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ABSTRACT

Rutting is one of the major distresses of flexible pavement. It is defined as the
formation of longitudinal depressions under the wheel paths caused by the
progressive movement of materials under traffic loading in the asphalt pavement
layer, or in the underlying base, through consolidation or plastic flow. A safeguard is
needed to protect asphalt pavements against rutting after opening roadways to
traffic. Traditionally, predicting rutting performance of Hot Mix Asphalt (HMA) in
the field has been a complicated task. In this study, a simpler method of determining
rutting potential of HMA is employed that uses an Asphalt Pavement Analyzer
(APA) in the laboratory. In the APA, rutting susceptibility is evaluated by subjecting
HMA samples to moving wheel loads and measuring permanent deformation at
selected points along the wheel path as a function of the number of loading cycles.
The APA can simulate the field conditions (traffic load, temperature, etc.) of flexible
pavements in the laboratory. Using the APA, a series of rut tests are performed on
HMA mixes and these mixes are ranked based on their rut potentials. Pertinent mix
properties (binder content, air voids), aggregate properties (angularity, size), asphalt
binder properties (viscosity, grade), loading (wheel loads, hose pressure), and
environment (temperature, wet/dry condition) that lead to differential rutting are
identified. The factors affecting rutting are ranked based on their type and
magnitude. Also, the correlation between resilient modulus and HMA rutting is
examined. To this end, a comprehensive rut database containing APA rut values and
factors affecting rutting potential of hundreds of HMA mixes is developed. Using

this database, a neural network model is developed to predict rutting in HMA. The

xxiii



proposed neural network represents a mapping associating rutting potential of HMA
with rut’ factors. Preprocessing and principal component analyses are applied to
examine the significance of each rut-influencing parameter, and the network is
trained using the Levenberg-Marquardt algorithm. Using randomly generated weight
factors to initialize the training algorithm, histograms are compiled and outputs are
estimated using statistical estimators. An excellent agreement is achieved between
test data and simulations based on maximum likelihood estimator. The developed
neural network is used to simulate the optimum asphalt content of a Superpave mix.
It is expected that this method will be a useful tool for mix design for new

pavements, as well as for rehabilitation of existing ones.
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CHAPTER 1

INTRODUCTION

1.1 Background

Rutting is defined as the formation of longitudinal depressions under the wheel paths
caused by the progressive movement of materials under traffic loading in the asphalt
pavement layers (asphalt concrete) or in the underlying base through consolidation or
plastic flow. Depending on the magnitude of the traffic load and the relative strength of
the pavement layers, rutting can occur in the subgrade, base, or upper hot-mix asphalt
layers. Recent studies indicate that the rutting generally occurs in the top 75 to 100 mm
(3 to 4 in.) of asphalt pavement (Stuart et al., 2001; Witczak et al., 2000; Monismith et
al., 2000, Kandhal et al., 1993; Brown et al., 1992). The present study focuses on the
rutting of top 75 to 100 mm (asphalt concrete) of the flexible pavement system.

Asphalt concrete, also known as Hot Mix Asphalt (HMA), combines bituminous
binder and aggregate to give a pavement structure that is flexible over a wide range of
climatic conditions. Asphalt concrete can be produced from a wide variety of local
aggregates. Asphalt concrete is relatively inexpensive and can be constructed rather
quickly. Asphalt concrete is the pavement of choice throughout the United States and
the whole world (Hall, 2003). Annually, about 500 million tons of asphalt concrete or
HMA is laid in the United States at a cost of 20 billion. Ninety-three percent of all
paved roads and streets in the United States (about 3.9 million miles) are surfaced with

asphalt (Carlson, 2002). The vehicular miles traveled in the country have increased



approximately 75% in the past 20 years (PTI, 2002). In the last decade, loads on the
nation’s highways have increased more than 60% (Brock et al., 1999). In addition to the
increased loads, the increased use of radial tires and high tire pressures are leading
causes of increased rutting in some asphalt roads.

Rutting is a national problem now. Excessive rutting has been reported in
Florida, Georgia, Illinois, Pennsylvania, Tennessee, and Virginia (Christensen, 2001;
Barksdale, 1993). Rutting is a prevailing concern in Oklahoma today. Rutting is of
concern for at least two reasons: (i) if the surface is impervious, rut traps water causing
hydroplaning, which is a potential threat to road vehicles, (ii) with increasing rut depth,
steering becomes increasingly difficult and sometimes dangerous. Rutting can
significantly reduce both structural and functional performance of a pavement.
Sometimes the rutting magnitude may not be alarming for structural performance, but is
important from the safety point of view (Roberts et al., 1996). Rutting can provide
useful information in selecting rehabilitation methods if it is quantified and categorized
(Choubane et al., 1998; Gramling et al., 1991). In case of consolidation (volume of
asphalt concrete changes due to contraction of air voids in it) and shear (material flows
as the rounded particles slide and roll and flat particles bend) rutting, a thicker overlay
can be used to improve serviceability. In case of shear rutting, rehabilitation strategies
can involve milling or leveling with a new wearing course, or recycling of the surface
course (Cooley et al., 2001; Gramling et al., 1991). For these and other reasons, it is
important to predict rutting in asphalt concrete.

Traditionally, prediction of field rutting potential of asphalt concrete has been a

complicated task. A safeguard is needed to protect against making substantial



investments in asphalt pavement only to discover, after opening to traffic, that pavement
will not meet expectations (NCHRP, 2001). It is important to identify practical
laboratory test methods to predict HMA rutting. With the evaluation of mix designs
from conventional Marshall design to the Superpave (Superior Performing Pavement)
design, researchers have sought for a simple and yet reliable testing procedure to assess
rutting potential of HMA for more than a decade. Currently, the most common type of
laboratory equipment of this nature is a loaded wheel tester (LWT). Several LWTs are
currently being used in the United States. They include the Georgia Loaded Wheel
Tester (GLWT), Asphalt Pavement Analyzer (APA), Hamburg Wheel Tracking Device
(HWTD), LCPC (French) Wheel Tracker, Purdue University Laboratory Wheel
Tracking Device (PURWheel), and one-third scale Model Mobile Load Simulator
(MMLS3) (Colley et al., 2001). Among these, the APA has received the most attention
in recent years (Jackson and Ownby, 1998). In this equipment, rutting susceptibility is
evaluated by subjecting HMA samples to moving wheel loads and measuring rutting
(permanent deformation) at selected points along the wheel path as a function of the
number of loading cycle. In this study, the APA is employed to determine the rutting
potential of HMA in the laboratory.

Rutting is influenced mainly by loading, environment and time-dependent
material behavior under loading. An element of HMA layer subjected to traffic loading
transfers the load from the surface to underlying layers through intergranular contact
and resistance to flow of the binder matrix. The stress pattern induced in a three-
dimensional pavement structure due to traffic loading is complex. The stresses are

transient and change with time as the wheel passes. When the response also depends on



the time or rate of loading and temperature, material characterization becomes even
more difficult. The properties of the individual components of HMA and how they react
with each other affect its behavior. There are occasions when the asphalt binder and
aggregate are adequate but the mix fails to exhibit desired performance because of poor
compaction, use of incorrect binder content, poor adhesion or some other problems
associated with the mixture. The mixture properties alone are not sufficient to ensure
satisfactory performance. No rational model to predict rutting has been developed yet
that would encompass all field variables. In this study, a neural network model is

proposed to predict rutting encompassing most of the rut influencing parameters.

1.2 Hypotheses and Objectives

Hypothesis One

Aggregate gradation, binder’s grade, and mix parameters (air voids, binder content) can
significantly affect the extent of rutting. Influences of mix temperature, axle load, and
tire pressure can be examined meaningfully using an asphalt pavement analyzer. These

factors can be investigated in the laboratory.

Objectives
The objectives are to
o Evaluate and analyze aggregate, asphalt, and pertinent mix properties that
lead to differential rutting potentials of HMA specimens.
o Conduct a series of the APA rut tests on selected mixes and rank the mixes

based on their rutting performance.



o Perform statistical analysis to identify the significant rut influencing
parameters.

« Examine the correlation of resilient modulus with the APA rutting.

Hypothesis Two
An appropriate neural network model can be developed to predict rutting by training the

model with laboratory data incorporating the rut influencing parameters.

Objectives
The objectives are to
« Design a neural network for rutting potential of HMA.
« Apply the resulting neural networks to predict optimum asphalt content of

HMA mixes.

1.3 Dissertation OQutline

This dissertation is composed of seven chapters. Chapter 1 provides a brief statement of
rutting problems, including specific goals and objectives. Chapter 2 focuses on the
experimental aspects of rutting, particularly on evaluation of rutting potential using the
APA. A particular emphasis is placed on the repeatability and reproducibility of rut
tests. The concept of volumetrics of HMA is introduced there as well. Chapter 3
presents binder’s contribution to rut potential of HMA. The mechanical and rheological
properties of different binders are correlated with their rutting performance in a mix. A

statistical evaluation of parameters that affect rutting is presented in Chapter 4. The



details of the statistical procedure to rank a number of rut factors is presented. Chapter 5
describes the correlation of resilient modulus with the APA rutting. Also, the variability
and complexity of modulus test is also focused from the pavement design point of view.
Chapter 6 presents the use of neural networks for pavement rutting. The design, training
and application of neural networks for mapping asphalt design and testing factors of
HMA samples to their rutting performance are presented. Finally, in Chapter 7, a

summary and conclusion of this study are presented, followed by recommendations.



CHAPTER 2

LABORATORY RUT TESTING

2.1 Introduction

In this chapter, laboratory rut testing equipment, namely the APA, testing procedure,
rutting mechanisms, mixture volumetrics, aggregate testing, and sample preparation are
introduced. The APA is evaluated primarily to determine if it readily distinguishes
between differing properties of HMA. In essence, three controlled mixes are chosen for
laboratory rut test. Also, ten different plant produced HMA mixes are tested and ranked
based on their rut potentials. Mix properties are correlated with their rutting potential.
Also, there needs to be an acceptable repeatability in the APA test results in order to use
APA with confidence. Consequently, the repeatability and reproducibility of laboratory

rut testing are discussed in this chapter.

2.2 Background

During the past three decades, a wide variety of equipment and procedures have been
developed and used to assess rutting characteristics of HMA mixes in the laboratory
(Lai, 1996). The adoption of Superpave (Superior Performing Pavement) methods by
governmental agencies has attracted worldwide attention to seek for advanced
laboratory equipment to examine rutting performance of asphalt concrete. While the
HMA industry has moved from Hveem or Marshall to Superpave design, traditional test

methods for quantifying HMA performance are found to be inapplicable for Superpave



(e.g., Texas gyratory compactor is not applicable to mix having aggregate size of 25.4
mm or 1 in.). Thus, materials engineers have struggled with exactly how to evaluate
performance in the practical manner to which they have become accustomed.

As full Superpave implementation nears, the industry has been naturally drawn
towards relatively new types of empirical tests to fill the consequential performance
evaluation void. A common class of device popular with many practicing engineers is
known as the performance test device, which finds its name in the fact that no basic
material property can be computed from its results. Typically, this class of test involves
the application of scaled-down load events that are applied to small laboratory samples
based upon the assumption that field pavements will respond to full-scale traffic
loadings in some related manner.

One of the most recent and promising performance tests currently commercially
available is the APA. The significant changes in the rut testing procedure occurred
when the Pavement Technology Inc. (PTI) started a commercial development of the
APA. The APA applies repetitive loadings on laboratory samples through a pressure
regulated rubber tube and rut depths are measured as a function of loading cycles. The
APA features an automated data acquisition system that obtains all rutting
measurements and plots them in a graphical and numeric format.

The APA is a multi-functional loaded wheel tester that can be successfully used
for evaluating permanent deformation (rutting), fatigue cracking, and moisture
susceptibility of both hot and cold asphalt mixes. Although the APA can be used to
conduct fatigue testing and moisture sensitivity analyses, the vast majority of published

literature indicates that rutting susceptibility studies are its most popular application



(Brock et al., 1998). Currently, the APA is the most widely used piece of laboratory
equipment designed to determine the rutting susceptibility of HMA mixes.

In the development of the APA, numerous studies are conducted to compare
results of APA testing to actual field performance. Most of these studies are to relate
APA rut depths to actual field rutting (Collins et al., 1995). A joint study by the FHWA
evaluated the APA to predict rutting performance on mixtures placed at the full-scale
pavement study WesTrack (Williams et al.,, 1999). Data of 10 test sections from

WesTrack shows a strong relationship (R*= 0.91) between APA and field rutting.

2.3 Asphalt Pavement Analyzer

An APA has three chambers as shown in Figure 2.1(a). These are the top control
system, the middle wheel tracking, and the bottom sample holding assembly. The
middle wheel-tracking chamber is shown in Figure 2.1(b). The basic component of an
APA consists of the following items:

o Wheel Tracking or Loading System: consists of drive, loading, and valve
assemblies and three special rubber hoses. The wheel tracking system applies
wheel loading on repetitive linear wheel tracking actions that control magnitude
and contact pressure on beam and cylindrical samples for rut testing.

o Sampling Holding Assembly: consists of sample tray and molds, holds the
asphalt concrete samples directly underneath the rubber hoses to allow the
samples to be subjected to the wheel tracking actions during rut testing. The

sliding tray design allows the samples to be pulled out from inside the machine,



making it easier to perform rut depth measurements and for installation of the
sample.

Temperature Control System: controls and maintains the temperature of the
APA chamber. The test and conditioning chamber temperatures are set at any
point between 40.6°C to 64°C (105°F to 147.2°F) within + 33.8°F (1°C).

Water Submersion System: consists of water tank, water tray and pneumatic
cylinder. This system allows the water to cover the test sample during the
submerged-in-water test and automatically drains the water upon completing the
test before the sample tray is pulled out.

Operating Controls: operate the machine and are mounted on the control panel
located in the front of the machine. The magnitude of wheel load, hose pressure,
temperature, number of cycles, and wet or dry conditions are changed or varied
using the controls.

Sample Temperature Conditioning Shelf: is located inside the lower front doors.

It can hold extra beams or cylindrical samples to allow heat soaking.

2.4 APA Rut Testing

The APA has the capability of testing both rectangular and cylindrical specimens. A

typical APA rut test uses either a three-beam specimens, each 75 mm x 125 mm x 300

mm (3 in x 5 in x 12 in) or six-cylindrical specimens, each 150 mm diameter x 75 mm

height (6 in x 3 in). Laboratory mixed specimens, including those prepared by a

gyratory compactor, Marshall samples, or roadway cores can be tested. In testing

procedure, the compacted specimens are placed in the molds and preconditioned at
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testing temperature (typically 64°C for Oklahoma mix) for a minimum of 10 hours.
However, the specimens should not be held at this temperature for more than 24 hours
prior to testing. Once the chamber temperature is stabilized, the molded specimens are
tested in the APA. Typically, the vertical wheel load is kept at 445 N (100 1bs), and the
hose pressure at 700 kPa (100 psi). The APA is run for 8000 loading cycles. The rut
depth is measured as a function of load cycle. An automated rut-depth measuring

system plots the cycles or time with respect to rutting.

2.5 Rut Specimen Compaction

The compaction method used to prepare rut specimens can significantly affect rutting
potential of a HMA sample. Recently, Superpave Gyratory Compactor (SGC) and
Asphalt Vibratory Compactor (AVC) have received much more attention within the

asphalt industry. Both of theses compactors are used in this study.

2.5.1 Superpave Gyratory Compactor

The Superpave gyratory compactor is a laboratory device used in Superpave mix
design. The SGC can orient the aggregate particles in a way that is similar to that
observed in the field and has the capability to accommodate larger aggregates (up to 50
mm) in the mix (Roberts et al., 1996). A photographic view of the SGC is shown in
Figure 2.2. It consists of a rigid reaction frame, loading system, and épecimen height
measurement system. It compacts asphalt mixture specimens at a constant pressure of
600 kPa. The mixture is compacted by a gyratory kneading action using a compaction

angle of 1.25 degrees and operating at 30 rpm. By knowing the mass of the specimen
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being compacted and the height of the specimen, specimen density can be estimated
during the compaction process. This is accomplished by dividing the specimen mass by
the specimen volume. To estimate volume, the specimen is assumed at any point to be a
smooth-sided cylinder of 150 mm in diameter and measured height. From the laboratory
experience, the SGC is found to be very consistent to prepare samples. It is also found
that the gyratory compacted samples show equal compaction in the top and the bottom

of samples and significantly more compaction in the middle (Tarefder et al., 2003).

2.5.2 Asphalt Vibratory Compactor

A photographic view of the AVC (model no. AVC II) used in this study is shown in
Figure 2.3. The AVC, developed by PTI, can be used to prepare beam or cylindrical
samples. The AVC compacts asphalt at the same amplitude, same frequency, and same
relative weight that are found in the roadway pavement compactors. In AVC, the
forward pressure is typically kept at 14.5 psi (100 kPa) and the backpressure at 5.8 psi
(40 kPa). The time to compact beam specimens can be varied 25 to 40 seconds. In
AVC, compaction is achieved through vibration. Vibratory compaction tends to result
in more compaction at top and less compaction at the bottom of samples. This is
generally true for both beam and cylindrical samples. In AVC, it is difficult to reach the

desired level of compaction (Tarefder et al., 2003).

2.6 Rutting Mechanisms
Permanent deformation is generally considered to be the result of two mechanisms:

shear deformation and consolidation (Lekarp et al., 1996). Figure 2.4(a) shows a typical
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cross section of a conventional flexible pavement. It consists of surface course, base
course, and compacted subgrade layer. With repeated loading, rutting may occur at

different layers based on the rutting mechanism and layer stiffness.

2.6.1 Deformation

Bending of flat particles, sliding and rolling of rounded grains are considered to be
distortion. HMA materials flow laterally due to loss of interlocking of contracting
particles, rather than densification (Gramling et al., 1991). This type of rutting is mainly
caused when an asphalt mixture with very low shear strength is subjected to repeated
heavy loads as shown in Figure 2.4(b). This figure shows that the pavement has very
strong base and subgrade. Rutting occur in the surface layer due to plastic deformation

of HMA materials. This study focuses on rutting of asphalt HMA mix only.

2.6.2 Consolidation

The change in shape and compressibility of particle assemblies is considered
consolidation. Volume changes due to changes in grain arrangements, particle
orientation, and generalized contraction of the assembly without modification of the
aggregate structure. Rutting caused by densification of asphalt mixtures having high air
voids is usually not considered during the initial mix design. Consolidation type of
rutting normally occurs in subgrade, subbase, or base below the asphalt layer as shown
in Figure 2.4(c). Although stiffer paving materials can partially reduce this type of
rutting, it is normally considered more of a structural problem rather than materials

problem. Rutting in the base and subgrade are not focused in this study.
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2.7 Asphalt Mixture Volumetrics
A hot mix asphalt material comprises three material components:

« Air Voids

o Mineral Aggregate

» Bituminous Binder
In production, the latter two materials are proportioned by mass (weight). It has long
been acknowledged that the performance of HMA mixtures is more significantly
influenced by the relative volumetric proportions of the three components. The use of
the volumetric proportioning of HMA mixtures is called volumetrics. This section does
not investigate nor justify the critical design values assigned to any of these, or other,
volumetric parameters, but to explain their meanings and interrelationships. The
nomenclature used throughout this study is based on the modified Asphalt Institute

system adopted by the Superpave system.

2.7.1 Primary Volumetric Parameters
The primary volumetric parameters are those relating directly to the relative volumes of
the individual components:

« Air Voids, Vy - the volume of air voids

« Binder Volume, Vj, - the volume of the bituminous binder

« Aggregate Volume, V; - the volume of the mineral aggregate
Due to the phenomenon of absorption, some of the bituminous binder is absorbed into
the external pore structure of the aggregate. This leads to the situation wherein a portion

of the aggregate and binder share a common space that is, the sum of the individual
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volumes (Vp + V) is greater than their combined volume (V). This leads to further

sub-division of the primary volumetric parameters as described below:

Effective Binder Volume, Vi - the volume of bituminous binder external
to the aggregate particles, i.e., that volume not absorbed into the aggregate.
Absorbed Binder Volume, Vp, - the volume of bituminous binder absorbed
into the external pore structure of the aggregate.

Bulk Aggregate Volume, Vg - the total volume of the aggregate,
comprising the “solid” aggregate volume, the volume of the pore structure
permeable to water but not to bituminous binder and the volume of the pore
structure permeable to the bituminous binder.

Effective Aggregate Volume, V. - the volume of the aggregate comprising
the “solid” aggregate volume and the volume of the pore structure
permeable to water but not to bituminous binder.

Apparent Aggregate Volume, Vg, - the volume of the “solid” aggregate,

i.e., that volume permeable to neither water nor bituminous binder.

These various volumetric components are conventionally represented by a “phase

diagram” shown in Figure 2.5.

2.7.2 Secondary Volumetric Parameters

For many years, three additional volumetric parameters are widely used, and at various

times, have formed critical design thresholds (Patrick, 2003). These are the percent air

voids (V,), Voids in the Mineral Aggregate (VMA), and Voids Filled with Asphalt

(VFA). These three parameters are described below:
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« Percent Air Voids, V, - the volume of the air voids, V5, expressed as a
percentage of the total volume, Vr of the mixture. With reference to Figure
2.5, the following relationship can be derived: V,= V,/V1 x 100.

« Voids in the Mineral Aggregate, VMA - the sum of the air voids, Vy, and
the effective binder volume, Vi, expressed as a percentage of the total
volume of the mixture. This parameter is directly analogous to "porosity"
in soil mechanics. Similarly, it can be shown, VMA = (Vy +V,)/Vr x 100.

« Voids Filled with Asphalt, VFA - the degree to which the VMA are filled
with the bituminous binder, expressed as a percentage. This is directly
analogous to the “degree of saturation” in soil mechanics. Similarly, VFA
can be derived as: VFA = Vy,o/(Vy+Vie) % 100.

In practice, two of these parameters (V, and VMA) are obtained from measurements of
various specific gravities (Gmp - the bulk specific gravity of the compacted mixture,
Gmm, - the maximum theoretical (void-free) specific gravity of the mixture, and Gy, - the
bulk specific gravity of the blended aggregate) and knowledge of the mass percentage
of bituminous binder in the mixture, Pp. The tests methods followed in this study for
determination of specific gravities are ASTM D 2726 (AASHTO T 166), AASHTO T
209 (ASTM D 2041), AASHTO T 84, and AASHTO T 85. The secondary volumetric
parameters are calculated from the weight-volume relationships as follows:

« For a compacted specimen (SGC or AVC), the bulk specific gravity (Gmp)

and Rice Specific gravity (Gpm) are used to calculate the percent air void:

V. =(1——(—}—’1‘1’—Jx100 @2.1)
G

mm
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» Using the bulk specific gravity of the aggregate (G), the bulk specific
gravity of the compacted specimen (Gmp), and the asphalt content (Py), the

VMA is calculated as follows:

VMA =(1 —WJMOO 2.2)

sb

« The VFA for each specimen is calculated using V, and VMA as follows:

VFA =(

XM}@OO (2.3)

2.8 Aggregate Testing

Prior to mixing the aggregate with asphalt binder, aggregates are tested for gradation,
Los Angeles abrasion values, sand equivalent, durability, fractured faces, fine aggregate
angularity, and bulk and effective specific gravities.

Gradation tests are performed for plant produced and control mixes. Gradation is
perhaps the most important property of an aggregate. It affects almost all the important
properties of a HMA, including stiffness, stability, durability, permeability, workability,
fatigue resistance, frictional resistance, and resistance to moisture damage. Therefore,
gradation is a primary consideration in asphalt mix design, and the specifications used
by most states limit the gradations that can be used in HMA. Figure 2.6 shows the
gradation of control mixes, which is a straight line on the 0.45-power-chart. In this
figure, a gradation passing Though the Restricted Zone (TRZ) (Figure 2.6) is believed
to have high rut potential. Also, gradation passing Above the Restricted Zone (ARZ) is

believed to have low VMA and fails to meet Superpave design criteria. Aggregate
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gradation Passing Below the Restricted zone( BRZ) is most common and widely used
for HMA design. Gradation tests are performed using AASHTO T 27.

The Los Angeles (L..A.) abrasion test is frequently used to obtain an indication
of desired toughness and abrasion characteristics of aggregate. The test method ASTM
C 131 or AASHTO T 96 is a measure of degradation of mineral aggregates. It gives a
combination of actions including abrasion or attrition, impact, and grinding for a
prescribed number of revolutions in a rotating steel drum containing a specific number
of steel spheres. Another method of evaluating aggregate abrasion and durability is
Micro-Deval (Appendix I). This test is performed with soaked aggregate under water.
This is widely used as an indicator of the relative quality or competency of various
sources of aggregate having similar mineral compositions.

The Sand Equivalent Test is performed to determine the relative proportions of
plastic fines and dust in a fine aggregate mix. Dust especially, clay adhering to
aggregate, prevents good bond between the asphalt binder and aggregate. In this test,
the amount of clay is measured (ASTM D 2419 or AASHTO T 176). The sand
equivalent is the ratio of the height of sand to the height of clay expressed in
percentage.

Aggregate particles with more fractured faces exhibit greater interlock and
internal friction, and hence result in greater mechanical stability and resistance to
rutting than do the rounded particles. Currently, there is no ASTM or AASHTO
standard test procedure for measuring the percentage of fractured faces for an aggregate.
In this study, a sample of coarse aggregate (retained on sieve no. 8) is divided into 3

stacks. The particles that had none, one, and two or more fractured faces are counted.
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The first stack contained all the particles with zero fractured faces. The second stack
contained all particles with one fractured face, and the third stack contains all particles
with two or more fractured faces. The percentage by weight of each stack with one or
more fractured faces and with two or more fractured faces is then determined (OHD
Designation: L 18).

Aggregates are tested for bulk specific gravity, Gy, (ASTM C 127 and C 128 or
AASHTO T 85 and T 84). The specific gravity of coarse aggregate is useful in making
weight-volume conversions (Equation 2.2) and in calculating the VMA and VFA in a

compacted mix.

2.9 Mixing, Compacting and Rut Testing

Aggregates are dried at 110 £ 2°C for about 10 to 12 hours and sieved into different
sizes (preferably individual sizes) and about 3 percent moisture is added to the materials
passing sieve no. 10. Adding of such small amount of water to the fines helps to prevent
segregation during mixing. Usually, two or three aggregates of different size are
combined and heated to a mixing temperature of 163°C (325°F). Asphalt cement is
heated for one hour at the same temperature. The hot asphalt and aggregates are then
mixed together. A complete mix design procedure can be found in Appendix II. The
mixes are compacted to contain a target air voids of 7.0%1 percent using the SGC and
AVC. Rice specific gravities (Gmm) of the loose HMA mix samples are measured in
accordance with the AASHTO T 209 (ASTM D2041), where as the bulk specific
gravity (Gmp) of compacted specimen are determined in accordance with the ASTM D

2726 (AASHTO T 166) and the CoreLok™ (OHD L 42) method (Appendix III). The
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compacted specimens are conditioned for at least 10 hours at testing temperature (i.e.,

60°C or 64°C). The conditioned samples are then tested for rutting in the APA.

2.10 Controlled Mix: Test Results

Three mixes (limestone mix ID: 3012-OAPA-99037, gravel mix ID: 3011-OK99-
63070, gravel mix ID: 3011-0OK99-63071) were selected for rut testing in co-operation
with the Oklahoma Department of Transportation (ODOT). Aggregates and asphalt
binders were supplied by ODOT. The contractors supplied the source of materials and
the proportions used for batching and mixing. Aggregate, mix and specimen tests as
discussed above were conducted for each mix. The HMA mix information is given in
Table 2.1 to Table 2.3. It can be seen that one of the mixes is limestone and the other
two gravel mixes.

Figure 2.7 shows a typical rut versus number of cycle curve. This figure
represents rut results of six cylindrical samples of Mix ID 3011-0K99-63071. There are
three curves each representing average rut for two samples. A small difference in rut
values is observed between the left and the middle samples. However, the rut depth
varies by about 1 mm between the left and the right samples. This is most likely due to
the difference in air voids. The testing parameters are listed in Table 2.3. Initially, the
AVC is used to prepare samples for rut testing. The asphalt content varies from test to
test.

From Figure 2.8 (for Mix ID: 3012-OAPA-99037), it can be seen that the rut
depths at 64°C are more than the double of the rut depths at 60°C. A small increase in

temperature changes the rut performance of the mix drastically. This can be explained
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from the stiffness and temperature relationship of HMA. Figure 2.9 shows a simplified
diagram illustrating the temperature dependence of HMA stiffness at a particular
loading (Roberts et at., 1996). At a temperature below 60°C (140°F), stiffness is
essentially temperature-independent. In this case, the stiffness approaches the elastic
modulus (most asphalt cements exhibit non-Newtonian or viscoelastic flow). At a
temperature above 60°C (140°F), the stiffness decreases with an increase in
temperature. The slope of the line at temperatures below 60°C (140°F) is very small.
Whereas, a sharp change in the slope of the line occurs at temperatures above 60°C
(140°F) (Bahia and Anderson, 1995). Therefore, a significant difference in rut
performance can be justified when the HMA temperature is increased from 60°C to
64°C.

Figure 2.10 shows the correlation between rut depth and air voids for (Mix ID:
3012-OAPA-99037). Significant trend between rut depth and air voids is not evident.
For samples with air voids more than 5%, rut depth generally increases with increase in
air voids. In this case, rut occurs due to consolidation. As the air voids of a sample
increase, more empty space inside the sample is available for consolidation. For
samples with air voids less than 4%, rut depth increases with a decrease of air voids. In
this case, rutting occurs due to shear flow. As the air voids decrease, a sample becomes
denser and more materials flow due to shearing action (Chen and Lin, 1998).

Figure 2.11 shows air voids, percent asphalt content and rut depth for Mix ID:
3011-0K99-63070. The percent asphalt content is in the design range. Therefore, the

rut depth did not vary significantly from one sample to another. The AVC samples
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show higher rut depths when compared to those of the SGC samples. A total of 20
samples’ data are plotted in Figure 2.11.

A total of 26 samples’ data (Mix ID: 3011-0K99-63070) are plotted in the form
of a bar graph in Figure 2.12 (Mix ID: 3011-0K99-63071). The maximum rut depth at
60°C is about 4.5 mm. The corresponding rut depth at 64°C is about 6 mm. The rut
depth for the gravel mix is higher than that for the exploratory mix. Once again, the air
void is not in the range of 6-8%. However, this data are useful for developing neural
network model.

Figure 2.13 (Mix ID: 3011-0K99-63071) shows the correlation of rut depth with
air voids. This plot illustrates that there is no apparent pattern in the APA rut depth data
with respect to air voids. The very poor correlation of the data, as evidenced by the
nearly flat regression line and extremely low coefficient of determination value (R*-
value) confirms that air voids in this range have very little effect on the observed rut
depth in the APA. It is to be noted that a few data points plotted are available at certain
percentage asphalt content. Linear regression analysis is performed at a constant
percentage asphalt contents.

Figure 2.14 shows the effect of gradation on rut depth for all three mixes. It can
be seen that the mix (3011-0K99-63070) whose gradation passes through the restricted
zone, showed maximum rut depth. Of the two mixes passing above the maximum
density line, the lime stone mix (3012-OAPA-99037) show less rut potential compared
to the base gravel mix (3011-OK99-63071). A possible explanation can be the grave
mix has 79.1% of aggregate fractured faces, where as the limestone mix has 83%

fractured faces (Table 2.1).
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2.11 Plant Mix: Test Results

This section deals with the rutting susceptibility of 10 selected HMA mixes. Mix
information and rut test results are shown in Tables 2.4 to 2.8. The proportions of the
aggregate used in HMA mixes are listed in Table 2.5. Typically, three to four
aggregates of different gradations are blended to achieve certain desirable gradation
required for HMA mixes. Table 2.5 also shows that Mix 1, Mix 5 and Mix 7 have used
37.5 mm (1% in.) rocks; therefore, the nominal maximum size is 25.0 mm (1 in.). Mixes
were collected in sufficient amounts for rut testing. Each mix is burned to determine the
asphalt content using the National Center for Asphalt Technology (NCAT) ignition
oven. Aggregate gradation is determined as discussed above. The gradation test results
for all mixes are listed in Table 2.6. The binder’s Performance Grade (PG), aggregate
properties and mix volumetric properties are listed in Table 2.7. An asphalt cement
grade of PG 64-22 is used for Mix 1, Mix 2, Mix 3, and Mix 8, while PG 76-28 type
asphalt is used for Mix 6. An asphalt cement grade, PG 70-28 is used for the other

mixes. The percent of asphalt cement used in the design mix varied from 4.4% to 6.3%.

2.11.1 Plant Mix Ranking

Figure 2.15 is a histogram showing all mixes with increasing rut values for cylindrical
samples. Mixes have been labeled E (Excellent), G (Good), F (Fair) and P (Poor) on the
basis of rut value in millimeter. Four mixes exhibited rut values below 2 mm (0.079 in.)
and are labeled as excellent. Three mixes exhibited rut depth more than 2 mm (0.079

in.) and less than 3 mm (0.118 in.) and are classified as good. Mixes with rut potential

23



of 3 mm to 4 mm (0.118 in. to 0.16 in.) have been characterized as fair. Mix 3 showed a
rut depth of more 4 mm (0.16 in.) and is classified as poor. Figure 2.16 is a histogram
which ranks the mixes based on beam specimen’s rut values. For all cases, beam
specimens rutted more than the cylindrical specimens. The ranking criteria for beam
samples are fixed by increasing the rut depth criteria for cylindrical samples by 1 mm.
Based on this criterion, two mixes are excellent, one is good and others are poor
performing mixes of the seven mixes. It can be seen that Mix 3 is poor performing in

both cases.

2.11.2 Effect of HMA Type on Rutting

Table 2.8 shows rut depth versus asphalt mix type for the cylindrical samples. Three of
the ten mixes used in this study are Type A mixes (with Recycled Asphalt Pavement,
RAP), six mixes are Type B insoluble and one is a C insoluble. Type A mixes exhibited
a mean rut of about 2.3 mm (0.09 in.) with a standard deviation of 0.45, while the Type
B mixes exhibited a mean rut depth of 2.5 mm (0.098 in.) with a standard deviation of
1.1. Type C mix exhibited rut depth of 3.2 mm (0.12 in.). This is because the Type A
mixes combine larger aggregates (nominal maximum size of aggregate 19.0 mm)
compared to the Type B mixes (nominal maximum size of aggregate 12.5 mm) or the
Type C mixes (nominal maximum size of aggregate 9.5 mm). The coarse aggregate
provides the shear strength to resist rutting where as the fines are used to fill the voids

in coarse aggregates.
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2.11.3 Effects of Asphalt Content and Grade on Rutting

It can be seen from Table 2.8 that for Type A mixes, Mix 7 with a percent asphalt
content of 4.1 of PG 70-28 had the lowest rut depth, where as Mix 1 with a percent
asphalt content of 4.6 of PG 64-22 had the highest rut depth of 2.8 mm. By comparing
Mix 7 with Mix 5, it can be seen that the higher asphalt content of Mix 5 had lower rut
depth than the lower asphalt content Mix 7. Therefore, the coarse mix, larger nominal
maximum size (19.0 mm) is more sensitive to binder’s performance grade as well as

percent asphalt content. For Type M mix, asphalt content is not a sensitive parameter.

2.11.4 Effect of Materials Passing No. 200 Sieve on Rutting

Table 2.8 shows that the maximum rut depth for mix Type B is 4.3 mm with a
minimum of 1.4 mm. The rut depth for type B mixes increases (Mix 3 and Mix 9 show
higher ruts compared to other B mixes) as the percent passing no. 200 sieve increased.
Mix 2 and Mix 4 had less materials passing no. 200 sieve (4.2 and 4.7 percent,
respectively) as compared to Mix 9 and Mix 3 (5.4 and 5.7 percent respectively). Mix 2
and Mix 4 have less rut value compared to Mix 9 and Mix 3. Therefore, the mixes with

smaller nominal maximum size (12.5 mm) are more sensitive to materials passing no.

200 sieve.

2.11.5 Effect of Gradation on Rutting
Mix gradations passing BRZ are coarser (i.e., the size of the aggregate particles are
bigger) than that of mix gradations passing ARZ. Table 2.8 shows that ARZ mixes have

higher rut values compared to the BRZ and TRZ mixes. Again, TRZ mixes have higher
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rut depths compared to the BRZ. The same is very clear when comparing the Type B
insoluble mixes of different gradations. For example, Mix 2 with BRZ had the lowest
rut depth (1.4mm) compared to the TRZ and ARZ mixes. Mix 4 with TRZ had the
second lowest rut when comparing the rut values of the Type B mixes. It is evident
from Table 2.8 that the aggregate gradations passing through the restricted zone are not

susceptible to high rutting.

2.12 Repeatability and Reproducibility

An identical result cannot be obtained from the tests performed using the APA under
presumably identical circumstances. The differences in results are due to unavoidable
random errors or factors inherent in every test procedure. In other words, the factors that
influence the outcome of a test cannot be completely controlled. For practical
interpretation of test results, this inherent variability must be accounted for. Therefore,
an inter-laboratory study is undertaken to determine whether the data collected are
adequately consistent and verify data precision. The primary factor of concern is the
sample preparation at a target air voids. Other factors such as temperature, wheel load,
and tire pressure could be controlled by proper calibration.

A measure of the greatest difference between two test results is considered
acceptable when properly conducted repetitive determination is made on the same
material by a competent operator. This is defined as repeatability or within laboratory
precision (ASTM 670). It is the square root of the pooled average of within laboratory
variances. Reproducibility is a measure of the greatest difference between two tests. The

tests are usually conducted by two different operators in different laboratories on
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portions of a material that are identical, or as nearly identical as possible. Repeatability
would be considered acceptable when the difference in test results is negligible. The
reproducibility is the square root of the pooled average of between laboratory variances.
The fundamental statistics underlying repeatability and reproducibility is the standard
deviation (one sigma limit, 1s or difference two-sigma limit, d2s) of the population of
measurements. In some cases, it is appropriate to use the coefficient of variation in
place of the standard deviation as the fundamental statistic. The results of two properly
conducted tests from two different laboratories on samples of same material should not
change the value obtained from multiplying 1s or d2s by 2.828 (ASTM C 670).

An outlier can be defined as discarding individual test results that appear to
differ by suspiciously large amounts from the others. However, discarding of suspicious
test results should be avoided unless there is a clear physical evidence to consider the
result faulty. Sometimes if a test really went wrong, it is better to discard the results and
repeat the test. Tests should not be repeated, however, just because the results do not
look good. A consistency statistics generated through the method may assist in the
detection of outlying data (ASTM E691). For a single APA rut test, there are 3 sets of
rut results from six samples. An outlier is imposed to these 3 sets according to OHD L-
43 method. If the difference between any set and average of the set divided by the

standard deviation of that set exceeds 1.155, the result of that particular set is rejected.

2.12.1 Experimental Program and Testing
A limestone aggregate (T. J. Campbell Co. materials) is used for the variability analysis.

Aggregate batching is performed at the University of Oklahoma (OU) Broce laboratory.
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The optimum asphalt content of 5.1% is found from the mix design information. Binder
mixing 1s performed in both the OU laboratory as well as the ODOT laboratory. It is
decided not to perform batching in both laboratories in order to keep the number of
variables limited. A total of 24 samples are prepared; half of these samples are prepared
in the OU laboratory and half of them are prepared in ODOT laboratory. A sample
prepared at OU and tested at ODOT is represented by OU-ODOT. Similarly, four
combinations of samples are tested, namely, OU-ODOT, OU-OU, ODOT-0OU, ODOT-
ODOT. A total of 6 samples prepared at OU are tested at ODOT (OU-ODOT). Also, 6
samples prepared at OU are tested at OU (OU-OU). Similarly, half of the samples

prepared at ODOT are tested at OU (ODOT-OU) and ODOT (ODOT-ODOT).

2.12.2 Interpretation of Test Results

The test results are plotted in Figure 2.17(a)-2.17(d). From Figure 2.17(a), (OU-OU)
sample with air voids of 6.7% shows a rut depth slightly higher and lower than that of
samples with 6.9% air voids. Again, in Figure 2.17 (c¢), (ODOT-ODOT) samples with
air void of 7.5 % showed higher rut depth compared to that of samples with air voids of
6.9% and 7.4%. Clearly, the trend of rut depth with air voids cannot be established from
these results. Therefore, an outlier approach is employed to throw a sample test result if
it deviates significantly from the average of three curves as in each of figures. An
outlier calculation is explained in Table 2.9. The critical value for student test (t-
statistic) is taken to be 1.155. If the calculated t-statistic (or t-calculated) value is

greater or equal to this value (1.155), then one chance in one hundred the value is from
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the same population (OHD L-43, 2001). According to this procedure, no data set is
rejected as an outlier. Therefore, all the data are considered to be good.

Table 2.10 shows that the results between and within analysis for the various
samples tested. The table shows the average and standard deviation for each
combination tested. It is evident that the results of samples prepared at OU and tested at
ODOT (combination, OU-ODOT) differ radically when compared to the other
combinations. The combination OU-ODOT had 10 times the second highest variance.
Therefore, the data obtained from this combination is excluded.

Table 2.10 also shows one sigma limit (1s) or coefficient of variation, which is
an indication of variability. The value of repeatability (1s%) within laboratory ranges
from 2.6 to 5.5. Therefore, results of two properly conducted tests by the same operator
on the same material should not differ by more than 7% to 15% (second to last column
in Table 7.2). The multi-laboratory coefficient of variation had been found to be 15%
to 45%. The results of two different laboratories differ from each other by more than
45% of the average.

Based on the above interpretation, it evident that the actual variability of rut
values is due to the variability in air voids. Results found from the APA testing are
consistent if the specimens are compacted to uniform air voids. Essentially, there is no
significant difference in final rut depths obtained from the OU and the ODOT

laboratory. Therefore, the test results can be considered repeatable and reproducible.
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2.13 Total Data

A total of 744 data sets have been reported in this study (Appendix IV). Each data set
represents an average of two HMA specimens rut values. For each data set (each row),
the HMA mix design identification number (mix ID), type of HMA, the name of the
highway where the HMA used, the average daily traffic capacity (in million) of the
highway, aggregate gradation, binder properties, mix properties, testing temperature,
wheel load, hose pressure and rut depths at different cycles are listed in Appendix IV.
A correlation of rutting with binder’s PG, air voids, and asphalt content, and materials
passing 19.0 mm sieve are plotted in Figures 2.18 to 2.21. Overall, the modified binders
(PG 70-28 and PG 76-28) have low rut potential compared to those of unmodified
binder (PG 64-22) as shown in Figure 2.18. However, the correlations of rutting with air
voids, asphalt content, and gradation are poor. This is an interpretation of data from the
linear regression results. Consequently, detail investigations of the factors that affect

rutting are performed in the subsequent chapters.
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Table 2.1 Selected Mix Information

Selected Mix 3012-0OAPA 3011-0K99 3011-OK99
Design No. -99037 -63070 -63071
Asphalt Concrete B Insoluble A A
. NHY-8N (005)- NHY-8N (005)- NHY-8N (005)
Project Number 10088(13) 10088(13) -10088(13)
Highway US54 US54 US54
Avg. Daily Traffic 3IM+ 3M+ 3M+
Contractor Duit Const. Duit Const. Duit Const.
Blended Materials % Used
1-1/2" Rock 00 15 15
3/4" Chips 25 20 30
3/8" Chips 30 60 00
Crushed Gravel 00 38 20
Screenings 30 27 35
Sand 15 00 00
Asphalt Information
Asphalt Type PG 70-28 PG 64-22 PG 64-22
Asphalt Content 5.0-6.0 45-55 43-53
Asphalt Source Royal Trading  Total Petroleum Total Petroleum
SP oure Tulsa, OK Ardmore, OK Ardmore, OK
Asphalt Specific Gravity 1.0177 1.0078 1.0078
Aggregate Property
Sand Equivalent 48 61 46
L.A. Abrasion % Wear 29.5 28.9 289
Durability 76 78 78
10C 0.34 0.42 0.53
Insoluble Residue (Ca) 80 0.0 0.0
Fractured Faces 83 83 79.1
ESG 2.657 2.636 2.649
Mixture Property
% Compaction 94.5 95.5 95.0
VMA (%) 15 13 13
Retained Strength (%) 85 90 91
Hveem Stability 57 52 55

Note: I0OC = Ignition Oven Correction factor, ESG = Effective Specific Gravity,
VMA = Voids in the Mineral Aggregate, and PG = Performance Grade.
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Table 2.2 Mixing and Testing Temperature

Temperature (°F)
Procedure 3012-OAPA 3011-OK99 3011-OK99  Time
-99037 -63070 -63071
Oven drying of Aggregate 230 230 230 Over-night
Gradation Test 77 77 77 >2hr
Preheating Aggregate 325+10 325+10 325+10 >1.5 hr
Mixing 32510 325+10 32510 3 minutes
Short-Term Aging 305+10 290£10 305£10 >2<4hr
Compaction 30510 290+10 305+10 35 sec
Cooling 77 77 77 >4 hr
Density and G, Test 77 77 77 0.5hr
Sample Conditioning 147.2 147.2 147.2 >10 hr
Testing 147.2 147.2 147.2 25 hr

32



Table 2.3 Rut Parameters of Mix: 3012-OAPA-99037

Parameter Name Parameter value
Sample Position in the APA Left Middle  Right
Asphalt content 5.75 5.75 525
Bulk Specific Gravity 2.333 2364 2372
Maximum Specific Gravity 2432 2.432 2.450
% Air Voids 4.1 2.8 32
% Material Passing No. 200 Sieve 6 6 6
% Material Passing No. 10 Sieve 40 40 40
Test Temperature (°C) 64 64 64
% Fractured Face 75 75 75
% Natural Sand 15 15 15

Binder Specific Gravity at 23 °C 1.0177 1.0177 1.0177

Note: APA = Asphalt Pavement Analyzer
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Table 2.4 Plant Mix Design Information

I\I/II;X Project ID Design ID County Highway "El\yge ADT
1 STP-55B(95STAG 3011-56875 Oklahoma S(‘Erigt A Rec 0.3M+
2 CIP-132B(11DIP  3012-OAPA-99048 Hughes US75 BlIns 0.3M+
3 SAP-151C(58)  3012-OAPA-20095 Muskogee IIizl;Z Bins 0.3M+
4 STP-RES-49B(280) 3012-APAC-99018 Mayes SH-20 Bins 3M+
5 IMY-40-4(366)138 3011-OAPA-20048 Canadian 140 A Rec 3M+
6 IMY-40-4(366)138 3012-OAPA-20049 Canadian 140 Bins 3M+
7  CIP-155N(114)IP 3011-OAPA-20090 Oklahoma ‘S(t:rietz ¢ ARec 3M+
8 MC-116B(16)Pt.1-3 3013-OAPA-20225 Cimarron Siig ; Clns 03M+
9  CIP-155N(114)IP 3012-OAPA-20095 Oklahoma Sctjrig; ¢ Bins 3M+
10  CIP-175N(1DIP  3012-OAPA-20033 Oklahoma US183 Bins 3M+

Note: AC= Asphalt Concrete; A.D.T = Average Daily Traffic; Rec= Recycled; Ins= Insoluble, and

1D = Identification Number
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Table 2.5 Types of Aggregate and Percentage Used

Mix 1-1/2" 3/4" 5/8" 5/8" 3/8" 1/4" Shot Stone Chat No.4 Screen RAP Sand
ID Rock ChipsChips Mill Screen Chips Sand Screen -ings
Run -ings -ing
() (o) () (B) (B) (B) (B) B) (B) () (%) () (%)

I 22 - - - - - 20 - - - 22 25 11
2 - - 30 34 - 28 - - - - - - 8
3 - 17 35 - - - - - - - 33 - 15
4 - 26 - - - - - - 36 - 23 - 15
5 39 - - - 13 - - 15 - - - 23 10
6 - 42 - 18 - 25 - - - - 15
7 24 - - - - - 18 - - - 21 25 12
8 - 25 30 - - - - - - - 30 - 15
9 - 28 - - - - 10 - - 47 - 15
10 - 12 30 - - - - - - 26 20 - 12

Note: RAP = Recycled Asphalt Pavement, ‘-° = No value
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Table 2.6 Mix Aggregate Gradations

I\I/Ill)x % Materials Passing Through
SIVe 4y i lin. %in %in. 3/8in. No.4 No.10 No.40 No.80 No.200
Qiges 120 lin %in. %in. in. No. 0. 0. 0. 0.

(mm) (37.5) (254) (19.5) (12.5) (95) (475 (2.0) (0.425) (0.18) (0.075)

1 100 99 - 84 - 60 35 20 9 4.5
2 - - 100 98 85 54 30 17 7 4.2
3 - - 100 90 75 50 37 22 12 5.7
4 - - 160 95 86 50 32 20 8 4.7
5 160 98 - 76 - 54 40 20 9 4.7
6 - - 100 99 86 60 45 22 9 4.6
7 100 99 - 82 - 61 36 23 11 4.7
8 - - - 100 95 66 44 18 10 5.7
9 - - 100 99 89 62 44 25 12 5.4
10 - - 100 89 73 57 40 20 10 53

Note: ‘- = No value

36



Table 2.7 HMA Mix Properties

Binder Properties Aggregate Properties Mix Properties
Mix Hveem
ID PG Source Sp.Gr. S.E. L.A. gl‘lllrtay IOC IR FF P, VMA Stability
1 PG64-220K a 1.0100 70 235 69 0.22 87.4 100 46 137 41
2 PG64-22 d 1.0201 70 273 83 0.14 87.4 100 4.8 154 48
3 PG64-220K e 1.0119 56 347 58 1.04 90.0 100 5.6 15 49
4 PG70-280K c 1.0198 71 234 73 022 40.4 100 49 16 45
5 PG70-280K b 1.0100 77 232 73 0.10 874 100 3.8 13.7 59
6 PG76-280K b 1.0232 79 264 77 0.23 40.0 100 4.7 15.7 50
7 PG70-280K a  1.0100 62 207 72 022 793 100 4.1 14.5 62
8 PG64-220K f 09943 75 200 84 03 809 100 63 15.5 51
9 PG70-280K a 1.0128 59 209 77 0.78 70.5 100 52 172 59

10 PG70-28 c 1.0245 68 252 84 0.12 63.5 100 4.5 16.2 53

Note: S.E = Sand Equivalent; L.A. =Los Angeles Abrasion, P, = Percent Asphalt Content; I0C = Ignition
Oven Calibration Factor, IR = Insoluble Residue; FF = Fractured Face; VMA = Voids in Mineral Aggregate
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Table 2.8 Effect of Asphalt Concrete Type

Mix  AC ﬁgx?rﬁn Yo Passing o ) halt Rut
D Type Oradation N;. 200 Confem DAR  Depth
ieve (mm)
7  Arec  ARZ 19.0 47 4.1 1.15 1.9
5 Arec ARZ 19.0 47 3.8 1.24 2.3
1 Arec ARZ 19.0 45 4.6 0.98 2.8
2  Bins BRZ 12.5 42 4.8 0.88 1.4
4  Bins TRZ 12.5 47 4.9 0.96 1.9
10 Bins ARZ 12.5 5.3 45 1.18 2.0
6 Bins ARZ 12.5 4.6 4.7 0.98 2.1
9 Bins ARZ 12.5 5.4 52 1.04 3.5
3  Bins ARZ 12.5 5.7 5.6 1.02 43
8§ Cins TRZ 9.5 5.7 6.3 0.90 3.2

Note: rec =Recycled aggregate, ins = insoluble aggregate, DAR = Dust to Asphalt Ratio
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Table 2.9 Outlier for Rut Depth Calculation

Sample Rut (mm) m-Values Outlier ﬁ; Z‘?mm%ne)
1 8.5033 1.124 8.5033
2 7.1522 0.791 7.152 7.71
3 7.4755 0.333 7.4755
Average 7.710
Stdev 0.705 If m> 1.155 then throw

Note: stdev = standard deviation; Note: m= (x-average)/stdev; Stdev = Standard Deviation
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Table 2.10 Between and Within Analysis for Rut Tests

Specimen No

Within 1s% o
Laboratory No.1 No.2 No.3 Average Stdev Var. Limit 1%

OouU-0uU 7.503 7.152 7.475 7.377 0.195 0.038 7.484 2.644

ODOT-

ODOT 6.371 5.699 6.074 6.048 0.337 0.113 15.757 5.568

ODOT-OU 7.012 7.265 6.596 6.958 0.338 0.114 13.740  4.855

OU-ODOT 6.162 7.92 5961 6.681 1.078 1.161 45.650 16.131

Note: OU-OU means sample prepared at OU and tested at OU; OU-ODOT means sample prepared

at OU but tested at ODOT; Average = sum of n tests results for a particular combination divided by
the specimen number; Var. = means variance, the sum of the squares of n test results for a particular
combination minus n times; the square of the average for that combination, divided by one less than
the number of replicate test results; 1s% = (Standard Deviation x 100)/Average
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(b) Inside View of APA Chamber

Figure 2.1 Photographic view of Asphalt Pavement Analyzer (APA)
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Control Panel

Extruder

Figure 2.2 Photographic View of Superpave Gyratory Compactor (SGC)

42



Control Panel -

Sample Table

Figure 2.3 Photographic View of Asphalt Vibratory Compactor (AVC)
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Figure 2.4 Pavement Cross-Section and Rutting

44



Air Voids, V. Air *
VoIS, ¥y Effective Binder Volume, Vi,

Total Binder

Volume, Vy A—f Absorbed Binder

Content, Vy,

Total Volume, V¢

Bulk Aggregate Volume, Vg,
Effective Aggregate

Volame, V,

Figure 2.5 Phase Relationships of Hot Mix Asphalt
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Figure 2.7 Typical Rut Plot of Mix ID: 3011-0OK99-99037

47



ww ‘yyded iny

w0 < o o

(AVC, Cylindrical Sample, 8000 Cycle, 64°C)

T

Jusjuo) jfeydsy %

53 5.6 6.4
% Air Void

3.8

2.5

ww ‘ydeq Jny

5
+ 0.5

e

(AVC, Cylindrical Sample, 8000 Cycle, 60°C)

10

7 T T T g T T T T
D 0 N~ W W0 Y 0N (=]

Jusuog jeudsy %

% Air Void

Figure 2.8 Rut Plot of Mix ID: (3012-OAPA-99037)

48



HMA Stiffness

Elast;ic Behaviorg

55°C 60°C

65°C 70°C

Temperature, T °c

Figure 2.9 Idealized Temperature Dependence of the Stiffness of
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CHAPTER 3
AN ASSESSMENT OF BINDERS’ CONTRIBUTION TO RUTTING

SUSCEPTIBILITY

3.1 Introduction

The relationship between rheological and mechanical properties for various binders
based on the asphalt mixture’s rutting performance is studied. The rutting performance
of a mixture is determined from the laboratory test results. The test results are analyzed
and interpreted to examine whether binder’s Performance Grade (PG) affects rutting.
Both modified binders and unmodified binders (base crudes) are examined. Moreover,
linear and nonlinear regression models are developed to predict Rut Depth (RD). In
particular, the effect of two parameters (binder’s viscosity, Ry and rut factor, G'/sind;
where G’ is the shear modulus of binder and & is the phase difference between applied

load and the corresponding shear deformation) to rutting is investigated.

3.2 Background

The concept of creating HMA concrete with increased resistance to permanent
deformation or rutting is a major driving force behind much of the asphalt-related
research performed under the Strategic Highway Research Program (SHRP). The
provisional binder specification AASHTO MP1-98 (better known as the SHRP or the
Superpave binder specification) represents a historic and logical steppingstone on the

path to a performance-related specification for binders (AASHTO MP1-98, 2000). In
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the 40’s and 50’s, the penetration grading system, ASTM D 946 was primarily used for
specifying binders (ASTM D 946, 1998). However, the penetration value does not
describe pavement distress, as it is not a fundamental property of a binder.

The next evolutionary step is the viscosity grading system, ASTM D 3381
(ASTM D 3381, 1998). The performance of pavements built with viscosity-graded
asphalt binders were thought to be controlled by their viscosity-temperature
susceptibility (Anderson et al., 1991). However, asphalt cements classified on the basis
of viscosity does not adequately reflect the theology of the binder. Viscosity does not
provide a true indication of how asphalt cement performs within a pavement over its
yearly temperature range. A binder can be non-Newtonian (and visco-elastic); therefore,
it requires further characterization in addition to the viscosity.

In the late 80’s and early 90’s, a new specification, called Performance-Based
Asphalt (PBA), attempted to include regional climatic variations and long-term aging in
the field (Reese et al., 1993). The Superpave binder specification adopted many of the
concepts in PBA specifications. The most significant advancement in the Superpave
Binder (SB) specification is the move from empirical testing to advanced performance-
based testing. With Superpave specifications, a binder can be characterized at a
controlled rate and temperature to obtain engineering properties of that binder. In the
Superpave binder specification, the Dynamic Shear Rheometer (DSR), Bending Beam
Rheometer (BBR) and Direct Tension (DT) replaced such tests as the viscosity,
penetration and ductility. Nine-binder grade-classifications are used under the asphalt

grading system (AASHTO TP5-98, AASHTO TP1-98, AASHTO TP3-00).
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The Oklahoma Department of Transportation (ODOT) adopted the PG binder
specification in July 1997. The ODOT supplemented the AASHTO MP1 (AASHTO
MP1-98, 2000) specifications in 1999 (ODOT, 1999). The new grading system,
AASHTO MP1 (AASHTO MP1-98, 2000) more appropriately relates the grade of the
asphalt binder to the pavement temperature and traffic loading for a construction project
than the previous grading systems. Under a true PG grading system, binders classified
the same should have similar performance characteristics. Mixes containing these
binders should show similar performance characteristics. PG binders of the same grade,
produced from different crudes and manufacturing process and meeting the
specification requirements of MP1-98 may show different performance in HMA mixes.
If different binders of the same PG grade do not perform similarly, then the binder
specification may lose its significance. It should be noted that the PG system is a
purchase specification. A real attempt is made by the SHRP researchers to relate the
various PG grades to actual performance (Natu et al., 1999). No binder grading system
may fully identify the full mixture performance when binder characteristics alone are
considered.

Rutting and fatigue failure models are developed during the SHRP research
(Asphalt Institute, 2001). These models continue to be refined. The Superpave Shear
Test (SST) (AASHTO TP9, 2000) and Indirect Tensile Test (IDT) (AASHTO TP7,
2000) machines are expensive. Only five Superpave centers had these machines in the
early 1990’s. The cost of these machines has made full use of the SHRP research using
the SST and IDT cost and time prohibitive. Full implementation of Superpave, by state

and local agencies, using these machines may be delayed.
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Superpave testing equipment and procedures, for a full evaluation of the
permanent deformation resistance for a given mixture, are still under development.
Recently, the APA has become increasingly popular in evaluating rutting potential of
HMA mixes (Kandhal et al., 1999). Accordingly, many state agencies have started
using the APA to evaluate rutting potential. The present study has employed the APA to
investigate the performance of different binders based on HMA rut potential. The main
objective of this study is to evaluate and compare the performance of these binders in
the context of rut potential of mixes with these binders. A subsequent objective is to
examine the performance of binders with the same high temperature PG grade
(unmodified binders or modified binders) and the performances of binders with
different high temperature PG grade (comparison modified and unmodified binders).
The primary goals of this study are to develop rutting prediction equations of HMA
mixes and to examine whether MP1-98 specified binders could produce a low rut

potential mix.

3.3 Binders Description

This section describes HMA produced from thirteen different unmodified and modified
binders from different sources and PG grades HMA. These binders are currently being
used in different projects in Oklahoma. The unmodified binders referred to as PG1 are
PG 64-22 or PG 64-22 OK and they are refined from eight different sources. The
unmodified binders are known as base asphalt. The modified binders referred to as PG2
are PG 70-28 and PG 70-28 OK, typically contains 2% styrene-butadiene-styrene (SB)

polymer. These two binders used in samples of this study are obtained from two
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different sources. The modified binder PG3 is a PG 76-28 OK from one of the PG2
sources. It contains 5% SB polymer with 0.05% chemical anti-strip additive. Although
the modified binders are produced from the same base asphalts, they contain relatively
low amount of asphaltenes. The PG 64-22 OK, PG 70-28 OK and PG 76-28 all meet
the requirements for PG 64-22, PG 70-28 and PG 76-28 in accordance with AASHTO

MP1, as well as the additional requirements of ODOT specifications (ODOT, 1999).

3.4 Binders Properties
Tests are conducted by ODOT to determine the complex shear modulus, G~ and phase
angle, & values using a DSR at the high PG temperature (e.g, for PG 64-22 at 64°C, for
PG 70-28 at 70°C) and at 10 radian per sec frequency of loading. The DSR tests are
performed on the original and Rolling Thin Film Oven (RTFO) samples. The Superpave
binder specification uses a factor called rutting factor, G'/sind to characterize binder
stiffness or rut resistance at high pavement service temperature. The rutting factor
reflects the total resistance of a binder to deform under repeated loading (G"), and the
relative energy dissipated into non-recoverable deformation (sind) during the loading
cycle (Roberts et al., 1996). A higher value of G'/sind implies that the binder behaves
more like an elastic material, which is desirable for rutting resistance. As the binder
ages, the G* increases and the & decreases and binders increasingly become less
viscous. The SHRP rutting factor G*/sind for unaged and aged binders are listed in
Table 3.1.

From Table 3.1, it can be seen that all binders are within the Superpave

specification for the rutting factor, G /sind. The value of G /sind should be 1.00 kPa
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(0.145 psi) minimum for unaged binders, and 2.20 kPa (0.319 psi) for RTFO aged
binders. The mean rutting factor for the unmodified binder is 1.40, whereas for the
modified binders the corresponding value is 1.57 for unaged condition. The mean
rutting factor of 3.3 for the unmodified binder and 3.10 for the modified binder
indicates that there is no significant improvement in the rutting factor due to
modification. The rutting factor can be compared at the same temperature assuming
linear behavior. For example, rutting factors for modified binder (i.e. PG 2) of 3.10 at
70°C would be 6.2 at 64°C (Summers, 2001). Therefore, all the modified binders have
high rutting factors compared to the unmodified binders at 64°C. A study by Bahia et al.
(1999) showed that polymer modification increases the elastic responses and dynamic
modulus of bitumen at intermediate and high temperatures, and it influences complex
and stiffness modulus at high temperature. Polymer can also reduce the temperature
susceptibility, the glass transition and limiting stiffness temperatures of a bitumen
(Bahia et al., 1999).

The binders have also been tested by DOT for viscosity at 135°C (275°F) using a
rotational viscometer (AASHTO TP48-97) and the values are listed in Table 3.1.
Although the viscosity tests are usually conducted for mixing and handling
performance, this study investigates the correlation of viscosity with rutting
performance. The higher viscosity values for modified binders, as shown in Table 3.1,
indicates that polymer modification makes binders more resistance to disturbance.
Table 3.1 also shows that the viscosity is different for various modified binders

depending on the source. The degree of improvement in binder quality generally
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increases with polymer content, but varies with base bitumen, bitumen source, PG grade

and polymer type (Isacsson, 1999)

3.5 Aggregate and Mix Design

Four mineral aggregates consisting 16.0 mm (5/8 in.) chips, screenings, shot and sand
are incorporated into the Superpave method of mix design to produce asphalt concrete.
Aggregate information is listed in Table 3.2. In the experimental procedure one,
aggregates are evaluated, and gradation tests are performed to obtain a blend that met
all of the Superpave gradation criteria. The final blend gradation plotted on the 0.45-
power-chart, as shown in Figure 3.1, passes below the maximum density line with a
Nominal Maximum Size (NMS) of 12.5 mm (%2 in.). The blended aggregate properties
are summarized in Table 3.3. Mix designs are performed using a traffic level of more
than 3 and less than 30 million Equivalent Single Axle Loads (ESALs). Although the
binder grades of PG 64-22 and PG 64-22 OK are recommended for less than 3 million
ESALs in ODOT specification, this study has considered 3 million ESALSs as the design
criteria for volumetric properties.

The maximum gyration, Npax is 160 and the design gyration, Nesign is 100.
Design mixes are mixed at 163°C (325°F), aged at 149°C (300°F) for 3 hours and
compacted at 149°C (300°F) using a Superpave Gyratory Compactor (SGC). The SGC
is set at a vertical pressure of 600 kPa (87 psi) and a gyratory angle of 1.25°. The
optimum asphalt content is determined at 4% air voids at Ny (number of gyration for a
specific design). Figure 3.2 and Table 3.4 represents optimum asphalt content of four

binders and volumetric properties as well as Superpave volumetric criteria. After each
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mix design is completed, the mix is tested for water susceptibility (AASHTO T 283).
Only mixes with a Tensile Strength Ratio (TSR) more than 0.80 are used in the final
mix design. In addition, some binders are mixed at lower and higher optimum asphalt

contents to examine the effect of asphalt binder on rutting performance of mixes.

3.6 Rut Testing
Cylindrical specimens of 75 mm (3 in.) height are compacted in the SGC at a target air
void of 6 to 8%. It is to be noted that HMA are usually designed with a target air voids
of 4% (laboratory), however, constructed with a target air voids of 6 to 8% (field).
Specimens are preconditioned at 64°C (147.3°F) for 10 hours before rut testing. In the
APA testing procedure, the cylindrical samples are subjected to repeated passes of a 445
N (100 1b) loaded wheel through a 690 kPa (100 psi) pressurized hose. Specimens are
tested at 64°C (147.3°F) temperature. The rut depth is measured in millimeters as a
function of number of wheel passes. A total of ninety specimens are prepared and tested
for rut depth at 8000 loading cycles. Figure 3.3 shows the typical variations of rut depth
in millimeters with the number of load cycle for mixes containing various modified and
unmodified binders. Three modified binders out of four showed rut depths of less than 3
mm. Others showed more than 4.5 mm rut depth at 8000 cycles of loading. From Figure
3.3, it can be seen that more than 50% of the final rutting occurs within 1000 loading
cycles for all mixes.

The initial higher rate of rutting can be attributed to the initial densification or
compaction of materials. After completion of initial densification, the rate of rutting

(slope of rutting curve) decreases with the increase in loading cycles for each mixture.

69



The slope of rutting curves in the range of 2000 cycle to 8000 cycles is nearly equal for
all mixes (except for S4-PG 64-22). Therefore, it can be concluded that the major
difference in final rut depth is primarily due to densification of materials and not by

plastic flow at higher cycles.

3.7 Analysis of Test Results
In this section, the binders are ranked based on their rutting performances in mix

testing. An interpretation of the factors affecting rut is also presented.

3.7.1 Overall Ranking

Figure 3.4 is a histogram showing all binders with increasing rut depth for samples with
6 to 8 percent air voids. A threshold value of rut depth for classifying a mix as good or
poor performing has yet to be developed by ODOT. Currently, Oklahoma DOT is
considering a limiting rut depth of 6.0 mm for mixes with ESALSs in the range of 0.3-3.0
millions (OHD L 43, 2002). This study considers a rut depth of 6 mm as a threshold
between excellent-good mixes and poor mixes. Accordingly, in Figure 3.4, the binders
are classified as E (excellent), G (good) and P (poor) on the basis of the threshold value
associated with rutting performance. It is evident that 3 mixes fall in the category of
excellent, 6 mixes are in the good category and 4 exhibit poor rutting performance.
These are the rating of 13 mixes prepared with various modified and unmodified
Superpave binders. From this ranking procedure, it is evident that the asphalt pavement
analyzer can be used for screening of poor mixtures. That is, the APA can be used as

proof tester for HMA mix.
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3.7.2 Effect of Binder’s Performance Grade

Figure 3.5 shows that most PG2 and PG3 (modified binders) mixes have lower rut
potential (excellent) compared to the rutting performance of PG1 (unmodified binders).
The mean rut depth for the modified binders is 3.4 mm with a standard deviation of 1.8
mm. The unmodified binders show a mean rut depth of 5.8 mm with a standard
deviation of 0.78 mm. The higher standard deviation for the case of modified binders is
due to the poor performance of S8-PG 70-28 OK. From the binder’s PG point of view,
it can be shown that the overall performance of the modified binders is much better than
that of the unmodified binders. This agrees with what is expected from the Superpave
binder’s specification point of view. However, there is no significant difference when
the performance of the modified binder S8-PG 70-28 OK mixture is compared with the
performance of unmodified binders. The rutting performance of S7-PG3 does not differ
when compared with the performance of the S7-PG2 binder mixture. From the test
results, it is evident that the binder’s higher performing grade is not a sufficient criterion
to conclude that the mixture will perform well. A polymer-modified binders’

performance should be evaluated by the rut performance of the mix in an APA.

3.7.3 Effect of Source

One of the objectives of the present study is to examine whether the performance of
mixes with same PG binder grade differs with the source. For the PG1 binder, the
following source ranking is S6>S5>S3>S1>S8>S4>S7>52, based on the low to high
rutting potential. From Figure 3.5, it can be seen that the rut potential for PG1 binders

differs very little (varies from 5 mm to 7 mm) by source. But, in the case of the PG2
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binder the performance of S8 is worse compared to the source S7. Based on the APA
test results, it is evident that the APA is sensitive to a binder’s PG grade and source. A
simple APA rut test can facilitate the prediction of binder’s actual behavior in a HMA
mix. Therefore, binders meeting the specification requirements of MP1-98 should also

be evaluated by the APA rut testing.

3.7.4 Effect of Rut Factor

Figure 3.6 shows that the rut depth of mixes prepared with modified binders generally
increases with decreasing rut factor, G'/sind. However, for the case of unmodified
binders, rut depth generally decreases with the decreasing value of rutting factor. The
overall ranking based on rutting factor, as shown in Figure 3.7, does not comply with
the overall rank based on rutting performance as noted. Basically, the binder’s DSR test
properties cannot reflect the mix performance. It can also be seen that the S8-G1 has the
lowest rutting factor and S5-G1 has the highest, but their rutting performance dose not
differ significantly. Figure 3.8 shows that the rut depth at 500 cycles plotted with
percentage increases in the binder’s rutting factor due to RTFO aging. There is no
significant effect of aging on rut depth at 500 cycles for both the modified and

unmodified binders.

3.7.5 Effect of Viscosity
Figure 3.9 shows a bar plot of viscosity and rut depth for all the binders. It shows that
the modified binders have higher viscosities or resistance to flow. Mixes containing

these binders show low rut potential. The unmodified binders have low viscosity and
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exhibit higher rut potential. Therefore, the viscosity of binders at 135° C (275° F) can be

a good performance-based binder evaluation parameter

3.8 Statistical Analysis

Many independent variables affect rutting. This study deals only with the variables that
cover laboratory mix design, binder properties, rut specimen preparation and the APA
rut testing. The following nine variables are identified for data analysis: mixture binder
content (Py), air void (V,), Void in Mineral Aggregate (VMA), Void Filled with Asphalt
(VFA), absorbed asphalt (Py,), viscosity (Ry), unaged G /sind (DSR,) and aged G'/sind
(DSR,), and the APA load cycles. A single independent variable, when used to predict
rut potential, is shown to give very poor prediction. For example, the amount of air void
is likely to be the most important physical property of asphalt mixes that relates to
rutting (Brown et al., 1989). The correlation of air voids to rutting, as shown in Figure
3.10, is very poor. Brown et al. (1989) reported that total air voids might actually
increase with additional traffic once rutting starts.

According to many engineers, plastic flow is likely to begin once the air void is
reduced to approximately 3 percent (Ford, 1988). However, these analyses are
performed at an air void of 6 to 7 percent that changes with load cycle. Therefore, air
voids cannot reflect the actual correlation with rutting. Two rut prediction models are
developed using Linear Multiple Regression (LMR) analysis and Nonlinear Regression
(NR) analysis. A total of 45 sets of data, each with an average of 2 specimens are used
for model development considering the above-mentioned parameters. The final

prediction model includes only significant variables that affect rutting.
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3.8.1 Linear Multiple Regression Model

The stepwise method is employed for LMR model development. In step one, the
independent variable that best correlated with the dependent variable (rutting) is
included in the equation. In the second step, the remaining independent variables with
the highest partial correlation with the dependent are entered. This process is repeated
until the addition of a remaining independent does not increase the R? value by a
significant amount (or until all variables are entered). The dependent variable (rut
depth, RD in millimeter) is multiplied by 1000 and transferred to a logarithmic scale
prior to incorporation into the linear model. The loading cycle is also transferred to
logarithmic scale. The established terminal simplified expression for the linear model is

given below:

%

Lo (RDx1000)=-2.51-0.20(R, )+ 5.29(Pb)—4.92(Pbe)—0.59(—9_6)
Sie

unaged

+0.608 Ln(cycle) (3.1)

where
RD = 8000-cycle Rut Depth
(G'/5in8)ynagea = rut factor of unaged binder (G* = shear modulus and & = phase angle)
Ry = viscosity, kPa.s
Py = asphalt content, %
Py = Effective asphalt content.

A summary of relevant statistics for the LMR model is reported in Table 3.5.
The sample multiple correlation coefficient (R = 0.951) measured the degree of

relationship between the actual Ln (RD x 1000) and the predicted Ln (RD x 1000). The

74



value indicates that the relationship between Ln (RD x 1000) and the five independent
variables is quite strong and positive. The sample coefficient of determination, R*-value
measures the goodness-of-fit of the estimated sample regression equation. It explains
the proportion of the variation in the dependent variable predicted by the fitted the
Simple Regression Plane (SRP). The value of R? =0.905 simply means that about 90%
of the variation in Ln (RD x 1000) can be explained or accounted for by the estimated
SRP that uses Ln (cycle), Ry, Py, Poa, DSRunaged as the independent variables. Adjusted
R? is the sample coefficient of determination after adjusting for the degrees-of-freedom
lost in the process of estimating the regression parameters. In this case, adjusted R? =
0.904 is a better measure of the goodness-of-fit of the estimated SRP than its
nominal/unadjusted counterpart. Standard Error of Estimate S, = 0.507 means that, on
an average, the predicted values of the Ln (RD x 1000) can vary by +0.507 about the
estimated regression equation for each value of independent variables during the sample

period and by a much larger amount outside the sample period.

3.8.2 Nonlinear Regression Model

The present study also employs the iterative estimation of Levenberg-Marquardt
method for nonlinear model development. A regression model is called nonlinear, if the
derivatives of the model with respect to the model parameters depend on one or more
parameters. The specific advantages such as the parameters of a nonlinear model
usually have direct interpretation in terms of the process or mechanism under
considerations. In the modeling procedure, trials are made to fit a nonlinear equation to

observed rutting, giving initial values of parameters. The adjustment of all parameters is
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considered in one iteration. In the next iteration, the program attempts to improve on the
fit by modifying the parameters. If any further improvement is not possible, the fit
(model relation or equation) is considered converged. Iterations are stopped when the
relative reduction between successive residual sums of squares is, at most, 1.000E-08.
Several models with different parameters are examined. A model (for example, one
with more parameters) is satisfactory, if the relative increase in sum-of-squares (going
from one to another model) is greater than the relative increase in the degrees-of-

freedom of that model, i.e. (SS1-SS2)/SS2 >(DF1-DF2)/DF2, where, SS = regression

Sum of Square and DF = Degrees-of-Freedom.

In a linear regression model, the quality of fit of a model is expressed in terms of
the R*-value. In nonlinear regression, such a measure is unfortunately not readily
defined. One of the problems with the R*-value definition is that it requires the presence
of an intercept, which most nonlinear models do not have. A measure, relatively closely
corresponding to R*-value in the nonlinear case is Pseudo-R*=1-SS (residual) /SS
(Totalcorrected). The final form of the nonlinear model with a pseudo coefficient of

determination, Pseudo-R* =0.807 can be expressed as follows:

#

RD=-2.57-1.09(R,)+1.68(P,)+0.35(V,)=0.14(VMA) —0.71(%)mged
S11ik

+0.2442 Ln (cycle)*™” (3.2)
where

V. = percentage air voids

VMA = voids in the mineral aggregate.
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Table 3.6 contains the partitioning of the total sum of squares for the model
and data into a regression sum of squares explained by the model and a residual sum of
squares. The mean square error of this fit (R*= 0.5697) is the estimate of variability in

the data when adjusted for the nonlinear model.

3.9 Comparison of Measured Rut Depth with Model Predictions

Figure 3.11 is a plot of measured rut versus model predicted rut depth for unmodified
binder, S8-PG1-OK. The nonlinear prediction is closer to the measured rut depth and
better than the linear prediction. The linear prediction is 3.0 mm more than both the
measured rut depth and the nonlinear prediction. The nonlinear prediction for binder,
S2-PG1 is shown in Figure 3.12. It follows the previous trend but the predicted values
are about 2 mm less than the measured. The linear predictions are higher than nonlinear
predictions. Figures 3.13-3.14 are the plots for modified binders S7-PG2 and S7-PG3,
respectively. Both these figures show that both nonlinear and linear predictions cannot
explain the measured rut depth. The linear and nonlinear prediction equations include
the viscosity and G*/sind (unaged), but these values do not vary significantly for
modified binders. Although the final rut depth for linear prediction is better
(representative to laboratory rut value) than the nonlinear prediction, the slope of the

nonlinear prediction at higher load cycles is almost equal to measured rut depth.

3.10 Rut at 500-Cycle Versus Rut at 8000-Cycle
Often time, in cyclic tests, the performance of a material at a lower cycle is correlated

with its performance at higher cycles. Therefore, the correlation of 500-cycle rutting
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with 8000-cycle rutting is attempted in this study. It believed that at lower cycles,
rutting occurs due to consolidation and at higher cycle, rutting occurs due to plastic
flow. The APA rut depth at 500-cycle can be a transition between consolidation and
plastic flow of materials. Also, the preceding analyses indicate that the visco-elastic
properties of a binder are significant at lower numbers of loading cycles. At higher
loading cycles, binder properties are less significant and rate of rutting is almost equal
for all binders. Therefore, trials are made to correlate 8000-cycle APA rut depth to
500-cycle rut depth. From the linear regression analysis, the following relationship is

obtained with a R* = 0.830:

RD=196+18(RD,,)+0.93 (S’—) 23 (—TG——)aged (3.3)
sind sind

unaged

where

RDsgo = Rut depth at 500-cycle

(G"/ Sind)ageq = rut factor of aged binder.

A nonlinear analysis is found to give a better correlation with R* = 0.89 and the

following equation:

#*

RD=15.76-0.17(R, )+ 2.67(P, )+ 0.53(V,)—0.8(VMA) -2.16(—(.}——5)unaged
Sin

+7.2(Py) ~19.62(RD )" (3.4)

The predicted 8000-cycle rut depths for all mixes are plotted against measured rut
depths in Figures 3.15 and 3.16 for linear and nonlinear prediction, respectively. These
model predictions show that the nonlinear prediction has less scatter along a 45° line
drawn between the measured and predicted rut values. One of the basic ideas behind

establishing this kind of relationship is to distinguish rutting performance of a
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pavement at the end of pavement life from its early life. The 8000-cycle rut depth is

correlated to 500-cycle rut depth as shown in Figure 5.17. The R2-value is found to be

0.7683 and the prediction equation is given below:

RD=2.0557(RD,,,)+1.2759 (3.5)

This equation can be useful (i.e., rule of thumb) for approximating final rut depth from

the 500-cycle rut depth.

3.11 Concluding Remarks

The following points summarize the findings of this chapter:

This study ranked 13 different binders based on mixes’ performance and also
on their properties. The binders’ ranking based on their properties do not
match with the mixture performance. A binder’s PG grade does not ensure the
performance of the mixture containing the binder. Therefore, a binder
satisfying the Superpave specification requirements should be evaluated by the
rutting performance of the corresponding HMA mix, determined by APA
testing.

The performance of modified binders having the same PG grade can vary
significantly with the combining process or source. If the binders are
unmodified or neat asphalts theﬁ the changing source will not vary in rutting
depth by more than 1 mm, if the binders satisfy AASHTO MP1-98. As
binders’ source is always changing, the ranking of unmodified binders

depending on the source become less significant.
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The higher the rutting factor the lower rut potential is not valid always. Rather,
binder’s viscosity and mix performance have to be considered with rutting
factor. In this study, binder’s viscosity has shown to have a good correlation
with the mix performance.

If a rut depth of 6.00 mm is the divider between good and poor mixes, then
ODOT’s restriction for using of unmodified binders in roads with 3M+ ESALs
on some sources should be reinvestigated.

If the air voids of laboratory-produced rut specimens are kept within 6 to 8%,
then air voids plays an insignificant role in the contribution to rut potential.

A 500-cycle APA rut depth can be used to predict 8000-cycle rut depth, both
for modified and unmodified binders mix using linear and nonlinear regression
models.

The nonlinear model has higher R? value compared to that of linear prediction
model developed in this study. Both models over predicted rut depth for mixes
with modified binders

Although rutting involves many parameters, mainly the binder properties are

considerer in the model development in this study.

80



Table 3.1 Properties of Unaged and RTFO Aged Binder

%

Binder Binder Binder  Specific Viscosity s, . * .
. G /sindlunaged G /5indlageq Increase
Type  Source PG Gravity (Ry) G*/sind
S1 PG64-22 1.0152 047 1.58 3.60 128
S2 PG64-22 1.0315 045 1.55 3.33 115
S3 PG64-22 1.0254 0.61 1.74 3.59 106
S4 PG64-22 1.0159  0.63 1.27 3.33 162
Ul.q° S5 PG64-220K 1.0103  0.64 1.25 3.48 178
modified
S6 PG64-22 1.0076  0.59 1.27 2.62 106
S7 PG 64-22 1.0151  0.60 1.29 3.21 149
S8 PG64-22 1.0110 0.60 1.23 3.53 187
S8 PG64-220K 1.0160  0.56 1.41 3.35 138
S7 PG70-28 1.0122 1.11 1.40 2.64 89
S7 PG70-280K 1.0150 1.20 1.66 3.33 101
Modified
S8 PG70-280K 1.0087  1.17 1.45 3.58 147
S7 PG76-280K 1.0258  1.08 1.78 2.86 61

Note: R, = viscosity is measured at 135 °C with a gyration of 10 radian/second;
G*/sind = rut factor is measured at high PG temperature (i.e. 64°C or 70°C)
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Table 3.2 Aggregate Information

Material Source Type % Used
16 mléthISJQS in.) Western Rock at Davis, Oklahoma Rhyolite 35
Screening Western Rock at Davis, Oklahoma Rhyolite 35
Shot Dolese Co. at Davis, Oklahoma Limestone 20
Sand Dolese Co. at Oklahoma City, Oklahoma  Quartz 10

Table 3.3 Blended Aggregate Properties

Properties Measured Required
L.A. Abrasion, % wear 23 40 Max.
Durability Index 74 40 Min.
Insoluble Residue (%) 68.7 40 Min.
Fractured Faces (%) 100 95/90 Min.
Sand Equivalent (%) 52 45 Min.
Fine Aggregate Angularity (%) 46 45 Min.
Specific Gravity (SSD) 2.639
Absorption (%) 0.189
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Table 3.4 Volumetric Properties for Optimum Asphalt Content

Optimum %V, %VMA %VFA %Gum % Gum

Binder AC atN;  atNy;  atNy  atN at Ny
S3-Gl 5.4 4.0 142 72.0 88.8 96.0
S8-G2 5.4 4.1 14.7 72.3 88.5 95.9
S7-G2 5.1 4.0 13.9 70.9 88.2 96.0
S2-G1 5.1 4.1 14.0 70.7 89.0 95.9
} ) Less
Superpave Requirement 4.0 14 min 65-76 than 89 96.0
Table 3.5 Linear Regression Model Summary
Independent Variables > Adjusted Std. Error of
Model (Predictor) R R R?>  The Estimate
1 C,LNCY 0.931 0.867 0.867 0.5989
2 C, Ln (cycle), Ry 0.944 0.892 0.891 0.5409
3 C, Ln (cycle), Ry, Py 0.948 0.899 0.899 0.5219
4 C, Ln (cycle), Ry, Py Py 0.950 0.902 0.902 0.5137
5 C, Ln (cycle), Ry, Py Pye DSR, 0.951 0.905 0.905 0.5068
6 C, Ln (cycle), Py Pre DSR, VFA  0.952 0.906 0.906 0.5038
7 S/’FIAH (eyele), R Py Poe DSRw, 959 0906 0.906 05039
8 IC)’SII{" (cycle), Po Poe DSRu VEA 5 959 0906 0906  0.5031
a

Note: Dependent Variable = Ln (RD x 1000) , C=constant
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Table 3.6 Non Linear Model Summary Statistics

Source DF Sum of Squares Mean Square
Regression 8 6456.02 807.00
Residual 1522 867.09 0.5697
Uncorrected Total 1530 7323.11
(Corrected Total) 1529 4473.71314

R squared = 1 - Residual SS / Corrected SS = 0.80618
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CHAPTER 4
A LABORATORY AND STATISTICAL EVALUATION OF

FACTORS AFFECTING RUTTING

4.1 Introduction

The research presented in this chapter identifies the most significant factors from those
factors evaluated, which affect rutting potential of HMA. The experimental program
employed in this study consists of three sets of test, each set representing a matrix
whose elements are rut parameters. In Set A, seven factors, each at two levels, are
examined using a mixture of limestone aggregates designed in accordance with
Superpave method. The test results are analyzed statistically. In Set B, six factors:
aggregate gradation, temperature, moisture, asphalt content, load, and hose pressure are
investigated using a Hveem designed mixture with gravel aggregates. One of the levels
of asphalt content selected for Set B is at optimum, while the other at one percent more
than the optimum. Also, an experimental Set C with five factors: temperature,
gradation, moisture, load, and hose pressure is examined. In this chapter, a statistical
procedure is developed and described to analyze a designed experimental program to

interpret test results without the need for a full factorial approach.
4.2 Objective and Scope
The objective of this study is to quantify the effect of selected mix, load and

environmental factors on HMA rutting based on APA data. A range is considered for
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each selected factor and tests are conducted using a combination of these factors. The
test matrix is designed to minimize the total number of rut tests, while maximizing the
interaction of the factors within the matrix. The objective is to obtain a set of factors for
which rut is high, a set of factors for which rut is low, and a set of rut factors for which

rut value lies within a certain range statistically.

4.3 Identification of Rut Factors

The mix factors include binder’s performance grade, asphalt content (AC), and
aggregate gradation. The load factors include wheel load and tire pressure, whereas the
environmental factors include temperature and moisture.

Binder’s performance grade is an important factor that influences rutting.
According to the Superpave asphalt binder specification, the physical properties remain
constant for all PG, but temperature at which these properties must be achieved varies
from grade to grade (AASHTO MP1-93). That is, binder’s viscosity (resistance to flow)
at a specified temperature varies from one grade to another. The increased viscosity or
resistance to flow of HMA materials can be achieved by using modified asphalt binders.
In general, a HMA produced from a modified binder shows lower rut depth compared
to the HMA produced from an unmodified binder (base or crudes). Also, use of
excessive asphalt binder is a common cause of rutting. Shear forces developed due to
repeated traffic loading in HMA is resisted by the bonding force of asphalt in asphalt
film and by the frictional force acting on contacts between aggregates. If the amount of
asphalt content exceeds the optimum asphalt content, there is a loss of internal friction

at aggregate contacts, resulting in loads being carried by the asphalt binder rather than
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the aggregate. Barksdale (1993) reported that the permanent deformation in dense-
graded asphalt concrete is directly related to the asphalt content. Aggregate gradation
also affects rutting. A gradation having maximum density provides increased contacts
and reduced air void space in the mineral aggregate. Gradation is determined by sieve
analysis and is normally plotted as the total percent passing versus the sieve sizes raised
to the power 0.45. Superpave method specifies a restricted zone in the 0.45-power-chart
as a design guide to avoid too much natural sand in a mix. A HMA gradation passing
through the restricted zone has excessive fines and thus more rut susceptibility than a
HMA gradation passing below the restricted zone.

The stiffness of HMA varies with temperature due to the rheological behavior of
asphalt binder in it. As the temperature increases, HMA stiffness decreases and
therefore, its rut potential increases. Moisture is also an important factor influencing
HMA rut potential. Moisture produces a loss of strength through weakening of the bond
between asphalt cement and aggregate. The gradual loss of strength over a period of
time can contribute to the development of lateral flow of HMA materials. The rate of
rutting is accelerated by loss of cohesion due to moisture-induced damage in HMA.
Tire pressure and wheel load can also affect rutting. An increase in tire pressure
decreases the contact area between tire and pavement surface, therefore, increases the
stress in HMA. As noted by Brock et al. (1999), increased stress due to vehicles having
high tire pressures and heavier wheel loads can be the leading causes of increased
rutting. Studies by Middleton et al. (1886) and Kim et al. (1988) have shown that truck
tire pressures that increased substantially above the 482 kPa to 551 kPa (70 psi to 80

psi) levels are responsible for high rutting. In a separate study, Hudson et al. (1988)
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showed that truck tire pressure is sometimes as high as 965 kPa (140 psi) and has
become the primary cause of rutting. Laboratory prediction of rutting may vary
depending on the type of specimens used in testing. Two specimens having identical air
voids can have different orientation of aggregate (density gradient) in them, if prepared
by different compaction methods. For the APA rut testing, a Superpave gyratory
compactor is used to prepare cylindrical specimens, whereas an asphalt vibratory
compactor is used to prepare beam specimen. Cooley et al. (1999) reported that
vibratory compaction tends to result in high compaction at top and low compaction at
the bottom of a specimen. Gyratory compacted specimens, on the other hand, show low
compaction on the top and the bottom and significantly high compaction in the middle.

Laboratory predicted rut can, therefore, vary with specimen type (cylinder or beam).

4.4 Selection of Factor Levels

All of the above mentioned factors are studied at two different levels in three sets of
experiments. Table 4.1 is the list of factors and their levels used in the experimental
program. There are three sets of test in this program. The test Set A consists of seven
parameters. These parameters are used to prepare limestone mixes designed in
accordance with Superpave method. Two different grades: an unmodified binder (PG
64-22) and a modified binder (PG 70-28) are used in preparing the HMA. Both of these
binders are commonly used in Oklahoma and they meet the AASHTO MP1 (AASHTO
MP1-93) requirements. The unmodified binder is produced from crude oil having a high
level of asphaltenes and is known as base asphalt. The modified binder, on the other

hand, typically contains 2% styrene-butadiene-styrene (SB) polymer with base asphalt.
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The optimum asphalt content is 5.1% when using PG 64-22, the optimum asphalt
content is 5.4% when using PG 70-28. Thus, two levels of asphalt contents chosen in
this study are 5.1% and 5.4%. One of the testing temperatures is selected to be 64°C
(147.2°F). This is the design pavement temperature during hot summer in Oklahoma.
The other level of temperature is selected to be 60°C (140°F). This is a key temperature
often used for aging of specimens for Hveem stability test (OHD L 16), retained
strength test (OHD L 36) and indirect tensile strength test (AASHTO T 283). An APA
rut test, conducted for 8000 cycles with 445 N (100 1b) wheel load and 690 kPa (100
psi) hose pressure, approximates the total load expected in the design life of an asphalt
pavement. As noted by Brock et al. (1999), the tire pressure, which was 70 psi in the
last decade, is now believed to be more than 100 psi. To reflect this trend, two wheel
loads and hose pressures are selected 445 N (100 1b), 690 kPa (100 psi) and 489 N (110
Ib), 760 kPa (110 psi). Moisture-induced damage especially stripping is now a concern
within the pavement industry. To examine the influence of moisture, in this study,
specimens are tested under both dry and wet conditions. Beam and cylindrical
specimens are tested to investigate the effect of specimen type (method parameter) as
well as compaction methods. Beams are excluded from subsequent testing due to the
difficulty involved in the preparation of beam specimens of consistent quality using
AVC. The test Set B consists of six factors namely, asphalt content, wheel load, hose
pressure, test temperature, test condition, and gradation. Several designs of limestone
aggregates of gradation passing through the restricted zone failed to meet the VMA
required by Superpave specification. To this end gravel aggregates are chosen to meet

VMA criteria required by Hveem method of mix design. It is to be noted that a
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Superpave method of mix design requires its aggregate to have at least two fractured
faces. A gravel aggregate has one fractured face and cannot produce a Superpave mix.
Therefore, the factors in Set B and in subsequent set are from gravel mixes designed in
accordance with Hveem method (OHD L 16). Two aggregate gradations: one passing
BRZ and the other passing TRZ are considered. One of the levels of asphalt content is
optimum asphalt content and the other level is one percent higher than the optimum
asphalt content. The test Set C consists of five factors namely, wheel load, hose
pressure, test temperature, moisture, and gradation. One of the levels of temperature is
66°C, which is selected to be higher than the temperature examined in Set A or Set B.
The other level of temperature is chosen to be 62°C, which is the intermediate of the

temperature between the levels examined in the Set A or the Set B.

4.5 Mix Information

The limestone mixture (for Set A) consists of 16 mm chips (5/8 in.), screenings, shot
and sand. Mix gradation plotted on the 0.45-power-chart passes below the restricted
zone, as shown in Figure 4.1. Its nominal maximum size (NMS) size is 12.5 mm (1/2
in.). The mixture is designed for serving roadway traffic levels of more than 10 million
Equivalent Single Axle Loads (ESALs). The maximum number of gyrations, Ny is
chosen to be 160 and the design number of gyrations, Ng is 100 (ODOT, 1999).
Aggregates are mixed at a temperature of 163°C (325°F) and the resulting mix is aged
at 149°C (300°F) for 3 hours. The gravel mixtures (for Set B and Set C) consist of 25
mm (1 in.) rock, 19.0 mm (3/4 in.) chips, screenings and crushed gravel using PG 64-22

graded binder. The gravel mix gradations (e.g., BRZ and TRZ) are also shown in Figure

107



4.1. The design criteria for ESALSs is 0.3 to 3 million where as the mixing and aging

temperatures are identical to those of limestone mixture.

4.6 Specimen Preparation

Cylindrical specimens of 75 mm (3 in.) height are compacted using a SGC at target air
voids of 6 to 8%. Beam specimens of the same height are prepared using an AVC at the
same target air voids. Specimen’s air voids is calculated from its bulk specific gravity as
determined by the CoreLok™ method (OHD L 45) and mixture’s theoretical maximum
specific gravity (AASHTO T 209). Specimens are subjected to test temperature and
moisture for 10 hours before rut testing. Specimens tested under water are subjected to

vacuum saturation to a degree of 55% to 75% before preconditioning (OHD 1.43).

4.7 Experimental Program and Testing

Table 4.2 lists the combination of factors selected for different sets in the experimental
program. The value in the row indicates the factor levels and each row represents a
Trial. The vertical column represents the experimental factors. Each of the assigned
columns contains each level of a factor for four times in éight Trials. The columns are
said to be orthogonal or balanced, since the combination of the levels occurred the same
number of times, when two or more columns of the matrix or set are formed. Each
factor in the matrix is compared to all other factors in equal number of times (Taguchi,
1987). A total of 8 beam and 16 cylindrical specimens is tested under Set A. Average
rut results from two beam and 4 cylinders is reported for each test. In Set B, a total of

32 cylindrical specimens are tested and average of 4 cylinders are reported for each test.
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The samples in Set B are prepared with PG 64-22. Also, a total of 32 cylindrical
. specimens are tested to complete Set C. The samples in Set C are cylinders and contain

optimum (5.1%) asphalt of type PG 62-22.

4.8 Interpreting Test Results

In Set A (Table 4.2) for limestone experiment, it can be easily seen that Trial 1 to Trial
4 with unmodified binders show higher rut values compared to those in Trial 5 to Trial
8 with modified binders. Beam specimens in Trial 2 and Trial 3 show higher rut
susceptibility compared to the cylinders in Trial 1 and Trial 4. Overall rut depth of beam
specimens is higher than that of cylindrical specimens. However, comparison between
any of the Trial 1, Trial 2, Trial 7, or Trial 8 at 60°C (140°F) and any of the Trial 3,
Trial 4, Trial 5, and Trial 6 at 64 °C (147.2°F) cannot explain the affect of temperature
on rutting potential due to the interaction of other parameters. Similarly, one cannot
report that wet specimens have higher rut potential over dried specimens from the Trial
in Set B (Table 4.2) without a statistical analysis. Also, the effect of asphalt content,
load, and pressure cannot be explained readily from the test result of Set A. Therefore,
an analysis approach is necessary so that one can look at the overall trend instead of
individual numbers (rut value). Again, in Set B (Table 4.2) for the gravel experiment, it
is evident that mixture with gradation passing through the restricted zone has higher rut
potential compared to that of the mixture with gradation passing below the restricted
zone. If Trial 3 is compared to Trial 1, the asphalt content increases one percent and
sample is run under water with 760 kPa (110 psi) hose pressure. The rutting increases

from 6.0 mm to 7.6 mm; however, due not only to increase in asphalt content but also
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for changes in moisture and hose pressure. Also, from Set C (Table 4.2), it is evident
that in overall, each of the trials (trials 2, 4, 6, 8) at the higher temperature, 66°C
(150.8°F) shows higher rut values compared to those of mixtures at the lower
temperature of 62°C (143.2°F). The effect of factors such as gradation, moisture, load,

and pressure on rutting cannot be readily evaluated from the test results of Trials using

Set C, as can be seen from Table 4.2.

4.9 Analysis Approach

From the above discussion, it is evident that the experimental results of this study are
not enough to draw a meaningful conclusion on how the factors affect rutting.
Experimental results can only make some general points about rutting contribution of
some factors. A particular concern rises when attempting to evaluate and compare one
factor with another, with respect to rutting contribution. Statistical analyses are useful to
interpret experimental results and to demonstrate one factor’s contribution to rutting
compared to that of the other factor (Kyle, 1995). This study has employed a four-step
statistical analysis approach for meaningful interpretation of factors’ contribution to
rutting from the experimental rut results presented in Table 4.2. Rut depth is considered
to be the response or dependent variable. Its value depends on the rut factors, which are

considered as independent variables. The important analysis steps are described below:

Step One
The sum of squares of rut depths for each factor is calculated and the factors are

grouped depending on the values of the sum of squares. The higher the sum of squares
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for a factor the greater the influence of that factor on rutting. The sum of square values
for each factor are calculated from the following formula,

s =[L21X+Lzzx)~(ZR)2
* N

n

(4.1)

where

SSx = sum of squares for factor x

Lix = level sum for factor x at level 1

Lox = Level sum for factor x at level 2

R = the final rut depth at 8000-cycles, mm

n = number of experiments used in calculating the level sums for level 1 or level 2

N = total number of test or experiments in a designed matrix.

Step Two

The degrees of freedom, variance and Fisher’s statistic are calculated to investigate the
statistical significance of a factor. Degrees of freedom are the number of independent
comparisons available to evaluate rut data and used for variance calculation. The
variance represents variability generally used to characterize the dispersion among the
rut values. Fisher’s statistic represents the significance of a factor involved in
interactions with other factors (Frigon, 1997). The degrees of freedom and variance of

each factor, and Fisher’s statistic are calculated from the following equations:

df, =n_ -1 (4.2)

SS,
V = [dfx ) (4.3)
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F(statistic) = 1// (4.4)

ar
where

dfy = degrees of freedom for factor x,
Vx = variance of factor x,

F = Fisher’s statistic

Verr = variance of error

Step Three

The expected sums of squares are calculated to estimate the compensation for any
experimental error that influences the calculation of the sum of squares. The percentage
contribution is determined to estimate the portion of the wvariation that could be
attributed to a factor (e.g., load, temperature) in the experiment. The factors are rated
according to their rutting contribution at the end of this step. The expected sum of

squares and the percent contribution are calculated from the following formulas,

SS, =SS, —(V,, —df,) (4.5)

P =| 25 4100 (4.6)
SS

t

where

SS's = expected sum of squares for factor, x
Verr = variance of error

Py« = percent contribution of factor, x

SS; = total sum of squares for all factors
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Step Four

The mean rut depth for each set of factors is estimated. This is the expected result from
a Trial consisting of a recommended number of factors, each at a specified level. The
error of the estimate is also calculated to determine the spread that can be expected in

the data. The predicted mean rut depth is calculated from the following equation,
RD & RD
RD szN +Z[L _LRD J 4.7

where

RDy, = predicted mean rut depth, mm

Ls = level sum for a significant factor s at its specified level
nl = number of significant factors

RD = rut depth, mm

N = number of tests.

The estimation of the mean response is meaningful only if the spread in data is
known. A range or spread in rut data is calculated by adding and subtracting the error
with the predicted mean value. Sometimes, additional tests are conducted to check
whether the test results are in the predicted or estimated range. The error of the estimate

is calculated from the following formula,

Fy oy - Ve
R, = sqrt(—"fﬂff——-—) (4.8)

where

Rerr = error in predicted rut depth

113



nesr = effective number of d.o.f. for the error = N/(1+total d.o.f. for significant factors)

Fg 4, = T statistic associated with the specified risk level and the degrees of freedom

(d.o.f.) for each factor in the experiment, df; and the degrees of error term, dfe,,

4.10 Discussion of Results

Figure 4.2 shows rut depths as a function of loading cycles. A total of six trials (two
trials from each set) are plotted. The rut depths at 8000-cycles are considered as the
final rut potential of a mix. Only the final rut values (e.g., for Set-A in Trial-7, the final
rut depth = 4.2 mm) are used in statistical calculation. The sums of squares, SSy for
each factor in Set A are calculated using Equation 4.1. The sums of squares are plotted
in descending order of magnitude from the left to the right and points are connected by
a solid line, as shown in Figure 4.3. The factors having higher sum of square values
have greater effect on the rut potential compared to that of other factors. The factors
along the steepest section of the graph are the more important ones and those along the
flat portion or the bottom of the slope are the least important. From Figure 4.3, binder’s
grade is found to have the most significant effect on rutting followed by specimen type
(cylindrical or beam), temperature and moisture. The remaining factors: hose pressure,
percentage asphalt, and wheel load does not affect rutting significantly. Asphalt content
does not show a significant effect on rutting probably because of the fact that their level
used in Set A are either optimum or varies only 0.3%. In fact, a variation of asphalt
content within 0.3%*optimum is allowed under Superpave mix design (ODOT, 2001).
Figure 4.4 is the plot of level sum squares, SSy against the factors involved in Set B.

Temperature is the most significant factor. The gradation has the second highest effect
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on rutting among the parameters. From this plot, it can be seen that the effect of asphalt
content is significant. This is due to an asphalt content relatively (e.g., 1%zoptimum)

higher than the optimum. A small variation in asphalt content, which is within +0.3%
from optimum AC, does not affect the rut value in limestone experiment of Set A.
Therefore, asphalt content is even more significant than the moisture in case of gravel
mix experiment of Set B. Using Equation 4.1, the sums of squares, SS, for each factor
in Set C is also calculated. Figure 4.5 is the plot of sum of squares against the factors
involved the Set C. It follows the similar trend found in Set B (Figure 4.4). Temperature
is the most significant factor followed by gradation and moisture. From all plots
(Figures 4.3-4.5), it is evident that the effect of wheel load and hose pressure can be
neglected.

The factors that had little or no effect on rutting are grouped. The factor that
resulted from the grouping of the insignificant factors is represented by error term. For
Set A, three factors: wheel load, asphalt content, and hose pressure are grouped together
as error term and its value is given in Table 4.3. The factor load and pressure are
grouped as error in both test Set B and Set C. The total sum of squares is calculated by
summing the individual factor’s sums of squares. The degrees of freedom df;, variance
Vi, and Fisher’s statistic F are calculated from the Equations 4.2, 4.3, and 4.4
respectively. The values of dfy, V, and F statistics are listed in Table 4.3. For Set A, the
calculated F-statistics for the binder’s grade, specimen type, temperature, and moisture
are higher than the F-table values (calculated for 3 degrees of freedom for error and for

5% confidence level). Therefore, these parameters are statistically significant. For Set B
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and Set C, the F-statistics for temperature, gradation, AC, and moisture are higher than
F-table values and therefore, the factors are statistically significant.

The expected sum of squares, SS'x and the percent contribution, Py are
calculated from Equation 4.5 and Equation 4.6, respectively. These values are listed in
Table 4.3. For Set A, it is evident that the significant factors: PG, specimen type,
temperature, and moisture contributes about 88 % of rut depth for a specific trial. There
are 12% of the percent contributions that could not be attributed to any of the factors
examined in Set A. Similar results are found also for test Set B and Set C. This is due to
interaction between factors or due to the effect of unknown factors. There are also
situations where a factor may be determined to be statistically insignificant according to
the F statistic, but that it may have a sizable percent contribution.

The significant factors of each test set are rated by assigning a number according
to their level sums of square values. The smaller the assigned number to a factor, the
higher the significance of that factor in contribution to rutting. The rating for each set is
presented in Table 4.4. An overall rating for a combined set is also determined from the
rating of factors in individual sets. Using the significant factor and their level for set A
(Table 4.4), the predicted mean response is calculated to be 9.2 mm from Equation 4.7.
The higher rut value is due to the combined effect of the significant factors (that affect
rutting) in the mix. Based on this prediction, a beam specimen prepared using limestone
aggregates and PG 64-22 binder exhibits a rut value of 9.2 mm tested under water at a
temperature of 64° C (147.2° F) using APA. The error for the estimate is calculated to
be £1.1 mm from Equation 4.8. The spread in the rut data for significant factors is 9.2

+1.1 mm. Therefore, the predicted rutting value can be expected to be within the range

116



of 8.0 mm to 10.3 mm. The predicted mean rut depth, error in prediction, and expected
spread of predicted rut is listed in Table 4.5. In a separate experiment, two beam
specimens prepared using limestone aggregate combined by binder grade of 64-22 are
tested under water at 64 ° C temperature. The test results showed that rut depths of 9.3
mm and 9.7 mm are produced. These rut depths are within the predicted range listed in
Table S for limestone experiment in Set A. This confirms the validity of the statistically
predicted range of rut depth in Set A. Similarly, for Set B, the predicted rut range is
10.9 mm to 13.8 mm if the level of factors shown in Table 4.4 (for Set B) is used. The
predicted rut value falls between 8.0 mm and 15.0 mm if the level of factors as shown

in Table 4.4 (for Set C) is used.

4.11 Conclusions
The following is a summary of the contents of this chapter;
o Major factors that affect rut potential of HMA can be identified by using the
statistical approach shown in this chapter.
o The mix factors that showed the most significant contribution to rutting for the
three sets of tests examined with seven, six, and five factors respectively are:
« Binder grade (PG 64-22 vs. PG 70-28) — This is the most significant.
o Temperature (64°C vs. 60°C) —This is second most significant.
« Gradation — TRZ in the gravel mixture has more rutting potential than
that of BRZ.

«  Moisture or test specimens (wet vs. dry).
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» Binder content — When binder content exceeded one percent, it became
a significant factor for the gravel mixture.

o The Specimen mold type (AVC Beam vs. SGC cylinder) — When included in a
testing matrix, this factor becomes the second most significant factor in
limestone mix. It is excluded from test sets due to difficulty in fabrication of
beam specimen using the AVC.

o The rut depth and range of variation can be predicted for a matrix of factors as
shown and verified for test Set A. Additional experiments should include
significant factors as determined by the statistical analysis of the same matrix.

o The detailed statistical procedure such as one similar to the method developed
and shown in this chapter can be applied to design and analysis of test sets

involving numerous factors.
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Table 4.1 Rut Factors and Levels

Set A Set B Set C
Factor
Levell level2 Levell Level2Z Levell Level2
Binder’s PG PG64-22 PG70-28 - - - -
Moisture Dry Wet Dry Wet Dry Wet
Temperature (°C) 60 64 60 64 62 66
Wheel Load (1b) 100 110 100 110 100 110
Hose Pressure (psi) 100 110 100 110 100 110
Specimen Type  Cylinder Beam - - - -
Asphalt (%) 5.1 5.4 Opt. Opt.+1 - -
Gradation - - BRZ TRZ BRZ TRZ

Note: ‘- means the corresponding factor (in the row) is not considered in the test matrix.
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Table 4.2 Experimental Matrix of Rut Factors and Test Results

Specimen  Rut

Set  Trial PG Temperature Load Pressure Asphalt

Gradation ©C) ™) (kPa) (%) Moisture Type (mm)
SetA 1 PG 64-22 60 489 760 5.1 Dry Cylinder 5.0
2 PG64-22 60 449 690 5.4 Dry Beam 6.8
3 PG64-22 64 489 760 5.4 Wet Beam 9.4
4 PGE42 o 64 449 690 5.1 Wet Cylinder 7.0
5 PG70-28 64 489 690 5.4 Dry Cylinder 2.7
6  PG70-28 64 449 760 5.1 Dry Beam 5.2
7 PG70-28 60 489 690 5.1 Wet Beam 42
8  PG70-28 60 449 760 5.4 Wet Cylinder 3.2
SetB 1 BRZ 60 449 690 45 Dry 6.0
2 BRZ 64 489 760 4.5 Dry 7.1
3 BRZ 60 449 760 5.5 Wet 7.6
4 BRZ 64 489 690 5.5 Wet . 11.4
5 PO6F2  pg 60 489 690 43 Wet ~ oylmder g
6 TRZ 64 449 760 43 Wet 11.3
7 TRZ 60 489 760 5.3 Dry 10.1
8 TRZ 64 449 690 5.3 Dry 9.9
SetC BRZ 62 449 690 Dry 4.8
2 BRZ 66 489 760 Dry 10.6
3 BRZ 62 449 760 Wet 5.3
4 BRZ 66 480 690 Wet . 9.1
; PGed22 7 s 185 600 5.1 Wet Cylinder ¢
6 TRZ 66 449 760 Wet 10.5
7 TRZ 62 489 760 Dry 10.5
8 TRZ 66 449 690 Dry 13.2
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Table 4.3 Variance, F Statistic and Percentage Contribution of Rut Factors

i = Variance, . _V, 11:: Tzlile;) %
Test Factors (nx-l) SS, _S8, v, . 0; SS’y  Contri-
) Todfy  (Statistics) ‘ Bution, Py
Set PG 1 20.9 20.7 102.6 10.1 203 58.5
A Specimen 1 7.3 7.3 36.1 10.1 6.7 19.4
Temperature 1 2.9 2.9 14.1 10.1 23 6.5
Moisture 1 1.9 1.9 9.5 10.1 1.3 3.8
Error 3 0.6 0.2
Total 7 34.6 5.0 88.2
Set  Temperature | 7.4 7.4 21.5 10.1 7.1 25.2
B Gradation 1 7.0 7.0 20.4 10.1 6.7 23.8
AC 1 5.0 5.0 144 10.1 4.6 16.4
Moisture 1 3.8 3.8 11.0 10.1 34 12.2
Error 2 0.7 04
Total 5 28.1 5.6 77.6
Set
C Temperature 1 28.9 28.8 22.1 18.5 27.6 47.6
Gradation 1 18.0 18.0 13.8 18.5 16.7 28.8
Moisture 1 5.5 5.5 4.2 18.5 4.1 7.2
Error 2 2.6 1.3
Total 5 579 11.6 83.6
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Table 4.4 Statistical Rating of Significant Factors

Set A Set B Set C Combined
Factor Rating
Level Rating  Level Rating Level Rating

PG PG64-22 1 - - - - 1
Specimen Beam 2 - - - - 6
Temperature 64°C 3 64°C 1 66°C 1 2
Moisture Wet 4 Wet 4 Wet 3 4
Gradation - - TRZ 2 TRZ 2 3
Asphalt (%) - - Opt.+1 3 - - 5

Note: “-* the factor (in the row) does not significantly affect rutting in the corresponding set;
Opt =optimum asphalt content

Table 4.5 Statistically Predicted Mean, Error and Range of Rut

Factor Set A Set B Set C
Predicted Mean (mm) 9.2 12.3 11.5
Predicted Error (mm) 1.1 1.5 3.5
Predicted Range (mm) 8.1-10.3 10.8-13.8 8.0-15.0
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CHAPTER S

CORRELATION OF RUTTING WITH RESILIENT MODULUS

5.1 Intreduction

Resilient modulus (stiffness) is a material property and rutting is a manifestation of
performance that depends on different properties and design factors. It is logical to
question if an HMA mix with high resilient modulus exhibits low rut potential and vice
versa. In a more broad sense, one may question if resilient modulus and APA rut
potential could be correlated for HMA mixes. So far, no systematic studies are
undertaken to answer these questions. This is partly because the field of resilient
modulus testing of HMA specimens is largely unexplored so far. In this study, a series
of modulus and rut tests are conducted to generate laboratory data to examine if resilient
modulus could be correlated with the APA rutting.

Also, in recent years, there has been a change in philosophy in flexible
pavement design from an empirical approach to a more mechanistic approach, based on
elastic theory. According to the AASHTO 2002 guide for flexible pavement design,
viscoelastic analysis is not required for asphalt concrete layer, provided the asphalt
concrete’s modulus (dynamic or resilient modulus) value used in design addresses
appropriate loading rate (frequency) and temperature. Modulus value is used to
calculate stress, strain and deflection (pavement response) in a pavement layer. The
pavement responses are then correlated to the rutting and fatigue damages empirically.

Thus, a pavement design procedure implicitly considers rutting and fatigue cracking.
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However, this procedure does not explicitly consider mix properties and hence,
provides no quantitative means for addressing the relative merits of different mixes. A
performance test of asphalt concrete using the APA can close the large gap between the
mix design and thickness design parameters. Therefore, the correlation of Superpave
mix properties with resilient modulus and rutting is examined in this study. Laboratory
resilient modulus of asphalt concrete is determined by repeated load triaxial
compression tests and cyclic indirect tensile tests. However, the laboratory modulus
testing of asphalt concrete is a rather complex and challenging area. It sometimes
suffers from variability of results due to noise. A very small movement due to noise can
change the resilient modulus of a sample by several orders. Therefore, the repeatability
issue of laboratory resilient modulus testing of asphalt concrete is also addressed in this

study.

5.2 Background

HMA pavement is a series of layers of aggregate and asphalt concrete. It is exposed to
weather and is subjected to repeated traffic loads. The loads can be either static or
dynamic. If the loading (dynamic) time is short, the viscous effect of viscoelastic
materials such as asphalt concrete is small. That is, the material can be assumed to act
elastically under short dynamic load. Therefore, under an individual loading cycle,
pavement layers are assumed to behave essentially elastically (resilient strain), although
plastic deformation (rutting) can accumulate with repeated cycles. Among the common
methods to measure the elastic properties of asphalt concrete (Young’s, shear, bulk,

dynamic, complex, resilient, and Shell nomograph moduli), the resilient modulus is the
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most appropriate for use in multiplayer elastic theories (Huang, 1993). Resilient
modulus is defined as the ratio of applied stress (transient stress within a layer) to the
strain induced by the transient load (moving wheel load). Resilient modulus tests in the
laboratory involve cyclic loading. Evaluation of rutting potential of HMA using an APA
also involves cyclic loading. While the APA rut testing is considered to be a practical
approach by the mix designer, resilient modulus testing is believed to be a rational
approach by the pavement designer. Finding the correlation between rutting and
modulus can have tremendous positive impacts on transportation community’s
continued effort to implement Superpave mix design with AASHTO 2002 pavement
design.

Resilient modulus is an important material property in the mechanistic design of
flexible pavements (NCHRP, 2002). It defines the relative efficiencies of different
layers to distribute load-induced stresses within a pavement system. When used in a
layered system analysis, it is an important property in predicting pavement thickness. If
the design resilient modulus value is too high, the thickness of the pavement layer
becomes insufficient. If, on the other hand, the design resilient modulus value is too
low, the thickness is conservative but costly. It is, therefore, important to know the
factors that influence the laboratory determination of resilient modulus of asphalt
concrete. One important question whose answer would be very useful for AASHTO
2002 Guide for Pavement Design is: is it possible to determine resilient modulus of
asphalt samples in the laboratory reliably? In the process of seeking an answer, this

study addresses the issue of repeatability of resilient modulus testing in the laboratory.
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Also, the variation of resilient modulus with temperature, mix properties and test

methods are discussed.

5.3 Objectives And Scope

The primary objective of this study is to explore relationship(s) between resilient
modulus (both triaxial and diametral), if any. The other objective is to examine the
correlations of parameters such as: temperature, asphalt content, binder’s PG and air
voids with resilient modulus and rutting. Another objective is to address the issue of
repeatability in laboratory resilient modulus testing of asphalt concrete. Because both
rut values and resilient modulus values depend on various factors including
temperature, compaction (air voids), asphalt content, and binder grade, only these
factors are considered in this study to the extent allowed by the laboratory data. Two
mixes: one is an unmodified binder mix with high rut potential and the other is a

modified binder mix with low rut potential are included in this research.

5.4 Overview of Modulus Testing Protocol

A typical resilient modulus test using a cyclic triaxial apparatus involves application of
various stress and loading sequences. For unbound materials such as aggregate and soil,
the testing protocol is relatively well established (e.g., AASHTO T 307-99; ASTM D
5311-92). For such materials, the resilient modulus test is conducted by first placing a
specimen in the triaxial cell (Witczak et al., 2002). The specimen is subject to an all-

around confining pressure (o3), and a cyclic axial or deviatoric stress, 64 (04 = 0 - O3);

where, o represents the axial stress applied to the specimen. The resulting recoverable
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axial strain, g,, is determined by measuring the recoverable deformation across a known

gauge length or the total sample height. The resilient modulus is calculated by using the

following expression:
M =—* (5.1)

where

M; = resilient modulus
o4= cyclic deviatoric stress
gy = resilient strain.

For asphalt concrete, however, there is no widely accepted procedure within the
framework of repeated load triaxial test methods. A protocol for cyclic triaxial testing is
adopted based on the literature review, personal contacts and experience (Zaman and
Zhu, 1999). The test is conducted applying a haversine wave shaped load pulse having
duration of 0.1 sec and a rest period of 0.9 sec (loading frequency of 1 Hz). Depending
on the loading characteristic, a triaxial modulus can be called dynamic modulus or
triaxial resilient modulus. The difference between a triaxial resilient modulus test and a
dynamic modulus test for asphalt concrete is that the former uses loading of any form
with rest period, while the latter applies a sinusoidal or haversine loading with no rest
period.

Another method commonly used to evaluate the resilient modulus of asphalt
concrete samples involves application of cyclic loading diametrically (Figure 5.1),
instead of axially (ASTM D 4123 or AASHTO TP31-96). Indirect or diametral tensile

resilient modulus testing provides an insight into the ability of a material to function in
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an environment that produces tensile stresses. These tensile stresses may be load-
induced or non-load-induced (e.g., environmental). In this testing procedure, diametral
deformations along vertical and lateral directions, and vertical load are measured
precisely. The lateral deformation is determined from the deviatoric stress and
recoverable vertical strain. The Poisson’s ratio is evaluated from the ratio of the lateral
and vertical strains. According to Brown and Foo (1989), the ASTM D 4123 testing
protocol suffers from the lack of accuracy and precision and some agencies have
expressed lack of satisfaction. Barksdale et al. (1997) showed that the repeated load
diametral test is the most practical and realistic method for evaluating resilient modulus
of asphalt concrete (AASHTO TP31-96). The resilient modulus measured by indirect
tensile test is selected by engineers (ASTM D 4123 or AASHTO TP 31-96), whereas
the researchers have used resilient modulus measured by repeated load triaxial tests.
The reason for selecting indirect tensile test is mainly because of the thin lifts of
pavement. Cores or sample extracted from thin lifts cannot satisfy the sample criteria
(height to diameter ratio of 1.5 to 2) for triaxial tests. Some researchers so use the cyclic
indirect tensile test to measure resilient modulus. But this test method cannot accurately
simulate the stress conditions encountered in real pavement systems. The diametral test,
however, does reasonably simulate the stress conditions existing at the bottom of the
asphalt concrete layer. While practical tests are needed to help today's engineers and to
improve quality control and quality assurance, research to understand fundamental
mechanisms are pursued in this study. Subsequent to these studies, both deformation
and load measurement techniques and equipment (LVDTs, load cell) have improved

considerably. Therefore, the reliability of the resilient modulus value obtained using this
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protocol is examined (AASHTO TP31-96 with surface gage-point-mounted LVDTs).
The expression for calculating the diametral tensile resilient modulus is derived in the
next paragraph.

If a plastic disk or cylinder is loaded diametrically (Figure 5.1), from the theory
of elasticity and photoelastic analyses, it is possible to determine the elastic modulus of
the material. It can be mathematically shown that this load gives rise to a uniform
tensile stress along the horizontal diametral plane of the sample (Timoshenko and
Goodier, 1951). The expressions for the total normal stress on the vertical plane, o and
the total normal stress on the horizontal plane, oy can be found in the literature as given

below (Frocht, 1948):
o, =2P/mtd [1-16d* x*/(d*+4x7)?] (5.2)
o, =2P/ntd [1-4d* /(d* +4x%)*] (5.3)
where
x = the distance from the origin along the abscissa (horizontal)
y = the ordinate from the origin along the ordinate (vertical)
t = thickness of the disk (sample)
d = diameter of the disk (sample)
P = applied laod
Assuming plane stress condition and elastic behavior, the expression for the horizontal
strain, € can be given as:
g, =l/E[o, —-v(o, o] 5.4

where
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E = Young’s modulus
o, = plain stress, which is zero
v =Poisson’s ratio.

Under short-duration dynamic loads on a viscous materials (such as asphalt
concrete), the viscous effects are small and the apparent Young’s modulus, E, is
frequently referred as the resilient modulus, M; By substituting o, and oy from Equation
(5.4), the following expression can be obtained:

g, =2P/M, mtd[(4d*v—-16d*x>)/(d* +4x>)* +(1-V)] (5.5)

The total horizontal deformation, Ay, is given by,
4,72
A= [o.dx (5.6)
-d, /2
where, d, = gage length for the mounted horizontal LVDTs. By substituting ¢, and
integrating between the limits * d,, the following equation can be shown:

M, =2P/A,mtd[d*d] +v)+(1+v){d] 2d(d’* +d2)tan™'(d, /d)}]/(d* +d3) (5.7)

Equation (5.7) is used to calculate indirect tensile resilient modulus of asphalt concrete

in this study.

5.5 Testing Plan

Both triaxial and diametral resilient modulus tests are conducted on two replicate
specimens for each of the six mixtures (2 binders x 3 asphalt content) evaluated in this
study. The aggregate source (limestone) and gradation of the mixes are conformed to

the dense graded surface course mixture used by the Oklahoma DOT (ODOT, 2002).
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For each mixture tested, a full factorial of test temiperatures (0, 23, 40°C) and 1.0 Hz
frequency are used. Each specimen is tested in an increasing order of temperature, that
is, 0, 25, and 40°C. This temperature-frequency sequence is carried out to cause
minimum damage to the specimen before the next sequential test. This is due to the fact
that at cold temperatures, the material behaves stronger compared to warmer
temperatures. A total of 72 (2 binders x 3 asphalt contents x 2 test methods x 3
temperatures x 2 replicates) resilient modulus tests are conducted. Mixes (asphalt
samples) are designed according to the Superpave procedure (Roberts, et al., 1996).
Also, a total of 48 (2 test methods x 3 temperatures x 8 tests) triaxial resilient modulus
tests are conducted on one mix to address the issue of repeatability in resilient modulus
testing. Thus, for two mixes a total of 120 modulus tests are conducted in this study. In
fact, the actual test matrix included a number of exploratory tests in addition to the 120
tests. For example, some of the specimens are tested twice at different orientations (0°
and 180°). The average of the two test results is reported as the final resilient modulus.
Also, a total of 12 sets of APA rut tests are conducted. Rut value from each set

represents an average of the rut of two specimens.

5.6 Samble Preparation

The triaxial resilient modulus specimens are prepared in a rather unique manner for this
study. For a given mix type, a 150 mm (6 in.) diameter gyratory specimen is compacted
at the specific design asphalt content. The compaction is achieved using the SGC at a
wide range of air voids level (4 to 12%). The specimen is compacted to an approximate

height of 175 mm (7 in.). Upon extrusion, the SGC specimens are measured for density
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and then cored using a heavy-duty asphalt-coring machine. The ends of the cored
specimens are trimmed by a double bladed saw. Each core had a diameter of 100 mm (4
in.), an approximate height of 150 mm (6 in.) and therefore complied with a minimum
height to diameter ratio of 1.5 for dynamic modulus evaluation (Witczak, 2002). For,
indirect tensile resilient modulus test, the final triaxial sample is cut into two pieces
with a double bladed saw. The final dimensions of the specimen for diametral tests are
approximately 100 mm (4 in.) diameter and 75 mm (3 in.) height. Air voids of the
specimens are determined using the CoreLok™ sealing method (InstroTek Inc., 2002).
Other volumetric properties are also evaluated and used in statistical correlations and

interpretations of test results.

5.7 Testing

A Material Testing Service (MTS) electro-hydraulic test system is used to load the
specimens. The resilient modulus is measured by applying a computer-generated 1 Hz
haversine load with a loading duration of 0.1 sec and a rest period of 0.9 sec on
unconfined specimens (if the rest period is zero, the resilient modulus is equivalent to
the dynamic modulus). The load is measured through the MTS load cell, whereas, the
deformations are measured through two spring-loaded LVDTs (Linear Variable
Differential Transformers) of 2.54 mm (0.1 in.) stroke length, connected to a 16-bit
resolution analog-to-digital converter and a real time interface using LabVIEW
(Laboratory Virtual Instrument Engineering Workbench). These LVDTs are clamped

vertically on diametrically opposite specimen sides. Parallel clamps are placed
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approximately 100 mm (4 in) apart and located 2.54 mm (1 in.) from the top and bottom
of the specimen used to secure the LVDTs in place.

Modulus tests are conducted within an environmental chamber throughout the
testing sequence (i.e., temperature is held constant within the chamber to +1°C
throughout the test). After a test at a given temperature has been completed, the new
temperature is adjusted in the chamber for the next test and specimens stored within the
chamber to reach the new equilibrium temperature. This required a time period of
generally 18 to 24 hours for the specimen to reach and maintain the required test
temperature. As noted from this description, all triaxial resilient modulus tests are
conducted in accordance with a procedure similar to AASTHO T 307-99; ASTM D
5311-92. For triaxial tests at room temperature (23°C), the range of resilient stress is
138.9 to 206.8 kPa (20 to 30 psi) for a cycle range of 50 to 100 cycles. For
preconditioning, a stress in the range of 34.5 to 68.9 kPa (5 to 10 psi) is used for a total
of 500 cycles. However, the applied loads and cycles differed from sample to sample
along with temperatures.

Rut tests are conducted on specimens prepared with a dimension of 75 mm (3
in.) height by 150 mm (6 in.) diameter using the SGC. These specimens are
preconditioned at testing temperature of 64°C for a minimum of 10 hours. The
temperature of 64°C is found to be suitable for laboratory rut testing in Oklahoma’s
environment (Tarefder and Zaman, 2002). The preconditioned specimens are then tested
for rut in accordance with the APA testing protocol (PTL, 1999). In this procedure, the
rutting potential of an asphalt sample is determined by applying a vertical wheel load of

445 N (100 1bs) through pressurized hose with a pressure of 700 kPa (100 psi) for 8000
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cycles. The rut depths are measured as a function of load cycles. The 8000-cycle rut

depth is reported as final rut potential of asphalt concrete.

5.8 Results and Discussions

Table 5.1 shows mix parameters, test parameters, modulus and rut test results from the
laboratory. The sample numbers are placed in ascending order in column 1. The column
2 shows two mixes of which one is modified binder (PG 70-28) and the other is
unmodified binder (PG 64-22). Three asphalt contents, one at optimum, one at below
0.5% optimum, and the other at 0.5% above the optimum asphalt content are used in
each case of the binders. The difference in air voids in replicate (by PG and % asphalt)
samples are due to the tedious methods of long sample preparation for three different
tests (rut, triaxial, diametral) methods. Results of a total of 36 cyclic resilient modulus
tests and a total of 36 diametral resilient modulus tests, and 12 rut tests are shown in
Table 5.1. Over all, the triaxial resilient modulus has higher value compared to those of
diametral resilient tests. Also, modulus value at a lower temperature is higher than that
at a higher temperature. Overall, the modified binder mix (PG 70-28) showed a lower
rut potential and higher triaxial resilient modulus compared to those of unmodified mix
(PG 64-22). Table 5.1 is discussed further subsequently. In the next section, the rut and

modulus factors are interpreted using graphical method and statistical analysis.
5.9 Correlations of Mixture Properties
In Table 5.2, the correlations of mix properties, namely asphalt content, air voids, and

percentage binder with resilient modulus and rut depth are shown. As always, the
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correlation matrix (Table 5.2) is a symmetric matrix. In a particular row, it can be seen
that PG grade has the highest correlation (coefficient of correlation = - 0.438) with the
diametral resilient modulus at 23°C. However, this correlation is very poor for
interpretation. The negative correlation means that the use of unmodified binder has
decreased resilient modulus values. The PG grade has a positive correlation with
rutting, which means the use of unmodified binders has increased rutting. Similarly,
from the third row, it can be seen that the correlation of binder with triaxial resilient
modulus at 0°C is —0.443, which means increase in binder content has resulted in
decreased triaxial resilient modulus. In general, it appears to be difficult to interpret the
limited test results based on this correlation. Therefore, a graphical interpretation is

pursued subsequently.

5.10 Asphalt Content, Performance Grade and Modulus
Figure 5.2 (a) shows that the modulus value is lower at higher temperature, as expected.
At 40°C, if the diametral modulus values at different asphalt contents (5.1%, 5.6% for
unmodified binders) are compared, it can be seen that the resilient modulus at optimum
(5.1%) asphalt content is lower than those at an asphalt content of 5.6%. This may be
due to the fact that the increased asphalt content increases the thickness of the binder
film between aggregate particles, thereby, an increased proportion of asphalt acts to
resist the applied tensile stress over a cross-section normal to the direction of applied
load.

Tensile strains are concentrated in the asphalt binder (binder is much more

compliant than the stiffer aggregate particles) and thicker films result in smaller binder
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strain when the added asphalt does not alter the overall mixture strain. Moreover,
because tensile stresses must ultimately be transferred through the asphalt, more asphalt
means more asphalt area in a cross-section and hence, less stress in the asphalt.
However, the diametral modulus at 40°C and 4.6% asphalt is higher than that at 40°C
and 5.1% asphalt. Thus, the effects of asphalt content can be further complicated by the
related effects of asphalt content on mix stiffness and, as a result, on the stresses and

strains.

5.11 Air Voids and Resilient Modulus

From Figure 5.2 (b), it can be seen that the samples (modified asphalt) with air voids of
12.1% and at 8.6% show slightly lower triaxial resilient modulus than those of the
samples with 4.2% and 4.7% air voids. The modified asphalt samples with 5.5% and
7.4% air voids have the highest triaxial resilient modulus. Therefore, air voids have
higher influence on the diametral resilient modulus values than that on triaxial resilient
modulus values. Overall, a resilient modulus value changes with a change in air void.
Therefore, resilient modulus testing sample should be cored from the 150 mm (6 in)

sample to a 100 mm (4 in) to reduce the density gradient in the final core.

5.12 Asphalt Content and Rut Depth
Figure 5.3 illustrates that the rut potential of an asphalt concrete increases as the amount
of binder content increases. If the rut depths of specimens containing modified binder

are compared with the rut depths of specimens containing unmodified binder, it can be
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seen that modified binders have lower rut depth than the unmodified binders. Also, the

modified binder mix is more sensitive to the percentage asphalt content.

5.13 Air Voids and Rut Depth

The plot in Figure 5.4 shows that rut depths do not vary significantly for the air voids
within 6% to 8% for all cylindrical specimens. The regression line between the rut
depth and air voids for the modified asphalt binder shows a good correlation. From
Figure 5.4, it can be seen that rut depth is smaller at smaller air voids in the range of 5%
to 12%. A smaller air void content affects rutting in mainly two ways. First, because air
transmits little or no stress, replacing some of its volume with asphalt and aggregate
reduces the stress level in these components. Second, a sample having smaller air voids
creates a more homogenous asphalt-aggregate structure. Whereas, one with fewer or
smaller air voids results in less stress concentration at solid and air interfaces. Reduced

air voids can increased stiffness and decreased rut potential of asphalt materials.

5.14 Diametral and Triaxial Resilient Modulus Relationship

Figure 5.5 compares the repeated load triaxial resilient modulus to the repeated load
diametral (or indirect tension) resilient modulus at three different temperatures. For all
cases the correlation between the diametral resilient modulus and triaxial resilient
modulus is very poor. The correlation coefficient between these two moduli at 40°C is
better than that at other temperatures. The triaxial resilient modulus is about 5 to10

times higher than the diametral resilient modulus for most cases. The data is very
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scattered as shown in Figure 5.5. This is probably due to the complexity of resilient

modulus testing (Monismith, 1989).

5.15 Repeatability of Modulus Testing
Several factors may contribute to the variability (or accuracy) associated with resilient
testing. Experimental error may include operator, specimen preparation, equipment
setup, equipment calibration, and the testing environment. In order to quantify the error
due to operator, a sample of PG 64-22 mix (asphalt content = 4.6%, and air voids =
5.4%) is prepared and tested for 16 times by two operators (namely, Operator A and
Operator B). The same sample is tested using a triaxial apparatus at 0°C. These test
results are presented in Figure 5.6. It can be seen that the modulus test results at 0°C
vary randomly for a particular operator. This may be due to the difference in test setup
(load cell contact with the sample, signal conditioner adjustments, MTS operation) by a
specific operator. For an example, the load cell used in this study has a resolution of
13.4 N (3 1b). Using this load cell, an operator may apply a target contact load of 44.4 N
(10 Ib) in one test, however, the same operator may be off from the target with an
amount of £13.4 N (3 1b) in another test. However, both of these tests are considered to
be performed at the same testing condition. Therefore, several duplicate tests were
conducted for a given testing conditions and test results having extreme deviation from
the average, were rejected.

Triaxial modulus test results at 23°C and 40°C by operator A are plotted in
Figure 5.6. It is evident that the variation in the test results is due to temperature. At

higher test temperature, the random variation in test results is less than that at lower
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testing temperature. This may attribute to the measurement error due to smaller
deformation (strain) at lower temperature. Also, results from a total of 42 tests are listed
in Table 5.3 to compare the repeatability between triaxial and diametral tests. For each
set of tests (number of observation) mean, standard deviation (stdev), % error
(stdev/mean), and coefficient of variance are calculated. These values are listed in Table
5.3. The mean value is an indication of the average performance over all tests, while
coefficient of variance is an indication of the variation in different test results. Overall,
the coefficient of variance in diametral tests is smaller than that in triaxial resilient
modulus tests. The variance in diametral resilient modulus test at a higher temperature
is‘higher than that at a lower temperature. Therefore, a diametral resilient modulus can
provide a better confidence level at lower temperature. However, the triaxial resilient
modulus test shows a lower coefficient of variance at higher temperature. When
comparing diametral modulus to triaxial modulus, the diametral modulus is more
reliable at lower temperature, whereas the triaxial resilient modulus is more reliable at

higher temperature.

5.16 Relationship Between Modulus and Rut

Figure 5.7 shows the correlation between resilient modulus and rut potential at different
temperatures for both triaxial and diametral cases. The regression plots at 40°C and 0°C
are linear plots, while the regression plot at 23°C is an exponential plot (the exponential
plot has a better R?-value compared to that of a linear plot). At 0°C, the diametral
resilient shows a better correlation compared to those at the other two temperatures. The

regression coefficient for triaxial modulus is lower than that for diametral resilient
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modulus. Over all, the correlations are very poor. The poor correlations can be
explained due to the mechanistic differences (stress level, strain, temperature, loading
cycle etc.) between modulus and rut tests. The applied stress for an APA rut test is in
the range of 689.5 kPa to 758.5 kPa (100 psi to110 psi), whereas the applied stresses for
resilient modulus tests (triaxial and diametral) are in thé range of 138 kPa to 206 kPa
(20-30 psi). The corresponding deformations in modulus tests are elastic (small). The
deformation in rut test is elasto-plastic (high). The number of cycles in a laboratory rut
test is 8000 preceded by a preconditioning for 50 cycles. The testing cycle for modulus
is only 50 for triaxial test and 30 for diametral test. The preconditioning cycle is 500 for
a triaxial test and 90 for a diametral test. Also, rut test is performed at 64°C with a
preconditioning of the sample at 60°C for at least 10 hours. Modulus testing
temperatures are much lower (0°C, 23°C, 40°C) than rut testing temperatures. The
samples for modulus testing are preconditioned at testing temperatures for at least 10
hours. The loading time (number of cycles) for rutting is approximately 2% hours (or
8000 cycles), whereas the loading time for modulus testing is less than 1 minute (30 to
50 cycles).

From the above statistics, it is evident that there are a number of differences
between modulus and rut testing parameters. However, the choice of the combinations
of temperatures and loading time for each test is appropriate and logical. Rutting is
expected to occur at higher temperatures and with higher cycles of load applications,
whereas modulus should represent stress-strain properties of HMA at intermediate
temperatures and lower loading cycles. These differences in temperature, stress level,

and loading cycles result in poor correlations between modulus and rutting for the same
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set of mixtures. A multiple linear regression analysis is also performed and regressions

equations (as shown in Table 5.2) are developed to predict rutting using asphalt content,

binder’s PG, percentage air voids and resilient modulus at a specific temperature as

descriptors. The regression equation relating diametral resilient modulus at 40°C has the

highest coefficient of determination (R*> = 0.267). The diametral resilient modulus at

higher temperature may have better correlation with rutting. This would require further

testing at higher temperatures, which was not performed in this study.

5.17 Concluding Remarks

Overall, the modified binder mix (PG 70-28) showed a lower rut potential and
higher triaxial resilient modulus compared to those of an unmodified binder mix
(PG 64-22).

Although rut potential of an asphalt concrete increases as the amount of binder
increases, the correlation of modulus and asphalt content is poor.

The correlations between air voids with rut and resilient modulus is not clear
from this study. This may be due to relatively few tests (72 modulus tests)
performed in this study.

The triaxial resilient modulus shows higher values compared to those of
diametral resilient modulus tests.

Modulus value at lower temperatures is higher than that at higher temperatures.
The coefficient of variance (%error) of diametral resilient modulus testing is

smaller than that in repeated load triaxial resilient modulus tests. The diametral
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resilient modulus test can provide a higher level of confidence, at least in an
overall sense, compared to a triaxial resilient modulus test.

Conducting the resilient modulus tests is complex and difficult. The end results
can be influenced by several factors. A laboratory resilient modulus
measurement may not always be repeatable and/or reliable, at least from a
practical point view. One must be very cautious in using laboratory resilient
modulus in level 1 pavement design according to AASHTO 2000 guide.

A poor relationship exists between the laboratory triaxial resilient modulus and
the APA rut values. When multiple regression analysis is performed based on
selective descriptors (%oair, asphalt content, binder’s PG), it is found that the
diametral resilient modulus at 40°C has a relatively good correlation with rut
potential of an asphalt mix. If diametral resilient modulus tests at a higher
temperature with several aggregate gradations and mixes are conducted, it
would be interesting to see whether the correlation between resilient modulus

and rut improves.



Table 5.1 Matrix of Laboratory Test Results

Triaxial Resilient  Diametral Resilient Rut

Sample Binder % % Air Modulus, psi (10°) Modulus, psi (10°) Depth

No Grade Binder Voids 0°C  23°C  40°C 0°C 23°C 40°C (mm)

p—

PGe64-22 51 76 51.6 291 148 7.63 6.00 124 52

2 PG70-28 54 47 553 587 174 545 378 198 2.6
3 PG70-28 49 55 550 6.77 359 853 402 199 1.7
4 PG70-28 49 74 260 416 191 867 4.09 210 2.0
5 PG64-22 4.6 65 557 174 212 6.02 579 228 4.8
6 PG64-22 4.6 34 473 201 10.1 592 584 226 42
7 PG64-22 5.6 3.1 573 913 513 450 351 330 6.0
g PG64-22 5.6 101 234 134 114 456 381 301 7.8
9 PG70-28 59 121 6.01 3.02 202 679 520 0951 6.3
10 PG70-28 59 86 628 428 328 685 510 0939 52
11 PG70-28 54 42 252 152 122 6.14 408 204 23
12 PG6422 51 45 261 413 213 796 685 124 50

Note: 1 psi = 6.894 kPa
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Table 5.2 Correlation Matrix and Multiple Linear Regression Results

. . Triaxial PG - % Air Triaxial = Triaxial Diametral  Diametr Diametral
Correlation Matrix RM, Grade % Binder Voids RM RM RM al RM RM
°C 23°C 40°C 0°C 23°C 40°C
Triaxial RM 0°C 1 -0.389 -0.6 -0.641 0298  -0.112 0.496 0.111  -0.164
PG-Grade -0.389 1 0.345 0228  -0397  -0.164 -0.384 -0.438  0.36
% Binder 0.6 0.345 1 0477  -0.443  0.044 -0.19 -0.345  -0.333
% Air -0.641 0.228 0.477 1 0375  -0.192 -0.39 0.039  0.114
Triaxial RM 23°C  0.298 -0.397 -0.443  -0.375 1 0.715 0.58 -0.023  -0.532
Triaxial RM 40°C ~ -0.112  -0.164 0.044  -0.192  0.715 1 0.503 -0.291 -0.514
Diametral RM 0°C  0.496 -0.384 -0.19 -0.39 0.58 0.503 1 -0.595 -0.618
Diametral RM 23°C  -0.111 -0.438 0345 0.039  -0.023  -0.291 -0.595 1 0.361
Diametral RM 40°C  -0.164 0.36 0333 0.114  -0.532  -0.514 -0.618 1
Multiple Linecar Regression Results
Triaxial RM, 0°C Rut = - 9.838 - 0.841 (PG) + 3.202 P, —0.32A, + (RMy) 0.2155 x 10°® R*=0.457
Triaxial RM, 23°C Rut = - 9.0 - 0.787 (PG) + 3.12 P, —0.30A, + (RMa3) 0.6317 x 10 R?=0.464
Triaxial RM, 40°C Rut = - 6.703 - 0.876 (PG) + 2.746 P, —0.359A, + (RMy0) 0.7373 x 10°  R*=0.457
Diametral RM, 0°C Rut = - 7.439 - 0.859 (PG) + 2.858 P, —0.362A, + (RM,) 2.544 x 10°® R? =0.442
Diametral RM, 23°C Rut=-35.179 - 1.117 (PG) + 2.756 P, —0.367A, - (RM>3) 1.67 x 10 R%=0.441
Diametral RM, 40°C Rut = 3.006 — 0.184 (PG) + 1.484 P, — 0.278A, - (RM4) 6.9 x 10 R*=0.580

Note: P, = %asphalt content, A, = % air voids, RM =resilient modulus, PG= performance grade
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Table 5.3 Repeatability Statistics of Resilient Modulus

Modulus Temperature Number of Mean  Standard % Frror %
Test Method (°C)  Observation (psi)  Deviation T cv
. 0 6 1766945 147425 83  3.04
Diametral
Resilient 23 10 408119 38183 94 451
Modulus 40 6 204075 40098  19.6  8.02
. 0 12 5381300 800700 149 11.21
Triaxial
Resilient 23 12 303190 49800 164 9.8
Modulus 40 12 144190 2430 1.7 371

Note: CV = Coefficient of Variance
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Figure 5.1 Diametrical Resilient Modulus Testing of Asphalt Concrete
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CHAPTER 6

NEURAL NETWORK MODELING OF RUTTING

6.1 Introduction

Although it is preferable to conduct the APA tests to predict the rutting potential of a
mix, such tests are not always feasible for a project due to economic reasons. A rut
prediction model can be a useful tool in such situations. Prediction of rutting using a
model is a rather complex and challenging task. Traditional statistical models have often
exhibited weaknesses in predicting reliable rut values (Fine, 1996; White et al., 1992).
One of the main objectives of this study is to develop a neural network (NN) model to
predict the rutting performance of asphalt concrete. The steps to be taken in the design,
training, and performance evaluation of a neural network model are discussed in this
chapter.

A neural network is a network of many simple processors (units, nodes, and
neurons), each of which has a small amount of local memory (Fine, 1996). These
processors are connected by unidirectional communication channels (connections) that
carry numerical data. Neural networks are uniquely powerful tools that are used in
applications where formal analysis would be difficult or impossible, such as pattern
recognition and nonlinear system identification and control. Not only that, it often
outperforms classical statistical methods in its ability to analyze incomplete, noisy data,
to deal with problems that have no closed-form solutions (Hornik et al., 1989;

Engelbrecht, 2001). Absence of close-form solutions and the inherent nonlinearity
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associated with the rutting factors in asphalt concrete makes the problem of rutting very
suitable for modeling with NNs.

Neural networks have already been used successfully in pavement systems.
Most of NN studies in the pavement area mainly concentrated on: planning, traffic
control and operations, construction and maintenance, and facilities management
(Faghri et al,, 1997; Dougherty, 1995). In the past decade, there is a considerable
interest in using NNs for geotechnical engineering applications, as well as pavement
systems. The majority of NN-based models are for geomaterials, such as subgrade soils
and aggregate, rather than for paving materials such as asphalt and concrete (Toll,
1996). The work presented here deals with mapping problems specifically in the area of
pavement materials.

One of the drawbacks of a neural network model is that there is no established
method for deciding which architecture is best for certain mappings (Bishop, 1995;
Fine, 1998). In fact, the design of NN architecture is the main topic of this chapter. It is
later shown that a three-layer neural network having tan-sigmoid transfer function is

best capable of predicting rut potential of asphalt concrete.

6.2 Chapter Organization

The rest of this chapter is organized as follows. Following the introductory section, a
basic description of NNs including a mathematical model of a neuron, activation
function, and NN architecture is presented. This is followed by a discussion on learning
rules, minimization algorithms and issues of global and local minima. Next, the

architecture selection methodology and the issues pertaining to NN performance are
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discussed. After this, the neural network design methodology is presented, followed by
a section for the prediction of NN. Finally, concluding remarks are included at the end

of this chapter.

6.3 Neural Network Basics
In this section, the basic structural constituents of a NN model known as “neurons” as

well as the type of NN used in this study are described.

6.3.1 Model of a Neuron

A neuron is an information processing unit that is fundamental to the operation of a NN.
Figure 6.1 shows the model of a neuron. As illustrated, a neuron has three elements,
which are synaptic weight, adder, and activation function. As shown in Figure 6.1, a
typical neuron k, whose output is denoted by xy, is connected to the neuron under
construction j with an appropriate interconnection weight wj.. The effect of neuron k to
neuron j is described by the product xwj. If k is active and wy is positive (excitatory
synapse), then neuron k affects neuron j positively. If, on the other hand, neuron k is
active but wy is negative (inhibitory synapse), then neuron k affects neuron j negatively.
It is important to note the manner in which the subscripts of the synaptic weight wy are
written. The first subscript refers to the destination neuron, while the second subscript
refers to the originating neuron for the synapse under consideration. The adder is to sum
the input signals, weighted by the respective synapses of the neuron. The activation
function is used for limiting the amplitude of the output of a neuron. Also, the neuron

model as shown in Figure 6.1 includes an externally applied threshold, b; (also referred
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to as bias). In mathematical terms, a neuron j is described in the form of Equation (6.1)

and Equation (6.2) as follows (Bishop, 1995):

K
Vi= D Wik, +b; (6.1
k=1
y;=6(v;) (6.2)
where, Xi, Xp,......, Xk are the input signals; wji, Wi,.....,Wjx are the synaptic weights

converging to neuron j; vj is the cumulative effect of all the neurons connected to
neuron j and the internal threshold of neuron j; ¢(.) is the activation function; b; is the

bias; and y; is the output signal of the neuron.

6.3.2 Activation Function
The activation function, denoted by ¢(.) in Equation (6.2), defines the output of a
neuron in terms of the activity level at its input. Two activation functions are used in the

study. The activation functions (also called transfer functions) are described below:

Sigmoid Transfer Function

A sigmoid function, whose graph is s-shaped, is the most common form of an activation
function used in the construction of NNs. It is a strictly increasing function that
saturates to the value of -1 (for very high negative v input values) and 1 (for very high
positive v input values). The sigmoid function is differentiable everywhere. The
sigmoid function used in this study is a ‘tansig’ (tan-sigmoid) named after the

hyperbolic tangent, fanh(v). Its shape is shown in Figure 6.2 and defined as follows:
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(V)= -1 (6.3)

l+e™?

Linear Transfer Function
The linear transfer function can be expressed as:

o) =V (6.4)
By varying the domain of input, active range of this function can be shown in the range
of [-o0, +o0]. Using this function in the output layer with a sigmoid function in the inner
layer of NN, it is possible to get the outputs in any range. This combination is very

common in the NNs usually designed for function mapping (Hornik et al., 1994).

6.3.3 Neural Network Architectures

The manner in which the neurons of the NN described above are structured is called the
NN architecture. Usually, neurons are organized in the form of layers. Depending on the
number of layers, a NN can be classified as a single layered or multiple layered

network.

Single-Layer Feed-Forward Networks

The simplest possible layered NN is the single-layer NN that consists of a layer of
inputs (input layer) and a layer of output nodes (output layer). No synaptic weight
connections are allowed amongst the nodes belonging to the same layer. Therefore, data
is fed only in the forward direction. The architecture is called a single-layer feed-

forward NN.

162



Multilayer Feed-Forward Networks
The extension of the single-layer feed-forward structure is obviously the multilayer
feedforward structure as depicted in Figure 6.3. It can be seen from Figure 6.3, the NN
has an input layer and an output layer as in the single-layer case, but now in between
these two layers, there exists one or more layers of nodes, designated as hidden layers.
All these layers of nodes are denoted by layer 0 (input layer), layer 1 (first hidden
layer), layer 2 (second hidden layer), and so on until the layer M (output layer) is
reached. Figure 6.3 shows a multilayered feedforward structure with an input layer of K
nodes, an output layer of I nodes, and a single hidden layer of J nodes. As with the
single-layer NN, weight connections are only allowed from a layer of certain index to a
layer of higher index. No connections are permitted amongst the nodes belonging to the
same layer or from a layer of higher index to a layer of lower index. Figure 6.3 shows
weight connections from a layer of certain index to a layer of an immediately higher
index. This type of weight connectivity is referred to as standard connectivity. Once
again, data in the multilayered NN structure of Figure 6.3 propagates in the forward
direction from the input layer (layer 0), towards the hidden layers (layer 1 in Figure
6.3), and finally to the output layer (layer 2 in Figure 6.3). This is why the multilayered
NN structure is denoted as the multilayered feed forward NN. The multilayer NN as
shown in Figure 6.3 is fully connected because every node in each layer of the network
is connected to every node in the adjacent forward layer. If any of the communication
links (synaptic weights) are missing, the network is called partially connected.
Multilayer NNs are more powerful than single layer ones, since multilayer NNs

use a combination of transfer functions. Using a linear transfer function in the output
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layer and sigmoid functions in the hidden layers, a multilayer feedforward network can
approximate any function with a finite number of discontinuities with arbitrary accuracy
(Haykin, 1994). The only requirement is that enough neurons exist in the hidden layers.
In principle, a NN consisting of just one hidden layer can be taught to approximate any
continuous functional mapping (Fine, 1998; Hornik, et al., 1994). As is shown in this
study (discussed later), the learning task of mapping is faster using multiple hidden
layers even with fewer neurons. The NN learns the mapping from a collective set of
input-output given to it. The learning process follows a set of algorithms, which are

discussed in the next section.

6.4 Learning Algorithm

Neural network learns about the input-output mapping through an interactive process
(training or learning) of adjustments applied to its synaptic weights and biases. A
prescribed set of well-defined rules for the solution of a learning problem is called a
learning algorithm. There are five commonly known learning rules: error-correction
learning, memory-based learning, Hebbian learning, competitive learning, and
Boltzmann learning. In this study, error-correction learning that is based on an

optimization or error minimization technique is employed.

6.4.1 Error-Correction Learning Algorithm
A neural network learns from a given training set of examples, Ty= {(xi, t;) : i = l:n}
consisting of n input-output pairs (x is the inputs, t is the target outputs). For a given m-

dimensional input x (rut factors) and an associated target value t (rut), the goal is to
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design a neural network, NN (x; w) that generalizes (learns) well to new function
values. The output of NN is denoted by y;. This output is compared to the target output,
ti.. The error is denoted by e; and can be expressed as,
€=t -y, (6.5)

The error signal e; actuates a mechanism, the purpose of which is to apply a sequence of
corrective adjustments to the synaptic weights of neurons in the network. The corrective
adjustments are designed to make the output signal y; come close to the target response
ti, in a step-by-step manner. The objective is achieved by minimizing a cost function or

index of performance, &

6.4.2 Performance Function
The performance function or minimization function can be defined in terms of error, ¢;

as:
1,
& =-—}: e (6.6)

where, & is the instantaneous value of the error energy. The adjustments to the synaptic
weights of neurons are continued until the system reaches a steady state (i.e., the
synaptic weights are essentially stabilized). At that point the learning is terminated.
Having computed the synaptic adjustments Awy, the updated value of the synaptic
weight wi4 is determined from the following formula:

Wiy =W, +Aw, (6.7)
where, wy is the current weight value. The manner in which the error, € is used to

determine the Awy term is closely related to optimization or minimization algorithm.
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6.4.3 Minimization Algorithm

For the cost function, £ (w) defined by Equation (6.6) is minimized with respect to
some unknown weight (parameter) vector w. An optimal solution w' that satisfies the
condition, & (w*) < & (w) is found. The necessary condition for optimality is V& (w')=0,
where, V is the gradient operator and g (w) = V& (w) is the gradient vector of the cost
function.

Typically, all optimization algorithms for feedforward neural network uses
gradient of the cost function to determine how to adjust the weights. A class of
optimization algorithms widely used today is based on the idea of local iterative
descent. This algorithm starts with an initial guess denoted by wy, and then generates a
sequence of weight vectors wy, W, ... Wy, such that the cost function, & (w) is reduced at
each iteration of the algorithm by &(wi+1) < &(wy), where wy is the old value of the
weight vector and wyy; is its updated value. The hope is that the algorithm eventually
converges to the optimal solution w .

However, the mean squared error, £(w), is a relatively complex surface in the
weight space, possibly with many local minima, flat sections, narrow irregular valleys,
and saddle points (Wasserman, 1993). The complexity of the error surface is the main
reason that the behavior of a minimization algorithm can be very complex, often with
oscillations around a local minimum. The problem of minimization of a function of
many variables (multi-variable function), &(w), has been researched since the 17th
century and its principles were formulated by people such as Kepler, Fermat, Newton,
Leibnitz, and Gauss (Mehra, 1992). In practice, there are three types of optimization

algorithms that are used to select network parameters to minimize &(w), namely,
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steepest descent, Newton’s method, and Gauss-Newton method. The behavior of these
algorithms can be improved by making modifications to their parameters, or to the
algorithm itself. Of them, the fastest and most popular is the Levenberg-Marquardt
algorithm, which originates from the Gauss-Newton method (Hagan, 1996). A brief
overview of these methods is presented below:

The Levenberg-Marquardt method expresses the cost function of Equation (6.6)

in the form of:
1& ,
i(W)=-2~Z e (6.8)
i=1

where, the scaling factor of 1/2 is included to simplify expressions in the subsequent
analysis. All the error terms in this formula are calculated on the basis of a weight
vector w that is fixed over the entire observation interval 1<i<n. The error ¢; is a
function of the adjustable weight vector w. For a given operating point, wi (k is the

number of trial or iteration), the dependence of e; on w can be written as:
e; (W )=¢ +J;(w,,—w,),i=1,2,..nandj=1,2,..m (6.9)

where, n is the number of training datasets, m the number of weights to be adjusted and
Oe; . . . i
35 =—6—w—— the n-by-m Jacobian matrix of error, e;. The updated weight vector wi. is
j

then defined by:

.1
Wi = argmv&n{zﬂei (Wk+1)“2} (6.10)

Using Equation (6.9) to evaluate the squared Fuclidean norm of ei’(wkﬂ) , the

following relation can found:
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1 1 1
‘i’” e (Wyy) “2 = ‘2”|Iei ”2 + eiTJij(Wk+1 —Wy) +5(Wk+l - Wk)TJijTJij (Wi —Wy)

Differentiating the above expression with respect to wi; and setting the result equal to

zero, the following equation can be obtained:
Wen =W, = 1)1 e, 6.11)

This is known as the Gauss-Newton method. This requires the Jacobian matrix of the
error vector e;. However, for the Gauss-Newton iteration to be computable, the matrix
product, J'J must be nonsingular. The J'J is always nonnegative definite. To ensure that
it is nonsingular, the Jacobian J;; must have the row rank n; that is, the n rows of Jj; must
be linearly independent. Unfortunately, there is no guarantee that this condition will
always hold.

To guard against the possibility that J is rank deficient, Levenberg-Marquardt
method adds a simple positively scaled unit matrix, €], to the matrix J'J. The parameter
¢ is a small positive constant chosen to ensure that My = [J'J -+€I] is positive definite for
all i. Therefore, the Levenberg-Marquardt Algorithm (LMA) can be expressed in the
form of:

W =w, —(J; T, +eD 7 e, (6.12)
The Jacobian matrix J can be computed through a standard backpropagation (of error)
technique. The matrix J'J is automatically symmetric and non-negative definite.
Typically, large size of J may require a careful memory management in evaluating the
product of J'J. The performance of the algorithm depends on the choice of € in Equation
(6.12). When ¢ is large, the LMA becomes equivalent to the method of steepest descent.

When the scalar ¢ is zero, the LMA is equivalent to the Newton’s method. The
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Newton’s method is faster and more accurate as it approaches the error minima. The
aim of decreasing € is to shift towards the Newton’s method. Thus, the value of € is
decreased after each successful step (reduction in performance) and is increased only
when a tentative step increases the performance function. In this way, the performance

function is always reduced at each iteration of the algorithm (Demuth, 1998).

6.4.4 Local and Multiple Minima

Although the preceding discussion has focused on identifying a minimum value of the
cost function, &(w), or training error, &(w), the algorithms may fixate on to a local
optimum without finding a global optimum. Using the above local optimizers to
identify a single good neural network yielding a low value of cost function or training
error (local minima), the algorithms themselves identify large sequences of networks.
This is because the outcome of a minimization algorithm is strongly dependent on the
initial choice of the starting point (initial weights). Hence, repeating (minimization)
training with a different and randomly chosen initial condition, the same network
performance, &(w) is rarely obtained. Of course, it is always possible to construct
instances in which one algorithm performs better than others. The lack of uniqueness of
a neural network representation of a function establishes that some multiple minima
occur due to the symmetries that cause the non-uniqueness; several parameter vectors
give rise to the same function and hence to the same value of error (Auer et al., 1996).
In many applications, it is possible to attain a satisfactory performance at many of the

local minima and have little incentive to find a global minimum or explore all the local
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minima (Kearns, 1997). This study explores a variety of initial conditions to achieve a

good minimum training error.

6.4.5 Global Optimization

In global optimization, the algorithm searches for the global optimum by employing
mechanisms to search larger parts of the search space (error surface). Some of the
global optimizers such as: simulated annealing, LeapFrog, and swarm algorithm are
discussed below. These methods are applicable only when the dimension of the search
space is small. If the dimension of the search space is high, then the search for global
error is time consuming and in many cases, it is impossible to search the entire space
(Engelbrecht, 2002). Search for global error is not pursued in this study because rutting
problem requires a NN with a large number of weights. To develop intuition, the issue
of global search in the case of rutting can be discussed as follows. A neural network
designed with a minimum number of parameters requires at least nine inputs and seven
outputs. For seven outputs, seven neurons in the output layer is required. If a one layer
Feed Forward Neural (FFN) network with 2 neurons in the hidden layer is considered,
the total number of parameters become, q = ((9+1) x 2 + (2+1) x 7) = 41, where ¢ is the
total number of weights to be adjusted. The goal is to seek for g={w, wa, ....wy;} of
minimum or lowest error, £1(q). Proceeding by evaluating &r at a closely spaced
(spacing s) grid points (the points in the plot of error function or error versus weights
plot) and selecting the mapped point of lowest error, the number of required training
grows exponentially in the dimension s of q. In this case, if 2 grid points are considered,

the total number of search is 2*. This becomes impossible for closer grid points or high
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dimension of error surface. For large networks an exhaustive search for global error is

unrealistic.

6.5 Outline of the Proposed Approach to Architecture Selection
The abstract formulation of the architecture selection problem can be described as the

minimization of a function &: Q—RY where Q is the set of architecture parameter

vectors. The architecture selection problem is to find a q” € Q such that:
£(q")=min&() (6.13)

As discussed in the previous section, the minimization algorithm cannot be expected to
converge to a global minimum. Convergence to a local minimum is even problematic
for some minimization algorithms. The Levenberg-Margardt algorithm generally
converges to a local minimum. Therefore, it is not always obvious what is the best
architecture. Indeed, one of the most challenging problems in neural network design is
finding a suitable architecture.

In architecture selection procedure, a few networks of different architectures are
trained first. Of them the one that results in the lowest generalization error is selected as
final network. As a first step, two families of networks are trained in this study. The
assumed number of hidden layers is one in the first family, while it is two in the second
family. The total number of weight parameters defining the architecture in each family
is varied. In particular, a NN starts with a small number of hidden neurons, and the
hidden units are added to the NN incrementally based on the generalization
performance defined in the next section. This is a trial-and-error approach in which, the

training data is not fitted too closely assuming the convergence to a well-selected local
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minimum is satisfactory. Each trial network is trained for several times and the final
performance is calculated from the linear combination of these training outputs. Finally,
the NN with best performance is chosen. However, if several networks fit the training
set equally well, then the simplest network (i.e. the network which has the smallest

number of weights) is selected as the final NN.

6.6 Analysis of NN Performance
In this section, the various aspects that have an influence on the performance of NNs are
discussed. These aspects include performance index, performance measure, and data

manipulation.

6.6.1 Performance Index
Three indices are used in this study to design the NN. The most common measure of

performance of NN is the Mean Squared Error (MSE), expressed as,

P n

ZZ(Oi,j _ti,j)2

MSE = &2 =2 (6.14)
n.p

where

n = total number of data set
o = network output

p = number of outputs

t = target output.
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Instead of mean square error, an Average Relative Error (ARE) can be used to
measure the performance of a NN. The average relative error is calculated using the L,-
norm of error vector normalized by the L,-norm of output vector, as shown below:

n P S 2
& =12[12MJ (6.15)

2
D\ P =1 t

Correlation Coefficient: Although the above two indices are the most common for
measuring performance of a NN, an additional measure of NN performance, the
correlation between the output and target values for all data sets, is useful in
architecture selection. The measure of such performance, referred to as the correlation

coefficient, R-value, is calculated as follows:

P 1 P P
Zok,ptk,p _—Zok,pztk,p
p=1 P p=l

=]

= (6.16)

P P 2 P P 2
2% ~ 5| 220k | 1| 2t ~ 3| Ltes
p=] P p=1 p=] P p=1

6.6.2 Performance Measure

After the performance indices are defined, an accurate measurement of these indices is
important to ensure that the resulting architecture works reasonably well for the entire
family of initializations. |

Consider a performance index, &(.,.) described in the Section 6.6.1. Therefore,
&(q, w) is a measure of the performance of the neural network when the architecture,
A(q) has q parameters and the network N(w), initialized with w. If Equation (6.14) or

Equation (6.15) defines the performance function, then a lower value of & is preferred.
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If it is defined by the Equation (6.16), then a higher value of the performance function is
desired. The performance function can be defined as below:

g(q, w)=E[A(q), N(w)] 6.17)
The aim is to define an object function of g (.,.) alone that quantifies the performance of
the architecture A (q), so that by minimizing this object function with respect to g, the

optimal architecture can be found. There are two choices, as discussed in the following.

6.6.2.1 Best Performance

The best performance or lowest error of a NN can be defined as:

h(a)= min g(q,w)=min&[ A(a),N(w)] (6.18)

weW
Here, h(q) measures the best-case performance of an architecture A(q), as the
initialization varies over {N(w), we W}. Such a choice of h(q) may not correspond to

achieving the best possible (stable) performance. The NN thus designed is denoted as a

“Best Net” in this study.

6.6.2.2 Likelihood Performance

The second choice is to settle for architectures that work satisfactorily “most of the
time”. One way to capture this idea in a mathematical framework is to introduce a
probability measure Py, on the set W, that reflects that the best initialization N(w) is
distributed in the set of possible initializations {N(w), we W}. In particular, N(wg) can
be a most likely initialization for a fixed parameterized architecture and the probability
measure Py, can be peaked around N(wy). After knowing the probability measure Py, the

objective function to be minimized can be defined as:
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f(q) =E,, [g(q, W)]=Ep [§(A(@), N(w)] (6.19)
Thus, f(q) is the expected or average performance of the architecture, E is the
expectation, A(q) when the initialization is distributed according to the probability Py,
While the best-case objective function as defined in Equation (6.18) is easy to
understand and to interpret, the interpretation of the expected-value type of objective
function defined in Equation (6.19) needs additional elaboration. Ideally, f(q) is
computed for a given q and a finite number of initializations, {w = [w; wa... wp]' €
W™} and collection of m-trial initializations. For each A(q), the expected value is

approximated by a mean or a maximum likelihood estimator described below.

Mean Estimator
The performance f{(q) of an architecture A(q) is approximated by taking the mean of the
performances of randomly initialized networks, N(w;), N(wa), ...... N(wp). The mean

can be defined, based on the multisampling w, as:

E(gyr W)= D g, (W)= 3 g(w,,a), a€Q (6:20)

i=1

Maximum likelihood Estimator

The principle behind the maximum likelihood method is the multisampling of w. If
g(wy), g(wa), ...... g(wp) are the m observed performances of the network, then the
estimated performance of the NN is most likely to produce or represent these observed
values. The probability density function of f{w) is determined. Then the one with

maximum probability density is considered to be the final performance of that family
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{f(w), w ¢ W}. Then the one with maximum probability density is considered the final
performance.

In this study, the selection of architecture in NN design is based only on its
mean performance, and not on the best-case performance. Once the network
architecture is selected, the neural network is used to map new data by the method of
likelihood. The likelihood method is simply what is used to generate simulated data
after the unknown parameters (weights) are guessed. The simulation performance of the
designed NN is evaluated using the likelihood method (by mean estimator and by
maximum likelihood estimator), as well as the best performance index. The best-case

performance index is defined by mean square error or average relative error.

6.7 Neural Network Design and Performance Estimation

In this section, the input and rut date sets are described first. Next, the preprocessing of
raw data and principle component analysis are described. The selection of neural
network architecture is described in a step-by-step procedure. The training and
validation performance of NN are described. Finally, the simulation results are
presented followed by an illustration of the application of neural network in HMA

design.

6.7.1 Input Factors
As a first step, a set of input factors or descriptors that affect the rutting performance of
asphalt concrete under consideration is identified (Tarefder et al., 2002; 2003). Mainly

two classes of factors affect laboratory rutting of asphalt concrete. One is mix design
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measured at design stage and the other is testing parameters measured during laboratory
rut testing. The mix design factors include aggregate properties, asphalt cement
properties and mixture properties. The volumetric parameters and their
interrelationships (discussed in Chapter 2) can be found from these properties.
Aggregate size, gradation, and angularity are the most important factors to affect rutting
and therefore, the full series of sieve sizes used to define a Superpave mix are included
to define the proposed NN. Binder’s PG is one of the most important factors to affect
rutting and included in the proposed NN. In many situations aggregate and binder’s
meet the Superpave design requirements but the mix performance is not satisfactory;
thus, several mix properties, environmental factors, and loading factors are included in

the proposed NN model. Specifically, the factors considered in this study are as follows:

1. Percentage of materials passing through no. 200 sieve
2. Percentage of materials passing through no. 100 sieve
3. Percentage of materials passing through no. 50 sieve

4. Percentage of materials passing through no. 30 sieve

5. Percentage of materials passing through no. 16 sieve

6. Percentage of materials passing through no. 8 sieve

7. Percentage of materials passing through no. 4 sieve

8. Percentage of materials passing through 9.5 mm sieve
9. Percentage of materials passing through 12.5 mm sieve

10.  Percentage of materials passing through 19.0 mm sieve
11. Binder’s Performance Grade (PG)

12.  Percentage asphalt content (Py,)
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13.  Specific gravity of asphalt (Gy)

14.  Maximum specific gravity of mix (Gmm)

15. Bulk specific gravity of aggregate (Gg)

16. Bulk specific gravity of HMA (mix) sample (Gup)
17.  Temperature

18.  Wheel load

19.  Tire pressure

20.  Fine Aggregate Angularity (FAA)

21.  Aggregate’s Fractured Face (FF)

The ranges of the input factors are shown in Figures 6.4(a) to 6.4(c). The
distribution of particle sizes expressed as a percent of the total weight (gradation) is
plotted in vertical axis in Figure 6.4(a). Gradation is determined by sieve analysis and
normally expressed as total percent passing various sieve sizes as shown in the
horizontal axis. Gradation is a primary consideration in asphalt mix design and
specifications. The mixes included in the design of neural network are currently being
used in the State of Oklahoma and their gradation is shown in Table 6.1. The specific
gravities of HMA components as well as the binder’s performance grade (PG) are
shown in Figure 6.4 (b). A basic understanding of weight-volume relationships of
compacted HMA is important from both a mixture design standpoint and from a field
construction standpoint. The input factors 11-16 shown in Figure 6.4(b) are the
parameters required to understand mix design. These parameters are used to determine
the volume of asphalt cement and aggregates required to produce a mixture with the

desired properties. It is to be noted that the VMA and VFA can be calculated from the
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specific gravities and percentage asphalt content using Equation (2.2) and Equation
(2.3). The range of the factors 17-21 is shown Figure 6.4 (c). Three of these factors
(factors 17-19) are to simulate the field pavement conditions while the other two factors

(factors 20-21) are aggregate properties.

6.7.2 Target Vector

The output data is obtained by means of cyclic rutting tests in which the deformations
of samples are recorded over 8000 cycles. For the purpose of this study, it suffices to
describe this time series of rut or deformations by an interpolation with piecewise linear
elements using only a few deformation values. Consequently, the domain of the neural
network to be constructed and trained is a vector space of input factors and whose range
space consists of vectors obtained from a few values of deformation. Observations of
deformations are made at eight selected cycles: 1, 500, 1000, 1500, 2000, 4000, 6000,
and 8000. Since the deformation at cycle number 1 for all data is essentially the same
(zero deformation), the target vector consists of 7 components. The range of 8000 cycle
rut depth is 0.3 mm to 13.4 mm. The spread of the rut depths at different cycles are
shown in Figure 6.5. Finally, a dataset consists of 21 inputs (described in the previous

section) and 7 outputs (500, 1000, 1500, 2000, 4000, 6000, and 8000-cycle rut).

6.7.3 Data Preprocessing
One of the most important steps in using a NN is to define a data set and transform data
into a form acceptable to the NN. Neural network training can be made efficient if the

following preprocessing steps are performed on the network inputs and targets.
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6.7.3.1 Removal of Missing Value Data

It is common that data sets have missing values for input parameters. NNs need a value
for each of the input parameters. There are two options: one is to remove the data set
and the other is to replace each missing value with the average value for that input
parameter. In this study, the entire data sets are removed. Initially, there are 793 data
sets (a total of 1586 samples, a total of two samples are tested to produce one data set),
after removing the missing data, a total of 769 data sets are available for outlier analysis

described in the next section.

6.7.3.2 Outlier Analysis

Very often, in large data sets, there exist samples that do not comply with the general
behavior of the data model. Such samples, which are significantly different or
inconsistent with the remaining set of data, are called outliers. Because of the large
deviation from the norm, the outliers result in large errors, and consequently a NN is
subjected to large weight updates. In this study, any data that deviates more than two
times the standard deviation from the mean value of the corresponding data vectors are
considered as outlier. A total of 23 data sets are removed based on the outlier criteria

and finally, the database for the construction of NN model contains 746 data sets.

6.7.3.3 Transformation of Non-Numeric Data
All the input values to a NN must be numeric. Nominal values, therefore, are
transformed to numerical values. This study encounters one non-numeric or nominal

input parameter that is the PG of asphalt binder. The PG has 3 different values, which
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are coded as 3 different numeric input parameters. The PG that corresponds to a grade
of PG 64-22 is assigned a value of 1, the grade of PG 70-28 is assigned a value of 2, and

the PG 76-28 is assigned a value of 3.

6.7.3.4 Data Normalization

It is useful to scale and normalize the input and output data, so that, they always fall
within the active range and domain of the activation function. From Figure 6.3, it can
be shown that the active domain of tan-sigmoid function is [-1.73, 1.73]. Values near
the asymptotic ends of this sigmoid function have a very small influence on weight
updates. Changes in these values result in very small changes in output. Furthermore,
the derivatives near the asymptotes are approximately zero, causing weight updates to
be approximately zero. Therefore, no learning is achieved in these areas. Since, the
weighted sums of the network inputs are mapped through an activation function, an
efficient weight initialization can speed up the convergence process significantly, even
by an order of magnitude. In normalization procedure, the mean value p(x) and the
standard deviation o(x) of a feature x;, are computed for the entire data set. The feature

value is transformed to x,; using the Equation (6.21) as shown below:

X, = 6.21)

In this study, all of the 21 input vectors are normalized so that the mean value of
each input factor, averaged over 746 data sets, is zero and the standard deviations is
unity (using Equation 6.21). The deformation values at 500, 1000, 1500, 2000, 4000,

6000, and 8000 cycles over 746 data sets so that the normalized deformation has zero
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mean and unity variance. This is not necessary as a pure linear activation function is
used in the output layer; however, this step is useful in case the network weights are
updated based on MSE instead of ARE. Also, the Principal Component Analysis (PCA)

of input factors requires normalized data.

6.7.3.5 Principal Component Analysis

The purpose of principal components analysis is to derive new variables (in decreasing
order of importance) that are linear combinations of the original variables and are
uncorrelated. Geometrically, principal components analysis can be thought of as a
rotation of the axes of the original coordinate system to a new set of orthogonal axes
that are ordered in terms of the amount of variation of the original data they account for
(Kantardzic, 2003).

A set of n-dimensional vector samples X = {X], X, X3, ......... Xn} is considered
first. This vector is then transformed into another set Y = {yi1, y2, ¥3...Ym} of reduced
dimensionality, but the vector Y has the property that most of its information content is
stored in the first dimension. The goal is to reduce the data set to a smaller number of
dimensions with low information loss. A matrix A is determined, so that the
computation, Y=A.X has the largest variance possible for a given data set. In practice, a

covariance matrix is computed as given below:

S
S oxn =m|:;(xj—x) (x; X)} (6.22)

where, x is the mean of x;. The eigenvalue of the covariance matrix S is calculated for

given data. The eigenvalues of S;xp are Aq, Az, Aspe vvvvnennnnns An, Where A= A2k ... =
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An 2 0. Then, the proportion of variance is calculated. Dividing the sum of the first m
eigenvalues by the sum of all the variances (all eigenvalues), the quality of the
representation based on the first m principal components is measured. The result is
expressed as a percentage. Typically, the projection that accounts for over 90% of the

total variance is considered to be good. The ration is expressed as follow:
Re:(z xi]/(inJ (2.23)

By setting a threshold values for Re, the principal components that contribute less than
the others to the total variation in a give dataset is eliminated.

In this study, a total of three principal component analyses are conducted in
which factors accounting for 0.1%, 1% and 2% of the variation of the input vectors are
used. Using a variance of 0.1% (Equation 2.23), the number of input factors remained
the same. Whereas, using the variance of 1%, the number of input factors reduces from
21 to 15; that is, input factors accounting for 99.0% of variation in the total data set
leads to a reduction in input dimension. Using 98% of variation in the total data set, the
number of input factors reduced to 12 and is used to construct and train the neural
network. Finally, a data set (training set) is designed to consist of data in the form of

pairs of vectors composed of 12 input factors and associated 7 target vectors.

6.7.4 Neural Network Architecture and Training
The manner in which the neurons are structured in a NN is called architecture. Usually,
neurons are organized in the form of layers. In this case, the NN architecture can be

defined as follows: each of the 12-inputs is connected to each of the g-hidden neurons
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(either in one or two layers), and the outputs of the hidden neurons are fed into the 7-
output neurons. The number of hidden neurons, q in the final NN is determined by trial
and error method. It is a sequential algorithm in which at each step a new feed forward
neural network designed by adding a neuron to a specific hidden layer, trained by the
Levenberg-Marquardt minimization algorithm, validated, and tested for generalization
performance (Demuth, 1998; Hagan, 1996). However, the architecture or topology of
NN must be established before training. The network constructed and trained in this
study has three processing layers (also called neuron layers) and denoted by 12-h;-hy-7
as shown in Figure 6.6.

In the training step, the first hidden layer takes a preconditioned input column of
n=12 vectors and maps it to a column of ny=11 vectors by a tan-sigmoid transfer
function (Equation 6.3). The resulting vectors are then taken as an input by the seconf
hidden layer as inputs and mapped by a tan-sigmoid function to a column of np=11.
These vectors are then taken as input by the output layer neurons and mapped though a
linear operation to an output consisting of a column vector with n,=7 components. The
network weights are randomly generated from a uniform distribution for the linear
transfer function. For the tangent sigmoid transfer function, the random weights are
processed in accordance with the algorithm developed by Nguyen and Widrow
(MathWorks, 2002). The weights are continuously updated based on error (difference
between the NN outputs and target vector) determined by the Levenberg-Marquardt
minimization algorithm.

One of the problems that occur during the NN training phase is called

overfitting. The error on the training set is driven to a very small value, but when new
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data is presented to the network the error is large. The network memorizes the training
examples, but it does not learn to generalize to new situations. Overfitting occurs when
the NN architecture is too large or NN is trained for too long. Overtraining may end up
fitting the data with a more complex function, than the true relationship (e.g., a higher-
degree polynomial can fit the same sample points as a lower-degree polynomial).
Fitting too closely to the training set means fitting to the noise (experimental errors) as
well and thereby doing less well on new inputs that will contain noise independent of
that found in the training set.

In order to detect the point of overfitting, the original data set is divided into
three sets: the training set, the validation set, and the test set. The training data set is
used for computing the gradient and updating the network weights and biases. The error
on the validation set is monitored during the training process. The test set is not used
during training, but is used to compare different models (architectures). Figure 6.7
shows the training and generalization errors as a function of training epochs
(presentation of the data sets to the NN). It can be seen that from the start of training,
both the training and validation errors decrease usually exponentially. In the case of
oversized NNs or too many epochs, there is a point at which the training érror continues
to decrease, while the validation error starts to increase. The epoch number of 25 is the

point of overfitting. Training is stopped at epoch 25.
6.7.5 Data Set Division

Although there is no rule to divide the data set, a precise data division may yield good

performance (Fine, 1998). The total of 746 data sets are divided into three parts
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arbitrarily, employed in the training procedure using training and validation data sets,
and NN performance is investigated on test sets. The MSE, ARE, and R-values for
different data divisions are summarized in Table 6.2. The difference between Set A and
Set B is that the number of data in the validation Set B is higher than that in Set A.
Obviously, the MSE performance of Set B is better (lower MSE value) than that of Set
A for the validation set, whereas the training set MSE performance of Set B and Set A
are almost equal. Due to an increased number of unknown data in the validation data
set, the R-value of Set B (R = 0.8214) is less than that of Set A (R = 0.6692). There is a
little difference between the MSE performances of Set A and Set B based on the test
data. The R-value of Set C (R = 0.8125) is improved compared to that of Set A. Also,
the Set D has highest R-value. This is because most of available data are used to train
the network and the calculation of R- value involves all data. However, the Set D is
rejected because the MSE and ARE errors are high. For similar reasons, the data
division of Set E is rejected. From Table 2, it can be seen that the MSE, and ARE errors
of Set C are smaller than those of the other data sets. Therefore, the data division of data

Set C is chosen for designing the NN in this study.

6.7.6 Training, Validation and Test Performance

Figure 6.8 shows the MSE performance during the training process. Using the data set
C as described above, the MSE performance on the training, validation and test data sets
are determined and plotted as a function of epochs is shown in Figure 6.8. It can be seen
that the error in the test set reaches a minimum at a similar iteration number as the

validation set error. The result is reasonable. Since the test set error and the validation
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set error have similar characteristics, it does not appear that any significant overfitting is
occurred. This also confirms that the selected Set C eliminates the dependence of NN
performance on the training set and thereby, ensures that the division in the data sets is

not affected the selection of network architecture in this study.

6.7.7 Trial Neural Networks

NNs with One Hidden Layer

First, a two layer feedforward network with one hidden neuron (12-1-7) is initialized
and trained using a total of 469 training data sets and a total of 187 validation data sets.
Before the training, the principle components that contributed less than 2% to the total
variation in the data set are eliminated. As a result of this step, the dimension of the
input space reduced from 21 to 12. A total of 100 trials are performed with different
random initializations of network weight and bias values. In each trial, each of the
subsets (training, validation, test data sets) is randomly chosen so that the sequence of
data in an epoch differs from one trial to another. The average of MSE performance
from 100 trials is then computed. To this end, a second NN with two neurons in the
hidden layer (12-2-7) is selected, trained, evaluated for MSE performances. The
procedure continued, designing and training up to 40 more NNs, before the average
MSE performances on the test data sets are determined as shown in Figure 6.9. It is
evident that as the number of neurons in hidden layer one increases the average MSE
error decreases until it reaches 25 neurons. After 25 neurons, an increase in the hidden
neurons of NNs does not improve NN performance, but rather the standard deviation of

MSE increases. Therefore, a total of 25 hidden neurons are selected as the final NN
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(ie., 12-25-7 NN). Also, the R-value (correlation coefficient) between the NN
predicted rut and the actual rut along with the MSE and ARE are shown in Figure 6.9.
The R-value increases as the hidden neurons are increased in the trial neural network.
The nearly maximum R-value of 0.8264 with a standard deviation 0.0341 is found when

the number of hidden neurons is 25 in the trial network (9-25-7).

NNs with Two Hidden Layers

The performance of a NN having one layer of hidden neurons can be improved to a
certain extent by using two layers of hidden neurons. The number of hidden neurons in
first hidden layer is increased, while the number of neurons in the other hidden layer of
the NN remains constant. The input layer takes 12 inputs and the output layer has 7
neurons. The number of nodes in the first layer is arbitrarily chosen to vary from 1 to
20, whereas the number of nodes in the second layer is kept between 1 and 15. A total
of 300 NNs had been trained to find a NN that shows better performance over the
others. For a selected configuration, a network is trained 100 times and then a
simulation is performed on the trained NN using the training, validation, test data and
total data sets. Results are reported by average and standard deviation of MSE, as
shown in Table 6.3. Column 2 and Column 3 show the number of hidden neurons in
first and second hidden layers, respectively. The results are presented in ascending order
of test sets MSE. The average performance of the first five NNs (first 5 rows) over all
simulations are close to each other. The mean MSE error (value = 0.4006) on test data is
the lowest in 12-12-11-7 NN, whereas the validation MSE (value = 0.5103) is minimum

in 12-13-10-7 NN. However, it can be seen that 9-11-11-7 NN has lower variance in
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performance compared to that of any other NNs. Also, the variance or standard
deviation is very important in selection of NNs. The network, 12-12-11-7 NN is
selected as the final NN from the NN family with two hidden layers. The R-value for
this network is 0.8129, which is slightly less than that of 12-25-7 NN. The total number
of parameters to be adjusted in neural network, 12-25-7 NN is 507 (i.e.
weights=25x12+7x25 and bias=25+7). This is higher than the total of parameters 383
(i.e., weights=12x12+12x11+7x11 and bias=12+11+7) to be adjusted in the neural
network, 12-12-11-7 NN. It is evident that the increase in the total number of
parameters of NN 12-25-7 improves the NN performance by a very little amount. The

neural network (12-12-11-7 NN) with two hidden layers is used for prediction.

6.7.8 Neural Network Prediction

At this stage, the trained and tested (validated) network (12-12-11-7 NN) is used to map
or simulate a new set of inputs. The difference between the testing and prediction is that
the target output is known during testing, whereas in prediction steps, the tested NN is
used to find the unknown (target) rutting. A final simulation output is obtained through
the development of ensemble networks, where the aim is to optimize the NN outputs
through a combination of a number of individual network outputs, trained on same data
sets, using the architecture (12-12-11-7 NN) found above. A total of 20 data sets
(prediction set), which are used in the architecture selection, are simulated using the 12-
12-11-7 NN. The training and simulation procedure is carried out for several times and
the resulting output vector is compiled. Figures 6.10(a) to 6.10(g) are the histograms of

rut depths (RD) at 500, 1000, 1500, 2000, 4000, 6000, 8000 cycles for data set 5 (mix

189



ID: 3012-APAC-20117). Similarly, histograms of the rut depths, RD (1)-RD (7) for the
each of these 20 data sets are compiled. Estimators of the deformations are calculated
from the histograms. In particular, deformations are predicted based on estimators of the
mean and maximum likelihood estimator as described earlier. Also, the NN that
provides the minimum error (MSE or ARE) on the validation data sets 100 trials is used
in simulation (i.e., prediction). In study, the estimation from a NN with the minimum
MSE is termed “best MSE net” estimation, whereas the estimation by NN with lowest
ARE is termed as “best ARE net” estimation.

The deformations based on mean, maximum likelihood, best net ARE, and best
net ARE estimations for data set number 5 using 12-12-11-7 NN are depicted in Figure
6.11. An excellent agreement is observed between the predicted and the actual rut
depths. Deformation responses obtained from a single best net, based on the minimum
MSE and ARE, are also shown. It can be seen that the maximum likelihood prediction
is close to the mean prediction; where as the best net simulation does not show a good
generalization capability of the designed NN. Similarly, the predicted and laboratory rut
values for the data set number 7 is shown Figure 6.12. A regression analysis of the
networks predicted deformations are performed. The entire test data set is applied to the
neural network and performed a linear regression between the network outputs and the
corresponding targets. In this case, there are 7 outputs and therefore, seven regressions
are performed. The results for 8000-cycle rut depth for a test data set 12 using 12-12-
11-7 NN are shown in Figures 6.13(a) to 6.13(g). The best linear fit is indicated by
dash line. The perfect fit (output equal to target) is indicated by the solid line. As the

best linear fit line approaches close to the perfect fit line, the NN simulation is evaluated
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as better. It can be seen that 8000-cycle (Figure 6.13(g)) rut depth has the highest
correlation coefficient among the rut depths at other cycles (Figure 6.13(a)). Also, the
maximum likelihood and mean prediction has higher correlation that of a single neural
network. The regression coefficient for the validation and training data sets are listed in
Table 6.4. From the regression coefficients shown in Table 6.4 and Figure 6.13(a)-(g), it
is evident that the use of families of networks trained on different initial conditions can
improve the network performance. Better performance can be achieved through the
linear combination of the trained networks instead of simply choosing the single best
network. A possible explanation of this can be that the linear combination of network
results in a new, more complex network that can explain the improved fit to the training
data. The total error from simulation over the test data sets is determined to be:

Total relative error of mean estimator = 0.2394

Total relative error of the maximum likelihood estimator = 0.2456

Total relative error of best net by the minimum MSE = 0.2451

Total relative error of best net by the minimum ARE = 0.2775

6.7.9 Neural Networks Application

As mentioned before, one of the major goals of this study is to use the designed NN as a
performance-based mix design tool. Consequently, the validated NN model, found
above, is applied to design Superpave mixes to examine HMA rutting potential. It is
know that the Superpave method of mix design requires three parameters for the
determination of optimum asphalt content. These are percentage air voids, VMA, and

VFA. According to the Superpave method of mix design, HMA is designed based on
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the volumetric properties only. Currently, the Superpave method does not include a
performance test to check whether a mix having the optimum asphalt content will
perform satisfactorily. This study proposes rut as a performance test for the Superpave
method of mix design. The rut value can be obtained from laboratory testing or using
the NN developed in this study. In essence, two Superpave mixes (Mix 3037-OAPA-
25089 and Mix 3012-OK-02156) are tested for rutting using NN simulations. Both of
these mixes are currently being used in the state of Oklahoma. From the mix design
information, it is known that Mix 3037-OAPA-25089 contains an optimum asphalt
content of 4.8%. In a neural network simulation procedure, the mix information such as
gradation, aggregate properties, and binder PG is kept constant, whereas the amount of
binder is varied. The simulation results using the developed NN model are shown in
Figure 6.14 for Mix 3037-OAPA-25089. It can be seen that for asphalt content in the
range of 4 to 4.8 %, rut depth (mm) increases as binder content increases. Then in the
range of 4.8 to 5.5%, rut depth slightly decreases as the asphalt content of the mix
increases. Beyond 5.5%, rut depth increases exponentially as the asphalt content
increases. Clearly, there is an inflection point at 5.5% asphalt content. Therefore, the
optimum asphalt content of Mix 3037-OAPA-25089 is 5.5% based on the rut criteria.
The HMA mixes prepared with asphalt contents below 4.5% satisfy the low rut criteria,
but fail to meet the moisture-induced damage criteria (indirect tensile test). Similarly,
the simulation results for Mix 3012-OK-02156 are plotted in Figure 6.15. It can be seen
that for asphalt content in the range of 3.5 to 4.3%, rut depth (mm) increases with
increasing binder content. For asphalt content in the range of 4.3 to 4.49%, rut depth

slightly decreases as the asphalt content of the mix increases. Beyond that (4.49%-
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5.5%), rut depth increases exponentially with increasing asphalt content. Clearly, there
is an inflection point at 4.49% asphalt content, which is considered the optimum asphalt
content for this mix. Simulations are not performed beyond 5.5% asphalt content
because with higher amount of asphalt, the mix will flow. Also, it is impractical to
fabricate HMA samples at very high asphalt contents. Again, below 3.5% asphalt
content, mixes fail due to moisture-induced damage. Although this study finds the
inflection points (Figures 6.14-6.15) for each case of the Mix 3037-OAPA-25089 and
Mix 3012-0OK-02156, further investigations would be helpful to conclude that such an
inflection point always occurs. There may occur situations in which a mix will not show
any inflection point. In such cases, this study recommends selecting the optimum
asphalt content based on air voids, VMA, VFA, and moisture-induced damage criteria.
Of course, rut performance can be a secondary check for such mixes. Thus, the
developed neural network in this study can be used to examine new designs (HMA)
prior to implementation. It is to be noted that finding the optimum amount of asphalt in
these example mixes is very inexpensive and time-efficient. In addition, by changing
model inputs and observing the resulting outputs, it is possible to study the important
variables, and how variables interact with each other. Also, a neural network model can
be used to estimate the performaﬁce (non-destructive performance) of existing
pavements. In a neural network simulation, a broader range of experimental conditions

can be covered, than would generally be possible through laboratory testing.

193



6.8 Conclusions

In this study, a 3-layer feedforward neural network model is designed and applied to
determine a mapping that associates asphalt mix design factors and testing parameters
of HMA samples with their rutting performance. The developed network uses 12
neurons in the first hidden layer, 11 hidden neurons in the second hidden layer, whereas
the output layer uses a total of 7 neurons. Using a total of 21 mix factors as input, the
developed model produces rut depths at 7 different cycles. The time series (cycle) of
rutting are recorded over 8000 cycles by an interpolation with piecewise linear
elements, using these few outputs. A total of 746 sets of data obtained from mix design
information and laboratory tests are used for developing this NN model. Preprocessing
and principal component analyses are applied, and the network trained using the
Levenberg-Marquardt algorithm. Using randomly generated weight factors to initialize
the training algorithm, histograms are compiled and outputs estimated using statistical
estimators. An excellent agreement is observed between test data and simulations. To
this end, the developed NN is used to estimate (based on the rut performance) the
optimum asphalt content for a Superpave mix. The results are satisfactory. It is believed
that the proposed NN model will be a useful tool in the study of asphalt mix design and

performance evaluation.
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Table 6.1 Mix Properties Used in Neural Network Design

Properties Mix Type S2 S3 S3-rec S4 Sé

37.5(1 Y2in) 100 - - - -

25.0 (1 in.) 90-100 100 100 - -
19.0 (3/4 in.) - 90-100 90-100 100 -
12.5 (1/2in) - 90max 90max 90-100 -
= 9.5(3/8 in.) - - - 90 max 100
‘é’ 4.75 (No.4) 40-40 - - - 80-100
E“ 2.36 (No.8) 19-45 23-49 23-49 28-58 54-90
-§ 2.00 (No.10) - - - - -
% 1.18 (NO.16) 18-24 22-28 22-28 26-32 39-39
b2 0.60 (No.30) 14-18 17-21 17-21 19-23 26-32
0.425 (No.40) - - - - -
0.30 (No.50) 11-11 14-14 14-14 16-16 19-23
0.15 (N.100) - - - - 16-16
0.075 (N0.200) 0.6 —1.2 P.0.6 -1.2 P.z0.6 ~1.2 P.50.6 -1.2 P  5-15
Design Method Superpave Superpave Superpave Superpave Superpave
N"mi“&&’[gii‘m“;m Size 25 19 19 12.5 475
Lift Thickness, mm 56-112 56-112 56-112 37.5-75  12.5-25
Compaction Method SGCf/field SGC/field SGC/field SGC/field SGC/field
Asphalt to Dust Ratio 12 0.9 1.1 1.1 0.9

Note: Py = Effective Percentage Binder, SGC = Superpave Gyratory Compactor, ‘-* =N/A value, and
S2 = Superpave mix type 2
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Table 6.2 Neural Network Performances on Different Data Divisions

Mean Square Error (MSE) Average Relative Error ~ R-value
Data Set

Training Validation Test Training Validation Test All Data

Dr=273

Dy=187 03616 05731 0.5012 0.2579 03729 03764 0.6692
Dg =187

DT =373

Dy=283 03006 05146 0.5044 02846 0.2982 0.2815 0.8214
Ds=90

Dy =469

Dy=187 03019 05018 04111 0.2519 0.2781 0.2618 0.8125
Dg=90

Dy =567

Dy=90 03580 0.6172 0.596 0.2907 0.3450 0.3339 0.8537
De=90

DT =90

Dy=567 0.4013 0.7861 0.7402 0.2741 0.5126 0.3941 0.4587
DG =90

Note: Dt = Training Data Sets, Dy = Validation Data Sets, Dg = Test Data Sets.

196



Table 6.3 Training Performances of NNs with Two Hidden Layers

Trial Neurons in Neurons in Training Data Set Validation Data Set Test Data Set Total Data Set
NNNo. b layer bz layer Mean Stddev. Mean StdDev. Mean StdDev. Mean Std Dev.
1 12 11 0.3120 0.0314 0.5251 0.0649 0.4006 0.0413 0.3081 0.0236
2 18 10 03018 0.0375 0.5526 0.1028 0.4271 0.1446  0.3205 0.0326
3 10 12 0.3053 0.0209 0.5704 0.0550 0.4524 0.0829  0.3293 0.0173
4 13 10 0.2980 0.0200 0.5103 0.0668 0.4532  0.0957 0.3175 0.0167
5 10 12 0.3198 0.0500 0.6022 0.1478 0.4858  0.1931 0.3379  0.0449
6 16 9 03232 0.0279 0.6008 0.1007 0.5077 0.1139  0.3412  0.0265
7 12 10 0.3305 0.0249 0.6419 0.0554 0.5663  0.0655  0.3446 0.0216
8 14 12 03132 0.0483 0.6194 0.1311 0.6006 0.1539  0.3561 0.0444
9 11 10 0.3578 0.0183 0.7281 0.0993  0.6623  0.1143 0.3682 0.0179
10 9 9 0.3645 0.0344 0.7341 0.0540 0.6425 0.1604  0.3881 0.0456
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Table 6.4 R-value for the Linear Regression Fit of Simulated and Actual Rut Depths

NN Output R-value

(Rut-Cycle) Maximum Mean Best Net Best Net
Likelihood  Estimator (MSE) (ARE)

Using Training Data

RD-0500-cycle 0.7454 0.7846 0.7785 0.7039
RD-1000-cycle 0.8047 0.8324 0.8219 0.7639
RD-1500-cycle 0.8053 0.8398 0.8322 0.7763
RD-2000-cycle 0.8238 0.8431 0.8365 0.7834
RD-4000-cycle 0.8295 0.8491 0.8455 0.7967
RD-6000-cycle 0.8249 0.8456 0.8440 0.8001
RD-8000-cycle 0.8155 0.8401 0.8403 0.8028
Using Validation Data
RD-0500-cycle 0.8902 0.8981 0.9041 0.9065
RD-1000-cycle 0.9035 0.9167 0.9202 0.9221
RD-1500-cycle 0.9166 0.9275 0.9305 0.9308
RD-2000-cycle 0.9222 0.9307 0.9323 0.9327
RD-4000-cycle 0.9320 0.9355 0.9354 0.9337
RD-6000-cycle 0.9286 0.9334 0.9329 0.9297
RD-8000-cycle 0.9258 0.9285 0.9267 0.9230
Using Total Data
RD-0500-cycle 0.8577 0.8719 0.8716 0.8581
RD-1000-cycle 0.8796 0.8955 0.8933 0.8820
RD-1500-cycle 0.8892 0.9054 0.9041 0.8911
RD-2000-cycle 0.8973 0.9082 0.9067 0.8935
RD-4000-cycle 0.9055 0.9127 0.9113 0.8968
RD-6000-cycle 0.9021 0.9110 0.9096 0.8951
RD-8000-cycle 0.8989 0.9066 0.9047 0.8915

Note: MSE=Mean Square Error, ARE= Average Relative Error, R=Regression Coefficient
NN = neural network, RD =Rut Depth, Total Data = (Training+Testin+validation) data
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Frequency

Histogram for RD(500-Cycle) of Test Data 5: Mix ID-3012-APAC-20117
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Figure 6.10(a) Histogram for RD (1) of Test Data 5
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Frequency

Histogram for RD(1000-Cycle) of Test Data 5: Mix ID-3012-APAC-20117
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Frequency

Histogram for RD(1500-Cycle) of Test Data 5: Mix ID-3012-APAC-20117
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Frequency

Histogram for RD(2000-Cycle) of Test Data 5: Mix ID-3012-APAC-20117
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Frequency

Histogram for RD(6000-Cycle) of Test Data 5: Mix ID-3012-APAC-20117
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CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

In this study, the rutting problem is introduced and followed by laboratory rut testing,
mix testing, data collection and correlation of mix parameters with the rutting
performance. The laboratory rut results are studied for repeatability and reproducibility.
According to the Superpave method of mix design, binders are selected based on their
mechanical (rut factor) and rheological properties (grade, viscosity, specific gravity) but
not on the mix performance (rutting). Binders are evaluated based on their rutting
performance in a mix. Thirteen different binders are studied and ranked based on the
rutting criterion. Next, aggregate factors (shape, size, type), environmental factors
(temperature, wet/dry conditions), mix factors (asphalt content, gradation, voids in the
mineral aggregate, air voids), and load factors (wheel load, hose pressure) are correlated
with rutting potential. This is followed by the analysis of correlation of rutting
performance with their resilient modulus values. After determining the major rut
factors, a principal component analysis is performed to ascertain the most significant
factors among them. A neural network model is developed based on the most significant
factors. The training algorithm used, architecture selection, and the NN design are
discussed in considerable detail. Finally, the application of the proposed NN model (by
simulation) is illustrated by using the model to determine the optimum asphalt content

of Superpave mixes.

228



It is understood that rutting is contributed by many factors including mix
properties, aggregate properties, binder properties, traffic loading, and environment.
Each selected factor must be considered in designing the HMA mix and in examining
the quality of HMA construction. For illustration, the APA rutting potential is chosen to
design the HMA mix in the laboratory and to control its quality in the field. In essence,
three controlled mixes are studied to investigate the effect of aggregate gradation on
mix rutting. Also, the effects of air voids and asphalt content on rutting are discussed.
Test results for ten different plat-produced HMA mixes are presented. These mixes are
ranked based on their rut potentials. The repeatability and reproducibility of the APA
testing are also examined. The mixes containing different binders are ranked based on
their rutting performance. In testing plan, both modified binders and unmodified binders
are incorporated. The liquid binders are tested (at Oklahoma DOT laboratory) for their
properties (e.g., viscosity, shear modulus, DSR rut-factor) specified in the Superpave
design requirements. Binder’s rheological and mechanical properties are correlated with
rutting in asphalt concrete. Two (linear and nonlinear) regression models are developed
to predict rut depth incorporating binder’s liquid properties in the developed nonlinear
model. The effect of binder’s viscosity and rut factor, G'/sind on rutting has also been
investigated.

As described above, rutting of asphalt concrete is affected by many factors.
These factors can be ranked based on their contributions to rutting. The statistical
analysis procedure presented in Chapter 4 is developed to identify the most significant
factors that affect rut potential of HMA. It is not possible to incorporate all the rutting

factors together. Therefore, three test sets, each set representing a matrix whose
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elements are rut parameters, are employed in this study. Set A incorporates a total of
seven factors. Each of these factors is investigated at two different levels. The mix
design followed the Superpave method. In Set B, six factors are investigated. The mix
used for Set B is a typical Hveem mixture of gravel aggregates. Different amounts of
asphalt varying £0.5% of the optimum are used as factors to be investigated. In
addition, an experimental Set C with five factors is examined. All of the sets considered
in this study include a partial factorial of testing program instead of a full factorial. In
Chapter 3, the correlation between resilient modulus and rutting in asphalt concrete is
investigated in light of the fact that the current pavement and mix design procedure
seeks a simple performance test that can empirically bridge between the thickness
design and mix design. A series of modulus and rut tests are conducted in the laboratory
to generate data to examine if resilient modulus could be correlated with the APA
rutting. Laboratory resilient modulus of asphalt concrete is determined by repeated load
triaxial compression tests and cyclic indirect tensile tests. It is found that the laboratory
modulus testing of asphalt concrete is complex and may suffer from variation of results
due to noise. Therefore, the repeatability of resilient modulus values of asphalt concrete
is investigated. The resilient modulus of asphalt content is correlated with asphalt
content, temperature, and air voids.

A novel methodology is developed in this study for neural network modeling of
rutting in asphalt concrete. Neural networks are considered within the context of HMA
mix design to approximate the functional relationships between mix design parameters
(mix properties, aggregate properties, liquid asphalt properties, traffic properties, or

environmental factors) and rutting performance of asphalt concrete. The design
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methodology presented in this research divides the total data set into three different sets:
training set, validation set and test set. The level of accuracy (average relative, MSE,
and R-value) is calculated using the test data set, whereas the training set and validation
set are used to train the network. Preprocessing and principal component analyses are
performed, and the network trained using the Levenberg-Marquardt minimization
algorithm. Improvement in the accuracy of NN performance is obtained by using
different magnitudes of component variance in the principal component analysis. The
selection or reduction of the descriptors among a larger pool of candidate descriptors is
reported. Specifically, the developed network uses 12 neurons in the first hidden layer,
11 hidden neurons in the second hidden layer, while the output layer contains a total of
7 neurons. A sequential training algorithm based on trial-and-error is presented, which
guarantees that the trained network provides minimum average relative error (maximum
R*-value) in mapping the functional relationship. Here, at each sequence, a new neural
network is designed and trained to minimize the average relative error (average of 100
trials) of the previous network. The design algorithm avoids the local minima
phenomenon that hampers the traditional network training, and thereby speeds up the
training processes. Using a total of 21 mix factors as input, the developed model
produces rut depths at 7 selected cycles (500, 1000, 1500, 2000, 4000, 6000, 8000
cycles). The time series (cycle) of rutting are recorded over 8000 cycles by an
interpolation with piecewise linear element method, using network-simulated seven
outputs. A total of 746 sets of data obtained from mix design information and laboratory
tests are used in developing this NN model. Using randomly generated weight factors to

initialize the training algorithm, histograms are compiled and outputs estimated using

231



statistical estimators. Excellent agreement is found between the laboratory rut values

and neural network predictions. A simulation study carried out on a specific Superpave

mix design application demonstrates the feasibility of the proposed neural network

model.

7.2 Conclusions

Based on the results presented in the preceding chapters, the following conclusions are

made:

1.

One of the most significant findings of this study is that it suggests a
modification of the Superpave binder specification. In the current practice,
rutting is taken into account using a so-called rutting factor (e.g., G '/sind,
where G = complex shear modulus of asphalt binder, & = phase angle), which
is solely dependent on the properties of the liquid asphalt binder. For rutting
resistance, a high value of rut factor or G and a low phase angle & are
desirable. The higher the rut factor, the stiffer the asphalt and thus more
resistant is the binder to rutting. However, this study found that a higher rutting
factor (G/sind) alone could not ensure that a mix has a low rut potential.
Binder’s viscosity was found to have higher effect on rutting than other
properties. A binder’s ranking based on its properties does not match with the
mixture performance. A binder’s PG grade does not ensure the rut performance
of the mixture containing the binder. Therefore, a binder satisfying the
Superpave specification requirements should be evaluated by the rutting

performance of the HMA mix in the APA testing.
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2. Another contribution of this study is the evaluation of a number of factors that
affect rutting from a rather small number of tests. Since rutting can be affected
by many parameters, typically a large number of tests are needed to evaluate
the effect of these parameters on rutting, as well as their relative significance.
In this study, a procedure is employed to design a test matrix that includes only
a small number of tests. A procedure for evaluating the test results is described.
Using the developed procedure the significant factors are identified from a
number of factors that affect rutting. In particular, the major rut factors
identified using the developed statistical approach are:

s  Binder grade (PG 64-22 vs. PG 70-28) — This is the most significant.

o  Temperature (64°C vs. 60°C) —This is second most significant.

o  Gradation — TRZ in the gravel mixture has higher rut potential than that
of BRZ in the limestone mixture.

o  Moisture of test specimens (wet vs. dry).

o Binder content —~ When binder content exceeded one percent, it
becomes a significant factor for the gravel mixture.

e Specimen mold type (AVC beam vs. SGC cylinder) — If this factor is
included in a test matrix, it becomes the second most significant factor
among the factors that affect rutting. However, this factor (specimen
type) is excluded due to difficulty in fabrication of beam specimen
using the AVC.

3. The ranking of mixes can be performed based on their rutting potential. For a

total of 10 different plant produced mixes, 4 excellent, 3 good, 2 fair, and 1
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poor performing mixes are detected. Ranking criteria is based on mixes
exhibits rut values below 2 mm (0.079 in.) are excellent, mixes exhibits rut
depth more than 2 mm (0.079 in.) and less than 3 mm (0.118 in.) are good, and
mixes with rut potential of 3 mm to 4 mm (0.118 in. to 0.16 in.) are fair. Any
mix shows a rut depth of more 4 mm (0.16 in.) is classified as a poor mix.

It is found that a mix with its aggregate gradation passing through the restricted
zone can have rut values lower than that of a mix with its aggregate gradation
passing below or above the restricted zone. The restricted zone in the 0.45-
power gradation plot does not have any 