
UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

COMPREHENSIVE PERFORMANCE EVALUATION AND OPTIMIZATION OF 

HIGH THROUGHPUT SCANNING MICROSCOPY FOR METAPHASE 

CHROMOSOME IMAGING 

 

 

 

 

 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

By 

 

YUCHEN QIU 

 Norman, Oklahoma 

2013  



 

 

 

 

 

COMPREHENSIVE PERFORMANCE EVALUATION AND OPTIMIZATION OF 

HIGH THROUGHPUT SCANNING MICROSCOPY FOR METAPHASE 

CHROMOSOME IMAGING 

 

 

A DISSERTATION APPROVED FOR THE 

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

 

 

 

 

 

 

 

 

BY 

 

 

 

 

 

 

 

    ______________________________ 

Dr. Hong Liu, Chair 

 

 

______________________________ 

Dr. Shibo Li 

 

 

______________________________ 

Dr. Lei Ding 

 

 

______________________________ 

Dr. Monte Tull 

 

 

______________________________ 

Dr. Jizhong Zhou 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by YUCHEN QIU 2013 

All Rights Reserved. 



To my parents



iv 

Acknowledgements 

The author would like to express his sincere gratitude to his advisor, Dr. Hong 

Liu, who has provided the author such an incredible opportunity to perform his 

encouraging research. The author has benefited tremendously from his tireless 

mentoring and vast knowledge.  

The author gratefully acknowledges Dr. Bin Zheng and Dr. Shibo Li (Health 

Sciences Center, University of Oklahoma), for their continued support of the author’s 

research. 

The author also gratefully acknowledges all his committee members: Dr. Lei 

Ding, Dr. Monte Tull, and Dr. Jizhong Zhou, for their time and efforts serving in 

author’s Ph.D. program committee.   

The author also greatly appreciates the help from the members of the research 

group: Molly Donovan Wong, Yuhua Li, Xiaodong Chen, Da Zhang, Xingwei Wang, 

Zheng Li, Di Wu, Liqiang Ren, Jie Song, and Muhammad U. Ghani. 

  



v 

Table of Contents 

Acknowledgements ......................................................................................................... iv 

List of Tables ................................................................................................................... ix 

List of Figures ................................................................................................................... x 

Abstract .......................................................................................................................... xiii 

Chapter 1: Introduction ..................................................................................................... 1 

1.1 Objective ............................................................................................................... 1 

1.2 Dissertation organization ...................................................................................... 1 

Chapter 2: Background ..................................................................................................... 5 

2.1 Human chromosomes: Extraction and karyotyping ............................................. 5 

2.2 Human chromosomes: Indentifying the pathologically analyzable metaphase 

chromosomes .................................................................................................. 7 

2.3 Human chromosomes: Chromosome abnormalities ............................................. 8 

2.4 The fluorescent in situ hybridization (FISH) technique ..................................... 10 

Chapter 3: The motivation of investigating the high throughput scanning .................... 12 

3.1 Why do we need to develop automatic scanning microscopy? .......................... 12 

3.2 Introduction to automatic scanning microscopy: Literature review ................... 13 

3.2.1 The automatic scanning microscopy for metaphase chromosome screening 

and karyotyping ...................................................................................... 13 

3.2.2 The automatic scanning microscopy for FISH screening .......................... 15 

3.3 High throughput scanning microscopy: Concept and practice ........................... 17 

3.4 Technical challenges of the current prototype .................................................... 22 



vi 

Chapter 4: The feasibility of the automatic detection of analyzable metaphase 

chromosomes ...................................................................................................... 23 

4.1 Background ......................................................................................................... 23 

4.2 Experimental methods ........................................................................................ 23 

4.3 Experimental results ........................................................................................... 26 

4.4 Discussion ........................................................................................................... 30 

Chapter 5: Impact of the optical depth of field on cytogenetic image quality ............... 32 

5.1 Background ......................................................................................................... 32 

5.2 Optical depth of field (DOF): Definition and calculation .................................. 33 

5.2.1 Geometric DOF ......................................................................................... 33 

5.2.2 Diffractive DOF ......................................................................................... 35 

5.2.3 The total DOF of the optical system .......................................................... 35 

5.3 DOF measurements ............................................................................................ 35 

5.4 Results ................................................................................................................ 38 

5.4.1 DOF theoretical results .............................................................................. 38 

5.4.2 DOF experimental results .......................................................................... 38 

5.4.3 DOF impact on diagnosis of clinical cytogenetic images ......................... 40 

5.5 Discussion ........................................................................................................... 50 

Chapter 6: Evaluations of auto-focusing methods .......................................................... 53 

6.1 Background ......................................................................................................... 53 

6.2 Auto-focusing functions: Definition and introduction ....................................... 54 

6.2.1 The definition of the auto-focusing function ............................................. 54 

6.2.2 Auto-focusing functions: Brenner gradient ............................................... 55 



vii 

6.2.3 Auto-focusing functions: Histogram range ............................................... 56 

6.2.4 Auto-focusing functions: Threshold pixel counting .................................. 57 

6.2.5 Auto-focusing functions: Vollath F5 ......................................................... 58 

6.2.6 Auto-focusing functions: Image variance ................................................. 59 

6.3 Experimental methods ........................................................................................ 59 

6.4 Experimental results ........................................................................................... 63 

6.5 Discussion ........................................................................................................... 67 

Chapter 7: Objective evaluation of the microscopic image sharpness ........................... 70 

7.1 Background ......................................................................................................... 70 

7.2 Experimental methods ........................................................................................ 70 

7.2.1 Objective sharpness evaluation of the microscopic images for standard 

resolution target ...................................................................................... 70 

7.2.2 Objective sharpness evaluation of the microscopic images for metaphase 

chromosomes .......................................................................................... 73 

7.3 Experimental results ........................................................................................... 73 

7.3.1 Results of objective evaluation for standard resolution target .................. 73 

7.3.2 Results of objective evaluation for metaphase chromosomes ................... 74 

7.4 Discussion ........................................................................................................... 76 

Chapter 8: An initial study of an automatic scanning method ....................................... 77 

8.1 Background ......................................................................................................... 77 

8.2 Experimental methods ........................................................................................ 77 

8.3 Experimental results ........................................................................................... 80 

8.4 Discussion ........................................................................................................... 82 



viii 

Chapter 9: Feature selection for the automated detection of metaphase chromosomes: 

Performance comparison using a receiver operating characteristic (ROC) 

method ................................................................................................................ 84 

9.1 Background ......................................................................................................... 84 

9.2 Receiver operating characteristic (ROC) curve: Basic concepts ........................ 85 

9.2.1 ROC curve: Four categories in the diagnosis ............................................ 85 

9.2.2 ROC curve: Definition .............................................................................. 87 

9.2.3 ROC curve: Models and estimation .......................................................... 89 

9.2.4 Performance evaluation using ROC curve ................................................ 93 

9.3 Experimental materials and methods .................................................................. 95 

9.4 Experimental results ........................................................................................... 98 

9.5 Discussion ......................................................................................................... 104 

Chapter 10: Conclusion and discussion ........................................................................ 106 

10.1 Summary ......................................................................................................... 106 

10.2 Original contributions ..................................................................................... 108 

10.3 Discussion and future study ............................................................................ 109 

References .................................................................................................................... 112 

  



ix 

List of Tables 

Table 1: Comparison between the numbers of visually selected analyzable cells using 

microscopes and the automated scanning system with CAD ......................................... 29 

Table 2: The depth of field of our microscopic scanning system equipped with two 

different objective lenses ................................................................................................ 38 

Table 3: Results of the evaluation of auto-focusing functions for bone marrow 

specimen ......................................................................................................................... 66 

Table 4: Results of the evaluation of auto-focusing functions for blood specimen ...... 66 

Table 5: Comparison between the automatic screening using different sampling 

schemes ........................................................................................................................... 81 

Table 6: The radiologists’ diagnostic results of 100 patients ........................................ 88 

Table 7: The calculated sensitivity and specificity of the radiologists’ diagnostic results

 ........................................................................................................................................ 89 

Table 8: The estimated p-value of the difference significance between the features .. 103 

Table 9: The estimated correlation coefficients among different features .................. 104 

 



x 

List of Figures 

Figure 1: The microscopic images of chromosomes ....................................................... 6 

Figure 2: The microscopic images of a metaphase bone marrow cells before (a) and 

after (b) karyotyping ......................................................................................................... 7 

Figure 3: The microscopic images of pathologically meaningless chromosomes .......... 8 

Figure 4: Three examples of chromosome abnormities .................................................. 9 

Figure 5: A microscopic image of an interphase cell processed by FISH technique .... 11 

Figure 6: The microscopic images of a clinically analyzable metaphase cell ............... 14 

Figure 7: A demonstration of the motion blur ............................................................... 18 

Figure 8: A demonstration of the time delay integration .............................................. 18 

Figure 9: A demonstration of the synchronization blur ................................................ 20 

Figure 10: The scanned images of an USAF1951 resolution target .............................. 21 

Figure 11: The microscopic images of metaphase chromosomes obtained by a TDI 

camera under a 100× (oil, N.A. = 1.25) objective lens .................................................. 21 

Figure 12: The flow chart of the CAD scheme program [29] ....................................... 25 

Figure 13: Digital microscopic images of an analyzable cell ....................................... 27 

Figure 14: An example of image contrast and sharpness deterioration due to the off-

focusing effect ................................................................................................................ 27 

Figure 15: The demonstration of geometric DOF ......................................................... 33 

Figure 16: Sample images of an USAF 1951 standard resolution target ...................... 39 

Figure 17: The MTF curve measured for the tested microscope using (a) 60× (dry, N.A. 

= 0.95) objective lens and (b) 100× (oil, N.A. = 1.25) objective lens ............................ 39 



xi 

Figure 18: The measured “half-maximum” contrast values versus focusing positions for 

the investigated microscopes when using (a) 60× (dry, N.A. = 0.95) objective lens and 

(b) 100× (oil, N.A. = 1.25) objective lens ...................................................................... 40 

Figure 19: Microscopic images (60×) of a clinically analyzable cell contained in a bone 

marrow sample ............................................................................................................... 43 

Figure 20: Microscopic images (60×) of a clinically analyzable cell contained in a 

blood sample ................................................................................................................... 44 

Figure 21: Microscopic images (60×) of a clinically analyzable cell contained in a POC 

sample ............................................................................................................................. 45 

Figure 22: Microscopic images (100×) of a clinically analyzable cell contained in a 

bone marrow sample ....................................................................................................... 46 

Figure 23: Microscopic images (100×) of a clinically analyzable cell contained in a 

blood sample ................................................................................................................... 47 

Figure 24: Microscopic images (100×) of a clinically analyzable cell contained in a 

POC sample .................................................................................................................... 48 

Figure 25: Microscopic images (100×) of a clinically analyzable cell contained in an 

amniotic fluid sample ..................................................................................................... 49 

Figure 26: Microscopic fluorescent in situ hybridization (FISH) images of a clinically 

analyzable interphase cell contained in a POC sample. ................................................. 50 

Figure 27: Microscopic images of a USAF1951 standard resolution target ................. 54 

Figure 28: The microscopic images of the 456 lp/mm pattern of the USAF1951 

standard resolution target. .............................................................................................. 56 



xii 

Figure 29: The histogram of the 456 lp/mm pattern of the USAF1951 standard 

resolution target. ............................................................................................................. 57 

Figure 30: Examples of an ideal focus curve (a) and a failed focus curve (b) .............. 62 

Figure 31: An example of auto-focusing functions performed on micorsopic images of 

a pathlogical cell acquried from bone marrow sample ................................................... 66 

Figure 32: Sharpness curve and some partial images of a resolution target obtained at 

different scanning speeds ............................................................................................... 74 

Figure 33: Sharpness curve and some images of a metaphase chromosome obtained at 

different scanning speeds ............................................................................................... 75 

Figure 34: 3×3 scanning scheme ................................................................................... 78 

Figure 35: Microscopic images of a clinically analyzable cell contained in a blood 

sample, captured by (a) 3×2, (b) 3×3 sampling scheme, respectively ........................... 82 

Figure 36: The confusion matrix of the diagnosis [127] ............................................... 86 

Figure 37: The empirical ROC curve of the above example ......................................... 89 

Figure 38: The demonstration of the binomial modal for the ROC curve [127] ........... 90 

Figure 39: The estimated ROC curve of the example in Section 9.2.2 ......................... 93 

Figure 40: Four different ROC curves .......................................................................... 93 

Figure 41: A comparison between two different ROC curves with similar AUC......... 94 

Figure 42: Three examples of the microscopic images capitured by the high throughput 

scanner ............................................................................................................................ 99 

Figure 43: The feature scatter diagram of the dataset ................................................. 100 

Figure 44: The estimated ROC curve for different extracted features ........................ 101 

Figure 45: The ROC of the standard deviation of different features ........................... 102 



xiii 

Abstract 

Specimen scanning is a critically important tool for diagnosing the genetic 

diseases in today’s hospital. In order to reduce the clinician’s work load, many 

investigations have been conducted on developing automatic sample screening 

techniques in the last twenty years. However, the currently commercialized scanners 

can only accomplish the low magnification sample screening (i.e.  under 10× objective 

lens), and still require clinicians’ manual operation for the high magnification image 

acquisition and confirmation (i.e. under 100× objective lens). Therefore, a new high 

throughput scanning method is recently proposed to continuously scan the specimen 

and select the clinically analyzable cells. In the medical imaging lab, University of 

Oklahoma, a prototype of high throughput scanning microscopy is built based on the 

time delay integration (TDI) line scanning detector.  

This new scanning method, however, raises several technical challenges for 

evaluating and optimizing the performance. First, we need to use the clinical samples to 

compare this new prototype with the conventional two-step scanners. Second, the 

system DOF should be investigated to assess the impact on clinically analyzable 

metaphase chromosomes. Further, in order to achieve the optimal results, we should 

carefully assess and select the auto-focusing methods for the high throughput scanning 

system. Third, we need to optimize the scanning scheme by finding the optimal trade-

off between the image quality and efficiency. Finally, analyzing the performance of the 

various image features is meaningful for improving the performance of the computer 

aided detection (CAD) scheme under the high throughput scanning condition.   
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The purpose of this dissertation is to comprehensively evaluate the performance 

of the high throughput scanning prototype. The first technical challenge was solved by 

the first investigation, which utilized a number of 9 slides from five patients to compare 

the detecting performance of the high throughput scanning prototype. The second and 

third studies were performed for the second technical challenge. In the second study, we 

first theoretically computed the DOF of our prototype and then experimentally 

measured the system DOF. After that, the DOF impact was analyzed using cytogenetic 

images from different pathological specimens, under the condition of two objective 

lenses of 60× (dry, N.A. = 0.95) and 100× (oil, N.A. = 1.25). In the third study, five 

auto-focusing functions were investigated using metaphase chromosome images. The 

performance of these different functions was compared using four widely accepted 

criteria. The fourth and fifth investigations were designed for the third technical 

challenge. The fourth study objectively assessed chromosome band sharpness by a 

gradient sharpness function. The sharpness of the images captured from standard 

resolution target and several pathological chromosomes was objectively evaluated by 

the gradient sharpness function. The fifth study presented a new slide scanning scheme, 

which only applies the auto-focusing operations on limited locations. The focusing 

position was adjusted very quickly by linear interpolation for the other locations. The 

sixth study was aimed for the fourth technical challenge. The study investigated 9 

different feature extraction methods for the CAD modules applied on our high 

throughput scanning prototype. A certain amount of images were first acquired from 

200 bone marrow cells. Then the tested features were performed on these images and 

the images containing clinically meaningful chromosomes were selected using each 
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feature individually. The identifying accuracy of each feature was evaluated using the 

receiver operating characteristic (ROC) method.  

In this dissertation, we have the following results. First, in most cases, we 

demonstrated that the high throughput scanning can select more diagnostic images 

depicting clinically analyzable metaphase chromosomes. These selected images were 

acquired with adequate spatial resolution for the following clinical interpretation. 

Second, our results showed that, for the commonly used pathological specimens, the 

metaphase chromosome band patterns are clinically recognizable when these 

chromosomes were obtained within 1.5 or 1.0 μm away from the focal plane, under the 

condition of applying the two 60× or 100× objective lenses, respectively. In addition, 

when scanning bone marrow and blood samples, the Brenner gradient and threshold 

pixel counting methods can achieve the optimal performance, respectively. Third, we 

illustrated that the optimal scanning speed of clinical samples is 0.8 mm/s, for which the 

captured image sharpness is optimized. When scanning the blood sample slide with an 

auto-focusing distance of 6.9 mm, the prototype obtained an adequate number of 

analyzable metaphase cells. More useful cells can be captured by increasing the auto-

focusing operations, which may be needed for the high accuracy diagnosis. Finally, we 

found that the optimal feature for the online CAD scheme is the number of the labeled 

regions. When applying the offline CAD scheme, the satisfactory results can be 

achieved by combining four different features including the number of the labeled 

regions, average region area, average region pixel value, and the standard deviation of 

the either region circularity or distance. 
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Although these investigations are encouraging, there exist several limitations. 

First, the number of the specimens is limited in most of the assessments. Second, some 

important impacts, such as the DOF of human eye and the sample thickness, are not 

considered. Third, more recently proposed algorithms and image features are not used 

for the evaluation. Therefore, several further studies are planned, which may provide 

more meaningful information for improving the scanning efficiency and image quality. 

In summary, we believe that the high throughput scanning may be extensively applied 

for diagnosing genetic diseases in the future. 

 

Keywords: Metaphase chromosome imaging, high throughput scanning, computer 

aided detection (CAD) , performance evaluation and optimization, depth of field (DOF), 

cytogenetic image quality, digital pathology, automatic scanning method, sampling 

scheme, auto-focusing technique, image sharpness, objective evaluation, chromosome 

feature extraction 

 

 



1 

Chapter 1: Introduction 

1.1 Objective 

Specimen scanning is an effective tool for the diagnosis of genetic diseases such 

as leukemia [1-3]. Traditionally, the scanning is accomplished manually by clinicians, 

which is tedious and inefficient. Although many research efforts have been devoted to 

the development of automatic sample screening in the last twenty years [4], the 

currently commercialized image scanners still require two step scanning (10× screening 

and 100× image acquisition) and need clinicians’ manual operation [5, 6]. In order to 

improve the current method, a new technique, high throughput scanning microscopy, 

was recently proposed, which is able to continuously scan the specimen and select the 

clinically analyzable cells. In addition, the obtained images have enough resolving 

power for the clinical diagnosis. In the medical imaging lab, University of Oklahoma, a 

new prototype of high throughput microscopic scanning microscopy is developed, 

which is based on the time delay integration (TDI) line scanning camera. However, 

there are several technical challenges for the assessing and optimizing the new 

prototype. The objective of this dissertation is to comprehensively evaluate the 

prototype and optimize the performance. 

1.2 Dissertation organization 

This dissertation is composed of 10 chapters. Besides the chapter 1, the other 9 

chapters are organized as follows: 

Chapter 2 briefly presents the background of the entire dissertation. It consists of 

4 sections. Section 1 introduces the basic concepts about the chromosome diagnosis, 

including the chromosome sample preparation and karyotyping. Section 2 explains why 
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we need to scan and identify the analyzable metaphase chromosomes. Section 3 is a 

brief introduction of chromosome abnormalities and the related diseases. Section 4 

discusses the concepts of fluorescent in situ hybridization technique (FISH) method.   

Chapter 3 explains the motivation of why high throughput scanning method is 

proposed. Section 1 first discusses the relationship between the genetic diseases and 

chromosome abnormalities. Section 2 then summarizes the recent research progress of 

the automatic specimen scanning based on the transmitted light or florescent 

microscopic scanners, respectively. After that, section 3 presents the architecture of the 

high throughput scanning prototype developed in our lab. Finally section 4 discusses the 

technical challenges of the high throughput scanning microscopy.      

Chapter 4 is a preliminary performance comparison between high throughput 

scanning prototype and the conventional scanners [7]. A total of 9 slides obtained from 

five patients’ blood and bone marrow sample were scanned by both of the two scanning 

machines. The system performance was evaluated by comparing the number of the 

clinically meaningful metaphase chromosomes selected by each scanner.   

Chapter 5 investigates the off-focusing tolerance of the clinically analyzable 

metaphase chromosomes acquired from several different types of pathological samples 

[8, 9]. In this chapter, the optical depth of focus (DOF) was first computed by a well-

recognized theoretic model, and then the DOF was measured using a standard 

USAF1951 resolution target. After that, the DOF impact on the chromosomes was 

subjectively assessed by comparing the band pattern sharpness of the cytogenetic 

images which are captured inside or outside the system DOF range. The assessment was 
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conducted under two objective lenses of 60× (dry, N.A. = 0.95) and 100× (oil, N.A. = 

1.25).  

Chapter 6 tests and compares five auto-focusing functions [10]. The five tested 

auto-focusing functions were first detailed. Then a certain amount of images were 

obtained from bone marrow and blood specimens. The five tested auto-focusing 

functions were applied on these images, and their performance was assessed by four 

different widely accepted criteria. The optimal functions were finally suggested for each 

specimen, respectively.  

Chapter 7 objectively assesses the chromosome band sharpness [11]. The 

standard resolution target and several pathological chromosomes were first imaged at 

different scanning speeds, and the sharpness was objectively assessed by the gradient 

sharpness function. According to the computed sharpness, the optimal scanning 

speeding was suggested for the chromosome screening. 

Chapter 8 analyzes a sampling-focusing method, which only applies the auto-

focusing operations on a limited number of locations of the imaging field [12]. For the 

rest of the imaging field, the focusing position is adjusted very quickly through linear 

interpolation. Using different sampling schemes, the investigated method was evaluated 

on scanning a certain area of blood specimens. The numbers of the selected analyzable 

chromosomes were summarized for comparison.  

Chapter 9 utilizes the receiver operating characteristic (ROC) method to select 

the optimal feature for the analyzable metaphase chromosome selection. In this chapter, 

the ROC curve was first briefly explained. Next, a number of 200 bone marrow cells 

including 67 clinically meaningful chromosomes were acquired under the high 
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throughput scanning prototype. After that, a number of 9 image features were 

individually applied on these obtained images, to group the analyzable images from the 

others. The classification performance of each feature was assessed by the ROC curve. 

Finally, the optimal features were suggested for the first on-line and second off-line 

CAD schemes, respectively. 

Chapter 10 summarizes the entire dissertation and suggests the future studies. 
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Chapter 2: Background 

2.1 Human chromosomes: Extraction and karyotyping 

Chromosome is a specially organized biological structure in the cell nucleus 

which carries heredity materials including Deoxyribonucleic acid (DNA), Ribonucleic 

acid (RNA), and some other special proteins [13]. In the clinical application, physicians 

are interested in the number and morphology of the human chromosomes. The 

chromosome numbers are different for a variety of organisms. The number of the 

human chromosomes was first discovered by Tjio and Levan in 1956, which illustrated 

that each normal human cell contains 46 chromosomes, including 44 autosomes and 2 

allosomes [1]. The chromosomes morphology varies in the different stages of the cell 

division. In the interphase stage, chromosomes are inside the cell nucleus for DNA 

duplication, as demonstrated in Fig 1 (a).  In the mitosis stage, the chromosomes are 

divided into two identical parts for the two individual daughter cells.  The mitosis stage 

can be further classified into several steps, among which the middle step is called 

metaphase. In metaphase step, two identical parts of one chromosome are attached at 

the centromere, and these chromosomes are highly condensed and coiled, as shown in 

Fig 1 (b). Comparing to the other steps, the metaphase chromosomes have the best 

morphology, thus they are most suitable for the clinical diagnosis. 

In the clinical application, the metaphase chromosomes are obtained from 

different kinds of patient samples, including bone marrow, peripheral blood, product of 

conception, amniotic fluid etc. The chromosome extracting procedure is composed of 

three steps: incubation, fixation, and spreading. These obtained samples are first 

incubated for several days, during which phytoagglutinin is applied to increase the cell 
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reproduction. At the end of the incubation, the cell division is inhibited by colchicines, 

to maximize the number of the useful metaphase chromosomes. Then, using the mixture 

of carbinol and glacial acetic acid, the cells are fixed at one stage of the cell cycle. The 

fixed chromosomes are finally spreaded on the microscopic slides for the purpose of 

following observation.   

Before staining, the chromosomes are transparent and cannot be observed under 

the transmitted microscope. The clinically distinguishable chromosome segments are 

defined as the chromosome band patterns, which are accomplished by the banding 

techniques. Among different banding methods, the G-banding technique is used in all 

the experiments discussed in this dissertation. The G-banding technique utilizes the 

Giemsa dye to stain the investigated chromosomes, which are composed of alternating 

bright and dark segments, as demonstrated in Fig 2.  

                          

                              (a)                                                    (b) 
 

Figure 1: The microscopic images of chromosomes 

(a): The microscopic image of an interphase chromosomes (b): The microscopic image 

of a metaphase chromosomes 
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The 46 chromosomes can be grouped into 23 pairs, each of which contains a 

unique band pattern. Since all the chromosomes are randomly distributed on the 

captured images, we need to organize them with a standard order, which is defined as 

chromosome karyotyping. As illustrated in Fig 2 (b), each pair of the chromosomes is 

recognized from Fig 2 (a), by comparing the unique band pattern with a standard layout. 

The karyotyped results are ordered with decreasing length.  

  
             (a)             (b) 
 

Figure 2: The microscopic images of a metaphase bone marrow cells before (a) and 

after (b) karyotyping  

(Courtesy Genetics Lab, University of Oklahoma Health Sciences Center) 

2.2 Human chromosomes: Indentifying the pathologically analyzable metaphase 

chromosomes  

As mentioned before, only metaphase chromosomes are suitable for the clinical 

investigation. However, metaphase chromosomes are not all analyzable for the 

diagnostic purpose. Due to the reasons of the clinical sample preparation and processing, 

some metaphase chromosomes are overlapped with each other, and some chromosomes 

are too close to be distinguished under the microscope, as demonstrated in Fig 3 (a) and 

(b). These cells are defined as clinically un-analyzable metaphase chromosomes.  
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Clinicians need to screen and detect the clinically meaningful chromosomes 

before the karyotyping. Since metaphase chromosomes only account for approximately 

4% of all the cells depicted on the clinical slide and only part of the metaphase cells are 

pathologically analyzable, clinician need to scan 3-5 slides to identify a certain amount 

of analyzable chromosomes, which is labor intensive and time consuming.  

          

(a)     (b) 
 

Figure 3: The microscopic images of pathologically meaningless chromosomes 

(a): Two many metaphase chromosomes aggregated together (b): metaphase 

chromosomes from two cells.  

2.3 Human chromosomes: Chromosome abnormalities 

Since Philadelphia translocation t(9;22)(q34;q11) was first discovered by  

Novell and Hungerford in 1959, chromosome abnormalities have been proved to be 

consistent with genetic related diseases [3]. Chromosome abnormalities can be 

classified into structure abnormality and number abnormality. The Philadelphia 

translocation is a typical example of structure abnormality, which is a reciprocal 

translocation between 9th and 22nd chromosome. On the karyotyped image Fig 4, the 

9th chromosome is longer and 22th chromosome is shorter than the normal case. In 



9 

addition, their band patterns are also different. Chromosome number change is defined 

as the number deletion (monosomy) or redundancy (trisomy). For example, 21 trisomy 

is a sensitive indicator of Down’s Syndrome, which has an extra 21st chromosome, as 

illustrated in Fig 4 (b). In Fig 4 (c), however, has only one chromosome in 16th, 18th, 

and 22th chromosome, which is associated with a specific leukemia. 

 

(a) 

              

       (b)                                                          (c) 
 

Figure 4: Three examples of chromosome abnormities 

(a): Philadelphia translocation  (b): 21 trisomy  (c): 16th, 18th, and 22th monosomy 

(Courtesy Genetics Lab, University of Oklahoma Health Sciences Center) 

In hospital, physicians have different standards for various samples. For the 

bone marrow sample, clinicians need to image and karyotype at least 20 analyzable 

metaphase chromosomes for each case. Since the heterogeneous case might contain 

both normal and abnormal chromosome band patterns, the case will be diagnosed as 
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positive if chromosome abnormalities (number or structure) are identified in three or 

more cells. For the peripheral blood sample, clinicians need to find 20 analyzable 

chromosomes. Among these detected chromosomes, 17 cells are examined by counting 

the number of the chromosomes, while the other three cells are karyotyped to analyze 

both the number and structure abnormalities. 

2.4 The fluorescent in situ hybridization (FISH) technique 

The method of fluorescent in situ hybridization (FISH) [14, 15] has been widely 

used in the detection of gene abnormality for medical applications such as prenatal 

aneuploidy [16] and chronic myeloid leukemia (CML) [17]. Similarly, the FISH sample 

preparing procedure also includes cell incubation, fixation and spreading [18]. After the 

cell spreading, the fluorescent biomarkers are added, which diffuse into the cell and 

finally attach the centromere of the interested chromosomes. Under the fluorescent 

microscope, the investigated chromosomes can be observed as circular dots with 

different colors. Fig 5 is an example of the FISH image. 13rd and 21st chromosomes are 

indicated by the centromeric CEPX (DXZ1) and CEP 3 (D3Z1) spectrum probe, which 

appear as green and red dots, respectively [19]. The blue background of the entire cell 

nucleus is stained by the DAPI. The chromosome abnormally is investigated by 

counting the number of the dots. Clinicians need to check at least 50 cells for each case. 
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Figure 5: A microscopic image of an interphase cell processed by FISH technique 

(Courtesy Genetics Lab, University of Oklahoma Health Sciences Center) 
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Chapter 3: The motivation of investigating the high throughput scanning  

3.1 Why do we need to develop automatic scanning microscopy? 

Pathological examination of clinical specimens provides a ground-truth of 

disease diagnosis. In clinical practice, consistent chromosome abnormalities have been 

proved to be associated with some serious diseases [1-3, 6, 20, 21]. Furthermore, 

pathological chromosome analysis helps to categorize patients into different clinical 

groups of various cancer or disease prognoses, for which oncologists could evaluate 

cancer prognosis and select more effective treatment procedures [22]. 

For the chromosome analysis, karyotyping and fluorescence in situ hybridization 

(FISH) are the standard techniques in today’s hospital [23, 24]. Karyotyping is only 

suitable for the analyzable metaphase chromosomes [23]. For each indentified 

chromosome of the interested cell, it is compared with the standard chromosome band 

patterns, to determine the chromosome abnormalities on number or morphology. All 

these chromosomes are arranged in pair and ordered with decreasing length on the 

finally karyotyped result. FISH technique is suitable for both metaphase and interphase 

chromosomes. The interested DNA segments are attached with fluorescent biomarkers, 

which can be observed as colored dots under the fluorescent microscope [24]. 

Clinicians can identify the abnormalities by counting the number or estimating the size 

of the dots. 

Traditionally, karyotyping or FISH analysis are accomplished manually in the 

hospital. However, the visual searching and identification is very labor intensive. In 

addition, the inter-observer variability during the chromosome selection may produce 
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inconsistent results. Therefore, the development of automatic scanning microscopy has 

received extensive research interest since 1980’s [4, 25-31]. 

 3.2 Introduction to automatic scanning microscopy: Literature review 

3.2.1 The automatic scanning microscopy for metaphase chromosome screening and 

karyotyping  

The automatic scanning microscopy can be divided into three basic steps: 1) 

image acquisition; 2) image separation; 3) feature extraction and classification [4]. In 

order to find a desirable number (20-30) of analyzable metaphase chromosome cells for 

each patient, the machine needs to scan 3 to 5 sample slides for one patient (in 

particular for the bone marrow specimens). The current commercialized image scanning 

systems (i.e., MetaSystems, Altlussheim, Germany [21]) are semi-automatic, which 

screens the specimen under 10× or 20× objective lenses with low numerical aperture 

(N.A.), as illustrated in Fig 6 (a). Since these lenses cannot obtain images with adequate 

spatial resolution for the karyotyping, clinicians need to manually move the slide to the 

identified location and acquire the image under a high magnification objective lens. An 

example is demonstrated in Fig 6 (b). 

After the images are obtained, the interested chromosomes are separated from 

the background, for the following feature extraction and classification. Before the 

segmentation, a low pass filter is applied to suppress the noise and remove the small 

size debris [32]. The chromosome separation is composed of two steps. First, the 

separated or clustered chromosomes are segmented from the background by setting an 

intensity threshold. Among the different threshold methods, the adaptive threshold [33] 

and region based level set [34] are considered as the best methods [35]. Then, the 
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clustered chromosomes are disentangled as individual entities. The early disentangling 

methods, such as shape reasoning [36] or geometric contour separation [37], are only 

effective for the slightly overlapped chromosomes [38]. The method can be improved 

by using chromosome feature [39] and classification evidence [40]. Recently, a more 

accurate method employs global text and variant analysis [41], but the accuracy 

decreases when the image quality is deteriorated. Another recently reported method is 

based on the tree of choices, which is able to achieve an accuracy of 90% [33]. 

However, the dataset only contains 162 chromosome images [33].  In general, although 

the automatic segmentation and disentangle techniques are significantly improved in the 

last several years, they are still not satisfactory for clinical practice. The current 

commercialized scanning systems require clinician’s intervention to correct the 

segmentation [4].  

                              
 

              (a)                                                                 (b) 
 

Figure 6: The microscopic images of a clinically analyzable metaphase cell 

(a): The cell was captured under 10 (N.A. = 0.25) objective lens (b): The cell was 

100 (N.A. = 1.25) objective lens  

The feature extraction and classification is the final step of the entire procedure 

[4, 42]. The common chromosome features include relative length [43-45], centrometric 
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index [43-45], band pattern density profile [44-46], local energy [47], multi-resolution 

curvature [38],  DNA index [28], and gradient profile [48]. Most of the above features 

are related to the chromosome centromere, thus some researchers investigated the 

algorithms of identifying and locating the centromeres depicted on the captured images 

[49, 50]. The classifying accuracy can be improved by using machine learning tools to 

combine the advantages of different features [28, 30, 51].  Some typical classifiers are 

Hopfield networks [52] or multilayer perception networks [28, 30, 45, 51, 53], support 

vector machine [54], and fuzzy rule based expert system [55]. Among these machine 

learning tools, multilayer perception networks (MPN) are most popularly used, as the 

MPN has relatively low complexity and satisfied classifying accuracy. Another 

interesting topic is the selection of the chromosome features. Although the optimal 

combination of the above features are suggested in some publications [53], feature 

selection are still highly dependent on the specific clinical application. 

3.2.2 The automatic scanning microscopy for FISH screening 

Similarly, the scanning microscopy for FISH analysis is also divided into four 

steps. The FISH images are acquired from 2 dimensional (2D) or 3 dimensional (3D)  

fluorescence microscopes [56]. The first 2D FISH scanning system was proposed by 

Netten in 1997 [57]. The Netten’s system can capture the fluorescent images of two 

different bio-markers (one background marker and one FISH marker). For each 

acquired image, the region of interest (ROI) depicting interested interphase cells are 

first determined by an automatically-chosen constant threshold algorithm [58], and the 

interphase cells are then separated from the ROI background using isodata threshold 

approach [59]. The FISH dots are finally segmented by a combined method of TopHat 
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transform [60] and non-linear Laplacian operator edge detecting algorithm [61]. The 

segmented regions with proper size and relative intensity are considered as FISH dots 

and the number of the dots of each interphase cells is calculated as the final result. The 

Netten’s prototype achieves an accuracy of 89%, which is comparable to the manual dot 

enumeration [57]. 

 Although the test result was encouraging, a series of new scanners were 

proposed to further improve the Netten’s FISH scanning prototype.  Since several FISH 

biomarkers are applied in many clinical diagnosis, de Solórzano [62] reported a new 

scanner which is able to screen and identify the FISH emitting images from two FISH  

markers. Besides the dot number, the recently proposed scanners also applied  the ratio 

of green and red dots [63], telomere length [64], translocation detection [21] for the 

diagnosis. In addition, some pre-processing algorithms, such as CCD response recovery 

[65, 66], contrast enhancement [65, 66], and systematic error correction [21, 62], were 

also utilized on the FISH scanners, to improve the detecting accuracy.  

Due to the large sample thickness of the FISH cells, the interested DNA 

segments may be located differently in depth, but observed as overlapped dots under the 

2D the fluorescence microscopes [67]. These overlapped signals can be easily 

distinguished by 3D confocal microscopes [67], and the distance of the different FISH 

dots can be computed more accurately [68, 69]. Besides the confocal microscopes, 3D 

FISH scanner can also be implemented by the regular 2D fluorescent microscope [70], 

which sequentially obtains a stack of FISH images at different focusing positions to 

create the 3D FISH images [70].  
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Different from the karyotyping CAD, the mostly widely used features for the 

FISH dots are contrast, intensity, size, texture, eccentricity, etc [21, 71]. Besides the 

ANN, several other classifiers, such as Fuzzy ARTMAP [72, 73], support vector 

machine [74], native Bayesian classifier (NBC) [75], are also applied, which are able to 

achieve a classifying accuracy up to 87.1% [73]. 

3.3 High throughput scanning microscopy: Concept and practice 

Our research group has developed and tested a fully-automated microscopic 

scanning system based on a time-delay integration (TDI) scanning concept [76]. The 

scanner was built based on a commercially available microscope (Eclipse 50i, Nikon 

Instruments, Tokyo, Japan). The system includes a Time Delay Integration (TDI) CCD 

image detector (Piranha HS-40-04k40, Dalsa Company, Canada) and a motorized 

scanning stage (99S000, Ludl Electronic Products Ltd, U.S.A.).  

Different from the previously reported scanners, the high throughput prototype 

is able to scan the image continuously when the stage is moving. The continuous 

scanning is accomplished by the Time Delay Integration (TDI) CCD image detector. 

The principle of the TDI camera is demonstrated by a simplified detector with 9 pixels. 

As demonstrated in Fig 7 (a), a small object will be obtained by the detector, for which 

the image exactly matches the size of one detector pixel. If the object is moving, the 

obtained image will be blurred under the same exposure time, which is defined as 

motion blur. An example is illustrated in Fig 7 (b). In order to overcome the motion blur, 

the TDI detector divides the long exposure into three short exposures, each of which 

can acquire the object within one camera pixel. Thus the images are not blurred, but the 

signal to noise radio (SNR) will decrease as the exposure time declines. The SNR can 
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be enhanced by adding these three images properly, to finally create a high SNR image 

without motion blur, as shown in Fig 8 (d). 

     

         (a)                                                           (b) 
 

Figure 7: A demonstration of the motion blur 

(a): A still object is captured. (b): The image is obtained when the object is moving. 

            

                (a)                                             (b)                                              (c) 

 

(d) 
 

Figure 8: A demonstration of the time delay integration 

The object is captured in first (a) second (b) and third (c) short exposure. (d): The final 

images are accomplished by add these three images properly. 
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In the high throughput scanning prototype, the CCD detector is made of a TDI 

chip that includes 4096 active photo-elements in the horizontal direction (X-direction). 

In the vertical direction (Y-direction) of the TDI detector, the signal are added and 

averaged by shifting the signal charges. For our specific detector, there are 96 pixels in 

the vertical direction (Y-direction). The output signal is given by: 

                                                            

96

1

sig i

i

n n



                                          (3-1) 

where nsig is the output signal, and ni is the signal collected by each pixel in the vertical 

direction (Y-direction).  

In the continuous scanning, the stage and the TDI camera should be 

synchronized. In order words, the image of the object must be acquired within exactly 

one detector pixel during the exposure. If the object is imaged partially in one pixel and 

partially in another pixel, the final image will also be blurred after the integration, 

which is defined as synchronization blur. An example is as demonstrated in Fig 9 (d). In 

order to avoid the synchronization blur, the speed of the stage and the sampling rate of 

the TDI camera must be matched, which is determined by the following formula [77]:                                         

                                                             
p

T
V M




                                                                 (3-2) 

In the formula, T is the exposure time. V is the scanning speed. M is the system 

magnification (i.e. the magnification of the objective lens), and p is the pixel size of the 

detector, which is 0.007mm for our scanning prototype.  

Our TDI scanning prototype system has the capability of scanning a complete 

slide of 40mm × 20mm (0-40mm in X-direction, and 0-20 mm in Y-direction) under 

various optical magnification levels. As demonstrated in Fig 10 (a) and (b), the 
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USAF1951 resolution target (USAF1951, Edmund Optics, New Jersey, U.S.A.) is 

obtained at 12.28mm/sec under 10× (dry, N.A. =  0.25), and at 2.4mm/sec under 40× 

(dry, N.A. =  0.75), respectively. In Fig 11, metaphase chromosome cells are imaged 

using a 100× (oil, N.A. = 1.25) objective lens, with two scanning speeds (0.6mm/s and 

1.2mm/s). As compared to the current digital microscopes equipped with 2-D (CCD) 

detectors, the new TDI scanning system has the potential to directly scan an entire 

specimen under a high magnification objective lens (i.e. 100× oil immersion objective 

lens). Thus, the acquired images can be directly used for the diagnostic purpose.            

 

             

                  (a)                                           (b)                                             (c) 

 

(d) 
 

Figure 9: A demonstration of the synchronization blur 

(a): The object is captured in first exposure. (b) In the second exposure, the object is 

acquired in synchronized state. (c): In the second exposure, the object is acquired in 

unsynchronized state. (d): If the system is not synchronized, the finally obtained image 

will be blurred. 
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                      (a)                                            (b) 
 

Figure 10: The scanned images of an USAF1951 resolution target 

The images were captured with TDI camera under (a) 10× (dry, N.A. = 0.25), 12.28 

mm/sec stage moving speed, and TDI synchronization frequency of 17.75KHz, and (b) 

40× (dry, N.A. = 0.75), 2.4mm/sec stage moving speed. TDI synchronization frequency 

is 14.4 kHz. 

                       

       (a)                                         (b) 
 

Figure 11: The microscopic images of metaphase chromosomes obtained by a TDI 

camera under a 100× (oil, N.A. = 1.25) objective lens 

 They were obtained under (a) 0.6mm/sec stage scanning speed and TDI 

synchronization frequency of 11.25 kHz, and (b) 1.2mm/sec stage scanning speed and 

TDI synchronization frequency of 22.5 kHz. 
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3.4 Technical challenges of the current prototype 

The automated high-resolution image scanner raises several technical 

challenges. First, the performance of the automated scanner needs to be compared with 

the traditional two-step scanners. Second, in order to keep the pathologic specimen in 

focus during the image scanning, we need to investigate the tolerance level of tolerance 

level of the off-focusing in clinically analyzable metaphase chromosomes. Furthermore, 

during the scanning, the focusing position of the specimen is maintained by applying 

the auto-focusing technique. But the performance of auto-focusing methods are 

application oriented, which must be carefully assessed to achieve the satisfactory results. 

Third, auto-focusing operations are very time consuming, especially when they are 

repeatedly applied during the scanning. Thus the optimal scanning scheme should also 

be examined to balance the efficiency and image quality. In addition, we need to 

carefully select the scanning speed, as sharpness of the obtained images might be 

deteriorated due to the short exposure, scanning blur, and the stage random vibrations. 

Finally, in the development of the CAD scheme, selecting optimal and robust feature set 

is a critically step, as the image features may directly determine the final performance 

of the entire scheme. Since the effectiveness of the features varies according to different 

applications, we should assess the classification accuracy of these features under the 

high throughput scanning condition.   
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Chapter 4: The feasibility of the automatic detection of analyzable metaphase 

chromosomes  

4.1 Background  

During the scanning process, the high throughput microscopic scanner generates 

a large number of images with high resolving power. However, only a few regions of 

interest (ROI) contain analyzable metaphase chromosomes. Therefore, a computer 

aided detection (CAD) scheme is necessary to automatically identify ROIs depicting 

analyzable metaphase chromosomes [28-30, 78]. 

4.2 Experimental methods  

In this study, we investigated the feasibility of integrating the high throughput 

image scanner and the CAD scheme. During the investigation, a number of 9 specimens 

were first selected by the experienced clinicians. Among these specimens, 6 were 

acquired from the blood samples, and the others are from the bone marrow samples. 

These specimens were processed using the standard methods. For each specimen, the 

analyzable metaphase chromosomes were visually selected under the same condition of 

routine clinical practice.  

These selected specimens were then scanned using the high throughput image 

scanner. During the scanning, the CAD scheme was applied to detect and identify ROIs 

that may contain analyzable chromosomes. To improve the efficiency, the CAD scheme 

is divided into two processing modules: the on-line and off-line processing modules. 

The on-line module quickly follows the scanning processing to detect and save ROIs 

containing suspiciously analyzable chromosomes. After the scanning is finished, the 
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off-line CAD module is used to process each saved image section to further detect the 

analyzable ROIs.  

The flowchart of both on-line and off-line CAD schemes is illustrated in Fig 12. 

These schemes are composed of 4 different steps. The suspicious chromosome region is 

first separated and labeled, using a region growth and labeling algorithm. Then, a set of 

rules based on size and circularity are applied to discard the labeled regions under or 

above the previously determined threshold. After that, several image features are 

computed on the remained regions, which are detailed as follows [28, 29]:  

1) Number of the labeled regions [29]: This feature is defined as the number of 

the isolated “chromosomes” depicted on the entire image.  

2) Average intensity of each labeled region [79]: This feature is the average 

value of the pixel intensity for each separated “chromosomes” contained on the 

obtianed image.  

3) Area of each labeled region [29]: It is computed by counting the number of 

the pixels for each labeled “chromosome” contained in the image. 

4) Circularity of each region [80]:  In this feature, the gravity center of  each 

labeled “chromosome” is first determined. Next, the CAD creates a circle with the same 

size as the labeled region. Then, the method estimates the size of labeled region which 

is overlapped size with the equivalent circle. The ratio between the overlapped size (Ao) 

and entire size of the region (A) is defined as the region circularity: Ao / A.  

 5) The radial length to the center [29]: For this feature, the global gravity center 

(xg , yg) of all the labeled regions is calculated. Then the method determines the distance 
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between the gravity center (x, y) of each label region and global gravity center (xg , yg)., 

which is defined as the radial length to the center. 

 

Figure 12: The flow chart of the CAD scheme program [29] 

The offline CAD scheme extracts all of the above five features. For the online 

CAD scheme, only first three features are used to improve the algorithm efficiency.  

In the fourth step, based on these calculated features, the scheme identifies the 

analyzable metaphase chromosomes. For each feature, a range was first determined 

based on the clinician’s experience, within which the image will be consider as 

analyzable chromosome. The captured image will be discarded if the any one of the 

calculated features are outside the pre-determined range. The selected results are 

visually confirmed by a panel of three clinicians independently, to detect and discard 

the false-positive chromosomes. 
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4.3 Experimental results 

Figure 13-14 shows several analyzable chromosomes acquired by both area 

scanning and TDI line scanning detectors. Fig 13 (a) was acquired by the area scanning 

camera, which shows clear chromosomal band patterns with high contrast. Fig 13 (b), 

however, was captured by the TDI detector. Fig 13 (b) demonstrates clear chromosomal 

band patterns that are adequate for clinical interpretation, although they provide less 

contrast as compared to the image in Fig 13 (a). The relatively low contrast may be 

attributed to multiple factors including TDI noise. Experimental results demonstrate the 

potential of the high speed TDI scanning, online processing technique for clinical 

applications.   

 The image contrast and sharpness will decrease more significantly if the cell 

chromosomal band patterns deteriorate, as demonstrated in Fig 14. The image acquired 

manually in Fig 14 (a) depicts very clear chromosomal band patterns with high contrast. 

However, the auto-captured result in Fig. 14 (b) shows fuzzy chromosomal band 

patterns which do not meet the requirement for clinical interpretation. Generally, the 

sharpness and contrast of the auto-captured image by the TDI line scanning camera is 

inferior to the manual-captured image by the area camera, but in most situations, the 

auto-captured results are acceptable for clinicians. 
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(a)                                                        (b) 
 

Figure 13: Digital microscopic images of an analyzable cell 

 (a): The cell is acquired manually from a bone morrow slide, by an area scanning 

camera with a 100× objective. (b): The cell is acquired from the same slide, by a TDI 

line scanning camera with a 100× objective.  

         

      (a)                                                          (b) 
 

Figure 14: An example of image contrast and sharpness deterioration due to the off-

focusing effect  
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(a):  Digital microscopic image of an analyzable cell which is acquired manually from a 

bone morrow slide, by an area scanning camera with a 100× objective. (b) Image of the 

same cell acquired by a TDI line scanning camera with a 100× objective.  

The experimental results of blood specimens are demonstrated in Table 1. The 

clinicians initially selected 3 to 4 analyzable metaphase cells in these six specimen 

slides for their diagnostic purpose. However, a large number of image frames were 

captured (ranging from 518 to 3696 with an average of 1954 frames in each specimen) 

when scanning and applying the online CAD scheme to the six blood specimens. The 

large number of the on-line results can be attributed to the low specificity of the on-line 

CAD scheme. Real time scanning requires the high efficiency and high sensitivity of the 

on-line CAD, but this occurs at the cost of low specificity. After applying the off-line 

CAD scheme on the scanned results, the clinicians finally confirmed that 2 to 46 ROIs 

depicting analyzable metaphase chromosome cells for the diagnosis. These results 

reveal that our scanning system can select more analyzable cells in five out of six blood 

specimens.  

Analyzing bone marrow specimens is typically more difficult than analyzing 

blood specimens. In the experiment, the clinicians initially selected 10, 9, 10 analyzable 

cells from three bone marrow specimens. After conducting the automated scanning on 

these slides, the offline CAD scheme ultimately selected 80, 73, 20 ROIs with 

“analyzable cells”. Finally, clinicians confirmed 50, 22, 9 analyzable ROIs. Among 

these results, 9, 7, and 5 ROIs are matched with the initially visual selection, and 41, 15 

and 4 analyzable ROIs are missed in visual searching. On the other hand, the scheme 

selected 30, 51, and 11 ROIs in which the clinicians considered as un-analyzable cells, 
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which is larger than the corresponding results of blood specimens. The relatively high 

false-positive cell numbers can be attributed into multiple factors including image 

quality degradation by using TDI scanner as compared to the still-acquired images. In 

general, although the further improvement on CAD performance in reducing “false-

positive” selection is needed in our future studies, experimental results demonstrate the 

potential of high speed TDI scanning and CAD pre-screening for clinical applications. 

Factually, clinicians can also find as many analyzable cells as CAD scheme 

does. However, due to the time and cost restriction, they usually find only about 3 to 5 

analyzable metaphase cells per slide, although obtaining more analyzable metaphase 

cells can significantly improve the accuracy of the diagnosis. Using high speed TDI 

scanning, the tested system can provide more analyzable images for clinicians, to 

enhance their diagnostic accuracy with no additional costs. The results of the 

experiment reveal that the automated scanning system could help clinicians to achieve 

more accurate diagnosis while avoiding the tediously visual searching process under the 

microscopes. 

 

Table 1: Comparison between the numbers of visually selected analyzable cells using 

microscopes and the automated scanning system with CAD 

Blood Specimen Cells selected in 

initially visual 

searching 

Cells selected by 

on-line CAD 

module 

Cells selected by 

off-line CAD 

module 

Analyzable cells 

visually confirmed 

among CAD-

selected  cells 

1 3 1262 33 28 

2 3 3696 50 46 

3 3 1618 39 32 

4 4 2583 10 9 

5 3 518 34 19 

6 3 2046 4 2 
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4.4 Discussion 

High throughput scanning microscopy is an important technique for the 

diagnosis of genetic diseases. However, there is no investigation on the performance 

comparison between the new scanning method and the conventional scanners. In this 

paper, a total of 9 slides from five patients were used to test the system performance. 

During the scanning, an online program was used to determine whether the acquired 

image to be saved. Due to the high specificity caused by the strict time and sensitivity 

requirement of the online program, an offline program was necessary to further select 

the analyzable metaphase cells within the online results from the scanning process. The 

results demonstrate that the investigated system can identify more analyzable metaphase 

cells than clinicians do in six out of the seven slides. These cells are presented with 

acceptable specificity and adequate contrast and sharpness for further interpretation. 

As compared to the traditional method, the new high throughput scanning 

system has two principal advantages. First, the new system can offer the high resolution 

images directly for clinicians or the  computer aided processing, while the conventional 

scanner only provide the location of the possible analyzable metaphase cells, requiring 

clinicians to recapture and confirm the image in high resolution [27]. Second, the new 

system has the potential high efficiency of the slide scanning. Due to the superior TDI 

line scanning mechanism, the high throughput scanning system can acquire the images 

when the stage is moving, while the conventional scanner must capture the image when 

the stage is stationary to avoid serious image blurring. The highly efficient TDI line 

scanning may provide more analyzable metaphase cells for clinicians with no additional 
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workload, which can substantially enhance the diagnosis accuracy because the accuracy 

is strongly related to the number of analyzable metaphase cells.  

Although the initial testing of the system provides an encouraging result, this 

study is preliminary. The number of the specimens is limited, and the CAD scheme 

should be improved to increase the detecting accuracy for the bone marrow analyzable 

chromosomes. In spite of these limitations, we believe that the high throughput 

scanning technique may be meaningful for improving the diagnostic accuracy in the 

future.  
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Chapter 5: Impact of the optical depth of field on cytogenetic image quality 

 5.1 Background  

In digital pathology, high throughput digital microscopic image scanning is a 

fundamental technique for the diagnosis of various diseases [1-4, 20]. For this technique, 

however, one of the technical challenges is to maintain the pathologic specimen in focus 

during the image scanning, which may affect the reliability and efficiency of the image 

acquisition. The off-focused images can be attributed to several different factors, 

including the narrow depth of field (DOF) of an optical imaging system, and the impact 

of mechanical drifting and random vibrations of a scanning stage. These factors are 

often unavoidable even when using the high precision moving stages, which may blur 

the scanned images. Although the researchers pursue to develop a precise focusing trace 

technique for the high quality microscopic image scanners, understanding the impact of 

the DOF on the scanned digital images can help balance the tradeoff between the 

scanning efficiency and image quality, which is important and necessary in the design 

of cost-effective digital microscopic image scanners.  

This study aims to systematically investigate the tolerance level of off-focusing 

in diagnostic cytogenetic images. We first analyzed optical DOF of a microscope in 

theory. Then, we measured the DOF using a standard resolution target, under objective 

lenses with different magnification powers and numerical apertures (N.A.). After that, 

cytogenetic images from different clinical specimens were acquired and analyzed using 

the same microscope equipped with a 60× (dry, N.A. = 0.95) and a 100× objective 

lenses (oil, N.A. = 1.25), respectively. The chromosomal band sharpness was 

subjectively assessed to investigate the image quality deterioration when the metaphase 
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or interphase cells were captured at in-focused and off-focused states. The detailed 

experimental procedures and image quality analysis results are presented in this article. 

5.2 Optical depth of field (DOF): Definition and calculation  

5.2.1 Geometric DOF 

The DOF of an optical system is defined as the axial range in the object space 

where the quality degradation of the imaged object is undistinguishable [56]. There are 

two different types of DOF which contribute to the system DOF: geometric DOF and 

diffractive DOF. The geometric DOF is the axial range in the object space within which 

the blurred spot on the image space cannot be distinguished by the detector, as 

illustrated in Fig 15. 

 

Figure 15: The demonstration of geometric DOF 

In Fig 15, x, x’ are objective points, y, y’ are the corresponding image points. Δx, 

Δy are the distance between x, x’ and y, y’ respectively. δ is the diameter of the blurred 

circular region. The detector has a pixel size of p μm. 

In the figure, the objective point x is placed in the object side of the objective 

lens and the point x is imaged as a distinct point at point y on the other side. When the 

object point moves a distance of Δx towards the lens, the image point will also move a 

distance of Δy further to the lens on the other side. However, if the camera is not 
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moved, a blurred circular region will be detected instead of a distinctive point. 

According to the Nyquist sampling theorem, the circular region will not affect the final 

image quality if the diameter of the circular region is smaller or equal to twice the pixel 

size on the detector [81]. Therefore, the diameter of the blurred circular δ must be 

smaller or equal to twice the pixel size:  

                                                          2 ' 2y p                                                     (5-1)         

where Δy is the moving distance, and α’ is the aperture angle of the light path on the 

image space.  

Given that the axial magnification relation between the moving distance in the 

image space (Δy) and object space (Δx) is: 

                                                               21y

x n






                                                     (5-2)     

where β is defined as the magnification of the light aperture angle, and n is the 

refractive index of the object space. Substitute (2-2) into (2-1), we have [56, 82]: 
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Note that N.A. is numerical aperture of the objective, which is [82]: 

                                                           . .N A n                                                        (5-4) 

In the formula, α is the aperture angle of the object space. 

If the object point moves further, the same Δx is achieved through the similar 

method. Thus the final geometric field depth is [56]: 
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5.2.2 Diffractive DOF 

The diffractive DOF is based on the light intensity distribution along the optical 

axis. For the object point x, the axial light intensity distribution of the corresponding 

image point x’ is can be approximated as a Sinc function centered at x. The detected 

image point x’ will be considered as acceptable if the intensity is larger than 80% of the 

maximum. Accordingly, the corresponding moving range on the object space is defined 

as the diffractive DOF, which can be calculated as follows [56, 82]: 

                                                        0

2. .
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                                                        (5-6) 

Where n is the refractive index in object space, N.A. is the numerical aperture of 

objective lens, and λ0 is the wavelength of the illumination. In this investigation, the 

wavelength is assumed to be 0.550 μm. 

5.2.3 The total DOF of the optical system 

For a realistic microscopic imaging system, both geometrical and physical 

effects exist simultaneously. The calculation of the total DOF has been thoroughly 

discussed in the last several decades [56, 83-85].
 
Although a standard method of 

determining the total DOF has not been established to date, the following method is the 

most recommended to compute total DOF, which is the sum of the diffractive and 

geometric DOF [56, 83-85]: 
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                                                   (5-7) 

5.3 DOF measurements 

The DOF of the tested microscopic system can be investigated experimentally 

by measuring the contrast at a series of in-focused and off-focused positions. The DOF 
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is estimated by determining the range where the contrast is larger than 80% of the 

maximum [86-90]. 

During the experiment, the DOF range was estimated separately when applying 

60× (dry, N.A. = 0.95) and 100× (oil, N.A. = 1.25) objective lenses. The experiment is 

divided into three steps. First, we measured the modulation transfer function (MTF) to 

determine the spatial frequency for DOF estimation. MTF was accomplished by 

measuring the image contrast at a series of discrete spatial frequencies from 0 to the 

system resolving limit. The measured contrast values are normalized for the final MTF 

curve. Second, according to the MTF curve, the frequency where the contrast drops to 

half of the maximum is selected to estimate the DOF. Finally, at the selected frequency, 

the contrast was measured to determine the system DOF. 

In order to determine the spatial frequency of DOF estimation, the MTF was 

first measured using standard resolution targets. Two different bar pattern targets were 

used in the experiments. The USAF1951 resolution target (USAF1951, Edmund Optics, 

New Jersey, U.S.A.) contains different bar patterns with discrete spatial frequencies up to  

645 lp/mm. Another target with maximal frequency of 2000 lp/mm (MRS-4, Geller 

Microanalytical Laboratory, Massachusetts, U.S.A) was also applied to measure the 

contrast at spatial frequencies higher than 645 lp/mm. 

For each microscopic objective lens, the MTF was estimated through measuring 

the contrast at different spatial frequencies from 0 to the resolving limit. In this 

investigated system, the pixel size of the camera is smaller than half of the resolving 

limit. Therefore, the spatial resolution was determined by the following formula [56]: 

 00.61

. .N A


                                                        (5-8) 
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where N.A. is numerical aperture of the objective lens, and λ0 is the wavelength of the 

illumination. In this investigation, the wavelength is assumed to be 0.550 μm. Thus, 

when using the two objective lenses with 60× and 100× magnification power, the spatial 

resolution calculated with Equation (5-8) is 0.353 and 0.268 μm, or 1416 lp/mm and 

1863 lp/mm, respectively.  

In the MTF measurement, the test target was placed on the stage. The system 

was manually adjusted to ensure that the target is imaged at the in-focused condition. 

After that, the target was captured and the contrast of each pattern on the target is 

calculated by the following formula [91]: 

max min

max min

I I
C

I I





                                        (5-9) 

where Imax and Imin are the average maximum and minimum digital pixel values of the 

imaged test bar patterns at different frequencies. Based on the calculated contrasts at 

different spatial frequencies, the curve fitting method was then applied to create a 

smooth MTF curve [92]. The frequency where the MTF decreases to 0.5 was selected 

for the DOF estimation. 

After the spatial frequency was determined, the DOF range was estimated for 

each objective lens. The estimation was accomplished using the above test bar pattern 

targets. Before the measurement, the target was placed on the stage and the in-focused 

position was visually adjusted and determined. Then, starting from the in-focused 

position, the stage was gradually moved up and down with a series of steps. At each 

position, the target image was obtained by the detector and the contrast of the image is 

computed by Equation (5-9). Finally, the calculated contrast was curved as a function of 
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focusing positions. The range where the contrast is larger than 80% of the maximum is 

determined as the system DOF estimation [86]. 

5.4 Results 

5.4.1 DOF theoretical results 

Table 1 tabulates the theoretical results calculated by Equation (5-7) in Section 

5.2.1. The one-dimensional pixel size of the CCD detector used in the investigated 

system is 7 μm. When applying a dry 60× (N.A. = 0.95) microscopic objective lens and 

an oil-emerged 100× (N.A. = 1.25) objective lens, the computed system DOF are 0.855 

and 0.703 μm, respectively. As expected, using higher magnification power results in 

smaller DOF.  

Table 2: The depth of field of our microscopic scanning system equipped with two 

different objective lenses 

Magnification Type Refractive 

index of 

object side 

Numerical 

aperture 

(N.A.) 

Detector 

pixel size  

Geometric 

DOF 

Diffractiv

e DOF 

System 

DOF 

     60×   Dry     1    0.95   7 μm  0.246 μm  0.609 μm  0.855 μm 

     100×   Oil    1.515   1.25   7 μm  0.170 μm  0.533 μm  0.703 μm 

 

5.4.2 DOF experimental results 

Two example images of the USAF1951 resolution test bar target are 

demonstrated in Fig 16 (a) and (b), which were captured at the focal position and 3.5 

μm away from the focal plane of an oil-emerged 100× objective lens, respectively. The 

image in Fig 16 (b) was acquired at the off-focused state, as the resolution patterns are 

obviously blurred. Fig 17 illustrates two measured MTF curves of the microscope when 

using two 60× and 100× objective lenses separately. The measured curves reveal that 

the MTF decreases approximately to the half maximum value at 456 lp/mm and 645 
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lp/mm, respectively. These spatial frequencies were therefore utilized to estimate the 

system DOF when the 60× and 100× objective lenses were applied. 

                       

                                    (a)                                                  (b)   

Figure 16: Sample images of an USAF 1951 standard resolution target 

The target was captured by a 100× (oil, N.A. = 1.25) objective lens, at (a) in-focused 

position (b) 3.5 μm away from the focal plane. 

 

                                (a)                                                                  (b) 

Figure 17: The MTF curve measured for the tested microscope using (a) 60× (dry, N.A. 

= 0.95) objective lens and (b) 100× (oil, N.A. = 1.25) objective lens 

The “half-maximum” contrast measurements, plotted as a function of focusing 

positions, are shown in Fig. 18 (a) and (b), when the 60× and 100× objective lenses 

were used, respectively. For each curve, the contrast value reaches the maximum at the 

in-focused position (0 at x-axis), and decreases as the target is moved away from the in-

focused position. As mentioned previously, the DOF can be estimated as the range 
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where the contrast is higher than 80% of the maximal value [86]. Therefore, the actually 

measured system DOF are 3.0 μm and 1.8 μm when applying the 60× and 100× 

objective lenses, respectively.  

As predicted by theoretical calculations, the results reveal that the DOF 

decreases when increasing the N.A.. Due to the experimental restriction, the measured 

DOF is substantially greater than the theoretical prediction. In the experiment, we could 

not directly measure the size of the image spot or the axial light intensity for the 

geometrical and diffractive DOF separately. Alternatively, the DOF was estimated by 

measuring the image contrast. But the z-position where the image contrast drops to 80% 

of the maximum is not exactly the same position for the geometrical or diffractive DOF. 

In other words, theoretical computation can only be used as a reference. 

 

                                 (a)                                                                 (b)   
 

Figure 18: The measured “half-maximum” contrast values versus focusing positions for 

the investigated microscopes when using (a) 60× (dry, N.A. = 0.95) objective lens and 

(b) 100× (oil, N.A. = 1.25) objective lens 

5.4.3 DOF impact on diagnosis of clinical cytogenetic images 

The microscopic images of analyzable cells acquired from four pathological 

samples including bone marrow, blood, amniotic fluid, and products of conception 
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(POC) are shown in Figs 19-26 as examples. Figs 19-21 are metaphase cells acquired 

by the microscopic system using 60× (dry, N.A. = 0.95) objective lens, and Figs 22-25 

are metaphase cells acquired under 100× (oil, N.A. = 1.25) objective lens. Figure 26 

illustrates an interphase cell captured under 100× (oil, N.A. = 1.25) objective lens. In 

each of Figs 19-21, Image (a) was obtained at the focal plane resulting in clear and 

sharp chromosome band patterns, which are adequate for clinical diagnosis. Image (b) 

was acquired 1 μm out of focus, and the band patterns are as clear as Image (a). When 

the cell was obtained 1.5 μm away from the focal plane, the image is somewhat blurred 

but still recognizable, as shown in Image (c). The band contrast decreases more 

significantly when the cell moves further away from the focal plane, with the band 

shapes becoming barely recognizable and then totally unrecognizable in Image (d) and 

(e), both of which were acquired 2 μm and 2.5 μm out of focus, respectively.  

In Figs 22-25, the band sharpness decreases at a faster rate as compared with 

those shown in Fig 19-21. In Figs 22-25, Image (c) was obtained 1 μm away from the 

focal plane, which shows a cell containing somewhat recognizable band shapes with 

decreased contrast. These cells are still suitable for clinical practice. Furthermore, when 

the image was obtained 2 μm out of focus, the band patterns become completely 

unrecognizable and unsuitable for the diagnosis purposes, as illustrated in Image (e). 

Fig 26 shows a typical image of an interphase cell acquired from a POC sample. 

This cell was processed by the fluorescence in situ hybridization technique (FISH) 

biomarkers. The diagnostic genome fragments are demonstrated as bright dots in the 

captured image. The cell in Fig 26 (a) was imaged at the focal plane, and shows two 

clear green dots on the blue background. When the cell was moved 1 μm away from the 
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focal plane, as shown in Fig 26 (b), the dots become smaller but still recognizable. 

However, the dots disappear completely in Fig 26 (c), which was captured 2 μm out of 

focus. 

In summary, these experimental and observation results agree with the measured 

DOF ranges demonstrated in Section 5.4.2. For the investigated microscopic system, the 

range of DOF is approximately 3.0 μm and 1.8 μm when applying 60× (dry, N.A. = 

0.95) and 100× (oil, N.A. = 1.25) objective lenses, respectively. The images acquired 

within DOF illustrate clearly cytogenetic features, which are adequate for the diagnosis 

of diseases in clinical practice. However, when the cell is moved out of the DOF range, 

the pathological meaning of the acquired images slowly diminishes. 
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 (a)                                       (b)                                     (c) 

 

 

(d)                                      (e) 

Figure 19: Microscopic images (60×) of a clinically analyzable cell contained in a bone 

marrow sample  

The cell was captured using a 60× objective lens (dry, N.A. = 0.95), at positions of (a) 

in-focused, (b) 1 μm, (c) 1.5 μm,  (d) 2 μm, and (e) 2.5 μm away from the focal plane. 
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                    (a)                                       (b)                                      (c) 

 

            

   (d)                                          (e) 

Figure 20: Microscopic images (60×) of a clinically analyzable cell contained in a 

blood sample  

The cell was captured using a 60× objective lens (dry, N.A. = 0.95), at positions of (a) 

in-focused, (b) 1 μm, (c) 1.5 μm,  (d) 2 μm, and (e) 2.5 μm away from the focal plane 
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      (a)                                      (b)                                     (c) 

 

            

              (d)                                      (e) 

Figure 21: Microscopic images (60×) of a clinically analyzable cell contained in a POC 

sample  

The cell was captured using a 60× objective lens (dry, N.A. = 0.95), at positions of (a) 

in-focused, (b) 1 μm, (c) 1.5 μm,  (d) 2 μm, and (e) 2.5 μm away from the focal plane. 
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                             (a)                                        (b)                                       (c) 

 

   

                           (d)                                        (e)  

Figure 22: Microscopic images (100×) of a clinically analyzable cell contained in a 

bone marrow sample  

The cell was captured using a 100× objective lens (oil, N.A. = 1.25), at positions of (a) 

in-focused, (b) 0.5 μm, (c) 1 μm,  (d) 1.5 μm, and (e) 2 μm away from the focal plane. 
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                                (a)                                      (b)                                       (c) 

 

                                        (d)                                       (e)       

Figure 23: Microscopic images (100×) of a clinically analyzable cell contained in a 

blood sample  

The cell was captured using a 100× objective lens (oil, N.A. = 1.25), at positions of (a) 

in-focused, (b) 0.5 μm, (c) 1 μm, (d) 1.5 μm, and (e) 2 μm away from the focal plane. 
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                             (a)                                               (b)                                           (c) 

 

                

                                           (d)                                                     (e) 

Figure 24: Microscopic images (100×) of a clinically analyzable cell contained in a 

POC sample  

The cell was captured  using a 100× objective lens (oil, N.A. = 1.25), at positions of (a) 

in-focused, (b) 0.5 μm, (c) 1 μm,  (d) 1.5 μm, and (e) 2 μm away from the focal plane. 
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                      (a)                                       (b)                                     (c) 

 

 

                                     (e)                                        (f) 

Figure 25: Microscopic images (100×) of a clinically analyzable cell contained in an 

amniotic fluid sample  

The cell was captured using a 100× objective lens (oil, N.A. = 1.25), at positions of (a) 

in-focused, (b) 0.5 μm, (c) 1 μm, (d) 1.5 μm, and (e) 2 μm away from the focal plane. 
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                             (a)                                    (b)                                 (c) 

Figure 26: Microscopic fluorescent in situ hybridization (FISH) images of a clinically 

analyzable interphase cell contained in a POC sample  

The chromosomes of interest are marked as the fluorescent dots, and the cell is captured 

by the system under investigation using 100× objective lens (oil, N.A. = 1.25), at 

positions of (a) in-focused, (b) 1 μm, and (c) 2 μm away from the focal plane. 

5.5 Discussion 

In clinical practice, the consistent chromosome abnormalities have been used to 

diagnose some serious diseases [1-3]. In order to diagnose these diseases, clinicians in 

the cytogenetic laboratories need to obtain in-focused images with clear and sharp 

chromosome bands, as the blurred bands in the digital images may result in 

misdiagnosis. For instance, among the karyotyping of metaphase chromosomes, 21st 

trisomy is an important diagnostic evidence of the down’s syndrome [2]. Since the size 

of 21st chromosome is shorter than the others, these chromosomes can be easily 

misunderstood as small debris in the off-focused state. In another example, Philadelphia 

translocation t(9;22)(q34;q11), a reciprocal translocation between 9th and 22nd 

chromosome, is highly related to chronic myelogenous leukemia [3]. Clinicians need to 

locate the region q34 in the 9th chromosome and q11 in the 22nd chromosome, by 

analyzing the band shape and counting the bands. However, if the image is off-focused, 

the band patterns become fuzzy, hence these two different regions (q34 and q11 in the 
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9th and 22nd chromosomes) are extremely difficult to distinguish, which might cause 

false positive or false negative results. 

In order to ensure that the imaged chromosome bands are adequately sharp for 

the diagnosis, many current microscopic systems perform the auto-focusing operation 

repeatedly for each useful cell [5, 21, 25]. However, these scanning systems are often 

inefficient because the auto-focusing operation is quite time consuming. Therefore, in 

order to balance the trade-off between the scanning efficiency and the image quality for 

a clinical diagnostic purpose, we need to analyze how the DOF impacts on the acquired 

chromosome bands. To the best of our knowledge, no similar studies have been 

previously conducted and reported to investigate the tolerance level of out-focusing in 

automatically scanning pathological specimen slides.     

In this study, we first computed DOF using a well-recognized theoretic model of 

an optical image system and then measured DOF of the same optical system using a 

standard test bar pattern target. Our results showed that the experimentally measured 

DOF was substantially greater than that computed by the theoretic model, which 

suggests the importance of using well-designed experiments to assess and measure the 

actual DOF of an optical system (e.g., a microscope). In addition, we also analyzed 

DOF (or off-focusing tolerance level) by obtaining cytogenetic images under the 60× 

(dry, N.A. = 0.95) and 100× (oil, N.A. = 1.25) objective lenses. Four types of 

commonly cytogenetic specimens acquired from bone marrow, blood, amniotic fluid, 

and products of conception (POC) in our cytogenetic laboratory were tested and 

analyzed in this study. Although the quality (i.e., sharpness and/or contrast of the 

metaphase chromosomes) of the images acquired from these four types of specimens 
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varies, our experimental results demonstrated that the chromosomal bands remained 

analyzable if the cells were captured within the range of 1.5 or 1.0 μm away from the 

focal plane when using the two 60× or 100× objective lenses, respectively. Comparing 

the experimental results acquired from using these two objective lenses, one could find 

that the microscopic system’s DOF would be wider if low magnification objective 

lenses were utilized. However, the resolution of the pathological features also 

decreased. In summary, the results support the feasibility of developing the automated 

microscopic or pathological image scanners with limited power of auto-focusing, which 

will significantly increase the efficiency of image scanning as well as the efficacy of 

digital pathology.   

Although the results of this preliminary study are encouraging, there are several 

limitations. First, we did not consider the effect of the chromosome thickness [93]. 

Second, a simple DOF measurement was used, and we did not test whether applying the 

new contrast calculation methods proposed recently could achieve more accurate results 

[94-98]. Third, we did not test and discuss the DOF of the human eye, which is also an 

important factor affecting subjective evaluation of the cytogenetic image qualities [99, 

100]. Hence, a more comprehensive investigation is under way from which we hope to 

acquire better knowledge about the designing trade-off parameters to optimize the 

automated digital microscopic image scanning systems for cytogenetic image diagnosis 

and the other digital pathology applications in the future. 
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Chapter 6: Evaluations of auto-focusing methods  

6.1 Background 

High throughput scanning microscopy is an important technique for the 

diagnosis and treatment of genetic related diseases [1, 3, 5, 20]. To make this 

technology clinically acceptable, obtaining the in-focused high resolution images is 

critically important, as the blurred images may directly affect the diagnostic accuracy. 

Therefore, the auto-focusing technique is required for the high throughput microscopic 

system in the clinical practice. 

During the last twenty years, substantial research efforts have been devoted to 

the development of reliable auto-focusing techniques for automated digital microscopes 

and other optical imaging applications [101-107]. Since the performance of the auto-

focusing operation heavily depends on the selection of the auto-focusing function [108-

111], a focusing function that performs well for the digital camera might not be selected 

as the optimal function for the digital scanning microscope [108]. Recently, some 

researchers have investigated and compared several different auto-focusing techniques 

for scanning a number of specific pathological specimens acquired from blood smear, 

pap smear, tuberculosis, or fluorescent samples [110, 112-114]. However, these 

researches are not specifically designed for the clinical specimens (i.e. blood or bone 

marrow) used in the pathological metaphase chromosome analysis. 

In this study, we investigated and compared a number of different auto-focusing 

methods when they were applied to acquire metaphase chromosome images from bone 

marrow and blood specimens. The optimal auto-focusing method is selected and 
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recommended based on the experimental results. The details of our experimental 

methods and results are presented as follows. 

6.2 Auto-focusing functions: Definition and introduction  

6.2.1 The definition of the auto-focusing function  

Auto-focusing function is a function which can estimate the sharpness or 

contrast of the image, to determine whether the target is in-focused or not. The system 

can locate the focal plane by searching the maximum. For example, the estimated 

sharpness of Fig 27 (a) is larger than Fig 27 (b). Accordingly, the system will determine 

that the focusing position of Fig 27 (a) is closer to the focal plane. In fact, Fig 27 (a) 

was captured at the focal plane, while Fig 27 (b) was 3.75 μm away. 

                     

(a)                                              (b) 

Figure 27: Microscopic images of a USAF1951 standard resolution target 

(a): The target was acquired at in-focused position. (b): The same target was acquired 

3.75 μm away from the focal plane.  

In the last several years, many auto-focusing functions have been investigated 

and reported. The published auto-focusing functions can be grouped into several classes 

including but not limited to: i) image gradient [104, 109-111], ii) histogram or contrast 

[109-111], iii) statistical measurement (e.g. correlation) [105], iv) wavelet transform 

[111, 115, 116], and v) discrete cosine transform [107].  
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In this study, we tested five typical methods selected from group i), ii) and iii), 

which are Brenner gradient, histogram range, threshold pixel counting, Vollath F5, and 

variance [104-106, 108, 109]. These methods have been used for a variety of 

biomedical specimens including fluorescent sample, blood smear, pop smear, and 

tuberculosis [110, 112-114]. The concepts of these functions are briefly described in the 

following sections. 

6.2.2 Auto-focusing functions: Brenner gradient 

This function is based on the fact that the intensity gradient of the acquired 

image will decrease when the cell is placed away from the focal plane. For example, Fig 

28 (a) and (b) are the microscopic images of the 456 lp/mm pattern of the USAF1951 

resolution target in Fig 28 (a) and (b), which were obtained at the focal plane and 3.75 

μm away. When fixing the row value y = 50, the intensity variance over the x direction 

are plotted in Fig 28 (c) and (d). The intensity decreases and increases very sharply 

when the target was in-focused, but the intensity varies much smoothly when image was 

off-focused. The variance can be estimated by the Brenner gradient function. 

For each pixel on the captured image, Brenner gradient function calculates the 

square of the difference between the two neighbors of the pixel, and then adds them 

together using the following equation [104]:  

                                          2

, ( ( 1, ) ( 1, ))x yF i x y i x y                                (6-1) 

with ( 1, ) ( 1, )i x y i i y     , where i(x, y) is the intensity at pixel (x, y), α is the 

threshold of the intensity difference.  
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(a)                                                        (b) 

 

(c)                                                      (d) 

Figure 28: The microscopic images of the 456 lp/mm pattern of the USAF1951 

standard resolution target 

 The target was acquired at (a) in-focused position fluorescent (b) 3.75 μm away from 

the focal plane. (c) and (d) illustrate the one direction intensity variance of (a) and (b) 

by fixing y = 50. 

6.2.3 Auto-focusing functions: Histogram range 

When the target is obtained inside or outside the depth of field (DOF) range, the 

histogram of the acquired images will also be changed. Fig 29 (a) shows the histogram 

range of Fig 28 (a), which is the image of the 456 lp/mm resolution patterns acquired at 

the focal plane. The range in Fig 29 (a) is obviously larger than the histogram range of 

Fig 29 (b), which is the result of the same pattern captured at 3.75 μm away. Therefore, 

we can measure the image sharpness by calculating the histogram range, which is 
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defined as the difference between the maximum and minimum pixel intensities 

measured on the acquired image. Let Nk be the number of pixels with intensity k (0≤ k 

≤255 for the 256 level grayscale images), which can be written as [109]: 

                     max( | 0) min( | 0)k kF k N k N                                     (6-2)  

 

(a)                                                              (b) 

Figure 29: The histogram of the 456 lp/mm pattern of the USAF1951 standard 

resolution target 

(a): The pattern was acquired at in-focused position (b): The pattern was acquired 3.75 

μm away from the focal plane.  

6.2.4 Auto-focusing functions: Threshold pixel counting 

The Fig 29 also demonstrates that the number of the pixels with large intensity 

decreases when the pattern is moving away from the focal plane. Therefore, if a 

threshold is determined, the image sharpness can also be estimated by counting the 

number of the pixels below (or above) the threshold. In this investigation, the threshold 

pixel counting is defined as the number of pixels whose intensity is lower than a 

predetermined intensity (or grayscale) threshold [108]: 

                                     , [ ( , ), ]x yF sign i x y th                                          (6-3) 

where the sign function is 1 if the pixel intensity is below the threshold and 0 otherwise. 
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6.2.5 Auto-focusing functions: Vollath F5 

Vollath F5 is defined as follows [105]: 

                                           2

, ( , ) ( 1, )x yF i x y i x y MNi                                 (6-4) 

In order to investigate the relationship between the value F and the image 

sharpness, the pixel intensity can be written as the sum of three different parts: 

                                           ( , ) ( , ) ( , )i x y i a x y n x y                                       (6-5) 

where i(x, y) is the pixel intensity at (x, y),   is the average intensity value, and a(x, y) is 

the intensity amplitude, which has the following property: 

                                                       
, ( , ) 0x ya i j                                              (6-6) 

   Note that n(x,y) is the noise. Obviously, the sum of all the noise n(x, y) over the 

entire image is also zero. 

Therefore, the intensity of the neighboring can be written as: 

                                    ( 1, ) ( , ) ( , ) ( 1, )i x y i x y a x y n x y                           (6-7) 

where Δ(x, y) is the amplitude difference between (x, y) and (x+1, y). 

Given that the pixel amplitude and noise are independent with each other and 

the noise is also independently distributed, we have the following results: 

                                                     
, ( , ) ( , ) 0x ya x y n x y                            (6-8) 

                                                 
, ( 1, ) ( , ) 0x yn x y n x y                                     (6-9) 

Substitute the above formula into (6-4), we have the following formula: 

                                             2

, ( , ) ( , ) ( , )x yF a x y a x y x y                               (6-10) 

In order to derive the formula (6-10), we assume that the following equations are 

established [105]: 
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                                              2 2

, ( , ) ( , )x ya x y a x i y                                        (6-11) 

                                              2 2

, ( , ) ( , )x yn x y n x i y                                        (6-12) 

                                               
, ( , ) ( , )x ya x y a x i y                                        (6-13) 

The above functions are correct when i is very small (i.e. i = 0, 1, 2) and x, y are 

very large ( i.e. larger than 1000). 

As demonstrated in Fig 28, the amplitude a(x,y) increases when the image is 

becoming sharper. Since the intensity difference Δ(x,y) increases slower than the 

amplitude a(x,y), the overall value F will increase when the image is obtained at the 

focal plane. 

6.2.6 Auto-focusing functions: Image variance 

 For each pixel of the image, this method computes the square of difference 

between pixel intensity and the average pixel value of the image, and then adds them 

together for the final value [105, 106, 108, 110]: 

                                          
2

, ( ( , ) )x yF i x y i                                                (6-14)                             

Using the similar method as in Section 8.2.5, we can have the following 

equation [105]: 

                                                   2 2

, ( ( , ) ( , ) )x yF a x y n x y                                          (6-15)                             

Given that the amplitude a(x, y) increases when the image is sharper, the 

variance function will also increase when the cell is placed closer to the focal plane. 

6.3 Experimental methods 

In microscopic imaging, the obtained images will become fuzzy with decreased 

contrast and edge sharpness when the imaged objects (e.g. metaphase chromosomes) 

are located outside of the focal plane. The image contrast can be estimated by several 
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auto-focusing functions. Therefore, the in-focused position of the imaged objects can be 

determined by searching for the maximal image contrast value. 

In this investigation, a number of five different auto-focusing functions were 

evaluated using the metaphase chromosome images acquired from the bone marrow and 

blood specimens. All the experiments were performed on a prototype microscopic 

image scanning system previously developed in our medical image laboratory [7]. The 

specimens were prepared based on the standard clinical procedure.  

During the experiment, we selected and tested a number of the auto-focusing 

functions aiming to obtain the high contrast images with maximum sharpness of 

chromosome band patterns. In this study, we tested five typical methods selected from 

group i), ii) and iii), which are Brenner gradient, histogram range, threshold pixel 

counting, Vollath F5, and variance [104-106, 108, 109]. These methods have been used 

for a variety of biomedical specimens including fluorescent sample, blood smear, pop 

smear, and tuberculosis [110, 112-114]. These functions are described in Section 6.2. 

In the above five functions, the focus value F is an estimation of image contrast. 

Since image contrast is smaller than 1, the computed focus values are normalized for 

each metaphase chromosome cell. 

In order to evaluate the performance of the above five different auto-focusing 

functions, the off-line (static) evaluation method was applied in this investigation, 

which is widely accepted as a standard method [108-111, 113, 114]. The off-line 

evaluation assesses the auto-focusing functions using the previously captured 

chromosome images. In this study, chromosome images were obtained from blood and 

bone marrow specimens. For each specimen, a number of twenty metaphase 
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chromosome cells were selected and used. For each cell, the focal position was first 

visually determined by the trained researchers. Then, a number of 25 images were 

captured for each cell by moving the scanning stage up and down in a range from +6μm 

to – 6μm, with a step of 0.5μm. To acquire clinically acceptable images, a 100× oil 

immersion objective lens was used in the experiments. 

The performance of using each of these auto-focusing functions was then 

assessed based on the acquired images. The auto-focusing function was applied on each 

captured image and the focus value was calculated. The computed focus value was 

curved as a function of focusing positions. As illustrated Fig 30 (a), a typical auto-

focusing curve has only one maximum, and the focusing position corresponding to the 

maximum value is determined as the in-focused position.  

In order to assess the auto-focusing function, four evaluation criteria were 

applied in this study, including execution time, focusing accuracy, number of false 

maxima, and full width at the half maximum (FWHM).  These measuring parameters 

are described as follows [110, 111, 114]:  

1) Execution time: The time used to compute the auto-focusing value for each 

captured image. 

2) Focusing accuracy: The difference between the visually determined and 

automatically determined focal positions. In this study, the visually determined 

position was calibrated at the central position. (0 μm) 

3) Number of false maxima: False maximum is defined as the failed auto-

focusing curve, as illustrated in Fig. 30 (b). In this case, the in-focused position 

cannot be determined from the curve. 
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4) FWHM: As shown in Fig. 30 (a), the auto-focusing value decreases vastly 

when the targeted cell is moved away from the in-focused plane. FWHM is the 

range where the auto-focusing function value reduces to 50% of the maximum. 

  
                                         (a)                                                        (b) 

Figure 30: Examples of an ideal focus curve (a) and a failed focus curve (b) 

The calculated focus value is plotted as a function of focusing position. (a): An ideal 

focus curve is approximated by Gaussian function, which has only one maximum value 

corresponding to the focal plane (0μm). The focus value decreases when the cell is 

away.  The range where the focus value is above 50% of the maximum is defined as full 

width at the half maximum (FWHM). (b): A failed auto-focusing curve. The focus 

curve has two maximal values, thus the focal position cannot be located. 

The evaluation results were tabulated for comparison and analysis. Among the 

applied criteria, the number of false maxima was first considered, as this criterion 

directly demonstrates the efficacy of the auto-focusing functions. The execution time 

was then compared, which demonstrates the efficiency of the operation. The FWHM 

was analyzed next. The standard of the FWHM is related to the system depth of field 

(DOF), as the ideal focus curve can be approximated by the DOF contrast curve. The 

DOF is defined as the range where the measured contrast is larger than 80% of the 

maximum [9]. Under the experimental conditions (using 100× oil immersion objective 

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Distance away from the focal plane (m)

F
o

c
u

s
 v

a
lu

e

 

 

Focus value

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Distance away from the focal plane (m)

F
o

c
u

s
 v

a
lu

e

 

 

Focus value



63 

lens), the measured DOF is 1.8μm. Thus, the ‘ideal’ FWHM will be approximately 

3.0μm, as shown in Fig 34 (a). The focusing accuracy will not be used for comparison if 

the accuracy is within the system’s DOF. All auto-focusing algorithms were assessed 

using a personal computer equipped with an Intel i3 2.4G Hz dual core processor with 

4G RAM using the MATLAB R2011 software application. 

6.4 Experimental results 

Fig. 31 demonstrates an example of the auto-focusing functions. Fig 31 (a) and 

(b) demonstrate two images that were separately acquired at the in-focus plane and 3μm 

away. Among these two images, Fig. 31 (b) is obviously blurred. Fig. 31 (c)-(g) 

illustrate the results of the five different auto-focusing functions. Among these functions, 

the Brenner function, threshold, Vollath F5 and variance methods can effectively locate 

the focal position, as the calculated value reaches the maximum around the focal plane 

(0 μm). The Brenner function deceases faster than the other three methods when the cell 

is moved away from the in-focused plane. Histogram range, however, fails to find the 

focal plane. The range value varies at different positions and no peak value can be 

found.  

In the high throughput scanning microscope, the captured image is very large 

(3488×2048, 3488 pixels in x direction and 2048 pixels in y direction) and also contains 

interphase cells. As compared to the chromosome bands, the size of the interphase 

nuclei is larger, thus the spatial frequency is lower. According to the Fourier optics 

theory, the contrast of high spatial frequency regions decreases more significantly than 

the low frequency regions when the cell is moved away from the focal position [117]. 

Therefore, the high throughput scanning technique requires that the auto-focusing 
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function can extract the useful high frequency components from the obtained image. 

Among all the five selected methods, Brenner function performs better than the others, 

as the difference operator can extract the high frequency information while discarding 

the others. The threshold pixel counting, Vollath F5, and variance methods can 

somehow extract the useful high frequency information. The pixel intensity variance of 

in-focused images is larger than the off focused images, which can be demonstrated by 

calculating the image variance (variance method), standard deviation (Vollath F5), or 

counting pixels with very low grayscale (threshold pixel counting). Histogram range 

method, however, cannot distinguish the high and low frequency components, as the 

range are mainly determined by the low frequency components. 

Tables 3 and 4 summarize the statistical results of applying the five auto-

focusing functions on the bone marrow and blood samples.  The data demonstrates that 

Brenner function and threshold pixel count methods are superior to the others. Both 

these two methods can successfully locate the focal position with high reliability. The 

threshold pixel counting method has one false maximum in case of the bone marrow 

samples. For assessing efficiency, however, the threshold method is much more 

efficient than the Brenner function. Brenner function takes about 15 seconds to process 

a single image, while threshold method only needs about 0.2 second. The efficiency 

difference can be attributed by the fact that the Brenner gradient method has high 

computing complexity. The FWHM of the Brenner method is approximately 1.5μm, 

while the FWHM of the threshold method is larger than 12.5μm. As compared to the 

threshold method, the FWHM of the Brenner function (approximately 1.5μm) is closer 

to the ideal FWHM, which shows that the Brenner function is more sensitive to the 
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change of focusing position. Thus, the Brenner function can search the focal plane more 

reliably than the threshold method. The accuracies of both these two methods are within 

the system’s DOF. 

         

                         (a)                           (b) 

   

              (c)                               (d) 

  

                                   (e)                                  (f) 
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(g) 

Figure 31: An example of auto-focusing functions performed on micorsopic images of 

a pathlogical cell acquried from bone marrow sample  

(a): The cell was captured at in-focused position (b): The cell was captured 3μm away 

from the focal plane. (c): The focus value calculated by Brenner function. (d): The 

sharpness value calculated by Histogram range function. (e): The sharpness value 

calculated by Threshold pixel counting function. (f): The sharpness value calculated by 

Vollath F5 functions. (g): The sharpness value calculated by Variance function.   

Table 3: Results of the evaluation of auto-focusing functions for bone marrow 

specimen  
 

 Executing time 

(second) 

Accuracy (μm) Number of false 

maxima 

Full width at half 

maximum (μm) 

Brenner function 14.7125±0.6406(3) 0.2500±0.2565(1) 0(1) 1.6344±0.1630(1) 

Histogram range 0.1411±0.0066(2) 1.3000±0.6708(5) 15(5) ≥12.5(2) 

Threshold 0.1383±0.0033(1) 0.2895±0.2536(4) 1(2) ≥12.5(2) 

Vollath F5 34.7059±3.0202(4) 0.2632±0.2565(2) 1(2) ≥12.5(2) 

Variance 35.0119±0.8372(5) 0.2632±0.2565(2) 1(2) ≥12.5(2) 

     Note: Rank is illustrated in the parentheses. 

Table 4: Results of the evaluation of auto-focusing functions for blood specimen  

 Executing time 

(second) 

Accuracy (μm) Number of false 

maxima 

Full width at half 

maximum (μm) 

Brenner function 15.3441±0.4044(3) 0.2250±0.2552(2) 0(1) 1.3404±0.6354(1) 

Histogram range 0.1435±0.0099(2) 1.1818±0.7833(5) 9(5) ≥12.5(2) 

Threshold 0.1400±0.0064(1) 0.2000±0.2513(1) 0(1) ≥12.5(2) 

Vollath F5 32.0297±0.6356(4) 0.2500±0.3035(3) 0(1) ≥12.5(2) 

Variance 34.5461±0.2625(5) 0.2500±0.3035(3) 0(1) ≥12.5(2) 

         Note: Rank is illustrated in the parentheses. 
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Blood and bone marrow samples have different optimal auto-focusing functions. 

In clinical application, one or two auto-focusing false maxima is acceptable when 

scanning the blood specimens, as one slide usually contains 30-50 useful cells and 

clinicians only need 3-5 cells to make the diagnosis. Comparing to the Brenner 

function, the threshold pixel counting method has much higher efficiency while 

achieving a satisfactory accuracy and robustness. Therefore, the threshold pixel 

counting algorithm is suggested as the optimal selection.  

For the bone marrow specimen, however, one slide only contains 5-6 useful 

analyzable metaphase cells. In order to collect enough (20) cells for diagnosis, 

clinicians need to screen 3-5 slides. Furthermore, even in in-focused state, the image 

quality of bone marrow cells is not as good as the blood cells, which may affect the 

auto-focusing operation. Thus, scanning of bone marrow slides requires very high 

reliability. On the other hand, executing time of the Brenner gradient is highly 

dependent on the computing environment. The executing time can be significantly 

reduced by utilizing a high efficiency programming language such as C/C++ under the 

environment of a high performance workstation. Therefore, Brenner function is the 

optimal solution for the bone marrow slide, as the Brenner function has high accuracy 

and robustness to the useless information, especially when using the images with 

decreased quality.  

6.5 Discussion 

Metaphase chromosome karyotyping of pathological specimens is a widely used 

technique for the diagnosis of genetic diseases. In the hospital, clinicians need to 

carefully examine the number or morphology of the chromosome bands, to determine 
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whether the case is abnormal or not [1, 3, 6, 20, 21]. Therefore, during the image 

acquisition, we must ensure that the band sharpness is adequate for diagnosis, as the off-

focused bands in the captured images might lead to false positive or false negative 

diagnostic results. 

In order to keep the adequate band sharpness in microscopic images, auto-

focusing techniques are necessary for the automatic or semi-automatic scanning 

microscopes, especially the high throughput scanning systems [12, 25]. The auto-

focusing technique can be divided into auto-focusing function and searching algorithms. 

Since the performance of auto-focusing functions varies in different applications, the 

auto-focusing function must be carefully selected to achieve the satisfactory or optimal 

results. Although several studies have been reported on selecting the optimal auto-

focusing function for some specimens, such as pap smear or tuberculosis, little effort 

has been done on how to select the “best” auto-focusing function for the metaphase 

chromosome images acquired from different pathological specimens (i.e. bone marrow 

or blood) in high resolution imaging environments [110, 112-114].  

In this study, five auto-focusing functions were tested and compared on 

metaphase chromosome images obtained from bone marrow and blood specimens. Four 

different criteria were used for the evaluation. The results demonstrate that the Brenner 

gradient and threshold pixel counting are superior to the others. To achieve the optimal 

performance, Brenner gradient and threshold pixel counting methods are suggested for 

the bone marrow and blood sample scanning, respectively. 

However, this preliminary study has several limitations. First, we only used 

blood and bone marrow samples. Some other specimens, such as amniotic fluid, product 
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of conception (POC), which are also widely used in clinical practice, were not tested. 

Second, we only selected five different auto-focusing functions. Some recently 

developed functions were not considered [101, 118-120]. Third, the selected optimal 

auto-focusing methods have not been actually performed for realistic imaging scanning. 

Hence, a more comprehensive study is underway, which may help eventually optimize 

high throughput microscopic image scanning system in the future clinical practice. 
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Chapter 7: Objective evaluation of the microscopic image sharpness  

7.1 Background  

High throughput scanning microscopy is a widely used technique which has 

attracted extensive research efforts in the last several years [4, 6, 29, 121]. During the 

chromosome scanning, the efficiency can be improved by increasing the scanning speed 

[7]. However, for the high speed scanning, the sharpness of the obtained images may be 

deteriorated [88], which can be attributed to the short exposure, scanning blur, and the 

stage random vibrations. The deteriorated images cannot be clinically used, as they may 

lead to misdiagnosis. Therefore, we need to understand the relationship between the 

scanning speed and image sharpness deterioration.  

In this study, the image sharpness at different scanning speeds was investigated 

objectively using a sharpness function. A standard resolution target and several 

clinically analyzable metaphase chromosomes were imaged at different scanning speeds, 

under the condition of 100× objective lens. Then the sharpness of the obtained images 

was objectively evaluated by a sharpness function.  

7.2 Experimental methods 

7.2.1 Objective sharpness evaluation of the microscopic images for standard resolution 

target  

In scanning microscopy, the clinical slides are screened at high speed to improve 

the efficiency [7]. However, increasing the scanning speed may lead to sharpness 

deterioration of the captured images [88]. In this study, the deterioration was evaluated 

objectively using a sharpness function.  
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All the experiments were performed with a custom developed high throughput 

scanning microscopy prototype [7]. The prototype was built upon a commercialized 

microscope, which is equipped with a line scanning CCD detector based on the time 

delay integration (TDI) technique (Piranha HS-40-04k40, Dalsa Company, Ontario, 

Canada), and a high precision moving stage (99S000, Ludl Electronic Products,  New 

York, U.S.A.). When the system is synchronized, the detector is able to acquire images 

continuously.  

The experiment started with the image acquisition of the standard resolution 

target USAF1951 (USAF1951, Edmund Optics, New Jersey, U.S.A), which is 

performed under 100× objective lenses. The target contains a series of resolution 

patterns with different spatial frequencies up to 645 lp/mm. During the experiment, the 

target was first fixed on the stage, and the in-focused position is visually determined. 

Then the target was imaged when the stage is moving continuously with different 

speeds. Accordingly, the exposure time of the TDI detector must be synchronized with 

the speed, which can be determined by the following formula [77]:                                        

                                                               
p

T
V M




                                                                (7-1) 

In the formula, T is the exposure time, V is the scanning speed, M is the system 

magnification (i.e. the magnification of the objective lens), and p is the pixel size of the 

detector, which is 0.007mm for our scanning prototype.  

When the 100× objective lens was applied, the scanning speed can be ranged 

from 0.25 mm/s to 2.5mm/s, as the minimal and maximal exposure time of the detector 

are 1/36000 and 1/3500 second, respectively. Therefore, the investigated speed range 

was selected from 0.4mm/s to 2.4mm/s, with a step of 0.2mm/s. 
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After the images were acquired, the sharpness was assessed for each captured 

image. The evaluation was composed of two steps. Since there are a series of different 

patterns on each acquired image, we first used the system modulation transfer function 

(MTF) curve to select one resolution pattern for the assessment. The curve has been 

measured in our previous investigations [8, 9]. The spatial frequency for which the 

contrast drops to 50% of the maximum was determined for the following assessment [9]. 

Therefore, the 645 lp/mm pattern was used in the experiment. 

Then, the image sharpness of the selected patterns was assessed. There are many 

different methods reported recently for the image sharpness evaluation [122, 123]. 

Among these methods, the gradient sharpness function has low computing complexity 

and high sensitivity to the change of the exposure. Thus the gradient sharpness function 

was used in this application, which is demonstrated as follows [79]:  

                        
2 21

{[ ( , ) ( 1, )] [ ( , ) ( , 1)] }
2

S i x y i x y i x y i x y
mn

                             (7-2) 

Where S is the calculated sharpness value, i(x, y) is the intensity at pixel (x, y), and m, n 

are the numbers of rows and columns respectively. The gradient sharpness function first 

computes the average intensity difference between pixel (x, y) and the neighbor pixels 

(x-1, y), and (x, y-1), respectively. Then, the algorithm adds the computed result of each 

pixel together and the final value is divided by the number of the pixels of the obtained 

pattern [79]. 

For each acquired image, the image sharpness value of the selected pattern was 

calculated. These sharpness values were finally curved as a function of scanning speed. 
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7.2.2 Objective sharpness evaluation of the microscopic images for metaphase 

chromosomes  

Similarly, for the metaphase chromosomes, we randomly selected several 

clinically analyzable metaphase cells from the bone marrow sample. These 

chromosomes were imaged at the speed between 0.4 and 2.4 mm/s, under the condition 

of 100× (oil, N.A. = 1.25) objective lens. Among the 46 chromosomes for each acquired 

image, three of them were randomly selected for the objective sharpness assessment. At 

each speed, the calculated sharpness value of the selected chromosomes was averaged. 

The final results were plotted versus scanning speed.  

7.3 Experimental results 

7.3.1 Results of objective evaluation for standard resolution target 

Fig. 32 (a) demonstrates the measured image sharpness values at different 

scanning speeds for the USAF1951 standard resolution target. The image sharpness is 

optimized at 0.6 mm/s, at which the target is properly exposed. An example is 

illustrated in Fig. 32 (c).  In addition, the scanning blur and random vibration would not 

seriously affect the image sharpness when the speed is low. According to the formula 

(7-1), the exposure time decreases when increasing the scanning speed. Due to the 

under exposure, the sharpness decreases significantly at 0.8 mm/s, which can be 

attributed to the non-linearity of the sharpness function and the detector sensitivity. 

Besides the exposure time, the scanning blur and stage random vibration also affect the 

image sharpness when the speed is high. Therefore, the sharpness value decreases as the 

speed increases. When the speed is lower than 0.6 mm/s, the sharpness value decreases 

again, as the exposure is too long, and the resolution patterns are saturated with light.   
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    (a) 

                 

                               (b)                                    (c)              (d) 

Figure 32: Sharpness curve and some partial images of a resolution target obtained at 

different scanning speeds 

(a): The sharpness curve versus the scanning speed under the condition of 100× 

objective lens (oil, N.A. = 1.25). (b), (c) and (d): Three partial images acquired from the 

USAF1951 standard resolution target with a scanning speed of 0.3mm/s, 0.6mm/s and 

1.6mm/s, respectively. 

7.3.2 Results of objective evaluation for metaphase chromosomes 

Fig. 33 (a) demonstrates the calculated sharpness value for the metaphase 

chromosomes. Similarly, the sharpness value reaches the maximum at 0.8 mm/s, and 

decreases when increasing or decreasing the speeds. Given that the sharpness is 

optimized at 0.6 mm/s when standard resolution target is imaged, this difference can be 
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attributed to the fact that the attenuate coefficient of the bone marrow samples is smaller 

than the standard resolution target. The sharpness curve generally agrees with the 

subjective evaluation of the chromosome bands. When the chromosomes were captured 

at 0.6 or 0.8 mm/s, the band patterns are adequate for the diagnosis, as demonstrated in 

Fig 33 (c) and (d). The clinical meaning of the chromosomes decreases when the speed 

is lower than 0.6 mm/s or higher than 0.8 mm/s, as expected. 

   

           (a)                                            

             

              (b)                            (c)                            (d)                                 (e)    

Figure 33: Sharpness curve and some images of a metaphase chromosome obtained at 

different scanning speeds  

(a): Sharpness curve versus the scanning speed, when using the 100× objective lens (oil, 

N.A. = 1.25). (b), (c), (d), and (e): Sample images of a pathologically analyzable 
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chromosome obtained from bone marrow samples, with a scanning speed of 0.4 mm/s,  

0.6 mm/s,  0.8 mm/s, and 1.6 mm/s, respectively. 

7.4 Discussion 

High throughput scanning microscopy is a widely applied technique for the 

diagnosis of the chromosome abnormalities. When applying this new technique, the 

sharpness of the chromosome band patterns is a critically important indicator of the 

image quality, as the acquired images with blurred bands may lead to misdiagnosis. In 

this study, the chromosome band sharpness was objectively investigated, using a 

gradient sharpness function. The standard resolution target and several pathological 

chromosomes were imaged at different scanning speeds, and the sharpness is 

objectively evaluated by the gradient sharpness function. The results reveal that the 

captured image sharpness is optimized at 0.6 and 0.8 mm/s, for the resolution target and 

metaphase chromosomes, respectively. The results general agree with the subjective 

assessment. 

However, this study is preliminary. The clinical samples are limited to bone 

marrow, and we do not consider the interplay between the impact of speed and the 

impact of depth of field (DOF) [9]. A more comprehensive study is planned, which 

might be meaningful for improving the efficiency and quality of clinical cytogenetic 

scanning. 
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Chapter 8: An initial study of an automatic scanning method  

8.1 Background 

Developing automatic microscopic image scanning technologies and systems 

has been attracting wide research interest in clinical pathology and other areas for the 

diagnosis of a variety of cancers and other serious diseases [6, 121, 124]. For the high 

throughput scanning microscopic systems, one of the technical challenges is to 

minimize the impact of the random vibration and mechanical drifting of the scanning 

stage, to ensure that the specimen remains in focus during the scanning process, as the 

off focused images may seriously blur the targeted signals and increase the image noise 

that lead to reduce the diagnosis accuracy and reliability. In order to keep the system in 

focus, the current scanner repeatedly applies the auto-focusing operations on the entire 

imaging field. However, such a method is quite time-consuming and lowly efficient. 

In our bioengineering laboratory, a sampling-focusing method was investigated, 

which differs from the traditional method in that the investigated method only applies 

the auto-focusing operations on a limited number of locations of the imaging field. For 

the rest of the imaging field, the focusing position is adjusted very quickly through 

linear interpolation. The purpose of this study is to investigate an optimal trade-off 

between image quality and scanning efficiency.    

8.2 Experimental methods 

The scanning method investigated in this study applies only a limited number of 

focusing adjustments during the scanning process. For an imaging field of a given size, 

applying a greater number of focusing operations increases the image quality, but this 
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occurs at a cost of lower efficiency. Experimental studies were performed to determine 

the optimal trade-off between the quality and efficiency. 

 

 

Figure 34: 3×3 scanning scheme 

 The schematic diagram was applied on the imaging field of pathological slides. The 

field size is 6.9mm×6.9mm. The bold dots indicate 9 locations where the z-position 

adjustments (focusing operations) are performed. S1, S2, S3, and S4 are four subfields. 

Each subfield is composed of 9 scanning regions. The interpolation is performed at the 

center of each scanning region, as shown by the open dot. 

The experiments were performed on a high throughput microscopic image 

scanning system equipped with a Time Delay Integration (TDI) detector [7, 88]. 

Clinical slides of blood samples containing both metaphase and interphase cells were 

used in the experiments.  

On the pathological slides, the imaging field size was selected as 6.9mm×6.9mm. 

Next, the auto-focusing locations were determined. A total of four different sampling 

schemes were utilized for comparison in this experimental investigation, which are 2×2, 

3×2, 3×3, 4×4 auto-focusing locations. 
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For the 3×3 scanning scheme, a total of 9 auto-focusing locations are evenly 

distributed across the imaging field, as shown by the bold dots in Fig 34. The distance 

between two auto-focusing locations is 3.45mm in both the X and Y directions. The 

imaging field is composed of 4 subfields: S1, S2, S3 and S4. Each subfield has an area 

of 3.45mm×3.45mm, with four auto-focusing locations distributed at the corners. The 

method sequentially scans subfields S1, S2, S3, and S4. 

Before scanning S1, the method first measures the in-focused z-position at the 

four corners of S1. At each corner, the motorized scanning stage moves up and down 

along the z-direction, to adjust the distance between the objective lens of the 

microscope and the blood sample. With the commonly used auto-focusing technique, 

the in-focused z-position is determined by comparing the sharpness of the images 

acquired at a series of z-positions. The z-position corresponding to the sharpest image is 

considered as the in-focused position. The image sharpness is assessed by applying a 

sharpness function on the acquired images. The sharpness function has been 

investigated by researchers for many years [109-111]. Specifically, in this study, a 

derivative-based sharpness function was applied, as this method has relatively low 

computational complexity [7, 88]. The function is calculated as follows: 

                                  2

,( ) [ ( 1, , ) ( 1, , )]x ySV z i x y z i i y z                                               (8-1) 

where i(x+1,y) and i(x-1,y) are the intensity of the pixel (x+1, y) and (x-1, y) of the 

image which is captured at focusing position z. SV is the sharpness value. The image 

with the largest sharpness value SV is selected as the sharpest image. The auto-focusing 

operation is applied on the four corners of S1 to determine the in-focused z-position 

resulting in the sharpest image. 
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Then, the method scans the subfield S1, which is divided into 9 scanning regions, 

as illustrated by the dashed line in Fig 34. Each region has an area of 1.15 mm×1.15mm. 

The region is scanned continuously by the TDI camera with a fixed z-position, which is 

calculated by interpolating the measured z-positions at the four corners of the subfield. 

In the experiment, linear interpolation was applied, as this algorithm is the most 

efficient method among all the interpolation algorithms [7, 88]. The interpolation is 

performed at the center of each scanning region, using the following formula:  

                                31 1 1 2

3 3 3 3

32 1 2 2

1( , ) ( , )
( , ) [1 ]

( , ) ( , )

yZ x y Z x y
Z x y x x
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. Z(x1,y1 ), Z(x1,y2), Z(x2,y1) , 

and Z(x2,y2) the in-focused z-positions measured at four locations (x1, y1 ), (x1, y2 ), (x2, y1 ), 

and (x2, y2 ), respectively.  

When the automated-processing of one region is completed, the method moves 

to the next region until the entire subfield is finished. When S1 is finished, the method 

scans subfields S2, S3, and S4 using the same approach. 

For the 2×2 scheme, the 4 auto-focusing locations are at the four corners of the 

entire imaging field, and only one subfield is utilized. The 3×2 scheme has 2 scanning 

subfields, with a size of 3.45mm×6.9mm. The 4×4 scheme has 9 scanning subfields, 

with a size of 2.3mm×2.3mm. After all the scanning schemes are finished, the clinically 

meaningful cells are selected from the scanned results and tabulated for comparison. 

8.3 Experimental results 

Table 5 presents the scanning results from using each of the four different 

sampling schemes. 25 clinically useful cells were selected when the 2×2 sampling 

scheme is applied, with a scanning time of 15 minutes. Similarly, when the 3×2, 3×3, 
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and 4×4 sampling schemes were applied, 29, 40 and 41 analyzable cells were identified. 

However, the scanning time also increases to 21, 29 and 44 minutes, respectively. 

Table 5: Comparison between the automatic screening using different sampling 

schemes 

The sampling scheme Identified useful cells Scanning time 

2×2 25 15 min 

3×2 29 21 min 

3×3 40 29 min 

4×4 41 44 min 

The results show that different scanning schemes obtain different numbers of 

useful cell images, which can be attributed to the z-position interpolation. During the 

scanning, the interpolated z-position might be different from the in-focused z-position, 

thus some analyzable cells may be captured as off focused images, which cannot be 

used for diagnosis. The error decreases when more locations are sampled, as the 

interpolation is more accurate when the distance between two auto-focusing locations is 

small. Therefore, more useful images are captured when the number of sampled 

locations increases. Fig 35 illustrates a clinically analyzable cell captured by the 3×2 

and 3×3 sampling schemes in (a) and (b), respectively. The chromosome bands in Fig 

35 (a) are unrecognizable. In Fig 35 (b), however, the image sharpness has been 

substantially improved and the chromosome bands have adequate sharpness for clinical 

interpretation.  

The results demonstrate the trade-off between the scanning efficiency and the 

number of acquired analyzable cells. As discussed previously, more clinically useful 

cells can be selected when a larger number of auto-focusing locations are sampled. 

However, the scanning efficiency will decrease when the number of auto-focusing 

operations increases. In this specific experiment, the 2×2 sampling scheme identifies 25 

clinically meaningful cells, which is adequate in most clinical situations where visually 
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selecting 20 analyzable cells are required to make a diagnostic decision. However, in 

order to improve diagnostic accuracy in heterogeneous cases in which more numbers of 

analyzable cells are needed, the 3×2 and 3×3 sampling schemes also provide an option, 

as these two schemes acquired 4 or 15 more analyzable cells for high accuracy 

diagnosis, respectively. Obviously, the 4×4 sampling scheme is not recommended, as it 

takes too much time (44 minutes) by acquiring one additional useful cell, as compared 

to the use of the 3×3 sampling scheme.  

                

                                    (a)                                                   (b) 

Figure 35: Microscopic images of a clinically analyzable cell contained in a blood 

sample, captured by (a) 3×2, (b) 3×3 sampling scheme, respectively 

8.4 Discussion 

Developing high throughput microscopic image scanning systems has potential 

to improve disease diagnostic accuracy and efficiency in variety of clinical applications. 

During the automatic scanning, keeping the specimen in focus is critically important, as 

the random vibration and mechanical drifting of the stage may result in off focused 

images, which could make the actually analyzable cells not diagnosable or introduce 

diagnostic errors. The random vibration and mechanical drifting can be vastly reduced 

by repeatedly performing the auto-focusing operation on the specimen. However, this 

method is quite inefficient and unnecessary. The new selective auto-focusing methods 
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evaluated and compared in this preliminary study may offer a practical solution that 

enables to balance the trade-offs between image quality and scanning efficiency. To 

assess the robustness of the new scanning method, more comprehensive research has 

been planned to study these and other design trade-offs for developing the optimal 

scanning scheme of the high throughput microscopic systems.  
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Chapter 9: Feature selection for the automated detection of metaphase 

chromosomes: Performance comparison using a receiver operating characteristic 

(ROC) method  

9.1 Background 

Chromosome imaging and karyotyping is an important and widely used clinical 

method for the diagnosis of genetic related diseases and cancers [1-3]. For this 

technique, identifying a sufficiently large number of pathologically analyzable 

metaphase chromosomes is critically important for the final accuracy of cancer 

diagnosis and residual cancer cell detection. Traditionally, these analyzable metaphase 

chromosomes are screened and detected manually by the experienced clinicians, which 

is labor intensive and time consuming. In addition, manual identification also creates 

substantial inter-observer variation due to the bias of cell selection (i.e., the tendency 

towards selecting cells with good morphology). Therefore, the automatic scanning 

techniques are proposed and developed in the last 20 years, in an attempt to reduce the 

clinicians’ workload and improve the diagnostic  accuracy and consistency [4]. 

Recently, a new high throughput scanning method was reported in our 

laboratory[7]. Comparing to the conventional microscopic image scanners, our new 

method combines the slide screening and image acquisition, which is able to directly 

provide the images containing high resolution chromosomes for the following diagnosis 

purpose [7, 12, 88]. In order to apply the high throughput scanning to the future 

practice, a computer aided detection (CAD) scheme is needed to be integrated into the 

image scanning procedure, for selecting the analyzable metaphase chromosomes [7]. 

The CAD scheme extracts and computes a set of image features from the segmented 
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region of interest (ROI) on the acquired image, in an effort to further determine whether 

the image contains analyzable chromosomes. Thus selecting optimal and robust features  

is critically important in the CAD scheme, as the image features will directly determine 

the final accuracy of the entire scheme. In the last several years, investigating new 

features has received extensive research interest and a series of different methods have 

been reported [27-29, 78, 125]. However, the effectiveness of feature selection is often 

application oriented. The previously published chromosome features cannot be directly 

compared for our CAD scheme, as these methods are applied under different scanning 

conditions and evaluated using different standards. Therefore, we need to investigate 

how to effectively evaluate these features under the high throughput scanning condition.   

For this purpose, we performed a new study in which a certain amount of bone 

marrow chromosomes were scanned and imaged under the high throughput scanning 

prototype. Different image features were computed by our CAD scheme to detect and 

classify the analyzable cells among the scanned images. The performance of the 

features was assessed and compared using a receiver operating characteristic (ROC) 

data analysis method. The detailed experimental methods and results are reported as 

follows. 

9.2 Receiver operating characteristic (ROC) curve: Basic concepts 

9.2.1 ROC curve: Four categories in the diagnosis  

During the diagnosis, the patients will be identified as normal (negative) or 

abnormal (positive) to a specific disease (i.e. Hypertension, cancer, etc). Given that all 

the patients can be divided into normal and abnormal classes, a number of 4 different 

categories will be generated, as demonstrated in Fig 36 [126-128]: 
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True positive category (TP): The actually abnormal patient is diagnosed as 

abnormal. 

False positive category (FP): The patient is diagnosed as abnormal. However, he 

(she) is actually normal. 

True Negative category (TN): The actually normal patient is diagnosed as 

normal. 

False Negative category (FN): The patient is diagnosed as normal. However, he 

(she) is actually abnormal. 

 

                  Figure 36: The confusion matrix of the diagnosis [127] 

Accordingly, the number NTP, NFP, NTN, NFN are defined as the number of patients 

in true positive (TP), false positive (FP), true negative (TN), false negative (FN) 

categories, respectively.  

Based on the above four numbers (NTP, NFP, NTN, NFN), the following concepts are 

defined: 

True positive fraction (TPF): TPF is the ratio between the number of TP patients 

and all the actually positive (abnormal) patients: TPF = NTP / (NTP + NFN).  
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False positive fraction (FPF): FPF is the ratio between the number of FP patients 

and all the actually negative (normal) patients: FPF = NFP / (NFP + NTN).  

True negative fraction (TNF): TNF is the ratio between the number of TN 

patients and all the actually negative (normal) patients: TNF = NTN / (NTN + NFP).  

False negative fraction (FNF): FNF is the ratio between the number of FN 

patients and all the actually positive (abnormal) patients: FNF = NFN / (NTP + NFN).  

Obviously, the following formulas are established: 

                                                    TPF + FNF = 1                                             (9-1) 

                                                    TNF + FPF = 1                                              (9-2) 

Specifically, the TPF and TNF are also defined as sensitivity and specificity, 

respectively. 

In addition, the diagnosis accuracy (A) is defined as the ratio between the 

number of all the correctly diagnosed patients and the total patients: 

                               A = (NTP + NTN) / (NTP + NFP + NTN + NFN)                           (9-3) 

9.2.2 ROC curve: Definition 

ROC curve was first applied in random signal detection, which is defined as the 

curve of sensitivities at different specificities [126, 129, 130]. At present, the ROC 

curve is wildly used in the assessment of medical diagnosis. 

 During the diagnosis, especially in the radiological diagnosis, the patients are 

classified into several categories. For example, in the breast cancer diagnosis, all the 

mammograms are divided into five different categories [131, 132]: Definitely benign, 

benign, probably benign, probably malignant, and definitely malignant. Suppose there 

are 100 patients, among which 50 are actually breast cancer patients and the others are 
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normal [131]. After the mammogram screening, the radiologist’s diagnosis results are 

illustrated in the following table: 

Table 6: The radiologists’ diagnostic results of 100 patients 

 Definitely 

malignant 

Probably 

malignant 

Probably 

benign 

Benign Definitely 

benign 

Total 

Abnormal 30 7 2 6 5 50 

Normal 6 5 3 5 31 50 

Total 32 12 9 11 36 100 

Since the patients are classified into 5 different categories, six decision rules can 

be designed: 

Rule1: All the patients are diagnosed as normal.   

Rule2: The patients with definite malignant results are diagnosed as abnormal, 

and others are normal.   

Rule3: The patients with definitely malignant and probably malignant results are 

diagnosed as abnormal, and others are normal.   

Rule4: The patients with definitely malignant, probably malignant, and probably 

benign results are diagnosed as abnormal, and others are normal.   

 Rule5: The patients with definitely malignant, probably malignant, probably 

benign, and benign results are diagnosed as normal, and others are abnormal.  

Rule6: All the patients are diagnosed as abnormal. 

 Accordingly, based on these rules, the different sensitivities and specificities can 

be estimated, as illustrated in the Table 7. Using these data, the empirical ROC curve is 

plotted, which is demonstrated in Fig 37. 

 Note that the malignant patients are considered positive in the diagnosis. 
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Table 7: The calculated sensitivity and specificity of the radiologists’ diagnostic results 

Diagnosis rules Sensitivity (TPF) Specificity (TNF) FPF 

Rule1 0 1 0 

Rule2 30/50=0.6 (5+3+5+31)/50=0.88 1-0.88=0.12 

Rule3 (30+7)/50=0.74 (3+5+31)/50=0.78 1-0.78=0.22 

Rule4 (30+7+2)/50=0.78 (5+31)/50=0.72 1-0.72=0.28 

Rule5 (30+7+2+6)/50=0.9 31/50=0.62 1-0.62=0.38 

Rule6 1 0 1 

 

 

Figure 37: The empirical ROC curve of the above example 

9.2.3 ROC curve: Models and estimation 

In the realistic application, the distribution of the true and false positive cases 

can be approximated as normal distributions [133-136]. In order to determine the TPF at 

different FPF, a number of K different discrimination thresholds are selected, as 

illustrated in Fig 38 (a). At each threshold xt, the TPF and FPF is the shaded area under 

the curve [127, 129]:   
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In these formulas, μp and σp are the mean and standard deviation of the normal 

distribution for the positive cases, while μn and σn are the mean and standard deviation 

of the normal distribution for the negative cases.   

 
     (a) 

 

                          
                     (b)                                                                          (c) 
 

Figure 38: The demonstration of the binomial modal for the ROC curve [127] 

(a): A number of 5 discrimination thresholds are used for the ROC estimation. For each 

threshold, the TPF (b) and FPF (c) can be estimated as the shaded area under the curve. 

Using z as the standard normal random variable, we have: 

                                              ( ) /TPF p m pz x                                              (9-6)  

                                              ( ) /FPF n m nz x                                        (9-7) 

Therefore, the following formula is derived: 
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Given that TPF = Φ(zTPF) and FPF = Φ(zFPF), we have 

                                           1( ( ))TPF a b FPF                                     (9-9) 

where a = (μp –  μn) / σp, b = σn / σp. 

Using ti = (xi – μn) / σn as the normalized discrimination threshold, the FPF is: 
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                                     (9-10) 

Therefore, we have: 

                1( ( )) ( ( )) 1 ( )i iTPF a b FPF a b t b t a                  (9-11) 

The coordinates (x, y) at the ROC curve can be written as: 

                                ( , ) (1 ( ),1 ( ))i iFPF TPF t b t a                             (9-12) 

where ti ranges from – ∞ to +∞. 

Therefore, the entire curve is completely determined when the parameter a and b 

are estimated. 

In order to estimate a and b, the maximum likelihood (ML) method is applied. 

As mentioned before, if a number of K different discrimination rules x1, 

x2 ,x3,…xK is made, an number of K+1 categories are accomplished.  

Thus the probability P (x ≥ xi | p) is equal to the estimated sensitivity (TPF) 

when using discriminating rule i. Similarly, the probability P (x ≥ xi | n) is equal to the 

estimated FPF (1 – specificity) when using discriminating rule i. 

Therefore, the probability of one actually positive (abnormal) case locating in 

category r ( 1 ≤  r ≤ N +1 ) is: 

 1( | ) ( | ) ( | )r rP r p P x p P x p                                     (9-13) 
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The probability of one actually negative (normal) case locating in category r (1 

≤  r ≤ N +1 ) is: 

    1( | ) ( | ) ( | )r rP r n P x n P x n                                   (9-14) 

Suppose the dataset has M actually positive (abnormal) cases and N actually 

negative (normal) cases. Among the M abnormal cases, m1, m2,… mK+1 responses are 

located in the K+1 categories, respectively. Similarly, among the N normal cases, n1, 

n2, … nK+1 responses are located in the K+1 categories.  Then the likelihood of establish 

such as dataset is [127, 129]: 

1 2 1( , | , , ) (1| ) (2 | ) ... ( 1| ) Km m mP M N a b x P p P p P K p       

                                               1 2 1(1| ) (2 | ) ... ( 1| ) Kn n nP n P n P K n                   (9-15) 

where x is the K different discrimination rules. 

Then 
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                            (9-16) 

Using θ to represent the K+2 parameters (a,b, x1, x2, …, xK), then the maximum 

probability P is achieved when the following condition is satisfied: 

                                              
ln ( , | , , )
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P M N a b x







                                     (9-17) 

 The parameters can be solved by expanding the above equation. Currently, 

some standard programs are published and widely used to estimate the ROC curve, such 

as ROCKIT program, which is developed by Metz [129, 130, 137-139]. 

In the example discussed in the last section, the sensitivities are 0, 0.6, 0.74, 

0.78, 0.9, and 1, while the corresponding FPF are 0, 0.12, 0.22, 0.28, and 0.38, 
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respectively. Using the ROCKIT program, the estimated ROC curve is demonstrated in 

Fig 39. 

 

 
 

Figure 39: The estimated ROC curve of the example in Section 9.2.2 

9.2.4 Performance evaluation using ROC curve 

 
 

Figure 40: Four different ROC curves 

In order to assess the performance of the diagnostic methods, the most important 

parameter of the ROC is area under curve (AUC). Given one randomly selected positive 

and one randomly selected negative cases, the AUC is the average probability for which 

the tested method will give the positive case a higher score than the negative case [140]. 

Fig 40 illustrates the ROC of four different diagnostic methods (Classifiers). Method 1 

has an AUC of 0.5, for which the TPF (Sensitivity) is always equal to the FPF. 
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Factually, Method 1 is equivalent to the random classification, which has the worst 

performance among all the four illustrated methods. Method 3 is better than method 2, 

as method 2 has larger AUC that method 3, and method 3 also has a higher sensitivity 

than ROC2 at any FPFs. Method 4 is the perfect method with an AUC of 1, which has 

sensitivity of 1 at any FPFs. 

 
 

Figure 41: A comparison between two different ROC curves with similar AUC 

In many situations, we need to compare the performance of the method at a 

specified FPF. Fig 41 is an example. The overall performance of method 1 and 2 are 

very close, as they have similar AUC (Method 1: 0.8145, Method 2: 0.8044). However, 

the performance of method 1 is better than 2 at high FPF (Low specificity), while the 

method 2 is better than 1 at low FPF (high specificity). These two different methods 

might be suitable for different patients. For the average patients, the number of the 

actually normal (Negative) cases is much more than the abnormal (Positive) cases, the 

clinician will use the decision rule with high specificity, to reduce the number of the 

false positive patients. Therefore, Method 2 is more suitable for the average patients, as 

method 2 has higher sensitivity when the FPF is low (FPF = 1 – specificity).  However, 

if the patients have family history of breast cancer, the clinician will use the decision 
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rule with very high sensitivity to decrease the risk of false negative diagnosis. This high 

sensitivity will occur with low specificity (or high FPF). Therefore, for these highly 

suspicious patients, method 1 is more suitable as its sensitivity is higher than method 2 

when the FPF is very high.   

9.3 Experimental materials and methods 

During the specimen slide scanning, only a small amount of the scanned images 

are qualified for the clinical examination, as most of the scanned image regions contain 

un-analyzable cells due to the sample processing in genetic laboratory. Therefore, a 

CAD scheme is applied to detect and identify the image regions of interest (ROIs) 

depicting the analyzable chromosomes. To develop an effective and robust CAD 

scheme, feature extraction is a critically important step in the CAD development and 

optimization [4, 27-29].  

  In this investigation, different features were assessed under the high throughput 

scanning condition. The entire assessment includes the following three steps. First, a 

number of 200 cells were randomly selected from bone marrow specimens. All the 

selected cells were imaged under our recently developed scanning microscopy 

prototype [7]. Each cell was captured under a 100× objective lens, by a time delay 

integration (TDI) camera with a pixel size of 7 μm.     

Second, the CAD scheme computed a number of images features for the region 

of interest on the obtained image. The feature pool includes a number of nine different 

features, which are widely used for the chromosome classifications [27-29]. They are 

detailed as follows: 
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1) Number of  the labeled regions [29]: Aftering applying the region growth and 

labeing algorithm, the CAD detects and counts the number of the isolated 

“chromosomes”. 

2) Average region pixel intensity [79]: The CAD computes the average pixel 

intensity value for all the labeled “chromosomes” on the image.  

3) Standard deviation (STD) of the region pixel intensity [79]: The CAD first 

computes the average pixel intensity for each labeled region, and then calculates the 

standard deviation of the region pixel intensity for all the labeled “chromosomes”.  

4) Average region area [79]: The CAD computes the area of each labeled region 

(“chromosome”) by counting the number of the pixels contained in the region. The 

average region area for the entire image was computed by averaging the region area of 

all the labeled regions. 

5) STD of the region area [79]: The CAD computes the standard deviation of the 

region area for all the labeled regions contained on the entire image. 

6) Average region circularity [29, 80]:  In order to calculate this feature, the 

circularity of each labeled region was first computed.  For each region, an equivalent 

circle was created, and this circle has the same area as the labeled region. The CAD 

then computes the overlapped area (Ao) between the equivalent circle and the entire 

region. The region circularity is then defined as the ratio between the overlapped area 

(Ao) and entire regions area (A): Ao / A. After that, the circularities of all the regions 

were averaged for the entire image. 

7) STD of the region circularity [29, 80]: The CAD computed the standard 

deviation of the circularities of all the labeled regions within the entire image. 
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8) The average region distance [29]: The CAD first computes the global gravity 

center (xg , yg) of all the labeled regions. The radial distance is then defined as the 

distance between the gravity center (x, y) of each labeled region and global gravity 

center (xg , yg). The radial distances of all the regions were averaged as the average 

region distance. 

9) STD of the region distance [29]: The CAD computes the standard deviation 

of the region distances for all the labeled regions on the image. 

Third, the performance of the CAD scheme was assessed using a receiver 

operating characteristic (ROC) method [126, 129, 130]. For each feature, a ROC curve 

was computed by estimating the true positive fraction (TPF) at different false positive 

fractions (FPF) [129]. In the realistic application, the distribution of the true and false 

positive cases can be approximated as normal distributions [129, 130]. In order to 

estimate the TPF at different FPF, the data were categorized by several discrimination 

thresholds. At each threshold, the TPF and FPF were estimated. The ROC curves were 

estimated by maximum likelihood method, using the ROCKIT program, as discussed in 

Section 9.2 [129].   

In this investigation, the area under the curve (AUC) was first computed [129]. 

The features with an AUC under or close to 0.5 were discarded, as their performances 

are not better than the random decision. Then, each pair of the remained features was 

compared and the difference significance among these feature classifying performances 

was determined by the partially paired model [141]. Finally, the correlation of the ROC 

curve was also calculated to analyze the statistical independence of the features [139].  



98 

9.4 Experimental results 

Fig 42 shows three images acquired by the high throughput scanner. Fig 42 (a) 

contains a clinically analyzable region of interest (ROI), while Fig 42 (b) and (c) do not 

contain analyzable chromosomes for diagnostic purpose. Fig 42 (b) only contains 

interphase cells. Fig 42 (c) has more than one metaphase cells, and they are overlapped 

with each other. It can be seen that all the metaphase chromosomes are located in a 

certain area of the image. Comparing to the interphase cells, the metaphase 

chromosome is bright and has small size. In addition, the shape of the metaphase 

chromosome is totally different from the approximately circular interphase cells. The 

number of the labeled regions in Fig 42 (a) is much larger than Fig 42 (b), as a normal 

human cell contains 46 chromosomes and one meaningless image would not contain so 

many interphase cells. As demonstrated in Fig 42 (c), some un-analyzable images have 

more than one metaphase cells, so the number of the labeled regions is much larger than 

Fig 42 (a). 

Fig 43 shows two scatter diagrams of the dataset demonstrating the relationship 

of the feature distribution between analyzable and un-analyzable ROIs. Fig 43 (a) is a 

scatter diagram between average region area and number of the labeled regions. Since 

most of the chromosomes can be labeled as individual region, most of the analyzable 

cells have more labeled regions. Moreover, the metaphase chromosomes are much 

smaller than the un-analyzable interphase cells. Thus most of the clinically analyzable 

cells are located in the up left corner of the diagram. Some un-analyzable cells are also 

located in the up left corner, because some un-analyzable cells contain many 

meaningless metaphase chromosomes, as illustrated in Fig 42(c). Fig 43 (b) is the 
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feature distribution between number of the labeled regions and the average region 

circularity. A lot of features are overlapped in the horizontal direction, as some short 

analyzable chromosomes also have a large circularity and the captured analyzable 

images also contain interphase cells with large circularity.  

 
 

(a) 

       
 

(b)                                                        (c) 
 

Figure 42: Three examples of the microscopic images capitured by the high throughput 

scanner  

The cells were acquried under a 100× objective lens, and imaged by a TDI detector with 

a pixel size of 7μm. (a): The image contains a clinically analyzable region of interest 

(ROI). (b) and (c): The image are meaningless to the diagnosis.  
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 (a)                                                       (b) 
 

Figure 43: The feature scatter diagram of the dataset 

(a) and (b): The dataset contains 67 clinically meaningful and 133 clinical meaningless 

chromosomes. The vertical axis shows the number of the labeled regions, while the 

horizontal axis represents average region area and average region circularity, 

respectively. 

Figure 44 and 45 demonstrate and compare a set of ROC curves computed from 

different features. Among all these features, the number of the labeled regions, average 

region area, average region pixel value, the STD of the region circularity, and STD of 

the region distance demonstrate high discriminatory ability, as the area under curve 

(AUC) of the other four features are under or very close to 0.5. Among these features, 

the AUC of the number of the labeled regions are 0.896±0.023, which is significantly 

better than the AUC of the average region area (0.666±0.037), average region pixel 

intesity (0.592±0.039), STD of the circulairity (0.581±0.039), and STD of the region 

distance (0.625±0.038). Although the AUC of the other four features range from 0.666 

to 0.581, the differences between these features are not statistically significant (p  ≥ 

0.05), as illustrated in Table 8.  
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(a)                                                        (b) 

  

(c)                                                        (d)  

 

(e) 

Figure 44: The estimated ROC curve for different extracted features 

 These features are (a) number of labeled regions (b) average region area (c) average 

region pixel intesity (d) average region circulairity and (e) average region distance. 

Accordingly, the calculated area under curve (AUC) are (a) 0.896±0.023 (b) 

0.666±0.037 (c) 0.592±0.039 (d) 0.531±0.040 (e) 0.516±0.039, respectively. 
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(a)                                                           (b) 

         

                            (c)                                                                (d) 

Figure 45: The ROC of the standard deviation of different features 

These features include (a) region area (b) region pixel intensity (c) region circularity (d) 

region distance. The AUC of the ROC curves are (a) 0.486±0.039 (b) 0.524±0.039 (c) 

0.581±0.039 (d) 0.625±0.038. 

Table 9 shows the correlation coefficient between each pair of the investigated 

features. The data demonstrate that the number of the labeled regions, average region 

area, and average region pixel value are relatively independent features, as the 

correlation coefficient between these features are smaller than 0.5. The STD of the 

region circularity and the STD of the region distance are related with each other, but 

each of these two features is also independent with the other three features (number of 

the labeled regions, average region area, and average region pixel value).  
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For the high throughput scanning, both the on-line and off-line CAD schemes 

are applied [7]. The on-line CAD scheme synchronizes with the high speed image 

scanning process and initially detects the analyzable cells, while the off-line CAD 

scheme is applied after scanning, to further select the analyzable images on the results 

firstly processed by the on-line scheme. Since the number of the labeled regions has 

better performance than the other eight features, it is suggested as the only feature for 

the on line CAD scheme, to satisfy the real time requirement. After the online 

processing, a number of 1000-3000 ROIs are saved [7], among which only 10-30 ROIs  

contain analyzable metaphase cells for the following diagnosis. Thus the off-line CAD 

scheme requires high specificity to discard most of the false positive images selected by 

the on line CAD scheme. Furthermore, using the modern classifiers, the CAD scheme is 

able to combine more than one extracted features, to achieve a better accuracy [73-75, 

142]. As mentioned before, we do not need to apply both the STD of the region distance 

and circularity because they are correlated features. Therefore, for the off-line CAD 

schemes, a combination of four features is recommended, which includes number of the 

labeled regions, average region area, average region pixel value, and standard deviation 

of either region distance or circularity. 

 

Table 8: The estimated p-value of the difference significance between the features 

 Number of 

the labeled 

regions 

Average 

region area 

Average 

pixel value 

STD of the 

region 

circularity 

STD of the 

region 

distance 

Number of the labeled regions 1 0 0 0 0 

Average region area 0 1 0.1873 0.1484 0.4652 

Average pixel value 0 0.1873 1 0.6576 0.6230 

STD of the region circularity 0 0.1484 0.6576 1 0.3284 

STD of the region distance 0 0.4652 0.6230 0.3284 1 
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Table 9: The estimated correlation coefficients among different features 

 Number of 

the labeled 

regions 

Average 

region area 

Average 

pixel value 

STD of the 

region 

circularity 

STD of the 

region 

distance 

Number of the labeled regions 1 0.3253 0.1567 0.2939 0.3467 

Average region area 0.3253 1 -0.0151 -0.1524 -0.1038 

Average pixel value 0.1567 -0.0151 1 0.3698 0.3334 

STD of the region circularity 0.2939 -0.1524 0.3698 1 0.6058 

STD of the region distance 0.3467 -0.1038 0.3334 0.6058 1 

 

9.5 Discussion 

High throughput scanning microscopy is a promising method to digitalize the 

cells depicted on the clinical slides. Since only a small amount of cells contained on the 

slide are actually analyzable for the diagnosis, a CAD scheme is needed to select the 

ROIs depicting clinically analyzable chromosomes for the following diagnosis. For the 

development of a robust CAD schemes, the feature selection is critically important, 

which may directly determine the final performance of the CAD scheme. Thus the CAD 

designers need to carefully select the most suitable features, to satisfy the different 

requirements of the various CAD schemes. 

 In the last several years, many feature extraction methods are reported, which 

can effectively identify the pathologically analyzable metaphase chromosomes [27-29, 

78, 125]. However, we cannot directly compare the reported results, as these features 

were applied on the different datasets and assessed by the different standards.  

In this study, 9 different feature extraction methods were investigated, under the 

condition of high throughput scanning prototype. A number of 200 bone marrow cells 

including 67 clinically meaningful chromosomes were first acquired. Then these cell 

images were processed and the feature extraction methods were applied for each 
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acquired image. After that, the images were classified into analyzable and un-

analyzable groups, using each feature extraction method. The performance of each 

feature was assessed by the ROC curve. The result shows that extracting number of the 

labeled regions is suitable for the on-line CAD scheme. For the off line CAD scheme, 

combining four features is recommended, which includes the number of the labeled 

regions, average region area, average region pixel value, and the deviation of the either 

region circularity or distance. 

As an initial study, however, this investigation has several limitations. First, the 

performance of the classifiers was not assessed. Different classifiers, such as decision 

tree [142], support vector machine [74], fuzzy ARTMAP [73], native Bayesian 

classifier [75], may affect the performance of the final CAD schemes when using more 

than one features. Second, we did not discuss the overall performance difference 

between the manual and automatic scanning systems. Thus a more comprehensive study 

is prepared, which may be able to improve the accuracy of the high throughput scanning 

systems in the future. 
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Chapter 10: Conclusion and discussion 

10.1 Summary 

High throughput scanning microscopy is a recently developed scanning 

technique, which might be widely applied in the future. In medical imaging lab, 

University of Oklahoma, a prototype of high throughput microscopic scanning system 

was developed. The entire system was built upon a commercial transmitted light 

microscope. On this microscope, a new type of TDI line scanning camera was installed 

to acquire high resolution moving cells depicted on the specimen. A high precision 

moving stage is also utilized to hold the specimen, and both the camera and moving 

stage are synchronized by a computer. Two different CAD modules are applied to select 

the clinically meaningful cells among all the obtained images.  

For the high throughput scanning technique, however, there are several technical 

challenges. First, we need to compare the performance of this new scanning method 

with the conventional two-step scanners. Second, the DOF impact is necessary to be 

examined using the clinically analyzable metaphase chromosomes and the auto-

focusing methods should be carefully assessed to achieve the satisfactory results. Third, 

we need to optimize scanning scheme to balance the image quality and efficiency. 

Finally, classification accuracy of image features should be evaluated uniformly the 

under the high throughput scanning condition.   

This dissertation is composed of 6 investigations aiming to evaluate and 

optimize the performance of the high throughput scanning microscopic scanning system.  

The first investigation was designed to solve the first technical challenge, which utilized 
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a total of 9 slides obtained from five patients to compare the system performance of the 

high throughput scanning prototype with the conventional scanners.  

The second and third studies were performed for the second technical challenge. 

In the second study, we first computed DOF using a well-recognized theoretic model of 

an optical image system and then measured DOF of the same optical system using a 

standard test bar pattern target. After that, we analyzed DOF (by obtaining cytogenetic 

images under our developed prototype using two objective lenses of 60× (dry, N.A. = 

0.95) and 100× (oil, N.A. = 1.25). In the third study, five auto-focusing functions were 

tested and compared on metaphase chromosome images obtained from bone marrow 

and blood specimens. Four different criteria were applied to assess the performance of 

these methods.  

The fourth and fifth investigations were targeted to the third technical challenge. 

The forth study utilized a gradient sharpness function to objectively assess the 

chromosome band sharpness. The standard resolution target and several pathological 

chromosomes were imaged at different scanning speeds, and the sharpness is 

objectively evaluated by the gradient sharpness function. The fifth study analyzed a 

sampling-focusing method, which only applies the auto-focusing operations on a 

limited number of locations of the imaging field. For the rest of the imaging field, the 

focusing position is adjusted very quickly through linear interpolation.  

The forth technical challenge was examined by the sixth study. In this study, 9 

different feature extraction methods were investigated, under the condition of high 

throughput scanning prototype. A number of 200 bone marrow cells including 67 

clinically meaningful chromosomes were first acquired. Then these cell images were 
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processed and the feature extraction methods were applied for each acquired image. 

After that, the images were classified into analyzable and un-analyzable groups, using 

each feature extraction method. The classification performance of each feature was 

assessed by the ROC curve.  

10.2 Original contributions 

This dissertation has the following original contributions. First, we preliminarily 

demonstrated that high throughput scanner can detect more clinically meaningful 

metaphase cells than clinicians do in six out of the seven slides. These images were 

presented with adequate contrast and sharpness for further pathological interpretation.  

Second, our results in the dissertation showed that the experimentally measured 

DOF was substantially greater than that computed by the theoretic model. For the 

commonly cytogenetic specimens, the chromosome band depicted on the acquired 

images remained analyzable if the specimen were placed within the range of 1.5 or 1.0 

μm away from the focal plane when using the two 60× or 100× objective lenses, 

respectively. Furthermore, in order to maintain the specimen in focus, the Brenner 

gradient and threshold pixel counting methods were suggested as the most suitable auto-

focusing functions for the bone marrow and blood sample scanning, respectively. 

Third, we showed that that the captured image sharpness is optimized at 0.6 and 

0.8 mm/s, for the resolution target and metaphase chromosomes, respectively. Placing 

the auto-focusing positions with a distance of 6.9 cm, the prototype could obtain the 

adequate number of clinically meaningful cells from blood specimens. Using more 

auto-focusing operations is also meaningful for the high reliability diagnosis when 

clinically necessary.  
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Finally, we recommended that extracting number of the labeled regions is 

suitable for the on-line CAD scheme. For the off line CAD scheme, four different 

features are suggested, which are the number of the labeled regions, average region 

area, average region pixel value, and the deviation of the either region circularity or 

distance.  

10.3 Discussion and future study 

The investigations in this dissertation have several limitations and a series of 

further studies can be conducted based on our results. First, we should investigate the 

impact of the DOF of human eye [99, 100] and the sample thickness on the off-focusing 

tolerance of the metaphase chromosomes [93]. Second, more recently proposed 

algorithms should be considered in a more comprehensive assessment of the optimal 

selection of the auto focusing methods [101, 118-120]. Similarly, using the ROC 

method, we can assess more modern image features for the CAD modules [4].  

Furthermore, this high throughput prototype can be improved in several 

different ways. On our prototype, the auto-focusing operation is applied on a number of 

sampled locations, to balance the image quality and scanning efficiency [12]. The 

system performance, including the image quality and scanning efficiency, can be vastly 

improved by dynamically adjusting the z-axis position during the continuous scanning. 

A dynamic auto-focusing method based on the TDI detector was reported by Bravo-

Zanoguera and Laris in 2007 [103]. However, this method employs 9 independent 

optical fiber coupled CCD detectors, which is too expensive and complicated. Thus, 

developing a low cost dynamic auto-focusing technique is meaningful for the high 

throughput scanning system.  
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Recently, more and more interests are focused on digitalize and display the 

image of the entire slide for diagnosing and reviewing purpose [143-145]. Currently, we 

did not using the high throughput prototype to scan and store the whole slide imaging 

(WSI) of the chromosome specimens. Given that most of the current whole slide 

imaging (WSI) were conducted under 20× or 40× objective lenses [143], one of the 

technical challenges is to screen and store the high magnification (60× or 100×) whole 

slide images. According to our studies, both these two lenses have very similar 

resolving powers (0.353 μm for 60× and 0.268 μm for the 100× lenses) and the captured 

images can be used for the diagnosis with acceptable quality degradation [9].  Given 

that the total size of the 60× WSI is much smaller than the 100× WSI, the diagnosis 

efficacy should be assessed and validated under the condition of applying the 60× lens. 

 In addition, a more comprehensive study is necessary to be carried on to 

determine whether the visual specimen screening can be replaced by the digital WSI for 

the diagnosis of chromosome aberrations. Since the size of the WSI is much larger than 

the traditionally captured images, the WSI management and interpretation is a typical 

“big data” problem, which requires the data mining techniques to extract the meaningful 

information for the clinical practice [142]. However, only few research efforts have 

been conducted in this emerging area. 

The high throughput scanning can also be applied on the FISH slides. The FISH 

technique can examine both interphase and metaphase chromosomes. But more 

technical challenges are associated with the optical path and hardware design of the 

FISH image scanning system, which must capture the fluorescent signals from multiple 

frequency channels. Fortunately, the hardware complexity can be significantly 
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simplified by applying the new fluorescent biomarkers such as quantum dots [146-148], 

because quantum dots have very wide exciting spectrum and narrow emitting spectrum.  

  Identifying the abnormalities of the band patterns or dot numbers is a “course” 

technique, as a large amount of DNA aberration might occur when these abnormalities 

are detected.  At present, fast developing DNA sequencing technique provides a new 

way to precisely locate the aberrant DNA segments [149]. A number of research studies 

have been reported on using the DNA sequence to diagnose different kind of cancers 

[150-153]. In addition, many DNA sequence analyzing techniques in bioinformatics can 

be utilized for the computer aided cancer identification based on the DNA sequence 

[154-158]. Another interesting topic is how to combine the cell level and molecular 

level information together for the clinical diagnosis. 

In summary, we believe that the various genome aberration detecting techniques 

may hold a prosperous potential for extensive diagnostic applications in the future.    
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