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GENERAL  INTRODUCTION   

1.  Motivation  

Identification of the effects of acidification on the evolution of carbon in our 

environment is necessary to determine the impact of natural and anthropogenic forcing on 

the carbon cycle (Falkowski et al., 2000; Schimel, 2001; House et al., 2003; Takahashi, 

2004). The US Carbon Cycle Research Program (www.carboncyclescience.gov) 

identifies several areas where gaps exist in our knowledge and understanding of carbon 

sources and fluxes from terrestrial reservoir to the atmosphere For example, carbon in 

bedrocks and freshwater systems is an important part of the carbon cycle and represent 

important links in the conversion of terrestrial carbon and its transfer to the atmospheric 

or ocean reservoirs. The carbon that is lost as CO2 from terrestrial reservoirs to the 

atmosphere is generated either from organic carbon respiration or from weathering of 

watershed rocks such as limestone and dolomite (Wicks and Groves, 1993; Webb and 

Sasowsky, 1994; Affek et al., 1998; Telmer and Veizer, 1999; Karim and Veizer, 2000; 

Andrews and Schlesinger, 2001).  

.



2 
 

 Natural weathering of carbonates provide the bulk of DIC in groundwater and 

surface water in terrestrial watersheds (Karim and Veizer, 2000). In several watersheds 

with a history of mining activities, the oxidation of sulfide minerals (e.g., PbS, FeS2, and 

ZnS) generates sulfuric acid. The acid reacts with carbonate minerals to neutralize H+ and 

release DIC. Despite the potential to generate significant DIC from carbonate mineral 

dissolution, few studies (e.g. Fonyuy and Atekwana 2008a&b) have examined carbon 

cycling and transfer in watersheds impacted by acidification. The carbon that is 

transformed, exchanged, or lost from the system imparts shifts on the isotopic ratio of 

DIC (δ13CDIC) through isotopic fractionation. Fractionation may lead to distinct changes 

in the δ13CDIC that may be diagnostic of the acidification process. So far, little is known 

about the anthropogenic effects of acidification and subsequent neutralization processes 

on the cycling of carbon in groundwater and surface waters contaminated by 

anthropogenic effects e.g., mine drainage. 

2.  Research hypothesis and objectives 

The goal of this research was to investigate the effect of acidification on carbon 

cycling in surface and groundwater using C isotopes. We hypothesize that DIC and 

isotope ratios can be diagnostic of the extent of acidification / neutralization in 

contaminated groundwater and surface waters. Our plan is to conduct field and 

laboratory experiments in order to investigate 1) DIC production and fate in groundwater, 

soil water, and lake water affected by acidification and neutralization in mine tailings, 2) 

the impact of drainage from mine tailings on surface water DIC cycling, and 3) the 

isotope fractionation of carbon during progressive acidification in surface waters. In order 
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to solve these issues, we need to determine: 1) information on DIC partitioning and 

δ
13CDIC and δ13CCO2 fractionation in groundwater, soil water, and surface water in a 

tailings environment, 2) Spatial evolution of DIC and the kinetic fractionation of δ13CDIC 

of drainage from mine tailings, and 3) a model of δ
13CDIC and δ13CCO2 evolution of 

surface waters due to acidification.  

3.  Significance of study 

The results of this study contribute to our understanding of the role of 

anthropogenic acidification and subsequent neutralization on inorganic carbon cycling 

and evolution in contaminated surface and groundwater. Given that the conversion, 

transformation and transfer of DIC to the atmospheric reservoir will continue, the role of 

anthropogenic DIC sources needs to be factored in the terrestrial carbon budget. In this 

study, the impact of continuous acidification and neutralization on DIC generation and 

loss as CO2 to the atmosphere is presented in three different investigations. This research 

met goals and objectives of the National Science Foundation (NSF) program 

(www.nsf.gov/pubs/2006/nsf06514/nsf06514.htm, March, 2007) on integrated carbon 

cycle and water in the earth system and the US Carbon Cycle Research 

(www.carboncyclescience.gov, March, 2007). Given that natural resource exploitation by 

mining and surface disposal of mine waste is likely to continue, this study sheds more 

light and understanding on how such activities impact carbon cycling. The results of this 

study also highlight the use of stable carbon isotope fractionation in addition to water 

chemistry analysis as a tool to study carbon evolution in mining environments 
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CHAPTER I 
 

 

EFFECT OF PROGRESSIVE ACIDIFICATION ON STABLE CARBON 

ISOTOPE OF DISSOLVED INORGANIC CARBON IN SURFACE WATERS  

Hendratta N. Ali and Eliot Atekwana 
Chemical Geology Volume 260, Issues 1-2, 15 March 2009, Pages 102-111 

Boone Pickens School of Geology, 105 Noble Research Center, Oklahoma State 
University, Stillwater, OK 74078, USA 

Abstract 

Acidification of surface waters by acid mine drainage (AMD) contamination or 

atmospheric deposition perturbs the carbonate equilibrium, with unknown effects to the 

isotope ratio of dissolved inorganic carbon (DIC). Here, we aimed to determine shifts in 

the δ13CDIC and to model carbon isotope fractionation during progressive acidification. 

We progressively acidified samples of NaHCO3, stream water, groundwater, and spring 

water contaminated by AMD (AMD spring) to a pH <3 using H2SO4 under open 

conditions (exposed to the atmosphere) and closed conditions (isolated from the 

atmosphere). Duplicate sets of samples were left unacidified and allowed to chemically 

evolve under ambient conditions in the laboratory. The δ
13CDIC of the acidified samples 

were enriched by 0.7‰ to 5.0‰ during the HCO3
- dehydration phase and depleted by 

0.6‰ to 2.3‰ during the phase when HCO3
- was exhausted. The δ

13C of the initial CO2 

(δ13CCO2) captured during closed acidification of NaHCO3 (7.4‰,) stream water (7.9‰), 
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 groundwater (8.3‰), and AMD spring (1.9‰) samples were more depleted than their 

respective δ13CDIC. The δ13CCO2 showed enrichment and depletion trends that were 

similar to those of the DIC. In addition, the δ
13CCO2 were of similar magnitude to the 

δ
13CDIC after the HCO3

- in the samples was exhausted. The positive enrichment in δ
13CDIC 

during the HCO3
- dehydration phase was driven by 1) kinetic fractionation of CO2 during 

diffusion, or 2) a combination of fractionation accompanying HCO3
- dehydration to 

CO2(aq) followed by isotopic exchange of carbon between CO2(aq) and HCO3
-. The 

enrichment of 13C was defined by slopes for close or open acidification of 7.3‰ or 3.4‰ 

for NaHCO3, 7.7‰ or 4.8‰ for stream water, 6.8‰ or 2.9‰ for groundwater, and 4.8‰ 

or 2.5‰ for the AMD spring. The negative trend in δ
13CDIC after HCO3

- was exhausted 

was entirely due to kinetic fractionation associated with CO2 loss by diffusion. The 

depletion of 13C was defined by slopes for closed and open acidification of 6.8‰ or 2.2‰ 

for NaHCO3, 7.4‰ or 3.9‰ for stream water, 6.9‰ or 4.8‰ for groundwater, and 7.9‰ 

or 6.3‰ for the AMD spring. The unacidified samples showed fluctuations in DIC 

concentrations of 8% for NaHCO3, and decreases in DIC concentrations of 21% for 

stream water, 26% for groundwater, and 99% for AMD spring. The δ
13CDIC of the 

unacidified samples were enriched by <1.0‰ for NaHCO3, 7.0‰ for stream water, 3.3‰ 

for groundwater, and 2.7‰ for AMD spring. The enrichment of δ
13CDIC of 1.0 to 7.0‰ 

for the unacidified NaHCO3, stream water, and groundwater samples was due to 

exchange of carbon between HCO3
- and atmospheric CO2. Protons produced during 

hydrolysis of Fe3+ in the unacidified AMD spring caused this sample to behave 

isotopically similar to the acidified AMD spring. We conclude that carbon isotope values 
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in conjunction with concentrations of DIC species (CO2(aq), HCO3
-, and CO3

2-) can be 

used to provide evidence for the effects of acidification on DIC in surface waters. 

Keywords: Acidification; Dissolved inorganic carbon; Stable carbon isotopes; Surface 

waters. 

1.  Introduction 

The acidification of surface waters perturbs the carbonate equilibrium (e.g., Berelson 

et al., 1994; Heron et al., 1997; Lohse et al., 2000; Feely et al., 2004; Orr et al., 2005; 

Zachos et al., 2005). Acidification may result from acid mine drainage (AMD) 

contamination (e.g., Baker et al., 1991; Herlihy et al., 1991; Wicks and Groves, 1993; 

Webb and Sasowsky, 1994; Benson, 1998; Mayo et al., 2000; Espana et al., 2005; Lee 

and Chon, 2006; Fonyuy and Atekwana, 2008a), atmospheric deposition (e.g., Baker et 

al., 1991; Stoddard et al., 1999; Larssen and Carmichael, 2000; Wright et al., 2001), or 

organic anions from watersheds (e.g., Baker et al., 1991; Kaufmann et al., 1991; 

Kaufmann et al., 1992). Acidification lowers water pH and drives the carbonate 

equilibrium to produce CO2(aq) which may be lost to the atmosphere or facilitate exchange 

of carbon between dissolved inorganic carbon (DIC) and atmospheric CO2. The carbon 

that is transformed, exchanged, or lost imparts shifts to the isotope ratio of DIC (δ
13CDIC) 

because of isotope fractionation accompanying each process. If the carbon isotope 

fractionation leads to distinct shifts in the δ
13CDIC of acidified waters, this may be 

diagnostic of acidification. Therefore, given initial constraints, models based on DIC 

concentrations, DIC speciation, and the δ
13CDIC  may be an effective way of evaluating the 

extent of acidification in surface waters. 
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The extent to which acidification affects the δ
13CDIC of surface waters is currently not 

well understood as this problem has not been intensively investigated. However, a few 

studies (e.g., Fonyuy and Atekwana, 2008 a&b) show large decreases in DIC (>98%) and 

variable shifts in δ13CDIC in AMD-contaminated samples in field and laboratory studies. 

Furthermore, Fonyuy and Atekwana (2008 a&b) suggest that the enrichment in δ
13CDIC 

that is due to acidification alone may be in the range of ~1.0‰ to 3.0‰. A variety of 

competing reactions and processes (such as dissolution of streambed carbonates, CO2 

exchange with the atmosphere, photo-oxidation of organic matter, aquatic 

photosynthesis/respiration, and variable influx of DIC from groundwater and tributaries) 

may occur during acidification. These competing processes especially in field settings, 

make it difficult to sort out the effects of acidification from the measured DIC 

concentration and δ13CDIC (Fonyuy and Atekwana, 2008a).  

There is a need to conduct detailed and controlled studies on acidification to 

determine carbon loss from which the effects of the isotopic fractionation of carbon on 

the δ13C can be assessed. In this study we progressively acidified samples of NaHCO3, 

stream water, groundwater, and a spring contaminated by AMD to pH of <3.0 by adding 

H2SO4. We measured DIC, alkalinity, cations and anions, the δ
13C of DIC, and the δ13C 

of CO2(g) released during acidification. Our objective was to determine shifts in δ
13CDIC 

and carbon isotope fractionation during DIC transformation and to model carbon isotope 

evolution during progressive acidification. 
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2.  Method 

2.1. Sample collection and preparation 

A solution of NaHCO3, and samples of stream water, groundwater, and spring water 

contaminated by AMD (AMD spring) were used for this experiment. The NaHCO3 

solution was made by dissolving 7.0 to 8.0 g of 99% laboratory grade NaHCO3 (EMD 

Chemicals, Inc.) in 20 L of de-ionized (18.2 Ωm) water. The NaHCO3 solution was used 

as a control because protons from acidification would only affect bicarbonate. In 

addition, we also wanted to minimize the effects from processes that could occur in 

natural samples (e.g., biological transformation of organic carbon, protons produced by 

metal precipitation, etc.) that may affect pH, DIC, and carbon isotope evolution. Natural 

samples were collected from Missouri, USA; AMD spring in Huntsville (39°26'22"N, 

92°32'38"W), uncontaminated stream water from Little Piney Branch in Rolla 

(37°57'05"N, 91°46'16"W), and groundwater from the Federal Tailings Pile in Park Hills 

(37°49'16"N, 90°30'49"W). The AMD spring and stream water were collected by the 

grab technique and groundwater was pumped to the surface using a submersible pump. 

Samples for the laboratory experiment were collected in 20 L Fort-Paks® plastic 

containers (reactors), closed tight and transported to the laboratory. The NaHCO3 

solution was prepared and the natural samples were collected in triplicates. 

2.2. Experimental procedure 

In the laboratory, a set of reactor samples from each source was opened, left 

unacidified and allowed to evolve under ambient laboratory conditions and in contact 

with the atmosphere for up to 43 days. The other two reactor samples from each source 
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were progressively acidified with sulfuric acid to pH <3. One reactor from each set was 

acidified open to the atmosphere (open acidification) which allowed the reactor sample to 

lose or exchange CO2 freely with atmosphere. The other reactor sample was acidified 

without contact with atmosphere (closed acidification) so as to collect the CO2(g) during 

acidification for isotope analysis. Acidification of the reactors was done by adding 0.2 to 

0.75 mL 1.6 N of H2SO4 that was mixed with the sample by mechanical shaking of the 

reactor for about 5 minutes. 

Modifications made to the closed acidification reactors are shown in Figure 1. The 

air-tight lid of the reactor was fitted with a septum through which H2SO4 was injected 

into the sample using a 1 mL glass syringe. An outlet was created and fitted with 6 mm 

OD plastic tubing and connected to a multipurpose vacuum line to 1) collect CO2(g) from 

the reactor headspace without contamination by atmospheric CO2(g) and 2) to remove all 

CO2(g) from the reactor before the next acidification. A 6 mm OD plastic tubing was fitted 

with a plastic syringe valve that provided access to the water sample which was 

withdrawn using a 60 mL plastic syringe. Because of the vacuum created in the reactor 

during removal of CO2(g) in the headspace, 99.99% helium was released into the reactor 

to restore pressure to atmospheric, followed by water sampling.  

2.3. Analysis 

Measurements of physical, chemical and isotopic parameters were done after each 

acidification and every 2-4 days for the unacidified samples. The temperature and pH 

were measured using a YSI multi-parameter probe after calibration to manufacturers 

specifications. All samples were filtered through a 0.45 µm syringe filter after collection. 

Alkalinity was determined immediately after filtration by acid titration (Hach, 1992). 
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Samples for anions were collected unacidified and samples for cations were acidified to a 

pH <2. All samples were stored at 4oC until analysis. Anions were analyzed by ion 

chromatography and cations by either ion chromatography or inductively coupled plasma 

optical emission spectrometry. 

Water samples for DIC were collected and the CO2 extracted as described by 

Atekwana and Krishnamurthy (1998) with modifications as in Fonyuy and Atekwana 

(2008b). The DIC concentrations were calculated from the CO2 measured by a pressure 

transducer. The CO2 was collected and sealed in Pyrex tubes. The CO2 in the reactor 

headspace was purified in the vacuum line and an aliquot was sealed in Pyrex tubes. 

Carbon isotope ratios of the CO2 in the sealed Pyrex tubes were measured by isotope 

ratio mass spectrometry at Western Michigan University, Kalamazoo, Michigan. The 

carbon isotope ratios are reported in the delta notation relative to Vienna Pee Dee 

Belemnite (VPDB) carbon standard. 

%1000113 ×=
stdR

R
Cδδδδ  

3.  Results  

3.1. pH, HCO3
-, and DIC  

The pH, HCO3
-, and DIC concentrations of samples from the open and closed 

acidification and of unacidified samples are presented in Table 1. With progressive 

addition of H2SO4, HCO3
- concentrations decreased to below detection levels. DIC 

concentrations for samples in the open acidification decreased by 67% for NaHCO3, 81% 
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in stream water, 72% for groundwater, and 96% for AMD spring. In the closed 

acidification, DIC decreased by 93% for NaHCO3, 96% for stream water, 97% for 

groundwater, and 97% for the AMD spring. The trend of decreasing HCO3
- 

concentrations with progressive acidification is similar for open and closed acidification 

(Fig. I-2a-d). However, the trend of decreasing DIC concentrations for open and closed 

acidification is different for NaHCO3, stream water, and groundwater (Fig. I-2e-g), and 

similar for AMD spring (Fig. I-2h). The trends of decreasing DIC concentrations for open 

acidification are lower than for closed acidification (Fig. I-2e-g). This difference between 

the DIC concentrations for open and closed acidification is due to greater removal of 

CO2(aq) by applying vacuum to the closed acidification reactors. Despite this fact, the 

AMD spring samples also subjected to open and closed acidification show similar trends 

of decreasing DIC concentrations (Fig. I-2h). 

Unacidified samples showed fluctuations in HCO3
- concentrations of 7% in NaHCO3, 

and decreased by 21% in stream water and 18% in groundwater (Fig. I-2a-d). The 

samples also showed fluctuations in DIC concentration of 8% in NaHCO3, and decreases 

of 21% in stream water, and 26% in groundwater (Fig. I-2e-g). The pH increased by 0.2 

in NaHCO3, 0.7 in stream water, and 0.6 in groundwater. In contrast, the pH of the AMD 

spring sample decrease progressively from 5.9 to 3.1, while HCO3
- concentrations 

decreased to below detection level and DIC concentrations decreased by 98%.  

3.2. δ13C of DIC and δ13C of CO2 

The δ13CDIC and δ13CCO2 of samples from the acidified and unacidified reactors are 

presented in Table 1. In the open and closed acidifications, the trend of δ
13CDIC 

enrichment reversed at lower DIC concentrations to depletion which continued to the end 
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of the acidification (Fig. I-3a-d). The DIC concentrations were less than 2 mM C/L in 

closed acidification and 3 mM C/L in open acidification when the trends in δ
13CDIC 

reversed from enrichment to depletion. The magnitude of the enrichment and depletion in 

the δ13CDIC was greater for the closed acidification than for the open acidification (Fig. I-

3a-d).  

The δ13C of the CO2 captured during closed acidification was progressively enriched 

before reversing to become progressively depleted at low DIC concentrations of <1.0 

mM C/L (Fig. I-3e-h). The trend in the δ13CCO2 mimics that observed for δ13CDIC of the 

closed acidification (Fig. I-3a-d). However, the δ
13CCO2 that was initially more depleted 

relative to δ13CDIC was progressively enriched to values nearly identical to those of 

δ
13CDIC before the trend of enrichment reversed to depletion at low DIC (Table 1). Also, 

after reversal from 13C enrichment to depletion, the values of δ
13CCO2 are similar to or 

slightly enriched than the δ13CDIC. 

The δ13CDIC of unacidified NaHCO3, stream water, and groundwater samples showed 

enrichments of 0.6‰, 7.0‰, and 3.3‰, respectively (Fig. I-3a-c). The δ
13CDIC of the 

AMD spring was enriched by 2.7‰, which reversed to depletion at low DIC (<2 mM 

C/L) and decreased to a minimum δ
13CDIC of -18.8‰ (Table 1; Fig. I-3d). 
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4.  Discussion  

4.1. Effects of acidification on HCO3
-, CO2(aq), and DIC 

In the acidified reactors, protons from H2SO4 dissociation react with HCO3
- to 

produce H2CO3 (reaction 1) reducing HCO3
- concentrations. Decreases in DIC 

concentrations occur by loss of CO2(g) from solution (reaction 2): 

H+  +  HCO3
-  �  H2CO3        (1) 

H2CO3  �  CO2(aq)  +  H2O  �  CO2(g)  +  H2O       (2) 

The decreasing trend of HCO3
- concentration is similar for both open and closed 

acidification (Fig. I-2a-d). However, the trends of DIC concentration decreases are 

markedly different between open and closed acidifications (Fig. I-2e-g), except for the 

AMD spring sample (Fig. I-2h), because DIC loss from the samples is not directly 

controlled by acidification. For example, in sample sets (excluding AMD spring), a single 

pH value corresponds to different DIC concentrations in the open and closed acidification 

because of different amounts of CO2 lost from solution (Fig. I-2e-g).  

DIC loss from solution depends on 1) the partial pressure of CO2 (pCO2) in the 

reactor samples relative to that of the atmosphere, 2) the method of CO2 removal from 

solution (e.g. vacuum assisted for closed acidification vs. diffusion controlled for open 

acidification), and 3) the effectiveness of each method in removing CO2. The extent to 

which CO2 is removed also depends on how much time is allowed for removal to occur. 

One way to evaluate how CO2 is produced and lost as DIC decreases during acidification 

is to examine the relationship between the normalized DIC concentration which is the 
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ratio of DIC at any time (Ct) to the DIC concentration prior to acidification (C0) and the 

pCO2 in the samples. A plot of the Ct/C0 vs. pCO2 of samples from open and close 

acidification shows initial increase in the pCO2 for NaHCO3, stream water, and 

groundwater to peak values (Fig. I-4a-c). This was followed by pCO2 decreases as 

acidification progressed to the end of the experiment. The trend of increasing followed by 

decreasing pCO2 is more pronounced for the open acidification than for the closed 

acidification (Fig. I-4a-c). Enhanced CO2 removal by applying vacuum to the reactor 

headspace is responsible for the lower pCO2 magnitudes observed for closed acidification 

samples. At Ct/C0 of about 0.2 and lower, the decrease in the pCO2 for both open and 

closed acidifications show similar trends and magnitudes. The overall trend of pCO2 for 

the acidified AMD spring is different from that of NaHCO3, stream water, and 

groundwater (Fig. I-4d vs. 4a-c). The pCO2 of the AMD spring decreased with decrease 

in DIC in both open and closed acidification. In addition, the trends of pCO2 are similar 

and almost identical in magnitude at Ct/C0 <0.2 despite vacuum assisted CO2 removal 

during closed acidification.  

The pCO2 trend in the acidified AMD spring which continuously declined from the 

start of experiment, suggest that HCO3
- dehydration does not necessary lead to CO2 

accumulation (increased pCO2 before decline). Considering that the initial pH of AMD 

spring was ~5.9 (compared to 8.1, 7.7, and 7.4 for NaHCO3, stream water, and 

groundwater, respectively), we infer that the sample had already undergone some degree 

of DIC speciation due to acidification. The acidification occurred from protons produced 

during the generation of AMD underground and before discharging as the spring 

(Blodau, 2006). We note that at a pH below ~6.0, the pCO2 of NaHCO3, stream water, 
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and groundwater reverses from increasing trends to decreasing trends. Thus, at the 

moment of sampling the AMD spring for the laboratory experiment, we captured ongoing 

AMD related acidification process at the stage of decreasing pCO2. 

The initial pCO2 of NaHCO3 (2.3x10-4 to 3.7x10-4 atm.), stream water (7.5x10-4 to 

1.5x10-3), and groundwater (1.2x10-3 to 1.6x10-3 atm.) suggest that CO2(aq) initially 

comprised a much smaller fraction (<1%) of the DIC. This is in contrast to the AMD 

spring sample (5.0x10-2 to 3.7x10-2 atm.) in which the initial CO2(aq) comprised 65% to 

81% of the DIC. The trends in pCO2 during acidification therefore suggest that despite 

overall DIC concentration decreases, accumulation of CO2(aq) in the reactors or lack 

thereof is related to the ratio of CO2(aq) to HCO3
- at the start of the laboratory acidification 

(Table 1). We reiterate that the behavior of CO2 (pCO2) in AMD spring samples during 

open and closed acidification was similar to that of other acidified samples (Fig. I-4a-c 

vs. 4h) although only the declining trend of pCO2(aq) was captured during the laboratory 

acidification. Thus, it appears that the initial ratio of CO2:DIC and HCO3
-:DIC is 

important in predicting the behavior of the pCO2 of the samples during HCO3
- 

dehydration by protons. 

The pCO2 of unacidified NaHCO3 (1.2x10-4 to 2.7x10-4 atm.), stream water (2.9x10-4 

to 1.5x10-3 atm.), and groundwater (3.5x10-4 to 1.6x10-3 atm.) did not change 

significantly during the experiment (Fig 4e-g). In contrast, the unacidified AMD spring 

samples showed a decreasing trend in pCO2 similar to the acidified AMD spring sample 

due to acid production in the sample (Fig. I-4h vs. 4d). Fe2+ in the AMD spring sample 

was oxidized to Fe3+, followed by hydrolysis to produce precipitates and H+ (e.g., Espana 

et al., 2005; Lee and Chon, 2006). The H+ ions are responsible for HCO3
- dehydration 
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that caused this sample to behave chemically like the acidified samples (Fonyuy and 

Atekwana, 2008b). 

4.2. Effect of acidification on carbon isotopes of DIC 

4.2.1. Carbon isotope fractionation 

Carbon isotope fractionation occurs during HCO3
- dehydration: εHCO3-CO2(aq) (Mills 

and Urey, 1940; Clark and Lauriol, 1992; Halas et al., 1997) and loss of CO2 from 

solution: εCO2(aq)-CO2(g) (Vogel et al., 1970; Zhang et al., 1995; Szaran, 1998). In NaHCO3, 

stream water, and groundwater, the carbon lost as CO2(g) is less than the CO2(aq) produced 

during HCO3
- dehydration as evidenced by increased pCO2 despite decrease in DIC (Fig. 

I-4a-c). It is not possible to determine the fractional contribution to the overall isotopic 

fractionation by HCO3
- dehydration or CO2 loss in the measured δ13CDIC values. 

However, we can gain insights into the behavior of δ
13CDIC by evaluating DIC speciation 

to HCO3
- and CO2(aq) during acidification and comparing variations in the concentrations 

of HCO3
- and CO2(aq) to the δ13CDIC (Fig. I-5). For both open and closed acidifications 

involving NaHCO3, stream water, and groundwater, the trends in δ
13CDIC are similar to 

those of CO2(aq) (Fig. I-5a-c), albeit subdued for closed acidification (Fig. I-5e-g). For 

these samples, the positive trends in δ
13CDIC correspond to decreasing concentrations of 

HCO3
- and increasing concentrations of CO2(aq), while the negative trends in δ13CDIC 

corresponds to decreasing concentrations of CO2(aq) after HCO3
- was exhausted.  

We first examine the negative trends in δ
13CDIC and its causal mechanism, as this will 

lay the foundation for exploring the mechanism responsible for the positive trends in 

δ
13CDIC during HCO3

- dehydration (Fig. I-5). The negative trends in the δ
13CDIC for all 
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acidified samples (Fig. I-5a-h) is due only to CO2(g) loss from solutions, because during 

this phase of acidification HCO3
- was exhausted. There is experimental evidence that 

shows that during the dissolution of CO2(g) in water, 12CO2 is slightly more soluble than 

13CO2, causing the δ13CDIC of the solution to become depleted (Vogel et al., 1970; 

Usdowski and Hoefs, 1990). The depletion in δ
13CDIC should continue over time and the 

final δ13CDIC of the solution for a system in which CO2(g) equilibrates with CO2(aq) will be 

determined by the equilibrium fractionation factor at the given temperature and the δ13C 

of CO2(g) (Mook et al., 1974; Usdowski and Hoefs, 1990). In this experiment, the pCO2 of 

the reactor samples were higher than atmospheric during the negative δ
13CDIC excursion, 

thus CO2 loss was controlled by diffusion. Models of isotopic fractionation based on the 

differences in the diffusivities of 12CO2 and 13CO2 from solution should lead to 

enrichment of δ13CDIC (e.g., Usdowski and Hoefs, 1990). However, Usdowski and Hoefs 

(1990) provide experimental evidence which suggest that pH increase during CO2 loss 

from solution produces a fractionation effect counteracted by greater reaction of 12CO2, 

effectively negating the diffusive fractionation effect. In the acidified reactors the pH was 

decreasing, thus we can not invoke a similar mechanism. The isotopic fractionation that 

leads to negative δ13CDIC in the reactor solution can be explained if as CO2(aq) is desorbed 

from solution, 12CO2 which is more reactive is retained in solution relative to 13CO2 

(Vogel et al., 1970). In addition, because the CO2 removed from solution was unable to 

equilibrate with CO2 in the aqueous phase, this led to continuous depletion in the 13CDIC 

as the DIC continued to decrease (Fig. I-5a-h).  

The positive trends in the δ13CDIC during the HCO3
- dehydration (Fig. I-5) must then 

be due to preferential loss of 12CO2 vs. 13CO2 from the reactor samples. This is in contrast 
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with the observations that 12CO2 which is more reactive with water (Vogel et al., 1970; 

Usdowski and Hoefs, 1990) is retained in solution causing negative trends in the δ
13CDIC. 

We invoke a CO2 loss mechanism mostly controlled by HCO3
- dehydration. As HCO3

- 

dehydration proceeds, 12C is preferentially incorporated into CO2(aq), leaving HCO3
- 

enriched in 13C. Although 13CO2 is preferentially incorporated into gas phase during CO2 

loss, more 12C is lost as CO2(g) relative to the HCO3
- that is enriched in 13C. The overall 

effect of this is to make the solution more enriched in 13C with progressive HCO3
- 

dehydration, and thus the positive trend in δ
13CDIC. We suggest that HCO3

- dehydration 

and physical loss of CO2 together control the observed 13C isotopic enrichment. 

The δ13C of CO2(g) captured during closed acidification can be used to make an even 

stronger case for the HCO3
- dehydration effects on the isotope fractionation that causes 

13C enrichment along the positive trend of δ
13CDIC (Fig. I-6e-g). During acidification, the 

δ
13C of CO2(g) produced after the first acid application was 7.4 to 8.3‰ more negative 

than the δ13CDIC of NaHCO3, stream water, and groundwater, and 1.9‰ more negative 

than the δ13CDIC of the AMD spring (Table 1). The variations in the magnitudes of 

depletion are due to differences in the initial HCO3
-:DIC ratios since the enrichment 

between HCO3
--CO2(aq) (αHCO3-CO2(aq) = -9.2‰ at 23oC) is much greater than between 

CO2(aq)-CO2(g) (αCO2(aq)-CO2(g) = 1.1‰ at 23oC) (Mook et al., 1974).  

For a carbon reservoir that 1) is continuously decreasing due to DIC loss and 

governed by first order kinetics and 2) has a constant isotopic fractionation during HCO3
- 

dehydration, the δ13CDIC and δ13CCO2 can be described by a Rayleigh function (e.g., 

Monson and Hayes, 1980; Mariotti et al, 1981; Galimov, 2006; Fonyuy and Atekwana, 

2008b):  
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δ
13Ct = ε (Ct/C0) + δ13C0       (3) 

where δ13Ct is the carbon isotope ratio to be predicted, δ
13C0 is the initial carbon isotope 

ratio of the reactor sample, ε is the isotopic enrichment factor (given as: [(δproduct/δreactant)-

1] x 103), Ct is the DIC concentration measured at any time t and C0 is the DIC 

concentration at the beginning of the experiment. The relationship between Ct/C0 vs. δ13C 

of DIC or CO2 (Fig. I-6a-d) can be used to determine the 13C enrichment (slope of the 

regression of the data points) and whether the fractionation associated with the process 

can be described as occurring in an “equilibrium open” or “equilibrium closed” system 

(e.g., Gat and Gonfiantini, 1981; Kendall and Caldwell, 1998). The δ
13C of DIC and CO2 

from the closed acidification are positively correlated with DIC decrease (Ct/C0) during 

the HCO3
- dehydration phase (Ct/C0 >~0.2) and negatively correlated during the phase 

(Ct/C0 <~0.2) after HCO3
- was exhausted in the samples (Fig. I-6a-d). The least squares 

regression equations defining enrichment and depletion trends in δ
13CDIC and δ13CCO2 are 

presented in Table 2. The correlation coefficients for the regression of the data points 

range from 0.77 to 0.99. The fact that the 13C enrichments and depletions can be defined 

by linear equations suggests that the overall effects of isotopic fractionation on DIC 

during acidification occur in an “equilibrium closed” system (Fonyuy and Atekwana, 

2008b). We note that the data for some of the regressions are few (n=3). However, the 

increasing and decreasing trends in δ
13C exhibited by all the different samples are similar, 

thus validating those trends defined by fewer points. 



20 
 

4.2.2. Carbon isotope enrichment during close acidification  

The δ13CDIC and δ13CCO2 were progressively enriched during the HCO3
- dehydration 

phase (Fig. I-6a-d). However, the enrichments occur at different rates for CO2 and DIC, 

i.e., the slopes of the trends in the isotopic enrichment are steeper for CO2 (14.3, 20.3, 

17.7, and 10.4) compared to DIC (5.9, 7.7, 6.3, and 4.7) (Table 2). The δ
13CCO2 from 

closed acidification supports a reaction mechanism in which the carbon in CO2(aq) 

equilibrates with carbon in HCO3
- (Fonyuy and Atekwana., 2008b). Isotopic exchange of 

carbon in CO2(aq) with carbon in HCO3
- during progressive acidification caused 

enrichment in 13CCO2(g) to occur at a higher rate compared to the enrichment of 13CDIC. 

The enrichment in the 13CCO2 occurs until it is equal to that of DIC near the point where 

HCO3
- is exhausted (Fig. I-6a-d). This concept of carbon equilibration between HCO3

- 

and CO2(aq) allows us to explain the rather small initial δ
13CCO2 depletion compared to 

δ
13CDIC of the acidified AMD spring. As previously stated, the AMD spring had already 

undergone some degree of acidification in the field. During the laboratory acidification of 

AMD, equilibration of carbon between HCO3
- and CO2(aq) is responsible for the smaller 

negative enrichment of the δ13CCO2. 

The magnitude of the negative shift in δ
13CDIC and the rate of depletion (slopes of the 

trend lines) vary for NaHCO3, stream water, groundwater, and the AMD spring. Least 

squares regression equations fitted to the data for the negative δ
13CDIC trends have slopes 

between 7.4 and 14.6 for closed acidifications (Table 2). The differences in the slopes are 

due to the relative difference in the initial DIC concentrations and DIC speciation during 

acidification. 



21 
 

4.2.3. Carbon isotope enrichment during open acidification  

The samples acidified under open conditions show the same general trends in δ
13CDIC as 

exhibited by samples acidified under close conditions with two main differences. During 

HCO3
- dehydration in the open acidification, the rates of CO2(aq) accumulation are higher 

(overall higher concentration of CO2(aq)) and the δ13CDIC enrichment is of lower 

magnitude (Fig. I-5a-d). The trends in δ
13CDIC enrichment followed by trends in the 

depletion of δ13CDIC indicate that the mechanism(s) causing isotopic fractionation during 

open acidification are the same as in the closed acidification. However, the greater 

accumulation of CO2(aq) in the solution during the open acidification facilitated the 

exchange of carbon between CO2(aq) and HCO3
- to a much greater extent. This resulted in 

overall lower 13C enrichment during the HCO3
- dehydration phase and 13C depletion after 

all HCO3
- was exhausted.  

4.2.4. Carbon isotope enrichment in unacidified samples 

The δ13CDIC was enriched by 0.6‰ in NaHCO3, 5.0‰ in stream water, and 3.4‰ in 

groundwater. The δ13CDIC of the AMD spring was initially enriched and reversed to 

depletion late in the experiment (Fig. I-3a-d). The 13C enrichment was 2.7‰ and the 

depletion was 9.8‰ in the AMD spring. The temporal δ
13CDIC for the unacidified 

samples are positively correlated with time except for the AMD spring (Fig. I-7a-c). The 

lack of a positive correlation for the enrichment in δ
13CDIC vs. time for the AMD spring 

(Fig. I-7d) is due to the differences in the mechanisms causing isotope fractionation and 

enrichment in the samples. The isotope fractionation of carbon in NaHCO3, stream water, 

and groundwater is due to equilibrium exchange of carbon between HCO3
- and 

atmospheric CO2 (e.g., Fonyuy and Atekwana, 2008b). For these samples, least squares 
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regression equations of time vs.δ
13CDIC shows that stream water has the highest 

enrichment rate given by a slope of 0.007, while NaHCO3 has the lowest slope of 0.0006. 

At equilibrium, the δ13C enrichment should approach values for equilibrium exchange of 

carbon (~8.02‰ at 23oC) between HCO3
- and CO2(g) (Lesniak and Zawidzki, 2006; Mook 

et al., 1974). The differences in the rate at which these samples are exchanging carbon 

with atmospheric CO2 varies with the initial CO2(aq):HCO3
- ratio. Carbon equilibration 

between HCO3
- in the samples and atmospheric CO2 is facilitated by increasing 

concentration of CO2(aq). The higher the CO2(aq):HCO3
- the faster the rate of equilibration 

(slope of the regression line) and the greater the enrichment rate.  

The AMD spring sample lost more than 99% of its original DIC accompanied by a 

decrease in pH from 5.7 to 3.2. The DIC loss was concomitant with a δ
13C enrichment of 

2.7‰ followed by depletion. We observed depletion of δ
13C of -18.8‰ at DIC 

concentration of 0.23 mM C/L. Although we are unable to explain this depletion, such 

depleted δ13C in AMD contaminated samples have been reported by Fonyuy and 

Atekwana (2008a). We attribute the enrichment and the depletion trends of the 

unacidified AMD spring sample to the same processes that cause fractionation in the 

acidified samples (section 4.2.2 and 4.2.3.) Oxidation of Fe2+ to Fe3+ and followed by 

hydrolysis of Fe3+ to form Fe-precipitates and protons. The dehydrated of HCO3
- by 

protons causes this sample to behave similar to samples from the open acidification.  
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5.  Summary and implications 

We progressively acidified natural and artificial water samples to study the effects of 

acidification on carbon isotope fractionation. Another set of water samples used as 

controls were allowed to evolve unacidfied and in contact with ambient laboratory air for 

7 to 43 days. During acidification, HCO3
- dehydration was concomitant with increase in 

the pCO2 in the samples. The pCO2 increased with progressive acidification to maximum 

values near the point when HCO3
- in the samples was exhausted, after which the pCO2 

values decline continuously to the end of the experiment. The δ
13CDIC was enriched 

during the HCO3
- dehydration phase and was depleted after HCO3

- was exhausted. The 

trends in enrichment and depletion of the δ
13CDIC mimicked those of the pCO2. However, 

the rate of isotopic enrichment and depletion in each acidified sample was different and 

depended on the initial HCO3
-:CO2(aq) ratio. The concentration of CO2(aq) in each sample 

controlled the extent of isotopic exchange of carbon between the un-dehydrated HCO3
- 

and the CO2(aq). The δ13C of CO2 captured from the acidified samples showed a steep 

enrichment trend with progressive acidification consistent with such a carbon exchange. 

The δ13CCO2 evolved was identical to the δ13CDIC of samples at the point where all HCO3
- 

was exhausted. Thus, higher concentrations of CO2(aq) resulted in greater exchange of 

carbon between HCO3
- and CO2(aq) which minimized the enrichment in δ13CDIC from 

HCO3
--CO2(g) fractionation during progressive acidification. The depletion of the δ

13CDIC 

after HCO3
- was exhausted in the samples was governed by isotopic fractionation 

controlled by the solubilities of 13C vs. 12C during water-gas exchange. The slightly more 

soluble and reactive 12C is retained in solution causing the observed 13C depletion. 



24 
 

The unacidified samples also showed isotopic enrichment which we attribute to 

exchange of carbon between HCO3
- and atmospheric CO2. The rate and extent of 

exchange was facilitated by the CO2(aq) concentration. Samples with higher initial CO2(aq) 

relative to HCO3
- had higher rates of carbon exchange, and the higher rates caused the 

13C enrichment in the samples to approach values expected for equilibrium isotopic 

exchange between HCO3
- and atmospheric CO2.  

From the results of our laboratory experiments, the δ
13CDIC measured for samples 

undergoing acidification show variable enrichment or depletion. Whether enrichments or 

depletion in the δ13CDIC are measured for field samples will depend on the extent to 

which the acidification process occurred before sampling. If samples are collected during 

the HCO3
- dehydration phase, enrichment in the δ

13CDIC will be observed, the magnitude 

of which will depend on the extent of HCO3
- dehydration. Alternatively, if samples are 

collected after all HCO3
- is dehydrated, a depletion in the δ

13CDIC will be measured, the 

magnitude of which will also dependent on the progress of acidification. Thus, measured 

enrichment followed by depletion in δ13CDIC of samples in the downstream direction in an 

AMD contaminated stream and over time in laboratory studies (e.g., Fonyuy and 

Atekwana, 2008 a&b) can be explained by the process of acidification. We conclude that 

in order to adequately assess the effects of acidification on the stable carbon isotopes of 

DIC in surface waters, time series measurements may be necessary to capture the 

progressive changes. When spatial and time series measurements are made, DIC species 

and the δ13CDIC should be measured along with routine physical and chemical parameters, 

as this would provide adequate input to model the process of acidification and its effect 

on stable carbon isotopes.  
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Figure I-1: Reactor modification for closed acidification 
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Figure I-2: Cross plots of pH vs. HCO3 − (a–d) and pH vs. DIC (e–h) for closed acidification, open 
acidification, and for unacidified samples of NaHCO3, stream water, groundwater, and spring water (AMD 
spring) contaminated by acid mine drainage. 
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Figure I-3: Cross plots of δ13CDIC vs. DIC for closed acidification, open acidification, and unacidified 
samples (a–d) and the δ13CCO2 vs. DIC for closed acidification (e–h) of NaHCO3, stream water, 
groundwater, and spring water (AMD spring) contaminated by acid mine drainage. 
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Figure I-4: Cross plots of the calculated partial pressure of CO2 (pCO2) vs. fraction of DIC at any time to 
that at the beginning (Ct/C0) for closed acidification and open acidification, (a–d) and unacidified samples 
(e–h) of NaHCO3, stream water, groundwater, and spring water (AMD spring) contaminated by acid mine 
drainage.  
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Figure I-5: Cross plots of concentration of HCO3
- and H2CO3 primary axis and δ13C of DIC (secondary 

axis) vs. fraction of DIC at any time to that at the beginning (Ct/C0) for closed acidification and open 
acidification of samples of NaHCO3, stream water, groundwater, and spring water (AMD spring) 
contaminated by acid mine drainage.  of NaHCO3, stream water, groundwater, and spring water 
contaminated by acid mine drainage (AMD spring). 
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Figure I-6: Cross plots of fraction of DIC at anytime to that at the beginning (Ct/C0) vs. δ13CDIC and δ13CCO2 
for closed acidification and open acidification (a-d), and unacidified samples (e-h) of NaHCO3, stream 
water, groundwater, and spring water (AMD spring) contaminated by acid mine drainage. 
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Figure I-7: Time series plots of δ13CCO2of unacidified samples of NaHCO3, stream water, groundwater, and 
spring water (AMD spring) contaminated by acid mine drainage. 
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Table I-1: Results of physical, chemical, and isotopic analyses of closed and open acidification and for 
unacidified samples of NaHCO3, stream water, groundwater and AMD contaminated spring (AMD spring). 
. 
 

Sample 
ID  

Cum. Time 
(hours) 

Temp 
(oC) pH 

DIC         
(mM C/l) 

H2CO3      

(mM C/l) 

HCO3
-   

(mM 
C/l) Ct/Co 

δδδδ
13CDIC 

(‰) 
δδδδ

13CCO2(g) 

(‰) 
pCO2             

(atm) 
Fe2+ 

(mM/l) 

NaHCO3: Closed acidification          

AC1-1 _ 23.12 8.12 4.88 0.66 4.22 1.000 -3.4 - 4.46E-04 _ 

AC1-2 _ 23.42 7.34 4.86 0.90 3.96 0.996 -3.22 -10.81 2.50E-03 _ 

AC1-3 _ 23.26 7.01 4.61 1.09 3.52 0.944 -2.91 -9.97 4.57E-03 _ 

AC1-4 _ 23.46 6.8 4.36 1.32 3.04 0.895 -2.4 -8.87 6.34E-03 _ 

AC1-5 _ 23.27 6.6 3.82 1.28 2.54 0.784 -1.76 -7.89 7.62E-03 _ 

AC1-6 _ 23.32 6.48 3.58 1.56 2.02 0.735 -1.01 -6.5 8.46E-03 _ 

AC1-7 _ 23.4 6.32 2.81 1.43 1.38 0.577 -0.25 -5.05 8.09E-03 _ 

AC1-8 _ 23.13 6.08 2.40 1.50 0.90 0.492 0.39 -3.09 8.62E-03 _ 

AC1-9 _ 23.33 5.72 1.52 1.06 0.46 0.311 0.22 -0.99 6.82E-03 _ 

AC1-10 _ 22.87 4.5 0.92 0.92 _ 0.189 0.12 1.33 4.94E-03 _ 

AC1-11 _ 23.17 3.05 0.67 0.67 _ 0.137 -0.44 1.35 3.66E-03 _ 

AC1-12 _ 22.81 2.77 0.57 0.57 _ 0.116 -0.77 1.1 3.09E-03 _ 

AC1-13 _ 23.28 2.59 0.36 0.36 _ 0.073 -1.57 0.7 1.97E-03 _ 

NaHCO3: Open acidification          

AC2-1 _ 23.19 8.12 4.62 0.62 4.00 1.000 -3.57 _ 4.23E-04 _ 

AC2-2 _ 23.2 7.18 4.55 0.89 3.66 0.986 -3.48 _ 3.24E-03 _ 

AC2-3 _ 23.19 6.91 4.49 1.11 3.38 0.972 -3.36 _ 5.35E-03 _ 

AC2-4 _ 23.23 6.68 4.42 1.48 2.94 0.957 -3.37 _ 7.79E-03 _ 

AC2-5 _ 23.24 6.44 4.30 1.86 2.44 0.932 -3.13 _ 1.07E-02 _ 

AC2-6 _ 23.26 6.24 4.18 2.24 1.94 0.906 -3.07 _ 1.30E-02 _ 

AC2-7 _ 23.27 5.98 3.89 2.49 1.40 0.843 -2.81 _ 1.51E-02 _ 

AC2-8 _ 23.27 5.63 3.64 2.74 0.90 0.788 -2.77 _ 1.69E-02 _ 

AC2-9 _ 23.29 5.44 3.27 2.75 0.52 0.709 -2.57 _ 1.61E-02 _ 

AC2-10 _ 23.3 4.54 2.73 2.69 0.04 0.592 -2.68 _ 1.48E-02 _ 

AC2-11 _ 23.3 3.33 2.57 2.57 _ 0.556 -2.77 _ 1.42E-02 _ 
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Sample 
ID  

Cum. 
Time 

(hours) 
Temp 
(oC) pH 

DIC         
(mM C/l) 

H2CO3      

(mM C/l) 

HCO3
-   

(mM 
C/l) Ct/Co 

d13CDIC 

(‰) 
d13CCO2(g) 

(‰) 
pCO2             

(atm) 
Fe2+ 

(mM/l) 

AC2-12 _ 23.3 3.06 2.35 2.35 _ 0.509 -2.86 _ 1.29E-02 _ 

AC2-13 _ 23.3 2.82 2.08 2.08 _ 0.450 -2.98 _ 1.15E-02 _ 

AC2-14 _ 23.31 2.64 1.90 1.90 _ 0.411 -3.2 _ 1.05E-02 _ 

AC2-15 _ 23.32 2.53 1.67 1.67 _ 0.362 -3.34 _ 9.21E-03 _ 

AC2-16 _ 23.32 2.43 1.53 1.53 _ 0.331 -3.34 _ 8.44E-03 _ 

NaHCO3: Unacidified            

UC1-1 0 23.66 8.41 4.41 0.65 3.76 1.000 -3.33 _ 2.09E-04 _ 

UC1-2 48 23.73 8.41 4.52 0.66 3.86 1.025 -3.22 _ 2.14E-04 _ 

UC1-3 144 22.7 8.48 4.50 0.70 3.80 1.021 -3.20 _ 1.79E-04 _ 

UC1-4 192 22.56 8.54 4.53 0.51 4.02 1.027 -3.10 _ 1.56E-04 _ 

UC1-5 240 22.74 8.55 4.56 0.56 4.00 1.034 -3.06 _ 1.54E-04 _ 

UC1-6 288 22.93 8.37 4.60 0.64 3.96 1.043 -3.05 _ 2.37E-04 _ 

UC1-7 336 23.09 8.35 4.53 0.59 3.94 1.026 -2.91 _ 2.44E-04 _ 

UC1-8 384 23.04 8.51 4.53 0.63 3.90 1.028 -3.00 _ 1.69E-04 _ 

UC1-9 432 22.97 8.51 4.75 0.79 3.96 1.077 -3.11 _ 1.77E-04 _ 

UC1-10 480 23.08 8.57 4.78 0.52 4.26 1.083 -3.01 _ 1.55E-04 _ 

UC1-11 528 22.89 8.67 4.57 0.74 3.84 1.037 -3.06 _ 1.17E-04 _ 

UC1-12 576 23.42 8.52 4.69 0.79 3.90 1.063 -3.14 _ 1.71E-04 _ 

UC1-13 624 23.49 8.58 4.63 0.79 3.84 1.048 -2.86 _ 1.47E-04 _ 

UC1-14 672 23.11 8.48 4.55 0.66 3.90 1.032 -2.85 _ 1.82E-04 _ 

UC1-15 720 23.23 8.45 4.63 0.65 3.98 1.050 -2.72 _ 1.99E-04 _ 

UC1-16 768 23.2 8.41 4.61 0.46 4.16 1.046 -2.70 _ 2.17E-04 _ 

Stream water: Closed 

acidification          

ALP1-1 _ 19.34 7.72 4.61 0.91 3.70 1.000 -13.2 _ 9.82E-04 _ 

ALP1-2 _ 21.4 7.06 4.34 0.94 3.40 0.940 -12.74 -21.08 3.80E-03 _ 

ALP1-3 _ 21.44 6.91 3.72 0.66 3.06 0.806 -12.12 -18.9 4.31E-03 _ 

ALP1-4 _ 21.69 6.84 3.34 0.78 2.56 0.723 -11.07 -17.99 4.40E-03 _ 

ALP1-5 _ 23.1 6.61 2.98 0.88 2.10 0.645 -10.89 -15.92 5.83E-03 _ 

ALP1-6 _ 23.26 6.43 2.82 1.18 1.64 0.612 -10.01 -14.87 7.11E-03 _ 

ALP1-7 _ 23.25 6.39 2.71 1.51 1.20 0.588 -9 -13.54 7.17E-03 _ 
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ALP1-8 _ 23.28 6.13 2.16 1.34 0.82 0.468 -8.36 -11.72 7.47E-03 _ 

 

Sample 
ID  

Cum. Time 
(hours) 

Temp 
(oC) pH 

DIC         
(mM C/l) 

H2CO3      

(mM C/l) 

HCO3
-   

(mM 
C/l) Ct/Co 

δδδδ
13CDIC 

(‰) 
δδδδ

13CCO2(g) 

(‰) 
pCO2             

(atm) 
Fe2+ 

(mM/l) 

ALP1-9 _ 23.31 4.61 1.15 1.05 0.10 0.249 -8.16 -7.6 6.22E-03 _ 

ALP1-10 _ 23.49 3.13 0.68 0.68 _ 0.146 -7.48 -8.06 3.74E-03 _ 

ALP1-11 _ 23.56 2.85 0.36 0.36 _ 0.077 -8.14 -8.63 1.98E-03 _ 

ALP1-12 _ 23.45 2.67 0.18 0.18 _ 0.040 -8.23 -8.77 1.01E-03 _ 

Stream water: Open acidification           

ALP2-1 _ 19.83 7.73 5.04 0.96 4.08 1.000 -13.06 _ 1.06E-03 _ 

ALP2-2 _ 20.51 6.81 4.55 1.11 3.44 0.902 -13.04 _ 6.16E-03 _ 

ALP2-3 _ 20.95 6.64 4.18 1.38 2.80 0.829 -12.97 _ 7.50E-03 _ 

ALP2-4 _ 21.49 6.41 4.02 1.51 2.52 0.799 -12.6 _ 1.00E-02 _ 

ALP2-5 _ 22.83 6.08 3.67 1.66 2.02 0.729 -12.52 _ 1.31E-02 _ 

ALP2-6 _ 22.92 6.02 3.67 2.15 1.52 0.728 -12.07 _ 1.37E-02 _ 

ALP2-7 _ 23.02 5.88 3.41 2.23 1.18 0.677 -11.62 _ 1.40E-02 _ 

ALP2-8 _ 23.11 5.64 3.27 2.59 0.68 0.649 -11.35 _ 1.50E-02 _ 

ALP2-9 _ 23.22 5.17 2.75 2.49 0.26 0.545 -11.19 _ 1.42E-02 _ 

ALP2-10 _ 23.33 3.54 2.36 2.36 _ 0.468 -11.04 _ 1.30E-02 _ 

ALP2-11 _ 23.47 3.04 1.99 1.99 _ 0.395 -11.04 _ 1.10E-02 _ 

ALP2-12 _ 23.66 2.87 1.52 1.52 _ 0.302 -11.73 _ 8.46E-03 _ 

ALP2-13 _ 23.66 2.64 0.93 0.93 _ 0.184 -12.02 _ 5.16E-03 _ 

Stream water: Unacidified          

LP1-1 0 19.25 7.68 4.59 0.55 4.04 1.000 -13.02 _ 1.07E-03 _ 

LP1-2 96 24.28 8.19 4.62 0.62 4.00 1.007 -12.25 _ 3.66E-04 _ 

LP1-3 168 23.91 8.23 4.57 0.61 3.96 0.995 -11.45 _ 3.29E-04 _ 

LP1-4 264 23.27 8.3 4.53 0.49 4.04 0.987 -10.99 _ 2.75E-04 _ 

LP1-5 336 22.49 8.31 4.62 0.66 3.96 1.006 -10.33 _ 2.71E-04 _ 

LP1-6 480 22.97 8.4 4.32 0.58 3.74 0.940 -9.42 _ 2.07E-04 _ 

LP1-7 552 24.91 8.23 4.33 0.67 3.66 0.942 -8.96 _ 3.16E-04 _ 

LP1-8 672 24.6 8.3 4.02 0.59 3.44 0.877 -8.1 _ 2.49E-04 _ 

LP1-9 744 24.03 8.31 4.05 0.65 3.40 0.882 -7.34 _ 2.43E-04 _ 

LP1-10 816 25.1 8.36 3.84 0.52 3.32 0.837 -6.9 _ 2.09E-04 _ 
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LP1-11 912 22.7 8.31 3.76 0.60 3.16 0.820 -6.68 _ 2.22E-04 _ 

Sample 
ID  

Cum. Time 
(hours) 

Temp 
(oC) pH 

DIC         
(mM C/l) 

H2CO3      

(mM C/l) 

HCO3
-   

(mM 
C/l) Ct/Co 

δδδδ
13CDIC 

(‰) 
δδδδ

13CCO2(g) 

(‰) 
pCO2             

(atm) 
Fe2+ 

(mM/l) 

LP1-12 1032 29.1 8.25 3.63 0.43 3.20 0.792 -5.98 _ 2.70E-04 _ 

Groundwater: Closed 
acidification          

ATP1-1 _ 23.22 7.43 3.85 0.81 3.04 1.000 -4.85 _ 1.63E-03 _ 

ATP1-2 _ 23.83 6.96 3.53 0.93 2.60 0.916 -4.45 -13.14 3.89E-03 _ 

ATP1-3 _ 23.99 6.77 3.22 1.08 2.14 0.837 -3.85 -11.14 4.98E-03 _ 

ATP1-4 _ 23.89 6.62 2.78 1.08 1.70 0.723 -3.01 -9.61 5.46E-03 _ 

ATP1-5 _ 23.86 6.56 2.36 1.20 1.16 0.614 -2.08 -7.63 5.06E-03 _ 

ATP1-6 _ 24.01 6.42 1.79 1.07 0.72 0.465 -1.33 -6.78 4.64E-03 _ 

ATP1-7 _ 23.64 6.14 1.58 0.98 0.60 0.411 -0.52 -4.39 5.47E-03 _ 

ATP1-8 _ 23.93 5.61 1.07 0.79 0.28 0.278 -0.28 -1.7 5.08E-03 _ 

ATP1-9 _ 23.72 4.29 0.77 0.76 0.01 0.200 -0.36 0.52 4.26E-03 _ 

ATP1-10 _ 23.63 3.47 0.77 0.77 _ 0.201 -0.74 0.24 4.29E-03 _ 

ATP1-11 _ 23.69 3.19 0.50 0.50 _ 0.129 -0.95 -0.68 2.77E-03 _ 

ATP1-12 _ 23.45 2.92 0.32 0.32 _ 0.083 -1.18 -0.58 1.77E-03 _ 

ATP1-13 _ 23.34 2.73 0.22 0.22 _ 0.057 -1.76 -1.21 1.21E-03 _ 

ATP1-14 _ 23.41 2.53 0.10 0.10 _ 0.027 -2.02 -1.29 5.70E-04 _ 

Groundwater: Open acidification          

ATP2-1 _ 24.54 7.42 3.76 0.72 3.04 1.000 -5.03 _ 1.66E-03 _ 

ATP2-2 _ 24.47 6.7 3.74 1.18 2.56 0.994 -4.87 _ 6.54E-03 _ 

ATP2-3 _ 24.49 6.55 3.59 1.33 2.26 0.955 -4.87 _ 7.89E-03 _ 

ATP2-4 _ 24.5 6.31 3.46 1.50 1.96 0.920 -4.68 _ 1.03E-02 _ 

ATP2-5 _ 24.55 6.1 3.41 1.85 1.56 0.906 -4.6 _ 1.24E-02 _ 

ATP2-6 _ 24.6 5.88 3.29 2.27 1.02 0.875 -4.58 _ 1.40E-02 _ 

ATP2-7 _ 24.62 5.66 3.11 2.41 0.70 0.826 -4.35 _ 1.48E-02 _ 

ATP2-8 _ 24.62 5.31 2.86 2.58 0.28 0.760 -4.34 _ 1.50E-02 _ 

ATP2-9 _ 24.64 4.9 2.65 2.59 0.06 0.706 -4.39 _ 1.47E-02 _ 

ATP2-10 _ 24.62 4.16 2.40 2.40 _ 0.637 -4.47 _ 1.36E-02 _ 

ATP2-11 _ 24.62 3.71 2.10 2.10 _ 0.558 -4.67 _ 1.20E-02 _ 

ATP2-12 _ 24.53 3.51 1.85 1.85 _ 0.492 -4.96 _ 1.05E-02 _ 

ATP2-13 _ 24.5 3.25 1.73 1.73 _ 0.459 -5.25 _ 9.83E-03 _ 



41 
 

ATP2-14 _ 24.54 3.07 1.41 1.41 _ 0.375 -5.41 _ 8.04E-03 _ 

Sample 
ID  

Cum. Time 
(hours) 

Temp 
(oC) pH 

DIC         
(mM C/l) 

H2CO3      

(mM C/l) 

HCO3
-   

(mM 
C/l) Ct/Co 

d13CDIC 

(‰) 
d13CCO2(g) 

(‰) 
pCO2             

(atm) 
Fe2+ 

(mM/l) 

ATP2-15 _ 24.47 2.83 1.20 1.20 _ 0.320 -5.85 _ 6.85E-03 _ 

ATP2-16 _ 24.52 2.68 1.07 1.07 _ 0.285 -6.65 _ 6.12E-03 _ 

Groundwater: Unacidified 

          
TP1-1 0 23.81 7.36 3.62 0.64 2.98 1.000 -5.37 _ 1.80E-03 _ 

TP1-2 120 22.31 7.75 3.36 0.62 2.74 0.928 -4.53 _ 7.00E-04 _ 

TP1-3 192 22.16 7.72 3.01 0.57 2.44 0.832 -4.4 _ 6.70E-04 _ 

TP1-4 240 22.08 7.84 3.38 0.58 2.80 0.933 -4.21 _ 5.74E-04 _ 

TP1-5 336 22 7.71 3.14 0.48 2.66 0.867 -3.74 _ 7.12E-04 _ 

TP1-6 432 22.06 7.68 3.27 0.49 2.78 0.904 -3.35 _ 7.94E-04 _ 

TP1-7 504 22.32 7.94 3.06 0.50 2.56 0.845 -3.03 _ 4.17E-04 _ 

TP1-8 576 21.94 7.79 2.96 0.46 2.50 0.817 -2.54 _ 5.62E-04 _ 

TP1-9 624 22.22 7.84 2.92 0.48 2.44 0.807 -2.43 _ 4.98E-04 _ 

TP1-10 744 21.88 7.72 2.75 0.41 2.34 0.759 -2 _ 6.09E-04 _ 

TP1-11 888 21.89 7.84 2.69 0.45 2.24 0.744 -2.02 _ 4.58E-04 _ 

AMD Spring: Closed acidification          

AMS1-1 _ 26.08 5.89 10.58 7.48 3.10 1.000 -11.47 - 4.64E-02 _ 

AMS1-2 _ 25.33 6.21 7.15 4.31 2.84 0.676 -10.11 -13.34 2.40E-02 _ 

AMS1-3 _ 25.69 6.17 5.98 3.54 2.44 0.566 -9.68 -13.04 2.10E-02 _ 

AMS1-4 _ 24.22 6.16 4.97 2.95 2.02 0.469 -9.2 -12.34 1.71E-02 _ 

AMS1-5 _ 24.08 6.17 4.16 2.54 1.62 0.393 -8.92 -11.76 1.41E-02 _ 

AMS1-6 _ 24.36 6.07 3.47 2.25 1.22 0.328 -8.33 -11.09 1.29E-02 _ 

AMS1-7 _ 24.32 5.95 2.72 1.80 0.92 0.257 -7.97 -10.11 1.10E-02 _ 

AMS1-8 _ 24.94 4.94 2.06 1.78 0.28 0.195 -7.52 -9.02 1.15E-02 _ 

AMS1-9 _ 24.47 4.64 1.42 1.36 0.06 0.135 -7.62 -7.56 7.95E-03 _ 

AMS1-10 _ 24.65 3.67 1.07 1.07 _ 0.101 -8.01 -7.07 6.10E-03 _ 

AMS1-11 _ 24.22 3.27 0.66 0.66 _ 0.062 -8.54 -7.38 3.73E-03 _ 

AMS1-12 _ 24.18 2.72 0.36 0.36 _ 0.034 -8.68 -7.62 2.02E-03 _ 

AMD Spring: Open acidification          

AMS2-1 _ 27.12 5.86 11.35 8.27 3.08 1.000 -11.71 _ 5.19E-02 _ 

AMS2-2 _ 26.67 5.88 9.56 6.82 2.74 0.842 -11.5 _ 4.28E-02 _ 
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AMS2-3 _ 26.43 5.86 8.48 6.20 2.28 0.747 -11.11 _ 3.82E-02 _ 

Sample 
ID  

Cum. Time 
(hours) 

Temp 
(oC) pH 

DIC         
(mM C/l) 

H2CO3      

(mM C/l) 

HCO3
-   

(mM 
C/l) Ct/Co 

δδδδ
13CDIC 

(‰) 
δδδδ

13CCO2(g) 

(‰) 
pCO2             

(atm) 
Fe2+ 

(mM/l) 

AMS2-4 _ 26.38 5.8 7.35 5.47 1.88 0.647 -10.9 _ 3.42E-02 _ 

AMS2-5 _ 26.42 5.78 6.42 4.92 1.50 0.566 -10.66 _ 3.02E-02 _ 

AMS2-6 _ 26.46 5.75 5.58 4.46 1.12 0.491 -10.46 _ 2.66E-02 _ 

AMS2-7 _ 26.46 5.69 4.64 3.68 0.96 0.408 -10.22 _ 2.28E-02 _ 

AMS2-8 _ 26.48 5.63 3.87 3.21 0.66 0.341 -10.08 _ 1.95E-02 _ 

AMS2-9 _ 26.52 5.5 3.07 2.55 0.52 0.270 -10.04 _ 1.61E-02 _ 

AMS2-10 _ 26.52 4.84 2.64 2.58 0.06 0.233 -10.13 _ 1.54E-02 _ 

AMS2-11 _ 26.11 3.85 1.76 1.76 _ 0.155 -10.15 _ 1.04E-02 _ 

AMS2-12 _ 25.94 3.52 1.32 1.32 _ 0.116 -10.49 _ 7.81E-03 _ 

AMS2-13 _ 25.79 3.26 0.78 0.78 _ 0.069 -11.34 _ 4.60E-03 _ 

AMS2-14 _ 25.37 3.1 0.73 0.73 _ 0.065 -11.06 _ 4.27E-03 _ 

AMS2-15 _ 25.6 2.82 0.41 0.41 _ 0.036 -11.52 _ 2.42E-03 _ 

AMD Spring: Unacidified           

AMS1-1 6.2 29.41 5.99 14.88 11.98 2.90 1.000 -10.97 _ 6.57E-02 2.42 

AMS1-2 14.2 23.2 5.7 11.97 9.95 2.02 0.804 -10.15 _ 5.39E-02 1.41 

AMS1-3 28.2 23.37 5.62 9.49 8.15 1.34 0.638 -9.6 _ 4.43E-02 1.36 

AMS1-4 49.2 21.03 5.27 8.73 8.33 0.40 0.586 -9.33 _ 4.18E-02 1.08 

AMS1-5 73.4 21.61 3.66 5.65 5.65 _ 0.379 -9.25 _ 2.96E-02 0.67 

AMS1-6 97.4 21.75 3.54 3.42 3.42 _ 0.230 -9.3 _ 1.80E-02 0.38 

AMS1-7 110.4 21.72 3.42 2.16 2.16 _ 0.145 -9.18 _ 1.14E-02 0.36 

AMS1-8 134.4 21.69 3.24 1.57 1.57 _ 0.105 -9.07 _ 8.25E-03 0.09 

AMS1-9 146.4 21.64 3.14 0.83 0.83 _ 0.056 -14.22 _ 4.39E-03 0.03 

AMS1-10 159.4 21.83 3.06 0.28 0.28 _ 0.019 -18.84 _ 1.47E-03 0.00 

AMS1-11 168.4 21.89 3.21 0.12 0.12 _ 0.008 -12.51 _ 6.55E-04 0.00 

- = Not applicable  
bdl =below detection level 
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Table I-2: Least squares regression equations defining the enrichment and depletion in 13C in open and closed acidification of samples of NaHCO3, 
stream water, groundwater and AMD contaminated spring water (AMD spring). . 

Sample Identification 
δδδδ
3CDIC  

enrichment trend 
R2 n δδδδ

11113CDIC  
depletion trend 

R2 n δδδδ
3CCO2  

enrichment trend 
R2 n δδδδ

3CCO2  
depletion trend 

R2 n 

NaHCO3: Closed 
acidification 

y = -5.9x + 2.8 0.92 9 y = 14.6x – 2.5 0.97 4 y = -14.6x + 3.6 0.99 9 y = 15.5x +4.0 0.99 4 

Stream water: Closed 
acidification 

y = -7.7x - 5.5 0.91 9 y = 7.4x - 8.6 0.94 3 y = -20.3x - 2.5 0.98 8 y = 6.9x - 9.1 0.97 3 

Groundwater: Closed 
acidification 

y = -6.3x + 1.4 0.97 9 y = 7.4x - 2.1 0.86 5 y = -17.7x + 3.1 0.97 7 y = 8.6x - 1.6 0.92 5 

AMD Spring: Closed 
acidification 

y = -4.7x - 6.8 0.98 9 y = 10.2x – 9.1 0.94 3 y = -10.4x – 7.1 0.91 8 y = 8.2x - 7.9 0.99 3 

NaHCO3: Open 
acidification 

y = -2.4x – 1.0 0.81 10 y = 2.8x - 4.3 0.96 6 
_ _ _ _ _ _ 

Stream water: Open 
acidification 

y = -4.9x - 8.5 0.84 9 y = 3.9x- 12.8 0.91 4 
_ _ _ _ _ _ 

Groundwater: Open 
acidification 

y = -2.2x - 2.7 0.83 9 y = 5.5x - 7.8 0.89 7 
_ _ _ _ _ _ 

AMD Spring: Open 
acidification 

y = -2.3x - 9.3 0.97 10 y = 11.9x – 12.0 0.95 5 
_ _ _ _ _ _ 
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     THE EFFECT OF SULFURIC ACID NEUTRALIZATION ON CARBONATE 

EVOLUTION OF SHALLOW GROUNDWATER 

Submitted for review (Chemical Geology) 
Authors: Hendratta N. Ali and Eliot Atekwana  

Boone Pickens School of Geology, 105 Noble Research Center, Oklahoma State 
University, Stillwater, OK 74078, USA 

Abstract 

Carbonate neutralization of sulfuric acid has been observed in natural groundwater 

impacted by anthropogenic activities such as mine waste disposal. Our aim in this study 

is to provide greater insights as to how dissolved inorganic carbon (DIC) generation and 

CO2(g) production from acidification and neutralization reactions affect the carbonate 

evolution of groundwater. We measured the concentrations of DIC and major ions and 

the stable carbon isotope ratio of DIC (δ
13CDIC) in water samples from a metal sulfide- 

and carbonate-rich mine tailings pile considered an analogue to natural environments 

where acid generation and neutralization occur. In addition, we measured the 

concentrations of CO2(g) and the δ13C of CO2(g) in the vadose zone and at a background 

soil zone. Our aim was to gain greater insights as to how DIC generation and CO2(g) 

production from acidification and neutralization reactions affect the carbonate evolution 

of groundwater. Near neutral pH and high concentrations of SO4, Ca, and Mg  
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and the positive correlation between Ca+Mg and SO4+HCO3 is evidence that acid 

produced by metal sulfide oxidation neutralizes carbonates. Soil water and perched 

groundwater (saturated zone above the water table) had significantly higher DIC 

concentrations compared to groundwater which suggest that DIC production from acid 

neutralization occurs primarily in the vadose zone where metal sulfide oxidation 

generates acidity. The concentration of CO2(g) in the vadose zone was high compared to 

atmospheric and the δ13CCO2 was enriched compared to background soil CO2(g), consistent 

with CO2(g) production from HCO3 neutralization of acid and from DIC loss as CO2(g) due 

to high pCO2 in the water samples. The range in δ
13CDIC of soil water and perched 

groundwater is also consistent with the dissolution of carbonates with heavy δ
13C and the 

loss of CO2(g) from solution to the vadose zone by acid dehydration of HCO3. 

Geochemical and isotopic modeling suggest that the DIC concentrations and the δ
13CDIC 

of shallow groundwater is due to: (1) mixing of the DIC in leachate formed by carbonate 

dissolution in the vadose zone with infiltration from precipitation and/or lake recharge 

and (2) "open system" groundwater DIC interaction with CO2(g) in the vadose zone 

produced from HCO3 dehydration. This study suggests that in natural and anthropogenic 

settings where sulfuric acid production by metal sulfides and neutralization by carbonates 

occur, the carbonate evolution of shallow groundwater is not described by the classical 

model ascribed to soil zone CO2(g).  

 

Keywords: Acidification; neutralization; dissolved inorganic carbon; stable carbon 

isotopes; carbonate-rich tailings pile; soil water; groundwater; soil CO2(g) 
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1. Introduction  

The major weathering agent that generates dissolved inorganic carbon (DIC) and 

controls carbonate evolution of shallow groundwater is acidity produced from organic 

acids (e.g., Chin and Mills, 1991; Douglas, 2006) or carbonic acid (formed from the 

dissolution of CO2(g)) generated in the soil zone by microbial degradation of organic 

matter (e.g., Andrews and Schlesinger, 2001; Macpherson et al., 2008). However, there 

are natural environments (e.g., Yoshimura et al., 2001; Li et al., 2008) and anthropogenic 

settings such as waste material from mineral exploitation (e.g., Al et al., 1997; Espana et 

al., 2005) which contain sulfide minerals (e.g., pyrite) that can be oxidized to generate 

H2SO4 that is subsequently neutralized by carbonates to produce DIC (Fonyuy and 

Atekwana, 2008a; Atekwana and Fonyuy, 2009).  

A conceptual model of how acid production and neutralization affects carbonate 

evolution in a shallow groundwater system is presented in Figure II-1. In the conceptual 

model, 4 main processes are identified: (1) acid generation and neutralization by 

carbonates that produces leachate, (2) HCO3 dehydration by neutralization of acidity to 

produce CO2(g) released to the vadose zone, (3) mixing of leachate with infiltration and 

groundwater, and (4) interaction of groundwater with the CO2(g) in the vadose zone. As 

an example, pyrite oxidation and subsequent neutralization of the acid by dolomite 

dissolution is shown in Equations 1 and 2:  

FeS2 + 7/2O2 + H2O → Fe2+ + H2SO4       (1) 

H2SO4 + MgCa(CO3)2 → SO4
2- + Mg2+ + Ca2+ + 2HCO3

-    (2) 
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These reactions together will release Fe, SO4, Mg, Ca, and HCO3 into solution and 

good correlation between these variables have been used as evidence of acidification and 

neutralization in groundwater (e.g., Yoshimura et al., 2001; Li et al., 2008). In addition, 

the neutralization reaction is significant due to the potential for uncommonly high DIC 

production. The HCO3 produced from carbonate dissolution may neutralize additional 

protons from H2SO4 dissociation to produce H2CO3 (Equation 3) which is dehydrated to 

CO2(g) (Equation 4): 

HCO3
- + H+ ↔ H2CO3        (3) 

H2CO3 ↔ H2O + CO2(aq) ↔ CO2(g)        (4) 

High concentrations of CO2(g) in the vadose zone have been reported in mine waste 

disposal sites (e.g., Jaynes et al., 1983; Nitzsche et al., 2002; Laughrey and Baldassare, 

2003).  

The conceptual model (Fig. II-1) suggests that carbonate evolution in groundwater is 

unlikely to be controlled by CO2(g) from the soil zone as described in classical models of 

groundwater carbonate evolution (e.g., Clark and Fritz, 1997). We predict that if the 

processes of natural and anthropogenic acidification and neutralization are significant in 

carbonate evolution, then the conceptual model can be tested by evaluating DIC 

concentrations, the stable isotope composition of DIC (δ
13CDIC), the concentration of 

vadose zone CO2(g) and the stable isotopic composition (δ
13CCO2) of vadose zone CO2(g). 

During acid neutralization by carbonate and subsequent HCO3 dehydration, the 

transformation of DIC species (CO2(aq), H2CO3, HCO3) impart shifts to the stable carbon 

isotope composition of DIC and CO2(g) due to isotopic fractionation (e.g., Ali and 



48 
 

Atekwana, 2009). Also, because the source of carbon in the groundwater is predicted to 

be predominantly derived from carbonate host rock/mineral, the groundwater δ
13CDIC and 

vadose zone δ13CCO2 can constrain models that will provide insights for understanding 

DIC evolution in the groundwater system. 

Production of H2SO4 in natural environments provides a unique situation in which 

carbonate evolution in groundwater systems is not primarily influenced by organic acids 

or soil zone CO2(g). Studies by Yoshimura et al. (2001), Dietzel and Kirchhoff (2002), 

and Li et al. (2008) have been instrumental in advancing our knowledge on acidification 

and neutralization in groundwater systems. However, the systems investigated had 

additional factors that affected the groundwater carbonate evolution including deep 

source CO2(g) (Yoshimura et al., 2001), magmatic CO2(g) (Dietzel and Kirchhoff, 2002), 

and a mixture of soil zone CO2(g) and DIC from carbonate neutralization of sulfuric acid 

(Yoshimura et al., 2001; Li et al., 2008). Ideally, the effect of sulfuric acid is best 

investigated in a system in which sulfuric acid neutralization is most dominant. Mine 

wastes disposal sites rich in metal sulfides and carbonates can be considered analogues 

for natural environments where acid production and neutralization occur, and are suitable 

settings to investigate the extent to which these processes affect the chemical and isotopic 

evolution of groundwater.  

In this study, we measured the concentrations of DIC and major ions and the δ
13CDIC 

in soil water, perched groundwater (lenses of water saturation above the water table), 

groundwater, and lake water samples in a metal sulfide-rich and carbonate-rich mine 

tailings pile. In addition, we measured the concentrations and the δ
13CCO2 of CO2(g) in the 
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vadose zone and soil zone at a background location. We aimed to investigate how acid 

production and neutralization affects DIC generation and CO2(g) production in the vadose 

zone and how these reactions affect the carbonate evolution of groundwater. Information 

on the generation and evolution of DIC in carbonate-rich environments is important in 

our understanding of perturbations of carbon cycling in groundwater settings by 

acidification reactions. Particularly, acid generation and neutralization can result in high 

CO2(aq) concentrations in groundwater systems (Dietzel and Kirchhoff, 2002) and lead to 

enhanced carbonate weathering in some watersheds (Li et al., 2008). 

2. Study site 

This study was conducted at the Federal Tailings Pile (FTP) in the St. Joe State 

Park (37°49’16”N, 90°30’49”W) in southeastern Missouri, USA (Fig. II-2). The 

study site is located in the “Old Lead Belt” where several large piles of tailings material 

estimated at more than 250 million tons generated during more than 100 years of mining 

(Kramer, 1976) are disposed directly on the land surface. The region has a temperate 

climate with mean annual precipitation and temperature for 1971-2006 of 1,086 mm and 

12.7 °C, respectively (Midwest Regional Climate Center, 2008). The geology of the area 

surrounding the study site is mainly carbonate rocks that host major ore deposits of lead 

and economic quantities of zinc, copper, silver, and cadmium, with minor quantities of 

other metals such as cobalt and nickel. The Bonneterre Formation which consists of 

medium to fine-grained dolostone is the host rock for the lead ore deposits. The 

Bonneterre dolostone overlie sandstones with occasional siltstone that lie directly on 

granites and volcanic rocks of the Ozark Uplands (Koenig, 1961). The Bonneterre 
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Formation is overlain by carbonate rocks including limestone of the Davis Formation and 

additional overlying stratigraphic units that are predominantly dolomitic (e.g., Gregg et 

al., 1993).  

The FTP covers a surface area of about 3.24 km2 and the tailings range in 

thickness from less than 1 m in the southern portion to about 30.4 m in the northern 

portion. The soil in the tailings pile area is silty-loam to silty-clay-loam, with the loam 

sometimes underlain at varying depths by clay-silt or clay. The mineralogical 

composition of the tailings material consist of (1) carbonates including dolomite 

(MgCa(CO3)2), calcite (CaCO3), ankerite Ca(Fe Mg)(CO3)2), and Zn-rich carbonates 

(e.g., smithsonite), (2) sulfides consisting of pyrite (FeS2), galena (PbS), sphalerite (ZnS), 

chalcopyrite (CuFeS4), and borite (CuFeS4), and (3) silicates consisting of mainly quartz 

and K-feldspar. Dolomite constitutes about 75 wt% of the tailings material (Smith and 

Schumacher, 1993). 

The FTP site is bounded to the west, south, and east by densely forested area and 

to the north by an earthen dam built to retain the tailings (Fig. II-2). The surface 

elevations at the site decrease from the south (279.3 m asl) towards the earthen dam to 

the north (269.9 m asl). There is no integrated surface drainage within the tailings pile 

area, and periodically, excess precipitation ponds on the surface and eventually infiltrates 

or is evaporated. The FTP site is drained by the intermittent Shaw Branch that begins at 

the Dam area and flows into the Flat River to the North. In the southern portion of the 

tailings pile, four artificial lakes (Monsanto Lake, Pim Lake, Jo Lee lake, and Apollo 

Lake) are open to the public for recreational fishing and swimming. The bedrock below 

the tailings pile varies from less than 1 m near the valley walls to about 30 m in the 
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middle of the valley. Considering the south-to-north slopping topography and that the 

fact that the tailings were disposed in a v-shaped valley (Buccellato, 2006), groundwater 

flows northwards towards the earthen dam. Depths to water table vary from <0.5 m 

below ground surface (bgs) near the lakes and increase northwards to about 10.0 m bgs 

near the earthen dam. Within the tailings pile, there is perched groundwater between 1.5 

to 3.0 m bgs 

3. Methods 

3.1. Sample collection 

Lake water, soil water, perched groundwater, and groundwater samples were 

collected from the FTP in June 2006 and June 2007. The lake samples were collected 

from Pim, Jo Lee, and Monsanto Lakes by the grab technique. Perched groundwater and 

groundwater was pumped from piezometers and monitoring wells using either a 

peristaltic pump or inertia pump. The monitoring wells were installed by the United State 

Geological Survey (USGS) in 2005. Eight groups of groundwater sampling stations 

(MW01 to MW08) were installed in the tailings material, each with 1 to 3 monitoring 

wells. The monitoring well depths vary between 3.4 to 30.7 m bgs. The perched 

groundwater (PGW) samples were collected from 0.64 cm diameter plastic tubing 

screened over a 10 cm interval and installed at depths between 0.5 to 3.0 m bgs at 

sampling stations MW01, MW03, and MW06. Soil water was sampled by suction 

lysimeters installed at 0.5 m bgs near MW01, MW03, and MW06. A vacuum pump was 

used to induce suction of soil water into the lysimeter and the water was pumped to the 
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surface into a clean glass vessel for measurements and sampling. The lysimeter at MW03 

did not yield water.  

All water samples were filtered through a 0.45 µm syringe filter during collection. 

The samples were collected in HDPE bottles that were unacidified for anions and 

acidified to a pH <2 with high purity HNO3 for cations. The samples were cooled on ice 

in the field and transported to the laboratory where they were stored at 4oC until analyses. 

Samples for DIC analysis were collected as described by Atekwana and Krishnamurthy 

(1998). Samples for stable oxygen and hydrogen isotope analysis were collected in 25 ml 

scintillation vials with inverted cone closures and stored at room temperature until 

analysis. 

Gas was collected from the vadose zone from gas samplers consisting of plastic 

tubing perforated over a 10 cm length and installed between 0.25 and 3.00 m bgs near 

sampling stations MW01, MW03, and MW06 (Fig.2). A vacuum pump was used to 

purge gas from the samplers and gas was collected into custom made pre-evacuated 1.0 

liter glass vessels. Background gas was collected in the soil zone at 25 and 50 cm bgs in a 

forested area west of tailings pile (Fig. II-2). 

Sediment samples were collected from the tailings pile at a depth of 50 cm bgs near 

stations MW01 and MW03 and stored in plastic bags for carbon isotope analysis of 

carbonates.  

3.2. Sample analyses  

Prior to collecting water samples, water levels in monitoring wells were measured 

using an electronic water level tape. Temperature, pH, dissolve oxygen (DO), oxidation 
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reduction potential (ORP), and specific conductance (SPC) were measured using a 

Yellow Spring Instrument (YSI) multi-parameter probe calibrated to manufacturers 

specifications. Alkalinity was measured by acid titration (Hach, 1992) immediately after 

sampling. Anions were analyzed by ion chromatography and cations were analyzed by a 

PerkinElmer Optima 2100DV inductively coupled plasma optical emission spectrometer 

(ICP-OES).  

Water samples for DIC were extracted for CO2(g) as described by Atekwana and 

Krishnamurthy (1998). DIC concentration was calculated from CO2(g) yields measured by 

a pressure transducer. Gas from the vadose and soil zones was purified in a vacuum line 

and the CO2(g) concentrations determined by a pressure transducer. The CO2(g) samples 

were sealed in Pyrex tubes for stable isotope analysis. The extraction of CO2(g) for carbon 

isotope analysis from sediments was performed following the technique of 

Krishnamurthy et al. (1997). The CO2(g) from sediments was sealed in Pyrex tubes for 

stable isotope analysis. The stable carbon isotope ratio of CO2(g) was measured by isotope 

ratio mass spectrometry at Western Michigan University, Kalamazoo Michigan. 

Measurements of stable isotopes of hydrogen and oxygen were made by high temperature 

conversion elemental analyzer (TC/EA) coupled to a Finnigan Delta plus XL isotope 

ratio mass spectrometer at Oklahoma State University, Stillwater Oklahoma. The isotope 

ratios are reported in the delta notation in per mil:  

δ (‰) = ((Rsample / Rstandard) -1) x 103     (5) 

Where R is 13C/12C, D/H, or 18O/16O.  
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The δ values are reported relative to VPDB standard for C and VSMOW for H 

and O isotopes. Routine δ measurements have an overall precision of better than 0.1‰ 

for δ13C and δ18O and 1.0‰ for δD.  

4.  Results  

4.1. SO4, Ca, and Mg in the water samples 

The SO4, Ca, and Mg concentrations in the water samples are presented in Table 

1. The SO4 concentrations range from 3.1 to 12.4 mM/L in soil water, 2.4 to 13.4 mM/L 

in perched groundwater and 0.9 to 16.8 mM/L in groundwater. The Ca concentrations 

range from 3.0 to 11.1 mM/L in soil water, 4.6 to 13.2 mM/L in perched groundwater, 

and 1.0 to 5.0 mM/L in groundwater, while the Mg concentrations range from 2.1 to 4.8 

mM/L in soil water, 1.8 to 5.8 mM/L in perched groundwater, and 1.9 to 13.4 mM/L in 

groundwater. The range in the concentrations of SO4 was similar for soil water, perched 

groundwater and groundwater. In contrast, Ca concentrations were generally higher in 

soil and perched groundwater compared to higher Mg concentrations in groundwater 

compared to soil and perched groundwater. The lowest concentration of SO4 of 0.1 to 0.5 

mM/L, Ca of 0.6 to 0.8 mM/L, and Mg of 0.5 to 0.8 mM/L were measured in lake 

samples.  

4.2. pH, HCO3, and DIC in the water samples 

The results of pH and HCO3 and DIC concentrations for the water samples are 

presented in Table 3. Lake samples have the highest pH of 8.6 to 7.7 and the lowest 

HCO3 concentration of 1.7 to 2.5 mM/L. Meanwhile, soil water and perched groundwater 

have the highest HCO3 concentrations that range between 3.1 and 10.3 mM/L and lower 
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pH values between 6.4 and 7.1. The HCO3 concentrations in groundwater vary between 

1.1 mM/L and 6.0 mM/L. The DIC concentrations in the soil water and perched 

groundwater samples range between 4.6 and 22.8 mM C/L, whereas, the DIC 

concentrations in groundwater has a narrower range between 1.1 and 7.2 mM C/L. The 

DIC and HCO3 concentrations were generally higher in the soil water and perched 

groundwater than for groundwater samples. Lake samples have lowest DIC 

concentrations which range from 1.6 to 2.2 mM C/L.  

4.3. δ13CDIC, δδδδD, and δδδδ18O in the water samples  

The δ13CDIC, δD, and δ18O for the water samples are presented in Table 3. The 

δ
13CDIC of soil water and perched groundwater samples range from -6.8 to -4.1‰ and -

12.9‰ and -2.9‰ for groundwater samples. The δ
13CDIC for lake water samples is 

between -7.7‰ and -9.3‰. Soil water and perched groundwater samples have relatively 

heavy δ13CDIC compared to the groundwater samples. Lake samples have δ
13CDIC that are 

generally more depleted than for groundwater samples with the exception of groundwater 

from MW06-94 with the most depleted δ
13CDIC of -12.9‰.  

The δD for soil water and perched groundwater samples ranged from 1.0 to -

6.3‰ and -9.0 to -40.1‰, respectively, and δ
18O ranged from 1.1 to -7.5‰ and -7.7 to -

42.5‰, respectively for groundwater samples, and from 0 to -2.0‰ and -8.6 to -20.2‰, 

respectively for lake samples. In general, lake samples are more enriched than the bulk of 

soil water, perched groundwater, and groundwater samples. 
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4.4. CO2 concentrations and δδδδ13C of CO2 in the vadose zone and soil zone gas 

The partial pressure of CO2(g) (logpCO2) in the vadose zone between -3.1 and -1.3 

atm (Table 4) is higher than atmospheric (~ -3.5 atm). The δ
13C of the CO2(g) in the 

vadose zone range between -16.4 and -11.4‰. The logpCO2 in the soil zone from the 

forested background area is between -2.1 to -1.7 atm and the δ
13C of the CO2 averages -

22.2 ±0.1‰ (n=2).  

5.  Discussion  

5.1. Acid neutralization and water chemistry in the tailings pile 

The conceptual model presented in Figure II-1 suggests that leachate produced 

from acidification and neutralization in metal sulfide-rich and carbonate-rich 

environments produces high concentrations of SO4, Ca, Mg, and DIC. High SO4 

concentrations in the water samples at the tailings pile are due to sulfide mineral 

oxidation (Smith and Schumaker, 1991; 1993). For the water samples, SO4+HCO3 is 

positively correlated to Ca+Mg concentrations (Fig. II-3), described by the least squares 

equation: (Ca+Mg) = 0.97(SO4 + HCO3) – 1.96; (R2 = 0.94). The sum of 

(HCO3/2)/(Ca+Mg) and (SO4/Ca+Mg) is close to 1.0. The relationships between 

SO4+HCO3 and Ca+Mg concentrations suggests that acid production from sulfide 

mineral oxidation and neutralization by dolomite are the dominant processes governing 

the production and fate of SO4, Ca, Mg, HCO3, and DIC in the samples (Yoshimura et al., 

2001; Li et al., 2008), and are therefore the important drivers of water chemistry in the 

tailings pile. Lake water is Ca-Mg-HCO3 type, whereas soil water and perched 

groundwater are exclusively Ca-Mg-SO4-HCO3 types, and groundwater shows a range of 
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water types including Mg-SO4, Mg-Ca-SO4-HCO3, or Ca-Mg-SO4-HCO3 types. The 

variations in water types reflect differences in the magnitude and extent of acid 

neutralization that produces leachate (soil water and perched groundwater), and the 

interaction of the leachate with infiltration and recharge from lakes 

5.2. DIC production and evolution during acid neutralization by carbonates 

The higher DIC concentrations in the leachate than in groundwater indicates 

greater amount of carbonate dissolution above the water table. This observation is similar 

to other studies that showed that sulfide mineral oxidation and subsequent acid 

neutralization occurs mainly in a “reaction zone” in the shallow vadose zone of tailings 

(e.g., Jaynes et al., 1983; Bain et al., 2000). We explore the production and evolution of 

DIC by examining the relationship between DIC and HCO3 (Fig. II-4). The water 

samples show a positive correlation between DIC and HCO3 expressed by the least 

squares equation: DIC = 2.8HCO3 - 6.3 (R2 = 0.96; n=11) for soil water and perched 

groundwater and by DIC = 1.1HCO3 - 0.1 (R² = 0.94; n=31) for groundwater and lake 

water samples (Fig. II-4). Groundwater samples lie near the DIC = HCO3 trend line and 

based on the pH of the samples, the DIC occurs mostly as HCO3 species (e.g., Clark and 

Fritz, 1997). Leachate samples lie above the DIC = HCO3 line along a trend line with a 

slope of 2.8, suggesting that greater amounts of DIC occur as CO2(aq) species (H2CO3 and 

dissolved CO2(aq)). The relationship between DIC and HCO3 for the samples indicates 

that there are two different mechanisms of DIC production and/or evolution in the 

tailings pile. The predominance of CO2(aq) in the leachate samples suggest that DIC 

evolution is not occurring under equilibrium conditions, while groundwater where DIC is 
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represented mostly by HCO3 suggest an equilibrium process (e.g., Svensson and 

Dreybrodt, 1992; Dreybrodt et al., 1996). 

In a groundwater system where DIC species are conserved (i.e., there is no loss of 

CO2(g) or precipitation of carbonates) during carbonate evolution initiated by H2SO4 

neutralization by dolomite, the relationship between SO4 vs. DIC or Ca+Mg vs. DIC 

should be positively correlated. The lack of a positive correlation for SO4 vs. DIC and for 

Ca+Mg vs. DIC (Fig. II-5a and b) for the water samples suggest carbonate evolution 

under “open system” conditions accompanied by addition, loss, or exchange of carbon in 

the DIC pool (e.g., Fonyuy and Atekwana, 2008b). The water samples can thus be 

grouped into 3 clusters that indicate the dominance of different processes during the 

carbonate evolution. Cluster 1 (Fig. II-5a) includes mostly leachate samples, where an 

increase in DIC concentrations is accompanied by an increase in SO4 and in Ca+Mg 

concentrations (Fig. II-5b). The overall positive relationship shown by samples in Cluster 

1 suggests that DIC production occurs from the addition of carbon during neutralization 

of H2SO4 by carbonates (Equation 1 and 2) (e.g., Moral et al., 2008). Cluster 2 shows a 

trend of decreasing DIC concentrations concomitant with increasing SO4 concentrations 

(Fig. II-5a). Samples in Cluster 2 are consistent with carbonate evolution dominated by 

the dehydration of HCO3 (Fonyuy and Atekwana, 2008b; Atekwana and Fonyuy, 2009; 

Ali and Atekwana, 2009), and where DIC concentration decrease is balanced by an 

increase in SO4 concentration (Equation 3 and 4). On the other hand, groundwater 

samples in Cluster 3 that show low DIC, high SO4, and significantly higher Ca+Mg 

concentrations suggest a DIC evolution that is due to both carbonate dissolution and 

HCO3 dehydration. For the samples in Cluster 3, higher Mg compared to Ca 
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concentrations (Table 3) suggests that these samples may have undergone incongruent 

dissolution of carbonate (Busenberg and Plummer, 1982). Alternatively, lower Ca 

concentrations may result from precipitation of Ca in solid mineral phases notably Ca-

montmorillonite, as these samples are supersaturated with respect to this mineral phase 

(Table 5). In addition, the groundwater samples in Cluster 3 have relatively high Cl 

concentrations (Table 3) that may have come from salt used to deice the roads in the park 

and leached into groundwater during spring snow melt. Because the recharge occurs 

along the southern edge of the FTP site (Fig. II-2), the groundwater flow pathway causes 

the recharged water to flow deeper within the tailings pile. Thus, because of the longer 

residence time, samples in Cluster 3 have undergone a chemical evolution not entirely 

driven by the acidification and neutralization processes.  

To further evaluate carbonate evolution due to acid neutralization, we examine the 

relationship between pH and pCO2 for the water samples. The plot of pH vs. logpCO2 

(Fig. II-6) shows a negative correlation (logpCO2 = -1.4pH + 7.8; R2=0.93). The lower 

pH and high pCO2 for soil water and perched groundwater is due to CO2(aq) generation 

from carbonate dissolution in the reaction zone (e.g., Jaynes et al., 1983). Lower pCO2 in 

the groundwater samples and the relatively higher pH values compared to soil water and 

perched groundwater samples is either due to lower DIC production or to loss of CO2(g) 

from the samples. In fact, all the water samples from the tailings pile have pCO2 values 

that are higher than atmospheric (logpCO2(atm) = -3.5). Thus, the negative relationship 

between pH and logpCO2 and the spatial position of perched groundwater and soil water 

samples relative to groundwater samples in Figure II-6 support a carbonate evolution 

whereby CO2(g) is lost from the water samples to the vadose zone, causing the sample pH 
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to increase (e.g., Choi et al., 1998). In addition, because the CO2(g) concentrations in the 

vadose zone are high, CO2(g) in the soil zone or atmosphere has little impact on the 

carbonate evolution of groundwater.  

5.3. DIC-δ13CDIC evolution during acid neutralization in a carbonate-rich setting 

Water samples from the FTP show an overall positive relationship for DIC vs. 

δ
13CDIC (Fig. II-7), although the correlation (R2=0.51) is rather poor. This is due to 

different mechanisms of DIC evolution for different sample types (e.g., different clusters 

in Fig. II-5a) accompanied by different carbon isotopic fractionation effects (Deines, 

2004). During carbonate evolution (e.g., CaMg(CO3)2(s)⇔CO3
2-
⇔HCO3

-

⇔H2CO3⇔CO2(g)), the isotopic effect depends on the addition or removal of carbon from 

the DIC pool. Since all water samples are either undersaturated or near saturation with 

respect to carbonates, the enrichment in 13C in the samples is mainly controlled by the 

formation of HCO3 and CO2(aq) from carbonate or loss of CO2(g) and the depletion in 13C 

in the samples is controlled by the dissolution of isotopically light CO2(g). The positive 

relationship suggests an evolution that is best described by the addition of heavy carbon 

(13C) from carbonate dissolution (δ13CCarbonate = -1.5‰). The higher pCO2 in the water 

samples compared to atmospheric does not however preclude the addition of carbon as 

dissolved CO2(g) from the vadose zone into the groundwater, particularly if the vadose 

zone pCO2 concentrations are higher than for groundwater. Thus, the scatter in the data in 

Figure II-7 could be due to the addition of variable amounts of isotopically lighter CO2(g) 

to the water samples. 
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5.3.1. Carbon isotope evidence of DIC production and evolution in soil water and 

perched groundwater 

In the leachate, DIC production is dominated by carbonate dissolution. Thus, 

given the δ13C composition of carbonates in the tailings of -1.5‰, dissolution would 

introduce relatively heavy 13C that will cause enrichment of the samples in the reaction 

zone. For the pH range measured, the CO3
2- ion concentration is negligible, implying that 

carbonate dissolution directly produces HCO3 or CO2(aq) in solution. The enrichment of 

13C during carbonate dissolution to form HCO3: εCaCO3–HCO3 ranges from -0.4‰ ± 0.2‰ 

to -3.4 ± 0.4‰ at 25 0C (e.g., Turner, 1982). Based on this 13C enrichment factor, the 

resulting δ13CDIC of the water samples should be in the range -1.9‰ to -4.8‰ ±0.8‰. 

The leachate samples have δ
13CDIC values between -3.1‰ and -6.8‰ and thus cannot be 

explained solely by the isotopic fractionation associated with carbonate dissolution and 

HCO3 formation. Because these water samples have high pCO2, CO2(g) is lost to the 

unsaturated zone. The loss of CO2(g) from solution is accompanied by an enrichment: 

εCO2(aq)-CO2(g) of ~1.1‰ (e.g., Vogel et al., 1970; Mook et al., 1974). If the isotopic 

fractionation during CO2(g) loss from solution is taken into account, then the δ
13CDIC of 

the residual DIC in the leachate should be in the range -2.1‰ and -5.8‰, which is within 

the range of the δ13CDIC values of the tailings leachate to within ±1‰. 

5.3.2. Carbon isotope evidence of CO2(g) production and evolution in the vadose zone 

The range in the δ13C of CO2(g) in the vadose zone (Table 4) suggests isotopic 

depletion consistent with the production of CO2(g) from leachate in the reaction zone. The 

enrichment of 13C for HCO3
 dehydration: εHCO3-CO2(aq) in the temperature range of 14 to 
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27oC for the water samples is between -8.9 to -10.3‰ (e.g., Mills and Urey, 1940; Mook 

et al., 1974) and the 13C enrichment for degassing of CO2(g) is about 1.1‰ (e.g., Fritz and 

Clark, 1977). A model where HCO3 dehydration is followed by CO2(g) degassing from 

the water samples into the vadose zone should result in a δ
13C depletion for CO2(g) 

released to vadose zone in the range of -7.8‰ to -9.2‰ [(1.1‰ + -8.9‰) to (1.1‰ + -

10.3‰)] relative to the δ13CDIC of the samples. By applying this 13C depletion range to 

groundwater samples (-2.0‰ to -12.0‰), the CO2(g) that would be degassed into the 

vadose zone should have δ
13C in the range of -10.9‰ to -23.1‰ shown in Figure II-7 

with dots. However, the range for measured δ
13C of the vadose zone CO2(g) of -16.2‰ to 

-11.4‰ closely compares to δ
13CCO2(g) values of -17.0‰ to -10.9‰ estimated for vadose 

zone CO2(g) produced from leachate and represented by the hatched interval in Figure II-

7. This suggests that the CO2(g) in the vadose zone is produced from HCO3 dehydration 

and subsequent degassing of CO2(g) from leachate in the reaction zone. Incidentally, 

Nitzsche et al. (2002) and Laughrey and Balsassare (2003) report high concentrations of 

CO2(g) in the vadose zone at abandoned mine sites which they attribute to acid 

neutralization by carbonates. In addition, Nitzsche et al. (2002) report δ
13CCO2 values of -

9.0‰ to -15.9‰. The CO2(g) concentrations and δ13CCO2 (Fig. II-8; solid and dashed 

arrows) is in the range observed in this study. 

5.3.4.  Stable carbon isotope evidence of DIC production and evolution in groundwater 

To account for the wide range in the DIC concentrations and the δ
13CDIC observed 

for the groundwater, we modeled the carbon isotopic evolution of DIC (2007 data) using 

the computer program NETPATH (Plummer et al., 1991). The approach was based on 
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models described by Plummer and Back (1980) and Plummer et al. (1990). Assumptions 

used for the models are: (1) constraints and phases were limited to species that control 

acid generation and neutralization, (2) CO2 could be lost or absorbed, models allowed for 

(3) dissolution or precipitation of calcite and dolomite, (4) evaporation or dilution of 

leachate, (5) redox processes including ion and proton exchange, and (6) Rayleigh 

calculations and fractionation (Mook et al., 1974). 

The δ13C of carbonates used is 1.5‰. The same leachate sample (PGW03-3) with 

δ
13CDIC of -5.3‰ was used to model all groundwater samples. This sample was selected 

because its δ13CDIC value is close to the average value for leachate of -5.1.‰. The δ
13C 

for vadose zone CO2(g) used in models is the average value of -14.2‰. The saturation 

indices of the mineral phases (Table 4) for groundwater samples were considered in 

selecting the correct model output. Modeled results (Table 6) indicate dissolution of 

carbonates, dilution with recharge, and dissolution or loss of CO2(g) as the major controls 

on the δ13CDIC of groundwater. Following carbonate dissolution in the reaction zone, the 

leachate is diluted to varying degrees by uncontaminated or less contaminated 

groundwater, likely recharged from precipitation or lakes. The exception to the above 

evolutionary model is the groundwater sample from MW06-94 with the most depleted 

δ
13CDIC value of -12.5‰ that failed the modeling exercise. The isotopic value of this 

sample suggests that DIC evolution along groundwater flow pathway to this location may 

occur under a “closed system” and may not be directly influenced by acid neutralization 

reactions in the tailings pile. A sensitivity analysis shows that using the most enriched 

reaction zone sample; PW-02 with a δ
13CDIC of -3.1‰ or the most depleted sample; 
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PGW06-3 with a δ13CDIC of -5.8‰, the modeled results obtained agree to within 1.0 

±0.5‰ of the δ13CDIC values modeled for the δ13CDIC of the initial water PGW03-3.  

Relationships for δ13CDIC vs. depth for leachate samples and δ
13CDIC vs. depth for 

groundwater samples are shown in Figure II-9a and II-9b, respectively. The depth 

relationships are consistent with our model where the δ
13CDIC of samples in the reaction 

zone is controlled mainly by dissolution of carbonates that adds heavy 13C to the DIC. 

The narrow range in δ13CDIC between -9.0‰ and -6.0‰ for the bulk of the groundwater 

samples suggest an evolution whereby dissolution of CO2(g) from the vadose zone plays 

an important role in DIC and carbon isotope evolution. For samples with δ
13CDIC values 

heavier than -5.3‰ (Fig. II-9b), our models indicate that the δ
13CDIC is controlled mostly 

by dissolution of dolomite + calcite (Table 6). 

The oxygen and hydrogen isotopic compositions of the different waters were used 

to evaluate recharge conditions for groundwater in the tailings pile. A plot of the δD and 

δ
18O of the water samples are presented in Figure II-10. Also shown in Figure II-10 is the 

global meteoric water line (GMWL) (Craig, 1961) and a local meteoric water line 

(LMWL) for reference. The LMWL was constructed using stream data from Coplen and 

Kendal (2000) for the Gasconade River located 120 km to the northwest of the study site. 

The δD and δ18O of the water samples show a good positive relationship represented by 

the least squares equation: δD = 3.99δ18O - 10.7 (R² = 0.93). The bulk of the water 

samples deviate from and lies below the LMWL due to evaporative enrichment. We use 

this observation to argue that the groundwater in the tailings pile is mostly recharged 

from seasonal precipitation and lake water that has undergone some evaporative 
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enrichment. This is consistent with our carbon isotope model results which indicate that 

groundwater evolves from the leachate produced in the reaction zone that is diluted and 

mixed with local recharge. 

6.  Conclusions 

In this study, we investigated the effects of acidification and neutralization on the 

carbonate evolution in shallow groundwater in a metal sulfide-rich and carbonate-rich 

tailings pile. Mine wastes disposal sites rich in metal sulfides and carbonates can be 

considered an analogue for natural environments where sulfuric acid production and 

neutralization occur. Sulfuric acid neutralization by carbonates in the shallow subsurface 

produces leachate (soil water and perched groundwater) above the water table that has 

relatively high concentrations of DIC, SO4, and Ca+Mg. The DIC in leachate samples is 

characterized by high CO2(aq) relative to HCO3 and has relatively enriched δ
13CDIC from 

carbonate dissolution. Additional neutralization of protons from H2SO4 dissociation by 

HCO3 in addition to degassing of CO2(g) from solution create high concentrations of 

CO2(g) into the vadose zone. The δ
13C of the CO2(g) in the vadose zone is isotopically 

heavier and clearly distinguishable from the isotopically lighter CO2(g) in a background 

soil zone. On the other hand, DIC in the groundwater is characterized by higher 

proportions of HCO3 relative to CO2(aq) and the δ13CDIC is much lighter compared to 

leachate samples. The DIC concentration and δ
13CDIC of the groundwater is controlled by 

two dominant processes; (1) mixing and dilution of leachate with infiltration from 

precipitation and/or lake water as well as lateral groundwater recharge and (2) 

groundwater interaction with the CO2(g) in the vadose zone. The high CO2(g) 
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concentrations produced from the acid and neutralization reactions in the vadose can be a 

potential source of CO2(g) to the atmosphere. Most importantly, in natural and 

anthropogenic settings where sulfuric acid production by metal sulfides and 

neutralization by carbonates occur, the carbonate evolution of shallow groundwater is not 

described by the classical model ascribed to soil zone CO2(g). 
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Figure II-1: Conceptual model of DIC production and carbonate evolution in a sulfide-rich and carbonate-
rich shallow groundwater system.
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Figure II-2: Map of study site showing water sampling locations for lake water, soil water, perched 
groundwater and groundwater. Also shown are all locations for gas sampling from the vadose zone and the 
background station for soil gas sampling. Sample location codes are as follows: MW= monitoring well, L= 
lysimeter, GS = gas sampler, modified from Schumacher and Hockanson (1996) and from Google Earth 
(2008). 
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Figure II-3: Cross plot of SO4+HCO3 vs. Ca+Mg for lake water, soil water, perched groundwater, and 
groundwater from the Federal Tailings Pile, St Joe State Park, SE Missouri USA. 
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Figure II-4: Cross plots of DIC vs. HCO3 of soil water, perched groundwater, groundwater, and lake water 
samples from the Federal Tailings Pile, St Joe State Park, SE Missouri USA. 
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Figure II-5: Cross plots of (a) DIC vs. SO4 and (b) DIC vs. Ca+Mg for soil water, perched groundwater, 
groundwater, and lake water samples from the Federal Tailings Pile, St Joe State Park, SE Missouri USA. 
The ellipses represent sample clusters; dashed circle represents cluster 1 evolving by dissolution of 
carbonates, solid circle represents cluster 2 for samples evolving dominantly by HCO3 dehydration, and 
dotted circle represents cluster 3 for samples evolving by dissolution, HCO3 dehydration and degassing of 
CO2. 
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Figure II-6: Cross plot of pH vs. logpCO2 for soil water, perched groundwater, groundwater, and lake water 
samples from the Federal Tailings Pile, St Joe State Park SE, Missouri USA. The dashed line represents 
average logpCO2(g) for atmosphere. 
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Figure II-7: Cross plot of δ13CDIC  vs. DIC for soil water, perched groundwater, groundwater, and lake 
water from the Federal Tailings Pile, St Joe State Park, SE Missouri USA. 
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Figure II-8: Plot of δ13CCO2 vs. logpCO2 for vadose zone CO2(g) and background soil zone CO2(g) from the 
St Joe State Park SE, Missouri USA. The hatched interval represents the range of modeled δ

13CCO2 

enrichment (-10.9‰ to -17.0‰) for CO2 production from soil water and perched groundwater and the 
dotted interval represent the range for modeled δ

13CCO2 enrichment (-10.7‰ to -23.1) for CO2 production 
from groundwater samples. Dashed and filled arrows represent the range for logpCO2 and δ13CCO2 
respectively from Nitzsche et al. (2002). Dashed lines represent average δ

13C for carbonates (-1.5‰) in the 
tailings pile and average δ13CCO2 of background soil gas (-22.1‰). 
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Figure II-9: Cross plot of δ13CDIC vs. depth below (a) ground surface for soil water and perched 
groundwater and (b) water table for groundwater samples from the Federal Tailings Pile, St Joe State Park, 
SE Missouri USA. 
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Figure II-10: Cross plot of δ18O vs. δD for soil water and perched groundwater and groundwater samples 
from the Federal Tailings Pile, St Joe State Park, SE Missouri USA. Included is the Global Meteoric Water 
Line (GMWL) from Craig (1961) and a Local Meteoric Water Line (LMWL) adapted from Gasconade 
River data (Coplan and Kendal, 2000). 
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Table II-1: Results of the physical, chemical, and stable isotope analyses of lake water, soil water, perched groundwater and groundwater from the Federal 
Tailings Pile, St Joe State Park, SE Missouri, USA. 

Sample ID 

Water 
level 
bgs Temp.  SPC  pH  DIC  δδδδ

13CDIC δδδδD δδδδ
18O HCO3

-  SO4
2- Cl  Ca Mg  Na  K Si 

Log 
pCO2 

  (m) (oC) (uS/cm)   (mM C/L) (‰) (‰) (‰) (mM/l) (mM/L) (mM/L) (mM/L) (mM/L)  (mM/L) (mM/L) (mM/L) (atm) 

2006                  

Lake water                  

Monsanto Lake  - 27.4 287 7.95 2.1 -7.7 -13.4 0.4 2.5 0.2 0.03 0.76 0.61 0.03 0.03 0.12 -2.82 

Pim Lake  - 28.2 330 8.59 1.9 -7.8 -8.6 0.0 2.0 0.5 0.04 0.82 0.75 0.06 0.05 0.04 -3.57 

Joe Lee Lake  - 29.2 221 8.58 1.6 -7.8 -13.8 -1.4 1.7 0.1 0.02 0.57 0.50 0.03 0.04 0.05 -3.59 

Groundwater                  

MW 01_42 -1.2 18.9 718 7.27 5.5 -8.5 -38.3 -6.8 5.4 2.0 0.06 2.27 2.29 0.05 0.2 0.48 -1.88 

MW 01_60 -1.9 20.0 872 7.71 1.8 -7.0 -42.5 -7.5 1.8 4.1 0.89 0.99 3.22 1.1 0.44 0.09 -2.83 

MW 08_11 -1.0 19.9 844 7.42 4.4 -7.5 -23.4 -2.9 4.3 3.3 0.05 1.92 2.94 0.04 0.39 0.43 -2.15 

MW 08_20 -0.9 17.7 694 7.55 4.1 -8.6 -23.7 -2.9 4.2 2.4 0.05 1.06 3.06 0.06 0.33 0.34 -2.29 

MW 08_52 -1.4 20.3 925 6.99 5.7 -7.1 -19.1 -1.8 4.7 1.2 2.91 0.95 2.35 2.77 0.35 0.18 -1.66 

MW 06_53 -1.3 14.9 801 7.39 3.0 -5.1 -29.6 -4.6 3.0 4.4 0.05 3.23 2.14 0.03 0.33 0.18 -2.31 

MW 06_94 -1.5 19.6 1577 7.2 5.9 -12.9 -16.3 -1.6 5.8 6.6 2.78 2.13 5.71 2.99 0.4 0.33 -1.84 

MW 07_20 -4.2 20.6 794 7.21 6.0 -4.8 -24.4 -2.8 6.0 1.8 0.02 2.76 2.18 0 0.08 0.35 -1.76 

MW 07_70 -7.2 29.2 947 7.95 5.3 - -27.3 -3.3 5.1 2.1 0.03 1.77 2.30 0.02 0.09 0.37 -2.60 

MW 05_58 -5.2 30.9 2021 7.01 6.2 -7.8 -31.3 -5.6 6.5 4.9 0.28 4.04 3.51 0.21 0.24 0.35 -1.54 

MW 04_101 - - - - - - - - - - - - - - - - - 

MW 04_80 - - - - - - - - - - - - - - - - - 

MW 03_62 -10.7 34.5 3687 7.54 1.1 -7.1 -37.6 -7.4 1.1 16.2 7.23 3.57 11.99 6.95 0.47 0.12 -2.93 

MW 03_72 -13.0 28.7 2938 7.63 1.5 -7.7 -34.6 -6.8 1.1 12.3 7.74 3.10 9.57 6.21 0.45 0.14 -3.00 
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Sample ID 

Water 
level 
bgs Temp.  SPC  pH  DIC  δδδδ

13CDIC δδδδD δδδδ
18O HCO3

-  SO4
2- Cl  Ca Mg  Na  K Si 

Log 
pCO2 

  (m) (oC) (uS/cm)   (mM C/L) (‰) (‰) (‰) (mM/l) (mM/L) (mM/L) (mM/L) (mM/L)  (mM/L) (mM/L) (mM/L) (atm) 
Soil water                  

PW 01 - 24.2 942 7.06 4.6 -5.8 -12.4 -1.7 4.6 3.3 0.04 3.35 2.09 0.03 0.08 0.5 -1.73 

PW 02 - 23.2 1318 6.9 5.5 -4.2 -27.2 -4.1 4.9 6.2 0.03 5.40 2.60 -0.01 0.03 0.28 -1.57 

Perched groundwater                  

PGW 01-3 -1.5 - - - - - - - - - - - - - - - - 

PGW 03-3 -1.5 23.1 2265 6.53 22.0 -6.8 -34.2 -5.1 10.0 6.7 0.01 10.92 5.27 0 0.10 0.65 -1.00 

PGW 06-2 -1.0 - - - - - - - - - - - - - - -  

PGW 06-3 -1.5 19.6 981 6.88 4.7 -4.8 -29.4 -4.6 4.3 4.3 0.03 4.60 1.98 0.02 0.06 0.19 -1.70 

PGW 06-4 -2.0 - - - - - - - - - - - - - - - - 

2007                  

Lake water                  

Monsanto Lake  - 27.4 258 7.78 2.2 -8.8 -20.0 -2.0 2.1 0.2 0.02 0.75 0.60 0.04 0.03 0.17 -2.61 

Pim Lake  - 24.6 314 7.74 2.2 -9.3 -18.4 -1.7 2.1 0.5 0.04 0.85 0.76 0.06 0.05 0.17 -2.59 

Joe Lee Lake  - 25.5 207 7.66 1.9 -8.4 -20.2 -2.0 1.9 0.2 0.02 0.58 0.48 0.03 0.05 0.17 -2.58 

Groundwater                 

MW 01_42 -0.8 19.5 810 7.19 5.8 -7.4 -19.9 -1.2 5.1 1.9 0.05 2.19 2.28 0.07 0.22 0.51 -1.72 

MW 01_60 -1.1 20.5 921 7.21 2.2 -7.2 -8.4 0.1 1.9 3.5 0.78 0.89 3.17 1.06 0.46 0.10 -2.15 

MW 03_62 -10.6 19.8 3219 7.65 1.3 -7.7 -33.7 -5.3 1.2 16.8 6.54 3.84 13.35 7.37 0.57 0.09 -2.79 

MW 03_72 -13 19.1 2832 7.39 1.5 -8.9 -34.8 -5.2 1.3 13.4 6.55 3.41 10.6 6.96 0.59 0.14 -2.49 
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Sample ID 

Water 
level 
bgs Temp.  SPC  pH  DIC  δδδδ

13CDIC δδδδD δδδδ
18O HCO3

-  SO4
2- Cl  Ca Mg  Na  K Si 

Log 
pCO2 

  (m) (oC) (uS/cm)   (mM C/L) (‰) (‰) (‰) (mM/l) (mM/L) (mM/L) (mM/L) (mM/L)  (mM/L) (mM/L) (mM/L) (atm) 
MW 04_101 -11 19.6 1600 7.53 2.7 -8.6 -29.8 -4.2 2.6 5.1 3.84 1.27 5.68 3.38 0.47 0.14 -2.31 

MW 04_80 -10 16.3 2859 7.01 4.1 -7.5 -14.3 -0.4 3.3 14.4 3.19 4.95 11.07 5.56 0.59 0.31 -1.72 

MW 05_58 -5.1 25.4 1248 6.89 5.7 -7.1 -21.3 -2.9 4.5 5.8 0.04 3.96 3.74 0.26 0.29 0.54 -1.43 

MW 06_53 -1.9 15.5 944 7.19 3.0 -5.3 -42.2 -5.9 2.6 3.8 0.04 3.23 2.05 0.03 0.33 0.22 -2.01 

MW 06_94 -1.4 13.4 1739 7.04 7.2 -12.5 -26.6 -2.6 5.8 6 2.45 2.35 6.18 3.33 0.47 0.39 -1.53 

MW 07_20 -4.2 20.1 753 7.11 6.6 -2.9 -17.9 -0.5 5.6 1.6 0.02 2.44 1.88 0.02 0.09 0.46 -1.58 

MW 07_70 -7.3 23.4 918 6.85 5.8 -4.5 -15.9 0.0 4.4 3.2 0.03 2.96 2.41 0.03 0.15 0.37 -1.42 

MW 08_11 -0.9 15.9 884 7.14 5.2 -7 -10.3 -0.1 4.4 2.9 0.04 1.96 2.90 0.04 0.39 0.49 -1.72 

MW 08_20 -0.8 14.7 777 7.23 4.6 -7.9 -7.7 1.1 4.0 2.2 0.04 1.10 3.10 0.05 0.34 0.39 -1.90 

MW 08_52 -1.1 17.5 966 6.86 7.1 -6.8 -17.2 -0.7 5.4 0.9 2.71 1.05 2.44 2.85 0.36 0.22 -1.37 

Soil water                   

PW 01 -0.5 23.1 928 7.01 5.0 -4.4 -40.1 -6.3 4.2 3.1 0.07 2.96 1.90 1.13 0.09 0.33 -1.61 

PW 02 -6.0 21.1 2068 6.5 8.6 -3.1 -31.5 -5.2 5.0 12.4 0.04 11.08 4.18 0.03 0.10 0.36 -1.01 

Perched groundwater                  

PGW 01-3 -1.5 23 859 7.09 5.0 -4.5 -25.7 -2.4 4.2 2.4 0.05 2.84 1.82 0.33 0.07 0.23 -1.68 

PGW 03-3 -1.5 20.1 2601 6.28 22.8 -5.3 -14.4 -0.7 10.3 13.4 0.03 13.22 5.81 0.04 0.16 0.39 -0.49 

PGW 06-2 -1.0 20.5 1903 6.4 10.1 -4.1 -9.0 1.0 5.2 8.9 0.02 8.69 3.75 0.04 0.10 0.22 -0.90 

PGW 06-3 -1.5 18.5 1256 6.45 8.7 -5.8 -14.1 0.4 4.7 5.3 0.01 5.40 2.36 0.04 0.08 0.25 -1.01 

PGW 06-4 -2.0 18.6 1151 6.84 6.0 -4.5 -9.6 0.1 4.5 4.8 0.01 4.64 2.20 0.04 0.09 0.29 -1.42 

- = Not determined    
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Table II-2: Sample depth, concentration of CO2(g), and the stable C-isotope ratio of CO2 (δ
13CCO2) in gas 

samples from the vadose zone and background soil gas from the Federal Tailings Pile, St Joe State Park, SE 
Missouri, USA. 
 

Sample ID 

Sampling 
depth  

(m) 
log pCO 2 

(atm) 

δδδδ
13CCO2(g) 

(‰) 

2006    

SJGW 1-1 -1.0 -2.82 -15.6 

SJGW 1-3 -0.5 -2.22 -14.4 

SJGW 1-4 -3.0 -2.30 -15.4 

SJGW 2-1 -1.5 -2.20 -12.2 

SJGW 2-2 -1.0 -2.28 -11.4 

SJGW 2-3 -0.5 -1.57 -13.1 

SJGW 2-4 -3.0 -3.05 -13.7 

SJGW 3-1 -1.0 -1.25 -15.6 

SJGW 3-2 -0.5 -1.56 -16.0 

2007    

SJGW1-4 -1.0 -2.38 -14.9 

SJGW3-3 -0.5 -1.35 -14.3 

SJGW6-1 -1.0 -1.87 -13.7 

SJGW3-1 -1.0 -1.83 -16.4 

SJGW3-4 -2.0 -3.12 - 

Background     

Background_01 -0.25 -2.08 -22.0 

Background_02 -0.50 -1.72 -22.3 

 

= Not determined 
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Table III-3: Saturation indices of mineral phases modeled using the computer program PHREEQCI (Parkhurst and Appelo, 1999) for lake water, soil water, 
perched groundwater, and groundwater samples from the Federal Tailings Pile, St Joe State Park SE, Missouri USA. 
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2007                      

Lake water                      

Monsanto 
Lake 

-3.22 -5.00 -2.71 -2.50 -10.4 -9.38 -0.19 -1.12 -0.63 -3.15 -1.82 -0.19 -0.04 -0.03 6.67 0.70 2.23 -2.60 -1.46 -0.03 4.42 

Pim Lake -1.30 -4.57 -2.36 -2.14 -9.72 -8.13 -0.25 -1.09 -0.66 -2.92 -2.03 -0.25 -0.11 -0.14 6.73 0.85 2.50 -2.65 -1.55 0.28 5.12 

Joe Lee Lake -2.13 -5.04 -2.93 -2.71 -9.33 -6.82 -0.49 -1.24 -0.81 -2.18 -2.09 -0.49 -0.35 -0.64 7.39 1.48 2.44 -2.75 -1.71 -0.06 4.92 

Groundwater                     

MW 01_42 5.53 -3.89 -1.61 -1.38 -7.75 -6.29 -0.20 -1.06 -1.09 -1.71 -2.54 -0.20 -0.05 -0.02 6.24 0.55 3.64 -3.00 -2.63 2.39 9.58 

MW 01_60 5.99 -3.28 -1.75 -1.51 -7.54 -5.32 -1.08 -1.21 -1.53 -2.24 -2.78 -1.08 -0.94 -1.25 6.29 0.56 3.53 -3.48 -2.22 0.45 6.64 

MW 03_62 4.28 -3.60 -0.86 -0.62 -5.92 1.64 -0.55 -1.88 -1.72 -0.99 -2.55 -0.55 -0.40 -0.21 8.72 3.02 3.07 -3.47 -2.15 0.69 5.64 

MW 03_72 5.20 - -0.94 -0.70 -5.59 1.03 -0.69 - - -0.72 - -0.69 -0.54 -0.53 8.29 2.61 3.14 - - 0.63 6.44 

MW 04_101 3.99 - -1.57 -1.33 -6.95 -1.89 -0.51 - - -1.27 - -0.51 -0.36 -0.01 7.69 2.00 3.12 - - 0.60 6.37 

MW 04_80 8.62 - -0.77 -0.53 -5.52 -1.60 -0.54 - - -0.71 - -0.54 -0.39 -0.41 6.98 1.41 3.84 - - 1.93 9.35 

MW 05_58 6.76 -3.52 -1.03 -0.81 -7.07 -5.23 -0.32 -1.45 -1.44 -1.65 -1.15 -0.32 -0.18 -0.25 6.04 0.14 3.53 -3.39 -3.02 2.20 9.17 

MW 06_53 6.96 -3.28 -1.19 -0.94 -5.69 -1.03 -0.46 -1.09 -1.42 -0.41 -2.49 -0.46 -0.31 -0.81 7.69 2.14 3.80 -3.32 -2.49 1.81 8.76 

MW 06_94 9.05 -3.49 -1.28 -1.02 -5.49 -1.74 -0.49 -1.22 -1.44 -0.19 -2.64 -0.49 -0.34 -0.29 7.15 1.69 4.18 -3.28 -3.21 2.42 10.56 
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Sample ID 
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MW 07_20 5.25 -4.03 -1.62 -1.38 -7.27 -5.53 -0.16 -1.16 -1.10 -1.18 -2.26 -0.16 -0.01 -0.07 6.58 0.87 3.64 -3.28 -2.84 2.25 9.39 

MW 07_70 6.57 -3.66 -1.30 -1.07 -6.85 -5.28 -0.44 -1.43 -1.50 -1.32 -2.49 -0.44 -0.30 -0.58 6.19 0.35 3.62 -3.36 -3.13 1.76 8.81 

MW 08_11 7.02 -3.69 -1.51 -1.26 -5.79 -1.37 -0.44 -1.17 -1.20 -0.17 -2.40 -0.44 -0.29 -0.41 7.58 2.03 3.82 -3.18 -2.86 2.29 10.04 

MW 08_20 6.62 -3.62 -1.83 -1.58 -6.23 -2.33 -0.65 -0.97 -1.13 -0.50 -2.48 -0.65 -0.49 -0.55 7.42 1.91 3.85 -3.17 -2.57 2.00 9.75 

MW 08_52 7.42 -3.92 -2.23 -1.99 -7.67 -7.89 -0.83 -1.08 -1.36 -1.68 -2.24 -0.83 -0.68 -0.96 5.49 -0.13 4.05 -3.22 -3.09 1.38 9.10 

Soil water                      

PW 01 5.18 -3.86 -1.31 -1.08 -7.71 -7.16 -0.30 -1.47 -1.35 -2.03 -2.15 -0.30 -0.16 -0.41 5.80 -0.02 3.39 -2.29 -3.01 1.50 8.16 

PW 02 9.93 -2.76 -0.45 -0.22 -6.99 -8.89 -0.40 -1.30 -1.97 -2.30 -2.06 -0.40 -0.26 -0.86 4.39 -1.36 4.14 -2.45 -3.46 2.33 10.01 

Perched groundwater                     

PGW 01-3 5.25 -3.34 -1.40 -1.17 -7.72 -6.73 -0.24 -0.80 - -1.88 -0.76 -0.24 -0.09 -0.28 6.12 0.30 3.60 -0.99 -2.24 1.75 8.08 

PGW 03-3 9.71 -2.80 -0.41 -0.17 -4.73 -3.41 -0.24 -1.22 - 0.06 -1.23 -0.24 -0.10 -0.49 5.93 0.21 3.77 -2.09 -3.97 1.21 9.24 

PGW 06-2 9.38 -2.24 -0.63 -0.40 -7.40 -10.71 -0.53 -0.72 - -2.66 -1.24 -0.53 -0.38 -1.06 3.75 -1.98 3.92 -0.77 -3.05 1.16 8.69 

PGW 06-3 8.85 -2.53 -0.93 -0.68 -5.20 -4.12 -0.68 -0.86 - -0.35 -1.31 -0.68 -0.53 -1.38 6.10 0.45 3.88 -2.09 -3.17 1.01 8.86 

PGW 06-4 7.22 - -1.00 -0.76 -5.37 -2.18 -0.36 - - -0.12 -1.37 -0.36 -0.21 -0.70 7.14 1.48 3.73 -2.77 - 1.57 8.85 

- - = Not determined 
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Table II-4: Modeled stable C-isotope (δ
13CDIC) results for groundwater samples from the Federal Tailings Pile, St 

Joe State Park SE, Missouri USA.  

 

/ = no reacting phases  
- = not determined 

Sample ID 
Modeled 
δδδδ

13CDIC (‰) 
Measured 
δδδδ

13CDIC (‰) Dissolving phases 

Evaporation 
or 

Dilution 

Precipitating 
phases 

MW 08_11 -7.0 -7.0 Dolomite, CO2 dilution Ca-Mont 

MW 08_20 7.9 7.9 Dolomite, CO2 dilution Ca-Mont 

MW 08_52 -6.8 -6.8 Dolomite,  CO2 dilution Ca-Mont 

MW 01_42 -6.7 -7.4 Dolomite, CO2 dilution Calcite, Ca-Mont 

MW 01_60 -7.2 -7.2 Dolomite, CO2 dilution Ca-Mont 

MW 06_53 -5.6 -5.3 CO2 dilution Ca-Mont 

MW 06_94 - -12.5 - - Model failed 

MW 07_20 2.9 -2.9 Dolomite, calcite, CO2 dilution Ca-Mont 

MW 07_70 -4.5 -4.5 Dolomite, Calcite, CO2 dilution Ca-Mont 

MW 04_101 -8.6 -8.6 Dolomite, CO2 dilution / 

MW 04_80 -7.4 -7.5 / dilution Calcite 

MW 05_58 -7.4 -7.1 Dolomite, CO2 dilution Calcite 

MW 03_62 -8.1 -7.7 Dolomite, dilution CO2, Ca -Mont 

MW 03_72 -8.6 -8.9 / dilution CO2, Ca-Mont 
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CHAPTER III 
 

 

DISSOLVED INORGANIC CARBON EVOLUTION IN NEUTRAL DISCHARG E 

FROM MINE TAILINGS PILES 

Abstract 

We measured the spatial concentrations of DIC, major ions, and stable carbon isotope 

ratios of  DIC in two tailings piles producing neutral mine drainage. The objective was to 

investigate DIC and δ13CDIC evolution during the outgassing of CO2(g) from the tailings 

discharge. Results show that over the 620 m reach of one of the discharges, DIC 

decreased by 0.9 mM C/L to 1.1 mM C/L for a δ
13CDIC enrichment of ~4.0‰. At the 

other discharge no significant decrease in DIC and only a small change in the δ13CDIC 

were observed over a 980 m reach. The DIC decrease was due to loss of excess CO2(aq) in 

water as discharge flowed downstream. The mechanism of CO2(g)  loss is kinetic and 

leads to a kinetic δ13CDIC enrichment. The magnitude of the downstream δ
13CDIC 

enrichment depends on the initial concentration of excess CO2(aq) in the discharge water 

and the amount and rate of CO2(g) lost from the discharge.  

Keywords: Dissolved inorganic carbon; excess CO2(aq); stable carbon isotopes; δ
13CDIC; 

carbonate-rich tailings pile. 
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1. Introduction 

 Investigations of carbon transfer from DIC in water discharged to the surface 

using stable carbon isotopes of the DIC (δ
13CDIC) has gained attention in the last decades 

(e.g., Doctor et al., 2008). This is because changes in DIC and δ
13CDIC can provide 

greater insights into our understanding of processes that control the movement of carbon 

between the discharge and the atmosphere (e.g., Doctor et al., 2008). The DIC in the 

groundwater that is discharged will have a carbon isotopic signature that is indicative of 

the sources of carbon and the relative contribution from each source. DIC in groundwater 

discharged to the surface can contain excess free dissolved CO2(aq) (Worral and 

Lancaster, 2005) that is in excess of the CO2 partial pressure in the water (pCO2) in 

equilibrium with atmospheric CO2(g). The transfer of the excess CO2(aq) to the atmosphere 

can occur via (1) equilibrium open system conditions in which there is exchange of 

carbon between the DIC and atmospheric CO2(g); which will result in equilibrium isotope 

exchange or (2) irreversible kinetic transfer of carbon from DIC by the outgassing of 

CO2(g) that would lead to kinetic isotope effects (e.g., Mills and Urey, 1940; Deines, 

1970; Mook et al., 1974).  

 In environments where there is excess CO2(aq) in the discharge water, relative to 

atmospheric CO2(g), the extent to which CO2(g) escapes from the water is controlled by the 

rate of diffusion across the water/air interface (e.g., Michaelis et al., 1985), the initial 

excess CO2(aq) and the extent to which the DIC species are converted to CO2(aq)  

(CO3⇒HCO3⇒H2CO3⇒CO2(aq)). Thus, for an aqueous system exposed to the 

atmosphere, the partial pressure of carbon dioxide in water( pCO2(aq)) controls the 
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ultimate fate of the CO2 that is lost. The carbonate reactions describing the transformation 

of DIC species in aqueous system exposed to the atmosphere are shown in equations 1-3.  

CO2(g) ↔ CO2(aq) + H2O ↔ H2CO3       (1) 

H2CO3↔ HCO3
- + H+         (2) 

HCO3
- → CO3

2- + H+         (3) 

  Shifts in the isotopic composition of DIC (δ
13CDIC) will occur due to the 

fractionation caused by the preferential release of 12C as CO2(g). The kinetic enrichment 

(εk) during the transfer of CO2(g) from water has been reported by several studies and 

shows a wide range. For example, Wanninkhof (1985) and Inoue and Sugimura (1985) 

determined εk in the range -1 to -4‰, Zhang et al. (1995) determined εk of -0.81±0.16‰ 

at 21oC and 0.95±0.2‰ at 5oC and Usdowski and Hoefs, (1990) calculated εk of -4‰. 

The range in the kinetic isotopic enrichment for the outgassing of CO2(g) in these studies 

may result from differences in the initial DIC concentrations, rates and different amounts 

of CO2(g) released from the water. The mechanism of CO2 loss may be important in our 

understanding of the anthropogenic effects of neutral drainage on carbon transfer during 

DIC evolution at surface conditions. 

 The goal of this study is to investigate the downstream evolution of DIC and 

δ
13CDIC changes in neutral mine discharge from the outgassing of CO2(g) to the 

atmosphere. The objective was to (1) investigate the effects of downstream changes of 

DIC and δ13CDIC composition of the discharge from two carbonate-rich mine tailings 

piles producing neutral drainage and (2) determine the nature of DIC speciation and 
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stable isotope composition (δ13CDIC) shifts during this evolution. To accomplish our 

objectives, we measured the concentrations of DIC, major ions, and stable carbon isotope 

composition of the DIC in neutral mine discharge from two tailings piles to assess the 

DIC and  δ13CDIC evolution in the discharge. 

2. Study Site 

 The Elvin’s Tailings Pile (ETP) and the Leadwood Tailings Pile (LTP) are two of 

several tailings piles found in St. Francois County, SE Missouri, USA (Fig. III-1). The 

tailing piles are located near the cities of Park Hills, MO and Leadwood, MO, 

respectively. The region has a temperate climate with mean annual precipitation and 

temperature for 1971-2007 of 1,086 mm and 12.7 °C, respectively (Midwest Regional 

Climate Center, 2009). The ETP covers approximately 1.1 km2 and is approximately 73 

m at its highest elevation relative to the surrounding topography. The LTP covers 2.2 km2 

and 22 m higher than the surrounding topography. The SE portion of the ETP is drained 

by a small creek (ETP Creek) that collects water discharged directly from the tailings 

pile. The ETP Creek flows southeastwards for about 650 m to join the Flat River (FR). 

The Flat River is the largest tributary to the Big River (Kramer, 1976). At the LTP, the 

northern section is drained by a small creek (LTP Creek) that is collects seeps discharged 

from the tailings pile. The LTP Creek flows northeastwards for about 980 m to join the 

Big River (BR). The Big River is a perennial stream that flows northwards and then 

westwards through the study area (Fig. III-1).The BR is the major stream that drains the 

region (Kramer, 1976). The ETP Creek and LTP Creek are shallow and vary in depth 
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from less than 5 cm to 10 cm deep and have average discharge rates that range from 

0.004 m3/s to 0.01 m3/s (http://waterdata.usgs.gov/mo/nwis/qwdata, Dec., 2009) 

3. Method 

3.1. Water sampling and field measurements 

The sampling locations selected for this study include six locations along the ETP 

Creek (620 m), starting at the seep source (ETP1) downstream to location (ETP 6) and 5 

locations along LTP Creek starting at 160 m (LTP1) from the seep source to location at 

LTP5 (980 m) downstream before the creek flows into the BR. It was not possible to 

sample LTP Creek at its seep source because of a drain pipe built at the seep source. AT 

the ETP Creek, the sampling distances between the stations ranged from 10 m to 200 m, 

while along the LTP Creek, the sampling distances between the stations ranged from 120 

to 340 m (Table 1) 

Water samples from both the ETP Creek and LTP Creek were collected in June 2006 

and June 2007. The water samples were collected by the grab technique. Prior to 

collecting water samples, the temperature, pH, dissolved oxygen (DO), oxidation 

reduction potential (ORP), and specific conductance (SPC) were measured using a 

Yellow Spring Instrument (YSI) multi-parameter probe that was calibrated to 

manufacturers specifications. All water samples were filtered through a 0.45 µm syringe 

filter during collection. The water samples were collected in high density polyethylene 

(HDPE) bottles that were unacidified for anion samples and acidified to a pH <2 with 

high purity HNO3 for cation and metal samples. All water samples were cooled on ice 

while in the field and transported to the laboratory where they were stored at 4oC until 



94 
 

analysis. Water samples for DIC analysis were collected as described by Atekwana and 

Krishnamurthy (1998). 

3.2. Sample analyses  

The alkalinity of the water samples was measured by acid titration (Hach, 1992) 

immediately after sampling in the field. Anions were analyzed by Dionex ICS 3000 ion 

chromatography and cations and metals were analyzed by a PerkinElmer Optima 

2100DV inductively coupled plasma optical emission spectrometer (ICP-OES). Water 

samples collected for DIC were extracted for CO2(g) as described by Atekwana and 

Krishnamurthy (1998). The DIC concentration was calculated from the CO2(g) yields 

measured by a pressure transducer. The CO2(g) was sealed in Pyrex tubes for later isotope 

analysis. Stable carbon isotope ratios of the CO2(g) was measured by isotope ratio mass 

spectrometry at Western Michigan University, Kalamazoo Michigan. The isotope ratios 

are reported in the delta notation in per mil: 

 δ (‰) = ((Rsample / Rstandard) -1) x 103  

Where R is the ratio 13C/12C. The delta values are reported relative to VPDB international 

carbon standard. Routine δ
13C measurements have an overall precision of < 0.1‰.  

4. Results  

4.1. Spatial variability of physical parameters in tailings discharge  

 The results for pH, ORP, DO and SPC for the samples are presented in Table III-

1. Although measurements varied between the two sampling periods and sites, the 

samples from the tailing piles show similar trends for pH, DO and SPC. In general there 
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is a marked increase in pH, DO and SPC and decrease in ORP between the ETP1 (seep 

source) and the second sampling station ETP2 at 127 m from where all the parameters 

remain nearly constant beyond ETP2. The pH increases from 6.5 to 7.1 (Fig. III-2a), DO 

from 3.8 to 4.5 mg/l (Fig. III-2e) and SPC from 1112 to 1294 µs/cm (Fig. III-2g). In 

2006, the ORP decreases from 218 mV to 173 mV between ETP1 and ETP2 and 

continued to decrease to 146 at ETP6 (Fig. III-2c), while in 2007 there is a slight increase 

in ORP after ETP2 before decreasing slightly downstream.  

 Water samples from LTP Creek show that spatial changes in the pH, ORP, DO 

and SPC are different from the ETP samples (Fig. III-2b, d, f and h). The pH fluctuates 

between 7.6 and 8.1. The lowest pH (7.6) is measured for LTP5, while the highest pH 

(8.1) is measured for LTP1 and LTP4 for 2006 and 2007, respectively (Fig. III-2b). The 

DO at LTP Creek decreased between LTP1 and LTP2 from 9.7 to 7.8 mg/l (Fig. III-2f) 

and then increased to 10.4 mg/l at LTP4 before decreasing. In 2007, SPC increases 

slightly from 906 to 1106 µs/cm between LTP1 and LTP2 and then remained nearly 

constant beyond (Fig. III-2h). The ORP shows an increasing trend between 185 mV to 

242 mV for 2006 and a decreasing trend between 196 and 115 mV (Fig. III-2d) for 2007 

between LTP1 and LTP2 after which the change was small. 

4.2. Spatial variability of SO4, Mg, Ca and Al in tailings discharge  

 Variations in concentrations of SO4, Mg, Ca, and Al are presented in Table III-1. 

Concentrations of SO4 range between 6.4 to 8.6 mM/L, Mg range between 2.5 and 3.7 

mM/L, Ca range between 4.5 and 6.0 mM/L, and Al is nearly constant at ~ 0.2 mM/L for 

2007 but increases slightly between ETP1 and ETP2 from 0.15 mM/L before fluctuating 
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slightly downstream. The trends in the downstream variation of SO4, Ca, and Mg for ETP 

are shown (Fig. III-3a, c, and e). 

. The water samples from the LTP Creek, range in SO4 concentrations range 

between 3.4 and 4.0 mM/L (Fig. III-3b), Mg range between 1.9 and 2.2 mM/L, Ca range 

between 3.3 and 4.4 mM/L, and Al is nearly constant at ~ 0.1 mM/L. Concentrations of 

SO4, Ca, and Mg show comparatively smaller increases relative to ETP between LTP1 

and LTP2, beyond which the concentrations also remain nearly constant. In general, for 

all species, ETP samples have relatively higher concentrations compared to LTP samples. 

The trends in the downstream variation of SO4, Ca, and Mg for LTP are shown (Fig. III-

3b, d, f, and h). 

4.3. Spatial variability of HCO3, DIC, logpCO2 and δδδδ13CDIC in tailings discharge  

 The results of variations in HCO3, DIC, logpCO2 and δ13CDIC are presented in 

Table III-1. For ETP Creek samples, HCO3 concentrations are nearly constant while DIC 

concentrations and log pCO2 values show an overall decrease downstream. Meanwhile, 

the δ13CDIC is enriched downstream from the source. The HCO3 concentrations range 

between 2.5 and 3.2 mM C/L, DIC concentrations range between 2.1 mM C/L and 3.3 

mM C/L, while logpCO2 values ranged between -3.0 and -1.3 atm. The δ
13CDIC values 

range between -8.7‰ and -4.4‰. The trends in the downstream variation of HCO3, DIC, 

logpCO2 and δ13CDIC for ETP are shown (Fig. III-4a, c, and e). 

 For LTP Creek samples, HCO3 concentrations also remain nearly constant 

between 4.1 and 4.3 mM/L, whereas DIC and logpCO2 concentrations fluctuate with 

slight increases downstream, ranging between 3.7 and 4.6 mM C/L for DIC and the 
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logpCO2 for LTP samples ranges between 2.2 and 2.7 atm. The δ
13CDIC for the LTP 

Creek samples varied between -9.2‰ and -11.5‰. Compared to ETP Creek samples, 

LTP Creek concentrations of HCO3, DIC and logpCO2 values are overall higher. On the 

other hand, the LTP Creek values for δ
13CDIC are more depleted and remain nearly 

constant compared to the δ
13CDIC values of ETP Creek samples. The trends in the 

downstream variation of HCO3, DIC, logpCO2 and δ13CDIC for LTP are shown (Fig. III-

4b, d, f, and h). 

5.  Discussion 

5.1. DIC and δδδδ13CDIC evolution in discharge water 

 DIC at the ETP and LTP tailings piles is produced from the neutralization of 

H2SO4 by carbonate minerals in the tailings. The ETP and LTP are composed of trace 

amounts of metal sulfides, carbonate minerals, dominantly dolomite with small quantities 

of calcite and other carbonates (Smith and Schumacher, 1993) that can generate acidity 

and neutralize carbonates. The production of acid by sulfide minerals and neutralization 

of carbonates, particularly dolomite is evidenced by the high concentrations of SO4, Ca, 

and Mg in the water samples (Table 1) (e.g., Singer and Stumm, 1970). The H2SO4 reacts 

with the dolomite according to equation 4 to release HCO3, SO4, Ca, and Mg in the 

tailings water. 

H2SO4 + MgCa(CO3)2 → SO4
2- + Mg2+ + Ca2+ + 2HCO3

-    (4) 

If HCO3 is the dominant DIC species produce from the neutralization reaction (Equation 

4), the DIC and HCO3 in the water samples should be correlated. The cross plot for DIC 
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vs. HCO3 (Fig. III-6a and b) for the ETP and LTP samples however, do not show any 

relationship. The lack of a linear relationship between DIC and HCO3 suggest the 

presence of significant amounts of DIC species in the form of  CO2(aq) in the water 

samples. The dissolved CO2(aq) is produced in excess, if HCO3 further reacts with protons 

according to reverse Equation 2 (Drever, 1997). The excess CO2(aq) that is produced from 

the HCO3 dehydration can be lost to the atmosphere as water discharges from the tailings 

pile. Although Figure III-5c and III-5d show that the ETP samples consistently have 

higher pCO2 compared to LTP samples, both tailings piles have relatively higher 

logpCO2(aq) compared to atmospheric. The dissolved CO2 could therefore be lost from 

both sites. However, rate of loss of DIC as CO2(g) from solution depend on the amount of 

excess CO2(aq) present in the water samples. The fraction of excess CO2(aq) in the water 

samples at the ETP and LTP Creeks are shown in Table III-1. The percent excess CO2 in 

the DIC was estimated according to the relation  

% ������ ��	 
 ��� � ����
�� � �100 

Higher excess CO2(aq) at the ETP site means that more DIC loss should occur at ETP 

compared to LTP site. The downstream decrease in DIC concentrations at the ETP 

whereby HCO3 remains nearly constant, support the observation of loss of mainly excess 

CO2(aq) from the samples. At the LTP, DIC and HCO3 concentrations remain nearly 

constant indicating that little excess CO2(aq) is lost from these samples. 

 The plots of logpCO2 vs. δ13CDIC (Fig. III-5e and f) show a negative relationship 

for samples at the ETP Creek described by the least square regression equation: y= -

0.34x-4.37; R2 =0.95 and -0.23x-4.1; R2=0.89 for 2006 and 2007 samples, respectively. 

The relationship between logpCO2 vs. δ13CDIC show that downstream DIC enrichment 

(5) 
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depends on the rate of loss of CO2(g) from the discharge. The δ13CDIC enrichment trend is 

consistent with observations from previous studies that show the downstream enrichment 

of δ13CDIC with decreasing pCO2 in stream water (e.g., Doctor et al., 2008; Fonyuy and 

Atekwana, 2008a). No relationship of logpCO2 vs. δ13CDIC is observed for LTP samples. 

The relationship between δ13CDIC vs. Ct/Co (where Co is initial concentration of DIC in 

water sample at the seep source and Ct is the fraction of DIC remaining as the discharge 

flows downstream) (Fig. III-5g and h), show a decrease in DIC corresponding to δ13CDIC 

enrichment for samples at the ETP. The LTP Creek, samples show no relationship 

between δ13CDIC vs. Ct/Co and the DIC remains nearly constant. The relationship 

between δ13CDIC vs. Ct/Co and logpCO2(aq) vs. δ13CDIC show that the change in δ
13CDIC 

composition in the water during the outgassing of CO2 depends on the rate of loss (slope 

of regression) and the concentration of excess CO2(aq) that is present in the water at the 

source and at any time during flow. At the LTP, where the DIC concentrations and 

logpCO2(aq) are initially lower compared to samples from the ETP Creek, there is no 

downstream decrease in DIC and logpCO2(aq) and no corresponding changes downstream 

in the δ13CDIC of the samples that remain nearly constant. This means that no excess CO2 

is lost from the DIC at the LTP site. 

5.2. Effect of CO2 outgassing on δδδδ13CDIC  

 The highest decrease in DIC for ETP Creek occurs between ETP1 and ETP2. This 

is because the DIC in samples discharged at the source is in greater disequilibrium with 

atmospheric CO2 due to significantly higher excess CO2 and thus logpCO2 relative to 

atmospheric. For both sampling periods the greatest change in δ
13CDIC (2.1‰ and 2.0‰) 
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occurs between the first and second sampling sites (ETP1 and ETP2). These are also the 

sites for which the greatest amount of DIC loss of 0.6 mM C/L and 0.4 mM C/L for 2006 

and 2007 respectively. The tailings groundwater discharging at the seep would tend to 

lose the excess CO2 more rapidly compared to downstream stations. Meanwhile, the 

outgassing of CO2(g) between the seep at ETP1 and downstream station ETP6 produced a 

total shift in δ13CDIC of 4.3‰ and 3.4‰ for 2006 and 2007 samples, respectively. The 

total amount of downstream DIC loss at ETP Creek increased to 0.9 mM C/L and 1.1 

mM C/L for 2006 and 2007 respectively and so did the enrichment in δ
13CDIC also 

increase from 2.1 to 4.3‰ and 2.0 to 3.4‰ for 2006 and 2007 respectively. The increase 

in δ13CDIC per unit decrease in logpCO2 given by the slope of the regression line is: 

0.23‰ and 0.35‰ (Fig. III-5d) for 2006 and 2007 respectively. This suggest that 

magnitude of δ13CDIC enrichment depends on the rate of loss of excess CO2(g) from water. 

Also the initial amount of excess CO2(aq) (intercept of the regression line) will affect the 

extent of  δ13CDIC enrichment. The LTP Creek samples, on the other hand, show very 

little loss in DIC concentrations over the entire downstream segment and comparatively 

very little shift in the δ13CDIC. Thus higher concentrations of excess CO2(g) loss in water at 

the ETP Creek leads to greater δ
13CDIC shift compared to the LTP Creek. 

 The mechanism of excess CO2(aq) loss to atmosphere at the ETP site is kinetic, and  

leads to a kinetic δ13CDIC enrichment. There is experimental evidence for the kinetic 

enrichment of DIC due to loss of CO2(g) from solution. For example, Zhang et al., (1995) 

reported a kinetic enrichment of 1‰ for CO2(g) outgassing from an acidic solution, 

Fonyuy and Atekwana (2008a,b) reported a kinetic enrichment of 1‰ to 3‰ in a study 

on acid mine drainage contaminated stream and Ali and Atekwana (2009) reported 
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enrichment of 1‰ to 6‰ for the acidification of water samples. Field studies have also 

reported kinetic enrichment of DIC. For example Atekwana and Fonyuy (2009) reported 

downstream enrichment of DIC of up to 8‰ in acid mine drainage (AMD) contaminated 

stream water, Doctor et al., (2008) report downstream DIC enrichment of nearly 4‰ for a 

headwater stream over a 600 m transect while Michaelis et al. (1985) reported δ
13CDIC 

enrichment of 5‰, in a study of CO2 outgassing from a carbonate rich groundwater 

discharge. The wide range in the kinetic enrichment in δ
13CDIC observed in these studies 

show that the kinetic enrichment during excess CO2 outgassing may best be explained by 

a physical process dependent on the rate and amount of excess CO2 that is released from 

the water. The absence of downstream variation in the HCO3 concentrations and the 

saturation state of carbonate minerals (Table A-5) in the water samples indicates that 

there is neither HCO3 dehydration nor carbonate dissolution occurring at the ETP and 

LTP sites. This suggest that the fate of the excess CO2(aq) in the water samples is not 

chemically controlled. The loss of CO2(g) from the water samples at the ETP Creek is 

therefore a physical process driven only by the difference in the concentration gradient of 

CO2(aq) across the water/air interface. Thus the factors that influence the δ
13CDIC shifts 

during excess CO2 loss from the water can be summarized thus:(1) the initial amount of 

excess CO2(aq) in the discharge water at the source and (2) the rate and amount of CO2(g) 

that is being lost to the atmosphere.  

6. Conclusion 

 Groundwater that is discharged from carbonate-rich tailings piles contains high 

DIC and excess CO2(aq). The loss of the excess CO2 from discharges is responsible for 
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isotopic enrichment during downstream flow. The mechanism of CO2(g) loss from the 

water to the atmosphere is kinetic and the rate and magnitude of the kinetic δ
13CDIC 

enrichment depends on initial amount of excess CO2(aq) that is present at the source and 

the amount and rate of CO2(g) loss to the atmosphere. The excess CO2(aq) in the discharge 

water is lost to the atmosphere due to a difference in the partial pressure (logpCO2(aq)) in 

the water relative to the atmosphere. The amount of excess CO2(g) that is lost is initially 

high and decreases downstream from the source. The loss of CO2(g) from the water 

samples is a physical process that results in the downstream kinetic enrichment in δ13CDIC 

due to the irreversible nature of the outgassing of excess CO2(g) from the water. The 

magnitude of the enrichment of δ
13CDIC during the outgassing CO2(g) depends on the 

initial concentration of excess CO2(g) in the water sample at the source and the amount of 

CO2(g) that is lost. At the ETP and the LTP Creeks, the total DIC decrease by 0.9 mM C/L 

and 1.1 mM C/L and a total shift in δ
13CDIC of 4.3‰ and 3.4‰ for 2006 and 2007 

respectively. The enrichment in δ
13CDIC per unit decrease in logpCO2 was 0.23‰ and 

0.35‰ for initial logpCO2 values of -2.0 and -1.8 atm respectively at the ETP and no 

significant change in DIC or rate of δ
13CDIC enrichment was measured for LTP creek 

samples. In general, the water samples at ETP had more excess CO2(g) and showed more 

shifts in δ13CDIC compared to LTP Creek samples that showed no change in DIC 

concentrations and no shifts in δ
13CDIC. 
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Figure III-1. Map of study site (a) showing locations of the Elvin’s Tailings Pile and Leadwood Tailings 
Pile  and (b), (c) show the sampling locations along the Elvin’s Tailings Pile discharge and the Leadwood 
Tailings Pile discharge (LTP Creek). Maps are adapted from Google Earth (2009). 
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Figure III-2. Plots of spatial variation of pH, ORP, DO and SPC along the Elvin’s Tailings Pile discharge 
Creek and along the Leadwood Tailings Pile discharge (LTP Creek).  
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Figure III-3. Plots of spatial distribution of SO4, Ca, Mg and Al along the Elvin’s Tailings Pile and the 
Leadwood Tailings Pile discharge Creeks.  
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Figure III-4: Plots of spatial variation of HCO3, DIC, logpCO2 and δ13CDIC along the Elvin’s Tailings Pile 
the Leadwood Tailings Pile discharge.  
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Figure III-5: Cross plots of HCO3 vs. DIC, logpCO2 vs. pH and logpCO2 vs. δ13CDIC and δ13CDIC vs. Ct/Co 
along the Elvin’s Tailings Pile (ETP Creek) and the Leadwood Tailings Pile discharge (LTP Creek). 
(Where Co is the DIC concentration at the source and Ct is the DIC concentration at station t downstream) . 
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Table III-1: Results of the physical, chemical, and stable isotope analyses for discharge water from the Elvin’s Tailings Pile and Leadwood Tailings Pile, 
St. Francoise County, SE Missouri, USA 

Sample ID Distance Temp. SPC DO pH ORP HCO3 DIC δ
13CDIC Cl SO4 Al Ca K Mg Na eCO2 logpCO2 

 (m) (oC) (µs/cm) (mg/L)  (mV) (mM/L) (mMC/L) (‰) (mM/L) (mM/L) (mM/L) (mM/L) (mM/L) (mM/L) (mM/L) % (atm) 

2006                   

ETP CreeK                  

ETP 1 0.0 18.9 1112 3.7 7.0 218 2.6 4.3 -8.7 0.3 6.4 0.2 4.5 0.2 2.5 0.2 39 -20 

ETP 2 127 25.7 1294 8.2 7.8 173 2.5 3.8 -6.7 0.3 6.7 0.2 4.6 0.2 2.5 0.2 34 -2.8 

ETP 3 339 27.8 1440 8.3 7.9 161 2.7 4.0 -5.2 0.3 7.0 0.2 5.0 0.2 2.7 0.2 33 -2.9 

ETP 4 439 27.7 1446 7.8 7.9 157 2.5 3.9 -5.0 0.3 7.3 0.2 6.0 0.2 3.2 0.3 35 -3.0 

ETP 5 509 27.7 1450 8.1 8.0 146 2.5 3.9 -4.8 0.3 7.1 0.2 5.0 0.2 2.7 0.2 37 -3.0 

ETP 6 620 27.4 1441 7.9 8.0 148 2.6 3.5 -4.4 0.3 7.3 0.2 4.8 0.2 2.6 0.2 25 -3.0 

LTP Creek                  

LTP 1 0 21.1 906 8.8 8.1 185 4.8 4.9 -11.5 0.1 3.4 0.1 3.7 0.1 2.0 0.2 2 -2.7 

LTP 2 120 20.6 928 7.8 7.8 206 4.1 5.2 -11.3 0.2 3.5 0.1 3.4 0.1 2.1 0.2 2 -2.4 

LTP 3 350 20.8 947 8.5 7.7 229 4.8 5.1 -11.0 0.2 3.6 0.1 3.4 0.1 2.0 0.2 5 -2.3 

LTP 4 585 21.1 913 10.4 8.0 217 4.9 5.0 -10.8 0.2 3.4 0.1 3.5 0.1 1.9 0.2 3 -2.6 

LTP 5 822 20.9 926 8.7 7.6 242 5.0 5.3 -11.2 0.3 3.4 0.1 3.3 0.1 2.0 0.3 6 -2.2 

2007                   

ETP CreeK                  

ETP 1 0 15.2 1273 3.8 6.5 168 3.2 4.7 -8.7 0.3 6.5 0.1 4.8 0.2 3.0 0.4 33 -1.3 

ETP 2 127 18.1 1600 4.5 7.1 162 3.2 4.3 -6.6 0.3 8.6 0.2 5.9 0.2 3.7 0.3 26 -1.9 

ETP 3 339 20.6 1600 8.8 7.5 176 3.1 4.2 -6.0 0.3 8.3 0.2 6.0 0.2 3.7 0.3 27 -2.4 

ETP 4 439 22.3 1580 8.4 7.6 167 3.0 3.9 -5.8 0.3 8.3 0.2 6.0 0.2 3.7 0.3 23 -2.4 

ETP 5 509 22.5 1592 8.3 7.6 162 3.0 3.9 -5.3 0.3 8.4 0.2 6.0 0.2 3.7 0.3 21 -2.5 

ETP 6 620 22.4 1593 8.2 7.7 164 3.0 4.1 -5.3 0.3 8.3 0.2 5.7 0.2 3.5 0.3 26 -2.3 

LTP Creek                  

LTP 1 0 19.9 955 9.7 8.0 196 5.2 5.2 -9.8 0.1 2.9 0.1 3.6 0.1 1.9 0.3 0 -2.5 

LTP 2 120 22.1 1106 8.5 7.9 168 5.0 5.5 -9.5 0.2 4.0 0.1 4.4 0.1 2.2 0.3 9 -2.5 

LTP 3 350 23.0 1089 7.6 7.9 1150 4.7 5.1 -9.5 0.2 3.8 0.1 4.2 0.1 2.1 0.3 8 -2.6 

LTP 4 585 24.7 1068 8.2 8.1 135 4.9 5.1 -9.2 0.2 3.7 0.1 4.1 0.1 2.1 0.3 5 -2.7 

LTP 5 822 22.6 1063 7.6 7.8 147 5.0 5.9 -9.9 0.2 3.6 0.1 3.9 0.1 2.2 0.3 6 -2.4 
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CHAPTER V 
 

 

CONCLUSION   

This work presents three separate but related research projects on the carbon 

cycling. It focuses on the use of stable isotopes of carbon, hydrogen and oxygen to 

understand processes and mechanisms that transform dissolved inorganic carbon during 

evolution in ground and surface waters impacted by acidification and/or neutralization. 

The research objective was to conduct field and laboratory experiments to investigate:  

1) the DIC speciation and carbon isotopic shifts during progressive acidification   

2) DIC production and fate in groundwater and soil water affected by acidification and 

neutralization   

3) DIC and δ13CDIC evolution in discharged from neutral mine tailings piles  

The following products result from the experiments conducted in this study: 

1) A model of δ13CDIC and δ13CCO2 evolution of surface waters during acidification. 

2) Information on DIC partitioning and δ13CDIC and δ13CCO2 shifts in groundwater and soil 

water during acid neutralization of sulfuric acid. 

3) Information on DIC evolution and δ13CDIC shifts during downstream evolution of 

neutral mine discharged from mine tailings piles. 
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1. A model of δ13CDIC and δ13CCO2 evolution of surface waters during acidification 

The first experiment involved the progressive acidification of natural and artificial 

water samples to study the effects of acidification on carbon isotope shifts. From the 

results of the laboratory experiments, the δ
13CDIC measured for samples undergoing 

acidification show variable enrichment or depletion. The δ
13CDIC was enriched during the 

HCO3
- dehydration phase and was depleted after HCO3

- was exhausted. The trends in 

enrichment and depletion of the δ13CDIC mimicked those of the pCO2. However, the rate 

of isotopic enrichment and depletion in each acidified sample was different and depended 

on the initial HCO3
-:CO2(aq) ratio. The concentration of CO2(aq) in each sample controls 

the extent of isotopic exchange of carbon between the un-dehydrated HCO3
- and the 

CO2(aq). The δ13C of CO2 captured from the acidified samples showed a steep enrichment 

trend with progressive acidification consistent with continous enrichment from addition 

of carbon-13. The δ13CCO2 evolved was identical to the δ13CDIC of samples at the point 

where all HCO3
- was exhausted. Higher concentrations of CO2(aq) results in greater 

exchange of carbon between HCO3
- and CO2(aq) which minimizes the enrichment in 

δ
13CDIC from HCO3

--CO2(g) fractionation during progressive acidification. The depletion 

of the δ13CDIC after HCO3
- was exhausted in the samples was governed by isotopic 

fractionation controlled by the solubilities of 13C vs.12C during water-gas exchange. The 

slightly more soluble and reactive 12C is retained in solution causing the observed 13C 

depletion. 

Whether enrichments or depletion in the δ
13CDIC are measured for field samples will 

depend on the extent to which the acidification process occurred before sampling. If 

samples are collected during the HCO3
- dehydration phase, enrichment in the δ

13CDIC will 
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be observed, the magnitude of which will depend on the extent of HCO3
- dehydration. 

Alternatively, if samples are collected after all HCO3
- is dehydrated, a depletion in the 

δ
13CDIC will be measured, the magnitude of which will also dependent on the progress of 

acidification. The DIC speciation and δ
13C shifts is important for studies involving 

carbon cycling in acid mine drainage contamination or acidic input from acid rains that 

cause highly acidic solutions.  

2. Information on DIC partitioning and stable isotope fractionation δ13C 

groundwater and soil water in a tailings  

Acidification and neutralization are the dominant controls of the chemical and 

carbon isotope evolution in a metal sulfide-rich and carbonate-rich tailings pile. The 

results of this study show that acid neutralization produces “leachate” with relatively high 

concentrations of DIC, SO4 and Ca+Mg, and enriched δ
13CDIC. The DIC in samples from 

the vadose zone is characterized by high CO2(aq) relative to HCO3. Additional 

neutralization of protons by HCO3 and degassing of CO2 create high amounts of CO2 in 

the vadose zone, evident in the enriched δ
13CCO2 and clearly distinguishable from lighter 

δ
13CCO2 in a background soil zone. This CO2 is in part responsible for the carbonate 

evolution of the groundwater. DIC in the groundwater is characterized by higher HCO3 

concentrations relative to CO2(aq). In addition, δ13CDIC modeling indicates that besides 

mixing or dilution of leachate with infiltration and lateral groundwater recharge, the 

carbonate evolution is regulated by the CO2 in the vadose zone.  

These results are important for interpreting DIC and stable carbon isotope evolution 

of groundwater. We provide chemical and isotopic evidence that suggests that in natural 
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and anthropogenic settings where sulfuric acid production by metal sulfides and 

neutralization by carbonates occur, the carbonate evolution of shallow groundwater is not 

described by the classical model ascribed to soil zone CO2(g). 

3. Information on DIC evolution and δ13CDIC shifts during downstream evolution 

of neutral mine discharged from mine tailings piles.  

The results of this study show that neutral mine discharge from carbonate-rich tailings 

piles contains high DIC and excess CO2(aq). The loss of the excess CO2 from discharges is 

responsible for isotopic enrichment during downstream flow. The mechanism of CO2(g) 

loss from the water to the atmosphere is kinetic and the rate and magnitude of the kinetic 

δ
13CDIC enrichment depends on initial amount of excess CO2(aq) that is present at the 

source and the amount and rate of CO2(g) loss to the atmosphere. The excess CO2(aq) in the 

discharge water is lost to the atmosphere due to a difference in the partial pressure 

(logpCO2(aq)) in the water relative to the atmosphere. The amount of excess CO2(g) that is 

lost is initially high and decreases downstream from the source. The loss of CO2(g) from 

the water samples is a physical process that results in the downstream kinetic enrichment 

in δ13CDIC due to the irreversible nature of the outgassing of excess CO2(g) from the water. 

The magnitude of the enrichment of δ
13CDIC during the outgassing CO2(g) depends on the 

initial concentration of excess CO2(g) in the water sample at the source and the amount of 

CO2(g) that is lost. 

4. Suggestion and recommendations 

 Investigations of dissolve inorganic carbon evolution in surface and groundwater 

offer important insights into carbon evolution and the use of stable isotopes in the study 
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of carbon cycling in environments impacted by neutral mine drainage. Field experiment 

to quantify the amount of CO2 that is loss from tailings environment from contributions 

from acid neutralization to the atmosphere are important in assessing the overall effect on 

local carbon budgets. 

In order to adequately assess the effects of acidification on the stable carbon isotopes 

of DIC in surface waters, time series measurements may be necessary to capture the 

progressive changes. When spatial and time series measurements are made, DIC species 

and the δ13CDIC should be measured along with routine physical and chemical parameters, 

as this would provide adequate input to model the process of acidification and its effect 

on stable carbon isotopes. 

Further field investigations on (1) high resolution spatial and temporal sampling of 

soil, groundwater, surface water samples and sediments for geochemical parameters DIC, 

DOC, stable isotope analysis of surface discharge from the tailings piles and (2) diel 

variations of neutral mine discharge are needed to provide data that can capture detailed 

stable isotope changes and DIC variations in field settings. For adequate characterization 

of mechanisms and processes affecting the inorganic carbon evolution in water impacted 

by neutral mine drainage The data will provide information to fill knowledge gaps in (1) 

depth and spatial evolution of DIC and δ
13CDIC in carbonate rich tailings environment and 

(2) the impact of biological activities and temperature changes on DIC evolution in 

surface discharge from neutral mine drainage  
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APPPENDICES 

Table A-1: Results of physical, chemical, and isotopic analyses of closed and open acidification and for unacidified samples of tap water 

Date Time Sample Temp 
(oC) 

SPC 
(us/cm3) 

DO 
(mg/L) 

pH ORP H2SO4 
(ml) 

DIC 
(mMC/L) 

Alk 
(mg/L) 

δδδδ
13CDIC 
(‰) 

CO2 
(mMC/L) 

δδδδ
13CCO2  
(‰) 

Tap water-Unacidified 

4/9/06 10:30 TW1-1 17.6 496 4.64 7.4 467 0 4.6 234 -12.5 - - 

4/12/06 22:30 TW1-2 23.2 483 5.57 7.6 531 0 4.4 232 -11.6 - - 

4/15/06 11:30 TW1-3 24.4 495 5.34 8.0 540 0 4.3 231 -11.0 - - 

4/19/06 9:30 TW1-4 24.2 487 5.9 8.1 456 0 4.4 222 -10.6 - - 

4/22/06 21:00 TW1-5 24.2 485 5.49 8.2 389 0 4.3 228 -9.8 - - 

4/26/06 10:30 TW1-6 23.5 477 6.13 8.3 257 0 4.0 222 -9.5 - - 

4/29/06 8:00 TW1-7 22.6 456 6.95 8.3 259 0 4.4 224 -9.0 - - 

5/5/06 12:00 TW1-8 22.9 434 5.83 8.1 281 0 3.8 199 -8.5 - - 

5/8/06 8:45 TW1-9 25.0 441 6.21 8.1 214 0 3.7 192 -7.9 - - 

5/13/06 10:45 TW1-10 24.9 426 5.75 8.1 213 0 3.6 185 -7.3 - - 

5/16/06 16:00 TW1-11 24.2 414 5.45 8.1 243 0 3.6 169 -6.8 - - 

5/19/06 10:30 TW1-12 25.3 418 5.61 8.0 263 0 3.7 167 -6.4 - - 

Tap water-Unacidified 

4/9/06 11:00 TW2-1 16.1 490 4.88 7.4 532 0 3.9 236 -12.6 - - 

4/12/06 23:00 TW2-2 23.2 484 5.58 7.7 586 0 4.4 230 -11.5 - - 

4/15/06 12:00 TW2-3 24.4 497 5.14 8.0 557 0 4.3 230 -10.9 - - 

4/19/06 10:00 TW2-4 24.3 491 5.47 8.2 508 0 4.5 232 -10.2 - - 

4/22/06 21:00 TW2-5 24.0 476 5.47 8.1 466 0 4.1 223 -9.6 - - 

4/26/06 11:00 TW2-6 23.4 453 5.9 8.1 395 0 4.2 211 -9.0 - - 

4/29/06 8:30 TW2-7 22.4 433 6.48 8.1 485 0 4.2 208 -8.5 - - 

5/5/06 12:10 TW2-8 22.9 417 5.44 8.2 346 0 3.4 195 -8.3 - - 

5/8/06 9:00 TW2-9 25.0 427 5.27 8.1 211 0 3.6 183 -7.1 - - 

5/13/06 11:20 TW2-10 24.8 415 5.87 8.2 202 0 3.5 182 -6.6 - - 
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Date Time Sample 
Temp 
(oC) 

SPC 
(us/cm3) 

DO 
(mg/L) 

pH ORP 
H2SO4 
(ml) 

DIC 
(mMC/L) 

Alk 
(mg/L) 

δδδδ
13CDIC 
(‰) 

CO2 
(mMC/L) 

δδδδ
13CCO2  
(‰) 

5/16/06 16:40 TW2-11 24.3 404 5.44 8.1 237 0 3.5 176 -6.1 - - 

5/19/06 10:45 TW2-12 25.3 410 5.58 8.2 247 0 3.7 169 -5.8 - - 

Tap water -Closed Acidification 

7/1/06 11:00 ATW1-1 22.9 486 6.37 7.3 605 0 4.6 230 -12.2 0.0 -19.6 

7/1/06 1:30 ATW1-2 22.4 499 4.63 7.0 636 0.3 4.4 205 -11.8 0.1 -18.2 

7/1/06 12:30 ATW1-3 22.4 505 3.07 6.8 653 0.3 3.9 168 -11.2 0.2 -17.0 

7/1/06 14:10 ATW1-4 22.9 512 2.64 6.6 656 0.3 3.4 137 -10.6 0.3 -15.0 

7/1/06 15:45 ATW1-5 22.9 513 1.78 6.6 638 0.3 2.7 106 -9.1 0.3 -13.3 

7/1/06 17:30 ATW1-6 23.1 525 1.7 6.4 342 0.3 2.4 78 -8.7 0.2 -13.3 

7/1/06 22:45 ATW1-7 23.2 533 3.06 6.2 309 0.3 1.5 39 -7.5 0.3 -11.1 

7/1/06 0:05 ATW1-8 23.2 552 5.21 5.8 291 0.3 1.3 17 -7.3 0.3 -10.0 

7/2/06 10:30 ATW1-9 22.4 589 4.77 3.7 457 0.2 0.9 0 -8.0 0.1 -7.2 

7/2/06 13:00 ATW1-10 22.6 675 4.73 3.3 459 0.1 0.5 0 -8.2 0.2 -7.2 

7/2/06 13:45 ATW1-11 22.7 776 2.65 3.1 456 0.1 0.3 0 -8.4 0.2 -8.1 

7/2/06 16:30 ATW1-12 22.3 920 3.78 2.9 470 0.2 0.1 0 -8.8 0.1 -8.4 

7/2/06 19:30 ATW1-13 22.4 1178 2.67 2.7 468 0.3 0.0 0 -9.3 0.0 -9.2 

Tap water- Open Acidification 

4/9/06 20:30 ATW2-1 21.4 463 3.7 7.1 602 0 4.9 231 -12.4 - - 

4/9/06 21:00 ATW2-2 21.6 475 4.5 6.5 661 0.5 4.8 187 -12.1 - - 

4/9/06 21:15 ATW2-3 21.7 484 5.3 6.1 692 0.5 3.9 145 -11.9 - - 

4/9/06 21:45 ATW2-4 21.8 498 6.1 5.8 711 0.5 4.1 96 -11.7 - - 

4/9/06 22:00 ATW2-5 21.9 507 6.8 5.6 724 0.3 3.5 69 -12.0 - - 

4/9/06 22:15 ATW2-6 22.0 515 6.7 5.4 676 0.3 3.5 40 -11.4 - - 

4/9/06 22:45 ATW2-7 22.1 527 7.1 4.6 754 0.3 3.1 8 -11.5 - - 

4/9/06 23:05 ATW2-8 22.2 683 6.8 3.1 758 0.3 2.6 0 -11.8 - - 

4/9/06 23:20 ATW2-9 22.2 868 7.1 2.8 794 0.3 2.0 0 -11.9 - - 

4/9/06 23:45 ATW2-10 22.2 1082 7 2.6 810 0.3 1.3 0 -12.1 - - 
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Table A-2: Results of chemical analysis of closed and open acidification and for unacidified samples  of tap 
water, groundwater, AMD spring and NaHCO3 solution  

 
 

Sample ID Fl Cl SO4 Na K Mg Ca 

mg/L mg/L mg/L mg/L mg/L mg/L mg/L 

Tap water-Unacidified 

TW1-1 1.1 3.6 31.8 3.5 0.7 33.3 55.4 

TW1-2 1.1 3.7 31.4 3.5 0.6 33.5 57.1 

TW1-3 0.7 - 31.5 3.6 0.6 33.3 56.8 

TW1-4 1.1 3.7 31.6 3.6 0.6 33.5 57.1 

TW1-5 1.1 3.7 31.1 3.7 0.6 33.9 57.9 

TW1-6 0.9 3.7 31.8 3.7 0.6 33.8 57.4 

TW1-7 1.1 3.8 31.6 3.7 0.5 33.7 53.9 

TW1-8 1.0 3.8 32.1 3.7 0.6 33.6 45.9 

TW1-9 1.0 3.8 31.9 3.7 0.5 33.5 42.3 

TW1-10 0.9 3.8 31.7 3.7 0.5 33.6 39.6 

TW1-11 0.9 3.8 31.8 3.7 0.6 34.5 37.6 

TW1-12 0.9 3.8 31.7 3.7 0.5 35.4 37.3 

Tap water-Unacidified 

TW2-1 - - 32.8 5.6 3.4 44.4 57.6 

TW2-2 1.1 3.8 31.8 3.6 0.5 33.2 59.4 

TW2-3 1.1 3.7 31.7 3.7 0.5 33.1 56.7 

TW2-4 1.1 3.7 31.8 3.6 0.5 33.6 57.3 

TW2-5 1.0 5.6 31.9 3.7 0.8 50.3 67.8 

TW2-6 1.1 3.8 32.0 3.7 0.5 33.2 42.8 

TW2-7 1.0 3.7 32.2 3.7 0.5 33.7 40.5 

TW2-8 1.1 3.8 32.2 3.7 0.5 33.3 40.4 

TW2-9 0.9 3.8 32.5 3.7 0.5 33.3 37.2 

TW2-10 0.9 3.8 32.1 3.7 0.5 33.3 35.2 

TW2-11 0.9 3.8 31.6 3.7 0.5 33.4 33.7 

TW2-12 0.9 4.1 32.5 3.8 0.5 33.2 32.4 

Tap water-Closed Acidification 

ATW1-1 1.1 3.4 34.9 3.2 - 34.1 59.6 

ATW1-2 1.2 3.3 64.2 3.2 - 34.7 61.0 

ATW1-3 1.1 3.6 102.1 3.3 - 35.4 61.9 

ATW1-4 1.2 3.4 126.9 3.2 - 35.1 62.1 

ATW1-5 1.1 3.4 156.3 3.2 - 34.9 61.2 

ATW1-6 0.9 3.4 185.5 3.2 - 34.8 61.1 

ATW1-7 0.9 3.4 212.4 3.2 - 35.0 60.8 

ATW1-8 1.1 3.6 259.2 3.2 - 35.2 61.0 

ATW1-9 1.1 3.4 274.4 3.2 - 35.7 62.3 

ATW1-10 1.2 3.6 288.8 3.2 - 35.9 62.4 

ATW1-11 1.1 3.5 312.0 3.2 - 35.8 62.3 
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Sample ID Fl Cl SO4 Na K Mg Ca 

ATW1-12 1.1 3.5 330.4 3.3 - 36.4 62.7 

ATW1-13 1.0 3.4 353.6 3.2 - 35.0 60.9 

Tap water-Open Acidification  
ATW2-1 1.3 3.6 28.2 3.4 - 33.5 58.8 

ATW2-2 1.2 3.5 63.0 3.4 - 33.7 58.8 

ATW2-3 1.2 3.4 105.8 3.4 - 33.9 59.6 

ATW2-4 1.2 3.6 156.9 3.4 - 34.0 59.2 

ATW2-5 1.2 3.5 186.1 3.4 - 34.4 59.3 

ATW2-6 1.1 3.6 218.0 3.5 - 34.5 59.4 

ATW2-7 1.0 3.6 246.4 3.4 - 34.0 58.6 

ATW2-8 1.0 3.5 274.1 3.5 - 34.8 60.6 

ATW2-9 1.0 4.4 316.6 3.4 - 35.1 61.4 

ATW2-10 0.9 3.5 329.1 3.5 - 34.8 60.3 

Groundwater-Unacidified 

FTP1-1 0.5 1.8 382.5 0.8 10.5 56.7 136.7 

FTP1-2 0.6 1.7 381.4 0.8 10.9 57.3 138.4 

FTP1-3 0.5 1.8 386.0 0.8 10.8 57.3 137.1 

FTP1-4 0.7 1.8 386.9 0.8 10.9 57.3 135.1 

FTP1-5 0.5 1.8 386.3 0.8 10.6 56.9 133.6 

FTP1-6 0.6 1.8 382.8 0.8 10.8 57.3 132.8 

FTP1-7 0.5 1.8 385.9 0.8 10.8 57.5 131.4 

FTP1-8 0.7 1.8 387.7 0.8 10.8 57.2 129.0 

FTP1-9 0.6 1.8 388.3 0.8 10.8 56.9 127.8 

FTP1-10 0.5 1.8 382.2 0.8 10.9 56.9 125.3 

FTP1-11 0.5 1.8 381.2 0.8 10.8 56.7 123.1 

Groundwater-Unacidified 

FTP2-1 0.7 2.8 380.7 0.7 11.0 55.9 135.0 

FTP2-2 0.6 1.8 383.7 0.8 11.2 56.3 136.4 

FTP2-3 0.5 1.8 382.9 0.8 10.9 56.6 136.6 

FTP2-4 0.7 1.8 380.6 0.8 11.1 55.3 131.8 

FTP2-5 0.5 1.8 380.0 0.8 10.8 55.4 130.9 

FTP2-6 0.7 1.8 380.9 0.8 10.8 56.7 131.6 

FTP2-7 0.6 1.8 384.3 0.8 10.7 56.0 128.3 

FTP2-8 0.6 1.7 360.0 0.8 10.5 54.0 122.1 

FTP2-9 0.6 1.7 365.2 0.7 10.4 53.1 118.9 

FTP2-10 0.7 2.0 430.9 0.9 12.3 62.6 140.2 

FTP2-11 0.4 1.4 282.9 0.6 8.2 43.1 94.3 

Groundwater-Closed acidification 

AFTP1-1 0.8 2.7 395.8 0.7 9.8 57.0 138.8 

AFTP1-2 0.8 1.7 417.1 0.7 9.6 57.4 141.2 

AFTP1-3 0.8 1.7 439.3 0.7 9.8 57.6 140.6 

AFTP1-4 0.8 1.7 463.7 0.7 9.8 58.2 140.9 
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Sample ID Fl Cl SO4 Na K Mg Ca 

AFTP1-5 0.8 1.7 486.1 0.7 9.7 57.8 140.5 

AFTP1-6 0.8 1.7 518.0 0.7 9.8 57.9 140.4 

AFTP1-7 0.8 1.7 529.3 0.7 9.7 57.6 139.4 

AFTP1-8 0.8 1.7 542.7 0.7 9.6 57.7 139.0 

AFTP1-9 0.8 1.7 557.1 0.7 9.7 57.9 140.0 

AFTP1-10 - - 570.2 - - - - 

AFTP1-11 0.7 1.7 586.8 0.7 9.7 58.1 139.0 

AFTP1-12 0.7 1.7 612.4 0.7 9.7 57.8 138.7 

AFTP1-13 0.7 1.7 643.4 0.7 9.5 57.8 138.9 

AFTP1-14 0.8 1.7 683.2 0.7 9.7 57.5 138.1 

Groundwater Open acidification 

AFTP2-1 0.9 2.9 393.6 0.7 10.4 56.6 141.1 

AFTP2-2 0.9 1.8 413.6 0.7 10.5 57.1 142.6 

AFTP2-3 0.7 1.7 428.6 0.7 10.4 56.9 142.3 

AFTP2-4 0.8 1.7 451.2 0.8 10.4 57.0 141.8 

AFTP2-5 0.9 1.7 470.7 0.7 10.5 57.1 142.4 

AFTP2-6 0.7 1.9 492.6 0.7 10.3 57.0 142.6 

AFTP2-7 0.8 1.7 512.8 0.7 10.3 57.2 142.6 

AFTP2-8 0.8 1.6 531.8 0.7 10.4 56.9 142.1 

AFTP2-9 0.7 1.8 542.6 0.7 10.2 56.6 141.5 

AFTP2-10 0.5 1.4 551.8 0.7 10.5 56.9 142.8 

AFTP2-11 - 1.8 559.9 - - - - 

AFTP2-12 0.5 1.7 578.4 0.8 10.4 57.4 146.5 

AFTP2-13 0.6 1.8 592.9 0.7 10.2 57.1 149.4 

AFTP2-14 0.5 1.7 613.3 0.8 9.5 56.9 151.8 

AFTP2-15 0.5 1.7 654.6 0.8 10.5 56.7 156.4 

AFTP2-16 0.5 1.7 698.3 - 1.1 0.2 - 

AMD-Unacidified 

AMD1-1 1.8 15.7 1575.6 74.9 11.2 141.0 345.7 

AMD1-2 0.5 18.7 1614.4 77.1 12.7 145.9 358.8 

AMD1-3 0.4 20.5 1611.4 77.3 13.0 146.2 358.3 

AMD1-4 0.4 21.6 1698.7 76.9 12.5 145.8 359.3 

AMD1-5 0.4 20.2 1576.8 77.2 12.8 145.7 357.8 

AMD1-6 0.5 21.4 1665.1 77.2 12.7 145.6 358.9 

AMD1-7 1.4 20.0 1545.1 77.3 13.1 145.0 357.1 

AMD1-8 0.3 20.9 1611.7 77.5 13.2 145.9 359.1 

AMD1-9 0.5 25.5 1587.5 77.6 13.6 145.1 358.0 

AMD-Unacidified 

AMD2-1 1.5 20.1 1569.1 74.5 12.2 139.0 341.5 

AMD2-2 1.5 20.4 1609.7 76.2 12.3 142.1 349.3 

AMD2-3 1.9 17.9 1403.9 66.3 11.0 123.4 303.0 

AMD2-4 2.8 20.5 1606.8 76.3 12.7 142.4 349.7 
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Sample ID Fl Cl SO4 Na K Mg Ca 

AMD2-5 1.3 20.0 1542.5 74.1 12.4 138.3 338.9 

AMD2-6 1.2 20.3 1577.0 75.0 12.9 140.8 347.1 

AMD2-7 2.6 20.3 1588.6 75.4 12.8 141.6 349.6 

AMD2-8 2.9 20.8 1596.5 76.3 13.3 143.4 352.5 

AMD2-9 0.5 13.8 1575.0 75.8 13.6 142.8 351.5 

AMD2-10 1.5 19.3 1498.1 75.6 12.8 142.3 350.1 

AMD2-11 2.0 20.1 1564.1 74.5 12.3 140.3 344.9 

AMD2-12 1.5 13.7 1591.5 76.0 13.0 143.2 351.7 

AMD-Closed Acidification 

AAMD1-1 0.5 20.8 1607.1 75.7 13.3 152.2 353.0 

AAMD1-2 0.8 20.3 1612.8 76.0 13.4 153.0 353.6 

AAMD1-3 0.5 19.8 1649.0 75.9 13.1 153.0 353.8 

AAMD1-4 0.5 19.7 1657.5 75.7 13.2 153.0 352.6 

AAMD1-5 0.5 20.1 1683.0 76.3 13.9 153.7 354.0 

AAMD1-6 0.5 20.2 1711.1 76.9 14.0 155.1 355.4 

AAMD1-7 0.5 19.9 1710.9 75.9 13.7 153.2 353.0 

AAMD1-8 0.5 20.0 1745.3 76.3 13.6 154.1 354.4 

AAMD1-9 0.5 20.0 1759.3 76.1 13.9 154.0 353.8 

AAMD1-10 0.5 20.4 1791.5 76.8 13.7 155.4 354.5 

AAMD1-11 0.5 20.5 1831.2 77.4 13.9 156.9 357.3 

AAMD1-12 0.9 19.9 1841.7 76.0 13.4 154.2 353.8 

AMD-Open Acidification  

AAMD2-1 0.5 20.1 1609.4 76.3 14.3 154.2 354.7 

AAMD2-2 0.5 20.2 1640.8 77.0 13.9 156.1 357.8 

AAMD2-3 0.5 20.2 1641.7 76.8 14.6 154.9 353.9 

AAMD2-4 0.5 20.1 1668.5 76.7 13.8 155.2 355.2 

AAMD2-5 0.5 20.1 1673.2 76.2 14.5 154.1 354.5 

AAMD2-6 0.5 20.1 1700.4 76.8 14.0 155.9 356.4 

AAMD2-7 0.5 20.0 1702.0 76.0 14.6 154.0 353.8 

AAMD2-8 0.5 20.1 1717.7 76.0 14.7 153.8 353.6 

AAMD2-9 0.5 20.1 1730.4 76.4 14.8 154.6 354.8 

AAMD2-10 0.4 15.7 1743.1 74.4 14.6 150.7 346.7 

AAMD2-11 0.5 20.3 1757.7 76.2 14.9 154.0 354.3 

AAMD2-12 0.4 20.0 1772.0 76.1 14.7 154.6 355.5 

AAMD2-13 0.5 20.0 1782.9 76.2 14.9 154.5 355.6 

AAMD2-14 0.4 20.0 1804.4 75.8 14.7 153.7 353.6 

AAMD2-15 0.4 19.9 1842.4 76.1 15.0 153.8 353.8 
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Solid NaHCO3 

Date Sample CO2 

(mM/L) 
δδδδ

13C 

(‰) 
5/8/2007 NaHCO3-1 11.6 -3.6 

5/8/2007 NaHCO3-2 11.4 -3.4 

5/8/2007 NaHCO3-3 12.0 -3.4 

5/8/2007 NaHCO3-4 11.9 -3.6 

5/9/2007 NaHCO3-5 11.6 -3.6 

 
 
 

Sample (ID) Al 
(mg/L) 

Mg 
(mg/L) 

Na 
(mg/L) 

Rb 
(mg/L) 

Sr 
(mg/L) 

NaHCO3 Open Acidification 

AS1-1 1.1 0.2 99.8 3.4 2.3 

AS1-2 1.1 0.2 100.7 3.4 2.3 

AS1-3 1.2 0.3 100.5 3.8 2.5 

AS1-4 1.4 0.3 100.9 4.4 2.9 

AS1-5 1.0 0.2 100.5 3.3 2.2 

AS1-6 1.3 0.3 101.3 4.1 2.7 

AS1-7 1.0 0.2 103.2 3.3 2.2 

AS1-8 1.0 0.2 104.2 3.2 2.1 

AS1-9 0.8 0.2 104.0 2.6 1.7 

AS1-10 1.2 0.2 103.0 3.8 2.5 

AS1-11 1.1 0.2 100.7 3.4 2.2 

AS1-12 1.1 0.2 103.8 3.4 2.2 

AS1-13 1.1 0.2 101.9 3.5 2.3 

AS1-14 1.1 0.2 102.7 3.6 2.4 

AS1-15 1.1 0.2 102.6 3.5 2.3 

AS1-16 1.1 0.2 100.6 3.3 2.2 

AS1-17 1.2 0.2 104.8 3.7 2.5 

NaHCO3 Open Acidification 

AS3-1 1.3 0.3 98.7 3.3 2.4 

AS3-2 1.1 0.2 101.6 2.9 2.1 

AS3-3 0.9 0.2 103.2 2.4 1.7 

AS3-4 1.3 0.2 100.6 3.3 2.4 

AS3-5 1.0 0.2 101.9 2.7 1.9 

AS3-6 0.9 0.2 103.4 2.4 1.7 

AS3-7 0.9 0.2 88.3 2.3 1.7 

AS3-8 1.1 0.2 103.5 2.8 2.0 

AS3-9 1.4 0.3 104.1 3.7 2.7 

AS3-10 1.1 0.2 104.9 3.0 2.2 

AS3-11 1.0 0.2 105.6 2.7 2.0 

AS3-12 1.4 0.3 102.2 3.6 2.6 

AS3-13 1.3 0.2 102.8 3.3 2.4 
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Sample (ID) Al 
(mg/L) 

Mg 
(mg/L) 

Na 
(mg/L) 

Rb 
(mg/L) 

Sr 
(mg/L) 

AS3-14 1.0 0.2 96.3 2.6 1.9 

AS3-15 1.6 0.3 105.7 4.1 3.0 

AS3-16 1.4 0.3 103.0 3.5 2.6 

NaHCO3 closed acidification 

AC1-1 1.2 0.3 108.8 3.8 2.5 

AC1-2 0.9 0.2 109.3 2.8 1.9 

AC1-3 0.9 0.2 110.2 3.0 2.0 

AC1-4 0.8 0.2 110.8 2.6 1.7 

AC1-5 1.0 0.2 112.0 3.1 2.1 

AC1-6 0.9 0.2 110.8 2.9 1.9 

AC1-7 1.0 0.2 109.1 3.1 2.1 

AC1-8 1.0 0.2 110.4 3.1 2.0 

AC1-9 1.2 0.3 110.3 3.9 2.5 

AC1-10 1.0 0.3 112.9 3.2 2.1 

AC1-11 1.0 0.3 112.0 3.1 2.1 

AC1-12 1.2 0.3 111.6 3.7 2.4 

AC1-13 0.8 0.2 111.0 2.6 1.7 

NaHCO3 unacidified 

UAJ1-1 0.9 0.2 100.8 2.8 1.9 

UAJ1-2 0.8 0.2 99.0 2.5 1.7 

UAJ1-3 1.0 14.4 226.0 3.4 2.6 

UAJ1-4 0.9 0.2 101.1 2.7 1.8 

UAJ1-5 1.0 0.2 102.7 3.0 2.0 

UAJ1-6 0.8 0.2 102.2 2.5 1.7 

UAJ1-7 0.8 0.2 96.5 2.6 1.7 

UAJ1-8 0.9 0.2 99.4 2.9 1.9 

UAJ1-9 1.0 0.2 99.3 3.2 2.1 

UAJ1-10 0.9 0.2 101.1 2.8 1.8 

UAJ1-11 1.0 0.2 101.5 3.2 2.1 

UAJ1-12 0.8 0.2 101.4 2.7 1.8 

UAJ1-13 1.0 0.2 102.0 3.2 2.1 

UAJ1-14 1.0 0.2 104.2 3.2 2.1 

UAJ1-15 0.9 0.2 100.6 3.0 2.0 

UAJ1-16 0.9 0.2 105.6 2.9 1.9 

UAJ1-17 1.1 0.2 102.5 3.3 2.2 

NaHCO3 unacidified 

UAD1-1 0.9 0.2 111.6 2.9 1.9 

UAD1-2 0.8 0.2 110.5 2.4 1.6 

UAD1-3 0.9 0.2 113.3 2.8 1.9 

UAD1-4 1.0 0.2 112.0 3.2 2.1 

UAD1-5 1.0 0.2 110.7 3.1 2.1 
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Sample (ID) Al 
(mg/L) 

Mg 
(mg/L) 

Na 
(mg/L) 

Rb 
(mg/L) 

Sr 
(mg/L) 

UAD1-6 0.9 0.2 110.9 2.7 1.8 

UAD1-7 0.9 0.2 114.0 3.0 2.0 

UAD1-8 0.9 0.2 112.3 2.9 1.9 

UAD1-9 1.0 0.2 112.3 3.2 2.1 

UAD1-10 1.0 0.2 113.2 3.2 2.1 

UAD1-11 1.0 0.2 112.5 3.0 2.0 

UAD1-12 0.9 0.2 113.8 2.8 1.9 

UAD1-13 1.0 0.2 117.5 3.0 2.0 

UAD1-14 0.9 0.2 117.6 3.0 2.0 

UAD1-15 1.0 0.2 114.8 3.1 2.1 

UAD1-16 0.8 0.2 112.2 2.5 1.7 

UAD1-17 0.9 0.2 111.5 2.9 2.0 

UAD1-18 1.0 0.2 117.1 3.1 2.0 

UAD1-19 0.9 0.2 117.4 2.7 1.8 

 

 

Table A-3: δD and δ18O data for the 2006 and 2007 samples from the Federal Tailings 
Pile, St Joe State Park, SE Missouri 

 2007 data 2006 data 

Sample ID  07_ δ18O  07_ δD  06_ δD  07_ δ18O  

  (‰) (‰) (‰) (‰) 

Soil and perched groundwater    

PW01 -6.3 -40.1 -12.4 -1.7 

PW02 -5.2 -31.5 -27.2 -4.1 

PGW01-3 -2.4 -25.7 - - 

PGW03-3 -0.7 -14.4 -34.2 -5.1 

PGW06-2 1.0 -9.0 - - 

PGW06-3 0.4 -14.1 -29.4 -4.6 

PGW06-4 0.1 -9.6 - - 

Groundwater     

MW01-42 -1.2 -19.9 -38.3 -6.8 

MW01-60 0.1 -8.4 -42.5 -7.5 

MW08-11 -5.3 -33.7 -23.4 -2.9 

MW08-20 -5.2 -34.8 -23.7 -2.9 

MW08-52 -4.2 -29.8 -19.1 -1.8 

MW06-53 -0.4 -14.3 -29.6 -4.6 

MW06-94 -2.9 -21.3 -16.3 -1.6 

MW07-20 -5.9 -42.2 -24.4 -2.8 
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Sample ID  07_ δ18O  07_ δD  06_ δD  07_ δ18O  

  (‰) (‰) (‰) (‰) 

MW07-70 -2.6 -26.6 -27.3 -3.3 

MW05-58 -0.5 -17.9 -31.3 -5.6 

MW04-101 0.0 -15.9 - - 

MW04-80 -0.1 -10.3 - - 

MW03-62 1.1 -7.7 -37.6 -7.4 

MW03-72 -0.7 -17.2 -34.6 -6.8 

Lakes     

Monsanto lake -2.0 -20.0 -13.4 0.4 

Pimp Lake -1.7 -18.4 -8.6 0.0 

Jo Lee Lake -2.0 -20.2 -13.8 -1.4 
- = Not determined 

 

Federal Tailings Pile sediment analysis 
 

Mass of sample digested=1000.1mg 
  
Sample No Fe  Pb Zn Mn 

mg/L mg/L mg/L mg/L 
 
Sample 1 333.2 9.7 3.03 54.6 

Sample 2 344.3 11.2 3.7 56.5 

Sample 3 336.9 13.23 4.4 55.5 
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Table A-4: 2006 and 2007 metal data from the Federal Tailings Pile, St Joe State Park, SE Missouri 

Sample ID Al 
(mM/L) 

Rb 
mM/L 

Pb 
(µM/L) 

Fe 
(µM/L) 

Zn 
(µM/L) 

Ag 
(µM/L) 

Cd 
(µM/L) 

Co 
(µM/L) 

Cr 
(µM/L) 

Mn 
(µM/L) 

Ni 
(µM/L) 

V 
(µM/L) 

2006 
Lakes 
Monsanto 
Lake  0.04 0.04 0.11 0.18 0.13 0.01 0.05 0.23 0.40 0.04 0.08 0.34 

Pim Lake  0.05 0.04 0.11 0.18 0.14 0.01 0.06 0.22 0.43 0.03 0.07 0.31 

Joe Lee Lake  0.04 0.04 0.08 0.88 0.12 0.01 0.05 0.19 0.40 0.03 0.04 0.32 

Groundwater 

MW 08_11 0.11 0.10 0.08 13.43 0.13 0.02 0.06 0.25 0.40 0.04 0.04 0.35 

MW 08_20 0.12 0.11 0.12 5.80 0.12 0.02 0.06 0.23 0.39 0.03 0.08 0.34 

MW 08_52 0.13 0.12 0.11 0.54 0.15 0.03 0.06 0.23 0.41 0.08 0.07 0.34 

MW 01_42 0.12 0.12 0.11 0.29 0.13 0.01 0.05 0.21 0.41 0.02 0.09 0.36 

MW 01_60 0.11 0.10 0.09 0.25 0.10 0.03 0.06 0.20 0.40 0.03 0.06 0.35 

MW 06_53 0.11 0.11 0.10 12.41 0.14 0.02 0.06 0.20 0.40 0.05 0.08 0.33 

MW 06_94 0.16 0.15 0.07 16.21 0.14 0.02 0.05 0.22 0.42 0.03 0.04 0.36 

MW 07_20 0.11 0.11 0.09 0.97 0.07 0.01 0.05 0.20 0.41 0.04 0.09 0.29 

MW 07_70 0.09 0.09 0.06 1.38 0.11 0.01 0.05 0.23 0.40 0.05 0.09 0.29 

MW 04_80 0.10 0.10 - 10.01 - - - - - - - - 
MW 04_101 0.08 0.08 - 2.01 - - - - - - - - 
MW 05_58 0.10 0.10 0.06 0.66 0.10 0.01 0.06 0.20 0.42 1.07 0.06 0.28 

MW 03_62 0.10 0.10 0.02 17.57 0.13 0.03 0.06 0.25 0.41 0.06 0.05 0.33 

MW 03_72 0.06 0.06 - 14.40 - - - - - - - - 

Soil and perched groundwater 

SGW 01-3 0.13 0.12 0.23 0.27 16.15 - - - - 1.62 0.65 - 

SGW 06-2 0.09 0.09 0.43 0.20 147.56 - - - - 2.95 9.08 - 

SGW 06-3 0.07 0.07 0.28 36.73 6.47 - - - - 2.20 1.38 - 

SGW 06-4 0.07 0.07 0.00 26.47 0.58 - - - - 0.80 0.60 - 

SGW 03-3 0.07 0.07 0.14 92.07 6.44 - - - - 2.62 3.97 - 

PW 01 0.07 0.07 0.05 0.21 0.96 0.01 0.05 0.26 0.42 0.08 0.16 0.30 

PW 02 0.16 0.15 0.11 0.43 2.89 0.02 0.06 0.46 0.41 0.41 0.39 0.31 
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Sample ID 
Al 

(mM/L) 
Rb 

mM/L 
Pb 

(µM/L) 
Fe 

(µM/L) 
Zn 

(µM/L) 
Ag 

(µM/L) 
Cd 

(µM/L) 
Co 

(µM/L) 
Cr 

(µM/L) 
Mn 

(µM/L) 
Ni 

(µM/L) 
V 

(µM/L) 
2007 
Lakes 
Monsanto 
Lake  0.04 0.04 0.11 0.18 0.13 0.01 0.05 0.23 0.40 0.04 0.08 0.34 

Pim Lake  0.05 0.04 0.11 0.18 0.14 0.01 0.06 0.22 0.43 0.03 0.07 0.31 

Joe Lee Lake  0.04 0.04 0.08 0.88 0.12 0.01 0.05 0.19 0.40 0.03 0.04 0.32 

Groundwater 

MW 08_11 0.11 0.10 0.08 13.43 0.13 0.02 0.06 0.25 0.40 0.04 0.04 0.35 

MW 08_20 0.12 0.11 0.12 5.80 0.12 0.02 0.06 0.23 0.39 0.03 0.08 0.34 

MW 08_52 0.13 0.12 0.11 0.54 0.15 0.03 0.06 0.23 0.41 0.08 0.07 0.34 

MW 01_42 0.12 0.12 0.11 0.29 0.13 0.01 0.05 0.21 0.41 0.02 0.09 0.36 

MW 01_60 0.11 0.10 0.09 0.25 0.10 0.03 0.06 0.20 0.40 0.03 0.06 0.35 

MW 06_53 0.11 0.11 0.10 12.41 0.14 0.02 0.06 0.20 0.40 0.05 0.08 0.33 

MW 06_94 0.16 0.15 0.07 16.21 0.14 0.02 0.05 0.22 0.42 0.03 0.04 0.36 

MW 07_20 0.11 0.11 0.09 0.97 0.07 0.01 0.05 0.20 0.41 0.04 0.09 0.29 

MW 07_70 0.09 0.09 0.06 1.38 0.11 0.01 0.05 0.23 0.40 0.05 0.09 0.29 

MW 04_101 0.08 0.08 0.00 2.01 - - - - - - - - 

MW 04_80 0.10 0.10 0.00 10.01 - - - - - - - - 

MW 05_58 0.10 0.10 0.06 0.66 0.10 0.01 0.06 0.20 0.42 1.07 0.06 0.28 

MW 03_62 0.10 0.10 0.02 17.57 0.13 0.03 0.06 0.25 0.41 0.06 0.05 0.33 

MW 03_72 0.06 0.06 0.00 14.40 - - - - - - - - 

Soil and perched groundwater 

SGW 01-3 0.13 0.12 0.23 0.27 16.15 - - - - 1.62 0.65 - 

SGW 06-2 0.09 0.09 0.43 0.20 147.56 - - - - 2.95 9.08 - 

SGW 06-3 0.07 0.07 0.28 36.73 6.47 - - - - 2.20 1.38 - 

SGW 06-4 0.07 0.07 0.00 26.47 0.58 - - - - 0.80 0.60 - 

SGW 03-3 0.07 0.07 0.14 92.07 6.44 - - - - 2.62 3.97 - 

PW 01 0.07 0.07 0.05 0.21 0.96 0.01 0.05 0.26 0.42 0.08 0.16 0.30 

PW 02 0.16 0.15 0.11 0.43 2.89 0.02 0.06 0.46 0.41 0.41 0.39 0.31 

- = Not determined 
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Table A-5: Saturation indices of mineral phases modeled using the computer program PHREEQCI 
(Parkhurst and Appelo, 1999) for discharge water from the Elvin’s Tailings Pile and Leadwood Tailings 
Pile, St. Francoise County, SE Missouri, USA 

Sample ID 
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2006                

ETP CreeK                

ETP 1 1.3 -1.2 8.2 -0.9 -0.6 -0.4 -0.4 -2.6 -1.1 4.1 -0.7 6.8 9.0 1.3 -5.9 

ETP 2 0.3 -1.7 2.3 -0.9 0.3 0.4 -0.5 4.9 0.7 3.0 -0.7 4.9 6.6 0.7 -2.7 

ETP 3 0.1 -1.8 1.2 -0.8 0.5 0.6 -0.5 6.1 1.1 2.7 -0.6 4.5 6.1 0.7 -2.1 

ETP 4 0.1 -1.6 1.5 -0.8 0.5 0.6 -0.5 6.6 1.1 2.8 -0.6 4.8 6.2 0.8 -2.0 

ETP 5 0.0 -1.7 0.8 -0.8 0.5 0.6 -0.5 7.0 1.1 2.7 -0.6 4.5 6.0 0.7 -1.7 

ETP 6 0.1 -1.7 1.0 -0.8 0.5 0.6 -0.5 6.9 1.1 2.7 -0.6 4.6 6.1 0.7 -1.8 

LTP Creek               

LTP 1 -0.2 -0.9 -0.8 -1.2 0.9 1.0 -0.1 6.7 1.8 2.5 -1.0 5.2 6.5 1.3 -0.7 

LTP 2 0.1 -0.7 1.2 -1.2 0.6 0.7 -0.1 4.3 1.3 2.8 -1.0 5.7 7.2 1.4 -1.8 

LTP 3 0.2 -1.0 1.8 -1.2 0.4 0.6 -0.2 3.2 1.0 2.9 -1.0 5.6 7.2 1.2 -2.4 

LTP 4 -0.1 -0.8 0.1 -1.2 0.8 0.9 -0.1 5.8 1.6 2.6 -1.0 5.4 6.7 1.4 -1.1 

LTP 5 0.3 -0.7 2.4 -1.2 0.4 0.5 -0.1 2.6 0.9 3.0 -1.0 5.9 7.4 1.4 -2.7 

2007                

ETP CreeK                

ETP 1 1.4 -1.1 9.0 -0.9 -0.6 -0.4 -0.4 -4.1 -1.1 4.2 -0.7 6.9 9.2 1.3 -6.4 

ETP 2 1.3 -1.1 8.1 -0.8 -0.3 -0.2 -0.4 -1.3 -0.5 4.0 -0.5 6.8 8.9 1.4 -5.4 

ETP 3 0.7 -1.4 4.8 -0.8 0.1 0.3 -0.5 2.0 0.4 3.4 -0.5 5.6 7.5 1.0 -3.8 

ETP 4 0.5 -1.5 4.0 -0.8 0.2 0.4 -0.5 3.1 0.6 3.2 -0.5 5.4 7.1 0.9 -3.4 

ETP 5 0.6 -1.3 4.1 -0.8 0.2 0.4 -0.5 3.4 0.6 3.3 -0.5 5.6 7.3 1.1 -3.2 

ETP 6 0.4 -1.5 3.3 -0.8 0.3 0.5 -0.5 3.9 0.8 3.1 -0.5 5.3 6.9 1.0 -2.9 

LTP Creek               

LTP 1 -0.1 -1.0 0.0 -1.3 0.8 1.0 -0.2 5.3 1.7 2.7 -1.0 5.1 6.6 1.1 -1.4 

LTP 2 0.0 -1.1 0.8 -1.1 0.8 0.9 -0.3 5.0 1.6 2.7 -0.9 5.2 6.6 1.2 -1.8 

LTP 3 0.0 -1.2 0.7 -1.1 0.7 0.9 -0.3 5.1 1.6 2.7 -0.9 5.0 6.5 1.1 -1.8 

LTP 4 -0.3 -1.3 -1.1 -1.1 1.0 1.1 -0.3 6.9 2.0 2.3 -0.9 4.5 5.8 0.9 -0.9 

LTP 5 0.1 -1.0 1.3 -1.2 0.6 0.8 -0.3 4.5 1.4 2.8 -0.9 5.3 6.8 1.1 -2.1 
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