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Chapter I 

Jesus! Jesus! Jesus! 

Introduction 

The United States is among the top fruit and tree nut producers in the world. Fruit and 

tree nut production constitutes about 13 percent of all agricultural crop cash receipts in 

the United States (USDA, 2010a). A typical American consumes around 280 pounds of 

fruits and tree nuts annually. Tree nut production increased from 0.3 billion pounds 

(shelled basis) in 1970 to 2.0 billion pounds in 2000 to meet domestic and foreign 

demand. Currently, a typical American consumes over 3.0 pounds of shelled tree nuts as 

compared to 1.7 pounds in 1977. The exports grew from an average of 24 percent in 

1970s to over 40 percent in 2000s. The total cash receipts from the tree nut production 

were nearly $4 billion since the mid-2000s (USDA, 2010b). Most of it came from 

almonds, walnuts, pistachios, and pecans. California produces about 90 percent of U.S. 

tree nut production. Heightened interest in health and nutrition coupled with rising 

population and income can be attributed to the growth of U.S. tree nut industry.  

Almonds, walnuts, and pecans are the top three nuts consumed in the United States 

(USDA, 2010b). 

Pecan [Carya illinoinensis (Wangenh.) K. Koch] is a native nut crop of the United States 

of America. The major pecan producing states are Georgia, New Mexico, Oklahoma, and 

Texas. The pecan nuts were originally harvested from wild trees but now improved 

varieties are being extensively cultivated. In 2007, the production of pecan was about 385 

million pounds in the United States with worth about $434 million (USDA, 2008). The 

production of improved pecans was 302 million pounds, and native and seedling was 83 

million pounds. The value of improved pecan was $374 million and native and seedling 

pecan was $60 million (USDA, 2008). 

Native pecan yields on an average about 600 pounds per acre (ATTRA, 2000), however 

yields over 1,000 pounds are often achievable. For native pecans wholesale return to the 

grower averages around $.60 per pound. The average net return from native pecans sold 

wholesale is $100 per acre. Improved pecan yields on an average 800-1,200 pounds per 

acre, though yields as high as 2,500 pounds are often achievable. Retail prices range from 

$1.50-2.25 per pound. On an average, the net wholesale returns from an improved pecan 

orchard are $300-400 per acre (ATTRA, 2000). The yield and prices for improved pecans 
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 are far superior to the native pecans. The economic importance of improved pecans to 

many states has led to research to improve their production and processing. 

Insect damage is one of the problems in pecan crop production. Some insects feed on 

foliage while others on the nut. The key pests throughout most of the eastern pecan 

production areas are pecan weevil and hickory shuck worm (ATTRA, 2000). The pecan 

weevil (Curculio caryae) emerges from the soil during August and September. The pecan 

weevils mate and begin feeding on the developing nuts. Pecan weevil females lay eggs 

inside the nuts, the eggs hatch, and the larvae feed on kernels (Mulder and Grantham, 

2007). Larvae then exit the shell and fall to the ground. The female pecan weevil (figure, 

1.1a) is the most damaging pest of the pecan. 

 

( a ) 

 

( b) 

 

( c) 

 

(d) 

Figure 1.1 Pecan nut damages by the Pecan weevil [pictures taken from Mulder and 

Grantham, 2007] (a) female pecan weevil on pecan nut (b) spot damage on kernel (c) 

pecan weevil exiting the nut, and (d) damage noticed when nut is cracked 

Types of damage depend on the stage of the nut development when the pecan weevil 

attacks.  Pecan weevils feeding on kernel in the water stage of the pecan cause dropped 

and punctured nuts. After shell hardening, male weevils cause slight damage on the shell 

but generally no noticeable damage to the nut meat.  Female weevils cause degradation 

resulting into smaller nuts with the shuck adhered to the shell. If the kernel is simply 
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probed by the female and not fully penetrated, then black spots (figure, 1.1b), pits, or 

molds can occur. These spots can make affected kernel taste bitter and thereby decrease 

their marketability. 

Even after applying several pest control measures many nuts get damaged. Female 

weevils lay eggs when the fruit contains well developed kernels. The eggs are often laid 

where development of the seed embryo and cotyledon begins. Each female weevil can 

oviposit 30 to 54 eggs. One weevil could damage as many as 15 to 27 or as few as 7 to 13 

pecans (Mulder and Grantham, 2007). Eggs hatch 1 to 2 weeks after they are laid. Pecan 

weevil grubs develop about ¾ inch long with a reddish brown head. The larvae feeds 

within the nut and drills the exit holes about 1/8 of an inch in diameter in the shell. Then, 

the larva leaves the nut (figure, 1.1c) and finally burrows into the ground. Where, it will 

remain dormant and again emerge in the next growing season. Some of the infected nuts 

may contain pecan weevil larvae when the nuts are harvested. The infected nuts may not 

have any insect exit holes and their physical properties would be similar to good nuts.  

Overall, the result of damage caused by pecan weevil oviposition is defective nuts with 

an unmarketable product. The infection may destroy the entire kernel and may come to 

notice (figure, 1.1d) when the nuts are cracked in processing plants. Similarly, there 

could be other types of internal defects: shriveled kernel, wafer, partially developed 

kernel, and many others. Haff and Toyofuku (2008) reviewed several studies for food 

safety inspection, and reported that the insect damage is positively linked to the 

production of aflatoxin, a carcinogenic substance, in food products. So, these insect 

damaged nuts need to be sorted out before shelling the nuts. 

Mechanical sorting of defective nuts is difficult as the physical properties of many 

defective and good nuts are similar. So, many infected nuts enter the nut crackers in the 

processing plant. Chemical solutions are used to float the pecan weevil after shelling the 

pecan nuts (Santerre, 1994). The remaining insects are picked manually under ultra-

violent lamps (Santerre, 1994). The current processing techniques are inefficient, tedious, 

and costly as well. Current remedial measures are taken after shelling the pecans. The 

shelling of defective pecans can be eliminated if an inspection system capable of 

identifying in-shell pecan defects is developed. The inspection system should employ a 

sensing technique which can look inside the nuts without break opening them.  

Machine vision inspection systems are gaining importance due to increased emphasis on 

food safety and quality. Haff and Toyofuku (2008) reported that current European Union 

food safety law makes food processors responsible for the injury and illness caused by 

their products, if they fail to use available technology. This food safety regulation is 

becoming a driving force for the growth of industrial machine vision systems, and the 

trend is likely to continue in European Union, United States and elsewhere in the context 

of imports to European Union and the global economy. Various machine vision 
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techniques, such as visible, infra-red, terahertz, and x-ray are employed for 

manufacturing and food inspection.  

Among machine vision techniques x-rays have distinct advantages in non-destructive 

food inspection. X-rays can look inside objects without breaking them apart, and alert us 

if the product is defective. Inspection of food products using x-rays has been researched 

by many researchers: water core defect in apples (Kim and Schatzki, 2000), naval orange 

worm damage (pinholes) in almonds (Kim and Schatzki, 2001), apple bruises (Shahin et 

al., 2002), insect damage in wheat (Karunakaran et al., 2003; Haff and Slaughter, 2004), 

internal defects in onions (Tollner et al., 2005), fruit fly damage in olives (Jackson and 

Haff, 2006), pecan (Kotwaliwale et al., 2007), wheat and olive (Haff and Pearson, 2007). 

Interestingly, insect damage detection was the objective of the majority of the above cited 

studies, and this study also deals with automatic insect damage detection. Eaten nutmeat 

or the presence of insect exit paths are the indicators of the insect damage in pecans. 

These studies also suggest that increased emphasis on x-ray machine vision applications 

is due to the inability of human vision and other machine vision systems to identify the 

internal defects. Typical machine vision inspection systems (figure 1.2) involve acquiring 

an image and then segmenting the objects of interest by using various software 

techniques including thresholding. The quality of the acquired digital image plays an 

important role in machine vision applications, and it depends on imaging system 

components, objects, background, lighting, and noise. For food products, the natural 

variability in their shape and size is one reason responsible for inhomogeneous 

backgrounds in which the defects hide. Another reason, making defect detection difficult 

is similarity in the density and chemical composition of various portions of food 

products, such as orange peels and orange insides, resulting in poor contrast x-ray 

images. 

All these result in a poor signal to noise ratio making the defect segmentation task 

difficult. Many researchers reported that global thresholding methods fail to segment the 

images with inhomogeneous backgrounds and poor contrast (Oh et al., 2005; 

Nacereddine et al., 2007), and it is also true for food products (Jiang et al., 2008). The 

main reason for failure of global segmentation approach is unimodal nature of food 

product images. 

The literature suggests that many local adaptive thresholding methods are available to 

segment unimodal images: histogram characteristics and local region properties (Sauvola 

and Pietiekainen, 2002), mean shift and clustering for multimodal feature space 

(Comaniciu and Meer, 2002), water flow method (Kim et al., 2002), gray level reduction 

(Quiwder et al., 2007), gray level co-occurrence matrix (Moki and Bakar, 2007), and 

others. However, there are few studies dealing with the adaptive thresholding of x-ray 

images of food products. One of the specific objectives of this study is to apply local 

adaptive thresholding methods for pecan defect segmentation. The other specific 
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objective is to propose a local adaptive method suitable for food images with unimodal 

histogram and poor contrast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Schematics of a generic pecan x-ray machine vision inspection system 

After image segmentation features are extracted and used to train the pattern recognition 

classifier. Natural variability present in food product images cause overlap between the 

decision boundaries of classes: good product and defective product. The Bayesian 

classifier is the most commonly used classifier. Neural network classifier and other 

statistical classifiers are used to improve classification accuracy. Literature suggests that 

much improved classifiers are also available and their application to pecan defect 

classification might improve the classification accuracy. 

AdaBoost classifier proposed by Freund and Schapire (1996) and support vector machine 

classifier proposed by Cortes and Vapnik (1995) are the two state-of-the-art classifiers. 
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The AdaBoost classifier has been a very successful machine learning algorithm. The 

advantages of AdaBoost include less memory and computational requirements. Support 

vector machine has been very successful classifier in many fields especially bio-

informatics. The development of application specific kernels in bio-informatics led to 98-

99% classification accuracy (Hur et al., 2008). Another specific objective of this study is 

to apply these classifiers for pecan defect classification. All the specific objectives or 

study tasks can be summarized as: 

a) To evaluate local adaptive thresholding methods for internal pecan defect 

segmentation 

b) To propose a new local adaptive thresholding method suitable for on line 

inspection of pecan extendable to other food and agricultural images characterized 

by unimodal histograms. 

c)  To apply AdaBoost and support vector machine classifiers for pecan defect 

classification. 

The literature survey and industrial applications suggests suitability of x-ray systems for 

pecan but the major lacuna is availability of software to make a decision about presence 

or absence of defects on individual pecan basis. To address the problem, this study was 

undertaken with the objective: develop and evaluate algorithms for x-ray inspection of 

pecans.
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Chapter II 

Jesus! Jesus! Jesus! 

Review of Literature 

2.1 X-ray Studies for Food Defect Detection 

Many types of machine vision techniques have been studied for food defect detection. 

Among them x-rays are extensively used for non-destructive internal defect detection.  A 

good description of x-ray properties and x-ray imaging systems can be found in 

Aichinger et al. (2004). Almonds (Kim and Schatzki, 2001), pistachio (Pearson et al., 

2001), apple (Shahin et al., 2002b), onion (Tollner et al., 2005) and pecan (Kotwaliwale 

et al., 2007) are the crops where x-ray imaging has been researched with varied success. 

The following sections summarize the relevant research studies according to approaches 

adopted in image processing. A comprehensive review of x-ray studies for food 

application can be found in Haff and Toyofuku (2008). 

2.1.1 Pixel and Texture Approaches 

These approaches typically exploit the fact that pixel intensities and texture of defective 

food parts are different than the good parts. Size of defects is another feature associated 

with defect detection. Area, intensity, and cosine and wavelet transform coefficients 

features were extracted to detect water core defect in apples (Shahin et al., 1999). After 

ranking extracted features, Bayesian classifier achieved classification accuracy of 79%. 

There are few studies for defect detection for grain crops especially wheat and corn using 

pixel intensity features. A number of features  (uniformity, maximum probability, 

entropy, inertia, cluster shade, short run, run length uniformity, gray level non-

uniformity, homogeneity and correlation) in addition to mean and variance of intensity 

were used for wheat infestation (Karunakaran et al., 2003). The selected sixteen textural 

features were invariant to size, translation and orientation.  A four layer back propagation 

neural network correctly identified 85% of sound wheat kernels and about 98% of 

infested wheat kernels. Similarly, mean, standard deviation, and maximum pixel intensity 

features were used for detecting corn kernels infected with fungi (Pearson and Wicklow, 

2006). The classification accuracy achieved was 82% for extensively discolored corn 

kernels and it was 100% for uninfected corn kernels. 
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Gray level co-occurrence matrix features in conjunction with intensity features were used 

to detect defects in wheat kernels (Narvankar et al., 2009). A number of classifiers: 

linear, quadratic, and Mahalanobis statistical classifiers and back propagation neural 

network classifier were used for classification. A two class Mahalanobis discriminant 

classifier classified 92.2–98.9% fungal-infected wheat kernels correctly. In most of the 

cases, the statistical classifiers gave better classification accuracies than the back 

propagation neural network classifier. 

There are few pixel intensity based studies for defect detection for nut crops: pistachio, 

almond, olive, and pecan. Gradient and intensity thresholds, in addition to area and 

intensity variations, were used for extracting features to identify pistachio nut defects 

(Pearson et al., 2001). The inspection system using discriminant function could 

distinguish pistachio nuts with shell defects from normal nuts with false positive rate of 

1.4% and a false negative rate of 2.3%. Pixel intensity and intensity change features were 

also used to detect pinhole insect damage in natural almonds (Kim and Schatzki, 2001). 

Correct classification accuracy of 81% with only 1% false positive was achieved for 

scanned film images. For line scanned images, the classification accuracy of 65% could 

be achieved with less than 12% false positives. 

Two-dimensional intensity histogram bin features were used to automatically detect olive 

fruit fly infestations (Jackson and Haff, 2006). A Bayesian classifier correctly identified 

50% of the slightly damaged olives. Severely damaged olives were correctly identified 

86% of the time, and non-infested olives were correctly identified 90% of the time. Haff 

and Pearson (2007) also studied olive fly damage and wheat infestations. Area ratio of 

defect to pecan nut area, mean intensity, and local intensity variations were used to 

identify defects (Kotwalowale, et al., 2007). Because morphological operations and 

histogram based operations failed to segment defects the segmentation was done 

manually. The classification accuracy achieved with Bayesian classifier was 76.2%. 

The pixel intensity and texture based classification approaches utilized both simple 

features such as mean intensity and advanced features such as gray level concurrence 

matrix features. About 80% classification accuracy was generally achieved. The lower 

classification accuracy of 50% and higher classification accuracy of 99% were reported 

in above studies. A variety of pattern recognition classifiers were also attempted. For 

pecan defect detection the challenges were: automation of segmentation process and 

improvement in classification accuracy. 

2.1.2 Edge Approaches 

Edge based approaches indentify sudden changes in pixel intensities, primarily arising 

due to the presence of defects. In case of nuts such as pecans and almonds insects leave 

the nut forming an exit hole. The detection of an insect exit hole can be helpful in 
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classifying the insect damaged nuts with little or no damages. Following studies utilized 

various edge detectors in combination with other features to identify defects. 

Edge based features extracted from post processed x-ray images were used to identify 

infected pistachio nuts (Keagy et al., 1996). The classification accuracy was 81% for 

insect infection with 10% of good product being also rejected. Robert’s edge detector and 

discrete cosine transform coefficients were found good for one month old internal apple 

bruises (Shahin et al., 2002b). Using features selected after stepwise discriminant analysis 

the artificial neural network classifiers could achieve accuracy of 90% and Bayesian 

83%. However, the classification accuracy was 60% for new bruises. 

Similarly, edge type features, area of the features close to center of the bulb, and discrete 

cosine transform coefficients were extracted to identify sweet onion defects (Shahin et 

al., 2002a). The classification accuracy for neural classifier was 90% and for the 

Bayesian classifier it was 84%. To detect voids in onions, Tollner et al. (2005) evaluated 

fast edge detection and thresholding based x-ray inspection system. The classification 

accuracy and false positive rates were close to the 90% and 10% levels.   Consistency in 

classification was very good if the bulbs were clearly good or defective. Consistency 

reduced for the damages up to 20% internal damage. 

The level of infestation appears to be influencing the classification accuracies for the 

edge feature based inspection systems. Edge detection can be critical for detecting 

presence or absence of insect exit holes in pecan, almonds, and other crops. 

2.1.3 Local Adaptive Thresholding Approaches 

X-ray food images are typically poor contrast and unimodal images. Global thresholding 

methods fail to segment them because they typically require bi-modal histograms. The 

defects generally show slightly different contrast and many times it is hard to tell whether 

the difference is due to natural variability or defects. In such a scenario, local adaptive 

thresholding methods can play significant role. Following section discusses some of the 

approaches reported in the literature for food products especially x-ray images. 

Global thresholding and local thresholding approaches were used to detect water core in 

apples (Kim and Schatzki, 2000). Average pixel values, size of both whole apple and 

dark regions within apple, number of pixels darker than their neighbors and their average 

values, and ratios of size of dark region and size of pixels darker than neighbors to apple 

size were amongst features extracted. The system could classify apples into clean and 

severe categories within 5-8% false positive and false negative. Randomly oriented and 

touching pistachio nuts were segmented using blob coloring, filtering, and watershed 

transforms (Casasent et al., 2001). Morphological processing was done to segment the 

nutmeat in pistachio nut images acquired at 25 kV were used. 
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To account for uneven thickness of chicken breast an adaptive thresholding method was 

proposed (Tao et al., 2001).  Threshold functions obtained by local averaging were used 

to detect bone fragments in x-ray images. This method could adapt to uneven thickness 

distribution. However, for varying object sizes this method needs multi scale processing 

with different window sizes. An adaptive thresholding method based on the local pixel 

intensities to detect insect infestation was developed by Jiang et al. (2008). It included 

image partition, local thresholding, threshold value interpolation, background removal, 

and morphological filtering for the determination of insect infestation in a fruit. The 

method was tested for real time processing of x-ray images of several fruits: citrus, peach, 

guava. The method was tested for the x-ray images obtained with different image 

acquisition parameters. 

Survey suggested that few studies were conducted applying local adaptive segmentation 

methods for food product images. Of the studies reported above, Jiang et al. (2008) study 

seems to be adaptable to pecan defect detection. Local adaptive thresholding methods 

applied in segmentation of other type of images were then surveyed and are discussed in 

section 2.2.7. 

2.2 Thresholding Methods 

Image segmentation is the most critical operation of any machine vision system. Its 

importance can be gauged from the fact it has been an active area of research for the last 

30 years and may continue in future as well.  As a consequence, giving a complete survey 

of the thresholding or segmentation literature is not possible. A recent review of 

thresholding methods can be found in Sezgin and Sankur (2004). Thresholding is one of 

the most popular segmentation approaches to extract objects of interest from the image. 

The main assumption is that the objects can be identified based on their gray levels. An 

optimal threshold is the pixel intensity value that distinguishes the objects of interest 

from the background. The classification adopted by Sezgin and Sankur (2004), and 

Gonzalez and Woods (2008) in grouping thresholding methods based on the information 

exploited is largely adopted in the following sections. 

2.2.1 Histogram Shape Methods 

Histogram shape methods decide thresholds based on the shape properties of the image 

histogram. Different shape properties were studied: the distance from the convex hull of 

the histogram, a smoothed two peaked representation, a rectangular approximation to the 

lobes of the histogram, and peaks and valleys search. Rosenfeld and Torre (1983) 

proposed a convex hull thresholding method based on analyzing the concavities of the 

histogram vis-a`-vis its convex hull.  The deepest concavity points become candidates for 

a threshold while calculating the convex hull of the histogram. 
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Sezan (1985) proposed a peak and valley thresholding method where the histogram is 

reduced to a two lobe function. The peak analysis is done by convolving the histogram 

function with a smoothing and differencing kernel. By adjusting the kernel and resorting 

to peak merging, the histogram is transformed to a two lobe function. The kernel outputs 

the triplet of incipient, maximum, and terminating zero crossings of the histogram lobe. 

The threshold is selected between the first terminating and second initiating zero 

crossing. Ramesh et al. (1995) used a two step function to approximate the shape of 

probability density function. The sum of squares between a bi-level function and the 

histogram is minimized to find optimum threshold iteratively. 

2.2.2 Clustering Thresholding Methods 

In clustering methods, the gray level data undergoes a clustering analysis with predefined 

number of clusters. The clusters correspond to the segments of the histogram and the 

midpoint of the peaks to the optimum threshold. Riddler and Calvard (1978) proposed an 

iterative thresholding method scheme based on Gaussian mixture models. A new 

threshold is established using the average of the foreground and background class means 

for all iterations. The process terminates when the changes between two consecutive 

iterations becomes small. Yanni and Horne (1994) starts from the midpoint between the 

two assumed peaks of the histogram. The midpoint is updated using the mean of the two 

peaks on the right and left. 

Otsu (1979) minimizes the weighted sum of within class variances of the foreground and 

background pixels to establish an optimum threshold creating clusters of two classes. 

This method is more suitable when the number of pixels in each class is close to each 

other. It is one of the most referenced thresholding methods; even though developed 30 

years earlier.  Minimum error thresholding methods describe the image by the 

distributions of foreground and background pixels. For example, Kittler and Illingworth 

(1986) treat thresholding as a minimum error Gaussian density fitting problem. Fuzzy 

clustering thresholding methods decide fuzzy clustering memberships to pixels 

depending on their differences from the two class means. Fuzziness index and distance 

functions are used to optimize the segmentation results (Jawahar et al., 1997). 

2.2.3 Entropy Methods  

The principle of entropy uses uncertainty as a measure to describe the information 

contained in a source. Entropy thresholding considers an image histogram as a 

probability distribution and selects an optimal threshold that maximizes the entropy. Best 

entropy thresholded image is the one which preserves most information contained in the 

original image. Different thresholding approaches include: maximization of the entropy, 

minimization the cross entropy between the input gray level image and the output binary 

image, fuzzy entropy, and Shannon entropy. 
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Kapur et al. (1985) considered the image foreground and background as two different 

signal sources. The image is considered optimally thresholded when the sum of the two 

class entropies reaches its maximum.  Fuzzy entropic thresholding was proposed by 

Shanbag (1994). The method considers the fuzzy memberships as an indication of how 

strongly a gray value belongs to the background or to the foreground. The farther away a 

gray value is from a presumed threshold, the greater becomes its potential to belong to a 

specific class. Li et al. (1998) formulated cross entropy thresholding as the minimization 

of an information theoretic distance: the Kullback-Leibler distance of the observed image 

and reconstructed image. The theoretic measure is minimized under the constraint that 

observed and reconstructed images have identical average intensity in their foreground 

and background. 

2.2.4 Object Attribute Methods 

Attribute methods select the threshold based on attribute quality or similarity measure 

between the original image and the segmented image. These attributes can be: edge 

matching, shape compactness, gray level moments, connectivity, texture, stability of 

segmented objects, fuzzy measure, resemblance of the cumulative probability 

distributions and quantity of information revealed as a result of segmentation. Moment 

preserving thresholding (Tsai, 1985) assumes the gray level image as the blurred version 

of an ideal binary image. The thresholding is carried out so that the first three moments of 

the gray image and binary image match. Edge field matching thresholding (Hertz and 

Schafer, 1988) proposed a multi-thresholding method where a thinned edge field, 

obtained from the gray level image and binarized image is compared.  The global 

threshold is the value that maximizes the coincidence of the two edge fields in the 

original and thresholded image.  

Fuzzy similarity thresholding method (Huang and Wang, 1995) uses an index of 

fuzziness. With fuzzy membership value of pixels, an index of fuzziness for the whole 

image is obtained via the Shannon entropy or the Yager’s measure. The optimum 

threshold is found by minimizing the index of fuzziness defined in terms of class medians 

or means. Maximum information thresholding method (Leung and Lam, 1998) assumes 

the thresholding problem as the change in the uncertainty of the foreground and 

background classes. The presentation of any foreground or background information 

reduces the class uncertainty of a pixel. The optimum threshold minimizes the average 

residual uncertainty about which class a pixel belongs in the segmented image. 

2.2.5 Spatial Thresholding Methods  

Spatial thresholding methods utilize gray value distribution and dependency of pixels in a 

local neighborhood. These include context probabilities, correlation functions, co-

occurrence probabilities, local linear dependence models of pixels, edge, and others to 
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determine the thresholds. Co-occurrence thresholding methods use co-occurrences for 

threshold selection and several measures have been proposed for threshold selection by 

Lie (1993). Random set based thresholding uses the idea that gray image gives rise to the 

distribution of a random set (Friel and Mulchanov, 1999). Each threshold value gives rise 

to a set of binary objects. The threshold is optimized based on Chamfer distance. In 2-D 

fuzzy partitioning method Cheng and Chen (1999) combined the ideas of fuzzy entropy, 

the 2-D histogram of the pixel values and their local 3x3 averages. The pixels are 

assigned to background or foreground according to a fuzzy rule. The optimum threshold 

is established by exhaustive search over all permissible values of fuzzy rule parameters. 

2.2.6 Multi-level Thresholding Methods 

Multi-level thresholding is an image processing operation which segments a gray image 

into more than two segments. This operation calculates multiple thresholds for an image 

and segments the image into certain brightness regions, which correspond to one 

background and several objects. The method is suitable for objects with complex 

backgrounds where bi-level thresholding produces poor results. The multi-level 

thresholding method by Otsu (1979) is one of the best methods but the computation time 

grows exponentially with the number of thresholds. Following sections discusses other 

approaches to multi-level thresholding. Most of them are extension of bi-level 

thresholding approaches: pixel intensity, edges detection, histogram valley search, 

optimization approaches, fuzzy theory, entropy, and Gaussian distribution. 

Mean and variance of pixel distribution was used to determine the multiple thresholds 

(Arora et al., 2008). Edge and intensity information were used to determine two 

thresholds (Chen et al., 2008). Edges are detected and two thresholds are calculated. 

Image is segmented by high and low threshold separately and then combined to get the 

final segmented image. The method performed better than other thresholding methods on 

non-destructive testing and document images with low contrast, noise and non-uniform 

illumination. To search the global valleys in the image histogram a transformation was 

developed by Davies (2008). The main advantage of the global valley method is that it 

permits partially hidden minima to be located. The global valley method demonstrated 

very good stability and high sensitivity for the detection of subsidiary minima such as 

defects or contaminants in an automated inspection scenario. 

Dynamic programming and optimal partitioning of the image data space was used to 

determine multiple thresholds by Quweider et al. (2007).  The algorithm was useful to 

reduce number of grey levels in a natural way.  Mini-max optimization was used by Saha 

and Ray (2009) to introduce an adaptive thresholding method based on a threshold 

surface. The method preserved edge/texture structures in different benchmark images 

over other methods. 

Fuzzy and rough set theories were used by Sen and Pal (2009) to present a multi-level 

thresholding method. Multi-level thresholding is done using the proposed bi-level 
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thresholding method in a tree structured manner. Segmentation and edge extraction 

performed using the proposed methodology demonstrated the effectiveness in terms of 

both qualitative and quantitative measures. Another approach used by Malyszko and 

Stepaniuk (2010) was entropy. The proposed algorithm was compared to the iterative 

rough entropy thresholding algorithm and standard k-means clustering methods. Results 

indicated multi-level rough entropy thresholding presented high quality, and comparable 

segmentation than k-means clustering. 

Gaussian distribution based multi-level thresholding approach was proposed by Cuevas et 

al. (2010). Each Gaussian function represents a pixel class and a threshold point. It is 

computationally efficient and does not require prior knowledge. Another computationally 

efficient multi-threshold Otsu method based algorithm was proposed by Huang and 

Wang (2009). The two stage multi-threshold Otsu method outperformed Otsu’s method 

by reducing the iterations required to compute the between class variance. For six class 

segmentation problem, the computational time increased with an average ratio of about 

76 for the conventional Otsu method as compared to 0.463  for the proposed method. The 

proposed method was much faster than Otsu method with an equivalent accuracy. 

Otsu (1979) method for calculating the dual threshold is one of the classical methods; it 

was selected for segmenting pecan defects. Background, pecan nutmeat, and defective 

nutmeat would be the three classes of interest. It was selected to serve as bench mark 

method in view of its success, simplicity and availability of in-built functions in many 

developmental environments. 

2.2.7 Local Adaptive Thresholding Methods 

In local adaptive thresholding methods local properties are taken into consideration. For 

example, a threshold may be calculated at each pixel depending on local statistics such as 

variance. The image may be partitioned into number of sub images and then thresholds 

are decided. It can be a simulation of water flow based on local pixel features considering 

image as a three dimensional surface and then thresholding amount of water deposited. 

2.2.7.1  Local Variance Methods  

The variance based Niblack method (1986) calculates the threshold based on the local 

mean and standard deviation in a window of 3x3. Sauvola and Pietaksinen (2000) 

improved the Niblack method for stained and badly illuminated documents. It adapts to 

the contribution of the standard deviation for the text in inhomogeneous background by 

lowering the threshold. The image is partitioned into equal sized windows of 10-20 pixels 

wide. Features are extracted to decide upon the type of thresholding approach to be used. 

Textual components are thresholded using histogram methods and non-textual 

components are thresholded by calculating a local threshold in the window. The method 

was evaluated using the test images with ground truth, evaluation metrics for binarization 
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of text and synthetic images. The method performed well both qualitatively and 

quantitatively compared to other known methods. 

2.2.7.2  Image Partition Methods 

In this approach an image is partitioned into number of sub images. Then the threshold 

for each sub image is calculated. The threshold is used to segment the sub-image or 

individual pixel threshold is determined by interpolating other sub-image thresholds or by 

other methods. Various approaches were proposed for image partition: Lorentz 

information measure, image attributes, learning image partition rules, and simple division 

into a number of equal sized sub-images. 

Lorentz information measure was used to adaptively select window size (Huang et al., 

2005). The method deals effectively with uneven lighting disturbance and ghost objects. 

The proposed method combined with Otsu thresholding approach provided accurate 

results under uneven lighting disturbance than Otsu method alone. Another approach for 

window size selection was based on image attributes (Hemachander et al., 2007). After 

window partition thresholding was done for each sub-image. The algorithm considered 

the thresholds of neighboring sub-images to decide a range of threshold values to 

maintain image continuity. 

Equal sized image partition was used by Jiang et al. (2008) to segment fruit defects. The 

Otsu threshold was determined for each sub image. A grid of thresholds determined is 

formed. Then pixel threshold is calculated by interpolating between the four nearest 

threshold grid points. The method was tested for real time processing of x-ray images of 

several fruits: citrus, peach, guava with different image acquisition parameters. 

Learning image partition rule approach was used by Chou et al. (2010). And then a 

decision is made how to segment each region. The decision rules are derived from a 

learning process that takes training images as input. Images with under normal and 

inadequate illumination conditions were segmented better than other global and locally 

adaptive binarization methods. Integrating the advantages of global and local methods 

was the approach adopted by Pai et al. (2010). A threshold surface constructed based on 

the diversity and the intensity of each region was used to segment image. 

Considering the fact that Jiang et al. (2008) method was applied successfully for 

segmenting defects in food product images; it was selected as one of the local adaptive 

thresholding method for pecan defect segmentation. 

2.2.7.3  Water Flow Methods 

The water flow methods consider the image surface as a three dimensional surface 

consisting of mountains and valleys. The pixel coordinates are treated as spatial locations. 

The pixel intensity is treated as an elevation of the topographic location. Kim et al. 
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(2002) assumed that higher gray levels (mountains) in a document image represent 

characters, and lower gray levels (valleys) backgrounds, or vice versa. 

The water flow method consists of two parts: a water flow process and a thresholding 

criterion. The water flow process consists of pouring a water drop at a defined pixel 

location (water drop point), then flow of the water drop to a regional minimum point, and 

deposition of the water drop.  The deposition of the water drop raises the elevation (pixel 

intensity) of the regional minimum point, or neighboring pixels including the regional 

minimum point. This mimics a natural water flow process. The water flow process is 

repeated for all the water drop points, and iterated many times. The amount of water 

deposited, representing objects, is segmented. Because, the water flow depends on the 

local intensity levels, a water flow method is essentially locally adaptive in nature. All 

pixel locations are used as water drop points and single Otsu global threshold as 

thresholding criterion. 

Oh et al. (2005) modified both the water flow process and the thresholding criterion of 

the Kim et al. (2002) method. In the modified Oh water flow process, water drops were 

poured at higher gradient points only. The water flow process was stopped when a certain 

percentage of the gradient points were submerged. The thresholding criterion was 

modified by categorizing the amount of filled water into shallow and deep pond 

categories. A separate threshold for each category was determined using the single Otsu 

threshold method. The modifications made the algorithm faster and more accurate. 

However, the Oh et al. (2005) method had two limitations. First, most water drops had to 

travel all the way from gradient points, mostly higher elevation points, to regional 

minimum points, making the water flow process slower. Second, the determination of 

two thresholds was cumbersome and complicated. It started with the assumption of 

minimum pond depth corresponding to the noise level of the image. Then, it required the 

determination of three separability factors, their empirical thresholds, and then threshold 

adjustments. Finally, two single Otsu thresholds were calculated. If segmentation was not 

satisfactory, then minimum pond depth corresponding to noise level was changed, and 

thresholds were recalculated. 

After considerable review of literature and critical thinking, it was concluded that water 

flow methods could be very suitable for pecan defect segmentation. It was thought that 

the method would adapt well to natural variations present in food and agricultural images. 

Especially, it was thought that nutmeat eaten by insect would results into higher pixel 

values than the surrounding good nutmeat pixels. The water flow methods should be able 

to segment these eaten nutmeat portions, however irregular and variable they may be. In 

other words, it would be shape and size invariant. The method also presented very sound 

analogy of water flow which with the author is well conversant. Therefore, it was thought 

to modify the water flow method to make it more suitable for pecan defect detection 

while keeping in mind its extendibility to other food and agricultural images. 
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2.3 Pattern Recognition Classifiers 

Many studies referred to above used a variety of pattern recognition classifiers: Bayesian, 

many variants of artificial neural networks, and many variants of statistical classifiers. On 

the other hand, the machine learning research has led to development two excellent 

classifiers: AdaBoost and support vector machine. The following section discusses some 

of the important developmental studies, and application of these methods to agricultural 

situations. A review of AdaBoost algorithms can be found in Meir and Rastch (2003) and 

a comprehensive review of application of support vector machine classifier to agricultural 

and biological applications can be found in Huang et al. (2010). 

2.3.1 AdaBoost 

AdaBoost is one of the state-of-the-art classifiers introduced by Freund and Schapire 

(1996). It consists of combining weak learners (simple thumb rules) such that the 

performance of the resulting ensemble is improved or boosted. Because, it adaptively 

boosts the combined classifier’s performance it is called AdaBoost. 

First successful algorithm called Discrete AdaBoost (Freund and Schapire, 1996) takes 

weighted labeled training data and outputs a classifier which predicts labels of input 

samples. Weighted training error is calculated and weights of misclassified training 

samples are increased. Again a classifier is trained using revised weighted training 

samples and this procedure is repeated till the weighted training error becomes more than 

50% or the specified number of iterations is reached. The final classifier is a linear 

combination of the classifiers from each stage. Freund and Schapire (1999 a) modified 

the Discrete AdaBoost algorithm to predict real valued confidence rated predictions 

rather than the {- 1, 1} of the earlier Discrete AdaBoost. This real valued contribution is 

combined with the previous contributions. A slightly different weighing of individual 

classifier is done. The modified algorithm is commonly referred as Real AdaBoost 

algorithm. 

The spontaneous success of AdaBoost algorithms for many applications generated lot of 

interest for theoretical explanation. A statistical explanation was proposed by Friedman et 

al. (2000). They concluded that AdaBoost is essentially additive regression modeling and 

expectation maximization. They also proposed a new AdaBoost algorithm called Gentle 

AdaBoost based on statistical principles. The main difference with the Real AdaBoost 

algorithm is that it uses Newton stepping rather than exact optimization at each step.  It 

was shown that Gentle AdaBoost algorithm has similar performance to the Real 

AdaBoost and often outperforms when stability is an issue. 

The validation error continues to improve even if the training error reduces to zero.  It is 

due to the fact that the margins of the examples defining the separating hyper-plane 

continue to increase even after all examples are on the correct side. Ratsch and Warmuth 
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(2005) proposed a new version of Star AdaBoost that explicitly maximizes the minimum 

margin of the examples up to a given precision. With an estimate of the achievable 

margin as a parameter, it was shown that Star AdaBoost requires less iteration than other 

algorithms which aim to maximize the margin. 

There are limited studies applying AdaBoost algorithms to agricultural classification 

tasks. First application of AdaBoost algorithm to agricultural tasks was reported by 

Barnes et al. (2010) for potato defect classification. Real AdaBoost was used to 

automatically select the best features for discriminating between blemishes and non-

blemishes potato pixels from a very large set of candidate features. The Real AdaBoost 

algorithm was robust to the natural variation in fresh produce due to different seasons, 

lighting conditions, and varieties. The results showed that a minimalist classifier that 

optimizes detection performance at low computational cost can be built on Real 

AdaBoost algorithm. The accuracy for blemish detectors for white and red potato 

varieties was 89.6% and 89.5%, respectively. 

In another study use of AdaBoost algorithms was demonstrated to classify plant species 

for automatic intra-row weed control (Mathnaker et al., 2010). An improvement in 

average classification accuracy of about 3.29% for canola using Real AdaBoost algorithm 

and 3.57% for wheat using Discrete AdaBoost was reported over the Bayesian classifier. 

The average classification accuracy was 79.55% for canola with Real AdaBoost 

algorithm and it was 74.89% for wheat with Discrete AdaBoost. 

The AdaBoost algorithms were originally developed to screen telephone calls. The 

variations in human voice can be compared to variations in agricultural classification 

tasks. Further, the AdaBoost classifier needs to remember only little information: the 

feature, its threshold, a direction, and weight of the individual classifier for individual 

iteration. In addition, the selection the best features in inbuilt in the training of classifier. 

Their use in agricultural classification tasks can be critical for real time applications. 

Considering their advantages it was decided to explore their use for pecan defect 

classification problem. 

2.3.2 Support Vector Machine 

A new learning machine for two-group classification problems known as support vector 

machine (SVM) was proposed by Cortes and Vapnik (1995). The SVM maps input 

vectors non-linearly into a very high dimension feature space. A linear hyper-plane 

divides the data in the feature space. The properties of the hyper-plane ensure high 

generalization ability. The machine can classify both separable and non-separable 

training data. Many studies demonstrated superiority of support vector machine over 

neural networks, linear classifier, and nearest neighbor classifier. The SVM classifier was 

also researched for few agricultural applications using color imaging, and hyper-spectral 

imaging. 
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Color images and support vector machine were used to classify pizza sauce spread by Du 

and Sun (2005). A 30-dimensional vector was used as input to the SVM classifiers. The 

polynomial SVM classifiers gave the best classification accuracy of 96.67% on the test 

data. Another application using color images and support vector machine was to 

determine color scores of beef fat (Chen et al., 2010). The best SVM classifier was 

obtained by optimizing radial basis kernel parameters. The SVM classifier achieved the 

best performance percentage of 97.4% showing the effectiveness of SVM discrimination 

method for predicting beef fat color scores. 

Hyper-spectral fluorescence imaging and support vector machine was studied for 

analyzing the difference of black walnuts shell and pulp by Jiang et al. (2007). An overall 

90.3% recognition rate showed that hyper-spectral fluorescence imaging and SVM 

classifier were effective in differentiation of walnuts shell and pulp. The comparison of 

different classifiers also demonstrated the superiority of support vector machine over 

principal component analysis and fisher discriminant analysis. In another application, 

multi-spectral entropy textural features and support vector machine were used to classify 

green tea categories by Wu et al. (2008). The classification accuracy obtained with least 

squares SVM with radial basis function kernel was up to 100%.  Radial basis kernel SVM 

performed better than linear kernel SVM and radial basis function neural networks. 

In another application eggshell crack detection was studied by Deng et al. (2010) using 

continuous wavelet transforms and support vector machine. An experimental system was 

used to generate the impact force and to measure the acoustic signal. Wavelet based 

features were extracted through the analysis of the energy distribution of the wavelet 

transform coefficients for the eggs. The wavelet features were used to construct the SVM 

classifiers. With four measurements for every egg, the system achieved highest crack 

detection rate of 98.9% and smallest false rejection rate of 0.8%. 

AdaBoost is based on linear programming approach whereas support vector machine on 

quadratic programming approach (Freund and Schapire, 1999b). AdaBoost is 

computationally more efficient and does not require complex calculations. It can be a 

good classifier for real time agricultural applications.  On the other hand, bio-informatics 

research led to development of specific support vector machine kernels accurate up to 98-

99% (Hur et al., 2008). On similar lines specific kernels can be developed for agricultural 

applications. Considering the superior performance of AdaBoost and support vector 

machine, it was decided to apply them for pecan defect detection task and compare their 

performance with Bayesian classifier.  
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Chapter III 

Jesus! Jesus! Jesus! 

Materials and Methods 

3.1 Experimental Setup 

The experimental setup comprises: an x-ray source, digital x-ray camera, frame grabber, 

software and computer (figure 3.1.1). The x-ray source (XTFTM-5011, Oxford 

Instruments, X-Ray Technology, Inc., Scotts Valley, CA) can operate up to a maximum 

voltage of 50 kV and a maximum current of 1mA. The x-ray source uses a tungsten 

anode, and the generated beam is filtered through a beryllium window. The beam of x-ray 

photons exits the window (76m x 93m oval) forming a diverging cone angle of 25
0
. A 

solid sate detector (Shad-o-Box-1024TM, Rad-icon Imaging Corp., Santa Clara, CA) 

captures the x-ray photons striking it, and converts them to a corresponding charge read 

by a 12 bit frame grabber. The detector has an array of 1024x1024 pixels, each spaced at 

48μm. 

 

Figure 3.1.1 Experimental setup used to acquire pecan x-ray images (taken from 

Kotwaliwale, 2007) 

The detector (camera) is calibrated for offset correction and gain correction. A pixel map 

is used to correct for dead pixels. A pecan nut is placed directly above the detector, and 

imaged with 1000 ms integration time. After applying the offset and gain correction, 
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images were saved in ‘raw’ format. Reading and further processing were done in the 

Matlab (Mathworks, Natick, MA) programming environment. This experimental setup 

also used by Kotwaliwale (2007). Earlier study (Kotwaliwale, 2007) recommended that a 

better quality images could be one of the alternatives to achieve automatic segmentation. 

So a better solid state detector (Shad-o-Box-1024TM, Rad-icon Imaging Corp., Santa 

Clara, CA) with 14 bit frame grabber was also used to acquire the images. A program in 

C# was written to control the input current and input voltage to the x-ray tube through NI 

6221 (National Instruments, Austin, TX) data acquisition card. All other instrumentation 

was the same used by Kotwaliwale (2007). The images from this detector were not used 

in this study. 

3.2 Thresholding Methods 

3.2.1 Multi-level Thresholding: Twice Otsu Method 

Bi-level thresholding methods segment the image pixels into two classes: background 

and object. Many images contain pixels belonging to more than two classes. To segment 

images with more than two classes more than one threshold are required. Otsu (1979) 

proposed a method to determine multiple thresholds based on maximization of between 

class variance. The between class variance 
2( )B for three classes (C1, C2, and C3 

separated by two thresholds, k1 and k2) can be written as (Otsu, 1979; and Gonzalez and 

Woods, 2008): 
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The procedure starts by selecting a value of k1 starting from 1 such that 1  k1< k2. For 

each values of k1, k2 values are varied from k1+1 to L-1. Then k1 is incremented by one 

and k2 is varied again as described above. This process is repeated till k1=L-3. The 

thresholds corresponding to the maximum value of between class variance are the two 

optimal thresholds. The pixels with intensity values less than or equal to optimal 

threshold k*1 are assigned to the first class (C1). The pixels with intensity values greater 

than k*1 but less than or equal to k*2 are assigned to the second class (C2). The pixels 

with intensity values greater than k*2 are assigned to the third class (C3). For pecan 

images, three classes were background (C1); nutmeat, shell, and woody separator (C2); 

and air gaps (C3) representing insect eaten nutmeat (defect). 

3.2.2 Image Partition: Jiang Method  

Jiang et al. (2008) reported image partition (window partition) method to detect the insect 

infestation sites in the citrus and guava fruit. The study found difficult to segment the 

infestation site with global (single) threshold value. An adaptive thresholding method 

based on the local grey level distribution was adopted to solve the problem. The method 

starts by removing random noise from the image background. Then, adaptive 

thresholding was used to give each pixel a suitable threshold value which was dependent 

on the distribution of neighborhood grey levels. For this a map of threshold values was 

created which was used to create a binary image. To calculate the threshold values of the 

map, the x-ray image was divided into many M×M (M= 32 in most cases) sub images as 

shown in figure 3.2.2.1 (a). An optimum threshold was calculated using Otsu global 

thresholding method for each M×M sub image. Each M×M sub image had M/2 pixels 

overlap both horizontally and vertically. The optimum threshold values were calculated 

from left top to right bottom of the image for all M×M sub images to form a coarse 

threshold value grid with (2N/M−1) x (2N/M−1) threshold values obtained for an N×N 

image, as shown in figure 3.2.2.1 (c). The individual threshold for each pixel p(x, y) 

within an M/2×M/2 interpolation grid was obtained by two dimensional interpolations 

using the following equation: 
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Where,  Ii = threshold values of the four nearest reference points to p(x, y) 

Ri = the distances from p(x, y) to Ii as shown in figure 3.2.2.1 (d). 

After obtaining the thresholds for all image pixels, the image was segmented. If the pixel 

intensity was more than the individual threshold calculated using equation 3.2.2.1 than it 
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was classified as background pixel otherwise as object (insect infested) pixel. Infestation 

sites were then located by a hole filling operation followed by image subtraction. 

Morphological filtering was used to remove the small infestation sites. 

 

 

Figure 3.2.2.1 Steps of the Jiang et al. (2008) algorithm: (a) starting position of the 

M×M operational region, (b) shifting the operational region, (c) the coarse threshold 

grid, and (d) two-dimensional interpolation of the threshold values (taken from 

Jiang et al., 2008) 

3.2.3 Water Flow Method: Kim Method  

Kim et al. (2002) method for text document segmentation was based on water flow 

properties i. e. water always flows down to the lower regions. It was assumed that lower 

intensity levels (darker regions) represent characters and higher intensity levels (brighter 

regions) represent backgrounds, or vice versa. The Kim method consists of two main 

processes: a water flow process and a thresholding criterion. Water flow extracts the local 

characteristic of an intensity image by simulating the rainfall. Simulated rainfall fills 

water in lower regions and it creates water ponds on the terrain. The water filled regions 

correspond to the local valleys (characters), whereas the dry regions to the background. 
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Figure 3.2.3.1 Search process for the regional minimum point (concept taken from 

Kim et al., 2002) 

The water flow process starts by pouring water drops at each pixel location. The travel 

path followed by a water drop is illustrated in figure 3.2.3.1. If a water drop is poured at 

location 1, mask ‘A’ (5x5 mask) finds the minimum intensity level (elevation) around 

location 1. If the location 2 is the location with minimum elevation in mask ‘A’, the water 

drop flows to location 2. A new mask ‘B’ detects the new location with minimum 

elevation within the mask ‘B’. If the location 3 is the location with minimum elevation in 

mask ‘B’, the water drop flows to location 3. This process is continued until the center 

location of the mask has the minimum elevation within the mask. If location 3 is the 

minimum point at the center of mask ‘C’, then the search has reached the regional 

minimum point. Once the search has reached the regional minimum point, the pixel 

intensity value of the regional minimum point is increased by one. Next water drop is 

dropped at the second pixel location and this is done for all the image pixels. Many water 

flow iterations are carried out for the whole image. These iterations can be continued till 

amount of water deposited exceeds the amount of water required to overflow. The 

overflow amount is calculated by inverting the image intensity levels and averaging. 

However, the water flow process is usually stopped much earlier determined through 

experimentation. 

Water filled image is then labeled to get water ponds. The average water height of each 

pond is then assigned to the pixels belonging to that water pond. This raises the 

characters hidden in the poor contrasting areas. Then, water image is obtained by 

subtracting the original image from the water filled image. The amount of water filled at 
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each pixel location is treated as pixel intensity and single Otsu (Otsu, 1979) threshold is 

determined.  This threshold segments the water image to decide character or background 

pixels. Since, the amount of filled water represents the local characteristic of an original 

terrain; the Kim et al. (2002) method yields locally adaptive thresholding results. 

3.2.4 Water Flow Method: Oh Method 

Oh et al. (2005) modified the Kim et al. (2002) water flow method. Oh et al. (2005) 

observed that since Kim method pours water on all image pixels, it takes longer computer 

time. Kim method also requires adjustment of iteration numbers to get the best 

segmentation results. Further, the segmentation results are obtained by applying a global 

water depth threshold. Because of global thresholding, characters in a poor contrast 

background are often removed, as they are represented by a shallow water depth. Oh et 

al. (2005) modified Kim method to overcome these problems. 

 

Figure 3.2.4.1 Gradient points (ROI), desert region, and example of search 

procedure for lowest local position using search mask (taken from Oh et al., 2005) 
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Figure 3.2.4.2 Schematic diagram of Oh et al. (2005) water flow method (taken 

from Oh et al. 2005) 

To reduce the computational time, the Oh water flow process restricts the rainfall drop 

points to the large magnitude gradient points (regions of interest {ROI}, figure 3.2.4.1) 

instead of all image pixels. The gradient threshold in a Sobel edge gradient image is 

defined as: 

10 ln ( ( , ) )I x yTh avggradient
 3.2.4.1 

Where, 
( , )I x y

avg  is the average gradient magnitude of the image by the Sobel edge 

operator. The gradient points (ROI) and water flow process is shown in figure 3.2.4.1. 

Once the search has reached the regional minimum point, the pixel intensity values of the 

neighboring pixels are increased as follows: 

'( , ) ( , ) ( 1, 1) 1 , 1I x y I x y G j k j kM j M jM k M k
 3.2.4.2 
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Where, 
'( , )I x yM M  represents the water filled image after (n+1)th water drop 

deposition, ( , )I x yM M represents water filled image after (n)th water drop deposition, 

,x yM M represents regional minimum point, ( , )G j k represents the 3x3 Gaussian mask 

with unit variance and controls the amount of water filled at local minimum point. A 

value of = 2 was used for 8 bit images and = 32 was used for 12 bit images. 

The iterative rainfall process is terminated automatically by introducing a stopping 

criterion. The stopping criterion is defined as submergence of certain fraction of gradient 

points.  To threshold the amount of filled water, a separability factor is determined by 

analyzing the water depth histogram. If separability factor is more than experimentally 

determined threshold than single Otsu threshold is used to segment the image. Complete 

procedure is shown in figure, 3.2.4.2. Otherwise the water ponds are classified into two 

categories: shallow ponds and deep ponds. Single Otsu thresholds are separately 

determined for each water pond categories. Again if the water pond single Otsu threshold 

is less than experimentally determined threshold than calculated threshold is adjusted. 

Finally, two thresholds are used to segment water image. 

3.2.5 Proposed Method: Reverse Water Flow 

The Oh et al. (2005) and Kim et al. (2002) water flow methods were programmed and 

applied to pecan image segmentation. Critical analysis of water flow process observed by 

making a movie of water flow process revealed that water drops has to travel long 

distances from higher gradient points to the regional minima points. It was further 

observed that the determination of threshold was pretty much complex and cumbersome. 

It required many optimizations, determination of empirical constant, and recalculations if 

the segmentation results were not satisfactory.  To overcome these limitations, this study 

proposes a new reverse water flow process, and a different thresholding criterion. 

First, the water flow process is modified by pouring the water drops at the local minima 

points, instead of the gradients points (Oh et al. 2005) or all the pixels (Kim et al. 2002). 

When a water drop is poured at a local minima point, a search for a regional minimum 

point at that moment is initiated. After completion of the search process, the water drop 

gets deposited at the regional minimum point. The water drop deposition raises elevations 

of the regional minimum point and its neighboring pixels (figure, 3.2.3.1). The proposed 

water flow process reverses the water flow direction. The water drop starts flowing from 

the local minima point, instead of from the gradient point (usually a higher elevation 

point). So the method was named reverse water flow method. From another perspective, 

it is similar to water being pumped up from the local minima point as in the watershed 

segmentation approach (Gonzalez and Woods, 2008). 



28 
 

It is hypothesized, that the reversal of water flow direction will reduce the water drop 

travel distance for the initial iterations. If the local minima points are well distributed 

throughout the image, the reverse water flow process can make the algorithm faster. This 

condition is closely matched for food product images, specifically for the pecan nuts, 

because of natural variability present in them. Second, the thresholding criterion is 

changed to the dual Otsu threshold (Otsu, 1979), instead of a single Otsu threshold (Kim 

et al., 2002), or two single Otsu thresholds one each for two categories of water depths 

(Oh et al., 2005). 

3.2.5.1  Reverse Water Flow Process 

The Kim water flow process pours water drops at all the pixel locations. The pixel 

locations can be considered as small grid squares shown on colored mesh in figure 

3.2.5.1. When a water drop falls in relatively flat or higher region, the water drop requires 

large travel distances to reach the regional minimum point. 

 

Figure 3.2.5.1 Three dimensional surface with possible locations of gradient points 

and local minima points 

The Oh water flow process excludes flat regions by dropping water at the higher 

magnitude gradient points (shown by circular red dots in figure 3.2.5.2), mostly at higher 

elevations. To further reduce travel time, the proposed reverse water flow process uses 

local minima points (shown by blue squares in figure 3.2.5.2) as water drop points. The 

situation ‘A’ in figure 3.2.5.2 refers to first iteration. The water drop poured at local 

minima point gets deposited there itself and does not has to travel any distance.  In 

contrast, the water drops poured at the gradient points have to travel longer distances 
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(shown by red dashed arrows in figure 3.2.5.2). The procedure to search for regional 

minima point is shown in figure 3.2.3.1. The water drop deposition procedure and 

stopping criterion (equation 3.2.5.1) are same as Oh et al. (2005). 

GPt = C * GP0 3.2.5.1 

Where, GPt = gradient points submerged at t
th
 iteration; GP0 = total gradient points; C = 

fraction of gradient points allowed to submerge (adjusted to get desired segmentation 

results). 

After a few iterations, the elevations of local minima points get raised due to water drop 

depositions. Then water drops poured at local minima points have to travel for example 

to location ‘B’ (figure 3.2.5.2). At this stage the travel distance for the proposed water 

drop points (local minima points) are approximately equal to a few Oh water drop points 

(gradient points), and still shorter than other Oh water drop points (top row of three red 

dots in figure 3.2.5.2). Overall, it might result in considerable computational time saving. 

 

 

Figure 3.2.5.2 Contour map of figure 3.2.5.1: illustrating possible flow paths from 

gradients points and local minima points (situation A: first iteration, and situation 

B: after few iterations) 

Before starting water flow process, the image is smoothed by a 3x3 Gaussian mask with 

unit variance, and then the image is searched for the local minima points.  The complete 

algorithm is presented in figure 3.2.5.3. A water drop is poured at the local minima point, 

and it flows to the regional minima point. This process is repeated for all the local 
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minima points, and iterated until the stopping criterion is met. The process is stopped 

when a certain percentage of the gradient points are submerged, as proposed by Oh et al. 

(2005). For pecan images, 70% submergence and for other images 60% submergence of 

gradient points was used as the stopping criterion. The stopping criterion is decided 

empirically to get the desired segmentation results. The amount of water filled at each 

pixel location is extracted by subtracting the water filled image at the completion of the 

reverse water flow process from the original image. The image thus obtained is referred 

to as the water image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.5.3 Flow chart for the proposed reverse water flow method 
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3.2.5.2  Local Adaptive Thresholding Criterion 

The water image is segmented by thresholding the gray scale histogram. Kim et al. 

(2002) used a single Otsu threshold to segment the water image.  Oh et al. (2005) used 

two single Otsu thresholds, one for shallow water ponds, and another for deep water 

ponds. In the Oh method, very small water depths were considered as noise and removed, 

however the noise level was assumed arbitrarily. The determination of two single Otsu 

thresholds, after the noise removal, was cumbersome and complicated. It involved 

empirical determination of the separability factors three times, and the adjustment of 

thresholds twice (Oh et al., 2005). The overall goal seemed to optimize two single Otsu 

thresholds, one each for the shallow and deep water pond category. 

Critical analysis of the Oh thresholding approach revealed that it is very similar to the 

Otsu (1979) approach of determining dual Otsu thresholds.  The analysis also revealed 

that the dual Otsu thresholds (Otsu, 1979) provide a much better way to optimize 

thresholds than empirical relationships described by Oh et al. (2005). Therefore, dual 

Otsu thresholds in this study were determined by following procedure described by Otsu 

(1979): 

 2 * * 2* ( , ) ( , )max1 2 1 2
1 1 1

n k k k k
B B

k k L
 3.2.5.2

    (3) 

Where, η is the between class variance, k1 and k2 are the thresholds separating intensity 

levels L into three classes (C1 [1, …, k1], C2 [k1+1, …, k2] and C3 [k2+1, …,L]), k*1  and 

k*2 are the thresholds that maximize the between class variance η*. These thresholds can 

be used to segment shallow and deep water ponds, based on pixel connectivity, as done in 

Oh thresholding criterion. However, in the proposed thresholding criterion water ponds 

based on pixel connectivity were not delineated, and only the lower level threshold 

defined the noise level for both shallow and deep water depth categories. Later in Results 

and Discussion section it is shown that segmentation results were comparable. To present 

flexibility in the noise level determination, the lower threshold can be adjusted as 

follows: 

 ' * *
1 1k k n  3.2.5.3  

Where,  = threshold adjustment parameter 

The lower threshold k`1 represents the noise level of the image. The water depths below it 

are considered as noise and removed. By varying the threshold adjustment parameter β, 

the lower threshold and thereby the noise level can be adjusted to get better segmentation 

results. It is interesting to note that the proposed thresholding criterion does not require 

recalculation of thresholds by equation 3.2.5.2 but just adjustment by equation 3.5.2.3. 

However, the Oh method requires recalculation of the two single Otsu thresholds to 
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adjust for noise levels. This feature makes the proposed thresholding criterion flexible to 

accommodate various noise levels. This flexibility can also be used for extracting 

classification features for pattern recognition. An example follows in the Results and 

Discussion section. 

3.2.6 Evaluation of Developed Method 

The evaluation of the proposed method was done using various images. The images used 

for evaluation of the selected thresholding methods came from published studies, and 

images acquired in this study. The images used from previous studies were: text 

document images (Kim et al., 2002, and Oh et al., 2005), citrus fruit image (Jiang et al., 

2008), material structure image and cell images (Sezgin and Sankur, 2004). For 

comparison, local adaptive thresholding methods proposed by Kim et al. (2002), Oh et al. 

(2005), and Jiang et al. (2008) were selected. If the one object (fruit or nut) is imaged, 

then the object is first segmented by the single Otsu threshold method. Then the 

segmented object is treated as an image. This saved computation time, and it was done 

for all the methods, but the Jiang method. For the Jiang model, the window size used to 

calculate sub-image single Otsu threshold was 32x32 pixels. 

Since single Otsu threshold method could not segment the pecan defects, so in this study 

twice application of the single Otsu threshold method was attempted. First application to 

the original image segmented the object (pecan nut) image and then second application to 

the object image to segment nutmeat, shell, and defects.  It is similar to the dual Otsu 

threshold (Otsu, 1979), but twice application of the single Otsu threshold method is 

preferred, because of wide availability of the single Otsu threshold method functions in 

different development environments. From other perspective, this approach represents 

multi-level thresholding.  In this study, this approach was also used for comparison and it 

is referred as Twice Otsu method. 

Fifteen pecan nuts, representing good and defective nuts (figure, 3.2.6.1) were imaged. 

The pecan nuts were placed directly above the detector and imaged with 1000 ms 

integration time. The x-ray tube was operated at 35 kV and 0.75 mA based on the 

recommendation of Kotwaliwale et al. (2007). The defects were created by drilling a 

2mm hole representing the insect exit path. To represent different levels of nutmeat 

damage, nut meat was removed manually with a steel wire having a pointed end, to 

simulate an insect bite. Care was taken not to break the shell in the process. Out of fifteen 

samples, three were good pecans and 12 were defective. Six pecans had hole(s) 

representing insect exit paths, and six had various amount of nutmeat removed to 

represent nutmeat eaten by the pecan weevil. Besides accuracy of segmentation results, 

other performance measure for segmentation methods is computational time.   For 

comparison, the time required for the algorithms to run in the Matlab programming 
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environment was recorded. The computational time is merely indicative of relative time 

that would be needed to run different algorithms in a programming environment. 

 

Figure 3.2.6.1 Good (upper row) and defective pecans (bottom row) with insect 

exit holes shown by arrow heads 

3.2.6.1  Objective  Evaluation of Segmentation Results 

A new segmentation method is evaluated in its ability to segment the desired object or 

defect. In addition to subjective evaluation by human eyes, a new method can also be 

evaluated objectively. There are many objective evaluation indices proposed. A 

comprehensive review of supervised objective evaluation indices can be found in Jiang 

(1996) and unsupervised objective evaluation indices in Jiang et al. (2008).  Jiang (1996) 

reported that misclassification error and relative area error are the two best objective 

evaluation indices. In this study, two segmentation evaluation criteria, misclassification 

error and relative foreground area error were used, as defined by Nacereddine et al. 

(2007). 

Misclassification error (ME): This measure represents the percentage of background 

pixels misclassified as foreground, and vice versa. It can be expressed as: 

0 0
1

0

B B F Fk k
ME

B Fo  3.2.6.1.1 

Where, B0 and F0 are the background and foreground pixels of the reference image, Bk 

and Fk are the background and foreground pixels of the test image, and |.| denotes the 

cardinality of the set. 

Relative foreground area error (RAE): This measure compares area in the segmented 

image to that of reference image. It can be expressed as: 
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Where, A0 and Ak are the foreground areas in the reference image and the test image. 

Best segmentation is represented by an evaluation index of Φ and the worst by an 

evaluation index of 1.0. The reference images were obtained by manually adjusting the 

threshold value to get the best possible segmentation of nutmeat (figure, 3.2.6.2 {b}). The 

shell was segmented by manually adjusting the gradient threshold in the Sobel mask 

operated gradient image (figure, 3.2.6.2 {c}). Both these images were combined to get 

the reference images (figure, 3.2.6.2 {d}). 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Original image nutmeat Shell reference image 

Figure 3.2.6.2 Different steps in obtaining a reference image 

The x-ray energy levels have significant impact on image quality. Kotwaliwale et al. 

(2007) studied different energy levels for pecan. Based on their recommendation three 

best voltage and current combinations were selected: a) 35kV and 0.75mA, b) 30 kV and 

1mA, and c) 40kV and 0.5 mA. The images of a good pecan, a pecan with small defect, 

and a pecan with large defect were obtained at different energy levels and segmented 

using selected segmentation methods. 

3.3  Pattern Recognition Classifiers 

3.3.1 AdaBoost 

Boosting is a method of combining the performances of weak classifiers to build a strong 

classifier whose performance is better than any of the weak classifiers. Weak classifier or 

weak learner or base leaner is a simple rule whose performance is only a little bit better 

than random guessing. In other words, the classification accuracy is just more than 50%. 

Better performance of the resulting strong classifier is due to more weights given to the 

training examples which are difficult to classify. The training consists of a number of 
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iterations through the training data. In first iteration all training samples get equal weight. 

A weak classifier is trained and weighted training error is calculated. Then weights are 

updated and misclassified training samples get higher weight. This procedure is iterated 

till weighted training error is more than 50% or specified number of iterations are 

reached. The first successful AdaBoost algorithm (Freund and Schapire, 1999b) is 

presented in algorithm 1 and hereafter referred as Diverse AdaBoost. 

Given: (x1, y1), …,(xm, ym)  where xi ∈ X, yi ∈ Y ={-1, +1}  

Initialize D1(i)=1/m 

For t = 1, …,T: 

1. Train weak learner using distribution Dt 

 

2. Get weak hypothesis ht: X→{-1, +1} with weighted error εt=
: ( )
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Algorithm 1. The Diverse AdaBoost (Freund and Schapire, 1999b) 

Real AdaBoost is modified version of Diverse AdaBoost modified by Freund and 

Schapire (1999a). In Real AdaBoost confidence rated prediction by weak classifier is 

used instead of simply binary predictions {1, 0}.  The Real AdaBoost algorithm 

presented in algorithm 2 generally gives lower error rates. 

Given: (x1, y1), …,(xm, ym)  where xi ∈ X, yi ∈ Y ={-1, +1} , the weak classifier 

pool K 

Initialize D1(i)=1/m 

For t = 1, …,T: 

1. For each weak classifier h in K do: 

a. Partition X into several disjoint blocks X1,…Xn 

 



36 
 

b. Using the weights in distribution Dt to calculate 

 

: ,

( , ) ( )
i j i

j

l i j i t

i x X y l

W P x X y l D i  

where, l =+1. 

c. Set  the output of h on each Xj as 

1

1

1
, ( ) ln( )

2

j

j j

W
x X h x

W
  

where,   = small positive constant 

d. Calculate the normalization factor 

1 12 j j

j

Z W W   

2. Select the hypothesis ht minimizing Z, i. e. 

 mint
h K

Z Z  

arg mint
h K

h Z  

3. Update: 1( ) ( )exp( ( ))t t i t iD i D i y h x  

Final hypothesis: 
1

( ) ( ( ) )
T

t

t

H x sign h x b  

Algorithm 2. The Real AdaBoost (Freund and Schapire, 1999a, and Barnes et al. 

2010) 

Friedman et al. (2000) reported that AdaBoost algorithms can be understood with 

statistical principles namely additive modeling and maximum likelihood. A new 

AdaBoost algorithm based on statistical theory called Gentle AdaBoost was proposed 

(Algorithm, 3). They found that results from Gentle AdaBoost and Real AdaBoost were 

identical. 

 Given: (x1, y1), …,(xm, ym)  where xi ∈ X, yi ∈ Y ={-1, +1} , H(x) = 0. 

Initialize D1(i)=1/m 

For t = 1, …,T: 

1. Fit the regression function fm (x) by weighted least-squares of yi to xi with 

weights Dt 
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2. Update F(x)← F(x) + fm (x). 

3. Update: 1( ) ( )exp( ( ))t t i t iD i D i y h x  and renormalize.  

Final hypothesis: 
1

( ) ( ( ))
T

t

H x sign f x  

Algorithm 3. The Gentle AdaBoost (Friedman et al. 2000) 

Many studies showed that the generalization error of the AdaBoost algorithm continues 

to improve even after the hyper-plane, defining the decision boundary, completely 

separates the training classes (Ratsch and Warmuth, 2005). The reduction in 

generalization error was attributed to the increased margin: the distances of the training 

examples to the separating hyper-plane.  To maximize the minimum margin of the 

examples up to a given precision, a new algorithm Star AdaBoost (algorithm 4) was 

proposed. 

 Given: (x1, y1), …,(xm, ym)  where xi ∈ X, yi ∈ Y ={-1, +1} , desired accuracy 

parameter  

Initialize D1(i)=1/m 

For t = 1, …,T: 

1. Train weak learner using distribution Dt and obtain weak learner ht: X→{-1, 

+1} 

2. Calculate the edge t of ht: t=
1

( ) ( )
m

t i t i

n

D i y h x  

3. If | t| =1, then α1=sign( t), h1= ht, T=1; break 

 

4. t
min 

=
1,...,

min
r t

t; ρt = t
min 

-  

5. Set αt =
1 11 1

ln ln
2 1 2 1

t t

t t

 

6.  Update weights: 1

( ) exp( ( ))
( ) t t i t i

t

t

D i y h x
D i

Z
 

where, Zt= 
1

( ) exp( ( ))
i m

t t i t i

i

D i y h x    

    Final hypothesis: 
1

1

( ) ( )
T

t
tT

t
r

r

H x h x  

Algorithm 4. The Star AdaBoost (Ratsch and Warmuth, 2005) 
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3.3.2 Support Vector Machine 

Support vector machine (SVM) classifier is based on the idea of mapping the input data, 

characterized by non-linear decision boundaries, into a high dimensional feature space 

Cortes and Vapnik (1995). Non-linear mapping function operates on input space to get a 

linear decision boundary, hyper-plane, in the feature space. Different mapping functions 

implements different types of SVM. The general form of SVM decision function is: 

( ) , ( )f x w x b   3.3.2.1 

where ( )x is a function mapping sample x from the input space to the feature space.<.,.> 

denotes the inner product in the feature space. The optimal values of w and b are obtained 

by solving the optimization problem: 

minimize: 
2

1

1
( , )

2

m

i

i

g w w C   3.3.2.2 

subject to: 
,( , ( ) ) 1 0,i i iy w x b   3.3.2.3 

where, i  is the i
th

 slack variable and C is the regularization parameter. In the Wolfe dual 

form, the above minimization problem: 

minimize: 
1 1 1

1
( ) ( , )

2

m m m

i i j i j i j

i i j

W y y k x x   3.3.2.4 

subject to:
1

0,
m

i i

i

y  ∀ i:0≤αi≤C              3.3.2.5 

where, αi is a Lagrange multiplier corresponding to the sample xi, k(.,.) is a kernel 

function that maps the input space into a higher order feature space. In this study linear, 

quadratic and radial basis function kernels are used. Linear and quadratic kernels can be 

expressed as: (<xi, xj>+1)d where d=1 for linear kernel and d=2 for quadratic kernel. 

Radial basis function kernel of Gaussian form can be expressed as: 

2

2
( , ) exp( )

2

i j

i j

x x
k x x  3.3.2.6 

Where, σ = width of Gaussian kernel 
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3.3.3 Bayesian Classifier 

A Bayesian classifier was used for comparison and a decision function assuming the 

probability density function to be Gaussian (Gonzalez and Woods, 2008) can be 

represented by: 

1 1 1( )( ) ln ( ) ln ( )
2 2

Tx md x P C C x mjj j j j j
 3.3.3.1 

Where,   

j =  1, 2 … w. number of class, 

 
( )P j  = probability that class j occurs, 

 Cj  =  Covariance matrix of class j, 

 mj = mean vector of class j, 

3.4 Comparison of AdaBoost and Support Vector Machine 

For comparison of different classifiers, 100 good and 100 defective pecans of Kanza 

variety were collected from an operating mechanical cleaning facility at OSU pecan 

orchard. The individual pecans were imaged using x-ray imaging system at 30 kV and 

0.75mA with integration time of 500ms. Images were segmented using different 

segmentation methods: Proposed method, Oh method, Kim method, Jiang method, and 

Twice Otsu method. 

Three features: area ratio (ratio of the nutmeat and shell area to the total nut area), mean 

local intensity variation, and mean pixel intensity were extracted from segmented images 

based on the recommendation of earlier study (Kotwaliwale, 2003). It is hypothesized 

that if the nutmeat is eaten by the insect then there would be difference in the segmented 

nutmeat area of the good and defective pecans. The mean pixel intensity would be 

different, if one of the nutmeat halves is missing, or the nutmeat is shriveled, or the 

nutmeat is a wafer, than compared to the good pecan. The mean local variation would be 

higher for defective pecans, because of more air gaps than the good pecans. 

The dataset was randomly divided into two: training and validation. The training data set 

was used to train AdaBoost algorithms, support vector machine kernels, and Bayesian 

classifier. The training of anyone of the above classifier results into a hypothesis. It takes 

feature vector of a sample as input and outputs the class of the sample, for example: good 

pecan nut or defective pecan nut. The hypothesis is used to calculate training error: the 

percentage of samples of training data set misclassified by the trained hypothesis. 

Similarly, the feature vectors of samples of validation dataset are fed to the trained 

hypothesis and their class is predicted. The validation error is calculated: the percentage 

of samples of validation data set misclassified by the trained hypothesis. 
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The selected AdaBoost algorithms were: Diverse AdaBoost (Algorithm 1), Real 

AdaBoost (Algorithm 2), Gentle AdaBoost (Algorithm 3), and Star AdaBoost (Algorithm 

4) with decision stump as weak learner. Decision stump is a single level decision tree 

which classifies samples by sorting them based on feature values. It uses one best feature 

for classification. The feature which gives highest classification accuracy is selected for 

classification. For example, from different features extracted only one feature say area 

ratio could be selected for classification and the decision rule would be if area ratio is 

greater than 0.75 than it is a good pecan otherwise a defective pecan. The Real AdaBoost 

and Gentle AdaBoost were implemented using GML AdaBoost Toolbox (Vezhnevets, 

2006). Decision stump was implemented using Matlab Central Code (Mertayak, 2008). 

The selected support vector machine kernels were linear, quadratic, and radial basis 

function. The kernels were implemented using Matlab defined functions svmtrain and 

svmclassify. The radial basis function kernel SVM represented single norm soft margin 

support vector machine. Matlab programming environment was used to implement all the 

classifiers. 

The proposed segmentation method was adjusted by optimizing  threshold adjustment 

parameter, to maximize classification accuracy. AdaBoost algorithms need to be fine 

tuned to determine optimum number of iterations. Star AdaBoost requires further fining 

tuning of accuracy parameter. Similarly, radial basis kernel requires fine tuning of kernel 

width parameter. To decide optimum parameters, 20 runs of training and validation were 

done by randomly dividing the data set into two. Three best optimum parameters were 

selected which gave lowest validation error. Then with these three best combinations 300 

runs of training and validation were done by randomly dividing data set into two for each 

run. In each run same data sets were used to compare all AdaBoost algorithms and SVM 

kernels. Average error rates and standard deviation of error rates was used to compare the 

performance of different classifiers. Time required for classifying validation data set was 

also recorded and used for comparing performance of different classifiers. The average 

time required for different image processing operations was also recorded. The 

segmentation and feature extraction time for all 200 sample pecans and classifier time for 

all 300 runs (30000 samples) was recorded. 
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Chapter IV 

Jesus! Jesus! Jesus! 

Results and Discussion 

4.1 Evaluation of Proposed Method 

The evaluation of the proposed method was done using images from published research 

studies and pecan x-ray images acquired in this study. Pecan x-ray images were used to 

compare the two main components of the proposed method: reverse water flow process 

and thresholding criteria. The water flow process was mainly compared using the 

computational time required. The thresholding criterion was compared with existing 

thresholding criteria using the different water images. The subjective evaluation of the 

segmentation results was done by comparing the achievement of intended segmentation 

task. For example, accuracy of segmentation of eaten nutmeat in the segmented pecan x-

ray image or segmentation of characters in poor contrast part of a text document image. 

The subjective evaluation was for both pecan x-ray images and published images. The 

objective evaluation was done using pecan x-ray images. Subjective evaluation of the 

proposed method for pecan defect machine vision inspection was also done. 

4.1.1 Reverse Water Flow Process 

The hypothesis of the proposed method is that the proposed water flow method is faster 

than the Oh water flow process. For comparison, three acquired pecan images (figure 

4.1.1.1-a good pecan nut; figure 4.1.1.1-b defective pecan nut with insect exit holes 

(arrow head points to insect exit path); and figure 4.1.1.1-c defective nut with nutmeat 

eaten by insect before exiting the nut) were used. These nuts represent three types of 

insect damage inspection tasks. The main hypothesis of the proposed reverse water flow 

process over the Oh water flow process is that the proposed process reduces the travel 

distance of water drops thereby reducing the computational time. The water drop points 

for the Oh process (gradient points) are presented in figures 4.1.1.1-d to 4.1.1.1-f, and for 

the proposed process (local minima points) in figures 4.1.1.1-g to 4.1.1.1-i. The local 

minimum points are enlarged for better presentation. 

In the Oh process, most of the water drop points are on the shell and nutmeat boundary, 

and they are not evenly distributed. The uneven distribution of Oh process water drop 
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points is more clearly visible in the figure 4.1.1.1-e. From these points, which are often at 

higher elevations, the water drop travels to regional minimum point in the nutmeat area 

(white region). On the other hand, water drop points for the proposed process are well 

distributed throughout the image (figure 4.1.1.1-g to 4.1.1.1-i). Therefore, a water drop in 

the proposed process has to travel a shorter distance than the Oh process, before it 

reaches the regional minimum point. This is more explicit in figure 4.1.1.1-g. Thus, the 

travel distance of the water drops is reduced in the proposed process compared to the Oh 

process. 

 

Figure 4.1.1.1 Comparison of locations of water drop points: original images (a-c), 

gradient points (d-f), and local minima points (g-i) 

The reduction in travel distance can be further demonstrated by the progression of the 

water flow process at various levels of submergence of gradient points. Figure 4.1.1.2 

shows the segmentation results at various stages of the water flow process for the Oh 

process and proposed process. In the Oh process, water drops deposited in the central 

portion of nutmeat halves (figure 4.1.1.2-c), travels from far distant water drop points 

(gradient points) mainly on the nut halves edges (figure 4.1.1.2-b). On the other hand, in 

the proposed process water drops are poured inside the nutmeat area get deposited there 

itself with minimum travel distance, and similarly water drops poured on the nutmeat 

edges get deposited nearby again with minimum travel distance (figure 4.1.1.2-i). 
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Figure 4.1.1.2 Progression of water flow process for the Oh and proposed method: 

original images (a and g), gradient points (b),  local minima points (h), water flow 

progression when 10% gradient points are submerged (c and i), 20% submerged (d 

and j), 30% submerged (e and k) and 80% submerged (f and l) 

This phenomenon becomes evident, when water drop point locations in figure 4.1.1.2-h 

and water deposition locations in figure 4.1.1.2-i are compared. Thus, one of the 

shortcomings of the Oh water flow process, longer water drop travel distance is addressed 

by the proposed reverse water flow process. This can be seen further by comparing figure 

4.1.1.2-k and 4.1.1.2-e with their corresponding figures, 4.1.1.2-h and 4.1.1.2-b. It may 

be interesting to note, that insect exit paths (shown with arrow heads) get flooded as the 

water flow progresses. It is evident that as the level of submergence of gradient points 

increases, more and more nutmeat gets segmented. The nutmeat segmented at later part 

of submergence mainly represents thinner areas of nutmeat on the edges of the nutmeat 

halves, or insect exit paths (figure 4.1.1.2-f and 4.1.1.2-l). The fraction of gradient points 

submerged can be used to meet varied segmentation needs, for example, what thickness 

level of nutmeat is considered good. 

The reduction in travel distance of the water drops was quantified by the processing 

(computational) time required. The computational time required for the water flow 

process and segmenting the image is shown in figure 4.1.1.3 for 70% submergence of 

gradient points. The processing time required is merely to compare different methods, 

and is not indicative of the actual time for on-line applications. Figure 4.1.1.3 clearly 

demonstrates that the proposed method is 2-3 times faster than the Oh method, and 7-8 

times faster than the Kim method. The computational time for the Jiang method and Otsu 

method is much less, but the segmentation results were extremely poor. The proposed 

method required only 38.92% of the average computation time required for the Oh 

method. Savings in time is mainly due to the new concept of the proposed process: 

pouring water drops at the local minima points. The new concept led to significant 

reduction of travel distance at initial stages, and therefore a faster algorithm.  Reduced 

computational time can be a significant step towards on-line machine vision inspection 

systems for pecans. 
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Figure 4.1.1.3 Comparison of computational time required for different 

thresholding methods 

4.1.2 Local Adaptive Thresholding Criterion 

The second part of the proposed method is the thresholding criterion for the water image. 

The water images from all three water flow processes were segmented using the proposed 

thresholding criterion, and also with their original thresholding criterion. The water 

images created by different water flow processes are shown in figure 4.1.2.1-b through d, 

for the same image used in figure 4.1.1.1-b and figure 4.1.1.2. The insect exit paths are 

clearly visible in all water images (figure 4.1.2.1-b to 4.1.2.1-d). Figure 4.1.2.1-e shows 

the Kim water image segmented by the Kim thresholding criterion. The insect exit paths 

were not segmented, but when the Kim water image was segmented by the proposed 

thresholding criterion one insect exit path was segmented (figure 4.1.2.1-h). 

The other insect exit path, whose orientation was not parallel to the x-ray beam direction, 

was not segmented. This is also true for all combinations of water images and 

thresholding criterions (figure 4.1.2.1-e through 4.1.2.1-j). The segmentation of the 

proposed water image with the proposed thresholding criterion (figure 4.1.2.1-j) is 

comparable to segmentation of the Oh water image with the Oh thresholding criterion 

(figure 4.1.2.1-f). The segmentation of the Oh water image and Kim water image by the 

proposed thresholding criterion (figure 4.1.2.1-i and 4.1.2.1-h) were also comparable to 

segmentation of the Oh water image by the Oh thresholding criterion (figure 4.1.2.1-f).  It 

may be concluded that the proposed thresholding criterion performed well for all the 

water images produced by the Kim water flow process(figure 4.1.2.1-h), the Oh water 

flow process(figure 4.1.2.1-i) and the proposed reverse water flow process(figure 4.1.2.1-

j) thereby indicating its robustness. 
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Figure 4.1.2.1 Comparison of thresholding criteria for water images by Kim, Oh, 

and proposed water flow processes. (a) Original image, (b) Kim water image, (c) Oh 

water image, (d) Proposed water image, (e) Kim water image & Kim thresholding, 

(f) Oh water image & Oh thresholding, (g) Proposed water image & Oh 

thresholding, (h) Kim water image & Proposed thresholding,  (i) Oh water image & 

Proposed thresholding (j) Proposed water image & Proposed thresholding 

The proposed thresholding criterion can be adjusted to meet the varied requirements as 

proposed by equation 3.2.5.2, for example, locating the insect exit paths. Figure 4.1.2.2 

shows the segmentation results for different values of the threshold adjustment parameter 

β. It is evident that increasing β results into better segmentation of the insect exit paths 

(arrow head indicates position of insect exit paths). This flexibility might be useful in 

extracting suitable classification features. In section 4.1.3.2, the use of the threshold 

adjustment parameter for the noise removal on a text document image is also 

demonstrated. 

      

Original image 
β = 1.00 β = 1.25 β =1.50 β =1.75 β =2.00 

Segmented results 

Figure 4.1.2.2 Effect of threshold adjustment parameter on segmentation results 
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4.1.3 Subjective Evaluation of Segmentation Results 

4.1.3.1  Pecan Images 

Segmentation results for the selected pecan images, good pecan (figure 4.1.3.1.1-a), 

defective pecan with insect exit paths (figure 4.1.3.1.1-b), and defective pecan with eaten 

nutmeat (figure 4.1.3.1.1-c), are shown in figure 4.1.3.1.1. All selected methods were 

compared to the proposed method. The Twice Otsu method was able to segment eaten 

nutmeat (figure 4.1.3.1.1-f), but was unable to segment insect exit paths (figure 4.1.3.1.1-

e). The Jiang method was able to segment insect exit paths and eaten nutmeat defects. 

But for all three images, the Jiang method segmented a significant part of good nutmeat 

as eaten nutmeat. It is more clearly evident in lower halves of the nuts (figure 4.1.3.1.1-g 

through 4.1.3.1.1-i). The Kim method was able to segment the eaten nutmeat (figure 

4.1.3.1.1-l) but it failed to segment the insect exit paths (figure 4.1.3.1.1-k). 

The Oh method and proposed method were able to detect the presence of insect exit 

paths, when the insect exit path orientation was parallel to the x-ray beam direction. 

However when the orientation was perpendicular, neither method was able to segment 

the insect exit path as discussed in the preceding sections. However, it could be 

segmented by varying the threshold adjustment parameter β, as explained in the 

preceding section.  This problem might also be solved by better camera configurations, 

monochromatic x-ray sources, and by imaging the nut from 2 or 3 directions. 

Original image Otsu method Jiang method 
Kim 

method 

Oh 

method 

Proposed 

method 
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(r) 

Figure 4.1.3.1.1 Segmentation results for pecan images by the selected and proposed 

methods 

4.1.3.2  Text Document Images 

The text document image (figure 4.1.3.2.1-a) was taken from Kim et al. (2002). The 

figures 4.1.3.2.1-b and 4.1.3.2.1-c were taken from Oh et al. (2005).  The segmentation 
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results for text document images by the Kim method and Oh method were compared with 

the proposed method, and are shown in figure 4.1.3.2.1. As can be seen from figures 

4.1.3.2.1-d and 4.1.3.2.1-e, the Kim method gave clear segmentation results, but it failed 

to segment smaller details. For example, the top line of figure 4.1.3.2.1-a, and a few 

characters on the top line of figure 4.1.3.2.1-b in lower contrast regions. Both the Oh 

method and proposed method could segment these results. The smearing of top line 

characters in figure 4.1.3.2.1-a by the Oh method (figure 4.1.3.2.1-g) and the proposed 

method (figure 4.1.3.2.1-j) may be attributed to deterioration in the image quality as the 

images were taken from on-line journal sources. The proposed method produced two 

good results out of the three presented here with the same set of parameters, whereas the 

Oh method produced only one good result. 

Original image Kim method Oh method Proposed method 
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Figure 4.1.3.2.1 Comparison of segmentation results for text document images; 

original figures (a-c), segmented results Kim method (d-f), Oh method (g-i) and 

proposed method (j-l) 

Figure 4.1.3.2.2 demonstrates noise removal by changing the threshold adjustment 

parameter β of equation 3.2.5.2 to get new lower threshold values for the test image 

4.1.3.2.2-c. It would be pertinent to mention that Oh method requires recalculation of 

optimum thresholds again, when noise levels need adjustment. The proposed thresholding 

criterion does not require recalculation of thresholds, but simple adjustment of the lower 
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threshold value by equation 3.2.5.3.  Savings in computational time by the proposed 

method over the Oh method may not be significant for text images, because the widths of 

characters are small, and therefore so are the travel distances. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Original image β = 1.00 β = 2.00 β = 2.50 

Figure 4.1.3.2.2 Segmentation results by the proposed method with varying β to 

remove noise 

Original image Reference image Oh method Proposed method 
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Figure 4.1.3.3.1 Segmentation results for citrus image (a), material structure (b) and 

cell image (c) reference images (d-f), Oh method (g-i) and proposed method (j-l) 

4.1.3.3  Non Destructive Testing  Images 

The citrus image and its segmented image taken from Jiang et al. (2008) are shown in 

figure 4.1.3.3.1-a, and 4.1.3.3.1-d. The metal structure image, figure 4.1.3.3.1-b, and the 

cell image, figure 4.1.3.3.1-c, were taken from Sezgin and Sankur (2004).  The 

segmentation results of the Oh and proposed method were compared to reference images, 
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and are shown in figure 4.1.3.3.1-g through 4.1.3.3.1-l. It can be seen from these figures 

that both the proposed method and Oh method worked well for the metal and cell image.  

Segmentation result (figure 4.1.3.3.1-l) for the cell image by the proposed method was 

even better than the reference image (figure 4.1.3.3.1-f).  For example, the second cell in 

the top row is properly segmented in the segmented image (figure 4.1.3.3.1-l) by the 

proposed method. Similarly, the last two cells in the top row are not clearly separated in 

the reference image (figure 4.1.3.3.1-f), whereas in figure 4.1.3.3.1-l, they are. Citrus 

image segmentation for the developed method was not exactly similar to the reference 

image (segmented image by the Jiang et al., 2008). The dark regions represent good parts 

of the citrus. Poor contrast between background and outer edge of the citrus may be one 

of the reasons. This is in contrast to pecan images, where there is good contrast between 

the outer edge of the nut and the background. 

4.1.4 OBJECTIVE EVALUATION OF SEGMENTATION RESULTS 

The segmentation results of the acquired pecan images were evaluated objectively as 

defined by the segmentation evaluation indices equation 3.2.6.1.1 and 3.2.6.1.2. The 

average of the objective evaluation indices:  the misclassification error (ME) and relative 

foreground area error (RAE) for selected thresholding methods are given in figure 

4.1.4.1. The objective evaluation indices for the Oh method and proposed method are 

presented in figure, 4.1.4.2. The reference images used as standard for comparing 

segmentation results, and segmentation results by the Oh and proposed method for the 14 

test pecans are shown in figure 4.1.5.1. For all the images, the misclassification error was 

lower for the proposed method than the Oh method, but the image 1 and 5 (figure 

4.1.4.2). Similarly, the relative foreground area error was higher for the proposed method 

than the Oh method, for all the images, but image 15. The average pixel misclassification 

error was 3.89% for the proposed method, and 5.14 % for the Oh method. However, the 

average relative foreground area error (12.61%) was a little higher for the proposed 

method than the Oh method (10.55%). The higher relative foreground area error for both 

methods may be attributed to poor segmentation of shell at the pointed ends of pecans 

(figure 4.1.5.1-1-r and 4.1.5.1-1-ps). Overall, the objective indices for the Oh method and 

the proposed method could be considered comparable. 
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Figure 4.1.4.1 Average objective segmentation evaluation indices for the selected 

and proposed methods 

 

 

 

Figure 4.1.4.2 Objective segmentation evaluation indices for the Oh and proposed 

methods 
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Figure 4.1.5.1 Segmentation results for 14 test pecan images by the Oh (subscript, 

os) and proposed (subscript, ps) method; and their original (subscript, o) and 

reference images (subscript, r); the arrow head indicates insect exit path 

4.1.5  SUITABILITY OF PROPOSED METHOD FOR MACHINE VISION INSPECTION 

To demonstrate suitability of the proposed method good pecans and pecans with different 

types of defects were imaged. The fourth row of figure 4.1.5.1 shows the segmented 

image of the corresponding original image shown in first row of figure 4.1.5.1 by the 

proposed method. Similarly, the 8
th

 row shows the segmented image for the 

corresponding original images shown in the 5
th

 row. The defects with eaten nutmeat 

(image no. 1 through 5) were easily distinguishable because a significant portion of 

nutmeat was eaten. (The sub images in this section are referred without the suffix of 
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figure 4.1.3.4.1 for better presentation.)  However, when eaten nutmeat portion is not 

significant (figure 11-ps, only a little nutmeat at the center is eaten) then it may not be 

possible to distinguish a defective nut from a good nut (figure 12-ps). The insect exit 

paths in such a scenario are also not distinguishable. 

The insect exit paths were segmented (figure 6-o through 9-o and 14-o) when the 

orientation of the x-ray beam, and the exit paths were not perpendicular to each other. 

When the exit paths were perpendicular as in center of upper nutmeat halve of figure 9-o 

then it was difficult to segment the insect exit path. Only a small white dot showed its 

presence in figure 9-ps. However, by changing the threshold adjustment parameter, β as 

proposed in equation 3.2.5.3, and demonstrated in figure 4.1.2.2, it would be possible to 

segment this insect exit path.  Similarly, when the insect exit path falls in between air 

gaps (figure 7-o and 7-ps), the parameter β would help. 

 

Figure 4.1.6.1 Segmentation results for the selected x-ray energy levels and the 

selected thresholding methods 
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4.1.6  COMPARISON OF SEGMENTATION METHODS AT SELECTED X-RAY ENERGIES 

The voltage and current combinations used to image the pecans were a) 35kV and 

0.75mA, b) 30 kV and 1mA, and c) 40kV and 0.5 mA. The combinations were selected 

based on recommendation of Kotwaliwale et al. (2007). The segmentation results for the 

good and defective pecans for the selected energy levels and thresholding methods are 

shown in figure 4.1.6.1. It is evident from figure 4.1.6.1 that segmentation results were 

generally not affected by the energy levels. All the three selected energy levels produced 

comparable results. However, the thresholding approaches produced different 

segmentation results. 

4.2 Adjustment of Parameters 

The parameters for the proposed local adaptive thresholding method (reverse water flow), 

Star AdaBoost algorithm, and radial basis support vector machine were fine tuned to get 

maximum classification accuracy. The threshold adjustment parameter ( ) was adjusted 

to extract best features for maximum classification accuracy. The accuracy parameter ( ) 

of Star AdaBoost algorithm was adjusted to maximize margin and thereby classification 

accuracy. The kernel width parameter: the variance of Gaussian kernel was adjusted to 

maximize the classification performance of the Radial Support Vector Machine.  

4.2.1 Proposed Method: Threshold Adjustment Parameter (β) 

One of the important features of the proposed local adaptive thresholding method is the 

threshold adjustment parameter ( ). In this section, it is adjusted to get maximum 

classification accuracy. The water images of pecans obtained with threshold parameter 

(C) value of 0.7 using proposed water flow process were segmented using seven different 

values {0.5, 1.0, 2.0, 3.5, 5.0, 7.5, and 10.0} of  (equation 3.2.5.3). The features:  mean 

intensity, local intensity variations, and area ratio were extracted from each of the seven 

segmented images obtained from the same water image of a pecan. 

4.2.1.1  Discrete, Real, and Gentle AdaBoost 

The figures 4.2.1.1.1through 4.2.1.3 shows training errors and validation errors for 

different value of In general, the value of 3.5 gave the lowest validation errors for all 

three algorithms. The validation error increased as number of iterations increased 

whereas training error converged.  The training error converged to zero for Real 

AdaBoost (figure 4.2.1.1.2) and Gentle AdaBoost (figure 4.2.1.1.3) after 50-60 iterations. 

The  value of 0.5 and 1 gave higher validation error, and the  value of 3.5 gave 

minimum validation error. The validation error again increased for  value higher than 

3.5. The  value of 3.5 showed distinct advantage in reducing validation error for 

Discrete, Real, and Gentle AdaBoost algorithms. 



 

 

 

 Figure 4.2.1.1.1 Training errors and validation errors as affected by and number of iterations for Discrete AdaBoost 
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Figure 4.2.1.1.2 Training errors and validation errors as affected by and number of iterations for Real AdaBoost 
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Figure 4.2.1.1.3 Training errors and validation errors as affected by and number of iterations for Gentle AdaBoost 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 3 5 7 9 11 13 15 17 19 25 35 45 60 80 100 120 140 160 180 200

T
ra

in
in

g
 E

rr
o

r 
(T

E
)

V
a
li

d
a
ti

o
n

 E
rr

o
r 

(V
E

)

Iterations

0.50 VE 1.00 VE 2.00 VE 3.50 VE 5.00 VE 7.50 VE 10.0 VE

0.50 TE 1.00 TE 2.00 TE 3.50 TE 5.00 TE 7.50 TE 10.0 TE

56
 



57 
 

4.2.1.2  Star AdaBoost 

The Star AdaBoost maximizes the margin to improve the classifier performance. Margin 

is the distance, in feature space, of any training sample from the decision boundary 

separating two classes. The margin is maximized by varying the accuracy parameter ( ). 

Figures 4.2.1.2.1 through 4.2.1.2.6 shows training error and validation error for different 

values of  {0.01, 0.02, 0.04, 0.1, 0.2, and 0.4} respectively. The convergence of training 

error toward zero was accelerated as the value of  increased. For smaller  values 

(figures 4.2.1.2.1 through 4.2.1.2.3), the validation error remained constant as the number 

of iterations increased. For higher  values (figures 4.2.1.2.4 through 4.2.1.2.6), the 

validation error increased and training error converged to zero as the number of iterations 

increased. For  values of 0.2 (figures 4.2.1.2.5) and 0.4 (figures 4.2.1.2.6) the validation 

error becomes unstable for initial iterations (up to 20) for value  of 3.5. 

The  value of 3.5 gave the lowest validation error for all values of the accuracy 

parameter . Increasing  value showed a cyclic pattern in validation errors. As the  

value changes the area of nutmeat segmented is changed. Consequently, it also changes 

other extracted features. The combined result is cyclic pattern of validation error as  

value increases. The validation errors for  values of 0.5 and 1 were higher; then they 

reduced for  value of 2 and 3.5; and again they increased for higher errors for  value of 

7.5 and 10. The training error was also lowest for  value of 3.5 for all values . Higher 

and lower  values than 3.5 gave higher training errors as well. For initial 20 iterations, 

the accuracy parameter does not have any significant effect on error rates. For higher 

number of iterations (more than 20) and higher value of values of  the training error 

reduces and validation error increases for all  values.  



 

 

 

Figure 4.2.1.2.1 Training errors and validation errors as affected by and number of iterations for Star AdaBoost 0.01 
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Figure 4.2.1.2.2 Training errors and validation errors as affected by and number of iterations for Star AdaBoost 0.02 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 3 5 7 9 11 13 15 17 19 25 35 45 60 80 100 120 140 160 180 200

T
ra

in
in

g
 E

rr
o

r 
(T

E
)

V
a
li

d
a
ti

o
n

 E
rr

o
r 

(V
E

)

Iterations

0.50 VE 1.00 VE 2.00 VE 3.50 VE 5.00 VE 7.50 VE 10.0 VE

0.50 TE 1.00 TE 2.00 TE 3.50 TE 5.00 TE 7.50 TE 10.0 TE

59
 



 

 

 

Figure 4.2.1.2.3 Training errors and validation errors as affected by and number of iterations for Star AdaBoost 0.04 
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Figure 4.2.1.2.4 Training errors and validation errors as affected by and number of iterations for Star AdaBoost 0.1 
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Figure 4.2.1.2.5 Training errors and validation errors as affected by and number of iterations for Star AdaBoost 0.2 
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Figure 4.2.1.2.6 Training errors and validation errors as affected by and number of iterations for Star AdaBoost 0.4 
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4.2.1.3  Radial Support Vector Machine 

Radial basis function support vector machine performance’s depends on kernel width 

parameter ( ). Figure 4.2.1.3.1 shows error rates for different values of  {0.5, 1.0, 2.0, 

3.5, 5.0, and 10.0} and and 10.0 . In 

general,  value of 2.0 gave lowest validation error. The lowest validation error rates 

were for  values between 1to 3. Lower and higher  values gave higher validation error 

than  value of 2.0. The training error rates increased as the  value increased. 

 

Figure 4.2.1.3.1 Training errors and validation errors as affected by and number 

of iterations for Radial Support Vector Machine 

Overall,  value had very significant influence on error rates for both AdaBoost and 

SVM classifiers. For pecan samples imaged in this study  value of 3.5 gave the best 

classifier performance for all the selected AdaBoost algorithms. The  value of 2.0 gave 

best performance for radial SVM followed by  value of 3.5.  Overall, it appears that a  

value of 3.5 is the best for the proposed segmentation method. The decision boundaries 

are well defined with good margin. Based on the results of this section a  value of 3.5 

was selected for comparison with other selected segmentation methods. 
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4.2.2 Optimization of Number of Iterations for AdaBoost Algorithms 

The optimization of AdaBoost algorithms is done by selecting optimum number of 

iterations which gives minimum error rates and less variation between different runs. The 

performance of Discrete, Real, and Gentle AdaBoost algorithms for selected 

segmentation methods is shown in figures 4.2.2.1 through 4.2.2.3.  The validation error 

for all segmentation methods is lower up to 20 iterations then it starts to increase. The 

Real AdaBoost and Gentle AdaBoost showed faster convergence of the training error 

than Discrete AdaBoost.  The lower validation errors were observed for very small 

number of observations. Among the selected segmentation methods, the lowest validation 

errors were observed for Twice Otsu method and the Proposed method. In general, as the 

number of iterations increased the validation error increased whereas training error 

reduced.  

The performance of the Star AdaBoost for selected segmentation methods is shown in 

figures 4.2.2.4 through 4.2.2.8 for different values of accuracy parameters ( ). The 

Proposed method (figure 4.2.2.4) and Twice Otsu (figures 4.2.2.8) gave the best results. 

Faster convergence of both training and validation error was observed for higher values 

{0.1, 0.2, and 0.4} of accuracy parameter ( ). Except for the Proposed method, the 

progression of validation errors was not smooth (figures 4.2.2.5 through 4.2.2.8) as the 

number of iterations increased. The validation errors were about 8.3% for the Proposed 

method and 9% for the Twice Otsu method up to 20 number of iterations. 

 



 

 

 

Figure 4.2.2.1 Optimization of number of iterations: Discrete AdaBoost 
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Figure 4.2.2.2 Optimization of number of iterations: Real AdaBoost 
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Figure 4.2.2.3 Optimization of number of iterations: Gentle AdaBoost 
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Figure 4.2.2.4 Optimization of number of iterations for the Star AdaBoost: Proposed method 
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Figure 4.2.2.5 Optimization of number of iterations for the Star AdaBoost: Oh method 
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Figure 4.2.2.6 Optimization of number of iterations for the Star AdaBoost: Kim method 
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Figure 4.2.2.7 Optimization of number of iterations for the Star AdaBoost: Jiang method 

 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 3 5 7 9 11 13 15 17 19 25 35 45 60 80 100 120 140 160 180 200

T
ra

in
in

g
 E

rr
o

r 
(T

E
)

V
a
li

d
a
ti

o
n

 E
rr

o
r 

(V
E

)

Iterations

0.01 VE 0.02 VE 0.04 VE 0.10 VE 0.20 VE 0.40 VE

0.01 TE 0.02 TE 0.04 TE 0.10 TE 0.20 TE 0.40 TE

72 



 

 

 

Figure 4.2.2.8 Optimization of number of iterations for the Star AdaBoost: Twice Otsu method 
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4.2.3 Optimization of kernel width parameter for Radial Support Vector Machine  

Radial basis function support vector machine’s performance is dependent on proper 

selection kernel width parameter ( ). The figure 4.2.3.1 shows the effect of  for selected 

segmentation methods. The training error for all segmentation methods increased as 

kernel width parameter increased. The validation errors for kernel width parameter (  

values from 1 to 3 were minimum. The lowest validation error rates were observed for 

the Twice Otsu method and the Proposed method. 

 

Figure 4.2.3.1 Optimization of kernel width parameter: Radial Support Vector 

Machine 

Based on the results section of 4.2, three best combinations of iterations and parameters 

were selected for each classifier which gave lowest validation error rates for the study 

section 4.3. 
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methods were selected for Discrete, Real, and Gentle AdaBoost. Similarly three best 

combinations of iterations and accuracy parameter were selected for the Star AdaBoost 

algorithm. Three best values of kernel width parameter ( ) were also selected for 

comparison. Same randomly selected training and validation data set was used for all 

above combinations. In addition, Bayesian, linear support vector machine, and quadratic 

support vector machine classifier were also used to predict error rates using the same 

data. Three hundred such runs were made to account for variability present in the data 

and to arrive at better representative results.  For each run, a classifier was trained and 

validation error was calculated. Time required to process classification of validation data 

set (100 samples) was also recorded. Mean error rate and standard deviation of error rate 

was calculated from results of 300 runs. Mean time required was also calculated for each 

combination of classifier. 

4.3.1 Comparison of Errors 

4.3.1.1  Bayesian and Support Vector Machine 

Figure 4.3.1.1.1 and 4.3.1.1.2 shows mean errors and standard deviations of 300 runs for 

Bayesian classifier and different support vector machine kernels. The mean Bayesian 

error was higher than linear support vector machine and quadratic support vector machine 

classifier for all five selected segmentation methods (figure 4.3.1.1.1). The Bayesian 

standard deviation of error rates was higher for all segmentation methods except Kim 

method. Linear support vector machine performed better than both quadratic support 

vector machine and Bayesian classifier. 

 

Figure 4.3.1.1.1 Comparison of Error Rates: Bayesian, Linear and Quadratic 

Support Vector Machine 
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Figure 4.3.1.1.2 shows comparison of error rates for three best values of kernel width 

parameter ( ). Twice Otsu method gave lowest standard deviation of error rates and also 

lowest mean error rates as compared to other methods. The proposed method gave better 

mean error rates than Oh and Kim method. Overall, all support vector machine kernels 

gave better performance than the Bayesian classifier. 

 

Figure 4.3.1.1.2 Comparison of Error Rates: Radial Support Vector Machine 
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Figure 4.3.1.2.1 Comparison of Error Rates: Discrete AdaBoost 

 

 

 

 

Figure 4.3.1.2.2 Comparison of Error Rates: Real AdaBoost 
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Figure 4.3.1.2.3 Comparison of Error Rates: Gentle AdaBoost 

The performance of Star AdaBoost was consistent for all three best combinations of 

selected segmentation methods in terms of both mean error rates and standard deviation 

of error rates. The accuracy parameter values: 0.02, 0.04, and 0.1 were used in three best 

combinations. It appears that Star AdaBoost was able to deal effectively with noisy 

samples.  

 

Figure 4.3.1.2.4 Comparison of Error Rates: Star AdaBoost 
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combinations. For Oh and Kim method Gentle AdaBoost gave larger variations for 

different best iteration combinations figure (4.3.2.3). For Twice Otsu method, Discrete 

AdaBoost (figure 4.3.2.1) and Star Adaboost (figure 4.3.2.4) gave more variations in 

processing time. For Jiang method, Real AdaBoost gave large variation (4.3.2.2). 

 

Figure 4.3.2.1 Comparison of Computational Time and Error Rates: Discrete 

AdaBoost 

 

 

Figure 4.3.2.2 Comparison of Computational Time and Error Rates: Real AdaBoost 
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Figure 4.3.2.3 Comparison of Computational Time and Error Rates: Gentle 

AdaBoost 

 

Figure 4.3.2.4 Comparison of Computational Time and Error Rates: Star AdaBoost 
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Twice Otsu method. It may be due to smaller number of support vectors required to 

define the decision boundary. This resulted into smaller kernel size and faster 

computational time. 

 

 

Figure 4.3.2.5 Comparison of Computational Time and Error Rates: Bayesian, 

Linear, Quadratic Support Vector Machine 

 

 

 

Figure 4.3.2.6 Comparison of Computational Time and Error Rates: Radial 

Support Vector Machine 
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Table 4.3.2.1 Average Computational time for different image processing operations 

 

Image processing operations Computational time for different segmentation methods (s)  

Proposed Oh Kim Jiang Twice Otsu 

Segmentation  227 377 1050 42 0.64 

Feature extraction  6.983     6.992     6.994     6.987     6.987 

Classifier Bayesian 1.3E-04 1.1E-04 1.1E-04 1.1E-04 1.1E-04 

SVM Linear 3.6E-05 3.7E-05 3.7E-05 3.7E-05 3.6E-05 

SVM Quadratic 3.7E-05 3.7E-05 3.7E-05 3.7E-05 3.6E-05 

SVM Radial 4.5E-05 4.5E-05 4.6E-05 4.6E-05 4.2E-05 

Diverse AdaBoost 7.8E-06 1.2E-05 9.6E-06 7.5E-06 7.2E-06 

Real AdaBoost 3.0E-06 2.7E-06 4.5E-06 2.7E-06 2.7E-06 

Gentle AdaBoost 2.7E-06 7.9E-06 4.5E-06 2.7E-06 2.7E-06 

Star AdaBoost 1.4E-06 5.4E-06 2.1E-06 2.7E-06 1.3E-05 
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In addition to computational time for different classifiers, computational time for 

segmentation and feature extraction were also recorded. The average time for these image 

processing operations is shown in table 4.3.2.1. The segmentation and feature extraction 

time are average of 200 samples and classifier time is average of 30000 samples. The 

difference in segmentation time in this section and section 4.1.1 may be due to different 

computers used, sample variations, and other factors. Table 4.3.2.1 shows that there are 

many orders of variations for segmentation, feature extraction, and classification 

operations. The segmentation time was three orders higher for the local adaptive methods 

than the Twice Otsu segmentation method. Considering orders of computational time, 

feature extraction approaches without segmentation such as Gabor features (Zheng et al., 

2006) worth exploration. 

The feature extraction took on an average seven seconds. The three selected features were 

based on earlier work recommendation (Kotwaliwale, 2007). The main focus of this 

study was automation of segmentation and selection of faster and accurate classifiers, and 

not on evaluation of different features. Features representing smaller defects such as 

insect hole detection using Hough transform might improve classification accuracy for 

the Proposed segmentation method. There are number of other features worth considering 

detailed evaluation. They include but not limited to: grey-level co-occurrence matrix 

features {energy, homogeneity, contrast, correlation, mean, entropy, and maximum 

probability} (Narvankar et al. 2009); gradient image histogram bin features (Haff and 

Pearson, 2007); statistical features {kernel area, total gray value, inverted gray value, and 

standard deviation of the gray level}(Neethiranjan et al. 2006); gray level run length 

matrix features  {short-run, long-run, gray-level non-uniformity, run percent, entropy, 

and run length non-uniformity} (Karunakaran et al. 2003); volume of pecan nut pixels 

(individual pixel intensity value x number of pixels with that pixel intensity); segmented 

nut meat area properties {eccentricity, circularity, major axis to the area ratio, perimeter}; 

insect exit hole shape detection using Hough transform. 

Similarly, feature selection might be influenced by different hardware configurations. For 

example line scan cameras and imaging more than one pecan at a time might influence 

feature selection, and classification approaches. On the other hand higher computational 

time may be addressed using parallel computing, dynamic programming, and other 

approaches. In general, the selection of approaches might be dictated by economics, 

product value, food safety regulations, and advances in other technological areas. 

Since the Twice Otsu method and the Proposed method gave best and comparable results, 

their comparison for all selected classifiers was done. The table 4.3.2.2 and figure 4.3.2.7 

shows comparison of all selected classifiers for the Proposed and Twice Otsu 

segmentation methods. The best combination of iteration and classifier parameter which 

gave lowest error rate was used for comparison. The performance of all the selected 

AdaBoost algorithms was best for Proposed segmentation method. In general, there was 
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about 5% improvement for the AdaBoost classifiers compared to the Bayesian classifier. 

The support vector machine classifiers also showed improvement over Bayesian 

classifier. For, Twice Otsu the AdaBoost classifiers showed about 1.25% improvement 

over Bayesian classifier. Linear support vector machine classifier gave the best 

improvement of 1.65%. 

Table 4.3.2.2 Comparison of Computational Time and Error Rates for all Selected 

Classifiers: the Proposed and Twice Otsu method 

Classifier 

 

Improvement in error 

rate compared to 

Bayesian error rate (%) 

Percent time  required 

compared to Bayesian 

method 

Proposed Twice Otsu Proposed Twice Otsu 

Bayesian 0.00 0.00 100.00 100.00 

SVM Linear 2.88 1.65 27.82 32.93 

SVM 

Quadratic 1.72 1.13 28.29 33.00 

SVM Radial 2.83 1.23 34.09 37.77 

Diverse 

AdaBoost 4.87 1.27 5.97 6.55 

Real 

AdaBoost 4.96 1.25 2.27 2.43 

Gentle 

AdaBoost 4.96 1.25 2.08 2.46 

Star 

AdaBoost 4.87 0.95 1.07 11.46 

 

 

Figure 4.3.2.7 Comparison of Computational Time and Error Rates for all Selected 

Classifiers: the Proposed and Twice Otsu method 
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The classification time required for support vector machine classifiers was about 27-38% 

of time for Bayesian classifier for both the Proposed and Twice Otsu method. The Star 

AdaBoost classifier took only 1.07% of time required for Bayesian classifier for the 

Proposed method but it took 11.46% for the Twice Otsu method. Diverse AdaBoost took 

5.97% time for the proposed method and 6.55% for the Twice Otsu method.  

Overall, the Real AdaBoost performed best for both the Proposed and Twice Otsu 

segmentation methods. The linear support vector machine classification accuracy was 

92.68% with Twice Otsu segmentation method. The Real AdaBoost classification 

accuracy was 92.28% with the reverse water flow segmentation method. Further 

evaluation with features representing smaller defects (insect exit holes) should improve 

the classifier performance with the reverse water flow segmentation method. 
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Chapter V 

Jesus! Jesus! Jesus! 

Conclusions and Recommendations 

The United States is among the top fruit and tree nut producers in the world and their 

production constitutes about 13 percent of all agricultural crop cash receipts in the United 

States with California contributing about 90% production (USDA, 2010a). Pecan is a 

native nut crop of the United States of America. The major pecan producing states are 

Georgia, New Mexico, Oklahoma, and Texas. In 2007, the production of pecan was about 

385 million pounds in the United States with worth about $434 million (USDA, 2008).  

The economic importance of pecans to many states has led to significant research to 

improve their production and processing. Even after applying several pest control 

measures many pecan nuts get infected by female pecan weevils resulting into an 

unmarketable product. Mechanical sorting, flotation of insect in chemical solution and 

manual picking of insect under ultra-violet lamp are the current remedial measures. The 

current processing techniques are inefficient, tedious, and costly as well. To address the 

issue these insect damaged nuts need to be sorted out before shelling them. 

X-ray imaging system was selected because of its proven ability in non-destructive 

testing. The natural variability and similarity in the density and chemical composition of 

various pecan nut constituents results in poor contrast images. Many researchers reported 

that global thresholding methods fail to segment the images with inhomogeneous 

backgrounds and poor contrast. The literature suggests that many local adaptive 

thresholding methods are available to segment unimodal images such as pecan x-ray 

images. Similarly, AdaBoost and support vector machine are the two state-of-the-art 

classifiers available with better classification performance than the Bayesian classifier. 

This study attempted to apply local adaptive thresholding methods and improved 

classifiers for pecan defect identification. 

The Otsu global thresholding method failed to segment the pecan images. Then double 

application of Otsu global thresholding method was tried and it worked well. The first 

application segmented the nut image and the second application segmented the larger 

defects: eaten nutmeat but failed to segment the smaller defects: insect exit holes. Image 

partition method of Jiang et al. (2008) produced false positives. Water flow method of 

Kim et al. (2002) worked well for the larger defects but failed to segment the smaller 



87 
 

defects. Water flow method of Oh et al. (2005) worked well for both smaller and larger 

defects but the simulated water flow process was slower and complex. The thresholding 

criterion required recalculation of thresholds to adjust for noise levels. 

A new local adaptive thresholding method with a new hypothesis: reversing the water 

flow and a simpler thresholding criterion is proposed. The new hypothesis, reversing the 

water flow, reduced the computational time by 40-60% as compared to the existing 

fastest Oh water flow method. Dual Otsu threshold (Otsu, 1979) was used as thresholding 

criterion which was much simpler than Oh method. It did not required recalculation and 

optimization as required in Oh method. A threshold adjustment parameter was used to 

adjust the lower threshold for noise removal and it did not required recalculation of 

thresholds to adjust for noise. In addition, the threshold adjustment parameter can be used 

to segment smaller defects (insect exit holes). The segmentation results of the proposed 

method were comparable to the Oh method. The objective segmentation evaluation 

showed that the segmentation results of the proposed method and Oh method were 

comparable. 

The limitations of the proposed method include failure to segment the insect exit paths 

when they overlap with air gaps and when the insect exit paths were perpendicular to the 

x-ray direction. This limitation may be more relevant for high end consumer products, for 

example: table purpose nuts. However, the limitation can be addressed by imaging pecans 

from 2-3 directions or 3D or 2&1/2 D machine vision techniques. The proposed method 

also worked well for text, citrus, metal structure, and cell image. Overall, the proposed 

method presents a faster, accurate, flexible, and simpler method. It can be extended to 

other food and agricultural images with unimodal histogram and poor contrast. 

The adjustment of threshold adjustment parameter resulted into improved classification 

accuracy for the proposed method. AdaBoost and support vector machine classifier when 

adjusted improved classification accuracy and reduced computational time required in 

classification of validation data set. The radial basis support vector machine performed 

best among selected support vector machine kernels. The radial basis support vector 

machine reduced error rates by 2.83% as compared to Bayesian classifier and reduced 

computational classification time by 62.33%. 

The AdaBoost algorithms reduced error rates up to 4.96% as compared to Bayesian 

classifier. The reduction in classification computational time ranged from 93.45% to 

97.92% as compared to Bayesian classifier. The reduction in error rate was 4.96% and 

classification time was 97.73% for the Real AdaBoost classifier. Barnes et al. (2010) also 

reported that Real AdaBoost classifier worked well for potato defect discrimination and 

was able to automatically select best features. Overall, the Real AdaBoost classifier 

performed best among all the selected classifiers. 
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Future Recommendations: 

1. Develop a pecan x-ray machine vision inspection research prototype for pecan 

defect identification, USDA grade determination and other industrial applications. 

To start with Twice Otsu segmentation method and Real AdaBoost are 

recommended because of less computational time. Later on other approaches may 

be tried to improve the classification accuracy and to achieve intended defect 

detection task. 

2. Evaluate the proposed method for different types of images and compare its 

performance with other segmentation methods and machine vision approaches 

without segmentation: mean shift (Comaniciu and Meer, 2002), gray level co-

occurrence matrix (Narvankar et al., 2009), gray level reduction (Quiwder et al., 

2007), Gabor features (Zheng et al., 2006). 

3. Evaluate different geometric and gray-scale features for pecan defect 

identification. Since this research focused on automation of segmentation and 

evaluation of various classifiers, the assessment of classifier features was not 

performed in this study. A list of suggested features is mention in section 4.3.2 on 

page 83. 

4. Study different support vector machine kernels and explore the possibility of 

developing specific kernels on the lines of bio-informatics spectral kernels (Hur et 

al. 2008). 

5. Further studies on AdaBoost algorithms to exploit their full potential in real time 

applications in agriculture applications. Specially to account for product 

variations from different seasons, geographical conditions, and varieties. 

6.  Explore possibility of using 3D x-ray imaging and 2 & ½ D machine vision 

techniques. 

7. Explore terahertz imaging for pecan defect identification. 



89 
 

REFERENCES 

Jesus! Jesus! Jesus! 

Aichinger, H., Dierker, J., Joite, S. and Sabel, M. 2004. Radiation exposure and image 

quality in x-ray diagnostic radiology. Berlin: Springer- Verlag. 

Althouse, M. L. G., and C. I. Chang. 1995. Image segmentation by local entropy 

methods. In Proc. International Conference on Image Processing, 3: 61-64. 

Arora, S., J. Acharya, A. Verma,, and P. K. Panigrahi. 2008. Multilevel thresholding for 

image segmentation through a fast statistical recursive algorithm. Pattern 

Recognition Letters, 29(2): 119-125. 

ATTRA. 2000. Sustainable Pecan Production. Fayetteville, AR: National Sustainable 

Agriculture Information Service. Available at http://attra.ncat.org/attra-

pub/PDF/pecan.pdf. Accessed 11 June 2010. 

Barnes, M., T. Duckett, G. Cielniak, G. Stround, and G. Harper. 2010. Visual detection of 

blemishes in potatoes using minimalist boosted classifiers. Journal of Food 

Engineering 98(3): 339-346. 

Casasent, D., A. Talukder, P. Keagy, and T. Schatzki. 2001. Detection and segmentation 

of items in x–ray imagery. Transactions of the ASAE, 44(2): 337–345. 

Chen, Z., Y. Tao, and X. Chen. 2001. Multi resolution local contrast enhancement of x-

ray images for poultry meat inspection. Appl. Opt. 40(8): 1195-1200. 

Chen, Q., Q. Sun, H. P. Ann, and D. Xia. 2008. A double-threshold image binarization 

method based on edge detector. Pattern Recogn., 41(4): 1254-1267. 

Chen, K., X. Sun, C. Qin, and X. Tang.  2010. Color grading of beef fat by using 

computer vision and support vector machine. Computers and Electronics in 

Agriculture, 70(1): 27-32. 

Cheng, H. D., and Y. H. Chen. 1999. Fuzzy partition of two-dimensional histogram and 

its application to thresholding. Pattern Recogn., 32: 825–843. 

 

http://attra.ncat.org/attra-pub/PDF/pecan.pdf
http://attra.ncat.org/attra-pub/PDF/pecan.pdf


90 
 

Chou, C. H., W. H. Lin, and F. Chang. 2010. A binarization method with learning-built 

rules for document images produced by cameras. Pattern Recogn., 43(4): 1518-

1530. 

Comaniciu, D., and P. Meer. 2002. Mean shift: a robust approach toward feature space 

analysis. IEEE T. Pattern Anal. 24(5):603-619. 

Cortes, C., and V. Vapnik. 1995. Support-vector networks. Machine Learning, 20(3): 

273-297. 

Cuevas, E., D. Zaldivar, and M. P. Cisneros. 2010. A novel multi-threshold segmentation 

approach based on differential evolution optimization. Expert Systems with 

Applications, 37(7): 5265-5271. 

Davies, E. R. 2008. Stable bi-level and multi-level thresholding of images using a new 

global transformation. IET Computer vision, 2(2): 60-74. 

Deng, X., Q. Wang, H. Chen, and X.  Hong. 2010. Eggshell crack detection using a 

wavelet-based support vector machine. Computers and Electronics in Agriculture, 

70(1): 135-143. 

Du, C. J., and D. W. Sun. 2005. Pizza sauce spread classification using color vision and 

support vector machines. Journal of Food Engineering 66: 137–145. 

Freund, Y., and R. E. Schapire. 1996. Experiments with a new boosting algorithm. In 

Proc. Thirteenth International Conference on Machine Learning, 148-156. 

Freund, Y., and R. E. Schapire. 1999a. Improved boosting algorithms using confidence-

rated predictions. Machine Learning 37(3): 297-336. 

Freund, Y., and R. E. Schapire. 1999b. A short introduction to boosting. Journal of 

Japanese Society for Artificial Intelligence 14(5): 771-780. 

Friedman, J., T. Hastie, and R. Tibshirani. 2000. Additive logistic regression: A statistical 

view of boosting. The Annals of Statistics 28(2): 337-374. 

Friel, N., and I. S. Molchanov. 1999. A new thresholding technique based on random 

sets. Pattern Recogn., 32:1507–1517. 

Gonzalez, R. C., and R. E. Woods. 2008. Digital image processing. 3
rd

 edition. Upper 

Saddle River, NJ: Pearson  Education, Inc. 

Haff, R. P., and N. Toyofuku. 2008. X-ray detection of defects and contaminants in food 

industry. Sens. & Instrumen. Food Qual., 2:262-273. 



91 
 

Haff, R., and T. Pearson. 2007. An automatic algorithm for detection of infestations in X-

ray images of agricultural products. Sens. & Instrumen. Food Qual., 1: 143-150. 

Hemachander, S., A. Verma, S. Arora, and P. K. Panigrahi. 2007. Locally adaptive block 

thresholding method with continuity constraint. Pattern Recognition Letters, 28(1): 

119-124. 

Hertz, L., and R. W. Schafer. 1988. Multilevel thresholding using edge matching. 

Comput. Vis. Graph. Image Process., 44: 279–295. 

Huang, L. K., and M. J.  Wang. 1995. Image thresholding by minimizing the measures of 

fuzziness. Pattern Recogn., 28: 41–51. 

Huang, Q., W. Gao, and W. Cai. 2005. Thresholding technique with adaptive window 

selection for uneven lighting image. Pattern Recognition Letters, 26(6): 801-808. 

Huang, D. Y., and C. H. Wang. 2009. Optimal multi-level thresholding using a two-stage 

Otsu optimization approach.  Pattern Recognition Letters, 30(3): 275-284. 

Huang, Y., Y. Lan, S. J. Thomson, A. Fang, W. C. Hoffmann, and R.E. Lace. 2010. 

Development of soft computing and applications in agricultural and biological 

engineering. Computers and Electronics in Agriculture, 71: 107-127. 

Hur, A. B., C. S. Ong, S. Sonnenburg, B. Scholkopf, and G. Ra¨tsch. 2008. Support 

Vector Machines and Kernels for Computational Biology. PLoS Computational 

Biology. Available at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547983 

/pdf/pcbi.1000173.pdf. Accessed on  Accessed on 30 April 2010.  

Jackson, E. S., and R. P. Haff. 2006. X-ray detection and sorting of olives damaged by 

fruit fly. ASABE Paper No. 066062. St. Joseph, Mich.: ASABE. 

Jawahar, C. V., P. K. Biswas, and A. K. Ray. 1997. Investigations on fuzzy thresholding 

based on fuzzy clustering. Pattern Recogn., 30(10):1605–1613. 

Jiang, L., B. Zhu, H. Jing, X. Chen, X. Rao, and Y. Tao. 2007. Gaussian mixture model-

based walnut shell and meat classification in hyper-spectral fluorescence imagery. 

Transactions of the ASAE, 50(1): 153−160. 

Jiang, J. E., H. Y. Chang, K. H. Wu, C. S. Ouyang, M. M. Yang, E. C. Yang, T. W. Chen, 

and T. T. Lin. 2008. An adaptive image segmentation algorithm for x-ray 

quarantine inspection of selected fruits. Comput.  Electron.  Agr. 60(2): 190-200. 



92 
 

Kapur, J. N., P. K. Sahoo, and A. K. C. Wong. 1985. A new method for gray-level 

picture thresholding using the entropy of the histogram. Graph. Models Image 

Process., 29:273–285. 

Karunakaran, C., D. S. Jayas, and N. D. G. White. 2003. Soft x–ray inspection of wheat 

kernels infested by sitophilus oryzae. Transactions of the ASAE, 46(3): 739–745. 

Keagy. P.M., T. F. Schatzki., and Parvin, B. 1996. Machine recognition of naval orange 

worm damage in x-ray images of pistachio nuts. Lebensm-Wiss u-Technol. 29:140-

145. 

Kim, I. K., D. W. Jung, and R. H. Park. 2002. Document image binarization based on 

topographic analysis using a water flow model. Pattern Recogn. 35: 265-277. 

Kim, S., and T. Schatzki. 2001. Detection of pinholes in almonds through x–ray imaging. 

Transactions of the ASAE, 44(4): 997–1003. 

Kim, S., and T. F. Schatzki. 2000. Apple watercore sorting system using x-ray imagery: I. 

Algorithm development. Transactions of the ASAE, 43(6): 1695-1702. 

Kittler, J., and J. Illingworth. 1986. Minimum error thresholding. Pattern Recogn., 19: 

41–47. 

Kotwaliwale, N., G. H. Brusewitz, and P. R. Weckler. 2004. Physical characteristics of 

pecan components: Effect of cultivar and relative humidity. Transactions of the 

ASAE, 47(1): 227-231. 

Kotwaliwale, N., P. R. Weckler, G. H. Brusewitz, G. A. Kranzler, and N. O. Maness. 

2007. Non-destructive quality determination of pecans using soft X-rays. 

Postharvest Biol. Tec. 45: 372-380.  

Leung, C. K., and F. K. Lam. 1998. Maximum segmented image information 

thresholding. Graph. Models Image Process., 60: 57–76. 

Li, C. H., and P. K. S. Tam. 1998. An iterative algorithm for minimum cross-entropy 

thresholding. Pattern Recogn. Lett., 19: 771–776. 

Lie, W. N. 1993. An efficient threshold-evaluation algorithm for image segmentation 

based on spatial gray level co-occurrences. Signal Process., 33: 121–126. 

Malyszko, D., and J. Stepaniuk. 2010. Adaptive multi-level rough entropy evolutionary 

thresholding. Information Sciences, 180(7): 1138-1158. 



93 
 

Mathanker, S. K., P. R. Weckler, R. K. Taylor, and G. Fan. 2010. Adaboost and support 

vector machine classifiers for automatic weed control: Canola and Wheat. ASABE 

Meeting Paper No. 1008834. St. Joseph, Mich.: ASABE. 

Math Works. 2007. Image Processing Toolbox User’s Guide, for Use with MATLAB. 

Natick, MA: The Math Works, Inc. 

Meir, R., and G. Rätsch. 2003. An introduction to boosting and leveraging: In Advanced 

Lectures on Machine Learning, 118-183. Berlin: Springer. 

Mertayak, C. 2007. AdaBoost: The meta machine learning algorithm formulated by Yoav 

Freund and Robert Schapire. Available at: http://www.mathworks.com/ 

matlabcentral / fileexchange/21317-adaboost. Accessed on 1 February 2010. 

Moki, M. M., and S. A. R. A. Bakar. 2007. Adaptive thresholding based on co-

occurrence matrix edge information. Journal of Computers, 2(8):44-52. 

Mulder, P. G., and  R. A. Grantham 2007.   Biology and Control of the Pecan Weevil in 

Oklahoma. Stilwater, OK: Oklahoma state University. Available at 

http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-4530/EPP-

7079web.pdf.  Accessed 11 June 2010. 

Nacereddine, N., L. Hamami, and D. Ziou. 2007.  Image thresholding for weld defect 

extraction in industrial radiographic testing. International Journal of Signal 

Processing, 3: 257-265. 

Narvankar, D. S., C. B. Singh, D. S. Jayas, and N. D. G. White. 2009. Assessment of soft 

x-ray imaging for detection of fungal infection in wheat. Biosystems Engineering, 

103(1): 49-56.  

Neethirajan, S., D. S. Jayas, and C. Karunakaran. 2006. Dual energy x-ray image analysis 

for classifying vitreous kernels in durum wheat. ASABE Paper No. 063081. St. 

Joseph, Mich.: ASABE. 

Niblack, W. 1986. An Introduction to Image Processing. Englewood Cliffs, NJ: Prentice-

Hall. 

Oh, H. H., K. T. Lim, and S. I. Chien. 2005. An improved binarization algorithm based 

on a water flow model for document image with inhomogeneous backgrounds. 

Pattern Recogn., 38:  2612-2625. 

Otsu, N. 1979. A threshold selection method from gray level histograms. IEEE T. Syst. 

Man Cy. C, 9(1): 62-66. 

http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-4530/EPP-7079web.pdf
http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-4530/EPP-7079web.pdf


94 
 

Pai, Y. T., Y. F. Chang, and S. J. Ruan. 2010. Adaptive thresholding algorithm: Efficient 

computation technique based on intelligent block detection for degraded document 

images. Pattern Recogn., In Press, Corrected Proof. 

Pearson, T. C., M. A. Doster, and T. J. Michailides. 2001. Automated detection of 

pistachio defects by machine vision. Applied Engineering in Agriculture, 

17(5):729–732. 

Pearson, T. C., and D. T. Wicklow. 2006. Detection of corn kernels infected by fungi. 

Transactions of the ASAE, 49(4): 1235−1245. 

Quweider, M. K., J. D. Scargle, and B. Jackson. 2007. Gray level reduction for 

segmentation, thresholding and binarisation of images based on optimal partitioning 

on an image interval. IET Image Process, 1(2):103-111.   

Ramesh, N.,  J. H. Yoo, and I. K. Sethi. 1995. Thresholding based on histogram 

approximation. IEE Proc. Vision Image Signal Process, 142(5):271–279. 

Rätsch, G., and M. K. Warmuth. 2005. Efficient margin maximizing with boosting. 

Journal of Machine Learning Research, 6(12): 2131-2152. 

Ridler, T. W. and S. Calvard. 1978. Picture thresholding using an iterative selection 

method. IEEE Trans. Syst. Man Cybern. SMC, 8: 630–632. 

Rosenfeld, A., and P. D. Torre. 1983. Histogram concavity analysis as an aid in threshold 

selection. IEEE Trans. Syst. Man Cybern. SMC,13: 231–235. 

Saha, B. N., and N. Ray. 2009. Image thresholding by variational minimax optimization. 

Pattern Recognition 42(5): 843-856. 

Santerre, C. R. 1994. Chapter 4: Pecan processing. In Pecan Technology, 57-58. New 

York, NY: Chapman and Hall. 

Sauvola, J., and M. Pietikainen. 2000. Adaptive document image binarization. Pattern 

Recogn., 33:  225-236. 

SAS. 2004. SAS User's Guide: Statistics. Ver. 9.1.3. Cary, N.C.: SAS Institute, Inc. 

Sen, D., and S. K. Pal. 2009. Histogram thresholding using fuzzy and rough measures of 

association error. IEEE Transactions on Image Processing, 18(4): 879-888. 

Sezan, M. I. 1985. A peak detection algorithm and its application to histogram based 

image data reduction. Graph. Models Image Process, 29: 47–59. 



95 
 

Sezgin, M., and B. Sankur. 2004. Survey over image thresholding techniques and 

quantitative performance evaluation. J. Electron. Imaging, 13(1): 146-168. 

Shahin, M. A., E. W. Tollner, M. D. Evans, and H. R. Arabnia. 1999. Water core features 

for sorting red delicious apples: A statistical approach. Transactions of the ASAE, 

42(6): 1889-1896. 

Shahin, M. A., E. W. Tollner, R. D. Gitaitis, D. R. Sumner, and B. W. Maw. 2002, a. 

Classification of sweet onions based on internal defects using image processing and 

neural network techniques. Transactions of the ASAE, 45(5): 1613–1618. 

Shahin, M. A., E. W. Tollner, R. W. McClendon, and H. R. Arabnia. 2002, b. Apple 

classification based on surface bruises using image processing and neural networks. 

Transactions of the ASAE, 45(5): 1619–1627. 

Shanbag, A. G. 1994. Utilization of information measure as a means of image 

thresholding. Comput. Vis. Graph. Image Process., 56: 414– 419. 

Tao, Y., and J. G. Ibarra. 2000. Thickness-compensated x-ray imaging detection of bone 

Fragments in deboned poultry model analysis. Trans. ASAE 43(2): 453-459. 

Tao, Y., Z. Chen, H. Jing, and J. Walker. 2001. Internal inspection of deboned poultry 

using x–ray imaging and adaptive thresholding. Transactions of the ASAE, 44(4): 

1005–1009. 

Tollner, E. W., R. D. Gitaitis, K. W. Seebold, and B. W. Maw. 2005. Experiences with a 

food product x-ray inspection system for classifying onions. Applied Engineering in 

Agriculture, 21(5): 907−912. 

Tsai, W. H. 1985. Moment preserving thresholding: A new approach. Graph. Models 

Image Process., 19: 377–393. 

USDA. 2010a. Fruit and Tree Nuts: Overview. Washington, D.C.: USDA Economic 

Research Service. Available at 

http://www.ers.usda.gov/Briefing/FruitandTreeNuts/.  Accessed 02 July 2010. 

USDA. 2010b. Fruit and Tree Nuts: Background. Washington, D.C.: USDA Economic 

Research Service. Available at 

http://www.ers.usda.gov/Briefing/FruitandTreeNuts/background.htm#treenuts.  

Accessed 02 July 2010. 

USDA. 2008. Pecans: Production (in-shell), season-average grower price, and value, 

United States, 1980 to date. Fruit and tree nut yearbook. Washington, D.C.: USDA 

http://www.ers.usda.gov/Briefing/FruitandTreeNuts/background.htm#treenuts


96 
 

Economic Research Service. Available at http://usda.mannlib.cornell.edu/ 

MannUsda/viewStaticPage.do?url=http://usda.mannlib.cornell.edu/usda/ers/./89022

/2008/index.html. Accessed 11 June 2010. 

Vezhnevets, A. 2006. GML AdaBoost MATLAB Toolbox. Available at: 

<http://research.graphicon.ru>. Accessed on 2 October 2009. 

Wu, D., H. Yang, X. Chen, Y. He, and X. Li. 2008. Application of image texture for the 

sorting of tea categories using multi-spectral imaging technique and support vector 

machine. Journal of Food Engineering, 88(4): 474-483. 

Yanni, M. K. and E. Horne. 1994. A new approach to dynamic thresholding. In 

EUSIPCO’94: 9th European Conf. Sig. Process. 1: 34–44. 

Zhang, H., J. E. Fritts, and S. A. Goldman. 2008. Image segmentation evaluation: A 

survey of unsupervised methods. Computer Vision and Image Understanding. 

110(2): 260-280. 

Zhang, Y. J. 1996. A survey on evaluation methods for image segmentation. Pattern 

Recogn., 29(8): 1335-1346. 

Zheng, C., D. W. Sun, and L. Zheng. 2006. Classification of tenderness of large cooked 

beef joints using wavelet and Gabor textural features. Transactions of the ASAE, 

49(5): 1447-1454. 

 

http://usda.mannlib.cornell.edu/


   

VITA 

 

Sunil Kumar Mathanker 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis: DEVELOPMENT OF A NEW LOCAL ADAPTIVE THRESHOLDING METHOD 

AND CLASSIFICATION ALGORITHMS FOR X-RAY MACHINE VISION 

INSPECTION OF PECANS 

 

Major Field:  Biosystems and Agricultural Engineering (Bio-Mechanical) 

 

Biographical: 

 

Personal Data:  Born on July 23, 1970 to Mr. Hariram Mathanker and Mrs. 

Shakuntala Mathanker at Masod (Betul), India. 

 

Education: 

 

Completed the requirements for the Doctor of Philosophy in Biosystem and 

Agricultural Engineering at Oklahoma State University, Stillwater, Oklahoma 

in December, 2010. 

 

Completed the requirements for the Master of Technology in Agricultural 

Engineering with major Irrigation and Drainage Engineering at Govind 

Ballabh Pant University of Agriculture and Technology, Pantnagar, 

Uttranchal, India in April, 1993. 

  

Completed the requirements for the Bachelor of Technology in Agricultural 

Engineering at Jawaherlal Nehru Krishi Vishwa Vidayalaya (Agricultural 

University), Jabalpur, Madhya Pradesh, India in September, 1991. 

 

Experience:  Scientist/ Agricultural Engineer, Indian Council of Agricultural 

Research, New Delhi, India (July 1993 to July 2006) Unit – Central Institute 

of Agricultural Engineering, Bhopal, India:  Research, training, and 

extension activities related to automation of agricultural mechanization and 

irrigation equipment of national relevance. 

 

Professional Memberships: 

 American Society of Agricultural and Biological Engineers (ASABE)         

 Canadian Society for Bioengineering (CSBE)           

 Alpha Epsilon: The Honor Society of Agricultural, Food and Biological 

Engineering. 

 

 



 

ADVISER’S APPROVAL:   Dr Paul R Weckler 

 

 
 

 

 

Name: Sunil Kumar Mathanker                                        Date of Degree: December, 2010 

 

Institution: Oklahoma State University                      Location: Stillwater, Oklahoma 

 

Title of Study: DEVELOPMENT OF A NEW LOCAL ADAPTIVE THRESHOLDING 

METHOD AND CLASSIFICATION ALGORITHMS FOR X-RAY MACHINE VISION 

INSPECTION OF PECANS 
 

Pages in Study: 108                            Candidate for the Degree of Doctor of Philosophy 

Major Field: Biosystems and Agricultural Engineering (Bio-Mechanical) 

 

Scope and Method of Study: 

This study evaluated selected local adaptive thresholding methods for pecan defect 

segmentation and proposed a new method: Reverse Water Flow. Good pecan nuts and 

fabricated defective pecan nuts were used for comparison, in addition to images from 

published research articles. For detailed comparison, defective and good pecans, 100 

each, were collect from a mechanical sorter operating at Pecan Research Farm, Oklahoma 

State University. To improve classification accuracy and reduce the decision time 

AdaBoost and support vector machine classifiers were applied and compared with 

Bayesian classifier. The data set was randomly divided into training and validation sets 

and 300 such runs were made. 

Findings and Conclusions: 
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flow and a simpler thresholding criterion is proposed. The new hypothesis, reversing the 
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existing fastest Oh method. The proposed method could segment both larger and smaller 

(presence of insect exit paths) defects. The proposed method worked well for other 

unimodal images taken from published research studies and it should be extendable to 

other food and agricultural images characterized by unimodal histogram and poor 
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The proposed method and Twice Otsu method worked best for the collected pecan 
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