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PREFACE 
 

 The Centers for Disease Control and Prevention (CDCP) has identified heart 

diseases, cancer, stroke (cerebrovascular diseases), alzheimer’s, and diabetes as the major 

causes of deaths in the United States for 2007. It has been believed that such diseases are 

known to be caused by major risk factors including cholesterol and polyunsaturated fatty 

acids (PUFAs).  With the emergence of such major risk factors, scientists are coming up 

with detection methods to efficiently identify and quantify such analytes in various types 

of biological media, including human serum. Current methodologies of identifying 

cholesterol and PUFAs in various types of biological media constitute techniques such as 

gas chromatography (GC) which requires significant time in order to carry out the 

analysis. This study is aimed in completing the analysis of the seven most abundant lipids 

in human serum using chemometric algorithms and consequent validation with gas 

chromatography-mass spectrometry (GC-MS). An extension of the development and 

application of the assay to different types of biological media including vegetable oils 

was also done. The results of these studies were published in the journals mentioned in 

this dissertation. As part of unpublished results, pattern recognition was also performed 

that allowed the discrimination of the various food samples from one another. The last 

part of this study is aimed in the inclusion of a monounsaturated fatty acid oleic acid in 

human serum as well as the spiking of human serum samples to build a new calibration 

model. Throughout the course of the study, a variety of chemometric algorithms were 

applied for the simultaneous determination of cholesterol and 
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polyunsaturated/monounsaturated fatty acids (PUFA/MUFA) in various biological 
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CHAPTER 1 

 

 INTRODUCTION 

 

Part of this chapter has been published in the Journal of Biotech Research, the 

Lecture Notes in Engineering and Computer Science, and the Lipid Technology Journal 

and appears in this dissertation with the journals’ permission.1-4 

In the modern era, biomedical research plays a very critical role in human health. 

Within the biomedical research area, scientists are searching for new biomarkers that 

would serve to identify the causes of obesity, coronary heart disease, diabetes, 

hypercholesterolemia, and cancer among others. The Centers for Disease Control and 

Prevention (CDCP) reported that the diseases of the heart, cancer, stroke, Alzheimer’s 

disease, and diabetes are among the top leading causes of deaths in the US for 2007.5 The 

above mentioned diseases are all high risk conditions that are top priority in research 

laboratories. Cholesterol and polyunsaturated fatty acids (PUFAs) are among the 

biomarkers associated with the previously mentioned diseases.  

 The role of cholesterol and lipids in atherosclerosis has been studied for decades, 

and many of the cellular and molecular mechanisms have been worked out in 

considerable detail.6 Across cultures, cholesterol is linearly related to coronary heart 
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disease (CHD) mortality, and the relative increase in CHD mortality rates with a given 

cholesterol increase is the same.7 PUFAs in the diet, on the other hand, have long been 

considered essential to the growth and proper nutrition of humans and animals. On the 

contrary, they have also exhibited negative effects.8 PUFAs exist in two major kinds, the 

ω-6 and the ω-3 forms. The ω-6 fatty acid esters such as the linoleic, conjugated linoleic, 

and arachidonic acids are known to enhance formation of cholesterol gallstones, a 

stimulus to carcinogenesis, increased vitamin E requirements, promotion of obesity, 

increased uptake of plant sterols, and increased cholesterol absorption.8-10 The ω-3 esters 

of the fatty acids such as α-linolenic, eicosapentaenoic acid (EPA), and docosahexaenoic 

acid (DHA), on the other hand, have effects on diverse physiological processes impacting 

normal health and chronic disease, such as the regulation of plasma lipid levels, 

cardiovascular and immune function, insulin action, and neuronal development and visual 

function.11-21 Several studies have already shown the dietary effects of ω-3 and ω-6 fatty 

acids. A study by Cave showed that diets containing high levels of the ω-6 PUFAs have 

routinely enhanced tumorigenesis in lipid sensitive carcinogen-induced and tumor 

transplant tumor models, whereas diets with equivalent levels of ω-3 PUFAs have 

diminished tumorigenesis.22 

 The -6/-3 ratio is an important indicator of human health. There is evidence 

that a 4:1 ratio is required for maximum benefit for cardiovascular disease and less than 

2:1 to have any effect on cancer.23 Genetically speaking, human beings today live in a 

nutritional environment wherein major changes in our diet have taken place, particularly 

in the type and the amount of essential fatty acids and in the antioxidant content of 

foods.24-28 Comparing the hunter-gatherer with the western diet and lifestyle, the ω-6 to 
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ω-3 ratio has shifted considerably from low to high.26 Excessive amounts of ω-6 PUFA 

and a very high ω -6/ω -3 ratio, as is found in today’s Western diets, promote the 

pathogenesis of many diseases, including cardiovascular disease, cancer, and 

inflammatory and autoimmune diseases, whereas increased levels of ω -3 PUFA (a lower 

ω -6/ ω -3 ratio), exert suppressive effects.29 

Several methods now exist for the determination of cholesterol and PUFAs levels 

in human serum. Current methods of quantifying cholesterol and PUFAs in human serum 

are done separately from each other. For cholesterol, several methods exist for 

quantifying the analyte in human serum, which are mostly based on enzymatic tests. 

Since the introduction of enzymatic assays for total cholesterol in serum (i.e., the sum of 

free and fatty-acid-esterifled cholesterol) nearly about four decades ago, the methods 

have largely replaced the more laborious, interference susceptible, and less-specific 

routine nonenyzmatic methods.30, 31 For PUFAs, on the other hand, gas chromatography 

(GC), thin layer chromatography (TLC), and high performance liquid chromatography 

(HPLC) are the methods commonly used for quantifying such analytes in human serum.32 

However, these methods are complicated, quite laborious, and suffer from the difficulty 

of obtaining meaningful concentrations. 

The Purdie Assay was established to enable the simultaneous quantification of 

cholesterol and PUFAs in synthetic mixtures and human serum without the need for 

analytical separations.2 The experimental method is accomplished in less than twenty 

minutes without the need for sophisticated analytical instrumentations like GC or HPLC. 

The assay originated with the Liebermann-Burchard reaction that was once the current 

gold standard for cholesterol and was later based upon a reaction attributed to Chugaev 
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and Gastev. The assay reagent had the extra selectivity of acylation of the - over the ß- 

position at the C-17 carbon that enabled the differentiation of anabolic steroids. In that 

and a following study, it was also determined that if multiple unsaturated lipids were 

present, the resulting compounded spectrum was the simple addition of the weighted 

spectra for each of the components, assuming no extraneous interferences were present.33 

The ultimate goal of this research project was to develop a simple, direct 

alternative method for the simultaneous quantitative determination of cholesterol and 

PUFAs (linoleic acid (LA), linolenic acid (LNA), arachidonic acid (AA), 

eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and conjugated linoleic acid 

(CLA)) in human serum by exploitation of various chemometric algorithms and 

consequent validation with the gas chromatography-mass spectrometry (GC-MS) 

method. An inclusion of oleic acid (OA), in addition to the above-mentioned analytes, 

was also performed. In this study, the performance of the various chemometric 

algorithms in all seven and eight components was compared. The study started with 

multiple linear regression techniques [K-matrix (KM), P-matrix (PM), ridge regression 

(RR), K-matrix ordinary least squares (OLS), and K-matrix non-negative least squares 

(NNLS)] and is extended to factor-based techniques (Principal component regression 

(PCR) and partial least squares (PLS1 and PLS2)) and finally to artificial neural network 

(ANN). Previous study has compared the performance of some of the above mentioned 

algorithms in four components. In this dissertation, the performance of the above 

mentioned algorithms is compared with as much as eight components present in human 

serum. In addition, GC-MS validation is also performed to determine the best algorithm 

that would be suited for a typical clinical analysis. In addition, extensions of the 
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application of the assay to various types of samples, including vegetable oils and various 

food and biological samples, were also done.  

For vegetable oil samples, an independent study was done with the objective of 

simultaneously quantitating oleic, linoleic, and linolenic fatty acids in vegetable oil 

samples using the Purdie Assay. HPLC, GC, or hyphenated methods such as HPLC/MS, 

and GC/MS are classical methods of determining the fatty acid composition and levels in 

vegetable oils.34, 35 For the determination of the fatty acid composition, the 

triacylglycerols (TAGs) are transesterified to give the methyl esters prior to analysis 

because the esters are less polar than the corresponding fatty acids, and, thus, are more 

compatible with the various chromatographic systems.36 Though these procedures have 

been successfully used in various chemical analyses, they, however, do suffer from the 

disadvantages of being time, labor, and resources consuming. In this study, various 

chemometric algorithms consisting of KM, NN, PCR, PLS1, and PLS2 were utilized for 

the deconvolution of the spectrophotometric data using the Purdie Assay. The most 

robust chemometric models were then compared against each and their regression 

coefficients applied for the molar concentration determination of oleic, linoleic, and 

linolenic fatty acids in olive and sunflower oil samples. The obtained concentrations were 

then validated with the existing United States Department of Agriculture (USDA) 

database concentrations.37 

In addition to the above mentioned researches, pattern recognition was also 

performed in the above-mentioned samples to determine the discrimination capability of 

the Purdie Assay.
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CHAPTER 2 

 

POLYUNSATURATED FATTY ACIDS AND CHOLESTEROL  

2.1 CHOLESTEROL 

2.1.1 STRUCTURE  

Cholesterol is a soft, waxy substance found among the lipids (fats) in the 

bloodstream and in all our body’s cells. It’s an important part of a healthy body because 

it’s used to form cell membranes, some hormones, vitamin D, and bile acids and is 

needed for other functions.38 Because of its hydrocarbon content (Figure 1 illustrates the 

chemical structure), cholesterol is not soluble in water.  

 

Figure 1. The chemical structures of cholesterol in 2D (left) and 3D.



7 
 

The exact empirical formula of cholesterol was accurately established in 1888 by 

Austrian botanist Friedrich Reinitzer, who worked at the Imperial Institute of Plant 

Physiology at the German University in Prague. Interested in the biologic roles of 

cholesterol in plants, Reinitzer initially studied cholesterol isolated from the carrot root. 

However, its cholesterol content was so minute that Reinitzer resorted to purchasing 

cholesterol from a factory. After purifying the sample by treatment with alcoholic sodium 

hydroxide, Reinitzer treated cholesterol with bromine and obtained a compound that 

“precipitates out as splendid crystals.” Using a rudimentary but a reliable method called 

elemental analysis involving combustion of the compound and then analysis of the 

carbon and hydrogen contents, he deduced the precise molecular formula. In his 

publication in the prestigious chemistry journal Monatshefte fur Chemie (Chemical 

Monthly) in 1888, Reinitzer was very confident: “The formula of cholesterol must read 

C27 H46 O.39 It has a molecular mass of 386.5 g/mol. 

2.1.2 FUNCTIONS 

 Cholesterol has many vital functions in our body. In membrane function, it forms 

part of each cell in the body. Because it is hard fat, it gives the membrane rigidity and 

stability. Cholesterol is also important in the synthesis of steroid hormones estrogen, 

progesterone, and testosterones, as well as in the synthesis of adrenal hormones like 

aldosterone which regulates water and sodium balance in our body, and cortisol which 

regulates metabolism, suppresses inflammation, and is produced in response to stress. 

When we are under chronic stress, our bodies produce a great deal of cholesterol.40 In 

general, steroids derived from cholesterol in animals include five families of hormones 

(the androgens, estrogens, progestins, glucocorticoids, and mineralocorticoids) and bile 
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acids (Figure 2). Androgens, such as testosterone and estrogens such as estradiol, mediate 

the development of sexual characteristics and sexual functions in animals. The progestins 

such as progesterone participate in control of the menstrual cycle and pregnancy. 

Glucocorticoids (cortisol, for example) participate in the control of carbohydrate, protein, 

and lipid metabolism, whereas mineralocorticoids regulate salt (Na+, K+, Cl- Na+) 

balances in tissues. The bile acids (including cholic and deoxycholic acid) are detergent 

molecules secreted in bile from the gallbladder that assist in the absorption of dietary 

lipids in the intestine.41 

 

Figure 2. The structures of several important sterols derived from cholesterol.  
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About 80% of the cholesterol in the body is used by the liver to produce bile salts. 

Bile is stored in the gallbladder and is used to help in the digestion and absorption of 

dietary fats and fat soluble vitamins. This is the major route of exit of cholesterol from 

the body. Bile is secreted into the intestines and leaves the body in bowel movements.40  

 Cholesterol is also important in vitamin D synthesis. The sunlight hitting the 

human skin converts cholesterol into vitamin D, which is needed to keep the bones 

strong. Vitamin D (Figure 3) has other important functions in the body like boosting the 

immune system and helping keep the blood pressure normal. Getting a bit of sunlight on 

our skin most days of the week can help lower the cholesterol level by facilitating its 

conversion to vitamin D.40 

HO
Vitamin D2 (ergocalciferol)

HO

H

Vitamin D3 (cholecalciferol)

Figure 3. The two major forms of vitamin D.  

In skin protection, cholesterol is secreted into the skin, where it covers and 

protects us from dehydration, cracking, and the drying effects of the elements. It helps to 
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keep the skin looking plump and wrinkle-free. Cholesterol plays an important role in 

healing, as high amounts of it are found in scar tissue.40 

 In serotonin function, cholesterol is necessary for the function of serotonin 

receptors in the brain. Serotonin (Figure 4) is a chemical that helps to protect us from 

depression. On the other hand, cholesterol is the main fat present in the myelin sheath, 

which coats the nerve cells and enables electrical impulses to occur in the brain and 

spinal cord. A healthy myelin sheet is needed for good concentration and memory.40 

 

Figure 4. Chemical structure of serotonin (5-hydroxytryptamine). 

 Lastly, in antioxidant function, cholesterol helps to transform fat soluble 

antioxidants around our body, such as vitamins E and A (Figure 5), and several 

antioxidant enzymes.40 

2.1.3 DIETARY SOURCES AND BIOSYNTHESIS 

 Cholesterol is a structural lipid that is not required in the diet, since ample 

amounts are synthesized in the body.42 It is found in all animal tissues, so that some are 

present in all foods of animal origin, but eggs are the only common foods rich in 
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cholesterol. Principal dietary sources include meats (liver, 370 mg; veal, lamb, and beef, 

80-85 mg/3 oz serving), eggs (one large, 252 mg), shellfish (shrimp, 128 mg/3 oz 

serving), poultry (chicken, 74 mg/3 oz serving), fish (45-60 mg/3 oz serving), and dairy 

products (whole milk, 34 mg/8 oz; ice cream, 54-98 mg/cup; American cheese, 28 

mg/oz). It is virtually absent in foods of plant origin, which, do however, contain other 

sterols.43 

 

Figure 5. The two major forms of vitamin E, and vitamin A. 

 Cholesterol is derived about equally from the diet and biosynthesis. The synthesis 

of cholesterol occurs in the smooth endoplasmic reticulum. In a long reaction chain, 

starting with C2-units, the C27-sterol is formed.44 

           Acetate  Mevalonate  [Isoprene]  Squalene  Cholesterol  
      C2  C6  C5  C30           C27 

Acetyl-CoA is the source of all carbon atoms in cholesterol. In particular, the 

acetyl group of acetyl-CoA is the ultimate precursor of all the carbon atoms in cholesterol 
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and in the other steroids that are derived from cholesterol.44 There are many steps in the 

biosynthesis of steroids. The synthesis proceeds with the formation of acetoacetyl-CoA, 

3-hydroxy-3-methylglutaryl-CoA (3-HMG-CoA) and mevalonate. Mevalonate, 

consisting of six carbon atoms, is formed by the condensation of three acetyl groups of 

acetyl-CoA. Decarboxylation of mevalonate produces the five-carbon isoprene units 

frequently encountered in the structure of lipids. The involvement of isoprene units is a 

key point in the biosynthesis of steroids and of many other compounds that have the 

generic name terpenes. Vitamins A, K, and E come from reactions involving terpenes 

that humans cannot carry out.  That is why we must consume these vitamins in our diet. 

After isoprene formation, the six isoprene units condense to form squalene, which 

contains 30 carbon atoms. Finally squalene is converted to cholesterol, which contains 27 

carbon atoms (Figure 6). This is made possible via lanosterol formation.44 

The key enzyme of cholesterol synthesis is HMG-CoA reductase which catalyzes 

the formation of mevalonate from 3-HMG-CoA. Free cholesterol and glucagon inhibit 

the activity of HMG-CoA reductase. Insulin and thyroxin stimulate the enzyme. 

Decreased intracellular cholesterol concentration and pharmacologic inhibition of HMG-

CoA reductase (statins) lead to an increase of low density lipoprotein (LDL)-receptors in 

the hepatocyte membrane.45 
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 Figure 6. Outline of the biosynthesis of cholesterol. 
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2.2 POLYUNSATURATED FATTY ACIDS (PUFAS) 

 Fatty acids are linear hydrocarbon chains with a methyl (-CH3, also called the ω-

end) and a carboxyl (-COOH) end. They vary in their number of carbon atoms and 

double bonds and can be classified as saturated fatty acids (SFAs), monounsaturated fatty 

acids (MUFAs), and polyunsaturated fatty acids (PUFAs).46 

 SFAs have no double bond in their hydrocarbon chain. MUFAs on the other hand,  

contain a double bond in their hydrocarbon chain. They have both systematic and 

common names. In the case of unsaturated fatty acids, isomerism is possible. The double 

bond exists either in cis (Z) or trans (E) configuration, and the double bond may be 

located at different carbon atoms (Table 1). Natural unsaturated fatty acids are mostly of 

the cis-configuration. Traces of trans-unsaturated fatty acids (0.04-0.05%) are detected 

even in cold-pressed edible oils.47 The position of double bonds is usually counted from 

the carboxyl carbon, but in texts dealing with nutrition, calculation is often from the final 

methyl group. In such case, they are defined, e.g., as an n-6 or ω-6, if the double bond is 

located at the 6th carbon atom from the final methyl group. The most common MUFA is 

oleic acid (an ω-9 fatty acid), which is present in nearly all lipids at least in small 

amounts.48 

 Unsaturated fatty acids have lower melting points than the respective saturated 

fatty acids, and are better soluble in organic solvents. Trans unsaturated fatty acids have 

higher melting points than the respective cis acids (Table 1).48 
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Table 1. The most important monounsaturated fatty acids (MUFAs).48 
Systematic 

name 
Common name Number of 

carbon atoms 
Molecular 

weight 
Melting point 

[°C] 
9-cis-

Hexadecenoic 
Palmitoleic 16 254.4 34.5 

6-cis-
Octadecenoic 

Petroselinic 18 282.5 31.5 

9-cis-
Octadecenoic 

Oleic 18 282.5 16 

9-trans-
Octadecenoic 

Elaidic 18 282.5 45.5 

11-trans-
Octadecenoic 

Vaccenic 18 282.5 39 

13-cis-
Docosenoic 

Erucic 22 338.6 33.5 

13-trans-
Docosenoic 

Brassidic 22 338.6 60.6 

 
 Polyunsaturated fatty acids (PUFAs), which are the major analytes of concern in 

this study, contain 2-6 double bonds. Many isomers are possible, but only a few are really 

found in nature. The majority among them belong to essential fatty acids as they cannot 

be synthesized in the human body.49 Most natural PUFAs have common names, which 

are more widely used than the systematic names (Table 2). The allylic (pentadienoic) 

configuration is most frequent, -CH=CH-CH2-CH=CH-, where the double bonds are 

separated by a methylene group. Both ω-6 and ω-3 PUFAs belong to the essential fatty 

acids. They are enzymatically transformed into eicosanoids.50  

Conjugated unsaturated acids, -CH=CH-CH=CH- are rather rarely found, e.g., in 

milk fat or on some nonedible oils. In the most common fatty acids, the first double bond 

is located at the 9th or 6th carbon atoms (from the carboxyl group) or at the 3rd or 6th 

carbon atom (from the methyl group).48 
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 The structures of the most common mono- and polyunsaturated fatty acids are 

shown in Figure 7. 

Table 2. The most important polyunsaturated fatty acids (PUFAs).48 
Systematic name Common name Number of 

carbon atoms 
Number of 

double bonds 
Molecular 

weight 
9-cis, 12-cis-
Octadecadienoic 

Linoleic 18 2 280.4 

9-cis, 12-cis, 15-
cis-
Octadecatrienoic 

Linolenic 18 3 278.4 

6-cis, 9-cis, 12-
cis-
Octadecatrienoic 

γ-Linolenic 18 3 278.4 

9-trans, 11-trans, 
13-trans-
Octadecatrienoic 

Eleostearic 18 3 278.4 

5, 8, 11, 14-all-
cis-
Eicosatetraenoic 

Arachidonic 20 4 304.6 

5, 8, 11, 14, 17-
all-cis-
Eicosapentaenoic 

EPA 20 5 302.4 

4, 7, 10, 13, 16, 
19-all-cis-
Docoshexaenoic 

DHA 22 6 328.5 
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Figure 7. The structures of the mono and polyunsaturated fatty acids of interest in this 
study. 
 
 Polyunsaturated fatty acids (PUFAs) can be classified into major types—the -6 

and the -3 PUFAs. -6 PUFAs have the first double bond at carbon number 6 counting 

from the methyl end. The major -6 PUFAs in the diet are linoleic acid (LA), -linolenic 

acid (GLNA), and arachidonic acid (AA). -3 PUFAs, on the other hand, have the first 

double bond at carbon number 3 counting from the methyl end. The major -3 PUFAs in 
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the diet are -linolenic acid (ALNA), eicosapentaenoic acid (EPA), and docosahexaenoic 

acid (DHA). 

2.3 THE OMEGA-6/OMEGA-3 PUFAS RATIOS AND ITS IMPORTANCE IN 

HEALTH RELATED ISSUES 

 In the Western diet, 20-25 fold more -6 fats than -3 fats are consumed.24 It has 

been known that the predominance of -6 fat is due to the abundance of LA (18:2-6), 

which is present in high concentrations in certain vegetable oils such as soy, corn, 

safflower, and sunflower oils. By contrast, there is a low intake of the -3 homologue of 

LA, ALNA (18:3-3), which is present in leafy green vegetables and in flaxseed and 

canola oils. Compared with LA, there is little dietary intake of AA and EPA, which are 

present in meat and fish, respectively.51 

 LA and ALNA are necessary for complete health and cannot be synthesized in 

vertebrates; therefore, they are essential fatty acids. As a consequence, the relative dietary 

amounts of -6 and -3 fatty acids are determinants of the relative cellular amounts of 

LA and ALA (figure 8).51 

 On the other hand, unlike the 18-carbon -3 fatty acid ALNA, oleic acid (OA) 

(18:1-9), is consumed in substantial amounts in the typical Western diet and is not an 

essential fatty acid. There is little eicosatrienoic acid (ETA; 20:3-9) in cell membranes, 

however, probably this is because of the overwhelming competition from dietary LA for 

the relevant desaturase and elongase enzymes (Figure 8).52 
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 Human beings evolved on a diet in which the ratio of -6/-3 essential fatty acids 

was about 1, whereas in the Western diets, the ratio is 15/1 to 16.7/1. Such evidence 

comes from studies on the evolutionary aspects of diet, modern day hunter-gatherers, and 

traditional diets (Figure 8). Many of the chronic conditions, cardiovascular disease, 

diabetes, cancer, obesity, autoimmune diseases, rheumatoid arthritis, asthma, and 

depression are associated with increased production of thromboxane A2 (TXA2), 

leukotriene B4 (LTB4), IL-1, IL-6, tumor necrosis factor (TNF), and C-reactive protein. 

All these factors increase by increases in -6 fatty acid intake and decrease by increases 

in -3 fatty acid intake, either ALNA or EPA and DHA.53 

Fatty acid 
designation 

-9 -6 -3 

18-carbon fatty 
acids 

Oleic acid (OA) Linoleic acid (LA) 
(dietary essential 
fatty acids 

-linolenic acid 
(ALNA) (dietary 
essential fatty acids 

Dietary sources Olive oil, sunola oil, 
meat 

Soy, corn, 
sunflower, safflower 
oils 

Flaxseed, canola, 
soy oils 

Dietary intake Large intake (8-15% 
dietary energy) 

Large intake (7-8% 
dietary energy) 

Minor intake (0.3-
0.4% dietary 
energy) 

    
20-carbon fatty 
acids 

Eicosatrienoic acid Arachidonic acid 
(AA) 

Eicosapentaenoic 
acid (EPA) 

Sources Potentially 
synthesized from 
OA 

Mainly synthesized 
from ingested LA, 
relative small 
amounts in diet 
(meat, offal) 

Synthesized from 
ingested ALNA or 
ingested as fish or 
fish oil 

Leucocyte content 
(% of total fatty 
acids) 

0.1% 10-16% 0.1-0.3% 

Figure 8. Dietary fatty acids intake and their metabolism after ingestion. Sunola oil; 
Meadow Lea Foods Ltd, Sydney, Australia.51 
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 A study was shown to summarize the current evidence on the consumption of -6 

PUFAs, particularly LA, and CHD risk. Aggregate data from randomized trials, case-

control and cohort studies, and long-term animal feeding experiments indicate that the 

consumption of at least 5% to 10% of energy from -6 PUFAs reduces the risk of CHD 

relative to lower intakes. The data from the study also suggest that higher intakes appear 

to be safe and may be even more beneficial (as part of a low-saturated-fat, low 

cholesterol diet). In summary, the American Heart Association (AHA) supports an -6 

PUFA intake of at least 5% to 10% of energy in the context of other AHA lifestyle and 

dietary recommendations. To reduce -6 PUFA intakes from their current levels would 

be more likely to increase than to decrease risk for CHD.54 However, as mentioned 

earlier, chronic excessive production of -6 eicosanoids is associated with heart attacks, 

thrombotic stroke, arrhythmia, arthritis, osteoporosis, inflammation, mood disorders, 

obesity, and cancer.55 

 A high consumption of -6 PUFAs, which are found mainly in most types of 

vegetable oils, may increase the likelihood that postmenopausal women will develop 

breast cancer.56 Similar effect was observed on prostate cancer.57 -3 fatty acids, on the 

other hand, consist mostly of EPA and DHA and are found in fish and fish oils. 

Epidemiological studies have shown an inverse relation between the dietary consumption 

of fish containing EPA/DHA and CHD mortality. These relationships have been proven 

from blood measures of -3 fatty acids including DHA as a physiological biomarker for 

-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in 

EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction 

patients with a substantial reduction in the risk of sudden cardiac death. The 
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cardioprotective effects of EPA/DHA are widespread, appear to act independently of 

blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall 

effects include anti-arrhythmic, blood-triglyceride-lowering, anti-thrombotic, and 

endothelial relaxation among the few.58 

2.4 THE MONOUNSATURATED OLEIC FATTY ACID 

 Oleic acid (OA) is known to be a pheromone released by bees when they die. This 

pheromone upon release initiates necrophoric behavior to other bees. Thus, when other 

bees detect the pheromone, the worker bees would grasp the corpse and move it a short 

distance towards the hive entrance. This behavior in bees serves as a hygienic procedure 

by keeping the dead bees away from the hive to avoid the spread of infection to the other 

bees.59 Oleic acid plays a key role in plants. It is probably synthesized from short-chain 

fatty acids and can be dehydrogenated into more highly unsaturated fatty acids, be 

converted into substituted acids such as ricinoleic acid; or elongated into erucic acid by 

specific enzyme systems (Figure 9).60 
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Figure 9. Unsaturated fatty acids derived from oleic acid.60 

 OA is known to be the present in various types of oils including olive oil, pecan 

oil (59-75%), peanut oil (36-67%), grape seed oil (15-20%), sesame oil (15-20%), and 

poppyseed oil (14%).61-63 In animal fats, OA constitutes to about 37-56% in chicken and 

turkey.64 In lard, OA is present at 44-47%. Moreover, the human adipose tissue consists 

mostly of OA.65 

 OA is known to slow down the progression of adrenoleukodystrophy (ALD), a 

rare, inherited disorder leading to progressive brain damage, failure of the adrenal glands 

and eventually death.66 Studies by Pala and colleagues also show that OA and MUFA 

levels in red blood cells membranes are known to be associated with increased risk of 

breast cancer.57 Moreover, OA in olive oil is also known to possess hypotensive 

properties.67 Intracerebroventricular (ICV) administration of OA is known to inhibit 
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glucose production and food intake. This means that OA provides a signal of “nutrient 

abundance” to discrete areas within the central nervous system (CNS). This signal in turn 

activates a chain of neuronal events designed to promote a switch in fuel sources from 

carbohydrates to lipids and to limit the further entry of exogenous and endogenous 

nutrients in the circulation.68
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CHAPTER 3 

 

METHODS OF CHOLESTEROL AND MONO-/POLYUNSATURATED FATTY  

ACIDS DETERMINATION 

Part of this chapter has been published in Lipid Technology Journal and appears 

in this dissertation with the journal’s permission.2 

3.1 REVIEW OF METHODS OF CHOLESTEROL AND MONO-

/POLYUNSATURATED FATTY ACIDS (PUFAs) DETERMINATION IN 

HUMAN SERUM 

 The current methods for the direct determination of cholesterol and PUFAs in 

human serum are done independently of the other. This section divides the discussion 

into two parts; the first part focuses on cholesterol, and the second on PUFAs. 

3.1.1 CLASSIFICATION OF METHODS FOR THE DETERMINATION OF 

CHOLESTEROL 

 Zak reviewed the different classification schemes for cholesterol determination 

methodologies and will be discussed in this section.69 
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3.1.1.1 DIRECT REACTIONS FOR THE DETERMINATION OF 

CHOLESTEROL 

 The methods involved in the direct reactions for cholesterol determination require 

no partial or full separation of cholesterol. The procedure usually involves mixing the 

reagents with sample and determining the endpoint by spectrophotometric methods.70-92 It 

is also possible to perform electrochemical measurement of the reaction product.93, 94 

Direct reactions have the absence of phase separations. Specific examples of direct 

reactions include the ones based on the Liebermann-Burchard reaction such as the 

Wybenga methods using an Fe (III) reaction,72 Pearson and colleagues’ method,70 or that 

of Huang.73 Allain’s procedure basing on a coupled enzyme system is another example of 

a direct reaction.31 Direct procedures have the primary advantage of being simple.  

3.1.1.2 PARTIAL PURIFICATION OF CHOLESTEROL WITH ORGANIC 

SOLVENTS 

 Liquid-solid or liquid-liquid extractions are the two methods of achieving 

cholesterol partial purification.95-109 In liquid-solid extractions, the extracting fluid is 

soluble in water and serves to remove the cholesterols from their protein-binding sites 

into the liquid phase, where the measurement can be made either directly110 or on a later 

solubilized residue of an evaporated extract.111 It is also possible to dry the serum into 

one of several solid materials, from which it can be eluted into a separating liquid.112-114 

Biphasic liquid-liquid extractions with115 or without99 saponification of cholesterol esters 

before the extraction have been used. Saponification method is required in some 
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procedures because the extracting fluid will not completely separate both free and 

esterified cholesterol.115  

For the automated mode, there has been at least one report in an enzymatic test116 

of dialysis of product, peroxide, where the latter could be measured in a diffusate which 

seemed free of interferences. Any potential competition of bilirubin with the color 

reaction was avoided by a preliminary treatment of the sample with alkali to oxidize it 

when total cholesterol was determined, because peroxidase was generated on the same 

side of the membrane where the bilirubin was present. However, bilirubin reaction with 

peroxide is minimized if no peroxidase is present to catalyze it. 

Partial purification and elimination of most interferences should result in a more 

nearly pure end-point determination and more nearly accurate results. However, the 

possibility of errors increases with increasing number of steps in the reaction process. 

Moreover, as the complexity of the process increases, the potential for automation also 

increases.69 

3.1.1.3 COMPLETE ISOLATION OF CHOLESTEROL 

 Studies were done isolating free cholesterol after extraction and saponification, by 

precipitation using different precipitating agents,103, 117-124 and this purified derivative has 

then been subjected to endpoint analyses.106, 107, 117, 125 Aluminum hydroxide118 or 

aluminum chloride119 can be used to hasten precipitation. 

 Chromatographic processes such as gas chromatography (GC)124-132, liquid 

column chromatography (LCC)133, 134, paper chromatography (PC), or thin layer 
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chromatography (TLC)135-141 after a preliminary partial purification by extraction, can 

also be used to separate cholesterol or its esters.  

 Purifying an analyte before it is determined offers the advantage of serving as a 

reference procedure for the more common procedures used routinely.69 However, high 

instrumentation costs and prolonged analyses times are the major disadvantages. 

3.1.1.4 MISCELLANEOUS METHODS 

 Several other miscellaneous procedures exist for cholesterol determination. One 

good example is one in which cholesterol and its esters have been extracted from the 

protein zones known to contain them after electrophoresis of serum proteins was carried 

out.142-145 Another example is that lipoproteins containing cholesterol have been 

selectively precipitated out with dextran sulfate before colorimetric determination by 

either the Liebermann-Burchard or Fe (III).146, 147 A selective partition procedure has 

been described for isolating free cholesterol.148 Any procedure devised in the future that 

does not fit into I, II, or III would fall in IV.  

3.1.1.5 SCREENING, DEFINITIVE, AND REFERENCE PROCEDURES 

A well-established method for the determination of cholesterol has not been 

described yet. However, at least three procedures, although unofficial, have proven 

worthy as reference methods115, 125, 149 while all the rest have been applied for routine 

circumstances. Several studies can be categorized as screening tests70, 72, 73, 150 since their 

primary purpose is to find abnormal values quickly, although perhaps not providing 

nearly the accuracy of the reference procedures when the latter are carefully carried 

out.151 The previously mentioned screening procedures have led to an era where 
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cholesterol assay became relatively inexpensive. The introduction of the enzymatic 

procedures, which require simple handling, as compared to the complicated methods,115, 

125 led to superior precision of cholesterol routine determinations.  

3.1.2 POLYUNSATURATED FATTY ACIDS (PUFAs) DETERMINATION IN 

HUMAN SERUM  

 Most polyunsaturated fatty acids (PUFAs) analyses are done for qualitative 

purposes only. Determination of PUFAs in human serum can be both qualitative and 

quantitative. This section will review the various methods of determining PUFAs both 

qualitatively and quantitatively.  

 In general, determination of PUFAs in human serum or any type of biological 

media can be divided into two major categories—those requiring lipid extraction and 

separations, and those requiring a little or none of those. Although the discussion in this 

section will focus on the qualitative determination of PUFAs, a particular emphasis will 

be on the quantitative means. 

3.1.2.1 DIRECT DETERMINATION OF PUFAs IN HUMAN SERUM 

 The direct methods constitute those procedures which require little or no 

extraction and separation techniques. Most of the direct methods for the determination of 

PUFAs are usually done by enzymatic and spectrophotometric procedures.152-156  

MacGee152 described a simple and rapid enzymatic procedure for the quantitative 

estimation of total cis-methylene-interrupted polyenoic acids. Linoleic, linolenic, and 

arachidonic fatty acids were used to calibrate the method. In his procedure, the potassium 
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salts of the fatty acids are oxidized by atmospheric oxygen in the presence of the enzyme 

lipoxidase, and the absorption of the conjugated diene hydroperoxide is measured at 234 

mµ. As little as 5 γ of linoleic acid can be quantitatively measured with good accuracy 

and precision. The % total content of PUFAs containing the cis-methylene-interrupted 

diene structure of fats, oils, hydrogenated oils, fatty acids, esters, blood plasma, 

microorganisms, and plant seeds has been measured directly by this method.152 

 A spectrophotometric micromethod for determining PUFAs was described by 

Herb and Riemenschneider.153 The method is considered to be an improvement over the 

usual spectrophotometric methods for determining PUFAs in fats and oils. Although, 

there were prior improvements in spectrophotometric methods for determining PUFAs in 

fats and oils requiring only 100 mg of sample155, 156, there was considered to be a great 

deal of interest in a micromethod that would require only a one to ten mg of fat. Herb and 

Riemenschneider’s procedure153 involves blanketing a 21% potassium hydroxide-glycol 

reagent with oxygen-free nitrogen in a reaction tube and heating in the bath at 180°C for 

15 minutes. One to ten mg of sample fat was then added to the tube followed by a 30-

second interval shaking until the contents appeared clear and homogenous. The total 

reaction time from the point wherein the sample was added to the reaction tube should be 

exactly 15 minutes. After rapid cooling of the sample in cold water, the isomerized 

mixture was diluted to known volumes with absolute methanol until suitable spectral 

densities were reached. Appropriate readings were made in a Model DU Beckman 

spectrophotometer. The specific extinction coefficient of a fat or oil at a selected 

wavelength is equal to the sum of the specific extinction coefficients of the components, 

each multiplied by its proportion in the mixture. Therefore, simultaneous equations may 



30 
 

be set up for the system and solved for each component with the results expressed in 

terms of % of linoleic, linolenic, arachidonic, and pentaenoic acids. Overall, the data 

obtained were reproducible results.153  

 On the other hand, Miles and colleagues154 described a rapid and precise 

microfluorometric method for the determination of free fatty acid concentrations in 2-

5µL of plasma.  The assay is performed directly on plasma, eliminating the need for 

extraction with organic solvents, and is based on the quantitation of adenosine 

monophosphate (AMP) generated from the formation of acyl coenzyme A (acyl CoA)  in 

the presence of adenosine triphosphate (ATP) and acyl Co-enzyme A (CoA) 

synthetase.154 Although this method is considered to be rapid, accurate, and relatively 

inexpensive, it is only limited to total free fatty acid molar concentration quantitation. 

3.1.2.2 DETERMINATION OF PUFAs IN HUMAN SERUM REQUIRING LIPID 

EXTRACTIONS AND SEPARATIONS 

 The primary disadvantage of determining PUFAs in human serum requiring lipid 

extractions and separations is that it requires significant amount of time to carry out the 

analyses. Moreover, with the rising cost of enormous instrumentations, though offering 

great accuracy and reproducibility, suffer from the disadvantage of not being ideal in an 

ordinary clinical setting. Lastly, methods requiring lipid extractions and separations 

require in some cases toxic solvents and also expertise in handling the sophisticated 

instrumentations and consequent interpretations. 

 Large numbers of literature citations, which cannot all be discussed in this 

section, were already published in many scientific publications regarding the 
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determination of PUFAs in human serum requiring lipid extractions and separations. Lin 

and McKeon157 described various methodologies of analyzing acyl lipids using high 

performance liquid chromatography (HPLC). HPLC of free fatty acids (FFA) and fatty 

acid methyl ester (FAME) has been reviewed.158-160 HPLC of FA was reported in the 

early developing stage as isocratic reversed-phase C18 HPLC of FAME using a refractive 

index (RI) detector or ultraviolet visible (UV) detector.161 The RI detector, however, was 

not sufficiently sensitive. To improve detection sensitivity, FA derivatives were formed 

that could be detected at low concentrations by UV or fluorescence.  A large number of 

derivatization reagents for the determination of FA by HPLC have been developed and 

applied to study numerous biologically important processes. For UV detection, 2-

Nitrophenylhydrazine (2-NPH) is useful for the simultaneous determination of various 

FA. It is also possible, on the other hand to achieve a highly sensitive detection at the 

femtomole, or much lower levels, using proper fluorescent derivatization reagents (e.g. 4-

Bromomethyl-7-methoxy-coumarin (Br-Mmc), 6,7-Dimethoxy-1-methyl-2(1H)-

quinoxalinone -3-propionylcarboxylic acid hydrazide (DMEQ-hydrazide), or 2-(4-

Hydrazinocarbonylphenyl)-4,5-diphenylimidazole (HCPI).162 The separation of 

derivatives usually involves a complicated gradient elution system, since it is based on 

the differences of alkyl chain lengths of FA. Moreover, some problems involved in FA 

analyses that need to be overcome include increasing throughput and the development of 

new derivatization reagents for simultaneous determination of FA ranging from short to 

very long chains in a single analytical run with high sensitivity, simplicity, and 

rapidity.162 
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 In the derivatization of FA, the bulky and somewhat polar chromophores attached 

to the FA molecules diminish the selectivity related to substituents of the FA and can 

complicate their subsequent identification by gas chromatography/mass spectrometry 

(GC-MS) and liquid chromatography/mass spectrometry (LC/MS). The evaporative light-

scattering detector (ELSD) is universal and sensitive. It usually eliminates the need to 

derivatize FA above the detection limit (about 1 µg).163 The disadvantage of ELSD is that 

there is a difficulty to recover FA and any other compounds after HPLC. Moreover, the 

relationship between mass and peak area is not linear. Some have described this 

relationship as sigmoidal, exponential, or “nearly linear”.164 

 Different tissues often have different requirements for sample handling and 

preparation. Prior to fractionation of total lipids, it is necessary to extract them. Basically, 

total lipids are extracted following the method of Folch165 utilizing a solvent mixture of 

chloroform/methanol (2:1, v/v). A lipoprotein sampling process prior to GC analysis of 

FAME which circumvents the lengthy and cumbersome Folch extraction method is also 

available.166 Consequent fractionation of total lipids after extraction includes liquid-liquid 

extraction, low-pressure solid-liquid column chromatography, thin-layer chromatography 

(TLC), solid-phase extraction (SPE), preparative HPLC, or supercritical fluid extraction 

(SFE).32 

 Besides HPLC, it is also possible to analyze FA by GC although there are many 

difficulties in the quantitative analysis of free FA by GC.167 Lagerstedt and colleagues168 

developed a capillary gas-chromatography-electron-capture negative-ion mass-

spectrometry (GC/MS) for the quantitative determination of C8-C26 total fatty acids in 
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plasma. Following hydrolysis, hexane extraction, and derivatization with 

pentafluorobenzyl bromide, fatty acid esters are analyzed in two steps: a splitless 

injection and a second split injection (1:100) for the quantitation of the more abundant 

long-chain species. 

 It is also possible to perform absolute quantitation of human lipoproteins and their 

lipid contents directly from plasma using 1H nuclear magnetic resonance spectroscopy 

(NMR). Though the method enables complete lipoprotein lipid profiles to be obtained in 

a total time of less than one hour, it is only limited in determining the absolute 

concentrations of triglycerides, phospholipids, total cholesterol, free cholesterol, 

esterified cholesterol, total proteins, and total masses for the very low density lipoprotein 

(VLDL) and low density lipoprotein (LDL) fractions.169 It doesn’t allow the absolute 

concentration determination of the individual omega-6 and omega-3 fatty acids which 

provides vital information for determining lipid disease states. Quantitative metabolomics 

was first described in 1991, as a novel approach to perform serum lipid and lipoprotein 

particle profiling.170 A current protocol, now called NMR LipoProfile, utilizes a reference 

spectral library of different lipoprotein subclasses for the identification and quantification 

of 15 different lipoprotein subcategories of VLDL, LDL, and HDL particles.171 A number 

of variations of this method have been described in the literature, with some methods 

utilizing only 11 lipoprotein categories or others using more sophisticated wavelet-

deconvolution algorithms.172, 173 Although NMR-based lipid quantitative methods are 

considered to be non-destructive, non-biased, easily quantifiable, and requires little or no 

separation, they suffer from the disadvantage that they require relatively large sample 

sizes (~500 µL).174 Moreover, the instruments are expensive and the method is 



34 
 

inappropriate in a typical clinical setting. Matrix-assisted laser desorption/ionization 

time-of-flight (MALDI-TOF) mass spectrometry can also be used for the analysis of 

FA,175 but similar to NMR, the instrument itself is very expensive and inappropriate for a 

typical clinical setting. 

3.2 REVIEW OF METHODS FOR POLYUNSATURATED FATTY ACIDS 

DETERMINATION IN VEGETABLE OILS AND FOOD/BIOLOGICAL 

SAMPLES 

 Vegetable oils primarily consist of oleic, linoleic, and linolenic fatty acids. These 

fatty acids are, thus, chosen in this study for analyses. Table 3 lists the fatty acid 

composition for the triacyglycerol oils of interest. Monounsaturated fatty acids such as 

palmitoleic (C16:1), gadoleic (C20:1), and erucic (C22:1) exist in traces176 and, thus, are 

not taken into account in this study. 

Table 3. Fatty acid composition ranges for sunflower,176 soybean,176 safflower,176 corn,177 
and flaxseed oils178 (% weight composition). 

Fatty Acid Sunflower Soybean Safflower Corn Flaxseed 
18:1 (oleic) 14-65 19-30 8.4-21.3 19-49 19 
18:2 (linoleic) 20-75 44-62 67.8-83.2 34-52 24.1 
18:3 (linolenic) <0.7 4.0-11 0-0.1 Trace 47.4 
  

 A number of published papers exist for the determination of fatty acids in 

vegetable oils. Fatty acid composition has commonly been determined by GC. The most 

commonly used methods for such analysis involve the conversion of lipids and/or oils 

into methyl esters before GC analysis.179, 180 The total time required to carry out the GC 

data is approximately 30 minutes.181 With the advent of NMR spectroscopy, several 
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studies have also been published regarding the analysis of oils by NMR.182-189 Moreover, 

it is also possible to perform quantitative fatty acid analysis of vegetable oils by gas-

liquid chromatography (GLC) which is limited in expressing fatty acid composition in 

terms of percentages190; MALDI-TOF mass spectrometry which provides quantitative 

measurement of fatty acid mixtures and/or soap formulations that contain saturated and 

unsaturated hydrocarbon moieties expressing the compositions in terms of fatty acid 

percentages191; HPLC via a flame ionization detector where quantitative analysis is based 

on a direct proportionality of peak areas192; silver-ion HPLC for the quantitative analysis 

(% composition) of monoenoic fatty acid.193 

 For most food and biological samples, the basic procedures of extraction prior to 

analyses are always performed. The analyses are then carried out by the previously 

mentioned methods for both human serum and vegetable oil samples, usually using 

sophisticated instrumentations. 

3.3 THE PURDIE ASSAY FOR THE DIRECT DETERMINATION OF 

CHOLESTEROL AND MONO-/POLYUNSATURATED FATTY ACIDS 

DETERMINATION 

 The Purdie Assay originated with the Liebermann-Burchard reaction that was 

once the current gold standard for cholesterol and was later based upon a reaction 

attributed to Chugaev and Gastev. The reason for the change was the desire to lessen the 

high temperature and toxic experimental conditions that present personal discomfort and 

health risks to the users. The reagent was a 2:1 mixture of 20% w/v ZnCl2 in glacial 

acetic acid combined with 98% acetyl chloride194 and was used to measure cholesterol 
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with great accuracy by Hanel and Dam.195 Refinements of the reagent system has led to a 

25:1 mixture of acetyl chloride and 70% perchloric acid (PA), which gave the procedure 

it the capability to react with steroids and terpenes. This latter so-called Purdie reagent 

had the extra selectivity of acylation of the α- over the ß- position at the C-17 carbon that 

enabled the differentiation of anabolic steroids. In that and a following study, it was also 

determined that if multiple unsaturated lipids are present, the resulting compounded 

spectrum is the simple addition of the weighted spectra for each of the components, 

assuming no extraneous interferences are present.33  
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CHAPTER 4 

 

MATERIALS AND METHODS 

Part of this chapter has been published in the Journal of Biotech Research, the 

Lecture Notes in Engineering and Computer Science, and the Lipid Technology Journal and 

appears in this dissertation with the journals’ permission.1-4 

4.1 HUMAN SERUM 

4.1.1 UNKNOWN HUMAN SERUM SAMPLES 

The staff and volunteers at the Hillcrest Medical Center (HMC) in Tulsa, Oklahoma 

provided us with the human serum samples. Such anonymously named samples were from 

individuals who had requested a lipid profile and had given consent. No attempt was made to 

solicit samples nor was any extensive medical information derived from the samples. Prior to 

sample collection, the subjects fasted for at least 12 hours, and using a VacutainerTM red and 

grey capped separation tube, venous blood samples were collected from these individuals. 

After inversion of the tube five times to mix the blood and the components of the collection 

tube, the sample was centrifuged at 3400 RPM for 15 minutes. The collection tube contained 

a clotting activator which takes approximately 30 minutes to activate and a floating gel that 

separates the red blood cells from the serum during the centrifugation step. The serum, which 

was the top layer in the tube, was then transferred to a 10 mL glass vial with a screw cap. The



38 
 

experimental assay was completed within three days of receiving the sample. Samples 

were stored in a refrigerator at 2-4°C and were allowed to return to room temperature 

prior to analyses. HMC samples were drawn from patients with normal to elevated 

cholesterol levels. For serum sample analysis, a 10 µL sample of serum was added to a 13 

x 100 mm borosilicate disposable test tube. Then 1 mL of 98 % acetyl chloride (AC) 

(Acros) was added to the test tube. A 40 µL aliquot of perchloric acid (PA) (70% ACS 

reagent grade, GFS) was carefully added down the inside of the test tube and slowly 

introduced to the AC, sample solution. The reaction started on first contact with the 

perchloric acid. The solution was shaken by hand for twenty seconds to allow for the 

release of the small amount of gas from the reaction test tube. The test tube was then 

covered with a Teflon cap and placed into a centrifuge and spun for 3 minutes at 3400 

RPM. After centrifugation, precipitated proteins were separated, and the reagent solution 

was transferred to a 10 mm pathlength optical glass cuvette that was fitted with a Teflon 

stopper for the remaining time. Absorbance spectra were measured after 15 minutes on an 

HP8452A Hewlett Packard spectrophotometer. A 5-second integration time and 2-nm 

spectral resolutions were used to collect the absorbance data over the range of 350-550 

nm. This wavelength range was chosen for the reason that the lipid analytes exhibit 

spectral variations in this range. For the analysis, the visible spectrum obtained for a 

typical plasma sample turned out to be the linear sum of the weighted contributions from 

all seven analytes that – given the heterogeneity of blood samples – leads to a broad 

diversity in the spectral patterns.2 The blank for each reaction was pure AC. The reagent 

mixture of AC, with PA, did produce a slight color at 15 minutes. The combination of 
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AC and PA was not used as a blank, due to the possible variability and small absorbance 

value out of such solution mixture. 

4.1.2 SYNTHETIC HUMAN SERUM SETS 

Methyl esters of ω-6 fatty acids (linoleic, conjugated linoleic, arachidonic), ω-3 

fatty acids (α-linolenic, eicosapentaenoic, docosahexaenoic), oleic, and free cholesterol in 

chloroform solutions were all used to prepare synthetic mixtures to be used as training 

and prediction sets. The mentioned PUFAs were used in the study because they are the 

most abundant lipids present in human serum.168 The training set was done using a full 

factorial design (n = 128), and the prediction set was done using D-optimal design (n = 

16) using the SAS-JMP Software Package.196 Tables 4 and 5 show the training and 

prediction sets, respectively. All of the standards were 90 to 99 % pure based on gas 

chromatographic analysis and were all purchased from Sigma-Aldrich. Stock solutions 

for each of the analytes with maximum total concentrations of 0.02 M and 0.04 M were 

prepared. The stock solutions were used to prepare mixtures to limit the maximum 

spectral response to ranges between 0.2 and 0.9 absorbance units. The inclusion of water 

was taken into account in this study. Serum normally consists of 97 % water.197 With the 

sample size of serum being 10 µL, approximately 9.7 µL of water was added to the 

reagents in cases where synthetic mixtures are analyzed. The final experimental assay 

involved the addition of 10 µL of distilled water as the first step, followed by 1 mL AC, 

10 µL chloroform mixture sample, and finally 40 µL PA. The final steps of the assay 

remained the same as in serum in order to maintain constancy during the 15-minute 

reaction period. 
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Table 4. Full factorial training set of synthetic human serum for seven components. 
 Cholesterol Linoleic Linolenic Arachidonic EPA DHA Conjugated 

Mixture1 7.78E-03 0 0 0 0 0 0 
Mixture2 0 1.87E-02 0 0 0 0 0 
Mixture3 7.78E-03 1.87E-02 0 0 0 0 0 
Mixture4 0 0 0 0 0 0 0 
Mixture5 7.78E-03 0 0 0 0 0 0 
Mixture6 0 1.87E-02 1.87E-02 0 0 0 0 
Mixture7 6.87E-03 1.65E-02 1.65E-02 0 0 0 0 
Mixture8 0 0 0 1.92E-02 0 0 0 
Mixture9 6.81E-03 0 0 9.58E-03 0 0 0 
Mixture10 0 1.87E-02 0 1.92E-02 0 0 0 
Mixture11 6.81E-03 9.35E-03 0 9.58E-03 0 0 0 
Mixture12 0 0 1.87E-02 1.92E-02 0 0 0 
Mixture13 6.81E-03 0 9.37E-03 9.58E-03 0 0 0 
Mixture14 0 9.35E-03 9.37E-03 9.58E-03 0 0 0 
Mixture15 6.81E-03 9.35E-03 9.37E-03 9.58E-03 0 0 0 
Mixture16 0 0 0 0 1.61E-02 0 0 
Mixture17 6.57E-03 0 0 0 8.03E-03 0 0 
Mixture18 0 1.97E-02 0 0 1.61E-02 0 0 
Mixture19 6.57E-03 9.85E-03 0 0 8.03E-03 0 0 
Mixture20 0 0 2.04E-02 0 1.61E-02 0 0 
Mixture21 6.57E-03 0 1.02E-02 0 8.03E-03 0 0 
Mixture22 0 9.85E-03 1.02E-02 0 8.03E-03 0 0 
Mixture23 6.57E-03 9.85E-03 1.02E-02 0 8.03E-03 0 0 
Mixture24 0 0 0 2.14E-02 1.61E-02 0 0 
Mixture25 6.57E-03 0 0 1.07E-02 8.03E-03 0 0 
Mixture26 0 9.85E-03 0 1.07E-02 8.03E-03 0 0 
Mixture27 6.57E-03 9.85E-03 0 1.07E-02 8.03E-03 0 0 
Mixture28 0 0 1.02E-02 1.07E-02 8.03E-03 0 0 
Mixture29 6.57E-03 0 1.02E-02 1.07E-02 8.03E-03 0 0 
Mixture30 0 9.85E-03 1.02E-02 1.07E-02 8.03E-03 0 0 
Mixture31 5.89E-03 8.82E-03 9.11E-03 9.59E-03 7.19E-03 0 0 
Mixture32 0 0 0 0 0 8.89E-03 0 
Mixture33 6.81E-03 0 0 0 0 8.89E-03 0 
Mixture34 0 1.87E-02 0 0 0 1.78E-02 0 
Mixture35 6.81E-03 9.35E-03 0 0 0 8.89E-03 0 
Mixture36 0 0 9.37E-03 0 0 8.89E-03 0 
Mixture37 6.81E-03 0 9.37E-03 0 0 8.89E-03 0 
Mixture38 0 9.35E-03 9.37E-03 0 0 8.89E-03 0 
Mixture39 6.81E-03 9.35E-03 9.37E-03 0 0 8.89E-03 0 
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Mixture40 0 0 0 1.85E-02 0 1.78E-02 0 
Mixture41 6.81E-03 0 0 9.27E-03 0 8.89E-03 0 
Mixture42 0 9.35E-03 0 9.27E-03 0 8.89E-03 0 
Mixture43 6.81E-03 9.35E-03 0 9.27E-03 0 8.89E-03 0 
Mixture44 0 0 9.37E-03 9.27E-03 0 8.89E-03 0 
Mixture45 6.81E-03 0 9.37E-03 9.27E-03 0 8.89E-03 0 
Mixture46 0 9.35E-03 9.37E-03 9.27E-03 0 8.89E-03 0 
Mixture47 6.10E-03 8.37E-03 8.39E-03 8.30E-03 0 7.96E-03 0 
Mixture48 0 0 0 0 1.61E-02 9.10E-03 0 
Mixture49 6.57E-03 0 0 0 8.03E-03 8.89E-03 0 
Mixture50 0 9.85E-03 0 0 8.03E-03 8.89E-03 0 
Mixture51 6.57E-03 9.85E-03 0 0 8.03E-03 8.89E-03 0 
Mixture52 0 0 1.02E-02 0 8.03E-03 8.89E-03 0 
Mixture53 6.57E-03 0 1.02E-02 0 8.03E-03 1.03E-02 0 
Mixture54 0 9.85E-03 1.02E-02 0 8.03E-03 1.03E-02 0 
Mixture55 5.89E-03 8.82E-03 9.11E-03 0 0 8.15E-03 0 
Mixture56 0 0 0 9.27E-03 0 9.10E-03 0 
Mixture57 6.57E-03 0 0 9.27E-03 0 9.10E-03 0 
Mixture58 0 9.85E-03 0 9.27E-03 0 9.10E-03 0 
Mixture59 5.89E-03 8.82E-03 0 8.30E-03 0 1.59E-02 0 
Mixture60 0 0 1.02E-02 9.27E-03 0 1.78E-02 0 
Mixture61 5.89E-03 0 9.11E-03 9.59E-03 0 1.59E-02 0 
Mixture62 0 4.93E-03 5.09E-03 5.35E-03 4.01E-03 5.17E-03 0 
Mixture63 5.63E-03 4.93E-03 5.09E-03 5.35E-03 4.01E-03 5.17E-03 0 
Mixture64 0 0 0 0 0 0 8.00E-03 
Mixture65 6.81E-03 0 0 0 0 0 6.00E-03 
Mixture66 0 9.35E-03 0 0 0 0 6.00E-03 
Mixture67 6.81E-03 9.35E-03 0 0 0 0 6.00E-03 
Mixture68 0 0 9.37E-03 0 0 0 6.00E-03 
Mixture69 6.81E-03 0 9.37E-03 0 0 0 6.00E-03 
Mixture70 0 9.35E-03 9.37E-03 0 0 0 6.00E-03 
Mixture71 5.84E-03 4.67E-03 4.68E-03 0 0 0 4.00E-03 
Mixture72 0 0 0 9.58E-03 0 0 6.00E-03 
Mixture73 6.81E-03 0 0 9.58E-03 0 0 6.00E-03 
Mixture74 0 9.35E-03 0 9.58E-03 0 0 6.00E-03 
Mixture75 5.84E-03 4.67E-03 0 4.79E-03 0 0 4.00E-03 
Mixture76 0 0 9.37E-03 9.58E-03 0 0 6.00E-03 
Mixture77 5.84E-03 0 4.68E-03 4.79E-03 0 0 4.00E-03 
Mixture78 0 4.67E-03 4.68E-03 4.79E-03 0 0 4.00E-03 
Mixture79 5.84E-03 4.67E-03 4.68E-03 4.79E-03 0 0 4.00E-03 
Mixture80 0 0 0 0 0 1.03E-02 6.21E-03 
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Mixture81 6.57E-03 0 0 0 0 1.03E-02 6.21E-03 
Mixture82 0 4.93E-03 0 0 0 5.17E-03 4.14E-03 
Mixture83 5.63E-03 4.93E-03 0 0 0 5.17E-03 4.14E-03 
Mixture84 0 0 5.09E-03 0 0 5.17E-03 4.14E-03 
Mixture85 5.63E-03 0 5.09E-03 0 0 5.17E-03 4.14E-03 
Mixture86 0 4.93E-03 5.09E-03 0 0 5.17E-03 4.14E-03 
Mixture87 5.63E-03 4.93E-03 5.09E-03 0 0 5.17E-03 4.14E-03 
Mixture88 0 0 0 5.35E-03 0 5.17E-03 4.14E-03 
Mixture89 5.63E-03 0 0 5.35E-03 0 5.17E-03 4.14E-03 
Mixture90 0 4.93E-03 0 5.35E-03 0 5.17E-03 4.14E-03 
Mixture91 5.63E-03 4.93E-03 0 5.35E-03 0 5.17E-03 4.14E-03 
Mixture92 0 0 5.09E-03 5.35E-03 0 5.17E-03 4.14E-03 
Mixture93 5.63E-03 0 5.09E-03 5.35E-03 0 5.17E-03 4.14E-03 
Mixture94 0 4.93E-03 5.09E-03 5.35E-03 0 5.17E-03 4.14E-03 
Mixture95 6.12E-03 5.35E-03 5.53E-03 2.33E-03 4.19E-03 0 4.50E-03 
Mixture96 0 0 0 0 0 8.89E-03 6.00E-03 
Mixture97 6.81E-03 0 0 0 0 8.89E-03 6.00E-03 
Mixture98 0 9.35E-03 0 0 0 8.89E-03 6.00E-03 
Mixture99 0 4.67E-03 0 0 0 4.44E-03 4.00E-03 
Mixture100 5.84E-03 4.67E-03 0 0 0 4.44E-03 4.00E-03 
Mixture101 5.84E-03 0 4.68E-03 0 0 4.44E-03 4.00E-03 
Mixture102 0 4.67E-03 4.68E-03 0 0 4.44E-03 4.00E-03 
Mixture103 5.84E-03 4.67E-03 4.68E-03 0 0 4.44E-03 4.00E-03 
Mixture104 0 0 0 9.27E-03 0 8.89E-03 6.00E-03 
Mixture105 5.84E-03 0 0 4.64E-03 0 4.44E-03 4.00E-03 
Mixture106 0 4.67E-03 0 4.64E-03 0 4.44E-03 4.00E-03 
Mixture107 5.84E-03 4.67E-03 0 4.64E-03 0 4.44E-03 4.00E-03 
Mixture108 0 0 4.68E-03 4.64E-03 0 4.44E-03 4.00E-03 
Mixture109 5.84E-03 0 4.68E-03 4.64E-03 0 4.44E-03 4.00E-03 
Mixture110 0 4.67E-03 4.68E-03 4.64E-03 0 4.44E-03 4.00E-03 
Mixture111 5.84E-03 4.67E-03 4.68E-03 4.64E-03 0 4.44E-03 4.00E-03 
Mixture112 0 0 0 0 4.01E-03 5.17E-03 4.14E-03 
Mixture113 5.63E-03 0 0 0 4.01E-03 5.17E-03 4.14E-03 
Mixture114 0 4.93E-03 0 0 4.01E-03 5.17E-03 4.14E-03 
Mixture115 5.63E-03 4.93E-03 0 0 4.01E-03 5.17E-03 4.14E-03 
Mixture116 0 0 5.09E-03 0 4.01E-03 5.17E-03 4.14E-03 
Mixture117 5.63E-03 0 5.09E-03 0 4.01E-03 5.17E-03 4.14E-03 
Mixture118 0 4.93E-03 5.09E-03 0 4.01E-03 5.17E-03 4.14E-03 
Mixture119 5.63E-03 4.93E-03 5.09E-03 0 4.01E-03 5.17E-03 4.14E-03 
Mixture120 0 0 0 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture121 5.63E-03 0 0 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
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Mixture122 0 4.93E-03 0 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture123 5.63E-03 4.93E-03 0 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture124 0 0 5.09E-03 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture125 5.63E-03 0 5.09E-03 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture126 0 4.93E-03 5.09E-03 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture127 5.63E-03 4.93E-03 5.09E-03 5.35E-03 4.01E-03 5.17E-03 4.14E-03 
Mixture128 2.82E-03 2.46E-03 2.54E-03 2.68E-03 2.01E-03 2.59E-03 2.07E-03 

 
Table 5. D-optimal design prediction set for synthetic human serum with seven 
components. 

 Cholesterol Linoleic Linolenic Arachidonic EPA DHA Conjugated 
Mixture A 2.52E-03 9.51E-03 0 0 0 0 0 
Mixture B 0 4.76E-03 4.84E-03 4.75E-03 0 0 0 
Mixture C 3.29E-03 0 0 5.35E-03 4.01E-03 0 0 
Mixture D 0 0 5.09E-03 5.35E-03 4.01E-03 0 0 
Mixture E 0 4.76E-03 4.84E-03 0 0 5.04E-03 0 
Mixture F 2.21E-03 4.76E-03 0 4.75E-03 0 5.04E-03 0 
Mixture G 0 0 4.84E-03 4.75E-03 0 5.04E-03 0 
Mixture H 0 0 5.09E-03 0 4.01E-03 4.44E-03 0 
Mixture I 2.21E-03 0 0 0 0 0 2.83E-03 
Mixture J 0 0 4.84E-03 0 0 0 2.83E-03 
Mixture K 1.89E-03 2.38E-03 2.42E-03 2.38E-03 0 0 1.89E-03 
Mixture L 0 0 0 0 0 5.04E-03 2.83E-03 
Mixture M 1.89E-03 2.38E-03 2.42E-03 0 0 2.52E-03 1.89E-03 
Mixture N 1.89E-03 0 2.42E-03 2.38E-03 0 2.52E-03 1.89E-03 
Mixture O 2.82E-03 0 2.54E-03 0 2.01E-03 2.59E-03 2.07E-03 
Mixture P 2.82E-03 2.46E-03 0 2.68E-03 2.01E-03 2.59E-03 2.07E-03 

 
4.1.3 CHEMOMETRIC ANALYSES OF TRAINING, PREDICTION, AND 

UNKNOWN HUMAN SERUM SAMPLES 

Mean centering was initially not opted by the authors in this study as a common 

preprocessing step for the spectroscopic data due to the issue that calibrations produced 

with mean-centered data can respond to small instrumentation drifts by generating large 

errors in predicted concentrations.198 K-matrix OLS, NNLS, RR, PLS, and PCR 

calculations were done in MATLAB using Chemometrics Toolbox.199 

 Determining the optimum number of factors (rank) to be used in the 
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calibration is a key step in both PCR and PLS. To select the number of factors for PLS 

and PCR methods, the cross-validation, leaving out one sample at a time, was used. This 

process was repeated 127 times until each sample had been left out once. The Predicted 

Residual Error Sum of Squares (PRESS) was used to determine the optimum number of 

factors in both algorithms. To calculate the PRESS we computed the errors between the 

expected and predicted concentrations for all of the samples, squared them, and summed 

them together as given by the equation (1) below:200  
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where y and y’ are the predicted and actual concentrations and N is the number of 

samples. The logarithmic plot of the PRESS values as a function of the number of factors 

indicates the rank to be used in the calibration. The root mean square error (RMSE) is 

also calculated for each algorithm. The general equation is:  

                        (2) 

The model with the minimum values for the root mean square error can indicate 

the appropriate model. In the initial work, all PLS calculations refer to PLS2 after an 

initial comparison showed that PLS2 yielded lower root mean square error of prediction 

(RMSEP) than PLS1. However, an attempt was also made to compare various 

chemometric algorithms (PLS vs PCR) by mean centering the training absorbance sets. 

Mean centering was also attempted in KM, RR, and PM but generated root mean square 

errors of predictions (RMSEPs) which are much larger than the non-mean centered 
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training data sets. Accordingly, the training data sets were not mean-centered in KM, 

RR, and PM regression models. 

 The various chemometric models can be referred to some references201-207 and will 

be discussed further on the next sections. 

4.1.4 CHEMOMETRIC ALGORITHMS USED FOR DATA ANALYSES 

 This section will describe the various chemometric techniques used for the data 

analyses. Chemometric techniques can be divided into two major approaches: the multiple 

linear regression (MLR) approach which includes the K-matrix (KM) and the P-matrix 

(PM) approaches and the soft modeling methods consisting of principal component 

regression (PCR) and partial least squares (PLS). For the MLR approach, several variants 

under such category consisting of the non-negative least squares (NNLS) and the ridge 

regression (RR) techniques applied to KM will also be discussed.  

4.1.4.1 MULTIPLE LINEAR REGRESSION (MLR) APPROACH 

KM and PM approaches were utilized for the MLR models. The KM was 

expressed in the matrix notation: 

      A = CK    (3) 

where A is the n x p matrix of absorbances, C is the n x m matrix of concentrations of 

constituents, K is the m x p matrix of absorptivities, n is the number of samples, p is the 

number of wavelengths, and m is the number of components. 
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 Calibration is based on a set of n samples of known concentrations for which the 

spectra are measured. By means of the calibration sample set, estimation of absorptivities 

is possible by solving for the matrix K according to the general least squares solution: 

   K = (C TC)-1CTA                                 (4)  

The analysis was based on the spectrum a0 (1 x p) of the unknown sample by use 

of: 

            c0 = a0 KT(KKT) -1                     (5) 

where c0  is the (1 x m) vector of sought-for concentrations.202 

The P-matrix notation, on the other hand, was represented as: 

                          C = AP                                (6) 

The calibration coefficients are now the elements of the P-matrix that are 

estimated by the generalized least squares solution according to: 

                         P = (A TA) -1A TC                    (7) 

Analyses were carried out by direct multiplication of the measured sample 

spectrum  a0 by the P-Matrix:202 

                                   c0 = a0P                                                            (8) 

Equations (5) and (8) were solved following a quadratic optimization problem 

with m linear constraints according to: 
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                                                                     (9) 

subject to c0 ≥ 0, i = 1,…,m and j = 1, …,p, where the weights wj are usually chosen 

according to the estimated (proportional to the reciprocal) size of the errors r(λj) based on 

                               (10) 

This is known as NNLS algorithm. The non-negative MLR approach (KM and PM) was 

used to quantitate the lipid analytes. The advantage of this method over the ordinary least 

squares estimation is the reliability of the computed amounts of constituents at low 

concentrations.203 

 Ridge regression (RR), on the other hand, is a variant of ordinary MLR whose 

goal is to circumvent the problem of independent variables collinearity.204 The regression 

coefficients in this algorithm procedure were obtained from: 

                                             c0 = a0 KT (KKT + kI) -1                                             (11) 

where k is a positive number (usually 0 <k <1) and I is the m x m identity matrix. 

Comparison of this expression with equation (5) reveals that a constant is added to the 

diagonal elements of the KKT matrix of the normal equations. With k = 0, the least 

squares solution is obtained as in equation (5).205 Hoerl and Kennard206 suggested 

selecting a value of k by an examination of a ridge trace, which is a plot of the regression 

coefficients for different values of the ridge parameter. The value of k was chosen at a 

point where the regression coefficients should start to stabilize and that the root mean 

square error of prediction (RMSEP) should decrease.      
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4.1.4.2 SOFT MODELING METHODS: PRINCIPAL COMPONENT 

REGRESSION (PCR) AND PARTIAL LEAST SQUARES (PLS) 

The methods of soft modeling are based on the inverse calibration model (i.e. PM 

approach) where concentrations are regressed on spectral data: 

                                               C = AB                                                             (12) 

C and A are again the n x m concentration and n x p absorbance matrices, respectively, 

and B is the p x m matrix of regression or B-coefficients. 

PCR is best performed by means of SVD (singular value decomposition). This 

method involves the decomposition of the absorbance matrix A into two orthogonal 

matrices U and V joined by a diagonal matrix W of singular values: 

                                             A = UWV T                                                             (13) 

Estimation of the matrix of regression coefficients B is performed column-wise by use of: 

                                                  b = A+c                                                               (14) 

with A+ being the pseudo-inverse of the absorbance matrix A.202 

Details of the PLS method can be referred to Otto.202 It involves the 

decomposition of A and C according to: 

         A = TPT + E                               (15) 

           C = UQT + F                                             (16) 
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where T and U are the n x d scores matrices containing orthogonal rows; P are the p x d 

loadings of the A matrix; E is the n x p error (residual) matrix of A matrix; Q is the m x d 

loading matrix of the C matrix; and F is the n x m error (residual) matrix for the C matrix. 

 Computation of the B-coefficients for the general model gives: 

             B =W (PTW) -1QT                                                   (17) 

with W as d x p matrix of PLS-weights. 

All chemometric calculations were done in MATLAB using Chemometrics 

Toolbox.199  

4.1.4.3 NEURAL NETWORKS 

  Neural network is divided into three layers comprised of input, hidden layers, and 

output. The input parameters are the absorbance at specified wavelengths. The 

parameters are connected to neurons in the hidden layer. The number of hidden layers 

and the number of neurons in each layer is flexible and is determined by the examination 

of errors in the results in the output layer in terms of concentrations. A basic network 

design is show in Fig. 10. More detailed information about neural network can be found 

in Hagan et al.207 Neural network was performed using the JMP Software 

Package.208

 

Fig. 10.  Example of a basic neural network design. 

 

SPECTRUM PARAMETERS HIDDEN LAYER CONCENTRATIONS 
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4.1.4.4 GENETIC ALGORITHM PARTIAL LEAST SQUARES (GAPLS)  

 PLS is known to treat very large data matrices, extracting the relevant part of the 

information and producing reliable but very complex models.209 Previously, PLS was 

considered to be almost insensitive to noise, and therefore it was commonly stated that no 

feature selection at all was required.210 However, over two decades ago, it has been 

widely recognized that a feature selection can be highly beneficial since a double goal can 

be achieved: improve the predictive ability of the model and highly simplify it.211  

 Genetic algorithms (GA) have been shown to be successful in selecting the most 

important features.212-223 The first applications were reported around 1960 when Holland 

introduced the method.224 It is, however, only since the 1980s that the number of 

publications increased exponentially, mainly due to advances in the computer 

technology.225 

 GA’s ultimate goal is the optimization of a given response function. These 

algorithms are inspired by the theory of evolution: in a living environment, the “best” 

individuals have a greater chance to survive and a greater probability to spread their 

genomes by reproduction. The mating of two “good” individuals causes the mixing of 

their genomes, which may result in a “better” offspring. The terms “good”, “best”, and 

“better” are related to the fitness of the individuals to their environment.215 

 The GA consists of five steps which include creation of the initial population, 

fitness evaluation, the stop condition check, crossover, and mutation. These steps are 

explained in short details below. In GA, a chromosome is defined as a bit vector where 

every gene (bit) equals inclusion (1) or exclusion (0) of the spectral data for a certain 
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number of wavelengths defined by the window size in the model. The fitness evaluation to 

mutation steps are repeated until the stop condition is achieved.226 

 In the initial step, a population of random chromosomes is created in accordance 

to given probabilities for each gene to be active as defined by the initial probability-

variable.  Thereafter, fitness is measured as the inverse of the root mean square error of 

cross validation (RMSECV) value for the model based on the chromosome in question.226 

 The GA will stop when the amount of chromosomes defined by the convergence 

stop criterion is equal or when the maximum allowed number of generations, defined by 

the maximum number of generations-variable, is reached. Following the stop condition 

check, crossover follows wherein first as many of the fittest chromosomes, as defined by 

the elitism value, will be copied to the child generation. Consequently, the rest of the 

children will be generated by repeated crossover of two parent chromosomes selected 

randomly so that a chromosome with a high fitness value have a higher probability to be 

selected than one with a low fitness value. Single-point or uniform crossover can be used. 

The crossover probability defines the probability that each gene will be switched between 

the two parent chromosomes in the case of uniform crossover.226 

 After crossover, mutation follows. Two forms of the mutation operator called 

“gene” and “chromosome” were implemented. In the first one, mutation probability 

defines the probability for each gene to switch state in all of the child chromosomes, 

except those selected by elitism. The mutation probability variable gives in the second 

one the probability to switch, from a randomly chosen point, the state of the next 25% of 

all genes in the chromosome. Consequently, the switching stops if the end of the 
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chromosome is reached.226  

 The performance of the model is gauged by measuring the RMSEP and RMSECV 

using equation (2).226 PLS1 regression method was used in GA method. GAPLS was done 

in MATLAB using the partial least squares-genetic algorithm (PLS-GA) Toolbox by 

Leardi.227, 228 Appendix I shows the default parameters used for such algorithm. GAPLS 

was run three times for each trial and the average results were determined for the three 

trials. 

4.1.5 GAS-CHROMATOGRAPHIC (GC-MS) QUANTITATION OF SERUM 

SAMPLES 

Validation was done by quantitating the same serum samples using GC-MS 

detection. Blood serum was esterified using the method given by Guy Lepage and C. 

Roy.229 A 1 µl of the upper benzene phase of the esterified serum was chromatographed 

as methyl esters on a 30-m fused silica column with an internal diameter of 0.320 mm. 

The column was wall-coated with 0.25 mm DB-23. Analysis was performed on a 

Shimadzu (GCMS-QP2010) gas chromatograph. Helium was used as the carrier gas. The 

injection temperature was held at 250°C, and the column oven temperature of 50°C. 

Splitless injection mode was used, and the oven temperature program was held for 2.0 

minutes at 50°C and then raised 180°C at 10°C/min. After a 5.0 minute hold, the 

temperature was raised to 240°C at a rate of 5.0°C/min and held for 13 minutes. Peaks 

were identified by the use of pure reference compounds. Six PUFAs from 18 to 22-

carbons were identified. 
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4.1.6 SPIKING OF HUMAN SERUM SAMPLES AND SYNTHETIC SETS 

 An attempt was also made of spiking the human serum samples with standard 

solutions of the individual fatty acids. Table 6 shows the molar concentrations of the fatty 

acids used to build the calibration model for the spiking of human serum samples. The 

concentration matrix was designed so as to obtain a spectral absorbance increment 

response between 0.1 and 1.2 absorbance units. The incremental absorbance responses 

for the additions are plotted with concentrations at different wavelengths, and the 

resulting slope is used as the molar extinction coefficient to determine the unknown 

serum molar concentrations. NNLS was used to determine the concentrations in the 

human serum samples. Spiking was also performed in a 7-component mixture (Mix 128, 

Table 4), and the RMSEP was determined according to equation (2). The concentrations 

of the samples for the spiking of the synthetic set were determined using NNLS, OLS, 

and RR as described in 4.1.4.1. 

Table 6. Molar concentration matrix used to build a calibration model for the spiking of 
human serum model. 
 Cholesterol LA LNA AA EPA DHA CLA 
addition1 1.89E-05 1.89E-05 1.94E-05 1.82E-05 1.87E-05 1.94E-05 1.90E-05 
addition2 3.74E-05 3.75E-05 3.83E-05 3.61E-05 3.71E-05 3.85E-05 3.76E-05 
addition3 5.56E-05 5.57E-05 5.7E-05 5.36E-05 5.52E-05 5.73E-05 5.59E-05 
addition4 7.34E-05 7.36E-05 7.53E-05 7.08E-05 7.29E-05 7.56E-05 7.39E-05 
addition5 9.09E-05 9.12E-05 9.32E-05 8.77E-05 9.03E-05 9.37E-05 9.15E-05 
 
4.2 VEGETABLE OILS 
 
4.2.1 VEGETABLE OIL TRAINING, PREDICTION, AND UNKNOWN SETS    

Oleic, linoleic, and linoleic fatty acid methyl esters should be as close as possible 

in concentration ranges of 0.0025 to 0.02 M in chloroform solutions in order to maintain 

the absorbance units from 0.1 to 1.2. It should be noted that the linolenic acid discussed 
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throughout in this paper refers to the alpha form. Tables 7 and 8 show the actual molar 

concentrations of the training and prediction set standards prepared. These sets were also 

used as training and prediction sets in human serum analysis adding oleic as the eighth 

component. Olive and sunflower oil samples were used as unknown sets. All samples 

were obtained from Sigma-Aldrich. 

       Table 7.  Oleic, linoleic, and linolenic fatty acid methyl esters (FAME)  
         training matrix by central composite and simplex lattice designs in chloroform  

solutions. 
 Oleic Linoleic Linolenic 

Mixture 1 8.31E-03 2.42E-03 1.92E-02 
Mixture 2 1.91E-02 1.90E-02 2.33E-03 
Mixture 3 8.31E-03 1.90E-02 2.33E-03 
Mixture 4 8.31E-03 2.42E-03 2.33E-03 
Mixture 5 1.91E-02 2.42E-03 2.33E-03 
Mixture 6 1.72E-02 1.71E-02 1.74E-02 
Mixture 7 8.31E-03 2.42E-03 1.92E-02 
Mixture 8 8.31E-03 1.90E-02 1.92E-02 
Mixture 9 1.37E-02 1.07E-02 2.33E-03 

Mixture 10 1.37E-02 1.07E-02 1.92E-02 
Mixture 11 1.37E-02 1.90E-02 1.08E-02 
Mixture 12 1.37E-02 2.42E-03 1.08E-02 
Mixture 13 1.91E-02 1.07E-02 1.08E-02 
Mixture 14 8.31E-03 1.07E-02 1.08E-02 
Mixture 15 1.37E-02 1.07E-02 1.08E-02 
Mixture 16 1.37E-02 1.07E-02 1.08E-02 
Mixture 17 1.37E-02 1.07E-02 1.08E-02 
Mixture 18 1.37E-02 1.07E-02 1.08E-02 
Mixture 19 1.37E-02 1.07E-02 1.08E-02 
Mixture 20 1.37E-02 1.07E-02 1.08E-02 
Mixture 21 1.43E-02 2.42E-03 2.33E-03 
Mixture 22 9.55E-03 1.90E-02 2.33E-03 
Mixture 23 9.55E-03 2.42E-03 1.92E-02 
Mixture 24 1.24E-02 6.67E-03 2.33E-03 
Mixture 25 8.31E-03 1.24E-02 2.33E-03 
Mixture 26 1.24E-02 2.42E-03 6.65E-03 
Mixture 27 8.31E-03 2.42E-03 1.24E-02 
Mixture 28 8.31E-03 1.24E-02 6.65E-03 
Mixture 29 8.31E-03 6.67E-03 1.24E-02 
Mixture 30 8.31E-03 6.67E-03 2.33E-03 
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        Table 8. Oleic, linoleic, and linolenic fatty acid methyl esters prediction  
   matrix by an independent simplex lattice design in chloroform solutions. 

 Oleic Linoleic Linolenic 
Mixture 1 1.24E-02 3.45E-03 3.50E-03 
Mixture 2 8.42E-03 1.73E-02 3.50E-03 
Mixture 3 8.42E-03 3.45E-03 1.75E-02 
Mixture 4 1.40E-02 7.48E-03 3.50E-03 
Mixture 5 1.01E-02 1.44E-02 3.50E-03 
Mixture 6 1.40E-02 3.45E-03 8.16E-03 
Mixture 7 1.01E-02 3.45E-03 1.34E-02 
Mixture 8 1.01E-02 1.44E-02 8.16E-03 
Mixture 9 1.01E-02 7.48E-03 1.34E-02 

Mixture 10 1.01E-02 7.48E-03 3.50E-03 
 

4.2.2 ANALYSIS OF FAME STANDARDS AND VEGETABLE OILS USING THE 

ASSAY AND VALIDATION 

The procedure for the acetyl chloride/perchloric acid (AC/PA) color assay 

reaction is conceptually simple. It entails placing a 10 microL aliquot of the fatty acid 

methyl esters (FAME) standards or vegetable oils into a 13 x 100 mm borosilicate 

disposable test tube, followed immediately by the careful addition of 1.0 mL AC then 40 

microL of PA. The test tube is sealed tightly with parafilm and gently shaken for 20 

seconds. The supernate is then transferred by pipette to a 10 mm pathlength optical glass 

cuvette and placed in the sample holder of a diode-array spectrophotometer (HP8452A). 

Analysis is done after 15 minutes from 350-550 nm at every 2 nm and 5 s integration 

time. Using the developed calibration matrix, the FAME standard concentrations in 

prediction sets and vegetable oils were determined using the chemometric techniques. 

The obtained chemometric molar concentrations were then validated with the existing 

USDA database concentrations.37 
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4.2.3 CHEMOMETRIC ANALYSES OF VEGETABLE OIL TRAINING, 

PREDICTION, AND UNKNOWN SETS    

The training, prediction, and unknown set spectra were deconvoluted using 

various chemometric algorithms. The KM, NN, PCR, and PLS algorithms were utilized 

in this study. Mean centering was performed prior to the chemometric analyses. 

Chemometric analyses were performed in MATLAB using Chemometric Toolbox.199 

Neural network was performed using the JMP Software Package.208 

Determining the number of factors (rank) to be used in the calibration is a key 

step in both PCR and PLS. To select the number of factors for PLS and PCR methods, 

the cross validation, leaving out one sample at a time, was used. This process was 

repeated 29 times, until each sample had been left out once. The PRESS was used to 

determine the optimum number of factors in both algorithms as given by equation (1) on 

page 44.199  

The plot of the PRESS values as a function of the number of factors indicates the 

rank to be used in the calibration. The RMSE is also calculated for each algorithm. The 

general equation is given by equation (2) on page 44. The model with the minimum 

values for the RMSE indicated the appropriate model. 

4.3 FOOD AND BIOLOGICAL SAMPLES 

 Various food and biological samples were treated with the Purdie assay with the 

same procedures as mentioned in 4.2.2 and pattern recognition was used to determine 

whether the assay can discriminate samples according to their types.  These said samples 

include fat free milk, chicken liver, chicken, Braum’s chocolate whole milk, salmon, 
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veal, ham, Heart Healthy Butter, egg yolk regular and free range, beef, ω-3 enriched oil, 

salmon in can, chicken dried, salmon dried for longer period of time, and turkey. All 

samples were purchased from Walmart. The solid samples were measured in uniform 

masses of 0.025 grams so as not to exceed 1.2 absorbance units. Liquid samples were 

also scaled so as not to exceed the sample absorbance of 1.2 absorbance units. 

 The pattern recognition technique used in this study, principal component analysis 

(PCA), is an unsupervised multivariate statistical method useful for reducing 

multidimensional data down to 2 or 3 dimensions that can readily be comprehended. The 

graphical representations presented utilize the first 2 or 3 principal components as the 

axes. Using PCA, the resulting principal components were plotted versus each other to 

produce 2- and 3-dimensional representations of the data to determine if any clustering 

patterns were separable. If a pattern was seen, then hierarchical cluster analysis was used 

to group together the data points using the JMP software package.208 In cluster analysis, 

the process will start with one piece of data and combines groups based on distances from 

one another in the principal component space.202 The cluster analysis in this study was 

agglomerative hierarchical with Ward’s method being used for the distances.
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

Part of this chapter has been published in the Journal of Biotech Research, the 

Lecture Notes in Engineering and Computer Science, and the Lipid Technology Journal 

and appears in this dissertation with the journals’ permission.1-4, 230 

5.1 HUMAN SERUM SAMPLES 

5.1.1 CHEMOMETRIC ALGORITHMS APPLIED TO HUMAN SERUM 

Figure 11 shows the comparison of the root mean square error of prediction 

(RMSEP) for the seven different algorithms in each lipid analyte as calculated according 

to equation (2). It is very clear that the non-negative least squares (NNLS) algorithm 

when applied to K-matrix yielded lower RMSEPs than their ordinary regression 

approaches. It is well known that the introduction of physically induced constraints 

reduces the error amplification factor of so-called incorrectly posed problems (highly 

sensitive to measurement errors), sometimes by an order of magnitude.231, 232 Gayle and 

Bennet233 showed examples demonstrating the advantages of NNLS. Jochum and 

Schrott234 also showed in their study the striking advantage of NNLS and its reliability of 

the computed amounts of constituents at low concentrations. The large RMSEPs 

contributed by the K-matrix approach is very evident in Figure 11. Though this approach
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offers the advantage of representing the genuine absorptivities with reference to the 

spectra of the individual constituents as shown in Figure 12, it does, however, have the 

disadvantage in that the calibration and analysis are connected to the inversion of a 

matrix.201 Although this is not a problem from the point of view of computational time, it 

might become a problem if ill-conditioned (less selective) systems are applied, where the 

spectra of the constituents are very similar.202 In Figure 12, it is evident that several 

constituents have similar spectra save for cholesterol and conjugated linoleic. The RR 

technique was attempted in order to improve the prediction errors in such cases. The 

ridge parameter obtained by using the value of k = 5.00E-7, which is the value taken from 

the plot of the standardized ridge coefficients vs. ridge parameter (Figure 13) resulted in 

improved results in the RMSEPs over the ordinary K-matrix least squares solution as 

shown in Figure 11. In a comparative simulation study by Frank and Friedman,235 it was 

shown that often the RR performs as well as PCR or PLS, all of them outperforming 

multiple linear regression (MLR) with forward variable selection. 

 

Figure 11. RMSEP comparison for each algorithm comparing the different lipid  
analytes. 
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Figure 12. Molar absorptivities of the seven lipid analytes determined by the K- 
matrix model. 
 
An alternative to the K-matrix approach is to calibrate the concentrations directly 

on the spectra. This is known as the P-matrix approach (or inverse model). A 

disadvantage of this calibration method is that the calibration coefficients (elements of 

the P-matrix) have no physical meaning, since they reflect the spectra of the individual 

components. Figure 14 shows the P-matrix regression coefficients obtained from the 

seven lipid analytes. It is evident in Figure 11 that the P-matrix technique also yielded 

comparable results with that of PCR and PLS. The P-matrix approach offers a slight 

advantage over the classical K-matrix approach because a second matrix inversion is 

avoided.202 One of the assumptions made in MLR is that the independent variables are 

truly independent. To the degree that this assumption is invalid, the resulting model 

parameters will be more affected by noise, eventually leading to loss of full rank.236 
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Attempts to eliminate this collinearity problem have led to such developments as PCR 

and RR. Among all algorithms attempted, P-matrix, PCR, and PLS performed quite 

equally well, exhibiting low RMSEP values. The number of factors in PCR in Figure 11 

might be high enough, but this number of factors was determined to be the optimum 

number after cross validation calculations. 

Figure 13. Plot of standardized coefficient vs ridge parameter for the RR approach. The 
point at which the ridge parameter, k = 5.00E-7, represents the optimum parameter value 
leading to lowest RMSEPs. 
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Figure 14. P-matrix regression coefficients obtained by using the P-matrix  
approach. 
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structural model (omission of regressors), the algorithm showed quite a robustness in 

these three inadequacies.  

An alternative diagram showing how the different constituents behave with 

respect to the different algorithms is shown by their RMSEPs in Figure 15. Clearly from 

Figure 15, cholesterol and conjugated linoleic yielded the lowest RMSEPs. As mentioned 

earlier, these analytes have distinctive characteristic spectra that could be clearly 

distinguished from the other lipid analytes (Figure 11). EPA, DHA, linolenic, and 

arachidonic exhibit similar spectra and, thus, yielded high RMSEPs.  

 
 
Figure 15. RMSEPs for the different algorithms as clustered in each lipid analyte. 
 

0 10 20 30 40 50 60 70 80

Cholesterol

Linoleic

Linolenic

Arachidonic

EPA

DHA

Conjugated

RMSEP (uM)

Li
pi

d 
A

na
ly

te

PCR  rank = 43

PLS2 rank = 18

P-Matrix

K-Matrix (RR k = 5e-7)

K-Matrix (NNLS)

K-Matrix (OLS)



64 
 

The PLS2 calibration coefficients were tested on some serum samples. The same 

serum samples were validated using GC-MS. Table 9 shows the comparison for the total 

ω-6 and ω-3 PUFA concentrations expressed as percentages and their ratios. It can be 

noted that the ω-6 and ω-3 total % concentration and the ratio of ω-6 to ω-3 were 

substantially identical between the two methods. Table 10 shows the comparison between 

the PLS and the standard enzymatic test for cholesterol. 

Table 9. Comparing ω-6 total conc % and ω-3 total conc % between PLS and GC-MS 
of five serum samples. 

Category -6 total 
conc % 

-6 total 
conc % 

-3 total 
conc % 

-3 total 
conc % 

-6/-3 total conc % 

Patient’s 
code 

PLS GC-MS PLS GC-MS PLS GC-MS 

P1 47.86 47.17 52.14 52.83 0.92 0.89 
P2 50.12 54.05 49.88 45.95 1.00 1.18 
P3 49.59 46.59 50.41 53.41 0.98 0.87 
P4 48.83 47.93 51.17 52.07 0.95 0.92 
P5 49.05 48.22 50.95 51.78 0.96 0.93 

 
   Table 10. Comparing cholesterol PLS and enzymatic test of five serum samples. 

Sample Cholesterol, PLS pred. 
(mg/dL) 

Cholesterol, Enzymatic 
(mg/dL) 

Percent Error 

P1 203.61 187 -8.88 
P2 207.27 188 -10.25 
P3 187.98 189 0.54 
P4 193.31 189 -2.28 
P5 174.05 163 -6.78 

  
5.1.2 PARTIAL LEAST SQUARES (PLS1) ALGORITHM APPLIED TO HUMAN 

SERUM 

Neural network (NN) was first attempted in this study. Using three hidden nodes, 

four number of tours, and with a 0.01 overfit penalty, the RMSEP in the training model 

was still considerably higher than any other algorithms. Though neural networks (NNs) 

can implicitly detect complex non-linear relationships between independent and 
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dependent variables, they suffer from disadvantages of being prone to “overfitting,” and 

are “black box” and have limited ability to identify possible causal relationships.247 

As with the previous results wherein PLS2 outperformed all other algorithms in 

the training model,230 partial least squares in the form of PLS1 yielded lesser RMSEP 

than PLS2 in the same training model in this paper after mean centering of the training 

data set (Figure 16). In PLS1, the highest RMSEP is obtained for DHA. The possibility of 

similarity in the molar absorbance spectra for EPA and DHA would be the reason why 

the RMSEP is higher for DHA (Figure 17). Nevertheless, this results show that despite 

similarities in the molar absorbance of the lipid components, the RMSEP of all 

components using PLS1 is still low as compared to other algorithms. 

 
Figure 16. 3-dimensional (3D) diagram of the RMSEP of the lipid analytes in each 
algorithm. PLS1 yielded the least RMSEP for all analytes. Other algorithms are identical 
as in previous result in 5.1.1 and are shown here for comparison purposes only.230 
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Table 11 below shows the RMSEP values comparing all algorithms as seen in 

Figure 16. It is apparent that PLS1 algorithm showed the lowest RMSEP for almost of all 

of the components as compared to other algorithms. 

Table 11. RMSEP (µM) values comparing all algorithms as seen in Fig. 16. (Linoleic 
acid (LA); linolenic acid (LNA); arachidonic acid (AA); eicosapentaenoic acid (EPA); 
docosahexaenoic acid (DHA); conjugated linoleic acid (CLA); ordinary least squares 
(OLS); non-negative least squares (NNLS); neural network (NN); principal component 
regression (PCR); partial least squares (PLS)). 
 Cholesterol LA LNA AA EPA DHA CLA 
K-matrix 
(OLS) 2.60 23.17 22.82 43.25 80.15 68.32 4.16 
K-matrix 
(NNLS) 2.39 25.78 16.24 28.63 39.75 29.45 4.01 
NN 3.63 21.97 5.84 17.74 8.34 5.25 21.50 
PLS1 1.46 3.14 1.35 3.06 1.67 5.94 1.60 
K-matrix 
(RR) 2.47 10.41 11.62 9.58 15.07 12.48 4.81 
P-matrix 0.83 5.16 2.27 4.71 5.25 6.97 0.88 
PLS2 5.29 5.27 3.66 2.80 3.59 5.64 1.65 
PCR 3.05 4.47 2.44 3.40 1.65 5.08 1.76 

Figure 17. Molar absorptivities of EPA and DHA determined by the K-matrix model as 
in 5.1.1.230 These are shown for comparison purposes only. 
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The PLS2 differs from PLS1 in the approach used to perform the signal 

decomposition and the regression analysis. Thus, PLS2 calculates the number of factors 

on all the components simultaneously and one weighed number of factors is optimized. 

PLS1 performs the optimization of the number of factors for only one component at a 

time. The application of PLS in spectroscopic data can be referred to some bibliographic 

references.209, 248-251 

Choosing the optimum number of factors in PLS1 is the key to obtain a good 

calibration model. The trick is to keep only those factors that contain analytical 

information. The discarded factors should contain only noise. If too many factors are 

kept, there is danger of overfitting the data and adding noise to the calibration. If there are 

not enough factors, a proper calibration model cannot be generated.199 

From Figures 18 and 19, it is readily apparent that prediction errors are minimized 

when calibrations are developed using the indicated number of factors as stated in the 

analyte’s respective figure captions. The obtained PLS2 and PLS1 calibration models 

were applied to five serum samples obtained from HMC. Save for conjugated linoleic, all 

lipid components yielded positive molar concentrations in PLS1. As compared to the 

previous result wherein PLS2 used 18 factors,230 the factors were reduced to an optimum 

number of 6 in PLS2 in this paper. The possibility of including a wide range of 

cholesterol and PUFAs concentration ranges calibration matrix is still collected, and 

when done, this assay will serve as a direct, time and cost saving method for 

simultaneously quantitating cholesterol and PUFAs in human serum. 
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Figure 18. Plot of PRESS vs ranks for cholesterol and conjugated linoleic. 6 and 4 factors 
were chosen for cholesterol and conjugated linoleic, respectively. 

 
In Table 12, molar concentrations of cholesterol, linoleic, linolenic, arachidonic, 

EPA, and DHA compared quite equally well with the GC-MS method. In Table 13, molar 

concentrations of conjugated linoleic compared quite equally well with the first two 

samples but not with the remaining three. CLA in normal physiological human serum 

exists in low concentrations (10-70 µM) as compared to other fatty acids, linoleic (2270-

3850 µM), -linolenic (50-130 µM), arachidonic (520-1490 µM), EPA (14-100 µM), and 

DHA (30-250 µM).168, 252 This would be the most probable reason of the negative molar 

concentrations for the PLS1 in CLA. 
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Figure 19. Plot of PRESS vs ranks for linoleic, linolenic, arachidonic, EPA, and DHA 
with ranks 3, 8, 17, 7, and 3, respectively. 

 

Although successful, especially, in comparing relative percentage change in fatty 

acids for clinical studies, GC’s disadvantages include the derivatization steps which can 

alter the structure of the fatty acid or create side-products that can overlap with the 

analytes needed.253 Short chain fatty acid methyl esters can be eluted quickly and 

missed.254 Also, the procedures are quite labor intensive. It is also difficult to obtain 

meaningful concentrations when using only a limited number of standards. These 

limitations strengthen the case for the development of this simple and direct method 

assay that does not require separation and reacts directly with the PUFAs. 
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Table 12. PLS1 molar concentrations of cholesterol, linoleic, linolenic, arachidonic, EPA, 
and DHA in human serum samples compared to GC-MS. 
 PLS1 GC-MS % 

Difference 
PLS1 GC-MS % 

Difference Cholesterol Linoleic 
P1 4.21E-03 4.09E-03 2.89 2.08E-03 1.98E-03 4.89 
P2 3.25E-03 3.01E-03 8.13 3.27E-03 2.87E-03 14.0 
P3 2.25E-03 2.39E-03 6.05 2.87E-05 3.19E-05 9.88 
P4 3.13E-03 3.39E-03 7.55 2.62E-03 2.44E-03 7.18 
P5 3.11E-03 3.19E-03 2.41 2.06E-03 3.01E-03 31.4 
  Linolenic  Arachidonic  
P1 3.13E-05 2.67E-05 17.2 1.46E-03 1.50E-03 2.42 
P2 3.83E-05 3.48E-05 10.0 2.86E-04 2.52E-04 13.7 
P3 5.79E-04 5.31E-04 9.05 2.40E-03 2.31E-03 3.84 
P4 5.76E-05 6.10E-05 5.58 2.86E-04 2.52E-04 13.7 
P5 3.75E-05 6.16E-05 39.1 9.70E-05 1.38E-04 29.7 
 EPA  DHA  
P1 2.83E-03 3.52E-03 19.5 2.28E-03 2.73E-03 16.5 
P2 4.05E-03 4.30E-03 5.86 9.77E-04 1.05E-03 6.91 
P3 2.39E-03 2.97E-03 19.6 1.80E-03 1.83E-03 1.81 
P4 2.10E-03 1.85E-03 13.3 1.74E-03 2.77E-03 37.1 
P5 2.17E-03 2.20E-03 1.39 1.80E-03 1.60E-03 12.3 

 
         Table 13. PLS1 molar concentrations of conjugated linoleic in human  
         serum samples compared to GC-MS. 

 PLS1 GC-MS % Difference 
P1 1.22E-04 1.21E-04 0.67 
P2 5.10E-04 5.17E-04 1.39 
P3 -8.26E-05 5.70E-04 - 
P4 -4.12E-04 1.03E-04 - 
P5 -5.63E-04 7.05E-05 - 

 
5.2 VEGETABLE OIL SAMPLES 

The molar absorbance spectra for oleic, linoleic, and linolenic fatty acid methyl 

esters obtained using the training set are shown in Fig. 20. Central composite design and 

simplex lattice design training sets were used because they have demonstrated to be a 

useful method in formulations of experiments, fits nicely into the sequential 

experimentation that is involved with the experimental design, requires fewer 

experiments, and provides convenience and high accuracy.255-257 It is readily apparent 
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that linoleic and linolenic molar absorbance spectra are six times greater than that of the 

oleic. Oleic is characterized by two smooth valley type peaks found at 368 and 442 nm. 

Linoleic, on the other hand has maxima that occur at 376 and 426 nm. Linolenic has two 

maximum peaks also occurring at 376 and 426 nm, with the latter peak about 1000 molar 

absorbance more than the 426 nm peak of the linoleic. It is also apparent from Fig. 20, a 

small shoulder is found at 444 nm for linolenic.  

Oleic fatty acid is a monounsaturated fatty acid with a double bond occurring at 

carbon 9 relative to the -COOH terminal. Linoleic, on the other hand has two double 

bonds occurring at carbons 9 and 12; while linolenic has three double bonds found at 

carbons 9, 12, and 15 all relative to the -COOH terminal (Fig. 21). The most probable 

reason why the molar absorbance of oleic is buried under that of linoleic and linolenic 

fatty acids is due to its monounsaturated property. 

 The first attempt of deconvoluting the spectra is by the KM model. However, the 

KM approach yielded RMSEP high enough that the regression coefficients may yield 

high errors in the actual sample sets. The RMSEP is especially useful in comparing the 

prediction errors of the different regression models.258 A high RMSEP (greater than 10 

µM) as in this study simply means the regression model will give high errors in the 

unknown set samples. It is observed that there are less samples (n=30) in the training sets 

than the number of variables (p=101). In such case, the KM calibration model has limited 

applicability, yielding high RMSEP.259 Although KM approach offers the advantage of 

estimating the true constituent spectra of the components in the training sets, it has, 

however, the disadvantage of requiring the knowledge of the concentrations of all 

interfering chemical constituents with a spectral profile in the training set and that the 
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calibration and analysis are connected to the inversion of the matrix.235, 260

 

Fig. 20.  Molar absorbance spectra of oleic, linoleic, and linolenic fatty acids  
obtained by the K-matrix chemometric approach. 

Fig. 21.  Structures of oleic, linoleic, and linolenic fatty acids. 
 

NN was next attempted in the study using 3 hidden nodes and 200 maximum 

iterations. NN improved the RMSEP over the KM approach yet not low enough to be 

used for the unknown sets (Fig. 22). NN offers the disadvantage of requiring a large 

amount of data to ensure that the results are statistically accurate and the networks adapt 

their analysis of data in response to the training which is connected to the network.261  
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Fig. 
Fig. 22.  RMSEP of oleic, linoleic, and linolenic fatty acid methyl esters compared against 
the different  algorithms. 

 

PCR and PLS algorithms were then attempted to obtain their RMSEPs, and the 

results are satisfying over the KM and NN models. A quite equal performance for PCR, 

PLS2, and PLS1 algorithms were obtained for their respective RMSEPs (Fig. 22). PLS 

differs from PCR in that it uses the concentration data from the training set and the 

spectral data in modeling, whereas PCR only uses the spectral data.262 However, the 

solutions and hence the performance of PLS and PCR tend to be quite similar in most 

situations, largely because they are applied to problems involving high collinearity.235 

A decision about the number of suitable PLS/PCR factors is necessary. Too few 

factors lead to underfitting leading to inadequate predictions, since the information 

extracted by the model is not enough to explain the data. On the other hand, too many 

Oleic
Linoleic

LinolenicNeural Network

PCR

PLS1

PLS2

K-Matrix

0

20

40

60

80

100

120

140

160

180

RMSEP (uM)

Lipid Analytes

Algorithms

Neural Network

PCR

PLS1

PLS2

K-Matrix



74 
 

factors leads to overfitting, that is, the model cannot be generalized to new data that did 

not contribute to the model construction.263 

For PCR, 6 factors were used for the model while 18 factors were used for PLS2. 

For PLS1, 5, 6, and 12 factors were used for oleic, linoleic, and linolenic, respectively 

(Fig.23).  These factors were chosen based on the plot of PRESS vs number of 

factors/rank chart as shown in Fig. 23. 

 
Fig. 23.  PRESS chart for oleic, linoleic, and linolenic fatty acid methyl esters. 5, 6, and 
12 factors were chosen for oleic, linoleic, and linolenic, respectively, in PLS1. 
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The plot with the lowest PRESS indicated the number of factors to be used for 

PLS1. After choosing the number of factors for each algorithm, the RMSEP was calculated 

to indicate the appropriate model. The model(s) with the lowest RMSEP indicated to be the 

appropriate model to be tested for the unknown samples. 

After choosing the number of factors for PCR, PLS2, and PLS1 algorithms (Fig. 

23), the obtained regression coefficients were applied to determine the molar 

concentrations of olive and sunflower oil samples. In Table 14, PLS2 yielded the lowest 

% error for oleic but not so much difference with PLS1 and PCR. For linoleic, PLS2 also 

yielded the lowest % error compared to PLS1 and PCR algorithms. In Table 15, PLS2 

also yielded the lowest % error for oleic while PCR yielded the lowest % error for 

linoleic. Based on the obtained results, PLS2 mostly yielded a better performance than 

PLS1 and PCR algorithms.      

Table 14. Molar concentrations of oleic linoleic, and linolenic fatty acid methyl esters in 
olive oil samples compared using the three most robust algorithms. 

Component PLS2 Database % 
Error 

PLS1 Database % 
Error 

PCR Database % 
Error 

Oleic 1.50E-02 2.37E-02 36.7 1.49E-02 2.37E-02 37.2 1.46E-02 2.37E-02 38.3 
Linoleic 1.06E-03 1.05E-03 -1.3 9.17E-04 1.05E-03 12.7 9.99E-04 1.05E-03 4.9 
Linolenic 1.50E-03 0 - 1.47E-03 0 - 1.50E-03 0 - 

 
 
 Table 15. Molar concentrations of oleic linoleic, and linolenic fatty acid methyl esters in 

sunflower oil samples compared using the three most robust algorithms. 
Component PLS2 Database % 

Error 
PLS1 Database % 

Error 
PCR Database % 

Error 
Oleic 2.08E-03 2.30E-03 9.6 6.88E-03 6.10E-3 -12.7 1.09E-03 2.30E-03 52.5 
Linoleic 4.41E-03 3.84E-03 -14.9 1.27E-02 1.06E-2 -19.9 4.20E-03 3.84E-03 -9.4 
Linolenic 8.59E-04 0 - 1.11E-03 0 - 5.85E-04 0 - 
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Normally we expect PLS1 to give a better model than PLS2. However, PLS2 

gives better results than PLS1 especially if the analyte concentrations are strongly 

correlated.259 Noticeable zero concentrations were obtained for linolenic fatty acid using 

the USDA database for the primary reason that it exists in low quantities in vegetable oil 

samples relative to both oleic and linoleic.176-178, 260  

Expanding the training and prediction sets and testing the PLS and PCR 

algorithms to other types of vegetable oil samples would probably improve the 

differentiation as to which algorithm would be the most appropriate one to be employed 

in this study.  

As part of an unpublished work and will be discussed herewith, an attempt was 

made of using PCA and cluster analysis to determinate the capability of the Purdie Assay 

to discriminate the prepared training set of vegetable oils made by central composite 

design (Table 6, mixtures 1 to 20). PCA was first performed in spectral data (20 samples 

x 101 variables matrix) of synthetic vegetable oil mixtures in chloroform solutions 

consisting of oleic, linoleic, and linolenic samples. Central composite design consists of 

two-level full factorial, star, and replicate designs and was used in this study because it is 

considered to be economical205 and has several advantages over the three-level design in 

that the total number of runs in the former is frequently less than that required for a three-

level full factorial factorial design. For example, with p = 5 variables, 243 runs would be 

required for the three-level full factorial design, whereas with single replicates for the 

cube and star portions and four center points, the total number of runs required for a 

central composite design would 16 + 10 + 4 = 30. A second advantage of the mentioned 
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design is that it lends to a sequential approach to experimentation, since it can be built in 

sections.264  

The spectral data matrix for the central composite design was decomposed in 

PCA by singular value decomposition algorithms according to the equation below:205 

  (18) 

   
where X  is an n (=20) spectra at p (=101) wavelengths; C, 20 x 3 concentration matrix; 

ST, 3 x 101 matrix of the pure spectra (n=20 is the number of mixture spectra, nc(=3) is 

the number of components, and p(=101) is the number of wavelengths). Eq. (18) shows 

the decomposition of the spectral matrix in real factors, a product of ST of the spectra with 

a matrix C of concentration profiles. 

By decomposing matrix X with a PCA as many significant principal components 

(PCs) should be found as there are chemical species in the mixtures.205 

The decomposition in the wavelength space, for a system with three components 

is given by: 
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      Eq. (19) shows the decomposition of the spectral matrix in abstract factors T* 

and V*T (E is the error). The score matrix T* gives the location of the spectra defined by 

the three principal components. 
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      In this study, all spectral wavelengths (350-550 nm) were used and consequent 

variable reduction was performed as discussed earlier. For 101-dimensional space, 

feature reduction was performed to a 2-dimensional data and the resulting principal 

components, PC1 and PC2 were plotted against each other. The first two PCs were used 

in this study for they retain the largest information and the most variations.205 After 

plotting the first two PCs, agglomerative hierarchical clustering using Ward’s algorithm 

was performed. The method starts with each point as its own cluster. At each step the 

clustering process calculates the Ward’s distance between each cluster and combines the 

two clusters that are closest together. This combining continues until all the points are in 

one final cluster.196 Specifically, for clusters Sw1 and Sw2 whose cardinalities are Nw1 and 

Nw2 and centroids cw1 and cw1, respectively, Ward’s distance is defined as: 

)2,1(
21

21)2,1( wcwcd
wNwN

wNwN
wSwSdw


                     (20)  

where d(cw1, cw2 ) is the squared Euclidean distance between  cw1 and cw2. 265 Fig. 24 

shows the dendogram resulting from hierarchical clustering. Each number corresponds to 

the clusters containing the samples of similar observations. Ward’s method was used in 

this study for it leads to well-structured dendograms. There are no completely satisfactory 

methods for determining the number of population clusters for any type of cluster 

analysis. In this study, the number of clusters was determined by using a Scree Plot found 

below the dendogram in Fig. 24. The place where the Scree Plot changes from a sharp 

downward slope to a more level slope is an indication of the number of clusters. Five 

clusters were identified corresponding to different levels of the prepared lipids according 
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to the central composite design of synthetic sets. The resulting plot of PC1 versus PC2 

and the resulting clusters with 0.90 confidence density ellipses are shown in Fig. 25. 

 Cluster 1 consisting of mixtures 1, 7, and 10 is characterized by low oleic and 

linoleic, and high linolenic concentrations. Cluster 2 comprising of mixtures 4, 5, 9, and 

12 consists of low concentrations in all three components. Cluster 3, on the other hand, 

consisting of mixtures 2 and 3, is high in oleic but low in linoleic and linolenic 

concentrations. Cluster 4 has mixtures 6, 8, and 11 consists of average oleic and high 

linoleic and linolenic concentrations. Lastly cluster 5 includes mixtures 13-20 and has 

average concentrations for the three components. The results indicate that the assay has 

the capability of discriminating patterns generated from different mixtures. 

 
Figure 24. Dendogram for vegetable oil central  
composite design training set. Below the diagram  
is the Scree Plot with five clusters. 
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Figure 25. Clusters corresponding to the dendogram in Fig. 24. Five clusters were  
identified corresponding to different concentrations of lipids prepared. 
 
The next work for this project will be to test a wide variety of actual vegetable oil 

samples to find out whether the assay can discriminate such samples according to the 

PUFA levels present in such. Once completed, the assay may provide a direct test to 

discriminate vegetable oil samples according to their PUFA contents. 

5.3 FOOD AND BIOLOGICAL SAMPLES 

Pattern recognition of several food and biological samples led to the 

discrimination of eleven clusters with each corresponding to the particular sample types. 

After hierarchical clustering, the Scree Plot was able to identify eleven clusters as shown 

in Figure 26. All of the information in this section is subject to change as more 

biological/food samples are analyzed. The general trend that we see to this point is that 

the samples cluster together according to their types (Fig. 27).  
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Cluster 1 consists of Walmart Fat Free Milk. Cluster 2 consists of chicken liver, 

chicken, and Braum’s Chocolate Whole Milk while cluster 3 has salmon and veal. 

Cluster 4 consists of ham and Heart Healthy Butter, cluster 5 has egg yolk regular and 

free range, while cluster 6 has beef. Omega-3 enriched oil, on the other hand belongs to 

cluster 7, salmon in can for cluster 8, chicken dried and salmon dried belong to cluster 9, 

while cluster 10 is a salmon dried for longer period of time.   

 
 

Figure 26. Dendogram for food and biological samples.  
Below the diagram is the Scree Plot with eleven clusters. 

 
Lastly, cluster 11 is a turkey sample.  The separation suggests that the pattern can 

be used to examine the patterns generated from different mixtures. Although an initial 

analysis of the clusters was completed, all of the following groups are subject to change 

as the fatty acid profile is increased and as more information about the background of 
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various food and biological samples is obtained. Further collection of the samples’ 

information including amounts of the different PUFAs and food processing conditions 

will have to be deduced to determine if this pattern recognition can be used as a screening 

tool to discriminate various biological and food samples according to their types and/or 

PUFAs contents. 

 
Figure 27. Clusters of different food and biological samples after treatment with the 
Purdie Assay. 
  

5.4 INCLUSION OF OLEIC ACID IN SYNTHETIC HUMAN SERUM SAMPLES 

 Oleic acid (OA) was included as the eighth component in the training and 

prediction sets of the synthetic human serum samples. Using the three most robust soft 

modeling methods consisting of PCR, PLS2, and PLS1, PLS1 is known to reduce the 

RMSEP for all the components (Fig. 28). However, the inclusion of a monounsaturated 

fatty acid (MUFA) led to a higher RMSEP than the ones without OA in all components 

(Table 16). It is readily apparent from Fig. 20 that OA has small molar absorbance 

spectrum relative to that of the cholesterol and PUFAs. This would be the most probably 

-4

-2

0 

2 

4 

6 

8 

PRI
N1 

-1.5 -1 -0.5 0 0.5 1 1.5 
PRIN2

1 

2 3 

4 5 

6 

7 8 

9 

10 

11 



83 
 

reason that despite attempts of trying out the most robust chemometric algorithms 

consisting of PLS1, PLS2, and PCR, the RMSEP for OA is relatively higher than most of 

the other components.  

 

Figure 28. RMSEP for the different components of human serum with the inclusion of 
oleic acid.  
 
 GAPLS was attempted as a solution to reduce the RMSEP for the eight-

component solution. We have given 101 variables for the training set. The GA was run 

for 101 variables (in the range 350-550 nm) using a PLS1 regression where the maximum 

number of factors allowed is the optimal number of components determined by cross-

validation on the model containing all the variables, and the selected variables were used 

for the running of PLS1. The GA used in this study was adapted from Leardi et al,227  

whose parameters are described in Appendix I. In order to obtain the optimum set of 
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wavelengths for the determination of the eight lipids, the GA procedure was repeated 

three times for each lipid component. Multiple GA runs were used because it was found 

out that multiple isolated runs can be advantageous than a single GA run by reaching the 

global solution using fewer function evaluations.266 Wavelength selection has clearly 

taken place, as indicated by the differences in selection frequency of the wavelength 

variables. Figure 29 shows the sample GA histogram of frequency of selection of each 

variable for cholesterol. The green horizontal line shows the cutoff for the model with the 

minimum RMSECV and is of interest in the study because of a larger number of 

variables selected.227, 228 Appendices II to IX show the complete trial GA histogram of 

frequency of selection of each variable for each component. Table 17 shows the selected 

common wavelengths by the GA approach for each component after three GA trial runs. 

RMSEP considerably reduced for all the components over the non-GA PLS1 

approach except for EPA and DHA (Table 16). The similarity in the spectra of EPA and 

DHA as seen in Fig. 17 might probably be the reason of the increase in RMSEP for EPA 

and DHA in GAPLS. It is also well established that high spectral overlap causes a large 

prediction error as evident in this case.267 Moreover, inspection of the selected 

wavelength variables revealed short intervals of selected wavelengths in Table 17 (12 and 

5 for EPA and DHA, respectively), which might indicate over-fitting.268  The average 

number of factors used for cholesterol, LA, LNA, AA, EPA, DHA, CLA, and OA  for the 

GAPLS approach were 4, 14, 9, 11, 5, 11, 7, and 19, respectively. 



85 
 

 
Figure 29. Histogram of frequency of selection of each variable for cholesterol. 
 
 
Table 16. RMSEP values for PLS1 with** and without* oleic. GAPLS was applied for 
the eight-component mixture and reduced the RMSEP for almost all of the components. 
 Cholesterol LA LNA AA EPA DHA CLA Oleic 
PLS1* 1.46 3.14 1.35 3.06 1.67 5.94 1.60  
PLS1** 1.66 13.28 4.41 7.61 7.67 6.20 3.70 17.47 
GAPLS 1.37 11.45 4.42 1.67 13.93 11.66 2.53 15.89 
 
Table 17. Selected common wavelengths by the GA approach for each component as an 
average of three GA trial runs.  
Component Number of 

wavelengths 
selected 

Selected common wavelengths (nm) in three trials  

Cholesterol 21 430-434, 438-440, 446-452, 492, 498, 502-514, 526-530 
LA 20 370-394, 458-468, 478 
LNA 33 366, 396, 416, 430-482, 488-492 
AA 52 356, 370, 382-406, 410-420, 430-486, 494-496 
EPA 12 414-436 
DHA 5 442-450 
CLA 16 374-386, 408-410, 422, 448-458 
OA 25 354, 358-362, 382-406, 412, 430-438, 480, 492 
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An attempt of combining EPA and DHA into one and determining the RMSEP will be 

the next approach in completing this project. Moreover, validation of GAPLS with GC-

MS and expanding the training and prediction sets will also be taken into consideration. 

Another interesting part of extending the project will be to use GA for other chemometric 

algorithms like PLS2, PCR, and MLR and compare the predictive ability of the models.  

5.5 SPIKING OF HUMAN SERUM SAMPLES AND SYNTHETIC SETS 

 Attempts were also done by spiking a human serum sample matrix with standard 

solutions of fatty acids. Molar concentrations of the individual fatty acids were added to 

fresh human serum samples independently at different increments as shown in Table 6. 

For each lipid analyte, the spectra resulting from the addition of the spikes were then 

subtracted with the spectra of the original human serum samples used to determine the 

increase in spectral response. A plot is then derived between absorbance values vs 

concentrations at each wavelength and the slope obtained then describes the molar 

absorbance value for such analyte at a specific wavelength. Figure 30 shows the 

absorbance spectra for cholesterol after subtraction of the original human serum sample 

from which it was spiked. As an example, the spiking procedure exhibited linearity 

especially at the wavelength of maximum absorption as shown in Figure 31 with R2 

values of 0.983, 0.9734, and 0.9902 at 362 nm, 420 nm, 520 nm peaks, respectively for 

cholesterol. Figure 32 shows the molar absorbance values obtained for the different 

components after the spiking procedure. The obtained molar absorbance values were then 

used to determine the concentrations of an unknown human serum sample using the 

NNLS method. Table 19 shows the molar concentrations of some human serum samples 

obtained using the spiking NNLS method. Due to the similarity in the spectra of EPA and  
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Figure 30. Absorbance spectra for cholesterol after subtraction of the original human 
serum sample from which it was spiked. 
 
DHA, the average molar absorbance spectrum was obtained from the two components, 

and was used to determine the concentrations of the unknown. The experimentally 

obtained cholesterol serum concentrations were then compared with the enzymatic 

concentrations determined independently by the OSU Seretean Wellness Center. Table 

18 shows this comparison of concentrations for the cholesterol component as an initial 

work. 

While we were able to obtain a comparison for the cholesterol analyte, comparing 

the concentrations for the other components with the GC-MS would be the next step in 

completing this project. However, due to the tedious task of spiking a human serum 

sample, this technique is not ideal in a typical clinical setting, especially if batches of 

samples will be analyzed.  
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Figure 31. Linearity of response at the three peaks of cholesterol after spiking of human 
serum samples. R2 values are 0.983, 0.9734, and 0.9902 for 362 nm, 420 nm, 520 nm, 
respectively. 

 
Figure 32. Molar absorbance from spiking of human serum samples using the spiking 
matrix from Table 6.  
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Table 18. Molar concentrations of actual human serum samples using the molar 
absorbance matrix obtained from Figure 32. EPA and DHA were averaged due to the 
similarity in the molar spectra. 
Components P1 P2 P3 P4 
Cholesterol 4.47E-03 4.24E-03 5.58E-03 3.71E-03 
LA 3.87E-03 3.84E-03 5.44E-03 1.70E-03 
LNA 0 0 0 0 
AA 3.06E-03 1.31E-03 7.91E-04 1.50E-03 
EPA/DHA average 3.83E-04 1.50E-03 2.78E-03 0 
CLA 0 0 0 0 
 
       Table 19. Cholesterol concentrations (mg/dL) comparison obtained  
       using the spiking matrix and the enzymatic tests. 

Patient Code Spiking Enzymatic Test % Error 
P1 172.99 180.00 -3.89 
P2 164.09 184.00 -10.82 
P3 215.95 226.00 -4.45 
P4 194.49 227.00 -14.32 

 
  Spiking was also performed in a 7-component synthetic mixture solution 

(Mixture 128 of full factorial design) using similar spiking matrix as in Table 6. Figure 

33 shows the obtained molar absorbance values from such experiment. These obtained 

molar absorbance values were then used to determine the RMSEP for an independent 

prediction set of Table 5 using the OLS, NNLS, and RR algorithms. Table 20 shows the 

RMSEP values comparing the three algorithms as seen in Figure 34 for the spiking 

procedure. Despite attempts of lowering the RMSEP, the prediction errors are 

considerably high enough to be used as training model to determine the unknown 

concentrations. Examining the condition number for Table 6 as a measure of error 

sensitivity, and as a criterion for data evaluation and experimental design, the value 

obtained was 1.98E4, which was high enough. When the condition number is a minimum 

(i.e. close to 1.00), small errors in the experimental measurements have the least effect on 

the unknown variables.269 Ideally, the condition number for the matrix experimental 

design of additions should be 1 to allow no amplification of error.203, 270 
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Figure 33. Molar absorbance from the spiking of a 7-component mixture using the 
spiking matrix from Table 6. 
 
Table 20. RMSEP (µM) values comparing the three algorithms for the spiking procedure. 
Spiking (OLS) 24.89 46.75 33.86 365.87 37.69 212.84 36.66 
Spiking (NNLS) 24.53 47.69 33.95 199.11 18.04 120.51 38.02 
Spiking (RR k = 
5e-7) 

22.45 67.59 30.43 101.45 14.63 76.02 26.19 

 

 
Figure 34. RMSEP (µM) for the lipids by spiking of a 7-component synthetic mixture. 
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CHAPTER 6 

CONCLUSION 

Part of this chapter has been published in the Journal of Biotech Research, the 

Lecture Notes in Engineering and Computer Science, and the Lipid Technology Journal 

and appears in this dissertation with the journals’ permission.1-4, 230 

A number of independent chemometric algorithms were tested that included 

MLR-NNLS, RR, PCR, and PLS. The principal outcome was that the RR, P-matrix, 

PCR, and PLS algorithms performed equally well enough as compared to the K-matrix 

approach when applied to the study of prepared mixtures (synthetic sera) in chloroform 

solutions. The PLS in the form of PLS2 model was tested for intact human serum 

specimens, and yielded results for ω-3 and ω-6 PUFA data that are comparable when 

using the GC-MS gold standard method. Similar results were also derived for the 

between-methods -6/-3 ratios. The first part of the study, therefore, showed the 

dominance of PLS2 over the other chemometric models. The study has also shown how 

the Purdie assay, coupled with chemometric algorithms, might provide alternatives to 

separations methods for the direct determination of lipids in human serum and its 

synthetic models. The advantages of this simple technology are the reduction in time and 

costs.230 
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For the second part of the study, as with the previous research results wherein 

PLS2 outperformed KM, PM, RR, and PCR in prepared mixtures in chloroform solutions 

(synthetic sera), PLS1 yielded the least RMSEP for all the lipid components as compared 

to all other algorithms in this study. This study has also attempted to determine the molar 

concentrations of cholesterol and PUFAs in human serum by the PLS1 algorithm. PLS1 

yielded molar concentrations quite comparable with the GC-MS method in the actual 

human serum samples. The consistencies in the validation are evidence that the assay can 

be used as an alternative to the GC-MS procedures. While the GC-MS procedures gives 

only percentage values of the PUFAs, and obtaining a calibration curve in terms of peak 

areas and heights is a very tedious task, this new spectroscopic technology offers the 

advantages of being direct, simple, rapid, and cost efficient. The assay has a potential 

market for a wide array of clinical settings wherein GC-MS is impossible.1 

The assay was extended to include OA as the eighth component for the 

simultaneous determination of unsaturated fatty acids in synthetic human serum models. 

However, despite attempts of utilizing the most robust algorithms like PLS1, PLS2, and 

PCR, the RMSEP was still high for the OA. GAPLS was able to successfully reduce the 

RMSEP for all the components over the non-GA PLS1 approach except for EPA and 

DHA. An attempt of combining EPA and DHA into one and determining the RMSEP 

will be the next approach in completing this project. Moreover, validation of GAPLS 

with GC-MS and expanding the training and prediction sets will also be taken into 

consideration. 

Spiking of the human serum sample and synthetic sets of lipids was also 

performed but the procedure is considered tedious to perform and is not ideal for a typical 
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clinical setting especially when batches of samples are to be analyzed. An extension of 

the assay was performed for the pattern recognition of biological and food samples. The 

assay was able to discriminate eleven clusters corresponding to different food and 

biological samples. 

The last part of the study attempted the simultaneous spectrophotometric and 

chemometric determination of the most abundant mono- and PUFAs in vegetable oils. 

The most important aspect of this work is the possibility of simultaneous determination 

of oleic, linoleic, and linolenic fatty acids in vegetable oil samples using the patented 

assay developed. No extraction step is required, and hence the use of organic solvents for 

separation, which are generally toxic pollutants, is avoided. It has been shown in this 

study that PCR, PLS2, and PLS1 algorithms compared equally well in the prediction sets, 

and that PLS2 mostly yielded a better performance than PLS1 and PCR algorithms in the 

unknown samples. Moreover, the assay was also able to discriminate the training set 

samples according to levels of lipids prepared. Compared to most other existing methods, 

the proposed methods are very simple, cheap, rapid and especially selective.4 
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APPENDICES 

 
 
 
APPENDIX I 
 
GAPLS default parameters used  
 
Response to be maximized: cross-validated explained variance (%); 
Regression method: PLS (the maximum number of components allowed is the optimal 
number of components determined by cross-validation on the model containing all the 
variables); 
Backward elimination after every 100th evaluation and at the end (if the number of 
evaluations is not a multiple of 100) 
Population size: 30 chromosomes; 
Deletion groups: 5; 
Maximum number of variables selected in the same chromosome: 30; 
Probability of mutation: 1%; 
Probability of cross-over: 50%; 
Preprocessing: Autoscaling; 
Maximum number of components: 15; 
Number of runs: 100; 
Window size for smoothing: 3. 
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APPENDIX II 
 
Histogram of frequency of selection of each variable for cholesterol trials using the 
model with minimum RMSECV (green line) 
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APPENDIX III 
 
Histogram of frequency of selection of each variable for LA trials using the model with 
minimum RMSECV (green line) 
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APPENDIX IV 
 
Histogram of frequency of selection of each variable for LNA trials using the model with 
minimum RMSECV (green line) 
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APPENDIX V 
 
Histogram of frequency of selection of each variable for AA trials using the model with 
minimum RMSECV (green line) 
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APPENDIX VI 
 
Histogram of frequency of selection of each variable for EPA trials using the model with 
minimum RMSECV (green line) 
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APPENDIX VII 
 
Histogram of frequency of selection of each variable for DHA trials using the model with 
minimum RMSECV (green line) 
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APPENDIX VIII 
 
Histogram of frequency of selection of each variable for CLA trials using the model with 
minimum RMSECV (green line) 
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APPENDIX IX 
 
Histogram of frequency of selection of each variable for OA trials using the model with 
minimum RMSECV (green line) 
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Scope and Method of Study: The ultimate goal of this research project was to complete the 
development of a simple, direct alternative method for the simultaneous quantitative 
determination of cholesterol and polyunsaturated fatty acids (PUFAs) in human serum by 
exploitation of various chemometric algorithms and consequent validation with the gas 
chromatography-mass spectrometry (GC-MS). In addition, oleic acid (OA) was also added as the 
eighth component and the performance of the various chemometric algorithms were compared. 
The study was also extended to various food and biological samples and chemometric algorithms 
were applied to obtain meaningful information of the data set. 
 
Findings and Conclusions: For the first part of the study, ridge regression (RR), P-matrix (PM), 
principal component regression (PCR), and partial least squares (PLS2) algorithms performed 
quite equally well enough than the K-matrix (KM) approach when applied to the study of 
prepared mixtures (synthetic sera) in chloroform solutions. The PLS in the form of PLS2 model 
was tested for intact human serum specimens, and yielded results for ω-3 and ω-6 PUFA data that 
are comparable when using the GC-MS. Similar results were also derived for the between-
methods -6/-3 ratios. The first part of the study, therefore, showed the dominance of PLS2 
over the other chemometric models. 

The second part of the study showed that PLS1 algorithm yielded the least root mean 
square error of prediction (RMSEP) for all the lipid components as compared to all other 
algorithms. PLS1 yielded molar concentrations quite comparable with the GC-MS in the actual 
human serum samples. Inclusion of OA yielded high RMSEP despite attempts of utilizing the 
most robust algorithms like PLS1, PLS2, and PCR. GAPLS was able to successfully reduce the 
RMSEP for all the components over the non-GA PLS1 approach except for EPA and DHA. The 
spiking of human serum samples was also done in the study but the task is considered tedious for 
a typical clinical setting. 

 In a study involving OA, LA, and LNA in vegetable oils, it has been shown that PCR, 
PLS2, and PLS1 algorithms compared quite equally well in the prediction sets and that PLS2 
mostly yielded a better performance than PLS1 and PCR algorithms in the unknown samples. 

An extension of the assay was performed for the pattern recognition of biological and 
food samples. The assay was able to discriminate eleven clusters corresponding to different food 
and biological samples. 

The study has shown how the Purdie assay coupled with chemometric algorithms might 
provide alternatives to separations methods for the direct determination of lipids in human serum, 
vegetable oils, and their synthetic models. The advantages of this simple technology are the 
reduction in time and costs. 
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