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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

Born-Oppenheimer potential-energy surfaces (PES) have been a subject of study 

for decades. Since it was first proposed, many molecular dynamics (MD) studies have 

been conducted based on the most traditional technique using empirical and semi-

empirical PES’s. These surfaces have very limited accuracy in terms of both potential 

energy fitting and chemical dynamics descriptions. The idea of fitting energies resulting 

from electronic structure calculations (ab initio energies) has been in use since the early 

80s with many limitations mainly because of huge computational cost. 

Morse potential function1 is a widely-employed method to describe chemical 

bonds. Potential energy functions of this type are obtained from fitting experimental data, 

such as chemical bond enthalpies, molecular vibrational energies, and equilibrium bond 

distances. Sudhakaran and Raff2 made an effort in 1984 to describe a three-atom system 

for the reaction )()( DBrHBrDH + by using a combination of three Morse potentials. 

Systems with triatomic molecules and higher complexity usually require bending 

potentials to describe the energy between chemical bonds and torsional potentials to 

describe rotations about chemical bonds. Guan and Thompson reported two different 

PES’s for cis-HONO and trans-HONO,3 and studied the cis-trans isomerization as well 

as the dissociation of the N-O bond. In a latter study, Guo and Thompson4 generalized 
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the cis and trans potential surfaces into a unique form that described both configurations 

by a method named “valence bond potential.” 

Fitting ab initio potential energies of a molecule using an empirical or semi-

empirical surface requires considerable mathematical and computational effort. Back in 

the 1980s, this approach was very time consuming and inapplicable. Water is one of the 

most important molecules that supports living organisms. Consequently, it has been 

studied extensively. The reaction HOHOH +→2 was investigated theoretically by 

Wright and Shih5 when they constructed an ab initio PES based on self-consistent-field6 

(SCF) and multi-reference double excitation configuration-interaction7,8 (CI) calculations 

on the double-zeta basis set (cc-pVDZ).9-13 Vinyl bromide (CH2CHBr) is a very complex 

six-atom molecule for MD studies as it has 12 internal coordinates and six open reaction 

channels. A semi-empirical surface that fits the ab initio potential energies of this 

molecule was first reported by Rahaman and Raff.14 Another example of semi-empirical 

PES’s as fitting functions of ab initio potential energy was presented by Kuhn et al.15 In 

their work, four different PES fits were reported for hydrogen peroxide (HOOH), to ab 

initio calculations which were performed by employing density functional theory (DFT) 

using the hybrid Beck 3 parameter Lee-Yang-Parr (B3LYP) calculations,16,17 and second-

order complete active space calculations (CASPT2)18,19, a very expensive ab initio 

method, on the triple-zeta basis set (cc-pVTZ).9-13 Four different PES fits were reported 

in that study, and each fit required more than 6,000 ab initio points. 

Currently, MD studies have been extended further since the development of some 

effective fitting techniques. Several molecules and chemical reactions with different 

levels of complexity have been investigated using these new techniques. The Shepard 
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interpolation method which was first proposed by Ischtwan and Collins attempts to fit ab 

initio data automatically.20 In this method, the potential energy at a given configuration is 

expressed as a summation of weighted Taylor expansions around N chosen points in the 

database. During MD trajectories, the fitting process has to be re-analyzed to determine 

the weights of each Taylor expansion. Therefore, this method does not provide an 

analytical function. Interpolating moving least-squares (IMLS) method is another 

technique that was first introduced by Maisuradze et al.21 The fitted potential in this 

method is a linear combination of many basis functions that are constructed by least-

squares fitting of data points in hyperspace. This method has been shown to be practical 

in MD studies, and in fact, it has been employed to investigate several chemical reactions 

theoretically. Neural networks (NN) are a robust and powerful fitting method, which have 

been developed for many decades.22 In this method, after a sufficient number of data 

points is obtained (the database required when using a NN is usually much larger than the 

database requirements for other methods), an analytical function is employed to fit them 

only once. This brings considerable computational advantages as retrieving the database 

during MD trajectories is not required. In our investigations, three different studies have 

been made with various approaches using this fitting technique. The last fitting technique 

that is also employed during the course of this research is the regression fitting built into 

the support vector machine (SVM) method, a “cousin” tool of NN, which was first 

proposed by Cortes and Vapnik.23 In the area of MD studies, this technique has not been 

widely used. More details about each individual technique will be discussed in detail in a 

latter section. 
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The first study that we have conducted using NN fitting is the cis-trans 

isomerizations and N-O bond rupture of nitrous acid (HONO).24 HONO has two 

equilibrium minima in term of potential energy. The cis configuration has a dihedral 

angle of 0o, while the trans configuration has a dihedral angle of 180o (HONO is 

perfectly planar in both equilibrium configurations). 

The unimolecular reaction dynamics of HONO has been investigated since 1982 

both theoretically and experimentally. In an experimental work, McDonald and Shirk25 

studied the cis-trans isomerizations in solid N2 and Ar matrices, and the rate of the 

reaction was not first order according to the reported results. In a latter study conducted 

by Shirk and Shirk,26 the rate of cis→trans reaction was reported to be almost 100 times 

faster than the reverse reaction. A similar reaction was investigated in various matrices 

(H2S, NO2, and Kr) by Khriachtchev et al.27 The first reported theoretical study of the gas 

phase reaction of HONO was conducted by Guan, Lynch, and Thompson28 using an 

empirical surface, and the reactions (cis-trans isomerization and N-O dissociation) were 

found to be first order. In a latter work, Guan and Thompson3 extended the theoretical 

investigations, and reported two PES’s for cis and trans HONO. They concluded that the 

photo-excitation effect was mode-specific as different excitations on six vibrational 

modes were executed for MD investigations. Also, cis→trans isomerization was found to 

be much faster than the reverse reaction. However, the characteristic of these two 

individual PES’s do not generalize the dissociation process well because the molecule 

tends to switch very fast from cis to trans and vice versa. Thus, in 2003, Guo and 

Thompson4 developed a PES that describes both configurations, which was known as the 

“valence bond potential surface.” In our study of HONO, we attempted to collect data 
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points that describe both cis and trans configurations as well as N-O bond dissociation, 

and employed a unique NN to fit the data and produce one PES. Theoretical 

investigations of the two reactions (isomerization and dissociation) were executed with 

different vibrational excitations for some specific internal energy levels. 

 

H
O2 N

O1
H

O2 N
O1

Figure I.1 Cis and trans configurations of HONO 

 

Developing ab initio NN PES’s that describe complex molecular dissociations has 

been proven to be practical. In a theoretical investigation of vinyl bromide (CH2CHBr) 

dynamics, Doughan et al.29 and Malshe et al.30 constructed a PES that describes six 

different reaction channels when vinyl bromide is vibrationally excited. The 

configurations in the vinyl bromide database are obtained using a “novelty sampling” 

(NS) technique first introduced by Raff et al.,31 which is based upon MD trajectories. 

From the studies of HONO and CH2CHBr, the capability of constructing PESs to 

describe dissociations of those molecules with 6 atoms or less is established. Our second 

effort to improve the NN method is to develop a NN PES that describes a collision in 

very wide hyperspace between two diatomic molecules. In our second study, the 

formation of beryllium hydride (BeH2) due to the collision of BeH and H2 is 

investigated.32 The six-dimensional configuration hyperspace of this four-body system is 

believed to be more complicated than the hyperspace of HONO, since the extension of 
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atomic distances is considerably larger. To obtain data points, we employed similar 

sampling procedure as previously used for HONO to sample BeH3 configurations. Once 

the PES is constructed, we employ classical trajectories to calculate the reaction 

probability and cross sections. 

 

Figure I.2 BeH3 system with six atomic distances assigned as r1→r6 

 

In an earlier investigation, Collins and Zhang studied the reaction of 

HBeHHBeH +→+ 22  using the Shepard interpolation method to fit 1,300 data 

points.33 Molecular dynamics was executed using a quantum reactive scattering method 

developed by Zhang and co-workers,34-36 and the maximum reaction probability at zero 

total angular momentum was reported as 0.11. Prior to this work, they performed another 

PES fit for BeH3 system using the same technique with only 438 configurations,37 and the 

reaction was investigated using quasi-classical dynamics. Koput and Peterson38 reported 

an ab initio prediction of BeH2 (and the similar compounds with deuterium substituted 
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for hydrogen) potential surface and vibration-rotation energy levels with high prevision 

using multiple electronic structure calculations (MP2, MP4(SDQ),39-44 CCSD45-48). Our 

study of BeH3 is considered as an extended work of a previous study33 because the set of 

1,300 data points provided by Collins and Zhang33 is used to construct a temporary 

potential surface as part of the modified novelty sampling procedure. Thereafter, similar 

electronic structure calculations (MP2 level of accuracy applied on the 6-311G(d,p) basis 

set) are executed to calculate the potential energy of the generated configurations. After 

constructing the NN PES, the collision is investigated at various translational energy 

levels (from 0.415 eV to 0.829 eV) using classical dynamics. 

The effectiveness of the “novelty sampling” procedure31 has not yet fully 

investigated. This procedure is based mainly on MD trajectories that sample data points 

in hyperspace. To evaluate the necessity of employing MD trajectories during 

configuration sampling, a new sampling method named “gradient sampling” is 

introduced. Briefly, a “gradient sampling” method is employed to search for regions that 

requires more configurations by analyzing the NN-fitting gradients (with respect to the 

inputs). The success of this method would prove MD sampling is not obligatory in any 

potential surface developments. We have chosen hydrogen peroxide (HOOH), a widely-

studied four-body molecule, as an illustrative example for the third NN PES study. The 

aim of the last study is to develop a surface that fully describes O-O bond rupture. 

Hydrogen peroxide is an important gas in atmospheric chemistry with a strong 

oxidation property. It has been researched in many theoretical and experimental works. 

Rizzo, Hayden, and Crim used direct excitation of overtone vibrations to study the 

reaction dynamics of HOOH.49 This technique was also used by Dubal and Crim when 
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overtone vibration excitation was initiated as a function of the wavelength.50 Laser 

induced fluorescence detection was used by Ticich et al.51 to detect the fragments of OH 

radicals during the dissociation process caused by exciting the OH stretching mode. 

Several other experimental investigations were conducted as the dissociation was 

monitored during the excitation of one or more vibrational quantum modes.52-58 Lin and 

Guo59 executed full-dimensional quantum calculations using the Lanczos algorithm on an 

ab initio PES with high quality electronic structure calculations. The work was further 

extended when they investigated HOOH and its deuterated isotopomers.60 As introduced 

above, four semi-empirical surfaces of HOOH were developed by Kuhn et al.15 with 

more than 6,000 data points. This is a remarkable effort of using semi-empirical functions 

to fit so many data points. Guo et al.61 and Maisuradze et al.62 performed a fit for the 

PCPSDE surface reported by Kuhn et al.15, and the O-O bond rupture was investigated on 

both the PCPSDE and IMLS fitted surfaces. The reported results show a good agreement 

as they fit the first-order rate coefficients to the Rice-Ramsperger-Kassel equation, and 

the s values are in good agreement (3.4 from MD investigations on PCPSDE surface and 

3.2 from MD investigations on the IMLS surface). 

Unlike nitrous acid (HONO), the equilibrium configuration of hydrogen peroxide 

(HOOH) is neither cis nor trans because each oxygen atom has two lone pairs of 

electrons. According to MP2 optimization on the 6-31G* basis set, at equilibrium, the 

dihedral angle is approximately 121o, while the HOO angle is 98.6o. The HO and OO 

bond distances are 0.98 Å and 1.47Å, respectively. 
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O O

H

H 

Figure I.3 Equilibrium configuration of HOOH. 

 

An important characteristic of HOOH is the ability to form internal hydrogen 

bonding. As we shall see latter in our study,63 during the dissociation process, it will be 

shown that one or both hydrogen atoms have a tendency to move closely to the other 

oxygen, and this formation of hydrogen bond resists O-O rupture strongly. This property 

was previously proposed in a theoretical study by Harding.64 
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CHAPTER II 

 
 

REVIEW OF POTENTIAL FITTING METHODS 

 

Sampling and fitting data are two important processes that are executed 

simultaneously during the development of an ab initio PES. Since the sampling 

procedure varies from study to study to enhance the efficiency due to the nature of the 

molecular system, in this chapter, we assume that the database is already in-hand, and 

introduce some well-known fitting methods. 

 

I. Shepard interpolation method 

This method was first proposed by Ischtwan and Collins.20 Basically, the potential 

energy at a given configuration during MD trajectories is a sum of many weighted Taylor 

expansions around the selected configurations stored in the database. The form of PES’s, 

as this method is applied, is not an analytical mathematical function. 

For a four-body system, let us denote vector },,,,,{ 654321 RRRRRRR =  as the 

atomic distance vector. In practice, the input vector is the inverse atomic distance vector, 

denoted as Z ( ii RZ /1= ). The Taylor expansion up to the second order terms at a 

configuration in the database is expressed as 
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The potential at a point that is not present in the database is calculated as 

following 

∑∑
∈ =

=
Gg

N

i
igig

d

ZTZwZV
1

)()()( οο . (2) 

In equation (2), g represents the symmetry group of the current configuration. For 

example, Collins and Bettens classified the BeH3 system to have five different symmertry 

groups.37 The advantage of this classification is that it is not required to retrieve all 

configurations present in the database at every potential calculation. In fact, retrieving 

partial databases helps to reduce much of the huge computational cost, which is a 

disadvantage of this fitting technique compared to the other methods. igw ο  represents the 

weight of point i. The form of the weight function was discussed in details in some 

previous works.65-67 By fitting 1,300 data points of BeH3 system, the absolute average 

error on a testing set of 1,000 points was reported as 0.41 kJ mol-1.67 The fitting errors 

using Shepard interpolation method vary from system to system. They range from 0.1 kJ 

mol-1 to 3.0 kJ mol-1. 

For the first time, MD trajectories are employed to sample configurations in 

developing ab initio PES’s as proposed by Collins and co-workers.33 They have 

established a detailed summary of the Shepard interpolation method, and presented the 

PES’s of many different molecular systems.68 In that paper, they proposed that a set of 

molecular configurations chosen from the reaction paths had a certain role in describing 

the reaction dynamics. The data-growing process is executed over and over, until a 
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convergence criterion is satisfied. This criterion is based on the convergence of the 

dynamics and therefore, requires repeated computations of the reaction dynamics 

resulting from the current PES with the ones resulting from a previous PES that fits less 

data points. If the difference in results is sufficiently small, the system is believed to 

converge and no further sampling is required. 

Although the Shepard interpolation method is a very feasible method, there are 

still some critical difficulties that prevent it to become a powerful and universal method 

to many molecular systems. Until today, HDH ++
3 and 23 DH ++  is the most complicated 

systems that has been investigated using the Shepard interpolation method.69 For an N-

body system, the number of input coordinates is 3N-6; therefore, the number of terms in 

each Taylor expansion extended through quadratic form is 105.135.4 2 +− NN . The 

computational requirements of the Taylor expansion terms rises significantly if we 

compare the previous cases to a four-body system like BeH3 to HDH ++
3 . Retrieving 

data is absolutely required at every new generated configuration during a MD trajectory. 

The weights must also be re-evaluated (this may be considered as performing a whole 

new fit for a new configuration). All of these facts lead to a difficulty of computational 

cost, which is the major concern in any molecular dynamics studies until nowadays 

despite the fact that computer technology has grown extremely fast in the past few 

decades. Lastly, the numerical ab initio derivative information has to be available in 

order to perform an interpolation, which makes this method impractical for systems that 

require high quality electronic structure calculations (for example, in MP4 calculations, 

numerical gradients are not available for quadruple excitations). 

 



 13 

II.  Interpolating moving least square (IMLS) method 

Interpolating moving least square method has been in practice for several years. 

The potential energy is expressed as a combination of linear basis functions. The 

mathematical form is given as: 

∑
=

=
M

i
iifitted ZbZaZV

1

)()()( , (3) 

where M is the number of basis functions, a is the coefficient, b is the basis function 

vector, and Z is the input vector. Again, in this technique, Z consists of the inverse atomic 

distances. We can see clearly from equation (3) that both a and b are two functions of Z, 

and they have to be calculated at every new configuration. The basis functions are to be 

constructed prior to the MD investigation. At every point during MD calculations, 

coefficients ai are computed in order to minimize the sum of weighted square errors of all 

points in the database. This is done by solving a matrix equation of size (N x M) at every 

new configuration during the MD investigation, and thus, the computational cost of this 

technique is huge. The cost of a fitted potential is proportional to NM2, where M comes 

from the number of basis functions, and NM is resulted from solving the matrix equation. 

Guo et al.70 have reported the computational time for one H2CN trajectory lasting for 2.5 

ps in molecular time was about 6,000 seconds. This method requires much more 

computational time than the Shepard interpolation method. 

Lowering the computational time effectively has always been a major concern 

when the IMLS technique is used. Recall that in the Shepard method, data points are 

classified into different symmetry groups to improve the speed. Here, in this method, a 

technique known as “cutoff radius” is also used to deal with the problem. The 

determination of the “weights” and coefficients ai is made based on some criteria, such as 
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calculating the distance between a new configuration and a certain configuration in the 

database. If the distance is not in the range of the cutoff radius, that configuration in the 

database is considered as not useful in the fit, and interpolating around that point is not 

required. The choice of the cutoff radius has to be done wisely, as it is a trade-off 

between computational cost and fitting accuracy. 

It has been shown that the fitting error goes down as more data points are used. 

Once the IMLS method is employed, one has to determine the trade-off between fitting 

error and computational speed. In the study of HOOH, Guo et al.61 performed three fits 

with various number of points using the valence internal coordinates (which consist of 

three bond distances, two bending angles, and a dihedral angle) and three fits with 

various number of points using the inverse interatomic distance coordinates. The best 

fitting error (8.25 kJ mol-1) has resulted from the fit using valence internal coordinates 

with 1,000 data points. In our HOOH study using the NN method, we also observed 

experimentally that the use of valence internal coordinates gives better accuracy than the 

use of interatomic distances as input coordinates. 

The local IMLS method (L-IMLS) restricts the number of weight evaluations.70 

For each point in the database, the fit is performed, and the resulting coefficients are 

stored. Once enough data points are collected, evaluations of the potential at a new point 

are performed based on the existing coefficients. The L-IMLS method helps to reduce 

computational cost. 

The advantage of this technique over the Shepard interpolation method is the 

capability to fit data from high quality ab initio calculations, most of which do not 

provide first and second derivative information. Moreover, since first and second 
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derivatives are not extracted from ab initio calculations, IMLS method saves more time 

in electronic structure calculations. 

 

III.  Neural network method 

Neural network fitting22 is a computational method that has been applied to 

chemical reaction dynamics since the 1990s, and broadly used to fit many numerical 

functions. In the field of MD study, NN has been proven to be powerful and robust 

because the fit is executed only once and available for use throughout the study. It has 

been employed to fit many PESs with various levels of complexity. Unlike the Shepard 

and IMLS methods, NN fitting provides an analytical function, which is very helpful 

when gradient analysis is executed. 

Let us denote vector R as the atomic distance coordinate (or valence internal 

coordinate) vector. Prior to the fitting process, R and the ab initio potential energy V are 

scaled as following 

1
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min_max_
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−
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where ri_min and ri_max are the ith minimum and maximum atomic distances, respectively. 

Similarly, Vmin and Vmax are the minimum and maximum potential energies, respectively. 

This scaling maps all number (inputs and outputs) in the range of -1 to +1. 

We employ a two-layer feed-forward NN to fit the function. The output of the 

first layer is produced as following 
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 for i = 1..m. (6) 

Each calculation of ni in the first layer is defined as a “hidden neuron.” m is the 

number of hidden neurons, w1 is the weight matrix of size (m x 6), and b1 is the (m x 1) 

bias column vector. In all three studies that we have conducted, there are 6 inputs (either 

valence internal coordinates or atomic distance coordinates). 

The outputs of the first layer are converted to be the inputs for the second layer by 

a transfer function f1. Hornik et al.72 have shown feed-forward NNs that use a sigmoid 

function as the transfer function in the first layer, and a linear function as the transfer 

function in the second layer are universal approximators for analytic functions. 

Specifically, in our studies, we use the hyperbolic tangent function as the transfer 

function in the first layer. The NN output is computed as 

∑
=

+=
m

i
iiout bnfwV

1

1 )(2  (7) 

In equation (7), w2 is the weight row vector of size (1 x m), and b is a scalar 

number which represents the bias value of the second layer. The number of neurons is 

assigned by users. The data is divided into three sets: training, validation, and testing. 

Subsequently, the NN is trained to minimize the sum square error of the training set using 

Levenberg–Marquardt algorithm.22 Usually, the training set consists of 80% of the data, 

while each one of the other two sets consists of 10%. 
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Figure II.1 Structure of a two-layer feed-forward NN with 34 neurons in the hidden layer 

 

Over-fitting is a very serious issue that is of concern when using the NN 

method.73 An illustrative example of over-fitting is given in Figure II.2. There are several 

ways to avoid this problem, but the most common technique is known as “early 

stopping.”22 A NN is trained for hundreds of epochs (iterations); however, when the sum 

square error of the validation set is seen to increase in 6 consecutive epochs, the training 

process is terminated to prevent over-fitting. The weights and biases used are those 

present when the validation error starts to increases. Figures II.3 and II.4 represent the 

training process. After each epoch, the root mean squared (rms) errors of three sets are 

calculated. 
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Figure II.2 An illustrative example of over-fitting.74 

 

 

Figure II.3 Mean square error of training, validation, and testing sets. 

The training process is terminated after 209 iterations. 
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Figure II.4 Plots of outputs vs. targets for training, validation, and testing sets. 

 

The NN method has been employed in many PES studies. It was first employed to 

study the surface diffusion of CO/Ni(111) system.75 To date, several PESs have been 

reported using this fitting technique. Some of them are CH2CHBr,29,30,76-79 HONO,24,80 

BeH3,
32 HOOH,63 SiO2,

81 hydrogen dissociation on metal surfaces,82 reaction of C2 

dimers with an activated diamond (100) surface,83 CO chemisorption on a Ni(111) 
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surface and the interaction of H2 with a Si(100)-2x1 surface,84,85 and H3
+.86 Among these, 

vinyl bromide has been so far the most complicated molecular system studied by any 

fitting method. More recently, a newly-developed training algorithm was introduced, in 

which ab initio potential energy and the gradients with respect to inputs are fitted 

simultaneously. Consequently, the method is denoted as a combined function derivative 

approximation (CFDA) method. This turns out to be a powerful method that describes 

functions with excellent accuracy. The method was applied to Si3, Si5 clusters,87 and the 

H+HBr system.88 

Low computational cost is a big advantage of the NN method. Since the PES fit is 

done only once, it is very convenient for users to extract analytic derivatives. More data 

points would require more neurons to perform the fit; however, it does not increase the 

number of neurons significantly, and can be considered as a negligible issue. In our three 

studies, we obtain about 20 thousands points for each case, and the fitting errors in all 

cases turned out to be very low. 

Because of low computational cost, we generally use a NN committee to enhance 

fitting accuracy. Several NN’s are trained individually by randomly selecting training 

data. Subsequently, the NN’s committee is taken to be an average of all individual NN’s. 

As will be shown latter, the error of NN committee is less than the errors resulted from 

each individual NN as a result of nearly random error cancellation. 

IV.  Support vector machine method 

A support vector machine is a “cousin” tool of NN fitting, which has been 

proposed and developed after the birth of NN’s. This technique is one of the most 

common machine learning algorithms and has been used for a variety of chemistry 
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applications, such as optimization of chromatographic separation, concentration 

prediction from spectral data, qualitative and quantitative prediction from sensor data, 

and so on. An overview of SVM applications in chemistry is available in ref. 89 for 

consulting. The SVM algorithm was initially developed by Vapnik and Lerner90 based 

mainly on the statistical learning theory. Drucker et al.91 latter developed the fitting 

algorithms for regression training as one important feature of SVM method (also known 

as support vector regression, SVR) to fit analytic function. 

 

 

Figure II.5 Example of an SVM regression using radial basis kernel.92 

Source: http://users.ecs.soton.ac.uk/srg/publications/pdf/SVM.pdf 
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The success of the NN method in MD studies has led us to explore the ability of 

an SVM model to fit ab initio data. Similarly to a NN, an SVM fit is an analytic function 

that only needs to be trained once. Prior to conducting the SVM ab initio PES study, our 

expectation is that SVM method will be comparable to NN method in terms of 

computational cost and accuracy. 

We also use equations (4) and (5) to scale inputs and output in the region of -1 to 

+1. The mathematical form of an SVM function using the radial basis kernel is 

ρα γ −= ∑
=

−•−−
n

i

xvxv
iout

iiexV
1

)()()(  (8) 

where γ, ρ, and αi are scalar values (γ is defined by users), n is the number of support 

vectors required for fitting with some given criteria, vi is a vector of six dimensions, and x 

is the (6 x 1) input vector. Each term in the above summation is referred to a “support 

vector.” 

There are also some other important parameters that need to be defined by users 

prior to training. The “cost” c is a very important parameter which determines the 

training speed and number of support vectors. Technically, c represents the absolute 

values of αi in the function. A high value of c gives a wide range of α, which makes the 

effective region of a support vector larger, and thus, would decrease the number of 

support vectors. However, it is very time consuming to train with high value of c. The 

epsilon value of the “loss function” ρ has a direct effect on accuracy. Obviously, smaller 

value of ρ gives better accuracy, but costs more computer time to train the data. The 

estimation of γ, c, and ρ will be discussed latter as we attempt to fit the HOOH data using 

SVM method. Some comparisons of PES’s obtained using both NN and SVM methods 

will be made in a subsequent chapter. 
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CHAPTER III 
 
 
 

CIS-TRANS ISOMERIZATIONS AND N-O BOND 

DISSOCIATION OF NITROUS ACID (HONO) 

 
 

I. Development of ab initio potential surface 

1. Electronic structure calculations 

The ab initio potential energy calculations are executed using the Gaussian suite 

of programs.93 In this work, accuracy is given the first priority and computational cost is 

our second consideration. Therefore, we choose to employ the fourth-order Moller-

Plesset perturbation method44 [MP4(SDQ)] with singlet, doublet, and quartet excitations. 

Other methods have also been executed for some comparisons, such as MP2 and couple-

cluster method94,95 (CCD) with double excitations. 

The choice of basis sets does not have a big affect on computational cost; in fact, 

accuracy and convergence are two direct consequences of a basis set choice. Several 

basis sets have been tested and compared to find the most suitable one. They include 4-

31G,96-99, 6-31G, 6-31G(d),100 and 6-311G(d).101,102 Most ab initio calculations in the 

sensitive region that describes N-O dissociation (large N-O distance) on 6-31G and 6-

31G(d) basis sets fail to converge. The 6-311G(d) basis set, on the other hand, has almost 

no problems in the convergence issue when MP4(SDQ) level of theory is applied. Also, 

we observe that the potential energy obtained from MP4(SDQ)/6-311G(d) is lower than 



 24 

results from the other methods. Therefore, it is chosen for the ab initio calculations in this 

study. The couple-cluster method with double excitation (CCD) on the large triple zeta 

basis set9-13 (cc-pVTZ) is also executed, but this method is not preferred in the study 

because of huge computational cost compared to the others. 

The potential barriers of cis-trans isomerization and N-O dissociation are 

obtained from partial optimization of the potential energy using the Newton-Raphson 

method. In a partial optimization, some Gaussian input parameters are set as constants, 

and the rest are optimized to minimize the potential energy. To investigate the rotational 

barrier, several partial optimizations are executed for various dihedral angles from 0 to π, 

and the corresponded potential energies are recorded. 
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Figure III.1 Rotational barrier of HONO 

 

Similarly, the N-O dissociation barrier is investigated by optimizing the potential 

for various N-O distances. From the potential barrier, it is concluded that the dissociating 

distance is 2.78 Å. 
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Figure III.2 N-O dissociation barrier of HONO 

 

From MP4(SDQ)/6-311G(d) calculation, the rotational barrier is 0.552 eV, while 

the dissociation barrier is 2.15 eV. When we compare the results among several 

calculations, we find that MP2 level of theory results in highest rotational barriers, while 

CCD/cc-pVTZ gives the highest dissociation energy (Table III.1). 
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Table III.1 Equilibrium energies and potential barrier heights for various computational 

methods and basis sets 

Ab initio method 
cis equilibrium energy 

(Hartree) 

Rotational barrier 

(eV) 

N-O dissociation 

barrier (eV) 

MP2/6-311G(d) -205.2618450 0.595 2.54 

MP2/6-31G* -205.1671423 0.607 2.46 

MP4(SDQ)/6-311G(d) -205.2675897 0.552 2.15 

MP4(SDQ)/6-31G* -205.1747915 0.565 2.12 

CCD/cc-pVTZ -205.2022592 0.515 3.16 

 

By performing two full optimizations of HONO, in which all parameters are 

considered as variables, it is found that there are two energetic minima. The cis 

configuration is more energetically stable than the trans configuration. 

A calculation for one HONO configuration operated on a processor with a 2.4-

GHz-clock-speed using MP4 level requires about 45-50 s to accomplish, which mean for 

a set of 21,584 configurations, about 280 hours of computer time are needed to execute 

ab initio calculations to obtain the potential energies. 

 

2. Modified novelty sampling procedure 

According to the novelty sampling procedure developed by Raff and co-

workers,31 a temporary potential surface must be available, and more configurations are 

obtained by executing MD trajectories on this temporary potential surface. Ab initio 

calculations are executed for the new configurations, and they are added to the database 

only if they satisfy the novelty sampling selection criteria. The more points we select, the 

more converged the PES becomes. However, some criteria have to be used in order to 
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test for convergence and terminate this sampling process, as we do not want to collect too 

many unnecessary data points. After adding the new points, the percentage of selected 

points to the current database is calculated. If the number of added data points is small, 

we believe the database has converged. The novelty sampling procedure has been found 

to work effectively in the case of vinyl bromide.29,30 

In our study of HONO, we employed a simple empirical surface developed by 

Guan and Thompson3 to serve as the first temporary PES. Several trajectories, each of 

which is initialized with a random geometric configuration and random momenta using 

the projection method (will be discussed in the trajectory calculation section), are 

integrated for 5 ps with a fixed step size of 3 (as 0.01 time unit) with the internal energy 

of 2.8 eV (including zero point energy), and the Cartesian coordinates are recorded. In 

the first iteration, we obtain 4,000 configurations with trajectories starting from cis 

configurations, and 4,000 configurations with trajectories starting from trans 

configurations, which combine to make a first set of 8,000 data points. The ab initio 

potential energy for each configuration is then calculated using MP4(SDQ)/6-311G(d) 

level of theory. Six atomic distances are recorded as inputs, and ab initio potential 

energies are recorded as outputs. 

A temporary NN surface is constructed based on 8,000 data points. More 

configurations are generated from trajectories on this temporary surface. We have 

developed some criteria to examine the configurations before adding them into the 

database. Let us denote vector iv  as a seven-component vector, which consists of six 

normalized inputs and one NN output which corresponds to the six inputs. The seven 
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components of vectoriv  are all unitless. The distance between the ith vector and the jth 

vector is defined as 

∑
=

−=
7

1

2)(
k

jiij vvd . (9) 

The ith minimum and average distances are directly obtained from the calculated 

values of dij. 

)min(min iji d=  where j = 1…n, and n is the total number of vectors, (10) 

n

d

avg

n

j
ij

i

∑
== 1 . (11) 

P(min( iv )) and P(avg( iv )) are the probability distribution functions of minimum 

and average distance, respectively. There are two designated tests to examine a new 

configuration. A generated configuration from NN trajectories is qualified to the next 

progress if it passes one of the following 

if max1 ))(min())(min( vPTvP k ≤ and min)min( α≥kv , (12) 

or if max2 ))(())(( vavgPTvavgP k ≤ and avgkvavg α≥)(  , (13) 

where T1 and T2 are selected as 0.5 and 0.2, respectively. From the probability 

distribution plots of minimum and average distances, we also choose αmin and αavg as 1.2 

and 0.1, respectively. The purpose of condition (12) is to ensure that if a point is far away 

from the other configurations in the database, it is a useful point. However, if a point is 

close to some other in the database (which means it would fail condition (12)), and if that 

group is far away from the majority, the point is still considered useful, and condition 

(13) helps to qualify that point. 
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An effective microcanonical method to sample the configuration hyperspace for 

some molecular systems, including HONO, was discussed by Schranz, Nordholm, and 

Nyman.103 This procedure, however, includes many configurations that are not useful to 

the reaction dynamics of HONO. Therefore, we employ a modified novelty sampling 

procedure31 to acquire data. MD trajectories usually produce more data points in the near-

equilibrium region, and less in the reacting region. However, the reacting region is more 

important in constructing the PES. Therefore, it is important to recognize those well-

described points and eliminate the unnecessary ones from the data. Empirically, it is 

observed that adding more data points to the regions of configuration space that is 

adequately covered would increase the fitting error in the other important regions. 

Therefore, a direct comparison of ab initio energy and NN predicted energy is made, if 

the percent difference is less than 1%, the point is discarded; otherwise, it is selected. 

After selecting a set of data points, Gaussian input parameters are calculated, and 

ab initio calculations are performed. The resulting ab initio potential is compared to the 

NN potential as a final test. This process is executed iteratively until convergence, in 

which we are not able to select many additional data points. 

With an initial set of 8,000 data points, a temporary surface is trained. In the first 

iteration, we mainly focus on finding data near the equilibrium region. Some trajectories 

are started at either cis or trans equilibrium configuration with no kinetic energy, and 

integrated for a period of time. We sample those configurations, perform ab initio 

calculations and add them to the database. During the course of this first iteration, 1,000 

more points are added to the database. 
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Subsequently, four more iterations are executed to add more data points into the 

system. In the last four iterations, bond stretching is our major goal in obtaining data 

points, especially N-O dissociation. Various levels of internal energy are applied to 

ensure that the important regions are adequately covered. As shown in Figure III.3, 3,314 

data points are added to the system in the second iteration. Most added points lie in the 

high minimum-distance region, which we do not see in the previous database. 

 

 

Figure III.3 P(min( iv )) vs. minimum distance. Most of the points from the overlapped 

region are rejected. 3,314 more data points are added to the system in the second 

iteration, which mainly focus on the stretching of three chemical bonds. 
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During the sampling process, we have noticed a circumstance when N-O bond is 

stretched too far apart. At a large N-O distance, MP4(SDQ) method fails to converge, and 

as a result, it either terminates the calculation, or gives non-sense potential energy (much 

lower than the equilibrium energy). After five iterations, we have selected 21,584 

configurations. The minimum distance distribution for the last iteration is shown in 

Figure III.4. The detailed number of added configurations during each iteration is given 

in Table III.2. 

 

 

Figure III.4 Minimum distance distribution for iteration 5. As we notice, most of the new 

data overlap with the previous data, and not many configurations can be selected. At this 

time, we decide to terminate the sampling process. 
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Table III.2 Number of added configurations in each iteration process 

Step Starting Adding Total Note 

0 0 8000 8000 Initial configurations 

1 8000 1000 9000 Focusing on cis and trans equilibrium configuration 

2 9000 3314 12314 Bond stretching 

3 12314 6288 18602 Bond stretching 

4 18602 1996 20598 More data described O-N dissociation 

5 20598 986 21584 More data described O-N dissociation 

 

 

Table III.3 Equilibrium, maximum and minimum atomic distances (Å) of HONO 

Identity of the atomic 

distance 

O1-N 

(r1) 

N-O2 

(r2) 

O2-H 

(r3) 

O1-O2 

(r4) 

O1-H 

(r5) 

N-H 

(r6) 

Cis equilibrium 1.195 1.380 0.969 2.161 2.119 1.901 

Exp. cis equilibrium 1.185 1.392 0.982 2.159 2.108 1.877 

Trans equilibrium 1.179 1.381 0.960 2.102 2.896 1.881 

Exp. trans equilibrium 1.170 1.432 0.958 2.146 2.883 1.882 

Maximum 1.527 2.850 1.391 3.873 4.881 3.812 

Minimum 0.976 1.079 0.775 1.673 1.381 1.330 

 

The six equilibrium atomic distances of cis and trans configurations are given in 

Table III.3. We have found that the result is in good agreement with the experimental 

values.104 
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3. Normal mode analysis on the new PES 

Vibrational wave numbers are an important characteristic of Born-Oppenheimer 

potential energy surfaces, in which we employ some mathematical approximations to 

extract the wave numbers. The results from this procedure can be compared directly to 

the wave numbers calculated by the corresponding ab initio method (MP4(SDQ)/6-

311G(d) in the case of HONO), and fitting quality can be evaluated. 

The details of normal mode analysis have been described by Herzberg105 and 

Wilson, Decius, and Cross.106 Consider a 2-dimensional matrix D of size (3N, 3N) for a 

molecule (where N is the number of atoms), where the element Dij is calculated as 

jiji

ij qq

V

mm
D

∂∂
∂

=
21

, (14) 

where mi is the atomic mass corresponding to coordinate i. 

As we can see, D is a Hermitian matrix, which always yields 3N real positive 

eigenvalues. 

LD λ= . (15) 

L is an orthonormal matrix, which consists of 3N eigenvectors, λ is a diagonal 

matrix, each value of the diagonal represents the fundamental frequency. If the molecule 

is non-linear, 6 frequencies, which represent translational and rotational modes, are 

expected to be very small (close to 0), and the other 3N-6 values are the vibrational 

frequencies. If the molecule is linear, there are 3N-5 vibrations. L is a useful orthonormal 

matrix, which can be employed to distribute energy into vibrational modes. 

In the HONO case, there are two global minima associated with the cis and trans 

configurations. Normal mode analysis is executed at both conformations, and the results 

shown in Table III.4 are in excellent agreement with ab initio values. They are higher 
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than the experimental values because the fitting is done to the MP2 results. Recall that 

this procedure is based on the second derivative analysis, which means the NN fits the 

shape of the function very well. This is a result of the sampling method which accurately 

fits the surface gradients. 

 

Table III.4 Experimental and calculated wave numbers (cm-1) of cis and trans HONO 

Vibrational Modes OH N=O HON O-N ONO Torsion 

Cis 

Experimental107 3426 1641 1302 852 609 640 

Calculated by NN surface 3597 1639 1370 968 671 710 
Gaussian (MP2) 3608 1643 1382 958 748 671 

Trans 

Experimental107 3591 1700 1263 790 596 544 

Calculated by NN surface 3799 1738 1348 967 708 549 
Gaussian (MP2) 3796 1694 1338 868 645 616 

 

 

4. Neural network committee 

It has been shown that using NN in MD studies is a time saving method, since the 

fit is done only once. When higher fitting accuracy is required, NN methods provide two 

possibilities. First, increasing the number of hidden neurons is an obvious option. We 

have performed several fits by varying the number of hidden neurons, and learned that a 

NN with 41 neurons is sufficiently effective for the HONO surface. Therefore, 41 

neurons are used to produce a good fitting error of 0.017 eV. Using more hidden neurons 

may result in over-fitting NNs. To improve the fitting accuracy, our second option is to 

construct a NN committee, which is a combination of several NN’s, each having 41 

neurons in the hidden layer. 
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Different training data selection results in slightly different NN parameters. 

Selecting data randomly for the training set can be employed to construct different NNs. 

Also, one can vary the percentage of training data, which also results in a slightly 

different NN. Once several NNs are constructed, the output of a NN committee is taken 

to be the average of those NN outputs of the members of the committee. Since the data is 

randomly selected when constructing a network, the fitting errors produced by each 

member in the committee tend to be randomly distributed about the target output. As we 

take the average, the nearly random errors are canceled out, thereby makes the accuracy 

of the committee better than any individual member. If the errors are well randomized, 

we expect the NN committee error to be reduced by a factor of N-1/2, where N is the 

number of individual NN’s. 

An obvious disadvantage of using NN committee is the additional computational 

effort required. At every integration step, gradients have to be analyzed on each 

individual network, and the averages are obtained. If there are N networks, N different 

gradient calculations have to be performed, and thus, raises the computational time by a 

factor of N. 

As an illustrative example, we use 5 individual networks to construct a NN 

committee. The fitting errors of the five networks tested on 21,584 data points vary from 

0.0126 to 0.0170 eV. When the NN committee is applied, the fitting error drops to 0.0111 

eV. It can be concluded clearly that the performance of the committee is better than any 

individual network as most nearly random errors resulted from the statistical fitting 

algorithm are cancelled. 
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Table III.5 Different (6-41-1) NN Potential Surfaces and Their Coressponding 

Average Absolute Errors 

NN Potential 

Surface 

Portion of Data Sets Average Absolute 

Error (eV) Training Validation Testing 

Surface 1 0.80 0.10 0.10 0.0170 

Surface 2 0.74 0.13 0.13 0.0136 

Surface 3 0.70 0.15 0.15 0.0141 

Surface 4 0.68 0.16 0.16 0.0126 

Surface 5 0.66 0.17 0.17 0.0162 

Committee Potential Surface 0.0111 

 

 

II.  Trajectory calculations 

This initial sampling technique is described by Raff in a previous application to 

1,2-difluoroethane.108 Initially, all four atoms are assigned at the equilibrium position. Let 

us denote the Cartesian coordinates to be qi and the normal coordinates to be Qi. Matrix L 

obtained from normal mode analysis is used to transform Cartesian coordinates (or 

velocities) to normal coordinates (or velocities), as shown in the following equation 

•• = QLq  (16) 

where q� is a 12-component vector representing the 12 Cartesian velocities, and Q� 

represents 12 normal velocities. The first six components of Q� are the six vibrational 

velocities; the latter six components are rotational and translational velocities. 
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Matrix L is orthonormal; thus, there exists a matrix L-1 which is the inverse of L, 

which transforms Q� to q�. 

••−•− == qLqLQL 11  (17) 

The first six components of Q� are obtained from converting the experimental 

frequencies shown in Table III.4 to normal mode velocities. The latter six components 

representing translational and rotational velocities are set to 0, as we require the total 

angular momentum to be zero and there is no center of mass motion. After assigning Q�, 

q� is calculated from equation (17). 

With initial Cartesian coordinates and velocities assigned, we integrate the system 

of partial differential equations on the NN PES for a random period chosen between 0.11 

ps and 0.16 ps (two to three times of the longest vibrational period) with a fixed step size 

of 1610018.1 −×  seconds using the fourth-order Runge-Kutta method.109 The total energy 

is conserved to at least four digits. This process randomizes the vibrational phase of the 

molecule. After this integration, Cartesian velocities are converted back to normal 

velocities using equation (16). Excitation energy is then introduced to the desired modes 

as kinetic energy. Finally, the normal coordinates are converted back to Cartesian 

coordinates using equation (17). After these operations, the molecule is now guaranteed 

to have randomized initial vibrational phase angles with zero linear and angular 

momenta. The trajectory starts from this point, reaction channels as well as any necessary 

parameters are recorded. The average computational time required to integrate a 

trajectory for 5 ps (in molecular time) is 4.8 s when a single CPU of 2.4 GHz clock speed 

is fully utilized. 
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III.  Cis-trans isomerizations 

Mode specificity of cis-trans isomerizations has been investigated in both rare gas 

matrices25 and in the gas phase.3,4 In these two cases, the reaction orders were found to be 

second and first order, respectively. All theoretical investigations of HONO reported to 

date have been executed on empirical surfaces. With a total energy of 1.7 eV (including 

zero point energy), mode specificity was clearly observed.3 The rate of cis→trans is 

higher than the rate of trans→cis in all cases when various vibrational modes are excited. 

Depending on the excitation, the factors were found to lie among 2.25 to 22.6, which give 

us a very good picture of mode specificity on the empirical surfaces being studied. In 

cis→trans isomerization, the factor of maximum/minimum rate coefficients is 23.8. On 

the other hand, the factor of trans→cis isomerization is 3.7. 

In the study of HONO, we employ surface 1 in Table III.5 to conduct MD 

investigation of cis-trans isomerizations. As we have investigated, zero point energy of 

HONO is 0.525 eV, and the potential barrier required to change the conformation (cis-

trans) is 0.6 eV (13.8 kJ mol-1) according to MP4(SDQ) calculations. It was reported by 

Guan and Thompson3 that the potential barrier is 13 kJ mol-1,3 somewhat lower than the 

value reported in our investigation. 

In each investigation, the total energy (including zero-point energy) is brought up 

to 1.70 eV. Six different investigations are executed with various types of excitations. In 

the first five investigations, zero-point energy is introduced initially, then the excitation 

energy is introduced into one of the five vibrational modes (excluding the torsional 

mode). During a previous investigation conducted by Richter et al.,110 it was found that 

the excitation of the torsional mode resulted the fastest isomerization. In the last 
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investigation, excitation energy is introduced equally among the modes after initiating 

with zero-point energy. 

The monitoring process is executed after the excitation. Taking advantage of the 

low computational cost of integrating trajectories on the NN surface, 2,000 trajectories 

with randomized configurations are investigated. Each trajectory is terminated when 5 ps 

elapses or the change of conformation is found (the dihedral angles reaches 90o). Six 

first-order decay plots are made from the first order rate law (as shown in equation (18)), 

and the rate coefficients as well as the statistical standard deviations are obtained directly 

from the decay curve, as illustrated in Figures III.5 and III.6. The resulting standard 

deviations are about 2% of the rate coefficients, which do not include Monte Carlo 

statistical errors. A first-order decay is described as following: 

kt
N

N t −=








0

ln  (18) 
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Figure III.5 First-order decay plot of cis→trans isomerization when OH mode is excited 

(the internal energy is 1.70 eV, including zero point energy). The curve gives an excellent 

linearity and statistical standard deviation. 
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Figure III.6 First-order decay plot of trans→cis isomerization when OH mode is excited 

(the internal energy is 1.70 eV, including zero point energy). 

 

The detailed rate coefficients and corresponding standard deviations are given in 

Table III.6. It is clearly found that the reaction rate is nearly independent of excitation 

types. In our result, the rate coefficients vary by a factor of 2.4 for the cis→trans 

isomerization from 0.210 ps-1 to 0.505 ps-1. Conducting similar investigations on the 

empirical surface, the factor was found to be as high as 22.8.3 The trans→cis 

isomerizations rate coefficients in our study was found to vary by a factor of 1.82 from 

0.199 ps-1 to 0.363 ps-1. The factor of trans→cis isomerization reported by Guan and 
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Thompson3 is about 7.0. These results suggest that some major differences exist between 

MD on an empirical surface and on a NN ab initio surface. 

The effectiveness of exciting a vibrational mode on the NN surface is different 

from the empirical surface employed by Guan and Thompson.3 In their study, HON 

excitation results in the highest reaction rate constant, while the excitation of OH stretch 

gave the lowest. In contrast, our study shows that the ONO bend is the most effective 

mode in cis-trans isomerizations, and HON is the least effective. 

 

Table III.6 Cis-trans isomerization rate constants for the total energy of 1.70 eV 

(including zero point energy) 

Reaction Mode 
excited 

Rate coefficient (ps-1) Standard deviation (ps-1) 

cis-trans 

OH 0.265 0.005 
N=O 0.491 0.014 
HON 0.210 0.007 
O-N 0.405 0.010 
ONO 0.505 0.011 

All 0.401 0.009 

trans-cis 

OH 0.199 0.003 
N=O 0.303 0.012 
HON 0.334 0.011 
O-N 0.363 0.013 
ONO 0.260 0.010 

All 0.255 0.010 
 

 

The most important difference between dynamics on the NN and empirical 

surfaces is the extent of intra-mode coupling. The reactions investigated on the NN 

surface are observed to have much greater intra-mode coupling than those conducted on 

the empirical surface. As a direct consequence, it is easier for energy to spread among the 
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modes. From the results reported by Guan and Thompson, intra-mode coupling is hardly 

observed, since the reaction rate coefficients are significantly different when different 

modes are excited. This, in fact, is not surprising as it was mentioned that the coupling 

terms were omitted since they used three Morse potential terms, two bending terms, and a 

Fourier transformed function to describe the torsional potential. 

Since the modes are highly coupled on the NN ab initio surface, we do not 

observe large differences in term of reaction rates when different modes are excited. The 

ratios of cis→trans/trans→cis rate coefficients vary from 0.63 to 1.94. In most cases, 

cis→trans rate is found to be higher than trans→cis rate when a particular mode is 

excited, except in the case HON bending where we observe higher rate of trans→cis. 

Guan and Thompson3 reported these ratios from 2.0 to 12.9. 

We have also performed an investigation of cis→trans reaction on the NN 

committee surface when OH mode is excited. The resulting rate constant from this 

investigation is 0.309  ps−1, which is 17% higher than the rate constant reported from 

conducting MD on the first NN surface, which is 0.265 ps-1. Recall that the fitting error 

of the NN committee is 0.0111 eV, which is 35% lower than the fitting error of the first 

NN surface (0.170 eV). 

 

IV.  N-O bond dissociation 

The potential barrier of N-O bond dissociation has been investigated using the 

MP4(SDQ) ab initio method. By extending the N-O bond from 2.2 Å to 2.8 Å, it is seen 

that the potential energy begins to drop at 2.78 Å. Therefore, we take this distance to be 

the dissociating distance. Also, it is indicated that the barrier height is 2.15 eV. As 
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reported by Herzberg, the zero point energies of radical HO and NO are 3735 and 1904 

cm-1, respectively.102 Thus, the difference in zero-point energy for HONO → HO + NO 

reaction is 0.18 eV. As a consequence, the minimum energy required to break N-O bond 

in the reaction is 1.97 eV (190 kJ mol-1). It is reported by Guan and Thompson that the 

value on the empirical surface is 1.77 eV.3 

The dissociation reaction is investigated at two different levels of internal energy, 

which are 3.1 eV and 3.3 eV. As previously noted, 2.78 Å is considered to be the 

dissociating distance; therefore, a trajectory is terminated when either 5 ps of molecular 

time elapse or the N-O distance reaches 2.78 Å. 

Seven investigations are conducted for seven different types of excitations. In the 

first six investigations, excitation energy is partitioned into a vibrational mode. In the last 

investigation, excitation energy is partitioned equally among the six vibrational modes. 

Since the molecule switches from between two conformations very rapidly at these two 

internal energy levels, we choose to start the trajectory from cis configuration with the 

choice making no major difference. 

The rate constants are obtained directly from the first-order decay plots. A typical 

decay plot of N-O dissociation is shown in Figure III.7. It is found that the plots are linear 

in all cases with excellent standard deviations. The results are shown in Table III.7 in 

detail. As expected, the rate constant at 3.3 eV is higher than the one at 3.1 eV when 

similar excitation is conducted. 
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Figure III.7 First-order decay plot for N–O bond dissociation when the OH mode is 

excited. The total energy studied in this case is 3.10  eV (including zero point energy). 
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Table III.7 N-O bond dissociation calculated rate constants at total energies of 3.10 eV 

and 3.30 eV (including zero point energy) 

Total 
energy 

Mode 
excited Rate coefficient (ps-1) Standard deviation (ps-1) 

3.10 eV 

OH 0.082 0.001 
N=O 0.075 0.001 
HON 0.042 0.001 
O-N 0.165 0.003 

Torsion 0.136 0.002 
ONO 0.063 0.001 

All 0.092 0.002 

3.30 eV 

OH 0.151 0.002 
N=O 0.146 0.001 
HON 0.072 0.001 
O-N 0.237 0.008 

Torsion 0.212 0.002 
ONO 0.116 0.002 

All 0.157 0.004 
 

 

Our results clearly indicate that the excitation of O-N mode enhances the reaction 

rate most effectively as expected. The excitation of torsional mode is also very effective, 

which results in the second highest reaction rate constants. Excitations of four other 

modes do not give high rate constants. 

Intra-mode coupling on the NN surface is significantly greater than on the 

empirical surface. As reported by Guan and Thompson,3 the ratio between the highest 

and lowest rate constants is 69.4 at the internal energy of 2.26 eV. In our investigation, 

the corresponding ratio is 3.9 when the internal energy is 3.1 eV, and 3.3 when the 

internal energy is 3.3 eV. This, again, reflects the ability of energy to spread rapidly on 

the NN ab initio surface during the dissociation of N-O bond. 
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V. Summary 

The cis-trans isomerizations and N-O bond dissociation of nitrous acid are 

investigated on an NN ab initio PES obtained by employing a feed-forward NN to fit 

21,584 data points selected by novelty sampling. The electronic structure calculations are 

executed using MP4(SDQ) level of theory on the 6-311G(d) basis set. With five 

individual (6-41-1) NN fits being performed, the average absolute errors vary from 0.012 

eV to 0.017 eV. When a committee of these five NNs is constructed, the average absolute 

error drops to 0.0111 eV as a result of nearly random error cancellation. This accuracy is 

better to that obtained using the IMLS methods. 

Molecular dynamics trajectories are integrated on a single NN surface. The 

average computational time required for a trajectory is 4.8 s when calculations are 

performed using a 2.4 GHz processor. This computational time compares favorably to 

that for other methods. As the fit is done only once, gradients are calculated easily, and 

the parameters are not required to be adjusted at every integration step as done using the 

other methods. Also, the ability to fit such a large database also implies a good 

description of chemical intuition. 

Prior to trajectory integration, a randomized configuration is generated, and 

excitation energy is introduced into the desired modes. Both of these steps are executed 

using projection methods.108 This process also guarantees no center-of-mass motion and 

zero total angular momentum; all internal energy is distributed into the six vibrational 

modes of HONO. 

The cis-trans isomerization investigations are executed at a total energy of 1.70 

eV. Six different energy partitionings are performed, and all decay plots clearly indicate 
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the reaction to be first order (each plot is an investigation of 2,000 trajectories). As 

different modes are excited, the rate coefficients of cis→trans vary by a factor of 2.4 

from 0.210  to  0.505  ps−1, which emphasizes large intra-mode coupling on the NN 

surface. When MD calculations were performed on an empirical surface, the ratio was 

found to be 22.8 by Guan and Thompson.3 The rate coefficients of trans→cis vary by a 

factor of 1.82 compared to the factor of 7.0 reported by MD investigations on the 

empirical surface. 

We have also found that the ratio of cis→trans/tran→cis rates to range from 0.63 

to 1.94, depending on the mode excited. In most cases, the rate of cis→trans is always 

faster, except for the case of HON mode excitation. As reported previously, the cis 

conformation is a little more energetically stable than the trans conformation; however, it 

is easier to switch from cis to trans than the other way. Doing calculations on the 

empirical surface,3 the ratios of rates vary from 2.0 to 12.9. 

When we use the NN committee, which is a combination of five individual 

networks, to investigate cis→trans reaction when HON mode is excited, the rate constant 

is 0.309  ps−1. When calculations are executed on a single NN, the result is reported as 

0.265 ps-1. The fitting error of the NN committee is 35% less than the fitting error of the 

single NN, and the rate constant drops 17%. The computational time for MD when the 

NN committee is employed is almost five times as required for calculations on a single 

network, but still better than the other methods. 

The N-O bond dissociation is investigated at two different energy levels, which 

are 3.1 eV and 3.3 eV. For each energy level, seven different partitionings of excitation 

energy are investigated. A decay plot is made in each case after obtaining information 
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from 2,000 trajectories. All dissociations are found to be first order. The ratio of 

maximum/minimum rates at 3.1 eV and 3.3 eV are 3.9 and 3.3, respectively. 

From our results of cis-trans isomerizations and N-O dissociation, high intra-

mode coupling between vibrational modes on the NN ab initio surface is obsereved, 

which makes the rate coefficients in all cases not as significantly different as reported 

from MD calculations on the empirical surface.3 Since the coupling terms are not 

included in the empirical surface, and the only coupling comes from the anharmonicity 

present in the Morse potentials descbring the chemical bonds, their result is not 

surprising. 



 51 

CHAPTER IV 
 
 
 

INVESTIGATION OF HBeHHBeH +→+ 22  
 

 

I. Development of ab initio potential surface 

In this work, we employ the NN method again to fit the data. Although there is 

only one reaction channel to be considered, the construction of BeH3 potential is more 

mathematically and computationally complicated than the previous one developed for 

HONO, which has two reaction channels. 

We employ MP2/6-311G(d,p) level of accuracy to perform electronic structure 

calculations for BeH3 potential, the choice that Collins and Zhang has made and reported 

in a study of this reaction using the Shepard interpolation method.33 In ground electronic 

state, BeH state is doublet, while H2 is singlet; therefore, the overall state of BeH + H2 is 

doublet. A single hydrogen atom has a doublet state, and BeH2 is singlet, thus, the overall 

state of BeH3 + H is also doublet. Therefore, we consider this reaction as an adiabatic 

process; all potentials are reported in the doublet state. 

 

1. Novelty sampling of configurations 

The effectiveness of the novelty sampling procedure has been proven to be the 

case for both the HONO study24 and the dissociation dynamics of vinyl bromide.29,30 

With the same numbers of atoms involved in the system, the use of novelty sampling 
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procedure with some modifications to enhance effectiveness should describe BeH3 

system accurately. 

Novelty sampling was first introduced by Raff and his co-workers31 to collect 

geometric configurations in twelve-dimensional hyperspace. In the study of BeH3, this 

technique is employed and we have made some significant modifications to improve the 

effectiveness of selecting useful configuration points. “Novelty sampling” was first 

applied to construct the database for CH2CHBr.29,30 Since this is a very large molecule in 

terms of both molecular dynamics study (many open reaction channels) and dimensions 

of hyperspace (15 dimensions for 6 atoms), in the construction of CH2CHBr 

configuration hyperspace, some criteria were developed to select data that are only useful 

for MD trajectories. The usefulness of a new configuration is determined by calculating 

the scaled minimum and average distances from that configuration to all configurations 

of the previous data. Subsequently, some tests are designed to qualify configurations. 

Selecting data from molecular dynamics trajectories using “novelty sampling” 

always requires a temporary PES.  Prior to any data selecting processes, a temporary PES 

fit of the previous data has to be available. Thus, the method cannot be self-starting, and 

requires some techniques to obtain the first set of data. In the study of vinyl bromide, MD 

trajectories on an empirical PES developed by Rahaman and Raff14 were employed to 

produce a first set of configurations. Similarly, Le and Raff employed an empirical 

surface reported by Guan and Thompson3 to study HONO.24 Recently, Agrawal et al.80 

have introduced a new technique to make the method self-starting. In their re-

investigation of HONO, a first set of data was obtained from Born-Oppenheimer 

molecular dynamics offered by the Gaussian suite of programs (also known as direct 
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dynamics). The result from that study was in good agreement with the results reported by 

Le and Raff,24 which shows the convergence of data selection is independent of the 

starting data set. 

In this work, the 1,300 data points were generously provided by Collins and 

Zhang from a previous study.33 From the intial database, we use those points to construct 

the first temporary NN PES. Let us denote υ as a six-component vector containing six 

scaled input values between -1 and +1 of a configuration in the database. The scaled 

distance between point i and point j in the database is calculated by 

∑
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The ith minimum and average distances are determined as follows: 
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For the first set of data points, n = 1,300,  the probability distribution plots of the 

minimum and average distances of the first data set are shown in Figures IV.1 and IV.2.  

These probability distributions are used to qualify the new configurations generated from 

MD trajectories in the second iteration. 
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Figure IV.1 Distribution plots of scaled minimum of the first 1,300 configurations. 
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Figure IV.2 Distribution plots of average distance of the first 1,300 configurations. 

 

A trajectory is sampled with the initial distance between BeH and H2 centers of 

mass being 5.82 Å (11 a0), and the maximum impact parameter being 0.265 Å (0.5 a0). 

The technique for initializing BeH + H2 reaction will be discussed in detail latter.  As we 

already have the first temporary NN PES, in the first stage of selecting new data points, 

trajectories describing the formation of BeH2 are executed to produce new configurations 

at every 0.2 time units (one time unit equals s1410018.1 −× ). Let us denote the minimum 

and average distance of a new configuration to all configurations in the previous database 

as minnew and avgnew. Empirically, we can state from the distribution plots of the very first 

1,300 data points that there are not sufficient configurations at the minimum distance less 
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than 0.04 or greater than 0.13, and the average distance greater than 0.3. Therefore, a new 

configuration is qualified to the second stage if 

a) minnew < 0.04 or 

b) minnew > 0.13 or 

c) avgnew >0.3 

 

We have selected 5,181 new configurations using these criteria. Subsequently, ab 

initio calculations are executed for these configurations. A new configuration is finally 

added to the database if the difference between its NN energy (predicted by the 

temporary surface) and the ab initio energy is greater than the average absolute error of 

the temporary fit for all previous data points. During the second iteration, we have chosen 

3,178 new data points. 

The process is repeated iteratively until we can no longer select a significant 

number of data points to add to the database. During the 7th iteration, we have selected 

5,027 points for ab initio calculations. After making comparisons between the NN-

predicted energies and ab initio energies, 484 configurations are added to the database 

(only 9.6%). At this point, we determine to terminate the configuration sampling process, 

and the database is believed to have converged because only a few points can be added to 

the systems. The detailed numbers of selected data points during this sampling process 

are reported in Table IV.1.  The database after 7 iterations contains 9,642 configurations. 

However, it is recognized that the points that have high potential energies would cost 

more effort for the NN to fit, but they are not useful for molecular dynamics studies. 

Therefore, 38 points are eliminated from the database, which make the number of points 
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become 9,604 configurations. By switching r4 and r5, r2 and r6 due symmetric 

considerations, the final database contains 19,208 configurations. 

 

Table IV.1 

Detailed numbers of configurations selected during the data sampling process 

Iteration 
Number of points for 
ab initio calculations 

Number of points 
added to the database 

Percentage 
Total points in 
the database 

1 0 0 0 1,300 
2 5,181 3,178 61.3% 4,478 
3 5,846 1,853 31.7% 6,331 
4 5,124 844 16.5% 7,175 
5 5,195 728 14.0% 7,903 
6 5,085 1,255 24.7% 9,158 
7 5,027 484 9.6% 9,642 

 

 

2. NN fitting of BeH3 potential 

The number of neurons in the hidden layer is selected in accordance with the 

complexity of the system under consideration. For a six-body molecule like vinyl 

bromide (CH2CHBr),29,30 the number of neurons used was 140. Less complicated 

molecules, such as HONO,24,80 requires 40 neurons or more to fit the data. In this study, 

the configuration space is too sparse (two diatomic molecules are sampled with centers-

of-mass far apart). Consequently, we employ a NN with 60 neurons in the hidden layer. 

Once an appropriate number of hidden neurons is chosen, the fitting process is done only 

once, and all parameters are saved for MD investigation. 

Our data are divided into 3 sets: training, testing, and validation sets.  Empirically, 

the training set consists of 80% of the data, while the other two sets consist of about 10% 

each. The maximum number of training iterations (epochs) is 1000. The Levenberg–
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Marquardt algorithm is applied to minimize the mean square error of the training set.22 

During the training process, an important issue to be concerned about is over-fitting.73 To 

prevent over-fitting, an empirical technique known as “early-stopping” is used to 

terminate the training process as the mean square error of the validation set increases in 6 

consecutive epochs. 

The actual potential surface of BeH3 is a committee of five feed-forward NN’s.  

After fitting each different NN individually by selecting different sets of training data, the 

NN committee is calculated by taking the average of the five networks.  Recently, a NN 

committee has been employed in the HONO study.24 The reported fitting error of the NN 

committee is significantly less than the errors of any individual network as a result of 

canceling nearly random errors.  In the study of BeH3, the average absolute error for each 

individual network varies from 0.0046 eV to 0.0051 eV. The average absolute error of 

the NN committee is 0.0046 eV, which is slightly improved in comparison to the errors 

of individual networks (as shown in Table IV.2).  The use of NN committee in this study 

does not help to cancel many nearly random errors; in fact, it has shown that the training 

process really converges when we investigate the outputs of all neural networks, and 

confirm the difference between NN outputs is extremely small. The absolute error 

distribution of all data is shown in Figure IV.3. 
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Figure IV.3 Absolute error distribution of all data of NN committee.  The number of 

small errors (< 0.01 eV) dominate the distribution, which results in a good average 

absolute error. 
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Table IV.2 

Average absolute error of the networks 

Network Average absolute error (eV) 
1 0.0046 
2 0.0051 
3 0.0046 
4 0.0049 
5 0.0047 

NN Committee 0.0046 
 

 

The gradients calculated by the NN committee are very important in MD 

investigations. Although they are not directly fitted by the NN, we expect them to be well 

predicted. A set of 965 points is chosen as a gradient testing set. The energy gradients 

with respect to 12 Cartesian coordinates are computed, and compared to the true MP2 

gradients. The average absolute error is 0.026 eV Å-1, while the average percent error is 

0.17% in a range of -7.66 eV Å-1 to +7.66 eV Å-1. Figure IV.4 shows a histogram of 

gradient absolute errors. A dominating number of small absolute errors reveal that not 

only the outputs are fitted very well, but the gradients are also excellently predicted. 
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Figure IV.4 Distribution of gradient absolute errors. 

 

II.  Classical dynamics investigation of BeH + H2 → BeH2 + H 

1. Initializing the BeH + H2 reaction 

Before executing classical trajectories of the reaction, BeH and H2 have to be 

sampled individually, assuming that there is no interaction between the two molecules at 

a relatively large distance. In order to do this effectively, we have constructed two simple 

ab initio PES’s for BeH and H2.  

BeH has a doublet electronic configuration in the ground state. Ab initio 

calculations are executed at MP2 level of theory using the 6-311G(d,p) basis set with 

various atomic distances between Be and H from 0.9 Å to 3.15 Å. A feed-forward NN fit 
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of BeH potential is performed with 4 neurons in the hidden layer, giving the form to the 

potential function as 

2
112tanh)( max

2

4

1
1

minmax

min
12

BeH
BeH

i

BeH
BeHBeH

BeH
BeH
i

BeH
BeH

V
bb

rr

rr
wwrV













++











+








−

−

−
= ∑

=

 (22) 

where 15.3max =BeHr  Å and 9.0min =BeHr  Å, and eVV BeH 35.2max = . The values of BeHw1 , BeHw2 , 

BeHb1 , and BeHb2 are reported in Table IV.3. We obtain an extremely small absolute 

average error of 0.0008 eV. The plot of the fit is illustrated in Figure IV.5. 

 

Table IV.3 Fitting parameters of BeH potential surface 

BeHw1  BeHb1  BeHw2  BeHb2  

6.25 -5.64 -0.006 

8.18 
2.62 0.30 0.817 

4.14 2.09 0.186 

3.51 4.42 -8.584 

All parameters are unitless 
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Figure IV.5 Potential energy curve of BeH.  The solid curve represents the fit by formula 

(22), and the circles (o) represent the real ab initio potential energies of BeH. 

 

BeH molecule is initially assigned at its equilibrium position (with r = 1.34 Å). A 

ground state vibrational energy of 0.127 eV (12.3 kJ mol-1) is introduced, and the 

trajectory is integrated for a random period of time. Subsequently, the molecular 

Cartesian coordinates and momenta are rotated about the y-axis by a uniformly 

randomized angle from 0 to π, and then rotated about the z axis by a uniformly 

randomized angle from 0 to 2π. 
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Hydrogen gas (H2) is in singlet state at the ground state level. We also execute ab 

initio calculations for H2 using the same level of theory at various atomic distances from 

0.45 Å to 1.54 Å.  The potential of H2 has the form 
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where 54.1max =HHr  Å and 45.0min =HHr  Å, and eVV HH 45.3max = . The values of HHw1 , HHw2 , 

HHb1 , and HHb2 are shown in Table IV.4.  The reported fitting error is 0.0004 eV, and 

Figure IV.6 illustrates the fitting potential energies on the ab initio energies. 

 

Table IV.4 Fitting parameters of H2 potential surface 

HHw1  HHb1  HHw2  HHb2  

-1.04 0.920 -1.181 

15.33 
-1.65 0.146 -0.508 

-2.63 -0.845 -0.130 

-2.40 -3.631 15.068 

All parameters are unitlesss 



 65 

 

Figure IV.6 Potential energy curve of H2.  The solid curve represents the fit by formula 

(23), and the circles (o) represent the real ab initio points of H2 potential. 

 

The sampling process of H2 is conducted similarly to the sampling process of 

BeH with a zero point energy of 0.261 eV (25.2 kJ mol-1) being used for H2 trajectories. 

After H2 is sampled, the two molecules are separated by a distance of 5.82 Å (distance 

between the two centers of mass), and a random impact parameter with the maximum 

value of 0.265 Å is applied. An amount of translational energy inserted to the system 

with no center-of-mass motion. 

 

2. Classical dynamics investigation 

According to a previous study by Collins and Zhang,33 the reaction probability 

derived from quantum dynamics calculations34-36 has a maximum value of 0.11 for 
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translational energy in the range of 40 kJ mol-1 to 77 kJ mol-1 when the total angular 

momentum of the system is zero (the impact parameter is 0). The potential barrier is 

investigated in a previous study by Collins and Bettens.37 As MP2/6-311G(d,p) level of 

theory is executed along the reaction coordinate, the potential barrier is reported to be 51 

kJ mol-1 (0.529 eV). 

In the first part of this study, we conduct an investigation using classical dynamics 

trajectories at zero impact parameter for purposes of comparison. The translational 

energy is varied from 0.415 eV to 0.829 eV. The classical Hamilton’s equations of 

motion are solved numerically using the fourth-order Runge-Kutta method,109 and the 

total energy is conserved to the fifth digit. A trajectory is terminated when one of the two 

criteria given below is satisfied: 

• The distance between BeH and H-H centers of mass keeps increasing and reaches 

5.83 Å. In this case, no chemical reactions are found, the two molecules just 

bounce off each other. 

• The distance between Be and one H from the H2 molecule is less than 1.5 Å, and 

the distance between two hydrogen atoms in H2 is greater than 2.5 Å. In this case, 

the formation of BeH2 is found. 

 

For each translational energy level, 5,000 trajectories are studied. The reaction 

probability values at various energy levels are recorded (the plot of reaction probability is 

shown in Figure IV.7). 
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Figure IV.7 Plot of reaction probability vs. various translational energy when both gases 

are at their ground vibrational states (v=0). The reaction is investigated when BeH and H2 

both have no rotations (j=0), and the total angular momentum is 0 (J=0). The quantum 

dynamics results are reported by Collins and Zhang.33 



 68 

Since we conduct a classical dynamics study, there is no resonance effect shown 

in the reaction probability curve. In fact, the probability tends to increase as the 

translational energy increases. When comparisons are made, it is much more probable for 

the reaction to happen when classical dynamics on the NN surface is employed as a result 

of zero-point energy being available to promote the reaction in classical calculations. At 

the lowest investigated translational energy, the reaction probability is 003.0043.0 ± . At 

the highest translational energy studied, we observe the reaction probability to be 

005.0152.0 ± , which is higher than the highest reaction probability using quantum 

scattering dynamics reported by Collins and Zhang (0.11).33 The reaction threshold is 

also investigated by removing all zero-point energy from BeH and H2 (this cannot be 

executed in a quantum mechanical system; however, since we are conducting classical 

dynamics study, this might be a helpful approach to search for the reaction threshold). 

When a translational energy of 0.56 eV is applied, we begin to observe some reactions. 

Therefore, 0.56 eV is concluded to be the threshold on this particular NN surface, 

apparently higher than the potential barrier reported by Collins and Bettens37 because of 

very poor statistics near threshold. 

The dissociation of H2 during the trajectory pathway plays an important role in 

the formation of BeH2. As a matter of fact, it is one of the two necessary conditions for 

reaction. This is seen clearly when H2 is promoted to its first excited state. A second 

investigation is conducted with a maximum impact of 0.265 Å.  BeH in this case is still 

assigned at its ground state, while H2 is in the ground state or the first vibrational excited 

state with an internal energy of 0.783 eV (recall that the ground state vibrational energy 

of H2 is 0.261 eV). It is observed that the reaction cross section when H2 is excited is 
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much greater when H2 is in its ground vibrational state (Figure IV.8). Moreover, it is 

observed that the probability seems to increase linearly with the applied translational 

energy. At the highest translational energy being studied, more than 47% of the samples 

are converted to the product side (the result is also shown in Table IV.5). When H2 is at 

the ground state, the cross sections vary from 0.007 Å2 to 0.030 Å2. On the other hand, 

when H2 is promoted to the first excited state, the cross sections vary from 0.05 Å2 to 

0.10 Å2. When H2 is in its excited state, the cross section tends to increase linearly with 

the translational energy up to the highest energy investigated (0.829 eV). 
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Figure IV.8 Plot of reaction cross section vs. various translational energy when H2 is at 

the ground state or first excited state. The reaction is investigated when BeH and H2 are 

both at their ground rotational state (j=0). The impact in this investigation is 0.265 Å. 
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Table IV.5 Reaction probability and cross section of HBeHHBeH +→+ 22 . The 

vibrational and rotational quantum states of BeH are zero in all cases. H2 gas is either at 

the ground state or the first vibrational excited state. 

 Reaction Probability Cross section 
Translational energy 

(eV) 
v = 0, j = 0 v = 1, j = 0 v = 0, j = 0 v = 1, j = 0 

0.41 0.032 0.007 0.236 0.052 
0.44 0.047 0.010 0.242 0.053 
0.45 0.051 0.011 0.229 0.050 
0.46 0.050 0.011 0.243 0.053 
0.47 0.053 0.012 0.242 0.053 
0.48 0.065 0.014 0.239 0.053 
0.49 0.072 0.016 0.239 0.053 
0.50 0.080 0.018 0.233 0.051 
0.51 0.077 0.017 0.256 0.056 
0.52 0.084 0.018 0.259 0.057 
0.53 0.079 0.017 0.264 0.058 
0.54 0.086 0.019 0.261 0.057 
0.55 0.087 0.019 0.276 0.061 
0.56 0.086 0.019 0.275 0.060 
0.57 0.097 0.021 0.290 0.064 
0.58 0.088 0.019 0.293 0.064 
0.59 0.095 0.021 0.298 0.066 
0.60 0.093 0.020 0.312 0.069 
0.61 0.095 0.021 0.315 0.069 
0.63 0.104 0.023 0.334 0.074 
0.64 0.103 0.023 0.336 0.074 
0.65 0.102 0.022 0.348 0.077 
0.66 0.103 0.023 0.343 0.075 
0.67 0.102 0.022 0.361 0.079 
0.68 0.104 0.023 0.368 0.081 
0.69 0.106 0.023 0.366 0.081 
0.70 0.112 0.025 0.368 0.081 
0.72 0.109 0.024 0.387 0.085 
0.73 0.120 0.026 0.381 0.084 
0.74 0.115 0.025 0.389 0.085 
0.75 0.120 0.026 0.399 0.088 
0.77 0.121 0.027 0.414 0.091 
0.78 0.116 0.026 0.421 0.093 
0.79 0.125 0.027 0.441 0.097 
0.80 0.120 0.026 0.432 0.095 
0.82 0.131 0.029 0.456 0.100 
0.83 0.136 0.030 0.470 0.103 
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III.  Summary 

An ab initio PES using NN fitting that describes the reaction 

HBeHHHBeH +→−+ 2  is developed in this study. We have successfully 

constructed an ab initio potential surface for a four-body system that describes a collision 

of two molecules leading to the formation of products. The electronic structure 

calculations are executed at MP2/6-311G(d,p) level of accuracy. Previously, several 

potential surfaces have been developed for molecular dissociations, and in those cases, 

the atomic distance ranges are more restricted. In the BeH3 system, the maximum 

extension of atomic distances is up to 8.1 Å; therefore, it is more difficult for the NN to 

generalize the fit, although the BeH3 does not have a complicated electronic 

configuration. 

The NN in this study requires 60 neurons in order to sufficiently fit the data. A 

NN committee is constructed by taking the average of five individual networks. Each 

network is trained by choosing the training set randomly in the database (approximately 

80% of the data). The average absolute error for each individual network ranges from 

0.0046 eV to 0.0051 eV (0.44 kJ mol-1 to 0.49 kJ mol-1), while we obtain an average 

absolute error of 0.0046 eV (0.44 kJ mol-1) for the NN committee. This fitting error is 

very comparable to the testing error reported by Collins and Zhang,33 which is 0.41 kJ 

mol-1. Recall that our database is almost 15 times bigger, which implies the NN method 

can fit large molecular system that has many data points without costing too much 

computational time on MD calculations (the average computational time is 1.07 seconds 

for a trajectory when we employ a CPU of 2.4 GHz clock speed). 
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A modified scheme of “novelty sampling” is used in this study to select data 

points based on MD on a temporary NN surface. After 7 iterations, we have terminated 

the sampling process and chosen 9,642 configurations from MD trajectories; however, 38 

points of high potential energies are eliminated as they have high energies that are 

unimportant in the molecular dynamics calculations. This set is then duplicated to make a 

final database of 19,208 configurations because of symmetric consideration of BeH3. The 

final database is about fifteen times larger than the database reported by Collins and 

Zhang.33 

The investigation of the reaction is executed using classical trajectories. With a 

maximum impact parameter of 0.265 Å, the reaction is investigated by executing 5,000 

trajectories at a given translational energy. Translational energy levels in the range of 

0.415 eV to 0.829 eV are investigated. The computed reaction cross sections vary from 

0.007 Å2 to 0.030 Å2 when H2 is at ground vibrational state, and 0.05 Å2 to 0.10 Å2 when 

H2 is in the first excited vibrational state. The reaction cross section tends to increase as 

the translational energy increases because classical dynamics is employed. 

When we set the impact parameter to 0 (no total angular momentum), the reaction 

probability is investigated and compared to the results reported by Collins and Zhang.33 

They have conducted the similar reaction on an analytic PES fitted by Shepard 

interpolation method using quantum dynamics scattering.34-36 With the same translational 

energy range as we use in this study, resonance effects are observed in their results. The 

highest reaction probability was reported to be 0.11. This is less than our maximum 

reaction probability of 005.0152.0 ± . This difference is due to the contribution of zero-
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point energy being available to promote classical reaction, which is usually not found in 

quantum calculations due to the quantum restrictions. 

The reaction threshold is found by investigating classical dynamics of BeH + H2 

with no zero-point energy and various translational energy levels. When the translational 

energy is 0.56 eV, we begin to observe the formation of BeH2 as a product. Therefore, 

0.56 eV is concluded to be the reaction threshold within the statistical accuracy of 

classical trajectories. 
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CHAPTER V 

 
 

MOLECULAR DISSOCIATION OF HYDROGEN PEROXIDE (HOOH) 
 

 
 

I. Introduction of a new sampling method 

Minimizing the sum of training squared errors is one of the NN fitting principles. 

During the fitting process, every point in the training set has an equal contribution. 

Experimentally, it is noticed that the density distribution of data has a significant affect 

on the fitting quality. In the training process, each point in the training set has an equal 

role. If a particular region of the database is more densely populated than others, the 

fitting error in that region is minimized; however, the fitting errors in other less dense 

regions will be sacrificed and become large, which increases the testing error. Therefore, 

it is useful to develop a new sampling technique that distributes configuration points 

more uniformly in order to enhance fitting accuracy. It is also helpful to develop a 

method that makes a system self-starting, which means construction of PES of any 

system is not dependent on the availability of empirical and semi-empirical potential 

surfaces in the literature. 

Since the employment of empirical or semi-empirical surfaces is not required, 

collecting data points using MD trajectories is not an obligation. In fact, when using MD 

as described by the “novelty sampling” technique,31 one has to confront the non-uniform 

distribution of data points. This is somehow handled in NS sampling as the minimum and 
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average distance criteria tend to prevent density from building up in one region. In low-

potential-energy regions, the kinetic energy is high, and the force field acting on every 

atom is high; therefore, atoms would move fast. On the other hand, atoms tend to move 

slowly in the high-potential-energy regions, and selecting data points would result in high 

density distribution unless the sampling frequency is adjusted. Thus, it is necessary to 

make the sampling frequency compatible to the instantaneous acceleration of atoms. To 

deal with this issue, Pukrittayakamee et al.86,87 has proposed a method in which they 

adjusted the integration step based on the level of kinetics energy. 

To date, most fitting methods mainly focus on the potential fits, although the 

potential is not required in MD investigations. The gradients of the potential with respect 

to input coordinates (force fields), on the other hand, are more important than the output 

potential itself as they are used to integrate the classical Hamilton’s equations of motion. 

Therefore, it is more important that the force fields are accurate. In most potential surface 

studies, an assumption is made, namely, if the potential is well fitted, the shape of the 

function is mathematically well-described, and the force fields are also accurate. 

However, this is not necessarily true, especially when over-fitting occurs. Adopting the 

idea of force field fitting, Pukrittayakamee et al.87,88 have proposed an algorithm that 

simultaneously fits both output and gradients. Since this feature is not available in 

MATLAB NN toolbox, the training algorithm has to be constructed. 

The valence internal coordinates describing the HOOH system consist of three 

bond distances (H-O, O-O, and O-H), two bending angles (H-O-O and O-O-H), and one 

dihedral angle. This set of coordinates is used as the input vector for NN training. The ab 

initio potential energy is used as NN target. In previous NN studies,24,32 all atomic 
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distances were used as NN inputs. In this study, we have found that the fitting error when 

using internal valence coordinates is lower than the error resulting from using atomic 

distances as NN inputs. 

If the molecule under study has three atoms or less, a grid search over the entire 

configuration space can be performed. If the molecule contains four or more atoms, the 

configuration space is very large due to the number of coordinates. In such cases, more 

efficient sampling methods have to be developed. The well-known “novelty sampling” 

method is among those. 

In some previous works,24,29,30,80,81 MD trajectories have been used to sample 

configurations. This idea was first adopted by Collins and Zhang.33 The sampling process 

of configuration space using this method consists of two steps. First, an initial set of data 

is generated in order to provide a temporary NN fit. In the second step, more geometric 

configurations are obtained and incorporated with the previous data until the system is 

believed to converge. 

Traditionally, to obtain the first set of data, MD trajectories on an empirical 

surface or chemical intuition can be employed. This method has been proven to cover the 

configuration space well; however, in order to execute this, an empirical surface from the 

literature must be available. Another method has been proposed recently by Agrawal et 

al.,80 which makes the method self-starting. In that method, they employ direct dynamics 

offered by Gaussian suite of programs. 

We develop the HOOH database based on selecting configurations around data 

points that are not well-fitted by the NN. By adding more data points around those badly-
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fitted configurations, we expect the NN to focus more on that region, and give a better fit. 

This method is independent of MD trajectories. 

In the first step, we construct a set of configurations which represents most of 

stationary points of the HOOH system. This is done by performing a procedure provided 

by Gaussian suite of program known as “partial optimization.” In a partial optimization 

procedure, one or more valence internal coordinates are held constants, while the 

remaining parameters are optimized to minimize the potential energy. The Newton-

Raphson method is used to analyze the first and second derivatives matrices with respect 

to the internal valence coordinates iteratively until the convergence criterion is satisfied 

(the potential energy is numerically minimized). Beside the Newton-Raphson method, the 

“steepest descent” method can also be requested when using the program. 

Three chemical bond distances H-O, O-O, and O-H are denoted as r1, r2, and r3, 

respectively; θ1 and θ2 are denoted as two bending angles, while ϕ is denoted as the 

dihedral angle. In each partial optimization, ϕ and one of the other five parameters are 

held constant in energetically reasonable ranges. Subsequently, four remaining 

parameters are varied to minimize the potential energy. This process is executed when ϕ 

is varied in a range of 0o and 180o, while r1, r2, and θ1 are varied in those ranges given in 

Table V.1. 
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Table V.1 

Number of configurations obtained from each variation. In each sampling, the dihedral 

angle is varied from zero to 180°, as described in the text. 

Variating parameter Number of configurations Range 

O-H bond (r1) 722 0.71 Å – 1.91 Å 

O-O bond (r2) 704 1.12 Å – 2.92 Å 

O-O-H angle (θ1) 722 40.0o - 169.8o 

Total = No 2148  

 

 

At the end of this process, we obtain N0 = 2,148 configurations with a maximum 

potential energy of 4.36 eV. The detailed number of data points obtained from each 

variation is listed in Table V.1. In this process, the data points obtained represent most of 

stationary points of HOOH energetic geometry. 

In the next stage, more data points are collected to cover the hyperspace that is 

energetically useful for the chemical dissociation of HOOH. We begin this process by 

scaling all the inputs and output in the range of -1 to +1 as previously described, and 

employ these scaled coordinates to sample more configurations. 

In the regions of six dimensional hyperspace where there are insufficient data 

points to describe the surface accurately, it is very likely that the NN extrapolates and 

results in bad fitting. Consequently, the NN-predicted first derivatives with respect to the 

input coordinates (bond distances, bending angles, and a dihedral angle) will exhibit 

significant differences compared to the derivatives calculated by the ab initio method 

(MP2) even though the outputs in that region are well-predicted. Adopting this idea, we 
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are able to identify the regions lacking a sufficient number of data points. Prior to 

searching for data points, a temporary NN fit is performed. Then, all gradients with 

respect to input coordinates are calculated using the fitted function. The NN-predicted 

gradients are compared to the corresponding MP2 gradients. If the percent difference is 

higher than 3%, we perform a configuration search around that point as follows: 

� A unit vector v is randomly generated. A new point pnew is computed 

as vgridkppnew ⋅⋅+= , where grid is the average distance between the data in 

the first set. For the present HOOH system where the initial database contains 

2,148 points, grid = 0.119 in scaled units. k is a scalar random number between 

2 and 3. 

� If the distance between pnew and any other point in the data base is smaller 

than grid, the point pnew is discarded. In addition, the NN potential at point pnew 

is computed using the temporary NN fit. If the computed potential is greater 

than 4.36 eV, pnew is rejected; otherwise, it is saved for ab initio calculations 

and a final qualification test. 

� Since the HOOH configuration hyperspace is six dimensional, this process 

is executed for 26 times around point p. Once a new point pnew is selected, the 

searching for configurations around p is terminated. 

 

In the above procedure, a grid is applied to make the database more uniform by 

preventing new configurations being too close to the present points in the current 

database. The second requirement that the energy of a point has to be lower than a 
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maximum value is used to limit the volume of HOOH hyperspace. This condition makes 

the sampling process more feasible. 

With N0 = 2148 points, we begin to search over the database to find points that 

fail the derivative analysis. The process of finding new points is then executed, and N1 

points are generated. We continue to search for more points around these recently-found 

N1 points by using the same procedure, and find N2 points, then more configurations are 

generated from N2. This process is continued until no more points can be generated, or 

the total of (N1+N2+N3…) exceeds 5,000. 

Subsequently, ab initio calculations are performed on the generated 

configurations at MP2 level. The computed energy of a new point is then compared to the 

NN-predicted energy. If the percent difference is less than 1%, the point is discarded as it 

is already well-described by the NN. Otherwise, it is included. 

The convergence of the sampling process is validated by testing (1) the six 

fundamental vibrational wave numbers predicted by the NN surface against the MP2-

predicted wave numbers and (2) the potential energy error of several hundreds of points 

generated from a MD trajectory. Also, the convergence can be recognized by the 

computational time used to search for data points (if the system is closely converged, 

more configurations can hardly be found in the defined region). At the termination of our 

sampling process, the NN surface exhibits very good agreement between MP2 and NN-

calculated wave numbers. Table V.2 gives some sets of HOOH fundamental wave 

numbers resulted from various calculations. 
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Table V.2 Fundamental vibrational wave numbers resulting from various calculations 

 Wave number (cm-1) 

Mode description 
NN 

predicted 

MP2/ 

6-31G* 

B3LYP/ 

cc-pVTZ 
PCPSDE15 

Symmetric OH stretching 3723 3740 3766 3778 

Antisymmetric OH stretching 3714 3738 3765 3762 

Symmetric OOH bending 1456 1463 1438 1453 

Antisymmetric OOH bending 1284 1323 1321 1297 

O-O stretching 929 928 954 889 

Torsion 331 338 366 392 

 

 

Four iterations have been executed to construct a final database of 12,804 points. 

In the first iteration, 4,314 configurations are identified for MP2 calculations; however, 

only 1,803 points are selected. During four iterations, we have identified 16,270 points, 

and 10,656 are added to the final database, which means we have rejected about 34.5% to 

make the database more uniform. The numbers of identified, accepted, and rejected 

points are shown in Table V.3. 
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Table V.3 Number of new configurations identified by sampling process described in the 

text, total number rejected and accepted due to energy differences between MP2 and NN 

calculations in the selection process. 

_______________________________________________________________ 

Iteration # # Points Identified # Points Accepted # Points Rejected 

_______________________________________________________________ 

1  4314   1803   2511 

2  5001   3607   1394 

3  4997   3738   1259 

4  1958   1508     450 

---------------------------------------------------------------------------------------------- 

Totals  16270   10656    5614 

_______________________________________________________________ 

 

When combined with 2,148 configurations from the initial set, the database 

contains 12,804 points after four iterations. This set is then duplicated by switching r1 and 

r3, θ1 and θ2 to produce a final set of 25,608 configurations due to the symmetry of 

HOOH molecule. 

The present sampling method allows configurations to be added by comparing the 

NN-predicted and MP2 gradients. As an advantage, this essentially makes the NN fit both 

the energy output and its gradients, thereby producing a better fit. The average absolute 

error of 0.0060 eV (0.58 kJ mol-1) reported in this study is among the best fitting errors 

for a four-body system in the literature. We also find excellent agreement between 

fundamental wave numbers from MP2 calculations and the normal mode analysis of the 

NN function. 
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II.  Electronic structure calculations 

The ab initio calculations in this study are performed at MP2/6-31G* level of 

accuracy using the Gaussian suite of program.93 For dissociation into two OH radicals, 

this level of ab initio calculations is not expected to give good accuracy. This PES is 

obtained in order to give a realistic test of the sampling method; therefore, we choose a 

small basis set with appropriate level of accuracy (MP2) to perform this illustrative 

example with small computational time. 

As reported latter, the potential barrier of O-O dissociation is investigated using 

several different ab initio methods. These methods (beside MP2) are HF and MP4(SDQ) 

on the 6-31G* basis set, and B3LYP/cc-pVTZ. 

 

III.  Fitting methods 

We have successfully trained a committee of five NNs for the database of 25,608 

data points. Each NN is a feed-forward NN with two layers. The number of hidden 

neurons used in this study is 34. Recall that for a four-body system like HONO with two 

open reaction channels (cis-trans isomerization and N-O bond dissociation),24 it requires 

41 neurons to perform the fit. BeH3 only has one reaction channel; however, the 

hyperspace volume of this system is much larger because of the distance between the two 

centers of mass. As a result, we have used 60 neurons to fit the BeH3 system with a 

comparable fitting error to that reported by Collins and Zhang using the Shepard 

interpolation method.33 

Five individual networks are fitted using 80% of database as training set, 10% as 

the testing set, and the remaining 10% as validation set. In each fit, the data are randomly 
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distributed into each set. The training process consists of a maximum of 500 iterations 

(epochs) using the Levenberg-Marquardt training algorithm.22 To prevent over-fitting, we 

employ “early stopping”,22 which allows the training process to be terminated if the mean 

square error of the validation set keeps increasing in six consecutive epochs. 

Five individual NNs are trained, and it is found that the average absolute errors 

vary from 0.0077 eV to 0.0090 eV, while the root mean squared errors vary from 0.0118 

eV to 0.0160 eV with a maximum potential energy of 4.36 eV. The fitting errors range 

from 0.177% to 0.211% of the energy range. The detailed fitting errors of five individual 

networks and the NN committee are shown in Table V.4. 

 

Table V.4 Average absolute and root mean squared testing set errors (eV) of the five NN 

fits forming the NN committee. 

 Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Committee 

Average absolute error 0.0077 0.0107 0.0079 0.009 0.0078 0.0060 

Root mean squared error 0.0118 0.016 0.0124 0.0138 0.0118 0.0099 

 

 

A NN committee is produced by taking the average of the five individual NN 

outputs. Gradients are also calculated by taking the average of five NN gradients. The 

error reported on the NN committee is 0.0060 eV, which is lower than the errors of any 

individual NNs as a result of cancellation of nearly random errors. The training outputs 

are plotted against the corresponding targets in Figure V.1. In Figure V.2, the distribution 

of testing set absolute errors is shown. 
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Figure V.1 Plot of targets vs. training outputs for all data points 
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Figure V.2 Distribution of the absolute testing set errors for the NN committee.  The 

small fitting errors (from 0 to 0.01 eV) clearly dominate the distribution.  The average 

absolute testing set error is 0.0060 eV. 

 

A different technique is also employed to fit the data, which is the SVM 

technique. As mentioned earlier, when using the support vector regression technique, 

there are several important parameters that have to be estimated empirically by users to 

utilize the best fitting result. 

The most important parameter in the Gaussian exponent is γ, which determines 

the flexibility of the entire function. If γ is too high, each Gaussian term will be small; 

thereby the number of terms (support vectors) will increase as the program tries to cover 

the entire configuration space. The determination of γ not only decides the fitting 
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accuracy, but also determines the MD computational time. The “cost” value is another 

important parameter in the training process. The “cost” represents the maximum absolute 

value of α, a coefficient that exists before each Gaussian term to determine its 

contribution (α can be considered as a weight of each term). Higher values of c reduce the 

training speed because α is adjusted in a wider range. Figure V.3 shows the number of 

support vectors for some SVM fits with different values of c (10, 13, and 17), with 

various values of γ in the range of 3 to 9. 

As seen from Figure V.3, the number of support vectors decreases significantly as 

the cost increases in a certain region. As c becomes large, the number of support vectors 

does not decrease significantly, but the training speed now is too slow. Therefore, the 

choice of very high value of c is not preferred. 
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Figure V.3 The variation of the required number of SVM support vectors as a function of 

gamma for different cost values. When γ lies in the range from 3 to 9, the number of 

support vector is seen to decrease with increasing γ and the cost. The best fitting result is 

obtained for γ = 4.0, c = 30, and p = 0.03. 

 

 



 89 

The last important parameter in an SVM training process is ρ, which is defined as 

the epsilon value of the “loss function.”90 The change of this parameter has an immediate 

affect on the training errors. When ρ decreases, the rms error decreases; however, the 

number of support vectors increases, which may lead to over-fitting. To obtain the best fit 

(good fitting accuracy and an appropriate number of support vectors), we perform many 

different fits with γ varying from 3.0 to 4.5, ρ from 0.01 to 0.034. For each fit, 80% of 

data are randomly selected, and serve as the training set. The remaining configurations 

are used in the testing set. The performance of the SVM is analyzed by calculating the 

rms errors and performing normal mode analysis on the SVM function. Finally, we 

choose γ =4.0, ρ=0.034, and c=30 as they give the best performance in term of reducing 

the number of support vectors and contributing good fitting accuracy. The number of 

support vectors is 447, which results in the testing rms error of 0.0384 eV, and testing 

average absolute error of 0.0311 eV, which is about five times higher than the two 

corresponding errors given by the NN committee as reported earlier. 

We also present an evaluation of SVM method versus NN method, and 

comparisons are made in terms of MD studies. Using 34 neurons in the hidden layer, a 

single NN has 273 parameters totally, and the best average absolute error is reported as 

0.0079 eV. On the other hand, the SVM fit requires 3130 parameters as 447 support 

vectors are employed. The average absolute error reported above is 0.0311 eV, which is 

almost five times higher than the error of a single NN. In term of trajectory time, a 

trajectory running for 49,113 integration steps requires about 9 s to accomplish on the 

NN surface, while about 2 minutes is required for the same trajectory performed on the 

SVM surface with less accuracy. 
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A further comparison is made by testing the fitting quality of a random trajectory. 

A random trajectory is generated, and runs for 388 steps on the NN PES with a fixed step 

size of s1610018.1 −×  using the fourth-order Runge-Kutta integration method.106 The 

geometric configuration and potential energy at each step are recorded during the 

trajectory. The SVM fit is now used to predict the potential energy of those stored 

configurations. The true MP2 ab initio energies are also calculated. The comparisons of 

true energies, NN energies, and SVM energies are shown in Figure V.4. The average 

absolute errors of the NN and SVM fit are 0.022 eV and 0.093 eV, respectively. It is 

shown clearly that the NN method gives better fitting generalization than the SVM 

method when a random trajectory test is performed despite the smaller number of 

parameters being employed by NN. 

We have computed fundamental wave numbers by the NN surface, and compare 

to other ab initio values given by MP2/6-31G* and B3LYP/cc-pVTZ levels. Kuhn et al.15 

used the semi-empirical PCPSDE surface to extract the wave numbers, and their results 

are found to be comparable to ours. All results are shown in Table V.2. The wave 

numbers resulted from the NN surface are in excellent agreement with the MP2 wave 

numbers. The wave numbers resulted from the SVM fit are not even close to the MP2 

values, and are not reported here. The SVM fit has no further use in this study. 

 

IV.  Molecular dissociation of HOOH: A proof of internal hydrogen bonding 

The O-O dissociation is investigated in this study using classical dynamics. Prior 

to executing molecular dynamics calculations, we have investigated the dissociation 

barrier using various ab initio methods, which include HF/6-31G*, MP2/6-31G*, 
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MP4(SDQ)/6-31G*, and B3LYP/cc-pVTZ levels of theory. The results are shown in 

Figure V.4. 

 

 

Figure V.4 The potential barrier investigated at HF/6-31G*, MP2/6-31G*, MP4/6-31G*, 

and DFT/B3LYP-cc-pVTZ levels of electronic structure theory. 

 

In each calculation, the O-O bond distance is fixed at a certain value (from 1.12 to 

2.92 Å), and the potential energy is optimized. According to MP2 and MP4(SDQ) 

investigation, O-O bond is believed to dissociate at 2.65 Å. At this distance, the potential 

height resulting from MP2 calculations is 2.57 eV. Therefore, the total energy (including 

zero point energy) used in our MD study ranges from 3.4 to 4.2 eV. 
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We also see a good agreement between MP2 and MP4(SDQ) calculations in term 

of O-O dissociating distance. However, the barrier height of MP4(SDQ) curve is 0.34 eV 

lower, which is about 2.24 eV. When simple restricted Hartree-Fock calculations are 

performed, no proof of dissociation is observed as the potential energy rises to 5.5 eV 

when O-O bond distance reaches 2.65 Å. DFT (B3LYP) calculations are executed on a 

large basis set (cc-pVTZ). The result clearly shows that there is no dissociation if O-O 

bond is less than 2.9 Å. In fact, based on a previous investigation, Kuhn et al.15 suggested 

that the bond will not be broken until 3.2 Å by executing second order perturbation 

complete active space calculations (CASPT2) and DFT calculations. 

To investigate the O-O dissociation, quasi-classical dynamics is employed. 

Initially, HOOH is assigned at its equilibrium configuration, and vibrational energy is 

introduced into each mode using the projection method.108 The trajectory is then 

integrated for a randomized period of time with no angular momentum. Subsequently, 

excitation energy is introduced into the six vibrational modes equally. At this point, it is 

guaranteed that HOOH has a configuration with randomized geometric coordinates and 

momenta at a certain energy level. The trajectory is then integrated with a fixed step size 

of s1610018.1 −×  using the fourth-order Runge-Kutta integration method.109 A trajectory 

is terminated if 5 ps elapse or O-O bond rupture is found (the distance reaches 2.65 Å), 

and trajectory time is recorded. The rate coefficient k at a given total energy is calculated 

based on the first-order decay plot of 1,000 sample trajectories. In Figure V.5, a first-

order typical decay plot at 3.4 eV of total energy is shown. Table V.5 gives calculated 

rate coefficients at the investigated total energy levels. 
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Figure V.5 First-order decay plot of O-O dissociation reaction when all vibrational modes 

are equally excited and the total energy equals 3.4 eV (including zero point energy). The 

excellent linearity of the results shows that we have very good statistical accuracy and no 

angular momentum present in HOOH. 
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Table V.5 First-order rate coefficients obtained from decay 

plots at five different total energies. The reported standard 

deviations are obtained from statistical analysis of the 

linear least-squares fit to the data. 

Total energy (eV) Rate (ps-1) Standard deviation (ps-1) 

3.4 0.117 0.003 

3.6 0.160 0.004 

3.8 0.205 0.005 

4.0 0.281 0.007 

4.2 0.324 0.009 

 

 

In this section, we also present a proof of convergence, which means we have a 

sufficient amount of data points to describe the PES. A very important criterion to testify 

the convergence of a database is the consistency of MD calculations. If the rate 

coefficient at a certain energy level does not change significantly when more 

configurations are added to the database, a convergence can be concurred. When 25,608 

points (100% of our sampled data points) are used to train a NN, the rate coefficient 

obtained at 3.4 eV of internal energy is 0.117 ± 0.002 ps-1. Several NNs are also trained 

using less data points, and the rate coefficients at 3.4 eV are calculated on each surface, 

and the results of which are given in Table V.6. 
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Table V.6 First-order dissociation rate coefficients for HOOH at an 

internal energy of 3.4 eV using  NN surfaces trained with smaller 

data randomly selected from the total database. 

Number of points 

in the database 
% of the total Rate (ps-1) 

20,486 80 0.094  ± 0.002 

23,048 90 0.126  ± 0.002 

24,328 95 0.121  ± 0.002 

25,608 100 0.117  ± 0.002 

 

 

When 90% of the database is used and the result is compared to the 100% case, 

the difference between is the two rate coefficients is 0.009 ps-1. In the 95% case, the rate 

is further converged by a difference of 0.004 ps-1. This proves an essential convergence 

of the database, and we expect no significant changes occur when more data points are 

sampled and added. 

The rate coefficients given in Table V.5 are fitted to the classical Rice-

Ramsperger-Kassel (RRK) equation. According to RRK theory, rate k is related to the 

investigated internal energy by the following equation 

10 )1( −−= s

E

E
fk  (24) 

where E0 is the dissociation barrier height. According to our MP2/6-31G* calculations, 

E0 is reported as 2.57 eV. In Figure V.6, the variation of ln(k) is linear with ln(1-E0/E). 

Although the system is studied under quasi-classical aspect, the linearity of RRK plot 
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clearly shows MD trajectories behave similar to a pure classical case. This is not a 

surprising consequence because the zero-point energy is allowed to spread over all 

vibrational modes for a random period of time before the insertion of excitation energy 

using the projection method. 

 

 

Figure V.6 RRK plot of O-O dissociation rate coefficients. 

 

From the RRK plot, we obtain an s value of 3.26. Theoretically, s represents the 

number of effective modes during a MD study. With a value of 3.26, we conclude that 

there are three ineffective modes during the dissociation of O-O bond, which include OH 

symmetric and antisymmetric stretching modes, and the torsional mode. We also obtain 

an f value of 9.58 ps-1, which corresponds to a wave number of 320 cm-1. This energy is 

relatively low, and in fact, provides evidence of slow dissociation of O-O bond due to 

internal hydrogen bonding. 
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The O-O dissociation dynamics observed in this study suggests that internal 

hydrogen bonds tend to form during the dissociating process. When O-O distance is 

stretched, one or both of the hydrogen atoms tend to move closer to the other oxygen 

atom. As this occurs, one or both of the bending angles decrease. As a result, the 

dissociation of O-O bond happens slower than expected due to the barrier height and O-O 

stretching frequency. An illustrative snapshot is presented in Figure V.8 that shows how 

hydrogen bonds are formed during the dissociating process, which was also suggested by 

Harding in a previous study.64 
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Figure V.8 Snapshots of HOOH configurations occurring during a trajectory resulting in 

O-O bond rupture that illustrate the effect of hydrogen bonding on the dissociation 
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processes. In snapshot (1), HOOH configuration is near equilibrium as the excitation 

energy is just added. In snapshots (2)-(4), the O-O bond distance increases from 1.46 Å to 

1.85 Å. In snapshot (4), the H-O-O angle has decreased to about 60° to form a hydrogen 

bond. This interaction prevents O-O bond rupture, and the O-O distance begins to drop to 

1.37 Å shown in snapshot (5). The sequence is repeated again in snapshots (6) and (7), 

but this time, the hydrogen-bond interaction is not sufficiently strong to prevent the O-O 

bond rupture shown in snapshot (8). 

 

V. Summary 

The O-O bond dissociation of hydrogen peroxide has been investigated on a PES 

obtained by fitting 25,608 points of MP2/6-31G* energies using a committee of five 

NNs, each of which has 34 neurons in the hidden layer. The average absolute error and 

root mean squared error are 0.0060 eV (0.58 kJ mol-1) and 0.0099 eV (0.96 kJ mol-1), 

respectively (the maximum potential energy is 4.36 eV). 

We have executed a fit using the SVM method, and this new fit is compared to 

the previous NN fit. With the same set of data, the SVM fit using a radial basis kernel 

yields 447 support vectors, giving a total number of parameters to be 11.5 times higher 

than the total number of NN parameters (a single NN). Therefore, it consumes more 

computational time to execute a MD trajectory on the SVM surface (about 12 times). The 

average absolute error for the SVM function is 0.0311 eV. These results indicate the 

SVM method is not suitable MD studies, although it has been proven to be powerful in 

data classification. Other suitable methods for fitting data that have been introduced are 

NN,29-32,74-79,81,85,86 IMLS,21 and the Shepard interpolation method.20 
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The initial set of HOOH configurations is obtained by performing partial 

optimization of potential energy. In each optimization, the dihedral angle and one of the 

five valence internal coordinates are assigned at some constant values. After constructing 

the initial set, more data points are obtained using the new sampling method. This method 

allows us to sample HOOH configurations without using MD trajectories. In this method, 

we analyze the data and find the regions that lack of data points. To do this, a derivative 

test is executed by comparing the NN derivatives with respect to the inputs to the real 

MP2 derivatives. If the difference is more than 3%, the region is identified, and more data 

points are generated in that region with two restricted conditions: the potential energy 

does not exceed 4.36 eV and the distance of a new point is greater than a defined 

threshold. Once identified, ab initio calculations are executed for the new point, and if the 

difference between the ab initio energy and the NN-predicted energy (temporary fit) is 

greater than 1%, the point is added to the database. This procedure allows us to sample 

HOOH configurations in a six-dimensional hyperspace with a more uniform density, 

thereby enhancing the NN fitting accuracy. 

After four iterations, a database of 12,804 points is produced, and latter duplicated 

due to the symmetry of HOOH, which gives us a set of 25,608 configurations. Normal 

mode analysis on the NN surface is performed, and gives very good agreement with 

MP2-predicted wave numbers. 

The present sampling method is based on an analysis of gradients; therefore, our 

NN committee is in essence of fitting both potential energies and gradients. This is 

reflected by a good agreement between NN-predicted and ab initio wave numbers. It is 

also supported by the low fitting error of the testing set (0.0060 eV). 
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The dissociation of O-O bond is investigated at 3.4, 3.6, 3.8, 4.0, and 4.2 eV of 

internal energy. The excitation energy is distributed equally among the six vibrational 

modes, then the trajectories are integrated using the Runge-Kutta method.106 On an 

average, it requires about 45 s of computer time to execute a full trajectory (lasting for 5 

ps in molecular time) on the NN committee surface when a 2.4 GHz clock-speed CPU is 

employed. 

From MD trajectories, we are able to calculate the first-order rate coefficients at 

different energy levels with small deviations. A RRK plot is made that describes the 

relationship between internal energies and reaction rate constants. The plot exhibits good 

linearity, and can be used to predict the rate coefficients at various energy levels that are 

not reported in this study. 

From RRK theory, we suggest that three of the six vibrational modes are not 

effective during the dissociation process. Although we execute quasi-classical trajectories 

in this study, the linearity of RRK plot shows that the dynamics of HOOH behaves 

classically because the zero-point energy is allowed to spread over the six vibrational 

modes for a random period of time. 

Internal hydrogen bonding occurs during the process. We monitor the 

dissociation, and observe the tendency of a hydrogen atom moving toward the oxygen 

that it does not chemically bond to. This behavior gives the molecule more stability, and 

makes the reaction rate slower than expected. 
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CHAPTER VI 
 
 
 

CONCLUSION 

 

We have successfully employed the NN method to construct PES’s for three 

chemical systems with different levels of complexity. In each study, we present a 

modified procedure and contribute a new approach to study a molecular system. The new 

approach may be a new data sampling method, or an improvement of the fitting 

technique. Besides NN fitting, SVM fitting is also presented and tested in the last study 

of HOOH, and comparisons are made to the NN method. 

In our first study, an analytic PES of HONO is developed using the traditional 

sampling method, which is known as “novelty sampling.”31 More than 21,000 

configurations are obtained during the sampling process, and the data represents cis and 

trans configurations of HONO as well as the dissociation pathway of N-O bond. 

Subsequently, MD trajectories are performed on the surface. The resulting rate 

coefficients in cis-trans isomerizations when applying different types of excitations do 

not differ a lot. When we compare our results to the results in a previous study 

conducting MD on an empirical surface, we observe that the intra-mode coupling on the 

NN ab initio surface is significantly larger. This is also the case for N-O dissociation. It is 

believed that the internal energy is transferred very rapidly among the vibrational modes 

on the NN surface, which results in the excitations to be somehow similar. 
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The PES fit of HONO only requires 41 neurons, which is a computational 

advantage compared to the other methods such as IMLS and Shepard interpolation. 

Therefore, the use of a committee of five NN’s has been proposed, and the fitting error of 

the NN committee is less than the error of each individual NN because nearly random 

errors are mostly cancelled. Thus, in the latter two studies (BeH3
32 and HOOH63), we 

employ NN committees to fit the data. 

A direct comparison between the NN and Shepard interpolation methods is 

presented in the second study. We conduct a study on the BeH3 system which has been 

previously studied by Collins and Zhang.33 In that study, 1,300 data points were sampled 

using classical dynamics, and ab initio energy and gradients with respect to atomic 

distances are computed using MP2/6-311G(d,p) level of theory. The fit was performed on 

those 1,300 points, and the reported testing error was 0.00424 eV or 0.41 kJ mol-1. 

Employing the data contributed by Collins and Zhang,33 we sample more configurations 

using the “novelty sampling” method31 and end up with 19,208 configurations in the final 

database. In this study, it is realized that the nature of the investigated chemical reaction 

also affects the number of size of fitting NN’s. With large extension of atomic distances 

in hyperspace, we have to use 60 neurons in each individual NN to provide a good fit for 

BeH3. The fitting error of the committee (of five NNs) is 0.44 kJ mol-1, which is very 

comparable to the Shepard interpolation error. 

Since the fit in Shepard interpolation method is a summation of weighted Taylor 

expansions around a group of selected data points, the weights have to be re-calculated at 

every new point during trajectories, and the computational cost becomes huge. The NN 

committee, on the other hand, uses a number of fixed parameters and therefore, gives a 
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noticeable advantage in computational cost with a comparable fitting error to the other 

method (0.44 kJ mol-1 versus 0.41 kJ mol-1). 

The reaction probability is calculated with various translational energy levels 

from 0.415 eV to 0.829 eV and no total angular momentum. This method was also 

employed by Collins and Zhang in their investigation. Our maximum probability 

is 005.0152.0 ± , which is about 38% higher than the maximum probability reported by 

Collins and Zhang33 (0.11). The reaction threshold is found by conducting classical 

dynamics with no zero-point energy at various translational levels. At 0.56 eV, products 

begin to occur, and this energy is concluded to be the reaction threshold within the 

statistical accuracy of the trajectory study. Our reaction threshold is in good agreement 

with the potential barrier reported by Collins and Bettens.37 

During the first two studies (HONO24 and BeH3
32), approximately 20 thousands 

points are collected using the “novelty sampling” procedure proposed by Raff and co-

workers.31 The complexities of these two systems are very distinct. HONO is considered 

to be more complicated in term of chemical intuition as it has two different reaction 

channels and two stationary configurations (cis and trans) as observed in our first study. 

Moreover, with 24 electrons, the electronic configuration of HONO is more complex than 

that of BeH3, which only has 7 electrons. On the other hand, the hyperspace of BeH3 is 

much larger as we attempt to describe the collision between two separate molecules. It 

can be concluded that the size of hyperspace as well as the number of reaction channels 

determines the number of required hidden neurons to fit the PES. 

The uniformity of data points is very important to a NN fit as we have observed 

during the studies of HONO24 and BeH3.
32 If the density of data points in a particular 
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region is much higher than the others, the NN would automatically focus on the high 

density region, and tend to neglect the other regions. In the “novelty sampling” 

procedure,31 MD trajectories are employed to sample configurations. As a result, the low 

potential energy region tends to have low density of configurations, and thus, is not well-

fitted by NN’s. In fact, this region is very important for MD studies because the initial 

molecular sampling process always requires to be done in this region. Therefore, we have 

introduced another method to improve the issue, which is referred to the “gradient 

sampling” method. 

In the last study of HOOH,63 we have successfully conducted a new sampling 

method, which not only sample a significant number of configurations to describe the 

chemical reaction, but also helps to improve the fitting accuracy. This method is based on 

searching for regions that are lacking data points in a defined region (<4.36 eV in the 

HOOH case particularly). Since the NN method fits most data very well, it is hard to 

identify the “bad” regions by just looking at the NN outputs. The output gradients, on the 

other hand, truly describe the shape of a function. If the fitted function is very distinct 

from the real function, the gradients resulted from the two functions will be much 

different (we may refer this to over-fitting). Adopting this idea, we are able to identify 

those “bad regions” by gradient analysis and sample more useful data points. 

By sampling configurations without MD trajectories, we are able to collect data 

points more uniformly. Moreover, the requirement of well-fitted gradients also helps to 

improve the accuracy. The final fitting error when a NN-committee with five members is 

employed is reported as 0.0060 eV, one of the best fitting errors reported in the literature 

for a four-body system. 
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It is observed during the investigation of HOOH dynamics that internal hydrogen 

bonding is very likely to form, which resists the dissociation of O-O bond. Unless very 

high excitation energy is used, the dissociation will not happen. We also observe this 

interesting property, which was suggested in a previous study by Harding.64 

The success of NN method to describe PES’s of a wide variety of chemical 

systems accurately really motivates us to extend our research to more complicated 

chemical reactions. Moreover, the use of a different system of coordination (beside the 

traditional Cartesian coordination) should be considered to use in molecular dynamics 

studies because NN’s are capable of generalizing any types of mathematical functions. 

The change of coordination system is a promising approach because it may help either to 

reduce computational cost (by cutting down the number of differential equations in the 

classical Hamiltonian), or to enhance fitting accuracy. However, modifications of the 

kinetic terms in any molecular systems are not easy. In fact, it is difficult to modify the 

kinetic terms of a complex system that has many atoms. Therefore, the change of 

coordinate system has to be evaluated carefully, as we do not want to create too many 

mathematical problems just to reduce computational cost. 

A test of the SVM method gives a good picture of its advantages and 

disadvantages in MD studies. Although the SVM method is very efficient and widely use 

in data classification, the ability to describe a mathematical function is still limited, 

especially when fitting gradients are also required to be accurate. The radial basis kernel 

in the SVM method is very similar to a feature in the NN method, which is known as 

radial basis network, and these two features are considered as not useful in chemical 

reaction dynamics when we consider their fitting accuracy and computational cost. 
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Findings and Conclusions: The neural network method has been employed to construct 

three analytic ab initio potential energy surfaces for three different chemical 
reactions, which are nitrous acid (HONO), BeH + H2, and hydrogen peroxide 
(HOOH). Molecular dynamics studies are then executed on each surface to 
investigate the chemical reaction. Two different sampling techniques are used to 
sample data: novelty sampling and gradient sampling. These two techniques have 
been successfully used to sample configurations for the investigated molecular 
systems. Once a sufficient number of configurations is collected, the potential 
energy surface is constructed, and classical molecular dynamics can be easily 
utilized to simulate the chemical reactions in gas phase. From these studies, the 
neural network method is concluded to be a very promising method in theoretical 
reaction dynamics investigations because of its computational advantage and 
excellent fitting accuracy. 

 
 
 


