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Abstract 

     Due in part to the very recent influx of federal and state policies promoting the 

development of ethanol as a gasoline additive, switchgrass (Panicum virgatum L.) has 

received much attention.  Nevertheless, investigations of the hydrological responses to 

switchgrass production are few, with those existing largely interested in the Southern or 

Upper Midwestern regions of the United States.  First, a contextualization of 

switchgrass as a potential biofuel crop vis-à-vis the history of land use change in the 

Great Plains region of the US is presented.  Then, an investigation of the hydrologic 

responses of two Great Plains watersheds: a 1641 km
2
 portion of the Middle North 

Canadian watershed and the 1061 km
2
 Skeleton Creek Watershed to the cultivation of 

switchgrass using the semidistributed Soil and Water Assessment Tool (SWAT) 

hydrological model, specifically the hydrologic responses on total monthly and seasonal 

discharge, and evapotranspiration, are evaluated.  Model results indicate that 

switchgrass cultivation is associated with decreased spring and summer seasonal runoff 

and increased spring and summer evapotranspiration relative to those under native land 

uses including native range grass and winter wheat.  When the confounding impacts of 

changing precipitation and temperature patterns associated with climate change are 

considered, the impact of switchgrass cultivation on wintertime hydrology is a function 

of the particular General Circulation Model (GCM) utilized.  With the addition of 

switchgrass, changes in surface runoff are amplified during the winter and summer and 

changes in evapotranspiration are amplified during all three seasons. Depending on the 

GCM utilized, either climate change or land use change (switchgrass cultivation) was 

the dominant driver of change in surface runoff while switchgrass cultivation was the 
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major driver of changes in evapotranspiration.  Therefore, any cultivation of 

switchgrass for biofuel production in the Great Plains region of the US must take into 

account hydrologic impacts and be accompanied by programs to ensure the 

sustainability of water supplies.   

Keywords: Great Plains, Switchgrass, Climate Change, Land Use Change, Hydrology, 

Soil and Water Assessment Tool 
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Chapter 1: Research Overview and Introduction to the Dissertation 

 

1.1: Overview of the Importance of Biofuels 

    Desire by the United States government to reduce its dependence on foreign oil 

combined with concerns about environmental sustainability, has caused the US to 

embrace biofuels as gasoline additives.  Biofuels are “liquid fuels derived from 

biological materials” (e.g. Mitchell et al. 2010; Robertson et al. 2010).  The Energy 

Policy Act of 2005 required 28 billion liters of ethanol to be blended into gasoline by 

2012, a standard extended to 136 billion liters by 2022 as part of the Energy 

Independence and Security Act of 2007.  The majority of Americans fill their cars with 

E10, a gasoline compound containing 10% ethanol, due to a combination of these 

federal regulations and state mandates (Renewable Fuels Association 2013).  In 2010, 

the Environmental Protection Agency approved use of E15 for some vehicles model 

year 2001 and later.  In the late 1990s, so-called Flex-Fuel vehicles, which run on E85 

which is a blend of 85% ethanol and 15% gasoline, entered the market. 

     The effects of policies which promote the use of biofuels are visible on the American 

landscape.  After remaining flat during the period 2000-2005, corn acreage, currently 

the only commercially-available ethanol source, increased by 13% or by 4 million 

hectares from 2006-2010 (EPA 2011).   

     Despite the dominance of corn in the ethanol market, corn-based ethanol is 

problematic for various reasons.  First, various reports have linked ethanol production to 

increased food prices in much of the world due to increased demand for corn, although 
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the picture is complex (e.g. FAPRI-MU 2008; Mitchell 2008; U.S. Congressional 

Budget Office 2009; Wescott 2012).  Second, the necessity for fertilizer application 

associated with corn production has resulted in reduced water quality in many water 

bodies, most famously the Gulf of Mexico (e.g. Schilling et al. 2010, 2012; Secchi et al. 

2011; Demissie et al. 2012; Forrestal et al. 2012).  Third, there is much uncertainty in 

the quantity of CO2 emissions resulting from the clearing of land to promote ethanol 

cultivation (e.g. Searchinger et al. 2008; Khosla 2008; Hertel et al. 2010; Plevin et al. 

2010; Lambin and Meyfroidt 2011; Tonini et al. 2012). 

1.2: Cellulosic Biofuels 

     Due to these concerns, much research has been conducted on so-called cellulosic 

biofuels, which refer to the utilization of crop-left overs like wood stalks or grasses as 

sources of ethanol production.  Examples include wood chips and corn stover.  One of 

the most frequently mentioned sources of cellulosic ethanol is switchgrass (Panicum 

virgatum L., Figure 1.1).  This drought-tolerant warm-season grass is native to the 

tallgrass prairies of the eastern 2/3rds of the United States and can be planted on a range 

of soils (Parrish and Fike 2005).  It has been subjected to extensive investigations by the 

United States Departments of Agriculture and the Department of Energy since the oil 

crisis of the 1970s.  Early in the investigations, switchgrass was identified as the most-

promising of the 37 feedstocks tested because of its generally high yields, low input 

requirements after the first year, and low economic and environmental costs (EPA 

2011).  It is also associated with improved environmental conditions over corn, most 
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notably reduced erosion and improved water quality (e.g. Graham et al. 1996; Nelson et 

al. 2006; Schilling et al. 2008; Simpson et al. 2008).   

 (a)                               (b) 

Figure 1.1: Switchgrass (Panicum virgatum L.).  a) Image source: Jeff McMillian, from 

the USDA-NRCS PLANTS Database.   b) Image source: Bruce Hoagland.  Both images 

used with permission. 

 

     In nature, switchgrass has two different ecotypes: upland and lowland (Porter 1966).  

Upland switchgrass grows in mesic locations.  Individuals of this ecotpe have been bred 

into the cultivars trailblazer, Blackwell, cave-in-rock, dacotah, pathfinder, sunburst, and 

caddo.  Lowland ecotypes grow in hydric locations and are more sensitive to moisture 

deficits than other C4 grasses (Porter 1966).  Cultivars derived from lowland ecotypes 

include Alamo, Kanlow, and eg1101.  In the southern tallgrass prairie of Kansas, Texas, 

and Oklahoma, the upland ecotype dominates while the lowland ecotype occupies the 

riverine portions (Brunken and Estes 1975).  With respect to genetics, while upland 

switchgrass cultivars are either tetraploid, hexaploid, octoploid, or aneuploid, lowland 
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cultivars are tetraploid (Porter 1966, Brunken and Estes 1975, Parrish and Fike 2005).  

Switchgrass may grow to heights of 3.0 meters and have rooting depths of 3.0 meters, 

although lowland types may grow larger (Parrish and Fike 2005).  Lowland ecotypes 

also have thicker stems and more bluish-green leaves. 

     Despite the presence of two genetically distinct ecotypes, the most frequently 

reported quantity of switchgrass yields in the literature across both ecotypes is 10-14 

Mg ha
-1

 of biomass, although the quantity varies by climate and nitrogen application 

(Wullschleger et al. 2010).  In general, yields increase with increasing temperature up to 

15-20
°
C, then decrease.  No correlation has been found between biomass yield and 

precipitation, although upland switchgrass yields have been shown to increase with 

increasing April-September precipitation up to 600 mm.  No consensus exists as to the 

ideal quantity of nitrogen application for switchgrass given local variations in nutrient 

levels (Parrish and Fike 2005).  Additionally, switchgrass has been successful in both 

acidic and basic soils (Porter 1966; Parrish and Fike 2005), although soil type is 

sometimes not as important for plant growth as moisture availability (Evers and Parsons 

2003).   

     Switchgrass has been researched extensively in the Great Plains region, a 

predominantly semi-arid agricultural region situated between the 98
th

 Meridian and the 

Rocky Mountains.  Various management schemes have been specifically applied to 

switchgrass stands in Oklahoma (Porter 1966; Thomason et al. 2003; Foster et al. 2013).  

With the assistance of the government of the State of Oklahoma, the Samuel Roberts 

Noble Foundation (http://www.noble.org/), and Oklahoma State University, the 
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Oklahoma Bioenergy Center (http://okbioenergycenter.org/) are actively engaged in 

biofuel crop research.  In 2008, the Samuel Roberts Noble Foundation planted 403 

hectares of switchgrass near Guymon, OK on 81 hectares near Maysville, OK as 

demonstration projects (John Blanton, Noble Energy Foundation, pers. com.).  The 

demonstration plot at Guymon contains 231 hectares of the upland cultivars trailblazer 

and Blackwell, and 172 hectares of lowland cultivars alamo, kanlow, and eg1101.  The 

switchgrass in this plot replaced a rotational planting system of wheat, corn, or 

soybeans (John Blanton, pers. Com.)  Approximately sixty-five kilometers from 

Guymon in Hugoton, KS, Albengoa Bioenergy Corporation has commenced 

construction on a biorefinery designed to generate ethanol from this switchgrass.   

     Despite the interest in switchgrass, relatively little is known about the possible 

hydrologic response to switchgrass cultivation in the Great Plains region, a transition 

zone between the tallgrass prairies to which switchgrass is native and the shortgrasses 

associated with the Western US.  To date, much of the investigations have been 

conducted in the American South and in the Midwest Corn Belt (e.g. Nyakatawa et al. 

2006; Simpson et al. 2008; Chamberlain et al. 2011; Sarkar et al. 2011; Demissie et al. 

2012). There is a need for similar investigation in the Great Plains because hydrologic 

response is often a function of local conditions.  In 2008, the National Research Council 

labeled the hydrology of biofuel production as an emerging field of study due to the 

continued importance of biofuels in helping the US meet its energy needs.   
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1.3: Research Objectives and Contribution  

     This study utilizes the Soil and Water Assessment Tool (SWAT) to simulate the 

hydrologic response of two representative watersheds in the U.S. Great Plains to biofuel 

production, most notably Alamo switchgrass.  The objectives of this research are as 

follows:  

(i) To contextualize the cultivation of switchgrass for biofuel cultivation within the 

GP’s history of land use change and in the discussions regarding sustainability in this 

region (Chapter 2). 

(ii)     To assess and quantify the direction and magnitude of change in key hydrologic 

variables, including seasonal stream discharge and seasonal evapotranspiration, that 

would result from incrementally replacing the existing vegetation within the basin with 

switchgrass. Because switchgrass is likely to displace other existing land types, it is 

essential to determine how such a change in land use affects regional hydrology 

(Chapters 3, 4).   

(iii)   To investigate the hydrologic responses of such watersheds to switchgrass 

production under a climate change scenario, and to isolate the relative impacts of 

climate change and switchgrass production (Chapter 4). 

(iv) To ascertain whether the cultivation of switchgrass in the U.S. Great Plains is 

advantageous or harmful from a water-supply perspective (Chapters 3, 4). 

     The research contributes to the scholarly discourse by adding to the growing body of 

literature on the possible environmental effects of biofuel production. Additionally, the 
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study quantifies the magnitude of change in several hydrologic variables expected by 

the mid-21
st
 century from various climate change scenarios. 

     The climate change component is particularly important, as this dimension has 

received too little discussion in the literature on biofuel production even though it is 

generally recognized that climate change may alter the amount and timing of 

precipitation.  To the author’s knowledge, only two articles to date in the field of 

biofuel hydrology considers the impact of climate change.  Brown et al. (2000) 

investigated the hydrologic response of a region spanning Minnesota to Southeastern 

Colorado to the planting of corn, sorghum, soybean, winter wheat, and switchgrass 

using two climate scenarios.  However, they did not simulate combinations of the 

planting of such crops [i.e. they simulate the sole planting of switchgrass, the sole 

planting of sorghum, etc.], and their study is specific to the Upper Midwest and 

northern Great Plains.  Recently, Kim et al. (2013) investigated the impact of climate 

change and the replacement of soybeans and corn with switchgrass and the grass 

Miscanthus (Miscanthus giganteus) for bioenergy purposes in the Upper Yazoo River 

Basin in the Southern US.  They devised eight scenarios, two of which involved solely 

replacing such crops with switchgrass and miscanthus, respectively, without 

considering climate change, and six where climate change was considered.  However, 

they only used the outputs from one GCM, the Goddard Fluid Dynamics-2.1 GCM; 

their climate change scenarios used this GCM’s outputs at different future periods with 

various combinations of land use change.    

 



 

8 

 

 

1.4: Organization of the Dissertation 

     The dissertation is organized as three chapters which are written as journal articles 

and therefore necessarily need to be self-sufficient or stand alone.  That is, each 

article/chapter contains a statement of objectives, literature review, data sources and 

methods and is written as a mini independent study.  Therefore, some repetition, 

especially related to problem statement, literature review, study area, and model 

description is unavoidable although efforts have been made to minimize it.  

Consequently, the format of each chapter’s in-text citations and bibliography varies 

according to the specification of the journal to which the chapter was sent.  

     The dissertation proceeds as follows.  Following this introductory chapter (Chapter 

1), Chapter 2 investigates the history of land use change in the Great Plains portion of 

the US.  It describes how Federal government policies and railroad promotions fostered 

settlement in what many considered to be “the Great American Desert” from the 1860s-

1880s.  Drought caused a mass-exodus from portions of the Plains and caused those 

who stayed to alter their agricultural practices through planting drought-resistant wheat.  

To foster agricultural expansion, many farmers removed native range grasses (resulting 

in the Dust Bowl) and, after the 1930s, exploited the waters of the deep Ogallala 

Aquifer, creating a patchwork of irrigation circles throughout the Plains.  The chapter 

then looks to the future to contextualize biofuel crop cultivation as the next chapter in 

agricultural land management in the Great Plains.  This chapter has been submitted to 

the Geographical Review.   
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     Chapter 3 evaluates the hydrologic response of a watershed in Western Oklahoma to 

a theoretical replacement of winter wheat and range grasses with switchgrass, using the 

semidistributed Soil and Water Assessment Tool (SWAT) hydrologic model.  It found 

that replacing native land uses, namely winter wheat and range grasses, with 

switchgrass results in decreased discharges and increased evapotranspiration (eT) 

relative to current conditions, which is an important consideration in semi-arid areas.  

The definitive peer-reviewed and edited version of this chapter will be published in 

Hydrology Research 44(6) 2013, doi 10.2166/nh.2013.163 and is available at 

iwapublishing.com. 

     Chapter 4 evaluates the hydrologic response of a watershed at the eastern boundary 

of the Great Plains to both climate change and switchgrass cultivation using the SWAT 

model.  Climate change is included in this analysis because it will likely combine with 

the impacts of switchgrass cultivation in determining the hydrologic regime of this 

region.  The chapter found that switchgrass cultivation amplified the decreases in winter 

and summer runoff associated with climate change, as well as that in winter and eT.  

Switchgrass cultivation also reversed increases in spring runoff that occur under climate 

change and increases spring eT.  Depending on the GCM utilized, either climate change 

or switchgrass cultivation was the dominant driver of changes in surface runoff while 

switchgrass cultivation was the major driver of changes in eT.  These findings suggest 

that switchgrass cultivation will aggravate existing and projected water issues in the GP.  

This chapter has been submitted to Hydrological Processes for publication 

consideration.        
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     Chapter 5, the conclusion chapter of the dissertation, summarizes the key findings 

and discusses avenues for future research. 

1.5: Description of the SWAT Hydrologic Model 

     As Chapters 3 and 4 are SWAT-based hydrologic modeling studies, a short overview 

of this model is relevant.  SWAT is a physics-based, semi-distributed hydrologic model 

developed by the US Department of Agriculture in Temple, Texas, and which has been 

employed in over six-hundred published studies worldwide (Gassman et al. 2007; 

Douglas-Mankin et al. 2010).  The purpose of SWAT is to predict the impact of land 

management on the local hydrology and sediment budgets on large, ungaged basins 

(Arnold et al. 1998).  It is frequently run as an extension in the ArcGIS program 

developed by ESRI.  The user divides a watershed into smaller subbasins, and then into 

smaller hydrologic research units (HRUs) which are areas of homogeneous land use, 

soil, and slope.  Required inputs to this model include a digital elevation model (DEM), 

land use grids, soil grids, information concerning land management, and weather.  The 

water balance model employed by SWAT may be stated as follows.  For day  , 

   e  soil water content   , number of days   in the simulation, precipitation    runoff 

 , evapotranspiration   , seepage from the soil profile to the vadose zone       , and 

return flow RF, then (Arnold et al. 1998): 

        ∑                    —     
 
                                       (1.1)                                                                            

All values are in millimeters.  SWAT computes each of these factors at the outlet of 

every HRU on a daily timestep, and routes them from the individual HRU to the outlet 
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of the larger subbasin.  In equation (1.1) above, precipitation over each HRU is obtained 

from the closest weather station to each subbasin.  Each subbasin is comprised of one 

main channel and one “tributary.”  The user-selected subbasin outlets are placed on 

stream channels. 

     SWAT is an ideal model for this study because of its demonstrated efficacy in 

modeling the hydrologic impacts of watershed crop substitution (e.g. Schilling et al. 

2008; Baskaran et al. 2010; Ng et al. 2010; Gramig et al. 2013; Kim et al. 2013). By 

design, SWAT is linked to various databases containing the data and information 

required for simulation, greatly simplifying model setup and operation.  The crop 

database contains alterable biophysical information (e.g. extinction coefficient, leaf area 

index) for 108 crops, including many biofuels such as Alamo Switchgrass, corn, oil 

palm, sugarcane, grain sorghum, and soybeans.  The availability of such information 

within the model permits the user to focus on hydrologic simulations rather than on 

developing a model to simulate crop production.  SWAT uses the EPIC crop growth 

model when simulating plant growth, developed by Texas A&M Agrilife Research.  

The model is built to differentiate various agricultural patterns, as opposed to the 

grouping of all agricultural land into one category.  Additionally, the land management 

database contains information concerning the properties of various fertilizers and 

harvesting schedules and tillage strategies, which are important considering that winter 

wheat and switchgrass are often fertilized.   

     The weather station database provides numerous monthly data for 1112 climate 

stations in the USA.  These data include absolute location, minimum and maximum 
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monthly temperatures (
O
C), minimum, average, and maximum monthly rainfall totals 

(mm), average number of days with precipitation in each month, average monthly dew 

point (
°
C), wind speed (m/s), elevation (m), average monthly solar radiation (mJ m

-2
), 

and probability of a wet day following a dry day and that of a wet day following a wet 

day during a particular month.  The availability of such weather data within the SWAT 

model not only obviates the need for a user to locate this information, but it also allows 

one to edit weather data when investigating climate change scenarios.  

1.6: Limitations to this Study 

     As investigations are by definition finite in nature, this dissertation contains 

limitations.  First, the results of any study are a function of its geographic extent.  

Likewise, the Great Plains, as with other regions, is not associated with any eastern 

boundary which is uniform across all investigations (see Lavin et al. 2011, pp. 11-13).  

Hudson (2011) recognized 50 different geographical extents for the Great Plains in the 

published literature.  Some articles cited in Chapter 2 (e.g. Sohl et al. 2012) use the EPA 

Level-1 ecoregion which extends eastward into Southern Minnesota, Iowa and Northern 

Missouri (ftp://ftp.epa.gov/wed/ecoregions/cec_na/NA_LEVEL_I.pdf)).  For instance, 

Popper and Popper (1987) relied fully on state boundaries.  Gutmann et al. (2005) and 

Parton et al. (2007) restrict the eastern scope of their study to the eastern borders of 

North and South Dakota and the 98
th

 meridian through Nebraska, Kansas, and Texas, 

but terminate their study area on the southern border of New Mexico.  Due to the 

modifiable areal unit problem, the results from the literature cited in this chapter may 

not be directly intercomparable.  This is an unavoidable problem but for the quantitative 
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portion of Chapter 2, the Great Plains was defined as the area between the 98
th
 meridian 

and the westward extent of the Great Plains ecoregion.  The 98
th

 meridian was selected 

as the eastern border for this study to be consistent with the pioneering work of the 

historian Walter Prescott Webb (1931).      

     Chapter 3 discusses the impacts of four scenarios involving switchgrass substitution 

on seasonal discharge and evapotranspiration.  It does not investigate impacts on other 

facets of the water balance, including soil moisture and subsurface runoff, due to 

difficulties in getting SWAT to calibrate to baseflow, despite an overall excellent 

calibration.  Likewise, Chapter 3 only deals with Alamo switchgrass, whereas other 

biofuel crops, such as miscanthus, may be worth examining.  The investigation 

discussed in Chapter 4 may contain the most limitations of any study in the dissertation.  

A reliance on NEXRAD precipitation data due to the inability of weather gages to 

capture some high-rain events, combined with calibrating to a stream gage with 

discharge records going back only to 2000 resulted in the utilization of a short-

calibration period.  Due to the need to have as long of a calibration period as possible, a 

validation period was not used.  Additionally, because of the short, nine-year calibration 

period, only a correspondingly short “climate change” period could be investigated.  

However, climate change studies require a longer analysis timeframe in order to 

minimize the impacts of interannual and interdecadal variability.  Finally, only one 

decade, and one IPCC SRES emissions scenario, the A2, was used in order to minimize 

the scope of work required to complete a study which would otherwise have involved 

other modelers and scientists.  While all these criticisms are legitimate, the nature of the 

research required some compromises.  Large gaps in radar coverage exist over much of 
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the Great Plains, including the western portion of the Oklahoma Panhandle and 

Southeastern Colorado through which large rivers such as the North Canadian flow 

(http://www.roc.noaa.gov/WSR88D/Maps.aspx).  Watersheds in such areas therefore 

may not be calibrate-able without high-resolution precipitation data.  The region suffers 

from intense groundwater mining which is not easily captured in SWAT and which 

results in near-zero discharges, to which calibration would be nearly impossible.  Such 

challenges make the Great Plains a fascinating area in which to conduct hydrologic 

modeling, as well as an area which mandates one’s selection of less than ideal 

watersheds.  
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Abstract 

I trace the role of land use as an important driver of social dynamics in the US Great 

Plains from the early nineteenth century to the present. Some early explorers believed 

this region to be a desert, while others saw an opportunity to create an agricultural 

economy.  This dichotomy in perceptions continues today, as the relative dearth of 

built-up land is a driving factor in discussions about sustainability in this region.  

Whereas some perceive the region’s population dynamics as indicative of a dying 

region, others view it as an opportunity to foster economic development through an 

expanded agricultural and resource extraction base.  Projections of future land use 

indicate that this region will remain predominantly agricultural and low-density but 

with a more urban character in the already emerging and developed regional and 

metropolitan centers.   

Keywords: Agriculture, Biofuels, Great Plains, Rural Areas, Sustainability 
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     Situated roughly on a north-south gradient between the 98
th

 meridian and the Rocky 

Mountains is the Great Plains (GP) region of the United States of America (Figure 2.1).  

Within its US portion, the GP is home to 9.9 million people and covers approximately 

1.4 million km
2
 spread over nine states (Wilson 2009).  The native vegetation of the 

region is largely grassland, with tallgrasses dominating the humid eastern portions, and 

shortgrasses and steppe dominating the drier western portions.  Trees are restricted to 

riparian zones and settlements (Hudson 2011).  The region contains thriving 

manufacturing and mining industries but agriculture remains the predominant economic 

activity.  

 

Figure 2.1: The Great Plains, as defined in this paper, including settlements mentioned 

in this paper.  Data source: The National Atlas of the United States of America. 
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     The dominance of agriculture coupled with the region’s large wheat-producing 

heritage has contributed to the legend of the GP as part of “America’s Breadbasket” 

(Garreau 1981), a title conjuring images of agricultural tradition and prosperity.  Yet, 

perceptions of the GP have not always been so optimistic.  This study of the GP is 

restricted to the US portion due to the importance of Federal policies in facilitating 

domestic migration which is highlighted below.     

2.1: The Great Plains As “The Great American Desert” 

      The lack of precipitation and dearth of trees caused early 19
th

 century explorers to 

describe this region as a wasteland and to paint a pessimistic picture of the future of 

non-Native American settlement in the GP.  Following his exploration of the area 

between St. Louis, Missouri and the Rocky Mountains in 1806, Lieutenant Zebulon 

Pike described the region as desert, “these vast plains of the western hemisphere may 

become in time equally celebrated as the sandy deserts of Africa (Pike 1810, 8).  

Similarly, after his failed 1819 Yellowstone Expedition, Major Stephen Long 

characterized a 800-kilometer long region east of the Rocky Mountains as a “Great 

Desert” (James et al. 1823, 276) and noted, per expedition geographer Edwin James 

(1823, 236): 

“I do not hesitate in giving the opinion, that it is almost wholly unfit for cultivation, and 

of course uninhabitable by a people depending upon agriculture for their subsistence… 

the scarcity of wood and water, almost uniformly prevalent, will prove an insuperable 

obstacle in the way of settling the country.” 



 

23 

 

 

Additionally, he wrote “This region, however, viewed as a frontier, may prove of 

infinite importance to the United States, in as much as it is calculated to serve as a 

barrier to prevent too great an extension of our population westward” (James et al. 

1823, 237).    

     A number of scholars (e.g. Webb 1931, 152; Stegner 1954, 215) believe that the idea 

of the GP as the Great American Desert was fully engrained in the American 

consciousness in the first half of the nineteenth century.  Additionally, Stegner (1954, 

215) notes that practically every west-bound traveler in the early nineteenth century 

remarked upon the arid nature of the region (e.g. Greeley 1860, 36).    

     However, in the journals of those who traveled through the Great Plains between 

1824 and 1869, New Englanders predominantly were inclined to refer to the region as a 

desert; travelers from other areas did so less frequently or not at all (Bowden, 1969) .  

For example, of the 143 members of the Church of Jesus Christ of Latter Day Saints 

(LDS) that journeyed in 1847 to what would become Salt Lake City, travelers remarked 

on the lack of moisture and grass and the prevalence of wind-blown dust in the western 

portions of the GP but only one wrote the word “desert” in his diary and none used the 

nomenclature “Great American Desert” (Jackson 1992).  One traveler even called 

Nebraska “the most delightful country of undulating prairie and slopes crowned with 

richest kind of grass.”  Bowden (1969) concludes that “the myth of the Great American 

Desert as the popular American image of the Western Interior before the Civil War is 

itself a myth.”  Regardless of which analysis is correct, it can be concluded that most 

Americans did not consider migration to this region at the beginning of the 19
th
 century.  
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    2.2: Land Use Change I: Settling the “Desert” 

     Non-Native American settlements began to appear on the Great Plains by the middle 

of the 19
th

 Century.  Analyses of the geographic variations in the migrations to the Great 

Plains have been discussed elsewhere at length (see e.g. Hudson 1976, 1986; Shortridge 

1988).  Here, it suffices to note only that through initiatives like the Homestead Act 

(1862), Soldier and Sailors Act (1872), Timber Culture Act (1873), and the Desert 

Lands Act (1877), the Federal government offered inexpensive land to potential settlers 

in order to encourage westward expansion (e.g. Resiner 1993).  Additionally, following 

the completion of the Transcontinental Railroad in 1869, the rail lines progressed 

rapidly, simultaneously spawning settlements related to the construction, supply, and 

maintenance of the railroads as well as facilitating the large-scale movement of people 

into the GP (e.g. White 2011, 455-493).  Taking advantage of these developments, land 

speculators, including many who had acquired land inexpensively, aggressively 

promoted settlements in the West, including the GP.  

     One method of promoting migration to the Plains was the popularization of the 

theory that “rain follows the plow,” which claimed that soil cultivation for agriculture 

induces rainfall, a view supported by some scientists, politicians, and railroad magnates 

alike (e.g. Thomas 1873, 237; Wilber 1881, 70).  Like all such claims this promotion 

was effective because it appeared at cursory glance to have some factual basis.  

Whereas 1845-1852 and 1856-1865 brought severe, sustained drought to portions of the 

GP (e.g. Woodhouse 2003), the period immediately following the American Civil War 

witnessed increased rainfall in the Great Plains.  During this time, individuals in wagon 
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trains to Oregon noted that the dry landscapes of Western Nebraska had turned green 

(Reisner 1993, 35). 

     The “rain follows the plow” rhetoric caused Stegner (1954) to state, “The Great 

American Desert was laughed away, washed away in the flow of [Colorado Governor 

and Presidential Aide William] Gilpin oratory, advertised away in the broadsides of 

land companies and railroad proselytizers” (p. 217).  Such promotions were effective; 

Colonel Richard Irving Dodge (1877, 2) noted “What was then ‘unexplored’ is now 

almost thoroughly known.  What was then regarded as a desert supports, in some 

portions, thriving populations.  The blotch of thirty years ago is now known as ‘The 

Plains.’” 

     However, the period of good rainfall was transitory, above sentiments 

notwithstanding.  A combination of drought and blizzard hit the Western Plains from 

1885-1887 causing a mass starve-off of cattle (e.g. Shortridge 1988).  The intensity of 

the 1893-1894 drought period in Central and Western Kansas led to farm failure and 

population declines of 27% in the twenty-four Kansas counties west of the 100
th
 

meridian from 1890-1900 (Libecap and Hansen 2002).  Concurrently the population 

grew by 19% in drought-free Eastern Kansas (Libecap and Hansen 2002).  The impacts 

of the drought extended into portions of neighboring Nebraska west of the 100
th
 

meridian, where 15,284 fewer people resided and 6,018 fewer farms existed in 1900 

than in 1890 (Fite 1977).   The drought also resulted in a decrease in new homesteads 

when wetter periods resumed and to a consolidation of existing ones (Libecap and 

Hansen 2002).   
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2.3: Land Use Change II: Adaptation to Drought 

     Not everyone abandoned the Plains; many endured drought by adapting their 

agricultural practices to the local climate.  Cunfer (2005, 5) categorizes the period 

between 1870 and 1920 as one of “rapid land-use adaptation.”  Many Central GP 

farmers replaced corn with more drought-tolerant wheat.  In the twenty-four Kansas 

counties west of the 100
th

 meridian, wheat acreage increased 391% from 35,230 ha to 

172,928 ha between 1889 and 1896 (Fite 1977).   Additionally, some Kansas and 

Nebraska farmers used lister drills to plant wheat in trenches at right angles relative to 

prevailing winds, resulting in increased yields (Bogue 1994, 229).  From 1870-1920, 

GP farmers increased cropland acreage every year, at the expense of native rangeland 

(Cunfer 2005, 18).  Some High Plains farmers produced sorghum (Bogue 1994, 229).   

     In the Dakota Territory, the period beginning with the 1873 bankruptcy of J.P Cooke 

and Company, a financier of the Northern Pacific railroad, is viewed as the onset of 

“bonanza farming” as company bondholders traded their worthless bonds for plots of 

land (NPS 1987).  Bonanza farming was characterized by large farms utilizing mass 

production techniques.  In 1855, the Cass-Cheney farm, west of Fargo, contained 

13,000 hectares of wheat.  The operation of such large farms was partially designed to 

increase confidence in the railroads, which were responsible for transporting this wheat, 

in the aftermath of the Panic of 1873.  The success of the Cass-Cheney farm resulted in 

the establishment of other bonanza farms, including many which were not being 

established on former railroad land.    
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     Agricultural activities in the GP during the late 1910s and early 1920s continued to 

reflect government policy and international markets.  Demand for wheat, and 

consequently its market price, escalated during World War I when the Turkish Navy 

blocked the Dardanelles, cutting off a main artery for global wheat supply (Egan 2006, 

42-43).  In response, the US government encouraged GP farmers to plant more wheat, 

guaranteeing  its price at $2/bushel through the end of the war.  Consequently, a bushel 

of wheat in Northwestern Kansas which sold for $0.78 per bushel in 1913 sold for $2.18 

in August 1918 (Cunfer 2005, 127).  US wheat production increased from 18 to 30 

million hectares between 1917 and 1919 (Egan 2006, 43).  In 1920, tractors replaced 

horses, facilitating further land cultivation at reduced cost (Cunfer 2005, 46-47).  In 

1930, it required only 7.5 hours to plant and harvest one hectare of wheat in the 

Oklahoma Panhandle compared to 145 hours in the 1830s (Egan 2006, 46-47).  The 

total amount of land cultivated throughout the GP increased from 7.7 million hectares in 

1880 to 117 million hectares by 1930 (Gutmann et al. 2005).   By the late 1930s, 

between 31% and 38% of the GP had been converted from grass to cropland, 

contributing, ultimately, to the Dust Bowl.   

     The causes, dynamics, and impacts of the Dust Bowl are well described in many 

sources (e.g. Worster 1979; Seager et al. 2005; Egan 2006).  By exposing the 

environmental consequences of land mismanagement in a semi-arid environment, the 

Dust Bowl became a watershed event in environmental history and sustainability 

studies.  Auspiciously, it induced changes to soil conservation and land management 

practices such that even with the return of severe drought during the 1950s and 1970s, 

the large clouds of dust failed to re-emerge (Hansen and Libecap 2004).  Agricultural 
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practices have actually improved since the Dust Bowl in many areas including the 

Texas Panhandle, where wind erosion has decreased since the beginning of a long-term 

study in 1961 (Stout and Lee 2003).  Additionally, from 1938-1946, the Federal 

Government purchased 235,404 hectares in the Southern Great Plains (now “National 

Grasslands”), much of them in the former “Dust Bowl,” with the purpose of reducing 

soil erosion and restoring native vegetation cover (Hurt 1986).    

2.4: Land Use Change III: Impact of Water Resources and Land Use 

     Following realization of the impracticality of large-scale dryland agriculture, 

irrigation began to increase in the former “core” Dust Bowl region.  Extensive irrigation 

became possible during the 1930s due to the introduction of turbine pumps and internal 

combustion engines (Musick et al. 1988).  By the 1960s, center-pivot sprinkler 

irrigation appeared (see Opie 1993), contributing to a still further increase in irrigation-

based water use (e.g. Wahl and Tortorelli 1994; Colaizzi et al. 2009).  From 1940-1980, 

irrigated acreage in the entire GP multiplied seven-fold from 800,000 ha to 5.7 million 

ha, with slightly more than half the irrigated acreage in 1980 situated in the Northern 

Great Plains (Weeks et al. 1988). 

     The proportion of the region consisting of cropland has remained relatively stable at 

45% since 1950 (Gutmann et al. 2005). While significant rural depopulation has 

occurred (see below), owners who take over the farms of those who emigrate have 

tended to continue the same crop and land use patterns.  Also, in much of the Central 

Great Plains, the net-impact of land use change is zero due to the balance between 

agricultural land retirement and extension. However, between 1950 and 2000, there 
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have been episodic phases of intensified or diminished agricultural activity.  For 

example, from 1973-2000, 8% of the region underwent land use/land cover change, 

with most of that land converted multiple times between grassland and cropland due to 

the Conservation Reserve Program (Drummond et al. 2012).  Urbanization accounted 

for some of the change in land use over the region but is localized to metropolitan and 

micropolitan areas.  The smallest change involved forest to agriculture, which was 

restricted to the eastern periphery of the Great Plains.  The small population of counties 

in metropolitan areas and the small quantity of farmland within them minimizes the risk 

of widespread suburbanization in this area (Parton et al. 2007), with the exception of the 

urbanizing Colorado Front Range (Parton et al. 2003).    

2.5: Perspectives on the Future of the Great Plains 

     In the above brief narrative, I demonstrated how a combination of socio-economic-

political dynamics and climatic variability conspired first to populate the Great Plains 

and then to provide settlers with untold hardship.  Today, it appears a different set of 

factors are creating new circumstances that in some important respects are analogous to 

the conditions that encouraged unbridled optimism during the early settlement of the 

GP. 

    One of these dynamics is the contemporary population shift from rural to urban areas.  

Numerous studies have analyzed declining population trends in some Great Plains 

counties since 1930 even as they acknowledge that population is rebounding in 

micropolitan and metropolitan areas (Figures 2.2 and 2.3) (e.g. Parton et al. 2007; 
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Wilson 2009; Mackun and Wilson 2011; Kotkin 2012).  These settlement patterns serve 

as the basis of many predictions regarding the future of the GP as discussed below.   

 

Figure 2.2: Population change by US county, 2000-2010, with the GP emphasized.  

Adapted from Mackun and Wilson (2011), Figure 5.  Image used with the permission of 

Steven Wilson. 
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Figure 2.3: Population growth in the micropolitan and metropolitan areas of the GP, 

2000-2010.  Adapted from Mackun and Wilson (2011), Figure 4.  Image used with the 

permission of Steven Wilson. 

 

2.5.1: Perspectives I: The Prairies Shall Return 

     Wallach (1985) speculated that increasing volumes of crop surpluses in the United 

States could cause GP farmers to voluntarily cede land to the Federal Government in 

exchange for money as part of a large-scale prairie restoration plan.  Similarly, citing 

the region’s troubled environmental history, climatic variability, the then unsustainable 

mining of the Ogallala Aquifer, large-scale depopulation, and bank failures Popper and 

Popper (1987) concluded that the depopulation of the region was “inevitable.”  They 

therefore advocated that the US government create “the world’s largest historic 

preservation project,” a “buffalo commons” where “most of the Great Plains will 

become what all of the United States once was -- a vast land mass, largely empty and 
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unexploited,” where its original inhabitants would freely roam.  This position attracted 

such media attention and local notoriety that the authors needed police escort on their 

speaking tours through the Plains (e.g. Callenbach 1996; Matthews 2002; Popper and 

Popper 2006).  Nevertheless, their article catapulted the issue of the sustainability of the 

GP to a level of discourse previously unseen, even though Popper and Popper (1999) 

later stated that the “buffalo commons” concept was meant as a metaphor for land 

management, not as advocacy for government seizure of property.  In 1994, former 

Kansas governor Mike Hayden backed the concept following previous denunciations 

(Dreiling 2011).   In 2011, due to the increase in buffalo production and increasing land 

easements owned by environmental organizations in the Plains, Frank Popper stated 

“…the Buffalo Commons has begun in clear ways to materialize” (Dreiling 2011).   

     Popper and Popper (1987) were not alone in their assessment of the possible end 

state of population shifts nor in advocating for the reintroduction of buffalo to the Great 

Plains.  Based on consideration of declining small towns and their stagnant economies 

in Iowa (outside the Great Plains), Daniels and Lapping (1987) advocated that regional 

governments in the US embark on “a regional settlement policy” similar to that in the 

United Kingdom, by promoting the creation of regional centers of 2500-15000 people 

to take advantage of economies of scale for the provision of public services.  “Small 

town triage” would be applied, in which growing towns would receive government aid 

at the expense of those showing less promise.  Citing depopulation, Donlan et al. (2005; 

2006) suggested that the GP could house an “ecological history park” housing 

endangered Pleistocene species, including Bactrian camels, feral horses, cheetahs, and 

kangaroos.  Scott (1992) advocated the filling of 39,000 km
2
 in Eastern Montana known 
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as “the Big Open” (population 3000) with bison and making the area one large tourist 

destination.  Today, Montana Big Open, Inc. is a tax-exempt charity run out of 

Hamilton, Montana which is devoted to restoring bison to some portions of the area 

(Northern Plains Conservation Network 2012).   Indeed, it is important to note that 

today, bison numbers are increasing on the Great Plains, primarily due to the efforts of 

large land owners including the media mogul Ted Turner (Founder of Cable News 

Network, CNN), Native American groups, the US government, and non-governmental 

organizations, including the Nature Conservancy (Popper and Popper 2006; Wood 

2008).     

     Commenting on depopulation in the GP, North Dakota Senator Byron Dorgan 

(2003) noted, “If we draw an egg shape from North Dakota down to Texas in the 

middle part of our country, we have the heartland of America being depopulated.”  With 

Nebraska Senator Chuck Hagel and eleven co-sponsors, Senator Dorgan unsuccessfully 

introduced the New Homestead Economic Opportunity Act to provide Federal tax 

credits and investment incentives to counties experiencing out-migration.   

     In a content analysis featuring 600 articles in the popular media spanning 1997-2007, 

Dando (2009) found that the perspective of the GP as either a failed or a severely 

challenged region is also shared by the popular media in the popular media.  She found 

that “depopulation” “drought,” “bison,” and “grasslands” collectively accounted for 190 

articles (32%) as the most frequent topics explored vis-à-vis the Great Plains.  Noting 

evidence to the contrary in the scholarly community, Dando (2009) accuses the media 

of “setting the stage for topocide/domicide.”  These terms, introduced by the geographer 
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J. Douglas Porteous (1989, xi), refer respectively to “the killing of place” and “the 

deliberate killing of home.” 

2.5.2: Perspectives II: The Great American Promise 

     The notion that the GP may eventually entirely depopulate, whether voluntarily or 

involuntarily, is not universally shared although enthusiasm is tempered.  While 

acknowledging that depopulation is indeed occurring, White (1994) demonstrated that 

the population in some areas, such as in Western Kansas, has become concentrated or 

stabilized around so-called “Ogallala Oases,” sustaining a livelihood by utilizing the 

High-Plains Aquifer.  White (1994) concludes: “abandonment is a regional 

development policy that looks good only if you are a buffalo.”  In a manner similar to 

the Homestead Act of 1862, various communities from North Dakota to Kansas have 

promoted “free land” to attract new residents (Shortridge 2004; Lu and Paull 2007),  

These communities promote themselves by emphasizing low crime rates, low traffic, 

good schools, inexpensive housing, and as community-oriented places  suited to raising 

a family (Lu and Paull 2007).  So far, these programs appear to be somewhat successful 

as they have attracted new residents and some towns have given away all their available 

lots.  “If the initial success of these free land programs is any indication,” they 

conclude, “then the future of rural communities in the Great Plains may be more 

promising than the outlook has been in the past few decades” (Lu and Paull 2007).  

Shortridge (2004) indicates, however, that towns closer to major population centers 

have been more successful with these programs than those in more remote locations. 
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    Contrary to present trends and fears about depopulation, Kotkin (2010, 2012), argued 

that the US “Heartland,” including the GP, will house a significantly growing American 

population by 2050.  He argued that the rise in national and international demand for 

resources extracted in the GP, coupled with increased global demand for agriculture 

products grown in this region (corn, soybeans, cotton), and the recent increases in 

employment pertaining to primary economic activities in the GP bode well for the 

region’s future (Kotkin 2012).  Additionally, he noted the ample space for development, 

and that many technological firms whose reliance on high speed communications 

technology obviated their locating near urban agglomerations have begun settling here 

(Kotkin 2010).  Kotkin (2012, 108) concludes: “The Great Plains has already proved to 

be anything but ‘The Great American Desert.’  As we move into the 21
st
 century, it [is] 

destined to once again take its role at the center stage of American inspiration, 

innovation, and progress.”           

2.5.3: Perspectives III: An Agricultural, Resource, Extraction, and Production Hub 

     Often the clusters of population growth in the GP reflect the dominance of major 

industries.  Since 1995, Southwestern Kansas has become a prime destination for the 

US dairy industry and houses one of the largest clusters of dairy operations in the Great 

Plains (Harrington et al. 2010).  These activities take advantage of available land 

necessary for such large-scale operations, lower operating costs, tax incentives, and a 

physical climate amenable for large-scale dairy agriculture (e.g. lack of cold winters).  

As of 2011, Kansas ranks third of all US states in number of cattle slaughtered and in 

the number of cattle on farms with 6.1 million (National Agriculture Statistics Service 
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2012).  The ubiquitous presence of beef in the region and its growing strength led 

Harrington et al. (2010, 540) to declare this part of Kansas as “real ‘cattle country!’”   

    Like agriculture, mineral extraction actively supports local economies.  The GP is 

home to reserves of oil and gas; the Oklahoma Panhandle and Southwestern Kansas 

region overlay one of the largest natural gas producing areas in the world-the Hugoton 

Natural Gas Area (Lowitt 2006, 84-86).  The national helium reserve is situated in the 

vicinity of this field, near Amarillo, Texas.  The GP also contains the Powder River 

Basin in Wyoming which is a large coal-producing region, the extensive Palo Duro and 

Fort Worth oil Basins in West Texas, and the Willston Basin in North Dakota, South 

Dakota, and Montana.  The vast majority (56%) of this production is due to extraction 

from the 500,000 km
2
 Bakken Formation in Western North Dakota and far eastern 

Montana (North Dakota Industrial Commission Department of Mineral Resources 

2010).  This Formation overlies counties that have seen population increase by up to 

50% between 2000 and 2010, prompting some reports to comment on the rise of “boom 

towns.”   Counties overlying the Bakken Formation that have been losing population 

may see increases in population by 50% by 2025 because of the energy industry (North 

Dakota State University Center for Social Research 2012).  

      The United States’ pursuit of renewable energy will likewise involve the Great 

Plains, just as its reliance on oil has involved this region.  For instance, wind power 

development comprises a nascent source for economic benefit.  Each GP state has some 

of the highest on-shore wind power potential in the US with the highest potential 

capacities in the GP region being on the western portions of the GP in Montana, 
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Southern Wyoming, and New Mexico (Brown et al. 2012).  Three of the four states with 

the highest installed wind power capacity in 2012: Texas, Kansas, and Oklahoma, are in 

the Great Plains, as are five of the top 20 (Colorado, North Dakota) (DOE 2013).  

Texas, which tops the list, has more than twice the installed capacity of the next-highest 

state, California, and has more installed wind power capacity than all but five countries.   

      Wind power development in the GP results in an average aggregate increase in 

personal income of $11,000 per megawatt capacity and in the generation of 0.5 jobs per 

megawatt (Brown et al. 2012).   Slattery et al. (2011) estimated using the National 

Renewable Energy Laboratory (NREL) Jobs and Economic Development Impacts 

(JEDI) model (http://www.nrel.gov/analysis/jedi/about_jedi_wind.html) that wind power 

projects in four west Texas counties supported the equivalent of 680 on-site 

construction jobs and 63 permanent on-site jobs, generating $3.6 million annually in 

earnings with an average annual salary of $58,000.   An analysis with the JEDI model 

likewise indicated that the cumulative development of 1000 Megawatts of power in 

eastern Colorado generated 1700 full-time equivalent jobs during construction and 

supports 300 permanent jobs rural areas with a total payroll of $14.7 million, and annual 

local economic activity valued at $34.9 million (Reategui and Tegen 2008).  A 2009 

National Renewable Energy Laboratory report estimated that the development of 7,800 

MW of wind power in Nebraska by 2030 will support 20,600 to 36,500 construction 

jobs, infusing $140 to $260 million into the state economy annually, and 2,200 to 4,000 

operational jobs, infusing $250 million to $442 million into the state annually (Lantz 

2009).      
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     Likewise, biofuel production comprises a potential source of economic benefit.  One 

biofuel-based crop that has received much attention is the warm-season grass 

Switchgrass (Panicum virgatum L, Parrish and Fike 2005) which is more drought-

tolerant than other grasses and requires relatively few inputs for growth.  Recently, the 

Samuel Roberts Noble Foundation planted 403 hectares of switchgrass near Guymon, 

Oklahoma and 81 hectare at another site near Maysville, Oklahoma as demonstration 

projects (Oklahoma Bioenergy Center 2008). 

     The production of corn-based ethanol is beginning to provide economic benefits to 

various towns in the Great Plains, such as Washburn, ND (population 1250) to which an 

ethanol plant brought 400 construction jobs and 40 permanent jobs, leading the mayor 

to announce “We’ve got the best future we’ve ever had” (Wood 2008, 171).  To process 

ethanol, numerous refineries have established in the GP including Sterling Ethanol, 

LLC (http://www.sterlingethanol.com/), Yuma Ethanol (http://www.yumaethanol.com) 

and Bridgeport Ethanol (http://www.bridgeportethanol.com).  Albengoa Bioenergy 

Corporation will open a $500 million switchgrass processing biorefinery in the 

Southwestern Kansas town of Hugoton by late 2013 or early 2014 (Albengoa Bioenergy 

2011).  This biorefinery will produce 87 million liters of ethanol annually, create 300 

construction jobs, and employ 65 people (Hanks 2011; Bickel 2012).  Albengoa also 

operates refineries in Portales, New Mexico and Colwich, Kansas both on the GP.    

     I have discussed the unfolding development of the biofuel industry on the GP to 

illustrate the fact that it represents a major land use change with implications on 

regional economy, regional sustainability, and environmental impacts.  I now turn to the 
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prospects for future land use changes in the GP.  Given that land use change is often a 

function of population growth, I begin with analysis of future population scenarios in 

the GP.   

2.5.4: Quantitative Analysis I: Population Projections 

     As noted above, the new energy security act is likely to affect land use change in the 

GP.  Because land use change is often driven by demographics, the Integrated Climate 

and Land Use Scenarios (ICLUS) version 1.3 dataset developed by the US 

Environmental Protection Agency was utilized (Bierwagen et al. 2011) to investigate 

the percent change in the population of the 492 GP counties from 2000-2100.  The 

ICLUS dataset contains county-level population data through 2100 under four 

demographic scenarios.  These scenarios were designed in a manner similar, and labeled 

identically, to the carbon dioxide emission scenarios used by the Intergovernmental 

Panel on Climate Change (Nakicenovic 2000; Bierwagen et al. 2011, Table 2.1).  In this 

analysis, 2010 population projections were used rather than 2010 census values because 

ICLUS version 1.3 was created prior to the census.  In all four scenarios, the majority of 

the counties in the Great Plains, like those in the rest of the country, are expected to 

have lower populations in 2100 than in 2010 (Table 2.2).  The A1 and A2 scenarios 

project the highest number of counties experiencing population declines; the B1 and B2 

project the fewest.  Consistent with the assumptions under which these scenarios were 

crafted, the A1 scenario projects the most severe declines in county population (due to 

urban migration) while the B2 projects the fewest quantity of population declines while 

predicting the highest number of counties experiencing population growth (Figure 2.4).  

Given the disparate assumptions behind the scenarios, it is not surprising that a 
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consensus among the four scenarios is achieved in only 54.3% of the GP counties 

(Figure 2.5).  They agree on population growth in 6.9% of the counties, notably those 

along the Denver-Colorado Front Range region and the Central Texas urbanized regions 

which have been growing for decades.  The scenarios also agree on population declines 

in 47.4%, most notably in the Northern Great Plains and the periphery of the GP.  

 

Table 2.1: Table illustrating the various ICLUS scenarios.  Source: Bierwagen et al. 

(2011). Adapted table used with permission. 

 

 

Table 2.2: Number of GP Counties Projected to Lose Population, 2010-2010, according 

to the ICLUS Dataset. 

ICLUS Scenario Number of Counties Losing Population % of all GP Counties 

A1 458 93.1% 

A2 413 83.9% 

B1 392 79.7% 

B2 244 49.6% 
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Figure 2.4: Histograms illustrating the percentage of GP counties experiencing various 

ranges of population changes, 2000-2010, under all four ICLUS scenarios.  Data source: 

EPA ICLUS Dataset.  
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Figure 2.5: Areas of agreement among the ICLUS scenarios vis-à-vis population 

increase or decline in GP counties by the Year 2100.  Data source: EPA ICLUS dataset. 

 

2.5.5: Quantitative Analysis II: Land Use Projections 

     Next, possible future land use projections are discussed.  Sohl et al. (2012) modeled 

changes in the land use composition of the GP in the Year 2100 using four scenarios 

designed in a manner similar to those used in the ICLUS dataset.  However, they 

integrate agriculture into these scenarios, with higher demand for agricultural products, 

including biofuels, present in the A1B and A2 scenarios and heavier demand for 

sustainable land use practices, conservation, and the restoration of native land use types 

in the B1 and B2 scenarios.  In their analysis, the former result in an increased 

proportion of anthropogenic land (defined as land that is urban, cultivated, hay/pasture, 

mechanically disturbed, or mined) in the GP from approximately 43% in 2006 to 65% 
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in 2010 with that of the B1 increasing after 2040 to approximately 53% of the GP.  The 

B2, however, predicts that following initial increase, anthropogenic signature in the GP 

decreases to 2006 levels by 2100.  Accordingly, the proportion of “natural” land 

(forests, grass/shrublands, and wetlands) decreases from 56% (2003 value), with the 

A1B and A2 scenarios predicting the largest decrease – to approximately 35% by 2100.  

In all scenarios, the proportion of land that is hay/pasture (surrogate for biofuels) 

increases, with the largest expansions occurring in the A1B and A2 scenarios, where 

increase in the Northern and Southeastern GP comes at the expense of grass and 

shrubland.  The aforementioned studies suggest that the major land use change in the 

GP will be the conversion of grassland to agriculture, even if population losses stabilize 

as suggested by the B2 scenario and micropolitan and metropolitan areas continue to 

grow. 

    Visual inspection of the map illustrating the extent of impervious land in the GP by 

2100 using the ICLUS dataset described above reveals that the GP will continue to lag 

behind the rest of the Continental United States in the proportion of built-up land 

(Figure 2.6).  This observation is consistent with population projections and with the 

findings of Sohl et al. (2012) that this region will remain predominantly low-density. 
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Figure 2.6: Extent of Impervious Surfaces (white) in the Year 2100, A2 Scenario.  Data 

source: EPA ICLUS Dataset. 

 

2.5.6: Implications Of Climate Change Vis-à-vis Scenarios 

     Under climate change, the Northern GP is expected to see increased moisture while 

the Southern GP is expected to become drier (U.S. Global Change Research Program 

2009, 123-128).  Concurrently, temperatures are expected to increase and more 

sustained droughts, which occur frequently on the Plains, are expected.  Such conditions 

will tax a semi-arid region with a strong agricultural economic basis by reducing water 

supplies and pressuring agricultural economies (U.S. Global Change Research Program 

2009).  Continued drought may cause the long-term closures of biorefineries, for 

example.   
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     Global climate change has the potential to amplify the impacts of both the “A” and 

“B” scenarios mentioned above.  It has the potential of enhancing rural depopulation if 

water supplies dwindle, perhaps resulting in increased migration to urban centers 

similar to those projected in the “A” scenarios listed above.  Or, it can foster the 

cultivation of crops and grasses that are more drought-tolerant, such as switchgrass.  

With regard to the “B” scenarios, the prevalence of groundwater conservation districts 

represents recognition that even in the most severe droughts, awareness of the 

sustainability of water supplies is necessary.  Additionally, diversification of economic 

activities and the development of micropolitan/metropolitan centers can mitigate the 

direct impacts of climate change on agriculture and stem population loss.    

2.6: Conclusions: The Great Plains: An Uncertain Future 

     The sustainability of the American Great Plains has been a matter of intense public 

discourse and speculation since the days of the region’s early exploration.  On one hand, 

the discourse has had the effect of cementing iconic images of the Great Plains as a 

formidable desert and as a drought-prone dust bowl abyss.  Others believe the region’s 

agricultural and mineral-based economy is a position of strength, especially if this 

region becomes a hearth for the cultivation of the nation’s supply of biofuel crops.  

Nevertheless, impacts of climate change need to be considered when evaluating the 

agricultural future of this region.  The beginning of non-native settlement, land use 

change in the GP has been heavily influenced by government policies and market 

conditions.     
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    If current projections of population dynamics and land use change hold, the vast 

majority of GP counties will continue to lose population, with the exception of those 

along the fringes of metropolitan and micropolitan areas. Thus, most of GP will remain 

agricultural favoring large expanses of land, the operation of small-scale industries, and 

perhaps some protected areas.  Most land use change will involve either conversion of 

grasslands to agriculture or the retirement of agricultural land to grassland, depending 

on market prices, federal policies, and the demand for biofuel production.  Although 

there may continue to be two de-facto GP regions: one agricultural and one built up, 

both will continue to play an integral role in US economic production, regardless of the 

extent of population changes.   
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Abstract 

The conversion of land from existing uses to biofuel cultivation is expected to increase 

given concerns about the sustainability of fossil-fuel supplies.  Nonetheless, research 

into the environmental impacts of biofuel crops, primarily the hydrological impacts of 

their cultivation, is in its infancy.  To investigate such issues, the response of a 1649 

km
2
 semiarid basin to the incremental substitution of the widely-discussed biofuel 

candidate switchgrass (Panicum virgatum L.) for native land uses was modelled using 

the Soil and Water Assessment Tool (SWAT).  Median discharges decreased 5.6% - 

20.6% during the spring and 6.4 - 31.2% during the summer depending on the quantity 

of acreage converted.  These were driven by an increased spring and summer 

evapotranspiration of 4.3% - 46% and 2.2% - 24%, respectively, depending on the 

quantity of switchgrass biomass produced.  The substitution of switchgrass also resulted 

in larger quantities of water stress days than in baseline scenarios.  I encourage the 

exploration of alternative biofuel crops in semiarid areas to mitigate such negative 

impacts. 

 

Keywords: Biofuels, Great Plains, Land Use change, Soil and Water Assessment Tool, 

Semiarid regions, Switchgrass 
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3.1: Introduction 

     Land conversion from existing uses to biofuel crops cultivation is an important form 

of land use change in the 21
st
 century.  According to the Renewable Fuels Association 

(2012), between 2000 and 2010, annual U.S. corn ethanol production increased nearly 

nine-fold from 6 billion to 52 billion liters, while the number of ethanol plants 

quadrupled from 54 to 204.  Driving this increase are a number of factors including 

increased oil prices, U.S. demand for greater energy independence, increased awareness 

and interest in renewable energy sources, as well as the policies and mandates of the 

United States Government.  In his 2006 State of the Union address, U.S. President 

George W. Bush proposed the Advanced Energy Initiative, which called for energy 

from biofuels to replace greater than 75% of imported oil from the Middle East by 2025 

(Bush 2006).  It also called for increased Federal investment in the production of 

ethanol from sources other than corn, including wood chips and switchgrass, with the 

goal of making these alternative forms of ethanol (called cellulosic ethanol) competitive 

with corn-based ethanol by 2012.  That call resulted ultimately in the Energy 

Independence and Security Act (EISA) of 2007.  The goals of the EISA are to increase 

energy security in the U.S. and to increase the production of clean fossil fuels, among 

others, including the mandated production of 61 billion liters of cellulosic-based 

gasoline additives by 2022 (One-hundred Tenth Congress of the United States of 

America 2007).   

     The Ecological Society of America defines biofuels as “liquid fuels derived from 

biological materials” (e.g. Mitchell et al. 2010; Robertson et al. 2010).  Common 

sources of biofuel crops include corn (Zea mays L.), switchgrass (Panicum virgatum 
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L.), soybeans (Glycine max L.), sweetgum (Liquidamber styraciflua L.), rapeseed 

(Brassica napus L. rape), sugarcane (Saccharum officinarum L.), palm oil (Elaeis 

guineensis), and jatropha (Jatropha curcus).  Resultant fuels include ethanol [the most 

common], methanol, propanol, butanol, methane, and biodiesel.            

     Native to the tallgrass prairies and a wide-range of mesic environments in the eastern 

two thirds of the United States, the warm season perennial switchgrass (Parrish & Fike 

2005) has received much attention as a possible cellulosic biofuel source because of its 

perceived advantages over other biofuel crops.  In their review paper, Simpson et al. 

(2008) concluded that compared to corn, switchgrass facilitates improved nutrient 

retention and carbon sequestration in soils, it has the ability to grow on marginal soils, 

and it needs replacement only once every twenty years.  Also, it has been projected that 

switchgrass-based ethanol reduces the emission of greenhouse gases by 94% relative to 

those emitted by traditional gasoline (Schmer et al. 2008). 

     As with any other major land use modification, biofuel production is expected to 

have major, but not yet fully understood, impacts on regional hydrology.  

Acknowledging this point, the National Research Council (2008, p. vii) refers to the 

hydrology of biofuel production as an “emerging field” of scientific inquiry.  Similarly, 

Georgescu and Lobell (2010, p. 33) noted, “changes to local hydrology caused by large-

scale perennial systems may be complex, and thus require careful evaluation.” Two 

other factors related to climate change and sustainability also make such evaluation 

imperative. A number of authors (e.g. Sala et al. 2000; Vorosmarty et al. 2000; Foley et 

al. 2005; Turner II et al. 2007; Wagener et al. 2010) have noted that land use change 
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dwarfs or is at least of comparable magnitude to the much more widely publicized topic 

of climate change, both as a driver and as an impact of future global environmental 

change. With specific respect to water resources, Ren et al. (2012) and Jiang et al. 

(2012) found that both climate change and anthropogenic activities including reservoir 

construction and irrigation are responsible for changes in streamflow in China’s 

Laohahae Basin during the late twentieth and early twenty-first century, although the 

relative contribution of each varies by decade.  In their study of the Shaumalun Basin in 

China, Yang et al. (2012) found a decline in annual runoff post 1998 far in excess of 

what could be attributed to changes in basin precipitation.  The authors concluded that 

the unexplained difference was likely due to land use changes including deforestation 

and urbanization. Ma et al. (2009) investigated the impacts of climate and land use 

change in the Kejie watershed in China from 1965-2005.  They found that the 

hydrologic effects of climate change were offset by land use changes, and that while 

seasonal changes in streamflow were mostly a function of precipitation, mean annual 

changes in streamflow were largely influenced by land use change.  Overall, they found 

that surface hydrology was more impacted by land use change than climate.  Franczyk 

and Chang (2009) assessed the impacts of climate change and future urbanization on the 

hydrology of the Rock Creek Basin, Oregon USA, through the 2040s.  They found that 

climate change and urbanization combine to amplify the magnitudes of the volumes of 

mean annual runoff and evapotranspiration relative to those in the absence of one of 

those factors.  Du et al. (2012) found that the impacts of urbanization on mean annual 

runoff are a function of the magnitude of precipitation; in their investigation of the 

Qinhuai River Watershed in China, they found that annual runoff in dry years increases 
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more than in wet years given a 10-fold increase in the area of impervious surfaces.  

Additionally, Raymond et al. (2008) and Schilling et al. (2010) attributed the increased 

in discharges in the Mississippi River Basin to agricultural production, and explicitly 

discounted the role of climate.  With specific respect to regional hydrology, a number of 

studies have reported significant stream depletion due to groundwater mining associated 

with agricultural expansion (e.g. Reisner 1993; Glennon 2009; Kustu et al. 2010; 

McGuire 2011; Scanlon et al. 2012). These findings underscore a critical need to 

unbundle and quantify the relative contributions of specific land use changes, especially 

in semiarid areas such as the U.S. Great Plains where the issue of the sustainability of 

scarce water supplies is of paramount importance (see below). This study is a 

contribution toward that goal.  

     With regard to the sustainability of biofuel hydrology, the myriad of factors 

comprising the hydrologic impacts of biofuel production may be grouped into three 

broad categories namely, the water footprint (WF) defined as “the total annual volume 

of fresh water used to produce goods and services for consumption” (see e.g. Gerbens-

Leenes et al. 2009 pp. 10219), water quality (e.g. Nyakatawa et al. 2006; Simpson et al. 

2008; Chamberlain et al. 2011; Sarkar et al. 2011), and impacts on the local or regional 

water balance.  This paper focuses on the third category. Specifically, the impact of 

switchgrass production on local scale changes in constituent components of the water 

balance, including runoff and evapotranspiration (eT), is investigated. 

     A number of studies have investigated the impact of the planting of different biofuel 

crops on local water balances (e.g. Schilling et al. 2008; Thomas et al. 2009).  These 
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studies suggest that increased biofuel crop cultivation can significantly alter local water 

balances through altering local evapotranspiration and discharge rates, although the 

results are mixed due to variations in crop management [i.e. till, no till, etc], climate, 

and topography.  Generally, switchgrass and the biofuel-grass miscanthus (Miscanthus 

x giganteus) have been shown to increase soil moisture retention and to reduce the 

volumes of river discharge relative to other crops.  For example, Schilling et al. (2008) 

simulated the impact of various land use scenarios involving combinations of biofuel 

crops in the Raccoon watershed in Iowa, USA, on the water balance using the Soil 

Water and Assessment Tool (SWAT).  They devised nine scenarios, ranging from an 

expansion of corn acreage to cover solely United States Department of Agriculture 

(USDA) lands to those in which switchgrass became the dominant biofuel crop and, 

finally, those in which cool season biofuel crops (i.e. fescue) dominated.  They found 

that the conversion of grassland to corn decreases mean annual evapotranspiration by 

1% and increases mean annual runoff by nearly 8%, but the conversion of cropland to 

warm season biofuel crops (switchgrass) increases mean annual evapotranspiration by 

2.6% and decreases mean annual runoff by 17%.  On the other hand, Thomas et al. 

(2009) suggested that planting corn on an annual basis increases evapotranspiration.  In 

an investigation using SWAT in a watershed in Eastern Kansas, United States, Nelson 

et al. (2006) modeled the percent reduction in surface runoff when the planting of 

switchgrass replaced the planting of traditional crop rotations, including corn-soybean, 

corn-soybean-wheat, grain sorghum-soybean, and grain sorghum-soybean-wheat.  They 

found that the planting of switchgrass reduced surface runoff by 55% over a 24-year 

period relative to baseline.  Graham et al. (1996) modeled the hydrologic impact of 
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replacing plots of soybeans, wheat, and cotton with switchgrass in the vicinities of the 

cities of Nashville and Memphis (Tennessee, USA) using the Environmental Policy 

Integrated Climate (EPIC) model.  They found that replacing such crops with 

switchgrass would result in lower runoff, erosion, evapotranspiration, and phosphorus 

loss.  Specifically, replacing soybeans with switchgrass reduced evapotranspiration by 

20% - 60% and phosphorus by 80% - 95%.  Additionally, replacing corn with 

switchgrass reduced evapotranspiration by up to 10% - 50% and phosphorus loss by 80-

95%.   Finally, replacing wheat with switchgrass reduced evapotranspiration by 15% - 

40% and phosphorus loss by approximately 90%.  In another study, Vanlocke et al. 

(2010) investigated the hypothetical impact on regional water balance of planting 

increasing proportions (i.e. 10% of area, 25%, 50%, 75%, and 100%) of miscanthus in 

the Upper Midwest of the United States.  By simulating the different land cover 

configurations using the Integrated Biosphere Simulator – Agricultural Version, the 

authors found that the planting of miscanthus significantly increased evapotranspiration 

and decreased discharge relative to its predecessor land cover type.  In yet another 

experimental study, McIsaac et al. (2010), found that late-season soil moisture under 

switchgrass plots exceeded that of miscanthus and maize-soybean because of the higher 

transpiration levels of miscanthus and maize-soybean relative to switchgrass (due to 

higher leaf-area indices and biomass) throughout much of the growing season.  

Estimated evapotranspiration from miscanthus exceeded that of switchgrass by 140 mm 

and that of maize-soybean by 104 mm. 

     In addition to differences in management practices, impacts of biofuel cultivation 

have been shown to be region-specific as a result of differences in climatic conditions 
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(e.g. Garoma et al. 2012).  For example, soybeans and cotton require more water than 

corn when planted in the Pacific and Mountain regions of the U.S., but the opposite is 

true in the semiarid Great Plains (National Research Council 2008).  These differences, 

and sometimes contradictory results, point to a need for more studies investigating the 

impacts of biofuel production generally in different regions and bioclimatic 

environments.  This study contributes to that goal.  

3.2: Study Area 

     The study area is part of the Middle North Canadian River (hereinafter, MNCR) 

Watershed located in Western Oklahoma, USA.  It covers approximately 1649 km
2
 

within the U.S. Geological Survey (USGS) Hydrologic Unit Code 11100301 (Figure 

3.1).  The headwaters of the basin are located at (36°26'12" N, 99°16'41" W) and the 

watershed outlet is situated at (36°11'00" N, 98°55'15" W).  Because of its 

predominantly agricultural character, the MNCR could be considered representative of 

other basins in the semiarid U.S. Great Plains.  Largely rural, the largest settlements in 

the MNCR are Mooreland (population 1,190), Seiling (population 860), and Vici 

(population 699).  Elevation varies from 762 meters at the headwaters to 512 meters at 

its outlet, a distance of approximately 53 km.  For the period 1980-2010, average annual 

precipitation was 666 mm with precipitation peaking during May and June (PRISM 

Climate Group 2012).  Average daily temperatures range from 1
 O

C during January to 

27
O
C during July and August.  Like other portions of the Great Plains, the study area is 

drought prone and suffers from water shortages associated with evaporative losses 

(Zume & Tarhule 2006, 2011).   
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Figure 3.1:  Location of the Middle North Canadian River Basin (MNCR), located 

within the U.S. State of Oklahoma. 

    

     The MNCR overlies two geological provinces: the Western Sand-Dune Belts and the 

Western Sandstone Hills (Goins & Anderson 2006).  The sand dune belts, which were 

blown from Quaternary alluvium and terrace deposits, are found on the north side of the 

North Canadian River and are oriented southeast.   These deposits create the Alluvium 

and Terrace aquifer (BNCR A&T) of the Beaver/North Canadian River, which 

originates upstream of the MNCR and ends at Lake Eufaula, 290 km downstream from 

the MNCR.  This aquifer serves as an important water source for irrigation and public 

water supplies in this region.  The Quaternary deposits vary in thickness; the alluvium 
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deposits average 10 meters in thickness while the high terrace deposits average 21 

meters in thickness.  The terrace and alluvium deposits are the main water-bearing 

portions of the aquifer, and it is believed that these deposits are hydraulically 

continuous and comprise a single aquifer system.  These deposits contain poorly-sorted 

sand and minor portions of gravel, silt, and clay (Davis & Christenson 1981).  It is 

believed that the base of the aquifer coincides with the relatively impermeable Permian 

Red Beds Formation (Zume & Tarhule 2008).   

     The depth to bedrock at the BNCR A&T varies spatially up to a maximum of 100 

meters, although it does outcrop at a few locations outside of the MNCR.  Hydraulic 

conductivity values vary from 18-24 m/d per day (Davis & Christenson 1981; Adams et 

al. 1997), with specific yield around 0.28 (Zume & Tarhule 2008) and transmissivity 

values from 0 – 749 m
2
/d (Davis & Christenson 1981).  Recharge is 1.39 * 10

-4
 m/d 

(Zume & Tarhule 2008), or approximately 7% of mean annual precipitation.   

     The vegetation of the watershed is dominated by non-irrigated native range grasses, 

and winter wheat, which is fertilized and irrigated.  Grasses include buffalo grass, big 

and little bluestem, sideoats grama, and blue grama.  Winter wheat is planted during the 

middle of September and is harvested in the middle of June of the following summer.  

Most of the irrigation originates from the BNCR A&T.   

     Heavy groundwater pumping for irrigation since 1970 in portions of the North 

Canadian River watershed upstream of the MNCR has contributed to decreases in the 

medians of the peak annual streamflow values of about 40% in the MNCR (see Wahl & 

Tortorelli 1997).  The two largest uses of BNCR A&T water are irrigation and 
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municipal use (Tortorelli 2009).  More groundwater is used from BNCR A&T for 

municipal use than in any other aquifer in Oklahoma, and 50-89% of the total 

withdrawals in the study area counties are BNCR A&T water.  The MNCR lacks large 

impoundments although several small reservoirs exist.     

3.3: Model Description and Methods 

     The response of the MNCR to the substitution of native land uses with switchgrass 

was investigated using SWAT, a physics-based semi-distributed hydrologic model 

(Arnold et al. 1998).  Developed by the U.S. Department of Agriculture in Temple, 

Texas, SWAT has been employed in over six-hundred published studies (Gassman et al. 

2007; Douglas-Mankin et al. 2010), including many investigations of the impacts of 

crop substitution (e.g. Schilling et al. 2008; Baskaran et al. 2010; Ng et al. 2010).  The 

model, along with associated documentation and related software, is available free of 

charge from the Texas A&M AgriLife Research Center (http://swatmodel.tamu.edu).  It 

has been applied to a variety of water resource issues in a large range of locations and 

spatial scales – from 0.004 km
2
 to 491,665 km

2
 (Gassman et al. 2007; Douglas-Mankin 

et al. 2010).   SWAT divides a watershed into smaller user-defined subbasins, and then 

into still smaller hydrologic research units (HRUs) which are areas of homogeneous 

land use, soil, and slope based on user-provided information.  The model operates on a 

water-balance principle on a daily time step.   

     A key convenience of SWAT is that it is linked to various databases containing the 

data and information required for simulation, greatly simplifying model setup and 

operation.  The crop database contains alterable biophysical information (e.g. extinction 
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coefficient, leaf area index) for 108 crops, including many biofuels such as Alamo 

Switchgrass, corn, oil palm, sugarcane, grain sorghum, and soybeans.  The sources for 

the input data used in this investigation are listed in Table 3.1. 

     The MNCR was delineated in SWAT using a 30-meter DEM, and by the subsequent 

“burning in” of the National Hydrography Dataset Plus dataset.  Thirteen (13) subbasins 

were delineated.  To reduce the quantity of HRUs to a manageable number without 

sacrificing model accuracy, a threshold of 3% land use, 10% soil, and 0% slope for each 

subbasin was used.  In other words, land use types were retained if they covered greater 

than 3% of the subbasin, otherwise they were incorporated into other HRUs.  This led to 

the retention of 529 HRUs.  The land use composition of the watershed post-threshold 

delineation is displayed as Table 3.2.   
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Table 3.1: Data sources for items used in investigation 

  

Data for Simulation Source 

Elevation: 30-meter DEM  USGS1 

Groundwater:  

values for effective hydraulic conductivity 

Zume & Tarhule 
(2008) 

Land Use:  

56-meter Crop Dataset Layer (CDL): 2006-2009                                                             

National Agriculture 
Statistics Service1 

Management:  

Planting, irrigation, and fertilization schedules 

Agriculture extension 
agents 

Soil: 1:15,000 scale Soil Survey Geographic  

         (SSURGO) dataset 

Natural Resources 
Conservation Service 
(NRCS) 2 

Weather:  

Daily temperature and precipitation data  

National Climatic 
Data Center  

1 Available at the USDA NRCS Geospatial Data Gateway (http://datagateway.nrcs.usda.gov) 

2 Data imported into SWAT using the SWATioTools program (Sheshukov et al. 2009) 
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Table 3.2: Land use composition (%) of the MNCR post-land use threshold delineation 

Land Use % of Watershed 

Native range grasses 74.59% 

Winter wheat 12.30% 

Low-density development  5.90% 

Evergreen forest  4.03% 

Shrubland  3.18% 

 

     Driven primarily by the availability of streamflow data for calibration, SWAT was 

run for 1977-2009, with 1977-1979 as the initialization period, 1980-1994 as the 

calibration period, and 1995-2009 as the simulation period.  These years coincided with 

a wet period in Oklahoma’s North Central Climate Climate Division 

(http://climate.ok.gov/index.php/climate/climate_trends/precipitation_history_annual_s

tatewide/CD02/prcp/Annual).  Following calibration, simulations of switchgrass 

replacement were conducted to quantify the response of the MNCR, specifically 

discharge (Q) and evapotranspiration (eT), to the cultivation of switchgrass during the 

spring and summer seasons which were the seasons with the best calibration results.  

The replacement scenarios are the following:  

(1) “nowwht:” Replacement of winter wheat with nonfertilized Alamo switchgrass 

(12.3% of the MNCR). 
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 (2) “nornge:” Replacement of range grasses with nonfertilized alamo switchgrass 

(74.5% of the MNCR). 

(3) “noag:” Replacement of agricultural land uses (range grass and winter wheat), with  

nonfertilized alamo switchgrass (86.8% of the MNCR) . 

(4) “fert:” Similar to “noag,” except switchgrass is managed as follows:  

a.       April 15 fertilize (56 kg ha
-1

 N) 

b.      Harvest May 15 (90% efficiency), July 15, November 1 

c.       Fertilize (56 kg ha
-1 

N) May 17, July 17 

     Switchgrass production was simulated using the default biophysical settings for 

alamo switchgrass provided in the SWAT crop database with 1187 heat units for growth 

and with increased rooting depth from 2 to 3 meters (Baskaran et al. 2010).   

3.4: Results 

3.4.1: Calibration  

     The result of the calibration on total monthly discharge (in cubic meters per second 

or “cms”) at the watershed outlet is presented as Figure 3.2(a).  The simulated model 

reproduces the observed discharges reasonably well without evidence of systematic 

under or over estimation.  The Nash-Sutcliffe Efficiency (NSE, Nash & Sutcliffe 1970) 

estimate is 0.86, well above the 0.75 threshold generally regarded as indicative of a 

“very good” simulation (Moriasi et al. 2007).  The calculated Percent Bias (PBIAS, 

Gupta et al. 1999) estimate is 3.87% (values less than 10% are considered “very good”).  
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Finally, the calibration fit was evaluated using the RMSE-Observations Standard 

Deviation Ratio (RSR), a measure of the ratio of the normalized sum of squares to the 

standard deviation of the observed values (Singh et al. 2004).  The RSR estimate is 0.38 

(values below 0.5 are considered “very good,” Moriasi et al. 2007).  Thus, the 

simulation performed satisfactorily on all three commonly used evaluation criteria. 

 

Figure 3.2: Plot of simulated and observed monthly discharges at the watershed outlet 

during (a) the calibration period and (b) the simulation period   
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     Sensitivity analysis (van Griensven et al. 2006) was performed on 26 parameters, 

using observed data.  The results showed that the curve number for soil moisture 

condition II (“average” moisture) was the most sensitive parameter, followed by 

maximum vegetation canopy storage, and Manning’s roughness coefficient (Table 3.3).  

A list of the curve numbers for the various land use classes in the calibration simulation 

is included as Table 3.4.  However, further fine tuning was deemed unnecessary given 

the low values of the sensitivity indices as well as the excellent calibration agreement 

already achieved.     

     Accordingly, the model was used to simulate total monthly discharge for the 

simulation period of 1995 to 2009 (Figure. 2.2b).  The results are likewise satisfactory 

with NSE of 0.80, PBIAS of 0.53, and RSR of 0.45. 

     Next, the model performance at seasonal time scale (i.e. winter - December, January, 

February, spring - March, April, May, summer - June, July, August, and fall - 

September, October, November) was evaluated for the calibration and simulation 

periods.  The results appear in Table 3.5.  The statistics for winter during the calibration 

and simulation periods were problematic due to relatively low NSE values and 

unsatisfactorily high PBIAS values (>25%, which is the threshold for satisfactorily 

monthly values per Moriasi et al. (2007)).  Therefore, subsequent analysis was confined 

to the spring and summer seasons.  Figures 3.3(a-b) and 3.4(a-b) present plots of the 

simulated and observed spring and summer discharges during the calibration and 

simulation periods, respectively.  
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Table 3.3: Sensitivity index rankings for the MNCR 

Sensitivity 

Ranking
a, 

b
 

Parameter Description Initial 

value 

Range 

tested
c
 

Sensitivity 

Index 

1 CN2                   
                   

Default -10%, 

10% 
d 

 

0.199 

 

 

2 Canmx                         
         

0 0, 10 0.112 

 

 

3 Ch_N2                            
             

Varies 

within 

range 

tested 

 

0.035, 

0.11 

0.0909 

4 Alpha_bf                           

        
0.75 

 

0, 1 0.0816 

 

 

5 Blai                         
           

Default 

 

0, 1 0.0308 

 

 

6 Surlag                     
                   

Default 

 

1, 24 0.0261 

 

 

7 Sol_Z                                     
                   

Default 

 

-4%, 

4% 
d
 

0.0205 

 

 

8 Esco                   
                    

0.7 0.65, 

0.80 

0.0166 

 

 

9 Ch_K2
e
                                    

                          
  

  
  

6.4-7 3, 20 0.0141 

 
 

10 Sol_Awc                              
                    

Default -4%, 

4%
 d
 

0.0113 

a
 Only 10 most sensitive parameters are shown 

b
 In order of decreasing sensitivity 

c
 Minimum and maximum values listed 

d
 Initial value multiplied by values in range 

e
 Only applied to subbasins with intermittent or ephemeral main channels.  Values based 

on those reported by Zume and Tarhule (2008). 
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Table 3.4: CNs for crops in this investigation, by National Resources Conservation 

Hydrologic Soil Group 

 

Crop Soil Group 

A
a
  

Soil Group 

B  

Soil Group 

C  

Soil Group 

D 
b
 

     
Winter Wheat 62 73 81 84 

Native Range Grasses 45 66 77 83 

Shrubland 39 61 74 80 

Low-density development 31 59 72 79 

Alamo Switchgrass c 31 59 72 79 

Evergreen Forest  25 55 70 77 

_____________________________________________________________________ 
a
 Lowest runoff potential 

 
b
 Highest runoff potential 

 
c
 Not included in calibration simulation 

 

Source: SWAT crop database 
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Table 3.5: Effectiveness of calibration during the calibration and simulation periods  

Criterion *  Winter Spring Summer Fall 

 Calibration Period    

NSE 0.64 0.76 0.97 0.87 

PBIAS (%) 29.34 -6.00 -9.90 -14.39 

RSR 0.60 0.49 0.18 0.36 

 

 Simulation Period    

NSE 0.61 0.93 0.88 0.69 

PBIAS (%) 25.17 6.75 -8.23 -29.63 

RSR 0.62 0.27 0.35 0.56 

*
 Thresholds for satisfactory calibration on the monthly timescale for NSE, PBIAS, and 

RSR are 0.50, +/- 25%, and 0.75, respectively (Moriasi et al. 2007) 

 

     The changes in hydrology discussed below are driven solely by the impacts of land 

use change since climatic parameters were not adjusted during the simulations.  The 

results of four switchgrass substitution simulation scenarios for the spring and summer 

appear in Figure 3.5(a-b).  All four scenarios result in decreased discharges relative to 

baseline.  Such decreases are consistent with the findings of Nelson et al. (2006) and 

Schilling et al. (2008), both of whom found decreased discharges when replacing pre-

existing cropland with warm-season grasses. As may be expected, the magnitude of the 

decreased discharges is a function of the area converted to switchgrass, a finding which 

also echoes that of Schilling et al. (2008).    
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3.4.2: Spring and summer discharge 

     On one hand, the magnitude of the reduction in median spring discharge for all 

scenarios is directly proportional to seasonal precipitation in Oklahoma Climate 

Division 2, in which the majority of the MNCR is situated (Figures 3.6a-3.6d).   All 

relationships are statistically significant (p<0.05).  I hypothesize that higher rainfall 

results in greater switchgrass biomass accumulation which then results in higher 

evaporative losses and therefore less water for discharge.  Notice that the relationship is 

relatively weak for the “nowwht” scenario.  This may be explained by the fact that 

winter wheat relies more heavily on fertilizer applications, and less on precipitation, for 

growth.  On the other hand, no statistically significant correlations exist between the 

magnitude of reduction in summer discharge and summer precipitation, implying that 

depletions in summer discharge are not a function of precipitation, explained below.   

     3.4.3: Spring and summer eT 

     The reductions in spring and summer discharge are driven by sizeable, statistically 

significant (p<0.05) increases in eT (Figures 3.7a-3.7b).  Median increases during the 

spring vary from 4.3 mm (“nowwht” scenario) to 46.0 mm (“fert” scenario) and from 

2.2 mm (“nowwht” scenario) to 24.0 mm (“fert” scenario) during the summer.  These 

increases appear not to be functions of land area converted but of the quantity of 

switchgrass biomass produced (Figure 3.8).  This is evident from the disparate eT 

values under the “noag” and “fert” scenarios despite these scenarios converting an 

identical acreage of switchgrass.        
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     It is evident that summer eT is greatly limited by available moisture, as the increases 

in spring eT exceed those of the summer by a factor of 1.3 to 2.3 despite higher summer 

temperatures relative to spring (Figures 3.7a-3.7b).  Higher water stress during the 

summer is evident in the higher ratio of summer eT to rainfall (0.632) relative to that 

during the spring (0.536).  These results are consistent with those reported by Lakshmi 

et al. (2011) for an area situated just north of the MNCR.  Additionally, the number of 

summer water stress days increases under all scenarios relative to baseline, resulting in 

an almost 300% increase under the “fert” scenario in which the most switchgrass 

biomass is produced (Table 3.6).  Under the “fert” scenario, 48% of all summer days are 

water stressed.   The increase in water stress days also explains the lack of a statistically 

significant relationship between precipitation and change in discharge (see above), as 

most of the MNCR’s summer moisture supply is exhausted by the high evaporative 

demands.  Additionally, the statistical relationship between the change in eT (mm) and 

the change in discharge (cms) during the simulation years is stronger during spring 

months than in summer, which indicates a lack of requisite moisture during the latter 

period (Table 3.7).  Simply stated, the increase in summer eT associated with 

switchgrass production increases the quantity of summer. 
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Figure 3.3:  Calibration of seasonal discharges at the watershed outlet for (a) spring, and 

(b) summer 
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Figure 3.4: Comparison of observed and predicted discharges at the watershed outlet for 

(a) spring, and (b) summer during the simulation period 
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Figure 3.5: Differences in a) spring and summer discharge associated with switchgrass 

production relative to baseline in all scenarios during the simulation period, 1995-2009, 

and b) the percent change in spring and summer discharge relative to baseline in all 

scenarios during the simulation period, 1995-2009.  The values of the medians (black 

lines) are provided.  The dots comprise the observations; circles indicate outliers.  The 

proportion of the watershed converted in each scenario is shown as a percentage in 

brackets underneath the x-axis label.   

 

b) 

a) 
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Figure 3.6: Relationship between change in spring discharge relative to baseline and 

precipitation, 1995-2009 in the a) nowwht, b) nornge, c) noag, and d) fert scenarios 

 

 

 

d) c) 

a) b) 
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Figure 3.7: Differences in in basin-wide a) spring and summer eT associated with 

switchgrass production relative to baseline in all scenarios during the simulation period, 

1995-2009, and b) the percent change in spring and summer eT relative to baseline in 

all scenarios during the simulation period, 1995-2009.  The boxplots are read in a 

manner identical to that of Figure 3.5. 
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Figure 3.8: Relationship between the change in seasonal eT in the four switchgrass 

scenarios relative to baseline, and the quantity of switchgrass biomass (in 100,000 

metric tons) during the spring and summer. 

 

     Table 3.7 indicates that moderately-strong, statistically-significant (p<0.05) 

relationships exist between changes in eT and changes in discharge during all seasons 

and scenarios except for “nowwht.”  I conclude, therefore, that changes in discharge in 

the MNCR are driven by eT except in this scenario, which may be driven by the 

application of spring fertilizer with the subsequent increase in the growth of winter 

wheat.  Ignoring the “nowwht” scenario, it is also noteworthy that the coefficient of 

determination for this relationship decreases with the volume of switchgrass production, 

which is further evidence of the occurrence of water stress mentioned above, as only so 

much moisture is available to be lost by eT. 



 

83 

 

 

Table 3.6: Average quantity of spring and summer water stress days, by scenario, 1995-

2009 

Scenario Spring Summer 

baseline            

nowwht           * 

nornge     *      * 

noag     *      * 

fert      *      * 

* Quantities are statistically significant (p<0.05) relative to baseline 

 

Table 3.7: The strength of the relationship between changes in eT (mm) and discharge 

(cms) in each scenario by season, as measured by R
2
 and p-values 

Scenario R
2
 P-value 

 Spring  

nowwht 0.11 0.232 

nornge 0.81 5.2*10
-6

 

noag  0.64 0.003 

fert 0.59 0.0008 

 Summer  

nowwht 0.01 0.77 

nornge 0.50 3.36*10
-3

 

 

noag 0.47 0.0047 

fert 0.48 0.004 
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3.5: Conclusions 

     The current interest in biofuel crops is likely to lead to major land use changes in 

some watersheds with major impacts on regional hydrology.  However, owing to the 

still evolving nature of the so-called biofuel hydrology, the dynamics and magnitudes of 

the possible hydrologic responses in different bioclimatic zones as well as management 

practices are not yet fully understood.  Efforts toward achieving that understanding have 

tended to adopt a modeling approach because of the complexity and futuristic nature of 

the processes involved.  Even though one of the largest experimental switchgrass plots 

is located in Guymon, Oklahoma, USA in the shortgrass prairies, few studies have 

investigated the hydrologic response to switchgrass cultivation in a semiarid 

environment.  This study was carried out to help fill that gap and to contribute to the 

emerging literature on the possible environmental effects of biofuel production in 

various regions. 

     A  SWAT model of the 1,649 km
2
 MNCR watershed was developed.  Model 

calibration resulted in excellent agreement between total simulated and observed 

discharges on three widely used model performance evaluation metrics (i.e. the NSE, 

PBIAS, and RSR).  At a seasonal scale, the evaluation yielded satisfactory simulations 

for the spring and summer seasons only.  Therefore, these seasons were used to explore 

the hydrologic impacts of replacing various current land use types with switchgrass 

under different management practices.  The major findings of the study are the 

following: 
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(1) Replacing any land use type with switchgrass reduces stream discharge.  The 

decreases ranged from 6 to 21% (spring) and 6 to 31% (summer).  Overall, the 

reduction was greatest for the scenario in which native land uses were replaced by 

heavily-managed switchgrass.  The degree of the reduction is a function of the amount 

of area replaced. 

(2) Switchgrass substitution also leads to increased evapotranspiration relative to base 

period for all scenarios investigated.  The increases ranged from 3% - 32% (spring) and 

2% - 19% (summer).  The scenario involving heavily-managed switchgrass produced 

the largest increase in eT.  Since climactic inputs are identical in all scenarios, I 

hypothesize that increased eT is most likely the result of the quantity of switchgrass 

biomass generated.   

(3) The summer-time impacts of managed switchgrass scenario are the most acute in the 

MNCR.  This approach is responsible for a 31% decrease in discharge and 19% 

increase in evapotranspiration.  Such impacts are significant in semiarid areas where 

evaporative losses are already high and discharges are relatively low (baseline 

discharges of 7.4 cms and 5.03 cms during the spring and summer, respectively, in the 

MNCR).   

     These results suggest that the hydrologic impacts of switchgrass cultivation may be 

non-trivial.  The possible effects of such impacts on the sustainability of the water 

supplies in a groundwater-dependent region already facing the effects of groundwater 

depletion deserve careful consideration.  I recognize that any decision about land use 

modification on the scale analyzed here will likely involve a cost-benefit analysis that 
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includes many more variables than just the regional hydrology.  These results can be an 

important component of such a decision matrix.  The study highlights the need for 

further simulations that include a larger variety of biofuel crops, an analysis of all 

seasons, as well as investigations into the possible confounding effects of the impact of 

climate change.   
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Abstract 

Climate and land use change greatly modify hydrologic regimes.  In this paper, the 

impacts of biofuel cultivation in the US Great Plains on a 1061 km
2
 watershed was 

investigated using the SWAT hydrologic model.  The model was calibrated to monthly 

discharges spanning 2002-2010 and for the winter, spring, and summer seasons.  SWAT 

was then run for a climate change only scenario using downscaled precipitation and 

projected temperature projections for 16 GCM runs associated with the IPCC SRES A2 

Scenario spanning 2040-2050.  Then, SWAT was run for a climate change plus land use 

change scenario in which Alamo switchgrass (Panicum virgatum L.) replaced native 

range grasses, winter wheat, and rye (89% of the basin).  For the climate change only 

scenario, the GCMs agreed on a monthly temperature increase of 1-2
O
C by the 2042-

2050 period, but they disagreed on the direction of change in precipitation.  For this 

scenario, changes in surface runoff during all three seasons, and spring and summer 

evapotranspiration were driven predominantly by precipitation.  Increased summer 

temperatures also significantly contributed to changes in eT.  With the addition of 

switchgrass, changes in surface runoff are amplified during the winter and summer and 

changes in eT are amplified during all three seasons. Depending on the GCM utilized, 

either climate change or land use change (switchgrass cultivation) was the dominant 

driver of change in surface runoff while switchgrass cultivation was the major driver of 

changes in eT.   

Keywords:  Agriculture; Biofuels; Climate Change; Land Use change; Semi-arid 

regions; Soil and Water Assessment Tool (SWAT); Switchgrass 



 

94 

 

 

4.1: Introduction and Objective 

     The importance of climate and land use change to global hydrologic systems cannot 

be understated (Vorosmarty et al., 2000; Bronstert, 2004; Praskievicz and Chang, 

2009).  While the patterns of interactions and pathways of causal effects are broadly 

known (e.g. higher temperatures will lead to an intensification of the hydrologic cycle), 

knowledge remains inadequate and uneven regarding the dynamics, magnitudes, and 

timing of impacts at location- and site-specific contexts.  Practical and theoretical 

considerations suggest an urgent need for improving such understanding.   For example, 

non-stationarities introduced by climate and land use change changes may invalidate 

assumptions inherent in using past hydroclimatic behavior as a basis for future water 

resources analysis, planning, and management (see, Milly et al., 2008; Brown, 2010; 

Steinschneider and Brown, 2012).  

     Consequently, several studies have investigated hydrologic responses to the 

combined impacts of possible future climate and land use change.  A common approach 

is to consider various combinations of the Intergovernmental Panel on Climate Change 

(IPCC) SRES scenarios (Intergovernmental Panel on Climate Change, 2000 p. 4) as 

well as a range of land use change scenarios.  For example, Ma et al. (2010) 

investigated the impacts of climate change and future land use in the Kejie watershed in 

Southwest China using the A2 and B2 emission scenarios and four land use scenarios: 

grassland, cropland, increased forest, or urban areas. Using the Soil and Water 

Assessment Tool (SWAT) Hydrologic Model and a base period of 1965-2005, the 

authors found that from 2010 to 2069, the impacts of land use dominate streamflow 
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response relative to the two climate change scenarios.  From 2070-2099, however, 

climate change dominates.  Viger et al. (2011) investigated the impacts of future 

climate change and urbanization on water availability in the Flint River Basin in the 

Southeastern United States through 2050 using the Precipitation-Runoff Modeling 

System hydrologic model.  The inputs to the model were downscaled outputs from five 

GCMs and changes in urbanization extent predicted by the Forecasting Scenarios of 

Future Land-Cover Model.  They found that increased surface runoff resulting from 

urbanization will offset the decreased runoff associated with climate change, resulting 

in a small gain in surface runoff.  Additionally, the reduction in evapotranspiration 

resulting from a combination of urbanization is not as strong as that resulting solely 

from urbanization.  Underscoring the significance of location and land use context, 

Franczyk and Chang (2009) used SWAT to assess the impacts of climate change and 

future urbanization on the hydrology of the Rock Creek Basin, Oregon USA, for the 

period 2039-2059.  They used the results from the ECHAM5 GCM for the IPCC A1B 

scenario, and three land use scenarios ranging from increased low-density land use to 

high density development.  While the combination of climate change and low-density 

development generated the largest change in mean annual runoff depth relative to the 

1973-2002 reference period, the combination of climate change and high-density 

development netted the smallest change in mean annual runoff relative to observed 

period.  

     Whereas the above cited studies have generally found land use to be the dominant 

driver of hydrologic response, others have found the opposite (i.e. climate change as 

predominant over land use change).  For example, Praskievicz and Chang (2011) 
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investigated the relative impacts of climate and land use change in the Tualatin River 

Basin in the Northwestern United States using eight downscaled climate change 

scenarios and two land use scenarios during the 2040s and 2070s.  The land use 

scenarios included (1) a market-oriented approach to urban development in which 

urbanization extends beyond current urban growth boundaries and (2) and a 

conservation-based approach in which population expands within current urban areas.  

They also considered four scenarios combining climate and land use change.  The 

authors evaluated first the impact of climate change, assuming no change in land use, 

followed by the impacts of land use change, assuming no change in climate, and then, 

finally, the joint impacts of climate and land use change.  The scenario in which climate 

change is combined with a market oriented approach resulted in a 71% increase in 

winter streamflow and a 48% decrease in summer flow.  Because the results of the 

combined scenarios closely resemble those from the climate change scenarios, the 

authors concluded that climate change is more important than land use change in 

governing hydrologic response.  Similarly, Montenegro and Ragab (2012) investigated 

the impacts of climate change on the hydrology of the Tapacura Basin in Northeast 

Brazil for three future time periods: 2010-2039, 2040-2069, and 2070-2099, relative to 

2004-2007, using the A2 and B1 IPCC scenarios.  A short baseline period was used 

because of a lack of rainfall data.  Regarding climate change, they found increases in 

surface flow of 25.3%, 39.5%, and 22.0% respectively for each of the three periods 

under the A2 scenario but reductions of 4.89%, 14.28%, and 20.58% under the B1 

scenario.  In a separate exercise, the authors evaluated the impacts of land use change 

relative to the baseline period of 2004-2007.  In this analysis, they concluded that 
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reforesting 33.3% of the basin results in decreased streamflows of 2.7%, possibly as a 

result of enhanced evapotranspiration losses and groundwater recharge. On the other 

hand, replacing irrigation-dependent vegetable production with sugarcane cultivation in 

54% of the watershed results in a 5% increase in streamflow.   

     A much-discussed form of land use change in the twenty-first century is land 

conversion for cultivation of biofuel crops (e.g. Searchinger et al., 2008; Hertel et al., 

2010; Djomo and Ceulemans, 2012; Sohl et al., 2012).  Several studies have concluded 

that biofuel crop production significantly changes water balances even in the absence of 

climate change.  For example, Demissie et al. (2012) evaluated the impacts of potential 

biofuel production in the Upper Mississippi River Basin, USA for the year 2022, using 

SWAT.  They found that biofuel production generated a 1 to 2% increase in 

evapotranspiration and a 5% decrease in streamflow relative to the baseline year (2006).  

Likewise, Schilling et al. (2008) used SWAT to simulate the impact of various land use 

management patterns involving biofuel production in the Raccoon watershed in Iowa, 

USA, a sub-basin of the Upper Mississippi River Basin.  They created nine scenarios, 

ranging from an expansion of corn acreage solely on US Department of Agriculture 

lands to the emergence of switchgrass (Panicum virgatum L.) as the dominant biofuel 

crop in the basin.  The results showed that converting grassland to corn decreased mean 

annual evapotranspiration from 610 mm to 603 mm (1.1%) and increased mean annual 

runoff from 84 mm to 91 mm (8.3%).  In contrast, converting all cropland in the basin 

to switchgrass increased mean annual evapotranspiration from 610 mm to 668 mm 

(9.5%) and decreased mean annual runoff from 84 mm to 37 mm (-56.0%).  Due to 

these opposite impacts based solely on the crop planted, the authors deduced that the 



 

98 

 

 

type of biofuel crop planted will govern the responses of watersheds in the Upper 

Midwest of the United States.  They concluded however that regardless of the type of 

biofuel crop planted, the water balance of such watersheds will be seriously impacted.  

Similarly, in an investigation of the impacts of switchgrass cultivation on the water 

balance of the Delaware River Basin in Eastern, Kansas USA, Nelson et al. (2006) 

found that planting switchgrass in-lieu of traditional corn-soybean rotations reduced 

runoff by 55.1-55.2% over a 24-year period, depending on the quantity of fertilizer 

applied to the switchgrass.      

     The above brief overview of the literature shows that the status of knowledge of the 

impacts of climate change and land use on watershed hydrology has not reached the 

point where broad generalizable conclusions can be drawn.  Location- and context- 

specific analyses are needed to fill gaps in our understanding spatially, temporally, as 

well as in terms of the responses of specific hydrologic processes, such as 

evapotranspiration, runoff, infiltration, etc. (see National Research Council, 2008).   

This study is a contribution toward that goal. It investigates the joint impacts of climate 

change, notably precipitation and temperature, and biofuel cultivation on hydrologic 

dynamics in the semiarid Southern Great Plains (GP) of the United States.  

4.2: Study Area 

4.2.1: Overview 

     The study area is a 1061 km
2
 portion of the Skeleton Creek Watershed (SCW), 

Oklahoma, USA (Figure 4.1).  The basin is located within the Southern Great Plains of 

the United States, where projections of increased temperatures and prolonged, intense 
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droughts have generated concern regarding the future sustainability of water resources 

(U.S. Global Change Research Program, 2009).  As shown by Sohl et al. (2012), biofuel 

crop production is also likely to emerge as an important driver of land use, and therefore 

hydrologic dynamics, in this part of the United States (National Research Council, 

2008).        

 

Figure 4.1: The Skeleton Creek Watershed (SCW) 

 

     For the period 1970-2000, annual precipitation averaged 865 mm, with the largest 

amounts falling during the summer and fall and lowest amounts during the winter and 

spring (Figure 4.2). The elevation of the SCW varies from approximately 408 meters at 

the headwaters of the SCW to 288 meters at its outlet, a distance of about 56 km.  The 
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largest settlement in the SCW is the City of Enid (2010 population 49,379), a regional 

and national center for the production and storage of grain.  Other settlements in the 

SCW are Waukomis (population 1,286), North Enid (population 860), Marshall 

(population 272), and Fairmont (population 134).  Apart from these settlements, the 

SCW is dominated by range grasses and winter wheat production, making it 

representative of other Great Plains basins.   

 

Figure 4.2: Monthly climograph for the SCW using data from the PRISM Climate 

Group, Oregon State University, http://prism.oregonstate.edu.  The precipitation 

quantities are listed. 

 

4.2.2: Geology 

    The headwaters of Skeleton Creek are fed by the 212 km
2
 Enid Isolated Terrace 

Aquifer (EITA, Figure 4.1, Kent et al., 1982), which is the principal water source for 
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the City of Enid.  This unconfined aquifer is of Quaternary origin, and consists of 

terrace deposits composed of discontinuous layers of gravel, sand, sandy clay, and clay.  

The sands and gravels are generally not well-sorted except in the southeastern portion 

of the EITA.  The deeper deposits are coarser grained than the shallower ones.  The 

northwestern, western, and southwestern boundaries of the aquifer are delineated by the 

interface with the Permian-era Cedar Hills Sandstone Formation (part of the El Reno 

Group).  This semipermeable Formation is situated on the Bison Formation and is fine-

grained, well-sorted, calcitic sandstone.  The eastern boundary of the EITA is located at 

the interface of the Permian-era Hennessey Group.  Subsurface flow in the EITA is 

generally from northwest to southeast, and follows a very low gradient except at the 

aquifer boundary where seeps and springs may be located.   

     The maximum annual yield of the EITA is 23,000,000 m
3
 with the total quantity of 

water in the aquifer amounting to 580,000,000 m
3
 (Kent et al., 1982).  The 

transmissivity of the EITA is 117 m
2
/d, and the average specific yield is 0.30.  

Hydraulic conductivity is 28.5 m/day over most of the EITA, except in the northwestern 

portion where it peaks at 40.84 m/d (Becker et al., 1997).  Depth to the water table 

varies throughout the EITA from 0-17 meters.  Recharge over the aquifer is 58 mm/yr, 

or approximately 7% of mean annual precipitation (Kent et al., 1982).  The rest of this 

watershed is of Permian origin and belongs to the Central Red-Bed Plains geologic 

province which covers much of Central Oklahoma.  This province is dominated by 

Permian sandstones and red shales which form broad, flat plains and rolling hills 

(Johnson, 2006). 
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4.3: Data and Methods 

4.3.1: Data and Model 

     To investigate the impacts of climate change and switchgrass cultivation, the semi-

distributed Soil and Water Assessment Tool hydrologic model (SWAT, Arnold et al., 

1998), developed by the USDA Agricultural Research Service at the Grassland, Soil 

and Water Research Laboratory in Temple, Texas USA, was utilized.  SWAT is 

designed to quantify the impacts of management patterns in complex watersheds.  

Running on a daily time-step, it permits the user to divide a watershed into subbasins 

and then into smaller “hydrologic research units” (HRUs), which are zones of uniform 

land use, soil, and slope characteristics. A useful characteristic of the model is that it is 

linked to various land management and crop databases, permitting a user lacking 

knowledge of crop management strategies or growth patterns to investigate the 

hydrologic impacts of such practices.   

     The datasets utilized in the modeling study are listed in Table 4.1.  The SCW was 

delineated in SWAT using a 30-meter digital elevation model, and the superimposing of 

the NHDPlus stream dataset (http://www.horizon-systems.com/nhdplus/) in order to 

define the streamflow network.  Twenty-five (25) subbasins were delineated.  In theory, 

a nearly infinite number of HRUs can be derived from any watershed.  To reduce the 

number of HRUs to a manageable level without compromising model accuracy, 

thresholds of land use, soil type, and slope were established.  Within the SWAT 

interface, land use types comprising fewer than 5% of the land area of each subbasin 

were integrated into the more extensive land use classes within each subbasin in 

proportion to the percentage of each land use type.  A threshold of 10% was used to 
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accomplish the same task with soil type.  Four thresholds of slope were defined i.e. 0-

1%, 1-3%, 3-5%, and greater than 5%, and used to delineate sub categories of each 

subbasin.  This resulted in the retention of 649 HRUs.  The resulting land use 

configuration is presented as Figure 4.3. 

     As with any other hydrologic model, precipitation is a critical input into SWAT 

because its partitioning greatly impacts other output components (e.g. Zhang and 

Srinivasan, 2009).  There is a need therefore to ensure that input precipitation values are 

as accurate as possible.  While precipitation data from rain gauge networks are widely 

used, they often do not adequately capture the aerial distribution of precipitation across 

a watershed (e.g. Legates and DeLiberty, 1993; Groisman and Legates, 1994).  This 

limitation can be especially acute in the Great Plains where most surface runoff results 

from a small number of intense storms (Jones et al., 1985; Fritsch et al., 1986).  For 

these reasons, the U.S. National Weather Service’s XMRG precipitation products were 

utilized (http://www.nws.noaa.gov/oh/hr1/misc/XMRG.pdf, Crum et al., 1998).  The 

XMRG products provide hourly precipitation estimates based on readings from 

approximately 160 Weather Surveillance Radar 1988 (WSR-88D) Doppler Radar 

Stations making up the Next-Generation Radar (NEXRAD) program.  Installed during 

the mid-1990s, NEXRAD is the US’s first true digital radar network. The radar stations 

provide comprehensive coverage for 96% of the coterminous United States at a spatial 

resolution of 4 km * 4 km.  Each radar is operated by the National Weather Service, 

Department of Defense, or the Department of Transportation.  Within the SCW, the 

NEXRAD data originate from Vance Air Force Base station (station KVNX), located in 

Enid, Oklahoma, USA. 
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     The NEXRAD-SWAT tool (Zhang and Srinivasan, 2010), available freely from 

http://xzhang.pbworks.com, provides an interactive framework for importing the radar 

readings into SWAT.  This tool generates a daily precipitation radar-based time-series 

for the centroid of each subbasin.  Results from previous studies have shown 

significantly improved calibration statistics relative to precipitation gages when 

NEXRAD data is used, especially when adjustments to the XMRG records are made 

including bias correction (e.g. Jayakrishnan et al., 2004; Sexton et al., 2010; Zhang and 

Srinivasan, 2010; Beeson et al., 2011; Gali et al., 2012).  Consequently, the bias-

corrected rainfall was used in this analysis.  Potential evapotranspiration was simulated 

using the Hargreaves Method (Hargreaves et al., 1985; Neitsch et al. 2011).  This 

equation may be written as follows: given extraterrestrial solar radiation 

            (MJ m
-2

 d
-1

), latent heat of vaporization     (J g
-1

) and daily 

maximum, average, and minimum temperatures (
°
C)     , T, and      respectively, 

then the potential evapotranspiration (  ) is 

                        T                    
                         (4.1) 

     The SWAT model of the SCW was calibrated to known monthly discharge from 

2002-2010 (2000-2001 model initialization) at the two USGS gaging sites within the 

basin, as the downstream “Skeleton Creek near Lovell, OK” gage contains a complete 

data record beginning in 2001.  
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Table 4.1: Data Sources Inputted into SWAT 

Data for Simulation Source 

Elevation: 30-meter DEM  USGS1 

Groundwater: values for effective hydraulic conductivity Kent et al. (1982) 

Land Use:  

56-meter Crop Dataset Layer: 2008-2010 

National Agriculture 
Statistics Service*  

Management:  

Planting, irrigation, and fertilization schedules 

Agriculture extension 
agents mentioned in 

the 
“acknowledgements” 
section 

Ponds:  

Locations, areas, and volumes 

U.S. Army Corp of 
Engineers National 
Inventory of Dams 
(2011) 

Soil: 1:15,000 scale Soil Survey Geographic  

         (SSURGO) dataset 

Natural Resources 
Conservation Service 
(NRCS) 1 2 

Water Use: Water use reports filled 
with the Oklahoma 

Water Resources Board 
(OWRB) 

 

Weather:  

     Hourly NEXRAD radar data from the Vance AFB radar station  

(KVNX): 2000-2010; Daily Maximum and Minimum Temperature  
Data (OC) 

Arkansas Red River 
Basin River Forecast 
Center; National 
Climatic Data Center 
(NCDC); Oklahoma 
Mesonet 

1
 Available from the USDA NRCS Geospatial Data Gateway (http://datagateway.nrcs. 

usda.gov) 

2
 Data imported into SWAT using the SWATioTools program (Sheshukov et al. 2009). 



 

106 

 

 

 

Figure 4.3: Land-use composition (%) of the SCW post-LU threshold delineation 

 

4.3.2: Modeling Scenarios of Climate and Land Use Change 

     Bias corrected, statistically-downscaled (BCSD) monthly precipitation and 

temperature outputs at 1/8
th

 degree resolution for sixteen General Circulation Models 

(GCMs) were downloaded from the World Climate Research Programme's Coupled 

Model Intercomparison Project phase 3 (CMIP3) multi-model dataset archive at 

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/ (Wood et al., 2002, 2004; 

Maurer, 2007).  The portal provides monthly climate outputs from 1950-2099 and daily 

climate outputs for 1961-2000, 2046-2065, and 2081-2100 for much of the western US.  

Table 4.2 lists the sixteen GCMs comprising the CMIP3 program.  Only precipitation 

and temperature were downloaded due to the lack of downscaled solar radiation data at 

this portal. To facilitate comparison among the GCMs, the first member of the ensemble 

for each GCM in the BCSD archive was used.  The A2 IPCC scenario was selected in 
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order to highlight the most austere impacts of CO2 emissions on climatic patterns by 

mid-century and because of computational limitations associated with running SWAT 

for additional scenarios.  An approach similar to that used by Johnson et al. (2012) was 

used to process the precipitation and temperature data for the period from 2040-2050 

for use in SWAT.  This approach involved the computation of the projected percent 

change in monthly precipitation and raw change in monthly temperature for the 2040s 

relative to those predicted by the GCMs for the observed period-the 2000s.  This 

approach is beneficial for our purpose not only because it makes use of observed 

climatic data which have undergone extensive quality analysis and control, but also 

because it captures intense, localized rainfall which downscaled GCM simulations of 

the SCW are unable to reproduce.  The short simulation period was selected in order to 

correspond with the length of the short calibration period, which itself was necessitated 

by the short recent discharge record of the “Skeleton Creek near Lovell, OK” stream 

gage.   

     Before proceeding, acknowledgement of several limitations associated with the 

approach mentioned above is in order.  First, I recognize the existence of a spatial 

mismatch in the climatic datasets, having used 4 km * 4 km NEXRAD rainfall data 

which were bias-corrected to point-based precipitation observations, point-based 

temperature observations, and 1/8
th

 degree * 1/8
th

 degree predictions of future 

precipitation and temperature.  Such a mismatch can potentially produce large 

uncertainty in model results.  Additionally, as a consequence of its small size, the SCW 

only overlaps few downscaled precipitation and temperature grid cells.  Second, I 

recognize that the calibration and simulation time periods are not long enough to 
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adequately capture interdecadal climate patterns and are at best a measure of short-term 

climatic variability.  The period 2000-2010 mostly contained years of above-average 

rainfall in Oklahoma’s North Central Climate Division with the exception of 2001, 

2003, and 2006 (http://climate.ok.gov/index.php/climate/climate_trends/precipitation_ 

history_annual_statewide/CD02/prcp/Annual).  Unfortunately, the short length of 

record for the “Skeleton Creek at Enid” stream gage to which we calibrated did not 

permit analysis of a longer time period.  Third, I recognize that an analysis using 

outputs solely from one IPCC SRES scenario can restrict the breath of this 

investigation.  However, computational limitations hindered our ability to utilize 

outputs from other scenarios.  To facilitate comparison between model runs, we chose 

to analyze the outputs from many GCM runs for a particular scenario rather than to use 

fewer GCMs from many scenarios.  Finally, I acknowledge that the SCW does not 

overlap many 1/8
th

 degree grid cells, which can potentially limit the breadth of the 

GCM outputs utilized.   

    To investigate the response of the SCW to both climate change and switchgrass 

cultivation, 32 SWAT simulations were run.  The first sixteen simulations (one for each 

of the BCSD GCMs, as described above) were run under the “climate change only” 

(CCO) scenario, in which only the precipitation and temperature values were modified.  

In addition to the changed climate, the additional sixteen simulations were run under a 

regime in which pre-existing winter wheat, rye, and range grasses, which collectively 

account for 89% of the watershed, were converted to switchgrass.  This is subsequently 

referred to as the “climate change + switchgrass” or CCS scenario.  Switchgrass was 

managed according to the schedule reported by Goldstein et al. (2013): 
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a.       Fertilize 56 kg ha
-1

 N on April 15, May 17, and July 17 of each year. 

b.       Harvest (90% efficiency), on May 15, July 15, and November 1 of each 

year. 

     Per Baskaran et al. (2010), switchgrass cultivation was simulated as having 3-meter 

roots, an initial leaf area index of 0.5 and an initial quantity of 500 kg/ha dry-weight 

biomass.  Switchgrass was assigned 1187 heat units for growth.  As in the baseline run, 

the Hargreaves equation was used to simulate evapotranspiration.       
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Table 4.2: GCMs used in this investigation.  Table adapted from Reclamation (2013).  

Used with permission 

GCM Developer Primary Reference 

BCCR_BCM_2.0 Bjerknes Centre for Climate Research Furevik et al. 2003 

CGCM3.1 (T47) Canadian Centre for Modeling and Analysis Flato and Boer 2001 

CNRM_CM3 Meteo-France / Centre National de Recherches 

Meteorologiques, France 

Salas-Melia et al. 2005 

CSIRO_MK3_0 CSIRO Atmospheric Research, Australia Gordon et al. 2002 

GFDL_CM_2_0 NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

Delworth et al. 2006 

GFDL_CM_2_1 NOAA Geophysical Fluid Dynamics 

Laboratory, USA 

Delworth et al. 2006 

GISS_MODEL_E_R NASA Goddard Institute for Space Studies, 

USA 

Russell et al. 2000 

INMCM3_0 Institute for Numerical Mathematics, Russia Diansky and Volodin 2002 

IPSL_CM4 Institut Pierre Simon Laplace, France Marti et al. 2005 

MIROC3.2 

(MEDRES) 

Center for Climate System Research (The 

University of Tokyo), National Institute for 

Environmental Studies, and Frontier Research 

Center for Global Change (JAMSTEC), Japan 

Hasumi and Emori 2004 

MIUB_ECHOG Meteorological Institute of the University of 

Bonn, Meteorological Research Institute of 

KMA 

Legutke and Voss 1999 

ECHAM5/MPI-OM Max Planck Institute for Meteorology, 

Germany 

Jungclaus et al. 2005 

MRI-CGCM2.3.2 Meteorological Research Institute, Japan Yukimoto et al. 2001 

CCSM3 National Center for Atmospheric Research, 

USA 

Collins et al. 2006 

PCM National Center for Atmospheric Research, 

USA 

Washington et al. 2000 

UKMO-HADCM3 Hadley Centre for Climate Prediction and 

Research Met Office, UK 

Gordon et al. 2000 
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4.4: Results 

4.4.1: Sensitivity Analysis and Calibration 

     Sensitivity analyses internal to the SWAT interface (van Griensven et al., 2006) 

were performed using observed monthly streamflow data at the two stream gages 

located in the watershed.  Using a sensitivity index threshold of 1, implying a high 

sensitivity to input parameters, only one of twenty-six parameters, the “threshold depth 

of water in the shallow aquifer required for return flow to occur (mm H20)” parameter, 

was identified as sensitive at the upstream gage, and no parameters were sensitive at the 

downstream gage (Table 4.3a-b).  Consequently, no further calibration was applied.  

Moriasi et al. (2007) provide criteria for evaluating the strength of model calibration as 

follows.  A "very good” fit is characterized by a Nash-Sutcliffe Efficiency (NSE) > 

0.75, Percent Bias (PBIAS) < ±10%, and RMSE-observations standard deviation ratio 

(RSR) ≤ 0.5. An “acceptable” match is one with NSE > 0.5, PBIAS  <  ±25%, and RSR 

< 0.7.  On these criteria, a obtained a “very good” fit between simulated and observed 

monthly discharges (Q) at both stream gages was obtained (Figure 4.4).  The fit 

between simulated and observed Q was also evaluated on a seasonal timescale defined 

as follows: winter (December-January-February), spring (March-April-May), summer 

(June-July-August), and fall (September-October-November).  These fits were 

acceptable for all seasons except for fall (NSE < 0, Figure 4.5), which therefore was not 

utilized for further simulations.   
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Table 4.3: Most sensitive parameters from the Sensitivity Analysis for discharge at the 

(a) “Skeleton Creek at Enid, OK” USGS stream gage (upstream) and at the (b) 

“Skeleton Creek near Lovell, OK” USGS stream gage (downstream)  

 

(a) 

Sensitivity 

Ranking
a
 

Parameter Description Initial value Range 

Tested 

Sensitivity 

Index 

      

1 Gwqmn Threshold depth of water in the 

shallow aquifer required for return 

flow to occur (mm) 

150 -150, 

4850 

1.14 

 

2 Alpha_bf 

 

Baseflow recession factor (days) 0.01 0.01, 

0.05 

0.329 

3 Ch_K2 Effective hydraulic conductivity in  

main channel alluvium (mm/hr) 

10 

 

1, 150 0.273 

 

 

4 Rchrg_dp Deep Aquifer Percolation Function 0 

 

0, 1 0.243 

 

5 Cn2 Initial Soil Conservation Service curve 

number  for moisture condition II 

Default 

 

±10%
b
 0.118 

 

(b)       

1 Cn2 Initial Soil Conservation Service curve  

number for moisture condition II 

Default ±10%
b 

 

0.631 

 

 

2 Canmx 

 

 Maximum canopy storage (mm) 0 0, 10 0.113 

3 Esco Soil evaportation compensation factor 

 

0.72 

 

0.6, 

0.8 

0.0789 

4 Sol_awc Available water capacity of the soil  

layer (mm H20/mm soil) 

 

Default 

 

-±4%
b
 0.0642 

5 Surlag Surface runoff lag coefficient (days) 24 1, 24 0.0598 

a
 in decreasing order of sensitivity                

b
 multiplied initial value by values in range. 
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Figure 4.4: Strength of calibration between simulated monthly discharges, 2002-2010, 

at the (a) “Skeleton Creek at Enid, OK” stream gage and at (b) the “Skeleton Creek near 

Lovell, OK” USGS stream gages. 
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Figure 4.5: Strength of calibration on simulated (a) winter, b) spring, and (c) summer 

discharges relative to observed, 2002-2010, at the watershed outlet: the “Skeleton Creek 

near Lovell, OK” USGS stream gage 
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4.4.2: Impacts of Projected Climate Change on the SCW 

   The impacts of climate change are mixed but not surprising; exactly half of the 192 

GCM monthly precipitation series show increased precipitation while the other half 

shows decreased precipitation. Other studies (e.g. Tebaldi et al., 2011; Deser et al., 

2012; Jin and Sridhar, 2012) found similar results for precipitation projections 

elsewhere.  Considering each season separately, the projections show increases in 

winter months in 54% of cases, compared to 46% which show decreases.  These 

percentages are almost exactly reversed in spring and fall.  In summer, however, the 

models show relatively greater agreement, with increases projected in 40% of cases and 

decreases in 60%.  Not surprisingly, the GCMs also disagree regarding the direction of 

change in seasonal precipitation (Figure 4.6a).   

      The changes in temperature are more decisive; 172 (90.0%) of the 192 GCM-

months simulated (12 months * 16 GCM runs) project higher temperatures during 2042-

2050 relative to the base period.  Regarding the seasonal values (Figure 4.6b), the 

median temperature increases range from 1.0 
°
C (winter) to 1.2

 °
C (spring and summer).  

In addition, note that the 1
st
 and 3

rd
 quartiles and temperature ranges are also highest in 

the summer, and the variance among the GCM outputs exceeds those of the winter and 

spring by three-fold.  These are noteworthy because they imply that the largest changes 

in temperature may coincide with the largest changes in precipitation.   
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Figure 4.6: The percent change in mean climate-change induced seasonal a) 

precipitation and b) temperature, relative to 2000-2010 conditions, as evaluated by 

sixteen GCMs.  The median values (black lines) are provided.  Circles indicate outlying 

values. 
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4.4.3: Response of the SCW to Climate Change and Switchgrass Cultivation     

     Tables presenting the change in average seasonal precipitation (%ΔP), temperature 

(ΔT), surface runoff (%Δrs), and evapotranspiration (%ΔeT) between the 2040s and the 

base period for the winter, spring, and summer seasons, respectively, by GCM are 

included in the Dissertation Appendix (Tables A.1-A.3).  Boxplots illustrating the 

statistical summaries of %Δrs and %ΔeT, according to season, are displayed as Figure 

4.7, and a division of the medians (CCS/CCO), by season for the purpose of 

investigating the extent of the amplification of decreased winter and summer %Δrs and 

amplification of increased winter and spring %ΔeT, is presented as Table 4.4.  

Regarding %Δrs, note that the values of the 5-number summary under CCO always 

exceed those for CCS, and such values under CCS are always negative.  The reduced 

variation in %Δrs under the CCS scenario relative to the CCO scenario may result from 

prairie streams having increased baseflow, higher infiltration, and a lower contribution 

from direct runoff, relative to agricultural streams (e.g. Heimann 2009).  The reduced 

contribution from direct runoff causes the prairie streams to possess a less “flashy” 

character than their agricultural counterparts.   

     For %ΔeT, the winter-season values of CCS are smaller than those under CCO, but 

those for spring and summer are larger.  The replacement of winter wheat results in 

dormant switchgrass stubble during the winter, reducing eT.  I speculate that reduced 

streamflow may be a function of a lack of available soil moisture due to switchgrass 

having exhausted the soil moisture during the late spring/early summer rainy season.  

With regard to the spring, while winter wheat and range grasses are not at full 
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productivity, the impacts of the mid-April and mid-May fertilizer applications for 

switchgrass generated a nine-fold increase in %ΔeT under CCS relative to that under 

CCO, which is the largest amplification presented in Table 4.4.  Consequently, the large 

amplification in spring %ΔeT results in a drastic reduction in %Δrs.  The 48% of the 

watershed associated with winter wheat cultivation, which is dormant under CCO 

during the summer, is replaced with large quantities of active switchgrass, likewise 

resulting in increased basin-wide eT.  The decreased surface runoff and increased 

evapotranspiration associated with switchgrass management absent a change in climate 

during the spring and summer is consistent with previous findings (i.e. Goldstein et al. 

2013).   

     Based on the results of multiple regression analysis (see also Vogel, 2006; Liu and 

Cui, 2011) in which precipitation and temperature were plotted against %Δrs and 

separately against %ΔeT, %Δrs is strongly associated with the change in precipitation, 

but not temperature, in all three seasons, with R
2
 values of 0.74, 0.93, and 0.91, 

respectively (p<0.05 in all cases).  Similarly, %ΔeT is also strongly associated with 

changes in precipitation for the spring and summer, with R
2
 values of 0.71 and 0.87, 

respectively.  The multiple regression also shows changes in summer eT to be the only 

parameter significantly associated with both changes in precipitation and temperature 

(p<0.05).  
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Table 4.4: Comparison of the median %Δrs and %ΔeT values listed in Figures 6 and 7.    

Positive values indicate the switchgrass-based amplification of the hydrologic output.   

Negative values indicate a difference in the sign of the medians in the CCO and CCS 

scenarios, in which case there is no amplification. 

 %Δrs %ΔeT 

Season CCS/CCO CCS/CCO 

Winter 3.31 2.92 

Spring -9.27 9.4 

Summer 4.47 n/a+ 

+
Division by zero. 

 

4.4.4: Determination of dominant mechanism affecting hydrology 

     The individual contributions of climate change and land use change (switchgrass 

cultivation) to the percent change in average seasonal runoff and eT associated with the 

CCS scenario are analyzed by dividing the percent change resulting from the CCO only 

scenario by that in the CCS scenario.  No dominant process can be identified where the 

signs of the changes in these drivers differ and where the hydrologic output under CCO 

exceeds that of CCS. 

     The dominant process in each season is identified in Tables 4.5 (for surface runoff) 

and 4.6 (for eT).  The results are mixed.  The dominant process is a function of the 

GCM employed.  Regarding %Δrs, the contribution of climate change exceeds that of 

switchgrass cultivation in five of the nine GCMs (56%) during the winter months, three 

of seven (43%) during the spring, and five of twelve (42%) during the summer.  In 

contrast to the multifaceted picture of surface runoff-generating mechanisms, 

switchgrass is very clearly the dominant driver in the percent change in %ΔeT (Table 
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4.6).  Climate dominates in four of the thirteen GCMs (31%) during the winter, in none 

during the spring, and in only one of nine (11%) during the summer.  In Table 4.6, the 

plethora of blank spaces for spring %ΔeT represents that in 15 of the 16 GCMs, 

switchgrass cultivation is responsible for reversing the change in eT from positive under 

CCO to negative under CCS. 

4.5: Conclusions 

      Various studies have investigated the relative impacts of climate and land use 

change on local hydrology.  Often, these results are mixed and the contributions appear 

to be governed by spatial and temporal scale.  A SWAT model of the 1061 km
2
 

Skeleton Creek Watershed (SCW) in the US Great Plains was created for the years 

2000-2010.  Simulated discharges were successfully calibrated to observed discharges 

on the monthly timescales and for winter, spring, and summer only.  To investigate the 

impact of changing precipitation and temperature patterns on this watershed during the 

middle of the 21
st
 century (2040-2050), SWAT was run by adding the projected 

anomalies in percent change in monthly precipitation and raw change in temperature 

relative to the observed period for each of sixteen GCMs to the observed precipitation 

and temperature data for 2000-2010.   The climate change runs were subsequently rerun 

on top of a land use change scenario in which existing agricultural land (89% of the 

watershed) was converted to Alamo switchgrass.  The main findings of this study are as 

follows: 

 



 

121 

 

 

 

 

Figure 4.7: Comparison of percent change in (a) surface runoff and (b) 

evapotranspiration, by season, for the 2040s relative to baseline under the CCO and 

CCS scenarios as simulated based on 16 GCMs.  The values of the medians are listed.  

Circles indicate outliers. 

 

     (a) The GCMs disagree on the direction of the change in precipitation during the 

2040s, but they largely agree on a 1-2
O 

C increase in seasonal temperature. 
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     (b) The direction of the percent changes in average surface runoff projected by 

SWAT during the three seasons varies by GCM, resulting in predictions of both 

increases and decreases.  While precipitation was associated with changes in winter, 

spring, and summer surface runoff, in addition to spring and summer eT, changes in 

temperature only impacted changes in summer eT.   

     (c) During winter, spring, and summer, switchgrass cultivation results in decreased 

surface runoff relative to the CCO scenario.  Switchgrass cultivation also results in 

decreased winter eT and increased spring and summer eT relative to the CCO scenario.   

    (d) Depending on the GCM employed and the season, either climate change or 

switchgrass cultivation can be identified as the dominant driver of changes in surface 

runoff.  Under the vast majority of GCMs, switchgrass cultivation is the dominant 

driver of changes in eT.   

     Further investigation into the impacts of changing other climatic parameters and into 

the analysis of longer-time periods is warranted in order to more definitively investigate 

the impacts of climate change and switch grass cultivation on basin hydrology.  

Additionally, further research into biofuel crops other than switchgrass is necessary in 

order to gain a more coherent picture of the impacts of biofuel production. 
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Table 4.5: Contributions of climate change (“Clim”) and switchgrass cultivation 

(“Swch”) to %Δrs in the 2040s under the CCS scenario, relative to the present, during 

the winter, spring, and summer seasons.  Blank entries refer to situations where the sign 

of %ΔeT differs by situation.  Dashes identify GCMs under which the % contribution of 

climate change relative to that under the CCS simulation exceeds 100%, meaning that 

the climate change contribution exceeds that of switchgrass. 

 

GCM Winter Spring Summer 

 Clim Swch Clim Swch Clim Swch 

BCCR_BCM_2.0 74.16 25.84 - - 39.27 60.73 

CCSM3   52.58 47.42   

CGCM3.1 (T47) - -   80.12 19.88 

CNRM_CM3 28.66 71.34   70.58 29.42 

CSIRO_MK3_0 28.72 71.28 - - 14.94 85.06 

ECHAM5/MPI-OM - - 56.39 43.61 - - 

GFDL_CM_2_0 66.95 33.05   91.48 8.52 

GFDL_CM2_1 24.79 75.21 32.46 67.54 56.14 43.86 

GISS_MODEL_E_R 78.54 21.46 24.56 75.44 23.21 76.79 

INMCM3_0   48.37 51.63 23.93 76.07 

IPSL_CM4 - - 75.01 24.99   

MIROC3.2 (MEDRES) 25.13 74.87   72.04 27.96 

MIUB_ECHOG 69.64 30.36 3.05 96.95 4.26 95.74 

MRI-HADCM3     18.41 81.59 

PCM       

UKMO-HADCM3 81.38 18.62   19.63 80.37 

Minimum 24.79 18.62 3.05 24.99 4.26 8.52 

1
st
 Quartile 28.66 25.84 28.51 45.52 19.33 29.06 

Median 66.95 33.05 48.37 51.63 31.6 68.4 

3
rd

 Quartile 74.16 71.34 54.49 71.49 70.95 80.68 
Maximum 81.38 75.21 75.01 96.95 91.48 95.74 
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Table 4.6: Contributions of climate change (“Clim”) and switchgrass cultivation 

(“Swch”) to %Δrs in the 2040s under the CCS scenario, relative to the present, during 

the winter, spring, and summer seasons.  Blank entries refer to situations where the sign 

of %ΔeT differs by situation.  Dashes identify GCMs under which the % contribution of 

climate change relative to that under the CCS simulation exceeds 100%, meaning that 

the climate change contribution exceeds that of switchgrass.   

 

GCM Winter Spring Summer 

 Clim Swch Clim Swch Clim Swch 

BCCR_BCM_2.0 6.32 93.68   5.59 94.41 

CCSM3 87.47 12.53   29.03 70.97 

CGCM3.1 (T47) 13.05 86.95     

CNRM_CM3 39.45 60.55     

CSIRO_MK3_0 37.81 62.19   4.24 95.76 

ECHAM5/MPI-OM     19.58 80.42 

GFDL_CM_2_0 97.02 2.98   80.7 19.3 

GFDL_CM2_1 28.26 71.74     

GISS_MODEL_E_R 30.41 69.59     

INMCM3_0 45.04 54.96   8.54 91.46 

IPSL_CM4 1.59 98.41   24.07 75.93 

MIROC3.2 (MEDRES) 92.35 7.65 25.71 74.29 - - 

MIUB_ECHOG 53.04 46.96   21.36 78.64 

MRI-HADCM3 19.22 80.78     

PCM     9.5 90.5 

UKMO-HADCM3       

Minimum 1.59 2.98   4.24 19.3 

1
st
 Quartile 19.22 46.96   8.54 75.93 

Median 37.81 62.19 25.71 74.29 19.58 80.42 

3
rd

 Quartile 53.04 80.78   24.07 91.46 

Maximum 97.02 98.41   80.7 95.76 
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Chapter 5: Conclusion 

     The Great Plains Region of the United States of America (GP) has been at the center 

of discourse regarding the sustainability of agricultural regions in the US going back to 

the 19
th

 century and continues to be so this day.  Identified with monikers as “the Great 

American Desert,” “the Return of the Prairie” (Wallach 1985), and “the Buffalo 

Commons” (Popper and Popper 1987), it also has large agricultural and economic 

significance to the United States through its role as a hub for wheat production, 

livestock and dairy farming, and mineral extraction.  A region characterized by 

population loss since 1930 likewise contains burgeoning and established micropolitan 

and metropolitan areas. 

    Recently, the prospect of the cultivation of biofuel crops, especially switchgrass, is 

causing some optimism regarding the future of the GP (e.g. Wood 2008; Kotkin 2012).   

However, biofuel cultivation, like any other land use change, is associated with changes 

in hydrology, which while always important, carry special significance in semiarid 

areas facing depleting water supplies, such as the GP.   This dissertation explored this 

question through three investigations, each represented by a chapter.  While Chapter 2 

did not pertain to hydrologic modeling, Chapters 3 and 4 were exercises using the Soil 

and Water Assessment Tool (SWAT) hydrologic model (Arnold et al. 1998).   

5.1: Objectives and Key Findings 

     There four objectives to this study, and associated key findings, are as follows: 
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(i) To contextualize the cultivation of switchgrass for biofuel cultivation within the 

GP’s history of land use change and in the discussions regarding sustainability in this 

region (Chapter 2). 

    Since the Civil War, the Great Plains has been predominantly an agricultural region 

with an economy based on the cultivation of wheat and sorghum, among other crops.  

Model results suggest that is expected to remain a largely agricultural region but will 

also continue to see continued growth along emerging and emerged micropolitan and 

metropolitan areas.  Biofuel cultivation is a real possible land use change in agricultural 

portions of the Great Plains. 

(ii)     To assess and quantify the direction and magnitude of change in key hydrologic 

variables, including seasonal stream discharge and seasonal evapotranspiration, that 

would result from incrementally replacing the existing vegetation within the basin with 

switchgrass.  Because switchgrass is likely to displace other existing land types, it is 

essential to determine how such a change in land use affects regional hydrology 

(Chapters 3, 4).   

     In a 1649 km
2
 basin in Western Oklahoma, replacing either winter wheat or native 

range grasses with switchgrass reduces stream discharge from 6 to 21% (spring) and 6 

to 31% (summer), and increases evapotranspiration from 3% - 32% (spring) and 2% - 

19% (summer).  The extents of the increases in evapotranspiration are functions of 

switchgrass biomass, with larger values corresponding to replacement of pre-existing 

land uses with managed switchgrass.  Reductions in spring and summer discharge and 

increases in spring and summer evapotranspiration associated with switchgrass 
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cultivation are also apparent in the 1061 km
2
 Skeleton Creek Watershed (SCW) 

investigated in Chapter 4.  Decreased winter surface runoff and evapotranspiration are 

associated with switchgrass cultivation (Chapter 4).    

(iii)   To investigate the hydrologic responses of such watersheds to switchgrass 

production under climate change scenarios, and to isolate the relative impacts of climate 

change and switchgrass production (Chapter 4). 

     The direction of the percent changes in average surface runoff projected by SWAT 

during winter, spring, and summer varies by General Circulation Model (GCM), 

resulting in predictions of both increases and decreases.  During winter, spring, and 

summer, switchgrass cultivation results in decreased surface runoff relative to under 

scenarios where only temperature and precipitation were modified.  Switchgrass 

cultivation also results in decreased winter eT and increased spring and summer eT 

relative to that under solely a modification of precipitation and temperature.  Depending 

on the GCM employed and the season, either climate change or switchgrass cultivation 

can be identified as the dominant driver of changes in surface runoff.  Under the vast 

majority of GCMs, switchgrass cultivation is the dominant driver of changes in eT 

during the spring and summer.   

(iv) To ascertain whether the cultivation of switchgrass in the U.S. Great Plains is 

advantageous or harmful from a water-supply perspective (Chapters 3, 4). 

     The increased spring and summer evapotranspiration and reduced surface runoff 

associated with switchgrass cultivation is harmful from a water supply perspective.  If 
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switchgrass is fertilized, increases in evapotranspiration are amplified.  In drought-

prone, semi-arid regions, reductions in available moisture can be especially 

problematic.  In Chapter 3 for example, an apparent small reduction in median summer 

discharge (0.9 cms) associated with switchgrass production is equivalent to a 31.2% 

decrease. 

     In answering these objectives, this study contributed to the scholarly record by 

investigating the hydrologic responses to switchgrass in the Great Plains region, and by 

combining the impacts of switchgrass cultivation with those emanating from changing 

precipitation and temperature patterns associated with climate change. 

5.2: Limitations to the SWAT Model 

     Some limitations to the SWAT model are evident from the dissertation .  Perhaps the 

most noteworthy is the problematic semidistributed nature of SWAT.  By design, 

SWAT assigns the precipitation data to the subbasin closest to the corresponding 

weather station despite the variability in rainfall patterns (i.e. it does not perform 

geostatistical analysis on the rainfall).  In order to capture the spatial variability in 

rainfall in a region experiencing highly localized precipitation like the US Great Plains, 

a large quantity of weather stations and subbasins is necessary.  An increased number of 

subbasins results in increased numbers of HRUs, which results in longer processing 

time. 

     As mentioned above, the size of the subbasin matters considerably beyond its 

relevance to climatic data.  Given the restriction of a subbasin to the one main channel 

and one tributary, the user must carefully decide which streams merit retention.  As a 
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general rule: the greater the number of streams that are retained, the more subbasins 

need to be created.  As HRUs are then created for every subbasin, the quantity of HRUs 

increases, resulting in increased computation time.  On a similar note, the user must 

carefully consider any important facets of the basin when delineating the watershed.  If 

a user wishes to ensure that a particular land use or localized geological feature is 

preserved, s/he should ensure that these have their own subbasin.  This may be 

particularly difficult in the absence of a neighboring stream network on which to place a 

subbasin outlet, such as in the case of the Alluvium and Terrace Aquifer of the North 

Canadian River (see Chapter 3 of the dissertation) where streams are lacking.  The 

downside to these considerations is that they may result in SWAT not having subbasins 

of uniform size.   

     Another drawback to the model pertains to the characterization of a wetland, pond, 

pothole, and reservoirs as non-land uses but rather as external features with only one of 

each permitted per subbasin.  Such structures are not assigned a specific location in the 

subbasin.  A separate analysis not included here which involved assigning wetlands to 

the MNCR resulted in poor calibration.    

     Another limitation to SWAT involves its handling of “flash-flood” events.  As 

SWAT is designed to evaluate the impacts of long-term land management practices, it is 

not designed to be used to investigate the impacts of isolated precipitation events 

(Arnold et al. 1998).  This is yet another reason justifying a long calibration record in 

order to minimize the impacts of one intense storm.  In a separate analysis not included 
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here, SWAT performed poorly when trying to simulate the hydrologic impacts of a 

tropical storm.    

     Additionally, this research identified various considerations that emerge when using 

SWAT in the Great Plains.  The lack of long-term high-resolution rainfall records, 

combined with ephemeral streams and minute discharges, greatly complicates 

hydrologic modeling in this region.  Two other watersheds, the Wolf Creek Basin in the 

Texas Panhandle and Western Oklahoma (USGS Hydrologic Unit Codes 11100202 and 

11100203) and the Palo Duro Basin in the Texas Panhandle (11100104), were initially 

considered for this research but were not included here due to problems with calibration 

arising from the problems listed above.   

5.3: Avenues for Further Research 

     Several avenues for future research are manifest.  Experimentation with different 

biofuel crop types will enrich our understanding of the impacts of biofuel cultivation on 

hydrology, as would a multi-species analysis.  The grass Miscanthus (Miscanthus 

giganteus) has recently received much attention in the literature as a grass that is 

capable of producing large yields while using much less water than current crops.  

Chapter 4 may be enhanced through the performance of analyses dealing with other 

future decades and different IPCC scenarios.  While the chapter investigates a “worst-

case” scenario by investigating the A2 IPCC SRES scenario, it could benefit from an 

investigation of a “best-case” scenario by examining the impacts of the B1 IPCC 

scenario.  Additionally, very recently projections from the CMIP5 program have been 
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published and have been utilized along with CMIP3 outputs, which would likewise be a 

logical extension of this work.  

References 

Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams 1998 Large area 

 hydrologic modeling and assessment - part 1: model development, J. Am. 

 Water Resour. As., 34, 73-89. 

Kotkin, J. 2012 The Rise of the Great Plains.  Texas Tech University Press, Lubbock, 

 TX, USA. 

Popper, D. E., and F. J. Popper 1987 Great Plains: From dust to dust, Planning 53, 12-

 18. 

Sohl, T. L., B. M. Sleeter, K. L. Sayler, M. A. Bouchard, R. R. Reker, S. L. Bennett, R. 

 R. Sleeter, R. L. Kanengieter, and Z. L. Zhu 2012 Spatially explicit land-use 

 and land-cover scenarios for the Great Plains of the United States, Agr. Ecosyst. 

 Environ., 153, 1-15. 

Wallach, B. 1985 The Return of the prairie, Landscape 28, 1-5. 

Wood, R. E. 2008 Survival of Rural America: Small victories and Bitter Harvests. 

 University Press of Kansas, Lawrence, KS, USA. 

  



 

139 

 

 

Appendix: Summary of Hydrologic Parameters, According to GCM, 

by Season (Pertains to Chapter 4) 
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Table A.1: Summary of Hydrologic Parameters, by GCM, for the winter season 

 
P 

 
(OC) rs eT   

Avg Obs Value for 

Parameter (mm H20) 65 3.19 3 70   

  
 Climate Change 

Only 

Climate Change + 

Switchgrass 

GCM 
%ΔP 

ΔT 
(OC) %Δrs %ΔeT %Δrs %ΔeT 

UKMO-HADCM3 -23.68* 2.22 -56.12 0.16 -68.96 -15.58 

GISS_MODEL_E_R -14.18 1.47 -57.91 -6.34 -73.73 -20.85 

MIUB_ECHOG -10.2 1.75 -32.84 -13.89 -47.16 -26.19 

CGCM3.1 (T47) -8.59* 0.93 -47.16 -2.62 -42.09 -20.07 

PCM -6.35 0.82 0.9 0.77 -49.25 -12.82 

BCCR_BCM_2.0 -6.3 1.37 -32.54 -1.01 -43.88 -15.99 

GFDL_CM_2_0 -2.6 1.15 -47.76 -17.59 -71.34 -18.13 

CNRM_CM3 1.23 0.75 -14.03 -8.92 -48.96 -22.61 

MIROC3.2 

(MEDRES) 
2.66 1.32 -13.73 -10.02 -54.63 -10.85 

CCSM3 4.46 1.06 6.27 -12.99 -44.78 -14.85 

CSIRO_MK3_0 6.39* 0.84 -15.52 -8.98 -54.03 -23.75 

GFDL_CM2_1 9.23* -0.3 -9.25 -6.11 -37.31 -21.62 

MRI-CGCM2.3.2 9.93 0.61 42.39 -4.11 -15.52 -21.38 

INMCM3_0 21.96* 1.89 10.15 -8.21 -42.09 -18.23 

IPSL_CM4 28.3* 0.99 97.61 -0.18 37.91 -11.33 

ECHAM5/MPI-OM 30.78* -0.42 188.36 5.42 156.42 -17.45 

Minimum -23.68 -0.42 -57.91 -17.59 -73.73 -26.19 

1st Quartile -6.91 0.8 -36.42 -9.24 -54.18 -21.44 

Median 1.95 1.03 -13.88 -6.23 -45.97 -18.18 

3rd Quartile 9.41 1.4 7.24 -0.8 -40.9 -15.4 

Maximum 30.78 2.22 188.36 5.42 156.42 -10.85 

* Denotes statistically significant change in precipitation (p<0.05).  Only precipitation 

was tested for statistical significance. 
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Table A.2: Summary of Hydrologic Parameters, by GCM, for the spring season 

 

P 
 

(OC) rs eT   

Avg Obs Value for 

Parameter (mm H20) 242 15.31 37 166   

 
 

 Climate Change 

Only 

Climate Change + 

Switchgrass 

GCM 
%ΔP 

ΔT 
(OC) %Δrs %ΔeT %Δrs %ΔeT 

MIROC3.2 

(MEDRES) 
-26.77* 1.53 -62.67 -2.79 

 
-54.63 

 
41.06 

IPSL_CM4 -16.89* 1.07 -29.29 1.6 -60.55 44.79 

GFDL_CM_2_0 -7.08* 1.58 -38.81 7.92 -68.83 49.9 

CGCM3.1 (T47) -5.15* 1.97 -26.31 4.85 -50.04 55.82 

GISS_MODEL_E_R -1.58 0.99 -20.56 2.82 -63.34 50.68 

MRI-CGCM2.3.2 -1.48 0.69 -1.67 1.02 -54.8 49.64 

UKMO-HadCM3 -1.35 1.85 5.75 5.97 -32.3 65.74 

INMCM3_0 -0.36 1.36 -12.6 6.74 -51.3 49.01 

BCCR_BCM_2.0 2.94 1.68 2.93 2 -34.43 49.77 

CNRM_CM3 9.26* 1.09 11.74 9.65 -38.83 55.52 

MIUB_ECHOG 10.26 1.31 23.78 4.57 -41.63 52.78 

CSIRO_MK3_0 16.52* 1.06 28.57 10.5 -32.81 57.65 

PCM 17.63* 0.07 58.96 2.3 -9.89 48.2 

GFDL_CM2_1 19.56* -0.37 47.92 13.62 -13.33 53.31 

ECHAM5/MPI-OM 26.69* 0.04 110.27 9.43 49.42 50.98 

CCSM3 52.42* 1.28 169.9 20.42 69.98 57.64 

Minimum -26.77 -0.37 -62.67 -2.79 -68.83 41.06 

1st Quartile -2.47 0.92 -22 2.23 -54.67 49.48 

Median 1.29 1.19 4.34 5.41 -40.23 50.83 

3rd Quartile 16.8 1.54 33.41 9.49 -27.56 55.6 

Maximum 52.42 1.97 169.9 20.42 69.98 65.74 

* Denotes statistically significant change in precipitation (p<0.05).  Only precipitation 

was tested for statistical significance).   
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Table A.3: Summary of Hydrologic Parameters, by GCM, for the summer season 

 
P 

 
(OC) rs eT   

Avg Obs Value for 

Parameter (mm H20) 308 27.03 31 243   

 
 

 Climate Change 

Only 

Climate Change 

+ Switchgrass 

GCM 
%ΔP 

ΔT 
(OC) %Δrs %ΔeT %Δrs %ΔeT 

GFDL_CM_2_0 -45.1* 4.52 -86.83 -23.41 -94.92 -29.01 

MIROC3.2 (MEDRES) -25.34* 3.12 -65.3 -8.4 -90.65 -6.28 

GFDL_CM2_1 -21.9* 2.47 -42.73 -2.37 -76.12 15.29 

CNRM_CM3 -16.65* 1 -55.82 -3.79 -79.09 8.68 

GISS_MODEL_E_R -11.33* 1.3 -14.5 -4.19 -62.48 9.69 

BCCR_BCM_2.0 -9.6* 1.1 -24.02 0.86 -61.17 15.39 

CGCM3.1 (T47) -6.59* 2.26 -44.37 -3.83 -55.38 2.95 

MRI-CGCM2.3.2* -5.65* 1.13 -12.34 -0.77 -67.02 20.2 

CSIRO_MK3_0 -5.33* 1.16 -8.9 0.77 -59.57 18.16 

UKMO-HadCM3 -2 3.3 -13.83 -2.21 -70.46 3.4 

INMCM3_0 -1.4 1.3 -15.95 1.35 -66.65 15.8 

MIUB_ECHOG -0.04 1.4 -2.65 5.47 -62.19 25.61 

PCM 1.54 0.13 5.89 3.13 -64.14 32.96 

CCSM3* 19.43* 0.66 61.15 13.44 -25.95 46.3 

IPSL_CM4 22.59* 1.14 59.26 8.29 -32.52 34.44 

ECHAM5/MPI-OM* 36.98* 0.06 133 9.82 13.46 50.15 

Minimum -45.1 0.06 -86.83 -23.41 -94.92 -29.01 

1st Quartile -12.66 1.08 -43.14 -3.8 -71.88 7.36 

Median -5.49 1.23 -13.83 0 -62.19 15.6 

3rd Quartile 0.36 2.31 -0.52 3.72 -49.67 27.45 

Maximum 36.98 4.52 133 13.44 13.46 50.15 

* Denotes statistically significant change in precipitation (p<0.05).  Only precipitation 

was tested for statistical significance. 


