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Abstract

A general, completely automated procedure for classifying rainfall systems is devel

oped. The technique is flexible and universally applicable, in that any rainfall system can 

be classified regardless of size, location, time of day or year, degree of organization, etc. 

The knowledge obtained from previous research was used to develop a relatively straight

forward and unique classification system. To test the performance of the method, results 

were validated against a subjective classification based upon objective criteria. From an 

independent random sample, the automated classification system accurately placed events 

into stratiform, linear, and cellular classes 85% of the time.
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Chapter 1

Introduction

l . l  Motivation

Classification is the process of systematically placing individual entities into 

categories or classes, based upon the similarity of an item to other members of a category. 

When considering rainfall (more generally, precipitation) systems, one is faced with a 

wide spectrum of entities, or phenomena. Several classes of rainfall systems have been 

previously defined, some based upon the underlying processes that produced the rainfall, 

such as the general parent classes of convective and stratiform (Houghton 1968). Other 

general classes are based upon the space and time scales associated with each system, such 

as synoptic and mesoscale (Austin and Houze 1972; Orlanski 1975). Sub-classes of these 

range from ordinary air-mass thunderstorms (Byers and Braham 1949) to mesoscale 

convective systems (MCSs, Zipser 1982) to mesoscale bands embedded within synoptic- 

scale circulations (Hobbs 1978). In many cases, the classes are delineated by various 

characteristics of the spatial patterns of rainfall. In particular, rainfall systems have been 

classified using characteristics related to the intensity, intermittancy, shape, structure, 

continuity, and organization of the rainfall amounts.

Rainfall systems have been classified for a variety of purposes. Numerous 

climatological studies (e.g., Austin and Houze 1972; Bluestein and Jain 1985; Johns and 

Hilt 1987; Houze et al. 1990; Blanchard 1990; Geerts 1996; Parker and Johnson 2000) 

based at least partially upon radar reflectivity data have examined the characteristics and 

behavior of various types of mesoscale precipitation systems. These studies were



motivated by the desire to increase understanding, and therefore improve forecasting of 

mesoscale convective precipitation systems. As a result of this research, conceptual 

models of various rainfall systems have been built. These models help in understanding 

the critical relationship between the mode of convection and the types of severe weather 

that may occur (e.g., Johns and Doswell 1990; Edwards et al. 2002). For example, Houze 

et al. (1990) found that MCSs classified as moderately or weakly similar to the 

archetypical “leading line-trailing stratiform” system with the most intense cells located 

along the southern portion of the line {asymmetric) were associated with the greatest 

number of severe weather reports, primarily tornadoes and damaging hail. Systems that 

were classified as strongly similar to the leading line-trailing stratiform category were 

mainly associated with flooding. Systems that were less organized (ironically classified 

by Houze et al. (1990) as “unclassifiable”) were more often associated with severe hail.

Other more basic climatological studies of MCSs have focussed on the contribution 

that these systems make to the wet-season rainfall over the U.S. (Fritsch et al. 1986) or the 

tropics (Mohr et al. 1999). For example, Fritsch et al. (1986) found that 30-70% of the 

warm-season rainfall was produced by MCSs. Mohr et al. (1999) classified convective 

rainfall systems based upon satellite data in the microwave channel (85-GHz) and found 

that MCSs contributed 70-80% of the total wet-season rainfall in the tropics.

Beyond climatological studies, some other applications of rainfall classification 

involve forecasting precipitation systems directly. For example, one might want to track 

individual storms for short-term forecasting purposes or for use in a weather-related 

decision support system (e.g., Kessler 1966; Dixon and Wiener 1993; Peak and Tag 1994; 

Johnson et al. 1998; Wilson et al. 1998; Lakshmanan 2001). This might involve an expert



system that assimilates a large volume of data and automatically returns some form of 

interpretation of the data in real-time, speeding up the data analysis process so the human 

forecaster can concentrate on the decision-making task at hand. Most of these 

“nowcasting” tools focus on individual thunderstorm cells that may be located within a 

larger rainfall system.

Other researchers have been motivated by the desire to estimate vertical latent 

heating profiles or improve rainfall estimation from remote sensing (e.g., Steiner et al. 

1995; Yuter and Houze 1997; Biggerstaff and Listemaa 2000; Rao et al. 2001). These 

classification schemes subdivide a rainfall system into convective and stratiform regions 

at the pixel-level. The motivation for this type of “micro-classification” is that convective 

and stratiform precipitation regimes are caused by vertical motions of greatly differing 

magnitudes. Houghton (1968) defines strati from precipitation as that related to vertical 

motions much less than the fall speed of snow, therefore the precipitation particles must 

grow as they fall through the cloud, primarily via aggregation. The stronger vertical 

motions associated with convective precipitation allow for different growth processes 

(accretion) to dominate. Since the precipitation growth mechanisms are so different, the 

vertical distribution of latent heating must also be different. In addition, the convective 

and stratifrom drop size distributions will likely be different, therefore different Z-R 

relations would be required for accurate rainfall estimation. In addition, by treating 

convective and stratiform regions differently, this type of classification of rainfall can 

improve data assimilation systems that utilize precipitation information (e.g., Zupanski 

and Mesinger 1995; Rogers et al. 2(X)1).

There are other potential applications for a rainfall system classication procedure



that have not yet been developed. For instance, Elmore et al. (2002) showed that an 

ensemble of cloud-resolving numerical model forecasts produced skillful forecasts of 

storm lifetimes. An automated rainfall system classification system could be used to 

analyze a large set of high-resolution forecasts, providing meaningful infomation on the 

range of possible rainfall systems that were predicted by the ensemble members. Forecast 

verification and predictability studies may also benefit from such a classification system. 

For example, Anthes (1983) argued for expanding verification information to include the 

validation of the “realism” of a forecast. One specific method that Anthes (1983) 

suggested was to verify the characteristics of significant meteorological phenomena. 

Along these lines, several “object-oriented” or “feature-specific” approaches to 

verification have been attempted or proposed (Somerville 1977; Williamson 1981; Neilley 

1993; Smith and Mullen 1993; Weygandt and Seaman 1994; Baldwin et al. 2001). In 

order to accomplish the task of verifying significant meteorological phenomena, an 

automated system for identifying, characterizing, and classifying such phenomena is 

required. Rainfall systems are certainly an excellent candidate for this type of verification 

technique. For example, information on errors of displacement, amplitude, orientation, 

convective mode, etc., related to specific classes of MCSs found in numerical guidance 

would be quite useful for operational forecasters, such as those at the Storm Prediction 

Center (Greg Dial 2003, personal communication). The development of a verification 

system of this kind is the primary motivation for this work.

The implementation of a national weather radar network along with real-time hourly 

raingage data has fostered the development of high-resolution hourly estimates of 

precipitation (Baldwin and Mitchell 1998). The existence of a national mosaic of high-



resolution rainfall data allows for the identification of rainfall systems across the lower 48 

states over a wide ranges of scales, as well as the development of automated classification 

systems. The availability of several years of data also allows for comprehensive studies of 

the climatology of rainfall systems. The motivation for developing an automated 

procedure for rainfall system classification certainly exists. The next section will examine 

previous research related to rainfall system classification.

1.2 Previous work

In the previous section, various reasons for classifying rainfall systems were 

discussed. The manner in which rainfall systems have been classified in previous work 

will be detailed in this section. There are three basic methods that have been employed in 

the previous research to locate and identify specific classes of rainfall systems within 

meteorological data; subjective (using objective criteria), threshold-related, and 

agglomerative methods.

Several researchers have subjectively analyzed a relatively large number of 

precipitation systems for classification purposes. For example, Austin and Houze (1972) 

analyzed radar data from three radars in New England and classified rainfall systems 

based upon their size and intensity. They established four classes of systems: synoptic 

areas, large mesoscale areas, small mesoscale areas, and cells. They also described the 

characteristics of each class, including the relative contribution of the total rainfall from 

each class. In their conclusions, they comment that “clearly it would be desirable to find a 

more objective mode of defining and identifying mesoscale precipitation areas...if their 

characteristics could be analyzed by computer techniques, much more data could be 

handled, and more comprehensive statistics would emerge.”



More comprehensive studies of MCSs were performed by Bluestein and Jain (1985), 

Bluestein et al. (1987), Blanchard (1990), Houze et al. (1990), Geerts (1998), and Parker 

and Johnson (2000). These studies examined MCSs subjectively via visual analysis of 

radar images. The systems were classified based upon how they developed over time and 

how closely they matched archetypical examples of MCS classes. For most of these, an 

objective criteria was used to define a line of convection, which was a length to width ratio 

of at least 5, at least 50km long and less than 50km wide (Bluestein and Jain 1985). In 

addition, most used an objective criteria for delineating the convective and stratiform 

regions. For example, Geerts (1998) used the 20dBZ threshold to delineate the convective 

region as long as there was a maximum reflectivity of at least 40dBZ embedded within it. 

Each study defined slightly different classes of MCSs, although there were a few classes 

in common worth noting. The leading-line/trailing-stratiform class (Houze et al. 1990) 

demonstrated the highest degree of linear organization and was the focus of several 

studies. On the opposite end of the alignment spectrum, Houze et al. (1990) established 

an unclassifiable class, similar to the chaotic class defined by Blanchard (1990). The 

common characteristic among these studies was the use of visual inspection of the radar 

images as the primary analysis tool. Since the goal of this work is developing an 

automated classification system, the subjective classification technique will obviously not 

be appropriate for this study.

The next group of classification tools uses some form of threshold in radar or 

satellite data to classify regions within rainfall systems. The specific class of 

thunderstorm cells have been located, classified, and tracked via reflectivity thresholds 

within weather-related decision support systems (e.g., Dixon and Weiner 1993; Johnson et



al. 1998). These routines are very class-specific, in fact, Johnson et ai. (1998) does not 

recommend using their technique for larger rain systems. Peak and Tag (1994) use 

hierarchical threshold segmentation as a feature identification tool, which is a necessary 

step prior to classification. A hierarchy of “objects” within a satellite image is produced 

though the use of a set of thresholds. A neural network is used to train the system to 

decide when to subdivide a region and when not to. The resulting segmentation will 

depend on the expert used to train the network. The characteristics of the satellite image 

patterns that were used were size, boundary length, and “complexity” (related to fractal 

dimension) which is ratio of size to boundary length.

Steiner et al. (1995) apply a sort of adaptive thresholding technique to separate 

convective and stratiform regions within a rainfall system. The reflectivity value at a 

point is compared to the “background” value, which is an average of the reflectivities 

within a small radius of the point. If the reflecitivity is significantly higher than the 

background, or if it is > 40dBZ, the point is considered convective. This is referred to by 

Biggerstaff and Listemaa (2000) as a “peakedness method.” The classification methods 

described by Yuter and Houze (1997) and Biggerstaff and Listemaa (2000) are based upon 

modified versions of the Steiner et al. (1995) routine. In addition, the analysis of the 

microwave channel of satellite data by Mohr and Zipser (1996) operates in a similar way, 

except with brightness temperatures. As mentioned in the previous section, the 

motivations for these types of classification routines are to estimate vertical latent heating 

profiles or modify Z-R relations to improve rainfall estimation. The physical basis for this 

type of “micro-classification” is that convective and stratiform precipitation are caused by 

vertical motions of greatly differing magnitudes (Houghton 1968), therefore the



associated vertical latent heating profiles should be different.

On the other hand, this work takes a “macro-classification” approach to classify 

entire rainfall systems, as opposed to the “micro-classification” of Steiner et al. (1995). 

The definition of a system is: “an organized integrated whole made up of diverse but 

interrelated and interdependent parts”. In a typical MCS, the convective and stratiform 

regions are interrelated and interdependent parts of a system. The stratiform region would 

not exist if the convection was not there to transport ice crystals away from the strong 

updraft. In some cases, evaporation of rainfall within the stratiform region helps to 

enhance the mesoscale circulation that allows the convection to propagate, keeping the 

entire system alive (e.g., Zhang and Gao 1989). In this work, a mesoscale convective 

system of this type will be considered a convective system and a complete entity and not 

sub-divided into convective/stratiform regions. Therefore, the Steiner et al. (1995) and 

related algorithms will not be used in this work.

The final method of rainfall system classification that will be discussed is the 

agglomerative or cluster analysis technique. An image processing technique, an 

agglomerative region-growing algorithm operates by grouping together portions of an 

image with similar characteristics. A recent example of an agglomerative routine for 

processing weather-related images is provided by Lakshmanan (2001). Here, the texture 

of the image, represented by a vector of local statistical measures in the neighborhood of 

each pixel, is analyzed. Pixels that are similar in terms of their texture and spatial location 

are grouped together to form a set of clusters. This technique produces a hierarchy of 

objects over a range of spatial scales, where the number of clusters/objects is cut in half at 

each step in order to reach the next level of hierarchy. At some point, a subjective



decision as to the desired number of clusters must be made. This method does produce 

favorable results for weather radar and satellite images, and is currently being tested for its 

potential use in radar feature tracking algorithms at the National Severe Storms 

Laboratory (Lakshmanan 2003). However, it was not selected for this work since a 

subjective decision on the number of clusters or objects to keep for each image is required. 

While the selection of an acceptable threshold that would produce satisfactory results for 

any given rainfall image might be possible to obtain, perhaps via training of a neural 

network such as in Peak and Tag (1994), this would likely require a great deal of effort and 

tuning of the technique.

As previously noted, there are a wide variety of applications for an automated 

rainfall system classification procedure. Many of the previous studies related to 

automated rainfall classification perform what has been defined as a “micro

classification” similar to categorizing parts of an entity, using a microscope. While there 

are certainly valid reasons for executing a classification of this kind, those are not the 

primary focus of this work. Instead, a broader “macro-classification” approach to the 

classification problem is followed in this work, considering classes of rainfall systems as 

separate types of entities or species of animals. For example, linear and chaotic MCSs are 

different species of the same family, they are associated with different types of mesoscale 

circulations, different environmental conditions, and tend to produce different types of 

severe weather (Houze et al. 1990). The differences between these two approaches to 

studying the morphology of rainfall systems is similar to the difference between anatomy, 

the study of parts of the body, and taxonomy, the classification of organisms in an ordered 

system. Of the past research described previously, only the subjective approaches to



classification followed this “macro-classification” philosophy. Therefore, in order to 

realize the goal of performing a more general automated classification, a unique 

classification procedure must be developed.

The specific objective of this work is to develop a general, completely automated 

procedure for classifying rainfall systems. A desirable property of such a technique is that 

it will be universally applicable, that is, any rainfall system can be classified regardless of 

size, location, time of day or year, degree of organization, etc. The knowledge obtained 

from previous research will be synthesized while a relatively simple, yet unique 

classification system is developed. To ensure that the method performs well, results of 

this technique will be validated against subjective classes based upon objective criteria, 

similar to those described in Bluestein and Jain (1985). The process of developing the 

automated classification system will be described in the next section.

1.3 Statement of work

Since there are many different applications for an automated rainfall system 

procedure, it is likely impossible to develop a universal method that will satisfy every 

user. The primary users that are the focus of this work are those interested in the 

classification of rainfall systems in their entirety. This section outlines the general 

framework that will be followed to perform an automated rainfall system classification. 

For this, we naturally turn to the discipline of data mining.

This work will take advantage of the well-established techniques found in the field 

of knowledge discovery in databases (KDD, Fayyad et al 1996) and data mining 

(Adriaans and Zantinge 1996). The concept of KDD is defined by Fayyad et al (1996) as 

“the non-trivial process of identifying valid, novel, potentially useful, and ultimately
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understandable patterns in data.” Data mining is a specific part of the KDD process, 

referring to the application of algorithms for extracting patterns from data, and 

classification is but one of several specific data mining tasks. KDD is a multi-disciplinary 

field with roots in machine learning, expert systems, databases, statistics, and data 

visualization. The general steps of the KDD process are listed in table 1-1 (Fayyad et al 

1996).

Table 1-1: General steps of the KDD process (from Fayyad et al. 1996).

1. Develop an understanding of the application and the goals of the end-user.

2. Create a target data set.

3. Preprocess the data set; remove noise and outliers and decide how to treat missing 
data.

4. Data reduction and projection; find useful features that represent the data with a 
smaller number of variables or dimensions.

5. Choose the data mining task; classification, regression, clustering, change detection, 
etc.

6. Choose the data mining algorithm.

7. Execute the data mining.

8. Interpret the mined patterns, possibly repeating previous steps as a result.

9. Consolidate discovered knowledge.

These general steps provide the broad outline that has been followed in developing 

an automated classification scheme for this research. The first step involves developing 

an understanding of the application and the goals of the end-user. This understanding has 

been established in this chapter. Here, the goal is to classify rainfall systems. For several 

reasons, rainfall has been selected as the variable for analysis. The spatial patterns found 

in precipitation fields often represent important and significantly different meteorological 

phenomena. There are several potential applications for an automated rainfall
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classification system, including climatological studies, verification, data assimilation, 

feature tracking, and forecasting. The next steps in the KDD process involve the selection 

of a target data set and preprocessing the data. A relatively large dataset should be used, 

one that is richly populated with a variety of interesting and important phenomena that 

span a large portion of the entire range of possible events. Here, forty-eight cases from a 

high-resolution precipitation analysis produced operationally by the National Centers for 

Environmental Prediction (NCEP) are used to create the target data set. The use of 

operationally available data will make this work more relevant and allow for faster 

implementation into an operational forecasting environment.

Once the target data set has been selected and processed, the next steps in the KDD 

process involve data reduction and data mining. In this case, the data mining task is 

classification. Data reduction addresses the methods used to extract features of a rela

tively small dimension within the large-dimensional dataset that allow for proper classifi

cation of objects. Here, statistically-based attributes will be used exclusively. The 

determination of useful attributes that possess good discrimination and classification prop

erties represents the most substantial portion of this work. The selection of attributes that 

characterize rainfall systems feeds off the lessons learned in previous research. For 

example, to attempt to separate convective and stratiform systems, histogram analysis was 

performed. Not only does this provide information on the overall intensity of the rain, but 

the “peakedness” (Biggerstaff and Listemaa 2000) as well. For example, convective 

systems will contain a relatively high number of heavy rainfall observations, which will be 

represented in the histogram by a distribution with a “thick tail.” In order to separate 

convective events into linear and chaotic (cellular) classes, estimates of the degree of
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linear organization of the rainfall system will be obtained via geostatistical measures. 

Once a useful set of attributes has been determined, algorithms will be developed to 

automate the identification of rainfall systems and extract the attributes associated with 

them, and automate the classification of each system. These procedures are related to the 

final steps of the KDD process, involved with selecting and executing the data mining 

algorithm, interpreting the results, perhaps repeating the previous steps, and finally 

consolidating the discovered knowledge. The automated classification procedure will be 

used to examine rainfall systems over the course of an entire year. The summary statistics 

of these data will be considered, and the classification method will be validated by an 

independent, representative sample.

In summary, to develop an automated rainfall system classification procedure, the 

KDD process has been followed in this work. A brief outline of the remainder of this 

dissertation folllows. A detailed description of the mathematical tools used throughout 

this work will be provided in chapter 2. Results from classification experiments involving 

histogram-related attributes are discussed in chapter 3. Experimental classification results 

using summary measures of geostatistics will be presented in chapter 4. A detailed 

description of procedures developed to identify, analyze, and classify rainfall systems in a 

completely automated fashion will be offered in chapter 5. In addition, summary statistics 

obtained from analysis of an entire year of rainfall data as well as an independent 

validation of the classification results will also be documented. Finally, concluding 

remarks and a discussion of future work related to this automated classification system 

will be provided in chapter 6.
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Chapter 2

Mathematical tools

2.1 Introduction

There is a long history in the meteorological literature on the use of pattern recogni

tion/classification techniques for a wide variety of applications. A few examples include: 

detecting patterns in atmospheric soundings in the near-tomado environment (Schaefer 

and Livingston, 1988), distinguishing polar ice cap cloud cover types in satellite data 

(Ebert 1987), locating frontal zones in numerical model output (Fine and Fraser 1990), 

classifying or clustering ensemble forecast data (Eckert et al 1996, Alahmed et al. 2002), 

locating significant circulation features in radar data (Weckwerth et al 1997, Stumpf et al 

1998), and pattern analysis of climate data (Gong and Richman, 1995). There are com

mon threads among these studies. Each begins with a complex data set of fairly large 

dimension. The goal of each is develop an objective method to extract useful information 

found within that large database. These goals are consistent with the general disciplines of 

data mining and knowledge discovery in databases (KDD) (Adriaans and Zantinge 1996, 

Fayyad et al 1996).

In the previous chapter, the general process for developing a rainfall classification 

system was outlined. A key aspect to this work involves comparing the results of an auto

mated classification using trial attributes with a subjective classification. If the two classi

fications agree, the trial attributes will then be considered useful. Also, an automated 

rainfall system identification and analysis system is required. Several steps within this 

process require the use of specific mathematical tools and algorithms. The purpose of this
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chapter is to introduce those concepts and tools. The KDD process (Table 1-1) defines the 

general framework that has been followed in developing a rainfall pattern classification 

technique. For example, step #2 (Table 1-1) involves creating a target data set. While the 

details of the type of rainfall observations that were used in the data set will be left to the 

next chapter, the definition of terms related to the target data set will follow.

2.2 Data Matrix
Classification involves placing subjects into groups based upon their similarity to 

other individuals found within a particular class. The similarity between individuals is 

determined by some function of the characteristics asssociated with each object. Analysis 

of a set of objects to be classified and the attributes associated with them is typically per

formed through the use of a data matrix. Define X  = [.r^] , 1 < / < m , I < j< n  as a data 

matrix. In such a matrix, each column represents an object, and each row represents an 

attribute. Therefore, .r,y represents the î  ̂ attribute of the j*  object. In the context of 

meteorological data, objects might also be called events, phenomena, features, realiza

tions, or cases. Attributes refer to the observations, parameters, characteristics, or mea

surements that describe various aspects of the objects of interest. For example, in 

ensemble forecasting (Alhamed et al 2002), objects would be forecasts from specific 

members of an ensemble, and attributes would be the values of the predicted variable from 

each member. Other examples of objects would include two-dimensional fields of heights 

on constant pressure surfaces, vertical soundings of temperature, time-series of wind 

speed, or snowdepth at a specified location. Each object can be described by a vector of 

m-dimension, where m is the number of attributes. Meteorological data consisting of mul

tiple spatial dimensions (such as a 2-D field of temperature) is often visualized in a grid-
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ded form, where, for example, the 1®* dimension represents the east-west spatial direction 

and the 2"^ dimension represents the north-south spatial direction. When placed in a data 

matrix, such data will be converted into a wi-dimension vector by proper row-major or col

umn-major storage methods. Additionally, each row of the data matrix can also be viewed 

as a vector of «-dimension, where n is the number of objects. A target data set is a data 

matrix containing some set of trial objects and attributes.

The choices of methods of comparing the similarity of objects will depend on the 

manner in which values are assigned to the attributes that describe each object. The rules 

for distinguishing among different attribute values are known as the scales of measure

ment. There are four scales for data that analysts typically use to establish the meaning of 

comparisons between attribute values. For example, when attributes can only be deter

mined to be equal or unequal, this is called the nominal scale. Examples of nominal scale 

values include colors, binary (true or false) variables, and gender. When the scale allows 

for the ordering of attribute values, it is known as an ordinal scale. The ordinal scale fur

ther distinguishes the equality/inequality relation of the nominal scale, by describing val

ues as greater or smaller than other variables. Examples of ordinal scale variables include 

letter grades (A through F) or opinion ratings on a scale of 1 to 10. The nominal and ordi

nal scales are also known as qualitative scales, since they only allow comparisons in a 

qualitative sense. For meaningful quantitative measures of the difference between two 

values, the interval scale is used. Finally, the ratio scale also allows for meaningful com

parisons of the ratio of two values. For example, temperature values in degrees Celsius 

follow the interval scale, since the difference between two values is meaningful. Temper

ature in degrees Celsius does not follow the ratio scale since the ratio of two values is not
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meaningful. An example of a ratio scale variable is temperature in degrees Kelvin. As 

mentioned earlier, the choices of methods of comparing objects containing nominal scale 

attributes will differ greatly from those containing ratio scale attributes. One must take 

care in comparing objects with attributes using a variety of different scales. Before mea

sures of similarity can be computed, attributes should be converted into one type of scale. 

In most meteorological applications, ratio scale variables are available and widely used. 

In this work, all attributes reside in the ratio scale.

The units used in the assignment of various attributes can strongly impact measures 

of similarity among objects. For example, differences in rainfall amounts cast in terms of 

millimeters will appear to be 25.4 times as large as those given in units of inches. One can 

arbitrarily inflate the importance of a particular attribute by simply recasting it in terms of 

some other unit of measurement. To avoid this arbitrary affect, attributes can be trans

formed by converting them into dimensionless numbers. Transforming the data matrix 

allows each attribute to contribute more equally to the overall measure of similarity 

(Romesburg 1984). There are several choices of data matrix transformation methods, 

each transfers the information in the data matrix X  into a new data matrix Z that is the 

same size as X. The transformed data matrix Z can then be use in the analysis of the data. 

For example, a simple type of transformation involves centering the data, that is, subtract

ing the mean value from each attribute.

n

j= i

The centered data retain their units, however, and can be thought of as anomalies or per

turbations. The data matrix can be normalized by dividing each centered attribute by its
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standard deviation.
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Normalization produces attributes which have zero mean and unit variance. Other meth

ods of transformation include scaling by the maximum or minimum value of each 

attribute, or by the maximum of the entire data matrix. In general, transformation of the 

data matrix is an optional step in data analysis. Analysis techniques such as cluster analy

sis or principal component analysis can be performed on either the original or transformed 

data matrices.

2.3 Cluster Analysis Overview
Once the data matrix has been populated with objects of interest and attributes that

describe those objects, the next steps in the KDD process (Table 1-9) involve choosing the 

data mining task and algorithm. For this work, the data mining task is classification, and 

the tool that will be used to accomplish this task is cluster analysis. The following para

graphs will describe various cluster analysis methods, and discuss the specific algorithm 

that was chosen to perform the classification task. The bulk of description found in this 

section is adapted from the excellent summary of clustering methods found in the appen

dices of Alhamed et al (2002) as well as Alhamed (2000).

Cluster analysis is a descriptive statistical method of analyzing the similarity of 

objects in a data matrix. There are two classes of cluster analysis techniques, hierarchical 

and partitional methods. Hierarchical methods discover the relationships between groups
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of objects by constructing a hierarchy of clusters. This can be visualized as a tree (Figure 

2-1), where the ends of each individual branch represents each individual object (or a clus-

objects 1 2 3 4 5 6 7

•ceg
I
3

I■o

C/5

B.

Figure 2-1: Hypothetical hierarchical clustering tree, also known as a dendrogram.

ter containing a single member), and as branches come together on the tree, objects are 

grouped together to form clusters. As you move further down the tree, the degree of simi

larity between clusters becomes less and less while clusters grow to contain more mem

bers. Eventually all objects are combined into a single cluster, which could be thought of 

as the trunk of the tree. Hierarchical methods are useful when the true number of clusters 

is not known. On the other hand, partitional (non-hierarchical) methods generate a single 

partition of objects into a pre-determined number of clusters. Ideally, objects grouped 

together to form a cluster will appear quite similar, and objects found in different clusters 

will appear quite different. The various clustering algorithms each follow this general 

idea in attempting to form ideal clusters. However, the manner in which this idea is imple

mented will differ for different algorithms.
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2.4 Similarity measures
In order to discover the relationships between differing groups of objects, the simi

larity among objects must be computed. Measures of similarity between objects, also 

known as resemblance coefficients (Romesburg 1984), establish the degree of similarity or 

dissimilarity between two objects. These pair-wise similarity measures are computed for

each pair of objects and are arranged in the form of a similarity matrix where the (i,j)* ele

ment indicates the resemblance coefficient between objects i and j. A similarity matrix is 

a square, symmetric, n x n matrix, where n is the number of objects. This matrix is sym

metric since the similarity of objects i and j  is identical to the similarity between objects j  

and I. A resemblance coefficient can be either a measure of similarity or dissimilarity. For 

a similarity measure, the larger the value, the more similar the objects will be. The oppo

site is true for a dissimilarity measure, larger values indicate less similar objects. Cluster 

analysis algorithms often operate directly with the similarity matrix, not the original data 

matrix, therefore the algorithms must properly account for the type of resemblance coeffi

cients used.

A commonly used measure of dissimilarity is the Euclidean distance, denoted as djf., 

which measures the distance between two objects,/ and k. Using the data matrix notation 

defined in section 2.2, the Euclidean distance is defined as:

^jk - = h k - ^ i i  (23)
i= 1

If we denote the j^  object as x.j this can also be rewritten as the norm of the difference 

vector between x.j and jc. ,̂ where HxHj indicates the Euclidean norm or 2-norm of the vec

tor ,v. Geometrically, the Euclidean distance is simply the length of the vector connecting

20



two points in space. Another distance measure is called the Manhattan or “taxi-cab” dis

tance or 1-norm, hjj^,and is defined as:

m

= ' Z h - ^ i k \  = N - y ,  (2.4)
I =  1

It is known as the Manhattan distance since it is the distance that one would travel if the 

path between points was taken along the city blocks of a major city, while the Euclidean 

distance is more of a straight-line or “as-the-crow-flies” distance. The Chebyshev dis

tance, py .̂also known as the <»-norm, is the maximum absolute value of the difference of 

all attributes:

Pjk= (2-5)
1 < t < m

The generalized version of the previous three distance measures is known as the 

Minkowski distance, my ,̂(for p>0):

^Jk = p (26)
i =  1

which equals the Euclidean distance for p=2, the Manhattan distance for p=I, and the Che

byshev distance for p=oo. Another distance measure is the Energy norm or generalized 

Euclidean distance djŝ jf.

T  1 / 2
^kjk = [(-^:y-^:ifc) (2.7)

Twhich is a weighted inner product of the difference between two objects (x  will be used 

in this work to denote the transpose of a vector or matrix). For this distance measure to
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meet the qualifications of a distance metric, A must be a positive-definite symmetric 

matrix. The use of the weight matrix allows one to weigh certain attributes more heavily 

than others, or to account for differences in the units between attributes. When the identity 

matrix is used for the weight matrix A, the familiar Euclidean distance (eq. 2.3) is 

obtained. A more specific example of this type of measure is the Mahalanobis distance, 

where A is replaced by the inverse of the covariance matrix S'^ of the data matrix X. This 

distance measure has the advantage of taking into account the covariance between vari

ables.

A commonly used measure of similarity is the correlation coefficient, rjf., defined as:

f  m \ f m  \

^ij X
nk =

i = 1 Vi = 1 /  V/ =  1 /
m  ̂ m 2n 1 / 2 m m  ' 2n 1 /2

1 4 ]_
m I 2 1 X

J  = 1 = 1 / J  =  1 ' ' 1 = 1  ^

(2.8)

This is the familiar Pearson product-moment correlation between objects j and k. Geo

metrically, the correlation coefficient is the cosine of the angle between centered vectors, 

where the mean of all attributes for each object is subtracted from each object (centered by 

column mean). This is unlike equation 2.1 above, where the centering was done by row 

mean (the mean of all objects for each attribute was subtracted). In addition, the cosine 

coefficient, Cj/̂ :
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z ;iX rik

^jk -  , 1/1. . t/1 (--9) ̂ m ' \ n  ̂ m '' 1/2

1 4 Z 4
X= 1 4  = 1 /

is another measure of similarity. Geometrically, the cosine coefficient is simply the cosine 

of the angle between the unit vectors in the same direction as objects j and k.

2.5 Hierarchical cluster analysis
Conceptually, there are two approaches that can be used to accomplish hierarchical

cluster analysis: agglomerative and divisive. Referring back to figure 2-1, this difference 

between these two approaches can be visualized as moving through the tree either in a top- 

down or a bottom-up direction. In the case of agglomerative clustering, each object is ini

tially placed in its own cluster and the algorithm joins similar clusters together. The 

remaining clusters gradually contain more and more objects, until finally one cluster is 

formed that contains all of the objects in the data matrix. On the other hand, the divisive 

approach begins with a single cluster containing all objects and subdivides dissimilar 

groups until eventually each cluster contains a single object. In this work, an agglomera

tive method is used.

Basically, agglomerative clustering algorithms proceed as follows.

Step 1: Assemble a similarity matrix S -  where resemblance coeffi

cients are computed for all possible pairs of objects in the data matrix. Element repre

sents the similarity/dissimilarity measure between objects i and j. Since this matrix is 

symmetric, only the lower triangular part of the matrix needs to be stored.
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Step 2: Construct n clusters by placing each object in an individual cluster. At this 

point, cluster C, contains only object /.

Step 3: Find the most similar pair of clusters in the similarity matrix. Let Q  and Cj 

be the most similar pair where i > j.

Step 4: Merge the two clusters and reduce the number of clusters by 1. Label the 

new cluster as C, and update the similarity matrix appropriately to account for the modi

fied similarities between this new cluster and all other existing clusters. Remove the row 

and column of S corresponding to the cluster Cy.

Step 5: Repeat steps 3 and 4 until only one cluster remains.

At each iteration, a record of the objects found within each cluster and the level of similar

ity found when clusters were merged is maintained. This allows for visualization of the 

tree structure (as in figure 2-1) where analysts can quickly examine the relationships 

between groups of objects. Within this basic framework, different methods could be used 

at each step, thereby developing different specific clustering algorithms. For instance, in 

step 3, the definition of the most similar pair will depend on whether similarity or dissimi

larity measures were used in the similarity matrix. There are several possible methods for 

updating the similarity matrix in step 4. One of the more common methods is called the 

single linkage (SLINK) method, where the similarity between clusters is replaced by the 

most similar value of the resemblance measures between all elements of the two clusters. 

The complete linkage (CLINK) method takes a similar approach, except using the least 

similar value of the similarity measures between the elements of the two clusters. One can 

also use the average value of all of the similarity measures between the elements of the 

two clusters, or average linkage.
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The agglomerative method used in this work is based on the variance conservation 

property for a group of objects, called Ward’s method (Ward 1963) or the minimum vari

ance method. The total variance among all of the objects found in the data matrix will be 

conserved regardless of how these objects are grouped into clusters. The total variance 

can also be divided into two components, the inter-cluster (between cluster) variance and 

the intra-cluster (within cluster) variance. The inter-cluster variance is defined as the scat

ter between the centroids of the clusters, while the intra-cluster variance is defined as the 

overall scatter between objects within each individual cluster. Since the total variance is 

constant, if the inter-cluster variance is relatively large, the intra-cluster variance must be 

relatively small, and vice versa. The criteria for merging clusters is minimizing the 

within-cluster variance, and therefore maximizing the between-cluster variance. This 

forces the objects found within a cluster to be similar while keeping the clusters as distinct 

as possible. Ward's clustering algorithm proceeds as follows:

Step I: Assign each object to separate clusters, each of which contains only one

object. The intra-cluster variance is zero at this point.

Step 2: Computed the intra-cluster variance for every possible merger of two clus

ters.

Step 3: Create a new cluster by merging the two clusters that produce the smallest

increase in the intra-cluster variance.

Step 4: Repeat steps 2 and 3 until a single cluster containing all objects remains. 

Ward's method has been found to produce good results for meteorological data in previous 

research (Alhamed et al. 2002). For this reason. Ward's method was chosen as the hierar
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chical cluster analysis algorithm for the entirety of this work.

2.6 Partitional cluster analysis
Although non-hierarchical cluster analysis methods were not used in this work, a

brief description is included for completeness. Hierarchical cluster analysis results in a 

branching sequence of clusters, organized in order of the degree of similarity. This kind of 

analysis is useful when the overall number of clusters expected in the data is not known in 

advance; i.e., the clustering hierarchy allows the analyst to visualize how the objects are 

organized in terms of their similarity. On the other hand, partitional cluster analysis meth

ods are designed to group objects together into a single set of k  clusters, where k is speci

fied ahead of time or is determined via the clustering algorithm. The problem of 

partitional clustering can be summarized as follows: given a set of n objects, determine a 

partition of the objects into k clusters such that the objects within each cluster are more 

similar to each other than to objects in different clusters (Jain and Dubes 1988). The prac

tical issues related to partitional clustering involve the choice of the initial partition, and 

the criterion used to decide if the resulting partition is optimal. The initial partition can be 

formed by identifying an initial set of k  seed points, from which the partitions will grow. 

The seed points could be the first k  objects in the data matrix, or k randomly selected 

objects, or k subjectively chosen objects, if the analyst has some expertise with the data. 

From the seed points, the initial partition could be created by assigning each object to the 

partition belonging to the nearest seed point. Another possibility is to take the results of 

hierarchical clustering to generate the k initial partitions. For the choice of criterion, as in 

the hierarchical Ward’s method, the partitions that minimize the within-cluster variance is 

one that is most commonly used. An example of such an algorithm is known as the k-
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means algorithm (Anderberg 1973). It proceeds as follows:

Step 1: Begin with an initial partition of k clusters.

Step 2: For each object, compute the distance to the centroids of every cluster. If 

the object does not belong to the cluster representing the nearest centroid, reassign the 

object and update the centroid values for those clusters affected by the move.

Step 3: Repeat step 2 until no objects are moved from one cluster to another.

This section has discussed the concepts and algorithms associated with cluster anal

ysis. The basic structure of the data used in cluster analysis is the set of objects/attributes 

associated with the data of interest. The next section will discuss the mathematical con

cepts and tools that were used in the computation of attributes in this work.

2.7 Computation o f  Attributes
As previously mentioned, the KDD process will be followed in order to determine

useful attributes for an automated rainfall classification system. Once the goals of the 

end-user have been established and the target data set has been created, the next step 

involves data reduction and projection. In Table I-I , data reduction is defined as finding 

useful features that represent the data with a smaller number of variables or dimensions. 

Ideally, the set of attributes should be relatively small to allow for faster and simpler anal

ysis. In addition, attributes should measure significant and interesting aspects of the 

objects of interest, and also allow discrimination between significantly different phenom

ena. Attributes should be as simple to compute as possible, to reduce the amount of com

putation time required. To assist in the interpretation of the results, attributes should be 

conceptually easy to understand and explain to the users of the results (meteorologists). 

The following sections describe the mathematical concepts and tools used to derive the
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attributes that were used in this work.

2.8 Gamma distribution
Data reduction involves objectively extracting useful features of a relatively small

dimension within the large-dimensional dataset that allow for classification of objects. 

Many statistical analysis methods can also be considered to be data reduction techniques. 

For example, if one fits a Gaussian distribution to a sample data set, the mean and variance 

are all that is necessary to describe the distribution. Hence, the large-dimensional data set 

has been reduced to two dimensions. Following this simple idea, the parameters of a the

oretical statistical distribution that fit the histogram representing the observed distribution 

of rainfall amounts were used as trial attributes. For example, Wilks (1989) mentions that

for the Weibull distribution; (/(x;(X,P) = (P /a ) ( jc /a )^ ~  ^ [ex p -(x /a )^ ] , x, a , P > 0 )  

“Smaller values of P [the so-called shape parameter] will reflect a tendency toward briefer 

and more predominantly convective precipitation, and larger values will indicate a greater 

tendency toward steadier precipitation derived from larger-scale processes.” The distribu

tion of rainfall tends to be highly positively skewed. For example, heavy rainfall is a rare 

event, and when large amounts of rain do occur, such as typically found intermittently in 

some convective systems, the resulting distribution possesses a long “tail” (Fig. 2-2a). It is 

also common to see widespread light rain, such as typically found in non-convective sys

tems, resulting in a distribution that is “humped” near a low amount of rainfall with little 

or no “tail” (Fig. 2-2b). These characteristics limit the choices of theoretical distributions 

as potential models for the observed distribution. For this work, we selected the gamma 

distribution since it is positively skewed and non-negative, provides a reasonable repre

sentation with only two parameters (Eq. 1), and has been widely used in the meteorologi-
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Figure 2-2:Sample histograms of non-zero rainfall from a convective case (#1, left panel) 

and a non-convective case (#45, right panel) from the target data set. Curves indicate 
gamma distribution fit using method of moments parameter estimation described in sec
tion 2.9.1.

cal literature for the analysis of precipitation data (e.g., Wilks 1990). The probability 

density function (f(x)), moment generating function (M^ (̂t)), and first four moments ( î,) of 

the gamma distribution are (Freund and Walpole 1987):

/(.r;a,P) = (x/P)“ ‘[exp(-x/P)][pr(a)] \ x > 0 ,a ,  P >0

-aM /f)=  ( 1 - P O

Pi= a p

Ho = « P ^(a+  1)

P3= aP^(a^ + 3 a  + 2)

(2 .10)

(2 .11)

(2 . 12)

(2.13)

(2.14)

1X4= a P ‘̂ (a^ + 6 a “ + l l a  + 6 ) (2.15)

where F(a) is the standard gamma function, which equates to the factorial for integer val-
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ues of a .

r(a) = JJr (2.16)

The parameter a  is commonly referred to as the “shape” parameter and P is referred 

to as the “scale” parameter. Figure 2-3a shows two example probability density function 

curves for the gamma distribution for varying values of a . For values of the parameter a

1.4,
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(a) Left panel (b) Right panel
Figure 2-3:Plots of the gamma probability density function for (a, left panel) a  = 0.9, P = 
1.0 (solid) and a  = 2.3, P = 1.0 (dashed), (b, right panel) a  = 0.9, P = 1.0 (solid) and a  = 
0.9, P = 3.0 (dashed).

< 1.0, the distribution is skewed strongly to the right with f(x) approaching infinity as x 

approaches zero. For values of a  > 1 the distribution function begins at the origin and 

reaches a maximum value at x=P(a-l). For very large values of a  the gamma distribution 

is similar to the Gaussian distribution. The role of the parameter P (Fig. 2b) is to “pull” 

the distribution to the right for larger P, increasing the frequency of larger values of x and 

creating a thicker tail. For smaller P, the frequency of smaller values of x is increased, 

creating a thinner tail and “pushing” the distribution towards the left. It seems reasonable
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to expect that the shape and scale parameters might be useful attributes for describing the 

overall distribution of rainfall intensity. For example, since higher values of P produces a 

thicker tail in the distribution, one would expect to see such high P values associated with 

intense rainfall events. The usefulness of these attributes in discriminating between con

vective and non-convective rainfall events will be evaluated in Chapter 3.

2.9 Parameter estimation
In order to fit this theoretical distribution to the observed rainfall values, it is neces

sary to estimate the parameters of the distribution. The following sections outline various 

parameter estimation techniques.

2.9.1 Method of moments
In the method of moments, a set of equations are developed to estimate the number

of unknown parameters found in the model. In the case of the gamma distribution, there 

are two unknown parameters, a  and P, therefore two equations relating these to known 

quantities are needed. Here, these two equations are found by equating the first two com

puted sample moments to the population moments. For example, the population mean of 

the gamma distribution is aP and the sample mean is x (which is known, computed from

the observed data). The population variance (related to the second moment) is aP" and

the sample variance is o^. Equating these sample and population values provides a set of

two equations and two unknowns. This system can easily be solved to find that a= ^ /o ^

and P=a^/x. These parameters fit the observed mean and variance exactly, but higher- 

order moments are not taken into account. Wilks (1990) also points out that for smaller 

values of a  (a  < 10), the parameter estimates resulting from the method of moments are 

subject to a relatively high degree of variability from one data sample to another. As dem

31



onstrated in figure 2-3, small values of a  correspond to strongly skewed distributions. 

Since it is common for distributions representing short-term rainfall amounts to be highly 

positively skewed, a more precise method of parameter estimation is desired.

2.9.2Maximum likelihood estimation
As the name suggests, the method of maximum likelihood estimation (MLE) seeks

to maximize the likelihood function, which is the joint distribution of values of the

unknown parameters given the observations of the random variable (denoted as/(0|W),

where 0 is the vector of unknown parameters and W is the vector of size T  containing the

observations, the i^ observation is denoted by w,). The multiplicative law of probability 

(Wilks 1995) states that for independent events, the joint probability is equal to multiply

ing all of the probabilities of the individual events.

T

/ ( 0 |W )  = / ( 0 | ( w i ,  W2,vv3, . . . , w j ) )  = [ % / ( 8 |w , )  (2.17)

/ = I

Note that independent events are uncorrelated; the occurrence of one event does not 

depend on the occurrence of another. Spatial rainfall data will undoubtedly violate this 

assumption. The likelihood function for a single observation appears identical to the prob

ability density function. The distinction between the likelihood and probability density 

functions is a technical one; the probability density is a function of the observations given 

the fixed values of the parameters. The likelihood function is a function of the parameters 

given the fixed values of the observations. In the case of the independent events following 

the gamma distribution, the likelihood function can be written as:
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T
  „_ .exp(-w ’,-/B)

= n ( w , / p )  — ( Z' »)
i =  l

Since the logarithm is a strictly increasing function, maximizing a function/is the same as 

maximizing log(/)- Therefore it is convenient to take the logarithm of the likelihood func

tion prior to maximization, the log-likelihood function becomes a sum rather than a prod

uct.

r  T

A(ct, = ( a - 1 ) ^  I n ( w , . ) - p ^  w . - r [ l n r ( a )  + aln(P )] (2.19)
1=1 1=1

For some theoretical distributions, such as Gaussian, maximization of the log-likelihood 

function can be solved analytically by taking partial derivatives of that function with 

respect to each unknown parameter and setting those equal to zero. This is not possible in 

the case of the gamma distribution since the derivative of the standard gamma function 

must be evaluated numerically. Therefore, maximizing the log-likelihood function is per

formed iteratively using standard multivariate optimization techniques. These also 

involve computation of partial derivatives of the log-likelihood function. Again, in the 

specific case of the gamma distribution, there will be a term involving the sum of the log

arithm of the observed values. For rainfall, this is problematic since zero observations are 

quite common. Therefore an modified method is required.

Wilks (1990) outlines the method of maximum likelihood estimation of the gamma

distribution parameters for data containing values of zero^ This uses the statistical con

cept of censored data. Type I censored data (Kendall and Stuart 1977) contain a known

1. Professor Daniel S. W ilks o f  C ornell University kindly supplied a Fortran subroutine that im ple
m ents this algorithm. This code w as used in this work.
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number of observations above or below some detection limit, with unknown numerical 

values. Typical applications of censored data in statistics involve censoring “on the right” 

for “survival” data, such as the number of people who did not die as part of a medical trial. 

In the case of rainfall, “left censored” data is involved, where, due to characteristics of the 

observing system, a given number of observations fall below the detection limit of the sen

sor. For example, in a tipping bucket raingage, zero rainfall will be reported until the 

amount of rain reaching the bucket is greater than the sensitivity of the instrument (e.g., 

0.01”). There is no way of knowing exactly how much rainfall was observed in this 

instance, it could be any value between zero and 0.01 inches. Operational gridded radar 

rainfall estimates are also censored below a small amount of rain (0.25mm). For MLE of 

the gamma distribution using data that include Ng values of zero, and non-zero values 

(T=N(.+N^), Wilks (1990) shows how the likelihood function is modified to allow for cen

sored data:

L(a,p;W) = (2.20)
i= 1

F(C;a,P) is the cumulative distribution function:

F(C;a,P) = = Pr{z<C} (2.21)

which is the probability that an observation is less than or equal to the censoring threshold. 

The logarithm of the likelihood function is taken as before, except now all terms involving 

the sum of the logarithm of the observed values use the non-zero values only. The 

usual optimization procedures for finding the maximum are followed from this point on.
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2.9.3Generalized method of moments
Rainfall data, like many meteorological variables, are spatially correlated. As previ

ously mentioned, a key assumption in the method of maximum likelihood estimation is 

that the data are independent and identically distributed. Independence implies that the 

occurrence of one event does not depend on the occurence of another, or that the data are 

serially uncorrelated. Spatial rainfall data will undoubtedly violate this assumption. For 

this reason, a robust method of parameter estimation is desired that does not rely upon an 

assumption of independence, for example, the generalized method o f moments (GMM, 

Hansen 1982; Hamilton 1994). GMM can allow correlation in the data to affect the 

parameter estimation. The generalized method of moments can be considered an exten

sion to the classical method of moments. In the method of moments, the parameters of the 

theoretical distribution are found by developing a system of equations that equate the pop

ulation moments with their sample counterparts. If there are N unknown parameters in the 

theoretical distribution, N such equations are necessary. The resulting parameters will 

produce a theoretical distribution that fits those N moments exactly. In some cases, how

ever, it may be desirable for the parameters to provide a better fit to the observed skewness 

(related to the 3rd moment) or kurtosis (related to the 4th moment). For example, if two 

parameters are unknown, one might desire to produce parameter estimates that fit the first, 

second, third, and fourth moments of the sample as closely as possible. A non-linear vec

tor function g(Q,w) could be produced representing the difference between the sample 

moments and the population moments, using the gamma distribution for example:
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&(8, vv) =

{ H i-a P }

{ [i2 -aP ^ (c t+  1)}

{H3 -  aP^(a" + 3a + 2)} 

{^4-aP'^(a^ + 6a"+ l i a + 6)}

(2.22)

Here, 0 = is the vector containing the parameters of the gamma distribution,

represents the values of the sample, and = ( 1/T ) ^  is the n*  sample moment.
t =  1

TOne can create an objective scalar function 0 ( 0 )  = g(Q, w) Ag(0, w)  which represents 

the weighted sum of squared errors of the estimates of the parameters, where A is a sym

metric positive-definite weighting matrix that represents the relative importance of fitting 

each of the moments. In this work, the 0 that minimizes this function was found itera

tively using the bounded truncated-Newton method (Nash 1984).

The optimal weighting matrix A* is the inverse of the parameter error covariance 

matrix S. If the data are serially uncorrelated, an estimate of the error covariance matrix is 

the second moment matrix:

S-p = ( I /T )  ^  g(0, w)g(0, w) 
t =  1

(2.23)

which is the mean outer product matrix of the errors of the estimated parameters. Serial 

correlation in the data can be taken into account by modifying the estimate of the second 

moment matrix (Newey and West 1987):
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sV = To.r  + 2 ]  {1 - [v/{q  + 1 ) ]} ( rv ,r+  r \ , t ) (2.24)
V =  1

where:

T

Fv.r = (1 /T ) ^  [g(0, vv',)]U(0, (2.25)
f = v +  1

and q is the lag-correlation length. Newey and West (1987) show that eq. 2.24 provides a 

consistent estimate of the covariance matrix if q grows as a fractional power of sample

size i q < T  ).

Note that in order to compute the second moment matrix, an estimate of the 

unknown parameters (0) is needed. An iterative procedure is followed where an initial 

estimate of the parameters (Gq) are obtained using an arbitrary weighting matrix such as 

the identity matrix Ao=I. This estimate of 0 is used in eq. 2.24 to produce an initial esti

mate of Sj, which is inverted to produce Aj. The objective function <î> is minimized using 

A; to produce a new estimate 0 ,̂ which is then used to estimate A?. These iterations con

tinue until convergence is reached. For all cases in this work convergence was reached in 

five iterations or less. To my knowledge, this work is the first example of the use of GMM 

with rainfall data in the meteorological community.

2.10 Geostatistics
In the previous section, attributes related to the overall distribution of rainfall across 

an object were presented. These attributes are expected to provide useful information on 

the intensity of rainfall within each object. However, these attributes will not provide 

information on the spatial continuity and variability of the rainfall within an object. The
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same observed histogram could be realized from different looking events that could be 

either randomly unorganized or spatially continuous, since the distribution ignores infor

mation on the location of rainfall amounts. In order to provide information on aspects of 

the spatial continuity and variability within rainfall objects, additional attributes related to 

the shape and structure of the spatial patterns are required.

To find such attributes, the place to turn to is the field of geostatistics. Geostatistics 

is concerned with the study of phenomena that fluctuate in space, of which rainfall is cer

tainly an example. The primary interest for this work is explaining and characterizing the 

spatial variance and continuity of a rainfall object; however much of the field of geostatis

tics is also concerned with estimating unknown values of a spatial field at any random 

location given a set of observations in space. There are several measures of spatial vari

ability and continuity to choose from (Isaaks and Srivastava 1989; Deutsch and Joumel 

1988). For this work three were examined: two-dimensional plots of the semivariogram, 

correlogram, and covariance. All three measure some aspect of the spatial field as a func

tion of a two-dimensional separation vector h (Fig 2-4). All possible pairs of values that 

are separated by h on the original field will be used to compute the various statistics. The 

semivariogram y(h) is defined as half of the average squared difference between the pairs 

of all values separated by h (Eq. 2.26). The covariance C(h) is the traditional covariance 

(Eq. 2.27) between all possible pairs of “tail” and “head” values separated by h. The cor

relogram pf/i) is also known as the auto-correlation, which is the covariance normalized 

by the respective tail and head standard deviations (Eq. 2.28).

N{ h)
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Figure 2-4:A conceptual example of the separation vector h

N{h)

P(A) =

(2.27)

(2.28)

Here nif and »i/, are the means of the tail and head values, respectively, and a, and a/, 

are the standard deviations of the tail and head values, respectively. N(/t) is the total num-

Figure 2-5: Example of data pairs for separation vector A = (1,1). Adapted from Isaaks 
and Srivastava (1989).

her of possible pairs of tail and head values for a given separation vector. Figure 2-5 pro

vides an example of how data can be paired to compute a statistic for a specific value of h. 

Some of the analysis results using these statistics were computed using GSLIB, a freely
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available library of software packages for geostatistics developed at Stanford University 

(Deutsch and Joumel 1988).

Examples of 2-D semivariogram, covariance, and correlogram plots are found, along 

with the corresponding rainfall field, for an example shown by Figure 2-6. The rainfall 

field (Fig 2-6a) shows fairly continuous heavier precipitation organized along a line ori-

SoraMnogfiRn

20 40 60 ao 100 120

CORdogram

-60 -20 600 20 40

-20

-40

20 40-20 0 60

Figure 2-6: Example Ih accumulated rainfall field (a) with corresponding semivariogram 
(b), covariance (c), and correlogram (d) plots.

ented approximately west-southwest to east-northeast, with strong variations in amounts
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normal to this line. The two-dimensional plots of these statistics can be interpreted by 

using the separation vector concept. For example, the correlation between all pairs of 

points separated by /i=(0,20), that is 20 grid points to the north, is approximately 0.2. The 

plots are symmetric about any line passing through the origin since these statistics are 

even functions (for example, y(A)=^(-A)). This symmetry is due to the fact that the same 

pairs of points will be compared when the head and tail of the separation vector are 

switched. Plots of the semivariogram, covariance, and correlogram (Figs 2-6b-d) provide 

fairly consistent information, that rainfall values are similar over a large distance in the 

direction approximately parallel to the x-axis, and similar to other values only over a short 

distance in other directions. The semivariogram (Fig 2-6b) provides information on the 

average squared difference, therefore the value at the origin (li=(0,0)) is zero and values 

increase as h moves further from the origin. The covariance (Fig 2-6c) plot works in the 

opposite sense, indicating how pairs of values simultaneously vary from their means, the 

value at the origin is the variance of the overall field. The correlogram (Fig 2-6d) operates 

in a similar fashion to the covariance plot, except the value at the origin is normalized to 

1.0 .

There is a long history in the literature of research using geostatistical tools to exam

ine the characteristics of spatial radar/rainfall data. Kessler and Russo (1963) and Kessler 

(1966) computed the two-dimensional auto-correlation of radar reflectivity. From this, 

ellipses were fit to the contours of the correlogram, and statistics such as the lengths of the 

major and minor axes of the average autocorrelation coefficient and the orientation of the 

major axis were computed. Kessler and Russo (1963) noted how the ellipticity was an 

objective measure of the “systematic bandedness in the pattern” and how the orientation
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of the major axis reflected the orientation of the reflectivity bands. They also found that 

statistics of this type did not vary greatly during the lifetime of a particular storm. The 

usefulness of these sorts of attributes in discriminating among different modes of organi

zation in rainfall patterns will be evaluated in Chapter 4. Zawadzki (1973) proposed using 

a slightly different form of the two-dimensional auto-correlation, by not subtracting the 

head and tail mean values in the computation of the covariance (Eq. 2.27) and variance. 

The cross-correlation of reflectivity images in time was used to determine the velocity of a 

given storm. This idea was the foundation of radar “nowcasting” approaches that are still 

being researched to this date (i.e., Germann and Zawadzki 2002; Wilson et al 1998). Ger- 

mann and Joss (2001) examined one-dimensional variograms of radar reflectivity. In this 

work, all separation vectors of the same length were combined and the resulting variogram 

provides information on the spatial continuity of the field as a function of distance alone, 

independent of direction. No information on the anisotropic nature of the field can be 

obtained. Through the use of variograms, Germann and Joss (2001) show how different 

precipitation phenomena produce different variograms, as well as how variograms can 

help to determine the representativeness of a point observations of rainfall, estimate obser

vation error variance, and find preferred regions for convective rainfall. Harris et al (2001) 

examined several multiscale statistical measures of observed and predicted rainfall fields, 

including Fourier spectra, generalized structure function, and moment-scale analyses. The 

generalized structure function using the second moment is equivalent to the semivario

gram. These statistical measures were used to determine whether or not a forecast model 

produced similar spatial variability in the rainfall field as what was observed. Here, a 

power-law scaling regime is found within various multiscale statistical measures, simi
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larly to previous work examining the fractal properties of rain and cloud fields (e.g., Love- 

joy 1982). Zepeda-Arce et al (2000) also performed a moment-scale analysis of observed 

and predicted rainfall fields, examining the variance of normalized rainfall fluctuations as 

a function of spatial scale. It seems reasonable to expect that geostatistical parameters 

might be useful attributes for characterizing the spatial structure and variability of rainfall 

events.

2.11 Principal Component Analysis
Another method of multivariate statistical analysis that will be used in this work is

principal component analysis (PCA). PGA is a multi-purpose tool, it allows one to repre

sent a data set in terms of a basis that is uncorrelated (orthogonal). In addition, PGA also 

helps to explain the variance contained within the data set. PGA is based upon the eigen- 

analysis of the variance-covariance matrix; eigenvectors of this matrix are orthogonal, and 

the eigenvector associated with the largest eigenvalue points in the direction that the data 

set exhibits the most variability (called the first principal component). PGA can be used as 

a data reduction tool, a data set can be reduced in dimension by retaining only a subset of 

the eigenvectors. Since the eigenvalues reveal the relative amount of variance explained 

by their respective eigenvectors, a specified amount of the total variance contained within 

the data can be preserved. If a large fraction of the total variance is explained by the first 

few principal components, a great deal of data reduction can be accomplished. Richman 

(1986) showed how rotation can be applied to PGA to create a basis for the data where the 

basis vectors point towards clusters of highly related variables. The rotated principal com

ponents do not necessarily have to retain the orthogonality of the original eigen-vectors. 

Gong and Richman (1995) argue that cluster analysis and rotated PGA have the same
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goals.

The operation of PCA proceeds as follows. Define X = , l < i < m ,  l < y < n

as à m x n  data matrix with n objects and m attributes. The Grammian Z of X is a real, 

symmetric matrix defined as:

Z = X^X  (2.29)

The Grammian could use the raw values of X  (Z=second moment matrix), centered values 

(Z=covariance matrix), or normalized unit-variance values (Z=correlation matrix). Let 

(X,-, p,) represent an eigenvalue/eigenvector pair for Z:

Zp,- = X,p,- (2.30)

The full eigen-system represented by i=l,2,...n of the above equation can be denoted as: 

ZF = FA (2.31)

where F  = [p^, p?, •••,p„] is the matrix of eigenvectors and A is the diagonal matrix of 

eigenvalues:

'^1 0 .. 0

A = 0 ^2 .. 0

0 0

(2.32)

Since Z is a real and symmetric matrix, F  is orthogonal, that is:

F^F = I = FF^ (2.33)

Therefore, equation 2.33 can be rewritten as:
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P 'S P  = A 

P^X^XP = A 

{XP)^XP = A

(2.34)

Define Z = X P , then this equation becomes:

Z^Z = A (2-35)

Assuming Z is positive-definite, the eigenvalues will be positive, therefore the “square- 

roots” of A can be taken:

f z  =

A -'^^Z^ZA -'"' = /

(ZA"^^")^ZA"‘^- = I  

F^F= I

(2.36)

where F = ZA~*^“ . F  is an uncorrelated transformation of the data matrix X  called the 

principal component scores. The objects found in X  are projected in the directions repre

sented by the eigenvectors found in P, normalized by dividing by the square root of the 

eigenvalues, Further:

F = ZA"'^- 

F = XPA"'^"

F = X(PA"‘^ ')J

Solving for X, we find:

(2.37)

X  = F(PA"*^^)"‘ 

X  = F ( a '^ V ‘) 

X = f a '^ V ^

(2.38)
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T T ; / ?  f  1/ 2
or X  = FA where A = A ~P or A = PA . A is called the principal component

loading, which represents the covariances (assuming Z represents the covariance matrix,

correlations if Z is a correlation matrix) between F  and X.

As shown above, PCA can be used to transform the data matrix, projecting X  onto a 

basis or coordinate system that is uncorrelated. In this work, principal component analysis 

will be used to visualize a multi-dimensional data set. Conceptually, visualizing a high

dimensional data set using only the leading two components of the PCA scores is equiva

lent to slicing a 2-D plane through the data in such a way that the maximum possible 

amount of variance contained in the original data set is displayed on that plane.

2.12 Image Processing
To this point, the mathematical tools and concepts that have been outlined have pri

marily focused on providing attributes that characterize aspects of objects and analyzing 

the similarity of objects. The method of locating and identifying individual objects within 

a full realization of rainfall has not yet been discussed. For this task, the discipline of 

image processing provides a wide range of tools. Image processing tools are also used in 

this work to assist in further data reduction in the automated analysis of correlogram infor

mation. Although the concepts of an image are not foreign to meteorologists, some defini

tions of common terms will be provided at the onset.

An image is a representation of values onto a set of spatial coordinates (x,y). Typi

cally, image values are often associated with grey scales or some other color map to allow 

for visualization. Formally (Klette and Zamperoni 1996), an image is a function/defined 

on a set of image points p=(x,y). The image value f(p)=f(x,y} is the numerical value of the 

function at point p. A pixel is an element of the image, represented by its location and
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value (x,y,f[x.y)). Optical systems generate analog images, where the spatial coordinates 

(x,y) and image values can be considered continuous variables. Typical computer-based 

images consist of data stored as grids with a finite number of spatial coordinates and 

image values, known as digital or discrete images. A Cartesian coordinate system is often 

used, where x and y take on integer values with intervals l < x < M , l < y < N  for an 

image sized M x N .  The origin is typically taken to be the lower left comer of the grid. 

Although most meteorological analyses consist of continuous variables represented on 

discrete grids, in this work meteorological fields (i.e., rainfall) will be treated as discrete 

images. In fact, due to bit packing used in the standard formats for transferring gridded 

weather data (Stackpole 1994) continuous variables are truncated to discrete values, 

whose number is determined by the number of bits used in the packing process.

Many image processing tools involve computations of image values in a neighbor

hood surrounding a particular point. To assist in the description of these algorithms, a 

commonly used (Davies 1997) template or moving window will be defined as follows. 

Assume original image values are stored in image space P, where P(/,y) is the local pixel 

value. In the neighborhood around P{i,j), define a template where PO=P(/,y), Pl=P(i+7,y),

P4 P3 P2 
P5 PO PI 
P6 P7 P8

7 + 1
7

7 - 1
I -  1 i i+ I  

Figure 2-7: Neighborhood numbering scheme.

and so on (figure 2-7). Assume that the results of processing the original image P will be 

stored in space Q. Various basic image processing algorithms can proceed by moving the
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template across all pixels found in the original image and operating on the image values 

found within the window defined in Figure 2-7. For example, a simple process involves 

copying an image from one space into another. In FORTRAN, this might look like:

do j= l,N  
do i=l,M
Q(i,j)=P(ij)
end do 
end do

For sake of brevity, loops across the entire image will be represented by double brackets 

[[]]. In addition, the numbering scheme used in Figure 2-7 will also be used. Therefore, 

the example given above would be replaced with the following pseudo-code:

COPY: [[QO = PO]] (2.39)

Another simple example would be to shift the image to the left by one pixel:

LEFT: [[Q0 = P1]] (2.40)

Other basic image processing algorithms can be found in Davies (1997) and Klette and 

Zamperoni (1996). For this work, a more useful example is the creation of a binary 

(l=dark, 0=light) image through the use of a simple threshold. This algorithm is com

monly used for object detection.

THRESH: [[IF (PO > thresh) Q0=1 ELSE Q0=0 ]] (2.41)

Once a binary image is obtained, one may wish to shrink or expand the extent of the dark 

regions of the image. For these types of processes, the sum of the values surrounding the 

center point (sigma) is introduced.

SHRINK: = P , + P 2  + P3 + P4 + M  + P6 + P7 + PS
IF (sigma < 8) Q0=0 ELSE Q0=P0]]
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One can easily see how the SHRINK process would shrink the darker portion of the 

image. The only way the new pixel would be dark (=1) would be if all 9 points found in 

the moving window on the original image were also dark. The converse would be true for 

the EXPAND process:

EXPAND- [[sigma = PI 4.P2 + P3-^P44.P5 + P64.P7 + P8

IF (sigma > 0) (30=1 ELSE QO=PO]]

Edge detection for a binary image also makes use of the sigma sum. The purpose of the

edge detection algorithm is to remove all pixels that are not on the edge of the dark region

(assumed to be an object). If a pixel is in the middle of a dark region, one can easily see

that the sigma sum will be equal to 8 . If a pixel is in the midst of a bright region, the sigma

sum will be equal to 0. Therefore, the edge points will be in the range of I to 7. Edge

points are defined to be part of the original dark object.

[[sigma = PI + P2 + P3 + P4 + P5 + P6 + P7 + PS
EDGE: (2.44)

IF (sigma = 8) Q0=0 ELSE QO=PO]]

This edge detection algorithm will be used extensively in this work.

Given an image that contains multiple objects, one might wish to locate individual 

objects and label each one uniquely. Here, an object in a binary image is defined as a con

tiguous region of dark pixels. Each contiguous region will be labeled with a unique inte

ger number. For this task, a connected component labeling algorithm is required. The 

algorithm used here is adapted from Klette and Zamperoni (1996). Since it is consider

ably more complicated than the simple algorithms introduced in the previous paragraph, 

the method will be described without providing detailed pseudo-code. The algorithm pro

ceeds in several steps. First, a binary image A is obtained, perhaps by using the THRESH 

operator (2.41) on the original digital image P. Next, a image B containing values of the
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object labels is created with default values set to zero. Scanning through binary image A, 

once an unlabeled dark pixel of A has been found, a region growing algorithm is used to 

apply the same label to other neighboring dark pixels. The region growing algorithm is 

similar to the EXPAND (2.43) algorithm above, except the routine searches in an outward 

reaching spiral from the “seed” point, and unlabeled dark pixels (where A(/,t)=1 and 

B(/,y)=0) will obtain the same label as the seed point if any of its 8 neighbors also have the 

same label as the seed point. As depicted in figure 2-8, one pass of the region growing

object

cavity

labelled
region

seed point

Figure 2-8: Impact of concavity on first pass of label algorithm. The entire object is the 
union of the dark and light shaded regions. The portion of the object that is given the same 
label as the seed point is solid black.

algorithm will not completely “grow” the entire contiguous region for objects containing 

concavities. A set of points is concave (or non-convex) if there exists at least two points in 

the set where a straight line connecting the two would not fall entirely within the set. For 

a given label value, one could repeat the region growing algorithm several times for each 

object until no new pixels are assigned that label; however this would be computationally 

expensive. A faster alternative is to allow different parts of objects to be labelled with dif

ferent values while compiling a table of neighboring points possessing different labels. 

Each time a pixel in B is assigned a value, the surrounding 8 neighbor points are checked
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for different label values, and if any are found, those values are stored in a table. The final 

step of the connected component algorithm is to reconcile the multiple labels so that each 

pixel within a contiguous object has the same label value. This step consists of assigning 

the lowest label value of all connected labels to each pixel determined to be connected in 

the “multiple label” table.

Many other image processing operations, including image enhancement and noise 

suppression, are window functions or local operators, where the processed image pixel is 

some function of the values of the original image within a window or neighborhood sur

rounding the pixel location. For example, to smooth an image, various filters can be used 

that compute a weighted sum of the pixel values in the vicinity of each location. In order 

to examine the impact of these types of functions on the image, it is convenient to use the 

mathematical concept of convolution. The continuous form of the convolution of (one

dimensional) function/with function h is:

g(f) = J f ( x ) h ( t - z ) dT  (2.45)

which is typically denoted by g = f * h  . In terms of using convolution for smoothing,/ 

is the input signal or image, h is the filtering function (impulse response), and g is the 

resulting smoothed signal. In discrete form, the integral is replaced by a sum:

g(i) = 21 / ( ^ ) ^ ( '- ^ )  (2.46)

which, again in terms of a filter, the smoothed signal g is obtained by a weighted sum of 

the input signal /  where the weights are determined by h. Typically, h has what is known 

as compact support, where the values of h are zero for all absolute values of k greater than
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some small value w. Therefore, the infinite sum can be replaced by:

W

8(i) = X  (2.47)
k =  - w

where vv is the window size. For a two-dimensional function, the convolution can be per

formed along one dimension at a time, or the convolving functions can be combined to 

make a two-dimensional function:

giUj )  = X  S  0  (2.48)
/  =  —W y k  — - w .

Given a 3x3 convolution function h and the numbering notation found in figure 2-7, this 

can be replaced by the following pseudo-code, where P is the input image and Q is the 

resulting smoothed image:

CONVOLVE:
8

QO = ^  P,h, (2.49)

In order to design a filter function, the effect of the filter in the frequency (for time 

domain variables) or wavenumber (space domain) space must be established. For exam

ple, a low-pass filter allows the low frequency waves through, but smooths out high-fre

quency waves. In general, the response for waves that should be kept is relatively high 

and the response for waves that one wants to remove is near zero. In frequency space, the 

filter can be considered to be such a function multiplying the signal (figure 2-9). In order 

to apply this approach, a Fourier transform of the input would be required, then multiply

ing this result by the filter response function, and finally an inverse Fourier transform of 

the result would be needed to get back into the time domain. Note that this involves two
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Fourier
transform

inverse
Fourier
transform

Figure 2-9: Two equivalent methods of filter application. Here, t indicates a signal in the 
time domain,/indicates frequency domain, x indicates multiplication by a filter response, 
* indicates convolution with the Fourier transform of the same filter response. Adapted 
from Davies (1997).

Fourier transforms, which can be computationally expensive. By taking advantage of the 

convolution theorem, which says that the Fourier transform of a convolution is the same as 

the product of the Fourier transforms, one could obtain the same result by convolving the 

input with the Fourier transform of the response function (figure 2-9). If we define a Fou

rier transform (Boas 1983) by:

1
g (a ) =

the product of two Fourier transforms becomes:

gi(a)g2(«) = /i(M)g"""^w ' /z (v )f

(2.50)

dv
(2.51)

dudv

By applying a change of variables x  = v + u, dx = <iv in the v integral, (2.51) becomes:

,2
g i ( a ) g 2 ( c t )  =  I J  f i (u) f2(x-u)e  ‘"^diidx 

Plugging in (2.45), (2.52) becomes:

(2.52)
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S ,(“ )S2(ot) = (2-53)

which is ^  times the Fourier transform of . If the convolving function has compact

support, this will likely not require as much computation time as the preceding “Fourier 

transform-multiply-inverse Fourier transform” method.

As shown in equation (2.49), the convolution operator simplifies to an application of 

a template across the image. Some examples of commonly used templates will now be 

presented. Marr and Hildreth (1980) show that for smoothing purposes, an ideal filter 

should be smooth and compact in both the spatial and wavenumber domains. For exam

ple, filters that are not smooth in the spatial domain, such as a square-wave (equivalent to 

a box-average in 2-D), will have a Fourier transform that is not compact, containing side- 

lobes in the wavenumber domain. These two requirements are conflicting and related by 

the Heisenberg uncertainty principle, which states that both the spatial and wavenumber 

domains cannot be measured with arbitrarily high precision. Marr and Hildreth (1980) 

find the filtering function that optimizes the uncertainty principle is Gaussian, which can 

be written in two-dimensions:

2 2

G(x,y)  =  rexp
2 7 t a 2a

(2.54)

Here, a^ is the variance and determines the “width” of the window when turned into a 

discrete operator. A commonly used template which closely approximates a Gaussian 

function is:
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1 2 1 
2 4 2 
I 2 I

(2.55)

which is the 2-D version of the well-known “1-2-1” filter.

Besides smoothing, convolution templates are used for a variety of purposes in 

image processing. Image sharpening and enhancement along with the detection of lines, 

edges, and other specific shapes are processes often performed using local window tem

plates. In this work, edge detection operators were tested for their effectiveness at locating 

regions of convective rainfall embedded within larger areas of stratiform precipitation. 

The contra-harmonic filter (Klette and Zamperoni 1996) is one example that highlights 

edge pixels based upon the difference between estimates of the local maximum and mini

mum values within a window. These estimates are non-linear calculations of averages 

(contra-harmonic average) of the local pixel values. The basic idea behind this filter is 

that, in the vicinity of edges, large differences between local maximum and minimum val

ues should exist. The filter is simply:

h{ i J)  = C ^ - C ^  (2.56)

where, assuming a 3x3 window and numbering scheme from figure 2-7:

CM = ^ ------  and ^ -------- , r > 0  (2.57)

z  p ; z  p :
n =  0  n =  0

The and values can be thought of as weighted averages of the local pixel values, 

where the weights are for and for C^. From this perspective, for positive real
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values of r, one can see that in the case higher pixel values are enhanced, while lower 

values are enhanced in the case. The impact of this filter on a hypothetical one-dimen

sional edge function can be found in figure 2-10. Assuming an object is defined as the set 

of pixels with relatively high values, and an edge is defined to be part of an object, in this 

case (figure 2-10a), the edge is located near 1=12. The result of (2.56) and (2.57) using 

r=1.2 and a window consisting of 3 points is shown in figure 2-10b. The maximum of this 

filter correctly indicates the location of the edge, near 1= 12.

Another example of a commonly used edge detection operator (Marr and Hildreth 

1980) is based upon well-known property of the second-derivative of a function in the 

vicinity of a edge, that is, edges are co-located with the zero-crossings of the second- 

derivative of a function. While based upon calculus, the development of the operator was 

motivated by research into mammalian vision systems (Marr and Hildreth 1980), as the 

authors desired to make the algorithm as consistent with human vision processes as possi

ble. The calculus-related properties that the operator is based upon can be illustrated using 

the preceding example. Again, a hypothetical one-dimensional edge function can be 

found in figure 2-10a, where the edge is located near /=12. Here, the function increases in 

a step-wise fashion. The first-derivative of this function (figure 2-10c) begins increasing 

on the “low” side of the step, reaches a maxima near “mid-step” where the slope of the 

step function is highest, then decreases back to zero as the top of the step is approached. 

The second-derivative of the function (figure 2-lOd) has large positive values on the “low” 

side of the step, where the first-derivative is increasing, a zero-crossing near j=12, and 

large negative values on the “high” side of the step. Again, this example illustrates where 

one intuitively expects to find an edge, somewhere between where the function increases
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and decreases the fastest, which corresponds to the location of the zero-crossing of the 

second-derivative. The Marr-Hildreth operator combines the smoothing properties of the 

Gaussian with the edge-finding properties of the Laplacian (second-derivative), in fact, it 

is also known as the Laplacian of Gaussian (LOG) filter. The LOG filter function can be 

obtained by taking the Laplacian of (2.54), which results in:

0 " ( x , y )  = — L  
2 n a

2 exp r - ( z ^ + / ) i
V a  ) L 2 a -  J

(2.58)

Again, a~ is the variance and determines the “width” of the window (= 2a)when turned 

into a discrete operator, as well as the spatial scales that are included/discarded by the 

smoothing properties of the Gaussian part of the function. Klette and Zamperoni (1996) 

provide a detailed implementation of a discrete template version of the LOG function. 

One of the advantages of the LOG operator is the scale-selectivity of the function, allow

ing the procedure to be applied at a variety of scales. Large-scale edges will be consis

tently found via applications of this operator for a wide range of values of a " , while

smaller-scale edges will disappear for larger values of a " . Multiple edge maps can be cre

ated at different scales, which allows for the creation of a hierarchical representation of the 

edge features found within an image (defined as blobs, bars, and edges by Marr and Hil

dreth 1980).

2.13 Summary
The KDD process (Table 1-9) defines the general framework that has been followed 

in this work in order to develop a rainfall pattern classification technique. In this chapter, 

several mathematical tools and concepts needed to perform this task were introduced and
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Figure 2-10: Hypothetical example of an edge. Smoothed step function (a) with corre
sponding contra-harmonic filter of that function (3 point window, r=1.2) (b), finite-dif- 
ference approximation of first-derivative (c), and finite-difference approximation of 
second-derivative (d).

discussed in some detail. These involve the creation of a target data set, choice of data 

mining task and algorithms, and data reduction. In addition, several image processing 

tools required for object location and identification were introduced. The final steps in the 

KDD process involve interpreting the results of patterns discovered by the data mining 

algorithms, possibly modifying the system, iterating previous steps, and consolidating the
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knowledge obtained through the process. These steps will be taken in the following 

chapters where analysis of a target data set will be performed.
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Chapter 3

Histogram analysis

3.1 Introduction
The outline of the KDD process (Table 1-1) defines the general framework that has 

been followed in developing an automated rainfall pattern classification technique. The 

first step involves developing an understanding of the application and the goals of the end- 

user. In this work, the goal is to classify rainfall systems. For several reasons, rainfall has 

been selected as the variable for analysis. The spatial patterns found in precipitation fields 

often represent important and significantly different meteorological phenomena. There 

are several potential applications for an automated rainfall classification system, including 

climatological studies, verification, data assimilation, feature tracking, hydrology, etc. 

The next steps in the KDD process involve the selection of a target data set and prepro

cessing the data. A relatively large dataset should be used, one that is richly populated 

with a variety of interesting and important phenomena that span a large portion of the 

entire range of possible events. Here, several cases from a high-resolution precipitation 

analysis produced operationally by the National Centers for Environmental Prediction 

(NCEP) are used to create the target data set. The use of operationally available data will 

make this work more relevant and allow for faster implementation into an operational 

forecasting environment.

Once the target data set has been selected and processed, the next steps in the KDD 

process involve data reduction and data mining. Data reduction addresses the methods 

used to extract features of a relatively small dimension within the large-dimensional 

dataset that allow for proper classification of objects. The determination of useful
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attributes that possess good discrimination and classification properties represents the 

most substantial portion of this work. It is not clear from the outset which attributes will 

be suitable for use in a classification system. Therefore, appropriate attributes will be dis

covered by trial and error. The results of an automated classification using trial attributes 

will be compared to a subjective classification. If these results are in agreement, the trial 

attributes will be considered useful. To provide a baseline for comparison, no data reduc

tion will be performed and the raw values of analyzed rainfall at every point in space will 

be tested for their classification ability. As the next step in this multi-faceted analysis pro

cess, bulk statistical measures representing the distribution of rainfall values will be tested 

as trial attributes. As the choice for a theoretical distribution, the gamma distribution is 

selected since it is well suited for rainfall data and has been widely used for rainfall histo

gram analysis in the meteorological literature. Due to the spatially correlated nature of 

rainfall, a robust method of parameter estimation of the gamma distribution is required, 

therefore the generalized method of moments (GMM) estimation technique was used. 

Hierarchical cluster analysis is then performed using the parameters of the gamma distri

bution as attributes to classify the objects in the target data set, and those results are com

pared to a subjective classification of the rainfall patterns. The results show that this 

system successfully classifies the cases in the target data set into convective and non-con- 

vective events with over 95% accuracy. Much of the work described in this chapter was 

also included in Baldwin and Lakshmivarahan (2002). Further refinement of the classifi

cation will be discussed in chapter 4.

3.2 T arget da ta  se t

To begin this work, a small target data set was established. The so-called “Stage IV”

6 1



rainfall analysis (Fulton et al. 1998; Sec 1998; Baldwin and Mitchell 1998) produced at 

the National Centers for Environmental Prediction (NCEP) was obtained for the period 

covering late summer/early fall of 2000. The Stage IV analysis is a national mosaic of 

optimal estimates of hourly accumulated rainfall using radar and raingage data, which is 

available on a 4km x 4km mesh covering the contiguous 48 states. The data analysis rou

tines include a mean radar bias correction, separate radar-only and gage-only analysis 

mosaics, and a “multi-sensor” analysis combining the radar and gage estimates using an 

optimal estimation technique (Seo, 1998).

Every observation platform and analysis system contains imperfections and Stage IV 

analyses are certainly no exception. The primary sources of information are the radar esti

mates of precipitation, which are potentially fraught with errors (Wilson and Brandes, 

1979; Austin, 1987). Typical sources of error include beam blockage by terrain, beam 

overshoot at long range or where the radar is sited at a high elevation, anomalous propaga

tion, overestimation due to melting snow or hail, radar calibration problems, underestima

tion of snow, and sensitivity to the Z-R relationship. The Stage IV analysis performs very 

little quality control (Baldwin and Mitchell, 1998) on the raingage data and no quality 

control on the radar estimates. The raingage density is fairly sparse (-2500 gages total), 

particularly in the mountainous Western U.S. where the radar also has the most problems 

with beam blockage and overshoot. A radar bias adjustment is applied across the entire 

radar umbrella, no attempt is made to account for bias as a function of range (Smith and 

Krajewski, 1991). The encoding of the radar estimates causes a truncation of light precip

itation amounts, the smallest reported precipitation rate is 0.25 mm/hr, which converts to 

approximately 0.25 inches/day (the analysis will be rounded to the nearest 0.1mm when
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packed into the standard GRIB format for transmission). However, since many of the 

errors affect the precipitation estimates over a large area in a similar fashion, the spatial 

structure of the field is assumed to be well-observed and that using the analysis to deter

mine a spatial pattern will be generally valid.

In this case, the method of selecting the rainfall objects (the terms objects and sys

tems will be used interchangeably when referring to rainfall entities) for target data set was 

not automated and clearly cannot be used to create an automated system, which is the ulti

mate goal of this research. However, the purpose of the initial target data set is to test the 

usefulness of various trial attributes in an automated classification system. This will be 

accomplished through the use of a data set that is relatively small and manageable but still 

well-populated with interesting features that are desirable for classification. Forty-eight 

separate precipitation events occurring at different times and locations across the United 

States were selected for inclusion in the target data set. The selection criteria was based 

upon the occurrence of typical rainfall patterns that are often found across the U.S. during 

the year. The late summer-fall time period was selected due to data availability and the 

fact that this represents a transition period from warm-season convection to cool-season 

stratiform precipitation regimes. The size of the domain was chosen to be fixed at 128 x 

128 4km grid boxes, which is approximately 500km by 500km. For each case, the domain 

was centered visually near the event of interest. For each of these 48 events, the rainfall 

pattern from the entire 500km by 500km domain will be considered the object for classifi

cation.

The domain size was chosen for a variety of reasons. Subjectively, 500km was 

deemed large enough to capture a wide variety of events across a range of spatial scales.
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from a significant portion of a synoptic-scale stratiform event to a collection of small- 

scale cells. Making the domain too large will often mean that many different types of 

events will be found together in the same domain, making classification more difficult. 

Making the domain too small will also create problems, since only a fraction of an event 

will be observed and many different types of events will appear similar when examined 

with a “zoom lens.”

Figures 3-1 through 3-4 display the rainfall patterns for all of the 48 cases found in 

the target data set. These plots demonstrate that a wide range of times, geographic loca

tions, and rainfall phenomena were included in the target data set. For some cases, (e.g. 

figure 3-1 case #03) the range of the radar/raingage analysis is indicated by a solid red 

line. Rainfall outside of this range was assumed to be zero for purposes o f this study.

3.3  S u b jec tive  c lassifica tion

Each case was subjectively classified (by the author) into three main event classes;

linear, cellular, and stratiform. In the linear class, there is larger-scale organization of 

smaller-scale elements of heavy precipitation. The smaller-scale elements (usually called 

“cells”) appear to be arranged approximately along a line. For the cellular class, there is 

very little large-scale organization of smaller-scale heavy precipitation elements (similar 

to “unclassifiable” class of Houze et al. (1990) and “chaotic” class of Blanchard (1990)). 

The rainfall field typically consists of “cell” features somewhat randomly positioned in a 

disorderly fashion. In the stratiform class, there is large-scale organization of light rain

fall, in which the precipitation field shows little variation in any direction over a large 

area. Linear and cellular events are considered to be related, due to the existence of 

smaller-scale heavy rainfall elements. These events fall under the convective precipitation
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Figure 3-1: Cases (objects) I through 12 of the target data set, from NCEP Stage IV Ih 
accumulated rainfall analyses. Domain consists of 128 x 128 4km grid boxes. Colorbar 
on the side of each image indicates rainfall amounts in mm. Valid times and case numbers 
are indicated at the top of each image.
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Figure 3-2: Cases (objects) 13 through 24 of the target data set, from NCEP Stage IV Ih 
accumulated rainfall analyses. Domain consists of 128 x 128 4km grid boxes. Colorbar 
on the side of each image indicates rainfall amounts in mm. Valid times and case numbers 
are indicated at the top of each image.
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Figure 3-3: Cases (objects) 25 through 36 of the target data set. from NCEP Stage IV Ih 
accumulated rainfall analyses. Domain consists of 128 x 128 4km grid boxes. Colorbar 
on the side of each image indicates rainfall amounts in mm. Valid times and case numbers 
are indicated at the top of each image.
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Figure 3-4: Cases (objects) 37 through 48 of the target data set, from NCEP Stage IV Ih 
accumulated rainfall analyses. Domain consists of 128 x 128 4km grid boxes. Colorbar 
on the side of each image indicates rainfall amounts in mm. Valid times and case numbers 
are indicated at the top of each image.
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class, which consists of rainfall produced by small-scale (wavelengths on the order l(X)km 

and smaller), convectively-driven atmospheric circulations. Stratiform events fall under 

the general non-convective precipitation heading, where rainfall is produced by upward 

vertical motion resulting from large-scale (wavelengths on the order 1000km and larger) 

forcing mechanisms. The subjective classification of the 48 cases was based entirely upon 

the rainfall pattern; no other information (such as meteorological conditions, location, 

time of year, time of day) associated with the events was provided to the human analyst. 

This forces the subjective classification to sample from the same “attribute space” as the 

automated classification systems.

Objective criteria are used to subjectively classify the cases in this work, similar to 

Bluestein and Jain (1985). For convective events, a significant fraction of the rainfall sys

tem must observe 5mm/hr or higher rain rates, otherwise the system will be classified as 

stratiform. For convective events, the region of heavier rainfall will be surrounded by a 

rectangular bounding box, and if the ratio of length to width of such a box is 3 or greater 

(relaxed from the 5 to 1 ratio used by Bluestein and Jain (1985)) the system will be classi

fied as linear, otherwise it will be considered cellular. The determination of what fraction 

of heavy rain would be considered “significant” when determining whether a system was 

convective was left to the discretion of the analyst. In addition, the determination of the 

region of heavier rainfall to be outlined by the bounding box was also left to the discretion 

of the analyst. Different analysts will have different criteria for determining these aspects 

of the subjective classification. Table 3-1 shows the distribution of the subjectively classi

fied events across the three main classes. Note that the events are not uniformly distrib

uted, the majority of the events were convective in nature. As described previously, the
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linear and cellular classes are considered sub-classes of the convective precipitation class.

3 .4  C lassifica tion  o n  th e  raw  va lues

To begin this work, a “baseline” automated classification will be performed. An

objective classification of the target data set is performed without any data reduction In 

order to provide a baseline experiment to compare other classification experiments 

against. The degree of similarity between the raw values of rainfall at each point in space 

for the 48 individual events will be analyzed, using cluster analysis. While cluster 

analysis methods were described in detail in chapter 2 , a brief explanation will also be 

provided here. Hierarchical cluster analysis has been selected as the primary classification 

tool. Here, similar objects will be grouped together into clusters where objects are 

defined as rainfall events over regions of fixed size. In general, an object consists of a 

vector of length m consisting of attributes that describe the object. In this baseline experi

ment, attributes are rainfall values at each point in space within the object domain, there

fore /w=16384 (=128 X 128). The rainfall objects are simply the 2-D rainfall analyses 

stored as a vector in row-major order. The data matrix for this experiment is therefore of 

dimension m x n  = 16384x 48. In this particular case, the similarity of objects will be 

measured by a single number representing the difference of rainfall values at each point in 

space, in a point-by-point sense. For example, the Euclidean distance between objects j  

and k  would be;

^Jk=

(Xij being the rainfall amount at location i for object J) which is almost identical to the root
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Table 3-1: Central location, time, date, and subjective event classification for tbe 48
cases of the target data set.

case number
central location (latitude 
degrees north, longitude 

degrees west)
date, time (UTC) subjective classification

1 42.8,94.9 17 Aug 2000, 0500 linear
2 39.0,90.0 05 Oct 2000, 1100 linear
3 42.9, 123.7 28 Oct 2000, 1100 linear
4 36.6,99.4 25 Oct 2000,0200 linear
5 39.2,97.3 29 Oct 2000. 0700 linear
6 39.5, 82.5 21 Sep 2000.0200 linear
7 39.5, 82.5 21 Sep 2000,0300 linear
8 37.0, 102.0 01 Nov 2000,0100 linear
9 38.4,97.2 22 Sep 2000, 2300 linear
10 40.0, 83.7 21 Sep 2000.0100 linear
11 35.5, 78.5 25 Sep 2000, 2300 linear
12 39.9, 86.3 20 Sep 2000, 2100 linear
13 40.0, 85.7 20 Sep 2000. 2200 linear
14 40.1,85.1 20 Sep 2000, 2300 linear
15 34.8,97.2 01 Nov 2000, 1800 linear
16 35.3, 87.6 09 Nov 2000, 0400 linear
17 40.2, 84.5 21 Sep 2000.0000 linear
18 35.5,85.2 25 Sep 2000,0900 linear
19 38.8,90.8 25 Sep 2000, 1000 cellular
20 40.0, 86.0 04 Oct 2000, 2200 cellular
21 36.9,97.7 25 Oct 2000, 1600 cellular
22 39.1, 104.2 17 Aug 2000, 2200 cellular
23 41.4,92.8 04 Oct 2000,0200 cellular
24 31.2, 101.6 17 Oct 2000. 1300 cellular
25 40.0, 86.0 04 Oct 2000, 2300 cellular
26 40.0, 86.0 05 Oct 2000. 0000 cellular
27 40.0,86.0 05 Oct 2000,0100 cellular
28 40.0, 86.0 05 Oct 2000,0200 cellular
29 38.8, 90.8 25 Sep 2000, 1100 cellular
30 32.4,93.0 05 Oct 2000, 2300 cellular
31 32.3,110.0 17 Aug 2000, 2300 cellular
32 31.8, 85.8 22 Sep 2000, 1100 cellular
33 39.3,88.9 25 Sep 2000, 12000 cellular
34 30.0,99.6 02 Nov 2000.2100 cellular
35 35.0,95.5 16 Oct 2000, 0300 cellular
36 41.89, 86.1 17 Aug 2000, 1400 cellular
37 38.5,83.2 17 Aug 2000, 1800 cellular
38 44.6, 123.3 10 Oct 2000, 0200 stratiform
39 45.1, 123.1 01 Oct 2000, 0300 stratiform
40 36.1, 118.7 10 Oct 2000,0600 stratiform
41 38.7,94.5 25 Sep 2000,0000 stratiform
42 41.2, 76.3 26 Sep 2000, 1500 stratiform
43 44.6, 123.3 10 Oct 2000,0000 stratiform
44 34.6,92.1 04 Nov 2000,0900 stratiform
45 42.3, 93.6 06 Nov 2000, 1900 stratiform
46 34.2,97.4 08 Nov 2000, 1000 stratiform
47 44.6, 123.3 10 Oct 2000,0100 stratiform
48 30.3,97.7 18 Nov 2000, 1600 stratiform
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mean squared error (RMSE) between two analyses. One might expect that this measure 

would be sensitive to large differences at a small number of points. This kind of point-by- 

point comparison might also be sensitive to small errors in phase lag or displacement. For 

example, two objects containing the same intense rainfall cell, with one object displaced 

slightly when compared to the other, will produce a large value of djĵ , even though the 

same type of rainfall event is occurring in both cases.

The hierarchical cluster analysis method that will be used is Ward’s method (Ward 

1963), which is built upon the fact that the total sum of squares (or variance) of all objects 

in the data matrix is constant and can be partitioned into the between-cluster and within- 

cluster scatter. The criteria for combining objects into a cluster is minimizing the total 

sum of squared error, which is the same as minimizing the within-cluster variance, and 

therefore maximizing the between-cluster variance. This forces objects found within a 

cluster to be similar while keeping the clusters as different as possible. Ward’s clustering 

algorithm proceeds as follows:

Step 1: Assign each object to separate clusters, each of which contains only one 

object. The total within-cluster sum of squared error is zero at this point.

Step 2: Compute the increase in the within-cluster sum of squares for every possi

ble merger of two clusters.

Step 3: Create a new cluster by combining the two clusters that produce the small

est increase in the within-cluster sum of squares.

Step 4: Repeat steps 2 and 3 until a single cluster containing all objects is created.

Ward’s method has been found to produce satisfying results for meteorological data in pre
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vious research (Alhamed et al. 2002). The statistical toolbox component of the student 

version of MAILAB (R ll) is used to execute Ward’s method throughout this work.

The results of a hierarchical clustering algorithm can be displayed as a tree or den

drogram. Figure 3-5 shows a hypothetical example of such results. In this case (unlike

O
Ë

objects

large between- 
cluster variance

t small within- 
cluster variance

Figure 3-5: Hypothetical hierarchical clustering dendrogram, indicating ideal clustering. 
Ideally, the within-cluster variance will be relatively small, while the between-cluster vari
ance will be relatively large. An ideal cut-level, indicated by the dashed line, can be made 
in the gap separating the major within-cluster and between-cluster variances.

figure 2- 1), the y-axis indicates increasing degrees of dissimilarity, where more similar 

objects are grouped on the tree at lower parts of the graph. The first question that arises is, 

how does one interpret the dendrogram? Hierarchical cluster analysis provides informa

tion on the relationship of the similarities between objects/clusters, but it does not auto

matically provide information on the number of clusters found in the data. The number of 

clusters must be determined subjectively. In fact, Kalkstein et al (1987) mention that the 

term objective maybe should be replaced with automated when referring to this type of 

analysis technique. The automated classification relies upon several subjective decisions; 

choice of cluster analysis algorithm, number of clusters, cut-level, etc. Ideally, objects
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will be grouped into clusters at a high level of similarity, and a relative small number of 

major clusters will ultimately be grouped at a high level of dissimilarity. On a dendro

gram, this ideal clustering tree might look something like the hypothetical tree found in 

figure 3-5. An experienced analyst can examine the dendrogram and determine a “cut- 

level” , or a degree of similarity/dissimilarity where the tree can be cut, forming a discrete 

number of major clusters each containing a number of objects. Returning to the hypothet

ical example (figure 3-5), the ideal cut-level is somewhere along the “long branches” of 

the tree, where there is a gap between the level where the major clusters are found to be 

relatively dissimilar and the level where the objects within each cluster are found to be rel

atively similar. This would produce clusters that contain objects which appear similar to 

other objects within a cluster, but different from objects found in other clusters. Of course, 

this is an idealized example and, as we will soon see, results from real data do not always 

follow idealized examples.

Using hierarchical cluster analysis as a classification tool requires a subjective deci

sion in order to determine the number of clusters. In this work, this subjective decision 

will be made as objectively as possible, with the goal of producing groups of objects that 

are as close to ideal as possible. The cut-level will be made such that a small number of 

clusters (3 or 4) contain as many objects in the target data set as possible. Every attempt 

will be made to cut the dendrogram at a point where there is substantial separation 

between the intra-cluster and inter-cluster variance. This cut-level will likely result in a 

number of outlier objects that do not belong to any of the major clusters. The outliers will 

not be classified. Each major cluster will be considered a different class of objects. For 

each of these main clusters, the class definition will be determined by the highest
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percentage of subjectively classified cases detected for that particular cluster. For 

example, a cluster that contains a large fraction of the events that were subjectively 

classified as stratiform will be considered a stratiform class for purposes of the automated 

classification. The percent of objects that are “correctly” classified by their membership 

in the dominant subjective class for each cluster will be used as the metric for determining 

the skill of the automated classification.

Figure 3-6 shows the results of Ward’s cluster analysis on the baseline (no data 

reduction) target data set. At first glace, there does not appear to be an ideal cut-level that 

results in three to four main clusters with small within-cluster variance and large between- 

cluster variance. For many of the objects, the increase in the variance for combining two 

objects is nearly as great as the increase in the variance found for merging a large number 

of objects. In addition, there is no cut level that results in a small number of outliers and 

three or four main clusters. It is assumed that at least three main clusters should be used 

since three subjective classes are provided. Given these difficulties, a cut level was 

determinined on the dendrogram tree at approximately the 300 level (indicated that the 

square root of the increase in the total sum of squared errors is -300) that results in 

separating the 48 cases into three main clusters and eleven outliers. This number of 

outliers represents a significant fraction (22.9%) of the total number of objects in the data 

set, which is undesirable. For each of the main clusters, the dominant class was defined as 

the class (linear, cellular, or stratiform) that contained the highest percent of cases detected 

for that particular cluster. For instance, the dominant class for cluster #1 was stratiform, 

since the cluster detected 9 of the 11 (82%) cases belonging to that class. Only 1 of the 18 

linear cases (5.6%) and 3 of 19 (15.8%) of the cellular cases were part of this first cluster.
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Figure 3-6:Dendrogram produced by Ward’s method with target data set using raw rain
fall data as attributes. Each object is color-coded by its subjective classification, linear 
events are green, cellular events are red, stratiform events are blue. Tick marks on the y- 
axis indicate the square root of the increase in the total sum of squared errors at which two 
clusters are combined to form a new cluster.

For cluster #2, 47.4% of the cellular cases (9 of 19) were detected, while 16.7% of the 

linear cases (3 of 18) and 18.2% of the stratiform cases (2 of 11) were also detected, 

therefore this cluster was considered to be cellular. Cluster #3 was considered linear
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dominant, with 50% (9 of 18) of all linear cases detected, 5.3% (1 of 19) of all cellular 

cases, and 0% (0 of 11) of the stratiform cases detected. The number of cases in each 

dominant class was summed to produce a total number of “correct” cases, and all cases not 

in the dominant class were considered “incorrect” cases. The overall percent correct was 

computed, this being equal to the total number of “correct” cases divided by the total 

number of cases minus the number of outlier cases (= 48 -  11 = 37 in this case). For the 

baseline classification experiment, 27 of 37 cases were correctly classified, or 72.3%.

In addition, one can determine the skill of the automated classification for separating 

the convective events from the non-convective events by combining the linear and cellular 

classes into a parent “convective” class. Again, for each of the main clusters, the domi

nant class was defined as either convective or non-convective based upon the highest per

cent of subjectively classified cases detected for that particular cluster. For instance, the 

dominant class for cluster #1 was non-convective, since the cluster detected 9 of the 11 

(82%) cases belonging to that class. Only 4 of the 37 convective cases (10.8%) were also 

part of this first cluster. For cluster #2, 32.4% of the convective cases (12 of 37) were 

detected, while 18.2% of the stratiform cases (2 of 11) were also detected, therefore this 

cluster was considered to be convective dominant. Cluster #3 was also considered con

vective, since all 10 cases found within that cluster were subjectively classified as convec

tive. For the two-class case, the baseline classification produced 31 of 37 correctly 

classified cases, or 83.7% percent correct.

These percent correct values (72.3% for the three-class and 83.7% for the two-class) 

will be used to compare with other classification experiments using trial attributes deter

mined by various data reduction methods.
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3 .5  D ata  red u ctio n  experim en ts

3 .5 .1  T h eo re tica l sta tistica l d istrib u tio n

There are a large number of potential choices of attributes that could describe the 

rainfall pattern over a region. An obvious choice is the amount of rainfall at every point in 

space obtained from a gridded analysis over the region of interest. This type of “no data 

reduction” classiOcation was performed in section 3.4. Given this choice, one expects the 

clustering algorithm to produce groups of objects that are similar in a “point-to-point” 

sense. Since the goal of this work is to classify rainfall patterns, such as a heavy precipita

tion band oriented along a line or a disorganized collection of cellular convection, the pre

cise locations of the maxima/minima are not of great importance. A more general 

characterization of the patterns may be more appropriate. Therefore, a logical choice for 

useful attributes might be some sort of bulk statistical measure of the overall distribution 

of rainfall across the region. To begin this work, the simplest choice of bulk statistical 

measures was selected, that is the parameters of a theoretical statistical distribution fit to 

the histogram representing the observed distribution of rainfall amounts across the region 

of each object.

As discussed in chapter 2, the distribution of rainfall tends to be highly positively 

skewed. Heavy rainfall is a rare event, and when large amounts of rainfall are observed 

the resulting distribution possesses a long “tail” (see for example figure 2-2a). On the 

other hand, widespread light rainfall would produce a distribution that is “humped” near a 

light amount of rainfall with little or no “tail” (for example, figure 2-2b). These character

istics limit the choice of theoretical distributions as potential models for the observed dis

tribution. For this work, the gamma distribution was selected since it is positively skewed
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and non-negative, provides a reasonable representation with only two parameters (a,P), 

and has been widely used in the meteorological literature for the analysis of precipitation 

data (e.g., Wilks 1990). The gamma probability density function is;

f(x-,a3) = (x /P )“ " ‘[ e x p ( - x /P ) ] [ p r ( a ) r ‘ ,x > 0 ,a ,P > 0  (3.2)

where T(a) is the standard gamma function. The a  parameter is commonly referred to as 

the shape parameter since it mainly affects the shape of the distribution function. For 

small values of a ( a  < 1 ) , the distribution is skewed strongly to the right with /(.r) -> oo 

as X approaches zero. For values of a  > 1 the distribution function begins at the origin and 

reaches a maximum value at x = P (a  -  1 ). For very large values of a , the gamma distri

bution is similar to the Gaussian distribution. The role of the parameter P, known as the 

scale parameter, is mainly to affect the tail of the distribution. For larger P, the distribu

tion is “pulled” to the right, increasing the frequency of larger values of x  and creating a 

thicker tail. For smaller P, the frequency of smaller values of x  is increased, creating a 

thinner tail and “pushing” the distribution towards the left (see figure 2-3 for an illustra

tion of the impact of varying a,P  on the probability distribution). Refer to section 2.8 for 

more detailed information on the gamma distribution.

3.5.2 Determination o f  trace region
Precipitation observing systems, such as raingages and radar estimates, will not

detect a non-zero value until the precipitation accumulation reaches some small amount. 

In the case of the Stage IV analysis used in this work, this detection limit is assumed to be 

0.05mm, since the minimum reported value of the analysis is 0.1mm and values between 

0.05 and 0.1mm are rounded up to 0.1mm by the gridded data packing routine. However, 

since the atmosphere is diffusive, it is physically sensible to expect a significant fraction
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of locations receiving non-zero precipitation over a region will receive less than the 

detectable limit (also known as a “trace” amount). Studies involving high-resolution mea

surements of rainfall have confirmed this, for example, Hosking and Stow (1987) found 

that 30-40% of non-zero rain periods produced total accumulations less than the resolv

able limit by conventional recording raingages. Spatially, it seems reasonable to expect 

that the size of the area receiving “trace” amounts of precipitation will be some fraction of 

the total area receiving detectable precipitation. It also seems reasonable to assume that 

the location of “trace” amounts of precipitation will be in the vicinity of the region receiv

ing measurable precipitation. The determination of the number of data values below the 

detection limit that are associated with each rainfall “object” is critical in the estimation of 

the parameters of a statistical distribution. Since there are no widely used methods for 

estimating the size of the trace area, this area was determined by experiment.

For each of the 48 cases in the target data set, the Wilks (1990) method for maximum 

likelihood estimation (MLE) of the gamma distribution parameters using left-censored 

data was performed. Wilks (1990) showed examples of this technique on a time series of 

precipitation data at fixed locations, here we use the technique for the distribution of pre

cipitation at fixed time across several locations. For more details on MLE of the gamma 

distribution, refer to section 2.9.2. For each case, the number of “trace” observation points 

(Ng) was assumed to be equal to a fraction of the total number of points greater than the 

detection limit across the region (N^). This fraction (k) varied from 0 to 1, limited by the 

fact that Nj, must be less than or equal to the total number of “zero” points available in the 

128 X 128 domain (= 16384-N ^ ) . From the a,3  parameters estimated by the MLE 

method, the mean absolute error (MAE) of the distribution fit to the observed histogram
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was computed. The fraction k that produced the minimum MAE was then deter

mined for each case. For example, figure 3-7 shows an example of how MAE varied with

MAE vs k case #01
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Figure 3-7: Mean absolute error of the gamma distribution fit using MLE (Wilks 1990) to 
the observed histogram for case #1 for 34 values of k. The k fraction is used in MLE to 
determine the number of censored (rainfall below the detection limit) data points 
(Ng = A:xN^)

k for case #1. For this case, the minimum MAE was found near k=0.2. Figure 3-8 shows 

the distribution of k„i^ across the 48 cases in the target data set, plotted as a function of 

Nyy. Most of the k^i„ values are clustered in the 0.1 to 0.2 range. However, note that for a 

minority of cases, was close to 1.0. For many of these cases, MAE continuously
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decreases as k  increases. It is possible that the actual for these cases is some value 

greater than 1.0 , which would mean that the trace area was larger than the area that 

received detectable precipitation. In addition, note that many of these high cases are

kmin vs Nw for 48 cases
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Figure 3-8: Distribution of kmin for the 48 cases in the target data set. Values are plotted
as a function of on the x-axis.

also associated with lower in other words, small areas of measurable precipitation. It 

seems unreasonable to expect the area observing non-zero rainfall below the detection 

limit should be as large or larger than the area receiving rainfall above the detection limit. 

Over the 48 cases, the median value for was found to be 0.18. As an approximation 

to this, a value of t=0.15 was used to estimate the “trace” precipitation area for the exper-
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imental results found in the remainder of this work.

In practice, k=0A5 area of trace precipitation was established in the gridded data by 

extending the detected rainfall region an integer number of grid points (denoted by iext) in 

each direction. This number of grid points is computed by assuming a circular area of pre-

(a) (b)

area=1.15c

area=c iext=2

Figure 3-9; Explanation of how the trace precipitation region was applied to the region of 
detectable rainfall. The left panel (a) illustrates how the formula for the extension radius 
r  ’ was calculated by assuming a circular region of rainfall. The right panel (b) shows how 
the edge of the detectable rainfall region (dark shaded) is extended by iext (= nearest inte
ger value to r ’) grid points in each direction, represented by the arrows. In this example, 
iext=2.

cipitation (figure 3-9a). Assume the area of this circular region is = c, this could be con

sidered to be equal to the number of grid points containing measurable precipitation if one 

assumes unit area for each grid point, therefore c = . The radius of this assumed cir

cular area is therefore r To produce a circle of radius = r  + r ’ that has an area

that is 15% larger than c, one must use an extension radius
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r' = ( y î 7 Î 5 - l ) r =  ( V Û S - l ) ^ ^  (3.3)

The nearest integer value to this extension radius becomes the actual number of grid 

points that are extended in each direction from the edge of the region of measurable pre

cipitation (figure 3-9b).

3 .5 .3  P aram eter estim a tion

Rainfall data, like many other meteorological variables, are spatially correlated. For

this reason, a robust method of parameter estimation that does not rely upon an assump

tion of independence is desired. One such parameter estimation technique is known as the 

generalized method of moments, or GMM (Hansen 1982; Hamilton 1994). GMM can be 

formulated to allow correlation in the data to affect the parameter estimation. GMM can 

be considered an extension to the more familiar method of moments technique for param

eter estimation. In the method of moments technique, a set of equations are developed to 

cover the number of unknown parameters found in the model. In the case of the gamma 

distribution, there are two unknown parameters, a  and P, therefore two equations relating 

these to known quantities are needed. For example, these two equations could be deter

mined by equating the first two sample moments to the population moments. In this case, 

parameters obtained via the method of moments technique will fit the observed mean and 

variance exactly, but higher-order moments will not be taken into account. In some cases, 

it may be desirable for the parameters to provide a better fit to the observed skewness 

(related to the 3rd moment) or kurtosis (related to the 4th moment). The GMM technique 

allows for this by adding higher-order moments to the equation set, resulting in an non-lin

ear system of equations which can then be solved by least-squares methods. A detailed
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description of GMM is provided in section 2.9.3. To my knowledge, this work is the first 

example of the use of GMM with rainfall data in the meteorological community.

The GMM estimates of the unknown parameters are those that minimize the 

weighted sum of squared errors of the parameter estimates. The optimal weighting matrix 

is the inverse of the parameter error covariance matrix. If the data are serially uncorre

lated, a consistent (in the statistical sense of consistency, where the sample estimate 

approaches the true population value in the limit where the sample size approaches infin

ity) estimate of the error covariance matrix is the second moment matrix, S t , where:

T

4  = (1/70 X  g ([â , h  w )g([â , PL w f  (3.4)
f =  1

which is the mean outer product matrix of the errors of the estimated parameters

(g ([a , P], w) as defined by eq. 2.22). Newey and West (1987) show how to modify the 

estimate of the second moment matrix to account for serial correlation in the data:

Sj- = To,7-+ ^  {1 - [v /(< 7 + l ) ]} ( rv ,r+ r^ v ,r )  (3.5)
V =  I

where:

T

Tv.r = ( 1/ r )  ^  [g ([a , P], w ,)][g([a, p], w,_y)]^ (3.6)
/  =  V +  1

and q is the lag-correlation length. The question now becomes, what is the proper choice 

for q l  Newey and West (1987) discuss how, in many studies, q is set equal to the number 

of non-zero autocorrelations in the data, which are known ahead of time. However, in 

many cases the number of non-zero autocorrelations is not known ahead of time or may in
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fact be quite large. For example, figure 3-10a shows the autocorrelation function (ACF) 

for case #1 from the rainfall target data set when stored in vector form in row-major order. 

Here, the ACF drops off to zero at a lag of approximately 35, then returns to a value near

(a)

(c)
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Figure 3-10: Autocorrelation function for the first 200 lags of case #1 stored in vector 
form in row-major order (a), case #1 in column-major order (b), case #48 in row-major 
order (c), and case #48 in column-major order (d).

1.0 at a lag of 128. This is due to the one-dimensional storage of the two-dimensional spa
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tial data, because the grid dimensions are 128 x 128, points that are separated by a lag of 

128 in the vector series are physically separated by 1 grid point on the original 2-D analy

sis. Figure 3-10b shows how the ACF changes for this case when the two-dimensional 

grid is stored in vector form in column-major order. The ACF crosses zero at a lag of 

approximately 40 in this instance. A quite different ACF is obtained from case #48 in 

row-major order (figure 3-10c) where the ACF remains positive throughout the plot. 

When stored in column-major order (figure 3-lOd) a plot similar to case #1 in row-major 

order is obtained, with a zero crossing near lag=35. Note that in all of these examples, the 

autocorrelation remains non-zero for large values of lag, therefore a proper value for the 

number of non-zero autocorrelations seems difficult to determine. On the other hand, 

Newey and West (1987) show that eq. 3.5 provides a consistent estimate of the covariance 

matrix even if the number of non-zero autocorrelations is not known or is not even finite,

as long as q grows as a fractional power of sample size iq  < This provides an

upper bound to q (for the target data set, 7=16384 therefore an upper bound for q is 

16384^ /^ ^ -11).

In order to determine the sensitivity of the results to variations in q, several different 

values {q ranging from 0 to 10) were tested in estimating the gamma parameters (see 

Tables 3-2 through 3-6). In addition, the number of moments included in the GMM esti

mation varied from two to four (two moments will produce identical results to the tradi

tional method of moments technique for any value of q). One can see that the values of Ct 

and P vary only slightly when different numbers of moments are used, and when different 

values for q are used. To further illustrate this, figure 3-11 shows examples of histograms 

from two different cases along with theoretical distribution plots for various values of q
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and numbers of moments in the GMM estimation. As can be seen in this figure, the differ

ences in gamma distribution probability distribution functions when two, three, or four 

moments are used (figures 3-1 la  and b) are quite small. In addition, almost imperceptible 

differences in gamma distribution plots are found for different values of q (=1, 5 , 10) when 

three moments are used in the GMM (figures 3-1 Ic and d) or when four moments are used 

(figures 3-l ie  and f).

3.5.4Classification results

The GMM estimates of a  and p are now used as trial attributes in an automated clas

sification (as in section 3.4) in order to find groups of similar rainfall events. The data 

matrix that becomes input to the cluster analysis is a n x m  (/i=48, m=2) matrix containing 

the raw, unnormalized (a,P) attributes for each of the 48 cases in the target data set. Fig

ure 3-12 shows a dendrogram of results from the Ward’s method on the target data set for 

the 48 cases using a , P estimated by GMM using 2 moments (see Table 3-2). In the den

drogram, there appears to be four main clusters which are separated at the breakpoint (on 

the y-axis) of ~3 (value indicates the square root of the increase in the sum of the squared 

errors caused by merging two clusters). The cases found within these four clusters are 

listed in Table 3-7. This result shows the cluster analysis successfully produces clusters 

whose members fall into the subjectively determined convective/non-convective classes. 

For example, clusters 1, 2, and 4 are unanimously populated by convective-type events 

(both linear and cellular). Cluster 3 is dominated by non-convective events, with 1 excep

tion (case 5). Case 31 is an outlier in this example. For the 2-class case, there is only 1 

“mis-classified” event out of 47, resulting in a 97.8% classification accuracy. This is 

much higher than the baseline experiment, which only produces 83.7% correct cases and
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Table 3-2: Results of GMM parameter estimation for gamma distribution for two,
three, and four moments with g=0.

2-moments 3-moments <j=0 4-moments q=0
case a P a P a P

1 0.51 6.91 0.49 6.50 0.50 6.31
2 0.67 2.01 0.62 2.11 0.56 2.28
3 0.73 1.85 0.63 1.49 0.67 1.38
4 0.42 4.54 0.42 4.52 0.39 4.83
5 0.53 1.47 0.49 1.29 0.52 1.19
6 0.39 4.07 0.30 3.20 0.34 2.80
7 0.32 3.67 0.26 2.99 0.28 2.76
8 0.50 3.99 0.44 3.62 0.45 3.54
9 0.38 7.50 0.37 7.55 0.40 6.87
10 0.50 2.00 0.49 1.94 0.57 1.58
II 0.48 4.16 0.44 3.64 0.48 3.32
12 0.40 3.32 0.39 3.16 0.44 2.62
13 0.43 2.98 0.42 2.77 0.48 2.33
14 0.45 3.28 0.51 2.80 0.57 2.42
15 0.27 7.25 0.24 6.73 0.26 6.08
16 0.51 5.09 0.52 5.03 0.61 3.96
17 0.52 2.17 0.52 2.17 0.59 1.83
18 0.17 8.34 0.16 8.18 0.17 7.33
19 0.62 2.33 0.59 2.44 0.55 2.58
20 0.36 4.44 0.33 4.33 0.35 4.03
21 0.68 3.08 0.67 3.13 0.65 3.21
22 0.25 5.18 0.19 4.46 0.20 4.21
23 0.39 2.83 0.40 2.72 0.40 2.71
24 0.42 8.26 0.38 7.40 0.39 7.09
25 0.57 3.56 0.53 3.47 0.53 3.47
26 0.53 3.92 0.46 3.50 0.48 3.34
27 0.59 3.33 0.52 3.11 0.49 3.31
28 0.53 2.83 0.51 2.68 0.53 2.56
29 0.61 2.41 0.54 2.35 0.51 2.48
30 0.17 5.41 0.17 5.40 0.17 5.48
31 0.14 12.18 0.14 11.99 0.15 10.75
32 0.26 6.08 0.31 5.13 0.32 4.94
33 0.62 2.04 0.57 2.03 0.54 2.18
34 0.22 6.41 0.22 6.44 0.28 4.44
35 0.49 3.22 0.49 3.18 0.48 3.25
36 0.54 3.00 0.52 2.62 0.58 2.24
37 0.31 5.19 0.30 5.17 0.35 4.17
38 0.47 1.25 0.50 1.17 0.53 1.10
39 0.53 0.90 0.52 0.92 0.52 0.92
40 0.54 0.67 0.52 0.62 0.58 0.54
41 0.77 0.47 0.76 0.47 0.83 0.42
42 0.57 0.59 0.59 0.57 0.67 0.48
43 0.64 0.61 0.61 0.63 0.62 0.62
44 0.45 1.18 0.71 0.73 0.81 0.64
45 1.65 0.77 1.65 0.70 1.61 0.72
46 0.51 I.II 0.59 0.96 0.66 0.83
47 0.59 0.71 0.66 0.63 0.71 0.56
48 1.16 0.92 I.II 0.94 1.05 1.00
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Table 3-3: Results of GMM parameter estimation for gamma distribution for three
moments with 9=1,2 , and 3.

3-moments y=l 3-moments q=2 3-moments q=3
case a P a P a P

1 0.48 6.46 0.48 6.43 0.48 6.40
2 0.62 2.11 0.62 2.10 0.62 2.09
3 0.63 1.47 0.63 1.46 0.62 1.45
4 0.42 4.52 0.42 4.52 0.42 4.52
5 0.48 1.28 0.48 1.28 0.48 1.28
6 0.30 3.16 0.30 3.13 0.29 3.10
7 0.26 2.97 0.25 2.94 0.25 2.92
8 0.44 3.57 0.43 3.52 0.43 3.49
9 0.37 7.54 0.37 7.53 0.37 7.51
10 0.49 1.92 0.49 1.91 0.49 1.90
H 0.44 3.60 0.44 3.57 0.44 3.55
12 0.39 3.14 0.39 3.11 0.39 3.10
13 0.42 2.73 0.42 2.70 0.42 2.68
14 0.52 2.75 0.53 2.71 0.53 2.68
15 0.24 6.63 0.24 6.58 0.24 6.54
16 0.52 5.03 0.52 5.04 0.52 5.05
17 0.52 2.17 0.52 2.17 0.52 2.17
18 0.16 8.13 0.16 8.07 0.16 8.02
19 0.59 2.44 0.59 2.44 0.59 2.44
20 0.33 4.32 0.33 4.31 0.32 4.30
21 0.67 3.13 0.67 3.12 0.67 3.12
22 0.19 4.31 0.19 4.28 0.18 4.28
23 0.40 2.72 0.40 2.71 0.40 2.71
24 0.38 7.37 0.37 7.36 0.37 7.35
25 0.52 3.45 0.52 3.42 0.52 3.39
26 0.46 3.49 0.46 3.48 0.46 3.46
27 0.52 3.06 0.52 3.02 0.52 2.98
28 0.51 2.65 0.51 2.63 0.51 2.61
29 0.54 2.33 0.54 2.31 0.53 2.29
30 0.17 5.40 0.17 5.40 0.17 5.40
31 0.14 11.94 0.14 11.87 0.14 11.83
32 0.31 5.05 0.31 4.99 0.31 4.96
33 0.57 2.01 0.57 2.00 0.57 1.98
34 0.22 6.46 0.22 6.47 0.22 6.47
35 0.49 3.18 0.49 3.18 0.49 3.18
36 0.52 2.61 0.52 2.60 0.52 2.59
37 0.30 5.14 0.30 5.13 0.30 5.11
38 0.50 1.16 0.51 1.15 0.51 1.15
39 0.52 0.92 0.52 0.92 0.52 0.92
40 0.51 0.62 0.51 0.62 0.51 0.62
41 0.76 0.46 0.77 0.46 0.77 0.46
42 0.59 0.57 0.59 0.57 0.59 0.58
43 0.62 0.62 0.62 0.61 0.62 0.61
44 0.73 0.71 0.74 0.70 0.75 0.69
45 1.65 0.70 1.64 0.70 1.64 0.69
46 0.59 0.94 0.60 0.93 0.60 0.92
47 0.67 0.62 0.67 0.61 0.67 0.61
48 1.11 0.94 1.11 0.93 1.11 0.93
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Table 3-4: Results of GMM parameter estimation for gamma distribution for three
moments with 9=4 ,5 , and 10.

3-moments q=^ 3-moments q=5 3-moments ^ 1 0
case a P a P ot P

I 0.48 6.37 0.48 6.34 0.48 6.23
2 0.62 2.08 0.62 2.07 0.61 2.04
3 0.62 1.44 0.62 1.44 0.60 1.42
4 0.42 4.52 0.42 4.52 0.42 4.51
5 0.48 1.27 0.47 1.27 0.46 1.26
6 0.29 3.08 0.29 3.06 0.27 3.05
7 0.25 2.90 0.24 2.88 0.23 2.86
8 0.42 3.48 0.42 3.47 0.40 3.49
9 0.37 7.50 0.37 7.48 0.37 7.43
10 0.49 1.89 0.49 1.88 0.49 1.87
11 0.43 3.54 0.43 3.53 0.42 3.48
12 0.39 3.08 0.39 3.07 0.39 3.04
13 0.42 2.66 0.42 2.65 0.43 2.61
14 0.53 2.65 0.54 2.62 0.55 2.51
15 0.24 6.53 0.23 6.53 0.22 6.57
16 0.52 5.06 0.52 5.07 0.51 5.13
17 0.52 2.17 0.52 2.17 0.52 2.17
18 0.16 7.96 0.16 7.92 0.16 7.80
19 0.59 2.44 0.59 2.43 0.59 2.41
20 0.32 4.29 0.32 4.28 0.32 4.23
21 0.67 3.12 0.67 3.12 0.67 3.11
22 0.18 4.30 0.18 4.31 0.17 4.38
23 0.40 2.71 0.40 2.70 0.40 2.71
24 0.37 7.35 0.36 7.35 0.35 7.37
25 0.52 3.37 0.52 3.35 0.51 3.29
26 0.45 3.45 0.45 3.44 0.44 3.40
27 0.51 2.96 0.51 2.93 0.50 2.88
28 0.51 2.59 0.51 2.57 0.51 2.53
29 0.53 2.27 0.53 2.26 0.52 2.21
30 0.17 5.40 0.17 5.40 0.17 5.40
31 0.14 11.81 0.14 11.79 0.13 11.76
32 0.31 4.94 0.31 4.93 0.31 4.93
33 0.56 1.97 0.56 1.96 0.55 1.92
34 0.22 6.48 0.22 6.48 0.22 6.48
35 0.49 3.18 0.49 3.18 0.49 3.18
36 0.52 2.58 0.52 2.58 0.51 2.55
37 0.30 5.10 0.30 5.08 0.30 5.04
38 0.51 1.14 0.51 1.14 0.51 1.14
39 0.52 0.91 0.52 0.91 0.52 0.90
40 0.51 0.62 0.51 0.62 0.50 0.61
41 0.77 0.46 0.77 0.46 0.77 0.45
42 0.59 0.58 0.59 0.59 0.58 0.60
43 0.62 0.60 0.62 0.60 0.62 0.60
44 0.75 0.69 0.76 0.68 0.76 0.68
45 1.64 0.69 1.64 0.69 1.61 0.68
46 0.61 0.91 0.61 0.91 0.62 0.89
47 0.68 0.61 0.68 0.60 0.69 0.59
48 1.11 0.92 1.11 0.92 1.11 0.90
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Table 3-5: Results of GMM parameter estimation for gamma distribution for four
moments with q=l, 2, and 3.

4-moments g=l 4-moments q= l 4-moments q=i
case a P a P a P

1 0.50 6.25 0.50 6.20 0.50 6.16
2 0.55 2.29 0.55 2.28 0.55 2.27
3 0.67 1.35 0.67 1.33 0.67 1.32
4 0.39 4.89 0.39 4.93 0.38 4.96
5 0.52 1.18 0.52 1.17 0.51 1.17
6 0.34 2.72 0.34 2.65 0.34 2.60
7 0.28 2.71 0.28 2.66 0.27 2.61
8 0.45 3.45 0.44 3.39 0.44 3.36
9 0.40 6.79 0.40 6.73 0.40 6.68
10 0.58 1.54 0.58 1.51 0.58 1.49
11 0.48 3.25 0.47 3.21 0.47 3.18
12 0.45 2.55 0.45 2.49 1 0.46 2.45
13 0.48 2.28 0.48 2.24 0.49 2.21
14 0.58 2.40 0.58 2.38 0.58 2.38
15 0.26 5.87 0.26 5.75 0.26 5.66
16 0.61 3.93 0.62 3.90 ^ 0.62 3.87
17 0.59 1.80 0.60 1.78 0.60 1.76
18 0.17 7.21 0.17 7.08 0.17 6.97
19 0.54 2.61 0.54 2.64 0.53 2.65
20 0.35 3.99 0.35 3.95 0.35 3.92
21 0.65 3.22 0.65 3.22 0.65 3.22
22 0.20 4.02 0.20 3.92 0.20 3.86
23 0.40 2.72 0.40 2.72 0.40 2.72
24 0.39 7.03 0.39 6.98 1 0.39 6.93
25 0.53 3.41 0.53 3.36 0.53 3.32
26 0.48 3.31 0.48 3.29 0.48 3.26
27 0.49 3.24 0.49 3.18 0.49 3.13
28 0.54 2.51 0.54 2.47 0.54 2.44
29 0.51 2.46 0.51 2.43 0.51 2.40
30 0.17 5.48 0.17 5.47 0.17 5.45
31 0.15 10.53 0.15 10.43 0.15 10.38
32 0.32 4.91 0.32 4.89 0.32 4.87
33 0.53 2.16 0.53 2.14 0.53 2.12
34 0.29 4.28 0.29 4.19 0.29 4.14
35 0.48 3.23 0.48 3.20 0.48 3.18
36 0.58 2.22 0.58 2.20 0.58 2.19
37 0.36 4.06 0.36 3.98 0.36 3.91
38 0.53 1.10 0.53 1.09 0.53 1.09
39 0.52 0.91 0.53 0.90 0.53 0.89
40 0.58 0.53 0.58 0.52 0.58 0.52
41 0.84 0.41 0.85 0.40 0.86 0.39
42 0.68 0.47 0.68 0.47 0.69 0.46
43 0.63 0.60 0.63 0.60 0.63 0.59
44 0.83 0.62 0.84 0.61 0.84 0.61
45 1.61 0.72 1.61 0.72 1.61 0.71
46 0.66 0.81 0.67 0.80 0.67 0.80
47 0.72 0.56 0.72 0.56 0.72 0.55
48 1.05 0.99 1.05 0.99 1.05 0.98
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Table 3-6: Results of GMM parameter estimation for gamma distribution for four
moments with ^=4,5, and 10.

4-moments tj=4 4-moments q=5 4-moments ^ 1 0
case a P a P a P

I 0.50 6.12 0.50 6.09 0.49 6.01
2 0.55 2.26 0.55 2.24 0.54 2.19
3 0.67 1.31 0.67 1.30 0.65 1.28
4 0.38 4.99 0.38 5.01 0.37 5.10
5 0.51 1.16 0.51 1.15 0.50 1.13
6 0.34 2.55 0.33 2.52 0.32 2.42
7 0.27 2.58 0.27 2.55 0.26 2.46
S 0.43 3.35 0.43 3.34 0.41 3.33
9 0.40 6.64 0.40 6.61 0.40 6.57
10 0.58 1.48 0.59 1.47 0.59 1.45
11 0.47 3.16 0.47 3.14 0.46 3.08
12 0.46 2.41 0.46 2.38 0.46 2.29
13 0.49 2.19 0.49 2.17 0.49 2.13
14 0.58 2.37 0.58 2.36 0.58 2.32
15 0.26 5.62 0.26 5.58 0.25 5.56
16 0.62 3.84 0.62 3.82 0.63 3.73
17 0.61 1.74 0.61 1.72 0.62 1.68
18 0.17 6.88 0.17 6.82 0.17 6.63
19 0.53 2.66 0.53 2.65 0.52 2.62
20 0.35 3.89 0.35 3.86 0.34 3.79
21 0.65 3.22 0.65 3.22 0.65 3.21
22 0.20 3.82 0.20 3.79 0.20 3.71
23 0.40 2.72 0.40 2.72 0.40 2.73
24 0.38 6.89 0.38 6.86 0.37 6.74
25 0.53 3.29 0.53 3.27 0.53 3.20
26 0.48 3.24 0.48 3.22 0.47 3.15
27 0.49 3.10 0.49 3.07 0.48 3.00
28 0.54 2.42 0.54 2.40 0.54 2.36
29 0.51 2.38 0.51 2.36 0.50 2.30
30 0.17 5.44 0.17 5.43 0.17 5.38
31 0.15 10.34 0.15 10.30 0.15 10.21
32 0.32 4.87 0.32 4.87 0.32 4.88
33 0.53 2.10 0.53 2.09 0.51 2.06
34 0.29 4.11 0.29 4.10 0.29 4.11
35 0.48 3.17 0.48 3.15 0.48 3.10
36 0.58 2.17 0.58 2.16 0.58 2.10
37 0.36 3.86 0.37 3.82 0.37 3.71
38 0.53 1.09 0.53 1.09 0.53 1.09
39 0.53 0.89 0.53 0.88 0.53 0.87
40 0.58 0.52 0.58 0.51 0.57 0.51
41 0.87 0.39 0.87 0.39 0.88 0.38
42 0.69 0.46 0.69 0.45 0.70 0.44
43 0.64 0.59 0.64 0.58 0.63 0.58
44 0.85 0.61 0.85 0.60 0.86 0.60
45 1.60 0.71 1.60 0.71 1.57 0.70
46 0.68 0.79 0.68 0.78 0.69 0.76
47 0.72 0.55 0.72 0.55 0.73 0.54
48 1.05 0.97 1.06 0.97 1.06 0.95
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(a) (b)

(c) (d)

i
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Figure 3-11: Sample histograms and theoretical distributions fit using GMM. Left col
umn is for case #1, right column is for case #16. Gamma distributions for plots in top row 
(a, b) are for two (blue), three (green), and four (red) moments using q=0. For plots in the 
middle row (c, d) three moments are used in GMM with q=l (blue), q=5 (green) and ^=10 
(red). Plots in the bottom row (e, f) are as in middle row, except for four moments in the 
GMM estimation.
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Table 3-7: Cluster membership for the 2-moment experiment

Cluster #  (# of members) cases

1 (10) 4 ,6 , 8 , 11, 16,20, 22,26, 30,37

2(18) 2, 3, 7, 10, 12, 13, 14, 17, 19, 21, 23, 25, 
27, 28, 29,33,35, 36

3(12) 5, 38, 39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 , 47, 48

4(7) 1,9, 15, 18,24, 32, 34

also had a higher number of outliers. Since this is a two-dimensional problem, we can 

easily visualize the clustering by plotting each case on the a - P  plane, with the clusters 

indicated by a contour around the cases involved. (Figure 3-13). In this figure, there is a 

threshold value of P (-1.5) that cleanly separates the three “convective” clusters from the 

“non-convective” cluster.

Now we examine how well the cluster analysis classifies the cases into three classes 

(linear, cellular, stratiform). Returning to the 2-moment experiment (Figure 3-12, Table 3- 

7), cluster 1 contains five cases that were subjectively classified as linear and five that 

were subjectively classified as cellular precipitation events. Cluster 2 is also split among 

the linear and cellular precipitation events with eight linear cases and ten cellular events. 

Cluster 3 contains mainly stratiform (11) events, with one linear event included. Cluster 4 

contains four linear events and three cellular events. Overall, this experiment placed 30 of 

the 47 cases into correct dominant classes, for a 63.8% percent correct. This result is 

worse than the baseline experiment which correctly classified 72.3% of the cases into the 

dominant class for each cluster. These results show that the cluster analysis did not pro

duce groups within the convective class with a clear preference for a particular sub-class 

(linear, cellular) in this experiment.

These results were consistent with those found by using three and four moments in
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Wards method GMM 2-moments

22 30 4 6 8 2 10 3 29 25 14 27 36 28 5 44 39 47 43 45 1 15 34 24

37 16 20 11 26 33 17 19 7 12 35 13 23 21 38 46 40 42 41 48 9 32 18 31

Figure 3-l2:Dendrogram produced by Ward's method with target data set using 2- 
moment GMM [a, P] as attributes. Each object is color-coded by its subjective classifica
tion, linear events are green, cellular events are red, stratiform events are blue. Dashed 
line indicates subjectively determined cut-level for this experiment.

the GMM, and by increasing q from 0 to 10, as summarized in Table 3-8. The automated 

classification shows some sensitivity to the choice of moments used in the parameter esti

mation. However, it does not appear to be very sensitive to the choice of q, since the esti

mated a  and P values vary only slightly q changes (see Tables 3-2 through 3-6). For the 

three-moment GMM experiment, the cluster analysis produced identical main clusters for
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GMM 2-moments
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Figure 3-13: Distribution of objects in target data set in [a, |3] space for 2-moment GMM. 
Each object is color-coded by its subjective classification, linear events are green, cellular 
events are red, stratiform events are blue. Contours indicate clusters found in figure 3-12.

Table 3-8: Summary of results of automated classification using attributes from
GMM.

experiments 2-class percent correct 3-class percent correct

2-moments 97.8% 63.8%

3-moments; <y=0, 1, 2, 3,4, 5, 10 95.7% 6 6 .0 %

4-moments; g=0 91.5% 6 8 . 1%

4-moments; ^=1,2, 3, 4, 5, 10 91.5% 6 6 .0 %
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all values o f q  from 0 to 10 (Table 3-9). The dendrogram for the three-moment q = \. exper-

Table 3-9: Cluster membership for the 3-moment experiments, all values of q (0-5,
10).

Cluster # (# of members) cases

1 (21) 2 ,6 ,7 , 8,10,11,12,13,14,17,19,21,23, 
25,26, 27,28, 29, 33, 35, 36

2(13) 3, 5, 38, 39,40 ,41 ,42 ,43 ,44 ,45 ,46 , 47, 
48

3(6) 1, 9, 15, 18, 24, 34

4(7) 4, 16, 20, 22, 30, 32, 37

iment is provided in figure 3-14a; other experiments using other values of q produced sim

ilar looking plots. The percent correct for these experiments was slightly lower than the 

two-moment experiment for the two-class (convective/non-convective) case (95.7% or 45 

of 47 correct), and slightly higher for the three-class case (66.0% or 31 of 47 correct). On 

the other hand, the four-moment GMM experiments did show some sensitivity to varia

tions in q, although this did not have a large impact on the overall percent correct. For 

example, one case (#30) that was subjectively classified as cellular switched from a cellu

lar dominant cluster in the q=0 experiment (figure 3 -14b) to a linear dominant cluster for 

the q=l (figure 3-I4c). This caused the percent correct for the three-class (linear, cellular, 

stratiform) situation to drop from 68.1% to 66.0%. The membership of the first two clus

ters changed from the q=l to q=2 experiments (figures 3-14c-d), then remained the same 

for all values of q greater than 2 (not shown). However, this did not affect the overall per

cent correct. The percent correct for the two-class case remained the same for all values of 

q in the four-moment experiments (91.5% or 43 of 47 correct). Among all of these exper

iments, the GMM estimation using three moments (first, second, and third) showed the
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least amount of sensitivity to variations in q, and provided percent correct values greater 

than 95% for the two-class case, and greater than 65% in the three-class case. None of the 

two-moment or four-moment experiments met these levels of performance for both 

degrees of classification hierarchy.

3 .6  Su m m a ry

The automated classification algorithm using attributes produced by analysis of the 

observed histograms successfully separated the target data set into convective and non- 

convective classes. However, looking at the next level of classification hierarchy, the 

main clusters contained a fairly even split of linear and cellular events within the parent 

convective class. This should not come as a surprise since the attributes used here (a , P) 

only contain information about the overall distribution of rainfall within the object. They 

do not provide any information on the organization or relative position of rainfall values 

within each object. It is therefore reasonable to expect that additional attributes are 

required in order to increase the degrees of freedom and allow the classification system to 

identify finer and more specific classes of events. Work of this type will be performed in 

the next chapter.
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Figure 3-14: Dendrograms produced by Ward’s method with target data set using GMM 
[a, P] as attributes. The three-moment, r/=l experiment (a), four-moment <r/=0 (b), q=l 
(c), and q=2 (d) experiments are shown. Each object is color-coded by its subjective clas
sification, linear events are green, cellular events are red, stratiform events are blue. 
Dashed lines indicate subjectively determined cut-levels for each experiment.
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Chapter 4

Spatial analysis

4.1 In tro d u ctio n

The specific purpose of this research is to determine those attributes which are most 

useful in an automated rainfall pattern classification system. A preliminary target data set 

has been collected to test various trial attributes. This data set consists of hourly accumu

lated rainfall analyses from an operational analysis system. A set of 48 separate precipita

tion events which occurred at various times and locations across the United States were 

selected for inclusion in this data set. Cases were included based upon the existence of 

“typical” rainfall patterns that are often found; in particular, linear, cellular, and stratiform 

precipitation events. Note that the linear and cellular classes are sub-classes of the parent 

convective class, while the stratiform class is a sub-class of the non-convective class in the 

overall classification hierarchy. Each case was subjectively classified into these main 

classes to allow for validation of various automated classification experiments.

The first step in this multi-faceted process involved a “baseline” automated classifi

cation using the raw values of rainfall at each point in space as attributes; in other words, 

no data reduction was performed. This classification experiment resulted in percent cor

rect values of 72.3% for the three-class (linear, cellular, stratiform) and 83.7% for the two- 

class (convective, non-convective) case. Next, the dimension of the data was reduced by 

analyzing the “bulk” global distribution of rainfall values across each object, using the 

parameters of the gamma distribution fit to the observed histogram using the generalized 

method of moments technique. The automated classification experiments using these
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attributes were able to successfully separate the convective events from the non-convec- 

tive events with over 95% accuracy. However, these attributes proved to be less success

ful in further separating the convective cases into linear/cellular classes, as the percent 

correct for the three-class case dropped to approximately 65%. This was likely due to the 

fact that these attributes are only able to describe the overall distribution of rainfall, and 

not how the rainfall amounts were organized spatially.

In order to obtain summary information on the spatial continuity of rainfall, statisti

cal measures that are a function of the location as well as the amount of rainfall are 

required. There is a long history of research using geostatistical tools to examine the char

acteristics of spatial radar/rainfall data. For example, Kessler and Russo (1963) and 

Kessler (1966) computed the two-dimensional auto-correlation of radar reflectivity. 

Kessler and Russo (1963) noted how the ellipticity of the auto-correlation was an objec

tive measure of the “systematic bandedness in the pattern” and how the orientation of the 

major axis reflected the orientation of the reflectivity bands. In this chapter, results of 

automated classification experiments using similar attributes related to the linear organiza

tion of the spatial field are presented. Using attributes of this type that summarize the geo

statistical characteristics of the rainfall pattern, the classification system is able to separate 

the linear and cellular events, with the percent correct for the three-class case increasing to 

over 90%. Much of the work described in this chapter was included in Baldwin and Lak- 

shmivarahan (2003).

4.2 Geostatistics

In the previous chapter, results from an automated classification using attributes 

related to the overall distribution of rainfall across an object were presented. These results
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showed that useful information on the intensity of rainfall within each object was 

obtained through the use of these attributes. However, it was determined that these 

attributes do not provide information on the spatial continuity and variability of the rain

fall within an object. For example, identical histograms could be obtained from events 

that are either randomly unorganized or spatially continuous, since the distribution ignores 

information on the location of rainfall amounts. In order to provide information on 

aspects of the spatial continuity and variability within rainfall objects, additional attributes 

related to the shape and structure of the spatial patterns are required. There are several 

measures of spatial variability and continuity to choose from (Isaaks and Srivastava 1989; 

Deutsch and Joumel 1988), three were used in this work: two-dimensional plots of the 

semivariogram, correlogram, and covariance. All three measure aspects of the spatial 

field as a function of a two-dimensional separation vector h (see figure 2-4). All possible 

pairs of values that are separated by h within an object will be used to compute the various 

statistics. The semivariogram y{h) is defined as half of the average squared difference 

between the pairs of all values separated by h (eq. 4.1). The covariance C(h) is the tradi

tional covariance (eq. 4.2) between all possible pairs of “tail” and “head” values separated 

by h. The correlogram p(h) is also known as the auto-correlation, which is the correlation 

between all possible pairs of “tail” and “head” values separated by fi (eq. 4.3).

N{h)

Z  (4 2 )
NW

p{h) = ^  (4.3)
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Here m, and nif, are the means of the tail and head values, respectively, and a , and are 

the standard deviations of the tail and head values, respectively. N(/i) is the total number 

of possible pairs of tail and head values for a given separation vector. A more detailed 

summary of geostatistical measures is provided in section 2 .10.

4.3 Synthetic data

The type of information that can be obtained about the continuity and variability of 

rainfall patterns from these geostatistics will be illustrated via simulated examples. In 

these examples, adapted from Baldwin et al (2001), synthetic precipitation fields are gen

erated using an elliptical shape function (modified from Williamson 1981).

2 2 1/2
r = ([(jc-x^)cosY + (y-yo)sm Y] + e [ ( y - 3'o)cosY-(j:-Xo)smY] ) (4.4)

P('t, >’) = r< K

p{x ,y)  = 0  r > R  (4.5)

An individual elliptical “blob” of precipitation is determined by the amplitude A multi

plied by the given radial function (eq. 4.5), where the remaining function is equal to one at 

the center of the blob (r=0 ) and zero where the radius r is greater than the size parameter

R. The center of the blob is given by (x ,̂ y^), the orientation of the ellipse (angle between

the major axis and the x-axis) is y, and the ratio of the semi-major and semi-minor axes is 

J z . Therefore, each rainfall blob is determined by six parameters (A, R, x„, y„, y, E), and 

the entire rainfall field is determined by summing the rainfall contribution from a number 

of individual elliptical features.

An example of a single rainfall feature, defined by A=10, R=60, Xg=64, yg=64,
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Y=30°, e=3, is shown in figure 4-la. Corresponding plots of the semivariogram, covari

ance, and correlogram for this event (figure 4-1 b-d) provide fairly consistent information;

(a)
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Figure 4-1: Synthetic rainfall field (a) of arbitrary units. Variogram (b), covariance (c), 
and correlogram (d) plots corresponding to given synthetic rainfall field, lags indicated on 
axes are in terms of arbitrary unit grid spacing from the original field.

rainfall values are similar over a relatively large distance in the direction along the major
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axis of the rainfall ellipse and similar to other values over a relatively short distance in 

other directions. The semivariogram (figure 4-lb) provides information on the average 

squared difference between head/tail values, therefore the statistic equals zero at the origin 

(h=(0,0)) and its magnitude increases as h moves further from the origin. The covariance 

(figure 4-ic) plot works in the opposite sense, indicating how pairs of values simulta

neously vary from their means, the value at the origin is the variance of the overall field. 

The correlogram (figure 4 -Id) operates in a similar fashion to the covariance plot, except 

the value at the origin is normalized to 1.0 .

To confirm that the ellipse produced by equation 4.5 using these parameters embod

ies the characteristics that were outlined in the previous paragraph, the orientation and 

ellipticity of the rainfall field itself will be analyzed using image processing algorithms. 

First, the rainfall feature is considered an object, and all contiguous grid points with rain

fall greater than 0.1 are given the same object label using the connected component label

ing algorithm outlined in section 2.12. Next, the edge of this connected region is found 

using the edge detection algorithm also outlined in section 2.12. These processes equate 

to locating the 0.1 contour on the rainfall plot (the first contour in figure 4-la). Once this 

is determined, the largest distance from the center of the object to this edge is found, and 

this distance is assumed to be the length of the semi-major axis (a) of the ellipse. In this 

case, a=47.5. The shortest distance from the center of the region to the edge is found next, 

and this is assumed to be the length of the semi-minor axis (6=25.8). As discussed previ

ously, J z  in equation 4.4 represents the ratio of the semi-major and semi-minor axes,

since e=3, this was specified as 73 = 1.73. In this case, this ratio was measured using 

the discrete a, b obtained via the image processing routines as 47.5/25.8=1.84, approxi-
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mately 6 % larger than the exact value. Since the discrete semi-major axis has been deter

mined, the angle between it and the x-axis can be found, and in this case that angle is 

30.3°, resulting in an error of ~1% when compared to the exact value. These results con

firm that the characteristics of the ellipse obtained by measurements using image process

ing routines agree with the exact values specified by the derivation of equation 4.5 within 

a small margin of error due to the discretization of the ellipse onto a regular grid.

Now it will be determined whether comparable information can be obtained via a 

similar analysis of geostatistical measures, rather than from direct analysis of the rainfall 

field itself. Since the correlogram is normalized, its values will not depend on the units or 

overall magnitude of the field. In addition, as shown above, the three geostatistical mea

sures produce similar qualitative information. For these reasons, the correlogram (figure 

4 -Id) will be selected for more detailed analysis. In this case, various correlation contours 

will be analyzed using the same image processing routines that were previously used 

directly on the rainfall field. The results for correlation thresholds of 0.0,0.2, 0.4,0.6, and

0.8 are given in table 4-1. The estimates of Jk  provided by a/b, for all contours except 

0 .8 , are nearly identical to the value measured by direct analysis o f the rainfall field 

(=1.83), and are within a few percent of the exact value (=1.73). For the 0.8 contour the 

error is slightly larger (-15%), since this region is relatively small, the grid discretization 

has more of an impact on the result. All estimates of y are within 10% of the exact value. 

These results confirm that indirect analysis of the rainfall field via summary geostatistical 

measures is able to characterize the orientation and ellipticity of the original field, to a rea

sonable degree of accuracy.

Next, the effect of multiple rainfall features upon the correlogram will be illustrated.
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Table 4-1: Measurements of lengths of semi-major (a) and semi-minor (b) axes, their 
ratio {a/b)i and the angle (y) between the semi-major axis and the x-axis of the

correlogram in figure 4-Id.

correlogram
contour a b a/b Y(°)

0.0 49.2 26.8 1.84 29.2

0.2 37.6 20.6 1.83 28.6

0.4 29.7 16.1 1.84 32.6

0.6 22.5 12.0 1.87 32.3

0.8 15.3 7.6 2 .00 31.6

Two identical features (figure 4-2, defined by A=10, R=25, y=45°, 8=3, at (Xg, y^) =

(40.40) and (88 ,88)) produce three maxima in the correlogram. The central maximum 

represents the “within-blob” correlation contributed by both features. The other maxima 

contain contributions from the “between-blob” correlations. The separation vector corre

sponding to the location of these other correlation maxima is equal to the separation 

between the two features (/i=(48,48) and (-48,-48)). Three evenly spaced identical fea

tures (same characteristics as in figure 4-2, except for an additional feature at (Xg, y^) = 

(64,64)) that are organized along a line result in multiple maxima (figure 4-3). Again, the 

central maximum mainly represents contributions from within-blob correlation, and other 

maxima represent various between-blob contributions. Some correlation contour values 

(such as 0 .2 ) extend in a continuous fashion along the axis of orientation for a consider

able distance, indicating a relatively high degree of linear spatial organization of the indi

vidual features. When three identical blobs are placed in a disorganized fashion (figure 4- 

4, same characteristics as two feature case except with additional feature at (x ,̂ y^) =

(88.40)) multiple correlation maxima are produced. None of the correlation contours
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Figure 4-2: Synthetic rainfall field (a) of arbitrary units. Correlogram (b) corresponding 
to given synthetic rainfall field, lags indicated on axes are in terms of arbitrary unit grid 
spacing from the original field.

extend continuously over a large distance, indicating the complexity of the field. To be 

exact, there are seven correlation maxima produced from three distinct rainfall features. If 

the three rainfall features are labelled as A, B, and C, the corresponding correlation max

ima will represent the within-blob correlation for all features, and contributions from the 

between-blob correlation from features A —> B , A —> C, 6  —> C, B —̂  A ,  C A ,  and 

C —>g . In general, given N distinct rainfall features, one should expect to find 2N+1 

maxima on the corresponding correlogram. In cases where features are evenly spaced the 

number of maxima will be reduced. For example, if the separation vector between fea

tures A and B is identical to the vector between features B and C, the contributions of 

between-blob correlations from A —> B and B —> C will occur at the same place on the 

correlogram. When three identical features are aligned closely together, (figure 4-5, same 

characteristics as three feature cases, with (x^, y^) = (52,52), (64,64), and (76,76)) the rain-
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Figure 4-3: Synthetic rainfall field (a) of arbitrary units. Correlogram (b) corresponding 
to given synthetic rainfall field, lags indicated on axes are in terms of arbitrary unit grid 
spacing from the original field.

(a) (b)
•yntfwoc rartal

- /ÿ
-a

•40

20 40 60 80 too 120 •80 - 6 0 - 4 0  -20 0 3  40 60 80i-tae

Figure 4-4: Synthetic rainfall field (a) of arbitrary units. Correlogram (b) corresponding 
to given synthetic rainfall field, lags indicated on axes are in terms of arbitrary unit grid 
spacing from the original field.

fall from each individual feature overlaps, resulting in a single continuous “line” feature. 

The correlogram in this case is highly elliptical, over several values of correlation, indicat-

110



ing a large degree of continuity along the line.
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Figure 4-5: Synthetic rainfall field (a) of arbitrary units. Correlogram (b) corresponding 
to given synthetic rainfall field, lags indicated on axes are in terms of arbitrary unit grid 
spacing from the original field.

Overall, these results show the potential of using several summary measures from 

the correlogram to characterize the rainfall field. The number of maxima could be 

counted to approximate the number of discrete “features” in the original field. However, 

as previously discussed, this could be problematic if some features are evenly spaced 

along a line. The ellipticity and areal coverage of various correlation contours from the 

central maxima (connected to the origin) seem to represent the degree of alignment in the 

original field. These aspects of the correlogram will be estimated by fitting an ellipse to 

various correlation contours by measuring the lengths of approximate semi-major and 

semi-minor axes. The ellipticity of the correlation contour will be approximated by com

puting the ratio between the semi-major and semi-minor axes. The product between them 

will be used as an approximation to the area of an ellipse. These attributes will be tested
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for their effectiveness in further refining the automated classification system in the next 

section.

4 .4  Target data  se t resu lts

For each event in the target data set (see section 3.2 for a complete description of the 

target data set), a correlogram was computed using GSLIB, a freely available library of 

software packages for geostatistics developed at Stanford University (Deutsch and Joumel 

1988). Plots of the target data set correlograms are provided in figures 4-6 through 4-9. 

The largest separation vector in either direction that was included in these analyses was 64 

grid boxes in length, therefore any correlation beyond 64 Ax (-250km) was ignored. 

Inspection of these plots reveals that correlation contours for cases that were subjectively 

classified as linear (cases 1-18) appear quite elliptical, while contours for cases subjec

tively classified as cellular (19-37) often appear more circular. Therefore, one might 

expect that summary measures of the ellipticity of various correlation contours will help 

the automated classification system to better discriminate between these two classes of 

convective precipitation.

To determine whether or not this is the case, the area and ellipticity of various con

tour values (0.2, 0.4, 0.6, and 0.8) in each correlogram from the target data set were ana

lyzed. Using the same image processing algorithms that were described in the previous 

section, the lengths of the approximate semi-major (a) and semi-minor (6 ) axes of an 

ellipse fit to each correlation contour were determined. Briefly summarizing this process, 

the correlation contour is considered an object, and all contiguous grid points with correla

tion greater than the contour value that also include the origin are given the same object 

label using connected component labeling algorithm outlined in section 2.12. Next, the
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edge of this connected region is found using the edge detection algorithm also outlined in 

section 2.12. These processes equate to locating the specified contour for the central max

imum on the correlogram. Contours related to secondary maxima are not analyzed by this 

procedure. Once this is established, the largest distance from the origin to this edge is 

found, and this distance is assumed to be the length of the semi-major axis (a) of the 

ellipse. If a contour is not closed, the edge of the correlogram domain becomes the edge 

of the connected region. In this case, a becomes the largest distance where the correlation 

is greater than the contour threshold value, given that the point is located within the region 

connected to the origin. The shortest distance from the origin to the edge is found next, 

and this is assumed to be the length of the semi-minor axis (6 ). As discussed previously, 

the ratio of the semi-major and semi-minor axes {a/b) is a summary measure of the ellip

ticity or eccentricity of the ellipse. For a circle, this ratio will be equal to I.O. The ratio 

will increase as the ellipticity of the contour increases. The product of the two axis lengths 

{ab) will also be used as a summary measure approximating the area of the ellipse 

(= nab).

The results of this analysis are provided in tables 4-2 and 4-3. To determine the use

fulness of these summary measures as attributes in an automated classification system, the 

attributes corresponding to the 0.6  correlation contour were selected for initial analysis. 

This contour was chosen because it was closed on all of the correlograms provided from 

the target data set (figures 4-6 through 4-9). As in the analysis described in chapter 3, the 

automated classification system uses a hierarchical cluster analysis algorithm, specifically 

Ward’s method. Validation of the automated classification will be performed in the same 

way as described in section 3.4. The use of hierarchical cluster analysis as a classification
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tool requires a subjective decision in order to determine the number of clusters. In this 

work, this subjective decision will be made as objectively as possible. The dendrogram 

will be cut into four or five clusters containing the majority of objects in the target data set. 

Outliers will not be classified, and no more than six outlier cases will be allowed. Every 

attempt will be made to cut the dendrogram at a point where there is substantial separation 

between the intra-cluster and inter-cluster variance. Each major cluster will be considered 

a separate class of objects. The definition of each class will be determined by the highest 

percentage of subjectively classified cases detected for that particular cluster. The per

centage of objects that are correctly classified by their membership in the dominant sub

jective class for each cluster will be used as the metric for determining the skill of the 

automated classification.

The purpose of this research is to determine which attributes are most useful in an 

automated rainfall pattern classification system. In order to build upon the system that 

was successfully able to separate convective and non-convective events (section 3.5), esti

mates of ab and a/b will be added to the histogram-related attributes to determine if geo- 

statistics-related attributes further refine the classification. It was determined in the last 

chapter that the classification using gamma distribution parameters (a,p) from the gener

alized method of moments estimation using three moments produced the best results over

all. In addition, since those results were not sensitive to q, an arbitrary choice of q can be 

made. Therefore, the histogram-related attributes that will be used for the remainder of 

this chapter will be from the GMM using three moments and q=l (table 3-3).

Now that the set of attributes and the classification algorithm have been selected, the 

question now becomes whether the attributes require normalization and what combination
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Figure 4-6: Correlogram plots corresponding to rainfall cases 1 through 12 of the target
data set. Lags indicated on axes are in terms of 4km grid boxes from the original analysis.
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Figure 4-7: As in figure 4-6, except for rainfall cases 13 through 24 of the target data set.
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Figure 4-8: As in figure 4-6, except for rainfall cases 25 through 36 of the target data set.
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Figure 4-9: As in figure 4-6, except for rainfall cases 37 through 48 of the target data set.
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Table 4-2: Characteristics of ellipses fit to the 0.2 and 0.4 correlation contours. The 
ratio {a/b) and product {ab) of the semi-major and semi-minor axes along with the 

angle between the semi-major axis and the x-axis (6) in degrees are provided.
0.2 contour 0.4 contour

case a/b ab 0(deg) a/b ab 0(deg)
1 4.09 661.9 22.6 4.25 212.7 21.4
2 5.86 1054.5 36.7 8.86 646.9 33.7
3 5.66 1274.4 47.9 4.56 583.9 54.5
4 7.32 709.8 60.9 9.90 396.0 63.4
5 5.35 776.0 138.1 5.12 368.4 128.5
6 6.40 742.5 66.0 5.86 339.6 70.3
7 6.78 677.8 68.4 8.28 405.8 75.0
8 8.57 497.0 74.9 5.70 114.0 64.4
9 12.27 552.3 40.1 7.03 126.6 39.6
10 5.72 744.0 74.9 4.78 306.2 70.1
11 5.55 888.1 63.8 2.55 204.4 66.8
12 6.97 557.2 71.3 3.44 154.9 72.3
13 4.59 477.7 73.9 4.70 249.0 74.7
14 3.99 462.6 77.9 3.03 175.8 72.3
15 11.15 379.0 75.7 15.50 247.9 79.8
16 5.44 789.0 74.1 749 546.4 80.1
17 4.67 541.6 72.6 4.63 245.6 78.0
18 3.13 353.8 32.7 3.57 178.5 33.7
19 4.58 897.9 100.8 3.66 300.1 84.8
20 5.55 988.5 31.8 1.87 99.0 17.1
21 3.11 1370.3 74.9 2.52 206.7 61.2
22 1.70 115.4 180.0 1.70 34.1 23.2
23 2.96 251.6 28.4 2.47 101.2 34.7
24 1.42 204.4 49.8 1.61 72.6 33.7
25 3.08 554.6 57.8 2.77 235.1 48.2
26 2.61 443.5 65.7 2.09 186.1 59.5
27 1.94 328.1 56.3 1.36 120.8 51.3
28 1.57 254.6 53.1 1.48 125.4 54.0
29 3.13 2003.7 127.3 3.73 1207.2 110.1
30 1.74 85.2 9.5 1.52 24.3 170.5
31 1.90 15.2 111.8 2.24 2.2 116.6
32 2.27 240.1 59.0 2.69 48.4 52.1
33 2.75 1059.7 100.7 2.65 519.5 104.0
34 1.47 49.8 110.6 2.53 12.6 45.0
35 4.12 964.2 91.8 5.01 580.9 100.7
36 2.05 544.1 38.9 1.78 258.5 27.8
37 3.23 469.0 48.1 2.54 155.0 40.9
38 2.54 276.4 79.1 2.22 115.6 86.4
39 2.04 181.2 51.3 1.67 75.0 63.4
40 2.24 332.1 81.6 2.03 164.2 80.5
41 1.96 575.1 53.5 1.42 171.8 50.2
42 1.52 293.1 58.6 1.49 119.3 77.0
43 4.73 345.6 81.5 2.77 94.2 68.2
44 4.86 1215.0 55.1 2.68 67.1 63.4
45 2.63 951.3 90.0 2.17 368.8 81.9
46 1.64 433.5 34.3 1.41 137.2 21.0
47 2.10 373.8 88.0 1.72 123.5 74.1
48 3.71 1042.7 175.4 1.46 200.0 20.6
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Table 4-3: Characteristics of ellipses fit to the 0.6 and 0.8 correlation contours. The 
ratio {a/b) and product {ab) of the semi-major and semi-minor axes along with the 

angle between the semi-major axis and the x-axis (6) in degrees are provided.
0.6 contour 0.8 contour

case a/b ab 0 (deg) a/b ab 0(deg)
1 5.00 65.0 19.4 4.74 19.0 18.4
2 2.58 74.8 30.3 2.37 19.0 26.6
3 4.04 202.2 53.5 2.00 26.0 56.3
4 2.48 32.2 63.4 3.16 6.3 63.4
5 4.14 165.5 133.5 2.77 36.1 126.9
6 5.06 126.5 71.6 3.35 26.8 71.6
7 5.16 103.2 72.3 3.64 14.6 74.1
8 5.06 40.5 65.2 7.28 7.3 74.1
9 2.76 22.1 39.8 3.00 6.0 45.0
10 2.83 56.6 71.6 3.16 6.3 63.4
11 2.49 72.2 63.4 2.61 13.0 59.0
12 2.77 47.0 74.7 2.92 11.7 59.0
13 3.10 77.6 75.1 3.26 16.3 74.1
14 2.62 68.0 77.0 2.83 14.1 71.6
15 8.68 43.4 78.1 10.20 10.2 78.7
16 3.04 109.5 80.5 2.92 29.2 77.5
17 2.30 39.1 71.6 2.69 10.8 68.2
18 3.40 61.2 33.7 2.86 14.3 51.3
19 2.62 89.2 78.7 1.90 15.2 68.2
20 3.07 27.7 12.5 5.10 5.1 11.3
21 2.70 54.0 65.6 3.16 12.6 71.6
22 2.12 4.2 180.0 1.00 1.0 180.0
23 2.09 35.5 35.5 2.24 8.9 26.6
24 1.86 24.2 26.6 2.24 4.5 18.4
25 2.16 69.1 55.0 2.06 16.5 31.0
26 1.50 60.0 18.4 1.70 17.0 21.8
27 1.30 52.2 14.0 1.41 14.1 153.4
28 1.49 59.7 58.0 1.80 14.4 78.7
29 1.84 222.5 81.5 1.65 41.2 104.0
30 1.58 6.3 161.6 1.41 1.4 135.0
31 1.00 1.0 45.0 1.00 1.0 0.0
32 2.69 10.8 68.2 2.83 2.8 45.0
33 1.62 110.0 103.0 2.06 16.5 59.0
34 3.61 3.6 56.3 1.00 1.0 45.0

35 1.56 62.3 66.0 1.58 12.6 63.4

36 1.72 112.0 30.3 1.77 30.0 15.9
37 1.98 49.5 45.0 2.24 8.9 26.6
38 1.26 25.3 135.0 1.58 6.3 161.6
39 1.63 32.6 74.1 1.61 8.1 56.3
40 1.63 55.3 71.6 1.84 9.2 76.0
41 1.33 54.3 45.0 1.50 12.0 45.0
42 1.52 38.1 66.8 1.61 8.1 56.3

43 2.11 27.5 66.8 2.24 4.5 71.6
44 2.24 8.9 63.4 1.41 1.4 135.0

45 1.42 103.9 80.5 1.48 25.1 99.5
46 1.70 34.1 66.8 2.92 5.8 76.0
47 1.52 38.1 66.8 1.80 7.2 56.3
48 1.30 65.2 49.4 1.41 18.4 78.7
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of these attributes will produce the best classification results. Some sort of normalization 

will likely be necessary, since the range of values of ab is two to three orders of magnitude 

higher than the other attributes (see table 4-3). The question of normalizing the attributes 

prior to the cluster analysis will be investigated by using the raw attributes, normalizing 

each attribute vector to produce zero mean and unit variance, and normalizing each 

attribute by dividing by its maximum value. For each of these types of normalization, dif

ferent combinations of subsets of the four attributes (ct, P, ab, a/b) were used. This 

includes the six possible combinations of two of the four attributes, plus the four possible 

combinations of three of the four attributes, and all four attributes, resulting in 11 different 

experiments for each type of normalization. As in the previous chapter, the percent cor

rect was considered for the three-class (linear, cellular, stratiform) as well the two-class 

cases (combining the linear and cellular classes into a parent “convective” class).

To illustrate how the validation of the automated classification operates, one exam

ple will be analyzed in detail. Figure 4-10 shows the dendrogram resulting from Ward’s 

cluster analysis method using unnormalized a/b, a , and P as attributes. In this example, 

the tree was cut (at a level of square root of the increase in the sum of the squared error of 

approximately 4) to produce five clusters with two outlier cases. Cluster 1 contains all 11 

cases that were subjectively classified as stratiform precipitation events. Cluster 2 is split 

among the linear and cellular precipitation events with seven linear cases and 11 cellular 

events. Cluster 3 contains only five linear events. Cluster 4 contains three linear events 

and two cellular events. Finally, cluster 5 contains two linear events and five cellular 

cases. Overall, this experiment placed 35 of the 46 cases into correct dominant classes, for 

a 76.1% percent correct for the three-class case. This result is improved over the experi-
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Figure 4-I0;Dendrogram produced by Ward’s method with target data set using a/b for 
0.6 contour and 3-moment q=\ GMM [a, (3] as attributes. Each object is color-coded by 
its subjective classification, linear events are green, cellular events are red, stratiform 
events are blue. Dashed line indicates subjectively determined cut-level for this experi
ment.

ment using only a  and P as attributes, which scored 66% correct in this case, showing that 

the addition of information on the ellipticity of the correlogram helps to refine the classifi

cation system. On the other hand, this result is only slightly better than the baseline exper

iment (raw rainfall values) which correctly classified 72.3% of the cases into the dominant
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class for each cluster. Since each cluster is unanimously populated with either convective 

(clusters 2-4) or non-convective (cluster 1) events, the two-class case results in 100% cor

rect classification. Obviously, a perfect score is better than the results of the baseline 

experiment (83.7%) and also shows improvement over the results using only a  and P as 

attributes (95.7%).

This validation was repeated for the entire set of II  experiments for the raw (unnor

malized) attributes as well as attributes normalized to produce zero mean and unit vari

ance, and attributes normalized by their maximum value. Figure 4-11 shows the percent 

correct results for all of the different combinations of attributes and normalization. It is 

clear from comparing the raw data results with those obtained after the attributes had been 

normalized that some sort of normalization is necessary. The results of any experiment 

that included unnormalized ab were much worse than those that did not include ab. This 

did not come as a surprise, since the range of ab values is several orders of magnitude 

higher than that of the other variables. There does not appear to be a clear preference for 

the type of normalization, as the results from both types of normalization were nearly 

identical for almost every combination of the various attributes.

Concentrating on the results from the normalized attribute experiments in the 2-class 

case (figure 4-1 la), the best combination of two of the four attributes were a/b and P, pro

ducing 100% correct, for both types of normalization. The best combination of three of 

the four attributes for the unit variance normalization was a , P, and ab, which also pro

duced 100% correct. However, the best combination of three attributes for the maximum 

normalization was a , P, and a/b, which also produced 100% correct. In addition, the 

experiment using all four attributes produced 100% correct. Most of the experiments pro-
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Figure 4-11: Percent correct results for 11 experiments in the two-class (a) and three-class 
(b) cases. Results using unnormalized attributes are in blue, attributes normalized to zero 
mean and unit variance are red, attributes normalized by their maximum are in white. The 
combination of attributes used in each experiment is indicated below each bar on the x- 
axis.
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duced greater than 90% correct, which is consistent with results found in the previous 

chapter (section 3.5).

Figure 4-11b shows the percent correct results for all of the different combinations of 

normalized and raw attributes in the three-class case. The best combination of two of the 

four attributes, and the best combination overall was a/b and P, producing 78.2% correct 

in the unit variance normalization case, and this experiment was clearly superior to the 

other combinations of two attributes. For unit variance normalization, the best combina

tion of three of the four attributes was ab, a/b, and P, which produced 73.3% correct. A 

similar level of performance was obtained in the maximum normalization case using a , P, 

and a/b, producing 75% correct. The experiment using all four attributes produced 74.4% 

correct using unit variance normalized attributes, and 76.7% correct when attributes were 

normalized by their maximum value. These results are similar to the best three of four and 

slightly less than the best two of four attribute experiments. These results are improved 

slightly when compared to the baseline experiment (raw rainfall values) which correctly 

classified 72.3% of cases.

In the three-class (linear, cellular, stratiform) case, the best results were obtained 

when only two out of four attributes were used (unit variance normalized a/b and P). This 

appears to be counter-intuitive, one might expect that additional information will always 

improve the automated classification. In fact, additional information will only improve 

the classification if it is consistent with the aspects of the data which were considered 

important in characterizing the various classes of objects. This sort of consistent informa

tion is defined by Romesburg (1984) as essential. This can be illustrated with a hypothet

ical example. In figure 4 -12a, the data matrix contains 20 objects and 2 attributes.
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therefore it can be easily visualized. For sake of argument, the subjective and automated 

classification schemes both agree that there are two clusters or classes of objects. In this 

case, the automated classification is perfect, therefore the attributes #1 and #2  used are 

considered essential. Next, in figure 4 -12b, an additional attribute (#3) is added that does 

not include information that is consistent with the characteristics of the data set that were 

deemed important to the subjective analyst. Objects that belonged to the same class in the 

two-attribute case are now scattered and mixed due to the influence of the third, inessen

tial attribute. The automated classification now disagrees with the subjective classifica

tion because many of the objects are now farther apart in attribute #3 space than they were 

in the space of attributes 1 and 2 . and vice versa.

(a) (b)

2

Figure 4-12: Hypothetical example illustrating the effect of the addition of an unimportant 
attribute to an automated classification. Left hand panel (a) shows the data matrix plotted 
in terms of attributes #1 and #2 , similar colored objects are clustered together by the hypo
thetical automated classification system (also indicated by like-colored contours). Right 
hand panel (b) shows the same data matrix plotted in three dimensions, including attribute 
#3. Objects maintain the same colors as they have in two-attribute space plot (a). Black 
contours indicate results of hypothetical automated classification.
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To this point, excluding the information on the angle between the semi-major axis 

and x-axis, ten attributes have been collected for each object in the data matrix: a , P, a/b 

for 0.2,0.4,0.6,0.8 contours, and ab for the four contours. Information on the orientation 

of the rainfall pattern is excluded from this set since it is not expected to help in discrimi

nating between classes, but instead should further describe the pattern once the general 

class has been determined. In fact, in order to determine the ideal selection of a combina

tion of these ten attributes, thousands of experiments would be necessary. The exact num

ber can be determined by turning to probability theory. The number of possible 

combinations of a subset of r  objects selected from a set of n objects is defined as

0 = -— ;.  In this case, n=IO and r  would vary from 1 to 10 since we would want 
(n - r ) ! r !

to test every combination from of the set of 10 attributes. Therefore, the total number of 

experiments required to exhaustively determine the ideal set of attributes would be 

10

= ^  = 1023 . In addition, since three different types of normalization have been
i = 1

tested, this number would need to be multiplied by 3. Obviously, analysis of such a large 

number of experiments is beyond the scope of this work. However, results from the 

experiments already performed can be used as guidance in the selection of a proper set of 

attributes from the set of ten.

It appears that the addition of information on the elliptical nature of the 0.6 contour 

in the correlogram provides useful information that allows for further refinement of the 

automated classification system. The previous results show that a/b and P are the 

attributes with the most discriminating power. For example, the best results were obtained
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when these were used by themselves. When additional attributes were added, results 

degraded slightly. When only one of these were used in combination with other attributes, 

results were also degraded. Therefore, in order to further refine the classification, it seems 

reasonable to expand the number of attributes by including information on the ellipticity 

of other correlation contours in the correlogram.

Figure 4-13 shows three cluster analysis results using 3 from three-moment, q=i 

GMM and a/b for 0.2, 0.4, 0.6, and 0.8 contours on the correlogram: raw attributes, 

attributes normalized to have zero mean and unit variance, and attributes standardized by 

dividing by their maximum values. Examining the results from the unnormalized 

attributes first (figure 4-13a), a cut has been made on the dendrogram separating the 

objects into five main clusters with six outliers (objects 1, 8 , 9, 15 18, and 31). The first 

cluster is unanimously populated with all eleven stratiform events. The second cluster is 

dominated by nine cellular cases, with one linear case included. The third cluster is also 

cellular dominant, with six cases. The fourth cluster contains five linear cases, and the 

fifth cluster is split between seven linear cases and three cellular events. Validating these 

clusters, in the two-class case there are no mis-classified events, resulting in 100% correct 

classification. In the three-class case the clusters correctly placed 38 of 42 cases into the 

dominant class, for a 90.5% percent correct. Clearly, these validation results outperform 

the baseline experiment values as well as all other experimental results discussed previ

ously. The automated classification using these five attributes have successfully separated 

the cellular, linear, and stratiform events with over a 90% accuracy rate.

The results from using attributes normalized to have zero mean and unit variance 

(figure 4-13b) do not reach the same level of success, however. A cut is made on the den-
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Figure 4-13: Dendrograms produced by Ward’s method with target data set using [p. a/b 
0.2 0.4 0.6 0.8 contours] attributes, unnormalized (a), normalized so each attribute has unit 
variance (b). and each attribute normalized by its maximum (c). Each object is color- 
coded by its subjective classification, linear events are green, cellular events are red, strat
iform events are blue. Dashed line indicates subjectively determined cut-level for each 
experiment.
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drogram in a similar fashion to create five clusters, this time with only one outlier (case 

#15). Notice in this case that the first cluster contains two different groups, one that 

includes nine stratiform events and the other which has six cellular cases. There was no 

way to cut the dendrogram such that these would be divided into two distinct groups while 

also producing four to five main clusters with six outliers or less. If one were to cut the 

dendrogram to produce six clusters, these two groups could be divided. Given this mixed 

stratiform/cellular cluster, the percent correct for the two-class case has dropped to 83.0%, 

and is 66.0% in the three-class case. Although these validation results are not as favorable 

as those obtained from unnormalized attributes, the automated classification is grouping 

events in a similar fashion to the subjective classification.

On the other hand, results from using the five attributes after normalization by their 

maximum values are consistent with the favorable results obtained without normalization 

(figure 4-13c). Again, a cut is made to produce five main clusters with five outliers (cases 

2 ,4 , 9, 15, and 16). In this case, it is possible to separate the main stratiform cluster from 

the other clusters. Here, cluster 1 contains nine stratiform cases. Cluster 2 contains 14 

cellular events and one linear case. Cluster 3 contains three cellular and one linear case. 

Cluster 4 contains four linear and one cellular case, and the last cluster contains seven lin

ear, one cellular, and two stratiform events. Overall, this classification is able to correctly 

place 41 of 43 cases into their proper convective/non-convective classes, for a 95.4% per

cent correct. In addition, 37 of 43 cases are placed into their proper linear/cellular/strati

form classes, for a 86 .1% correct validation.

It is interesting to look more closely at some cases that were placed in a class other 

than the one that was subjectively assigned in order to determine why they might be incor
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rectly classified. For example, in each classification experiment shown in figure 4-13, lin

ear case #14 is incorrectly placed with a group of cellular events. Figure 4-14a shows the 

rainfall for this case, and figure 4 -14b shows the rainfall plot for case #21, which is one of 

the similar cellular cases that case #14 is grouped with in these cluster analysis results. In 

fact, these two cases do appear to be quite similar. They are both somewhat organized, 

case #14 has a prominent circular-shaped feature and several other intense cells are orga

nized more or less along a line. Case #21 is organized to a lesser degree along a line, 

which explains why it was subjectively classified as a cellular event. Another example is 

case #19, which was subjectively classified as cellular but is placed with a group o f linear 

events in the automated classification experiments. Figure 4-14c shows the rainfall from 

case #19 while figure 4-14d shows the rainfall from case #13, which is one of the linear 

cases that case #19 is closely connected to on the dendrograms found in figure 4-13. 

Again, visually these cases appear to be quite similar. They are both organized to a certain 

degree along a line. Case #19 has a small intense cell on the western edge of the domain, 

which indicates the more cellular nature of this case. Case #13 also has a small cell on the 

easter edge of its domain, but this cell is closer to the organizational line than the offset 

western cell in case #19. In both of these examples, the “mis-classified” events have some 

characteristics of the both linear and cellular classes. For example, these cases appear to 

be more similar to each other than they do other “classical” linear (such as case #6 , figure

3-1) or cellular (such as case #34, figure 3-3) events. They appear to be on the fuzzy 

boundary which separates these classes, and might be better classified as “hybrid” events. 

One could imagine a less strict validation system where such events were not penalized if 

they were classified as either linear or cellular. In such a case, it would not be unreason
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able to expect the percent correct to climb well above the 90% threshold obtained using 

these five raw attributes with “strict” scoring standards. In any event, this level of success 

demonstrates that useful attributes for an automated rainfall pattern classification system 

have been discovered.

(a) (b)

20 40 60 80 100 120

(c)

100 120

(d)

20 40 60 80 100 120 20 40 60  80 100

Figure 4-14: Cases #14 (a), #21 (b), #19 (c), and #13 (d) of the target data set. 
on the side of each image indicates rainfall amounts in mm.

Colorbar
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4.5 Summary

The automated classification algorithm using attributes produced by summary mea

sures of the bulk statistical and geostatistical properties of rainfall patterns has success

fully separated the target data set into linear, cellular, and stratiform classes. In order to 

confirm that these attributes are producing the desired effect of characterizing the spatial 

rainfall patterns in a way that is consistent with subjective impressions, the data matrix 

will be visualized in terms of the five attributes that produced the best classification 

results. Since visualization of a five-dimensional data set is somewhat difficult, the data 

matrix will be projected onto a two-dimensional plane that accounts for the largest possi

ble fraction of the total variance contained in the data. Principal component analysis 

(PCA) of the Grammian matrix allows one to represent a data set in terms of a basis that is 

uncorrelated. Section 2.11 describes PCA in more detail. In this case, the correlation 

matrix (table 4-4) was used for the Grammian. Given that many of the attributes are 

highly correlated, especially the various aA) values, it is not surprising to find that the first 

two components explain 84.6% of the total variance. Therefore, a plot of the objects pro

jected onto the directions of the first two principal components will be a fairly good two- 

dimensional representation of the five-dimensional data set. Figure 4-15 shows such a 

plot of the target data set in terms of the first two principal component scores (projected in 

the directions represented by the eigenvectors, normalized by dividing by the square root 

of the eigenvalues). Here, stratiform cases are grouped together in one part of the trans

formed “attribute space”, while linear and cellular events are distributed in other sections 

of the plane. Cases on the fuzzy boundary between linear and cellular classes (such as #14 

and #19) have some of the characteristics of both classes. What is important is not
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whether each decision made by the automated classification agreed perfectly with those 

made by the subjective analyst. Instead, what is important is that the summary statistical 

measures are able to describe the degree of intensity and the degree of linear organization 

found within each object. This allows for meaningful comparisons of different objects. 

This plot shows that the goal of discovering attributes that characterize the intensity and 

degree of alignment of rainfall patterns has been met.

In this work, the determination of useful attributes that characterize important 

aspects of rainfall patterns has been built upon a relatively small target data set, comparing 

the results of automated classification experiments with a subjective classification. The 

target data set is a small, somewhat random sample of all possible rainfall objects that 

occur in nature. In order to get a better picture of the true distribution of rainfall objects in 

this attribute space, the characteristics of a large data set covering the entire year of 2002 

will be analyzed in the next chapter, using a completely automated rainfall object detec

tion and analysis system.

Table 4-4: Correlation matrix for the data matrix containing [P aA) 0.2 0.4 0.6 0.8]
attributes.

P 0.2  a/b 0.4 a/b 0.6  a/b 0.8 a/b
p 1.00 0.16 0.23 0.26 0.23

0.2  a/b 0.16 1.00 0.80 0.68 0.68
0.4 a/b 0.23 0.80 1.00 0.75 0.69
0.6  a/b 0.26 0.68 0.75 1.00 0.84
0.8 a/b 0.23 0.68 0.69 0.84 1.00
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Figure 4-15: Projection of the objects in the target data set onto the first two principal 
component directions, normalized by the square root of the eigenvalues (PCA scores). 
Each object is color-coded by its subjective classification, linear events are green, cellular 
events are red, stratiform events are blue.
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Chapter 5

Automated rainfall object classification system

5.1 Introduction

The overall goal of this work is to develop an automated rainfall pattern classifica

tion system. To accomplish this task, the discovery of a set of attributes that allow for 

automated characterization of rainfall patterns was required. To this point, the determina

tion of useful attributes has been based upon a relatively small target data set, comparing 

the results of automated classification experiments with a subjective classification. The 

first step in this process involved a “baseline” automated classification using the raw val

ues of rainfall at each point in space as attributes. Next, the dimension of the data was 

reduced by analyzing the “bulk” global distribution of rainfall values across each object, 

using the parameters of the gamma distribution fit to the observed histogram using the 

generalized method of moments technique. When the set of attributes was expanded to 

include those that summarize the geostatistical characteristics of the rainfall pattern, the 

classification system was able to separate the convective and non-con vecti ve events, and 

further separate the convective cases into linear and cellular events with over 90% accu

racy. Therefore, it was concluded that a useful set of attributes had been obtained.

The target data set is a small sample of all possible rainfall objects that could occur 

in nature. In order to get a more complete picture of the population, the characteristics of 

a much larger data set must be analyzed. A completely automated rainfall object classifi

cation system will be developed to accomplish this task. A large data set covering a full 

year (2002) will be analyzed using an automated rainfall object identification and analysis
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system. The automated classification system will be developed using the best results from 

previous classification experiments with the target data set. Summary statistics of ana

lyzed attributes from this year will be examined.

In order to validate the automated classification system, a random sample of rainfall 

events taken from 2002 data will be verified. The distribution of the random sample will 

be compared with the full year’s distribution to ensure that this validation data set is repre

sentative of the population. Once this has been confirmed, the sample will be classified 

subjectively and objectively via the automated classification system. Comparison of these 

results will provide independent confirmation of the accuracy of this classification system.

5.2 Automated rainfall object identification and analysis system

The bulk of this research has focused on the determination of a useful set of 

attributes that allow for accurate classification of rainfall patterns. Although the classifi

cation system used automated cluster analysis algorithms, the object identification process 

described in section 3.2 was purely subjective, not automated. To allow for practical 

implementation of this research, development of a fully automated system for rainfall 

object identification and characterization is required.

For this task, the discipline of image processing provides a wide range of tools. 

Although the concepts of an image are not new to meteorologists, some definitions of 

common terms will be provided at the start, a more detailed discussion of image process

ing is provided in section 2.12. An image is a representation of values onto a set of spatial 

coordinates. A pixel is an element of the image, represented by its location and value 

(x,y,flx,y)). An object is a connected set of pixels, often a representation within the image 

of an entity in the physical world. It is convenient to assume that an object represents a set
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of pixels that have fairly uniform characteristics, although this might not always be the 

case. For example, the brightness of an illuminated sphere will change continuously over 

the surface of the sphere. Computer-based images consist of data stored as grids with a 

finite number of spatial coordinates and image values, known as digital images. A Carte

sian coordinate system is often used, where x  and y  take on integer values with intervals 

1 < x < M , l  < y  </V for an image sized M x N .  The origin is typically taken to be the 

lower left comer of the grid. Although most meteorological analyses consist of continu

ous variables represented on discrete grids, in this work rainfall analyses are treated as 

digital images.

The task of object location and identification involves locating a proper set of con

nected pixels within the image. Determining a proper set of connected pixels can be 

accomplished in several ways. As previously mentioned, an object can be thought of as a 

set of pixels possessing somewhat uniform characteristics. This idea leads to one class of 

object identification algorithms, region-growing or agglomerative routines. These are 

developed on the basis of objects appearing to be fairly uniform, therefore an object can be 

built by grouping or clustering together similar-looking pixels. On the other hand, an 

object distinguishes itself from the background or from other objects by a perceptible 

change in characteristics, for example, changes in color, texture, or shading. The location 

of this change is considered the edge of an object. This concept leads to another branch of 

object identification algorithms, those related to edge detection. Here, an object will be 

identified as the region outlined by an edge on the image. Ideally, for rainfall analyses, 

any objects that are identified will represent significantly different meteorological phe

nomena. The difficulties in obtaining such a system using some edge detection or object
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identification algorithms will now be discussed.

5.2.1 Agglomerative methods
In general, agglomerative region-growing algorithms operate by clustering together

pixels with similar characteristics. These routines perform a cluster analysis, as in section 

2.3, where the data matrix is made up of pixels (the objects in cluster analysis terminol

ogy) and various attributes associated with them. A recent example of an agglomerative 

routine for processing weather-related images is provided by Lakshmanan (2001). Here, 

the texture of the image, represented by a vector of local statistical measures in the neigh

borhood of each pixel, becomes the attribute vector associated with each pixel. A set of K 

clusters are formed by minimizing a cost function, which is basically the sum of the 

Euclidean distances between each pixel and a cluster mean. In addition, the spatial loca

tion of each pixel is also included in the computation of the cost function. Therefore, clus

ters will contain pixels that are close together in terms of their texture and spatial location. 

This technique produces a hierarchy of objects over a range of spatial scales, where the 

number of clusters/objects is cut in half at each step in order to reach the next level of hier

archy. At some point, similar to the cluster analysis results that have been presented in 

previous chapters, a subjective decision as to the desired number of clusters or level of 

hierarchy must be made. This method does produce favorable results for weather radar 

and satellite images, and is currently being tested for its potential use in radar feature 

tracking algorithms at the National Severe Storms Laboratory (Lakshmanan 2003). How

ever, it was not selected for this work since a subjective decision on the number of clusters 

or objects to keep for each image is required. While the selection of an acceptable thresh

old that would produce satisfactory results for any given rainfall image might be possible
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to obtain, this would likely require a great deal of effort and tuning of the technique. This 

will be considered for future work.

5.2.2Edge detection filters
Since the concept of object identification involves locating points where characteris

tics of the image are changing quickly, the idea of directly analyzing the gradient of inten

sity has been explored. A commonly used edge detection operator (Marr and Hildreth 

1980) is based upon well-known property of the second-derivative in the vicinity of a 

edge, that is, edges are co-located with the zero-crossings of the second-derivative. While 

based upon calculus, the development of the operator was motivated by research into 

mammalian vision systems (Marr and Hildreth 1980), as the authors wished to make the 

algorithm as consistent with human vision processes as possible. The Marr-Hildreth oper

ator combines the band-pass smoothing properties of the Gaussian with the edge-finding 

properties of the Laplacian (second-derivative); in fact, it is also known as the Laplacian 

of Gaussian (LOG) filter (Klette and Zamperoni 1996, see section 2.12 for more details). 

One might expect that rainfall may pose some problems for this type of algorithm. For 

example, the edge separating very light rain and no rain will correspond to a weak gradi

ent; the zero-crossing of the second derivative in this instance will separate small values of 

the Laplacian. On the other hand, an edge separating heavy rain from lighter rain will cor

respond to strong gradients, and the zero-crossing of the second derivative will be found 

between much larger values of the Laplacian.

To determine the potential usefulness of the LOG filter for rainfall object edge detec

tion, the LOG filter was applied to a rainfall analysis taken from the target data set (figure 

5-1). The rainfall for this case consists of a region of light rainfall to the west of a linear
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Figure 5-1 : Examples of edge detection algorithms for a rainfall analysis (a). Rainfall 

values are in units of mm. Plot (b) shows results of Marr-Hildreth LOG filter for 
a  = 2.17 grid boxes. Plot (c) shows results of contra-harmonic filter for r= 1.2. for a 9x9 
window.
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region of heavier rainfall (Figure 5-la). The results of the LOG filter, with ct = 2.17 grid 

boxes, are shown in figure 5-lb. Again, the zero-crossing of this filter indicates the edges, 

with the zero contour separating the light blue and warmer colors from the region of 

darker blues. In this case, the edge detection algorithm highlights a separation between 

the region of heavier rain and the remainder of the image fairly well. However, for the 

indication of the edge of the rain/no-rain region found within the trailing stratiform area, 

the LOG filter does not produce satisfactory results.

Next, a second type of edge detection filter was tested. The contra-harmonic filter 

(Klette and Zamperoni 1996, see section 2.12 for more details) highlights edge pixels 

based upon the difference between estimates of the local maximum and minimum values 

within a window. These estimates are non-linear calculations of averages (contra-har

monic average) of the local pixel values. The basic idea behind this filter is that, in the 

vicinity of edges, large differences between local maximum and minimum values should 

exist. Once again, for rainfall one might expect that this sort of filter would have some 

trouble detecting the edge of a region of light rainfall, since the difference between the 

local maximum and minimum will be quite small. Figure 5-lc shows the results of the 

contra-harmonic filter with r=1.2 and a 9 x  9 grid point window (see section 2.12). In 

this case, edges are indicated by large values of the filter. Here, large values are indicated 

on either side of the linear area of heavier rainfall. Therefore, this filter does show prom

ise in separating regions of heavier rain from the remainder of an image. However, there 

are small values of the filter throughout the region of light rain, even beyond the rain/no

rain contour. In this case, as expected, the edge detection algorithm does not provide sat

isfactory results in the determination of the rain/no-rain edge.
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At this point it is not obvious how best to take advantage of the information provided 

by these edge detection or object identification algorithms. The agglomerative region- 

growing methods require a decision regarding the number of objects to locate within the 

image. The task of detecting an edge which separates zero rain from light rainfall proved 

to be problematic for both of the filters tested here. Perhaps these filters could be used to 

find edges separating heavy and light rainfall regions, and some other algorithm could be 

used to locate the edge separating the rain/no rain regions. In order to use the information 

provided by either of these edge detection filters to locate objects within the image, addi

tional processing would be required. For example, in the case of the contra-harmonic fil

ter, a threshold value would need to be selected that would indicate edge locations. In the 

example shown here, there are gaps between large values from the filter, so some sort of 

interpolation between highlighted edge points would likely be necessary in order to com

pletely outline a rainfall object. For the LOG filter, a decision on the spatial scales one 

wishes to smooth through the choice of a  is also required. Marr and Hildreth (1980) rec

ommend using the filter over a range of scales, as one will find certain edges across a wide 

range of scales and other edges will only be found at smaller scales. They provide a set of 

rules for combining the information from different applications of the LOG filter to create 

a description of the image that they call the raw primal sketch. Again in this case, some 

sort of interpolation between edge segments found by this filter would be needed to com

pletely identify a rainfall object. One can easily envision a very complicated, heuristically 

based scheme for locating objects using either of these types of edge detection algorithms. 

There is no reason to expect that, even after a considerable amount of effort is expended, 

such a system will produce ideal results. Therefore, a more natural choice of edge detec
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tion for rainfall will be made.

S.2.3 Binary edge detection
Since the object identification and edge detection algorithms discussed previously

did not provide a clear solution to the object location and identification problem, a simpler 

method of converting the image to binary through the use of a simple threshold was cho

sen. For a binary image, consisting o f  only light or dark pixels, the edge detection task is 

fairly simple (see, for example, the algorithm provided in equation 2.44). Here, edge 

detection for a dark object involves finding those dark pixels which are located immedi

ately next to light pixels. In order to convert a greyscale image into a binary image, a 

threshold must be selected. Once this has been accomplished, a straightforward binary 

edge detection algorithm can be applied to the converted image.

The problem now becomes one of selecting an appropriate threshold. As discussed 

in Davies (1996), the choice of threshold will depend on the practical problem that the 

user wishes to solve. For example, if  the task is optical character recognition, the objects 

are typically dark shaded letters and numbers that have been printed onto a lighter shaded 

background. If the grey values represented by the dark characters and the light back

ground are internally consistent, the proper choice of threshold can be obtained by analyz

ing the histogram of pixel intensity values. A pixel value located in a valley on the 

histogram separating the dark and light peaks makes an ideal threshold. However, there 

are often major difficulties with such an approach. For example, the background bright

ness values may vary substantially across an image, such as what one might find in a poor 

quality facsimile or Xerox copy. In this case, an adaptive thresholding technique might be 

beneficial. This involves determining a local threshold based upon the pixel values in a
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neighborhood surrounding each location.

Considering the case of rainfall data, as well as other types of images, an ideal 

threshold is often difficult to find. The histogram may have multiple minima due to detail 

or noise in the image. The pixel intensity histogram may be highly skewed, making it dif

ficult to determine a relevant threshold within the tail of the distribution. A quite simple 

and natural choice of threshold for rainfall data is one that separates measurable rain from 

no rain. Rainfall objects in this case will be connected regions of rainfall greater than the 

rain/no-rain threshold. This method for object identification has been selected for the 

automated object classification system for the remainder of this work. This simple 

method certainly avoids many of the problems related to developing a more complex 

object identification technique. This also solves the problem that the various edge detec

tion filters had in locating the light-rain/no-rain edge. On the other hand, this method will 

likely often produce large objects that contain several different types of rainfall events 

combined into a single object. For example, a line of convection connected to a trailing 

region of stratiform rainfall would be considered a single object when a rain/no-rain 

threshold is used. The selection of rainfall object identification technique for the auto

mated system has been made based on the desire to include all measurable rainfall while 

also allowing for relatively simple implementation and understanding of the procedure. A 

detailed explanation of this method will be provided by an example image in the next sec

tion.

5 .2 .4  E xa m p le
The operation of the rainfall object identification algorithm used for the remainder of 

this work will be illustrated via an example. In figure 5-2a, a small subset of the Stage IV
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Figure 5-2: Steps of the rainfall object identification process. Top panel (a) shows Ih 
rainfall valid 23 UTC 28 July 2002. Middle panel (b) shows initial connected region 
labelling. Lower panel (c) shows final rainfall object labelling.
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rainfall analysis domain is shown for a case from July, 2002. Here, a fairly large contigu

ous area of rainfall covers most of southern Minnesota. There are other smaller areas of 

rainfall over North and South Dakota, and a few pixels of scattered light rain appear in 

Wisconsin just east of the main heavy rainfall region. As previously mentioned, a simple 

threshold (=0.05mm) was used to convert the rainfall image into a binary image (using the 

threshold algorithm given in equation 2.41). The connected component labeling algo

rithm (section 2 .12) is applied to this binary image to locate individual objects within the 

full image and identify them with a separate label. This algorithm labels pixels that are 

“connected” to other pixels with the same label. The result of this labeling is shown in fig

ure 5-2b. Note that each contiguous region of rainfall is plotted with a different color, 

each connected region is assigned an integer label value, indicated by the colorbar on the 

edge of the figure. As discussed in section 3.5.2, since the atmosphere is diffusive, it is 

physically sensible to expect that a significant fraction of locations receiving non-zero 

precipitation over a region will receive less than a measurable amount of rain (also known 

as a “trace” amount). The size of the area receiving trace amounts of precipitation was 

specified to be 15% of the total area receiving detectable precipitation, executed in the 

same way as previously described for the target data set analysis. The areal extent of each 

object was increased by a integer number of pixels in each direction such that the object’s 

area was increased by as close to 15% as possible. In addition, it is not unusual to find 

small “gaps” between nearby regions of measurable rain, such as those found between the 

large contiguous rainfall region and the scattered pixels of light rain just to the east. 

Therefore, the definition of “connected” pixels was expanded so that pixels that were 

within 5 points (-20km) of one another were considered connected, and therefore given
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the same label value. Figure 5-2c displays the final result o f this process. At this point 

there are five separate objects shown in this domain. Since only a portion of object_5 in 

the figure is located within this domain, the four objects that are completely illustrated in 

this figure will be analyzed in more detail. The Minnesota rainfall has become a single 

object (object_l), the small region of intense rainfall in central South Dakota has also 

become a single object (object_2). The rainfall in North Dakota has been identified as two 

separated objects, object_3 contains the heavier rain plus the scattered light rain located 

adjacent and to the north, object_4 being a small region of scattered light rain in eastern 

North Dakota.

Now that the object identification process is complete, the rainfall objects will be 

analyzed so that statistical characteristics can be extracted. The analysis process for the 

large object in the previous example (object_l, figure 5-2c) will be examined in detail in 

order to illustrate the process. The parameters of the gamma distribution (a, P) will be fit 

to the histogram of rainfall amounts for each object using the generalized method of 

moments (three-moment g=l GMM, sections 2.9.3, 3.5.3). For this example, the resulting 

parameters of the gamma distribution were estimated to be a=0.30 and P=6.95. Figure 5- 

3 shows the observed distribution of rainfall amounts along with the theoretical probabil

ity distribution using these parameters. This distribution is strongly skewed, resulting in a 

low value of a , and has a fairly thick tail, indicating the presence of heavier rainfall, and 

reflected in the relatively high value of p.

A correlogram will be computed for each object as well. The correlogram represents 

the auto-correlation for each object individually. Only the rainfall contained within each 

unique object is included in the calculation. In other words, the rainfall from object_2 will
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Figure 5-3: Histogram of rainfall amounts (mm) for example rainfall object (object_I, 
figure 5-2c). Curve indicates gamma distribution fit to the histogram by GMM, resulting 
in a=0.30 and P=6.95.

not affect the correlogram for object_l. In order to limit the computation time needed to 

compute each correlogram for very large objects, the maximum lag that can be analyzed 

was set to 181 pixels (approximately the length of /i=[128,I28]). This was found to be 

greater than the largest distance between the origin and the 0.2 contour on correlograms 

computed without this limit for all objects during the month of January, 2002. Since this 

is a cool season period, one would expect to find a high degree of organization in several 

large, synoptic-scale rainfall objects, therefore this maximum lag should be quite applica

ble to the rest of the year.

As discussed in section 4.3, various contours surrounding the origin will be analyzed 

using several image processing routines described in section 2.12, and features of ellipses 

fit to those contours will be extracted. This process is illustrated in figure 5-4. Since the 

correlogram (figure 5-4a) is symmetric, only the top half is shown in subsequent figures, 

since that is all that is required in order to estimate the lengths of the semi-major and semi-
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minor axes of an ellipse. First, the correlogram is converted to a binary image (figure 5- 

4b), where pixels greater than the contour threshold are set to I. Next, the connected 

component labeling algorithm is used to find the region of the binary image that is con

nected to the origin (figure 5-4c). The binary edge detection algorithm is used to locate 

the pixels that define the edge of the connected region (figure 5-4d). The largest distance 

from the origin to the edge is considered the length of the semi-major axis, a. The small

est distance from the origin to the edge is the length of the semi-minor axis, b. In this 

case, the edge pixel that is furthest from the origin is located at [x,y]=[-4,22], therefore 

0=22.36. The closest edge pixel is at [-14,7], therefore 6=15.65. Once these lengths are 

found, as in section 4.4, the ratio and product of these axes will be taken (o6=350 and aJ 

6=1.429 in this case), as well as the counterclockwise angle between the semi-major axis 

and the x-axis (= I(X).3° ). This angle is rotated to adjust for the polar-stereographic map 

projection, making the angle the clockwise angle between a and due East. For a polar-ste

reographic projection (Pearson 1990), the rotation angle is simply 

A0 = central lon^^^y -  lon^^y, where the central longitude of the projection for the Stage 

IV analysis is 255E, and the longitude of the object is in degrees east (in this case, the 

angle of the semi-major axis after rotation = 89.5° ). Table 5-1 lists these attribute values 

for the four complete objects represented in figure 5-2c.

In summary, for each object, the following set of attributes will be obtained and 

stored; date, time, location (center o f mass x, y), average rainfall, size (number of pixels), 

a , P from GMM, a/b, ab, and 0 for the 0.2, 0.4, 0.6, and 0.8 correlation contours. The 

system for classifying these objects based upon the attributes extracted via the methods 

outlined here will be described in the next section.
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(d)
Figure 5-4: Correlogram 0.2 contour analysis process. Correlogram (a) from the example 

object (object_l, figure 5-2c), (b) 0.2 contour binary image, (c) 0.2 region connected to 
origin, (d) location of edge pixels for 0.2 connected region. Red line indicates furthest dis
tance from origin to edge (semi-major axis, a), green line shows shortest distance (semi
minor axis, b).
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Table 5-1: A sample of attributes extracted from the four objects found in figure 5-
2c.

label a P a/b 0.2 O(deg) size(pixels)

object_l 0.30 6.95 1.43 89.5 7644

object_2 0.16 4.67 6.32 7.6 275

object_3 0.23 5.05 2.85 58.6 1150

object_4 0.03 0.06 1.00 0.0 28

5.3 Automated rainfall object classification system

Now that a completely automated system for rainfall object identification and analy

sis has been developed, an automated system for classifying those rainfall objects is 

required. In the previous chapters, a hierarchical cluster analysis algorithm was used as a 

classification tool. When using such an algorithm, a subjective decision is required in 

order to split the data set into a fixed number of groups or clusters. The clusters that were 

found to be in closest agreement to the subjective classification in the previous chapter 

will be used to build the automated classification system here.

Figure 5-5 repeats the results (figure 4-13a) obtained from the hierarchical cluster 

analysis performed in section 4.4. This involved the use of raw, unnormalized attributes 

consisting of P, and oA) from the 0.2,0.4,0.6, and 0.8 correlogram contours. The analysis 

resulted in five major clusters and six outlier cases (cases 1,8,9, 12, 15, 18, and 31). The 

percent correct in the 3-class (stratiform, linear, cellular) case was 90.5%, and 100% in the 

2-class (convective, non-convective) case. The automated classification system will place 

objects into one of these five clusters, depending on which is closest to the object in terms 

of Euclidean distance. The location of each of these clusters will be defined by the mean 

of the attribute vector for the members of each cluster. The cluster mean attribute vectors
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are provided in table 5-2 .

W ards m ethod raw [beta a/b 0.2 0 .4  0 .6  O.SJ
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Figure 5-5: Dendrogram produced by Ward’s method with target data set using raw [p, a/ 
b 0.2 0.4 0.6 0.8 contours] attributes. Each object is color-coded by its subjective classifi
cation, linear events are green, cellular events are red, stratiform events are blue. Dashed 
line indicates subjectively determined cut-level.

Table 5-2: Cluster mean attribute vectors, from clusters denoted in figure 5-5.

P a/b 0.1 a/b 0.4 a/b 0.6 a/b 0.8

cluster 1 0.75 2.72 1.91 1.61 1.76

cluster 2 2.82 2.72 2.39 1.90 2.07

cluster 3 5.62 1.97 2.10 2.31 1.79

cluster 4 3.56 6.36 8.08 3.66 3.09

cluster 5 2.63 5.28 4.03 2.89 2.80

As shown in figure 5-5, cluster 1 is unanimously populated by stratiform events, 

therefore it is considered the stratiform cluster. The distinguishing feature of the strati

form cluster mean is the low value of p. The other convective clusters all have consider

ably higher mean P values. Cluster 2 is mainly a cellular cluster, with an additional linear
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member. Therefore, it will be considered a cellular cluster, with perhaps some hybrid lin

ear characteristics. Cluster 3 is unanimously populated with cellular events, therefore it is 

considered a cellular cluster also. Clusters 2 and 3 have relatively low mean values of a/b, 

indicating a characteristic lack of linear continuity. Cluster 3 has a considerably higher 

mean value of P than cluster 2 , indicating a thicker-tailed distribution and therefore more 

frequent instances of heavy rainfall. Cluster 4 is entirely a linear cluster, and cluster 5 

contains mainly linear events with a few cellular cases included. These will be considered 

linear clusters, although cluster 5 might be considered to be closer to the fuzzy boundary 

between linear and cellular, perhaps more precisely called a linear/hybrid class. Clusters 4 

and 5 have relatively high mean values of a/b, indicating their linearly-organized charac

ter. Cluster 4 contains the highest mean values of a/b, therefore one might expect cases 

belonging to this class to be on the highly-organized end of the spectrum.

The automated classification system will proceed as follows. The raw values of the 

five attributes (P, a/b 0 .2 ,0 .4 ,0 .6 , and 0.8 contours) for a given object will be compared to 

the five cluster mean vectors described previously. The Euclidean distances (equation 2.3) 

between the object and each of the five cluster means will be computed. The object will 

be placed into the class represented by the nearest cluster mean in terms of the smallest 

Euclidean distance, in other words, the nearest-neighbor cluster.

This automated classification system has been built upon the cases found in the tar

get data set. As previously mentioned, it is not clear at this point whether or not this target 

data set is a representative sample of the range of possible rainfall events found in the pop

ulation. A large data set covering a full year (2002) will be analyzed using the automated 

rainfall object identification and analysis system. Summary statistics of analyzed
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attributes from this year will be examined. In order to validate the automated classifica

tion system, an independent random sample of rainfall events from 2002  will be taken. 

The distribution of the random sample will be compared with the full year’s distribution to 

ensure that this validation data set is representative of the population. Once this has been 

confirmed, the sample will be classified subjectively and objectively via the automated 

classification system. Comparison of these results will provide an Independent confirma

tion of the accuracy of this classification system.

5 .4  Validation o f  au tom ated  c la ssifica tion  system

5 .4 .1 S u m m a ry  statistics

The so-called “Stage IV” rainfall analysis (Fulton et al. 1998; Seo 1998; Baldwin

and Mitchell 1998) produced at the National Centers for Environmental Prediction 

(NCEP) was obtained for the entire year of 2002. As discussed in section 3.2, the Stage 

IV analysis is a national mosaic of optimal estimates of hourly accumulated rainfall using 

radar and raingage data, which is available on a 4km x 4km mesh covering the contiguous 

48 states. Unlike in the earlier chapters, the domain that was analyzed included the entire 

lower 48 states. Each hourly analysis was processed using the automated rainfall object 

identification and analysis system described in section 5.2. Out of a possible 8760 hours 

over the course of the year, 8679 hours, or 99.1% of the hours in the year were included in 

the data set that was obtained from NCEP. In total, 799014 objects, or an average of 92 

objects per hour were identified by the automated system. The distribution of objects as a 

function of their size (number of pixels) is shown in figure 5-6. The histogram (figure 5- 

6 a) clearly shows that the majority of objects are relatively small in size. This can be fur

ther illustrated by examining the cumulative distribution function (figure 5-6b), where the
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probability of an object being larger than X  pixels is plotted versus the size (X) of an 

object. Studies related to self-organized criticality (e.g., Bak et al 1987; Song et al 2002) 

have found that many naturally occurring phenomena (forest fires, avalanches, earth

quakes) when plotted in a similar fashion (size vs. frequency) show power-law scaling 

properties, that is, their distributions follow a straight line on a log-log scale. In this 

instance, one might determine three separate regimes where such scaling power-law prop

erties exist, one in the range of approximately 5-150 pixels, another between 150-2000 

pixels, and the third for objects larger than 2000 pixels. In terms of physical dimensions 

for the transition points separating these three regimes, 150 pixels is approximately (50

km)^ while 2000 pixels is approximately (200 km)^. It is interesting to note that these 

length scales are quite close to those suggested by Orlanski (1975) for different regimes of 

mesoscale phenomena (meso-gamma scale features are of length scale 2 -20km, meso-beta 

are between 20-200km, and the length scales of meso-alpha scale phenomena are between 

200 2000km). Given these three size regimes, the objects can be grouped into three size- 

related categories, small (meso-y) objects of size 150 pixels or less, medium (meso-P) 

sized objects greater than 150 pixels and less than or equal to 2000 pixels, and large 

(meso-a) objects of size greater than 2000 pixels. For instance, in the 2002 data there are 

524224 small objects (65.6% of the total, an average of 60/hr), 242914 medium size 

(30.4%, average 28/hr), and 31876 large (4%, 3.7/hour) objects. For reference, figure 5- 

2c provides examples of typical objects in each size regime, a large object over Minnesota 

(object_l: 7644 pixels), medium sized objects in North Dakota (object_3: 1150 pixels) 

and South Dakota (object_2: 275 pixels), and a small object in eastern North Dakota 

(object_4: 28 pixels).
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Figure 5-6; Distribution of 2002 rainfall objects by size. Left panel (a) shows histogram, 
right panel (b) shows probability of object size being larger than x pixels versus x, on a 
log-log scale.

The diurnal cycle of the 2002 rainfall objects is displayed in figure 5-7. Overall, the 

maximum number of rainfall objects occurs in the late afternoon (21 UTC) and the mini

mum occurs in the early morning (12 UTC). However, the times of these maxima and 

minima are a function of object size. For example, small-sized objects (figure 5-7b) are 

most frequent at 00 UTC and show a minimum in frequency at 16 UTC. The peak fre

quency for medium-sized objects (figure 5-7c) occurs earlier than for the overall distribu

tion, at 19 UTC, while the minimum is in the early morning (12 UTC). For large objects 

(figure 5-7d), the maximum occurs at 22 UTC while the minimum also occurs at 12 UTC. 

The monthly distribution of objects is shown in figure 5-8. The overall distribution shows 

a peak in July, and a minimum in February. Again, there are differences in the monthly 

distributions depending on the object sizes. The distribution of small-sized objects (figure 

5-Sb) is quite similar to the overall distribution, except that the minimum occurs in Janu

ary instead of February. Medium-sized objects (figure 5-8c) show no clear peak or valley
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Figure 5-7: Hourly distribution of 2002 rainfall objects (UTC). Top left panel (a) shows 
number of objects for all sizes, top right panel (b) shows relative frequency of small 
objects, lower left panel (c) shows relative frequency of medium-sized objects, and lower 
right panel (d) shows relative frequency of large objects.

in their distribution, although the maximum does occur in July and the minimum in Febru

ary as in the overall distribution. Finally, the monthly distribution of large objects (figure 

5-8d) is consistent with the overall distribution. In general, these results are consistent 

with other studies of rainfall climatology (Geerts 1998) which show peak frequencies in
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Figure 5-8: Monthly distribution of 2002 rainfall objects (l=January, 12=December). 
Top left panel (a) shows number of objects for all sizes, top right panel (b) shows relative 
frequency of small objects, lower left panel (c) shows relative frequency of medium-sized 
objects, and lower right panel (d) shows relative frequency of large objects.

the late afternoon and the warm season, etc.

The distribution of object center of mass locations (figure 5-9) will be examined 

next. To help to visualize this distribution, the object center of mass locations will be ana

lyzed onto a grid with approximately 80km spacing. This will be done simply by sum-
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Figure 5-9: Spatial distribution of 2002 rainfall objects averaged onto 80km x 80km size 
grid boxes. Top left panel (a) shows number of objects for all sizes, top right panel (b) 
shows number of small objects, lower left panel (c) shows number of medium-sized 
objects, and lower right panel (d) shows number of large objects (note thresholds for col- 
orbar are order of magnitude smaller in this panel).

ming all objects found within non-overlapping sets of 17 x 17 grid points from the 

original grid (Stage IV grid spacing is 4.7625km, 17 x 4.7625 km = 80.96km) to deter

mine the number of objects on each 80km grid box. For comparison against climatology.
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a plot of the mean number of days with measurable precipitation from a 30 year period 

(1961-1990) across the U.S. is shown in figure 5-lOa (NOAA 2002). While this statistic is 

not the same as the number of hourly rainfall objects as identified here, it is similar enough 

for comparison purposes. The distribution of the objects of any size (figure 5-9a) shows 

several maxima. Maxima located across the western U.S. likely correspond to the higher 

terrain of the Rockies. It is not clear what fraction of these objects are actual rainfall and 

what fraction are anomalous objects caused by blockage of the radar beam by the high ter

rain. Similar maxima in daily rainfall frequency are found in the 30 year climatology (fig

ure 5-10a). Another large area of high object frequency is located across South Florida. 

Again, this region shows relatively high daily rainfall frequency in the 30 year climatol

ogy (figure 5-10a). This is not surprising to anyone familiar with the weather of this 

region, as Burpee (1989) noted in the warm season, “a day without significant rainfall or 

radar echoes is rare” in South Florida. In general, there is a relatively high frequency of 

hourly rainfall objects across the southeastern U.S. In particular, the number of objects 

tends to increase as one moves away from land in this region. Since these areas are on the 

edge of radar coverage and there are no rain gages over water that can be included in the 

multi-sensor analysis, the spatial rainfall patterns will be dominated by the radar esti

mates, which generally contain more spatial detail. It is likely that this will result in a 

larger number of smaller objects than would be found over land in the vicinity of rain gage 

observations. Therefore, it appears that this feature may in part be a spurious effect of the 

analysis system. Another relatively large maximum in object frequency is located across 

Pennsylvania and West Virginia. This is a region of significant terrain variation, while not 

as large as in the western U.S., this could also be related to radar beam blockage or oro-
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Figure 5-10; Left panel (a), annual mean number of days with measurable (>0.01 inch/ 
day) precipitation 1961-1990 (from NOA.\ 2002). Right panel (b). percent of normal 
annual precipitation for 2002 (from NOAA 2003).

graphically-forced rainfall. Regions of relatively few rainfall objects include southern 

regions of Nevada and California, and typical downslope regions just east of the Appala

chians and the high Plains just east of the Rocky Mountains. Similar minima are found in 

the 30 year climatology ( figure 5-10a).

The spatial distribution of the small (150 pixels or less) objects (figure 5-9b) is quite 

similar to the overall distribution, confirming that this size is the most frequent rainfall 

object observed in the 2002 data. As previously discussed, a large number of the objects 

found in the maxima over South Florida and off the southeastern U.S. are small in size. 

The distribution of medium-sized objects (151-2000 pixels, figure 5-9c) is considerably 

different from that of the small-sized objects. A large region of relatively high frequency 

for medium-sized objects is found across both the Rocky and Appalachian Mountains, as 

well as over the southeastern U.S. The distribution of large-sized objects (> 2000 pixels, 

figure 5-9d) shows a peak along the Cascade range of the westem Rockies, along with a
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maximum over the Florida peninsula. The distribution across the rest of the eastern half of 

the U.S. is fairly uniform. In some regions of southern Nevada and California, no large 

rainfall objects were found at any time during 2002. Recall that these object locations are 

the centers of mass for each object, and therefore a low frequency of occurrence does not 

indicate a complete lack of rainfall for that region. On the other hand, as shown in figure 

5-lOb, 2002 was abnormally dry in the southwestern U.S.. so a sparsity of rainfall objects 

in this region is consistent with the NCDC 2002 climate assessment (NOAA 2003).

Turning now to the distributions of attributes associated with each object, a question

(a) (b)

Figure 5-11: Distribution of 2002 rainfall objects in terms of attributes a  and p. Left 
panel (a) shows scatter plot of objects for all sizes. Right panel (b) shows the density of 
objects (log(number of objects) per grid box) on a regularly spaced grid in log(a). log(P) 
space, consisting of 51x51 grid points, (note values for colorbar are in terms of log(num- 
ber of objects).

as to how best to visualize such distributions arises. Since the objects of the target data set 

were originally plotted in a , P space (figure 3-13). a scatter plot of the 2002 data will also 

be made in this attribute space (figure 5-1 la). This plot uses log-log axes to assist in the
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visualization of the data. The reason why many of the objects tend to fail along some thin 

lines in ct,P space for very small values of P is not clear, this is likely an computational 

artifact of the GMM algorithm. One can easily see that a large number of the objects are 

located in the range of a  from 0.1 to 1.0 and P from 0.1 to 10. However, there is no way to 

assess the density of objects in this region since the dots representing each object in this 

region overlap to such a great extent. Therefore, it seems reasonable instead to analyze 

the density of objects in attribute space. Conceptually, this is accomplished by laying a 

regularly spaced grid in log(a), log(P) space consisting of 5 1 x 5 1  grid boxes over the 

scatter plot, and objects found within each grid box are counted. The log(number of 

objects) is displayed in figure 5-1 lb. The density of objects in this space can now be visu

alized. One can now see where the various maxima lie in this space. Thousands of 

objects (per “grid box”) have attribute values of a  from 0.1 to 1.0 and P from 0.1 to 10.

Object density plots of this type can also be made for different size regimes (figure 

5-12). Small objects account for nearly all of the objects in the 2002 data that have values 

of a  less than 0 .1, as well as a large number of the objects that have the tiny values of p (< 

0.05). In fact, nearly 90% of the small objects have values of P less than 0.5. Given these 

attributes, objects of this type must have a very strongly skewed histogram containing 

light values of rainfall. Similarly, medium-sized objects tend to have small values of P 

(nearly 80% of these objects have P < 0.5) over a wide range of a  (majority of objects 

have a  > 1.0). As discussed in section 2.8, the gamma distribution with a  > 1.0 peaks at x 

= P (a-l) instead of at x = 0. These types of objects (a  > 1, small P) must have a 

“humped” distribution with a very thin tail, indicating mostly light rainfall values. Large

sized objects tend to have larger values of P (over 75% of these objects have P > 0.5) and
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Figure 5-12: As in figure 5-IIb, except for all objects (a), small-sized objects (b). 
medium-sized objects (c), and large objects (d). (note range of values in (d) are 2 orders of 
magnitude smaller than in other panels).

small values of a  (over 90% of objects have a  < 1.0). One should expect objects of this 

size to have skewed histograms possibly with a thick tail, indicating the occurrence of 

heavier rainfall.

In order to determine which attributes to plot next, the correlation between attributes 

from the 2(X)2 data will be examined. Focusing on the five attributes that are used in the
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Table 5-3: Correlation matrix for 2002 data using [P, oAj 0.2, aA) 0.4, aA) 0.6, aA) 0.8]
attributes.

P 0.2 a/b 0.4 0 /& 0 .6  aAf 0.8 aA>
3 1.00 0.20 0.22 0.18 0.13

0.2 a/b 0.20 1.00 0.54 0.27 0.14
0.4 a/b 0.22 0.54 1.00 0.58 0.26
0.6  a/b 0.18 0.27 0.58 1.00 0.45
0.8  a/b 0.13 0.14 0.26 0.45 1.00

automated classification system, the correlation matrix was computed and is shown in 

table 5-3. As shown here, the various oAj attributes are somewhat correlated. The joint 

distribution of objects in a correlated space will not be very illuminating. One should 

expect objects in such a scatter plot to lie more or less along a line. In addition, a/b for the 

0.4 contour is correlated with the other a/b attributes at a higher level than the other con

tour values. Therefore, it seems reasonable to assume that the information contained in all 

of the a/b attributes will be represented somewhat by the a/b 0.4 value alone. Table 5-3 

shows that P is not highly correlated with any of the a/b attributes. Therefore, P and the 

0.4 a/b attributes will be used to visualize the 2002 data next.

Figure 5-13 shows the density of objects distributed in this P, 0.4 a/b space. The 

density plot for objects of any size (figure 5-13a) shows that a great number o f objects 

(over 75%) have a/b values equal to 1.0. For objects with a/b greater than 1.0, values of a/ 

b in the 1-3 range occur much more often than larger values (> 5). Values of P for these 

objects are quite uniformly distributed between values of 0.01 and 10, although objects 

with a/b of 2 or less also appear to be more likely to have smaller (< 0.5) values o f p. The 

density plot for small objects (figure 5-13b) appears to be in error at first glance, since the 

objects mostly lie along several constant values of a/b. However, this is in fact correct. 

For example, the minimum value that b (and a) can have is 0.0, corresponding to a correl-
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Figure 5-13: Density (Iog(number of objects) per grid box onto a regularly spaced grid in 
log(P), \og{aAj 0.4 contour) space, consisting of 51x61 grid points) of 2002 rainfall 
objects. Plots of all objects (a), small-sized objects (b), medium-sized objects (c), and 
large objects (d). (note values for colorbar are in terms of log(number of objects and are 
different in each panel).

ogram with a correlation of 1.0 at the origin and values less than the contour level (0.4 in 

this case) for neighboring lags. Here, the 0.4 contour is assumed to pass through the ori

gin, therefore 6  = 0. Since ci/b is undefined for this situation, a value equal to 1.0 is 

assigned instead. The overwhelming majority (> 97%) of small objects have this charac-
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teristic, as shown by the first high density region on figure 5-13b. In fact, over 85% of 

small objects have aA) = 1 and P < 0.5. Beyond this, the values of a and b (lengths of 

semi-major and semi-minor axes) are computed in terms of discrete grid boxes on the cor

relogram. For example, if the 0.4 correlation contour extends by one grid point in the x-

direction and one grid point in the y-direction, then a = J l .  If ^ in this instance is = I,

then aA) = J l .  The second high density region up from the bottom of figure 5-13b repre

sents objects with this characteristic. Medium-sized objects (figure 5-13c) also show rela

tive maxima in population density at these discrete values of aA), with a considerable 

fraction (~ 40%) of objects of this size having aA) attribute values = I. The remaining 

medium-sized objects are distributed across a range of aA> from I to 10 and of P from 0.01 

to 10. Large objects (figure 5-13d) also show relatively high density at discrete values of 

aA), although not to the same degree as small and medium-sized objects. The majority of 

large objects are distributed across a range of aA) from 1 to 3 and of P from O.I to 10. It 

appears that objects in this size regime become more rare as with increasing values of aA>.

Now that a sample of the statistics related to the distribution of objects has been 

summarized, the next task involves selecting a random sample of these data to indepen

dently validate the automated classification system. This will be accomplished in the next 

section.

5.4.2Validation sample
Again, the purpose of the previous section was to examine various statistics of the

entire 2002  data prior to selecting a random sample of these data to validate the automated 

classification system. The task now becomes one of selecting a random sample of objects 

from the 2002 data. One could choose the sample from the entire data set, but since the
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data set is dominated by objects of small size, one would expect the sample to be popu

lated mostly by small-sized objects. As previously discussed, the attributes associated 

with these objects tend to be quite consistent, characterized by o/fc=l and very small val

ues of a  and p. A random sample of these consistent objects would be quite uninterest

ing. In addition, the statistics obtained from these objects are based upon a small number 

of pixels, therefore one would also expect that the statistical values to contain a relatively 

high level of uncertainty (for example, the standard error of the sample mean is propor

tional to 1 /J N ) .  Medium-sized objects also show consistent characteristics, although to 

a lesser extent than the small objects. These objects are dominated by small P values and 

a large fraction have a/Z> = 1 as well. The target data set that the automated classification 

system was built upon consisted entirely of large objects (smallest object had just under 

3250 pixels). Objects from the large-size class have attributes whose values vary across a 

wide range, including time of day, time of year, and location. Therefore, the validation 

sample will be taken entirely from the large size object regime.

A random sample of 100 objects was taken from the 31876 large objects. To con

firm that this sample is representative of the entire population, the distributions of various 

attributes associated with these objects will be compared to the summary statistics pro

vided in the previous section (figures 5-14 and 5-15). As shown in figures 5-14a and 5- 

14b, but for an anomalous spike in the early morning, the diurnal cycle of the validation 

sample is quite similar to the overall large object distribution, generally decreasing during 

the evening and overnight hours, then increasing to a peak in the late afternoon. The dis

tribution of objects from the random sample during the course of the year (figures 5-14c, 

d) is also representative of the entire population, with relatively high frequency in the
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Figure 5-14: Comparison of characteristics of validation sample (left column) and large 
objects in 2002 data set (right column). As in figure 5-7, top row (a. b) shows distribution 
of objects as a function of time of day. As in figure 5-8, second row (c. d) displays distri
bution of objects by month. As in figure 5-9, last row (e, f) shows distribution of object 
center of mass locations.
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warm season and low frequency in the cool season. The validation sample is also well dis

tributed across the U.S. (figures 5-l4e,f) with somewhat dense clusters of sample objects 

in South Rorida and the Pacific Northwest in the same vicinity of maximum density in the 

overall distribution. The distribution of the validation sample objects in attribute space 

(figures 5-15a-d) also appear to be well representative of the entire 2002 population of

(a) (b)

(c) (d)

Figure 5-15: Comparison of characteristics of validation sample (left column) and large 
objects in 2002 data set (right column). As in figure 5-12, top row (a, b) shows object dis
tribution density (log(number of objects)) in a, P plane. As in figure 5-13. second row (c, 
d) displays object distribution density (log(number of objects)) in P, 0.4 a/b plane.

large objects, with P values ranging from 0.1 to 10, a  values ranging from 0.1 to 1. and a/ 

b values ranging from 1 to 10. However, one object does appear to be an outlier, with a
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very small P value, large a , and aA> slightly greater than 1. These results show that this 

sample is representative of the population and exhibits an interesting range of attribute 

values. This sample of 100 objects will be classified subjectively and objectively by the 

automated classification system. Comparison of these results will be presented in the next 

section.

5.4.3 Classification validation
In order to independently validate the automated classification system, a random,

representative sample of 100 objects was pulled from the set of all large objects in the 

2002 data. The large-sized objects show the greatest variability in attributes and should 

therefore pose the toughest classification challenge. In the previous section, the distribu

tions of objects from the validation sample were compared with those from the entire set 

of large objects to confirm that this sample is representative of the population.

Each object from the sample was classified into five categories by the automated 

classification system (section 5.3). Class 1 is the stratiform class, classes 2 and 3 are cel

lular (class 2 is more of a cellular/hybrid class), and classes 4 and 5 are linear (class 5 is 

more of a linear/hybrid class). Figure 5-I6a shows the results of this classification. The 

most popular individual class was the stratiform class, where 39% of the objects were 

classified. However, combining classes 2 and 3 (cellular) shows that 46% of the objects 

were considered cellular by the automated system. Linear events were the most rare, com

bining classes 4 and 5 results in 15% of the objects in the validation sample. Comparing 

this with the automated classification results for all of the large objects in the 2002  data 

(figure 5-16b) further confirms that this sample is representative of the population (43% 

stratiform, 39% cellular, and 18% linear).
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Figure 5-16: Distribution of objects by the automated classification system. Left panel 
(a) shows results from the validation sample, right panel (b) shows results for all large 
objects from 2002. Class 1 is the stratiform class, 2 is the cellular/hybrid class, 3 is the 
cellular class, 4 is the linear class, and 5 is the linear/hybrid class.

Each object from the validation sample was subjectively classified into three classes, 

stratiform, linear, and cellular. These results were compared with the automated classifi

cation results, where classes 2 and 3 were combined into a cellular class and classes 4 and 

5 were combined into a linear class. Overall, 89% of the objects were correctly classified 

into the parent convective/non-convective classes (2-class case), and 85% of the objects 

were correctly classified in the 3-class case (stratiform, linear, cellular). To estimate the 

variability of these statistics, the validation results were resampled (“bootstrapping” Wilks 

1995) with replacement 10000 times. The mean of the 2-class classification was 89.07% 

with a standard deviation of 3.13%. In this case, percent correct values varied from a min

imum of 73% to a maximum of 99%. The mean of the 3-class classification was 85.06% 

with a standard deviation of 3.57%. Here, the percent correct values varied from a mini

mum of 68% to a maximum of 96%.

Figure 5-17a shows the distribution of objects color coded by their classification. 

The automated classification is indicated by the colored circle, the subjective classifica-
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tion is the colored cross in the middle of each circle. One can visualize the incorrectly 

classified cases by the mismatched colors. Figure 5-17b shows the geographical distribu

tion of cases in the validation sample. Different symbols are used to denote correctly and 

incorrectly classified cases. The incorrectly classified cases are scattered randomly across 

the contiguous U.S., indicating that the classification errors are independent of geographic 

location.

(a) (b)

J

I

Figure 5-17: Left panel (a), scatter plot of validation sample in p, a/b 0.4 space. Right 
panel (b), geographic distribution of correctly (circles) and incorrectly (crosses) classified 
cases. In left panel (a), objects are color coded by their classification, blue for stratiform, 
red for cellular, and green for linear. Colored circles indicate the automated classification, 
colored crosses in the center of each circle indicate the subjective classification. Loca
tions of the five cluster means used in the automated classification are indicated by their 
cluster numbers printed in black.

In figure 5-17a, most of the incorrectly classified cases were subjectively considered 

non-convective and classified as convective by the automated system. In fact, seven of 

the cases were classified as linear by the automated system and stratiform by the subjec

tive classification. For these cases, high values of a/b tended to place them into a linear 

class even though the value of P was small, indicating a lack of heavy rainfall. An exam

ple of an error of this type is provided by case #3 of the sample, an object located over 

northern Michigan at 05 UTC 16 May 2002 (Obj_Five, figure 5-18). On figure 5-17, this
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Figure 5-18: Object #3 from the validation sample. Left panel. Lh accumulated rainfall 
(mm) valid 05 UTC 16 May 2002. Right panel, result of object identification process. 
Object of interest is labelled as Obj_Five in right panel.

object is a green circle with blue cross located at (3 = 0.7 and a/b = 4.6. The rainfall asso

ciated with this object is generally light and widespread, likely leading to the subjective 

stratiform classification. At the same time, the rainfall is somewhat organized along a 

line, represented by the relatively high a/b values, such as the one for the 0.4 contour listed 

above. In terms of Euclidean distance to the five cluster means, this object was closest to 

the linear/hybrid cluster 5 due to the high values of a/b.

Further tuning of the automated classification to put greater weight on P or perhaps 

to first classify events into convective/non-convective classes based upon a , p and then 

further subdivide the convective cases into linear and cellular based on a/b may poten

tially improve the system. This sort of fine-tuning will be left for future work.

5.5 Summary

The overall goal of this work is to develop a completely automated rainfall pattern 

classification system. To accomplish this task, the discovery of a set of attributes that 

allow for automated characterization of rainfall patterns was required. This was accom

plished via a relatively small target data set. comparing the results of various classification
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experiments with a subjective classification. However, the target data set was a small 

sample of all possible rainfall objects that might occur in nature. The objects were located 

by hand, since at that point in the research an automated object identification system had 

not been developed. Since the automated classification was “trained” using the target data 

set, an independent validation of the system was required. In order to obtain a representa

tive, random sample of the rainfall object population, analysis of the characteristics of a 

large data set had to be performed. To accomplish this, a completely automated rainfall 

object classification system was developed. The entire year of 2002 was analyzed using 

the automated rainfall object identification and analysis system. Summary statistics of 

attributes from this year were examined, and a random sample of interesting objects was 

pulled from the 2002 data. The distribution of the random sample was compared with the 

summary statistics in order to confirm that this validation data set was representative of 

the population. Once this had been confirmed, the sample was classified both subjectively 

and objectively via the automated classification system. Comparison of these results 

showed that the classification system accurately placed 85% of the objects into correct 

classes, and 89% of objects into their correct parent convective/non-convective class. 

Therefore, an independent confirmation of the accuracy of this classification system has 

been provided.

As a final step, each object in the 2002 data set regardless of size was run through 

the automated classification system, returning the distribution of objects into the five 

classes shown in figure 5-19. For objects of any size (figure 5-19a), the dominant class is 

stratiform, with over 90% of the cases from 2002 belonging to that class. Since the small 

objects (figure 5-19b) are almost unanimously classified as stratiform and represent over
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Figure 5-19: Results of automated classification of 2002 rainfall objects (l=stratiform, 
2=cellular/hybrid, 3=ceIIular, 4=Iinear, 5=linear/hybrid). Top left panel (a) shows number 
of objects for all sizes, top right panel (b) shows relative frequency of small objects, lower 
left panel (c) shows relative frequency of medium-sized objects, and lower right panel (d) 
shows relative frequency of large objects.

65% of the entire data set, this result is not very surprising. As previously discussed, the 

small objects uniformly contain small values of P and a/b=\, making them closest to the 

stratiform cluster in Euclidean distance. Similarly, the dominant class for medium-sized 

objects is stratiform, again since a large fraction of these objects possess small values of P
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and a/b=\. As discussed in the previous section, the classification of the large objects 

proves to be the most varied. The most popular class for these objects is also stratiform, 

followed closely by the cellular classification.

A summary of this research, concluding comments, and description of future work 

will be provided in the next chapter.
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Chapter 6

Conclusions

6.1 Su m m a ry

The overall goal of this work was to develop a completely automated rainfall pattern 

classification system. To accomplish this task, the discovery of a set of attributes that 

allow for accurate characterization of rainfall patterns was required. This task was accom

plished via a relatively small target data set, comparing the results of various classification 

experiments with a subjective classification. The first step in this process involved a 

“baseline” automated classification using the raw values of rainfall at each point in space 

as attributes. The next experiments involved reducing the dimension of the data by ana

lyzing the “bulk” global distribution of rainfall values across each object, using the histo

gram of rainfall values representing each object. The gamma distribution was selected as 

a compact model of the observed histograms. The parameters of the gamma distribution 

were fit to each histogram using the generalized method of moments technique. The auto

mated classification algorithm using attributes produced by analysis of the observed histo

grams successfully separated the target data set into convective and non-convective 

classes. However, when the next level of classification hierarchy was considered, the clas

sification experiments based upon these histogram-related attributes were not able to sep

arate the linear and cellular events within the parent convective class. This did not come 

as a surprise since the attributes only contain information about the overall distribution of 

rainfall within the object. In order to provide information on aspects of the spatial conti

nuity and variability within rainfall objects, it was determined that additional attributes
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related to the shape and structure of the spatial patterns were needed.

Information regarding the degree of spatial organization of the rainfall systems was 

obtained via geostatistical measures. The correlogram or auto-correlation function was 

selected for analysis because it did not depend on the magnitude of the rainfall values. By 

fitting ellipses to various correlation levels in the correlogram, useful information on the 

degree of organization within each rainfall system was obtained. The automated classifi

cation algorithm using attributes produced by summary measures of the geostatistical 

properties of rainfall patterns successfully separated the target data set into linear, cellular, 

and stratiform classes. Therefore, it was concluded that a useful set of attributes for classi

fication had been obtained.

The target data set was a small sample of all possible rainfall objects that might 

occur in nature. The objects were located by hand, since an automated object identifica

tion system had not yet been developed. Since the automated classification was “trained” 

using the target data set, an independent validation of the system was required. In order to 

obtain a representative, random sample of the rainfall object population, analysis of the 

characteristics of a large data set were performed. A completely automated rainfall object 

classification system was developed to accomplished this task. Rainfall objects (or sys

tems) were simply defined as contiguous regions of measurable precipitation. The classi

fication system was based upon a nearest-neighbor approach, using the best results from 

the previous classification experiments using the target data set. A large data set covering 

the entire year of 2 002  was then analyzed using the automated rainfall object identifica

tion and analysis system. Summary statistics of attributes from this year were examined, 

and a random sample of interesting objects was pulled from the 2002 data. The distribu
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tion of the random sample was compared with the summary statistics in order to confirm 

that this validation data set was representative of the population. Once this had been con

firmed, the sample was classified both subjectively and objectively via the automated clas

sification system. Comparison of these results showed that the classification system 

accurately placed 85% of the objects into correct classes, and 89% of objects into their 

correct parent convective/non-convective class. Therefore, an independent confirmation 

of the accuracy of this classification system was provided. Finally, the complete set of 

rainfall systems for the year of 2002  was classified.

6.2 Conclusions

The goal of developing a general, completely automated procedure for classifying 

rainfall systems has been met. A desirable property of the technique is that any rainfall 

system can be classified regardless of size, location, time of day or year, degree of organi

zation, etc. The process of knowledge discovery in databases was followed to develop a 

relatively straightforward and unique classification system using statistically-based 

attributes. To ensure that the method performed well, results of this technique were vali

dated against a subjective classification based upon objective criteria. From an indepen

dent random sample of interesting cases, the automated classification system accurately 

placed events into stratiform, linear, and cellular classes 85% of the time. The classifica

tion will be applied to forecast fields from research NWP models in the near future as part 

of an object-oriented verification system. Other applications, such as climatological stud

ies, ensemble forecast diagnosis, and weather-related decision support systems, may also 

benefit from the use of this system.
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6.3 Future work

While the automated rainfall system classification procedure developed in this work 

produces satisfactory results, further refinement of the methods used may result in a vari

ety of improvements. Image segmentation routines, such as those proposed by Peak and 

Tag (1994) and Lakshmanan (2001) may prove to be beneficial in locating rainfall systems 

within the full analysis domain. These may be especially useful in subdividing synoptic- 

scale, contiguous areas of rainfall which are currently defined to be a single rainfall sys

tem. One might wish to separate a convective line associated with a strong surface cold 

front from one that is connected to warm frontal bands within the stratiform region of a 

cyclone. These methods utilize texture-related attributes; the inclusion of these sorts of 

attributes in the classification system while keeping the current object identification sys

tem might also lead to more accurate classification. The inclusion of other sources of rain- 

fall-related data, such as lightning, reflectivity, VILS, satellite radiances, etc., may also 

help to improve the classification.

Further refinements in the classification hierarchy are also desirable. For example, 

the degree to which the attributes used in this work will dissect the linear class into more 

refined classes (such as symmetric/asymmetric as in Houze et al. (1990) or leading strati

form, parallel stratiform, and trailing stratiform as in Parker and Johnson (2000)) should 

be determined. If the attributes currently in use do not have the power to further discrimi

nate among sub-classes, then additional attributes that do have this ability should be dis

covered.

There are many potential applications for the automated rainfall system classifica

tion procedure developed in this work. Forecast verification and predictability studies
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may also benefit from such a classification system. As mentioned in chapter 1, this was 

the primary motivation for this work. For example, Anthes (1983) argued for expanding 

verification information to include the validation of the “realism” of a forecast. One spe

cific method that Anthes (1983) suggested was to verify the characteristics of significant 

meteorological phenomena. Along these lines, several “object-oriented” or “feature-spe

cific” approaches to verification have been attempted or proposed (Somerville 1977; Will

iamson 1981; Neilley 1993; Smith and Mullen 1993; Weygandt and Seaman 1994; 

Baldwin et al. 2001). In order to accomplish the task of verifying significant meteorolog

ical phenomena, an automated system for identifying, characterizing, and classifying such 

phenomena is required. Rainfall systems are certainly an excellent candidate for this type 

of verification technique. For example, information on errors of displacement, amplitude, 

orientation, mode, from numerical guidance related to specific classes of MCSs, for exam

ple, would be quite useful for operational forecasters, such as those at the Storm Prediction 

Center (Greg Dial 2003, personal communication).

Climatological studies, similar to those undertaken by Bluestein and Jain (1985), 

Houze et al. (1990), Geerts (1998), and Parker and Johnson (2000) would benefit greatly 

from the use of an automated rainfall system classification procedure. A much larger and 

more comprehensive database of events could be obtained. Since a multi-year archive of 

Stage rv  analyses is available, interannual variability of rainfall events could be studied. 

Through the use of operational gridded analyses of environmental conditions (such as 

those produced by the Rapid Update Cycle at NCEP, Benjamin et al. 1994), the relation

ship between system types and the thermodynamic and environment flow conditions asso

ciated with them could be studied further (Perica and Foufoula-Georgiou 1996). Severe
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weather reports could also be associated with the various classes of co-located rainfall sys

tems, possibly leading to improved forecasts of hazardous weather.

An automated rainfall system classification may also address interesting issues 

related to the predictability of smaller-scale rainfall features. Past research involving the 

use of band-pass, Fourier, or wavelet analysis techniques have applied the filtering proper

ties of these methods to select certain spatial scales within the fields for subsequent verifi

cation (e.g. Stamus et al. 1992; Briggs and Levine 1997). As a result, smaller-scale 

features were discarded as “noise” and only the larger-scale “signal” was verified. Conse

quently, various measures of forecast skill showed that the smoothed fields verified better 

than those that contained smaller-scale features, which are considered “unpredictable”. 

Unfortunately, what may be categorized as “noise” might actually be interesting, realistic, 

and potentially valuable smaller-scale detail. Removing this “noise” might be akin to 

throwing out the baby with the bath water, so to speak. This idea of filtering “unpredict

able” scales has been touted as a primary benefit of ensemble forecasting. For example, 

Hamill and Colucci (1997) claimed that the mean of an ensemble of reduced-resolution 

model forecasts provided better forecasts than a single higher-resolution model. Similarly, 

Germann and Zawadzki (2002) show that if rainfall forecasts are filtered, the predictabil

ity limit for such forecasts is extended.

Perhaps the traditional definition of “predictability” should be modified. Typically, 

phenomena are considered “predictable” as long as errors associated with their prediction 

are smaller than the length or time scales associated with the lifetime of the phenomena. 

Predictability is often measured by the correlation between predicted and observed vari

ables (e.g., Zawadzki et al. 1994; Germann and Zawadzki 2002). The point during the

184



forecast when the correlation drops below some threshold (typically 1/ e )  is considered 

the predictability time scale. At this point, phase and displacement errors (in time and/or 

space) are thought to be as large as the scales of the phenomena. When considering larger- 

scale phenomena, such as planetary waves, this definition is sensible. However, when 

considering smaller-scale events, such as tornadoes for example, this definition may not 

be appropriate. By this definition, a tomadic feature will only be considered predictable if 

it can be forecasted accurately with timing errors less than the lifetime of a tornado (typi

cally on the order of lOmin) and less than the length scale of a tornado (typically on the 

order of 100m). This is certainly not a very useful definition of predictability for tornado 

forecasting, as most emergency managers, weather forecasters, etc. would consider fore

casts of these systems to be extremely valuable even with timing and distance errors much 

larger than the lifetime and length scales of a typical tornado. A more appropriate defini

tion for predictability may be obtained through the use of a classification methodology. 

For rare events in particular, if the occurrence/non-occurrence of certain classes of events 

are predicted within a certain degree of accuracy, even with considerable errors in timing 

and displacement, those events should be considered predictable. An automated system 

for locating and classifying such events could be used to confirm that the occurrence of 

such events is accurately predicted, with information provided on typical errors in dis

placement, amplitude, orientation, etc.

In addition, recent research into ensemble forecasting techniques using cloud-resolv

ing models (Elmore et al. 2002) has demonstrated the benefits of such a technique. The 

automated rainfall system classification system will help in analyzing a large set of high- 

resolution forecasts, providing meaningful information on the range of possible rainfall
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systems that are predicted by the ensemble members.

Finally, an automated rainfall classification system might useful as part of a weather- 

related decision support system (e.g.. Peak and Tag 1994, Brody et al. 1997). These 

expert systems assimilate large volumes of data and return some form of interpretation of 

the data, thereby speeding up the data analysis process so the human decision maker can 

concentrate on the important task is at hand.
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