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CHAPTER |

INTRODUCTION

Pecans are a native of the southeastern USA andcM@dSDA, 2004). The
nuts were originally harvested from wild trees they have since increased in popularity
such that the trees are now being extensivelyvau#td in the southern states, particularly
in Texas and Oklahoma, and with the developmenmeiv varieties the area of
cultivation is spreading farther northwards (HI983). The United States production of
pecan nuts was 177,300 million pounds (USDA, 2004).

Pecans can be separated into two categories lmas@utensity of cultivation;
improved, and native and seedlindUG, 2005). Improved pecans are produced from
superior cultivars in orchard settings, while natand seedling production occurs largely
from wild-harvested native stands of trees in O&tah and Texas. The yield, quality,
and prices received are much greater for improliad hative and seedling pecans (UG,
2005). Approximately, 15-24% of native pecan prdauccomes from Oklahoma State
(UG, 2005). Total pecan acreage has been estinateder 1.4 million acres. About
60% of this is native and seedling, and 40% is oued, but the industry is moving
towards greater production from improved cultivarBue to the great value of this
product, significant research has been conductedpoove its production.

More than twenty types of insects can attack theapetree; however, pecan

weevil is one of the most destructive pests of G&laa pecans. It is also considered as



the most serious late-season pest because it sitfaekut. The pecan weevil is the most
important pest of pecans in the areas where itrec@darris, 1979). Nut damage is
caused by adult and larva feeding, and egg layitayting from July through September,
the adults begin emerging from the soil, where thggnd 2-3 years, and feeding on the
nuts. Pecan weevils mate shortly after emergingfamales choose the nuts that passed
the gel stage but have not hardened. Within 24pdsy emergence, a female can attack
25 nuts to lay about 3 eggs in each of them (Hal®¥9). This amount of damage
constitutes major damage while the amount of dancagsed by adults feeding on nuts
(as they feed on about 1 nut every four days) issiciered minor damage (Mulder,
2004).

The present management methods for controllingrpe&gevils involve detecting
their emergence and then applying insecticidesaP@aeevil control requires about one
to four well-timed insecticide applications (Mulde2004). Some integrated pest
management (IPM) stations delay the first treatnoeit nuts have reached the gel stage
of development. This is because successful pe@avilvoviposition can only occur at
and after that point until shuck split (Harris, 89.7Generally, insecticide coverage of at
least 20-30 days is needed for pecan weevil managem

These treatments will be economically justified high priced, large fruited
pecans if the infestation level is higher than ttime@shold of 500 post-emergence pecan
weevil adults per hectare. The threshold for snialited, low priced pecans is
approximately 3500 pecan weevil adults per hectarsecond or even a third treatment
may be needed to prevent economic damage from rrguf pecan weevils continue to

emerge from the soil after an initial treatmentiiita 1979).



There are several monitoring techniques to delectppearance and activities of
adult pecan weevil. They include inspecting droppets for feeding and/or oviposition
injury, and using knock down sprays, sticky bands, limhrjgr ground cover traps and
assorted traps (Ree et al. 2000). Among these itpods) traps are the most commonly
used method. There are different types of trapshvhave been utilized for monitoring
weevil for example, the wire cone trap, pyramigbfrand the circle trap. Traps are placed
on or under the trees with known weevil infestagioA very common trap that has been
used for years is the wire cone trap. It is norynplaced on the ground beneath pecan
trees with a known history of pecan weevil infastag.

The number of pecan trees in an orchard block sdr@m 60 trees per hectare,
(thinned density) to 237 trees per hectare (ultemsdy) (Herrera, 2000). It is
recommended to use one to two traps per tree aed tb five trees per orchard block
(Mizell, 2003). Traps should be placed in the ardhl to 2 weeks before the earliest
maturing varieties reach the gel stage and theges tare monitored every 2 to 3 days.
Adult weevils collected in the traps should be dedrand removed with each inspection
(Ree et al. 2000).

For monitoring pecan weevils in a 40 hectare (1€/@)aorchard, from 300 to 600
traps should be placed on 300 pecan trees. Sirgan peeevil emergence varies greatly
from year to year and is significantly affecteddmyl moisture, the initial emergence and
peak population emergence can vary from orchaatdbard and tree to tree. As a result,
traps have to be checked carefully during thisqaeaf time (emergence season).

Clearly, this technique of monitoring pecan weswu$ labor intensive and

requires very careful observation. Assuming thatauld take a farmer one minute to



check each trap in a 40 hectare orchard (600 trapspuld then take 10 hours to inspect
all of them. That means 30 hours of work per weeknd) the emergence period which
could last for three months. The long term objectof this study is to develop an
automatic monitoring system based on a wirelessar&timaging system. This system
would detect pecan weevils as soon as they go ghraoie imaging unit that can be
incorporated inside traps. The aim of this workthe development of a recognition

algorithm that can identify pecan weevils amongothsects.

1.1 Objective

The development of a wireless network imaging sydigr monitoring pecan weevils
in the field motivated this study. The robustnekthis recognition system would replace
the manual insect monitoring techniques curremtlyse and it would be a useful tool for
pest control management, in general. The aim sfgtudy is to develop the software part
of a wireless network imaging system that can aatarally identify pecan weevils in the
field.

In particular, the main objective of this studytésdevelop a recognition algorithm
that identifies pecan weevil among other insecét Hre naturally present in the pecan
habitat by implementing several image processiojgrigjues.

Furthermore, the software with minor modificatioren be used to identify other
insects.

To achieve this objective, the following tasks wenglertaken:
1. Design and test an imaging system for acquiringatis images
2. Collect enough pecan weevils to account for allsgme varieties among them

and build a database of pecan weevils’ imagesctrabe used as training data set



3. Explore the ability of different shape descriptiorethods in representing and
recognizing pecan weevils

4. Develop an algorithm for identifying pecan weevdad differentiating them
correctly from other insects

5. Evaluate the algorithm for robustness and speed

1.2 Organization of the Study

A better understanding of pecan weevils’ live eyand biology, in general,
would help in designing the recognition system tftem. The remaining document is
organized in the following manner: Chapter Il disses in detail important aspects of a
pecan weevil’s life and behavior. Chapter Il fees on a literature review of the related
methods used to detect insects. In this studyaltiigy of several recognition methods is
evaluated. Chapter IV introduces these method$, avibrief mathematical background,
and reviews their applications. This chapter alscusses the materials utilized in this
work. The results of all individual methods areailed and discussed in Chapter V.
Based on these findings, an overall algorithm @f tacognition system is proposed in
Chapter VI. Finally, Chapter VII contains the majoonclusions of this work and

recommendations for future research.



CHAPTER I

BIOLOGY OF PECAN WEEVIL

2.1 Origin and Distribution of Pecan Weevils

The pecan weevil is native to North America and loariound from New York in
the east to lowa in the west and Oklahoma, Texas@aorgia to the south (Gibson,
1969). As of 1999, pecan weevils had been found3h Texas counties (Ree et al.,
2000). The states of Alabama, Arkansas, Floridagr@a, Louisiana, Mississippi, New
Mexico, Oklahoma, South Carolina, Tennessee ancaddwave also reported pecan
weevil in pecan trees (Harris, 1979).

The pecan weevilCurculio caryae(Horn), belongs to the orderoleoptera
family Curculionidag and subfamilyCurculioninae(Borror et al., 1976). Twenty-seven
species have undergone close scrutiny (Gibson, )196Bhe family Curculionidae
(weevil or snout beetles) is a large family withoab 2500 species in North America

(Borror et al., 1976).

2.2 Recognition Characters

Curculio Caryaecan be recognized by its long rostrum abruptleited into
frons and its large femoral tooth (Gibson, 196%.dé¢scribed the recognition characters

of pecan weevils as follows: the rostrum of theemal3 the length of the body and the



female rostrum is as long as its body. The hearbusmided, punctures elliptical and
distinct, punctation extending to antennal insertan female rostrum and to the apex
though sparse, on the male rostrum. The vestiangyr extends onto the base of female
rostrum and about Y2 distance to antennal inseitiomale. The rostrum is abruptly
inserted into the frons and slightly thickenedhet base in male and female. The rostrum
is longer than body, curved upward near the bdss turved down in distal ¥4 and the
male rostrum is usually straight to near %, theuate. It is also less than 0.6 as long as
the body. The antennal insertion is about 3 mmftbe base in 11-mm specimens. The
antennal scape in male is as long as 5-5 ¥z fumiselgments whereas scape of female is
as long as 4 funicular segments. The mandiblessiaghtly longer than the apex of
rostrum. The eyes of the male are nearly circutar lzave about 36 facets per mm. The
female eyes are flattened and have a width of ab&@& mm. and a height of about 0.83
mm. Also, the male eye is convex and has a width@® and height of 0.75 mm. Figure

2.1 illustrates a typical male and female Pecanwl/ee

Figure 2.1 Pecan Vevils: Male (Left) and Female (Right)



2.3 General Features

Gibson (1969) also gave a general description oapeveevils as follows: their
shape is ovate-elliptical in dorsal view and eitigt in lateral view. Their length is 7.5-12
mm and width is 3.4-5.4 mm. The color of the bodydark reddish brown with the
antennae and legs lighter in color. There are pweston prothorax with or without
distinct sides and the size is fairly uniform. THeyve a diameter of about 0.08 mm and
are uniformly spaced. They are round, small, aradi@h in elytral stria, and also deeper
in male than in female. On metasternum, the puastare much smaller than on
prothorax and are widely set apart. The vestitloedy cover) is moderate to dense,
varying from golden to grayish yellow to dark brgwvith or without dark brown fasciae
on elytra. The dorsum of prothorax is fairly unifdy colored and underside of body is
also uniformly covered with scales of the same rcoloslightly paler than on dorsal
surface. The squamules on prothorax are hairlik8, tbnes longer than wide. The
squamules are 4-6 times longer than wide on vardoeas of elytra and are variable on
ventral areas of thorax. Also, most of them areng$ longer than wide whereas on
abdomen they are 4-8 times longer than wide. A &we also found on"5sternum,

hairlike; while those on femur are longer and ailifke on tibia and tarsi.
2.4 Biology

Adult pecan weevils emerge from soil in July thro@eptember where they have
spent 2 or 3 years in soil cells located 4 to 1éh&s beneath the soil surface. The
literature suggests that the emergence of pecaxiivoeéncides with the soil condition.

Harris and Ring (1980) concluded after their foaans of observation that pecan weevil



emergence was delayed in clay soil when soil mastuas low. They also found that
emergence occurs at about the same time and ratg ggar when soil moisture was
adequate to impart sufficient friability to allowl@dts to emerge.

Other investigators (Gibson, 1969; Price, 193%ridhs, 1965) have reached the
same conclusion. The emergence of adult pecaniWfeew the soil is unaffected by
pecan variety (Harris, 1976). The time that agh@étan weevils emerge from the soil
varies according to soil condition, season andlitycgOsburn et al., 1963). According to
Polles and Payne (1974), 80 to 90% of the emergencers between August 2@nd
September 28 The earliest report of adult emergence is Juffe(llangston, 1930) and
the latest report is October3(Neel et al., 1975).

Pecan weevil larvae exhibit little horizontal mowemh once they have penetrated
the soil, indicating that adult emergence is limhite the area covered by the canopy of
the tree (Raney et al., 1970). The emergence dfsadhpidly decreases as distance from
the dripline of the tree increases (Tedders andufdsld970). Harris (1975) found that
there were no pecan weevil larvae in the soil bdyte dripline of the tree. He did not
find any significant difference in the number otpe weevil larvae from the trunk to the
dripline or any significant difference in the numlaé pecan weevil larvae in any of the
cardinal directions among native pecan trees.

Criswell et al. (1975) found that early emergingulégl live longer than late
emerging adults. Harris et al. (1981) reported thates live from 15.5-29.9 days and
females live from 22.6-25.6 days when emergenceairscty August and September.
Also, they found that the adults that were delaye@mergence until October due to

drought conditions lived for shorter periods of ¢imVan Cleave and Harp (1971)



reported average life spans for adults were 17#&% dor males and 23.05 days for
females.

Upon emerging from the soil, the adults fly to ped¢eees (Swingle, 1934) or
crawl to the highest point nearby and then flyhe tree (Raney and Elikenbary, 1968).
Female weevils tend to fly to higher parts of tleean tree and male weevils tend to
crawl to the tree more frequently than female wee{iRaney, 1969). Boethel et al.
(1974) investigated in two studies (1967 and 19f2)effects of tree, height and sector
on nut infestations. In both studies, they did fiad any significant variation in
infestation among three height levels on the trémsyever, there was a significant
variation in infestation among trees.

Eikenbary and Raney (1973) reported that pecan ilga@oved considerably in a
tree from the top of the tree to the lowest limhd &#om the lower heights to the upper
portion of the tree as well as around the treeseRech indicates that 77% of adults fly to
the tree trunk at a height of 6 to 8 feet, 5% walkhe tree trunk and 15% fly directly to
the canopy (Ree et al., 2000).

As soon as the adult pecan weevils emerge fronsdileand reach the tree, they
begin puncturing and feeding on pecan nuts thatirarthe gel stage. The feeding
activity of adult weevils, both males and femalesfore the nuts enter the gel stage can
cause nut drop (Moznette et al., 1931). This puectsi about the size of a fine needle
that usually remains open (Bissell, 1935). As aulteghe liquid endosperm will be
released slowly producing a brown stain on shuak srell (Brison, 1975). This type of
injury may seal as the volume of the nut increagkgh makes it difficult to observe;

whereas, punctures occurring later, when the niridseasing in volume at lower rate,

10



may close very little and are easier to observea{(Ad932). The feeding rates for males
and females prior to shell hardening are low. Mesgvils emerge just at or shortly after

gel stage, so nut losses caused by adult feedangraall compared to those caused by
egg laying (Ellis, 2007).

An average of 0.23 and 0.29 nuts per day were tegppoo be punctured by a male
and a female weevil respectively (Calcote, 1975atdd females punctured more nuts
than virgin females while the nuts were in the watage, indicating that mated females
feed more in preparation for oviposition (Ring, 8R7After shell hardening, males only
feed on the shuck and this will not cause nut dumgin females puncture more nuts in

this state than mated females (Calcote, 1975).

2.5 Mating Behavior

Chemical cues are considered to be of prime impoeéan eliciting specific
reciprocal events for male and female with visaabustical and tactical cues (Hartfield
et al., 1982). Van Cleave and Harp (1971) indicateds baited with live female pecan
weevils captured more adults of both sexes thamitet traps. Hartfield et al. (1982)
reported that mating behavior of the pecan weewiscsts of a rapid, direct orientation
toward the female by the male, insertion of the imnedobe, and extended copulatory
period. Collins (1996) determined that pecan weewdles tapped mesothoracic legs
against lateral margins of the female prior to itise of the aedeagus and not the
metathoracic legs as previously published. It wamdl in the same study that the male
approached the female from behind, assuming a ghaiosture if the female was

receptive, and tapped the mesothoracic leg fos8e5 before inserting the aedeagus.
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2.6 Ovipositional Behavior

Hinricks and Thompson (1955) found that varietadcgptibility is correlated to
kernel development. The period between emergendevaiposition is a minimum of 5
days (Van Cleave and Harp, 1971). It was also teddhat oviposition occurs as early
as 2 days post emergence but preoviposition avavages-7 days (Criswell et al., 1975).
Moznette et al. (1931) reported oviposition did take place before the nuts’ shells were
hardened. The reason is that the pecan nuts wilfaloafter this (gel) stage. Some
investigators found early rather than late matuxiageties are more susceptible to attack
by the pecan weevil (Moznette et al., 1931; Swing@34; Price, 1939; Osburn et al.,
1966). Harris and McGlohon (1972) wrote that let@turing cultivars and varieties are
usually not attacked when there are enough nut$etming and oviposition on earlier
maturing cultivars and varieties. Harris (1976)ared that oviposition occurs as early as
August 15 and latest by Septembef"3Blowever, Harp and Van Cleave (1976) noted

that this begins near the end of August.
2.7 Egg Laying

To deposit eggs in pecans, a female feeds throlughshuck and shell to the
kernel where she excavates a small cavity in thveldping kernel. She turns around and,
with her ovipositor, places three to four eggsméron the developing kernel (Ree et al.,
2000). Criswell et al. (1975) reported that therage number of nuts each weevil may
oviposit in was 7.8, 9.6, or 8.7. It was also fouhat one female could oviposit in 10-30
nuts (Swingle, 1934). In 1934, Swingle had alamfbthat a single female could lay up

to 100 eggs with an average of 25. Gill (1924 )regr that the number of eggs was 7 in
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a single nut with the average number being 3 eggsipt. A range of 1 to 10 eggs laid

per nut was also noted by Leiby (1925). AccordiogMoznette et al. (1931), a female

oviposited 2 to 6 eggs per puncture. Generallyetione oviposition per nut indicating

that pecan weevil may shun nuts in which ovipositias already occurred (Ring, 1978).
Harris (1976) stated that the regulation of the benof eggs, and thus larvae per nut,
might be of selective advantage to the pecan waethat it may ensure enough food for
each larva. The peak in egg production occurs2l@dlys post-emergence (Van Cleave
and Harp, 1971).

Pecan weevil eggs are irregularly shaped; somengblsome elliptical, and
others ovate (Ring, 1978). They are clear, tramsitigvhite, with a shining surface and
exceedingly delicate texture, varying in size witle length ranging from 0.027 — 0.04
inches and width of 0.02 inches (Brooks, 1910). e8alvinvestigators had reported
different duration of the egg stage; Gill (1924paded that the duration of the egg stage
is 9 days. However, Moznette et al. (1931) andi®y$1940) found it to be one week,
depending on the temperature. Swingle (1934) redaat range of 7-10 days and Harp

and Van Cleave (1976) indicated that it could loenfi6-14 days.

2.8 Larval Stage

The larvae hatch and feed in the kernel. Whely figveloped, larvae chew a
single hole through the shuck and shell, exit tbe and drop to the ground; the time
period from egg laying to larval emergence is appnately 42 days (Ree, 2000). Pecan
weevil larva is a yellowish grub with a small resldibrown head when mature and white

when immature (Moznette et al., 1931). Swingle @)38scribed it as white when small
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to creamy-white when fully-grown, measuring fromt&#4 of an inch in length. It was
also described by Kern (1949) to be a soft, whigddlewish, cylindrical apodous body;
completely chitinized head capsule and black comgoeyes, ocelli and antennal
structures.

Bilsing (1940) found that the larvae spent aboutda@s feeding inside the nut
before dropping to the ground. Aguirre Uribe (1p3®@idied the immature stage of pecan
weevil and found that it took 7 - 8 days for eggsatch; 3 days for each of th& and
2"%instars; 4 —6 days for%instar, and 12-25 days for th® ihstar (average 18.3 days).
He also stated that the development time from rijmm to larval emergence averaged
33.3 days. Harp (1970) wrote that total larval fegderiod was approximately 30 days
in duration. Some investigators described eachldpreent stage of larvae in diameters
(Kern, 1949; Harp and Van Cleave, 1976). The lameight was found to be directly
related to larval age (Aguirre Uribe, 1979).

The number of pecan weevil larvae is variable amdetimes a nut is completely
packed with larvae (Bilsing, 1940). Kern (1949)icaded, in general, there would be 1-3
larvae per nut and in case that there are 5 lathed, size will shrink because of the
competition. In his study, Harris (1976) reportedaaerage of 1.74 to 3.17 larvae per nut
independent of the nut size and weight, kernel ateggnd infestation level. There could
be several larvae per nut but only 2 or 3 will sue(Craighead, 1950; Baker, 1972).

When it is time to emerge (larval maturity), a Etores a round hole out through
the shell, then goes into the ground and pupatepr@éparation to pass the winter
(Gossard, 1905). Hinricks and Thompson (1955) dt#tat usually one larva chews a

circular hole (1/8 inch in diameter) through thecge shell and/or shuck and all grubs
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would leave the nut by this hole. Sometimes, theap nuts dislodge from the tree and
fall to the ground so the emerging larvae will ckrdrem the hole to the soil (Gossard,
1905). In some cases, larvae do not attempt totbgitnut and shrivel and die even
though they are fully fed (Hamilton, 1890).

The larvae leave the nut during September and Nbeemnd enter the soil to a
depth of 6 or more inches (Gill, 1924). It was ateported that larval emergence lasts
from late September through March with the maximamergence occurring from
October & to October 28 (Swingle, 1932). After the emergence, the pecaevile
larvae burrow into the soil with their abdomens r{iKel949). Van Cleave and Harp
(1971) reported that larvae penetrate in the soihf3-11 inches with an average of 6.5
inches.

The literature suggests that the condition of thikcorrelated with the depth that
larvae would burrow to. For example, the depth ¢hitrvae burrow to in non- cultivated
soil is from 1-5 inches (Moznette et al., 1931)i2-inches (Hinricks and Thomson,
1955); up to 8 inches (Harris, 1975) whereas inivated soils, the range is from 1-9
inches (Moznette et al., 1931); up to 18 inchesniieks and Thomson, 1955); up to 12
inches, which may suggest that pecan weevil lamag penetrate deeper than necessary
to avoid any harmful weather conditions and natare@mies (Harris, 1975). The time it
takes pecan weevil larvae to burrow varied dependiso on the soil condition. Chau
(1949) wrote that larvae burrow 1-2 inches in 2Zhbrs, and on average it takes 1 week
to reach its final destination. In the soil, larveenstruct (form) an earthen cell by
pressing back the surrounding earth. During thisopgethe larvae do not feed but live on

fat reserves (Kern, 1949) as they are in diapauseaglthis stage.
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2.9 Pupal Stage

Harp (1970) found that the duration of the pupagistranged from 14 to 23 days
and averaged 19.1 and 20.3 days for males and desmedpectively in a 1967 study. He
also found that the average duration of the puiageswas 18.1 days for both sexes in a
1968 study. In the same study, Harp found approtain®0% of larvae pupate 1 year
after entering the soil and the remaining pupateddllowing year. The pupae are white,
have no coverings, and show the developing appesdafjan adult (Moznette et al.,
1931).

The duration of the pupal stage is 3 weeks accgrthnseveral studies (Harris,
1976; Harris and McGlohon, 1972; and Swingle, 1984rp and Van Cleave (1976)

found it to range from 14-23 days.

2.10 Adult Stage

After eclosion from the pupal stage, the adults a@min the soil until the
following August and September (Harp, 1970). Heedothat only 4% of the initial
insects successfully emerged as adults with thatege mortality occurring in the pupal
and adult stages. In this way, the pecan wedeilclycle will be completed in 2-3 years
(Hinricks, 1955).

Based on what has been cited in the literatureetivas no relationship between
the time of adult pecan weevils’ emergence andrihiestage on the host tree. Mody et
al. (1976) studied the volatile components of peeaves and nuts and found them to

contain 38 compounds. The intention of their redeavas to identify those constituents
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that could conceivably attract the pecan weevilh® leaves and the nuts. The authors
stated that these constituents could also be weiof the pecan weevil sex pheromone.

Prokopy et al. (2003) concluded in their studyodbr-baited trap trees: a new
approach to monitoring plum curculi€Cgleoptera: Curculionidag that monitoring
apples on odor-baited trap trees for fresh ovipmsat injury could be a useful new
approach for determining need and timing of insed# application against plum
curculio in commercial orchards.

The pecan weevils can be attracted by color as. Waltders et al. (1969)
investigated the effects of color and trunk-wrappesan weevil catch in pyramidal traps.
They found that black traps were superior to dileotcolors tested in attracting weevils.
The study indicated that white plastic wrap wase@ff’e and easier to use than
whitewash and both increased trap capture of paevils. In conclusion, it appears
that the pecan weevil can find the pecan tree ardse” the odor of the fruit and leaves
and find its mate; but to our knowledge, thereasenidence in the literature to test the
pecan weevil's ability to find its host tree ane tnaximum distance it could move to

reach it.

2.11 Summary

Pecan weevil's life cycle ranges from 2-3 yearsstraf it is underground. As
soon as the adult pecan weevils emerge, they faqeeoan nuts, mate and oviposition
eggs in the nuts. These eggs will hatch and lawiiebe developed in 30 days. After

their complete formation, the larvae would chewo&hn the nut, fall to the ground, and
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burrow into the soil. There it will pupate in 3 vikse and will remain as an adult for one

or two years before emerging to the pecan tree.
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CHAPTER 1lI

LITERATURE REVIEW

3.1 Insect Detection

Several methods have been used in monitoring isseopulation and migration
in an environment or plants. Examples of thesenieeies include optical and opto-
electronic devices, video graph, thermal imagiraglio frequency identification, radio-
telemetry, X-ray radiography, computed tomograg@@DAR and SONAR (Reynolds
and Riley, 2002). Monitoring the free movement mdacts in the field under natural or
semi-natural conditions can be done by any follgwpnocedure:

1. Visual Method

This approach depends on observing the insects’ements and scoring
their behaviors.

2. Night Vision Devices

The basic idea of this technique is to amplify #ivailable light for better vision.
An objective lens focuses available light onto aotpbathode which then releases
electrons: the number of these electrons is greatijtiplied by some form of high
voltage cascade and the resulting electron flwsesd to produce an image on a phosphor

screen.
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3. Video-graphic Techniques
Riley (1993) reviewed in detail the use of videaipgent to observe flying insects in
the field. One major problem with the techniquen&intaining a reasonable field of view
whilst producing a video image distinct enough ® detectable at more than a few
meters. Another common problem to most remote sgnsiethods is that of identifying
the target. Thus, it is not surprising that outdftight studies have been concerned with
insects either approaching traps or sources of @tlanes or other situations where
identifiable species are expected to pass througtth&r restricted sensing volume. The
range of detection can be increased by improviegctintrast between the insect and the
background in particular by viewing the target agathe night sky using some form of
artificial illumination.
4. Thermal Infrared Imaging Technology

This is designed to detect objects in condition®lascured visibility (darkness,
smoke, dust, haze, etc) by utilizing the long-waxfeared (heat) radiation emitted from
the objects rather than the light reflected ofithe

5. Optical Sensors and Insect Trapping

This provides a method of recording the time ofremif insects to traps or to
assign captured insects to body-size categorias. cédm be done by passing the insects
individually through an illuminated detection volamrand measuring the amount of light
scattered during the transit. In the area of tragpinfrared telemetry has been used to
transfer data from pheromone traps (used as pieciniel detection mechanism) and from
meteorological sensors in cotton fields to a baagos computer situated in the farm

office (Schouest and Miller, 1994).
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6. Opto-Electronic Devices

Farmery (1981) developed a device where the fieMdew of the photomultiplier
sensor intersected the illuminator beam at a smlelseight above ground level. Insects
passing through this intercept volume could be aetkand their wing-beat frequencies
recorded. This device is ineffective in twilightcadaytime when the luminance of the
sky greatly lowers its sensitivity to insect taggefhis obstacle was overcome by using a
very bright xenon flash lamp working in the nearaned and a video camera equipped
with a gated image intensifier which provided higmtrast images of even small flying
insects against the mid-day sky (Schaefer and B&&y4).

Although, the above methods are applicable to iss@tection, in general; it
was found that for the purposes of this work (tk&dtion of pecan weevils in the field

area) machine vision would be the most suitablealen method.

3.2 Detection of Insects by Machine Vision

Yu et al. (1992) worked on the identification ohneumonid wasps using image
analysis of wings. The right forewing was removeahf each wasp, placed between a
microscopic slide and coverslip, and then aligned imaging. Four data sets were
created for each sample; one each for verticessyeells, and the whole wing. Some
geometrical characteristics (length, area, origmatetc.) for each data set were
calculated. Their results showed that 100% of fifisects were correctly classified using
discriminant analysis and independent univariategarisons of 144 characters from the

data sets.
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Leafhoppers Hlomoptera Cicadellidae: Draeculacephala BaWere identified
using linear discriminant models (Dietrich et 4B94). The incorporated system depends
on a combination of qualitative external morphotadifeatures and morphometric data.
First, an online interactive key was used to cfgsan unknown specimen in a species or
species group using discrete external morpholodeatures. Second, an image of the
specimen was captured and edited for identificabased on the shape. Their results
showed that 89-98% of individuals may be corregntified.

Artificial neural networks (ANNS), discriminant alysis, and k-nearest neighbors
were compared in identifying fungal spores (Morgdral., 1998). Morphometric data
from spores of Pestalotiopsis species and a fewiepeaelated to Truncatella and
Monochaetia were used to train the ANNs. Both ANd&l statistical classifiers had
similar identification success on unseen data séivden 76-78% of 16 species and
between 63-67% of a 19 species group.

A similar approach was applied earlier by Wilkies al. (1999) to identify
phytoplankton from cytometry data. The system wasighed to identify seven
freshwater and five marine phytoplankton speciekeilT results showed that the
optimized networks and statistical methods perfarsienilarly. They obtained a correct
identification rate between 86.8% and 90.1% of daten freshwater species and
between 81.3% and 84.1% of data from marine species

Zayas and Flinn (1998) studied the detection seeats in bulk wheat samples
with machine vision. Their study focused on idemtif insects and body parts of
Rhyzopertha dominicheetles in bulk wheat samples. The main objedaiviheir work

was to determine x, y coordinates of a subimagengghg to insect versus noninsect

22



elements of the image. In combination with pattexroognition, multispectral analysis
was used in their study. Their results showed rthedgnition rate was higher than 90%
for the insects and other elements.

An optical digital system was also applied to tifgrfive phytoplankton species
(Pech-Pacheco et al., 1998). In this system, aicaldiiter was made for each species to
be correlated with six testing images. These tgsimages were prepared from
phytoplankton samples which may include one or nudrthe five species. The system
was evaluated using 100 different samples and e¢hegnition rate was 90% despite
rotation, translation and scale variations.

Boddy et al. (2000) trained radial basis functiotifiaial neural networks to
discriminate between phytoplankton species based” dlow cytometric parameters
measured on axenic cultures. The study comparedoé¢h®rmance of two networks
limited to using radially-symmetric basis functioasd networks using more general
oriented ellipsoidal basis functions. The resulteovged that the second method
performed better and the overall results of corr@entification were from 70-77%. The
identification was very poor (<20%) when testing gystem with one data set on cell
growing under different lighting conditions. Thesbeesult in this study was obtained
when the network was trained on a combination set#>70%).

Identifying and counting of phytoplankton was urtdken by Embleton et al.
(2003). In this study, a comparison between mararal automated counting was
conducted. A combination of artificial neural netk® and simple rule-based procedures
were used to identify selected groups of phytogiamkFor taking the required 75 images

per sample, the system took 7 minutes and betw@et0 3ninutes for identification and
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classification. The time required for the procesk identifying and counting
phytoplankton was similar to the manual proceduiéhe large number of
misclassification was due to the system’s inabilityrecognizing touched objects in the
images.

The classification and identification of polleragrs was studied by France et al.
(2000). The system involves two stages: firsilifig the location of a pollen grain in an
image taken from a slide where the pollen grairts amange of detrital materials could
be differentiated; Second, classification of tleign grains identified in the first stage
into different taxonomic categories. Neural netwevls employed in the analysis of
identifying the pollen grains. Their network hadttaee-layer architecture including
feature extraction, pattern detection, and classifon layer. Their results showed that
83% of the samples were correctly classified. Hmvethe authors were attempting to
improve the processing time, slide pre-preparatéorg pollen orientation invariance in
this system.

Moment invariants of butterfly wing patterns werged (White et al., 2003) to
detect differences between groups of butterflie®ating to sex, geographical origin and
culture history. Digital images of the speckled wodoutterfly were used to generate
moment invariant data sets which verified the défees in wing pattern. Their study
showed that gray images of butterfly wing can bedut detect differences between
wing surfaces even if the wing has some fadingdardage. Their results suggested that
the seven moment invariants would provide suitajpantitative pattern descriptors.
Moments invariants could be applied even to lowolk&son images and still provide

useful information for analysis.
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A machine vision system for detection of adult keetn wheat was devised by
Ridgway et al. (2001). The system was designeceteatl adult saw-toothed grain beetle
(Oryzaephilus surinamensig) grain. For various insect species, the repodetection
rates were 89-96% for commercial samples whichatoatl several insect species. These
were all classified by the recognition stage asd@isects.

Arbuckle et al. (2001) presented their Automateele Hdentification System
(ABIS) where the identification was based on feaguextracted from their forewings. In
this system, images of bees were taken by pladiagntmanually in standard position.
The venation of the wings was then identified andea of key wing cells were
determined. Images then were aligned and scalesdbas the wing cells. The lengths,
angles, and areas were computed. Bees’ classificaias achieved using Support Vector
machines and Kernel Discriminant Analysis. The regmb success classification rate of
this system was 95% using four species. One ofdktictions of ABIS is that feature
extraction algorithm includes prior expert knowledapout wing venation. Furthermore,
ABIS involves a user interaction to properly plaite bee in the standard wing's
position.

Automatic identification of bees was also studogdSchroder et al. (2002). The
identification of bees is based on characters efftre-wing venation. In this system,
images of bees would be transferred to a compuaterhich a user marks defined vein
junction; then, junctions would be automaticallynnected to digitize the whole
venation. Minimum training samples are 30 well-defl specimens of each sex per

species. Linear and non-linear discriminant analysethods were used in classifying
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species. Processing time was 5 minutes on averatha correct classification rate was
found to be around 98%.

A test of pattern recognition system for idenation of spiders was presented by
Do et al. (1999). It was a partially automated grattrecognition system that utilized
artificial neural network. For each species, betwé4 and 21 individual epigyna were
photographed by microscope equipped with a CCDovidemera. The preparation of
each specimen for imaging involved aligning thetel@containing 70% ethanol) of the
epigynum to the viewing axis of the microscope.e Téatures of spiders’ species were
extracted from the digital images of female geratalsing wavelet transform. Three
different sized networks were assessed in discatimg a set of six species to either the
genus or the species level where species represeéhtee genera of wolf spiders
(Araneae: Lycosidge Their results showed that identification of gpgns to the correct
genus was 100% and about 81% to the correct species

A study of automating the identification of insedty Weeks et al. (1997)
described a semi-automated digital imaging systendiscriminate five species of
IchneumonidaeThe wings of the specimens were used for distghgg purposes. The
algorithm followed in this study had three majoepst; first, training step in which
features of wings were extracted for each insestpisd, principal components were
employed to represent the morphology of wings ofheandividual insect; third,
correlation among the species based on their cleaistccs principal components was
performed to evaluate the likelihood of a new imagehe trained sets. The overall
result of this method was 94% when the system ested on 175 images of wings of the

five Ichneumonids
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In their second study, Weeks et al. (1999) comsitl¢he identification of wasps
using principal component associative memoriesty Bpecimens from each of five
species from two genera of pimpline ichneumonidpsallected from Costa Rica were
included in their study. For each wasp, the rigieWwing was removed and mounted in
Canada balsam on a microscope slide with cover Isipges were then acquired from a
CCD camera placed on the microscope. The wings weented by adjusting the
microscope slide to have the anterior margin iralbarwith the x-axis. The principal
component method was used for identification wh#dre images of wings were
rearranged into column vectors consisting of cartated rows of pixel intensities. The
system employed the differences between a pakeadnstructed images produced when
unknown image is included in and then excluded ftbm training set encoded by the
associative memory. The reconstructed images wamelated using a non-parametric
statistical correlation metric given by Kendall'sethod. The results of this approach
showed that 86% of the species were correctly ifiet

Identification of live moths (Macrolepidoptera) svaxplored by Watson et al.
(2003). Their system is known as Digital Automatddntification System (DAISY).
Thirty-five species were used as training imagedhe system. The system requires the
user to align the forewings of each moth for imacgpture and segmentation.
Identification method of species depends on itsetation value with an optimal linear
combination of the principal components of eaclssI& heir results showed that correct
identifications were heavily affected by the accyraf forewings alignment. Correct
classification was about 83% whereas the besttresad 100% and the worst was 35%.

The second version of the DAISY system adopted hemotmethod beside pattern
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correlation known as the normalized vector diffeeeiNVD) algorithm which requires
including adequate samples for each species. [Hssification algorithm was based on
n-tuple classifier (NNC) and plastic self organgzmaps (PSOM).

The limitations of morphometric features for tldentification of black-lip Pearl
Oyster larvae were evaluated by Paugam et al. {200%® goal of their study was to
determine the most significant morphological idecdtion measures in identifying
black-lip Pearl Oyster larvae to be able to distisg them from three other related
species. The software (Optilab, Grafetec, Franca$ wsed to automatically number
retrained areas, processed from larvae imagespearfidrm a series of 42 measurements
like coordinates, optical density, shape paramgetets. The principal component
analysis was used to determine the best descriptoog the 42 data sets which turned
out to be six parameters (ellipse ratio, elongatamtor, compactness factor, moment of
inertia, type factor). Statistical analysis of thescriptors showed that 77% of the black-
lip larvae were correctly identified.

Mayo et al. (2007) continued their investigatidraatomatically identifying live
moths. In this study, the accuracy rate was 85%omit manual specification of region of
interest like their previous system, Digital Autdeth Identification System (DAISY). A
dataset of 774 images of individual live moths hgiag to 35 different species was
built. After extracting the feature vectors of eagtage, a toolkit (collection of machine
learning algorithms for data mining tasks), WEKAhé University of Waikato, San
Francisco) was used to classify the moths by specisbout 11,300 numeric features
were extracted from each image at multiple poinitsng) processing. These features were

a combination of global image and also local imatgistics, obtained by centering a
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grid of total size 600600 pixels over the centrofdthe moth. This mask was then
subdivided into 400 square patches, each patchndr80x%30 pixels in size. For each
area, the mean, minimum, maximum, and standardatieni of the pixel values was
calculated and added to the feature vector. Howethes approach may not be as
effective for smaller species that occupy less spathe image.

A group of twelve researchers (Larios et. al.,, J00ave worked for the
development of an automated approach to identiiyedty larvae. Their project includes
designing and building a mechanical device thattcamsport insects through the field of
a microscope and automatically photograph theme Stoneflies were imaged by an
apparatus that manipulates the specimens into idk@ ¥view of a microscope. The
classification process included: identification refgions of interest, representation of
these regions as SIFT vectors, classification &fTS¥ectors into learning descriptors,
formation of histogram of detected descriptors, atassification of the descriptor
histogram via state-of-the-art ensemble classiboaglgorithm.

The authors (Larios et. al., 2007) tested thrggredescriptors on each image:
Hessian-affine detector (Mikolajczyk and Schmid0£2)) Kadir entropy detector (Kadir
et al.,, 2004), and the authors’ detector principaivature-based region (PCBR). The
results of this study showed that the best clasditn was obtained when using a
combination of all three detectors. The successitd for four-class was 82% where it
was 95% for three-class accuracy. However, atdtage, the system is not completely
automated because the specimen is inserted manua#&dlythe acrylic to be pumped
through the tube. Also, when photographing the ispec at different views, human

operator has to make a decision about which ofirtteges is suitable for recognition
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process. There are some issues that the authoes ceasidering to improve their
system. These include the mechanical apparatutharabftware (Larios et. al., 2007).
The identification of bivalve larvae with image adysis using discriminant

analysis was studied by Hendriks et al. (2005). oTmethods were applied for
recognition; first, compiling species-specific dinséons and second, compiling the shape
parameters (contour of the larvae shell) from treglable dataset. The first method failed
to provide reliable results whereas the secondvdren applied to large larvae (length >
150um) using discriminant analysis showed betteulte. The technique could identify

up to 74% of the large larvae correctly.

3.3 Analysis of Previous Work

Among the closely related studies to this projBogital Automated Identification
System (DAISY) (Watson et al., 2003), Automated Beentification System (ABIS)
(Arbuckle et al., 2001), Species ldentification dmiated and web Accessible (SPIDA)
(Do et al.,, 1999), and the Automated Insect I|damtiion through Concatenated
Histograms of Local Appearance (AIICHLA) (Larriosa., 2007), were very significant
in the field. However, these systems have somddtions and may not be applicable for
identifying all insects. The target group that DXISvas designed to identify is
Ophioninae Klymenoptera: IchneumonidaeFor accurate classification, the system
requires that insects are aligned for capturing iheage. In other words, the system may
not be applicable for field application where nontfam interaction is preferred.
Furthermore, for insects that are closely related similar in shape, large number of

training images would be required especially whk tandom n-tuple classifier (NCC)
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used in this system. However, the system could geod tool for routine identification
of a targeted group of insects.

ABIS system was designed specifically to idenbBes based on differences of
their forewings. It requires user interaction fdigming the specie’s wing before
capturing its image. Also, the system is limitedgp®cies with membranous wings as the
algorithm depends on a specific set of characteteeowing venation for identification.
In the SPIDA-web system, manual manipulation ofdepispecimen is required for
proper image acquisition. User interaction is atequired for region selection and
preprocessing of images. The AIICHLA system is dpaily designed to identify
stonefly larvae which live in water. An operatosha make sure that the larvae are in the
standard orientation for properly capturing theiages.

Based on the cited literature of insects’ ideadifion systems, no fully automated
system for identifying insects in the field haveebedeveloped thus far. Furthermore, to
our knowledge, no recognition system has been dedigpecifically for identifying

pecan weevils. The absence of such a system redithe research of this project.
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CHAPTER IV

MATERIALS AND METHODS

Recognition Methods
Introduction

The shape of an object is an important featurecttain image recognition
application. In general, there are two criteriarigpresenting the shape of an object. First,
the shape descriptors should be sufficiently adeusa that they uniquely represent that
shape. Second, they should be broad enough tosbasiiive to minor variations among
objects of the same type. This applies, in pariGub biological objects (as is the case in
this study), since they are irregular objects.

The shape of objects can be represented by ditfemethods. These methods are
generally classified under two major categoriesludipe representation, the boundary-
based and region-based methods. Boundary-base@segpations utilize only the
information of the shape boundary whereas the rebased techniques consider the
internal and external details of the shape.

The boundary-based method can represent the bquasia whole, and a feature
vector derived from the whole boundary is used &scdbe the shape. The other
approach of representing the boundary is by segngethem into primitives using
certain criterion. Techniques like Shape Signatufeurier Descriptors, Wavelet

Descriptors, Chain Code, and Gaussian are examplés this approach.
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The region based method has been widely implemeintedany applications
because it is usually simple to acquire and ismjgsee sufficiently. In this technique, all
pixels within a shape region are taken into accooimbtain the shape representation. An
advantage of this technique is that these pixeaisbeautilized to describe non-connected
and disjoint shapes. However, region-based reptasams do not emphasize boundary
features, which could be very crucial for some geition applications. Examples of
some common region-based methods include the AHaes, Euler number,
Geometrical moments, Zernike moments, Pseudo-Zermioments, and Legendre
moments. Figure 4.1 presents the major classificabf these shape representation

methods.

Shape Description
I

A 4 A 4
Boundary - Based Region - Based
A 4 A 4
Chain Code Region Properties
Perimeter Gird Method
Shape Signature Euler Number
Gaussian-Smoothing Geometric Moments
Fourier Descriptors Zernike Moments
Wavelet Descriptors Pseudo-Zernike
Polygon Moments

Figure 4.1 Taxonomy of Some Shape Description Metds
Boundary—based methods depend on extracting thadaoy information of
object’s shape. However, sometimes, this infornmatitay not be available or accurate
due to variety of reasons. On the other hand, dkegased methods are not heavily

dependent on shape boundary information (as Boyrused method) but they do not
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represent local features of the shape. Therefarth blasses of shape description are
necessary for general object recognition applicatio

In this study, methods from both types of shapem@srs were used. Fourier
descriptors and String matching methods were imetged as boundary-based method,
whereas, Geometric moments, Zernike moments, ampgoReroperties were selected
from Region-based method. In addition to these odgh the Normalized cross-
correlation method was also employed in this apgibe. These selected methods are
reviewed and discussed in the next section of ¢hpter. For each method, a brief
introduction is given followed by the mathematibalckground and the algorithm used

for that method.

4.1 Normalized Cross- Correlation Based Template Mahing
Introduction and Review
Correlation-based template matching is a standayg of finding a match of a

template in a given image. The template could paraof an object or the whole object
that need to be found in an image. The task ofetation-based matching is extended to
find the location of the template in the tested gmaThe correlation calculates the
similarity between the template and the area initipait image. A large value of the
correlation indicates a high similarity. In thisethod, no pre- or post- processing is
required. The computational complexity of correlatbased method depends on the size
of the template and the image. However, when thecheng area (image) is large, it is
expected that the searching process will take lotigee. Moreover, the computational

cost will be high in case of searching large databa

34



Goshtasby et al. (1984) used two-stage templatehimgt with cross correlation
as the similarity measure. In a human face recmgntask, Brunelli and Poggio (1993)
compared two algorithms, one based on the computatfi a set of geometrical features,
and the second based on correlation template nmgtcfihe results showed that perfect
recognition was achieved when using template magchwhere only 90% correct
recognition was obtained when using the other ntetho

Correlation-based template matching is also applécto binary images. Wallace
(1988) applied boundary correlation to geometncathatched rigid object-model
contours with image contours. The normalized fofraasrelation has been computed in
the spatial domain because there is no simple Hinieat frequency domain expression
(Lewis 1995). Darrell et al. (1996) selected ndinea correlation to be the similarity
measure between an image and a set of spatial medels to obtain real-time
performance in hand and face gestures recognipphcation.

Choi and Kim (2002) used correlation as a firstgstan a rotation and
illumination invariance template matching methadthis step, matching candidates are
selected using the vector sum of circular projedtiof the sub-image, which is low in
computational cost. In the second stage, matctsngerformed only on these selected
candidates using Zernike moments. Farag et al 4)2@€éveloped an algorithm based on a
combination of Normalized cross-correlation temgplabatching and Bayesian post-
classification to detect and recognize lung camcging image mass screening of spiral
computer tomographic chest scan.

In a real-time tracking system of a sequence ofjgsaWang et al. (2005) studied

the use of template matching. Kim et al. (2003dua combination of three correlation
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template matching- sum of absolute difference (SADM of squared difference (SSD),
and maximum absolute differences (MAD). Kohandzral. (2006) proposed a template
edge matching algorithm that utilized the edge rmfation to perform the template
matching. Their results showed that the proposgdrihm has higher error in finding
the template location but performed four timesdasin average than the method based

on original algorithm.

Matching by Correlation

The template will be denoted &&x, y) of size Q x L that is to be matched with an
image f(x,y Jof size M x N where the size of the template should be less ¢thagual

to the size of the image. The sum of squared reiffees (SSD) is a similarity measure
widely used in computer vision. In a gray level geadifferences of the sum squared of
each corresponding template and input image pidaken as an indication of the

similarity between the template and the searchexh af the image (Storring and

Moeslund, 1997).

N M 2

SSD(x, y):ZZ[f(x+n,y+m)—t(n, m)] (4.2)

n=1 m=1
The cross-correlation can be derived from the SSD a
N M N M N M
SSD(x, y) = zz f(x+n, y+m) +Z:Z:t(n,m)2 —ZDZZ f(x+n,y+m)>d(n,m) (4.2)
n=1 m=1 n=1m-1 n=1m=1

In this equation, the energy of the searched andalee template are represented
by the first and second terms respectively. The tlxsn is the cross correlation (CC)

which forms the correlation between the image dmdtémplate. The value of the CC

ranges from zero (no match), to [N.M. 3p%he maximum value. The need for
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normalizing the cross correlation (NCC) term appdasince the energy of the different
searched area in an image is not usually cons&otr{ng and Moeslund, 1997). The CC
can be normalized as follows:

N M
ZZf X+n, y+m [ﬂ(n,m)
NCC(x, ) == n=1 m-1 (4.3)

f2 x+n,y+m)iit2(n, m)

n=1 m=1 n=1m=1

<

As Equation 4.3 shows, the normalization is donedivyding the CC with the
square root of the energy of the searching areatentemplate. The range of the NCC is
between [0, 1] where zero indicates ho match afwd itlentical match.

In this study, NCC was used with a simple algonitto identify pecan weevils
among other insects. First, the program readsridnglgvel input image and the image of
pecan weevil stored in the database. Then, the inpage will be treated as a template
and normalized cross correlation performed betwdws template and the database
images one by one. If the value of the correlai®mreater than the experimentally

determined threshold (0.75), then the input imadkebe recognized as a pecan weevil.

4.2 Geometric Moment Invariants
Introduction and Review
Hu (1962) presented a theory of two-dimensionaihmt invariants for planar
geometric figures based on the work of th& t@ntury mathematicians Boole, Cayley
and Sylvester. In this theory, a set of invariabtsed on combinations of regular
moments using algebraic invariants were derivees€hseven moments are invariant to
translation, scale, and orientation. He also irm@leted these moments to recognize the

Latin alphabetic characters.
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Many studies on deriving different types of invat& and using invariant
moments for object recognition have been carrietl since the introduction of Hu’'s
theory. Ezer et al. (1994) compared the performariamoment invariants and Fourier
descriptors in recognizing planar shapes. Theyddabhat moment invariants are affected
more under changes in size. They concluded thaigretton was better when using the
silhouette of the shape. With a significantly lowaror rate, Dudani et al. (1977)
implemented moment invariants for the automatiogedion of six aircraft types using
132 images of them. Wong et al. (1995) described amplemented an automatic
approach for the generation of moment invarianteest new generated moments were
used for the recognition of English alphabets.

Abu Mostafa and Psaltis (1984) investigated sonpe@s of information loss,
suppression, and redundancy encountered in monmeatiants. They described the
behavior of moment invariants in the presence dita@ noise. Goshtasby (1985)
described rotationally invariant template matchusing normalized invariant moments.
In this technique, the zeroeth-order moment wasl fisgt to determine the likely match
positions, and the second and third-order momeete \ater used to determine the best
match position among the likely ones.

Flusser and Suk (1994) used affine moment invasjaherived by them, as the
features for recognizing handwritten charactergpahdent of their size, slant and other
variations. To estimate the object pose in an imifkundan and Ramakrishnan (1996)
used geometric moments as image feature descripioestablish the correspondence
between the object and image space transformatidrey (1993) also used a moment

based method for determining the three-dimensiootdtional parameters of a rigid
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body. Second- and third-order moment invariantsewssed to construct the feature
vector for the scale and orientation.

Sluzek (1988) presented a new approach basedeandment invariants to match
partially occluded contours. Sluzek (1995) also duseoment invariants for the
identification and inspection of 2-D shapes. Udagily of shapes created by occluding
the object by circles located in the object's aeatarea, it was possible to create from a
single moment invariant many shape descriptors2d@5, Sluzek combined template
matching and moments into a method of designingaliets for various image patterns.
The method used a circular window of the size eelaio the object, then, for each
location of the window, moment features were useddtermine the best match to the
actual content of the window.

El-Khaly and Sid- Ahmed (1990) used moment invdsdor the recognition of
Arabic characters and their isolation from the fathtext. Tsirikolias and Metzios (1993)
presented a set of moments which were normalizédnespect to standard deviation and
used them for optical character recognition. kaitLl979) provided some improvement
in moment invariants to make them invariant to¢hanges in contrast. Hupkens and De
Clippeleir (1995) applied normalization to momemgariants to overcome the intensity
invariant of noisy image. Wang and Healey (1998)adoped a method for recognizing
color texture under various illumination conditioasd geometric configurations based
on Zernike moments.

Zhang and Lu (2002) used geometrical moments irgen@trieval application

and concluded that they perform very well on sintyatransformed and affinely
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transformed contour-based shapes. However, thedmrpgance was not very effective in

the case of distorted contour-based and scaleashap

Object Recognition by Geometrical Moment Invariants

For robust and reliable recognition results, tlésirable to utilize methods which
are invariant to translation, scale, orientationd aotation. One of these methods that
have been widely implemented in image pattern neitiog and image classification is
moment invariants. Hu (1962) defined seven desmsptvhich computed from central
moments through order three that are independenbbject translation, scale and
orientation. Translation invariance is obtained bgmputing moments that are
normalized with respect to the center of gravifjhe size invariance can be computed
from algebraic invariants. From the second anddtbrder values of the normalized
central moments, a set of seven invariant momeats loge computed which are
independent of rotation (Sarfraz, 2006). Given a-tlmensional image (Gonzalez and

Woods, 2001)f (x,y )the moments of orddip + q aye defined as:

Mpq:j J-xpyqf(x,y)dxdy (4.4)

where p, g =0,1,2,.mx,

The central moments are defined as:

0 0o

fpg = | JO=RPly=9)F (. y) axay (4.5)
whereX = Mo andy = Moy
Moo Mpo

For a digital image, Equation (4.5) becomes:
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Hpg = D> (x=%)P(y=9)" f(x.y)

The central moments of order up to 3 are:

Hoo =D Y (=X (y-7) f(xy)
=22 f(xy)
=My

o =22 (X=X (y-y) f(xy)

=my _%(moo)

=0

Ho = ZX‘,Z(X_)_()O(y_ 7)1 f(x,y)

Myo
=My — XMy, =My, —ymy,

Hio = EZ(X_)_()Z(y_ y)o f(xy)

2 2
:rnzo—_zrrho +ﬁ
My Mo
_ m
_rnZ _——
omy
=My, — XMy,
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Hop = ZX)Z(X- X (y-y/f(xy)

=m,, - (4.71)
©my
=My, — ymm
to =2 3 (X=X (y-9) f(xy)
=5 (4.79)
= m,, = 2Xmy,; - ymy, + 2%X°my,
My = Zz (X_ )_()l(y - y)z f(xy)
Xy (4.7h)
=m, - 237”11 - Xmoz + zyzn‘ﬁo
tao =2 2 (X=X (y-9) f(xy)
Xy (4.71)
=my, —3szo + 2)_(2mlo
tos =2 2 (x=x)(y = 9f f(x.y)
Xy (4.7)
=My, — 337moz + Zyzmm
The normalized central momel(rﬁq) can be defined as:
n.= 1™ where y:ﬂ+1 (4.8)
4 2 '

The seven geometrical moment invariants derivediby1962) from the second and the

third order moments are:

¢ =M o (4.9)
@ =120 ~1102)* + 4172 (4.10)
@ = (130 = 3112)" + (720~ 3103)° (4.11)
@ = 130+ 3112)" + (720 + 3703)° (4.12)
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@ = (’730 _3’712)"' (’730 "‘3’712)2[(’730 ""712)2 _3(’721 ""703)2]
) ) (4.13)
+ (3’721 _/703)(/721 ""703) 3(’730 ""712) _(’721 ""703)

@ = (’720 _3702) [(’730 "‘3’712)2 _(’721 ""703)2] "‘4’711(3’730 _’712)(’721 +’703) (4.14)

@ = (3721 _3"703)+ (’730 +3712)l(’730 ""712)2 _3(’721 +’703)2J (4.15)
+ (3’721 _’703)(’721 +’703) [3(’730 +’712)2 - (’721 “"703)2

Similarity Measure
The idea of template matching is to measure thalagity between an input

image and a database of known shapes. When comgpgananimages, say G and H, then,
two sets of valueg(i)andh(i), will be produced by the two images. The simitarit
(distance) between them can be measuredi s g(i)—h(i). The smaller the distance is,
the closer the two shapes are to each other amdveisa. If the distancg(i) = , @hen
the two shapes are identical. In measuring sinylaiti is always desired to represent the
result by a single value instead of a set of valiles in d(i). This can be done by
treating d { ) as a vector in multi-dimensional space where #rgth of this vector

represents the distance between the two comparagesn(Sarfraz, 2006). The value of
the distance can be obtained from the square rboheo sum of the squares of the
elements ofd i( )

To calculate the similarity degree of the cormegping moment invariants of an
input insect’s image and the database of pecanilsegnages, Euclidean Distance (ED)

was utilized as the classifier measure. The EDisaggn can be written as:

D= |3 (o)1) (@.16)
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For a given input (insect’s image), these seven ardgrmvariants were calculated

and compared with the ones of each pecan weevgerstored in the database. Euclidean

similarity measure was used for comparison. Therdlyn used in this study to measure

the seven moment invariants has closely followedalgorithms presented in Gonzalez

et al.

(2004) and Sarfraz (2006). The algorithm wasigned to execute the following

steps:

1.

2.

Load the input gray level image

Convert the raw image to a binary

Label the image, remove all objects except thesstirgnsect’s body)

Extracted object in the last step gets loadedresaaimage

Boundaries of the image will be detected

Calculate the seven moments

Normalize the moments by dividing them with thestfione to eliminate the scale
effect

Compare the obtained moments of the tested imatlealimoments of the pecan
weevil images using Euclidean distance

Input image with least Euclidean distance is recaghas pecan weevil

4.3 Zernike Moments

Introduction and Review

Geometrical moments are the most common and silplesients; but in many

cases they do not represent the image featureseetly (Zhenjiang, 2000). Zernike

moments perform better than other methods despite fact that they are more

complicated than geometrical moments. Zernike masnevere first introduced by
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Teague (1980) who defined them based on Zernikgnpatials. These moments are
orthogonal to each other which allow them to re@néshe properties of images with no
redundancy or overlap of information between thenmots. Zernike moments have been
used in many recognition applications and theifggerances have been compared with
other methods. Different combinations of Zernike nmemts and some recognition
methods have been studied as well. Hwang and RD0Q) proposed an approach that
computes Zernike moments from a digital image eighes faster than an existing
method.

The literature strongly suggested the superiorityZernike moments in many
identification tasks over geometric moment invaisafiHu’s moment). Liao and Pawlak
(1996) addressed the issue of increasing the ancuaad efficiency of moment
invariants and proposed some techniques for thgroavement. These approaches were
used for image reconstruction from the orthogoreddndre moments. Zernike moments
are the most desirable shape descriptors amongmottraents (Zhang et al., 2004).

Teh (1988) compared the performances of geomaktnooments, Legendre
moments, Zernike moment, pseudo-Zernike momentsatioaal moments, and complex
moments. Their results showed that Zernike momemt® better than other types of
moments in terms of information redundancy and aVererformance. Khotanzad and
Hong (1990) introduced a set of invariants of feadélbased on Zernike moments. These
features were tested using clean and noisy imagesd 26-class character data set and a
4-class lake data set. Belkasim et al. (1991)istLthe effectiveness of different moment

invariants in the recognition of handwritten nuni&€rand aircrafts. The best overall
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performance was obtained when applying their metbbderiving Zernike moments
along with normalized scheme even with some adslitivise.

In retrieval application, Kim and Kim (2000) us@&ernike moments to match
images of large database under various transfoonmtand similarity—based retrieval.
Their results showed that Zernike moment can bd asen effective descriptor of global
shape retrieval. Zhenjiang (2000) utilized the prtips of Zernike moments to define the
method of roundness measurement, which was useadlyze the roundness of rose
flower shapes. Shen and Ip (1999) compared théormpesince of several moment
invariants method. The correct classification achieby Zernike moments was 98.7%
compared to 75.3% for Li's moments.

Lin and Chou (2003) studied the first 36 Zernik@ements and found the
dependence relations between them. They appliedpgtaposed compact representation
of Zernike moments on image retrieval applicatiomicoh turned out to be faster than
original representation. Park and Kim (2004) usednike moment as a region—-based
classifier in their proposed shape—based imagévatrmethod. They concluded that
using Zernike moment beside Fourier descriptorsvigenl better results than other
similarity methods. In a comparison of 2-D momeaséd description techniques, Di
Ruberto and Morgera (2005) found that Zernike masigave the best result compared

to the others.

Object Recognition by Zernike Moments
Zernike moment descriptor has the properties tattian invariance, robustness to
noise, expression efficiency, fast computation amdlti-level representation for

describing the various shapes of patterns (Kim kimd, 2000). In many comparison
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studies of moments based methods (Teh and Chi; 198 and Chou, 2003; Belkasim
et al., 1991; Zhang and Lu, 2004; Park and Kim 2®&z¥er, 1994; Padilla-Vivanco et al.,
2007 and Liao and Pawlak, 1996) Zernike momentpestdrmed the others methods,
especially the geometrical moments.

Zernike introduced a set of complex polynomials althiform a complete
orthogonal set over the interior of the unit cirdéx® + y*> =1. The computation of
Zernike moments from an input image consists oédhsteps: computation of radial
polynomials, computation of Zernike basis functicamd computation of Zernike
moments by projecting the image on to the basistion (Hwang and Kim, 2006). The

form of these polynomials is as follows:
Vam(% ) =Vnm(p, 8) = Ry (p) exp(jmé) (4.14)

wheren= 0123,...c0 n is called “order”, m is a positive and negativeeger (known as
“repetition”) with constraint that—|m/is evenandm < n, pis the length of vector from

origin to (x, y) pixel, 8 is the angle between vectgrand xaxis in counter-clockwise

direction, R, is the radial polynomial defined as:

These polynomials are orthogonal and satisfy thbogonal properties for the same

repletion,
J Lz+yzﬂ V(% YIViq (x yldxdy= n—fldnp@nq (4.18)
1 =
whered = (@=b) _
0 (otherwisg
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The Zernike moments of orderwith repetition m for a continuous image function
f(x, y) outside the unit circle is:

_n+l
T

A =[] 10009) V(0. 6)] dxaly (4.19)

In Equation 4.17, the integral can be replaced lbyieations (since all the images are

digital) as follows:
Am=——" 22t (xY)Mm(0.6)]  wherex’ +y*<1 (4.20)
Xy

The Zernike moments are computed for an image bgidering the center of the
image as the origin and the pixel coordinates ampped to the range of the unit circle.
The computation will not include pixels outside tiv@t circle. The orthogonality implies
no redundancy or overlap of information betweenrttwanents with different orders and
repetitions (Hwang and Kim, 2006). In this casesheenoment will be a unique and
independent representation to a given image.

Similarity Measure

For this method, the degree of similarity was eatd by calculating the

Euclidean Distance of the corresponding Zernike mrasiof an input insect’s image and

the database of pecan weevils’ images:

D= 3ol -hi) (4.21)

where g(i) andh { Jare the ! corresponding Zernike moment for the unknown ienag

and the pecan weevil image respectively.
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Algorithm

In this study, an algorithm presented by Chang Q2@@® the University of Texas

was adopted for computing Zernike moments. Therdalgn executes the following

steps:
1.

2.

Load the input (gray level) image

Convert the raw image to a binary

Label the image, removes all objects except thgekr(insect’'s body)

Extracted object in the last step gets loadedresaaimage

Normalize the coordinates assuming the centeristigin

Compute the unit disk mask

Mask the pixels which are lying inside or on unifcle by clipping the input
image matrix regions into a vector

Compute Zernike polynomial over unit circle at aegi order n and repetition m

which will result in the magnitude of the matrixdatne phase

4.4 Fourier Descriptors

Introduction and Review

Fourier descriptors (FDs) method is one of thenday-based shape descriptors

techniques and has been implemented for classificaf different types of objects. FDs

can provide characteristics of an object that ugliguepresent its shape (Sarfraz, 2006).

Their main advantage is invariance to translatiotgation and scaling of the observed

object. Invariant FDs which were first introduceg Granlund (1972), described the

rotational symmetry of a shape. He tested the ndethalassifying hand printed letters

which resulted in 98% correct classification.
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Many FD methods have been developed for shapgsasiatharacter recognition,
shape coding, shape classification, and shapesvatr(Zhang and Lu, 2002). Persoon
and Fu (1986) used FDs in character recognitionnaachine parts recognition. Rui et al.
(1999) proposed a modified Fourier descriptor tecdbe and compare closed planar
curves which account for the effects of spatiatiiszation of shapes. Kauppinen et al.
(1995) used FDs in 2D shape classification and dotivat it performed better than
autogressive modeling method especially in the gmes of noise. Chellappa and
Bagdazian (1984) described a transform coding seh&mn image boundaries using
Fourier computations. Reeves et al. (1988) usedifDscognizing a three-dimensional
object from a two-dimensional image where they qrenkd almost the same as the
standard moments. Park and Kim (2004) concludetl ithage retrieval success rate
increased significantly when FDs were used.

Zhang and Lu (2002) proposed a generic Fouriecrgeer that derived by
applying two-dimensional Fourier transform on agpobster sampled shape image.
Their experimental results showed that the proposethod performed better than some
existing contour-based and region-based shapeipssr In image retrieval application,
Zhang and Lu (2002) studied the performance ofrs¢¥Ps that have been derived from
different signatures. Their results showed thatpsheetrieval using FDs derived from
centroid distance signature is significantly bettean that using FDs derived from the
other three signatures. In another comparativeystddang and Lu (2002) found that
FDs performed better than the curvature scale spethod in terms of robustness, low

computation, hierarchical representation, retrigpgaformance.
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Object Recognition by Fourier Descriptors

Fourier descriptors are produced by the Fouri@an$iormation which represents
the shape in the frequency domain. The lower frequedescriptors store the general
information of the shape of the shape and the hidreguency the smaller details
(Sarfraz, 2006). Therefore, the lower frequencgnponents of the Fourier descriptors
are sufficient for general shape description.

The boundary of a shape consistskofpoints in thexy— planeTracing once
around the boundary from an arbitrary starting t((xm yo), in the counterclockwise
direction, at a constant speed produces a sequemde coordinate
pairs(xy, Yo ), (%, ¥, ) (%, Y5 hevees(X 1, Yiy ). FOr representing traversal at a constant
speed, it is necessary to interpolate equidistamit® around the boundary. The boundary
can be represented as the sequence of coordi;(le)es[x(k), y(k)], for
k=0,12,...K-1. The coordinate pair of shape boundary can be ibescras a
complex number as:

s(k) = x(k) + jy(k) (4.22)
wherej = V=1 . This representation changed the problem fromdimzensional to one-

dimensional case.

The discrete Fourier transform of Equation 4.18 is:
1 K2 _
a(u) =EZs(k)e’12’“k/K (4.23)
k=0

foru=0,12..,K-1 and the complex coefficientsa(u ale known as Fourier

descriptors of the boundary. The inverse Fourardform of Equation 4.19 is:
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= _
s(k) = D_alkje 7K (4.24)
u=0

where ‘K’ is the number of points in the boundandds’ is the featured value from
Fourier descriptors for object recognition and esentation. As mentioned earlier, high
frequency components account for fine detail awd fiequency components determine
global shape, therefore, not all Fourier descriptare required for general object
recognition. Instead, only the first P coefficeshould be used. In this case, Equation

4.20 can be rewritten as:
P-1 _
5(k) = ) a(u)elH/K (4.25)
u=0

As a result, smaller the P value is, the finer itet@ould be lost on the boundary.
On the other hand, the fewer components we incindée calculations, the faster the
algorithm will be.

The Fourier descriptors are not invariant direttlythe geometrical changes like
rotation, translation, scale, and starting poinpadcessing. However, applying specific
transformation to each individual variant would redkourier descriptors insensitive to
that particular change. The following set of egquat present the Fourier descriptors for
a boundary sequence that experience changes itiomtdranslation, scaling, and

changes in starting point (Gonzalez and Woods, 001

K-1

1 . .
Rotation, a(u) == > _s(kje!%e™ 2Kk (4.26)
u=0
1 K2 _
Translation,a(u) = [EZ s(k)e 127K J + A,y (4.27)
u=|
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where A, is the added constant displacement to all cooregnat the boundary(k )

which can be presented as:

s(k) = [x(k) + Ax] + j[y(K) + ay]

1 K-1
Scaling, a(u) :[K s(ge” ’Zf“k/KJ (4.28)
u=0
1 K2 S
Starting Point, a(u) = — Y s(k)e 1 2/K (4.29)
K u=0

In  Equation 4.28, the boundary sequence is defineds:

s(k) = x(k—k0)+ jy(k—ko), which indicates that the starting point of thexjsence
changes fromk =0to k =k, .

Similarity Measure

Euclidean Distance (ED) was implemented in thishoe as well, as a classifier
to measure the similarity degree of the correspandiourier descriptors of an input
insect image and the database of pecan weevil'gesa The ED’s equation can be

written as:

0= | (o)1) (4.20)

Using Fourier descriptors, an acquired image i®geized as pecan weevil when the
value of ED is less than or equal to 1.0 (experiagndetermined threshold).
Algorithm

A simple and fast algorithm was implemented in tdgimg pecan weevils among
other insects. This algorithm follows closely thethods presented by Sarfraz (2006) and

Gonzalez et al. (2004) with some modifications.
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1. Load all images

2. Convert the loaded images to binary images

3. Label connected components in binary image

4. Include the main object and eliminate the rest

5. Create a binary image containing only the mainabje

6. Find the boundary of the image

7. Convert the complex pairs to 1-D vector of desonipt

8. Select a number that could represent the shapehefirtsect (450 Fourier
Descriptors )

9. Normalize the selected Fourier descriptors by dingdeach element of the 450
descriptors by the first element (alpha)

10.Measure the similarity between a given image arel ttining set by using
Euclidean distance

11.An input image Euclidean distance less than or ledqha experimentally

determined threshold of 1.0 will be recognized esap weevil

4.5 String Matching
Introduction and Review
String matching is one of the boundary-based detecd in which the boundary
of a shape can be represented by a string. Strémgsone-dimensional structures
representing the boundary of two-dimensional shap&is representation requires an
appropriate method for reducing the two-dimensigeédtions to one-dimensional form
(Gonzalez and Woods, 2001). The fundamental carafagsing strings as descriptors is

to extract the connected line segments from theesh@a be recognized. The approach
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implemented in this study is to track the contotiao insect and code the result with
segments of specified direction (angles).

Sze and Yang (1981) proposed two similarity meashbetween strings. Wu and
Wang (1999) proposed a two-stage string matchintpodeto recognize two-dimensional
objects. First, global string matching is conductéebn, in the second stage, the local
dissimilarity measure is computed. Wolfson (199@)aduced two algorithms to find the
longest common sub-curve of two 2-D curves. In12080u introduced a feature for two-
dimensional object recognition named as “the rec@al of compactness of triangles
formed by two adjacent dominant String matchinghtegues for two-dimensional
objects”. The author concluded based on some expatal results that no parameters
need to be set in the recognition process.

Lee and Lee (1998) used a two-stage String matchathod in a scheme to
inspect two-dimensional objects for dimensional atdpe verification in industrial
environment. Their method first determines theanant starting point for boundary
tracing and locating the corner points of a curgbpct for polygon. In the second stage,
their method utilizes the feature string for eadstéd object to find the exact
correspondence to one of several model objects.

Pavlidis (1979) introduced a contour matching atbm. Pavlidis and Ali (1979)
used a syntactic shape analyzer whose outputes@&igdtion of the contour as a sequence
of arcs, each with a set of attributes. Sze andg¥[@®81) proposed a variation of the
previous study. Gdalyahu and Weinshall (1999) psedoan algorithm for matching

curves under substantial deformations and arbitrémyge scaling and rigid
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transformations and applied the algorithm to si#ttel matching. In their design, they

constructed a syntactic representation for botkeziand an edit transformation.

Matching by Strings

In this method, the boundary of an insect is regméed by a string which is
generated by coding the interior angles of the gag. Then, strings were generated
from a given angle array by quantizing the angige 45 increments which produced
strings whose elements were numbers between 1 gbi@zalez et al., 2004) with 1
increment. Table 4.1 presents this relationship.a@roinput image of unknown insect and
pecan weevil, the two boundaries can be coded irdisings denoted

a, a,,...,a, andb, b,,...,b respectively. If a represents the number of matches between
the two strings, and the match takes place in kfféocation, then the number of
unmatched symbols can be described As: max{d, |o))-a where [a and| are the

length of the string representing the unknown ihsmad the pecan weevil images

respectively. In this case, the value®is equal to zero if the two images are identical.

Table 4.1 Designated Integers for Each Angle’s Raeg

Angle Range  Symbol Representing the Range
0 <6<45 1
45 <6<90
90 <#<135
135 <6<180
180 <6< 225
225 <6< 270
270 <6<315
315 <A< 360

0o N o o~ WD
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Similarity Measure

Even though there are many definitions of stringilsirity, a simple measure
between strings was implemented in this study whar be represented by the following
ratio:

a

D:E—T)—ma aflbl — (4.31)
The value ofD is equal to zero when none of the symbolsainlunknown insect’s
image) andb (pecan weevil's image) is matche@; is equal to infinite when the two
images are identically matched. In String matchantgsted image is recognized as pecan
weevil if the D value is greater than or equalie value (1.0) of the threshold.
Algorithm
1. Load all images
2. Convert the loaded images to binary images
3. Label connected components in binary image
4. Include the main object and eliminate the rest
5. Create a binary image containing only the mainabje
6. Compute the minimum perimeter polygon (by using tMatlab function
minperpoly and form it in a string
7. Compute the internal polygon angles of the stripgdding the interior angles of
the polygon
8. Form a string from the angles array by quantizimg angles intod5 increments
in which the elements of this string are integersnf 1 to 8 representing the
angles’ increments.

9. Convert the yielded string from a string of integty a character string
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10.Measure the similarity between two strings usingldtafunctionstrsimilarity

4.6 Regional Properties Descriptors

While the aim of this study is to identify pecaeavils among other insects, it is
also desired to keep such a system as simple ashf®s A regional property is one of
the approaches among regional descriptors as it a@th the region(s) of the image
instead of its boundary. It is a simple method describing important properties of
image regions such as, the area, centroid, anchtatien. Although there are many
insects that are very close to pecan weevils im3esf shape description, one important
feature can be utilized to distinguish pecan weevdm other insects. This feature is the
pecan weevil's rostrum. It has been previously noaed (Chapter Il) that pecan weevil
can be recognized by its long rostrum which is #ldngth of the male’s body and as
long as the female’s body.

As pecan weevil is not the only insect that ha®sirum, hence, utilizing this
feature alone (major-axis length) may not be vdfgctive. Therefore, this feature was
related to other features in order to form a unigg@esentation of pecan weevils. The
area, major-axis length, and minor-axis length wesed to describe pecan weevils in this
project. The area of the selected region is defasethe number of pixels in that region.
The major-axis length can be defined as the lefigtipixels) of the major axis of the
ellipse that has the same second moments as tioa.régnally, the minor-axis length is
the length (in pixels) of the major axis of thapde that has the same second moments as

the region (Gonzalez et al., 2004).
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Similarity Measure
Euclidean Distance (Equation 4.29) was utilized ni@asure the similarity
between the testing images and the database oh pemavils’ image. In this method, an
input image is recognized as pecan weevil if thevae is greater than or equal to the
experimentally determined threshold which was fotmide 1.0.
Algorithm
1. Load all images
2. Convert the gray level image to double Precisiaratihg Point form
3. Clean the image from noise by applying low padsrfil
4. Define the boundaries of the image to eliminatezi®-padding artifacts around
the edge of the image
5. Convert the resulted images to binary images
6. Label connected components in binary image
7. Include the main object and eliminate the restgdbjvhich its area is >1000
pixels)
8. Create a binary image containing only the mainabje
9. For each image, compute the area, major-axis leagth minor-axis length of the
object and form the three components in one vector
10. Measure the similarity between an input image &eddatabase of pecan weevil's
images

11.Recognize the input image as pecan weevil imateeiED is< 1.0
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4.7 Materials

Collection of Insects

Traps were set up for pecan weevils at differecations in Stillwater, Oklahoma.

The other source of insects’ samples was the Edtmydvuseum at Oklahoma State

University. Over 205 pecan weevils were collectgdbbth sources and these included

both males and females. The collected weevils datie their size, color, age.

Furthermore, about 27 other types of insects wkse @ollected to be part of the testing

set. These insects are normally present in thenpleabitat. Some insects had 2, 3, 4, or 5

replicate samples and nine insects have only am@lea The names of insects used in the

testing data set and their number of replicatepegsented in Table 4.2.

Table 4.2 Insects Used for Testing the Algorithm

Family

Insect

Number of Replicates

Pentatomidae
Pentatomidae

Acridiae
Buprestidae
Carabidae
Elateidae
Elateridae
Reduviidae

Apis Mellifera L
Brochymena Guadripustulata (Fab)

Chortophaga Viridifasciata (Deg)

Chrysobothris Femorata (Oliv)
Coleoptera Carabidae
Acrosterunum Hilaris (Say)
Condoerus Lividus (Deg)
Hemiptera

Microlepidutera Hyphantria Cunea (Drury)

Alydidae
Cercopidae
Membracidae
Lepidoptea
Formicidae
Curculionidae
Curculionidae
Curculionidae
Curculionidae
Curculionidae

Leptoglossus Opposites (Say)

Lepyronia Gibbosa (Ball)

Metealfa Pruinosa (Say)
Plathypena Scabra (Fab)
Tomostethus Multicinctus (Rohwer)
Pantomorus Pallidus (Horn)
Naupactus Leucoloma (Boh)
Cyrtepistomus Castaneus (Roolofs)
Compsus Auricephalus (Say)
Conotrachelus Elegans (Say)

4
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Furthermore, each insect used in this study is shiowFigure 4.2 where the last row of

that image shows pecan weevils.

;

¢

- III

a &
&
b

St éﬁ"“ ’ﬁi "

L
F.f—'

Figure 4.2 Sample of Insects used as the TestingtSe

Image Acquisition

In template-based application, training set of imafould be a real representative

of the targeted object or shape. Even though tregr® checked regularly, few pecan

weevils were found alive. Experiments showed thase¢ live weevils die in short time
when kept in cages. Moreover, it is very hard tsifan live weevils appropriately for
imaging without causing some damage to their bodrdssing them since they can fly.

As a result, live collected insects were set te€pl’ by placing them in a refrigerator at

40 °F for 60 minutes.
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Muscles of pecan weevil shrink and pull the legshortly after they die. This
generally results in all six legs of pecan weesthaining close to the body or sometimes
touching the insect’'s abdomen. Since this systemdesigned to identify live pecan
weevils in the field, images of them in such posi§ would not simulate the natural
appearance of the insects in the field. Therefpreserved insects’ parts (legs and
antenna) were stretched out to so that they wopfsear similar to the position in live
insects. In order to achieve good results withosing these fragile parts, some careful
pre-processing steps were also undertaken to @éparcollected insects for imaging so
that they would appear like live insects.

The first pre-processing step was to put the issecta humidifying chamber for
10 days. The humidified environment helps in makthg insects’ parts (legs and
antenna) more flexible for stretching them out stlelt they are closer to their normal
position. The second step was to align each insetlte camera view for imaging. All
insects were approximately placed at a referens#ipo and orientation. Images of

insects were then acquired with the image acqoarsgiystem described below.

The imaging system

The imaging system consists of an AVT F-145B CCRckland white camera
which is an IEEE 1394 SXGA+ camera. It is equippath a 1.45 megapixel 2/3”
progressive CCD sensor. This camera was manufachyellied Vision Technologies
GmbH 2003, Stadtroda, Germany. Images of insecte wé the size of 335285
pixels. The lighting system is an Aristo MS1417 igd@ Grid Lamp Products Inc.

Washington D.C) model which consists of two padsip housing and power pack. The
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lamp house (Figure 4.3) is 43485.56 x 7.62 centimeters (I x b x h) respectively &
equipped with a cold cathode grid lamp. As suggksh the literature, diffused light
chamber would enhance edge detection and bodyctieftle Therefore, a diffused light

chamber was designed and fabricated in the depatéingorkshop.

Hole for
the Len:
Insect position

Opaque White class

.

<+«—Lamp House

Figure 4.3 Imaging System

This tool helped in reducing the specular reflectimm external light sources. It
is 45.72 centimeters in length, 23.8 centimetenwidth, and 12.7 centimeters in height.
The chamber has an opening of 3 inch radius tevate lens to go through the chamber.
An opaque white-class cover (0.3175 centimetekjhgused on top of the lighting box.
A Dell Optiplex GX745, Pentium® D, 3.4 GHz CPU wased in this project.
MATLAB® (R2006a) image processing software was izl to conduct these

experiments.
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CHAPTER V

RESULTS AND DISCUSSION

Introduction

The ultimate goal of this study is ®vdlop a simple yet robust algorithm that can
be used to identify pecan weevils among other sséthis algorithm is anticipated to
serve in a system that employs a wireless imagingrtique to detect targeted insects in
the field.

In this chapter, individual experimeeasults for each method are illustrated and
discussed for reliability and performance speedterAfdiscussing all methods, a
comparison study between individual methods is etesl. These discussions are

followed by a comparison of the performance ohadithods.

5.1 Normalized Cross- Correlation Based Template Mahing

Correlation-based method is a standard methodjecblecognition and has been
utilized in many applications for its simplicity @nmeliability. This technique finds the
“best” match and its location of an input shapenfiiate) in a given image. The degree
of similarity between a template and an image rarfgem 1.0 for identical match and
0.0 for no match. A higher correlation value indgsa a large similarity between

compared images and vice versa.
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In spite of the fact that in this technique imagesnot require any pre- or post-
processing, it showed higher positive identificatrate among most other methods. The
issue of computational complexity of correlatiors&d method is not a major concern in
this project because of the limited number of pagaavils in the training set. Moreover,
since this method will serve as part of a systeat would serve in a wireless imaging
network in the field, time of recognition is not astical as identifying the weevils
correctly.

Generally, processing time can be a very significeEactor in selecting a
recognition method over others if the designed esysis anticipated to serve in a
production line (industrial application). In thiggpect, however, identification time is
important but not critical because instantaneougr uaction is not necessary.
Traditionally, growers would check pecan weevipgavery three to five days during the
insect’'s emergence season (July-September). Wigesetirching area (image) is large, it
is expected that the searching process will takgdo time. Moreover, images used in
this project are resized to 12434 to ensure reasonable processing speed.

Threshold at which insects are recognized as pa@®vil was experimentally
determined using 204 pecan weevils. In this tesirnilized cross-correlation was
performed between each image of this data set landest of the pecan weevils. This
step showed the maximum possible correlation valueach individual weevil which

helped in choosing an appropriate overall threshold
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Figure 5.1 Threshold of Recognizing Pecan Weevilssihg Normalized Cross-
Correlation

Figure 5.1 illustrates that 86% of the pecan wedvave at least one match that is
greater than or equal to a correlation value o5 0A5 a result, the threshold was set to be
a correlation value of 0.75 or greater. In otherdg, an insect would be recognized as
pecan weevil using Normalized cross-correlationhoetif its correlation value with an
individual pecan weevil (training set) is greateart or equal to 0.75.

The method was then tested using two types ofskdig the first one consisted of
30 pecan weevils that were randomly selected frognoap of 200 pecan weevils. The
second group set is a group of 19 different ins@ttansects) that are naturally present in
the pecan habitat (Table 4.2). The results of éxigeriment showed that the average
correlation value of pecan weevils was 0.79 whglbove the threshold of recognition

(0.75). Using the testing set, twenty seven pecaavils out of thirty were positively
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recognized. On the other hand, when correlatiegsiacond group of insects with the

training set, seventy non-pecan weevil insects @utseventy four were correctly

classified.
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0.80

e Pecan Weevils
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Figure 5.2 Recognition Results for Pecan Weevils drOther Insects Using

Normalized Cross-Correlation Method

Figure 5.2 illustrates the results of using Notizead cross-correlation method to

identify pecan weevils among other insects. I8 flgure, pecan weevils are represented

by the solid circles w

hile the other insects apresented with hollow circles. Clearly, it

can be noticed that this method can distinguistapeateevils from other insects. First,

90% of the pecan w

Moreover, the three

eevils are above the experinigrdatermined threshold of 0.75.

pecan weevils which fall bekbne threshold line were very close

(0.74) to the passing criteria and not significaniway from being correctly

distinguished.
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Figure 5.2 shows that 95% of the non-pecan weevdse correctly classified.
The 5% error represents the misclassification af fosects that are very close in shape
and size to the pecan weevil. Figure 5.3 showsheriirst row, the four insects that were
misclassified and on the second row, an examplesoshe pecan weevils that are
somewhat similar in shape and size to the abowxiasThis similarity is not surprising

because all these four insects are in fact wethwalsshare similar body shape and size.

LN S S 4
¥ &5 &

Figure 5.3 Misclassified Insects (First Line) and Atual Pecan Weevils (Second row)
Similar to the Misclassified Insects

Table 5.1 summarizes the performance of the Nozewl cross-correlation
method in recognizing pecan weevils. It can beaectithat the correlation value of 60%
of non-pecan weevil insects is less than or equél &5, which is significantly less than
the threshold of positive recognition (0.75). Tleults strongly suggest that the method
would be a good tool in identifying pecan weevils,general. Furthermore, it would

facilitate correct recognition among insects whact quite similar to pecan weeuvils.
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Table 5.1 Performance Summary of Normalized Cross-@relation Method

Average Correlation
Value

Ratio of insects with

Pecan Weevils Other Insects

correlation values 050 0% 2.7%
Conelation value 055 0% 319%
Conelation value 065 0% 60%
Conelaton value 075 90% 5.4%
Type | Error 10% -
Type Il Error 5% -

The training set of 205 pecan weevils was choseactount for all possible
variation among pecan weevils in terms of size pads’ orientation. The average time
for recognizing unknown insects would take 22 sac.average. In other words, it would
take about 22 sec. to correlate an input image w@iiti205 pecan weevils’ images to
determine if the correlation value of any of thengreater than or equal to the threshold.
This time is not what would be expected if the injpuage is in fact a pecan weevil. That
is because it would be recognized at least oncerdeforrelating that image with the
whole training set. The results had shown thaapeeeevils which have been positively
recognized have 5.9 matches on average. This ramiitates that performance time
using this method is within acceptable range esfigcivhen considering the large
template used in this study.

Normalized cross-correlation method has been ugeatsélf in many recognition
applications but in this project, this method wountst ensure 100% positive recognition.

Furthermore, correlation technique is known to éesgive to variation in rotation which
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may negatively affect the recognition rate and cedthe reliability of the system. The
following method is implemented for two reasonsstfito use its properties in describing
and recognizing pecan weevils and second, to helgorrecting for any rotational

invariance of the input images.

5.2 Region Properties Method

Insects are the earth’s most varied organisms ambst three-quarters of all
animals (Daly et al, 1998). In body size, most atseare 1 to 10 mm in length. In this
project where many recognition methods are impldatent is desired to adopt a method
that would act as a “filter” which only allows irede to proceed through recognition steps
if they are matching pecan weevils in certain date Such procedure would significantly
reduce the amount of data that the recognitionrdlgo has to handle and increase the
system’s efficiency. The method used for achieuinig goal is known as the Region
properties method, which depends on evaluating sgemmetrical measurement of a
shape or object. These descriptors would thentitieed to represent that particular
silhouette in any identification or recognition ptem.

Region properties method provides several desegghat can be used in the area
of image recognition; for example, theea centroid orientation Euler numberamong
others. In this study, three measurements (descsiptvere adopted to represent pecan
weevils and these included area, major axis lergyt, minor axes length. The major
axes length is defined as the length (in pixelghefmajor axis of the ellipse that has the
same second moments as the region. The minor axisbe related to the length (in

pixels) of the minor axis of the ellipse that hae same second moments as the region
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length. The term area here refers to the numbeixals in a given region (Gonzalez et
al, 2004).

Pecan weevils belong to the superfan@yrculionideawhich is the largest group
(65,000 species) of ordeColeoptera They, as members of this group, are most
specialized in having rostrums which are used @pgring oviposition holes as well as in
feeding. Therefore, a vector that has the thresssl Region properties descriptors was
formed for each insect as a unique representalios significant point, here, is the major
axis length of the insects. This is true becauseaise of pecan weevils, it is almost
always the case that the major axis of their bady ifact the length of their rostrum plus
the length of the body (head and abdomen). Thiemgrule has some exceptions

especially when an image of pecan weevil was takeafe its rostrum was reoriented or

broken.

Maior Axis Lenatt

Maior Axis Lenatt
Maior Axis Lenatt
Maior Axis Lenatt

Figure 5.4 Samples of Pecan Weevils with the Majgkxis Length of their Bodies
Figure 5.4 illustrates the measurement of pecagvilg major axis length. This
distinctive characteristic of pecan weevil (rostjumas utilized by relating it to two more
geometrical measurements formed in one vector. iddee behind combining these three
components in one single vector is to make it nsprecific to the target insect. In other
words, it was hypothesized that an insect with suefjor and minor axis and area is most

likely to be a pecan weevil. This is so becausemihsects could have longer axis but
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smaller area or vice versa. Before conducting éisg threshold was first experimentally
determined.

Figure 5.5 presents the results of applying thgidgteproperties method to the
training data set of 205 pecan weevils. The reshitaved that 80% of the pecan weevils
have at least one positive match with minimum Eledn distance less than 1.0. The

average of number of positive matches for this gr@breshola& 10) was three matches

per insect. Although 90% of the pecan weevils wpositively identified below a

threshold of 2.0, it was preferred to go for a maoissed threshold of 1.0.
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Figure 5.5 Threshold of Recognizing Pecan Weevilssihg Region Properties
Method

With this criterion of recognition, two experimeniiere conducted. The first one
was done on a randomly selected group of thirtyapeeeevils. This testing set is the

same sample that was used to test the performdrade aiher recognition methods. In
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the other experiment, the Region properties methasl applied to a data set consisting
of 74 insects (non-pecan weevils). Using Euclidéistance for measuring similarity, the
results of first experiment showed that 27 pecamwl® out of 30 were positively

identified. This 90% successful recognition rates\aahieved with threshold of less than
or equal to 1.0. On the other hand, all nhon-pecapwl insects group were correctly
classified except five samples. In other words, erthian 93% of the non-pecan weevil

insects were accurately identified.
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Figure 5.6 Recognition Results for Pecan Weevils drOther Insects Using Region
Properties Method

Figure 5.6 shows the significance of the Regiarpprties method wherein non-
pecan weevil insects are clearly distinguished feoan weevils. The results indicated
that the Euclidean distance value of 40% of the-peran weevil insects was at least

100.0 whereas the recognition criteria was an BHeah distance value of less than or
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equal to 1.0. It is worth mentioning here that &bt of the non-pecan weevil insects
have an Euclidean distance value of greater thaaqaal to 10.0. These encouraging
results suggest that Region properties method wdoelda useful tool in the pecan
weevils’ recognition system.

Furthermore, Region properties method can be tsedrrect for any rotational
invariants in pecan weevils’ images. One of theapeters that Matlab function
regionpropsprovides is the orientation, which is the angle degrees) between the x-
axis and the major axis of the ellipse that hassémme second moments as the region
(Gonzalez et al, 2004). As illustrated in Figuré, 3he major axis for pecan weevil is the
length of its abdomen and rostrum. As a result,aientation of pecan weevil’'s image
can be corrected for rotation invariants prior toottional invariant method. This step

would increase the reliability and efficiency othua system.

5.3 String Matching

String matching is classified as region-based mjscs in which the two-
dimensional boundary of a shape is representechbydonensional string. This is done
by extracting the connected line segments fromstiege and coding the interior angles

of the polygons. The resulting angle array fort tstzape would then be quantized into

45 increments which produced strings whose elem&ate numbers between 1 and 8
with 1 increment (Gonzalez et al, 2004).

Figure 5.7 shows two images of insects and thelygom representation. The
string of angles is then used in the recognitiadcpss as a unique representative for each

individual insect. For measuring the degree ofilaifty between pecan weevils and any
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given insect, a simple measure between stringsmplemented in this study which was
represented in Equation 4.26. The degree vary Domgual to zero when the input image
of (a) and any image oflf) pecan weevils do not match, and infinite when tihe

images are identically matched

4

Figure 5.7 Original Images of Pecan Weevils with #ir Polygons

In this method, a tested image is recognized asrp&veevil if the D value is
greater than or equal to 1.0. This threshold waerdened based on the maximum
similarity value of the 205 pecan weevils when canep to each other. Figure 5.8
presents the results of measuring the degree dfasity among the training data set
using String matching method. It can be noticeat the maximum similarity values of
more than 74% of the pecan weevils’ population wgreater than or equal to 1.0. The
result also showed that each weevil which has d@asity value above the threshold has
at least 3.75 weevil matches, on average.

The testing set of insects which includes 75 narepeweevil insects and 30
pecan weevils were used in this experiment asstheen used throughout this study.

Figure 5.9 presents the results of using Stringchiay) method to identify pecan weevils.
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It can be noticed that 80% of the pecan weevilsewanrectly classified whereas this
ratio was 62% for the non-pecan weevil insects.

This result is based on a selected threshold acahitvary as the threshold moves
up or down the scale. Table 5.2 summarizes thelplsss of correct identification ratio
based on different thresholds. As evident froml&@dh2, changing the threshold will

increase the correct identification of one groug esduce it for the other one.

Table 5.2 Recognition Ratio at Different Thresholdvalues

Group Recognition Rates at Different Threshold Values

0.80 0.90 0.95 1.00
Pecan Weevils 100% 93% 87% 80%
Other Insects 30% 42% 57% 62%

Among the misclassified insects, there were 13wileavhich are somewhat
similar to pecan weevils. This is about 46% of tbw@al number of the misclassified
insects. The limited number of descriptor (angiwesented by digits from 1 to 8) which
represent the boundary of a given shape may pexijain the relatively high type I
error when using this method. This appears to be w&specially when coding the
boundary of objects that do not follow some lineaanges such as an insect’s body.
Nevertheless, String matching method can signiflgacontribute to a pecan weevil

recognition system.

5.4 Geometric Moment Invariants

The recognition system was tested by using twe aletlata- the pecan weevil and
other insects testing groups. In this experimdrd, deven moments were calculated first

for the whole training set of 205 pecan weevilstfog purpose of defining a recognition
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threshold. Then, moments were calculated for thBnig data. During this processing, it
was noticed that the value of the seventh momensdme images was zero. This is
because these Hu Moment invariants use central misnte achieve invariance to
changes in shift. As a result, the odd orderde$¢ central moments give value of zero
for images with symmetry which may affect the apilof the recognition system in
identifying and classifying such images.

It was found that 30% of the images in the trairsetyand 27% in the testing set
used in this study were associated with this symmeThe symmetry occurs when an

image has symmetry in the and ory directions and at centroid. This problem is caused

by the use of the image centroid in the calculatibthe central moments (Palaniappan et
al., 1999). This reduces the number of descrigtoas can be used in classifying images
where it is always desirable to have more feattoesuccessful classification especially
when working with noisy images.

In spite of the symmetry problem in some imagesg, finst experiment was
conducted using a training set of 147 pecan weeViss was the number of pecan
weevils whose images did not suffer from the symyngtoblem and thus all their seven
moments could be calculated. This data set is a®@Ut less than the standard number of
pecan weevils used for training the system. ThilsicBon of training images is expected
to have some impact on the recognition rate of théthod. Figure 5.10 presents the
results of measuring the similarity of pecan weew each other. The results showed
that 80% of the pecan weevils have a similarityrdegEuclidean distance) less than or
equal to 0.21. This threshold was chosen to begbegnition criterion for the following

tests.
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Figure 5.10 Threshold for Recognizing Pecan Weevildsing Geometrical Moment

Invariants Method

The seven geometrical moments were used firstdfamtifying the 30 randomly

selected samples of pecan weevils. Results oftéss showed that 26 pecan weevils

(87%) were correctly classified. The second expent was conducted using 54 non-

pecan weevil insects. These insects were the iosBcts that had a non-zero seventh

moment. In other words, 27 images of this groupelthe problem of symmetry in which

the seventh moment of each image in this group zeas and hence they could not be

used in this test. The results of this experimeatpaesented in Figure 5.11 where it can

be noticed that 63% of the non-pecan weevil inseeie correctly classified. Although

this result is not very promising, one can obsehet the correctly identified images

were significantly distinguished from pecan weevittere, about 39% of non-pecan

weevils have similarity value of greater than 1l@eveas the threshold value was 0.21.
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Figure 5.11 Recognition Results for Pecan Weevilsid Other Insects Using the
Seven Geometrical Moment Invariants Method

The issue of symmetry in about 30%cthe training and testing data sets
constrains the number of moments to be six instéagkven. One obvious result of this
reduction is an even lower recognition rate as mesaber of descriptors will be used to
represent images. But on the other hand, no imiagesthe training and testing data sets
will be discarded because of the symmetry probléigure 5.12 presented the threshold
of recognition using the first six moments. Usirdge t205 images of pecan weevils
(training set), results showed that 80% of themewadra Euclidean distance of less than

or equal to 0.06 from each other. This threshold a@dopted in testing the method on the

two data sets.
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As illustrated in Figure 5.13, results of applyitige first six moments of the
geometrical moment invariants method showed th&b &f the pecan weevils were
correctly classified. This successful recognitrate is the same when the first seven
moments were used for recognition. Therefore, cae conclude that there was no
difference in recognition rate of pecan weevil imagvhen using either the first seven or
six moments of the geometrical moment invariants.tRe non-pecan weevil testing set,
results indicated that 47% of this group was cdlyeclassified. As the number of
samples in this test included all images (74 irgechis relatively low recognition rate
cannot be compared with the previous experimentrevtamly 54 insects could be

included. However, when comparing the same 54 isagkich were used in both
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experiments, the method that uses 6 moments failegcognize six images (11%) of the

testing set which were correctly recognized ushegdeven moments approach.
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Figure 5.13 Recognition Results for Pecan Weevilsid Other Insects Using the Six
Geometrical Moment Invariants Method

These results were not surprisingly different thahat would be expected
especially after reducing the number of momentsn(ehting the seventh moment) used
in recognition. At any rate, if geometrical momentariants method is to be used in such
a recognition system, 53% of non-pecan weevil itssace expected to be misclassified.
This higher error rate motivated the exploratioranfalternative moments-based method.
Zernike moments has the potential of performingdrethan the geometrical moment
invariants, since it has been shown in the litemt(for example, Teh, 1988) to

outperform other methods including the geometmeament invariants.

82



5.5 Zernike Moments

Although Geometrical moment is the most common sintblest moment, results
showed that it was not performing efficiently ircognizing pecan weevils in this study.
Zernike moment method is known to be more commitdbhan the geometrical moment.
Also, at higher moment orders, Zernike Moment takegjer time in calculating its
features; however, it generally outperforms thengetical moment method. Zernike
moment introduces a set of complex polynomials thigrm a complete orthogonal set
over the interior of the unit circle.

The orthogonality property enables amedparate out the individual contribution
of each order moment to the reconstruction prod&$stanzad and Hong, 1990).
Although higher order moments carry finer detaifsan image, they are also more
susceptible to noise. Therefore, experiments wareed out with different orders of
Zernike moments to determine the optimal order dar problem. This yielded five
different orders of moments. These orders were, 305 20, and 30 and these were
applied to the testing data sets for evaluating ferformance. Threshold of recognition
was performed for each individual order using tlaging data of 205 pecan weevils.

Figure 5.14 presents the thresholdlrésuZernike moment of order 30 in which
80% of the training set were similar to each otitdEuclidean distance value of less than
or equal to 13.8. This criterion was used in im& £xperiment where 30 pecan weevils
and 74 other insects (testing sets) were testedefmygnition. The results of this test
showed that 90% of the pecan weevil group was ctiyrelassified. The successful
recognition in the non-pecan weevil testing set W8%. When comparing these results

with that of geometrical moment invariants, a digant improvement of recognition rate
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can be noticed. Using the geometrical moment'showgtonly 47% of the non-pecan
weevil group could be correctly classified wher@asnike moments of order 30 could
recognize successfully 73% of the same set. Thiopeaince of Zernike moments of
order 30 is demonstrated in Figure 5.15.

Using the same methodology, four more experimest® conducted using order
of 20, 10, 5, and 3 Zernike moments. Their thredholere found experimentally to be
Euclidean distance values of 8.45, 2.42, 1, andr@spectively. These four values
satisfied the condition that 80% of the pecan weepbpulation were recognized at
values less than or equal to these thresholdsrésgul6 and 5.17 present the results of
applying Zernike moments of order 20 and 10 respagt

The performance of Zernike moments of order 3@as significantly different
than the one of order 20. In fact, at both ord8esnike moments could achieve the same
result in terms of identifying pecan weevils. As & classifying the insects of non-pecan
weevil's group, Zernike moments of order 20 collseclassified 66% of them compared
to 73% achieved when Zernike moments of orden&9 used.

Zernike moment is known to be computationally msige especially at high
orders. Therefore, lower orders of moments werduated for robustness and processing
time. Starting with an order of 5 Zernike momentse results were significantly
improved in terms of recognition rate and proceassipeed.

Figure 5.18 shows that at threshold of 0.8, 83%exfan weevils and 100% of
other insects were positively classified. It can rticed from the figure that the
distribution pattern of the two testing groups asisistent for each group. That is, it can

be seen that the other insects’ group is satigfificseparated from the pecan weevils’
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group. Furthermore, the processing time using ahiker of Zernike moments was 0.24

sec. on average. This time is 77% less than tijatned by Zernike moments of order 10.

10

%o

Euclidean Distance
|_\

[ ) [
° [ ]
° ° ° °®
o o . ® ° v o °
[ )
[ ]
e Pecan Weevils
o Other Insects
0.1 T T T T T T T
0 10 20 30 40 50 60 70 80

Insect's Tag Number

Figure 5.18 Recognition Results for Pecan Weevilsid Other Insects Using the

Zernike Moments Method of Order 5

The last experiment for this method was done uZiemike moments of order

three. The results proved that using lower ordeZerhike moments for this application

would result in better recognition rate. The othdvantage of using fewer moments is to

reduce the processing time needed for processegrthges by reducing the amount of

data points. Illustrated in Figure 5.19, the outplthis experiment showed that the two

testing groups are clearly separated into two wiffe sections. This powerful

classification ability of Zernike moments at thisler strongly suggests its adoption in

the proposed recognition system. In particularsehesults are considered to be the best

in terms of correct classification rate and speed.
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Figure 5.19 Recognition Results for Pecan Weevilsid Other Insects Using the
Zernike Moments Method of Order 3

Table 5.3 summarizes the results of the Zernikenamds at the five different
orders used in this section. Although the recognitiates for pecan weevils at orders 30
and 20 were 90%, the rates for classifying othsedts were not satisfactory at these two
orders. The classification rates at Zernike momehtsrder 10 were low for both pecan
weevils (77%) and other insects (70%). At ordeth®, positive classification rates were
“perfect” (100%) for the pecan weevils’ group andrav83% for the other insects’ group.
The optimum results were obtained when performimg d¢lassification at order three.
There, the recognition rate was 97% for pecan vigeamd 99% for other insects.
Therefore, Zernike moments at order 3 was impleetem this study because of its
excellent and very fast (0.09 sec.) performandedentifying pecan weevils among other

insects.
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Table 5.3 Comparison of Recognition Rates Using Zeike Moments at Different

Orders
Threshold Value PTr?rﬁESf?)irng Recognition Rate
Order Value at 800./0. one Image Pecan Weevils Other Insects
Recognition
(sec)
30 13.8 13.28 90% 73%
20 8.5 4.65 90% 65%
10 2.42 1.03 77 % 70%
5 0.8 0.24 83 100%
3 0.8 0.09 97% 99%

Figure 5.20 presents the performance of Zernikememis using the five
experiments. The optimum point was found at ordef Zernike moments where the
highest recognition rate for both pecan weevils ao-pecan weevils could be obtained

at the shortest time (0.09 sec.).
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5.6 Fourier Descriptors

Fourier descriptors method has been implementeanamy recognition and
identification applications. With some simple tremmmation, Fourier descriptors can be
modified to account for some variances like rotatiscale, and translation. Fourier
Transformation produces the Fourier descriptorddoa unique representation in the
frequency domain for a given image. The lower festgry descriptors store the general
information of the shape and the higher frequerioyessmaller details (Sarfraz, 2006).
Therefore, lower frequency components of the Foudescriptors are sufficient for
general shape description. The degree of simjlamong some insects is very high,
especially if they are from the same family. There, higher frequency components of
the Fourier descriptors were used in this project.

Figure 5.21 shows a binary image of a pecan weavd several boundary
reconstructed shapes using different Fourier detscs. It can be noticed that more the
descriptors used, the closer the shape would beetoriginal image. The general shape
of pecan weevil was obtained by using the firstF&@Qirier descriptors; however, more
detailed shaped appeared at higher number of gési However, the performance of
recognition algorithm is expected to be sloweraagd number of Fourier descriptors is
used. Therefore, in order to find the optimum numbk Fourier descriptors, several

experiments were conducted using different numbé&oarier descriptors.
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Figure 5.21 Boundary Reconstructed of Pecan Weevilsect Using 450, 300,

200, 120, 30 Fourier Descriptors (Owtf a Possible 2602
Descriptors)

The first experiment was performed using 30 desars to represent the shape of

insects. Four more tests were conducted using (M, 300, and 450 Fourier descriptors
to evaluate the performance of each set of descsiph terms of successful recognition
rate. For each test, the threshold of recognitvas determined experimentally by using
that specific number of descriptors to recognizeapeweevils on the training. The

threshold for each experiment was set to be aEtleidean similarity value where 80%

of the training set had a degree of similarity lges or equal to that value.

The result of the first experiment showed a verw leecognition rate in

classifying the non-pecan weevil’'s testing grougthdugh this test could correctly

recognize 83% of the pecan weevils, it correctissified 26% of the non-pecan weevil
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insects. It can be noticed in Figure 5.22 that Foarier descriptor method failed to

distinguish pecan weevils among other insects wiwng 30 descriptors. This result

suggested that insect's shape need to be reprdsegtanore descriptors for better

classification rate. This low performance was noéxpected especially with the limited

number of descriptors representing the shapessetts. In fact, 30 descriptors were at

maximum representing less than 7% of the insetaps. This ratio would have been

sufficient if used in representing “regular” shapdsch is not the case in this study.

1
e Pecan Weevils
o Other Insects °
o)
o 0.1
o
C
8 °
7]
[a) . ° o
G o
() o o o
j=) 00 . %0 0009 ° o0 o °° . _ o
o ° e oe 00 0 © ° o o °
> [ ) [ ) ] (o) (o]
000L]e o © ° °%e S o 0 ° o® o © 00 o © 0o° °
° o . ° o © o
(o) o ° [ ) ° o )
(o] ] o
° o
(o]
(o]
o
0.001 T T T T T T T
0 10 20 30 40 50 60 70 80

Insect's Tag Number

Figure 5.22 Recognition Results for Pecan Weevilsid other Insects Using the
Fourier Descriptors Method (30 Descriptors)

The second test was performed using 120 Fouriscrigors to represent the

shapes of insects. Results showed slight improvemedassifying pecan weevils and

other insects but they were not significant.

Rissalso showed that 87% of the pecan

weevils and 28% of the non-pecan weevil insectewerrectly classified. As the result
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of recognizing other insects is very low, one canatude that the number of descriptors
used was not sufficient to differentiate the shagfethese insects. Figure 5.23

demonstrates the results of this experiment.
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Figure 5.23 Recognition Results for Pecan Weevilsid Other Insects Using the
Fourier Descriptors Method (120 Descriptors)

Three more experiments were carried out using B0, and 400 Fourier
descriptors. The performance of the first two ekpents was not any better than the
previous experiments where 30 and 120 descriptoese wused. When using 400
descriptors to represent the insects’ shapes, sopr@evements could be noticed; 35% of
the non-pecan weevil insects were correctly cleskifFigures 5.24, 5.25, and 5.26

illustrate the results of the three experimentpeesvely.
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Figure 5.24 Recognition Results for Pecan Weevilsid Other Insects Using the
Fourier Descriptors Method (200 Descriptors)
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Figure 5.25 Recognition Results for Pecan ¥évils and Other Insects Using the
Fourier Descriptors Method (300 Descriptor$
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Figure 5.26 Recognition Results for Pecan Weevilsid Other Insects Using the
Fourier Descriptors Method (400 Descriptors)

Finally, an experiment was conducted using 45QriEodescriptors. This number
of descriptors was the maximum possible numberestdptors that could be used. This
was because it was the total Fourier descriptoiaulzded from the boundary of some
smaller insects. Using more than 450 descriptarsldvhave required either discarding
that sample or adding zeros to the resulting sefafrier descriptors. In both cases,
results would have been negatively affected.

The results of this experiment are presented girei 5.27. It can be noticed that
80% of pecan weevils and 41% of the non-pecan We®acts were correctly classified.
Together, these two results were the best recognitate achieved by the Fourier

descriptors method. Although the results of thigegiment were the best among others,
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Fourier descriptor method provided the lowest redoen rate when compared with the

other four methods.
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Figure 5.27 Recognition Results for Pecan Weevilsid Other Insects Using the
Fourier Descriptors Method (450 Descriptors)

Table 5.4 summarizes the results of the six expartsmnconducted in this study
using different number of Fourier descriptors.cdh be noticed that the successful rate
for classifying pecan weevils was always at 80%igher. On the other hand, the best
result of classifying non-pecan weevil insects wWa% when 450 Fourier descriptors
were used. Thus, it became clear that the numbé&ioafier descriptors for any shape

depends heavily on its size.
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Table 5.4 Comparison of Recognition Rates Using Dé&rent Number of Fourier
Descriptors

Number of Threshold Value at Recognition Rate
Descriptors Used  80% Recognition Pecan Weevils Other Insects
30 0.017 83 % 26%
120 0.135 87% 28%
200 0.33 93% 20%
300 0.59 83% 26%
400 0.88 80% 35%
450 1.059 80% 41%

5.7 Performance Comparison of Different Methods

Throughout this chapter, the results of using freeognition methods were
discussed. These methods varied in their recognitedes and time of processing.
Normalized cross-correlation method had shown areleeat classification rate in both
testing data sets. The performance of the Regiopepties method was the closest to the
Normalized cross-correlation method. The methoderdike moments of order 3 was
the best in terms of correct classification rated processing time. String matching and
Fourier descriptors were at the fourth and fiftagals respectively. Table 5.5 shows the
recognition rates of each method when classifymsgcts of the same testing data sets.

Table 5.5 Recognition Rates for the Five Methods @d in the Multi-Recognition

System
Recognition rates
Method Pecan Weevils Other Insects
Region properties 90 % 93%
Normalized cross-correlation 90% 95%
Zernike moments (order 3) 97% 99%
String matching 87% 58%
Fourier descriptors (450 Descriptors) 80% 41%

The performance of each implemented method waxiaded with some margin

of errors. These errors can be categorized intotywes- Type | and Type Il errors. The

97



first one, refers to the case when a pecan wegwking classified as non- pecan weevil
insect (false negative). Type Il error, on theeothand, represents the event when a non-
pecan weevil insect is being recognized as pecavilwgalse positive). The goal of any
recognition system is to minimize the margin offbetrors. However, Type | error is
more crucial in most applications as it resultsdjecting the null hypothesis when it is
actually true.

Figure 5.28 illustrates the two types of errors éach individual method. The
Normalized cross-correlation and Region properteshods have recorded 10% of Type
| error whereas String Matching and Fourier desargomethods produced 17% and 20%
Type | error respectively. The figure also showat thernike moments method has the
lowest Type | (3%) and Type Il errors (1%) whertdaese are the highest (20% and 59%)

for Fourier descriptors method.
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Figure 5.28 Type | and Type Il Errors for the Five Methods
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To enhance the performance of the recognitionegsysthese errors have to be
minimized. One way of doing so is to use a comlamadf more than one method. Table
5.6 demonstrates several possibilities of combimmgge than one method and different
recognition criteria. The first combination inclubéhree methods- Region properties,
Normalized cross-correlation, and Zernike momelmnighis case, a positive match was
considered when an input image is correctly clessiby two of the three methods. The
results showed that 100% of both pecan weevils taedother insects were correctly
classified. These findings showed that using theethmethods have enhanced the
recognition rate and eliminated all errors in tase.

In the second case, four methods were combinddised for testing their ability
in classifying insects from the two data sets. Hewrect classification is considered
when three out of the four methods positively retbgd an input image. The correct
classification rate for pecan weevils was 100% whewas 89 % for the other insects’
data set. The low correct classification rate fon4pecan weevil group was due to the
stricter condition for confirming a positive match.

The rates of recognition in the third case wemy ygomising when using all five
methods where positive match was considered whenofithem correctly classified a
given image. The results showed that 100% of ble¢hpecan weevils and of the non-
pecan weevil insects were correctly classified. phean weevils were classified at the
same recognition rate (100%) when input image wasectly classified by three
methods out of the five. Evidently, in this catady, all methods were used and Type |

error was 0%. The more stricter criterion of redogn (three out of five) caused the
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recognition rate for non-pecan weevil insects tdOheéo; less than the one of the third
case (100%) where the recognition criterion was pasitive matches out of five.

Table 5.6 Different Combinations of Methods and Remgnition Criteria

Case Methods Involved Recognition Criteria Recognition Rates

No. Image Recognized by Pecan Other
weevils Insects
1 RP,NCC,andzm 'WO Mei‘r‘]’f’ese outofthe o 100%
2 RP, NCC , ZM, and Three Methods out of the 100% 89%
SM Four
RP, NCC , ZM, Two Methods out of the 0 0
3 SM, and FD Five 100% 100%
RP, NCC , ZM, Three Methods out of the 0 0
4 SM, and FD Five 100% 91%
RP, NCC , ZM, Four Methods out of the 0 0
5 SM, and FD Five 93% 73%
RP, NCC , ZM, Five Methods out of the 0 0
6 SM, and FD Five 53% 22%
/ All methods except Three Methods out of the 93% 24%
NCC Four
8 RP and ZM Two out of two 87% 92%
9 RP and ZM One out of two 100% 100%

The five recognition methods were used in thérfdhd sixth cases where their
recognition criteria were four out of five and fieait of five respectively. The output of
these experiments showed significant reductiomefrecognition rates for the non-pecan
weevil insects (73%). These results were not unebepleas the recognition criterion
became stricter. In particular, 53% of the pecaewils and 22% of the non-pecan
weevil insects were successfully classified, wherositive match was required from all

five methods.
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Normalized cross-correlation method is a veryatdl recognition method but is
known to be time intensive. Therefore, the sevecdéise involved evaluating the
recognition rates of all methods except Normalizedss-correlation (four methods).
Positive match here was considered when three buhese four methods correctly
classified an input image. The results showed 38&b of the pecan weevils and 74% of
the non-pecan weevils were correctly classifiederEthough the recognition rate for
pecan weevils was promising, the performance of tidse in classifying non-pecan
weevil insects was associated with 26% Type |l rerfthis degree of inaccuracy may
discourage adopting this combination.

The last experiment was performed using only Regooperties and Zernike
moments as they produced the best classificatisulteein the shortest processing time.
The positive match here is confirmed when bothhese methods correctly classify an
input image. The result showed that 87% of the pegaevils and 92% of the other
insects were correctly classified. These rateshed 00% correct classification if the
recognition criterion was to affirm positive matefnen an input image is recognized by
any of the two methods. It is worth noting herettlf® combination of these two
methods has resulted in highest classificatiorsrate

Figure 5.29 shows the 7 insects that failed talbssified using the recognition
criterion of case #4. Among these insects, 6 weffadt weevils, with very similar shape
and size as pecan weevils. These 6 weevils ar@nstye for about 86% of the total

misclassification incidents.
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Figure 5.29 Images of the Seven Misclassified Indsc
5.8 Processing Time

Processing time is a major factor in evaluatirgglrformance of any recognition
system. It depends on several aspects includintypgesof image (color, gray, or binary,
etc), size of the images, the number of sampled asethe template, the capacity of the
platform, and the limitation of the software usadprocessing. The processing time for
an input image was recorded for each individual hoé@t Figure 5.30 presents the
performance time, on average, to classify one infageach of the five methods. It also
presents the corresponding Type | and Type Il srrbrcan be noticed that Normalized
cross-correlation method requires 22 sec. to caeed given image with the template of
205 images of pecan weevils (size of images werdB pixels).

Compared with the other four methods, Normalizess-correlation method was
the most time intensive method whereas Zernike nmbsnmethod was the fastest in
classifying images. Within 0.09 sec., on average method could measure the set of
moments of a given image and evaluate its simylavith the ones of each pecan weeuvil
in the training data set. The other times were 885, 2.5 sec., and 0.5 sec. for Region
properties, String matching, and Fourier descriptoethods respectively. Furthermore, it
can be noticed that Zernike moments has the leasegsing time as well as the lowest

Type | and Il errors.
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Figure 5.30 Processing Time and Type | and Il Erros for the Five Recognition
Methods

5.9 Conclusions

Overall, it can be concluded that a combinationnadre than one method is
essentialfor a robust recognition system since no singléhoet yielded the desired
detection rates. Zernike moments at order 3 wasddo have the highest recognition
rates for pecan weevils and other insects. Thihatkélso yielded the lowest Type | and
Il errors. Also, this method required the leastgessing time. Region properties method
showed similar advantages to the Zernike momehtss, t100% successful recognition
rate for pecan weevils was achieved using a cortibmaf Zernike moments and Region

properties methods.
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Fourier descriptors method using 450 descriptoes iound to be the least
successful of these methods and yielded the highgse | and Il errors. Moreover,
region-based methods were found to represent sisdw@pes better than boundary-based

method. As a result, the recognition rates of #ggan-based methods were higher than

the boundary-based method.
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CHAPTER VI

OVERALL ALGORITHM

The overall algorithm for this work is primarily $&d on the levels of accuracy
and time intensiveness desirable from such a syshecareful analysis of the literature
had shown that a combination of methodsgsentialto account for the variations found
among the objects of interest. Moreover, using ipleltmethods also overcomes the
inherent limitations of a given method. Therefobased on their performance, five
methods were tested to serve in this recognitiostesy; namely, Normalized-cross-
correlation, Region property, String matching, Zkenmoments (order 3), and Fourier

descriptors (450 descriptors).

6.1 Initial Algorithm

These selected methods, when used in a combinatiere found to be very
effective in classifying pecan weevils, since thamal with different aspects of shape
representation. For example, the correlation-basehplate matching procedure
computes the similarity of two images; however, ig not (without spatial
transformations) invariant to rotation, scale, ocanslation. On the other hand, the
moment invariants method depends only on the vadfiéise moments regardless of the
description of the boundaries. Similarly, Regiaogerties method describes specific

properties of a given object and is independentthe boundary pattern. Fourier
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descriptors method depends on the contour of tlextdd shape regardless of the interior
part of that shape. Unlike the cross-correlationthm& which deals with patterns

guantitatively and does not take into account stimat relationships present in a pattern’s
shape, String matching utilizes such structuralatr@hships to achieve pattern

recognition. Therefore, implementing these five moels may result in the methods
complementing the overall performance of the atbari

Therefore, as a first approximation, the initiaga@ithm for identifying pecan
weevils among other insects incorporated all fivethnods explained in this chapter. The
order in which these methods were implemented wased on their performance in
identifying pecan weevils. The first step in thigaithm was Zernike moments of order
3. The recognition rates for pecan weevils anemthsects were found to be 97% and
99% respectively. This method of moment invariaatgperformed the geometrical
moment invariants which had performed poorly inssifying non-pecan weevil insects
(successful rate was 41%). At this order of momehis processing time for classifying
one sample was found to be 0.09 sec., on average.

The Region properties method was selected asttend step in this recognition
system. The excellent performance of this method @ simplicity motivated this
decision. The results of this method had shown3Q&b of the pecan weevils and 93% of
the other insects’ group were correctly classifiglreover, this method can be used to
correct for any rotation of the pecan weevil's agppeace on the image prior to the
correlation process. This can be done simply bgrdahing the rotation angle of a given
image. Furthermore, the algorithm of this methodsiimple and fast. It required an

average of 0.35 second to process one sample.
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Normalized Cross-Correlation method was choseieothe third step in the
recognition system for its promising results. Usitlys method, the successful
recognition rates were 90% for pecan weevils an®b 96r other insects. However,
correlation process is time intensive; but thisiesa/as resolved by resizing the images to
be 65 x 57 pixels. By doing so, the time requiredidlentifying one insect was 22 sec.,
on average. This time involved correlating that gemavith a template of 205 pecan
weevil images. As the purpose of this algorithns w@identify pecan weevils and help
in their monitoring in a field area, the time ins@reness of this process was not as
critical as in inspection applications like the mgi@g of products in an assembly line.
Therefore, such process time was acceptable. éantre, the accurate identification of
pecan weevils was deemed far more important tharatiiual process time required to
detect them. Moreover, this study evaluated sorheradlternatives that employed all
methods except the Normalized cross-correlatiorerdfore, when the criterion for a
positive match is confirmation from three out oé tfour methods, the recognition rate
was 74% and 93% for pecan weevils and other insesysectively. In this case, the
maximum processing time would be 3.44 sec.

String matching method was implemented as thettiostep in the recognition
process. The results of this method showed that &7¥e pecan weevils and 58% of the
non-pecan weevil insects were correctly classifidthe processing time for classifying
one sample was 2.5 sec., on average.

Fourier descriptors method was used as the fi&p sf this recognition system.

Using maximum possible descriptors (450 descriptdise correct classification rates
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were 80% for pecan weevils and 41% for non-pecagvivesects. It required less than
0.5 sec. to process and classify one image.

Figure 6.1 illustrates the performance of each $teethod) in the recognition
system. The arrows in Figure 6.1 refer to pecanvilethat were classified correctly at
that particular step whereas diamond-edged lineicate the pecan weevils not
recognized positively. As can be noticed from tlgere, each pecan weevil was correctly
classified by at least three methods. As showfrigure 6.1, the sample image was
correctly classified by at least three steps to rbgarded as an overall correct
classification.

For example, Figure 6.1 shows that pecan weewl#2 positively recognized by
the Region properties, Zernike moments, String mat; and Fourier descriptors
methods; whereas Normalized cross-correlation neefladed to classify it correctly.
Thus, this case study has shown that an algorithinsisting of these five methods can
yield a reasonable success rate in varying dasa set

The results of applying the five recognition stepsnon-pecan weevil insects are
presented in Figure 6.2. Here, arrows representctineectly classified insect at that
specific step and the diamond-edged lines represenisclassified insect. This diagram
emphasized the importance of implementing these rinethods. It can be noticed that
each method has contributed to the recognitiongaicFor example, Fourier descriptors
correctly classified insect #1, which could haverenisclassified if it had failed this
test.

String matching method, on the other hand, classifpositively insect #22.

Without using this method, this insect would haeerp misclassified as a pecan weeuvil
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and would have reduced the system efficiency. Tisé three methods played the main
role of classifying insects. Region properties mdtlwvas successful in recognizing all the
insects, except 5 of them whereas Normalized Ceog®lation misclassified only 4 out
of 74 insects. Zernike moments misclassified amg pecan weevil and one non-pecan
weevils insect.

Figure 6.3 presents theitial algorithm of the recognition system in this study.
The sequence starts by loading a new image oftinggch will directly be processed by
the Zernike moments of order three and its six namevould be calculated. The
similarity degree between these moments and the entsmof pecan weevils will be
measured. If this degree is greater than or equal threshold value of 0.8, the input
image will be classified as pecan weevil. A valdelowill be assigned to the counter
(S=1) and the algorithm will do the next step. &s€, an insect does not match any pecan
weevil of the training set, the algorithm will keg0 and move to the next step.

The input image then would be analyzed by the Repioperties method in the
second stage. After measuring the three propesfidisat insect (area, major and minor
axis), their similarity to each pecan weevil of thaining set will be evaluated. If the
degree of similarity is greater than or equal te threshold of recognition (1.0), this
insect will be recognized as pecan weevil and thenter will add 1 to its value. In case
that insect does not match any pecan weevil otrdiaing set, the algorithm will keep
the value of S unchanged and move to the next Jteps, the value of the counter S

would either be 0, 1, or 2 at the second step.
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Figure 6.2 Recognition Results of Non-Pecan WeeWilsects Testing Set Using the Five Methods
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In the third step, Normalized cross-correlation moett will be used. If the
correlation value between the input image and atap weevil image is greater than or
equal to 0.75, this image will be recognized asapeegeevil and the correlation process
will stop. The counter value will increase by one$%$1). At this stage, the counter S
can have possible values of 3, 2, 1, or zero. Rercese when S equals to 2 or 1, the
algorithm will go to the fourth step. On the othend, if S equals to 3, which means
input image was recognized by all three previoushous, the algorithm will recognize
this image as pecan weevil ending the recognitioocgss of the input image. The
program would then be ready for the next image.éadwer, if the S value is 0, which
indicates that the input image was not positivéassified by any of the three methods,
the algorithm will classify this insect as non-peageevil insect ending the recognition
process and would be ready for a new image.

The String matching method at the fourth step witigess the input image only if
the counter value is either S=1 or S=2. If the kinty measure of the string of this
image and any other string of the training setreater than or equal to 0.96, this image
will be regarded as pecan weevil insect. In thec#he counter value will be either S=2
or S=3. In the first case, the algorithm will gothe fifth step whereas in the second case
the insect will be confirmed as pecan weevil. Heeveif this insect did not match any
pecan weevil of the training set, the counter valileremain as either S=1 or S=2. The
input image will then go through the fifth methotl $=2 even though it was not
recognized at this level. However, when S=1, fgerdhm will classify the input image

as non-pecan weevil ending the recognition process.
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At the last step, Fourier descriptors method miticess the image if the counter
value is S=2. This method will calculate the Foudescriptors (450 descriptors) of the
input image and measure the similarity between gbisof descriptors and those of the
training data set. If the similarity measure isagee than or equal to the threshold of
1.059, this image will be classified as pecan weévithis case, the counter will add one
to its value (S=3), and hence the image will befiomed as a pecan weevil insect.
Otherwise the input image will be regarded as necap weevil insect. In both cases, the
recognition process for that image will be compktel the system would be ready for a
new input image.

The maximum processing time for one image throinghfive methods is 25.44
sec., one average. However, the system may resjumger time because an input image
may not need to be matched with all pecan weedges in the template, if it positively
matches any one of them. Furthermore, the algontlasidesigned to end the recognition
process when the input image fails the first thsgeps (methods). In this case, the
processing time was found to be 22.44 sec.

The above algorithm was successfully implementatigirecognition system and

it yielded promising results for the data sets stigmated.

6.2 Revised Algorithm

Although, the algorithm discussed above showedomable classification rates,
an alternative algorithm was also tested. Thisradtiere algorithm implemented only two
methods, namely, Zernike Moments and Region pragserlihe recognition criterion was

chosen to be a positive match from either of the tmethods. The results were found to
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be superior to the older algorithm, for the data wsted. In addition to better
performance, the revised algorithm required veralsmrocessing times (0.44 sec. as
compared to 25 sec. in the old algorithm, on awralgloreover, the target monitoring
system of this study is a wireless network whetkendata transfer rates are an important
factor. Therefore, using fewer methods in the atbariis highly recommended.

Based on the above findings and a careful anabfdise system requirements, it
is concluded that the application of the two methadamely, Zernike Moments and
Region properties would yield the desired succasssrfor identifying pecan weevil, in
field applications.

Figure 6.4 illustrates the revised algorithm impderted in this study. It shows the
two methods mentioned above applied in a sequenttigr. It can be seen that a positive

match form either of these two methods was usedeaselection criterion.
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Figure 6.4 Flow Diagram of the Revised Algorithm for Idenifying Pecan Weevils
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As discussed above, this algorithm yielded the bestlts when compared to
other combinations of methods. Therefore, this dlgaor is expected to be implemented

in a wireless monitoring system for field applicaus.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The aim of this work was to develop the softwaret ph a wireless network
imaging system that can automatically identify peeeeevils in the field. This study
resulted in developing a new recognition algorithwhich uses image processing
techniques based on template matching to idenéibap weevils among other insects that
are naturally present in the pecan habitat. Thisesyss anticipated to replace the manual
insects’ monitoring techniques currently in used @expected to be a valuable device
for pest management, in general.

Five recognition methods, namely, Zernike momerf&ggion properties,
Normalized cross-correlation, String matching, dralrier descriptors methods were
used in this recognition system. It was found thatsingle method was sufficiently
robust to yield the desired recognition rate, eglgcin varying data sets. It was also
found that region-based shape representation metvede better suited in recognizing
insects than boundary-based methods.

The most favorable recognition rate was found tovben an input image was
required to be positively matched by either oneghaf two methods, namely, Zernike

moments and Region properties. This evaluation rmneresulted in accurate and
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reliable classification of pecan weevil images. &fpElly, this criterion ensured 100%
correct identification rate for both pecan weewalsd other insects. Therefore, it is
concluded that a reliable and accurate recogngimtem for identifying pecan weevils

has been obtained by implementing the new algorithm

7.2 Recommendation and Further Study

This study focused on distinguishing pecan weemit®ng other insects that are
naturally present in the pecan habitat. Evaluatimegslystem for a wider variety of insects
would add to the reliability of this algorithm. Fher, it was noticed that the majority of
the misclassification rate originated from miscify®sg some weevils as pecan weevils.
Therefore, the inclusion of a template of such weefas a training data set) would
greatly enhance the capability of the algorithndigtinguish between different types of

weevils.
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