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ABSTRACT

This dissertation presents a new methodology for defining corrosion severity 

ranking by location for six operational air force bases, Hickam Air Force Base (AFB), 

Kadena Air Base (AB), Macdill AFB, Royal Air Force (RAF) Mildenhall, Pease Air 

National Guard Base (ANGB), and Seymour Johnson AFB. Three new corrosion growth 

predictive models are also presented so that a foundation for establishing a corrosion 

maintenance and inspection schedule of the C/KC-135 aircraft can be developed. The 

corrosion severity ranking scheme and the predictive growth models for the six 

operational air force bases will allow the United States Air Force (USAF) to concentrate 

their eSbrts on proactively inspecting aircraft for corrosion when deployed and operated 

at bases deemed as highly severe corrosion sites.

The method of principal component analysis (PCA) is used for the first time to 

analyze compositional data sets of atmospheric conditions (or thresholds) for defining 

corrosion severity ranking by locations (air force bases). The results show that the 

ranking for the six operational air bases from the most severe site to the least severe site 

is Hickam AFB, Kadena AB, Macdill AFB, Seymour Johnson AFB, RAF Mildenhall, 

and Pease ANGB.

In order to develop a more accurate corrosion growth predictive model, three 

corrosion growth predictive models are developed by modifying and combining the 

following existing growth models: the Gompertz growth and the logistic growth models 

(GL model), the Gompertz growth and the confined exponential growth models (GC 

model), and the logistic growth and the conGned exponential growth models (CL model). 

The confined exponential growth model, the power law equation, and the three new



models (i.e., GL, GC, and CL models) are compared through lack-of-fit tests and model 

adequacy checking (after performing weighted least square analysis). Corrosion growth 

data sets 6om four operational air bases (Hickam AFB, Kadena AB, RAF Mildenhall, 

and Seymour Johnson AFB) are used to perform the statistical tests. The results showed 

that the CL model provides the best fit for all corrosion growth data sets of the four 

operational air bases and dominates the other models in terms of weighted mean square 

error. The CL model also reveals that Hickam AFB is the most severe corrosion site and 

supports the results of the PCA analysis on corrosion severity ranking. Although other 

corrosion growth models exists, this research represents the first models based on 

corrosion growth data of alloys obtained hom operational C/KC-135 aircraft.



A CORROSION SEVERITY RANKING METHODOLOGY AND A PREDICTIVE 
MODEL FOR CORROSION GROWTH BASED ON ENVIRONMENTAL 

AND CORROSION GROWTH DATA

CHAPTER 1 

INTRODUCTION

The goal of the United States Air Force (USAF) Aging Aircraft Program is to 

predict corrosion growth so that aircraft maintenance schedules can be developed to 

prevent aircraft structural failures due to corrosion. At issue is the ability to model and 

predict corrosion growth during the operational life of an aircraft.

In 1992, the Oklahoma City Air Logistic Center (OC-ALC) and Arinc, Inc. of 

Oklahoma City began a program of aging aircraft disassembly and hidden corrosion 

detection in order to investigate the influence of aging aircraft corrosion on the USAF 

C/KC-135 fleet. The C/KC-135 is an air refueling tanker and special purpose aircraft. 

Figure 1.1 illustrates the lap joint construction showing damaging moisture and corrosion 

around the rivet area. This type of corrosion is mostly found in aircraft lap joints 

constructed hom aluminum alloy sheets (e.g., 2024-T3) with aluminum pop rivets. The 

lap joint is a region of particular concern to the USAF because corrosion is known to 

occur extensively in this area and is difficult to detect. To build a comprehensive 

program for analyzing and detecting corrosion for the C/KC-135 fleet, Arinc, Inc. had a 

three program attack: 1) evaluate and identify non-destructive inspection/testing 

(NDI/NDT) equipment for hidden corrosion detection and quantification of the C/KC- 

135 fuselage and wings, 2) invasively disassemble a complete C/KC-135, and 3) conduct 

aircraft structural corrosion data gathering.



Figure 1.1: Aircraft lap joint with damaging moisture and corrosion

Note that the fleet of C/KC-135 has operated over 600 individual aircrafts around 

the world and was built in the mid-1950s, but is now expected to operate until the year 

2040 (Groner and Nieser, 1996). They are currently the oldest aircraft in the USAT fleet 

(Ferrer and Kelly, 2002). Figure 1.2 shows the C/KC-135 aircraft. The primary mission 

of this aircraft is to aerial refuel compatible USAF, Navy, Marine Corps, and US-alhed 

aircraft. The C/KC-135 is equipped with a flying boom for fuel transfer. A special 

drogue can be attached to the flying boom on the ground so that it can refuel probe- 

equipped aircraft. The flying boom is controlled by an operator stationed in the rear of 

the airplane. In addition, this aircraft can hold passengers and cargo with a deck above 

the fuselage-mounted tanks.

The C/KC-135 fuselage construction employed spot-welded doublers and lap 

joints, which promote hidden corrosion (Groner and Nieser, 1996). In addition to the 

fuselage lap joint skins, the wing skin fastener area is also considered as a source of 

corrosion in aircraft, which is not easy to detect. The Arinc, Inc. program, thus, dealt 

with detecting hidden corrosion and evaluating the ability of NDI/NDT equipment for 

detecting hidden corrosion in lap joints and wing skins. After evaluation and inspection



by NDI/NDT techniques, lap joint inspection and wing skin fastener areas were cut from 

a retired C/KC-135 and subjected to disassembly in an effort to find and quantify the 

hidden or inaccessible corrosion. The corrosion detection results from the NDI/NDT 

techniques were compared to the actual corrosion in order to evaluate the NDI/NDT 

techniques. Note that NDI/NDT techniques consist of eddy current, ultrasonic, acoustic 

emission, thermal imaging, shearography, and enhanced visual inspection (more details 

o f these techniques can be found in Hagemaier et al., 1985).

Figure 1.2: a C/KC-135 refueling a Fighter 
Source: "KC-135 Stratotanker" [online].

Available: http://www.fas.org/nuke/guide/usa/bomber/kc-135.htm

http://www.fas.org/nuke/guide/usa/bomber/kc-135.htm


However, the program of aging aircraft disassembly and hidden corrosion 

detection at Arinc, Inc. in 1992, did not include consideration of what atmospheric 

conditions can lead to hidden corrosion or how corrosion grows over the time. In 1996, 

the OC-ALC, in conjunction with Arinc, Inc., began collecting atmospheric condition 

data and corrosion growth data 6om exposure racks of the C/KC-135 faying surfaces 

specimens (lap joints and wing skin fastener area coupons) (Howard et al., 1999). A 

description of the atmospheric data as collected by Arinc, Inc. is presented in Table 1.1.

Table 1.1: Description of raw data as collected by Arinc, Inc.

C aa

Relative humidity

Air temperature

Rain pH

Rainfall

Time-of-wetness 1

Time-of-wetness 2

CsscpTO'

Surface temperature

The amount of water vapor in the air 
compared with the amount of vapor 
needed to make the air saturated at the 
air’s  current temperature 
(range 0-100%RH)

A measure of the warmth or coldness of 
the air captured at each operational air 
base

The acidity and sulphate content of 
rainfall
(range 0.0-14,0)

Water that provides moisture on the metal 
surfaces

Length of time that moisture is present on 
the metal surface. The TOW1 sensor is 
used to detect light dew  
(range 0-1800 seconds)

Length of time that moisture is present on 
the metal surface. The T0W 2 sensor is 
used to detect rain and heavier liquid 
condensation.
(range 0-1800 seconds)

A measure of the warmth or coldness of 
the metal surface captured at each 
operational air base

A crcny— :jr:i of
n ea s_  erne'-,.

RH

AT

pH

RF

T0W 1

T0W 2

ST

%RH

°F

inch

second

second



Note that a coupon is a corrosion-monitoring specimen of material exposed to the 

environment on a rack for a given duration and removed for analysis. Sixty coupons 

were installed on an exposure rack at each of six operational air force bases around the 

world. The six operational air force bases chosen for the experiment included Hickam 

Air Force Base (AFB) in Hawaii, Kadena Air Base (AB) in Japan, Macdill AFB in 

Florida, Royal Air Force (RAF) Mildenhall in England, Pease Air National Guard Base 

(ANGB) in New Hampshire, and Seymour Johnson AFB in North Carolina. These bases 

were chosen to represent the range of atmospheric conditions C/KC-135 aircraft could be 

exposed to over their operational life. The sixty coupons on fabricated racks at each 

location consist of forty-five lap joint specimens and fifteen wing skin specimens. The 

materials used for the forty-five lap joint specimens were new 2024-T3 Alclad  ̂

aluminum, used 2024-T3 Alclad aluminum, and used 2024-T3 with the Alclad removed. 

Each material was used for fifteen of the lap joint specimens. The material of the fifteen 

wing skin specimens was 7178-T6 aluminum upper wing skin. Note that these aluminum 

alloys were actual aircraft construction material. All the coupons were nominal 0.04 inch 

thick (1.016 millimeter). Thus, two hundred and seventy lap joint specimens and ninety 

wing skin specimens were installed by Arinc, Inc. and were being monitored at the six 

rack locations while forty-two specimens randomly sampled were returned yearly for 

inspection of corrosion growth. The specimens were investigated at the test sites and 

selected specimens were returned periodically for data collection in order to determine 

the corrosion growth.

' Alclad is a pure aluminum coating that is highly resistant to corrosive attack while clad is a high strength 

aluminum alloy sheet coated.



Atmospheric conditions are clearly important because environment has long been 

identihed as the root-cause of corrosion problems (Feinberg et al., 1994). The 

atmospheric condition data sets h-om the six operational air bases had been collected at 

30-minute intervals between the years 1996 (as the initial year of exposure) and 1999. 

The atmospheric condition data captured include air temperature, relative humidity (RH), 

rain pH, rainfall, time-of-wetness (TOW), and surface temperature. Note that the 

moisture present on the surface of a metal was measured from two moisture sensors. 

That is, TOW can be separated into TOWl and T0W2. The TOWl sensor detects light 

dew whereas the T0W2 sensor detects rain and heavier liquid condensation.

The atmospheric condition data collections from the six air force bases were 

monitored by a Solus computer system (Solus Systems, 1994). The reason for using the 

Solus system in this program is that this system requires low current (148 mA) while it 

has versatility in recording data. This system involves a general purpose computer that 

can monitor conditions through sensors, detect events through inputs, and log data 

acquired through the sensors and the control devices. All sensors in the Solus computer 

system operate using wet cell battery power maintained by solar panels (since all rack 

sites are located in remote site areas in which line power is not available). The Solus 

computer is connected to the host through modems and the telecommunications system 

(e.g., telephone lines, satellites) with a modified serial connection cable. The main 

terminal box provides terminal connections for the environmental monitoring sensors and 

routing circuitry to the Solus computer system. Air temperature, surface temperature, 

relative humidity, rainfall, rain pH, and time-of-wetness (TOWl and T0W2), are also 

monitored through sensors. However, Arinc, Inc. experienced several data collection and



transmittal downtimes during the course of this study which led to errors and gaps in 

atmospheric data collection.

Corrosion growth data sets collected from the six air bases have been collected 

annually between the year 1996 (as the initial year of exposure) and the year 1999 and the 

thickness loss of material has been measured &om each coupon after each one-year 

exposure. It is important to note that the material thickness loss is currently considered 

the most significant corrosion characteristic that can be measured and used to evaluate 

corrosion.

After one year of the program's study, Arinc, Inc. used visual examinations to 

quantify corrosion areas o f the lap joints and wing skins, and used eddy current 

inspection to evaluate corrosion severity by location. Four levels of corrosion (i.e., 

uncorroded, light corroded, corroded, and destructively corroded) were used to 

subjectively categorize corrosion severity (Howard et al., 1999).

Besides the four levels of corrosion used to subjectively categorize corrosion 

severity by location, Arinc, Inc. used quantification of corrosion areas from lap joint 

specimens. The quantity of corrosion areas was attributable to percent metal loss 

(Howard et al., 1999). Arinc, Inc. used eddy current inspection to detect the percent 

metal loss. However, Howard et al. stated that eddy current inspection could not always 

accurately quantify corrosion in percent metal loss.

Arinc, Inc. then generated a composite evaluation of the six bases' corrosion 

using visual (subjective) and quantified corrosion (percent metal loss) at each of the six 

locations. With the most corrosive location given the lowest number, the six locations 

were ranked by category 6om one to six. The objective of the Arinc, Inc. study was to 

provide the USAF with corrosion severity analysis at the locations.



The results of corrosion severity ranking developed by Arinc, Inc. showed that the 

most severe locations were Hickam AFB, Kadena AB, and RAF Mildenhall followed by 

Pease ANGB, Macdill AFB, and Seymour Johnson AFB. However, the result of their 

study was based on subjective visual evaluation and a questionable methodology for 

estimating percent metal loss. In addition, their evaluation was based on data for only 

one year. Moreover, their evaluation did not include atmospheric conditions at each base 

that could be used to provide data for a more comprehensive corrosion severity ranking 

scheme.

f . f  Prob/em  Sfafem enf an d  R esearc/t O b/ecbves

According to the first year (1996) results of the study by Arinc, Inc., the following 

research issues were identified:

1. The analysis of corrosion severity ranking performed by Arinc, Inc. in 1996 was 

too subjective in that it lacked a valid quantifiable methodology.

2. Missing data is a considerable concern that must be addressed. Arinc, Inc. 

experienced equipment failure and data acquisition (download) interruptions. As 

a result, some atmospheric data were lost.

3. The atmospheric data dependency must be addressed. For example, a large RH 

level can cause moisture to be present and therefore should trigger a TOW 

reading. Consequently, data must be examined jointly to identify conditions for 

corrosion growth.

4. The atmospheric data within each measurement is a time series and is highly 

correlated.



5. The corrosion growth data is collected on an annual basis where a set of coupons 

is removed from the exposure racks, each coupon's corrosion measurements are 

recorded and the coupon is not returned to the rack. Consequently, each year's 

accumulated corrosion results are not on the same set of coupons.

6. Analytical models have not been developed for predicting corrosion based on 

corrosion growth data sets.

1.1.1 Research objectives

Currently, the C/KC-135 fleet is at least 30 years old while the USAF wishes to 

continue its operational life to the year 2040. The USAF realizes that environmental 

conditions coupled with the nature of the air&ame construction (such as joint fastening 

system and different material types) may lead to extensive corrosion growth and requires 

inspection and maintenance programs to detect corrosion. However, the USAF also 

recognizes that to reduce the amount of time and money spent repairing corrosion 

damage, corrosion should be prevented or minimized. Consequently, the research 

presented has the following objectives:

1. To provide a corrosion severity ranking scheme for the six operational air bases 

stemming from the atmospheric conditions surrounding the bases. This will allow 

the USAF to concentrate their efforts on proactively inspecting aircraft for 

corrosion when deployed and operated at highly severe corrosion sites.

2. To provide a predictive model of corrosion growth based on the corrosion data 

gathered &om coupons collected at each base. This will allow the USAF to look 

at the rate of corrosion growth by site as a function of time.



At issue is the ability of this research to address the data dependency and data loss 

issues (as outlined in Section 1.1) and the mixed level multivariate atmospheric data (e.g., 

threshold values are discrete while temperature is continuous).

The research contribution of this work is that for the first time a methodology for 

defining corrosion severity rankings is provided that in the future can aid aircraft 

maintenance programs for prioritizing corrosion inspection and repairs by base. In 

addition, three corrosion growth predictive models are developed based on atmospheric 

exposure of operational aircraft alloys. Past models have been developed for other metals 

but not for the alloys used in C/KC-135 operational aircraft. That is, no corrosion model 

has been developed for C/KC-135 alloys that have been "aged" to represent actual 

operational wear and tear.

f.2 Research AfefAodo/ogy Ouf//ne

Figure 1.3 illustrates the overall methodology tasks followed in this research. The 

two types of data, the atmospheric conditions and the corrosion growth data, were 

collected by Arinc, Inc. (see further details in Chapter 2). Corrosion growth data were 

measured yearly in terms of corrosion thickness loss by coupon, while the atmospheric 

conditions were collected on a half-hour basis 6om the six air force bases.

To rank corrosion severity o f the six air force bases, the method of principal 

component analysis (PCA) is used for simultaneously analyzing atmospheric conditions 

data sets of the bases. The time series data sets of the atmospheric conditions are 

translated to a compositional data set based on the percentage of 30-minute time intervals 

exceeding thresholds or meeting conditions conducive to corrosion growth. The 

compositional data set is then used to obtain a corrosion severity ranking of the bases.

10



Atmospheric condition time series data

Environmental monitoring sensors for j 
data collection from the six air force ; 

bases conducted by Arinc, Inc. using 
the Solus system

Data screening analysis; data quality check, 
outliers analysis, and missing observation 

analysis

Lap joint and wing skin test specimens

Corrosion growth testing at the six 
operational air force bases

Data collection of corrosion by material 
thickness loss

Corrosion severity ranking evaluated 
by the method of principal component 

analysis (PCA)

Corrosion growth as a function of 
exposure time

Foundation for establishing a corrosion maintenance and 
inspection schedule of the of the C/KC-135 aircraft

—  indicates the tasks performed by Arinc, Inc.

Figure 1.3: Overall methodology tasks

One of the purposes of this research is to develop a predictive model of corrosion 

growth using corrosion growth data sets. Based on corrosion growth phenomena, several 

predictive corrosion growth models (corrosion growth thickness loss as a function of 

time) are proposed for the first time by modifying existing growth models (i.e., the 

Gompertz growth model, the logistic growth model, and the confined exponential growth 

model). The newly proposed models are used to fit the data sets of corrosion growth for 

each air base. Then, a statistical comparison of the proposed models, an existing 

corrosion growth model (power law equation model), and an existing growth model
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(conGned exponential growth model) is presented, where the "best" model is identihed in 

terms of statistical accuracy.

f.3 Research 0/pamzaffon

The research organization begins with Chapter 2, which provides a literature 

review on the background and theory of atmospheric corrosion, preliminary data 

analyses, PCA analysis and existing corrosion growth models. Chapter 3 gives a detailed 

procedure of the research methodologies used for performing corrosion severity ranking 

analysis and corrosion modeling analyses. Chapters 4 and 5 present the results of the 

corrosion severity ranking analysis and the corrosion growth modeling, respectively. 

Chapter 6 gives a summary of the results and outlines future research.
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CHAPTER 2 

LITERATURE REVIEW

This chapter presents a literature review that describes the theory, methodology, 

and applications used to support this research. The first section provides a theory of 

atmospheric corrosion for supporting corrosion severity ranking and predictive modeling 

analyses. The second section provides data screening techniques that are used for outlier 

analysis and missing observation analysis of the atmospheric condition data. The third 

section describes preliminary analysis of correlation among atmospheric condition 

factors. The fourth section describes detailed information on the method of principal 

component analysis which is used to perform corrosion severity ranking by location. The 

fifth section provides some corrosion modeling efforts as studied by prior researchers. 

The last section describes the theory of growth models, which is used in this research to 

derive new corrosion growth models.

2.f Atmospfxenc Corros/on

Atmospheric corrosion is an electrochemical process involving a metal, corrosion 

products, a surface electrolyte, and the atmosphere (Kucera and Mattsson, 1987). 

Atmospheric corrosion is defined as the corrosion of materials exposed to air and its 

pollutants, rather than corrosion caused by immersion of the metal in a liquid (Roberge, 

2000). Atmospheric corrosion develops under thin layers of adsorbed oxygen and water. 

An oxide layer is formed on the metal surface when the gaseous oxygen interacts with the
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metal. The growth of this layer is determined by reactions at the metal-oxide interface 

and by the transfer of reacting particles through the oxide layer. During the ongoing 

corrosion process, a corrosion product (output) forms after long atmospheric exposure. 

Figure 2.1 illustrates the system of the atmospheric corrosion that consists of the input, 

the corrosion process, and the output. Atmospheric corrosion process, as related to an 

electrochemical reaction, depends on the time-of-wetness (TOW), the temperature, the 

humidity, the content and concentration of chemical impurities in the air (e.g., sulfur 

dioxide content, hydrogen sulfide content, chloride content), the amount of rainfall, dust, 

and even the position of the exposed metal (Schweitzer, 1998). Furthermore, it also 

depends on geographical locations, the distance &om sea or salt sources, and nature of the 

metals. From this research, the cause-and-effect diagram in Figure 2.2 is developed and 

presented.

Input

Metal

Output

Atmospheric 
Factors

Co'rostcri .=-cocss- 
£‘cc.:/cc'̂ e’-'r cs 

ReactionGeographic
Locations

Atmosphenc
Pollutants

Metal
loss

Figure 2.1: The system of atmospheric corrosion
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Figure 2.2: Cause-and-effect diagram influencing corrosion growth
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Figure 2.2 illustrates the factors influencing atmospheric corrosion. The 

atmospheric conditions, the atmospheric pollutants, and the geographical locations as 

ascertained from literature have been identified as contributors to corrosion. Moreover, 

other contributors (e.g., nature of metal, distance from sea, maintenance schedule, and 

age of the aircraft) have also been identrhed to cause corrosion. The graph represents the 

research conducted to present a comprehensive depiction of the factors identified as 

promoting corrosion growth. The identification of the factors of Figure 2.2 is explained 

in the paragraphs that follow and the means to capture the data from the Arinc, Inc. 

experiment is also outlined.

Time-of-wetness (TOW), an important practical variable in atmospheric 

corrosion, is the duration of the electrochemical corrosion processes on the metal surface. 

TOW is strongly dependent on the critical relative humidity (RH), air temperature, 

surface (metal) temperature, duration/h-equency of rain, fog, dew, wind speed, wind 

direction, and hours of sunshine (Lawson, 1995). In the Arinc, Inc. experiment, TOW is 

separated as TOWl and T0W2 (Howard et al., 1999). A TOWl sensor was used to 

detect light dew while the T0W2 sensor was used by Arinc, Inc., to detect rain and 

heavier liquid condensation. Hence, TOW can be obtained 6om the Arinc, Inc. data 

either by instruments that detect condensed moisture surfaces or by counting the number 

of hours at any specific time interval when the temperature is above 0°C and the relative 

humidity is greater than 80%RH (Dean, 1993; Roberge, 2000).

Temperature is another factor in atmospheric corrosion. For a constant humidity 

level, an increase in temperature leads to a high corrosion rate because it tends to 

stimulate corrosive attack by increasing the rate of electrochemical reactions and the 

diffusion processes (Roberge, 2000). Schweitzer (1991) stated that high temperatures
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(60°F or more) increase the rate of corrosive attack on surface metals because corrosion 

reactions are thermally activated. Below heezing, corrosion does not occur due to poor 

electrolyte activity.

For the Arinc, Inc. experiment, the surface temperature is also an important factor 

in atmospheric corrosion since moisture formation on the aircraft skin surface can 

increase the rate of the corrosion reaction. It is important to note that the moisture that 

can condense from air and dew is formed when the ambient temperature is within ±4°F of 

the approximate dew point temperature (Howard et al., 1999). Thus, moisture may not 

condense if the surface temperature is significantly hotter than the ambient temperature. 

This implies that corrosion under condensing conditions (i.e., surface temperature is 

within ±4°F of the approximate dew point temperature) is a function of the rate of 

condensation and corrosion products 6om the metal surface.

Humidity, the percentage of water vapor in the air at a given temperature, is one 

of the most important factors affecting atmospheric corrosion. At high relative humidity 

(RH) level, the moisture film at the metal surface increases in thickness and the corrosion 

process becomes an electrochemical reaction. Corrosion growth occurs at high humidity 

levels (60%RH or more) due to the condensation of moisture in the oxide layers, or the 

vaporization of the corrosion products (Wallace et al., 1985). However, in addition to 

RH, the nature of metals and the presence of pollutants may influence moisture film 

formation.

Rain affects atmospheric corrosion by providing moisture on the metal surfaces. 

Light rain can be harmful since it is a source of moisture that resides on the surface, while 

heavy rain can be beneficial since it washes away and dissolves pollutant deposits &om 

the surface. The acidity and sulphate content of rainfall also affects atmospheric
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corrosion. The rain pH of either less than 4 or greater than 8.5 has been shown to be 

conducive to corrosion growth (Wallace et al., 1985). In conjnnction with temperature 

and RH measurements, data obtained from a rainfall gauge is useful in determining the 

TOW for the Arinc, Inc.

Wind speed and wind direction affect the dispersion of air pollutants and the 

accumulation of particulates on the metal surfaces while solar radiation causes damage of 

protective coatings and contributes to exposing the underlying metal to corrosion 

(Roberge, 2000).

The content and concentration of chemical impurities in the air or atmospheric 

pollutants (e.g., sulfur dioxide [SO2] and chloride [CI2]) are considered to be m^or 

contributors to atmospheric corrosion of metals. Sulfur dioxide is produced hom the 

burning of fossil fuel (e.g., coal) for heating purposes, industrial activity, and thermal 

electric power generation. Chloride comes mainly hnm marine sources. Chloride exists 

in the atmosphere as particles or droplets that settle on the surfaces and provide the ionic 

constituents necessary to accelerate corrosion. The chloride deposition levels decrease 

considerably farther from the shoreline. Thus, distances from sea or salt sources and 

f-om pollutant sources are factors that accelerate atmospheric corrosion. The degree of 

corrosion growth is determined by the contaminant concentration, the length of time the 

pollutants remain on the surface, and the composition of contaminating materials.

Consequently, geological locations are also considered as factors affecting 

atmospheric corrosion. Industrial sites are usually highly corrosive locations and the 

corrosivity tends to be significantly dependent on concentrations of sulfur dioxide, 

chloride, phosphates, and nitrates. Marine sites are also considered as high corrosive 

locations. Marine sites extending some 4-5 km inland tend to have the most severe
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corrosion due to the eSect o f windswept chlorides (Roberge, 2000). On the other hand, 

rural and urban sites are generally the least corrosive locations because these regions tend 

to have low amounts of chemical pollutants hom industrial activity, domestic fuel 

emission, etc.

2.2 Oafa Screem/ng /n 77me-Senes Oafa

This section describes the theory and procedures for handling the problems of 

outliers and missing observations in time series data. The data collected during the 

Arinc, Inc. experiment can be analyzed as a time series if the conditions and assumptions 

of time series analysis are upheld. Fundamentals of the Box-Jenkins approach and well- 

known time series models, including autoregressive model (AR), moving average (MA), 

autoregressive moving average (ARMA), and autoregressive integrated moving average 

(ARIMA) are presented.

In the autoregressive model (AR), the current value of a time series is expressed as 

a hnite, linear aggregate of previous values of the time series and an uncorrelated residual 

series (Box et al., 1994). This model can be defined as follows:

^ " + (2.1)

where f) = -  p, is the deviate hom the mean p and a, is the uncorrelated residual series

(a zero-mean gaussian white noise process with variance cr̂ ) at time i. This model 

consists of an autoregressive process of order (lagged dependent variable) and unknown 

parameters ( /y ,0 ,,.. .,0  ,(7^ )̂ that can be estimated from the data.
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In the moving average (MA), the current value of the time series is expressed as a 

finite number of the uncorrelated residual series. This model is dehned as follows:

= a, - ,  (2.2)

which is called a moving average process of order g. This model consists of unknown

parameters ,(1 ^̂ ) that can be estimated from the data.

The autoregressive moving average (ARMA) is a combination of the 

autoregressive and moving average models. This model is defined as follows:

^ +02^-2 + " + -  (2.3)

This model consists of an autoregressive process of order a moving average process of 

order g, and unknown parameters (//,0,,...,0^,^,,...,^^,cr,^) that can be estimated 6om  

the data.

The autoregressive integrated moving average (ARIMA) includes nonstationary 

behavior which does not vary about the fixed mean. Such nonstationary behavior can be 

represented by a model, which calls for the (Ah difference of the process to be stationary. 

This model can be defined as follows:

w, +...+ 0^w,_^ 4-a, (2.4)

A time series is integrated of order (f if the time series becomes stationary after being first 

differenced (/ times. Note that w, is defined by:

w, = V " ] ^ ,  (2 .5)
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where V is the backward difkrence operator, which is defined by the operator of 

backward shift, The operator V can be written in terms of B as:

For example, an ARIMA(1, 1, 1) process (corresponding to^ = 1, cf = 1, and  ̂= 1) can 

be written in terms of V and as:

Vf; =0,vy;_,

or

2.2.1 Outliers

One of the problems commonly encountered in time series analysis is 

which are distinct from most of the other observations. Outliers in the atmospheric data 

from the Arinc, Inc. experiment might result 6om a gross error such as a recording or 

typing error, or from a non-repetitive exogenous intervention such as a weather disaster. 

Hence some outliers might be considered as valid observations and for those cases, the 

model for the time series data will need to take those observations into account 

(Chatfield, 1984). On the other hand, outliers might be considered as ùeak observations 

and for those cases, the outliers need to be adjusted or removed from the data set before 

further analysis of the data. If not treated properly, outliers tend to distort the estimates 

of model parameters that produce unrealistic prediction errors.

In practical applications, Collett and Lewis (1976) stated that an outlier detection 

procedure was a subjective decision by the analyst that outliers would be searched for in 

the time series data set. Chatfield (1984) also stated that the treatment of outliers was a 

complex subject in which common sense was as important as theory.
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Robinson (1979) and Ljung (1993) suggested that after knowing the locations of 

outliers, these outliers should be treated as missing observations in the time series data 

set. Then, a method of prediction for handling missing observations (as proposed in the 

next subsection) can be used to replace them with their predicted values.

2.2.2 Missing observations

AR and ARMA models are commonly used to model univariate time series data 

and to describe autocorrelated errors in regression models involving time series data 

(Chatfield, 1984). Most estimation methods used to determine the unknown parameters 

of these models are developed under the assumption that data are available at consecutive 

and equally spaced time intervals. However, time series data occasionally have some 

missing observations that impact unknown parameter estimation. If there are missing 

observations in time-series data sets, the results from time series modeling might be 

misleading and the statistical inference testing might be biased and inefficient. Many 

researchers have tried to solve this problem. The following paragraphs represent an 

overview of some works developed to deal with missing observations.

Some researchers have developed likelihood functions of various time series 

models to obtain parameter estimates and have claimed that the missing observations 

could be estimated with parameter estimates. Jones (1980) developed a form of the 

likelihood function for the autoregressive moving average model (ARMA) by using a 

Kalman filter approach for handling missing observations in time series data set. Note 

that the Kalman filter approach is an iterative computational algorithm used to calculate 

predictive values and forecast variances in time series models. Fuller (1996) 

demonstrated Jones's technique on a simulated time series data set from a second order
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autoregressive model (AR(2)) with a few missing observations. Basu and Reinsel (1996) 

proposed a form of the likelihood function for the autoregressive moving average model 

(ARMA). They demonstrated their technique on a time series data set of monthly 

averages for total ozone 6"om the Dobson spectrophotometer at Huancayo, Peru, obtained 

over the period January 1978-December 1991.

Ratinger (1996) proposed an acf Aoc technique applied to a seasonal 

autoregressive integrated moving average (ARIMA) time-series data set with a gap of 

missing observations. Ratinger suggested that a linear filter representation should be 

added in the seasonal ARIMA model before filling in a gap of missing observations. The 

author also derived this Aoc approach using minimum mean square error smoothing 

constants in the seasonal ARIMA time-series data set. The smoothing constants are the 

functions of the missing observations within a gap.

In addition to the techniques described thus far, meteorologists have tried to 

propose the techniques for handling the problem of missing observations in weather data. 

Kemp et al. (1983) used available data &om one or more adjacent weather stations to 

develop a prediction equation as a basis for estimating missing observations for daily 

maximum and minimum temperatures. Based on the assumption that the difference 

between daily temperatures at the ac^acent stations was equal to the difference between 

the monthly average temperatures of the adjacent stations, Kemp et al. (1983) performed 

regression analysis on available data &om the ac^acent stations as a basis for estimatmg 

the missing observations. DeGaetano et ai. (1995) also proposed a technique to estimate 

missing daily maximum and minimum temperatures. Their technique used the nearest 

available station data to reconstruct missing temperature values. Their technique also 

considered the differences in observation time between the missing-data station and those
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used in estimation. Only stations with observation times similar to that of the missing- 

data station were used. However, if a sufhcient number of stations with a similar 

observation time could not be identified, adjustments were made to simulate the 

maximum or minimum temperature corresponding to the appropriate time of observation. 

After obtaining the sufficient number of stations, the missing daily maximum and 

minimum temperatures were determined by prediction and interpolation using all 

available data from the stations within the same climate division.

However, the techniques for handling missing observations described thus far 

have some restrictions and assumptions for each type of time series models. The 

technique of Jones (1980), for example, assumed that all observations had the same 

probability of missing. For the Arinc, Inc. atmospheric data, the problems of missing 

observations might arise from measurement errors, equipment failure, loss of power to 

the datalogger, or natural disasters where the probabilities of these causes are not the 

same. Moreover, the techniques presented are appropriate for estimating only a few 

missing observations or a single gap of missing observations. In the meteorological case, 

the data from ac^acent weather stations were available for filling missing observations by 

applying the method of regression.

Neural networks have been widely used for time series prediction in various 

applications such as market predictions, meteorological, and network traffic forecasting. 

Feed-forward networks are one of the most often used approaches for time series 

prediction. Tang et al. (1991) performed time series forecasting of market sales using the 

feed-forward networks and the conventional Box-Jenkins time series approach. By 

comparing the performances of the neural networks and the conventional approach, Tang 

et al. found that the neural network is a better choice for long-term forecasting. In this
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research, the feed-forward networks with the BP algorithm are used to predict missing 

observations in long-term forecasting by applying the model parameters studied by Tang 

et al. (1991).

A neural networks model consists of: 1) a set of inputs, 2) a set of weights or 

connecting links, 3) an adder for summing the input signals and weights by the respective 

weights of the neural, 4) an activation function to deliver an output, and 5) a set of 

desired outputs (Haykin, 1999).

Figure 2.3 illustrates a neural network architecture. A set of input-output pairs is 

referred to as a set of training data or training sample. The weight of each connection in 

the network is a function of a learning rate and a momentum value. The larger learning 

rate makes the network become unstable (i.e., oscillatory) even though the network 

increases the rate of learning. To alleviate this problem, a momentum value is included 

in each network revision of weight. Note that the learning rate is the rate of network 

convergence, which is evaluated by the mean square errors of each iteration. The 

momentum value is a positive constant, which is used to control the feedback loop. Tang 

et al. (1991) performed simulation to investigate the effect of training parameters (i.e., 

momentum value and learning rate). They found that the network converged very 

quickly at a low learning rate (e.g., 0.1) and high momentum (e.g., 0.9).

Activation function such as threshold function, piecewise linear function, and 

sigmoid function, is defined for limiting the amplitude range of the output signal to some 

finite value of a neuron.
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Figure 2.3: A neural network architecture

The number of neurons in the input and output layers are determined by the 

number of input and output variable(s) whereas the number of neurons in the hidden 

layer(s) can be established by randomly setting up the initial values. The global error 

representing the difference between the network outputs and the desired outputs is used 

as a criterion for deciding the number of neurons in the hidden layer(s). Thus, trial and 

error is performed to determine the number of neurons of the hidden layer(s) during the 

training process.

An important class of neural networks, feed-forward networks, has been applied 

successfully to solve some difficult and diverse problems using a popular algorithm 

known as the back propagation (BP) algorithm. The feed-forward networks with the BP
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algorithm works by propagating the input signal through the network in a forward 

direction, on a layer-by-layer basis (Haykin, 1999). Generally, neural networks obtain 

knowledge of a process by training with input and output data. Each neuron (or node) 

receives information &om several input data sources by summing input data with a 

connection weight and using an activation (or transfer) function to deliver an output. 

Similarly, each neuron of the hidden layers also receives information from the outputs of 

all input layer nodes. In the output layer, each neuron uses an activation function (e.g., 

sigmoid function) to produce an output. The outputs &om the network and the target 

outputs h"om actual data are used to calculate a global error. The objective of the training 

process in the BP algorithm is to adjust the weight of each connection in the network to 

minimize a global error function. The training process is maintained on an iteration-by- 

iteration (or epoch-by-epoch) basis until the weight of each connection in the network 

stabilizes and the global error function converges to some minimum value based on a pre- 

established stopping criteria. The performance of the trained network is tested with data 

that the network has not seen before and then, assessed by comparing the actual data and 

the predicted values &om the trained neural networks.

2.3 Pre/ymma/yAna/ys/s

This section provides multivariate preliminary analysis for uncovering 

multivariate relationships. The data obtained from the Arinc, Inc. experiment is highly 

dependent on each other and exhibits several multivariate relationships. The main tools 

used for multivariate preliminary analysis are scatterplot matrix and correlation analysis 

(Weihs, 1993). In a real application of climatological data analysis, Wilks (1995) used a 

scatterplot matrix to reveal the relationship among the climatological variables (i.e.,
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precipitation, temperature) at Ithaca and Canadaigua, New York, for January 1987. 

K^iyama and Koyama (1997) investigated correlation between the maximum corrosion 

depth and 21 environmental factors measured along a 159 meter bare, ductile cast iron 

pipeline route at intervals of 1 meter. Soil resistivity, corrosion rate of the probe rod, 

corrosion potential, and pipe-to-soil potential were obtained by in-situ measurements at 

ground level in the field before excavation. Other environmental factors (e.g., water 

content, pH, content of ferrous sulfide [FeS], hydrogen peroxide [H2O2]) were measured 

in the laboratory by examining soil samples. Upon completion of surveys of the 

environmental factors, the maximum corrosion depth measurements were conducted 

along the 159-meter pipeline route. K^iyama and Koyama showed the results of the 

correlation analysis among the maximum corrosion depth and the environmental factors. 

They concluded that the environmental factors correlating with the maximum corrosion 

depth were pipe-to-soil potential, speciSc gravity, and the content of ferrous sulfide.

Plotting many variables against each other in the preliminary stages of data 

analysis is a good practice that allows examination of the data in a straightforward 

fashion. The scatterplot matrix is one of the statistical analysis tools used to interpret 

data by graphically displaying the relationship among variables (Weihs, 1993). A 

scatterplot matrix of variables is a matrix of graphs with a scatterplot of the Ah variable 

against the yth variable as the (z, / )  entry of the matrix ((?!:_/) and without the diagonal 

elements in the positions.

The scatterplot matrix can be interpreted &om the data patterns as positive, 

negative, or no relationship. A positive relationship between the two variables is 

displayed by an ellipse of points that slopes upward, demonstrating that an increase in the 

cause variable also increases the effect variable. On the other hand, a negative
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relationship between the two variables is displayed by an ellipse of points that slopes 

downward, demonstrating that an increase in the cause variable results in a decrease in 

the eSect variable. A plot indicates that there is no relationship between the two 

variables if  a cluster of points is difhcult or if it is impossible to determine whether the 

trend is upward sloping or downward sloping. Furthermore, data patterns, whether in a 

positive or negative direction, should be interpreted for strength by examining the 

tightness of the clustered points. Note that the more the points are clustered to look like a 

straight line, the stronger the relationship.

When the scatterplot matrix is performed, the next step is to measure the inter­

relationship among variables using correlation analysis. Note that the two variables are 

considered to be random variables. The output of this measurement is called the 

correlation coefficient and it ranges between -1.0 and +1.0. A correlation coefficient of 

+1.0 is a perfect positive correlation whereas a correlation coefficient of -1.0 is a perfect 

negative correlation. A correlation matrix is useful in obtaining a preliminary impression 

of the interrelationships among the variables. Moreover, a correlation matrix can be used 

to check for multicollinearity (i.e., interrelationship among the independent variables). 

The diagonal terms of the correlation matrix will always be 1 since each variable is 

perfectly correlated with itself whereas the ofF-diagonal terms are limited to the range -  

1.0 to +1.0. Note that the correlation matrix is symmetrical. Consequently, the ease with 

using the correlation matrix among random variables as a measure of interrelationship is 

that it is dimensionless, which makes its interpretation convenient. When using variables 

measured in either different units or the same units with large different values among 

variables, a correlation matrix should be used rather than a covariance matrix. However, 

the correlation matrix can be determined from a covariance matrix.
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Let us consider thep independent random variables %i, xz, -, as constituting a 

random vector

I  = (2 .6)

The mean vector is

E (i) = ^

Xj A
X2

(2.7)

The covariance matrix of x denoted by Z is

Z = E (x -p )(x -p ) '. (2 .8)

The diagonal element of the covariance matrix, cr», is the variance of the z'*' component 

of X so that we can denote this by ,. We can define the correlation coefficient denoted 

by Pÿ between the two random variables, and as follows:

Ay '̂,.7 1, 7, .. . jp. (2.9)

Note that Pÿ = pj;. The covariance matrix may be written as,
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k  -vWf)k -  A )

O’,2 O'/
0-2, (722 ^2^\P2l

20-2

• 0),0^/^2
2.. a ,  _

(2 .10)

If Equation 2.10 is divided by (T,<T/, f,y = 1,2, ...,/?, we can obtain a correlation 

matrix denoted by p as.

1 A 2 ' " A ; ,

P i \ 1 • " A ; ,
( 2 . 1 1 )

Pp^ Pp2  ■•• I

However, the parameters described thus far are point estimates of the population 

quantities. With the sample of n observations, let the sample mean vector, x be

X

■It

2*
t = l

pk

(2 .12)

and the sample covariance matrix, S, be
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s  =
■̂21 ^2 (2 .13)

where f  is the sample variance and the sample covariance is

- *=l    7 7 —19 77
n\n - 1  )

(2.14)

Note that fy = A sample correlation matrix denoted by R is

R ' 21

'If
' 2p

• •  1

(2.15)

where /-», = 1,2, . ..,p  is the sample correlation defined by

-
i= l

*=1

I
A=1

k=\ A=1

i, j  — \, 2,...,p

f, y = 1,2,...,^.

(2.16)

Note that once again, r, = /),. The computation of these correlations defined in Equation 

2.16 can be expressed in matrix notation as
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R  =  D  S D  % (2 .17)

where D is a diagonal matrix whose diagonal elements are the sample standard 

deviations of the ̂  variables (i.e., the square roots of the corresponding diagonal elements 

ofS).

2.4 Pnnc/pa/Component ̂ na/ys/s

Principal component analysis (PCA) is an approach used for summarizing the 

data so that no dependent variable exists (AGfi and Clark, 1990). The summary 

variables, called principal components, are computed from all of the original independent 

variables. Another definition of PCA is a multivariate approach in which a number of 

related variables are linearly transformed to set of uncorrelated variables (Jackson, 1980, 

1991). Furthermore, this technique is used to reduce the number of variables without 

losing much of the information (AfiG and Clark, 1990).

2.4.1 PCA Theory

The procedure of PCA is to transform a vector of the original correlated variables, 

[xii X]2 ... X];,], into a vector of the new variables, [zn zn ... zi;,], that are uncorrelated with 

each other. Note that these linear combinations represent the selection of a new 

coordinate system obtained by rotating the original system with xn, xiz, ..., xi;, as the 

coordinate axes. The logic of rotating the original coordinate system is to maximize the 

variance of the new coordinate system. After the Grst coordinate axis on which the 

variance is maximal, there remains some variability around this coordinate axis. In 

principal component analysis, after the Grst coordinate axis has been extracted (i.e., after
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the first coordinate axis has been drawn through the data), another coordinate axis will be 

extracted in order to maximize the remaining variability, and so on. In this manner, 

consecutive coordinate axes are extracted. Since each consecutive coordinate axis is 

defined to maximize the variability that is not captured hy the preceding coordinate axis, 

consecutive coordinate axes are independent of each other. This implies that consecutive 

coordinate axes are uncorrelated or orthogonal to each other. The original data can be 

transformed into the new coordinate axes by this manner. The general form of 

orthogonal transformation is defined as

z = xu (2.18)

This model can be written as

Z,2 • 1̂2 1̂2
2̂1 Zj2 2̂1 %22 2̂1 -  "2p

' '- -

(2.19)

Let X* be a vector of the original independent variables for each observation, A 

defined as [x*i %  ... x^], A; = 1, 2, ..., n. Let z* be a vector of principal component 

scores of x* for observation ^ defined as ... z; ]̂, t  = 1, 2, ..., » where ẑ  ̂ is a

principal component score of z* Let U define as [u% « 2  . . . Up]. Thus, the orthogonal 

transformation for each observation, A, is defined as follows

z ̂  — x^U, k  — 1,2,—, (2.20)

Note that z* scores are uncorrelated among the principal component scores. Conversely, 

xt for observation A can be determined by
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x*=Z;^U% t  = 1,2,...,». (2.21)

Since U is an orthogonal m a t r i x ( i . e . ,  U'U = I and UU' = I,  where I is identity 

matrix), the transpose of U is equal to its inverse. Thus, U' in Equation 2.24 can be 

replaced by U"\ The vectors of matrix U are of unit length are defined in Equation 2.22 

below:

( u /u j : = l ,  ;= l,2 ,...,p  

K '" v T = l ,  7=1, 2,...,p.

The coordinate axes of the uncorrelated variables are described by the vectors Uy 

that make up the matrix U of direction cosines. The columns of U are called 

vecror.r or gigenvecforf. In this research, eigenvectors will be employed 

rather than characteristic vectors. A first column vector of U defined as ui or [wn « 2 1  ... 

2̂ 1]' represents the coefGcients of the first principal component (pc) called the first 

eigenvector of the covariance or correlation matrix, a second vector U2 or « 2 2  ... Wpz]' 

represents the coefficients of the second pc called the second eigenvector, and the last 

vector Up or [«i;, »2p ... represents the coefGcients of the p  pc called the p  

eigenvector. Thus, principal components are particular linear combinations of the p  

original random variables with coefficients equal to the eigenvectors o f the covariance or 

correlation matrix. This implies that in Equation 2.20 each principal component (i.e., an 

element of z* score) is a linear combination of an observation of the original variables 

(i.e., X*) with coefficients (i.e., u, that is equal to the eigenvectors of the correlation or 

covariance matrix) as expressed in Equation 2.23
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(2 .23)

A covariance matrix S can be reduced to a diagonal matrix L by 

premultiplying and postmultiplying it by a particular orthogonal matrix U Therefore,

L = U'SU, (2.24)

where

L =

'h 0  • • o '

0 h  • ■ 0

0 0  •

Here S is the covariance matrix of the original variables while matrix L is the covariance 

matrix of the principal components. The diagonal elements of matrix L are called 

cAwactgrffhc or ezgenvaZwgf that are correspondingly equal to the variances of Z 

when all observations of the original variables (i.e., %*, = 1, 2, ..., n) are transformed

into the new variables (i.e., z*, * = 1, 2, ..., n). In this research, again, eigenvalues are 

used rather than characteristic roots. Note that matrix S will be replaced by matrix R if  

eigenvalues are obtained horn correlation among the variables.

It is worth noting that the principal components are sorted by descending order of 

eigenvalues (i.e., 6om the largest variance of any linear combination of the original 

variables to the smallest variance of any linear combination of the original variables). 

This implies that the first principal component accounts for as much variation in the data
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as possible while each succeeding principal component accounts for as much of the 

variation unaccounted for by preceding principal components as possible. Consequently, 

PCA can be used for identifying the atmospheric conditions most conducive to corrosion 

growth.

Note also that the off-diagonals of the matrix L representing the covariance are 

zero. This means that - are uncorrelated. Furthermore, the determinants of

the two matrices, S and L, are the same. The trace of the covariance matrix L (i.e., the 

sum of eigenvalues) is equal to the sum of the original variances; this is known as one of 

the important properties of PCA. According to this property, the percentage or 

proportion of the total variability is accounted for by each pc as defined as follows

%pc, = xlOO,

/=1

(2.25)

where %pc, is the percentage of the total variability accounted for by each pc. This value 

is important for pc interpretations. Eigenvalues can be determined from the solution of 

the determinental equation, called the characteristic equation, as follows (Jackson, 1980 

and 1991):

S - / I  = 0

S', S,2

’ 21

. .  0

. .  0
=  0

37



’21

”12
2 jf  2 -  / "

'If

=  0, (2 .26)

where I is the identity matrix. The values Zi, /2, . are found by this equation to 

produce a pth degree polynomial in /. Note that the matrix S will be replaced by the 

matrix R if eigenvalues are obtained from the correlation matrix.

If uy # 0 is a /7-dimensional vector defined in Equation 2.22, it will be an 

eigenvector of S corresponding to eigenvalue Zy if

Su y = ZyU, or
[ S - Z y l ] U y = 0 .

(2.27)

There are many methods and algorithms to solve Equation 2.27 in order to obtain the 

corresponding eigenvectors. A set of homogeneous linear equations is the one used to 

determine the eigenvectors by replacing Uy with ty as defined in Equation 2.28. This 

vector, ty must be normalized to unit length in order to obtain an eigenvector Uy hrom 

Equation 2.29.

[ S - Z l ] t y  = 0

(2.28)

V-̂12 1 0 ■■ 0”Z]i"0"
2̂1 ■ ‘̂2,—0/ •■ 0 Z21=0

• 2
■ _

0 0 •• zy/fL0
Z|](- /̂ - 0  + 2̂1-̂ U + -+ Ll-y
1̂1*̂21 2̂1 ("̂2 0  Zy,]”2y,

fl
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u ■, j — 1 , 2 , p . (2.29)

It is worth noting that U; in Equation 2.29 makes up the matrix U. The matrix S, once 

again, will be replaced by the matrix R if  eigenvalues are obtained hrom the correlation 

matrix.

However, diagnostic analyses should be checked for precise transformation by 

determining the correlations between the principal components and the original variables 

as follows:

(2.30)

where is the correlation coefficients between the pc and th eo r ig in a l variables and 

w,, is an element of U matrix. /, is an eigenvalue determined from matrix S. The value 

in matrix S will be replaced by the value of the original variable matrix R The matrix 

Rn, defined for the correlation coefficients between the pc and the original

variables, will be

•th

,̂=1 ,̂=2 -

1̂2 •
2̂1 2̂2

^2 •

'/=2

î=P-

(2.31)

It is clear to say that the first pc (i.e., = i or [ni rn ... n^]) is more highly correlated

with the original variables than the other ones since the first pc explains more variabihty 

than the other ones. It is worth noting that
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Stopping rules are the criteria used to determine the number of retained variables. 

As mentioned before, PCA is used to reduce the number of variables without losing much 

of the information by retaining the first few principal components based on the stopping 

rules. Based on generally accepted rules of thumb, the following criterions should be 

followed when determining how many principal components should be considered 

(Jackson, 1991):

1. Continue to estimate principal components until the cumulative eigenvalues 

contribution is significant at the chosen level (e.g., 80%)

2. Continue to estimate principal components until the variance (eigenvalue) 

exceeds one (i.e., the variance of one of the original variables)

3. Discontinue calculating principal components immediately prior to an abrupt 

decrease in the magnitude of the characteristic value.

Cattell (1966) developed a graphical technique for determining the number of 

retained variables, named scree. This method is concerned only with a plot of 

eigenvalues of a covariance matrix or a correlation matrix and the number of 

components. The scree plot can be helpful in deciding the appropriate number of 

retained variables. As mentioned before, eigenvalues are ordered from largest to smallest 

with the first few explaining most of the variability. Generally, the scree plot illustrates a 

steep drop over the first few components followed by a leveling off for the rest of the 

components. The criterion of this test is to plot a graph of eigenvalues as the function of 

the number of variables and try to draw a straight line connecting all eigenvalues. The
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number of retained variables can be found if  all components have eigenvalues above the 

straight line.

2.4.2 Applications of principal component analysis

Throughout this section, some applications of PCA are described in the fields of 

meteorology and criminology, but the ideas may readily be applied to the analysis of 

corrosion severity ranking with the atmospheric condition data sets. Note that none of 

the works addressed any assumptions about the data in terms of its applicability to PCA.

Principal component analysis has been used in meteorological fields for studying 

the interrelationships among several meteorological variables. The concept of 

eigenvectors in principal component analysis is very useful and interpretable for the 

multivariate data. Eigenvectors are derived 6om the data being studied and strongly 

resemble the important features of the data. Maximum variance is accounted for by 

choosing in order the eigenvectors associated with the largest eigenvalues of the 

approximate covariance matrix. Stidd (1967) described the use of eigenvectors for 

climatic estimates from the sets of 12 mean-monthly precipitation values for 60 stations 

in Nevada. As expected 6om climatological considerations, the data pattern is high in 

winter and low in summer. However, the variability among stations in Nevada is large so 

that it is difficult to determine precisely the month-to-month differences in the data 

pattern. The first three eigenvectors for the mean-monthly precipitation data of the 60 

Nevada stations account for 93% of the variation, which has been deemed sufficient 

accuracy. The author stated that the Erst eigenvector resembled the annual cycle of 

winter storms. The second eigenvector represented the annual cycle of summertime, 

convective precipitation, while the third eigenvector represented the effect of late spring
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and early fall rainfall observed at the most stations. This showed that the eigenvectors 

were strongly related to the influences of several separate natural processes. Stidd 

performed the vectors of pc scores (i.e., the linear combinations of the first three 

eigenvectors and the 12 monthly values for the 60 Nevada stations) and plotted the first 

three vectors of pc scores in the map of the state of Nevada. The author found that the 

spring and fall peaks of precipitation were most prominent in Northeast Nevada (i.e., the 

indication of some positive signs in the third vector of pc scores). Furthermore, the 

author found that the three maps and the corresponding eigenvectors supply all the 

information needed to estimate the mean monthly precipitation for any area in the state of 

Nevada (Stidd, 1967).

Similarly, Kutzbach (1967) implemented the methods of eigenvectors and PCA 

for the three climatic variables (i.e., monthly mean sea-level pressure [SLP], surface 

temperature, and precipitation). The author found that the patterns of the first several 

eigenvectors of the three variables illustrated realistically the covariance structure of the 

three variables that was consistent. From the first vector of pc scores plotted in the map 

of North America, it was clear that the center of high SLP variability was in the center of 

the continent. Moreover, the results showed that the eigenvectors could be of 

considerable descriptive or diagnostic value.

The methods of eigenvectors and principal component analysis are general and 

useful technique of statistically summarizing the variability of winds. Since the wind 

velocity observations are not decomposed into direction and speed, vector-based PCA is 

the most appropriate method for investigating wind fields. Klink and Willmont (1989) 

used the methods of eigenvectors and PCA to analyze and quantify the characteristic of 

the winds. They used the data of the surface winds for 1975, derived from 68 stations
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across the United States. Each station collected wind direction and wind speed recorded 

every three hours. For each station, they obtained the time series of the three-hourly 

wind direction and wind speed observations. These time-series data sets then were 

interpolated to a regular 2° of latitude by 2° of longitude using the spherical interpolation 

routine and grid-point interpolation and contouring.

A detailed description on the applications of eigenvectors and PCA in 

meteorological fields can be found in Wilks (1995).

Besides PCA applications on meteorological data, Ahamad (1968) performed an 

analysis of crimes by the method of principal component analysis. The data consisted of 

frequencies of occurrence of eighteen types of crime (e.g., homicide, assault, homosexual 

offence) for fourteen years (1950-1963), in England and Wales. The eighteen types of 

crime represented variables whereas the fourteen years represented observations. The 

objective of his study was to investigate the relationships among several different crimes 

and to determine to what extent the variation in the frequencies of occurrence of types of 

crime &om year to year could be explained by a small number of uncorrelated variables. 

The analysis showed that the first three principal components accounted for 92% of the 

total variance. These components suggested that much of the increase in the crime rate 

could be explained by the rapid increase in population.

An application of PCA can be found in the study of the Olympic track record 

ranking by Dawkins (1989). Dawkins used PCA to perform national track record ranking 

study of the fifty-five countries. The national records in track events for women included 

100, 200, 400, 800, 1500, 3000 meters, and marathon whereas the national records for 

men included 100, 200, 400, 800, 1500, 5000, 10000 meters, and marathon. The 

women's and the men's sets were treated separately. Since the time units of these data
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sets were different (i.e., the time unit tbr 100, 200, and 400 was seconds whereas the time 

unit for the remaining events was minutes), each data set needed to scale to give mean 

zero and unit standard deviation. If the original data were analyzed using the same time 

units, the marathon data would swamp the effect of the other events and also would be 

weighted excessively in the analysis by PCA. The first principal component appeared to 

be interpretable as the overall athletic excellence among the nations whereas the second 

principal component represented a contrast between the related times of the short and 

long distances. Since the first principal component accounted for maximum variation, it 

was reasonable to use the first principal component for ranking the countries. The 

comparisons between the results from PCA and from the Olympic rank were given for 

both women's and men's events.

Naik and Khattree (1996) revisited the Olympic track record ranking where 

principal component analysis was utilized. In order to compare the athletic performances 

of the nations, Naik and Khattree stated that the appropriate variables were the speeds 

rather than the total time taken because these variables succeeded in retaining the 

possibility of having different degrees of variability in different variables. These 

variables were defined as the distances (in meters) covered per second for the various 

track events, which were in the same unit. For example, the women USA's athletic 

runner speed for 100 meters was calculated as 100 meters/10.81 seconds. Thus, unlike 

the starting point of PCA with the correlation matrix used in Dawkins's study, Naik and 

Khattree used the covariance matrix to perform national track record ranking study of the 

fiffy-five countries. The PCA results showed that the first principal component 

represented a weighted average of all the speeds in the various events, which measured 

the overall athletic excellence among the nations whereas the second principal
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component appeared to be interpretable as the measure of differential achievement. 

Based on the first principal component, the results of rankings of nations were compared 

to Dawkins's analysis. The nations in the top ten lists for men were the same as those 

given by Dawkins, except that Kenya and France were switched from their previously 

assigned ranks as ninth and eighth, respectively. On the other hand, the nations in the top 

ten lists for women showed more contrasting rankings.

Another application of PCA can be found in the SAS® (1990) handbook, showing 

a criminal rate study of the fifty states of the United States. The data consisted of crime 

rates per 100,000 people in seven categories for each of the fifty states. The seven 

categories represented variables including murder, rape, robbery, assault, burglary, 

larceny, and auto, while the fifty states represented observations. The Directive of this 

study was to investigate regional trend of crime rate using the method of PCA. The 

analysis showed that the first three principal components accounted for 87% of the total 

variance. The interpretation of the first principal component was a measure of overall 

crime rate whereas the interpretation of the second principal component was a measure of 

the prevalence of property crime (e.g., robbery, burglary) over violence crime (e.g., 

murder, rape). However, the interpretation of the third principal component was not 

obvious. The plot of the first two principal components showed the trend of crime rate of 

the fifty states. The states with high overall crime rates were indicated at the extreme 

right of the plot whereas the states with low overall crime rate were indicated at the 

extreme left of the plot.

Tür COM ppp/iecf to fAe awz/yfff .yeverify (i.e.,
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2.4.3 The data used in principal component analysis

Since none of the previous work addressed any underlying assumptions for the 

data before PCA can be applied, the following represents work that has been done with 

PCA on various data set types. PCA was used in situations where the variables were 

measured at a variety of scale levels such as nominal, ordinal, or interval (Young et al., 

1978). Young et al. proposed a technique for handling these situations. Their procedure 

is to scale all of the variables in standard units and obtain a solution that minimizes the 

sum of squares by iterative procedures. They gave an illustrative example of a cylinder 

problem in which the data specify 12 physical characteristics of 30 cylinders. The 12 

physical characteristics include aspects of their height, volume, electrical resistance, 

moment of inertia, etc. The objective of their study was to demonstrate their procedures 

on mixed measurement level multivariate data. The results showed that the minimum 

sum of squares was 0.0079 and the variance accounted for by each variable was 1 after 

30 iterations. Their results are identical to the true underlying structure that was lending 

credence to their procedure.

PCA was also used to analyze real number data sets (e.g., continuous, discrete, 

proportion, and percentage) and complex data sets. Jackson (1991) gave many examples 

using PCA with continuous and discrete data sets. Audiometric data set is a continuous 

data set, which measures hearing loss from 100 subject males, all aged 39, who 

presumably had no indication of noise exposure or hearing disorders. An instrument
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called an audiometer was used to measure the subject's hearing in their leA ear and right 

ear at Aequencies 500, 1000, 2000, and 4000. The limits of the instrument are -10 to 99 

decibels. The covariance matrix for these 100 observations and corresponding 

correlation matrix were used with the original data for the starting point in PCA. The 

objective of his study was to distinguish between normal hearing and hearing loss people. 

Moreover, this study demonstrated what differences occurred if the starting point was the 

original data sets using the covariance matrix and the correlation matrix. Jackson found 

that the Arst principle component represented the overall hearing level of a respondent. 

This implies that individual suffering hearing loss at certain Aequencies was suffering at 

the other Aequencies as well. The second principal component indicated the contrast 

between the high Aequencies and the low Aequencies. The results also showed that there 

were different eigenvalues, eigenvectors, and principal component scores when the 

starting point was the original data sets using the covariance matrix and the correlaAon 

matrix.

Jackson (1991) gave an example of PCA applied to discrete data. The data set 

consisted of reports of personal assaults in England and Wales for the year 1878-1887 

broken down by the quarters of the year. The objective of the author's study was to 

idenAfy the effect of season on the incidence of crime. The study showed that the 

incidence of the crimes increased steadily throughout the 10-year period and that there 

was a higher incidence in the warmer months.

PCA was used to analyze composiAonal data sets such as vectors of percentages 

or proportions of various chemical compounds or ingredients. Note that the deAniAon of 

composiAonal data is that the sum of these percentages or proporAons must be equal to 

unity. Due to the awkward constraint that the components of each vector must sum to
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unity, Aitchison (1983) stated that compositional data are difhcult to perform 

statistically. Aitchison introduced transformation techniques for handling such data. 

Aitchison's procedure is to transform the original data to new logarithmic data of the 

following form:

c^ '= ln(c^)-—^ ln (cÿ } 1 = 1,2,...,» ; = 1 , 2 , . (2.33)

where c. is a logarithmic transformed data point, Cÿ is the original data, p is the number

of variables, and » is the number of observations. Then, the logarithmic transformed data 

sets are used in the PCA procedure. Aitchison gave the illustrative examples on steroid 

metabolites and Aphyric Skye lavas data sets. Jackson (1991) gave an illustrative 

example on U.S. budget data h"om 1967 to 1986. Khattree and Naik (2001) illustrated an 

example using geology data regarding the proportions of elements in a specimen found in 

two or more sources.

PCA was also used to analyze complex data sets. The most likely field of 

application for complex PCA is in time series analysis (Jackson, 1991). In this case, the 

covariance matrix is a Hermitian matrix. Note that a Hermitian matrix is a unique matrix 

made up of complex numbers such that the diagonal elements are real and the pair of off- 

diagonal elements are complex conjugates o f each other. The Hermitian matrix is also 

made up of the sum of the real part that is symmetric and an imaginary part that is skew- 

symmetric.

For this research, the data are transformed into compositional data based on 

relationships indicating corrosion growth. The compositional data is then analyzed via 

PCA to obtain corrosion severity ranking.
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2.5 ExÂsf/ng Corros/on Afode//ng Pred/cffon Wode/s

Predictive models for corrosion growth have been developed by several 

researchers. Sereda (1960) proposed a multiple regression model that used the sulphate 

(SO2) rate and surface temperature to predict the log corrosion rate per day for low 

carbon plain steel. Haynie et al. (1978) identified sulphate (SO2), nitrate (NO2), ozone 

( O 3) ,  and relative humidity as m^or factors influencing corrosion growth. They 

developed a least squares fit model for predicting corrosion measured in terms of weight 

loss on weathering steel and galvanized steel using a two-level factorial design. Power 

law equation was used to model accumulated corrosion growth as a function of time. 

This equation was expressed as

P = (2.34)

where P is the metal loss or the corrosion penetration depth after f years, AT is a constant,

and 7M is an exponent. The power law function is intrinsically linear because it can be

transformed to a straight line by a logarithmic transformation as follows:

P' = (2.35)

where P' represents logP , AT'represents log AT, and /denotes logt.

Pourbaix (1982) used the linear bilogarithmic laws (e.g., power law equation) to 

extrapolate long-term corrosion up to 20-30 years &om four years of tests. The linear 

bilogarithmic laws expressed as the relationships between time and corrosion penetration 

depths, mean corrosion rate, and instantaneous corrosion rate, were defined as follows:
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log? = +/Mlogf
P

l o g —  =  + ( / M -  l ) l o g f  ( 2 .3 6 )

l o g ^  = (AT* 4-logm)+(yM-l)log/,

where is the mean corrosion rate, and is the instantaneous corrosion rate. Note 

that this equation is valid and reliable for predicting long-term corrosion of different 

types of atmospheres and for a number of materials. The author demonstrated the effect 

of the exposure time on corrosion penetration, mean corrosion rate, and instantaneous 

corrosion rate of carbon steel, copper steel, weathering steel, galvanized steel, and 

alumimzed steel exposed in industrial climate and marine climate at the locations in the 

United States and the European countries. With different types of materials exposed at 

different types o f atmospheres, the results showed that the corrosion penetration 

increased as a function of exposure time whereas the corrosion rates and the 

instantaneous corrosion rates decreased as a function of exposure time.

It is worth noting that corrosion growth is not linear with time (Roberge, 2000). 

According to the power law equation, ifrn? is equal to 1, this equation will be expressed as 

a linear model. Moreover, if  ?» is larger than 1, this equation will be expressed as a 

convex curve. This implies that the exponent m impacts the characteristics of the power 

law equation. However, corrosion growth rates do not follow the power law equation if 

the exponent is larger or equal to 1.

Predictive models of corrosion growth are useful for explaining the durability of 

metallic structures, determining the economic costs of damages associated with the 

degradation of metals, and obtaining experience about the effect of atmospheric 

parameters on corrosion kinetics (Feliu et al., 1993a). Feliu et al. (1993a, 1993b)
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developed a linear regression model for predicting corrosion growth in steel, zinc, 

copper, and aluminnm as a function of seven environmental parameters—time-of-wetness, 

relative humidity, number of rain days per year, temperature, sulfate concentration, 

chloride concentration, and marine atmospheric quality. In their study, the power law 

equation was used to develop the predictive models of such materials. They proposed 

that is the function of the meteorological and pollutant data worldwide. Thus, the 

exponent m for different metals is expressed in different values.

Multiple linear regression model was used to investigate the relationship between 

corrosion growth and atmospheric conditions. In 1993, Bhattachagee et al. conducted an 

experiment on atmospheric corrosion of mild steel. The experimental sites included 17 

locations in India comprised of industrial areas, coastal areas, and combinations of both. 

Bhattachaijee et al. developed a multiple linear regression model for predicting corrosion 

loss as a function of the atmospheric conditions. The rate of atmospheric corrosion was 

the dependent variable whereas the atmospheric conditions, namely temperature, relative 

humidity, rainfall, number of rainy days, sulphur dioxide (SO2), and sodium chloride 

concentrations (NaCl), were the independent variables. Goodness of the fit, F- and t-tests 

were used to identify statistically significant parameters. Bhattachaijee et al. found that 

the major factors influencing corrosion growth were SO2 for industrial sites and NaCl for 

coastal sites. After SO2 and NaCl, temperature was identified to be the next significant 

factor contributing to atmospheric corrosion.

Although the existing corrosion models have been developed by several 

researchers, none of them address corrosion growth on operational aircraft. The 

experiments were designed for steel (not aircraft's aluminum parts) or based on lab-
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simulated corrosion. This research develops predictive corrosion growth models for 

corrosion growth on operational aircraft.

2.6 Growth Mode/s

Growth models are applied in many fields such as biology, botany, forestry, 

zoology, and ecology (Banks, 1994; Draper and Smith, 1998). Generally, a growth 

model can be obtained by making assumptions about the type of growth, formulating a 

differential equation that represent these assumptions, and solving the diSerential 

equation. Note that a growth model is a nonlinear model.

2.6.1 Gompertz growth model

This model was developed from an exponential growth model which is defined as

—  = n f, (2.37)

where f  is the magnitude (accumulated value) of the growing quantity and r is time.

At this point it is postulated that the growth coefficient, a, changes with time 

according to the relationship (Banks, 1994):

—  = -Aa, (2.38)

where A: is the decay coefficient of the growth coefficient. With the initial condition a(0) 

= Go, the solution to the differential equation of 2.38 is:
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(fa

= -k  \dt
-'a
lna = -Af+ c,

where c is the constant o f integration. The initial condition a = oo when f = 0 gives In og 

= c. Hence,

Ina = -^  + lnag

a = agg"*'.

Thus, the principal phenomena of the Gompertz model is the incorporation of an 

exponentially decreasing growth coefficient. Substituting the solution of this differential 

equation into Equation 2.37 obtains

T i  ’at
(2.39)

The solution to 2.39 is:

In f = + c .

where c is the constant o f integration. The initial condition f  = f  o when t = 0 gives

ln f^ = —-ÜQ + c or c = ln7^+—ÜQ.

Hence,

In f  = - ^ g - * '+ ln 7 ^ + ^  
A: ° A:

ÜQ
f  = 7̂  exp (l-exp(-A t))
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With initial condition f  (0) = f  o, the Gompertz model can then be written as:

f  exp y  0 -  exp(- (2 .40)

In Equation 2.40, it is clear that as / ^  oo,

f  = /j) exp (2.41)

where is the ultimate limiting value of the growing quantity. Substituting this result 

into Equation 2.40 obtains an alternative form of the Gompertz model

-^ e x p (-A /)
k

(2.42)

Researchers used the Gompertz growth model extensively in population studies 

and to represent the course of animal growth. In a biological study, Richards (1959) used 

the Gompertz growth model to fit the growth data of the length of the hypocotyls of 

meZo when grown in darkness at different temperatures over thirty days. 

Richards stated that the magnitudes of the model parameters might be used to assess the 

importance in growth of experimentally controllable factors. In his study, Richards also 

gave detail descriptions regarding interpretation of the model parameters in terms of 

biological implication. Applications of the Gompertz growth model can also be found in 

Banks (1994). refewcAcrf Aove Mot «.ygfZ tAe /nocZeZ yôr

growZA data.
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2.6.2 Logistic growth model

The logistic growth model is based on the change, cfPA/t, that is assumed to be 

proportional to (i) the current quantitative level, f ;  and (ii) a condition l - ( f / .R )  that 

makes ^  Owhenf .R, where 7̂  is the ultimate limiting value of the growing

quantity.

Hence,

(2.43)

where a is a growth coefRcient. The solution of 2.43 is:

r dP r
—7---------- \=

Partial fractioning the integrand on the leA hand side gives:

I1
• 4* ■ dP  - a t  + c.

where c  is the constant of integration. Hence,

I n f - ln
f - j

= or + c.

The initial conditionf fo  when r= 0 gives

c = ln [P „/(l^(P ,/P .))J

Hence,

In = a r+ in [;^ /(i-(;: ,/;:))]
( i - ( f / ; ^ ) )  

f  = 7 [̂l + ((;a/7^)-l)exp(-ar)]-'.

Thus, the logistic growth model is expressed as:
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1 + P.
- 1p ex

-1

(2.44)

Like the Gompertz growth model, the logistic growth model has been used to fit 

data of animal growth. Yano et al. (1998) applied the logistic growth model to the data 

of bacteria growth in a pharmaceutical study. They developed a new pharmacodynamic 

model for the analysis of in vitro bactericidal kinetics with the bacterial phases divided 

into two compartments. The model equations of the bacterial growth were expressed as 

nonlinear simultaneous differential equations and solved by both the simulation and the 

least squares curve-fitting procedure. tAe GoTMpertz growi/z mozie/, rgfgarcAers Acrve 

not iAg logifizg growtA /Mot̂ gZ ybr (fo/a ybr growZA PiocZg/zMg.

2.6.3 Confined exponential growth model

The differential equation for the conGned exponential growth model is:

(A
(2.45)

where a. is a growth coefficient and is the ultimate limiting value of the growing 

quandty. Note that o. and are assumed to be constants. The solution to Equation

2.45 is:

-ln(j^  - f ) = o.r + c.

where c is the constant of integration. The initial condition f  = f  o when t = 0 gives

g = -ln(/^
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Hence,

- ln ( & - f ) = n . f - ln ( j : - ; ^ )

Thus, &e confined exponential growth model is defined as:

f  = (2.46)

If the initial value is zero (i.e., f  (0) = f  o = 0), the solution to Equation 2.46 is:

f  = .a(l-g-'"') (2.47)

Researchers have used the confined exponential growth model for various 

applications in physical sciences and engineering in phenomena involving heat transfer 

and mass transfer. This model has also found applications in social sciences, geography, 

and agriculture (e.g., tree growth study, crop yields study) (Bank, 1994). However, once 

ogam, refeorcAer,y Auve not uye(7 iAe con^netf exponenho/ growtA TMOtfeZ /o r düin

yôr corro.yfo/7 growiA mô feZmg.
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CHAPTER 3 

METHODOLOGY

This chapter provides the methodology to be used in this research. The flowchart 

of Figure 3.1 depicts the overall methodology followed. The Grst section gives a 

technique of data screening analyses for the atmospheric time series data. In this section, 

the techniques for handling the problems of outliers and missing observations are given. 

The second section gives a detailed description of how dew point temperature is 

generated. The third section provides a detailed information of correlation analysis for 

time series data sets of the eight atmospheric conditions and justifies the use of PCA. 

The forth section describes a procedure of the method of PCA for corrosion severity 

ranking analysis. The fifth section gives a detailed description of corrosion growth 

modeling development. The last section provides the nonlinear regression method used in 

this research for corrosion growth modeling.

3 .) Dafa Screen/ng  A na/yses

This section provides some data screening techniques for preliminary analysis in 

time series data. These screening techniques consist of data quality check and outlier 

analysis and missing observation analysis.

3.1.1 Data quality check and outlier analysis

The first stage of the outlier detection is essentially a data quality check that 

compares data to known limits for each atmospheric condition (Collett and Lewis, 1976).
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Data
screening
analysis

PCA analysis

Outlier analysis

Data quality checking

Atmospheric data from Arinc, Inc.

Neural network analysis to replace 
missing observations

Data transformation into 
compositional data

Figure 3.1 : Overall methodology for obtaining corrosion severity ranking

For example, the maximum value of relative humidity (RH) must not exceed 100% while 

the maximum and minimum values of pH must be not higher than 14 and lower than 0, 

respectively. Since data quality checks are not sufficient for detecting outliers, it is 

necessary to perform a second pass through the data to identify outliers.

The flowchart of Figure 3.2 used the methodology in this research to detect 

outliers in the atmospheric data. Recall that the data is recorded as a time series where 

outlier analysis begins with examining the first two consecutive observations (x,, x,.i) in 

relationship to upper and lower bounds (as explained in Chapter 2). If the absolute value 

of X, - x,.| exceeds c, x, is considered an outlier and is then removed from the data set. 

This procedure continues until the last value of the data set has been analyzed.
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STAR T

No
If I X(- Xf-i I > c

Yes

No

Yes

C = constant value 
t = current element
T  = number of elements or observationsS TO P

X is an outlier

initialize Xf and X,

Treat all outliers as missing observations

Move to the next observation: f = f + 1

t = 2, (start with the second observation in the time series data set)

X = value of an observation

Figure 3.2: A flow chart for detecting outliers

3.1.2 Missing observation analysis: Neural Network Analysis

Missing observations in a data set can increase the chances of obtaining unreliable 

results, which are not meaningful. Missing observations also affect the interpretations of 

statistical analysis. If a time series predictive model (e.g., AR, MA, ARMA, or ARIMA) 

is fitted to a time series data set with missing observations, the model parameters might 

be biased and thus, using the time series for forecasting analysis will be inaccurate. 

Based on Robinson (1979), if  the locations of the outliers in a data set are known, one can
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treat them as missing observations and a procedure can be implemented to replace the 

missing observations. Neural networks are used to replace missing observations resulting 

h-om the data quality check, the outlier analysis and the data gaps caused by faulty 

equipment or transmittal errors.

Time series data sets obtained from Arinc, Inc. of atmospheric conditions consist 

of air temperature, relative humidity, rain pH, rainfall, time of wetness, and the coupon's 

surface temperature. These time series data sets have many gaps of missing observations 

which are not easy to replace by the techniques described in the literature review due to 

the restrictive assumptions of those techniques (e.g., data acquisition &om one or more 

ac^acent sites is not possible). Section 2.2.2 gives a more detailed description of neural 

networks and provides a literature review in time series forecasting.

The method to form a neural network structure on training and forecasting the 

atmospheric condition data sets is as follows:

Let I  = denote a vector of time series data

with /M observations, which is then transformed to a new matrix Z with:

X2

X3 •• ^ ,+ 2

^ a + ,-2 ^a+ q-\

^a+q-2 ^a+ q-\

'

^ m -q Xm-iy+] ^m -2

(3.1)

where  ̂denotes the number of time lags and a represents the number of data for training. 

The number of patterns of this data set is equal to M-g, the number of rows of matrix Z
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Each value in the last column of the matrix Z represents a target output corresponding to 

each pattern. Feed-forward networks with the back propagation (BP) algorithm work by 

propagating the patterns of time lags (the first g columns) through the network in a 

forward direction. As described in Section 2.2.2, neural networks obtain knowledge of a 

process by training with the Erst  ̂ columns and the last column data of matrix Z Each 

neuron receives information from several input data sources by summing the input data 

with connection weights and using the hyperbolic tangent sigmoid transfer function as the 

activation (or transfer) function to deliver an output. Similarly, each neuron of the hidden 

layers also receives information from the outputs of all input layer nodes. In the output 

layer, a neuron uses the hyperbolic tangent sigmoid transfer function as the activation 

function to produce the final output in output layer. The training outputs 6om the 

networks and the target outputs hom the last column data of matrix Z are used to 

calculate a global error. A global error function is minimized with the gradient descent 

convergent criterion. The training process is maintained on an epoch-by-epoch basis 

until the weight of each connection in the network stabilizes and the global error function 

converges to some minimum value based on stopping criteria. After training the 

networks with the ftrst a patterns, the number of patterns, /M-g-u, is used to test the 

performance of the networks. The missing observations are predicted by using this 

methodology.

To demonstrate the methodology for using a neural network structure on training 

and forecasting the atmospheric condition data sets, a vector of time series data set with 

15 observations of air temperature for Hickam AFB is defined by:

X = [84.3, 83.9, 83.9, 82.9, 84.9, 84.9, 87.6, 83.9, 79.9, 77.2,75.2,75.6, 74.2,74.2, 73.9]. 

The vector x is transformed to a matrix Z as defined in Equation 3.1:
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'84.3 83.9 83.9 82.9 84.9 84.9
83.9 83.9 82.9 84.9 84.9 87.6
83.9 82.9 84.9 84.9 87.6 83.9
82.9 84.9 84.9 87.6 83.9 79.9
84.9 84.9 87.6 83.9 79.9 77.2
84.9 87.6 83.9 79.9 77.2 75.2
87.6 83.9 79.9 77.2 75.2 75.6
83.9 79.9 77.2 75.2 75.6 74.2
79.9 77.2 75.2 75.6 74.2 74.2
77.2 75.2 75.6 74.2 74.2 73.9

The matrix Z is formed from the number of observations (i.e., /» = 15) and the number of 

time lags (i.e.,  ̂ = 5). The number of rows of the matrix Z is 10 (i.e., m-g) and the 

number of columns of the matrix Z is 6 (i.e., ^+1). A value 84.9 in the last column of the 

first row represents a target output corresponding to the first pattern (row). The first six 

patterns (rows) of the matrix Z are used for training by feed-forward networks with the 

BP algorithm. The training outputs h"om the networks (6 values) and the target outputs 

from the last columns of the matrix Z (i.e., 84.9, 87.6, 83.9, 79.9, 77.2, 75.2) 

corresponding to each patterns of the matrix Z are used to calculate a global error. The 

training process continues until the network stabilizes and the global error function 

converges to a minimum value based on stopping criteria. After training the networks 

with the first 6 patterns, the remaining patterns (i.e., 4 patterns) are used to test the 

performance of the networks. Hence, the missing observations of the time series data set 

are forecasted by using this methodology. Note that Matlab® neural network toolbox 

(2000) is used for filling missing observations of the atmospheric conditions for all 

operational air bases.
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3.2 Dew Po/nf Temperafure

Dew point or saturation temperature is the temperature at which a given mixture 

of water vapor and air is saturated (Perry and Green, 1997). Dew point temperature plays 

an important role in atmospheric corrosion. If the aircraft's surface temperature is within 

the approximate dew point temperature ±4°F, corrosion tends to occur (Howard et al., 

1999). For example, given a dew point temperature of 76.1°F and the aircraft's surface 

temperature of 79.3°F, the approximate dew point temperature is estimated as 76.1±4°F, 

or a range of 72.1°F to 80.1°F. Thus, aircraft's surface temperature (i.e., 79.3°F) is 

within the approximate dew point temperature ±4°F (i.e, 72.1°F and 80.1°F). This 

recording indicates the conditions for corrosion growth and can be counted as a 30- 

minute interval exceeding or falling within a threshold for promoting corrosion growth. 

Consequently, dew point temperature can also be used with the Aiinc, Inc. data when 

performing corrosion severity ranking analysis by PCA.

Since dew point temperature was not recorded by Arinc, Inc., the dew point 

temperature can be estimated as a function of air temperature and RH where the 

relationship between air temperature and RH is provided through the Antoine equation 

(Perry and Green, 1997). Given an air temperature, T (°C), and the RH level recorded at 

T, the Antoine equation determines the saturation pressure, (mmHg), as:

(3 2)

where vl, R, and C are the Antoine equation constants. For water, the constants of v4, R, 

and C are 8.10765, 1750.286, and 235.0, respectively (Dean, 1979). Since the Arinc, Inc.
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data is collected from an environment that is not "controlled", water is always present in 

the atmosphere. That is, the aircraft were not placed in hangers that had relative humidity 

kept to a low level and thus, moisture in the air was always present. Air pressure 

contained moisture, 7^ g , is a function of f  and defined as:

RH
(3.3)

By converting Equation 3.2, the dew point temperature. Tap, can be obtained by

For example, given an air temperature of 20°C an RH of 80%, and the Antoine 

equation constants for water. Equation 3.2 can be used to obtain fsat, (or 17.53006 

mmHg). Then, the air pressure contained moisture, 7^^, can be estimated &om

Equation 3.3, which is equal to 14.02405 mmHg. Hence Equation 3.4 can estimate the 

dew point temperature, which is equal to 16.45°C or 61.61°F.

This procedure is used to obtain the dew point temperature as one of the 

atmospheric conditions used for performing corrosion severity ranking.

3.3 Conne/aÉ/on^na/ys/s

The interrelationships among the atmospheric conditions are explored because a 

large amount of information about the joint behavior of the data can play an important 

role for corrosion severity ranking analysis.
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To illustrate the interrelationships among p  variables, a (p-1 x /?-!) matrix of 

scatter plots can be a useful way to represent the identified correlations between various 

variables o f multivariate data on a single two-dimensional display. In this study, is 

equal to eight variables representing RH, air temperature, dew point temperature, rainfall, 

pH, TOWl, T0W2, and surface temperature.

According to the matrices of scatter plots shown in Figures 3.3-3.8, the plotted 

relationships between air temperature and dew point temperature of the six operational air 

bases illustrate high positive correlations and the plotted relationships between RH and 

dew point temperature indicate positive correlations. This confirms that the dew point 

temperature is a function of the RH and the air temperature as described before. The 

relationships between RH and either TOWl or T0W2 at ail bases show that the average 

RH must be greater than 40% for TOWl and T0W2 to be triggered. This implies that as 

RH increases, TOWl and T0W2 increase. In addition, the relationships between rainfall 

and RH also indicate that the average RH must be greater than 30% for rainfall to be 

recorded at Seymour Johnson AFB, greater than 40% for rainfall to be recorded at 

Hickam AFB, greater than 50% for rainfall to be recorded at Macdill AFB, and greater 

than 60% for rainfall to be recorded at the remaining AFBs. On average, T0W2 is 

triggered at higher RH levels than TOWl because TOWl is geared towards dew point 

readings while T0W2 is geared towards rain conditions. Clearly, the relationship 

between TOWl and T0W2 at Hickam AFB, Kadena AB, and RAF Mildenhall, seems to 

be a highly positively correlated. The correlations of TOWl and T0W2 of Macdill AFB, 

Pease ANGB, and Seymour Johnson AFB are not clearly positive or negative.

Focusing on the plots of air temperature and surface temperature, it is apparent 

that the two variables seem to have positive correlation for Hickam AFB, Macdill AFB,
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RAF Mildenhall, Pease ANGB, and Seymour Johnson AFB. Moreover, the plots of dew 

point temperature and surface temperature for Hickam AFB, Macdill AFB, RAF 

Mildenhall, Pease ANGB, and Seymour Johnson AFB also indicate positive correlation. 

On the other hand, the plots of air temperature and TOWl for Pease ANGB and Seymour 

Johnson AFB tend to be negatively correlated. Notice that it is not easy to indicate which 

scatter plot is positive, negative, or without relationship if  the plot is randomly scattered 

in the single two-dimensional display. However, correlation matrices can be used to 

specify the values of coefficients among variables as shown in Tables 3.1-3.6. As 

expected the results of Tables 3.1-3.6 reveal that the matrices o f scatter plots and the 

correlation matrices show that the atmospheric variables seem to be correlated with each 

other. Hence it is necessary to transform the correlated atmospheric conditions into 

uncorrelated atmospheric conditions in order to perform corrosion severity ranking 

analysis.
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Table 3.1: Correlation matrix for atmospheric conditions at Hickam AFB

"O'.'"

R. 1 ‘.‘bdoo’

AT -0.6907 1.0000

DP 0.1017 0.6460 1.0000

pH -0.2440 -0.1136 -0.4093 1.0000
RF 0.0392 -0.0355 -0.0095 -0.0069 1.0000
TOWl 0.3347 -0.3412 -0.1244 0.0783 0.0635 1.0000

T0W2 0.3622 -0.3032 -0.0496 -0.0629 0.0654 0.7203
ST 0.0861 0.2414 0.4076 -0.1540 0.0677 0.1963

JVV2

1.0000
0.2063 1.0000

Note: RH: relative humidity. AT: air temperature, DP: dew point temperature, pH: rain pH, RF: 
rainfall, TOWl: time-of-wetness used to detect light dew, TOW2; time-of-wetness while used to 
detect rain and heavier liquid condensation, and ST: surface temperature measured on the 
material

Table 3.2: Correlation matrix for atmospheric conditions at Kadena AB

' RH D- pF R- -̂ CW" T0W2 ST

RH 1.0000
AT -0.1123 1.0000
DP 0.4140 0.8560 1.0000

pH -0.2540 -0.2387 -0.3614 1.0000
RF 0.0915 -0.0015 0.0410 -0.0006 1.0000
TOWl 0.2822 -0.3677 -0.1988 0.1094 0.1015 1.0000
T0W2 0.2761 -0.3498 -0.1841 0.0157 0.1024 0.8501 1.0000
ST -0.1102 -0.3204 -0.3555 0.1761 0.0346 -0.1174 -0.0943 1.0000

Table 3.3: Correlation matrix for atmospheric conditions at Macdill AFB

R -f A“ RF ~0W1 TOW?"........ ST

RH 1.0000
AT -0.3643 1.0000
DP 0.3695 0.7181 1.0000

pH -0.2947 0.1439 -0.1019 1.0000
RF -0.0077 -0.0015 -0.0107 0.0329 1.0000
TOWl 0.3433 -0.2054 0.0209 -0.0620 -0.0247 1.0000
TOW2 0.0590 0.0115 0.0497 0.0472 -0.0053 0.1494 1.0000
ST -0.0594 0.5846 0.5185 0.0332 0.1139 0.0381 0.0502 1.0000
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Table 3.4: Correlation matrix for atmospheric conditions at RAF Mildenhall

rc ’-'.i Z'\.L

RH ~ i 'o o o 6

AT -0.5937 1.0000
DP -0.2265 0.9164 1.0000
pH 0.0662 0.0563 0.0935 1.0000
RF 0.0692 -0.0297 -0.0033 0.0089 1.0000
TOWl 0.2042 -0.2303 -0.1872 0.2574 0.1114 1.0000
T0W2 0.2083 -0.1895 -0.1359 0.3058 0.0918 0.7665 1.0000
ST -0.3401 0.4379 0.3659 -0.2540 0.0307 -0.1570 -0.1513 1.0000

Note: RH: relative humidity, AT: air temperature, DP: dew point temperature, pH: rain pH, RF: 
rainfall, T O W l: time-of-wetness used to detect light dew, T 0W 2: time-of-wetness while used to 
detect rain and heavier liquid condensation, and ST: surface temperature measured on the 
material

Table 3.5: Correlation matrix for atmospheric conditions at Pease ANGB

F<.d A" pr- RF 7 C W  T0W 2 s~

H:. ” ' ‘1.0000

AT -0.2283 1.0000

DP 0.1561 0.9237 1.0000

pH 0.1656 0.0041 0.0713 1.0000

RF 0.1031 -0.0026 0.0351 0.0179 1.0000

T0W 1 0.2014 -0.7248 -0.6589 -0.0528 0.0246 1.0000

T0W2 0.2849 -0.4473 -0.3535 0.1279 0.1452 0.4941 1.0000
ST -0.1009 0.8065 0.7744 0.0093 0.1046 -0.5166 -0.2422 1.0000

Table 3.6: Correlation matrix for atmospheric conditions at Seymour Johnson AFB

x:-i AT 2-i RF 'O W  ■|0W2 ST

RH 1.0000

AT -0.3699 1.0000

DP 0.3616 0.7205 1.0000

pH 0.0663 -0.0306 0.0191 1.0000

RF 0.1108 -0.0277 0.0445 -0.0201 1.0000
T0W1 0.4709 -0.6213 -0.2999 0.0056 0.1335 1.0000
T0W 2 0.4510 -0.1992 0.0916 -0.0007 0.2343 0.5971 1.0000
ST -0.1238 0.7082 0.5900 -0.0139 0.1667 -0.2501 0.2272 1.0000
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3.4 Co/ros/on Seyenfy Rankmg Us/ng Pnnc^a/ Component /Ina/ys/s

Principal component analysis (PCA) is used to transform correlated variables to 

uncorrelated variables (Jackson, 1991). This technique is also used to reduce the number 

of variables without losing much of the information (Afifi and Clark, 1990). With the 

atmospheric condition data sets, PCA can be applied for corrosion severity ranking of the 

six air force bases. Recall that one objective of this research is to rank corrosion severity 

by locations based on the atmospheric condition data sets captured from the six 

operational air force bases.

The proposed methodology for corrosion severity ranking is to transform the 

original data set into a compositional data set based on the percentage of 30-minute 

intervals that an atmospheric variable has met a condition conducive to corrosion growth. 

Table 3.7 summarizes the conditions for each atmospheric variable. The reason that the 

percentage of 30-minute intervals is used for corrosion severity ranking analysis of the 

six air force bases is that atmospheric corrosion depends on the length of time that 

moisture is present on the metal's surface. In addition, utilizing the percentage of time 

allows each atmospheric variable to be measured against the same scale.

Table 3.7: Atmospheric conditions conducive to corrosion growth

.At-roscheric '-a.caoie Atvosoheric conc.'-ian jromctirg coirosion ç'Ow:i~
Relative humidity (RH) RH > 60%
Air temperature (AT) AT > 60°F

Dew point temperature (DT) D T > 46°F
Rainfall (RF) RF > 0 inch
Rain pH pH) pH < 4 or pH > 8.5

Time-of-wetness 1 (T0W1) T0W1 > 0 second
Time-of-wetness2 (TOW2) T0W 2 > 0 second
Surface temperature (ST) ST e  DT ± 4°F
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Since this data transibrmation places all data against a common scale, PCA 

analysis can be used to perform corrosion severity ranking. For the PCA analysis, the 

percentage of 30-minute intervals for each atmospheric condition now represents a 

variable, whereas the six air force base locations represent the observations. Recall from 

the literature review, PCA can be applied to compositional data sets such as vectors of 

percentages or proportions. Figure 3.9 illustrates the procedure to obtain the 

compositional data set from the original data set. First, the number of 30-minute intervals 

that an atmospheric condition is conducive to corrosion growth is transformed into a ratio 

as follows:

X r ,
r = ---------, f = l,2,...,M y = l,2,...,p , (3.5)

where denotes the ratio of the number of 30-minute intervals when an atmospheric 

condition is conducive to corrosion growth to the number of 30-minute intervals of the rth 

site and the yth atmospheric condition, % represents the number of 30-minute intervals 

when an atmospheric condition is conducive to corrosion growth, 7} denotes total number 

of 30-minute intervals when an atmospheric condition is conducive to corrosion growth 

of each atmospheric condition, o, denotes the number of 30-minute intervals collected at 

rth site, M is the number of observations (i.e., air force bases), and p? is the number of 

variables (i.e., the atmospheric conditions).
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START

STOP

Calculate
4’ ~ rjjxLCM

All data are transformed to compositional data

Calculate lowest common multiple (LCM) of the numbers of 
the 30-minute intervals collected from the six locations

Calculate compositional data;

;=1

Count the number of 30-minute intervals when an atmospheric condition is 
conducive to corrosion growth

Translate the number of 30-minute intervals when an atmospheric condition 
is conducive to corrosion growth to the ratio by:

Figure 3.9: Procedure for transforming the original data set into a compositional data set
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To calculate the compositional data, it is necessary to determine the lowest 

common multiple (Z,CM) of the number of 30-minute intervals between the bases. The 

TCM will allow PCA to rank bases (observations) by their atmospheric conditions 

(variables). Note that ZCM is the smallest multiple that is exactly divisible by every 

member of a set of numbers. For example, the ZCM of 12 and 18 is 36. Then, a value 

(/ÿ) is calculated as follows:

yj, = fÿ X ZCM. (3.6)

Thus, compositional data can be estimated as follows:

J  = (3.7)

Z f ,/=]

where Cÿ denotes a compositional data of the fth site and the yth atmospheric condition.

Note that y ] " , , fbry = 1,2,...,/? should be equal to one (i.e., the definition of

compositional data). After obtaining the compositional data, the method of PCA is then 

used to analyze corrosion severity ranking.

3.5 CofTos/on Growth Mode/mg Oeve/opment

The foundation for the corrosion growth models developed in this research is 

based on the known behavior of corrosion growth. Mikhailovsky (1982) states that when 

the gaseous oxygen interacts with the metal, an oxide is formed on the metal surface. 

The oxide forms the surface layer, which protects the metal from further oxidation. If the 

surface layer reaches a certain thickness, the oxide ceases to grow and the metal
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passivates. Consequently, while corrosion growth is free initially, it reaches an ultimate 

limiting value. That is, it cannot corrode more than what amount of metal is initially 

present or it is stopped by the oxidation process itself. So any model proposed for 

predicting corrosion growth must uphold this phenomena.

To satisfy the growth phenomena of corrosion, the following three models are 

modified in order to develop a more accurate predictive model of corrosion growth and 

are explained in the following sections:

# the Gompertz growth model and the logistic growth model or GL model

# the Gompertz growth model and the confined exponential growth model or GC 

model

# the logistic growth model and the confined exponential growth model or CL 

model

Note that although the Gompertz, the logistic, and the confined exponential 

models are typical types of growth models that have been applied in many fields such as 

biology, botany, forestry, zoology, and ecology (Banks, 1994), these modifications have 

not been explored. The three modifications are proposed since the existing growth 

models (the Gompertz and the logistic) have not satisfied the first growth phenomena of 

corrosion (i.e., corrosion growth is &ee initial). Recall Equation 2.42 (i.e., the Gompertz 

model), the initial condition when t = 0 gives:

f  = exp - — exp(-1(0))
I * V

f  = R exp -  —  .
I  ̂V

This shows that f  is not zero when t = 0. Recall Equation 2.44 (i.e., the logistic model), 

the initial condition when t = 0 gives:
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f  = 1 + p

A - i
P /y

e x p ( -  a ( 0 ) )

-I

f  = 7 .̂

This also shows that f  is not zero when f = 0. However, modifying these models may 

address this issue.

3.5.1 The GL model

Since the rates of change of the Gompertz and the logistic models are defined by:

dP

and

=

V & /

respectively, the rate of change of corrosion growth of a developed model can be defined

as:

V
(3.8)

where f  and are corrosion growth and the ultimate limiting value of corrosion growth, 

respectively, and a and  ̂ are the growth coefficient and the decay coefficient. The 

solution to Equation 3.8 is
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- ln(7l -  f )  = —  + c,

where c is the constant of integration. The initial condition f  (0) = f  o = 0 when t = 0 

gives:

a

Hence,

-b
ln(7)  ln ; i + - ^ o r

a
a - a

exp
V t a  t a

The GL corrosion growth model is then

a  =  a
1

r
exp

a
(3.9)

3.5.2 The GC model

Since the rates of change o f the Gompertz and the confined exponential models 

are defined by:

da -A,
dr

= ae*'a

and

= a (a -a %

82



respectively, the rate of change of corrosion growth for the developed model can be 

defined as:

àP
—  = (3.10)
(A

where f  and are corrosion growth and the ultimate limiting value of corrosion growth, 

respectively, and a and are the growth coefficient and the decay coefficient. The 

solution to Equation 3.10 is

J ; ,  J

- ln ( ; i - f ) = - ^ g - * ' + c ,

where c is the constant of integration. The initial condition f(0 ) = fo  = 0 when t = 0 

gives:

c =  — -  in P ,. 
k

Hence,

- ln (P  - P )  = e'*' + — -  In P, or

The GC corrosion growth model is then

P = P  ^  r (3.11)
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3.5.3 The CL model

Since the rates of change of the logistic and the confined exponential models are 

defined by:

(ft
V f '

f . /

and

respectively, the rate of change of corrosion growth for the developed model can be 

deGned as:

V f ' (3.12)

where P and P  are corrosion growth and the ultimate limiting value of corrosion growth 

while a is the growth coeGicient. The solution to this equation is

dP ( p - p y----    Q--------------
P

1 a= — t + c.
P - P  P

where c is the constant of integration. The initial condition P(0) = Po = 0 when t -  0 

gives:

P
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H en ce ,

1 a 1
 =  — Î  +  —

Thus, the CL corrosion growth model is defined as:

f  = - ^  (3.13)
1 + af

Note that the three proposed models are nonlinear models (at least one of the 

derivatives of the expectation function with respect to the parameters depends on at least 

one of the other parameters (Bates and Watts, 1988)). This can be shown as follows (for 

the CL model):

In this research, the confined exponential growth model (i.e., Equation 2.47), the 

power law equation (i.e.. Equation 2.34), and the three new models (i.e., Equations 3.9, 

3.11, and 3.13) are statistically tested for fit. Specifically, SAS® software is used to 

perform nonlinear regression with an iterative estimation method (Marquardt method) for 

parameter estimates to 6t these models to the corrosion growth data sets. A lack-of-fit 

test is then used to check whether or not the data indicate a nonlinear growth phenomena. 

Model adequacy checking techniques are used to assess the model Etting. A residual 

analysis test (consisting of normality and constant variance tests) is used to check
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whether or not the model is adequate. If the residuals indicate a non-constant variance, 

weighted least squares method is employed. Models passing the model adequacy 

checking are compared with each other using error sum of squares criteria and the best 

model is then identified.

3.6 Sfaffsffca/Tec/tn/quesfbrMocfe/mg

Since corrosion growth follows a nonlinear growth pattern, this section describes 

the theory regarding the least squares method and iterative methods for nonlinear 

parameter estimation. Furthermore, techniques of model adequacy checking for 

nonlinear models are also provided.

3.6.1 Theory

Generally, a nonlinear model can be expressed as:

y  =  / ( x , e ) + G  (3.14)

or

fi(r)=/(x,e)

if £(e} -  0 and K{e) = o   ̂are assumed where y  is a response variablc,/is the expectation 

function, i  is a vector of nonlinear predictor variables defined as 8 is a

vector of nonlinear parameters defined as (^,,^2 ,...,8^)', and E is an error term

distributed as f  -  #(o, o   ̂) (Draper and Smith, 1998). The errors are uncorrelated and 

independent.

If there are M observations. Equation 3.14 can be defined as:
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= / ( x ^ , e ) + G , ,  fo r  w = l,2 ,...,M , (3 .15)

where is a vector of nonlinear predictor variables defined as . The

assumption of normality and independence of the errors can be written as E -  jv(o, la   ̂), 

where E = (g,, g ; E ^ ) '  and 0 is a vector of zeros and I is an identity matrix.

For nonlinear models, at least one of the derivatives of the expectation function 

with respect to the parameters depends on at least one of the parameters (Bates and 

Watts, 1988). To demonstrate the nonlinear growth in the proposed corrosion growth 

model, the nonlinear growth model can be expressed as:

f;, = /(f,^)+G_, for M=1,2,...,M, (3.16)

where f  is corrosion growth (thickness loss) measured in millimeter and f is exposure 

time measured in year. The confined exponential model (see Section 2.6.3) is defined as:

fbr«=l,2,...,M, (3.17)

where f '( l-e " ^ )=  is the accumulated maximum growth when f -> oo .

Since

^  = (3.18)
66*

and

1 - e

depend on the parametersG andf ' ,  this model is nonlinear.
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To ûnd the normal equation for obtaining the least squares estimate 8 of 8 , the 

error sum of squares for the nonlinear model and the given data is defined as:

(3.19)
M=1

where To obtain the p  normal equations. Equation 3.19 will be

differentiated Avith respect to 8 and set equal to zero:

Ë K - / k , è
M=1 m ,

=  0 . (3.20)
e=e

To illustrate how Equation 3.20 can be used to solve the least squares estimate of the 

parameter, the corrosion growth model defined in Equation 3.17 is demonstrated. To find

the normal equation for obtaining the least squares estimate  ̂ of ^ , one needs to take the 

derivative with respect to ̂ . Hence,

(3.21)

According to Equation (3.20), one obtains

or

X  { p .- P ’ (l =  0

(3.22)
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Clearly, the normal equation is not easy to solve although it is a simple nonlinear model 

with one parameter. Thus, iterative estimation methods can be employed to deal with this 

problem.

Several iterative estimation methods used to obtain the parameter estimates 

include, steepest descent, Gauss-Newton method, and Marquardt method. Each iterative 

estimation method requires a starting value for each parameter. To improve the fit of the 

curve to the data by minimizing the residual sum of squares, the nonlinear regression 

procedure iteratively moves along the surface of the curve by adijusting the values of the 

parameters. These iterations continue until improvement occurs (i.e., the residual sum of 

squares is minimized).

The method of steepest descent is a gradient method, which requires calculating 

derivatives for obtaining search directions. This iterative estimation technique starts at an 

arbitrary value moving along the direction of steepest descent with an arbitrary step size. 

Then, the derivative is calculated in the new spot and the procedure is repeated. This 

iterative procedure continues (in a zig-zig manner, where the new search direction is 

orthogonal to the previous) until convergence is achieved. This technique is emphasized 

in initial steps with large step sizes that make it quickly approach the minimum value of 

the residual sum of squares. However, there is no guarantee that this method will reach 

the minimum value of the residual sum of squares after performing some iterations.

The method of Gauss-Newton uses Taylor series expansion to develop a method 

for iterative parameter estimation. The operation of pre-multiplying the steepest descent 

direction by the inverse of the first derivative matrix is performed to find a suitable 

direction for the quadratic approximation to the function, rather than by finding a linear 

approximation to the function as in the steepest descent procedure. The new parameter
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estimates are solved and replaced as the initial values. This iterative procedure continues 

until convergence is achieved. It is worth noting that this method works well when the 

values of parameter estimates are close to the optimum values. However, if  the initial 

value is poorly selected, this can lead to go to the wrong direction and never converge to 

the minimum value of the residual sum of squares.

The method of Marquardt combines the advantages of both the Steepest Descent 

and Gauss-Newton methods. The method of Steepest Descent works well in initial 

iterations whereas the method of Gauss-Newton works well in later iterations. The 

method of Marquardt uses the method of Steepest Descent in the initial iterations and 

performs it until the residual sum of squares is no longer decreasing (Marquardt, 1963). 

Then, the method of Marquardt gradually switches over to the Gauss-Newton principle. 

This method is useful to fit many types of data to various types of equations.

r/zg M ztrcff to detgr/Mme jDarazMgrgr gf/rmargf m rAg

growt/z zzzo(fgk t/zzs f  rwzfx.

After obtaining the model parameter estimates, a confidence interval for a model 

parameter (8 ) can also be calculated by:

0-23)

where 8 is a model parameter estimate, is the appropriate value from a t-distribution

with degrees of fteedom is the number of observations, is the number of model

parameters, and fg is standard error of the parameter estimate. In addition, the upper and

lower 95% confidence bounds of the predicted value (T ) can be calculated fi"om:
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(3 .24)

where f  = ), .ye(f)= .y-Jm{,(M'My m, , m, is the vector of the first derivatives

of /  evaluated at the parameter estimates and and M is an jVx p matrix of the first

derivatives evaluated at 6 .

A more detailed review of iterative estimation methods can be found in Bates and 

Watts (1988) and Ryan (1997). To check the adequacy of the model, some methods such 

as lack of fit test and plotting residuals are presented and will be followed in this 

research. They are described in the next section.

3.6.2 Lack-of-fit test for assessing the fit of the model

When there are two or more response values (repeat observations) corresponding 

to at least one independent variable, it is necessary to determine if the nonlinear model is

appropriate (i.e.. Ho: the nonlinear regression model is correct against H\: the nonlinear 

regression model is not correct). The error sum of squares plays an important role for 

assessing the fit of the model when the data contain repeat observations. The error sum 

of squares consists of; 1) pure error and 2) lack of fit (Draper and Smith, 1998), where

Error sum of squares = pure error + lack of fit
&SE = (3.25)

j= \  / = !  j~ \  /= !

and /M is the number of distinct combinations of predictor values (or the number of 

distinct values of the predictor if  there is only one predictor), while » is number of repeat
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observations in each design point of a predictor variable. The test for the lack of fit can 

be performed by an F-test statistic

= (3.26)
/ ( / / - /» )

where is the number of parameters in the nonlinear model, #  is the sample size, 

is mean square of lack of fit, and is mean square of pure error. Large values of Fo

indicate that more error is coming 6om lack of fit than from random variability. This 

imphes that if L/o is rejected, the nonlinear model is not appropriate.

3.6.3 Plotting residuals

Based on the assumption that corrosion models are nonlinear, the errors are 

assumed to be normally and independently distributed with mean zero and constant but 

unknown variance cr̂ . The examination of residuals can also be investigated to check 

model adequacy. The diagnostic checking can be done easily by graphical analysis of 

residuals. If the model is adequate, the residuals should be structureless (i.e., they should 

contain no obvious patterns.).

Graphically, the plot of standardized residuals against fitted values and the plot of 

standardized residuals against the nonlinear predictor variables are the tools used to 

perform model adequacy checking. The residuals are the differences between the 

observations and the corresponding predictive values, while the standardized normal 

scores are the residuals divided hy their standard deviation. The mean and the standard 

deviation of the standardized normal scores should be zero and one, respectively. This 

research will use the standardized normal scores for the normal probability plot.
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Normal probability plots are other tools used to check the model adequacy 

(normality of the errors). Normal probability plots are graphical methods for determining 

whether observed data conform to a hypothesized model based on a subjective visual 

examination of the data. Normal probability plots include quantile-quantile (g-ig) plot 

and a probability ( f - f )  plot. A g - g  plot is a graph between the standardized residuals 

and the normal quantile whereas a f - f  plot is a graph between the distribution of 

standardized residuals and the sample probability. If the hypothesized model adequately 

accounts for the observed data, the plotted points will fall approximately along a straight 

line.

To test the assumption of independence of the errors, a plot of standardized 

residuals against a predictor variable can be employed. If the plot shows suspicious 

behavior, such as runs of residuals of the same sign, the assumption of independence of 

the errors is not appropriate.

To check homogeneity of variance, a plot of standardized residuals against the 

Gtted values is useful. If the plot indicates suspicious behavior, such as a wedge-shaped 

pattern or megaphone pattern, the assumption of constant variance is not appropriate. 

When the data includes replications at some or all of the design points, one can plot the 

variances or standard deviations for the replicated responses against the averages. If 

there is a relationship, the variance is not constant. Then, the method of weighted least 

squares should be employed to alleviate the problem of heterogeneity.

3.6.4 Weighted least squares

A technique called weighted least squares can be used to correct for unequal 

variances and still maintain the regression relationship between the dependent and
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independent variables (Carroll and Rnppert, 1988; Ryan, 1997). This subsection provides 

the method of weighted least squares used to eliminate heterogeneity variances.

Based on Equation 3.15 (with one dependent variable and one parameter, 0), 

usual nonlinear regression modeling makes the following basic assumptions:

) = expectedvalueof T = /(%.,^), w = 1,2,...,» (3.27)

- /( jc .,^ )  = Variance(f,) = Variance(f) = c r (3.28)

However, if the heterogeneity of variance arises in the nonlinear regression model, these 

assumptions are changed to:

Pg(^) = /(%,,^), where // is the mean (3.29)

Variance(7,) = (^),^) = c   ̂/ w ,, (3.30)

where g is the variance function and w» is the true weights. According to Equation 3.30, 

the weights are defined as:

This implies that the weights are the inverses of the variances. If Equation 3.15 is 

multiplied by the nonlinear regression model now becomes:
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The redefined responses have constant variances with means given by the new 

nonlinear function . The idea is to minimize the error sum of squares in Equation 3.32

as:

Minimize , (3.33)
M=1

which is equivalent to

Minimize - (3.34)
w=l

Equation 3.34 indicates that the larger the values of the weight the larger the 

contribution of the squared errors. This implies that the values of the weight can 

justify the variance of the error term be constant. Hence, when a technique of weighted 

least squares is implemented, the assumption that the variance of the error term be 

constant is satisfied.
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CHAPTER 4 

CORROSION SEVERITY RANKING ANALYSIS

This chapter presents results from the data screening analyses and corrosion 

severity ranking analysis using principal component analysis. Specifically, Section 4.1 

presents the data screening analyses consisting of data quality check, outlier analysis, and 

missing observation analysis. Section 4.2 gives the results of the corrosion severity 

ranking analysis performed by the method of PCA.

Oafa Screen/mg A na/yses

This section describes the results and the analysis conducted to improve the 

quality of the data. Three areas are addressed: data quality check, outlier analysis, and

missing observation analysis.

4.1.1 Data quality check and outlier analysis

This section gives an example of data quality check and outlier analysis. The first 

stage of the outlier detection is essentially a data quality check that compares data to 

known limits for each atmospheric condition.

Table 4.1 shows a summary of the data quality check on all data sets of the 

atmospheric conditions for the six operational air bases. Percentages of data quality 

check (that failed after comparing data to known limits for each atmospheric condition) 

for the data sets of relative humidity and rain pH at each operational air base are 

investigated. The maximum value of relative humidity must not exceed 100% while the

96



maximum and minimum values of pH must be not higher than 14 and lower than 0, 

respectively.

After detecting outliers with data quality checks, it is necessary to perform a 

second pass through the data to identify outliers. The procedure of treating outliers is 

given in the flowchart for detecting outliers provided in Section 3.1.1, Figure 3.2. This 

procedure begins with the first two consecutive observations and then the second two, 

etc. When the difference between the current value and the prior value exceeds some 

constant value (c), the data point might be considered as an outlier. In this analysis, the 

constant value, c is determined by multiplying the standard deviation of the atmospheric 

condition data set by three.

Table 4.1 : Summary of data quality check

Base Percentage of data quality check (that failed after comparing 
data to known limits for each atmospheric condition)

RH pH

Hickam AFB 0.5841 0.2351
KadenaAB 0.1852 0
Macdill AFB 0 0.1207
RAF Mildenhall 0.2211 0

Pease ANGB 0 0.1093
Seymour Johnson AFB 0.1448 0

Note: RH: relative humidity and pH: rain pH

Table 4.2: Summary of outlier analysis

Bass Parcentsce of'-'..tiiers
R.- AT DP 0-i ST

Hickam AFB 0.8633 0.2217 0 0.0313 0.8862

KadenaAB 0.9311 0.1019 0 0.0219 1.3632

Macdill AFB 1.1012 0.2336 0 0.1038 1.1211

RAF Mildenhall 0.6065 0.1581 0 0.2011 0.8974

P ease ANGB 0.4876 0.2129 0 0.0427 0.7736

Seymour Johnson AFB 0.2992 0.1977 0 0.1127 0.9103

Note; RH; relative humidity, AT: air temperature, DP; dew point temperature, pH: rain pH, and 
ST: surface temperature measured on the material
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Figure 4.1: A snap-shot of 30-minute interval recordings of air temperature at Hickam AFB

Figure 4.1 depicts the data set of air temperature collected at Hickam AFB used to 

demonstrate outlier analysis. This data set has 425 data points with an average 75.45°F 

and standard deviation 6.03°F. The constant value c is equal to 3x6.03°F = 18.09°F. To 

demonstrate the outlier procedure, consider two consecutive air temperature data points 

are 84.3°F (x,_i) and 78.6°F (xj. Outlier can be detected by testing:

>c,

where X/ and are the two consecutive air temperature data points. Since the difference 

between the two values is less than 18.09°F, x, (78.6°F) is not treated as an outlier.
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Based on the data set of air temperature for Hickam AFB, 0.22 percent of the data 

set is deemed as outliers. Since each data set of atmospheric conditions for an 

operational air base were recorded in 30-minute time intervals with more than 20,000 

realizations and many missing data gaps, it is not reasonable to demonstrate all of the 

data and the outlier analysis conducted. Table 4.2 shows a summary of the outlier 

analysis on all data sets of the atmospheric conditions for the six operational air bases. 

Note also that percentage of outliers for the data sets of dew point temperature at each 

operational air base is zero because dew point temperature is estimated after performing 

outlier analysis of relative humidity and air temperature.

4.1.2 Missing observation analysis

The method of neural networks is used to predict missing observations (for both 

outliers and non-recorded data values) in the atmospheric condition data sets. Once 

again, the data set of air temperature for Hickam AFB is used to demonstrate missing 

observation analysis. Figure 4.2 illustrates the neural network experiment implemented 

by the Matlab® neural network toolbox. This experiment is conducted by creating a feed 

forward neural network with five neurons in one hidden layer, with the hyperbolic 

tangent sigmoid as the transfer function in the hidden layer and output layer, and with 

gradient descent as the convergent criterion. Recall that as Tang et al. (1991) suggested, 

the learning rate for efficient learning is 0.1, the momentum is 0.9, and the appropriate 

number of epochs for training the networks is 3,000.

A validation test was run using simulation. The results show that the predicted 

values and the actual values follow the same pattern, indicating that neural networks are 

appropriate to predict the missing observations for long-term forecasting. To illustrate
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the process and its validation, the data set of 425 data points of air temperature for 

Hickam AFB is used to predict consecutive missing values. Based on the data set, 96 

missing data points are replaced with values generated by the neural network 

methodology. The graph of Figure 4.2 depicts the actual versus the predicted values and 

indicates the ability of neural network to replace missing data. Figure 4.3 illustrates the 

data set of air temperature for Hickam AFB and the 96 data points predicted 6om the 

method of neural networks.
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Figure 4.2: Neural network experiment screen
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Figure 4.3; Data points predicted from the method of neural network

Table 4.3: Summary of missing observation analysis

Base Number 
cf gaps

Number of data points 
replaced in each gap

Overall percentage of 
The data points 'ep acec

Hickam AFB 6 96, 89, 144, 128, 192, 336 2.04

KadenaAB 8 288, 155, 96, 144, 240, 192, 124, 
144

3.54

Macdill AFB 15 144, 192, 235, 280, 91, 336, 432, 
309, 288, 96, 144, 48, 96, 48, 192

8.98

RAF Mildenhall 11 192, 96, 96, 288, 240, 240, 144, 
90, 127, 48, 79

3.64

Pease ANGB 18 240, 96, 240, 192, 187, 125, 96, 
48, 144, 142, 94, 156, 147, 192, 
144, 96, 48, 144

5.13

Seymour Johnson 
AFB

7 144, 96, 240, 288, 480, 432, 288 4.31
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Table 4.3 summarizes the number of gaps and the data points of all atmospheric 

condition data sets generated by the method of neural networks of the six bases. Hickam 

AFB had the least number of data gaps while Macdill AFB had the highest percentage.

4.2 Corros/on Seyerf^ Rank/ng

One of the olgectives of this research is to rank corrosion severity by base. To 

meet this purpose, the method of principal component analysis (PCA) is used to perform 

analysis on the compositional data sets rather than the raw data. The number of 30- 

minute intervals when an atmospheric condition is conducive to corrosion growth is 

derived by counting the number of times that each atmospheric condition supports a 

condition for corrosion growth.

Table 4.4 shows the number of 30-minute intervals for each of the eight 

atmospheric condition variables for the six operational air bases was deemed as 

supporting conditions for corrosion growth. Table 4.5 illustrates the new data set (i.e., 

the compositional data sets) transformed 6om the numbers of 30-minute intervals when 

an atmospheric condition is conducive to corrosion growth and represents a probability 

distribution for each base's atmospheric condition. Note that the total of each 

compositional variable is equal to one. For example, an RH' of 0.2066 for Hickam AFB 

means that there is a 20.66% chance that the RH level at Hickam AFB will meet the 

conditions for supporting corrosion growth. The new compositional variable for this 

condition is represented as RH'. Similarly, the new compositional variables are AT', DP', 

pH', RF', TOWl', T0W2', and ST' for AT, DP, pH, RF, TOWl, T0W2, and ST, 

respectively.
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The results of the PCA reveal the covariance matrix, eigenvalues of covariance 

matrix (arranged in order of magnitude), eigenvectors, the jGrst two principal components, 

a scree plot of eigenvalues, and a scatter plot of the Grst two principal components for the 

compositional data set These results are illustrated in Tables 4.6-4.9 and Figures 4.4-4.5.

Table 4.4: Numbers of 30-minute intervals when an atmospheric condition is conducive to 
corrosion growth for each atmospheric data condition

Bases RH AT DP pl- R - TOWl T0W 2 S'" # 0 f
intervals

Hickam 45855 48112 48212 3379 3581 18094 17340 15261 48252

Kadena 36299 27149 34067 3093 2712 17433 17029 2903 39048

Macdill 26349 27883 26140 3651 1263 12901 11025 7042 32632

Mildenhall 37044 9751 14300 2164 2183 9138 7419 16178 45115

P ease 20104 16802 19571 1560 1052 7839 6805 2074 49336

Seymour 31261 29528 26114 702 2282 17264 9816 15056 45712

Total 196912 159365 168445 11549 11073 82670 64433 48514

Note: RH: relative humidity, AT: air temperature, DP: dew point temperature, pH: rain pH, RF: 
rainfall, T0W1: time-of-wetness used to detect light dew, T0W2: time-of-wetness while used to 
detect rain and heavier liquid condensation, and ST: surface temperature measured on the 
material

Table 4.5: Compositional data set

B ases RH' A -' DP pH' RF' TOWl' TOW2' ST'
Hickam 0 2066 0 2659 0.2525 0.2074 0.2457 0.1917 0.2177 0.2367

Kadena 0.2021 0.1854 0.2204 0.2346 0.2300 0.2283 0.2642 0.0556

Macdill 0.1755 0.2279 0.2024 0.2769 0.1282 0.2021 0.2047 0.1615

Mildenhall 0.1785 0.0576 0.0801 0.1421 0.1602 0.1036 0.0996 0.2683

P ea se 0.0886 0.0908 0.1002 0.0936 0.0706 0.0812 0.0836 0.0315

Seymour 0.1487 0.1723 0.1443 0.0455 0.1653 0.1931 0.1301 0.2465

Total

Mean

1

0.1667

1

0.1667

1

0.1667

1

0.1667

1

0.1667

1

0.1667

1

0.1667

1

0.1667
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Table 4.6: Covariance matrix

c — Ü? c-i- ' rli"
r<.r. 0.0019

AT 0.0019 0.0063

DP 0.0021 0.0052 0.0048

pH 0.0025 0.0039 0.0042 0.0078

RF 0.0025 0.0029 0.0032 0.0021 0.0042

TOWl 0.0018 0.0039 0.0035 0.0027 0.0026 0.0035

T0W2 0.0024 0.0045 0.0046 0.0051 0.0034 0.0038

ST 0.0018 0.0008 -0.0003 -0.0015 0.0022 0.0004

Table 4.7: Eigenvalues of the covariance matrix

Number Eigenvalue Difference Proportion Cumulative
1 0.025566 0.013688 0.58 0.58

2 0.011878 0.008249 0.27 0.85

3 0.003629 0.001236 0.08 0.93

4 0.002394 0.001597 0.05 0.98

5 0.000796 0.000796 0.02 1.00

6 0.000000 0.000000 0.00 1.00

7 0.000000 0.000000 0.00 1.00

8 0.000000 0.00 1.00

0.03

0.025

0.02
2

g 0.015

0 ,
W 0.01

0.005

' urn., =.
1 2 3 4 5 6 7

N u m b e r

Figure 4.4: Scree plot
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Table 4.8: Eigenvectors

"2 Us U4 Us Us U7 Us
RH'

. . .  . .  

0.2218 0.1562 0.2019 0.2899 0.02501 0.8950 0.0000 0.0000

AT' 0.4404 0.0629 -0.3762 -0.5678 -0.2120 0.1547 -0.0142 -0.5187

DP' 0.4176 -0.0349 -0.2246 -0.1281 -0.3430 0.0044 0.1127 0.7917

pH' 0.4359 -0.2168 0.7970 -0.1927 -0.0123 -0.1873 0.2213 -0.0803

RF' 0.3040 0.2268 -0.1301 0.6632 -0.3798 -0.2898 0.2995 -0.2854

T0W 1' 0.3271 0.0403 -0.2652 0.0553 0.8041 -0.0686 0.4048 0.0541

T0W 2' 0.4392 -0.0038 -0.0222 0.2428 0.1996 -0.1682 -0.8164 0.0000

ST' 0.0157 0.9260 0.2103 -0.1952 0.0770 -0.1518 -0.1342 0.1138

Table 4.9: The first two principal components

Base ^finciDa. conocnenr 'i Principal component 2
Hickam 0.1619 0.0786

Kadena 0.1487 -0.1070

Macdill 0.1084 -0.0363

Mildenhall -0.1427 0.1011

P ease -0.2061 -0.1398

Seymour Johnson -0.0702 0.1034
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Figure 4.5: Scatter plot of the first two principal components for the six air bases

According to the compositional data in Table 4.5, the values o f the eight 

compositional atmospheric condition variables (i.e., RH', AT', DP', pH', RF', TOWT, 

T0W2', and ST') of Hickam AFB are larger than the mean vector of the eight 

compositional atmospheric condition variables (0.1667) whereas the values of the eight 

compositional atmospheric condition variables of Pease ANGB are less than the mean 

vector of the eight compositional atmospheric condition variable (0.1667). Recall that 

atmospheric corrosion depends on the length of time that moisture is present on the 

metal's surface. This shows that more moisture is present on the aircraft's surface at 

Hickam AFB than on the aircraft's surface at Pease ANGB. Hence it is reasonable to
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infer that Hickam AFB is the most severe site for corrosion whereas Pease ANGB is 

deemed to be the least severe site for corrosion.

The first two principal components are used for corrosion seventy ranking 

analysis since the first two principal components can account for most of the variability 

of the data as shown in the scree plot of Figure 4.4. The scree plot involves selecting the 

number of important principal components based on the visual appearance of the plot. 

According to Figure 4.4, the number (2) of principal components to be selected is 

determined in such a way that the slope of the plot is steep to the left of 2 but at the same 

time not steep to the right. Consequently, the first two principal components are used for 

corrosion severity ranking analysis. The first two principal components of the six air 

bases can be expressed as:

-1 1  ‘='12

2̂1 2̂2

-61 6̂2

v ,i yi.,2

''21 2̂2

'̂ 61 6̂2

'•18
'"28

1̂1 1̂2
»2] 2̂2

8̂2 8̂2

where zy  represents an element of principal component in a vector of principal component 

scores, Xÿ denotes an element in a matrix of the eight atmospheric condition variables and 

the six air bases, and Wÿ represents an element in an eigenvector. This implies that as 

much variation in the data as possible lies along the direction of the first eigenvector and 

the second eigenvector, consecutively. Since the eigenvectors are orthogonal, the 

principal components represent jointly perpendicular directions through the space of the 

original variables. This implies that the transformed variables are uncorrelated with each 

other and centered at the origin.
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T h e first tw o  p rin c ip a l co m p o n en t eq u a tio n s  fo r each  o f  the  s ix  a ir b ases  are  g iven

by:

PCI= 0.22RH' + 0.44AT' + 0.42CP' + 0.44]iT + 0.30RF' +
0.33TOWI' + 0.44TO^' + 0.02ST'

and

PC2=0.16RH' + 0.06AT' -  0.03CP' -  0.22pH' + 0.23RF' +
0.04TOW1' -  0.004TOW +0.93ST,

where PCI and PC2 are the Hrst and the second principal components, RH' is

compositional relative humidity variable, AT' is compositional air temperature variable,

DP' is compositional dew point temperature variable, pH' is compositional rain pH

variable, RF' is compositional rainfall variable, TOWT is compositional time-of-wetness

variable detected by light dew sensor, T0W2' is compositional time-of-wetness variable

detected by rain and heavier liquid condensation sensor, and ST' is compositional

aircrafTs surface temperature variable. The ûrst two principal component equations for

each of the six air bases are the same. This shows that each principal component of each

air base depends on the compositional atmospheric condition variables (i.e., the

compositional data).

According to Tables 4.7 and 4.8, the first principal component with the variance 

0.0256 explains about 58 percent of the variability and the eigenvector corresponding to 

the variance 0.0256 listed under the column ui is (0.2218, 0.4404, 0.4176, 0.4359,

0.3040, 0.3271, 0.4392, 0.0157)'. That is, the first principal component with all its 

positive coefGcients seems to measure the general severity of a base. The second 

principal component with the variance 0.0119 explains about 27 percent of the variability 

and the eigenvector corresponding to the variance 0.0119 listed under the column Uz is
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(0.1562, 0.0629, -0.0349, -0.2168, 0.2268, 0.0403, -0.0038, 0.9260)'. That is, the second 

principal component consists of positive and negative coefRcients indicating a contrast 

between the first group of the compositional atmospheric condition variables (RIT, AT', 

RF', TOWl', and ST') and the second group of the compositional atmospheric conditions 

variables (DP', pH', and T0W2'). By examining the cumulative proportion of the 

variation given in Table 4.7 and scree plot depicted in Figure 4.4, at least two principal 

components are needed to account for 85 percent (58 + 27) of the total variability.

Based on the scatter plots of the first two principal components depicted in Figure 

4.5, the horizontal line and the vertical line aligned zeros are used to separate the bases 

into four quadrants. The northeast quadrant is considered as the most severe zone for the 

compositional atmospheric conditions affecting corrosion (i.e., indicating positive signs 

that imply high impact affecting corrosion) while the southwest quadrant is considered as 

the least severe zone for the compositional atmospheric conditions affecting corrosion 

(i.e., indicating negative signs that imply low impact affecting corrosion). Thus, the 

results of the most severe and least severe zones as determined by the scatter plot of the 

two principal components can be used to rank the corrosion severity by locations.

Since the first principal component accounts for variability more than the second 

principal component, the remaining four sites should rank by considering the first 

principal component. Accordingly, the ranking for the six operational air bases in terms 

of the corrosion severity ranks hom the most severe site to the least severe site: Hickam 

AFB, Kadena AB, Macdill AFB, Seymour Johnson AFB, RAF Mildenhall, and Pease 

ANGB.

General considerations of climate and distance from the sea or salt sources 

provide qualitative information regarding atmospheric corrosion (Brown and Masters,
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1982). Marine and tropical climates are usually highly corrosive, and the corrosivity 

tends to be significantly dependent on the distance from the sea. Table 4.10 provides the 

information of the climate types and distance 6om the sea of the test site locations of the 

rack exposure (information on climate and distance culled from Howard et al., 1999). 

Hickam AFB has a tropical climate that is deemed a severe climate for the atmospheric 

corrosion and the distance hom the sea is less than one mile, while Macdill AFB has a 

marine climate that is deemed a severe climate to the atmospheric corrosion and the test 

site is also nearby the sea. Since the approximate distances &om the seas of RAF 

Mildenhall and Seymour Johnson AFB are far, the types of climate should be considered 

as the significant factor. Hence the least two severe corrosion test site locations would be 

RAF Mildenhall and Seymour Johnson.

Based on the hrst full year of monitoring of the environment at the six operational 

air bases, the results of corrosion severity ranking developed by Arinc, Inc. showed that 

the most severe locations were Hickam AFB, Kadena AB, and RAF Mildenhall followed 

by Pease ANGB, Macdill AFB, and Seymour Johnson AFB.

Based on the three scenario considerations. Table 4.11 shows the results of 

corrosion severity ranking of the six operational air bases. All three scenarios show that 

the most severe location is Hickam AFB whereas the remaining rankings are different. 

The PCA analysis uses threshold values for each atmospheric condition and several years 

worth of data collection to establish corrosion severity ranking by locations. In addition, 

the other two ranking schemes do not consider all atmospheric conditions that allow 

moisture formation. Ignoring moisture presence ignores the catalyst for corrosion 

growth. Only PCA provides a comprehensive analysis of factors contributing to moisture 

or corrosion presence.
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Table 4.10: Test site locations of rack exposure with climate types and distance from the sea 
(culled from Howard et al., 1999)

i's-3 -3 . : =  iccau jf-
Hickam AFB

_ C. i n s . s     D si3 ;ce  I s  sec
a tropical, maritime, and torrid approximately 2,000 feet from Mamaia 
climate Bay and the entrance to Ford Channel

Pearl Harbor

Kadena AB a subtropical, and maritime 
climate

approximately 2,000 feet from the East 
China Sea

Macdill AFB a marine, and sub-tropical 
climate

N/A (at a peninsula in Tampa Bay)

RAF Mildenhall 

P ease ANGB

a temperate maritime climate

a temperate maritime, and 
cold climate

Seymour Johnson a temperate climate 
AFB

approximately 45 mites from the North 
Sea
approximately 1.5 miles from the Great 
Bay, Little Bay, and the Atlantic Ocean

approximately 75 miles from the Atlantic 
Ocean

Table 4.11: Corrosion severity rankings by locations of the three scenarios (number 1 is the most 
severity)

arking Ar:nc Inc Climats ;ypss and =CA
unoer distance from the see

1 Hickam ÀFB Hickam AFB Hickam AFB

2 Kadena AB Macdill AFB Kadena AB
3 RAF Mildenhall Kadena AB Macdill AFB
4 P ease ANGB P ease ANGB Seymour Johnson AFB

5 Macdill AFB RAF Mildenhall RAF Mildenhall
6 Seymour Johnson AFB Seymour Johnson AFB P ease ANGB
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CHAPTER 5 

CORROSION GROWTH ANALYSES

In this chapter corrosion growth data measurements obtained hrom the retrieved 

coupons are used for developing predictive models of corrosion based on time for the 

bases. The models analyzed are the existing growth model (i.e., the confined exponential 

model), the existing corrosion growth model (i.e., power law equation), and the proposed 

corrosion growth models (i.e., the three proposed models, GL, GC, and CL). The first 

section of this chapter displays the corrosion growth data measurements obtained from 

the coupons at each base and utilizes the data to obtain parameter estimates for the 

various models. Then, the models are statistically compared by their weighted mean 

square errors, lack-of-fit tests, and model adequacy checking procedures. The second 

section provides a discussion of the statistical tests and identifies the "best" model as 

based the results of these tests.

Pred/cf/ye Corrosion Growth M odels

Figure 5.1 illustrates the corrosion growth data from the specimens at the six 

operational air bases expressed in thickness loss. Graphically, all data sets display a 

similar nature in that there is a concave growth curve with decreasing corrosion growth 

over time. Repeat observations by year represent the thickness loss for the coupons 

retrieved and thus are considered repeat observations. The repeat observations at the first 

year of exposure have small variation whereas the repeat observations at the last two
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Figure 5.1: Corrosion growth data sets obtained from the six operational air force bases
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years of exposure have higher variation. That is, as time goes on specimens tend to 

corrode at different rates. Note that Pease ANGB shows the largest variance in its data 

set for both years. Since the data sets of repeat observations for Macdill AFB and Pease 

ANGB are available only for two exposure times, performing predictive model 

formulation of corrosion growth is not reliable. Thus, the predictive models for corrosion 

growth as a function of exposure time is performed only on the remaining air bases: 

Hickam AFB, Kadena AB, RAF Mildenhall, and Seymour Johnson AFB.

The procedure used for fitting the confined exponential, the power law equation, 

and the models proposed in Section 3.6 (the GL, GC, and CL) is as follows:

1. SAS® software was used to perform nonlinear regression on the corrosion data 

sets. An iterative estimation method (Marquardt method) was then used to 

estimate the parameters for each of the five models.

2. A lack-of-fit test was used to check whether or not the Gtted model displayed 

the behavior of growth (i.e., a concave limiting function).

3. Model adequacy checking techniques (i.e., plots of residuals versus Gtted 

values and normality test) were used to assess model fit. If the residuals 

indicated non-constant variance, weighted least squares method was 

employed. Models passing the model adequacy checks were then compared 

with each other using error sum of squares criteria (detailed descriptions of 

these tests are outlined in Section 3.6).

Hickam AJFB is used to explain the analysis and results while the analyses for 

Kadena AB, RAF Mildenhall, and Seymour Johnson AFB are in Appendix A. For 

Hickam AFB, Table 5.1 gives the SAS code for fitting the confined exponential model to 

the corrosion growth data set. The SAS procedure to fit nonlinear regression is PROG
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NLIN with the fitting algorithm fbr model parameter estimates invoked by METHOD = 

Marquardt. The FARMS statement defines which elements of the model statement are 

the parameters to be estimated, ( f  ), the ultimate limiting value of corrosion growth fbr 

the confined exponential model (a), the growth coefficient of the confined exponential 

model. The values (0.1 and 0.1) following the parameters (Pstar and aO) are their starting 

values. The MODEL statement defines the mathematical expression of the model, apart 

&om the error term. To save fitted values and residuals, the OUTPUT statement is 

defined to save all data fbr the model adequacy test (i.e., residual analysis). PROC 

GPLOT is used to plot the residuals (the difference between the corrosion growth data 

and the fitted values). To check the model adequacy using normality tests of the 

residuals, PROC RANK is used to arrange residuals in increasing order. PROC GPLOT 

is also used to obtain normal probability plots. PROC RSREG is used to determine the 

pure error sum of squares while the lack-of-fit sum of squares is determined by 

subtracting pure error sum of squares from the total error sum of squares (as obtained 

&om the procedure PROC NLIN). Pure error sum of squares, lack-of-fit sum of squares, 

and total error sum of squares are used for testing whether or not the data display the 

behavior of growth in the lack-of-fit test.

To ht the power law equation and the three new models (i.e., model GL, model 

GC, and model CL) to the corrosion growth data set, the MODEL statement is modified 

to correspond with the model equations fbr the power law equation, model GL, model 

GC, and model CL, respectively.

Generally, the ordinary least square (OLS) method is used to fit any model to data 

using least squares as the fit criterion. OLS has the underlying assumption that the 

distributions of the random errors are all normal and that these distributions all have the
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same means (i.e., zero) and the same variances. If the variances are not equal, the 

method of weighted least squares has to be performed. Otherwise, inaccurate parameter 

estimates might be obtained.

Table 5.1: Confined exponential model fitting to corrosion growth data set of Hickam AFB using 
SAS®

data growth;
input year growthdepth @@; 
cards ;
/*Hickam data*/
0 0 1 0 . 1 3 2 3  3 0 . 2 4 7 1  3 0 . 3 0 7 6 ;
/*lack of fit test*/ 
proc rsreg;
model growthdepth = year/lackfit ;

/*pure error estimation: SS(PE)*/ 
run;
proc nlin data = growth method = marquardt; 
parms Pstar=0.1 a0=0.1;
model growthdepth = Pstar*(1-exp(-aO*year)); 
output out = GrowthResult p = preds r = resid student = stde 
195m = 195mean u95m = u95mean; 

run;
/*set dimension plot*/
goptions hsize = 3 in vsize = 2.8 in;
proc gplot data = GrowthResult;
/*Residual plot against predictive values*/ 
symbol1 v = circle c = black;
plot stde*preds = 1/VAXIS = axial VMINOR = 0 VREF = 0; 
label stde = 'Standardized residuals';
label preds = 'Fitted Value'; axisl label = (a=90 r=0); 

run;
/♦Normal probability plot*/
proc rank data = GrowthResult out = normsc normal = blom;
var stde; ranks nscore; 

run;
proc gplot data = normsc; 
symbol2 v = circle c = black;
plot stde*nscore = 2/VAXIS = axisl VMINOR = 0;
label nscore = 'Normal quantile'; label stde = 'Standardized residuals' 
axisl label = (a=90 r=0) ; 

run;
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Figure 5.2; Residual analysis from the results of the five models using OLS for Hickam AFB

Figure 5.2 depicts residual analyses of the five models using the ordinary least 

squares fbr Hickam AFB. The plots show suspicious behavior, wedge-shaped pattern or 

a megaphone pattern, indicating the assumption of constant variance is not appropriate. 

Thus, the method of weighted least squares is used to correct fbr the non-constant 

variances. The weighted least square procedures and calculations fbr Hickam AFB, 

Kadena AB, RAF Mildenhall, and Seymour Johnson AFB are given in Appendix B.
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After performing weighted least squares. Tables 5.2 and 5.3 show the results of 

the lack-of-fit test and the model parameter estimates fbr the confined exponential model 

using the Hickam AFB data. According to the results of the lack-of-fit tests fbr the 

confined exponential models fbr the Hickam AFB data, the F  and p  values indicate the 

lack-of-St test not significant at a 5 percent level of significance. This implies that the 

model appears to be adequate fbr fitting the corrosion growth data set fbr Hickam AFB. 

In addition, the F-test fbr the overall regression of the confined exponential model 

indicates significance. This also implies that a nonlinear relationship exists between the 

average corrosion thickness loss and time, as observed during a three-year exposure time 

fbr Hickam AFB. The approximate 95% confidence limits of the Gnal model parameter 

estimates fbr the confined exponential model exclude zero. This indicates nonzero values 

fbr all model parameters and implies that the confined exponential model is adequate fbr 

the corrosion growth data. Moreover, Figure 5.3 shows the model adequacy improves 

when using the weighted least square approach as indicates by the residuals and the 

normal probability plots.

For the power law equation and the three new models (GL, GC, and CL), the 

results of the lack-of-fit tests also show model significance at a 5 percent level of 

significance. However, the results .of the model parameter estimation fbr the GL and GC 

models indicate infinity values fbr one of the model parameters. The GL and GC models 

are complicated mathematical models that require iterative parameter estimation 

procedures that often fail to converge.

Similarly, results fbr the lack-of-fit tests, model parameter estimates, and model 

adequacy checking of the five models fbr Kadena AB, RAF Mildenhall, and Seymour
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Johnson AFB data sets show the same results. Appendices A and B gives all results fbr 

Kadena AB, RAF Mildenhall, and Seymour Johnson AFB, respectively.

Table 5.2: Lack-of-fit test for Confined Exponential model for Hickam AFB data with weighted 
least squares

Source DF Sum of Squares Mean Square F Value Pr > F
Regression 2 388.2000 194.1000 224.8657 < 0.0001

Lack of Fit 2 0.4482 0.2241 0.2471 0.79
Pure Error 20 18.5418 0.9271
Total Error 22 18.9916 0.8632

Table 5.3: Model parameter estimates for Confined Exponential model for Hickam AFB data with
weighted least squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.2507 0.0368 0.1744 0.3271

9o 0.6466 0.1890 0.2546 1.0387
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Figure 5.3: Model adequacy checking for Confined Exponential model 
for Hickam AFB data with weighted least squares
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Table 5.4: Lack-of-fit test fbr Power Law model for Hickam AFB data with weighted least squares

Source OF Sum of Squares Mean Square F Value Pr > F .
Regression 2 388.2000 194.1000 223.4537 < 0.0001

Lack of Fit 2 0.0597 0.0298 0.0313 0.97
Pure Error 20 19.0503 0.9525
Total Error 22 19.1100 0.8686

Table 5.5: Model parameter estimates for Power Law model for Hickam AFB data with weighted
least squares

'a'eneter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.1212 0.0106 0.0992 0.1432

9o 0.5304 0.1056 0.3107 0.7501
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Figure 5.4: Model adequacy checking for Power Law model 
for Hickam AFB data with weighted least squares
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Table 5.6: Lack-of-fit test for GL model for Hickam AFB data with weighted least squares

Source DF Sum of Squares Mean Square F Value Pr > F

Regression 3 387.9000 129.30 149.978 < 0.0001

Lack of Fit 2 0.3435 0.1717 0.0313 0.83
Pure Error 20 18.6233 0.9312
Total Error 22 18.9700 0.8621

Table 5.7: Model parameter estimates for GL model for Hickam AFB data with weighted least
squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.3509 0.1317 0.0779 0.6240

S q 0.1706 0.0311 0.1060 0.2351
k 0.3110 Infinity -Infinity Infinity
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Figure 5.5: Model adequacy checking for GL model 
for Hickam AFB data with weighted least squares
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Table 5.8: Lack-of-fit test for GC model for Hickam AFB data with weighted least squares

Source DF . Sum of Squares , Mean Square F Value Pr > F .
Regression 3 269.9000 89.966 139.87 < 0.0001

Lack of Fit 2 0.0185 0.0092 0.0131 0.98
Pure Error 20 14.1315 0.7066
Total Error 22 14.1500 0.6432

Table 5.9: Model parameter estimates for GC model for Hickam AFB data with weighted least
squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.3595 0.0822 0.1890 0.5300

3o 0.4634 Infinity -Infinity Infinity
k 0.3007 0.3340 -0.3921 0.9935

(lin n I I I |u i iïn rfj i w i in rip n rn n i ; 111 u ii 111
0 . 0 0  0 . 0 5  0 . 1 0  0 . 1 5  0 . 2 0  0 . 2 5  

F i t t e d  Val ue  

Residuals against fitted values plot

I i i n  i I I ( I I I I i' i I I i > I I i t I I I I I TT| IT FfT'TTTf Y

- 2 - 1 0  1

Norma1 quant 11e

Normal probability plot

Figure 5.6: Model adequacy checking for GC model 
for Hickam AFB data with weighted least squares
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Table 5.10: Lack-of-fit test for CL model for Hickam AFB data with weighted least squares

Source DF Sum of Squares M e d n ^ u a re  F Value Pr > F

Regression 2 238.5000 119.2500 231.9075 < 0.0001

Lack of Fit 2 0.2718 0.1359 0.2462 0.79
Pure Error 20 11.0409 0.5520
Total Error 22 11.3127 0.5142

Table 5.11: Model parameter estimates for CL model for Hickam AFB data with weighted least
squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.3543 0.0743 0.2003 0.5084

3o 0.5147 0.2096 0.0800 0.9495
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Figure 5.7: Model adequacy checking for CL model 
for Hickam AFB data with weighted least squares
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5 .2  O /s c u s s /o n

All five growth models were fit to the corrosion growth data sets fbr four 

operational air bases except one of the bases (i.e., the GC model of RAF Mildenhall). 

This is due to the inability of the iterative estimation procedure to converge when 

performing parameters estimates fbr the GC model. Table 5.12 summarizes all of the 

results fbr the parameter estimation by base, including weighted mean square errors

(WMSE) fbr each corrosion growth model. Note that f  represents the predicted 

thickness loss whereas t denotes exposure time. All summaries show that the CL model 

provides the best fit fbr all corrosion growth data sets of the fbur operational air bases and 

dominates the other models in terms of WMSE. Recall that the CL model is a modified 

model of the logistic growth model and the conGned exponential growth model. Figures 

5.8- 5.11 illustrate the Gve predictive corrosion growth models with upper and lower 95% 

confidence bounds on the predicted thickness loss for the four operational air bases. The 

upper and lower 95% confidence bounds of the predicted thickness loss increase as the 

exposure time increases. This implies that the variability of corrosion growth is higher 

when the coupons are exposed fbr longer periods of time. This behavior is supported by 

examining the corrosion growth measured from the coupons (see Figure 5.1).

Clearly, predictive corrosion growth models of Hickam AFB have higher growth 

trends compared to those of remaining air bases. According to the results of the 

corrosion severity ranking in Chapter 4, the PCA ranking fbr the six air bases in terms of 

corrosion severity from the most severe site to the least severe site is: Hickam AFB, 

Kadena AB, Macdill AFB, Seymour Johnson AFB, RAF Mildenhall, and Pease ANGB.
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The results 6om the predictive corrosion growth models thus support the results from the 

corrosion severity ranking analysis.
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Table 5.12: Summary of predictive corrosion growth models for the four bases (* indicating best
model by location)

5c£.e

Hickam
AFB

roc=l 

Confined exponential

.-erarats • .mode

Power law equation

GL model

GC model

P = 0 .2 5 0 7 (1 - 8 - ° ^ ' )

P = 0.1212f0.5304

P  = 0.3509
0.3509

exp 1.56331 - e -0.3110 t

P = 0 .3 5 9 5 -
0.3595

exp {l.541 l(l-e -°°™ ^ ')
CL* model 0.1824f 

1 + 0.5147f

' = 0.1520(l-e-'°'^")

VySf

0.8632

0.8686

0.8621

0.6432

0.5142

Kadena
AB

Confined exponential

Power law equation P = 0 .0972f0.3703

GL model
P  = 0.1885

0.1885
exp 1.933 (1 - -0.46931

GC model
P  = 0.1937

0.1937
exp [l.8844(l-e" °-0.4499 f

CL* model
P  = 0.1957f 

1 + 1.0146f

0.8467

0.7956

0.5329

0.5305

0.5172

Confined exponential
=  0 . 1940(1 -0.9239 t

Power law equation P  = 0.1174 f'0.4216

RAF
Mildenhall

GL model
P  = 0.1936

0.1936
exp

GC model

CL* model 0.2154f 
1 + 0.8388f

P = 0 .1 2 5 8 (l-e '°^ ')

0.5328

0.5415

0.5331

Failed to 
converge

0.3189

Seymour
Johnson
AFB

Confined exponential

Power law equation P  = 0.0926

GL model
p  = 0.1477

0.1477

exp 2.2296(l-e-°^°^')
GC model

P  = 0.1480
0.1480

exp !.2237(l-e-°^^°')
CL* model 0.2365f 

1 + 1.5603f

0.5497

0.5565

0.5492

0.4031

0.3402

126



1 2 
ExposLfl'etime (yea’)

Confined exponential

1 2 
Exposire I ime (yea-)

Power law

1 2 
Exposure time (year)

GL model

1 2 
Exposure t ime ( year)

GC model

Î
I
I 0.16

]  0.12

g 0.08
â 0.06  
5 0.04  
o  0.02 

0.00
20 1 3

Exposiretime (yea)

CL model

Figure 5.8; Corrosion growth predictive models for Hickam AFB
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Figure 5.9: Corrosion growth predictive models for Kadena AB
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Figure 5.10: Corrosion growth predictive models for RAF Mildenhall
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Figure 5.11: Corrosion growth predictive models for Seymour Johnson AFB
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH

This chapter provides conclusions and future research. All results 6om Chapters 

4 and 5 are summarized.

6.f Conc/ws/ons

One of the objectives of this research is to identify corrosion severity ranking by 

location of the six operational air bases. The six operational air force bases included 

Hickam Air Force Base (AFB) in Hawaii, Kadena Adr Base (AB) in Japan, Macdill AFB 

in Florida, Royal Air Force (RAF) Mildenhall in England, Pease Air National Guard 

Base (ANGB) in New Hampshire, and Seymour Johnson AFB in North Carolina. These 

bases were chosen by the USAF and Arinc, Inc. to represent the range of atmospheric 

conditions C/KC-135 aircraft could be exposed to over their operational hfe. A corrosion 

severity ranking scheme fbr the six operational air bases allows the USAF to concentrate 

their efforts on proactively inspecting aircraft fbr corrosion when deployed and operated 

at highly severe corrosion sites. A corrosion severity ranking scheme fbr the six 

operational air bases can also aid future aircraft maintenance programs by prioritizing 

corrosion inspection and repairs by base.

Atmospheric conditions are clearly important because environment has long been 

identified as the root-cause of corrosion problems. The atmospheric condition data 

captured by Arinc, Inc. include air temperature, relative humidity (RH), rain pH, rainfall.
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time-of-wetness (TOW), and aircraft's surface temperature. As stated earlier, dew point 

temperature also plays an important role in atmospheric corrosion and while the dew 

point temperature was not recorded by Arinc, Inc., it was estimated as a function of air 

temperature and RH. The methodology fbr corrosion severity ranking transformed the 

original data set and the calculated dew point temperature into a compositional data set 

based on the percentage of 30-minute intervals that an atmospheric variable met a 

condition conducive to corrosion growth. The percentage of 30-minute intervals is used 

fbr corrosion severity ranking analysis of the six air fbrce bases since atmospheric 

corrosion depends on the length of time that moisture is present on the metal's surface 

and places all conditions against a common scale fbr PCA. After obtaining the 

compositional atmospheric condition data the method of principal component analysis 

(PCA) was used fbr the first time to obtain corrosion severity ranking by location of the 

six operational air bases. The 6rst two principal components were used fbr corrosion 

severity ranking analysis since the first two principal components accounted for 85% of 

the variability of the data and showed that Hickam AFB is the most severe site fbr 

corrosion and Pease ANGB is the least severe site fbr corrosion. The PCA ranking fbr all 

six operational air bases ranks fiom the most severe site to the least severe site as Hickam 

AFB, Kadena AB, Macdill AFB, Seymour Johnson AFB, RAF Mildenhall, and Pease 

ANGB.

A predictive model of corrosion growth based on the corrosion thickness loss data 

gathered fiom the coupons at each base allows the USAF to look at the rate of corrosion 

growth by site as a function of time. The fbundation fbr the predictive corrosion growth 

models developed in this research is based on the known behavior of corrosion growth. 

That is, the gaseous oxygen interacts with the metal, an oxide is fbrmed on the metal
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surface. The oxide forms the surface layer, which protects the metal 6om further 

oxidation. If the surface layer reaches a certain thickness, the oxide ceases to grow and 

the metal passivates. Consequently, while corrosion growth is hee initially, it reaches an 

ultimate limiting value. That is, it cannot corrode more than what amount of metal is 

initially present or it is stopped by the oxidation process itself. While other models have 

been developed fbr metals none have been developed fbr the alloys used in C/KC-135 

operational aircraft or fbr C/KC-135 alloys that have been "aged" to represent actual 

operational wear and tear.

The three new predictive corrosion growth models developed by modifying the 

existing growth models (i.e., the Gompertz growth model and the logistic growth model 

or GL model, the Gompertz growth model and the confined exponential growth model or 

the GC model, and the logistic growth model and the conGned exponenGal growth model 

or the CL model) were compared to the confined exponential growth model and the 

power law equaGon. The results showed that of the Gve models tested, the CL model 

provides the best fit for all corrosion growth data sets of the four operational air bases and 

dominates the other models in terms of weighted mean square error (WMSE).

6.2 Fufure ResearcA

Multiple regression may be an effective approach used to express the relationship 

between the thickness loss and the eight atmospheric conditions (i.e., air temperature, 

relative humidity, dew point temperature, rain pH, rainfall, TOWl, T0W2, and aircraA's 

surface temperature). However, the problem of correlation among independent variables 

(i.e., multicollinearity) might arise in the independent variables. Multicollinearity will 

cause the variances to be high. This causes an invalid model while perfbrming multiple
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regression. Thus, before performing multiple regression, it is recommended that the 

problem of multicollinearity should be addressed and alleviated.

Principal component regression (PCR) is an effective approach fbr handling the 

problem of multicollinearity (Jackson, 1991). Principal component regression transforms 

the independent variables into principal components and the dependent variable (i.e., 

corrosion thickness loss data set) is regressed on the principal components rather than on 

the original variables (i.e., the numbers of 30-minute intervals exceeding or falling within 

a threshold fbr promoting corrosion growth over the thresholds of the atmospheric 

condition data sets). To overcome the problem of multicollinearity, Khattree and Naik 

(2000) stated that the last few principal components corresponding to the smallest 

eigenvalues of the covariance or correlation matrix, might be dropped.

However, by using the method of PCR all original independent variables are still 

present in the multiple regression model. In many applications, it is desirable not only to 

reduce the number of principal components corresponding to the smallest eigenvalues, 

but also to reduce the number of the original independent variables. Some original 

independent variables might not affect the response. It is reasonable to eliminate these 

ineffectual independent variables. To identify the significant atmospheric conditions 

influencing corrosion growth, an algorithm fbr eliminating the ineffectual atmospheric 

conditions should be developed fbr supporting the method of PCR. Mansfield et al. 

(1977) proposed an analytic variable selection algorithm fbr eliminating independent 

variables &om multiple regression when principal components were removed to ac^ust 

fbr multicollinearity among the independent variables. The procedure of the analytic 

variable selection algorithm first deleted principal components associated with small 

eigenvalues and then incorporated a resemblance of the backward elimination procedure
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in order to eliminate one or more independent variables. Other proposed algorithms fbr 

eliminating ineffectual variables fbr principal component regression are presented in the 

articles by McCabe (1984) and Depczynski et al. (2000).
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Bates, D M. and Watts, D.G. (1988), Aozz/zzzgor Rggrgj.yzozz y4zza(y.yz.y azzz7yf^Zzcatzozzf, 
John Wiley & Sons, Inc., New York.

Bhattacharjee, S., Roy, N., Dey, A.K., and Baneijee, M.K. (1993), "Statistical Appraisal 
of the Atmospheric Corrosion of Mild Steel", Cozro.yzozz Sbzgzzcg, 34(4), 573-581.

Box, G.E.P. and Jenkins, G.M., and Reinsel, G.C. (1994), Tzzzzg S'gz'zgf yfzzaJyfü.
Tbz-gcojtzzzg azzrf CozzP-oZ, Third Edition, Prentice Hall Englewood Cliffs, N.J.

Brown, P.W. and Masters, L.W. (1982), "Factors Affecting the Corrosion of Metals in 
the Atmosphere", y4tzzzo.̂ /zgz'zg Cozro ẑozz, Ailor, W.H., Ed., John Wiley & Sons, 
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APPENDIX A

Predictive Corrosion Growth Models for Kadena AB, 
RAF Mildenhall, and Seym our Jo h n so n  AFB
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Figure A1: Residual analysis from the results of the five models using OLS for Kadena
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Table A1 : Lack-of-fit test for ConfinecI Exponential model for Kadena AB data with weighted least
squares

Sc j ce DF Sum of Squares Mean Square F Value P r > F

Regression 2 623.2000 311.6000 368.0315 < 0.0001
Lack of Fit 2 2.6274 1.3137 1.6473 0.219
Pure Error 19 15.1526 0.7975
Total Error 21 17.7841 0.8467

Table A2: Model parameter estimates for Confined Exponential model for Kadena AB data with
weighted least squares

Parameter Esd " s .s Approximate Std Error Approximate 95% Confidence Limits

P* 0.1520 0.0117 0.1277 0.1763

3q 1.0121 0.1881 0.6209 1.4033
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Figure A2: Model adequacy checking for Confined Exponential model 
for Kadena AB data with weighted least squares
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Table A3: Lack-of-fit test for Power Law model for Kadena AB data with weighted least squares

Source ■ DF S„i" O'" Mean Square F Value P r > F
Regression 2 623.1000 311.5500 391.5725 < 0.0001
Lack of Fit 2 1.4324 0.7162 0.8908 0.43
Pure Error 19 15.2760 0.8040
Total Error 21 16.7084 0.7956

Table A4: Model parameter estimates for Power Law model for Kadena AB data with weighted 
least squares

Parameter Estimate Approximate Std Error, Approximate 95% Confidence Limits

P* 0.0972 0.00524 0.0863 0.1081

9o 0.3703 0.0714 0.2214 0.5192
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Figure A3: Model adequacy checking for Power Law model 
for Kadena AB data with weighted least squares
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Table A5: Lack-of-fit test for GL model for Kadena AB data with weighted least squares

Source , DF Sum of Squares Mean Square F Value Pr> F 9

Regression 3 402.00 134.00 251.47 < 0.0001

Lack of Fit 2 1.4483 0.7242 1.4124 0.268
Pure Error 19 9.7417 0.5127
Total Error 21 11.1900 0.5329

Table A6: Model parameter estimates for GL model for Kadena AB data with weighted least
squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.1885 0.0353 0.1150 0.2620

9o 0.1710 0.0248 0.1194 0.225
k 0.4693 Infinity -Infinity Infinity
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Figure A4: Model adequacy checking for GL model 
for Kadena AB data with weighted least squares
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Table A7: Lack43f-fit test for GC model for Kadena AB data with weighted least squares

Source DF o' Sqj're^' Mean Square ■ F Value ; Pr > F s:
Regression 3 226.10 75.367 142.0736 < 0.0001

Lack of Fit 2 1.5966 0.7983 1.5893 0.23
Pure Error 19 9.5434 0.5023
Total Error 21 11.1400 0.5305

Table A8: Model parameter estimates for GC model for Kadena AB data with weighted least
squares

Parameter -.stncre Approximate Std Error Approximate 95% Confidence Limits

P* 0.1937 0.0362 0.1184 0.2689

Bq 0.8478 Infinity -Infinity Infinity
k 0.4499 0.3939 -0.3693 1.2691
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Figure AS: Model adequacy checking for GC model 
for Kadena AB data with weighted least squares
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Table AS: Lack-of-fit test for CL model for Kadena AB data with weighted least squares

SoL rce DF 5.."-' c  S c.ia 'ss Mean Square F Value Pr > F
Regression 2 395.1000 197.5500 381 9957 < 0.0001

Lack of Fit 2 1.2672 0.6336 1.2549 0.31
Pure Error 19 9.5930 0.5049
Total Error 21 10.8602 0.5172

Table A10: Model parameter estimates for CL model for Kadena AB data with weighted least
squares

Pa ame^e- Estimate Approximate Std Error Approximate 95% Confidence Limits
P* 0.1929 0.0232 0.1447 0.2411

3q 1.0146 0.3137 0.3622 1.6671
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Figure AS: Model adequacy checking for CL model 
for Kadena AB data with weighted least squares
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Table A11: Lack-of-fit test for Confined Exponential model for RAF Mildenhall data with weighted
least squares

Source DF Sum of Squares ' , Mean Square F Value . Pr F  , ,
Regression 2 119.3000 59.6500 "11 9465 <0.0001

Lack of Fit 2 0.0024 0.0012 0.0020 0.99
Pure Error 14 8.5231 0.6088
Total Error 16 8.5255 0.5328

Table A12: Model parameter estimates for Confined Exponential model for RAF Mildenhall data
with weighted least squares

Parameter csin -ate Approximate Std Error Approximate 95% Confidence Limits
P> 0.1940 0.0401 0.1089 0.2791

Bo 0.9239 0.3669 0.1461 1.7016
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Figure A8: Model adequacy checking for Confined Exponential model 
for RAF Mildenhall data with weighted least squares
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Table A13: Lack-of-fit test for Power Law model Aar RAF Mildenhall data with weighted least
squares

Source C - S l 1 C' Soi-cfes ,'..63 ■. Sa..o.'e 5 j s Pr> F
Regression 2 119.3000 59.6500 110.1608 < 0.0001

Lack of Fit 2 0.0478 0.0239 0.0388 0.96
Pure Error 14 8.6159 0.6154
Total Error 16 8.6637 0.5415

Table A14: Model parameter estimates for Power Law model for RAF Mildenhall data with
weighted least squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.1174 0.00991 0.0963 0.1385

3o 0.4216 0.1587 0.0833 0.7599
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Figure A9: Model adequacy checking for Power Law model 
for RAF Mildenhall data with weighted least squares
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Table A15: Lack-of-fit test for GL model for RAF Mildenhall data with weighted least squares

Source DF Sum of Squares Mean Square , F  Value Pr > F
Regression 3 119.300 39.7667 74.5916 < 0.0001

Lack of Fit 2 0.0052 0.0026 0.0043 0.996
Pure Error 14 8.5248 0.6089
Total Error 16 8.53 0.5331

Table A16: Model parameter estimates for GL model for RAF Mildenhall data with weighted least
squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits.

P* 0.1936 0.1989 -0.2304 0.6177

do 0.1789 0.1960 -0.2388 0.5966
k -0.00612 3.3990 -7.2509 7.2387
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Figure AID: Model adequacy checking for GL model
for RAF Mildenhall data with weighted least squares
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Table A17: Lack-of-fit test for GC model for RAF Mildenliall data witli weighted least squares

SoorœïM ï DF Sum of Squares Mean Sduare F Value Pr > F
Regression 2

Lack of Fit 2
Pure Error 14
Total Error 16

Note; The results do not exist since the iterative estimation procedure failed to converge

Table A18: Model parameter estimates for GC model for RAF Mildenhall data with weighted least 
squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits
_ _ _ _ _  _ - ] Z I

3 q -  -

/c  -  -  -

Note: The results do not exist since the iterative estimation procedure failed to converge
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Table A19: Lack-of-fit test for CL mode! for RAF Mildenhall data with weighted least squares

Source • DF S.. ' ■ c ■ SoLsres Mean Square F Value . Pr > F
Regression 2 72.1143 36.0572 113.0761 <0.0001

Lack of Fit 2 0.0059 0.0030 0.0081 0.99
Pure Error 14 5.0961 0.3640
Total Error 16 5.1020 0.3189

Table A20: Model parameter estimates for CL model for RAF Mildenhall data with weighted least
squares

Parameter Estimate , Approximate Std Error Approximate 95% Confidence Limits

P* 0.2568 0.0800 0.0873 0.4263

9q 0.8388 0.5379 -0.3014 1.9790
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Figure A l l :  Model adequacy checking for CL model 
for RAF Mildenhall data with weighted least squares
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Seymour JoAnson AFB
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Figure A12: Residual analysis from the results of the five models using OLS
for Seymour Johnson AFB
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Table A21: Lack-of-fit test for ConfinecI Exponential mode! for Seymour Jotinson AFB data with
weighted least squares

Source DF Sum of Squares Mean Square F Value Pr > F
Regression 2 321.8000 160.9000 292.6928 < 0.0001

Lack of Fit 2 0.0497 0.0248 0.0385 0.96
Pure Error 11 7.0967 0.6452
Total Error 13 7.1464 0.5497

Table A22: Model parameter estimates for Confined Exponential model for Seymour Johnson
AFB data with weighted least squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.1258 0.0114 0.1011 0.1505

3g 1.3203 0.3155 0.6386 2.0019

j I I f T T T  I I ]• I 'T I T  n  I I I j I M  i I ! I I I I

0 . 0 0  0 . 0 5  0 . 1 0  0 . 1 5

Fitted Value

Residuals against fitted values plot

‘]-rrn ii ,, | |-|-|-rTTTi ii | n inxrri |i ii i rrrrt 
- 2 - 1 0  1 2

Norma1 quantile

Normal probability plot

Figure A13: Model adequacy checking for Confined Exponential model 
for Seymour Johnson AFB data with weighted least squares
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Table A23: Lack-of-fit test for Power Law model for Seymour Johnson AFB data with weighted
least squares

Source DF Sum of Squares Mean Square F Value • \  Pr.>F)
Regression 2 321.9000 160.9500 289.2303 <0.0001

Lack of Fit 2 0.0354 0.0177 0.0270 0.97
Pure Error 11 7.1988 0.6544
Total Error 13 7.2342 0.5565

Table A24: Model parameter estimates for Power Law model for Seymour Johnson AFB data 
with weighted least squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.0926 0.00516 0.0813 0.1038

3o 0.2832 0.0941 0.0782 0.4883

I I I r i ' T T T T T p i  I I I I I I I I I I I I I ! I I I I I I I I I I I I I I I

0 . 0 9  0 . 1 0  0 .11 0 . 1 2  0 . 1 3

F i t t e d  V alue

Residuals against fitted values plot

I" ITT I 11 11 11 I 11 |-| n'TT'i'ii tiiTrrrr|iiTTTTn i [' 
- 2 - 1 0  1 2

Norma1 quanti1e

Normal probability plot

Figure A14: Model adequacy checking for Power Law model 
for Seymour Johnson AFB data with weighted least squares
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Table A25: Lack-of-fit test for GL model for Seymour Johnson AFB data with weighted least
s q u a r e s

S ol ce DF Sum of Squares Mean Square F Value P r > F
Regression 3 321.900 107.30 195.3641 < 0.0001

Lack of Fit 2 0.0175 0.0088 0.0135 0.99
Pure Error 11 7.1225 0.6475
Total Error 13 7.1400 0.5492

Table A26: Model parameter estimates for GL model for Seymour Johnson AFB data with
weighted least squares

Parameter Estimate Approximate Std Error- Approximate 95% Confidence Limits

P* 0.1477 0.0305 0.0818 0.2136

9o 0.1908 0.0388 0.1070 0.2745
k 0.5794 Infinity -Infinity Infinity

0 . 1 50 . 0 5  0 . 1 0

Fitted Value 

Residuals against fitted values plot

I I I I  i  e  i  I I I  I I i I < I I I M  )  I i  I I M  I !  I }  I M  f  I I I H  I 

- 2 - 1 0  1 2

Norma1 quantile

Normal probability plot

Figure A15: Model adequacy checking for GL model 
for Seymour Johnson AFB data with weighted least squares
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Table A27: Lack-of-fit test for GC model for Seymour Johnson AFB data with weighted least
squares

Source Sum of Squares Mean Square F Value P r > F
Regression 3 201.00 67.0000 166.2214 < 0.0001
Lack of Fit 2 0.0159 0.0080 0.0167 0.98
Pure Error 11 5.2241 0.4749
Total Error 13 5.2400 0.4031

Table A28: Model parameter estimates for GC model for Seymour Johnson AFB data with
weighted least squares

Parameter Estimate Approximate Std trror Approximate 95% Confidence Limits

P* 0.1480 0.0305 0.0821 0.2139

So 1.2844 0.5427 0.1121 2.4568
k 0.5776 infinity -Infinity Infinity

2
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O o

O0 oD
o* o

o
o

1 I r I T r r  r  i r i n  rI i I I I I M I r I I r r  r V n  rryTTT

0 .0 0  0 . 0 5  0 . 1 0  0 . 1 5

F i t t e d  V a lu e  

Residuals against fitted values plot

' I 11 II II i"i r r n  i i r | i i 11 11 i n  | n  i-n 11 11 | ' 

- 2 - 1 0  1 2

Normal q u a n t i t é

Normal probability plot

Figure A16; Model adequacy checking for GC model 
for Seymour Johnson AFB data with weighted least squares
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Table A29: Lack-of-fit test fbr CL model for Seymour Johnson AFB data with weighted least
squares

'C ?

Regression 

Lack of Fit 
Pure Error 
Total Error

DF Sum of Squares

2
2
11
13

5? -i Sc i3 e

192.4000

0.0064
4.4158
4.4222

96.2000

0.0032
0.4014
0.3402

F Value

282.8004

0.0080

<0.0001

0.99

Table A30: Model parameter estimates for CL model for Seymour Johnson AFB data with 
weighted least squares

Parameter Estimate Approximate Std Error Approximate 95% Confidence Limits

P* 0.1516 0.0220 0.1041 0.1991

So 1.5603 0.7013 0.0452 3.0753

2
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-1
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o

o

_Q_

o

o
o

F i t t e d  V alu e  

Residuals against fitted values plot

' I  I I  II ti 11 I ]  rn nil ii | i ii'rin t'l't'nTTTTTT'rf 
- 2 - 1 0  1 2

Normal quan11 le

Normal probability plot

Figure A17: Model adequacy checking for CL model 
for Seymour Johnson AFB data with weighted least squares
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APPENDIX B 

W eighted L east S quares Calculation
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Weighted Least Squares Procedures

Step 1 : Plot graph relationship between average and standard deviation of each exposure time 

Step 2 : Determine expected value ( ) at each exposure time from

step 3: Determine variance function (g), which is defined as the function of expected value 

Step 4 : Determine the weights defined as

1"W = ----------------

Step 5 : Fit the growth model with the weights to the corrosion growth data set

Step 6 : Update the parameter estimates, weighted sum of squares, and repeat Steps 2-5 until the weighted 
sum of squares approaches the minimum value. If the model adequacy checking indicates constant 
variance, obtain the optimum parameter estimates.

R esults 

H/cAram
1. The Confined Exponential Model Fitting to the Corrosion Growth Data Set of HIckam AFB 

START

Iteration 0 Running SAS® to obtain the initial parameters without considering the weights.

Iteration 1
Step 1 :

0.07

0.05

o 0.04 
%
?  0.03 

-g 0.02 

c  0.01
w

- 0.01

o

o 9 = 0.2641mu-0.0035 
1? = 0.7636

1 0.05 0.1 0.15 0.2 0, 25
Average

Figure 81: Standard deviation as the function of average for Hickam AFB
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Steps 2. 3. and 4 :

P=C.2613(1-sxp(-C.5866u))

u Mu(u) = P a*0:2G41*mKLD035: 9*2 w(u)=1/g''2)
0 0 -0.0035 0.0000 22
1 0.11596097 0.02712529 0.00073.-,-31
2 0.18046022 0.04415954 0.001950065
3 0.21633569 0.05363425 0.002876633 :  -'6'-

Step 5:

data growth;
input year growthdepth cards;

0 0 1 : 0il323: . . . 3 Oi24?l 3 0 .30 76 
; /*Hickara and Mildenhall combined data*/ 
proc nlin data = growth method = marquardt; 
parms Pstar=0.1 a0=0.1;
model growthdepth = Pstar*(1-exp(-aO*year));

if year = 0 then _weight_ = 81632.65; if year = 1 then _weight_ = 1359.10; 
if year = 2 then _weight_ = 512.80; if year = 3 then _weight_ = 347.63; 

run; ____________________________________________________________________________

Step 6 :

Iteration Weighted SS Pstai aO
0 - 0.2613 0.5866
1 19.07 0.2502 0.6496

Iteration 2
Steps 2. 3. and 4 :

Cohf noo'Fxr.*
u

/^0.2502(1 -exp(-0.6496u))

Mu(u) = P S = 0.2641*Mw-0.003S 9*2 w(u)=Vg'^2)
0 0 -0.0035 0.0000122" 81632 ,5
1 0.11953189 0.02806837 0.000787834 1269 30
2 0.18195797 0.0445551 0.001985157
3 0.21455029 0.05316537 0.0028265or

Step 5:

proc nlin data = growth method = marquardt; 
parms Pstar=0.1 a0=0.1;
model growthdepth = Pstar*(1-exp(-aO*year));

if year = 0 then _weight_ = 81632.65; if year = 1 then _weight_ = 1269.30; 
if year = 2 then _weight_ = 503.74; if year = 3 then _weight_ = 353.79;

run;

Step 6 :

iteration Weighted SS Pstar aO
0 - 0.2613 0.5866
1 19.07 0.2502 0.6496
2 19.01 0.2508 0.6465
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Iteration 3
Steps 2. 3. and 4 :

Cc " f e
P=D.2508(1-exp(-0.6465u))

u Mu(u) = P g = 0.2641'*u4).0035 9*2 1 /
0 0 -0.0035 0.00001225
1 0.11941186 0.02803667 0.000786055 -  . . t
2 0,18196889 0.04455798 0.001985414
3 0.21474102 0.0532131 0.0028316 1

Step 5 :

proc nlin data = growth method = marquardt; 
partns Pstar=0.1 a0 = 0.1;
model growthdepth = Pstar*(1-exp(-aO*year));

if year = 0 then _weight_ = 81632.65; if year = 1 then _weight_ = 1272.18; 
_________if year = 2 then weight_ = 503.67; if year = 3 then weight = 353.15; run;

Step 6 :

Iteration Weighted SS Pstai aO
0 - 0.2613 0.5866
1 19.07 0.2502 0.6496

■ 2 19.01 0.2508 0.6465
3 18.99 0.2507 0.6466

Iteration 4
Steps 2. 3. and 4 :

Ccn''nsOnxpo
P=0.2507(1-exp(-0.6466i/))

u Mu(u) = P g = 0.2641'Mu-0.0035 9*2
0 0 -0.0035 0.0000''225 81632 35
1 0.11937739 0.02802757 0.000785545 1273 DC
2 0.18191009 0.04454246 0.00198101 504 02
3 0.21466621 0,05319335 0.002829532 353 4?

Step 5 :

proc nlin data = growth method = marquardt; 
parms Pstar=0.1 a0=0.1;
model growthdepth = Pstar*(1-exp(-aO*year));

if year = 0 then _weight_ = 81632.65; if year = 1 then _weight_ 
_____ if year = 2 then weight = 504.02; if year = 3 then weight =

= 1273.00; 
353.42; run;

Step 6 :

Iteration Weighted SS Pstar aO
0 - 0.2613 0.5866
1 19.07 0.2502 0.6496
2 19.01 0.2508 0.6465
3 18.99 0.2507 0.6466
4 18.99 0.2507 0.6466

STOP
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Similarly, the weighted least squares procedures can be used to obtain weighted sum of squares 
and the optimal model parameters for the power law equation and the “new” model fitting to the corrosion 
growth data sets of Hickam AFB, Kadena AB, RAF Mildenhall, and Seymour Johnson AFB. Thus, the 
detailed procedures will not be presented for these models. However, the summary results will be provided.

2. The Power Law Equation Fitting to the Corrosion Growth Data Set of Hickam AFB

P=0.1212*.u''0.5304

u Mufu) = P ' " a ̂ tL2e»i*mMi.oo35 9*2 w{u)=ilg''2)
0 0 -0.0035 0.00001225 81632.65
1 0.1212 0.02850892 0.000812759 1230.38
2 0.17505275 0.04273143 0.001825975 547.65
3 0.21705397 0.05382395 0.002897018 345.18

Iteration Weighted SS k m
0 . 0.1202 0.5407
1 19.09 0.1212 0.5302
2 19.12 0.1212 0.5304
3 19.11 0.1212 0.5304
4 19.11 0.1212 0.5304

3. The Model GLFitting to the Corrosion Growth Data Set of Hickam AFB

newt . Î ■
u Mu(u) = P g = 0.2641*Mu-0.0035 9*2 w(u)=1/g*2)
0 0 -0.0035 0.00001225 81632.65
1 0.1198441 0.02815083 0.000792469 1261.88
2 0.18078047 0,04424412 0.001957542 510.84
3 0.21496527 0.05327233 0.002837941 352.37

Iteration Weighted SS Pstar A aC
0 - 0.3713 0.2875 0.1616
1 19.02 0.3501 0.312 0.1709
2 19.00 0.351 0.311 0.1706
3 18.98 0.3509 0.311 0.1706
4 18.97 0.3509 0.311 0.1706
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4. The Model GC Fitting to the Corrosion Growth Data Set of Hickam AFB

u MuW = P g=0JZ64rWu4l.0O35 g*2 w(u)=1/g'̂2)
0 0.103336 0.023791 0.000566 1766.74
1 0,1720309 0.0419334 0.0017584 568.70
2 0.2107785 0.0521666 0.0027214 367.46
3 0.2342426 0.0583635 0.0034063 293.57

Replication Weighted SS Pstai k aO
0 . 0.3713 0.2875 0.4351
1 15.37 0.3568 0.3039 0.4704
2 14.15 0.3602 0.2999 0.4616
3 14.38 0.3595 0.3007 0.4634
4 14.39 0.3597 0.3005 0.463

5. The Model CL Fitting to the Corrosion Growth Data Set of Hickam AFB

cew
P=(0.3543*0.5147‘u)/(1+0.5147*0)

u Mu(u) = P g = 0.2641*Mu-0.0035 ST2 w(u)=1/g''2)
0 0 -0.0035 0.00001225 81632.65
1 0.14256107 0.03415038 0.001166248 857.45
2 0.22777547 0.0566555 0.003209846 311.54
3 0.2787115 0.07010771 0.004915091 203.46

Iteratio Weighted SS Pstar aO
0 - 0.3735 0.4602
1 11.49 0.3535 0.5172
2 11.35 0.3544 0.5146
3 11.31 0.3543 0.5147
4 11.31 0.3543 0.5147
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Kadena

6. The Confined Exponential Model Fitting to the Comwlon Growth Data Set of Kadena AB

Cor.medcxpo
f%=0.152(1-exp(-1.0121 u))

u Mufuf = P *̂0.t78@"Wu+0.0011 9*2 w(u)=1/g*2)

0 0 0.0011 0.00000121 826446.28
1 0.09674933 0.01836975 0.000337448 2963.42
2 0.13191686 0.02464716 0.000607482 1646.14
3 0.14469995 0.02692894 0.000725168 1378.99

Iteration Weighted SS Pstai aO
0 . 0.1543 0.9610
1 17.90 0.1519 1.0146
2 17.78 0.152 1.012
3 17.78 0.152 1.0121
4 17.78 0.152 1.0121

7. The Power Law Equation Fitting to the Corrosion Growth Data Set of Kadena AB

Pov./di-a»"
ffe0.0972*i/'0.3703

u Mu(u) = P g=  0.1785*Sfu+0.0011 9*2 w(u)=1/g*2)
0 0 0.0011 0.00000121 826446.28
1 0.0972 0.0184502 0.00034041 2937.64
2 0.12564282 0.02352724 0.000553531 1806.58
3 0.14599711 0.02716048 0.000737692 1355.58

Iteration Weighted SS A m
0 0.0963 0.3840
1 16.75 0.0972 0.3698
2 16.72 0.0972 0.3703
3 16.71 0.0972 0.3703
4 16.71 0.0972 0.3703
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8. The GL Model Fitting to the Corrosion Growth Data Set of Kadena AB

u MuW = P g  = 0.1785**0+0.0011 ST2 iv(u)=1/g*2)
0 0 -0.0035 0.00001225 81632.65
1 0.09714911 0.02215708 0.000490936 2036.92
2 0.13035342 0.03092634 0.000956438 1045.55
3 0.14462902 0.03469652 0.001203849 830.67

Iteration Weighted SS Pstar k aO
0 - 0.1942 0.4479 0.1635
1 11.27 0.1882 0.4704 0.1713
2 11.19 0.1885 0.4693 0.171
3 11.19 0.1885 0.4693 0.171
4

9. The GC Model Fitting to the Corrosion Growth Data Set of Kadena AB
:

u Mu(u) = P g  = 0.1785*Mu+0,0011 9*2 w(u)=Mg^2)
0 0.1484396 0.0275965 0.0007616 1313.08
1 0.1549766 0.0287633 0.0008273 1208.71
2 0.1586431 0.0294178 0.0008654 1155.53
3 0.1607978 0.0298024 0.0008882 1125.89

Iteration Weighted SS Pstar k aO
0 - 0.1942 0.4479 0.8418
1 11.17 0.1936 0.4499 0.8479
2 11.15 0.1937 0.4499 0.8478
3 11.14 0.1937 0.4499 0.8478
4
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10. The CL Model Fitting to the Corrosion Growth Data Set of Kadena AB

P=(0.1929*0.1.0146'£/)/(1 +1 .0146*u)

u MefW = P g « 0.1785**u*Ô.0Ù11 9*2 w(u)=1/g*2)
0 0 0.0011 0.00000121 826446.28
1 0.12294362 0.02304544 0.000531092 1882.91
2 0.16752988 0.03100408 0.000961253 1040.31
3 0.18369937 0.03389034 0.001148555 870.66

Iteration Weighted SS Pstar aO
0 . 0.1973 0.9472
1 10.90 0.1926 1.0193
2 10.86 0.1929 1.0143
3 10.86 0.1929 1.0146
4 10.86 0.1929 1.0146
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RAF Af//(/enAa//

11. The Confined Exponential Model Fitting to the Corrosion Growth Data Set of RAF Mildenhall

ConfineoExpo
u Mu(u) = P g=0>M56**iM).006 5T2 w(u)=1/g*2)
0 0 -0.005 0.000025 40000.00
1 0,11698824 0.04362031 0.001902732 525.56
2 0.16342881 0,06292101 0.003959054 252.59
3 0.18186422 0.07058277 0,004981927 200.73

Iteration Weighted SS Pstar aO
0 - 0.1940 0.9240
1 8.52 0.194 0.9239
2 8.5255 0.194 0.9239
3 8.5255 0.194 0.9239
4 8.5255 0.194 0.9239

12. The Power Law Equation Fitting to the Corrosion Growth Data Set of RAF Mildenhall

power _a Vif
P=0.117A*i/0.4216

u Mu(u) = P g-0^168**iP0.005 g*2 iiv(o)=1/g*2)
0 0 -0.005 0.000025 40000.00
1 0.1174 0.04379144 0.00191769 521.46
2 0.15724699 0.06035185 0.003642346 274.55
3 0.18656167 0.07253503 0.005261331 190.07

Iteration Weighted SS k m
0 - 0.1179 0.4121
1 8.67 0.1174 0.4214
2 8.67 0.1174 0.4216
3 8.66 0.1174 0.4216
4 8.66 0.1174 0.4216
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13. The GL Model Fitting to the Corrosion Growth Data Set of RAF Miidenhail

u Mu(u) = P g»0.415@*Wu4).005 g*2 w(u)=i/g*2)
0 0 -0.005 0.000025 40000.00
1 0,11697752 0.04361586 0.001902343 525.67
2 0.16344663 0.06292842 0.003959986 252.53
3 0.18180143 0.07055668 0.004978244 200.87

Iteration Weighted SS Pstar k aO
0 - 0.1936 -0.0061 0.1789
1 8.53 0.1936 -0.00612 0.1789
2
3
4

14. The GC Model Fitting to the Corrosion Growth Data Set of RAF Mildenhall

The results do not exist since the iterative estimation procedure failed to converge

15. The CL Model Fitting to the Corrosion Growth Data Set of RAF Mildenhall
P=(0.2568*0.8388’*u)/(1+0.8388’'u)

u Mu(u) = P g  = 0.4156*Mw-0,005 g*2 w(u)=1/g''2)
0 0 -0.005 0.000025 40000.00
1 0.14581472 0.0556006 0.003091426 323.48
2 0.20883375 0.08179131 0.006689818 149.48
3 0.23606968 0.09311056 0.008669576 115.35

Iteration Weighted SS Pstar aO
0 - 0.2553 0.8506
1 5.10 0.2568 0.8389
2 5.10 0.2568 0.8388
3 5.10 0.2568 0.8388
4 5.10 0.2568 0.8388
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Seymour JoAnson

16. The Confined Exponential Model Fitting to the Corrosion Growth Data Set of Seymour Johnson 
AFB

Zcri  ■'CC z\po
P=0.1258(1-exp(-0.1 3203U))

u Mu(u) = P g = 0.2281'We-0.002 g^2 w(u)=1/g''2)
0 0 -0.002 0.000004 250000.00
1 0.09220446 0.01903184 0.000362211 2760.82
2 0.11682814 0.0246485 0.000607548 1645.96
3 0.12340402 0.02614846 0.000683742 1462.54

Iteration Weighted SS Pstar aO
0 - 0.1260 1.3108
1 7.15 0.1258 1.3204
2 7.1464 0.1258 1.3203
3 7.1464 0.1258 1.3203
4 7.1464 0.1258 1.3203

17. The Power Law Equation Fitting to the Corrosion Growth Data Set of Seymour Johnson AFB

“ower_a\,''
P=0.0926*tP02832

u Mu(u) = P g = 0.2281*Mu-0.002 lT2 w(u)=1/S*2)
0 0 -0.002 0.000004 250000.00
1 0.0926 0.01912208 0.000365653 2734.83
2 0.11268411 0.02370325 0.000561844 1779.85
3 0.12639553 0.02683082 0.000719893 1389.10

Iteration Weighted SS m
0 - 0.0927 0.2803
1 7.25 0.0926 0.2832
2 7.23 0.0926 0.2832
3 7.23 0.0926 0.2832
4 7.23 0.0926 0.2832
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18. The GL Model Fitting to the Corrosion Growth Data Set of Seymour Johnson AFB

ne
u Mu(u) = P g=0.2281*Wu-0.002 3*2 w{u)=ilg^2)
0 0 -0.002 0.000004 250000.00
1 0.09229339 0.01905212 0.000362983 2754.95
2 0.11571081 0.02439364 0.00059505 1680.53
3 0.12418448 0.02632648 0.000693084 1442.83

Iteration Weighted SS Pstai k aO
0 - 0.1480 0.5775 0.1900
1 7.15 0.1477 0.5794 0.1908
2 7.14 0.1477 0.5794 0.1908
3
4

19. The GC Model Fitting to the Corrosion Growth Data Set of Seymour Johnson AFB

New?
u Mu(u) = P g = 0.2281'Mu-0.002 3*2 vv(u)=1/g''2)
0 0.1273077 0.0270389 0.0007311 1367.80
1 0.129508 0.0275408 0.0007585 1318.40
2 0.1306388 0.0277987 0.0007728 1294.05
3 0.1312428 0.0279365 0.0007804 1281.32

Iteration Weighted SS Pstar aO
0 - 0.1480 0.5774 0.2840
1 46.41 0.1477 0.5792 1.2908
2 5.25 0.148 0.5776 1.2844
3 5.24 0.148 0.5776 1.2844
4
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20. The CL Model Fltüng to the Corrosion Growth Data Set of Seymour Johnson AFB

m=(0.151 G"0.1.5603*u)/(1 +1 5603'u)

u Mu(u) = P g = 0.2281'MiMI.002 9*2 w(u)=Vg'^2)
0 0 -0.002 0.000004 250000.00
1 0.11975293 0.02531564 0.000640882 1560.35
2 0.14490979 0.03105392 0.000964346 1036.97
3 0.15019457 0.03225938 0.001040668 960.92

Iteration Weighted SS PStat aO

0 - 0.1516 1.5585
1 4.42 0.1516 1.5603
2 4.42 0.1516 1.5603
3 4.42 0.1516 1.5603
4 4.42 0.1516 1.5603
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