R 4 R 5

p 1 € 2 . C 3 , A ®- a A  —  
ap

- a A  —  
ap

s 0 I C 32 A ^— aA —  
as

A ^- a A  —  
as

A 0 0 0 - (1 - a)(K ;ii). -- aK:;,. - ( l - a ) D „  - a D - ( l - a ) n „  -  an

a 0 0 C 34 A ^- a A  —  
da

A ^— aA —  
aa

Ae; C,5 0 0 0 0 0

Ae** 0 C 26
0

aAn
ae"

A ^-  a A ----
aeP

I

gl2 0 0 0
uA n 

%,2

A ®- a A -----
%I2

0

§3 0 0 0
A ^ P-  a A — - n

%3

0 0

Note: l i s a  unity tensor. K* = Kp/p
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Ry R.

“ (g3«-g3n«n):

a(g ,2«-g,2n«n):
(K

pl2
pl2 ÔS 9s

n)
“ (g3«-g3n«n):

(K
9n SK p3

p3 9s 9s
n)

A -1 -1

a
g|2

^pl2n ^pl2
g3 ( l - a ) ^  + a ^

^p3n ^p3

(K
9n 5K pl2

a(g,2»-gl2n»n):
pl2 9a 9a

n) (K
9n ^K.p3

CKpu)
a(g3«-g3n«„):

p3 da da n)

Aeü

Ae"
a(g|2«-g,2n«n):n

(9K;,2/9e")
“ (g 3« -g3„«n):n -

(9K;,/9e")

gl2
: a -

a(g i2«-g i2„«n):n

pl2n pi 2

aKlu/Ggi

a (g 3 « -g 3 » « n ):n — - T - r -
(Rp3 '

-pl2'^&12

g3 0 n. n
K p3n KP3

: a

= K p,/p , = K ^/p
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The defin itions o f  C,;,C 2 , ,C 2 g,€ 3 1 , 0 ^ 2  and C'34

q ,  = K „p .f '[K op ;:°(l-aJ(A 6 , -  A en  + pL"

C 2 , = -2 aG « a .p '^ 'p ;:° (A e-A e :')  = 2 G o P :T [(l-a )P :°+ « P '° ]l

C 3 , = m - m - m ' r  : ( r - a )  = m ' (r -  a ) C 34 = - p m ‘(c -  a)

in = [(r -  a) : (r -  a)] 1/2

The differentiations o f  K*, K % 2  ,K% with respect to p, s, a, e’’, g ij , g 3‘ P ’ p I2 ’ p3

ÔK 0K:pl2 b 5Kp3 b  ̂ ^  0n
H-------------------1------------—(g,, — g, )oi I ---

ap b + a "  ap b + ^p  ap (b + ^ p y ^ ^ '"  ap

aK pl2

4d;2a(Mj -d i2 ) -  2d
ap

ap a '( M ,- d ,2 y
, an an^
h i(—  : n + --- : tt2 -  g.z» : — )

ap ap ap

aK:;,  ̂ , ^aK;,2 , ,
= ex p (-k ,v )——  -  k, -  K i2 exp(-k,vi/) 

ap ap p

+

M j = M j - 2 m
ad , 2 ajvi an

0 s b + Ç' 0 s b + Ç" 0 s (b + O  '  ' 0 s

ad,
as

2d4d,2a(Mj d,2) ^

as a '( M : - d ,2 ) '
,  ̂ a«2 an an^
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= e x p ( -k ,v )^ ^ ''"
8d

9s 9s
9M 9n

9s
12

da b + ^P da b + ^P da (b + ^P)'

9d 12 ■2d-
-pl2

(M,
9d 12

da da da
da

h,(n:
9a 2 

da
+ an

dn
da

a '( M ,- d ,2 ) '  

9n
■gi2«: 9a

•gun)

9KP3
9a

exp(-k,\|/)-
9K pl2 9d 12

da
9M 9n

.   g i 2 ( « : ^  + n)da da da

9eP
= ( K ; ,2 - K : Jp3 > (b+ Ç ')M A e '| b + 5 ' Be" b + Ç 'S e '

Ae- Ç' PK;„-I--------------------1- P3

9eP 9eP 9eP 9eP

aKp ^p 9K,,2
+

b aK P3
+  ■

agi2 b + P̂ 9g,2 b + P̂ 9g,2 (b + ^P)̂
(n : a)

^^pi2 -  (a  : n)|4d;2 (M^ -  d ,2  ) + 2d^ ]

ag 12 a (M ;-d ,2 ) '

9K% 9K
= exp(-k,\|/)

ag 12 ag 12

aKp ^  -  b(n : a)

The differentiations o fD  with respect to p, s, a, eP, g,2 , g.

9D 9D, _  9D, _  9C,
  -   L + C; + D; -----
9p 9p 9p 9p
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5D, dM  À, 0k 2 0n
= A(—  + k j -  + -  gi2« : — )

0p 0p 0p 0p

ÔD, . .0M , A, 0k2 0 a 2 0n.
- r r  = A(— + k 2 -  + V - ^ - n : - ^ - a 2  : — )
0p 0p p 0p 0p 0p

0 C 2 h 2 (a 2 - 0 ,2 ) :n  0 a 2

0p j ( a 2 -a ,2 ) :n | 0p
0n
0p

0D 0D, ^  0 D 2 _  0 C 2
'+ C ,  — ^  + D, -

0s 0S 0S 0S

0D,  ̂ 0M
= A(— + x|/

0s 0S
0kj 0n 0 D 2 _  ̂^0M , 0k2 0a.

0s 0s 0s 0s
0 n .
0s

0 C 2 h jC a j-a ,2 )  :n  0a2 0n 0n,
_ -  . r ( n : ^ ^  + a2 : - “ -g ]2 a  : — )
0s |(a 2 - a j 2 ) :n| 0s 0s 0s

0D
0eP

(—AC2 +
h.^{a^ - a i 2 ) :n

0D 0D, ^ 0 D 2 X.-:---->- + C , ------
0a 0a 0a

+ D
0 C 2

0a

0D| 0n
3,_Ag ( a :  — + n) 

0a 0a
0 D 2

0a
0a 0n,

A(n : — -  + a 2 : — )
0a 0a

0C, h . f a . - a „ )  :n   ̂ da.
-  ( n : — -  + a 2 :

0a [(a; -  a ,;)  :n| 0a
0n 0n .

g i2 « :^ -g i2 » » )da da

0g,2 |( a 2 -a ,2 ) :n |

The differentiations o f  a j ,  n with respect to p, s, a, e’’

da. dM
M

0a

0x a +  eH dx (a +  e'' 0x
(x = p, s, a)
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5a 2 M
(a + |e'’

(a + |eP|)I-
e " 0 e "

^  = ^  + ^ [ ( r - a ) : r ]
5p pm pm

5n _  I (r -  a) ® (r -  a ) 
5s pm pm^

^  - I  (r -  g) 0  (r -  a) 
5a m

The differentiations o f  model parameters Q (a,M ,and k 2 ) with respect to p,s,and a

5Q _ » 5cos(39) _ s
^  ^   ̂~ ~ W ~  ' p^

5Q _  , 5cos(39) 1 
'  5? p

5Q _ ♦ 5cos(39)
5 ^ "  '  5F

Q:
2c . ( l - c J Q .

[(l + c J - ( l - c J c o s ( 3 8 ) ?

5cos(38) 9V3S" / J -  -  S _ ,
2J^ 3S 2J
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