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Abstract: A basic methodology for analyzing large multivariate chemical data sets based 
on feature selection is proposed. Each chromatogram or spectrum is represented as a 
point in a high dimensional measurement space. A genetic algorithm for feature selection 
and classification is applied to the data to identify features that optimize the separation of 
the classes in a plot of the two or three largest principal components of the data.  A good 
principal component plot can only be generated using features whose variance or 
information is primarily about differences between classes in the data.  Hence, feature 
subsets that maximize the ratio of between-class to within-class variance are selected by 
the pattern recognition genetic algorithm. Furthermore, the structure of the data set can be 
explored, for example, new classes can be discovered by simply tuning various 
parameters of the fitness function of the pattern recognition genetic algorithm. The 
proposed method has been validated on a wide range of data.  

A two-step procedure for pattern recognition analysis of spectral data has been 
developed. First, wavelets are used to denoise and deconvolute spectral bands by 
decomposing each spectrum into wavelet coefficients, which represent the samples 
constituent frequencies. Second, the pattern recognition genetic algorithm is used to 
identify wavelet coefficients characteristic of the class. In several studies involving 
spectral library searching, this method was employed. In one study, a search pre-filter to 
detect the presence of carboxylic acids from vapor phase infrared spectra which has 
previously eluted prominent researchers has been successfully formulated and validated.  
In another study, this same approach has been used to develop a pattern recognition 
assisted infrared library searching technique to determine the model, manufacturer, and 
year of the vehicle from which a clear coat paint smear originated. The pattern 
recognition genetic algorithm has also been used to develop a potential method to 
identify molds in indoor environments using volatile organic compounds. A distinct 
profile indicative of microbial volatile organic compounds was developed from air 
sampling data that could be readily differentiated from the blank for both high mold 
count and moderate mold count exposure samples.  The utility of the pattern recognition 
genetic algorithm for discovery of biomarker candidates from genomic and proteomic 
data sets has also been shown. 
 
 

  

iii 
 



TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION ......................................................................................................1 

 
  
II. PATTERN RECOGNITION...................................................................................11 
  
 2.1 INTRODUCTION ...........................................................................................11 
 2.2 PRINCIPAL COMPONENT ANALYSIS ......................................................13 
          2.2.1. Variance Based Coordinate System ....................................................16 
          2.2.2. Information Content of Principal Components ...................................17 
          2.2.3. Soft Modeling in Latent Variables ......................................................18 
          2.2.4. Implementation of PCA ......................................................................20 
 2.3 CLUSTER ANALYSIS ...................................................................................21 
          2.3.1. Hierarchical Clustering .......................................................................24 
          2.3.2. FCV Clustering ...................................................................................26 
          2.3.3. Practical Considerations ......................................................................29 
          2.3.4. Conclusion ..........................................................................................30 
 2.4 CLASSIFICATION METHODS .....................................................................31 
          2.4.1. K-Nearest Neighbor (KNN) ................................................................32 
          2.4.2. Linear and Quadratic Discriminant Analysis ......................................33 
               2.4.3. SIMCA and Regularized Discriminant Analysis ................................35 
          2.4.4. Neural Networks .................................................................................39 
          2.4.5. Support Vector Machines ...................................................................42 
          2.4.6. Data Preprocessing..............................................................................44 
 2.5 ADAPT ............................................................................................................52 
 2.6 CASE STUDIES ..............................................................................................54 
          2.6.1. Prediction of Mold Contamination from VOCs..................................55 
               2.6.2. Analysis of Chemical Signals in Red Fire Ants ..................................63 
 
 
III. GENETIC ALGORITHMS FOR PATTERN RECOGNITION AND          

FEATURE SELECTION .......................................................................................92 
 
 3.1 GENETIC ALGORITHMS .............................................................................93 
 3.2 GENETIC ALGORITHM FOR FEATURE SELECTION AND            

PATTERN RECOGNITION .........................................................................100 
         3.2.1. Fitness Function .................................................................................103 
         3.2.2. Reproduction ......................................................................................105 

iv 
 



Chapter          Page 
          
              3.2.3. Boosting (Adjusting Internal Parameters) .........................................107 
 3.3 MODIFICATIONS TO PCKaNN .................................................................111 
         3.3.1. Hopkins Statistic for Transverse Learning ........................................113 
         3.3.2. Modified Hopkins Statistic for Transverse Learning .........................117 
         3.3.3. Comparison of PCKaNN Fitness Functions ......................................118 
              3.3.4. Canonical Variate Analysis................................................................124 
 3.3 SOFTWARE DESIGN AND IMPLEMENTATION ....................................124 

 
 
IV. WAVELETS AND GENETIC ALGORITHMS FOR SPECTRAL              

PATTERN RECOGNITION ...............................................................................131 
 
 4.1 INTRODUCTION .........................................................................................131 
 4.2 PATTERN RECOGNITION ANALYSIS OF DIFFERENTIAL           

MOBILITY SPECTRA WITH CLASSIFICATION BY                      
CHEMICAL FAMILY ..................................................................................134 

 4.3 IDENTIFICATION OF WAXY WHEAT ALLELES BY NEAR          
INFRARED REFLECTANCE SPECTROSCOPY .......................................143 

 4.4 SEARCH PRE-FILTERS FOR INFRARED LIBRARY                     
SEARCHING FOR CARBOXYLIC ACIDS ................................................156 

 4.5 PATTERN RECOGNITION ASSISTED INFRARED LIBRARY    
SEARCHING FOR PDQ DATABASE.........................................................166 

 
 
V. DISCOVERY OF BIOMARKER CANDIDATES USING THE GENETIC 

ALGORITHM FOR PATTERN RECOGNITION ANALYSIS .........................187 
 
 5.1 INTRODUCTION .........................................................................................187 
 5.2 PREDICTION OF MOLD CONTAMINATION FROM                     

MICROBIAL VOC PROFILES ....................................................................189 
 5.3 DIFFERENTIATION OF SMALL ROUND BLUE CELL                        

TUMOR .........................................................................................................201 
 5.4 DISCOVERY OF BIOMARKER CANDIDATES FOR LIVER              

CANCER FROM MALDI-TOF DATA OF TISSUE N-LINKED          
GLYCANS .....................................................................................................206 

 5.5 DISCOVERY OF BIOMARKER CANDIDATES FOR LIVER                
CANCER FROM IMS DATA OF SERUM N-GLYCANS ..........................219 

 5.6 DISCOVERY OF BIOMARKER CANDIDATES FOR                  
PANCREATIC CANCER FROM   MALDI-TOF DATA OF                     
SERUM N-GLYCANS ..................................................................................223 

 5.7 DISCOVERY OF BIOMARKER CANDIDATES FOR                 
ESOPHAGEAL CANCER FROM IMS-MS DATA OF SERUM                        
N-GLYCANS ................................................................................................236 

  

v 
 



vi 
 

Chapter          Page 
 

5.8 DISCOVERY OF BIOMARKER CANDIDATES FOR                 
ESOPHAGEAL CANCER FROM MALDI-TOF DATA OF                      
SERUM N-GLYCANS ..................................................................................242 

 
VI. CONCLUSION....................................................................................................251 
 
REFERENCES ..........................................................................................................257 
 
APPENDIX I .............................................................................................................275 
 
APPENDIX II ............................................................................................................280 



LIST OF TABLES 

 

 

Table           Page 
 

2-1. Class Membership Distribution of Bioaerosol Sampling Data ............................56 
 
2-2. Validation Set Results ..........................................................................................63 
 
3-1. Discriminant Analysis Results for 80%/20% Cross Validation Study ...............122 
 
3-2. Discriminant Analysis Results for 20%/80% Cross Validation Study ...............123 
 
4-1. Composition of the DMS spectral data set .........................................................137 
 
4-2. Wheat Data Set ...................................................................................................147 
 
4-3. PLS Results.........................................................................................................152 
 
4-4. Prediction Set ......................................................................................................155 
 
4-5. Summary of Object Validation Results ..............................................................156 
 
4-6. Description of the Training Set ..........................................................................160 
 
4-7. Description of the Validation Set .......................................................................160 
 
4-8. Clear Coat Paint Data Set ...................................................................................170 
 
4-9. Automobile Parts Used in the Data Set ..............................................................171 
 
4-10. Training Set ......................................................................................................171 
 
4-11. Validation Set ...................................................................................................171 
 
5-1. MVOC Compounds ............................................................................................191 
 

vii 
 



Table           Page 
 
5-2.  Bioaerosol Data .................................................................................................193 
 
5-3.  K-NN Results for DG18 ....................................................................................194 
 
5-4.  DG18 Cross Validation Set Results...................................................................195 
 
5-5.  K-NN Results for MEA .....................................................................................197 
 
5-6.  MEA Cross Validation Set Results ...................................................................197 
 
5-7.  DG18-MEA Cross Validation Set Results ........................................................200 
 
5-8. Training Set for SRBCT .....................................................................................202 
 
5-9. Prediction Set for SRBCT ..................................................................................202 
 
5-10. Training Set and Prediction Set ........................................................................208 
 
5-11. Identity of the 11 Features Identified by the GA ..............................................211 
 
5-12. Identity of the 6 Features identified by the GA ................................................215 
 
5-13. Training Set and Prediction Set ........................................................................220 
 
5-14. Training Set and Prediction Set ........................................................................223 
 
5-15. Composition of the IMS-MS Data Set .............................................................239 
 
5-16. Composition of the MALDI-TOF Data Set ......................................................243 
 
 

 
 
 

 
 
 
 

 

 

viii 
 



LIST OF FIGURES 

 

Figure           Page 
 
1.1. Data set consisting of two classes: circles = acceptable, and x = 

unacceptable. Each sample is characterized by two measurements: x1 and 
x2. Univariate criteria would rank x1 and x2 as uninformative variables ..............2 

 
2.1.  Gas chromatogram of JP-4 fuel ...........................................................................14 
 
2.2. Seventeen hypothetical samples projected onto a 2-dimensional 

measurement space defined by the measurement variables X1 and X2. The 
vertices, A, B, C, and D, of the rectangle represent the smallest and largest 
values of X1 and X2. (Adapted from NBS J. Res., 1985, 190(6), 465-476) .........15 

 
2.3. Six hypothetical samples projected onto a 3-dimensional measurement 

space.  Because of strong correlations among the 3 measurement variables, 
the data points reside in a 2-dimensional subspace of the original 
measurement space.  (Adapted from Multivariate Pattern Recognition in 
Chemometrics, Elsevier Science Publishers, Amsterdam, 1992) .......................15 

 
2.4.  Principal component axes developed from the measurement variables a, b, 

and c. (Courtesy of Applied Spectroscopy, 1995, 49(12), 14A-30A) ................16 
 
2.5.  Defining a cluster can be a problem.  Are there two or four clusters in the 

data? (Adapted from Multivariate Pattern Recognition in Chemometrics, 
Elsevier Science Publishers, Amsterdam, 1992) ................................................24 

 
2.6.  The distance between a data cluster and a point using (a) nearest linkage, 

(b) farthest linkage, and (c) mean linkage ..........................................................26 
 
2.7.  Configuration of a three-layer feed-forward neural network ...............................40 
 
2.8.  Decision surface from a support vector machine for a binary classification 

problem ...............................................................................................................44 
 
2.9.  Template of a typical Wavelet basis function ......................................................46 

ix 
 



Figure           Page 
 
2.10. A comparison of: a.) high scale wavelet and b.) low scale wavelet for 

representation of signal .......................................................................................48 
 
2.11. Decomposition of the spectrum using wavelet filters .........................................49 
 
2.12. Second level decomposition of a noisy sine wave using wavelet filters ............49 
 
2.13. Two different types of Wavelet transform are shown: a.) Discrete wavelet 

transform of original signal S to give approximations An and details Dn 
where n is the decomposition level; b.) Wavelet packet tree where each 
packet (l,n) is represented by the level of decomposition (l) and its number 
(n) in that level. ...................................................................................................50 

 
2.14. Templates of several “mother” wavelets ............................................................51 
 
2.15. PC plot of the two largest principal components of the low mold count gas 

chromatograms as determined by the DG18 impactor data.  4 
chromatograms enclosed by an ellipse are outliers in the PC plot of this 
data ......................................................................................................................58 

 
2.16. A plot of the two largest canonical variates of the GC profiles of the 

MVOCs with the 4 outliers removed.   Each gas chromatogram is 
represented as a point in the plot.  1 = low mold count, 2 = medium mold 
count, and 3 = high mold count .................................................................…….59 

 
2.17. PC plot of the two largest principal components of the low mold count gas 

chromatograms as determined by the MEA impactor data. Each 
chromatogram is represented as a point in the plot. 4 chromatograms 
enclosed by an ellipse are outliers in the PC plot of this data .............................60 

 
2.18. PC plot of the two largest principal components of the medium mold count 

gas chromatograms as determined by the MEA impactor data.  Each gas 
chromatogram is represented as a point in the plot. 4 chromatograms 
enclosed by an ellipse are outliers in the PC plot of this data .............................60 

 
2.19. PC plot of the two largest principal components of the high mold count 

gas chromatograms as determined by the MEA impactor data. Each gas 
chromatogram is represented as a point in the plot. 4 gas chromatograms 
enclosed by an ellipse are outliers in the PC plot of this data .............................61 

 
2.20. A plot of the two largest canonical variates of the GC profiles of the 

MVOCs with the 4 outliers removed. Each gas chromatogram is 
represented as a point in the plot. 1 = low mold count, 2 = medium mold 
count, and 3 = high mold count ..........................................................................61 

x 
 



Figure           Page 
 
2.21. Gas chromatographic trace of cuticular hydrocarbons from S. invicta. The 

compounds eluting off the capillary column were identified and quantified 
by GC/MS: (a) heptacosane, (b) 13-methylheptacosane, (c) 13, 15-
dimethylheptacosane, (d) 3-methylheptacosane, and (e) 3, 9-
dimethylheptacosane.  Hexacosane was added for quantitation as an 
internal standard (IS) ...........................................................................................65 

 
2.22. a) Comparison of the classification scores for the pooled ant samples 

versus the average degree of separation in the data due to chance.  b) 
Probability of achieving any degree of separability due to chance for the 
pooled ant samples with RDA (0.8, 0), LDA, and QDA ....................................68 

 
2.23. a) Comparison of the classification scores for the individual ant samples 

versus the average degree of separation in the data due to chance.  b) 
Probability of achieving any degree of separability due to chance for the 
pooled ant samples with LDA, and QDA ...........................................................68 

 
2.24. A plot of the two largest principal components of the 170 pooled red fire 

ant samples and the five high molecular weight hydrocarbon compounds 
that characterize the cuticle of S. invicta.  Each ant sample is represented 
as a point in the principal component map of the data.  1 is a pooled ant 
sample from colony 1; 2 is a pooled ant sampled from colony 2; 3 is a 
pooled ant sample from colony 3; 4 is a pooled ant sample from colony 4; 
5 is a pooled ant sample from colony 5 ..................................................………70 

 
2.25. A plot of the two largest canonical variates of the pooled ant samples 

obtained from colony 1.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled forager ant sample; 2 is a 
pooled reserve ant sample; and 3 is a pooled brood tender ant sample.  
Separation of the foragers from brood tenders and reserves in the plot is 
evident .................................................................................................................71 

 
2.26. A plot of the two largest canonical variates of the pooled ant samples 

obtained from colony 2.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled forager ant sample; 2 is a 
pooled brood tender ant sample; and 3 is a pooled reserve ant sample.  
Separation of the foragers from brood tenders and reserves in the plot is 
evident .................................................................................................................72 

 
 
 
 
 
 

xi 
 



Figure           Page 
 
2.27. A plot of the two largest canonical variates of the pooled ant samples 

obtained from colony 3.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled forager ant sample; 2 is a 
pooled brood tender ant sample; and 3 is a pooled reserve ant sample.  
Clustering of the pooled ant samples on the basis of social caste is not 
observed in this plot ............................................................................................72 

 
2.28. A plot of the two largest canonical variates of the pooled ant samples 

obtained from colony 4.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled forager ant sample; 2 is a 
pooled brood tender ant sample; and 3 is a pooled reserve ant sample.  
Separation of the foragers from brood tenders and reserves in the plot is 
evident .................................................................................................................73 

 
2.29. A plot of the two largest canonical variates of the pooled ant samples 

obtained from colony 5.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled forager ant sample; 2 is a 
pooled brood tender ant sample; and 3 is a pooled reserve ant sample.  
Separation of the foragers from brood tenders and reserves in the plot is 
evident .................................................................................................................73 

 
2.30. A plot of the two largest canonical variates of the pooled ant samples 

obtained from all five colonies.  Each pooled ant sample is represented as 
a point in the CVA map of the data.  1 is a pooled forager ant sample; 2 is 
a pooled brood tender ant sample; and 3 is a pooled reserve ant sample.  
Separation of the foragers from the brood tenders and reserves in the plot 
is evident .............................................................................................................74 

 
2.31. A plot of the three largest canonical variates of the pooled ant samples 

obtained from colony 1.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled ant sample from time period 1; 
2 is a pooled ant sample from time period 2; 3 is a pooled ant sample from 
time period 3; and 4 is a pooled ant sample from time period 4.  Clustering 
of the pooled ant samples by time period is evident in this plot .........................75 

 
2.32. A plot of the three largest canonical variates of the simulated data sets for 

colony 1.  Clustering of the pooled ant samples by time period is not 
evident in this plot ...............................................................................................76 

 
 
 
 
 
 

xii 
 



Figure           Page 
 
2.33. A plot of the three largest canonical variates of the pooled ant samples 

obtained from colony 2.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled ant sample from time period 1; 
2 is a pooled ant sample from time period 2; 3 is a pooled ant sample from 
time period 3; and 4 is a pooled ant sample from time period 4.  Clustering 
of the pooled ant samples by time period is evident in this plot .........................76 

 
2.34. A plot of the three largest canonical variates of the simulated data sets for 

colony 2.  Clustering of the pooled ant samples by time period is not 
evident in this plot .......................................................................................……77 

 
2.35. A plot of the three largest canonical variates of the pooled ant samples 

obtained from colony 3.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled ant sample from time period 1; 
2 is a pooled ant sample from time period 2; 3 is a pooled ant sample from 
time period 3; and 4 is a pooled ant sample from time period 4.  Clustering 
of the pooled ant samples by time period is evident in this plot .........................77 

 
2.36. A plot of the three largest canonical variates of the simulated data sets for 

colony 3.  Clustering of the pooled ant samples by time period is not 
evident in this plot .......................................................................................……78 

 
2.37. A plot of the three largest canonical variates of the pooled ant samples 

obtained from colony 4.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled ant sample from time period 1; 
2 is a pooled ant sample from time period 2; 3 is a pooled ant sample from 
time period 3; and 4 is a pooled ant sample from time period 4.  Clustering 
of the pooled ant samples by time period is evident in this plot .........................78 

 
2.38. A plot of the three largest canonical variates of the simulated data sets for 

colony 4.  Clustering of the pooled ant samples by time period is not 
evident in this plot .......................................................................................……79 

 
2.39. A plot of the three largest canonical variates of the pooled ant samples 

obtained from colony 5.  Each pooled ant sample is represented as a point 
in the CVA map of the data.  1 is a pooled ant sample from time period 1; 
2 is a pooled ant sample from time period 2; 3 is a pooled ant sample from 
time period 3; and 4 is a pooled ant sample from time period 4.  Clustering 
of the pooled ant samples by time period is evident in this plot .........................79 

 
2.40. A plot of the three largest canonical variates of the simulated data sets for 

colony 5.  Clustering of the pooled ant samples by time period is not 
evident in this plot .......................................................................................……80 

 

xiii 
 



Figure           Page 
 
2.41. A comparison of the classification scores for colony versus the degree of 

separation in the data due to chance at (a) time period 1, (b) time period 2, 
(c) time period 3, and (d) time period 4 ..............................................................81 

 
2.42. A comparison of the classification scores for colony across all time 

periods versus the degree of separation in the data due to chance ......................83 
 
2.43. Probability of achieving any degree of separation in the data due to chance 

for all 5 laboratory colonies using QDA.  There is a 50% probability of 
achieving a classification score of 40.1% ...........................................................83 

 
3.1.  Processes involved in the operation of a simple genetic algorithm .....................95 
 
3.2.  An example of one-point crossover .....................................................................96 
 
3.3.  A plot of the two largest principal components of 10 features in the data set 

does not show class separation.  When principal components are 
developed from features that contain information about class, clustering on 
the basis of the sample’s class label (1= low, 2 = medium, and 3 = high) is 
evident ...............................................................................................................102 

 
3.4.  Block diagram of the pattern recognition GA used for feature selection ..........102 
 
3.5.  The top half of the ordered population is mated with strings from the top 

half of the random population, guaranteeing the best 50% are selected for 
reproduction, while every string in the randomized copy has an equal 
chance of being selected .......................................................................………106 

 
3.6. A score plot of the two largest principal components of the 3352 

wavelengths.  Each spectrum is represented as a point in the plot (1 = soft, 
2 = hard, and 3 = tropical) .................................................................................120 

 
3.7.  A score plot of the two largest principal components of the 11 wavelengths 

identified by the pattern recognition GA. Each spectrum is represented as 
a point in the plot (1 = soft, 2 = hard, and 3 = tropical) ....................................121 

 
4.1.  DMS spectra of octanone showing a reactant ion peak (−22 V) and peaks 

for product ions from chemical ionization of sample vapors, in positive 
polarity. The product ions are a protonated monomer (−6V) and a proton 
bound dimer (+2 V) form in purified air with moisture of ~0.2ppm. The 
relationship between ΔK (ion mobility difference) for the product ion and 
compensation voltage from the DMS measurement is shown using arrows. 
The ion source was 1 mCi of 63Ni. (Courtesy of Anal Chim. Acta 2006, 
579, 1–10) ................................................................................................…….135 

xiv 
 



Figure           Page 
 
4.2.  A plot of the two largest principal components of the 390 spectra that 

comprise the entire data set and the 65 wavelet coefficients identified by 
the pattern recognition GA. (1) alkanes, (2) cycloalkanes, (3) alcohols, (4) 
ketones, (5) substituted ketones, and (6) substituted aromatics. (Courtesy 
of Anal Chim. Acta 2006, 579, 1–10) .........................................................…..139 

 
4.3.  A plot of the two largest principal components of the 230 spectra from the 

remaining four chemical families and the 53 features identified by the 
pattern recognition GA. (3) alcohols, (4) ketones, (5) substituted ketones, 
and (6) substituted aromatics. (Courtesy of Anal Chim. Acta 2006, 579, 1–
10) .....................................................................................................................141 

 
4.3.  A plot of the two largest principal components of the 183 spectra from 

three chemical families and the 67 features identified by the pattern 
recognition GA. (3) alcohols, (5) substituted ketones, and (6) substituted 
aromatics. (Courtesy of Anal Chim. Acta 2006, 579, 1–10) .............................142 

 
4.5.  A plot of the two largest principal components of the 170 spectra from 

three chemical families and the 50 features identified by the pattern 
recognition GA. (4) ketones, (5) substituted ketones, and (6) substituted 
aromatics. (Courtesy of Anal Chim. Acta 2006, 579, 1–10) .............................142 

 
4.6.  Typical spectrum of waxy wheat obtained by NIR diffused reflectance 

spectroscopy ..............................................................................................……146 
 
4.7.  Plot of the two largest principal components of the 95 NIR spectra and 700 

points that comprise the wheat data set.  Each NIR spectrum is represented 
as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 
= wild type) ..............................................................................................…….147 

 
4.8.  Plot of the two largest principal components of the 94 NIR spectra and 6 

wavelengths identified by the pattern recognition GA.  Each NIR spectrum 
is represented as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 = 
wx-B1 null, and 4 = wild type) ..........................................................................148 

 
4.9.  Plot of the two largest principal components of the 94 second derivative 

spectra and 686 points.  Each second derivative NIR spectrum is 
represented as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 = wx-
B1 null, and 4 = wild type) ...............................................................................149 

 
4.10. Plot of the two largest principal components of the 94 second derivative 

spectra and 17 features identified by the pattern recognition GA.  Each 
second derivative NIR spectrum is represented as a point in the plot (1 = 
waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild type) .......................150 

xv 
 



Figure           Page 
 
4.11. Plot of the two largest principal components of the 94 wavelet transformed 

NIR spectra and 55 wavelet coefficients identified by the pattern 
recognition GA.  Each wavelet transformed NIR spectrum is represented 
as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 
= wild type) .......................................................................................................151 

 
4.12. Plot of (a) amylose and (b) protein content (mean %, standard deviation) 

for each genotype in the wheat data set (1 = waxy type, 2 = wx-A1 null, 3 
= wx-B1 null, and 4 = wild type). .....................................................................153 

 
4.13. Projection of the prediction set samples onto the PC plot of the 84 wavelet 

transformed NIR spectra and 32 wavelet coefficients identified by the 
pattern recognition GA. Each wavelet transformed NIR spectrum in the 
training set (grey) and prediction set (black) is represented as a point in the 
plot (1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild type) ........155 

 
4.14. Plot of the two largest principal components of the 463 IR spectra that 

comprised the training set.  Each spectrum is represented as a point in the 
PC plot (1 = carboxylic acid and 2 = noncarboxylic acid) ...............................161 

 
4.15. Plot of the two largest principal components of the 463 IR spectra that 

comprised the training set and the 22 wavelengths identified by the pattern 
recognition GA.  Each spectrum is represented as a point in the PC plot (1 
= carboxylic acid and 2 = noncarboxylic acid) .................................................162 

 
4.16. IR spectra of butyric acid, cyclopropanedicarboxylic acid cis-1-phenyl, 

octanoyl chloride, and propionic anhydride ......................................................163 
 
4.17. Plot of the two largest principal components of the 463 wavelet 

transformed IR spectra and the 9398 wavelet coefficients that comprised 
the training set.  Each spectrum is represented as a point in the PC plot (1 
= carboxylic acid and 2 = noncarboxylic acid) .................................................164 

 
4.18. Plot of the two largest principal components of the 463 IR spectra and 41 

wavelet coefficients identified by the pattern recognition GA.  Each IR 
spectrum is represented as a point in the PC plot (1 = carboxylic acid and 
2 = noncarboxylic acid).  The carboxylic acids are well separated from the 
noncarboxylic acids in the plot .........................................................................165 

 
 
 
 
 
 

xvi 
 



Figure           Page 
 
4.19. Projection of the validation set spectra onto the PC map of the 463 IR 

spectra and 41 wavelet coefficients identified by the pattern recognition 
GA.  Each projected infrared spectrum lies in a region of the map 
occupied by spectra possessing the same class label.  (1 = carboxylic acid 
from the training set, 2 = noncarboxylic acid from the training set, C = 
carboxylic acid from the validation set, and N = noncarboxylic acid from 
the validations set) ............................................................................................165 

 
4.20. Plot of the two largest principal components of the 88 clear coat IR spectra 

and 1944 points that comprise the training set.  Each IR spectrum is 
represented as a point in the plot (1 = BRA, 2 = STL, 3 = JFN, 4 = STH, 5 
= SAL, and 6 = NEW).  (Courtesy of Talanta, 2011, 87, 46-52) .....................172 

 
4.21. Plot of the two largest principal components of the 88 clear coat IR spectra 

of the training set and 8 wavelengths identified by the pattern recognition 
GA.  Each IR spectrum is represented as a point in the plot (1 = BRA, 2 = 
STL, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW).  (Courtesy of Talanta, 
2011, 87, 46-52) ................................................................................................174 

 
4.22. Plot of the two largest principal components of 1944 points of the 21 STL 

clear coat IR spectra.  Each IR spectrum is represented by its sample ID in 
the plot. (Courtesy of Talanta, 2011, 87, 46-52) ..............................................175 

 
4.23. Prototypical IR spectrum representative of each STL clear coat cluster.  

(Courtesy of Talanta, 2011, 87, 46-52) ............................................................175 
 
4.24. Plot of the two largest principal components of the 67 clear coat IR spectra 

and 1944 points that comprise the training set used for prediction.  Each 
IR spectrum is represented as a point in the plot (1 = BRA, 3 = JFN, 4 = 
STH, 5 = SAL, and 6 = NEW). (Courtesy of Talanta, 2011, 87, 46-52) .........176 

 
4.25. Plot of the two largest principal components of the 67 clear coat IR spectra 

from the training set and 10 wavelengths identified by the pattern 
recognition GA.  Each IR spectrum is represented as a point in the plot (1 
= BRA, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW).  (Courtesy of 
Talanta, 2011, 87, 46-52) .................................................................................177 

 
4.26. Plot of the two largest principal components of the 67 wavelet transformed 

clear coat IR spectra and 16362 wavelet coefficients that comprise the 
training set used for prediction.  Each IR spectrum is represented as a 
point in the plot (1 = BRA, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW).  
(Courtesy of Talanta, 2011, 87, 46-52) ............................................................178 

 
 

xvii 
 



Figure           Page 
 
4.27. Plot of the two largest principal components of the 67 wavelet transformed 

clear coat IR spectra from the training set and 36 wavelet coefficients 
identified by the pattern recognition GA.  Each IR spectrum is represented 
as a point in the plot (1 = BRA, 3 = JFN, 4 = STH, 5 = SAL, and 6 = 
NEW).  (Courtesy of Talanta, 2011, 87, 46-52) ...............................................179 

 
4.28. Projection of the prediction set samples onto the PC plot of the 67 wavelet 

transformed IR spectra and 36 wavelet coefficients identified by the 
pattern recognition GA.  Each IR spectrum in the training set (1 = BRA, 3 
= JFN, 4 = STH, 5 = SAL, and 6 = NEW) and prediction set (BRA and 
SAL) is represented as a point in the plot.  All projected samples lie in a 
region of the map near clear coats with the same class label.  (Courtesy of 
Talanta, 2011, 87, 46-52) .................................................................................179 

 
5.1.  Plot of the two largest principal components of the 18 VOCs for DG18.  

Each air sample is represented as a point in the plot.  1 = low mold count 
exposure, 2 = moderate mold count exposure, and 3 = high mold count 
exposure. (Courtesy of Microchem. J. 2012, 103, 119-124.) ...........................193 

 
5.2.  Plot of the two largest principal components of the 8 VOCs identified by 

the pattern recognition GA for DG18.  Each air sample is represented as a 
point in the plot.  1 = low mold count exposure, 2 = moderate mold count 
exposure, and 3 = high mold count exposure. (Courtesy of Microchemical 
J., 2012, 103, 119-124.) ....................................................................................194 

 
5.3.  Plot of the two largest principal components of the 18 VOCs for MEA.  

Each air sample is represented as a point in the plot.  1 = low mold count 
exposure, 2 = moderate mold count exposure, and 3 = high mold count 
exposure. (Courtesy of Microchemical J., 2012, 103, 119-124.) .....................196 

 
5.4.  Plot of the two largest principal components of the 5 VOCs identified by 

the pattern recognition GA for MEA.  Each air sample is represented as a 
point in the plot.  1 = low mold count exposure, 2 = moderate mold count 
exposure, and 3 = high mold count exposure. (Courtesy of Microchemical. 
J., 2012, 103, 119-124.) ....................................................................................197 

 
5.5. The samples comprising each cluster identified by the FCV clustering 

algorithm are circled and shown in the PC plot of the 5 VOCs that were 
identified by the pattern recognition GA for MEA.  Each air sample is 
represented as a point in the plot.  1 = low mold count exposure, 2 = 
moderate mold count exposure, and 3 = high mold count exposure. 
(Courtesy of Microchem. J. 2012, 103, 119-124.) ............................................198 

 
 

xviii 
 



Figure           Page 
 
5.6.  Plot of the two largest principal components of the 8 VOCs identified by 

the pattern recognition GA for DG18-MEA.  Each air sample is 
represented as a point in the plot.  1 = low mold count exposure, 2 = 
moderate mold count exposure, and 3 = high mold count exposure. 
(Courtesy of Microchem. J. 2012, 103, 119-124.) ....................................……199 

 
5.7.  A plot of the two largest principal components developed from the 63 

training set samples and the 2308 genes.  Each sample is represented as a 
point in the score plot (1 = EWS, 2 = BL, 3 = NB, and 4 = RMS) ...................203 

 
5.8.  A plot of the two largest principal components developed from the 63 

training set samples and 22 genes identified by PCKaNN.  Each sample is 
represented as a point in the score plot (1 = EWS, 2 = BL, 3 = NB, and 4 = 
RMS).  Training set samples are in grey and the prediction set samples 
which are projected onto the PC map of the data are in black ..........................205 

 
5.9.  A plot of the two largest principal components developed from the 63 

training set samples and 22 genes identified by PCKaNN and the Hopkins 
statistic.  Each sample is represented as a point in the score plot (1 = EWS, 
2 = BL, 3 = NB, and 4 = RMS).  Training set samples (labeled points) are 
in grey and the prediction set samples (unlabeled points) are in black ............205 

 
5.10. A plot of the two largest principal components developed from the 63 

training set samples and 22 genes identified by PCKaNN and the modified 
Hopkins statistic.  Each sample is represented as a point in the score plot 
(1 = EWS, 2 = BL, 3 = NB, and 4 = RMS).  Training set samples (labeled 
points) are in grey and the prediction set samples (unlabeled points) are in 
black ..................................................................................................................206 

 
5.11. A plot of the three largest principal components developed from the 29 

training set spectra and 125 peaks. Each spectrum is represented as a point 
in the PC score plot (l = Normal, 2 = Cirrhosis, 3 = Hepatocellular 
Carcinoma, and 4 = Uninvolved).. ....................................................................209 

 
5.12. A plot of the three largest principal components developed from the 28 

training set spectra and 11 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = Uninvolved) ...................210 

 
 
 
 
 
 

xix 
 



Figure           Page 
 
5.13. A plot of the three largest principal components developed from the 28 

training set spectra and 11 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = Uninvolved).  
Training set samples are in grey and the prediction set samples which are 
projected onto the PC map of the data are in black ..........................................211 

 
5.14. A plot of the three largest principal components developed from the 21 

training set spectra and 12 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, and 3 = Hepatocellular Carcinoma).  Training set samples are 
in grey and the prediction set samples which are projected onto the PC 
map of the data are in black ..............................................................................212 

 
5.15. A plot of the three largest principal components developed from the 15 

training set spectra and 10 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, and 4 = Uninvolved).  Training set samples are in grey and 
the prediction set samples which are projected onto the PC map of the data 
are in black ........................................................................................................213 

 
5.16. A plot of the three largest principal components developed from the 24 

training set spectra and 10 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 3 
= Hepatocellular Carcinoma, and 4 = Uninvolved).  Training set samples 
are in grey and the prediction set samples which are projected onto the PC 
map of the data are in black ..............................................................................213 

 
5.17. A plot of the three largest principal components developed from the 24 

training set spectra and 12 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (2 = Cirrhosis, 
3 = Hepatocellular Carcinoma, and 4 = Uninvolved).  Training set samples 
are in grey and the prediction set samples which are projected onto the PC 
map of the data are in black ..............................................................................214 

 
5.18. A plot of the two largest principal components developed from the 20 

training set spectra and 13 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (3 = 
Hepatocellular Carcinoma and 4 = Uninvolved) ..............................................214 

 
5.19. A plot of the three largest principal components developed from the 28 

training set spectra and 6 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, and 3 = Hepatocellular Carcinoma or Uninvolved) ......................216 

xx 
 



Figure           Page 
 
5.20. A plot of the three largest principal components developed from the 28 

training set spectra and 6 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, and 3 = Hepatocellular Carcinoma or Uninvolved). Training 
set samples are in grey and the prediction set samples which are projected 
onto the PC map of the data are in black ..........................................................216 

 
5.21. A plot of the two largest principal components developed from the 29 

training set spectra and 12 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, and 3 = Hepatocellular Carcinoma or Uninvolved) ......................218 

 
5.22. A plot of the two largest principal components developed from the 29 

training set spectra and 12 peaks identified by the pattern recognition GA. 
Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, and 3 = Hepatocellular Carcinoma or Uninvolved). Training 
set samples are in grey and the prediction set samples which are projected 
onto the PC map of the data are in black ..........................................................218 

 
5.23. A plot of the two largest principal components developed from the 81 

training set spectra and 4972 time tags. Each ion mobility spectrum is 
represented as a point in the PC score plot (l = Normal, 2 = Hepatocellular 
Carcinoma, and 3 = Cirrhosis). .........................................................................220 

 
5.24. A plot of the two largest principal components developed from the 81 

training set spectra and 20 time tags identified by the pattern recognition 
GA. Each ion mobility spectrum is represented as a point in the PC score 
plot (l = Normal, 2 = Hepatocellular Carcinoma, and 3 = Cirrhosis) ...............222 

 
5.25. A plot of the two largest principal components developed from the 81 

training set spectra and 20 time tags identified by the pattern recognition 
GA. Each ion mobility spectrum is represented as a point in the PC score 
plot (l = Normal, 2 = Hepatocellular Carcinoma, and 3 = Cirrhosis). 
Training set samples are in grey and the prediction set samples which are 
projected onto the PC map of the data are in black ..........................................222 

 
5.26. A plot of the two largest principal components developed from the 41 

spectra (first data set) and 127 peaks. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = 
Pancreatic Adenocarcinoma). Outliers are circled ............................................227 

 
 
 
 

xxi 
 



Figure           Page 
 
5.27. A plot of the two largest principal components developed from the 39 

spectra (first data set) and 5 peaks identified by the pattern recognition 
GA. Each spectrum is represented as a point in the PC score plot (l = 
Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma) ..........227 

 
5.28. A plot of the two largest canonical variates developed from the 39 spectra 

(first data set) and 127 peaks. Each spectrum is represented as a point in 
the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma) ..............................................................................................228 

 
5.29. A plot of the two largest canonical variates developed from the 39 spectra 

(first data set) and 18 peaks selected by the pattern recognition GA. Each 
spectrum is represented as a point in the CV score plot (l = Normal, 2 = 
Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma) ...............................228 

 
5.30. A plot of the two largest canonical variates developed from the 36 spectra 

(first data set) and 22 peaks selected by the pattern recognition GA. Each 
spectrum is represented as a point in the CV score plot (l = Normal, 2 = 
Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma). Training set 
samples are in grey and the prediction set samples which are projected 
onto the CV map of the data are in black ..........................................................229 

 
5.31. A histogram depicting the number of times each spectral feature was 

selected by the pattern recognition GA in each generation (number of hits) 
for schema hunting… ........................................................................................229 

 
5.32. A plot of the two largest canonical variates developed from the 36 spectra 

(first data set) and 14 peaks identified by schema hunting and loading 
plots. Each spectrum is represented as a point in the CV score plot (l = 
Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma). 
Training set samples are in grey and the prediction set samples which are 
projected onto the CV map of the data are in black ..........................................230 

 
5.33. A plot of the two largest canonical variates developed from the 38 spectra 

(with the two outliers included) of the first data set and 23 peaks identified 
pattern recognition GA. Each spectrum is represented as a point in the CV 
score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma). Training set samples are in grey and the prediction set 
samples which are projected onto the CV map of the data are in black. 
Outliers are circled ............................................................................................230 

 
 
 
 

xxii 
 



Figure           Page 
 
5.34. A plot of the two largest canonical variates developed from the 37 spectra 

(only one outlier included) of the first data set and 22 peaks identified 
pattern recognition GA. Each spectrum is represented as a point in the CV 
score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma). Training set samples are in grey and the prediction set 
samples which are projected onto the CV map of the data are in black. 
Outlier is circled ................................................................................................231 

 
5.35. A plot of the two largest canonical variates developed from the 37 spectra 

(only one outlier included) of the first data set and 24 peaks identified 
pattern recognition GA. Each spectrum is represented as a point in the CV 
score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma). Training set samples are in grey and the prediction set 
samples which are projected onto the CV map of the data are in black. 
Outlier is circled ................................................................................................231 

 
5.36. A plot of the two largest principal components developed from the 71 

spectra (both data sets) and 126 peaks. Each spectrum is represented as a 
point in the PC score plot (l = First data set samples, 2 = Second data set 
samples) ............................................................................................................233 

 
5.37. A hierarchical clustering (Wards) obtained by using 73 spectra (both data 

sets) and 126 peaks.  (l = First data set samples, 2 = Second data set 
samples) ............................................................................................................234 

 
5.38. A plot of the two largest canonical variates developed from the 32 spectra 

(second data set) and 23 peaks selected by the pattern recognition GA. 
Each spectra is represented as a point in the CV score plot (l = Normal, 2 
= Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma) ............................234 

 
5.39. A plot of the two largest canonical variates developed from the 28 spectra 

(second data set) and 23 peaks selected previously by the pattern 
recognition GA. Each spectra is represented as a point in the CV score plot 
(l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma). 
Training set samples are in grey and the prediction set samples which are 
projected onto the CV map of the data are in black ..........................................235 

 
5.40. A plot of the two largest canonical variates developed from the 36 spectra 

(first data set) and 18 peaks selected previously by the pattern recognition 
GA. Each spectra is represented as a point in the CV score plot (l = 
Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma). 
Training set samples are in grey and the prediction set samples which are 
projected onto the CV map of the data are in black ..........................................235 

 

xxiii 
 



xxiv 
 

Figure           Page 
 
5.41. A plot of the three largest principal components developed from the 10 

spectra and 5401 peaks. Each spectrum is represented as a point in the PC 
plot. (1 = replicates, 2 = samples worked up and collected on different 
days) ..................................................................................................................238 

 
5.42. A plot of the three largest principal components developed from the 10 

spectra and 2831 peaks of the 6 glycans. Each spectrum is represented as a 
point in the PC plot. (1 = replicates, 2 = samples worked up and collected 
on different days) ..............................................................................................238 

 
5.43. A plot of the three largest principal components developed from the 61 

normal control (NC) samples and 1431 spectral features. 3 distinct clusters 
are observed. .....................................................................................................241 

 
5.44. A plot of the two largest principal components developed from the 12 

HGD samples and 1431 spectral features. 2 distinct clusters are observed ......241 
 
5.45. A plot of the two largest principal components developed from the 102 

IMS-MS spectra and 46 spectral features identified by the pattern 
recognition GA. Each spectrum is represented as a point in the PC score 
plot (l = NC, 2 = EAC) .........................................................................………242 

 
5.46. A plot of the two largest principal components developed from the 75 

spectra and 514 mass spectral features. Each spectrum is represented as a 
point in the PC score plot (1 = NC, 2 = EAC, 3 = BE, and 4 = HGD) .............244 

 
5.47. A plot of the two largest principal components developed from the 75 

spectra and 25 mass spectral features. Each spectrum is represented as a 
point in the PC score plot (1 = NC, 2 = EAC, 3 = BE, and 4 = HGD) .............245 

 
5.48. A plot of the two largest principal components developed from the 75 

spectra and 25 mass spectral features. Each spectrum is represented as a 
point in the PC score plot (1 = NC, 2 = EAC, 3 = BE, and 4 = HGD). 
Training set samples are in grey and the prediction set samples which are 
projected onto the PC map of the data are in black ..........................................245 

 
 
 
 



LIST OF ABBREVIATIONS 

 

ADAPT Advanced Data Analysis and Pattern Recognition Toolkit 

ASCII  American Standard Code for Information Interchange 

BE  Barrett’s esophagus  
BL   Burkitt’s lymphoma  
BPNN  Back propagation neural network 

cDNA  Complementary Deoxyribonucleic acid 

CVA  Canonical variate analysis 

CVC  Cluster validity coefficient 

DG-18  Dichloran glycerol-18 

DMS  Differential mobility spectrometry 

DNA  Deoxyribonucleic acid 

EAC  Esophageal adenocarcinoma  
 
EPA  Environmental Protection Agency 

EWS  Ewing family of tumors  

FCV  Fuzzy c-varieties 

FTIR  Fourier transform infrared 

GA  Genetic algorithm 

GBSS  Granule bound starch synthase 

GC  Gas chromatogram 

GUI  Graphical user interface 

HGD   High-grade dysplasia 
ID  Identity 

xxv 
 



IMS  Ion mobility spectrometry 

IR  Infrared 

K-NN   K-nearest neighbors 

LDA  Linear discriminant analysis 

MALDI Matrix-assisted laser desorption ionization 

MEA  Malt extract agar 

MS  Mass spectrometry 

MVOC Microbial volatile organic compound 

NB  Neuroblastoma 

NC   Normal controls 
NIR  Near-infrared 

PC  Principal component 

PCA  Principal component analysis  

PDQ  Paint Data Query 

PLS  Partial least squares 

QDA  Quadratic discriminant analysis 

RCMP  Royal Canadian Mounted Police  

RDA  Regularized discriminant analysis 

RIP  Reactant ion peak 

RMS  Rhabdomyosarcoma 
SEC  Standard error of calibration 

SIM  Selective ion monitoring 

SIMCA Soft independent modeling of class analogy 

SPME  Solid phase microextraction 

SRBCT Small round blue cell tumors  

SVD  Singular value decomposition 

TOF  Time of flight 

xxvi 
 



xxvii 
 

VOC  Volatile organic compound 

 



CHAPTER I 
 
 

INTRODUCTION 
 

 
 
 
 

Profiling of complex samples using high performance chromatographic and 

spectroscopic methods is an active area of research with a large and growing literature [1-

1 to 1-10].  The object of profile analysis is to correlate characteristic fingerprint patterns 

in a chromatogram or spectrum with the properties of a sample or in biomedical studies 

with the presence or absence of disease in a patient or animal from which the sample was 

taken.  Fingerprint experiments of this type often yield profiles containing hundreds of 

components.  Objective analysis of the profiles depends upon the use of multivariate 

statistical methods.  However, there has been little research directed towards the 

development of methods to analyze data generated in such experiments.   

Pattern recognition methods are well suited for analyzing chromatographic and 

spectroscopic data because of the characteristics of the procedures.  Methods are 

available that assume no mathematical model but rather seek relationships that provide 

definitions of similarity between groups of data.  Pattern recognition methods are also 

able to deal with high dimensional data where more than three measurements are used to 

describe each sample.  Finally, techniques are available for selecting important features
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from a large set of measurements.  Thus, studies can be performed on systems where the 

exact relationships are not fully understood. 

Problems arise when applying pattern recognition methods to large data sets.  

First, classification success rates often vary with the pattern recognition method 

employed.  Second, low classification success rates for the prediction set are obtained 

despite a linearly separable training set.  Automation of these techniques can be difficult. 

The basic premise underlying the research described in this thesis is that all 

pattern recognition methods work well when the classification problem is simple. By 

identifying the appropriate features, a “hard” problem can be transformed into a “simple” 

one.  For pattern recognition analysis, the goal is feature selection, in order to increase the 

signal to noise ratio of the data by discarding measurements or features that are not 

characteristic of the profile of each class in the data set.  To ensure identification of all 

relevant features, it is best that a multivariate approach to feature selection be employed. 

This approach should take into account the existence of redundancies in the data. 

   

Figure 1.1.  Data set consisting of two classes: circles = acceptable, and x = unacceptable.  Each 
sample is characterized by two measurements: x1 and x2.   Univariate criteria would rank x1 and 
x2 as uninformative variables. 
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The experience of the Lavine group in pattern recognition has shown that 

irrelevant features can introduce so much noise that a good classification of the data 

cannot be obtained. When these irrelevant features are removed, a clear and well-

separated class structure can often be found.  The deletion of irrelevant variables is 

therefore an important goal of feature selection. For averaging techniques such as partial 

least squares and discriminant analysis, feature selection is important since signal is 

averaged with noise over a large number of variables with a loss of discernible signal 

amplitude when noisy features are not removed from the data. With neural networks, the 

presence of irrelevant measurement variables may cause the network to focus its attention 

on the idiosyncrasies of individual samples due to the net’s ability to approximate a 

variety of complex functions in higher dimensional space, thereby causing it to lose sight 

of the broader picture, which is essential for generalizing any relationship beyond the 

training set.   

Feature selection is also necessary because of the sheer enormity of many 

classification problems.  For example, consider DNA array data, which consists of 

thousands of descriptors per observation but only 50 or 100 observations distributed 

equally between two classes.  Feature selection improves the reliability of a classifier 

because noisy variables increase the chances of false classification and decrease 

classification success-rates on new data. It is important to identify and delete features 

from the data set that contain information about experimental artifacts or other systematic 

variations in the data not related to legitimate chemical differences between the classes 

represented in the study.  Feature selection can also lead to an understanding of the 

essential features that play an important role in governing the behavior of the process 
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under investigation. It can identify those measurements that are informative and those 

measurements that are uninformative.  For all of these reasons, feature selection should 

be the principal focus of research on new methodology in data mining.   

 Clearly, one major goal of feature selection is the removal of noisy or irrelevant 

features from the data.  Another is dimensionality reduction.  In many pattern recognition 

problems, it is necessary to use artificial neural networks (i.e., nonlinear discriminants) to 

perform a classification.  When artificial neural networks are used to classify data, the 

pattern recognition problem is often divided into two parts.  The first part involves 

simplifying the problem through feature selection, which then facilitates implementation 

of the pattern classifier in the second part. The fewer features used, the easier is the 

classification task and the more reliable are the results.  To ensure that random or chance 

separation is not a problem, the number of observations in the training set should be 

greater than the number of features.  A ratio of 3 or greater for the object to descriptor 

ratio (n/d) in the training set is considered sufficient to minimize chance classification [1-

11 to 1-13] but a larger object to descriptor ratio, for example, n/d > 10 is preferred [1-

14]. 

 No general theory has been developed to tackle the problem of feature selection 

because the results obtained must be evaluated in the classification step, which requires 

the user to consider both the transduction and preprocessing steps used, which in turn 

introduces additional complexity.  The only approach that is guaranteed to identify the 

optimum set of features in a data set is for the analyst to examine all possible 

combinations of features.  An exhaustive search of this type is only feasible with small 

data sets. 
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 To understand the importance of feature selection, one must realize that data 

analysis problems encountered by chemists are often poorly defined from a mathematical 

standpoint.  This occurs because of the way the data is taken.  Consider a chromatogram 

or absorbance spectrum. Each sensor channel (i.e., a peak in the chromatogram or the 

absorbance at a particular wavelength) is often related to the next channel, and the net 

result is that the desired information is obscured by redundancies in the data.  

Furthermore, the data sets are usually underdetermined, i.e., there are more features than 

observations.  Therefore, the major problem in chemistry and the physical sciences, 

which is to isolate the information of interest from the large amount of redundant or 

irrelevant data, is a different problem from the one encountered by statisticians who 

typically work with a small number of variables with information rich data sets generated 

in well designed experiments.   

 The procedure used to isolate the desired information from the large amount of 

redundant or irrelevant data is known as feature selection. Feature selection can be 

performed using statistical parameters (e.g., means and variances) computed directly 

from the data for each class to identify the most important features.  Alternatively, feature 

selection can be performed by selecting those descriptors that an analyst believes are the 

most important based on his or her understanding of the problem.  A feature selection 

step based on knowledge of the problem is often more effective than one based on 

heuristic methods. Feature selection can also be performed from the results of a 

classification using the classifier to identify the most informative features.  Clustering 

methods (e.g., hierarchical and K-means clustering) can be used to replace a group of 

similar variables with a single variable that most closely corresponds to the centroid of 
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the cluster.  Methods most frequently used to perform feature selection include filters to 

rank the variables or wrapper and embedded methods to assess subsets of features as to 

their usefulness for a given predictor.   

 Filter methods select variables by ranking them according to their individual 

predictive power.  Examples of filter methods include the Fisher ratio and the variance 

weights [1-15] which measure the dichotomization power of each variable for a particular 

classification problem by computing the between class and within class variance of each 

feature.  Alternatively, the value of the variable itself can be used as a discriminant by 

setting a threshold on the value with the predictive power of the variable measured in 

terms of error rate [1-16].  Information theory has also used to rank variables by 

developing empirical estimates of the information shared between each variable and the 

predictor.  One criticism of filter methods is that it leads to the selection of redundant 

features even though better class separation may be obtained due to noise reduction (via 

the Central Limit Theorem) by averaging independent and identically distributed features 

[1-17].  Another criticism of filters is that variables are scored independent of each other 

and cannot determine the combination of variables that would give the best prediction 

(see Figure 1.1).   

 Wrappers and embedded methods utilize the classifier to score subsets of 

variables according to their classification power.  Wrappers use the performance of the 

classifier to assess feature subsets of the data.  However, a drawback of most wrapper 

methods is that an exhaustive search of the data cannot be performed on large data sets as 

the search quickly becomes computationally intractable.  A wide range of search 

strategies have been employed [1-18] including forward selection, backward elimination, 
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branch-and-bound, and simulated annealing. All of these strategies are greedy as 

decisions to include or exclude variables during the early part of the search cannot be 

reversed in light of new information developed during the latter part of the search.   

 Embedded methods circumvent many of the problems associated with wrappers 

by incorporating variable selection in the development of the classifier, which allows for 

better use of the available data as it is not necessary to divide the data set into a training 

set and validation set.  Examples of embedded methods include decision trees such as 

CART [1-19] that have routines for feature selection, and finite difference calculations 

[1-20], quadratic approximations of cost functions [1-21], and sensitivity of the objective 

function calculation [1-22] which have been used to predict the change in the object 

function of the discriminant and thereby identify variables for addition or removal from 

classifier such as linear support vector machines [1-23].    The drawback of embedded 

methods (as well as wrappers) is the dependence on the classification method used to 

identify informative features in the data.  As the goal of feature selection in a pattern 

recognition problem is the identification of a variable subset that maximizes the ratio of 

between class variance to within class variance, it is evident that both wrappers and 

embedded methods do not directly utilize this figure of merit for variable selection.    

The development and application of a genetic algorithm (GA) for pattern 

recognition analysis of chemical data is the subject of this thesis.  The pattern recognition 

GA selects features that optimize the separation of the classes in a plot of the two or three 

largest principal components of the data.  A good principal component plot can only be 

generated using features whose variance or information is primarily about differences 

between the classes in the data. Thus, a feature subset is selected that maximizes the ratio 

7 
 



8 
 

of between groups to within groups’ variance.  This criterion dramatically reduces the 

size of the search space since it limits the search to these types of feature subsets.  In 

addition, the GA focuses on those classes and/or samples that are difficult to classify as it 

trains by boosting the relative importance of those classes and samples that consistently 

score poorly. Over time, the algorithm learns its optimal parameters in a manner similar 

to a neural network. The pattern recognition GA integrates aspects of artificial 

intelligence and evolutionary computations to yield a "smart" one -pass procedure for 

feature selection and pattern classification (using principal component analysis).  The 

efficacy and efficiency of the pattern recognition GA is demonstrated using problems 

from spectral pattern recognition, e.g., infrared and differential ion mobility library 

searching, genotyping of wheat using near infrared spectroscopy, and biomarker 

candidate discovery, e.g., detection of molds, analysis of DNA microarrays.  
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CHAPTER II 
 
 

PATTERN RECOGNITION 
 
 
 

 
2.1. INTRODUCTION 
 
 

Many relationships in chemical data cannot be expressed in quantitative terms.  

These relationships are better expressed in terms of similarity and dissimilarity among 

diverse groups of data [2-1].  The task confronting a scientist when investigating these 

types of relationships is twofold: (1) Can a useful structure based on distinct groups of 

data be discerned, and (2) Can a sample be classified into one of these groups for the 

prediction of some property?  The first task is addressed using principal component 

analysis (PCA) [2-2] or cluster analysis [2-3], whereas the second task is addressed using 

classification methods [2-4]. For the second task, a set of known samples is used to 

separate information and noise sources, with the information sources combined to 

develop a discriminant that is used to predict the class membership of samples not part of 

the original training set.   The development of suitable models to isolate groups of data 

according to their properties is known as classification. The basic premise underlying the 

use of PCA, cluster analysis or classification  methods is that clustering of the data into 

less similar subgroups is associated with some underlying property of the data.
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PCA [2-5] is the most widely used multivariate analysis technique in science and 

engineering. It is a method for transforming the original measurement variables into a 

new set of variables called principal components.  Each principal component is a linear 

combination of the original measurement variables. Often, only 2 or 3 principal 

components are necessary to explain all of the information present in the data. By 

plotting the data in a coordinate system defined by the 2 or 3 largest principal 

components, it is possible to identify key relationships in the data, that is, find similarities 

and differences among samples (e.g., chromatograms or spectra) in a data set. 

Cluster analysis [2-6] is the name given to a set of techniques that seek to 

determine the structural characteristics of a data set by dividing the data into groups, 

clusters or hierarchies.  Samples within the same group are more similar to each other 

than samples in different groups. Cluster analysis is an exploratory data analysis 

procedure.  Hence, it is usually applied to data sets for which there is no apriori 

knowledge about the class membership of the samples.  

Pattern recognition [2-7] is a name given to a set of techniques developed to solve 

the class membership problem. In a typical pattern recognition study, samples are 

classified according to a specific property using measurements that are indirectly related 

to that property.  An empirical relationship or classification rule is developed from a set 

of samples for which the property of interest and the measurements are known.  The 

classification rule is then used to predict this property in samples that are not part of the 

original training set.  The property in question may be the type of fuel responsible for a 

spill, and the measurements are the areas of selected gas chromatographic peaks from the 

recovered fuel. Classification is synonymous with pattern recognition, and scientists have 
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turned to it and principal component analysis and cluster analysis to analyze the large 

data sets typically generated in monitoring studies that employ computerized 

instrumentation.    

In this chapter, pattern recognition methods are discussed. A summary of the 

techniques used in the studies described in this thesis are included in the following 

sections.  Special emphasis is placed on the application of these techniques to problems 

in spectral and chromatographic pattern recognition.   

 
2.2. PRINCIPAL COMPONENT ANALYSIS 

 
Principal component analysis (PCA) is probably the oldest and best known of the 

techniques used in multivariate analysis. The overall goal of PCA is to reduce the 

dimensionality of a data set, while simultaneously retaining the information present in the 

data. Dimensionality reduction or data compression is possible with PCA because 

chemical data sets are often redundant.  That is, chemical data sets are not information 

rich.  Consider a gas chromatogram of a JP-4 fuel (see Figure 2.1), which is a mixture of 

alkanes, alkenes, and aromatics. The gas chromatogram of a JP-4 fuel is characterized by 

a large number of early eluting peaks, which are large in size.  There are a few late 

eluting peaks, but their size is small.  Clearly, there is a strong negative correlation 

between the early and late eluting peaks of the JP-4 fuel.  Furthermore, many of the 

alkane and alkene peaks are correlated, which should not come as a surprise as alkenes 

are not constituents of crude oil but instead are formed from alkanes during the refining 

process.  In addition, the property of a fuel most likely to be reflected in a high resolution 

gas chromatogram is its distillation curve, which does not require all 85 peaks for 

characterization.   
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Figure 2.1.  Gas chromatogram of JP-4 fuel 

 

Redundancy in data is due to collinearity (i.e., correlations) among the 

measurement variables. Collinearity diminishes the information content of the data [2-8]. 

Consider a set of samples characterized by two measurements, X1 and X2.  Figure 2.2 

shows a plot of these data in a 2-dimensional measurement space, where the coordinate 

axes (or basis vectors) of this measurement space are the variables X1 and X2.  There 

appears to be a relationship between these two measurement variables, which suggests 

that X1 and X2 are correlated, since fixing the value of X1 limits the range of values 

possible for X2.  If the two measurement variables were uncorrelated, the enclosed 

rectangle in Figure 2.2 would be fully populated by the data points.  Because information 

is defined as the scatter of points in a measurement space, it is evident that correlations 

between the measurement variables decrease the information content of this space. The 

data points, which are restricted to a small region of the measurement space due to 

correlations among the variables, could even reside in a subspace if the measurement 

variables are highly correlated.  This is shown in Figure 2.3.  X3 is perfectly correlated 
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with X1 and X2 because X1 plus X2 equals X3.  Hence, these six sample points lie in a 

plane even though each data point has three measurements associated with it. 

 
Figure 2.2.  Seventeen hypothetical samples projected onto a 2-dimensional measurement space 
defined by the measurement variables X1 and X2.  The vertices, A, B, C, and D, of the rectangle 
represent the smallest and largest values of X1 and X2.  (Adapted from NBS J. Res., 1985, 190(6), 
465-476)   
 

 
Figure 2.3.  Six hypothetical samples projected onto a 3-dimensional measurement space.  
Because of strong correlations among the 3 measurement variables, the data points reside in a 2-
dimensional subspace of the original measurement space.  (Adapted from Multivariate Pattern 
Recognition in Chemometrics, Elsevier Science Publishers, Amsterdam, 1992)  
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2.2.1. Variance Based Coordinate System. Variables that have a great deal of 

redundancy or are highly correlated are said to be collinear.  High collinearity between 

variables is a strong indication that a new set of basis vectors can be found that will be 

better at conveying the information content present in data than axes defined by the 

original measurement variables. The new basis set which is linked to variation in the data 

can be used to develop a new coordinate system for displaying the data. The principal 

components of the data define the variance-based axes of this new coordinate system.  

 
Figure 2.4.  Principal component axes developed from the measurement variables a, b, and c. 
(Courtesy of Applied Spectroscopy, 1995, 49(12), 14A-30A) 

 

The largest or first principal component is formed by determining the direction of 

largest variation in the original measurement space and modeling it with a line fitted by 

linear least squares (see Figure 2.4), which passes through the center of the data.  The 

second largest principal component lies in the direction of next largest variation: It passes 

through the center of the data and is orthogonal to the first principal component.  The 

third largest principal component lies in the direction of next largest variation: It also 
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passes through the center of the data; it is orthogonal to the first and second principal 

components, and so forth.  Each principal component describes a different source of 

information because each defines a different direction of scatter or variance in the data. 

(The scatter of the data points in the measurement space is a direct measure of the data’s 

variance.)  Hence, the orthogonality constraint imposed by the mathematics of PCA 

ensures that each variance-based axis will be independent. 

2.2.2. Information Content of Principal Components. One measure of the 

amount of information conveyed by each principal component is the variance of the data 

explained by the principal component.  The variance explained by each principal 

component is expressed in terms of its eigenvalue.  For this reason, principal components 

are usually arranged in order of decreasing eigenvalues or waning information content. 

The most informative principal component is the first and the least informative is the last.  

The maximum number of principal components that can be extracted from the data is the 

smaller of either the number of samples or number of measurements in the data set, as 

this number defines the largest number of independent variables in the data.   

If the data are collected with due care, one would expect that only the first few 

principal components would convey information about the signal, since most of the 

information in the data should be about the effect or property of interest being studied.  

However, the situation is not always this straightforward. Each principal component 

describes some amount of signal and some amount of noise in the data because of 

accidental correlation between signal and noise.  The larger principal components 

primarily describe signal variation, whereas the smaller principal components essentially 

describe noise.  When smaller principal components are deleted, noise is being discarded 
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from the data, but so is a small amount of signal.  However, the reduction in noise more 

than compensates for the biased representation of the signal that result from discarding 

principal components that contain a small amount of signal but a large amount of noise. 

Often plotting the data in a coordinate system defined by the two or three largest 

principal components provides more than enough information about the overall structure 

of the data.  This approach to describing a data set in terms of important and unimportant 

variation is known as soft modeling in latent variables. 

PCA takes advantage of the fact that a large amount of data is usually generated 

in monitoring studies when sophisticated chemical instrumentation, which is commonly 

under computer control, is used.  The data have a great deal of redundancy and therefore 

a great deal of collinearity. Because the measurement variables are correlated, 85 peak 

gas chromatograms do not necessarily require 85 independent axes to define the position 

of the sample points. Utilizing PCA, the original measurement variables that constitute a 

correlated axis system can be converted to a system that removes correlation by forcing 

the new axes to be independent and orthogonal.  This requirement greatly simplifies the 

data because the correlations present in the data often allow us to use fewer axes to 

describe the sample points. Hence, the gas chromatograms of a set of JP-4 and Jet-A fuel 

samples may reside in a subspace of the 85-dimensional measurement space. A plot of 

the two or three largest principal components of the data can help us to visualize the 

relative position of the Jet-A and JP-4 fuel samples in this subspace. 

2.2.3. Soft Modeling in Latent Variables. The approach of describing 

multivariate data in terms of important and unimportant variation is known as soft 

modeling in latent variables.  This approach is possible because instrumental data often 
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contains a large number of interrelated measurement variables.  All of the variation in the 

data can be explained by a small number of surrogate variables, which are often principal 

components, because of the redundancies in the data.  By examining these principal 

components, it is possible to identify important relationships in the data, that is, find 

similarities and differences among the samples in a data set, since each principal 

component captures a different source of information, i.e., variation in the data.  The 

principal components that describe important variation in the data (i.e., signal) can be 

identified and regressed against the desired property variable via linear least squares to 

develop a soft calibration model.  Surrogate variables which describe the property of 

interest are called latent variables. 

 With PCA, multivariate data can be plotted in a new coordinate system based on 

variance.  The origin of the new coordinate system is the center of the data, and the axes 

of the new coordinate system are the principal components of the data that primarily 

contain signal.  With this new coordinate system, relationships among the samples can be 

uncovered in the data.  PCA is actually using the data to suggest the model which is a 

new coordinate system for the data.  The model is local since the model center and the 

principal components will be different for each data set.  The focus of PCA and all soft 

modeling methods is signal, not noise.   

 Plotting the scores corresponds to plotting the samples in the principal component 

space.  The corresponding plots are called score plots.  They are the “work horse” of PCA 

and other soft modeling techniques since score plots can be used to identify outliers, 

groups and trends in data and explore similarities among samples.  The loadings, which 

describe the relationship between each principal component and the original 
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measurement variables from which the principal components are computed, can provide a 

clue as to the chemical information explained by each principal component.  The fraction 

of the data that is not explained by the set of principal components judged to contain the 

signal is contained in a residual matrix which is principally noise.    

 PCA and soft modeling methods are generally not used to analyze data sets that 

contain a large number of samples and a few measurement variables as each variable 

probably describes a different source of information.  Data sets with a large number of 

variables and relatively few samples usually contain redundant variables.  For this type of 

data, PCA and soft modeling methods can isolate the various sources of information in 

the data.  

2.2.4. Implementation of PCA. The procedure used to for implement PCA is as 

follows. First, the samples or data vectors are arranged in the form of a table, which is 

known as a data matrix. Each row of the matrix corresponds to a sample, and each 

column of the matrix is a measurement variable. It is crucial for each variable to encode 

the same information.  If the fifth column of the data matrix is the area of a gas 

chromatographic (GC) peak for benzene in sample 1, then it must also be the GC peak 

area of benzene in sample 2, sample 3, … sample N.  The data matrix is usually centered 

about the mean.  This is accomplished by subtracting the mean of the variable from each 

entry in the corresponding column. Mean centering of a data matrix adjusts the means of 

each column in the matrix to zero. To ensure that each variable has equal weight in the 

analysis, the data are usually auto-scaled.  In other words, after mean centering, each 

entry of a column is divided by the standard deviation of the column. Autoscaling adjusts 

the value of the measurements such that each variable has a mean of zero and a standard 
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deviation of one. Autoscaling removes inadvertent weighting of the variables that 

otherwise would occur due to differences in magnitude among the measurement 

variables.  

Principal components are directly computed from the mean centered or auto-

scaled data matrix using the singular value decomposition (SVD) algorithm [2-9].  SVD 

generates the loading matrix, the eigenvalues of each principal component, and a third 

matrix from which the sample scores, which define the coordinates of the data points in 

the principal component space, are obtained.  The loading matrix defines the relationship 

between the original measurement variables and the new basis vectors describing 

variation. Principal components of the data can be reconstructed from the original 

measurement variables using information contained in the loading matrix. The 

eigenvalues define the amount of variation in the data contained in each principal 

component.  The principal component representing the direction of largest variance in the 

data has the largest eigenvalue; the principal component representing the direction of next 

largest variance in the data has the second-largest eigenvalue, and so forth. The amount 

of information contained in a principal component relative to the original measurement 

space, i.e. the fraction of the total cumulative variance explained by the principal 

component, is equal to the eigenvalue of the principal component divided by the sum of 

all eigenvalues. 

 

2. 3.  CLUSTER ANALYSIS 

Cluster analysis is a popular technique whose basic objective is to discover class 

structure within data.  The technique is encountered in many fields, e.g., biology, 

geology, and geochemistry, under such names as unsupervised pattern recognition and 
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numerical taxonomy. Clustering methods are divided into three broad categories: 

hierarchical, object-functional, and graph theoretical. We will concentrate on hierarchical 

and object functional methods, as they are the most popular. 

For cluster analysis, each sample is treated as a point in an n-dimensional 

measurement space. The coordinate axes of this space are defined by the measurements 

used to characterize the samples. Cluster analysis assesses the similarity between samples 

by measuring the distances between the points in the measurement space.  Samples that 

are similar will lie close to one another, whereas dissimilar samples are distant from each 

other. The choice of the distance metric to express similarity between samples in a data 

set depends on the type of measurements used.  

Typically, three types of measurement variables – categorical, ordinal, and 

continuous - are used to characterize chemical samples. Categorical variables denote the 

assignment of a sample to a specific category.  Each category is represented by a number, 

e.g., 1, 2, 3, etc. Ordinal variables are categorical variables, in which the categories 

follow a logical progression or order, e.g., 1, 2, and 3 denoting low, middle, and high. 

Continuous variables, on the other hand, are quantitative. The difference between two 

values for a continuous variable has a precise meaning.  If a continuous variable assumes 

the values 1, 2, and 3, the difference between the values 3 and 2 will have the same 

meaning as the difference between the values 2 and 1, since they are equal.  

Usually, the measurement variables are continuous. For continuous variables, the 

Euclidean distance is the best choice for the distance metric, because inter-point distances 

between the samples can be computed directly.  However, there is a problem with using 

the Euclidean distance, which is the so-called scaling effect.  It arises from inadvertent 
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weighing of the variables in the analysis that can occur due to differences in magnitude 

among the measurement variables.  For example, consider a data set where each sample 

is described by two variables: the concentration of Na and the concentration of K as 

measured by an ion selective electrode. The concentration of Na varies from 50 to 

500ppm, whereas the concentration of K in the same samples varies from 5 to 50ppm.  A 

10% change in the Na concentration will have a greater effect on Euclidean distance than 

a 10% change in K concentration.  The influence of variable scaling on the Euclidean 

distance can be eliminated by auto-scaling the data, which involves standardizing the 

measurement variables (see Equation 2.1), so each variable has a mean of zero and a 

standard deviation of 1, that is     

   
௜,௦௧௔௡ௗ௔௥ௗ௜௭௘ௗݔ  ൌ ௜,௢௥௜௚௜௡௔௟ݔ െ ݉௜,௢௥௜௚௜௡௔௟ݏ௜,௢௥௜௚௜௡௔௟  (2.1) 

                

where ݔ௜,௢௥௜௚௜௡௔௟ is the original measurement variable i, ݉௜,௢௥௜௚௜௡௔௟ is the mean of the 

original measurement variable i, and ݏ௜,௢௥௜௚௜௡௔௟ is the standard deviation of the original 

measurement variable i.  Thus, a 10% change in K concentration has the same effect on 

the Euclidean distance as a 10% change in Na concentration when the data is auto-scaled.  

Clearly, auto-scaling ensures that each measurement variable has an equal weight in the 

analysis. For cluster analysis, it is best to auto-scale the data, since similarity is directly 

determined by a majority vote of the measurement variables.  

 

     Defining a cluster is a problem in cluster analysis (see Figure 2.5) as there is no figure 

of merit that can serve as a reliable measure of cluster validity for a proposed partitioning 

of the data.  For this reason, clusters are not defined mathematically but rather intuitively 
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depending on the nature of the problem investigated, the goals of the study, the number 

of clusters sought in the data, and previous experience.  When using these methods, prior 

knowledge of the problem is often essential.   

 

Figure 2.5.  Defining a cluster can be a problem.  Are there two or four clusters in the data? 
dapted from Multivariate Pattern Recognition in Chemometrics, Elsevier Science Publishers, 

2.3.1. Hierarchical Clustering. Hierarchical cluster analysis [2-10] is based on 

the prin

 

a) b)

(A
Amsterdam, 1992) 

 

ciple that distances between pairs of points (i.e., samples) in the measurement 

space are inversely related to their degree of similarity.  The starting point for a 

hierarchical clustering experiment is the similarity matrix.  This matrix is formed by first 

computing the distances between all pairs of points in the data set. Each distance is 

converted into a similarity value using Equation 2.2 

 ௜௞ݏ௜௞ ൌ 1 െ ݀݀௠௔௫ (2.2) 

 
where sik is the similarity between hich varies from 0 to 1, dik is the  samples i and k w

Euclidean distance between samples i and k, and dmax is the largest distance in the data set 

which corresponds to the two most dissimilar samples. The similarity values are 
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organized in the form of a table or matrix which is then scanned to identify the most 

similar point pair (i.e., largest value).  The two samples that comprise the point pair are 

combined to form a new point located midway between the two original points.  Both the 

rows and columns corresponding to the old data points are removed from the matrix.  The 

similarity matrix is then recomputed for the data set.  In other words, the matrix is 

updated to include information about the similarity between the new point and every 

other point in the data set. The new nearest point pair is identified, and combined to form 

a single point.  This process is repeated until all points have been linked.  

There are a variety of ways to compute the distances between data points and 

clusters

hierarchical clustering study are usually displayed as a 

dendog

 

 in hierarchical clustering (see Figure 2.6).  The nearest linkage method assesses 

similarity between a point and a cluster of points by measuring the distance to the closest 

point in the cluster.  The farthest linkage method assesses similarity by measuring the 

distance to the point furthest away in the cluster.  Mean linkage assesses the similarity by 

computing the distances between all point pairs where a member of each pair belongs to 

the cluster.  The mean of these distances is used to compute the similarity between the 

data point and the cluster.   

The results of a 

ram, which is a tree shaped map of the inter-sample distances in the data set.  The 

dendogram shows the merging of samples into clusters at various stages of the analysis 

and the similarities at which the clusters merge, with the clustering displayed 

hierarchically.  Interpretation of the results is intuitive, which is the major reason for the 

popularity of these methods.  
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Figure 2.6.  The distance between a data cluster and a point using (a) nearest linkage, (b) farthest 
nkage, and (c) mean linkage.  

orithm [2-9 to 2-16] attempts to fit each of the c clusters in 

ݔ ൌ ݒ ൅ ݐ ݀௉஼
 (2.3) 

      

where x denotes a sam ter in the 
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2.3.2. FCV Clustering 

 The FCV clustering alg

the data set to a principal component model of the form given by Equation 2.3 
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ple representative of the cluster, ν is the center of the clus

p-dimensional space, Rp, the vectors dj are an orthonormal set (i.e., loadings) spanning a 

subspace of Rp, and tj (scores) are the coordinates of the sample vector in the subspace. 

An interesting feature of the FCV clustering algorithm is that each data vector in the data 

set is assumed to contribute to the modeling of each of the clusters within the data.  The 
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actual algorithm consists of solving four equations simultaneously (see Equations 2.4 to 

2.7) using a Picard iteration [2-17].   

௜ݒ  ൌ ∑ ሺߤ௜௞ሻ௠ ∑௞௡௞ୀଵݔ ሺߤ௜௞ሻ௠௡௞ୀଵ  (2.4)
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௜௞ܦ ൌ  ቌ| ௞ݔ െ ௜ |ଶݒ െ ෍ۃ ௞ݔ െ ,௜ݒ ݀௜௝ ଶ௝ୀଵۄ ቍଶ  
    

(2.7) 

 is the membership value of sample k with respect to cluster i where i = 1, 2, 3….c and 

so forth).   

௜௞ߤ
is subject to the boundary conditions 0 < ߤ௜௞ < 1 and ∑  ௜௞ is the distanceܦ  .௜௞ = 1ߤ

between sample k and the center of cluster i, ܦ௝௞ is the distance between sample k and the 

center of cluster center j, ݒ௜ is the center of cluster i, ݀௜௝ is a unit eigenvector (principal 

component) corresponding to the jth largest eigenvalue of the fuzzy covariance matrix ௜ܵ 
for cluster i, m is a fixed weighting exponent which is usually assigned a value of 2, and r 

defines the shape of the cluster (r = 0 for spherical clusters, r = l for linear varieties, and 
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 To obtain a solution to this set of four equations, the user must provide the 

starting centers.  Class membership values, the within cluster scatter matrix of each 

d to the importance of samples with small class membership values.  As the value 

 m is

n as an indicator of its quality.  This is achieved 

y com

cluster, and the distance between each sample and each cluster are then computed in 

succession. New cluster centers are calculated in the last step of the first iteration, and the 

algorithm uses these new cluster centers as a starting point for a second iteration through 

the same set of equations.  This process continues until convergence is achieved.  The 

number of iterations required to achieve convergence is determined by the minimum 

prespecified change criterion used for the class membership values which is set by the 

user.   

 Usually, one chooses m to be equal to 2 but by increasing m less weight is 

attache

of  increased, the algorithm becomes fuzzier.  Data points whose membership values 

are uniformly low throughout the iterative procedure are less influential in defining a 

cluster at higher m values.  It is this attribute of the FCV clustering algorithm that is 

appealing when one suspects the data may not exist, as well separated clusters.  The 

ability to tune out noise by adjusting the value of m can be advantageous in obtaining 

meaningful clustering results.  Alternatively, the value of m can be set close to unity and 

the clustering algorithm then functions as a hard clustering algorithm yielding results 

similar to those obtained by k-means.   

 Another advantage of the FCV clustering algorithm is the possibility of using the 

fuzziness of a given cluster configuratio

b puting the cluster validity coefficient (CVC), which is a measure of the separation 

between clusters.  The CVC is determined by computing the ratio of the distance between 
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cluster centers to the weighted scatter of the clusters [2-18].  The larger the value of this 

coefficient, the better the separation between the two clusters.  By successively increasing 

the value of m, the effect of samples with poor class membership values can be filtered 

out.  An indication of cluster quality can be obtained by comparing CVC values where m 

is increased stepwise.  If the change in the CVC value is small, the conclusion is that 

distinct sample clusters exist within the data.  A marked increase in the value of the CVC 

as m is increased could be interpreted as significant overlap between data clusters. 

 When using the FCV clustering algorithm to investigate data, one can  search for 

round clusters in the data by specifying r = 0, find the best fit of the data to linear chain 

like clusters by specifying r = 1, or fit the data to other cluster shapes by setting r > 2.  

This feature allows the data to be fitted to a variety of distinct cluster shapes.  

Hierarchical clustering discussed in the previous section possesses a similar attribute as 

nearest linkage favors the formation of large linear clusters and complete linkage favors 

the formation of small spherical clusters.  

2.3.3. Practical Considerations.  All clustering procedures yield the same results 

for data sets with well-separated cluster

 

s. However, the results will differ when the 

clusters overlap.  For this reason, it is a good idea to use at least two different clustering 

algorithms, e.g., single and complete linkage, when studying a data set.  If the 

dendograms are in agreement, then a strong case can be made for partitioning the data 

into distinct groups as suggested by the dendograms. If the cluster memberships differ, 

the data should be further investigated using PCA or the FCV clustering algorithm.  The 

results from FCV and PCA can be used to gauge whether nearest linkage or complete 

linkage is the better solution.  
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All hierarchical clustering techniques suffer from so-called space distorting 

effects.  Nearest linkage, for example, favors the formation of large linear clusters instead 

of the u

ignificance level 

of the 

 and 

summa

sual elliptical or spherical clusters.  As a result, poorly separated clusters are often 

chained together. Because of these space-distorting effects, all clustering methods should 

be used in tandem with PCA to detect clusters in multivariate data sets.  

All clustering methods will always partition data, even randomly generated data, 

into distinct groups or clusters.  Hence, it is important to ascertain the s

similarity value selected by the user. For this task, the author proposes a simple 

three-step procedure. First, a random data set is generated with the same correlation 

structure, the same number of samples, and the same number of measurements as the real 

data set that is currently being investigated.  Second, the same clustering technique(s) is 

applied to the random data.  Third, the similarity or class membership value for the same 

number of clusters identified in the real data set is determined from the FCV results or the 

dendogram of the random data.  If the similarity or the class membership value is 

substantially larger for the real data set, the likelihood of having inadvertently exploited 

random variation in the data to achieve clustering is probably insignificant.               

2.3.4. Conclusion. Cluster analysis should be used in conjunction with mapping 

and display techniques such as PCA to identify similar samples, detect outliers,

rize overall trends in a multivariate data set.   Although clustering methods can 

identify distinct sample subgroups in a data set, they are not sufficient for developing a 

classification rule that can accurately predict the class membership of an unknown 

sample.  For this reason, classification methods have been developed and are discussed in 

the following sections of this chapter. 
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2. 4.  CLASSIFICATION METHODS 

So far, only exploratory data analysis techniques, i.e., cluster analysis and PCA, 

attempt to analyze data without directly using 

informa

rametric discriminants.  Minimum distance classifiers, 

e.g., k-

have been discussed. These techniques 

tion about the class assignment of the samples.  In this section, pattern 

recognition techniques will be discussed.  These techniques which were originally 

developed to solve the class membership problem, categorize a sample on the basis of 

regularities in observed data. The first applications of pattern recognition to chemistry 

were studies involving low-resolution mass spectrometry [2-19]. Since then, pattern 

recognition techniques have been applied to a wide variety of chemical problems, e.g., 

chromatographic fingerprinting [2-20 to 2-22], spectroscopic imaging [2-23 to 2-25], and 

data interpretation [2-26 to 2-28]. 

Pattern recognition techniques fall into one of two categories: (1) minimum 

distance classifiers and (2) non-pa

nearest neighbor [2-29] and SIMCA [2-30 to 2-33], treat each chromatogram or 

spectrum as a data vector x = (x1, x2, x3…xj…xp) where component xj is the area of the jth 

peak or the absorbance of the jth wavelength.  Such a vector can also be viewed as a point 

in a high-dimensional measurement space.  A basic assumption is that distances between 

points in the measurement space will be inversely related to their degree of similarity. 

Using a minimum distance classifier we can determine the class membership of a sample 

by examining the class label of the data point closest to it or by determining the class 

centroid that lies closest to the sample in the measurement space.  In analytical chemistry, 

minimum distance classification rules are developed using either K-nearest neighbor or 

statistical discriminant analysis.  
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Non-parametric discriminants [2-34 to 2-36], e.g., neural networks and support 

vector machines, attempt to divide a data space into different regions.  In the simplest 

case, th

e majority vote of its k-

nearest

e a large number of samples in each class, the 1-nearest neighbor 

at of a binary classifier, the data space is divided into two regions.  Samples that 

share a common property (e.g., fuel type) will be found on one side of the decision 

surface, while those samples comprising the other category will be found on the other 

side. Non-parametric discriminants have provided insight into relationships contained 

within sets of chemical measurements.  However, random or chance classification [2-39] 

can be a serious problem for data sets that are not sample-rich.   

2.4.1 K-Nearest Neighbor (K-NN). For its simplicity, K-NN is a powerful 

classification technique.  A sample is classified according to th

 neighbors, where k is an odd integer, e.g., one, three, or five. For a given sample, 

Euclidean distances are first computed from the sample to every other point in the data 

set.  These distances arranged from smallest to the largest are used to define the sample’s 

k-nearest neighbors.  A poll is then taken by examining the class identities among the 

point’s k-nearest neighbors. Based on the class identity of the majority of its k-nearest 

neighbors, the sample is assigned to a class in the data set.  If the assigned class and the 

actual class of the sample match, the test is considered a success.  The overall 

classification success rate, calculated over the entire set of points, is a measure of the 

degree of clustering in the set of data. Clearly, a majority vote of the k-nearest neighbors 

can only occur if the majority of the measurement variables concur since the data is 

usually autoscaled.   

K-NN cannot furnish a statement about the reliability of a classification.  For 

training sets that hav  
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classifi

he statistical 

propert

cation rule will have an error rate that is twice as large as the Bayes classifier [2-

37] which is the optimum classifier for any set of data.  To implement the Bayes 

classifier, one must have knowledge about all the statistics of the data including the 

underlying probability distribution function of each class. Usually, this knowledge is not 

available.  Any other classification method, no matter how sophisticated, can at best only 

improve on the performance of K-NN by a factor of two.  For this reason, K-NN is often 

used as a benchmark against which to measure other classification methods. 

2.4.2. Linear and Quadratic Discriminant Analysis.  Linear and quadratic 

discriminant analyses [2-38 to 2-40] develop classification rules based upon t

ies of the data.  Classifiers are developed from prior knowledge of class 

membership, from apriori assumptions about the statistical distribution of the data, and 

from the mean vectors and covariance matrices of the classes.  For linear and quadratic 

discriminant analysis, each class is assumed to possess a multivariate normal distribution.  

This is a reasonable assumption as most of the distribution functions encountered in 

chromatographic and spectroscopic data sets possess elliptical probability contours due to 

correlations among the measurement variables.  They only differ in the rate at which the 

probability decreases away from the mean. In linear discriminant analysis (LDA), a 

sample is assigned to the class with the lowest discriminant score, (see Equation 2.8) 

where dk(x) is the discriminant score for class k, x is the data vector of the sample, and Ck 

is the pooled or average class covariance matrix of the data.  Because LDA presumes that 

all class covariance matrices are equal, the classification rule is a Mahalanobis distance, 

which is similar to a Euclidean distance with a correction to taking into account 
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correlations among the measurement variables using the inverse of the covariance matrix 

(Ck
-1) when computing the distance between a sample and the centroid of a class.   

 

 (2.8) 

 
In quadratic d c ce matrices are not 

assume

 (2.9) 

LDA and d ification surface.  

Howev

݉݅݊ሾ ݀௞ሺݔሻ ൌ ሺݔ െ ݉௞ሻ் ௞ିܥ ଵ ሺݔ െ ݉௞ሻ ሿ 
iscriminant analysis (QDA), lass covarian

 

d to be equal.  The classification rule is given by Equation 2.9 where ln |Ck| is the 

determinant of the class covariance matrix which corresponds to the volume of space 

occupied by the sample points representing the class.  This classification rule is not 

limited to the Mahalanobis distance computed for each class but is specific for the 

covariance matrix of each class.    

 ݉݅݊ሾ ݀௞ሺݔሻ ൌ ሺݔ െ ݉௞ሻ் ௞ିܥ ଵ ሺݔ െ ݉௞ሻ ൅  ௞| ሿܥ|݈݊
  
 

 QD eed to pro uce an optimal class

 

A are guarant

er, LDA and QDA are seldom applied to problems in pattern recognition as there 

are usually too few samples in most data sets to reliably estimate Ck
-1 [2-41].  The issue 

of covariance stabilization in discriminant analysis for data sets with a low object to 

descriptor ratio is discussed in the next section of this chapter.  Both SIMCA and 

regularized discriminant analysis [2-42] have been used successfully to develop 

classifiers from data where the number of dimensions is large compared to the size of the 

training set.   Both methods provide the benefit of increased stability without being 
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restrictive as to ignore essential differences in the covariance that may be present in the 

data.   

2.4.3 SIMCA and Regularized Discriminant Analysis.  The problem of 

covariance stabilization in discriminant analysis was first tackled by Wold in 1976 [2-

43].   He addressed the problem of covariance stabilization by developing a biased 

estimate of the covariance matrix using a method called SIMCA (Soft Independent 

Modeling of Class Analogy).  For each class in the data set, the inverse of the covariance 

matrix is approximated by a principal component representation involving the so-called 

secondary eigenvectors of the data.  The inverse of the class k covariance matrix, Ck
-1, is 

decomposed by a process known as spectral decomposition [2-44], see Equation 2.10,  

where νjk is the jth principal component of Ck, λjk is the corresponding eigenvalue and p is 

the dimensionality of the data.  It is the smaller eigenvalues, not the larger ones that are 

most important when reconstructing Ck
-1.  However, it is the smaller eigenvalues that are 

difficult to estimate where the dimensionality of the data is large compared to the size of 

the training set.  By taking the average of these smaller eigenvalues, more reliable 

estimates of them can be obtained (see Equation 2.11) where A is the number of principal 

components necessary to describe class k, which is determined directly from the data 

using a procedure known as cross validation [2-45].  

 

௞ିܥ  ଵ ൌ ෍ ቈ ௝௞ݒ ௝௞ߣ௝௞்ݒ ቉௣
௝ୀଵ  (2.10) 
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௞ିܥ  ଵ ൌ ∑ ൣ ௝௞ݒ ∑௝௞்൧௣௝ୀ஺ାଵݒ ௝௞൧௣௝ୀ஺ାଵߣൣ  (2.11) 

 

In SIMCA, a principal component analysis is performed on each class in the data 

set, and a sufficient number of principal components are retained to account for most of 

the variation within each class.  Thus, each class in the data set is represented by a 

principal component model.  The number of principal components retained for each class 

is usually different.  Determining the number of principal components that should be 

retained for each class is important as retention of too few components can distort the 

signal or information content contained in the class model, whereas retention of too many 

principal components will diminish the signal to noise. Using cross validation [2-46] 

model size can be determined directly from the data. To perform cross validation, 

segments of the data are omitted during the principal component analysis. Using one, 

two, three, etc., principal components, omitted data are predicted and compared to the 

actual values.  This procedure is repeated until every data element has been omitted once.  

The principal component model that yields the minimum prediction error for the omitted 

data is retained.  Using cross validation the number of principal components necessary to 

describe the signal in the data can be determined while ensuring high signal to noise by 

not including the so-called secondary or noise laden principal components in the class 

model.  

 The variance explained by the class model is called the modeled variance, which 

describes the signal, where as the noise in the data is described by the residual variance or 

the variance not accounted for by the model which is explained by the secondary 

principal components, which have been truncated or omitted from the class model. By 
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comparing the residual variance of an unknown to the average residual variance of those 

samples that comprise the class, a direct measure of the similarity of the unknown to the 

class can be obtained.  This comparison also serves as a measure of the goodness of fit of 

the sample to a particular principal component model. Usually, the F-statistic is used to 

compare the residual variance of a sample with the mean residual variance of the class [2-

47].  Employing the F-statistic, an upper limit for the residual variance can be calculated 

for those samples belonging to the class.  The final result is a set of probabilities of class 

membership for each sample.  

 One advantage of SIMCA is that an unknown is only assigned to the class for 

which it has a high probability.  If the residual variance of a sample exceeds the upper 

limit for every modeled class in the data set, the sample is not assigned to any of the 

classes because it is either an outlier or comes from a class that is not represented in the 

data set.  Another advantage of SIMCA is that it is sensitive to the quality of the data 

used to generate the principal component models.  As a result, there are diagnostics to 

assess the quality of the data, e.g., the modeling power [2-48] and the discriminatory 

power [2-49]. The modeling power describes how well a variable helps the principal 

components to model variation, and discriminatory power describes how well the 

variable helps the principal components to classify the samples in the data set.  Variables 

with low modeling power and low discriminatory power are usually deleted from the data 

because they contribute only noise to the principal component models. 

 Friedman and Frank [2-50] also addressed the problem of covariance stabilization 

in discriminant analysis by developing a pooled estimate of the class covariance matrix, 

which they called regularized discriminant analysis (RDA).  The class covariance matrix 
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is first shrunk towards the pooled covariance matrix used in LDA to estimate the 

common covariance of the data (see Equation 2.12) where Ck(λ) is the shrunken estimate 

of the covariance matrix of class k, Ck is the covariance matrix of class k estimated 

directly from the data as in QDA, C is the pooled covariance matrix used in LDA, and λ, 

which varies from 0 to 1, regulates the variance bias trade-off.  Equation 12 is then 

shrunk towards the identity matrix using the parameter γ which also varies between 0 and 

1 (see Equation 2.13) where Ck(λ, γ) is the biased estimate of the covariance matrix of 

class k, (γ which varies from 0 to 1 is another user provided shrinkage parameter, 

trace[Ck(λ)] is a diagonal matrix consisting of the eigenvalues for class k, p is the number 

of measurement variables for each sample, and I is the identity matrix.  LDA and QDA 

are special cases of RDA as λ = 0 and γ = 0 gives rise to QDA and λ = 1 and γ = 0 gives 

rise to LDA. λ and γ are determined by computing the cross validated error rate of the 

discriminant using the training set data on a unit square defined by λ and γ.   λ and γ are 

varied by 0.1 on the grid, and a vector of misclassifications as a function of these 

shrinkage parameters is generated with the values of λ and γ that yield the lowest error 

rate selected.   

 

ሻߣ௞ሺܥ  ൌ ሺ1 െ ௞ܥሻߣ ൅  (2.12) ܥߣ

 

,ߣ௞ሺܥ  ሻߛ  ൌ ሺ1 െ ሻߣ௞ሺܥሻߛ ൅ ߛ ݁ܿܽݎݐ ቈܥ௞ሺߣሻ݌ ቉ כ  (2.13) ܫ
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Both RDA and SIMCA use a bias estimate of the class covariance matrix to 

deemphasize the effect of the lower eigenvalues.  The major difference between these 

two methods is the approach used to perform the necessary variance-bias trade-off.  

Although the approach used in RDA to estimate the class covariance matrix has been 

shown to superior to the approach used in SIMCA, RDA lacks the necessary tools to 

optimize the classification model, many of which are found in SIMCA e.g., the modeling 

and discriminatory power of the measurement variables used to develop the principal 

component models for each class in the data set.          

2.4.4 Neural Networks. A large number of papers have been published on the 

advantages of using feed- forward neural networks to classify chromatographic and 

spectroscopic data.  The flexibility of the distributed model defined by the weights of the 

network allows both linear and nonlinear classifiers to be defined.  The addition of a 

hidden layer using the appropriate transfer function converts a simple, two-layer (input 

and output) linear neural network into a three-layer network capable of describing any 

continuous nonlinear surface defined on a p-dimensional space [2-51].  Although linear 

decision surfaces for classification can also be developed using linear transfer functions 

to connect the layers, linear feed forward neural networks have received only scant 

attention as LDA, QDA, SIMCA, and RDA  have been repeatedly shown to be very 

effective in dealing with linear classification problems. 

 During training, a feed-forward neural network learns the relationship between 

independent variables (e.g., absorbance values at specific wavelengths), which serve as 

inputs to the network, and dependent variables (e.g., sample class membership) which are 

designated as outputs of the network.  Learning occurs when a training set consisting of 
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spectra or chromatograms and the class labels of the samples are presented to the 

network, and the network weights are adjusted to minimize differences between the 

output of the network and the known class membership of the samples.  Once the 

network weights have been adjusted using the training set, the network can be used to 

predict the class membership of unknown samples from their spectra or chromatograms.  

 The configuration of a three-layer feed-forward neural network for classification 

is shown in Figure 2.7.  The input layer serves as a buffer to store the values of the input 

variables.  In the hidden layer, neurons are arranged in parallel with each neuron 

corresponding to a hyperplane (i.e., linear boundary) or decision surface in the 

measurement space formed from the linear combination of the measurement variables as 

defined by the weights for each neuron.  Using this network configuration, nonlinear 

decision surfaces can be developed from the combinations of hyperplanes formed in the 

construction of the class boundaries.   

 

 
Figure 2.7. Configuration of a three-layer feed-forward neural network 
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The weights associated with each hidden layer neuron correspond to a weight 

vector 

etwork amounts 

 using a neural network is to obtain a weight solution 

that produces a neural network model that fits the training set data and permits good 

that defines a specific hyperplane in the pattern space.  The output layer weights 

define combinations of the hyperplane tests that can determine the class membership of 

the samples.   Feed-forward neural networks that contain a finite number of neurons in 

the hidden layer connected to the outer layer by a sigmoid transfer function are capable of 

modeling any continuous nonlinear decision surface in the pattern space. 

 The optimization of the weights in a 3-layer feed-forward neural n

to an iterative search for an acceptable minimum as the samples comprising the training 

set are processed individually by the network to encode the relationship between the 

input and output variables in the network model.  Back propagation of error [2-52 and 2-

53], a nonlinear optimization method, is the most popular method for training the weights 

of feed-forward neural networks that contain hidden layers.  The training of the network 

is initiated by initializing the weights at small random values that naturally grow to larger 

magnitudes through error feedback.  As the weights grow in magnitude during training, 

the network model becomes increasingly nonlinear since larger weights imply greater 

nonlinear character while small weights result in projections of the network inputs onto 

linear portions of the sigmoid transfer function.  The use of large numbers of 

measurement variables as inputs increases the nonlinear character of the neural network 

classifier in the early stages of training as a linear combination of a large number of terms 

is more likely to yield summations with large magnitudes that project on the nonlinear 

portions of the sigmoid curve.    

 The goal of classification
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p ion of the data outside of the training set.  The ability to accurately classify both 

the training and test set reflects good generalization by the network model.  Neural 

networks that do not exhibit good generalization are usually overtrained.  Overtraining 

occurs because the model is fitting noise or there are too many network weights to be 

estimated from the data.  The tendency to fit noise in the data can be limited by 

controlling the flexibility of the network or by applying noise reduction techniques to the 

input data before the initiation of training.  The number of neurons in the hidden layer, 

the number of network weights, and the magnitude of the weights should be limited while 

ensuring the necessary flexibility for modeling nonlinear decision surfaces.  It is well 

known that classification should not be attempted when the degrees of freedom exceed 

the number of training set samples [2-54 and 2-55].  For this reason, the number of 

samples and the number of weights in the network should be carefully examined to avoid 

an over-determined model when analyzing data using multi-layer feed-forward neural 

network.  The effects of noisy input data can be diminished by using a larger training set.  

However, the use of small, noisy training sets can result in a neural network model that 

fits the noisy data very well while generalizing poorly on data that has not been used in 

weight training.  From these considerations, the obvious strategy when modeling noisy 

data using a multilayer feed forward neural network is to keep the number of network 

weights small and use large, representative data sets.  In cases where fitting noise remains 

a concern, feature selection or wavelets (see Section 2.4.6) can be used to remove noise, 

thereby reducing the tendency of the network to model the noise.   

2.4.5 Support Vector Machines. Support vector machines identify decision 

surfaces or hyperplanes with the widest margin to separate samples

redict

 from different classes 
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in a dat

 to 

overfitt

a set (see Figure 2.8).  This is done using only some samples in the data set which 

are known as support vectors.   The input data are mapped from the original measurement 

space to a higher dimensional space using kernel functions to simplify the classification 

problem. There are a variety of kernel functions including linear kernels for linear 

hyperplanes, polynomial, Gaussian, and sigmoidal kernels for nonlinear decision 

surfaces.  Kernel functions simplify the classification problem by allowing us to directly 

compute the dot product of the weight vector which defines the distance between the 

hyperplane and each support vector in the original measurement space.  For a linearly 

separable data set, there will be a large number of linear hyperplanes that can be 

developed to separate samples into their respective classes.  The hyperplane best able to 

generalize the data (i.e., accurately classify both the training and test sets) is the one with 

the widest margin.  For data sets that are not linearly separable, a nonlinear decision 

surface will be used.  The kernel function that yields the best classification for the 

samples is the one selected for discriminant development. When developing a 

classification rule for a data set that is not separable, the optimization problem is 

reformulated to allow for samples but as few as possible to be present in the margin.   

Support vector machines have good generalization ability because the 

optimization problem when using the appropriate kernel functions is less prone

ing as there are fewer model parameters to compute from the data.  Another 

advantage of support vector machines is that it is easier to train.  The optimization search 

space of a support vector machine with the appropriate kernel will have a global solution 

without local minima.  For a nonlinear classification problem, the selection of the 

parameter values for the kernel function becomes crucial as they have an effect on the 

 43



shape of the separating hyperplane.  Larger values of the kernel parameters for a 

Gaussian kernel incorporate linearity to the model whereas smaller values tend to 

diminish the generalization ability by making the kernel more sensitive to noise in the 

data.  It is also important to remember that a properly trained feed-forward multi-layer 

neural network will perform better than a support vector machine for nonlinear 

classifications as a neural network with a hidden layer is capable of modeling any 

continuous nonlinear decision surface in the pattern space.   

  
Figure 2.8.  Decision surface from a support vector machine for a binary classification problem 

 
 

 

spectroscopic or chromatographic profiles can be confounded by noise.  If the basis of 

classifi

2.4.6 Data Preprocessing. Classification of complex samples on the basis of their

cations for samples in a data set is other than legitimate differences between the 

desired groups, unfavorable classification results can be obtained for the prediction set 

despite a linearly separable training set.   The application of noise reduction techniques to 
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the input data before initiation of training can obviate this problem.  In this section, two 

preprocessing techniques will be discussed for noise removal: feature selection and 

wavelets.  

Feature selection is crucial in many pattern recognition studies as not all of the 

measurements taken on each sample are meaningful.  For data sets containing a large 

number of measurement variables, irrelevant features can introduce so much noise that a 

good classification of the data cannot be obtained.   A clear and well separated class 

structure can be uncovered when irrelevant features are removed from the data due to the 

elimination of noise variance unrelated to class structure.  With averaging techniques 

such as discriminant analysis or PCA, feature selection is crucial since signal is averaged 

with noise over a large number of variables with a loss of signal amplitude when noisy 

features are not removed.  For neural networks, the presence of irrelevant features can 

prevent the network from generalizing the data beyond the training set because the 

network is fitting the noise in the samples, not the signal.   Feature selection will improve 

the reliability of any classifier because noisy variables increase chances of false 

classification and lower classification success-rates on new data.  It is important to 

identify and delete features from the data set that contain information about experimental 

artifacts or other systematic variations in the data not related to legitimate chemical 

differences between the source profiles of the classes represented in the study.   Feature 

selection is also important because of the sheer enormity of many classification problems, 

e.g., DNA microarray data that often consists of thousands of measurements per 

observation but only 50 or 100 observations distributed between two classes.  For all of 
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these reasons, feature selection is often the principal focus of many pattern recognition 

studies.   

Wavelets [2-56 and 2-57] can be used to separate noise from signal in 

multiva

            
               Figure 2.9.  Template of a typical Wavelet basis function

 

he property of scalability of wavelet basis functions is used to extract 

information from signals. Removing noise and deconvoluting overlapping bands in a 

riate chemical data. Spectra and chromatograms are characterized by peaks and 

other local features. However, important key features are often hidden or buried in noise. 

Wavelets can extract this hidden local information by analyzing the original data at 

different levels of resolution. Using wavelets, the data is transformed into a new set of 

variables called wavelet coefficients that are better at conveying information than the 

original measurement variables. Wavelets are scalable mathematical functions of 

localized waveforms that have the following properties: (1) they oscillate with varying 

frequency, (2) they decay rapidly, and (3) they have an average value of zero. The 

template of a typical wavelet basis function, the so-called “mother wavelet,” is shown in 

Figure 2.9.  

 

 

T
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spectru

r chromatogram.  The scaled and shifted version of the “mother wavelet” is 

project

m is more efficient than using the Fourier transform since local information is 

extracted with wavelets as opposed to only global information which is extracted using 

the Fourier transform. The Fourier transform is limited to global information since it uses 

an infinite series of sine and cosine wave functions to describe the signal as opposed to 

wavelets where each function is defined for a limited region of the chromatogram or 

spectrum.  

Wavelet analysis is implemented by a non-redundant decomposition of the 

spectrum o

ed onto the spectrum or chromatogram and a comparison is made between the 

wavelet and the original data using a set of approximation and difference functions [2-

58]. During wavelet analysis, the signal is decomposed into sets of various signal 

component sets.  Each set corresponds to a different time (or wavelength) and frequency 

scale.  Each frequency component of the signal is analyzed separately using a resolution 

that matches its scale [2-59].  Changing the time scale of the wavelet also allows for a 

closer examination of local information of the signal at different resolutions of the 

chromatogram or spectrum.  Scaling the wavelet corresponds to either dilating or 

compressing the wavelet basis function along its time axis by a scaling factor to fit 

different frequency scales of the signal. The dilated or compressed versions of the 

wavelet basis function are then shifted on the time axis to be projected on all parts of the 

signal to generate wavelet coefficients. These wavelet coefficients measure correlation of 

different sections of the signal with the scaled versions of the wavelet basis function.  

Higher scales correspond to highly stretched (or dilated) wavelets (see Figure 2.10), 

which are compared with longer portions of the signal to capture its smoother features. 

 47



These long range slowly changing coarse features form the lower frequency components 

of the signal. Similarly, lower scales correspond to compressed wavelets (see Figure 

2.10) that measure short range rapidly changing features, which provide information 

pertaining to high frequency components of the signal.  

 

 
 
Figure 2.10.  A comparison of: a.) high scale wavelet and b.) low scale wavelet for representation 
of signal 

 

low-pass wavelet scaling filters [2-59] is used as shown in Figure 2.11. The high-pass 

filter w

 

a.)  high scale wavelet

b.)  low scale wavelet

For the wavelet decomposition of data, a complementary pair of high-pass and 

ill allow only the high frequency component of the signal to be measured as a set 

of wavelet coefficients called “approximation”. The low-pass filter will measure the low 

frequency coefficient set called “detail”. The detail coefficients usually correspond to the 

noisy part of the data. This process of decomposition is continued with different scales of 

the wavelet filter pair in a step-by-step manner to separate the noisy components from the 

signal.  Figure 2.12 shows the first and second levels of wavelet filtering applied to a 

noisy sine wave.  
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Figure 2.11.  Decomposition of the spectrum using wavelet filters. 
 

 
Figure 2.12.  Second level decomposition of a noisy sine wave using wavelet filters 

 

There are several ways to apply the wavelet transformation: continuous, discrete, 

fast, and complex wavelet transform, and the wavelet packet transform. The discrete 
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wavelet transform is implemented by decomposing the signal and all of its successive 

approx

 
Figure 2.13. Two different types of Wavelet transform are shown: a.) Discrete wavelet transform 
of original signal S to give approximations An and details Dn where n is the decomposition level; 
b.) Wavelet packet tree where each packet (l,n) is represented by the level of decomposition (l) 
and its number (n) in that level. 

 

square wave. A major drawback of using the Haar wavelet is that it is not continuous and 

imations until the desired level of signal decomposition is achieved as shown in 

Figure 2.13. The wavelet packet transform performs a much richer analysis by 

decomposing both the approximations and details at each level to give what is called a 

wavelet packet tree (see Figure 2.13). It can be used in difficult cases where the signal is 

highly convoluted. All the wavelet coefficient sets (approximations and details) generated 

at each level are organized in a specific order to form a data vector. Every sample in the 

data set after the wavelet transform is represented by such an array of wavelet 

coefficients. 

a.)  Discrete Wavelet Transform

(0,0)

(1,0) (1,1)

(2,0) (1,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

b.)  Wavelet  Packet Tree

S

A1 D1

A2 D2

D3A3  

There are many different types of mother wavelets: Daubechies, Symlet, Coiflet, 

Haar and Biorthogonal. The Haar wavelet is the simplest wavelet. It is one period of a 
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therefo

 
 

Figure 2.14.  Templates of several “mother” wavelets 
 
 
The selection criterion for a suitable choice of mother wavelet is based on the 

ability of the wavelet to denoise and deconvolute spectral or chromatographic data. The 

wavelet chosen should be similar to the type of features and attributes present in the 

spectra

re not differentiable. Daubechies are compactly supported orthonormal wavelets 

suitable for discrete wavelet analysis. Symlet are nearly symmetrical wavelets. They are 

related to the Daubechies family as they share similar properties. Figure 2.14 shows the 

basic templates of the mother wavelets belonging to these families.  

 

 or chromatogram. The Daubechies and Symlet wavelets generally work well with 

chromatographic and spectral data. For signals with sharp peaks or discontinuities, 

mother wavelets such as Daubechies 2 to 4 also with sharp and abrupt features should be 

useful. If the signal comprises smoother or broad peaks than smoother wavelets such as 

Daubechies 5 through 12 or even larger may be employed depending on the type of 

 51



features that are needed to be extracted. We generally use a range of mother wavelets on 

the data set to get the best result. The implementation of wavelet transform was 

performed by MATLAB using its wavelet toolbox [2-60]. 

 
2.5. ADAPT  

The pattern recognition analyses performed in the studied described in this thesis 

were performed using a tool kit written for MATLAB (MATLAB 7.6.0.324) called 

nced Data Analysis and Pattern Recognition Tool Kit). It was developed 

with th

escribed in this thesis with the 

excepti

ADAPT (Adva

e help of Graphical User Interface Development Environment (GUIDE) of 

MATLAB.  GUIDE provides an easy to use framework for designing GUIs with 

simplified ways to attach sub-routines and functionalities.  

The Main GUI panel can be invoked by entering the command ADAPTv5 and the 

toolkit can be used in a straightforward and intuitive manner with simple instructions 

provided.  All of the pattern recognition analysis routines d

on of support vector machines can be accessed from this main panel. The panel 

consists of a toolbar with menus at the top with the panels remaining area divided into 

two parts that display information about the training set (top half) and the prediction set 

(bottom half). The information displayed for both sets consists of the total number of 

samples in a data set and the misclassified samples listed in each class after training and 

prediction is performed using a particular pattern recognition method. It also displays the 

name of the data set uploaded, the number of descriptors, the type of preprocessing 

performed on the data, and the status of both training and prediction. The tags of 

individual samples after training and prediction are also displayed along with their actual 

and predicted class-labels to identify misclassified samples. The toolbar menus consist of 
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several menus: File, Edit, Analysis, Train, Predict, Calculate Error Rate and Display. 

Each menu has a sub-menu or it opens up another GUI panel with simple instructions.  

The File menu allows for importing of data files (both training and prediction 

sets), saving classification models, training-prediction results, and uploading previously 

trained models for use in future studies. The data file that can be uploaded needs to have 

data in

e.  Autoscaling or mean centering is performed by each pattern 

recogni

 feature selection. Each submenu 

opens 

 a table or matrix form with a delimited ASCII format.  The rows of the data 

should correspond to sample data vectors and the columns should be the measurement 

variables (descriptors).  The data columns should be preceded by label columns for 

sample and class id. 

The Edit menu is used to remove or retain specific samples, classes, or descriptors 

and to perform the necessary preprocessing of the data, e.g., normalizing data vectors to 

unit length or to on

tion analysis routine when desired by the user. 

The Analysis menu includes various methods for pattern recognition analysis such 

as PCA and canonical variate analysis (CVA), clustering methods like Hierarchical and 

FCV clustering, and variance and Fisher weights for

a new sub-panel/window for selecting various parameters specific to those 

methods and for changing display settings. More information is also displayed on these 

sub-panels. For example, the cumulative variance for as many as 10 principal 

components is shown in PCA. Also choices are provided for displaying the score and 

loading plots, selecting the principal components for plotting, selecting sample or class 

label tags for display in the score plots, and projection of the prediction set samples. The 
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plots generated have provisions for focusing into a specific region by zooming, panning, 

and 3D rotation, which ensures a careful analysis of the data. 

The Train menu leads to different pattern recognition and classification methods 

for developing classifiers. The available methods are LDA, QDA, RDA, RDA with self 

optimiz

TUDIES 

Pattern recognition is about reasoning, using the available information about the 

ormation contained within the data. Autoscaling, feature selection, 

and cla

n, and (4) mapping and display.  

Howev

ed parameters, K-NN, and a Back Propagation Neural Network.  Each application 

opens a self explanatory sub- panel for selecting method parameters.  The Predict menu 

enables the user to apply a stored classification model on the prediction set. Other menu 

functions are available for calculating the error rates of training (by boot-strapping or 

cross-validation) and for displaying the training and prediction sets results of individual 

samples.     

 

2.6 CASE S

problem to uncover inf

ssification are an integral part of this reasoning process.  Each plays a role in 

uncovering information contained within the data.  

Pattern recognition analyses are usually implemented in four distinct steps: (1) 

scaling, (2) data preprocessing, (3) classificatio

er, the actual process is iterative, with the results of a classification or display 

often determining a further preprocessing step and reanalysis of the data.  Although the 

procedures selected for a given problem are highly dependent upon the nature of the 

problem, it is still possible to develop a general set of guidelines for applying pattern 

recognition techniques to real data sets. In the last section of this chapter, a framework is 
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presented for solving the class membership problem by way of two published studies. In 

the first study, a set of microbial volatile organic compound (MVOC) profiles were 

developed with corresponding bioaerosol measurements as input-output pairs for a 

discriminant to predict the presence or absence of mold contamination in indoor 

environments [2-61].  In the second study, GC profiles of cuticular hydrocarbon extracts 

obtained from individual and pooled ant samples were analyzed using pattern recognition 

techniques [2-62]. Clustering was observed according to the biological variables of social 

caste and colony of origin. Pattern recognition methods were used to separate three 

temporal (age dependent) social castes (foragers, reserves, and broods) and to visualize 

colony cuticular hydrocarbon changes that occurred with time. The dynamic nature of 

these heritable characters in relationship to nestmate recognition confirmed previous 

studies [2-63].    

2.6.1 Prediction of Mold Contamination from VOCs.  The data consisted of 

145 gas chromatograms of VOCs collected by solid phase microextraction (SPME) from 

homes 

, New York from July 2006 until August 2007.   Sampling of airborne 

and office buildings in Northern New York.  Spore collection to characterize the 

indoor air quality of the residences and buildings investigated as part of this study was 

simultaneously performed using Anderson N6 impactors. The volatile organic signatures 

that molds emit as reflected by the GC profiles were compared to the impactor data 

collected from each building.  By comparing the bioaerosol data to the volatile organic 

profiles, a discriminant could be trained to classify a residence by potential mold growth 

based on VOCs.  

Bioaerosol data was collected during 33 sampling events from 16 locations in the 

village of Potsdam
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fungi o

d for 6 

days an

Number of Samples 

nto agar plates required a high-volume vacuum pump and an Anderson N6 

impactor, which was used in conjunction with malt extract agar (MEA) and dichloran 

glycerol 18 (DG18) in Petri dishes to collect viable mold samples.  DG18 is a xerophilic 

agar whereas MEA is a mesophilic agar.  By using two agar types, a broader range of 

fungi was cultured, providing a better representation of the site’s fungal ecology.  

At each residence or building, 4 or 5 samples of each type of agar were collected 

with an associated field blank for each sampling event.  The samples were culture

d counted.  All counts were blank corrected, and a positive-hole correction was 

applied.  These biological characterizations were converted into values after taking 

indoor-outdoor ratios for each sampling event.  These values were used to tag each 

sampling site with a specific class label: low (ratio is less than 1.2), medium (ratio is 

between 1.2 and 3) and high (ratio is greater than 3) mold contamination.  This allowed 

for a direct comparison between the volatile organic profile characterizations (input) and 

the relative bioaerosol concentrations in each building (output) using discriminant 

analysis.  The class membership distribution of the sampling events using DG18 and 

MEA growth media is shown in Table 2-1.  

Table 2-1.  Class Membership Distribution of Bioaerosol Sampling Data 

Mold Count DG18 MEA 
Low 56 56 
Medium 34 27 
High 55 62 

 
  

 Conc  air sampling for VOCs was performed by SPME. An 85μm 

tableflex carboxen/polydimethylsiloxane fiber equipped with a commercial holder for 

anual

urrently,

s

m  operation was chosen for air sampling to reduce fiber breakage. Other advantages 

associated with this fiber include its high affinity for low molecular weight volatiles due 

 56



and its ability to extract a broad range of analytes.  Multiple SPME fibers were used at 

each location, and the sampling time for each experiment was 2 hours.  The SPME fibers 

were conditioned for 30 to 60 minutes prior to sampling.  After sampling, the SPME 

fibers were injected into a HP5890 Series GC equipped with a HP 5971 mass selective 

detector using Chemstation software (Agilent).  A splitless injection was performed with 

a purge of 1.5 minutes.  The injector temperature of the GC was set at 250 degrees 

Centigrade, the detector temperature was set at 280 degrees Centigrade, and the column 

oven temperature was 40 degrees Centigrade for 5 minutes, followed by a 5 degree ramp 

to 200 degrees Centigrade, which was held for 5.5 minutes.  Separation of the VOCs was 

performed on a VOCOL (Supelco) capillary column (60 meters L x 0.32mm id x 1.8μm 

film thickness).  MS scan range was from 35 to 350amu.  

 For pattern recognition analysis, each gas chromatogram was represented as a 

data vector X = (x1, x2, x3 … x29) using as descriptors the area of each of the VOCs 

outliers 

using P

identified by GC/MS.  Peak areas were normalized to the percentage of the total 

integrated area for each gas chromatogram. Each gas chromatogram contained 29 

standardized retention time windows.  43 GC profiles were common to the low mold 

count class, 14 profiles were common to the medium mold count class, and 42 were 

common to the high mold count class for both DG18 and MEA (see Table 2.1).    

The 145 gas chromatograms were divided into three classes on the basis of 

impactor data obtained for DG18.  Prior to CVA, each class was analyzed for 

CA.  Figure 2.15 shows a plot of the two largest principal components of the low 

mold count gas chromatograms of the VOCs.  The first two principal components explain 

50% of the total cumulative variance of the data.  It is evident from this score plot and the 
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generalized distance test [2-64] that 4 gas chromatograms are outliers - they are very 

different from the other gas chromatograms. A visual analysis of these 4 gas 

chromatograms suggested that peak matching could be the source of the problem as 

several peaks were poorly resolved and there were variations in retention time from the 

established time windows for several peaks presumably due to a sloping baseline. Outlier 

analysis using PCA was also performed for the medium and high mold count gas 

chromatograms but no discordant observations in this data were detected.  A plot of the 

two largest canonical variates of the GC profiles with the outliers removed is shown in 

Figure 2.16.  There is considerable overlap between the low mold count and medium 

mold count gas chromatograms and some overlap between the medium and high mold 

count gas chromatograms, and this does not augur well for the viability of the proposed 

method. 

 
Figure 2.15. PC plot of the two largest principal components of the low mold count gas 
chromatograms as determined by the DG18 impactor data.  4 chromatograms enclosed by an 
ellipse are outliers in the PC plot of this data. 
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Figure 2.16.  A plot of the two largest canonical variates of the GC profiles of the MVOCs with 
the 4 outliers removed.   Each gas chromatogram is represented as a point in the plot.  1 = low 
mold count, 2 = medium mold count, and 3 = high mold count.  
 

 

pactor data.  Principal component plots of each class revealed the presence of outliers 

in the d
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The same study for the 145 gas chromatograms was repeated using the MEA 

im

ata (see Figures 2.17, 2.18, and 2.19).  Again, the outliers were attributed to the 

poor quality of the GC data.  A plot of the two largest canonical variates of the GC 

profiles with the 12 outliers removed (see Figure 2.20) revealed that indoor environments 

with high mold counts can be readily differentiated from indoor environments with 

medium and low mold counts.  The overlap of VOC profiles from low and medium mold 

count environments could be due to chemical interferences from cooking and cleaning 

activities in many of these locations prior to sampling.   

 
 
 
 

 59



 
Figure 2.17. PC plot of the two largest principal components of the low mold count gas 
chromatograms as determined by the MEA impactor data.  Each gas chromatogram is represented 
as a point in the plot. 4 chromatograms enclosed by an ellipse are outliers in the PC plot of this 
data. 

Figure 2.18. PC plot of the two largest principal components of the medium mold count gas 
chromatograms as determined by the MEA impactor data.  Each gas chromatogram is represented 
as a point in the plot. 4 chromatograms enclosed by an ellipse are outliers in the PC plot of this 
data. 
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Figure 2.19.  PC plot of the two largest principal components of the high mold count gas 
chromatograms as determined by the MEA impactor data.  Each gas chromatogram is represented 
as a point in the plot.  4 gas chromatograms enclosed by an ellipse are outliers in the PC plot of 
this data. 
 

Figure 2.20.  A plot of the two largest canonical variates of the GC profiles of the MVOCs with 
the 4 outliers removed.   Each gas chromatogram is represented as a point in the plot.  1 = low 
mold count, 2 = medium mold count, and 3 = high mold count.  
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Because the MEA impactor data was more closely correlated to the GC profiles of 

the VOCs, it was selected for further study using a technique known as cross validation to 

simulat

old count gas chromatograms suggesting that a 

distinct

e the ability of a classifier to predict the class membership of an unknown sample.  

13 sets of VOC profiles were developed by random selection, where each training set 

consisted of 122 or 123 gas chromatograms and the corresponding prediction set 

contained the remaining 11 or 10 gas chromatograms. (In this study, the outliers were 

deleted from the analysis.)  Each gas chromatogram was only present in one of the 13 

prediction sets generated.  Each training set was analyzed by LDA, QDA, and a 3-layer 

back propagation neural network (BPNN) using a sigmoid transfer function.  The class 

membership of the volatile profiles in the corresponding prediction set samples was 

determined using these trained models.   

Table 2-2 summarizes the results of the validation study.  High classification 

success rates were obtained for the high m

 volatile profile representative of the MVOCs was identified by the pattern 

recognition methodology.  For the moderate and low mold count indoor environments, 

classification success rates were lower.  Misclassified GC profiles of VOCs from the 

moderate mold count were assigned to the low mold count class and vice versa. The 

overlap between these two classes can probably be attributed to background VOCs, 

which is obscuring the MVOC profile for the low and moderate mold count data.  

Because the GC data has been normalized to constant sum, the focus of this pattern 

recognition analysis study is the concentration pattern of the compounds present in the 

GC profile, not the total amount of VOCs captured in air sampling by the SPME fiber.  
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Table 2-2.  Validation Set Results 
Method Class Total Missed Success (%) 

1 52 9 82.7 
2 23 11 52.2 LDA 3 58 1 98.3 

T l ota 133 21 84.2 

QDA 

1 52 6 88.5 
2 23 18 21.7 
3 58 4 93.1 

T l ota 133 28 78.9 

BPNN 
(29-3-3) 

1 52 3 94.2 
2 23 9 60.9 
3 58 1 98.3 

T l ota 133 13 90.2 
 

 
The classification results obtained f DA were consistent with the CVA plot of 

the data (see Figure 2.20).  LDA outperformed QDA because more model parameters are 

required to be estimated from the data using the more complex QDA model.  The higher 

classification success rates obtained for BPNN can probably be attributed to the more 

robust nature of the decision surface generated by the neural network for the profile data.  

The architecture used for the neural network was based on previous experience with GC 

data [2-65]. 

From this study, it can be concluded that GC profile data of MVOCs can be 

correlated to MEA Impactor data.  Gas chromatograms from buildings and residences 

with high mold counts can be reliably differentiated from moderate and low mold count 

indoor environments using SPME and GC/MS.  

2.6.2 Analysis of Chemical Signals in Red Fire Ants.  The test data consisted of 

gas chromatograms from 125 individual and 235 pooled ant samples obtained from 

laboratory colonies maintained at the USDA-ARS Fire Ant Project Laboratory in 

Gainesville, FL.  Ants from each colony were fed with sugar-water (1:1) and crickets.  

Three temporal worker categories were represented in the data: foragers, reserves, and 

or L
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brood tenders.  Brood tenders were identified by disturbing a colony and observing the 

workers that were carrying broods.  

Cuticular hydrocarbons were obtained by soaking individual or pooled ant 

samples for at least 10 minutes at room temperature in enough hexane (with n-C26H56 

added for quantitation as an internal standard) to just cover them. After the rinses were 

complete, the soaks were processed using an Agilent 6890N Network Gas 

Chromatograph System (Palo, Alto, CA).   The Agilent System was equipped with a 

split-splitless injector, a flame ionization detector, and a DB-1 fused silica capillary 

column (30 m, 0.25 mm id, 0.25 μm film thickness, J&W Scientific Inc., Folsom, CA).  

The injector and detector were set at 300oC, and the oven temperature was programmed 

from 150o to 285oC at 10o/min and then held at 285oC for 4 min.  Hydrogen was used as 

the carrier gas and nitrogen was used as the makeup gas.  The chromatographic data (see 

Figure 2.21) were processed using Agilent Technologies GC Chemstation G2071AA 

A.10.01 (Agilent Technologies, Palo Alto).  Peak retention times were compared to 

standard cuticular hydrocarbons from S. invicta.  If there was ambiguity in a peak 

assignment, then mass spectra were obtained on an Agilent 5973 Network Mass Selective 

Detector US10480853 using Agilent 6890N Network Gas Chromatography System 

US10124023.  For the GC/MS runs, the injector was set at 300oC and the oven 

temperature was programmed from 100o to 285oC at 10o/min, and then held at 285oC for 

10 min with the transfer line set at 285oC.  Helium was used as the carrier gas for the 

column.  GC/MS data were processed using Agilent Enhanced GC/MS Chemstation 

software G1701DA version D.00.00.38.  
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Figure 2.21.  Gas chromatographic trace of cuticular hydrocarbons from S. invicta.   The 
compounds eluting off the capillary column were identified and quantified by GC/MS: (a) 
heptacosane, (b) 13-methylheptacosane, (c) 13, 15-dimethylheptacosane, (d) 3-
methylheptacosane, and (e) 3, 9-dimethylheptacosane.  Hexacosane was added for quantitation as 

uticular hydrocarbon extracts of pooled versus individual ant samples?  Second, is the 

an internal standard (IS). 
 
 
Several questions were addressed in this study.  First, is there an advantage to analyze the 

c

cuticular hydrocarbon patterns of S. invicta workers correlated with their age-linked 

temporal caste?  Third, do the hydrocarbon profiles of S. invicta significantly differ for 

each laboratory colony? And fourth, can the same methods used to distinguish colony of 

origin be used to track colony cuticular hydrocarbon changes over time? Previous studies 

[2-66 to 2-72] performed on differences in cuticular hydrocarbon profiles for carpenter 

ants and for C. niger have shown separation by colony, and temporal caste.  For S. 

invicta, it has been previously reported, albeit in a preliminary study, that cuticular 

hydrocarbon patterns were consistent within colonies for a given sampling time, but they 

varied sufficiently from colony to colony. The cuticular hydrocarbon profiles of S. invicta 

colonies also changed over time [2-73 to 2-75]. In these studies, the results were reported 

on a subset of the data collected and/or the multivariate methods used were limited in 
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their ability to extract information from the cuticular hydrocarbon profiles.  Furthermore, 

there was no attempt to deconvolve the confounding effects of the biological variables 

investigated.  For these reasons, a more exhaustive investigation of the biological 

variables that influence the cuticular hydrocarbon profiles of S. invicta was undertaken.  

To answer the first question, gas chromatograms of cuticular hydrocarbon extracts 

obtained from 65 pooled, reserve ant samples from five laboratory colonies were 

collecte

. The goal was 

 estima

d and analyzed using LDA, QDA, and RDA. The goal was to separate one colony 

from another.  The results of this study are summarized in Figure 2.22a.   

 Because there was no validation set, Monte Carlo simulation studies were 

performed to assess the statistical significance of the classification scores

to te the separation in the data due to chance using LDA, QDA, and RDA.  For 

these studies, data sets comprised of random numbers were generated.  Both Gaussian 

and uniform distributions were employed.  A method described in previous publications 

[2-76 and 2-77] was used to compute the expected level of chance classification for both 

the pooled and individual ant samples. For each chance classification study, 100 data sets 

consisting of random numbers were generated.  The statistical properties of the simulated 

data (i.e., dimensionality, number of samples, class membership distribution, and 

covariance structure) were identical to the actual data for which we wish to determine its 

degree of classification due to chance. For each random data set, its degree of separability 

was assessed.  The number of occurrences of several degrees of separation (e.g., at least 

70% of the patterns were correctly classified or at least 80% of the patterns were 

correctly classified) was noted and the fraction of the total number of occurrences 

(cumulative probability) for each degree of separation was plotted against the percentage 
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of patterns correctly classified.  These cumulative distribution curves provide information 

about the likelihood that a particular classification result is due to chance.  For example, 

if the classification score obtained for real data is 80% but the mean classification success 

rate for the simulated data is only 37% and the probability of achieving 65% correct 

classification due to chance is zero (see Figure 2.22b), the score obtained using the real 

data (80%, see Figure 2.22a) would be considered statistically significant.   

 Results from these Monte Carlo simulation studies are summarized in Figures 

2.22a and 2.22b.  For the QDA classification study involving the pooled ant samples (see 

 colonies as the pooled ant samples.  Each colony is 

Figure 2.22b), one hundred data sets consisting of random numbers were generated.  The 

statistical properties of the simulated data (i.e., dimensionality, number of samples, class 

membership distribution, and covariance structure) were identical to those of the 65 

pooled ant samples.  The separabililty of each random data set was assessed using QDA 

and a cumulative probability plot was generated for the random data.  The mean 

classification score of the 100 random data sets was also computed and compared to the 

classification score obtained in the QDA study for the GC data.  Since the mean 

classification success rate of the simulated data was only 57.3%, the classification score 

obtained for QDA using GC data expressed in nanograms was judged to be statistically 

significant (see Figure 2.22b).    

 Figure 3a summarizes the results obtained for 125 individual ant samples 

collected from the same laboratory

represented by 25 reserve workers. Figures 2.23a and 2.23b summarizes the results of the 

chance classification studies for this data. Results for RDA were not reported because 
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the values of γ and λ that gave the best classification for colony were 0, 0 which 

corresponds to QDA.   

 

 
 
Figure 2.22.  a) Comparison of the classification scores for the pooled ant samples versus the
verage degree of separation in the data due to chance.  b) Probability of achieving any degree of

 
Figure 2.23.  a) Comparison of the classification scores for the individual ant samples versus the
verage degree of separation in the data due to chance.  b) Probability of achieving any degree of 
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 For the pooled ant samples, there were 65 independent samples equally 

distributed among 5 classes.  For the individual ants, there were 125 independent samples 

distributed equally among 5 classes.  As the number of objects in a data set increases, the 

degree of separation due to chance will decrease.  For this reason, chance classifications 

are lower for the individual ants than for the pooled ant samples. 

An examination of Figures 2.22 and 2.23 reveals that differences between the 

classification-success rates obtained for real data versus random data are smaller for the 

individual ant samples.  This suggests that pooling the samples enhances the recognition 

of patterns indicative of colony in the cuticular hydrocarbon profiles of S. invicta when 

pattern recognition techniques are used to analyze the data.  Evidently, the contribution of 

the ant’s individual pattern to the overall hydrocarbon profile pattern obscures 

information about colony of origin in GC traces obtained from cuticular hydrocarbon 

extracts.  For these reasons, it is suggested that cuticular hydrocarbon profiles from 

pooled ant samples, not individual ant samples be studied to seek meaningful 

relationships between cuticular hydrocarbon profiles and biological variables such as 

colony of origin and temporal (social) caste.  

To address the question about patterns in the hydrocarbon profiles indicative of 

temporal caste, it was necessary to collect additional data.  A set of 170 gas 

chromatograms of cuticular hydrocarbon extracts were obtained from 170 S. invicta 

samples.  Each ant sample contains hydrocarbons extracted with hexane from the cuticle 

of 100 individual ants.  The ant samples were obtained from 5 laboratory colonies (which 

were not the same laboratory colonies used in the pooled versus individual ant sample 

study), 3 temporal castes (foragers, reserves, and brood tenders), and the colonies were 
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sampled at four different time periods (three in the spring and summer, and one in the 

winter).   

 The first step was to analyze the data using PCA.  Figure 2.24 is a plot of the two 

 
 
Figure 2.24.  A plot of the two largest principal components of the 170 pooled red fire ant 
amples and the five high molecular weight hydrocarbon compounds that characterize the cuticle 

largest principal components of the 170 pooled S. invicta samples and the five GC peaks 

that characterize each sample.  Each pooled ant sample is represented as a point in the 

principal component map of the data.  It is evident from the plot that sample 31 (colony 

1) is an outlier, and this sample was subsequently deleted from the analysis because of 

the adverse effect that outliers can have on the performance of pattern recognition 

methods. 

 

Outlier

s
of S. invicta.  Each ant sample is represented as a point in the principal component map of the 
data.  1 is a pooled ant sample from colony 1; 2 is a pooled ant sampled from colony 2; 3 is a 
pooled ant sample from colony 3; 4 is a pooled ant sample from colony 4; 5 is a pooled ant 
sample from colony 5.  
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 For each laboratory colony, the data were divided into three categories 

according to temporal caste.  Previous analyses of the cuticular hydrocarbons [2-74 and 

2-75] using PCA to analyze the GC profiles of the hydrocarbon soaks revealed patterns 

indicative of the temporal caste of the S. invicta samples in only one of the five 

laboratory colonies investigated.  Therefore, CVA was performed to separate the pooled 

ant samples in each colony by temporal caste.  The results of this study are summarized 

in Figures 2.25, 2.26, 2.27, 2.28, and 2.29.  Each pooled ant sample is represented as a 

point in the CVA map of the data.  Foragers, which are represented by the symbol 1, 

could be readily differentiated from brood tenders (represented by the symbol 2) and 

reserves (represented by the symbol 3) in four of the five laboratory colonies (colonies 1, 

2, 4, and 5) investigated.  Because reserves can assume the role of brood tenders, it is 

plausible that both reserves and the brood tenders could have similar hydrocarbon 

profiles. 

 
Figure 2.25.  A plot of the two largest canonical variates of the pooled ant samples obtained from 
colony 1.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is a 
pooled forager ant sample; 2 is a pooled reserve ant sample; and 3 is a pooled brood tender ant 
sample.  Separation of the foragers from brood tenders and reserves in the plot is evident. 

1 = Foragers
2 = Brood tenders
3 = Reserves
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Figure 2.26.  A plot of the two largest canonical variates of the pooled ant samples obtained from 
colony 2.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is a 
pooled forager ant sample; 2 is a pooled brood tender ant sample; and 3 is a pooled reserve ant 
sample.  Separation of the foragers from brood tenders and reserves in the plot is evident. 

1 = Foragers
2 = Brood tenders
3 = Reserves

 
 
 

 
Figure 2.27.  A plot of the two largest canonical variates of the pooled ant samples obtained from 
colony 3.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is a 
pooled forager ant sample; 2 is a pooled brood tender ant sample; and 3 is a pooled reserve ant 
sample.  Clustering of the pooled ant samples on the basis of social caste is not observed in this 
plot.  

1 = Foragers
2 = Brood tenders
3 = Reserves
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Figure 2.28.  A plot of the two largest canonical variates of the pooled ant samples obtained from 
colony 4.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is a 
pooled forager ant sample; 2 is a pooled brood tender ant sample; and 3 is a pooled reserve ant 
sample.  Separation of the foragers from brood tenders and reserves in the plot is evident. 

1 = Foragers
2 = Brood tenders
3 = Reserves

 
 
 

 
Figure 2.29.  A plot of the two largest canonical variates of the pooled ant samples obtained from 
colony 5.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is a 
pooled forager ant sample; 2 is a pooled brood tender ant sample; and 3 is a pooled reserve ant 
sample.  Separation of the foragers from brood tenders and reserves in the plot is evident. 

1 = Foragers
2 = Brood tenders
3 = Reserves
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Figure 2.30 shows a CVA plot of the GC data from colonies 1, 2, 4, and 5.  The 

data was divided into three classes according to social caste.  Again, separation of the 

foragers from the reserves and brood tenders is evident. When social caste is investigated 

on a per colony basis, separation of the foragers from the reserves and the brood tenders 

occurred on the first canonical variate.  Upon investigating social caste as the class 

variable using GC data from colonies 1, 2, 4, and 5, separation of the foragers from the 

reserves and brood tenders occurred on the second canonical variate. These results (see 

Figures 2.25 thru 2.29 versus Figure 2.30) confirm that patterns correlated to temporal 

caste are present in the cuticular hydrocarbon profiles of S. invicta, but are not the major 

source of variation in the hydrocarbon profiles obtained from pooled ant samples.   

 
 

 
Figure 2.30.  A plot of the two largest canonical variates of the pooled ant samples obtained from 
all five colonies.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 
is a pooled forager ant sample; 2 is a pooled brood tender ant sample; and 3 is a pooled reserve 
ant sample.  Separation of the foragers from the brood tenders and reserves in the plot is evident.  

1 = Foragers
2 = Brood tenders
3 = Reserves
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 Temporal changes in the cuticular hydrocarbon profiles were also investigated. 

For each colony, the data was divided into four categories according to the time period of 

sampling.  CVA was performed to separate pooled ant samples in each colony by time 

period.  Monte Carlo simulation experiments were also performed in tandem to assess the 

degree of separation in the data due to chance.  One hundred data sets comprised of 

random numbers with Gaussian distributions that had statistical properties (i.e. 

dimensionality, number of samples, class membership distribution, and covariance 

structure) identical to those of the real data were generated. CVA was performed on a 

data set that was an average of the 100 random data sets generated.  The results are 

summarized graphically, see Figures 2.31 through 2.40.  It is evident from the Monte 

Carlo simulation experiments that separation of the pooled ant samples by time period in 

the CVA plots cannot be attributed to chance. 

 
Figure 2.31.  A plot of the three largest canonical variates of the pooled ant samples obtained 
from colony 1.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is 
a pooled ant sample from time period 1; 2 is a pooled ant sample from time period 2; 3 is a 
pooled ant sample from time period 3; and 4 is a pooled ant sample from time period 4.  
Clustering of the pooled ant samples by time period is evident in this plot.  
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Figure 2.32.  A plot of the three largest canonical variates of the simulated data sets for colony 1.  
Clustering of the pooled ant samples by time period is not evident in this plot.  
 
 

 
Figure 2.33.  A plot of the three largest canonical variates of the pooled ant samples obtained 
from colony 2.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is 
a pooled ant sample from time period 1; 2 is a pooled ant sample from time period 2; 3 is a 
pooled ant sample from time period 3; and 4 is a pooled ant sample from time period 4.  
Clustering of the pooled ant samples by time period is evident in this plot. 
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Figure 2.34. A plot of the three largest canonical variates of the simulated data sets for colony 2.  
Clustering of the pooled ant samples by time period is not evident in this plot. 
 
 

 
Figure 2.35.  A plot of the three largest canonical variates of the pooled ant samples obtained 
from colony 3.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is 
a pooled ant sample from time period 1; 2 is a pooled ant sample from time period 2; 3 is a 
pooled ant sample from time period 3; and 4 is a pooled ant sample from time period 4.  
Clustering of the pooled ant samples by time period is evident in this plot. 
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Figure 2.36. A plot of the three largest canonical variates of the simulated data sets for colony 3.  
Clustering of the pooled ant samples by time period is not evident in this plot. 
 
 

 
Figure 2.37.  A plot of the three largest canonical variates of the pooled ant samples obtained 
from colony 4.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is 
a pooled ant sample from time period 1; 2 is a pooled ant sample from time period 2; 3 is a 
pooled ant sample from time period 3; and 4 is a pooled ant sample from time period 4.  
Clustering of the pooled ant samples by time period is evident in this plot. 
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Figure 2.38. A plot of the three largest canonical variates of the simulated data sets for colony 4.  
Clustering of the pooled ant samples by time period is not evident in this plot. 
 
 

 
Figure 2.39.  A plot of the three largest canonical variates of the pooled ant samples obtained 
from colony 5.  Each pooled ant sample is represented as a point in the CVA map of the data.  1 is 
a pooled ant sample from time period 1; 2 is a pooled ant sample from time period 2; 3 is a 
pooled ant sample from time period 3; and 4 is a pooled ant sample from time period 4.  
Clustering of the pooled ant samples by time period is evident in this plot. 
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Figure 2.40. A plot of the three largest canonical variates of the simulated data sets for colony 5.  
Clustering of the pooled ant samples by time period is not evident in this plot. 
  
 

 Each laboratory colony exhibited a different pattern of change with time. In our 

previous studies [2-74 and 2-75], we were able to determine that S. inivcta cuticular 

hydrocarbon profiles from time period four were different from the cuticular hydrocarbon 

profiles of the other time periods and that only one laboratory colony exhibited a 

systematic change in its cuticular hydrocarbon profile over time.  The results obtained in 

the present study indicate that cuticular hydrocarbon profiles of each S. invicta colony 

change with time.   However, the pattern of change as shown in each CVA plot is 

different for each colony.  In some instances, all of the time periods are well separated 

whereas in other instances only two of the four time periods are well separated.  This 

should not come as a surprise for the cuticular hydrocarbon profiles of S. invicta may be 

a dynamic system that undergoes changes with time and the nature of this change will be 

different for each colony.  
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 The cuticular hydrocarbon profiles of S. invicta were also found to be 

characteristic of the individual colony.  For each time period, the data was divided into 

five categories according to the colony of origin of the pooled ant samples.  Again, 

decision surfaces were developed from the five major hydrocarbon components.  QDA 

was used to classify the data by colony for each time period.  Monte Carlo simulation 

studies were also performed to assess the degree of separation in the data due to chance. 

The results of these studies are summarized in Figure 2.41.  Clearly, the cuticular 

hydrocarbon profiles of the red fire ants are characteristic of the colony of origin for a 

given time period.   However, it was surprising that our Monte Carlo simulations revealed 

high chance classification success rates for the case of 45 samples distributed equally 

among 4 classes with each sample characterized by 5 measurements using QDA. Chance 

classification may be a more serious problem with QDA than was previously thought. 
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Figure 2.41.  A comparison of the classification scores for colony versus the degree of separation 
in the data due to chance at (a) time period 1, (b) time period 2, (c) time period 3, and (d) time 
period 4. 
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QDA was also used to classify the data by colony across all time periods. The 

results of this study are summarized in Figure 2.42. To assess the significance of these 

classifications, Monte Carlo simulation studies were performed. The results of these 

studies are summarized in Figures 2.42 and 2.43. Differences in chance classification 

across all time periods versus individual time periods were due to the larger number of 

samples involved in colony classification across all time periods. Using the Monte Carlo 

simulation studies as a benchmark, it is evident that classifications obtained in the QDA 

study across all time periods are significant for four of the five laboratory colonies. When 

the classifications for colony from each time period (see Figure 2.41) are compared to the 

classifications for colony across all time periods (see Figure 2.42), it is evident that 

cuticular hydrocarbon profiles of S. invicta change with time, which can confound the 

classification of GC profile data by colony using pattern recognition techniques. This is 

most evident in the cuticular hydrocarbon profiles of pooled samples of S. invicta from 

colonies 4 and 5. The changes in the cuticular hydrocarbon profiles that occurred in 

laboratory colonies 4 and 5 over time caused their cuticular hydrocarbon profiles to 

overlap.  For example, cuticular hydrocarbon profiles from colony 5 at time period 1 

were similar to those of colony 4 at time period 3.     

 It has been previously reported [2-74 and 2-75] that 4 of 5 laboratory colonies 

could be differentiated on the basis of their cuticular hydrocarbon profiles. These studies 

were carried out by formulating the problem as a series of binary classifications using the 

linear learning machine and related linear nonparametric methods of classification. In the 

current study, better multivariate analysis methods have been used and the analysis of the 

cuticular hydrocarbon data was more detailed in its scope.  From the current study, we 
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have learned that all five colonies could be separated on the basis of their cuticular 

hydrocarbon profiles when data from each time period is analyzed separately.  When 

colonies are analyzed using data from all of the time periods, the classifications become 

confounded which considerably strengthens the previously stated conclusion that 

cuticular hydrocarbon profiles of red fire ants change over time.  

 

 

94.3 96.3
100

88.6

41.7

83.4

39.1
44.4

38.5 39.2 40.5 40.1

0

20

40

60

80

100

120

Colony 1 Colony 2 Colony 3 Colony 4 Colony 5 All Colonies

C
la

ss
ifi

ca
tio

n 
Su

cc
es

s 
Ra

te
 (

%
)

All Time Periods

Original Data

Random Data

 
Figure 2.42.  A comparison of the classification scores for colony across all time periods versus 
the degree of separation in the data due to chance. 
 
 

 
Figure 2.43.  Probability of achieving any degree of separation in the data due to chance for all 5 
laboratory colonies using QDA.  There is a 50% probability of achieving a classification score of 
40.1%. 
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 The GC traces representing ant cuticle extracts can be related to colony of 

origin and temporal caste.  These results support a correlative role for cuticular 

hydrocarbons in nestmate recognition. However, it remains for specific behavioral 

bioassays with purified hydrocarbons to determine if cuticular hydrocarbons are in fact 

used by S. invicta in nestmate recognition. In addition, the re-analysis of temporal caste 

and time on cuticular hydrocarbon patterns demonstrates that sampling time and social 

caste must be taken into account to avoid unnecessary variability and possible 

confounding.  This and the fact that foragers could not be separated from reserves and 

brood-tenders in all five laboratory colonies suggests that cuticular hydrocarbons as a 

class of compounds cannot model every facet of nestmate recognition in S. invicta which 

in turn suggests a potential role for other compounds in the discrimination of alien 

conspecifics from nestmates.     

 It is truly remarkable that all of this information (social caste, colony of origin, 

and time period) is contained in the concentration pattern of five high molecular weight 

hydrocarbons which comprise a dynamic system that changes with time with the nature 

of these changes being different for each colony.   Neither colony of origin, social caste, 

nor time period is the major source of variation in the data although distinct patterns in 

the concentration profiles of the five hydrocarbons characteristic of these biological 

variables can be identified.   

This study also demonstrates the importance of using pattern recognition methods 

to analyze complex chromatographic data sets and to seek meaningful relations between 

chemical constitution and biological variables.    The classification of complex biological 

samples on the basis of their GC profiles can be complicated by two factors: (1) 
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confounding of the desired group information by other systematic variations present in 

the data and (2) random or chance classification effects. The existence of these 

complicating relationships is an inherent part of fingerprint type data.   
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CHAPTER III 
 
 

GENETIC ALGORITHMS FOR PATTERN RECOGNITION AND 
FEATURE SELECTION 

 

 
 
 
 

A genetic algorithm (GA) for classification of multivariate chemical data has been 

developed as part of the research described in this thesis.  The pattern recognition GA 

identifies features that convey information about differences between sample classes in a 

plot of the two or three largest principal components of the data.  The GA is also 

equipped to perform advanced tasks such as outlier detection, identification of training 

set samples that do not have the proper class label, and elucidation of clustering trends 

and data structures in large multivariate chemical data sets. The design of the pattern 

recognition GA incorporates aspects of artificial intelligence and evolutionary 

computations to yield a “smart” one-pass procedure for feature selection and 

classification of chemical data. The general concept and methodology of genetic 

algorithms are discussed in this chapter followed by a detailed discussion of the pattern 

recognition GA used in the studies described in this thesis for feature selection. 
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3.1 GENETIC ALGORITHMS 

Genetic algorithms were pioneered by John Holland [3-1]. They are adaptive 

heuristic search algorithms that simulate the process of evolution to solve optimization 

problems. Genetic algorithms use a population of strings to encode potential solutions for 

an optimization problem.  A search of the solution space is conducted by exploiting 

knowledge contained in the population while simultaneously utilizing randomized 

operators to generate new and potentially better solutions.   Each string or point is tested 

individually and desirable features from existing points are combined to form a new 

population of strings that often yield better solutions to the problem.  A GA only requires 

knowledge about the quality of the solution generated by each string or parameter set.   

Genetic algorithms have several advantages over conventional search algorithms.  

They work with the entire parameter set whereas conventional optimization techniques 

manipulate the parameters independently.  This can pose a problem if an object function 

becomes overly sensitive to one parameter as the optimization function will tend to focus 

its effort on the troublesome parameter at the expense of the other parameters.   

Genetic algorithms consider simultaneously many points in the search space.  

More of the response surface is probed reducing the change of convergence to a local 

minimum since genetic algorithms utilize parallelism as a large number of candidate 

solutions are searched simultaneously.   

Genetic algorithms make no assumption about the geometry of the response 

surface.  They do not require any knowledge of the search space beyond the fitness of 

individual solutions Discontinuities or singularities in the response surface which prevent 

the use of calculus (derivative) or simplex based methods will not cause a problem for the 
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GA.  The computational environment offered by a GA can be readily adjusted to match a 

particular application allowing genetic algorithms to be tailored for individual problems.   

When applying genetic algorithms, there are two decisions that must be made: (1) 

How to code the parameters as chromosomes (potential solutions), and (2) How to 

evaluate the fitness of each chromosome?  Implementation of a genetic algorithm 

requires a population of candidate solutions and heuristics to manipulate them.  The 

optimization procedure used by a GA consists of five interrelated steps. 

• An initial population of strings (candidate solutions) is generated with each string 

representing a potential solution to the problem. 

• The strings are decoded yielding the actual parameter set sent to the fitness 

function for evaluation.  (Each string is assigned a value by the fitness function 

that is a measure of the quality of the proposed solution) 

• The fitness is used to select strings for the reproduction operator, which produces 

a new population of strings through recombination and mutation 

• The new population of solutions, which often yields better results for the problem, 

is evaluated by the fitness function. 

• This simple procedure is repeated until an optimal solution is found or a specified 

number of generations have been achieved 

 
During each generation, each solution in the population is evaluated by a fitness 

function.  Solutions with a high fitness value have a high probability of being selected for 

crossover (the operator often used for reproduction) and mutation.  The power of the GA 

arises from crossover, which causes a structured yet randomized exchange of information 

between solutions with the possibility that good solutions can lead to better ones.  
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Crossover enables the GA to investigate large regions of the solution space making the 

GA more robust to local optima.  

Figure 3.1 provides an outline of the main steps involved in the operation of a simple 

genetic algorithm. The procedure begins with the generation of an initial population of 

strings.   A genetic algorithm uses binary strings of uniform length known as 

chromosomes where each binary bit is analogous to a gene.  The identity of a gene 

depends on its location in the chromosome.  A bit-value of 0 or 1 stands for the absence 

or presence of a particular feature in the solution with 0 indicating its absence and 1 

indicating the presence of the feature.  Bit-values for all chromosomes in the initial 

population are randomly chosen.   

 

 

Figure 3.1.  Processes involved in the operation of a simple genetic algorithm. 

 

95 
 



Each chromosome in the population is scored.  The objective function used to score 

the chromosomes is called the fitness function.  After evaluation, reproduction operators 

are used to generate a new population of chromosomes. The process of reproduction is 

implemented using three operators: selection, cross-over and mutation.  During selection, 

chromosomes are chosen for reproduction with the selection probability proportional to 

their fitness. Chromosomes with higher fitness scores are more likely to be selected.  

Crossover involves a structured yet randomized recombination of the selected 

chromosomes (see Figure 3.2).  Two parent chromosomes selected for reproduction 

undergo an exchange of binary bits at a randomly selected crossover point to yield two 

new off-spring chromosomes. Mutation is the random alteration of a single bit in a string 

and occurs with a predefined probability which is usually very low.   Mutation is used to 

explore regions of the solution space above and below those that are being probed.  The 

new generation of chromosomes replaces the older chromosomes in the population. The 

process of evaluation and reproduction of is repeated until a feasible solution is found or 

a certain number of generations have been exceeded.  

 

 

                Figure 3.2.  An example of one-point crossover 
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The selection criteria for reproduction exhibits bias towards higher ranking 

chromosomes. However, crossover and mutation operators ensure a significant degree of 

diversity in the solution population.  As the population evolves by sampling more often 

from regions of the search space with higher average fitness, the average fitness of the 

population is expected to improve over successive generations.   Although the GA has 

access only to the chromosomes of the current population and their fitness, the 

information extracted from the potential solutions is about the relationship between the 

chromosomes and their fitness.  Highly fit chromosomes after they are identified often 

guide the search.  This vast wealth of information explored by the GA is quantified by a 

framework called schema or similarity template.  

A schema also referred to as a similarity template [3-2] represents a set of 

chromosomes.  For example, the schema {1 * * * * * * 0} will match all chromosomes 

with eight bits that start with 1 and end with 0 with either 0 or 1 in positions 2 thru 7.  

Genetic algorithms use schema implicitly.  For a genetic algorithm operating on a 

population of chromosomes of fixed length l, there are 3l unique schema or patterns.  

Each chromosome is a member of 2l of them.   For example, {0.1} is a member of the 

following schema: {01}, {*1}, {0*}, and {**}.  When the fitness function of a genetic 

algorithm is evaluating a chromosome, it is also evaluating many schemas.  In a 

population of identical chromosomes, there are 2l schema present, and in a population of 

n unique chromosomes, there can be as many as n2l schema represented. Evaluating 

different chromosomes which are members of the same schema can be thought of as 

estimating the average value of that pattern.  Even though these averages are not 
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explicitly calculated, the survival of the pattern and the number of representative 

chromosomes can be expressed in terms of these averages. 

Let S be a schema present in the population at generation g.  Its multiplicity, ݉ሺܵ, ݃ሻ is defined as the number of instances of S in the population at generation g.  The 

expected number of chromosomes which represents S in the next generation is given by 

Equation 3.1 (the schema theorem): 

 

 ݉ሺܵ, ݃ ൅ 1ሻ   ൒  ݉ሺܵ, ݃ሻ ݂ሺܵሻ݂ҧ ቆ 1 െ ௖݌ ݀ሺܵሻ݈ െ 1 ቇ ሺ1 െ  ௠ሻ௢ሺௌሻ (3.1)݌ 

 

where ݉ሺܵ, ݃ ൅ 1ሻ is the expected number of chromosomes representing schema S in the 

next generation (g + 1) based on the number of chromosomes representing schema S in 

the current generation, ݉ሺܵ, ݃ሻ.  The ratio of the fitness of the chromosome representing 

schema S to the average fitness of the population is given by ௙ሺௌሻ௙ҧ , and collectively 

݉ሺܵ, ݃ሻ ௙ሺௌሻ௙ҧ   is the likelihood that schema S is represented in the population.  Due to 

selection pressure alone, schema will grow or decay depending on their fitness [3-3].  

However, chromosomes selected for reproduction will undergo crossover and mutation.  

These operators can disrupt the schema S such that S is not present in the next generation.  

The second factor in Equation 3.1, ቀ 1 െ ݌௖  ௗሺௌሻ௟ିଵ  ቁ accounts for the probability that S 

survives crossover; ݌௖ is the probability that a chromosome undergoes crossover. The last 

factor in Equation 3.1, ሺ1 െ  ௠ሻ௢ሺௌሻ, accounts for the probability that S survives the݌ 

98 
 



mutation operator.  Here, ݌௠ is the probability that a given bit is flipped, and ݋ሺܵሻ is the 

order of S or the number of non-* bits in S.   

 The consequence of a genetic algorithms use of schema is an implicit parallelism 

[3-4].  At each evaluation, the genetic algorithm is aware of a particular point in the 

fitness landscape because of the chromosomes it is evaluating.  According to the schema 

theorem, the genetic algorithm makes observations about areas of the search space based 

on the schema, which allows the genetic algorithm to focus its attention on “hot spots” or 

areas likely to have a high fitness in the solution space similar to that of a gradient 

descent search.  (In a gradient descent search, the value at a random position is 

calculated. The points around it are also inspected to calculate the direction and 

magnitude of greatest local descent.  A new point in that direction is sampled and the 

process is repeated until the minimum is reached.)  An obvious difference between these 

two methods (genetic algorithm versus gradient descent) is the number of points sampled 

per iteration. Even when the gradient descent method is modified to sample multiple 

points per iteration, the next point or set of points is near the last in the solution space, 

whereas genetic operators such as crossover and mutation produce points which are near 

or are distant from the parents in the solution space depending on the bits that are 

exchanged or flipped in the chromosome.  Consequently, a genetic algorithm is less 

likely to get stuck in a local minimum in the solution space. 

 Genetic algorithms are probabilistic, neither random nor deterministic.  This is 

demonstrated in the selection process where a chromosome’s chances of being selected 

are weighted against its fitness.  It is preferable that offspring are not produced in the 

same way each time.  This is addressed by assigning a probability to each reproductive 
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function.  When two chromosomes are selected for reproduction, a mechanism is chosen 

according to its probability (P).  The user can assign pm equal to 0.01 and pc equal to 0.5. 

This mixing of reproductive operations preserves a certain amount of variation in the 

population 

 
3.2 GENETIC ALGORITHM FOR FEATURE SELECTION AND PATTERN 
RECOGNITION  
 

The genetic algorithm for feature selection and pattern recognition uses principal 

component plots to characterize the information contained in feature subsets of the data.  

For a classification problem, the amount of information in a set of features about class 

differences is directly proportional to the magnitude of the class separation achieved in a 

plot of the two or three largest principal components of the feature subset.  An 

improvement in the separation of the classes in a principal component plot corresponds to 

an increase in the amount of information about class differences captured by a specific 

feature subset.  PCA is incorporated into the fitness function of the pattern recognition 

GA to provide an information filter which reduces the size of the search space by limiting 

the search to feature subsets that enhance the separation between classes in the data set.  

The approach to feature selection for classification described in this chapter is 

based on a very simple idea - identify a set of measurement variables that optimize the 

separation of the classes in a plot of the two or three largest principal components of the 

data. Because principal components maximize variance, the bulk of the information 

encoded by these features is about differences between classes in the data set.  This idea 

is demonstrated in Figure 3.3, which shows a plot of the two largest principal components 

of a data set prior to feature selection.  The data set consists of 30 samples distributed 
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between 3 classes (good, better, and best).  Each sample is characterized by 10 

measurements.  However, only 4 of these measurements contain information about the 

classification problem.  When a principal component map of the data is developed using 

only these 4 measurements, sample clustering on the basis of class is evident. 

Using this approach to feature selection, an eigenvector projection of the data is 

developed that discriminates classes in the data set by maximizing the ratio of between- 

to within-group variance.  This approach to feature selection has a number of advantages.  

It avoids overly complicated solutions, which do not perform as well on the prediction set 

because of over-fitting.  Although a principal component plot is not a sharp knife for 

discrimination, if we have a principal component plot that shows clustering, then our 

experience is that we will be able to predict robustly using this set of descriptors. 

Furthermore, the principal component plot displays the variability between large numbers 

of samples and show the major clustering trends present in the data; the user can visually 

identify the presence of confounding relationships in the data, thereby gaining insight 

into how the decision is made for a classification.   

A block diagram that illustrates the general operation of the pattern recognition 

GA for feature selection is shown in Figure 3.4.  The fitness functions used, the 

reproduction operators and the mechanism to adjust internal parameters of the GA for 

guiding the search in the right direction via adjustment of the fitness function are 

important aspects of the pattern recognition GA that make it unique.  The operators 

unique to the pattern recognition GA are described below 
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Figure 3.3.  A plot of the two largest principal components of 10 features in the data set does not 
show class separation.  When principal components are developed from features that contain 
information about class, clustering on the basis of the sample’s class label (1= low, 2 = medium, 
and 3 = high) is evident. 
 
 
 

 

Figure 3.4.  Block diagram of the pattern recognition GA used for feature selection. 
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3.2.1 Fitness Function. To evaluate and compare different chromosomes, an 

object function that quantifies the fitness of individual chromosomes needs to be 

formulated.  One fitness function that is used by the pattern recognition GA for feature 

selection is PCKaNN [3-5 – 3-11]. PCKaNN utilizes both PCA and K-NN to score each 

feature subset in the population.  For each chromosome in a population, PCA is used to 

plot the corresponding data using the two or three largest principal components of the 

data.  The degree of class separation in the principal component plot of the data is 

assessed using the K-NN classification method.  Class and sample weights which are an 

integral component of PCKaNN are computed using Equation 3.2 and Equation 3.3, 

where CW(c) is the weight of class c, and SW(s) is the weight of sample s in class c.  

To evaluate and compare different chromosomes an objective function that 

quantifies the fitness of individual chromosomes needs to be formulated.  The fitness 

function used by the pattern recognition GA for feature selection is PCKaNN [3-5 to 3-

11]. PCKaNN is a combination of principal component analysis (PCA) and K-nearest 

neighbor (K-NN) method. For each chromosome of a given population, PCA is first used 

for extracting the information content of the feature subset and mapping it in a plot of its 

two or three largest principal components. Then the K-NN method is used for 

quantitatively characterizing the amount of class separation achieved in the PC-plot. 

Class and sample weights are computed as shown by Equations (3.1) and (3.2) 

respectively, where CW(c) is the weight of class c, and SW(s) is the weight of sample s in 

class c.  
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ሺܿሻܹܥ  ൌ 100 ∑ሺܿሻܹܥ ሺܿሻ௖௜ୀଵܹܥ  (3.2) 

 

 ܵ ௖ܹሺݏሻ ൌ ሺܿሻܹܥ ܵ ௖ܹሺݏሻ∑ ܵ ௖ܹሺݏሻௌא஼  (3.3) 

 

The sum of the sample weights for objects assigned to a particular class is equal 

to the class weight, and the sum of all class weights in the data set is equal to 100.   For a 

given data point, Euclidean distances are computed between it and every other point in 

the principal component plot.  These distances are arranged from smallest to largest.  A 

poll is then taken of the point’s kc-nearest neighbors.  (Kc is set by the user, and for the 

most rigorous classification, Kc equals the number of samples in the class to which the 

point belongs.  The number of Kc-nearest neighbors with the same class label as the 

sample point in question, called the sample hit count (SHC), is computed (0 < SHC(s) < 

Kc).  It is then a simple matter to score a principal component plot (see Equation 4). 

 

ܨ  ൌ ෍ ෍ ௖א௖௦ܭሻݏሺܥܪܵ ܹܵሺݏሻ௖  (3.4) 

 

To better understand the scoring of the principal component plots, consider a data 

set with two classes, which have been assigned equal weights.  Class 1 has 10 samples, 

and class 2 has 20 samples.  At generation 0, the samples in a given class will have the 

same weight.  Thus, each sample in class 1 has a sample weight of 5, whereas each 

sample in class 2 has a weight of 2.5.  Suppose a sample from class 1 has as its nearest 
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neighbors 7 class one samples.  Hence, SHC/K = 0.7, and (SHC/K)*SW = 0.7*5, which 

equals 3.5.  By summing (SHC/Kc)*SW for each sample, each principal component plot 

can be scored. 

 

3.2.2 Reproduction. The process of creating a population with a higher average 

fitness score is called reproduction.  The steps involved in reproduction are: (1) Selection, 

(2) Crossover, and (3) Mutation.  Selection of chromosomes for reproduction should take 

into account their fitness while ensuring the existence of sufficient diversity in the 

population.  Selection in the pattern recognition GA is implemented by ordering the 

population of strings, i.e. potential solutions, from best to worst, while simultaneously 

generating a copy of the same population and randomizing the order of the strings in this 

copy with respect to their fitness (see Figure 3.5).  A fraction of the population is then 

selected as per the selection pressure, which is set at 0.5. The top half of the ordered 

population undergoes reproduction with strings from the top half of the random 

population, guaranteeing the best 50% are selected for reproduction, while ensuring that 

every string in the randomized copy has an equal probability of being selected.  If a 

purely biased selection criterion were used to select strings, only a small region of the 

search space would be explored.  Within a few generations, the population would consist 

of only copies of the best strings in the initial population.  By using this two step 

approach for reproduction, a randomized selection criterion as well as one based on 

fitness is imposed on the strings (i.e., potential solutions) from the population ensuring 

that sufficient genetic diversity is always maintained.  Maintaining genetic diversity is 

necessary to allow the population to evolve to better solutions by widening the search 
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space and preventing premature convergence.  This has been a problem with some of the 

more popular reproduction operators, such as the roulette wheel and tournament 

selection.   

Highest 
fitness

Lowest 
fitness

Best to worst set Random set

Next Generation

 
 
Figure 3.5. The top half of the ordered population is mated with strings from the top half of the 
random population, guaranteeing the best 50% are selected for reproduction, while every string in 
the randomized copy has an equal chance of being selected. 
 
 

For each pair of strings selected for mating, two new strings are generated using 

three-point crossover.  A mutation operator is then applied to the new strings. The 

mutation probability of the operator is usually set at 0.01, so 1% of the feature subsets are 

selected at random for mutation. A chromosome marked for mutation has a single 

random bit flipped, which allows the GA to explore other regions of the parameter space.  

The resulting population of strings, both the parents and children, are sorted by fitness, 

with the top φ  strings retained for the next generation. Because the selection criterion 

used for reproduction exhibits bias towards the higher-ranking strings, the new 

population is expected to perform better on average than its predecessor. The 
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reproductive operators used, however, also assure a significant degree of diversity in the 

population, since the crossover points of each chromosome pair is selected at random.  

 

3.2.3 Boosting (Adjusting Internal Parameters). Using the information gained 

from the solutions (feature subsets) of the previous generation, the genetic algorithm can 

focus on those classes and samples that are more difficult to classify by adaptively 

changing their weights. This process is called boosting [3-12 to 3-18].  (Boosting the 

weights is referred to as adjusting the internal parameters in the block diagram of the 

pattern recognition GA shown in Figure 3.4.) The first step in boosting is to compute the 

sample and class hit-rates using Equations 3.5 and 3.6 to characterize the degree of 

difficulty of classifying a particular sample or class using the entire population of feature 

subsets. The sample hit-rate, SHR(s), is the mean value of the mean value of SHC/Kc for 

sample s over all the feature subsets of the population, and the class hit-rate, CHR(c), is 

the mean sample hit-rate of all samples in a class.  φ in Equation 3.5 is the number of 

chromosomes in the population, and AVG in Equation 3.6 refers to the average or mean 

value for the sample hit rate. 

 

ሻݏሺܴܪܵ  ൌ 1߮ ෍ ఝܭሻݏ௜ሺܥܪܵ
௜ୀଵ  (3.5) 

 

௚ሺܿሻܴܪܥ  ൌ ൫݃ݒܽ :ሻݏ௚ሺܴܪܵ ௦׊ א ௖ ൯ (3.6) 
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Sample and class hit-rates from the previous generation are used to update the 

sample and class weights for the next generation using Equations 3.7 and 3.8, where g is 

the previous generation, g+1 is the current generation, and P is the momentum or 

learning rate (which is set by the user).  Sample and class weights after adjustment using 

a perceptron algorithm are renormalized using Equations 3.2 and 3.3.  

 

ܥ  ௚ܹାଵሺܿሻ ൌ ܥ ௚ܹሺܿሻ ൅ ܲ ቀ1 െ  ௚ሺܿሻቁ  (3.7)ܴܪܥ

 

 ܵ ௚ܹାଵሺݏሻ ൌ ܵ ௚ܹሺݏሻ ൅ ܲ ቀ1 െ  ሻቁ (3.8)ݏ௚ሺܴܪܵ

 

Classes and samples that are difficult to classify will have lower hit-rates.  They 

will be more heavily weighted in the next generation.  Their higher impact on the fitness 

function provides a driving force for the pattern recognition GA to search for feature 

subsets that can correctly classify difficult samples and/or classes. Unlike support vector 

machines or back propagation neural networks, all samples and classes contribute to the 

overall fitness score.    

Boosting is performed in two stages. In the initial stage, the learning rate P is set 

at 0.5 to facilitate learning of the optimal class weights. Once the class weights become 

stable, i.e., the change in the class weights falls below some threshold tolerance, the class 

weights are fixed and Equation 3.7 is turned off for the remaining generations.  During 

the second stage of boosting, P is set to 0.25. These values for P have been chosen in part 

because they facilitate learning by the genetic algorithm but do not cause a particular 
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sample or class to dominate the calculation, which would result in the other samples or 

classes not contributing to the scoring by the fitness function. 

Boosting is crucial for the successful operation of the pattern recognition GA 

because it modifies the fitness landscape by adjusting values of both class and sample 

weights.  This helps to minimize the problem of convergence to a local optimum.  Hence, 

the fitness function of the pattern recognition GA changes as the population is evolving 

towards a solution using information from the population to guide these changes.  The 

cycle of evaluation, reproduction, and boosting of potential solutions is repeated until a 

feasible solution is found or a specified number of generations are attained. 

There are a number of parameters that affect the performance of the pattern 

recognition GA including the choice of the crossover and mutation rate and the 

configuration of the initial population.  The experience of our research group using the 

pattern recognition GA has shown that 3-point crossover works.  However, the number of 

features in each feature subset of the initial population should also be treated as an 

important parameter.  If the feature sets are initially sparse, the probability of including 

features, which are neither good nor bad, is low since the principal component based 

fitness function does not provide additional points for adding them.  Conversely, the 

probability of removing these features from less sparse feature subsets is also low since 

there is no advantage in deleting them.  For data sets with a large number of good 

features, it is probably best not to employ sparse feature subsets in the initial population.  

Otherwise, it may take thousands of generations to ensure the inclusion of all good 

features in the solution. 
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To ensure removal of features, which are neither good nor bad, the corresponding 

loading plot that is generated with each principal component plot can be examined by the 

pattern recognition GA. If the loadings for a particular feature are near zero with both 

principal components, the descriptor is a likely candidate for removal since its 

contribution to the principal component score plot is negligible.  Even good feature 

subsets often contain some features that are uninformative.  The information derived 

from such a feature subset is equivalent to the subset with the uninformative features 

removed.  As there is no explicit benefit gained by removing these features due to the 

attributes of PCA, they tend to remain lodged in the feature subset and could be 

misinterpreted as important features. 

As part of the pattern recognition GA, a culling routine has been developed to 

remove these irrelevant features by careful examination of the corresponding principal 

component loading plots. Features with loadings near zero will have negligible 

contributions towards the computation of the principal components and are removed if 

they lie within a user specified radius of the origin in a plot of the loadings.  Other 

parameters that can be controlled by the user for the implementation of culling are the 

culling frequency and the culling pressure. The culling frequency is the number of 

generations after which the culling is repeated. The fraction of the population to which 

culling is applied is indicated by the culling pressure.  Culling is often implemented every 

25 generations to check for features that are neither good nor bad.  During the generation 

when culling is implemented, crossover is not performed on the strings.  

Varying the composition of the initial population or the mutation rate can prove 

beneficial in optimizing a solution but this fact should not be viewed negatively as 
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suggested by some workers since it allows the user to vary the search of the solution 

space ensuring a more careful analysis of the data.  Given the small number of iterations 

required for a solution (usually less than 100), the advantages of using these two GA 

parameters as search variables outweighs any disadvantage that might be incurred due to 

increased complexity. 

A drawback of a genetic algorithm is that one cannot control the rate of 

convergence, but convergence is not what we are seeking.  A genetic algorithm can evade 

local optima, but this does not mean that convergence necessitates an optimal solution.  

Convergence as a benchmark for the success of a GA would suggest that any genetic 

algorithm provides a deficient solution.  However, the quality of the best solution found – 

and how quickly and reproducibly it is found – is the guide being used to determine the 

success of this method.  The ease, speed, and reproducibility of our pattern recognition 

GA have been demonstrated on a variety of data sets.  The success of the pattern 

recognition GA can be attributed to the large number of optimum solutions that exist in 

the data as a result of the high degree of collinearity between measurement variables in 

the data set.     

 

3.3 MODIFICATIONS TO PCKaNN 

By incorporating various modifications to PCKaNN, the fitness function of the 

pattern recognition GA has been generalized to tackle a variety of pattern recognition 

problems that are difficult to solve.  Three different modifications have been made to 

PCKaNN: (1) combination of the Hopkins statistic with PCKaNN to perform transverse 

learning, (2) combination of a modified Hopkins statistic with PCKaNN to implement 
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transverse learning, and (3) canonical variate analysis (CVA) in lieu of PCA in PCKaNN.  

Transverse learning has been incorporated into the pattern recognition GA by coupling 

PCKaNN with the Hopkins statistic and the modified Hopkins statistic.  The Hopkins 

statistic and the modified Hopkins statistic search for features that increase the clustering 

of the data whereas PCKaNN identifies feature subsets that create class separation.  We 

will be able to explore the structure of a data set, for example, discover new classes, by 

simply tuning the relative contribution of the Hopkins statistic and the original fitness 

function to the overall fitness score.  For training sets with small amounts of labeled data 

and large amounts of unlabeled data, this approach will perform better than a learning 

model developed from a set of features using only the labeled data points since 

information in the unlabeled data is used by the fitness function to guide feature selection 

which will prevent overfitting.  This approach to feature selection is semi-supervised 

learning as it incorporates aspects of both supervised and unsupervised learning to 

develop a new paradigm for multivariate data analysis where classification, clustering, 

feature selection, and prediction can be combined in a single step enabling a more careful 

analysis of the data.   

CVA [3-19] is similar to PCA except that a map of each feature subset is being 

developed with the focus on optimization of “between groups variability” not total 

variability.  If information about class differences lies in the directions of maximum 

variance, then PCA and CVA produce similar scatter plots.  That is to say, PCA is 

usually all that is needed when the variability in the data is small, except for that induced 

by class differences.  When information about class differences cannot be related to total 
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variability, then techniques such as CVA must be be used in lieu of PCA to assess the 

information content of each feature subset.    

3.3.1 Hopkins Statistic for Transverse Learning.  The Hopkins statistic does 

not make any assumptions about the data to assess clustering.  As it is a fast and simple 

method to use, it can be easily integrated with PCKaNN.  The Hopkins statistic is defined 

as 

ܪ  ൌ ∑ ∑ݑ ݑ ൅ ∑  (3.9) ݓ

 

where U are the distances between randomly selected locations and their nearest 

neighbors in the PC plot and W are the distances between randomly selected data points 

and their nearest neighbors in the same PC plot.   Usually 10% of the samples in the data 

are chosen. The same number of random locations in the projected data space of the 

principal component plot are chosen, and the distances (u) from these points to their 

nearest neighboring samples are also determined. The value of the Hopkins statistic, H is 

then computed as a ratio of the sum of the distances as shown by Equation 3.9.  This 

process is repeated several times, and H is averaged to get a more accurate estimate of the 

clustering tendency. 

The Hopkins statistic probes the volume occupied by samples (using w) in 

comparison to the volume of the projected data space (using u) to assess the degree of 

clustering.  Uniformly distributed random data will not cluster and will have similar u 

and w distances with an H value of 0.5.  If the data contain closely packed clusters, the 

volume occupied by the samples is only a small fraction of the entire data space.  For this 
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reason, an increase in the clustering tendency is reflected by a decrease in w relative to u 

with the value of H approaching 1 well clustered data.  

If a data set has more features than samples, then even multivariate normally 

distributed data that does not contain outliers will have variables that produce principal 

component plots containing points that appear as outliers.  The Hopkins statistic will 

generate higher scores for these principal component plots as outliers tend to increase the 

value of H.  This prevents the GA from searching for more meaningful feature subsets.  

For this reason, it was necessary to robustify the Hopkins statistic. An influence function 

[3-20] that can detect the presence of outliers in principal component plots by computing 

the leverage of each sample on the largest principal components.  This information can 

then be used to de-weight the Hopkins statistic for outliers (i.e., samples with high 

leverage). The deweighted Hopkins statistic ܪ෩ is given by Equation 3.10, where H is the 

scaled Hopkins statistic and ݉ܽݔ൫݁ܿ݊݁ݑ݈݂݊ܫ௝൯ is the influence value of the sample with 

the highest leverage on the jth principal component where j = 1, 2,3. 

 

෩ܪ  ൌ ܪ െ ܪ ෍ ௝൯௉஼݁ܿ݊݁ݑ݈݂݊ܫ൫ݔܽ݉
௝ୀଵ  (3.10) 

 

The influence function for the de-weighted Hopkins statistic is provided by Equation 

3.11, where ݐ௜௝ is the influence of the ith sample on the jth principal component, ݕ௜௝ is the 

score of the ith sample on the jth principal component, ߣ௝ is the eigenvalue of the jth 

principal component, and n is the number of samples.  Influence values are normalized 

across all samples to sum to 1 (Equation 3.12). 
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௜௝ݐ  ൌ ௜௝ଶሺ݊ݕ െ 1ሻߣ௝  (3.11) 

 

 ෍ ௜௝ݐ ൌ 1௡
௜ୀଵ  (3.12) 

 

A sigmoid transfer function was also used to scale the range of the deweighted 

Hopkins statistic from 0 to 1.  The value of H for clustered data seldom approaches 1, 

while H for data with an outlier is often close to 1.  Increasing the range of H with a 

sigmoid transfer function (similar to the one used in neural networks) facilitates detection 

of a broader range of clustering configurations.  

The scaled and deweighted Hopkins statistic is more robust and can be used to 

search for feature subsets that exhibit sample clustering.  The fitness function of the 

pattern recognition GA for feature selection can be modified by coupling this robust 

Hopkins statistic to PCKaNN.  The new fitness function ܨ෠ is given by a weighted average 

of the fitness scores F (PCKaNN) and ܪ෩ (Hopkins statistic) as shown in Equation 3.13. 

The value of the weighting factor r, which is between 0 and 1, determines the degree of 

emphasis placed on searches for features that will display clustering. 

 

෠ܨ  ൌ ሺ1 െ ܨሻݎ ൅  ෩ (3.13)ܪݎ
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Smaller values of r will emphasize class separation because greater emphasis is 

placed on PCKaNN, whereas sample clustering will gain precedence as the value of r is 

increased. The fitness function is generalized to provide the pattern recognition GA with 

the capability to perform two tasks in tandem: classification and clustering. By varying 

the contributions of PCKaNN and the deweighted Hopkins statistic, it is possible to tune 

the fitness function, enabling the pattern recognition GA to search for different types of 

structure that may be present in the data. For example subclasses within a data set could 

be uncovered.  Another advantage of using the fitness function described in Equation 

3.13 is transverse learning.  Often, chemical data sets contain a large number of samples 

without class labels as compared to the number of samples with class labels that can be 

used for training.  A classical learning model which only uses samples with class labels to 

develop a classification rule may lack sufficient information to correctly classify the 

samples in a larger prediction set.  Transverse learning [3-21] makes use of the 

information available in the prediction set with the training set samples in a semi-

supervised manner.  PCKaNN is a supervised learning method (i.e., uses class 

information) whereas the deweighted Hopkins statistic is an example of unsupervised 

learning method as it does not require class information. Transverse learning can be 

implemented using the modified PCKaNN fitness function which is a combination of 

PCKaNN and the deweighted Hopkins statistic. Feature subsets are simultaneously 

evaluated for class separation using only the labeled samples and for clustering using 

both the labeled and unlabeled samples. Searches for feature subsets capable of 

classifying the labeled samples are performed, while simultaneously allowing similar 

samples (both labeled and unlabeled) to cluster.  This semi-supervised learning 

116 
 



methodology will produce higher classification success rates for the prediction set than 

one obtained using a classical learning model by minimizing the chances of overfitting 

the training set data.  

3.3.2 Modified Hopkins Statistic for Transverse Learning.  The unlabeled 

samples in the training set can be included into the boosting routine of the pattern 

recognition GA to further minimize the probability of convergence to a local optimum. 

The deweighted Hopkins statistic can be modified to allow the boosting routine to track 

the unlabeled samples by monitoring and adjusting their sample weights during each 

generation. The modified deweighted Hopkins score, MH, of a feature subset is given by 

Equation 3.14. 

ܪܯ  ൌ ෍ 11 ൅ ݀௜௝
௨

௝ୀଵ ܷܵ ௝ܹ (3.14) 

 

where u is the number of unlabelled samples, USWj is the weight of the jth unlabeled 

sample, and ݀௜௝ is the distance between the jth unlabeled sample and the labeled sample 

that is its nearest neighbor in the principal component plot of the ith feature subset.  Each 

unlabelled sample is initially assigned a sample weight of 100/u.  To monitor the weight 

of troublesome samples, an average distance vector is computed for the entire population. 

The average distance vector ܽܦ݃ݒሺ݆ሻ for unlabeled sample j is given by Equation 3.15, 

where φ is the number of chromosomes in the population. The sample weights are 

adjusted for boosting using Equation 3.16. 

 

117 
 



ሺ݆ሻܦ݃ݒܽ  ൌ 1߮ ෍ 11 ൅ ݀௜௝
ఝ

௜ୀଵ  (3.15) 

 

 ܷܵ ௚ܹାଵሺ݆ሻ ൌ ܷܵ ௚ܹሺ݆ሻ ൅ ܲ ቀ1 െ  ௚ሺ݆ሻቁ (3.16)ܦ݃ݒܽ

 

This modification to the deweighted Hopkins statistics enables the GA for pattern 

recognition to focus on unlabelled samples that are difficult to cluster by making full use 

of the boosting routine of the pattern recognition GA for transverse learning. 

 3.3.3 Comparison of PCKaNN Fitness Functions.  A data set of 98 Raman 

spectra was used to evaluate the efficacy of the three PCKaNN fitness functions 

discussed in this section of the thesis. Wood identification is usually accomplished by 

forestry experts who employ visual microscopy, hardness testing, and/or leaf analysis [3-

22]. Vibrational spectroscopy offers another means of elucidating the structure of wood 

and characterizing wood types.  Early studies [3-23 to 3-25] focused on the use of mid-

infrared techniques, e.g., transmission using pressed alkali halide disks or diffuse 

reflection.  More recent studies have focused on Raman spectroscopy, which offers the 

ability to analyze wood specimens nondestructively.   

The 98 Raman spectra consisted of 39 tropical woods (Brazil and Honduras), 28 

softwoods (United States), and 31 hardwoods (United States).  Raman spectra of the 

woods were measured on a Perkin Elmer System 2000 FT spectrometer fitted with a 

standard Perkin Elmer Raman attachment and a modified Spectron 301 Nd3+ laser (λ = 

1064nm).  The spectra were baseline corrected using a three point baseline to minimize 

the effect of fluorescence.  All spectra were measured at a resolution of 4cm-1.  Each 
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Raman spectrum was an average of 500 scans with the data stored from 3600 to 250 cm-1.  

All spectra were de-resolved to 4 cm-1 yielding 3352 point spectra.   

For pattern recognition analysis the Raman spectra were normalized to unit length 

to adjust for variations in the scattering cross-section of each sample. Each wood sample 

was represented by a data vector x = (x1, x2, x3…xj…x3352) where xj is the Raman 

intensity of the jth point in the normalized Raman spectrum. The data were autoscaled so 

that each variable had a mean of zero and a standard deviation of one within the entire set 

of 98 Raman spectra. 

The first step in this study was to apply PCA to the entire data set.  Figure 3.6 

shows a plot of the scores of the two largest principal components of the 3352-point 

spectra that comprise this data set.  The two largest principal components of the data 

explain 41% of the total cumulative variance.  Each spectrum in the score plot is 

represented as a point (1 = soft, 2 = hard, and 3 = tropical).  There is overlap between the 

tropical woods, hard woods, and soft woods in the score plot of the data.   

Feature selection was the next step as deletion of uninformative features would 

ensure that discriminatory information about wood type would be the major source of 

variation in the data.  PCKaNN was used to uncover features characteristic of the Raman 

spectra of each wood-type.  In this study, the population consisted of 5000 chromosomes, 

and the mutation rate was 0.2.  Three point cross-over was used, and Kc for each class 

was set equal to the number of spectra in the class.  PCKaNN identified informative 

features in the data set by sampling key feature subsets, scoring their principal component 

plots, and tracking those samples or classes that were most difficult to classify.  The 

boosting routine used this information to steer the population to an optimal solution.  
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After 300 generations, the genetic algorithm identified 11 wavelengths whose principal 

component plot showed clustering of the Raman spectra according to wood type (see 

Figure 3.7).  The hardwoods, softwoods, and tropical woods are well separated from each 

other in the score plot.  For these 11 features, between group differences are large 

compared to within group differences.  This would suggest that all classification methods 

will work well with this data.  An advantage of using a score plot to display the 

classification results instead of submitting the 11 features to linear or quadratic 

discriminant analysis for development of a classifier is that it allows the user to better 

understand how a classification decision is made for a particular sample.  

 

 
Figure 3.6.  A score plot of the two largest principal components of the 3352 wavelengths.  Each 
spectrum is represented as a point in the plot (1 = soft, 2 = hard, and 3 = tropical). 
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Figure 3.7. A score plot of the two largest principal components of the 11 wavelengths identified 
by the pattern recognition GA. Each spectrum is represented as a point in the plot (1 = soft, 2 = 
hard, and 3 = tropical).   

 

The ability of a classifier to predict the class membership of a simulated unknown 

wood sample was tested using a procedure known as segmented cross validation [3-26].  

The data set was divided into N training set prediction set pairs. For each training set, the 

pattern recognition GA identified informative features by sampling key feature subsets, 

scoring their PC plots, and tracking those classes and samples that were difficult to 

classify. For each training set, a classifier is developed using the features identified by the 

pattern recognition GA and then tested on the corresponding prediction set.  Each sample 

was present in only one of the N prediction sets generated.   

The cross validation procedure used in this study differed from the procedure used 

by other workers [3-26].  In this study, the features selected for each training set are 

different.  In most cross validation studies reported in the literature, the features selected 

for each training set are the same and are identified using the entire data set prior to 

121 
 



dividing the data into training set/prediction set pairs.  For this reason, cross validation 

usually gives overly optimistic estimates of the error rate.  In this study, the validation set 

samples did not influence the features selected for each training set.  Hence, the error rate 

reported with the cross validation procedure described in this study will be less biased.    

For this study, two training set prediction set pair combinations were investigated: 

80%/20% (5 training set prediction pairs with 80% of the samples in each training set and 

the remaining 20% in each prediction set), and 20%/80% (5 training set prediction set 

pairs with 20% of the samples in each training set and the remaining 80% in each 

prediction set). Classification success rates for LDA, RDA, and K-NN are shown in 

Table 3-1 for the features selected by the pattern recognition GA using the three fitness 

functions.  They are comparable to each other.  Because the classical learning model (i.e., 

the PCKaNN fitness function) performed well (100%) with LDA), differences between 

PCKaNN and the two fitness functions that employ transverse learning are expected to be 

negligible.  We attribute this to the large number of samples (80% of the entire data set) 

in each training set. 

 
Table 3-1.  Discriminant Analysis Results for 80%/20% Cross Validation Study 

Method Average Tset % classification Average Pset % classification 

 PCKaNN
Modified 
Hopkins Hopkins PCKaNN

Modified 
Hopkins Hopkins 

LDA 100 100 100 98 99 100 

RDA 100 100 100 97 98 99 

1-NN 99.25 100 98.75 97 98 98 
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Table 3-2 summarizes the results from the 20%/80% segmented cross validation 

study (5 training set prediction set pairs with 20% of the samples in each training set and 

the remaining 80% in each prediction set) using LDA, RDA, and K-NN for the features 

selected by the pattern recognition GA with transverse learning and without transverse 

learning.  From this table, it is evident that classifiers developed from features selected by 

the pattern recognition GA using transverse learning performed better than classifiers 

developed from features selected by the pattern recognition GA using only PCKaNN.  

The classification success rate for the modified Hopkins statistic was approximately 10% 

higher than that achieved by PCKaNN, which is consistent with the improvement that is 

anticipated when transverse learning [3-21] is used compared to an inductive inference 

learning model which is developed using only samples that have class labels.  The 

superior performance of classifiers developed from features selected by the pattern 

recognition GA using the modified Hopkins statistic (as compared to classifiers 

developed from features selected by the pattern recognition GA using PCKaNN with the 

Hopkins statistic) can be attributed to boosting used in all facets of the problem, i.e., for 

both the labeled and unlabeled data points.  

 
Table 3-2.  Discriminant Analysis Results for 20%/80% Cross Validation Study 
Method Average Tset % classification Average Pset % classification 

 PCKaNN 
Modified 
Hopkins Hopkins PCKaNN 

Modified 
Hopkins Hopkins 

LDA 100 100 100 72 85.5 75 

RDA 100 100 100 68.22 79.25 70 

1-NN 100 100 98 78.5 88 81.6 
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3.3.4 Canonical Variate Analysis. CVA was implemented in the PCKaNN 

fitness function using a routine developed by Norgaard [3-27] to analyze 

underdetermined multivariate chemical data sets.  This modification to PCKaNN is called 

CVAKNN. The number of canonical variates required for mapping the data is one less 

than then number of classes in the data. Hence a data set with three classes is mapped 

onto a plot of its two largest canonical variates and a data set containing four classes is 

mapped onto the three largest canonical variates.   

 

3.4 SOFTWARE DESIGN AND IMPLEMENTATION  

The software used to implement the pattern recognition GA provides an easy to 

use graphical user interface that allows the user to smoothly and intuitively navigate 

through the entire application. The software is portable and can be installed on a broad 

range of platforms (e.g. personal computers to high performance workstations). It 

supports additional functionality e.g., file import/export and visualization of 

multidimensional data. The software has a modular design that allows for the addition of 

new objects or functionality without requiring major revisions to the existing code. The 

pattern recognition GA has been implemented in two different versions built using 

MATLAB or JAVA.  

MATLAB is a programming environment that provides an easy to use framework 

for algorithm development, numerical computations, data analysis and visualization. 

MATLAB is well designed to handle matrix operations and comes with a multitude of 

built in functions and toolboxes. However, there are some disadvantages to the MATLAB 

implementation of the pattern recognition GA. Routines developed in MATLAB can 
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become outdated as MATLAB is upgraded to newer versions where certain segments or 

the whole application may stop functioning when run under a newer version of 

MATLAB.  The JAVA implementation of the pattern recognition GA, on the other hand, 

runs independently on any platform. The Java programming environment unlike 

MATLAB is freely available and more robust to changes. The JAVA version is also 

designed for parallel computing to handle larger tasks quickly and efficiently by their 

distribution.  

The implementation of the pattern recognition GA comprises three modules: (1) 

Data Preprocessing; (2) Operation of the Genetic Algorithm for Pattern Recognition; and 

(3) Visual Analysis of Results. The first step in data preprocessing is acquiring and 

formatting the raw data to make it compatible to the program.  The raw data is arranged 

in the form of a table or matrix using a spreadsheet and numerical labels are attached for 

the identification of samples and classes. Predictions set samples are marked as NaN for 

the class label. Mathematical transformation such as normalization and auto-scaling are 

applied to the data. The second module implements the operation of the pattern 

recognition GA by conducting the search for the best feature subsets using one of several 

fitness functions that can be chosen by the user. All other GA parameters are also set by 

the user before starting the pattern recognition GA. At the end of the GA operation, the 

third module facilitates the graphical display of results for visual analysis. For example, a 

principal component plot of the best feature subset from the final generation is displayed. 

The control panel of the visualization module provides several functionalities such as 

selecting the sample labeling (sample number, class number, etc.), scrolling through the 

results of different generations, projection of the prediction set samples onto the PC plots 
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of specific feature subsets identified by the pattern recognition GA, 3D rotation and 

magnification of a specific region of the plot.   

The pattern recognition GA uses value encoding where chromosomes are arrays 

of positive integers such that each integer represents a distinct feature. Each chromosome 

is directly encoded as a unique subset of features that represents a potential solution to 

the problem of optimal feature selection for pattern recognition analysis. The 

chromosomes for the initial population are generated randomly because no information is 

available about the features before the start of the genetic algorithm operations.  

However, it is important to mention certain practical concerns. If certain features are not 

present in any of the chromosomes of a randomly generated population, then the 

crossover operator will be unable to reintroduce these features into the general 

population. Although there is a possibility of these missing features reintroduced into the 

general population using mutation, there is no guarantee of the mutation operator 

providing the desired result.  Absence of important features in the population imposes 

significant constraints in the search that prevents the GA from identifying regions in the 

solution space that contain an optimal solution. For these reasons, it is important that all 

features are present in the initial population.  

The MATLAB version of the pattern recognition GA displays the progress of the 

run from the first generation to the last generation in terms of the highest and average 

fitness of the population.  It also displays the PC plot and fitness score of the best feature 

subset identified in each generation along with a plot of the corresponding class and 

sample weights for the best feature subset.  It is neither a simple or easy task to add new 

functionality or methods as in the JAVA version.  The MALAB implementation, unlike 
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the JAVA implementation has several limitations. The MATLAB implementation is 

cumbersome to operate since there are more command prompt interaction with different 

GUI’s needed to be invoked for different applications, e.g., data import, GA run 

parameters and display of results. The JAVA version has a simple user friendly GUI 

which is very straightforward and all applications are integrated into a series of panels.  

The MATLAB version is not suitable for large datasets due to a limitation on the size of 

population that can be handled and the speed of operation. The JAVA version, however, 

is scalable and can run with larger populations to handle larger data sets very quickly and 

efficiently.  In addition, the JAVA version is graphically well equipped for visual 

analysis of the results with extended functionalities available. The user can analyze the 

best results from each generation uncovering additional aspects of the pattern recognition 

problem. Built-in functions, such as displaying loading plots, and saving score plot 

images, are also a big advantage.  
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CHAPTER IV 

 
 

WAVELETS AND GENETIC ALGORITHMS FOR SPECTRAL 
PATTERN RECOGNITION 

 
 

 
 
4.1. INTRODUCTION 
 

A two step procedure for pattern recognition analysis of spectral data is proposed. 

First, the wavelet packet transform is used to denoise and deconvolute spectral bands by 

decomposing each spectrum into wavelet coefficients, which represent the samples 

constituent frequencies.  Second, the pattern recognition GA is used to identify wavelet 

coefficients characteristic of the class.  The pattern recognition GA employs both 

supervised and unsupervised learning to identify features that optimize clustering of the 

spectra by sample type in a plot of the two or three largest principal components of the 

data.  Because principal components maximize variance, the bulk of the information 

encoded by the selected wavelet coefficients is about differences between the classes in 

the data set.  The principal component analysis routine embedded in the fitness function 

of the pattern recognition GA serves as an information filter, significantly reducing the 

size of the search space since it restricts the search to feature sets whose principal 

component plots show clustering on the basis of class.  In addition, the algorithm focuses 

on those samples and or classes that are difficult to classify as it trains using a form of          
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boosting to adjust both the sample and class weights.  Samples or classes that are 

consistently classified correctly are not as heavily weighted as samples that are difficult 

to classify.  Over time, the algorithm learns its optimal parameters in a manner similar to 

a neural network.  The pattern recognition GA integrates aspects of artificial intelligence 

and evolutionary computations to yield a smart one pass procedure for feature selection, 

classification and prediction 

 The advantages of the proposed methodology have been demonstrated in four 

studies which are the subject of this chapter.  In the first study [4-1], differential mobility 

spectra of alkanes, alcohols, ketones, cycloalkanes, substituted ketones, and substituted 

benzenes with carbon numbers between 3 and 10 were obtained from gas 

chromatography-differential mobility spectrometry (GC-DMS) analyses of mixtures in 

dilute solution. Spectra were produced in a supporting atmosphere of purified air with 

0.6–0.8ppm moisture, gas temperature of 120◦C, sample concentrations of <0.2–5ppm, 

and ion source of 2mCi (74 MBq) 63Ni. Multiple spectra were extracted from 

chromatographic elution profiles for each chemical providing a library of 390 spectra 

from 39 chemicals. The spectra were analyzed for structural content by chemical family 

using the pattern recognition GA.  The wavelet packet transform was used to denoise and 

deconvolute the DMS data by decomposing each spectrum into its wavelet coefficients, 

which represent the sample’s constituent frequencies. The wavelet coefficients 

characteristic of the compound’s structural class were identified using the genetic 

algorithm for pattern recognition analysis.   

 In the second study [4-2] the feasibility of near-infrared (NIR) spectroscopy to 

identify waxy wheat and differentiate it from partial waxy and wild-type phenotypes was 
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investigated.  The effectiveness of NIR reflectance spectroscopy for classification of 

waxy (low amylase) wheat into its four possible alleles was undertaken.  The four alleles 

were wild type, waxy, and two intermediate states which correspond to partially waxy.   

In the two intermediate states, a null allele occurs at either of the two homologous genes 

(Wx-1A and Wx-1B) that encodes for production of the enzyme, granule bound starch 

synthase (GBSS), which controls amylose synthesis. 

The third study [4-3 to 4-4] involved the development of an IR search prefilter for 

carboxylic acids using the two step procedure. Carboxylic acid search prefilters 

developed from 463 vapor phase IR spectra were successfully validated (100% correct 

classification) using an external prediction set of 92 IR spectra. Recognition rates for 

carboxylic acids search prefilters previously reported in the literature for vapor phase 

spectra have varied from 81% to 92% [4-5 to 4-9].  This is comparable to a scientist 

somewhat familiar with IR.  These search prefilters were developed using raw 

absorbance values from selected spectral regions and did not include information about 

band shape and band width.  By using wavelet coefficients generated from the wavelet 

packet tree to represent the features of the IR spectrum, information about band shape 

and band width could be encoded in the search prefilters developed in this study. 

In the fourth study, prefilters for searching IR spectral libraries of the Paint Data 

Query (PDQ) automotive database to differentiate between similar but nonidentical 

Fourier transform infrared (FTIR) paint spectra were developed.  Currently, the 

identification of the make, model and year of a motor vehicle involved in a hit and run 

collision from only a clear coat paint smear left at the crime scene is not possible.  

Applying the wavelet packet transform, FTIR spectra of clear coat paint smears were 
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denoised and deconvolved by decomposing each spectrum into wavelet coefficients. The 

GA for pattern recognition was used to identify wavelet coefficients characteristic of the 

model and manufacturer of the automobile from which the spectra of the clear coats were 

obtained. Even in challenging trials where the samples evaluated were all the same 

manufacturer (Chrysler) with a limited production year range, the respective models and 

manufacturing plants were correctly identified.  Search prefilters for spectral library 

matching are necessary for forensic databases to extract investigative lead information 

from a clear coat paint smear. Information obtained from these searches can also serve to 

quantify the general discrimination power of original automotive paint comparisons 

encountered in casework, and to succinctly communicate the significance of the evidence 

to the courts. 

 
4.2   PATTERN RECOGNITION ANALYSIS OF DIFFERENTIAL MOBILITY 
SPECTRA WITH CLASSIFICATION BY CHEMICAL FAMILY 
 

Differential mobility spectrometry (DMS) is an emerging technology for 

characterizing volatile organic compounds (VOCs) by measuring differences in the gas 

phase ion mobility of these VOCs through application of varying electric fields (between 

~800 and 20,000 Vcm-1 or higher) to generate analytically useful information [4-5 to 4-7].  

In DMS, the sample is ionized by the same methods or reactions as found in IMS. 

However, ions derived from the sample are moved in a gas flow of <4ms−1 between two 

metal plates separated by a distance of 0.1mm or larger. An electric field, called the 

separation field, is applied between the plates as a <1MHz asymmetric waveform with 

amplitudes of ≤−500 and ≥20,000Vcm−1. Applications of DMS include explosive 

detection [4-8] and ion filtering before mass spectrometry to reduce chemical noise in 
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biological measurements [4-9 and 4-10].  DMS instrumentation is simpler with a smaller 

footprint and costs less than conventional ion mobility spectrometry (IMS) analyzers [4-

5].  Using DMS, both positive and negative ions can be simultaneously characterized 

which is a distinct advantage for chemical analysis. Typical features of differential 

mobility spectra are shown in Figure 4.1, and include peaks for the reactant ions (at 

≈−22V), a protonated monomer (at ≈−7.5V) and a proton bound dimer (at ≈+2V). These 

ions arise from the chemistry of gas phase reactions through proton transfer found with 

all β sources at ambient pressure providing both qualitative and quantitative information 

about sample vapors [4-11 to 4-13].   

 

 

Figure 4.1.  DMS spectra of octanone showing a reactant ion peak (−22 V) and peaks for product 
ions from chemical ionization of sample vapors, in positive polarity. The product ions are a 
protonated monomer (−6V) and a proton bound dimer (+2 V) form in purified air with moisture 
of ~0.2ppm. The relationship between ΔK (ion mobility difference) for the product ion and 
compensation voltage from the DMS measurement is shown using arrows. The ion source was 1 
mCi of 63Ni. (Courtesy of Anal Chim. Acta 2006, 579, 1–10)  

 

Mobility spectra from conventional IMS analyzers are known to contain both 

structural information [4-14] and chemical class specific information [4-11 and 4-12]. 

135 
 



The possibility of using pattern recognition methods to categorize differential mobility 

spectra by chemical family can be attributed to the spectral region near the reactant ion 

peak. Ions at low intensity and small mass observed in ion mobility spectra are 

understood to be class specific fragment ions formed during the ionization step in air at 

ambient pressure. Although models of ion separation using IMS have been proposed [4-

15 and 4-16] and supported by subsequent studies [4-17], there has been little exploration 

of the detailed features in DMS and the information content available in their profiles. 

The major objective of this study was to ascertain whether differential mobility 

spectra contain information about chemical family and the exploitation of this 

information by pattern recognition methods.  A two-step procedure was used in this study 

to analyze DMS data. In the first step, the wavelet packet transform [4-18 to 4-20] was 

used to denoise and deconvolute the DMS data by decomposing each spectrum into its 

wavelet coefficients, which represent the sample’s constituent frequencies. In the second 

step, the pattern recognition GA [4-21 to 4-25] was used to identify wavelet coefficients 

characteristic of chemical family. The pattern recognition GA employed supervised 

learning to identify coefficients that optimize the clustering of spectra in a plot of the two 

or three largest principal components of the data.  A spectral library was prepared using 

DMS which was run under uniform experimental conditions. Thirty nine VOCs from six 

chemical classes (Table 4-1) were obtained in high purity from various manufacturers 

and stock solutions were prepared using glass distilled grade hexane.  Standards were 

prepared by diluting stock solutions until DMS analysis produced depletion of the 

reactant ion peak (RIP) to 20–30% of the original RIP intensity. This avoided sample 

saturation of the ion source and corresponded to concentrations from 50 to 200 ng µL−1. 
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Spectra were obtained continuously throughout a GC/DMS measurement. DMS spectra 

were produced in a supporting atmosphere of purified air with 0.6–0.8ppm moisture, gas 

temperature of 120◦C, sample concentrations of <0.2–5ppm, and ion source of 2mCi (74 

MBq) 63Ni. Further details about the experimental conditions used to generate this data 

can be found elsewhere [4-1].  

Spectra found in chromatographic peaks corresponding to authentic chemicals, 

confirmed by GC/MS measurements, were extracted into spreadsheets of intensity at 150 

columns for the compensation voltage axis from −40 to +10V. Eight to fifteen spectra 

were available for each chemical throughout the dynamic range of the analyzer from limit 

of detection to maximum response without saturation of the ion source. In all, 390 spectra 

from six chemical families were included in the spectral library (Table 4-1). These 

compounds included cycloalkanes, alkanes, alcohols, ketones, substituted ketones, and 

substituted benzenes. 

 

Table 4-1. Composition of the DMS spectral data set 

Chemical family Number of 
chemicals 

Number of 
all spectra 

Alkanes 9 90 

Cycloalkanes 7 70 

Alcohols 6 60 

Ketones 5 47 

Substituted ketones 8 83 

Substituted benzenes 4 40 

Total 39 390 
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The differential mobility spectra produced in these studies were consistent with 

previous spectra using the same or comparable DMS analyzers [4-6, 4-7, and 4-17]. Since 

the DMS analyzer exhibited fast response to effluent composition and also fast 

restoration to baseline levels on the falling edge of an eluting peak [4-6], the spectral files 

extracted from single chromatographic peaks provided profiles for authentic chemicals, 

free of impurities from manufacture or interferences from nearby eluting chemicals. 

Although spectra for chemicals with retention times near the solvent peak might be prone 

to contamination, hexane presented little response in positive polarity with chemical 

ionization at ambient pressure. Thus, the spectral library was considered free of 

complications that can arise from either impurities or various contaminations. Since, 

concentration dependence was known to be a necessary facet and a practical requirement 

for any robust classification method from prior studies of pattern recognition techniques 

with ion mobility spectra [4-11 and 4-12], a range of concentrations were used to produce 

differential mobility spectra in this study. The differential mobility spectra were 

comprised of an RIP and peaks for the protonated monomer (MH+(H2O)n) and 

commonly, but not uniformly, the proton bound dimer (M2H+(H2O)n). The use of whole 

spectra (compensation voltages from −40 to +10V) provided the classifier with full 

content of peak width and shape, and not simply a peak location. 

The Daubechies 12 wavelet up to the sixth level of decomposition was used to 

denoise and deconvolute the DMS data. Criteria used in this study for selection of a 

suitable wavelet is based on the ability of the wavelet to extract chemical information 

from the data, which can then be exploited by the pattern recognition GA for 

classification of the spectra into their respective chemical families. There was no 
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improvement in the ability of the pattern recognition GA to correctly classify the spectra 

when other wavelets such as the Daubechies 6 or 18 were used to denoise and 

deconvolute the data.  

For pattern recognition analysis, each DMS vector was initially represented by 

3690 wavelet coefficients. The first step in this study was to apply PCA to the data. 

Figure 4.2 shows a principal component (PC) plot developed from the 390 spectra and 65 

wavelet coefficients identified by the pattern recognition GA. The alkanes (1’s) and 

cycloalkanes (2’s) are dispersed throughout the entire PC plot, whereas the alcohols (3’s), 

ketones (4’s), substituted ketones (5’s) and substituted aromatics (6’s) cluster in specific 

regions of the plot.  

 

 
Figure 4.2.  A plot of the two largest principal components of the 390 spectra that comprise the 
entire data set and the 65 wavelet coefficients identified by the pattern recognition GA. (1) 
alkanes, (2) cycloalkanes, (3) alcohols, (4) ketones, (5) substituted ketones, and (6) substituted 
aromatics. (Courtesy of Anal Chim. Acta 2006, 579, 1–10) 
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The failure of the alkanes and cycloalkanes to form a well defined cluster 

suggests that information characteristic of chemical family is not present in their spectra. 

This is probably due to their low proton affinity. Consequently, the response obtained for 

these chemicals is low since the origination of the response, displacement by the 

molecule of a water adduct on a hydrated proton, is poor. It is true that a response can be 

observed if moisture is low and charge exchange reactions occur with H2O+ or NO+, both 

of which are found in dry atmospheres in a beta source with air or nitrogen. However, the 

conditions used in this study were not too dry, and these would have been very minor 

contributions. Therefore, the poor response exhibited by the alkanes and cycloalkanes is 

due to low spectral intensity where it counts, which is in their fragment ion intensity.  

For these reasons, both the alkanes and cycloalkanes were removed from the 

analysis. Figure 4.3 shows a PC plot developed using spectra from the remaining four 

chemical families and 53 features identified by the pattern recognition GA. The 

substituted ketones (5’s) and the aromatics (6’s) are well separated from each other and 

from the other two chemical families, whereas there is some degree of overlap between 

the alcohols and the simple ketones. This conclusion was reinforced by performing two 

additional comparisons of the spectra using the pattern recognition GA to identify 

wavelet coefficients for discrimination of the chemical families in these comparisons: (1) 

classification (see Figure 4.4) of the spectra of the alcohols, substituted ketones, and 

substituted aromatics, and another classification study (see Figure 4.5) involving the 

simple ketones, substituted ketones, and the substituted aromatics.  

The classification results obtained for the simple ketones and substituted ketones 

were unexpected in view of the fact that ketones undergo little or no fragmentation, 
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which is the basis for their chemical class recognition, although the response to form a 

product ion MH+(H2O), can be good or very good. The ketone functional group can form 

a stable association with the gas phase proton with the ketone acting as a base. 

Nevertheless, the lack of fragmentation has been seen in past studies as a detriment to 

classification since the fragment ions are either of very low intensity or not detectable. 

 
Figure 4.3.  A plot of the two largest principal components of the 230 spectra from the remaining 
four chemical families and the 53 features identified by the pattern recognition GA. (3) alcohols, 
(4) ketones, (5) substituted ketones, and (6) substituted aromatics. (Courtesy of Anal Chim. Acta 
2006, 579, 1–10) 

 

Other analyses that were performed on the DMS spectral data included the use of 

back propagation neural networks to develop classifiers for characterizing spectra by 

chemical families. The neural network classifiers produced results similar to those 

obtained using the wavelets. Further details about the neural network studies can be 

found elsewhere [4-1]. The performance of the neural network also indicated that 
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chemical class information was largely associated with the region of the spectrum 

between −26.6 V and −20 V.  

 
Figure 4.4.  A plot of the two largest principal components of the 183 spectra from three chemical 
families and the 67 features identified by the pattern recognition GA. (3) alcohols, (5) substituted 
ketones, and (6) substituted aromatics. (Courtesy of Anal Chim. Acta 2006, 579, 1–10) 
 

 
Figure 4.5.  A plot of the two largest principal components of the 170 spectra from three chemical 
families and the 50 features identified by the pattern recognition GA. (4) ketones, (5) substituted 
ketones, and (6) substituted aromatics. (Courtesy of Anal Chim. Acta 2006, 579, 1–10) 
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Use of wavelets for spectral deconvolution followed by the pattern recognition 

GA for identification of informative features related to chemical class also showed that 

categorization of spectra by chemical families is observed in DMS for some functional 

groups but not others. The results of the wavelet study also indicate that chemical class 

information is available in the DMS spectra.  These findings also demonstrate that DMS 

analyzers, like IMS instruments, can be valuable for the identification of a chemical not 

present in spectral libraries. The first step in any identification, which is assignment of 

the chemical class, is plausible using DMS based on the results from this study. 

 

4.3 IDENTIFICATION OF WAXY WHEAT ALLELES BY NEAR INFRARED 
REFLECTANCE SPECTROSCOPY 

During the past decade there has been renewed interest in the breeding of ‘waxy’ 

and ‘partially waxy’ wheat due to a multitude of potential applications including the 

development of stock flour material for blending by millers, flour for Asian noodle-

making,  and a substitute for waxy maize starch in the paper making and adhesive 

industries [4-26 to 4-30].  The ‘waxy’ condition of wheat is related to its amylose 

content. An enzyme called granule bound starch synthase (GBSS), which is also known 

as ‘waxy’ protein, is primarily responsible for amylose in wheat plants [4-30]. Absence 

of GBSS causes near zero amylose content in wheat, which is commonly referred to as 

the ‘waxy’ condition. Under natural conditions, active isoforms of GBSS in wheat are 

encoded by two waxy genes, Wx-A and Wx-B, for tetraploid (durum) wheat and three 

waxy genes, Wx-A, Wx-B, and Wx-D, for hexaploid wheat. In the native wild-type state, 

the wheat possesses all GBSS isoforms. The partially waxy condition occurs in a wheat 

line by natural mutation or through conventional breeding practices, when at least one 
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(but not all) of the waxy genes is a null allele. With the growing demand for waxy and 

partially waxy wheat, there is a need to develop a reliable and rapid test to authenticate 

the waxy condition.  

Identification of waxy seeds is presently done using iodine-binding blue complex 

colorimetry for the determination of amylose content.  However, this method is not 

definitive for identification of partially waxy lines [4-31]. Furthermore, the procedure is 

time consuming, has poor precision and is not suitable for commercial grades of wheat 

that have a narrower range of amylose content.  Rather than quantifying the proportion of 

amylose in wheat by current chemical methods, an alternative approach is required to 

characterize samples according to the number of active GBSS genes. Detection of the 

different GBSS isoforms is typically performed by SDS-PAGE [4-32], ELISA [4-33], or 

multiplex PCR techniques [4-34]. These methods are expensive, complicated and not 

readily amenable to the various stages of wheat breeding, marketing and production. 

Near-infrared (NIR) spectroscopy is a simple, fast and inexpensive methodology  that is 

well-established and widely used for determination of protein, moisture and other 

properties of cereals at grain processing facilities.  

Previous attempts to characterize wheat genotypes of ground meal and whole 

kernel samples using NIR reflectance spectroscopy to characterize phenotype have not 

been successful [4-2 and 4-35]. These studies were performed using PCA and LDA to 

analyze the NIR data. Although the classification models were able to identify the waxy 

genotype, identification of the three other genotypes (wx-A1 null, wx-B1 null, and wild 

type) was not possible. The low classification success rate obtained in these studies, 
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which was approximately 50%, can be attributed to the inability to identify partial waxy 

lines. 

In this study, the wavelet packet transform was applied to NIR spectra, followed 

by the use of the pattern recognition GA to identify informative wavelet coefficients that 

can be used to characterize spectra according to the four genotypes: waxy, wx-A1 null, 

wx-B1 null and wild type. NIR spectra of wheat from a previously published study [4-2] 

were used.  The objective of this study was to evaluate the feasibility of NIR reflectance 

spectroscopy to genotype wheat samples. The confounding of chemical information with 

the expression level of the genes was also investigated by analyzing the selected wavelet 

coefficients for correlation with amylose and protein content. 

Wheat samples were collected from various breeding programs. The number and 

type of active GBSS genes in the wheat samples were determined using SDS-PAGE. The 

samples were separately ground on a lab scale cyclone grinder and NIR spectra were 

generated using a reflectance spectrophotometer (Foss-NIR System Model 6500).  An 

average spectrum of each sample was generated using 32 scans/spectrum with a 

wavelength range from 1100-2498nm and 2nm resolution. Amylose content of wheat 

samples was measured by iodine-binding blue complex colorimetry.  Further details 

about the conditions used to collect the data can be found elsewhere [4-2]. Figure 4.6 

shows a typical NIR spectrum of a wheat sample of the waxy type.   

Ninety five NIR spectra from four different wheat genotypes were available for 

this study, see Table 4-2. Each spectrum was represented as a data vector, x = (x1, x2, 

x3...xj…x700) where xj is the absorbance of the jth point of the NIR spectrum. All spectra 

were normalized to unit length to nullify the effect of differences in the optical path 
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length between samples. The first step in this study was to perform PCA on the 95 NIR 

spectra. All spectral features were auto-scaled prior to performing PCA to remove any 

inadvertent weighing of the variables that otherwise would occur due to differences in 

magnitude among the spectral features comprising the data set. Figure 4.7 shows a plot of 

the two largest principal components of the 95 wheat samples using all 700 spectral 

features. Each spectrum (i.e., sample) is represented by a point in the plot (1 = waxy type, 

2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild type). The overlap of NIR spectra from the 

different genotypes in the principal component plot of the data is evident. One sample in 

the plot was identified as an outlier and was deleted from the analysis as its spectrum was 

very different from the other spectra in the data set. 
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Figure 4.6. Typical spectrum of waxy wheat obtained by NIR diffused reflectance spectroscopy 
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Table 4-2. Wheat Data Set 

Genotype Number of NIR 
spectra 

Waxy 24 

Wx-A1 25 

Wx-B1 24 

Wild type 22 

All 95 
 

 
Figure 4.7. Plot of the two largest principal components of the 95 NIR spectra and 700 points that 
comprise the wheat data set.  Each NIR spectrum is represented as a point in the plot (1 = waxy 
type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild type).   
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The next step in this study was feature selection. The pattern recognition GA 

using the PCKaNN fitness function attempted to identify features in the NIR spectra of 

the wheat samples characteristic of genotype. The pattern recognition GA identified 

spectral features that optimized the separation of NIR spectra by genotype in a plot of the 
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two or three largest principal components of the data by sampling key feature subsets, 

scoring their PC plots, and tracking wheat samples or genotypes that were difficult to 

classify. The boosting routine used this information to steer the population to an optimal 

solution. After 300 generations, the GA identified 6 spectral features (see Figure 4.8).  

From the PC plot of these 6 spectral features, it is evident that information about 

genotype cannot be directly obtained from the original data. Further preprocessing of the 

original data is necessary.  

 

 

 
Figure 4.8. Plot of the two largest principal components of the 94 NIR spectra and 6 wavelengths 
identified by the pattern recognition GA.  Each NIR spectrum is represented as a point in the plot 
(1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild type). 
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For this reason, the second derivative function was applied to each spectrum using 

a 7-point Savitzky-Golay filter. The second derivative was used because it eliminates 

sloping baselines and offsets, as well as deconvolutes overlapping spectral bands.  Figure 
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4.9 shows a plot of the two largest principal components of the 94 second derivative NIR 

spectra and 686 features. Again, separation of the samples by wheat genotypes is not 

observed.  Applying the PCKaNN fitness function of the pattern recognition GA to the 

second derivative spectra, 17 features were identified that contained some information 

about wheat genotype (see Figure 4.10).  Although the PC plot shows separation of waxy 

wheat from the other wheat samples, the partially waxy and wild type wheat samples 

overlap. Although the ability to discriminate waxy wheat has been improved by the 

second derivative, this preprocessing method alone cannot extract sufficient information 

from the spectral data about the different wheat genotypes.  

 

 
Figure 4.9. Plot of the two largest principal components of the 94 second derivative spectra and 
686 points.  Each second derivative NIR spectrum is represented as a point in the plot (1 = waxy 
type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild type). 

-40 -30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

40

50

 1

 1

 1

 1

 1
 1

 1
 1

 1 1
 1

 1

 1

 1

 1

 1

 1

 1
 1  1

 1
 1

 1

 1
 2

 2

 2

 2

 2

 2

 2

 2

 2
 2

 2  2
 2

 2

 2 2

 2

 2

 2

 2

 2

 2

 2
 2

 2
 3  3

 3

 3
 3

 3

 3

 3

 3
 3

 3

 3
 3

 3

 3

 3

 3

 3

 3

 3 3
 3

 3

 3

 4

 4  4

 4

 4

 4

 4
 4

 4

 4
 4

 4

 4 4

 4 4

 4

 4

 4

 4

 4

PC 1

P
C

 2

 

149 
 



 
Figure 4.10. Plot of the two largest principal components of the 94 second derivative spectra and 
17 features identified by the pattern recognition GA.  Each second derivative NIR spectrum is 
represented as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild 
type). 
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More powerful spectral preprocessing methods are required to denoise and 

deconvolve the spectral bands of these samples and to resolve information related to 

wheat genotype.  For this reason, the wavelet packet transform was applied to the data.   

The Daubechies 4 wavelet was selected as the other member of the Daubechies family 

had either sharper or broader features compared to the NIR spectra.  Furthermore, the 

Daubechies 4 wavelet does not suffer from oscillations, which is the case with the higher 

Daubechies mother wavelets. The Daubechies 4 mother wavelet at the 8th level of 

decomposition was used to denoise and deconvolute each NIR spectrum into wavelet 

coefficients. Wavelet decomposition at the 4th or 6th level could not provide sufficient 

resolution of the signal in the data with respect to information about genotype.   
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To identify the informative wavelet coefficients, the pattern recognition GA was 

applied to the data. The pattern recognition GA identified 55 wavelet coefficients which 

contained information about wheat genotype. Figure 4.11 shows a plot of the two largest 

principal components of the 94 NIR spectra comprising the data set and the 55 wavelet 

coefficients identified the pattern recognition GA.  Separation of NIR spectra by wheat 

genotype is evident.  

 
Figure 4.11. Plot of the two largest principal components of the 94 wavelet transformed NIR 
spectra and 55 wavelet coefficients identified by the pattern recognition GA.  Each wavelet 
transformed NIR spectrum is represented as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 
= wx-B1 null, and 4 = wild type). 
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To learn more about the information content of the 55 wavelet coefficients, partial 

least squares (PLS) regression was used to develop a correlation between the wavelet 

coefficients and the amylose or protein content of the wheat. PLS calibration models 

were developed for amylose and protein using the wavelet transformed NIR spectra and 

151 
 



the 55 wavelet coefficients identified by the pattern recognition GA.  In PLS, the design 

space of the wavelet coefficients is approximated with one of lower dimension whose basis 

vectors are defined in terms of linear combinations of the original variables.  Since the latent 

variables in PLS are developed simultaneously along with the regression model, each latent 

variable which is generated from an eigen analysis of the data is a linear combination of the 

original measurement variables rotated to ensure maximum correlation with the 

concentration information provided by the response variable.  Latent variables produced by 

PLS are better at capturing information relevant to a calibration than a corresponding 

principal component analysis regression model.   

Table 4-3 shows the results of the PLS analysis including the standard error of 

calibration (SEC), the range of amylose and protein content spanned by the 94 wheat 

samples, and the correlation coefficients for the amylose and protein calibrations. It is 

evident from Table 4-3 that information about amylose content and protein content is also 

present in the 55 wavelet coefficients identified by the pattern recognition GA.  A 

histogram of the mean amylose and mean protein content of each genotype is shown in 

Figure 4.12.  The standard deviation of the amylose and protein content for the wheat 

samples from each genotype is also listed in parentheses in the histograms.  From Table 

4-3, Figures 4.11 and 4.12, one can conclude that classification of the wheat samples by 

genotype is not strongly influenced by the protein or amylose content of the wheat.  

 
Table 4-3.  PLS Results 

Y-block PLS 
components SEC (%) Correlation 

Amylose (14.6%-21.2%) 3 3.47 0.94 

Protein (1.8% - 31.9%) 3 0.38 0.94 
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Figure 4.12. Plot of (a) amylose and (b) protein content (mean %, standard deviation) for each 
genotype in the wheat data set (1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild 
type). 
 

 

To assess the predictive ability of the NIR methodology for genotyping wheat, 

object validation was performed. First, the 94 NIR spectra were divided into a training set 

of 86 wheat samples and a prediction set of 8 samples. The spectra comprising the 

prediction set were chosen by random lot. During the course of this study, two training 

set samples were identified as outliers since their removal from the training set allowed 

the pattern recognition GA to converge towards a solution.  These two wheat samples 

were waxy but their amylose content was approximately 13% and was found to be 

substantially higher than the other waxy wheat samples whose amylose content was less 

than 5%.  Therefore, these two samples were deleted from the study.  Table 4-4 shows 

the composition of the prediction set. 

The pattern recognition GA was applied to the 84 spectra of the training set. The 

GA identified informative wavelet coefficients for the training set samples by sampling 

key feature subsets, scoring their PC plots, and tracking those genotypes and samples that 
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were difficult to classify. After 300 generations, the GA identified 32 wavelet coefficients 

whose PC plot showed clustering of the training set samples on the basis of genotype. 

The prediction set of 8 NIR spectra was then employed to assess the predictive ability of 

the 32 wavelet coefficients identified by the pattern recognition GA. We chose to map the 

8 spectra directly onto the principal component map defined by the 84 spectra and 32 

wavelet coefficients.  Figure 4.13 shows the prediction set samples projected onto the 

principal component map developed from the training set.  All but one (wx-A1) wheat 

sample was projected in a region of the map near wheat samples of the same genotype.   

Additional object validation studies were performed. Twenty three training 

set/prediction set pairs were generated by random selection where the training set 

consisted of 88 samples and the corresponding prediction set contained 4 samples. Any 

particular wheat sample was present in only one of the 23 prediction sets generated.   For 

each training set, wavelet coefficients whose PC plots showed clustering on the basis of 

genotype were identified by the pattern recognition GA using PCKaNN with the 

modified Hopkins statistic.  The ability of the wavelet coefficients selected by the pattern 

recognition GA to classify NIR spectra was further assessed using the corresponding 

prediction set.  The object validation procedure used here differs from the procedure used 

by other workers.  In this study, the features selected for each training set are different.  

In most object validation studies, the features selected for each training set are the same 

and are identified using the entire data set prior to dividing the data into training 

set/prediction set pairs.  For this reason, object validation generally gives overly 

optimistic estimates of the error rate.   In this study, the validation set samples do not 
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influence the features selected for each training set.  Hence, the error rate reported with 

the cross validation procedure described in this study is less biased.    

 
Table 4-4. Prediction Set 

Genotype Number of NIR spectra 
Waxy (1) 2 
Wx-A1 (2) 2 
Wx-B1 (3) 2 
Wild type (4) 2 

 

 
Figure 4.13 Projection of the prediction set samples onto the PC plot of the 84 wavelet 
transformed NIR spectra and 32 wavelet coefficients identified by the pattern recognition GA. 
Each wavelet transformed NIR spectrum in the training set (grey) and prediction set (black) is 
represented as a point in the plot (1 = waxy type, 2 = wx-A1 null, 3 = wx-B1 null, and 4 = wild 
type). 

 

A summary of the object validation results is given in Table 4-5. The 

misclassified Wx-A1 samples were assigned to Wx-B1, and the misclassified WX-B1 

samples were assigned to Wx-A1. This is not surprising as Wx-A1 and Wx-B1 are both 

single nulls but differ in the location of the GBSS gene on the chromosome.  The 3 
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misclassified Wild types were assigned to Wx-A1 or Wx-B1.  These results suggest that 

NIR reflectance spectroscopy has the potential to genotype wheat.  Using wavelets and 

the pattern recognition GA, it was possible to differentiate the 4 genotypes including the 

partial waxy types with a recognition rate of 80% versus 50% which was reported in a 

previous study [4-2].  Amylose and protein content of the wheat samples did not appear 

to be a significant covariate that would confound the classification of the NIR spectra by 

genotype.  

 

Table 4-5. Summary of Object Validation Results 

Genotype Number of 
samples 

Number of correct 
classifications 

Classification success 
rate (%) 

Waxy (1) 22 22 100.0 

Wx-A1 (2) 25 12 48.0 

Wx-B1 (3) 24 20 83.3 

Wild type (4) 21 18 85.7 

Total 90 72 80.0 

 

 

4.4 SEARCH PRE-FILTERS FOR INFRARED LIBRARY SEARCHING FOR 
CARBOXYLIC ACIDS 

There has been renewed interest in infrared (IR) spectral library matching due to 

the wealth of information in an IR spectrum, improvements in computing power, the 

higher quality and larger amounts of IR data, and workers who are less skilled in the art 

of interpreting IR spectra [4-36 and 4-37].  However, a concern in the use of reference 

spectra for identification is the approach taken by most commercial search algorithms for 

spectral matching which involves some form of point by point numerical comparison 
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between the unknown and spectra in the library.  These algorithms lack interpretative 

ability, are sensitive to band shifting, and often ignore bands of low intensity, which can 

be quite informative.    

Many of the problems encountered in IR spectral library matching can be 

addressed using search prefilters.  A search prefilter is a quick test to identify library 

spectra that are dissimilar to an unknown [4-38 and 4-39].  Prefilters allow for more 

sophisticated and correspondingly more time-consuming algorithms for spectral library 

searching since the size of the library is culled down for a specific match. Search 

prefilters also increase the selectivity of searches by precluding library spectra that do not 

contain the prescribed functional group.   It is well known among workers in the field of 

IR spectroscopy that the number of false matches obtained between an unknown and 

reference spectra in a library increases with the size of the library. The likelihood of 

obtaining these types of matches due to chance is diminished when search prefilters are 

used to reduce the size of the library for a match.  

A two-step procedure is proposed to develop search prefilters. The first step 

involves preprocessing the IR library spectra by wavelets to enhance subtle but 

significant features in the spectral library data [4-40 and 4-41]. Wavelet coefficients 

characteristic of specific functional groups are identified in the second step by the pattern 

recognition GA [4-42 to 4-50] for separation of spectra by functional group. Search 

prefilters for carboxylic acids were developed as part of this study to demonstrate the 

feasibility of the proposed methodology. For liquid samples, carboxylic acids are difficult 

to distinguish from large libraries of organic materials due to their somewhat indistinct 

band shapes.  They contain elements of carbonyl and hydroxyl functional groups that are 
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often indistinguishable from noncarboxylic acids.  The spectra of carboxylic acids exhibit 

a strong carbonyl stretching vibration, combined with a broad O-H stretching vibration. 

The O-H stretching band often appears in the spectrum of other compounds containing 

O-H groups or mixtures containing such molecules.  The presence of both carbonyl and 

hydroxyl groups is quite common in mixtures of organic compounds that do not contain 

the organic acid functionality.  For these reasons, searching liquid phase compound 

libraries for carboxylic acids often gives positive identification for organic compound 

mixtures containing both a broad O-H group and a narrow C=O functionality.   

However, a clarification statement is needed here for a comparison of liquid phase 

versus vapor phase carboxylic acid spectra.  Liquid phase carboxylic acids have a broad 

O-H stretching vibration that is possibly confused with other compounds containing O-H 

and carbonyl groups.  In this study, vapor phase spectra of carboxylic acids where the O-

H group is not hydrogen bonded was used.  The O-H stretch in vapor phase spectra is 

relatively narrow and it is unusual to have the carboxylic acid O-H overlapped by the O-

H stretching band of the hydroxylic compounds.  For this study, some of the problems 

encountered when searching liquid phase spectral libraries for carboxylic acids were 

obviated.   

Recognition rates for carboxylic acids search prefilters previously reported in the 

literature for vapor phase spectra have varied from 81% to 92% [4-51 to 4-55]. This is 

comparable to a scientist somewhat familiar with IR.  However, these search prefilters 

were developed using raw absorbance values from selected spectral regions and did not 

include any information about band shape and band width.  If search prefilters are to be 

of value to researchers, they must perform better.  For this reason, information about 
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band shape and band width was included in the search prefilters developed in this study 

by using wavelet coefficients generated from the wavelet packet tree. 

The 555 IR spectra used in this study were obtained from the Nicolet vapor phase 

library.  Spectra comprising this library included the EPA gas phase IR collection, 

Bayerische Julius Maximilian Universitat Wurzburg and from Aldrich using their 

products as samples.   Each IR spectrum was collected in a heated cell or in a light pipe 

connected to the outlet of a gas chromatograph.  Vapor phase spectra were selected for 

this study because they exhibit somewhat simpler spectral band-shapes than condensed 

phase spectra.  Spectra were originally acquired at 0.5 – 2.0cm-1 spectral resolution.  All 

spectra (4000cm-1 to 455cm-1) were mathematically deresolved to 8cm-1 resolution by 

apodization of the original interferograms before application of the Fourier Transform 

during conversion to Omnic Library format.  Each IR spectrum contained 460 points.  

For pattern recognition analysis, each IR spectrum was initially represented as a data 

vector, x = (x1, x2, x3,…xj,…x460) where xj is the infrared absorbance of the jth point. All 

IR spectra were normalized to unit length to correct for differences in optical path length.   

The IR spectra were divided into a training set of 463 compounds and a validation 

set of 92 compounds.  (See Appendix for the names of the compounds that comprise both 

the training and prediction set.)  Spectra in the validation set were chosen by random lot.  

The training set (see Table 4-6) consisted of 146 carboxylic acids, 220 noncarbonyls 

(phosphates, alkenes, alkynes, and alkanes), 24 aldehydes, 25 ketones, 20 esters, 2 

anhydrides, 2 acid chlorides, and 24 amides.  As for the validations set (see Table 4-7), 

there were 25 carboxylic acids, 25 noncarbonyls (phosphates, alkenes, alkynes, and 

alkanes), 2 aldehydes, 12 ketones with 5 containing the OH functionality, 19 esters with 3 
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containing an OH group, and 9 amides with 2 containing an OH group.  Aldehydes, 

ketones, amides, and esters, as well as compounds that contained both the carbonyl and 

OH functionality, were selected for this study to make this problem challenging and 

meaningful.   The set of data selected for this study is also representative of the 

complexity of the modeling problem that must be solved in order to discriminate spectra 

of carboxylic acids from non-carboxylic acids in real world samples.   

 
Table 4-6.  Description of the Training Set 

Functional Group Number of 
Compounds 

Carboxylic acids 146 

Phosphates, alkenes, alkynes, and alkanes 220 

Aldehydes 24 

Ketones 25 

Esters 20 

Anhydrides and acid chlorides 4 

Amides 24 

Total Number of Compounds 463 
 

 
Table 4-7.  Description of the Validation Set 

Functional Group Number of 
Compounds 

Carboxylic acids (two contain ester functionality) 25 

Phosphates, alkenes, alkynes, and alkanes 25 

Aldehydes 2 

Ketones (5 contain OH) 12 

Esters (3 contain OH) 19 

Amides (2 contain OH) 9 

Total Number of Compounds 92 
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The first step in this study was to apply PCA to the normalized raw spectra in the 

training set.  Prior to PCA, the data were auto-scaled to ensure that each wavelength had 

equal weight in the analysis.  Figure 4.14 shows a plot of the two largest principal 

components of the 463 IR spectra that comprised the training set.  Each spectrum is 

represented as a point in the PC plot (1 = carboxylic acid and 2 = noncarboxylic acid).  

The overlap between the carboxylic acids and noncarboxylic acids in the PC plot of the 

data is evident. 

 
Figure 4.14.  Plot of the two largest principal components of the 463 IR spectra that comprised 
the training set.  Each spectrum is represented as a point in the PC plot (1 = carboxylic acid and 2 
= noncarboxylic acid).   
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The pattern recognition GA (PCKaNN fitness function) was used to identify 

wavelengths characteristic of the IR absorption profile of carboxylic acids. Informative 

wavelengths were identified by sampling key feature subsets, scoring their PC plots, and 

tracking those classes and/or spectra that were most difficult to classify.  The boosting 
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routine used this information to steer the population to an optimal solution.  After 300 

generations, the pattern recognition GA identified 22 wavelengths whose PC plot (see 

Figure 4.15) showed a limited degree of clustering of the IR spectra on the basis of 

functional group.   The overlap between carboxylic acids and noncarboxylic acids in the 

PC plot of the data can be explained from an examination of Figure 4.16, which has 

examples of spectra that comprise the training set.  Butyric acid has several characteristic 

carboxylic acid bands in its IR spectrum, whereas the spectrum of 

cyclopropanedicarboxylic acid more closely resembles the spectrum of the noncarboxylic 

acids propionic anhydride and octanoyl chloride. 
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Figure 4.15.  Plot of the two largest principal components of the 463 IR spectra that comprised 
the training set and the 22 wavelengths identified by the pattern recognition GA.  Each spectrum 
is represented as a point in the PC plot (1 = carboxylic acid and 2 = noncarboxylic acid).   
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Figure 4.16. IR spectra of butyric acid, 1, 2-cyclopropanedicarboxylic acid cis-1-phenyl, octanoyl 
chloride, and propionic anhydride 
 

The symlet 6 wavelet at the 8th level of decomposition was applied to the IR 

spectra in the training set to deconvolve overlapping spectral bands and to capture both 

bandwidth and band-shape information.  Figure 4.17 shows a plot of the two largest 

principal components of the 463 wavelet transformed spectra and the 9398 wavelet 

coefficients used to represent each IR spectrum.  The wavelet transform enhanced the 

separation of the carboxylic acids and noncarboxylic acids in a PC plot of the data. 

The pattern recognition GA was applied to the wavelet transformed spectra to 

further enhance the separation of the carboxylic acids from the noncarboxylic acids in the 

PC plot of the training set data.  For this problem, the fitness function used consisted of 

both PCKaNN and the modified Hopkins statistic.  This was necessary because of so-

called “outliers” present in PC plots of symlet 6 mother wavelet coefficient subsets of the 

data.   Figure 4.18 shows a PC plot of the 463 IR spectra and 41 wavelet coefficients 
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identified by the pattern recognition GA.  Each IR spectrum is represented as a point in 

the PC plot (1 = carboxylic acid and 2 = noncarboxylic acid).  The carboxylic acids are 

well separated from the noncarboxylic acids in the plot.   

 

 
Figure 4.17.  Plot of the two largest principal components of the 463 wavelet transformed IR 
spectra and the 9398 wavelet coefficients that comprised the training set.  Each spectrum is 
represented as a point in the PC plot (1 = carboxylic acid and 2 = noncarboxylic acid).   
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To assess the predictive ability of the 41 wavelet coefficients identified by the 

pattern recognition GA, a validation set of 92 IR spectra was used (see Table 4-7).  

Spectra from the validation set were projected directly onto the PC map developed from 

the 463 IR spectra and 41 wavelet coefficients identified by the pattern recognition GA.  

Figure 4.19 shows the projection of the validation set spectra onto the PC map of the 

training set data.  Each projected infrared spectrum lies in a region of the map occupied 

by IR spectra possessing the same class label.   
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Figure 4.18.  Plot of the two largest principal components of the 463 IR spectra and 41 wavelet 
coefficients identified by the pattern recognition GA.  Each IR spectrum is represented as a point 
in the PC plot (1 = carboxylic acid and 2 = noncarboxylic acid).  The carboxylic acids are well 
separated from the noncarboxylic acids in the plot.  
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Figure 4.19.   Projection of the validation set spectra onto the PC map of the 463 IR spectra and 
41 wavelet coefficients identified by the pattern recognition GA.  Each projected infrared 
spectrum lies in a region of the map occupied by spectra possessing the same class label.  (1 = 
carboxylic acid from the training set, 2 = noncarboxylic acid from the training set, C = carboxylic 
acid from the validation set, and N = noncarboxylic acid from the validations set).   
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Discriminant analysis was also used to classify the 463 spectra in the training set.  

The data were divided into two classes: carboxylic acids and noncarboxylic acids.  LDA, 

QDA, RDA, SIMCA, and back propagation neural networks (BPNN) were used to 

develop classifiers to differentiate carboxylic acids from noncarboxylic acids using the 41 

wavelet coefficients identified by the pattern recognition GA as descriptors for these four 

classification algorithms. Again, a classification success rate of 100% was achieved using 

each of these classification algorithms. 

To further test the predictive ability of these descriptors and the discriminants 

associated with them, a validation set of 92 IR spectra (see Table 4-7) was employed.  

Again, a classification success rate of 100% was achieved for the spectra in the validation 

set using LDA, QDA, RDA, SIMCA, or BPNN.  Evidently, the pattern recognition GA 

can identify wavelet coefficients that are characteristic of the carboxylic acid functional 

group.  This suggests that wavelet analysis coupled to the pattern recognition GA can be 

used to extract structural information from IR data. The feasibility of the proposed 

methodology to develop IR search prefilters for spectral library matching (e.g., 

identification of carboxylic acids) is evident. 

 

4.5 PATTERN RECOGNITION ASSISTED INFRARED LIBRARY SEARCHING 
FOR PDQ DATABASE 

 Paint samples are often recovered from collisions where injury or death to a 

pedestrian and damage to a vehicle have occurred. Studies [4-56 and 4-57] conducted 

over 30 years ago by the Royal Canadian Mounted Police (RCMP) showed that vehicles 

can be differentiated by comparing the color, layer sequence and chemical composition 

of each individual layer in paint.  In order to make these comparisons, a comprehensive 
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database was developed as well as a means of searching and retrieving information from 

it. Today, the Paint Data Query (PDQ) database contains over 19,000 samples (street 

samples and factory panels), that correspond to over 72,000 individual paint layers, 

representing the paint systems used on most domestic and foreign vehicles marketed in 

North America. 

 Automotive paint [4-58] consists of several layers: a clear coat over a color coat 

which in turn is over one or two undercoats (primers).  Each paint layer, with the 

exception of the clear coat, contains pigments and fillers, and all layers contain binders. 

Automotive manufacturers often use a unique combination of pigments and binders.  It is 

this unique combination that allows forensic scientists to determine the possible make, 

model, and year of a vehicle from a paint chip left at the scene of a crime. 

PDQ is a database of the chemical composition and physical attributes (i.e. color 

and layer sequence) of each layer of the original manufacturer’s paint. The database also 

contains digital libraries of IR spectra of each of the layers.  PDQ is accessed through a 

general text-based search and retrieval system. Text-based coding of both chemical and 

physical characteristics serves as a pre-screen for a manual infrared spectral search of 

materials that tend to be chemically very similar to one another.  The capability to 

directly search FTIR spectra in the database does not exist.  Commercial spectral search 

algorithms cannot distinguish subtle differences between spectra from one vehicle model 

to the next.  The coding used for IR in PDQ is generic, based on functional group 

recognition, which often leads to non-specific search criteria that can result in a large 

number of spurious hits that a scientist must work through and eliminate. 
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Currently, modern automotive paints use thinner undercoats and color coat layers 

which is protected by a thicker clear coat layer.  All too often, only a clear coat paint 

smear is the only layer of paint left at the crime scene.  The text based system of PDQ 

will not allow for effective searching of clear coats because all modern clear coats 

applied to any painted automotive parts have only one of two possible formulations: 

acrylic melamine styrene, or acrylic melamine styrene polyurethane.  They contain no 

inorganic fillers or color with which to further discriminate the sample. In these cases, the 

motor vehicle cannot be identified using the text based portion of the PDQ database.   

 The inability to access information about clear coats and search clear coat FTIR 

spectra is a significant limitation to the current text-based PDQ database.  Library 

searching algorithms incorporated directly into the database have the potential for more 

specific searches by relying less on subjective text-based characteristics. However, 

searches of the database’s associated IR libraries using commercial software have met 

with only some success.  Automotive paint libraries are composed of a large number of 

similar spectra.  Commercial search algorithms are not able to distinguish subtle but 

significant features in the data, such as shoulders, unique shapes and patterns, and minor 

peaks.  Since most commercial search algorithms involve some form of numerical 

comparison between the spectrum of an unknown and each library spectrum [4-59], these 

algorithms are unable to handle peak shifting and ignore peaks of low intensity, which 

may be informative [4-60]. 

By using search prefilters [4-61 and 4-62], many of the problems encountered in 

spectral searching of IR automotive paint libraries can be addressed.  A search prefilter is 

a quick test to identify library spectra that are dissimilar to an unknown.  Prefilters 
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increase the selectivity of the search as the size of the library is culled down for a specific 

match using pattern recognition techniques which increases the accuracy of the search.  

However, it is important that information contained in the search prefilter be based on the 

relationship between the composition of the clear coat layer and the manufacturer and 

model of the vehicle.  The high quality of FTIR data in the PDQ spectral libraries, and 

the comprehensiveness of this database, makes it an excellent source of data for the 

development and validation of search prefilters.   

To assess the utility of this approach for spectral library matching, IR spectra of 

clear coats were collected using a BioRad 40A or BioRad 60 FTIR spectrometer.  Each 

clear coat paint sample, which was between 3μg and 4μg, was run from 2000 to 200 cm-1 

between diamond windows.  IR spectra of paint samples from six Chrysler plants (see 

Table 4-8) were obtained from the PDQ database.  Each plant (BRA, STL, JFN, STH, 

SAL, and NEW) was represented by at least 10 paint samples obtained from a variety of 

automobile parts (see Table 4-9).  With the exception of the STL plant, all of the paint 

samples were from the same production year (see Table 4-8).  This made the problem 

more challenging as the paint samples evaluated were all the same make (Chrysler) with 

a limited production year range.  The IR spectra were divided into a training set of 88 

spectra (see Table 4-10) and a validation set of 3 spectra (see Table 4-11).  Samples from 

the validation set were chosen by random lot. Further details about the experimental 

conditions used can be found elsewhere [4-63]. 

As the overall goal of this study was to differentiate IR spectra of clear coats by 

manufacturing plant, the initial focus of the pattern recognition analysis was the training 

set data. The first step in the study was to apply PCA to the autoscaled IR spectral data.  

169 
 



For PCA, each sample was initially represented as a data vector, x = (x1, x2, x3, 

...xj,…x1944) where xj is the absorbance of the jth point from the IR spectrum.  In Figure 

4.20, a plot of the two largest principal components of the 88 spectra and 1944 features 

comprising the training set is shown.  Each spectrum (i.e., sample) is represented by a 

point in the plot (1 = BRA, 2 = STL, 3 = JFN, 4 = STH, 5 = SAL, 6 = NEW).  The 

overlap of clear coats from the different manufacturing plants in the principal component 

of the data is evident. 

 

Table 4-8.  Clear Coat Paint Data Set 
(Courtesy of Talanta, 2011, 87, 46-52 

 Plant Code Vehicle Model Number of 
Spectra

1 Bramalea, Canada  BRA *Intrepid, Concorde, LHS and 
300M (1999) 

25 

2 **St. Louis, USA  STL Dodge Ram Trucks 
(1999-2000) 
Chrysler/Plymouth SUV’s 
(1999) 

21 

3 Jefferson North Plant, 
USA  

JFN Jeep Cherokee (1999) 13 

4 Sterling Heights, 
USA  

STH Dodge Stratus (1999)   9 

5 Saltillo, Mexico  SAL Dodge Ram Trucks (1999) 12 

6 Newark, USA  NEW Durango SUV (1999) 11 

 
*Chrylser Intrepid, Chrysler Concorde, Chrysler LHS and Chrysler 300M are mechanically 
similar vehicles as they are interrelated models.  Both the Concorde and Intrepid are built on the 
same identical (LH) platform. 
**St. Louis plant has two distinct production lines: Dodge Ram Trucks (North Plant) and 
Chrysler/Plymouth SUV’s (South Plant)) 
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Table 4-9.  Automobile Parts Used in the Data Set 

(Courtesy of Talanta, 2011, 87, 46-52) 

Part Number of samples

Roof 68 

Hood 9 

Fender 10 

Door 2 

Hatchback 1 

Trunk 1 
 
 
 

Table 4-10.  Training Set 
(Courtesy of Talanta, 2011, 87, 46-52) 

 Plant Number of Spectra 

1 Bramalea (BRA)  23 

2 St. Louis (STL)  21 

3 Jefferson North Plant (JFN)  13 

4 Sterling Heights (STH)  9 

5 Saltillo (SAL)  11 

6 Newark (NEW) 11 

 
 
 

Table 4-11.  Validation Set 
(Courtesy of Talanta, 2011, 87, 46-52) 

Sample (PDQ Number) Manufacturing Plant 

M0057OT2 Bramalea (BRA)  

W0001OT2 Bramalea (BRA)  

P0093OT2 Saltillo (SAL) 
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Figure 4.20.  Plot of the two largest principal components of the 88 clear coat IR spectra and 1944 
points that comprise the training set.  Each IR spectrum is represented as a point in the plot (1 = 
BRA, 2 = STL, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW).  (Courtesy of Talanta, 2011, 87, 46-
52) 
 

The next step was feature selection.  A genetic algorithm for pattern recognition 

analysis [4-64 to 4-74] was used in this study to identify features from the IR spectra of 

the clear coats characteristic of the profile of each manufacturing plant. The pattern 

recognition GA identified features that optimized the separation of the IR spectra by 

manufacturing plant in a plot of the two or three largest principal components of the data.  

Because principal components maximize variance, the bulk of the information encoded 

by these features is about plant identity.  A principal component plot that shows 

separation of the spectra by manufacturing plant can only be generated using features 

whose variance or information is primarily about differences between the plants. This 

fitness criterion reduces the size of the search space as it limits the search to these types 
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of features.  In addition, the pattern recognition GA focuses on those classes and/or 

samples that are difficult to classify by boosting the relative importance of those classes 

and/or samples that consistently score poorly as it trains. Over time, the algorithm learns 

its optimal parameters in a manner similar to that of a neural network. The pattern 

recognition GA integrates aspects of artificial intelligence and evolutionary computations 

to yield a "smart" one -pass procedure for feature selection and pattern classification.  

The pattern recognition GA identified spectral features by sampling key feature 

subsets, scoring their principal component plots, and tracking clear coat samples or plants 

that were difficult to classify. The boosting routine used this information to steer the 

population to an optimal solution. After 300 generations, the GA identified 8 wavelengths 

whose PC plot showed clustering on the basis of Plant ID (see Figure 4.21).  Plant 5 is 

well separated from the other manufacturing plants, whereas Plants 1 and 4 are separated 

from each other and Plants 3 and 6 overlap with each other.  Plant 2 (STL) appears to be 

composed of three distinct clusters indicative of three different types of clear coats.  Two 

of these clusters overlap with Plants 1 and 4, and Plants 3 and 6, respectively.  The 

principal component map of these 8 spectral features suggests that information about 

manufacturing plant is present in the IR spectra of clear coats.  

A PC map of the STL clear coat samples was developed to investigate the 

clustering.  Figure 4.22 shows a plot of the two largest principal components of these 21 

STL IR spectra and 1944 spectral features.  Clustering in three distinct sample groups is 

again evident, which corresponds to the clustering of STL in the original six-class study.  

Each cluster has a distinctive IR spectrum (see Figure 4.23).   Group A are SUV’s 

(Plymouth Voyager, Dodge Grand Caravan, and Chrysler Town and Country), whereas 
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Groups B and C are Dodge Ram trucks (1500, 2500, and 3500 for Group B and 1500 and 

3500 for Group C).  Chrysler had made a change in the clear coat formulation used at the 

St. Louis North Plant in 2000.  Group B falls under the BASF supplied Duraclear II clear 

coat and has a chemistry of acrylic, melamine, styrene, and polyurethane.  Group C falls 

under DuPont supplied Gen IV AW clear coat and has the chemistry acrylic, melamine, 

and styrene.  One can conclude from an examination of this PC plot that information 

about model and specific production line can be obtained from an IR spectrum of a clear 

coat paint smear. 

 

 
Figure 4.21.  Plot of the two largest principal components of the 88 clear coat IR spectra of the 
training set and 8 wavelengths identified by the pattern recognition GA.  Each IR spectrum is 
represented as a point in the plot (1 = BRA, 2 = STL, 3 = JFN, 4 = STH, 5 = SAL, and 6 = 
NEW).  (Courtesy of Talanta, 2011, 87, 46-52) 
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Figure 4.22.  Plot of the two largest principal components of 1944 points of the 21 STL clear coat 
IR spectra.  Each IR spectrum is represented by its sample ID in the plot. (Courtesy of Talanta, 
2011, 87, 46-52) 

 
 

 
 
Figure 4.23. Prototypical IR spectrum representative of each STL clear coat cluster.  (Courtesy of 
Talanta, 2011, 87, 46-52) 
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STL clear coats were removed from the training set and the pattern recognition 

analysis was again repeated.  Figure 4.24 shows a plot of the two largest principal 

components of the 67 IR spectra and 1944 features.  Applying the pattern recognition GA 

to the data, 10 wavelengths were identified that contained information about the 

manufacturing plant of these clear coats.  Figure 4.25 shows a plot of the two largest 

principal components developed from the 10 wavelengths selected by the pattern 

recognition GA.  The same trends observed in the PC plot for the larger training set 

(which contained STL samples) are again reported.  Plant 5 is well separated from the 

other plants, whereas Plants 1 and 4 (BRA and STH) and Plants 3 and 6 (JFN and NEW) 

overlap. 

 
Figure 4.24.  Plot of the two largest principal components of the 67 clear coat IR spectra and 1944 
points that comprise the training set used for prediction.  Each IR spectrum is represented as a 
point in the plot (1 = BRA, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW). (Courtesy of Talanta, 
2011, 87, 46-52) 
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Figure 4.25.  Plot of the two largest principal components of the 67 clear coat IR spectra from the 
training set and 10 wavelengths identified by the pattern recognition GA.  Each IR spectrum is 
represented as a point in the plot (1 = BRA, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW).  
(Courtesy of Talanta, 2011, 87, 46-52) 

 

More powerful preprocessing methods were needed to extract information about 

manufacturing plant from the IR spectra of these clear coats.  For this reason, wavelets 

were applied to this data.  To identify informative wavelet coefficients, it was necessary 

to use the pattern recognition GA.  The Daubechies 12 mother wavelet at the 8th level of 

decomposition was used to denoise and deconvolute each IR spectrum into 16362 

wavelet coefficients.   Figure 4.26 shows a plot of the two largest principal components 

of the wavelet transformed IR spectra of the clear coats.  Each IR spectrum was 

represented by 16362 wavelet coefficients.  Because this plot was uninformative, the 

pattern recognition GA was used to identify informative wavelet coefficients. Using the 

pattern recognition GA, 36 wavelet coefficients which contained information about the 

manufacturing plant were identified. Figure 4.27 shows a plot of the two largest principal 

177 
 



components of the 67 clear coat spectra comprising the training set and the 36 wavelet 

coefficients identified the pattern recognition GA.  Separation of IR spectra by 

manufacturing plant is evident.   

 
Figure 4.26.  Plot of the two largest principal components of the 67 wavelet transformed clear 
coat IR spectra and 16362 wavelet coefficients that comprise the training set used for prediction.  
Each IR spectrum is represented as a point in the plot (1 = BRA, 3 = JFN, 4 = STH, 5 = SAL, and 
6 = NEW).  (Courtesy of Talanta, 2011, 87, 46-52) 

 

A prediction set of 3 spectra was employed (see Table 4-11) to assess the 

predictive ability of the 36 wavelet coefficients identified by the pattern recognition GA.  

Figure 4.28 shows the projection of the prediction set samples onto a PC map developed 

from the 67 clear coat spectra and the 36 wavelet coefficients. Each projected sample lies 

in a region of the map near a clear coat with the same class label.  Evidently, the pattern 

GA can identify wavelet coefficients characteristic of the manufacturing plant of the clear 

coat sample.  This suggests that IR spectra of clear coats can be used to characterize paint 

smears by manufacturing plant and production line.   
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Figure 4.27.  Plot of the two largest principal components of the 67 wavelet transformed clear 
coat IR spectra from the training set and 36 wavelet coefficients identified by the pattern 
recognition GA.  Each IR spectrum is represented as a point in the plot (1 = BRA, 3 = JFN, 4 = 
STH, 5 = SAL, and 6 = NEW).  (Courtesy of Talanta, 2011, 87, 46-52) 

 
Figure 4.28.  Projection of the prediction set samples onto the PC plot of the 67 wavelet 
transformed IR spectra and 36 wavelet coefficients identified by the pattern recognition GA.  
Each IR spectrum in the training set (1 = BRA, 3 = JFN, 4 = STH, 5 = SAL, and 6 = NEW) and 
prediction set (BRA and SAL) is represented as a point in the plot.  All projected samples lie in a 
region of the map near clear coats with the same class label.  (Courtesy of Talanta, 2011, 87, 46-
52) 
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CHAPTER V 
 
 

DISCOVERY OF BIOMARKER CANDIDATES USING THE GENETIC 
ALGORITHM FOR PATTERN RECOGNITION ANALYSIS 

 

 

5.1  INTRODUCTION 
 

Biomarkers are compounds that are used as indicators of biological states in a 

wide range of applications which include medicine, cell biology, genetics, geology and 

astrobiology. In the context of medicine, a biomarker can serve as an indicator of the 

presence of disease in a subject. For example, changes in the expression levels of 

particular proteins in serum have been correlated with the progression of cancer [5-1 to 5-

3].  Biomarkers can also indicate the presence of harmful micro-organisms in indoor 

environments.  The absence of clinically proven biomarkers has limited efforts to 

improve detection of cancer and pathogenic micro-organisms.  

During the past decade, significant progress in air sampling, micro-array 

technology, and mass spectrometry has offered the possibility of using genetic, 

proteomic, or chemical fingerprinting to predict the progression of cancer in patients or 

the presence of harmful micro-organisms in homes or office buildings.  Recent advances 

in air sampling technology, e.g., the development of an integrated chemical and 

microbiological approach to characterize the fungal load of a contaminated area in a 
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building, have the potential to discriminate mold contamination from mold free areas in 

buildings in an economic and timely manner [5-4].   Advances in microarray technology 

during the past decade offer the opportunity to perform comparative transcriptional 

profiling as large amounts of genetic and proteomic expression data is routinely 

generated [5-5 to 5-7]. The development of new mass spectrometric based techniques, 

e.g., techniques for ionization of proteins and peptides such as matrix-assisted laser 

desorption ionization (MALDI) and electrospray ionization combined with time of flight 

mass spectrometry and new hybrid mass spectrometers, are becoming routine tools for 

protein characterization [5-8 to 5-10].  The advantage of using these new methods to 

facilitate the discovery of clinically relevant biomarker candidates is demonstrated in 

several studies that are the subject of this chapter.    

In the first study [5-11], a set of volatile organic compound (VOC) profiles were 

developed with corresponding bioaerosol measurements as input-output pairs for a 

discriminant to predict mold exposure in indoor environments.  A novel air sampling 

methodology was used to collect whole air grab samples while viable spores were 

collected concurrently using an Andersen impactor in conjunction with malt extract agar 

and dichloran glycerol 18.  By comparing the bioaerosol data to VOC profiles obtained 

using a GC/MS equipped with a cold trap preconcentrator, a discriminant was developed 

to classify a residence as to potential mold growth based on its microbial VOC profile.  

The pattern recognition GA was used to identify features in the GC/MS profile of the 

VOCs correlated with spore count. 

In the second study [5-12], biopsy material of small round blue cell tumors 

analyzed by cDNA microarrays was identified as to type (Ewings sarcoma, Burkitt’s 
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lymphoma, neuroblastoma, and rhabdomyo sarcoma through supervised learning 

implemented using the pattern recognition GA.  Protein profiling of serum and tissue 

extracts using mass spectrometry is a popular method to detect biomarker patterns in 

cancer research.  As each sample is very complex and is described by thousands of 

features, an important issue is the methodology used to extract the information present in 

these mass spectral profiles that distinguish disease from the controls.  The remaining 

five studies in this chapter focus on using the pattern recognition GA to simplify complex 

proteomic data and to facilitate the visualization of data through identification of the 

mass spectral features related to the disease state of the subjects.    

 

5.2 PREDICTION OF MOLD CONTAMINATION FROM MICROBIAL VOC 
PROFILES  
 

The goal of this study is to determine the degree of mold infestation in indoor 

environments. Mold contamination in indoor environments has become a public safety 

concern.  Mold infestations have closed schools, condemned houses, caused lost revenue 

in industrial settings, rendered crops unfit for human consumption, and caused allergic 

reactions in sensitive populations [5-13 to 5-21]. Current mold sampling techniques are 

not effective at elucidating the fungal load in a contaminated area nor are they 

economical and timely in providing results.  Therefore, there is interest in developing 

new sampling and analytical approaches to detect molds in homes and buildings. 

A new analytical methodology to characterize the fungal load of a contaminated 

area in a building has been developed as part of this study using an integrated chemical 

and microbiological approach. A set of VOC profiles were developed with corresponding 

bioaerosol measurements as input-output pairs for a discriminant to predict the presence 
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or absence of mold contamination in indoor environments. The VOC signatures that 

molds emit as reflected by the gas chromatographic profiles were compared to impactor 

data collected from each sampling site.  By comparing the bioaerosol data to VOC 

profiles, a discriminant was trained to classify a residence as to potential mold growth 

based on its microbial volatile organic compound (MVOC) profile. 

VOC air sampling was performed using Entech Bottle-Vacs [5-22].  Sampling 

volatile organics in air using evacuated containers, which can be shipped out for analysis, 

has been shown to be a viable low-cost method that can be performed in seconds by 

building occupants or homeowners [5-23].  The air samples were analyzed using GC/MS 

equipped with a cold trap preconcentrator.    

Bioaerosol and chemical sampling data were collected concurrently at 10 

locations in Northern New York during 17 sampling periods from July 2006 to August 

2007 with the majority of samples collected during the summer.  Because cooking and 

cleaning activities can produce considerable chemical interference, occupants at these 

locations agreed to abstain from these activities for 12 hours prior to sampling and during 

sampling events.  Whole-air grab samples for MVOCs were collected using Entech 

Bottle-Vacs.  The bottles were checked by an analogue pressure gauge prior to sampling 

to ensure that a proper vacuum was maintained.  Each sample was analyzed by an Agilent 

6890/5973N GC/MS (Agilent Technologies, Santa Clara, CA) equipped with a 7500 

Autosampler attached to a 7100A Extended Cold Trap Dehydration Preconcentrator 

(Entech Instruments, Inc, Simi Valley, CA).  Separation of the MVOC mixture was 

performed by a DB-1 column (60 meters by 0.32 mm ID with a film thickness of 1 μm).   

Calibration standards used in the analysis included bromochloromethane, 1, 4-
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difluorobenzene and deuterated chlorobenzene.  Relative response factors were calculated 

for several MVOCs.  All samples were analyzed in both SIM and Scan mode. Eighteen 

chemicals were selected as representative MVOCs (see Table 5-1) known to be emitted 

by molds during metabolic activity. All concentrations determined were blank corrected. 

Bioaerosol data was collected using an Anderson N6 Impactor [5-24] in 

conjunction with malt extract agar (MEA) and dichloran glycerol (DG18) in Petri dishes 

to obtain viable mold samples.  Since MEA is a mesophilic agar whereas DG18 is a 

xerophilic agar, a broader range of fungi can be cultured giving a better representation of 

the fungal ecology by using both types of agar.  During each sampling event, 6 samples 

of each agar type were collected with an associated field blank.  The samples were 

cultured for 6 days with colony counts blank corrected with a positive-hole correction 

applied [5-25].  The mold count values, which were expressed as a ratio using the field 

blank, were divided into three categories: low (less than 1.2), medium (1.2 to 3.0) and 

high (greater than 3.0).  These values were used to assign the MVOC gas 

chromatographic (GC) profiles with the appropriate class label.   

 
Table 5-1.  MVOC Compounds 

2-Methylfuran 1-Pentanol 
2-Butanone 2-Hexanone 
3-Methylfuran 2-Heptanone 
2-Methyl-1-propanol 1-Octen-3-ol 
3-Methyl-2-butanol 3-Octanone 
2-Pentanol 2-Pentylfuran 
1, 4 Dioxane 3-Octanol 
3-Methyl-1-butanol 2-Ethyl-1-hexanol 
2-Methyl-1-butanol 1-Octanol 

 

For pattern recognition analysis, each gas chromatogram was represented as a 

data vector X = (x1, x2, x3 … x18) where the components of the data vector are the 
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concentrations of the VOCs identified by GC/MS.  All profiles were normalized to 

constant sum and the data were autoscaled to ensure that each compound had equal 

weight in the analysis. Because of the preprocessing methods used, the focus of the 

pattern recognition analysis is the concentration pattern present in the GC profiles, 

not the total amount of VOCs captured in the whole air grab samples by the Entech 

Bottle-Vacs. 

Each MVOC profile (air sample) was assigned two class labels as viable mold 

samples were collected using two different types of agar.  One label was based on spore 

counts from DG18 agar and the other on spore counts from MEA agar.  The two 

bioaerosol data sets (which are summarized in Table 5-2) have 20 MVOC profiles in 

common for low mold count exposure, 5 for medium mold count exposure, and 29 for 

high mold count exposure. The 58 MVOC profiles in the DG18 data set were divided into 

3 classes on the basis of the impactor data.  Figure 5.1 shows a PC plot of all 18 

compounds for the DG18 data set.  Each air sample is represented as a point in the plot.  

MVOC profiles of the high mold count air samples are well separated from medium and 

low mold count samples in the PC plot of the data. 

The genetic algorithm for pattern recognition analysis was used to identify 

specific compounds in the gas chromatograms characteristic of the MVOC profile of each 

class.  The GA sampled key feature subsets, scored their principal component plots, and 

tracked those samples and/or classes that were difficult to classify.  The boosting routine 

used this information to steer the population to an optimal solution. After 100 

generations, the GA identified 8 MVOCs whose PC plot showed clustering of the gas 

chromatograms on the basis of mold count (see Figure 5.2). This suggests that 
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information about mold count is contained within the gas chromatograms of these air 

samples. 

Table 5-2.   Bioaerosol Data 

Mold Count  
Number of Samples  

DG18  MEA  

Low  20  22  

Medium  5  7  

High  33  29  

  

 
Figure 5.1.  Plot of the two largest principal components of the 18 VOCs for DG18.  Each air 
sample is represented as a point in the plot.  1 = low mold count exposure, 2 = moderate mold 
count exposure, and 3 = high mold count exposure. (Courtesy of Microchem. J. 2012, 103, 119-
124.) 
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Table 5-3 shows the results of K-NN classification study for the 8 MVOCs 

identified by the pattern recognition GA. The overall classification success rate, 

calculated over the entire set of points using the 1-NN and 3-NN classification rule, 

indicated a high degree of clustering of the air samples based on the mold count. Only 2 
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samples were misclassified using the 1-NN classification rule and 5 samples by the 3-NN 

classification rule.  

 
Figure 5.2.  Plot of the two largest principal components of the 8 VOCs identified by the pattern 
recognition GA for DG18.  Each air sample is represented as a point in the plot.  1 = low mold 
count exposure, 2 = moderate mold count exposure, and 3 = high mold count exposure. (Courtesy 
of Microchemical J., 2012, 103, 119-124.) 
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Table 5-3.  K-NN Results for DG18 
K-NN Total Number of Samples Misclassifications 
1-NN 58 2 
3-NN 58 5 

 

The 8 VOCs identified by the pattern recognition GA were selected for further 

study using cross validation to simulate the ability of the compounds to predict the mold 

count exposure of an unknown air sample.  Twenty nine sets of VOC profiles were 

developed by random selection, where each training set consisted of 56 MVOC profiles 

and the corresponding prediction set contained the remaining 2 profiles. Each profile was 

only present in one of the 29 prediction sets generated.  The training sets were analyzed 
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by three classification methods: LDA, QDA, and a 3-layer back propagation neural 

network (BPNN) using a sigmoid transfer function.  The mold count exposure of the 

samples in the corresponding prediction set was determined using these trained models.  

Table 5-4 summarizes the results of the validation study.  High classification success 

rates were obtained for both high and low mold count exposure suggesting that a distinct 

VOC profile representative of the MVOCs which could be differentiated from the blank 

was identified by the pattern recognition methodology.  For moderate mold count 

exposure, the classification success rates were low with the misclassified VOC profiles 

assigned to the low mold count exposure class. This indicates that problems exist with 

differentiating background from VOCs of air samples collected in indoor environments 

with moderate mold counts.   

 
Table 5-4.  DG18 Cross Validation Set Results 

Training 
method  

Low mold count  Medium mold 
count  High mold count  Total  

Missed  Success 
(%)  Missed Success 

(%)  Missed Success 
(%)  Missed Success 

(%)  

LDA  2  90  2  60  5  84.8  9  84.4  

QDA  1  95  5  0 1  97  7  87.9 

BPNN  
(10-3-3)  0  100  3  40 3  90.9  6  89.7 

 

The 58 gas chromatograms from the MEA data set were also analyzed using 

pattern recognition methods. Figure 5.3 shows a plot of the two largest principal 

components of the 58 air samples and 18 compounds comprising this data set.  Each 

sample is represented as a point in the PC plot of the data.  There is overlap between the 
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three classes in the PC map of the data.  Therefore, the pattern recognition GA was again 

used to identify features characteristic of the MVOC profile of each class.  The pattern 

recognition GA identified informative descriptors by sampling key feature subsets, 

scoring their principal component plots and tracking those samples and or classes that 

were difficult to classify.  After 100 generations, the pattern recognition GA identified 5 

compounds whose PC plot showed separation on the largest principal component based 

on mold count exposure (see Figure 5.4). Table 5-5 shows the results of K-NN 

classification for the 5 MVOCs identified by the pattern recognition GA using the 1-NN 

and 3-NN classification rule.  Table 5-6 summarizes the results of a cross validation 

study for the 5 MVOCs.  Although K-NN yielded better results for DG18 than MEA, the 

results of the cross validation study for MEA were similar to DG18.  

 
Figure 5.3.  Plot of the two largest principal components of the 18 VOCs for MEA.  Each air 
sample is represented as a point in the plot.  1 = low mold count exposure, 2 = moderate mold 
count exposure, and 3 = high mold count exposure. (Courtesy of Microchemical J., 2012, 103, 
119-124.) 
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Figure 5.4.  Plot of the two largest principal components of the 5 VOCs identified by the pattern 
recognition GA for MEA.  Each air sample is represented as a point in the plot.  1 = low mold 
count exposure, 2 = moderate mold count exposure, and 3 = high mold count exposure. (Courtesy 
of Microchemical. J., 2012, 103, 119-124.) 
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Table 5-5.  K-NN Results for MEA 
K-NN Total Number of Samples Misclassifications 

1-NN 58 4 

3-NN 58 10 

 
 

Table 5-6.  MEA Cross Validation Set Results 

Training 
method  

Low mold count  Medium mold 
count  High mold count  Total  

Missed  Success 
(%)  Missed Success 

(%)  Missed Success 
(%)  Missed Success 

(%)  

LDA  2  90.91  4  57.14  3  89.7  9  84.75  

QDA  0  100 5  28.57 1  96.6  6  89.7 

BPNN  
(10-3-3)  2  90.91 2 71.43 2  93.1 6  89.7 
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To ascertain the validity of the PC map as an accurate representation of the 5-

dimensional feature space for MEA, the FCV clustering algorithm was used.  Four 

starting cluster centers were selected (Sample IDs 10, 13, 55, and 59) based on their 

location in the PC plot of the 5 compounds selected by the pattern recognition GA.  A 

zero principal component model was used to characterize each fuzzy cluster in the data.  

The FCV clustering algorithm converged in 7 iterations with a class membership error of 

0.0027. The four clusters identified by the FCV clustering algorithm, which are 

consistent with the PC plot of the data, are shown in Figure 5.5.  Although FCV 

clustering was also used to assess the accuracy of the PC plot as an accurate 

representation of the 8-dimensional feature space identified by the pattern recognition 

GA for DG18, the results are not reported here as they were inconclusive. 

 
Figure 5.5.  The samples comprising each cluster identified by the FCV clustering algorithm are 
circled and shown in the PC plot of the 5 VOCs that were identified by the pattern recognition 
GA for MEA.  Each air sample is represented as a point in the plot.  1 = low mold count 
exposure, 2 = moderate mold count exposure, and 3 = high mold count exposure. (Courtesy of 
Microchem. J. 2012, 103, 119-124.) 
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DG18 and MEA were combined into a single data set to take full advantage of the 

broader range of fungi cultured by these two agars for assigning class labels to the 

MVOC profiles.   GC class assignments remained unchanged for air samples that had the 

same mold counts in the two bioaerosol data sets.  However, samples with different mold 

counts for DG18 and MEA agars were assigned the higher value.   The GA for pattern 

recognition analysis was used to identify the informative compounds in the profile 

correlated to mold count exposure.  Figure 5.6 is a PC plot of 8 VOCs identified by the 

pattern recognition GA as characteristic of the MVOC profiles.  The 3 classes are well 

separated in the PC plot of these 8 compounds with the largest principal component 

containing the bulk of the discriminatory information about sample mold count.    

 
Figure 5.6.  Plot of the two largest principal components of the 8 VOCs identified by the pattern 
recognition GA for DG18-MEA.  Each air sample is represented as a point in the plot.  1 = low 
mold count exposure, 2 = moderate mold count exposure, and 3 = high mold count exposure. 
(Courtesy of Microchem. J. 2012, 103, 119-124.) 
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The 8 compounds identified by the pattern recognition GA from the combined 

DG18 and MEA data set were assessed for their ability to predict the mold count 

exposure of an unknown air sample.  The same segmented cross validation design used 

for DG18 and MEA was used for the combined data set.  Each training set was analyzed 

by LDA, and a 3-layer back propagation neural network (BPNN).  QDA was not used to 

perform cross validation as there were only 5 chromatograms representing air samples 

with moderate mold count exposure, and the inverse of the class variance-covariance 

matrix cannot be directly computed from the data when the number of observations in a 

class is less than the number of measurements used to characterize the class.  Table 5-7 

summarizes the results of the validation study for LDA and BPNN.  All GC profiles were 

correctly classified using a back propagation neural network. As for LDA, the assumption 

of equal class covariance, which was assessed by computing the determinant of the 

variance-covariance matrix for each class, did not hold true for this data.  Therefore, it is 

not surprising that LDA did not perform as well as the neural network which does not 

utilize information about class covariance matrices in the development of decision 

surfaces to classify the VOC profile data.  

 

Table 5-7.  DG18-MEA Cross Validation Set Results 

Training 
method  

Low mold count  Medium mold 
count  High mold count  Total  

Missed  Success 
(%)  Missed Success 

(%)  Missed Success 
(%)  Missed Success 

(%)  

LDA  2  90.91  1 80  0  100 3  94.9 

BPNN  
(10-3-3)  0  100 0 100 0  100 0  100 
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A distinct profile indicative of MVOCs was developed from the air sampling data 

that could be readily differentiated from the blank for both high mold count and moderate 

mold count exposure samples.  However, these results should be viewed as preliminary 

due to the small number of air samples obtained from moderate mold count exposure 

environments.  Future studies will need to be undertaken in other locales to further assess 

the validity of the proposed method. 

 

5.3 DIFFERENTIATION OF SMALL ROUND BLUE CELL TUMORS   

The goal of this study was to differentiate between the different types of small 

round blue cell tumors (SRBCT), namely Neuroblastoma (NB), Rhabdomyosarcoma 

(RMS), Burkitt’s lymphoma (BL), and the Ewing family of tumors (EWS), using gene 

expression data from cDNA microarrays.  These cancers are difficult to distinguish by 

light microscopy, and currently there is no single test that can precisely identify these 

cancers. In clinical practice, several techniques are used for diagnosis including 

immunohistochemistry, cytogenetics, interphase fluorescence in situ hybridization, and 

reverse transcription.   

The SRBCT data set, which consisted of 2308 genes across 83 samples, was 

divided into a training set of 63 samples and a prediction set of 20 samples as in the 

original study [5-26] published by Khan, see Tables 5-8 and 5-9.  (In the original study 

there were 25 samples in the validation set.  However, 5 of the samples were non SRBCT 

and were excluded from this study because they were not represented in the training set.) 

The training set data were autoscaled to remove any inadvertent weighting that might 
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otherwise occur due to differences in magnitude among the measurement variables. 

Further information about the collection of this data can be found elsewhere [5-26]. 

Table 5-8.  Training Set for SRBCT 
Cancer Type Tumor Biopsy Material Cell Lines Total 
EWS 13 10 23 
BL - 8 8 
NB - 12 12 
RMS 10 10 20 
Total 23 40 63 

 
 

Table 5-9.  Prediction Set for SRBCT 
Cancer Type Tumor Biopsy Material Cell Lines Total 
EWS 5 1 6 
BL - 3 3 
NB 4 2 6 
RMS 5  5 
Total 14 6 20 

 

Three different fitness functions were employed: PCKaNN, PCKaNN with the 

Hopkins statistic and PCKaNN with the modified Hopkins statistic. The first step in this 

study was to apply PCA to the data.  Figure 5.7 shows a plot of the two largest principal 

components developed from the 63 training set samples and 2308 genes.  Each sample is 

represented as a point in the score plot (l = EWS, 2 = BL, 3 = NB, and 4 = RMS).  There 

is overlap between the different types of small round blue cell tumors in the principal 

component map of the data indicating that feature selection is necessary. Therefore, the 

pattern recognition GA was used to identify features characteristic of the gene expression 

profile of each tumor class.  The GA identified features by sampling key feature subsets, 

scoring their principal component plots, and tracking those classes and/or samples that 

were difficult to classify.  The population consisted of 5000 chromosomes and the 

mutation rate of the genetic algorithm was set at 0.2.  After 37 generations, PCKaNN 

identified 22 features whose principal component plot showed clustering of the training 
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set samples (grey) on the basis of tumor type (see Figure 5.8).  The 20 prediction set 

samples (black) were then projected onto the principal component map developed from 

the 63 training set samples and the 22 genes identified by PCKaNN (see Figure 5.8).  15 

of the 20 prediction set samples were projected onto a region of the map containing 

tumor samples with the same class label. 

 
Figure 5.7.  A plot of the two largest principal components developed from the 63 training set 
samples and the 2308 genes.  Each sample is represented as a point in the score plot (1 = EWS, 2 
= BL, 3 = NB, and 4 = RMS).   

 

 

This classification problem was also tackled by incorporating transverse learning 

into the feature selection process. Figure 5.9 summarizes the results obtained for 

PCKaNN with the deweighted Hopkins statistic, and Figure 5.10 summarizes the results 

obtained for PCKaNN with the modified Hopkins statistic.  In both studies, the 

population consisted of 5000 chromosomes, the mutation rate was 0.2, 200 generations 

were run, and the fitness function consisted of 90% PCKaNN and 10% Hopkins or 90% 

PCKaNN with 10%  modified Hopkins statistic.  For the run involving the deweighted 

Hopkins statistic (see Figure 5.9), 30 features were selected by the pattern recognition 
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GA.  All of the training set samples (grey) were correctly classified, and 18 of the 20 

prediction set samples (black) were located in a region of the map with SRBCT samples 

that had the same class label.  The results obtained for the modified Hopkins statistic (see 

Figure 5.10) were more impressive.  Thirty one features were identified by the pattern 

recognition GA.  All of the training set samples (grey) were correctly classified, and all 

prediction set samples (black) were located in a region of the map with SBRCT samples 

that had the same class label. 

Of the 83 features identified by the pattern recognition GA using the three fitness 

functions, 61 were unique.  Only 5 features were selected by all three fitness functions, 

whereas 45 features were selected by a single fitness function and 11 features were 

selected by two fitness functions.  The fitness functions PCKaNN and PCKaNN with 

deweighted Hopkins had 8 features in common, whereas the fitness functions PCKaNN 

and PCKaNN with modified Hopkins had 9 features in common.  The two fitness 

functions incorporating transverse learning also had 9 features in common.  Of the 45 

features selected by only a single fitness function, 7 were selected by PCKaNN, 17 were 

selected by PCKaNN with Hopkins and 18 were selected by PCKaNN with modified 

Hopkins.   

Clearly, a larger fraction of the features identified by the two fitness functions that 

utilize transverse learning are unique features and this has implications with regard to 

applying this methodology for the selection of biomarker candidates.  These results also 

confirm that this set of gene expression data contains a wealth of information relevant to 

separating the samples by tumor type. 

 

204 
 



 
Figure 5.8.  A plot of the two largest principal components developed from the 63 training set 
samples and 22 genes identified by PCKaNN.  Each sample is represented as a point in the score 
plot (1 = EWS, 2 = BL, 3 = NB, and 4 = RMS).  Training set samples are in grey and the 
prediction set samples which are projected onto the PC map of the data are in black. 

 

 
 

 
Figure 5.9.  A plot of the two largest principal components developed from the 63 training set 
samples and 22 genes identified by PCKaNN and the Hopkins statistic.  Each sample is 
represented as a point in the score plot (1 = EWS, 2 = BL, 3 = NB, and 4 = RMS).  Training set 
samples (labeled points) are in grey and the prediction set samples (unlabeled points) are in black. 
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Figure 5.10.  A plot of the two largest principal components developed from the 63 training set 
samples and 22 genes identified by PCKaNN and the modified Hopkins statistic.  Each sample is 
represented as a point in the score plot (1 = EWS, 2 = BL, 3 = NB, and 4 = RMS).  Training set 
samples (labeled points) are in grey and the prediction set samples (unlabeled points) are in black. 

 

 
 

Features selected by the pattern recognition GA using a fitness function that 

incorporates transverse learning performed better for prediction of the validation set 

samples included in the training set (as unlabeled points) than features selected by 

PCKaNN.  However, these same features and subsequently any model developed from 

them may not perform as well (compared to the features selected by PCKaNN) for future 

samples, i.e., those not included in the training set as unlabeled samples.  

 
5.4 DISCOVERY OF BIOMARKER CANDIDATES FOR LIVER CANCER 
FROM MALDI-TOF DATA OF TISSUE N-LINKED GLYCANS 

 
 The goal of this study was to identify potential biomarkers for liver cancer from 

MALDI-TOF data of tissue N-linked glycans. N-linked glycans are polysaccharides or 

oligosaccharides that are attached to a nitrogen atom of an amino acid residue in 
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a glycoprotein. Glycans have received considerable attention as potential biomarkers for 

detection of cancer. Aberrant glycosylation has been linked to several cancers [5-27 to 5-

36] and to specific structural changes occurring in metastatic cells, e.g., an increase in 

sialylation or fucosylation has been reported [5-37]. Incomplete or truncated structures 

originating from variations in the expression of glycosyltransferases often are also 

associated with diseased phenotypes [5-37].  Glycan characterization is challenging 

because glycans can form a vast number of different structures due to alternative 

branching and linkage possibilities, which leads to a large number of diverse molecules 

and multiple isomeric species [5-37 and 5-38]. 

 For this study, tissue samples were collected from various donors, some of 

whom were healthy, while others were diagnosed with Hepatocellular Carcinoma or 

Liver Cirrhosis. Thirty three liver tissue samples were collected that comprised 5 normal 

controls, 5 cirrhosis, 16 hepatocellular carcinoma, and 7 uninvolved tissue samples from 

patients diagnosed with hepatocellular carcinoma. To generate the MALDI-TOF data, the 

tissue samples were first processed for enzymatic release of N-glycans from 

glycoproteins, followed by extraction and solid phase permethylation [5-39 and 5-40]. 

Permethylated glycans were spotted on a MALDI plate with DHB-matrix and vacuum 

dried for co-crystallization. Glycomics data was collected using Ultraflex II MALDI-

TOF-TOF (Bruker Daltonics, Billerica, MA) in reflectron positive ion mode with an 

accelerating voltage of 23 kV. The m/z range of data collected was from 500-7000 Da. 

Two data sets were developed from the raw MALDI-TOF data. The first data set 

consisted of 125 peaks that represented known N-glycans, while the second dataset was 

developed using all of the peaks in the MALDI-TOF data. For the first data set, raw mass 
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spectra were processed using flexAnalysis 2.4 (Bruker Daltonics, Billerica, MA) and 125 

peaks in the m/z range of 1400-6000 Daltons were selected by a software tool called 

Glycoworkbench [5-41]. For the second data set, raw MALDI-TOF data was 

preprocessed for baseline correction, denoising, binning and peak alignment using the 

pkDACLAS software package [5-42]. After pre-processing, each mass spectrum 

consisted of 6500 points. The spectra in both data sets were normalized by taking the 

ratio of each peak with the largest peak in the spectrum. Both data sets were divided into 

a training set of 29 spectra and a validation set of 4 spectra as shown in Table 5-10. 

Spectra comprising the validation set were chosen by random lot. 

 
Table 5-10.  Training Set and Prediction Set  

Tissue Type Number of 
Samples 

Number of Samples 
in Training Set 

Number of Samples 
in Prediction Set 

Normal 5 4 1 

Cirrhosis 5 4 1 

Hepatocellular Carcinoma 16 14 2 
Uninvolved 7 7 - 
Total 33 29 4 

 
 

 The 125 peak MALDI-TOF data set was first analyzed.  For pattern recognition 

analysis, each spectrum was represented as a data vector X = (x1, x2, x3 … x125), where 

the components of the data vector are the line intensities at specific m/z values that 

represent N-glycans in the MALDI-TOF data. The training set spectra were autoscaled to 

remove any inadvertent weighting that might occur due to differences in magnitude 

among the measurement variables. The first step in this study was to analyze 125 peak 

MALDI-TOF spectra using PCA.  Figure 5.11 shows a plot of the three largest principal 

components developed from the 29 spectra and 125 peaks that comprised the training set 
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data. Each spectrum is represented as a point in the PC score plot (l = Normal, 2 = 

Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = Uninvolved). The PC plot does not 

show any separation between the four classes in the data. One sample that belonged to 

Hepatocellular Carcinoma was identified as an outlier and was removed from the study. 

 

 
Figure 5.11.  A plot of the three largest principal components developed from the 29 training set 
spectra and 125 peaks. Each spectrum is represented as a point in the PC score plot (l = Normal, 2 
= Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = Uninvolved). 
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 In the next step, the GA for pattern recognition analysis using PCKaNN was 

used to identify mass spectral peaks characteristic of each class.  The pattern recognition 

GA identified features that could separate the four sample types by sampling key feature 

subsets, scoring their PC plots and tracking those classes and/or samples that were 

difficult to classify. The boosting routine used this information to steer the population to 

an optimal solution. After 200 generations, the GA identified 11 peaks that contained 
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discriminatory information about sample type. Figure 5.12 shows a plot of the three 

largest principal components developed from the 28 training set spectra and 11 peaks 

identified by the pattern recognition GA. The Normal and Cirrhosis samples were well 

separated from each other and the other sample types whereas Hepatocellular Carcinoma 

and Uninvolved tissue samples overlapped with each other. The 4 prediction set samples 

(black) were then projected onto the principal component map of the 28 training set 

samples (grey) and the 11 peaks identified by the GA (see Figure 5.13).  All 4 prediction 

set samples were projected onto a region of the map that contained samples with the same 

class label.  Table 5-11 lists the m/z values of the 11 features identified by the pattern 

recognition GA and the sample class for which they have the highest average intensity 

value.   

 

 

 
Figure 5.12. A plot of the three largest principal components developed from the 28 training set 
spectra and 11 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = 
Uninvolved). 
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Figure 5.13. A plot of the three largest principal components developed from the 28 training set 
spectra and 11 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = 
Uninvolved).  Training set samples are in grey and the prediction set samples which are projected 
onto the PC map of the data are in black. 
 
 
 

Table 5-11.  Identity of the 11 Features Identified by the GA  
m/z Value of 

Feature Class with Highest Average Intensity Value 

1763.7 Hepatocellular Carcinoma and Uninvolved  

1783.9 Hepatocellular Carcinoma and Uninvolved 
2591.3 Hepatocellular Carcinoma and Uninvolved  
2736.3 Normals 
2822.4 Normals 
3602.8 Hepatocellular Carcinoma 
3865.2 Normals 
4056.9 Hepatocellular Carcinoma 
4400.3 Hepatocellular Carcinoma 
4443.3 Hepatocellular Carcinoma 
4763.6 Hepatocellular Carcinoma 
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 The overlap between Hepatocellular Carcinoma and Uninvolved tissue samples 

suggested that information about the identity of the patient is also contained in the 

MALDI-TOF profiles, as these samples were obtained from the same donors. To assess 

this hypothesis, other comparisons of the MALDI-TOF profiles involving samples from 

Hepatocellular Carcinoma and/or Uninvolved tissue were undertaken. For example, GA 

runs involving several three-way and two-way classifications of the data were 

undertaken: (1) Normal, Cirrhosis, and Hepatocellular Carcinoma; (2) Normal, Cirrhosis, 

and Uninvolved; (3) Normal, Hepatocellular Carcinoma and Uninvolved; (4) Cirrhosis, 

Hepatocellular Carcinoma and Uninvolved; and (5) Hepatocellular Carcinoma and 

Uninvolved. For the 2-way and 3-way classifications, Uninvolved tissue samples always 

overlapped with Heptacellular Carcinoma, whereas the other three sample types could be 

separated from each other (see Figures 5.14 to 5.18).   

 
Figure 5.14. A plot of the three largest principal components developed from the 21 training set 
spectra and 12 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, and 3 = Hepatocellular Carcinoma).  
Training set samples are in grey and the prediction set samples which are projected onto the PC 
map of the data are in black. 

212 
 



 

 
Figure 5.15. A plot of the three largest principal components developed from the 15 training set 
spectra and 10 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, and 4 = Uninvolved).  Training set samples 
are in grey and the prediction set samples which are projected onto the PC map of the data are in 
black. 

 
Figure 5.16. A plot of the three largest principal components developed from the 24 training set 
spectra and 10 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 3 = Hepatocellular Carcinoma, and 4 = Uninvolved).  
Training set samples are in grey and the prediction set samples which are projected onto the PC 
map of the data are in black. 
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Figure 5.17. A plot of the three largest principal components developed from the 24 training set 
spectra and 12 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (2 = Cirrhosis, 3 = Hepatocellular Carcinoma, and 4 = Uninvolved).  
Training set samples are in grey and the prediction set samples which are projected onto the PC 
map of the data are in black. 

 
Figure 5.18.  A plot of the two largest principal components developed from the 20 training set 
spectra and 13 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (3 = Hepatocellular Carcinoma and 4 = Uninvolved).   
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Because uninvolved tissue samples always overlapped with Heptacellular Carcinoma, 

both Hepatocellular Carcinoma and Uninvolved tissue samples were assigned to the same 

class and studied along with the other two classes (Normal and Cirrhosis) using 

transverse learning (80 % PCKaNN and 20 % modified Hopkins). The pattern 

recognition GA identified 6 peaks that contained discriminatory information about 

sample type. Figure 5.19 shows a plot of the three largest principal components 

developed from the 28 training set spectra and 6 mass spectral peaks identified by the 

pattern recognition GA.  The PC map of these 6 features shows clustering of the samples 

on the basis of class.  When the 4 prediction set samples (black) are projected onto the PC 

map developed from the 28 training set samples (grey) and the 6 peaks identified by the 

pattern recognition GA (see Figure 5.20), all 4 prediction set samples lie in a region of 

the map containing samples with the same class label.  This was consistent with the 

results obtained from the 4-class study. Table 5-12 lists the m/z values for the 6 features 

identified by the pattern recognition GA for the 3-way classification involving Normals, 

Cirrhosis, and Heptacellular Carcinoma and Uninvolved tissue, and the sample class for 

which they have the highest average intensity value.   

 
Table 5-12.  Identity of the 6 Features identified by the GA 

m/z Value of 
Feature Class with Highest Average Intensity Value 

1729.9 Hepatocellular Carcinoma 

1763.9 Hepatocellular Carcinoma and Uninvolved 
1982.0 Hepatocellular Carcinoma 
2426.2 Hepatocellular Carcinoma 
4057.0 Hepatocellular Carcinoma 
4763.6 Hepatocellular Carcinoma 
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Figure 5.19. A plot of the three largest principal components developed from the 28 training set 
spectra and 6 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, and 3 = Hepatocellular Carcinoma or 
Uninvolved). 
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Figure 5.20. A plot of the three largest principal components developed from the 28 training set 
spectra and 6 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, and 3 = Hepatocellular Carcinoma or 
Uninvolved). Training set samples are in grey and the prediction set samples which are projected 
onto the PC map of the data are in black. 

 

216 
 



  The second MALDI-TOF data set with 6500 points per spectrum was also 

analyzed using the pattern recognition GA.  Each mass spectrum was divided into three 

intervals based on visual analysis.  Several GA runs were performed on each interval 

which revealed that only noise was contained in the spectral range 500 to 1000 m/z and 

5000 to 7000 m/z.  Therefore, the spectra were truncated and only the points in the range 

from 1000 m/z to 5000 m/z which corresponded to 4000 points were retained for further 

analysis.  The truncated data set was reanalyzed using the pattern recognition GA with 

transverse learning (80 % PCKaNN and 20 % modified Hopkins).  A 4-way classification 

of the data was unsuccessful.  When the uninvolved tissue samples were combined with 

samples of Hepatocellular Carcinoma to form a single class, clustering was observed on 

the basis of sample class membership. Figure 5.21 shows a plot of the two largest 

principal components developed from the 29 training set spectra and the 12 points 

identified by the pattern recognition GA. Each point represents a different peak as these 

12 points span the entire mass spectrum.  When the 4 prediction set samples (black) are 

projected onto the PC map developed from the 29 training set samples (grey) and the 12 

points identified by the pattern recognition GA (see Figure 5.22),  all 4 projected samples 

lie in a region of the map with training set samples that have the same class label.  

Although a different transduction method was used to represent the mass spectra as data 

vectors (5000 points versus 125 peaks selected by the Glycoworkbench software tool), 

the same results were obtained.  Evidently, the MALDI-TOF mass spectra contain 

information about the diseased state of the subject and the identity of the subject as the 

samples of Uninvolved tissue and Hepatocellular Carcinoma are from the same donors. 
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Figure 5.21. A plot of the two largest principal components developed from the 29 training set 
spectra and 12 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, and 3 = Hepatocellular Carcinoma or 
Uninvolved).  
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Figure 5.22. A plot of the two largest principal components developed from the 29 training set 
spectra and 12 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Cirrhosis, and 3 = Hepatocellular Carcinoma or 
Uninvolved). Training set samples are in grey and the prediction set samples which are projected 
onto the PC map of the data are in black. 
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5.5 DISCOVERY OF BIOMARKER CANDIDATES FOR LIVER CANCER 
FROM IMS DATA OF SERUM N-GLYCANS 
 

The goal of this study was to identify potential biomarkers for liver cancer from 

IMS data of serum N-glycans. The genetic algorithm for pattern recognition analysis was 

used to identify time tags from IMS data of serum N-glycans that could serve as potential 

biomarkers for liver cancer.  90 human serum samples were collected from donors to 

develop the N-glycan IMS data. The data set consisted of 30 normal control, 30 

hepatocellular carcinoma, and 30 liver cirrhosis samples.   

The sample preparation for developing IMS profiles included enzymatic release 

of N-glycans from serum glycoproteins, followed by solid phase extraction and 

permethylation. Further details about the sample processing can be found elsewhere [5-

43]. The IMS spectra for the 90 glycan samples were developed using instrumentation 

built in-house. The ions were generated by electrospray ionization using a modified 

NanoMate (TriVersa, Advion, Ithaca, NY) auto injection system. The beam of 

electrosprayed ions were accumulated in an hourglass shaped ion funnel and a packet of 

ions was periodically released into the drift tube using an electrostatic gate. The drift tube 

was filled with 2.5 Torr of 300 K He buffer gas and the activation region was set at 20 V. 

Upon exiting the drift tube, ions were focused into the source region of a time-of-flight 

mass analyzer and detected by a multichannel plate (MCP) detector. Further details about 

the IMS instrument used for generating the data can be found elsewhere [5-44]. 

Each IMS spectrum was represented by 4972 time tags. The data were divided 

into a training set of 81 samples and a prediction set of 9 samples. Table 5-13 shows the 

number of samples in the training set and prediction set for each class. The prediction set 

samples were chosen by random lot. Each spectrum in the IMS data was normalized to 
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constant sum and the training set data were autoscaled prior to pattern recognition 

analysis. The training set spectra were analyzed using PCA. Figure 5.23 shows a plot of 

the two largest principal components developed from the 81 training set spectra and 4972 

time tags. Each ion mobility spectrum is represented as a point in the PC score plot (l = 

Normal, 2 = Hepatocellular Carcinoma, and 3 = Cirrhosis).  

 
Table 5-13.  Training Set and Prediction Set  

Tissue Type Number of 
Samples 

Number of Samples 
in Training Set 

Number of Samples 
in Prediction Set 

Normal 30 27 3 
Hepatocellular Carcinoma 30 27 3 
Cirrhosis 30 27 3 
Total 90 81 9 

 

 

 
Figure 5.23. A plot of the two largest principal components developed from the 81 training set 
spectra and 4972 time tags. Each ion mobility spectrum is represented as a point in the PC score 
plot (l = Normal, 2 = Hepatocellular Carcinoma, and 3 = Cirrhosis). 
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The IMS data was analyzed using the pattern recognition GA with transverse 

learning (80% PCKaNN and 20% modified Hopkins). The pattern recognition GA 

identified potential biomarkers for liver cancer by sampling key feature subsets, scoring 

their principal component plots, and tracking those samples and/or classes that were most 

difficult to classify. The boosting routine used this information to steer the population to 

an optimal solution. After 100 generations, the genetic algorithm identified 20 time tags 

whose principal component plot showed clustering of the ion mobility spectra according 

to sample type. The normals, hepatocellular carcinoma, and cirrhosis samples are well 

separated from each other in the plot of the two largest principal components (see Figure 

5.24).  

 The prediction set of 9 ion mobility spectra was employed to assess the predictive 

ability of the 20 time tags identified by the pattern recognition GA.  Figure 5.25 shows 

the 9 spectra from the prediction set (black) that were projected onto the PC score plot 

defined by the 81 spectra of the training set (grey) and 20 time tags. Each projected 

spectrum is in a region of the map with samples that have the same class label.  

Evidently, the GA can identify time tags from the ion mobility spectra that are correlated 

to the disease state of the subject from which the IMS spectrum was obtained. 

221 
 



 
Figure 5.24. A plot of the two largest principal components developed from the 81 training set 
spectra and 20 time tags identified by the pattern recognition GA. Each ion mobility spectrum is 
represented as a point in the PC score plot (l = Normal, 2 = Hepatocellular Carcinoma, and 3 = 
Cirrhosis). 
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Figure 5.25. A plot of the two largest principal components developed from the 81 training set 
spectra and 20 time tags identified by the pattern recognition GA. Each ion mobility spectrum is 
represented as a point in the PC score plot (l = Normal, 2 = Hepatocellular Carcinoma, and 3 = 
Cirrhosis). Training set samples are in grey and the prediction set samples which are projected 
onto the PC map of the data are in black. 
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5.6 DISCOVERY OF BIOMARKER CANDIDATES FOR PANCREATIC 
CANCER FROM MALDI-TOF DATA OF SERUM N-GLYCANS 

 
The goal of this study was to identify potential biomarkers for pancreatic cancer 

from MALDI-TOF data developed from serum N-glycans. The genetic algorithm for 

pattern recognition analysis was used to identify peaks from MALDI-TOF profiles of 

serum N-glycans that were potential biomarkers for pancreatic cancer.  The MALDI-TOF 

data was developed from 41 serum samples that consisted of 22 normal controls, 7 

chronic pancreatis and 12 pancreatic adenocarcinoma samples. Pattern recognition 

analysis also performed on a second data set that served as a validation set and contained 

32 MALDI-TOF profiles, which consisted of 8 normal controls, 8 chronic pancreatis and 

16 pancreatic adenocarcinoma samples. The composition of the two data sets is 

summarized in Table 5-14.  

Table 5-14.  Training Set and Prediction Set  

Sample Type Number of Samples in 
First Data Set 

Number of Samples in 
Second Data Set 

Normal 22 8 

Chronic Pancreatis 7 8 
Pancreatic Adenocarcinoma 12 16 
Total 41 32 

 
The experimental conditions and procedure used for preparation of samples and 

procurement of MALDI-TOF data was similar to that used in a previous study and can be 

found elsewhere [5-45 to 5-47]. The spectral profiles consisted of 127 peaks that 

represented N-glycans. The data were normalized to unit length and autoscaled prior to 

pattern recognition analysis. PCA was used to analyze the 41 spectral profiles.  Figure 

5.26 shows a plot of the two largest principal components developed from the 41 spectra 

and 127 peaks. Each spectrum is represented as a point in the PC score plot (l = Normal, 
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2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma).  An examination of the 

score plot shown in Figure 5.26 reveals the presence of two outliers in the data.  These 

two samples always behaved as outliers even in combination with other normalization 

(unit length, constant sum, and ratio of largest peak) and scaling (autoscaling and mean 

centering) routines.  They were excluded from further analyses. 

PCKaNN was used to identify mass spectral peaks that showed clustering based 

on the class label of the sample. The population consisted of 200 chromosomes, mutation 

rate was 0.2, three-point cross-over was used, and K for each class was set equal to the 

number of samples in the class. The GA identified informative peaks by sampling key 

feature subsets, scoring their principal component plots, and tracking those samples 

and/or classes that were most difficult to classify. After 50 generations, the GA identified 

5 spectral features whose PC plot did not show clustering on the basis of sample type (see 

Figure 5.27).  

Because separation between classes was not achieved, different combinations of 

normalization and scaling methods were investigated using PCKaNN. The normalization 

and transformation methods investigated were normalization to largest peak ratio, unit 

length, constant sum, and log transform. Scaling methods used to preprocess the data 

were autoscaling, mean centering, range scaling, level scaling, Paretoscaling and 

generalized Paretoscaling. In all, 24 preprocessing combinations were investigated for 

PCKaNN.  From the results obtained using PCKaNN, it was obvious that a different 

eigenvector projection method was needed to display the information content of the data 

for the pattern recognition GA. For this reason, CVAKNN was substituted for PCKaNN 

in the pattern recognition GA. 
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Figure 5.28 shows a plot of the two largest canonical variates developed from the 

39 spectra and 127 peaks. No clustering of the samples based on class was observed. 

Pattern recognition analysis was performed using CVAKNN. The population consisted of 

200 chromosomes, mutation rate was 0.2, three-point cross-over was used, and K for 

each class was set equal to the number of samples in the class. The GA identified peaks 

by sampling key feature subsets, scoring their CVA plots, and tracking those classes and 

samples that were difficult to classify. The boosting routine used this information to steer 

the population to an optimal solution. After 50 generations, the GA identified 18 mass 

spectral features whose CVA plot showed clustering of the samples on the basis of the 

class label (see Figure 5.29). 

  Object validation was performed by dividing the data set into a training set (36 

spectra) and a prediction set (3 spectra). One sample was chosen by random lot from each 

of the three classes for the prediction set. The pattern recognition GA was run on the 

training set with CVAKNN. The GA identified 22 mass spectral peaks that were 

correlated with the class membership of the samples in the training set. Prediction set 

samples were projected on the CVA plot developed from the 22 peaks identified by the 

pattern recognition GA (see Figure 5.30). All 3 prediction set samples were projected 

onto a region of the map containing samples with the same class label.  

To reduce the occurrence of chance classification and select only those features 

which will have true potential as biomarkers, a method known as schema hunting was 

implemented. Several GA runs were performed on the training set with each run having 

different values for the GA parameters such as different mutation rates (0.1, 0.2, 0.3, and 

0.4). A histogram depicting the number of times each spectral feature was selected by the 
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pattern recognition GA during each generation (number of hits) is shown in Figure 5.31. 

Features that have a number of hits equal to or larger than a specific threshold value were 

selected for classification and analyzed. The threshold used for selecting subsets of 

features was increased in a stepwise manner to obtain a decreasing number of features in 

the feature subsets. CVA plots were developed to evaluate the feature subsets. The 

minimum number of features required to separate the samples in the training set by 

sample type and correctly predict the class membership of the mass spectra in the 

prediction set was 24 peaks (number of hits ≥ 9). Further removal of uninformative 

features was achieved stepwise by removal of mass spectral peaks that had canonical 

loadings near zero. Fourteen mass spectral peaks that were correlated to the class 

membership of the samples were identified as potential biomarkers (see Figure 5.32). 

The two samples that behaved as outliers were reanalyzed using CVA to better 

understand their relationship to the other samples in the data set. Each outlier was 

reintroduced in the training set or both outliers were introduced in the training set, and 

pattern recognition analysis was performed by the GA using CVAKNN. The results 

obtained for these three trials are shown in Figures 5.33, 5.34, and 5.35. The outliers are 

marked by circles in the score plots.  The presence of these outliers in the training set 

diminished the separation between the three classes (see Figures 5.33 and 5.35) and 

lowered the classification success rates obtained for the 3 validation set samples (see 

Figures 5.33, 5.34, and 5.35).  From these three plots, it is evident that deleting the two 

outliers that were identified by PCA during the beginning of this study was the correct 

course of action to be taken.  
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Figure 5.26. A plot of the two largest principal components developed from the 41 spectra (first 
data set) and 127 peaks. Each spectrum is represented as a point in the PC score plot (l = Normal, 
2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma). Outliers are circled. 
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Figure 5.27. A plot of the two largest principal components developed from the 39 spectra (first 
data set) and 5 peaks identified by the pattern recognition GA. Each spectrum is represented as a 
point in the PC score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma).  
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Figure 5.28. A plot of the two largest canonical variates developed from the 39 spectra (first data 
set) and 127 peaks. Each spectrum is represented as a point in the CV score plot (l = Normal, 2 = 
Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma).  
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Figure 5.29. A plot of the two largest canonical variates developed from the 39 spectra (first data 
set) and 18 peaks selected by the pattern recognition GA. Each spectrum is represented as a point 
in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma).  
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Figure 5.30. A plot of the two largest canonical variates developed from the 36 spectra (first data 
set) and 22 peaks selected by the pattern recognition GA. Each spectrum is represented as a point 
in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic Adenocarcinoma). 
Training set samples are in grey and the prediction set samples which are projected onto the CV 
map of the data are in black. 
 
 
 

 
Figure 5.31. A histogram depicting the number of times each spectral feature was selected by the 
pattern recognition GA in each generation (number of hits) for schema hunting.  
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Figure 5.32. A plot of the two largest canonical variates developed from the 36 spectra (first data 
set) and 14 peaks identified by schema hunting and loading plots. Each spectrum is represented as 
a point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma). Training set samples are in grey and the prediction set samples which are 
projected onto the CV map of the data are in black. 
 

 
Figure 5.33. A plot of the two largest canonical variates developed from the 38 spectra (with the 
two outliers included) of the first data set and 23 peaks identified pattern recognition GA. Each 
spectrum is represented as a point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 
= Pancreatic Adenocarcinoma). Training set samples are in grey and the prediction set samples 
which are projected onto the CV map of the data are in black. Outliers are circled. 
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Figure 5.34. A plot of the two largest canonical variates developed from the 37 spectra (only one 
outlier included) of the first data set and 22 peaks identified pattern recognition GA. Each 
spectrum is represented as a point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 
= Pancreatic Adenocarcinoma). Training set samples are in grey and the prediction set samples 
which are projected onto the CV map of the data are in black. Outlier is circled. 
 
 
 

 
Figure 5.35. A plot of the two largest canonical variates developed from the 37 spectra (only one 
outlier included) of the first data set and 24 peaks identified pattern recognition GA. Each 
spectrum is represented as a point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 
= Pancreatic Adenocarcinoma). Training set samples are in grey and the prediction set samples 
which are projected onto the CV map of the data are in black. Outlier is circled. 
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The second data set of 32 MALDI-TOF profiles, which had 126 peaks, was 

compared with the first data set of 39 spectra (with the two outliers removed) using 

pattern recognition analysis. Spectra in both datasets were normalized to unit length and 

autoscaled prior to pattern recognition analysis.  The two data sets were combined and 

the 71 samples were analyzed using both PCA and hierarchical clustering. The results of 

PCA and hierarchical clustering for the 71 samples and 126 peaks are shown in Figures 

5.36 and 5.37 respectively.  Two clusters were detected in the data.  The first cluster 

consisted of the samples from the first data set and the second cluster consisted of the 

samples from the second data set.  Evidently, the experimental conditions used to 

generate the first data set were not the same for the second data set.  Although the same 

MALDI-TOF instrument was used to generate both data sets, it was not standardized 

during the generation of the second data set.  This would explain the disparity in the 

MALDI-TOF profile of the samples from the two data sets.    

The second data set was then investigated independent of the first data set using 

CVAKNN and object validation. For the 32 spectra, the pattern recognition GA identified 

23 mass spectral features that provided discrimination between the three classes in the 

second MALDI-TOF data set (see Figure 5.38). The second data set was then divided 

into a training set of 28 spectra and a prediction set of 4 spectra. The prediction set 

samples were selected by random lot and included 1 sample that was a normal control, 1 

chronic pancreatic sample, and 2 pancreatic adenocarcinoma samples. The 23 mass 

spectral features previously identified by the pattern recognition GA were used to classify 

the training set of 28 spectra and to predict the class membership of the 4 prediction set 

samples (see Figure 5.39) using CVA. Three of the 4 prediction set samples were 
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misclassified. A comparison was made with the first data set using this same approach. 

The 18 mass spectral features  identified previously by the pattern recognition GA using 

39 samples from the first data set (see Figure 5.29) were used to classify the 36 training 

set samples and to predict the class membership of the 3 prediction set samples (see 

Figure 5.40).  All prediction set samples from data set 1 were correctly classified. 

Several mass spectral features that could serve as potential biomarkers for 

pancreatic cancer were identified from the first data set.  Each mass spectral data set was 

obtained under different conditions, which prevented these two data sets from being 

combined into a single data set or for the second data set to be used as a validation set for 

the first data set.  There is also a problem with the quality of the mass spectra in the 

second data set which is probably due to the failure of the investigators to standardize the 

instrumental conditions during the mass spectral runs. 

 
Figure 5.36. A plot of the two largest principal components developed from the 71 spectra (both 
data sets) and 126 peaks. Each spectrum is represented as a point in the PC score plot (l = First 
data set samples, 2 = Second data set samples). 
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Figure 5.37. A hierarchical clustering (Wards) obtained by using 73 spectra (both data sets) and 
126 peaks.  (l = First data set samples, 2 = Second data set samples). 
 

 
 
 

 
Figure 5.38. A plot of the two largest canonical variates developed from the 32 spectra (second 
data set) and 23 peaks selected by the pattern recognition GA. Each spectra is represented as a 
point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma).  
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Figure 5.39. A plot of the two largest canonical variates developed from the 28 spectra (second 
data set) and 23 peaks selected previously by the pattern recognition GA. Each spectra is 
represented as a point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = 
Pancreatic Adenocarcinoma). Training set samples are in grey and the prediction set samples 
which are projected onto the CV map of the data are in black. 
 
 
 

 
Figure 5.40. A plot of the two largest canonical variates developed from the 36 spectra (first data 
set) and 18 peaks selected previously by the pattern recognition GA. Each spectra is represented 
as a point in the CV score plot (l = Normal, 2 = Chronic Pancreatis, and 3 = Pancreatic 
Adenocarcinoma). Training set samples are in grey and the prediction set samples which are 
projected onto the CV map of the data are in black. 
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5.7 DISCOVERY OF BIOMARKER CANDIDATES FOR ESOPHAGEAL 
CANCER FROM IMS-MS DATA OF SERUM N-GLYCANS 
 
 The goal of this study was to identify potential biomarkers for esophageal 

cancer and its progression using IMS-MS data developed from serum N-glycans. Before 

the glycans data set was probed for biomarkers, the quality of the IMS-MS data was 

evaluated with respect to instrumental variability and variability associated with the 

procedure used for extraction of serum glycans.      

 The IMS-MS data collected for each sample were recorded as intensities for 

individual drift time bins and time-of-flight bins.  A box extraction algorithm was used 

for extracting data within a specified range of drift time and m/z values and for peak 

alignment. The algorithm added intensities across a narrow m/z range around nominal 

m/z values for each drift time bin to generate drift time distributions. These ion mobility 

distributions are generated over the specified range of m/z and drift time bins. Each IMS-

MS spectrum was represented as a data vector where the components of the vector are 

ion intensities obtained at specific drift times and m/z values. Ion mobility profiles were 

extracted for the m/z range 650-1600 Da across a drift time of 15-35 ms.  Each IMS 

spectrum consisted of 5401 points. The spectra were normalized to constant sum of 1 and 

autoscaled before the analysis.  Further details about the IMS-MS instrumental setup used 

to collect this data can be found elsewhere [5-48].   

 To assess the quality of the IMS-MS data, a test data set of 10 spectra was 

collected.  This data set consisted of 5 replicate runs of the same sample worked up and 

run on the same day and 5 spectra of the same sample that was worked up and run on 

different days.  A comparison of these spectra was performed using PCA.  Each spectrum 

is represented as a point in the score plot.   It is expected that replicate spectra would be 
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closer to each other and would cluster in a distinct region of the PC map, whereas the 

other 5 spectra that were prepared and run on different days would not form a well 

defined cluster due to variability from sources other than the instrument.  Figure 5.41 

shows a plot of the three largest principal components developed from the 10 spectra and 

5401 peaks. Each spectrum is represented as a point in the PC plot (1 = replicates, 2 = 

samples worked up and collected on different days). The five replicates cluster in a 

distinct region of the PC plot whereas the other 5 samples occupy a larger region of the 

map.  

 Another data set was developed by extracting ion mobility profiles 

corresponding to 6 known glycans for these 10 spectra.  Each spectrum was developed by 

combining ion mobility profiles that were obtained by using the box extraction algorithm 

for 6 regions of the IMS-MS data (m/z bin values 826.2, 903.5, 946.6, 1086.3, 1217, and 

1408.2) that corresponded to these 6 glycans. Each mass spectrum consisted of 2831 

peaks. Figure 5.42 shows a plot of the three largest principal components developed from 

the 10 spectra and 2831 peaks of the 6 glycans.   Differences between the 5 replicates 

versus the other 5 spectra were not as pronounced when only peaks from known glycans 

were used, which indicates that experimental artifacts in the data are a less serious 

problem when the analysis is focused on the glycans.  When analyzing these PC plots, 

one must realize in advance that variability is scaled to the samples that comprise the 

plot.  A minor source of variability can be magnified depending on the samples used to 

develop the PC plot.  For this reason, the design of the training set is crucial for assessing 

the magnitude of potential sources of variability in data.   
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Figure 5.41. A plot of the three largest principal components developed from the 10 spectra and 
5401 peaks. Each spectrum is represented as a point in the PC plot. (1 = replicates, 2 = samples 
worked up and collected on different days).   
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Figure 5.42. A plot of the three largest principal components developed from the 10 spectra and 
2831 peaks of the 6 glycans. Each spectrum is represented as a point in the PC plot. (1 = 
replicates, 2 = samples worked up and collected on different days) 
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IMS-MS data of N-glycans was collected from serum samples for the 

identification of potential biomarkers associated with esophageal cancer and its 

progression. The data set was composed of 136 human serum samples collected from 

donors that were normal controls (NC) and those that expressed three different stages of 

esophageal cancer: Barrett’s esophagus (BE), high-grade dysplasia (HGD), and 

esophageal adenocarcinoma (EAC). The composition of the glycan data set is shown in 

Table 5.15. N-glycans were extracted from the 136 serum samples followed by the 

generation of IMS-MS data. Each ion mobility spectra contained 1431 points that 

represented 11 N-glycans associated with the following m/z bin values: 763.4, 801.4, 

825.7, 883.8, 946.1, 1004.2, 1095.2, 1216.3, 1227.1, 1274.3, and 1407.7.  

 
Table 5-15.  Composition of the IMS-MS Data Set 

Sample Type Number of Samples  

Normal Controls (NC) 61 

Esophageal Adenocarcinoma (EAC) 56 
Barrett’s Esophagus (BE) 7 
High-grade Dysplasia (HGD) 12 

Total 136 
 

Outlier analysis was performed on each class in the data set using the generalized 

distance test using SCOUT [5-49], PCA (using PC score plots and sample leverages via 

ADAPT) and visual analysis of the IMS-MS spectra. Seven EAC samples were identified 

as outliers. Three of these samples were dirty and a visual analysis of the IMS spectra of 

the other 4 samples indicated the presence of artifacts in the data.  As these 7 samples 

were from the same lot, this suggested that problems occurred during sample processing. 

For the NC samples, a plot of the three largest principal components developed with the 

1431 spectral features (see Figure 5.43) indicated the presence of 3 distinct clusters in the 
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data. This clustering was also attributed to differences in the sample work up.  Eight NC 

samples (cluster 1) were removed from the data as they were detected to be outliers from 

the generalized distance test. One BE sample was also identified as an outlier from the 

generalized distance test and from its leverage. HGD also exhibited clustering (see Figure 

5.44) with cluster 1 containing the outliers (6 samples) as determined by a visual analysis 

of their spectra. Twenty two samples were judged to be outliers and were removed from 

the analysis due to the low quality of their spectra. 

The pattern recognition GA was used to identify features for the discrimination of 

NC samples from EAC samples. The pattern recognition GA identified informative 

features by sampling key feature subsets, scoring their principal component plots, and 

tracking samples that were difficult to classify. The boosting routine used this 

information to steer the population to an optimal solution. After 200 generations, the GA 

identified 46 IMS features that showed separation between the samples of the two classes 

on a PC plot (see Figure 5.45). These 46 spectral features were found to be related to four 

glycans.  

The results from this study indicate that a relationship exists between the 

conditions used to process the samples and the IMS-MS spectra obtained.  It will be 

crucial in future studies to standardize the conditions used for glycan extraction as this 

will decrease variability within a class and also reduce the occurrence of outliers in the 

data. 
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Figure 5.43. A plot of the three largest principal components developed from the 61 normal 
control (NC) samples and 1431 spectral features. 3 distinct clusters are observed. 
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Figure 5.44. A plot of the two largest principal components developed from the 12 HGD samples 
and 1431 spectral features. 2 distinct clusters are observed. 
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Figure 5.45. A plot of the two largest principal components developed from the 102 IMS-MS 
spectra and 46 spectral features identified by the pattern recognition GA. Each spectrum is 
represented as a point in the PC score plot (l = NC, 2 = EAC). 

-6 -5 -4 -3 -2 -1 0 1 2 3 4
-6

-4

-2

0

2

4

6

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1

 1

 1
 1

 1

 1

 1

 1
 1

 1

 1

 1
 1

 1 1 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1
 1

 1

 1
 1

 1
 1

 1  1

 2

 2

 2

 2
 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2

 2  2

 2

 2

 2
 2

 2

 2

 2

 2

 2

 2 2 2

 2

 2
 2

 2

 2

 2
 2 2

 2 2

 2

 2

 2

 2

 2
 2

 2

 2
 2

 2
 2

 2

 2

 2

PC 1

P
C

 2

 
 
 
5.8 DISCOVERY OF BIOMARKER CANDIDATES FOR ESOPHAGEAL 
CANCER FROM MALDI-TOF DATA OF SERUM N-GLYCANS 
 

The goal of this study was to identify potential biomarkers for esophageal cancer 

from MALDI-TOF data developed from serum N-glycans. The pattern recognition GA 

was used to identify features in the MALDI-TOF data that could serve as potential 

biomarkers for esophageal cancer.  The mass spectral data set developed in this study 

consisted of 82 spectra that represented serum samples for normal controls and three 

different stages of esophageal cancer: Barrett’s esophagus (BE), high-grade dysplasia 

(HGD), and esophageal adenocarcinoma (EAC). The composition of the MALDI-TOF 

data set is shown in Table 5.16.  
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The MALDI-TOF spectra were generated from N-glycans extracted and 

processed from serum samples. The experimental conditions and procedure used for 

preparation of samples and procurement of MALDI-TOF data was similar to that used in 

a previous study and can be found elsewhere [5-45 to 5-47]. Each spectrum was 

represented by 514 spectral features over the m/z range of 1580 – 5490 Da.  The data set 

was divided into a training set of 75 spectra and a prediction set of 7 spectra, with the 

samples for the prediction set chosen by random lot (see Table 5.16).  

 
Table 5-16.  Composition of the MALDI-TOF Data Set   

Sample Type Number of 
Samples 

Number of 
Samples in 

Training Set 

Number of 
Samples in 

Prediction Set 
Normal Controls (NC) 18 16 2 

Esophageal Adenocarcinoma (EAC) 48 44 4 
Barrett’s Esophagus (BE) 5 5 - 
High-grade Dysplasia (HGD) 11 10 1 
Total 82 75 7 

 
   

The mass spectral data was analyzed using PCA. Figure 5.46 shows a plot of the 

two largest principal components developed from the 75 spectra and 514 mass spectral 

features. Each spectrum is represented as a point in the PC score plot. No separation was 

observed between samples from the four classes (1 = NC, 2 = EAC, 3 = BE, and 4 = 

HGD) in the PC map of the data.  

The pattern recognition GA was used for the analysis of the data. The GA 

identified potential biomarkers for esophageal cancer by sampling key feature subsets, 

scoring their principal component (PC) plots, and tracking those samples and/or classes 

that were most difficult to classify. The boosting routine used this information to steer the 

population to an optimal solution. After 200 generations, the genetic algorithm identified 
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25 spectral peaks whose PC plot showed clustering of the mass spectral data by sample 

type. The NC, EAC, and BE samples were all well separated from each other in a plot of 

the two largest principal components of the data (see Figure 5.47). However, two HGD 

samples overlapped with the normals.  

The prediction set was employed to assess the predictive ability of the 25 mass 

spectral peaks identified by the pattern recognition GA. The 7 prediction set spectra 

(black) were projected directly onto the PC score plot developed from the 75 spectra of 

the training set (grey) and 25 mass spectral features (see Figure 5.48). Six of the 7 

projected spectra lie in a region of the PC map with samples that have the same class 

label. Evidently, the GA can identify features from the mass spectra that are correlated to 

the diseased state of the subject.   

 

 
Figure 5.46. A plot of the two largest principal components developed from the 75 spectra and 
514 mass spectral features. Each spectrum is represented as a point in the PC score plot (1 = NC, 
2 = EAC, 3 = BE, and 4 = HGD). 
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Figure 5.47. A plot of the two largest principal components developed from the 75 spectra and 25 
mass spectral features. Each spectrum is represented as a point in the PC score plot (1 = NC, 2 = 
EAC, 3 = BE, and 4 = HGD). 
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Figure 5.48. A plot of the two largest principal components developed from the 75 spectra and 25 
mass spectral features. Each spectrum is represented as a point in the PC score plot (1 = NC, 2 = 
EAC, 3 = BE, and 4 = HGD). Training set samples are in grey and the prediction set samples 
which are projected onto the PC map of the data are in black. 
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CHAPTER VI 
 
 

CONCLUSION 
 

 
 
 

 

In the preceding chapters, a basic methodology for analyzing large multivariate 

chemical data sets based on feature selection is described. A chromatogram or spectrum 

is represented as a point in a high dimensional measurement space. Exploratory data 

analysis techniques (principal component analysis and clustering) are then used to 

investigate the properties of this measurement space.  A genetic algorithm for feature 

selection and classification is then applied to the data to identify features that optimize 

the separation of the classes in a plot of the two or three largest principal components of 

the data.  A good principal component plot can only be generated using features whose 

variance or information is primarily about differences between classes in the data.  

Hence, feature subsets that maximize the ratio of between-class to within-class variance 

are selected by the pattern recognition GA.   Furthermore, the structure of the data set can 

be explored, for example, we can discover new classes, by simply tuning Kc in PCKaNN 

and by varying the relative contribution of PCKaNN and the deweighted or modified 

Hopkins statistic to the overall fitness score, ensuring a careful analysis of the data.   
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The pattern recognition GA has been validated on a wide range of data.  In three 

studies involving spectral library searching, the use of wavelets and the pattern 

recognition GA as a general solution to problems in spectral pattern recognition was 

demonstrated.  In one study, differential mobility spectra of VOCs were analyzed for 

structural content by chemical family. In another study, a search prefilter to detect the 

presence of carboxylic acids from vapor phase IR spectra has been successfully 

formulated and validated.  In a third study, this same approach has been used to develop a 

pattern recognition assisted infrared library searching technique to determine the model, 

manufacturer, and year of the vehicle from which a clear coat paint smear originated.  

Because modern automotive paints are using thinner undercoat and color coat layers, 

protected by a thicker clear coat layer, all too often only a clear coat paint smear is the 

only layer of paint left at the crime scene.  In these cases, PDQ database, which is used to 

identify the automobile from which a paint sample originates, cannot be used to identify 

the motor vehicle. PDQ cannot differentiate between similar but nonidentical FTIR paint 

spectra. This result is a major breakthrough in the area of trace evidence.   

In addition, the pattern recognition GA has been used to develop a potential 

method to identify molds in indoor environments using VOCs.  A distinct profile 

indicative of microbial VOCs was developed from air sampling data that could be readily 

differentiated from the blank for both high mold count and moderate mold count 

exposure samples.   The pattern or profile of the VOCs is more important than individual 

quantities or total quantities of VOCs, i.e. the profile itself is the unique identifier  

Analytical methods often generate such complex data that multivariate and pattern 

recognition methods must be used for their analysis.  The studies described in this thesis 
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afforded us an opportunity to work on a variety of problems with different characteristics 

which necessitated the development of new mathematical and statistical methods for their 

solution.  Although the pattern recognition GA has proven successful in a variety of 

studies, further research and development will be necessary to ensure that this approach 

becomes part of the routine practice of analytical chemists for data interpretation.  

Improvements for the pattern recognition GA that need to be undertaken are listed below. 

1.  Applying FCV false color data imaging [6-1], a method for increasing the 

information content by a PC plot, further aiding in its interpretation. 

2. Estimation of the uncertainty of the scores in PC plots using jackknife and 

boostrap resampling approaches [6-2] which will involve rotation of each 

resampled PC model to ensure that it matches with a reference model 

eliminating rotational ambiguity.  

3. Fitness functions for the pattern recognition GA must be formulated that will 

allow searches of the data space for significant structure by identifying 

features that increase the clustering of the data using ideas taken from the field 

of thin positions for knots and 3-dimensional manifolds to detect clusters in 

data subspaces [6-3, and 6-4].  Advantages of using these clustering 

algorithms are two-fold: (1) data preprocessing will not be a critical issue 

which is not the situation when using PCA, and (2) both linear and nonlinear 

manifolds in data subspaces can be detected.  
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4. Fitness functions for the pattern recognition GA must be formulation that will 

allow for data fusion where data from multiple databases are combined and 

information in the form of actionable items is extracted, e.g., the class 

membership of a sample.  Data fusion has the potential to increase both the 

robustness and the selectivity of a classification 

5. A practical limitation of classification occurs when an existing model is 

applied to data measured under new sampling or environmental conditions or 

on a different instrument.  Even if samples with identical amounts of analyte 

are measured, the variation that is captured by the model will differ because of 

the different contributions from the sample matrix, the instrumental functions, 

and the environment of the measurement.  For this reason, a model developed 

using data from one instrument generally cannot be used on data from a 

second instrument to provide accurate estimates of calibrated property values.  

For this reason, new methods must be developed to transfer a classification 

model between different instruments.  

Pattern recognition methods operate with well defined criteria and attempt to 

extract useful information from raw data.  If the limitations of the methods are not fully 

understood, the danger of misinterpretation and misuse of costly measurements is 

significant.  It is our opinion that multivariate analysis techniques such as principal 

component analysis and discriminant analysis should be used to extend the ability of 

human pattern recognition to uncover hidden relationships in chemical data.  The pattern 

recognition GA described in this thesis relies heavily on graphics for the presentation of 

results.  Although the computer can assimilate greater quantities of data at any given time 
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than can the chemist, it is the chemist, who in the end must make the decisions and 

judgments about the problem. 

 

.  
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1. Barry K. Lavine, David J. Westover, Leah Oxenford, Nikhil Mirjankar, and Necati 
Kaval, “Construction of an Inexpensive Surface Plasmon Resonance Instrument for 
Use in Teaching and Research,” Microchemical Journal, 2007, 86, 147-155. 
The construction of an inexpensive SPR instrument that can be used for both teaching 
and research is described. Using a 2’x 2’ optical table to construct this instrument 
allows both scientists and students full access to the operation of the spectrometer. 
Furthermore, the use of open platform instrumentation has the advantage of 
maintaining the focus on the relationship between emerging technology and analytical 
chemistry as well as allowing the user to modify the instrument to enhance the 
measurement process for a particular application.  This is a change from the learning 
paradigm used in most research and teaching laboratories where commercial 
instrumentation is treated as a black box due to its complexity.  Three studies, which 
were performed using this instrument, are presented to demonstrate the suitability of 
this instrument for both teaching and research.  These studies include measuring the 
refractive index of alcohols, investigating the partitioning of ruthenium (II) 
trisbipyridine chloride into Nafion, and understanding the mechanism controlling 
metal ion adsorption by polyacrylamide hydrogels. 

 
2. B. K. Lavine, D. J. Westover, N. Kaval, N. Mirjankar, L. Oxenford, and G. Mwangi, 

“Swellable Molecularly Imprinted Poly N-(N-propyl)acrylamide Particles for 
Detection of Emerging Organic Contaminants Using Surface Plasmon Resonance 
Spectroscopy,” Talanta, 2007, 72, 1042-1048. 
Lightly crosslinked theophylline imprinted polyN-(N-propyl)acrylamide particles (ca. 
300nm in diameter) that are designed to swell and shrink as a function of analyte 
concentration in aqueous media were spin coated onto a gold surface. The 
nanospheres responded selectively to the targeted analyte due to molecular 
imprinting. Chemical sensing was based on changes in the refractive index of the 
imprinted particles that accompanied swelling due to binding of the targeted analyte, 
which was detected using surface plasmon resonance (SPR) spectroscopy.  Because 
swelling leads to an increase in the percentage of water in the polymer, the refractive 
index of the polymer nanospheres decreased as the particles swelled. In the presence 
of aqueous theophylline at concentrations as low as 10-6 M, particle swelling is both 
pronounced and readily detectable.  The full scale response of the imprinted particles 
to template occurs in less than ten minutes. Swelling is also reversible and 
independent of the ionic strength of the solution in contact with the polymer. 
Replicate precision is less than 10-4 RI units.  
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By comparison, there is no response to caffeine which is similar in structure to 
theophylline at concentrations as high as 1x10-2 M.  Changes in the refractive index 
of the imprinted polymer particles, as low as 10-4 RI units could be readily detected.  
A unique aspect of the prepared particles is the use of light crosslinking rather than 
heavy crosslinking.  This is a significant development as it indicates that heavy 
crosslinking is not entirely necessary for selectivity in molecular imprinting with 
polyacrylamides. 

 
3. Barry K. Lavine, Nikhil Mirjankar, and Robert K. Vander Meer, “Analysis of 

Chemical Signals In Red Fire Ants by Gas Chromatography and Pattern Recognition 
Techniques,” Talanta, 2011, 83, 1308-1316. 
Gas chromatographic (GC) profiles of cuticular hydrocarbon extracts obtained from 
individual and pooled ant samples were analyzed using pattern recognition 
techniques.  Clustering according to the biological variables of social caste and 
colony were observed.  Pooling individual extracts enhanced the recognition of 
patterns in the GC profile data characteristic of colony.  Evidently, the contribution of 
the ant’s individual pattern to the overall hydrocarbon profile pattern can obscure 
information about colony in the GC traces of cuticular hydrocarbon extracts obtained 
from red fire ants.  Re-analysis of temporal caste and time period data on the cuticular 
hydrocarbon patterns demonstrates that sampling time and social caste must be taken 
into account to avoid unnecessary variability and possible confounding.  This and the 
fact that foragers could not be separated from reserves and brood-tenders in all 5 
laboratory colonies studied suggests that cuticular hydrocarbons as a class of 
sociochemicals cannot model every facet of nestmate recognition in S. invicta which 
in turn suggests a potential role for other compounds in the discrimination of alien 
conspecifics from nestmates.   

 
4. Barry K. Lavine, Kadambari Nuguru, and Nikhil Mirjankar, “One Stop Shopping - 

Feature Selection, Classification, and Prediction in a Single Step,” Journal of 
Chemometrics, 2011, 25, 116-129 
We report on the application of a genetic algorithm (GA) for pattern recognition that 
uses both supervised and transverse learning to mine spectroscopic and proteomic 
data. The pattern recognition GA selects features that optimize the separation of the 
classes in a plot of the two or three largest principal components of the data.  For 
training sets with small amounts of labeled data (i.e., data points tagged with a class 
label) and large amounts of unlabeled data (i.e., data points that are not tagged with a 
class label), this approach is preferred, as our results show since information in the 
unlabeled data is used by the fitness function to guide feature selection. The 
advantages of incorporating transverse learning into the fitness function of the pattern 
recognition GA have been evaluated in two recently published studies by our group. 
In one study, Raman spectroscopy and the pattern recognition GA were used to 
develop a potential method to discriminate hardwoods, softwoods and tropical woods.  
In a second study, biopsy material of small round blue cell tumors analyzed by cDNA 
microarrays was identified as to type (Ewings sarcoma, Burkitt’s lymphoma, 
neuroblastoma, and rhabdomyo sarcoma) through supervised learning implemented 
by the pattern recognition GA. 
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5. J. Bowen, J. Meecham, M. Hamlin, B. Henderson, M. Kim, N. Mirjankar, B. K. 

Lavine, “Development of Field-Deployable Instrumentation Based on “Antigen-
Antibody” Reactions for Detection of Hemorrhagic Disease in Ruminants,” 
Microchemical Journal, 2011, 99(2), 415-420. 
Development of field-deployable methodology utilizing antigen-antibody reactions 
and the surface plasmon resonance (SPR) effect to provide a rapid diagnostic test for 
recognition of the blue tongue virus (BTV) and epizootic hemorrhage disease virus 
(EHDV) in wild and domestic ruminants is reported.  A Spreeta® chip, which utilizes 
microelectronic technology to implement the SPR effect, is shown to possess 
sufficient sensitivity and operating speed to detect either BTV and EHVD antigens or 
antibodies in real time.  The biosensor consists of an outer active surface layer 
comprised of either an antibody or antigen immobilized by covalent bonds through 
several other organic layers including a self assembled monolayer to a gold surface.  
Parallel experiments were run on the biosensor surface using either a home-built high 
resolution SPR instrument or a low resolution solid state Spreeta® SPR chip.  Both 
instruments were capable of monitoring the antigen-antibody reaction used to 
selectively detect the presence of BTV and EHDV viral pathogens.  Results for the 
antibody and antigen reactive layers with antigen or antibody solutions as well as the 
modeling of these layers are discussed.  The characteristics of these biosensors – 
specificity and time of reaction – were assessed.  The antibody surface biosensors 
exhibited a high degree of specificity, even when using low resolution 
instrumentation.  The time of analysis was under 20 minutes, which was the arbitrary 
exposure time.  Results indicate the potential of even shorter times of analysis. 

 
6. Barry K. Lavine, Nikhil Mirjankar, Scott Ryland, and Mark Sandercock, “Wavelets 

and Genetic Algorithms Applied to Search Prefilters for Spectral Library Matching in 
Forensics,” Talanta, 2011, 87, 46-52. 
Currently, the identification of the make, model and year of a motor vehicle involved 
in a hit and run collision from only a clear coat paint smear left at the crime scene is 
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(MVOC) profiles were developed with corresponding bioaerosol measurements as 
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contamination in indoor environments.  Spore collection to characterize the indoor air 
quality of the residences and buildings was performed using an Anderson N6 
impactor.  Simultaneously, solid phase microextraction was used as a passive 
sampling device to collect VOCs from the air for GC/MS analysis.  The volatile 
organic signatures that molds emit as reflected by the gas chromatographic profiles 
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the bioaerosol data to the volatile organic profiles, a discriminant could be trained to 
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(IR) library searching.  A two step procedure has been employed.  First, the wavelet 
packet tree is used to decompose each spectrum into wavelet coefficients that 
represent both the high and low frequency components of the signal.  Second, a 
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coefficients characteristic of functional group.  Even in challenging trials involving 
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APPENDIX II 
 

Compounds Used in the Study for Developing Search Pre-filters for Infrared 
Library Searching of Carboxylic Acids (Section 4.4) 

 
Training Set Compounds 

 (E)-2-Butene 

(E)-2-Pentene, 4,4-dimethyl- 

(E)-3-Heptene, 2,2-dimethyl- 

(E)-3-Hexene 

(E)-3-Hexene, 2,5-dimethyl- 

(E)-3-Octene 

(E)-4-Octene 

(E)-5-Decene 

(Z)-3-Hexene, 2,5-dimethyl- 

1,2-Cyclobutanedicarboxylic anhydride, cis- 

1,2-Cyclopropanedicarboxylic acid, trans- 

1,3,4-Thiadiazole, 2,5-dimethyl- 

1,3-Butadiene 

1,3-Cyclooctadiene 

1,3-Dithiane 

1,4-Benzoquinone, 2,6-dimethyl- 

1,4-Cyclohexadiene, 1-methyl- 

1,4-Dithiane 

1,4-Piperazinedicarboxylic acid, diethyl ester 

1,5-Heptadiene, 3-methyl- 

1,5-Hexadiene, 2,5-dimethyl- 

1,5-Hexadiene, 2-methyl- 

1,9-Decadiene 

10-Undecenoic acid 

1-Butene 

1-Butene, 2-ethyl- 

1-Butene, 2-methyl- 

1-Butene, 3,3-dimethyl- 

1-Cyclohexene, 4-vinyl- 

1-Cyclohexene-1-acetic acid 

1-Decene 

1-Dodecene 

1-Heptene 

1-Hexadecene 

1-Hexanol, 2-ethyl-, phosphite 

1-Hexene (liquid) 

1-Hexene, 2,3-dimethyl- 

1-Hexene, 2-ethyl- 

1-Naphthoic acid 

1-Octadecene 

1-Octene 

1-Oxa-6-thiacycloheptadecan-17-one 
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1-Pentene, 2,4,4-trimethyl- 

1-Pentene, 2-methyl- 

1-Pentene, 4-methyl- 

1-Piperazinecarboxylic acid, methyl ester 

1-Pyrrolidinepropionitrile, b-oxo- 

1-Tetradecene 

1-Tridecene 

1-Undecene, 2-methyl- 

2,4,6-Cycloheptatrien-1-one, 2-hydroxy-4-
isopropyl- 

2,4-Hexadiene 

2,4-Hexadiene, 2,5-dimethyl- 

2,5-Norbornadiene 

2,6-Octadien-1-ol, 3,7-dimethyl-, formate 

2,6-Pyridinedicarboxylic acid, 4-methoxy-, 

2-Azetidinone, 1,4-diphenyl-3-ethyl- 

2-Benzofurancarboxaldehyde, 3-methyl- 

2-Benzofurancarboxaldehyde, 3-methyl- 

2-Benzofurancarboxylic acid 

2-Butanone, 3,3-dimethyl-, oxime 

2-Butanone, 3-hydroxy- 

2-Butene, 2,3-dimethyl- 

2-Butene, 2-methyl- 

2-Decenoic acid 

2-Dodecenoic acid 

2-Ethylhexylphosphonic acid, bis(2-ethylhexyl) 
ester 

2-Furaldehyde 

2-Furaldehyde, 5-(acetoxymethyl)- 

2H-1,2-Benzothiazin-3(4H)-one, 2-ethyl-, 1,1-
dioxide 

2-Heptenoic acid 

2-Hexanone, 5-methyl- 

2-Hexanone, 5-methyl-, oxime 

2-Hexene 

2-Hexene, 2,5-dimethyl- 

2-Hexene, 2,5-dimethyl- 

2H-Pyran-2-carboxaldehyde, 3,4-dihydro-2,5-
dimethyl- 

2-Imidazolidinone, 1-allyl- 

2-Isoindolineacetic acid, 1,3-dioxo-a-
isopropyl- 

2-Isoindolineacetic acid, 1,3-dioxo-a-methyl- 

2-Nonadecanone 

2-Norbornaneacetic acid 

2-Norbornanecarboxylic acid 

2-Norbornene 

2-Octanone oxime 

2-Octene 

2-Pentanone oxime 

2-Pentanone, 4-methyl- oxime 

2-Pentene 

2-Pentene, 2,4,4-trimethyl- 

2-Pentene, 2-methyl- 

2-Pentene, 4-methyl- 

2-Pyrrolidinone, 1-(3-aminopropyl)- 

2-Thiazoline, 2-methyl- 

2-Thiophenebutyric acid 
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2-Thiophenecarboxaldehyde, 5-chloro- 

2-Tridecenoic acid 

3,5-Heptanedione, 2,2,6,6-tetramethyl- 

3,8-Diazabicyclo[3.2.1]octan-2-one, 8-methyl-
3-(3-methyl-2-butenyl)- 

3-Cyclohexene-1-carboxylic acid 

3-Decyne 

3-Decyne 

3-Furoic acid, 5-formyl-2-(trifluoromethyl)-, 
ethyl ester 

3-Heptene, 2,2,4,6,6-pentamethyl- 

3-Heptene, 2,6-dimethyl- 

3-Quinolinecarboxaldehyde 

4,4'-Stilbenediol, a,a'-diethyl-, diacetate 

4-Octanone, 5-hydroxy- 

4-Pentenoic acid 

5-Norbornene-2-carboxaldehyde 

5-Pyrimidinecarboxylic acid, 2,4-
bis(methylthio)-, ethyl ester 

8-Hexadecanone, 9-hydroxy- 

Acetaldehyde, tribromo- 

Acetamide, 2-hydroxy-N-phenyl- 

Acetamide, N,N-diisopropyl- 

Acetamide, N-butyl-N-(p-tolylsulfonyl)- 

Acetanilide, 2,2',4',5'-tetrachloro- 

Acetanilide, 2,2',4',5'-tetrachloro- 

Acetanilide, 2,4'-dichloro- 

Acetic acid 

Acetic acid, (2,4-dichlorophenoxy)- 

Acetic acid, (2-ethoxyphenyl)- 

Acetic acid, (4-chloro-o-tolyloxy)- 

Acetic acid, 2-(2-methoxyphenyl)- 

Acetic acid, 2-methoxy-2-phenyl- 

Acetic acid, 4-bromophenyl- 

Acetic acid, bromo- 

Acetic acid, bromo-, pentachlorophenyl ester 

Acetic acid, dichloro- 

Acetic acid, ethoxy- 

Acetic acid, mercapto- 

Acetic acid, mercapto-, 2-methoxyethyl ester 

Acetic acid, methoxy- 

Acetic acid, phenoxy- 

Acetic acid, trifluoro- 

Acetic anhydride 

Acetic anhydride 

Acetophenone, 2,2-dichloro- 

Acetophenone, 2'-amino- 

Acetophenone, 4'-hydroxy- 

Acetyl chloride (liquid) 

Acrylamide, N-(1,1-dimethyl-3-oxobutyl)- 

Acrylic acid 

Acrylic acid, 2-ethyl-3-propyl- 

Acrylic acid, 2-methyl- 

Adipic acid, monomethyl ester 

Allyl sulfide 

Ammonium thiocyanate, tetrapentyl- 

Ammonium thiocyanate, tetrapentyl- 
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Amyl disulfide 

Anthranilic acid, 5-chloro- 

Arachidic acid 

Azelaic acid 

Azelaic acid, monomethyl ester 

Barbituric acid, 5-ethyl-1-methyl-5-phenyl- 

Behenic acid 

Benzaldehyde, 2,3,4-trimethoxy- 

Benzaldehyde, 2,4-dimethyl- 

Benzaldehyde, 2-ethoxy- 

Benzaldehyde, 4-hydroxy-3,5-dimethoxy- 

Benzene, tetrahydro- 

Benzo[b]thiophene-2-carboxaldehyde, 7- 

Benzo[b]thiophene-2-carboxaldehyde, 7-
methyl- 

Benzoic acid 

Benzoic acid, 2,4-dichloro- 

Benzoic acid, 2,5-dichloro- 

Benzoic acid, 2-benzyl- 

Benzoic acid, 2-bromo- 

Benzoic acid, 2-chloro- 

Benzoic acid, 2-ethoxy- 

Benzoic acid, 2-nitro- 

Benzoic acid, 3-chloro- 

Benzoic acid, 3-chloro-4-hydroxy- 

Benzoic acid, 3-hydroxy- 

Benzoic acid, 3-methyl-4-nitro- 

Benzoic acid, 3-nitro- 

Benzoic acid, 4-acetoxy-3-methoxy- 

Benzoic acid, 4-chloro-3-nitro- 

Benzoic acid, 4-fluoro- 

Benzoic acid, 4-hydroxy- 

Benzoic acid, 4-nitro- 

Benzoic acid, 4-t-butyl- 

Benzoic acid, cmpd with dibutylamine 

Benzophenone, 2-amino-2',5-dichloro- 

Benzophenone, decafluoro- 

Bicyclo[3.1.1]hept-2-ene, 2,6,6-trimethyl- 

Bicyclo[3.1.1]hept-2-ene, 2,6,6-trimethyl- 

Bicyclo[4.4.0]decane 

Bicyclohexyl 

Butane 

Butane, 1,4-diiodo- 

Butane, 1-iodo- 

Butane, 2,3-dimethyl- 

Butane, 2-methyl- 

Butyl phosphate 

Butyl phosphite 

Butyric acid 

Butyric acid, 2-bromo- 

Butyric acid, 2-bromo-3-methyl- 

Butyric acid, 2-chloro- 

Butyric acid, 2-hydroxy-2-methyl- 

Butyric acid, 2-methyl- 

Butyric acid, 3,3-dimethyl- 

Butyric acid, 3-bromo- 

Butyric acid, 3-chloro- 
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Butyric acid, 3-methyl- 

Butyric acid, 3-methyl-2-phthalimido- 

Butyric acid, 4-(2,4-dichlorophenoxy)- 

Butyric acid, 4-(4-methoxyphenyl)- 

Butyric acid, 4-(ethylthio)- 

Butyric acid, 4-acetyl- 

Butyrophenone, 4'-hydroxy- 

Capric acid 

Caprylic acid 

Carbamic acid, allyl-, ethyl ester 

Carbamic acid, diallyl-, ethyl ester 

Carbamic acid, diallyl-, ethyl ester 

Carbamic acid, dibutyl-, ethyl ester 

Carbamic acid, dimethyl-, 3-nitrophenyl ester 

Carvomenthene 

Chloral 

Chloroformic acid, hexyl ester 

Cinnamic acid 

Cinnamic acid, 2-bromo-a-cyano-, ethyl ester 

Crotonic acid, 4-phosphono-, triethyl ester 

Cyclobutane, octafluoro- 

Cyclobutane, perfluoro-1,2-dimethyl- 

Cyclobutanecarboxylic acid 

Cyclododecene 

Cyclohexane 

Cyclohexane, 1,1-dimethyl- 

Cyclohexane, 1,4-dimethyl- 

Cyclohexane, 1-hexyl-4-tetradecyl-, trans- 

Cyclohexane, butyl- 

Cyclohexane, ethyl- 

Cyclohexane, iodo- 

Cyclohexane, isobutyl- 

Cyclohexane, pentyl- 

Cyclohexane, propyl- 

Cyclohexane, t-butyl- 

Cyclohexane, vinyl- 

Cyclohexaneacetic acid 

Cyclohexanecarboxylic acid 

Cyclohexanecarboxylic acid, 1-methyl- 

Cyclohexanepropionic acid 

Cyclohexanol, 2,5-dimethyl- 

Cyclohexanone, 4-ethyl- 

Cyclohexene, 1-methyl- 

Cyclohexene, 4-isopropenyl-1-methyl 

Cyclohexene, 4-isopropenyl-1-methyl- 

Cyclooctane 

Cyclooctene 

Cyclopentane 

Cyclopentane, butyl- 

Cyclopentane, methyl- 

Cyclopentaneacetic acid, a-phenyl- 

Cyclopentanecarboxylic acid 

Cyclopropanecarboxylic acid, trans-2-nitro-, 

Decane 

Decane, 1,10-diiodo- 

Decane, 1-fluoro- 
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Decane, 1-iodo- 

Decanedioic acid 

Decyl disulfide 

Decyl disulfide 

Dibutyltin diacetate 

dimethyl ester 

Dimethyl hydrogen phosphite 

Disiloxane, hexamethyl- 

Docosane 

Dodecane 

Dodecanoic acid 

Eicosane 

Enanthic acid 

Ethane 

Ethane, 1,1-difluoro- 

Ethane, 1,2-bis(ethylthio)- 

Ethane, hexafluoro- 

Ethane, iodo- 

Ethyl disulfide 

Ethyl phosphite 

Ethyl phosphonate 

Ethyl phosphorothioate 

Ethyl sulfite 

Ethylene, 1,1-difluoro- 

Ethylene, fluoro- 

Ethylene, tetrafluoro- 

Ethylphosphonic acid, diethyl ester 

Flavanone 

Formamide, N-(a-methylbenzyl)- 

Formamide, N-(a-methylbenzyl)- 

Formamide, N-ethyl- 

Formic acid 

Formic acid, isopentyl ester 

Formic acid, propyl ester 

Fumaric acid, methyl- 

Furan, 2-acetyl- 

Glutaric acid, 3-oxo-, diethyl ester 

Glutaric acid, methyl ester 

Glycolic acid, ethyl ester 

Hendecane 

Hendecanoic acid 

Heptadecane 

Heptadecane, 6,9,12-tripropyl- 

Heptadecanoic acid 

Heptane 

Heptane, 1-iodopentadecafluoro- 

Heptane, 1-iodopentadecafluoro- 

Heptane, 2,2-dimethyl- 

Heptane, 3-(iodomethyl)- 

Heptane, 3,3-dimethyl- 

Heptanoic acid, 2-bromo- 

Heptanoic acid, 3-ethyl-3-methyl- 

Hexacosane 

Hexadecane 

Hexadecane, 6,11-dipentyl- 

Hexadecanoic acid 
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Hexane 

Hexane, 1,6-diiodo- 

Hexane, 2,2,4-trimethyl- 

Hexane, 2,2,5-trimethyl- 

Hexane, 2,4-dimethyl- 

Hexane, 2,4-dimethyl- 

Hexane, 2,5-dimethyl- 

Hexanoic acid, 2-bromo- 

Hexanoic acid, 3,5,5-trimethyl- 

Hexanoic acid, 6-phenyl- 

Hexyl phosphite 

Hippuric acid, methyl ester 

Hydantoin, 1-acetyl-3,5-dimethyl-2-thio- 

Hydantoin, 3-benzyl-5,5-dimethyl- 

Hydantoin, 5,5-dimethyl-2-thio- 

Hydratropic acid 

Hydrocinnamic acid 

Hydrocinnamic acid, 4-hydroxy- 

Hydrocinnamic acid, a-isopropyl-2-methyl- 

Hydrocinnamic acid, b-methyl- 

Imidazole-2-carboxaldehyde, 1-benzyl- 

Indene, 3a,4,7,7a-tetrahydro- 

Iodoform 

Isobutane 

Isobutyl disulfide 

Isobutyl sulfide 

Isobutylene 

Isocaproic acid 

Isonicotinaldehyde, O-propyloxime 

Isonicotinaldehyde, O-propyloxime 

Isooctane (so-called) 

Isopentyl disulfide 

Isopropyl disulfide 

Itaconic acid, monomethyl ester 

Lactamide 

Lactic acid 

Levulinic acid 

Maleic acid, (2-acetyl-1,2-dimethylhydrazino)-, 
dimethyl ester 

Malonic acid, piperonyl-, diethyl ester 

m-Anisaldehyde, 2-hydroxy- 

m-Anisic acid 

Mercury, diethyl- 

Mercury, diethyl- 

Methane, fluoro- 

Methane, iodo- 

Methane, trifluoro- 

Methyl disulfide 

Methyl phosphite 

Methyl phosphorothioate 

Methyl sulfate-d6 

Methyl sulfide (liquid) 

Morpholine, 4-acetyl- 

m-Toluic acid 

Myristic acid 

Nicotinaldehyde 

Nicotinic acid, hydrazide 
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Nonadecane 

Nonane 

Nonane, 1,9-diiodo- 

Nonane, 2,2,4,4,6,8,8-heptamethyl- 

Nonanoic acid 

Nonanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-
hexadecafluoro- 

Octadecane 

Octadecanoic acid 

Octane 

Octanoic acid, pentadecafluoro- 

Octanoyl chloride 

Oleic acid 

o-Veratric acid 

Paraldehyde 

Pentacosane 

Pentadecane 

Pentadecane, 2,6,10,14-tetramethyl- 

Pentadecanoic acid 

Pentane 

Pentane, 1-iodo- 

Pentane, 2,2,3-trimethyl- 

Pentane, 2,3,3-trimethyl- 

Pentane, 2,3,4-trimethyl- 

Pentane, 2,4-dimethyl- 

Pentane, 3,3-dimethyl- 

Pentane, 3-ethyl- 

Pentane, 3-methyl- 

Pentanoic acid 

Pentyl sulfite 

Phosphine oxide, dimethylhexadecyl- 

Phosphine oxide, dimethylhexadecyl- 

Phosphine oxide, dimethyltetradecyl- 

Phosphine oxide, dimethyltetradecyl- 

Phosphonic acid, butyl-, dibutyl ester 

Phosphonic acid, vinyl-, diethyl ester 

Phosphoramidic acid, cyclohexyl-, diethyl ester 

Phosphoric acid, diethyl ester 

Phthalimide, N-(1-formylethyl)- 

Pilocarpine, mononitrate 

Pivalic acid 

p-Mentha-1,4(8)-diene 

Propane 

Propane, 1,2-dibromo- 

Propane, 1,3-diiodo- 

Propane, 1-iodo- 

Propane, 2-iodo- 

Propane, 3-iodo-1,1,1,2,2-pentafluoro- 

Propanoic acid 

Propene 

Propionic acid, 2-(2,4,6-trichlorophenoxy)- 

Propionic acid, 2-(2,5-dichlorophenoxy)- 

Propionic acid, 2-bromo- 

Propionic acid, 2-chloro- 

Propionic acid, 2-methyl-2-(m-tolylthio)- 

Propionic acid, 3-(p-tolylthio)- 

Propionic acid, 3,3-diphenyl- 
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Propionic acid, 3-mercapto- 

Propionic acid, a-(2,4-dichlorophenoxy)- 

Propionic acid, a-(4-chloro-o-tolyloxy)- 

Propionic anhydride 

Propionic anhydride 

Propyl disulfide 

p-Toluic acid 

Pyridine, 2-acetyl- 

Pyridine, 3-acetyl 

Pyrrole, 1-methyl- 

Pyrrole-2-carboxaldehyde 

Rhodanine, 3-methyl- 

Salicylaldehyde, 5-methoxy- 

Salicylic acid 

Salicylic acid, 5-bromo- 

Salicylic acid, 5-chloro- 

Salicylic acid, 5-fluoro- 

Salicylic acid, 5-t-butyl- 

Silane, tetrafluoro- 

Silane, tetramethyl- 

Silane, triethoxyethyl- 

Spiro[5.5]undecane-3-carboxylic acid 

Succinic acid, methyl- 

Sulfide, allyl sec-butyl 

Sulfide, allyl sec-butyl 

Sulfide, butyl ethyl 

Sulfide, butyl ethyl 

Sulfide, ethyl isopropyl 

Sulfide, ethyl isopropyl 

Sulfoxide, dimethyl-d6 

Tartaric acid, diethyl ester 

Tetracosane 

Tetradecane 

Thiophene, 2-acetyl 

Thiophene, 2-iodo- 

Thiopyran, tetrahydro- 

Tin chloride, trimethyl- 

Tin dichloride, diisobutyl- 

Tin dichloride, diisobutyl- 

Tin trichloride, butyl- 

Tin, tetraethyl- 

Tin, tetramethyl- 

Tridecane 

Tridecanoic acid 

Tropolone 

Urea, tetramethyl- 

Urea, tetramethyl- 

Valeraldehyde 

Valeric acid, 2,2-dimethyl- 

Valeric acid, 4-hydroxy-3-mercapto-, g-lactone 

Valeric acid, 5-chloro- 

Vanillic acid 

Vanillin, 6-bromo- 

Vanillin, acetate 

Veratric acid 
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Validation Set Compounds 

1(6H)-Pyridazineacetic acid, 3-chloro-6-oxo-, 
ethyl ester 

1,2,4-Triazine-3,5(2H,4H)-dione, 2-methyl 

1,4-Benzoquinone, 2,5-dihydroxy- 

1,4-Naphthoquinone, 3-methyl-2,5,8-
trihydroxy- 

1,5-Cyclooctadiene 

10-Eicosanone, 11-hydroxy- 

1-Butene, 3-methyl- 

2(10)-Pinene 

2,4-Pentadienoic acid, 5-phenyl- 

2-Azepinone, hexahydro- 

2-Cyclohexen-1-one, 3-amino-5,5-dimethyl 

2-Naphthoic acid 

2-Octenoic acid 

2-Penten-4-one, 2-hydroxy-5-methoxy- 

2-Propen-1-one, 1,3-di-2-thienyl- 

2-Thiophenecarboxaldehyde 

3-Decenoic acid 

5-Undecyne 

Acetamide, N-ethyl-N-(p-tolylsulfonyl)- 

Acetanilide, 2-chloro-4'-nitro- 

Acetic acid, carvacryl- 

Acetic acid, m-tolyl- 

Acetophenone, 3'-fluoro-4'-methoxy 

Adamantane, 1,3-dimethyl- 

Adipic acid 

Anthranilic acid, cyclohexyl ester 

Anthranilic acid, methyl ester 

Benzoic acid, 2-iodo- 

Benzoic acid, 2-trifluoromethyl- 

Benzoic acid, 3,4-dihydroxy-, ethyl ester 

Benzoic acid, 3,4-dimethyl- 

Benzophenone, 2-hydroxy-5-methyl- 

Boric acid, tris(2-ethylhexyl) ester 

Butyl sulfite 

Butyric acid, 2-ethyl- 

Butyric acid, 4-(2,5-xylyl)- 

Butyric acid, ethyl ester 

Butyric acid, hydrazide 

Caproic acid 

Carbamic acid, diphenyl-, ethyl ester 

Carbamic acid, isopropyl ester 

Carbonic acid, diethyl ester 

Chloroformic acid, phenyl ester 

Cinnamic acid, 4-methyl- 

Cyclododecane 

Cycloheptanecarboxylic acid 

Cyclohexane, 1-dodecyl-4-octyl-, trans- 

Cyclohexane, cis-1,3-dimethyl- 

Cyclohexane, methyl- 

Cyclohexane, trans-1,2-dimethyl- 

Cyclopentaneacetic acid 

Cyclopropane, benzoyl- 

Cyclopropanecarboxamide, N-ethyl-2-phenyl-, 
cis- 
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Cyclotetrasiloxane, octamethyl- 

Dicyclopentadiene 

Ethyl phosphate 

Fluorene, dodecahydro- 

Formic acid, methyl ester 

Furan, 3,4-bis(acetoxymethyl)- 

Furoin 

Glutaric acid, 2-methyl- 

Heptadecane, 6,12-diethyl-9-pentyl- 

Heptane, 2,2,4,6,6-pentamethyl- 

Hexanoic acid, 2-butyl- 

Hexanoic acid, 2-ethyl- 

Hydantoin, 1-ethyl-3-methyl-2-thio- 

Isobutyric acid 

Ketone, 4-methyl-2-pyridyl 2-thienyl 

Ketone, di-2-pyridyl, 

Mercury, chloroethyl- 

Methacrylic acid, 2-dimethylamino-, ethyl ester 

Methacrylic acid, 2-hydroxyethyl ester 

Naphthalene, decahydro-, cis-, 

Nicotinamide, N,N-dipropyl- 

Octadecane, 1-iodo- 

Octyl disulfide 

o-Toluic acid 

Phenoxyacetic acid, isobutyl ester 

Phenylacetic acid 

Phosphine oxide, diethyltetradecyl- 

Phthalimide, N-(2-hydroxyethyl)- 

Piperidine, 1-(trichloroacetyl)- 

Propionic acid, 3-(6-hydroxy-m-anisoyl)-, 
methyl ester 

Pyridine, 2-acetyl-6-methyl 

Salicylic acid, benzyl ester 

Salicylic acid, isopentyl ester 

Suberic acid 

Succinimide, N-(4-chloroanilinomethyl)- 

Succinyl chloride 

Tricosane 

Valeric acid, 2-bromo- 

Valeric acid, 2-bromo-4-methyl-, dl- 
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