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∆Cpi Change in specific heat of i 

∆G Change in Gibbs energy  

∆Hf i Change in enthalpy of formation of i 

∆Hi Change in enthalpy of i 

∆HR enthalpy of reaction, kJ/mol or kJ/kg 

∆Si Variation of entropy of i 

A amperes 

ai Activity of i 

AI Analog input 

aik Number of element k in i 

AO Analog output 

atm Atmosphere (pressure unit) 

bar Bar (pressure unit) 

Btu British Thermal Unit (energy unit) 

C Atom of carbon 

C2H2 Acetylene molecule 

C2H4 Ethylene molecule 

C2H6 Ethane molecule 



 

xv 

cc cubic centimeter (volume unit) 

CH4 methane molecule 

cm Centimeter 

CO Carbon monoxide molecule 

CO2 Carbon dioxide molecule 

Cpi Specific heat of specie i (kJ/kg/K) 

Cs Carbon solid 

db Dry basis 

DHR enthalpy of reaction, kJ/mol or kJ/kg 

DI Digital input 

dm3 Cubic decimeter (volume unit) 

DO Digital output 

Eff i Efficiency of i, % 

ER Equivalence ratio 

FBG Fluidized bed gasifier 

Fi Mole flow rate of i, (mol/h) 

ft. Foot 

g Gram 

gal. Gallon 

Gi Gibbs energy of i 

GC-MS Gas chromatograph with mass spectrometer detector 

GC-TCD Gas chromatograph with thermal conductance detector 

gpm Gallons per minute 



 

xvi 

H Atom of hydrogen 

h Hour 

H2 Hydrogen molecule 

H2O Water molecule 

He Atom of helium 

Hf i Enthalpy of formation of i, kJ/mol or kJ/kg 

HHV High heating value 

hp Horse power (power unit) 

IC Ions chromatography 

in. Inch 

J Joule (energy unit) 

K Equilibrium constant 

K Kelvin (temperature unit) 

kg Kilogramm 

kJ KiloJoules (energy unit) 

kPa kilopascal (pressure unit) 

kW KiloWatt (power unit) 

l Liter (volume unit) 

LHV Low heating value 

•

im  Mass flow rate of i, m3/h 

m Meter (length unit) 

m3 Cubic meter (volume unit) 

mg Milligram (mass unit) 



 

xvii 

M i Molecular mass of i, g/mol 

ml Milliliter  

mm Millimeter(length unit) 

mol Mole 

ms millisecond 

MW Molecular weight, g/mol 

mx Mass of x, kg 

Mx Molecular weight of x, g/mol 

N Atom of nitrogen 

N2 Nitrogen molecule 

NI  National instrument 

ni Number of mole of i 

O Atom of oxygen 

O2 Oxygen molecule 

ºC Degrees Celsius 

P pressure (kPa, Pa, atm, psi or bar) 

P7T Strain of C. carboxidivorans  

Pa Pascal (pressure unit) 

PAH Polycyclic aromatic hydrocarbon 

Pi Pressure of i 

PID Proportional integrator derivator controller 

PM Particulate matter 

ppm Parts per million 



 

xviii 

psi Pounds per square inch (pressure unit) 

•

iQ  Heat flow of i, kW 

Qx Sensitive heat of x, kW 

iρ  Density of i, kg/m3 

R Ideal gas constant 

rpm Rotations per minute 

s Second (time unit) 

S/B Steam to biomass ratio 

scfm Gas flow rate standard cubic feet per minute 

SR Stoichiometric ratio 

ton Cooling unit used in refrigeration (energy unit) 

•

GasV  Gas volume flow rate, m3/s, l/min 

V Volt 

V i Liquid volume in reactor of i 

vi Virtual instrument 

V i Volume of i, m3 

VOC Volatile organic compounds 

Vv Revolving valve volume, m3 

wb Wet basis 

yi Molar fraction of the i 

λk Lagrange coefficient for the element k 
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1 INTRODUCTION 

1.1 A NEED FOR RENEWABLE ENERGY  

Energy is economically crucial for every industrialized country’s economy. For a 

large majority, the dependence on foreign oil has been an important concern, particularly 

since the 1970s when an oil shortage generated a near crisis situation for all countries in 

the entire developed world. Today more than ever and despite all the protections taken to 

prevent a highly fluctuating market, international politics are affected by this aspect of 

foreign dependence. 

The present effects of terrorism and instability of the large world oil reserve 

countries of the Middle East raise further concerns about the supply stability. Chaotic 

markets lead to high prices and slowing the economy in developed countries. 

In the rural United States, like here in Oklahoma, the effect of the production 

decline has already impacted the economy. Major oil companies are leaving the state, 

relocating to bigger cities to manage economic difficulties. 

The recent discovery of an increase in greenhouse gases levels, especially CO2, in 

the earth’s atmosphere since the industrial revolution, raises concerns regarding the 

quality of life for future generations. In order to stabilize the concentration of these gases 

in the atmosphere and prevent potential interferences with climate change, 169 nations 

ratified the Kyoto protocol and committed to reduce their emission of CO2 from fossil 

fuel combustion. 
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History shows that when absence of readily available oil becomes a problem, 

countries begin investigating alternatives to fossil fuel. During World War ІІ the Fischer-

Tropsch process was used to convert synthesis gas to liquid fuel. This process is being re-

examined. 

Renewable energy sources could be one solution to many of the problems 

discussed above. One such energy source is ethanol. The availability of developing 

technologies producing ethanol, with low environmental impact, makes it an increasingly 

attractive fuel option. 

Ethanol has been produced for thousands of years dating from the time of the 

Pharaohs. Today, fuel-grade ethanol is industrially produced from simple sugars and 

yeast fermentation. This process generates large quantities of byproducts once considered 

as a waste, most being of cellulosic nature.  

These agricultural wastes are called biomass.  The use of biomass to produce fuel-

grade ethanol through enzymatic preparation and fermentation is currently being studied, 

but preparation processes of the biomass are expensive and technologically challenging. 

The solution could be in the implementing of an innovative process that can bypass 

these technological challenges, and produce ethanol from a different type of fermentation 

by transforming the biomass feedstock through a simple, low cost process, i.e. using 

gasification to produce a gas that can then be fermented. 
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1.2 AN INNOVATIVE NEW PROCESS AND ITS 

CHALLENGES  

In the gasification-fermentation process low cost biomass is gasified producing a 

producer gas, a mix of elemental gases that includes hydrogen and carbon monoxide, 

which is the primary focus of this study. These are fed through an anaerobic fermentor, 

containing a unique Clostridial bacterium currently named C. Carboxidivorans (P7T), first 

obtained from an agricultural lagoon, and provided by Dr. Tanner at University of 

Oklahoma (Lewis et al., 2002). Hydrogen and carbon monoxide are then converted to 

ethanol and other valuable products, including acetic acid, butanol and butyric acid. The 

presence of oxygen, nitrous oxides, ammonia or tars in the gas is inhibitive and possibly 

toxic to the microorganisms depending on concentration levels. 

Previous research shows the feasibility of this process from mixed clean bottled 

gases (Ghady, 1992, Klasson et al., 1992, Lewis et al., 2002). No research has been 

published evaluating the impact of the gas quality from a gasifier on an anaerobic 

fermentor. At present, there is no single source of technical information that provides 

effective guidance concerning the specialized requirements of such a process. 

The tremendous advantages of this process over all other ethanol producing 

technologies is not only the low cost of the biomass utilized as the feedstock but also the 

process simplicity, resulting in low production costs. Previous research indicates that this 

process is technically feasible, its overall environmental impact on greenhouse gas CO2 

would be positive, and it is economically competitive (Lewis et al., 2002). Such a process 

would reduce dependency on foreign oil. This process would not increase greenhouse 

gases emissions since the biomass does not have a fossil fuel origin. This process would 
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improve rural economies by offering a new revenue source, and help rural oil producers 

on the decline to stay in the energy production market by switching from fossil energy oil 

to energy crop production and conversion. It would enhance economic development, as 

poorly utilized land would be given economic value by becoming productive. 

 

1.3 OBJECTIVES 

The overall objective of this study is to measure the quality and quantity of 

producer gas generated from the gasification of various kinds of biomass (low-cost 

biomass, agricultural, and industrial waste) in a 25-cm diameter, fluidized bed, pilot-scale 

atmospheric gasifier. Results of this study are important to the overall gasification-

fermentation project in that the gas generated is fed into a bioreactor for conversion into 

ethanol. The bioconversion process, i.e. converting gas to ethanol, is highly dependent on 

gas composition.  

It is important to understand what parameters influence the quality of the gas used 

in this fermentation. In this study, a number of gasification parameters will be varied, 

including biomass compositions, gasifying agents, biomass-to-agent ratios, and operating 

temperatures to determine the quality and quantity of a representative range of gas and tar 

compounds. This study will also provide information on the removal of possible 

contaminants by separating these compounds from the gas stream. 

The decision to use a fluidized bed gasifier was made prior to this study. Fluidized 

bed gasifiers have a high heat and mass transfer rates and an efficient mixing. They are 

easily scalable and are well suited for lignocellulosic feedstocks. The pilot-scale fluidized 

bed air gasifier at Oklahoma State University was constructed utilizing an initial design 
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developed by Carbon Energy Technology, Inc. and the Center for Coal and the 

Environment at Iowa State University. It is important to note that the gasifier, as 

originally designed, did not operate efficiently with the biomass used in this study and 

lacked several systems necessary to measure gasification parameters.  

 

Specific objectives of the gasification study are: 

1. Design and develop the modifications of an existing fluidized bed gasifier, including 

a cleaning, cooling and storage system, to improve generated gas quantity and quality. 

2. Develop an analytical procedure to identify major tar compounds using various 

feedstocks and process modes. 

3. Evaluate the products of gasification from selected scenarios:  

 A. Evaluate the effect of feed moisture content during air gasification of 

switchgrass. 

 B. Air gasification of switchgrass, corn gluten, and bermudagrass. 

 C. Low equivalence ratio (ER) flaming pyrolytic gasification of switchgrass, corn 

gluten, and bermudagrass.  

 D. Steam gasification of switchgrass, corn gluten, and bermudagrass at different 

steam to carbon ratios (S/C).  

4. Model the gasification equilibrium with the different gasifying agents and operating 

temperatures. 
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1.4 REVIEW OF LITERATURE  

 

1.4.1 Fluidized Bed Gasification 

There are several existing technologies available for atmospheric gasification. 

These technologies can be classified in four major groups: fixed bed updraft, fixed bed 

downdraft, bubbling fluidized bed and circulating fluidized bed.  

An updraft gasifier is a counter flow unit where the air is introduced at the bottom 

and the feed at the top. The incoming air at the bottom of the unit first totally combusts 

the outgoing char. Resulting hot gases then pass through the above feed bed where 

reduction takes place and reduces the moisture content of the entering biomass. The 

major disadvantage of an updraft gasifier is that it produces large quantities of tar in gas. 

(Klass, 1998; and Reed, 1981) 

Downdraft gasifiers use co-current flows, where air and low moisture feed are both 

introduced at the top of the reactor where ignition occurs. The hot pyrolysis gas flows 

downward and reacts through the char bed. This process produces virtually no tar but 

often with far more unconverted char than other gasifier types. (Klass, 1998; and Reed, 

1981) 

A bubbling fluidized bed gasifier consists of a cylinder of fine inert particulates of 

silica sand or alumina, selected for size, density and thermal properties, resting on a 

perforated plate. The agent (air, steam or oxygen) is forced below the plate and through 

the bed. At a certain velocity (often minimum fluidization velocity), all bed particulates 

become suspended in the agent stream, resulting in the bed behaving like a fluid. 

Bubbling fluidization will occur depending on the nature of the particulate and stream 
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velocity. The feed is forced through the preheated fluidized bed where friction reduces 

the biomass ensuring good heat transfer. The advantages of this type of gasifier are 

numerous, it accepts a wide range of fuel size, has a uniform temperature distribution, 

provides high rate of heat transfer, and performs at a high conversion rate with low levels 

of tar and unconverted char. (Klass, 1998; and Reed, 1981) 

Circulating fluidized beds use higher gas velocities than bubbling bed resulting in 

elutriation of the bed particles and char that are separated from the gas stream outlet with 

a cyclone and recirculated into the bed. It has many of the advantages of the bubbling 

fluidized bed and is suitable for rapid reactions though with a less efficient heat 

exchange. Their major disadvantage is the complexity of operation and the internal 

erosion at high recirculation rates. (Klass, 1998; and Reed, 1981) 

The gasifier currently used for this project is a bubbling fluidized bed reactor, 

which has been used in numerous applications (Narvaez et al., 1996). Fluidized bed 

reactors provide excellent mixing characteristics, high mass transfer reaction rates 

between gas and solid mixtures, and are one of the most reliable methods available for 

feedstocks that are prone to agglomeration in other types of gasifiers. Fluidized bed 

reactors are also unique in that biomass fuel of any particle size or moisture content can 

be gasified, thus accommodating a large variety of fuel types (Reed, 1981).  In addition, 

fluidized bed reactors can be scaled up with considerable confidence (Natarajan et al., 

1998). Because of better mixing properties and better temperature homogenization, 

fluidized bed gasifiers are less prone to generate high levels of tar than other gasifier 

types. This wide range of accommodations makes it a great candidate for this 

bioconversion project.  
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1.4.2 Gasification Parameters 

1.4.2.1 Agents 

Typical gasifying agents include air, steam, and steam plus oxygen mixtures.  The 

composition of the raw gas produced depends on the gasifying agent used and the gasifier 

operating conditions. In this study, oxygen will not be considered. The cost of oxygen 

makes the process uneconomical (Gil et al., 1997). 

Air is the most commonly used agent at demonstration and commercial scales (Gil 

et al., 1997).  With the use of air, the reaction is exothermic and temperature-wise self-

sustainable. The flue gas from the air process is called producer gas and typically 

contains a large fraction of N2, along with CO, CO2, H2, CH4, water, tars, and higher 

hydrocarbons.  N2 is an inert gas in this process, representing about 50% of the producer 

gas, but it could contribute to the generation of trace amounts of toxic NOX and NH3 

(Cooper et al., 1986) . This volume of N2 is costly in the cleaning and compressing stages 

of the process since it cannot be separated from the mix.  

Furthermore, producer gas fermentation is mass transfer limited because at mild 

temperatures (bioreactor temperature of 35°C), CO and H2 , the main constituents of 

producer gas have aqueous solubilities of 77% and 68% that of O2 on a molar basis, 

respectively. These low solubilities result in low concentration driving forces, and, hence 

low volumetric mass transfer rates to the bioreactor media (Bredwell et al., 1998; Worden 

et al., 1997; Bredwell et al., 1995). The presence of N2 greatly reduces the partial 

pressures of CO and H2 in the gas, which reduces even further the mass transfer driving 

forces from the gas to the bioreactor media. Klasson et al. (1992) conducted a study 

which involved CO uptake rate with time using various initial CO partial pressure. Their 
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finding shows an increase in the rate of the reaction with an increase in the CO partial 

pressures. 

When steam is used as the gasifying agent, the flue gas from the steam process is 

called synthesis gas or syngas, and does not contain N2, thus increasing the partial 

pressures of other important constituents such as H2, CO, and CO2 (Klasson et al., 1992). 

While this gas is of higher heating value, steam gasification is an endothermic process, 

i.e. not self-sustainable and thus requiring heat.  The heat could be supplied via a separate 

reactor where the char produced in the steam process is burned such as the Battelle-

Columbus demonstration unit in Vermont (Gil et al., 1997). Although the char could be 

used to provide heat to our fluidized bed reactor, electric heaters were added to the bed 

for experimental purposes, as demonstrated by Dr. R. Bailie (Environmental Energy 

Engineering, Inc.) in 1979 (Reed, 1981). 

In oxygen steam gasification, exothermic partial oxidation reactions of carbon 

with oxygen provide the heat required by endothermic steam reactions of carbon with 

water, therefore maintaining thermal balance. In this study, steam gasification (without 

oxygen) will be examined and heat will be provided electrically. Klass (1998) discussed 

the steam to carbon ratio. He stated that in oxygen steam gasification the hypothetical 

amount of oxygen required is 0.27 mol/mol of carbon and the amount of steam is 0.45 

mol/mol of carbon. Selection of the temperature, pressure, reactant and recycle product 

feed rates, reaction times, and oxygen-steam ratios can favor certain reactions and 

products. The oxygen-steam ratio to maintain zero net enthalpy depends on pressure and 

temperature conditions. At lower temperatures, the oxygen-steam ratio value doubles for 

each 100K in temperature increase, and increases much less at higher temperatures above 
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about 1200°C. CO and H2 tend to be maximized at lower pressures and high 

temperatures, according to the following reactions: 

C + H2O → CO + H2     ( 1.1) 
 

C + 0.5 O2 → CO     ( 1.2) 
 

1.4.2.2 Equivalence Ratio 

The theory of gasification process design thermally balances endothermic and 

exothermic reactions. Carbon, oxygen, and/or steam feed rates are controlled to balance 

heat requirements of the design with or without heat inputs (Reed, 1981). 

According to Reed (1981), the equivalence ratio (ER) for air-blown gasification 

should be between 0.2 and 0.4 for maximum chemical energy conversion into producer 

gas.  His studies found the optimum for gasification of wood to be 0.255.  Equivalence 

ratio (ER) is defined as: 

ratiobiomassdryoxidanttricStoichiome

biomassdryofweightoxidantofWeight
ER

/

/=    (1.3) 

 

In his intent to establish a roadmap to biomass pyrolysis, gasification and 

combustion, Reed (1981) defines these three ideal processes. ER conditions are shown on 

an ER diagram by three points P, G, and C as shown in Figure 1.1. 

For Reed (1981), pure pyrolytic gasification (P) necessitates external heat and 

operates at 450 to 600°C. It produces a high heating value gas plus 20 to 30% free carbon 

and 30% of a low temperature tar. Isothermal or conventional gasification (G) occurs at 

approximately 0.25 ER and produces gases like CO and H2 with relatively small amounts 

of free carbon. Reed defines the FP area as flaming pyrolytic gasification a zone between 

pure pyrolytic gasification or pyrolysis (P) and isothermal gasification (G). It uses 
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smaller amounts of O2 than conventional gasification passing through a bed of biomass at 

700°C producing a flammable gas tar and free carbon. As ER increases, the temperature 

reaches a maximum at (C) point of stoichiometric combustion. 

 
Figure 1.1  Equivalence ratio and air fuel diagram (Air/Fuel values shown for biomass) 

 

1.4.2.3 Operating temperature 

Gasification process temperatures also have a significant effect on combustion 

products.  In fluidized bed studies using sawdust as the feedstock, researchers found that 

the quantities of all four major components in the producer gas, i.e. CO, CO2, H2, and 

CH4, were affected by temperature (Wang and Kinoshita, 1992).  As bed temperature was 

raised from 700°C to 900oC, CO and H2 increased while levels of CO2 and CH4 

decreased.  Research involving the gasification of sugarcane bagasse indicated that as the 

operating temperature was increased from 600 to 900oC, the quantity of H2 increased, but 

the other three main components (CO, CO2, and CH4) remained fairly constant (Gomez et 

al., 1998).  Similar studies have also shown that increasing the operating temperature 

increases the total gas yield during gasification (Natarajan et al., 1998; Gil et al., 1997). 

Temperature, °C 

(Reed, 1981) 
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1.4.2.4 Feedstock 

 
1.4.2.4.1 Type 

Gasification of biomass in fluidized beds has been studied for many years.  

Numerous works exist involving gasification of various feedstocks such as sawdust, 

woodchips, sugarcane bagasse, and solid waste (Narvaez et al., 1996; Natarajan et al., 

1998; Wang and Kinoshita, 1992; Gomez et al., 1998; Klass, 1998; and Reed, 1981). 

 

1.4.2.4.2 Moisture content 

Klass (1998) and Reed (1981) mention that biomass feedstock moisture content is 

an important parameter to be considered. Moisture content has been shown to have a 

significant effect on the composition of the resulting producer or synthesis gas and the 

temperature of the process. A moisture content of 15%wb is generally recognized as the 

optimum for efficient thermochemical gasification of biomass (Klass, 1998 and Reed, 

1981). A low moisture content biomass saves appreciable energy in later processing.  

Exceptions are made in steam gasification in which water is one of the process feed 

materials. According to Narvaez et al. (1996), studies with sawdust have shown that an 

increased moisture content in the feed increases the H2 content of the gas, while 

decreasing the quantity of tar present.  The added water seems to enhance both the steam 

reforming and the water-gas shift reactions, but may decrease the temperature of the 

steady state process for the same run conditions. 
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1.4.2.5 Tar  

The presence of condensable organic compounds in the producer or synthesis gas 

renders the gasification technologies unsuitable for specific applications. Tars condense 

at reduced temperatures blocking and fouling process equipment such as engines and 

turbines (Klass, 1998). 

In our situation, the lack of literature on the unique microorganism, P7, used in this 

bioconversion project forces us to consider that most organic compounds could have a 

toxic effect.  Recent bioreactor experiments have shown that tar can have an adverse 

effect on the microorganism and that poor gas cleaning will inhibit biochemical pathways 

(Lewis et al., 2002). 

There is currently no standard analytical procedure for tar measurement. However, 

a draft for such a standard (Energy project ERK6-CT1999-20002 (Tar protocol): 

www.tarweb.net) has been elaborated. The guidelines for sampling and analysis of tar 

and particles in biomass producer gases are available in Appendix 8.3. These guidelines 

have been prepared by representatives from the following organizations: 

-European Commission (DGXII) 

-Netherlands Agency for Energy and the Environment (NOVEM) 

-Swiss Federal Office of Education and Science 

-Danish Energy Agency (Energistyrelsen) 

-US Department of Energy (DOE) 

-National Resources Canada. 

 

 



 

14 

1.4.3 Gasification Chemistry and Modeling 

1.4.3.1 Mechanism of gasification 

 

Reed (1981) describes the mechanism of biomass pyrolysis and gasification. He 

suggests that biomass and heat alone result in char. There must be a change in 

composition if biomass is to be completely gasified. The heat and mass flows during 

biomass gasification are illustrated in Figure 1.2. 

 

Process: Drying Primary 
pyrolysis 

Secondary 
pyrolysis 

Char 
gasification 

Char 
combustion 

Temp°C: <120 200-600 300-800 800-1100 800-1500 
 

 

 

 

 

 

 

 

Figure 1.2  Heat and mass flow in biomass pyrolysis and gasification 
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Reed (1981) divides the mechanism of char gasification (principally composed of 

carbon) into five sequential steps: 

1. Diffusion of reactants to the char external surface through the surrounding stagnant 

film; 

2. Pore diffusion of gas inside the particle; 

3. Adsorption, surface reactions, and desorption on the pore walls and/or on the external 

surface; 

4. Diffusion of products outside the pores; and 

5. Diffusion of products through the stagnant film. 

 

1.4.3.2 Gasification chemistry 

In the case of fluidized bed reactors, steps 2, 3 and 4 of char gasification are 

minimized because the fluidized bed, with sand as a media, has a constant mechanical 

grinding effect on char particles. Porosity of the char and gas diffusion have a negligible 

effect on the reactions. 

Most gasification reactions are reversible, and not all reactants transform into 

products. At certain concentrations, the rates of the forward and reverse reactions reach a 

dynamic equilibrium, defining the kinetics of the reactions involved. 

The chemistry of biomass gasification involves different chemical reactions 

depending on the process parameters (D.L. Klass, 1998): 



 

16 

Partial oxidation (air gasification) Enthalpy 

 C6H10O5 + 0.5 O2 → 5 H2 + 6 CO (96 kJ @ 1000K)  (1.4) 

 C6H10O5 + O2 → 4 H2 + 6 CO + H2O (-142 kJ @ 1000K)  (1.5) 

 C6H10O5 + O2 → 5 H2 + 5 CO + CO2  (-180 kJ @ 1000K) (1.6) 

 C6H10O5 + 1.5 O2 → 3 H2 + 6 CO + 2 H2O (-389 kJ @ 1000K)  (1.7) 

 C6H10O5 + 1.5 O2 → 5 H2 + 4 CO + 2 CO2 (-464 kJ @ 1000K) (1.8) 

 C6H10O5 + 2 O2 → 5 H2 + 3 CO + 3 CO2  (-745 kJ @ 1000K)  (1.9) 

 

 
Pyrolysis Enthalpy 

 C6H10O5 → 5 H2 + 5CO + C (209 kJ @ 1000K) (1.10)  

 C6H10O5 → 3H2 + 5CO + CH4 (120 kJ @ 1000K) (1.11)  

 C6H10O5 → 2H2 + 4CO + CH4 + H2O+ C (-16 kJ @ 1000K) (1.12)  

 C6H10O5 → H2 + 3CO + 2CH4 + CO2 (-140 kJ @ 1000K) (1.13) 

 C6H10O5 → H2 + 3CO + CH4 + 2H2O+ 2C (-152 kJ @ 1000K) (1.14) 

 C6H10O5 → 2CO + 2CH4 + CO2 + H2O+ C (-276 kJ @ 1000K) (1.15)  

 

 
Steam gasification  Enthalpy 

 C6H10O5 + H2O → 6 H2 + 6 CO ( 322 kJ @ 1000K) (1.16)  

 C6H10O5 + 2 H2O → 7 H2 + 5 CO + CO2  ( 310 kJ @ 1000K) (1.17)  

 C6H10O5 + 3 H2O → 8 H2 + 4 CO + 2 CO2  ( 276 kJ @ 1000K) (1.18)  

 C6H10O5 + 7 H2O → 12 H2 + 6 CO2  ( 137 kJ @ 1000K) (1.19) 

 C6H10O5 + H2O → 4 H2 + 4 CO + CO2 + CH4 ( 85 kJ @ 1000K) (1.20) 

 C6H10O5 + H2O → 2 H2 + 2 CO + 2 CO2 + 2 CH4 (-175 kJ @ 1000K) (1.21) 
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1.4.3.3 Modeling 

 

Ciesielczy and Gawdzik (1994) developed a two-phase model taking the non-

isothermal character of coal gasification and the bubble growth into account. The bed is 

divided into compartments in which the bubble level is assumed to be constant. 

Several models for the bubbling fluidized bed hydrodynamics have been 

extensively used for coal combustion. To model the description of the hydrodynamic 

behavior of the bubbling bed, Werther (1980) assumes the existence of a film between 

the bubble and the emulsion phase, i.e. buffer zone. Marias et al. (2001) assumes that the 

zone above the bed is divided in two perfectly stirred regions. The first zone is just above 

the bed where the bubbles burst out of the bed and still contain solid particles, i.e. 

disengagement zone. Milioli and Foster (1995) evaluated the amount of sand and fuel 

material in this zone. Above the disengagement zone is a second perfectly stirred zone 

where homogeneous gas combustion is taking place, i.e. post-combustion zone. These 

zones are displayed in Figure 1.3. The model assumes three sources for heat generation: 

homogeneous combustion of volatile, heterogeneous combustion of biomass particles, 

and heat transfer with sand and char. 

  Homogeneous zone 

 
  Disengagement zone 
 
 
  Bubbling bed 
 

Figure 1.3  Modeling of a fluidized bed gasifier 
 

Sadaka et al. (2002) developed a two-phase model dividing the bed into three 

zones: jetting, bubbling, and slugging. For each zone, hydrodynamics, transport and 
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thermodynamic properties were included. Researchers assumed that the devolatilization 

is instantaneous and considered the major compounds in his gasification model to be: H2, 

CO, CO2,  H2O, CH4, O2, N2, char, and tar  in two reacting systems. The first reacting 

system is the bubble phase with a single gas phase. The second reacting system is the 

emulsion phase with a solid carbon phase in addition to the gas phase. Sadaka et al. 

(2002) approximated the tar yield according to an empirical equation developed from 

four data points from the steam gasification of straw from Corella et al. (1989) as:  

Tary = 3598 * e-0.0029*Ts    (1.22) 

where Ts is average temperature (K) of the particles. The model then approximates tar and 

C2 compounds as CH4. This approximation does not change the overall results. 

To find a solution to the differential equations of the model, Sadaka et al. (2002) 

divides the bed into multiple control volumes. Solutions are calculated numerically by 

using the finite element method solving for heat and mass transfer and equilibrium by 

minimization of the Gibbs enthalpy of the system. 

Because of the numerous previously mentioned approximations involved in the 

modeling of the gasification of biomass, this study will focus instead on modeling the 

equilibrium of biomass gasification at temperatures between 600°C and 900°C, where 

most of the primary pyrolysis reactions are minimal. The intent is to model the 

gasification parameters and products concentrations on a wide range of equivalence ratios 

between 0 and 0.4 in the most pertinent temperature range for gasification between 700°C 

and 900°C. The mathematical model used in this study is an equilibrium reactor; i.e. a 

Gibbs reactor model, taking solid carbon and tar into account. 
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2 RESEARCH DESIGN 

 
The present research involves the gasification of various biomass feedstocks for 

which all producer gas characteristics are yet unknown. The gasification process is an 

integral part of the further development of a bioconversion technology.  It is important to 

characterize, quantitatively and qualitatively the gas and byproducts generated during the 

gasification process.  

The conversion of producer or synthesis gas from biomass gasification to ethanol 

has not been extensively investigated to date. Although many experiments have been 

made with bottled gas, few (none in the literature) have ever used actual producer or 

synthesis gas from a gasifier through an anaerobic fermentor. Traces of toxic compounds 

created during the gasification could inhibit biochemical pathways for the production of 

valuable products and/or harm the microorganism (Lewis et al., 2002). To further 

understand the overall process, experimentation on the gasification feedstocks, agents, 

parameters, and toxic hydrocarbons reforming and/or removal are necessary. 

The first step of this study was to design and develop the modifications for an 

existing fluidized bed gasification system in order to conduct experiments in steady state 

atmospheric air gasification, flaming pyrolytic gasification and steam gasification of low 

cost biomass (switchgrass, bermudagrass, and corn gluten). For this purpose, the 

modified pilot plant includes a computerized control and data collection system, a 

temperature controlled gas-sampling system, and a scrubbing and storage system. 
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2.1 INITIAL DESIGN  

 

The pilot-scale fluidized bed air gasifier at Oklahoma State University, from an 

initial design developed by Carbon Energy Technology, Inc. and the Center for Coal and 

the Environment at Iowa State University, consists of a fuel hopper, feed auger, injection 

auger, reactor, and ignition system.  A schematic of the initial system is shown in Figure 

2.1. 

The fluidized-bed reactor is 25-cm in diameter and is constructed of mild steel with 

a 5-cm refractory lining. The bed is 30-cm high and consists of sand particles with a 

geometric mean diameter of approximately 900 µm.  The air, supplied by piston 

compressors, is injected into the plenum underneath the distribution plate at a volumetric 

flow rate of 0.4 m3/min.  Air is fed through the bottom of the bed through a distribution 

plate which has 177 uniformly spaced 2-mm holes. A manually controlled metering auger 

pushes the material from the bottom of the mixed bin directly into a perpendicular 

injection auger, which rotates at constant high speed, and pushes the biomass into the 

reactor bed. During startup only, the bed is preheated with propane gas up to 800°C in 

temperature. The biomass material is gasified as it enters the high temperature fluidized 

bed. 
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Figure 2.1  Fluidized bed air gasifier initial design schematic 
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The producer gas exits at the top of the gasifier where it is centrifuged through a 

13-cm diameter cyclone. Ashes are collected at the bottom of the cyclone in a stainless 

steel container. 

This design functioned correctly and provided producer gas. However several 

difficulties were experienced in the areas of startup, data recording, ash collection, 

process control and biomass feeding. Modifications were necessary to overcome these 

difficulties. 
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2.2 GASIFICATION SYSTEM MODIFICATIONS  

The initial design was not functional. Therefore several changes to the gasification 

system were necessary in order to achieve biomass gasification with gas storage. The 

challenges included correcting feeding system breakdowns, providing heat to the 

endothermic processes, cleaning the produced gas and setting up process controls and 

data acquisition systems. 

 

2.2.1 Feeding system 

The initial feeding system (Figure 2.2) described in the previous paragraph was 

able to handle loose non-compressible solids like wood pellets, but the system was unable 

to function correctly with low density biomass such as chopped grasses. Because of their 

compressibility, chopped grasses agglomerate, forming plugs through the initial 

components of the feeding systems. 

 

 

 

 

 

 

 

 

 

Figure 2.2  Top view of initial feeding system 
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2.2.2 Mixer  

Chopped grasses do not flow consistently. Because of their compressibility and 

bridging properties, they necessitate constant mixing to loosen them up and avoid 

bridging around the metering auger. 

The mixing system at the bottom of the tank consisted of a 2.5-cm wide square 

tubing placed across the tank diameter, welded on the end of a rod linked through the 

tank bottom plate to a worm gear reducer mounted directly under the tank. The torque 

necessary for the mixing of a full tank of chopped grass was too high for this setup, 

resulting in breakdowns: broken welds, broken worm-gear reducer and electrical motor 

overheating. 

The square tubing was replaced with a wider 5-cm by 2.5-cm solid metal bar. This 

new width allows the mixer axle to go through the bar with a system consisting of two 

metal keys, stronger than the previously used weld. The electrical motor driving the 

mixer was increased from 0.5hp to 1.0hp. A heavy-duty worm-gear reducer linked to a 

large double sprocket system with a higher torque capability with a total ratio 875:1 

replaces the directly linked worm-gear reducer. 

 

2.2.3 Metering auger 

Located at the bottom of the tank, the metering auger exits the bin 5-cm above the 

bottom through a 7.5-cm diameter housing pipe. This initial system faced intermittent 

jamming due to the agglomeration of the chopped biomass. When compressed in the 

metering auger housing, chopped grasses stuck to the auger and formed a hard wood-like 
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plug. This plug rotated in the housing with the auger, resulting in no forward motion. 

This plug sometimes reached the injection auger, causing a jam. 

Increasing the housing cross section vertically reduced the pressure of the material 

around the auger, preventing plugging at this location. The 7.5-cm pipe was cut 

horizontally with the top half raised 2.5-cm. Two 2.5-cm wide plates were welded along 

each side, resulting in a sleeve with an oval cross section. The added space above the 

auger allows the biomass to remain loose and flows evenly. 

Because the initial feeding system did not allow weight measurements, a 

correlation of the metering auger rotation i.e. rpm, with the mass flow rate was initially 

attempted. Due to the compressible nature of chopped grasses, this correlation appeared 

to be a function of the biomass pressure around the auger at the bottom of the tank, thus a 

function of the biomass level in the tank. Results did not show sufficient repeatability and 

were abandoned. This feeding system necessitated a different measurement of the mass 

flow rate than the metering auger speed.  The weight of the entire bin is now measured 

with a load cell. 

 

2.2.4 Injection auger 

In the initial design, a rigid Tee junction existed between the metering auger and 

the auger that injected the biomass into the reactor bed. At this intersection of the slow 

moving metering auger and the fast rotating injection auger, material would often form a 

plug. This rigid junction also prevented an accurate measurement of the small weight 

variation of the low-density chopped grasses in comparison to the weight of the entire 
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hopper system. This design also allowed producer gas to back flow into the tank. 

Weather-stripping was used to prevent gas back draft into the tank was inadequate. 

A 20-cm rotary feeder was designed, built and installed on top of the injection 

auger housing preventing hot gas from back flowing. This new design permits the feed 

tank to be disconnected from the injection system, allowing the tank to hang free from a 

load cell for precise weight measurement. 

 

2.2.5 Rotary feeder 

The sizing of the rotary feeder (Figure 2.3 and 2.4) is based on the special 

characteristics of the chopped grass: low density, high bridging capacity, high 

compressibility. 

The material must remain loose all along the feeding system until the sand bed. 

Lack of data from the literature on the material characteristics of the chopped grass drove 

the choice for a volumetric flow rate capacity of the rotary valve equal or larger than the 

metering auger maximum volume capacity.  

The capacity of the rotary feeder depends on two design parameters: rotor volume 

capacity, rotor speed 

Increasing the rotor speed would in fact increase the volume flow rate capacity 

but it would also increase the gas leakage through the feeder. 

Solid mass flow rate: RPMVm VSS ××=
•

ρ   (2.1) 

Rotary feeder gas leakage: RPMVPV VRatioGas ××=
•

  (2.2) 
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Figure 2.3  Rotary feeder CAD 
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Figure 2.4  Upgraded feeding system 
 
With  

•

Sm : solid mass flow rate, m3/h 

Sρ  : solid density, kg/m3 

•

GasV : standard volumetric gas flow rate, m3/h 

Vv : revolving valve volume, m3 

Pratio : feeder inner over outer pressure ratio 

RPM : Valve rotation speed, round per minutes 

The volume of agent (air or steam) fed to the fluidized bed gasifier pilot is 17 

m3/h in order to sustain minimum fluidization, with an inner pressure of 0.07 atm 
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(gauge). The maximum mass flow rate of chopped grass achieved by the metering system 

is 100 kg/h. 

Since the width of the inlet was planned to be approximately 1/8 of the perimeter 

of the valve (8 cavities rotating valve), it was necessary to size the width to a minimum in 

order to keep the valve diameter small. Lumps of chopped grass formed in the 7.62-cm 

diameter metering auger housing, which could clog the device inlet. Consequently, the 

inlet width was sized to 7.62 cm (3 in.), the perimeter of the rotary valve is 61 cm (24 in) 

and the diameter 20 cm (8 in.). 

Considering a lump of chopped grass as a ball and the V shape cavity, only the 

first half of the lump can enter in the cavity. The depth of the cavity is then 3.8 cm (1.5 

in.). Then, the final cavity volume is 502 cm3 (30.6 in3) for a revolving volume (Vv) of 4 l 

(245 in3). Using equation 2.1, RPM is then 3.2. Using equation 2.2, the theoretical 

leakage of this airlock is :  

•

GasV = 13.7 l/min = 0.82 m3/h 

To avoid accumulation of tar due to the gas back draft. The airlock is kept under 

agent pressure (air or steam) equal to the one in the reactor, so that the leak itself does not 

consist of hot gases and tar.  

Because of air leakage through the rotary feeder and the difficulty to quantify this 

leakage using nitrogen particularly in the case of steam gasification, a different tracer 

other than nitrogen must be used  

As a result, helium is used as the tracer because it has a good response on the GC-

TCD for gas analysis and it is easily available. The precision of the flow of tracer must be 

of the most precise accuracy possible in order to rely on this data for cross calculation of 
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all gases material balance. As Nitrogen was initially used, the data for the steam 

gasification process are altered by the airlock leakage high variability. 

 

2.2.6 Disengagement section 

A disengagement section (Figure 2.5) built on top of the existing gasifier increases 

the cross section diameter from 25 to 53 cm before the 2-in. diameter exhaust pipe. This 

feature allows the main stream velocity to decrease by a ratio of 4.5:1 in order to prevent 

sand elutriation from the fluidized bed gasifier pilot. 

 

 

Figure 2.5  Top expansion disengagement section. 
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2.2.7 Electrical heating systems 

Three superposed 7.5 kW electric conic spiral shaped heating elements (Figure 2.6) 

are installed in the reactor bed to allow the process to sustain bed temperature and act as 

baffles to prevent slugging. The ends of the elements exit through the gasifier wall for 

connecting the 3 phase, 208 V electrical circuit in a delta configuration. Each phase is 

actuated by a 100 A solid-state relay. 

Because the minimum-bending radius of these heating elements is 3.8 cm, the 

baffle heaters are not present in a 7.6-cm diameter cylindrical zone in the bed center. To 

prevent channeling, three stainless steel grids with 1.25-cm diameter holes are installed in 

the center of each spiral coil to cover the opened center zone. 

 

Figure 2.6  Baffle heaters in sand bed 
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2.2.8 Ash collection system 

In the initial design, the ash collection system consisted of one cyclone and one 

stainless steel container, and performed adequately for low tar producing conditions. 

When the equivalence ratio was reduced, tar condensation in the pipe connecting the 

cyclone to the stainless steel barrel induced ash agglomeration, and obstruction of the 

pipe, thus preventing any ash collection.  

The long pipe connecting the container to the cyclone required shortening and, the 

cyclone, to be maintained above tar condensing temperature using electric band heaters. 

For convenience, a 10-cm rotary airlock (Figure 2.7 and 2.8) was designed and installed 

15 cm underneath the cyclone. A second smaller diameter cyclone with an identical 

airlock is installed in series following the first to collect smaller-sized particulates and 

enhance gas cleaning. Figures 2.9-11 show the modified fluidized bed gasification 

process. 
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Figure 2.7  Ash collection rotary airlock design 

 
 

 
Figure 2.8  Ash collection rotary airlock 
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Figure 2.9  Modified fluidized bed gasification process schematic 
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Figure 2.10  Gasifier pilot plant 
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Figure 2.11  Hot gas recycling turbine and lobe blower (left and center) and flare (right) 
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2.2.9 Scrubbing system 

After the two cyclones, the producer gas passes through an ash trap (Figure 2.12) 

and two vertical scrubbers (Figure 2.13) installed in series. The purpose is to remove the 

ash and tar from the produced gas.  

  
Figure 2.12  Ash trap-solvent tank Figure 2.13  Scrubbing unit 

 
The ash trap-solvent tank (Figure 2.12) is composed of a 38-in. L × 16-in. W × 

12-in. Hback × 19-in. Hfront container with a sloped bottom filled with solvent. The 

container is partitioned into two compartments by an open base wall at about ¾ of its 

length; a bubbling compartment with a copper coil heat exchanger (Figure 2.14) and a 

decanting compartment Figure 2.16. Gas enters from the top at the rear of the tank and 

bubbles in the longest partition through a bubbler, a 2-in. diameter, 24 in. long perforated 

pipe located horizontally at the bottom of that partition (Figure 2.15). Gas exhausts at the 

top back of this first compartment just in front of the gas inlet. Gas then flows out 
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towards the first of two scrubbing columns, which are in series. Once wet, ash remains in 

the solvent and decants at the bottom of the trap under the dividing wall. The solvent 

flows up behind the wall in the second compartment of the ash trap. Solvent is pumped 

from the top of the ash trap of the second compartment through a mini 

aluminum/stainless steel suction strainer, 100 mesh, 10 gpm capacity, 5.625 in. long, by 

1.625 in. diameter, cooled through a 3-ton counter current heat exchanger and sprayed at 

the top of the columns at 3 gpm at 150psi (three nozzles on first column and one on 

second column).   

 

 

Figure 2.14  Bubbling compartment with heat exchanger 
 

   
Figure 2.15  Bubbler Figure 2.16  Strainer 
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The scrubbing system is composed of two 12-in. diameter columns each packed 4 

feet deep with stainless steel pall rings (0.75-in. diameter by 0.75 in. long) with a total 

approximate exchange area of 41.6 m2. They are showered with 0°C cold solvent from 

the column top down through the packed bed counter current to the gas flow. Solvent is 

collected at the bottom of the columns, and recycled to the ash trap. 

Water alone was first used as a cooling media to condense the tar on the packing. 

Because tar does not dissolve in water, acetone is mixed with the water at a ratio of 20:80 

allowing the tar to dissolve in the liquid phase, increasing the scrubbing efficiency. To 

avoid the evaporation of the acetone into the gas phase the cooling of the liquid phase is 

essential.  

A 10-gal stainless steel drum filled with pall rings has been setup at the column 

exhaust to avoid droplets of liquid to be carried out downstream. Clean gas then 

circulates to a compressor-booster unit where it is compressed at 400 psi. The gas passes 

through a 0.5-ton water-cooled counter current heat exchanger to condense any excess 

solvent. Located at the outlet of the heat exchanger is a liquid trap with an automatic 

drain valve to the solvent tank.  

Gas is then stored in tanks with 675 liters total capacity. This volume provides over 

two months of feed for the bench-top bioreactor running at 4 psi and 200 cc/min. 
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Figure 2.17  Gas scrubbing, compressing and storage system schematic 
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2.2.10 Data acquisition system and process monitoring 

The process is monitored and controlled via numerous sensors, all of which are 

connected to a computer for process supervision and data acquisition. The SCXI system 

data interface was purchased from National Instruments, which includes: 

• Computer card E-6425 with 2 analog outputs, 5 counters or digital inputs/outputs 

and 30 analog/thermocouple inputs 

• Chassis SCXI 1000  

• SCXI 1102 module for all inputs 

• SCXI 1180 feed through panel for outputs 

 

2.2.11 Computer program for process control 

The programming interface used is National Instruments LabView graphic 

programming (LabView, 1999). The virtual instrument name is GAS11.vi (Appendix 

8.6.1). Its basic principle is a continuous looping program that updates all inputs and 

outputs every 500 ms. It records all data to a user-chosen file every 10s. It is programmed 

to automatically control biomass input, air input, and process temperature. Figure 2.18 

explains the various functions of the subprograms found in Gas11.vi. The program’s 

control panel is shown on Figures 2.19 and 2.20. 
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Figure 2.18  VIs hierarchy in the main program 
 

PID: controller for baffle and air heaters, biomass and air flow rates. 

AI-Scan: scans all analog input channels. 

Single update: updates all channels. 

Alarm: sounds alarm on computer speaker. 

Array biomass: transforms biomass bin weight into biomass flow rate. 

Ramp up: ramps temperature set point up during auto start or run. 

Array sampling: totalizes the amount of gas sampled through impingers. 

Array steam: totalizes the amount of steam fed to the gasifier by the boiler. 

Data recording: saves all data to hard drive in spreadsheet file. 

Gas End: ends all task ID and reports error codes in program. 

DI: reads digital input. 

DO: writes to digital output. 

Gas Data: converts all channel signal voltages to data. 

Gas init: initializes hardware, and data file and configure all channels. 

Flow biomass: transforms biomass bin weight into biomass flow rate, and 
calculates ER and air leakage from rotary feeder. 
 

Counter start: starts counter outputs to air 
and baffle heaters relays. 

Pulse config: configures pulse signal for 
counter outputs. 
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Figure 2.19  Control panel screen 1: graphs and controls 
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Figure 2.20  Control panel screen 2: automation proportional integrator derivator (PID) 
controllers (feed, air, power baffle heaters, power air heater) 
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Sensors 
• Load cell (maximum 2268-kg capacity) is used to monitor feed hopper weight. 

• 14 Type-K thermocouples used to monitor temperatures of the air heater outlet, in 

and above the fluidized zone of the bubbling sand bed, at the top of the gasifier, at 

the venturi, and at the gas sampling flow meter.  

• Differential pressure gage to measure the pressure drop through the bed.  

• Differential pressure gage across a venturi used to measure exhaust gas flow. 

• Mass flow meter (30 scfm maximum) used to measure airflow. 

 

Controls 
• 3 phase, 220 V inverter to control the biomass flow metering auger. 

• 1-cm opening, ¼ turn valve and a 12 V actuator to control the airflow. 

• Three 100 A solid-state relays to control the three baffle heaters. 

• 75 A solid-state relay to control the air heater. 
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2.3 AIR GASIFICATION PRELIMINARY ENERGY 

BALANCE  

The thermal balance between endothermic and exothermic reactions is the base of 

an air gasifier design. Carbon and air feed rates are controlled to balance heat 

requirements of the reaction without heat inputs. In order to study the process, it is 

important to understand the heat requirement of the chemical reaction for this gasifier 

design. 

The reaction is based on cellulose composition, and a moisture ash free (maf) 

biomass input at 20 kg/h. For the following calculation, 5%wt ash is assumed in the 

biomass. 

∆HR 
C6H10O5 + 2 O2 + 7.52 N2 + Ash  5 H2 + 3 CO + 3 CO2 + 7.52N2 + Ash (2.3) 

With ∆HR = -745 kJ/mol @ 1000 K from equation (1.9)  

Parameters a compound x: 
Qx = sensitive heat of x, kW 
mx = mass flow rate of x, kg/h 
Fx = mole flow rate of x, mol/h 
Mx = molecular weight of x, g/mol 
 
 

Cpx = specific heat of x, J/mol.K 
Qreact. = heat of reaction, kW 
∆HR = enthalpy of reaction, kJ/mol 
a,b,c,d,e,f,g = stoichiometric coefficients 

Mass and mole flow rate calculations through the gasifier on the base of a 

biomass feed flow rate of: 
•

biomassm  = 20 kg/h 

Mbiomass = 
5106 OHCM  = 6 * MC + 10 * MH + 5 * MO (2.4) 

Mbiomass = 6 * 12 g/mol + 10 * 1 g/mol + 5 * 16 g/mol 

Mbiomass = 162 g/mol 

Fbiomass = 
•

biomassm  * Mbiomass (2.5) 
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Fbiomass = 20 kg/h * 1000 g/kg / 162 g/mol 

Fbiomass = 123.5 mol/h 

 

Calculations for all other compounds are similar: 

Example of O2: 

2OM  = 2 * MO (2.6) 

2OM  = 2 * 16 g/mol 

2OM  = 32 g/mol 

2OF  = 2* Fbiomass (2.7) 

2OF  = 2 * 123.5 g/mol 

2OF  = 246.9 mol/h 

•

2Om  = MO2 * FO2 (2.8) 

•

2Om  = 32 g/mol*246.9 mol/h / 1000g/kg 

•

2Om  = 7.9 kg/h 

 

For all reactants and products, the following results are obtained: 

From equation (1.15) 

 C6H10O5 + 2 O2 + 7.52 N2 + Ash → 5 H2 + 3 CO + 3 CO2 + 7.52N2 + Ash 

•
m  (kg/h) 20.00 7.90 25.99 1 1.23 10.37 16.30 25.99 1  

F (mol/h) 123.5 246.9 928.4 617.3 370.4 370.4 928.4   
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The heat consumed to increase the incoming ambient air temperature (300K) to reaction 

temperature of the reactor (1000K) is: 

•

airQ  = - airF  *Cpair *(T2-T1)  (2.9) 

22 NOair FFF +=  (2.10) 

airF = (246.9 mol/h + 928.4 mol/h ) / 3600 s/h = 0.3265 mol/s 

•

airQ  = - 0.3265 mol/s * 29 J/mol*K * ( 1000 K – 300 K ) 

•

airQ  = - 6.63 kW 

 
The heat released by the reaction is: 

•

reactionQ  = ∆HR * Fbiomass  (2.11) 

Fbiomass = 123.5 mol/h / 3600 mol/s = 0.0343 mol/s 

•

reactionQ  = -745 kJ/mol * 0.0343 mol/s 

•

reactionQ  = -25.56 kW 

The heat lost by the hot exhaust gas (1000 K) leaving the reactor: 

( ) ( )23222222
TTCpFCpFCpFCpFQ NNCOCOCOCOHHgas −××+×+×+×=

•
 (2.12) 

•

gasQ  = ( 617.3 mol/h * 28.8J/mol * K + 370.4 mol/h * 29.1 J/mol*K + 370.4 mol/h * 

37.1 J/mol*K + 928.4 * 29.1 J/mol*K) * ( 300 K – 1000 K ) / ( 3600 s/h) 

•

gasQ  = -13.48kW 
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Energy lost by the hot solids (1000 K) leaving the reactor: 

•

ashQ  = ( )23 TTCpm ashash −××
•

 (2.13) 

•

ashm  = 1 kg/h / 3600s/h = 2.78*10-4 kg/s 

•

ashQ  = 2.78 * 10-4 kg/s * 1 kJ/kg.K * ( 300 K - 1000 K) 

•

ashQ  = -0.19 kW 

 
Overall energy balance: 

•

airQ  + 
•

reactionQ  + 
•

gasQ  + 
•

ashQ  = 
•

balanceQ   

•

balanceQ  = - 6.63 kW + 25.56 kW - 13.48 kW - 0.19 kW = -5.26 kW 

•

balanceQ  represents 20% of the heat generated by the gasification reaction in the fluidized 

bed reactor. It is a sufficient excess to account for heat loss through the insulation. 

 

2.4 MODIFICATIONS FOR STEAM GASIFICATION  

Because steam gasification is an endothermic reaction, the fluidized bed gasifier 

modifications for steam gasification mainly involve the installation of electric heaters and 

a steam generator. The steam is be fed into the fluidized bed gasifier plenum below the 

sand bed and used to fluidize the bed instead of air. For conditions requiring a low steam 

flow rate that will not satisfy minimum fluidization, a high temperature air driven turbine 

is used to recirculate outlet gases in order to maintain fluidization. 

Steam reforming from equation 1.16: 

C6H10O5 + H2O  6CO + 6H2  322kj/mole@1000K 
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According to the above equation, for a biomass feed rate of 20kg/h the steam feed rate 

would be: 
•

steamm  = 
•

biomassm  * MH2O / 
•

biomassm   (2.14) 

•

steamm  = 20 kg/h * 18 g/mol / 162 g/mol = 2.22 kg/h 

With the ideal gas law (PV=nRT) and Fsteam = 
•

steamm  * Msteam, the steam flow rate is: 

( )
P

TRF
V steam

steam

××=
•

 (2.15) 

•

steamV  = 2.22 kg/h *1000 g/kg * 8.2*10-2 dm3*atm/mol*K *373.15 K / (60 min/h * 18 

g/mol *1 atm) 

•

steamV  = 62.9 dm3/min 

•

steamV  = 2.22 cfm 

 

Heat requirement for the steam will be: 

•

steamQ  = 
•

steamm  * ( Cpliquid water * ( T2-T1 ) + 
•

nevaporatioofheatlatentQ  + Cpsteam * (T3-T2) ) (2.16) 

•

steamQ  = 2.22 kg/h * ( 4.18 kJ/kg*K * ( 100-25 ) + 2258 kJ/kg + 1.97 kJ/kg*K * ( 700-

100 )) / 3600 s/h 

•

steamQ  = 2.31 kW 

 
And the reaction heat requirement would be: 

biomassRreaction FHQ ×∆−=
•

. (2.17) 

•

reactionQ  = 322 kJ/mol * 20 kg/h * 1000 g/kg / (3600 s/h * 162 g/mol) 

•

reactionQ . = 11.04 kW
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Considering excess of 20% to account for heat loss, the heat requirement becomes: 

( 11.04 kW + 2.31 kW )* 1.2 = 16.02 kW 

Three 7.5 kW - 240V spiral conic shaped heating elements are superposed 7.62 

cm apart in the sand bed and temperature controlled. When connected in parallel, these 

provided a total of 22.5 kW. 

Because the exhaust mass flow rates will be lower than for air gasification, the 

second cyclone is reduced in diameter for steam gasification. 

Although the biomass moisture content in steam gasification is not as important as 

it is in air gasification, the biomass materials tested are at the same moisture content 

considered in the first objective. To maintain the thermal balance in air gasification, heat 

necessary for the endothermic reactions is mainly provided by the double oxidation of the 

carbon forming CO2 . In the steam gasification, heat is provided externally. The steam-to-

carbon ratio and temperature are not as dependent on equivalence ratio and temperature 

as in the air gasification case. 

 

2.5 ANALYSIS  

2.5.1 Solids analysis 

In order to generate mass and energy balances of the system, flow rates of the 

reactants and products are recorded. Biomass input flow rate is measured with the 

combination of a load cell and a computer program calculating the variation of weight 

with time. Solids outlet flow rate is measured through isokinetic sampling, filtration and 

solvent extraction. After extraction of the tar, the solids are dried and weighed. This 

calculation necessitates isokinetic conditions at the sampling probe. Proximate and 
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ultimate analyses of each material tested and corresponding solid output are determined 

through an external laboratory; Hazen Research, Inc. 

 

2.5.2 Gas Analysis 

Producer gas, synthesis gas and flame pyrolytic gas are sampled from the exhaust 

in syringes and then analyzed using a gas chromatograph (GC) equipped with a thermal 

conductivity detector (TCD). The GC uses Argon as the carrier gas. The injector is a 

constant volume injection loop of 1.0 ml. The column is a packed type, Hayesep DB 

100/120 mesh. Producer gas analysis results show hydrogen (H2), nitrogen (N2), oxygen 

(O2), carbon monoxide (CO), methane (CH4), carbon dioxide (CO2), ethylene (C2H2), 

acetylene (C2H4) and ethane (C2H6).  Calibration of the GC was performed using Supelco 

Scotty 2 analyzed gases mix 216 and mix 234, ambient air, and a certified specialty gas 

mix containing 15% CO2, 25% CO, and 60% N2. See Appendix 8.1 for calibration 

curves. 

Temperature changes are programmed as follows for each sample separation: 

6min at 40°C, ramp up to 140°C at 100°C/min, 20 min 140°C, then ramp down to 40°C 

at 100°C/min. 

Percentage volume results are corrected for potential air leaks during syringe 

sampling using the oxygen peak, and are then removed with results normalized in the 

analysis, using Excel based software. See Chapter 4. 
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2.5.3 Tar analysis 

There is no standard analytical procedure for tar measurement. Though a tar 

protocol has been elaborated (Energy project ERK6-CT1999-20002 (Tar protocol)): 

Guidelines for Sampling and Analysis of Tar and Particles in Biomass Producer Gases 

(Appendix 8.3).  

The guidelines describe the basic concept of the sampling train which consists of 

4 main modules and respective submodules. The main modules are gas preconditioning, 

particle collection, tar collection and volume measurement (Figure 2.21). 

1. In the preconditioning module (Module 1), the process gas is heated to a constant 

temperature of 300-350°C using a heated probe. The sampling probe is designed 

according to Abatzoglou et al. (2000). 

2. In the particle collection module (Module 2), a heated filter, maintained at the 

same temperature as the probe, collects the solids from the gas. 

3. The tar collection module (Module 3) consists of three submodules. In the first 

submodule, the gas is cooled resulting in moisture and some of the tar being 

collected in a condenser at a temperature of approximately 20°C. A liquid quench, 

which facilitates cleaning of sampling lines after the sampling, is optional. In the 

second submodule, tar and volatile organic compounds (VOC) are absorbed into 

the solvent at -20°C in a series of impinger bottles. In the third, and optional 

submodule, a backup VOC adsorber collects residual VOC’s which may have 

penetrated the impinger train. The backup VOC adsorber is not necessary when 

enough impinger bottles, appropriate solvents and collection temperatures are 

used. 
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4. The volume-sampling module (Module 4) consists of three submodules. The 

purpose of these submodules is to: (a) maintain the sample flow by a pump (not 

needed in pressurised gasification); (b) adjust and control of flow rate; (c) 

measure the sample volume; and (d) vent the gas. See Appendix 8.3 for 

information on the sampling unit operation. 

 

Figure 2.21: schematic of the sampling probe and impinger train connected to the 
pilot plant exhaust pipe 

Module 3 
Impinger train 

Module 4 
Pump and flow measurement 

Module 2 
High temperature ceramic filter 

Module 1 
Isokinetic sampling probe 

Pprobe = Ppipe 
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2.5.3.1 Experimental procedure 

Tar sampling is performed intermittently during steady state operation of the 

gasifier. A stainless steel sampling probe (Figure 2.22 and 2.23) (0.683 cm in diameter 

designed according to 1998 tar sampling guidelines) is located inside the gasifier exhaust 

pipe, where the gas temperature is approximately 350oC. The gas flow rate in the probe is 

set with the rotameter valve after the vacuum pump to maintain isokinetic sampling 

conditions. It is preferable to have the valve in a positive pressure environment in order to 

prevent eventual oxygen leakage into the system. 

 

 

 

 

 

Figure 2.22  Sampling probe design 

The ratio of the pipe diameter and the sampling nozzle diameter must be at least 

10 so that 1% of the gas is sampled. 

The sampling apparatus (Figures 2.21, 2.24 and 2.25) consists of: 

• filter 

• series of condensers 

• series of impingers 

• VOC backup with activated carbon 

 

• vacuum pump 

• rotameter 

• turbine gas flow meter 

• flow totalizer (in computer program). 

 

L t = 3*Dg+L1+L2 = 210 mm 
Di = Dg/10  

  ≈ 68 mm 

P1 
P2 

 

L1 = 5*Di  
  ≈ 35 mm 

DPp = 3 mm 

2-in. NPT 
plug fitting 

L2 = 25 mm 
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Figure 2.23  Sampling probe 

 

A high temperature ¼-turn valve is placed between the probe outlet and the filter. 

The filtration device is a stainless steel filter holder SFA-300 with ceramic or fiberglass 

thimble filters, maintained at approximately 150oC with a band-heater. All pipes before 

and after the filter are heated to prevent tar condensation. At the filter outlet, four glass 

condensers in series are maintained in an ethylene glycol bath at a controlled temperature 

of –5oC. Upon exiting the condensers, the gas is drawn through one acetone-filled 

impinger plus a dry impinger, both immersed in an ethylene glycol bath at or below –

20oC.  Sample flow rate is maintained at around 11 l/min (depending on isokinetic 

conditions for the gasifier exhaust flow rate) using a vacuum pump at desired time 

intervals. 
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Upon completion of sampling, all unheated parts of the sampling system are 

rinsed with acetone to collect tar deposits, and mixed with the acetone collected from the 

impingers, and condensers. At this point, a 20-cc sample is taken for gas chromatography 

mass spectrometry (GC-MS) analysis. The remainder of the solution is evaporated and 

quantified gravimetrically. 

 

Figure 2.24  Schematic of the cold bath regulation in sampling unit 
 
 
To cool the bath of this sampling system (Figure 2.24 and 2.25), a single cold 

finger unit is immersed into the second impinger bath, maintaining a temperature below -

20°C. The temperature of the first impinger bath was regulated using a PID controlled 

flow of coolant from the second bath to maintain a temperature at 5°C. (For more 

technical information about this unit and how it runs, see Appendix 8.2) 

pump PID  
5C 

Level 
Sensor 

Coolant 
pumps 

Temperature 
sensor 

Cold Finger unit 
-20C 
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Figure 2.25  Sampling unit 
 

2.5.3.2 Gravimetric analysis 

To evaluate the tar concentration gravimetrically, 100cc of acetone-tar solution is 

evaporated in a buchi rotavapor according to the guidelines in Appendix 8.3. 

 

2.5.3.3 Tar GC-MS analysis 

A quality analysis of the tar is performed with a GC-MS through a 60-m long, 

0.25-mm diameter capillary column with a 0.25-µm thick diphenyl dimethyl film.  

Using a method (Appendix 8.4) built from three external standard mixes (referred 

to as BTEX, Mix 4, PAHs), and one internal standard added to each sample tested, the 

GC-MS provides the composition of the tar for 210 compounds for each process and 

biomass material gasified.  

The methodology offered in the guidelines (Appendix 8.3) is applied for 

determination of the tar concentration in the gas. 
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Once the solutions from the sampling and rinsing of the impinger train and from 

the ash soxhlet extraction are mixed together, the total volume is recorded as Vsolvent. A  

1-ml sample is placed in the GC-MS with 20 µl of internal standard.  

Once recognized and quantified, those compounds that could be potentially 

harmful to the downstream bioreaction are identified and will merit further testing this 

experiment. 

The expected compounds in the tar are: carboxylic acids, sugars, alcohols, 

phenols, guaiacols, mixed oxygenates furans, aromatics, polycyclic aromatic 

hydrocarbons (PAH), and nitrogen containing aromatics. The present analysis 

concentrates on the main compounds of the tar listed in Table 8.1 in Appendix 8.4. 
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3 AIR GASIFICATION OF MOIST SWITCHGRASS 

Knowledge of the effects of biomass moisture content on gasification process 

parameters and resulting producer or synthesis gas composition for selected feedstocks is 

essential to further develop the gasification-fermentation bioconversion process. 

 

3.1 EXPERIMENTAL PROCEDURE  

For the first series of experiments with moist switchgrass only, the water and tar 

sampling system was different than the procedure used in all other experiments. It 

consisted of a stainless steel sampling probe (1.0 cm in diameter) located inside the 

gasifier exhaust pipe in laminar flow conditions, where the gas temperature is 

approximately 600oC. The sampling apparatus consisted of a filter, three vertical 

condensers in series, and a series of impingers. A high temperature 1.0-cm diameter valve 

was placed between the probe outlet and filter. The filtration device was a stainless steel 

wire mesh (rated at 0.4 micron), maintained at approximately 350oC with a band heater. 

All pipes, before and after the filter, were band heated to prevent tar condensation. At the 

filter outlet, three glass condensers in series were maintained at –5oC as a water trap. 

Upon exiting the condensers, the gas was drawn through a series of three acetone-filled 

impingers, and a dry impinger, immerged in an ethylene glycol bath at –20oC.  Sample 

flow rate was maintained at 11.2 l/min using a rotameter and a vacuum pump to maintain 

isokinetic conditions.  
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Upon completion of sampling, all unheated parts of the sampling system were 

rinsed with acetone to collect tar deposits, mixed with the acetone collected from the 

impingers, and evaporated at 60oC under atmospheric pressure. Remaining water droplets 

were separated from the tar through a centrifugation process. Water and tar were both 

quantified gravimetrically. 

 

3.2 BIOMASS PREPARATION AND PROPERTIES 

Moist switchgrass was cut the morning of November 12, 2002, and allowed to 

field cure before round baling in late afternoon. Two bales were immediately processed 

in a tub grinder with a ½-inch screen for size reduction and then gasified. Six additional 

bales were stored under cover, with four being artificially dried until they reached 

successively lower levels of moisture content.  After being dried to the approximate 

desired moisture content, the bales were processed in the tub grinder and gasified. The 

initial three target moisture levels were 30, 20, and 10% wet basis.  

The bale drying system consisted of a compressor, an electric air heater 

electronically controlled to maintain a temperature of 70oC, and a series of perforated 

galvanized pipes for distribution of the air within the bales.  Each bale was equipped with 

a 5-cm diameter pipe, perforated every 15 cm along its length with 8 holes, each 0.8 mm 

in diameter.  Airflow rate through the bales was maintained at 0.14 m3/min. 

Moisture content of the switchgrass was determined according to ASTM standard 

E1756-01. Switchgrass samples were sent to Hazen Research, Inc., for proximate and 

ultimate analysis (Table 3.1). As can be seen, the switchgrass has a relatively low 

hydrogen and nitrogen content. 
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 Composition 
C H O N Ash & S Ultimate 

% db wt 50.15 6.92 37.07 0.52 5.34 
Volatiles Fixed Carbon Ash Proximate 

% db wt 79.09 15.64 5.27 
Table 3.1  Proximate and ultimate switchgrass analysis 

 

3.3 RESULTS 

The artificial drying process resulted in five distinct moisture contents (wet basis): 

34%, 29%, 25%, 19%, and 9%. The first observed effect of switchgrass moisture content 

on gasifier operating conditions was the effect on reactor bed temperature.  Figure 3.1 

shows the change in gasifier operating temperature for each moisture content at various 

equivalence ratios.  It can be clearly seen that as moisture content is increased, operating 

temperature is decreased.  For biomass moisture contents above 19%, bed temperature 

could not be maintained at 800oC in the range of ER chosen for the experiment. The 

temperature difference is as much as 100oC between the high and low moisture contents 

for a given equivalence ratio. This loss in temperature is the consequence of both the 

additional latent heat of water vaporized and the endothermic chemical reactions with the 

water. 
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Figure 3.1  Effect of switchgrass moisture content on gasifier operating temperature at various 
equivalence ratios. 
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Figure 3.2 shows the mole percent composition of various components of the 

producer gas resulting from gasification of switchgrass at moisture contents (wet basis) of 

9%, 19%, and 29%, respectively.  Each data point represents the average of three 

replicate samples.  As shown, CO production ranges from 15-20%, H2 from 4-8%, CO2 

from 15-20%, while the other hydrocarbons are less than 5%. 

Figure 3.3 shows a direct comparison of the production of CO, H2, CO2 and CH4 

at various moisture contents.  As switchgrass moisture content increases, production 

levels of both CO and H2 greatly decrease, CO2 slightly increases, and CH4 slightly 

decreases.  A decrease in production of carbon monoxide and hydrogen are consistent 

with the decrease in operating temperature of the gasifier. 

An additional experiment was conducted in which the fluidized bed gasifier was 

operated at an ER of 0.3 with switchgrass at 19% MC. An external heat source was used 

to increase the input air temperature to 350oC, allowing the bed to be maintained at a 

temperature of 800oC.  The concentration of the components in the producer gas 

increased to: 5.8% H2, 20.0% CO, 14.0% CO2, and 5.2% CH4. 
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a) 9% moisture content 
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b) 19% moisture content 
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c) 29% moisture content 

Figure 3.2  Producer gas composition with switchgrass at moisture contents of a) 9%, b) 19%, and 
c) 29%. 
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Figure 3.3  Effect of switchgrass moisture content on production of CO, H2, CO2, and CH4 at an 
equivalence ratio of 0.27. 

 

Table 3.2 shows all gasification products as a function of moisture content at an 

equivalence ratio range of 0.27-0.3.  All values listed are in units of weight percent of 

incoming biomass feed. Products shown include all gases as well as tar, ash, and water.  

As shown, levels of CO, H2, and CH4 clearly decrease with increasing moisture content.  

Also, levels of tar and ash remain relatively constant at about 2% and 8% of feed flow 

rate, respectively.  Of the ash values given, it should be noted that chemical analyses 

revealed that approximately 36% of the ‘ash’ samples collected in the cyclones was fixed 

carbon.  Due to the difficulty of tar and water measurement and the variability of the 

results, values determined in this experiment do not appear to change appreciably with 

respect to changes in moisture content of the biomass.  It is generally observed, however, 

that tar production increases at lower values of ER for all moisture contents. 
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Gasification Products (% Feed Weight) 
M.C. 

 (% w.b.) H2 CO CH4 CO2 tar H2O Ash 

9 0.90 37.91 5.74 55.92 2.81 17.71 8.94 

19 0.59 34.54 4.62 51.07 2.14 20.26 8.47 

25 0.37 29.85 3.83 56.46 1.44 28.01 8.28 

29 0.43 29.42 3.41 50.01 1.62 21.06 8.28 
 
Table 3.2  Gasification products (in % wt of the feed) at various levels of switchgrass moisture 
content, using an equivalence ratio range of 0.27-0.3.  All values shown are the average of at least 
three replicates. 

 

When considering just carbon conversion, it can be deduced that approximately 

90% of the carbon entering the process in the biomass is converted to producer gas, with 

the remainder going to tar and ash. Depending on the moisture content considered, 

approximately 30-40% of the carbon is converted to CO, 25-35% to CO2, and the 

remainder to other hydrocarbons, tar and ash. 
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3.4 CONCLUSIONS 

For this gasification-fermentation process, it is desirable to maximize both CO 

and H2 production, to be converted into ethanol by anaerobic acetogenic microorganisms. 

This study showed that elevated biomass moisture contents decrease the operating 

temperature of the gasification system by as much as 100oC for a 20% change in MC. 

Decreased operating temperatures alter the composition of the producer gas.   

Specifically, CO and H2 concentrations were lowered by 30-40 % when increasing 

moisture content from 9% to 29%.  Changes in the quantity of ash, tar, and water 

produced during gasification did not seem to show specific patterns with changes in 

biomass moisture content. 

As in all gasification systems, waste heat is always a concern. It was also briefly 

shown in this situation that gasification of moist switchgrass can be performed with the 

same output levels of H2, CO and CH4 if the loss of temperature due to the water 

evaporation is compensated for with an external source of heat input, as was 

accomplished by heating the incoming air.  

Other biomass (bermudagrass and corn gluten) were gasified at the most adequate 

moisture content obtained from the conclusion of the first series of air gasification 

experiments and at various equivalence ratios. All gasification experiments were run at 

steady state and at the same constant airflow rate to maintain the same fluidization of the 

bed. 
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4 GASIFICATION AT LOW MOISTURE CONTENT 

During these series of experiments with low moisture content (approximately 10%) 

biomass, the tar sampling system used was the one described in chapter two. The solvent 

was acetone because it provided better results than isopropyl alcohol particularly at low 

equivalence ratio (ER). 

Some of the acetone-washed particulate matter was sent to Hazen Research 

Laboratories, along with three types of biomass for proximate and ultimate analyses. 

Results are shown in red in Table 4.1. 

The pilot plant is programmed to start automatically at night on a ramped-up 

temperature set point to allow a slow warm up and preserve the gasifier refractory from 

thermal shock. The start up procedure is described in Appendix 8.2. The program is 

described in Chapter 2. All experiments are done with the process at steady state.  

All biomass were allowed to dry down to a moisture content of 9 to 10% wb. The 

two grasses (switchgrass and bermudagrass) were chopped with a tub grinder with a ½-

in. screen. The majority of the particles were approximately ¾ in. in length. 
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4.1 BIOMASS PROPERTIES 

 

Biomass properties in Table 4.1 are based on ultimate and proximate analysis (italics). 

Properties Switchgrass Bermudagrass Corn Gluten 
Atomic %wt db Total biomass PM Total biomass PM Total biomass PM 

C 49.67 50.08 45.67 44.13 47.50 47.57 
H 5.27 0.68 4.76 0.64 5.49 0.68 
O 40.31 1.97 34.77 2.15 37.28 2.21 
N 0.57 1.00 1.83 1.42 3.88 3.09 
S 0.07 0.15 0.33 0.65 0.40 0.20 

Ash 4.11 46.12 12.64 51.01 5.45 46.25 

HHV (Btu/lb) 8056 7346 7459 6509 8432 7135 
MAF Btu/lb 8401 13635 8537 13287 8918 13274 
LHV (Btu/lb) 7353 6991 6765 6218 7627 6858 

# of atom of C 6 6 6 6 6 6 
# of atom of H 7.64 0.98 7.50 1.04 8.32 1.03 
# of atom of O 3.65 0.18 3.43 0.22 3.53 0.21 
# of atom of N 0.06 0.10 0.21 0.17 0.42 0.33 

C6HxOy g/mol 138.07 75.81 134.32 76.55 136.83 76.37 
CHO %wt db 95.25 52.73 85.20 46.92 90.27 50.46 

SR 1.34 1.37 1.25 1.21 1.33 1.30 

# of atom of C 1 1 1 1 1 1 
# of atom of H 1.27 0.16 1.25 0.17 1.39 0.17 
# of atom of O 0.61 0.03 0.57 0.04 0.59 0.03 
# of atom of N 0.01 0.02 0.03 0.03 0.07 0.06 

CHxOy g/mol 23.01 12.63 22.39 12.76 22.81 12.73 
CHO %wt wb 86.93 50.18 77.28 44.82 81.65 48.51 

Hf kJ/mol CHxOy -126.23 -16.46 -128.14 -24.44 -119.12 -25.39 
Hf kJ/kg CHxOy -5485.4 -1302.6 -5724.1 -1915.8 -5223.6 -1994.3 

%wt wb Switchgrass Ash S Bermudagrass Ash B Corn Gluten Ash CG 
H2O 8.73 4.84 9.30 4.47 9.55 3.87 

C 45.33 47.66 41.42 42.16 42.96 45.73 
H 4.81 0.65 4.32 0.61 4.97 0.65 
O 36.79 1.87 31.54 2.05 33.72 2.12 
N 0.52 0.95 1.66 1.36 3.51 2.97 
S 0.06 0.14 0.30 0.62 0.36 0.19 

Ash 3.75 43.89 11.46 48.73 4.93 44.46 
Table 4.1  Biomass characteristics; proximate and ultimate analysis, stoichiometric ratio, 
molecular formula and enthalpy of formation at 298K 
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4.2 AIR GASIFICATION RESULTS  

4.2.1 Temperature profiles 

Air gasification temperature plays an important role as it improves carbon 

conversion to the gas when it increases, hence the importance of the thermal insulation of 

the gasifier. Air gasification experiments are done at or slightly above minimum 

fluidization with an ambient air flow rate inlet of 17 to 20m3/h.  

Literature states (Reed, 1981) that the reactor bed temperature for air gasification 

depends directly on the ER. A well-defined range for air gasification is between 0.2 to 0.4 

ER.  

Temperature profiles in Figures 4.1, 4.2 and 4.3 represent the air gasification of  

switchgrass, bermudagrass and corn gluten, respectively, at 9% moisture content in the 

fluidized bed gasifier (FBG) pilot plant. The data confirms that in the case of air 

gasification temperature is clearly a function of ER. As ER values decrease so does the 

bed temperature. This reduction in temperature is the consequence of an increasing lack 

of oxygen. The reduction of the number of exothermic oxidations such as the formation 

of CO2 gives way to an increase in endothermic reactions. Although the amount of 

oxidations of C to CO increases, it only releases 1/3 of the heat of the second oxidation 

from CO to CO2. 

The average temperature difference between the bed and the fluidized bed gasifier 

outlet is around 150°C for switchgrass, bermudagrass and corn gluten. The large 

variation of the outlet temperature data is considered to be more of a measurement 

problem. The average difference decreases with ER mostly due to a decrease in residence 

time in the reactor. 
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The bed temperature influences the residence time. As it decreases, the volumetric 

flow rate in the constant cross section of the gasifier decreases as well. But the amount of 

gas produced has more influence on this variation in stream velocity  than the decrease in 

temperature. Because the inlet air flow rate is maintained constant for all ERs, the amount 

of biomass fed to the fluidized bed gasifier is increased to lower the ER value. This 

increase in feed rate increases the amount of gas produced and influences greatly the 

residence time of the gas in the reactor. 

While running using the same conditions all biomass materials do not gasify at the 

same temperature for the same ER. Corn gluten gasifies at 725°C for an ER=0.25, 

bermudagrass and switchgrass reach higher temperatures 750°C and 775°C, respectively. 

All temperatures are maintained at or below the 800°C to avoid bed agglomeration 

particularly in the case of corn gluten and bermudagrass where high ash content make 

them prone to agglomeration. These ashes contain alkali compounds consisting of K, Na, 

Mg, and Ca, which have melting points that are slightly above 800°C.  

Analysis using ion chromatography (IC) revealed that the proportions of K+, Na+, 

Mg+ and Ca+ are the same covering the sand particles that agglomerated after a corn 

gluten run compared to the corn gluten material itself. 
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Figure 4.1  Air gasification of switchgrass temperature profile 
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Figure 4.2  Air gasification of bermudagrass temperature profile 
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Figure 4.3  Air gasification of corn gluten temperature profile 
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4.2.2 Gas compositions 

Gas compositions during air gasification displayed in Figures 4.4, 4.5 and 4.6 show 

only the four major gases: H2, CO, CO2, CH4. For switchgrass, bermudagrass and corn 

gluten, all gas concentrations are increasing with a decrease in ER inducing a drop in 

temperature as endothermic reactions are taking over to form these higher concentrations. 

Although it is not shown, the concentration of nitrogen decreases with ER as the 

proportion of air supplied is decreased with lower ER values. 

In the ER range experimented, switchgrass produces CO level between 15 and 

20%, slightly higher than bermudagrass and corn gluten which have CO levels between 

12 to 15%.  

Bermudagrass gasification shows slightly higher H2 levels 5 to 7%, compared to 

corn gluten and switchgrass gasification at 5%.  

These concentrations were measured by GC analysis after the gas cooled to 

ambient temperature. It must be noted that these values are not representative of the 

levels at the bed or outlet temperature of the of the pilot plant. This point will be further 

discussed in the equilibrium modeling in Chapter 5. 
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Figure 4.4  Dry gas molar composition from air gasification of switchgrass 
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Figure 4.5  Dry gas molar composition from air gasification of bermudagrass 
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Figure 4.6  Dry gas molar composition from air gasification of corn gluten 
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4.2.3 Water 

In all three biomass cases shown in Figures 4.7, 4.8 and 4.9, water production 

increases rapidly in the ER range from 0.35 to 0.2. Switchgrass, bermudagrass and corn 

gluten do not produce equal amounts. Corn gluten produces from 150 to 450 g/Nm3, 

whereas the water for switchgrass is measured between 130 and 380 g/Nm3. 

Bermudagrass generates the less water with values between 100 and 250 g/Nm3 in the 

same ER range. Water concentrations shown reflect the hydrogen levels before the gas is 

cooled which shifts the equilibrium towards water production.  

An exponential trend line could be a good match for these data. This choice of 

function implies a water concentration close to zero for ER = 1, which could be 

satisfactory, since hydrogen production reduces with increasing ER, inducing a decrease 

in water shift. However, a polynomial is a better choice, because it is important to 

consider that at ER = 1, or stoichiometric combustion, the water produced should be at its 

highest level. It is then possible that the last data points at the highest ER, showing what 

seems to be minimums on all three graphs, Figures 4.7, 4.8 and 4.9, are not data 

dispersions due to measurement error, but higher values of water content suggesting an 

increasing amount of combustion versus gasification reactions between the minimum at 

its respective ER and when ER = 1. These multiple hydrogen pathways to water in the 

gas stream, explains the presence of a minimum in the range of ER 0.25 to 0.3, which 

also correspond to the best air gasification range (Reed, 1981). The polynomial equations 

shown in Figure 4.7 and 4.9 for switchgrass and corn gluten account for 68 to 80 %, 

respectively of the variation in the observations. However, the polynomial equations for 

bermudagrass Figure 4.8 accounts for only 44% of the variation in the observations. 
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Figure 4.7  Water concentration in gas from air gasification of switchgrass 
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Figure 4.8  Water concentration in gas from air gasification of bermudagrass 
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Figure 4.9  Water concentration in gas from air gasification of corn gluten 
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4.2.4 Tar  

Figures 4.10-12 show both the results of the gravimetric and GC-MS tar analysis. 

The latter procedure is more precise because the gravimetric method looses some of the 

lighter compounds in the solvent evaporation step process. On the other hand, the GC-

MS method may be a challenge for heavier polycyclic aromatic hydrocarbon (PAH) 

compounds as polycyclic molecules of 4 cycles and above, face challenges to enter the 

capillary column of the GC-MS and remain in the injection port. Both methods are highly 

dependent on the precision of the sampling step. 

In air gasification of switchgrass and bermudagrass, tar levels increase 

exponentially from 10 to 20 g/Nm3 at  ER = 0.35 and up to 50 to 60 g/Nm3with ER = 

0.15 for switchgrass and 0.17 for bermudagrass. 

The gravimetric data for corn gluten are the result of an oven drying method of the 

sample before the tar guidelines recommended a rotary evaporator. However, this still 

does not explain why the GC-MS data show a decrease in tar amounts. It appears the data 

for higher ERs are higher than expected because the remainder of the GC-MS data for 

corn gluten seems to agree with the levels found in switchgrass and bermudagrass. One 

hypothesis is that the high ash content of the corn gluten could have affected the catalysis 

of tar. 

All six curves match an exponential type equation as seen in the literature (Corolla 

et al., 1989), resulting in tar approaching zero at combustion conditions ER=1. The 

equations for tar (GC-MS) shown in Figure 4.10 and 4.11 account for 80% to 90% of the 

variation in observations. However the equation for Tar (GC-MS) from gasification of 

corn gluten shown in Figure 4.12 does not explain the variation of the observations. The 
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exponential is not a proper match and more likely dispersion in the data measurement is 

too important. 
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Figure 4.10  Tar concentration in gas from air gasification of switchgrass 
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Figure 4.11  Tar concentration in gas from air gasification of bermudagrass 
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Figure 4.12  Tar concentration in gas from air gasification of corn gluten 
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Tar atomic compositions, shown in Figures 4.13, 4.14, and 4.15, and average 

molecular weight do not depend on the ER, nor do they depend on the temperature since 

ER and temperature are interrelated in air gasification.  

Tar average atomic composition is constant regardless of the conditions of air 

gasification (Table 4.2). 

 C H O N MW 
Switchgrass 7.785 8.060 0.390 0.054 108.640 

Bermudagrass 7.383 8.855 0.406 0.251 107.460 

Corn gluten 7.170 8.866 0.341 0.355 105.357 
 

Table 4.2  Tar average atomic composition and molecular weight in air gasification 
 

Another interesting aspect of the tar is, despite an average atomic weight 

relatively constant at all conditions of air gasification, the enthalpy of formation (Figures 

4.16, 4.17 and 4.18) varies according to a trend that is almost linear. Procedure for 

calculation of enthalpy of formation is in Appendix 8.5. The significance of this is 

although the atomic composition is not changing, the nature of the compound is changing 

towards compounds of lower free energy as the ER decreases. A similar trend is also 

found in bermudagrass and corn gluten but dispersion of the data due to technical 

difficulties during storage and analysis of the tar samples make the trends less apparent. 

The equation shown in Figure 4.16 accounts for 88% of the variation in the observations 

for switchgrass. 
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Figure 4.13  Switchgrass average tar atomic composition vs ER vs temperature in air 

gasification. 
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Figure 4.14  Bermudagrass average tar atomic composition vs ER vs temperature in air 

gasification. 
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Figure 4.15  Corn gluten average tar atomic composition vs ER vs temperature in air 

gasification. 
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Figure 4.16  Enthalpy of formation of tar at 298K for air gasification of switchgrass. 
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Figure 4.17  Enthalpy of formation of tar at 298K for air gasification of bermudagrass. 
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Figure 4.18  Enthalpy of formation of tar at 298K for air gasification of corn gluten 
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4.2.5 Carbon to gas efficiency 

As ER decreases in Figures 4.19, 4.20 and 4.21, so does the conversion of the 

carbon from the biomass to the gas. For all three biomass types, the conversion decreases 

from 80-90% for an ER of about 0.3 to 50% for ER values between 0.15 and 0.2. 

Switchgrass and bermudagrass conversion values are higher than corn gluten for 

the same ER values. As ER decreases, bermudagrass stays at 90% conversion, further in 

ERs than switchgrass. Bermudagrass conversion starts reducing at lower ER values than 

switchgrass. Bermudagrass conversions reduce rapidly to end at the same level than 

switchgrass for the same ER value. 

Excel is unable to calculate an appropriate curve fitting for the carbon C to gas 

efficiency itself, but does for both C to tar efficiency and C to particulate matter (PM) 

efficiency as exponential forms.  

Since the sum of the three efficiencies is 100%, the best curve fitting for C to gas 

efficiency is 100 minus the two exponential terms of the two other efficiencies: 

EffC to gas=100 - EffC to PM - EffC to tar (4.1) 

Although tar increases as ER decreases, unreacted carbon in the char remains the primary 

reason for the reduction in efficiency. 

The equations shown in Figure 4.19, 4.20 and 4.21 account for 56% and 86% of the 

variation in the observations in particulate matter and tar, respectively, for switchgrass to 

over 80 to 90% for bermudagrass and corn gluten. 
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Figure 4.19  Carbon to gas efficiency from air gasification of switchgrass 
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Figure 4.20  Carbon to gas efficiency from air gasification of bermudagrass 
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Figure 4.21  Carbon to gas efficiency from air gasification of corn gluten 
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4.2.6 Carbon to CO efficiency 

Figures 4.22, 4.23 and 4.24 show the carbon to CO efficiencies of the air 

gasification for all three biomasses. All three graphs seem to show a maximum efficiency 

around the ER 0.25 to 0.3. The presence of a maximum is logical since no carbon goes to 

CO at combustion conditions ER=1, and at low ER conditions the tar and char portion 

increase exponentially. This value of maximum efficiency is verified in the literature 

(Reed, 1981) and other fluidized bed gasifier results. 

The equations shown in Figure 4.22, 4.23 and 4.24 account for 45% of the variation in 

the observations for bermudagrass to approximately as 65% for switchgrass and corn 

gluten. 
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Figure 4.22  Carbon to CO efficiency from air gasification of switchgrass 
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Figure 4.23  Carbon to CO efficiency from air gasification of bermudagrass 
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Figure 4.24  Carbon to CO efficiency from air gasification of corn gluten 
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4.2.7 Enthalpy of the gas 

Figures 4.25, 4.26 and 4.27 show the enthalpy of the gas versus ER. The enthalpy 

of gas increases as ER decreases. This is due to the formation of methane a high heating 

value (HHV) gas and higher concentration of H2 and CO. 

Switchgrass and corn gluten show the most variation of heating value in the 

produced gas from 4000 to 6000 kJ/kg between ERs of 0.35 to 0.18. The HHV of the gas 

from bermudagrass increases and then stabilizes at a value close to 4000 kJ/kg as ER 

decreases in the same range as switchgrass. 

The equations shown in Figures 4.25, 4.26 and 4.27 have a wide range of data 

points, which does not provide a meaningful trendline. 

 

4.2.8 Enthalpy of reaction 

Figures 4.28, 4.29 and 4.30 show the standard enthalpies of the air gasification 

reaction versus ER in the fluidized bed gasifier pilot plant. As the enthalpy of reaction 

increases steadily for switchgrass with lowering ER, bermudagrass and corn gluten reach 

a maximum at different values of enthalpy and ER, -3000 kJ/kg of CHxOy fed to the 

reactor at ER = 0.15, -4000 kJ/kg at ER = 0.225 respectively. Switchgrass shows a higher 

enthalpy of reaction at -2500 kJ/kg of CHxOy for ER=0.18. It is expected that this value 

for switchgrass would have reached a maximum as well if the experiments were 

conducted at a lower ER. 

The equations shown in Figure 4.28, 4.29 and 4.30 account for only 40% of the variation 

in the observations for corn gluten to over 99% for switchgrass and bermudagrass. 
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Figure 4.25  Enthalpy of gas from air gasification of switchgrass 
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Figure 4.26  Enthalpy of gas from air gasification of bermudagrass 
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Figure 4.27  Enthalpy of gas from air gasification of corn gluten 
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Figure 4.28  Standard enthalpy of reaction from air gasification of switchgrass 
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Figure 4.29  Standard enthalpy of reaction from air gasification of bermudagrass 
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Figure 4.30  Standard enthalpy of reaction from air gasification of corn gluten 
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4.3 FLAMING PYROLYTIC GASIFICATION  

 

4.3.1 Temperature profiles 

In this experiment, the temperature of the reactor is maintained at 775°C. There are 

two reasons for this choice; 1) a limitation in heating element sheath maximum 

temperature of 850°C and 2) the likelihood for bermudagrass and corn gluten to 

agglomerate the bed at temperatures above 800°C. 

Figures 4.31, 4.32 and 4.33 show steady temperatures, except in the case of pure 

pyrolysis of bermudagrass while using two heaters because one failed, when the system 

was limited in power to sustain the desired temperature of 775°C. 
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Figure 4.31  Flaming pyrolytic gasification of switchgrass temperature profile 
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Figure 4.32  Flaming pyrolytic gasification of bermudagrass temperature profile 
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Figure 4.33  Flaming pyrolytic gasification of corn gluten temperature profile 
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4.3.2 Gas composition 

Figures 4.34, 4.35 and 4.36 show the dry gas compositions for flaming pyrolytic 

gasification. Percentages of combustible gases of greatest interest, CO and H2, are 

increasing exponentially for switchgrass and bermudagrass between the values of ER 

where air gasification experiments ended, about 0.2, down to 0.0 for pure pyrolysis. 

Within this ER range, CO increases from 20 to 40% for switchgrass and from 15 to 30% 

for bermudagrass. H2 increases from 5 to 22% for switchgrass and from 5 to 26% for 

bermudagrass. CH4 increase from 5 to 14% for switchgrass and bermudagrass. On the 

other hand CO2 remains stable for switchgrass, and has a slight increase of 3% for 

bermudagrass. 

In the case of corn gluten, CO2 actually decreases 6% while CO, H2, and CH4 

remain relatively constant. Experimentation of corn gluten towards pyrolysis could not 

verify increases in those gas concentrations at lower ERs, because of repetitive bed 

agglomeration at these conditions limited the study. Further experimentation could be of 

interest, if the bed agglomeration can be avoided while maintaining a temperature 

adequate for high gas conversion and low tar production. 
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Figure 4.34  Dry gas molar composition from flaming pyrolytic gasification of switchgrass 
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Figure 4.35  Dry gas molar composition from flaming pyrolytic gasification of bermudagrass 
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Figure 4.36  Dry gas molar composition from flaming pyrolytic gasification of corn gluten 
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4.3.3 Water 

The water measured comes primarily from the conversion of the H2 to water as the 

equilibrium changes during cool down. Figures 4.37, 4.38, and 4.39 show a large increase 

in water production for switchgrass and bermudagrass, in the order of 250 g/Nm3 and 600 

g/Nm3 respectively, with a small decrease for corn gluten. These values are in the same 

order as air gasification. After cool down, the levels of H2 stabilized at higher H2 gas 

compositions than the ones in air gasification. 

Because of limited data for bermudagrass and corn gluten, it is difficult to assess if 

these opposite variations are reflecting the trend of flaming pyrolytic gasification of these 

materials or if analytical measurement are at fault. 

Technical difficulties during the storage and analysis of samples were common, 

resulting in significant variability, making it difficult to identify trends. 

The equations shown in Figures 4.37, 4.38 and 4.39 account for 75% of the 

variation in the observations for switchgrass. 
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Figure 4.37  Water concentration in gas from flaming pyrolytic gasification of switchgrass 
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Figure 4.38  Water concentration in gas from flaming pyrolytic gasification of bermudagrass 
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Figure 4.39  Water concentration in gas from flaming pyrolytic gasification of corn gluten 
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4.3.4 Tar  

Similar to the previous process discussion, Figures 4.40, 4.41 and 4.42 show both 

the results of the gravimetric and GC-MS tar analysis.  

In flaming pyrolytic gasification and pyrolysis with ER=0.2 to 0, switchgrass and 

bermudagrass reach tar levels between 25 to 110 g/Nm3. Tar levels increase 

exponentially from 25 g/Nm3 at ER = 0.2 up to 110 g/Nm3 at ER = 0. 

As for the previous process, the gravimetric data for corn gluten are the result of an 

oven drying method before the tar guidelines recommended a rotary evaporator. This 

explains why the gravimetric tar is so much higher than the GC-MS data. 

In flaming pyrolytic gasification and pyrolysis, the corn gluten tar GC-MS data 

show a slight reduction in tar, not an exponential increase as expected. This confirms the 

hypotheses shown previously in air gasification, that corn gluten, unlike switchgrass and 

bermudagrass, has a reduction of tar as ER decreases when temperature is maintained 

around 775°C.  

In flaming pyrolytic gasification and pyrolysis, all six curves match an 

exponential-type equation, resulting in tar approaching zero at combustion conditions 

ER=1 and increases as ER decreases.  

The equations for tar (GC-MS) shown in Figures 4.40, 4.41 and 4.42 account for 

over 83% of the variation in observations. 
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Figure 4.40  Tar concentration from flaming pyrolytic gasification of switchgrass 
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Figure 4.41  Tar concentration from flaming pyrolytic gasification of bermudagrass 
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Figure 4.42  Tar concentration from flaming pyrolytic gasification of corn gluten 
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Flaming pyrolytic gasification tar atomic composition (Figures 4.43, 4.44 and 

4.45) and average molecular weight do not depend on ER, but seem to depend on the 

temperatures. Although the effort is to keep bed temperature at 775°C, as temperature 

decreases near pyrolysis by lack of electrical heating power (one element malfunctioned) 

there is a slight change in tar atomic composition.  

Tar average atomic composition shows little change for switchgrass, 

bermudagrass and corn gluten in flaming and pure pyrolytic gasification. Average results 

are in Table 4.3.  

 C H O N MW 

Switchgrass 7.818 7.903 0.279 0.043 106.773 

Bermudagrass 7.662 8.955 0.332 0.219 109.279 

Corn gluten 7.705 9.088 0.264 0.379 111.296 

 
Table 4.3  Tar average atomic composition and molecular weight in flaming pyrolytic 

gasification and pyrolysis 
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Figure 4.43  Switchgrass average tar atomic composition vs ER vs temperature in flaming 

pyrolytic gasification and pyrolysis. 
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Figure 4.44  Bermudagrass average tar atomic composition vs ER vs temperature in 

flaming pyrolytic gasification and pyrolysis. 
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Figure 4.45  Corn gluten average tar atomic composition vs ER vs temperature in flaming 

pyrolytic gasification and pyrolysis. 
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Another interesting aspect of the tar is that despite an average atomic weight 

relatively constant at all conditions of flaming pyrolytic gasification and pyrolysis, the 

enthalpy of formation of switchgrass (Figure 4.46) does not vary since the process 

temperature is maintained relatively constant. This confirms that tar is mainly a function 

of the temperature. 

On the other hand, since temperature was not perfectly maintained to the same 

value for bermudagrass and corn gluten, a linear variation of the enthalpy of formation 

can be observed as in air gasification. Dispersion of the data due to technical difficulties 

during storage and analysis of the tar samples significantly altered the accuracy of the 

result trends. The equations shown in Figure 4.46 account for 40% of the variation in 

observations. The equations shown in Figures 4.47 and 4.48 have only very few data 

points, which is insufficient for a meaningful trendline. 
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Figure 4.46  Enthalpy of formation of tar at 298K for flaming pyrolytic gasification of 
switchgrass. 
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Figure 4.47  Enthalpy of formation of tar at 298K for flaming pyrolytic gasification of 
bermudagrass. 
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Figure 4.48  Enthalpy of formation of tar at 298K for flaming pyrolytic gasification of corn 
gluten 
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4.3.5 Carbon to gas efficiency 

As ER decreases in Figures 4.49, 4.50 and 4.51, so does the conversion of the 

carbon from the biomass to the gas. For all three biomass types, the conversion decreases 

from 80% for ER around 0.3 down to 50% for pyrolysis of switchgrass, 30% for 

pyrolysis of bermudagrass. 

When air gasification was converting around 50% to 60% of the carbon to the gas 

at an ER of 0.2, flaming pyrolitic gasification at the same ER is able to achieve 70% to 

80% of conversion with corn gluten being the lowest and switchgrass the highest of these 

values. This confirms the importance of maintaining reactor temperature as high as 

possible, and how a small decrease of the temperature of 50°C from 775°C for FPG to 

725°C for air gasification can disrupt the carbon conversion process. 

Switchgrass and bermudagrass conversion values are higher than corn gluten for 

the same ER values. Bermudagrass stays closer to 80% conversion more than switchgrass 

as ER starts to lower, before reducing rapidly to a lower level of conversion than 

switchgrass at pyrolysis. But optimum temperature is not sustained for this particular ER 

for bermudagrass which explains the loss of conversion at pyrolysis. 

As for air gasification, Excel is unable to calculate an appropriate curve fitting for 

the efficiency data, but it is able to do so for both sets per material.  

Since the sum of the three efficiencies is 100%, the best curve fitting for the hard 

to fit efficiency is 100 minus the two other trend lines efficiency terms. For the cases of 

switchgrass and corn gluten: 

EffC to PM =100 - EffC to gas - EffC to tar 
(4.2) 
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For bermudagrass: 

EffC to gas = 100 - EffC to PM - EffC to tar 
(4.3) 

Although tar increases as ER decreases, unreacted carbon in the char remains the 

main reason for loss of efficiency. 

The equations shown in Figure 4.49 account for 67% of the variation in 

observations for carbon to tar and 72% for carbon to gas. For bermudagrass, (Figure 

4.50), the equations offered account for 99% of the variation in carbon to tar and 80% for 

the carbon to gas. The equations shown in Figure 4.51 have only very few data points, 

which is insufficient for a meaningful trendline. 
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Figure 4.49  Carbon to gas efficiency from flaming pyrolytic gasification of switchgrass 
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Figure 4.50  Carbon to gas efficiency from flaming pyrolytic gasification of bermudagrass 
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Figure 4.51  Carbon to gas efficiency from flaming pyrolytic gasification of corn gluten 
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4.3.6 Carbon to CO efficiency 

Figures 4.52, 4.53 and 4.54 show the carbon to CO efficiencies of the flaming 

pyrolytic gasification for all three biomasses. At ER = 0.2, compared to air gasification, 

FPG reaches conversion 10% higher for all three biomasses tested. 

Considering the difficulty of sustaining temperature all the way down to ER=0 for 

pyrolysis all three graphs show a slowly decreasing efficiency from 35 to 25% between 

the ER values 0.2 and 0. 

It is important to note that despite a lower carbon to gas conversion than air 

gasification, FPG achieved levels of carbon to CO conversion equal and sometimes 

greater than air gasification with no inert gas in the gas stream.  

The equation shown in Figure 4.52 account for 61% of the variation in observations 

for carbon to CO for switchgrass. For bermudagrass, (Figure 4.53), the equation offered 

account for 82% of the variation in carbon to CO. The equation shown in Figure 4.54 

have only very few data points, which is insufficient for a meaningful trendline. 
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Figure 4.52  Carbon to CO efficiency from flaming pyrolytic gasification of switchgrass 
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Figure 4.53  Carbon to CO efficiency from flaming pyrolytic gasification of bermudagrass 
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Figure 4.54  Carbon to CO efficiency from flaming pyrolytic gasification of corn gluten 
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4.3.7 Enthalpy of the gas 

Figures 4.55, 4.56 and 4.57 show the enthalpy of the gas versus ER. The enthalpy 

of the gas increases as ER decreases from 0.2 to 0.15 with little variation in conversion, 

then past 0.15 to pyrolysis the variation in enthalpy increases greatly up to values around 

16000 kJ/mol for switchgrass and bermudagrass. This is due to a large increase in  the 

formation of methane a HHV gas H2 and CO. 

All three biomass types seem to show the same variation of heating value in the 

produced gas from 6000 to 8000 kj/kg between ER values of 0.2 to 0.15 and up to 16000 

kJ/mol at ER = 0.  

The equations shown in Figures 4.55 and 4.56 account for 98% and 99% of the 

variation in observations for carbon to CO for switchgrass and bermudagrass. The 

equation shown in Figure 4.57 have only very few data points, which is insufficient for a 

meaningful trendline. 
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Figure 4.55  Enthalpy of gas from flaming pyrolytic gasification of switchgrass 
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Figure 4.56  Enthalpy of gas from flaming pyrolytic gasification of bermudagrass 
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Figure 4.57  Enthalpy of gas from flaming pyrolytic gasification of corn gluten 
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4.3.8 Enthalpy of reaction 

Figures 4.58, 4.59 and 4.60 show the standard enthalpies of the gasification 

reaction versus ER in the fluidized bed gasifier. As it increases steadily for switchgrass 

with lowering ER, bermudagrass and corn gluten come to a maximum of 0 kJ/kg of 

CHxOy fed to the reactor at ER = 0 in pyrolysis conditions. Though each biomass having 

different enthalpy values at ER=0.2, switchgrass: -2500 kJ/kg, bermudagrass: -4000 

kJ/kg and corn gluten: -4500 kJ/kg of CHxOy. Corn gluten curve does not show any data 

at ER = 0. However it is expected from the trend that the enthalpy of reaction for corn 

gluten would have stabilized around 0 kJ/kg of CHxOy as well, if experiments were to 

have been conducted for pyrolysis.  

The equations shown in Figures 4.58 and 4.59 account for 95% of the variation in 

observations for switchgrass and for 84% for bermudagrass. The equation shown in 

Figure 4.60 have only very few data points, which is insufficient for a meaningful 

trendline. 
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Figure 4.58  Enthalpy of reaction from flaming pyrolytic gasification of switchgrass 
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Figure 4.59  Enthalpy of reaction from flaming pyrolytic gasification of bermudagrass 
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Figure 4.60  Enthalpy of reaction from flaming pyrolytic gasification of corn gluten 



 

 110 

4.4 STEAM GASIFICATION  

Steam gasification is tested with varying steam-to-carbon ratios at different 

temperatures for each biomass material. Results show the concentrations in CO and H2, 

carbon conversion to the gas, and the tar production for each material. These experiments 

show differences between the steam gasification conditions of the different materials. 

 

4.4.1 Temperature profile 

In this experiment, the temperature of the reactor is set at 775°C. The reasons 

motivating this choice are the same limitations as those for flaming pyrolytic gasification, 

i.e. the heating element sheath maximum temperature of 850°C and the likelihood for 

bermudagrass and corn gluten to agglomerate the bed at about 800°C. 

Figures 4.61, 4.62 and 4.63 show steady temperatures, except in the case of low 

steam to biomass ratio S/B of bermudagrass and corn gluten; running on two heaters 

limited to sustainable temperature to 775°C. 
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Figure 4.61  Steam gasification of switchgrass temperature profile 
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Figure 4.62  Steam gasification of bermudagrass temperature profile 
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Figure 4.63  Steam gasification of corn gluten temperature profile 
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4.4.2 Gas composition 

Figures 4.64, 4.65 and 4.66 show the dry gas compositions for steam gasification.  

Percentage of combustible gas of greatest interest, CO, is increasing for switchgrass from 

30% up to 40% between the S/B ratios from 1.1 down to 0.5. Bermudagrass, on the other 

hand, shows lower or equal values of CO and H2 with almost constant values through the 

same range of S/B ratios. Despite a much lower reactor bed temperature than the 

switchgrass runs, corn gluten shows similar concentrations of CO but with lower values 

in H2. In the same range of S/B, H2 decreases from 35% down to 23% for switchgrass 

and from 28% down to 15% for corn gluten.  

On the other hand, CH4 remains stable at about 10% for switchgrass, 

bermudagrass and corn gluten at all S/B values. CO2 stays constant for bermudagrass but 

decreases with H2 for switchgrass and corn gluten. These variations in concentration of 

gases from switchgrass and corn gluten correspond to the variation in reactor bed 

temperature discussed in the previous paragraph. It is quite noticeable that although corn 

gluten was a bad candidate for air and flame pyrolytic gasification because of 

temperature limitations due to an agglomeration potential inducing lower concentrations 

in gases of greatest interest, it is a potential good candidate from steam gasification with 

compositions matching those of the switchgrass. 



 

 113 

 

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
S/B

C
on

ce
nt

ra
tio

n,
 %

m
ol

H2

CO
CH4

CO2

 
Figure 4.64  Dry gas molar composition from steam gasification of switchgrass 
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Figure 4.65  Dry gas molar composition from steam gasification of bermudagrass 
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Figure 4.66  Dry gas molar composition from steam gasification of corn gluten 
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4.4.3 Water 

In steam gasification, the level of water as shown in Figures 4.67, 4.68 and 4.69 

are, as expected, well above those measured in the two previous processes. Little of this 

water measured comes from the conversion of the H2 to water, as the equilibrium is less 

likely to shift towards water production during cool down because of the excess of water 

that is already present in the gas. 

Figures 4.67, 4.68 and 4.69, show a large decrease in water production for 

switchgrass from S/B 1.1 to 0.4, for bermudagrass from S/B 1.3 to 0.6 and for corn gluten 

from S/B 1.2 to 0.4, in the order of 600 g/Nm3, 1500g/Nm3, and 600 g/Nm3, respectively. 

Switchgrass, bermudagrass and corn gluten follow a polynomial trend that reaches 

a minimum of 900 g/Nm3 in the case of switchgrass and corn gluten and 2250 g/Nm3 for 

bermudagrass at S/B = 0.5. 

The polynomial equations shown in Figures 4.67, 4.68 and 4.69 account for 82 to 

99.9 % of the variation in the observations. 
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Figure 4.67  Water concentration in gas from steam gasification of switchgrass 
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Figure 4.68  Water concentration in gas from steam gasification of bermudagrass 
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Figure 4.69  Water concentration in gas from steam gasification of switchgrass 
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4.4.4 Tar  

Similar to the previous process, Figures 4.70, 4.71 and 4.72 show the results of 

both the gravimetric and GC-MS tar analyses for steam gasification runs. In steam 

gasification, switchgrass reaches GC-MS tar levels between 80 to 125 g/Nm3, 

bermudagrass between 50 to 100 g/Nm3, and corn gluten between 25 to 100 g/Nm3. Tar 

levels follow exponential trends for switchgrass and corn gluten. The same trend would 

have been expected from bermudagrass but it has a minimum of 50 g/Nm3 at S/B = 0.9 

primarily due to measurement error than a representative aspect of tar production because 

of the dispersion of the data. 

As for the previous processes, the gravimetric data for corn gluten are the result of 

an oven drying method of the sample, prior to the suggested tar guidelines identified 

which recommended a rotary evaporator. This explains why the gravimetric tar is 

sometimes so much higher than the GC-MS data. Despite the changes in reactor bed 

temperatures experienced for switchgrass and corn gluten as S/B decreases, tar is also the 

lowest in this range of S/B ratios for both switchgrass and corn gluten since the 

extrapolation of the exponential trend of corn gluten tar decreased approaching this value. 

The equations for Tar (GC-MS) shown in Figures 4.70 and 4.72 account for 76% to 

92% of the variation in observations for switchgrass and corn gluten, respectively. 
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Figure 4.70  Tar concentration in gas from steam gasification of switchgrass 
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Figure 4.71  Tar concentration in gas from steam gasification of bermudagrass 
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Figure 4.72  Tar concentration in gas from steam gasification of corn gluten 
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Flaming pyrolytic gasification, tar atomic composition (Figures 4.73, 4.74 and 

4.75) and average molecular weight do not depend on ER, but seem to depend on 

temperature. Although the effort is to keep bed temperature at 775°C, as temperature 

decreases near pyrolysis by lack of electrical heating power (one element malfunctioned) 

there is a slight change in tar atomic composition. 

Tar average atomic composition shows little change for switchgrass, 

bermudagrass and corn gluten in steam gasification. Average results are in Table 4.4. 

 C H O N MW 
Switchgrass 7.698 8.081 0.482 0.013 108.346 

Bermudagrass 7.480 9.007 0.521 0.259 110.729 

Corn gluten 7.272 8.795 0.299 0.263 104.524 
 

Table 4.4  Tar average atomic composition and molecular weight in steam gasification 
 

Another interesting aspect of the tar is, despite an average atomic weight 

relatively constant at all conditions of steam gasification, the enthalpy of formation of 

switchgrass and bermudagrass Figures 4.76 and 4.77 do not vary much since the process 

temperature is maintained relatively constant. This confirms that tar is primarily a 

function of the temperature. 

On the other end, since temperature was not perfectly maintained to the same 

value for corn gluten, it is more difficult to observe a linear variation of the enthalpy of 

formation. Dispersion of the data due to technical difficulties during storage and analysis 

of the tar samples significantly altered the accuracy of the result trends. 

The equations shown in Figures 4.76, 4.77 and 4.78 account for 60% to 80% of 

the variation in observations for all three biomasses.  
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Figure 4.73  Switchgrass average tar atomic composition vs ER vs temperature in steam 

gasification 
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Figure 4.74  Bermudagrass average tar atomic composition vs ER vs temperature in steam 

gasification 
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Figure 4.75  Corn gluten average tar atomic composition vs ER vs temperature in steam 

gasification 
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Figure 4.76  Enthalpy of formation of tar at 298K for steam gasification of switchgrass. 
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Figure 4.77  Enthalpy of formation of tar at 298K for steam gasification of bermudagrass. 
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Figure 4.78  Enthalpy of formation of tar at 298K for steam gasification of corn gluten. 
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4.4.5 Carbon to gas efficiency 

As S/B ratio decreases in Figures 4.79, 4.80 and 4.81, so does the conversion of the 

carbon from the biomass to the gas. The variation of C to gas conversion is very different 

for the three biomasses experimented. These differences are not only the consequence of 

the biomass type, but are primarily the result of the difference in reactor bed temperature 

achieved during the experiments. 

For switchgrass, the conversion stays in the 50 to 60% range with a maximum at 

S/B of 0.8. For bermudagrass the conversion remains between 30 and 40% with a 

maximum at about 0.85 S/B.  The temperature for that material was 75°C to 100°C lower 

than the one for switchgrass, which can explain this important change in C conversion. 

This confirms the importance of sustaining reactor bed temperature as high as possible, 

and how a small decrease of the temperature from 775°C to 700°C can disrupt the carbon 

conversion process. 

Although corn gluten is experimented with a lower temperature than switchgrass 

but comparable to the one of bermudagrass, the conversion obtained does not reach a 

maximum like switchgrass and bermudagrass. The conversion for corn gluten is higher 

than the one of switchgrass with values of 75% at S/B of 1.1 dropping to 55% at S/B of 

0.5. 

In this process, tar levels depend on the biomass in a way that is opposite to how 

temperature usually influences the production of tar. Although switchgrass had the 

highest bed temperature, it produces the highest tar levels; 12 to 16% tar as S/B decreases 

from 1.1 to 0.5. Bermudagrass stays around 5% tar across the range of values of S/B and 

corn gluten climb from 5% to 10% tar in that same range. More experiments are 
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necessary to confirm this result. At this point, corn gluten which has such better results 

than the other processes is a great candidate for steam gasification. Unreacted carbon in 

the char still remains the main reason for loss of efficiency. 

As shown in Figure 4.79, the polynomial equations account for nearly 100% of the 

variation in carbon to gas and 88% of the carbon to particulate matter. In Figure 4.81, the 

equations account for 88% of the vatiation in carbon to gas and 92% of the carbon to 

particulate matter. 
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Figure 4.79  Carbon to gas efficiency from steam gasification of switchgrass 
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Figure 4.80  Carbon to gas efficiency from steam gasification of bermudagrass 
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Figure 4.81  Carbon to gas efficiency from steam gasification of corn gluten 
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4.4.6 Carbon to CO efficiency 

Figures 4.82, 4.83 and 4.84 show the carbon to CO efficiencies of the steam 

gasification for all three biomass materials. Compared to air and flaming pyrolytic 

gasification at the optimum range of 25 to 30% conversion to CO, steam gasification 

reaches conversion efficiencies slightly lower for switchgrass and bermudagrass around 

25%, but shows a higher conversion for corn gluten at 34% of the carbon input. This last 

result is very interesting considering the temperature was at 700°C during these runs and 

not at 775°C as originally planned. Further experimentation could determine if the high 

ash content or particular nature of the ashes of corn gluten is responsible for this high 

conversion level. 

It is important to note that, despite a lower carbon to gas conversion than air 

gasification, steam gasification, as does flaming pyrolytic gasification, achieves a level of 

carbon to CO conversion equal and sometimes greater than air gasification, and without 

inert gases present in the gas stream, which is a great advantage for gas fermentation 

downstream. 

The equations shown in Figures 4.82 and 4.84 account for 95% and 87% of the 

variation in observations for switchgrass and corn gluten, respectively. The equation 

shown in Figure 4.83 for bermudagrass has a wide range of data points, which does not 

provide a meaningful trendline. 
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Figure 4.82  Carbon to CO efficiency from steam gasification of switchgrass 
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Figure 4.83  Carbon to CO efficiency from steam gasification of bermudagrass 
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Figure 4.84  Carbon to CO efficiency from steam gasification of corn gluten 
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4.4.7 Enthalpy of the gas 

Figures 4.85, 4.86 and 4.87 show the enthalpy of the gas versus S/B. The enthalpy 

of the gas increases remain in the range of 15,000 to 16,000 kJ/kg for switchgrass with a 

maximum at 0.85 S/B. Bermudagrass gas enthalpy values are slightly lower than 

switchgrass values (considering a lower reactor bed temperature for bermudagrass) with 

an increasing trend from 12,000 to 15,000 kJ/kg as S/B ratios decreases. Corn gluten 

produces the highest enthalpy of the three gases produced at 18,000 kJ/kg decreasing 

slightly towards 16,000 kJ/kg as S/B decreases to 0.5 with a bed temperature at 700°C. 

The equations shown in Figures 4.85 and 4.87 account for 99.8% and 57% of the 

variation in observations for switchgrass and corn gluten, respectively. The equation 

shown in Figure 4.86 for bermudagrass has a wide range of data points, which does not 

provide a meaningful trendline. 
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Figure 4.85  Enthalpy of gas from steam gasification of switchgrass 
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Figure 4.86  Enthalpy of gas from steam gasification of bermudagrass 
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Figure 4.87  Enthalpy of gas from steam gasification of corn gluten 
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4.4.8 Enthalpy of reaction 

Figures 4.88, 4.89 and 4.90 show the standard enthalpies of the steam gasification 

reaction versus S/B ratios in the fluidized bed gasifier. The enthalpies of reactions have, 

for most cases, positive values indicating the endothermic nature of the process. 

Switchgrass values are between 500 to 1000 kJ/kg of CHxOy fed to the reactor, while 

bermudagrass is lower, around 0 kJ/kg and corn gluten decreases from 1500 to 1000 

kJ/kg with lowering S/B ratios. 

The equations shown in Figures 4.88 and 4.90 account for 94% and 78% of the 

variation in observations for switchgrass and corn gluten, respectively. The equation 

shown in Figure 4.89 accounts for 56% of the variation in observations for bermudagrass. 
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Figure 4.88  Enthalpy of reaction from steam gasification of switchgrass 
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Figure 4.89  Enthalpy of reaction from steam gasification of bermudagrass 
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Figure 4.90  Enthalpy of reaction from steam gasification of corn gluten 
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4.5 OVERALL TAR CHARACTERISTICS  

4.5.1 Average atomic composition 

For the three gasification processes used in this study, the atomic compositions of 

tar for all three feedstocks gasified in the temperature range of 700 to 800°C are very 

similar as provided in Tables 4.2, 4.3 and 4.4. The average of those 9 results for each 

element, representing 100 gasification experiments with over 210,000 tar compounds 

tested, provides the average atomic tar composition for all biomasses and all processes 

experimented as: 

204.0368.0623.8553.7 NOHC  

 This result is of particular importance for the equilibrium modeling discussed in 

Chapter 5. It is the basis for considering the hypothesis of tar as one molecule with 

properties averaged from empirical data. 

 

4.5.2 Average molecular weight 

From the above average atomic tar composition, the average molecular weight for 

tar can also be calculated for all biomasses and all processes resulting in the following: 

MW tar = 108.045 g/mol 
 

4.5.3 Average determination of the free enthalpy ∆∆∆∆G(T) for tar  

Because it is difficult to find free enthalpy ∆G(T) functions for all 210 tar 

compounds, as opposed to the enthalpy of formation, the free enthalpy for tar is the result 

average of the one of the major compounds. Considering the average proportion of the 
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first 10 main compounds of tar for switchgrass (Table 4.5), the sum represents 

approximately 75% of the total mass of the tar. 

 

Substance 
Mol. 
Formula 

Mol. 
Weight A B C % 

Benzene C6H6 78.114 81.078 0.16 1.76E-05 28.89 
Toluene C7H8 92.141 47.987 0.24 2.45E-05 17.65 
Phenol C6H6O 94.113 -98.451 0.22 1.34E-05 13.72 
Ethylbenzene C8H10 106.167 27.095 0.34 2.82E-05 9.78 
Methylphenol C8H10O 122.167 -130.92 0.32 1.80E-05 8.22 
Styrene C8H8 104.152 146.28 0.22 2.08E-05 5.77 
Xylene C8H10 106.167 15.327 0.35 3.11E-05 5.01 
naphthalene C10H8 128.174 147.69 0.25 1.91E-05 3.97 
dimethylnaphthalene C12H12 156.227 79.111 0.45 2.61E-05 3.73 
methylnaphthalene C11H10 142.2 113.27 0.34 2.27E-05 3.26 
Weighted averages   31.978 0.24635 2.073E-05 100 

Table 4.5  Average tar composition for free enthalpy ∆∆∆∆Gtar(T) calculation 
 

The function for free enthalpy of tar is then: 

2510073.224635.0978.31)( TTTGTar ××+×+=∆ −  (4.4) 
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Figure 4.91  Average tar free enthalpy. 
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5 EQUILIBRIUM METHODOLOGY 

5.1 EQUILIBRIUM MODELING  

 
Gasification of several biomass types was modeled with a Gibbs reactor at 

atmospheric pressure representing equilibrium of the major compounds at different 

temperatures and Equivalence Ratios. 

What is a Gibbs reactor? A Gibbs reactor is a form of equilibrium reactor. It 

minimizes the total Gibbs energy subject to a material balance. When the variation of the 

free enthalpy G (or Gibbs energy, or thermodynamic potential at constant pressure and 

constant temperature) of a thermodynamic system is minimized (∆G = 0), the system is at 

equilibrium. If a mixture of chemical species is not at equilibrium: ∆G ≠ 0, any reactions 

that occurs at constant pressure and temperature must minimize the total Gibbs energy G 

of the system until ∆G = 0. 

In this type of reactor, only the feed and product streams are specified, but the 

reactions are not. Considering a reversible chemical reaction of ideal gases A, B, C and D 

with respective stoichiometric coefficient a,b,c and d such as equation 5.1. 

D
a

d
C

a

c
B

a

b
A +⇔+  (5.1) 

For each gas chemical species, the free enthalpy is: 

)ln( i
o
ii PRTGG +∆=  (5.2) 
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For this reaction the free enthalpy variation is: 
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MRTGG o ln+∆=∆  (5.6) 

Equation 5.6 gives the value of ∆G of the reaction whatever the conditions. If ∆G 

≠ 0, products and reactants are not at the same “potential”. The reaction is going to take 

place in such a way that ∆G is negative; the potentials of the reactants and the products 

tend to equalize and the total free enthalpy of the system tends toward its minimum. 

When equilibrium is reached, the result is: 
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 (5.7) 

The equilibrium constant (K) is this particular value of M for which equilibrium 

made: RT

G
o

o

eKorKRTG
∆

−
=−=∆ ln  (5.8) 

For this ideal gas reaction, the equilibrium law is: 

a

b

BA

a

d

D
a

c

C

R
j

oducts
i

PP

PP

P

P

K
j

i

1
eactants

Pr ==
∏
∏

ν

ν

 (5.9) 

This previous description is for ideal gas, but the same principle applies for all 

single phase systems, and K becomes a function of the activity: 

∏
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 where ai is the activity of the chemical specie i. 
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It is important to note that gasification is not a single phase system. Although the 

products of interest are gases, gasification is the transformation of a solid phase reactant 

to a mixed gas phase/solid phase product. In most fluidized bed modeling, the first aspect 

is a devolatilization step where it is assumed that most of the carbon in the biomass is 

instantaneously transformed into the gas phase as CO, CH4, and CO2. This consideration 

leaves the solid phase out of the equilibrium calculations. The instantaneous hypothesis 

of this transformation relies on the negligible aspect of the char porosity in fluidized bed 

reactor because char is reduced to a fine powder, thus maximizing the mass transfer 

between the solid phase and the gas phase. 

In the equilibrium model described in this chapter, solid carbon is considered to 

be a powder so fine that it reacts as a gas. Although carbon boiling point is at a 

temperature of 5100K, for the necessity of the model, the hypothesis of elemental pure 

carbon interacting with the gas mixture is formulated. Furthermore, the effect of pressure 

on the activity of a solid is very small, so the activity of carbon solid is considered to be 

unity: 1=
SCa . 

Calculating the product fractions at equilibrium consists of minimizing the free 

enthalpy by solving a nonlinear system of equations involving: 

• free enthalpy for each compound 

• number of moles for each compound 

• mole balance and 

• atomic balance. 
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5.2 PROGRAM 

5.2.1 Program inputs 

The program for this model was created using LabView graphic programming from 

National Instrument (1999). The program requests the user to enter the following 

parameters: 

Gasification agents: 

• Air 

• Pressure (Pa) 

• Temperature (K) 

• volumetric flow rate (m3/h) 

• Steam mass flow rate (kg/h) 

• Biomasses and chars compositions (array of four types) 

• C, H, O, N, S and ash (wt % db) 

• Moisture content (wt % wb) 

• biomasses flow rates (kg/h wb) (array of 11 user modifiable) 

• biomasses and chars HHVs (J/kg) 
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5.2.2 Program flow diagram 

 
Figure 5.1  Program flow diagram 
 

3D-graphic.vi: The results of the main program for all four biomasses may also be 

viewed all at once with a simple stand alone 3D-graphic.vi program that calls the same 
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global variables. This virtual instrument (vi) is voluntarily kept separated from the main 

program for facility of use, but it is also possible to add this vi to the main program. 

 

5.2.3 Virtual instruments (VI) hierarchy  

 
Figure 5.2  VI hierarchy 
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5.3 VIRTUAL INSTRUMENTS (.vi) CALCULATIONS  

The following calculations are shown in vi hierarchy (Figure 5.2). 

5.3.1 Dry to Wet basis.vi: % composition basis conversion 

 This virtual instrument calculates wet basis percentage composition of the 

biomass from a dry basis percentage composition input and moisture content. 

100
%100

%% 2 biomass

wbwt
dbwtwbwt OH

ii
−×=  (5.10) 

 

5.3.2 CHO.vi: conversion to atomic composition  

 This virtual instrument defines the properties of the biomasses.  It calculates 

the ratio of atoms C, H and O for each biomass on the basis of one carbon. This defines a 

hypothetical molecule of biomass with the form CHxOy 

 

C

O
O

C

H
H

M

C
M

O

yAtomic

M

C
M

H

xAtomic
%

%

#
%

%

# ====  (5.11) 

This virtual instrument also calculates the enthalpie of formation of this 

hypothetical molecule of biomass from the measured HHV (J/kg) of a biomass sample. 
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Considering the stoichiometric combustion of this hypothetical molecule of 

biomass: 

OH
x

COO
yx

CHxOy HHV
222 2

)
24

1( + →−++  (5.12) 

and 

∑ ∑−= reactantsproductsHHV  (5.13) 

since 0
2

=∆ OfH  

HHVHHH OHfCOfOCH yx
−∆+∆=∆

22
 (5.14) 

since 1.393510
2

−−=∆ molJH COf and 1.285830
2

−−=∆ molJH OHf  

HHV
x

molJmolJH
yxOCHf −×−−=∆ −−

2
.285830.393510 11  (5.15) 

5.3.3 ER.vi: calculation of ER ratio 

 The ER is the abscise variable that permits the comparison of various 

biomasses air gasification and it is defined and calculated in this vi.  

Considering the stoichiometric combustion of biomass: 

1 CHxOy + (1+x/4-y/2) O2 → 1 CO2 + x/2 H2O (5.16) 

The stoichiometric ratio is: 

( )













××+×+






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 −+×
==

biomass

dbwtOHC

O

CHO
MyMxM

yx
M
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combustionforoxygenofmass

%

100

24
1

SR
2

 

 (5.17) 

From equation 1.3, the equivalence ratio (ER) is: 

combustionbiomassdryofMassoxidantofMass

ongasificatibiomassdryofMassoxidantofMass

SRRatiotricStoichiome

ratioonGasificati
ER

@/
@/

)(
==  
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 (5.18) 

5.3.4 SB.vi: calculation of S/B ratio 

 This vi calculates the steam to biomass ratio in the case of steam gasification, 

that is define as follow: 








 −×

+=
•

••

biomass

wbwt

biomass

moistureSteam

OHm

mm

2%1
S/B  (5.19) 

Whether the data display would use ER or S/B for abscise, is defined in the main 

program by the comparison of the agents mass flow rates. 

5.3.5 Biomass composition conversion and  Char composition 
conversion VIs 

  Technically the same, these two vi’s calculate atomic mole flow rate of 

biomass and char from % dry basis composition, % wet basis moisture content and 

biomass mass flow rate. 

1003600

%1000

××
×

•
×

=
i

biomass

wbwt

biomass

biomass M

im
iF  (5.20) 

Char

dbwt
biomass

dbwt

biomasschar

Ash

Ash
mm

%

%×
•

=
•

 (5.21) 

Char

dbwt
biomass

dbwt

biomasschari

Ash

Ash
mF

%

%
×

•
=  (5.22) 
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5.4 FREE ENTHALPY CALCULATIONS  

To calculate the equilibrium concentrations with the nonlinear equations system 

solver, it is necessary to build the set of equations with known parameters. 

The known values of the nonlinear equations system solver are: 

• the free enthalpy value of each individual gases at process temperature T 

• the atomic elemental mole flow rates of Carbon, Hydrogen and Oxygen in the 

chemical system 

5.4.1 DG Knovel.vi: free enthalpy calculations from Knovel 
tables 

 This vi calculates free enthalpy of the various compounds of the gas from 

temperature dependant equations of the Knovel database: 

2TCTBAG iiii ×+×+=∆  (5.23) 

 
A                    B                    C

H2
N2

O2
CO

CH4
CO2
C2H2

C2H4
C2H6

H2O

-3.9300E+2 0.0000E+0 5.9300E-7

2.2846E+2 -6.0000E-2 2.2383E-6

5.1887E+1 5.0000E-2 1.5435E-5

-8.4856E+1 1.7000E-1 2.4303E-5

-2.4200E+2 4.3500E-2 6.1000E-6

0.0000E+0 0.0000E+0 0.0000E+0

0.0000E+0 0.0000E+0 0.0000E+0

0.0000E+0 0.0000E+0 0.0000E+0

-1.0994E+2 -9.0000E-2 5.7289E-7

-7.4826E+1 8.0000E-2 1.7205E-5

0

0

 
Table 5.1  ∆∆∆∆GKnovel database 

 

The temperature limitation of the Knovel database is a maximum of 1000K. Free 

enthalpy values calculated from specific heat (Cp) and enthalpy of formation (Hf) valid 

up to 1500 K of the gas compounds are compared to Knovel data: 
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Figure 5.3  ∆∆∆∆G calculated and ∆∆∆∆G from the Knovel database 
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Figure 5.4  Difference ∆∆∆∆G calculated - ∆∆∆∆G from the Knovel database 

 
 

Because of the limitation in temperature of the Knovel database equations, the 

values of free energies were calculated from specific heat and enthalpies of formation of 

the gas compounds (next section), but a user may insert DG Knovel.vi if preferred. 
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5.5 COMPOUNDS FREE ENTHALPY CALCULATIONS  

Free enthalpy at standard temperature T=298K: 

oooo STHG ∆×−∆=∆  (5.24) 
Or 

o

oo
o

T

GH
S

∆−∆=∆  (5.25) 

Free enthalpy at a temperature T (Kelvin): 

TTT STHG ∆×−∆=∆  (5.26) 
With 

dTCpHH
T

T

oT
o∫ ∆+∆=∆  (5.27) 

 

dT
T

Cp
SS

T

T

oT
o∫

∆+∆=∆  (5.28) 

Using equation 5.27 & 5.28 in equation 5.26, the free enthalpy becomes: 








 ∆+∆−∆+∆=∆ ∫∫ dT
T

Cp
STdTCpHG

T

T

oT

T

oT
oo

 (5.29) 

Using equation 5.25 in equation 5.29, the free enthalpy becomes:  








 ∆+∆−∆−∆+∆=∆ ∫∫ dT
T

Cp

T

GH
TdTCpHG

T

To

oo
T

T

oT
oo

 (5.30) 

Because the functions defining Cps (Table 5.2) are given divided by the ideal gas 

constant R, equation 5.30 becomes:  

( )
dT

RT

Cp
RTdT

R

Cp
RH

T

HG
TG

T

T

T

T

o
o

oo
T

oo ∫∫
∆−∆+∆+∆−∆=∆  (5.31) 
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Specific heat variation ∆Cp across any reaction: 

∑∑ −=∆
reactantsproducts

ii CpCpCp  (5.32) 

 

Integral from the enthalpy term in equation 5.31: 

dT
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 (5.33) 
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Integral from the entropy term in equation 5.31: 
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Using equation 5.34 & 5.36 in equation 5.31, the free enthalpy becomes: 
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Specific heat calculation of each gas ( Smith et al.,1996): 

2
2*

T

D
TCTBA
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Cp i
iii

i ++×+=  (5.38) 

Using equation 5.38 the integral from the enthalpy term equation 5.37 becomes: 
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Using equation 5.38 the integral from the entropy term equation 5.37 becomes: 
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Using equation 5.41 & 5.44 in equation 5.37, the free enthalpy equation becomes: 
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The calculation of ∆Gi for the array of gases is performed through two vis :  

 Cp Equil gases.vi   EquilEnthalpies1.vi 
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5.5.1 Cp Equil gases.vi: gases heat capacities calculations 

 This vi calculates specific heat values of each gas from []: 

2
2

T

D
TCTBA

R

Cp i
iii

i +++=  (5.46) 

A                    B                     C                     D

C(s)

Cpig/R = A + BT + CT^2 + DT^-2

H2O

C2H6

C2H4

C2H2

CO2

CH4

CO

O2

N2

H2

-8.6700E+4

3.2490E+0 4.2200E-4 0.0000E+0 8.3000E+3

3.2800E+0 5.9300E-4 0.0000E+0 4.0000E+3

3.6390E+0 5.0600E-4 0.0000E+0 -2.2700E+4

3.3760E+0 5.5700E-4 0.0000E+0 -3.1000E+3

1.7020E+0 9.0810E-3 -2.1640E-6 0.0000E+0

5.4570E+0 1.0450E-3 0.0000E+0 -1.1570E+5

6.1320E+0 1.9520E-3 0.0000E+0 -1.2990E+5

1.4240E+0 1.4394E-2 -4.3920E-6 0.0000E+0

1.1310E+0 1.9225E-2 -5.5610E-6 0.0000E+0

3.4700E+0 1.4500E-3 0.0000E+0 1.2100E+4

1.7710E+0 7.7100E-4 0.0000E+0

0

0

 

Table 5.2  Cp coefficient (Smith et al.1996) 
 

This vi also calculates the integrals terms dT
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Only reactions from pure elements were considered for the calculations of the 

integrals of ∆Cp, except for the pure elements themselves, i.e. H2 , N2, and O2 for which 

0=∆ TG
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∆Cp calculations of non elemental compounds: 

• Carbon monoxide: 

sCOCO

s

CpCpCpCp

COOC
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→+

22

1
2

1
2

 (5.49) 

• Methane: 
sCHCH
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−−=∆
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2 42
 (5.50) 

• Carbon dioxide: 
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 (5.51) 

• Acetylene: 
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 (5.52) 

• Ethylene: 
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• Ethane: 
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• Water: 
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To build values for dT
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 in vector array, dT
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 arrays are multiplied by the following matrix built from the above reactions 

equations 5.49-5.55: 

H2
N2
O2
CO
CH4
CO2
C2H2
C2H4
C2H6
H20

0.0 0.5 0.0 0.0 -1.0

-1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 -1.0

-1.0 0.0 -0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 -0.5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0

-2.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 -1.0

0.0 0.0 -1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 -1.0

-0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 -1.0

-1.0 0.0 0.0 0.0 0.0 0.0

0

0

DCp matrix
  H2     N2     O2    CO    CH4  CO2  C2H2 C2H4 C2H6  H20   Cs

 
Table 5.3  ∆∆∆∆Cp reactions matrix 
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5.5.2 Equil enthalpy w char.vi: enthalpies of formation and 
free enthalpy calculation 

 This vi calculates enthalpies of formation and free energies values of each 

individual gas from equation 5.31: 

 

( )
dT

RT

Cp
RTdT

R

Cp
RH

T

HG
TG

T

T

i
T

T

io
io

o
i

o
iT

i oo ∫∫
∆

−
∆

+∆+
∆−∆

=∆  

 

From the following values: 

C(s)

H2

N2

O2

CO

CH4

CO2

C2H2

C2H4

C2H6

H2O

0.00

0.00

0.00

-137169.00

-50460.00

-394359.00

209970.00

68460.00

-31855.00

-228572.00

0.00

DGi(j/ mole)@298K

 

Table 5.4  ∆∆∆∆Gi at 298K (Smith et al.,1996) 

C(s)

H2

N2

O2

CO

CH4

CO2

C2H2

C2H4

C2H6

H2O

0.00

0.00

0.00

-110525.00

-74520.00

-393509.00

227480.00

52510.00

-83820.00

-241818.00

0.00

DHfi(j/ mole)@298K

 

Table 5.5  ∆∆∆∆Hfi at 298K (Smith et al.,1996) 
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5.6 EQUILIBRIUM CALCULATION  

This chapter discusses the culmination of the calculations for the entire system of 

non linear equations. At constant atmospheric pressure the gas phase system containing 

the species: H2, CO, CH4, CO2, C2H2, C2H4, C2H4, H2O, will reach equilibrium 

depending only on the temperature and the number of mole of C, H and O in the system. 

 

5.6.1 Mole balance equations 

Carbon balance: 

0722.7222
62422224

=−×+×+×+×+++
inTar CCHCHCHCCOCHCO nnnnnnnn  (5.56) 

Hydrogen balance: 

0997.7264242
262422242

=−×+×+×+×+×+×+×
inTar HHOHHCHCHCCHH nnnnnnnn  (5.57) 

Oxygen balance: 

0377.02
22

=−×++×+
inTar OCOHCOCO nnnnn  (5.58) 

Total mole balance: 

0
2624222242

=−++++++++ totalTarOHHCHCHCCOCHCOH nnnnnnnnnn  (5.59) 

In the hypothesis of ideal gases, the 10 equilibrium equations, one for each 

chemical species, are of the form: ( ) 0ln =++∆
∑ ik

k

k
i

i a
RT

y
RT

G λ
  (5.60) 

Where 
∆Gi = free enthalpy of the compound i. 
λk = Lagrange coefficient for the element k. 
R = ideal gas constant. 

T = temperature in Kelvin. 
yi = fraction of the compound i. 
aik = number of element k in compound i. 
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The 10 equilibrium equations from equation 5.60, one for each chemical species are: 

H2: ( ) 02ln
2

2 =++
∆

RT
y

RT

G
H

H
H λ

 (5.61) 

 

CO: ( ) 0ln =+++∆
RTRT

y
RT

G OC
CO

CO λλ
 (5.62) 

 

CO2: ( ) 02ln
2

2 =+++
∆

RTRT
y

RT

G
OC

CO
CO λλ

 (5.63) 

 

CH4: ( ) 04ln
4

4 =+++
∆

RTRT
y

RT

G
HC

CH
CH λλ

 (5.64) 

 

C2H2: ( ) 022ln
22

22 =+++
∆

RTRT
y

RT

G
HC

HC
HC λλ

 (5.65) 

 

C2H4: ( ) 042ln
42

42 =+++
∆

RTRT
y

RT

G
HC

HC
HC λλ

 (5.66) 

 

C2H6: ( ) 062ln
62

62 =+++
∆

RTRT
y

RT

G
HC

HC
HC λλ

 (5.67) 

 

H2O: ( ) 02ln
2

2 =+++
∆

RTRT
y

RT

G
OH

OH
OH λλ

 (5.68) 

 

Defined by empirical data from the previous chapter, the tar equation becomes: 

( ) 0368.0623.8553.7ln =++++
∆

RTRTRT
y

RT

G OHC
Tar

Tar λλλ
 (5.69) 

 

In addition to the gas phase system, the unreacted carbon is taken into account in 

the model: 

( ) 0ln =++
∆

RT
y

RT

G
C

C

C

S

S
λ

 (5.70) 
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The resolution of this nonlinear system of equation is done with one of the 

following vis depending on the type of compounds searched: 

 Equil Yield.vi solves for: H2, CO, CH4, CO2, H2O 

 Equil Yield All.vi solves for: H2, CO, CH4, CO2, C2H2, C2H4, C2H4, H2O 

 Equil Yield tar.vi solves for: H2, CO, CH4, CO2, H2O, tar 

 Equil Yield All n tar.vi solves for: H2, CO, CH4, CO2, C2H2, C2H4, C2H4, H2O, tar 

Each of the vis also calculate the mole flow rates of the compounds from the 

solution yield of the solver considering the inert gas (N2) not included in the solver and 

readjusting for the total number of moles with N2 after solver calculations. 



 

 152 

5.6.2 Cp Equil mix.vi and Equil Enthalpies mix.vi: gas mix 
heat capacity and enthalpies calculation 

 

 The calculation of ∆Gmix for the gas mixture at equilibrium is done through 

two vis: 

Cp Equil mix.vi  

o ( )∑=
products

iimix yCpCp  J/mol/K (5.71) 

o ∑ 







=

products i

ii
mix M

yCp
Cp

1000
 J/kg/K (5.72) 

 Equil Enthalpies mix.vi 

o ( )∑ ∆=∆
products

iimix yGG  (5.73) 

o ( )∑=
products

iiimix yHHVMHHV  (5.74) 

o ( )∑ ∆=∆
products

o
ifi

o
mixf HyH  (5.75) 

o ∑ ∫ 






















+∆=∆
products

T

T

io
ifi

T
mixf dT

R

Cp
RHyH

o
 (5.76) 

o ( )
o

CharBiomassf
o

mixf
o
r HHH −∆−∆=∆  (5.77) 
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6 MODELING RESULTS 

This chapter highlights the gas compositions predicted from the modeling program 

described previously. The compositions results are given at the chosen temperature of the 

model. The compositions from the fluidized bed gasifier are the results of GC-TCD 

analyses at ambient temperature. The gas starts cooling when exiting the gasifier. During 

cool down, equilibrium does change the composition of the gas. This decrease in 

temperature modifies the equilibrium consuming H2 and producing water. As water 

condenses, the equilibrium is shifted further in the same direction consuming most of the 

H2.  

In equilibrium models, cooling the gas down to 298K results in H2 being totally 

consumed. The pressure of saturation of water in the gas must be taken into 

consideration, explaining why data show low levels of H2. 

 

6.1 TAR AND CHAR CHARACTERIZATION  

In most models, (Sadaka et al., 2002) tars are not defined as such, but assumed to 

be part of the CH4 for mass balance reasons. This assumption is valid since the amount of 

tar is small in comparison to the other compounds. 

The model developed in this research focuses on tar despite the small amounts 

being generated by the fluidized bed gasifier. 
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Tar is generated in the primary char during the pyrolysis. In this model a small 

variation in the definition of char greatly influences tar production. 

The tar and chars are not element-defined in any database. Ultimate analysis of 

char for switchgrass, bermudagrass and corn gluten show similar results in the ER range 

for air gasification. For this model, that this composition will be the same for flaming 

pyrolytic gasification, pyrolysis and steam gasification. Table 6.1 shows ultimate and 

proximate analysis results of char sampled at various ER after soxhlet extraction. 

 Atomic composition Hf
0, kJ/mol 

Switchgrass C1H0.16O0.03N0.02 -16.46 

Bermudagrass C1H0.17O0.04N0.03 -24.44 

Corn gluten C1H0.17O0.03N0.06 -25.39 

 
Table 6.1: Char average atomic composition and enthalpy of formation 

 

In most models, because char is mostly carbon, it is assumed to be pure carbon 

element with an enthalpy and free energy of zero. However, ultimate analysis of the char 

shows the presence of other compounds, thus char is not a pure element with an enthalpy 

of formation (∆Hf
0). Even so, with no empirical data on char from switchgrass, 

bermudagrass and corn gluten, the standard free enthalpy of char is assumed to be 0. The 

Cp(T) for char is assumed to be that of graphite. 

For equilibrium modeling, it is necessary to have Cp(T) function, ∆Hf
0 and ∆G0 

for each compound present in the system. In this case both pure carbon and char are 

considered. 
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An extensive review of literature resulted in no data on tar. Therefore, the attempt 

is made in the model to define tar from the empirical data collected in previous 

experiments. 

It was concluded from previous experiments that tar atomic composition was 

almost constant and could be averaged to: 

204.0368.0623.8553.7 NOHC  

In these experiments, tar was analyzed for 210 compounds, with 10 of them 

constituting approximately 75% of the total tar mass. It is then possible to hypothesize 

that tar free enthalpy closely follows the weighted average of these 10 compounds. 

Equation (5.4) gives: 

2510073.224635.0978.31)( TTTGTar ××+×+=∆ −  

For the two following cases (Figures 6.1 and 6.2), the model was run in air and 

flame pyrolytic gasification at a constant incoming air flow, of 17m3/h and varying the 

biomass flow rate from 10 to 1000 kg/h. 

Figures 6.1 and 6.2 are tables of graphs resulting from the Labview model, 

showing the fractions for the three biomass types (switchgrass row 1, bermudagrass row 

2 and corn gluten row 3) being studied for the two different hypotheses considered, i.e. 

CSolid and char, at a temperature of 1023K (750°C). In both tables of graphs, the first 

column of graphs shows the fractions of gases, Tar Moisture Ash Free (TMAF). The 

second and third columns of graphs show the fractions of gases, tar, water and solids at 

high, and low fraction scale. 
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Figure 6.1  Gas and Cs fractions from Gibbs equilibrium of air gasification of switchgrass 

row #1, bermudagrass row #2 and corn gluten row #3 at 1023 K in raw gas column #2-3 
and tar moisture ash free gas columns #1 

 
 
 

 
Figure 6.2  Gas and char fractions from Gibbs equilibrium of air gasification of 

switchgrass row #1, bermudagrass row #2 and corn gluten row #3 at 1023 K in raw gas 
column #2-3 and tar moisture ash free gas columns #1 
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Graphs (Figure 6.1 in the case of the pure carbon hypotheses) show that there is 

little variation in gas, tar and solids compositions between the different biomass types. 

Switchgrass and bermudagrass show a slightly higher fraction of CO (0.01) than corn 

gluten. However, corn gluten shows a slightly higher level of H2 (0.02) with a little more 

water (0.01) and less CO2 (0.01) than switchgrass and bermudagrass. For all three 

biomass types, CH4 , C2 gases and tar levels are low or do not exist at this temperature. 

The differences between experimental and modeled fraction are not only due to 

the change in equilibrium of the various gas species considered during gas cool down, but 

also of other type of parameters than the thermodynamic equilibrium as the consideration 

of particulate matter (PM) as non-elemental carbon compound. 

Graphs (Figure 6.2 in the case of the char hypotheses) show that there is little 

variation in gas, tar and solids compositions between the different biomass types. 

However, there is a large difference between these char hypotheses results and the pure 

carbon hypotheses results (Figure 6.1). The gas fractions of CO and H2 are reversed and 

are larger in comparison to the pure carbon hypotheses results, particularly for CO. H2 

and CO are higher by a factor of 1.1, and 1.5 to 2.25 respectively, as ER varies from 0.4 

to 0. 

Although there are little difference between biomass types, the variations in char 

fraction in the stream are quite important particularly for switchgrass. This is the result of 

the analysis of the PM product from air gasification of switchgrass that has a HHV 

slightly higher than the PM resulting from bermudagrass and corn gluten air gasification. 

Hence, the resulting enthalpy of formation is lower for switchgrass PM than 

bermudagrass PM and corn gluten PM. Considering the same Cp(T) function for all three 
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biomass types, this HHV measurement directly influences the free energy value of the 

char in the model. 

Because it was not possible to measure the composition of the char for each 

gasifier run, the hypothesis was made that PM would always have the same proportion of 

CHO as for air gasification. 

In the char hypothesis, case methane and C2 gases have fractions similar than in 

the pure carbon hypothesis case. For all three biomasses, C2 gas levels are low or do not 

exist. However, tar appears at an ER of 0.17 and increases to a maximum fraction of 0.25 

at ER = 0. Tar varies with an exponential trend as in the experimental data. 

In the series of 12 3-dimensional Figures 6.3 to 6.14, temperature is changed from 

773K (500°C) to 1123K (850°C) both for air and flaming pyrolytic gasification and for 

steam gasification for all three biomass types. In the case of air and flaming pyrolytic 

gasification, ER is changed from 0.4 to 0 and in the case of steam gasification, S/B is 

changed from 1.25 to 0.4. (Note: vertical fraction axis is set at a maximum of 0.6 except 

in the case of tar and C2 gases that are set at 0.1) 

In all PM hypothesis cases, it is interesting to see on Figures 6.3 to 6.14, the same 

behavior of the tar and solids model regardless of the process type. 

As expected, CO and H2 obtain maximum values at low ER and high temperature 

regardless of the Csolid or char hypothesis, as does the enthalpy of the reaction. Though it 

is interesting to note that in the char hypothesis case, the enthalpy of reaction maximums 

are shifted slightly from the ER=0 (S/B=0) and maximum temperature top left corner of 

the graph to a position with still the maximum possible temperature but at an ER of 

approximately 0.12 or S/B of approximately 0.22. 
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A better definition of the tar in the model with a variation of its composition taken 

into account when ER or S/B varies would probably change the coordinate of these 

maximums shifting slightly along the ER or S/B axis. These maximums are displayed in 

Table 6.2: 

 

Air gasification and 
flaming pyroysis 

gasification 
CSolid hypothesis 

(MJ/mol) 

Air gasification and 
flaming pyroysis 

gasification 
Char hypothesis 

(MJ/mol) 

Steam 
gasification 

CSolid 
hypothesis 
(MJ/mol) 

Steam 
gasification 

char 
hypothesis 
(MJ/mol) 

Switchgrass 54 57 53 50 
Bermudagrass 49 52 48 44 
Corn gluten 43 46 42 40 

 
Table 6.2  Maximum values of ∆∆∆∆HR at 298K for Csolid and char hypothesis 
 

Switching between the two hypotheses, i.e. from Csolid to char, affect only slightly 

the value of the enthalpy of reaction maximum, increasing it by 3 MJ/mol in the case of 

air and flaming pyrolitic gasification, while decreasing by up to 4 MJ/mol in the steam 

gasification case. 
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Figure 6.3  Gas, tar and solids fractions and enthalpy of reaction, in air gasification of 
switchgrass in the Cs hypothesis 
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Figure 6.4  Gas, tar and solids fractions and enthalpy of reaction, in air gasification of 
bermudagrass in the Cs hypothesis 
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Figure 6.5  Gas, tar and solids fractions and enthalpy of reaction, in air gasification of corn 
gluten in the Cs hypothesis 
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Figure 6.6  Gas, tar and solids fractions and enthalpy of reaction, in air gasification of 
switchgrass in the char hypothesis 
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Figure 6.7  Gas, tar and solids fractions and enthalpy of reaction, in air gasification of 
bermudagrass in the char hypothesis 
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Figure 6.8  Gas, tar and solids fractions and enthalpy of reaction, in air gasification of corn 
gluten in the char hypothesis 
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Figure 6.9  Gas, tar and solids fractions and enthalpy of reaction, in steam gasification of 
switchgrass in the Cs hypothesis 
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Figure 6.10  Gas, tar and solids fractions and enthalpy of reaction, in steam gasification of 
bermudagrass in the Cs hypothesis 
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Figure 6.11  Gas, tar and solids fractions and enthalpy of reaction, in steam gasification of 
corn gluten in the Cs hypothesis 
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Figure 6.12  Gas, tar and solids fractions and enthalpy of reaction, in steam gasification of 
switchgrass in the char hypothesis 
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Figure 6.13  Gas, tar and solids fractions and enthalpy of reaction, in steam gasification of 
bermudagrass in the char hypothesis 
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Figure 6.14  Gas, tar and solids fractions and enthalpy of reaction, in steam Gasification of 
corn gluten in the char hypothesis 
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In the next series of Figures 6.15 to 6.23, data of the experimental conditions: 

CHO feed rates, ER, S/B and temperatures, are loaded in the model and solved with the 

char hypothesis. The result is a series of 2D-graphs displaying fractions versus ER or S/B 

ratios where each data point is at the experimental bed temperature recorded during the 

fluidized bed gasifier run. From these graphs, a comparison with the real data would be 

possible if the non linear solver virtual instrument could have found solutions for low 

temperature (298K). Assistance was sought from National Instrument Research and 

Development responsible for Labview performance.  This department recognized the 

problem with the nonlinear equation solver virtual instrument, but was not able to make 

the appropriate correction. 

The model shows CO levels higher than H2 for air gasification and flaming 

pyrolytic gasification similar to the experimental results at 298K measured by the GC-

TCD. The model also calculates a maximum of CO between ER=0.2 and 0.25, and an 

increase in methane and tar with decreasing ER or S/B. 

The model also confirms the experimental order of CO and H2 for steam 

gasification with H2 fractions above CO fractions and a higher methane level than air 

gasification. 

For flaming pyrolytic gasification, the level of CO and H2 at ER=0.2 are higher 

than air gasification for the same ER and continues to increase as ER decreases. 
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Figure 6.15  Data from air gasification of switchgrass modeled equilibrium 
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Figure 6.16  Data from flaming pyrolitic gasification of switchgrass modeled equilibrium 
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Figure 6.17  Data Steam Gasification of switchgrass modeled equilibrium 
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Figure 6.18  Data from air gasification of bermudagrass modeled equilibrium 
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Figure 6.19  Data from flaming pyrolitic gasification of bermudagrass modeled equilibrium 
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Figure 6.20  Data from steam gasification of bermudagrass modeled equilibrium 
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Figure 6.21  Data from air gasification of corn gluten modeled equilibrium 
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Figure 6.22  Data from flaming pyrolitic gasification of corn gluten modeled equilibrium 
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Figure 6.23  Data from steam gasification of corn gluten modeled equilibrium 
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6.2 EQUILIBRIUM CHANGE DURING GAS COOL DOWN  

 As previously discussed, gas cool down has a significant effect on the gas 

equilibrium. Figures 6.24 to 6.28 show the effect of such cool down for pyrolysis 

conditions of switchgrass in Figure 6.24 to close to combustion conditions in Figure 6.28, 

with HSC Gibbs reactor model (HSC5 2002). 

In each figure, as temperature decreases CO and H2 mol % decrease while CO2 

and H2O increase. The presence of methane in gas samples indicates that the cool down 

equilibrium is not totally reached as methane is maximized around 350°C and almost 

absent at ambient temperature and at 800°C. 

Gasification equilibrium results of HSC5 (HSC5 2002) Gibbs reactor modeling of 

1 mol of CH1.27O0.03 (Switchgrass) from pyrolysis to near combustion. 
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Figure 6.24  Gas cool down after pyrolysis, O2 = 0 mol 
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Figure 6.25  Gas cool down after gasification, O2 = 0.25 mol 
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Figure 6.26  Gas cool down after gasification, O2 = 0.5 mol 
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Figure 6.27  Gas cool down after gasification, O2 = 0.75 mol 
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Figure 6.28  Gas cool down after near combustion, O2 = 1 mol 
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7 CONCLUSION 

7.1 ACHIEVEMENT OF OBJECTIVES  

7.1.1 Design and develop the modifications of an existing 
fluidized bed gasifier. 

Significant modifications were successfully incorporated in an existing fluidized 

bed gasifier pilot plant reactor enabling it to be operated as an air, steam and flaming 

pyrolytic gasifier, and pyrolyser. Three different biomass types were used to evaluate its 

operation efficiency. In addition, the feeding system was successfully modified for 

compressible chopped grass material handling and low density solid flow measurement. 

An isokinetic gas particulate matter sampling system with condensable products sampling 

were successfully designed and implemented. A hot gas recycling loop system for 

pyrolytic mode operation was designed, constructed and operated successfully. A 

computer program controls the pilot plant functions automatically and has the ability to 

measure and record process parameters for mass and energy balance analysis. The user 

managing the plant can manually activate the cleanup and compression process of 

producer and synthesis gas for storage for gas fermentation downstream. 
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7.1.2 Develop an analytical procedure to identify major tar 
compounds. 

An analytical procedure was successfully established on the bases of the tar 

guidelines. The use of acetone as a solvent was preferred to the isopropyl alcohol offered 

by the tar measurement guidelines. A total of 210 compounds were calibrated for the GC-

MS method. During the time of these experiments, there were no officially recognized 

standard for tar measurement. 

 

7.1.3 Evaluate the products of gasification  

7.1.3.1 A. Air gasification of switchgrass at different feed moisture contents. 

 Bed temperature decrease was the main consequence of an increase in biomass 

moisture content. This temperature reduction induced a reduction in concentration of the 

gases of primary interest, CO and H2. Though gasification of high moisture content 

switchgrass can be performed with the same output levels or better as dry switchgrass, if 

the temperature in the reactor can be maintained by external means. 

 

7.1.3.2 B. Gasification using various feedstocks 

7.1.3.2.1 Air gasification of dry switchgrass, bermudagrass and corn gluten. 

Air gasification was successfully achieved in the fluidized bed pilot plant using 

switchgrass, bermudagrass and corn gluten. Gas compositions, tar and water were 

measured and analyzed after gas cool down. 

Air gasification temperature was found to be dependant on equivalence ratio for 

all three biomass types. Carbon to CO efficiency was found to be maximized at ER=0.25 
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to 0.3 for all three biomasses at values of 30 to 35% of the incoming carbon for 

switchgrass, and 25 to 30% for bermudagrass and corn gluten. At this same equivalence 

ratio range, tar levels are found to be 10 to 15 g/Nm3 for switchgrass, 15 to 20 g/Nm3 for 

bermudagrass and 30 to 35g/Nm3 for corn gluten. All were relatively constant in atomic 

composition. 

High heating value of the gas was highest for corn gluten at -5000 kJ/kg of gas 

compared to switchgrass and bermudagrass with both at -4000 kJ/kg. The enthalpy of the 

air gasification reaction stayed between -4000 to -5000 kJ/kg of feed for all three biomass 

types. Water was produced at a similar rate for all three biomass types at 150 to 200 

g/Nm3. 

 

7.1.3.2.2 Flaming pyrolytic gasification of dry switchgrass, bermudagrass and corn 

gluten. 

Flaming pyrolytic gasification and pyrolysis were successfully achieved in the 

fluidized bed pilot plant using switchgrass, bermudagrass and corn gluten. Gas 

compositions, tar and water were measured and analyzed after gas cool down. 

Reactor temperature was set to 775°C and mostly maintained as close to that set 

point as possible throughout the experimentation. Although the temperature, which is the 

key parameter for gasification was fixed, the Carbon to CO efficiency  was found to be 

maximized at ER = 0.1 to 0.2 for all three types: 30 to 38% of the incoming carbon for 

switchgrass, 28 to 33% for bermudagrass, and 25 to 28% for corn gluten. At this same 

equivalence ratio range, tar levels increased exponentially with equivalence ratio from 25 
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to 50g/Nm3 for switchgrass bermudagrass and corn gluten. Tar was relatively constant in 

its atomic composition. 

 Though the high heating value of the gas is increased between the same values for 

all three biomass types in the same equivalence ratio range (0.1 to 0.2); -6000 to -8000 

kJ/kg of gas, this increase seemed to occur towards the lower end of the equivalence ratio 

range, leaving the high heating value value closer to -6000 kJ/kg between 0.2 and 0.15 

equivalence ratio values. The enthalpy of the air gasification reaction stayed between  

-3000 to -1500 kJ/kg of feed for switchgrass and bermudagrass and between -4000 to  

-1000 kJ/kg for corn gluten. The lower value, i.e. -4000 kJ/kg, was a sign that despite the 

agglomeration complications, corn gluten required less external heat than switchgrass and 

bermudagrass to achieve similar results within this range of equivalence ratio. However, 

this is arguable because water, that influences the enthalpy of reaction, showed a 

decreasing trend in corn gluten from 275 to 180 g/Nm3 while it increased for 

bermudagrass from 100 to 150 g/Nm3 and from at 100 to 325 g/Nm3 for switchgrass 

across the same equivalence ratio range. 

 

7.1.3.2.3 Steam gasification of dry switchgrass, bermudagrass and corn gluten. 

Steam gasification was successfully achieved in the fluidized bed pilot plant using 

switchgrass, bermudagrass and corn gluten. Gas compositions, tar and water were 

measured and analyzed after gas cool down. 

Reactor temperature was set to 775°C and maintained as close to set point as 

possible throughout the experimentation. Although the temperature was fixed, the carbon 

to CO efficiency was found to be maximized at S/B = 0.6 to 0.8 for switchgrass with 
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27%, S/B = 0.8 to 1.0 for bermudagrass with 15% and S/B = 1.0 to 1.2 for corn gluten 

with 35% of the incoming carbon. This value of carbon to CO efficiency for corn gluten 

makes this feedstock an excellent candidate for steam gasification. When carbon to gas 

efficiency is maximum for each biomass type, H2 concentration is around the same value 

of 25%, and tar levels are the lowest for corn gluten. Tar is also relatively constant in its 

atomic composition. 

The high heating value of the gas is maximized at the same values of S/B ratio 

around 0.85 with -16,000 kJ/kg for switchgrass and -18,000 kJ/kg for corn gluten. The 

enthalpy of the steam gasification reaction stays around 0 kJ/kg of feed for switchgrass 

and bermudagrass, however it is at 1000 kJ/kg for corn gluten. This higher value of 1000 

kJ/kg shows that more heat was provided  to achieve higher results with corn gluten than 

switchgrass and bermudagrass. This observation is arguable because water measurement 

made after cool down, which influences the enthalpy of reaction calculation, is showing a 

lower value for corn gluten maximum gas HHV at 1100 g/Nm3 than the two other grasses 

1250 g/Nm3 for switchgrass and 2500 g/Nm3 for bermudagrass. Further research is 

necessary in corn gluten steam gasification to confirm these initial results. 

 

7.1.4 Modeling of the gasification equilibrium. 

An equilibrium Gibbs reactor model was programmed in LabView. The model 

can calculate equilibrium of air, flaming pyrolytic and steam gasifications and pyrolysis 

at different temperatures steam to biomass and equivalence ratio for four biomass types 

with 2D and 3D graphics. The characterization of the tar and char defined in laboratory 

experiments was implemented. The model was also programmed to calculate equilibrium 
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of the high temperature outputs at 298K with water removal from the equilibrium due to 

its condensation during the gas cool down for comparison of the model results with GC-

TCD data. Technical difficulties with the virtual instrument provided by LabView, 

prevented the solver from finding solutions to low temperature equilibrium. 

 

Considering the particulate matter as char with a CHO composition and a free 

enthalpy not equal to zero, allowed, the model to increase tar production to more 

realistically level, and decrease char production. 

It is satisfactory to assume tar as one hypothetical compound for equilibrium 

modeling, because tar atomic composition remained constant through most gasification 

processes at constant temperature. 

Tar and char taken as non-pure element influenced each other production in their 

equilibrium modeling. 

All three biomass types are suitable for gasification but show better results in 

different processes. Switchgrass showed the best results for all gasification processes of 

all three biomasses tested. It is matched by corn gluten using steam gasification. 

Bermudagrass like corn gluten induces agglomeration of the bed when the reactor bed 

temperature exceeded about 800°C. The high ash content of corn gluten might have a 

catalytic effect on the gasification reaction. Bermudagrass showed better results than corn 

gluten except in steam gasification. 
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7.2 FUTURE RESEARCH 

At the process level, particulate matter combustion could generate enough heat to 

replace the electrical heaters. An additional inner cyclone was installed before the 

expansion to protect the hot gas recycling loop turbine and to collect PM for combustion 

inside the gasifier. It was combined to a finned pipe located below the cyclone as an inner 

PM combustor. The intent of this gasifier-combustor concentric design is to allow the 

separation of the flue gas and syngas, and generate heat inside the bed and the freeboard 

of the gasifier. Future test will reveal if the heat from the PM combustion and the heat 

recycled from the gas outlet as steam would allow the system to be energetically self-

sustainable. Also this design allows possible future use of the pilot plant as a recirculated 

fluidized bed gasifier if the finned pipe is not fed with air but simply used as a sand 

recycle open the gasifier bed. At the sampling level, improvement can be achieved by 

increasing the accuracy of the isokinetic conditions and sampling flow measurement. At 

the modeling level, characterization of the char is definitely important to further the study 

of this modeling hypothesis. 
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8.1 GAS CHROMATOGRAPH CALIBRATION GRAPHS  

Calibration Curve Report
File:  d:\gasifier\dataga~1\runs\2004\syn140c1.mth
Detector:  ADC Board,  Address:  16,  Channel ID:  A

Hydrogen
External Standard Analysis - Locked Resp. Fact. RSD:  0.2048%
Curve Type:  Linear Corr. Coef.(R²):  0.999994
Origin:  Force
y =    +2.802191e+004x
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Methane  Carbon dioxide  
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8.2 PROCEDURES FOR FLUIDIZED BED GASIFIER 

PILOT PLANT AND TAR SAMPLING SYSTEM  

 

8.2.1 Procedure for Automatic Start.  

1. First check for biomass in the hopper.  

2. Plug in the plenum heaters in the extension cord below the gasifier and plug 

the extension cord at the south east corner of the annex Lab near the entrance. 

3. Flip the main switch of the baffle heaters on at the north wall.  

4. Connect the electrical devices such as the mass flow meter (Check), load cell 

(Check), power supply to the two electrical air valve plugged in (Check) 

5. Open the main air valve (Set pressure @ 75 psi for auto mode with solenoid 

valve or 50 psi for normal use with actuated valve). 

6. Check that the bi-pass valve (needle valve black handle) is closed and that the 

yellow valve is open of the gasifier. 

7. Set air lock needle valve to 1.5 scfm to be read directly on mass flow meter. 

 

NOTE: Plug in the sampling system the night before running for the temperature 

of the second ice bath to reduce to at-least –200 Celsius. During that night 

switch off temperature control of first ice chest (according to gas flow). 

 

8.2.2 Starting the Gasifier Program  

When a user starts the program, he can indicate a file name under which he wants to save 

the data on the system (Text.dat by default). At this point the programs is running.  

1. In the program the user go to the ‘Auto Start Section’ on the program panel 

and indicates the delay before start in hours and minutes (from the time at 

which the auto start button is activated).  

2. After this step the user indicates the rate at which the temperature baffle 

heaters setpoint is going to rise (degrees/ min) to warm up the Gasifier bed.  
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3. Next check the air flow rate by activating air booster valve on the program 

panel. (flow rate should be between 10 and 12 scfm. Regulate flow with 

pressure regulator on the main line from step 5 paragraph 8.2.1, it should be 

around 75psi. Switch off air booster after check). 

4. Switch ‘Auto Start’ on, switch baffle heaters on with the desired set point (air 

heater and plenum heater are not part of the auto start).  

 

8.2.3 Procedure After the Gasifier is in Temperature 

 
1. Start the cyclone airlocks (No. 1 & 2), heaters over the cyclones (the heaters 

should be set at 4000 F). 

2. Start piston vibrators (timer) if desired.  

3. Start injection auger. 

4. Start the feeding airlock and hopper mixer.  

5. Start steam generator and check for water inflow at 0.2 gal/min on rotameter 

when solenoid valve opens. Enter this value on panel for boiler water inflow. 

6. On the program panel set air valve to desired percentage (0.425 at 50 psi is 

usual setting). 

7. Next switch off the ‘Auto start’ as soon as the air flow rate starts to increase. 

8. If steam is used start plenum heater and steam measurement system.  

9. Then open the steam valve on the steam generator; wait for the stable steam 

flow rate. 

10. Switch on the biomass with desired frequency and wait for the time set in 

biomass array minutes for accurate biomass flow. 

11. Set stoichiometric ratio according to the biomass experimented and desired 

Equivalence Ratio (ER) in air mode. Switch air mode to automatic when all 

parameters are in range.  

12. Switch off heaters if desired. 

13. Open tracer valve at graduation 70 on rotameter which is 23.5 liters/min and 

switch on tracer mass flow meter (zero calibration may be required). 
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8.2.4 Procedure for the Gravimetric Tar Analysis  

1. Start the Coolant. 

2. Start the rotary evaporator water bath (RO or DI water), and set it to 550C. 

3. Place the round bottom flask (250ml) in the oven for 5min  at 110°C. 

4. Cool down the round bottom flask in the desiccators. 

5. Weigh the round bottom flask on the precision scale and write down the 

weight (up to 10-4 g accuracy).  

6. Take a clean beaker (100ml). Pour some of the tar solution obtained from the 

gasification run into the beaker. 

7. Pour solution from the beaker into the burette (50ml). 

8. Measure 50 ml of solution with the burette into the round bottom flask. Repeat 

the operation a second time to obtain a total of 100 ml.  

9. Place the round bottom flask with the solution on the rotary evaporator. Lower 

the rotary evaporator so that the round bottom flask is half way into the water 

bath and start rotation at 100 rpm. 

10. Open the upper vacuum knob on the rotary evaporator condenser and close the 

lower knob in such way that the injection tube is not on the path of the 

condensing solvent. 

11. Start the vacuum pump; trim the vacuum valve so that vacuum is between 40 

to 50 KPa, in order to initially have 4 droplets per second according to the 

guidelines. 

12. Check for presence of water in round bottom flask. If there is water then inject 

Nitrogen so that vacuum pressures do not go lower than 35 KPa of vacuum. 

Continue until traces of water disappear. If there is no trace of water in the 

flask, time 15 min until end of the experiment.   

13. Stop vacuum pump and break vacuum in the rotary evaporator.  

14. Raise rotary evaporator until the flask out of the water, dry flask outer surface 

with paper towel and remove flask from rotary evaporator. Place flask in the 

desiccators to cool down according to guidelines  

15. Weigh flask and note down the value. 
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8.2.5 Procedures for the tar-sampling system 

 

 

8.2.5.1 Cleaning the probe which is full of ashes 

1. First the compress air plug has to be attached to the port, which is behind the 

U-Tube Manometer.  

2. The two round black knob valves of the U-Tube manometer are closed and the 

three way valve (A black knob which is above the compressed air port is 

turned to the right).  

3. Compressed air is passed through the probe static pressure ports by opening 

the Red valve on the compressed air line (1/8th of a turn only) and by changing 

direction on three-way valve several times.  

4. Return the three-way valve back to initial position; turned to the right with the 

air still open. There are 4 valves, which have to be opened to clean the probe. 

5. First open the Yellow valve and with a wire brush clean the passage until it is 

ash free. After that open the green valve and clean the passage. Now keeping 
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the Green Valve open close the yellow valve in order to flush out some 

residual ashes. Repeat the same procedure by opening the Red and the Black 

valves. 

6. Now close all the valves except the compressed air valve with three way valve 

turned to the right (open towards inner probe static pressure port). The reason 

for a leakage of compressed air is to keep ashes from accumulating into the 

probe prior to an experiment. 

• Note: The two circular knob valves over the U-Tube Manometer must be closed 

while cleaning and the three-way valve turned to the right. The three-way valve 

and compressed air valve will be closed at the beginning of a sampling 

experiment. 

 

8.2.5.2 Cleaning the Filter Casing, the Connecting Tube & the Impingers 

1. Make sure that the filter casing and the connecting tube are free of ashes and 

tar. To ensure this, the entire passage has to be rinsed with acetone 2 to 3 

times after every run or untill there is clean acetone coming out of the lower 

end of the tube.  

2. Check the first impinger in the first ice chest for any kind of impurity. If there 

are any impurities then clean the first impinger and rinse it with acetone. 

 

8.2.5.3 Steps to be followed during the run: Preparing the system for a run: 

1. Take a clean ceramic filter. Keep it in the oven at 110°C for 5 minutes ( to 

remove moisture.  

2. Place the filter to cool down into the desiccator in order.  

3. Weigh the filter on a precision weighing scale and note the weight (accuracy 

up to 0.1 mg) 

4. Next bring the filter and place if into the filter casing along with the Vitton 

seal (‘O’ Ring). 
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Note: The seal should be about 3 to 4 mm below the top circumference of the 

filter. Make sure that al 4 valves on the probe exhaust are closed before 

fixing the filter casing.  

 

5. After placing the filter with the ‘O’ Ring into the casing the entire 

arrangement is properly fixed to the exhaust port. Make sure that the screw 

squeezes the ‘O’ Ring between the exhaust port and the filter casing.  Switch 

on the heathers placed on the filter casing and the connecting tube by flipping 

the switch to the ON position. (Make sure that the thermocouples on both and 

the electric plugs are connected to the control units.). Allow the temperature 

of the casing and the connecting tube to reach up to 490 to 500 Degree F.  

 

 

 

6. Connect the glass elbow adapter at the end of the connecting tube by using 

the black plastic nut, which has a vitton ‘O’ Ring housed into it. Make sure 

that the ‘O’ Ring and the black plastic connecting nut are over the 

connecting tube,  

Temperature 
control unit for 
the heater 
installed on the 
filter casing 

Temperature 
control unit for 
the heaters 
installed on the 
connecting tube 
and the 4-Valve 
system Electrical connector for the 

heater installed on the 
connecting tube. 

The Thermocouple plug for 
the thermocouple installed on 
the connecting tube.  

Electrical connector for the 
heater installed on the filter 
casing.   

The Thermocouple plug for 
the thermo couple installed on 
the filter casing.   
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Note: The stainless connecting tube should be 10 to 15 mm inside the glass 

elbow adapter and then black plastic nut is tightened the elbow adapter.  

 

7. Now connect the larger end of the glass elbow to the inlet of the first 

impinger and clamp it using the metal clamps.  

 

IMPINGER 

 

 

METALIC CLAMP 

 

 

GLASS ELBOW ADAPTER 

GAS INLET PORT 

GAS OUTLET 
PORT 
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8. Place all the impingers into the two ice chests. There are 4 impingers in the 

first ice chest and 2 in the second ice chest. Before making any connections 

make sure that the impingers are properly submerged into the coolant and 

are properly located between the two plexi – glass round plate holders.  

Note: The inlet of the impinger is right at the top and the outlet is a ‘U’ tube on 

the side. Check the ‘O’ Rings for damage on the inlet and the outlet joints 

and replace them if necessary. 

 

9. After all the checks are done, add the following amounts of acetone into the 

impingers: first Impinger 200ml, last Impinger 0ml and 150 ml in all the 

other impingers.  

 

10. Once the entire setup is ready, make the connections as followed. Connect 

the elbow adapter which is on the connecting tube over the inlet of the first 

impinger. Then connect the outlet of the first impinger to the inlet of the 

second with the glass U-connectors (the connections are repeated in the 

counter-clock wise direction in which the impingers are placed along the 

periphery of the first ice chest.) 
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11. The outlet of the last impinger should be connected to the inlet of the 

column containing activated carbon. The outlet of the column goes to the 

inlet of a vacuum pump.  

12. After all these connections are done, check that the K-thermocouple and the 

flow sensor (black plug) are connected to their receiving ports. One 

measures the outlet temperature of the gas and other measures the flow of 

the gas.  

13. Test system for leakage according to guidelines. 

14. Before running the system, check that the temperature in the second ice 

chest is –200 C and that the first one is around 50 Celsius.  

 

The glass U-
connector.  

The connecting 
tube.  

Theglass elbow 
adapter connected 
to the tube.  

First ice chest 

The glass U-
connectors.  

Metallic clamps. 
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8.2.5.4 The Sampling System @ Run Time. 

 

1. Flip the switch of the vacuum pump to the ‘ON’ position. Immediately open 

the green valve above the exhaust port. Then close the red valve, which is on 

the compressed air tube, and close the black valve above the compressed air 

valve. The two circular black valves placed on the either sides of the U-tube 

manometer are open.  (Make sure that the two blue valves above the Vacuum 

Pump are in the following position; extreme right valve closed and the valve 

at the left open.). 

 

 

 

Switch for 
vacuum pump 
  

Turbine flow 
meter (flow of 
clean syn-gas.) 

Blue valve 
(Open during run 
time.) 

The rota-meter (used to 
maintain isokinetic 
conditions) i.e. a constant 
value on the flow meter that 
will balance the level in the 
U-tube Manometer. 

Vacuum pump 
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Right Side View 

 

 

 

 

 

 

 

2. Check if there level of water in the manometer is leveled. To equalize them 

use the Rota meter and adjust the value of the gas flow on the flow Meter.  

3. Once the system is at isokinetic conditions, allow it to run until a gas volume 

of 150 l has been sampled through the system. Simultaneously maintain the 

isokinetic conditions by constantly checking the manometer and by using the 

black valve on the Rota meter. 

 

 

The 3-Way 
black valve.  

Probe cleaning 
valves (red yellow 
& black)  

Green valve: gas and 
ashes enter the filter 
when the valve is 
open. 

The two round black 
knobs of the U-tube 
manometer.  

The compressed 
air port.  

Front 
View 
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8.2.5.5 Procedures to be followed After the Run is Completed.  

 

Once the run is completed, the system is turned off as followed: 

Turn off the vacuum pump by flipping the switch to off position. Then close the Green 

valve above the filter housing once the vacuum pressure is zero. Close the two Black 

knobs attached to the U-tube manometer. Then turn off the heaters on the filter housing 

and the connecting tube by switching off the power to the temperature control boxes.   

 

1. Once the system is turned off, let it cool down. 

2. Remove the glass elbow adapter and place it in a beaker with clean acetone allow 

all the tar to get dissolved into the acetone.  

3. Allow the filter housing and the connecting tube to cool down. Mean while 

reverse the position of the two blue valves. (The valves are shown in the picture 

below.)  

4. Remove the metal clamp fitted at the outlet of the last impinger and disconnect 

the plastic hose. Fill the last impinger with clean acetone. 

Temperature control units 

Electrical switch board for 
the temperature control 
units 
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5. Connect the longer end of the tar collecting system (which is attached with the 

acetone resistance hose and a glass elbow adapter) to the inlet port of the first 

impinger. Attach the metal clamp in order to ensure that there is no leak.  

6. Now insert the tar collecting system with the rubber stopper into a 4000ml 

Erlenmeyer flask. The rubber stopper should be pressed down hard to make sure 

that it is air tight.    

7. Start the vacuum pump and adjust the flow to 6 to 8 l/min. Then the system 

flushes counter current to the gas sampling flow and all the tar and acetone 

mixture from all the impingers flow into the conical flask.  

Blue valve 
1: closed 

Blue valve 
2: open 

The tar 
collecting 
system.  

Plastic 
hose with a 
glass elbow 
adapter 
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8. Refill the last impinger (with the vacuum pump switched off) with clean acetone 

and flush the system. Repeat this process until you get clean acetone out of the 

impingers.  

Note: Check the first impinger if there is ammonia (a white precipitate at the 

bottom of the impinger or stuck to the walls) then drain the acetone and add a 

measured volume of DI water (Deionized Water) and dissolve the ammonia. 

9. Refill all the impingers with fresh clean acetone with the specified quantity 

mentioned in section 4.3 step 9.    

10. If recycled acetone is used make sure to keep a blank sample for data analysis 

later. 
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8.3 GUIDELINES FOR TAR MEASUREMENT  
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8.4 TAR COMPOUNDS ANALYZED ON GC-MS  

 

GC-MS tar compounds 
MW 
g/mol Formula 

Hf 
kJ/mol 

Isobutyronitrile* 69.1 C4H7N 22.8 
1,4-Cyclohexadiene* 80.1 C6H8 104.75 
3-Butenenitrile* 67.1 C4H5N 157.7 
2-Propanone, 1-hydroxy- * 74.0 C3H6O2 -410 
(BTEX); Benzene 78.1 C6H6 82.9 
3-Penten-2-one, (E)- * 84.1 C5H8O -240.2 
(PAH); N-Nitrosodimethylamine 74.0  C2H6N2O -1650 
1H-1,2,4-Triazole* 69.1 C2H3N3 192.7 
(PAH); Pyridine 79.1 C5H5N 140.4 
Pyrrole * 67.1 C4H5N 108.3 
Furan, 2,5-dihydro-* 70.0 C4H6O -109.7 
(BTEX);Toluene 92.1 C7H8 50.2 
1H-Pyrazole* 68.1 C3H4N2 179.4 
2-Amino-4-methylbut-2-enenitrile* 70.1 C5H10 -77.1 
3-Penten-2-one, 4-methyl- * 98.1 C6H10O -195.56 
2-Pentanone, 4-hydroxy-* 102.0 C5H10O2 439.82 
Furfural * 96.1 C5H4O2 -151.04 
2-Pentanone, 4-hydroxy-4-methyl- * 116.0 C5H10O2 439.82 
(Mix 4); Benzene, Chloro- 112.6 C6H5Cl 54.42 
(BTEX); Ethylbenzene 106.2 C8H10 29.8 
(Mix 4); m-Xylene 106.2 C8H10 17.2 
(BTEX); p-xylene 106.2 C8H10 18 
Phenylethyne * 102.1 C8H6 306.6 
(Mix 4); Styrene 104.2 C8H8 148.3 
(BTEX); o-xylene 106.2 C8H10 19.1 
(Mix 4); Benzene, isopropyl- 120.2 C9H12 3.9 
Furan * 68.1 C4H4O -34.7 
1,3,5-Triazine * 81.1 C3H3N3 229.3 
1,3-Cyclopentadiene, 5-(1-methylethyli* 106.2 C8H10 144 
Benzene, 1-ethynyl-4-methyl* 116.0 C9H8 -1.8 
(Mix 4); Benzene, n-propyl- 120.2 C9H12 3.9 
1H-Pyrrole, 2-ethyl-3,4,5-trimethyl-* 137.2 C9H15N n/a 
Benzene, 1-ethyl-3-methyl- * 120.2 C9H12 -1.8 
Benzene, (1-methylethyl)-* 120.2 C9H12 3.9 
(Mix 4); Benzene, 1,3,5-trimethyl- 120.2 C9H12 385.3 
(PAH); Aniline 93.1 C6H7N 86.86 
(PAH); Phenol 94.1 C6H6O -96.4 
Benzene, (1-methylethyl)-** 120.2 C9H12 3.9 
alpha.-Methylstyrene* 118.2 C9H10 118.3 
(PAH); Bis(2-chloroethyl) ether 143.0 C4H8Cl2O -153.3 
Benzonitrile * 161.2 C10H11NO 137.4 
(PAH); Phenol, 2-chloro- 128.6 C6H5ClO -153.3 
Benzene, 1,2,4 trimethyl -* 120.2 C9H12 -13.8 
Pyridine, 2,4,6-trimethyl- * 121.0 C8H11N 103.9 
Benzene, 1-ethenyl-3-methyl- * 134.0 C9H10O -63.1 
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Benzofuran* 118.1 C8H6O -34.89 
2,2,5,5-Tetramethyl-4-ethyl-3-imidazol* 169.0 C9H17N2O n/a 
(PAH); Benzene, 1,3-dichloro- 147.0 C6H4Cl2 25.5 
(PAH); Benzene, 1,4-dichloro- 147.0  C6H4Cl2 22.2 
(Mix 4); Benzene, tert-butyl- 134.2 C10H14 -22.7 
Benzene, 1-ethenyl-2-methyl- * 116.2 C9H7 119.7 
Benzene, 1-ethenyl-4-methyl-* 116.2 C9H8 -94.4 
(PAH); Benzyl Alcohol 108.1 C7H8O -100.4 
Pyridine, 2,5-dimethyl- * 107.0 C7H9N 56.1 
(PAH); Benzene, 1,2-dichloro- 147.0 C6H4Cl2 29.7 
Piperidine, 3-isopropyl- * 85.1 C5H11N -48.9 
Indene * 116.2 C9H8 163.4 
(PAH); Phenol, 2-methyl- 108.1 C7H8O -128.6 
(PAH); Bis(2-chloroisopropyl) ether 170.0 C6H12Cl2O n/a 
Acetic acid, phenyl ester* 136.2 C8H8O2 -279.7 
N,N-bis(1-methylethyl-2-Propen-1-amine* 141.0 C9H19N -161.5 
(PAH); 4-Methylphenol & 3-Methylphenol 108.1 C7H8O -125.3 
(PAH); N-nitroso-di-n-propylamine 130.0 C6H14N2O -82.7 
Phenol, 4-methyl-* 108.1 C7H8O -125.3 
(PAH); Ethane, hexachloro- 236.7 C2Cl6 -138.9 
(PAH); Benzene, nitro- 123.1 C6H5NO2 67.6 
(IS); 1,4-Dichlorobenzene-D4 150.0 C6Cl2D4 n/a 
Benzene, 4-ethenyl-1,2-dimethyl- 132.0 C10H12 -263.6 
Benzofuran, 2-methyl- * 132.0 C9H8O 13.6 
Benzofuran, 7-methyl- ** 132.0 C9H8O 13.6 
Benzofuran, 2-methyl- ** 279.0 C9H8O 13.6 
Benzene, 1,3-diethenyl- * 130.0 C10H10 248.2 
4-Piperidinone, 2,2,6,6-tetramethyl(M)* 155.0 C9H17NO -334.3 
1H-Indene, 2,3-dihydro-4-methyl-* 132.2 C10H12 28 
(PAH); Isophorone 138.2 C9H14O -251 
(PAH); Phenol, 2-nitro- 139.0  C6H5NO3 -204.6 
Benzyl nitrile * 117.0 C8H7N n/a 
(PAH); Phenol, 2,4-dimethyl- 122.2 C8H10O -162.9 
Phenol, 2,5-dimethyl-* 122.2 C8H10O -161.7 
Phenol, 3,5-dimethyl-* 122.2 C8H10O -161.6 
1H-Indene, 1-methyl- * 130.2 C10H10 122 
Benzene, 1-butynyl-* 130.2 C10H10 248.6 
Phenol, 2-ethyl- *  122.2 C8H10O -145.2 
Benzene, (1-methyl-2-cyclopropen-1-yl)* 130.2 C10H10 297 
1H-Indene, 3-methyl-* 130.2 C10H10 122 
Naphtalene* 128.2 C10H8 150.6 
(PAH); Methane, bis(2-chloroethoxy)- 172.0 C5H10Cl2O2 n/a 
4-Piperidinone, 2,2,6,6-tetramethyl-(R) 155.0 C9H17NO -334.3 
(PAH); Phenol, 2,4-dichloro- 162.0 C6H4Cl2O -226.4 
Phenol, 4-ethyl- * 122.2 C8H10O -144.05 
Naphthalene, 1,2-dihydro-* 130.0 C10H10 n/a 
(PAH); Benzene, 1,2,4-trichloro- 181.4 C6H3Cl3 -0.2 
(IS); Naphthalene-D8 128.0 C10D8 n/a 
(PAH); Naphthalene 128.2 C10H8 150.6 
Benzene, (ethenyloxy)-* 120.0 C8H8O -52 
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1-Hexadecene * 224.4 C16H32 -248.6 
(PAH); p-Chloroaniline 127.0 C6H6NCl n/a 
(PAH); 1,3-Butadiene, hexachloro- 260.8  C4Cl6 -29.2 
Benzofuran, 2,3-dihydro- * 120.0 C8H8O -47.3 
1H-Indazole, 3,6-dimethyl-* 146.0 C9H10N2 199 
Benzofuran, 2-ethenyl-* 144.0 C10H8O -29.9 
Methenamine * 140.2 C6H12N4 199 
Quinoline * 129.2 C9H7N 200.52 
Benzenamine, N,N-dimethyl-4-[[(1-methy* 121.0 C8H11N 103.9 
1H-Indene, 2,3-dimethyl-* 144.0 C11H12 261 
Benzofuran, 2,3-dihydro-* 120.2 C8H8O -46.5 
(PAH); Phenol, 4-chloro-3-methyl- 142.0 C7H7ClO n/a 
p-Isobutylbenzaldehyde* 162.0 C11H14O -209.2 
Naphthalene, 1-methyl-* 142.2 C11H10 116.9 
Indole * 117.0 C8H7N 100.2 
(PAH); Naphthalene, 2-methyl- 142.2 C11H10 116.11 
(PAH); Naphthalene, 1-methyl- 142.2 C11H10 116.86 
Benzofuran, 7-methyl-* 132.0 C9H8O 13.6 
(PAH); 1,3-Cyclopentadiene, hexach 272.8 C5Cl6 -102 
1H-Indenol * 132.0 C9H8O n/a 
(PAH); Phenol, 2,4,6-trichloro- 196.0 C6H3Cl3O n/a 
(PAH); Phenol, 2,4,5-trichloro- 196.0 C6H3Cl3O n/a 
1H-Indole, 4-methyl-* 131.0 C9H9N 146.2 
(PAH); Naphthalene, 2-chloro- 162.0 C10H7Cl 55.2 
Biphenyl * 154.2 C12H10 182.4 
3-Tetradecene(Z) * 196.0 C14H28 -271.3 
Naphthalene, 1-ethyl* 156.0 C12H12 111.8 
(PAH); o-Nitroaniline 138.1 C6H6N2O2 63.8 
Naphthalene, 1,4-dimethyl-* 156.2 C12H12 76.1 
Naphthalene, 2,3-dimethyl-* 156.2 C12H12 76.1 
Naphthalene, 2-ethenyl-* 154.0 C12H10 160 
Naphthalene, 1,6-dimethyl-* 156.2 C12H12 76.1 
Naphthalene, 2,6-dimethyl-* 156.2 C12H12 76.1 
Naphthalene, 1,6-dimethyl-** 156.2 C12H12 76.1 
(PAH); Benzene, 1,4-dinitro- 168.1 C6H4N2O4 50.8 
Naphthalene, 2-ethenyl-** 154.0 C12H10 160 
(PAH); Acenaphthylene 152.0 C12H8 193 
(PAH); Dimethyl phthalate 194.2 C10H10O4 -663 
(PAH); 2,6-Dinitrotoluene 162.0 C3H6N4O4 n/a 
(PAH); Benzene, 1,2-dinitro- 168.1 C6H4N2O4 27.8 
Naphthalene, 1,4-dimethyl-** 156.2 C12H12 76.1 
(PAH); 3-Nitroaniline 138.1 C6H6N2O2 58.5 
(IS); Acenaphthene-D10 152.0 C12H8 n/a 
(PAH); Acenaphthene 154.2 C12H10 155 
1,1'-Biphenyl, 3-methyl-* 168.0 C13H12 166.4 
(PAH); Phenol, 2,4-dinitro- 184.0 C6H4N2O5 n/a 
1-Naphthalenol* 144.2 C10H8O -29.9 
2-Naphthalenol* 144.2 C10H8O -29.9 
Phenol, 3,5-bis(1,1-dimethylethyl)- * 206.0 C14H22O -410 
(PAH); Dibenzofuran 168.2 C12H8O 83.4 
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(PAH); Phenol, 4-nitro- 139.0 C6H5NO3 -207.1 
(PAH); 2,4-Dinitrotoluene 234.0 C10H6N2O5 -172 
(PAH); Phenol, 2,3,4,6-tetrachloro- 230.0 C6H2Cl4O n/a 
Naphthalene, 2-(1-methylethenyl)-* 168.0 C13H12 154.3 
(PAH); Phenol, 2,3,5,6-tetrachloro- 230.0 C6H2Cl4O n/a 
1(2H)-Acenaphthylenone* 168.0 C12H8O 52.1 
(PAH); Fluorene 166.2 C13H10 171 
(PAH); Benzene, 1-chloro-4-phenoxy- 204.0 C12H9ClO n/a 
Fluorene-9-methanol* 196.0 C14H12O n/a 
(PAH); Diethyl Phthalate 222.2 C12H14O4 -688.3 
Fluorene* 166.2 C13H10 171 
Dibenzofuran* 168.2 C12H8O 47.3 
2-Naphthalenol, acetate* 186.0 C12H10O2 n/a 
Fluorene** 166.2 C13H10 171 
(PAH); p-Nitroaniline 138.1 C6H6N2O2 59.5 
(PAH); Phenol, 2-methyl-4,6-dinitro- 198.0 C7H6N2O5 -279 
Fluorene*** 166.2 C13H10 171 
(PAH); Diphenylamine 198.0 C12H10N2O 227 
Dibenzofuran, 4-methyl-* 182.0 C13H10O 52.9 
(PAH); Azobenzene 182.0 C12H10N2 374 
Fluorene**** 166.2 C13H10 171 
Fluorene***** 166.2 C13H10 171 
(PAH); Benzene, 1-bromo-4-phenoxy- 248.0 C12H9BrO n/a 
(PAH); Benzene, hexachloro- 284.8 C6Cl6 -33.9 
9H-Fluorene, 1-methyl-* 180.0 C14H12 149.1 
Phenol, 2-(1-phenylethyl)-* 198.0 C14H14O 93.6 
9H-Fluorene, 9-methyl-* 180.3 C14H12 148 
9H-Fluorene, 2-methyl-* 180.3 C14H12 149.1 
(PAH); Phenol, pentachloro- 264.0 C6HCl5O -292.5 
(PAH); Phenanthrene 178.2  C14H10 207.5 
(IS); Anthracene-D10 188.0 C14D10 n/a 
(PAH); Anthracene 178.2 C14H10 227.7 
(PAH); Carbazole 167.2 C12H9N 209.6 
Anthracene, 2-methyl-* 192.3 C15H12 196.9 
Anthracene, 9-methyl-* 192.3 C15H12 196.9 
Phenanthrene, 4-methyl-* 192.3 C15H12 195.8 
4H-Cyclopenta[def]phenanthrene* 190.0 C15H10 227 
(PAH); Dibutyl phthalate 278.3 C16H22O4 -750.9 
Phenanthrene, 1-methyl-* 192.3 C15H12 196.9 
4H-Cyclopenta[def]phenanthrene** 190.0 C15H10 227 
Naphthalene, 2-phenyl-* 204.0 C16H12 466.1 
(PAH); Fluoranthene 202.3 C16H10 289 
(PAH); Pyrene 202.3  C16H10 225.7 
Fluoranthene* 202.3 C16H10 292 
11H-Benzo[c]fluorene* 216.0 C17H12 294.2 
Pyrene, 1-methyl-* 216.0 C17H12 294.2 
Pyrene, 1-methyl-** 216.0 C17H12 294.2 
Benzanthrene* 228.0 C18H12 277 
(PAH); Benzyl butyl phthalate 312.0 C19H20O4 n/a 
(PAH); bis(2-ethylhexyl) adipate 370.0 C22H42O4 n/a 
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Phenol, 2,4-bis(1-phenylethyl)-* 302.0 C22H22O n/a 
Phenol, 2,4-bis(1-phenylethyl)-** 302.0 C22H22O n/a 
Phenol, 2,4-bis(1-phenylethyl)-*** 302.0 C22H22O n/a 
(PAH); Benz[a]anthracene 228.0 C18H12 275.73 
(IS); Chrysene-D12 240.0 C18D12 n/a 
(PAH); Chrysene 228.3 C18H12 269.8 
(PAH); Bis(2-ethylhexyl) phthalate 390.6 C24H38O4 -967 
(PAH); Di-n-octyl phthalate 390.6 C24H38O4 -966.72 
(PAH); Benzo[b] fluoranthene 252.0 C20H12 348.025 
(PAH); Benzo[k] fluoranthene 252.0 C20H12 348.025 
(PAH); Benzo[a] pyrene 252.0 C20H12 307.4505 
(IS); Perylene-D12 264.0 C20D12 n/a 

(PAH); Indeno[1,2,3-cd]pyrene 276.0 C22H12 371.03 
(PAH); Dibenz[a,h]anthracene 278.0 C22H14 317.908 
(PAH); Benzo[ghi]perylene 276.0 C22H12 316.234 

 
Table 8.1: List of tar compounds analyzed with GC-MS method 
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8.5 DATA ANALYSIS  

This chapter relates of the calculations of mass and energy balances determined 

from the results obtained from a gasification run. 

 

An Excel file provides the user the opportunity to analyze runs made on the 

fluidized bed gasifier (FBG) pilot plant in order to obtain mass and energy balances and 

take into account other important analytical data from the GC-TCD gas analyzer and the 

GC-MS tar compounds analyzer. 

 

The file contains multiple spreadsheets linked to each other for calculations, which 

tabs are in order from left to right. This order is important because it is  recognized by the 

macros programmed for calculation and organization of the data. They are: 

• Sheet 1: “Graphs” contains all the charts that can be generated via macro; 

Graph spreadsheet data source is “All”.  

• Sheet 2: “All” contains all results from all the file experiments.  

• Sheet 3: “Biomass” contains each biomass and char characteristics  

• Sheet 4: “Constants” contains all chemical and thermodynamics contants for 

all calculations.  

• Sheet 5: “Inputs” contains all inputs external to the fluidized bed gasifier 

Labview data set 

• Sheet 6: “Gas GC” contains all gas compositions from the GC-TCD 

• Sheet 7: “Tar GCMS” contains all tar compounds compositions from the GC-

MS 
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• Sheet 8: “Water” contains all water samples results from the GC-MS 

• Sheet 9-last: All runs calculations named by process and biomass types: 

• “SA(#)” switchgrass air gasification 

• “SP(#)” switchgrass pyrolysis and heat supplemented air gasification 

• “SS(#)” switchgrass steam gasification.  

• “BA(#)”bermudagrass air gasification 

• “BP(#)” bermudagrass pyrolysis and heat supplemented air gasification 

• “BS(#)” bermudagrass steam gasification.  

• “CGA(#)” corn gluten air gasification 

• “CGP(#)” corn gluten pyrolysis and heat supplemented air gasification 

• “CGS(#)” corn gluten steam gasification.  
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8.5.1 SHEET 1: “GRAPHS”  

 

These graphes are generated by three macros: 

• Sub Graph() creates seven graphes for 3 processes. 

• Sub Align_Graph() subroutine of Sub Graph() aligns graphes on the 

spreadsheet in an orderly display, user may call it or not call it from Sub 

Graph() as desired. 

• Sub Align_titles() positions titles for charts and axis and sets fonts and color. 

 

The user may modify these macros manually through the visual basic editor. 
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8.5.2 SHEET 2: “ALL”  

All results from the entire file of runs calculations are linked for display in this 

spreadsheet. 

 

Date  
Run # 
ER ratio 
S/B ratio 
Time h 
Tbed (Celsius) Celsius 
Biomass used kg 
Measured Gas flow 
(scfm) stp BS usa scfm 
Airflow scfm 
Sampling flow l/min 
Total sampling liters 
Airlock leak scfm 
RAirflow scfm 
Biomassflow kg/h 
SR ratio 
MC %wb 

Baffle 
% 
power 

Air Ht 
% 
power 

Steam flow kg/h 
H2 % mol 
N2 % mol 
CO % mol 
CH4 % mol 
CO2 % mol 
C2H2 % mol 
C2H4 % mol 
C2H6 % mol 
HHVg kJ/kg 
HHVg kJ/Nm3 
dry gas density kg/Nm3 
wet gas density kg/Nm3 
Gas mol wt g/mol 
C to gas % 
C to CO % 

C to PM % 
C to tar % 
Tar grav. g/Nm3 
Tar GCMS g/Nm3 
Tar appGCMS g/Nm3 
PM flow g/Nm3 
H2O conc g/Nm3 
Tar compound  #1 g/Nm3 
Tar compound  #2 g/Nm3 
Tar compound  #3 g/Nm3 
Tar compound  #4 g/Nm3 
Tar compound  #5 g/Nm3 
Tar compound  #6 g/Nm3 
Tar compound  #7 g/Nm3 
Tar compound  #8 g/Nm3 
Tar compound  #9 g/Nm3 
Tar compound  #10 g/Nm3 
Tar compound  #11 g/Nm3 
C # 
H # 
N # 
O # 
Tar average MW g/mol 
Hf tar kJ/kg 

DHr 
kJ/kg 
CHO 

H2O mg/ml 
Mass Bal kg/h 
Airleak scfm 
C bal mol/h 
H Bal mol/h 
O Bal mol/h 
C bal err % 
H bal err % 
O bal err % 
waste heat kW 
Tar compound  #1 Name 

Tar compound  #2 Name 
Tar compound  #3 Name 
Tar compound  #4 Name 
Tar compound  #5 Name 
Tar compound  #6 Name 
Tar compound  #7 Name 
Tar compound  #8 Name 
Tar compound  #9 Name 
Tar compound  #10 Name 
Tar compound  #11 Name 
CHObiomass mol/h 
C mol/h 
H mol/h 
O mol/h 
N mol/h 
H2Omoist. mol/h 
H2Osteam mol/h 
O2 mol/h 
N2 mol/h 
  
H2 mol/h 
N2 mol/h 
CO mol/h 
CH4 mol/h 
CO2 mol/h 
C2H2 mol/h 
C2H4 mol/h 
C2H6 mol/h 
H2Og mol/h 
  
Csolids mol/h 
Hsolids mol/h 
Osolids mol/h 
Nsolids mol/h 
  
C7HNOtar mol/h 
Ctar mol/h 
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Htar mol/h 
Otar mol/h 
Ntar mol/h 
  
CHObiomass kg/h 
C kg/h 
H kg/h 
O kg/h 
N kg/h 
Ash kg/h 
H2Omoist. kg/h 
H2Osteam kg/h 
O2 kg/h 
N2 kg/h 
  
H2 kg/h 
N2 kg/h 
CO kg/h 
CH4 kg/h 
CO2 kg/h 
C2H2 kg/h 

C2H4 kg/h 
C2H6 kg/h 
H2O kg/h 
  
Csolids kg/h 
Hsolids kg/h 
Osolids kg/h 
Nsolids kg/h 
Ashsolids kg/h 
  
CHONtar kg/h 
Ctar kg/h 
Htar kg/h 
Otar kg/h 
  
CHOy # mole 
C # mole 
H # mole 
O # mole 
N # mole 
H2O # mole 

O2 # mole 
N2 # mole 
  
H2 # mole 
N2 # mole 
CO # mole 
CH4 # mole 
CO2 # mole 
C2H2 # mole 
C2H4 # mole 
C2H6 # mole 
H2O # mole 
  
Csolids # mole 
Hsolids # mole 
Osolids # mole 
Nsolids # mole 
  
C7HOtar # mole 

Table 8.2  Analysis results 
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8.5.3 SHEET 3: “BIOMASS”  

This sheet relates of the experimental characteristics of each biomass type and 

respective chars. It also contains the calculations defining a hypothetical molecule of 

biomass, such as stoichiometric ratios and enthalpies of formation. 

The requested inputs in this spreadsheet are: 

• High heating value-(HHV) of moisture ash free biomass (MAF), (Btu/lb) 

• Elemental analysis of the biomass: 

o %wt dry basis (db) composition 

o Moisture content, % 

 

%wt wb composition for each atom: 

100

%100
%% 2 biomass

wbwt
dbwtwbwt OH

ii
−

×=  (8.1) 

 

Considering the stoichiometric combustion of biomass: 

 1 CHxOy + (1+x/4-y/2) O2 → 1 CO2 + x/2 H2O (8.2) 

Stoichiometric Ratio (SR): 

( )













××+×+








 −+×
==

biomass

dbwtOHC

O

CHO
MyMxM

yx
M

biomassdryofmass

combustionforoxygenofmass

%

100

24
1

SR
2

 ( 8.3) 

 

Carbon ratio formula for biomass is CHxOy with: 



 

 335 

C

O
O

C

H
H

M

C
M

O

yAtomic

M

C
M

H

xAtomic
%

%

#
%

%

# ====  ( 8.4) 

 

The enthalpy of formation of the hypothetical molecule of biomass or char is 

calculated from the measured HHV and elemental analysis of a biomass or char sample. 

Considering the stoichiometric combustion of this hypothetical molecule of biomass: 

OH
x

COO
yx

CHxOy HHV
222 2

)
24

1( + →−++  (8.5) 

and  

∑ ∑−= reactantsproductsHHV  (8.6) 

since 0
2

=∆ OfH  

HHVHHH OHfCOfOCH yx
−∆+∆=∆

22
 (8.7) 

since molJH COf /393510
2

−=∆  and molJH OHf /285830
2

−=∆  

HHV
x

molJmolJH
yxOCHf −×−−=∆

2
/285830/393510  (8.8) 

 

 

8.5.4 SHEET 4: “CONSTANTS”  

This spreadsheet contains all the thermodynamic constants common to most 

calculations in the entire file: 

 



 

 336 

 

Constant's name Value Unit 

R 8.21E-02 
l.atm/K 
/mol 

K factor for Mass-track 
He conversion 1.454  

Helium density stp 0.1786 g/l 
Conversion CF to liters 28.31685 l/cf 
Mol % O2 in Air 20.95%  
Mol % N2 in Air 78.08%  

Mass % O2 in Air 23.46%  
Mass % N2 in Air 76.52%  
Normalized Mol % O2 
in Air (N2 O2) 21.16%  
Normalized Mol % N2 
in Air (N2 O2) 78.84%  
Molecular weight of 

dry air 28.9644 g/mol 
Molecular ratio N2/O2 3.727  
Conversion Btu/lbs to 

kJ/kg 2.3244  

Hf He 0.00 kJ/mol 

Hf H2 0.00 kJ/mol 

Hf N2 0.00 kJ/mol 

Hf O2 0.00 kJ/mol 

Constant's name Value unit 
Hf CO -110.53 kJ/mol 
Hf CH4 -74.81 kJ/mol 

Hf CO2 -393.51 kJ/mol 
Hf C2H2 226.73 kJ/mol 
Hf C2H4 52.26 kJ/mol 

Hf C2H6 -84.68 kJ/mol 
Hf water  -285.83 kJ/mol 
Latent heat of 

evaporation of water 2270.00 kJ/kg 
Sensitive heat of water 4.19 kJ/kg.K 
Sensitive heat of dry air 1.01 kJ/kg.K 
H2 14.27 kJ/kg/K 
N2 1.00 kJ/kg/K 
O2 0.92 kJ/kg/K 
CO 1.04 kJ/kg/K 

CH4 2.23 kJ/kg/K 

CO2 0.85 kJ/kg/K 
C2H2 1.47 kJ/kg/K 
C2H4 1.54 kJ/kg/K 
C2H6 1.77 kJ/kg/K 

 

Table 8.3  Thermodynamic constants 

 

 Air standard condition  
  SI BS BS in USA Mass flow meter 
T (K) / (F) 273.15 80 288.7056 60 294.2611 70 
Pa (atm) / (psi) 1 14.4   14.696 1 14.696 
Vol mol (l/mol) 22.414         
Humidity (%) 0 60       
Air density (kg/m3)or(g/l) 1.293           

Table 8.4  Air standard conditions in British systems, American BS, and SI system 
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Heating Values of kJ/kg kJ/Nm3 
Pure Gases HHV LHV HHV LHV 

H2 141854.33 119527.00 12766.85 10757.64 

N2 0 0 0 0 
O2 0 0 0 0 
CO 10092.09 10092.09 12616.16 12616.16 

CH4 55604.86 50004.19 39891.17 35872.75 

CO2 0 0 0 0 
C2H2 49945.58 48195.90 58518.21 56467.14 

C2H4 50313.94 47174.55 63206.36 59439.10 

C2H6 51904.56 47509.42 69903.73 64043.53 

Table 8.5  Heating values of pure gases 
 

8.5.5 SHEET 5: “INPUTS”  

The Inputs are: 

• Date 

• Run number 

• Material type (switchgrass, bermudagrass, corn gluten) 

• Steam flow rate (kg/h) 

• Initial particulate matter filter weight (g) 

• Filter and particulate matter weight after cooling (g) 

• Filter and particulate matter weight after Soxhlet extraction (g) 

• Total solvent volume (Acetone) used (impingers, rinsing, and Soxhlet) (ml)  

• Solvent (acetone) volume used in the rotary evaporator (ml); tar gravimetric 

method. 
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• Rotary evaporator flask weight (g) 

• Gas total measured sample volume (l)  

• Solvent sample water content (mg/ml) from GC-MS 

• Tar method used for mass balance:“gc” (for gas chromatograph method) or 

“grav” (for gravimetric method) 

• power to plenum heater (0 = no, 1 = yes) 

• % power baffle heaters (0-100%) 

• % power air heater (0-100%) 

• Number of baffle heaters in use (1-3) 

 

8.5.6 SHEET 6: “GAS GC”  

Results of GC analysis of gases results are stored in this spreadsheet. It allows 

storage up to four gas sampling composition results of the 10 gases calibrated in the 

method of the Varian 3800P GC-TCD. In order of elution, the gases are: He, (tracer), H2, 

N2, O2, CO, CO2, CH4, C2H2, C2H4, C2H6. 

 

As all the rest of the file first spreadsheets for data inputs, each line of the “Gas 

GC” spreadsheet represents one run. Thus the four gas samples raw compositions results 

are lined up over 40 columns in the precise order of their elution, listed above. The 4 first 

columns are used for run referencing: Date, Run #, ER, S/B. 
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The mention of a raw composition is important. It does not matter whether or not 

the compositions are normalized, or with oxygen from incorrect sampling. The 

calculations are such that all samples will be normalized without their tracer or the 

oxygen coming from incorrect sampling. This calculation also takes into account the 

amount of nitrogen associated with the presence of oxygen from the air. 

This line of data is linked to a run sheet starting from sheet #9; excel counts sheets 

from left to right starting at #1. This detail is important in using the visual basic (VB) 

macro used for general modifications of cell addressing and calculation formulas. 

 

8.5.7 SHEET 7: “TAR GCMS”  

As for the GC spreadsheet, all GC-MS results are loaded in a single line per run. 

The list of the 210 compounds is listed in Table 2.1. Again, the four first columns are 

used for run referencing: Date, Run #, ER, S/B. 

The compositions in this spreadsheet must be in µg/ml of solvent (in our case, 

acetone) used in the tar sampling system with any dilution calculations already taken into 

account. 
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8.5.8 SHEET 8: “WATER”  

 

This spreadsheet is a temporary storage location for the water inputs with no link to 

the rest of the file. Water concentration from the solvent are actually entered in column D 

in the input spreadsheet. 

 

8.5.9 SHEET 9 TO LAST: “ALL RUNS”  

This spreadsheet template is color coded: 

• Gold for the biomass feed 

• Sky blue for air and gases 

• Turquoise for steam 

• Light gray for particulate matter 

• Dark gray for tar 

• Green for the helium tracer 

• Purple text for energy balance results in kW 

• Orange text for energy balance results in kJ/mol 

• Brown for mass balance 

• Black for mole balance 

Depending on the user choice performed in the Input spreadsheet, the mass 

balance is calculated relative to the amount of inert gas either N2 or He. In the case of N2, 
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an important parameter is to evaluate the airlock leakage. Because there is considerable 

variation in the airlock leakage, its calibration may vary. As the result, it is recommended 

that helium be used as a tracer even in air gasification; It is easier and more precise for all 

process types. 

 

For each run, all data are calculated in this sheet type. The set of data from the 

GAS11.vi recorded run file of the fluidized bed gasifier (FBG) unit is copied for each 

spreadsheet starting on rows 70 to 1000 in the same column order. 

All averages, minimums and maximums necessary from the data recording of a 

FBG run for calculations are made on row 69. This row is also copied in black on the 

right side of the “Input” spreadsheet so that all inputs can be viewed at once. 

All calculations for biomass, air, steam, gas, tar, water, particulate matter, mass 

balance and energy balance are made individually for each run. A nitrogen balance was 

initially performed since this inert gas is the most abundant element in air gasification. 

But a helium tracer was later introduced as a more accurate method to perform mass 

balance and energy balance calculations. A second basis for mass balance is also the 

oxygen balance. 

Each sheet currently recognizes three biomass names: switchgrass, bermudagrass, corn 

gluten. 

Each sheet works with two gasifying agents (air and steam) simultaneously 
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In these spreadsheets, all data in red are inputs from the “Biomass”,“Input”,”Gas 

GC”, and “Tar GCMS” spreadsheets. All other numbers are either constants or 

calculation results. Row #1-#3 are dedicated to those inputs see Table 4.5. 

R\C C#1 C#2 C#3 C#4 C#5 C#6 C#7 
R#1 

Date Run# Material  
steam 
(kg/h) 

Filter 
(g) 

PMt + filter 
wet (g) 

PM + filter 
washed & dry (g) 

R#2 5/27/2004 1 Switchgrass 0.00 2.74 12.73 12.74 
R#3 Tracer (He 

or N2) N2 
He flow 
(lpm) 22.50    

 
R\C C#6 C#7 C#8 C#9 C#10 C#11 C#12 
R#1 

Acetone (ml) 
Evap.Vol. 
(ml) 

Tar Flask 
(g) 

Tar Flask 
dry (g) 

H2O mg/ml 
acetone 

Feed 
C (%db) 

H 
(%db) 

R#2 1500.00 1500.00 3.99 16.88 102.91 49.67 5.27 
R#3 Tar method 

(gc/grav)   Gc 55.95 Goalseek 102.91 
 

R\C C#13 C#14 C#15 C#16 C#17 C#18 
R#1 O 

(%db) 
N 

(%db) 
S 

(%db) 
Ash 

(%db) 
Moist 
(%wb) 

HHV maf 
kJ/kg 

R#2 40.31 0.57 0.07 4.11 8.73 8401.00 
 

 C#19 C#20 C21 C#22 C#23 C#24 C#25 
R1 PM 

 C 
(%db) 

H 
(%db) 

O 
(%db) 

N 
(%db) 

S 
(%db) 

Ash 
(%db) 

PM maf 
HHV 
kJ/kg 

R#2 50.08 0.68 1.97 1.00 0.15 46.12 13635 
Table 8.6  Run sheet input area rows#1-3 column#1-27 example (all four tables are aligned 
left to right) 
 

The cells between rows #4-15 over the first 17 columns, Table 4.6, are reserved 

for gas normalization, oxygen sampling leak removal and gas HHV calculation. The red 

lined pattern in the helium row indicates that the tracer in NOT part of the percentage 

calculation. 
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R\C C#1 C#2 C#3 C#4 C#5 C#6 C#7 
R#4 Gas Aver norm StdDev Sample1 Sample2 Sample3 Sample4 
R#5 He 0.00 0.00 0.0000 0.0000 0.0000 0.0000 
R#6 H2 4.87 1.14 3.5380 4.7978 0.0000 0.0000 
R#7 N2 57.67 5.21 57.7913 56.1439 0.0000 0.0000 
R#8 O2 0.00 0.00 1.1550 2.8290 0.00 0.0000 
R#9 CO 15.75 3.94 11.3053 15.6704 0.0000 0.0000 
R#10 CH4 3.78 1.35 2.4667 3.9997 0.0000 0.0000 
R#11 CO2 15.26 0.22 13.4444 12.7631 0.0000 0.0000 
R#12 C2H2 0.23 0.21 0.3306 0.0685 0.0000 0.0000 
R#13 C2H4 1.95 0.53 2.0282 1.3302 0.0000 0.0000 
R#14 C2H6 0.49 0.25 0.5778 0.2599 0.0000 0.0000 
R#15 totals 100.00   92.64 97.86 0.00 0.00 

 
R\C C#8 C#9 C#10 C#11 
R#4 kJ/kg   kJ/Nm3   
R#5 HHV LHV HHV LHV 

R#6 141854.3 119527 12766.85 10757.64 

R#7 0 0 0 0 

R#8 0 0 0 0 

R#9 10092.09 10092.09 12616.16 12616.16 

R#10 55604.86 50004.19 39891.17 35872.75 

R#11 0 0 0 0 

R#12 49945.58 48195.9 58518.21 56467.14 

R#13 50313.94 47174.55 63206.36 59439.1 

R#14 51904.56 47509.42 69903.73 64043.53 

R#15 4524.64819 4245.46452 5823.69989 5467.35079 
 

R\C C#12 C#13 C#14 C#15 C#16 C#17 
R#4 Normalized Normalized Normalized Normalized g/mol % wt dg 
R#5 0.00 0.00 #DIV/0! #DIV/0!     
R#6 4.06 5.68 #DIV/0! #DIV/0! 2 0.34 
R#7 61.36 53.98 #DIV/0! #DIV/0! 28 56.21 
R#8 0.00 0.00 0.00 0.00 32 0.00 
R#9 12.97 18.54 #DIV/0! #DIV/0! 28 15.36 
R#10 2.83 4.73 #DIV/0! #DIV/0! 16 2.11 
R#11 15.42 15.10 #DIV/0! #DIV/0! 44 23.37 
R#12 0.38 0.08 #DIV/0! #DIV/0! 26 0.21 
R#13 2.33 1.57 #DIV/0! #DIV/0! 28 1.90 
R#14 0.66 0.31 #DIV/0! #DIV/0! 30 0.51 
R#15 100.00 100.00 #DIV/0! #DIV/0! 28.73 100.00 

Table 8.7  Gas composition and HHV calculations rows #4-15 columns #1-17 (all three 
tables are aligned left to right) 
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The area between row #16-30 and column #4-18 in Table 4.7 is dedicated to tar 

approximation calculation over the 11 most important compounds in this run.(molecular 

weight (MW) and atomic composition) 

R\C C#4 C#5 C#6 C#7 C#8 C#9 
R#16 Tar  g/mol C H N O 
R#17 (BTEX); Benzene 78.114 6 6 0 0 
R#18 (BTEX);Toluene 92.141 7 8 0 0 
R#19 (PAH); Phenol 94.113 6 6 0 1 
R#20 (PAH); Naphthalene 128.174 10 8 0 0 
R#21 Indene * 116.163 9 8 0 0 
R#22 Benzene, 1-ethenyl-3-methyl- * 134 9 10 0 1 
R#23 (PAH); 4-Methylphenol & 3-

Methylphenol 108.14 7 8 0 1 
R#24 (PAH); N-nitroso-di-n-propylamine 130 6 14 2 1 
R#25 (Mix 4); Styrene 104.152 8 8 0 0 
R#26 (PAH); Pyridine 79.102 5 5 1 0 
R#27 Benzofuran* 118.13 8 6 0 1 
R#28 MW 14.00 1 1.07 0.02 0.04 
R#29 MW  107.72 7.70 8.11 0.13 0.34 
R#30 Error 0.01%         

 
R\C C#10 C#11 C#12 C#13 
R#16 g/Nm3 % mass total % mass 11 first compounds % mol 
R#17 2.73 19.65 30.19 36.70 
R#18 1.31 9.41 14.46 14.90 
R#19 1.05 7.57 11.64 11.74 
R#20 0.67 4.81 7.39 5.47 
R#21 0.63 4.52 6.95 5.68 
R#22 0.61 4.37 6.72 4.76 
R#23 0.60 4.33 6.65 5.84 
R#24 0.55 3.93 6.03 4.41 
R#25 0.46 3.31 5.08 4.63 
R#26 0.44 3.19 4.90 5.88 
R#27 0.38 2.73 4.20 3.37 
R#28 9.05 65.06 100.00 100.00 

 
R\C C#14 C#15 C#16 C#17 C#18 
R#16 mol/Nm3 C mol/Nm3 H mol/Nm3 N mol/Nm3 O mol/Nm3 
R#17 0.21 0.21 0.00 0.00 3.50E-02 
R#18 0.10 0.11 0.00 0.00 1.42E-02 
R#19 0.07 0.07 0.00 0.01 1.12E-02 
R#20 0.05 0.04 0.00 0.00 5.22E-03 
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R#21 0.05 0.04 0.00 0.00 5.42E-03 
R#22 0.04 0.05 0.00 0.00 4.54E-03 
R#23 0.04 0.04 0.00 0.01 5.57E-03 
R#24 0.03 0.06 0.01 0.00 4.20E-03 
R#25 0.04 0.04 0.00 0.00 4.42E-03 
R#26 0.03 0.03 0.01 0.00 5.61E-03 
R#27 0.03 0.02 0.00 0.00 3.22E-03 
R#28 6.46E-01 6.88E-01 1.40E-02 2.55E-02 9.54E-02 

Table 8.8  Calculations for tar approximation to 11 compounds rows#16-30 columns#4-18 
(all three table are aligned left to right) 
 

The area between row #16-30 and column #1-3 in Table 4.8 calculates and 

display ER, S/B ratio, input and output flows of the fluidized bed gasifier pilot plant. 

Important:  This is also where the total volume of the gas sampled is calculated with 

correction for air from vacuum leakage in the sampled gas. 

R\C C#1 C#2 C#3 
R#16 Biomass mass flow (kg/h) 11.79   
R#17 Real Air (kg/h) / (scfm) 13.55 6.52 
R#18 Air leak (kg/h) / (scfm) 6.09 2.93 
R#19 Steam (kg/h) / (cfm) 0.00 0.00 
R#20 ER 0.22   
R#21 S/Biomass 0.10   
R#22 Dry Gas density (kg/m3) / Wet 1.28 0.92 
R#23 Measured gas flow (kg/h) stp / (scfm) 32.41 15.73 
R#24 Std Gas sample volume (l) 627.43   
R#25 Leak corrected Std Gas sample volume (l) 543.67   
R#26 Dry Gas flow (kg/h) / (Nm3/h) 18.19 14.19 
R#27 PM flow (kg/h) / (g/Nm3dg) 0.26 18.39 
R#28 Gravimetric tar (kg/h) / (g/Nm3dg) 0.34 23.71 
R#29 GCMS TAR (kg/h) / (g/Nm3dg) 0.20 13.92 
R#30 H2O (kg/h) / (g/Nm3dg) 4.03 283.93 

Table 8.9  ER, S/B ratios, input and output flow rates rows#16-30 columns#1-3 
 

Finally, all detailed tar calculations over the method 210 compounds are made in 

the area between rows #1-22 columns #28-239 see in Table 4.9. The second row of this 

zone is reserved for receiving data from the 210 concentrations from the “Tar GCMS” 

spreadsheet #7. Column 29 contains all totals and averages for tar. 
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R\C C#28 C#29 C#30 C#31 C#32 C#33 C#34 C#35 C#36…… 
R#1 GC-MS 

sample 
Total 
Tar  Isobutyronitrile* 

1,4-
Cyclohexadiene* 

3-
Butenenitrile* 

2-Propanone, 
1-hydroxy- * 

(BTEX); 
Benzene 

3-Penten-2-
one, (E)- * 

(PAH); N-
Nitrosodimethylamine 

R#2 ug/ml 8337.09 0 0 0 0 990.84 5.54 0 
R#3 exclusion 12.00    y   y  
R#4 g/Nm3 13.92 0.00 0.00 0.00 0.00 2.73 0.00 0.00 
R#5 % mass 100.00 0.00 0.00 0.00 0.00 19.65 0.00 0.00 
R#6 g/mol 107.72 69.11 80.13 67.09 74 78.114 84.118 74 
R#7 C multiplier 

/ Formulas 7.70 C4H7N C6H8 C4H5N C3H6O2 C6H6 C5H8O  C2H6N2O 
R#8 C 1 4 6 4 3 6 5 2 
R#9 H 1.053 7 8 5 6 6 8 6 
R#10 N 0.017 1  1    2 
R#11 O 0.044    2  1 1 
R#12 Cl 0.000        
R#13 mol/Nm3 0.13 0.00 0.00 0.00 0.00 0.03 0.00 0.00 
R#14 % mol 100.00 0.00 0.00 0.00 0.00 27.09 0.00 0.00 
R#15 mol/Nm3 C 0.99 0.00 0.00 0.00 0.00 0.21 0.00 0.00 
R#16 mol/Nm3 H 1.05 0.00 0.00 0.00 0.00 0.21 0.00 0.00 
R#17 mol/Nm3 N 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
R#18 mol/Nm3 O 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
R#19 mol/Nm3 Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
R#20 Hf kJ/mol  31.36 22.8 104.75 157.7 -410 82.9 -240.2 -1650 
R#21 Hf kJ/kg  291.11 0.00 0.00 0.00 0.00 208.49 0.00 0.00 
R#22 Hf kJ/mol  31.36 0.00 0.00 0.00 0.00 22.46 0.00 0.00 

Table 8.10  Tar calculations example rows#1-22 columns#28-239 
 

The following is the last area of the run sheet in Table 4.10. It contains all the detailed calculations of the mole, mass and 

energy balances. All totals are calculated in the left two first columns. 
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R\C C#1 C#2 C#3 C#4 C#5 C#6 C#7 C#8 C#9 C#10 C#11 C#12 C#13 C#14 C#15 C#16 C#17 C#18 C#19 C#20 
R#39 

Input    Biomass 12  1  16  14  32  Moisture   18 Air  32   28 
R#40 

Hf kJ/mol -162.9 -126.23 12  1  16  14  32  -36.70 1 16 0 16 0 14 

R#41 Balance C/mol 
Cin 0.000 1 C 1.27 H 0.61 O 0.01 N 0.00 S Ash 0.13 H O 0.220 O 0.83 N 

R#42 
Hf kJ/h -72542.08 

-
56203.52 1  1.00  1.00  1  1   

-
16338.56 2 1 0 2 0 2 

R#43 mol/h    445.25  566.90  271.01  4.38  0.24     57.16  97.98  365.16 
R#44 kg/h 25.15 10.25 5.34  0.57  4.34  0.06  0.01 0.44   1.03  3.14  10.22 
R#45 % wt wb of 

biomass feed 100.00   45.33   4.81   36.79   0.52   0.06 3.75     8.73         

R#46 
Gas Output   Tracer   

Fuel 
Gas 2   28    28   16    44    26 

R#47 
Hf kJ/mol -256.3     0.0 1 0 14 -24.76 12 16 -4.02 12 1 -85.40 12 16 0.74 12 1 

R#48 
mol Cgas/mol Cin 0.571     0.07 H 0.82 N 0.22 C O 0.05 C H 0.22 C O 0.00 C H 

R#49 
Hf kJ/h 

-
114113.50     0.00 2 0.00 2 

-
11025.81 1 1 

-
1790.97 1 4 

-
38025.04 1 2 330.36 2 2 

R#50 
mol/h 857.04      30.82   365.16     99.75     23.94     96.63     1.46 

R#51 
kg/h 22.22      0.06   10.22     2.79     0.38     4.25     0.04 

R#52 
% Vol of gas 100.00       4.87   57.67     15.75     3.78     15.26     0.23 

R#53 Particulate 
Matter Output    Char 12   1   16 Nitrogen 14 Sulphur 32 Ash         

R#54 
Hf kJ/mol -16.5 -16.46 12  1  16   14   32           

R#55 
mol Cpm/mol Cin 0.398 1 C 0.16 H 0.03 O 0.02 N 0.00 S   Ash       

R#56 
Hf kJ/h -2285.79 -2285.79 1  1  1   1  1       

    

R#57 
mol/h    177.07   28.85   5.22   3.03   0.20       

    

R#58 
kg/h 2.73   2.12   0.03   0.08   0.04   0.01   0.44   

    

R#59 
% wt db of solids 100.00   77.86   1.06   3.06   1.55   0.233   16.20   

    

R#60 Tar output     
(gc/grav)   Tar     107.72              

R#61 
Hf kJ/mol 0.1 0.1291 12 1 14 16              

R#62 
mol Ctar/mol Cin  0.032 0.00 C H N O     

 
        

R#63 
Hf kJ/h 57.49 57.49 7.70 8.11 0.129 0.341     

 
    

 
   

R#64 
mol/h       1.83     

 
  

 
 

 
   

R#65 
kg/h 0.20         0.20  

 
 

 
 

 
 

 
 

 
   

R#66 
Total output kg/h 25.15       
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R\C C#21 C#22 C#23 C#24 C#25 C#26 C#27 C#28 C#29 
R#39 

Steam   18 Tracer       
R#40 

0.00 1 16         

R#41 
0.00 H O         

R#42 
0.00 2 1         

R#43 
  0.00        

R#44 
  0.00        

R#45 
              

R#46 
    28    30 Water   18 

R#47 
1.45 12 1 -0.58 12 1 -143.71 1 16 

R#48 
0.03 C H 0.01 C H 0.50 H O 

R#49 
645.29 2 4 -260.11 2 6 -63987.23 2 1 

R#50 
    12.35     3.07     223.86 

R#51 
    0.35     0.09     4.03 

R#52 
    1.95     0.49     35.36 

Table 8.11  Detailed calculations of mass mole and energy balances 
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The carbon balance is then closed in Table 4.11 by assuming that all remaining carbon, besides tar and gas, are part of the 

chars. Results of balances are displayed between rows#31-38 columns#1-19 

R\C C#1 C#2 C#3 C#4 C#5 C#6 C#7 C#8 C#9 C#10 C#11 C#12 C#13 C#14 C#15 C#16 C#17 C#18 C#19 

R#31 
Reactants 

1          
C 1.00 H 1.27 O 0.61 N 0.010 0.13 H2O 0.220 

O2+3.76
N2 0.00 H2O         

R#32  Products: 
Gas 0.07 H2 0.82 N2 0.22 CO 0.05 CH4 0.22 CO2 0.00 C2H2 0.03 C2H4 0.01 C2H6 0.50 H2O 

R#33 Solids 1.00 C 0.03 O 0.16 H 0.017 N 0.00 S          

R#34 Tar  0.00 C 7.70 H 8.11 O 0.34 N 0.13               

R#35 

C Bal. 
(mol/h) 0.000 

H Bal. 
(mol/h) 38.359 

O Bal. 
(mol/h) -1.396 

Wet gas 
out 
mol/h 857.04 

Dry 
gas 
out 
mol/h 633.18              

R#36 error 
%mol in 0.000%   

-
5.631%   0.266%               

R#37 

C Bal. 
(kg/h) 0.000 

H Bal. 
(kg/h) 0.038 

O Bal. 
(kg/h) -0.022 

Total 
Mass 
Balance 
kg/h 0.000                   

R#38 
∆∆∆∆Hr 

(kJ/kg 
CHO)     

-
4263.7
3 

∆∆∆∆Hr 
(kJ/mo

l c)    -109.70 

Energy 
for 
reactio
n (kW) -12.1 

Elect. 
Heaters 
(kW)  0.0 

Loss 
(kW)  12.1 

Gas 
cool 
down 
(kW) 9.11 

Wasted 
heat 
(kW) 3.0      

Table 8.12  Summary equation of the reaction with mass and energy balance rows#31-38 columns#1-19 
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8.6 LABVIEW GRAPHIC PROGRAMMING  

8.6.1 Gas11.vi, pilot plant program 

8.6.1.1 Main program  
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8.6.1.2 Gas 11 init.vi 
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8.6.1.3 Gas 10 sampling flow array.vi 

 
 

 
 
 
 
 
 

8.6.1.4 Gas 10 biomass array.vi 
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8.6.1.5 Gas 11 Data.vi 

 

 
 

8.6.1.6 PID with autotuning.vi  
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8.6.1.7 Gas 10 Flow biomass.vi 
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8.6.1.8 Gas 10 steam flow array.vi 

 

 
 

  
 
 

8.6.1.9 Gas 11 DI.vi 
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8.6.1.10 Gas 10 Ramp.vi 
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8.6.1.11 Gas 11 DO.vi 

 

 
 
 
 
 

8.6.1.12 Gas 10 Data recording.vi 
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8.6.1.13 Gas 10 end.vi 
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8.6.2 Gibbs reactor modeling program 

8.6.2.1 Main program 
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Other cases from previous page case structures in main program: 
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Other case from above case structures in sequence 0: 
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Other case from above case structures in sequence 5: 
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8.6.2.2 PV=nRT.vi: calculates mole number from ideal gas law 

 
 
 
 
8.6.2.3 Dry to wet.vi: % composition basis conversion 

 
 
 
 
8.6.2.4 ER.vi: calculation of ER ratio 
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8.6.2.5 SB.vi: calculation of S/B ratio 

 

 
 
 
 
 
 
8.6.2.6 CHO.vi: conversion to atomic composition 
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8.6.2.7 Initialize feed.vi: conversion of mass flow rates to biomass and char atomic flow rates 

 
 
8.6.2.8 Atomization.vi:Agent biomass and char atomic flow rates 
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8.6.2.9 Biomass composition conversion.vi 

 

 
 
 
8.6.2.10 Char composition conversion.vi 
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8.6.2.11 Cp Equil gases.vi: gases heat capacities calculations 
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8.6.2.12 Equil enthalpy w char.vi: enthalpies of formation and free enthalpy 

calculation 
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8.6.2.13 Equil Yield All n Tar n C.vi: non linear equations system solver 
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8.6.2.14 Cp Equil mix.vi: gas mix heat capacity calculation 
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8.6.2.15 Equil Enthalpies mix.vi: gas mix enthalpies calculation 
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8.6.2.16 Equil Yield All n Tar n C cooldown.vi: non linear equations system solver 
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8.6.2.17 gas 3D graph Basic Properties.vi: 3 dimensional graphs setup 
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8.6.2.18 3D Surface.vi: 3 dimensional graphs 
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