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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

BACKGROUND AND AIM OF RESEARCH: 

Zirconia is a widely used ceramic in many technological applications. This is 

clearly attributed to its unique mechanical and chemical properties such as surface acidity 

and basicity, oxidation and reduction properties, porosity, stable surface area at high 

temperatures, high melting point, good mechanical strength, low thermal conductivity, 

and corrosion resistance [1].  Zirconia is used as an effective catalyst in many important 

reactions such as dehydration, elimination, hydrogenation, and oxidation reactions. 

Moreover, zirconia can be acidified to give a strong acid catalyst which can be effective 

in many reactions, such as alkene isomerization, hydrocracking, and alkylation [2]. 

Additionally, the high thermal stability and high ionic conductivity of zirconia make it a 

useful material for refractory purposes and in oxygen sensors. Zirconia has four 

polymorphs; namely, cubic, tetragonal, monoclinic, and orthorhombic.  The latter formed 

only at elevated pressures. Zirconia can be modified by doping with other metal oxides 

such as magnesia and yttria.  The tetragonal to monoclinic phase transformation 

significantly enhances the strength and toughness of partially stabilized zirconia [3].  

Customarily, zirconia is prepared through base precipitation of zirconium hydroxide, 
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followed by thermal calcination.  Similarly, the traditional method for the synthesis of 

sulfated zirconia involves treating zirconium hydroxide or oxide with an aqueous solution 

of sulfuric acid prior to the thermal treatment.  The aim of this work is to synthesize a 

single source precursors composed of zirconium carboxylates and zirconium sulfonates 

that are suitable for formation of zirconia and sulfated zirconia upon thermal calcination. 

The variation of the ligands coordinated to zirconium metal will eventually influence 

properties of the final oxide catalysts such as specific surface area, surface morphology, 

phase composition, number of active sites, and surface acidity.  Furthermore, another 

purpose of this work is to study the catalytic behavior of the synthesized sulfated zirconia 

for several reactions, such as alkylation of aromatics and ketone condensation reactions, 

and relate the catalytic activity with the physical and chemical properties. 

 

AQUEOUS CHEMISTRY AND STRUCTURE OF ZIRCONIUM (IV): 

 Zirconium has nearly equal energy of the 4d and 5s levels, and this allows most of 

the zirconium chemistry to involve the four electrons in these two levels.  The Zr4+ is a 

highly charged ion with a relatively large radius (0.86 Å). The Zr(IV) compounds exhibit 

high coordination numbers because Zr(IV) does not have a partially filled shell. 

Therefore, Zr(IV) does not display a stable lower valence species. Solutions of zirconium 

salts can exhibit many chemical reactions such as hydrolysis, polymerization and 

hydration, depending on conditions. Zirconium salts dissociate in water at low pH value. 

For example, Zr4+ ions hydrate with bonding to eight water molecules to form a square 

antiprism [4].  In solution, these species hydrolyze by proton transfer from a zirconium-

water linkage to liberate hydronium ions as shown in Equation 1-1. 
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[Zr(H2O)8]4+ + H2O [Zr(H2O)7(OH)]3+ H3O++

[Zr(H2O)6(OH)2]2+

H2O

+ H3O+

Eq. 1-1

 

The structure of ZrOCl2⋅8H2O was determined by Clearfield and coworkers [4].  

Single crystal X-ray analysis showed the isolated polymeric tetramer cations of 

composition [Zr4(OH)8(H2O)16]8+ with chlorine counterions to balance the charges.  The 

four Zr4+ ions form a slightly distorted square and are connected together with bridging 

hydroxide groups. The neutral water molecules are bonded directly to zirconium to 

complete an 8-fold coordination shell of the zirconium atoms.  The authors concluded 

that there are no bonds between zirconium and chlorine formed in either the solid state or 

in solution.  Figure 1-1 shows the structure of the polymeric tetramer cation.  

 

 

Figure 1-1: The structure of [Zr4(OH)8(H2O)16]8+ polymeric tetramer zirconium 

complex cation [4]. 

Zirconium 

Water 

Hydroxyl 
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HYDROUS ZIRCONIUM OXIDE: 

 The chemical and physical nature of the gels that form upon addition of the 

hydroxide base ions to an aqueous solution of zirconium salts have been the subject of 

enormous research interest [5-9]. The pH, aging time, precipitation agent, and zirconium 

salt are important parameters that play a critical rule on the characteristic properties of the 

final oxide produced [5,6].  Several authors believe that the structure of the materials 

obtained by precipitation of a zirconium salt using base is not completely a pure 

zirconium hydroxide. In fact, the product is believed to be hydrated oxide ZrOx(OH)y. 

Clearfield [7] suggested that a polymeric tetrameric zirconium species was formed from a 

Zr(IV) solution via addition of a base which displaced the bonded water in hydroxyl 

groups. The tetramers are bonded together, via bridging hydroxyl groups, to form sheets 

which bind together via a condensation of hydroxyl groups to form a three dimensional 

zirconia units and water molecules as shown in Figure 1-2.  However, electron diffraction 

studies of this hydrated oxide demonstrated that the particle size is very small and not 

large enough to give X-ray diffraction patterns, and therefore an amorphous pattern was 

obtained. 
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Figure 1-2: The structure the ordered sheet polymeric species in solution formed by 

the tetrameric Zr(IV) complex. Zr4(OH)8 tetrameric units are represented by the 

solid square lines, the dashed line represent the hydroxyl groups, and the bridging 

hydroxyl groups are represented by the bent dash lines [7]. 

 

 Ultrafine pure zirconia can also be prepared by a hydrolytic polycondensation of 

zirconium alkoxides [8,9]. This procedure provides a better way to control the rapid 

hydrolysis. The organic groups of the zirconium alkoxide react with hydroxyl groups of 

water molecules to form an alcohol and corresponding oxide as shown below (Equation 

1-2). The degree of hydrolysis and polymerization depend on many factors such as 

reaction temperature, pH, nature of the R groups, and the OH- concentration.   
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Zr(OR)4 + H2O Zr OHRO

OR

OR

+ ROHHydrolysis

Zr OHRO

OR

OR

+ Zr(OR)4
Polymerization

Zr ORO

OR

OR

Zr OR

OR

OR

+ ROH

Eq. 1-2

 

 

ZIRCONIUM OXIDE: 

Zirconium (IV) oxide is an extremely important oxide, and it has an extensive 

number of applications. It is used as a solid state electrolyte, in industrial ceramics, and in 

the catalysis area. Furthermore, the extraordinarily high melting point and low thermal 

coefficient of expansion make it a major component of refractories. Another important 

reported application is that heated zirconia can be utilized as a source of infrared 

radiation and white light [10]. The high electrical resistance of the zirconia makes it an 

excellent oxide material for use as a ceramic insulator [11]. Table 1-1 summarizes the 

physical properties of the zirconium (IV) oxide. 
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Table 1-1: Physical properties of zirconium oxide (ZrO2) 

Property Value 

Boiling point (°C) 4300 

Coefficient of thermal expansion at -80 °C (cm/cm/°C) 8 x 10-6 

Color White 

Density (gm/ml)  

Monoclinic 5.68 

Tetragonal 6.10 

Cubic 6.27 

Entropy of formation at 298 K (Cal.) - 46.5 

Heat of Formation at 298 K (Kg Cal./mol) -261.5 

Heat of fusion (Kg Cal./mol) 20.8 

Formula weight (gm/ mol) 123.22 

Melting point (°C) 2900 

Solubility  

Soluble in  HF, Conc. H2SO4, molten glass 

Insoluble in Water, alkalies, organic solvents

Thermal conductivity at 100 °C (Cal. Sec/cm/cm2/°C) 0.004 

 

CRYSTAL STRUCTURE OF ZIRCONIUM OXIDE: 

Cubic phase:  Smith has identified the crystal structure of cubic zirconia [12].  

The cubic phase is stable above 2370 ºC to melting point. The cubic phase has a fluorite-

type structure with a unit cell dimension of 5.27 Å. Each Zr4+ ion is coordinated to eight 

oxygen atoms, while each oxygen atom is bonded to four zirconium atoms in a 

tetrahedral manner.  Figures 1-3 [13] and 1-4(c) show the structure of cubic zirconia. 

Monoclinic phase: The crystal structure of the monoclinic phase revealed the 

unit cell parameters to a = 5.169 Å, b = 5.232 Å, and c = 5.341 Å with β = 99º. The 

crystal structure of this phase demonstrates that the zirconium cations are seven-fold 
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coordinated with oxygen. Oxygen coordinates nearly tetrahedral to zirconium cations 

with one angle slightly larger than the tetrahedral angle (109.5º).  Another property of 

this structure is the existence of two alternative layers forming the seven-fold 

coordination. The seven coordination site of Zr4+ arises from the fact that there are two 

parallel oxygen layers present in the structure of the monoclinic zirconium oxide in 

which the zirconium atom layer is located between these oxygen layers parallel to the 100 

planes.  The first layer is the Zr4+ coordinated to four oxygen atoms which form a square 

plane similar to half of an eight-fold cubic structure.  In the second layer, the Zr4+ ion is 

coordinated to the three other oxygen atoms which form a trigonal shape with the plane 

parallel to the phase of the first layer as shown in Figure 1-4 (a and d).  The monoclinic 

phase is stable at room temperature to about 1170 °C [14]. 

 

 

 

Figure 1-3: The atomic positions of zirconium and oxygen atoms in the cubic 

zirconia crystal structure [14]. 

Zirconium 

Oxygen
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Figure 1-4: The crystal structure of zirconia: (a) projection for the ZrO7 layer of 

monoclinic phase, (b) projection for the layer of the ZrO8 of the tetragonal phase, (c) 

projection of the ZrO8 layer of cubic phase, and (d) angle and interatomic distances 

in the monoclinic ZrO7 layer [12]. 

 

(a) (b) 

(c) (d) 
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Tetragonal phase:  The tetragonal phase is stable above 1170 ºC and below the 

cubic range temperature of about 2370 ºC. The tetragonal zirconia structure is very 

similar to the cubic structure with a slight difference.  The former still maintains the 

eight-fold coordination of the zirconium cation. However, the bond distances between the 

zirconium ions and the four oxygens is 2.45 Å, while the distances to the other four 

oxygen atoms is slightly shorter, 2.065 Å [Figure 1-4(b)] [12,15].  

 

PHASE TRANSFORMATION: 

 Zirconia can exhibit phase transformation from one structure to another as a 

function of temperature and pressure as follows [1]: 

 

          1170 °C               2370 °C        2680 °C 
Monoclinic     Tetragonal   Cubic     Liquid 

   950 °C 
 

The monoclinic–tetragonal phase transformation has been extensively studied due 

to its theoretical and practical importance [16-21].  Upon phase transformation, the lattice 

parameters change, and zirconia undergoes contraction on heating and expansion on 

cooling through the transformation.  X-ray diffraction analysis [16] showed that the 

transformation does not occur at a fixed temperature, but the extent of transformation is 

changed with changing the temperature.  Earlier, Wolten [17] illustrated that the 

monoclinic-tetragonal transition was thermodynamically reversible and exhibited a large 

thermal hysteresis between cooling and heating cycles.  Furthermore, the transformation 

rate was dependent upon the particle size of the zirconia powder.  The larger the particle 

size of the prepared zirconia, the faster the phase transformation occurs. 
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One of the major advantageous of the monoclinic to tetragonal transformation is 

the volume contraction which can dramatically improve the fracture toughness and 

strength of zirconia ceramics [3].  However, the volume expansion of the tetragonal to 

monoclinic phase transformation, which occurs upon cooling through the transformation 

temperature, can indeed induce cracking of the materials. Therefore, stabilization of 

zirconia ceramics with other oxide materials, such as yttria and magnesia, is required in 

order to improve the mechanical properties of zirconia [18]. 

A metastable tetragonal phase can be achieved at low temperatures using a variety 

of synthetic approaches.  Garvie et al. [19,20] attributed the low temperature stability of 

the tetragonal phase to the low surface energy of the tetragonal phase compared to that of 

the monoclinic phase.  They claimed that the critical size for stabilization of the 

tetragonal phase was 30 nm. When the crystallite size exceeded 30 nm, the material 

exhibited a transformation from tetragonal phase to more stable monoclinic phase.  

Additionally, the presence of water, upon calcination, was found to increase the rate of 

aggregation to form large particles and enhance the transformation [21].  This is also 

probably attributed to the lowering of the monoclinic surface energy as a result of water 

adsorption. Morgan [22], however, prepared a monoclinic zirconia with a crystallite size 

smaller than 30 nm. This contradiction arises a question whether the tetragonal phase is 

the more stable phase or it is a metastable phase.  Addition of sulfate anions can also play 

an important rule in phase transformation. Bridging sulfate ions stabilize the structure of 

zirconia since it can retard the formation of oxo bonds between zirconium atoms and 

oxygen atoms.  This will prevent sintering at high temperature, and hence, prevent rapid 

phase transformation and will stabilize the surface area [23,24].  Furthermore, bridging 
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sulfate groups are believed to contribute to thermal stabilization by increasing of the Zr-

O-Zr separation from 3.4 Å to about 4.3 Å [23-25].   There are, in fact, other factors 

which also influence the phase transformation such as the precursor, pH, and aging time 

[26,27].  Srinivasan, et al. [26] precipitated zirconia at different pH values within the 

range 3-13. The samples were calcined at 500 °C for different periods of time. They 

found that the sample precipitated at low pH exhibited fast phase transition from 

tetragonal to monoclinic. Furthermore, the phase transformation occurred more rapidly in 

an oxygen environment than in an inert gas atmosphere. The role of oxygen adsorption is 

believed to be as follows; the oxygen creates defect sites which generate more strains and 

dislocations sites which, in turn, initiate the phase transformation [1]. 

Several authors have studied extensively the thermal behaviour of the precipitated 

zirconium hydroxide using thermal gravimetric analysis (TGA) and differential thermal 

analysis (DTA) [27-29]. All authors observed similar results, indicating that the phase 

transformation of the amorphous phase into tetragonal phase, which is called glow 

crystallization, occurred at about 400 °C.  Blesa et al. [30] suggested a scheme for the 

transformation of the precipitated zirconium hydroxide.  (Equation 1-3). 

 

[Zr4(OH)8(H2O)16]8+ (eq)
Room temperature

Precipitation
[Zr4O8-x(OH)2x.4H2O]n (gel)

Drying

100  C-300  C

Zr4O8-x(OH)2x

Glow crystallizationTetragonal 
zirconia

Monoclinic
zirconia

400  C-900  C

Phase
transformation

Eq 1-3
oo

o

oo

400 C
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 To conclude, the phase transformation phenomenon of amorphous zirconia is 

influenced by the crystallization time, the calcination temperature, the environment in 

which the sample is calcined, the precursor, and the precipitation process.  Under most 

conditions, the initial zirconia formed was in the tetragonal phase when calcined to 400 

°C. Upon further heating, the transformation of the tetragonal phase to monoclinic phase 

occurs and the transformation rate depends on the mentioned factors. 

 

SULFATED ZIRCONIA, A STRONG ACID MATERIAL: 

The utilization of liquid acid catalysts is very important in commercial and 

industrial applications.  However, the uses of these liquid catalysts have some safety and 

environmental drawbacks such as toxicity, corrosivity, pollution, separation of products, 

and problems associated with storage, disposal, transportation and handling.  Therefore, 

replacing those acids with more environmentally friendly, solid acids is extremely 

favored.  Among these strong acids, sulfated zirconia has attracted much attention since it 

exhibited a promising catalytic activity in many reactions such as isomerzation, 

hydrocracking, alkylations, condensations, and oligomerizations [31].  Arata et al. [32] 

was the first to report that sulfated zirconia is active for n-butane isomerization at 

moderate temperatures. A 100% sulfuric acid, the threshold of the super acidity according 

to the definition by Cillespic [33], was not able to catalyze the skeletal isomerization of 

n-butane.  That indicated that the reaction mechanism involved the formation of 

carbenium ions via protonation of the alkane, and this accentuated the superacidity of 

sulfated zirconia.  However, the acid strength is not the only important factor which 

affects the catalytic activity of sulfated zirconia, but also the type of the acid sites, 
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Brønsted and Lewis acid sites, plays an important role in determining the catalytic 

properties.  

It is generally accepted that the essential properties of sulfated zirconia, such as 

the acid strength, the nature of the Lewis and Brønsted acid sites, and catalytic properties, 

are strongly influenced by the method of preparation, nature of the starting materials, 

types of sulfation agent, and thermal treatment [34,35].  Conventional sulfated zirconia is 

generally synthesized by two step methods [36-38].  In the first step, zirconium 

hydroxide is prepared by hydrolysis of an aqueous solution of a zirconium salt. The 

second step involves treatment of the zirconium hydroxide with a suitable sulfating agent 

to form strong acid zirconia upon pyrolysis.  An alternative one step preparation 

procedure has also been developed for the synthesis of sulphated zirconia. In the one step 

method, alcogel is formed by mixing the zirconium alkoxide, usually zirconium 

propoxide, in alcohol with nitric acid in the presence of sulfuric acid.  The alcohol is then 

dried to form aerogel which in turn forms sulfated zirconia when calcined at high 

temperature [39].  These methods are affected by the type of hydrolyzing and 

precipitation agents, pH of the solution, type of the zirconium precursor, sulfating agents, 

and finally the drying and calcination procedure.  Typical sulfating agents reported in the 

literature are H2SO4, (NH4)2SO4, SO2, H2S, CS2, and SO2Cl2, and typical zirconium 

precursors are zirconium chloride, zirconium nitrate, zirconium isopropoxide, and 

zirconium oxychloride [40,41]. 
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NATURE OF THE ACTIVE SITES ON SULFATED ZIRCONIA: 

Several studies have been conducted in order to understand the nature and the 

structure of the acid active sites of sulfated zirconia.  Norman et al. [23,24] reported that 

the transformation of zirconium hydroxide to oxide proceeds via loss of weakly bonded 

water molecules and hydroxyl groups during the thermal decomposition to form hydroxyl 

bridges as a preliminary step to form oxide.  Upon sulfation, they suggested that sulfate 

groups form a bridging structure which improves the thermal stability. Furthermore, the 

sulfate ions delay the formation of oxo bonds which can facilitate the quick 

crystallization and phase transformation.  This will eventually retard the sintering and 

stabilize the surface area and lead to fine oxide particles [42,43].  The first structure of 

sulfated zirconia was proposed by Yamaguchi et al. [44] [Figure 1-5(I)]. They claimed 

that only Lewis sites existed on the surface. Ward et al. [39] proposed a modified 

structure which illustrates the observation of Brønsted acid sites [Figure 1-5(II)]. 
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Figure 1-5: Proposed sulfated zirconia model; (I): model proposed by Yamaguchi 

[44], (II): model proposed by Ward [39]. 

 

Morterra et al. [45] suggested that the surface sulfates are highly covalent and 

have a strong ability to accept electrons from incoming basic molecules. The presence of 

the adsorbed water molecules, which act as Lewis bases, tends to reduce the covalency of 



 16

the surface sulfates, resulting in formation of an ionic form of sulfate species, and hence 

reduce the Lewis acidic character. Davies et al. [25] proposed a scheme that describes the 

mechanism of loss of a sulfur species from the surface of the materials in the form of SO3 

at high temperature [Figure 1-6)]. 
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Figure 1-6: Sulfated zirconia model proposed by Davis [25]. 

 

Clearfield et al. [46] proposed a mechanism for the formation of both Lewis and 

Brønsted acid sites upon thermal treatment of the sulfonated zirconium hydroxide.  Their 

assumption was based on the displacement of the bridge hydroxyl groups of hydrated 

zirconia by the chemisorption of bisulfate ions.  Lewis acid sites are formed as a result of 

the reaction of the bisulfate ions with an adjacent hydroxyl group, as indicated by asterisk 

in Figure 1-7.  The Brønsted acid sites are formed as a result of the reaction of two 

adjacent hydroxyl groups.  This results in formation of Lewis acid sites as well as 

bisulfate groups which act as strong Brønsted acid sites.  The strong acidity of these 

Brønsted sites is attributed to the adjacent Lewis sites which tend to withdraw the 

electrons from bisulfate.  As a result, the oxygen-hydrogen bond in the bisulfate is 
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weakened [Figure 1-7]. The presence of both acid sites was confirmed by adsorption of 

pyridine via the use of IR spectroscopy analysis [47].   The bisulfate anions are probably 

responsible for the high Lewis activity of sulfated zirconia.  This is due to the inductive 

effect of these bisulfate groups which withdraw electron density from the three-

coordinate zirconium cation through the bridging oxygen. 
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Figure 1-7: Sulfated zirconia model proposed by Clearfield [46]. 

 

A slightly different evaluation was proposed by Babou et al. [48]. They suggested 

that the protons of the sulfuric acid are trapped on the surface of the zirconium hydroxide 

to form an ionic surface. The sulfate ions (SO4
2-) are then adsorbed on the positively 

charged surfaces.  Drying at temperatures below 200 °C led to a loss of the first water 
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molecule. Further heating above 200 °C led to the elimination of the second water 

molecule with formation of a chemisorbed SO3 group [Figure 1-8]. 
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Figure 1-8: Sulfated zirconia model proposed by Babou [48]. 
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A different structure of sulfated zirconia with 5-coordination surface atoms was 

proposed by White et al. [49].  Each sulfur atom in this structure is surrounded by five 

oxygen atoms. [Figure 1-9]. 
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Figure 1-9: Sulfated zirconia model proposed by White [49]. 

 

ACIDIC PROPERTIES OF SULFATED ZIRCONIA: 

The acidity is one of the most important properties of sulfated zirconia. The 

reactivity of the solid acid depends mainly on the nature of the active sites, Brønsted or 

Lewis acid sites.  The properties of the solid acids are strongly influenced by the 

preparative conditions and other parameters such as nature of the starting materials and 

procedures adopted for thermal treatment and/or electric insulation [2,31].  A slight 

variation of the preparative procedure can strongly influence the surface acidic properties 

of the resulting oxide [50].  Different characterization techniques were discussed in the 

literature for the determination of surface acidity strength and for provision a rough 

impression of the number of acid sites on the solid acidic surface.  Examples of these 

methods are the titration with base molecules using bases with diverse pKa values [51], 

and studying the adsorption of suitable base molecules such as ammonia, n-butylamine, 
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quinoline, and pyridine using infrared and temperature program desorption (TPD) 

techniques [52-56].  However, despite all the acidity studies and measurements, the 

superacidity of sulfated zirconia is still a subject of debate.  Kustiv et al. studied the 

strength of the Brønsted acid sites using benzene as a weak base type probe obtained by 

monitoring the infrared shift of the hydroxyl groups after adsorption of benzene [57].  

They concluded that the strength of the acidic sites of the sulfated zirconia is stronger 

than that of the silica gel, but still weaker than the zeolites, which don’t exhibit super 

acidity. Therefore, they classify sulfated zirconia as a strong acid rather than supper acid.  

Pyridine and ammonia, on the other hand, are unique probes since they can be utilized to 

measure both Brønsted and Lewis acid sites on the catalyst surface by exploiting the 

infrared spectroscopic technique [58].  Pyridine and ammonia can distinguish between 

Brønsted and Lewis acid sites based on the fact that proton donor sites and electron pair 

acceptor sites can interact with the electron pair on the nitrogen atom.  Therefore, there 

are specific characteristic IR bands associated with adsorption of ammonia and pyridine 

over Lewis sites while different characteristic peaks assigned for adsorption of 

ammonium and pyridinium ions over Brønsted acid sites [58-60].  However, it was 

reported for the analogous amines, such as n-butylamine, that ammonia and other primary 

and secondary amines are considered to be misleading probes for surface acidity 

measurements of solid acids, since these amines can dissociate to yield NRxHy
¯ anions 

and H+ cations.  These anions and cations latter can be adsorbed on the acid and base 

sites, respectively, depend on the solid type and adsorption conditions, Eq. 3-1[61]. 

NRxHy H+NRxHy

_

+ Eq. 3-1 
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Infrared spectroscopy was also utilized to estimate the Lewis and Brønsted acidity 

using several bases such as pyridine, ammonia, and benzene by monitoring the chemical 

shift of the asymmetric stretching of S=O bonds, which were observed in the range of 

1370-1410 cm-1 and OH groups around 3600 cm-1 [62-65]. These kinds of base probes are 

able to identify and measure quantitively the Brønsted as well as Lewis acid sites on the 

surface.  This approach can give valuable information about the structure of sulfated 

zirconia. Additionally, IR studies using base probes showed that there are several sulfate 

forms present on the surface [66].  It was suggested that sulfated zirconia does not exhibit 

a superacidity modality since its acidity is not stronger or similar to that of pure sulfuric 

acid or even some acidic zeolites [57,67-69]. 

The acid strength is defined as the ability of the solid surface to convert a neutral 

base into its conjugate acid. One of the most important analytical methods utilized for the 

evaluation of the acid strength of sulfated zirconia is Hammett indicators, which depend 

on a color change.  These techniques are often used for characterization of liquid acids.  

The Hammett acidity function, known as Ho value, provides an indication about the acid 

strength, since the more acidic the surface, the lower the Ho and pKa values and vice 

versa. If the color formed is that of the acid form of the indicator, the implication is that 

the proton transfers from the surface to the adsorbate, indicating that the value of the Ho 

is the same or lower than the pKa of the conjugate acid of the indicator according to the 

following equation (Eq. 3-2) [53,54,58,70]: 

 

HA + B (Indicator base) BH  (conjugate acid)  +  A Eq. 3-2+ _
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Therefore, the acid strength expressed by Hο as shown in Eq. 3-3: 

 

Hο = pKa + log [B]/[ BH+]     Eq. 3-3 

 

Where Ka is the equilibrium constant of dissociation of the acid, [B] and [BH+] 

are the concentrations of the neutral base and conjugate acids, respectively.  For example, 

a solid gives a yellow color with chalcone (pKa = -5.6) whereas it is colorless with 

anthraquinone (pKa = -8.2).  Therefore, it can be concluded that the acid strength (Ho) of 

the solid is between -5.6 and -8.2.  Furthermore, the solid which gives a color change 

with p-nitrotoluene (pKa = -11.4) is considered to be more acidic than 100% sulfuric acid 

and hence it is a superacid [71,72].  

Hino et al. [71] reported that the Ho value for sulfated zirconia is about -16, 

which is much larger than that of the 100% H2SO4 (Ho = -11), if this method is 

applicable to solid acids. However, there are many limitations for this method, specially 

when applied to solid acids such as: difficulty in formation of the conjugate acid BH+ 

[68]; presence of heterogeneous distribution of the indicator over the anisotropic solid 

surface [73]; strong interaction between solvent and catalyst surface; high sensitivity 

toward moisture; strong chemical bonding of the indicator (B) with the protonic acid sites 

on the surface; and finally difficulty to observe color change in some cases [74-76].  

Furthermore, several assumptions are needed to obtain reliable acidity measurements 

using the Hammett indicator method.  For instance, equilibrium between adsorbed 

indicator on the surface acid sites and the homogenous, uniformly-distributed acid 

surface is assumed to be maintained.  Another assumption is the formation of the mobile 
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physisorbed BH+ on the acid surface.  Moreover, theoretical methods were also used to 

assess the acidity of sulfated zirconia using ab intio methods along with utilizing water 

and carbon monoxide as appropriate probes [69,77,78].  These measurements provide 

invaluable information about sulfated zirconia structure at the microscopic level.  It has 

been confirmed that sulfated zirconia has acidity similar to that of pure sulfuric acid and 

yet is not considered a superacid.  That was also confirmed by Adevaa and his associates 

using thermal methods and UV measurements [68].  They reported that the acidity of 

sulfated zirconia is similar to that of zeolites. They concluded that its catalytic activity 

towards initiating isomerization of alkanes is not only directed by the surface acidity, but 

also can catalyze such a reaction while zeolites can not. 

Furthermore, Shibata et al. [79] reported that zirconia itself, without the 

incorporation of sulfate ions, is a weakly acidic oxide.  They claimed the highest acidity 

strength of zirconia prepared with 64 m2/g specific surface area was derived calcination 

of zirconium hydroxide at 773 K for 3 hours. The acidity strength reported was Ho = 

+1.5 with an acidity amount of 60 µmol/ g. The acid sites on the zirconia surface are 

mainly Lewis sites.  In conclusion, one can say that the catalyst properties, such as pore 

shape and diameter, can strongly influence the availability of the acid sites and hence the 

catalyst activity and selectivity.  Additionally, more research work is required to develop 

suitable methods for characterization of acidic properties of sulfated zirconia and other 

solid acids. 

Despite all the debate in the literature about the superacidity status and the acid 

strength of the sulfated zirconia, there are many researchers who reported and confirm 

that the sulfated zirconia is indubitably a superacid.  Their conclusions were based on 
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acidity measurements using Hammett indicators [71,80-82], and using adsorption probes 

such as ammonia, pyridine, and benzene [2,62,63,65,82].  In our current research work, 

we corroborate the previous researchers work.  Although our experimental protocol was 

different, we arrived at a similar conclusion that the synthesized sulfated zirconia does in 

fact exhibit superacidity. 

 

MODIFIED SULFATED ZIRCONIA: 

It was discovered that platinum-promoted, sulfated zirconia showed a higher 

activity towards alkane isomerization reactions in the presence of hydrogen molecules 

than conventional sulfated zirconia [83,84].  Several researchers studied the state of the 

Pt-supported over sulfated zirconia. Hattori [85] suggested that Pt-supported over 

sulphated zirconia is different than the usual supported Pt catalysts. Characterization 

techniques, such as temperature programmed desorption (TPD), X-ray photoelectron 

spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS) indicated 

most of the Pt on the sulphated zirconia support surface is in a cationic state. These 

results were confirmed by Ebitani [86].  Due to the redox metal-support interaction of the 

Pt with the acidic-sulphated zirconia support, the reducibility of the cationic Pt particles 

on the surface was suppressed, and no carbon monoxide chemisorption was observed, 

confirming the dominant presence of cationic Pt particles [87].  Furthermore, the 

presence of Pt and H2 in a gas phase reaction is believed to help purge the active sites by 

hydrogenation of the coke formed during the reaction.  The latter is considered the main 

reason for the catalyst deactivation [88].  Hattori and his associates [85] proposed a 

mechanistic role of Pt in the presence of H2. They suggested that the hydrogen adsorbed 
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dissociatively on the surface of Pt particles.  Subsequently, these hydrogen atoms 

undergo distribution onto the sulfated zirconia support. Hydrogen atoms, then, migrate to 

the zirconium sites which are the Lewis acid sites. As a result, an electron will be 

released from the hydrogen atom and converted to a proton which bonds to the adjacent 

surface oxygen atoms forming a new Brønsted acid site. The latter can play an important 

role as active sites for the acid catalyzed reactions. On the other hand, removing of an 

electron will result in weakened Lewis acid sites, and hence a decrease in coke formation 

and an increase in the catalytic activity.  Figure 1-10 describes a possible mechanism of 

the H2 distribution on the activation of sulfated zirconia. 

 

 

Figure 1-10: Role of platinum and possible mechanism of H2 distribution over the Pt 

surface to activate the sulfated zirconia (proposed by Hattori [85]) 
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Sulfated zirconia has recently been modified to be a more shape-selective catalyst 

by coating of the oxide with polymers such as polyvinyl alcohol [89,90].  Carbonylation 

at different calcination temperatures in inert atmosphere helps to create a barrier of 

carbon molecular sieves (CMS) which coat the zirconium oxide to generate a well 

defined pore size and distribution. 

 

CONCLUSIONS AND REMARKS: 

Most of the previous synthetic methods, for zirconia and sulfated zirconia utilize 

zirconium hydroxide as a starting material and result in formation of a monoclinic 

crystalline zirconia which is the less active phase compared to tetragonal zirconia. The 

interaction of a sulfate ion with the tetragonal phase provides highly active sites with 

higher catalytic activity.  Additionally, moderate calcination temperatures are required for 

the formation of active sites and for the formation of a covalent structure between sulfate 

ions and tetragonal zirconia phase. High calcination temperatures will lead to the loss of 

sulfate ions and enhance transformation of the tetragonal phase to monoclinic phase 

which leads to an acute decrease in the activity.  Moreover, the existence of sulfated 

anions on the surface of zirconia strongly enhances the Lewis acidity via increases on the 

electron accepting susceptibly of the zirconium cations through the bridging oxygen 

atoms which join the sulfur and zirconium atoms. 

In this work, zirconia and sulfated zirconia will be prepared by synthesizing 

zirconium carboxylates and sulfonates as single source precursor complexes which 

undergo transformations to a stable zirconia and/or sulfated zirconia upon thermal 

calcination with the incorporation of the sulfate ions into the zirconia lattice. The next 
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two chapters discuss the synthesis and characterization of several zirconium carboxylate 

and sulfonate precursors. The fourth chapter of the dissertation is reserved for the 

synthesis and characterization of supported sulfated zirconia over Mobil Crystalline 

Materials MCM-41. The acidic properties of the prepared sulfated zirconia and the 

supported sulfated zirconia samples, using several probes such as cyclohexylamine, 

acetonylacetone, and Hammett base indicators, will be covered during discussions in 

chapters three and four.  The remainder of the work will be dedicated for discussion of 

some application reactions, such as alkylation and aldol condensation reactions, 

performed over sulfated zirconia. 
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CHAPTER 2 

 

SYNTHESIS OF ZIRCONIA POWDERS DERIVED FROM SINGLE SOURCE 

ZIRCONIUM CARBOXYLATE PRECURSORS 

 

INTRODUCTION: 

Zirconia has numerous applications as a refractory ceramic material.  High 

performance tetragonal zirconia polycrystalline oxide is one useful form, but it must be 

prepared with a high density, homogenous structure, and small grain size [1,2].  Synthesis 

of such materials depends on the zirconium starting precursor.  A fine powder with little 

tendency toward agglomeration is required since the agglomeration forms during the 

precipitation and calcination steps. Generally, high purity oxides can be synthesized 

directly from the corresponding metal hydroxide precipitates by thermal treatment.  Most 

interest in recent years had focused on the synthesis and development of a stable, low 

temperature zirconia with the use of different precursors [3].  In the work reported herein, 

a variety of zirconium carboxylate complexes were utilized as precursors for the 

synthesis of zirconium oxide.  Zirconium carboxylates can be prepared easily by the 

reaction of sodium carboxylate with an aqueous solution of a zirconium salt [4].  

Zirconium cations in the aqueous solution coordinate to the carboxylate anions.  In the 

aqueous solution of zirconium oxychloride, for instance, the carboxylate groups displace 
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the water molecules in the tetrameric cation [Zr4(OH)8]8+ to form monocarboxylato 

zirconium species.  As more carboxylate ligands coordinate to zirconium, more water 

molecules will be displaced from the zirconium complex. The bond formed between the 

carboxylate ligands and the zirconium atom should be stronger and more stable than the 

zirconium-water bond.  The number of the carboxylate ligands that coordinate to the 

zirconium atom depends on the stability of the carboxylate ligand bonds.  Furthermore, 

heating the zirconium aqueous solution will tend to weaken the bonds between zirconium 

and carboxylate and strengthen the zirconium-water and zirconium hydroxyl bonds. 

Reaction of zirconium halogenides, such as zirconium oxychloride in nonaqueous 

system, will involve a kind of competition between the halogen atoms and the 

carboxylate anions for bonding with zirconium atoms.  Additionally, with an increase of 

the carboxylate chain length, the hydrophilic nature of the zirconium carboxylate 

complex will be reduced. Therefore, zirconium carboxylate complexes usually do not 

dissolve in water but are soluble in nonpolar solvents.  Additionally, zirconium 

carboxylates can also be prepared by the reaction of zirconium alkoxide with a carboxylic 

acid [5,6].  Alkoxide groups can be displaced completely by carboxylic acid ligands 

when heated in a nonpolar solvent. This method formed a polymerized zirconium 

carboxylate with high molecular weight [6].  Zirconium metal possibly coordinates to the 

carboxylate ligands in four different modes, that are as a free ion, a monodentate ligand, 

bidentate bridging ligand, and a bidentate chelating ligand as shown in Figure 2-1 [7].  
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Figure 2-1: Types of coordination of carboxylates ligands with the zirconium metal 

[7]. 

 

In the monodentate coordination, the hydrogen of the carboxylic acid is replaced 

by a zirconium ion which eventually influences the stretching frequency of the carbonyl 

group in the acid.  When replacing the O=C-O-H with O=C-O-Zr, the stretching 

frequency of the carbonyl will decrease due to an increase of the reduced mass since the 

vibrational frequency is inversely proportional to the mass. The carboxylate also can 

coordinate in a bidentate fashion in two different ways.  These are bidentate bridging in 

which each oxygen atom of the carboxylic acid coordinates to a different zirconium atom 
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and bidentate chelating in which both oxygen atoms of the carboxylate ions coordinate to 

the same zirconium metal ion.  Bidentate bridging is assumed to result in less strain than 

the bidentate chelating configuration. The oxygen atoms of the carboxylate ligands have 

sp3 hybridization with an angle of 109.5° while the carbon atom has sp2 hybridization 

with angle of 120°.  Therefore, since the four bonds (two Zr-O, and two C-O) lay in the 

same plane to form a chelated structure and the summation of the three angles is 339°, the 

chelated O-Zr-O angle is left with only 21° (Figure 2-1d). This angle is too small 

compared to that of the eight-fold coordination Zr-atom angle which is 72° [8].  As a 

result, the other three bonds will be reduced leading to steric strain in the structure. 

Chelating carboxylates can also influence the properties of the resulted zirconium 

complexes.  α-Hydroxyl carboxylic acids, for example, form a chelate ring with 

zirconium, followed by ionization of the hydroxyl hydrogen. The structure of the chelated 

carboxylate is shown below as structures (I) and (II): 

CH C

O

OO

Zr

R

( I )

α
CH C

O

OO

Zr

R

( II )

α

H +
+H

 

The most available zirconium carboxylate complexes discussed extensively in the 

literature and utilized as a precursor for the synthesis of zirconium oxide are the 

zirconium acetates [9-15].  Zirconium tetraacetate was prepared by the reaction of 

zirconium tetrachloride with an excess of acetic acid at 80 °C [9].  Refluxing the mixture 

to the boiling point, resulted in formation of zirconium oxyacetate [9,10].  Zirconium 

oxyacetate was also prepared by refluxing of a small amount of zirconium oxychloride 
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with acetic acid to give a product characterized as Zr4O3(CH3COO)10·3H2O [11].  

Recently, Gong et al. [16] reported a novel zirconium oxy-hydroxy acetate complex 

synthesized from zirconium oxychloride and acetic acid solution followed by 

precipitation with concentrated ammonium hydroxide at pH ≈ 6. The product was 

determined to have a formula of Zr4O3(OH)7(CH3COO)3·5H2O and it produced a 

tetragonal zirconium oxide phase with a crystallite size of 30 nm when pyrolyzed at 545 

°C. 

Little research work has been done to investigate the preparation of zirconium 

oxide from the pyrolysis of zirconium carboxylate complexes and the effect on the 

zirconium complex precursors on the oxide properties such as the surface area, particle 

size, and the crystalline phase that is formed.  In this chapter, zirconium carboxylate 

complexes were prepared and utilized as single precursors for the synthesis of zirconia 

powder upon thermal calcination.  The temperature of the thermal composition, as well as 

the properties of the final oxide, showed a strong dependence on the type of carboxylate 

ligands used. 

 

EXPERIMENTAL: 

Chemicals: 

All the chemicals were purchased and used without further purification. The 

chemicals used in this section were as follows:  Aqueous ammonium hydroxide [NH4OH 

ACS reagent, Scientific Products]; zirconium oxychloride [ZrOCl2.8H2O, Alfa Aesar]; 

sodium bicarbonate [NaHCO3, Alfa Aesar]; 2-ethylhexanoic acid [C8H16O2, MCB], 

benzilic acid [C14H12O3, Fluka]; α-hydroxyisobutyric acid [C4H8O3, Fluka]; propanoic 
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acid  [C3H6O2, Aldrich]; sodium butyrate [C4H7O2Na, Aldrich]; isobutyric acid [C4H8O2, 

Aldrich]; pivalic acid [C5H10O2, Aldrich]; mandelic acid [C8H8O3, Aldrich]; and hydroxy 

pivalic [C5H10O3, Aldrich]. 

 

Preparation of the zirconium carboxylate precursor: 

Figure 2-2 shows the chemical structure of all carboxylic acids used for the 

preparation of the zirconium carboxylate complexes. 
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Figure 2-2: The structure of the carboxylic acids used for the preparation of the 

single precursor zirconium carboxylates. 
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The zirconium carboxylate precursors were synthesized simply by the reaction of 

the zirconium oxychloride salt with carboxylic acids or their salts. 

 

Reaction of ZrOCl2·8H2O with glacial propanoic acid:  

Zr4O2(OH)5(OAp)5Cl2].8H2O (Zr-1): 

A sample of 20 g (60 mmol) of zirconium oxychloride octahydrate was added to 

200 ml of concentrated propanoic acid in a 500-ml, round-bottomed flask and refluxed 

for three days.  A light golden yellow solution was created. The solution was cooled to 

room temperature.  The resulting light yellow solid was filtered, washed with de-ionized 

water, and dried under vacuum for 24 hours.  The reaction yielded 15.8 g of product. The 

solution, on the other hand, was placed in a 200-ml flask which was then left in a fume 

hood for crystallization and evaporation of excess acid to about 50 ml.  White thin 

crystals formed from the solution.  About 1.4 g of the crystals were collected from the 

latter solution.  Both samples showed very similar IR absorptions. IR (cm-1) (KBr):  

3653(m, sh), 3310(s, br), 2981(s), 2944(s), 2886(m), 1562(s), 1470(s), 1440(s), 1376(m), 

1303(s), 1241(w), 1084(m), 1015(w), 811(w), 665(m), 553(w), 474(m). 

 

Reaction of ZrOCl2·8H2O with the sodium propionate: [Zr4O4(OH)3(OAp) 5]·7H2O 

(Zr-2): 

A sample of 3 g (80 mmol) of propanoic acid was diluted with 100 ml of de-

ionized water in a 200-ml beaker.  A sample of 3.4 g (80 mmol) of sodium bicarbonate 

was added gradually to the solution resulting in CO2 evolution and yielding a colorless 

solution.  An amount of 6.44 g (40 mmol) of zirconium oxychloride was dissolved in 50 
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ml of de-ionized water in a 250 ml beaker and added gradually to the propanoic acid 

solution, a white colored precipitate was observed. The precipitate was filtered and 

washed with enough distilled water to remove all the residual unreacted starting materials 

and sodium salts and was then dried under vacuum for 12 hours. The reaction yielded 

4.89 g (95.6% based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  3632(m, sh), 3340(s, br), 

2978(s), 2941(s), 2882(m), 1560(s), 1471(s), 1439(s, sh), 1376(m), 1301(m, sh), 

1239(w), 1080(m), 812(w), 651(w). 

 

Reaction of ZrOCl2·8H2O with the sodium butyrate:  

[Zr4O4(OH)2(BUT)6]·2H2O (Zr-3): 

A sample of 11.22 g (100 mmol) of sodium butyrate (98%) was dissolved in 100 

ml of de-ionized water in a 200 ml beaker. A sample of 16.1g (50 mmol) of zirconium 

oxychloride was dissolved in a 50 ml of de-ionized water in 250 ml beaker and added 

gradually to the butyrate solution.  A white colored precipitate was observed. The 

precipitate was filtered and washed with enough distilled water to remove all the residual 

unreacted starting materials and sodium salts. Finally it was dried under vacuum for 12 

hours. The reaction yielded 12.3 g (94% based on ZrOCl2.8H2O).  IR(cm-1)(KBr):  

3648(m), 3494(m), 3396(m), 3334(m), 2963(m), 2935(m), (2874(m), 1600(s), 1533(m), 

1466(m), 1376(m), 1315(m), 1293(m), 1211(w), 1100(m), 668(m, br). 
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Reaction of ZrOCl2·8H2O with the sodium isobutyrate: 

[Zr4O4(OH)2(ISBUT)6]·8H2O (Zr-4): 

A sample of 16.7 g (190 mmol) of isobutyric acid was diluted with 100 ml of de-

ionized water in a 200-ml beaker.  The acid was neutralized with 16 g (190 mmol) of 

sodium bicarbonate to yield a colorless solution.  A solution of 31 g (95 mmol) of 

zirconium oxychloride in 100 ml of de-ionized water was added gradually to the 

isobutyrate acid solution.  The resulting white precipitate was filtered and washed with 

enough distilled water to remove all the residual unreacted starting materials and sodium 

salts. Finally it was dried under vacuum for 12 hours. The reaction yielded 35.6 g (100% 

based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  3639(m, sh), 3396(s, br), 2971(s), 2930(s), 

2873(m), 1716(w), 1585(s), 1487(s), 1444(s), 1361(m), 1300(m). 1170(w), 1097(w), 

931(w), 666(w, br). 

 

Reaction of ZrOCl2·8H2O with ammonium pivalate: [Zr4O4.5(PA)7]·5H2O (Zr-5): 

A sample of 6.0 g (19 mmol) of zirconium oxychloride octahydrate was dissolved 

in 30 ml of de-ionized water in a 250 ml beaker. Next, 4.8 g (40 mmol) of ammonium 

pivalate was dissolved in 100 ml of de-ionized water, and this solution was added slowly 

to the zirconium solution causing the formation of a white precipitate.  The precipitate 

was filtered, washed carefully with de-ionized water to remove all the residual 

ammonium salts and dried under vacuum for 12 hours.  The reaction yielded 6.8 g 

(99.2% based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  3666(s, sh), 3383 (m, br), 2964(s), 

2931(s), 2871(s), 1551(s), 1488(s, sh), 1431(s), 1380(s), 1364(s), 1231(s), 1030(w), 

937(w), 906(m), 878(w), 814(w), 787(m, br), 606(m). 
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Reaction of ZrOCl2·8H2O with the sodium hydroxypivalate: 

[Zr4O5(HPA)6]·8H2O (Zr-6): 

A sample of 11.8 g (100 mmol) of hydroxypivalic acid was diluted with 100 ml of 

de-ionized water in a 200 ml beaker.  Then 8.4g (100 mmol) of sodium bicarbonate was 

added gradually to the solution. Carbon dioxide was released upon addition of sodium 

bicarbonate, and a colorless solution was formed. An amount of 16.1 g (50.0 mmol) of 

zirconium oxychloride was dissolved in 50 ml of de-ionized water in 250-ml beaker and 

added gradually to the hydroxypivalate solution.  A white color precipitate formed. The 

precipitate was filtered and washed with a large amount of de-ionized water to remove all 

the residual unreacted starting materials and sodium salts. Finally, it was dried under 

vacuum for 12 hours. The reaction yielded 13.3 g (64.4% based on ZrOCl2·8H2O).  

IR(cm-1)(KBr):  3349(s, br), 3070(m), 2968(s), 2931(s), 2874(m), 1556(s), 1480(s, sh), 

1431(s, sh), 1361(m), 1272(m), 1191(w), 1046(m), 987(w), 904(w), 783(w), 659(w), 

600(w), 498(w). 

 

Reaction of ZrOCl2·8H2O with the ammonium 2-ethylhexanoate: 

[Zr4O6(OH)2(EHA)2]·7H2O (Zr-7): 

A sample of 8.1 g (50 mmol) of ammonium 2-ethylhexanoate was diluted with 50 

ml of de-ionized water in a 200-ml beaker.  A sample of 8.00 g (25 mmol) of zirconium 

oxychloride was dissolved in 30 ml of de-ionized water in 250-ml beaker. The zirconium 

salt solution was added gradually to the 2-ethylhexanoic acid solution, and a white 

colored precipitate was observed immediately. The precipitate was filtered and washed 

with enough amount of distilled water to remove all the residual unreacted starting 
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materials and ammonium hydroxide. Finally, the precipitate was dried under vacuum for 

12 hours. The reaction yielded 4.8 g (74% based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  

3663(m), 3411(m, br), 2958(s), 2934(m), 2873(m), 1539(s), 1424(s), 1375(m), 1322(m), 

1233(w), 1104(w), 950(w), 727(w, br). 

 

Reaction of ZrOCl2·8H2O with α-Hydroxy isobutyric acid 

[Zr4(OH)4(HIBUTA)12]·6H2O (Zr-8): 

A sample of 5.2 g (50mmol) of α-hydroxyisobutyric acid was added to 50 ml of 

de-ionized water in a 200-ml beaker.  A sample of 8.1 g (25 mmol) of zirconium 

oxychloride was dissolved in 30 ml of de-ionized water in 250-ml beaker. The latter 

solution was added gradually to the previous solution with continuous refluxing for 4 

hours. The precipitate was filtered and washed with a large amount of distilled water to 

remove all the residual unreacted starting materials.  Finally it was dried under vacuum 

for 12 hours and collected. The reaction yielded 4.83 g (56% based on ZrOCl2·8H2O).  

IR(cm-1)(KBr):  3325(m, br), 2983(m), 2941(m), 2884(m), 2700-2100(m, br), 1714(m, 

sh), 1615(s), 1555(m), 1477(m), 1431(m), 1388(s, sh), 1363(s, sh), 1267(s), 1192(m), 

1167(s), 964(m, sh), 938(w), 907(m, sh), 822(w, sh), 778(w), 632(w, sh), 583(w, sh), 

509(w), 436(vw). 

 

Reaction of ZrOCl2·8H2O with the sodium α-hydroxyisobutyrat 

[Zr4O(OH)4(HIBUTA)10]·28H2O (Zr-9): 

A sample of 5.2 g (50 mmol) of α-hydroxyisobutyric acid was added to 50 ml of 

de-ionized water in a 200-ml beaker.  A sample of 4.2 g (50 mmol) of sodium 
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bicarbonate was added gradually to the solution.  Carbon dioxide was released upon 

addition of sodium bicarbonate, and a colorless solution was formed.  A sample of 8.1 g 

(25 mmol) of zirconium oxychloride was dissolved in 30 ml of de-ionized water in 250 

ml beaker. The latter solution was added gradually to the previous solution, and a white 

precipitate was formed. The precipitate was filtered and washed with enough distilled 

water to remove all the residual unreacted starting materials.  Finally it was dried under 

vacuum for 12 hours and collected. The reaction yielded 6.35 g (78% based on 

ZrOCl2.8H2O).    IR(cm-1)(KBr):  3395(s, br), 2981(m), 2935(m), 2940-2200(m, br), 

1551(s, br), 1475(s), 1427(m), 1377(m), 1359(m), 1332(m), 1198(w, br), 1038(w), 

1003(m), 973(m), 934(w), 909(w), 835(m), 824(m), 780(w), 655(m), 634(m), 534(w), 

464(w). 

 

Reaction of ZrOCl2·8H2O with mandelic acid [Zr4O(OH)5(MA)9]·4H2O (Zr-10): 

A sample of 15.2 g (100 mmol) of mandelic acid was dissolved in 100 ml of de-

ionized water in a 250-ml round-bottomed flask with heating at the boiling temperature.  

An amount of 16.1 g (50 mmol) of zirconium oxychloride was dissolved in 50 ml of de-

ionized water in a 250 ml beaker. The latter solution was gradually added to the previous 

solution with continuous refluxing for 4 hours. The precipitate was filtered and washed 

with enough distilled water to remove all the residual unreacted starting materials.  

Finally, it was dried under vacuum for 12 hours and collected. The reaction yielded 18.9 

g (72% based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  3366(s, br), 3062(m), 3033(m), 

2981(m,br), 2571(m, br), 1957(vw), 1894(vw), 1805(vw), 1625(s, br), 1496(m, sh), 

1450(m, sh), 1374(m), 1342(m), 1280(m, sh), 1190(m, sh), 1158(vw), 1082(w), 1053(m), 
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1026(m), 1003(m), 962(m), 920(w), 789(w), 756(w), 695(m), 674(w), 620(m), 611(m), 

534(m), 498(w). 

 

Reaction of ZrOCl2·8H2O with the sodium mandelate: [Zr4(OH)8(MA)8]·8H2O (Zr-

11): 

A sample of 15.2 g (100 mmol) of mandelic acid was dissolved in 100 ml of de- 

ionized water in a 200-ml beaker.  About 8.6 g (100 mmol) of sodium bicarbonate was 

added gradually to the solution. Carbon dioxide was released upon addition of sodium 

bicarbonate, a colorless solution was formed.  A sample of 16.1 g (50 mmol) of 

zirconium oxychloride was dissolved in 50 ml of de-ionized water in 250 ml beaker. The 

latter solution was added gradually to the previous solution, and a white precipitate was 

formed. The precipitate was filtered and washed with enough distilled water to remove all 

the residual unreacted starting materials.  Finally, it was dried under vacuum for 12 hours 

and collected. The reaction yielded 18.4 g (78% based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  

3366(s, br), 1717(m), 1637(m), 1598(m), 1448(m), 1362(m), 1321(m), 1221(w), 

1181(w), 982(w), 865(w), 677(w, br). 

  

Reaction of ZrOCl2·8H2O with benzilic acid [Zr4O(OH)6(BA)8]·4H2O (Zr-12): 

A sample of 18.44 g (80 mmol) of benzilic acid was added to 100 ml of de-

ionized water in a 250-ml round bottomed flask with heating at the boiling temperature. 

Then 12.88 g (40 mmol) of zirconium oxychloride was dissolved in 50 ml of de-ionized 

water in 250-ml beaker.  The latter solution was gradually added to the previous solution 

with continuous refluxing for 4 hours.  The precipitate was filtered and washed with 
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enough distilled water to remove all the residual unreacted starting materials.  Finally, it 

was dried under vacuum for 12 hours and collected. The sample was washed benzilic 

acid reflection peaks disappeared in the X-ray powder diffraction pattern of the solid.  

The reaction yielded 21.8 g (88.6% based on ZrOCl2·8H2O).  IR(cm-1)(KBr):  3535(w), 

3398 (w), 3052(m, sh), 2999-2000 (m, br), 1952(w), 1880(w), 1809(w), 1752(w), 

1653(m), 1597(m), 1491(m), 1445(m), 1325(w), 1307(m), 1276(s, sh), 1208(m), 

1188(w), 1173(m), 1089(m), 1063(m), 1031(m), 1014(m), 933(m), 783(m), 763(m), 

700(s), 620(w), 601(w), 551(w), 488(w), 425(w). 

 

Reaction of ZrOCl2·8H2O with the sodium benzilate: [Zr4(OH)7.5(BA)8.5]·14H2O (Zr-

13):  

A sample of 18.44 g (80 mmol) of benzilic acid was added to 100 ml of de-

ionized water in a 500-ml beaker.  A sample of 6.72 g (80mmol) of sodium bicarbonate 

was added gradually to the solution.  Next, a sample of 12.88 g (40 mmol) of zirconium 

oxychloride was dissolved in 50 ml of de-ionized water in 250 ml beaker. The latter 

solution was added gradually to the previous solution, and a white precipitate was 

observed. The precipitate was filtered and washed three times with distilled water by 

stirring the sample in 600 ml of water for 1 hour each time in order to remove all the 

residual unreacted starting materials and sodium chloride.  Finally it was dried under 

vacuum for 12 hours. The reaction yielded 23.5 g (86% based on the ZrOCl2·8H2O).  

IR(cm-1)(KBr):  3544(s, br), 3059 (m), 3034 (m), 2930(m), 1957(w), 1888(w), 1813(w), 

1664(s), 1598(m), 1492(m), 1447(m), 1313(m, br), 1213(m), 1174(m), 1093(w), 
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1060(m), 1031(w), 1003(w), 986(w), 942(w), 914(w), 818(w), 757(m), 700(m), 677(w), 

604(w), 489(w). 

 

Characterizations: 

The precursors and zirconium powders were characterized using several 

techniques. The specific surface area was obtained via a conventional Brunauer-Emmett-

Teller (BET) multilayer nitrogen adsorption method using a Quantachrome Nova 1200 

instrument. Thermogravimetric analyses were performed using a Seiko EXSTAR 6000 

TG/DTA 6200 instrument. Scanning Electron Micrographs where obtained using a JEOL 

JXM 6400 SEM.  Infrared spectra in the 4000-400 cm-1 region were collected by diffuse 

reflectance of a ground powder diluted with potassium bromide on a Nicolet Magna-IR 

750 spectrometer.  The Carbon Hydrogen elemental analysis was performed by Desert 

Analytics.  X-Ray powder diffraction patterns were obtained on a Bruker AXS D8 

advance diffractomer using copper Kα radiation with a wavelength of 1.5418 Å.  All the 

XRD patterns where collected at ambient temperature, and the phases were identified 

using the ICDD database (ICDD# 42-1164 and #37-1484).  The mean crystallite sizes of 

the oxide samples were estimated by X-ray diffraction using a line broadening method 

and Scherer's equation, C = λk/βCOS (2θ), where λ is the radiation wave length, k is a 

constant dependant on the crystallite shape, θ is the angle of the maximum intensity peak, 

and β is equal to the square-root of the βt
2 - βo

2 value where βt and βo are the angular 

peak width measured at half of the maximum intensity line for the measured and 

reference compounds, respectively.  The peaks were profiled with a Pearson 7 model 

using Topas P version 1.01 software (Bruker Analytical X-ray systems, Madison,WI, 
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USA, 1998). The profiles of the standard and the sample were input into the Win-Crysize 

version 3.05 programs (Bruker Analytical X-ray systems, Madison, WI, USA, 1997), 

which uses the Scherer's evaluation method to determine crystallite size and strain 

broadening effects [17]. 

The volume fraction of the tetragonal (t-ZrO2) and monoclinic (m-ZrO2) phases 

and the relative ratio of tetragonal zirconia to monoclinic zirconia were determined in a 

manner akin to that descried by Toraya [18].  The integrated intensity ratio (X) was 

calculated by using the area values of the tetragonal characteristic peak at 2θ = 30º for the 

(111) reflection and that of the two monoclinic characteristic peaks of the peaks at 2θ = 

28º and 2θ = 31º for the (11ī) and (111) reflections respectively, as shown below:  

Xtetragonal

(A) Tetragonal (111)

(A) Tetragonal (111) + (A) Monoclinic (111) + (A) Monolinic (111)
_=

Xmonoclinic

(A) Monoclinic (111) + (A) Monolinic (111)

(A) Tetragonal (111) + (A) Monoclinic (111) + (A) Monolinic (111)
_=

_

 

The volume fraction (V) was then calculated using the integrated intensity values taking 

into account the deviation from linearity between the volume fraction and the intensity 

ratio using the following correction equation [18]: 

 

Vmonoclinic

1.311 Xmonoclinic

1+0.311 Xmonoclinic

= Vtetragonal 1 - Vmonoclinic=
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The chloride content was determined using a conventional gravimetric analysis 

[19].  A sample of approximately 0.20 g of the desired sample was dissolved in 150 ml of 

de-ionized water in a 400-ml beaker followed by addition of 0.5 ml of concentrated nitric 

acid.  A silver nitrate solution (0.1 M) was added dropwise to the resulting solution with 

continuous stirring until no more white precipitate of silver chloride was formed.  The 

solution was then heated near its boiling point for 10 minutes. The precipitate 

agglomerated in the bottom of the beaker.  Another 3-4 drops of silver nitrate solution 

was added to confirm that there was no chloride ions left in the solution. Finally, the 

supernatant solution was left to stand for one hour in the dark, followed by filtration and 

drying at 130 °C for 3 hours. The percentage of chlorine in the original sample was 

calculated from the amount of the silver chloride isolated. 

 

RESULTS AND DISCUSSION: 

The zirconium carboxylate precursors were prepared from the reaction of 

zirconium oxychloride with different sodium or ammonium carboxylic acid salts.  

Zirconium carboxylate precursors prepared by this method were precipitated with a good 

yield. The properties of the precursors and the corresponding oxides are strongly 

dependent on the nature of the carboxylate ligands. 

 

Zirconium carboxylate precursors: 

The stoichiometry and formula weight of the complexes were determined directly 

from the TGA curves, assuming that the calcined residue was pure zirconium oxide.  The 

thermogravimetric analysis (TGA) of several of the zirconium carboxylate complexes are 
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shown in Figure 2-3 and Figure 2-4. Generally, all samples showed a loss of weight 

starting from room temperature to about 450-500 °C.  However, slight differences were 

observed in the TGA in the ranges between 25 °C-100 °C, 100 °C-200 °C, 200 °C-350 

°C, and 350 °C-500 °C.  The first range of weight loss from room temperature to 100 °C 

was due to the evaporation of the water molecules.  In the second thermal range from 100 

°C to 200 °C, loosely bonded organic species, hydroxide ions, and carboxylate moieties 

may be thermally decomposed.  The third range between 200 °C - 350 °C corresponds 

mainly to decomposition of carboxylate groups and is the major weight loss step.  A slow 

thermal decomposition curve was observed above 350 °C and 500 °C due to the loss of 

the remaining portion of the carboxylate and carbonate species on the surface to give 

zirconium oxide, carbon dioxide, and water.  The weight loss strongly depends on the 

nature of the carboxylate ligand coordinated to the zirconium in the precursor.  

Furthermore, the TGA results illustrate that the total weight loss of the zirconium α-

hydroxylcarboxylate complexes (17 wt%-24 wt %) was lower than that, along with the 

high molecular weight, of the aliphatic zirconium carboxylates (38 wt%-47 wt %).  The 

reason behind that is the strong tendency of the α-hydroxylcarboxylate to coordinate to 

zirconium metal via forming a stable, chelating, five member ring that can be seen clearly 

from the stoichiometric results demonstrated in Table 2-1.  The proposed formulas for the 

resulted zirconium carboxylate complexes was estimated from the TGA results and the 

C,H elemental analysis results (Table 2-2).  We found that the experimental C,H 

elemental analysis we obtained fit the theoretical values for the proposed structures 

within a ± 5% variation.  The temperature required for complete conversion to zirconia 

and the ceramic yield were strongly dependant on the identity of the carboxylate ion. 
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Figure 2-3: The thermogravimetric analysis (TGA) data for the prepared zirconium 

carboxylates: (Zr-1: propionate; Zr-5: pivalate; and Zr-7: 2-ethyl hexanoate). 
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Figure 2-4: The thermogravimetric analysis (TGA) data for the prepared zirconium 

carboxylates: (Zr-10: mandelate; Zr-12: benzilate; and Zr-13: benzilate (from 

sodium salt of benzilic acid). 
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Table 2-2: The elemental analysis results for the synthesized zirconium carboxylate 

complexes. 

Elemental 

analysis (%) 

Sample 

code 

C H 

Product proposed formula *Expt. Mwt 

(g/mol) 

**Theoretical 

Mwt. (g/mol) 

ZrAc 14.1 2.81 [Zr4O4(OH)3(OAc)5]·4H2O 211 212 

Zr-1 17.2 4.10 [Zr4O2(OH)5(OAP)5Cl2]·8H2O 273 267 

Zr-2 18.6 3.95 [Zr4O4(OH)3(OAP) 5]·7H2O 252 243 

Zr-3 28.3 4.68 [Zr4O4(OH)2(BUT)6]·2H2O 254 256 

Zr-4 23.3 5.33 [Zr4O4(OH)2(ISBUT)6]·8H2O 289 292 

Zr-5 35.0 7.08 [Zr4O4.5(PA)7]·5H2O 304 309 

Zr-6 27.6 4.93 [Zr4O5(HPA)6]·8H2O 326 323 

Zr-7 18.5 4.55 [Zr4O6(OH)2(EHA)2]·7H2O 259 227 

Zr-8 36.5 5.27 [Zr4(OH)4(HIBA)12]·6H2O 443 445 

Zr-9 23.9 6.45 [Zr4O(OH)4(HIBA)10]·28H2O 504 496 

Zr-10 47.0 4.46 [Zr4O(OH)5(MA)9]·4H2O 532 506 

Zr-12 57.8 4.26 [Zr4O(OH)6(BA)8]·4H2O 600 593 

Zr-13 54.0 4.75 [Zr4(OH)7.5(BA)8.5]·14H2O 676 669 
 

* from TGA and thermal analysis 

** from proposed formula 

 

The X-ray diffraction patterns (XRD) in the range of 10-70º for the zirconium 

benzilates are shown in Figure 2-5.  XRD analysis showed that the zirconium benzilate 

complex (Zr-12) prepared by the  reflux of benzilic acid with an aqueous solution of 

zirconium oxychloride was a crystalline material while the zirconium benzilate complex 

prepared by the reaction of a zirconium salt with the sodium salt of benzilic acid (Zr-13) 

was amorphous.  However, when the Zr-13 sample was stirred in water for 24 hours, it 

showed a crystalline material with similar diffraction lines and d-spacings to that of the 
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Zr-12 sample.  Thus, in contact with water, the amorphous phase undergoes 

crystallization to give the same crystalline phase that is formed under reflux conditions.  

However, broader XRD reflection peaks were observed for the room temperature sample 

indicating less extensive crystalline growth and smaller crystallite size than the high 

temperature sample.  As the material was transformed into a more arranged structure, 

there was a marked increase in surface area from 31 m2/g to about 241 m2/g.  This 

demonstrates that the crystallization leads to an organization of the zirconium benzilate 

into a mesoporous structure.  This was confirmed by the low angle XRD pattern that 

show the growth of a peak at 2θ = 7º (d = 7.02 Å).  This was accompanied by a large 

increase in surface area as would be expected for formation of a mesoporous solid. 

 

Figure 2-5: X-Ray diffraction pattern of the zirconium benzilates from the reaction 

of zirconium oxychloride with: Zr-13: benzilic acid, sodium salt; Zr-12: benzilic 

acid; Zr-14: benzilic acid, sodium salt stirred for 24 hours in water. 
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Figure 2-6: Low angle X-ray diffraction pattern of the zirconium benzilate (Zr-13) 

stirred in water at different period of time. 

 

The low angle X-ray diffraction pattern of the calcined zirconium pivalate 

complex (Figure 2-7) also shows formation of a mesoporous solid.  A single broad 

diffraction peak was observed with a d-spacing of 14.3 Å, 18.1 Å, and 20.0 Å for the 

fresh synthesized complex, and the complex calcined at 250 °C and 300 ºC, respectively.  

The breadth of the reflection peaks reflect wither distribution of pore sizes or 

organization of the pores in limited regions of the solid.  The zirconium pivalate complex 

also showed a high surface area of about 297 m2/g. These results, along with the low 

angle X-ray diffraction data, confirm the ordered porous structure of the zirconium 

pivalate complex.  Upon thermal calcination, as shown in Figure 2-7, the d-spacing 

increased while the scattering intensity decreased.  This provides a clear indication that 

the structure undergoes contraction during calcination and transformed into a less ordered 
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structure upon removal of the alkyl groups.  This is also confirmed by the sharp decrease 

of the specific surface area during calcination due to the collapse of the structure.  The 

observed increase in the d-spacing might be due to the loss of adsorbed water molecules 

and gradual thermal decomposition of the alkyl groups leading to longer pores and an 

expansion in the distance between the structure layers. 

 

 

 

 

 

 

 

 

Figure 2-7: Low angle X-ray diffraction pattern of the zirconium pivalate (Zr-5) 

calcined at different temperatures. 

 

It is expected that the polymerization of the zirconium carboxylate tetramer 

occurred by the presence of the -OH groups which form a bridge between two tetramers 

[20,21].  Apparently, a slow hydrolysis is associated with the polymerization process. 

The hydrogens of the incoming water molecule form a partial bond with the oxygen in 

300  °C 300  °C 
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the carboxylate ligands.  Thus, a displacement of some carboxylate ligands will take 

place to form a monodentate carboxylate. Another water molecule can attack another 

bridging carboxylate or attack the monodentate ligand to completely displace the 

carboxylate molecule.  This process will form more hydroxyl groups which can link the 

tetramer together and form a polymeric species. With continued hydrolysis, more 

carboxylate ligands are displaced with more bridging tetramers formed by OH and oxo 

groups and hence a larger polymer will form.  Additionally, it is also believed that the 

carboxylate ions may incorporate in the linkage of the zirconium tetramers together.  

Hence the properties of the ligands that coordinate to the zirconium metal are strongly 

influenced by the degree of the polymerization.   The polymerization processes may be 

responsible for the formation of the high surface area porous zirconium complexes as in 

case of the zirconium pivalate (Zr-5) and zirconium benzilate (Zr-14).  Additionally, 

based on the elemental analysis and the TG analysis, the Zr-13 precursor (derived from 

the reaction of zirconium oxychloride and benzilic acid, sodium salt) has a general 

chemical formula of [Zr4(OH)7.5(BA)8.5]·14H2O while the Zr-14 precursor (derived from 

the reaction of zirconium oxychloride and benzilic acid, sodium salt stirred for a longer 

time) has a chemical formula of [Zr4O(OH)6(BA)8]·4H2O.  The Zr-12 precursor showed a 

less amount of water, less hydroxyl, and less carboxylate ligand.  This may be due to the 

fact that the longer aging time in solution results in oxalation in which the bridging 

hydroxyl groups transform into an oxo bridging group.  This is often observed for 

hydrous metal oxides [20,21].  A schematic diagram for the polymerization process is 

shown in Figure 2-8 [21]. 
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Figure 2-8: Schematic diagram for the partial hydrolysis and polymerization of the 

zirconium carboxylate tetramers. 
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As a matter of fact, some of the synthesized zirconium carboxylate as shown in 

Table 2-1 and Table 2-2 preserved a high amount of water molecules in the final 

complexes.  This is especially true for zirconium benzilate and zirconium α-

hydroxyisobutyrate.  The inclusion of extra water may be attributed to the water 

molecules coordinated to the zirconium metal in the complexes being highly polarized 

and capable of strong interaction with other water molecules via hydrogen bonding.  As a 

result of such hydrogen bonding, several stable physisorbed immobilized water layers 

may formed (Figure 2-9). 
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Figure 2-9: Physisorbed water molecules on the zirconium carboxylate complexes. 

 

IR analysis can give significant information about the coordination mode of the 

carboxylate ligands. Generally, the carboxylate ligands bonded in a bridging bidentate 
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configuration have a  ∆ν value (splitting between the asymmetric and symmetric 

carbonyl stretching frequencies) of about 160 cm-1 while chelating bidentate carboxylates 

give a smaller ∆ν value (100 cm-1 or less).  Monodentate carboxylates, on the other hand, 

result in a greater ∆ν value of about 200 cm-1 [7,22].  The zirconium aliphatic 

carboxylates such as propionate showed a band centered at 3377 cm-1 which corresponds 

to the hydrogen bonded O-H stretching band while the one at 3643 cm-1 is related to the 

free O-H stretching vibration. The bands for zirconium propionate at 2980 cm-1 and 2930 

cm-1 were assigned to the asymmetric and symmetric methyl groups of the carboxylate 

ligands, respectively, while that at 1340 cm-1 was attributed to the vibration mode of the 

CH3 groups.  The bands around 1560 cm-1 and 1439 cm-1 correspond to the asymmetric 

and symmetric carboxylate stretching vibrations, respectively.  The IR band at about 

1470 cm-1 belongs to the CH3 and C-O-H bending frequencies. 

Table 2-3 lists the stretching frequencies of the carboxylate carbonyl group 

νCOO(symm) and νCOO(asymm) and the splitting (∆ν) between the asymmetric and symmetric 

carbonyl stretching frequencies of the different zirconium carboxylate complexes.  In 

general, the results in Table 2-3 showed that the ∆ν values are higher for the α-hydroxy 

carboxylate zirconium complexes (benzilate and mandelate) than that of other zirconium 

carboxylate complexes. As shown in the Table 2-3, the ∆ν values of α-hydroxy- 

carboxylate zirconium complexes were in the range 230-301 cm-1 while the other 

zirconium carboxylate complexes showed lower ∆ν values in the range 120-152 cm-1. 

The lower ∆ν values for the other zirconium carboxylates are presumably attributed to 

the bridging bidentate bonding character of these carboxylate ligands. 
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Table 2-3: Infrared carbonyl stretching frequency data for the zirconium 

carboxylate complexes. 

ν 
COO 

(cm-1) 

*Sample 

Code 

Proposed Structure Free C=O 

(cm-1) 

Assym. Symm. 

Complex 

∆ν (cm-1) 

Zr-1 [Zr4O2(OH)5(OAP)5Cl2]·8H2O 1700 1564 1439 125 

Zr-2 [Zr4O4(OH)3(OAP) 5]·7H2O 1700 1560 1439 121 

Zr-3 [Zr4O4(OH)2(BUT)6]·2H2O 1712 1600 1466 134 

Zr-4 [Zr4O4(OH)2(ISBUT)6]·8H2O 1707 1585 1444 141 

Zr-5 [Zr4O4.5(PA)7]·5H2O 1700 1580 1428 152 

Zr-6 [Zr4O5(HPA)6]·8H2O 1698 1556 1431 125 

Zr-7 [Zr4O6(OH)2(EHA)2]·7H2O 1720 1570 1425 145 

Zr-8 [Zr4(OH)4(HIBA)12]·6H2O 1730 1615 1388 227 

Zr-9 [Zr4O(OH)4(HIBA)10]·28H2O 1730 1551 1381 170 

Zr-10 [Zr4O(OH)5(MA)9]·4H2O 1716 1625 1351 274 

Zr-11 [Zr4(OH)8(MA)8]·8H2O 1716 1598 1383 215 

Zr-12 [Zr4O(OH)6(BA)8]·4H2O 1720 1650 1356 294 

Zr-13 [Zr4(OH)7.5(BA)8.5]·14H2O 1720 1593 1388 205 

Zr-14 [Zr4O(OH)6(BA)8]·4H2O 1720 1653 1352 301 

 

* The samples specifications correspond to each samples code was described in Table 2-1. 

 

Bidentate bridging can occur with two different steric structures, cis and trans. In 

the cis structure both oxygen atoms of the carboxylate groups coordinate to the zirconium 

atoms on the same side of the tetramer plane, and, in the trans structure, the two oxygen 

atoms coordinate to the two zirconium atoms that lie on different sides of the tetramer 
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plane (Figure 2-9). The cis configuration is sterically less strained than the trans 

configuration due to the strained Zr-O angle in the trans structure. 
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Figure 2-10:  Possible bonding types of carboxylate to the zirconium tetramer. 

 

The results in Table 2-3 also showed that the ∆ν values for the zirconium 

carboxylate were slightly increased with an increase in the chain length or branching of 

the carboxylate ligands, the propionate having the lowest ∆ν value of 121 cm-1 while 2-

ethylhexanoate had the highest value among the aliphatic carboxylate of 145 cm-1. 

Additionally, the synthesized aliphatic zirconium carboxylate complexes, such as 

zirconium propionate, zirconium pivalate, zirconium hydroxypivalate, and 2-

ethylhexanoiate, had lower asymmetric stretching frequencies of the carbonyl groups 

than the α-hydroxylcarboxylate zirconium complexes.  A large shift of the carbonyl 

stretching frequencies between the free acid carbonyl (1700-1730 cm-1) and the carbonyl 

stretching frequencies (1560-1580 cm-1) of the complexes was observed for these 

complexes. This shift is due to the fact that when zirconium metal coordinates to the 
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oxygen of the carbonyl groups in the carboxylate ligands in a bidentate fashion, the C-O 

bond will be weakened due to the sharing of the carbonyl oxygen electrons in the 

bonding with the zirconium metal. In contrast, the α-hydroxyl zirconium carboxylate 

complexes showed a higher asymmetric stretching for the carbonyl groups (1620-1650 

cm-1). This is presumably due to the chelating type of bonding between the oxygen of the 

carbonyl group and the oxygen of the alcoholic hydroxyl group with the zirconium metal 

to form a five-membered ring structure. This will make the contribution of the 

carboxylate carbonyl group to the bonding less, leading to a higher stretching frequency.  

Figure 2-11 shows the IR spectra of the zirconium benzilate complexes and 

benzilic acid. The stretching frequency of the carboxylate carbonyl group νCOO(symm) of 

the benzilic acid is appeared above 1700 cm-1 (Figure 2-11A).  The strong band at about 

3400 cm-1 corresponded to the free alcoholic α-hydroxy groups (νOH). When the 

zirconium salt reacted with sodium benzilate (Zr-13), the stretching frequency of the 

carboxylate carbonyl was decreased to about 1590 cm-1 while maintaining the high 

intensity of the single sharp O-H peak at about 3550 cm-1 which indicates the absence of 

the hydrogen bonds in this structure and emphasizes the dominance of the bidentate 

coordination. The results in Table 2-3 and Figure 2-11 also showed that the zirconium 

benzilate derived form sodium benzilate (Zr-13) has a lower ∆ν value (205 cm-1) which 

indicates bidentate coordination of the carboxylate group.  Upon the stirring and 

polymerization of the Zr-13 complex, the carboxyl stretching frequency increased to 

about 1650 cm-1, and the sharpness of the O-H band at 3550 cm-1 decreased dramatically 

(Figure 2-11C).  This implied that the bonding of the carboxylate to the zirconium atoms 

was transformed into the bridging chelating mode with incorporation of the O-H group in 
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the bonding to form a five-membered ring structure.  Additionally, it is likely that the 

hydroxyl group of the carboxylate condenses with a free or bridging hydroxyl group from 

the zirconium tetramer to liberate a water molecule.  Figure 2-12 shows the proposed two 

types of bonding structures for the synthesized zirconium benzilate complexes. 
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Figure 2-11: Infrared spectra of the zirconium benzilate complexes: A: benzilic 

acid; B: (Zr-12) ZrOCl2.8H2O with benzilic acid; C: (Zr-14) ZrOCl2.8H2O with 

benzilic acid, sodium salt stirred for 24 hours in water; D: (Zr-13) ZrOCl2.8H2O 

with benzilic acid, sodium salt. 
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 dominant bonding structure in sample Zr-13
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Figure 2-12: Bonding types in the zirconium benzilate complexes. 

 

Zirconium oxide from zirconium carboxylates: 

 

Figures 2-13 showed the IR spectra and the X-ray diffraction patterns for the 

products obtained from the pyrolysis of zirconium propionate at different calcination 

temperatures.  The IR spectra (Figure 2-13) showed that the bands corresponding to the 
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carboxylate were still intact when the sample was heated at 230 °C.  The intensity of the 

carboxylate band was reduced significantly in the sample calcined at 420 °C, which 

implied that most of the carboxylate ligands were decomposed at this temperature.  The 

IR spectra for the calcined precursor (Figure 2- 13 B and C) showed a sharp band at 

about 2339 cm-1. This band appeared due to the adsorbed CO2 species on the surface.  

Carbon dioxide formed as a result of the thermal decomposition of the carboxylate 

ligand.  The previous studies on the adsorption of carbon dioxide over zirconia and 

modified zirconia showed similar bands in the same wavenumber range [23-24].  

Apparently, CO2 is weakly adsorbed on the surface.  This can be seen clearly from the 

slight frequency shift (∆ν) with respect to the CO2 free molecule which has a band at 

2348 cm-1 [23].  The peak observed at about 1424 cm-1 for the zirconium propionate 

calcined at 470 °C (Figure 2-13C) probably corresponds to the presence of some 

carbonate species adsorbed on the surface of the tetragonal zirconium oxide. It was 

observed also that the calcined sample at 470 °C showed a medium broad band at 1533 

cm-1 which was attributed to bidentate carbonate species present on the oxide surface.  

Furthermore, the sample lost about 40% of its weight when calcined at 470 °C, which 

according to the TGA analysis is the appropriate temperature for zirconia formation.  

However, the sample color was still brown at this calcination temperature indicating that 

the band at 1533 cm-1 may be due to the bidentate carbonate and carbon species deposited 

on the oxide surface [23,25].  The intensity of this peak decreased upon calcination to 

720 °C (Figure 2-13D).  The band observed at 790 cm-1 for the sample calcined at 470 °C 

is probably due to the carbonate-water interaction. With the increase of the calcination 

temperature, the intensity of this band was decreased. 
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Figure 2-13: IR spectra of the pyrolysis product of the zirconium propionate (Zr-1) 

at A: room temperature; B: 470 °C; and C: 720 °C. 
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The pyrolysis products of the zirconium propionate at 230 °C was found to be 

amorphous by X-ray powder diffraction (Figure 2-14).  With further heating to 420 °C, a 

mixture of tetragonal and cubic phases started to appear as a result of the transformation 

of the zirconium carboxylate to zirconium oxide. Upon heating to 590 °C, a more 

crystalline tetragonal zirconia phase was observed. When the oxide was heated above 600 

°C, a phase transformation occurred from the tetragonal phase to monoclinic.  When the 

oxide was further calcined to 800 °C, the monoclinic phase was the dominant phase with 

about 90% relative abundance. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-14: X-Ray diffraction pattern for zirconium propionate (Zr-1) calcined at 

different temperature: A: room temperature; B: 230 °C; C: 590 °C; D: 720 °C; E: 

800 °C. (T = Tetragonal; M = Monoclinic) 
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In most cases, zirconium carboxylates showed first a transformation to a 

metastable tetragonal phase followed by transformation of the tetragonal to monoclinic 

phase.  The initial crystallization of the zirconia from these complexes was observed in 

the temperature range of 350 °C to 450 °C.  Calcination to temperatures higher than 600 

°C resulted in a phase transformation of the tetragonal phase to give a mixture of 

tetragonal and monoclinic phases of zirconia. The general trend of the thermal calcination 

of zirconium carboxylates to crystalline zirconium oxide can be described as shown 

below: 

 

Zr(OH)x(Carboxylate)y .nH2O 130 °C

- nH2O
Zr(OH)x(Carboxylate)y

Zr(OH)x(Carboxylate)y
350 °C - 500 °C

ZrO2 (tetragonal) CO2 H2O+ +

ZrO2 (tetragonal)
600 °C - 800 °C

ZrO2 (tetragonal) + ZrO2 (monoclinic)

ZrO2 (tetragonal) + ZrO2 (monoclinic)
> 800 °C

ZrO2 (monoclinic)  

 

The presence of hydroxyl ions is believed to stabilize the tetragonal phase and 

delay the transformation to the monoclinic phase [26].  Therefore, the transformation 

from tetragonal to monoclinic phase was observed in this work occurred at a higher 

temperature compared to that of a pure zirconium hydroxide prepared by a variety of 

methods [26,27].  The reason for this phase stabilization may be due to the fact that 

decomposition of carboxylate ligands leads to the presence of some carbonate species on 

the surface that stabilize the tetragonal phase. 
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The crystallite size derived from the Scherrer’s equation obtained by the X-ray 

pattern using a line broadening method showed an increase in crystallite size with an 

increase of the calcination temperature.  Figure 2-15 shows the crystallite size 

distribution of zirconia deduced from zirconium propionate calcined at different 

temperatures.  A slight increase in the average crystallite size from 3.2 nm to 6.7 nm was 

observed when the precursor was heated at 590 °C and 720 °C respectively.  A higher 

average crystallite size of 18.4 nm was observed when the sample calcined at 800 °C, at 

which point the substance is almost completely transformed into a monoclinic phase. 
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Figure 2-15: The crystallite size distribution of the zirconium propionate calcined at 

different temperatures. 

 

The phase transformation data and the surface area values are presented in Table 

2-4 and Figure 2-16. The results show that the aliphatic zirconium carboxylates undergo a 
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phase transformation to a monoclinic system at higher temperature (> 720 ºC) compared 

to the α-hydroxylcarboxylate complexes.  Figure 2-16 shows that the oxides derived from 

the thermal calcination of zirconium mandelate and zirconium hydroxybutyrate 

transformed into the monoclinic phase rapidly in the temperature range of 590 °C to 720 

°C.  An obvious increase in the volume percentage of the monoclinic zirconium oxide 

occurs in this temperature region.  The α-hydroxyacids can undergo a decomposition to 

give ZrO2, CO and RCHO or R2CO.  When zirconium benzilate, for instance, is 

pyrolyzed in a sealed tube at 280 ºC for 6 hours, the major product obtained from the 

decomposition reaction is benzophenone.  The thermal decomposition of such precursors 

is believed to occur according to the following pathway: 
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Since this pathway generates zirconia without many surface hydroxyl or 

carbonate species, the phase transformation to monoclinic zirconia is not retarded. 
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Table 2-4: The surface area and phase composites of the zirconium oxides derived 

from thermal calcinations of zirconium carboxylates. 

Phase (%) *Sample 
code 

Calcination 
Temperature (°C) 

Surface Area 
(m2/g) 

Vtetragonal Vmonoclinic 
ZrAc(590) 590 4.60 35 65 
ZrAc(720) 720 3.20 8.0 92 
ZrAc(850) 850 0.32 0 100 
Zr-1(590) 590 4.10 100 0 
Zr-1(700) 700 0.97 64 36 
Zr-1(800) 800 0.57 --- --- 
Zr-2(590) 590 2.15 100 0 
Zr-2(720) 720 1.01 59 41 
Zr-2(800) 800 0.83 2.0 98 
Zr-2(850) 850 1.77 1.0 99 
Zr-3(590) 590 8.30 100 0 
Zr-3(650) 650 10.2 95 5.0 
Zr-3(720) 720 9.56 69 31 
Zr-3(750) 750 4.70 30 70 
Zr-3(850) 850 7.20 8.0 92 
Zr-4(590) 590 6.90 100 0 
Zr-4(650) 650 7.20 94 6.0 
Zr-4(720) 720 5.72 63 37 
Zr-4(750) 750 5.60 26 74 
Zr-4(850) 850 4.80 0 100 
Zr-5(350) 350 14.9 100 0 
Zr-5(500) 500 7.65 100 0 
Zr-5(590) 590 9.30 96 4.0 
Zr-5(720) 720 5.32 69 31 
Zr-5(850) 850 6.30 15 85 
Zr-6(590) 590 7.59 85 16 
Zr-6(720) 720 6.64 85 15 
Zr-6(850) 850 6.40 0 100 
Zr-7(470) 470 31.6 100 0 
Zr-7(600) 600 16.4 59 41 
Zr-7(720) 720 8.50 28 72 
Zr-7(850) 850 5.30 1.0 99 

 

* The specifications correspond to each sample’s code are described in Table 2-2. 

ZrAc = Zirconium (IV) acetate hydroxide 
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Table 2-4: The surface area and phase composites of the zirconium oxides derived 

from thermal calcinations of zirconium carboxylates (continue). 

Phase (%) *Sample 
code 

Calcination 
Temperature (°C) 

Surface Area 
(m2/g) 

Vtetragonal Vmonoclinic 
Zr-8(590) 590 19.8 62 38 
Zr-8(720) 720 8.30 25 75 
Zr-8(850) 850 6.80 0 100 
Zr-9(590) 590 3.28 83 17 
Zr-9(720) 720 4.04 19 81 
Zr-9(850) 850 2.70 0 100 
Zr-10(500) 500 7.10 100 0 
Zr-10(590) 590 6.97 95 5.0 
Zr-10(720) 720 5.56 65 35 
Zr-10(850) 850 2.87 14 86 
Zr-11(590) 590 6.20 88 12 
Zr-11(620) 620 4.30 66 34 
Zr-11(720) 720 1.92 39 61 
Zr-11(850) 850 0.68 2.0 98 
Zr-12(590) 590 17.3 100 0 
Zr-12(720) 720 15.6 65 35 
Zr-12(850) 850 11.1 12 88 
Zr-14(460) 460 31.6 100 0 
Zr-14(590) 590 9.33 64 36 
Zr-14(720) 720 1.44 55 45 
Zr-14(850) 850 0.68 0 100 

 

* The specifications correspond to each sample’s code are described in Table 2-2. 
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Figure 2-16: X-ray diffraction pattern for several zirconium carboxylate precursors 

calcined at three different temperatures; Zr-14 (Zirconium benzilate), Zr-6 

(Zirconium hydroxylpivalate), and Zr-11 (Zirconium mandelate), and Zr-9 

(Zirconium hydroxylisobutyrate) 
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As shown in Table 2-4 and Figure 2-17, the surface area of the zirconium 

precursors showed a slight increase upon calcination due to the loss of the ligand and the 

formation of oxides with open pores.  Further heating led to the gradual sintering of the 

oxide particles and decrease in the surface area. The precursors that showed a long order 

range and very high surface areas (the zirconium benzilate and zirconium pivalate) 

exhibited a sharp decrease in the surface area as mentioned earlier due to the collapse of 

the metallo-organic framework to form oxide and then a slow decrease in the surface area 

due to the sintering process.  Furthermore, the zirconium oxides obtained from the 

aliphatic carboxylates (Table 2-4) showed a dependency on the carboxylate ligands.  That 

is, the longer the carboxylate ligand chain, the higher the surface area of the resulting 

zirconia.  For example, zirconia obtained from zirconium ethylhexanoate showed a 

relatively higher surface area of 31.6 m2/g (sample calcined at 470 °C) compared to that 

of the zirconia prepared from the other aliphatic zirconium carboxylate complexes. 
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Figure 2-17: Effect of the calcination temperature of the zirconium carboxylate 

precursors on the specific surface area of the pyrolysis product. 

 

Figure 2-18 shows the scanning electron micrographs of the zirconium oxide 

derived from the thermal treatment of zirconium benzilate and zirconium pivalate.  The 

SEM showed an influence of the zirconium precursor on the morphology of the final 

oxide. The oxide derived from zirconium pivalate [sample Zr-3(500)] showed the 

formation of agglomerates containing spherical nanosize individual particles with 

approximate average diameter of about 100-200 nm. On the other hand, the zirconium 

oxide powder derived from the pyrolysis of zirconium benzilate [sample Zr-12(460)] 

showed a quite different morphology.  Zirconium oxide derived from zirconium benzilate 
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complex displaced a flat smooth relief surface of a large aggregate.  According to the 

SEM images, uniform and regular hollow cubic and regular shaped particles with 

different sizes and origination were adhered to the smooth aggregate surface.  These 

uniform morphologies of both oxide powders shown in Figure 2-18 reflect the 

homogeneity and polymerization of the zirconium tetramers. 
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Figure 2-18: Scanning electron micrographs for the zirconium oxide derived from 

thermal calcination of zirconium carboxylate precursors. ZrO2 form zirconium 

pivalate at 400 ºC (Zr-8(400)): A(13000X), B(40,000X), C(9000X); ZrO2 from 

zirconium benzilate at 460  ºC (Zr-14(460)): D(2000X), E(3400X), F(40,000X). 
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CONCLUSIONS AND REMARKS: 

This work can be considered as a competitive alternative to the existing synthetic 

methods for zirconium oxide.  Zirconium carboxylate complexes were synthesized by 

reaction of zirconium oxychloride with carboxylic acids or carboxylate salts in aqueous 

media. Different carboxylates were used in this study, namely propanoic acid, pivalic 

acid, hydroxypivalic acid, and 2-ethylhexanoic acid as aliphatic carboxylic acids, and α-

hydroxyisobutyric acid, mandelic acid, and benzilic acid as an α-hydroxyl carboxylic 

acids. Furthermore, the characterization results showed that the aliphatic zirconium 

carboxylate complexes coordinate to the zirconium metal in a bridging bidentate mode 

while a bridging chelating bonding with incorporation of the OH in the bonding was 

observed with the α-hydroxylcarboxylate complexes. 

All the zirconium carboxylate precursors showed a general trend for the 

decomposition to yield a tetragonal zirconia, which then was further transformed into a 

monoclinic phase. The precursors formed a tetragonal phase when they were heated in 

the temperature range between 400 °C–500 °C. Transformation to the more stable 

monoclinic phase occurred when the precursors were calcined at temperatures higher 

than 600 °C.  The degree of the crystallization, as well as the phase composition, depends 

on the zirconium carboxylate starting materials.  The oxides obtained from different 

zirconium carboxylate precursors showed different properties, such as surface 

morphologies, phase composition, and crystallite size.  These changes implied strong 

dependency of the properties of the final oxide formed upon the carboxylate ligands, 

which coordinate to the zirconium in the precursor complexes. 
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CHAPTER 3 

 

SYNTHESIS OF SULFATED ZIRCONIA POWDERS DERIVED FROM SINGLE 

SOURCE ZIRCONIUM SULFONATE PRECURSORS 

 

INTRODUCTION: 

The purpose of the research reported herein is to develop zirconium sulfonate 

complexes as single source precursors for sulfated zirconia.  Sulfonate dyes, such as 2-

hydroxy-5-methylazobenzene-4-sulfonic acid, were used extensively in the past to 

determine gravimetrically the contents of zirconium metal in samples [1].  This is 

because of a strong tendency of the dye towards formation of stable bonds with 

zirconium atoms.  The anions of the sulfonic acid are believed to be bonded covalently 

with zirconium metal to form salts such as [Zr(SO3R)n]+(4/n).  As a matter of fact, the 

chemistry of transition metal coordination by sulfonates is not as well studied or 

understood as that of phosphates and carboxylates.  It is well known that sulfonate ions 

are poor ligands and they are weakly bound or non-bonded to most of the transition 

metals [2].  Furthermore, as in the case of carboxylates, sulfonate groups can be 

coordinated to the center of the transition metal in variety modes.  Sulfonates can bond in 

a monodentate fashion, a O-O chelating bidentate fashion, or they can bridge two metal 

centres via two oxygen atoms or sometimes even via one oxygen atom [3,4].  Figure 3-1 

shows the schematic diagram for some bonding modes of sulfonate groups. 
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Figure 3-1: Some coordination modes of the sulfonate groups. 

 

Generally, sulfated zirconias are synthesized by precipitation of zirconium 

hydroxide from a variety of zirconium salts by aqueous ammonia solution, followed by 

sulfation using ammonium sulfate or sulfuric acid solutions [5-9].  The only single 

precursor source utilized for the synthesis of sulfated zirconia disclosed in the literature is 

zirconium sulfate.  Thermal decomposition of zirconium sulfate leads to the formation of 

zirconium oxide and sulfur trioxide, which can be retained on the zirconia surface to give 

sulfated zirconia [10,11].  However, the acid strength and the catalytic activity of the 

oxide prepared via this pathway are much lower than that of zirconia prepared by 

conventional procedures.  This is presumably due to the decomposition mechanism, 

which facilitates the rapid loss of sulfur species and hence reduces the surface acidity.  

The physical and chemical properties such as the specific surface area, number and type 

of active sites, crystalline structure and phase composition are believed to be strongly 

influenced by several factors such as, preparation procedure, thermal treatment, nature of 

the starting materials, and type of sulfation agents [12,13]. 



 84

At present, there are no comprehensive studies in the literature describing the 

synthesis and characterization of sulfated zirconia from zirconium sulfonate complexes.  

In this chapter of the thesis, several zirconium sulfonate complexes that were synthesized 

and utilized as single-source precursors for sulfated zirconia will be reported.  Zirconium 

oxychloride and zirconium hydroxyl acetate were used as the starting reagents for 

preparation of zirconium complexes.  Upon thermal treatment of precursors, sulfated 

zirconia was prepared with profoundly diverse physical and chemical properties.  The 

effect of the starting precursor on the physical and chemical properties of the resultant 

sulfated zirconium oxide will be addressed in this section. 

 

EXPERIMENTAL: 

Chemicals: 

All the chemicals were purchased and used without any further purification.  The 

chemicals that used in this section were as follows; zirconium oxychloride 

[ZrOCl2·8H2O, Alfa Aesar], zirconium(IV) acetate hydroxide [(CH3CO2)xZr(OH)y 

(X+Y≈ 4), Aldrich], 8-hydroxyquinoline-5-sulfonic acid [C9H7SO4N, Aldrich], 8-

hydroxyquinoline [C9H7ON, Aldrich], p-toluenesulfonic acid monohydrate 

[CH3C6H4SO3H.H2O, Aldrich], sodium dodecyl sulfate [CH3(CH2)10SO4
-Na+, K & K 

Laboratories, INC.], ethanesulfonic acid [CH3CH2SO3H, Aldrich], hexadecyl sulfuric 

acid, sodium salt (contains 40% sodium stearylsulfate) [CH3(CH2)15SO4
-Na+, Aldrich], 

cyclohexane [C6H12, Fisher Scientific], cyclohexylamine [C6H11NH2, Aldrich], trans-

chalcone [C15H12O5, Aldrich], anthraquinone [C14H8O2, TCI], phenanthrene [C14H10, 

TCI], hexamethyl-pararosaniline chloride (crystal violet) [C25H30N3Cl, Spectrum], 
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neutral red [C15H17ClN4, TCI], dicinnamalacetone [C21H18O, TCI], 4-phenylazo-1-

naphthylamine hydrochloride [C16H14N3Cl, TCI], p-dimethylaminoazobenzene 

(methylene yellow) [C14H15N3, TCI], acetonylacetone [C6H10O2, Aldrich], 2.5-

dimethylfurane [C6H8O, Aldrich], 3-methyl-2-cyclopentene-1-one [C6H8O, Aldrich] and 

benzene [C6H6, Fisher Scientific]. 

 

Synthesis of the zirconium sulfonate precursors: 

Figure 3-2 showed the chemical structure of sulfonate ligands used for the 

synthesis of zirconium sulfonate complexes. 
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Figure 3-2: The chemical structure of sulfonic acids used for the preparation of 

zirconium sulfonate single precursors. 
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Precursors from the reaction of zirconium salts with aqueous solutions of 

ethanesulfonic acid:  

Zirconium acetate and zirconium oxychloride were reacted with ethanesulfonic 

acid with variant mole ratios of the zirconium salt to ethanesulfonic acid followed by 

drying to give amorphous powders.  The prepared precursors are as following: 

 

Reaction of zirconium acetate with ethanesulfonic acid with (1:0.25) mole ratio 

[Zr(O)0.9(OH)1(OAC)1(ESA)0.2]·0.8H2O  (SZ-1(1:0.25)): 

A sample of 5.35 g (25 mmol) zirconium acetate was dissolved in 20 ml of 

distilled water in a 250ml beaker.  An amount of 0.98 g (6.25 mmol) of ethanesulfonic 

acid (70 wt% solution in water) was dissolved in 30 ml of de-ionized water.  The 

ethanesulfonic acid solution was added slowly to the zirconium acetate solution.  Ethyl 

sulfonate groups replaced the acetate ligands and released acetic acid into the solution.  

The precursor was obtained by evaporation of water and acetic acid from the solution, 

followed by drying under vacuum for 12 hours. The reaction yielded 5.48 g (98% based 

on zirconium acetate).  IR(cm-1)(KBr):  3324(s, br), 2991(s), 2948(s), 2881(m), 1578(s), 

1454(s), 1342(w), 1261(m), 1193(m), 1144(m), 1042(m), 977(vw), 745(w), 654(w), 

527(vw).  13C NMR:  δ 179.1, 23.6 (CH3COO),  8.8, 45.7 (CH3CH2SO3). 

 

Reaction of zirconium acetate with ethanesulfonic acid with (1:0.5) mole ratio 

[Zr(O)1.25(OAC)1(ESA)0.5]·0.5H2O  (SZ-1(1:0.5)): 

A sample of 5.35 g (25 mmol) zirconium acetate was dissolved in 20 ml of 

distilled water in a 250ml beaker.  An amount of 1.95 g (12.5 mmol) of ethanesulfonic 
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acid (70 wt% solution in water) was dissolved in 30 ml of de-ionized water.  The 

ethanesulfonic acid solution was added slowly to the zirconium acetate solution. The 

precursor was obtained by evaporation of water and acetic acid from the solution 

followed by drying under vacuum for 12 hours.  The reaction yielded 5.95 g (97% based 

on zirconium acetate).  IR(cm-1)(KBr):  3329(s, br), 2988(s), 2942(s), 2884(m), 1575(s), 

1456(s), 1347(w), 1261(m), 1193(m), 1144(m), 1042(m), 977(vw), 745(w), 654(w), 

527(vw).  13C NMR:  δ 179.1, 23.6 (CH3COO), 8.8, 45.7 (CH3CH2SO3). 

 

Reaction of zirconium acetate with ethanesulfonic acid with (1:1) mole ratio 

[Zr(O)1.3(OAC)0.6(ESA)0.8]·2H2O  (SZ-1(1:1)): 

A sample of 5.35 g (25 mmol) zirconium acetate was dissolved in 20 ml of 

distilled water in a 250ml beaker.  Then, 3.90 g (25 mmol) of ethanesulfonic acid (70 

wt% solution in water) was dissolved in 30 ml of de-ionized water.  Ethanesulfonic acid 

solution was added slowly to the zirconium acetate solution. The precursor was obtained 

by evaporation of water and acetic acid from the solution, followed by drying under 

vacuum for 12 hours.  The reaction yielded 6.83  g (98% based on zirconium acetate).  

IR(cm-1)(KBr):  3337(s, br), 2982(m), 2943(m), 2884(m), 1652(w), 1557(m, sh), 

1455(m), 1379(vw), 1347(vw), 1275(m), 1227(m), 1186(m), 1138(m), 1041(m), 745(w), 

674(w), 649(w), 518(vw).  13C NMR:  δ 179.5, 23.6 (CH3COO), 8.8, 45.7 (CH3CH2SO3). 
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Reaction of zirconium acetate with ethanesulfonic acid with (1:2) mole ratio 

[Zr(O)0.9(OAC)0.4(ESA)1.8]·2.2H2O  (SZ-1(1:2)): 

A sample of 5.35 g (25 mmol) zirconium acetate was dissolved in 20 ml of 

distilled water in a 250ml beaker.  Next, 7.80 g (50 mmol) of ethanesulfonic acid (70 

wt% solution in water) was dissolved in 30 ml of de-ionized water.  Ethanesulfonic acid 

solution was added slowly to the zirconium acetate solution.  The precursor was obtained 

by evaporation of water and acetic acid from the solution followed by drying under 

vacuum for 12 hours.  The reaction yielded 8.83 g (97% based on zirconium acetate).  

IR(cm-1)(KBr):  3518(s, br),  3348(s, br), 2985(s), 2946(m), 2886(m), 2047(vw), 

1641(w), 1540(w), 1459(m, sh), 1416(w), 1382(vw), 1308(m, br), 1220(m), 1147(w), 

1110(w), 1076(w), 981(vw), 746(w), 660(w), 596(w), 536(w).  13C NMR:  δ 179.8, 23.7 

(CH3COO), 8.4, 46.3 (CH3CH2SO3). 

 

Reaction of zirconium acetate with ethanesulfonic acid with (1:3) mole ratio 

[Zr(O)0.5(ESA)3]·3H2O   (SZ-1(1:3)): 

A sample of 5.35 g (25 mmol) zirconium acetate was dissolved in 20 ml of 

distilled water in a 250ml beaker.  A sample of 11.7 g (75 mmol) of ethanesulfonic acid 

(70 wt% solution in water) was dissolved in 30 ml of de-ionized water.  Ethanesulfonic 

acid solution was added slowly to the zirconium acetate solution.  The precursor was 

obtained by evaporation of water and acetic acid from the solution followed by drying 

under vacuum for 12 hours. The reaction yield was 11.7 g (≈100% based on zirconium 

acetate).  IR(cm-1)(KBr):  3348(s, br), 2983(s), 2946(s), 2885(m), 2441(w), 2201(w), 

1640(m), 1459(m, sh), 1417(w), 1293(s), 1233(m), 1150 (m), 1130(m), 1048(m), 
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1005(m), 973(m), 748(m), 651(vw), 595(vw), 522(w).  13C NMR:  δ 8.5, 46.5 

(CH3CH2SO3). 

 

Reaction of zirconium oxychloride with ethanesulfonic acid with (1:2) mole ratio  

[Zr(O)0.75(ESA)1.5(Cl)1]·5H2O  (SZ-2): 

A sample of 6.44 g (20 mmol) zirconium oxychloride was dissolved in 20 ml of 

distilled water in a 250ml beaker.  A sample of 5.70 g (150 mmol) of ethanesulfonic acid 

(70 wt% solution in water) was dissolved in 30 ml of de-ionized water.  The 

ethanesulfonic acid solution was then added slowly to the zirconium oxychloride 

solution.  The precursor was obtained by evaporation of water from the solution followed 

by drying under vacuum for 12 hours.  The reaction yielded 6.72 g (93% based on 

zirconium oxychloride).  IR(cm-1)(KBr):  3341(s, br), 2985(s), 2946(s), 2886(m), 

1634(m), 1458(m, sh), 1417(w), 1383(vw), 1292(s), 1230(m), 1135(m), 1043(m), 

976(w), 782(vw), 747(m), 642(vw), 590(vw), 531(w). 

 

Precursor from the reaction of zirconium salts with other sulfonate reagents: 

 

Reaction of zirconium acetate with p-toluene sulfonic acid 

[Zr(O)0.8(OH)1(OAc)1(PTSA)0.4]·1H2O (SZ-3):  

A sample of 10.6 g (50 mmol) zirconium acetate was dissolved in 40 ml of 

distilled water in a 250ml beaker.  An amount of 9.51 g (50 mmol) of p-toluenesulfonic 

acid was dissolved in 30 ml of de-ionized water.  The zirconium solution was added 

slowly to the acid solution.  A white precipitate was formed immediately.  The precipitate 
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was filtered, washed with distilled water and dried under vacuum for 24 hours.   The 

reaction yield was 13.2 g (93% based on zirconium acetate).  IR(cm-1)(KBr):  3487(br, 

m), 3062(m), 2015(vw), 1960(vw), 1695(w), 1567(m), 1522(w), 1454(m), 1378(vw), 

1347(w), 1249(w), 1156(w), 1156(w), 1125(w), 1035(w, sh), 1009(w, sh), 814(w), 

658(w), 570(w). 

 

Reaction of zirconium oxychloride with p-toluene sulfonic acid 

[Zr(OH)1.5(PTSA)2Cl0.5]·5H2O  (SZ-4) : 

A sample of 25.7 g (80 mmol) of zirconium oxychloride octahydrate was 

dissolved in 30ml of distilled water in a 250 ml beaker.  A sample of 30.4 g (160 mmol) 

of p-toluenesulfonic acid was dissolved in 30 ml of de-ionized water.  The zirconium 

solution was added slowly to the acid solution to form a color less solution.  The solution 

was left in the fume hood for precipitation and recrystallized for 12 days.  The precipitate 

formed was filtered, washed with de-ionized water and dried under vacuum for 24 hours. 

The reaction yielded 34.0 g (84% based on zirconium oxychloride).  IR(cm-1)(KBr):  

3354(s, br), 3064(m), 2986(m), 2952(m), 2922(m), 1916(w), 1629(m), 1600(m), 

1496(m), 1450(w), 1275(m), 1151(s), 1127(s), 1036(s), 1009(s), 813(m), 783(w), 

685(m), 565(m). 

 

Reaction of zirconium acetate with 8-hydroxyquinoline-5-sulfonic acid 

[Zr(O)0.5(OH)2(OAc)0.7(HQSA)0.3]·1.5H2O  (SZ-5): 

A sample of 21.0 g (50 mmol) of 8-hydroxyquinoline-5-sulfonic acid was 

suspended in 200ml of distilled water in a round-bottomed flask.  Then, 10.1 g (100 
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mmol) of zirconium acetate (Zr(OAC)x(OH)y) was dissolved in 150ml of distilled water 

in 250 ml beaker.  This solution was added gradually to the zirconium solution.  The 

reaction mixture was then refluxed for 60 hours.  A dark yellow, gel-like precipitate was 

formed. The precipitate was then filtered and washed with a large amount of distilled 

water to remove any unreacted starting materials.  Finally the precipitate was dried under 

vacuum for 12 hours. The purity of the product was determined by recording the X-ray 

pattern after washing until peaks due to the starting materials disappeared.  The reaction 

yielded 23.8 g. (81% based on zirconium acetate).  IR(cm-1)(KBr):  3419(s br), 3080(m), 

1599 (m, sh), 1574(m), 1502(m, sh), 1465(m), 1373(w), 1325(m), 1236(w), 1195(w), 

1159(m), 1093(vw), 1036(m), 838(w), 699(w), 613(w). 

 

Reaction of zirconium oxychloride with 8-hydroxyquinoline-5-sulfonic acid 

[Zr(O)1.5(HQSA)1]·1H2O (SZ-6): 

A sample of 20.2 g (90 mmol) of 8-hydroxyquinoline-5-sulfonic acid was added 

to 200ml of distilled water in a round-bottomed flask.  A sample of 14.3 g (45 mmol) of 

zirconium oxychloride was dissolved in 150 ml of distilled water in 250ml beaker.  The 

solution was added gradually to the former solution and refluxed for 68 hours.  A yellow, 

gel-like, precipitate was formed.  The precipitate was filtered and washed with a large 

amount of distilled water to remove all the unreacted starting materials.  Finally, the 

precipitate was dried under vacuum for 12 hours. The purity of the product was 

determined by registering the X-ray pattern after washing until the disappearance of 

peaks due to the starting metal.  The reaction yielded 23.8 g (71.3% based on zirconium 

oxychloride).  IR(cm-1)(KBr):  3413 (s, br), 3080 (m), 1629 (w), 1602 (m), 1576 (m), 
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1501 (s, sh), 1465 (m), 137 (m), 1323 (m), 1223 (m), 1196 (m), 1161 (m), 1094 (vw), 

1037 (m, sh), 965 (vw), 840 (w), 700 (w), 613 (w), 561(w), 510 (w). 

 

Reaction of zirconium acetate with 8-hydroxyquinoline  

 [Zr(O)0.8(OAc)0.6(HQ)1.8]·1H2O (SZ-7): 

A sample of 13.6 g (90 mmol) of 8-hydroxyquinoline were suspended to 200 ml 

of distilled water in a round-bottomed flask. A sample of 9.54 g (45 mmol) of zirconium 

acetate was dissolved in 100ml of distilled water in 250ml beaker. The solution was 

added gradually to the previous solution with continuous reflux for 21 hours.  During this 

addition the organic color of the 8-hydroxyquinoline solution faded and a yellow 

precipitate formed.  The precipitate was then filtered and washed with distilled water to 

remove all the residual materials.  Finally, the precipitate was dried under vacuum for 12 

hours.  The purity of the product was determined by recording the X-ray pattern after 

washing until the disappearance of starting metals peaks. The reaction yielded 10.6 g 

(88.5% based on zirconium acetate).  IR (cm-1)(KBr):  3412(w, br), 3045(w), 1603(m), 

1574(s), 1496(s, sh), 1465(s, sh), 1424(w), 1378(s), 1320(s, sh), 1276(m), 1228(w), 

1173(vw), 1109(s), 1052(w), 1029(w), 909(w), 822(m), 806(w), 785(m), 740(m), 644(w), 

615(w), 515(m), 495(w). 

 

Reaction of zirconium oxychloride with 8-hydroxyquinoline [Zr(O)1.5(HQ)1]·0.5H2O 

(SZ-8): 

A sample of 13.6 g (90 mmol) of 8-hydroxyquinoline was suspended to 200ml of 

distilled water in a round-bottomed flask. A sample of 14.5 g (45 mmol) of zirconium 
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oxychloride was dissolved in 40ml of distilled water in 100ml beaker. This solution was 

added gradually to the previous solution. The mixture was refluxed for 21 hours.  The 

color of the solution was changed upon addition from orange to yellow color precipitate. 

The precipitate was separated by centrifuge and washed with distilled water four times to 

remove all the unreacted starting materials.  Finally it was dried under vacuum for 12 

hours.  The purity of the product was determined by recording the X-ray pattern after 

washing until disappearance of peaks due to the starting metals.  The reaction yielded 

8.35 g (77.39% based on zirconium oxychloride).  IR(cm-1)(KBr):  3266 (m, br), 3080 

(m), 1606 (m), 1578 (m), 1544 (w), 1501 (s, sh), 1470 (s), 1423(m), 1379 (m), 1321 (s), 

1274 (m), 1239 (w), 1175 (w), 1109 (m), 1056 (w), 823 (m), 741(m), 643(w), 517 (w).   

 

Reaction of zirconium acetate with sodium dodecyl sulfate   

[Zr(O)0.5(OH)1(OAc)1.5(SDS)0.5]·1H2O (SZ-9): 

A sample of 8.00 g (28 mmol) of sodium dodecyl sulfate were added to 400 ml of 

de-ionized water with continues stirring until all the salt dissolved in a 1 L beaker.  An 

amount of 3.10 g (14.6 mmol) of zirconium dichloride oxide was dissolved in 50ml of 

deionized water in a 250ml beaker. The latter solution was added gradually to the 

previous solution with continues stirring at room temperature for 30 minuets to give a 

white precipitate.  The precipitate was filtered and washed with enough distilled water to 

remove all the residual materials, and it was then dried under vacuum for 12 hours.  The 

reaction yielded 8.60 g (82.6 % based on zirconium acetate).  IR(cm-1)(KBr):  3525(s, 

br), 2978(s), 2924(s), 2853(s), 2030(w,br), 1577(m), 1459(m), 1346(w), 1280(w), 

1241(w), 1195(w), 1059(w), 977(w), 687(vw). 
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Reaction of zirconium oxychloride with sodium dodecyl sulfate [Zr(O)1.5(SDS)1]·1H2O 

(SZ-10): 

A sample of 7.20 g (26.5 mmol) of sodium dodecyl sulfate was added to 400 ml 

of de-ionized water with continuous stirring until all the salt dissolved in a 1 L beaker.  

Then, 4.03 g (12.5 mmol) of zirconium oxychloride were dissolved in 50ml of de-ionized 

water in 250ml beaker, the later solution was added gradually to the previous solution 

with continuous stirring at room temperature for 30 minutes to give a white.  The 

precipitate was filtered and washed with enough distilled water to remove all the residual 

materials, finally it was dried under vacuum for 12 hours.  The reaction yielded 4.49 g 

(97% based on zirconium oxychloride).  IR(cm-1)(KBr):  3400(s, br), 2952(s), 2922(s), 

2852(s, sh), 1641(m), 1467(m, sh), 1378(vw), 1287(m), 1170(m), 1063(w), 966(m), 

828(w), 721(w), 576(w, br). 

 

Reaction of zirconium acetate with sodium hexadecyl sulfate 

[Zr(O)0.7(OAc)2(HDSA)0.6]·1H2O (SZ-11): 

A sample of 16.3 g (47 mmol) of sodium hexadecylsulfate was dissolved in 300 

ml of distilled water in a round-bottomed flask.  A sample of 10.0 g (47 mmol) of 

zirconium acetate hydroxide was dissolved in 60ml of distilled water in 100ml beaker.  

This solution was added gradually to the previous solution resulting in immediate 

formation of a white precipitate.  After stirring for three hours, the precipitate was filtered 

off and washed with distilled water several times to remove all the impurities and 

unreacted starting materials.  Finally it was dried under vacuum for 12 hours.  The 

reaction yielded 21.4 g (≈100% based on zirconium acetate).  IR(cm-1)(KBr):  3450(m, 
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br), 2956(s), 2926(s), 2851(s), 2017(w), 1581(s), 1470(m), 1450(m), 1378(w), 1346(w), 

1262(m), 1210(m), 1083(w), 998(w), 829(m), 719(m), 647(m), 493(m). 

 

Reaction of zirconium oxychloride with sodium hexadecyl sulfate:  

[Zr(O)1.55(HDSA)0.9]·1H2O  (SZ-12): 

A sample of 8.60 g (25 mmol) of sodium hexadecylsulfate was dissolved in 200 

ml of distilled water in a round-bottomed flask.  Next, 8.20 g (25 mmol) of zirconium 

oxychloride were dissolved in 40ml of distilled water in 100ml beaker.  The solution was 

added gradually to the previous solution and a white precipitate was formed immediately. 

The solution was continuously stirred for three hours.  The precipitate was filtered off 

and washed with distilled water several times to remove all the impurities and unreacted 

starting materials.  It was then dried under vacuum for 12 hours.  The reaction yielded 

11.98g (≈100% based on zirconium oxychloride).  IR(cm-1)(KBr):  3454(s, br), 2954(s), 

2919(s), 2850(s), 1639(w), 1468(m, sh), 1392(vw), 1375(vw), 1282(m), 1173(m), 

1066(w), 976(w), 722(vw). 

 

Characterization: 

In addition to the characterization techniques that discussed previously in detail in 

Chapters 2, 13C NMR was also used for the characterization of the prepared zirconium 

complexes. 13C spectra were obtained with a Chemagnetics CMX-II solid-state NMR 

spectrometer operating at 75.694 MHz for carbon-13 and a Chemagnetics 5mm double 

resonance magic-angle spinning probe.  Carbon-13 cross-polarization/magic-angle 

spinning (CP/MAS) was carried out with a quasi-adiabatic sequence (1) using two pulse 
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phase modulation (TPPM) decoupling (2) at 50-75 kHz. The C-13 CP contact pulse of 1 

msec length was divided into 11 steps of equal length with ascending radiofrequency 

field strength, while the H-1 contact pulse had constant radiofrequency field strength.  At 

least 3600 scans were acquired with a delay of 1.0 s between scans.  The MAS sample 

spinning frequency was 6.0 kHz, maintained to within a range of +/- 5 Hz or less with a 

Chemagnetics speed controller. 

 

Acidity measurements: 

The acidity measurements for the synthesized sulfated zirconia catalysts were 

conducted using three different procedures as follows: 

 

Acidity measurements using cyclohexylamine probe:  

The total acidity of the synthesized zirconias was determined from Langmuir 

adsorption isotherm using cyclohexylamine as an adsorbate (a titration agent) [14,15].  

The concentration of non-adsorbed base in equilibrium with the concentration of the 

adsorbed base on the surface of solid (C) was determined from the difference in the UV 

absorption before and after the adsorption of the titrating agent on the sulfated zirconia 

surface.  A solution of approximately 5.0 x 10-2 (moles/l) cyclohexylamine in 

cyclohexane (λmax ≈ 226 nm) was prepared.   A sample of 10 ml of the cyclohexylamine 

solution was added to a specific amount of sulfated zirconia in a 20-ml glass vial.  This 

mixture was then stirred for 12 hours, the mixture was filtered off and then the UV 

absorption was measured at the λmax of the cyclohexylamine solution to give the 

equilibrium concentration (C) and the amount of the base adsorbed per gram of the 
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zirconia (X).  The number of acidic sites on the surface of the oxide expressed in µmol/g 

is equal to the amount of adsorbate adsorbed by the oxide to form a monolayer (Xm), 

which is equal to the reciprocal of the slope of the straight line obtained from the plot of 

C/X versus C according to the Langmuir equation (eq 3-1). 

 

C/X = C/ Xm + b/ Xm                Eq 3-1 

 

Where b is a characteristic constant of the adsorbent under study state which can be 

determined experimentally by dividing the intercept by the slope. 

 

Acid strength using Hammett indicators: 

The acid strength of the prepared sulfated zirconia powders was determined using 

Hammett organic base indicators [16].  This determination is based on the ability of the 

oxide surface to change the organic base indicator into its conjugate acid due to transfer 

of proton from Brønsted acid site on the surface to the indicator.  The lower the Hο value, 

the higher the acidity of the oxide surface.  If the surface sites have a Hο values less than 

the pKa values of the indicators, the color will change as a result of the acid base reaction 

on the surface. 

The indicator solutions were prepared in 1% wt/wt concentration by dissolving of 

0.5 g of the organic indicator in 50 ml of dry benzene since water can affect the results by 

rapid adsorption on the surface oxide.  The sample surface was cleaned prior performing 

the tests by heating the samples under vacuum at 80 ºC for 2 hours.  The acidity strength 

was experimentally determined by addition of 0.1g of the solid to 2 ml of dry benzene in 



 98

20 ml test tube followed by addition of 1ml of the indicator solution.  The tube was 

covered and left for one hour to allow equilibrium to occur before recording the color 

changed.  The pKa values of the conjugate acid of the indicators as well as the acid-base 

color is shown in Table 3-1 while the chemical structure of the Hammett organic base 

indicators used in this study is shown in Figure 3-3. 

 

Table 3-1: The pKa values of Hammett indicators conjugate acids along with its 

acid-base colors. 

Indicator pKa Wt % H2SO4 of 
equivalent 
strength 

Basic 
color 

Acid 
color 

A)  neutral red                                   6.8 - Yellow Red 
B)  p- dimethylaminoazobenzene     3.3 3 x 10 -4 Yellow Red 
C)  4-phenylazo-1-naphthylamine    

hydrochloric acid                  
1.5 - Yellow Purple 

D)  hexamethyl-paraosaniline 
chloride (crystal violet) 

0.8 - Blue Yellow 

E)  dicinnamalacetone -3.0 48 Yellow Red 
F)  trans-chalcone -5.7 72 Color less Yellow 
G)  anthraquinone -8.2 90 Color less Yellow 
H)  4-nitrotoulene -11.4 100 Color less Yellow 
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Figure 3-3: Hammett organic base indicators used to evaluate the acidity strength of 

sulfated zirconia. 
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Acidity Evaluation via acetonylacetone conversion reaction: 

Acetonylacetone can undergo an acid-base catalyzed intermolecular cyclization 

reaction [17].  In this part of the work, an attempt to use acetonylacetone as a probe to 

determine the ability of the different synthesized sulfated zirconia samples to catalyze the 

intermolecular cyclization reaction and to utilize this reaction to measure their acid 

strength was conducted.  The acid-catalyzed product out of this reaction is dimethylfuran 

while the base-catalyzed one is methyl-cyclopentanone.  The proposed mechanism for 

this reaction is shown in Figure 3-4.  This reaction was utilized in the current research to 

estimate the acidity of the oxide catalyst surface.  Approximately 1.0 gram of 

acetonylacetone was added to 0.2 g of the catalyst sample in a Teflon bomb reactor and 

was heated in the oven at 150 ºC for 20 hours.  The acetonylacetone conversion and the 

dimethylfuran selectivity were obtained from GCMS analysis data. 
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Figure 3-4: Acid-base catalyzed cyclization of acetonylacetone 
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RESULTS AND DISCUSSIONS 

 

Precursors obtained from the reaction of zirconium salts with ethanesulfonic acid 

and its corresponding oxides: 

 

Table 3-2 and Table 3-3 shows the C,H,S elemental analyses and the details of 

some precursors obtained from the reaction of zirconium acetate and zirconium 

oxychloride with ethanesulfonic acid in different mole ratios.  The possible proposed 

formulas are deduced based on the elemental analyses and the TGA data. 

 

Table 3-2: The structures and properties of the synthesized zirconium sulfonate 

complexes obtained from reaction of zirconium salts with ethanesulfonic acid. 

Calcination to 
oxide 

 

Sample 

code 

‡Initial mixture 

ZrO2 

(%) 

Molecular 

weight 

(gm / mol) 

*Oxide 

Temp. 

(°C) 

‡ Proposed precursor formula Surface 

Area 

(m2/g) 

SZ-1(1:0.25) ZA with 0.25 ESA 55.4 226 700 [Zr(O)0.9(OH)1(OAC)1(ESA)0.2]·0.8H2O ---- 

SZ-1(1:0.5) ZA with 0.5 ESA 50. 5 243 700 [Zr(O)1.25(OAC)1(ESA)0.5]·0.5H2O 0.004 

SZ-1(1:1) ZA with 1 ESA 44.5 276 650 [Zr(O)1.3(OAC)0.6(ESA)0.8]·2H2O 0.47 

SZ-1(1:2) ZA with 2 ESA 34.0 361 650 [Zr(O)0.9(OAC)0.4(ESA)1.8]·2.2H2O 0.28 

SZ-1(1:3) ZA with 3 ESA 26.4 465 650 [Zr(O)0.6(ESA)2.8]·3H2O 0.86 

SZ-2 ZOC with 2 ESA 31.4 392 600 [Zr(O)0.75(ESA)1.5(Cl)1]·5H2O 0.441 

 

‡ ZA = Zirconium acetate hydroxide; ZOC = zirconium oxychloride; ESA= Ethanesulfonic acid, and 

OAc = acetate group.   

* The minimum temperature required for the combustion of precursor to zirconium oxide. 
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Table 3-3: The elemental analysis results for the synthesized zirconium sulfonate 

complexes obtained from reaction of zirconium salts with ethanesulfonic acid. 

Elemental 

analysis (%) 

Sample 

code 

C H S 

Product proposed formula *Expt. 

Fwt 

(g/mol) 

**Theor. 

Fwt 

(g/mol) 

SZ-1(1:0.25) 12.3 3.29 2.62 [Zr(O)0.9(OH)1(OAC)1(ESA)0.2]·0.8H2O 222 219 

SZ-1(1:0.5) 13.5 3.40 6.33 [Zr(O)0.7(OH)1.25(OAC)0.85(ESA)0.5]·1H2O 243 247 

SZ-1(1:1) 12.1 3.54 9.52 [Zr(O)1.3(OAC)0.6(ESA)0.8]·2H2O 276 272 

SZ-1(1:2) 14.6 3.61 16.91 [Zr(O)0.9(OAC)0.4(ESA)1.8]·2.2H2O 361 367 

SZ-1(1:3) 15.7 3.49 18.5 [Zr(O)0.6(ESA)2.8]·3H2O 465 464 

SZ-2 9.24 4.98 10.41 [Zr(O)0.75(ESA)1.5(Cl)1]·5H2O 392 394 

 

* from TGA and thermal analysis 

** from proposed formula 

 

The TGA profiles of the zirconium sulfonate precursors derived from the reaction 

of zirconium salts with different concentrations of ethanesulfonic acid are shown in 

Figure 3-5.  The TGA curve of the SZ-1(1:1) sample was slightly different from the SZ-

1(1:2) sample.  The TGA profile of SZ-1(1:1) exhibited a stepwise thermal 

decomposition with three distinct regions. A weight loss observed between room 

temperature and 150 °C is due to evolution of the coordinated water molecules.  A 

gradual decomposition was observed between 150 °C and 350 °C, which can be 

attributed to the decomposition of the organic sulfate ligands and hydroxy groups.  The 

weight loss between 350 °C and 600 °C is attributed to the decomposition of the acetate 

ligands.  The TGA curve for the SZ-1(1:2) sample, however, showed a sharp weigh loss 

between 350 °C and 450 °C due to the loss of the additional ethane sulfonate ligands.  
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The SZ-2 sample has a more significant weight loss before 250 °C.  However, chlorine 

analysis showed that the SZ-2 precursor contains 16% chloride ions.  Upon thermal 

drying at 130 ºC, the chloride content drops to 8%.  This implies that the weight loss 

shown in the TGA profile of the sample SZ-2 (Figure 3-5) in the temperature region from 

25 ºC to 250 ºC is attributed to both the loss of water molecules and the loss of chloride 

ions probably as HCl.  
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Figure 3-5: The thermogravimetric analysis (TGA) graphs for the prepared 

zirconium ethane sulfonate hydroxide precursors:  (SZ-1(1:1)): zirconium acetate 

with 1 mole of ethanesulfonic acid; (SZ-1(1:2)): zirconium acetate with 2 moles of 

ethanesulfonic acid; (SZ-2): zirconium oxychloride with 2 moles of ethanesulfonic 

acid. 
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The carboxylate stretching frequencies of zirconium acetate complexes occur 

between 1400 cm-1 and 1700 cm-1.  Table 3-4 and Figure 3-6 list the stretching 

frequencies of the carboxylate carbonyl group νCOO(symm) and νCOO(asymm) and the splitting 

(∆ν) between the asymmetric and symmetric carbonyl stretching frequencies of several 

synthesized zirconium acetate ethyl sulfonate complexes, which were prepared by the 

reaction of zirconium acetate with variant amounts of ethanesulfonic acid.  The results 

show clearly that the asymmetric carboxylate absorption stretching frequencies 

νCOO(asymm) and the  ∆ν values decrease dramatically with an increase of the number of 

ethylsulfonates on the precursors. This is indicative of a change in the mode of 

coordination of the bridging acetate groups to either wider angle or higher delocalization 

to the double bond.  Additionally, the 13C NMR spectra of the zirconium sulfonate 

precursors obtained from the reaction of zirconium acetate with different mole ratio of 

ethanesulfonic acid are shown in Figure 3-7.  The NMR spectra show that the intensity of 

the 13C acetate peaks at 24 ppm and 178 ppm decreased while the intensity of the 13C of 

the ethylsulfonate at 8.8 ppm and 45.7 ppm increased with an increasing amount of 

ethylsulfonate until the point at which the acetate peaks disappear completely.  These 

results confirmed the results observed by the IR spectroscopy and clearly suggest that the 

ethane sulfonate gradually replace the acetate ligands.  The complete replacement was 

observed when the zirconium acetate precursor reacts with three mole equivalents of 

ethanesulfonic acid. 
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Figure 3-6: The IR spectra of the zirconium sulfonate precursors obtained from the 

reaction of 1 mole of zirconium acetate with different mole ratio of ethanesulfonic 

acid (ESA): A: zirconium acetate; B: with 0.5 ESA; C: with 1 ESA; D: with 2 ESA; 

and E: with 3 ESA. 
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Table 3-4: IR stretching frequencies of the asymmetric and symmetric carbonyl 

groups in the synthesized zirconium acetate ethyl sulfonate complexes containing 

different amount of ethanesulfonic acid. 

νCOO (cm-1) Sample 

Code 

Precursor pH 

Asymmetric Symmetric 

Complex ∆ν 

(cm-1) 

* ZrA ZrA 4.45 1573 1450 123 

SZ-1(1:0.1) ZrA with 0.1ESA 3.70 1573 1445 128 

SZ-1(1:0.5) ZrA with 0.5ESA 2.30 1575 1456 119 

SZ-1(1:1) ZrA with 1ESA 0.56 1557 1455 102 

SZ-1(1:2) ZrA with 2 ESA ≈ 0 1540 1459 81 

 

* ZrA = zirconium acetate hydroxide; ESA=ethanesulfonic acid 
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Figure 3-7: The 13C NMR spectra of the zirconium precursors obtained from the 

reaction of 1 mole of zirconium acetate with different mole ratios of ethanesulfonic 

acid (ESA): A: zirconium acetate; B: with 0.5 ESA; C: with 1ESA; and D: with 

3ESA. 
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The XRD pattern of the precursor derived from the reaction of zirconium acetate 

with one mole equivalent of ethanesulfonic acid calcined at different temperatures is 

shown in Figure 3-8.  It is known, that the hydroxyl ions available on the surface of 

zirconium oxide stabilize the tetragonal phase and delay the transformation to the 

monoclinic phase [18].  As shown in Figure 3-8, the tetragonal phase started to appear at 

approximately 500°C.  With an increase of the temperature, more crystalline tetragonal 

phases develop without the appearance of the monoclinic phase until about 950 °C.  

Comparison of these data with that of zirconium oxide derived from thermal treatment of 

zirconium carboxylate complexes (discussed in Chapter 2) and with that from zirconium 

acetate shown in Figure 3-8F revealed that the zirconium sulfonate precursors produce a 

highly thermally stabile tetragonal phase due to the presence of the sulfate ions.  Sulfate 

ions are believed to increase the thermal energy required to remove the hydroxyl ions 

during the thermal dehydroxylation process [19].  The phase composition results also 

show a degree of dependency on the nature of the sulfated zirconia single precursor and 

on the amount of sulfur species available in the surface. 
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Figure 3-8: X-ray diffraction pattern for the zirconium sulfonate single precursor 

derived from reaction of 1 mole of zirconium acetate with 1 mole of ethanesulfonic 

acid (SZ-1(1:1)).  A; at 550 °C; at B: 700 °C; C: at 850 °C; D: at 950 °C; E: at 1050 

°C; and F: zirconium acetate at 800 °C. 

 

The crystallite size measurements obtained from the X-ray diffraction for the 

thermally treated single precursor (SZ-1(1:3)) at different calcination temperatures are 

shown in Figure 3-9.  A small average crystallite size of about 4 nm was observed for the 

sample calcined at 550 °C.  The crystallite size increased with an increase in the 

temperature and reached a 12 nm average size when the sample was calcined at 850 °C.  

This increase in the crystallite size is presumably due to the sintering and agglomeration 

of the particles during thermal treatment.  By comparison, the crystallite size of zirconia 

derived fro, zirconium carboxylates, displaced markedly higher increases upon 
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calcinations at similar temperatures. This clearly indicates that the sintering of zirconia 

crystallites during calcination process is delayed by the presence of sulfate ions on the 

oxide surface resulting in smaller crystallite size. 
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Figure 3-9: The average crystallite size of the SZ-1(1:3) precursor calcined at 

different temperature. 

 

The infrared spectrum of the oxide obtained from thermal decomposition of the 

precursor SZ-1(1:3) at 650 °C is shown in Figure 3-10.  Three peaks in the IR region 

from 1000 cm-1 to 1250 cm-1 were observed, specifically, 1029 cm-1 - 1069 cm-1, 1143 

cm-1, and 1222 cm-1 - 1243 cm-1.  These bands are considered as characteristic peaks for 

the S-O stretching modes of vibration of the coordinated SO4
2- species on the surface.  

They are typical of the chelating bidentate sulfate species coordinated to the zirconium 
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metal ion [20].  Furthermore, the peak that was observed at about 1389 cm-1 is believed to 

correspond to the S=O stretching frequency of sulfate adsorbed on the metal oxide 

surface [20,21].  The broad peak observed at 3375 cm-1 is attributed to the hydrogen 

bonding OH stretching mode of the adsorbed water on the surface of the zirconia [22].  

Additionally, the peak appearing at 1627 cm-1 was attributed to the δ OH bending mode 

of the adsorbed water molecules on the surface [22].  It is obvious from Figure 3-10 that 

the oxide obtained form the SZ-1(1:1) and SZ-1(1:2) precursors are similar to each other 

with slight differences in the relative intensities of the peaks.  This implies that the sulfate 

groups adsorbed on the surface have similar structures.  The characteristic peak for the 

νS=O with the zirconia sample SZ-1(1:1) was observed at frequency of 1376 cm-1 but it is 

shifted to higher position (1389 cm-1) for the zirconia sample SZ-1(1:2).  This increase in 

the band absorption frequency presumably occurs due to the increase of the surface 

sulfate groups concentration.  As shown in Figure 3-10, the oxide with high sulfate 

contents (SZ-1(1:3) sample) has a different IR spectrum in the νS-O region with 

appearance of new strong bands at about 1065 cm-1 and 900-1000 cm-1.  This change is 

presumably due to the formation of polynuclear sulfate compounds [21,23].  

Furthermore, the degree of hydration of the crystalline sulfate groups maybe also 

influence the structure of the adsorbed sulfate groups on the surface [21]. 

 

 

 

 

 



 112

 

 

 

 

 

 

 

 

 

 

7009001100130015001700

Wavenumber (cm-1)

υ S=O1:1

1:2

1:3

13
76

13
89

7009001100130015001700

Wavenumber (cm-1)

7009001100130015001700

Wavenumber (cm-1)

υ S=O1:1

1:2

1:3

13
76

13
89

 

Figure 3-10: (Upper spectra), the IR of the (A) zirconia obtained from zirconium 

acetate heated at 720 °C; (B) zirconium sulfonate precursor SZ-1(1:3) dried at 100 

°C; (C) sulfated zirconium oxide obtained from calcination of SZ-1(1:3) at 650 °C.  

(Lower spectra); sulfated zirconia obtained from pyrolysis of zirconium sulfonate 

precursors at 650 °C;  (1:1): oxide from SZ-1(1:1); (1:2) : oxide from SZ-1(1:2); and 

(1:3): oxide from SZ-1(1:3). (The precursor details are summarized in Table 3-2) 
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Figure 3-11 shows the influence of the sulfate concentration on the phase 

composition and thermal stability.  All the samples were calcined at 950 °C for 8 hours.  

It was previously reported that the acetate to the zirconium stoichiometry in the 

zirconium acetate complex precursors had only a negligible effect on the crystallite phase 

and the crystallization temperature [24].  Therefore, the observed variation in the phase 

composition can be directly attributed to the presence of the sulfate groups on the final 

oxide surface.  Zirconium acetate itself showed a complete transformation of the 

tetragonal phase to the monoclinic phase at this temperature.  However, the results 

showed that with addition of 0.1 mole ratio of ethanesulfonic acid (ESA) to zirconium 

acetate, the tetragonal phase was highly stable and resisted the transformation into a 

monoclinic phase.  The presence of the tetragonal phase was about 56%.  It seems that 

even a small amount of sulfate introduced into the defect sites of the zirconium oxide 

crystals is capable of stability of the tetragonal phase. With an increase in the mole ratio 

of ESA, the structure retained more of the tetragonal phase at high calcination 

temperature.  At 1 mole ratio of ESA, the structure almost completely retains its 

tetragonal phase at 950 °C. 
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Figure 3-11: Effect of the ethanesulfonic acid (ESA): zirconium acetate (ZrAc) mole 

ratio on the phase composition of the sulfated zirconium oxide calcined at 950 °C;  

A: zirconium acetate; B: with 0.1 ESA; C: with 0.25 ESA; D: with 0.5 ESA; E: with 

1 ESA; F: with 2ESA; and G: with 3 ESA. 
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It has been reported that sulfates stabilized the tetragonal phase by contribution to 

the rigidity of the structure and increasing the Zr-Zr bond separation [12].  However, 

there is another reason that is believed to influence the structure stability by sulfate ions. 

It is expected that the zirconium oxide surface has some sites and vacancies that can 

adsorb oxygen and hence inspire the phase transformation from tetragonal to monoclinic 

[9].  However, the sulfate ions, coordinated to the surface, cover such sites and delay the 

phase development from both amorphous to crystalline phase and from tetragonal to 

monoclinic phase. 

 Interestingly, beyond a 1:1 mole ratio of zirconium acetate to the ESA (Figure 3-

11), a decrease in the stability of the tetragonal phase was observed.  The cause of this is 

not understood, but it may reflect a very different decomposition pathway leading to 

sulfated zirconia particles with varying microstructures and hence the tetragonal to 

monoclinic transformation.  Additionally, this may be due to the observed change in the 

nature of the sulfate groups coordinated to the surface of the zirconium.  For example, a 

zirconia with 91.9% monoclinic phase was obtained from the three mole equivalents of 

ethanesulfonic acid precursor.  Figure 3-12 shows also the effect of the sulfur contents on 

the development and the initial formation of the tetragonal phase.  When the precursor 

(SZ-1(1:1)) is calcined at 550 °C for 6 hours, most of the sample mainly remains 

amorphous.  However, calcination of the (SZ-1(1:3)) precursor at the same temperature 

results in the formation of a more crystalline tetragonal phase. 

Apparently, one can conclude from all the characterization results that there is a 

maximum in the amount of sulfate groups necessarily for the stabilization of the 

tetragonal phase at high temperature and the maximum phase stability is obtained when 
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the oxide surface has a certain ratio of SO4
2-/OH¯.  Beyond that ratio, the sulfate groups 

replace large amounts of the hydroxyl groups from the surface and appear to be crowded 

on the surface, which affects its coordination nature and hence facilitates the evolution of 

sulfate species in the form of SO3 gas at elevated temperature. 

 

 

 
Figure 3-12: Effect of the ethanesulfonic acid (ESA) concentration in the initial 

crystallization of the tetragonal sulfated zirconia.  Samples were calcined at 550 °C 

for 6 hours.  A: with 0.5 ESA; B: with 1 ESA; C: with 2 ESA; D: with 3 ESA. 

 

Figure 3-13 showed the relationship between the specific surface area and the 

mole ratio of the zirconium acetate to the ethanesulfonic acid in the single precursor 

series (SZ-1).  The mole ratio of the ethanesulfonic acid is believed to be proportional to 
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the amount of the sulfate groups on the surface area of the final oxides.  All the samples 

were calcined at 650 °C for 8 hours.  The results show a dramatic increase in the oxide 

surface area with an increase of the sulfur content.  This can be attributed to the 

interaction of the sulfate groups on the oxide surface.  The reason behind the growth in 

the surface area maybe attributed to the presence of bridging sulfate SO4
2- ions on the 

surface.  Apparently, the bridging sulfate ions replace the hydroxyl groups present on the 

surface resulting in a more rigid and stable structure.  Furthermore, the bridging sulfate 

ions caused an increase the Zr-Zr separation from about 3.4 A° to 4.3 A° [12,25] which 

also appears to facilitate the dispersion of the oxide particles and hence increases the 

surface area. 
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Figure 3-13: Effect of the ethanesulfonic acid (ESA) mole ratio in the surface area of 

the sulfated zirconium oxide calcined at 650 °C. 
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The general proposed pathway for the thermal decomposition of the zirconium 

sulfonate precursors to form sulfated zirconium oxide is shown in the following scheme: 

 
Zr(OH)x(Sulfonate)y .nH2O

130 °C

- nH2O

300 °C - 600 °C
SO4

2--ZrO2 (tetragonal) SO3 H2O+ +

600 °C - 900 °C

Zr(OH)x(Sulfonate)y

Zr(OH)x(Sulfonate)y + CO2

SO4
2--ZrO2 (tetragonal) SO4

2--ZrO2 (tetragonal) ZrO2 (monoclinic)+

SO4
2--ZrO2 (tetragonal)

ZrO2 (monoclinic)

> 950 °C
ZrO2 (monoclinic)

SO3+

SO3+
 

 
The SEM micrograph of the zirconium acetate starting material and the zirconium 

ethyl sulfonate precursor (SZ-1(1:3)) are shown in Figure 3-14.  The SEM was recorded 

for both, the precursor itself and the oxide obtained from the pyrolysis of the precursor.  

The micrographs of the zirconium acetate (Figure 3-14 A,B) show smooth spherical 

particles with uniform holes on the walls of the particles.  The size of these particles lay 

in the range from 2 µm to about 20 µm.  When the zirconium acetate was heated to 700 

°C to yield zirconium oxide (Figure 3-14 C,D), the SEM of the resulting oxide showed 

that it maintained the morphology of the precursor with more polished spherical particles. 

The morphology of the zirconium sulfonate precursor (SZ-1(1:3)) showed uniformly 

shaped crystals stuck together with average diameters of about 0.5µm.  Upon calcination, 

the morphology completely changed to form rod-like zirconia with an average diameter 

of about 200 to 500 nm with several microns in length.  This apparently occurred due to 

the sintering of the particles during the thermal transformation of the precursor to the 

oxide.  The uniaxial growth may be a reflection of the formation of the tetragonal phase 

with preferred growth in the C axis. 
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Figure 3-14: Scanning electron micrographs of the zirconium acetate [(A(1500X) 

and B(13000X)]; zirconium acetate at 700 °C [C(1500X) and D(13000X)]; zirconium 

ethane sulfonate (SZ-1(1:3)) [E(1500X) and F(13000X)]; and zirconium ethane 

sulfonate (SZ-1(1:3)) at 650 °C [G(1500X) and H(13000X)]. 
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Other synthesized zirconium sulfonate precursors and their corresponding oxides: 

 

Single source precursors synthesized in the current research work were obtained 

from the reaction of zirconium salts with a variety other sulfonic acids or sulfonic acid 

salts.  Zirconium sulfonate precursors prepared by these methods were obtained generally 

with about 80% yield.  Table 3-5 showed the details of these precursors with its proposed 

chemical formula while Table 3-6 shows the C,H,S,N elemental analysis results.  The 

TGA profiles of some zirconium sulfonate precursors obtained from the reaction of 

zirconium salts with different sulfonate reagents are shown in Figure 3-15. 

 

 

 

 

 

 

 

 

 

Figure 3-15: TGA profiles of some zirconium sulfonate precursors; (SZ-4): 

zirconium oxychloride with p-toluene sulfonic acid; (SZ-5): zirconium acetate with 

8-hydroxyquinoline sulfonic acid; (SZ-9): zirconium acetate with sodium dodecyl 

sulfate; and (SZ-11): zirconium acetate with sodium hexadecyl sulfate. 
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Table 3-6: The elemental analysis results for the synthesized zirconium sulfonate 

complexes. 

Elemental analysis (%) Sample 

code S C H N 

Product proposed formula *Expt. 

Fwt 

(g/mol) 

**Theor. 

Fwt 

(g/mol) 

SZ-3 5.08 21.4 3.11 --- [Zr(O)0.8(OH)1(OAc)1(PTSA)0.4]·1H2O 274 268 

SZ-4 11.4 29.7 4.68 --- [Zr(OH)1.5(PTSA)2Cl0.5]·5H2O 564 567 

SZ-5 3.51 18.3 3.44 1.89 [Zr(O)0.5(OH)2(OAc)0.7(HQSA)0.3]·1.5H2O 269 269 

SZ-6 9.26 32.4 4.16 3.62 [Zr(O)1.5(HQSA)1]·1H2O 349 358 

Zr-7 --- 48.4 3.77 5.80 [Zr(O)0.8(OAc)0.6(HQ)1.8]·1H2O 424 419 

Zr-8 --- 40.0 2.46 4.93 [Zr(O)1.5(HQ)0.75(Cl)0.25]·1H2O 267 252 

SZ-9 4.30 30.6 5.74 --- [Zr(O)1.5(HQ)1]·0.5H2O 345 356 

SZ-10 8.16 40.6 6.84 --- [Zr(O)1.5(SDS)1]·1H2O 399 399 

SZ-11 4.73 38.1 5.83 --- [Zr(O)0.7(OAc)2(HDSA)0.6]·1H2O 426 431 

SZ-12 5.74 40.4 7.45 --- [Zr(O)1.55(HDSA)0.9]·1H2O 423 424 

 

* from TGA and thermal analysis 

** from proposed formula 

 

The TGA profiles of the zirconium sulfonate showed a decomposition profile 

similar to that of the SZ-1 precursor series which obtained from the reaction of zirconium 

acetate with ethanesulfonic acid. The thermal decomposition of precursors occurs in a 

stepwise manner with the loss of water molecules at the beginning followed by the 

decomposition of sulfonate ligands.  The degree of the decomposition depends on the 

nature of the zirconium sulfonate precursor.  However, most of precursors show the 

formation of the oxide at about 600 ºC.  Sulfated zirconium oxides were obtained by 

pyrolysis of synthesized zirconium sulfonate precursors at different calcination 
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temperatures.  The synthesized oxides are listed in Table 3-7 along with their specific 

surface areas and phase compositions. 

 

Table 3-7: The surface areas and the phase composites of the sulfated zirconium 

oxides derived from calcination of zirconium sulfonate complexes. 

Phase (%) *Sample 
code 

Calcination 
Temperature (°C) 

Surface Area 
(m2/g) 

VTetragonal VMonoclinic 
SZ-3(580) 580 49.5 100 0 
SZ-3(650) 650 25.4 100 0 
SZ-3(680) 680 20.9 100 0 
SZ-3(750) 750 12.3 100 0 
SZ-3(850) 850 7.40 100 0 
SZ-4(500) 500 9.94 100 0 
SZ-4(580) 580 32.9 100 0 
SZ-4(650) 650 16.4 97 3 
SZ-4(750) 750 2.90 96 4.0 
SZ-4(850) 850 1.30 68 32 
SZ-5(580) 580 16.2 100 0 
SZ-5(650) 650 63.6 100 0 
SZ-5(750) 750 36.3 100 0 
SZ-5(850) 850 15.5 100 0 
SZ-6(580) 580 32.6 100 0 
SZ-6(620) 620 17.2 100 0 
SZ-6(650) 650 15.8 100 0 
SZ-6(680) 680 13.2 100 0 
SZ-6(750) 750 12.7 100 0 
SZ-6(850) 850 6.30 7.0 93 
Zr-7(460) 460 22.3 100 0 
Zr-7(580) 580 15.2 100 0 
Zr-7(650) 650 12.8 77 23 
Zr-7(750) 750 18.0 73 27 
Zr-7(850) 850 8.60 55 45 
Zr-8(590) 590 23.2 100 0 
Zr-8(650) 650 7.50 47 53 
Zr-8(750) 750 2.80 0 100 
Zr-8(850) 850 1.32 0 100 

 
* The samples specifications correspond to each samples code was described in Table 3-5. 



 124

Table 3-7: The surface areas and phase composites of sulfated zirconium oxides 

derived from calcination of zirconium sulfonate complexes (continue). 

Phase (%) *Sample 
code 

Calcination 
Temperature (°C) 

Surface Area 
(m2/g) 

VTetragonal VMonoclinic 
SZ-9(610) 610 34.3 100 0 
SZ-9(650) 650 28.9 100 0 
SZ-9(720) 720 22.5 86 14 
SZ-9(750) 750 21.7  84 16 
SZ-9(800) 800 14.5 70 30 
SZ-9(850) 850 12.2 64 36 
SZ-9(900) 900 7.20 40 60 
SZ-9(950) 950 4.90 22 78 
SZ-10(610) 610 20.8 100 0 
SZ-10(650) 650 18.7 100 0 
SZ-10(720) 750 12.4 49 51 
SZ-10(750) 750 9.97 77 23 
SZ-10(800) 800 3.70 26 74 
SZ-10(850) 850 3.10 15 85 
SZ-10(900) 900 1.20 11 89 
SZ-11(600) 600 34.3 100 0 
SZ-11(650) 650 45.6 100 0 
SZ-11(750) 750 20.4 78 22 
SZ-11(850) 850 5.90 8.0 92 
SZ-12(500) 500 31.7 100 0 
SZ-12(600) 600 75.4 100 0 
SZ-12(650) 650 52.2 90 10 
SZ-12(720) 720 41.0 23 77 
SZ-12(750) 750 36.3 10 90 
SZ-12(850) 850 16.5 4.0 96 

 
* The samples specifications correspond to each samples code was described in Table 3-5. 

 

The surface area of the resulting oxide showed also a kind of dependency on the 

single source zirconium sulfonate precursor itself.  The higher surface area was observed 

with the oxide obtained from calcination of SZ-12 precursor (zirconium oxychloride with 

sodium hexadecyl sulfate) at 600 °C.  Additionally, as we have seen in the case of the 

sulfated zirconia obtained for the precursors SZ-1 and SZ-2, the oxides showed a high 
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stability of the tetragonal phase over the monoclinic phase due to the presence of surface 

sulfate groups.  Figure 3-16 shows the X-ray diffraction pattern for the sulfated zirconia 

obtained from different synthesized precursors utilizing both zirconium oxychloride and 

zirconium acetate as starting zirconium salts.  The influence of the sulfate ions on the 

surface of the final oxide can be observed from Figure 3-16(a, and b).  The oxide 

obtained from zirconium quinoline (Zr-7, and Zr-8) showed a much low stability of the 

tetragonal phase than the oxide obtained from the pyrolysis of zirconium quinoline 

sulfonic acid (SZ-5 and SZ-6).  This is probably due to the presence of adsorbed sulfate 

groups on the surface of the latter oxide. 

 Furthermore, as in case of oxides derived from zirconium carboxylate precursors 

discussed in Chapter 2, the results demonstrated in Table 3-7 and Figure 3-16 showed 

that the phase stability have some kind of dependency on the chain length of the alkyl 

ligands.  The oxide obtained from (SZ-12) precursor at 850 °C showed a complete 

transformation to the monoclinic phase.  With smaller alkyl group ligands, as in case of 

sodium dodecyl sulfate (SZ-9 and SZ-10), the percent volume of the tetragonal phase was 

higher at the same calcination temperature.  The oxide obtained from the reaction of 

zirconium salts with ethanesulfonic acid (SZ-1) showed the highest tetragonal phase 

stability even at high temperature. 

 In general, as can be seen from Figure 3-16 and Table 3-7, one can say that the 

nature of zirconium precursors strongly influence the phase composition of the resulting 

sulfated zirconia hence it can effect the concentration and structure of sulfate ions and 

hydroxyl groups on the surface of the sulfated zirconia. 
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Figure 3-16: Sulfated zirconia obtained from the reaction of A:  zirconium 

oxychloride and B: zirconium acetate with:  a) 8-hydroxyquinoline; b) 8-

hydroxyquinoline sulfonic acid; c) sodium hexadecyl sulfate and d) sodium lauryl 

sulfate. 
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Once again, one can see the influence of the sulfate groups on the morphology of 

the final zirconium oxide.  Figure 3-17 shows the SEM micrographs of the precursor and 

the oxide obtained from the reaction of zirconium acetate with 8-hydroxyquinoline (SZ-

7) and the oxide obtained from the reaction of zirconium acetate with 8-

hydroxyquinoline-5-sulfonic acid (SZ-5).  The morphology of the two precursor (SZ-7) 

consisted of similar uniform spherical particles.  Upon thermal heating at 460 ºC, 

however, two remarkably different microstructures resulted from the two precursors.  A 

smooth glassy surface with few small particles deposited on this surface (Figure 3-17B) 

resulted from firing of the 8-hydroxyquinolene precursor (Zr-7).  This implies that 

zirconium particles undergo some sort of melting and aggregation.  On the other hand, 

the SZ-5 precursor produced an oxide consisted of spherical particles with an average 

particle size of 50-200 nm.  This is quite similar to the oxide obtained from the precursor 

Zr-7, implying that there was no sintering or major aggregation occurring.  The 

preservation of the spherical particles after heating apparently reflects the influence of the 

surface sulfate groups on the sintering resistance. 
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Figure 3-17: Scanning electron micrographs of:  (A) zirconium acetate 

hydroxyquinolate (SZ-7) (A (40000X); (B) zirconium acetate hydroxyquinolate at 

460 °C (SZ-7(460)) (B (50000X); (C) zirconium acetate hydroxyquinolate sulfonate 

(SZ-5) (C (40000X) and (D) zirconium acetate hydroxyquinolate sulfonate at 650 °C 

(SZ-5(650)) (D (40000X). 
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Surface acidity: 

The total acidity measurements of several sulfated zirconium oxides obtained 

from different zirconium sulfonate precursors are listed in Table 3-8.  The listed values 

were obtained from the intramolecular cyclization of acetonylacetone and adsorption of 

cyclohexylamine.  The acid strength data (Table 3-9) was estimated using different 

Hammett indicators.  The data in Tables 3-8 and 3-9, indicate that the surface acidity of 

the sulfated zirconia obtained from different precursors have widely verity total acidities 

and acid strengths.  These dissimilar acidic properties can be mainly attributed to the both 

variations in specific surface area of the oxide and the availability and concentration of 

the active sites, and the structure of sulfate species on the surface. Table 3-9 shows that 

the acid site density of the sulfated zirconia samples is higher than that of the pure 

zirconium oxide by a factor of 3-5 times.  This confirms that the coordinated surface 

sulfate groups create the strong acidity.  Moreover, the acidity measurements of the oxide 

series obtained from the reaction of zirconium acetate with different mole ratios of 

ethanesulfonic acid demonstrated that the acidity increased with the increase of the 

sulfate concentration on the surface. 

 As shown in Tables 3-8 and 3-9, the total acidity and the acid strength of the pure 

zirconium oxide prepared from pyrolysis of zirconium acetate or zirconium 

hydroxyquinolate (SZ-7 and SZ-8) was very low with no significant values compare to 

that of sulfated zirconia.  Furthermore, the intermolecular cyclization of acetonylacetone 

over pure zirconia showed no selectivity towards the production of dimethylfuran which 

is the product obtained from the reaction over acid sites.  
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Table 3-8: Acidity measurement of the synthesized sulfated zirconia obtained from 

the pyrolysis of the prepared single source precursors. 

Acidity Measurements 

Cyclohexylamine 

adsorption 

Acetonylacetone cyclization 

reaction 
*Sample code 

(Temperature °C) 

SBET 

(m2/g) 
Acidity 

µmol/g 

Site density

µmol/m2 

Acetonylacetone 

conversion (%) 

Dimethylfuran 

selectivity (%) 

Zirconium acetate (650) 2.58 2.10 0.81 3.23 0 

SZ-1(1:0.1)(650) 3.85 --- --- 24.0 31.0 

SZ-1(1:0.5)(650) 20.1 65.3 3.24 37.0 72.0 

SZ-1(1:1)(650) 23.9 109 4.50 --- --- 

SZ-1(1:2)(650) 27.5 139 5.08 15.5 81.0 

SZ-1(1:3)(650) 49.6 278 5.67 28.4 89.0 

SZ-2(700) 14.0 77.2 5.50 --- --- 

SZ-3(680) 20.9 122 5.80 --- --- 

SZ-5(650) 63.6 305 4.80 32.2 91.1 

SZ-6(650) 13.2 41.1 3.11 28.4 96.4 

SZ-7(650) 12.8 12.3 0.96 14.7 11.3 

SZ-8(650) 7.50 1.63 0.22 --- --- 

SZ-10(610) 25.7 146 5.60 14.5 0 

 

*All the samples details are summarized in Table 3-2 and Table 3-5. 
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Table 3-9:  Acidity strength estimation of the sulfated zirconia obtained from the 

pyrolysis of synthesized single source precursors using Hammett indicator. 

*Color Indicator / (pKa) ‡Sample code 
B(+3.3) C(+1.5) D(+0.8) E(-3) F(-5.7) G(-8.2) H(-11.4) 

ZrAc(650) L. orange Yellow Green L. yellow Colorless Colorless Colorless 

SZ-1(1:0.5)(650) D. red D. purple Yellow D. orange L. yellow Colorless Colorless 

SZ-1(1:1)(650) D. orange Purple Yellow D. Red Yellow L. yellow Colorless 

SZ-1(1:2)(650) Red D. purple Yellow Red Yellow L. yellow Yellow 

SZ-1(1:3)(650) D. red Purple Yellow Red Yellow Yellow L. yellow 

SZ-2(700) Red L. purple Yellow D. red Yellow Colorless Colorless 

SZ-5(650) D. red Purple Yellow D. red Yellow Pink L. yellow 

SZ-6(650) D. orange Purple Yellow D. red Yellow L. pink Colorless 

SZ-7(650) Red L. purple L. green L. orange Colorless Colorless Colorless 

SZ-8(650) L. yellow L. purple L. green L. orange Colorless Colorless Colorless 

SZ-9(610) Red Purple L. green D. orange L. yellow Colorless Colorless 

SZ-10(610) Red Purple L. green Orange L. yellow Colorless Colorless 

SZ-11(650) Red Purple L. green Orange Colorless Colorless Colorless 

SZ-12650) Red Purple L. green Orange Colorless Colorless Colorless 

 

‡ All the samples details are summarized in Table 3-2 and Table 3-5. 

* All the indicators detailed are summarized in Table 3-1 and Figure 3-3. 

 

The acidity measurement results, particularly those for the oxide obtained from 

the series of precursors obtained from the reaction of zirconium acetate with 

ethanesulfonic acid, show that the acidity increases with an increase of the sulfate 

concentration.  This may be attributed to the generation of more Brønsted acid sites.  It is 

expected that the initial decomposition of the zirconium sulfonate precursor during the 

thermal treatment in air at low temperature may proceed by β-hydride elimination to give 

ethylene and water.  Adsorbed water may then react with the adjacent sulfate groups to 
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yield adsorbed bisulfates (HSO4¯) and hydroxyl groups.  In a similar manner to that 

which was proposed by Muriel et al. [26] at low sulfate concentration, the surface 

presumably is rich with the hydroxyl and bridging hydroxyl groups along with bisulfate 

groups.  Upon further heating to higher temperature (above 600 °C), the bisulfate 

undergoes a kind of condensation reaction with the adjacent hydroxyl groups to evolve 

water and forms a bridging bidentate sulfate group on the surface with concurrent 

formation of week and strong Lewis acid sites.  Water molecules were evolved during the 

thermal decomposition of the precursor or it can be re-adsorbed on Lewis acid sites to 

form weak Brønsted acid sites.  The delay of the formation of the tetragonal phase with 

low sulfate concentration as well as the thermal stability of this phase at higher 

temperature may be emphasized the presence of a high concentration of stabilized 

hydroxyl groups on the surface.  Figure 3-18 presents a schematic diagram of the 

proposed low and high sulfate load surface structures with showing both, the Brønsted 

and Lewis acid sites. 

Additionally, with further increase in the concentration of the sulfur species, the 

bisulfate groups on the oxide surface will increase and presumably some polynuclear 

sulfate compound such as pyrosulfate may be formed.  As shown earlier, the X-ray 

diffraction data showed that the sample with high sulfur species undergoes a rapid 

transformation of the tetragonal phase to monoclinic upon calcination at higher 

temperature. Presumably, this is due either to the different microstructure 

(nanocrystalline) of the zirconia and/or a none facile loss of sulfate due to the different 

mode of coordination.  
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Figure 3-18: Proposed structure of the synthesized sulfated zirconia with low and 

high sulfur concentrations [21, 26]. 

 

In fact, it was observed that sulfated zirconium oxides obtained from the 

zirconium acetate starting material exhibited more surface acidity and higher surface area 
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than that derived from zirconium oxychloride when prepared and treated at the same 

conditions.  We can also conclude, as seen from the TGA profile of zirconium ethane 

sulfonate (Figure 3-5), that the zirconium sulfonate precursors obtained from zirconium 

acetate required a higher temperature for the removal of the SO4
2- compared to that the 

precursor obtained from the reaction of zirconium oxychloride with sulfonic acids.  This 

higher temperature implies that there is a strong interaction between the zirconium 

acetate-derived zirconia particles and sulfonate ions.  Additionally, in order to investigate 

the influence of the zirconium salts on the phase composition of the final zirconium 

oxide, the two starting zirconium salt precursors were dissolved in water, then dried and 

calcined at 600 °C in order to mimic the preparation and firing of the sulfonate 

precursors.  The XRD patterns for these samples are shown in Figure 3-19.  The XRD 

pattern shows that the zirconium acetate sample retained the tetragonal structure of the 

oxide while the zirconium oxide derived from zirconium oxychloride undergoes almost a 

complete transformation from a tetragonal to monoclinic zirconia phase (≈ 78% of 

monoclinic).  This indicates that the zirconium acetate sample may be preserve more 

hydroxyl groups on the surface of the final oxide, as well as some carbonate species, 

which interact easily with the sulfate species to form stable SO4
2- anions on the surface 

resulting in more phase stability.  These results also indicate that the dehydroxylation 

process is delayed in zirconia derived from decomposition of acetate groups. 
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Figure 3-19: X-ray diffraction pattern of zirconium precursors pyrolyzed at 600 °C 

for 4 hours. A: zirconium acetate, B: zirconium oxychloride. 

 

Thermal decomposition of the sulfated zirconia precursors: 

The precursor, derived from the reaction of zirconium acetate with ethanesulfonic 

acid, was heated in a sealed glass tube using a tube furnace at various temperatures in the 

range of 250 °C to 450 °C.  The decomposition process initiated at about 200 °C -300 °C 

by β-hydride elimination reaction to evolve ethylene gas.  The ethylene gas presumably 

further undergoes dimerization and trimerization over the acid surface at high 

temperatures to yield a mixture of C4-C6 olefins.  Sulfur dioxide was also formed at this 

stage.  Hydrogen sulfide and more sulfur dioxide were also released as byproducts at 

higher decomposition temperatures (above 350 °C).  The C4 and C6 olefins directly 
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reacted with hydrogen sulfide via cyclization to give a mixture of thiophenes.  It is well 

established that one potential pathway for the synthesis of thiophenes is from the reaction 

of alkanes or olefins with sulfur dioxide or hydrogen sulfide at high temperature in an 

inert gas environment [27,28].  In our experiments, the formation of thiophene and 

hydrogen sulfide started at about 400 °C.  At lower than 400 °C, the reaction mainly 

produced SO2, water, and ethylene.  Figure 3-20 showed a schematic diagram for the 

possible products formed from the thermal decomposition of the zirconium sulfonate 

single-source precursor SZ-1(1:3).  Notably, thiophenes were produced in substantial 

amounts when a larger amount of sample was placed in the sealed tube due to the 

presence of less oxygen gas.  Thiophene compounds may also be formed as a result of the 

reaction of sulfur with ethylene to form a conjugated thiodiethylene intermediate, which 

further reacts with another ethylene molecule followed by intramolecular cyclization.  

The formation of diethyl sulfide and dithiolanes also suggest that the reaction follows a 

free radical mechanism. 
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Figure 3-20: Schematic diagram for the possible products obtained from the 

thermal decomposition of the sulfated zirconia single-source precursor (SZ-1). 

 

Other products obtained, such as elemental sulfur (S8), carbonyl sulfide (COS), 

diethyl disulfide, 1,4-dithiane, and 2-methyl-1,3-dithiolane were also detected as a result 

of the reduction pyrolysis of the precursor.  Elemental sulfur, which was observed at a 

high decomposition temperature (above 450 °C), apparently was formed as a result of the 

decomposition of hydrogen sulfide or thiophene under the reduction conditions. The 

sulfur then was deposited on the surface of the decomposed precursor. When the 

pyrolysis was conducted in a larger volume sealed tube with more oxygen concentration, 

the reaction produced CO2 and SO2 at higher yield than the thiophene and other products. 
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This implies that the thiophene, alkylated thiophene products, and other possible aromatic 

products are oxidized to sulfur dioxide and carbon dioxide gases. When the precursor was 

pyrolyzed in oxygen rich environment in an open vessel at 450 °C followed by extraction 

with methylene chloride, no elemental sulfur (S8) was deposited indicating that all the 

sulfur species are oxidized to sulfur dioxide gas or surface sulfate groups. 

When the long chain zirconium precursor was pyrolyzed at high temperature in a 

sealed tube, no elemental sulfur was produced.  Zirconium hexadecylsulfonate complexes 

(SZ-11), for example, produced mainly the β-hydride elimination products, other 

products due to elimination reaction and cyclization of the long chain hydrocarbons 

products, and sulfur dioxide.  The structures of the long chain hydrocarbon products are 

shown in Figure 3-21. Apparently, 3-Octadecene was produced due to the large presence 

of sodium stearylsulfate on the sodium hexadecyl sulfate starting material.  

 

Cyclohexadecane

3-Octadecene

3-Hexadecene

1-Hexadecene

 

Figure 3-21: Schematic diagram for the long chain hydrocarbon products obtained 

from the thermal decomposition of the sulfated zirconium hexadecyl sulfate 

precursor (SZ-11). 
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The yield of the thiophene products and other heterocyclic products were very 

low in this case.  This is due to the formation of long chain hydrocarbons which tend to 

form dehydrocyclization products rather than react with sulfur to form the heterocyclic 

products.  This conclusion is supported by the results obtained from the reaction of the 

hydrocarbons of different length (C4-C8) with hydrogen sulfide [27].  Other precursors, 

such as [Zr(O)0.5(OH)2(OAc)0.7(HQSA)0.3]1.5H2O (SZ-5 sample), did not produce 

thiophene upon  thermal decomposition in a sealed tube at 500 °C, which implies that the 

thiophene is only produced upon the reaction of the unsaturated hydrocarbons with the 

sulfur or hydrogen sulfide. 

In conclusion, three main processes during the thermal decomposition of the 

precursor in a sealed tube were observed.  First, the evolution of SO2 gas at a temperature 

below 300 °C.  Second, the evolution of the H2S and thiophenes at a temperature range 

between 300 °C - 450 °C.  And third, the formation of elemental sulfur at a temperature 

above 450 °C.  The amount of SO2, S8, and H2S depend on the pyrolyzed precursor.  This 

clearly implies that upon the formation of the zirconia lattices as a result of the thermal 

treatment, different sulfate group structures are presented on the surface and these 

decompose at different temperatures. The preparation methods and the nature of the 

zirconium sulfonate precursor strongly influence the sulfate contents, the nature and the 

structure of the sulfate groups on the surface.  Therefore, sulfated zirconium oxides 

obtained from the thermal decomposition of the synthesized zirconium sulfonate 

precursors are expected to have variable catalytic properties and surface acidity. 
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CONCLUSIONS AND REMARKS: 

 The zirconium sulfonate complexes used in this study yield highly stabilized 

tetragonal phase sulfated zirconia with small crystallite size after pyrolysis. The 

tetragonal phase was stabilized by the sulfate ions to a relatively high temperature.  The 

crystallite size and the phase composition showed a strong dependency on the zirconium 

sulfonate single precursor employed.  The ratio of the tetragonal to the monoclinic phase 

is strongly influence by the surface structure and the amount of sulfate groups 

coordinated to the oxide surface. 

The reaction of zirconium acetate with different concentrations of ethanesulfonic 

acid provides a successful method for controlling of sulfur content on the surface of the 

final sulfated zirconium oxide obtained after the pyrolysis of single precursors.  This was 

achieved by the gradual displacement of the acetate ligands by the sulfonate ions 

sequentially.  Sulfated zirconium oxide powders prepared by the thermal treatment of the 

zirconium sulfonate single source precursors exhibited a strong surface acidity and 

relatively high surface areas.  The results obtained from different characterization 

techniques demonstrated that the surface sulfate structure and the surface acidity strongly 

depend on the concentration of the sulfate on the surface.  The total surface acidity, acid 

strength and surface area showed an increase with an increase of the amount of sulfate 

groups on the surface. 

 The thermal decomposition of zirconium ethane sulfonate complexes showed that 

the initial step in the precursor complex decomposition is probably the evolution of 

ethylene gas as a result of β-hydride elimination, which further oligomerizes to higher 

molecular weight olefins.  Thiophenes were produced when the precursor is pyrolyzed 
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above 400 °C. SO2, CO2, COS and H2S gases as well as S8 (elemental sulfur) were also 

observed among the pyrolysis product mixture.  The product distribution obtained by 

pyrolysis showed a dependency on the sample to oxygen ratio available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 142

REFERENCES CITED: 

 

1. V. Kuznetsov, J. Appl. Chem. 1940, 13, 1257.   

2. J. Davies, C. Hockensmith; V. Kukushkin; and Y. Kukushkin, Synthetic 

Coordination Chemistry: Principles and Practices, World Scientifics, London, 

1996, p. 58. 

3. A. Cote, G. Shimizu, Coordination Chemistry Reviews, 2003, 245, 49. 

4. G. Shimizu, G. Enright, C. Ratciffe, K. Preston; J. Reid, and J. Ripmeester, Chem. 

Commun. 1999, 1485. 

5. M. Hino, S. Kobayashi and K. Arata, J. Am. Chem. Soc., 101, 6439, 1979. 

6. M. Hino and K. Arata, J. Chem. Soc., Chem. Commun., 1980, 851. 

7. K. Arata, Adv. Catal. 1990, 37, 165. 

8. R. Gillespie and T. Peel, Adv. Phys. Org. Chem., 1972, 9,1 

9. B. Davis, R. Keogh and R. Srinivasan, Catal. Today, 1994, 20, 219. 

10. K. Arata, M. Hino and N. Yamagata, Bull. Chem. Soc. Jpn. 1990, 63, 244,. 

11. E. Escalona and M. Penarroga, Catal. Lett., 1995, 30, 31. 

12. S. Song and A. Sayari. Cat. Rev.Sci. Eng., 1996, 38(3), 329. 

13. G. Yadav and J. Nair, Micro. Meso. Mat., 1999, 33, 1. 

14. C. Breen, Clay Minerals, 1991, 26, 487. 

15. F. Kooli, T. Sasaki and M. Watanabe, Langmuir, 1999, 15, 1090. 

16. L. Hammett and A. Deyrap, J. Am. Chem. Soc., 1932, 54, 2721. 

17. R. Dessau, Zeolites, 1990, 10, 205. 

18. R. Gomez and T. Lopez, J. Sol-Gel Sci. Technol. 1998, 11, 309. 



 143

19. J. Wang, M. Valenzyela, J. Salmon, A. Vazquez, A. Garcia-Ruiz and X. Boxhimi, 

Catal. Today, 2001, 68, 21. 

20. D. Ganapathy and J. Jayeshi, Microporous Mesoporous Materials, 1999, 33, 1. 

21. C. Morterra, G. Cerrato, C. Emanule and V. Bolis, J. Catal. 1993, 142, 349. 

22. D. Ward, and E. Ko, J. Catal.1994,150, 18. 

23. M. Bensitel, O. Saur; J. Lavally and B. Morrow. Mater. Chem. Phys.1988, 19, 

147. 

24. A. Geiculescu and H. Specncer. J. Sol-Gel Sci. Tech. 1999, 16, 243. 

25. W. Aiken and E. Matijevic, J. Mater. Sci. 1996, 38(3), 329. 

26. M. Ecormier, K. Wilson and A. Lee, J. Catal. 2003, 215, 57. 

27. M. Ryashentseva, Rev. Heter. Chem., 1994, 10, 23. 

28. M. Ryashentseva, Kh. Minacher and Ya. Afanas’eva: USSR Patent 

165425(1964). Chem. Abst. 62 5256e (1965). 



 144

CHAPTER 4 

 

SYNTHESIS AND CHARACTERIZATION OF SUPPORTED SULFATED 

ZIRCONIA OVER MESOPOROUS MOBIL CRYSTALLINE MATERIALS 

(MCM-41)  

 

INTRODUCTION: 

Although sulfated zirconia is considered to be one of the important superacid 

catalysts, it has not achieved industrial and commercial applications due to its low surface 

area and short life time in catalytic reactions. There are several possible reasons 

responsible for the deactivation of sulfated zirconia, such as sintering, sulfur migration 

into the bulk metal oxide, and coke formation [1]. Another possible route for deactivation 

is that the sulfur is further reduced to a lower oxidation state in the form of SO2 or H2S. 

This process was interpreted by Lee et al. based on temperature programmed desorption 

TPD analysis [2,3], and was also confirmed by Arata and co-authors [4,5]. They 

demonstrated that when a reactant such as 1-butene adsorb and interact with the sulfate 

groups in the surface at relatively high temperature, a kind of redox reaction between 

sulfate group and adsorbate reactant take place leading to formation of oxidized species 

and loss of SO2 gas. 
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In order to overcome such problems, sulfated zirconia can be supported over high 

surface area support. Supporting of zirconia over a proper support will prevent the 

sintering of the zirconia particles to form large particles, provide a high surface area, and 

facilitate the formation of the tetragonal active zirconia phase. Therefore, a better solution 

to overcome the problems associated with catalysis using sulfated zirconia is to find 

unique pore materials with uniform pores size and higher specific surface area.  Porous 

materials have been extensively utilized in many catalysis and industrial applications. 

Depending on their microstructure, porous materials are classified into three categories 

according to the International Union of Pure and Applied Chemistry (IUPAC), 

microporous (≤ 2nm) such as zeolites and related materials, mesoporous (2-50 nm) such 

as MCM and silica gel, and macroporous (≥ 50nm) such as porous glasses and alumina 

membranes.  Ishida et al. [5] synthesized supported sulfated zirconia on silica and studied 

its applications for the cyclopropane ring-opening isomerization reaction.  A family of 

high surface area mesoporous silica materials MCM (Mobil Crystalline Materials ) was 

discovered for the first time in the early 1990’s by research group in Mobile Corporation 

[6,7]. Upon this discovery, MCM was found effective in application as a support material 

in the petroleum refining industries. It has a unique ordered structure with uniform 

mesopores arranged into a hexagonal lattice.  This is illustrated in the high resolution 

transmission electron microscopy picture shown in Figure 4-1. It exhibits narrow pore-

size distribution, high thermal stability, and a large surface area of about 1000 m2/g with 

low density. The pore size of these materials varied between 2 nm and 10 nm depending 

on the surfactant chain length used.  This pore size is much higher than the pore size of 

other porous materials such as conventional zeolites and aluminum phosphates.  
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However, these materials themselves are not very active in catalytic processes due to 

weak acidity that results from the amorphous structure of the silicate mesoporous 

materials. 

 

 

 

Figure 4-1: Transmission Electron Micrograph of MCM-41. The mesoporous 

arrange in honeycomb-like structure, the black walls are thin amorphous silica [8]. 

  

MCM-41 is usually synthesized by hydrothermal reaction using a suitable 

surfactant [6,7] to form a precipitate which can be filtered out, washed and calcined. 

Several factors are found to influence the resultant product such as solvent, source of 

silica, surfactant used, and thermal treatment. Mobil researchers have proposed two 

possible pathway for the formation of such mesoporous materials.  This mechanism is 

called “liquid crystal templating” (LCT). The mechanism was proposed based on the fact 

that the pore size is dependant on the surfactant chain length and the close similarity of 

the morphology of the silicate mesophase and the structure of surfactant micelles in 

liquids.  The mechanism is shown in Figure 4-2. In the first pathway, the template 
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organizes itself in the solution to form the hexagonal liquid crystal phase.  The addition 

of silicate inorganic species then results in precipitation of these species on the 

hydrophilic surfaces of the micelles to form the MCM-41 framework. In the second 

pathway, it is proposed that the silicate inorganic species contribute to the formation of 

the liquid crystals by combination with the surfactant which results in the formation of 

the micellar rods. The micellar rods are further arranged by the inorganic phase to form 

the ordered hexagonal structure. 

 

 

Figure 4-2: Possible liquid crystal templating mechanism pathways for the 

formation of MCM-41. 

 

Gao et al. [9] have synthesized supported sulfated zirconia over MCM-41 by two-

step impregnation methods.  They reported that the acidity increased with increasing of 

the zirconium oxide content over the support.  With this method, they claimed that the 

mesoporous frame work was destroyed by supporting more than 30% wt/wt ZrO2. Xia et 

al. [10] prepared supported sulfated zirconia over MCM by chemical deposition of 

zirconium propoxide in hexane, followed by hydrolysis in an aqueous solution of sodium 

chloride and sulfation using sulfuric acid.  They achieved highly acidic supported 

2
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catalysts which exhibited high catalytic activity for the isomerization of n-pentane and for 

the gas phase synthesis of methyl tertiary butyl ether (MTBE). However, their method of 

preparation was complicated and quite costly, and only one zirconia concentration was 

reported.  

Despite the high thermal stability of the MCM materials, it has a limited stability 

due to the reactivity of the silica walls toward several reagents such as steam, and 

hydrolysis by materials such as hydroxide and flouride which results in collapse of the 

thin walls. Therefore, the stability of MCM in an aqueous solution is limited to a pH of 7 

or less. In this chapter, we reported a new method for the synthesis and characterization 

of the several supported sulfated zirconia over MCM-41 composites by the preparation of 

a single precursor exploiting zirconium acetate and ethanesulfonic acid as starting 

reagents. 

 

EXPERIMENTS: 

Chemicals: 

 All the starting materials were purchased and used without any further 

purification.  These were zirconium (IV) acetate hydroxide [(CH3CO2)xZr(OH)y X+Y∼ 

4, Aldrich], ethanesulfonic acid [(CH3CH2SO3H), Aldrich], tetraethyl orthosilicate 

[Si(OCH2CH3)4, Aldrich]; ethanol [(C2H5OH), Aldrich]; iso-propanol [(C3H9OH), 

Fisher-Scientific]; and hexadecylamine (CH3(CH2)15NH3), Aldrich]. 
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Synthesis: 

The MCM-41 support was synthesized in a manner similar to that described by 

Tuel et al [11].  First, a tetraethyl orthosilicate (TEOS) solution (250 mmole) in ethanol 

and iso-propanol was prepared with mole ratio of  1:6:1 TEOS, ethanol, and iso-propanol, 

respectively. A solution of hexadecylamine (75 mmoles) in 9000 mmoles of distilled 

water was added to the TEOS solution, and the resulting mixture was stirred continuously 

for 1 hour and then left for 12 hours without stirring at room temperature. The resulting 

solid was filtered off and washed with 300 ml of distilled water to remove all of the 

residual template and solvents. The solid was dried under vacuum at room temperature 

and calcined at 500°C for 12 hours to produce a mesoporous silica material.  The 

supported sulfated zirconia was synthesized by addition of the required amount of MCM-

41 support to an aqueous solution of 0.303 g (1.43 mmole) of zirconium (IV) acetate 

hydroxide [Zr(OAc)x(OH)y] and 0.312 g (2.86 mmole) of ethanesulfonic acid with 

stirring for 3 hours at room temperature to insure the impregnation of the zirconium salt 

into the pores of the silica support.  The water in the solution was evaporated by rotary 

evaporation, and the samples were dried under vacuum. The supported sulfated zirconia 

was obtained by calcination of the supported precursors at 650 °C according to the 

thermogravimetric analysis data.  The unsupported sulfated zirconia sample [SZ-

(1:3)(650 °C)] was prepared according to the procedure that described earlier in Chapter 

3. 
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Characterization: 

 In addition to the characterization techniques that pointed out in Chapters 2 and 3, 

three other analytical techniques were used for the characterization of the supported 

sulfated zirconia samples.  These were X-ray photoelectron spectroscopy (XPS), carbon 

nitrogen sulfur microanalysis (CNS) and X-ray flourescence analysis.  

The XPS measurements were performed by the Dr. Resasco research group at the 

University of Oklahoma.  The XPS data were recorded on a Physical Electronics PHI 

5800 ESCA System with a background pressure of approximately 3.0X 10-9 Torr. The 

electron takeoff angle was 45o with respect to the sample surface. A 800-um spot size and 

23 eV pass energy were typically used for the analysis. The Binding energies were 

corrected by reference to the C1s line at 284.8 eV for hydrocarbon.  Quantification of the 

surface composition was carried out by integrating the peaks corresponding to each 

element with aid of the Shirley background subtraction algorithm, and then converting 

these peak areas to atomic composition by using the sensitivity factors provided for the 

each element by the PHI 5800 system software.   

 Carbon hydrogen nitrogen sulfur analysis were performed using (CHNS) 

Elemental Analyzer, model Vario ELMake: Elementar Germany. Simply, the sample was 

weighed in a tin capsule with continuous purging with oxygen on top of the capsule to 

free it from atmospheric nitrogen. The capsule was sealed with a specially designed 

capsule press.  Samples were then transferred, by a sampling device, to the combustion 

tube heated at 1200ºC in an oxygenated helium atmosphere. The combustion of CHNS 

sample produces CO2, H2O, SO2, N2, NO, and NO2. The oxygenated products are passed 

through a reduction tube containing copper at 850 ºC which quantitatively reduces the 
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nitrogen and sulfur oxides to molecular nitrogen and sulfur dioxide and binds excess 

oxygen as copper oxide. The remaining gas mixture of helium, CO2, H2O, N2   and SO2 is 

subsequently guided to a separation and measuring system. A thermal conductivity 

detector (TCD) is used for the detection of each component which is diverted to the 

detector sequentially by the adsorption and desorption columns. 

 Elemental analysis was determined using Siemens model SRS 3000 wavelength 

dispersive X-ray fluorescence (WDXRF). The instrument uses X-ray energy as an 

excitation source for elemental lines emissions and characterizes elements according to 

their differing fluorescent wavelengths. 

 

RESULTS AND DISCUSSION: 

Thermogravimetric Analysis and Infrared Spectroscopy: 

TG analysis was performed on the samples in order to estimate the suitable 

calcination temperature for preparation of the supported zirconium oxide from the 

precursors. Figure 4-3 shows the TGA profiles for the unsupported and the supported 

precursors. The profiles suggest that the precursor thermally decomposed in stepwise 

manner. In the first step, the weakly bonded water molecules were lost, and with further 

heating, a decomposition of the coordinated ligands occurred to give a volatile organic 

byproducts, carbon dioxide, and water. According to Davis and associates [12], the 

weight loss observed above 650 ºC is probably due to the loss of sulfur in the form of 

sulfur dioxide and oxygen. Figure 4-4 showed the IR spectras for the supported samples 

taken in the region from 3500 cm-1 to 4000 cm-1 after calcination to 650 °C. The MCM 

support showed a sharp peak with medium intensity at about 3750 cm-1 corresponding to 
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the O-H bond vibration of the free Si-O-H groups on the support surface. The intensity of 

this peak was obviously reduced with the increase of the amount of the sulfated zirconia 

on the support surface. These results confirm that the MCM-41 support surface is covered 

by a layer of the sulfated zirconia in the supported samples and the covering degree 

increases with increase of the sulfated zirconia on the surface. 
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Figure 4-3: Thermogravimetric analysis profiles for the supported sulfated zirconia 

with different zirconia concentrations. 



 153

 

Figure 4-4: The IR spectra for the supported samples, the stretching frequencies of 

the Si-OH groups of the MCM support are shown. 

 

X-ray Diffraction (XRD): 

 The XRD pattern for the supported samples gives an indication of the 

dispersion of the sulfated zirconia over the MCM-41 support surface.  Figure 4-5 shows 

that there are no diffraction peaks corresponding to the tetragonal zirconia when the 

zirconia contents reached 30%.  At about 40% zirconia load over the support, a weak 

tetragonal phase was observed indicating, that up to 40% ZrO2 load, the zirconia is still 

well-dispersed in the pores of the silica.  Above that concentration (about 70% ZrO2 / 

MCM) a strong tetragonal phase peak at 2θ = 30° was observed, which indicated that the 

support pores were packed and the zirconia started to build on the exterior of the MCM-
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41 particles.  The uniform decrease of the surface area with increasing the ZrO2 content 

(Table 4-1) also confirmed the blockage of the pores with zirconia.  It was theoretically 

calculated that the required amount of zirconium oxide for the formation of a monolayer 

over the support surface is 2.57 grams for each gram of the MCM support.  This 

demonstrates that the zirconium oxide monolayer formed after covering about 72% of the 

support surface.  These calculations achieved using the unit cell dimensions of the 

tetragonal zirconia model shown in Figure 4-6.  Additionally, Figure 4-5 showed that the 

tetragonal phase, which is known to be the more catalytically active phase [13,14], was 

the only phase observed for the supported samples when calcined at 750 ºC.  However, 

the XRD profile for the unsupported calcined precursor showed the appearance of the 

monoclinic phase along with the dominant tetragonal phase.  These results are identical to 

that obtained by Huang [15] for the zirconium sulfate supported over silica gel. 
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Figure 4-5: X-ray diffraction pattern for the supported samples with different 

zirconia contents calcined at 750 ºC. 

 

 

 

 

 

 

Figure 4-6: Crystal structure and unite cell dimensions of the tetragonal zirconia. 
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The average crystallite sizes obtained by Scherer’s method (Figure 4-7) were 

4.3 nm and 7.7 nm for the supported samples contains 40% and 70% zirconia, 

respectively.  The average crystallite size for the unsupported zirconia was about 14 nm. 

This clearly implies that the crystallite size was increasing with increasing the zirconia 

content.  The small crystallite size and the stability of the active metastable tetragonal 

phase was a result of supporting the sulfated zirconia on the silica MCM. Supporting of 

sulfated zirconium oxide on the mesoporous MCM-41 materials results in a decrease of 

the crystallite size by inhibiting the growth of the zirconium particles. 
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Figure 4-7: The crystallite size distribution derived from the XRD for the supported 

sulfated zirconia samples over MCM, the samples calcined at 650 °C. 
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Elemental analysis and pore volume: 

The bulk elemental analysis using XRF and pore volume results of the 

synthesized supported catalytic systems are summarized in Table 4-1. The elemental 

analysis showed that the sulfur contents of the supported samples are higher than the 

sulfur contents of the bulk sulfated zirconia. The maximum sulfur content as observed for 

40% SZ/MCM sample. This indicates that the support stabilized the coordinated sulfate 

groups in the surface. 

 Additionally, the pore volume and specific surface area data are shown in Table 

(4-1). The results showed a slight and uniform decrease on both the surface area and the 

pore volume with an increase of the zirconium oxide contents over the MCM support 

surface. At higher than 40% SZ/MCM composites, sharper decrease on the pore volume 

and surface area occurred. These results showed that most of the ZrO2 contents are 

available inside the pores and well dispersed on the surface. However at a load higher 

than 40% SZ/MCM the decrease in the pore volume was observed markedly and the 

sulfur contents as well decreased. This decreased in the sulfur contents maybe attributed 

to the migration of most of the sulfate groups from the MCM pores to the surface which 

facilitate the decomposition during thermal calcination. This strongly implies that the 

support stabilized the coordinated sulfated groups to the zirconia. In this research work, 

the 40% SZ/MCM appear to be the dispersion threshold of sulfate zirconia on the surface. 
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Table 4-1: The pore volume and elemental analysis results for the supported 

sulfated zirconia samples. 

Elemental Analysis by ‡XRF 

(%) Catalyst Sample 
SBET 

(m2/g) 

**Pore 

volume 

(ml/g) 
Zr Si S O 

Sulfur Contents by 
‡‡CHNS analyzer 

(%) 

MCM-41 1175 1.1 ---- 45.3 ---- 52.4 ---- 

*SZ 49.5 0.08 73.1 ---- 0.41 26.4 0.38 

15% SZ/MCM 1037 1.03 16.6 35.1 0.95 47.35 0.633 

30% SZr/MCM 714 0.92 32.2 25.1 1.08 41.6 0.754 

40% SZ/MCM 545 0.75 43.9 16.3 2.28 37.5 1.76 

70% SZ/MCM 274 0.35 61.1 7.14 0.78 30.8 0.979 

 
*  SZ = unsupported sulfated zirconia 
**  Total pore volume was measured at P/Po = 0.9929 
‡  CHNS = Carbon hydrogen nitrogen sulfur 
‡‡ XRF = X-ray Florescence 

 

XPS Analysis: 

 The XPS data show a strong influence of the support on the surface chemistry 

of the zirconia.  Below the maximum loading (where crystalline ZrO2 forms) the surface 

is rich in sulfate while once the ZrO2 starts to crystallize, the surface sulfur concentration 

drops.  The XPS surface analysis results (Table 4-2) showed that the Zr and S atomic 

percentage on the surface increased with increasing of the sulfated zirconia content on the 

MCM support.  However, the results showed that the S/Zr atomic ratio on the surface 

decreased with increasing zirconium content.  For 15 wt% SZ/MCM, the surface atomic 

ratio of S/Zr was higher than the ratio of Zr:S in the precursor. With further increasing 

the amount of sulfated zirconia on the support more than 40 wt%, the atomic ratio of S/Zr 
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the surface decreases remarkably.  This is may be due to incorporation of the sulfur 

species into the catalyst bulk. 

 

Table 4-2: Surface atomic percentage extracted from XPS analysis. 

Atomic % Sample 

C Zr S O 

Bulk S/Zr 

Ratio 

XPS S/Zr 

Atomic Ratio 

15 wt% SZ/MCM 6.2 4.39 4.21 85.16 0.057 0.959 

40 wt% SZ/MCM 8.7 8.89 6.25 76.19 0.05 0.703 

70 wt% SZ/MCM 15.4 17.35 8.38 58.84 0.013 0.453 

SZ 14.8 27.87 1.33 56.25 0.0056 0.05 

 

* SZ = unsupported sulfated zirconia; surface area data and bulk elemental analysis are 

presented in Table 4-1. 

 

 The results in Table 4-2 showed also the S/Zr ratio obtained form the XRF bulk 

elemental analysis.  The S/Zr ratio was decreases with increases of the amount of sulfated 

zirconia on the MCM-41 support.  These results are similar to the results obtained from 

the XPS analysis.  However, the S/Zr ratio obtained from bulk analysis is much low (10-

15 times lower) than that derived from the XPS surface analysis.  These results strongly 

support a very important conclusion that the sulfur species are mostly available on the 

surface of the oxide rather than in the bulk. 

 It was determined by XPS that the MCM-41 silica was treated with ethanesulfonic 

acid followed by calcination at 650 °C did not contain a considerable amount of sulfate 
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species on the surface. This clearly demonstrates that the sulfate groups are strongly 

coordinated to the zirconium metal centers not to the silica of the MCM-41 support (Si : 

S atomic ratio = 200:1).  Therefore, it can be concluded that the zirconium oxide attaches 

to the surface of the MCM-41 support by condensation with reactive silanol groups and 

the silicate groups are bonded to the surface of the zirconia. The proposed structure is 

shown in Figure 4-8. 
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Figure 4-8: Proposed structure of sulfated zirconia over MCM-41. 

 

Scanning Electron Microscopy: 

 The SEM data for the supported catalyst with 15% and 70% zirconia contents are 

shown in Figure 4-9.  The sample with the higher concentration of zirconia contained 

particles similar to the support along with tubules that can be presumed to be zirconia.  
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The tubes have an approximate diameter between 70 nm and 120 nm.  Firing of the 

sulfated zirconia without the MCM-41 present did not produce any zirconia nanotubes.  

This suggests that the MCM-41 catalyzed the crystallization of zirconia.  This could 

occur by initial crystallization of zirconia within the pores of the MCM followed by 

elongation of the crystal out of the pores.  However, the average width of the tubes is 7-

10 times larger than the pores of the MCM (≈10nm).  Thus, if this crystallization 

mechanism does occur the zirconia tubules would likely be bindles of several nanowires. 

 

 

Figure 4-9: Scanning Electron Micrographs for the supported sulfated zirconia, A: 

with 16% zirconia, B: with 70% zirconia. 

 

Surface Acidity of the Supported Sulfated Zirconia: 

Table 4-3 showed the acidity strength measurements results using Hammett 

indicators. Generally, the results showed that the acidity strength increased with an 

increase of the amount of sulfated zirconia over the MCM-41 support surface. 
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Table 4-3: Acid strength measurement of the supported sulfated zirconia using 

Hammett indicator 

*Color Indicator / (pKa) Sample code 

B(+3.3) C(+1.5) D(+0.8) E(-3) F(-5.7) G(-8.2) H(-11.4) 

MCM-41 ---- D. yellow Blue Yellow Colorless Colorless Colorless 

SZ D. Red Purple Yellow D. red Yellow Yellow Yellow 
‡SZ L. Red L. Purple Green L. orange Colorless Colorless Colorless 

15% SZ/ MCM Red D. purple Yellow Red L. yellow Colorless Colorless 

30% SZ/ MCM D. red Purple Yellow Red L. yellow Colorless Colorless 

40% SZ/ MCM Red Purple D. yellow D. red Yellow Yellow L. yellow 
‡40% SZ/ MCM Red Purple Yellow Red Yellow L. Yellow L. yellow 

70% SZ/ MCM Red Purple Yellow D. red Yellow Yellow L. yellow 

 
*All the indicators detailed are summarized in Table 3-2 in Chapter 3. 
All the samples were calcined at 650 °C. 
‡ Samples were calcined at 950 °C 

 

The acid strength measurement using the Hammett indicators method showed that 

the supported sulfated zirconia samples exhibited high acid strength.  The 40 wt% SZ/ 

MCM protonated p-nitrotoluene (pKa = -11.4) causing the indicator to change from 

colorless to yellow. The zirconias failed to react with 2,4-dinitrotoluene which has a pKa 

of  -13.75 demonstrated that their pKas are in the range of -11.4 to -13.75.  In order to 

test the influence of the support, both the supported (40 wt% SZ/MCM) and unsupported 

precursor were calcined at 950 °C for 8 hours.  In contrast to the unsupported precursor, 

the supported samples calcined at high temperature retained their acid strength.  The 

supported sample gave a yellow coloration with both anthraquinone (pKa = -8.2) and p-

nitrotoluene (pKa= -11.4), while no color change occurred when either indicator was 

exposed to the unsupported samples. Additionally, supported sample calcined at high 

temperature gave a dark red coloration with dicinnamalacetone (pKa= -3), while a very 
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light orange color was noted with the unsupported sample calcined at 950°C.  It is known 

that the acid-form color of dicinnamalacetone is red and the base-form color is yellow 

[16].  Therefore, the results clearly indicate that the acid strength and number of acid sites 

of the unsupported oxide drops when heated to high temperature, presumably due to the 

loss of the active sites in the form of SO2 or SO3.  However, the supported sample 

retained acidity due to strong support / catalyst interaction which plays an important role 

in the delay of decomposition and loss of sulfur. The XRD results for the samples 

calcined at high temperature (Figure 4-10) showed that the phase transformation from 

tetragonal to monoclinic phase was delayed with the supported sample compared to that 

of unsupported sulfated zirconia.  Not only does sulfonation stabilize the tetragonal 

phase, but stabilization of the tetragonal phase by interaction with the support also 

stabilizes the sulfonated surface. Thus, it would appear that the primary loss of acidity of 

sulfonated zirconias during calcination is due to surface reconstruction as the tetragonal 

to monoclinic phase change takes place. 
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Figure 4-10: X-ray diffraction pattern for the supported and unsupported sulfated 

zirconia calcined at 950 °C for 8 hours. 

 

The total acidity measurements were performed using cyclohexylamine as a 

titrant.  Also, intermolecular cyclization of acetonylacetone was used as a probe reaction.  

The detailed of methodology of the acidity measurements using cyclohexylamine and 

acetonylacetone was extensively discussed earlier in Chapter 3.  The results of these tests 

are shown in Table 4-4.  The cyclohexylamine adsorption showed that the number of acid 

sites per square meter of the sulfated zirconia increased with increasing amount of 

sulfated zirconia on the MCM support. The acetonylacetone conversion and selectivity 

towards dimethylfuran also increased with increasing the amount of sulfated zirconia to 

maximum at 40% SZ/MCM, beyond which the activity and selectivity began to 

40% SZ/MCM40% SZ/MCM
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decreases. The highest acetonylacetone conversion and dimethylfuran selectivity was 

obtained with the 40% sulfated zirconium oxide over MCM composite.  This reflects the 

optimum combination of high specific surface area and high coverage with available 

active acid sites on the surface. Additionally, the cyclohexylamine adsorption on silica 

support showed that its acidity at 1.73 mmol/g was relatively high due to the fact that 

cyclohexylamine is a relatively strong base (pKa of 10.6) [17] and can be adsorbed on the 

weakly acidic sites of the MCM.  However, no dimethylfuran product was detected from 

reaction of acetonylacetone over pure MCM implying that the acid sites of MCM were 

not strong enough to perform such reactions. Surface acidity strength measurements of 

the MCM confirmed this hypothesis since its pKa value was found to be higher than + 

3.3. 

 

Table 4-4: Acidity measurement for the supported sulfated zirconia 

Acidity Measurements 
Cyclohexylamine 

adsorption 
Acetonylacetone Cyclization Reaction Catalyst Sample 

SBET 
(m2/g) 

µmol/g µmol/m2 
Acetonylacetone 
Conversion (%) 

Dimethylfuran 
Selectivity (%) 

MCM-41 1175 1733 1.47 11.5 0 
SZ 49.5 277 5.60 28.4 89.6 
15% SZ/MCM 1037 1737 1.68 31.3 87.9 
30% SZ/MCM 714 1469 2.06 36.0 95.2 
40% SZ/MCM 545 1213 2.23 41.6 98.4 
70% SZ/MCM 274 1464 5.34 35.8 92.3 

 
SZ = Unsupported sulfated zirconia. 
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CONCLUSIONS AND REMARKS:  

 Supported samples were successfully synthesized by the impregnation of 

sulfated zirconia precursor over calcined MCM-41samples. This method provides a 

suitable route for obtaining a well dispersed, highly sulfated tetragonal zirconia content 

on the internal surface of the silica support with a small crystallite size without major 

blockage of the support pores. The supported samples showed an extremely high thermal 

stability with suppression of the tetragonal phase transformation to the monoclinic phase. 

The S/Zr ratio on the surface decreased with an increase the amount of the sulfated 

zirconia on the support. The XPS results also demonstrated that the surface sulfate groups 

strongly coordinate to the zirconium atoms but not to the silicon atoms. Furthermore, the 

XPS results along with the elemental analysis showed that most of the sulfur is available 

in the surface rather than in the catalyst bulk. Supported sulfated zirconia samples 

exhibited high acidity strength that was retained even when the supported samples 

calcined at high temperature presumably due to the availability of the acid sites inside the 

MCM-41 pores. These supported catalysts showed a remarkable and promising activity 

for alkylation and condensation reactions that will be discussed in the next chapters of 

this thesis. 
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CHAPTER 5 

 

ALKYLATION OF BENZENE OVER SULFATED ZIRCONIA USING ETHERS 

AS ALKYLATING AGENTS 

 

INTRODUCTION:  

 Friedel-Crafts alkylation is a vitally important reaction for the production of 

fine chemicals and for petrochemical refining.  Commercially, a high yield of alkylated 

products is usually achieved using a homogenous Lewis acid such as aluminum chloride, 

iron chloride, and boron fluoride or protonic acids such as sulfuric acid as catalysts [1,2]. 

However, there are problems associated with the technologies that utilize liquid-soluble, 

acid catalysts such as difficultly of separation of the spent catalysts, corrosion, and some 

environmental problems involving toxicity.  These issues encourage the development 

solid acid catalysts which are suitable for alkylation reactions.   

 Sulfated zirconia is an environmental-friendly solid acid with numerous 

applications in alkylation reactions such as benzylation of benzene and benzene 

derivatives [3,4], alkylation of cresols with isobutylene [5], alkylation of phenol with 

methyl tertiary butyl ether to produce tert-butyl phenols [6], and alkylation of diphenyl 

oxide with olefins [7].  A variety of organic species such as alcohols, alkyl chlorides, 

ethers, and olefins can be used as alkylating agents in conjunction with sulfated zirconia.
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 In this section, the alkylation of benzene reaction over sulfated zirconia will be 

performing and discussed utilizing several ethers as alkylation agents to produce 

alkylated benzene derivatives. The ethers exploited are anisole, diethyl ether, dibenzyl 

ether, benzyl methyl ether, and n-butyl ether.  

 

EXPERIMENTAL: 

Chemicals: 

 All the starting materials were purchased and used without any further 

purification.  These were dibenzylether [(C14H14O), Aldrich], methyl benzylether 

[(C8H10O), Aldrich], n-butylether [(C8H18O), Aldrich], benzyl alcohol [(C7H8O), 

Aldrich], and benzene [(C6H6), Fisher]. 

 

Procedure: 

The alkylation reactions were carried out in a 30-ml Teflon bomb reactor at a 

variety of reaction temperatures. An appropriate amount of dibenzylether or other desired 

ether was mixed with an excess of benzene with a desired catalyst loading of wt% with 

respect to the total weight of the reactants. Samples were collected from the reactor at 

different reaction times and diluted with methylene chloride for analysis. (GC/MS) was 

performed on a Hewlett Packard G1800A instrument equipped with 30 m x 0.25 mm 

HP5 column (Crosslinked 5% PhME silicone). The temperature program used was an 

initial hold of 2 min at 35 °C, a ramp of 5°C/min to 170 °C, and a final hold of 5 min. 

The helium flow rate was 1 ml/min and the injection port was set at 250 °C.  The ether 
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conversion was calculated as follows: Ether conversion (%) = (Cn/Co) X 100, where Cn 

and Co are the moles of ether reactant converted, and moles of ether in feed, respectively. 

 

RESULTS AND DISCUSSIONS: 

Effect of the catalyst concentration on alkylation reaction: 

The effect of the catalyst loading on the alkylation reaction of benzene with 

dibenzyl ether was investigated by varying of the ratio of the unsupported sulfated 

zirconia catalyst to the total weight of the reactant. It was found that the rate of the 

dibenzyl ether conversion and the yield of diphenylmethane increased with increasing of 

the amount of the catalyst used (Figure 5-1). When the reaction was run for 2 hours at 

150 °C, the conversion of dibenzyl ether increased from 6% to 59% with increasing of 

the catalyst weight percent with respect to the reactant from 10% to 50%.  The slope of 

the plot of the natural logarithm of the catalyst concentration versus natural logarithm of 

the initial rate contestant kobs (slope = 1.06) indicate a first order reaction with respect to 

the catalyst concentration (Figure 5-2). 
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Figure 5-1: Effect of the catalyst loading on the benzyl ether conversion in the 

alkylation reaction of benzene over SZ sample at 150 °C, (The weight percent is with 

respect to the total reactants weight). 
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Figure 5-2: A plot of the natural logarithm of the rate constant versus the natural 

logarithm of the catalyst concentration. (Slope =1.06 ( ± 0.35 within a 90% C.L.)). 
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Effect of the Reaction Temperature: 

 The effect of the reaction temperature on the rate alkylation of benzene reaction 

was investigated by conducting the reaction at three different temperatures, mainly at 100 

ºC, 150 ºC, and 180 ºC, under fixed reaction conditions (10 wt% catalyst with respect to 

reactants with dibenzylether : benzene mole ration of 1:10). Figure 5-3 shows a plot of the 

dibenzyl ether conversion versus time at different reaction temperatures. The results 

demonstrate that the reaction rate strongly depends on the reaction temperature. 
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Figure 5-3: Alkylation of benzene with benzyl ether at different reaction 

temperatures. (Reaction conditions: catalyst load of 10 wt% with respect to 

reactants; Benzyl ether: Benzene mole ratio of 1:10) 
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 When the reaction proceeds for 5 hours at low temperature (100 °C), the 

dibenzyl ether conversion was only about 7%.  The diphenyl methane selectivity at this 

point was 65.3 % due to the formation of other products such as benzaldehyde and benzyl 

alcohol which is unreactive at this temperature. When the reaction temperature is 

elevated to 150 °C, the dibenzyl ether conversion was increased to about 25% after 5 

hours with increasing of the diphenyl methane selectivity to 88%.  When the reaction was 

conducted at higher temperature (180 °C) for 6 hours, the dibenzyl ether conversion 

further increased to 80% and the selectivity of the diphenyl methane increased to 93%. 

Apparently, the reaction is controlled by the kinetics and requires high activation energy. 

Even when the reaction time was prolonged to 24 hours at 180 °C and the conversion of 

dibenzyl ether is almost completed, high selectivity towards diphenylmethane was 

maintained.  However, there was some formation of over-alkylation products such as 

benzyl diphenyl methane (BDPM) and dibenzyl diphenyl methane (DBDPM).  Figure 5-4 

illustrated the effect of the reaction temperature on the product distribution. 
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Figure 5-4: Effect of the reaction temperature on the product selectivities of the 

alkylation of benzene reaction with benzyl ether. A: the reaction was performed for 

5 hours, B: the reaction was performed for 24 hours. (Reaction conditions: catalyst 

load of 10 wt% with respect to reactants; Benzylether: Benzene mole ration of 1:10). 

* BzOH and PhCHO are benzyl alcohol and benzaldehyde respectively and DPM is 

diphenylmethane. 

 

 Figure 5-5 shows a plot of the natural logarithm of the dibenzyl ether 

concentration versus time. The activation energy of the reaction was determined from a 

slope of the plot of the natural logarithm of ether conversion rate versus the inverse of the 

temperature according to Arrhenius equations (Figure 5-6). The resulting activation 

energy was 62 kJ/mole. 
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Figure 5-5: A plot of the natural logarithm of benzyl ether concentration versus 

time at different reaction temperatures. 
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Figure 5-6: An Arrhenius plot of ln k versus 1/T. 
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Effect of the reactant mole ratio: 

The influence of the mole ratio of the reactants on the catalytic activity and 

product selectivities was investigated by varying the ratio of dibenzylether to benzene 

while maintaining a fixed total reactant weight and catalyst concentration. The results, 

summarized in Table 5-1, showed that the dibenzylether conversion increased with 

increasing the mole ratio of dibenzyl ether to benzene. An excess of benzene reactant 

favored the formation of the monoalkylated product (diphenylmethane) even with 

prolonged reaction times. When the mole ratio of dibenzylether to benzene was 

decreased, the production of dialkylated products increased but these were formed at a 

slower rate than diphenylmethane. In addition, other products such as toluene, benzyl 

alcohol and benzaldehyde formed when dibenzylether was present in high concentration 

in the reaction media.  Such products are likely formed via a disproportionation reaction 

that occurs between two adjacent benzyloxy groups adsorbed on the surface via direct 

hydrogen transfer from one surface molecule to the other to yield toluene and 

benzaldehyde. This is analogous to the mechanism of the disproportionation of benzyl 

alcohol over acidic alumina [8].  Part of the benzyl alcohol is oxidized to benzaldehyde 

and most of the toluene formed was alkylated by dibenzyl ether to give 2-methyldiphenyl 

methane (2-MDPM) and 4-methyldiphenyl methane (4-MDPM) which are shown in 

Figure 5-7. It is apparent that the interaction of dibenzyl ether with the sulfated zirconia 

catalyst generates a powerful alkylating agent that is non-selective.  Thus, a large excess 

of the substrates is required to yield the desired reaction product cleanly. 
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Table 5-1: Effect of reactant mole ratio on the alkylation reaction 

*  % Products Selectivity BE : Bz 
mole ratio 

Reaction 
time(h) 

%BE 
Conversion BzOH + 

PhCHO 
DPM BDPM + 

DBDPM 
Others 

15 24.9 0 100 0 0 1:20 
35 47.4 5 95 0 0 
15 25.5 8.1 90.2 1.1 0.6 1:15 
35 40.7 6.2 91.8 1.3 0.7 
15 59.7 2.5 96.8 0 0.64 1:10 
35 61.1 4.1 91.9 3.42 0.61 
15 16.1 28.4 6.9 64.7 1.6 1:0.2 
35 23.4 22.6 4.3 67.9 5.2 
15 4.63 35.9 3.17 59.3 1.58 1:0.1 
35 10.6 19.9 2.02 75.3 2.78 

1:0 45 < 3.0 20.0 11.8 40.1 28.1 
 
Reaction conditions: catalyst load of 10 wt% with respect to reactants, reaction 

temperature 150 °C.  

* BE and Bz are dibenzyl ether and benzene respectively; BzOH and PhCHO are benzyl 

alcohol and benzaldehyde respectively; DPM is diphenylmethane; BDPM and DBDPM 

are benzyl diphenylmethane and dibenzyl diphenylmethane, respectively). 

Benzyldiphenyl methane (BDPM)

Dibenzyldiphenyl methane (DBDPM)
1

2

3

4

2-methyldiphenyl methane (2-MDPM)

4-methyldiphenyl methane (4-MDPM)  

 

Figure 5-7:  Possible secondary products formed from alkylation reaction of 

benzene with benzyl ether. 
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 In the kinetic experiments described above, benzene was present in a 20-fold 

excess. The reaction followed pseudo first order kinetics with respect to dibenzyl ether.  

When the benzene ratio was varied, the rate of dibenzylether reactant conversion 

followed a “volcano plot” curve with a maximum benzene mole fraction observed at 0.9 

(Figure 5-8).  This indicates that dibenzyl ether and benzene compete for similar active 

sites on the catalyst surface.  Therefore, the reaction mechanism likely includes 

adsorption of the reactants on adjacent active sites of the catalyst surface, followed by a 

surface reaction of the two adsorbed species leading to the formation of DPM. This 

implies that the chemical process follows the Langmuir-Hinshelwood mechanistic kinetic 

model as in case of alkylation of aromatics over zeolites or other solid acid type catalyst 

[9-12].  The alkylation reaction mechanism can simply be described as follows; the 

sulfated zirconia first protonates the dibenzyl ether leading to chemisorption of the latter 

onto acid sites.  As a result, polarization of the C-O bond of the ether will occur to give 

an adsorbed benzyloxy species on the catalyst surface with concomitant formation of a 

benzyl carbocation. An electron pair from benzene ring subsequently attacks the 

carbocation forming a C-C bond. The resulting cationic intermediate undergoes proton 

transfer to give a neutral alkylated substitution product and regenerates the catalyst. The 

proposed mechanism for the alkylation reaction of benzene with dibenzyl ether is shown 

in Figure 5-9. 
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Figure 5-8: A plot of benzyl ether conversion versus mole fraction of benzene. 
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Figure 5-9: Proposed mechanism of alkylation of benzene reaction with benzyl 

ether. 

 

Effect of the support: 

 A control reaction of benzene with dibenzyl ether was performed over pure 

MCM-41 support for more than 40 hours at 150 ºC.  No reaction took place, indicating 

that the acid sites of the support were not capable of performing the alkylation reaction. 
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The reaction was performed using several MCM-41 supported catalyst with sulfated 

zirconia ranging from 15 wt% to 100 w%. Figure 5-10 shows a plot of the natural 

logarithm of the dibenzyl ether concentration versus time.  The slopes of the resulting 

straight lines gave the rate of the alkylation reaction.  Figure 5-11 shows a plot of the rate 

of reaction versus the amount of zirconia. The experimental results obtained revealed that 

the alkylation activities increased with increasing sulfated zirconia content on the support 

to a maximum at 40 wt% SZ/MCM-41 where the reaction was almost three times greater 

compared to the unsupported sulfated zirconia. This is in agreement with the results 

obtained using acetonylacetone reaction and the acidity measurements. It appears that the 

optimum activity is obtained with 40 wt% SZ/MCM-41 which reflects the most useful 

combination between the available active acid sites and the specific surface area. 

 

 

 

 

 

 

 

 

 

 

Figure 5-10: Effect of the sulfated zirconia concentration over MCM-41 on the rate 

of the alkylation reaction of benzene with benzyl ether. 
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Figure 5-11: A plot of the rate of alkylation reaction versus the zirconia content over 

the MCM-41. (Reaction conditions: sulfated zirconia loading = 10% w/w; benzyl 

ether: benzene mole ratio = 1:10; reaction temperature: 150 °C). 

 

Catalyst Regeneration: 

 The catalyst was deactivated when it was used for several hours during the 

alkylation reaction of benzene with dibenzyl ether.  The deactivation was presumably due 

to the adsorption of benzyloxy groups which cover the active sites on the surface.  Figure 

5-12 shows the IR spectra for both fresh and used unsupported catalyst samples dried at 

170 ºC under vacuum. The carbon-carbon double bonds stretching frequencies at 1600 

cm-1, as well as the sp2 C-H stretching frequency in the range between 3000 cm-1 and 

3100 cm-1, clearly indicate that some organic and aromatic species are adsorbed on the 

catalyst surface, probably benzyloxy and other aromatic species. 
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Figure 5-12: Infrared spectra for the fresh and used catalyst. 

 

The used catalyst was recycled several times by heating at 500 ºC for 4 hours in 

flowing of air (Figure 5-13). The results showed that the catalyst completely retained its 

activity after the first regeneration.  This implies that the deactivation is mainly due to 

hydrocarbon deposition, and the loss of sulfur during the reaction is ruled out.  A modest 

loss in the activity was observed after the second and third regenerations.  The conversion 

of dibenzyl ethers dropped from 81% for the fresh sample to 60% after the third 

recycling.  This drop in conversion after several regenerations may be due to either the 

loss of the very small amount of active sites in a form of SO2 or from migration of the 

sulfur into the bulk of the zirconium oxide.  Notably, benzaldehyde formation is observed 
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during the catalytic reactions.  This could be due to oxidation of the benzyl alcohol 

byproduct by dioxygen or it could be due to reduction of the sulfate group. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13: regeneration of the used samples at 500 °C in air for 4 hours. (Reaction 

conditions: sulfated zirconia loading = 20% w/w; Benzylether: Benzene mole ratio = 

1:10; reaction temperature: 150 °C). 

 

 Another suggestion for the loss of sulfur is during the regeneration process rather 

than during the reaction. Li and associates [13-14] observed a loss in activity of sulfated 

catalyst towards isomersation of n-butane reaction when the used catalyst was 

regenerated in a nitrogen environment, this quite likely due to redox reactions between 

coke and the sulfate groups.  In this work, the regeneration process was performed in a 

flow of air in order to minimize such reactions. 
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Alkylation of Benzene with Other Ethers: 

 Three different ethers were utilized for the alkylation of benzene.  Figure 5-14 

shows the conversion of different ethers versus the reaction time. The n-butyl ether 

conversion rate is the slowest among the three ethers.  This may be attributed to the low 

stability of the rearranged secondary butyl carbocation which further reacts with benzene 

to give 2-phenylbutane.  Only traces of 1-phenylbutane were formed as a result of the 

alkylation of benzene with the n-butyl carbocation before rearrangement took place. The 

reaction rate of methyl benzylether and dibenzylether are similar to each other. However, 

the catalyst seems to be deactivated faster in case of dibenzyl ether. Presumably this is 

due to less hindrance of the reactive sites by the smaller methoxy groups as compared to 

adsorbed benzyloxy groups. This will eventually make the catalyst deactivation process 

slower in case of benzene alkylation with MBE. 

 

 

 

 

 

 

 

 

 

 

Figure 5-14: Alkylation of benzene with different ethers over sulfated zirconia. 
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CONCLUSIONS AND REMARKS:  

 Sulfated zirconia and modified sulfated zirconia were utilized for the Friedel-

Crafts alkylation of benzene with ethers. The synthesized sulfated zirconia samples 

showed a remarkable activity in the alkylation reaction of benzene using different ethers 

as alkylating agents. The effects of various parameters on the reaction rates, such as 

reaction temperature, catalyst load, support influence and molar ratio of reactants, were 

studied under similar reaction conditions. The supported samples with 40% 

Zirconia/MCM-41 showed a three times higher activity than the bulk unsupported 

sample. The rate of the deactivation is decreased with supporting of sulfated zirconia over 

Si-MCM type of support. The reaction appears to be influenced by the reaction 

temperature and the catalyst concentration, and the prepared catalyst can be regenerated 

several times without major decrease or loss of its activity and selectivity. The 

chemisorbed benzyloxy and other aromatic compounds are considered to be the 

responsible for the initiation of the deactivation process. The sulfated zirconia catalysts 

can be regenerated several times without major decrease in the catalytic activity and 

selectivity. 
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CHAPTER 6 
 

ALDOL CONDENSATION REACTION OF KETONES OVER SULFATED 

ZIRCONIA 

 

INTRODUCTION: 

The aldol condensation is considered an important reaction in organic synthetic 

industrial chemistry [1-3].  It involves the production of β-hydroxy aldehydes or β-

hydroxy ketones by condensation of two aldehydes or ketones.  Self condensation of 

ketones, is a well established process that is important for production of α,β-unsaturated 

carbonyl compounds [4].  Usually, such reactions are performed homogenously over a 

liquid base catalyst such as soda or potash [5-7] or liquid acid catalysts such as sulfuric 

acid [8].  These reactions ordinarily require very long, complicated, and hazardous 

procedures.  Recently, efforts have been directed toward replacing the catalyst systems 

with more environmental friendly heterogonous solid catalysts.  For example, solid basic 

catalysts such as MgO and CaO have been utilized for such reactions [9].  Other 

conventional solid acid catalysts used for the aldol condensation reaction include 

aluminum oxide [10], aluminum alkoxides [11] and zeolites [12].  The aldol condensation 

of ketones is a complex reaction which leads to many products via self condensation of 

two ketone molecules or cross condensation of one ketone with other ketone products 

that are formed.  The reaction network and product distribution is controlled by the 
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catalyst properties, reaction conditions, and chemical nature of the ketones.  Acetone 

condensation, for example, has been studied over several solid acid catalysts using many 

characterization techniques such as 13C NMR and IR spectroscopies [13-15].  The results 

obtained from the condensation reaction of acetone over zeolites and alumina indicated 

that the Lewis acid sites are mainly the responsible active sites for the initial activation of 

acetone.  The secondary side reactions which involved double bond migration, hydride 

transfer, oligomerization, and cracking can occur on the catalyst surface.  In this chapter, 

a detailed investigation of liquid phase self aldol condensation reaction of four different 

ketones, namely, acetone, cyclopentanone, acetophenone, and methyl isopropyl ketone, 

was performed over sulfated zirconia sample prepared from single source precursors.  

These ketones were converted on the surface of sulfated zirconia to more useful aromatic 

compounds that have potential applications as diesel fuel and other industrial 

applications.  The effect of several factors such as preparation method, surface acidity, 

and physico-chemical properties of the sulfated zirconia, on the catalytic activity and 

productivity was addressed. 

 

EXPERIMENTAL: 

Chemicals:  

The reagents were used as purchased without further purification.  The chemicals 

used in this investigation were: acetone-2-13C (99%13C) [(C3H6O), Aldrich], mesityl 

oxide [(C6H10O), Aldrich], cyclopentanone [(C3H6O), Aldrich], methyl isopropyl ketones 

[(C4H10O), Aldrich], dypnone [(C16H14O), Chem. Tech.] and acetophenone [(C8H8O), 

Aldrich].  
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Procedure: 

The catalysts used in this study were; SZ-1(1:3) (sulfated zirconia obtained from 

the reaction of zirconium acetate with three equivalents of ethanesulfonic acid), SZ-4 

(sulfated zirconia produced from the reaction of zirconium acetate with 8-

hydroxyquinoline-5-sulfonic acid), 15% SZ/MCM (supported sulfated zirconia with 15% 

sulfated zirconia over MCM-41), and 40% SZ/MCM (supported sulfated zirconia with 

40% sulfated zirconia over MCM-41).  The methods of preparation and characterization 

of the catalysts utilized in this work were described in detail previously in Chapters 2, 3, 

and 4.  The description and properties of these samples are shown in Table 6-1.  The 

liquid phase condensation reaction of the ketones was carried out at 150 °C in the 

presence of the catalysts in a Teflon-lined bomb reactor.  Typically, 0.2 grams of the 

sulfated zirconia catalyst was added to one gram of the desired ketone.  Samples from the 

reaction media were continuously taken at different reaction periods and diluted with 

pure methylene chloride before they were analyzed by the gas chromatography/mass 

spectrometer (GCMS). 
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Table 6-1: Catalyst properties for the samples utilized for ketones condensation. 

Total Acidity 
Catalyst code *Description of the oxide 

SBET 
(m2/g) 

Pore volume 
(ml/g) µmol/g µmol/m2 

SZ-1(1:3) 
Zirconium acetate with three 
equivalents of ethanesulfonic acid 

49 0.077 227 4.6 

15% SZ/MCM 
15% sulfated zirconia supported 
over MCM-41 

1037 1.03 1737 2.44 

40% SZ/MCM 
40% sulfated zirconia supported 
over MCM-41 

545 0.74 1213 2.954 

SZ-4 
Zirconium acetate with 8-
hydroxiquinolene sulfonic acid 

48.3 ___ 223 4.6 

 

* All the samples were calcined at 650 °C 

 

RESULTS AND DISCUSSION: 

Acetone condensation: 

The reaction of acetone over the solid acids follows several pathways leading to 

numerous products.  The acetone condensation reaction was performed over two different 

synthesized sulfated zirconias, 40% SZ/MCM, and SZ-4.  The reaction was performed at 

150 °C with 20 wt/wt % catalyst/ketone.  Figure 6-1 summarizes all the possible reaction 

pathways for the acetone condensation.  In the first step, protonation of acetone over the 

solid surface take place to form the conjugate acid.  The next step involves the 

electrophilic addition of carbonium ion of the conjugate acid with the enol form of 

another acetone molecule via well known aldol reaction to yield diacetone alcohol (DAA) 

1.  Dehydration of diacetone alcohol 1 occurs readily over acid sites to form mesityl 

oxide (MO) 2.  Another acetone enol reacts further with the mesityl oxide following the 

similar mechanism mentioned above to give linear phorone 3. Cyclization of phorone to 
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isophorone 4 presumably mainly arises through a 1,6 Michael addition mechanism which 

involve the conjugate addition of the enolate nucleophile anion to the β-carbon of an α,β-

unsaturated carbonyl electrophile double bond [16,17].  Mesitylene 5 may be formed as a 

result of dehydration and rearrangement of isophorone over acid sites.  Additionally, 

another likely possible route for formation of mesitylene is the condensation of three 

acetone enol form molecules to produce the trialcohol intermediate product 6 followed by 

rapid dehydration on the acid sites to release three water molecules and mesitylene.  

Among all these products, mesityl oxide, isophorone, and mesitylene are commercially 

the most important products obtained from acetone condensation [18,19].  These products 

are mainly applicable in polymerization and separation of heavy metals. 
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Figure 6-1: Schematic reaction network for self acetone condensation. 
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Products such as pentamers 8 or 9 are also formed in considerable amount via a 

proposed mechanism shown in Figure 6-2.  The pentamer was identified using mass 

spectrometry, which indicated a molecular mass fragmentation of m/e 200 involving five 

13C atoms suggesting that it formed as a result of condensation of five acetone molecules.  

Most likely, this product formed directly from the reaction of isophorone with mesityl 

oxide to give an intermediate structure 7 followed by rapid dehydration to evolve two 

water molecules and products 8 and/or 9. 

8
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pentamethyl-Naphthalene
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4
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1,2-dihydronaphthalene

The position of the 13C

 

 

Figure 6-2: Schematic diagram for the formation of pentmer product from acetone. 

 

Furthermore, the headspace analysis of the reaction mixture showed that 

isopropyl alcohol is produced in low concentration, this is apparently produced as a result 

of the reduction of acetone by protonation over the sulfated zirconia surface.  Figure 6-3 

shows the conversion of the acetone versus reaction time over the sulfated zirconia 
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samples, supported sample 40% SZ/MCM, and unsupported sample SZ-4.  As shown in 

the Figure 6-3, the conversion over the supported samples increased rapidly to its 

maximum after only three hours of reaction time with about 80% conversion.  Beyond 

that, the conversion appears to be constant without significant change.  On the other 

hand, when the reaction of acetone was performed over SZ-4 sample, the conversion 

increased with a slower rate compared to 40% the SZ/MCM sample to reach a maximum 

conversion after about 12 hours.  Obviously, this high initial activity of the supported 

sample is attributed to the high surface area and dispersion of the active sites on the 

surface.  The product distribution results are summarized in Figures 6-4 and 6-5. 
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Figure 6-3: Acetone conversion over sulfated zirconia samples, 40% SZ/MCM and 

SZ-4 at 150 ºC. 

* The details of the catalyst used are shown in Table 6-1. 
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Figure 6-4: Product distribution resulted from acetone condensation over 40% 

SZ/MCM sample. 
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Figure 6-5: Product distribution resulted from acetone condensation over the 

sulfated zirconia obtained from zirconium quinoline sulfonates (SZ-4). 

* The details of the catalyst used are shown in Table 6-1. 
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The results demonstrated in Figures 6-4 and 6-5 showed that the aldol 

condensation reaction of acetone initially produced mesityl oxide 2 during the first 3 

hours of reaction time.  Mesityl oxide is presumably produced from dehydration of the 

intermediate diacetone alcohol 1, but none of it was observed at these conditions due to 

high acidity of the catalyst’s surface.  It has been reported that the alcohol dehydration 

process requires low acidic strength sites with pKa of +0.8 [20].  However, when the 

reaction was performed at room temperature for 24 hours with 10 wt% catalyst (40% 

SZ/MCM)/ acetone, the primary condensation products were observed which are 

diacetone alcohol 1 and mesityl oxide 2.  The acetone conversion at these conditions was 

very low with approximately 92% selectivity for diacetone alcohol and 8% selectivity for 

mesityl oxide.  These results clearly indicate that the selectivity toward the diacetone 

alcohol is sensitive to the reaction temperature.  The high selectivity for diacetone alcohol 

which was observed at room temperature is presumably due to the fact that dehydration 

steps as well as further condensation of ketones to higher molecular weight products have 

high activation energy and occur quite slowly at room temperature.   

As shown in Figures 6-1 and 6-2, numerous products are formed when the 

reaction was performed at 150 ºC.  These products generally formed as a result of the self 

and cross condensation of mesityl oxide with acetone molecules.  When the reaction 

proceeds for longer time, it is shown that the concentration of mesityl oxide was 

decreased as it was consumed in cross-condensation reaction with acetone to produce 

isophorone 4, mesitylene 5, and pentamer 8 or 9 products. The selectivities towards these 

products increased with increasing reaction time.  Isophorone selectivity was very low 

compared to the other products due to its instability toward decomposition over strong 
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acidic sites to give mesitylene 5 or further reaction with mesityl oxide to give the 

pentamers 8 and 9.  Another possible route for consumption of phorone and isophorone is 

cracking of such organics over the acid surface at the reaction conditions to evolve 

carbon dioxide gas.  Isophorone selectivity is higher when the reaction was performed 

over 15% SZ/MCM sample (Figure 6-5) than when it was conducted over 40% SZ/MCM 

(Figure 6-4).  Apparently this is due to the lower acidic sites available on the surface of 

15% SZ/MCM sample compared to that of 40% SZ/MCM (Table 6-1).  In general, the 

results showed that the supported sample 40% SZ/MCM is a more active catalyst for the 

condensation of acetone than the SZ-4 sample.  This greater activity is apparently due to 

the large difference in the specific surface area and surface acidity. Furthermore, the 

supported sample (40% SZ/MCM) favored the formation of the high molecular weight 

products such as mesitylene 5 and the pentamers 8 or 9.  This is presumably due to the 

availability of the large pores provided by the MCM-41 support which facilitates the 

formation of such kind of bulky products. 

 

Cyclopentanone condensation: 

The self condensation reaction of cyclopentanone was studied over the prepared 

sulfated zirconia catalysts. A schematic diagram for the cyclopentanone condensation 

reaction is shown in Figure 6-6. 
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Figure 6-6:  The main products obtained from the condensation reaction of 

Cyclopentanone (CPO) over sulfated zirconia 

 

The first steps in the condensation of the cyclopentanone reaction occur over 

acidic surfaces are quite similar to those observed with the acetone.  The reaction 

involves the protonation of cyclopentanone 10 to form carbonium ions which further 

react with the enol form of another cyclopentanone molecule to form an alcohol 

intermediate 11.  As in the case of the acetone condensation reaction, the alcohol 

intermediate 11 was not observed in the reaction mixture at 150 °C due to the immediate 

dehydration to give 2-cyclopentylidenecyclopentanone (2-CPYCPE) 12.  This compound 

can undergoes further secondary reactions over very strong acid sites to yield other 

products via either protonation or double bond migration.  Part of product 12 reduced by 

hydrogenation of the double bond to form 2-cyclopentylcyclopentanone 13.  However, 
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the yield of this particular product was very low with a maximum of about 0.5%-1%.  2-

cyclopentylidenecyclopentanone 12 can also undergo an isomerization via double bond 

migration to β,γ positions to give 2-cyclopentenylidenecyclopentene (2-CPECPE) 14.  

The interaction of another enol form of cyclopentanone with either products 12 or 14 

followed by dehydration gives a mixture of trimer isomers 15, 16, and 17 as shown in 

Figure 6-6.  The mole ratio of the products 15, 16, and 17 after 15h reaction time at 150 

ºC was 5.2:1.4:1 respectively.  Trindene 19 is believed to be formed directly from the 

trimer 15 through rearrangement to form an intermediate unsymmetrical trimer 18 [21].  

Additionally, the ketone conversion as a function of time over 40% SZ/MCM samples is 

shown in Figure 6-7 while the product distribution of the self condensation reaction of 

cyclopentanone is shown in Figure 6-8. 
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Figure 6-7: Cyclopentanone conversion over 40% SZ/MCM at 150 ºC. 
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Figure 6-8: Product distribution resulted from cyclopentanone condensation over 

40% SZ/MCM sample. 

 

The results obtained indicate that at the beginning of the reaction, the main 

products formed were dimer ketones, such as 12, and 14.  With increasing reaction time, 

the yield of trimers and trindene increased while the concentration of the dimer 12 

decreased.  The results also showed that there was no 2,5-dicyclopentylidene 

cyclopentanone 15 formed in the early stage of the reaction until the reaction proceeded 

for 9 hours.  This implies that most of the dicyclopentylidene cyclopentanone 15 

produced initially further transformed into trindene 19.  However, with prolonged 
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reaction time, the decrease on activity of the catalyst causes this transformation to slow 

leading to an increase in the concentration of the trindene. 

 

Acetophenone condensation: 

Figure 6-9 summarizes the reaction mechanism of acetophenone over sulfated 

zirconia.  The carbonyl group of the acetophenone 20 is protonated to form the conjugate 

acid carbonium ion which attacks another enol form of acetophenone to form 1,3-

diphenyl-3-hydroxy-1-butanone (DPHB) 21.  This then dehydrated to give mainly the cis 

and trans isomers of dypnone (DPBO) 22, and 23.  Dypnone is considered an important 

intermediate as a plasticizer and softening agent.  Another dehydration dehydrated 

product is may be 24, which was formed via elimination of the hydrogen atom on the 

primarily methyl group.  However, this product was detected in very low concentration 

due to its lower stability compare to other dypnone isomers.  
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Figure 6-9:  Acetophenone condensation reaction over sulfated zirconia. 
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Deactivation of the catalysts occurred, presumably due to coke formation via 

strong adsorption of dypnone on the catalyst surface or formation of bulky aromatics 

groups such as triphenylbenzene 25 as illustrated in Figure 6-10.  Triphenylbenzene was 

formed, most likely from condensation of three molecules of acetophenone to give a 

trialcohol intermediate followed by rapid dehydration to liberate three water molecules.  

Other possible molecules responsible for acid site deactivation and pore blockage 

according to Lavaud et al [22] is the product resulting fro condensation of 

triphenylbenzene with another acetophenone molecule to give an intermediate alcohol 26 

which undergoes a dehydration reaction to yield probably a compound with chemical 

structure (C32H24) 27 (Figure 6-10).  These bulky aromatic compounds have low 

volatility and can strongly deposit on the acid surface leading to a catalyst deactivation. 
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Figure 6-10: Formation of the possible coke precursors from the acetophenone 

condensation self reaction. 
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Table 6-2 summarizes the product from aldol condensation of acetophenone 

carried out at 150 °C over various zirconia samples.  As in case of acetone and 

cyclopentanone condensation reactions, no intermediate alcoholic products such as 

BPHB 21 was observed under these reaction conditions. 

 

Table 6-2: Acetophenone condensation reaction over sulfated zirconia samples 

proceeds for 10 hours at 150 ºC. 

Product Selectivity (%) Catalyst code Acetophenone 

Conversion (%) Dypnone Others 

Ratio 

 (trans : cis)  

SZ-1(1:3) 39.7 88 12 (1:1) 

15% SZ/MCM 22.1 92.8 7.2 (1:0) 

*15% SZ/MCM 45.4 61.6 38.4 (1:0) 

40% SZ/MCM 17.9 83.7 16.3 (1:0) 

SZ-4 20.7 89.4 10.6 (9:1) 

 

* The reaction was run for 50 hours. 

 

 The results of the condensation reaction of acetophenone over supported and 

unsupported sulfated zirconia (Table 6-2) showed that the reaction strongly depends on 

the number and the distribution of the active acid sites.  The catalyst with the highest 

initial activity was SZ-1(1:3) which also had the highest acidity.  However, unlike the 

supported samples, SZ-1(1:3) showed a rapid deactivation which indicated that the 

dispersion of the active sites on the surface is extremely important to avoid fast catalyst 

deactivation.  Bulky triphenylbenzene 25 was isolated in the product solution only when 

the reaction was conducted over the supported sulfated zirconia samples.  This implies 
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that such bulky products, once formed, are protected inside the pores of the MCM and 

desorb from the catalyst before further polymerization to form coke species or 

decomposition could occur.  Furthermore, when the reaction time prolonged over 15% 

SZ/MCM sample for about 50 hours, the selectivity toward dypnone was decreased to 

about 60% and the selectivity for triphenylbenzene at these conditions was increased to 

22%.  Apparently, the selectivity towards dypnone decreases due to the arising of other 

competition reactions included the self and cross condensation over the acid sites.  

Another possible reason for the decrease of the dypnone selectivity is due to an acid 

cracking mechanism by protonation of the dypnone itself followed by dissociation to give 

a stable carbocation acylium ion 28 and isopropenylbenzene 29 (Figure 6-11).  The 

acylium ion further reacts with another water byproduct molecule in the solution to give 

benzoic acid 30.  Such products, however, were observed with very low yield.  These 

products were also observed when the acetophenone condensation reaction was 

performed at high reaction temperature (350 °C) on zeolite type catalysts [23-24]. 
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Figure 6-11:  Formation of benzoic acid and isopropenyl benzene from acid 

cracking of dypnone. 
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Methylisopropyl ketone condensation: 

 The mechanistic pathway for the self condensation reaction of methyl isopropyl 

ketone (MIP) was quite similar to that discussed for other ketones.  The reaction was 

conducted over 40% SZ/MCM sample at 150 °C.  Figure 6-12 summarizes the main 

products formed from this reaction.  In this case, however, there are two different enol 

forms that can be produced; the more stable form (32) and the less stable one (33) (Figure 

6-12). 
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Figure 6-12: Reaction network for methyl isopropyl ketone condensation over 

synthesized sulfated zirconia. 

  

 The conversion of metyhlisopropyl ketone over sulfated zirconia is shown in 

Figure 6-13.  The reaction showed a slower initial rate compare to that of other studied 
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ketones such as acetone and cyclopentanone, and a comparable rate to that of 

Acetophenone. 
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Figure 6-13: Methylisopropyl ketone conversion over 40% SZ/MCM at 150 ºC. 

 

 Unsaturated ketones 36, 37, and 38 are the main products formed.  These ketones 

formed as a result of reaction of both enol forms with the protonated ketone molecules to 

form generally stable unsaturated ketones.  The results of the condensation reaction of 

MIP over the 40% SZ/MCM sample are shown in Table 6-3. 
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Table 6-3: Methylisopropyl Ketone condensation reaction over sulfated zirconia 

sample 40% SZ/MCM at 150 ºC. 

Product Selectivity (%) Reaction 

Time (h) 

MIP conversion 

(%) 34 36 35 36 Others 

9 12.3 26.8 35.9 11.9 1.8 23.6 

20 36.3 26.3 37.5 6.9 2.2 27.1 

35 58.7 24.5 30.5 6.4 1.2 37.4 

45 64.6 22.8 25.7 11.18 2.9 37.4 

60 66.4 16 17.7 9.4 3.8 53.1 

 

* The products assigned to each number in the table are shown in figure 6-13. 

 

The less stable enol form 33 also reacts with the protonated carbocation followed 

by dehydration to produce three different unsaturated ketones 38, 39, and 40 isomers with 

that only differ in the position of the double bond.  Triisopropyl benzene 41 was also 

observed in very low concentration and is believed to be formed as a result of the self 

condensation of three less stable enol forms molecules 33 to form a trialcoholic 

intermediate followed by dehydration. 

 

Ketones reactivity on the surface of sulfated zirconia: 

Figure 6-14 showed the IR spectra of the adsorption of acetone and 

cyclopentanone over sulfated zirconia sample (40% SZ/MCM) at room temperature and 

at the reaction conditions.  In the case of acetone adsorption, on sulfated zirconia at room 

temperature, two different bands that correspond to the carbonyl groups were observed 

[Figure 6-14 25 °C, a].  The first band at 1720 cm-1 is obviously attributed to the weakly 
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physisorbed ketone species on the surface.  The other band at about 1560 cm-1 is believed 

to be attributed to the formation of the enolate acetone species on the surface as in case of 

adsorption of acetone over zeolite type catalysts [24].  The lower frequency of the latter 

band is due to the lower C-O double bond character.  The enolate band formed as a result 

of the coordination of the ketones on either the Lewis or Brønsted acid sites. 

 

 

 

 

 

 

 

 

 

Figure 6-14: IR spectra of the sulfated zirconia after adsorption of a) acetone and b) 

cyclopentanone at 25 °C and 150 °C. 
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to the enolate form was not observed.  This clearly implies that the protonation of the 

cyclopentanone at room temperature is not as easy as in case of the protonation of 

acetone molecules.  This maybe is the reason behind the lower initial reactivity of the 

cyclopentanone compared to that of the acetone [Figures 6-3 and 6-7].  The conversion of 

acetone was about 80% when the reaction performed for 3 hours while the conversion of 

cyclopentanone was only about 25% in the same time period.  Other evidence for the 

protonation of acetone at room temperature, as seen earlier, is that acetone reacts on 40% 

SZ/MCM sample at room temperature with low conversion to produce diacetone alcohol 

and mesityl oxide while no reaction was occur when cyclopentanone was stirred with 

40% SZ/MCM catalyst at 25 °C for two days.  Figure 6-15 shows a schematic diagram 

for the proposed structure of the chemisorbed acetone on the both, Lewis and Brønsted 

acid sites on sulfated zirconia surface. 
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Figure 6-15: Schematic diagram for acetone chemisorbed on sulfated zirconia. 
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 Figure 6-14 also shows the IR spectra of the sulfated zirconia after the 

condensation reaction of acetone and cyclopentanone at 150 °C.  The spectra are 

significantly changed compared to the spectra of the adsorbed ketone at room 

temperature.  In the case of acetone [Figure 6-14,150 °C, a], a strong band at 1689 cm-1 

was observed which corresponds to the chemisorbed carbonyl groups of the ketone 

compound such as acetone or mesitylene oxide.  The band at 1601 cm-1 presumably 

corresponds to the C=C of the aromatic compound which may be deposited on the 

surface of the oxide during the reaction.  On the other hand, the IR spectrum of the oxide 

after the condensation of cyclopentanone [Figure 6-14,150 °C, b] shows a strong band at 

1710 cm-1 corresponding to the weakly physisorbed ketone species on the surface.  

Additionally, the appearance of a strong band at 1560 cm-1 along with another strong 

band at 1466 cm-1 in the IR spectra of the oxide after cyclopentanone condensation at 150 

ºC compared to that at room temperature, presumably, suggests the formation of surface 

carboxylate groups (RCOO¯).  The carboxylate species formed as a result of the oxidation 

of cyclopentanone or other species at elevated temperature.  These surface molecules 

along with the coke formation probably contributing to the slow reactivity of 

cyclopentanone compared to that of acetone (the conversion of acetone reaches 80% after 

reaction for three hours while the conversion of cyclopentanone achieved 80% after 38 

hours [Figures 6-3 and 6-7]). 

 

CONCLUSIONS AND REMARKS: 

In conclusion, sulfated zirconium oxides can catalyze self condensation reactions 

of several ketones such as acetone, cyclopentanone, and acetophenone.  The catalytic 
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activity and product selectivities are strongly influenced by the nature of the starting 

ketone (steric properties and accessibility to the active sites) as well as catalyst properties 

and the surface acidity of the employed sulfated zirconia catalyst.  Acidity becomes very 

critical in the dehydration of the intermediate alcohol to the corresponding α,β-

unsaturated carbonyl compounds.  However, the reaction temperature also plays an 

important role in the dehydration process as seen in the case of conversion of diacetone 

alcohol to mesityl oxide in the acetone condensation reaction.  The catalyst deactivation 

most probably occurs due to the strong chemisorption of ketones over the acid sites or is 

due to the formation of bulky high molecular weight aromatics which formed via the 

secondary reactions during the condensation reaction via oligomerization. These 

aromatics act as a coke precursor leading to the rapid deactivation of the surface of 

zirconia catalysts.  Bulky aromatic products are best prepared using a porous catalyst 

with high surface area and big cavities that can easily accommodate these species.  

Furthermore, water molecules that are formed during the condensation reaction can 

adsorb on the acidic sites on the oxide surface and hence deactivate the catalysts.  In 

general, one can say that the selection of suitable and appropriate reaction conditions and 

catalytic system is very critical for the optimization of the activity and selectivity for 

desired products. 
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