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ABSTRACT

The purpose of this ease study was to explore the complex interplay among 

student beliefs, problem solving engagement, problem type, and mathematics 

understanding as well as dynamics within group discourse among four ninth-grade 

mathematics students. The study aimed to provide insight into the relationship that 

exist between student engagement and problem type they choose to solve and to 

understand how their problem solving discourse evolve as students participate in a 

collaborative problem solving environment. This case study, focusing on two dyads’ 

problem posing, problem solving, and collaboration, sheds light on the envisioning of 

curriculum alternatives for mathematics education amidst the many constraints of 

current and traditional problem solving contexts. The analysis of both these dyad’s 

16-week long collaboration reveals that the role of conversation, prolonged problem 

solving interactions, and on-going negotiations and relationships is key in their 

transformation.

The results suggest, as students developed a culture within their dyads, of 

problem solving and problem posing, and collaboration, that engagement was 

increased. After evaluating the various data relating to problem type and participant 

engagement, it became evident that certain problem types engaged the students more 

than the others. While it was no surprise that routine problems were not engaging to 

them, it was also evident that their collaboration and discourse were very different 

under these circumstances. They were much less likely to question, challenge, argue, 

negotiate, or probe eaeh others’ thinking, and were much more likely to rely on and



accept the first answer. There were no efforts to modify, extend, or apply these 

routine problems to other contexts.

After examining the “big picture,” it became evident that over the course of 

this 16-week period, significant transitional moments existed, during which 

collaborations among the dyads and the group seemed to change, and the quality of 

discourse improved for both groups. While not directly related to any specific 

problem type or context, these transitional moments seemed to be related to on-going 

negotiations and relationships, my role as a teacher/facilitator in the development of 

the dyads’ effective listening (Davis, 1997) and to their beliefs and mathematical 

understandings. Prolonged problem solving and on-going negotiations and 

collaborations seemed to be related to students’ experiences with productive 

interactions, shared authorities, and meaningful discourse as well as developing a 

supportive environment that was beneficial to its participants.

While this study did illuminate some limitations that a prolonged problem 

solving atmosphere might present in a traditional classroom setting, for the most part, 

the results of this work supported recent reform-based literature that advocates the use 

of nonroutine problems in a collaborative environment. This conclusion is equally 

supported by the enhanced level of mathematics conceptual understanding manifested 

in the participants at the close of this study, as well as changes that occurred in their 

pedagogical, collaborative, technical, and mathematics beliefs and assumptions.



CHAPTER I 

INTRODUCTION

In today's technological and information-sensitive society, it is important that 

citizens be mathematically literate (Kenney & Silver, 1997; Paulos, 1989, 1991) and 

intellectually autonomous (Bauersfeld, 1992; Bishop, 1988; Cobb, 1989; National 

Council of Teachers of Mathematics [NCTM], 1991, 2000; Yackel & Cobb, 1996). 

Mathematical literacy and intellectual autonomy include the development of students’ 

autonomy in and out of schools as life-long learners. That is, integrated learning 

should focus not on accumulation of information, but on reasoning about information 

with a strong emphasis on nonroutine problem solving, problem posing, and 

understanding as well as the representation and communication of solution findings 

(Brown, 2003; Doerr & English, 2003; English, et al., 2000; Fleener & Rogers, 1999; 

Greer, 2000; Hiebert, et al., 1996; Lajoie, 1998; Moore, 1998; National Council of 

Teachers of Mathematics [NCTM], 1989, 1991, 2000; Shaughnessy, et al., 1998) and 

collective mathematical development (Davis & Simmt, 2003). Because students’ 

problem solving, reasoning, and discussion (Brown, 2003; Steen, 1999) is the 

cornerstone of proficiency, mathematical literacy and technological competence must 

include learning opportunities that challenge students to be mindfully engaged 

(Langer, 1997), to think critically, to use technology collaboratively, and to work on 

tasks that are worthwhile (Davis, et al., 2000).

All too often, students in American schools are not challenged with problems 

or activities that they would value and engage their minds (Davis, et al., 2000; Langer,



1997; National Research Council (NRG), 2001). Historically, problem solving and 

communication in mathematics has been taught by rote, with very little mindful 

engagement by the teacher or students. The teacher simply explains the procedures 

needed to obtain the correct answers, and it makes no difference whether the students 

work individually or in groups (Langer, 1997; Lindquist, 1989, 1997; Lindquist, et al., 

1995; Simon, 1995). This pervasive manner to problem solving and communication 

in mathematics undermines the process of meaningfiil learning; consequently, 

students regard mathematics as dull and far removed from reality and their own 

interests. The NCTM Standards (2000), suggests that mathematics problem solving 

“should be coherent ...[and]...should focus on mathematics content and processes 

that are worth the time and attention of students” (p. 15). This problem-solving 

situation is inquiry-based, participatory, and mindftil. Langer (1997) describes a 

mindful state as an interactive learning participation in which the nature of the 

interaction “is not a matter of fitting ourselves to an external norm; rather, it is a 

process by which we give form, meaning, and value to our world” (p. 137). Brown 

(2003) suggests that curricula and teachers ought to embrace problems, not just their 

solution. “The focus [should be] on human activity and dialogue involving 

mathematics” (Brown, 2003, p. 175). To improve understanding, Hiebert, et al., 

(1996) purport, students must take responsibility for sharing the results of their 

inquiries and for explaining and justifying their methods. Minimal participation in 

problem solving, reasoning, and communicative situations frequently results in lack 

of preparation, performance, and understanding of mathematics.

On the national level in 1994, Lester quoted from Dossey et al.'s telling report



on the 1992 National Assessment for Educational Progress (NAEP):

On extended eonstrueted-response tasks, which required students 
to solve problems requiring a greater depth of understanding and 
then explain, at some length, specific features of their solutions, 
the average percentage of students producing satisfactory or better 
responses was 16 percent at grade 4, 8 percent at grade 8, and 9 
percent at grade 12. (p. 660)

Dossey and Mullis later replicated the findings of their report, adding that “despite

detailed instructions, substantial percentages of students appeared at a loss as to how

to proceed in answering the extended eonstrueted-response questions on the 1992

NAEP mathematics assessment” (Dossey & Mullis, 1997, p. 25).

NAEP mathematics assessment was first administered in the year 1990. A

continuation of this assessment fi-amework was used in the years 1992, 1996, and

2000 as well as a follow-up in the fall of 2003, which, thus far, the results reinforce

these earlier findings. According to the National Center for Educational Statistics

(NCES, 2003), in the year 2000, approximately 250,000 students were assessed in

mathematical problem solving in national and state samples. National samples

included grades 4, 8, and 12 while state samples included only grades 4 and 8.

Questions were based on five content strands: (1) Number sense, properties and

operations (2) Measurement (3) Geometry and spatial sense (4) Data analysis,

statistics, and probability and (5) Algebra and functions. Students answered a

combination of multiple-choice and eonstrueted-response questions. Students in all

three grades (4, 8, and 12) had higher average scores in 2000 than in 1990. According

to NCES (2003), fourth- and eight-graders showed steady progress across the decade.

Twelfth-graders made gains fi'om 1990 to 1996, but their average score declined



between 1996 and 2000. When compared with the international level, however, the

results are quite astonishing. That is, according to Fuson, et al., (2000),

... results from the recent Third International Mathematics and 
Science Study (TIMSS) indicate that the U.S. curriculum continues 
to be an “underachieving curriculum" compared to the mathematics 
curricula in higher achieving nations and that instruction in the 
United States is still more likely to focus on practice of skills than 
on understanding, (pp. 277-278).

International comparisons of American students’ problem solving, reasoning,

and communication, which are key outcomes of mathematics education, reveal that

US students do not perform as well as their Asian counterparts. The Third

International Mathematics and Science Study (TIMSS), which was conducted in

1995, tested 500,000 students in 41 countries, reported American eighth graders

below the average in mathematics problem solving. The top 10 percent of Americans

scored about the same as the average students from Singapore, the global leader.

In 1998, the TIMSS International Study Center conducted an in-depth analysis

of the TIMSS 1995 mathematics and science achievement results for eight grades.

One of the components of the project was to compare world-class mathematics and

science achievement with U.S. national standards for these projects. The results were

astonishing. Kelly, et al., (2000) reports.

At eight grade, U.S. students performed below the international 
percentages for the three highest benchmarks, with only 5 percent 
reaching the top 10% benchmark, 18 percent reaching the Upper 
Quarter benchmark, 45 percent reaching the Median benchmark.
Seventy-five percent of U.S. students reached the Lower Quarter 
benchmark, which matches the international percentage, (p. 9)

In 1999, a repeat of the TIMSS 1995 was conducted. The new study, known

as the TIMSS-Repeat or TIMSS-R, provides the world with another snapshots of



students’ performance in eight-grade mathematics and science (NCTM, 2003). This

time, only 38 countries participated in the TIMSS-R. Both the TIMSS (1995) and

TIMSS-R (1999) mathematics tests for the eighth grade were designed and

implemented to enable reporting in five content areas: (1) fi-actions and number sense

(2) measurement (3) data representation, analysis, and probability (4) geometry (5)

algebra. The United States performed above the international average in fi-actions and

number sense in data representation, analysis, and probability and in algebra.

However, it performed below the international average in measurement and geometry.

Singapore was the global leader on all subscores. According to NCTM (2003): News

& Media (nctm.org): What Can We Learn from TIMSS-Repeat?,

Overall, U.S. students maintained their standing in the middle of 
the international ranking, Canadian students were among the few 
that showed significant gains in mathematics, and Asian countries 
held their berth above the international average... . Students in 
other countries reported working on mathematics projects during 
class more often than U.S. students (36 percent international average 
compared to the U.S. average of 29 percent), (p. 1)

TIMSS 1999 is only the second in what is expected to become, for every four years, a

series of international surveys designed to reveal trends in achievement in

mathematics and science.

Hiebert (1999) examines the current debates about the future of mathematics

education and the role that research plays in that future—to resolve issues about

priorities and values, which are often ignored—and suggests, therefore, by applying

what we learn from research such as TIMSS, we can evaluate the current state of

classroom teaching. The author states that we have a quite traditional way of teaching

mathematics, which places the emphasis on teaching and computation procedures and



places little attention to helping students develop conceptual ideas. Moreover, the 

researcher cites TIMSS (1995) as an example, and remarks that 78% of the topic were 

only demonstrated but not explained, and during 96% students were only doing 

seatwork that they had been shown how to do. This TIMMS data, Hiebert (1999) 

claims, shows that “the traditional U.S. curriculum is relatively repetitive, unfocused, 

and undemanding” (p. 11). Hiebert (1999) concludes that (1) students learn only what 

they have an opportunity to learn (2) traditional methods of mathematics teaching and 

learning are deficient (3) “we can design curriculum and pedagogy to help students 

meet the ambitious learning goals outlined by the NCTM Standards [and (4)] the 

question is whether we value these goals enough to invest in opportunities for 

teachers to learn to teach in the ways they require” (p. 16).

Similarly, Schmidt, et al., (2001), through in-depth analyses of information 

from TIMSS (1995)—an empirical data—set out to evaluate how curricular learning 

opportunities impact students’ learning. The authors focus on curriculum and 

pedagogy by examining artifacts such as content standards, textbooks, teachers’ 

goals, and the amount of time that teachers devoted to the topics. To ascertain the 

influence curriculum and textbooks have on achievement gains, the authors relied on 

data gleaned from TIMMS (1995) test results (which focused primarily on a cross­

national comparison of 4th, 8th, and 12th grade students from approximately fifty 

countries, including the United States). Examining the relationship between 

achievement gains and the allocation of curriculum resources (both across countries 

and within countries), the authors argue that “national culture has an impact on 

learning” (Schmidt, et al., 2001, p. 10). To explore this notion, the authors examined



the fundamental aspects of formal education in each country—aspects they believe are 

affected by social, political, and cultural contexts and are likely to shape student 

achievement. Schmidt, et al., (2001) identified countries such as Hong Kong, Korea, 

and Japan as “high performing,” which contrasted with the comparatively low 

performance level of the United States (p. 33). Although all countries shared a 

relatively common core of curriculum, the higher performing countries seemed to 

utilize more in-depth textbooks and a curriculum that was more organized to take 

advantage of “the logic of subject matter disciplines” (e.g., mathematics) which 

“plays an important role in school learning” (Schmidt, et al., 2001, p. 356). With this 

in mind, the authors argue that a set of national priorities in content standards can be 

advantageous and not be equivalent to national control of a system, which is the case 

in the U.S. For that reason, they propose a reformed curriculum—one that equally 

addresses both the cognitive demand of tasks and the type of instructional activity. 

Schmidt, et al., (2001) assert: “In the end, schools matter ... [and] ... curriculum is 

related to learning” (p. 361).

Rather than memorizing inflexible procedures provided by a teacher or 

textbook, students seem to leam best by constructing their own mathematics. In fact, 

because construction of knowledge is an essential part of solving problems, the 

NCTM 1989, 1991, 1995, and 2000 placed problem solving at the core of the 

mathematics curriculum, stressing it in all aspects of mathematics instruction. 

Problem solving, therefore, should he a part of all mathematics activity, because being 

mathematically literate means being a good problem solver.

According to the NCTM (1989, 1991, 1995, & 2000), instruction in



mathematics should use problem situations as a way of involving students in 

mathematical activities. In particular, the Standards advocate the use of problem 

solving in mathematics to provide opportunities for all students to engage in 

meaningful mathematics and to challenge their curiosities while increasing their 

confidence and value in doing mathematics.

A variety of sources (for example, AAAS, 1993; MSEB, 1989; and NCTM, 

1989, 1991, 1995, 2000) agree there is a need for change in the school mathematics 

content and in the way that content is taught. The recent surge of technology in the 

work force similarly has a great influence on the use of mathematics and the need to 

reform how mathematics is taught in the schools. How technology is implemented 

and how mathematics is taught, however, may be determined by our beliefs about 

what mathematics is. Thus, the way teachers/leamers view mathematics may 

contribute as a factor to how mathematical problem solving is approached in the 

classroom.

What is Mathematics?

Mathematics is the study of relationships and pattern recognition. It is a 

particular way of knowing, a part of human culture—a broad body of human 

knowledge (Devlin, 2000)—and a way of understanding different aspects of the world 

we live in. Mathematics is a discipline that is not static. It continues to expand and to 

grow. Schoenfeld (1992) echoes the National Research Council (NRC) (1989) as 

saying: “Mathematics is a living subject which seeks to understand patterns that 

permeate both the world around us and the mind within us” (p. 335). He views the 

study of mathematics as being exploratory and evolving and not as a rigid, absolute.



closed body of facts that need to be memorized. Mathematics as a discipline should 

focus on seeking solutions, exploring patterns, and formulating conjectures, not just 

on memorizing rules and formulas and doing exercises. Mathematics is more than 

just memorizing computational procedures and equations. Mathematics education is 

a discipline that is two-tiered. It is comprised of mathematics learning which leads 

inevitably to mathematical power. These two dynamics are processes and ends in and 

of themselves.

Mathematics Learning

Learning to solve problems is the principal reason for studying mathematics. 

This learning proceeds through construction not absorption (Romberg & Carpenter, 

1986) and does not occur in isolation but in collaboration with others in a learning 

community (Fleener, 1995). The NCTM Standards (1989, 1991, 1995, & 2000) are 

based on the assumption that learning is a constructive rather than a passive 

experience. Koehler and Grouws (1992) quote Cobb, et al., (1991) explaining: 

‘“ ...mathematics learning is not a process of internalizing carefully packaged 

knowledge but is instead a matter of reorganizing activity’” (p. 118). Simon (1995) 

tells us that learning is the process by which human beings adapt to their experiential 

world. Building on previous learning, "[wjhen students are using prior knowledge to 

construct new mathematical knowledge, they are learning mathematics" (Lindquist, 

1989, p. 3). Learning mathematics is not passive but deliberate. Students leam 

mathematics best when they are encouraged to become mindfully engaged (Langer, 

1997) in their own learning environment to solve problems.

The learning of mathematics for students, according to the NCTM (2000),



must be with understanding, “actively building new knowledge from experience and 

prior knowledge” (p .ll). The NCTM (1995) lists five shifts for the mathematics 

problem-solving community to foster mathematics learning and understanding. They 

include: (1) a shift away from thinking of mathematics as arithmetic proficiency for 

most students to thinking of mathematics as power for all students to solve problems 

(2) a shift from memorizing and repetitive practice to investigating, speculating, and 

reasoning to find solutions to problem situations (3) a shift from concepts and skills in 

a linear order to the use of mathematical power in solving genuine problems. 

Mathematical Power

Tsuruda’s (1994) uses the following definition to describe the attributes of 

mathematical empowerment: “[M]athematically powerful students possess attitudes 

of appreciation, confidence, curiosity, inventiveness, persistence, reflection, and 

willingness” (p. 39). The NCTM Standards (1991) defines mathematical power to 

include the student’s ability “to explore, conjecture, and reason logically; to solve 

nonroutine problems” (p. 1). Mathematical empowerment involves the development 

of a student’s personal self-confidence and a disposition to seek, evaluate, and solve 

problems as well as to make sound decisions. Additionally, the learner’s “flexibility, 

perseverance, interest, curiosity, and inventiveness also affect the realization of 

mathematical power” (NCTM, 1991, p. 1).

Thus, implications for 21st century problem solving in mathematics include a 

shift from acquisition models of learning to student mathematical empowerment 

through life-long learning (Boyer, 1995). Empowering students mathematically 

includes providing opportunities for students to develop their “abilities to explore,

10



conjecture, and reason logically, as well as the ability to use a variety of mathematical 

methods effectively to solve nonroutine problems” (NCTM, 1989, p. 5).

The NCTM Standards (1989) suggest five general goals for all students to 

reach in order to become empowered mathematically: (1) leam to value mathematics 

(2) become confident in their ability to do mathematics (3) become mathematical 

problem solvers (4) leam to communicate mathematically (5) leam to reason 

mathematically. According to the NCTM Standards (1989, 1991, 1995, & 2000), 

students who achieve these goals will become mathematically empowered.

Mathematical empowerment can also occur through supporting the leamers’ 

initiatives in coping with their eomplex and multiple realities, aeceptance of multiple 

perspectives, and fostering a feeling of value for learning tasks in an authentic and 

collaborative eurricular context.

Mathematics, says Devlin (2000), presents four faces to the world: (1) 

mathematics as computation, formal reasoning, and problem solving (2) mathematics 

as a way of knowing (3) mathematics as a creative medium (4) applications of 

mathematics. How can we create a sound pedagogical problem-solving context in the 

mathematics classroom where students are encouraged to link these four faces of 

mathematics and think critically and creatively, work on problems that are interesting 

to them and connected to the workplace, and use technology to search, question, and 

“know” mathematics? In order to better understand how we might create classroom 

contexts that support mathematical problem solving, we need to explore pedagogical 

problem solving contexts.

11



Pedagogical Mathematics Problem Solving Contexts

It is difficult to speak of mathematics context without referring to other 

aspects of mathematics learning which include the content and the processes. 

According to the NCTM (2000), in a pedagogical problem-solving situation, the 

content and curriculum as well as the context in which the mathematics is embedded 

should be engaging, meaningful, synergic, and should resemble tasks and models that 

are found in everyday life, i.e., in the workplace. “School mathematics curricula 

should focus on mathematics content and processes that are worth the time and 

attention of students” (NCTM, 2000, p. 15). In a pedagogical problem-solving 

context, students are given opportunities to design, plan, evaluate, recommend, 

review, define, critique, explain, and make situations problematic. The challenges 

students face in these settings “are often nonroutine and open-ended, with solutions 

taking from minutes to days, and requiring diverse forms of presentation ... some 

work is done alone and some in teams” (Forman & Steen, 2000, p. 139). These 

pedagogical problem-solving contexts may motivate students to link meaning with 

mathematics. Supporting mathematics problem solving contexts are approaches to 

teaching that encourage risk-taking in a supportive environment.

Problem Solving Pedagogy

Problem solving in mathematics includes the development of conceptual 

understanding. Kenney (1997) states that conceptual understanding is an essential 

part of problem solving. This understanding is developed best when students are 

mindfully engaged in solving problems that interest them and raise their curiosities 

(Langer, 1997). However, as Hiebert, et al., (1996) indicate, the history of problem

12



solving in mathematics “has heen infused with a distinction between acquiring

knowledge and applying it” (p. 12). These researchers tell us that in order for

students to develop mathematical problem solving reasoning, they need to be engaged

in problem solving situations in which they are allowed to make the subject

problematic. They quote Dewey (1929) as saying all reflective inquiry starts from a

problematic situation. They describe reflective inquiry as having the following

characteristics: “(1) problems are identified; (2) problems are studied through active

engagement; (3) conclusions are reached as problems are (at least partially) resolved”

(Hiebert, et al., 1996, p. 14).

Within the constructivists’ pedagogical model of mathematics learning and

doing, learners are to form a collaborative and conversational problem-solving

partnership focused on sense making and reflection. Etchberger and Shaw (1992)

provided the following example of such a problem-solving partnership in the solution

to an inquiry in the process of knowledge construction:

They [the learners] explain, clarify, elaborate, question, evaluate, 
justify, extend, and argue. The key to making sense is in this 
negotiation process. Meaning is being negotiated. Ways to 
solve problems are examined, tried, rejected, defended, justified, 
and explained, (p. 412)

Stein, et al., (1994) pointed out that what is learned through the constructivist dialogic

problem-solving process as learners create their own tasks, “depends on the shared

understandings that students negotiate with the teacher and with each other” (p. 12).

Problem-solving pedagogy in mathematics should enable all learners to experience

mathematics as a dynamic engagement in solving problems. Thus, engaging students

in problem solving, is a focus of problem solving pedagogy. Key to problem solving
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pedagogy is dialogical problem solving.

Dialogic Problem Solving

Dialogic problem solving can be defined as problem solving situations where 

two or more students, through reflective inquiry, critical thinking, and negotiation 

converse and communicate their ideas with one another and work together toward a 

shared meaning (Yackel & Cobb, 1996). When students are allowed to work together 

in pairs or in a group to negotiate problem-solving strategies and how to go about 

resolving their differences, they are given opportunities to collaborate, negotiate, and 

discuss mathematics as well as work toward the establishment of a supportive and 

synergistic environment of a dialogic pedagogy. Dialogical problem solving is 

supported by dialogical pedagogy.

Dialogic Pedagogy

There is a growing interest among educators to involve students in learning 

situations that are collaborative and to encourage dialogue at all grade levels. 

Dialogic pedagogy will be used to describe an approach to instruction focusing on 

conversation pattern and emerging collaboration. Dialogic pedagogy is related to 

collaborative learning environments.

Collaborative Learning Environments

Gokhale (1995) defines a collaborative learning environment as the grouping 

and pairing o f students for the purpose o f academic learning. The students are 

responsible for one another’s learning as well as their own. Therefore, the 

development of one’s understanding through mindful engaging, reflecting, and 

constructing as well as sharing and conversing should help other students develop

14



their own understanding of the inquiry within the learning environment. 

Collaboration in education helps students to leam from each other's experiences, 

understandings, and reasoning. Effective collaboration and conversation are essential 

in establishing meaningful dialogic problem-solving pedagogy in mathematics. When 

students collaborate and converse with one another about mathematics, both by 

speech and by writing, they leam to clarify and defend their thinking, pool ideas, and 

share in decision-making. Moreover, these conversational activities among students 

shift the classroom environment from an environment being dominated by a 

researcher (teacher) to an environment negotiated by all members alike, teacher plus 

students. Tsuruda (1994) explains the importance of group work (collaboration) in 

learning this way: “Perhaps the most critical aspect of group work with regard to 

learning is the forum it creates for discussion. When students are placed in situations 

in which they must verbalize their thoughts and ideas, their thinking, of necessity, 

becomes clearer” (p. 100). Collaborative learning environments are supported by and 

perhaps inextricable from dialogic pedagogical practices. Synergy of shared vision 

not only is an important aspect of the establishment of a dialogic pedagogy, but also is 

an important part of generating enthusiasm and new energy for continuing dialogue to 

resolve more problems.

In what follows, I will discuss the theoretical framework of this study. 

Implicit in these ideas about ereating mathematics learning environments where 

students become active problem solvers and empowered mathematically are 

perspectives of teaching and learning foimd in constructivist theories of knowing.
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Socio-Autonomy

Carter and Fleener (2002) purport Piaget’s (1973/1948) view that the central 

purpose of education is the development of autonomy. They cite Kamii and 

Dominick (1998) and Yackel and Cobb (1996) to claim that this view is consistent 

with current reform movements in education particularly in mathematics. That is, the 

goal of research in mathematics and mathematics education is “ ...to support teachers 

as they establish classroom environments that facilitate students’ mathematical 

conceptual development” (Yackel & Cobb, 1996, p. 458).

All too often, this goal is “ ...lost when accomplishment is defined by grades 

and the sueeessful completion of particular educational tasks (Fleener & Rogers, 

1999, p. 9). Consequently, many students have experienced “education” as 

compliance with authority and the adoption of others’ ideas without critical review 

(Fosnot, 1996). “They often tend to associate learning with the completion of a series 

of discreet tasks to receive good grades” (Rogers & Dunn, 1999, p. 271).

Individual development or autonomy “... does not imply ‘freedom’ as the 

term is often used; rather it is acting in accordance with one’s core system of 

understandings, values and beliefs” (Fleener & Rogers, 1999, p. 14). Similarly, socio­

autonomy may be defined as “/Ac potential for self-creation and self-production o f  

social systems, analogous to autonomy for the individual as an autopoietie, self- 

creating entity” (Fleener & Rogers, 1999, p. 15). Moreover, there exist a dialectical 

relationship between the individual and the environment, hence, communications “ . .. 

that as a result of interaction, both are transformed or changed: the individual and the 

environment” (Fleener & Rogers, 1999, p. 14).
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Fleener, et al., (2001) reiterates the importance of socioautonomy within social 

systems and focuses on the communicative process. The verbal exchange between 

student and teacher opens modes of exploration and encourages intellectual growth; 

this exchange is evident in language games utilized within the classroom. While 

some language games involve “playing at,” or participants using appropriate language 

and operations to achieve meanings, these meanings are perceived as external and 

often obscured. “Playing in” language games also obscures meaning and 

communication because it assumes a script where the performance of the participants 

is measured against that pre-existing script. Individual autonomy may be achieved in 

both approaches, but true communication and shared knowledge is not. However, 

incorporating both types of language games, as well as “playing with” an approach 

that requires a teacher to act as an encourager, not an evaluator may be beneficial, but 

only if the role of listening is tantamount. Evaluative listening, or eliciting certain 

responses and interpretive listening, or listening for certain responses, do not 

encourage the generation of ideas (Davis, 1997) necessary for the development of 

understanding and autonomy which is vital for an individual’s ability to 

communicate, respect others, function within a team, analyze information, make 

decisions, and evolve socially (Rogers & Long, 2002). Rather, understanding and 

autonomy is best developed when students are engaged in autonomous activities in 

supportive environments. These supportive environments are best provided through 

researchers/teachers who are prepared to operate in an autonomous fashion. To do 

this, educators must put theory into practice and constantly seek to understand the 

underlying principals and make decisions that are consistent with those principals.
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Furthermore, it is necessary to implement an autonomous-supportive framework in 

order to nurture the development of autonomous educators (Rogers & Long, 2002).

This study is rooted in social and cognitive theories of constructivism with an 

emphasis on developing mathematical autonomy through socio-autonomous activity. 

Also embedded in this theoretical framework is the rejection of a focus on 

individualism and competition in learning environments, emphasizing, instead, 

interconnectedness and care as fundamental to learning and the curriculum (Fleener, 

2002). Learning which takes place as a result of mindful engagement of the learner 

with his or her own environment, must be open and connected to other systems 

within the whole; it cannot be reduced to simple cause and effect. Learning, 

therefore, is adaptive and dynamic (Frigogine & Stengers, 1984; Wheatley, 1994). 

These perspectives are related to and compatible with some versions of 

constructivism. Constructivists view the learner as an active participant and sense 

maker of the daily experiences encountered both individually and socially 

(Bauersfeld, 1995; Cobb, 1989; Cobb & Bauersfeld, 1995; Cobb, Yackel, & Wood, 

1989, 1992, 1993; Confrey, 1990, 1995; Davis, 1990, 1997, 2000; Noddings, 1990; 

Shapiro, 1989; Simon, 1995; Steffe & Gale, 1995; von Glasersfeld, 1984, 1987, 1991, 

1995; Yackel, 1995). These perspectives emphasize the importance of social context, 

discourse, and experience. “Learning is the process by which human beings adapt to 

their experiential world” (Simon, 1995, p. 115).

This study includes consideration of not only problem situations that are 

nonroutine, engaging, and potentially meaningful to the students, but also harmonic to 

the participants’ prior mathematical knowledge and experiences. ‘“The most basic
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responsibility of constructivist teachers is to leam the mathematical knowledge of 

their students and how to harmonize their teaching methods with the nature of that 

mathematical knowledge’” (Simon, 1995, p. 120, quoting Steffe & Wiegel, 1992). 

Focusing on the students’ individual and collective mathematical autonomy through 

prolonged problem solving activity and not just on their tests achievement and rigid 

class-works is by far a greater challenge for both the teacher/researcher and the 

student.

Research Questions

This study will address the following questions:

1. What is the relationship between student engagement and problem 

type?

2. How does problem solving discourse evolve as students participate in 

a collaborative problem solving environment?

In the next chapter, I provide essential background information on the 

importance of nonroutine problem solving activities, dialogical problem solving 

process, student collaboration, and student engagement in collaborative learning 

environments. This background information is relevant to my study because my focus 

is on student pairs and small group nonroutine problem-solving activities, individual 

and collective construction of mathematical knowledge, and attentive communication 

as well as working toward an evolving problem solving discourse as students 

participate in a supportive collaborative problem solving environment.
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CHAPTER II

REVIEW OF RELATED LITERATURE

Most historical views of problem solving make a distinction between 

acquiring knowledge and applying that knowledge. Applying knowledge through 

problem solving in different contexts is a goal of mathematics education. 

Understanding how generalization to new contexts occurs is of central concern to 

learning theories. Interweaving learning theory, curriculum and instruction, 

mathematics education research and theory explores how to make mathematics 

meaningful for students.

Important to meaning-making efforts is the role of communications and social 

relations. Mathematical communications include classroom discourse as well as self- 

talk. Related to self-reflection and metacognition, some mathematics education 

researchers are exploring the role language plays in students’ mathematics learning 

(Fleener, et al., 2003; S fard, 2000) while others emphasize social discourse as a 

function of classroom norms (Yackel, 2000) or culture (Applebaum, 1995).

This chapter will explore the role communications may play in mathematical 

problem solving. The first section discusses the importance of nonroutine problem 

solving activities in mathematics for students’ learning. The second section addresses 

the role of student discourse in problem solving, and reviews studies that explore the 

problem solving processes examining mathematical conversations. The third section 

discusses the research literature on student collaboration during problem solving, and 

the fourth section explores the literature on student engagement in collaborative
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learning environments.

Nonroutine Problem Solving

Problem solving, as a thinking process, implicates imderstanding that requires 

using prior knowledge, concepts, and understandings as well as newly constructed 

knowledge on the part of the student during his or her own mathematics problem 

solving experience. Learning mathematics means becoming a mathematical problem 

solver.

In order to understand what nonroutine problem solving is, it is important to 

understand how problem solving has been treated in the mathematics education 

literature. From a broader perspective, problem solving involves reaching a goal by 

providing an answer to a given state in which an answer or solution method is not 

initially known (Mayer, 1982, 1985; NCTM, 1989, 1991, 1995, 2000; Pugalee, 1995; 

Wilson, et al., 1993). This central view is also consistent with historical perspectives 

of the role of problem solving in the mathematics curriculum (Stanic & Kilpatrick, 

1988). Pugalee (1995) defines nonroutine mathematical problems as “problems in 

which a possible solution or conclusion is not immediately evident” (p. 4). This 

definition is in contrast to the definition of routine problems; problems that are rigid 

and stress steps to be followed to reach a solution (e.g., Polya’s 1957 and 1973 stages 

of problem solving). This method of problem solving is widely known as “a classie 

and clichéd four-step procedure: ‘understanding the problem,’ ‘devising a plan,’ 

‘carrying out the plan,’ and ‘looking back’” (Calvert, 2001, p. 14).

According to Calvert (2001), routine mathematics instruction has a long 

history in classrooms as teacher-directed communication with sequential skill-
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oriented practice. This method of instruction, for the most part, is founded on the 

formalist perspective as articulated by George Polya (Calvert, 2001). Many 

mathematics educators look to Polya’s work when attempting to formulate 

methodology for teaching problem solving in the classroom. Characteristics of this 

approach include a linear, step-by-step method for problem solving, failing to take 

into consideration the dynamic nature of the problem solving process (Calvert, 2001; 

NCTM, 2000; Pugalee, 1995; Wilson, et al., 1993). Nonroutine problems can be used 

to encourage reflective approaches to problem solving, providing contexts for open- 

ended, dynamic methods and supporting student invention and creativity.

For example, Bransford, et al., (1996) discuss the issues of fostering 

mathematical thinking in middle school students who think they are “not good at 

mathematics” because all they have experienced has been routine, rule-following 

problem solving contexts (p. 203). Their research suggests it is necessary for 

educators to involve students with more than just routine problem solving, but also to 

utilize problem-based curricula including “class projects that are tailored to the 

interests and resources of students and their community” (Bransford, et al., 1996, p. 

218).

Bransford, et al., (1996) contend by varying educational approaches (i.e. 

computation-based, worksheet-based, and student generated problem-based), it is 

easier to “foster the kinds o f mathematical thinking that we [had] hoped to see in [the] 

classrooms” (p. 224). Although some of these approaches do have their drawbacks 

(i.e. collaborative learning became hectic at times, student-generated questions tend to 

tax a teacher’s mathematics knowledge, and it is difficult at times to develop “on the
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spot” tools to enable students to conceptualize certain elements), such approaches 

allow students to question and leam for themselves to become more reliant on a 

learning community for aid in implementing some ideas (Bransford, et al., 1996).

To flesh out this concept, Bransford, et al., (1996) implemented “the Jasper 

Woodbury Problem Solving Series’’'—̂  series of 12 videodise -based adventures. 

Studies of implementation efforts of the Jasper series show that by utilizing different 

mediums, students were able to conceptualize certain word-problems and develop 

new ways of solving these problems. This was true because the videos allowed the 

students to: identify and define their own word problems and to focus more directly 

on mathematical concepts, reasoning, and communication. Three key components 

emerged while conducting the research: students have variable views about 

mathematical thinking, changing these views is a daunting challenge, and our concept 

of mathematical thinking is still evolving; thus it is the educator’s duty to strive to 

evolve with this change (Bransford, et al., 1996).

Such variable views on the part of the student are dependent on the 

presentation of nonroutine problems, which should involve “a situation in which an 

individual or a group is called upon to perform a task for which there is no readily 

accessible algorithm” (Lester, 1980, p. 287). This very definition indicates the 

nonroutine nature of problems as tasks that require creativity for their completion. 

However, traditional teaching methods still seem to overshadow more reform-based 

standards. According to Kilpatrick and Silver (2000), traditionally, 

teachers/educators have accepted their responsibility by offering their students clear 

explanations and instructional objectives within a classroom, prefacing complex
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knowledge with “hierarchical sequences of purported prerec|uisites,” and tailoring

activities to individual needs (p. 226). Although such approaches are beneficial, 

Kilpatrick and Silver propose a contingent model of mathematics education instead of 

a more anticipant model, which carefully follows a path that has been worked out in 

advance. The contingent approach follows a path that emerges during the lesson. In 

this aspect, educators “orchestrate the discourse so that these students in this class 

will function as an intellectual community” (p. 226). In turn, intellectual 

communities must begin at the level of the nonroutine problem solving process.

During the problem solving process. Beamish and Au (1995) suggested a 

number of key issues for educators to keep in mind while solving (nonroutine) 

problems with their students: (1) problem solving skills (concepts) are to be 

experienced (2) opportunities for students to verbalize their plans should be provided 

and (3) problems that require careful planning and evaluation after solving should be 

offered. According to this study, the problem solving pedagogy should have, as its 

goal, the development of students’ individual intellectual autonomy as independent 

problem solvers.

Ernest (1991) states that mathematics is largely human problem posing and 

solving, mathematics education should be centrally concerned with this, and 

investigations should constitute a large part of the school mathematics curriculum. 

Although such an approach differs among educators and theorists, all share common 

distinctions between the object (or focus) of inquiry, the process of inquiry (the 

redefinition of focus as new questions are explored), and an inquiry based pedagogy 

(one that requires creativity for completion) that requires the teacher to relinquish
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some control over the process and allows students to find their own ways to solve the 

problem (Ernest, 1991). Such an emancipatory approach empowers learners 

epistemologically and encourages active learning.

The NCTM (1991) advocates such investigatory problem posing, problem 

solving, and generating activities by the learners and suggests students should be 

allowed to “formulate problems from given situations and create new problems by 

modifying the conditions of a given problem” (p. 95). To this end. Silver and Cai

(1996) set out to investigate the impact of open-ended problems for sixth and seventh 

graders. They developed an assessment instrument to measure students’ 

mathematical thinking, reasoning, and understanding while engaged in problem 

solving. The students were asked to pose questions, provide answers, and justify their 

solution processes from the open-ended problems, which was then examined for 

solvability, complexity, and relationships within the sets of posed problems—large 

number of generated posed problems were categorized as being complex and solvable 

and nearly half were categorized as being sets of related problems. In addition to this 

study, there have been several studies which examine the impact of experience in 

formal problem solving. These studies suggest generative activity increases student 

interest and has a positive effect of students’ conceptual understanding (English, 

1998; English & Halford, 1995; Kilpatrick, 1987; Silver, 1994; Silver & Cai, 1996; 

Silver & Mamona, 1989; Silver, et al., 1990). Such studies illuminate the needs for 

educators to develop problem solving and problem posing skills if children are to 

experience “the diverse problem posing we desire,” (English, 1998, p. 100).

Henningsen and Stein (1997) address limitations in students’ thinking,

25



reasoning, approaches to problem solving, and conceptual understandings in 

mathematics. To this end, the authors pose a question—what does it mean to be a 

mathematical doer and thinker?—and argue that answers to this question depend on 

one’s view of the nature of mathematics. To further problematize this, Henningsen 

and Stein offer a view of mathematics that (1) is based on a dynamic and exploratory 

approach toward the discipline—citing Romberg (1994)—(2) requires a person to 

focus on the active and generative processes engaged in by doers and thinkers of 

mathematics—citing Schoenfeld (1992)—and (3) involves the use of tools to explore 

patterns, frame problems, and justify reasoning processes systematically—citing 

Burton (1984); National Research Council (1989); Romberg (1992); Schoenfeld 

(1992,1994).

Additionally, Henningsen and Stein (1997) believe students’ learning should 

be “seen as” the process of developing and gaining a ‘“mathematical disposition,” as 

well as gaining “mathematical knowledge and tools” (p. 525). In order for such 

processes to occur, classrooms should become environments in which students may 

actively engage in mathematical activity that is rooted in rich, meaningful, and 

worthwhile mathematical tasks (Henningsen & Stein, 1997; NCTM, 1991, 2000; 

Resnick, 1987; Schoenfeld, 1994), which are central to students’ thinking and doing 

of mathematics because tasks convey messages about what mathematics is, provide 

contexts for students’ thinking, and may place differing cognitive demands on 

students (Henningsen & Stein, 1997, citing Doyle, 1983; Hiebert & Weame, 1993; 

Marx & Walsh, 1988).

Similarly, Glasersfeld (1995) presents a learning theory that emerges from
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Piaget’s work and summarizes that “cognitive change and learning in a specific 

direction take place when a scheme, instead of producing the expected result, leads to 

perturbation, and perturbation, in turn, to an accommodation that maintains or 

establishes equilibrium” (p. 68). This theory of cognition involves two kinds of 

viability—a term borrowed from Piaget’s work—and a twofold instrumentalism. 

Glasersfeld (1995) purports on the sensorimotor level, viable action schemes, as 

instruments, enable individuals to achieve goals as they experience in their 

interactions with the world. On the level of reflective abstraction, however, operative 

schemes enable an individual to develop a conceptual framework that reflects both 

thinking and acting, which, at their present point of experience, is viewed as viable 

(Glasersfeld, 1995). This first level might be called utilitarian—another term 

borrowed from Piaget—while the second may be referred to as strictly epistemic. 

Glasersfeld (1995) concludes that only “knowledge that results from inductive 

inferences and generalizations” allows these two levels to correspond “with 

ontological reality,” and that “thought experiments constitute what is perhaps the 

most powerful learning procedure in the cognitive domain” (p. 69). Again, the 

implication here is that students be allowed to engage in cognitively demanding 

activities in order to develop a deeper mathematical understanding.

Henningsen and Stein (1997) cite Bennett and Desforges (1988), Doyle (1983, 

1986, 1988), and Stein, et al, (1996) to concede that setting up instructional tasks to 

engage students in eognitively demanding activities has its difficulties. Specifically, 

they suggest problems with challenging students include (1) complex tasks often 

devolve into less demanding or sequential routines (2) a lack of alignment between
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tasks and students’ prior knowledge restrict the potential benefits of providing 

cognitively challenging activities and (3) a higher personal risk occurs for students 

than is typically experienced in performing more routine activities. Yet they theorize 

that these difficulties may be due to classrooms’ factors—teachers’ lack of 

expectation for students to demonstrate understanding of the mathematics underlying 

the activities in which they are engaged, connections with students’ prior knowing 

and understanding, appropriateness of cognitively demanding tasks with students’ 

levels and kinds of prior experience, and allowing inappropriate amounts of time to be 

devoted to tasks.

In this study, Henningsen and Stein (1997) draw data from an earlier 

investigation—Stein, et al., (1996)—to explore the relationship between classroom 

environments and students’ abilities to navigate problem solving with high-level 

mathematical thinking. Their study is “based on the premise that prior failures of 

poor and minority students are due to a lack of opportunities to participate in 

meaningful and challenging learning experiences rather than a lack of abilities or 

potential” (Henningsen & Stein, 1997, p. 527). They incorporate a previously 

constructed conceptual framework (e.g., Stein, et al., 1996) to define a mathematical 

task as a classroom activity with an aim to focus students’ attention on a particular 

mathematical concept. They purport when students were allowed to participate in a 

more dynamic classroom environment, students’ engagement and high-level problem 

solving increased, and were decreased when problems were simplified and/or taken 

over by the teacher, or when an insufficient amount of time was given the students to 

solve the problems.
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Henningsen and Stein (1997) also noted that when students were instructed to 

refer to Polya’s four-step processes as they solved problems, which “may have 

encouraged self-monitoring and regulation,” found that “[djuring task 

implementation, students’ cognitive processes declined into procedural thinking that 

made little if any connection to understanding or meaning” (p. 541). The same 

conclusion was drawn in Keys, et al.’s, (2003), Riordan and Noyce, (2001), and 

TIMS-R (1999), suggesting the importance and value of nonroutine problem solving 

opportunities for cognitive engagement.

While addressing the centrality of the development of mathematical reasoning 

in mathematics education, Reid (2002) cites former research that addresses juvenile 

spontaneous reasoning in mathematics—(citing e.g., Artzt & Yaloz-Femia, 1999; 

Tang & Ginsburg, 1999)—, their approaches to argumentation—(citing e.g.. Ball & 

Bass, 2000; Maher & Martino, 1996; Wood, 1999; Zack, 1999)—, teaching that 

supports reasoning—(citing e.g., Boldt & Levin, 1999; Fraivillig, Murphy, & Fuson, 

1999; Lampert, 1990; Yackel & Cobb, 1996)— , assessing reasoning—(citing e.g., 

Carroll, 1999)—, and the very nature of mathematical reasoning—(citing e.g., Steen, 

1999; Sternberg, 1999). Reid (2002) concludes that mathematical reasoning can 

further be examined in terms of ‘̂‘ways of reasoning (deductive, by analogy, etc.), 

needs to reason (to explain, explore, verify), and the degree of formulation or 

awareness of reason” (p. 6). The underlying theories of this perception are rooted in 

enactivism, which he divides into four major aspects: “structure determinism, 

cognition as bringing forth a world, coevolution of structures, and observer 

dependence” (p. 7). Mathematics, therefore, as embodied experience, must unfold for
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each individual as all students are provided experiences and opportunities for 

challenging their thinking and exploring their understandings.

McCaffrey, et al., (2001) suggest recent reform movements—(e.g., the 

National Science Foundation (NSF) and the National Council of Teachers of 

Mathematics (NCTM)—emphasize mathematics instruction that engages students’ 

advances the development of their cognitive processes. This approach to mathematics 

curriculum implicates classrooms as communities instead of collections of 

individuals, uses logic to verify results instead of teacher authority, focuses on 

mathematics reasoning instead of procedures, emphasizing invention and problem 

solving rather than mere answer finding, and encourages students to make 

connections among these ideas (McCaffrey, et al., 2001).

Additionally, reform educators include cooperative learning groups and 

inquiry-based activities in the classroom—a practice that provides the application of 

mathematics to novel situations and encourages flexible thinking among students who 

are then able to outperform students who are taught through procedure and 

memorization (McCaffrey, et al., 2001). As an amendment to these reform efforts, 

McCaffrey et al. investigated professional development and student achievement by 

observing a group of tenth-grade mathematics students some of whom were enrolled 

in reform-based mathematics courses, while others were enrolled in traditional 

courses. The reform-based courses involved textbooks and activities that included 

cooperative project^hile the tr aditional courses utilized traditional algebra, 

geometry, trigonometry, and precaleulus course sequences (McCaffrey, et al., 2001). 

The reform-based courses challenged students to explore open-ended situations
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utilizing an exploratory approach, as well as collaborative projects. Of those that did 

incorporate reform curriculum in the classrooms, there were higher achievement test 

scores among the students (McCaf&ey, et al., 2001). Such reform requires educators 

to reevaluate the features of mathematics, which is precisely what Devlin (2000) does 

in the four faces o f  mathematics.

The author asserts that there are four faces of mathematics: it is a form of 

computation and problem solving, a way of knowing, a creative medium, and an 

application. Devlin (2000) posits that mathematics itself is a crucial educational tool 

because it allows students to develop ^Hhe ability to acquire specialized knowledge 

and skills'’ which, in turn, allows them to adapt to changing circumstances during the 

course of their working lives (p. 16). To this end, the author contends mathematics 

should be taught “not as a utilitarian toolbox but as a part of human culture,” much in 

the same manner that history or humanities is taught (Devlin, 2000, p. 17); he does 

not believe that the computative facet of mathematics should be ignored, but rather 

used in collaboration with other approaches. By realizing the many faces of 

mathematics, students are then able to make '"the invisible visible,” or to “see” and 

hence to understand that mathematics concepts are processes of intellectual creativity, 

connectivity, and human ingenuity. All the four faces of mathematics, he argues, 

must be brought to the classroom with various applications so that students are able to 

recognize the scope and depth o f the applications o f mathematics in their world 

(Devlin, 2000).

Similarly, Kilpatrick and Silver (2000) challenge mathematics educators to 

focus on classroom pedagogy to prepare students for lifelong learning. They argue
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that despite the fact that most school mathematics curricula are now richer in topics 

and take these topics further than those of a century ago, still “[s]tudents aren’t 

learning mathematics well enough; they leave school hating it.... The school 

mathematics curriculum is superficial, boring, and repetitious. It fails to prepare 

students to use mathematics in their lives outside of school” (p. 224). To promote 

students’ understanding of mathematics, Kilpatrick and Silver (2000) call for better 

teaching. They purport John Dewey’s observation of the past century—learning by 

doing and reflecting on what we do—as being extremely applicable to every day 

mathematics educators’ critical reflection for classroom discourse. The teacher’s role 

is to create a situation that allows students to make observations, seek clarification, 

and challenge them in order to explain or justify their thinking. The educator’s role is 

to respond to his or her student and create an environment in which students may 

develop their own (and one another’s) understanding.

On that note, Stevens (2000) echoes the sentiments of many mathematies 

educators and instructional designers including Paul Cobb, and advocates a type of 

educational process which he terms “project-based mathematics (PBM),” which 

involves the following basic structure: “students work on projects guided by the 

teacher, usually in groups, that are extended over weeks or months and are organized 

around fields of inquiry other than disciplinary mathematics [that] are intended to 

give shape and meaning to student uses and learning of mathematics” (p. 105). The 

author cites Battista (1999) to claim that PBM education is controversial because it 

challenges traditional assumptions about what “counts” as mathematics, but he 

attempts to extend its usefulness by analyzing four interactional events involving
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middle school students and a teacher.

The author observed four students (of mixed ethnicity and varying degrees of 

familiarity with one another) over the course of the project and focused on the 

contrast between emergent problems and ones that were assigned. After observing 

their interaction and conversations as they tackled various problems, Stevens (2000) 

concluded that while such a nontraditional approach to teaching and learning 

mathematics is not yet settled in our school systeni,students were able to associate 

mathematics with experience and therefore gain a greater understanding of the actual 

concepts. Stevens contends that traditional mathematics is problematic because “it 

seems neither to teach people to use mathematics as a generative resource in their out- 

of-school lives nor to enlist enthusiasts; ... helping most students leam to use 

mathematical tools and ideas to support arguments, to work together, to make things, 

and to resolve problematic situations from daily life” are more important objectives 

than merely raising standardized scores (p. 139). In his study, the emergent problems 

seemed to have fostered mathematical learning and became vehicles to important ends 

within the team.

Cobb (2000) also discusses the situated approach that he (and his colleagues in 

other settings) takes regarding mathematics education—an approach that involves the 

teacher as an active part of a team that supports student’s autonomous learning. To 

explore this, he (and his colleagues— e.g., Cobb, et al., (2000))— implements varying 

problem solving activities into an experimental group, often incorporating computer- 

based tools. Each classroom event is then analyzed, discussed, and modified as the 

experiment eontinues. Two aspects of the experiment that is highly emphasized are
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the social perspective of the classroom (classroom social norms, sociomathematical 

norms, and classroom mathematical practices) and the psychological perspective 

(beliefs about individual role, others’ role, and general nature of mathematical 

activity; mathematical beliefs and values; and mathematical interpretations and 

reasoning). According to Cobb (2000), the social perspective brings to the fore 

normative, whereas the psychological perspective brings to the fore the diversity in 

students’ ways of participating in these taken-as-shared activities. Analysis of these 

aspects should then improve instructional designs to support students’ mathematical 

learning. This process of planning, instruction, and analysis enables an educator to 

evaluate his or her fieldwork and nurture their students’ mathematical understanding 

(Cobb, 2000).

Pertinent to fostering opportunities for students’ mathematical learning is 

problem-centered learning (PCL) environment. Problem-centered inquiry is an 

approach that consists of tasks, collaborations, and presentations in order to 

encourage students to explore mathematical issues and to see mathematics itself as a 

system of meaning, patterns, and relationships—not just procedures and computation.

An environment which utilizes PCL consists of open dialogue and involved 

activity among all students. This is prompted when students are given opportunities 

to work on open-ended problems that have no known solution, work individually or in 

groups to find possible solutions, and then refieet upon the proeesses used to form 

that solution (Wheatley 1992). Successful approaches to PCL in students’ 

mathematical problem solving involve tasks (which may take more than one hour to 

solve and involve more than one mathematical concepts), groups (or homogonous
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pairs, which differs from cooperative groups that usually involve assigned roles that 

limits mathematical understandings and creates inequalities among its members), and 

sharing (at which point each pair shares their solution to the entire class, and explain 

and justify their methodology) (Cassel, 2002). In this sense, PCL allows students to 

develop their own methods of problem solving, while accepting responsibility for 

their own learning. To this end, the focus on explanation and justification in this 

environment illuminates the necessity for argumentation in the classroom. Because 

students must actively listen to one another, question, comment, and share, 

argumentation fosters an interactive environment that “allows a collective 

consciousness to emerge [and] become aware as a mathematics community” (Cassel, 

2002, p. 51).

Cassel (2002) notes that by explaining and justifying ideas, students are able 

to make new connections that form a mathematics community focused on the 

development of mathematics ideas (Reynolds & Wheatley, 1996). To ensure that 

mathematics discussion does not break down in the discourse, echoing Cobb, et al.,

(1997), Cassel (2002) stresses the need for “‘reflective discourse,’ [which] is a 

sociological construct by which a mathematical action becomes an entity, which can 

be manipulated” (p.39). By turning action into discussion, argumentation allows 

students to observe other perspectives within their dialogic community and form new 

ideas. To nurture such a community, then, teachers must act as facilitators, ask 

students to explain their thinking, listen, and respond by selecting activities which 

will further their mathematical thinking. Students, not teachers, should be the main 

contributor in this type of dialogue. By allowing students to discuss, present, and
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challenge each other’s ideas, teachers provide rich argumentative opportunities, which 

may foster students’ mathematical understanding. By attempting to convince others 

“through the use of certain modes of thought” (Woods, 1999, p. 170), students 

participate in discursive exchange, which allows them to make judgments, not just 

accept solutions; in short, they become autonomous, or “self-governing” (Kamii 2000, 

p. 71). This social interaction is a vital component in students’ development of logic 

because it allows them to discard erroneous reasoning and come to an agreed solution.

Cassel (2002) refers to this process as synergistic argumentation because the “sum 

total of the effectual learning” of the entire dynamic group is greater than a mere 

compilation of each individual’s learning (p. 166), and create a dynamic dialogic 

community that motivates and interests students to become an active participant in 

their own learning.

Summary of Major Points

From both literature and application, it is safe to conclude that mathematics 

learning is increased with the use of nonroutine problem solving and the development 

of dialogic communities. Nonroutine problem solving is open-ended and allows 

multiple solutions, thus inviting greater conceptual understanding. In turn, this type 

of problem solving restructures the level (and focus) of communication between 

students and teachers, students and students, and students and self. Although such a 

shift in the classroom environment has its drawbacks, research suggests that these are 

outweighed by the benefits and will ultimately create more autonomous learners. 

Tied to nonroutine problems and the emergence of a dialogic community, is the
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literature on dialogical problem solving process in problem-solving instruction. 

Communications and Problem Solving Process

Related to nonroutine problem solving, as delineated above, are issues of 

classroom curriculum, how children leam mathematics, and what constitutes learning. 

According to Sfard (2000), learning is inextricably linked to thinking. Learning is 

thinking and thinking is subordinated to, and informed by, the demands of 

communication. From this perspective, if having a better understanding of classroom 

discourse will offer a better understanding of “the dialogue one leads with oneself 

[and with others], then one must realize that investigating communication with others 

may be the best route to discovering the mechanisms of human thinking” (Sfard, 

2000, p. 296). To this end, the author claims the best route to discovering human 

thinking is to investigate the nature of communication. That is, communication 

within a classroom is not merely helpful; it is integral. Before explaining the many 

facets of her new research, however, Sfard (2000) offers a rather complex aspect of 

the many components involved in communication. She challenges the common 

notion that communication is merely an exchange of information and argues that one 

must realize that the only way to define the relation of sameness o f meanings is to say 

that this is the relation that enables successful communication, that is, that it is the 

relationship that conveys the meanings, not the information as conduits of 

information.

This theory is then utilized in her own goal, which is to study the implications 

of bringing mathematical objects into being when there is no ready-made discursive 

focus. In her study, she analyzed a classroom episode in which a group of seventh
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graders try to solve a problem that was intended for statistical thinking. “The 

students’ exchange is analyzed in terms of the discursive processes that underlie 

mathematical problem solving and that occasionally bring about the emergence of a 

new mathematical object” (Sfard, 2000, p. 298). The episode in question comes from 

a lesson in which the students were asked to choose which brand of battery had the 

longer life-span based on limited information. The students were able to view a chart 

on a computer screen that reflected the life-span of several batteries. Sfard (2000) 

notices that the students use concrete visual terms when discussing the batteries (i.e. 

“the greens are the longest”) and then compared two or more batteries, or colors, 

using spatial terms (“next to,” “higher ones”). By using spatial metaphors and visual 

terminology, the students attempt to create a more pronounced focus. One student 

looks for consistency in battery life-spans, while another looks for intensity; this 

diversity exemplifies the process of establishing foci. “The process of focus-building 

is a result of an intricate negotiation between these complementing needs for intuitive 

acceptability and operative rigor" (Sfard, 2000, p. 314).

By examining such interactions, she concludes that the effectiveness of verbal 

communication is dependent on the quality of the focus; this discursive focus is three­

fold: the pronounced element is public, the intended is private, and the attended 

mediates between the two. All three ingredients are discursive constructions that can 

only be realized through dialogue. Moreover, “\m\athematical objects arise out o f  the 

needs o f  communication instead o f  being primary to communication^' which is a 

“reversal of the Platonic belief about the relation between ‘mathematical reality’ and 

discourse about this reality” (Sfard, 2000, p. 323). In short, one must communicate
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effectively with one self as well as with others to develop a logical conclusion. Part 

of this communication process evolves through the eoneeptualization process, or 

more specifically, as Sfard points out: ^"Mathematical objects emerge through 

negotiations between metaphor and rigor and should be explored for mathematical 

creation (Sfard, 2000, p. 324).

Fleener, et al., (2002) examines Sfard’s research, which focuses on 

communication and interaction between students and teachers as a means to explore 

various ways of emergent meaning and shared understandings. According to the 

authors, Sfard (2000, 2001) focuses on communications, not reified ideas or things, 

and, in the process, illustrates the integral relationships between dialectical process, 

cognition, inquiry, experience, and ideas. Fleener, et al., (2002) also diseusses 

Wittgenstein’s language games approach to meaning and problem solving. By 

considering both approaches, Fleener’s study asserts social autopoiesis is an integral 

aspect of “shared understandings and emergent meaning” (p. 4). A key component to 

this notion is the idea of personal autonomy within soeial systems. Soeio-autonomy, 

then, is the “ereative potential for self-creation and self-produetion in soeial systems” 

(Fleener, et al., 2002, p. 5). In short, by engaging in a social system, individual 

participants also develop a sense of autonomy.

To continue their examination of the benefits of interactive dialogue in a 

classroom setting, Sfard and Kieren (2001) studied the conversations that took place 

between two thirteen-year old boys learning algebra. The authors focused on two 

main elements: focal analysis—(the mathematical content, or object level)and 

preoccupational analysis—(the participants’ engagement in the conversations, or meta­
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level)—in order to examine the reasons why communication sometimes fails in the 

classroom.

In this process, the authors realized that thinking was an act of communication 

itself, and once this is realized, they believed they could bridge the gap between 

private and social communication. Through their observation, videotaping, 

transcription, and analysis, Sfard and Kieren (2001) realized that the students solved 

the problems individually, they could not agree upon an answer in a collaborative 

setting. This, then, led the researchers to the conclusion that students’ mathematical 

problem-solving results may not be as important as their mathematics 

communication. Therefore, the role of conversation in learning is tantamount. In 

fact, Sfard and Kieren (2001) conclude that the notion of “communication [as] 

auxiliary to thinking and that mathematical knowledge and thoughts, are somehow 

primary to, or at least independent of, the acts of communication” (p. 47) is false. In 

short, thinking takes place within the activity of communication and simultaneous 

intra and interpersonal discourses shape one another. Furthermore the researchers 

define the nature of effective communication as an act that fulfills the participants’ 

expectations and actually changes the way he or she might approach similar situations 

in the future.

In order to evaluate the effectiveness of communication, the authors offer an 

explanation of the different types o f communicative responses involved in a dialogue; 

reactive and proactive (or inviting a response) which form channels between the 

participants. By examining these two factors in relation to the interaction between the 

boys in their study, the authors concluded that while individual problem solving might
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be an easy task for most of the participants, verbalizing their problem-solving 

strategies with a group in a productive manner seemed more difficult. Therefore, the 

participants’ public channels of communication seemed dependant on their private 

channels of conununication. In other words, an individual’s knowledge of the subject 

matter had little impact on his or her ability to transfer this information to another. 

Yet the concept of learning by talking is integral to mathematics education and has 

proven to be beneficial to many students. Sfard and Kieren (2001) conclude, 

however, “[i]t is not necessarily true that two people who join forces can do more 

than the sum of what each one of them can do alone” (p. 70), and the reason this is 

true is because of the absence of productive communication. This dilemma, the 

authors contend, can be rectified by teachers who are able to facilitate perceptual 

mediation among their students; productive communication can be taught, and that 

should be the goal of every teacher (Sfard & Kieren, 2001).

The role of communication is vital in education and must also be examined in 

a pedagogical context. Menon’s (1995) study, is an attempt, to “augment research on 

the role of context in problem posing ... by studying student-constructed questions 

(SCQ) of some grade 5 and 6 students” (p. 25). More specifically, the author points 

out that individuals who are poor problem solvers in a classroom setting are not 

necessarily poor problem solvers in other contexts (Greeno, 1989; Menon, 1995; 

Stigler & Baranes, 1988). Within this frame o f mind, Menon (1995) investigates his 

study with 5th and 6th grade students using student-constructed questions (SCQ), 

such as: ‘“ [wjrite a word problem involving common and decimal fractions’” (p. 26). 

Students, then, worked in class, once a week, first in groups, and then individually.

41



for about twenty minutes to construet and write the SCQ. According to Menon, 

results from this SCQ activity points out to the importance of using student 

experience and interest as the context of the SCQ, which, generally, reflects students’ 

daily, out-of-school or in-school experiences. There is a call for motivating students 

“to take responsibility for and ownership of their learning” (Menon, 1995, p. 31). 

Koehler and Grouws (1992) echoing Yackel, et al., (1990) remind us that students’ 

dialogical problem solving processes or peer-interaction during problem-solving 

activities is responsible for much of the learning that takes place.

Mathematics communication requires an understanding of symbolization in 

problem solving. In the introduction of their book Yackel and Cobb (2000) explore 

the role symbols play in students’ mathematical learning and concludes that 

symbolizing and communicating is a much more dynamic approach to education than 

the previous static views of representation indicated; such an approach proactively 

supports mathematical learning instead of just merely analyzing activity. In this 

fashion, smdents are ahle to hegin their experience using conventional mathematics 

symbols, but can eventually come to invent ways of symbolizing, which in turn allows 

the mathematics community in which they participate to explore new mathematical 

approaches. Because of this conclusion, Yackel (2000) focuses more on the activity 

of symbolizing rather than the symbols themselves. Similarly, Cobb (2000) concurs 

with the notion that symbolizing is integral to mathematieal aetivity. However, as 

was concluded with Yackel, Cobb (2000) summarizes, “a student’s use of symbols 

involves some type of meaning, and that development of meaning involves 

modifications in ways of symbolizing” (p. 19). In short, a student’s experimental use
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of conventional symbols within a dynamic framework lends to the creation of new 

meaning. Such a process involves communicative relations between teachers and 

students, and to reinforce this notion, he cites Sfard and Dorfler’s (2000) concern with 

both the subject and process of communication between the two parties. This process 

can be seen in the various ways students approach problem solving. One might graph 

information internally, while another might verbalize his calculations externally, but 

both students engage in an active discourse with conventional symbols in order to 

arrive at their own meaning (Cobb, 2000).

Moreover, in the same book, Lesh and Doer (2000) continue to support the 

notion of communicative engagement in the classroom and offer a definition of 

models and modeling as a research perspective. A model is a system that consists of 

''elements," "relationships among elements,” "operations that describe how the 

elements interact,” and "patterns or rules, such as symmetry, commutativity, or 

transitivity that apply to the preceding relationships and operations.... To be a model, 

a system must be used to describe some other system,” and “to be a mathematically 

significant model, it must focus on underlying structural characteristics of the system 

being described” (p. 362). In an educational setting, this model then depends on a 

larger conceptual system such as language or symbols, thereby allowing students to 

utilize such tools to create new types of systems. Although some of this newly 

cognized ability or “representation system” cannot be shared with others, much of this 

information may be externalized, which allows other members of this model 

“community” to develop new internalized systems, thus enabling them with a greater 

problem solving ability (p. 364). In this way, models are formed not just by
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individuals, but by communities. Again, this is a dynamic activity, not static one; 

attention must be paid to the process, not the product (Lesh & Doer, 2000). This 

shared language of the classroom is a vital component to student collaboration. 

Student Collaboration

Gokhale (1995) defined a collaborative problem-solving context as the 

grouping and pairing of students for the purpose of academic (mathematics) learning. 

The students are responsible for one another’s learning as well as their own. In her 

own study she compared undergraduate students enrolled in Basic Electronics; one 

class was individualized while one was collaborative, and she concluded that student 

collaboration fosters the development of group critical thinking through discussion, 

clarification, and analysis. According to Gokhale (1995), student collaboration, in a 

dialogic problem-solving process, aids in the development of critical thinking through 

discussion, clarification of ideas, and evaluation of others' ideas. Gokhale (1995) 

posits the mathematics learning community should be a verbal community, where 

talking, listening, writing and reading are important areas of the activities.

Stein, et al., (1994) pointed out that students’ engagement, collaboration, and 

negotiation through the problem solving process are essential elements of establishing 

a transformative pedagogy. For example, in a collaborative learning environment, 

students work together to solve problems just as teams of people work together in the 

workplace to solve problems.

Mathematics learning community, therefore, should focus on experience and 

relationships in order for students to realize their discursive potential; such a focus 

will allow students to take responsibility in their own learning process (Fleener,
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1999). This approach is referred to as transformative education and involves 

collaborative critical inquiry, which will empower students and allow them to 

overcome anxiety about mathematics learning. The classroom can then be seen as an 

autopoietic social system where students can engage in a dialogic relationship with 

other individuals and with the environment itself. Such systems of communication 

and experience will allow students to develop mathematics potential and engage in 

meaningful mathematics discourse. In short, social meaning transforms those 

involved (Fleener, 1999).

The concept of students’ collaborative problem solving has been addressed by 

others as well. For example, Maher and Martino (1996) began their longitudinal case 

study with the notion that when students are given opportunities to work in 

collaborative environments to initiate conversations with others and compare their 

ideas, they are afforded more momentums to build on concepts they have already 

learned. Thus, conversation, collaboration, and problem solving are combined to 

provide opportunities for meaning-making beyond what an individual typically may 

experience alone. When students are allowed to work collaboratively in groups and 

offer “proof and justification” for their answers, “disparate and distinct structures of 

knowledge interact and eventually become integrated” (Maher & Martino, 1996, p. 

197). The authors observed one student over five years and evaluated her progress by 

choosing critical events from classroom activity, classroom discussion, individual 

interview, small group assessment, and written assessment. Through prolonged 

collaboration, the student was able to develop more and more sophisticated arguments 

to support her solutions.
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Collaborative learning is not without its opponents, however. Lieken and 

Zaslavsky (1997) caution that although several studies have stressed the importance 

of students’ active role in collaborative learning process, many educators have 

criticized collaborative learning because it allows some students to develop stronger 

problem-solving skills, but fails to enable the lower-end achieving students to have 

similar experiences because sometimes, for example, “highly competent students, by 

exhibiting far more active behavior, tend to dominate less competent students” (p. 

334^

Drawing on Cummins and Sayers (1997), Fleener (1999) tells us that 

transformative pedagogy through collaborative critical inquiry is: (1) grounded in the 

lives of students (2) critical (3) multicultural, antiracist, pro-justice (4) participatory, 

experiential (5) hopeful, joyfiil, kind, visionary (6) activist (7) academically rigorous 

and (8) culturally sensitive. “Experiencing, embracing, and loving mathematics rather 

than mastering, controlling, or over-coming mathematics supports meaning-making 

and relationships with mathematics” (Fleener, 1999, pp. 102-103).

Further analysis of collaborative learning yields similar results. In her study, 

Dupree (1999) examines the relationships within a classroom of all-female students in 

an attempt to re-think traditional approaches of mathematics education, which may 

lack the personal level needed to foster mathematics understanding. The author 

stresses that students should not be mere recipients of lectures, but should actively 

participate in their own education. To do this, they should be encouraged to engage in 

problem-posing exercises (Dupree, 1999). Such an approach will lead students to 

becoming mindful problem-solvers instead of simple followers of pre-ordained rules.
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In her study, collaborative problem solving was supported and facilitated by 

classroom conversations and opportunities for personal reflection. The classroom 

environment seemed crucial to supporting collaborative problem solving and 

reflective practice.

These environmental aspects include teachers who help students understand 

concepts instead of just teaching students how to do something (which seems to be 

the case in the United States), and collaborative activities that include both problem 

solving and problem posing. For this to occur, Dupree (1999) argues, there must be a 

sense of trust established within the classroom, which is established by listening and 

valuing one another’s commentary.

Posing nonroutine problems and involving students in meaningful and 

challenging mathematics explorations and problem solving opportunities in a 

collaborative environment can support not only the development of individual 

understanding but may also contribute to individual and socioautonomy as key 

features of growth (Fleener, 2002; Yackel & Cobb, 1996). The next section supports 

the need for more research in the area of student engagement in 

collaborative/transformative learning environments.

Student Engagement in Collaborative Learning Environments

The previous sections have reviewed the literature on nonroutine problem 

solving, conversation as important to mathematical understandings, and collaboration 

as supportive of inquiry approaches to instruction that elicit and support mathematical 

discourse. Such a mathematical discourse is multi-faceted, but can be summarized 

with the following characteristics: Nonroutine problem solving, student discourse,
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collaboration, and student engagement.

Nonroutine problems or projects, as mentioned before, must be dynamic and 

creative in nature. This may involve student-generated problems and an 

implementation of technical (i.e. the Internet) aids. This type of problem solving is 

more of a contingent educational model, in that instructors do not anticipate certain 

responses from students, but allow them to come to their own conclusions. Such a 

model changes the teacher’s role, in that he or she must relinquish some control and 

allow students to become more reliant on a community and themselves for their 

learning. The creation of a learning community must involve student discourse; 

students must actively engage in mathematics activity, perturbation, and 

argumentation. By creating a discourse, the educational emphasis is on invention, not 

procedure, which further enables the development of both the individual and the 

community. Verbalization is the key to better-thought and better education; therefore, 

students must actively listen to one another, but teachers should also listen “to” 

students and not “for” a particular answer, which may hinder mathematical growth 

(Davis, 1997). Once student discourse is established, collaborative learning becomes 

an integral component of the reform-based classroom. Collaboration allows students 

to connect in new ways, foster intellectual creativity, and utilize project-based 

mathematics—an approach that allows students to associate mathematics with 

experience and soeial perspectives. As stated earlier, problem-centered learning 

fosters mathematical and conceptual understanding among participants, which lends 

itself to mathematics learning in general. Further, collaborative projects are based on 

student engagement. Communication with others (and with self) is vital to thinking.
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With communicative exchange, students are able to conceptualize and verbalize (both 

privately and publicly) to form a shared understanding and personal meaning. This 

development of autonomy in social systems improves individual potential for self- 

creation and production. For this to occur communication must be productive; 

teachers must facilitate perceptual mediation and create a trustworthy classroom 

environment that will perpetuate the creative and reflective process.

When students are offered opportunities to be inventive, collaborate with other 

students, and work on problem inquiries which are meaningful to them, they can build 

bridges to new and better understandings of and develop a deeper understanding and 

appreciation for mathematics. As understanding develops, so can confidence. 

Student confidence in solving mathematical problems has been found to be a 

significant predictor of their ability to effect mathematical learning (Pajares & Miller, 

1995). Confidence, reflective thinking, imagination, and creativity may also be 

supported by social factors, including working in groups to solve difficult tasks. In 

addition, research on mathematical discourse supports a problem solving approach to 

mathematics learning. Historically, problem solving in mathematics has been viewed 

with a distinction between acquiring knowledge and applying that knowledge. This 

approach to problem solving is plagued by a push for correct answers and the 

practicing of skills. Correct answers with or without understanding are speedier for 

students to achieve, require less time on the part of teachers, and can be easily utilized 

to assess student performance. Therefore, the focus of instruction is on helping 

students to produce the correct answers. The benefits for this rigid-type of 

instructional procedure are questionable. Dewey (1926) warned educators about this
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by arguing that the quality of mental process, not the production of correct answers, 

should he the measure of educative growth.

This exploratory study focuses on students’ nonroutine problem solving 

conversations in the area of mathematics. This dialogic problem-solving 

investigation will include learning opportunities in which students are challenged to 

think critically and to engage collaboratively to resolve their own problems and to 

understand and use mathematics. When students are allowed to work together in 

pairs or in a group to negotiate in choosing solution strategies and how to go about 

resolving their differences, they are given opportunities to collaborate, negotiate, and 

discuss mathematics as well as work toward the establishment of a supportive and 

synergistic context of a dialogic community.
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CHAPTER III 

THE RESEARCH DESIGN AND METHODOLOGY

In this chapter I present my researeh design and methodology, whieh are 

strongly influenced by Guba and Lincoln (1985, 1994) constructivist inquiry. The 

interpretive methodology, which 1 use in this study, is consistent with the current 

theories of learning mathematics. In summation, the research and application that 

follows is based upon the constructivist theory that learning varies from one 

individual to the next and cannot be effectively achieved with a blanket instructional 

method. Education, therefore, must not be treated as a factory that produces learned 

individuals, but as a multifaceted, eontextual environment that fosters individual 

development within an interactive eommunity.

In what follows, 1 outline the rationale for the use of the naturalistie 

(constructivist) inquiry approach in this study. Then, 1 restate the research questions. 

The eontext of the study is next whieh ineludes deseriptions of the sehool and 

research settings and the participating students. Finally, 1 describe the procedures for 

this study, which are comprised of the data sources, the data collection, and the data 

analyses as well as the trustworthiness of the gathered data.

Rationale for Constructivist Inquiry Approach

Guba and Lincoln (1985, 1994) point out three crucial philosophical 

differences between positivistic and constructivist (post-positivistic) inquiry. These 

three differences are ontological, epistemological, and methodological in nature. 

Ontology refers to the nature of reality. Epistemology relates to ways of knowing.
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Methodology defines how we do research.

Ontology. The nature of reality—the positivist views reality as being single, 

tangible, and “out there.” The goals of the positivist researcher are for accurate 

prediction, discovery of underlying truths, and ultimate mastery over our 

environment. In education, therefore, positivist research attempts to identify the 

variables and discover the methods that “produce” the “best” learning. The 

constructivist (post-positivist) envisions reality to be multiple, contextual, and 

interactive constructed by the individual. Therefore, it cannot be predicted and/or 

controlled. Constructivist learning, therefore, challenges the positivist assumptions 

that learning is the same for different individuals and that learning can be “produced” 

by instructional methods. These ontological differences between the positivist and 

the constructivist perspectives also involve implications for epistemological 

differences.

Epistemology. Ways of knowing—the positivist version of the relationship of 

knower to the known is completely dualistic and objectivistic and suggests that the 

inquirer (the knower) can function in total independence from the object of inquiry 

(known) without influencing the “object.” In contrast to this view, the constructivist 

envisions the relationship of knower and known as being inseparable and dialectical, 

and it suggests that the knower and known are interactively related and thus influence 

one another. Moreover, the naturalist (constructivist) believes that it is through this 

interaction that realities are shared and negotiated which help each knower to create 

his or her own meaning toward the development of his or her own construction of 

new knowledge. Ontological and epistemological differences between the positivist
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and constructivist (post-positivist) are directly connected with the way each does 

research, hence, the methodology.

Methodology. With implications for implicit values in inquiry—the positivist 

views research as being value-free and the goal of research is to generalize findings 

for the purpose of evaluation, measurement, or assessment. This method of 

measuring can be guaranteed by virtue of the objective methodology employed, which 

is based on the premise that by controlling “factors” within an environment the 

hypothesized effect will occur. That is, there exists a linear relationship between 

cause and effect (Guba, 1981; Guba & Lincoln, 1985, 1994). The constructivist, on 

the other hand, questions the generalizability of any research finding in positivistic 

terms and envisions all inquiry to be value-dependent and therefore impossible to 

separate causes from effects.

The positivist aims to produce research with human respondents as “subjects” 

and “...ignores their humanness, a fact that has not only ethical but also validity 

implications” (Guba & Lincoln, 1985, p. 27). That is, the positivist attempts to 

control and quantify our environment to produce desired results; therefore, his or her 

research is deterministic and reducing. The constructivist, however, views him or 

herself as well as other humans (participants) as the primary data-gathering sources 

and elects to carry out research in the natural setting “...to allow the study design to 

emerge (flow, easeade, unfold) rather than to eonstruet it preordinately...” (Guba & 

Lincoln, 1985, p. 39) because what may emerge during the interaction between the 

knower and the phenomenon is largely unpredictable in advance. Moreover, it is 

through these interactions that meanings and interpretations of multiple realities are
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shared and negotiated which may give birth to new understandings. The relationship 

between social interaction and student learning is complex, as is its analysis. In order 

to provide a more concise definition of dialogic communication and establish 

guidelines for evaluating classroom discourse (i.e., between student to student, 

student to teacher, etc.) I relied upon criteria set forth by Cobb and Yackel in 1995. 

Studying Dialogic Process

Cobb and Yackel (1995) offer an emergent design approach to study the 

complexity of social interaction and student learning. The emergent approach, which 

is viewed as a version of social constructivism, involves coordination of 

interactionism and psychological constructivism, which attempts to interpret the joint 

activity of the learners in the learning environment. The framework of this approach 

includes social norms, sociomathematical norms, and classroom mathematical 

practices. This approach is particularly relevant to the design of the current study, as 

described below.

Social Norms. Social norms, according to Cobb and Yackel (1995), account 

for an individual child's learning in the learning context by analyzing the conceptual 

reorganizations he or she has made while interacting with the other learners within the 

community. In such social norms, Cobb and Yackel (1995) concluded that (a) the 

most the facilitator can do is to initiate and guide the group discussions, allowing 

students to explain and justify solutions, ask questions, and make sense o f any 

interpretations which may go on in the social context (b) neither the social norms nor 

the individual students' beliefs are given primacy over the other (c) social norms and 

beliefs are seen to be reflexively related and neither exists independently of the other
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(d) social norms develop as students reorganize their beliefs and, conversely, this 

reorganization is aided by the social norms (e) this reflexive reorganization ean be 

applied not to just mathematical development, but to almost any subjeet matter.

Sociomathematical Norms. What counts as an acceptable mathematical 

explanation and justifieation during a mindful problem-solving interaction? Yackel 

and Cobb (1996) attempt to answer this question by foeusing on the joint aetivity of 

the learners with regard to their taken-as-shared basis for communication and 

discussion. This activity is termed as ‘̂‘sociomathematical norms, that is, normative 

aspects of mathematical discussions that are specific to students’ mathematical 

activity” (Yackel & Cobb, 1996, p. 458). What constitutes as an aeeeptable 

mathematical reasoning is agreed upon by everyone within the learning community. 

That is, when students and not just their mentor(s) consider the adequacy of an 

explanation given to others, rather than just for themselves, the explanation itself 

becomes the object of discourse.

Sociomathematical norms are signifieant in developing students' intellectual 

autonomy. When a researcher asks the students if anyone has a different 

mathematieal solution, the students must think about what constitutes a "different" 

solution from the solution already presented. This requires the student to explain his 

or her own thinking. Further, it requires the student to deeide whether a different 

solution is an efficient and aeeeptable solution. The joint aetivity o f the learners is 

very significant in the development of a student's responsibility to judge a solution as 

to its difference, its efficiency, and its appropriateness. This, then, is developing 

students' intellectual autonomy by drawing on the students' own intellectual abilities
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to make decisions and judgments. This is in contrast to intellectual heteronomy 

wherein students rely on an authority to know what action to take. Cobb and Yackel 

(1995) conclude: "These beliefs and values, it should be noted, are psychological 

constructs and constitute what the National Council of Teachers of Mathematics 

(1991) calls a mathematical disposition" (p.35).

Sociomathematical norms are important because they open wide the group 

activities, giving credence to students’ contributions and judgments as to what 

constitutes an acceptable mathematical explanation. And, while engaging in such 

mathematical group activities, the students are becoming autonomous in mathematics. 

With these guiding principles established, I set out to create my own study of social 

interaction and its relationships to student learning using nonroutine problems as focal 

points for mathematics communication.

In this study, the students’ nonroutine problem-solving discourse within pairs 

and in the group activities on searching, questioning, talking, listening, writing, 

negotiating, feeling, caring, sharing, and validating played a vital role for 

understanding and interpreting the research. This approach to research is called an 

emergent approach. The researcher, therefore, incorporated a combined research 

methodology of cognitive and social constructivism to best reflect and analyze the 

flow of this journey as the study unfolded. The implications of this methodology 

required asking questions, which were inherently unique to the context of the study as 

well as being complex, dynamic, and open-ended. These questions were nonroutine, 

demanded more opportunities for cognitive challenges, and required conversation 

with-self and with-others as well as having multiple possible solutions. By providing
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problems that could be approached in multiple ways and encourage communication 

among individuals and collaborative partners, it was possible to analyze how a 

constructivist, dialogic environment impacted student learning and problem solving. 

Therefore, a set of research questions was established to reflect this goal.

Research Questions

The purpose of this study was to examine the complex interplay among 

student beliefs, problem solving engagement, problem type, and mathematics 

understanding as well as the dynamics within group discourse among four ninth-grade 

mathematics students. The focus of this study was to explore the following questions:

1. What is the relationship between student engagement and problem 

type?

2. How does problem solving discourse evolve as students participate in 

a collaborative problem solving environment?

Yet before these questions could be addressed in data collection, it was necessary to 

establish the criteria by which the reliability and trustworthiness of gathered data 

would be determined, which was gleaned from Guba and Lincoln’s (1985, 1994) and 

Guba’s (1981) proposal for establishing trustworthiness.

T rustworthiness

Guba and Lincoln (1985, 1994), based on Guba’s (1981) proposal, give the 

techniques for establishing trustworthiness. These techniques focus on four criteria 

that best fit with constructivist epistemology, namely credibility, transferability, 

dependability, and confirmability. In what follows, borrowing from Guba and 

Lincoln (1985, 1994), I describe these four criteria in the context of nonroutine
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problem solving.

Credibility refers to those activities that increase the likelihood of authentic 

findings. According to Guba and Lincoln (1985, 1994), there are three such 

activities: prolonged engagement, persistent observation, and triangulation. 

Prolonged engagement refers to the investment of suffieient time to becoming 

oriented to the problem solving context. This orientation may take much needed time 

for the constructors of multiple realities to search, to question, to conjecture, to test, to 

validate, to share, to build trust, and to make sense of their own reality and the reality 

of the others. One validation of establishing credibility is acceptance of the findings 

by the members of the problem solving group being studied as well as by the critical 

consumer of the inquirer’s report. Data, analytic categories, interpretations, and 

conclusions, which may result from the researcher’s collective observations and 

triangulations, must be examined with the members from whom the data were 

originally collected. Guba and Lincoln (1985) call this member checking. Member 

checking is both formal and informal, and it occurs continuously throughout the data 

collection process. Member checking will enable the investigator to suggest that his 

or her representations are reeognizable by the prohlem-solving members as 

appropriate understandings of their own (and multiple) realities. Member checking is 

an important component of credibility.

A second component o f trustworthiness is the establishment o f transferability. 

The establishment of transferability, in a precise sense, is impossible. For its validity 

to “hold in some other context, or even in the same context at some other time, is an 

empirical issue, the resolution of which depends upon the degree of similarity
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between sending and receiving (or earlier and later) contexts” (Guba & Lincoln, 1985, 

p. 316). Therefore, transferability of the constructivist findings can only be possible 

through the provision of thick description.

A third component of trustworthiness is dependability. Reflecting on their 

previous paper (Guba, 1981), Guba and Lincoln (1985) tell us that there can be no 

validity without reliability and therefore no credibility without dependability. One of 

the ways to establish dependability can be reached by the review of triangulation of 

data in relation to credibility. Guba and Lincoln (1985) characterize this as overlap 

methods and suggest that it should not be necessary to demonstrate a separate 

approach for dependahility. Another approach for establishing dependability is 

through the inquiry audit, in a metaphorical sense, to authenticate the process by 

which the data were gathered and kept. An auditor examines the fairness and 

accuracy of the representation of the investigator’s overall study with the participating 

students, which is closely connected to confirmability, the fourth component of 

trustworthiness.

The major approach for establishing confirmability is the audit as mentioned 

above. There are several stages in assessing eonfirmability in a research study. The 

auditor’s first concern is to determine if the findings are grounded in the data. Formal 

and informal observations, interview notes, and clips from videotapes as well as 

document entries are examined. Next, the auditor is to reach a professional judgment 

about the appropriateness of inferences based on the gathered data, the 

appropriateness of emerging categories, and the quality of interpretations as well as 

the possibility of equally attractive alternatives. The auditor also looks at “the utility
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of the category structure: its clarity, explanatory power, and fit to the data” (Guba & 

Lincoln 1985, p. 323). Finally, the auditor reviews the inquirer bias to determine the 

extent to which the inquirer resisted early closure.

Because this study is grounded in social and cognitive constructivist 

methodology and focuses on students’ nonroutine problem-solving dialogue, issues of 

trustworthiness—credibility, transferability, dependability, and confirmability—will 

be considered in the design and in the implementation of the project where the 

establishment of a dialogic problem-solving pedagogy is the goal of this research. 

This study attempted to establish credibility by electing activities, which allowed for 

the investment of sufficient time on the part of the volunteer students to becoming 

oriented to the problem-solving context, persistent observation and triangulation, as 

well as continuous formal and informal member checking throughout the data 

collection. The establishment of transferability, as mentioned above, is impossible in 

a precise sense. However, the summary of appropriate, relevant, thick, and 

meaningful description, which has emerged from this study, could be utilized as the 

bases for an index of transferability on the part of potential appliers. The 

establishment of dependability and credibility are closely related and inseparable. 

One of the ways to establish dependability for this study is done by the review of 

triangulation of gathered data. These data are gathered from transcriptions of 

videotaped and audiotaped discussions during problem solving, dyad interviews, and 

group problem-solving dialogue meetings, as well as students’ verbal and written 

responses to questionnaires and problem-solving journal documentation and 

reflections, which are closely related to the establishment of the credibility for this
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research. Another approach for establishing dependability was to incorporate an 

inquiry auditor, as a “pump,” to examine and authenticate the process of the inquiry. 

The role of the auditor is important for establishing confirmability in the 

constructivist research methodology. In this study, the auditor determined whether 

the findings were grounded in the gathered data by tracing back via the already 

established audit trail to the gathered data such as interview notes, videotaped clips, 

and document entries. The auditor also checked the appropriateness of inferences 

based on the gathered data and the efforts made by the researcher during the inquiry to 

ensure genuine and meaningful study. Once it was established how data would be 

deemed reliable and trustworthy, the exact methodology for collecting this data was 

determined.

Procedures

The procedures for this study include data sources, data collection, and data 

analysis. In what follows, I describe each of these.

Data Collection. The data collection process occurred in two phases. The 

purpose of the first phase of the study was to gather background information and 

provide team-building opportunities among and between the volunteer participants. 

The first phase lasted approximately six weeks and included the following 

components: (1) group discussion and negotiation of study procedures with the 

participants (2) individual participants’ completion o f questionnaires on Mathematics 

Learning Inventory (MLI) and one-on-one interviews (3) two, one-hour group 

meetings for further collection of backgroimd information (4) observations of 

participating students’ preliminary pair and group activities starting the third week.
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During the second phase, the researcher (1) observed and videotaped student 

dyads during nonroutine mathematics problem-solving interactions (2) followed each 

dyad videotaped interaction with pair interviews and (3) met with all participants 

every month for approximately two hours to discuss students’ reflections on their 

nonroutine mathematics problem-solving interactions with peers, problem types, and 

group discourse. A final individual exit interview occurred with each of the 

participating partners at the concluding session of the study. Additionally, videotaped 

problem-solving sessions were made available for students to review and were used 

as prompts for follow-up interview sessions.

Data Sources. Data sources included the following: the students and parental 

consent forms (see Appendix A), the students’ written responses to questionnaires 

(see Appendices B -  D), the superintendent’s responses to my questions regarding the 

information about the sehool, and transcripts of videotapes and audiotapes gathered 

from students’ dyad problem-solving engagement and one-on-one interviews with the 

students. Data was also collected from transcripts of videotapes and audiotapes 

gathered from group discussions and dialogue occurring once every month for 

approximately two hours each time, my field notes fi-om pairs problem-solving 

observations, and the students’ journals.

Data Analysis. Data fi"om transcriptions of videotaped and audiotaped 

discussions during problem solving, dyad interviews, and group problem-solving 

dialogue meetings, as well as students’ verbal and written responses to questionnaires 

and problem-solving journal documentation and reflections were analyzed using a 

constant comparative method (Guba & Lincoln, 1985, 1994). The emerging
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categories from the multiple data sources were examined using a matrix of categories 

for comparing mathematics inquiry, inclusive use of technology, and mathematics 

understanding as well as changes within the dialogic discourse. This procedural 

framework was then applied to the selection of participants, research site, etc. The 

details that make up the context of this study are discussed below.

Context of the Study

This study investigated nonroutine collaborative problem-solving dynamics 

among four ninth-grade mathematics students. The number of participants provided 

ample opportunities to observe varying levels of interaction (i.e., one-to-one, within a 

dyad, and within a group), while still allowing for close observation and analysis 

permitted in a smaller group setting. The students attended Crossroad Christian 

School (CCS)*, which is a pre-kindergarten through twelfth-grade private school 

located in an urban area of about 500,000 people. There are several private and state- 

supported colleges and universities close to this school. While the participants were 

selected in cooperation with the school, all problem solving sessions took place away 

from the school either at my house or in public place. As mentioned above in “data 

collection,” a booklet provided by CCS principle is the source for information 

regarding the school.

The School. Crossroad Christian School (CCS) was established in the fall of 

1972 for grades one through eight. By 1976, the school was expanded to include pre- 

kindergarten through twelfth grade. CCS is a nonprofit, tax-exempt, private

* All names are pseudonym chosen by the participants.
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educational institution that is separately ineorporated and independently governed by 

a Board of Trustees. At the beginning of the 1988-89 school year, CCS moved to its 

present loeation.

The school’s first senior class contained eight students who graduated in May 

1977. After beginning with 200 students, enrollment declined to about 155 over the 

first three years. Then it began to increase, and growth has been relatively steady over 

the years. Currently, and since the 1986-1987 school year, each grade level contains 

two classes with a total school enrollment of approximately 1200. CCS is a 

protestant-based private Christian school. The majority of its students (about 98 

percent) are middle-class American Caucasian, many of whom are female (about 35 

percent). The school ranks as one of the best regional private Christian schools, 

whose graduates are known to be competitive in entering eolleges and university.

CCS was chosen beeause of its academic record, and because I had an 

established acquaintance with Mr. David Mehlaff, who was a coach and a fundraiser 

for the school. After securing permission from the school’s administration, I asked 

Mr. Mehlaff for help in selecting four ninth-grade mathematics students who would 

be willing to volunteer for this study. This particular age-level was chosen because of 

the stage of mathematics development generally associated with that grade. For 

example, I was confident that the students had had at least some exposure to multiple 

concepts (such as algebra, geometry, word and logic problems) at varying degrees of 

difficulty, yet they had yet to experience more involved mathematics problem solving 

discourse. Such a balance guaranteed that each participant had a basic mathematics 

understanding, had formed some opinions or assumptions about mathematics
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education and the use of teehnology in that edueational process.

With that in mind, I asked Mr. Mehlaff s aid in selecting four students with 

analogous mathematics ability and social involvement who would be willing to 

participate in this study. Mr. Mehlaff then suggested four students he believed fit this 

criteria (i.e., each student had shared the same geometry teacher, were involved in 

some school-related sport, and took part in some church related musical activity). 

Once these students were identified, I decided to meet with the boys and their parents 

so that the exact nature of the study could be discussed and what would be required of 

the participants.

The First Meeting: Surveying the Landscape. With the school’s permission 

and the aid of Mr. Mehlaff (who acted as a mediator during this first meeting), a two- 

hour, informational meeting was scheduled at the school for September 1, 1997. The 

purpose of the meeting was informative, but it was also intended to establish a sense 

of familiarity and trust between the four volunteer participants, their parents, and 

myself. After Mr. Mehlhaff introduced the participants and their families to me, I 

explained the purpose of the study, my intentions behind this research, and my 

professional and personal background (i.e., information regarding my immediate 

family, the quality of education and the relationship between students and teachers in 

my country, and how Iranian public schools used technological tools such as the 

Internet). In turn, I inquired about their individual families, their past and current 

mathematics experiences, and their level of familiarity with the Internet. These 

inquiries were intended not only to develop familiarity with the participants and their 

families, but also to evaluate their proximal prior technological and mathematics
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experience.

The parents wanted to know about my expectation of them and their children 

throughout this research process, which I explained would involve the students’ 

commitment and consistent attendance because an absence would involve 

rescheduling. I also told the parents and their children that their names will be kept 

anonymously, and to that end, I asked the students to choose a name other than their 

birth names as their pseudonym, which they did. At that point, I discussed the 

possible setting for the research with the group; I explained that in order to implement 

nonroutine collaborative problem solving experiences that would enable authentic 

cognitive engagements among the students, the locale had to be one that provided a 

relatively comfortable environment in which their mathematics and communicative 

exchanges could be observed and recorded. Initially, I had considered the school as 

the site for the study, yet there was not a reliable computer available at CCS that had 

Internet access. Therefore, I suggested the study take place at my house because this 

option was the most convenient to myself and the boys, who would have access to 

facilities such as the Internet, snacks, soft drinks, etc.

Background Information and Team-Building

After conferring with the four participants and their parents, the next meeting 

was scheduled for September 8, 1997, one week later. The purpose of the second 

meeting was for the group to become better acquainted with one another, provide the 

parents an opportunity to view the research environment, and select dyads for 

collaborative projects. During this meeting, I learned that Jim and Bob were not only 

close friends, but were also neighbors, often ehallenging one another with friendly
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competition. I also learned that Paul, Clint, and their parents attend the same church 

as my family and I do, and had seen me before in that setting.

After the parents had toured the house and departed, the students engaged in a 

few moments of casual conversation, inquiring about one another’s family, school, 

and church. These “icebreaking” questions were important so that the group could 

determine their commonalities and differences, which would then aid them in 

selecting a partner for the study.

The Participating Students. The four volunteers were then told that they 

would be grouped, by their own choosing, into two pairs of collaborative problem­

solving dyads. I explained that the reasons that pairs are chosen in this way are as 

follows;

1. to accommodate self-seleetion of the four students who volunteered to 

participate in the researeh study,

2. to accommodate the expressed desire of student participants to work 

with closer friends toward problem-solving inquiries, and

3. to facilitate mathematics discourse among the participating students as 

well as problem solving dialogue.

With these factors in mind, Bob and Jim decided to work together as a team, 

because they already had established a friendship, and Paul and Clint chose to become 

partners. Because Bob and Jim had already worked together, there was more initial 

connection and corroboration between them than there was between Paul and Clint. 

Yet collaborative problem solving was a unique experience—an unfamiliar 

environment—to all of them because at school, the mathematics classroom
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environment involved students working individually to solve problems or to do 

homework. Therefore, although all four participants were in the same classroom, they 

did not have much opportunity to work with each other or with other students.

After choosing a peer and forming a team, the participants were asked to 

choose a research schedule that involved two weekly, two-hour meetings with me. 

Bob and Jim, members of team one, decided to meet every Monday and Wednesday, 

after school, from 4:00 to 6:00 P.M., and Paul and Clint, members of team two, 

decided to meet every Tuesday and Thursday, after school, between the hours of 4:00 

to 6:00 P.M. Bob and Jim immediately worked out a car-pool arrangement, while 

Clint and Paul had to rely on their parents or myself and would arrive separately.

This concludes the discussion of research design, methodology, data 

collection, data analysis, and selection of research setting, participants, and dyads. 

The following chapter discusses the individual results of the MLI questionnaire, the 

one-on-one initial interview, and the first team-building project, which is referred to 

as the initial phase. Data gleaned from the questionnaires and interviews are then 

used as a starting point so that any changes or modifications to these beliefs and 

assumptions may be compared and noted in terms of individual or group 

development. The pairs’ preliminary activity during this first stage of problem 

solving interactions will also be presented and discussed in terms of dialogic and 

constructivist importance. Also, the following chapter discusses results from phase 

two of this research study, which comprises of emerging patterns through dyads’ 

engagement on problem types, problem solving discourse, and on-going negotiations 

and communications as well as evolving discourse through problem solving.



CHAPTER IV 

THE RESEARCH RESULTS

Traditionally, mathematics education has largely been based on rote 

memorization and drill, placing the authoritative foeus on the instruetor and rendering 

the students as mere recipients of knowledge and information. In this type of 

environment, students behave as independent agents, and their mathematics success is 

rooted in their ability to remember formulas and reproduce results. Yet, research (as 

discussed in chapter two) indieates that this type of approach fails to utilize the many 

benefits available in a more reform-based curriculum. While many researchers may 

disagree about what the most important facets of a reform-based currieulum may be, 

they all seem to agree that it involves one or more of the following elements: aetive 

student discourse, technical innovation, and collaboration.

Recent studies show that an active student-teacher and student-student 

discourse creates a more open environment that allows students to explore 

mathematical concepts in a more meaningful way. In such a setting, the teacher 

surrenders some authority to allow students to generate their own problems and 

experiment with multiple methods for producing multiple solutions; the teacher acts 

as a facilitator to create opportunities for open discussions that are beneficial in 

developing mathematies understandings. In addition, elassrooms that provide aeeess 

to various technical aids (i.e. the Internet, instructional programs, etc.) reinforce the 

notion of vast mathematical possibilities within the students and inspire them to 

incorporate creativity in their problem solving. Finally, collaborative projects are
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integral to reform-based classrooms because they allow students to explore new ideas, 

challenge old ideas, share perspectives, propose possible solutions, and justify their 

methodologies. The very act of communication within a classroom leads to a greater 

opportunity for mathematical understanding for all those involved. However, such 

opportunities are largely missing from today’s elassrooms’ diseourse, a condition that 

is in direct relationship to problem type that is currently being offered. Specifically, 

the lack of nomoutine and open-ended problems in mathematics curriculum robs 

students of the opportunity to engage in problem solving projects over time; 

traditional methods of assessment such as test taking and homework assignments do 

not allow prolonged problem solving experiences to occur. Additionally, without an 

environment that fosters prolonged, conceptual problem solving, it is almost 

impossible for an active student to student or student to teacher discourse to evolve.

Because of the relationship between nomoutine problems and mathematics 

discomse, both factors must be considered when evaluating or modifying the current 

traditional curriculum. For that very reason, I propose that the following components 

must be incorporated in order to create a more productive environment: mathematics 

education settings that promote and keep into account the complex interplay and 

interactions among beliefs about what mathematies is, how engagement between 

teacher-student and student-student should take place in mathematical settings, what 

type of problems should be explored and experienced, and the nature of supportive 

community and discourse being promoted here in this study as catalysts for 

mathematics teaching and learning.

With these innovations in mind, I wanted to see first-hand how students who
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were engaged in a collaborative, dialogic community involving the use of technical 

support performed and learned as individuals and members of a larger community. 

To this end, I provided various nonroutine (open-ended) projects and problems, (see 

Appendix E), to be worked-on by four ninth-grade participants who had volunteered 

for a sixteen-week mathematics program to be conducted outside their school 

environment. These four students would then be divided into two pairs, or dyads, so 

that focused observations could be made of their problem solving, problem posing, 

communication, execution, collaboration, and overall success. The focus was, then, 

not only on their individual progress and use of technical aids, but also on their 

progression and development as collaborative pairs.

In order to conduct a thorough observation and analysis of their development 

and progression, however, the nature, content, and context of the study had to be 

multifaceted. For that reason, I concluded that each pair should meet and collaborate 

twice a week for sixteen weeks, and that the entire group should meet at least twice 

during that time—a schedule that provided ample opportunities to observe their 

interactions and communications. In addition, 1 believed that it was important to 

understand their initial beliefs and assumptions about mathematics, collaboration, 

technical incorporation, and educational responsibility to better interpret their 

interactions as the study progressed. Therefore, the purpose of this study was to 

examine the eomplex interplay among student beliefs, mathematics inquiry, and the 

use of technology as well as mathematics understanding and the evolution of a 

dialogic community among four ninth-grade mathematics students. The following 

sections present various problem solving situations in which the students were
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engaged in an effort to traek their progression and proficiency in mathematics 

problem solving, problem posing, communication, use of technical tools, individual 

inquiry, and conceptual understanding. With that goal in mind, each project was then 

analyzed in terms of how it related to the researeh questions that drove this study. 

These questions are;

1. What is the relationship between student engagement and problem 

type?

2. How does problem solving diseourse evolve as students participate in 

a collaborative problem solving environment?

The Initial Phase

The first phase of this study began in the second week of September 1997 and 

lasted six weeks. Sessions were audiotaped and transcribed. The purposes of this 

initial phase of students’ interactions and data collection were: (1) to engage 

participants in group discussion and negotiation of study procedures (2) to obtain 

background data by having individual participants complete MLI questionnaires and a 

one-on-one entry-interview and participate in two, one-hour group meetings (3) to 

make sure each participant knew how to use the Internet to log-on, browse through, 

and download information by providing two one-hour, pair-intemet-workshop 

sessions and (4) to implement a preliminary (or ice-breaking) individual, pair, or 

group project (e.g., egg-drop project) designed specifically to provide team-building 

experiences.

The goals for implementing the initial phase of the study were to (I) establish 

an atmosphere of trust in which the participants could get to know each other, as pairs
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and as a group (2) examine each student’s beliefs with respect to the nature of 

mathematics, problem solving discourse, use of technology, and mathematics 

understanding (3) provide a setting for discourse in which the participants could build 

their teams and have shared experiences and (4) negotiate days, times, and the lengths 

of each dyad’s problem solving engagement for the second phase of the study.

To contribute to the collection of background information, each of the four 

volunteer participants was asked to complete a survey questionnaire “Math Learning 

Inventory or (MLI)”—A research-designed survey adapted from Fleener (1995). The 

survey was distributed to and completed by the participants in my home (see 

Appendices B -  D). The participants’ individual completion of questionnaires was 

then followed by one-on-one interviews that were designed to clarify responses 

generated in the MLI. Each individual student interview took about one hour to 

complete.

The following is a comparative analysis of the individual responses and how 

they relate to this study. A brief summary of the students’ MLI survey results is in 

tables 1 -  4 at the end of this dissertation case study. What is perhaps most 

significant about these responses is that half the participants (2 out of 4) immediately 

expressed difficulty communicating their mathematics activity to another party, which 

is interesting because these students also express reluctance to participate in 

collaborative learning in the classroom even though they are not satisfied with the 

current traditional approaches to the curriculum. Similarly, each volunteer participant 

agreed that there are several possible solutions to every problem, but only half of the 

participants deemed creativity important in problem solving. Additionally, each
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student cautiously endorsed technology in the classroom. These initial findings are 

important because they emphasize the lack of technological, communicative and 

collaborative opportunities in their school classrooms and the students’ lack of 

experiences with these approaches to mathematics learning. As these students 

engaged in collaborate, open-ended, technology supported, dialogic problem solving 

opportunities, it was hoped they would be able to better reflect upon the potential 

impact of these experiences. Results of the responses to subsections of MLI follow. 

Basic Mathematics Assumptions

In order to get a sense of the four volunteer participants’ initial assumptions 

and beliefs about mathematics, inventory items 1-4, 6, 11, 17, 29, 22-24, 27-28, 32- 

34, 36-37, 39, 45-45, 50-51, 60, and 68 were analyzed. These items specifically 

addressed basic mathematics assumptions as well as their personal feelings regarding 

their mathematics performance. Such information was vital because it allowed me to 

compare these initial beliefs with their exit interviews and determine if collaboration 

and technological innovation had changed their initial stances. Transcripts where 

students were specifically asked about these items or volunteered observation related 

to mathematical beliefs are summarized below.

For the most part, each participant shared similar assumptions and beliefs 

about mathematics, mathematical knowledge, and their own mathematical abilities. 

Each participant felt relatively confident about his mathematies ability; however. Bob 

and Clint expressed a weakness in geometry, and Paul and Jim said they had difficulty 

verbalizing their solutions to another party. All four participating students supposed 

that every problem had numerous possible solutions that should be explored to
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“widen understanding” as Clint remarked, but he and Bob both intimated that the 

“teacher’s way was probably the best” way to approach problem solving, which 

indicates some caution in mathematics experimentation.

Similarly, Bob and Paul both believed mathematical problem solving requires 

more logic than creativity; in fact. Bob said there is little room for the creative process 

because “mathematics is just facts and truths. You just plug in the numbers [to a 

given formula].” He said he had never used creativity in problem solving. Again, 

they seemed willing, yet lacking experience with espousing creativity into their 

problem solving, problem posing, and open-ended problem solving.

All four participants stated that good grades do not necessarily reflect 

mathematics ability. However, Clint then said he believed grades might be a slight 

indication of ability and said that he knows he understands mathematics concepts 

when “the teachers give [him] good grades,” and Bob said he expects good grades in 

subjects he knows well. They all shared the belief that some people are more 

mathematically inclined (yet Jim then said that people are not bom with mathematics 

ability because “you have to study it and be taught it”), but that talent is not 

synonymous with enjoyment. Yet he also indicated that a student does not need 

“basic facts” to be an effective problem-solver, and later stated that a student can 

learn the “rest” if he “gets the basics.”

It seems there is definitive confusion about the nature o f mathematics 

imderstanding and how it is developed cognitively. Bob did say that only people who 

enjoyed mathematics were capable of inventing new mathematical truths. All four 

participants asserted that mathematics is applicable in everyday situations and is not
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just an abstraction, which reveals recognition that mathematics can be applied to 

outside classroom contexts. Likewise, all four participants agreed, to some extent, 

that there are absolute mathematical truths, but then seemed to reconsider that opinion 

during the interview process. For example. Bob defined a mathematical truth as 

something that consistently works in all formulas and are absolute; he then said that 

some truths could be proven wrong, while others can never be challenged (e.g. 

Einstein’s equation of relativity). He also initially said that the invention of new 

truths was limited to mathematics professionals only, but then said they didn’t have to 

“be clever” to invent mathematics knowledge—an interesting contrast.

On the same note, Jim strongly believed that mathematical truths are absolute, 

not relative because “two plus two is always four, never five.” But he then said that 

truths are dependant on a person’s perception of reality (i.e. a person who is color­

blind perceives colors differently than others will), and he also strongly believed that 

truths could be proven wrong. To clarify this he offered, “when Newton was around, 

all the things he had were true in certain situations . . . but time has affected his 

theories.” In essence, he believes a truth is true until it is proven otherwise, but that 

does not make it any less true before it was challenged—a concept that is consistent 

with post-modern perspectives. He also stated that the invention of mathematical 

truths is limited to mathematics professionals, yet of the three, only Jim labeled 

himself a mathematics inventor, while the other three considered themselves to be 

consumers of mathematics. Jim offered his definition of a consumer as one who 

accepts whatever is given to him/her, but an inventor asks “why it works, how it 

works, how to make it work, how to make more things with it, like how to make an
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equation to solve a certain problem.” Bob said that he believed a consumer simply 

“consumes all the information, takes it, and learns it,” while an inventor “invents 

problems, mathematical truths, and equations that will work every time . . . does 

something no one’s done before.” He said he only solves problems, but does not 

invent them.

Such contradictions about mathematical truths and inventions seems to 

indicate that the four participants have mixed understandings about what 

mathematical truths may be, and how they may have been invented or discovered. 

This, then, may explain why the boys seem uncertain about their own mathematical 

inventive abilities. From this analysis of their basic mathematics assumptions, it is 

plausible to see the four participating students’ reliance on relatively traditional 

beliefs about mathematics (i.e. that it is a realm reserved for professionals and 

educators). Such reliance is also indicated in their wariness to experiment with 

mathematics and problem solving. This wariness is also evident in their views about 

technology, pedagogy, and collaboration as they approach working on mathematical 

problems.

Technological Assumptions

Information regarding their technological assumptions was gathered from the 

analysis of inventory items 5, 14, 35, 41, 61, and 69—questions that asked the 

participants how they viewed the use o f computers and calculators in the classroom 

and whether or not their use should effect mathematics education. Again, this 

information is important to the study because (a) it enabled me to evaluate their level
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of technological proficiency and (b) I could then compare these technological 

assumptions with post-study responses.

Their collective technological background was almost nonexistent; of the four 

participants, only Jim expressed online proficiency—Clint had only utilized the 

Internet to send and receive e-mail. Bob said he had only “watched others” use the 

Internet, but was familiar with other programs, had used the computer since an early 

age, and had even tutored others in a Basic Computers class. Paul had never used the 

Internet. Three of the four participants stated unequivocally that they believed 

students should practice mathematics problems without the use of calculators, a tool 

they seemed to regard as convenient, but not necessary, yet two out of four admitted 

that calculators certainly “sped things up,” which would provide more time for other 

activities; Paul even indicated that they should always be used on tests. All four 

participants agreed that technology and computer-use should not change current 

learning methodology, yet they all expressed some dissatisfaction with traditional 

methodologies. It is unclear whether they were hesitant to utilize technological aids 

because they believed using a calculator indicated a lack of conceptual knowledge, 

because they believed mathematics educators disapproved of them, or because they 

had had little experience using technology in problem solving.

Pedagogical Beliefs

Inventory items 8-10, 12-13, 18-19, 21, 25, 29-31, 38, 40, 42, 47-49, 52-59, 

62-67, and 70 all pertained to pedagogical beliefs and beliefs about current 

approaches to mathematics education. The students’ responses were valuable because 

they indicated a level of satisfaction (or dissatisfaction) with past educational

78



experiences and views of the roles of educators within the eurriculum. Based on their 

responses, it was evident that the students all had participated in traditional 

mathematics education. These factors were then compared to their pedagogieal 

beliefs at the end of the study, which allowed me to understand how a nonroutine, 

eollaborative, technologic environment may have effected their pedagogical 

assumptions.

All four participants expressed some degree of dissatisfaetion with traditional 

methodologies; even though they were the only curriculum they had experienced and 

indicated confidence in their ability. All four strongly disagreed with the use of 

mathematics drilling and memorization as a teaching technique; in fact, Paul said that 

he believed that an individual who can “recognize patterns and relationships” has a 

much greater conceptual understanding than “someone who memorizes formulas.” 

All four believed that tests would be more effective if they contained few longer, 

more involved problems instead of many shorter, less challenging problems and that 

teachers should provide unambiguous problems for general coursework. Paul defined 

ambiguous problems as either poorly worded or too advanced; he suggested teaehers 

provide various problems to accommodate varying levels of ability.

Yet, only Clint said teachers should show students the correct way to solve a 

problem and, then, tell students whether or not their answers are eorrect. In fact, he 

emphasized that different approaehes to a partieular problem are beneficial because 

“they make it easier to do it the way the teacher told you to.” Paul disagreed with 

Clint because he believed students have the ability to “pick up knowledge” without 

the teacher’s intervention. Bob initially said the teacher should only provide the
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correct methodology if  the student’s methods were “inefficient,” but later said that the 

correct way should be shown first, to everyone, to eliminate erroneous approaches. 

Jim initially said that students can learn without the help of teachers, but later said 

that it is the teacher’s job to show the correct way to solve a problem, and that once a 

student understands “the basics,” the teacher should only indicate when an error is 

being made, not what that error is—but that communication between a student and 

teacher should not be limited to these instances.

The four participants’ views on personal educational responsibility varied. 

Paul and Bob both believed that teachers were ultimately responsible for students’ 

learning; Bob even credited his past and current teachers with his own conceptual 

understanding and ability. Jim believed students were responsible for their own 

education, and Clint believed both parties were responsible. From these responses, it 

is apparent that each participant would welcome a change in their current 

mathematics education, but seem unsure about the role an educator should play in 

the classroom and how he or she should influence students’ approaches to problem 

solving. They all seem to believe that the teacher is the ultimate authority in the 

classroom, but disagree about how that authority should be executed. The four 

participants seemed hesitant to embrace freedom in problem generation and 

methodologies, even though they advocated those very practices in mathematics 

education.

Collaborative Work

Because the very nature of my study focused on the collaboration that would 

take place between the participants, it was vital to understand what past collaborative
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experiences they had had, what opinion they had about those experiences, and what 

their beliefs were about cooperative projects in general. Inventory items 15-16, 26, 

and 43-44 addressed these issues, and their responses would then provide insight 

when evaluating their initial communication with one another, as well as how their 

beliefs changed over the course of the study.

When questioned about dialogic learning, Paul and Clint said they believed 

group work and collaborative learning were beneficial only if applied sparingly, yet 

Clint admitted he had tutored classmates in computer courses and said that sharing 

ideas in the classroom is helpful because “everyone could see, hear, and think what 

others were doing,” likewise, Paul said his geometric understanding had improved 

with the help of another student. This is interesting because they both indicated 

definite caution with collaborative learning, yet both have had positive experiences in 

a group environment. This tension will become evident in their own exchanges.

Bob and Jim strongly believed group work was beneficial both to mathematics 

learning and application and referred to instances where they had worked with one 

another. This is equally interesting because their positive beliefs about eollaboration 

will become evident in their exchanges. For the most part, it seems as if the group 

was open to collaborative projects, even though they had had little experience in that 

type of environment.

This background information and analyses on the four participating ninth- 

grade students was pertinent to this investigation to increase my understanding of the 

students’ prior mathematics knowledge and beliefs, and the students’ familiarity 

working with each other and with the Internet. To this end, we conducted three



additional two-hour group meetings and two, two-hour Internet workshops at my 

house in order to triangulate data pertaining to initial beliefs and to start to build 

community and collaborations within the pairs and the group. During the group 

meetings students talked about several issues including their classroom experiences 

with their teacher(s), curriculum, and working with peers. During the Internet 

workshop sessions I asked each volunteer pair to search, negotiate, and design, an 

egg-drop project.

Team Building and Shared Experiences

In addition to the surveys, the initial phase of data collection included three 

additional two-hour group meetings. The purpose of these sessions was to provide 

opportunities for collaboration and shared problem-solving experiences. These 

experiences were essential to emerging individual reflective inquiry, group dynamics, 

approaches to problem solving, building trust, and collaborative communications.

These group meetings took place during the fourth week of September in my 

house. During these meetings, we (the students for the most part) negotiated which 

mathematics problems/projects from a list of suggestive activities to address, how to 

use the Internet to approach those problems.

As mentioned before, two of the four participating students never had used the 

Internet, and none of these students had access to a computer at home. Therefore, the 

students asked for an Intemet-workshop at my house, which led to students’ 

preliminary pair and group activities starting the first week of October.

As per the students’ request, I conducted two, two-hour workshops on the use 

of the Internet prior to their preliminary pair and group activities. First, I worked with
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Paul and Clint, and then with Jim and Bob. Because Jim had prior experiences with 

the Internet, he became a mentor to his partner. Bob, and later to the other pair, Paul 

and Clint. While continuing with the collection of background information, we 

decided, based on my suggestion, to tackle an egg-drop project. The main purpose for 

this project was to provide opportunities for team building and collaboration among 

the pairs. It was also hoped that the initial project would help build trust as the pairs 

designed and executed an open-ended project. We had negotiated and agreed to use 

limited materials, such as toothpicks, glue, cotton balls, paper, etc., to complete the 

project. Students were encouraged to seek help from their parents, neighbors, or high 

school peers as well as to search the Internet for finding useful information on similar 

projects. The objective for this particular task was to drop an egg from a significant 

height without breaking the egg itself.

By observing the exchanges that took place between myself and the 

participants, paired participants, and the group as a whole, the following categories 

had emerged from the first phase of the study, which pointed out the importance of 

group dynamics, individual, pair, or group problem solving approaches, and building 

trust as the four volunteer participants inquired into these collaborative and team­

building efforts.

Group Dynamics. Students then searched the Internet for ideas that others 

had generated dealing with similar projects, and shared information as a group; they 

seemed to be forming a common bond and feeling of trust as a larger community (as 

opposed to a singular dyad). They exchanged ideas about possible materials, and 

approaches (i.e. using teepees made of straws, developing cushions for the eggs,
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creating parachutes), and locations for the execution of their projects. They were to 

conduct a “pilot drop” from the stadium at a university in a near-by town 

(approximately 35 feet high), and then move on to the University of Oklahoma 

stadium (a height of 192 feet) for the final drop. The group categorized this project as 

an open-ended problem/project where there were many possible solutions and many 

different ways to construct and execute it. Their group dynamic seemed to be active 

and productive. Following my suggestion, they all agreed to design and develop two 

different kind of egg-drop projects per dyad. Here, Jim and Bob discussed enlisting 

Jim’s father to help them design an airplane-shaped egg-drop device with an engine to 

be ignited. The pair was establishing a timeline for completion of that project. They 

were the first dyad to engage in deeper communication about the specifics of their 

project.

Clint and Paul had expressed caution in collaborative environments, and their 

discourse reflected this reluctance. Granted, the two had had no familiarity with one 

another prior to the project (which is not uncommon in a collaborative environment), 

they did share similar mathematics ability and achievements, similar mathematics 

teachers and educational beliefs, as well as common social interests; they also 

belonged to the same church. Yet they seldom operated as a team; the two seemed to 

function, for the most part, as individuals who presented their solutions, independent 

o f their partner’s participation. Their relative lack o f a eollaborative discourse can be 

seen in the correlating table at the end of the book (see Tables 5 - 7), which graphs the 

communicative activity of both pairs through the course of the initial phase of this 

research study. These three tables exemplify both productive and nonproductive
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communications and the impact they may have on a collaborative learning 

environment. Clint and Paul seldom listened to one another. The dyad seldom felt 

compelled to cooperate with one another to reach a joint goal; this is painfully 

obvious in Clint’s reaction to Paul’s second attempt at the final execution of their 

egg-drop project. Their individuated responses to the collaboration was also apparent 

in their pronoun usage; each continually discussed his findings as “mine,” or what “I” 

had accomplished. On the other hand, Bob and Jim consistently referred to their 

project as “ours” or what “we” have accomplished. Jim and Bob were also more 

inclined to ask for outside help to empower their group process, while the other two 

(Paul and Clint) relied predominantly on individual efforts. Jim and Bob seemed to 

develop and nurture a sense of trustworthiness within their dyad, whereas Clint and 

Paul never seemed to embrace this concept; they communicated to accomplish the 

tasks, but they never seemed to go beyond superficial communications to exchange 

meta-messages (Sfard & Kieran, 2001), that is, their individual mathematics 

understanding and cognition did not seem to change as a result of their 

communicative exchanges—a notion integral to the structure of collaborative 

learning.

Problem Solving Approaches. On October 3rd, 1997, Clint, Paul, Jim, and 

Bob conducted a pilot egg-drop project at a local regional university. Both projects 

consisted o f a parachute model o f some sort, and despite the high wind, their projects 

were successful and their eggs did not break, although one parachute was damaged; 

they immediately discussed possible modifications. What is interesting to note at this 

point is that pair two, Paul and Clint, seemed to realize how their project lacked in
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some areas, but were unwilling to discuss improvements; yet pair one, Jim and Bob, 

immediately began discussing possible modifications. Their contrasting approaches 

to collaborative communication and the impact this had on completing this project 

were quite evident.

On the afternoon of October 8*, Clint, Paul, and I headed toward the 

University of Oklahoma football stadium to test their egg-drop project from a height 

of 192 feet. The two attempted their project (the same parachute projects) several 

times that evening, yet each time, there seemed to be some unexpected obstacle 

prohibiting them from becoming successful. Although they both participated in the 

project and seemed equally committed to its successful completion, the two had 

limited conversations.

The following week, .Tim and Bob tested their first project, which consisted of 

a rocket engine in a carrying case and was unsuccessful. Their second attempt (a 

small teepee of sorts) was successful. The two discussed how to improve their 

results; again, these two communicated very effectively. In fact, it seemed as if their 

communicative exchanges were evolving to a certain point; they were able to 

exchange ideas using a shorthand of sorts because they could almost anticipate the 

other’s thoughts in that community.

Each participant was asked to reflect on the problem, their initial approaches, 

and how those techniques fared in execution. After reflection and re-evaluation, the 

boys were then ready to refine their designs. This was the final stage of this project; 

the boys were asked to evaluate their projects and make any necessary modifications 

so that they could test their designs one last time. Jim and Bob had planned two



different egg-drop projects, and although they worked together on both of their 

projects, each was mainly responsible for administrating and executing one project, 

both of which were successful. They were very familiar with each other’s projects 

and had collaborated in their construction. The other pair, Clint and Paul, worked 

individually on their own project and had very little knowledge of each other’s work; 

they seemed to be acting as individuals not as a collaborative pair. Although they 

were aware of the other’s project, they seemed uninterested or in competition with 

one another. In fact, during one attempt, Clint broke Paul’s egg as a “joke,” an act 

which seemed almost hostile and indicated individuated approaches and goals and a 

lack of trust.

Bob and Jim, however, were very involved with each other’s projects and Jim 

stated that they had asked a friend from geometry class because “a third set of hands 

was helpful.” Bob said they consulted with a neighbor (who was a pilot) in order to 

make the bottle aerodynamic by adding wings and a tail fin; he believed this would 

reduce the force of the landing and thereby protect the egg. These two were 

communicating within their group, but were also involving the community in which 

they lived. It seemed that their collaborative effort produced more successful 

attempts than did their counterparts. For a brief overview of the results of these 

projects, see Table 7.

This initial phase provided the groundwork by which the remainder of the 

study was conducted. After this initial project was completed, the dyads then moved 

on to other types of problems, all of which were approached within a supportive, 

collaborative environment.
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Students’ Engagement on Problem Type and Problem Solving Discourse

In phase two of this research each participant and dyad were given a variety of 

nonroutine problems from which they chose and then worked collaboratively (see 

Appendix E). Again, their individual and group progression were evaluated in terms 

of inquiry, communication, technological support, problem solving development, and 

mathematics understanding.

During the second phase of the study, the researcher (1) observed and 

videotaped student dyads during their mathematics problem solving engagement (2) 

followed each dyad videotaped engagement with pair interviews (3) met with all 

participants once every two weeks for approximately two hours to discuss students’ 

reflections on their problem solving engagement, problem type, and mathematics 

discourse and (4) negotiated meeting times (for example, whether or not to meet 

during school holidays such as Thanksgiving, Christmas, and etc.). A final individual 

exit-interview occurred with each participating partner at the concluding session of 

the study. The purposes of this interview were to (1) help the researcher to develop 

sound understandings of student dyads, by allowing the students to re-examine the 

process and justify their thoughts (2) provide opportunities for students to re-examine 

their own beliefs with respect to mathematics inquiry, problem type, and mathematics 

understanding by reflecting on their problem solving interactions and shared 

experiences. Videotaped problem solving sessions were available for students’ 

review and were used as prompts for follow-up interview sessions.

The goals for implementing the second phase of this study were to (1) find 

what mathematics problems/projects students foimd interesting and problematic (2)
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explore the relationship between student engagement and problem type (3) identify 

emerging patterns with respect to student dyads during their mathematics problem 

solving engagement and (4) see how problem solving discourse evolve as students 

participated in a collaborative problem solving environment.

During the remaining course of the study, the participants were able to choose 

the problems that they would solve. These problems were either provided by me or 

extracted from various Internet sites (see Appendices E & F). From these sources, the 

students could then choose the problems that their dyad would address. The types of 

problems that were provided fell into one of the following four categories:

1. Routine problems or traditional algebra, geometry, or other formulaic 

problems that resembled the traditional problems found in most 

mathematics textbooks (in other words, these problems had relatively 

uniform approaches, as well as fixed solutions). Similarly, the boys 

engaged with one another and took an online IQ test (first as an 

individual then as a dyad), which is consistent with this type of routine 

problem solving.

2. Nonroutine problems that involved mathematical concepts such as 

fractions and ratios, but could be approached in several different ways 

in order to reach the same solution. These types of problems allowed 

the participants to modify the conditions on which a word, ratio, or 

fraction problem was based in order to reach a solution. Such an 

approach allowed them to develop varying methodologies to relatively 

traditional situations.
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3. Open-ended problems were also provided for them, even though none 

of the participants chose to attempt one. Open-ended problems 

involved theory, logic, and/or experimental methodologies. One 

example of this type of problem would be a question such as “How 

much money does it take to make more money?”—a question which, 

as it is labeled, is open-ended in terms of approaches and possible 

solutions.

4. Projects that encouraged hands-on activity were also provided. The 

students eagerly embraced these types of problems, which involved 

trips to local educational facilities, online “treasure-hunting,” and web­

page designs.

Table 8 illustrates a summary of these four types of problems.

With these four problem types in mind, their interaction will be presented in 

terms of its type, the relationship between that type and student engagement, patterns 

that emerged through the dyad’s prolonged mathematics problem solving 

engagement, evolving discourse through problem solving, and, finally, the production 

of meta-messages from this discourse through synergetic perturbations, 

argumentation, and on-going communications.

Data from transcriptions of videotaped and audiotaped discussions during 

problem solving, dyad interviews, and group problem-solving dialogue meetings, as 

well as students' verbal and written responses to questionnaires and problem-solving 

journal documentation and reflections, were analyzed using a constant comparative 

method (Guba & Lincoln, 1985, 1994). The emerging categories from the multiple
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data sources were analyzed by comparing student engagement, problem type, use of 

technology, and mathematics understanding as well as dynamics within the group 

discourse.

The problems, from which the boys chose, were provided by the researcher 

(see Appendices E & F). The focal analysis (Sfard & Kieran, 2001) was on the 

mathematics content within the problem type. The boys’ exchanges and the ways in 

which they interacted with one another within their dyads then served as the 

preoccupational analysis—how they communicated with self and with their partner in 

problem solving and engaging with particular types of problems (Sfard & Kieran, 

2001). Focal and preoccupational analyses are especially helpful when evaluating the 

effectiveness of collaborative communication and engagement. Thus, focal analysis 

was organized into the following categories:

1. Problem Type, or the categorization of problems by their type.

2. Relationships between student engagement and problem type, or 

the exploration of the possible relationship between the type of 

problem the dyads addressed and their level of energy, if  any, as well 

as their level of trust, collaboration and discussion, creativity, 

productivity (or lack thereof), and etc.

After such possible relationships were identified, their preoccupational 

analysis was then examined within the structure o f the focal analysis. This 

preoccupational analysis was organized and analyzed using the following categories:

1. Evolving problem solving patterns through prolonged 

engagement. Here, I focused on what the data revealed to me in terms
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of students’ mathematics problem solving approaches, use of 

technology, and their selection of problem types.

2. Evolving Discourse Through Problem Solving. Using a more 

analytical approach, the focus here was on the evolution of the 

discourse as the volunteer participants engaged in problem solving.

As noted before, such an organizational mathematical and discursive analysis is 

significantly linked to the type of problem utilized in problem solving. For this 

reason, it warrants further exploration.

Routine Problems. As stated before, these problems were generated from 

their own Internet search to which the links were provided. These selected routine 

problems were predominately at an eighth or ninth graded mathematics level (see 

Appendix F for a complete view of the links to these problems); they were consistent 

with problems that appeared in their textbooks at school (i.e. Pythagorean theorem, 

right triangles, simple linear equations, etc.), in that they called for the utilization of 

formulas to solve an unknown. In that manner, these problems were very consistent 

with traditional belief systems of viewing what mathematics may be and how students 

should approach solving these problems and, therefore, were very familiar to each 

participant.

It was important to note that the very fact that each participant used the 

Internet to inquire problems indieated an exploratory use of teehnology on their part. 

The majority of the participants expressed a hesitance about using computers and 

technology in the classroom, but each of them seemed intrigued with the notion of 

finding their own problems using the Internet; a concept that will be revisited in
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chapter five. However, when dealing with routine problems, their collective interest 

seemed to die once the Internet searching and problem colleetion was finished

Once the problems were gathered from the Internet, eaeh participant tackled to 

find their answers, in a very traditional, linear fashion, moving very quickly on to the 

next problem; there seemed to be no ehallenge involved. One example of routine 

problems was the Die Problem, where the solver was asked to determine how many 

times the number two is expeeted to “come up” if a die is rolled 18 times. (The die is 

rolled 18 times, how many times is the number 2 expected to come up? (Adapted from  

the Internet -  NASA Page http:Wwww.nasa.goyl

Clint and Paul first approaehed this problem, and Paul did most of the talking, 

experimenting with rolling a die, and recording. He hypothesized that equal 

probability was independent of events, and then experimented with the die by rolling 

it 18 times to confirm this notion, but Clint seemed not interested to collaborate with 

Paul. He was simply watching his partner and seemed to be bored by the process. 

Their interaetion was short and not productive, whieh is evident in the following 

exchange:

Paul: Clint, do you think the answer is 2 times, 3 times, 6 times, or 9 times?

Clint: I say number 2 will eome up 2 times.

Paul: No, I say number 2 will come up 3 times.

Clint: Why?

Paul: Because the probability of rolling any number on the die is 1 out of 6.
You then multiply that by 18 and reduce it by 6 and you get 3.

Clint: So 1 in every 6 sides multiply by 2.
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Paul: Why multiply by 2? It asks how many times the number 2 eomes up,
you wouldn't multiply it by 2. Just don't worry about that number, it 
could be any number, it could be 5. It is the number that you want to 
come up.

Clint: I guess it's 3 times.

Paul: Do you see why?

Clint: Yeah.

Paul: We decided that the answer is 3 times on this question (speaking to the
researcher).

Researcher: Clint, do you agree with Paul on this?

Clint: Well, he worked on this before at home so he already knows the
answer.

Paul: I am just trying to show another way to do this. I was just trying to
show you how I figured it out at home.

Researcher: How did you figure it Paul?

Paul: I took 18 times and the probability of it is.. .If you roll it six times
you're saying eaeh number will come up once and that means the 
probability to be 1 out of 6 and then multiply it by 18 whieh is 18/6. 
Then when you divide 18 by 6, it is 3 and so the answer is 3.

Clint: I understand.

This communication contrasted slightly with Jim and Bob, who, in turn, 

seemed to pick problems that were already solved and had first been explained by the 

other pair, or more particularly, by Paul. This approach was evident in their choice of 

the order of routine problems they solved, which mimicked the sequence of the 

preceding dyad. In short. Bob and Jim decided to solve the same routine problems 

that Paul and Clint had solved earlier that day. First, Jim read the problem aloud and 

quickly went on to solve the problem alone. I had to remind Jim to wait on his
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partner, Bob, whom I then asked to read the problem aloud to ensure that he 

understood the question.

Jim: If a die is rolled 18 times, how many times is the number 2 expected to
come up?

Bob: A die is rolled 18 times, how many times is the number 2 expected to
come up?

Jim: 1 ,2 ,3 ,4 , 5,6, 7, 8, 9,10,11,12,13,14,15,16, (background talking)
17, and 18.

Researcher: How many times the number 2 came up Jim?

Jim: 5 out of 18. 1,2, 3, 4, 5, and 6. 6 out of 18.

This dialogue accurately illustrates the nature of their communicative 

experience with routine problems; Jim experimented rolling a die and recording the 

results, while Bob passively observed what Jim was doing. It seemed the two were 

rather bored by simple problems, and their interests waned. They did collaborate on 

an IQ test later that day, which they found on the Internet. First they took it 

individually and then collaboratively. They found out that they had better results 

working together as peers than either would have working individually (a conclusion 

at which Paul and Clint also arrived); this shared opinion showed a significant change 

in their assumptions about collaboration. Moreover, the two seemed much more 

excited with problem solving when they used the Internet to generate problems. In 

fact, Jim and Bob later collaborated on building a web page, a project the two both 

said they would not have attempted at the beginning of the study. Next, Bob and Jim 

worked on another routine problem, a surface area problem, which they downloaded 

fi"om the Internet and read.
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What is the surface area o f  a rectangle solid, when the length is 6 centimeters, the 
dept is 5 centimeters, and the height is 4 centimeters. (NASA Page 
http:Wwww.nasa.goy)

Bob and Jim began to talk among each other very quietly, and I inquired what they 

were planning. Jim then offered:

■Tim : Finding the area of each side and adding them all together.

Researcher: Bob, what are you doing there?

Bob: I'm surfing the Internet to look for a formula.

Researcher: What kind of formula? Is it for volume or area?

Bob: Surface area.

While Jim initially consulted Internet sources for aid (a fact which may be

indicative of his prior online experiences). Bob tackled the problem solving in a much 

more traditional manner by attempting to find a formula on the Internet; yet they both 

seemed to agree that such an approach, as well as a delegation of tasks, was helpful 

and expedient.

Clint and Paul’s approach to the same problem differed greatly, which was 

evident both immediately and later, when the dyad attempted to explain their 

methodologies to me that day. Their body language immediately indicated a 

communicative and collaborative problem. For example, while Clint was passively 

listening to Paul’s explanations, his body movements (such as sighing and 

exaggerated repositioning) exemplified his severe boredom with the problem. At the 

same time, Paul read the problem aloud and tried to explain to me his already 

constructed solution to this problem.

Paul: I drew a rectangular prism. I drew it on this paper. See what you have
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to do is, all of these are rectangles and so you have the length is 6 
centimeters so each side is 6. Do you see Clint?

Clint: I know. Surfaces are 148 centimeter square.

Researcher: Okay, how are you finding the surface area on that shape?

Paul: We added up the area of each side like the area of this side plus this
side ... plus this side. We took the area of each side and add them 
together.

Like Clint and Paul, Bob and Jim had very little discussion on these types of 

problems, and showed little interest in engaging in dialogue and collaboration while 

working on routine problems; in turn, their disinterest summarily ceased dyadic 

communication. Consequently, they quickly moved on to the next problem, which 

was another surface area problem and found from the same NASA-Page on the 

Internet. The pair independently used a formula (e.g. Area -  + ms) to solve the

problem without much discussion or elaboration. These problems were very similar 

to their textbook problems they were currently experiencing at school, and seemed to 

require no creative effort in their solution findings, which is evident from the 

following:

Researcher: Could you now explain to me how you solved it?

Jim: All we did was plug the numbers into the formula, side height is 6 and
radius is 3 put pie in for that and you get the area and you get 7/8 
square inches.

While working on routine problems, for the most part, none of the participants 

seemed challenged to think creatively or to create new mathematics. They associated 

answer finding with “doing” mathematics, and their engagement was short-lived and
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dull. They did not seem to comprehend that mathematics learning is more than 

answer finding.

When the dyads solved routine problems, the level of engagement was nil—a 

fact that was especially true with Clint and Paul—a pair who had failed to build a 

community as of yet. Paul seemed to know the answer already because he was more 

familiar with formulaic computation, and therefore, he did not engage in productive 

collaboration with Clint. Similarly, Bob and Jim were both familiar with these types 

of computations and therefore did not expend much energy or focused attentions in 

formulaic problem solving.

From this lack of collaboration, it seems safe to assume that routine problem 

solving may in fact rob students of opportunities to engage in critical thinking and 

negotiation. In short, there seemed to have been no synergy involved with these types 

of mathematical education, which is one of the main reasons reform-minded 

mathematics educators want to create a supportive environment by utilizing 

nonroutine problems. As discussed in Chapter Two, research indicates that a reform- 

based curriculum that engage students creates a richer atmosphere—one that invites 

students to pay attention and investigate solution-findings (or answers that are not 

immediately known such as those created by Pythagorean theorem, etc.). Nonroutine 

problems are much more multi-faceted, and by their nature have the potential to 

provide meaningful background that may involve association and communication 

between two or more students in the process of their solution finding. Therefore, the 

very type of problems used in mathematics curriculum may be relevant to the level of
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generative collaboration and communication that may lead to deeper conceptual 

understanding experienced by the students.

Nonroutine problems. Although the participants chose several nonroutine 

problems to solve collaboratively, the following two examples (the “marble problem,” 

and the “fraction problem”) will be discussed at length in this session and involved 

ample opportunities for students’ collaboration, perturbation, and argumentation.

On Friday, November 21, Paul and Clint chose to solve a nonroutine problem 

(provided by the researcher) dealing with beads (see Appendix E). Their interests in 

this problem seemed to stem from the fact that it was nonroutine, or open-ended. 

Once the problem was selected, they decided to work with chocolates (red and green 

Reese’s pieces) instead of beads. The original problem read like this:

Two jars are placed on the table. One contains 1000 blue beads and the other 
500 yellow beads. Crystal took 20 beads out o f the blue bead jar and put them into 
the yellow bead jar. After shaking that ja r until the yellow and blue beads were 
thoroughly mixed, she randomly selected 20 beads from the mixed jar and put them 
into the jar o f  blue beads. After completing the task she asked were there more blue 
beads in the yellow beadjar than there were yellow beads in the blue beadjar? 
(Adapting from Maher & Alston, 1990)

Clint and Paul decided to modify this problem to a more manageable size 

using chocolate Reese’s, and 1 videotaped their problem solving process. After 

reading the problem a few times, the pair came up with this modified problem, or a 

new focal point:

We have two jars one o f  them has 100 red chocolate and the other one has 50 
green chocolate. We ’re going to take out 20 o f  the green and put it into the red and 
shake them up randomly and we ’re going to take 20 o f  red and put it into green, 
we ’re try to figure it out which one have more that red in green or the green in the 
red so now we want to get started.

To initiate the problem solving process, Clint took 20 green Reese’s and put
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them inside the jar with the red Reese’s, shook the mixed jar, and asked Paul to take 

20 Reese’s from the mixed jar and put them back into the jar of green Reese’s. At 

first, the two communicated quite well with one another as they discussed possible 

approaches, questioned each other’s theories, and exchanged ideas, which is seen in 

the following dialogue:

Paul: We need to figure out whether jar of red has more green in it or jar of
green has more red in it.

Clint: Okay, first we started with 50 green and then took out 20.

Paul: So ... that means we have 30 left.

Clint: 30 left, but the 20 is the 2/5 of that [of the 50].

Paul: Why would you say that? There are half as many greens as red, so ....
we’re trying to figure it out. Okay, now, how am I going to figure it 
out?

As the dyad continued working this problem, the level of collaboration 

seemed to wane a bit. Paul began talking to himself, as if he was working alone on 

this problem. It was quite evident that Paul did not view working with Clint to be 

valuable to him. In fact it appeared to me as if  Paul preferred, at this time, to work 

alone and did not wish to exchange with Clint at all, which is illustrated by the 

following dialogic example:

Clint: Let’s say this is jar one. Do you have the marker Paul?

Paul: I got it! [Shouting]

Paul acted as if he did not hear a word of what Clint had said to him. At this 

point, the dialogue seemed to end. Paul was excited about his result, but Clint acted 

indifferent and continued to draw pictures on a piece of paper using his marker.
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When a dialogue resumed, Paul had taken on the role of teacher, often correcting 

Clint’s methodologies and logics. This effectively silenced Clint, who began to 

concentrate on developing an algebraic formula to solve the problem while Paul made 

notations in his notebook, searching for a probability to solve the problem. Clint’s 

body language indicated that he was bored working with Paul and lacked energy.

Paul then concluded that there would always be equal numbers of the opposite 

colors, but could not explain his findings to Clint, which exemplified his tacit 

understanding because he was unable to explain symbolism and representation to the 

researcher. Clint arrived at the same conclusion, but the two never seemed to “get” 

how the other had come to their solutions. There was effective communication 

between the two (they attempted to explain reasoning, challenge solutions, and extend 

understandings), but this informational exchange and perturbation failed to change 

their individual cognition or to involve meta-communication/messages.

The following day, Jim and Bob tackled the same problem, yet the pair was 

more interested in spending time on the Internet than doing anything else, which 

illustrated a growing desire to use technology in generating problems for their focal 

analyses. Eventually, the two began to work together on the “marble problem” 

(which was suggested by the researcher). They read the same problem and decided to 

use 150 Reese’s chocolate candies, taking two out and putting two back in, instead of 

using 1500 beads.

After I suggested they repeat the process using 20 beads for exchange instead 

of only two, the pair then illustrated this process one more time so that 1 could 

understand their reasoning. They repeated the process and came to this conclusion:
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“There’s 13 red in the green jar and 13 green in the red jar, they came out evenly,” 

Bob said. I asked them to explain their findings to me. “It depends how you pick 

them,” Bob offered. “If you pick more green or red and mix them with another 

colored beads, then chances are that you are going to have more green beads than red 

or red than green because there’s more green picked from after it’s mixed.”

They replaced the red/green Reese’s, and tried the problem again. This time, 

Bob reversed the process by taking 10 red out of the green jar and mixing them; he 

then took the same amount out of the mixed jar and put them in the green jar. Bob 

asked Jim if there were more red in the green jar than there were green in the red jar, 

and Jim replied, “There’s 7 red in here and 7 green in there.” Jim separated the beads 

(Reese’s) once again, read the problem aloud, and then suggested to Bob that they use 

30 of each this time. Bob agreed, and after going through the process, Jim asked Bob 

how many red Reese’s he had in the mixed jar.

Bob: I’ve got 19. How many did you take out from here?

Jim: 30.

Bob: 19 and 19 is more than 30! Somebody messed it up!

Bob suggested that, somehow, a mistake had been made by Jim while 

counting the Reese’s. Jim shook his head in disagreement while smiling and uttering 

“Uh-Uhhh,” suggesting that Bob was incorrect in his judgment of him and did not 

quite know what he was saying.

Bob perceived the marble problem as some sort of addition problem. This 

was evident when he added 19 and 19, the sum of which he knew was more than 30. 

Jim and Bob still seemed puzzled by the results of their experimentations with the
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Reese’s and tried several more times, repeating their experiments by drawing various 

numbers of Reese’s from the jars; they concluded that there would be equal numbers 

of opposite color Reese’s in each jar. The pair, then, tested this theory using drawn 

circles on a sheet of paper to farther investigate findings.

The two regarded one another with mixed expressions (curiosity, amusement, 

and confusion), and exchanged very few words to explain their thoughts processes to 

each other or to me. They finally agreed, with very little explanations, that their 

theory was correct, but could not explain why; yet I persisted. Bob and Jim reasoned 

that as long as the ratio of colored beads was 2 to 1, then they were always going to 

have the same number of beads in different colored jars. However, they were not 

satisfied with this explanation, and neither was I. Therefore, Jim tried the process one 

more time and came to the conclusion that it did not matter how many beads he 

started out with, he would still end up with the same amount of red and green beads at 

the end. “They are always equal,” said Jim. Yet, he could not explain to himself. 

Bob, or to me why they were always equal.

Likewise, Bob was still not sure how this process worked either. He 

continued to struggle for understanding about the problem’s mechanics by attempting 

to formulate an equation as a concrete proof solution to the problem. Bob attempted 

to explain what he was doing, and finally said, “I just don’t know. I’m kind of trying 

to find out the reason why they are always equal. I know that it happens. I know it’s 

always going to happen, but just don’t yet know why?”

This relationship between prolonged engagement, conflict, perturbation, and 

argumentation provided potential opportunities for deeper conceptual tmderstanding
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for Bob and Jim. The two began drawing with a few numbers of Reese’s, and 

gradually increased these numbers before realizing they always ended up with the 

same amount of dissimilar candies in each jar. During their “marble problem” 

solving interactions, it was clear to me that the pair knew the answer to this problem 

intuitively, but was not able to verbalize their knowing to each other or to someone 

else. To farther problematize this, I asked Jim if  he would care to share his reasoning 

with Bob, but Jim said he couldn’t explain it very well. In turn. Bob still wanted to 

find an algebraic equation, which confused Jim. I asked Bob what he was doing and 

why. He offered:

Bob: I’m starting with an equation because it is easier for me to explain my
thoughts this way. Okay, X is the red (Reese’s) and Y is the green 
(Reese’s). You subtract 10 greens or 10 reds, and add 10 right over 
here.

Researcher: Can you see that Jim?

Jim: Yeah, I can see it. But it’s more confusing to use formula. It’s easier
for me to just look at the beads (Reese’s), switch them around, and 
look and see what I have here than use an equation.

Bob: This is what you do if you want to solve it by writing it down. I have a
ratio here, like Red to Green, and then. I’m gonna subtract lOXs from 
here and add to there. So we got X -  lOX and Y + lOX. If you got 
100 red, now you have 90. lOOX-lOX = 90X. Okay, say, take 3X’s 
and 7 Y’s fi'om the mixed jar and put them back in here. Now, come 
back over here: 3X + 90X = 93X; this is my first equation. Then over 
here, you have 50Y -  7Y will be equal to 43 Ys, and plus 7Xs.

Researcher: This is interesting to me Bob. Why did you use this method?

Bob: Just, if you didn’t have all those beads (Reese’s), this is how you do it
on the paper.

Bob took some time to explain to me and to his partner, Jim, how he had 

arrived to his “equation” by showing and describing his solution strategies using his
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pen and notebook (a process both Jim and I paid considerable attention). This time, 

the pair seemed to be very confident about their reasoning because the team had 

formed an “equation” to back up their theory and knowing.

Bob and Jim also used self-talk and self-thinking as they attempted to solve 

the problem. Jim tried to formalize his approach at first, while Bob used a more 

hands-on approach—a process which was later “flipped” as Jim tried to experiment 

with hands-on and Bob attempted to create a formula. This approach contrasted with 

Paul and Clint, who never really experimented with formulas. Paul and Clint took 

less time to come to the same conclusion, but their approaches were not as developed 

as Jim and Bob’s.

As with the second pair, Paul and Clint, their efforts to create or develop meta­

communications/messages did not change their cognitions; they merely exchanged 

ideas. They did not communicate effectively. However, Bob and Jim seemed to have 

utilized parallel play more; they watched one another playing with the problem, paid 

attention, and listened to one another’s explanations while extending their own 

solution approaches and strategies. This community seemed to develop more meta­

messages, which in turn seemed to help their own individual and collective 

cognitions.

For the most part all participants agreed that the nature of this problem 

(marble problem) was nonroutine and ehallenging beeause it ealled for prolonged 

problem solving instead of limited problem solving, such as test taking or lecturing in 

traditional classrooms that are limited to 45-50 minute sessions (an issue which will 

also be addressed in the next chapter), there were many possible ways to solve the
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problem, and solutions to the posed problem were not immediately known to the

solver(s). The dyads’ nonroutine problem solving interactions resumed in February

of the following year, after a long but needed Thanksgivings and Christmas breaks.

On February 5*, 1998, Paul and Clint worked on problems, which I provided

for them to solve (see Appendix E). I videotaped their problem solving interactions.

The two volunteer participants seemed interested and excited in resuming their

problem solving efforts at my house. Their fraction problem was worded as such:

What proper fraction exceeds it's square by the greatest possible amount? (Adapted 
from Mathematics Teacher, September 1995, volume 88, #6.)

After reading the problem independently and silently first, Clint read the

problem aloud to the pair, and then each peer, begun to solve the problem separately

using a trail method. Paul and Clint eaeh used a pen, a notebook, and a calculator to

experiment with the problem and its possible solution(s). They seemed to have

forgotten the meaning of a “proper” fraction. This was evident in Clint’s first trail

attempt to tackle with the number 5/3 as a starting fraction, which Paul objected to his

assumption and quickly questioned the researcher about the very nature of a proper

fraction (where the numerator is smaller than the denominator). They decided that

5/3 is an improper fraction. Their following exchanges clearly exemplify how their

conversational interactions have begun to impact their cognitions. This became

evident as Paul began his “self-aloud-talk” engagement with the problem:

Paul: Okay! What is the largest fraction that you can have that exceeds it's
square by the largest amount?

Researcher: Is it any fraction Paul?

Paul: No. It has to be a proper fraction.
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Researcher: Does it have to be the largest proper fraction Paul?

Paul: No, any fraction that you want it to he. As long as when you square it
or multiple it hy itself, it is larger than its product. For example, .1, 
that is 1/10, then when you square it 1/100 then you’r saying what is 
the most that you can have between fraetion and its square?

Clint: It's the differenee between the original fraction and what you get when
you square it. It's going to he smaller, the larger the fraction is. Like 
1/2 it's going to have a small difference.

Paul: Not necessarily!

Clint: Uh-hu, because if  it comes out 1/4 it's just 1/36. The difference is
larger the smaller the number is. So, the way you would find that is, 
find the smallest fraction you could get because, ... look, this is a 
greater fraction.

Paul: Not necessary! Look at .5! When you square it, (while talking to
Clint, Paul is using his calculator to demonstrate his thinking at the 
same time), there is .25. That is a larger distance.

Clint: The largest proper fraction I could think of is 1/2.

Paul: No it isn't. You can have 2/3, 5/9, or 3/5. You eould even have 3/3,
which is 1.

Clint: No! Not 1! That's not even a fraction!

Paul: Yes it is! How about 1/4?

Researcher: Do you agree that all proper fractions once being squared are smaller
than their original proper fraction? Now the question asks what proper 
fraction exceeds its square hy the greatest possible amount.

Clint: Yeah. The answer is the largest proper fraction.

Paul: No it isn't! Because .9 is like .90, which is 90/100 but with .5 its 5/10.

Researcher: As you are checking these proper fractions, you may want to record
your findings and look for a pattern.

Paul: I was doing that with .9 and .8 and so on . . . .

Clint: It all came out in your head it is hard to explain how it comes out 9/10.
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Researcher: Clint, do you think there is no answer for this problem?

Clint: I think the answer is 9/10, but still that wouldn't work beeause it would
have a very small difference. The larger the proper fraction is, after 
squaring it the smaller the difference is, but we're looking for the 
greatest difference between a proper fraction and it's square.

Paul: I'm trying to see if  there is a pattern or anything. I think “if” (the
largest proper fraetion) is .5 or 1/2 and the differenee is .25 or 25/100, 
whieh is 1/4. Beeause hum ... when I squared 9/10,1 got 81/100 and
the difference was 9/100. I squared 8/10, I got 64/100 and the
difference was 16/100. I squared .7, gave me the difference of 21/100, 
6/10, gave me the difference of 24/100, and then I squared 5/10 whieh
is 1/2, it gave me the differenee of 25/100 that is the largest. Then I
went .4 square and saw it’s difference, which was .24 or 24/100. I 
tried .3 squared, the difference was .21 or 21/100, ... So, I found a 
pattern and the answer is .5 or 1/2.

Clint: I ean't find a pattern.

Researeher: You ean't find a pattern?

Paul: Oh yes, you can! Because when you take 4/10, for example, and
square it it's .16 and find the differenee subtract .4 and take off the 
negative beeause its the same answer its .24 its 24/100 then try other 
proper fractions. Okay, you increase like 9, 16, 21, 24, 25 then it goes 
down by the same distanee as it was going up. It goes down by 25, 24, 
21, 16, 9. So, the greatest possible amount is .25 or 25/100, which 
belongs to the proper fraetion of .5 or 1/2. That's what I eoneluded: the 
proper fraetion that exeeeds by the greatest amount is 1/2 beeause it 
has the greatest distanee between the two numbers when you square it.

Researeher: Paul, would you explain that with Clint?

Clint: It's hard to explain isn't it Paul?

Paul: Yeah, it is.

Clint: I understand it.

Paul: When you square 9/10, the differenee is not very much only 9/100 and
8/10 is 16/100 and 7/10 is ... wow I just saw something here ... 9*1; 
8*2; 7*3; 6*4; 5*5; 4*6; 3*7; 2*8; and 1*9. That’s how it is going up 
and down. It’s going up by 9, 16, 21, 24, and 25 is the highest it goes. 
Then it goes down by 24, 21, 16, and 9. Do you see Clint? When it
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reaches the middle it is at its peak. Therefore it is 1/2.

The two partners posed questions to one another, clarified definitions, tested 

cases by trial and error, organized data, and experimented with calculators and 

argumentation. They also engaged in parallel play and attempted to help eaeh other 

recognize patterns. Such an exchange showed a definitive progression in their 

communication. This was apparent later when they tackled a logic problem, or the 

salary problem. The two partners discussed various approaches to solve the problem 

and both seemed to had benefited from their collaborative problem solving 

interactions.

Project-Based Problems. The “project” portion of the study involved a 

geometric scavenger hunt of sorts at the Omniplex, the egg-drop project, web design, 

and an Internet treasure hunt. The egg-drop project has already been discussed in 

detail and is only addressed at this point to make the following observations in terms 

of discourse evolution and problem solving patterns: During the initial phase, Paul 

dominated his dyad, and set the pace for their initial planning; he wanted his pair to 

experiment with Paintbrush and created a preliminary plan before searching the 

Internet for possible approaches, which contrasted slightly with the other pair. 

Perhaps beeause of his prior Internet experience, Jim opted instead to search the 

Internet and then used Paintbrush to draw a plan. From that point, the differences are 

much more obvious. Bob and Jim worked together on each project and paid attention 

to one another during each stage of development (making sure not to alienate the 

other during discussion or planning), while Clint and Paul were much more 

individuated. As mentioned before, there was almost a hint of hostility between the
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two. This may have been due to the fact that Paul’s project was much more 

“polished,” and Clint seemed to be jealous of this fact. Similarly, Paul designed 

several egg-drop executions, while Clint only designed one or two, which showed a 

difference in their level of engagement.

Even though each dyad approached this project differently, one thing was 

consistent. Both pairs were deeply involved with the project, and experienced a high 

level of engagement and interest. In fact, during the remainder of the study, they 

often asked if they could complete a similar project, although they did enjoy the 

treasure hunt at the Omniplex, where again, the two dyads approached their goal in 

different manners, although both were highly engaged in the activity.

Both pairs were given hints about the identity of a secret object within the 

complex, and were then asked to find that object (i.e. Bob and Jim were asked to find 

something that was brown and stood next to a fence, which turned out to be an 

elephant, and Clint and Paul were asked to find an object that glinted in the sun, 

which turned out to be a trashcan). Both pairs employed a notebook for initial 

thoughts, discussed possible locations with one another, and both were able to find 

their secret object relatively quickly. Again, Jim and Bob communicated well with 

one another, but seemed to employ non-verbal communication more so than their 

counterparts. Additionally, at this level, they seemed to experience more effective 

communication, but this may be due to the fact (again) o f their pre-existing 

relationship.

Before the dyads split up to engage in an Internet treasure hunt, the group as a 

whole engaged in an Intemet-inquiry into nonroutine problems. Interestingly, as a
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group, their productivity lagged. For example, Clint passively listened to Paul and 

nodded his head often (instead of offering verbal communication), while Paul again 

assumed the role of a teacher as he attempted to explain possible solutions to 

problems that were found on the Internet. One example of a problem they addressed 

was another probability problem, which asked the number of times a coin would land 

either heads or tales.

Paul actively experimented with the problem, actually flipping a coin in hopes 

of discovering a pattern. Yet Clint seemed bored and his level of engagement was 

nonexistent. Similarly, Jim was completely focused on searching the Internet for 

other problems instead of addressing the task at hand vyith his partner. Bob. He was 

focused on the computer, not the group discussion, as lacking as it was. Only Paul 

and Boh attempted to solve problems, independent of their partners, using trial and 

error method instead of a formulaic approach (which may indicate a lack of statistical 

knowledge, hut a propensity for creative problem solving—reinventing statistics 

(Kamii, 2000».

This episode may have been due to the fact that the group had already engaged 

in previous problem solving that day and had simply lost their enthusiasm for the 

matter, or it may be indicative of a larger issue. For example, Paul suggested that he 

was unable to focus in a larger group setting because he could not help but overhear 

other conversations and solution methods (some of which were incorrect). This 

suggestion is reminiscent of Sfard and Kieren’s (2001) findings that a group setting is 

not always the most beneficial for students because peer-interactions may actually 

interfere with an individual’s self-talk and the development of potential cognition;
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that is, he or she may lose a “golden moment” of cognition as a peer attempts to 

converse while he or she is paying “attention” and is engaged in conversing with self. 

The other participants agreed that this might be true at times, but that peer-interaction 

was often helpful in that it allowed them to hear other approaches which had potential 

to perturb them to re-evaluate their own approaches and methodologies to problem 

solving and communication.

Interestingly, the project that followed this interaction, the Intemet-search 

among dyads, was perhaps the most productive engagement for Clint and Paul. Here, 

the dyad searched for other problems that they would want to solve, and then 

attempted to solve various nonroutine problems as a pair. In this process of working 

on a common goal, the two sat close together, used a calculator, and equally engaged 

in conversation. They even shared the same piece of paper as they experimented with 

problem solving; both engaged in self-talk and dialogue. They seemed to have begun 

to build a community.

As Clint and Paul addressed one problem, which dealt with the center of 

gravity, each took turns drafting a graph for discussion, and each listened to the other 

as he explained his approaches to resolving the problem. The level of trust was 

evident at this point, and the two not only actively engaged in problem solving, but 

effectively deepened the other’s cognitive understanding by their meaningful 

exchanges. As Clint gained self-esteem and self-respect, his communication with 

Paul began to become much more productive, as did his level of conceptual 

understanding on the problem and its solution. In fact, during a later project, it was 

he, not Paul, who solved a problem correctly and was able to verbalize these solutions
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to his partner. In short, he too was experiencing meta-communication/messages at the 

conclusion of the study.

The fact that Clint and Paul experienced productive communication and 

deepened conceptual understanding in the later stages of the study may be indicative 

of their heterogeneous mathematics levels. There was definitely a larger gap between 

their individual mathematics ability than there was between Jim and Bob—a fact that 

may have played an important role in their community building. Research does 

indicate that a closer level of cognitive ability is helpful in collaborative 

environments. Specifically, Leiken and Zaslavsky (1997) warned reform-based 

educators that heterogeneous collaborations failed to engage lower-end students and 

forced the more cognitively developed student to assume the role of a teacher. This 

was the ease earlier in the study (i.e. when Clint expressed hostility to Paul’s more 

sophisticated egg-drop projects and when the dyad engaged in problem solving 

interactions). But, Paul and Clint overcame this and did in fact connect with one 

another and affectively impacted one another’s ability through their prolonged 

interactions.

Open-ended Problems. Each dyad was presented with several open-ended 

problems to which they did not attempt to solve. These problems (See appendix E) 

were different fi-om any other problems they had seen before. In that, the nature of 

problems was open-ended. Their solutions required creativity and risks: issues that 

are seldom, if ever, catered in traditional mathematics education classrooms. 

Consequently, the pairs talked about these problems, but since they lacked having 

clear visions or ideas on how to begin or precede their solution strategies, they
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stopped working on them immediately. This may be indicative of their lack of 

experiences on such problems, an element which will be addressed in the following 

chapter. At this point, however, an entry/exit comparison combined with a brief 

summary of the nature of this study might provide some insight into the dyads’ 

cognitive development, motivation, collaboration, and communication. For that 

reason, a discussion of the four volunteer participants’ exit-interviews which took 

place at the end of this research study may be helpful.

Summary

While reflecting on this research in terms of the nature of the study, it is 

possible to see an evolution among the participants. For the most part, when they 

were given the opportunity to select their own problems and approach them from their 

own perspectives, the act of problem solving became more interesting to them and 

incited more meaningful communication. Bob and Jim displayed a much more 

“connected” environment within their dyad, and exhibited greater cognitive 

development early on. Paul and Clint’s interactions may have been more indicative of 

the typical classroom where many students may be unfamiliar with one another and 

may have to work harder to establish a trustworthy community. Nevertheless, 

connections were made between Clint and Paul and they both seemed to have 

benefited from this.

There were several moments when Jim was ahle to “see” better because o f  

Bob’s explanations, and the very act of explaining proved to be beneficial to Bob. 

This was true with Clint and Paul as well, especially, toward the latter part of their 

collaborative problem solving experiences. Clint and Paul’s willingness to engage in
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parallel play with the problems and attempt to help each other recognize patterns 

through conversations and exchanges showed a progression in their communications, 

even though their communications remained preoccupational, focusing on self-talk 

and personal understanding. The pair did not seem to come to meta-message 

communications during their problem solving processes; that is, while both 

individually seemed to use communication to further their understanding, the pair did 

not experience the synergy of collaboration.

Engaging and playing with nonroutine problems afforded both pairs expanded 

levels of energy. This is especially evident with the “marble problem.” They were 

forced to depend on further investigation and experimentation which were seen when 

they played with the problem several times—they checked their solutions, modified 

their approaches, and attempted new solution methods. The notion of perturbation 

and argumentation is exemplified by these exchanges.

For example, early on, Clint seemed completely disengaged and disinterested; 

he was much more interested in checking his e-mail or searching for other problems 

on the Internet than he was in working with Paul. In turn, Paul also seemed 

individuated in terms of these problems. He often sought help at home from his 

parents before arriving at the sessions, and would therefore have several of the 

problems already worked out before ever conferring with his partner. This is evident 

in many sessions when he flipped back and forth in his notebook, looking for his 

finished solutions. So for Paul and Clint, the focal points (engaging with 

mathematics) were individuated. Paul would attempt to explain his answers to Clint, 

and Clint was uninterested. There were several times when Clint said that he
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understood a problem when in fact he did not. This pattern seemed to change by the 

end of the study; they communicated more effectively and seemed more "connected" 

when they tackled problems or projects, listening to each other and focusing on 

mathematical processes.

Even though Bob and Jim seemed to engage more in self-talk from the very 

beginning, their communications became more productive (Sfard, 2001) as the pairs 

experienced more prolonged collaborative problem solving. This was especially 

apparent at the end of the study, when the dyads presented problems they found from 

the Internet as they searched for “treasures.” Their ownership of and interest in 

problems was evident in their conversations about them.

Exit interviews with all participants revealed a change in the way each 

participant viewed collaborative learning, technological educational tools, personal 

educational responsibility, and mathematics inquiry and problem solving. Tables 

Nine, Ten, Eleven, and Twelve summarize the changes in various technical, 

pedagogical, mathematical, and collaborative beliefs the students responded during 

their exit interview and compare exit interview data with entry data along these 

dimensions (see the end of the book). Problem solving collaboration and prolonged 

engagement seemed to benefit all students both mathematically and in their 

willingness to learn from each other.

In the next ehapter, I will diseuss the eonelusions o f the study. 1 will also 

discuss the limitations of this research study and related questions for further potential 

research explorations.
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CHAPTER V

ANALYSIS AND DISCUSSION

In this research study I took a close look at two pairs of ninth-grade geometry 

students’ problem posing, problem solving, and dyad interactions with types of 

problems including routine, nonroutine, or open-ended problems/projects. 1 also 

examined their discourse as each dyad participated in a sixteen-week-long 

collaborative problem solving environment. Prolonged research observations, data 

collection, and data analyses were continually utilized throughout the course of the 

study in light of two research questions as follows:

1. What is the relationship between student engagement and problem 

type?

2. How does problem solving diseourse evolve as students partieipate in 

a eollaborative problem solving environment?

The findings to this researeh inform a mathematics community interested in 

incorporating nonroutine problems/projects into eurrent mathematies instruetion. The 

results suggest that as students developed a eulture within their dyads, became 

involved in problem solving and problem posing, and collaboration, their collective 

and individual engagement were increased. After evaluating the various data relating 

to problem type and partieipant engagement, it beeame evident that eertain problem 

types engaged the students more than the others. While it was no surprise that routine 

problems were not engaging to them, it was interesting to find that their collaboration 

and discourse were similarly affected by these mathematics circumstances. The
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participants were much less likely to question, challenge, argue, negotiate, or probe 

each others’ thinking, and were much more likely to rely on and accept the first 

answer at which they arrived. There were no efforts to modify, extend, or apply these 

routine problems to other contexts. This outcome proves by negation the point 

Kilpatrick and Silver (2000) made when they concluded that a positive mathematics 

experience will enable students to apply methodology and knowledge outside the 

classroom. In this case study, routine problems failed to engage the dyads’ cognitive 

initiative outside a traditional environment and failed to keep them interested in the 

process of finding a solution. Similarly, these results affirm the thesis presented by 

Henningsen and Stein (1997): that students decline into procedural thinking when 

approaching a routine problem that fails to engage creative problem solving.

After examining the “big picture,” it became evident that over the course of 

this 16-week period, significant transitional moments existed, during which 

collaborations among the dyads and the group seemed to change, and the quality of 

discourse improved for both groups. While not directly related to any specific 

problem type or context, these transitional moments seemed to be related to on-going 

negotiations and relationships, my role as a teacher/facilitator in the development of 

the dyads’ effective listening (Davis, 1997), and to their beliefs and mathematical 

understandings. Prolonged problem solving and on-going negotiations and 

collaborations seemed to be related to students’ experiences with productive 

interactions, shared authorities, and meaningful discourse as well as developing a 

supportive environment that was beneficial to its participants, a conclusion that 

reiterates the findings of McCaffrey, et al. (2001): a connection in a community
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setting helps individual eognition and improves mathematics ability and 

understandings.

These conclusions are supported by theorists/researchers who base their 

studies on the notion that mathematical literacy and understanding include the 

development of students’ autonomy in and out of schools as life-long learners. That 

is, integrated learning should focus not on accumulation of information, but on 

mathematical reasoning with a strong emphasis on nonroutine problem solving, 

problem posing, and understanding, as well as representation and communication of 

solution findings (Brown, 2003; Davis & Simmt, 2003; Doerr & English, 2003; 

English, et al., 2000; Fleener & Rogers, 1999; Greer, 2000; Hiebert, et al., 1996; 

Lajoie, 1998; Moore, 1998; National Council of Teachers of Mathematies [NCTM], 

1989, 1991, 2000; Shaughnessy, et al., 1998). In addition, appropriate use of 

technology, as a problem solving tool, becomes important as students’ mathematical 

competencies develop—a point specifically stressed by Cobb (2000), who purports 

the interest students take when allowed to utilize non-traditional, technical aids and 

innovations; an interest that is then taken as a shared phenomenon.

Likewise, participating in a discourse community, students’ collaborative 

efforts and skills need to be supported in their mathematical experiences. Because 

problem solving, reasoning, and discussion (Brown, 2003) are the cornerstones of 

proficiency (Steen, 1999), mathematical literacy and technological competence must 

include learning opportunities that challenge students to be mindfully engaged 

(Langer, 1997), to think critically, to use technology collaboratively, and to work on 

tasks that are worthwhile (Davis, et al, 2000).
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Relationship Between Student Engagement and Problem Type

After evaluating the various data relating to problem type and participant 

engagement, it became evident that certain problem types engaged the students more 

than the others. For example, routine problems such as those found in their textbooks 

that involved uniform approaches and fixed solutions failed to engage the 

participants. The participants approached these types of problems in a mechanical 

manner, addressing, formulizing, and solving them rather quickly before moving on 

to another problem.

As previously stated, while it was no surprise that routine problems were not 

engaging to them, it was also evident that their collaboration and discourse were very 

different under these circumstances. They were much less likely to question, 

challenge, argue, negotiate, or probe each others’ thinking, and were much more 

likely to rely on and accept the first answer. There were no efforts to modify, extend, 

or apply these routine problems to other contexts.

Their interest was more piqued by the notion of finding their own problems on 

the Internet and working individually or in pairs solving nonroutine problems. Even 

though their interest may have waned as they began problem solving, they all enjoyed 

having the opportunity to select their own problems.

Nonroutine problems seemed to engage them more so than routine problems, 

and called for an active approach to problem solving. These types o f problems 

allowed the participants to modify the conditions on which a word, ratio, or fraction 

was based in order to reach a correlating solution and seemed to hold their interests.
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Perhaps a factor in their enthusiasm for the nonroutine problems was their ability to 

choose the problem that they would attempt to solve.

This freedom of inquiry into problem selection and solving was not only 

interesting in terms of their educational discourse, but also because of the 

implications of such methodologies in terms of classroom authority. When the 

participants were able to become actively engaged in their own education and to seek 

out the very problems they would be expected to “tackle,” their interest, enthusiasm, 

and dedication to the project escalated. Routine problems (and problems that were 

mechanically “assigned” to them) initiated analogous responses; they mechanically 

approached problem solving and reasoning. However, when they were given an 

active voice in deciding what problems would be the focus of their investigation, they 

not only sought out challenging problems, they invested themselves much more in the 

actual solution process. Once given some authority in their own education, they took 

the necessary actions in becoming autonomous agents.

Although there were some differences in how the two dyads approached these 

nonroutine problems (i.e. Bob and Jim communicated with one another much more 

effectively using both verbal and nonverbal communication in order to emerge as a 

functioning dyad, while Paul and Clint were much more cautious in their 

communication with one another and did not emerge as a functioning, communicating 

dyad until much later in the study), both dyads expressed much more interest and 

energy in solving nonroutine problems that they themselves were responsible for 

generating. Even though there were several instances when one partner would 

commimicate internally and one would communicate externally, their overall
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discourse eventually became harmonious. The process of working together also 

seemed to educate the four participants on the benefits of incorporating technology in 

their mathematics learning. In short, they realized how much was available to them in 

both problem posing and problem generating, not just in this study, but for their future 

mathematics endeavors.

Similarly, they all enjoyed project-based problem solving very much, and 

continually expressed a desire to return to such a “hands on” approach as they 

completed other eomponents of the study. This is apparent in their problem selection; 

even though they were given the opportunity to explore open-ended problems, they 

expressed a desire to return to projects that involved trips to loeal educational 

facilities, online searehing, and web-page designs. Again Bob and Jim aeted as an 

effective, communicatively functioning dyad early in the study and expressed a desire 

to work together as a team. Their discourse was open and active; each listened to the 

other, shared his opinions, modified working “theorems” according to the addition of 

new information, and actively sought to communicate and compromise.

While this communicative relationship is probably due to the fact that the two 

had a prior relationship with one another and felt comfortable communicating with 

one another, their exchanges were highly suecessful nonetheless. This is evident in 

their successfiil compilation and completion of the egg-drop project (i.e. they actively 

engaged with one another during the egg-drop projeet and were eonsistently 

successful).

This exchange sharply contrasts with Paul and Clint; this dyad communicated 

begrudgingly with one another for the majority of the first half of the study. Their
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responses to one another were short, uninterested, and for the most part, completely 

individuated. Personal ownership of solution strategies seldom went beyond 

comments like, “my answer,” “my method,” or “my approach.” As a dyad, their 

initial discourse did not involve meaningful communication; that is, they shared ideas 

with one another sporadically, “tuned” the other participant out when he was sharing 

his ideas, and failed to incorporate this additional information into his ovm problem 

solving methodology. Again, this interaction may largely be due to the fact that the 

two had no previous relationship and had not established a trusting communicative 

relationship, but the results were startling nonetheless. Often, Paul would take on the 

role of a teacher with Clint, which may have been responsible for some of the hostility 

in the latter participant. This became evident during the egg-drop project when Clint 

destroyed his partner’s egg and then claimed to have been “joking.” However, they 

did begin to exhibit a more trustful relationship toward the latter half of the study, 

which is greatly due to the number of projects and problems that they worked on 

together. They too were much more communicative and engaged when dealing with 

nonroutine, self-generated problems.

From this study, one may conclude that a relationship exists between the kind 

of problems in which students are engaged and the nature of their mathematical 

conversations. Even in the case of Paul and Clint, they were much more likely to talk 

about and actively listen to each others approaches to nonroutine problems. Students 

were not as actively involved in problems that were centered on standard, formulaic 

approaches that required little or no creativity. In contrast, students were engaged in 

selecting their own problems for solving (particularly by using the Internet), and were
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more prone to engage with one another if a significant level of interest existed. 

Mathematical conversations were richer and more involved as problems were more 

open-ended, nonroutine, or ill-defined. Some of these findings may be of function of 

the level of trust that existed in this small community.

Building trust and the process of trust-building was important for these 

students’ abilities to express their thinking and the quality of their discourse. When 

trust was established, then dyads were more likely to argue, conjecture, and share 

their own uncertainties with one another especially when engaged in nonroutine 

problem solving.

Evolving Beliefs about Mathematical Problem Solving and Collaboration

For the most part, at the beginning of the study, the participants’ views on 

mathematical problem solving and collaboration were varied; Paul and Clint believed 

collaborative work in problem solving should be utilized sparingly, although Clint 

admitted that he had tutored other classmates in computer courses, and that sharing 

ideas in other courses was beneficial to the entire class. Paul confided that his 

geometric understanding had improved with help from another student.

Their counterparts, Jim and Bob, however, enthusiastically supported 

collaborative work from the very beginning of the study and seemed eager to explore 

further group work. It is clear from the initial interviews that these students had a 

very narrow view of mathematies eollaborations. All viewed eollaboration as helping 

someone find a correct answer or procedure.

Perhaps because of their initial openness to collaboration, Jim and Bob were 

the first dyad to engage in deeper communication about the specific nature of their
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project (the egg-drop project), while Clint and Paul failed to engage with one another 

meaningfully; they operated as independent agents for the most part. In fact, these 

two failed to “mesh” through most of the first half of the study. On many occasions, 

the two seemed disinterested in each other’s findings, and, in turn, Paul’s project 

seemed more successful than Clint’s, which may have been a point of contention 

between the two. There was absolutely no hint at the formation of a community in the 

early stages of their interactions. This again reflects their narrow view of and lack of 

experience with collaborative problem solving opportunities.

When the dyads entered the second phase of the study, the nonroutine problem 

solving, the nature of their problem solving discourse seemed to mirror these initial 

differences. Clint and Paul seemed to be passive participants, while Bob and Jim 

actively engaged with one another. In other instances, Paul assumed the role of a 

teacher with Clint, which effectively stunted his level of involvement. Even with 

these opportunities to work collaboratively on nonroutine problems, Clint and Paul 

seemed unable to extend their ideas of mathematical collaboration beyond focusing 

on “right answers” and competition. Despite these differences, all four participants 

agreed that nonroutine problems were beneficial to their mathematics learning 

because they called for extended problem solving, not the 45-50 minute problem 

solving “sessions” offered at their school.

At one point during problem solving (later in the study) Paul and Clint began 

to communicate with one another on a more meaningful level. This suggests that the 

nature of communicative exchanges is a complex fimction of beliefs, experiences, and 

opportunities. Also a factor may have been the difference in mathematical abilities in
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the two groups. For example, Bob and Jim were much more homogenous with regard 

to their mathematical abilities and had aheady established a relationship prior to this 

study. Likewise, the heterogeneous relationship between Clint and Paul was of great 

importance. Because Paul seemed to have greater mathematical understanding and 

ability than his partner, Clint, Paul often adopted the role of a teacher as the two 

exchanged information—effectively silencing Clint and guaranteeing his passivity. In 

the end, the two did show promise of developing positive collaboration, but their 

communications paled in comparison to their counterparts.

After examining the “total context,” it became evident that over the course of 

this 16-week period, significant transitional moments existed, during which 

collaborations among the dyads and the group seemed to change, and the quality of 

discourse improved for both groups. While not directly related to any specific 

problem type or context, these transitional moments seemed to be related to on-going 

negotiations and relationships, my role as a teacher/facilitator in the development of 

the dyads’ effective listening (Davis, 1997), and to their beliefs and mathematical 

understandings. For example. Bob and Clint expressed initial eagerness in 

participating in group work and their mathematical ability was relatively 

homogenous; therefore, their transitional moments occurred more often and early on, 

allowing for a more generative communicative evolution. Likewise, Paul and Clint 

expressed relative hesitanee in partieipating in a group projeet, and their mathematics 

ability was more heterogeneous; therefore, their transitional points occurred much 

later and produced a less profound communicative evolution.

Prolonged problem solving and on-going negotiations and collaborations
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seemed to be related to students’ experiences with productive interactions, shared 

authorities, and meaningful discourse as well as developing a supportive environment 

that was beneficial to its participants. An important component to this case study was 

the role I played, as a teacher, to intervene and facilitate for the development of the 

dyads’ effective listening (Davis, 1997) to accelerate mathematical discourse. Early 

on, when Clint and Paul were failing to listen to and expand on their thinking. I, as a 

teaeher/facilitator, have encouraged them to listen to, respond to, and utilize each 

other’s approaches.

In this case study. I, as a researcher, provided many experiences without time 

limitations and (according to the four ninth-grade participating students’ interests) 

and, as a teacher, I intervened and facilitated for the development of the dyads’ 

effective listening, which seemed to have been crucial to the development of their 

mathematics understandings. Moreover, all the four ninth-grade participating 

students seemed to have benefited from on-going negotiations and prolonged problem 

solving experiences—experiences which seemed to be beneficial in their 

establishment of more positive relationships, beliefs, and mathematical 

understandings within their small collaborative community.

Therefore, my role in this study was not only to set up contexts and observe 

problem solving and communicative patterns, but also, as a teacher, I intervened and 

facilitated the development o f effective listening (Davis, 1997) and multiple 

approaches to solution strategies. The on-going progress and accelerated 

collaboration in Clint and Paul’s problem solving interactions seemed to suggest the 

importance of my role as a teacher/facilitator in providing a supportive collaborative

127



learning environment.

Limitations

This study was eonducted outside a elassroom environment. The tensions a 

teacher feels to “cover” the curriculum in the elassroom makes it difficult to 

understand how effective students’ choice of nonroutine problems could fit in that 

curriculum. Therefore, student autonomy related to student choice within a traditional 

classroom setting is yet untested.

Thus, while this study was incredibly illuminating in terms of developing a 

mathematical discourse and autonomy, it did have its limitations in terms of 

implementing the findings into a classroom setting. For example, most of the content 

addressed in this study (and most of the problems suggested for eollaboration) 

involved prolonged problem solving—problems that cannot be solved in 45-50 

minutes with meaningful experiences. Obviously, this type of problem solving would 

be problematic for a mathematics curriculum involving 50 minute to one hour class 

intervals that does not spouse the spirit o f reform-based curriculum’s dynamics 

cultures.

Additionally, the current systematic structure of mathematics education 

involves focus on measured results—testing that focuses solely on test results, not 

mathematical processes. This concentration on the production of “right answers” 

places the importanee solely on eorrect results, not eoneeptual understanding. Results 

of this study that suggest the importance of prolonged collaborative engagement, 

nonroutine problem solving, and the development of mathematical communications 

in a supportive environment may have limited applicability in classroom contexts
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where teachers feel pressures to “perform.” This is not to say students would not 

learn the mathematies anyway, but this has yet to be a part of our mathematical 

culture.

Similarly, the incorporation of nonroutine problem solving into mathematics 

curriculum may be resisted by the society as a whole. This is true because of the 

existing traditional culture of the schools. For so long, teachers, students, and parents 

have been “trained” to view mathematies education as the production of correct 

answers; therefore, any modification to such a curriculum may cause uneasiness in the 

educational community.

Therefore, in order to change the eulture of the classroom into one that 

encourages problem solving and collaborations, mathematics educators need to 

provide more time and meaningful experiences to their students and not focus on 

routine problems. Educators must view mathematics as human activities, respect 

students for their mathematics capabilities, and value the culture of the classrooms. 

Teachers of mathematics should provide supportive eollaborative learning 

environments in the classrooms that including other things, incorporate the use of 

technology, as a tool, and utilize the spirit of reform-based curriculum including 

nonroutine and open-ended problems/projects that encourage students to think, to 

investigate, and to share as well as to collaborate and communicate effectively beyond 

50 minute to one hour class intervals.

Implications for Future Research

Future researeh needs to provide opportunities for classroom teachers to build 

on a context of nonroutine problem solving and research in the classroom.
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Collaborative problem solving in mathematies classrooms are necessary, and will be 

beneficial when educators create and support opportunities for students’ collaborative 

learning. Educators must seek to adapt ways to incorporate eollaborative learning that 

involves nonroutine problem solving in the classroom. Additionally, this research 

calls for a greater need to study further the implications of utilizing technology, as a 

tool, in the classroom so that students may have more and richer opportunities and 

selections of pursuing their own problems. Such a supportive inquiry-based 

collaborative environment seems to engage students and is worthy of further 

experimentation.
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APPENDIX A

INFORMED CONSENT

University of Oklahoma 
Instructional Leadership and Academic Curriculum

Problem Solving Dynamics -  Students Nonroutine Problem Solving Engagement: A 
Case Study of Four Ninth-Grade Mathematics Students

820 Van Vleet Oval 
Norman, Ok 73019-0260

A Letter to the Parents

Date: 08-20-97

Ross Pourdavood 
4704 S. Love Drive 
Oklahoma City, OK 73135 
e-mail: rosspour@flash.net

Dear Parents of 9*̂  graders.

As an instructor of college mathematics and as a graduate student in 
mathematics education I am continually aware of the role problem solving has in 
today’s American schools. Problem solving is the cornerstone of becoming literate in 
mathematics. Technological advancements such as graphing calculators, computer 
software, and the Internet (with supervision) are viewed as important components in 
the efforts of mathematics teaching and learning to facilitate active problem solving in 
mathematics. Administrators, teachers, researchers, and students at all grade levels 
across the United States and abroad are excited about the integration of such 
technology tools for doing problem solving in mathematics.

This Fall I plan to be working closely with your 9^ grade mathematics student 
from Christian Heritage Academy (CHA) doing nonroutine collaborative problem 
solving using the Internet (with supervision) as part of my dissertation research. This 
study may last 16 weeks beginning mid-August. The participants will comprise of 
four 9*̂  grade volunteers. The entire dissertation research will be directed by my 
chairperson Dr. Jayne Fleener, Associate Professor from the University of Oklahoma.
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The study will be divided into two phases. Phase one will include background 
data collection on student beliefs and attitudes about mathematics and technology, 
instruction on computer use, and a group problem solving activity to build teamwork. 
Phase two will involve student pairs working every two weeks to solve mathematical 
problems that are nonroutine. Problems such as building a hyperbolic cube with 
cardboard, designing a skate board for all terrain, designing homepages (with 
supervision), or defining and solving their own problems will be explored.

These projects are tentative ones and may be modified or changed to better 
serve to the needs of the volunteer participants. These projects may be used not as an 
end-mean but only as a catalyst to improve the volunteers’ critical thinking, 
reasoning, and problem solving process in mathematics. We will also welcome and 
incorporate ideas and suggestions related to this study, which may come, from the 
volunteer participants, their parents, and/or from their teachers at CHA.

I would like to ask you and your child to read the attached consent forms. If 
you have no objections, please sign the Parental Consent Form and have your child 
sign the Student Consent Form (I only need one parent signature and a student 
signature) and return them to me as soon as possible. You can use the enclosed 
envelope or have your child return the signed forms to Mr. David Mehlhaff at CHA. 
If you have any questions about the research I plan to be doing, please feel free to call 
me at home (732-3125) or e-mail me at rosspour@flash.net.

Thank you in advance for your help.

Sincerely,

Ross Pourdavood
Doctoral Student, Mathematics Education
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PARENTAL CONSENT FORM

Title; Problem Solving Dynamics -  Students Nonroutine Problem
Solving Engagement: A Case Study of Four Ninth-Grade 
Mathematics Students

Principal
Investigator: Mr. Ross Pourdavood

Instructional Leadership and Academic Curriculum -
Mathematics Education, University of Oklahoma 
Phone number: 359-5004
e-mail: rosspour@flash.net

Dissertation
Director: Dr. Jayne Fleener, Associate Professor, University of

Oklahoma Phone number: 325-1498

This is to certify that I, _______________________________ , hereby give
permission to have my child or legal ward participate as a volunteer in a descriptive 
study as part of an authorized dissertation research project at the University of 
Oklahoma under the supervision of Dr. Jayne Fleener.

I understand that my child or legal ward will complete two questionnaires, 
spend time, out of school, working on the Internet (with the supervision of the 
researcher), using e-mail, and collaborating with the other volunteers in doing 
nonroutine problem solving in mathematics. In addition I understand my child will be 
audiotaped and videotaped with project personnel while working in pairs or in a 
group as well as individual or group interviews throughout the study. I understand 
that the materials and methods of this project have been approved by the 
administration at CHA and the Institutional Review Board at the University of 
Oklahoma for researeh on human subjects. I also understand that the result of this 
study may be used for aeademic presentations and publieations.

I understand that confidentiality has been assured and my ehild’s name will 
not appear in any publication or presentation associated with this project. I 
understand that I am free to withdraw my child or legal ward from the investigation at 
any time without prejudice. I understand that the ahove named researcher will answer 
any questions about the research procedures or my child’s rights at any time.

I understand that by agreeing for my child or legal ward to participate in this 
research and signing this form I do not waive any of my legal rights.

Parent/Guardian Signature Date
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STUDENT CONSENT FORM

Title: Problem Solving Dynamics -  Students Nonroutine Problem
Solving Engagement: A Case Study of Four Ninth-Grade 
Mathematics Students

Principal
Investigator: Mr. Ross Pourdavood

Instructional Leadership and Academic Curriculum -
Mathematics Education, University of Oklahoma 
Phone number: 732-3125
e-mail: rosspour@flash.net

Dissertation
Director: Dr. Jayne Fleener, Associate Professor, University of

Oklahoma Phone number: 325-1498.

This is to certify that 1,_______________________________ , hereby agree to
participate as a volunteer in a descriptive study as part of an authorized dissertation 
research project at the University of Oklahoma under the supervision of Dr. Jayne 
Fleener.

1 understand that 1 will complete two questionnaires, spend time, out of 
school, working on the Internet (with the supervision of the researcher), using e-mail, 
and collaborating with the other volunteers in doing nonroutine problem solving in 
mathematics. In addition 1 understand that 1 will be audiotaped and videotaped with 
project personnel while working in pairs or in a group as well as individual or group 
interviews throughout the study. 1 understand that the materials and methods of this 
project have been approved by the administration at CHA and the Institutional 
Review Board at the University of Oklahoma for research on human subjects. 1 also 
understand that the result o f this study may be used for academic presentations and 
publications.

1 understand that confidentiality has been assured and my name will not 
appear in any publication or presentation associated with this project. 1 understand 
that 1 am free to withdraw from the investigation at any time without prejudice. 1 
understand that the above named researeher will answer any questions about the 
research procedures or my rights at any time.

1 understand that by agreeing to participate in this research and signing this 
form 1 do not waive any of my legal rights.

Student Signature Date
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APPENDIX B

MATHEMATICS LEARNING INVENTORY 

Please respond to each item by circling a 1-4 to correspond to the following:

1 = Strongly Agree, 2 = Agree, 3 = Disagree, 4 = Strongly Disagree. SA A D SD

1. Students don’t have to like math to have mathematical power.

2. Only professional mathematicians can invent mathematical truths.

3. No two students can have the same understanding of mathematics.

4. Mathematics is pure intellect.

5. Computers and calculators should affect how mathematics is taught.

6. There is usually one best way to solve a math problem.

7. Being able to do the problems in the book is a good indication of math learning

8. Math drills on mathematics facts are necessary for students to leam them,

9. Good mathematics teachers know how to control their students.

10. Teachers should provide unambiguous problems for students to solve.

11. Students don’t have enough mathematical sophistication to make up their 

own mathematics problems.

12. Teachers should repeat student comments so all members of the class hear 

their ideas.

13. Students should be encouraged to try different solutions to problems.

14. Students should not use calculators until they know the basic operations.

15. Discussing solution strategies with peers helps facilitate math learning.

16. The teacher is ultimately responsible for the student’s learning.

17. Mathematics is very abstract, (e.g., describing without physically seeing).

18. Students cannot leam mathematics well imless they pay attention to the teacher
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1 = Strongly Agree, 2 = Agree, 3 == Disagree, 4 = Strongly Disagree. SA A D SD

19. Well organized lectures and carefully selected examples are important for 

effective mathematics teaching.

20. Even children who have not learned the basic facts can have effective methods 

for solving problems.

21. Children can leam mathematics effectively when the teacher does not tell them 

whether their answers are right or wrong.

22. Mathematical truths are relative.

23. Learning mathematics requires a good memory.

24. Mathematical traths are discovered rather than invented.

25. Students need repetition and practice in order to leam mathematics.

26. Students’ explanations of their solutions to problems are good indicators of 

their mathematics learning.

27. Mathematics learning requires creativity.

28. Mathematics does not change.

29. It’s best to let students find their own methods for solving problems.

30. The goals of math instraction are best achieved when students routinely 

produce correct answers to problems.

31. It’s better to give students lots of practice with a variety of easy problems 

rather than a few more involved problems to solve.

32. A good indicator of leaming in mathematics is if a student can get correct 

answers to problems.

33. There are some mathematical traths, which will never be proven wrong.

34. Children should be able to complete mathematics problems quickly.

35. The primary value of calculators in junior high school is to allow students 

to check their answers.

36. Confidence is not an important element of mathematics leaming.
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1 = Strongly Agree, 2 = Agree, 3 -  Disagree, 4 -  Strongly Disagree. SA A D SD

37. Getting right answers is as good an indication of understanding as being able

to explain reasons for the answers. 1 2 3 4

38. Student performance on standardized tests is a good indication of level of 

understanding. 1 2 3 4

39. Mathematical truths are dependent on our perceptions of reality. 1 2 3 4

40. Teachers should encourage students to solve problems in more than one way. 1 2 3 4

41. Computers and calculators should not affect what mathematics is taught. 1 2 3 4

42. Teaching short-cuts and more efficient mathematical procedures allows

students to leam more material in less time. 1 2 3 4

43. Cooperative leaming is not as efficient as direct teaching. 1 2 3 4

44. The teacher is the ultimate authority in the classroom. 1 2 3 4

45. Getting right answers is a better indication of understanding than being able to

explain reasoning. 1 2 3 4

46. One must be clever in order to invent mathematical knowledge. 1 2 3 4

47. If a student is having trouble with a problem, it is the teacher’s responsibility

to tell the students how to do it. 1 2  3 4

48. Teachers should use a carefiilly stractured skills guide when teaching

mathematics to insure each skill is mastered. 1 2 3 4

49. It’s inefficient to allow students to invent their own solution strategies before

the teacher demonstrates the correct procedure. 1 2 3 4

50. Students don’t understand fi-actions because fractions are hard. 1 2 3 4

51. The majority of students cannot figure mathematics out for themselves and

must be explicitly taught. 1 2 3 4

52. Teachers should encourage students to develop their own solutions even if

they are inefficient. 1 2 3 4

53. The teacher’s job is to guide the students to discover the right answers. 1 2 3 4
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1 = Strongly Agree, 2 = Agree, 3 = Disagree, 4 = Strongly Disagree. SA A D SD

54. Effective teaching requires rewarding right answers.

55. Effective teaching requires correcting wrong answers.

56. If students really understand mathematics, they will do well on 

standardized tests.

57. It is more useful to allow children time to explore some tasks thoroughly than 

cover all of the curriculum material.

58. Students should master computation first; conceptual understanding comes 

later.

59. An effective mathematics teacher demonstrates the right way to do a problem. 1

60. Mathematics is abstract with little practical significance.

61. Computers and calculators have significantly changed how mathematics is 

done.

62. The role of the math teacher is to explain methods clearly and carefully.

63. When selecting the next topic to be taught, the teacher must consider the 

organization of the curriculum.

64. The math curriculum should he written by mathematicians.

65. Mathematics classrooms should be organized so that students can work 

quietly in their textbooks with as little distraction as possible.

66. The classroom should be arranged so the authority is centered on the teacher.

67. It is important to cover the math curriculum if students are to be successful 

next year.

68. It’s not surprising that some students have difficulty with math; math is not for 

everyone.

69. Students shouldn’t have to practice complicated long division problems because 

of calculators.
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1 = strongly Agree, 2 = Agree, 3 = Disagree, 4 = Strongly Disagree. SA A D SD

70. On a math test, it’s better to have a variety of many short problems than a few

involved problems to assess the depth of mathematics understanding. 1 2 3 4
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APPENDIX C

STUDENT PRIOR MATHEMATICS EXPERIENCES 

Answer the following questions about your own mathematics experiences;

1 = Strongly Agree, 2 = Agree, 3 = Disagree, 4 = Strongly Disagree. SA A D SD

1. Fm not very confident about my ability to solve math problems.

2. I enjoy mathematical problem solving.

3. It’s important to me to understand why math procedures for solving problems 

work.

4. Being a good mathematics problem solver is important to me.

5. I have been a consumer rather than inventor of mathematics.

6. I don’t have a very good feel for how to use my mathematical knowledge.

7. I have trouble explaining my solutions to mathematics problems.

8. I’ve been satisfied to find only one right way to do a math problem.

9. Math has never been easy for me.

10.1 don’t like to work math problems just for fun.

11. I avoid math whenever I can.

12. Knowing more than one way to do a problem confuses me.

13.1 received good grades in math.

14. My math grades were not a good indication of how well I understood mathema
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3 4 
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2 3 4

15. Age:

16. Gender: male female

17. Ethnic group affiliation:

(* Adapted from Fleener, 1995 )
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APPENDIX D

VOICES OF THE PARTICIPATING STUDENTS

1. Tell me about your school mathematics experiences.

2. Has mathematics always been easy for you? Please explain.

3. Tell me about your experiences with problem solving.

4. What do you find difficult about problem solving? Please explain.

5. If you could change one thing about the way your mathematics class is

approached, what would it be?

6. How many times a day do you think you use mathematics? Please explain.

7. How would you respond to this: Problems are our fiiends; you cannot leam 

without them.

8. Why do I have to know about problem solving?

9. What does it mean to do problem solving?

10. What is your opinion of the usefulness of mathematics in school? In the 

workplace? In daily life?

11. What are your career goals?

12. To what do you attribute your success in school? At home? In life?

13. To what do you attribute your impediments in school? At home? In life?

14. How do you compare yourself to your elassmates academieally?
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APPENDIX E

PROBLEM SOLVING TASKS 

The following are some problems that were suggested and assigned by the 

researcher to the volunteer participants to use as bases to create their own 

mathematical problems to solve. These problems, for the most part, were 

mathematical in nature and some of these problems seemed to have been challenging 

and engaging. These problems were basically categorized as: (a) routine (b) 

nonroutine (c) open-ended and (d) project-oriented problems. In the following, 1 will 

give some of these categorical problems:

Routine Problems

1. The die is rolled 18 times, how many times is the #2 expected to come up? 

(Adapted from the Internet -  NASA Page http:Wwww.nasa)

2. What is the surface area of a rectangle solid, when the length is 6 centimeters, 

the dept is 5 centimeters, and the height is 4 centimeters. (NASA Page 

http:Wwww.nasa)

Nonroutine Problems

1. Two jars are placed on the table. One contains 1000 blue beads and the

other 500 yellow beads. Crystal took 20 beads out of the blue bead jar and 

put them into the yellow bead jar. After shaking that jar until the yellow 

and blue beads were thoroughly mixed, she randomly selected 20 beads from 

the mixed jar and put them into the jar of blue beads. After completing the 

task she asked were there more blue beads in the yellow bead jar than there
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were yellow beads in the blue bead jar? (Adapting from Maher & Alston, 

1990)

2. Leah bought a number of Christian song tapes in a store where a 8.695% sales 

tax is added to every purchase. If she did not have to pay the tax, she could 

have bought 2 more tapes for the same amount of money. How many tapes 

did she buy? (Round your answer to the nearest cents.)

(Developed by the researcher, 1997)

3. Jayne read a book with more than 100 and fewer than 200 pages. The sum of 

the three digits in the number of pages is 10. The second digit is twice the last 

digit. How many pages did her book have?

(Adapted from NCTM - MTMS, 1997)

4. The nth term of a sequence is 2n + 3 for all counting numbers n. What is the 

arithmetic mean (average) of the first ten terms of the sequence?

(Adapted from NCTM - MTMS, 1997)

5. A rectangular polygon consists of five squares placed side by side. The 

perimeter of the rectangle is 60 cm. What is the area of the rectangle in square 

centimeters? (Adapted from NCTM - MTMS, 1997)

6. What proper fraction exceeds its square by the greatest possible amount? 

(Adapted from Mathematics Teacher Sept. 1995 Vol. 88, No. 6)

7. Your salary is to be raised 15 pereent and then a month later redueed by 15 

percent. There it will remain. However, you may elect to have the cut first 

followed by the raise one month later. Which is the better plan?

(Adapted from Jamski, 1991)
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8. Skydivers fall at 54 meters per second before their chutes open. They fall at 6

meters per second after their chutes open. If a skydiver jumped fi-om a plane 

1800 meters high and reached the ground in 2 minutes, how high was she 

when she opened her chute?

(Adapted from Pugalee, 1995)

Project-oriented Problems

1. From what height can you drop an egg without breaking it?

2. Do an Internet Treasure Hunt (with supervision).

3. Design a skate board for all terrain including the planet Mars.

4. Design a Web-Page.

5. Explore an Omniplex Geometrical Treasure Hunt (with Supervision). 

Open-ended Projects

1. How much money does it take to make money?

2. Does time travel forever or does it die?
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APPENDIX F

INTERNET SITES TO VISIT 

The following are some Internet links that include K-12 science and 

mathematics problems that are routine, nonroutine, or open-ended problems and were 

used by the participating volunteers as potential sites to visit (with supervision), to 

explore, and to search as well as to solve problems.

1. Exploratorium: ExploraNet; Problems from Mathematics Teachers 

(http://www2.hawaii.edu/suremath/nctmjoumaI.html)

2. The Journal of Modem Problem Solving 

IhttD://www2.hawaii.edu/surematb/ioumal html#al gebraJ

3. Science and Math Bookmarks #1 

nittp://206.76.136.3/resources/scimath 1 htmll

4. Mathematics Resource 

Ihttp://www.dpi.state.nc.us/Intemet.Resources/Math.rsrcs.htmB

5. Activities for Pi Mathematics (http://www.ncsa.uiuc.edu)

6. Teaching Units - Integrating the Intemet

(http ://www.indirect.com/www/dhixson/index3 Jitml)

7. LFM - Kid’s Comer - Student Stumpers 

(http://que8t.arc.na8a.gov/mars/kids/stimiDers.html)

8. Math and Science Gateway (http://www.tc.Gomell.edu/)

9. CSC Mathematical Topics (http://www.csc.fi/math topics/Generai.html)
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TABLE ONE

Statements/Questions From The 
IMLI Posed to Participants

Number of 
Participants who 
Disagreed with 
Statement

Clarifications and/or 
Explanations Provided 
during Interview

1. More than one answer is 
possible for math problem 0

Yet Clint stated that two 
students can leam in the 
same manner, and Bob 
believes two students can 
have same solution but 
different understanding (i.e. 
algebraically or 
geometrically)

2. Mathematies understanding is 
not synonymous with high 
standardized test scores

0

Both Bob and Paul 
specifically stated some 
students just don’t “test 
well.”

3. To some extent there are 
absolute mathematical truths 0

.Tim stated mathematics truths 
are not relative and do not 
change, yet later said math 
truths can be proven wrong. 
In contrasts. Bob said some 
math can be proven wrong 
but are not relative.

4. Invention of new mathematics is 
not limited to mathematics 
professionals

1

Bob said only professionals 
can invent truths, but later 
said one didn’t have to “be 
clever” to invent tmths. Paul 
later intimated on other 
responses that it is limited to 
professionals

5. Some people are more 
mathematically inclined, but that 
talent is not synonymous with 
enjoyment

0

Paul said one can have math 
power w/out “liking it”; Clint 
said one must like it to do 
well, but later said he does 
well in English and does not 
like it; Bob said only people 
who like math can invent 
truths

160



Statements/Questions From The 
MLI Posed to Participants

Number of 
Participants who 
Disagreed with 
Statement

Clarifications and/or 
Explanations Provided 
during Interview

6. Mathematics is applicable in 
everyday situations and is not 
just an abstraction

0

Jim said one should use 
experience to generate 
problems and problem­
solving relates to every-day 
life, yet there are “a bunch of 
things in math” that he does 
not use everyday.

7. Ability to do math problems 
Does not indicate math 
leaming

1 Bob believes that ability does 
equate leaming

8. Math leaming requires creativity 1

Bob believed the process was 
rooted in logic b/c math is 
only "facts", but then said 
students should generate own 
problems; Paul intimated 
later that it requires more 
logic than creativity

9 .1 consider myself to be a math 
consumer, not an inventor 1

Only Jim labeled himself an 
inventor, yet Paul believed 
students should use own 
experience in generating and 
solving problems

10.1 am relatively comfortable with 
my ability to solve problems 0

Bob considers himself good 
at math and "gets concepts” 
yet he and Clint express a 
weakness in geometry

11.1 can verbalize my solutions to 
someone else 2

Paul and Jim expressed 
difficulty verbalizing 
mathematics solutions

12. Grades are not an indication of 
mathematics knowledge 1

Bob believed they were no 
indication, yet said his grades 
were an indication; Clint later 
stated they might be a slight 
indication

Table 1. Basic Mathematics Assumptions and Beliefs
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TABLE TWO

Statements/Questions From The 
MLI Posed to Participants

Number of 
Participants who 
Disagreed with 
Statement

Clarifications and/or 
Explanations Provided 
during Interview

1. Computers should not effect how 
mathematics is taught in school 0 Yet all four expressed 

dissatisfaction with 
current curriculum

2. Students should practice math 
problems without use of 
calculators

1

Bob said they free more 
time to “leam the basics;”

Jim agrees but believes 
they should be used only 
after basics are grasped, 
and
Paul believes they are a 
detriment to mathematical 
understanding.

3 .1 have had prior experience with 
the Intemet 3

Bob familiar with 
computer but had never 
used Intemet;

Clint had only used the 
Intemet to send and 
receive e-mails.

Jim was proficient.

Table 2. Technological Beliefs and Assumptions

162



TABLE THREE

Slateinents/Qucstioiis From The 
MLl Posed to Participants

Number of 
Participants who 
Disagreed with 
Statement

Clarifications and/or 
Explanations Provided during 
Interview

1. Math drills are ineffective 
educational tools 0

Yet, all four are products of the 
traditional classroom settings. 
Bob said that some students may 
need repetition to understand.

2. Teachers should provide 
unambiguous math problems 0

Paul said he believed multiple 
solutions should be encouraged; 
defined ambiguity as poorly 
worded problems or problems 
that are too advanced.

3. A few longer mathematics 
problems are better for a test 
than several short ones

0
All four stated that they wished 
to have experienced more with 
longer math problems

4. Teachers should not show 
students the “right” way to 
solve problems

1

Jim said it is the teacher’s “job” 
to show correct way; Clint 
believed teachers should show 
correct way, but not confirm 
solutions. Bob believed teachers 
should only show method if 
students were “inefficient,” but 
later said teachers should show 
correct way first

5. Teachers should not tell 
students if their answers are 
correct or incorrect

1 Bob believed teachers should 
provide correct answers

6. Teachers are not responsible 
for their students’ learning 1

Paul and Bob believed teachers 
are ultimately responsible, Jim 
believed students were ultimately 
responsible, and Clint believed 
both parties were responsible.

7. Students must pay attention to 
teachers in order to learn 2

Jim and Paul believed students 
can learn without the help of their 
teachers, but Paul believed that it 
is more difficult.

Table 3. Views about Pedagogy and Role of Educators
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TABLE FOUR

Statements/Questions From The 
IMLl Posed to Participants

Number of 
Participants who 
Disagreed with 
Statement

Clarifications and/or 
Explanations Provided during 
Interview

1. Teachers should always 
control their classrooms 2

Jim and Boh disagreed, yet 
Bob later said that the 
teacher is the ultimate 
authority.

Clint helieved that order in 
the classroom reflected the 
teacher’s ability to instruct

2. Group work should be 
limited in the classroom 2

Paul and Bob said it should 
be used sparingly, but

Bob said he enjoyed hearing 
other students’ solutions and 
methods.

Clint had had positive 
experiences with group work

Table 4. Views on Collaborative Work
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TABLE FIVE

(11= Individual Inquiry, GD= Group Dynamics, CD=Collaborative Discourse, 
C=Conimunity)

Partici­ Group Meeting One Pilot Egg-drop Main Execution Reconstructed
pant Project Project

II: Examined Jim’s CD: Listened to II: Makes
findings fi'om the researcher’s advice parachute
Internet search. GD: Seemed to throw egg away out of

interested in from building; handkerchief;
GD: Helped to define other pair’s worked with partner utilizes straws
project as an open- results. to execute project; and fishing
ended one with many attempted several line in project.
solutions. CD: Worked executions, all of Attempts

with partner to which failed. project three
CD: Discussed Internet create project times and all

Paul usage with researcher Ifom toothpicks. C: No community three were
and suggested use of a glue, cotton. as yet. successful.
parachute in project to thread, and egg.
partner. Doesn’t seem Successful, yet CD: Does not
to be “bonding” with still not include
partner. “meshing” 

with Clint.
partner 
in project.

C: No community as uses pronoun
yet. C: No community 

as yet.
«J9»

exclusively. 
C: No comm­
unity as yet.

II: Seemed excited by CD: Asked site II: Makes
number of possible GD: Seemed employees about parachute
approaches. interested in other exact height of with pillows.

pair’s results. drop site; worked First Attempt
GD: Discussed various with partner to successful.
approaches with Paul CD: Worked with execute project; CD: Does

partner to create attempted several not include
CD: Seems project from executions alone. partner

Clint disinterested in partner, toothpicks, glue. all of which in project;
yet showed enthusiasm cotton, thread, and failed. purposefully
for Paul’s suggestions egg. Successful, yet breaks
and asked researcher still not “meshing” C: No community partner’s
about possible with Paul. as yet. egg during
materials and suggested successful
sites for the “drop.” C: No community attempt.
C: No community as as yet. 2 C: No comm.-
yet. unity as yet.

Table 5. Dyad One: Paul and Clint
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TABLE SIX

(11= Individual Inquiry, GD= Group Dynamics, CD=Collaborative Discourse, 
C=Community)

P articip .

Bob

Ciroup Meeting One

II: Searched Internet for 
ideas on project; became 
excited over concept of 
using a teepee and garbage 
bag.

GD: Discussed possible 
approaches with CUnt.

CD: Discussed possible 
locations with researcher 
and was open to guidance 
from Jim on the Internet 
searches.
(Note: Bob and Jim were 
already familiar with one 
another from school and 
church activities).

C: Some community 
already.

Pilot Egg- Main Execution Reconstructed
drop Project Project

II: Formulated plan CD: Worked
GD: using rocket engine with partner to
Supportive of and parachute. create project
other pair’s using cola
projects. CD: Helped build bottle, wings.

both his and paper towel
CD: Worked partner’s project. roll, and foam.
with partner to expressed to Worked with
create researcher partner to enlist
cardboard enthusiasm of outside help for
airplane for project. Both project design
project. attempts to launch and execution.
Successful project failed, yet Successful

enthusiastic over
C: Some partner’s success.
community C: Some
already. C: Some community community

already. already.

II: Formulated plan
GD: for teepee and
Supportive of parachute CD: Worked as
other pair’s a team with
project. CD: Co-built both partner to

projects with create project,
CD: Worked partner, admitted enlisted help
with partner to the two had no time from classmate.
create to “set up” before as well as from
cardboard launch date, but did a neighbor-
airplane for test engine. First pilot.
project. attempt at project Successful
Successful successful.

discussed possible C: Some
C: Some improvements with community
community Bob. already.
already. C: Some

community already.

Jim

II: Planed to ask his father 
for help and establish a 
timeline for completion. He 
formulated an initial plan 
for project.
GD: Helped group with the 
Internet usage and shared 
his search results with other 
pair.
CD: Asked researcher 
several questions about 
possible materials, helps 
Bob one-on-one on 
computer, and adds to 
Bob’s idea o f using garbage 
bag as parachute.
C: Some community 
already.

Table 6. Dyad Two: Bob and Jim
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TABLE SEVEN

Paired Students Pilot Project Main Project Reconstructed Project

Collaborative Project: 
Did not exist;

Collaborative Project: 
Existed some;

Collaborative Project: 
Did not exist;

Parallel Play: 
Existed;

Parallel Play: 
Existed;

Parallel Play: 
Existed;

Clint and Paul
Trust: Did not exist;

Responses:
Individuated;

Trust: Did not exist;

Responses:
Individuated;

Trust: Did not exist;

Responses:
Individuated;

Communication:
Superficial;

Communication:
Superficial;

Communication:
Superficial;

Meta-Messages:
Non-Productive

Meta-Messages:
Non-Productive

Meta-Messages:
Non-Productive

Collaborative Project: 
Did exist;

Collaborative Project: 
Did exist;

Collaborative Project: 
Did exist;

Parallel Play: 
Existed;

Parallel Play: 
Existed;

Parallel Play: 
Existed;

Trust: Did exist; Trust: Did exist; Trust: Did exist;

Jim and Bob Responses: 
Collaborative; Sought 
outside help;

Responses: 
Collaborative; Sought 
outside help;

Responses: 
Collaborative; Sought 
outside help;

Communication:
Genuine;

Communication:
Genuine;

Communication:
Genuine;

Meta-Messages:
Productive

Meta-Messages:
Productive

Meta-Messages:
Productive

Table 7. A Summary of Egg-Drop Project Interactions

167



TABLE EIGHT

Routine
Problems

Traditional
Geometry

IQ-Tests Traditional
Probability

Nonroutine
Problems

Marbles
combinations

Salary increase or 
decrease

Sky diver

Project-Based
Problems

Egg-Drop
Omniplex: 
Geometric 

Treasure- Hunting

Designing a 
web-page

Open-Ended
Problems

How much money 
does it take to make 

money?

Does time travel 
forever or does it 

die-out?

How to build a 
hyperbolic cube 
with cardboard?

Table 8. The Four Categories (Types) of Problems
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TABLE NINE

Mathe­
matics
Conceptual
Unders­
tanding

Mathematics 
Inquiry and 
Involvement

Techno-
Ogical
Mathe-
atics
Familiarity

Views on 
Group 
Work 
in P. 
Solving

Personal
Educa­
tional
Respon­
sibility

-Felt -Labeled -Never -Believed -Believed
confident, himself a used the limited teachers

Paul but cold not consumer Internet amount should not
explain his - Believed of show “right”
solutions non-math -Strongly group way to solve
-Believed professionals believed work problems
ability to could invent computers was -Strongly

■Î do math new truths should not beneficial believed

1 problems -Believed p. change in solving teachers
does not solving how problems should not

g indicate required math is tell if
•g math creativity taught correct
HH learning -Believes or not.

-Believe more than -Believed
grades one solution teachers
are an exists per are initially
indication problem responsible
of for learning.
knowledge but more

so students
-Believed -Believed -Learned -Believed -Believed
peer intera­ peer interaction to use the group smaller

.a ction forced showed Internet work classes
him to commu­ him to is very would be
nicate, approach -Believes productive more

•"S and can now a problem in technology in class beneficial
w explain numerous ways can benefit -Group- for him to

solutions -Learned math work work one-
-Learned to develop education improved on-one
to solve various communi­ with the
nonroutine ways to solve cation teacher
problems problems skills

Table 9. Paul’s Entry-Exit Interviews

169



TABLE TEN

Mathe­
matics
Conceptual
Underst­
anding

Mathe­
matics
Inquiry
And
Involve-
Ment

Techn­
ological
Mathem­
atics
Famil­
iarity

Views on 
Group 
Work in 
Problem 
Solving

Personal
Educat­
ional
Respons­
ibility

-Felt - Labeled himself -Only used -Strongly -Believed
confident. a consumer Internet for believed teachers

Clint but - Believed non­ e-mail group should show
experiencing math professio­ -Believed work “right” way
problems nals could invent computers was to solve
with new truths should not beneficial problems

1 Geometry -Believed change in problem­ -Strongly
- Believed problem-solving how math solving believed

1 ability to do required is taught teachers
math creativity should not

1 problems -Strongly tell if
•a does not believes problems are

indicate math more than correct or not
learning one solution -Believed
-Believe exists per both students
grades are problem and teachers
slight are equally
indication of responsible
knowledge for learning
-Improved -Realized -Uses the -Believes -Believes
Geometry he enjoyed Internet more teachers
grade from choosing what classes who force
a D to B problems -Still should a certain

to solve believes use approach
> -Believed and how technology group limit
.22 he had to may make work. students

better mathe­ approach them problem­ Collabor- -Realizes
s matical solving Ation too much
•3 conceptual -Learned too taught reliance
w understan­ to invent approa­ easy him on guidance

ding and ches to which he respons­ from teachers
thinking relates ibility and limits his
skills teamwork underst­

-Learned anding
to solve Believes
problems he is respons­
through ibility in his
group work education

Table 10. Clint’s Entry-Exit Interviews
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TABLE ELEVEN

Mathe­ Mathe- Techno­ Views on Personal
matics Matics logical Group Educat­
Conceptual Inquiry Mathe­ Work in ional
Unders­ and Involv­ matics Problem Respon­
tanding ement Familia­

rity
Solving sibility

Jim -Felt very -Labeled -Relatively -Strongly -Believed
confident, himself an proficient believed teachers
but could inventor on the group should not
not explain - Believed Internet work show
his non-math studentswas
solutions professionals -Believed beneficial “right” way

could invent computers in problem to solve
- Believed new truths should not solving problems
ability to - Believed change -Strongly
do math problem­ how math believed
problems solving is taught teachers
does not required should not

S indicate creativity tell students
•a math if problems

learning

-Believe 
grades are

- Believes 
more than 
one solution 
exists per

are correct 
or not 
- Strongly 
believed

some problem, but teachers
indication two students are not
of can learn in responsible
knowledge same way for students 

learning,
-Has better -Still enjoys -Uses -Believes -Believes
understanding logic-based Internet competitive students
of mathe­ problems, but often nature of must be
matics enjoys -Created group work more

.2h concepts choosing a web-page improved involved

1 which with math his problem­ in education.
-Group work problems to links solving and group

1
improved his solve -Believes skills and collabo­
communi­ Internet kept him ration
cation skills access in motivated would

the
classroom

-Believes 
group work

achieve
this

would be teaches
beneficial discipline

Table 11. Jim’s Entry-Exit Interviews
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TABLE TWELVE

Mathe­ Mathe- Techno- Views on Personal
matics Matics Logical Group Educat­
Conceptual Inquiry Mathe­ Work in ional
Unders­ and Involv­ matics Problem Respons­
tanding ement Familiarity Solving ibility

Bob -Felt -Labeled -Never -Believed -Believed
confident himself a used the limited teachers
except with consumer Internet amount of should not
Geometry group work show students
-Believed -Believed -Believed was “right” way

.2 ability to do only math computers beneficial to solve
g math professionals should not in problem problems.

1 problems could invent change solving should tell
indicates new truths how math students if

1
math - Believed is taught problems

£ learning problem­ are correct,
-Believe solving and were
grades are no required responsible
indication of logic, not for students
knowledge creativity learning
-Believes he -Learned to -Uses the -Said -Believes
is a better develop Internet, discussing students
problem- different but still problems should be
solver solutions to believes improved more

problems textbooks his unders­ involved
-Can better -Learned to are more tanding in own
communicate incorporate convenient education
problem­ outside for the -Believes
solving assistance classroom group work
process (friends. helps

1 neighbors. -Developing students
etc.) own website become

X -Being able more
w to choose productive

howto
solve -Believes
problems sharing
gave him ideas
a sense of helped him
self-reliance grasp

concepts
and ideas

Table 12. Bob’s Entry-Exit Interviews
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