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CHAPTER I 

 

INTRODUCTION 

Development of sensor technologies for rapid in situ measurement of plant conditions can lead to 

efficiency and productivity improvements for producers, scientists, engineers and processors. 

This dissertation presents research conducted on three distinct sensor applications that exploit the 

visible-near infrared, mid infrared, and microwave regions of the electromagnetic spectrum.   

Chapter two reports on alternative methods to rapidly quantify cuticular waxes that occur on the 

aerial parts of plant leaves with minimal sample preparation. Current methods require solvent 

extraction of the waxes and quantification with gas chromatography. Fourier transform infrared 

spectroscopy with attenuated total reflectance shows promise as an alternative to current methods.  

The technique allows rapid in situ quantification of waxes and minimal sample preparation is 

required.  Associated experiments using differential scanning calorimetry to quantify waxes on 

dried leaf sections did not yield useful predictions of wax quantity. 

Chapters three and four investigate sensing technologies for enabling precision agriculture in 

pecan orchards.  Precision agricultural practices, including in situ yield estimates and variable 

rate fertilizer applications, have been developed for a variety of field crops. The goal of precision 

agriculture is to optimize efficiency and productivity by sensing plant conditions and applying 

treatments at the correct level at an optimum spatial scale. Measurement of foliar nitrogen and 
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estimating nut yield are two essential tasks in current pecan management practices and represent 

opportunities for deployment of precision agriculture practices. 

Foliar nitrogen concentration is used to assess tree health and nutritional needs.  The current 

protocol for measuring foliar nitrogen in pecan trees is to hand harvest and dry leaf samples, 

which are then sent to a lab for chemical analysis. In addition to being a time and labor intensive 

endeavor, expense makes it prohibitive to sample every tree in the orchard. Chapter three reports 

the results of research using a hand held chlorophyll meter used to take field measurements of 

leaf nitrogen. In addition, a protocol to extract foliar nitrogen concentration from images taken 

from a high resolution visible and near infrared camera within the orchard was developed.  

Accurate yield estimates of pecans throughout the growing season are important for optimizing 

production, managing alternate bearing behavior, and for marketing and business purposes. Yield 

estimates are currently obtained by scouting an orchard and counting nuts on a subsample of the 

trees.  Estimates are inaccurate and due to the effort involved, yield data are generally not 

obtained on every tree. Chapter four documents empirical research on the backscatter response of 

microwaves to pecan tree canopy components: nuts, secondary branches, and leaves.  Microwave 

energy can penetrate into the canopy of trees to interact with objects hidden from view.  The 

objective of this investigation was to assess if short-range backscattered microwaves from the 

canopy of a pecan tree can be used to sense nut yield. Baseline results from this investigation will 

be used to develop future experiments to be conducted under field conditions. Furthermore, if 

successful in pecans, the technology has potential for extension to other orchard fruit and nut 

crops.   
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CHAPTER II 

 

RAPID IN SITU QUANTIFICATION OF SPINACH CUTICULAR WAX USING 

FTIR-ATR AND DSC 

Abstract: The ability to rapidly quantify and characterize the cuticular wax on agricultural crops 

in situ may have significance in crop production, storage and processing.  Gas chromatography of 

solvent extracted waxes is the most common method of measurement. This paper reports on two 

potential, quantitative, in situ measurement techniques to measure cuticular waxes, tested on 

spinach leaves. The first technique used Fourier transform infrared spectroscopy with attenuated 

total internal reflectance optics (FTIR-ATR) to quantify cuticular waxes. FTIR-ATR spectra were 

subjected to principal component analysis (PCA) to identify potentially important wavelengths. 

Linear regression techniques using wavelengths identified by PCA and wax quantified by gas 

chromatography resulted in predictive models with R
2
>0.86 using as few as four predictor 

wavelengths. The models developed for fresh spinach were used to measure the waxes on 

rehydrated dried spinach. The mean difference in waxes measured on rehydrated dried leaves 

varied among the models from 18 to 129% of wax on fresh leaves. The second wax measurement 

technique attempted to directly quantify cuticle wax on leaves by using differential scanning 

calorimetry (DSC) to measure the heat of fusion of the cuticular wax on dried leaf discs. This 

method did not provide reliable predictions of wax loads on leaves.  
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Introduction 

The plant cuticle is a hydrophobic lipid polymer membrane that covers the aerial parts of all 

plants.   Physical and chemical properties of the cuticle are important to many plant physiological 

processes such as transpiration, protection from solar radiation and desiccation, exclusion of 

pathogens and contaminants, and absorption of agricultural chemicals.  The cuticle is also 

instrumental in the interaction of insects with the plant surface (Stork 1980).  For these and other 

reasons, the cuticle is an area of active inquiry.  

The plant cuticle membrane (CM) consists of three general layers (Jetter et al. 2000). The 

outermost layer is the epicuticular wax (EW) layer consisting of soluble cuticular lipids (SCL) of 

varying composition.   SCL’s can be dissolved and recovered (chloroform or 

chloroform/methanol are common solvents) from leaves leaving the rest of the cuticle intact.  The 

next layer is the cuticle matrix (MX) which consists of cutin infused with SCLs.  The MX can 

have cutin arranged in a lamellar structure or it can be amorphous with no regular organization.  

The EW plus MX are often called the cuticle proper. The innermost layer, under the MX and in 

contact with a layer of pectin outside the cell wall, is the cuticular layer. The cuticular layer is a 

transition zone between the cuticle proper and the cell wall, containing cutin and waxes plus 

embedded polysaccharides pectin, hemicelluloses, and cellulose (Lopez-Casado et al. 2007).  The 

pectin layer is contiguous with the middle lamella. In many cases the CM can be enzymatically 

separated, intact, from host plant organs using pectinase which breaks down the polysaccharide 

layer between the CM and the cell wall of the epidermal cells (Orgell 1955).   

Relative thickness, structural arrangement and chemical composition of the various layers of the 

cuticle vary widely among plant species, organs and throughout ontogeny (Bargel et al. 2006; 

Jeffree 1984; Kunst et al. 2005). SCLs in the MX and cuticular layer are termed intracuticular 

waxes (IW) while SCLs above the MX are called epicuticular waxes (EW).  Mass fractions of 
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each component vary widely by plant location and species but SCL’s are typically 20 to 60% of 

the CM mass.  Interaction of the MX and SCL determines the ultimate chemical, structural and 

photo properties of the CM (Schreiber and Schönherr 2009). Research on cuticle wax 

accumulation has been shown to effect resistance to pathogens (Uppalapati et al. 2012), rate of 

water loss and drought resistance (Islam et al. 2009; Riederer and Schreiber 2001; Zhang et al. 

2007). Studies of Arabidopsis have shown that C16 and C18 fatty acids within epidermal cells are 

the precursors of cuticular waxes.  Fatty acids undergo elongation and then are converted into 

various wax components before transport across the cell wall into the cuticle. (Samuels et al. 

2008). 

Cuticular waxes are primarily composed of linear long-chain aliphatic compounds (e.g., fatty 

acids, aldehydes, alcohols, alkanes, secondary alcohols and esters) with chain lengths ranging 

from C20 to C70. Other components such as triterpenoids, flavonoids and phenylpropanoids are 

also present in some plants (Schreiber and Schönherr 2009). The MX consists primarily of cutin 

and polar polymers.  Cutin is a biopolyester composed primarily of C16 and C18 acid and alcohol 

monomers.  The CM components occur in varying proportions on different plant organs and the 

proportions change during ontogeny (Bargel et al. 2006).  
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Figure 1. Generalized structure of the plant cuticle. Adapted from Jetter et al. (2000). 

The outer structure of the cuticle is complex with some chemical classes located only in specific 

layers of the cuticle while others are distributed throughout (Jetter and Sodhi 2010). The 

crystalline structures found on the outermost layer of the cuticle derive their geometry from a 

primary wax constituent although other secondary components likely play a role.  The crystalline 

structure forms when the concentration of the crystal forming constituent reaches a critical level. 

At concentrations less than the critical level, no crystals are formed.   Many methods of chemical 

analysis of extracted waxes do not maintain the stratification of wax components thus the results 

in the literature should be viewed with that in mind (Jetter et al. 2000). Techniques to investigate 

the stratification of cuticular waxes include Raman spectroscopy, FTIR and various mechanical 

separation techniques (Buschhaus et al. 2007; Els et al. 2003; Jetter et al. 2000). 

The thickness of the CM on mature leaves varies widely from 30nm to 30 μm.  Average thickness 

of the CM is on the order of 3 μm (Jeffree 2006).  Wax accumulation is known to be influenced 

by many factors including light and osmotic stress.  Plants exposed to severe environments often 
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have thicker CM for greater protection from desiccation and solar damage (Samuels et al. 2008). 

Fast growing plants tend to have thinner CM’s on leaves and stems.  The CM on most fruits is 

thicker than other parts of the plant (Bauer et al. 2004; Peschel et al. 2007).    

Spinach is a crop of interest in Oklahoma and there is current research at Oklahoma State 

University investigating microbial contamination of fresh market spinach. In a study investigating 

the composition of spinach cuticle by Holloway (1974), EW was removed by brief immersion of 

leaves in chloroform.  Following that, CM disks were enzymatically isolated and the waxes and 

cutin analyzed.  Holloway found 7 μg cm
-2 

of intracuticular wax comprised mostly of primary 

alcohols (C24 to C30) and mono-basic acids (C16, C24 to C30) and 10 μg cm
-2

 of cutin in 

isolated CM.  Cutin analysis revealed a complex mixture primarily containing C16 and C18 

epoxy compounds.  TEM images of spinach cuticle reveal that the thickness of the spinach CM 

was 263nm, the cuticle proper 110 nm and the cuticular layer 160 nm.  The MX is largely 

amorphous although a faint lamellar structure of cutin is found in some locations (Holloway 

1974; Holloway et al. 1981; Jeffree 2006).  In addition to the components identified by Holloway 

(1974) spinach waxes are likely to contain a mixture of long chain aliphatic components (alkanes, 

aldehydes, esters) and triterpenoids (Jenks et al. 1995; Peschel et al. 2007; Rashotte et al. 2004; 

Schreiber and Schönherr 2009). 

Hydration of the cuticle changes its viscoelastic behavior.  Generally the extent of elastic 

deformation increases at the expense of plastic deformation and hydration has been shown to 

slightly reduce the fracture strength of the cuticle (Edelmann et al. 2005; Petracek and Bukovac 

1995). This suggests that the cuticle on dried leaves would be more likely to be permanently 

deformed but not more likely to break when subjected to mechanical stress than a hydrated 

cuticle.  Strength and toughness of the cuticle change a relatively small amount after drying while 

the rest of the leaf undergoes profound reductions in these mechanical properties. The cuticle is a 
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thin membrane relative to the leaf thickness and its absolute strength is small.  The cuticle may 

however, contribute enough strength to significantly reduce breakage during routine material 

handling and storage of dried leaf materials.  Without the viscoelastic properties of the cuticle, 

brittle dried leaves would be subject to shattering due to mechanical stresses.   Cuticular wax 

alone has low mechanical strength.  Extracting waxes from isolated ripe tomato cuticles caused 

changes in mechanical properties similar to those induced by drying.  Wax apparently acts as a 

filler and lubricant within the cutin matrix (Petracek and Bukovac 1995). Aliphatic cuticular 

lipids are relatively stable chemically with primary environmental reactions caused by photolysis 

and oxidizing agents such as ozone, hydroxyl and nitrate radicals, oxygen radicals (Calvert et al. 

2008; Jetter et al. 1996; Percy et al. 2009).   

Existing cuticle wax measurement methods 

Several cuticular wax quantification methods are found in the literature.  Solvent extracted waxes 

can be gravimetrically determined after evaporating the solvent.  Techniques for analysis of 

solvent extracted waxes using gas chromatography (GC) have been widely documented. 

Measurements of the CM have been accomplished using transmission electron microscopy 

(TEM), however documented fixation protocols don’t conserve surface wax structure and are not 

appropriate for measurement of EW waxes (Franke et al. 2005).  Isolation of EW wax from 

leaves has been demonstrated by mechanical removal using cryo-adhesive and chemical adhesive 

techniques.  Waxes are separated from the adhesive by solvent extraction for GC quantification 

(Riedel et al. 2003).  The cuticle membrane can be separated from underlying leaf material by 

enzymatic digestion of the polysaccharide rich layer which anchors the cuticle to the epidermal 

cell wall.  SCLs can be separated from cutin by solvent extraction. (Buschhaus et al. 2007).  All 

of these methods require time consuming preparatory protocols and each has limitations on 

accuracy and selectivity. The objective of this research project was to investigate new 
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experimental methods to rapidly measure cuticle wax on leaves of plants in situ in a field 

environment. 

Proposed cuticle wax measurement methods 

Fourier transform infrared spectroscopy - Attenuated total reflectance  

Attenuated total reflectance (ATR) spectroscopy measures the energy profile of a reflected beam 

of light that intersects an edge of a refractive crystal at an angle greater than the critical angle 

where total internal reflection occurs.  The evanescent wave produced under these conditions 

penetrates a short distance into a sample held in contact with the internal reflective element (IRE).  

The interaction of the evanescent wave with the sample can reveal information about the surface 

chemistry of the sample.  The evanescent wave penetration depth is dependent on the refractive 

indices of the IRE and sample, angle of light w.r.t. the IRE and wavelength (eq. 1).   Fourier 

transform infrared spectroscopy ATR (FTIR-ATR) is a common laboratory tool for analysis of 

surface chemistry of organic polymers.  Greene and Bain (2005), Ribeiro da Luz (2006), and 

others have used the limited penetration depth of infrared evanescent waves to study cuticle 

surface and laminar structure, however no literature sources have been identified where the 

thickness of the cuticle was measured using this technique.   

The electromagnetic field intensity of the evanescent wave falls off exponentially with distance z 

from the IRE-sample interface according to the relation: E=E0e
-z/dp.  Evanescent wave penetration 

depth, dp, in a non-attenuating sample is:  

           
    

  √      –       
 

   (1) 

The refractive indices of the IRE and sample are n1 and n2 respectively.  The angle of incident 

light is θ and λ is the wavelength of incident light in free space. The penetration depth is defined 
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as point where the intensity of the evanescent wave falls to 1/e the intensity at the surface. When 

the sample is layered, such as in the case of a cuticle with an underlying polysaccharide layer 

binding the CM to epidermal cell walls, an estimate of the CM thickness is possible by ATR if 

the CM thickness is in the same order of magnitude as dp (Muller and Abraham-Fuchs 1993).  If 

refractive indices of each layer are known, reflectivity of incident light can be calculated by 

methods of Muller and Abraham-Fuchs (1993).  Refractive indices of waxes vary according to 

their composition but 1.46 to 1.51 is typical for alkane rich hydrocarbons in the C16 to C30 range 

found in waxes and cutin of the CM.  Diamond and ZnSe have refractive indices of 2.4, 

germanium is 4.0 at 1000 cm
-1

. This suggests that CM on the order of 1 μm thick could be probed 

over the mid IR spectral analysis range of 2.5 to 25 μm with a diamond IRE. 

Several absorption bands are of interest for FTIR-ATR of plant cuticles.  Cuticle lipids are 

predominately long chain aliphatic molecules dominated by -CH2- monomers which adsorb 

strongly at 2915 and 2850 cm
-1

(C-C stretching) and 1462 cm
-1

 (C-C deformation).  Water absorbs 

strongly in the 3300 (O-H stretching), 2125 and 1633 cm
-1

 (O-H absorption) bands.  Cell wall 

polysaccharides exhibit characteristic differences concentrated in the 1200 to 900 cm
-1

 region. 

This absorption region is dominated by ring vibrations overlapped with stretching vibrations of 

C-OH side groups and the C-O-C glycosidic bond vibration (Kacuráková et al. 2000).  Cellulose 

and other cell wall polysaccharides absorb strongly at 1446 cm
-1

 (C-H stretching), 1055 and 1032 

cm
-1

 from C-O and C-OH stretching vibrations.  The ability of FTIR-ATR to differentiate 

between cell wall polysaccharides and cuticle components is likely to play and important role in 

measuring thickness due to the spatial arrangement of these elements in the plant epidermis. 

The proximity of cellulose and pectin in the cell wall to the ATR IRE may be exploited to provide 

an indicator of cuticle thickness.  The total thickness of cuticle proper, pectin layer and primary 

cell wall of epidermal cells of eight varieties of forage plants was 2.62 μm (0.119 s.e.) (Rezvani 
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and Wilman 1998). This is large in relation to dp in most ATR configurations.  Furthermore, it is 

likely that a combination of absorption bands, both direct and indirect, will need to be analyzed to 

quantify cuticle and wax thickness. Thinner cuticles will likely lead to greater attenuation from 

water, cellulose and pectin and lower attenuation from lipids.  Subtle differences in leaf 

components will also confound the ability of FTIR-ATR to accurately measure cuticle thickness.  

Turakhozhaev (1997) found well-pronounced absorption bands in pectin extracted from apple in 

various ways at 1749 cm
-1

.  Depending on the extraction method absorption
 
bands were also 

found at 1450, 1620, 3311, 3400, 3500, 3600 and 3263 cm
-1

.  Lu et al. (2008) successfully used 

FTIR-ATR analysis to identify  different varieties of ground Camellia L. leaves.  The absorption 

spectrum depends on the relative amount of specific chemical bonds in the sample and these 

slight differences were enough to discern different varieties.  Dubis et al. (1999) noted that in situ 

FTIR-ATR analysis of cuticle waxes was  more difficult on plants with thinner layers of wax 

because of interference from water contained in underlying polysaccharides associated with the 

cell wall.  Wilson et al. (2000) found minor changes in intensity of polarized FTIR spectral peaks 

of cellulose and pectin when examining cell walls under mechanical and dehydration stress.  It 

can be expected that some variation in infrared spectral response will be induced by changes in 

water content and by deformation caused by clamping a leaf sample against the optics of an ATR 

attachment. 

The thickness of some thin membranes can be calculated by analyzing the attenuation of 

internally reflected light by the method outlined by Muller and Abraham-Fuchs (1993). If the leaf 

epidermis is modeled as optically homogeneous layers (Figure 3) and optical properties of each 

layer are distinct, the thickness of the cuticle could be calculated by solving equation (2) for 

perpendicularly polarized light by means of a non-linear optimization algorithm.  
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Figure 2. System for ATR measurement of cuticle membrane overlaying polysaccharide rich 

layer. k: absorption index of the layer, n: refractive index of the layer and d: the thickness of the 

CM. 
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The stated assumptions of known, homogeneous optical properties are not found in real plant 

surfaces, thus a better approach to determining thickness would be to calibrate the ATR 
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measurements to cuticle thickness determined by other methods.  Using similar reasoning Kane et 

al. (2009) used  FTIR-ATR to measure the thickness of a thin film of coatings on ultrahigh 

molecular weight polyethylene substrate.  The ether groups present in the cross-linked coating, 

but absent in the substrate, absorbed at 1115 cm
-1

. Their procedure used AFM thickness 

measurements to correlate the FTIR-ATR peak area absorbance readings at 1115 cm
-1

 to coating 

thickness.  Coating thicknesses measured ranged from 30 to 200 nm thick, less than one-third the 

600 nm penetration depth of the evanescent wave in their configuration.  

Yang et al. (2005) used substrate absorbance to  measure the thickness of a thin polystyrene 

coating on a polypropylene substrate.  Their technique required measuring the area of the methyl 

absorption band (1375 cm
-1

) in the bulk substrate at varying incidence angles above the critical 

angle and correlating the results to thickness.  The measured systems of Kane et al. (2009) and 

Yang et al. (2005) consisted of distinct layers of pure, homogenous polymeric materials.  In 

addition to the layers being more chemically homogeneous, the top layer was more consistent in 

thickness than a leaf CM and the substrate was orders of magnitude thicker than dp. 

Contact of the sample leaf with the IRE is critical to obtaining reliable CM thickness 

measurements.  Stuchebryukov and Rudoy (1992) were able to show that the intermittent contact 

gap caused by a rough surface could be compensated for by incorporating a known surface 

roughness into calculations.  This effectively added another layer to the three layer ATR 

equations noted above.  This confounding effect may be eliminated by high contact forces to 

effectively eliminate the gap by deforming the leaf surface and forcing it to contact the IRE. 

For infield measurements, portable and ruggedized FTIR-ATR instruments are currently available 

for scanning the thermal IR spectrum.  A purpose-built ATR sensor that analyzes several IR 

frequencies specific to cuticular measurements would be a significant, but achievable, 
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engineering design challenge.  Electronic emitters and/or receivers with sufficient spectral 

precision in the IR band will be required along with significant processing capabilities. 

Thermal measurement: Differential scanning calorimetry  

The thermal properties of cuticular waxes have been used to study cuticular characteristics.  

Scanning Thermal Microscopy (SThM) uses atomic force microscopy (AFM) techniques with 

thermal probes to detect thermal properties of surface components.  Perkins et al. (2005) used 

SThM to study the effects of surfactants on cuticle wax of Prunus laurocerasus leaves.  They 

found that SThM techniques allowed them to spatially map wax transition properties at a 

submicron scale across the leaf surface.  Similar techniques might be applied to determine wax 

thickness.   If the SThM tip is held at a temperature above the melting point of the cuticle wax 

during a scan, the energy needed to keep the tip at that temperature would be related to the 

amount of wax being melted and in turn its thickness.  In this scenario, penetration depth of the 

tip would need to be limited to the wax layer by underlying structural elements in the leaf.  

Methods to do that are not readily apparent.  

Directly measuring the wax content of a leaf section is in theory possible using differential 

scanning calorimetry (DSC) of leaf sections.  Coret and Chamel (1994) used DSC on extracted 

10-20 mg samples of box-tree (Buxus sempervirens L.) cuticle wax and found an enthalpy of 

fusion of 30 uJ/ug centered around a temperature of 50.8°C.   If the phase transition temperatures 

of the waxes on a leaf can be separated from thermal transitions of other leaf components such as 

gelling of intracellular pectin, protein denaturing and water vaporization, DSC may be a 

technology for quantification of cuticular wax.  The wide variety of cuticle components found on 

plants will likely result in a wide melting band.  Increasing chain length, degree of saturation, and 

number of methylene units between methyl side groups generally increases melting temperature 

of the specific wax components (Gibbs and Pomonis 1995).  Reconstituted wax of Hedera helix 
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and Juglans regia had a melting midpoint of 82 and 71 °C respectively and exhibited a melting 

range of 75-86 and 41-82 °C respectively when evaluated by FTIR with a temperature controlled 

cell holder.  Whole leaves of Hedera helix and Juglans regia evaluated by the same equipment 

showed an increase in melting midpoint to 86 and 79 °C respectively and exhibited a melting 

range of 78-89 and 41-93 °C respectively (Merk et al. 1997). This change in melting behavior 

indicates that other leaf components are interfering with the heating profile of the waxes of those 

species in situ.  Furthermore, current DSC technology would not likely be able to discern between 

adaxial and abaxial waxes.  DSC is typically performed on homogenized samples in the lab.  The 

specific heat of cutin and cuticular wax varies with temperature, moisture content and wax/cutin 

composition (Casado and Heredia 2001; Matas et al. 2004). Reynhardt and Riederer (1991) used 

DSC on insolated CM, cuticle wax and MX of Citrus aurantium leaves. The isolated wax 

produced endothermic peaks at 57 and 70°C.  However these peaks were not evident in the 

thermalgram of the intact CM on leaves.  Citrus aurantium has very low wax content, 

approximately 4% of the CM, which could explain the lack of sufficient profile of wax melting in 

isolated CM to determine wax quantity.  This study does cast doubt on the viability of this 

technique to accurately measure wax thickness on leaves of plants, like citrus, that have low wax 

coverage. 

The precision of analytical DSC equipment should be sufficient to discern transition temperatures 

of wax on many leaves.  For example Ristic and Jenks (2002) found 10ug cm
-2

 of wax, primarily 

C30 to 32, on two varieties of maize and Holloway (1974) found 7 ug cm
-2

 of intracuticular wax 

on spinach leaves.   This results in a wax thickness of approximately 25 to 50 nm on each surface 

of the leaf.  With a melting point of 50°C and a heat of fusion of 30uJ/ug, a spinach leaf sample 

would require about 200 uJ cm
-2

 for the phase transition of a 50 nm thick wax layer.   Spinach 

cuticular wax is a tiny fraction of the total leaf mass - less that 0.1%.  The wax mass fraction can 

be increased about 10 fold by drying leaves since they contain >90% water.   If thermal phase 
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transitions of other leaf components do not mask the wax melting transition it is not unreasonable 

to expect that useful predictions of wax thickness could be discerned with laboratory grade DSC 

equipment.  Pectin gels above the temperature of interest and should not be an interferent (Ye et 

al. 2008). Further information on the nature of the wax layers may be discerned by analyzing the 

profile of the heat flux curve.  For example, if Tmelt of epicuticular and intracuticular wax are 

different, the relative dwell times at each components melting temperature could provide insight 

into the amount of each component present in the tissue sample if enough precision in the 

measurements can be made.  

There are two main types of DSCs available: heat flux and power compensated DSCs.  Most 

current laboratory DSCs operate on the heat flux principle. Both types monitor a differential 

signal between an analytical and reference sample to determine the differential amount of heat 

flux that has been absorbed by the sample.  Heat flux DSCs operate by maintaining a steady heat 

flux to the sample and reference sample in the furnace.  Temperature of the two samples is 

precisely monitored over time by a network of thermocouples.  For two similar samples, the 

differential temperature is due to a phase transition in one of the samples.  Power compensated 

DSCs use a closely coupled control algorithm to vary the heat flux to each sample to maintain a 

constant temperature profile.  The differential heat flux can be attributed to a phase change or 

reaction in one of the samples (Hohne et al. 2003).  

Experimental objectives for rapid in situ measurement of leaf cuticular wax  

A search of the literature reveals a dearth of rapid, in situ methods for quantitative measurement 

of cuticle thickness or cuticular waxes. The composition and spatial arrangement of the plant 

cuticle suggests that FTIR-ATR spectroscopy and DSC may hold promise as methods for rapid, 

in situ quantification of cuticular waxes.  The objective of our experiments was to develop 

empirical methods to measure the amount of cuticular wax using FTIR-ATR and DSC on spinach 
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leaves. Successful demonstration of these new quantitative methods on spinach leaves would 

provide a reference for other researchers looking for rapid, non-extractive laboratory procedures 

to quantify cuticular wax in other plants.   

Materials and methods 

Plant materials 

 Fresh picked fully expanded spinach leaves (Spinacia oleracea L. cv. Silverwhale) in good 

condition suitable for fresh market sale, ranging in age from 42 to 63 days were used for these 

experiments.  Plants were grown in pots in either a slow growth (SG) or a fast growth (FG) 

chamber that simulated early and late season field conditions (Table 1).  Leaves from different 

growth conditions were selected so that a range of wax and CM thickness was available for model 

building and verification. Leaves from 28 plants were harvested for model building. A sample of 

leaves from 13 plants sown at a later date was used for model validation. A second validation 

sample of a different spinach cultivar (Spinacia oleracea L. cv. Tyee) grown outdoors in Bixby, 

Oklahoma was also tested.  It was planted on March 30, 2011 and harvested 63 days later. An 

additional three plantings of Silverwhale spinach, spaced 10 days apart, were grown in a 

greenhouse for experiments to measure cuticular waxes on dried leaves using FTIR-ATR.  These 

leaves were harvested 53 to 76 days after planting.  

Leaves were stored in plastic bags at 4°C in a high relative humidity environment to slow 

desiccation and decomposition prior to testing (Kosma et al. 2009).  Immediately before analysis 

leaves were gently agitated in distilled water for 30 s two times to remove surface particulates and 

water soluble contaminants from the leaf surface.   
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Chamber Day length (h) Day temp (°C) Night temp (°C) Time to maturity (days) 

Slow growth 10 18 7 45-50 

Fast growth 12 24 18 35-40 

  Table 1.  Growth chamber conditions for spinach specimens. 

Wax load and CM thickness are spatially non-uniform, generally varying from stem to tip and 

transversally across the leaf (Jeffree 2006). To account for this variation, solvent extracted GC 

samples, FTIR-ATR spectral scans and DSC sections were taken as close together on the leaf 

surface as possible to minimize variation (Figure 4 and Figure 5).  The DSC protocol will analyze 

waxes on both sides of the leaf while FTIR-ATR and GC will be single sided measurements.  

Therefore, top and bottom GC wax measurements from the same leaf were pooled to compare to 

DSC results. 

FTIR-ATR measurements 

FTIR-ATR analysis was conducted on a Thermo Science Nicolet 6700 with a single reflection 

diamond IRE ATR attachment.  The active sampling area of this device was approximately 1.5 

mm in diameter.  A hold down clamp with a conformable tip made from a rubber stopper (size 

000) was used to maintain contact between the leaf sample and ATR IRE (Ivanova and Singh 

2003).  A uniform pressure of 0.1 MPa was maintained by first measuring the stress – strain 

relationship of the elastomeric tip and then compressing it a known distance with the screw clamp 

(Figure 3).   

Separate FTIR-ATR sampling protocols were used on leaves depending on whether waxes would 

be analyzed by GC or in a dried condition. On leaves where cuticle waxes would be analyzed by 

GC, three spectra over the range of 650-4000 cm
-1

 were collected from three different locations in 

a 10 mm diameter area to be extracted (Figure 4).  For leaves that were to be dried, three 

measurements were taken on the fresh leaf adjacent to the section that was removed and dried.  
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Two more measurements were taken from the removed leaf section after it had been dried and 

rehydrated (Figure 5). 

In addition, spectra of selected isolated leaf components (wax, cutin, cellulose and water) were 

collected using appropriate fixtures to assist in analysis. Each spectrum consisted of the mean of 

16 scans taken with a resolution of 1 cm
-1

.  

Care was taken to avoid FTIR-ATR scans directly on a leaf blemish or rib. Measurements taken 

on a leaf rib did not have repeatable spectral response due to inconsistent contact between the IRE 

and leaf.  The IRE was cleaned with an ethanol soaked tissue between leaf samples. Spectra were 

referenced to background measurements collected in air. 

 
Figure 3.  Spinach leaf held against IRE with conformal elastomeric tip during FTIR-ATR 

spectral scan.  



20 

 
Figure 4. Diagram of spinach leaf sampling protocol for FTIR-ATR, GC and DSC sample set.  

Dashed lines indicate sampling locations on  the back side of the leaf. 

 

 
 

Figure 5. Diagram of spinach leaf sampling protocol for measurement of dried leaf cuticular 

waxes.  Rectangle indicates sampling locations on dried leaf area. 
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10mm ID chloroform extraction site 

  



21 

Chloroform extraction of CM waxes 

Cuticular wax for GC analysis was extracted from intact leaves using a protocol adapted from 

Buschhaus et al. (2007).  Leaves were held against an open 7 ml vial containing 2 ml of 

chloroform with a gloved hand for 30 s at room temperature. The inside diameter of the vial 

mouth was 10 mm. The vial was gently inverted 10 times during the extraction.  The extraction 

was repeated with another vial in the same location and combined with the first vial.  A sample 

was discarded if significant solvent leaked during extraction.  The first extraction vial contained 2 

μg each of tetracosane and heptacosanol (Sigma-Aldrich) as internal analytical standards.  The 

second vial was pure chloroform.  A similar extraction protocol conducted by Jetter et al. (2000) 

demonstrated recovery of 95% of waxes in the first extraction  thus minor losses of wax or 

solvent during the second extraction would have a negligible effect on analysis. 

Larger samples of cuticular waxes for TLC and DSC and GC protocol development were 

obtained with a similar process except whole leaves were suspended in chloroform for 30 s two 

times.  Solvent was removed by heating at 40 °C under a stream of nitrogen. 

High performance thin layer chromatography 

High performance thin layer chromatography (HPTLC) was used to determine the molecular 

classes of extracted spinach waxes.   Known standards and extracted waxes were spotted onto 

silica gel HPTLC plates (Analtech Uniplate, model 57527) and developed in a hexane-ether ( 9:1 

and 8:2, with 1% citric acid) mobile phase for component class identification.  Wax fractions 

were visualized by dipping in a 3% cupric acetate and 15% phosphoric acid solution followed by 

charring on a hot plate.   Wax fractions for analysis by GC were isolated on preparatory plates 

(Analtech Uniplate, model 42511).  Individual wax fractions were recovered by eluting bands of 

silica gel scraped from the plate with hexane-ether (1:1). 
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Gas chromatography 

Extracted waxes were analyzed by GC to determine wax amount and composition using a 

protocol adapted from Buschhaus et al. (2007), Jetter and Schaffer (2001) and others to quantify 

SCL’s .  After extraction chloroform was evaporated from vials under a stream of nitrogen. 

Trimethylsilyl (TMS) derivatives of hydroxyl containing compounds were prepared by adding 

50ul each of bis-N,O-trimethylsilyltrifluoroacetamide (BTSFA) (Supelco, Bellefonte, PA) and 

pyridine to the 7 ml vial, vortexing for 10 s and incubating at 70°C for 30 min.  Wax components 

were quantified on a capillary GC (Hewlett Packard 5890 II, Santa Clara, CA) equipped with a 

FID detector.  A 1 ul sample was injected in a splitless configuration (Agilent DB-1, 30 m x 0.25 

mm i.d., film thickness 0.25 μm, Santa Clara, CA) with helium as the carrier gas at 1 ml min
-1

. 

The GC program consists of inlet temperature of 250 °C, oven temperature: 50 °C for 1.75 min, 

40 °C min
-1

 to 180 °C, 3 °C min
-1

 to 320 °C, 10 min at 320 °C.  FID was maintained at 350 °C.  

Injector purge gas was turned on at 1.85 min and off at 59.5 min. A 3 m long retention gap 

(Agilent model 160-2255-10, Santa Clara, CA) was incorporated and replaced as needed due to 

fouling by contamination of unpurified samples and non-volatile components (Nass et al. 1998). 

Semi-quantification of wax components was done by comparing their FID response to tetracosane 

and heptacosanol internal standards for unchanged and TMS derivatives of wax components 

respectively.  Retention times of authentic standards and GC-MS were used to identify FID 

peaks. 

Scanning electron microscopy (SEM) 

SEM was used to image whole leaves to examine leaf surface topography.  Leaf tissue samples 

were fixed for 2 hours in 2.0% buffered glutaraldehyde solution followed by rinsing in 0.1M 

phosphate buffer (pH 7.0) for 20 min three times. After one hour in 1% osmium tetroxide 

specimens were rinsed three times in 0.1M phosphate buffer for 20 min.  Dehydration consisted 
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of an ethanol series of 30%, 50%, 70%, 80%, 90%, 95% and three times in 100% ETOH for 20 

minutes each. Finally samples were critical point dried (Bal Tec CPD 030) and mounted on 12 

mm aluminum stubs with double-sided adhesive carbon tape and Au-Pd sputter coated (Balzers 

MED010, Liechtenstein) for 2 min.  Images were obtained using a FEI Quanta 600 SEM 

(Hillsboro, OR) at the Oklahoma State University Microscopy Laboratory. 

Transmission electron microscopy (TEM) 

TEM of leaf sections was used to image cuticle thickness directly. The fixation protocol is 

adapted from one used by Franke et al. (2005). Leaf tissue samples approximately 1.5 mm by 4 

mm were cut with a punch and immediately immersed in a vial containing a 2% buffered 

glutaraldehyde solution.  After 2 hours specimens were suspended in buffered wash (ph 7.0) three 

times for 20 min each followed by a second fixation in 1% osmium tetroxide for 18 hours.  

Dehydration consisted of an ethanol series of 25%, 50%, 75%, 95% and three times in 100% 

ETOH for 20 minutes each.  Three 20 min washes in transitional solvent propylene oxide 

followed dehydration.  The tissue specimens were then imbedded in a propylene oxide/Spurr’s 

(1:1) resin for 24 h, followed by 24 h in complete Spurr’s.  Finally tissue specimens were placed 

in fresh resin in silicon molds and cured at 60°C for 24 hours.  Sections 70 nm thick were stained 

with uranyl acetate for 30 min and Reynold’s lead citrate for 20 min.  Images were obtained using 

a JEM 2100 TEM (Jeol, Tokyo, Japan) at the Oklahoma State University Microscopy Laboratory.  

Cuticular membrane isolation 

CM were enzymatically isolated intact using an adaptation of a technique described by Orgell 

(1955).  The underlying cell structure was disrupted by immersion of 10 mm diameter leaf discs 

in a solution of 0.5 g/l Pectinex Ultra SP-L (Novozymes, Denmark) in 0.1M acetate buffer at pH 

4.0 for 48-72 h at 50°C followed by gentle agitation and thorough rinsing with distilled water to 
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remove leaf residues.  Wax from isolated cuticles was extracted with chloroform, using a similar 

procedure for leaf sections, leaving cutin discs.  CM and cutin discs were stored in water at 4°C 

until use. 

Dried leaf cuticle measurement protocol 

Sections removed from the fresh leaf after initial FTIR-ATR scans were dried at 50°C for 24 h.  

Leaf sections were rehydrated in distilled water at 22°C for 2 h.  After rehydration, leaf sections 

were flattened and excess water was removed by gently pressing between two pieces of filter 

paper for 3 to 4 min.  Leaf section area was measured before drying and after rehydration to 

assess shrinkage. Rehydrated leaves were positioned on the FTIR-ATR IRE such that the area 

where the conformal clamp contacted the leaf on previous measurements did not overlap the 

current measurement area.  

Statistical analysis 

Principal component analysis (PCA) was used to identify important wavenumbers in the collected 

spectra.   The average reflectance of three (two for dried leaf sections) spectra collected was used 

as the wax thickness indicator for each leaf region.  Prior to averaging, spectral resolution was 

reduced to 4 cm
-1

 to decrease processing time.  To further reduce processing time, the spectra 

were truncated to exclude wavebands that exhibited little inter-sample variance or were primarily 

a response to water.  Wavenumbers between 3300 and 4000 cm
-1

,1800 and 2800 cm
-1 

and 650 to 

900 cm
-1

 were eliminated.  Specific wavenumbers contributing most significantly to variance 

were isolated by subjecting the training set of 28 reflectance spectra to PCA using the SAS 

PRINCOMP procedure (SAS Institute Inc., Cary, NC). Using these results, 24 wavenumbers at 

local maxima and minima values from the first four principal components were selected by 

inspection for subsequent regression analysis.  
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Models predicting wax load were then calculated using a subset of these frequencies by multiple 

linear regression analysis using coefficient of multiple determination (R
2
) and adjusted coefficient 

of multiple determination
 
(R

2
A) as the variable selection criteria with the SAS REG procedure 

(SAS Institute Inc. 2004). The SAS CORR procedure was used to evaluate multicollinearity 

between predictor variables. Response variable measurements were obtained by GC analysis of 

extracted wax samples.  Model performance was verified by comparing root mean squared error 

(RMSE) of the training set to a validation set containing 13 samples.   

DSC measurements 

Five, 6.35 mm diameter leaf discs were cut with a punch from the middle of each leaf (Figure 4) 

and dried at 40 C for 24-28 h.  Dried disks were then sealed in a hermetically sealed crucible (TA 

Instruments, TZERO p/n 901683/4) for DSC analysis. Prior investigation has shown that 

hermetically sealed crucibles are required to mitigate the effects of water vaporization in the wax 

phase transition range. DSC thermographs of leaf and wax samples were taken with a TA 

Instruments Q2000 DSC (TA Instruments, New Castle Delaware). Sensitivity of the instrument is 

0.2uW with a sampling rate of 50 s
-1

.  Measurements were performed using a constant rate 

temperature ramp of 10 °C/min from 10 to 100 °C.  Heat of fusion of pure cuticle wax was 

determined using the same procedure used for leaf samples. The mass of cuticular wax in each 

sample was calculated by dividing the sample peak area, in joules, by the heat of fusion of pure 

wax.  Sample peak area of leaf samples was measured over the same temperature range used to 

determine the heat of fusion of wax. Accuracy of the method was evaluated by comparing the 

DSC measurement to GC results of extracted wax. 
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Results and discussion 

Leaf cuticular wax composition 

HPTLC of extract of spinach leaves immersed in chloroform 2 times for 30 s revealed the 

presence of alkanes, aldehydes, alcohols, fatty acids, and wax esters along with unidentified non-

mobile impurities and suspected intracellular compounds from cells disrupted during extraction 

and handling (Figure 6).   

 
Figure 6.  HPTLC plates of chloroform extracted spinach cuticular wax developed with 8:2 (a) 

and 9:1 (b) hexane - ether mobile phase. Columns 1 and 2 are authentic standards and column 3 is 

chloroform extracted spinach cuticular wax. 

GC was used to identify and quantify the main compounds in the extract. Cuticular waxes 

consisted mainly of primary alcohols (C24, C26) and saturated alkanes (nC29-nC33, with nC31 

dominant) (Figure 7).  Aldehydes, wax esters and acids visualized with TLC were low relative to 

alkanes and alcohols and were not quantified for the purposes of this study. FG and SG leaves 

had significant differences in the amount of alkanes (P=0.0009) and primary alcohols (P=0.0002) 
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but not in total wax (P=0.7464).  SG leaf waxes consisted mainly of primary alcohols while FG 

waxes were principally alkanes (Table 2).  Total cuticular wax and alkane load were not 

significantly different on abaxial and adaxial sides of the leaves.  Adaxial leaf surfaces had more 

primary alcohols than the abaxial surface (1.17 vs. 0.89 μg cm
-2

; P=0.0268).  Total wax amount 

increased with chronological plant age although the correlation was poor (P=0.0004, R
2
=0.28).  

As spinach grows, new leaves emerge in pairs and expand in size. Thus, relationships of wax 

composition and/or amount to leaf size are also correlated to leaf age.  Linear regression analysis 

showed no consistent pattern of wax load to leaf size so this research provides no insight into a 

relationship between maturity of individual leaves and wax composition. 

Table 2. Composition of cuticular waxes from fast growth (FG) and slow growth (SG) spinach 

leaves.  Amounts shown are the mean and (SD) of waxes extracted mid-leaf from abaxial and 

adaxial surfaces determined by gas chromatography. 

Spinach 

type 

No. of 

samples 

Wax component (μg cm
-2

) 

Alkanes Primary alcohols Total waxes 

FG 23   1.29 (0.50) a* 0.82 (0.21) a 2.12 (0.50) a 

SG 18 0.77 (0.41) b 1.28 (0.48) b 2.06 (0.82) a 

*Means in columns followed by similar letters are not significantly different.  (LSD test at 

α=0.05) 
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Figure 7.  Typical GC response of spinach leaf chloroform extract following TMS derivatization. 

Transmission electron Microscopy 

Measurement of cuticle thickness by transmission electron microscopy (TEM) was inconclusive.  

Differentiation of the cuticle from cell walls was not consistent and epicuticular waxes were not 

conserved.  Some images did have good differentiation (Figure 8, left) while others (Figure 8, 

right) did not.  Furthermore, work effort and expense would have been prohibitive to use this 

technique for quantifying the cuticle thickness.  TEM Images did support published reports of a 

cuticular structure consisting of a faintly lamellar cutin structure merging with an inner reticulate 

region next to the cell wall (Jeffree 2006). 
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Figure 8. Representative transmission electron microscope images of spinach leaf epidermis.  

Pointer is indicating base of cuticle. Scale bar is 500 nm. 

Scanning electron microscope images of the surface of spinach leaves revealed a generally 

smooth leaf surface (Figure 9, top row) at moderate magnification.  Small scale surface roughness 

(Figure 9, bottom row) is obscured by the relatively large 1.5 mm diameter sensing area of the 

FTIR optics. 
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Figure 9. SEM images of FG (left images) and SG (right images) spinach leaf surface.  Scale bar 

is 300 μm in top images and 10 μm in bottom images. 

FTIR-ATR spectra 

For FTIR-ATR spectral measurements to be a viable indicator of cuticle wax thickness, 

attenuation at distinct wavelengths by the various leaf components in the leaf epidermal layer 

must be correlated to thickness.  FTIR-ATR spectrum of a whole leaf (Figure 10, A) is a 

composite of the spectra of isolated epidermal components (Figure 10, B-E).  Thickness of each 

of the isolated components is much greater than the penetration depth of the evanescent wave and 

thus these spectra represent attenuation by pure substances.  An optical leaf model made up of 

layers of these pure components would not represent a real leaf because the boundaries between 

layers are not well differentiated.  The cuticle membrane consists primarily of wax and cutin but 
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also has residual polysaccharides embedded within it.  Furthermore, thicknesses of the various 

layers within the cuticle are not constant within the measurement window of an FTIR-ATR 

instrument.   

Wax displayed strong attenuation at 2915 and 2850 cm
-1

 (typical of C-C stretching) while other 

epidermal components had essentially no attenuation at those wavelengths.  Water and cellulose 

both have broad absorbance bands centered at 3300 cm
-1

 (O-H stretching), and 1632 cm
-1

 (O-H 

absorption) due to high incidence of hydroxyl groups.  Close examination shows that these bands 

are present, but much less pronounced, in wax and cutin which also contain a relatively small 

amount of hydroxyl groups. Cutin and cellulose showed interfering absorptive bands at 1000 cm
-1

 

(C-O stretching in cellulose) however at 900 to 950 cm
-1

 cutin showed considerably more 

attenuation which concurs with the findings of Nuopponen et al. (2005). The whole leaf spectrum 

has the primary shape of water overlain by wax, polysaccharides and cutin. 
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Figure 10.  FTIR-ATR reflectance spectra of spinach: (A) leaf, (B) extracted cuticular wax, (C) 

dewaxed isolated cutin, (D) cellulose, and (E) water. 

Wax quantification on fresh leaves using FTIR-ATR 

The first four eigenvectors (Figure 11) from PCA analysis accounted for 97.7% of the variation in 

the reflectance spectra while the first eigenvector accounted for 69% (Table 3). Twenty-four local 

maxima/minima values from the first four principal components were selected for regression 

analysis (Figure 11).   As the number of predictor variables in the best linear model increased, the 

coefficient of multiple determination (R
2
) also increased (Figure 12).  Models with four or more 
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predictor variables had values of R
2
 approaching 0.9. Based on this preliminary analysis, final 

models were limited to a maximum of five predictor frequencies. 

Table 3.  Principal component analysis results of training spectra of spinach. (N=28) 

Principal 

component Eigenvalue 

Proportion of 

variance Cumulative 

1 252.78 69.3% 69.3% 

2 77.27 21.2% 90.4% 

3 18.71 5.1% 95.6% 

4 7.70 2.1% 97.7% 



34 

 

 
Figure 11.  First four eigenvectors for 28 training spectra.  Wavenumbers of frequencies selected 

for regression modeling are represented by □ on graph. 
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Figure 12. Effect of predictor variable quantity on coefficient of variation for the best fitting 

linear models. 

Adjusted coefficient of multiple determination
 
(R

2
A) was used as the selection criteria for the final 

multiple linear regression models to mitigate the effects of over fitting.  Examination of the top 

models reveals that specific wavenumbers were shared between various models. Most influential 

in most of the models was the 2958 cm
-1

 waveband in combination with wavenumbers 2916 or 

2846 cm
-1

 (C-C stretching) attributable to waxes. Wavenumbers 1709 cm
-1

 (C-O stretching) and 

1435 cm
-1

 are influenced by cell wall polysaccharides and cellulose. The best model with five 

predictor wavenumbers had an R
2
 of 0.879 (Table 4, model 1). In that model, wavenumber 1007 

cm
-1

 was not significant at α=0.05 (P=0.145).  The best model with four predictor variables 

(Table 4, model 11) contained the same wavenumbers as model one, except wavenumber 1007 

cm
-1

 was removed.  This had minimal effect on model fit or on reducing RMSE of the training 

and validation sets (Table 4). Models 11 and 14, each with four variables, had RMSE of 0.51 and 

0.45 μg cm
-2

 respectively, the lowest of any of the models for the validation set although the 

differences between residuals of any two of the remaining models was not significant (P=0.0899 

to 0.5474).  For model 11 the 95% confidence prediction interval varied across the range of wax 

loads in the training set from ±0.63 to ±0.76 μg cm
-2

.  All but one of the 13 validation samples 

fell within the prediction interval of model 11 (Figure 14). 
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Table 4. Comparison of best linear regression models based on R
2

A for training, validation and 

field grown samples. 

Model 

number 

Number of 

predictor 

variables R
2
 R

2
A 

Wax prediction RMSE (μg cm
-2

) 

Training set       

(n=28) 

Validation set        

(n=13) 

Field 

samples 

(n=8) 

1 5 0.879 0.851 0.32 0.62 0.96 

2 5 0.879 0.851 0.33 0.87 1.89 

3 5 0.877 0.850 0.33 1.33 0.90 

4 5 0.874 0.845 0.33 0.77 1.63 

5 5 0.873 0.845 0.33 1.33 1.05 

6 5 0.873 0.845 0.33 0.72 1.12 

7 5 0.873 0.844 0.33 1.29 1.30 

8 5 0.873 0.844 0.34 0.71 1.44 

9 5 0.873 0.844 0.33 0.61 1.08 

10 5 0.872 0.843 0.33 0.54 1.00 

11 4 0.866 0.843 0.34 0.51 1.04 

12 4 0.856 0.830 0.36 1.17 1.01 

13 4 0.844 0.817 0.37 0.84 0.96 

14 4 0.837 0.809 0.38 0.45 0.88 

Model Regression equation
*
 

1 WAX=16.0273+2.1896(W2958)-0.4325(W2846)-0.8151(W1709)-1.2346(W1435)+0.1211(W1007) 

2 WAX=12.7782+1.9594(W2958)-0.3914(W2846)+0.6569(W1732)-1.1145(W1435)-1.2599(W1180) 

3 WAX=25.5174-0.4073(W3143)+3.1976(W2970)-1.5925(W2804)-1.0914(W1462)-0.3882(W1238) 

4 WAX=20.7718+1.7959(W2958)-0.4031(W2846)+0.6574(W1732)-1.0456(W1308)-1.2479(W1180) 

5 WAX=13.5418-0.3391(W3143)+3.2592(W2970)-1.3172(W2804)-1.1681(W1462)-0.5915(W1308) 

6 WAX=-2.1426+2.6332(W2958)-0.3113(W2916)-1.2564(W1709)-1.5172(W1435)+0.4628(W941) 

7 WAX=17.5658-0.3761(W3143)+3.0871(W2970)-1.4802(W2804)-1.2961(W1462)-0.1379(W1034) 

8 WAX=23.5327-1.7722(W2970)+2.9333(W2958)-0.5659(W2846)+0.5685(W1732)-1.4430(W1165) 

9 WAX=18.5074+2.0257(W2958)-0.4310(W2846)+0.0689(W1732)-0.7294(W1709)-1.1438(W1435) 

10 WAX=17.5632+2.1804(W2958)-0.3999(W2846)-1.0064(W1709)-1.1388(W1435)+0.1743(W941) 

11 WAX=15.1526+2.1661(W2958)-0.4065(W2846)-0.7407(W1709)-1.1933(W1435) 

12 WAX=22.2144-0.3469(W3143)+2.7528(W2970)-1.3553(W2804)-1.2856(W1462) 

13 WAX=8.08438-0.1001(W3143)+1.8798(W2958)-0.4992(W2846)-1.3970(W1435) 

14 WAX=24.2537+1.900(W2958)-0.4059(W2846)-0.6940(W1709)-1.0798(W1308) 
*
WAX in μg cm

-2
, Wnnnn is the FTIR-ATR reflectance (0 to 1) at wavenumber nnnn cm

-1
. 

Several of the best performing models (Table 4, models 3, 5, 7, 12 and 13) included the 3143 cm
-1

 

wavenumber.  Response at this frequency is affected largely by water in the leaf (Figure 11E).  

Models containing wavenumber 3143 cm
-1

 were rejected as predictors of wax load because the 
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amount of water within a leaf can change rapidly.  Furthermore, those models resulted in poor 

predictions for the validation set. FTIR-ATR spectra of a wilted leaf compared to a fully hydrated 

leaf, showed much less absorption from water in the broad peak centered at 3300 cm
-1

 (Figure 

13).  However, at 1615, 1308 and 1020 cm
-1

, absorption increased in the partially desiccated 

leaves, likely due to polysaccharide concentration increasing in the evanescent wave field. The 

effects of leaf desiccation and reduction of the water absorbance did not substantially change wax 

absorbance at 2958, 2916, 2846, 1709 and 1435 cm
-1

, wavenumbers contained in the best fitting 

models (Figure 13, Table 4). 

 

 
Figure 13. Typical FTIR-ATR spectra of fresh and wilted spinach leaves. 

Multicollinearity is expected between wavenumbers in a spectral dataset even after pruning and 

regression steps to reduce the number of predictor variables.  Pearson correlation coefficients 

(PCC) confirm significant multicollinearity between  some of the variables in the best linear 

regression models (Table 5).   An example of the effects of having variables with a high degree of 
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multicollinearity is illustrated in models 11 and 14.  They have the same variables except that 

model 14 contains wavenumber 1308 which replaces 1435 in model 11 (Table 4).  These two 

wavenumbers are highly correlated with a PCC of 0.99 (Table 5) and both models yield similar 

estimates of wax load.. Wavenumbers 2916 and  2846 are both associated with C-C stretching in 

wax and are highly correlated ( PCC=0.98, p<0.001).  Models 6 and 10 are the same except for 

these wavenumbers and result in similar performance (Table 4).  Wavenumber 2970 or 2958 

appear in all models in Table 4 and are also highly correlated ( PCC=0.90, p<0.001) .  

Conversely, wavenumbers 2970 and 2958 are not significantly correlated (p>0.271) to the wax 

wavenumbers of 2916 and 2846.  One wavenumber from each of these two pairs appear in all 

models except for those that contain water wavenumber 3143 and are important to account for 

variation among the spectra (Table 4).   

When the models for FG and SG spinach were applied to spectra of a different spinach cultivar 

grown under field conditions, wax prediction was poor and RMSE increased in all models except 

for several models that contained wavenumber 3143 (Table 4, Figure 14).  This suggests that 

recalibration of the model will be necessary when evaluating different cultivars of plants. The 

FTIR-ATR spectral profiles of other plant species have a pattern similar to spinach leaves 

(Appendix B) indicating that the empirical methods used to construct models for measuring 

spinach wax could be applied to them. Some plants, such as certain varieties of apples and 

tomatoes have cuticles that may be too thick for accurate FTIR-ATR measurements of wax 

(Jeffree 2006). These methods may also have application on dried and processed plant materials.  

In any case, recalibration or reformulation of the models would likely be required when applied to 

new applications. 
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Figure 14. Comparison of cuticular wax measured by GC to predicted amount from FTIR-ATR 

using the model:  WAX = 15.1526 + 2.1661(W2958) - 0.4065(W2846) - 0.7407(W1709) - 1.1933(W1435). 

 

Table 5.  Pearson correlation coefficients for selected predictor variables in important wax 

prediction models.  P values in parenthesis. 

  WN2970 WN2916 WN2958 WN2846 WN1435 WN1308 

WN2970 
1 -0.19 0.9 -0.21 0.98 0.98 

  -0.327 (<.001) -0.282 (<.001) (<.001) 

WN2916 
-0.19 1 0.22 0.98 -0.06 -0.1 

-0.327 

 

-0.271 (<.001) -0.758 -0.629 

WN2958 
0.9 0.22 1 0.18 0.93 0.91 

(<.001) -0.271   -0.356 (<.001) (<.001) 

WN2846 
-0.21 0.98 0.18 1 -0.07 -0.12 

-0.282 (<.001) -0.356 

 

-0.72 -0.556 

WN1435 
0.98 -0.06 0.93 -0.07 1 0.99 

(<.001) -0.758 (<.001) -0.72   (<.001) 

WN1308 
0.98 -0.1 0.91 -0.12 0.99 1 

(<.001) -0.629 (<.001) -0.556 (<.001)   
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Wax quantification on dried spinach leaves using FTIR-ATR 

The surface texture of dried leaves was rougher than fresh leaves. Surface texture after 

rehydration was in between the fresh and dried states (Figure 15).  Initial leaf sample MC was 

86.8 % wet basis (SD = 2.8%).  After rehydration leaf MC was 54.4% (SD=7.8%).  Rehydrated 

leaf sections covered 75.4% of their original area. The amount of shrinkage was similar in the 

longitudinal and transverse directions. 

 
Figure 15. Typical leaf surface texture from left to right of fresh, dried at 50 °C for 24 h, and 

rehydrated spinach in water at 22 °C for 2 h.  Images represent a 1.5 by 1.5 mm area. 

The FTIR-ATR instrument used in these experiments has an active sampling area 1.5 mm in 

diameter.  Roughness on the scale found on dried leaves (Figure 15, center) would cause non-

uniform contact with the FTIR-ATR IRE.  FTIR-ATR measurements on dried samples produced 

erratic results although it is unknown whether this was caused by non-uniform contact with the 

IRE due to surface roughness or by cracks in the leaves that resulted from stresses imparted by 

the sample holder, or both.  Rehydration by immersing the dried leaves in water at 22 °C for 2 h 

produced consistent spectral scans although samples were subject to damage from clamping 

forces and measurements could not be repeated in the same area. 

Cuticular wax amounts were calculated from FTIR-ATR spectra obtained from the same leaf in 

the fresh and rehydrated state using each of the models derived from regression analysis of 
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FTIR_ATR spectra to GC results (Table 4).   These models over predicted the amount of wax on 

the rehydrated leaves and there was considerable variation within the sample population (Table 

6). This prediction trend was expected because after drying and rehydration the leaves shrunk to 

75.4% (SD=4.4% ) of their fresh size increasing the cuticle thickness.  Performance improved 

when model predictions for rehydrated leaves were corrected to account for leaf area shrinkage 

(Table 6).  Models 4 and 14 contained wavenumber 1308 cm
-1

 and had poor correlations between 

fresh and rehydrated leaves with RMSE of 154.8% and 193.2% respectively.  These models over 

predicted wax on rehydrated leaves by 64.6% (SD=41.0%) and 61.2% (SD=46.8%) respectively.  

It is unknown how this predictor frequency contributed to poor model performance on dried 

samples.  Wavenumber 1308 is significant in the cellulose spectra (Figure 10) and attention at this 

frequency was much more apparent in wilted leaves than fully hydrated leaves (Figure 13).  For 

the other models, error in wax predictions on rehydrated leaves after correcting for shrinkage 

ranged from 18.2% to 59.3% of fresh wax load. Model 11, previously identified as the best 

performing model with four predictor frequencies, resulted in RMSE of 41.9% for wax 

predictions of rehydrated leaves. Wax was over predicted by a mean of 24.3% (SD=26.9%). After 

correcting for shrinkage due to drying/rehydration RMSE was reduced to 23.8% and wax on 

rehydrated leaves was under predicted by 6.3% (SD=23.1%).   

The differences in wax quantities predicted by the current models on fresh and rehydrated leaves 

are too large to recommend using FTIR-ATR as a method for in situ measurement of wax on 

dried spinach. The method may ultimately work if the models are recalibrated.  This would 

require repeating the protocol used to produce the original models for fresh leaves, with 

modifications to the extraction procedures as needed to accommodate rehydrated leaves. 



42 

Table 6. Root mean square error and mean difference between fresh and rehydrated spinach leaf 

(n=48) cuticular wax load predicted by each of the 14 best performing models with 4 or 5 

predictor frequencies. Rehydrated leaf cuticular wax predictions for corrected model output were 

multiplied by 75.4% to account for shrinkage due to drying/rehydration process. 

  Uncorrected model   Corrected model 

Model  
RMSE  

(μg cm-1) 
RMSE   

% 
Mean 

difference %   
RMSE 

(μg cm-1) 
RMSE  

% 
Mean 

difference % 

1 1.23 35.8% 21.9% (23.7%) 0.82 20.9% -8.1% (20.1%) 

2 2.37 60.4% 46.6% (27.6%) 1.12 28.4% 10.5% (23.6%) 

3 1.12 35.7% 20.0% (22.5%) 0.82 21.4% -9.6% (20.1%) 

4 4.85 154.8% 118.4% (49.6%) 2.88 96.4% 64.6% (41.0%) 

5 2.53 66.9% 51.8% (28.7%) 1.20 32.5% 14.4% (24.3%) 

6 0.99 29.9% 1.9% (29.0%) 1.15 31.1% 23.2% (24.3%) 

7 1.16 31.1% 15.0% (22.5%) 1.03 22.0% -13.3% (12.0%) 

8 1.83 95.4% 44.1% (36.7%) 1.09 59.3% 8.6% (33.2%) 

9 1.42 43.2% 25.4% (26.7%) 0.91 24.1% -5.5% (23.0%) 

10 1.05 32.7% 15.8% (24.5%) 0.88 23.1% -12.7% (20.9%) 

11 1.33 41.9% 24.3% (26.9%) 0.87 23.8% -6.3% (23.1%) 

12 1.16 30.4% 19.3% (19.2%) 0.84 18.2% -10.1% (17.0%) 

13 2.06 60.6% 37.1% (33.5%) 1.18 33.0% 3.3% (28.7%) 

14 3.80 193.2% 114.0% (56.6%) 2.30 128.6% 61.2% (46.8%) 
 

 
Figure 16. Comparison of wax predictions from model 11 on leaves (n=48) in the fresh and 

rehydrated state.  Graphs represent uncorrected model output (a) and rehydrated leaf wax 

corrected for shrinkage (b).  
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Wax quantification using DSC 

The heat of fusion of extracted spinach cuticular wax was found to be 88.8 uJ μg
-1

 (n=3, SE=2.0) 

over a broad temperature range of 40 to 73 °C (Figure 17). DSC of leaf material remaining after 

chloroform extraction of SCLs showed no phase transitions over this same temperature range 

indicating other components within the leaf did not overlap with the cuticular wax transition.  

Wax quantity was calculated from the integrated heat flow between 40 and 73 °C on dried leaf 

samples (Figure 18). 

 
Figure 17. Representative differential scanning calorimetry thermalgram of spinach cuticular 

wax. 
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Figure 18. Typical DSC thermalgram of leaf sample showing peak area measured between 40 and 

73 °C. 

The correlation of DSC to GC measured wax quantity was poor (Figure 19).  Two groupings of 

data are evident on Figure 19. The bottom group of eight points correlates to the GC 

measurements to some extent.  Linear regression of only those eight points results in an R
2 
 of 

0.31 and overestimated wax content by 34% compared to the GC measurement. No justification 

for eliminating specific outliers from the results could be identified.   

The calculation used to determine wax transition energy assumed a flat baseline in the 

thermalgram (Figure 18). It was assumed that an empirically determined baseline correction 

would be needed to compensate for leaf dry matter effects and to calibrate the model to match GC 

results.  Given the scattered nature of the DSC data compared to GC measurements that process is 

not justified.  The DSC results of several leaf samples were discarded because integrating the 

peak area of the thermalgram using a linear or sigmoidal baseline was not possible due to the 

shape of the heat flux trace. Another suspected problem with the protocol was maintaining 
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consistent thermal conductance from the leaf material to the crucible for all samples.  Lower heat 

flux rates on process verification samples did not mitigate the problem. 

Quantifying cuticular wax in situ using DSC was initially proposed with a low confidence of 

success because the amount of wax on a leaf is only about 0.1% of mass on a dry basis.  This is 

approaching the sensitivity limit of laboratory instruments. Furthermore this measurement 

procedure requires drying discs removed from leaves and is not as fast of FTIR-ATR or GC 

methods. 

  
Figure 19. Comparison of spinach cuticular wax determined by GC and DSC. (N=17) 

Conclusion 

FTIR-ATR shows promise as a method for rapid in situ measurement of cuticular waxes on 

leaves.  Empirically derived  linear regression models for spinach leaves using FTIR-ATR 

spectral responses correlated well with GC measurements of extracted cuticular waxes (R
2
>0.86).  

The model development technique presented can be used to extend this measurement method to 

other plant cultivars, organs and species. Portable and ruggedized FTIR-ATR instruments are 
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currently available and would allow for infield measurements.  A purpose-built ATR sensor that 

analyzes several infrared frequencies specific to cuticular measurements would be a significant, 

but achievable, engineering design challenge. 

Two methods were investigated for quantifying cuticular wax on dried leaf samples. The first 

used the regression models developed for fresh leaves on rehydrated dried leaves.  After 

correcting for leaf shrinkage, FTIR-ATR on rehydrated leaves produced results with RMSE of 

wax load from 18.2% to 59.3% compared to fresh leaf measurements. Model 11, previously 

identified as the best performing model with four predictor frequencies, resulted in RMSE of 

23.8% for wax predictions of rehydrated leaves. This model under predicted wax on rehydrated 

leaves by an average of 6.3% (SD=23.1%).  Recalibration of the regression models specifically 

for rehydrated leaves may yield acceptable wax predictions. DSC experiments produced erratic 

results. The cuticular wax content of spinach leaves is approximately 0.1% of dry leaf mass.  This 

is too low to overcome the confounding thermal transitions of other leaf materials.  A new 

approach to DSC measurements of cuticular waxes is required. 
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CHAPTER III 

ESTIMATION OF PECAN YIELD USING TERRESTRIAL MICROWAVE SENSING 

Abstract: Accurate estimates of pecans [Carya illinoinensis (Wang.) K. Koch] in an orchard prior 

to harvest are critically important for marketing and production management decisions such as 

nut thinning, irrigating and nutrition supplementing.  Current methods of estimating pecan yield 

in situ are not sufficiently accurate and are time consuming.  Research using satellite based 

microwave imaging has enabled scientists to identify trends in orchard crop condition but 

precision is inadequate for yield sensing.  Ground based radar schemes using antenna within the 

orchard resolve many of the power, resolution and sensitivity limitations of satellite radar 

imagery.  The objective of this research is to determine if pecan nuts can be quantified in situ 

using backscattered microwaves from antenna located in the orchard.  Pecan tree canopy samples 

(leaves and secondary branches) and nuts were collected at five growth stages (water stage 

through shuck split) and placed in a polystyrene foam test fixture located between horn antennae 

spaced 1 m apart.  Reflection and transmission measurements were recorded with a vector 

network analyzer at frequencies from 1 to 18 GHz while the amount of nuts were varied from 0 to 

approximately 30% of the canopy mass.  Regression analysis revealed no specific frequencies to 

quantify nut mass however response to total canopy water and dry mass  over a wide range of 

frequencies had R
2
 >0.63 and 0.78 respectively.  This relationship combined with range finding 

and appropriate crop model algorithms may ultimately be the basis used to developing pecan 

yield monitoring technology.  Furthermore, if successful in pecans, the technology has potential 

for extension to other orchard fruit and nut crops.
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Introduction 

Pecans [Carya illinoinensis (Wang.) K. Koch] are an economically important nut crop grown 

commercially across 13 states in the USA. Annual production in 2011 was 122.8M kg with a 

commercial value of $683M. Exports of inshell and shelled pecans totaled $192.8M. Production 

and exports of pecan have both seen significant increases in recent years. Over 80% of the 

world’s pecans are produced in the United States (Geisler 2012). 

Accurate estimates of pecans in an orchard prior to harvest are critically important for both 

production management decisions and marketing. Under normal conditions pecan trees exhibit 

alternate bearing where they produce nuts heavily one year followed by a smaller crop the next 

(Conner and Worley 2000). The mechanisms causing alternate bearing are complex and are an 

area of active research. Recommended practices to reduce alternate bearing include fruit thinning, 

timed fertilizer applications, pruning and other cultural practices (McCraw et al. 2007). Accurate, 

in situ measurement of crop load is important for these and other management decisions such as 

irrigation and pest control measures. Pecan producers, processors and marketers have identified 

control of alternate bearing and improved accuracy of crop estimates as primary research 

priorities for the industry (Weckler and Smith 2011). 

Current methods of estimating pecan yield in situ include empirically derived formulas and 

sampling techniques where a subset of nuts are visually counted in the orchard (Wright et al. 

1990). These methods are not sufficiently accurate nor do they provide cost effective yield 

information on a per tree basis that is needed for precision agriculture applications. Technological 

innovations to improve the accuracy and/or speed of infield pecan estimates will have direct 

benefit to producers, processors and marketers. Precision agricultural practices, including in situ 

yield estimates, have been applied successfully to a variety of field crops and pecans represent a 
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similar opportunity (Lee et al. 2010). Furthermore, if successful in pecans, the technology has 

potential for extension to other orchard fruit and nut crops.   

Existing remote sensing technologies for estimating pecan yield in situ 

Remote sensing from satellites and airplanes to estimate yield of agricultural crops has been 

applied to many different commodities using a wide range of the visible, IR and microwave 

spectrum.  Applications of remote sensing in both the visible and microwave regions of the 

electromagnetic spectrum have been successfully demonstrated for field crops such as corn, rice, 

soybeans and wheat (Bouvet et al. 2009; McNairn et al. 2009; Shao et al. 2001).  Plots of these 

crops appear homogeneous at resolutions detectable by current sensors.  Crop type, condition and 

yield data can be inferred by correlating the reflected electromagnetic energy to ground truth data. 

Forests and orchards are more heterogeneous and estimating tree crop condition and yields using 

satellite remote sensing has had limited success to date. 

Recent research using satellite based optical imaging has enabled scientists to identify trends in 

orchard crop yield but precision is inadequate. Ye et al. (2008) used 1.2 m resolution 

hyperspectral vis-NIR data to estimate citrus yield and found that the best model performance 

accounted for less than 75% of actual variation in the citrus crop.  In a study on Pistachio, 

Moazenpour et al. (2006) showed that satellite data was inadequate for yield prediction.  Even 

when satellite data was combined with other orchard data (soil, cultivar and management 

practices) only marginally accurate estimates of yield resulted. Both of these studies used 

statistical analysis to develop models that predict yield using optical spectral response of the 

overall tree in combination with other non-sensed variables.  Vis-NIR electromagnetic energy 

does not penetrate effectively through leafy tree canopies, thus the image data is not directly 

influenced by fruits that are often fully or partially hidden from the field of view.  
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Microwaves have longer wavelengths (1 cm to 1 m) than vis-NIR radiation so they can penetrate 

vegetation more effectively and thus may be more appropriate for yield monitoring of pecan. 

Microwaves have an advantage over vis-NIR imaging in that they are able to penetrate clouds 

that would obscure optical wavelengths. By definition, remote sensing is concerned with reflected 

or backscattered energy. For biological materials, backscattered microwaves are largely 

dependent on the frequency and polarization of the incident signal and on the geometry and 

dielectric properties of the target.  Geometric properties such as surface roughness and orientation 

effect whether reflections are specular or diffuse.  Vegetation usually returns diffuse reflections to 

remote sensors due to the generally random orientation of leaves.  However, plants are often 

arranged with underlying patterns, such as vertical stalks in grains or upward facing leaves that 

reflect certain orientations of electromagnetic waves more strongly (Bouvet et al. 2009).  If 

incident energy is polarized, the intensity of resulting reflections can be either enhanced or 

reduced providing useful information about the target. Similarly, plant structural orientation can 

result in polarized energy reflecting from a non-polarized source.   

Satellite based radar images of vegetation consist of a composite of backscattered electromagnetic 

energy.  Some energy is directly reflected back to the receiver by leaves, stalks/stems or soil 

while a portion undergoes multiple reflections before returning.  Early investigations of crops by 

backscattered microwaves used models that assumed the vegetative layer was a cloud of 

absorbing material over the soil surface (Ulaby et al. 1984).  Performance of vegetation canopy 

models of field crops have been improved by differentiating between leaf and stem layers (Paris 

1986).    

Researchers have been able to identify and provide estimates of corn crop acreage and their 

condition at a field scale by analyzing backscattered satellite radar imagery (McNairn et al. 2009; 

Soria-Ruiz et al. 2007).  In these approaches, more comprehensive crop information such as yield 
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estimation is inferred from measured parameters.  For example, taller stands of corn generally 

correlate to better plant condition and thus higher yields.  The actual kernel content does not 

significantly affect the sensed signal. Further refinements have been incorporated into microwave 

backscatter models for forest canopies that include reflections from leaf, branch, trunk, and soil 

layers (de Jong and Herben 2004; Ulaby et al. 1990). In these models, the trunk is represented as 

a single vertical cylinder while branches commonly take the form of semi-randomly oriented 

cylinders of various sizes. Individual thin disks or a cloud of material can represent leaves. In 

general, leaves and small branches result in isotropic reflections and the trunk and primary 

branches have directional reflections. Imagery from satellite synthetic aperture radar (SAR) 

investigations has shown the ability to provide canopy level information correlating with density 

of stems and leaves, leaf area and  understory canopy type (Imhoff 1995; Kovacs et al. 2008).  

Detecting differences in the nut content at the tree or orchard level with satellite based radar 

remains well beyond the sensitivity of current technology.  

The dielectric properties, or permittivity, of a material determine how the electric field of an 

electromagnetic wave interacts with it. Permittivity is represented as a complex number; the real 

component is a measure of how much of the electric field is stored in the material while the 

imaginary component represents how much is absorbed by the sample, and generally dissipated 

as heat. The stored energy component can be either reflected back, or transmitted through the 

sample to intercept another surface.   

The dielectric constant (K) of a material is the ratio of the material’s permittivity over the 

permittivity of free space.  Water has a very high K, usually given as 80 at 1 GHz.  Free space, by 

definition, has a dielectric constant of one.  The dielectric constant of a material is not a constant; 

it varies with frequency and temperature.  Materials containing water generally have a high K.  

The K of a leaf increases as it takes on water and decreases as it dries out (Shrestha et al. 2007).  
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Many plants exhibit a diurnal water cycle where water stored in tissues is released during the day 

through transpiration.  Similar responses have been detected due to irrigation and soil water levels 

(Dobson 1988). Solutions containing sugars, salts and lipids have unique K values.  As the 

concentration of these changes over time in a plant the electromagnetic response of the plant 

changes.  The state of water in a plant also influences K.  Water can exist in a free state or it can 

be chemically bound in tissues. Each tissue in a plant has its own electromagnetic signature that is 

dependent on its chemical makeup, structure, quantity and state of water.   

Mature pecan nuts, like many seeds, are high in lipids and have a lower K value than leaves and 

stems (Nelson 1991; Nelson et al. 1992).  The developing pecan nut expands to its full size early 

in its development.  When it reaches its ultimate size it is dominated by a large central vacuole 

filled with cytoplasm, which is commonly called the “water stage” of development.  The 

cytoplasm is an aqueous solution containing elemental ions and sugars that maintain turgor 

pressure in the developing nut. The edible embryo and cotyledons of the pecan develop and 

expand to fill the liquid filled void (Wells and Wood 2008). Fruit thinning decisions are made at 

the water stage before significant plant resources are diverted to development of the kernel. The 

effectiveness of microwaves to estimate yield will likely be maximum at this stage when the nuts 

have high water content and a correspondingly high K.  As nutrients are diverted from other tree 

tissues to the developing kernel, there may be sensible changes in the K profile necessitating 

different models to predict pecan load throughout the season. 

Short-range terrestrial backscattered microwaves can resolve many of the resolution and 

sensitivity limitations of satellite radar imagery. The radar equation (Eq. 1) can be used to 

illustrate fundamental relations between the characteristics of the radar, the target, and power of 

the transmitted and received signals.  

      
  

  

         (1) 
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In this equation Pt and Pr represent the power of the transmitter and receiver respectively, λ is 

signal wavelength, σ is the radar backscattering coefficient of the target, R is the distance to the 

target, and G is the gain of the antenna (ESA 2011). Equation 1 is written in a form that assumes 

that microwaves are transmitted and received from the same antenna. 

The radar backscatter coefficient, or radar cross section, lumps together a number of parameters 

associated with the target.  It is influenced by the dielectric constant, physical properties and area 

of the target, factors that are frequency, polarization and directionally variable. 

Equation 1 shows that returned signal power is inversely proportional to the distance from the 

receiver to the target raised to the fourth power. By placing the transmitter/receiver closer to the 

target, higher received signal strengths, and thus, increased sensitivity, are attainable.  

Background noise will be lower which potentially improves signal to noise ratio. Another related 

advantage that close proximity to the pecan tree provides is that reflections from the far side of 

the tree are much further from the antenna relative to reflections from the front side.  Reflected 

signals from the backside will be weaker by the ratio of distances to the fourth power.   

Lower frequencies tend to be preferred on satellite-based radars because the reflected power of 

short wavelengths is lower (Eq.1) unless the target is tuned to specific wavelengths.  For example, 

tripling the wavelength increases returned signal power by a factor of nine. In most cases, 

satellites have limited power available; a problem that ground based systems can generally 

overcome.  Another advantage of dedicated ground based radar is that imagery can be taken when 

needed from orientations not dictated by set satellite orbits.  Imaging of the pecan canopy could 

use upward looking radar, which removes reflections from the soil and trunks in the returned 

signal.  All models that use satellite imagery must account for the confounding effects of 

reflections from the ground.  Ground reflections are influenced by soil moisture from rainfall and 

irrigation, vegetation cover and soil conditions. McDonald et al. (1991) investigated microwave 
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backscatter response of a walnut orchard to ground based X band (9.6 GHz) radar. The 

configuration used in the experiments of McDonald et al. employed a boom-mounted antenna 

pointed towards the ground at an angle of 35-50°.  Diurnal water response of the tree was 

detectable with their configuration. Their antenna also received reflections from the soil but the 

effects were less influential than in satellite systems because of the proximity of the antenna to 

the tree and ground resulted in less interference with canopy backscatter. This study illustrated 

the ability to detect relatively minor physiological differences in a tree with short-range ground 

based radar. 

The ability of microwave energy to penetrate through vegetation has enabled satellite-based 

radars to identify trends in orchard crop condition but precision is inadequate for yield sensing.  

Short-range ground based radars resolve many of the power, resolution and sensitivity limitations 

of satellite radar imagery and are a potential technology for estimation of pecan nut yield. The 

objective of this research was to determine the feasibility of pecan nut quantification in situ using 

backscattered microwaves from antenna located in the orchard.  The specific experimental 

objectives were to obtain baseline empirical microwave backscatter response of a pecan tree 

canopy in a laboratory setting and identify spectral features that may allow quantification of nuts 

in situ. This information will assist in specifying radar systems and experiments for future 

research efforts. 

Materials and Methods 

Plant materials 

Pecan nuts and canopy samples were collected from the Oklahoma State University Cimarron 

Valley Research Station near Perkins, OK.  The orchard contained 26-year-old ‘Maramec’ trees 

on ‘Apache’ seedling rootstocks in a Teller sandy loam soil (fine-loamy, mixed, active, thermic 
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Udic Argiustoll). Trees were diagonally spaced 24.4 by 24.4 m with Bermudagrass [Cynodon 

dactylon (L.) Pers.] ground cover. A 3 m wide vegetation-free area was maintained the entire row 

length with herbicides.  Natural rainfall of 51.9 cm from Jan. through Oct. 2011 was 

supplemented by traveling gun irrigation. Mean daily temperatures were 4.0 °C above average 

during June through Aug. 2011. Commercial management for pests and fertilization were used. 

Diammonium phosphate and urea were each applied in a band application at rate of 482 kg·ha
-1

 in 

March of 2011.  Specimens were collected periodically from water stage through harvest to 

determine the effects of ontogeny on electromagnetic properties.  On each collection date, canopy 

samples from three trees randomly selected at the start of the study were cut where the branch 

diameter reached approximately 2 cm.  Samples were taken from trees approximately 2 to 4 m 

above the ground.  Additional nuts were collected from the same trees to supplement nuts in the 

canopy samples.  Plant materials were immediately placed over ice in coolers until tested. 

Vector network analyzer measurements 

Microwave response to the pecan canopy samples was observed at the Biosystems and 

Agricultural Engineering Sensor lab at Oklahoma State University in Stillwater, Oklahoma.  

Microwave reflection and transmission measurements of test samples in various configurations 

were taken using a vector network analyzer (VNA) (model N5230A PNA-L, Agilent, Santa 

Clara, CA) attached to double-ridged waveguide horn antennae (model 3117, ETS-Lindgren, 

Cedar Park, TX).  The antenna supported a frequency range of 1 to 18 GHz. The antennae were 

mounted vertically facing each other 1 m apart in a PVC frame with a midlevel specimen support 

shelf (Figure 20).  Port 1 of the VNA was connected to the bottom antenna.  To minimize 

reflections from the tile covered concrete floor a microwave absorbent panel 61 by 61 cm was 

positioned under the antenna set (model C-RAM LF-79, Cuming Microwave, Avon, MA).  The 

VNA was calibrated with a SOLT (short-open-load-through) procedure prior to taking 
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measurements on pecan canopy samples. This procedure consisted of sequentially connecting a 

short circuit, open circuit and matched load to each of the VNA ports to calibrate reflection 

response. After this, the antennae were connected to the VNA ports to calibrate the through 

response in empty space. Temperatures were between 21 and 23 °C for all tests. 

 
Figure 20.  Pecan canopy test stand showing antenna, specimen holder on support shelf, 

absorbent material on floor and VNA in background. 

For each configuration tested, the magnitude of scattering matrix parameters S11, S22, S21 and 

phase of S21 were collected.  Each measurement consisted of the average of 20 spectral scans 
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from 1 to 18 GHz divided into 401 measurements resulting in a spectral resolution of 42.4 MHz. 

VNA transmit power was set at -5 dBm and each scan took 11 ms.   

Sample holder and measurement procedure 

A specimen holder with dimensions of 35 by 40 cm and consisting of 12 layers of 1.8 cm thick 

closed cell expanded polystyrene (EPS) was used to position plant materials for measurement in 

the test stand (Figure 21). EPS has a dielectric constant of 1.03, which is very near that of air, 

thus the specimen holder has little effect on the antenna field (Trabelsi and Nelson 2004).  Layers 

2, 4, 9 and 11 had an open space 25 x 30 cm to hold leaves and branch material in a secure 

position.  This allowed multiple measurements to be taken with the leaves and branches in the 

same position as nuts were sequentially added to 9 holes arranged in a 3 by 3 grid with 10 cm 

spacing in layers 6 and 7 (Figure 21). The layers of the specimen holder allowed air to circulate 

through it so that plant materials could be partially dried in their original position by placing the 

loaded specimen holder in an oven so that the effect of leaf moisture content (MC) on dielectric 

properties could be measured.   

Each canopy specimen was subjected to two sets of 11 VNA measurements.  First, the empty 

specimen holder was measured with the VNA to establish a baseline.  Then the specimen holder 

was loaded with approximately 200 g of leaves and current year growth plus 200 g of prior year 

growth and branch material divided approximately equally between the 4 void spaces.  Plant 

materials were randomly layered which allowed a few leaves and stems to protrude from the 

specimen block. Elastic bands held layers 1-5 and 8-12 together during subsequent 

measurements.  After loading the specimen block with leaves and branches, a series of 10 VNA 

measurements were taken with zero through nine nuts sequentially added to randomly selected 

holes (Figure 21). 
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Following the 10 VNA measurements with fresh leaves, the specimen holder was placed in an 

oven for 30 minutes at 50 °C to reduce leaf MC.  The specimen block was weighed after the 

drying cycle to determine leaf moisture loss. The VNA measurements were repeated on 

configurations with zero through nine nuts.  After the final VNA measurement, plant materials 

were dried at 70 °C for 72 hours to determine MC at the two levels of hydration. Nuts were 

dissected to determine maturity stage at time of measurement. Six repetitions at five maturity 

stages were tested. Attenuation of nuts without leaves and branches were also measured to 

identify significant attenuation frequencies. 

  
Figure 21. Typical sample of leaves and branches (left) and nuts (right) being loaded into 

specimen holder for VNA measurements. 

Data analysis 

Key predictive frequencies were identified by partial least squares (PLS) and linear regression 

analysis in MATLAB (Natick, MA).  Analysis was conducted on two sample formations: on fresh 

leaves and on fresh and partially dried leaves pooled together. Statistical analysis of the spectral 

data investigated significant main effects by frequency for pecan and canopy mass, and water 

content. Plant material property data were analyzed using SAS GLM (SAS Institute Inc., Cary, 

NC) for mean separations.   
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Results and discussion 

Plant materials 

Pecan canopy samples were collected on five occasions where the maturity stage of the nuts 

ranged from water stage through shuck split initiation (Table 7, Figure 22).  Due to abnormally 

low seasonal rainfall in 2011, which was partially supplemented with irrigation, MC and mass of 

nuts at water stage were low on the first sampling date in August.  The orchard received 

significant rainfall before the second sampling date on Aug. 17 and mean nut mass increased 

from 8.1 g to 13.9 g.  Nuts continued to increase in size through the growing season. Leaf MC 

ranged from 55.9% at the first sampling and generally decreased through the season to 52.4% 

while MC of branches exhibited an irregular trend over the sampling period. Leaf MC was 

reduced by 10.8% to 16.5% after partial drying for 30 min at 50 °C (Table 7).  Drying for 30 min 

at 50 °C had little influence on branch moisture levels therefore those effects were not analyzed in 

these experiments. 

Table 7. Pecan canopy materials used in microwave experiments with associated moisture content 

(MC).  

Sample 

date 

Nut development 

stage 

Mean 

nut 

mass 

(g) 

Nut MC 

(% w.b.) 

Leaf MC 

initial 

(% w.b.) 

Leaf MC 

after 

desiccation 

(% w.b.) 

Branch MC 

(% w.b.) 

3-Aug Water stage 8.1 78.2% a
z
 55.9% a 43.1% a 39.7% a 

17-Aug Gell stage 13.9 79.9% b 53.2%    b c 42.4% a 40.7% a     c 

6-Sep Developing kernel 20.2 73.1% c 54.8% a b c 41.8% a 43.0%    b 

27-Sep Mature kernel 23.7 68.9% d 54.9% a b 40.6% a  42.3%    b  c 

25-Oct Shuck split 25.5 67.1% e 52.4%       c 35.9% b 42.5%    b  c 
z
Means followed by the same letter are not significantly different as determined  by LSD test (P≤0.05).  
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Sample holder

 
Figure 22. Sectioned ‘Maramec’ pecan nuts at each sampling date in 2010. Bar = 5 cm. 

VNA measurements 

Trends in the VNA spectral response of the canopy samples as nuts were sequentially added 

(Figure 23) were not evident from inspection.  Small changes in the orientation of the samples in 

the antenna field could not be precisely controlled and this resulted in variation in the VNA 

measurements that often obscured differences as nuts were added.  This was especially evident in 

the phase behavior of through measurements where large changes were observed as nuts were 

sequentially added (Figure 23, top right).  

A consistent resonance, centered at 1.9 GHz, occurred throughout the testing. This resulted in 

positive insertion losses and attenuation in the range of 1-3 GHz.  The source of the resonance is 

unknown, however, reflections from the ceiling and absorber (S11 and S22 measurements 

respectively) and diffuse reflections from the canopy samples impinging on the receiving antenna 

(S21 measurements) are suspected contributing factors.  During calibration in open space, no 

energy is diffusely reflected by the canopy samples and this energy would have bypassed the 

antenna and been excluded from the received signal.    Backscattered measurements in the test 

configuration included energy reflected from the opposing antenna that would not exist in a field 

06Aug.                   17Aug.                     06Sept.                  27Sept.                     25Oct. 
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measurement.  Testing in an anechoic chamber or open field site would reduce interfering 

reflections from the surroundings and should be considered for future measurements. 

 
Figure 23. VNA spectral response of representative canopy sample with 0 to 9 pecan nuts. Top 

row is insertion loss and phase of through measurement.  Bottom row is reflection of ports 1 and 

2 respectively.  (Mean of Oct 27 fresh leaf  sample (n=6)).  

Baseline reflection response was generally greater than -40 dB except at the low range of the 

spectrum (Figure 24, bottom).  For signals transmitted through the canopy samples, insertion 

losses were generally low starting at 1 GHz and increased to approximately -30 dB at 18 GHz 
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(Figure 24, top left).  Attenuation of the reflected signals (S11 and S22) decreased with increasing 

frequency in a pattern complementary to the through measurements (Figure 24, bottom).  A 

strong attenuation band occurred at 11.8 GHz in nuts, and in leaves and branches in the reflected 

signal from antenna 1.  The signal from antenna 2 exhibited attenuation at this same frequency 

although the magnitude was lower (Figure 24, bottom row). The difference between reflected 

signals from nuts and from leaves and branches was greater than 5 dB across the spectrum of 

antenna 1 except around 4 GHz.  Antenna 2 had a similar response although there were several 

additional bands between 9.1 and 14.4 GHz that showed low attenuation difference. 
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Figure 24. Mean VNA spectral response for pecan  leaves and branches (n=60), and nuts (9 nuts, 

24 samples). The top row is insertion loss and phase of through measurement.  The bottom row is 

reflection of ports 1 and 2 respectively. 

Microwave signal attenuation of leaves and branches generally increased with frequency (Figure 

24, top left).  Longer wavelengths are able to penetrate deeper into the tree canopy (Karam et al. 

1992).  Pecan nut samples caused maximum attenuation of the through signal in a broad 

frequency band centered around 5 GHz (Figure 24, top left). In this same band, the magnitude of 

attenuation increased through the season as nut mass increased (Figure 25, top left and Table 7). 

In the reflected signals (Figure 25, bottom row), increasing nut mass resulted in a stronger 

reflected signal up to about 12 GHz.  At higher frequencies, the pattern is not well defined. 
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Figure 25. Effect of harvest date on mean VNA spectral response for nuts (9 nuts, 6 samples per 

date) . The top row is insertion loss and phase of through measurement.  The bottom row is 

reflection of ports 1 and 2 respectively. 

PLS regression analysis was conducted on spectral data of fresh leaves and on fresh and partially 

dried leaves pooled together with nut, canopy water, and canopy mass as independent variables.  

Weights of the five most influential eigenvectors indicate several frequency bands that were 

responsible for a large part of the variance among the samples (Figure 26). An analysis of the ten 

peaks with the strongest correlation to nut mass in each of the first five eigenvectors shows that 

several frequencies between 1 and 5.5 GHz, plus bands around 9, 12 and 15 GHz were the most 
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influential in accounting for variance among the samples. This pattern was consistent for all 

maturity stages with the 9 GHz band being the most prominent for all dates (Figure 27).  

 
Figure 26.  Weighting of first five eigenvectors from partial least squares (PLS) regression of 

canopy samples for nut mass at individual harvest datesand all dates pooled together. (S11 

shown) 
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Figure 27. Distribution of the ten most influential frequencies from each of the first five 

eigenvectors from partial least squares (PLS) regression of canopy samples for nut mass at 

individual harvest dates and all dates pooled together. (S11 shown) 

The amount of variance explained by PLS regression analysis increased as more PLS components 

were added. With one PLS component, between 19 and 66% of the variance in nut mass was 

recovered in the reflection measurements (Figure 28).  The through measurements exhibited the 

best performance although backscattered microwaves were of primary interest in this study.  PLS 

analysis of individual dates was better than when all dates were pooled together suggesting that 

physiological changes during canopy ontogeny have an effect on microwave response.  A similar 

pattern was observed when the fresh leaves were analyzed with the partially dried leaves except 

the magnitude of variance recovered was lower (Figure 29). The primary difference between the 

two sample sets was the water content of the leaves. 

5 10 15
0

5

10

Frequency (GHz)

O
c
c
u
re

n
c
e
s

 04 Aug.

5 10 15
0

5

10

15

Frequency (GHz)

O
c
c
u
re

n
c
e
s

 17 Aug.

5 10 15
0

5

10

15

Frequency (GHz)

O
c
c
u
re

n
c
e
s

 06 Sept.

5 10 15
0

5

10

15

Frequency (GHz)

O
c
c
u
re

n
c
e
s

 27 Sept.

5 10 15
0

5

10

15

Frequency (GHz)

O
c
c
u
re

n
c
e
s

 25 Oct.

5 10 15
0

5

10

Frequency (GHz)

O
c
c
u
re

n
c
e
s

 All dates



75 

 
Figure 28. Variance accounted for by the first 10 eigenvectors from partial least squares (PLS) 

regression of fresh leaf canopy samples for nut mass at individual harvest dates and all dates 

pooled together.  The top row is the attenuation and phase shift of through measurements; the 

bottom row is reflection measurements from antenna one and two respectively. 
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Figure 29. Variance accounted for by the first 10 eigenvectors from partial least squares (PLS) 

regression of fresh and partially dried canopy samples for nut mass at individual harvest dates and 

all dates pooled together.  The top row is the attenuation and phase shift of through 

measurements; the bottom row is reflection measurements from antenna one and two 

respectively. 

The variance recovered in PLS regression is a function of the entire spectra although weighting of 

individual frequencies is governed by the eigenvectors. The correlation of nut mass to a single 

frequency is of practical interest to radar applications. Simple linear regression of nut mass to 

each frequency in all samples resulted in significant correlations at several frequency bands 

however model error was relatively high and there was significant variability among the dates. 

The maximum coefficient of determination (R
2
) occurred from 1 to 4.5 GHz for all dates. The 
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2
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correlations at all frequencies were poor with R2<0.3 (Figure 30).  The poor correlations suggest 

that direct sensing of nut mass within a canopy sample using backscattered microwaves is not 

feasible because no strong nut specific microwave interactions were found. 

 

 
Figure 30. Coefficients of determination (R

2
) from linear regression of nut mass at each 

frequency from canopy samples for individual harvest dates and all dates pooled together. (S11 

shown) 
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0 to 301 g and 0 to 359 g respectively. The magnitude of the first eigenvector from PLS 

regression is much greater than the others across most of the measured spectrum when the 

baseline samples were included (Figure 31 and Figure 32). Eigenvectors 2 through 5 indicate that 

frequency bands at 5.5, 9, 12 and 15 GHz were also influential in accounting for variance among 

the samples. The pattern in eigenvectors 2 through 5 is similar to the previous analysis when the 

baseline observations were not included. In the present analysis, the first eigenvector accounts for 

more than 67% of variance in all maturity stages of the reflected measurements for total water 

(Figure 33).  For dry matter mass, the first eigenvector accounts for more than 83% of variance 

among the samples (Figure 34).   

Simple linear regression of total water at each frequency resulted in significant correlations across 

large portions of the spectrum. A consistent broad peak from approximately 5.5 to 8 GHz had 

R
2
>0.63 (P<0.0001) for total water and R

2
>0.78 (P<0.0001) for total dry matter for all dates 

analyzed individually and pooled together. Non-significant results were found in various dates at 

narrow frequency bands around 2, 5.2, 9, 12 and 15 GHz for total water and dry mass (Figure 35 

and Figure 36).   
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Figure 31. Weighting of first five eigenvectors from partial least squares (PLS) regression of 

baseline and canopy samples for total water mass at individual harvest dates and all dates pooled 

together. 
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Figure 32. Weighting of first five eigenvectors from partial least squares (PLS) regression of 

baseline and canopy samples for total dry mass at individual harvest dates and all dates pooled 

together. 
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Figure 33. Variance accounted for by the first 10 eigenvectors from partial least squares (PLS) 

regression of baseline an canopy samples for total water mass at individual harvest dates and all 

dates pooled together.  S11 and S22 represent reflection measurements from antenna one and two 

respectively. 

 

 
Figure 34. Variance accounted for by the first 10 eigenvectors from partial least squares (PLS) 

regression of baseline an canopy samples for total dry mass at individual harvest dates and all 

dates pooled together.  S11 and S22 represent reflection measurements from antenna one and two 

respectively. 
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Figure 35. Coefficients of determination (R2) and P-values from linear regression of total water 

mass at each frequency from baseline and canopy samples for individual harvest dates and all 

dates pooled together. 
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Figure 36. Coefficients of determination (R2) and P-values from linear regression of total dry 

mass at each frequency from baseline and canopy samples for individual harvest dates and all 

dates pooled together. 
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indicates that the backscattered microwaves were more highly influenced by the geometry of the 

leaves, branches and nuts than by their composition or water content.   

These experiments were designed to minimize the variability of leaf and branch mass among the 

samples in order to test the effects of changing nut quantity on backscattered microwaves.  In an 

orchard, there will be variability in distance from the antenna and in the spatial arrangement of 

the canopy components. No frequencies were identified that directly correlated to nut mass 

however yield estimates may be indirectly derived from mass changes sensed in the canopy.  To 

do this, spatial distributions of biomass within an orchard could be compared at different dates. 

The sensing system would require distance measuring and positioning capabilities in order to 

construct a three dimensional distribution of canopy biomass. Additional studies to optimize 

sensor parameters including directionality, power, gain, frequency, bandwidth and polarity also 

need to be performed. 

Technology developed to sense pecan yield in situ can potentially be extended to other pecan tree 

sensing applications and to other orchard fruit and nut crops.  Orchard crops such as citrus, 

peaches and apples have higher fruit mass in the canopy compared to pecans and may be better 

suited to microwave yield sensing.  

Conclusions 

Sensing of backscattered microwaves originating from antenna located within an orchard is a 

potential solution for in situ estimation of pecan nut yield. Short-range microwaves resolve many 

of the power, resolution and sensitivity problems that limit utility of satellite radar systems. VNA 

measurements of microwave energy reflected from, and transmitted through pecan tree canopy 

samples with varying nut content were taken to characterize the microwave response of pecan 

trees.  PLS regression of the spectral data did not reveal frequencies that were specifically 
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sensitive to varying nut content. Linear regression analysis identified significant correlations of 

pecan canopy water and dry mass to backscattered microwave response over a large portion of 

the 1 to 18 GHZ spectrum tested. Most notably a broad peak from 5.5 to 8 GHz had R
2
>0.63 for 

total water and R
2
>0.78 for total dry matter. Non-significant correlations were found in various 

dates at narrow frequency bands around 2, 5.2, 9, 12 and 15 GHz for total water and dry mass. 

These results indicate that short-range backscattered microwaves are a promising technology for 

in situ estimation of pecan yield.  Furthermore, the same methods may be extensible to other 

sensing applications in pecans and other orchard crops. 
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CHAPTER IV 

 

IN SITU MEASUREMENT OF PECAN LEAF NITROGEN CONCENTRATION 

USING A CHLOROPHYLL METER AND VIS-NIR MULTISPECTRAL CAMERA 

Abstract: Knowledge of foliar nitrogen (N) concentration is important in pecan [Carya 

illinoinensis (Wang.) K. Koch] management protocols.  Lower cost and/or rapid methods to 

determine foliar N are desirable and may result in improved management strategies as well as 

enable precision agricultural practices to be deployed in pecan production. This study investigates 

using a portable chlorophyll meter and Vis-NIR camera to rapidly determine pecan foliar N in 

situ.  Relationships of SPAD values from a chlorophyll meter (Minolta SPAD 502Plus) and 

vegetative indices calculated from camera image data to foliar N determined by chemical analysis 

were investigated.  SPAD readings were taken monthly from May through October on ‘Pawnee’, 

‘Kanza’ and ‘Maramec’ pecan cultivars in Oklahoma in 2010. Images of the same ‘Pawnee’ and 

‘Kanza’ trees were collected in September and October of 2010 with a truck mounted 

multispectral camera using ambient light. Correlation of foliar N to SPAD values was poor in 

May for all cultivars but distinct significant linear relationships were found for ‘Maramec’ and 

‘Pawnee’ for each of the other months tested with R
2
 ranging from 0.40 to 0.87. Data from 

‘Kanza’ had significant relationships in June and October with R
2
 of 0.39 and 0.72, respectively. 

Normalized difference vegetative index (NDVI) and reflectance data extracted from Vis-NIR 

camera images were significantly correlated to foliar N in both months of the study on ‘Pawnee’ 

but only in September for ‘Kanza’.  The various relationships had R
2
 between 0.21 and 0.51. 
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Introduction 

Nitrogen management in pecan orchards is important for tree health, optimizing yield and 

managing alternate bearing (Conner and Worley 2000; Smith et al. 2007; Wood et al. 2004).  

Over application of N wastes resources and can cause environmental harm. Availability of N 

depends not only on fertilizer application rate, type and time, but also on a variety of cultural 

practices and environmental conditions including soil nutrients and properties, weather and 

climate, irrigation practices, tree condition, orchard floor management and nut production 

(McDonald et al. 1991; Soria-Ruiz et al. 2007; Ye et al. 2008). Soil tests and leaf analysis are 

used to measure N; however, leaf analysis is widely used commercially in pecan to assess N 

concentration during the growing season because it provides a direct measurement of nutrient 

status in the tree.   

The traditional practice for measuring N levels in a pecan orchard consists of hand harvesting 

specific leaves that are then dried and sent off to a lab for chemical analysis.  This process takes 

considerable time and is typically used to guide the subsequent year’s fertility program rather 

than adjusting N in the current year. Generally only a subset of the trees in an orchard is tested to 

reduce cost. A sensor that provides an immediate indication of pecan foliar N in the field would 

be desirable if it provides adequate performance at a reasonable cost. Such a sensor would also be 

a key component to enable precision agriculture practices in pecan production. 

Much of the N in a leaf is partitioned in chlorophyll, thus a sensor that measures chlorophyll can 

often be used to quantify the amount of N in a leaf (Filella et al. 1995). The basis for most optical 

sensing of N in leaves is based on chlorophyll’s spectral response to light. Chlorophyll absorbs 

blue and red light (λ ≈ 450 and 650 nm, respectively) and reflects near infrared (NIR) light (λ > 

750 nm). The intensity of transmitted and/or reflected light at these wavelengths can be used to 
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form empirical relationships which estimate chlorophyll, and consequently, N concentration in a 

leaf (Richardson et al. 2002).   

A SPAD meter (Konica Minolta, Osaka, Japan) is a handheld device that measures light intensity 

at wavelengths of 650 and 940 nm transmitted through a 2 by 3 mm area of a leaf clamped in the 

instrument.  The SPAD meter calculates a unit-less value between 1 and 100 that has been shown 

to be positively correlated to leaf chlorophyll concentration.  Regression analysis can then be 

used to predict foliar N from SPAD readings (Markwell et al. 1995).  Originally developed for 

rice, SPAD meters have found utility on a variety of field and tree crops for predicting N 

concentrations (Chang and Robison 2003; Gianquinto et al. 2004; Neilsen et al. 1995; Perry and 

Davenport 2007; Simorte et al. 2001; van den Berg and Perkins 2004; Wood et al. 1992).  

Reflectance measurements of Vis-NIR light have also been used to estimate chlorophyll and N 

status of plants.  Normalized difference vegetative index (NDVI) is the most widely used 

measurement and is computed from the intensity of reflected red and NIR light using the 

following equation: NDVI = (INIR – Ired) / (INIR + Ired). Empirical relationships of NDVI to 

chlorophyll concentration and N status have been developed for many crops (Hansen and 

Schjoerring 2003; Jones et al. 2007; Ma et al. 1995; Plant et al. 2000; Reyniers and Vrindts 

2006). NDVI can be calculated from remotely acquired multispectral digital camera images or 

from close-proximity sensors.  Remote imaging systems generally measure reflected ambient 

light while some close proximity sensors collect reflected light that originates from the sensor 

itself (Jones et al. 2007).  In both cases the intensity of incident light is required to accurately 

determine relative intensity of the reflected light to control sensor error.  

At high levels of biomass, NDVI tends to becomes less sensitive to chlorophyll concentration 

because reflected red light intensity from leaves asymptotically approaches a minimum. In plant 

systems where chlorophyll density is high, vegetative indices (VI) that include green reflectance 
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may have better performance predicting foliar N than NDVI. Gitelson et al. (1996) compared 

NDVI to green-NDVI (GNDVI) obtained from satellite images of Norway maple (Acer 

platanoides L.) and horse chestnut (Aesculus hippocastanum L.) trees and found GNDVI resulted 

in more accurate predictions of chlorophyll content with full canopies. GNDVI is calculated from 

the intensities of reflected NIR and green light using the formula: GNDVI = (INIR – Igreen) / (INIR + 

Igreen). Numerous other VI using red, green and NIR reflected light have been proposed and 

evaluated on various plants over the years (Zarco-Tejada et al. 2005). 

A SPAD meter and/or a suitable ground based multispectral camera may have utility for assessing 

the N status of pecan leaves in an orchard. The optical properties of leaves vary among plant 

species and can change throughout ontogeny and with growth conditions (Qi et al. 2003). Foliar 

N levels on fruiting and vegetative shoots of pecan decreased over the growing season (Diver et 

al. 1984).  Chang and Robison (2003) found that the regression relationships of SPAD readings to 

foliar N concentration on four species of hardwood tree leaves were different among species and 

crown position, and changed throughout the growing season.  In a similar study on citrus, Jifon et 

al. (2005) found that growth conditions resulted in a variation of leaf thickness and changed the 

regression relationship of SPAD readings to chlorophyll and N concentration. Similarly, 

corrections for variation in pecan leaf optical properties may need to be included in a 

measurement protocol using a SPAD meter or multispectral camera to measure foliar N. 

The efficacy of multispectral cameras and/or portable chlorophyll meters to quantify N in pecan 

leaves has not been reported. The objectives of these experiments were to evaluate the 

performance of: 1) a SPAD meter and 2) a ground based Vis-NIR multispectral camera using 

ambient light for rapid in situ measurement of foliar N in a pecan orchard during the growing 

season.  
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Materials and methods 

Site descriptions 

The study contained trees in two locations in Oklahoma. An orchard near Cleveland, OK, USA 

contained 17-year-old ‘Pawnee’ and ‘Kanza’ pecan on ‘Giles’ seedling rootstocks with 12.2 by 

12.2 m diagonal spacing. Soil was a Dennis silt loam (fine, mixed, active, thermic Aquic 

Argiudoll). Rainfall in this non-irrigated orchard during the study period (April through October 

2010) was about 640 mm. A 1.8 m wide vegetation-free strip centered on the tree was maintained 

with selected herbicides while the remainder of the orchard floor was mowed as needed. Trees 

received commercial management for pests.  Fertilizer treatments in the Cleveland, OK orchard 

were varied to induce greater variability of foliar N for this study (Table 8).  All ‘Pawnee’ trees, 

and one subplot of ‘Kanza’, received a base rate of 280 kg·ha
-1

 of diammonium phosphate (18N-

20P-0K) applied in a continuous band 1.8 m from the trunk during March.  Various subplots also 

received between 0 and 975 kg·ha
-1

 of urea (46N-0P-0K) hand broadcast from the trunk to the 

drip line of the tree (Table 8). One subplot of ‘Kanza’ trees was seeded with ‘Durana’ white 

clover (Trifolium repens L.) and received no other N supplements.  This orchard was used for 

both the SPAD and Vis-NIR camera studies. 

A second orchard at the Cimarron Valley Research Station near Perkins, OK contained 25-year-

old ‘Maramec’ trees on ‘Apache’ seedling rootstocks in a Teller sandy loam soil (fine-loamy, 

mixed, active, thermic Udic Argiustoll). Trees were diagonally spaced 24.4 by 24.4 m with 

Bermudagrass [Cynodon dactylon (L.) Pers.] ground cover. A 3 m wide vegetation-free area was 

maintained the entire row length with herbicides.  Natural rainfall of 607 mm during the study 

period (Apr. through Oct. 2010) was supplemented by traveling gun irrigation. Commercial 

management for pests and fertilization were used. Diammonium phosphate and urea were each 
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applied in a band application at rate of 482 kg·ha
-1

 of material in March of 2010.  Ten trees were 

randomly selected within the orchard for the SPAD study (Table 8).  

Table 8. Cultivar and nitrogen treatments for pecan trees in study. 

Cultivar 

Number 

of trees 

Baserate 

(kg·ha
-1

 N) 

Urea 

(kg·ha
-1

N) 

Pawnee 5 50 0 

Pawnee 5 50 56 

Pawnee 5 50 112 

Pawnee 5 50 224 

Pawnee 5 50 448 

Kanza 5 0 0 

Kanza 5 50 112 

Kanza 5 0 ‘Durana' clover 

Maramec 10 87 222 

 

Sampling protocol – SPAD meter 

Trees were sampled mid-month from May through October (Cleveland orchard) and April 

through September (Perkins orchard) in 2010.  SPAD readings (SPAD 502Plus, Konica Minolta, 

Osaka, Japan) were taken by a technician standing on the ground from 10 middle leaflet pairs on 

the middle leaf of current season shoots approximately evenly spaced around the circumference 

of the tree canopy. Measurements were taken adjacent to the midrib at the middle of the leaflet 

with the adaxial surface of the leaflet was facing the light source of the SPAD meter. Individual 

SPAD readings were averaged for each tree. These same 10 leaflet pairs were collected and 

combined for elemental analysis.  Leaves were dried and ground and then N concentration for 

each tree was determined using a Leco Truspec N analyzer (St. Joseph, MI, USA).  

Sampling protocol and image processing – Vis-NIR multispectral camera 

A multispectral camera (Duncan Tech MS3100, Auburn, CA) was used to obtain images of the 

same trees that were measured with the SPAD meter in the Cleveland, OK orchard.  Images were 
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acquired on 15 Sept. and 13 Oct. 2010, the same day that the SPAD meter measurements were 

taken.  The camera images were 1392 x 1040 pixels by 8-bits (256 intensity levels) in three 

optical wavebands centered at 550, 670 and 780 nm (±10 nm) through a 14 mm focal length lens.  

The camera was mounted on a truck at a height approximately 2.5m above ground level.   

A reflectance target containing two panels with diffuse reflectance of 10 and 99% was mounted 

on a tripod, 1.8 m above ground level, facing the camera to provide a reference of solar irradiance 

in each image (Labsphere, Inc., Model SRT-SP-050, North Sutton, N.H.).  It was located under 

the drip line of the tree so it was about the same distance from the camera as the near edge of the 

tree canopy. An image containing a pecan tree and the reflectance target was composed by 

positioning the truck so that the sun was directly behind the camera (Fig. 37).  Distance from the 

camera to the trunk of each tree was between 6 and 10 m. Rows in the orchard were oriented east 

to west.  Images were taken mid-morning on cloud free days, to insure that the sun directly 

illuminated a significant portion of the tree and the reflectance target. Images were saved to a 

portable computer which was also used to set gain and exposure of the camera.  Gain and 

exposure time for each waveband were adjusted such that light from the 10 and 98% reflectance 

targets resulted in intensities in the linear range of the camera response and did not saturate the 

camera sensor.  Target image intensities were 40 and 220 (out of 255) for the 10 and 99% 

reflectance targets, respectively.  Camera gain and exposure time were set once at the start of 

each sampling date and remained constant for about 1.5 h while 40 trees in the sample were 

imaged (Table 9). At these gain and exposure settings, noise from the camera sensor was minimal 

even at low illumination levels (Weckler et al. 2002).  

Table 9. Duncan Tech MS3100 camera gain and exposure settings for collecting pecan images 

 

Camera Gain setting 

 

Exposure time (ms) 

  IR Red Green 

 

IR Red Green 

September 9.6 13.4 9.0 

 

10.0 10.8 9.0 

October 9.6 13.2 8.0   10.0 10.8 8.0 
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Images were processed using Matlab (MathWorks, Inc., Natick, MA) software (Appendix C). 

The location of the reflectance target was first selected from the image to obtain a reference 

intensity of red, green and NIR ambient light. A rectangle was then selected, roughly including 

the canopy area of each tree and excluding other objects, trees and grass in the background, from 

the tree image (Fig. 37). Image pixels outside the rectangle were cropped and not included in 

further analysis. Irradiance for each pixel was then extracted from the red, green and NIR cropped 

images.  The intensity of each pixel in the three cropped images were then linearly normalized to 

a 0 to 255 scale using intensity values obtained from the 10 and 99% reflectance targets in the 

same image.  This step allowed images of different trees to be compared to each other.  

 
Fig. 37. Representative NIR image composure of pecan tree obtained with multispectral camera.  

Reflectance standard (a) is in lower left of image.  Rectangle represents leaf area selected for 

analysis. (Image of ‘Pawnee’, row 2, tree 13, Oct. 2010). 

Leaves are highly reflective to NIR radiation while branches, trunks and other materials generally 

are not.  Pixels from the normalized NIR image with intensities within a threshold window were 

classified as leaf pixels (LP). Various threshold windows, with low NIR intensities ranging from 

a 
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25 to 200 in increments of 25, were evaluated to classify LP.  Threshold window spans were 

defined in two ways.  One method set the high value 50 units above the lower limit and the other 

used 255 as the high intensity limit for all threshold windows. A vegetative index (VI) was 

calculated for each LP by using the appropriate individual pixel intensities of the NIR, green and 

red images for each threshold window. VI for each tree was the mean of the VI calculated for LP 

classified in each image. The optimum threshold window for classifying LP was determined by 

regression analysis.   

Statistical analysis 

Data were analyzed using SAS MIXED (SAS Institute Inc., Cary, NC) using repeated measures.  

Regressions using least squares analysis techniques tested for significant main effects and 

interactions of SPAD, VI, cultivar, and sampling date to foliar N concentration. Linear, quadratic 

and cubic relationships of SPAD and VI to foliar N were investigated. 

Results and discussion 

Foliar nitrogen 

Foliar N concentration ranged from 1.8% to 3.8 % of dry leaf mass across all samples (Fig. 38). 

Nitrogen levels fell with time (P<0.0001) during this study following expected seasonal 

variations. 
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Fig. 38. Mass fraction of nitrogen in dried pecan leaves during 2010 growing season for ‘Kanza’ 

(n=15), ‘Maramec’ (n=10), and ‘Pawnee’ (n=25) trees. Bars on graph indicate standard deviation. 

SPAD meter 

SPAD values varied from 26.2 to 52.3 with the lowest readings occurring in May (Fig. 39). Foliar 

N was generally positively correlated to SPAD readings but the specific relationships varied 

across the three cultivars and growing season. There was a significant cultivar by month 

interaction (P<0.0001) thus equations predicting foliar N from SPAD meter readings are reported 

for each cultivar by month (Table 10).  No cultivar exhibited significant relationships between 

SPAD and foliar N in May, the first month of the study. Significant linear models were found for 

‘Maramec’ and ‘Pawnee’ in all subsequent months. For ‘Kanza’, the only significant models 

found were in June and October. Correlation analysis shows that from 39% to 87% of the 

variation of leaf N was predicted by SPAD readings where significant relationships were found 

(Table 10 and Fig. 39). Higher order models did not result in improved correlations. Slopes of the 

regression equations generally decreased as the season progressed indicating the SPAD response 

to foliar N concentration was also declining. 
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Table 10. Equations for predicting foliar nitrogen concentration from SPAD readings on three 

cultivars of pecan. 

 

Kanza Maramec Pawnee 

Month Equation  R
2
 Equation  R

2
 Equation  R

2
 

May -- NS -- NS -- NS 

June N= 0.29+0.055S 0.39
*
 N= -0.46+0.071S 0.75

**
 N= 0.03+0.060S 0.64

***
 

July -- NS N= -0.17+0.056S 0.87
***

 N= 0.51+0.049S 0.47
***

 

Aug -- NS N= 0.95+0.027S 0.58
*
 N= -0.92+0.067S 0.74

***
 

Sept -- NS N= 0.66+0.032S 0.40
*
 N= -0.47+0.058S 0.67

***
 

Oct N= 0.32+0.037S 0.72
***

 --- --- N= 0.34+0.037S 0.66
***

 
NS, *, **, ***

   Not significant (NS) or significant at 5% (*), 1% (**) or 0.1% (***). 

N = Leaf nitrogen concentration (% DW)  S = Mean of 10 SPAD meter readings. 
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Fig. 39. Correlation of foliar nitrogen (N) concentration to SPAD response for ‘Kanza’, 

‘Maramec’, and ‘Pawnee’  pecan trees by month in 2010. Linear regression relationship (           ), 

95% confidence limits for regression equation (                ), and 95% confidence interval for 

predicted foliar N values (                 ). 
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Researchers evaluating SPAD meters on other plant species have found patterns similar to the 

present study reflecting seasonal changes in foliar N and leaf optical properties. Chang and 

Robison (2003) found that SPAD readings on sweetgum (Liquidambar styraciflura L.) trees were 

positively correlated with foliar N, however, the regression relationships varied with sampling 

date and location in the crown.  Seasonal physiological changes and environmental factors 

resulted in variation of leaf optical properties, which in turn affect response of the SPAD meter. 

These researchers improved correlation of the regression relationships by adding a term for foliar 

moisture content or by predicting N content on a leaf area basis instead of concentration by leaf 

mass. By dividing SPAD response by specific leaf weight (ratio of leaf dry weight to leaf area), 

Peng et al. (1993) were able to increase the coefficient of determination (R
2
) of the regression 

equations from 0.49 to 0.93 on five rice (Oryza sativa L.) cultivars .  This correction essentially 

accounts for variation in leaf thickness among samples. Adding these or similar measures to the 

SPAD sampling protocol increases the duration and effort required to gather data thus negating 

some of the advantages inherent to the SPAD sampling protocol.  

Vis-NIR multispectral camera 

The distribution of the intensity of NIR leaf pixels (LP), after normalization to a 0 to 255 scale, 

was approximately lognormal with peak values ranging from 35 to 81 for all trees in the study. 

The distributions of pixel intensity in the red and green images were both maximum at zero 

intensity and green images were brighter than red (Fig. 40). The peak of the NIR histogram 

occurred at higher intensities for ‘Kanza’ than ‘Pawnee’ however there was no significant 

temporal difference (Table 11).  
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Table 11. Histogram peak intensity (S.E.) of NIR image pixels from images of ‘Pawnee’ and 

‘Kanza’ pecan trees taken in 2010. 

Month 
Pixel intensity 

Kanza Pawnee 

Sept 68.2 (3.5) a
z
 53.9 (2.5) b 

Oct 63.9 (3.3) a 48.1 (2.6) b 
z
Means followed by the same letter are not significantly different by LSD test (P≤0.05).  

 

 

 
Fig. 40. Intensity distribution (0 to 255) of NIR, green and red pixels in leaf area image of 

representative pecan tree.   (‘Pawnee’, row 2, tree 13, Oct. 2010). 

At low NIR intensity thresholds, some of the reflected light was from branches and other non-leaf 

areas in the images. As the threshold level was raised to 150 (out of 255) most of the non-leaf 

reflections were removed from the images (Fig. 41). Raising the threshold level reduced the 

number of pixels remaining in the image for VI calculations.  On several images in this study, no 

NIR pixels had intensity values above 200. Correlation coefficients of foliar N to NDVI and 

GNDVI obtained from linear regression were maximized when the NIR threshold window for 

classification of leaf pixels ranged from 150 to 200.   
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Fig. 41. Effect of NIR pixel threshold (0 to 255 scale) on leaf area image of a representative 

pecan tree. Black areas indicate pixels below the threshold. (Image of ‘Pawnee’, row 2, tree 13, 

Oct. 2010). 

NIR threshold 25 NIR threshold 50 

NIR threshold 75 NIR threshold 100 

NIR threshold 125 NIR threshold 150 

NIR threshold 175 NIR threshold 200 
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Linear models relating foliar N to NDVI and GNDVI were found for ‘Pawnee’ trees in both 

months of the study, although the correlation coefficients were generally low (Table 12).  No 

simple regression models were identified for ‘Kanza’ however. The mean intensity of leaf pixels 

in the red image when using a threshold window of 150-200 was 9.9±0.38 S.E. This low value 

suggests that NDVI may be saturating and green reflectivity may provide additional predictive 

power to the model (Gitelson et al. 1996).  The corresponding intensity of green pixels was higher 

at 29.8±0.56 S.E. Regression models using GNDVI did not have significantly better performance 

however (Table 12).    

Table 12. Regression relationships of leaf N concentration to NDVI, GNDVI and green 

reflectance from images of ‘Pawnee’ and ‘Kanza’ pecan trees taken in 2010. 

Month 

Predictor 

variable(s) 

Kanza Pawnee 

Equation R
2
 Equation R

2
 

Sept NDVI -- NS N=3.122NDVI-0.344 0.31** 

Sept GNDVI -- NS N=2.157GNDVI+0.893 0.21* 

Sept NDVI & Green N=-9.15NDVI-15.28G+12.77z 0.51* N=2.799NDVI-0.715G+0.038 0.31* 

Oct NDVI -- NS N=3.173NDVI-0.786 0.29** 

Oct GNDVI -- NS N=3.943GNDVI-0.879 0.48*** 

Oct NDVI & Green -- NS N=0.162NDVI-8.279G+2.818 0.48** 
NS, *

, 
**

, 
***

   Not significant (NS) or significant at 5% (*), 1% (**) or 0.1% (***). 
z
 N = leaf nitrogen concentration (% DW),  NDVI and  GNDVI are mean VI calculated from leaf pixels 

(LP) of tree images. G = mean intensity of green LP (0 to 1).  

 

Multiple linear regression modeling using NIR, green and red reflected light intensity in addition 

to NDVI, and GNDVI as predictor variables for foliar N did not produce models superior to 

simple linear regressions.  Relationships that included the mean intensity of reflected green light 

for LP and NDVI improved performance slightly and produced significant models for ‘Kanza’ in 

September and ‘Pawnee’ in both months of the study (Table 12).  Correlations for these 

relationships were weak with maximum R
2
 of 0.51. 
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Conclusion 

These experiments indicate that SPAD meters and in-field Vis-NIR cameras have potential to 

provide useful indications of pecan leaf N concentration for some cultivars of pecan. The change 

in instrument response due to seasonal and cultivar variation necessitates obtaining calibration 

equations for each pecan cultivar at selected growth stages.  The correlation of SPAD and/or Vis-

NIR camera image data to leaf N was generally low.  Improvements are needed before the tested 

protocols can replace traditional foliar N analysis. These protocols may, however, provide a 

useful alternative to chemical analysis in cases where rapid and/or relative foliar N measurements 

are needed. 
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CHAPTER V 

 

CONCLUSION 

This research investigated three sensor technologies for rapid and in situ measurement of plant 

physical and physiological conditions. Quantification of waxes that occur on all aerial plant 

surfaces using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-

ATR) optics is a novel application of this technology that may assist producers, processors and 

plant breeders investigating the plant cuticle. Research on backscattered microwaves from pecan 

tree canopy samples is the first step in developing a new method to estimate pecan yield using 

short-range terrestrial radar systems. The third area of research investigated optical sensor 

technologies for more efficient measurements of foliar nitrogen concentration in pecan orchards. 

Quantification of cuticular wax on spinach leaves empirically determined from Fourier transform 

infrared spectroscopy with attenuated total reflectance (FTIR-ATR) measurements resulted in 

predictions that correlated well to results obtained from gas chromatography (GC). This new 

method is in situ, requires minimal sample preparation, and can measure waxes in a small area 

defined by the active sensing region of the FTIR-ATR optics. It does not have the ability to 

provide detailed information about composition of the extracted waxes that GC does however.   

Further research on this new method will likely ultimately depend on the application. There are 

opportunities to improve accuracy and precision, robustness, and to extend the method to other 

plant organs and species. Contact between the internally reflecting element (IRE) and the leaf 
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sample are critically important and the current leaf clamping method could be optimized to 

maintain uniform and repeatable pressure.  This would be especially important for fragile 

specimens where cell disruption causes interference as was observed when testing rehydrated 

spinach leaves. An important attribute of robust measuring systems is the detection of invalid or 

suspect sensor readings.  In our system, this can be caused by foreign material, poor IRE to leaf 

contact, cell disruption, and other conditions. Identification of spectral features that indicate 

sensor faults would enhance the measurement protocol.   

These empirical wax prediction models were developed from GC measurements of extracted 

cuticular wax. Crosschecking our results against other methods of wax measurement would 

increase confidence in the models. Our attempts to measure cuticle cross section thickness on 

transmission electron microscope images were not successful.  Improvements to the chemical 

fixation protocols, cryo-fixation, and/or scanning electron microscope imaging, may result in a 

method to validate FTIR-ATR measurements.  It may also allow extension of the FTIR-ATR 

method to quantify thickness of the entire cuticle membrane, which may be of interest to some 

researchers. 

Precision agriculture applications rely on sensing of crop parameters on a fine scale so that 

treatments can be applied at the correct amount only where needed. Pecans present an untapped 

opportunity for application of precision agriculture practices to improve efficiency and 

production. In situ yield estimates of nuts and quantification of foliar nitrogen concentration were 

investigated as two enabling technologies for precision agriculture in pecans. 

Laboratory experiments indicted that backscattered microwaves from pecan tree canopy 

components may be useful for measuring biomass with short-range radars located within an 

orchard. Reflected signal strength across a large portion of the 1 to 18 GHz frequency range 

tested was positively correlated to water and dry matter mass in the canopy samples (R
2
>0.63 and 
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0.78 respectively). More research will be required to extend these initial findings into a method 

for quantifying nut yield in an orchard. Scenarios for discerning nut yield from canopy 

reflectance data are undefined but are likely to involve spatial comparisons of canopy biomass 

throughout the growing season as nuts grow in size and mature. A three dimensional map of 

canopy biomass in an orchard may be obtained by adding range finding capabilities to the 

backscattered microwave biomass estimates and incorporating precision global positioning 

system data.  Capabilities of the microwave sensor itself (power, directionality, gain, polarity, 

bandwidth and frequency) will also need to be optimized for the measurement system. 

Current protocols for assessing nitrogen needs in pecan involve laboratory analysis of manually 

harvested leaves.  In addition to being time consuming, these methods are too costly for 

producers to measure every tree in an orchard. In field tests, a hand-held chlorophyll meter 

resulted in significant distinct linear relationships predicting leaf nitrogen for various months and 

cultivars in the study, but the correlations were weak (R
2
 ranged from 0.21 to 0.87). Measuring 

leaf nitrogen with a hand-held meter remains a manual process although it provides immediate 

results and lab fees are eliminated. In related research, equations predicting leaf nitrogen were 

computed from pecan tree canopy images obtained with a high resolution, visible and near 

infrared camera mounted on a vehicle maneuvered through the rows of the orchard. The best 

nitrogen prediction models used normalized difference vegetative index and green reflectance 

extracted from the camera image data. Correlations obtained in these experiments were weak (R
2
 

between 0.21 and 0.51 for months and cultivars with significant linear relationships) and 

insufficient for replacing traditional manual methods of measuring leaf nitrogen. Additional 

research to improve the nitrogen prediction models is needed. Important areas of investigation are 

pecan leaf spectral characteristics throughout ontogeny and changes to how images are acquired. 

Once an understanding of leaf reflectance is complete, subtle changes to the sensor filters, 

especially in the red region, can be investigated to improve performance. The experiments 
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performed here used reflected ambient light. This imposes restrictions on the times and 

orientations from which camera images can be acquired in an orchard and the illuminating solar 

spectrum may not be optimal for sensing leaf nitrogen. A sensor with its own light source may be 

able to overcome these limitations. 

Sensor technologies can improve efficiency and enable new capabilities in agriculture production, 

processing and research. Each of the sensing technologies investigated in this research show 

promise for rapid in situ measurement of plant physical and physiological conditions. With 

additional research, they may also have utility on other plants and cropping systems. 
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APPENDIX A 

LEAF AND CUTICULAR WAX DATA FROM GC AND FTIR-ATR MODELS 

Table A13. Composition of cuticular waxes from fast and slow growth spinach leaves for 

training, validation and field grown samples.  Amounts are determined by gas chromatography 

from mid-leaf  extractions of abaxial and adaxial surfaces. 

Sample 

Age 

(d) 

Growth 

type 

Leaf 

side 

Leaf 

area 

(cm
2
) 

GC results (ug/cm
2
) 

Alcohols   Alkanes Total 

wax 24C 26C   29C 29C 29C 29C 29C 

Train 1 54 Fast Bot 29.0 0.44 0.50 

 

0.10 0.12 1.00 0.15 0.18 2.49 

Train 2 54 Fast Top 29.0 0.42 0.82 

 

0.08 0.09 0.93 0.15 0.20 2.70 

Train 3 54 Fast Bot 31.5 0.23 0.73 

 

0.15 0.10 2.03 0.14 0.18 3.55 

Train 4 54 Fast Top 31.5 0.20 0.50 

 

0.08 0.05 1.15 0.08 0.19 2.25 

Train 5 54 Slow Bot 37.0 0.96 0.45 

 

0.13 0.13 0.66 0.16 0.13 2.62 

Train 6 54 Slow Top 37.0 0.85 0.62 

 

0.09 0.07 0.53 0.09 0.10 2.36 

Train 7 54 Slow Bot 42.0 0.81 0.24 

 

0.04 0.05 0.21 0.05 0.05 1.46 

Train 8 54 Slow Top 42.0 0.91 0.50 

 

0.09 0.08 0.32 0.09 0.09 2.09 

Train 9 48 Fast Bot 24.7 0.30 0.53 

 

0.05 0.00 1.49 0.00 0.00 2.37 

Train 10 48 Fast Top 24.7 0.41 0.83 

 

0.04 0.00 1.21 0.00 0.00 2.49 

Train 11 48 Fast Bot 27.3 0.27 0.59 

 

0.01 0.00 1.41 0.00 0.00 2.28 

Train 12 48 Fast Top 27.3 0.29 0.52 

 

0.01 0.00 1.05 0.00 0.00 1.86 

Train 13 48 Slow Bot 16.0 0.51 0.33 

 

0.02 0.00 0.42 0.00 0.00 1.28 

Train 14 48 Slow Top 16.0 0.70 0.66 

 

0.08 0.02 0.86 0.00 0.05 2.37 

Train 15 48 Slow Bot 16.4 0.62 0.31 

 

0.00 0.00 0.16 0.00 0.00 1.09 

Train 16 48 Slow Top 16.4 0.73 0.84 

 

0.00 0.00 0.21 0.00 0.00 1.79 

Train 17 63 Fast Bot 23.2 0.38 0.89 

 

0.15 0.08 2.01 0.10 0.12 3.73 

Train 18 63 Fast Top 23.2 0.26 0.59 

 

0.11 0.07 1.19 0.13 0.14 2.48 

Train 19 63 Fast Bot 22.7 0.25 0.77 

 

0.16 0.15 2.27 0.23 0.23 4.07 

Train 20 63 Fast Top 22.7 0.21 0.85 

 

0.21 0.25 2.11 0.40 0.37 4.39 

Train 21 42 Fast Bot 27.4 0.90 0.47 

 

0.06 0.06 0.58 0.06 0.09 2.23 

Train 22 42 Fast Top 27.4 0.88 0.70 

 

0.09 0.09 0.64 0.12 0.14 2.66 

Train 23 42 Fast Bot 32.3 0.74 0.43 

 

0.11 0.12 0.64 0.12 0.13 2.29 

Train 24 42 Fast Top 32.3 0.76 0.41 

 

0.13 0.14 0.77 0.17 0.17 2.55 

Train 25 63 Slow Bot 25.3 1.32 0.46 

 

0.18 0.20 0.80 0.25 0.22 3.43 

Train 26 63 Slow Top 25.3 1.08 0.56 

 

0.09 0.10 0.42 0.12 0.11 2.49 

Train 27 63 Slow Bot 20.6 0.70 0.71 

 

0.14 0.15 1.02 0.21 0.19 3.11 

Train 28 63 Slow Top 20.6 1.33 1.97 

 

0.22 0.19 1.33 0.24 0.25 5.54 
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Val 1 54 Fast Bot 38.7 0.37 0.38 

 

0.10 0.10 1.10 0.14 0.19 2.37 

Val 2 54 Fast Top 38.7 0.69 0.82 

 

0.08 0.08 0.71 0.12 0.15 2.65 

Val 3 54 Fast Bot 41.8 0.50 0.63 

 

0.08 0.05 1.19 0.08 0.17 2.70 

Val 4 54 Fast Top 41.8 0.70 0.75 

 

0.08 0.06 0.93 0.10 0.16 2.77 

Val 5 54 Slow Bot 24.5 1.00 0.47 

 

0.11 0.08 0.57 0.09 0.09 2.42 

Val 6 54 Slow Top 24.5 1.12 1.12 

 

0.13 0.12 0.64 0.13 0.13 3.39 

Val 7 54 Slow Bot 15.7 1.03 0.43 

 

0.12 0.13 0.56 0.16 0.15 2.57 

Val 8 54 Slow Top 15.7 1.40 1.39 

 

0.12 0.06 0.71 0.08 0.12 3.88 

Val 9 54 Slow Bot 21.4 0.99 0.44 

 

0.13 0.07 0.63 0.08 0.09 2.42 

Val 10 54 Slow Top 21.4 1.14 0.71 

 

0.16 0.10 0.50 0.10 0.10 2.81 

Val 11 61 Fast Bot 82.4 0.28 0.54 

 

0.05 0.02 1.41 0.09 0.19 2.59 

Val 12 61 Fast Top 82.4 0.20 0.46 

 

0.04 0.02 1.08 0.05 0.13 1.98 

Val 13 61 Fast Bot 90.2 0.33 0.51 

 

0.09 0.03 1.54 0.07 0.12 2.67 

Field 1 63 Field Bot 31.5 0.27 0.51 

 

0.03 0.00 1.54 0.01 0.07 2.43 

Field 2 63 Field Top 31.5 0.42 0.40 

 

0.00 0.00 0.73 0.00 0.03 1.57 

Field 3 63 Field Bot 47.0 0.44 0.98 

 

0.13 0.01 2.25 0.11 0.19 4.12 

Field 4 63 Field Top 47.0 0.45 0.63 

 

0.05 0.00 1.11 0.01 0.06 2.32 

Field 5 63 Field Bot 34.0 0.33 0.75 

 

0.21 0.00 1.53 0.01 0.05 2.87 

Field 6 63 Field Top 34.0 0.56 0.77 

 

0.03 0.00 0.96 0.01 0.05 2.37 

Field 7 63 Field Bot 99.0 0.81 0.83 

 

0.10 0.00 1.43 0.03 0.05 3.26 

Field 8 63 Field Top 99.0 0.54 0.75   0.01 0.00 1.05 0.00 0.00 2.35 

 

Table A14. Cuticular wax load predicted on spinach leaves for training, validation and field 

grown samples for each of the 14 best performing models with 4 or 5 predictor frequencies.  

Sample 

Predicted wax (ug/cm
2
) 

Model number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Train 1 2.48 2.42 2.53 2.30 2.45 2.42 2.63 2.18 2.15 2.33 2.09 2.32 2.36 2.31 

Train 2 2.46 2.16 2.39 2.32 2.31 2.31 2.07 2.29 2.71 2.78 2.43 2.52 2.62 2.56 

Train 3 3.57 3.53 3.38 3.45 3.33 3.39 3.40 3.47 3.47 3.59 3.64 3.55 3.56 3.60 

Train 4 3.01 2.86 3.27 2.86 3.11 3.14 3.14 2.85 3.05 2.93 2.75 3.03 3.04 3.08 

Train 5 2.44 2.48 2.48 2.45 2.39 2.42 2.45 2.42 2.39 2.42 2.56 2.32 2.37 2.40 

Train 6 2.22 2.15 2.37 2.11 2.35 2.31 2.32 1.99 2.24 2.10 2.05 2.10 2.24 2.25 

Train 7 1.70 1.93 1.64 1.92 1.92 1.81 1.76 1.99 1.85 1.78 1.71 1.74 1.69 1.82 

Train 8 2.21 2.41 2.48 2.39 2.64 2.53 2.61 2.21 2.29 2.19 2.01 2.16 2.23 2.28 

Train 9 2.14 2.28 2.34 2.16 2.36 2.53 2.56 2.68 1.94 1.91 2.14 2.26 2.02 2.07 

Train 10 2.26 2.70 2.42 2.73 2.34 2.39 2.27 2.54 2.44 2.26 2.77 2.48 2.34 2.42 

Train 11 2.01 1.76 1.86 1.93 1.98 2.04 1.82 2.21 2.35 2.19 1.96 2.14 2.08 2.19 

Train 12 2.50 2.27 2.41 2.26 2.45 2.43 2.29 2.43 2.54 2.57 2.40 2.53 2.57 2.57 

Train 13 1.08 0.92 1.12 0.92 0.85 0.98 1.07 0.89 1.12 1.19 1.08 1.12 1.16 1.04 
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Train 14 1.96 2.06 2.04 2.13 2.05 1.98 2.00 1.81 2.03 1.88 2.07 1.86 1.93 1.93 

Train 15 1.31 1.64 1.28 1.60 1.29 1.30 1.44 1.63 1.31 1.26 1.58 1.31 1.22 1.28 

Train 16 1.68 1.86 1.64 1.77 1.66 1.58 1.75 1.61 1.55 1.76 1.58 1.62 1.67 1.61 

Train 17 3.43 3.43 3.15 4.04 3.55 3.31 3.37 3.55 4.00 3.43 3.51 3.43 3.33 3.37 

Train 18 3.04 2.80 2.67 3.02 2.69 2.69 2.72 2.73 3.20 3.11 3.42 3.00 3.08 2.97 

Train 19 4.26 4.39 4.17 4.32 4.27 4.33 4.32 4.44 4.13 4.22 3.99 4.31 4.17 4.24 

Train 20 4.29 4.27 4.41 4.44 4.31 4.35 4.24 4.25 4.50 4.31 4.33 4.40 4.34 4.37 

Train 21 2.50 2.46 2.51 2.41 2.57 2.49 2.60 2.52 2.26 2.39 2.41 2.43 2.41 2.32 

Train 22 2.59 2.62 2.34 2.66 2.52 2.38 2.29 2.63 2.62 2.85 2.54 2.62 2.67 2.59 

Train 23 2.27 2.09 2.09 2.04 2.07 2.01 2.23 2.09 1.98 2.10 2.09 2.14 2.17 2.05 

Train 24 2.25 2.36 2.56 2.42 2.48 2.63 2.42 2.35 2.40 2.25 2.94 2.37 2.33 2.35 

Train 25 3.24 3.23 3.27 3.10 3.15 3.17 3.07 3.21 3.14 3.30 3.06 3.22 3.21 3.29 

Train 26 2.67 2.40 2.76 2.31 2.57 2.77 2.64 2.77 2.77 2.63 2.75 2.77 2.81 2.84 

Train 27 3.63 3.57 3.32 3.26 3.42 3.38 3.51 3.64 3.20 3.53 3.21 3.55 3.58 3.52 

Train 28 4.91 5.04 5.10 4.75 4.97 4.97 5.02 4.69 4.44 4.88 5.03 4.78 4.90 4.78 

Val 1 2.90 3.55 4.16 3.24 4.37 4.12 4.16 3.07 2.33 2.84 2.14 2.82 2.75 2.68 

Val 2 3.29 3.72 4.62 3.54 4.65 4.44 4.23 3.44 3.05 3.52 2.69 3.37 3.35 3.27 

Val 3 3.46 4.24 4.77 4.09 5.08 4.89 4.83 3.99 3.04 3.33 3.07 3.49 3.23 3.22 

Val 4 3.53 4.14 4.90 3.99 4.90 4.87 4.72 4.19 3.21 3.56 3.20 3.71 3.43 3.38 

Val 5 2.33 2.01 2.93 2.18 2.75 2.69 2.60 2.49 2.55 2.22 1.85 2.37 2.28 2.35 

Val 6 2.29 1.95 2.84 2.05 2.67 2.58 2.55 1.91 2.42 2.16 1.84 2.24 2.37 2.31 

Val 7 3.31 2.95 3.85 2.93 3.61 3.59 3.55 3.42 3.21 3.25 2.77 3.26 3.25 3.24 

Val 8 3.12 3.66 4.35 3.54 4.28 4.16 3.98 3.40 3.14 3.15 2.93 3.29 3.20 3.27 

Val 9 2.20 3.04 3.77 3.09 3.64 3.80 3.40 2.99 2.58 2.12 3.13 2.54 2.28 2.49 

Val 10 2.52 3.08 4.34 3.17 4.03 4.23 3.77 3.17 3.03 2.43 3.08 2.89 2.71 2.90 

Val 11 3.02 2.70 2.58 2.64 2.76 2.81 2.71 3.42 2.88 3.28 2.68 3.11 2.95 3.00 

Val 12 2.43 1.86 1.71 1.75 1.88 1.84 1.88 2.33 2.10 2.78 2.06 2.33 2.41 2.25 

Val 13 3.25 2.46 1.95 2.47 2.72 2.06 2.46 2.87 2.79 3.58 1.27 2.90 3.07 2.87 

Field 1 3.04 3.77 3.40 3.33 3.44 3.69 3.59 3.05 2.52 2.84 3.12 3.10 2.98 3.06 

Field 2 2.53 3.30 2.56 3.00 2.73 2.95 2.74 2.71 2.24 2.67 2.93 2.72 2.57 2.60 

Field 3 3.03 4.37 3.81 4.03 3.75 4.45 3.83 3.34 3.04 2.72 4.05 3.50 3.23 3.50 

Field 4 3.47 4.85 3.89 4.65 3.98 4.46 3.81 3.72 3.62 3.48 4.60 3.95 3.71 3.93 

Field 5 3.37 4.83 3.09 4.29 3.52 3.74 3.74 3.37 2.62 3.38 3.45 3.38 3.23 3.26 

Field 6 3.48 4.96 3.01 4.54 3.43 3.67 3.48 3.30 2.99 3.80 3.80 3.58 3.52 3.52 

Field 7 3.15 4.30 3.25 4.08 3.64 3.74 3.44 3.29 2.97 3.10 3.55 3.31 3.16 3.29 

Field 8 3.77 4.73 3.63 4.73 3.72 4.00 3.44 3.76 3.90 4.11 4.92 4.05 3.94 4.00 
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APPENDIX B 

REPRESENTATIVE FTIR-ATR SPECTRAL PROFILES FROM ADAXIAL 

SURFACE OF GENOVESE BASIL, BERMUDA GRASS, DANDELION LEAF, 

JOHNSON GRASS AND SUNFLOWER LEAF. 

.   

Basil, Genovese

 60

 80

 100

%
R

Bermuda grass

 60

 80

 100

%
R

Dandelion leaf

 60

 80

 100

%
R

Johnson grass

 60

 80

 100

%
R

Sunflower leaf

 60

 80

 100

%
R

 1000   1500   2000   2500   3000   3500   4000  

Wavenumbers (cm-1)



119 

 

 

APPENDIX C 

CUTICULAR WAX PREDICTIONS ON FRESH AND REHYDRATED DRIED 

LEAVES  

Table B15. Cuticular wax predicted on  fresh spinach leaves (n=48) by each of the 14 best 

performing models with 4 or 5 predictor frequencies.  

Sample 

Predicted wax on fresh leaf  by each model (μg/cm
2
) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 2.91 3.83 2.42 5.22 3.84 1.92 2.67 2.56 2.85 2.44 2.58 3.15 3.38 3.99 

2 3.60 5.76 3.58 7.90 5.54 2.53 3.89 4.16 3.89 3.21 3.71 3.85 4.59 5.87 

3 3.54 4.67 3.41 6.50 5.10 2.88 3.73 3.34 3.60 3.20 3.42 3.86 4.03 5.25 

4 3.06 4.19 3.42 5.13 4.40 1.61 3.88 3.62 3.16 2.58 2.77 4.22 3.91 3.73 

5 3.32 4.98 3.11 7.33 5.04 2.63 3.32 3.88 3.43 2.96 3.26 3.40 3.89 5.64 

6 3.09 4.64 3.26 6.33 4.75 1.76 3.77 4.09 3.33 2.62 2.95 3.89 4.18 4.69 

7 3.54 4.44 3.14 6.21 4.91 2.83 3.41 2.88 3.60 3.14 3.34 3.66 4.26 5.13 

8 3.32 5.38 2.69 6.95 4.48 2.51 2.86 3.45 3.44 2.94 3.33 3.04 4.01 4.90 

9 3.04 4.57 3.33 5.60 4.39 2.22 3.76 3.72 3.34 2.76 3.10 3.71 3.95 4.14 

10 2.61 4.54 2.91 6.03 4.54 1.76 3.53 3.30 3.16 2.43 2.91 3.32 3.95 4.43 

11 3.11 4.42 2.53 6.70 4.53 2.40 2.79 3.17 3.28 2.69 3.01 2.93 4.15 5.37 

12 2.39 4.37 2.65 5.56 4.10 1.13 3.16 3.00 2.83 2.03 2.56 3.07 3.70 3.79 

13 2.90 3.70 2.59 4.58 3.55 2.05 2.88 3.04 2.82 2.45 2.54 3.30 3.31 3.44 

14 3.61 4.93 3.55 6.34 4.96 2.28 4.02 4.08 3.79 3.14 3.44 4.20 4.53 4.86 

15 3.32 4.42 3.43 5.70 4.86 2.54 3.75 2.99 3.35 2.98 3.21 3.84 3.64 4.47 

16 2.54 3.85 2.64 5.81 4.17 1.63 2.76 2.92 2.43 2.15 2.23 3.23 2.71 4.25 

17 3.40 3.98 2.85 5.14 4.08 2.80 3.02 2.75 3.28 2.99 3.06 3.40 3.58 4.22 

18 3.32 4.24 2.99 5.36 4.21 2.78 3.26 3.34 3.30 2.99 3.10 3.50 3.59 4.22 

19 3.56 4.42 3.40 5.35 4.51 2.72 3.68 3.38 3.50 3.15 3.29 3.92 3.91 4.21 

20 4.14 5.44 4.25 7.54 6.08 3.17 4.53 4.09 4.25 3.74 4.05 4.59 4.80 6.16 

21 3.21 4.25 3.77 4.83 4.63 2.02 4.21 3.31 3.29 2.83 3.04 4.44 3.70 3.58 

22 4.41 5.39 4.46 6.51 5.76 3.25 4.92 4.30 4.53 3.96 4.22 5.09 5.21 5.31 

23 3.88 5.10 3.91 6.27 5.34 2.78 4.29 3.67 3.93 3.43 3.66 4.53 4.64 4.82 

24 3.61 4.97 3.75 6.16 5.21 2.62 4.29 3.58 3.89 3.26 3.66 4.17 4.50 4.83 

25 4.43 5.74 4.17 6.68 5.63 3.81 4.57 3.97 4.63 4.11 4.49 4.53 5.25 5.36 

26 4.40 5.93 3.92 7.31 5.88 3.74 4.34 3.70 4.65 4.03 4.49 4.22 5.51 5.82 

27 2.23 3.66 2.52 4.23 3.37 0.99 2.66 2.06 2.36 1.90 2.31 2.76 2.52 2.85 

28 3.82 4.94 4.20 5.50 5.19 2.76 4.77 3.89 4.08 3.47 3.84 4.68 4.79 4.35 
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29 4.80 6.73 3.52 9.42 6.29 4.08 3.89 4.55 5.06 4.32 4.78 3.97 6.29 7.50 

30 3.76 4.09 3.45 4.41 4.18 2.96 3.84 3.43 3.76 3.34 3.49 4.05 4.35 3.78 

31 3.20 4.47 3.39 5.32 4.30 2.43 3.64 3.40 3.39 2.96 3.25 3.63 3.66 4.07 

32 3.15 4.55 2.61 5.24 4.07 2.33 2.98 2.49 3.26 2.81 3.17 3.07 3.77 3.83 

33 4.04 5.33 4.14 6.84 5.72 2.74 4.73 4.16 4.36 3.57 3.98 4.78 5.36 5.50 

34 3.76 5.26 3.66 7.46 5.95 3.07 3.96 3.05 3.83 3.41 3.73 3.99 4.30 5.92 

35 3.84 4.68 3.69 6.64 5.45 3.20 3.92 3.22 3.92 3.49 3.72 4.04 4.54 5.70 

36 4.33 5.66 4.13 7.33 6.04 3.56 4.52 3.98 4.44 3.93 4.23 4.53 5.11 5.88 

37 3.82 4.70 3.23 6.01 4.75 3.32 3.60 3.34 3.97 3.53 3.78 3.70 4.49 5.07 

38 4.51 5.47 3.23 7.69 5.48 4.05 3.42 3.58 4.47 4.06 4.26 3.71 5.14 6.49 

39 4.34 5.96 3.82 7.67 6.07 3.68 4.04 3.25 4.45 3.94 4.38 3.95 5.11 6.05 

40 4.23 5.42 4.15 6.84 5.98 3.35 4.90 4.00 4.58 3.89 4.28 4.76 5.38 5.68 

41 3.62 5.76 3.62 6.25 4.68 2.98 4.25 4.89 3.90 3.37 3.75 3.96 4.20 4.19 

42 4.11 5.87 3.34 8.07 5.42 3.39 3.65 4.60 4.28 3.62 3.95 3.84 5.30 6.18 

43 3.17 5.40 3.26 7.73 5.35 2.38 3.78 4.05 3.70 2.97 3.48 3.61 4.62 5.85 

44 2.27 4.33 2.70 4.31 3.52 1.01 3.51 3.52 2.77 2.02 2.59 3.14 3.30 2.54 

45 2.97 4.72 3.12 5.16 4.33 1.55 3.60 2.90 3.25 2.57 3.13 3.53 3.85 3.52 

46 4.11 4.80 3.99 6.54 5.74 2.79 4.33 3.47 4.02 3.58 3.74 4.78 4.69 5.48 

47 3.07 3.76 2.54 4.55 3.89 2.53 2.63 1.95 2.71 2.67 2.70 3.05 2.61 3.44 

48 3.77 4.92 3.11 6.53 4.91 3.36 3.54 3.41 4.00 3.47 3.79 3.56 4.76 5.39 

 

Table B16. Cuticular wax predicted on  rehydrated spinach leaves (n=48) by each of the 14 best 

performing models with 4 or 5 predictor frequencies. Rehydrated leaf cuticular wax predictions 

have been multiplied by 75.4% to account for shrinkage due to drying/rehydration process. 

Sample 

Predicted wax on rehydrated dried leaf  by each model (μg/cm
2
) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 3.18 3.93 2.80 2.83 3.31 3.17 3.38 2.24 3.16 3.05 3.12 3.29 3.20 1.90 

2 2.77 3.52 2.73 3.13 3.15 2.46 3.16 2.64 2.78 2.61 2.64 3.15 2.79 2.19 

3 5.15 6.10 5.06 4.10 5.61 5.14 5.99 3.47 5.37 4.96 5.25 5.63 6.01 3.07 

4 4.23 5.52 4.83 5.28 5.40 3.23 5.58 4.88 4.48 3.87 4.08 5.50 5.12 3.79 

5 3.03 3.63 2.65 3.10 3.21 2.60 3.09 2.62 2.83 2.63 2.53 3.48 3.11 1.95 

6 3.50 4.24 3.62 3.96 4.15 2.79 4.14 3.42 3.52 3.13 3.16 4.30 3.98 2.84 

7 3.25 3.71 3.38 3.22 3.74 2.86 3.75 2.63 3.32 3.08 3.16 3.70 3.43 2.60 

8 3.47 5.00 3.60 4.17 4.20 3.03 4.35 3.83 3.68 3.22 3.35 4.36 4.28 2.49 

9 3.45 4.72 4.08 4.39 4.59 2.67 4.75 3.80 3.78 3.21 3.38 4.72 4.51 3.03 

10 2.47 3.36 2.69 2.66 3.29 1.83 3.20 1.77 2.43 2.15 2.16 3.55 2.83 1.42 

11 3.82 4.15 4.16 4.08 4.46 3.39 4.55 3.71 4.05 3.71 3.88 4.26 4.15 3.76 

12 3.74 4.06 3.99 3.89 4.45 2.95 4.58 3.48 3.85 3.38 3.48 4.62 4.26 3.26 

13 4.17 4.79 4.42 3.86 4.77 3.84 5.04 3.41 4.44 4.06 4.27 4.75 4.80 3.25 

14 3.69 4.03 3.52 3.63 4.10 3.02 4.06 3.08 3.63 3.36 3.41 4.13 3.80 2.93 
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15 4.10 4.96 4.81 4.92 5.21 3.29 5.57 4.85 4.54 3.92 4.20 5.17 5.15 4.10 

16 3.20 3.84 3.02 3.21 3.52 2.86 3.61 2.95 3.20 3.01 3.06 3.60 3.31 2.35 

17 3.15 3.69 2.96 3.36 3.39 2.97 3.48 3.04 3.36 3.09 3.21 3.21 3.45 2.82 

18 4.45 4.99 4.21 4.78 4.59 4.23 4.77 4.68 4.71 4.32 4.44 4.48 5.03 4.16 

19 3.54 3.97 3.40 3.40 3.85 3.07 4.02 3.16 3.67 3.31 3.46 3.86 4.04 2.83 

20 3.73 4.34 4.04 4.30 4.39 2.99 4.61 4.13 3.98 3.50 3.65 4.42 4.46 3.57 

21 4.10 5.62 4.57 5.16 5.34 3.05 5.57 4.68 4.47 3.75 4.03 5.47 5.44 3.51 

22 4.39 5.66 4.97 5.84 5.56 3.21 5.75 5.35 4.84 4.12 4.42 5.54 5.74 4.55 

23 3.81 4.53 3.85 4.27 4.25 3.19 4.48 4.07 4.10 3.65 3.86 4.14 4.42 3.53 

24 3.79 4.47 4.11 4.17 4.62 2.99 4.78 3.73 4.02 3.52 3.69 4.67 4.54 3.33 

25 4.30 4.08 3.58 3.16 4.23 4.22 4.03 2.24 4.05 4.08 3.97 4.15 3.94 2.92 

26 3.75 3.32 2.99 2.28 3.63 3.67 3.44 1.45 3.43 3.53 3.41 3.63 3.25 2.25 

27 3.38 4.21 3.33 3.81 3.77 2.98 3.95 3.47 3.65 3.30 3.48 3.63 3.79 3.01 

28 4.76 4.43 4.63 3.66 5.18 4.39 5.20 2.92 4.74 4.57 4.64 5.04 4.77 3.73 

29 3.50 4.51 3.43 3.96 3.96 3.30 4.10 3.45 3.76 3.45 3.63 3.75 3.98 3.00 

30 5.21 5.05 4.53 4.46 5.34 5.25 5.04 3.27 5.11 5.00 5.05 4.91 5.17 4.31 

31 4.64 5.53 4.48 5.16 5.28 4.64 5.12 4.09 4.81 4.50 4.62 4.96 5.17 4.14 

32 3.84 5.20 3.81 4.47 4.79 3.56 4.60 3.25 3.89 3.58 3.72 4.68 4.49 2.91 

33 3.58 3.87 3.56 3.56 4.12 2.81 4.10 2.89 3.60 3.31 3.34 4.17 3.75 2.95 

34 5.15 5.66 4.78 3.67 5.57 5.12 5.59 2.88 4.89 4.74 4.83 5.61 5.15 2.64 

35 3.65 3.94 3.86 3.84 4.32 3.27 4.27 3.16 3.74 3.49 3.57 4.12 3.80 3.40 

36 4.93 5.56 4.54 4.91 5.31 4.87 5.25 4.19 5.03 4.68 4.82 5.08 5.40 4.05 

37 2.97 3.68 2.38 2.01 3.01 3.14 3.07 1.41 2.69 2.76 2.71 3.18 2.58 0.90 

38 3.08 3.69 2.31 2.15 3.09 3.24 2.84 1.01 2.73 2.84 2.77 3.10 2.63 1.09 

39 3.96 4.22 3.61 3.74 4.22 3.76 4.02 2.93 3.85 3.73 3.71 4.07 3.82 3.14 

40 3.75 4.15 3.18 3.42 3.89 3.34 3.76 2.86 3.46 3.34 3.23 4.07 3.55 2.40 

41 4.20 4.80 3.76 4.21 4.26 4.07 4.28 3.79 4.16 4.05 4.04 4.20 3.99 3.33 

42 3.56 3.80 3.15 3.31 3.60 3.27 3.49 2.73 3.40 3.28 3.23 3.67 3.43 2.65 

43 3.46 3.63 2.92 3.17 3.42 3.45 3.40 2.66 3.53 3.39 3.39 3.33 3.65 2.85 

44 3.63 4.22 3.40 3.60 4.08 3.16 3.98 3.16 3.40 3.25 3.20 4.20 3.43 2.48 

45 3.87 4.02 3.72 3.44 4.50 2.93 4.47 2.71 3.84 3.52 3.57 4.60 4.20 2.91 

46 4.29 4.47 4.53 4.13 5.13 3.21 5.32 3.72 4.39 3.96 4.06 5.28 4.89 3.64 

47 4.36 4.22 3.56 3.50 4.13 4.32 4.02 2.92 4.21 4.19 4.12 4.01 4.13 3.27 

48 4.04 3.43 3.10 2.24 3.58 4.42 3.43 1.48 3.84 3.97 3.89 3.38 3.65 2.55 
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APPENDIX D 

MATLAB PROGRAM FOR ANALYZING PECAN TREE IMAGES 

%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

%This program reads in images of pecan trees, allows manual selection  

%of reflection targets and calculates vegetative indices. Additional %analysis of VI data is also performed 
% 
%James Hardin 
%24Jan2012 
%++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
% Read in image files, select reflection target and tree area.   
% List row and tree number in nX2 array 
SeptTrees=[2,12;2,13;2,15;2,16;2,17;2,18;2,19;2,20;3,14;3,16;3,18;3,19;3,20;3,21;4,14;4,16;4,17;4,18;4,20

;4,21;5,16;5,19;5,20;5,21;5,22;7,18;7,19;7,22;7,23;8,17;8,18;8,19;8,21;8,22;8,23;11,16;11,17;12,15]; 
OctTrees=[2,12;2,13;2,15;2,16;2,17;2,19;2,20;3,14;3,16;3,18;3,19;3,20;3,21;4,14;4,16;4,17;4,18;4,20;4,21;

5,16;5,19;5,20;5,21;5,22;7,18;7,19;7,22;7,23;8,17;8,18;8,19;8,21;8,22;8,23;11,16;11,17;12,15;12,16;12,17]

; 
RowCount=1; %initialize counter for number of trees 
for Mon = 9:10; %9 for Sept, 10 for Oct; 
    if Mon==9; 
        Month='Sept'; 
        Trees=SeptTrees; 
        [NumTrees, ~]=size(SeptTrees); 
    elseif Mon==10; 
        Month = 'Oct'; 
        Trees=OctTrees; 
        [NumTrees,~]=size(OctTrees);         
    end 
  
    for t=1:NumTrees; 
        Row=Trees(t,1); 
        SRow=int2str(Row); 
        if Row<7 
            Cvar=1; 
        else Cvar=2; 
        end 
        Tree=Trees(t,2); 
        STree=int2str(Tree); 
        % build file names and import 
        IR = imread(strcat('I:\Pecans\SPAD meter\',(Month),'2010 images\','r',(SRow),'t',(STree),' - IR.tif')); 
        Rd = imread(strcat('I:\Pecans\SPAD meter\',(Month),'2010 images\','r',(SRow),'t',(STree),' - Rd.tif')); 
        Gn = imread(strcat('I:\Pecans\SPAD meter\',(Month),'2010 images\','r',(SRow),'t',(STree),' - Gn.tif')); 
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        figure (1), imshow(IR)  %show the IR image for manual selection of target and leaf area 
        title([Month ' Row ' SRow ' Tree ' STree ' IR image, Click center of 99% target then select leaf area by 

dragging mouse from lower left to upper right, then crop']); 
  
        % FIND INTENSITY FROM REFERENCE STD 
        % Find reference by clicking center of 99% reflective target. 
        % "Backspace" to unselect, "enter" to chose selected point 
        [x,y] = getpts(gcf); 
        x = round(x); 
        y = round(y); 
  
% Find intensity of Rd and IR targets using 3 x 7 pixel region  from image 
        if Mon==9||Row==8||Tree==17;  
            IR98Val= 225;   % These values for obscure target in Sept 2010 R8T17 image 
            IR10Val=51; 
            Rd98Val=193; 
            Rd10Val=25; 
            Gn98Val=229; 
            Gn10Val=29;         
        else 
            IR98Val=sum(sum(IR(y-3:1:y+3,x-1:1:x+1)))/21; 
            IR10Val=sum(sum(IR(y-3:1:y+3,x+14:1:x+16)))/21; 
            Rd98Val=sum(sum(Rd(y-3:1:y+3,x-1:1:x+1)))/21; 
            Rd10Val=sum(sum(Rd(y-3:1:y+3,x+14:1:x+16)))/21; 
            Gn98Val=sum(sum(Gn(y-3:1:y+3,x-1:1:x+1)))/21; 
            Gn10Val=sum(sum(Gn(y-3:1:y+3,x+14:1:x+16)))/21; 
        end 
  
        % Crop image by dragging from lower left to upper right 
        % Right click, then select "crop image" 
        [IRcrop rect] = imcrop(IR); 
  

% Create cropped red image from coordinates returned from IR crop 
        Rdcrop = imcrop(Rd, rect); 
        Gncrop = imcrop(Gn, rect); 
  
        % show cropped images.... 
        % figure, imshow(IRcrop); 
        % title('Infrared image of analysis area') 
        % figure, imhist(IRcrop); 
        % title('IR pixel histogram of analysis area') 
  

% STRETCH RED AND IR MATRICES TO 10-98% SCALE, DISPLAY IMAGES AND 

HISTOGRAMS 
%Find slope (M) and intercept (B) of response curve from images   using target values.  

        RdM = (Rd98Val - Rd10Val)/(98-10); 
        IRM = (IR98Val - IR10Val)/(98-10); 
        GnM = (Gn98Val - Gn10Val)/(98-10); 
        RdB = Rd98Val - RdM * 98; 
        IRB = IR98Val - IRM * 98; 
        GnB = Gn98Val - GnM * 98; 
        % Slope adjustment parameter 
        RdMAdjust = 2.55/RdM; 
        IRMAdjust = 2.55/IRM; 
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        GnMAdjust = 2.55/GnM; 
        % Create stretched images using intercept and slope adjustment  
        RdStretch = (Rdcrop - RdB)* RdMAdjust;  
        IRStretch = (IRcrop - IRB)* IRMAdjust;  
        GnStretch = (Gncrop - GnB)* GnMAdjust; 
  
        %find peak value in IR historgram for later calculations 
        %figure, imhist(IRStretch); 
        % title('IR pixel histogram of analysis area') 
        [Count, Index] = imhist(IRStretch); 
        [Peak, Index] = max(Count); 
  
        % Investigate pixel intensity 
        for r=1:9; 
            IRHistPeak=r*25; %Step through peaks from 25 to 200 
            if r==9 
                IRHistPeak = Index; %use the peak value found earlier  
            end 
            % create matrix where leaf pixels are 1 and all else =0 
            IRBinHigh = im2bw(IRStretch, (IRHistPeak+50)/255); 
            IRBinLow = im2bw(IRStretch, IRHistPeak/255); 
            IRBin = IRBinHigh .* IRBinLow; %flag pixels in range 
            IRBin = uint8(IRBin); % Change to uint8 for mult later; 

% Discard non-leaf pixels by multipling red and IR images by "leaf" binary image, these 

are the pixels that will be analyized 
            IRThres = IRStretch .* IRBin; 
            RdThres = RdStretch .* IRBin;  
            GnThres = GnStretch .* IRBin;  
            %Convert IR and Red images to gray scale w/values 0 to 1 
            NIR = im2single(IRThres); 
            Red = im2single(RdThres); 
            Grn = im2single(GnThres); 
            % Calculate Index image 
            NDVI = (NIR - Red)./(NIR + Red); 
            NDVIGn = (NIR - Grn)./(NIR + Grn); 
            NRI = (Grn - Red)./(Grn + Red); 
            %convert NaN's to 0's 
            B=isnan(NDVI);  
            NDVI(B)=0;  
            C=isnan(NDVIGn);  
            NDVIGn(C)=0;  
            D=isnan(NRI);  
            NRI(D)=0; 
  
            % Compute with lower cutoff only 
            IRBinLow = uint8(IRBinLow); % Change to uint8 

% Discard non-leaf pixels by multipling red and IR images by "leaf" binary image, these 

are the pixels that will be analyized 
            IRThresLow = IRStretch .* IRBinLow; 
            RdThresLow = RdStretch .* IRBinLow;  
            GnThresLow = GnStretch .* IRBinLow;  
  
            %Convert IR and Red images to gray scale w/ values 0 to 1 
            NIRLow = im2single(IRThresLow); 
            RedLow = im2single(RdThresLow); 
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            GrnLow = im2single(GnThresLow); 
  
            % Calculate Index image 
            NDVILow = (NIRLow - RedLow)./(NIRLow + RedLow); 
            NDVIGnLow = (NIRLow - GrnLow)./(NIRLow + GrnLow); 
            NRILow = (GrnLow - RedLow)./(GrnLow + RedLow); 
  
            %convert NaN's to 0's 
            B=isnan(NDVILow);  
            NDVILow(B)=0;  
            C=isnan(NDVIGnLow);  
            NDVIGnLow(C)=0;  
            D=isnan(NRILow);  
            NRILow(D)=0; 
  
            % NDVI Moment calculation 
            IRBinSum = sum(sum(IRBin)); 
            NDVIMean = sum(sum(NDVI))/IRBinSum; 
            NDVIGnMean = sum(sum(NDVIGn))/IRBinSum; 
            NRIMean = sum(sum(NRI))/IRBinSum; 
            IRRefl = sum(sum(NIR))/IRBinSum; 
            RedRefl = sum(sum(Red))/IRBinSum; 
            GrnRefl = sum(sum(Grn))/IRBinSum; 
            SR=IRRefl/RedRefl; 
             
            IRBinSumLow = sum(sum(IRBinLow)); 
            NDVIMeanLow = sum(sum(NDVILow))/IRBinSumLow; 
            NDVIGnMeanLow = sum(sum(NDVIGnLow))/IRBinSumLow; 
            NRIMeanLow = sum(sum(NRILow))/IRBinSumLow; 
            IRReflLow = sum(sum(NIRLow))/IRBinSumLow; 
            RedReflLow = sum(sum(RedLow))/IRBinSumLow; 
            GrnReflLow = sum(sum(GrnLow))/IRBinSumLow; 
            SRLow=IRReflLow/RedReflLow; 
             
            SumData(RowCount,:)=[Cvar Mon Row Tree r IRHistPeak NDVIMean NDVIGnMean NRIMean 

SR IRRefl RedRefl GrnRefl NDVIMeanLow NDVIGnMeanLow NRIMeanLow SRLow IRReflLow 

RedReflLow GrnReflLow IR10Val IR98Val Rd10Val Rd98Val Gn10Val Gn98Val]; 
            RowCount=RowCount+1; 
        end 
        %find size of 'out' so new entires are appended 
    end 
end 
  
%% Regression analysis to find the best threshold for leaf pixels 
Bass=xlsread('NDVIdata2.xlsx', 'data2'); 
IndVar=14;  %NDVI=7 NDVIGn=8 NRI=9 SR=10 IRRefl=11 RedRefl=12 GrnRefl=13 NDVILow=14 

NDVIGnLow=15  NRILow=16 SRLow=17 IRReflLow=18 RedReflLow=19 GrnReflLow=20 IR10Val=21 

IR98Val=22 Rd10Val=23 Rd98Val=24 Gn10Val=25 Gn98Val=26 
line=1; 
% Line numbers in XLSX file..... 
map=[0,25,50,75,100,125,150,175,200,225,249,273,297,321,345,369,393,417,441,454,467,480,493,506,51

9,532,545,558,573,588,603,618,633,648,663,678,693];  
for n=1:36; 
    top=map(n)+1; 
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    bot=map(n+1); 
    Y=Bass(top:bot,6); 
    X=[Bass(top:bot,IndVar),Bass(top:bot,IndVar+6)]; 
    [r c]=size(X); 
    Col = ones(r,1); %make a row vector of ones to concatenate to X 
    X1 = [Col, X]; 
    [b,~,~,~,stats] = regress(Y,X1); %stats (R2 statistic, F statistic, p value, and an estimate of the error 

variance) 
    %load Cvar, month, IRcutoff, b0, b1, R2,pVal into array 
    SumStats(line,:) = [1, Bass(top,2), Bass(top,1)*25, b(1,1), b(2,1), stats(1), stats(3)]; %first 18 are 

Pawnee, next 18 are Kanza 
    line=line+1; 
end 
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APPENDIX E 

SPAD READINGS AND NITROGEN ANALYSIS DATA 

 
Table D17. Tree data and associated chlorophyll meter readings and leaf nitrogen analysis results 

for study samples. 

 

   

SPAD reading (mean of 10)  Nitrogen analysis (% dry weight) 

Cultivar Row Tree 

N 

(kg/ha) May June July Aug. Sep. Oct. 

 

May June July Aug. Sep. Oct. 

Kanza 7 18 0 31.6 40.0 41.4 43.7 41.2 41.2  3.20 2.40 2.36 2.05 1.99 1.77 

Kanza 7 19 0 30.2 40.3 42.5 45.3 42.3 39.3  2.83 2.43 2.60 2.11 1.99 1.71 

Kanza 8 17 0 28.4 38.6 41.8 42.8 40.2 37.3  2.70 2.33 2.22 2.01 1.95 1.66 

Kanza 8 18 0 32.1 40.2 43.4 44.7 41.6 37.9  2.88 2.54 2.49 2.12 1.94 1.72 

Kanza 8 19 0 28.7 38.1 42.3 41.9 39.4 39.2  2.53 2.30 2.29 2.07 1.93 1.75 

Kanza 11 16 162 32.3 40.9 43.6 45.9 47.4 47.8  2.93 2.63 2.42 2.23 2.11 2.04 

Kanza 11 17 162 31.2 39.7 43.2 44.7 43.2 43.3  2.90 2.56 2.62 2.30 2.12 1.94 

Kanza 12 15 162 30.9 42.2 43.8 46.7 46.4 44.0  2.82 2.60 2.50 2.22 1.97 1.97 

Kanza 12 16 162 30.9 38.9 43.4 45.0 43.6 40.4  2.56 2.40 2.39 2.11 1.98 1.97 

Kanza 12 17 162 32.0 40.3 45.0 46.1 43.4 43.7  2.58 2.34 2.42 2.12 1.91 1.83 

Kanza 7 22 Clover 30.9 41.6 43.4 45.1 43.2 40.7  3.30 2.66 2.65 2.28 2.31 1.81 

Kanza 7 23 Clover 30.2 39.3 42.6 45.8 43.4 41.4  3.11 2.50 2.54 2.17 2.13 1.87 

Kanza 8 21 Clover 31.5 40.7 42.5 44.3 42.8 41.7  3.01 2.55 2.54 2.20 2.32 1.92 

Kanza 8 22 Clover 29.2 37.5 41.1 41.6 40.6 37.6  2.91 2.48 2.56 2.16 2.20 1.74 

Kanza 8 23 Clover 30.0 39.0 43.2 44.8 41.7 37.7  3.11 2.55 2.59 2.17 2.19 1.61 

Maramec 5 4 309 28.6 40.8 44.5 46.1 46.1 .  2.58 2.43 2.34 2.13 2.02 . 

Maramec 6 6 309 29.5 41.2 45.3 46.5 47.2 .  2.74 2.50 2.31 2.17 2.04 . 

Maramec 8 6 309 28.1 40.0 44.4 43.6 45.0 .  2.65 2.46 2.42 2.15 2.12 . 

Maramec 10 6 309 30.4 38.7 40.3 37.6 44.0 .  3.05 2.24 2.06 2.03 2.07 . 

Maramec 12 7 309 30.2 41.7 46.9 42.4 44.2 .  2.70 2.40 2.43 1.94 2.03 . 

Maramec 13 7 309 31.5 40.4 46.3 45.1 46.1 .  2.82 2.57 2.43 2.22 2.17 . 

Maramec 14 7 309 27.9 43.7 49.5 46.4 47.6 .  2.83 2.69 2.55 2.23 2.28 . 

Maramec 15 6 309 29.4 44.0 47.1 48.6 48.6 .  2.87 2.64 2.56 2.27 2.20 . 

Maramec 16 6 309 29.2 44.0 47.3 47.6 48.6 .  2.77 2.74 2.49 2.27 2.15 . 

Maramec 18 6 309 26.2 41.0 47.4 46.1 48.6 .  2.91 2.44 2.52 2.29 2.22 . 

Pawnee 2 12 50 37.6 42.3 47.1 48.8 46.6 45.6  3.55 2.63 2.73 2.35 2.36 . 

Pawnee 2 13 50 34.5 43.6 44.8 47.6 46.4 42.5  3.32 2.47 2.54 2.20 2.16 1.84 

Pawnee 2 15 50 35.0 45.1 47.8 50.7 46.9 42.9  3.74 2.79 2.90 2.37 2.26 1.84 

Pawnee 3 14 50 36.1 43.7 47.0 48.3 47.9 42.0  3.70 2.63 2.71 2.22 2.20 1.94 
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Pawnee 4 14 50 33.2 45.3 48.2 47.7 46.9 41.3  3.50 2.56 2.78 2.20 2.13 1.94 

Pawnee 2 16 106 33.9 43.2 46.3 48.5 45.5 43.5  3.77 2.59 2.86 2.26 2.24 1.87 

Pawnee 2 17 106 35.8 48.2 45.6 48.3 47.5 44.1  3.92 2.84 2.91 2.40 2.39 1.87 

Pawnee 2 18 106 32.5 44.0 46.4 48.5 47.8 46.8  3.80 2.69 2.81 2.23 2.30 1.97 

Pawnee 2 19 106 35.4 44.2 47.3 48.6 47.7 46.0  3.72 2.70 2.74 2.34 2.28 1.95 

Pawnee 2 20 106 36.4 41.0 46.7 46.9 45.9 41.5  3.81 2.44 2.81 2.27 2.21 2.09 

Pawnee 3 16 162 33.6 43.5 47.2 47.7 47.2 44.1  3.27 2.58 2.87 2.28 2.27 1.97 

Pawnee 3 18 162 34.7 42.7 47.8 48.6 48.1 43.5  3.59 2.74 2.95 2.34 2.32 1.96 

Pawnee 3 19 162 37.0 45.8 48.7 49.3 49.6 46.2  3.37 2.91 2.88 2.39 2.41 2.10 

Pawnee 3 20 162 34.8 45.1 47.6 50.8 49.5 46.7  3.67 2.87 2.83 2.54 2.48 2.13 

Pawnee 3 21 162 37.8 45.3 50.6 48.6 50.4 47.1  4.18 2.75 2.95 2.41 2.42 2.12 

Pawnee 4 16 274 36.3 44.8 48.9 50.0 46.8 43.3  3.70 2.76 2.90 2.36 2.34 2.01 

Pawnee 4 17 274 35.8 45.6 49.0 52.1 50.3 49.0  3.97 2.82 2.92 2.46 2.46 2.24 

Pawnee 4 18 274 35.0 47.8 50.9 49.1 50.1 47.3  4.08 2.80 2.93 2.34 2.33 2.03 

Pawnee 4 20 274 35.5 47.8 49.8 50.1 49.5 47.8  4.03 2.85 2.96 2.39 2.47 2.13 

Pawnee 4 21 274 34.9 47.7 48.0 50.6 50.1 50.9  3.98 3.00 3.14 2.57 2.61 2.25 

Pawnee 5 16 498 36.2 46.9 51.8 52.3 49.6 48.7  4.04 2.86 3.08 2.56 2.42 2.10 

Pawnee 5 19 498 37.3 47.5 48.7 51.4 52.1 48.3  4.23 2.90 2.83 2.54 2.59 2.23 

Pawnee 5 20 498 38.3 46.3 49.7 51.0 49.2 46.3  3.76 2.71 3.04 2.44 2.37 2.09 

Pawnee 5 21 498 37.4 47.9 49.3 51.7 51.1 50.4  4.22 2.99 2.92 2.58 2.52 2.29 

Pawnee 5 22 498 36.7 46.1 51.4 51.6 50.0 50.7  4.02 2.77 3.04 2.55 2.40 2.19 
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