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ABSTRACT 

 

Fecal bacteria being transported by surface runoff and infiltration from fields 

treated with manure as fertilizer may result in contamination of adjacent water bodies. 

During infiltration, the presence of macropores and biopores allows manure effluent 

constituents and microorganisms to rapidly bypass a portion of the soil matrix, reaching 

deeper soils and perhaps interconnecting to subsurface drainage systems. This research 

investigated the significance of biopores in facilitating fecal bacteria transport to deeper 

soils and subsurface drainage systems and incorporated fecal bacteria fate and transport 

routines and a biopore concept in the Root Zone Water Quality Model (RZWQM).  A 

laboratory study was conducted using artificial biopores in a 28 cm by 50 cm wide and 95 

cm long soil column to investigate biopores facilitating fecal bacteria transport to 

subsurface drainage systems in two contrasting soils. Soil sorption of fecal bacteria 

relative to constituents in swine effluent was investigated using batch experiments with 

natural and artificial soils treated with liquid swine manure at different concentrations. 

For field conditions, transport of fecal bacteria in surface runoff and the effect of the time 

lag between poultry litter application and the occurrence of a 2-yr and 5-yr rainfall event 

were investigated on a series of 2 m by 2 m pasturelands plots. Finally, routines were 

incorporated in RZWQM to simulate fecal bacteria fate and transport through the soil 

matrix, macropores, and surface runoff. Also, an open surface connected biopore concept 

was developed to simulate rapid flow and fecal bacteria transport bypassing a portion of 

the soil matrix and interconnecting to subsurface drainage systems.  
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Biopores provided a mechanism for rapid flow bypassing a portion of the soil 

profile and transporting fecal bacteria to deeper soils and tile drainage systems. The 

transport process was as a function of the soil type, the layer thickness above or below 

the biopore, and the presence of macropores from soil structure. Manure effluents 

primarily consisted of sessile fecal bacteria and effluent constituents that increased the 

soil bulk solution pH when in contact with soils and provided exchangeable ions that may 

promote soil dispersion, decreasing soil sorption of fecal bacteria. A predictive equation 

was developed to determine the parameters of a nonlinear equation that described soil 

sorption of E. coli as a function of clay content, total carbon and amorphous Al and Fe. 

Event mean concentrations (EMC) of fecal bacteria in surface runoff from poultry litter 

amended plots were observed to decrease between 0 hr and 24 hr and then increase 120 

hr following manure application. Also, fecal bacteria from sources independent of the 

immediate poultry litter application significantly contributed to the total E. coli EMCs. 

The updated RZWQM predicted rapid flow and fate and transport of fecal bacteria in the 

soil matrix, macropores, biopores, subsurface drains, and surface runoff. The biopore 

concept represented the observed rapid flow and fecal bacteria transport at the subsurface 

drain during the soil column experiments. However, the modified RZWQM poorly 

represented flow in the drain during the recession part of the hydrograph and surface 

runoff. This research contributed to the understanding of fate and transport of fecal 

bacteria in soils in the presence of biopores and will be useful in assessing further 

mitigation and regulatory strategies relative to fecal bacteria contamination of soil and 

water. 
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INTRODUCTION 

 

Following manure application, rapid transport of fecal bacteria in runoff and 

infiltration may result in fecal bacteria contamination of deeper soils and adjacent water 

bodies. Fecal microorganisms are a group of virus, bacteria and protozoa commonly not 

pathogenic. Investigations for fecal soil and water contamination, and fate and transport 

are typically conducted using indicator organisms such as Escherichia coli and 

Enterococcus faecalis. In most cases, indicator organisms exhibit negative growth rates 

in soil and water following manure application but detection is still possible after several 

weeks in some cases.  

Macropores and biopores play an important role in facilitating fecal bacteria 

transport to deeper soils and to drainage systems, and help explain the rapid fecal bacteria 

breakthrough concentrations observed in subsurface drain pipes following manure 

application, under rainfall or irrigation events. Macropores from soil structure are not 

sufficient to explain the rapid fecal bacteria transport to drainage systems but rather serve 

as a complementary flow pathway and transport mechanism in the presence of biopores. 

Macropores and mesopores found in the soil layer thickness between the end of the 

biopore and drain pipe or between the surface and the biopore allow open surface 

connected and buried surface disconnected biopores to interconnect to subsurface drains.  

Manure effluent constituents possess the capability to impact the soil bulk 

solution pH and provide solute concentrations that may result in different fecal bacteria 
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sorption mechanisms as a function of the effluent concentrations, soil properties, and 

sessile or planktonic fecal bacteria population. This effect may further impact fecal 

bacteria transport through macropores and biopores, and deeper soils interconnecting 

drainage systems. Available fecal bacteria on soils following litter application may 

exhibit varied die-off rates as a function of environmental variables and lag time between 

manure application and the occurrence of rainfall or irrigation events. This condition may 

play an important role in further defining the fecal bacteria population available for 

mixing and transport in runoff and through macropores and biopores. 

Extensive experimentation and modeling on soil fate and transport of fecal 

bacteria have been conducted at the field and laboratory scale. In the laboratory, the use 

of mono-strain fecal indicator organisms suspended in inert solutions has been a common 

practice with disturbed and undisturbed soils. At the field scale, a more comprehensive 

approach has been used, but more research is still needed due to the physical, chemical 

and biological complexity of the processes involved. On the other hand, modeling of soil 

fecal bacteria transport is frequently conducted with the idea of physical equilibrium 

occurring in a representative elementary volume (REV) using the Richards' equation and 

Green-Ampt method to describe flow in combination with the advection-dispersion 

equation. However, the presence of soil macropores and biopores in natural soils may 

invalidate the REV concept when vertical flow and contaminants move rapidly in the 

unsaturated soil profile without allowing horizontal equilibrium of water pressure and 

solute/contaminant concentrations. In the last decade a large effort has been in place on 

understanding and modeling this phenomenon using continuum, multi-continuum and 

network approaches.     
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The fate of fecal bacteria in soils is controlled by the bacteria strain 

characteristics, external variables (e.g., physical and chemical) and the microbial 

community. In the intestinal tract of warm-blooded animals, fecal bacteria exhibit stable 

populations with favorable environmental conditions and nutrient availability. After 

excretion, fecal bacteria are under stress by environmental and nutritional conditions and 

the competitive well-adapted microbial communities (e.g., virus, bacteria, protozoa, and 

nematodes) present in soils. Also, manure constituents found in aged manures (e.g., 

organic compounds, solutes, and microbial byproducts) can potentially modify soil 

properties when placed in contact with soils and result in diverse soil-bacteria or soil 

bacteria-substrate attachment mechanisms.  

 Soil fecal bacteria transport in the presence of macropores is mainly driven by 

advective processes occurring at the surface and in the subsurface. During rainfall or 

irrigation events, available fecal bacteria in top soils are transported through the surface, 

soil matrix, macropores and biopores with different flow regimes. In the absence of 

macropores and biopores, the soil matrix potentially immobilizes and inactivates fecal 

bacteria (e.g., planktonic and sessile) being transported during infiltration as a function of 

the pore size opening and sorptive properties. The occurrence of rapid vertical flow 

through biopores allows fecal bacteria to bypass a portion of the soil matrix, reaching 

deeper soils and perhaps interconnect with drainage systems. Although some fecal 

microorganisms possess motility, diffusion is most likely not an important fecal transport 

mechanism due to the fact that most of the fecal bacteria from manure effluents are in 

sessile form rather than free cells, and the preference of bacteria to be surface bonded. 

However, in those cases in which fecal bacteria colonize soils and establish mature 
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biofilms, release of fecal bacteria from biofilms in search of readily available nutrients 

can mimic diffusive transport mechanisms. Also, diffusion and dispersion of colloids 

carrying fecal bacteria can be present as a transport mechanism in some cases.   

This research investigated the significance of biopores in facilitating fecal bacteria 

transport to deeper soils and subsurface drainage systems and incorporated fecal bacteria 

fate and transport routines and a biopore concept in the Root Zone Water Quality Model 

(RZWQM). Four interrelated chapters form this dissertation: 

 Chapter 1 investigates the significance of open surface connected (OSC) and 

buried surface disconnected (BSD) biopores on E. coli transport to 

subsurface drainage systems. Experiments were conducted on a soil column 

(28 x 50 x 85 cm) packed with two contrasting soils types (e.g., loamy sand 

and sandy loam) and OSC or BSD biopores placed at different depths. Also, 

the sandy loam soil was packed in two ways to mimic the presence of soil 

structure.   

 Chapter 2 investigates soil sorption of E. coli in a series of soils treated with 

liquid swine manure at different concentrations and the effect of the effluent 

constituents in soil sorption of fecal bacteria. Batch experiments were 

conducted using 6 g of soil mixed with 6 mL of swine manure effluent at five 

dilution ratios. Soil properties were used to develop a predictive equation to 

determine the parameters of the nonlinear equation describing E. coli 

sorption.   

 Chapter 3 investigates surface runoff transport of E. coli on pasturelands 

plots treated with poultry litter and the effect of time lag between application 
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and the occurrence of a rainfall event.  Experiments were conducted on a 

series of 2 by 2 m plots subjected to an artificial 2-yr or 5-yr return period 

storm event in Haskell, OK, and 0-hr, 24-hr, and 120-hr time lag following 

litter application. 

 Chapter 4 incorporates routines in RZWQM to simulate fecal bacteria fate 

and transport through the soil matrix, macropores, and surface runoff. Also, 

an open surface connected (OSC) biopore concept was developed to simulate 

rapid flow and fecal bacteria transport bypassing a portion of the soil matrix 

and interconnecting to subsurface drainage systems.  

The incorporation of fecal bacteria fate and transport routines and a biopore 

concept in RZWQM provided a tool to simulate physical non-equilibrium flow in the 

vadose zone. In combination with the macropore model available in RZWQM, the 

implemented biopore concept improved flow and fecal bacteria transport simulations at 

the subsurface drain, in runoff, and through the soil profile and therefore may be useful 

when assessing fecal bacteria contamination of soil and water and mitigation and 

regulatory strategies. 
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CHAPTER 1 

Escherichia coli Transport from Surface-Applied 

Manure to Subsurface Drains Through Artificial 

Biopores
1
 

1.1. ABSTRACT 

Bacteria transport in soils primarily occurs through soil mesopores and 

macropores. Field research has demonstrated that biopores and subsurface drains can be 

hydraulically connected. This research was conducted to investigate the importance of 

surface connected and disconnected (buried) biopores on Escherichia coli (E. coli) 

transport when biopores are located near subsurface drains. A soil column (28 by 50 by 

95 cm) was packed with loamy sand and sandy loam soils to bulk densities of 1.6 and 1.4 

Mg m
-3

, respectively, and containing an artificial biopore located directly above a 

subsurface drain. The sandy loam soil was packed using two different methods: moist soil 

sieved to 4.0 mm and air-dried soil manually crushed and then sieved to 2.8 mm. A 1-cm 

constant head was induced on the soil surface in three flushes: (i) water, (ii) diluted liquid 

swine (Sus scrofa) manure 48 h later, and (iii) water 48 h after the manure. Escherichia 

coli transport to the drain was observed with either open surface connected or buried 

biopores. In surface connected biopores, E. coli transport to the drain was a function of 

                                                 
1
  Published in Journal of Environmental Quality, 2009. 

Guzman, J.A., G.A. Fox, R. Malone, and R. Kanwar. 2009. Escherichia coli transport from 

surface applied manure to subsurface drains through artificial biopores. J. Environ. Qual.  38: 

2412–2421. 
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the soil type and the layer thickness between the end of the biopore and drain. Buried 

biopores contributed flow and E. coli to the drain in the less sorptive soil (loamy sand) 

and the sorptive soil (sandy loam) containing a wide (i.e., with mesopores) pore space 

distribution prevalent due to the moist soil packing technique. Biopores provide a 

mechanism for rapidly transporting E. coli into subsurface drains during flow events. 

1.2. INTRODUCTION 

Animal excretions, slurry, and liquid manure on soil can easily be diluted and 

transported into the soil by irrigation or rainfall events. Bacteria can be carried by surface 

runoff, infiltration, and macropore flow to adjacent soils, deeper soils, or drainage 

systems. Survival of E. coli in soils has been reported to range between 60 and 103 d 

before falling below detectable Pathogenic bacteria can be transported through the soil in 

the form of suspended cells or they can attach to colloids, organic matter compounds, and 

mineral particles. levels (Stoddard et al., 1998; Sørensen et al., 1999; Wang, 2003). 

Normally, the soil matrix acts as an effective pathogenic control during water 

infiltration and percolation (Darnault et al., 2004; Pachepsky et al., 2006). The natural 

soil filtration capacity is a function of bacterium properties, microbial community 

interaction, sorption processes and porous media characteristics such as texture, organic 

matter content, temperature, pH, solution ionic strength, and pore space distribution 

(Fontes et al., 1991; Pachepsky et al., 2006). Normally, these processes are simplified 

when attempting to analyze fate and transport pathways due to the complexity, 

specificity, lack of knowledge, and/or insufficient data about specific processes. 

Macropores can allow bacteria and pathogens to bypass the soil’s natural filter 

capacity and increase the risk of surface water and groundwater contamination (Reddy et 
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al., 1981; Mawdsley et al., 1996a, 1996b; Guan and Holley, 2003; McGechan and Vinten, 

2003; Darnault et al., 2004). Micropores, mesopores, and macropores are defined as 

pores spaces with equivalent diameters of 5 to 30 µm, 30 to 75 µm, and larger than 75 

µm, respectively (SSSA, 2008). With macropores, wetting fronts propagate to significant 

depths by bypassing matrix pore space. Soil macropores (e.g., pore spaces formed as part 

of the soil structure) can transport air, water, colloids, organic matter, and 

microorganisms rapidly from the surface or upper soil (vertically and horizontally) to 

deeper soil and drainage systems (Lobry de Bruyn and Conacher, 1994; McMahon and 

Christy, 2000). 

Macropores may be subdivided into two major groups based on physical 

characteristics and origin: natural fractures and cylindrical biopores. Natural fractures 

originate from soil expansion and contraction or from geological processes. Biopores, on 

the other hand, are created by tunneling insects, small animals, nematodes, and decaying 

roots (McMahon and Christy, 2000). Biological (biopores) and mechanical fragmentation 

(tillage) are common in cultivated lands. Hubert et al. (2007) found that no tillage 

practices promote biological fragmentation, and biological fragmentation reformed 

following mechanical fragmentation in soils under annual tillage practices. 

Several studies have attempted to investigate the influence of preferential flow 

pathways on soil pathogen transport (Fontes et al., 1991; Jiang et al., 2007; Garbrecht et 

al., 2009). For example, Fontes et al. (1991) investigated bacterial transport in 

homogeneous and heterogeneous sand soil columns (14 cm length). For heterogeneous 

columns, the preferential path was created by inserting a glass pipe in the center of the 

column, packing the column with fine sand, filling the glass pipe with coarse sand, and 
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finally removing the pipe. A double peak was observed in the breakthrough curves as a 

result of flow velocity differences between the preferential flow path and fine sand. They 

found that the grain size was the most important variable controlling bacterial transport 

followed by ionic strength and cell size. On the other hand, Jiang et al. (2007), using 

homogeneous sand columns, concluded that the length of a column (14 cm length) has no 

effect on the E. coli peak concentration. They found that bacteria were mainly retained in 

the top 10 cm of soil and that grain size had a significant effect on the bacterial transport 

and retention. 

A significant component of pathogen movement to streams commonly identified 

but not explicitly considered is pathogen movement to subsurface tile drainage systems 

(Dorner et al., 2006). However, few, if any, studies to date have investigated soil bacteria 

transport in relation to biopores located in the vicinity of subsurface drains. Figure 1.1 

represents a vertical soil cross-section and conceptual diagram of potential biopore 

interconnectivity with a subsurface drain. Open-surface connected (OSC), buried surface 

disconnected (BSD), and buried disconnected biopores are typically found in the vadose 

zone between the soil surface and the subsurface drain (Akay et al., 2008). 

Shipitalo and Gibbs (2000) investigated biopores directly connected to artificial 

drainage systems by a deep burrowing Anecic earthworm species. The interconnectivity 

was demonstrated in the field using a smoke test, filling the earthworm’s channels with 

resin, and by measuring the biopore flow using infiltrometers. They later excavated the 

soil to expose the earthworm channel. Akay and Fox (2007) and Akay et al. (2008) 

investigated the importance of biopores and drainage system interconnectivity in the 

movement of water using a soil column (28 cm by 50 cm cross-section and 95 cm long) 
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by placing an artificial biopores both directly above and shifted away from the drainage 

pipe without unpacking or disturbing the soil column between experiments. They found 

that OSC macropores were a highly efficient preferential flow path reducing the 

breakthrough times to the subsurface drainage outlet as a function of the macropore depth 

penetration. Simulated BSD macropores diverted as much as 40% of the matrix flow 

when directly connected to the subsurface drains and after buildup of soil pore-water 

pressure. Other studies have pointed out the importance of macropore and artificial 

drainage interconnectivity in the transport of nutrients and pesticides (Villholth et al., 

1998; Fox et al., 2004, 2007). 

The objective of this research was to investigate the significance of OSC and BSD 

biopores on E. coli transport to subsurface drainage systems. Laboratory experiments of 

E. coli transport through OSC and BSD biopores were performed using the soil column 

developed by Akay and Fox (2007) with two soils containing different soil organic matter 

contents and hydraulic conductivities. 

1.3. MATERIAL AND METHODS 

Transport of E. coli in soil was measured using a soil column (28 by 50 by 95 cm) 

developed by Akay and Fox (2007). Two types of soil were used in the experiments: 

Dougherty loamy sand (LS; loamy, mixed, active, thermic Arenic Haplustalfs) and Floyd 

sandy loam (SL; fine-loamy, mixed, superactive, mesic aquic Pachic Hapludolls), 

selected due to the contrasting particle size distribution, soil organic matter content, and 

saturated hydraulic conductivity (Table 1.1). Soil organic matter content was estimated 

from total carbon (TruSpec Carbon and Nitrogen Analyzer, LECO Corp., St. Joseph, MI) 
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using a 1.724 ratio. Saturated hydraulic conductivity was measured using a falling head 

permeameter (Amoozegar and Wilson, 1999). 

Table 1.1. Properties of the loamy sand (LS) and sandy loam (SL) soils used in the soil column 

experiments. 

 

Soil 

type 

 

 

SP
†
 

Bulk 

density 

Specific 

gravity Sand Silt Clay SOM
‡
 s

§
 r

¶
 Ks

#
 

 

 

n
††

 






††

 

  Mg m
3

  
–%– 

g kg
–1

 cm
3
 cm

–3
 m s

–1
  pF

-1
 

LS – 1.6 2.67 84.5 13.4 2.1 3 0.40 0.01 1.20 x 10
5

 3.20 0.40 

SL WG 1.4 2.30 63.6 32.3 4.1 39 0.39 0.21 – 3.59 0.87 

SL DG 1.4 2.30 63.6 32.3 4.1 39 0.39 0.26 1.94 x 10
6

 4.73 0.89 

† SP, soil preparation technique (WG: wet grinding; DG: dry grinding). ‡ SOM, soil organic matter content 

measured from total carbon (TruSpec Carbon and Nitrogen Analyzer, LECO Corp., St. Joseph, MI) using a 

1.724 ratio. § s, saturated volumetric water content. ¶ r, residual volumetric water content. # Ks, saturated 

hydraulic conductivity measured by falling head permeameter test. †† n, , van Genuchten model 

parameters, where pF is defined as –log(h) and h is the pore water pressure in cm. 

 

Eight experiments were conducted: four with LS and four with SL (Table 1.2). 

During the experiments, soil pressure potential was measured at 12 different points at 

three different depths (20, 50, and 80 cm from the bottom of the column) using pencil-

size tensiometers, connected to pressure transducers and a data logger (CR10X, Campbell 

Scientific, Logan, UT), similar to Akay and Fox (2007). 

An artificial biopore built by rolling a metallic mesh around a 6-mm diam. 

wooden dowel and covered with a plastic mesh was used to simulate OSC biopores with 

lengths of 55 and 65 cm and BSD biopores with lengths of 20 and 55 cm. All biopores 

were placed directly above the drain in the center of the soil column (Figure 1.1 and 1.2). 

A 5-cm diam. perforated tube was placed 6 cm (center of the pipe) from the bottom of the 

soil column to simulate a zero-pressure head boundary condition, assumed to represent an 

artificial drain. A 1-cm constant head on top of the column was maintained using a 
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Mariotte infiltrometer. Inflow at the top of the soil column and the outflow from the drain 

and the biopore were measured every 10 s using weighing scales (Figure 1.2). 

Table 1.2. Main experimental variables for the open-surface connected (OSC) and buried surface 

disconnected (BSD) biopore soil column experiments with loamy sand (LS) and sandy loam (SL) 

soils. The SL soil was packed using either a wet grinding (WG) or dry grinding (DG) technique. 

  
Type Soil 

Soil column 

dimensions BD‡ 
Soil 

preparation 

E. coli 

Co
§
 

E. coli 

recovery 
BP

¶
 

 
L
†
 a

†
 b

†
 

      cm cm cm Mg m
–3

   MPN# /100 

mL 
  BTT

††
 

1 OSC LS 65 10 0 1.6 
 

11,517 + NA
‡‡

 

2 OSC LS 55 20 0 1.6 
 

15,362 + NA 

3
§§

 BSD LS 55 0 17.5 1.6 
 

7140 + Yes 

4
§§

 BSD LS 20 0 52.5 1.6 
 

4130 + Yes 

5 OSC SL 55 20 0 1.4 WG 8355 + NA 

6
¶¶

 BSD SL 55 0 17.5 1.4 WG 5771 + Yes 

7
¶¶

 BSD SL 20 0 52.5 1.4 DG 15,000 – No 

8
¶¶

 BSD SL 55 0 17.5 1.4 DG 16,780 + Yes 

† Dimensions: a = soil layer thickness between the center of the drainage pipe to the bottom of the 

biopores; b: soil layer thickness between the surface and the top of the biopores; L: length of the biopores; 

see Figure 1.1for more details. ‡ BD = Bulk density. § Co = Initial E. coli concentration in the liquid swine 

manure. ¶ BP = Biopore. # MPN = Most Probable Number. †† BTT: Breakthrough time. ‡‡ NA = No 

measurement directly from the biopores because of experimental setup. §§ Rhodamine WT, 50 µg L
–1

 

added in the final water flush. ¶¶ CaCl2, 0.01 M concentration added in the initial water flush; 1 g of 

Peptone per L of diluted liquid swine manure was added in the manure flush. 

 

Each experiment consisted of four stages: (i) packing, (ii) an initial water flush 

(186–257 mm), (iii) a manure flush (107 mm), and (iv) a final water flush (107 mm). The 

LS and SL soils were packed at 1.6 and 1.4 Mg m
–3

 bulk density, respectively, for a total 

length of 85 cm. The LS soil was replaced with new soil after each experiment. For this 

same LS soil and bulk density, Chu-Agor et al. (2008) reported parameters for the soil 

moisture (i.e., hydraulic) characteristic curve, derived using the pressure plate extractor 

method on multiple samples as described by Dane and Hopmans (2002). The SL soil 
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from the Northeast Iowa State University research farm in Nashua was unpacked and 

reused. The SL was prepared before packing using two processes: (i) moist soil (WG, 

moisture content 10–20%) forced to pass a 4-mm sieve opening, and (ii) air dried soil, 

manually crushed by hammering, sieved using a no. 7 sieve, and then moistened to attain 

a moisture content of <10% before packing. It was hypothesized that the WG packing 

resulted in a greater distribution of soil pore spaces compared to the DG packing due to 

the differences in soil structure. 

 

Figure 1.1. Potential biopores in relationship to a subsurface drain. OSC: open surface connected; 

BSD: buried surface disconnected; and BD: buried disconnected; a: soil layer thickness between 

the center of the drainage pipe to the bottom of the biopores; b: soil layer thickness between the 

Ty
p

e
 I

Ty
p

e
 II

Ty
p

e
 II

I

Open  Surface Connected - OSC

Buried  Surface Disconnected - BSD

Buried Disconnected - BD

L

L

L

a

a

b

b

d

d

c

c

c

Φ 

Φ

Φ



9 

 

soil surface and the top of the biopores; c: initial saturated soil layer thickness equal to 10 cm for 

all experiments; d: distance from the center of the drain pipe to the vertical center of the biopores 

equal to zero for all experiments; L: length of the biopores; Φ: drain pipe diameter equal to 5 cm 

for all experiments. 

 

Figure 1.2. Descriptive setup of the soil column and instruments used in all experiments. 

During the unpacking of two experiments (i.e., SL-WG and SL-DG, BSD, 55-

cm), six soil core samples from each soil preparation were taken at different depths to 

define the hydraulic characteristic curve. Data from the pressure cell using the 12 SL core 

samples (WG and DG soil preparation techniques) were grouped and averaged according 

to the different pressures applied. The final data were plotted and fit with the van 

Genuchten (1980) model. The fit model was used to compare the LS vs. SL soils and DG 
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vs. WG packing techniques in terms of their soil moisture characteristic curves and to 

explain activation of the artificial biopore. 

After packing and instrument setup, the initial water flush followed immediately. 

The manure flush and the final flush followed 48 and 96 h later, respectively. During the 

initial flush, only matrix flow was allowed by clogging the biopore with a wooden dowel. 

The initial flush in all experiments provided a hydrostatic, initial moisture content profile, 

allowed initial consolidation of the soil, established the saturated zone, and verified that 

there was no initial biopore flow. Water samples were taken in the drain after the initial 

flush to verify that E. coli was not present. Before the manure flush, the wooden dowel 

was pulled out to the desired biopore length. Diluted liquid swine manure was applied at 

the top of the soil column with different concentrations (Table 1.2). The liquid swine 

manure used in all experiments was collected in a 5-d composite sample from the Swine 

Research and Educational Center at Oklahoma State University and stored at 4°C. 

Before each experiment, a manure dilution using distilled water was prepared to 

assure a proper E. coli concentration to minimize dilution during sample analysis and to 

mimic the effect of rainfall or irrigation in the field. During the manure flush in the SL 

experiments, 1 g of peptone (Special Peptone L0072, Oxoid, Lenexa, KS) per L of 

diluted liquid manure was used to reduce bacteria die-off in the Mariotte bottle due to the 

long infiltration time. The peptone concentration used (1 g per L) is typically 

recommended to provide or equilibrate a media at a steady bacteria concentration (e.g., 

growth equivalent to die-off). Escherichia coli samples were collected periodically from 

the Mariotte bottle and water at the top of the soil column and demonstrated that E. coli 

concentrations remained approximately stable during the experiments. Preliminary 
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experiments indicated that the E. coli from diluted liquid swine manure required 8 to 10 h 

(e.g., lag time) to begin using nutrients from sources other than the manure media. 

Distilled as opposed to tap water was used in the initial flush to avoid chlorine 

residuals in the soil solution that might affect the bacteria population and transport. 

However, the use of distilled water most likely decreased the bulk soil solution ionic 

strength as water infiltrated due to the ionic interchange between the soil minerals and the 

displaced wetting front. This decrease in solution ionic strength may have promoted soil 

dispersion and progressive clogging of pore spaces as a result of the soil mineral double 

layer expanding. During preliminary experiments, soil dispersion and clogging was 

observed when the SL soil was used. To minimize soil dispersion in the SL soil, CaCl2 

(0.01 mol L
–1

 concentration) was added during the initial flush. The authors considered 

that the addition of CaCl2 at this concentration allowed equilibrating the soil solution 

ionic strength to avoid soil dispersion and clogging and only marginally affected the fate 

and transport results. 

Distilled water was used for the final flush of experiments with LS soil while tap 

water was used for SL soil. The use of tap water for SL was to further minimize soil 

dispersion and clogging of the soil column. In the LS soil, dispersion was not a problem. 

Rhodamine WT (50 g L
–1

 concentration) was used in some experiments during the final 

flush to investigate flow conditions and verify no additional preferential flow along the 

soil column walls. Rhodamine WT is considered a conservative tracer and therefore 

minimally adsorbed to soil particles during the soil column experiments. Rhodamine WT 

was not expected to be used by the bacteria in significant quantities to affect fate and 
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transport in the time frame of the experiments. The final flush in all cases acted as a 

replicated experiment of the hydrologic response of the system. 

Water samples and flow rates from the drain and the macropore were collected 

after each flushing for E. coli and total Coliform quantification. Escherichia coli was 

used as an indicator organism of fecal contamination and total Coliform for 

environmental bacterial activity. The semi-automated Quanti-Tray Method (IDEXX, 

Westbrook, ME), which provides counts from 0.0 to 2419.6 per 100 mL, was used to 

quantify the E. coli and total Coliform concentration by the most probable number 

(MPN) technique. Initial E. coli and total Coliform concentration were estimated as the 

average concentration between the beginning and end of the manure flush taken from the 

Mariotte bottle. Discharge and E. coli breakthrough time were defined as the point in 

time in which the constant cumulative discharge gradient changed or E. coli was 

continuously detected, respectively. After each experiment, the soil column was 

unpacked, disinfected and packed again with soil. 

1.4. RESULTS AND DISCUSSION 

1.4.1. Soil Property Characterization 

A uniform soil pore space distribution was observed after packing the LS soil. 

Packing the SL soil to the designated bulk density generated an approximately equivalent 

average pore size between the DG and WG processes. However, the distribution of the 

pore spaces around this average (i.e., more homogeneous soil pore sizes in the DG and 

more widely varying in the WG) was hypothesized to be different and qualitatively 

observed during the experiments. During the SL soil preparation using the WG process, 

formation of soil aggregates were observed after forcing the soil to pass the sieve mesh. 
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Soil macropore formation within the soil aggregates was observed to be distributed 

irregularly along the soil column. On the other hand, the DG process resulted in a 

uniform pore size distribution with no soil aggregate development and no observable 

large pore spaces. 

 

Figure 1.3. Hydraulic (i.e., soil moisture) characteristic curve for the loamy sand (LS) and sandy 

loam (SL) soil and its two preparation techniques (WG, wet soil; DG, dry soil) and fit to the van 

Genuchten (1980) model (VG). Data represent the means for six cores extracted from two SL 

columns. Data for the LS are reported by Chu-Agor et al. (2008) for the same bulk density as 

used in these experiments. 

After the manure flush, some small cracks formed at the surface during the soil 

column depletion period. These cracks were also observed during the pressure cell 

experiments in most of the DG samples. Data from the pressure cell and van Genuchten 

(1980) model confirmed the previous observation (Table 1.1 and Figure 1.3). Parameters 

of the model indicated a difference in the macropore activation pressure for the two SL 
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soil preparations primarily in the air-entry pressure value. Estimates from the model 

based on six replicated samples implied an air-entry pressure difference in the range of 

0.3 to 2.3 cm higher in the DG as well as the development of higher water suction values 

as moisture content decreased (Figure 1.3). 

1.4.2. Water and Manure Suspension Flow 

For a specific soil type and packing, discharge breakthrough time was inversely 

proportional to the biopore length in the OSC and BSD experiments. The only exception 

was for the LS, OSC, 55-cm experiment during the final flush, probably a result of 

additional preferential flow between the soil and the soil column walls. In general, the 

breakthrough time in the biopore occurred later than in the drain with the time difference 

decreasing as a function of the biopore length (Table 1.3). During the manure flush, the 

discharge breakthrough time for the SL, OSC, 55-cm experiment (i.e., WG soil 

preparation) was detected earlier than expected, especially in comparison with the LS 

OSC experiments. This early discharge breakthrough time was probably the result of the 

soil macropore formation around the soil aggregates. 

Reduction in the cumulative matrix flow, measured 24 h after flush initialization, 

was observed between the manure and final flush (Table 1.4). This phenomenon was a 

function of the biopore length and soil type, with a stronger effect in the SL soil. It was 

hypothesized that soil dispersion was the result of distilled water utilization that might 

change the soil solution ionic strength and promote soil dispersion followed by clogging. 

Therefore, CaCl2 (0.01mol L
–1

) was used during the initial water flush to equilibrate the 

soil solution ionic strength. However, results indicate that the reduction in flow discharge 

was a complex combination of soil swelling and dispersion, soil minerals-organic matter 
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aggregation, and bacteria straining. In the SL soil, the larger proportion of small pore 

spaces and the higher soil organic matter and clay content was hypothesized to promote 

sorption of colloids, straining of fine particles in suspension, and straining of bacteria, all 

of which favored the clogging process. 

Table 1.3. Drainage (Drain) and biopore (BP) breakthrough time (minutes) after manure flush and 

final water flush for open-surface connected (OSC) and buried surface disconnected (BSD) 

biopores in loamy sand (LS) and sandy loam (SL) soils. The SL soil was packed using either a 

wet grinding (WG) or dry grinding (DG) technique. 

Experiment Manure-Flush Final-Flush 

 

Type-

length 

(cm) 

Soil 

type 
Discharge E. Coli Discharge E. Coli 

      Drain BP Drain BP Drain BP Drain BP 

1 OSC-65 LS 3 NA† 17.5 NA 3.3 NA 4.5 NA 

2 OSC-55 LS 7.7 NA 18 NA 2.7 NA 3 NA 

3 BSD-55 LS 24.5 25.9 37.0‡ 26.1 24.7 25.1 25.5 25.4 

4 BSD-20 LS 34.7 47.4 70.0§ 50 33.8 52.1 106¶ 53.8 

5 OSC-55 SL-WG 1.2 NA 60 NA  4.0 NA 4 NA 

6 BSD-55 SL-WG 11.5  132 170.0# 132 234.5 
No 

Flow 

No 

BTT†† 

No 

Flow 

7 BSD-20 SL-DG  30
No 

Flow 

No 

BTT 

No 

Flow 
NA 

No 

Flow 
No BTT 

No 

Flow 

8 BSD-55 SL-DG 6 60.2 
No 

BTT 

No 

BTT 
13 20.2 No BTT 

No 

BTT 

† NA = no measurement directly from the biopore because of experimental setup. ‡ Escherichia coli was 

initially detected at 25.4 min followed by no continuous detection until 37 min. § Escherichia coli was 

initially detected at 57 min followed by no continuous detection until 70 min. ¶ Escherichia coli was 

initially detected at 9 min followed by no continuous detection until 106 min. # Escherichia coli was not 

detected continuously; data in the table correspond to the first detection. †† BTT = Breakthrough time. 

 

In the biopore flow, a reduction in the cumulative discharge after 24 h for the SL 

soil and an increasing discharge for the LS soil were observed (Table 1.4). In the SL soil, 

this was hypothesized to be the result of pore space clogging as previously discussed. In 

the LS soil, the biopore discharge increase can be explained by expansion of the biopore 
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effective radius due to internal erosion along the biopore wall (observed qualitatively 

based on turbidity in the outflow water) and/or the reduction in the soil matrix suction 

around the biopore after the manure flush (Table 1.3). In general, during the unpacking of 

the soil column, it was observed that the soil in contact with the biopore wall was 

saturated in most of its length 48 h after final flush initialization. The occurrence of this 

condition after the manure flush in combination with a lower air-entry pressure (higher 

pF value) in the LS favored macropore discharge during the final flush. 

In all BSD experiments, discharge from the biopore and into the macropore 

weighing scale occurred suddenly. This condition was studied by Akay and Fox (2007) 

and occurred at the moment in which the matrix suction decreased along the biopore as 

the water pressure increased near the drain. Comparison between the SL-DG and SL-WG 

BSD, 55-cm experiments indicated the importance of pore size in the biopore activation 

due to changes in the soil structure. The SL-DG contained uniform pore spaces and 

maintained higher pore water suction than SL-WG around the soil in contact with the 

biopore wall after depletion. This condition reduced the capacity of water to move into 

the biopore while at the same time moved water from the walls of the biopore into the 

soil matrix as the wetting front progressed downward. These effects are also applicable 

when comparing total biopore discharge in the LS and SL soils (Table 1.3). 

1.4.3. Escherichia coli Transport: Soil Type and Packing 

Water samples taken during the initial flush indicated no initial E. coli 

concentration capable of desorbing into the matrix flow. However, total Coliform was 

always detected in the drain at concentrations greater than 500 MPN/100 mL. During the 

manure flush, with the exception of the SL-DG experiments where no activation of the 



17 

 

biopore occurred, E. coli and discharge breakthrough time indicated that E. coli moved 

slower than water in the soil matrix, as represented by the drain discharge in Table 3. On 

the other hand, in the biopore, E. coli was always detected at approximately the same 

time as the discharge (Table 1.3). The difference between the discharge and E. coli 

breakthrough time in the biopore and matrix was hypothesized to be the result of E. coli 

resistance to be transported through pore spaces by using a combination of motile 

capabilities and adhesion (Hill et al., 2007). In the soil solution, the sorptive properties of 

the soil, primarily determined by fine particles (i.e., clay and silt) and organic matter 

content, established the E. coli concentration available for transport. Then, E. coli in 

planktonic forms in the soil solution, attached to colloids in suspension, or weakly 

attached could be transported as water moved through soil pore spaces. 

The presence of a larger proportion of small pore spaces (e.g., micropores and 

small mesopores) in the soil promoted straining (physical and biological) and induced 

large hydraulic energy losses. Energy losses were translated as a reduction in the pore 

space velocity distribution and allowed E. coli to resist transport (adhesion and/or auto-

propulsion) in the direction of flow. In cases where the soil contained a larger proportion 

of soil macropores, flow and shear stress forces can more effectively mobilize available 

bacteria in solution, bacteria that are weakly attached, or colloids and aggregates 

previously colonized by bacteria. In fact, Smith et al. (1985) made similar observations in 

reporting that the transport of bacteria through sieved or mixed soil columns was 

negligible when compared to more structured soils. 
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Table 1.4. Cumulative matrix (Drain) and biopore (BP) discharge in the open-surface connected 

(OSC) and buried surface disconnected (BSD) biopore experiments with loamy sand (LS) and 

sandy loam (SL) soils. The SL soil was packed using either a wet grinding (WG) or dry grinding 

(DG) technique. Cumulative discharge measured 24 h after flush initialization. 

  
Type 

Soil 

type 
Flush 

Flush Drain BP Drain BP   

mL mL mL 
% of 

Flush 

% 

Change 

% of 

Flush 

% 

Change 

% of 

Drain 

% 

Change 
  

1 
OSC-

65 
LS 

Manure 15,000 14,601 NA† 97.3 

–8.6 

NA 

NA 

NA 

NA Final 

flush 
15,000 13,311 NA 88.7 NA NA 

2 
OSC-

55 
LS 

Manure 15,000 14,962 NA 99.7 

–9.7 

NA 

NA 

NA 

NA Final 

flush 
15,000 13,500 NA 90 NA NA 

3 
BSD-

55 
LS 

Manure 15,000 10,688 3,387 71.3 

–11.7 

22.6 

1.8 

31.7 

9.3 Final 

flush 
15,000 8930 3,659 59.5 24.4 41 

4 
BSD-

20 
LS 

Manure 15,000 12,567 934 83.8 

–13.1 

6.2 

2.2 

7.4 

4.5 Final 

flush 
15,000 10,600 1,261 70.7 8.4 11.9 

5 
OSC-

55 

SL-

WG 

Manure 15,000 11,623 NA 77.5 

DL‡ 

NA 

NA 

NA 

NA Final 

flush 
15,000 DL NA DL NA NA 

6 
BSD-

55 

SL-

WG 

Manure 15,000 6,435 1,235 42.9 

–36.0 

8.2 

-8.2 

19.2 

-19.2 Final 

flush 
15,000 1,028 0 6.9 0 0 

7 
BSD-

20 

SL-

DG 

Manure 15,000 10,000 0 66.7 

–58.2 

0 

0 

0 

0 Final 

flush 
15,000 1,264 0 8.4 0 0 

8 
BSD-

55 

SL-

DG 

Manure 15,000 10,506 564 70 

–25.5 

3.8 

-3 

5.4 

-3.7 Final 

flush 
15,000 6,676 110 44.5 0.7 1.6 

† NA = no measurement directly from the biopore because of experimental setup. ‡ DL = No data available 

because data were lost due to datalogger failure.  

 

1.4.4. Escherichia coli Transport: Open-Surface Connected versus Buried 

Surface Disconnected Biopores. 

In the OSC experiments, E. coli transport to the drain was mainly a function of 

the soil layer thickness between the end of the biopore and the drain and the E. coli 

concentration along the biopore wall (Figure 1.1 and Table 1.2). The latter was a function 
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of the energy head in the biopore. The OSC biopores allowed rapid E. coli transport from 

the surface to deeper soil layers at the end of the biopore, followed by slower wetting 

front movement through the remaining soil profile (i.e., 10 or 20 cm depending of the 

biopore length) before reaching the drainage pipe. These conditions were verified by the 

soil tensiometer data. This 10 to 20 cm soil buffer layer in the LS was not important in 

the E. coli breakthrough time. However, changing the soil texture as indicated in the SL 

experiment (WG, OSC, 55-cm) resulted in an extended E. coli breakthrough time. Soil 

type and organic matter content impacted the straining (physical and biological) and 

sorption mechanisms as well as allowed E. coli to resist being transported when soil pore 

water shear forces were low (Table 1.3 and Figure 1.4). 

 Transport of E. coli in BSD biopores was subjected to two different processes: the 

soil-biopore interaction as the wetting front moved downward and the soil water suction 

relaxation along the biopore wall that allowed water movement into the biopore. In the 

first case, small water fluxes from the soil solution moved into the biopore as the wetting 

front moved downward, with a possibility of E. coli transport if soil pore space allowed 

bacteria movement. As water moving into the biopore wall entered in contact with soil 

containing higher pore water suction, water moved back into the soil matrix. E. coli 

stayed in the soil solution, attached to the soil surrounding the biopore, or moved back 

into the biopore when the wetting front from matrix flow reached the surrounding soil. In 

the second case, E. coli was transported from the soil solution or detached by stress 

forces when biopore fluxes created shear forces that exceeded E. coli attachment forces. 

These conditions can explain the large E. coli recovery concentration at the beginning of 

the biopore discharge in Figure 1.5. 
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Figure1.4. Escherichia coli concentrations from the drain (C) relative to the inflow E. coli 

concentration (Co) for open-surface connected (OSC) biopore experiments (i.e., 55 and 65 cm 

biopores lengths) as a function of the number of pore volumes (i.e., product of flow rate, Q, and 

time, t, divided by the volume of pore space, Vps, of the soil column) of inflow water (a) during 

manure flush and (b) during the final water application. Experiments correspond to numbers 1, 2, 

and 5 in Tables 2 to 5. 

During the final flush for most experiments, E. coli and discharge breakthrough 

time in the drain and biopore occurred at approximately the same time (Table 1.3). This 

demonstrated that E. coli was previously established in the soil solution or weakly 

attached when water fluxes started moving into the biopore. The manure flush provided 

the initial E. coli concentration at different depths through soil matrix and/or biopore 

domains, followed by an E. coli regrowth period. During the final flush, E. coli were 

flushed out from the soil closest to the drain and/or biopore wall, providing the initial E. 

coli concentration observed in the breakthrough curve. The E. coli concentrated then 

peaked and decreased over time in most cases (Figure 1.4b, 1. 5c-d). These results have 

implications in terms of the impact of pathogenic bacteria transport to subsurface 

drainage from storm events beyond those immediately following manure applications. 
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The OSC and BSD biopores may provide a mechanism for transporting bacteria to more 

favorable survival and growth conditions and therefore may contribute E. coli in 

subsequent drain flow events. 

For all LS experiments, E. coli was always detected in the drain flow for the OSC 

and BSD biopores with the highest recovery concentrations during the final flush (Table 

1.5). Note than in the case of OSC biopore experiments, E. coli recovery and discharge 

cannot be measured at the biopore due to the experimental setup. The LS soil possessed 

larger pore spaces and less sorptive properties than the SL soil. Therefore, E. coli moved 

easily through the soil macropores and eventually through mesopores during the manure 

and final flush. During the final flush, E. coli regrowth and lower straining conditions 

explained the highest concentration recovery in Table 1.5. On the other hand, in the SL 

soil, the highest E. coli recovery occurred during the manure flush indicating the 

importance of transport restriction due to smaller pore spaces that can easily promote 

straining. This hypothesis was also associated with the observed flow reduction between 

the manure and final flush described previously. 

 

 

 



22 

 

 

Figure 1.5. Escherichia coli concentrations from the drain (C) relative to the inflow E. coli 

concentration (Co) for buried surface disconnected (BSD) biopore experiments (i.e., 55 and 20 cm 

macropore lengths) as a function of the number of pore volumes (i.e., product of flow rate, Q, and 

time, t, divided by the volume of pore space, Vps, of the soil column) of inflow water. Figures (a) 

and (b) are during the manure flush and final water application for the 55-cm BSD biopores, 

respectively (i.e., Exp. 3, 6, and 8 in Tables 2–5). Figures (c) and (d) are during the manure flush 

and final water application for 20-cm BSD biopores, respectively (i.e., Exp. 4 in Tables 2–5 with 

Exp. 7 having no observed E. coli from the matrix or biopore). DR = drain flow, BP = biopore 

flow, LS = loamy sand, SL = sandy loam, WG = wet soil preparation and DG = dried soil 

preparation. 
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Table 1.5.. Macropore length, E. coli initial concentration (Co), and maximum E. coli recovery 

from the matrix and macropore flow for the open-surface connected (OSC) and buried surface 

disconnected (BSD) biopore experiments with loamy sand (LS) and sandy loam (SL) soils. The 

SL soil was packed using either a wet grinding (WG) or dry grinding (DG) technique. 

  Type 
Soil 

Type 

Macropore E. coli Co Matrix flow Macropore flow 

Length 

(cm) 

 

(MPN/100mL) 

Man-

Flush 

Final-

Flush 

Man-

Flush 

Final-

Flush 

1 OSC LS 65 11,500 0.21Co
†
 0.32Co NA

‡
 NA 

2 OSC LS 55 15,400 0.20Co 0.25Co NA NA 

3 BSD LS 55 7140 0.12Co 0.05Co 0.32Co 0.41Co 

4 BSD LS 20 4130 0.05Co 0.01Co 0.24Co 0.37Co 

5 OSC 
SL-

WG 
55 8355 0.04Co 0.02Co NA NA 

6 BSD 
SL-

WG 
55 5771 0.002Co 0 0.023Co 

No 

Flow 

7 BSD 
SL-

DG 
20 15,000 0 0 

No 

Flow 

No 

Flow 

8 BSD 
SL-

DG 
55 16,780 6x10

5
Co 6x10

5
Co 0 0 

† E. coli exceeded the upper limit of the test procedure (i.e., 2419.6 MPN/100 mL) for two samples. ‡ NA 

= not measured because of experimental setup (no measurement directly from the biopores). 

 

1.5. SUMMARY AND CONCLUSIONS 

Results from this study indicated the efficiency of E. coli transport to drainage 

systems under the presence of interconnected open-surface or buried biopores. Soil 

macropores and large mesopores play an important role in allowing the movement of 

pathogens to deeper soils after irrigation or rainfall events. Soils with small soil pore 

spaces (e.g., micropore and small mesopores) and sorptive properties can filter E. coli in 

most of the cases due to the development of physical and biological straining as well as 

adsorption. Additionally, low velocities in the soil pore spaces may allow E. coli to resist 

being transported by its auto-propulsion and adhesion capabilities. On the other hand, 

soils with large pore spaces such as large mesopores and soil macropores favored E. coli 
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transport. The development of shear forces under these conditions may promote transport 

and detachment of bacteria or colloids colonized by bacteria during wetting front 

displacement. 

Biopores that are directly connected to subsurface drainage systems can provide a 

direct conduit for E. coli transport from the soil surface into tile drainage that may impact 

drain flow E. coli concentrations in immediate and subsequent storm or irrigation events 

following manure applications. In these experiments, it was clear that biopore activation 

occurred later than discharge in the drain. In the biopore, E. coli and flow were 

simultaneously detected. In the open-surface connected biopore, E. coli transport to the 

drain was mainly a function of the soil type and/or soil layer thickness between the end of 

the macropore and the drain. In the LS soil, the thickness of the layer was not important 

in regard to the E. coli peak concentration in the drain; however, in the SL soil, E. coli 

transport to the drain was clearly limited by the soil properties. This study indicated that 

sorption of E. coli to soil determined residual E. coli concentrations in the soil solution or 

attached to soil particles and colloids in solution after manure application. For these 

reasons, adsorption and adhesion mechanisms of pathogenic bacteria should be further 

investigated. Buried surface disconnected biopores can be an effective E. coli pathway 

through soils when they are in contact with other soil macropores or large mesopores. 

However, under the presence of small and homogeneous soil pore spaces, the soil filter 

capacity will limit the transport of E. coli to the biopore and then to the interconnected 

drainage system. 
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CHAPTER 2 

Sorption of Escherichia coli in Agricultural Soils 

Influenced by Swine Manure Constituents 

2.1. ABSTRACT  

Sorption of fecal bacteria in soils has been typically investigated using cultured 

bacteria suspended in distilled water and found to be proportionally related to the 

percentage of clay content. Under field conditions, increased concentrations of fecal 

bacteria are associated with increased application rates of animal waste, containing a 

variety of waste constituents that can interact with soils. Also, under nutritional depleted 

environments found in aged manures commonly used as fertilizers, fecal bacteria is 

mainly found bonded to particles and colloids surfaces (i.e., sessile form as micro 

colonies and/or biofilms) rather than as a free cells in suspension (i.e., planktonic form). 

The objective of this research was to investigate the influence of manure constituents and 

the predominance of sessile bacteria on fecal bacteria sorption/attachment. Escherichia 

coli sorption was investigated using a series of artificial and natural soils treated with 

swine effluent at varying dilution ratios (i.e., manure effluent concentration). Fecal 

bacteria in swine effluents consisted primarily of sessile (i.e., attached) bacteria (90%) 

compared to free cells in suspension (10%). Removal of sessile E. coli from solution by 

sorption/attachment and/or flocculation/precipitation appeared to be controlled by 

processes occurring in the substrate (i.e., surfaces to which the bacteria attached). For 
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soils up to 30% clay content and 3.0% total carbon content, nonlinear equations 

characterized the sorption of E. coli from multi-constituent manure effluent in the 

artificial and natural soils with the equation parameters predicted by the amorphous 

aluminum and iron content, percent clay, and percent organic carbon. Also, dispersion 

resulting from alkalinity buildup due to adding effluent to the soils decreased observed 

sorption of E. coli, especially at higher effluent ratios. These influential factors (i.e., 

manure effluent concentration, sessile bacteria, and soil dispersion under high effluent 

concentrations) should be considered when modeling fecal bacteria transport in the 

environment. 

2.2. INTRODUCTION 

Following manure application in agricultural lands, soil sorption of fecal bacteria 

is influenced by the soil’s physical-chemical properties, animal waste effluent 

characteristics and bacteria properties (Foppen et al., 2005; Pachepsky et al., 2006; 

Torkzaban et al., 2008; Kim and Walker, 2009; Guzman et al., 2009, 2010). Under 

nutritional depleted environments (e.g., aged manures commonly used as fertilizers), 

fecal bacteria is mainly found bonded to particles and colloids surfaces (i.e., sessile form 

as micro colonies and/or biofilms) rather than as a free cells in suspension (i.e., 

planktonic form) (Dunne, 2002; Winfield and Groisman, 2003). Bacteria attachment and 

adhesion are terms frequently used to describe sorption of E. coli (e.g., reversible or 

irreversible) that may not necessary imply bacteria immobilization under flow conditions. 

Soil sorption of fecal bacteria following manure applications are complex and difficult to 

identify and quantify due to the multiple mechanisms and interactions that can occur at 

the surface/bulk solution interface of the organic and inorganic compounds (Brown et al., 
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2000; ter Laak, 2005). Parallel to this, animal wastes contribute loads of organic 

compounds and solutes to soils when applied as fertilizers, along with a diverse microbial 

population (Choudhary et al., 1996; Leung and Topp, 2001), thereby promoting changes 

in the soil properties and the microbial community following application (Gerzabek et al., 

1997; Haynes and Naidu, 1998; Eghball et al., 2004).    

Soil sorption of fecal bacteria has been typically investigated using planktonic 

mono-strain cultured bacteria in batch, soil column or microfluid devices and described 

by linear or nonlinear relationships (e.g., Ling et al., 2002; Mankin et al., 2007; Bolster et 

al, 2009) or the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (e.g., Redman et 

al., 2004; Torkzaban et al., 2008). However, most investigations become limited in 

applicability with complex soil/bulk solution interactions found in soils treated with 

animal waste. Previous investigations are typically limited to sediments and particles 

typically not representative of highly reactive soil minerals (e.g., mostly variably 

charged) and organic matter (i.e., permanently charged) commonly found in agricultural 

lands.  

Few studies had been conducted to investigate sorption of fecal bacteria on soils 

treated with manure fertilizers.  As an example, experiments conducted on batch 

experiments using loam and clay loam top soils were conducted to evaluate the effect of 

bovine manure colloids on E. coli attachment (Guber et al., 2005), and to compare the 

attachment of fecal Coliforms to the same two soil types and its soil fractions (Guber et 

al., 2007). In both series of experiments, cultured bacteria (e.g., fecal Coliforms or E. 

coli) insulated from bovine manure was used after placed in suspension. Other studies on 

sorption of fecal bacteria have been conducted on loess clay loam soil (clay, silt, sand and 
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organic matter content of 29%, 45%, 26% and 0.8%, respectively) treated with waste 

effluents (Gantzer et al., 2001; Kouznetsov et al., 2004). Nonlinear relationships were 

reported describing sorption of fecal Coliform in soils. Ling et al. (2002) proposed a 

linear relationship between the E. coli distribution coefficient of the Freundlich model, 

Kd, and the natural logarithm of the clay content based on two different soils (14% and 

35% clay content with 0.84% and 0.54% organic matter content). Moreover, Mankin et 

al. (2007) conducted similar experiments and reported Freundlich isotherms describing E. 

coli sorption to sand and silt loam soils but concluded that linear isotherms better fit low 

initial E. coli concentrations.  

This research hypothesizes that manure constituents and the predominance of 

sessile fecal bacteria found in animal waste result in unique sorption/attachment 

observations when compared to previous sorption studies utilizing suspended mono-

strain free cells. Therefore, the objectives of this study were to (i) investigate sorption of 

E. coli in a range of soils after liquid swine manure application, (ii) determine the 

potential for using nonlinear equations to describe this sorption, and (iii) utilize soil 

properties for estimating the nonlinear parameters.  The development of such predictive 

equations will be useful in estimating E. coli sorption in liquid swine manure-amended 

soils for improved modeling of E. coli sorption after manure application.  

2.3. MATERIAL AND METHODOLOGY 

2.3.1. Soil Samples  

Natural soils and artificial soils (e.g., natural soils and natural soils after organic 

matter removal) were used in E. coli sorption experiments performed at room 

temperature (e.g., 23±0.5°C), as shown in Tables 2.1 and 2.2. Benchmark Oklahoma soils 
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(e.g., natural soils) were provided by the Soil, Water and Forage Analytical Laboratory 

(SWFAL) at Oklahoma State University, and Iowa soil collected from the Iowa State 

Research Farm in Nashua, IA (Table 2.1). Soils were air dried, grinded, and sieved to 

pass a 2 mm opening. Soil particle size distribution was estimated by wet sieve and 

hydrometer method (Gee and Or, 2002). Soil pH was measured in natural and artificial 

soils using 1:1 soil to distilled water dilution (Thomas, 1996).  

Table 2.1. Soil properties of the natural soils used in the sorption experiments. 

ID  
Natural Soils  Soil Clay TN† TC¶ 

Name Classification pH % % % 

PR Pratt 
Sandy, mixed mesic Lamellic 

Haplustalfs 
6.3 7 0.04 0.36 

DO Dougherty 
Loamy, mixed, active, thermic Arenic 

Haplustalfs 
5.2 8 0.06 0.48 

DA Darnell 
Loamy, siliceous, active, thermic, 

shallow Udic Haplustepts 
5.4 11 0.06 0.57 

BE Bernow 
Fine-loamy, siliceous, active, thermic 

Glossic Paleudalfs 
4.3 11 0.13 1.30 

CO Cobb 
Fine-loamy, mixed, active, thermic 

Typic Haplustalfs 
5.5 16 0.06 0.40 

CA Camasaw Typic Hapludults 5.7 21 0.12 2.83 

EA Easpur 
Fine-loamy, mixed, superactive, thermic 

Fluventic Haplustolls 
5.9 22 0.09 0.96 

SA Sallisaw 
Fine-loamy, siliceous, superactive, 

thermic Typic Paleudalfs 
5.5 22 0.15 1.26 

PA Parsons 
Fine, mixed, active, thermic Mollic 

Albaqualfs 
6.5 30 0.12 1.41 

SL§ 

Floyd 

sandy 

loam 

Fine-loamy, mixed, superactive, mesic 

Aquic Pachic Hapludolls 
6.0 4.1 0.21 2.07 

LS 
Loamy 

sand 
Arenic Haplustalfs 7.4 2.1 0.01 0.15 

† TN = total nitrogen 

¶ TC = total carbon 

§ = Soil from Iowa, all other soils from Oklahoma 

 

Artificial soil samples were prepared by mixing Silurian sand (U.S. Silica 

Company, Berkeley Springs, WV) and well crystalline kaolinite clay (KGa-1b, The 

Source Clay Repository, Purdue University, West Lafayette, IN) at three different 
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kaolinite clay and total carbon contents (Table 2.2). In the cases in which total carbon 

was considered, sphagnum peat moss (Premier Horticulture, Inc., Quakertown, PA) was 

used.  Before mixing, the peat moss was oven dried at 65°C for 24 hr and sieved to pass a 

#200 sieve (i.e. 74 µm opening) in order to mimic clay particle sizes. Two natural soils 

were treated to reduce the total carbon content (e.g., loamy sand - LS, and sandy loam - 

SL) following the procedures described in Kunze (1965): 120 g of soil was placed in a 

glass container and sodium acetate (NaOAc) was added to achieve a 1:1 soil to NaOAc 

volume ratio. An initial 30 mL of hydrogen peroxide reagent (30% concentration) was 

added and the mixture was allowed to stand overnight. The following day the suspension 

was stirred and heated in order to remove excess H2O2 while small H2O2 aliquots were 

added until the soil lost its black color. With the completion of the organic matter 

decomposition, the pH was increased to 8 using Na2CO3 and then the solution was boiled 

for 10 minutes. After the solution cooled, a 1 N NaCl wash followed at an equivalent 

volume. The solution was allowed to stand for one day or until a clear supernatant was 

observed. The supernatant was then discharged and the remaining soil was washed with 

distilled water twice and then allowed to stand. Once a clear supernatant was observed, 

the supernatant was poured out and the soil was oven dried at 65°C.  

Artificial soils were used to assess and quantify the effect of soil minerals and 

total carbon on prevailing mechanisms occurring on the soil/bulk solution that might 

impact attachment of E. coli to soils from manure effluents. For all soils and peat (e.g., 

sieved fraction), total carbon and total nitrogen content were estimated using a TruSpec 

Carbon and Nitrogen Analyzer (LECO Corp., St. Joseph, MI). 
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Table  2.2. Soil properties of the artificial soils used in the sorption experiments. 

ID Artificial Soils 
Soil Clay TN† TC¶ 

pH % % % 

C5P2 Silurian sand, kaolinite and peat moss 4.4 5 0.03 0.75 

C10P2 Silurian sand, kaolinite and peat moss 4.5 10 0.03 0.75 

C20P2 Silurian sand, kaolinite and peat moss 4.3 20 0.03 0.75 

C5P4 Silurian sand, kaolinite and peat moss - 5 0.06 1.51 

C10P4 Silurian sand, kaolinite and peat moss - 10 0.06 1.51 

C20P4 Silurian sand, kaolinite and peat moss - 20 0.06 1.51 

C5P8 Silurian sand, kaolinite and peat moss - 5 0.11 3.02 

C10P8 Silurian sand, kaolinite and peat moss - 10 0.11 3.02 

C20P8 Silurian sand, kaolinite and peat moss - 20 0.11 3.02 

C5 Silurian sand and kaolinite 5.4 5 0.02 0.00 

C10 Silurian sand and kaolinite 5.3 10 0.01 0.00 

C20 Silurian sand and kaolinite 5 20 0.01 0.00 

SS Silurian sand - 0 0.00 0.00 

SSPt Silurian sand and peat moss 4.5 0 0.03 0.75 

SL-TCR Natural soil; Total carbon reduced  9.1 4.1 0.00 0.64 

LS-TCR Natural soil; Total carbon reduced   8.4 2.1 0.08 0.15 

† TN = total nitrogen 

¶ TC = total carbon 

 

All soil samples for E. coli quantification were prepared in triplicate by placing 

6.0 g of air dried soil (e.g., room temperature) in a 50-mL plastic centrifuge tubes and 

then mixing with a 6.0 mL effluent (e.g., approximately 10°C) prepared by diluting liquid 

swine manure in distilled water at five different dilution ratios (e.g., 1:5, 2:4, 3:3, 5:1, and 

6:0 mL of liquid swine manure to mL of distilled water). A total of 15 samples per soil 

type were prepared (Tables 2.1 and 2.2). Even though soil samples were prepared from 

disturbed soils, the experiments were intended to mimic the upper 1 to 2 cm of soil in 

contact with swine effluent under field conditions. Once effluents move through the soil 

matrix, reduction in solute concentration and organic compounds due to sorption, ion 

exchange, and filtering may result in different sorption conditions which fall outside the 

scope of this paper.  
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2.3.2. Escherichia coli Source 

Liquid swine manure from the Swine Research and Educational Center at 

Oklahoma State University was collected in a 5 d composite sample and stored at 4°C in 

a closed plastic container for one year. Storage of the swine effluent mimicked anaerobic 

conditions typically found in manure pits before manure application. Before the 

experiments, the stored manure was mixed with fresh liquid swine manure aliquots in 

order to increase the E. coli concentration to a desired concentration (e.g., approximately 

20,000 most probable number (MPN)/mL) and mimic the mixing cycle found in manure 

pits (e.g., aged manure mixed with fresh manure).   

Major ions were measured in the final effluent mixture using ICP-AES and 

elemental digestion analysis (EPA 3051 method) for the liquid and solid component, 

respectively (Table 2.3). Solids were separated after 90 minutes of centrifugation at 400 

G using 40 mL of liquid swine manure. The percentage of solids and liquid was estimated 

by weight after pouring the supernatant and evaporating the remained liquid at 65
o
C.  The 

particle size distribution of the swine manure colloids and their associated E. coli 

concentrations were determined by filtration using a series of 1.27-cm diameter and 0.16-

cm thickness stainless steel disks (Applied Porous Technologies, Inc., Tariffvile, CT) 

with 53, 40, 20 and 10 μm openings and a set of Nylon mesh (BioDesign Inc. of New 

York, Carmel, NY) with 50, 35, 20 15 and 8 μm openings. Samples for E. coli 

enumeration were taken before and after each successive filtration stage in triplicate 

experiments. 
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Table 2.3. Composition of the swine effluent utilized in the study. 

Source % Na Ca Mg K S B P Fe Zn Cu Mn Al Ni pH 
Li

q
u

id
 AS

† 

(mg L
-1

) 
99 

4
0

0
.5

 

1
5

9
.3

 

4
4

.6
 

9
2

2
.7

 

8
1

7
.7

 

1
.2

 

1
3

6
.9

 

2
 

0
.7

 

0
.4

 

0
.4

 

0
.1

 

- 

7
.5

 

NS
¶ 

(mg L
-1

) 3
9

4
.2

 

1
5

8
.7

 

1
5

.2
 

1
0

2
9

.2
 

3
4

5
.6

 

1
.2

 

5
5

.8
 

1
.2

 

0
.2

 

0
 

0
 

0
.1

 

- 

7
.5

 

So
lid

 

(mg kg
-1

) 1 0
.6

 

1
.5

 

0
.7

 

0
.9

 

0
.6

 

- 1
.6

 

1
5

8
0
 

1
8

0
8
 

3
6

6
.6

 

3
0

4
.6

 

- 9
 - 

† Swine effluent used in the artificial soils (AS) 
¶ Swine effluent used in the natural soils (NS) 

 

2.3.3. Quantification of E. coli Sorption 

After soil sample preparation, E. coli sorption was quantified as follow. First, 

treated soils were re-suspended using a vortex (Genie 2, G-560, Scientific Industries, 

Inc., Bohemia, NY) for 2 to 3 seconds and then allowed to stand for a 5-minute 

equilibration time to minimize bacterial activity. This equilibration time was equivalent 

to that used by Ling et al. (2002) and similar to other reported sorption studies with fecal 

bacteria (Huysman and Verstraete, 1993). Second, treated soils were centrifuged for 3 

minutes at 48G to decant clay particles from E. coli (e.g., differential centrifugation) as 

described in Ling et al. (2002). Note that the complete methodology proposed in Ling et 

al. (2002) was not followed as it implied a second treatment with a saline solution 

quantifying the so called “strong adsorption”. Tests conducted to quantify E. coli removal 

by centrifugation in swine effluents (no soil was added) rather than sorption indicated 

that less than 5% of the E. coli population was removed by gravitational forces during the 

3 minute centrifugation time. This percentage was not considered significant in the 

computations.  The equilibration time was short enough to minimize microbial activity 

that may affect the initial fecal bacteria population (e.g., inactivation, bacteria growth, 

competition and predation), but long enough for the main ion exchange processes to 
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occur during the mixing process.  Note that effluents were used with its entire biological 

and chemical loads proportional to the dilution ratio.  

Subsamples from the supernatant were quantified for E. coli concentrations 

(MPN/mL) using IDEXX Colilert reagent and Quanti-Tray 2000 (IDEXX, Westbrook, 

ME), a U.S. EPA approved method for E. coli quantification. Note that E. coli 

enumeration using Quanti-Tray 2000 is based on fluorescence under UV light (Garbrecht 

et al., 2009; Guzman et al., 2009, 2010).  Electrical conductivity and soil pH were 

measured after centrifugation (e.g., triplicate samples) per each dilution ratio and 

refrigerated for additional solution analysis of major ions (e.g., Na, K, Ca, Mg, S, P, B, 

Fe, Zn, Cu, Mn, and Al) using Inductively Coupled Plasma Atomic Emission (ICP-AES). 

This research assumed that the experimental process did not lead to cell lysis due to the 

collision between E. coli and the soil particles. Sutera and Mehrjardi (1975) concluded 

from blood cells experiments (e.g., 6-8 µm size) under turbulent flow that shear stress 

above 2,500 to 3,000 dynes/cm2 may result in cell lysis. This shear stress was equivalent 

to cells centrifuged an approximately 400 to 480 G.  

2.3.4. Effluent Bacteria Growth: Microcalorimeter 

Time lag to the exponential bacteria growth phase was investigated using an 

isothermal titration microcalorimeter (ITC, CSC 4200, Calorimetry Science Corporation) 

in triplicate experiments. Silurian sand (SS) and sandy loam (SL) soils were sterilized by 

placing 1 g of dried soil in an oven at 100°C for 24 hours. Soil (e.g., 500 mg) was placed 

in the microcalorimeter cell with 97 µL of distilled water. The wet soil was left to stand 

for five minutes in the microcalorimeter equilibration compartment to allow temperature 

equilibration before placing the cell in the calorimeter chamber. Once the cell was in 
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place, a 3-minute time lag was allowed to equilibrate the temperature disturbance from 

positioning the cell. The sample was then inoculated with 97 µL manure effluent. 

Temperature in the ITC was set at 35°C for all experiments (e.g., favorable E. coli growth 

temperature) and data from the cell (e.g., microwatts, μW) were recorded every 4 s and 

then converted to μcal/mg. 

2.3.5. SAR, E. coli Quantification, and Nonlinear E. coli Sorption 

Sodium absorption ratio, SAR, was computed based in the ion concentration from 

each poured effluent dilution: 

 
   






22 MgCa

Na
SAR      (2.1) 

where [Na
+
], [Ca

2+
] and [Mg

2+
] are the soil solution ion concentration in mmol L

-1
. Also, 

electrical conductivity (EC) and soil pH were measured from effluent dilutions after 

mixing with soils. 

Sorbed E. coli was computed and expressed per g of dry soil as the difference in 

E. coli population in the initial effluent volume (e.g., 6 mL) and the estimated E. coli 

population in the supernatant after centrifugation:  

 o LP

SP

soil

V C C
q

M


         (2.2) 

where qSP is the sorbed E. coli concentration (MPN/g soil), V is the effluent volume 

(mL), Co and CLP are the initial and supernatant E. coli concentrations (MPN/100 mL), 

and Msoil is the mass of soil (g). Data from the triplicate experiments were averaged and 

then fit to the following nonlinear equation:  

B

SP LPq A C        (2.3) 
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where A and B are empirical parameters. This equation is mathematically equivalent to 

the Freundlich isotherm equation. Note that qSP represented sorption of E. coli in the solid 

phase in MPN g
-1

 and CLP 
 the concentration of E. coli in solution after centrifugation in 

MPN mL
-1

. The coefficient of determination R
2
 between the observed and predicted data 

was used to quantify the strength of the fit. 

A linear model was derived to estimate the measured A parameter based on soil 

properties. The natural soils were divided in two groups based on the percent clay content 

in order to estimate the A parameter: (1) an equation based on percent of total carbon 

(%TC) for soils with percent clay contents less than 11% due to the fact that increased 

clay content in this range resulted in increased E. coli sorption, and (2) an equation for 

soils with percent clay contents between 11% and 30% based on %TC and amorphous Al 

and Fe mineral content extracted with acid ammonium oxalate reagent (McKeague and 

Day, 1966). Finally, relationships between the A and B parameter were derived.  

Estimated mean error (EME) between observed (Cobs) and estimated (Cest) E. coli 

from nonlinear equations were computed for the natural soils using all dilution ratios: 

 
21

obs estEME C C
n

      (2.4) 

where n is number of observations from triplicate samples, and Cobs and Cest are the 

sorbed E. coli concentrations from the nonlinear and the predictive equation in MPN g
-1

, 

respectively. 
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2.4. RESULTS AND DISCUSSION 

2.4.1. Sessile E. coli and Effluent Solute Concentrations 

Assuming an E. coli size in the range of 0.8 to 3 µm (e.g., vertical dash lines in 

Figure 2.1), the estimated planktonic E. coli in the effluent was less than 10% of the 

detectable E. coli after filtering swine manure using a series of porous metal disks and 

nylon mesh (e.g., estimated from the regression line; Figure 2.1). Approximately 40% of 

the total E. coli population was able to pass a 10 µm pore space opening. Therefore, 

removal of sessile E. coli from solution by sorption and/or flocculation/precipitation was 

potentially controlled by processes occurring in the substrate (i.e., organic compounds in 

which the bacteria are attached or aggregate).  

 

Figure 2.1. Particle size distribution of organic compounds in swine effluents associated with the 

percentage of E. coli population finer than a certain mesh size from micro-sieving experiments. 

Filled circles represent data from nylon mesh and hollow circles from metal disks.  

Note that free cell fecal bacteria (e.g., estimated as a 10%) were the potential 

bacteria population subject to surface bonding (e.g., reversible or irreversible) while most 
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of the sessile fecal bacteria were hypothesized to be under irreversible attachment. 

Reversible bonding may occur quickly as bacteria contact surfaces (e.g., fractions of a 

second). Irreversible bonding is a secondary stage requiring bacteria to develop 

exopolysaccharides polymers (e.g., hours to days) as a function of nutritional needs and a 

stage of biofilm formation (Dunne, 2002).  A bacterium to surface bonding differs from 

sorption of solutes even though both cases have been modeled with DLVO theory. A 

fecal bacterium has nutritional needs and the capability to modify surfaces, bond soil 

constituents and change the bulk solution equilibrium through enzymatic action, protein 

release and by modifying its electrical charge.      

The liquid swine manure was rich in organic compounds (e.g., aggregates and 

colloids) and solutes (see Table 2.3) that upon contact with soils increased the pH and 

ionic strength of the soils’ bulk solution (Figure 2.2a). Note that EC and ionic strength 

are commonly linearly correlated. Following centrifugation, pH in the bulk solution 

increased to greater than the initial effluent pH (e.g., 7.5) in most cases. This observation 

indicated that effluent constituents played an important role in raising the pH in the bulk 

solution as a function of the soil-effluent mixing ratio and soil pH buffer capacity. 

However, for the artificial soils, the bulk solution pH did not exceed the initial swine 

effluent pH, perhaps due to the high pH buffer capacity of peat. Also, note in Figure 2.2a 

the pH variability in the natural soils for dilution ratios below or equal to 2:4 (e.g., swine 

effluent to distilled water) compared to dilution ratios above 2:4.  

Changes (e.g., increase and decrease) in soil pH following manure application 

have been reported from laboratory and field experiments as a temporary condition which 

would be important in immediate sorption of bacteria to soils. Changes in the bulk 
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solution pH were explained from CO2 degasification (Husted et al., 1991; Safley et al., 

1992) as the swine effluent was initially shaken and increased in temperature during 

centrifugation: 

 OHCO 22


 HHCO3

     (2.5) 

Essentially, a loss of CO2 from the system (i.e., degassing) forced the equilibrium in 

equation (2.5) to shift toward the reactants (left side), which resulted in a consumption of 

solution protons thereby increasing pH. As an example, recently Lovanh et al. (2010) 

documented greenhouse gas fluxes (e.g., methane, carbon dioxide, nitrous oxide and 

ammonia) in fields following manure application. Note that CO2 and HCO3
-
 are microbial 

byproducts in swine effluents. Also, HCO3
-
 is found in the pig mucosal duodenum 

secretions (Odes et al, 1995).   

Moreover, ion exchange of Mg
2+ 

associated with carbonates on clay minerals (Figure 

2.2f) and Na
+
, K

+
 and Ca

2+
 in organic compounds from the effluent solution (Figure 2.2c, 

2.2d and 2.2e) may have contributed to the increase in pH. Other variables may play a 

role in pH changes, such as oxidation of volatile fatty acid and ammonia concentrations, 

which have been reported to buffer swine effluent pH (e.g., 6.3 to 7.5) under anaerobic 

conditions but favor increases in pH as ammonia volatilization occurred (Georgacaki et 

al., 1982; Paul and Beauchamp, 1989).   
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Figure 2.2. Major ions sorbed (qSP) by the natural soils and in the swine effluent (Cman; dash line 

on Figures 2.2c to 2.2h), pH, sodium absorption ratio (SAR), electrical conductivity (EC) and 

equilibrated E. coli concentrations. Dash lines in Figure 2.2a are the average EC per dilution ratio 

(i.e., mL of liquid swine manure to mL of distilled water). Dash lines in Figure 2.2c to 2.2h are 

the solute concentration in the swine effluent before mixing with soils and circles are the sorbed 

solute concentrations after mixing. 
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2.4.2. Influence of Clay, Total Carbon, and Dispersion on E. coli Sorption 

As expected, for the artificial and natural soils, higher clay content increased E. 

coli sorption (Figure 2.3). The magnitude of the additional sorption decreased as the 

percent clay content increased to 10%. Increases in total carbon contents in artificial soils 

increased sorption of E. coli (Figure 2.3a). In some soils (e.g., C5P8, CA, EA, PA and SA 

soils in Figure 2.3), a sharp decrease in sorption was observed at the maximum effluent 

concentration (Figure 2.3a, 2.3e and 2.3f). Note that EC was an indicator of effluent 

application rates (Figure 2.2a). Soil dispersion (Gupta et al., 1984) and the presence of 

sessile E. coli were hypothesized to explain these results. Note that for the natural soils 

this phenomenon occurred for those soils with high clay contents. Also, in Figure 2.2a 

and 2.2e note the change in sorption after the reduction in total carbon treatment in the 

loamy sand and sandy loam soils. These observations indicate the importance of soil 

mineralogy and total carbon (e.g. soil organic matter) on sorption of fecal bacteria from 

manure effluents that are potentially changing the bulk solution pH.  

The sodium adsorption ratio (SAR) in the natural soils (Figures 2.2c and 2.2d) 

indicated that exchangeable Na
+ 

and K
+
 (e.g., dispersing ions) might be contributing to 

soil dispersion.  In addition, increased pH and desorption of Mg
2+

 from soils (e.g., 

flocculating ion as shown in Figure 2.2f) further favored dispersion as the effluent 

concentration increased. Note that pH increased to an average of 8.2 as soils were treated 

with swine effluents (Figure 2.2a; initial pH in swine effluent was 7.5). Dispersion of the 

clay minerals occurred as the dilution ratio decreased and was visibly present in all soils 

to some degree. Soil dispersion decreased sorption of E. coli due to the fact that clay and 

organic compounds possessing E. coli remained in suspension after centrifugation.  
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Figure 2.3. Sorption of E. coli from swine effluents for the artificial soils with clay contents of (a) 

5%, (b) 10%, and (c) 20%. Sorbed E. coli concentrations for the natural soils with clay contents 

in the range of (d) 0% to 10%, (e) 10% to 20%, and (f) 20% to 30%. See Tables 2.1 and 2.2 for 

identification and soil property information. Dashed lines and regression equations correspond to 

the artificial soils with 5%, 10% and 20% kaolinite clay content and no total carbon added. Note 

that all data points are the average of triplicate experiments. 

y = 37.1x0.6

R² = 1.0

100

1000

10000

10 100 1000 10000

So
rb

ed
  E

. c
o

li
co

n
ce

n
tr

at
io

n
, q

SP
(M

P
N

 g
-1

)

C5
C5P2
C5P4
C5P8
SL-TCR
LS-TCR
Power (C5)

y = 140.2x0.5

R² = 1.0

100

1000

10000

10 100 1000 10000

So
rb

e
d

  E
. c

o
li

co
n

ce
n

tr
at

io
n

, q
SP

(M
P

N
 g

-1
)

C10

C10P2

C10P4

C10P8

Power (C10)

100

1000

10000

10 100 1000 10000

Solution E. coli concentration, CLP (MPN mL-1)

CA

EA

SA

PA

C20

100

1000

10000

10 100 1000 10000

DA

BE

CO

C10

100

1000

10000

10 100 1000 10000

PR

DO

SL

LS

C5

y = 188.2x0.5

R² = 0.96

100

1000

10000

10 100 1000 10000

So
rb

e
d

  E
. c

o
li

co
n

ce
n

tr
at

io
n

, q
SP

(M
P

N
 g

-1
)

Solution E. coli concentration, CLP (MPN mL-1)

C20

C20P2

C20P4

C20P8

Power (C20)

ARTIFICIAL SOILS NATURAL SOILS

(a)

(b)

(c)

(d)

(e)

(f)



43 

 

Bacteria growth investigated with calorimetric experiments indicated a time lag of 

5 to 10 hr following soil inoculation before bacteria activity was detectable. Note that 

sorption experiments were completed in less than 20 minutes. It was also hypothesized 

that dispersion of the effluent organic compounds increased detection of E. coli in 

solution as particles carrying attached E. coli were physically split apart. However, 

further investigation is needed on this hypothesis. 

2.4.3. Predictive Equations for Sorption of E. coli 

In both artificial and natural soils, nonlinear equations described sorption of E. 

coli at different percent clay and total carbon contents. However, the nonlinear equation 

could not model the sharp decrease in sorption observed in some soils (e.g., CA, EA and 

SA soils; Figure 2.3). Note that these equations and their parameters are unique in that 

they characterize different soil and manure application suspensions. For soils with 

percent clay contents less than or equal to 11%, the A parameter was proportional to the 

%TC: 

 
2.4

39.0 %A TC
   

  

(2.6) 

For soils with percent clay contents larger than 11% but lower than 30%, the A parameter 

depended on amorphous Al and Fe mineral concentration (mmol kg
-1

), percent clay 

content (%clay), and %TC:  

 8.9 5.8 0.8 % 153.5(% )
1 1

A Al Fe clay TC
mmol kg mmol kg

   
     

(2.7) 

The B parameter was related to A (Figure 2.4):  

 0.1ln 0.9B A        (2.8) 
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Note that artificial soils were not included in the regression as artificial soil compositions 

were limited to assess the effect of total carbon and soil minerals on sorption of E. coli. 

The dependence of the predictive equations for A on the percent clay content was 

expected. Soil colloids smaller than 2 µm are responsible for most of the soil charge in 

which organic substances and amorphous Al and Fe coating clay mineral surfaces modify 

the electrochemical properties of the clay surfaces’ (Zhuang and Yu, 2002). On the other 

hand, the B parameter inversely represents the potential reduction in sorption of E. coli.  

 

Figure 2.4. Estimated nonlinear parameters (A and B) from the predictive equations developed in 

this research: (a) predicted versus observed nonlinear A parameter for the natural soils; (b) 

relationship between the nonlinear equation parameters (A versus B) for the natural soils. Soils 

after reduction in total carbon and artificial soils are in the figure for comparison. See Tables 2.1 

and 2.2 for identification and soil property information. 
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2
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MPN g
-1

. The mean error when fitting the experimental data with individual nonlinear 

equations for each experimental condition was 740 MPN g
-1

. The mean error of the 

estimated A values was found to be 6.48 and the B parameter was 0.09. Residuals from 

the estimated sorption of E. coli were normally distributed and proportional to the 

increase in the E. coli concentration in solution. This increase in error deviation was at 

least partially the result of the most probable number method used to quantify E. coli 

concentrations (Gronewold and Wolpert, 2008).  

A comparison between sorption of E. coli using a previously reported equation by 

Ling et al. (2002) and experimental data indicated that predictions based on the percent 

clay content alone overestimated sorption of E. coli from swine effluent applications 

(Figure 2.5). The overestimation was commonly at least one order of magnitude for soils 

with 0% to 11% clay content and more than one order of magnitude for soils with clay 

content greater than 11%. Note that Ling et al. (2002) carried out the experiments using 

planktonic fecal bacteria suspended in inert solutions. Therefore, the proposed predictive 

equations in this research will be valuable in estimating E. coli sorption from manure 

application in agricultural lands. 
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Figure 2.5. Comparison of E. coli sorbed (qSP) versus solution (CLP) concentrations observed 

during the experiments and estimated by the proposed predictive equations (i.e., “Estimated”). E. 

coli sorption predicted by the Ling et al. (2002) relationship based on only percent clay content is 

also shown. See Table 2.1 for identification and soil property information. 

2.5. SUMMARY AND CONCLUSSIONS 

Swine effluents are rich in solutes and organic colloids and upon contact with 

soils result in differential sorption mechanisms for E. coli. The dominant sessile E. coli 

population in the effluent resulted in different sorption mechanisms, as sorption of sessile 

E. coli was primarily controlled by sorption of the bacteria substrate rather than the 

bacterium itself. Also, buildup in alkalinity of the bulk solution and ion exchange of 
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solutes such Na
+
, K

+
, Ca

2+
 and Mg

2+
 may decrease sorption of E. coli in presence of 

organic matter as a result of soil dispersion. Degassing of CO2 from the swine effluent 

when aerated via shaking or with increased temperature and ion exchange explained the 

increase in pH observed in the sorption experiments.  Even though complex sorption 

mechanisms occurred when multiple constituent liquid swine manure was applied to 

soils, sorption of E. coli was adequately represented by a non-linear equation, valid 

except in cases of soil dispersion. Note that these equations and their parameters are 

unique in that they characterize different soil and manure application suspensions, rather 

than typical isotherms characterizing sorption for a constant bulk solution condition. 
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CHAPTER 3 

Surface Runoff Transport of Escherichia coli after 

Poultry Litter Application on Pastureland
2
 

3.1. ABSTRACT 

Escherichia coli transported in surface runoff from dissolution of applied poultry 

litter is a major variable in assessing fecal contamination of streams. However, the 

relative magnitude of the E. coli concentration from a specific poultry litter application 

and relative to the time lag between litter application and rainfall are not completely 

understood. This research investigated E. coli transport in runoff on fourteen 2 m  2 m 

pastureland plots. Poultry litter was manually applied (4,942 kg ha
-1

) in twelve plots 

followed by artificial rainfall with intensities equivalent to 2-year and 5-year storm 

events. Rainfall was applied in duplicate plots immediately after poultry litter application 

and 24 and 120 h after litter application. Experiments were also conducted on two control 

plots without poultry litter application. Surface runoff was collected using a flume 

installed in a trench. E. coli was quantified from sampled runoff and used as an indicator 

of fecal contamination by the most probable number (MPN) technique. No significant 

differences were observed in average event mean concentrations (EMCs) relative to 

storm intensity. Statistically significant differences were observed in average EMCs 

                                                 
2
 Published in Transaction of ASABE, 2010 

Guzman, J.A., G.A. Fox, and J.B. Payne. 2010. Surface runoff transport of Escherichia coli after 
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relative to time lag between litter application and rainfall. A nonlinear relationship was 

observed between average E. coli EMC and time lag, with the EMC decreasing between 

0 h (1.6  10
5
 MPN/100 mL) and 24 h (1.3  10

4
 MPN/100 mL) and then increasing at 

120 h (4.3  10
4
 MPN/100 mL). E. coli were always detected in the control plots 

(average EMC of 6.8  10
3
 MPN/100 mL), indicating the presence and transport of fecal 

bacteria from sources independent of the immediate poultry litter application. Even 

though poultry litter application may increase E. coli concentrations in runoff, other 

sources of fecal contamination serve as a significant component of the total E. coli EMC, 

especially as the time lag between litter application and rainfall events increases. 

3.2. INTRODUCTION 

The U.S. poultry industry has provided a plentiful and affordable source of 

protein for consumers while generating economic revenue. However, modern livestock 

industries, including poultry production, are frequently unprofitable unless a significant 

economy of scale can be achieved (Bossman, 2005). To achieve this economical scale, 

large numbers of birds are generally reared in confinement, resulting in a large amount of 

animal waste, in the form of poultry litter, produced in a limited geographic area. Poultry 

litter consists of manure, bedding material, and other components such as feathers and 

soil (Kelley et al., 1994). Wood shavings, sawdust, and soybean, peanut, or rice hulls are 

all common manure carriers added to the poultry house floor and utilized for raising four 

to eight flocks on a single placement prior to complete cleanout. After removal from the 

poultry house, litter is generally land-applied as a fertilizer source to pastures and 

cropland. Litter is recognized as an excellent source of the plant nutrients N, P, and K, 

but it can also contain pathogenic microorganisms such as Salmonella, Campylobacter, 
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and fecal indicator bacteria such as enterococci and Escherichia coli (de Rezende et al., 

2001; Santos et al., 2005; Jenkins et al., 2006). 

Surface and subsurface waters can result in fecal bacteria contamination as a 

function of runoff transport, litter properties, and rainfall events following litter 

application. E. coli can survive for extended periods of time in feces, soil, and water 

(Stoddard et al., 1998; Sørensen et al., 1999; Wang, 2003) and often serve as indicator 

organisms of fecal contamination (U.S. EPA, 1986, 2004; Foppen and Schijven, 2006). 

However, the interaction between land-applied poultry litter and E. coli concentration 

transported by surface runoff is still not well understood. Jenkins et al. (2006) reported 

that litter can impact E. coli concentrations in runoff from cropland when runoff occurs 

three weeks following litter application; in addition, they concluded that litter application 

did not appear to impact background concentrations when runoff events occurred seven 

months after application. In a second study involving poultry litter and commercial 

fertilizer applications to conventional-till and no-till corn plots subjected to simulated 

rainfall, Jenkins et al. (2008) concluded that no significant differences were determined 

between tillage treatments in runoff concentrations of E. coli. Litter application appeared 

to have little potential of pathogen contamination of surface waters. Recently, Sistani et 

al. (2009) compared the effect of litter application (e.g., surface-broadcast and subsurface 

banding) on surface runoff transporting E. coli following a rainfall event applied on the 

same plot during three consecutive weeks. The authors concluded that surface-broadcast 

litter treatment had a significantly greater E. coli contribution during all events as 

compared to subsurface litter application. 
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Litter application might contribute fecal bacteria to soils in sessile form (e.g., 

micro-colonies and biofilms) rather than planktonic form. During rainfall events, sessile 

E. coli can be transported in runoff and contribute to surface and subsurface 

concentration (Reddy et al., 1981; Shipitalo and Gibbs, 2000; Pachepsky et al., 2006). In 

soil habitats, E. coli populations typically exhibit a negative growth rate, balanced by the 

arrival of new organisms from manure sources, and thus maintain a relative steady 

"background" population (Savageau, 1983). This background E. coli population might be 

further subjected to surface runoff transport when located in the top centimeters of the 

soil profile as surface erosion occurs. Muirhead et al. (2006) performed laboratory-scale 

experiments to compare surface runoff transport of E. coli attached to silt loam soil 

particles versus planktonic cells in surface runoff. They observed reductions in E. coli 

when attached to soil particles, but this reduction did not impact the overall transport. On 

the other hand, planktonic cells rapidly attached to small particles that remained in 

suspension while being transported in surface runoff. In addition, they found no 

significant E. coli transport differences between slope (e.g., 5% and 15%) and flow rates 

(e.g., 0.6 and 2 mL s
-1

). 

In eastern Oklahoma, much of the poultry litter produced is land-applied to 

pastures for forage production. Questions exist regarding the effects of time lag and 

rainfall intensity on the potential for E. coli event mean concentration (EMC) and other 

biological contaminants from pasture-applied poultry litter to reach receiving water 

bodies during surface runoff events. The objective of this study was to investigate E. coli 

concentrations transported by surface runoff after poultry litter application on a series of 
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pasture plots selected with similar soil, slope, and vegetation characteristics and subjected 

to 2-year and 5-year storm event intensities using a rainfall simulator. 

3.3. MATERIAL AND METHODS 

Field experiments consisting of fourteen 2 m  2 m pastureland plots were used to 

evaluate E. coli surface runoff transport. The plots were located at the Oklahoma State 

University Eastern Research Station in Haskell, Oklahoma (Figure 3.1). Two of these 

fourteen plots were used as control plots without poultry litter application. Plots were set 

up by berming the soil along the perimeter of the plot and digging a trench at the drainage 

(i.e., downslope) end. Special attention was given during plot preparation to avoid 

external contamination resulting from stepping on the plot, exogenous soil particles, or 

altering the existing vegetation. In addition, plots were separated by a distance of at least 

5 m to avoid cross-contamination. One-year-old broiler litter (moisture content = 25% 

and pH = 8) collected the same day from a commercial poultry house, typically cleaned 

out once per year, was manually surface applied at an application rate of 4,942 kg ha
-1

 on 

twelve plots. Litter was collected directly from a poultry house floor following a zig-zag 

pattern while avoiding large clumps of litter (e.g., caked litter) and mixed before field 

application. Additionally, litter was applied to an area 20 cm in diameter and 1 cm in 

depth outside the plots to quantify E. coli populations in litter exposed to the same 

environmental conditions over time. 
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Figure 3.1. (a) Aerial image of the Oklahoma State University Eastern Research Station in 

Haskell, Oklahoma, including the study area location of the plots and the rainfall simulator used 

for the 2-year and 5-year rainfall intensities, and (b) illustration of vegetation, rain gauge, and 

borders of one of the plots and the outflow flume and flow collection device at the downslope end 

of the plot. 

In each plot, an artificial rainfall event was simulated using a standard rainfall 

simulator (Miller, 1987) with the intensity equivalent to a 2-year or 5-year return period 

event and for 30 or 45 min duration (Tortorelli et al., 1999). Rainfall was applied 0 h, 24 

h, or 120 h after litter application (Table 3.1) to evaluate the effect of time lag on E. coli 
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transport. During the 5 d span of the experiments, there was no natural rainfall. One 

control plot was tested at the beginning of the experiment (e.g., 0 h time lag in plot 1), 

while the second control plot was tested at the end (e.g., 120 h time lag in plot 14). 

Table 3.1. Characteristics of the rainfall events, plot slope, and surface runoff for the experiments. 

Note that all surface runoff times are non-dimensionalized by the duration of the rainfall event, td. 

Plot 

Time Lag 

(h) 

Plot 
Slope 

(%) 

Storm Event 

 

Surface Runoff 

EMC 

(MPN/100 mL) 

T 

(year) 

Intensity, 

i (mm h-1) 

Duration, 

td (min) 

Volume 

(mm) t/td 

Mean 

(mm h-1) 

Peak 

(mm h-1) 

1[a] 0 3.6 2 58.4 45 43.8  0.46 35.7 58.7 7.7  103 

2 0 5.1 2 58.4 45 43.8  0.46 29.3 51.9 2.2  105 

3 0 4.4 2 58.4 45 43.8  0.55 31.0 66.5 1.9  105 

4 0 3.2 5 76.2 30 38.1  0.63 19.9 44.9 5.0  104 

5 0 4.8 5 76.2 30 38.1  0.52 41.9 93.4 1.7  105 

6 24 4.9 2 58.4 45 43.8  0.45 36.3 66.4 2.6  104 

7 24 5.2 2 58.4 45 43.8  0.42 36.8 56.3 7.6  103 

8 24 7.4 5 76.2 30 38.1  0.43 55.0 85.9 1.1  104 

9 24 5.4 5 76.2 30 38.1  0.39 53.7 86.1 7.1  103 

10 120 3.0 5 76.2 30 38.1  0.36 40.4 56.9 1.9  104 

11 120 2.1 2 58.4 45 43.8  0.85 34.4 45.4 6.2  104 

12 120 3.8 2 58.4 45 43.8  NA[b] NA[b] NA[b] 5.0  104 

13 120 3.3 2 58.4 45 43.8  0.30 44.6 64.8 4.0  104 

14[a] 120 3.9 2 58.4 45 43.8  0.50 35.7 58.7 5.8  103 
[a] Control plots. 
[b] Runoff data eliminated due to measurement error (flow underneath the outflow flume). 

 

3.3.1. Experimental Area 

The experimental area consisted of pastureland with a mixture of perennial 

ryegrass (Lolium multiflorum Lam.), tall fescue grass (Festuca arundinacea), bermuda 

grass (Cynodon dactylon), and some Johnsongrass (Sorghum halepense (L.) Pers.) grown 

for hay production (Figure 3.1.). Cattle had not been allowed access to the pasture for 

over one year, and poultry litter had previously been applied one year prior to the study 

on 16 May 2008 at an approximate application rate of 8,649 kg ha
-1

. The topographical 

slopes in the experiment area varied from 0% to 8% with some isolated small 

depressions. Plots drained to an intermittent natural drainage channel (Figure 3.1) with 
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soils mainly from clayey residuum weathered from shale and silty alluvium parent 

material. Soils series were primarily Dennis-Verdigris complex (Dennis: 35%, Verdigris: 

25%, minor components: 40%) and Parsons silt loam (Mollic Albaqualfs). A weather 

station located on site measured rainfall, air temperature, relative humidity, wind speed, 

and solar radiation (Figure 3.2). 

 

 
Figure 3.2. Meteorological conditions during the experimental 5 d period: (a) air temperature at 

1.5 m (TAIR-1.5 m) and relative humidity (RELH), and (b) wind speed at 10 m (WVEC-10 m) 

and solar radiation (SRAD). 
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3.3.2. Rainfall Simulator 

A solenoid-operated rainfall simulator (Miller, 1987) was used to simulate 2-year 

and 5-year storm event intensities for a 30 or 45 min duration (Figure 3.1). The rainfall 

intensity provided by the simulator was calibrated and controlled by an on-off cycle (2.0 

s on and 1.8 s off for the 2-year event, and 2.0 s on and 0.4 s off for the 5-year event) of 

the solenoid valve (MKC-2, Sporlan Division, Washington, Mo.). A single nozzle (TeeJet 

1/2 HH-SS50WSQ, Spraying Systems Co, Chicago, Ill.) placed in the center of the 

simulator frame (3.0 m high, 2.8 m long, and 2.3 m wide) was used to spray the water. A 

water tank that was previously disinfected and connected to a centrifugal gasoline-

operated pump (Honda, WB30X) was used to provide the pressure head required by the 

rainfall simulator. The setup included a valve to regulate the pressure head. During 

simulator calibration prior to the field experiments, rainfall intensity was measured in 

three rainfall collectors randomly located in an equivalent plot of 2 m  2 m. As part of 

the rainfall simulator setup, a manometer located in the water distribution pipe was used 

to monitor the pressure head provided by the pump. A calibration curve was derived to 

estimate the on-off cycle at 103 kPa for the rainfall intensities. 

3.3.3. Plot Instrumentation 

The hydrological response in all plots was measured by collecting the overland 

flow using a flume at the downslope end of each plot. The flume was installed 15 cm 

below the surface by mechanical insertion into the manually dug trench (Figure 3.1). 

Runoff was measured by mass using a bucket attached to a weighing scale (GX-12K, 

A&D, San Jose, Cal.) recording data every 5 s. Three Hydra Pro II sensors (Stevens, 

Portland, Ore.) connected to a XR-10 datalogger (Campbell Scientific, Logan, Utah) 
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were setup during the experiments (one outside and two inside each plot) to measure 

salinity, soil temperature, and volumetric moisture content every 5 s. Rainfall amounts 

were collected using a rain gauge installed inside the plastic berm in order to verify the 

applied rainfall intensity and confirm that the applied water was not a source of E. coli. 

Equipment, sensors and the flume were cleaned and disinfected after each experiment. 

3.3.4. Escherichia coli Concentration 

Water samples were collected approximately every 2 min at the end of the flume 

during the experiments. Samples were stored on ice until E. coli enumeration, not more 

than 6 h after sampling. E. coli was quantified by the most probable number (MPN) 

technique using the Colilert reagent and semi-automated Quanti-Tray method (IDEXX, 

Westbrook, Maine), which provides counts from 0.0 to 2,419.6 per 100 mL (Garbrecht et 

al., 2009; Guzman et al., 2009). Yellow wells with fluorescence in the IDEXX panels 

were considered positive for E. coli. Triplicate litter samples taken before application and 

collected outside the plots at 0 h, 24 h, and 120 h were stored on ice and enumerated for 

E. coli by placing 10 g of litter in 100 mL of distilled water, shaking periodically for 20 

min, and sampling the supernatant. 

3.3.5. Data Processing 

Raw data from the weighing scale were adjusted to eliminate the effects of water 

sampling and water disposal when the bucket hanging from the weighing scale reached 

capacity and had to be emptied. Hydrographs were obtained after processing and 

smoothing the adjusted data in each plot using a Fourier series with a number of 

harmonics defined by a periodogram analysis (Salas et al., 1997). The same technique 

was used to estimate the average hydrological response for the 2-year and 5-year storm 
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events. Runoff data from plot number 12 were eliminated due to measurement problems 

with respect to water flowing underneath the outflow flume. 

E. coli event mean concentrations (EMC) were estimated for the 2-year or 5-year 

storm events and lag times using the following equation: 








N

i

i

N

i

ii

Q

CQ

1

1EMC         (3.1) 

where Qi is the runoff discharge for the 2-year or 5-year averaged hydrological 

response at time i, Ci is the effluent E. coli concentration at time i for a specific time lag, 

and N is the combined number of measurements for the corresponding time lag and storm 

event (Garbrecht et al., 2009). Estimated EMC values were tested for normality by fitting 

the data to a normal distribution with 95% confidence intervals. An ANOVA unstaked 

test with 95% confidence limits was used to test for significant differences in the average 

EMCs for the various treatments. 

3.4. RESULTS AND DISCUSSION 

3.4.1. Hydrological Response 

In all plots, runoff initiated shortly after the beginning of the simulated rainfall, 

peaked at the end of the storm duration, and then rapidly receded for 10 to 15 min for 

both the 2-year and 5-year storm events (Figure 3.3). Peak runoff was directly 

proportional to the storm intensity, while the time to peak runoff was inversely 

proportional to the storm intensity. The average peak runoff was 58.7 and 73.4 mm h
-1

 for 

the 2-year and 5-year storm events, respectively (Table 3.1). The variance in peak runoff 

observed for the individual plots was most likely due to variability in infiltration between 
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the plots, microrelief, water pressure fluctuations in the rainfall simulator, wind effects, 

and some interflow bypassing the flume collector at the end of the plot. Moisture content 

sensors indicated saturation conditions at the end of the rainfall events. The average plot 

slope ranged between 2.1% and 7.4%; no significant difference was observed relative to 

slope in the plots used for the 2-year and 5-year storm intensities. 

 

 
Figure 3.3. Smoothed hydrograph response from each plot for (a) T = 2-year and (b) T = 5-year 

rainfall intensity relative to the time lag (TL) between litter application and rainfall. Only 2-year 

storm intensities were simulated in the control plots. 
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3.4.2. Escherichia coli Event Mean Concentrations 

Average E. coli loads applied to the plots were approximately 8.2  10
10

 MPN  

ha
-1

 or 3.3  10
7
 MPN. Computed E. coli EMCs were the combination of E. coli 

concentrations from other sources and the immediate litter application. Averaged E. coli 

EMC in table 3.2 decreased as a function of the time lag (e.g., 24 h and 120 h) when 

compared to the EMC for rainfall events immediately following litter application (e.g., 0 

h time lag). This EMC reduction was in the range of one order of magnitude independent 

of the storm event intensity. In addition, EMC for each time lag followed a similar 

pattern for both storm event intensities (Figure 3.4). 

Table 3.2. E. coli event mean concentration (EMC, MPN/100 mL) and ANOVA test results (95% 

confidence limits, CL) for significant differences in the EMC averages as a function of the time 

lag. P-values lower than 0.050 indicated a significant difference in the average EMCs. 

 Control 0 h 24 h 120 h 

Average EMC 6.8  10
3
 1.6  10

5
 1.3  10

4
 4.3  10

4
 

Maximum EMC 7.7  10
3
 2.2  10

5
 2.6  10

4
 6.2  10

4
 

Minimum EMC 5.8  10
3
 5.0  10

4
 7.1  10

3
 1.9  10

4
 

 

P-Values from ANOVA Test on Average 

EMCs 

(95% CL) 

0 h 0.053 -- 0.008 0.024 

24 h 0.412 0.008 -- 0.026 

120 h 0.058 0.024 0.026 -- 
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Figure 3.4. E. coli concentration for the 2-year and 5-year storm intensity and time lags: (a) E. 

coli concentration and average runoff from the 2-year storm intensity, and (b) E. coli 

concentration and average runoff from the 5-year storm intensity. Only 2-year storm intensities 

were simulated in the control plots. Filled square symbols correspond to the minimum 

concentration (e.g., water samples in which E. coli concentrations where over the range of 

quantification). TL = time lag (h) and td is the rainfall event duration time. 
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No significant differences were observed in average EMCs across the storm 

intensities (2-year and 5-year storm intensity). Therefore, data were grouped as a function 

of the time lag. Statistical analyses between the 0 h versus 24 h, 24 h versus 120 h, and 0 

h versus 120 h time lag experiments indicated that average EMCs were significantly 

different. On the other hand, the average EMCs from the control and treated plots were 

not significantly different (Table 3.2) at 95% confidence limits. This was perhaps the 

result of the limited number of control experiments. However, note in table 3.2 that the 

average EMCs between the control plots and the 0 h versus 120 h time lag EMC can be 

considered significantly different at 90% confidence limits. 

3.4.3. Escherichia coli Surface Runoff Concentrations 

In both control plots (e.g., 0 h and 120 h time lag), E. coli was always detected. 

Concentrations were observed to vary as a function of the surface runoff volume. This 

observed E. coli concentration indicated the presence of fecal contamination from sources 

other than the immediate poultry litter application. The background E. coli initially 

present in the control plots were capable of sustaining E. coli release proportional to the 

surface runoff development during the duration of the rainfall event. The average E. coli 

concentration always increased with time during the rainfall events (Figure 3.4). 

The source of background E. coli may be due to rodents, birds, and other small 

mammals in the area. In addition, a previous poultry litter application had occurred on the 

plots one year earlier. Jenkins et al. (2006) found during a series of experiments in four 

small watersheds located in Watkinsville, Georgia, that E. coli persisted in soil months 

after poultry litter application. They reported an initially undetectable E. coli 

concentration in soil samples and a "marginally detectable" E. coli concentration on the 
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order of 102.7 to 104.2 MPN per kg
-1

 of soil nine to eleven months after the first litter 

application. However, E. coli runoff concentrations were on the whole minimal and were 

not greater than background concentrations following a runoff event seven months after 

litter application. 

As shown in figure 3.4, background E. coli concentrations should not be 

considered negligible and significantly contributed to the total E. coli biomass transport. 

In all field conditions, surface runoff has the capability to erode, re-suspend, and 

transport soil particles and colloids in which E. coli might attach or adhere. Further 

investigation on the effect of long-term litter application facilitating fecal bacteria 

background populations in soils is needed. Some studies have demonstrated that soils 

treated with animal manure can result in higher soil organic carbon content (Gerzabek et 

al., 1997; Peacock et al., 2001), an increase in the soil microbial biomass located in the 

top soil (e.g., 0 to 5 cm soil depth), and significant changes in the microbial community 

structure (Peacock et al., 2001). 

In experimental plots with litter application, E. coli concentrations for rainfall 

immediately after application increased compared to the background E. coli 

concentrations for the 2-year and 5-year storm events (Figure 3.4). For the 0 h time lag, 

sustained E. coli concentrations were observed after the peak concentration, while for the 

24 h and 120 h time lag, E. coli concentrations peaked and then decreased. Reductions in 

the E. coli concentrations as a function of the time lag (e.g., 24 h and 120 h) indicated 

bacteria die-off of approximately one order of magnitude (Figure 3.4). It should be noted 

that in figure 3.4 the filled square symbols correspond to the minimum concentrations 
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(e.g., water samples in which E. coli concentrations were over the range of quantification 

for the dilution factor). 

However, a slight increase in E. coli concentrations was observed during the 120 

h time lag experiments as compared to the 24 h experiments. This increase in average E. 

coli concentrations for the 120 h time lag experiment was hypothesized to be due to E. 

coli growth in litter when in contact with the soil surface and protected from ultraviolet 

light by vegetation. In addition, litter samples from outside the plots indicated an initial 

decrease in E. coli concentration 24 h after application and an increase in E. coli 

concentration 120 h after application (Figure 3.5). Wang (2003) reported E. coli re-

growth after manure excretion for three to five days, during which temperature was 

considered the most critical variable, followed by moisture. Poultry litter is a non-

homogeneous compound formed by bedding materials and manure. Particle size in litter 

ranges from millimeters in particulate litter to centimeters in cake compounds with a 

heterogeneous E. coli population distribution as a function of the litter particle size. As 

poultry litter is applied on the field, litter with higher mass (e.g., larger aggregation 

around manure droppings) is deposited close to the soil surface, where it is protected 

from UV light exposure, experiences more stable temperatures, and may have access to 

available moisture. Meteorological conditions and deposition location might promote E. 

coli survival as a function of moisture variation in the litter particles. Air temperatures 

during the experiments were in the range of 10°C to 32°C, solar radiation peaked at 

approximately 1200 W m
-2

, and relative humidity averaged 90% during nights and 

sporadically some hours during the day (Figure 3.2). These environmental conditions 

were not optimal (e.g., maximum multiplication rate) for E. coli re-growth but can buffer 
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E. coli populations in larger litter particles or small cake fractions deposited close to the 

soil surface from inactivation. 

 
Figure 3.5. Escherichia coli concentration in poultry litter samples collected outside the treated 

plots as a function of time lag. 

3.5. SUMMARY AND CONCLUSIONS 

The objective of this research was to investigate E. coli event mean 

concentrations in surface runoff after poultry litter application on a series of fourteen 2 m 

 2 m pasture plots subjected to 2-year and 5-year storm event intensities and for various 

time lags between litter application and rainfall. No significant differences were observed 

in average event mean concentrations relative to storm intensity. However, statistically 

significant differences were observed in average EMCs relative to time lag between litter 

application and rainfall. The relationship between time lag and litter application was not 

straightforward. The event mean concentrations were expected to be a maximum 

immediately following litter application and then decrease as a function of the time lag. 

However, the expected bacteria die-off rate was buffered due to hypothesized E. coli 

0 24 120
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growth in plots 120 h after litter application. It should be noted that the plots used for this 

research were only 2 m  2 m, and this research did not address fate and transport 

mechanisms as runoff generated from these plots traveled to receiving water bodies. 

In control plots, E. coli was always detected, indicating the presence and transport 

of fecal bacteria from sources independent from poultry litter application, with an 

average E. coli event mean concentration of 6.8  10
3
 MPN/100 mL. The observed E. 

coli background concentration and its resulting contribution to the E. coli event mean 

concentration cannot be neglected as an important source of E. coli, especially in regard 

to the time lag between litter application and rainfall events. For example, the percentage 

contribution of the background fecal contamination was on average 4%, 52%, and 16% 

of the E. coli event mean concentration during the 0 h, 24 h, and 120 h time lag 

experiments, respectively. Therefore, poultry litter applications may contribute to runoff 

E. coli event mean concentrations when rainfall events occur shortly after litter 

application. However, other sources of fecal contamination serve as a significant 

component of the total E. coli event mean concentration, especially as the time lag 

between litter application and rainfall events increases. Bacteria survival and growth was 

hypothesized to depend on the location of deposited litter within the plot (i.e., on the 

surface of the grass or reaching the soil surface), suggesting that distribution of litter 

among various compartments within the system is needed to adequately represent 

available E. coli biomass for transport in runoff. Attempts at modeling the fate and 

transport of E. coli from surface-applied litter to pastureland should account for different 

deposition locations. In addition, future studies using more advanced biological analysis 
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techniques (i.e., DNA profiling) should be conducted to better resolve the possible 

sources of the control plot E. coli concentrations. 
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CHAPTER 4 

Implementation and Validation of Biopore and Fecal 

Bacteria Fate and Transport Routines into the Root Zone 

Water Quality Model (RZWQM) 

 

4.1. ABSTRACT 

Surface runoff and infiltration are primary fecal bacteria transport mechanisms 

occurring in agricultural fields following manure application. Macropores and biopores 

increase water infiltration, decrease surface runoff and allow fecal bacteria and water to 

rapidly bypass the soil matrix during rainfall or irrigation events. This research 

incorporates fecal bacteria transport and biopore routines into the Root Zone Water 

Quality Model (RZWQM), to simulate flow and fecal bacteria transport though the soil, 

to subsurface drainage, and in runoff. Flow, soil fecal transport routines, and the 

influence of macropores and biopores on this transport were evaluated based on a series 

of soil column experiments (28 cm by 50 cm by 85 cm) with two contrasting soil types 

(e.g., loamy sand and sandy loam) in which artificial open surface connected biopores 

were placed at two different depths (e.g., 55 cm and 65 cm). Simulations of fecal 

transport in runoff were evaluated from a series of 2 m by 2 m plot experiments treated 

with poultry litter and subjected to two artificial rainfall storm event intensities. The new 

routines improved RZWQM’s capability to predict rapid flow (e.g., shape of the 
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hydrograph, time to peak, and flow breakthrough. Simulated Nash-Sutcliffe efficiency 

index ranged between 0.65 and 0.81 and soil fecal transport (e.g., absolute error for the 

simulated event mean concentrations (EMCs) ranged between 4% and 109%) resulting 

from macropores, biopores, and subsurface drainage interconnectivity.  Fecal transport 

concentrations were underestimated in some cases. The modified model captured the 

trend in concentrations observed during the soil column but not the plot experiments. The 

updated model is a simple, prediction tool capable of simulating fecal bacteria transport 

in runoff and to subsurface drainage with and without the presence of biopores and 

macropores. 

4.2. INTRODUCTION 

Surface runoff and water infiltration are primary fecal bacteria transport 

mechanisms following manure application in agricultural fields (Jamieson et al., 2002; 

Tyrrel and Quinton, 2003). During infiltration, the physical, chemical, and biological 

interactions in the soil matrix may result in fecal bacteria inactivation, transport 

retardation or immobilization (Fontes et al., 1991; Unc and Goss, 2003; Darnault et al., 

2004). The presence of macropores (i.e., soil fractures and mesopores) and biopores (i.e., 

tunneling macropores from anecic earthworms) in soils may increase infiltration allowing 

rapid transport of solutes and microorganisms to deeper soils and/or subsurface drainage 

systems (Kemper et al., 1988; Shipitalo and Gibbs, 2000; Akay and Fox, 2007; Guzman 

et al., 2009). 

A few physically-based or conceptual hydrological models at the column, plot and 

catchment scale have been used to simulate soil bacteria transport and preferential flow. 

Examples of these models are MACRO (Jarvis, 1994) and HYDRUS (Šimunek et al., 
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2005; Šimunek et al., 2006).  Recently, Köhne et al., (2009a,b) published a detailed 

review of models application for structured soils, and transport of tracers and pesticides. 

In most cases, bacteria transport has been simulated in a continuum porous media 

representation by solving the advection-diffusion equation in one, two or three-

dimensions using Richard’s equation and/or the Green-Ampt method. Also, soil structure 

has been incorporated into models assuming a uniform soil macroporosity in dual 

porosity or dual permeability models. However, assumptions made to simulate water 

flow at the pore scale in physically-based models are too restrictive in the presence of 

biopores that can invalidate the representative element volume concept (Jarvis, 2007). 

The Root Zone Water Quality Model (RZWQM) is a one-dimensional physically-

based lumped model with the capability to simulate the physical, biological, and chemical 

processes occurring in the vadoze zone under different scenarios and management 

practices. The main hydrological processes in the vadoze zone are modeled using the 

one-dimensional Richard’s equation for soil moisture redistribution, the Green-Ampt 

method during infiltration, and the integrated Hooghoudt’s equation (Bouwer and van 

Schilfgaarde, 1963) for the subsurface drain flow. Also, RZWQM has the capability to 

incorporate soil structure into the model by using uniform macroporosity per soil horizon 

(Ahuja et al., 2000). Moreover, flow and solute transport from directly connected 

macropores to subsurface drainage systems can be simulated using the express fraction 

concept (Fox et al., 2004). This model has also been considered for use by governmental 

agencies for simulating contaminant transport in soils; however, the model currently 

lacks routines for soil fecal bacteria fate and transport and rapid flow in the presence of 

biopores. 
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During the infiltration process, biopores may cause water and contaminants to 

bypass rapidly specific soil depths (Akay et al., 2008). This condition allows the 

propagation of a secondary wetting front down to the end of the biopore length, and along 

the biopore. A rapid rise in the water table may result from biopore flow bypassing a 

portion of the soil matrix increasing flow and transport at the drain as a function of the 

soil properties, macropores, and layer thickness between the end of the biopore and the 

subsurface drain (Akay and Fox, 2007; Akay et al., 2008; Guzman et al., 2009).  

The objectives of this research were to (1) incorporate routines in RZWQM to 

simulate fecal bacteria transport through the soil matrix, macropores, and in surface 

runoff; and (2) to incorporate a new open surface connected (OSC) biopore routine to 

improve flow and transport simulations to subsurface drains. This model is the first to 

simulate fecal bacteria fate and transport through soils incorporating macropore and 

biopore flow at the plot scale. 

4.3 MATERIALS AND METHODS 

Routines to simulate fecal bacteria fate and transport were incorporated into 

RZWQM’s water redistribution and infiltration subroutines. Additionally, a routine 

simulating OSC biopores from anecic earthworms was added to the infiltration module 

for rapid flow and transport to a specific soil depth (Figure 4.1).  No additional routines 

were included to account for surface runoff or subsurface drain flow routing. 
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Figure 4.1. Conceptual diagram of the main RZWQM hydrological processes and the new 

biopore concept. Where XpF is the express fraction concept (Fox et al., 2004) and GWT is the 

ground water table. 

4.3.1 Fecal Bacteria Fate and Transport Modeling 

Soil fecal bacteria fate and transport was modeled based on the conservation of 

mass at the layer (e.g., infiltration) or horizon discretization (e.g., redistribution) in a 

unitary volume (e.g., 1 cm
3
 fecal bacteria pools). Fecal bacteria transport by advection, 

attachment, detachment, straining, and dieoff were considered in the liquid and/or solid 

phase. Attachment was represented by a non-linear function (see Chapter 2) while 

detachment was assumed to occur linearly. Straining was linearly represented (Foppen et 
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al., 2005) as a fraction of the fecal bacteria mass transported in the liquid phase from an 

adjacent layer: 

str
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(4.3) 

where C is the fecal bacteria concentration in the liquid phase (MPN mL
-1

); u is the flow 

velocity at the receiving layer (cm h
-1

); bulk
 
is the soil bulk density (g cm

3
); q represents 

the fecal bacteria attachment concentration (MPN g
-1

) ; A and b are constants for the non-

linear attachment function; Kstr is the straining coefficient fraction; Ddet is the detachment 

coefficient fraction; t
 
is the time in hours; z

 
represents the vertical direction, k is the 

dieoff rate (h 
-1

), and N is the fecal bacteria mass in the liquid or solid phase pools per 

unitary volume (MPN cm
-3

). adv, str, att, LP, and SP indicate advection, straining, 

attachment, liquid phase and solid phase, respectively. 

Fecal bacteria die-off was simulated by an exponential inactivation model 

(Chick’s, 1908). During simulation, the first order die-off rate was adjusted at each time 

step as a function of the water temperature in the soil profile using the Arrhenious 

equation (Hrishikesh et al., 2007; Garzio-Hadzick et al., 2010): 

E

RT

rk A e

 
 
       (4.4) 

where Ar is a constant in the Arrhenious equation; E is the activation energy; R is the gas 

constant, and T is the water layer temperature. Variables affecting bacteria fate such as 
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moisture content, microbial competition, UV radiation, pH, and soil organic matter 

content were not considered in the model.  

In cases in which the integrated Hooghoudt’s equation contributed flow to the 

drain, transport of fecal bacteria was estimated as a function of the advection, detachment 

and strainingoccurring in the soil volume fraction of the layer separating two drain pipes:  

   1DP HVF SEP strN K DP K uC t z y         (4.5) 

where NDP is the bacteria mass transported to the drain pipe (MPN); KHVF is the effective 

horizontal layer volume contributing fecal bacteria; DPSEP is the drain pipes spacing 

(cm); Kstr is the straining coefficient; u represent the horizontal flow velocity (cm h
-1

); C 

is the fecal bacteria concentration in the liquid phase and y is the layer depth (cm). 

4.3.2 Biopore Flow and Transport 

Biopores were described in the model by a vertical circular opening reaching a 

specific soil depth in contact with saturated or unsaturated soil layers (Figure 4.1). 

Biopores were assumed to occur homogenously in the one-dimensional soil profile as a 

function of the biopore macroporosity estimated as the biopore volume per 1-cm soil 

layer volume. Seasonal biopore opening variation as well as tillage biopore disruption 

was allowed using a daily fraction biopore opening parameter (Ramirez et al., 2009). The 

effective biopore length was expressed as a function of the biopore tortuosity. Flow 

routed through biopores was proportional to the remaining surface runoff portion 

following soil matrix and macropore infiltration including the express fraction. Biopores 

propagate water into the soil matrix downward and upward at the biopore end. Layer 

flow propagation was estimated as the result of the minimum flow between the maximum 
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infiltration capacity and the saturated hydraulic conductivity or saturation water deficit 

for a saturated or unsaturated layer, respectively.  

The maximum infiltration capacity was estimated by the Hagen-Poiseuille law 

(1939) or tank model for the unsaturated or saturated layer condition, respectively. The 

final maximum biopore infiltration flow resulted from multiplying the former value by an 

effective lateral infiltration constantand the daily biopore opening parameter: 

4

8

u

BPf eff

r P
Q K K

L






      (4.6) 

2 2s

BPf effQ K K r gL     (4.7) 

where KBPf is the biopore opening fraction;
u

effK  and 
s

effK  are the effective lateral 

infiltration coefficient per soil horizon for the unsaturated and saturated condition, 

respectively; r is the biopore radius; P  is the pressure difference over the corresponding 

layer;  is the water dynamic viscosity; L isthe biopore soil profile depth at each layer; 

and  is the tortuosity.  

The volume of water propagating downward was limited by the infiltration 

capacity of the layer containing the end of the biopore. In cases in which the biopore end 

layer become saturated, a downward piston flow was allowed until the water front 

reached the drain pipe depth or the propagating water become exhausted in the adjacent 

layers. Excess of water reaching the drain pipe was added to the subsurface drain flow. 

For the upward water propagation, piston flow was also allowed in saturated layers. At 

the surface, the excess water after the downward and upward propagation process, if any, 

was returned to the surface runoff. 
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4.3.3 Sources of Fecal Bacteria 

Three sources of fecal bacteria were considered in the model: (i) fecal bacteria 

from manure application, (ii) fecal bacteria from other sources, and (iii) fecal bacteria 

from rainfall events (Figure 4.1). Fecal bacteria from other sources represent bacteria 

mass that is deposited on the top layer of the soil from animal excretions, such as from 

rodents and birds. It was considered to form part of the solid phase based on user-defined 

monthly mean concentrations and standard deviations. Routines to allow a source of fecal 

bacteria as part of RZWQM’s management practices were added based on daily 

application of injected liquid manure or broadcasted manure as a function of the 

application rate and fecal bacteria concentration. Following manure application, fecal 

bacteria was subject to attachment at the corresponding layer (equation 4.2). To allow the 

model to simulate laboratory soil column experiments (Guzman et al., 2010), fecal 

bacteria concentrations in the rainfall were allowed. This condition is very rare in field 

condition but served to simulate fecal bacteria transport in soil columns in which the 

source of fecal bacteria is applied such as a rainfall event.    

4.3.4 Model Calibration and Validation 

In order to evaluate the capability of the model to predict the hydrological 

response and fecal bacteria transport at the subsurface drain flow and surface runoff, the 

updated model was calibrated and evaluated to two sets of experiments. First, the model 

was calibrated and evaluated for subsurface drain transport with biopores using a series 

of five-day experiments carried out in a laboratory 28 x 50 x 85 cm soil column  using 

artificial OSC biopores of 55 cm and 65 cm in depth in two soil types. In these 

experiments, the soil column was initially packed and then flushed with deionized water 
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(DI), 48-hr later flushed with diluted liquid swine manure, and then finally 48-hr after the 

manure application flushed with DI (Guzman et al., 2009). Flow and E. coli 

concentrations were measured in the subsurface drainage.  

Second, the model was calibrated and evaluated for surface runoff based on a 

series of experiments using two artificial rainfall events, 2-yr and 5-yr return periods 

applied on a 2 x 2 m pastureland plots manually treated with poultry litter at the rate of 

4,942 kg ha
-1 

(Guzman et al., 2010). Surface runoff and E. coli concentrations were 

measured at the collecting flume located at the drainage end of the plots. 

In all cases, the hydrological responses were evaluated by the Nash-Sutcliffe 

(Nash and Sutcliff, 1970) efficiency index (NSI) and absolute error between the observed 

and simulated mass of subsurface drainage or runoff: 
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where  is the Nash-Sutcliffe efficiency index; iy  and iŷ  are the observed and simulated 

values at time i, respectively, and iy  is the mean of the observed values. Fecal bacteria 

transport was evaluated in two steps. First, the absolute difference between the observed 

and simulated fecal transport was assessed based on the event mean concentrations 

(EMC) from the observed and simulated fecal bacteria breakthrough curves (Garbrecht et 

al., 2009; Guzman et al., 2010) and loads: 

i i i
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

     (4.9) 

where ti is the time between two measurements; Qi is the observed or simulated runoff for 

the soil column or plot experiments at time i; and Ci is the effluent E. coli concentration 
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at time i. Second, observed and simulated trends were evaluated by normalizing the 

observed and simulated fecal bacteria concentrations by its maximum value and then 

computing the NSI.  

For the soil column experiments, the updated RZWQM was calibrated (e.g., soil 

hydraulic, macropore and biopore properties) based on the cumulative drainage runoff at 

the end of the manure flush. The final DI flush (e.g., 48-h after the manure flush) served 

to validate the corresponding model calibration. For the surface runoff plot experiments, 

model calibration was based on the flow from the 2-yr return period storm event and then 

validated based on flow from the 5-yr return period storm event Also, the calibrated 2-yr 

storm event was used to estimate the equivalent E. coli rainfall concentration proportional 

to the E. coli background concentration observed during the experiments (Guzman et al., 

2010). This fecal background concentration was used during the model validation. 

Attachment and detachment parameters affecting transport were obtained from 

soil sorption experiments after mixing 6 g of soil and diluted swine manure in a series of 

batch experiments (see Chapter 2). The straining coefficient for the loamy sand was 

obtained from Garbrecht et al., (2009) experiments while for the other soils it was 

assumed. Die-off rates and the effective horizontal soil layer contribution fraction were 

assumed in all cases.  

4.4 RESULTS AND DISCUSSION 

4.4.1 Hydrological Response 

Tables 4.1 to 4.3 summarize the calibrated parameters controlling the 

hydrological response for both the soil column and field experiments. Tables 4.4 and 4.5 

summarize the experimental setup and goodness-of-fitness indices assessing the model 
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performance. Graphical representations of the model performance are shown in Figures 

4.2 and 4.3 for the subsurface drain flow and surface runoff, respectively.  

The biopore routine notably improved the subsurface flow simulation at the drain 

during the soil column experiments. The hydrograph shape, tile drain flow, breakthrough 

time and time to peak were in general properly represented (Figure 4.2). Also, the new 

routines characterized the rapid increase in flow at the drain pipe typically observed in 

presence of biopores. On the other hand, simulations without biopores could not properly 

represent the shape and peak of the hydrograph even though macropores were included in 

the simulations. 

For the plot experiments, RZWQM underestimated the hydrological response. 

Note that as a one-dimensional model RZWQM does not have surface runoff routing 

capabilities. However, the model represented the total surface runoff volume accurately 

in all cases but not the shape of the hydrograph (Figure 4.3). This condition indicates that 

RZWQM may properly represent runoff at the daily but not the subdaily time scale. As 

the rainfall event intensity increased, deviation in the simulated runoff proportionally 

increased (Figure 4.3b). On the other hand, lower rainfall intensities resulted in higher 

infiltration volume decreasing the available surface runoff subject to routing (Figure 

4.3a). As an example, the total observed losses during the 2-yr and 5-yr storm event were 

42.0% and 27.8%, respectively (see Table 4.5). 
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Table 4.1 Soil macropores and biopore properties for the soil column and plot experiments after 

calibration. Note that SC is the soil column, MP is macropore radius, FDEP is the fraction of dead 

end pores, ELWT is the effective lateral wetting thickness, and Keff is the effective biopore 

infiltration constant. 

  

Exp.  

  

Soil 

Type 

Biopore MP Macroporosity 
FDEP ELWT 

Keff 

Depth radius Radius Biopore MP Unsat. Sat. 

  cm cm cm cm3 cm-3 cm3 cm-3         

SC 
Loamy 

sand 
55 0.4 0.04 3.59E-04 6.30E-04 0.500 1.0 5.5E-03 3.5E-02 

SC 
Loamy 

sand 
65 0.4 0.04 3.59E-04 1.15E-04 0.460 1.0 9.5E-05 5.6E-03 

SC 
Sandy 

loam 
55 0.4 0.04 3.59E-04 4.30E-05 0.465 1.0 1.0E-02 9.3E-04 

Plot 
Silt 

loam 
- - 0.04 - 3.00E-06 0.460 1.0 9.5E-05 5.6E-03 

Plot 
Silt 

loam 
- - 0.04 - 3.00E-06 0.460 1.0 9.5E-05 5.6E-03 

 

Table 4.2 Soil hydraulic properties for the soil column and plot experiments after calibration. 

Note that hb is the bubbling pressure, λ is the pore size distribution index, N is the exponent for 

the k(h) curve, Ksat is the saturated hydraulic conductivity, r is the residual water content, s is 

the saturation water content, and Ksat-d is the lateral saturated hydraulic conductivity to the drain.  

Soil Type Experiment 
hb λ N Ksat r s Ksat-d 

cm     cm h
-1

     cm h
-1

 

Loamy sand OSC-55 7.905 0.484 3.422 11.110 0.035 0.396 0.710 

Loamy sand OSC-65 10.090 0.474 3.422 3.900 0.035 0.396 2.450 

Sandy loam OSC-55 12.740 0.322 2.966 2.580 0.041 0.472 0.995 

Silt loam Plot 7.537 0.361 2.633 0.424 0.015 0.472 15.00 
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Table 4.3 Soil textural properties for the soil column and plot experiments after calibration, where 

BD is the soil bulk density and  is the soil porosity. 

Soil Type 
BD 

 
Sand Silt Clay 

g cm
-3

 Fraction 

Loamy sand 1.6 0.396 0.85 0.1 0.05 

Sandy loam 1.4 0.472 0.65 0.25 0.10 

Silt loam 1.4 0.472 0.2 0.65 0.15 

 

In all cases, RZWQM poorly represented the recession part of the hydrographs at 

the end of the rainfall event. However, the depletion part was properly represented in the 

soil column experiments (Figure 4.2 and 4.3). This phenomenon occurred at the time the 

model shifted from infiltration to water redistribution computations in the column 

experiments and impacted the mass curves in Figure 4.2 right after the end of the rainfall 

event. It was explained due to a rapid drop in the simulated water table and quick change 

in moisture conditions no properly simulated by the Richard's equation during water 

redistribution. Note in Table 4.4 the high average infiltration rates for the loamy sand 

(e.g., 3.0 cm
3
 s

-1
 for the OSC-65 and 13.8 cm

3
 s

-1 
for the OSC-55 experiments) driving a 

rapid rise in the water table during infiltration.  

Additionally, high deviations in the simulated flow occurred during high 

infiltration rates (Figures 4.2a, 4.2b and 4.2d) right after the breakthrough. This condition 

may indicate the presence of direct macropore connectivity occurring between the end of 

the biopore and the subsurface drain pipe contributing rapid flow. The express fraction 

can help better represent this process after some modifications, which should be 

considered in future research. On the other hand, the lack of surface runoff routing 

capabilities in RZWQM explained the lack of the recession part of the hydrograph in the 

plot experiments (Figures 4.3).  



82 

 

Also, the fact that RZWQM cannot simulate other surface runoff mechanisms 

such as the presence of water storage in surface depressions, interception, interflow, 

surface roughness and spatial variability in the slope, explains the shape of the simulated 

hydrograph in the sub-daily basis simulations. Note that the simulated runoff in RZWQM 

corresponded to the excess water resulting from the rainfall event and infiltration at 

specific time step in a 1 cm
2
 area. 

Table 4.4 Subsurface drainage soil column calibration and validation results, where MCobs and 

MCsim are the mass curve values for the observed and simulated drainage runoff; NSI is the Nash-

Sutcliffe efficiency index; MCerr is the mass curve error; favg is the average infiltration rate; REC 

is the rainfall E. coli concentration; Man is the manure flush; and DI is the distilled water flush. 

  Flush Rainfall MCobs MCsim NSI MCerr favg REC 

    Time cm
3
 cm

3
 cm

3
   % cm

3 
s

-1
 MPN mL-1 

OSC-

55 

Loamy 

sand 

Man 

Start 9:25 

13,830 

0 0 

0.01 

- 

11.51 153.6 End† 9:45 1,774 1,779 0.3% 

End‡ 23:07 15,234 14,614 4.1% 

DI 

Start 9:45 

13,920 

0 0 

0.65 

- 

16.05 0 End† 9:59 1,557 2,001 28.5% 

End‡  18:24 12,438 11,043 11.2% 

OSC-

65 

Loamy 

sand 

Man 

Start 10:40 

14,190 

0 0 

0.76 

- 

2.15 115.2 End† 12:29 7,645 7,326 4.2% 

End‡ 22:05 13,203 13,270 0.5% 

DI 

Start 9:35 

14,470 

0 0 

0.75 
 

3.76 0 End† 10:39 6,349 6,070 4.4% 

End‡ 23:05 12,440 12,539 0.8% 

OSC-

55 

Sandy 

loam 

Man 

Start 11:59 

14,085 

0 0 

0.81 

  

1.82 83.6 End† 14:07 6,666 7,600 14.0% 

End‡ 23:22 10,964 10,366 5.5% 

† Final time for the rainfall event. ‡ Final time for the mass transport assessment. 
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Table 4.5 Surface runoff plot experiments calibration and validation results, where MCobs and 

MCsim are the mass curve for observed and simulated surface runoff, NSI is the Nash-Sutcliffe 

efficiency index, MCerr is the mass curve error, Lossesavg is the average infiltration, interception 

and evaporation volume, and PREC is the proportional rainfall E. coli concentration.  

Exp. Time 
Rainfall MCobs MCsim NSI MCerr Lossesavg PREC 

Cm cm
3
 cm

3
   % cm MPN mL-1 

2-year 

storm 

event 

Start 15:24 

4.38 

0 0 

0.81 

- 

1.84 1,660 End† 16:09 90,949 90,955 0.0% 

End‡ 16:19 101,453 95,444 5.9% 

5-year 

storm 

event 

Start 19:27 

3.81 

0 0 

0.05 

- 

1.06 1,660 End† 19:57 85,460 84,471 1.2% 

End‡ 20:13 110,053 110,136 0.1% 

† Final time for the rainfall event. ‡ Final time for undetectable surface runoff. 
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Figure 4.2 Subsurface drain flow and mass curves for the soil column experiments. 

 

Figure 4.3 Surface runoff and mass curve for the plot experiments. 
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4.4.2. Transport of Fecal Bacteria 

Table 4.6 summarizes the fecal transport parameters used during the simulations. 

The new transport routines and biopore concept notably improved the simulation of fecal 

bacteria transport at the subsurface drain in the soil column experiments. For example, 

simulated EMCs using the biopore concept were predicted with an absolute error in the 

range of 4% to 109% when compared to the observed EMC (Table 4.7 and 4.8). Note that 

during the column experiments a few samples were available after the rainfall event 

(Figure 4.4). Also, E. coli concentrations showed high variability during the 5-yr storm 

event (Figure 4.5). Without the biopore routine, simulated EMC for the column 

experiments were zero during the manure flush but represented a maximum of 2.2% of 

the observed EMC for the DI flush in the LS OSC-65 experiment (Table 4.7). Fecal 

bacteria concentration trends were properly simulated for the LS-OSC-65 and SL-OSC-

65 column experiments (Figure 4.4 and Table 4.7). However, for the LS-OSC-55 

experiment, the model poorly represented the fecal concentration trends perhaps due to 

piping flow previously discussed. Additionally, when the model shifted from infiltration 

to redistribution, concentrations were poorly represented during the recession part of the 

hydrograph.  

Table 4.6 Transport parameters for the soil column and plot experiment simulations, where Kstr is 

the straining coefficient, Dtchm is the detachment coefficient, LP is the liquid phase, SP is the solid 

phase, and Top is the soil top layer.  

Soil Type 
Attachment Kstr Dtchm Die-off rate (d

-1
) 

A B Fraction Fraction LP SP Top 

Loamy sand 0.38 1.01 0.01 0.24 0.05 0.03 0.1 

Sandy loam 213.4 0.324 0.05 0.20 0.05 0.03 0.1 

Silt loam 342.5 0.315 0.01 0.20 0.05 0.03 0.1 
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Table 4.7 Fecal transport event mean concentrations (EMC) for the soil column experiments, 

where NEMC is the normalized event mean concentration (EMCsim/EMCobs), NBP refers to the 

simulations with no biopore routine included, and REC is the rainfall E. coli concentration. 

Exp. Flush 
EMCobs EMCsim Abs. Trend EMCsim -NBP REC 

MPN mL-1 MPN mL-1 Error NSI MPN mL-1 MPN mL-1 

LS OSC-55 

Man 
Rainfall 6.5 13.6 109.2% 

-0.41 0.0 153.6 
Total 21.7 6.9 68.2% 

DI 
Rainfall 25.1 11.8 53.0% 

-0.90 0.0 0.0 
Total 18.1 17.3 4.4% 

LS OSC-65  

Man 
Rainfall 15.3 12 21.6% 

0.79 0.0 115.2 
Total 16.2 7.6 53.1% 

DI 
Rainfall 14.1 26.5 87.9% 

0.97 0.3 0.0 
Total 13.7 17.6 28.5% 

SL OSC-55  Man 
Rainfall 0.6 0.8 27.0% 

0.73 0.0 83.6 
Total 1.4 0.7 50.4% 

 

During the depletion part of the hydrograph, the model underestimated the 

observed fecal concentrations even though flow simulations were properly represented. 

This condition was perhaps the result of underestimated fecal transport at the above 

adjacent layers contributing most of the drainage flow in the model. Further calibration of 

the transport parameters may improve simulations as a function of a specific objective 

function for subdaily simulations.  

For the plot experiments, concentrations were underestimated in most cases as 

well as loads (Figure 4.5 and Table 4.8). However, when using the upper observed 

poultry litter concentration (Guzman et al., 2010), simulated EMC accounted for 48% 

and 43% of the observed EMC during the 2-yr and   5-yr storm events, respectively. Note 

that poultry litter has high fecal concentration variability when dispersed in water as it is 

mainly composed of aged droppings in bedding materials heterogeneously distributed. 

Trends in the fecal transport concentrations were poorly represented as indicated by the 
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negative NSI in Table 4.8. These results indicated that the RZWQM surface mixing 

model can represent fecal bacteria concentrations in runoff and future research is needed 

to incorporate routing processes in RZWQM and fecal bacteria release from manure 

application.   

Table 4.8 Fecal transport event mean concentrations (EMC) for the plot experiments, where REC 

is the rainfall E. coli concentration. 

Exp. 
EMCobs EMCsim (MPN mL-1) Absolute error Trend REC (MPN mL-1) 

MPN mL-1 avg min max avg min max NSI avg min Max 

2-year 1,838 415 62 1,088 77.4% 96.6% 40.8% -0.79 
1,660 246 4,317 

5-year 1,784 446 67 1,169 75.0% 96.3% 34.5% -0.25 

 

4.5 SUMMARY AND CONCLUSIONS 

The implementation of routines to simulate fecal bacteria transport in the vadoze 

zone, as well as flow and transport through biopores, improved the capability of 

RZWQM. For model evaluations based on subsurface drainage experiment, the new 

routines improved the simulation of the hydrograph shape, time to peak, and flow 

breakthrough when biopores were present. Also, fecal transport concentrations were 

properly represented in some cases, but not total load. The modified RZWQM poorly 

represented flow during the recession part of the hydrograph, while the depletion was 

properly described. This condition strongly impacted fecal transport simulations as well 

as the goodness-of-fitness indices. Moreover in some cases, the new routines 

underestimated the rapid increase in flow observed in the subsurface drain immediately 

after the flow breakthrough perhaps due to biopore/subsurface drain/macropore 

interconnectivity.   
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Figure 4.4 Observed and simulated fecal bacteria concentrations and mass curves for the soil 

column experiments. Triangle legends represent observed concentrations over the detection 

range.  
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Figure 4.5 Observed and simulated fecal bacteria concentrations and mass curves for the plot 

experiments. 

 

Evaluation of the model based on surface runoff experiments with artificial 

rainfall indicated that RZWQM can properly represent the total runoff volume but not the 

shape of the hydrograph, as RZWQM does not include surface runoff routing processes. 

Fecal bacteria concentrations in surface runoff were underestimated by the model and the 

observed trends in concentrations were not properly represented. Implementation of 

routing processes for surface runoff and subsurface drain flow may help improve 

RZWQM’s capabilities for predicting flow and soil fecal transport.   
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CHAPTER 5 

Summary and Conclusions of Dissertation 

 

Fecal bacteria fate and transport in soils treated with manure effluent are driven 

by multiple interrelated physical, chemical and biological processes. In most cases, the 

soil matrix can retard, immobilize and/or inactivate fecal bacteria being transported. 

However, facilitated flow and fecal bacteria transport through macropores and biopores 

allow fecal bacteria to bypass a portion of the soil matrix and reach deeper soils and 

subsurface drainage systems.  Manure effluent constituents can potentially change the 

soil bulk solution pH and favor ionic exchange resulting in varying soil-bacteria or soil 

bacteria-substrate sorption mechanisms. Fecal bacteria die-off rates vary as a function of 

lag time between manure application and the occurrence of rainfall or irrigation events, 

and environmental variables. The new routines implemented in RZWQM allow fecal 

bacteria fate and transport simulation in the soil matrix, runoff, soil profile, and drainage 

system. Also, the implemented biopore concept allows RZWQM to simulate non-

equilibrium flow conditions.  

5.1 SPECIFIC CONCLUSIONS 

In the first chapter, the importance of surface connected and disconnected (buried) 

biopores on Escherichia coli transport was investigated when biopores were located near 

subsurface drains. The results were: 
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 Escherichia coli transport to the drain was observed with either open surface 

connected or buried biopores.  

 Escherichia coli transport to the drain in the surface connected biopores was a 

function of the soil type and the layer thickness between the end of the biopore 

and drain.  

 Buried biopores contributed flow and E. coli to the drain in the less sorptive soil 

(loamy sand) and the sorptive soil (sandy loam) containing a wide (i.e., with 

mesopores) pore space distribution prevalent due to the moist soil packing 

technique.  

 Biopores provide a mechanism for rapidly transporting E. coli into subsurface 

drains during flow events. 

In the second chapter, soil sorption/attachment of Escherichia coli and the 

influence of swine manure constituents were investigated using a series of artificial and 

natural soils treated with manure effluents at varying dilution ratios (i.e., swine manure 

effluent concentration). The results were: 

 Fecal bacteria in swine effluents consisted primarily of sessile (i.e., attached) 

bacteria (90%) compared to free cells in suspension (10%).  

 Removal of sessile E. coli from solution by sorption/attachment and/or 

flocculation/precipitation appeared to be controlled by processes occurring in the 

substrate (i.e., surfaces to which the bacteria attached).  

 For soils up to 30% clay content and 3.0% total carbon content, nonlinear 

equations characterized the sorption of E. coli from multi-constituent manure 

effluent in the artificial and natural soils with the equation parameters predicted 
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by the amorphous aluminum and iron content, percent clay, and percent organic 

carbon.  

 Dispersion resulting from alkalinity buildup due to adding effluent to the soils 

decreased observed sorption of E. coli, especially at higher effluent ratios. 

In the third chapter, transport of E. coli in runoff was investigated on fourteen 2 m 

by 2 m pastureland plots treated with poultry litter and subjected to artificial rainfall 

intensities equivalent to 2-yr and 5-yr storm events after poultry litter application, and 

after 24 and 120 hr. The results were: 

 No significant differences were observed in E. coli average event mean 

concentrations (EMCs) relative to storm intensity.  

 Statistically significant differences were observed in average E. coli EMCs 

relative to time lag between litter application and rainfall.  

 A nonlinear relationship was observed between average E. coli EMC and time 

lag, with the EMC decreasing between 0 h and 24 h and then increasing at 120 h. 

 Escherichia coli were always detected in the control plots, indicating the 

presence and transport of fecal bacteria from sources independent of the 

immediate poultry litter application and serving as a significant component of the 

total E. coli EMC, especially as the time lag between litter application and 

rainfall events increases. 

Finally, in the fourth chapter routines were incorporated in the Root Zone Water 

Quality Model (RZWQM) to simulate fecal bacteria transport through the soil, subsurface 

drain and runoff. Also, a biopore concept was developed to model the rapid flow and 

transport of fecal bacteria bypassing a portion of the soil matrix. The results were: 
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 The new routines improved RZWQM’s capability to predict rapid flow and soil 

fecal bacteria transport in the soil matrix, macropores, biopores, and subsurface 

drains. 

 For model evaluations based on subsurface drainage experiment, the new 

routines improved the simulation of the hydrograph shape, time to peak, and 

flow breakthrough when biopores were present. Also, fecal concentrations were 

properly represented in some cases but not fecal loads.  

 The modified RZWQM poorly represented flow during the recession part of the 

hydrograph, while the depletion was properly described for the soil column 

experiments.   

 Fecal concentrations were underestimated in some cases but the modified model 

captured the observed concentration trend in the drain for the column 

experiments but not in runoff for the plot experiments.  

 The updated model is a simple, prediction tool capable of simulating fecal 

bacteria transport in runoff and to subsurface drainage with and without the 

presence of biopores and macropores. 

5.2 FUTURE RESEARCH 

A more comprehensive approach should be adopted in future soil fecal bacteria 

fate and transport research to avoid over simplification of the physical, chemical and 

biological variables and their relationship. Also, the use of mono-strain cultured bacteria 

suspended in inert solutions typically used in homogeneous porous media and granular 

soils should be limited as fecal bacteria from manure effluents are mainly in sessile form 
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and agricultural lands primarily develop on soils possessing varying soil minerals and 

organic matter and are subjected to macropore/biopore development. 

Investigations on colloidal-facilitated fecal bacteria fate and transport should be 

conducted at both field and laboratory scales due to the preference of fecal bacteria to be 

surface bonded. Also, soil colloidal interaction in the presence of solute concentrations 

should be investigated as changes in the colloids carrying fecal bacteria can increase fecal 

bacteria detection. In addition, acquisition of long term fecal bacteria fate and transport 

data in runoff and in the soil profile is needed to advance the understanding of fate and 

transport mechanisms of fecal bacteria in soils and improve modeling capabilities at the 

field scale.  

Finally, further research is needed to incorporate surface and subsurface runoff 

routing capabilities, simulate fecal bacteria release from manure amendments, 

incorporate open surface disconnected biopore routines, improve the express fraction 

concept, and perhaps incorporate a dual permeability model for the water redistribution 

subroutine in RZWQM.  
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Findings and Conclusions:   

 

Following manure application, rapid transport of fecal bacteria in runoff and 

infiltration may result in fecal bacteria contamination of deeper soils and adjacent 

water bodies. Fecal microorganisms are a group of virus, bacteria and protozoa 

commonly not pathogenic. Investigations for fecal soil and water contamination, and 

fate and transport are typically conducted using indicator organisms such as 

Escherichia coli and Enterococcus faecalis. Fecal bacteria fate and transport in soils 

treated with manure effluent are driven by multiple interrelated physical, chemical and 

biological processes. This research investigated the significance of biopores in 

facilitating fecal bacteria transport to deeper soils and subsurface drainage systems and 

incorporated fecal bacteria fate and transport routines and a biopore concept in the 

Root Zone Water Quality Model (RZWQM). In most cases, the soil matrix can retard, 

immobilize and/or inactivate fecal bacteria being transported. However, facilitated 

flow and fecal bacteria transport through macropores and biopores allow fecal bacteria 

to rapidly bypass a portion of the soil matrix and reach deeper soils and subsurface 

drainage systems as a function of the soil type and the presence of macropores from 

soil structure or cracks. Also, manure effluent constituents can potentially change the 

soil bulk solution pH and favor ionic exchange resulting in varying soil -bacteria or soil 

bacteria-substrate sorption mechanisms. Fecal bacteria die-off rates vary as a function 

of lag time between manure application and the occurrence of rainfall or irrigation 

events, and environmental variables. New routines implemented into RZWQM allow 

fecal bacteria fate and transport simulation in the soil matrix, runoff, soil profile, and 

drainage system. Moreover, the implemented biopore concept allows RZWQM to 

simulate non-equilibrium flow conditions. In combination with the macropore model 

available in RZWQM, the implemented biopore concept improved flow and fecal 

bacteria transport simulations at the drain pipe, in runoff and through the soil profile  

and therefore may be useful when assessing fecal bacteria contamination of soil and 

water and helping to address mitigation and regulatory strategies.  


