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PREFACE 

 

Polymers are large molecules composed of many smaller units.  Dendrimers are a 

class of highly branched polymers with spherical shape and dimensions in nanometers, 

i.e., one-billionth of a meter.  Amphiphilic molecules contain both water loving 

(hydrophilic) and water hating (hydrophobic) chains as in soaps and detergents.  

Dendrimers with amphiphilic end branches may be good for dispersion of nanomaterials.  

These dendrimers might be used as molecular weight and size standards and as hosts for 

the transport of biologically important guests due to their small uniform size.   

A linear copolymer has chains composed of two or more different monomers 

linked together.  Linear chains that consist of a long sequence of one repeating unit and 

then a long sequence of a different repeating unit are called block copolymers.  By 

controlled methods, growth of polymer chains from the end groups of a dendrimer would 

convert a dendrimer of one size to larger molecules with relatively low distribution of 

sizes of molecules.  The controlled method of atom transfer radical polymerization 

(ATRP) was used to synthesize amphiphilic block copolymers of hydrophobic styrene 

and hydrophilic acrylic acid from the dendrimer chain ends.  The amphiphilic block 

copolymer dendrimers in water formed aggregates from about 40 nm to > 100 nm in 

diameter.  Atomic force microscopy (AFM) images of spin coated thin films show that 

the materials have aggregation characteristics of amphiphilic PS-PAA block copolymers, 
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in general, as shown by morphological transitions either from spherical to worm-like or 

from worm-like to spherical aggregates. 

An emulsion is a finely divided mixture of two immiscible substances, like oil 

(hydrophobic) and water (hydrophilic).  These hydrophobic oil droplets are dispersed in 

water and are surrounded by amphiphilic surfactant (soap) to prevent coagulation of the 

oil.  Emulsion polymerization is used to produce latexes that are a suspension of rubber 

or plastic (polymer) particles in water.  To produce the dendritic styrene latex, styrene 

monomer was mixed with a dendrimer and an initiator and polymerized in water either 

with or without the surfactant.  The presence of a surfactant reduced the average diameter 

of dendritic styrene latexes to approximately 50 nm with broad particle size distribution 

(PSD).  More than 100 nm and narrower PSD were obtained in the absence of surfactant. 
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CHAPTER I 

 

DENDRIMERS AND ATOM TRANSFER RADICAL POLYMERIZATION 

 

Introduction 

 

Dendrimers are large and spherical macromolecules with a highly branched 

three-dimensional architecture.  They are monodisperse, meaning of a consistent size.  

Their structures consist of core, branches, and end groups.1-8  The structure of 

poly(propylene imine) (PPI) dendrimer generations 1-5 is shown in Figure 1. 

Dendrimers have attractive structural features that include the nanoscopic sizes of 

the molecules, spherical surfaces, and spacious interior.4,6,9  The physical properties of 

dendrimers are dependent upon their structural features.1-9   

There are two well-known methods of dendrimer synthesis, divergent and 

convergent (Figure 2).1,2,5,6  In either method, the synthesis requires a stepwise process, 

which is the reason for the monodisperse composition.  By the divergent method, the 

dendrimer grows outward from the core to the periphery.  The molar mass of the 

dendrimer is approximately doubled with each increasing generation.  Large dendrimers 

have been prepared by this approach.  Incomplete growth steps and side reactions, 

however, become unavoidable and leave impurities.  In the convergent approach, the 
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dendrimer is produced from the surface towards the interior by linking surface units 

together with more monomers step by step.  This provides for simple purification as 

impurities and side products are minimized. 1,2,5,6   
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Figure 1. PPI dendrimer generations 1-5 showing the morphological structural aspects 

that consist of core, branching unit, internal void volume, and end group. 
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Figure 2. Dendrimer construction with divergent and convergent procedures.10 
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Figure 3. Hyperbranched polymer and dendrimer.11 
 

In contrast, the structures of hyperbranched polymers are not as precisely 

controlled so that it makes them imperfect molecules.  Hyperbranched polymers can be 

obtained by the one-pot polymerization of AB2 monomers, as long as A reacts only with 

B from another molecule.  Reactions between A and B from the same molecule terminate 

the polymerization by cyclization.  This synthesis method produces broad molecular 

weight distributions and irregular arm growth.4,6,12  There are missing parts in the 

structure and fewer active chemical groups at the surface of these molecules.  Such 

hyperbranched structures provide lower viscosity and more space inside the molecules 

that leads to an advantage for binding larger molecules.13  
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Figure 4. A plot of the intrinsic viscosity [η] against molecular weight for nitrile-

terminated PPI dendrimer series and polystyrene.3,5 

 

The intrinsic viscosity, glass transition temperature, and solubility of dendrimers 

are different from those properties of linear polymers.5,21  In general, the intrinsic 

viscosity increases the increasing molecular weight of linear polymers (Figure 4).  In the 

case of dendrimers, intrinsic viscosity [η] is inversely proportional to the hydrodynamic 

density and is proportional to the hydrodynamic volume (VH)21,22 
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where RH is the hydrodynamic radius and Na the Avogadro number.  Intrinsic viscosity 

[η] in dendrimers goes through a maximum as molecular weight (M) of dendrimers 

increases (Figure 4).  This fact may result from the globular shapes of higher generation 

dendrimers, leaving them unable to tangle with one another such as the case of linear 

polymers.  As the branching points at the peripheral regions get crowded, its steric 

congestion affects the structural features.  Dendrimers at low generations (1 → 3) have 

generally open, floppy structures; however, the dendrimers have more globular 

conformation at higher generations (>4).23  Spherical dendrimers form until steric 

crowding of the end groups limits complete reaction at a specific generation and also 

destroys the monodispersity of molecules.5   

The glass transition temperature (Tg) of dendrimers is known to be a function of 

the number of arms and the molecular weight.  End group, core, branch unit, and 

functionality are the parameters to be measured.  The theoretical finding by Shutz is that 

the backbone glass temperature has influence over the Tg.3,24 

Monodispersity and globular shape of dendrimers provide interesting properties 

for study of molecular topology.  The surface and interior of the dendritic sphere are two 

distinct chemical environments.  Two chemical environments play an important role for 

guest and host molecules for the existence of voids in the dendrimer chemistry.  This 

unique environment of the dendrimer interior and surface is influenced by 

hydrophobic/hydrophilic interactions.  Dendrimers have been utilized as molecular 

weight and size standards,25 as gene transfection agents, as hosts for the transport of 

biologically important guests,23,26 and as anti-cancer agents.23,26,27   
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A number of functionalities and high local densities of active sites at the surface 

areas in a dendrimer molecule have drawn a lot of attention from medicinal chemistry.  

Multivalency on the surface of the dendrimers allows enhancing the drug-loading 

capacity of carriers and strengthening of ligand-receptor binding.23,28   

Dendrimers as catalytic agents have been also utilized for their high surface 

functionality.28   

Dendrimers are widely becoming recognized as versatile and well controlled 

nanoscale building blocks along with metal nanocrystals and nanotubes.27,29-32  By 

adjusting chemical properties of the core, the shells, and especially the surface layer, 

dendrimers can be modified to fit the needs of specific applications in nanotechnology. 

Controlled radical polymerization in general produces narrow molecular weight 

distribution (MWD) and enables synthesis of block copolymers, which can not be 

accomplished by conventional radical polymerization.  In conventional radical 

polymerization chain termination causes polymers with broad molecular weight 

distributions.33 

The Matyjaszewski research group has developed a method of controlled/“living” 

polymerization that is capable of polymerizing a wide variety of monomers and is 

tolerant of trace impurities such as water and inhibitor.  The system that was developed 

was termed Atom Transfer Radical Polymerization (ATRP).  ATRP is the most widely 

used of the living polymer methods.33-41 

In ATRP, a transition metal species abstracts a halogen atom from the organic 

halide (dormant) to form the oxidized species and a carbon centered radical (active).  A 

radical addition to monomer then occurs.  The reaction between oxidized transition metal 
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and chain radical result in a target polymer and recycles the reduced transition metal 

species.  The small equilibrium constant of the activation step lowers the concentration of 

growing radicals and reduces the contribution of radical-radical termination significantly, 

providing well-defined polymers with low polydispersity.33-41 

 

(a) Stepwise mechanism38,39  

Initiation

R-X      +      Cu(I)X/L R.     +     Cu(II)X2/L

R          +      monomer P1

Propagation

Termination

Pn-X    +     Cu(I)X/L

Pn        +      monomer Pn+1

Pn         +       Pm Pn+m

Pn    +     Cu(II)X2/L

Keg 
o

Keg

ki

kp

kt
 

R. = alkyl radical   X = Cl or Br 

L = complexing ligand  monomer = vinyl monomer 

Pn-X = dormant   Pn
. = active polymer chain 

Pn+1
. = growing radical  ki = rate constant of initiation  

kp = rate constant of propagation kt = rate constant of termination 

Keg
o = equilibrium constant for initiation 

Keg = equilibrium constant for propagation 
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(b) Reversible mechanism34,37 

P-X + Mt
n/Ligand

ka

kd

+ X-Mt
n+1/Ligand

+ M
kp

kt

P-P

P

termination 

P-X = propagating dormant  Mt
n = transition metal 

Ligand = complexing ligand   P. = propagating radical 

X = Br or Cl     M = vinyl monomer 

ka = rate constant of activation  kd = rate constant of deactivation 

kp = rate constant of propagation kt = rate constant of termination 

 

Figure 5. Mechanisms of ATRP. 

 

ATRP is based on a reversible exchange between a low concentration of growing 

radicals and a dormant species.  Reactivation of the dormant species allows the polymer 

chains to grow and deactivate later.  The radical is formed by a transition metal catalyst 

that is abstracting the halogen atom at the chain end of the organic initiator for ATRP.  

The end group of the organic initiator is usually an alkyl halide.  The reversible process 

results in a polymer chain that grows slowly and gradually and has a well-defined end 

group due to minimum termination under appropriate conditions.33-37,41  

The initiator efficiency is possibly dependent upon halogen exchange between the 

growing chains and the metal center.  The order of bond strength in alkyl halide is R-Cl > 
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R-Br > R-I.  Thus, alkyl chloride should be the least efficient initiator and alkyl iodide the 

most efficient.  The affinities toward metal catalysts are also important.  In the case of the 

affinities toward metal catalysts, if the relative affinity of halide is higher toward carbon, 

low affinities toward metal catalysts can be still used.  The use of alkyl bromides as 

initiators has additional advantages compared with chlorides because of the faster 

exchange reaction which results in polymers with lower polydispersities.  However, some 

side reactions occur more readily for R-Br/Cu-Br than for the mixed halide systems.  Use 

of alkyl iodides requires special precautions due to their light sensitivity, the low affinity 

of iodine toward most metals, and the possibility of heterolytic cleavage of the R-I 

bond.36 

Other types of living polymerizations are more restricted than ATRP by many 

factors: a limited number of monomers available, sensitivity to moisture, and 

incompetence to randomly copolymerize with two or more monomers.  Radical 

polymerization is not susceptible to moisture so that emulsions or suspensions can be 

performed in water.40  Copolymerization can be accomplished with two or more 

monomers.  Therefore controlled/“living” radical polymerization provides a method to 

maximize the potential of living polymerizations. 

ATRP has been able to polymerize a wide range of monomers including various 

styrenes, acrylates and methacrylates as well as other monomers such as acrylonitrile, 

vinylpyridine, and dienes.34,35  In general, ATRP uses simple alkyl halides as initiators 

and transition metals such as iron and copper as the catalysts.  The transition metal is 

complexed by one or more ligands.  These catalysts can be used in very low amounts, 
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whereas other ATRP systems require the use of more expensive reagents such as Ru 

complexes.34,36,41  

The well-known disadvantage of ATRP is the need to remove and the transition 

metal complex from the resulting polymer, because the initial transition metal complex 

can contaminate the polymer and also can be recycled at the end of polymerization. 

By ATRP, polymers with controlled molar masses and narrow polydispersities 

can be obtained.  ATRP is readily applicable to dendrimers which are aimed to produce 

well-defined and narrow polydisperse amphiphilic block copolymers with controlled 

molecular weights dendrimers.  Also, ATRP allows dendrimers to enlarge quickly and 

retain narrow molecular weight distribution (MWD).   

Living radical polymerization was used to obtain well-defined and narrow 

polydispersity amphiphilic block copolymers with controlled molecular weights.  ATRP 

was the method chosen for the living radical polymerization described in this dissertation, 

enabling to control the type of amphiphilic polymers.  A new class of macroinitiators was 

developed by using the PPI dendrimer and then used as a precursor for block polymers.  

Highly branched structural features in the PPI dendrimer allowed us to control of 

polymer architecture, size and shape, and a multiplicity of chain ends that were 

functionalized further by polymerization.  The diameters of the spherical PPI dendrimers 

(generation 2 to generation 5) range from 2 to 5 nm.42  By taking advantage of 

architecture and size of the PPI dendrimer, the main objective of the project was to 

synthesize and characterize the monodisperse branched polystyrene with chain lengths of 

50 repeat units and poly(t-butyl acrylate) with chain lengths of 100-450 repeat units from 

dendrimer chain ends in the 64- arm PPI dendritic ATRP initiator.  These types of 
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amphiphilic block polymers allowed us to attempt synthesis of the monodisperse polymer 

particles with 10 to 100 nm in diameters, which can be accomplished by emulsion 

polymerization of styrene.   
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CHAPTER II 

 

FUNCTIONAL MODIFICATION OF POLY(PROPYLENE IMINE) 

DENDRIMERS 

 

Introduction 

 

Diffusion of solute molecules is an important physical property of polymer 

solutions and gels.  It is important to understand the effect of polymer concentration, size 

and shape of the diffusant, temperature, and molecular interaction within the polymer 

solutions or polymer gels.  Study of diffusion behavior of molecules having various 

functional groups, such as, alcohol, amine, ammonium salt, amide, and carboxylate acid, 

in poly(vinyl alcohol) shows that molecular size and chemical interaction are very 

important in diffusion behavior.1  However, most studies of polymer diffusion have been 

devoted to linear polymers.2,3,4  Further understanding of the diffusion process should 

include narrow polydispersity of the linear polymers.  Better control of molecular size 

and spherical shape make dendrimers an attractive choice to compare with all linear 

polymers.  In addition, dendritic polymers are monodisperse.5-12  These features make 

dendrimers useful as ideal diffusion molecules.  For the self-diffusion of dendritic 

polymers, three different PPI dendrimers with hydrophilic triethylenoxy methyl ether  
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Scheme 1. Structures of PPI Dendrimers, G2, G4, and G5. 
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(TEO) groups at chain ends were synthesized by a procedure, modified from Pan and 

Kreider, and characterized by 1H NMR and 13C NMR.13,14  These PPI dendrimers were 

studied and compared with linear poly(ethylene glycol)s (PEGs).  The diffusion study of 

the modified PPI dendrimers was accomplished by the Zhu group at the University of 

Montreal.1 

The structures of PPI dendrimers have amine sites at all branch points and chain 

ends.  Dendrimers change conformation to be more spherical with increasing molecular 

weight.  The conformational change is significant between dendrimers 2 and 3 because 

the mass increases more than the volume of the sphere that encloses the molecule.5-12   
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Our group has synthesized PPI dendrimers quaternized at chain ends only, at 

chain ends and branch points, and at branch points only.14  For these purposes the 

primary amine end groups of DAB-dendr-(NH2)n (n = 8, 32 and 64) 1, 2, and 3 first were 

converted to tertiary amines using formic acid and formaldehyde.  The synthesis of 

tertiary amine dendrimers with both hydrophilic and hydrophobic groups at every end 

and their conversion from poly(propylene imine) dendrimers DAB-dendr-(NH2)n (n = 8, 

32 and 64) 1, 2, and 3 to quaternary ammonium ion dendrimers have been studied.  The 

method for methylation of dendrimers with formaldehyde in formic acid was proven by 

13C NMR to produce mixed secondary/ tertiary amines even with a large excess of 

reagents and long reaction time.  A need for complete conversion of primary amines to 

tertiary amines has prompted us to investigate reductive ethylation of the primary and 

secondary amines.   

Primary amine dendrimers coordinate with a Group I or II metal.15-19  The 

methylation was also considered to prevent amine-metal ion coordination during a 

standard work-up.  The product tertiary amine dendrimers have been completely 

extracted from aqueous sodium hydroxide solution.  It is also desirable if the reductive 

methylation proceeds in one step without use of LiAlH4 because Li+ or Al3+coordinates 

with dendrimer more strongly than Na+ with dendrimers so that Li+ and Al3+ can be 

difficult to remove from the dendrimers.  

Reductive alkylation by NaBH4-CH3COOH has been reported for the conversion 

of a primary or secondary amine to a tertiary ethyl amine in one step.  The reductive 

alkylation has been primarily developed by Gribble and colleagues, who noted that the 
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reaction mixture should be free of moisture and that sodium borohydride should be added 

into the amine-carboxylic acid mixture kept at approximately 50 oC.20-26 

After the preliminary ethylation of dendrimers 1, 2, and 3 in NaBH4-CH3COOH, 

deuteroethyl PPI dendrimers were prepared in one step with sodium borodeuteride in 

acetic acid-d4 at 50-55 oC under nitrogen atmosphere.  The reaction of the PPI dendrimers 

1, 2, and 3 with NaBD4– CD3COOD gave the desired tertiary amine in good yield.  The 

synthesis of deuteroethyl PPI dendrimers is presented and discussed. 

Dendrimers with deuterated ethyl tertiary amine chain ends were prepared to 

understand conformation of the dendrimers by neutron diffraction and chain motions in 

solid state by 2H NMR.  Deuterated ethylation of 2 and 3 was carried out for the 

structural analysis.  

 

Results and Discussion 

 

Amidation of PPI Dendrimers at Chain Ends.  The purpose of PPI dendrimers 

having triethylenoxy methyl ether chain ends was to determine how molecular size 

affects diffusion in gels of aqueous poly(vinyl alcohol).  Hydrophilic dendrimers 

modified at chain ends were prepared in two steps from PPI dendrimers 1-3.  Oxalyl 

chloride 5 was reacted with 2-[2-(2-methoxyethoxy)ethoxy]acetic acid 4 in toluene to 

give 2-[2-(2-methoxyethoxy)ethoxy]acetyl chloride 6.1,13,14,27  Oxalyl chloride was used 

instead of SOCl2 because it leaves no sulfur-containing colored impurities.  Reaction of 

the acid chloride 6 with 1, 2, and 3 gave the amide dendrimers 7, 8, and 9 as shown in 

Scheme 2.1,13,14  N,N-Dimethylformamide (DMF) was used as the solvent and catalyzed 
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formation of the amide.  The 1H and 13C NMR spectra of the three hydrophilic 

dendrimers 7-9 made by a slightly modified procedure here were the same as the spectra 

of those reported before.13,14 

The NMR relaxation time experiments were performed by the Zhu group to study 

the motion of different parts of the dendrimer, such as core and terminal groups.1  The 

proton NMR relaxation time (T1 and T2) experiments show that the mobility of both core 

and terminal groups in the dendrimers 1-3 decreases as the size of the dendrimers 

increases.  The experiments also indicate that the chain ends are more mobile than the 

core groups of the protons for the dendrimers 1-3.  
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Scheme 2. Amidation of PPI Dendrimers at Chain Ends. 
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Reactions of PPI Dendrimers DAB-dendri-(NH2)n (n = 8, 32, and 64) with 

NaBH4-CH3COOH.  The purpose of ethylation of the chain ends of PPI dendrimers was 

to prepare deuterated dendrimers for study of their packing by neutron diffraction and for 

study of their chain motion by solid state 2H NMR spectroscopy.  In order to examine 

suitable reaction conditions for ethylation of the dendrimers using the NaBH4-CH3COOH 

system, the following were considered: reaction time, co-solvent, reaction scale, and type 

of sodium borohydride.  Results of ethylation of the dendrimers in NaBH4-CH3COOH 

are as shown in Table 1.  

 

Scheme 3. Ethylation of PPI Dendrimers in Glacial Acetic Acid and Sodium 

Borohydride. 
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Table 1. Reaction Conditions for Ethylation of Amines in Glacial Acetic Acid and 
Sodium Borohydride.a 
 

 
product 

 
reaction 

time 
 

 
cosolvent 

(mL) 

 
dendrimer 
reactant  

(g) 

 
type of NaBH4 

(g) 

 
Yieldb 

(%) 

 
10 

 
8.5 h 

 
THF 
(10) 

 

 
1.000 

 
powder 
(3.760) 

 
96 

 

10 

 

17.5 h 

 

- 

 

0.250 

 

granule 
(0.977) 

 

 

96 

 

10 

 

3 days 

 

THF 
(10) 

 

1.000 

 

powder 
(3.760) 

 

 

72 

 

10 

 

5 days 

 

- 

 

1.000 

 

powder 
(3.760) 

 

 

88 

 

11 

 

11.5 h 

 

- 

 

0.250 

 

granule 
(0.828) 

 

 

86c 

 

11 

 

5 days 

 

- 

 

1.000 

 

powder 
(3.276) 

 

 

86 

 

12 

 

11.5 h 

 

- 

 

0.250 

 

granule 
(0.811) 

 

 

97 

 

12 

 

5 days 

 

- 

 

1.000 

 

powder 
(3.212) 

 

96 

 

a Reaction was performed at 55 oC.  b Recovered product yields without trace of solvent peaks in 
NMR spectra.  c Observed only mixed secondary/tertiary dendrimers. 
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Regardless of changes in reaction time, reaction scale, and type of sodium 

borohydride, there was no apparent difference in ethylation for any of the cases in terms 

of product recovered yield.  The reaction of sodium borohydride with glacial acetic acid 

was somewhat vigorous.  Giving off H2 gas caused the reaction mixture to overflow out 

of the reaction flask in a short period of time.  To avoid the potential hazard with a large 

reaction scale, different types of sodium borohydride were examined in an effort to slow 

down the reaction.  Three types of sodium borohydride are commercially available; 

caplets, granules, and powder.  Gribble and others used caplets and granules 

predominantly to prevent rapid evolution of H2.20,22  Two sodium borohydrides, granules 

and powder, were selected to investigate in our experiments.  No significant difficulty in 

handling the reaction was found in either case under the same experimental conditions.  

However, only the powder is available for sodium borodeuteride.   

Due to deuterium kinetic isotope effects, reduction with NaBD4 was expected to 

take much longer than with NaBH4.  The dendrimers are stable up to 5 days in the 

NaBH4-CH3COOH system.  The reaction of 2 with NaBH4-CH3COOH gave mixed 

secondary/tertiary dendrimers after 11.5 h and complete conversion to tertiary amines 

after 5 days.  In some experiments, tetrahydrofuran (THF) was used as a cosolvent to 

decrease the viscosity of the solution and to increase the solubilty of the sodium 

borohydride powder.  Comparison of the results with or without THF indicated there was 

no significant difference. 

The mechanism of alkylation of amines has been proposed and supported by a 

few experiments.21,22,25,26,28,29  Scheme 4 illustrates the possible mechanism of alkyation 

of an amine with sodium borohydride in carboxylic acid. 
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Scheme 4. Possible Reductive Deuteroethylation Mechanism 

 

3CD3COOD   +   NaBD4                                (CD3COO)3BD-Na+   +   3D2                                 (1) 

 

(CD3COO)3BD-Na+                                       CD3CDO   +   (CD3COO)2BO-Na+                         (2) 

 

CD3CDO   +   NRH2                                      CD3CD=N+RH  OH-                                               (3) 

 

CD3CD=N+RH  OH-  +  (CD3COO)3BD-Na+                 

                                                                        CD3CD2NRH  +  (CD3COO)3B  +   Na+OH-          (4) 

 

(CD3COO)3BD-Na+  +  CD3COOD                  (CD3COO)3B  +  D2  +  CD3COO-Na+                 (5) 

 

(CD3COO)2BOC(O)CD3  +  RNH2                   RNHC(O)CD3  +  (CD3COO)2BOH                   (6) 

 

R = Dendrimer 

 

 

The step (2) is considered the key stage for the reductive ethylation by self-

reduction of trialkyloxyborohydride to free aldehyde which reacts with the amine in the 

next step (3).26  From the above mechanism, successful reductive alkylation requires that 

steps (2) and (3) be much faster than steps (5) and (6). 

Moisture must be kept out of reaction mixture.  Acyloxyborohydrides decompose 

in the presence of moisture which prevents further ethylation of the amine.22 

This reductive ethylation of dendrimers with CH3COOH-NaBH4 gave a higher 

yield of  tertiary amine than the methylation with formaldehyde in formic acid.  However, 

the reductive methylation of amines with HCOOH-NaBH4 has been reported to be 

uncontrollable due to vigorous production of H2.20  As a result, few reactions have been 
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studied with HCOOH-NaBH4.  During preliminary experiments, we found no 

methylation of amines with HCOOH-NaBH4 with aromatic or branched aliphatic amines.  

Repeating the methylation of HCOOH-NaBH4 by the literature method was also 

unsuccessful. 

 

Reactions of PPI Dendrimers DAB-dendri-(NH2)n (n = 32 and 64) with 

NaBD4-CD3COOD. The reactions of PPI dendrimers DAB-dendr-(NH2)n (n = 32 and 64) 

with NaBD4-CD3COOD were achieved in one step by the method of Gribble and 

coworkers as shown in Scheme 5.20  The hydrophobic deuterated ethyl chains were 

introduced to give perethyl terminated dendrimers in 74-83 % yield with no trace of 

secondary amine peaks at 15.0 and 43.5 ppm in the 13C NMR spectra.  The deuterated 

dendrimers 13 and 14 have very clean proton NMR spectra and show the 

NCH2CH2CH2N and NCH2CH2CH2CH2N peaks at 1.57 ppm and the NCH2CH2CH2N 

and NCH2CH2CH2CH2N peaks at 2.40 ppm. 
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Scheme 5. Deuteroethyl PPI dendrimers 
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Conclusions 

 

Oxalyl chloride was reacted with 2-[2-(2-methoxyethoxy)ethoxy]acetic acid in 

toluene, followed by PPI dendrimers 1-3 and TEA in DMF to give the hydrophilic amide 

dendrimers 7, 8, and 9.  All dendrimer chain ends were reacted and determined by 1H 

NMR and 13C NMR.  The self-diffusion experiment of three hydrophilic amide 

dendrimers was performed by the Zhu group at Department de Chemie, Universite de 

Montreal in Canada.1  The results show that the self-diffusion coefficients of the 

dendrimers decrease with increasing molecular size of the diffusant as poly(vinyl 

alcohol) (PVA) concentration increases and as temperature decreases.  NMR relaxation 

time measurements indicate that the terminal protons are more mobile than the core 

protons for all generations of the dendrimers.  The mobility for all protons is also slower 

as dendrimer generation gets larger.  

Tertiary amine dendrimers with hydrophobic chains on every end were 

synthesized from poly(propylene imine) (PPI) dendrimers DAB-dendr-(NH2)n (n = 32 

and 64) with NaBD4 in CD3COOD (74-83 % yields).  Complete conversion to tertiary 

amine dendrimers by reductive ethylation was accomplished in a one pot reaction and 

determined by 1H NMR and 13C NMR. 

 

Experimental Section 

 
 Materials. PPI dendrimers DAB-dendr-(NH2)n (n = 8, 32 and 64) and 2-[2-(2-

methoxyethoxy)ethoxy]acetic acid were purchased from Aldrich (Milwaukee, WI).  For 

the N-perdeuteroethylation, CD3COOD (99.5 atom % D) was purchased from CDN 
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Isotopes and NaBD4 (powder, 99 atom % D) was purchased from Cambridge Isotope 

Laboratories, Inc.  For the N-ethylation, NaBH4 (powder, 98 %) was purchased from 

Aldrich and NaBH4 (granules, -10+40 mesh, 97 %) was purchased from Alfa Aesar.  

Triethylamine (TEA) was dried over anhydrous 3 Å molecular sieves and freshly distilled. 

All other chemicals were used as received.  

2-[2-(2-Methoxyethoxy)ethoxy]acetyl Chloride.1,13,14,27  A solution of 2-[2-(2-

methoxyethoxy)ethoxy]acetic acid (5.34 g, 30.0 mmol) and oxalyl chloride (6.35 g, 50.0 

mmol) in 3 mL of toluene was stirred for 4 h at 65 °C. The solvent and excess reagent 

were removed under reduced pressure, and the residue was dried at 40 °C under vacuum 

to give a light yellow oil (5.34 g, 90%) which was used without further purification. 

Amidation of Poly(propylene imine) Dendrimers. 2-[2-(2 

Methoxyethoxy)ethoxy]acetyl chloride (3.00 g, 15.3 mmol) was added to a solution of 

PPI dendrimer DAB-dendr-(NH2)8 (1) (1.00 g, 1.29 mmol), DMF (5.0 mL), and TEA 

(0.900 g, 8.89 mmol) at 0 °C.  The solution was stirred under nitrogen at 70 °C for 24 h. 

Water (5 mL) was added to hydrolyze the excess acid chloride.  The mixture was made 

basic to pH > 14 using 5 g (27 mmol) of tetramethylammonium hydroxide pentahydrate 

and was extracted with CH2Cl2 (4 times 10 mL).  The combined dichloromethane 

solutions were dried over Na2SO4 and evaporated.  The oily residue was dried at 40 °C 

under vacuum to give a light yellow oil of 7 (2.21 g, 83%).  DAB-dendr-(NH2)n (n = 32 

and 64) (2 and 3) were also modified with triethylenoxy methyl ether end groups by the 

same procedure to yield compounds 8 and 9.  The 1H and 13C NMR spectra of dendrimers 

made by the current procedure were the same as the spectra of those reported earlier, 

which were prepared by a slightly different procedure.13,14 
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Procedure for the N-Ethylation of 1 in CH3COOH-NaBH4.20  Glacial 

CH3COOH (641 mmol, 36.7 mL) was added dropwise to the dendrimer 1 (1.29 mmol, 

1.00 g, 1.00 mmol / NH2) in a dry three-necked round-bottomed flask by a syringe with 

magnetic stirring under N2 at 40-45 oC in an oil bath.  The temperature was then raised to 

50 oC.  Sodium borohydride (96.4 mmol, 3.76 g) was added portionwise to the mixture 

over 1-2 h at 50-55 oC.  The mixture was heated at 50-55 oC for 5 days under nitrogen, to 

give a brownish yellow solution.  The mixture was cooled to room temperature and then 

to 0 oC in an ice bath.  Deionized water (~100 mL) was added to the magnetically stirred 

mixture kept in the ice bath, followed by NaOH pellets to pH > 14.  The basic mixture 

was extracted with dichloromethane (5 x 30 mL).  The organic layers were combined and 

dried with anhydrous sodium sulfate overnight. The extract was concentrated to remove 

solvent and excess reagent under reduced pressure.  The crude oily dark brown product 

10 (1.52 g, 96.6 %) was dried under vacuum at 40 oC for 12 h.  1H NMR (300 MHz, 

CDCl3, δ):1.01(t, NCH2CH3), 1.38(m, NCH2CH2CH2CH2N), 1.58 (m, NCH2CH2CH2N), 

2.40 (broad t, NCH2CH2CH2N and NCH2CH2CH2CH2N), 2.51 (q, NCH2CH3); 13C NMR 

(75.4 MHz, CDCl3, δ): 11.62 (NCH2CH3), 24.40 (NCH2CH2CH2N), 24.51 

(NCH2CH2CH2CH2N), 25.51 (NCH2CH2CH2N-(CH2CH3)2), 46.80 (NCH2CH3), 51.05 

(NCH2CH2CH2N-(CH2CH3)2), 52.13 and 52.29 (NCH2CH2CH2N and 

NCH2CH2CH2CH2N). 

Compound 11: By the previous N-ethylation procedure, 2 (0.285 mmol, 1.00 g), 

glacial CH3COOH (565 mmol, 32 mL), and NaBH4 (84.9 mmol, 3.28 g, powder, 98%) 

gave a brownish yellow thick liquid (1.29 g, 85.5%).  1H NMR (300 MHz, 

CDCl3, δ): 0.98 (t, NCH2CH3 for tertiary amine),   1.07  (t, NCH2CH3 for seccondary 
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amine), 1.56 (m, NCH2CH2CH2N), 2.38 (broad t, NCH2CH2CH2N and 

NCH2CH2CH2CH2N), 2.49 (q, NCH2CH3 for tertiary amine), 2.60 (q, NCH2CH3 for 

secondary amine); 13C NMR (75.4 MHz, CDCl3, δ): 12.17 (NCH2CH3), 24.89 

(NCH2CH2CH2N), 47.30 (NCH2CH3), 51.52 and 52.60 (NCH2CH2CH2N and 

NCH2CH2CH2CH2N). 

Compound 12: By the previous N-ethylation procedure, 3 (0.140 mmol, 1.00 g), 

glacial CH3COOH (554 mmol, 32 mL), and NaBH4 (83.2 mmol, 3.21 g, powder, 98%) 

gave a brownish yellow thick liquid (1.20 g, 96%).  1H NMR (300 MHz, 

CDCl3, δ): 0.98 (t, NCH2CH3), 1.56 (m, NCH2CH2CH2N), 2.38 (broad t, 

NCH2CH2CH2N and NCH2CH2CH2CH2N), 2.48 (q, NCH2CH3); 13C NMR (75.4 MHz, 

CDCl3, δ): 11.79 (NCH2CH3), 24.49 (NCH2CH2CH2N), 46.88 (NCH2CH3), 51.11 and 

52.16 (NCH2CH2CH2N and NCH2CH2CH2CH2N). 

Compound 13: Deuterated derivatives of the PPI dendrimers DAB-dendri-

(NH2)32 2 were prepared by the same procedure as described for the N-ethylation of 11.  

The mixture of 2 (0.427 mmol, 1.50 g), CD3COOD (848 mmol, 49 mL, 99.5%), and 

NaBD4 (127 mmol, 5.40 g, powder, 99%) gave a brownish yellow thick liquid (1.75 g, 

74%).  1H NMR (300 MHz, CDCl3, δ): 1.58 (m, NCH2CH2CH2N and 

NCH2CH2CH2CH2N), 2.40 (m, NCH2CH2CH2N and NCH2CH2CH2CH2N); 13C NMR 

(75.4 MHz, CDCl3, δ): 10.50 (NCD2CD3), 24.50-25.10 (NCH2CH2CH2N), 46.00 

(NCD2CD3), 51.08 (NCH2CH2CH2N-(CH2CH3)2), 52.19 and 52.51 (NCH2CH2CH2N and 

NCH2CH2CH2CH2N). 

Compound 14: Deuterated derivatives of the PPI dendrimer DAB-dendri-(NH2)64 

3 were prepared by the same procedure as the N-ethylation of 12.  The mixture of 3 
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(0.176 mmol, 1.26 g), CD3COOD (697 mmol, 40 mL, 99.5%), and NaBD4 (104 mmol, 

4.40 g, powder, 99%) gave a brownish yellow thick liquid (1.68 g, 83%).  1H NMR (300 

MHz, CDCl3, δ): 1.57 (m, NCH2CH2CH2N and NCH2CH2CH2CH2N), 2.41 (m, 

NCH2CH2CH2N and NCH2CH2CH2CH2N); 13C NMR (75.4 MHz, CDCl3, δ): 10.70 

(NCD2CD3), 24.10-25.10 (NCH2CH2CH2N), 46.00 (NCD2CD3), 51.10 (NCH2CH2CH2N-

(CH2CH3)2), 52.21 and 52.57 (NCH2CH2CH2N and NCH2CH2CH2CH2N). 
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CHAPTER III 

 

AMPHIPHILIC DENDRITIC BLOCK COPOLYMERS 

 

Abstract 

 

Atom transfer radical polymerization (ATRP) was applied to the synthesis of 

monodisperse branched polystyrene with chain lengths of 20-50 repeat units from 

dendrimer chain ends.  The preparation of the monodisperse core based on the dendrimer 

with styrene at the chain ends allows for amphiphilic poly(styrene-b-acrylic acid) 

unimolecular micelles with a dendrimer core by ATRP.  

For a branched polystyrene, a narrow polydispersity (PDI) = 1.15 with a diameter 

of ~15 nm was obtained with PPI DAB-dendr-(NH2)64 halogenated initiator in the 

presence of Cu(I)/(II)-N,N,N′,N′,N"-pentamethyldiethylenetriamine (PMDETA) in DMF-

anisole.  Block copolymerization of t-butylacrylate (t-BA) onto the polystyrene was 

performed in anisole mediated by a copper(I)/(II)-PMDETA catalyst.  Molecular weight 

distributions (Mw/Mn) of the branched block copolymers were 1.2-1.6 with diameters of 

17-28 nm.  Removal of the ester group of PtBA to poly(acrylic acid)(PAA) in 

CH2Cl2/CF3COOH at room temperature gave amphiphilic block copolymers. 
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Emulsion polymerization was applied to the synthesis of the polymer colloids.  

Polymerization of styrene in aqueous DMF dispersions of the amphiphilic poly(styrene-

b-methacrylic acid) unimolecular micelles with a dendrimer core and sodium dodecyl 

sulfate (SDS) produced stable latexes at 80 oC.  The polystyrene latexes had diameters of 

45-55 nm with broad particle size distribution (PDI). 

 

Introduction 

 

Amphiphilic block copolymers can self-assemble into aggregates and micelles in 

solutions.1,2  These properties make self-assembled block copolymers attractive for 

potential applications such as drug delivery, coatings, and colloid stabilization.1,3  

Amphiphilic macromolecules can form unimolecular micelles, which consist of a 

hydrophobic core surrounded by a shell of the solvated hydrophilic part of the block 

copolymer, stretched out from the core of the hydrophobic part of the molecule.1 

Well-defined and narrow polydispersity amphiphilic block copolymers with 

controlled molecular weights can be synthesized by living radical polymerization.1-4  

Living radical polymerization is applicable to many vinyl monomers under mild reaction 

conditions in a wide range of reaction temperatures.  The polymerization requires the 

absence of oxygen but is tolerant to water.  Living radical polymerization has led to an 

increase in the type of amphiphilic polymers that are easily accessible.  The 

polymerization involves the reversible activation and deactivation of growing radicals 

while a concentration of propagating radicals maintains low.  The low radical 

concentration suppresses termination reactions.  Therefore, it leads to the formation of 
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polymer with narrow polydispersity, with control of the molecular weight and chain end 

functionality.4,5  Transition-metal mediated living radical polymerization, such as atom 

transfer radical polymerization (ATRP) and nitroxide-mediated radical polymerization, 

have been developed and used for the preparation of many different block copolymers.1,4  

For ATRP, many catalysts have been described with several transition metals, such as 

copper, iron, nickel, ruthenium, and palladium.6,7  Most studies also have been carried out 

with copper(I)-based catalysts with a wide range of ligands, including multidentate 

alkylamines, substituted bipyridines, and pyridineimines.1,6,7 

This research reports a new class of macroinitiators which provide an initiating 

group for ATRP and can allow us to synthesize the monodisperse branched polystyrene 

with chain lengths of 20-50 repeat units from dendrimer chain ends.  Prior to synthesis of 

amphiphilic poly(styrene-b-methacrylic acid) unimolecular micelles with a dendrimer 

core, preparation of a dendrimer initiator is necessary for ATRP.  

The selection criteria for each component of the polymerization mixture - 

transition metal, ligand, and solvent - are based on the optimization studies reported for 

styrene in bulk in the literature.5-14  In particular, the use of the tridentate PMDETA in the 

copper mediated ATRP of styrene in DMF/anisole was chosen due to the faster 

polymerization rate for styrene than those using bipy as the ligand.  The fast rate was not 

our goal because it might result in more coupling products.  A slow rate at a lower 

temperature would be better.  However, the copper-PMDETA catalyst system provided a 

fast initiation step for radical formation by abstracting the halide at the chain end and 

followed by the reversible exchange between a low concentration of growing radicals and 

dendritic halide initiators.  The reversible process may result in a polymer chain that 
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grows slowly and gradually and prevents termination under our specific conditions.  The 

fast rate observed using the copper-PMDETA catalyst system occurs because the 

coordination complexes between copper and aliphatic amines have lower redox potentials 

than the copper-bypy complex, resulting in higher rates of activation of the dormant 

halides.15  

Dendrimers have highly branched structures.  They offer control of molecular 

architecture, size and shape, and a multiplicity of chain ends that can be functionalized.16   
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The structures of PPI dendrimers have amine sites at all branch points and chain ends.  

The diameters of spherical dendrimers in general range from 3 nm to 10 nm.  Growth of 

polymer chains by controlled methods from the end groups of a dendrimer would convert 

a monodisperse dendrimer to a larger molecule and maintain low polydispersity.  The use 

of the copper-PMDETA catalyst system with the PPI dendritic initiators for ATRP may 

provide better control of chain functionalities, architectures, and compositions as well as 

the extension to new monomers.  The goal of this research was synthesis of monodisperse 

polymer particles with about 10 nm to 100 nm size in diameter, which can be difficult by 

emulsion polymerization. 

The method chosen was to synthesize and characterize the monodisperse 

branched polystyrene with chain lengths of 20-50 repeat units and poly(t-butyl 

methacrylate) with chain lengths of 100-500 repeat units from dendrimer chain ends of a 

64-arm dendritic ATRP initiator, G5(AmBr64). 

Aggregation properties of amphiphilic monodisperse block copolymer dendrimers 

DAB-dendr-(NH2)8, as templates for styrene latexes will be discussed.  In seed growth 

emulsion polymerization, an assembly of block copolymer PS52-PMAA26 on a dendrimer 

core as a template for small and monodisperse styrene latexes will be also discussed.  

 

Results and Discussion 

 

Reaction of PPI Dendrimer DAB-dendr-(NH2)64 with 2-Bromoisobutyryl 

Bromide.  Syntheses of 64-arm dendritic ATRP initiators are outlined in Scheme 1.  

Initiators and dendrimer based initiators for the polymerization of styrene, t-butyl 
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methacrylate, and t-butyl acrylate used for this project are shown in Figure 1.  Syntheses 

of initiators for controlled growth radical polymerization via ATRP were accomplished 

using modifications of reported procedures.18,19   

Preliminary experiments with PPI Dendrimer DAB-dendr-(NH2)8 (1) show that 

the halogenated initiator can be synthesized by condensation of the 64 primary amine 

group at chain ends of dendrimer 1 with 2-bromoisobutyryl bromide (5) at room 

temperature.  The dendritic initiator can also be used for polymerization of styrene in a 

mixed catalyst-cosolvent system (Cu(I)Cl/Cu(II)Cl2)/PMDETA-DMF/anisole.  The 

polystyrene can be then utilized for block copolymerization of t-BA with a mixed catalyst 

system, (Cu(I)Cl/Cu(II)Cl2)/PMDETA, in anisole to produce amphiphilic block 

copolymers. 
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Scheme 1. Amphiphilic Block Copolymers 

 

CF3COOH
CH2Cl2
25 oC, 24 h

D64-PS(n)-b-PAA(m)-Cl, 13

t-BA

NH2

   TEA, THF
    N2,  0oC

+

Styrene, DMF/Anisole
Cu(I)Cl/Cu(II)Cl2-PMDETA
100oC, N2

 9

Cu(I)Cl/Cu(II)Cl2-PMDETA
Anisole, 110oC, N2

PPI DAB-dendr-(NH2)64, 3 4

Br Br

O

NH Br

O

12

Cl

O
NH

O
n

O

m

11

NH
O

Cl
n

Cl

OH
NH

O
n

O

m

 

 51



 

 

Br

O

Br

O

CH3O

O

Br Br

N
H

O

N
H

O

BrBr

D8D8 D64D64
N
H

O

Br
N
H

O

Br

54 6

7 8 9 10

Br

 

 

 

Figure 1. Initiators and dendrimer based initiators for the polymerization of styrene, t-

butyl methacrylate, and t-butyl acrylate. 

 

The 64-arm dendritic ATRP initiator 9 was prepared by condensation of the 64 

primary amine groups on PPI DAB-dendr-(NH2)64 (3) with 2-bromoisobutyryl bromide 

(4) at 0 oC in 79 % recovery.  Experimental conditions are summarized in Table 1. 

The new peaks in the proton NMR spectrum that support the structure of 9 are the 

methyl group at 1.8 ppm, the amide NH at 7.9 ppm, the NCH2CH2CH2NHCO quartet at 

3.3 ppm, and the CHCH3Br quartet at 4.5 ppm (Figure 2). 
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Table 1. Synthesis of Dendritic Initiators with PPI DAB-dendr-(NH2)64. 

R-Xa Reaction Condition Yieldd

(%)

4b
TEA, THF, 0oC,  N2 42-71

4c
TEA, THF, 0oC,  N2 79

5b
TEA, THF, 0oC-RT, ≥24h, N2 ~21

5b
TEA, THF, 0oC,  N2 5-40  

a See Figure 1.  b Molar ratio as of 3:R-X:TEA = 1:1.1:1.1.  c Molar ratio as of 3:R-X:TEA = 1:1.5:1.5.  
d Stable products observed after standing for over 7 days at room temperature and also after storing                        
at -4 oC over one month. 
 

For the synthesis of both the bromide PPI dendrimer initiators from 1 and 3, no 

side reaction such as an elimination reaction of HBr was observed when the reaction time 

was less than one hour at 0 oC.  However, when the reaction time was greater than one 

hour, peaks at 4-5 ppm were observed in the 1H NMR spectrum.  The peaks are 

presumably from the vinyl group of the elimination product at the end of chains in the 

tertiary carbon.  Increase in the reaction temperature from 0 oC to room temperature 

apparently caused an elimination reaction in the product to give methacrylamide end 

groups.  Heating and/or long standing at room temperature may also cause the 

elimination reaction.  The condensation of PPI dendrimer DAB-dendr-(NH2)64 (3), as 

well as DAB-dendr-(NH2)8 (1) with 2-bromoisobutyryl bromide (4) and 2-

bromopropionyl bromide (5), was achieved in moderate yield by the modified methods of 

Haddleton and Matyjaszewski.18-21  This was the first attempt to use PPI dendrimers 

DAB-dendr-(NH2)8 (1) and DAB-dendr-(NH2)64 (3) for ATRP initiators, based on a 

literature search. 
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                                                                                                              δ, ppm 

 
Figure 2. 1H NMR spectra of the PPI dendritic initiator and the corresponding block 
copolymers. 
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Regardless of the success of the synthesis of the halogenated ATRP initiator with 

the PPI dendrimer DAB-dendr-(NH2)8 (1), improvement on isolating the product was 

needed.  The initiator 10 was obtained in very low recovery (5-40 %).  Combined with 

proper multiple solvent extractions and with more hydrophobic methyl groups to the 

dendritic initiator, the yield of initiator 9 was improved to 40-80 %.  Two factors were 

important for recovery of the ATRP initiator.  Firstly, the triethylamine hydrochloride 

side-product from the condensation reaction, was less soluble in THF.  However, the 

modified step was to dissolve the salt in methylene chloride and wash with 5 % aqueous 

NaOH (pH ≥ 14) to remove the salt from the dendritic bromide initiator by multiple 

extractions.  The modified step gave a 3-fold improvement on the recovery of the 

dendrimer initiator, in particular, for the bromide dendrimer 9.  Secondly, the bromide 

initiators, for example, 2-bromopropionyl bromide (5) and 2-bromoisobutyryl bromide 

(4), also have an effect on the recovery of the product in the case of the dendrimer 3 

(Scheme 2).  Specifically, the recovery yields of 7 and 9 were better than that of 8 and 10 

(Figure 1).  The dendritic initiators 8 and 10 seem more hydrophilic than 7 and 9 because 

of having one less hydrophobic methyl group.  The initiators 8 and 10 tend to remain in 

the aqueous phase more than organic phase.  The improvement of the recovery of the 

product is very important for further synthesis of block copolymers by ATRP.  However, 

for the dendrimer 1 the two bromide initiators (4 and 5) did not have a great effect on the 

recovery of the product compared to the dendrimer 3. 
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Polymerization of Styrene and t-BMA from the Dendritic Initiators.  

Polymerization of styrene was studied under various conditions.  The best conditions for 

narrow molecular weight distribution involved the use of 9/Cu(I)Cl-Cu(II)Cl2/PMDETA 

as the dendritic initiator/catalyst/ligand at 100 oC in DMF-anisole (Scheme 1). 

The monomer conversion was determined by integration of the vinyl resonance  

(5 - 6 ppm) relative to either the combined values for the aromatic resonance from 

polystyrene (6 –7.2 ppm) or the methoxy resonance from anisole (3.82 ppm) in the 1H 

NMR spectra (Figure 3).  As the reaction progressed, the area of the vinyl resonance at 5 

- 6 ppm decreased with respect to the methoxy resonance from anisole as an internal 

standard at 3.82 ppm.  The monomer conversion for polymerization of styrene was 

reproducible.  The polymerization in Cu(I)/(II)-PMDETA system led to narrow 

polydispersity (PDI = 1.1-1.5) (Table 2) and better control of the molecular weight 

distribution and polydispersity in DMF/anisole as co-solvent system.  

Preliminary experiments for the polymerization of styrene with dendrimer 

initiators are reported in Table 2.  The dendritic initiator 1 was used mainly to explore 

and optimize the conditions.  ATRP of styrene with the PPI dendrimer initiator 9 was 

found to be reproducible at 100 oC (Scheme 1).   
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Table 2. Poly(styrene-b-tert-butyl methacrylate) Block Copolymers Using 
Poly(propylene imine) Initiators. 
 

    

GPC DLS (nm)e

sample macro- condition M n,calc
c major minor commentf

initiaora M n,GPC
d PDI particle particle 

size size
2093 8 St/Cu(I)Br 37 32600 111400 1.31 (17-28) (540) Gel 

DMF (1060) formed
110 oC/380 min (3920)

3054 7 St/Cu(I)Cl 60 20100 41300 1.16 (12-29) (57) Gel 
DMF (440) formed
110 oC/360 min (500)

3066 6 & 9 St/Cu(I)Cl 41 18160g

DMF 4440g 6000 1.14 3.7 408 Thick
100 oC/105 min syrup

3070 9 St/Cu(I)Cl 15 113800 10700 1.18 (697) Gel 
DMF formed
100 oC/240 min

3077h 4 1965 2.3
3079 3077 St/Cu(I)Cl 52 44900 24800 1.21 (14.9)i (58)i Thick

DMF/toluene (452)i syrup
100 oC/260 min (5300)i

(16.2)j (53)j

(299)j

3081 3077 St 52 44900 37000 1.13 11.3 28 No Gel 
Cu(I)Cl/Cu(II)Cl (11.4) (25) formed
DMF/anisole (476)
100 oC/32h

3083l 3081 t -BMA 164 231500 150800 1.88 9.8 22 No Gel 
Cu(I)Cl/Cu(II)Cl (12.1) (903) formed
anisole
90 oC/90 min

3085k 3081 t -BMA 68 122290 64300 1.31 16.1 No Gel 
Cu(I)Cl/Cu(II)Cl (20.3) (697) formed
anisole
90 oC/110 min

3089k 3081 t -BMA 34 83610 67200 1.40 14.6 No Gel 
Cu(I)Cl/Cu(II)Cl formed
anisole
90 oC/80 min

3093l 3079 t -BMA 26 74510 28100 1.25 24.6 198 No Gel 
Cu(I)Cl/Cu(II)Cl formed
anisole
80 oC/190 min

DP
b

 
   aSee Figure 1.  bCalculated from 1H NMR measurement of monomer consumed and eight polymer chains 
per dendrimer.  cCalculated from the monomer conversion and [I]o.  dCalibrated against linear PS standards.  
eNumbers in parenthesis obtained without filtration, THF used as solvent, and size (nm) reported in 
diameter.  fObserved during the polymerization.  gObtained two types of polymers by mixing two different 
types of initiators with molar ratio of 6:9:M:PMDETA:Cu(I)Cl = 10:1:500:11:11.  hDendrimer inititator 
used for polymerization of styrene to obtain 3079 and 3081.  iToluene used.  jTHF used.  kMolar ratio : 
I:M:PMDETA:Cu(I)Cl = 1:578:6.4:6.4.  lMolar ratio : I:M:PMDETA:Cu(I)Cl = 1:90:1:1.  
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The polymerization of styrene with dendritic initiators by ATRP could not be conducted 

in bulk because of insolubility of the dendritic initiators in either monomer (styrene) or 

ligand (PMDETA), or any common solvent, such as, dioxane.  The initiators and catalyst 

did somehow dissolve in the mixture of styrene-PMDETA at room temperature and 

produced a small amount of a dark green jelly.  This jelly may be either swollen initiator 

or a copper(II) containing species.  As a result, it could cause the polymerization to be 

irreproducible depending on the amount of the jelly substance formed.  Inhomogeneous 

conditions could also cause the uncontrollable polymerization of styrene with the 

dendritic initiator during the polymerization.  The polymerization of styrene was 

accomplished at 100 oC while the copolymerization of tBMA was done at 110 oC.  For 

the solvent, DMF was chosen because the dendritic initiator was soluble in DMF.  

However, there might cause a problem.  DMF tends to be trapped inside the dendrimer 

core so that the possible problem arises for the macro-dendrimer initiator in the removal 

of DMF along with the catalyst.  On the other hand, DMF dissolves the dendrimer 

initiator for homogeneous ATRP of styrene.  Regardless of the above possible problems, 

DMF was found to be good for the case of styrene as it produced a controllable and 

reproducible rate of polymerization.  DMF is miscible with methanol.  It allowed 

purifying the polymer from DMF by precipitating the polymer into methanol.  The 

previously mentioned conditions found in the preliminary experiment with dendrimer 1 

provided a controllable polymerization of the PPI dendrimer 3 by ATRP in a copper(I) 

mediated catalyst system. 

Complete removal of copper catalyst is another problem for the PPI dendritic 

block copolymers onto 1 and 3 compared to a small molecule such as methyl 2-
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bromopropionate (6).  The PPI dendrimer is well-known to be capable of complexing 

with Co, Fe, Ni, Cu, etc.  The dendritic copolymers were therefore liable to be 

contaminated with a small amount of copper catalyst that was evident from the light 

green or bluish color.  On the contrary, polystyrene made from methyl 2-

bromopropionate (6) as an initiator was a white solid powder that indicated no copper 

catalyst contamination.  Moreover, the copper contaminant on the dendritic block 

copolymer might also have an effect on the further ATRP polymerization of the second 

block. 

Samples 3079 and 3081 were polymerized with styrene at 100 oC as summarized 

in Table 2.  Sample 3079 was a thick syrup in DMF/toluene.  Sample 3081 formed no gel 

in DMF/anisole.  The difference between the two final physical states could be due to a 

combination of catalyst system, solubility of polymer formed in the reaction medium, and 

formation of inter- or intramolecular covalent coupling product.  DMF dissolved 

dendrimer initiators, and both anisole and toluene dissolved polystyrene.  The 

DMF/anisole system formed no gel so that polymerization was homogeneous.  However, 

DMF/toluene system did not improve control of the polymerization of styrene.  Cuprous 

chloride and cupric chloride were used as catalysts with the ligand PMDETA.  The 

cuprous chloride/cupric chloride system was observed to be more controllable than 

cuprous bromide/cupric bromide system in ATRP. 

In order to obtain block copolymers with no residue of polystyrenes, one 

approach was to try to prevent the formation of covalent coupling product.  Covalent 

coupling product might be promoted by increasing the viscosity of the solution during 

polymerization.  A way to reduce viscosity of the solution is to use a better solvent for the 
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block copolymer so that chains graft onto the dendrimer core and diffuse into the reaction 

medium.  The dilution would decrease the viscosity of the solution.  It leads to 

maintaining a homogeneous solution and also reduces the formation of a coupling 

product during polymerization.  As a result, polymerization could be well controllable. 

The experiments in Table 2 show convenient conditions for ATRP.  Sample 3079 

produced the resulting thick syrupy solution when solvent was used half of the amount of 

monomer.  However, samples 3081, 3083, 3085, and 3089 formed no gel in the reaction 

medium when solvent was used in equal or 2-fold of the amount of monomer.  

Decreasing the viscosity of solution helped prevent gel formation during the 

polymerization in these four cases.  GPCs of the polymers in Figure 4 showed that the 

block copolymers  3081, 3083, 3085, and 3089 contained the precursor 3081 as a 

shoulder peak in the range of 14.2-14.3 min retention time as shown in Figure 4b, 4c, 4d, 

and 4e.  It indicates that some of the polystyrene chains did not continue to grow PtBMA 

blocks. 
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Figure 4. GPC traces determined by RI detector of (a) D8-pS52-Cl (3079), (b) D8-pS52-Cl 
(3081), (c) D8-pS52-ptBMA164-Cl (3083), (d) D8-pS52-ptBMA68-Cl (3085), and (e) D8-
pS52-ptBMA34-Cl (3089) (see Table 2). 

 

 

In order to decrease the viscosity of solution and continue chain growth at the 

same time, the amount of solvent used was 8 times of the amount of monomer.  Figure 5 

shows the GPC results for the styrene homopolymer and the block copolymer from 

dendrimer 1.  Figure 5b shows that the block copolymer 3093 does not contain any large 

amount of polystyrene 3079 because the trace has no shoulder of the starting polystyrene 

on it.   
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Figure 5. GPC traces measured by RI detector of (a) D8-pS52-Cl (3079) and (b) D8-pS52-

ptBMA26-Cl (3093). 
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Polymerization of styrene and t-BA from the dendrimer 3.  For the dendrimer 

3 the dilute conditions that gave the best results for the dendrimer 1 were used.  Table 3 

reports the conditions used for ATRP polymerization onto a dendrimer 3 core.   

 

Table 3. Block copolymerization with dendritic initiator 9. 
 
 
 
product 

 
 

[M]/[I]/[Cu(I)]/[L] 

 

 
 

monomer 
 

 
 

time 
(h) 

 

 
conv 
(%) 
by 

NMR 
 

 
assumed 

polymer structure 

 

 
11a 

 
200/1/1c/1 

 

 
St 

 
40 

 
24 

 
D64-(pS48-Cl)64 

 
 

12ab 
 

800/1/1c/1 
 

 
tBA 

 

 
102 

 

 
13 
 

 
D64-(pS48-ptBA104-Cl)64 

 
 

12bb 
 

1600/1/1d/1 
 

 
tBA 

 

 
48 
 

 
13 
 

 
D64-(pS48-ptBA215-Cl)64 

 
 

12cb 
 

3200/1/1d/1 
 
 

 
tBA 

 

 
76.5 

 

 
14 
 

 
D64-(pS48-ptBA445-Cl)64 

 

a100 oC for polystyrene.  b110 oC for PtBA.   cCu(II)/Cu(I) = 0.2.  dCu(II)/Cu(I) = 0.1.   

 

The GPCs in Figures 6 and 7 show the use of two different detectors, RI and 

viscometry, for block copolymers with the dendrimer 3.  No shoulders on the 

chromatograms indicated that the dilution was indeed useful to eliminate the residue of 

polystyrene for block copolymerization in ATRP of the dendrimer 3.  Residual amine 

groups present in the samples were pretreated with phenyl isocyanate in THF solution 

prior to running the sample through the GPC columns.  This allows for clear solutions to 

provide accurate GPC analyses detected both from viscometry/universial calibration 
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(univ cal) and light scattering without some of the rest sample adsorbed in the GPC 

column.  Molecular weights shown in the GPC analyses between RI detector and 

viscometry/ univ cal (or light scattering) detector(s) are largely different for the polymer 

11 in Table 4.  The discrepancy of molecular weights might result from the residue of the 

free amine group in the sample adsorbed in the GPC column.  GPC analysis using the RI 

detector did not require with the derivatization with phenyl isocyanate.  Molecular 

weights from the RI detector gave much smaller values than calculated and viscometry-

univ cal/light scattering values.  The viscometry-univ cal/light scattering molecular 

weights were closer to calculated values. 

 

11 12 13 14 15 16

c

d

b

retention time (min)

a

 
Figure 6 . GPC traces measured by RI detector of (a) D64-Polystyrene48-Cl (11), (b) 

D64-Poly(styrene48–b-tert-butyl acrylate104)-Cl (12a), (c) D64-Poly(styrene48–b-tert-

butyl acrylate215)-Cl (12b), and (d) D64-Poly(styrene48–b-tert-butyl acrylate445)-Cl (12c).   
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Figure 7. GPC traces measured by viscometry detector of (a) D64-Polystyrene48-Cl (11), 

(b) D64-Poly(styrene48–b-tert-butyl acrylate104)-Cl (12a), (c) D64-Poly(styrene48–b-tert-

butyl acrylate215)-Cl (12b), and (d) D64-Poly(styrene48–b-tert-butyl acrylate445)-Cl (12c).  

[From Thomas H. Mourey, Imaging Materials and Media Research and Development, 

Eastman Kodak Company Research Laboratories]. 

 

 

Polymerization of t-BA was mediated by Cu(I)Cl-Cu(II)Cl2/PMDETA using the 

macroinitiator (11) at 110 oC in anisole (Scheme 1).  Table 4 summarizes the results.  The 

monomer conversion was determined by 1H NMR with integration of the vinyl resonance 

(5 - 6 ppm) relative to the methoxy resonance from anisole (3.82 ppm) (Figure 3).  The 

monomer conversion for block copolymerization of t-BA and the rates of polymerization 

were reproducible.  The molar ratio as of I:M:PMDETA:Cu(I)/Cu(II) = 1:800-3200:1:1 
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was used for better control of its molecular weight distribution and polydispersity.  The 

amount of monomer was 8 to 32-times the normal amount of monomer used for block 

copolymerization to reduce the rate of termination of polymer radicals relative to the rate 

of propagation.  The reaction in the presence of Cu(I)Cl/Cu(II)Cl2/PMDETA led to block 

copolymers of polydispersity (PDI = 1.28-1.60 by RI detector and 1.36-1.53 by 

viscometry) with diameter of ranging from 17 to 28 nm (Table 4). 

In general, a slow rate of polymerization with dendrimer initiator 9 was observed 

for ATRP of t-BA at 110 oC (Table 3: 12a, 12b, and 12c) in anisole due to the dilute 

polymerization conditions.  The GPC traces in Figure 6 provide that block copolymers 

12a, 12b, and 12c grew as the molecular weights of each were increased.  These GPC 

results indicate that block copolymerization provides controllability for ATRP of t-BA at 

110 oC. 

The GPC data in Table 4 indicates that the molecular weights of the branched 

polymers are less than the molecular weights calculated on the basis of 64 growing chains.  

Absolute molecular weights measured by viscometry and universal calibration (Mn) and 

by light scattering (Mw) are much less than molecular weights calculated by assuming 

Mn,calc = [M]/[I] where [M] = concentration of monomer consumed and [I] = initiator 

concentration.  Therefore, the number of active growing chains per dendrimer was much 

less than the assumed number of 64.  This could happen because of termination of chains 

located close in space on the dendritic molecule, because steric crowding of the initiator 

sites by growing chains prevented growth from many of the initiator groups, or because 

of some unknown reaction that converted initiator sites to inactive chain ends.  The 

unknown could be associated with intermolecular radical-radical coupling as well as 

 68



intramolecular coupling at high molecular weights due to the possible elimination 

product at the end of chains as seen for the case of 1 in Table 2.  The potential for cross-

linking is possible to occur during polymerization as a result of radical coupling of the 

growing polymer chain ends.  GPC for molecular weight from linear polystyrene 

standard are not accurate for highly branched polystyrenes.  The measured absolute 

molecular weights are larger than those calculated for linear polystyrene (PS) and linear 

poly(methyl methachrylate) (PMMA) standards.  Molecular weights increase as the 

calculated of DPn (degree of polymerization) of PtBA increases.  For example, Mn,RI, 

Mn,vis, and Mn,LS are much smaller than Mn,calc calculated assuming a 64-branch star due to 

the compact nature of spherical dendrimer/PS composite (Table 4).  The star molecule 

has a small number of branches because of many less active initiator sites on the 

dendrimer. However, ATRP controlled the growth of PS and PtBA blocks as shown by 

systematic increase of molecular weights from increasing amounts of tBA monomers. 

Although GPC calibrated by linear polymer standards is not accurate for 

molecular weight, peak width in GPC is reliable for determining polydispersity (PDI).  

The PDI values of polymers 12a, 12b, and 12c measured by both RI and viscometry 

detectors are consistent in the range of 1.2-1.6.  This indicates that ATRP was 

controllable for the growth of the chain ends on to a dendritic core.  

 

Poly(styrene-b-acrylic acid) (13).  Conversion of the PtBA blocks to 

poly(acrylic acid)(PAA) blocks with CF3COOH in CH2Cl2 for 24 h at 25 oC was 

performed.  A 25-fold molar excess of CF3COOH was used with respect to the t-butyl 

groups in the blocks. As shown in Figure 2 for sample 13a, the disappearance of the 
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characteristic strong peak at 1.56 ppm corresponding to the methyl protons of the t-butyl 

group demonstrates the complete conversion of PtBA blocks to PAA blocks.  DMF-d7 

was used as the NMR solvent because PAA dissolved well in DMF-d7 enabling 

identification of the carboxylic acid group in PAA at 12.5 ppm.  Otherwise CDCl3 was 

the common NMR solvent for both PS and PtBA (Figure 2).  

 

Dynamic Light Scattering Measurements of Initial Reaction Mixtures.  A 

mixture of amphiphilic block copolymer dendrimer in DMF and water was stirred at 

room temperature for 30 min. The solution was transferred to a glass cuvette, and the 

average diameter of the scattering particles was measured by DLS to be > 80 nm in most 

cases at pH > 8. DMF-water was effective as a co-solvent for styrene latexes with low 

polydispersity at above pH 8. THF-water was ineffective due to aggregates of the 

amphiphilic dendritic block copolymer at either low or high pH.  The data of DLS are 

reported in Table 5.   

 

Table 5.  Dynamic Light Scattering (DLS) of PS-PAA Block Copolymers. 

DLS (diameter, nm) 

Water/DMF(20/1) 

 

polymer DMF 

pH 10 pH 7 pH 4 

13a 16 48 / 738 294 104 

13b 17 355 25 / 406 140 

13c 22 28 / 347 / 617 37 / 356 / 740 92 
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The diameters of particles were measured by DLS.  Each individual particle was 

observed for samples 13a, 13b, and 13c in DMF.  However, multiple diameters in 

samples 13a, 13b, and 13c were found in water/DMF.  The DLS shows each particle 

aggregates in different sizes at pH 7 and pH 10 although aggregates in size at pH 4 are 

uniform.  At pH 4 individual particles might aggregate at once and then not change.  At 

pH > 7 individual particles might aggregate and then break them out into the smaller 

clustered particles due to more exposure of the free carboxylate form of PAA.   

 

Latex Synthesis.  In spite of the advantage associated with small particle size, the 

presence of large amounts of surfactant in the latex is highly undesirable for adhesive and 

coating applications.27  The small and mobile surfactant molecules might migrate toward 

the surface layer of the coating material and can degrade the film properties.  One 

approach to eliminate such a surfactant migration problem is to exploit the surfactant-free 

method, in which the carboxyl groups derived from acid monomers, such as, methacrylic 

acid (MAA) or acrylic acid (AA), are responsible for stabilization of the latex particles.  

In the report here, the amphiphilic dendritic PS-b-PMAA 3100 was investigated as a seed 

for semi-continuous emulsion polymerization of styrene (see Table 6 and Experimental 

section).  The ability of self-assembly in amphiphilic block copolymers can be utilized to 

control aggregates and form micelles in aqueous solution for surfactant-free emulsion 

polymerization.28,29  Here, one problem is that the dendritic block copolymer was not 

soluble in water at any range of pH.  The block copolymer was shown by DLS 

measurements to be aggregated at pH > 8.  It may indicate that the interaction of PMAA 

segments is caused by assembling them at the dendrimer surface.  With aid of DMF as 
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co-solvent, 3100 was able to dissolve in aqueous solution because both polystyrene and 

polymethacrylic acid blocks are soluble in DMF.30  When the diameter of the dendritic 

block copolymer in aqueous-DMF solution at various pHs was measured by DLS, the 

dendritic block copolymers were found to self-aggregate in the pH range of 8-13. It is 

possible that the PMAA segment formed a more hydrophobic and compact coil 

conformation at pH > 8.  The ability of PMAA is well documented to exhibit a pH-

dependent conformational transition in aqueous solution from compact coil to random 

coil and simultaneously shows a drastic change in hydrophobicity of the segment by 

varying the pH. PAA is also known to behave in a very different manner.31-34  The 

inability of a random coil of PAA to aggregate in acidic media can be explained by the 

absence of α-methyl groups in the polymeric chains.32  Therefore, if such PAA segments 

can be introduced to the dendrimer core next to a PS segment, stable colloidal particles 

can form in aqueous solution.  The amphiphilic block copolymers are known to be 

efficient when optimal composition has short blocks of PS(~10) and long blocks of 

PAA(>50).35  An increase in the hydrophilic block length has been also reported to result 

in the formation of smaller particle sizes.36  The higher repulsion favors a decrease in the 

radius of curvature and contributes to the formation of smaller sizes from copolymers 

with longer PAA block length.31  However, block copolymers with shorter PAA block 

length self-assemble into larger sizes. 
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Table 6.  Particle Sizes by TEM and DLS for Polystyrene Latexes. 

 
 

Product sample 

 
 

ingredients 

 
DLS 

diameter 
(nm) 

 

 
TEMa 

diameter 
(nm) (avg.) 

 
 

4014 
 
 
 
 

4025 

 
D8-pS52-b-pMAA26-Cl (3100)b (10 mg) 
styrene (1.5 mL) 
KPS (45 mg)  
water/DMF(27.5 mL/1 mL) 
 
D8-pS52-b-pMAA26-Cl (3100)b (5 mg) 
styrene (0.5 mL) 
KPS (45 mg)  
water/DMF(27.5 mL/1 mL) 
SDS (50-100 mg) 
 

 
179 

 
 
 
 

45-55 
 

 
152 

 
 
 
 
- 
 

 
4080 

 
 
 
 

4081 
 
 

 
(D64-pS48-b-pAA104-Cl (13a) (20 mg) 
styrene (1 mL) 
KPS (30 mg) 
water/DMF(27.5 mL/1 mL)  
 
D64-pS48-b-pAA104-Cl (13a) (50 mg) 
styrene (0.5 mL) 
KPS (30 mg) 
water/DMF(27.5 mL/1 mL)  
SDS (50 mg) 

 
293 

 
 
 
 

40-60 

 
104c 

 
 
 
 
- 

     aSee Figure 8.  bSample 3100 is described in Experimental section.  cSample was stained with uranyl 
acetate. 
 

 

Latex particles were prepared by emulsion polymerization of styrene in the 

presence of sodium dodecyl sulfate (SDS) or without SDS anionic surfactant and 

amphiphilic PS-b-PMAA 3100 with potassium persulfate (KPS) initiator in DMF-water 

at 80 oC.  The polymerization was accomplished by the semicontinuous method.  The 

polymerization produced relatively monodisperse latexes with average diameters between 
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120 and 180 nm when no SDS was used (Figure 8a and Table 6).  The particle size 

distribution (PSD) was broad with diameters of 45-55 nm when SDS was used.   

The pH of the polymerization medium was around 9 for full ionization of the 

carboxylic acid unit.  The pH was adjusted by addition of NaHCO3 aqueous solution 

during the polymerization to reach monodisperse and nano-sized particles.  The diameter 

of styrene latex was measured as 313 nm by DLS when the polymerization medium was 

tested as acid, such as pH 4-6, during the polymerization.  The diameter was larger than 

that from the basic medium for polymerization.  The optimal pH should be about 9 for 

full dissociation of carboxylic acid unit in the seed-growth emulsion polymerization of 

styrene with the dendrimer.  

Emulsion polymerization of styrene with D64-pS48-b-pAA104-Cl (13a) was also 

accomplished in the presence of SDS or in the absence of SDS anionic surfactant and 

with KPS initiator in DMF-water at 80 oC.  Transmission electron microscope (TEM) 

images of polystyrene latex particles prepared with 13a (Figure 8b) show similar results 

to those of 3100.  In the presence of SDS, polystyrene latex particles are around ~40-60 

nm in diameter but over 100 nm in diameter in the absence of SDS.   

The TEM image of sample 13a in Figure 8b shows both individual and clustered 

spherical particles.  The diameters from DLS were much larger than those from TEM. 

The discrepancy was expected because DLS measures a hydrodynamic size and counts a 

cluster as one particle. 
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(a) 

              

(b)  
 

              
 

Figure 8. Transmission electron microscope (TEM) images of polystyrene latex 
particles.  (a) Polystyrene latex from 3100; Diameter: 152 nm. (b) Polystyrene 
latex 13a; Diameter: 104 nm; The TEM sample was stained with uranyl acetate.  
(See Table 6). 
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Dendritic latex synthesis seems to agree with the analysis of D64-pS-b-ptBA-Cl 

by GPC.  If the dendrimer had been fully substituted with halides at the chain ends and 

subsequently polymerized fully at chain ends followed by deprotection of ester groups, 

the fully negatively charged chain ends of polystyrene latex should be expected to 

disperse into the basic aqueous solution at pH 10-11.  Without aggregation, the 

polystyrene latex particles would be less than 50 nm in diameter in the absence of SDS.  

However, the latex was in fact more than 100 nm in diameter in the absence of SDS.  The 

larger size of the latex indicates that the latex formed aggregates due to not fully 

negatively charged chain ends of the D64-pS-b-pAA-Cl. 

The amounts of dendrimer template and styrene had little affect on the particle 

sizes.  However, the presence of SDS reduced the average diameter to approximately 50 

nm with broad particle size distribution (PSD).  More than 100 nm and narrower particle 

size distribution was obtained in the absence of SDS.   

Emulsion polymerization provided broader particle size distribution (PSD) but 

smaller diameters of individual clusters in the presence of SDS regardless of the lengths 

of the PMAA (~26) and PAA (~104) blocks at the PS blocks (~50).  In the absence of 

SDS, the emulsion polymerization showed the opposite results with the same polymers, 

i.e. narrow PSD and large aggregates. 
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Conclusions  

 
The end groups of the poly(propylene imine) (PPI) dendrimer were converted to 

2-bromoisobutyramides to initiate atom transfer radical polymerization (ATRP), and 

blocks of polystyrene (PS) and poly(tert-butyl acrylate) (PtBA) were grown by ATRP.  

The PtBA blocks were converted to poly(acrylic acid) (PAA) to give branched 

amphiphilic PS-PAA block copolymers.   

The measured molecular weights of the PS-b-PtBA from PPI DAB-dendr-(NH2)64 

are larger than those calculated for linear PS and linear PMMA standards.  The measured 

molecular weights are much less than the molecular weights calculated assuming a 64-

branch star.  Molecular weights increase as the calculated of DPn of PtBA increases. 

The branched amphiphilic polymers are stars with small numbers of branches 

resulting from growth at a small number of initiator sites per dendrimer.  The amphiphilic 

polymers are controlled by ATRP for the growth of PS and PtBA blocks.  However, the 

number of active initiator sites on the dendrimer is very much smaller than expected 

assuming a 64-branch star.  

Branched aggregates of the PS-PtBA and of the PS-PAA detected by dynamic 

light scattering (DLS) and transmission electron microscope (TEM) images of 

polystyrene latex particles in water-DMF mixtures show that the materials have 

aggregation characteristics of amphiphilic PS-PAA block copolymers. 
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Experimental Section 

 
Materials.  PPI DAB-dendr-(NH2)n (n = 8 and 64), 2-bromoisobutyryl bromide, 

2-bromopropionyl bromide, and  N,N,N’,N’,N”-pentamethyldiethylenetriamine 

(PMDETA) (99%), were purchased from Aldrich (Milwaukee, WI) and used as received.  

Anisole (99%), THF (99.9%), and DMF (99.8%) were purchased from Acros and used as 

received.  Triethylamine (TEA) was dried over anhydrous 3 Å molecular sieves and 

freshly distilled.  

Copper(I) chloride (99.995+ %) was used as received from Aldrich.  Copper(II) 

chloride (dihydrate) was purchased from EM Science.  Copper(I) bromide (2 g, 98 %) 

was stirred over glacial acetic acid under N2 at room temperature for 12 h.  The deep 

blue-green mixture was filtered under N2 and washed with ethyl alcohol and anhydrous 

diethyl ether until the color of the filtrate changed from blue-green to yellow.  The 

purified copper(I) bromide (pale yellow) was dried via vacuum either at room 

temperature for 12 h or at 60 oC for 6 h and stored in the dark at room temperature.  

Diethyl ether tended to give a gray tint to the copper(I) bromide.   

Styrene, tert-butyl methacrylate (t-BMA), and tert-butyl acrylate (t-BA) were 

purified by passage through a column of activated basic alumina (~150 mesh, 58 Å) to 

remove inhibitor and moisture.  Sodium dodecyl sulfate (SDS), potassium persulfate 

(KPS, 99+ %), and sodium bicarbonate were purchased from Aldrich (Milwaukee, WI) 

and used as received unless otherwise stated.  Water was purified using a Barnstead water 

purification system.   

Characterization.  Conversion was determined using 1H NMR by measuring 

residual monomer relative to either a newly formed polymer or solvent as an internal 
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standard.  The Mn and Mw/Mn of the polymer samples were measured with a Agilent 

series 1100 chromatograph using a THF as eluent (1 mL/min) at 40 oC using differential 

refractive index detection.  Polymer Laboratories gel permeation chromatography (GPC) 

columns (2 PLgel 10μm mixed B 7.5 mm ID) were used.  Samples and polystyrene 

standards were filtered through a Whatman polypropylene filter (0.2 μm) prior to 

injection.  Amounts and concentrations of samples used for GPC analysis were 10 μL for 

injection and 5 mg of a sample in 1 mL of THF for sample preparation.  Molecular 

weights of polystyrene and poly(t-butyl acrylate) were calibrated against polystyrene 

standards in the range of 1,800,000-500 g/mol.   

Second GPC analyses were performed at Eastman Kodak Co. on solutions of the 

polymers in DMF containing 0.01 M lithium nitrate using two PSS Gram Linear 8 x 300 

mm columns.  The column set was calibrated with narrow molecular weight distribution 

poly(methyl methacrylate) standards and polystyrene standards.  The instrument was 

equipped with differential refractometer and differential viscometer detectors.  

Concerning residual amine groups present in the samples, phenyl isocyanate (2 drops) 

was added to 10 mL of a 2 mg/mL THF solution of the polymer and warmed for 1 h.  

This derivatization treatment gives clear solutions for all polymers and permits 

reproducible chromatography in THF as shown in Table 4.   

Particle sizes by dynamic light scattering (DLS) were measured by back-scattered 

light at 25 oC using a Malvern High Performance Particle Sizer (HPPS) 3.3 version 

instrument equipped with a He-Ne laser (633 nm).  The samples were filtered with a 

Whatman polypropylene filter (0.2 μm).   
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The transmission electron microscopy (TEM) images were obtained at 80 keV 

with a JEOL JEM 100 CX II instrument.  The emulsion was diluted with the ratio of 1:15 

in water to give a stock solution of each sample.  A suspension preparation technique was 

used to deposit the particles on a Formvar-coated copper grid.  A drop of the stock 

solution was deposited onto the grid and blotted with a small piece of filter paper to dry.   

Dendritic Macroinitiator 7.18-21  A solution of 1 (0.262 g, 0.339 mmol) and TEA 

(0.302 g, 0.339 mmol/1 NH2) in anhydrous DMF (3 mL) was placed in a 25-mL, two-

necked, round-bottomed flask under nitrogen at 0 oC in an ice/water bath.  With magnetic 

stirring, 2-bromoisobutyryl bromide (4) (0.685 g, 0.339 mmol/1 NH2) was added 

dropwise by a syringe over 5 min and stirred for another 5 min at 0 oC.  A 1.1-fold molar 

excess of TEA and the bromide 4 (with respect to the NH2 groups at the end of chains) 

was used.  The reaction mixture became a red-yellow suspension during the addition of 

the bromide.  DI (deionized) water (1 mL) was added, and 5% aqueous NaOH (10 mL) 

was then added to pH 12.  The basic aqueous solution was extracted with methylene 

chloride (3 x 10 mL).  The organic layer was combined and dried over anhydrous K2CO3 

for 3 h.  The K2CO3 was filtered off.  Solvent and excess reagents were then removed at 

room temperature by rotary evaporation.  Residual DMF and TEA were removed by 

vacuum distillation with toluene at room temperature.  The crude product was dried under 

vacuum at room temperature for 12 h.  Initiator 7 (0.506 g, 76.0 %) was used for 

polymerization of styrene without further purification. 1H NMR (300 MHz, CDCl3, δ): 

1.3 (br, NCH2CH2CH2CH2N), 1.4-1.9 (br, NCH2CH2CH2N and NCH2CH2CH2NHC=O), 

1.8 (d, CH3), 2.5 (t and br, NCH2CH2CH2CH2N, NCH2CH2CH2N, and 
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NCH2CH2CH2NHC=O), 3.3 (q, NCH2CH2CH2NHC=O), 4.5 (q, CHCH3Br), 7.9 (t, 

NHC=O). 

Dendritic Macroinitiator 9. 18-21  A solution of 3 (0.277 g, 0.0386 mmol) and 

TEA (0.375 g, 1.5 mol TEA/mol NH2) in anhydrous THF (20 mL) was placed in a 50-mL, 

two-necked, round-bottomed flask under nitrogen at 0 oC in an ice/water bath.  With 

magnetic stirring, 2-bromoisobutyryl bromide (4) (0.853 g, 1.5 mol/mol NH2) was added 

dropwise by a syringe over 5 min and stirred for another 5 min at 0 oC.  A 1.5-fold molar 

excess of TEA and the bromide 4 (with respect to the NH2 groups at the end of chains) 

was used.  Aqueous NaOH (5%, 10 mL) was then added to pH 14.  The basic aqueous 

solution was extracted with methylene chlroride (3 x 20 mL).  The combined organic 

layers were dried over anhydrous K2CO3.  The solution was filtered, and the solvent and 

excess reagents were removed under vacuum.  The crude product was dried under 

vacuum at room temperature for 24 h.  Initiator 9 (0.457 g, 80%) was used for 

polymerization of styrene without further purification. 1H NMR (300 MHz, CDCl3, δ): 

1.3 (br, NCH2CH2CH2CH2N), 1.4-1.9 (br, NCH2CH2CH2N and NCH2CH2CH2NHC=O), 

1.8 (d, CH3), 2.5 (t and br, NCH2CH2CH2CH2N, NCH2CH2CH2N, and 

NCH2CH2CH2NHC=O), 3.3 (q, NCH2CH2CH2NHC=O), 4.5 (q, CHCH3Br), 7.9 (t, 

NHC=O).  

Polymerization of Styrene onto Dendritic Initiator 7.11,21,37 Initiator 7 (0.168 g, 

0.0855 mmol), PMDETA (0.119 g, 0.687 mmol) and styrene (7.12 g, 0.0684 mol) in 

DMF (0.14 mL) and anisole (7.84 mL) were placed in a 25-mL Schlenk flask equipped 

with a stopper and a tube with a stopcock covered with septum for withdrawal of samples 

and a nitrogen inlet and outlet.  Three freeze-pump-thaw cycles were performed.  All 
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glassware was oven-dried and purged with nitrogen before polymerization.  To the dry 

flask with degassed dendritic initiator 7, PMDETA, and styrene in DMF/anisole were 

added CuCl (0.068 g, 0.687 mmol) and CuCl2 (0.007 g, 10 wt % of CuCl) at -70 oC under 

a nitrogen atmosphere.  CuCl and CuCl2 were added as solids under the nitrogen 

atmosphere.  The flask was evacuated and flushed with dry nitrogen three times to 

remove oxygen.  The initial mixture was a green suspension which became a 

homogeneous solution with stirring at room temperature for 30 min.  The flask was 

immersed in a thermostated oil bath at 100 oC.  For determination of polymerization with 

desirable monomer conversion, an 0.1 mL aliquot of the solution was taken every hour 

until the desired monomer conversion was measured by 1H NMR.  Catalyst residues were 

removed by passing the samples through a short column of activated basic alumina with 

CDCl3 (1 mL) prior to NMR analysis.  The eluate was collected directly into the NMR 

tube for monomer conversion.  After 32 h, the remaining reaction mixture was cooled at 

0 oC in an ice bath to stop the polymerization, diluted with CH2Cl2 (5 mL) and passed 

through basic alumina, and the alumina was washed with methylene chloride (5 x 1 mL).  

The filtrate was concentrated under reduced pressure by rotary evaporation.  The residue 

was precipitated into methanol and filtered to give a green-white powder.  The polymer 

(2.990 g, 77.9 %) was dried at room temperature for 12 h under vacuum. 

Block Copolymer 3093.  A solution of PMDETA (0.0418 g, 0.241 mmol), t-

BMA (3.08 g, 0.0217 mol), and 3079 (1.355 g, 0.0302 mmol) in anisole (28 mL) were 

placed in a 25-mL, two-necked, round-bottomed flask and deoxygenated by three freeze-

pump-thaw cycles under a nitrogen atmosphere.  The flask was evacuated and flushed 

with dry nitrogen three times to remove oxygen.  Then CuCl (0.024 g, 0.242 mmol) and 

 82



CuCl2 (0.002 g, 10 wt % of CuCl) were added to the flask at -70 oC under N2.  The 

reaction mixture was stirred for 20 min until it turned into a green-blue homogeneous 

solution.  The flask was placed into a thermostated oil bath at 80 oC.  For determination 

of the degree of polymerization with targeted ~10 % monomer conversion, a 0.1 mL 

aliquot of the solution was taken every 30 min until the desired monomer conversion was 

measured by 1H NMR. Catalyst residues were removed by passage of the solution 

through a short column of activated basic alumina with CDCl3 (1 mL) prior to NMR 

analysis.  After 195 min, the remaining reaction mixture was passed through basic 

alumina, and the alumina was washed with methylene chloride (5 x 1 mL).  The filtrate 

was concentrated under reduced pressure by rotary evaporation.  The residue was 

precipitated into methanol and microfiltered to give an off-white solid.  The polymer 

3093 (0.716 g) was dried under vacuum at room temperature for 9 h.  

Polymerization of Styrene onto Dendritic Initiator 9. 11,21,27 All glassware was 

oven-dried and purged with nitrogen.  Initiator 9 (0.442 g, 0.0265 mmol), PMDETA 

(0.293 g, 1.691 mmol) and styrene (35.3 g, 0.339 mol) in DMF (4.8 mL, 10 wt % of total 

reagents) and anisole (78.0 mL) were placed in a 250-mL Schlenk flask.  Three freeze-

pump-thaw cycles were performed.  To the flask was added CuCl (0.168 g, 1.697 mmol) 

and CuCl2 (0.034 g, 20 wt % of CuCl) at -70 oC under a nitrogen atmosphere.  The flask 

was evacuated, refilled with nitrogen three times to remove oxygen, and held at 100 oC.  

For determination of the degree of polymerization, a 0.1 mL aliquot of the solution was 

taken for NMR analysis every hour until the desired monomer conversion was reached.  

The reaction mixture was cooled at 0 oC in an ice bath, diluted with CH2Cl2 (10 mL), and 

passed through basic alumina, and the alumina was washed with methylene chloride (10 
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mL).  The polymer 11 (7.705 g, 80 %) was precipitated into methanol, filtered, and dried 

under vacuum at room temperature for 12 h. 

Polymerization of t-Butyl Methacrylate.  A solution of PMDETA (0.0686 g, 

0.00769 mmol per end group with a 6.4-fold molar excess), t-BMA (5.06 g, 0.0356 mol), 

and 11 (0.346 g, 0.00769 mmol) in anisole (10 mL) were placed in a 25-mL, two-necked, 

round-bottomed flask and deoxygenated by three freeze-pump-thaw cycles under a 

nitrogen atmosphere.  The flask was evacuated and flushed with dry nitrogen three times 

to remove oxygen.  CuCl (0.039 g, 0.394 mmol) and CuCl2 (0.004 g, 10 wt % of CuCl) 

were added to the flask at -70 oC under N2.  The reaction mixture was stirred for 20 min 

until it turned into a green-blue homogeneous solution.  The flask was placed in a 

thermostated oil bath at 90 oC.  For determination of the degree of polymerization with 

targeted ~10 % monomer conversion, a 0.1 mL aliquot of the solution was taken every 30 

min until the desired monomer conversion was measured by 1H NMR.  Catalyst residues 

were removed by passage of the solution through a short column of activated basic 

alumina with CDCl3 (1 mL) prior to NMR analysis.  After 110 min, the remaining 

reaction mixture was passed through basic alumina, and the alumina was washed with 

methylene chloride (5 x 1 mL).  The filtrate was concentrated under reduced pressure by 

rotary evaporation.  The residue was precipitated into methanol and filtered to give a 

green-white solid.  The polymer (0.637 g, 67.8 %) was dried under vacuum at room 

temperature for 12 h.  

Conversion of the Poly(t-butyl methacrylate) Blocks to Poly(methacrylic 

acid).38 In a 100-mL, round-bottomed flask, the block copolymer 3093 (0.860 g, 0.0115 

mmol) was dissolved in methylene chloride (40 mL) and a 25-fold molar excess of TFA 
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(6.84 g, 0.0599 mol) was added slowly with magnetic stirring at room temperature.  The 

mixture was stirred at room temperature for 24 h.  The solvent and CF3COOH were 

removed by rotary evaporation.  The residue was diluted with THF (5 mL) and 

precipitated into hexane (~150 mL) to give an off white solid.  The product 3100 (0.577 g, 

80 %) was filtered and dried under vacuum at room temperature for 10 h.  

Characterization was accomplished using proton NMR in pyridine-d5. 

Polymer 12a.  The polymerization was carried out in a 100-mL Schlenk flask.  

The reagents, PMDETA (0.0393 g, 0.227 mmol), t-BA (23.3 g, 0.183 mol), and 11 (1.184 

g, 0.00355 mmol) in anisole (53.2 mL) were placed in the flask and deoxygenated by 

three freeze-pump-thaw cycles.  CuCl (0.023 g, 0.232 mmol) and CuCl2 (0.004 g, 20 wt 

% of CuCl) were added to the flask at -70 oC under N2.  The reaction mixture was 

immersed in a thermostated oil bath at 110 oC for 102 h.  The remaining reaction mixture 

was cooled to 0 oC and then room temperature and diluted with methylene chloride, the 

reaction mixture was passed through basic alumina, and the alumina was washed with 

methylene chloride, followed by micro-filtration (0.2 μm filter).  The filtrate was 

concentrated under reduced pressure by rotary evaporation.  The residue was precipitated 

into methanol and filtered to give a white solid.  The polymer 12a (1.986 g) was isolated 

by precipitation into methanol, filtered, and dried under vacuum at room temperature for 

12 h. 

Polymer 12b.  The polymerization was carried out in a 100-mL Schlenk flask.  

The reagents, PMDETA (0.0358 g, 0.207 mmol), t-BA (42.3 g, 0.333 mol), and 11 (1.076 

g, 0.00322 mmol) in anisole (49.0 mL) were placed in the flask and deoxygenated by 

three freeze-pump-thaw cycles.  CuCl (0.020 g, 0.202 mmol) and CuCl2 (0.002 g, 10 wt 
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% of CuCl) were added to the flask at -70 oC under N2.  The reaction mixture was 

immersed in a thermostated oil bath at 110 oC for 48 h.  The polymer 12b (2.120 g) was 

isolated by precipitation into methanol, filtered, and dried under vacuum at room 

temperature for 12 h. 

Polymer 12c.  The polymerization was carried out in a-100 mL Schlenk flask.  

The reagents were used for this polymerization: PMDETA (0.0343 g, 0.198 mmol), t-BA 

(81.2 g, 0.638 mol), 11 (0.516 g, 0.0634 mmol) in anisole (46.5 mL), CuCl (0.010 g, 

0.101 mmol), and CuCl2 (0.001 g, 10 wt % of CuCl).  The polymerization was performed 

at 110 oC for 67.5 h.  The polymer 12c (4.745 g) was isolated by precipitation into 

methanol, filtered, and dried under vacuum at room temperature for 12 h. 

Conversion of the Poly(t-butyl acrylate) Blocks to Poly(acrylic acid).38  In a 

25-mL, round-bottomed flask, the block copolymer 12 (0.111 g, 0.000189 mmol) was 

dissolved in methylene chloride (15 mL) and a 25-fold molar excess of TFA (1.79 g, 

0.0157 mole) was added slowly with stirring at room temperature.  The mixture was 

stirred at room temperature for 24 h.  The solvent and CF3COOH were removed by rotary 

evaporation.  The residue was diluted with methylene chloride (3 mL) and precipitated 

into hexane (~50 mL) to give an off-white solid.  The product 13 (0.086 g, >99 %) was 

filtered and dried under vacuum at room temperature for 12 h.  Characterization was 

accomplished using proton NMR in DMF-d7. 

Emulsion Polymerization.39,40 To a 100-mL, three-necked, round-bottomed flask 

equipped with a condenser and a nitrogen inlet and outlet, D8-PS52-PMAA26-Cl (3100) 

(10 mg) in DMF (3 mL) and water (28 mL) were mixed at room temperature.  The pH of 

the emulsion was measured with a pH meter.  With magnetic stirring, SDS (50.0 mg) was 
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added, and 5 min later, styrene (1.0 mL) was added.  Polymerization was achieved under 

a nitrogen atmosphere until the polymerization was completed.  After 1.5 h, aqueous KPS 

stock solution (2.0 mL, 1.50 g of KPS in 100.0 mL of water) and aqueous NaHCO3 (0.5 

mL, 1.00 g of NaHCO3 in 40.0 mL of water) were added.  The mixture was stirred at 

room temperature for 0.5 h and was then placed in a thermostated oil bath at 80 oC.  The 

polymerization was complete after 2 - 3 h.  The emulsion was filtered off through cotton 

to remove some of aggregates.  The pH of the emulsion was measured at room 

temperature. 
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CHAPTER IV 

 

MORPHOLOGY STUDY OF AMPHIPHILIC BLOCK COPOLYMERS BY AFM  

 

Abstract 

 

Several morphologies of spherical and worm-like aggregates were prepared from 

(polypropylene imine) PPI dendritic block copolymers of polystyrene-b-poly(acrylic 

acid) (PS-b-PAA) in dilute solution.  Aggregation was induced by the addition of 

polymer/DMF solutions to water.  The morphology of the aggregates changed from 

spheres to worm-like and then back to spheres as water content increased to less than 75 

% at a concentration of 0.2 (w/v) % block copolymer in DMF.  Regardless of the 

different length of the PAA block with the fixed PS block length, all the aggregates 

showed the morphology reversibility by AFM images as water content was increased in 

DMF/water mixture. 

 

Introduction 

 

Amphiphilic block copolymers are well known to form either micelles or 

aggregates when dissolved in selective solvents, for example, a solvent where only one of 

the blocks is soluble.1  Over the past few decades, amphiphilic block copolymers have 
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attracted various applications.  Their ability to self-assemble and form stable micelles at 

very low polymer concentrations has led to a valuable area of polymer synthesis for 

effective surfactants,2 drug carriers in drug delivery systems,2-6 and templates in 

nanotechnologies.3  

Amphiphilic block copolymers have either a linear or a branched topology.  Block 

copolymers based on polystyrene (PS) and polyacrylic acid (PAA) are one variety of 

amphiphilic system that self-assembles in water. 

The micelles can be formed when only one block of the polymer is soluble. In 

water, the micelles are formed from hydrophilic-hydrophobic diblock copolymer chains, 

where the core is formed by the hydrophobic block and the corona (or shell) by the 

hydrophilic block.  By contrast, aggregates that have a hydrophilic core and a 

hydrophobic corona are formed in organic solvents.  These are called reverse micelles 

(Scheme 1).7,8 
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Scheme 1. Different Types of Micelles 

 

Regular Reverse Dendritic 

 polyacrylic acid dendrimer core polystyrene 

 

 

In regular micelles the micellar size and the aggregation number are independent 

of the polymer concentration and may change as a function of the block copolymer 

compositions.  Most of these micelles are known to be spherical. However, they are 

reported to have other morphologies, such as cylinders, rods, worms, vesicles, hollow 

spheres, or even branched tubules, depending on the sample preparation, the temperature, 

the volume fraction, and the concentration.7,8 

In most spherical block copolymer micelles, the corona blocks are much longer 

than the core blocks.  The spherical micelles are mostly formed because the repulsive 

interactions among the corona chains are strong due to the relatively high density of 
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corona chains on the core surface.  The corona chains in a good solvent extend away 

from a spherical core.7-12  

Corona chain repulsion can balance the core interfacial tension effect, preventing 

an increase in the aggregation number and in the core size.  The interfacial tension 

between the core and corona interface is minimized not only by an increase of the 

intercorona chain repulsion but also by an increase in the chain stretching of the micelle 

core.7-12 

The strength of polymer-solvent interaction influences the morphology of 

aggregates.7,12  The PS-solvent interaction affects the degree of stretching of the PS 

chains, while the PAA-solvent interaction is related to the repulsion among the corona 

chains.  The solvent nature and composition determine the type of the copolymer-solvent 

interactions and affect the degree of swelling of the hydrophobic PS block, as well as the 

degree of ionization of PAA chains.  With the solubility parameters of THF (δ = 18.6 

MPa1/2), DMF (δ = 24.8 MPa1/2), and polystyrene (δ = 16.6-20.2 MPa1/2), the degree of 

swelling of the PS chains is expected to be greater in THF than in DMF.  On the other 

hand, to increase the strength of the PAA-solvent interaction, polar solvent should be 

considered.  The dielectric constant of DMF (є = 38.2) is higher than that of THF (є = 

7.5).  Therefore, the strength of solvation of PAA by DMF should be stronger than that 

between PAA and THF.  All these factors should be considered to understand the effect 

of the solvent on the morphology of the dendritic block copolymers.7,12 

In general, aggregates are prepared from polystyrene-b-poly(acrylic acid) (PS-b-

PAA) by addition of water to a solution of the polymer in a common solvent, such as 

DMF, for both PS and PAA blocks.  Subsequently, the PS blocks start to associate to 
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form the micelles.  In the early stage of micellization, the PS cores of the aggregates are 

generally highly swollen by DMF.  The amount of the common solvent, DMF, in the PS 

gradually decreases due to transfer of DMF from the micelle to the water phase.  Next, 

the concentration of linear polymers decreases and the solvent for the PS blocks is 

replaced.  As a result, micelle core reduces the mobility of the chains.  The structures of 

the aggregates become kinetically locked at some point in the water content range in the 

late stage of micellization.7,8,12,13 

Thermodynamics and kinetics of micellization are important for the formation of 

the aggregates.  When water content of the solvent mixture is relatively low, the 

morphology of the aggregates is mainly controlled by the thermodynamics.  The 

thermodynamics of the micellization involves a force balance relating the repulsive 

interactions of the corona chains, the interfacial energy of the core/shell region, and the 

deformation of the PS blocks in the core.10,14  

Kinetic aspects become very important with increasing water content.  Two 

possible mechanisms such as chain insertion/expulsion (Scheme 2a) and micellar 

merger/splitting (Scheme 2b) have been suggested for the morphological transitions for 

the chain exchange of linear block copolymers between spherical micelles.10,14-16 
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Scheme 2. Possible Mechanisms for the Morphological Transition  
          from Spheres to Rods.14 
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The first mechanism (Scheme 2a) involves a continuous insertion of single linear 

polymer chains into spherical micelles.  The chain insertion increases the aggregation 

number as well as core dimension.  Eventually the micelles change the structure from 

spheres to rod-like when the core diameter of the spherical micelles has reached some 

critical value.10,14-16  Another possible mechanism (Scheme 2b) involves adhesive 

collisions of small spherical micelles which increase the aggregation number and form 

larger spherical micelles.  Again, at some point, the morphology changes to rod-like. For 

both mechanisms, once the morphological transition occurs, further chain insertion or 

adhesive micelle collisions leads to an increase in the length of rod-like micelles.10,14 

The kinetics of growth of aggregates via the insertion mechanism (Scheme 2a) 

depend on the polymer concentration as well as the mobility of the chains in and out of 

the micelles.  Both the polymer concentration and the solvent content in the core decrease 

as the water content in the solvent mixture increases.  The mobility of polymer chains 

seems to decrease significantly as the water content increases.  Therefore, when the water 
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content is relatively low, the kinetics via the insertion mechanism (Scheme 2a) can be 

very fast because of the relatively high polymer concentration and the high mobility of 

the chains due to high solvent content in the core.  At higher water contents, because of 

the lower polymer concentration and less chain mobility when there is low solvent 

content in the core, the kinetics of the insertion mechanism can become very slow.10,14-16 

The kinetics of conversion of spherical micelles to rodlike micelles via the 

adhesive collision mechanism (Scheme 2b) depends on not only the mobility of chains 

for the structural rearrangement but also on the rate of adhesive collisions.  Even if the 

chain mobility for the structural rearrangement of the micelles is reasonably high, it is 

possible that the efficiency of adhesive collision of the micelles is low.  The low 

efficiency is a result of the strong interactions between the PAA and the solvent 

molecules, the partial ionization of the PAA blocks, and the resulting strong repulsion 

among the particles.  Therefore, it can be expected that the efficiency of the adhesive 

collisions could be increased by reducing the charge density of the PAA and the repulsion 

between particles.10,14  These transitions of rods to spheres depend mainly on the mobility 

of the chains to achieve a structure fission but do not involve the effective collision 

problem (Scheme 2). 

The purpose of this research project is to study how the structures of dendritic 

block copolymers in selective solvents affect their micellar organization.  In this study, 

atomic force microscopy (AFM) was used to characterize the evolution of the 

geometrical parameters, for example, the size and shape, of the micelles in the solid-state 

by AFM by evaporating the solvent.  The effect of composition of the block copolymers 

on the morphology was also investigated. 
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In this chapter, the detailed study of the effect of the common solvent on the 

morphology of the diblock copolymers of polystyrene-b-poly(acrylic acid) on a 

dendrimer core is reported.  In particular, the relationship between the degree of 

micellization and the nature of the common solvent, as well as the dependence of the 

aggregate structure on the compositions of the common solvent mixtures, are reported.  

 

Results and Discussion 

 

The formation of aggregates was studied as a function of water content for 0.2 

(w/v) % solutions of PS48-b-PAA104-Cl (12a), PS48-b-PAA215-Cl (12b), and PS48-b-

PAA445-Cl (12c) on a dendrimer core in DMF, prepared with the solution at pH 10 

adjusted by the addition of ca. 0.1 M NaOH (pH ~13).  DMF is a good solvent for both 

PS and PAA blocks but water is good only for the PAA blocks.  The morphogenic effect 

of the solvent on the aggregates of polystyrene-b-poly(t-butyl acrylate) (D64-PS-b-PtBA-

Cl) and polystyrene-b-poly(acrylic acid) (D64-PS-b-PAA-Cl) diblock copolymers on a 

dendrimer core was also studied by AFM.   

AFM samples were prepared by spin coating the solutions of the polymers onto 

freshly cleaved mica.  AFM images were acquired by operating in tapping mode with a 

silicon cantilever under ambient conditions.   
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Morphogenic Effects of Solvent on D64-pS-b-pAA-Cl Aggregates. The 

formation of aggregates is controlled by three factors.  The three factors are the stretching 

or deformation of the hydrophobic chains in the aggregates core, the surface tension 

between the core and the solvent outside of the core, and the intercorona-chain 

interactions.  

DMF and THF are well known good solvents for the PS blocks of PS-b-PtBA and 

PS-b-PAA copolymers.  As for these specific dendritic PS-b-PtBA-Cl and PS-b-PAA-Cl 

copolymers, DMF is good for PAA blocks but THF is poor for PAA blocks.  For the 

morphology of the aggregates of the dendritic PS-b-PtBA-Cl, DMF and THF were 

chosen as the common solvents.   

Table 1 reports the relationship between the morphology of dendritic PS-Cl and 

PS-b-PtBA-Cl aggregates and the nature of the common solvent for the different PAA 

compositions.  Spherical morphology was prevalent by the dendritic PS-PtBA polymers 

in both THF and DMF as shown in Table 1, regardless of PAA content increasing.  

 

Table 1. Aggregate Morphologies of 0.2 (w/v) % of D64-PS-Cl and D64-PS-b-PtBA-

Cl in THF and DMF. 

 
 

polymer 
 

structure 
 

PS content 
(mol %) 

 
PAA content 

(mol %) 

 
THF/DMF 

 
11 

 
D64-PS48-Cl 

 
100 

 
0 

 
sphere 

 
12a 

 
D64-PS48-b-PtBA104-Cl 

 
31.6 

 
68.4 

 
sphere 

 
12b 

 
D64-PS48-b-PtBA215-Cl 

 
18.3 

 
81.7 

 
sphere 

 
12c 

 
D64-PS48-b-PtBA445-Cl 

 
9.7 

 
90.3 

 
sphere 
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Dendritic PS-Cl. Spherical morphologies were obtained in both THF and DMF. 

Isolated aggregates with a spherical shape and monodisperse sizes were observed at a 

concentration of 0.2 (w/v) % block copolymer in THF (Figure 1).  

However, the AFM image from DMF (not shown here) has very dense and 

circular surface aggregates with polydisperse sizes.  Aggregates on local formation look 

to be formed multiple layers on the mica, which might be indicative of the non-uniform 

aggregation.  As increasing in the polymer concentration, for example, 0.01 (w/v) %, 

0.05 (w/v) %, and 0.2 (w/v) % in DMF, the aggregation number increases.  For the 

moment that it takes to add DMF to water, the dendrimer molecules may flow and 

aggregate by a diffusion limited coalescence mechanism.17  In contrast to DMF solutions, 

THF may evaporate too fast for the dendrimer aggregates to coalesce during spin coating. 

Aggregates of the PS were investigated by dynamic light scattering.  In pure DMF 

average sphere diameters of ~15 nm were measured for the intended D64-PS-PAA (0.1 

mg/mL) material.  A small amount of high molecular weight materials appeared as 

aggregates in the 60-400 nm range.  Those aggregates could be bimodal or trimodal 

distributions which were observed with a peak in the intensity vs. diameter graphs. 
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(a) 

                      

 

(b) 

 

 

Figure 1. (a) AFM images of aggregates made by spin coating of the block copolymer 
(0.2 w/v) %  in pS48-Cl (11) in THF; (b) Section analysis. 
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Dendritic PS-b-PtBA-Cl. For all of the PS-b-PtBA-Cl block copolymers, 

isolated spherical aggregates with polydisperse sizes were observed at a concentration of 

0.2 (w/v) % block copolymer in THF (Figures 2, 3, and 4).  The increase in electrostatic 

repulsion may explain the formation of smaller aggregates in THF. 

Regardless of the PtBA content, the aggregates prepared from THF showed only 

circular images.  Like dendritic PS-Cl, the aggregates prepared from all the PS-b-PtBA-

Cl block copolymers have the same elliptical streaked images from a 0.2 (w/v) % block 

copolymer in DMF (Figures 2, 3, and 4).  

During the sample preparation for both dendritic PS-Cl and PS-b-PtBA-Cl, the PS 

chains are swollen with either DMF or THF.  Over time during evaporation the solvent 

will remain either in the PS chains or in the PAA chains longer.  THF has higher vapor 

pressure and lower viscosity than DMF.  Due to slower evaporation, DMF may allow 

aggregates to spread out and move around on the mica surface.  The aggregates end up 

densely packed into streaked aggregates in DMF.  On the other hand in THF, aggregates 

may shrink and create more isolated spherical aggregates forming craters (Figure 3a and 

c) or disks (Figure 4a).  
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(a)                                                            (b) 

           
(c) 

   
 
(d) 

 
Figure 2. AFM images (height) of aggregates made by dissolution of the block 
copolymer (0.2 w/v %): (a) pS48-b-ptBA104-Cl (12a) in THF, (b) 12a in DMF, (c) section 
analysis of 12a in THF, (d) surface view of 12a in DMF. 
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(a)                      (b) 

              
 

(c) 

      
 

Figure 3. AFM height images of aggregates made by dissolution of the block copolymer 
(0.2 v/w %): (a) pS48-b-ptBA215-Cl (12b) in THF, (b) 12b in DMF, (c) section analysis of 
12b in THF. 
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(a)                                                        (b) 

        

 

Figure 4. (a) AFM height image of aggregates made by dissolution of the block 
copolymer pS48-b-ptBA445-Cl (12c) (0.2 v/w %) in THF and (b) section analysis of 12c in 
THF. 
 

 

Aggregation of the Copolymers in DMF/Water Mixtures.  Since water is a 

good solvent only for the PAA chains, the PS blocks start to aggregate when water is 

added.  The interactions between the hydrophobic PS chain and the solvent mixture 

become less favorable and cause the aggregate to become less mobile when water is 

added to the block copolymer dissolved in DMF.  The PAA chains are deprotonated and 

negatively charged in aqueous NaOH solution.  As a result, there is stronger electrostatic 

repulsion among its chains.  In the presence of electrostatic repulsion among the 

hydrophilic chains, higher water concentrations result in the aggregation of the chains 

and the formation of stable aggregates.  
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Dendritic PS-b-PAA-Cl.  Since DMF is the only common solvent for both 

blocks of the dendritic PS-b-PAA-Cl polymers, DMF/water mixtures were prepared to 

explore the influence of water content on the aggregate morphology.  An increase of 

water into the DMF solution makes the solvent poor for the PS blocks.  In particular, the 

chain mobility of the PS is influenced by the water content that plays an important role in 

the course of micellization.  Table 2 reports the spheres and worm-like shapes that were 

obtained in DMF/water mixtures over the range of PAA block lengths studied.  

 

 

Table 2. Images of D64-PS-b-PAA-Cl, Polymers Spin-coated from a 0.2 (w/v) % 

DMF/Water Mixture at pH 10 

 
DMF/Water mixture  

polymer 
2 % 

DMF 
10 % 
DMF 

25%  
DMF 

50 %  
DMF 

100 % 
DMF 

 
D64-PS48-b-PAA104-Cl 

 
- 

 
- 

 
sphere 

 
worm-like 

 
worm-like 

 
D64-PS48-b-PAA215-Cl 

 
sphere 

 
sphere 

 
worm-like 

 
sphere 

 
sphere 

 
D64-PS48-b-PAA445-Cl 

 
- 

 
- 

 
sphere 

 
worm-like 

 
sphere 
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  (a)                                                              (b) 

          
 

  (c) 

 
Figure 5. AFM height images of aggregates made from the block copolymer (0.2 (w/v) 
%): (a) pS48-b-pAA104-Cl (12a) in 25 % DMF, (b) 12a in 50 % DMF, (c) 12a in 100 % 
DMF. 

 

 

For D64-PS48-b-PAA104-Cl (12a) individual aggregates were formed in a 25 

(w/w) % DMF (Figure 5a).  As the water content is increased to 50 wt %, as shown in 

Figure 5b, a new morphology started to develop.  Both short and long worm-like (or 
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cylinder) aggregates were found to coexist along with spherical aggregates on the mica 

surface.  These worm-like aggregates seem to be formed by the intermicellar assembly of 

the individual spherical aggregates.  At 100 % DMF, short worm-like aggregates were 

found to not only be more densely packed but also coexist with spherical aggregates as 

the concentration of the polymer was increased (Figure 5c). 

In the case of D64-PS48-b-PAA215-Cl (12b), both spherical and worm-like 

morphologies were observed over the range of water content at 2, 10, 25, 50, and 100 % 

DMF (Figure 6).  At 2 % DMF, individual spherical aggregates appeared monodisperse 

from the dilute solution (Figure 6a).  Meanwhile, the spherical aggregates obtained were 

also monodisperse and well isolated on the surface at 10 % DMF (Figures 6b-d).  A 

morphological transition from spheres to worm-like aggregates occurred as the water 

content decreased from 10 % DMF (Figures 6b-d) to 25 % DMF (Figure 6e).  The 

combination of the aggregates having the straight, curved, short, and long aggregates was 

observed at 25 % DMF.  These aggregates might indicate that aggregation of spherical 

aggregates takes place on the mica surface at this specific condition on drying (Figure 

6e).  As water content decreased from 25 % DMF to 50 % DMF (Figure 6f), the 

morphology was again changed from worm-like to spherical aggregates.  The spherical 

aggregates are somewhat monodisperse.  Some clusters were formed and coexisted with 

the spherical aggregates.  These clusters might be formed by self-assembly of the 

spherical aggregates.  Spheres and clusters were seen and were rather polydisperse at 100 

% DMF (Figures 6g and 6h).  As concentration of the polymer increases, more clusters 

seem to be formed in 100 % DMF. 
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(a) 2 % DMF                                         (b) 10 % DMF 

                     
(c) 10 % DMF 
 

              
    

                                   (d) 10 % DMF 
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(e)  Height Image (25 % DMF)                    Phase Image (25 % DMF) 

                

(f) Height Image (50 % DMF)                      Phase Image (50 % DMF) 
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(g) Height Image (100 % DMF)                    Phase Image (100 % DMF) 

               

                             (h) (100 % DMF) 

                              

Figure 6. AFM images of aggregates made by spin-coating of the block copolymer (0.2 
(w/v)%) in aqueous NaOH at pH~10: (a) height and phase images of pS48-b-pAA215-Cl 
(12b) in 2 % DMF, (b) 12b in 10 % DMF, (c) section analysis of 12b in 10 % DMF, (d) 
surface view of 12b in 10 % DMF, (e) height and phase images of 12b in 25 % DMF, (f) 
height and phase images of 12b in 50 % DMF, (g) height and phase images of 12b in 100 
% DMF, (h) surface view of 12b in 100 % DMF. 
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(a) Height Image (25 % DMF) 

     
 
(b) Height Image (50 % DMF)                   Phase Image (50 % DMF) 

            
 
(c) Height Image (100 % DMF)                 Phase Image (100% DMF) 

            
Figure 7. AFM images of aggregates made by spin-coating of the block copolymer pS48-
b-pAA445-Cl (12c) (0.2 (w/v)%): (a) height image of 12c in 25 % DMF, (b) height and 
phase images of 12c in 50 % DMF, (c) height and phase images of 12c in 100 % DMF. 
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As for D64-PS48-b-PAA445-Cl (12c), a transition was observed from spherical to 

worm-like to spherical as the DMF content increased from 25 % DMF to 50 % DMF to 

100 % DMF (Figure 7).  At 25 % DMF, spherical aggregates were well isolated and 

monodispersed (Figure 7a).  However, short worm-like aggregates were seen with 

spherical ones as DMF content increased in 50 % DMF solution (Figure 7b).  Worm-like 

aggregates were back to form spherical ones but more and more densely packed on the 

surface as concentration of the polymer increased in 100 % DMF solution (Figure 7c).  

The morphologies of the dendritic PS-b-PAA-Cl aggregates in DMF only show spherical 

aggregates that seem packed densely and are hardly seen in isolated particles on the 

surface in general.  However, there are both spherical and worm-like aggregates as water 

content increases gradually.  

The morphological reversibility was achieved by water addition method.  The 

modified water addition method used for this study was to add the block copolymers in 

DMF slowly into the basic aqueous solution.  In general, the conventional water method 

is to add water into the polymer solution gradually.  Therefore, by selecting the 

appropriate solvent, one can prepare aggregates whose size or morphology is tunable by, 

or resistant to, changes in the water concentration.  All of the aggregate structures are 

formed under conditions of kinetic control. 
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Conclusions 

 

Spin coating of solution of PS-b-PAA block copolymers onto mica produced 

spherical and worm-like aggregates in AFM images.  These AFM images show that the 

materials have aggregation characteristics of amphiphilic PS-PAA linear block 

copolymers.   

From THF solutions the PS48 and the PS48-PtBA104, THF evaporated faster and 

the polymers hardened before the polymers had time to spread to a thinner layer during 

spin coating.  The same polymers spin coated from DMF left streaked images, indicating 

that the polymer spread out to a thinner layer as the DMF evaporated slower.   

The transition between spherical and worm-like aggregates is the greatest 

morphological change seen in the dendritic PS-b-PAA-Cl polymers as DMF/water 

content is varied.  When water content is less than 75 %, the morphological transitions 

are reversible from sphere to worm-like to sphere.  It indicates regardless of PAA block 

lengths that the kinetics of aggregate formation is fast and the formation of aggregates is 

controlled by thermodynamics of micellization.   

 

Future Work 

 

By maintaining the shorter hydrophilic blocks, an increase in the hydrophobic 

block length of the dendritic polystyrene-b-poly(acrylic acid) should be further studied 

for the detailed effect of the common solvent on the morphology of the block 

copolymers.  Shorter hydrophobic (PS) blocks and longer hydrophilic (PAA) blocks are 

also possibly considered.  Longer hydrophilic blocks with shorter hydrophobic blocks 
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with dendritic block copolymers could be much better dispersed in the aqueous solution.  

In particular, the relationship between the degree of aggregation and the nature of the 

common solvent as well as the dependence of the aggregate structure on the compositions 

of the common solvents should be studied.  The further study would allow application to 

the synthesis of the polymer colloids 10-100 nm in diameter that are monodisperse.  The 

amphiphilic poly(styrene-b-methacrylic acid) with a dendrimer core could possibly form 

unimolecular micelles dispersed in aqueous DMF solution.  It is important to know what 

the optimum PS and PAA block lengths of the polymer colloids should be for 

amphiphilic unimolecular aggregates onto a dendrimer core 

Furthermore, the effect of the array of different block lengths in both PS and PAA 

block on aggregate size and aggregate morphology could be determined.  Therefore, one 

could prepare aggregates on a dendrimer core, whose size is tunable by changes in the 

water concentration. 

 

Experimental Section 

 

Sample preparation.6,11,18 A 2 wt % solution of each diblock copolymer was 

prepared in DMF, which is a common solvent for both polystyrene (PS) and poly(acrylic 

acid)(PAA) blocks. 

Subsequent addition of the polymer/DMF solutions to a basic solution (pH ~10) 

adjusted by the addition of ca. 0.1 M NaOH (pH ~13), i.e. polymer/DMF to basic water, 

at a rate of 1 drop every ~5 s with vigorous stirring induced aggregation of the PS blocks.  
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The addition to water was continued until the desired concentration had been reached: 2, 

10, 25, 50, and 100 wt % DMF, respectively.  

AFM Experiments.6,19,20 Samples for AFM analysis were prepared by solvent 

spin coating at room temperature, starting from a solution of 0.1 to 2 mg of dendritic 

polymer (PS-PAA) in 1 mL of THF or DMF.  The freshly cleaved mica was rinsed with 

deionized water and dried under a stream of nitrogen gas.  Typically, 2 drops of the 

solution were applied on a 1 x 1 cm2 piece of the mica.  The mica was then spun for 120 

sec at a rate of ~1.8 x 103 rpm to spread the solution out evenly on the surface of the 

mica.  Samples were analyzed after complete evaporation of solvent at room temperature.  

The AFM microscope was operated in tapping mode (TM), a procedure that is known to 

minimize the sample distortion due to mechanical interactions between the AFM tip and 

the surface.  All TM-AFM images were recorded in ambient atmosphere at room 

temperature with a Nanoscope IIIa (Veeco, Santa Barbara, CA).  The probes are 

commercially available silicon tips with a spring constant of 24-52 N/m, a resonance 

frequency in the 264-339 kHz range, and a typical radius of curvature of 10-15 nm.  
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CHAPTER V 

 

Concluding Remarks 

 

A variety of amphiphilic dendritic molecules have been made using 

poly(propylene imine) dendrimers (PPI) DAB-dendr-(NH2)n (n = 8, 32, and 64).  These 

molecules have shown a variety of functionalities at the ends of the dendritic spheres 

which have allowed for dispersion and determination of the structure of nanomaterials. 

Hydrophilic amide dendrimers were synthesized with three different PPI 

dendrimer generations (G2, G4, and G5) for NMR self-diffusion measurements.  Three 

hydrophilic amide dendrimers show that the self-diffusion coefficients of the dendrimers 

in aqueous gels of poly(vinyl alcohol) decrease with increasing molecular size of the 

diffusant, as PVA concentration increases, and as temperature decreases.  In NMR 

relaxation time measurements, the terminal protons are more mobile than the core 

protons for all the generations of the dendrimers.  The mobility for all protons is also 

slower as dendrimer generation gets larger.  

Deuterated tertiary amine dendrimers with hydrophobic chains on every end were 

synthesized by reductive amination of primary amine PPI dendrimers with NaBD4 in 

CD3COOD.  This method allows for the reductive ethylation in a one pot reaction.  The 
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synthesis of these dendrimers was an efficient method to complete conversion to tertiary 

amine dendrimers.  

Atom transfer radical polymerization (ATRP) allowed for the synthesis of the 

monodisperse branched polystyrene with chain lengths of ~50 repeat units from dendrimer 

chain ends.  Amphiphilic poly(styrene-b-acrylic acid) with a dendrimer core was 

synthesized by block copolymerization of styrene and tert-butyl acrylate by ATRP 

followed by hydrolysis of the tert-butyl esters to carboxylic acids.   

Amphiphilic poly(styrene-b-acrylic acid) with a dendrimer core was synthesized 

for use as a template for small and monodisperse styrene latexes during the seed growth 

emulsion polymerization.  Semi-continuous and surfactant-free emulsion polymerization 

of styrene with PS-PMAA-shelled dendrimer G2, initiated by KPS, produced particles 

with diameters of more than 100 nm.  More polydisperse latexes with diameters of 45-55 

nm were produced when SDS was present.  The study of the relation between ionization 

and aggregation properties at variable pH showed that the branched amphiphlic PS-

PMAA and PS-PAA-shelled dendrimers had aggregation characteristics of amphiphilic 

polystyrene-polyacrylic acid block copolymers. 

Amphiphilic poly(styrene-b-acrylic acid) formed aggregates in DMF/water 

mixtures.  AFM images showed reversible morphological transitions from spherical to 

worm-like to spherical when water content was less than 75 %. 
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block copolymers were stars with small numbers of branches resulting from growth at 
a small number of initiator sites per dendrimer.  Styrene was polymerized in 
emulsions containing the dendritic PS-PAA.  The resulting polystyrene latexes were 
broader in particle size distribution and 40-60 nm in diameter in the presence of the 
surfactant sodium dodecyl sulfate (SDS), however, narrower in particle size 
distribution and over 100 nm in diameter in the absence of SDS.  Branched dendritic 
aggregates of the PS-PAA showed aggregation characteristics of amphiphilic PS-
PAA block copolymers.   
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