UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SEARCHING IMAGES BY COLOR IN

MULTIMEDIA DATABASE SYSTEMS

A Dissertation
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

By
LEONARD BROWN

Norman, Oklahoma
2003

UMI Number: 3085710

®

UMI

UMI Microform 3085710
Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

© Copyright by LEONARD BROWN 2003
All Rights Reserved

SEARCHING IMAGES BY COLOR IN
MULTIMEDIA DATABASE SYSTEMS

A Dissertation APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

/j*ctng‘»‘qu;@o»(

Le G nvéald, Comtnittee Chair
Y ———

Sddarshan K. Dhall

= U VA

S. Lak;?xvarahzu; ,‘

Samuel Lee

K. D o~

K. Thulasirahan

ACKNOWLEDGMENTS

I would not have been able to complete this work without the help and support of
many people, and I would like to take this opportunity to thank them. First, I want to
thank my advisor, Dr. Gruenwald. She is the person who is the most responsible for the
successful completion of this work due to here infinite patience and guidance. I would
also like to thank my committee of Drs. Dhall, Lee, Thulasirahan, and Lakshmivarahan
as well as Dr. Speegle from Baylor University for their valuable time and their thoughtful
recommendations.

I also want to thank the members of the computer science community here at OU.
I thank the past and present members of the OUDB research group for their support and
friendship. I will always cherish the friends that I have made here at QU over the years
including Brian, Carlos, David, Diana, Gary, Hongping, Javed, Jianting, Jim, Khushru,
Lau, Leslie, Shankar, Sirirut, Sylvain, and Zahid.

I would also like to thank Wayne Steen and the Minority Engineering Program for
supporting me throughout my undergraduate and graduate work. I would also like to
thank Nicolas Pontier and Jeff Watkins for their contributions to the prototype.

Finally, I would also like to thank my family and friends who are more important
to me than any degree. They supported me in my decision to return to school and always
encouraged me not to give up my goals. I would not have completed this work without
the support of my sister Kara, my brother-in-law James, my mother Rose, my aunts and
uncles and their families, and my friends Michael and Ron. In addition, I want to thank

my three-year-old niece Rachel for serving as the inspiration to complete my degree.

v

TABLE OF CONTENTS

CHAPTER 2. SURVEY OF RELATED RESEARCH

2.1.

2.2.

2.3.

Content-Based Image Retrieval Systems

2.1.1. Identifying Features

2.1.2. Feature Extraction Techniques
2.1.2.1. Color Models

2.1.3. Feature Representation
2.1.4. Defining Image Similarity
2.1.5. Access Methods
Virtual Image Editing Operations
2.2.1. Define(xy, vi, X2, V2)
2.2.2. Mutate M1, My, My3, Mz, M3z, Ma3, M31, Maz, Ms3)
2.2.3. Modify (Redmin, Redmax, Rednew, Greenmin, Greenp,y, Greenyew,
Bluemin, Bluemax, Bluegew)
2.2.4. Combine (C11, C12, C13, C21, sz, C23, C31, C32, C33)
2.2.5. Merge (Target Image, Xp, yp)
Virtual Image Retrieval

CHAPTER 3. TECHNIQUES FOR PROCESSING COLOR-BASED RANGE

3.2.
3.3.
3.4.

3.5.

3.4.1. Combine (Ci1, Ci2, Cis, Ca1, Caz, Casz, Cai, Caa, Ca3)
3.4.2. MOdlfy (Rmina RmaXa Rnew, Gmin, Gmax, Gnew: Bmin: Bmax, Bnew)
3.4.3. Mutate (M11, M12, M13, M21, Mzz, M23, M31, M32, M33)
3.4.4. Merge (Target Image, xp, yp)
Range Query Processing Example

CHAPTER 4. TECHNIQUES FOR PROCESSING NEAREST NEIGHBOR

QUERIES

4.1.
4.2.

4.3.
4.4.

Algorithm Steps

Algorithm for Processing Nearest Neighbor Queries
Algorithm for Determining the Distances from Q to the Virtual Images
4.2.1.

Nearest Neighbor Query Processing Example

CHAPTER 5. DATA STRUCTURE FOR SPEEDING UP RETRIEVAL
PROCESSING

5.1. Properties of Rules for Editing Operations
5.1.1.

5.3. Range Query Processing Algorithm
5.3.1.

Bound Widening Rules

Range Query Processing Algorithm Steps

5.1.2. Techniques for Speeding up Retrieval Query Processing

CHAPTER 6. HISTOGRAM-BASED APPROACHES FOR SEARCHING BY

CHAPTER 7. PERFORMANCE EVALUATION OF ALGORITHMS
7.1. Error Probabilities

7.2.

7.2.2.

7.2.3.

Virtual Storage with Instantiation while Inserting (VSII)

Approach

7.2.3.2. Average Insertion Time for VSII Algorithms

Vi

7.2.3.1. Permanent Storage Space for VSII Algorithms

64
64
66
69
71
76

79
80
80
87
89

93
95

98
98
100

104
104
105
108
110
112
112
112
113
114

116
116
117
118
120

123
123
123

7.2.3.3. Average Retrieval Query Processing Time for VSII

7.3. Comparison of Approaches e,
7.3.1. Comparison of Permanent Storage Space
7.3.2. Comparison of Average Insertion Time________....
7.3.3. Comparison of Average Times for Processing Range Queries

7.3.4. Comparison of Average Times for Processing Nearest Neighbor

7.3.5. Summary of Comparisons .
7.4. Analysis of Proposed Data Structure .
7.4.1. Permanent Storage Space for Proposed Data Structure
7.4.2. Average Insertion Time for Proposed Data Structure
7.4.3. Average Range Query Processing Time for Proposed Data
Structure

CHAPTER 8. A PROTOTYPE VIRTUAL IMAGE RETRIEVAL SYSTEM
8.1, Ml ati O
8. 1.1, Prototype StTUCIUTE e
8.1.2. Queries and Images
8.1.3. User Interface

8.3.1. Permanent Storage Space
8.3.2. Retrieval Time

8.3.3. Imsertion TIme e
8.3.4. Retrieval ACCUIACY
8.3.4.1. Accuracy of Rule-Based Nearest Neighbor Query
Processing Algorithms .
8.3.4.2. Accuracy of Rule-Based Range Query Processing

Algorithms

Vii

140

144
144
145
147
148
152
155
155
158
169
172

173

175
179

CHAPTER 9. CONCLUSION 183

9.1. Summary and Conclusions,____ .., 183
9.1.1. Algorithms for Processing Range Queries________._.._._._. 183

9.1.2. Algorithms for Processing Nearest Neighbor Queries____ 185

9.1.3. Data Structure for Speeding up Query Processing______. 185

9.1.4. Performance Evaluation e 186

9.2. Directions for Future Research . 187
REFERENCES 189

viii

LIST OF TABLES

Table 2-1. Partitioning Methods of CBIR Systems that Use Color Histograms
Table 3-1. Operations Used to Perform Steps of Transformation Algorithm

Table 3-2. Rules for How Editing Operations Affect Bounds on Histogram Bins___

Table 3-3. Histograms for the Binary Images in the Example Database
Table 3-4. Descriptions of Virtual Images in the Example Database
Table 4-1. Histograms of the Binary Images in the Example Database
Table 4-2. States of NEAREST array as Nearest Neighbor Algorithm Proceeds
Table 5-1. Histograms of the Binary Images in the Example Database

Table 7-1. Parameters Used in Performance Evaluation

Table 7-2. Comparison of Total Space Used by Each Approach
Table 7-3. Comparison of Average Insertion Times for Each Approach
Table 7-4. Comparison of Average Times for Processing Range Queries

Table 7-5. Comparison of Average Times for Processing Nearest Neighbor

Table 7-6. Additional Variables Used in Evaluation of Data Structure

Table 8-1. Default Values of Parameters Used in Performance

Table 8-2. Default Values of Data Structure Parameters Used in Performance

Evaluation

Table 8-3. Dynamic Parameters Used in Performance Evaluation

17
33

58
58
72
72
94
111
130
132
134

136
138
153

154
154
182
182
182

Figure 1-1.
Figure 1-2a. Storage of Similar Flags with and without Virtual Images
Figure 1-2b. Storage of Similar Photos with and without Virtual Images
Figure 2-1. Example Histograms Extracted from a Set of Images

Figure 2-2.

Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 3-1.
Figure 3-2.
Figure 3-3.

Figure 3-4.
Figure 3-5.

Figure 3-6.
Figure 3-7.

Figure 3-8.
Figure 3-9.
Figure 3-10. Coordinates in an Image Resulting from Merge(Target, xp, yp)

LIST OF FIGURES

Description of a Virtual Image

Quantization Function for Mapping Color Model Values to

Sample Histograms Extracted from Similar Images

Algorithm for transforming image A

into image B

Algorithm for Testing if a Set of Image Editing Operations is

Minimal

Proposed Algorithm for Processing Range Queries in a Virtual

Image Retrieval System

Algorithm for Determining Bounds on Bin HB in a Virtual Image

Results after Application of a Mutate Operation that Translates

Figure 3-11. Other Possible Coordinates in an Image Resulting from

Figure 4-1.
Figure 4-2.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.

Merge(Target, Xy, ¥p)

Proposed Algorithm for Processing Nearest Neighbor Queries
VIRTUAL_ NN Algorithm for Query Processing of Virtual Images
Insertion Algorithm for Proposed Data Structure
Example Data Structure as Images are Inserted into Database
Range Query Processing Algorithm Using Proposed Data Structure
VSIS Algorithm for Processing Range Queries
VSIS Algorithm for Processing Nearest Neighbor Queries
VSII Algorithm for Processing Range Queries
VSII Algorithm for Processing Nearest Neighbor Queries

Types of Image Retrieval Errors

Uniform Probability Distribution Function for Actual
Uniform Probability Distribution Function when Actual € Bounds
Uniform Probability Distribution Function when Actual ¢ Bounds

BSH Algorithm for Inserting Images

— R W

3

16
22
23
23
25

26
27
29
31

34
37

38
40

50
53
35
55

56
66
68
90
92
94
99
100
102
103
105
106
107
110
113

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure §8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.

User Interface for Browsing ImagesofaDataSet_
User Interface for Submitting Nearest Neighbor Queries

Figure 8-9a. Space Savings vs. Percentage of Images Stored Virtually

(Helmet Data Set)

Figure 8-9b. Space Savings vs. Percentage of Images Stored Virtually

(Flag Data Set)

Figure 8-9¢c. Space Savings vs. Percentage of Images Stored Virtually

(Random Data Set)

Figure 8-10a. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Helmets)

Figure 8-10b. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Flags)

Figure 8-10c. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Random)

Figure 8-11a. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Helmets)

Figure 8-11b. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Flags)

Figure 8-11c. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Random)

Figure 8-12a. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Helmets)

Figure 8-12b. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Flags)

Figure 8-12c. Searching Time for Nearest Neighbor Query vs. Percentage of

Images Stored Virtually (Random)

Figure 8-13a. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Helmets)

Figure 8-13b. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Flags)

Figure 8-13c. Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Random)

Figure 8-14a. Searching Time for Range Query vs. Percentage of Images Stored

Xi

114
115
118
118
121
124
127
146
149
149
150
150
151
151
151

156

156

157

159

159

160

Figure 8-14b.
Figure 8-14c.
Figure 8-15a.
Figure 8-15b.
Figure 8-15c¢.

Figure 8-16a.
Figure 8-16b.
Figure 8-16¢.
Figure 8-17a.
Figure 8-17b.
Figure 8-17c.

Virtually (Helmets)

Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Flags)

Searching Time for Range Query vs. Percentage of Images Stored

Virtually (Random)

Insertion Time vs. Percentage of Images Stored Virtually

(Helmets)
Insertion Time vs. Percentage of Images Stored Virtual

ly

Insertion Time vs. Percentage of Images Stored Virtually

(Random)

Precision and Recall vs. Width of Query Range (Flags)

Precision and Recall vs. Width of Query Range (Random)

Xii

Retrieval Accuracy vs. Number of Retrieved Images (Helmets)
Retrieval Accuracy vs. Number of Retrieved Images (Flags)
Retrieval Accuracy vs. Number of Retrieved Images (Random)
Precision and Recall vs. Width of Query Range (Helmets)

168

168

169

170

170

171
174
174
175
176
176
177

ABSTRACT

Previous research has demonstrated that instead of storing images in a Multimedia
DataBase Management System (MMDBMS) using a conventional binary format, space
can be saved by storing some of the images virtually, meaning that they are stored as
sequences of editing operations. Since the existing techniques for searching images by
color typically assume that the images are stored in conventional binary formats, new
techniques and strategies for processing the queries are needed when the images are
stored virtually. The goal of this dissertation is to develop techniques for performing
color-based searches of virtual images and determine their strengths and weaknesses.

This dissertation presents several tasks that have been completed in order to
achieve the above goal. First, this dissertation presents algorithms for processing color-
based queries based on the colors contained within an image. They process queries of the
type “Identify all images that are between PCT,;, and PCT, percent of color Cp”,
where PCT,., and PCT,,, represent percentages and Cyp represents a color in the RGB
(Red, Green, Blue) model.

Next, this dissertation proposes algorithms for measuring the similarity between
two images when one of them is stored virtually, where the similarity is based on the
colors contained within an image. This allows an MMDBMS to process color-based
searching queries of the type “Identify the k images that most resemble Q based on
color”, where k represents the desired number of images, and Q represents a query object

by providing a method to measure how similar each virtual image is to the query object.

Xiii

Third, this dissertation proposes a data structure for organizing virtual images
identifiers stored in the MMDBMS in order to reduce the amount of time it takes to
process the above algorithm. By using the data structure, the system will be able to
identify some of the virtual images that can satisfy a given query without analyzing their
sequences of editing operations. The reduction in the query processing time occurs from
the reduction in the number of virtual images that have to be analyzed.

Finally, this dissertation constructs a prototype system to compare the above
algorithms to the conventional approach for processing color-based search queries that
use images stored as binary objects. The performance evaluation is based on permanent
storage space used, color-based search query processing time, insertion query processing
time, as well as accuracy. The comparison results show that unlike the alternative
approaches, the proposed algorithms are able to perform efficiently in both searching and

insertion time while still saving storage space through the use of virtual images.

Xiv

CHAPTER 1

INTRODUCTION

1.1. Motivation

One of the most valuable assets today is information. Businesses and other
organizations can gain competitive advantages from simply having the ability to store and
retrieve large quantities of information quickly and efficiently. Consequently, there has
been a tremendous amount of research devoted to the development of DataBase
Management Systems (DBMSs) that perform these functions [Kort, 1991]. In recent
years, however, organizations have had an increasing need to track images and other
types of multimedia data.

Unfortunately, conventional DBMSs are not appropriate for storing and retrieving
images ([Blan 1997], [Gros, 1997]). The reason is that images have different
characteristics than the traditional alphanumeric data stored in conventional systems. The
work in this dissertation focuses on the differences that arise in the area of storing images

and retrieving them, which will be addressed in the following sections.

1.1.1. Storing Images

One characteristic that makes storing images more difficult than storing
traditional alphanumeric data is that images require more space. For example, a single
image object often requires several hundred kilobytes, while a very high resolution image
can use several megabytes [Klas, 1997]. Even with the falling cost of memory,

attempting to store thousands of these data objects can quickly exhaust a database’s

storage space.

The necessity of a method that reduces the space used by storing such images
becomes evident by discussing some example applications. First, consider an application
that stores images obtained from orbiting telescopes or space stations. When the raw
images are received, they may be processed to create new versions that enhance certain
points of interest. For example, in order to provide a more detailed view of a storm
displayed in one of the images, a new image may be created by cropping the storm, and
then enlarging it. The user, however, will want to save both the original image and the
enlarged picture of the storm. Another application is one that allows an interior designer
to decorate a room by editing a picture of it. The designer may change the color of the
walls or carpet, add or remove furniture, and experiment with different lighting effects.

The above applications are examples where several similar images may be stored
in the database, which means that these images would contain a lot of redundant data. As
in traditional databases, such redundant data should be eliminated. One method for
avoiding the storage problem described earlier is to eliminate the redundancy in these
types of applications by changing how the data objects are stored ([Grue, 1996], [Spee,
1995], [Spee, 1998]). The idea is that instead of storing two similar images in their
binary, space-intensive formats, only one, called the base image, is stored in that manner.
The other, called a derived image, is stored as a reference to the first (base) image along
with a set of editing operations used to transform it into the second one, as displayed in
Figure 1-1. The derived image is therefore represented as a transformation of the base
image. Displaying an image stored in this format can be accomplished by accessing the

base image and sequentially performing the associated editing operations on it, which is a

process called instantiation [Grue, 1996]. An image stored in this format is called a

virtual image.

<Base Image>

<Operation 1> <Parameters>
<Operation 2> <Parameters>

<Operation n> <Parameters>

Figure 1-1. Description of a Virtual Image

As examples of this concept, consider Figures 1-2a and 1-2b. Both figures
illustrate the effect of storing a pair of similar images in a system that uses virtual images.
In Figure 1-2a, the base image is an image of the French flag, and the derived image
depicts the Italian flag that was created by changing the blue pixels in the French flag to
green. In a system that uses virtual images, the French flag would be stored normally,
while the Italian Flag would be stored virtually, which includes a reference to the French
Flag and the sequence of operations “select entire image” and “change blue pixels to
green” that can be later used to instantiate the close-up. Alternatively, Figure 1-2b
illustrates the difference in storing the storm photos described in the example application
presented earlier. Again, in a system that uses virtual images, the base image would be
stored normally, while the enlarged photo would be stored as a reference to the base
image and the sequence of operations “select center”, “crop selected region”, and

“enlarge selected region”.

French Flag French Flag

[Flag, 2003] [Flag, 2003]
French Flag
Select Entire Image
Change Blue Pixels to Green

ftalian Flag Italian Flag

[Flag, 2003}

Conventional Storage Use of Virtual Images

Figure 1-2a. Storage of Similar Flags with and without Virtual images

Storm Photo Storm Photo

[NASA, 2003] ;—'> [NASA, 2003]
P ' Storm_Photo
Select Center
Crop Selected Region
I ‘ | Enlarge Selected Region
Enlarged Storm Enlarged Storm
INASA, 2003}
Conventional Storage Use of Virtual Images

Figure 1-2b. Storage of Similar Photos with and without Virtual Images

In addition to using less space, using virtual images offers other advantages.

Unlike many compression methods such as JPEG [Wall, 1991], storing and instantiating

a virtual image is a lossless process. The derived object, then, can be retrieved endlessly
without any degradation. Another advantage of virtual images is that they are not
dependent upon any particular compression or storage format, nor are they dependent

upon any particular computing platform. Thus, virtual images are portable.

1.1.2. Searching Images

Although virtual images address the storage requirements of MMDBMSs, other
issues arise when considering image retrieval. One such requirement is that an
MMDBMS should facilitate searching images based on their content, but it is
insufficient, however, to represent that content using only textual descriptions such as
filenames or keywords. To illustrate, consider a query requesting all images in the
database that contain a picture of a dark blue sports car. A conventional DBMS would
require that the keywords “dark”, “blue”, “sports”, and “car” be attached to any image in
order to return it as a result of this query. Not only does this require that humans inspect
each image and attach keywords, but also it prohibits humans from using other phrases
such as “navy automobile” or to make common judgment errors such as “black corvette”.

Instead of using keywords that are manually associated with an image, an image
ideally should be retrieved using automatically extracted features or attributes that
represent its content. Features that are commonly extracted from images include color,
texture, and shape. Systems that retrieve images using automatically extracted features
are called Content-Based Image Retrieval (CBIR) systems [Eaki, 1998]. Examples of

these systems include BIC [Steh, 2002], DISIMA ([Oria, 2001], [Oria, 2000]), MARS

[Orte, 1998], QBIC ([Falo, 1994, Flic, 1995, Hafn, 1995]), ARTISAN ([Eaki, 1998],

[Eaki, 1996]), FIBSSR [Mehr, 1995], and ImageRoadMap [Park, 1997].

CBIR systems typically use the following approach to retrieve images. As each
image is entered into the database, the values of the features that can be used for querying
are automatically identified. Each image, then, is represented by the set of values of the
features extracted from it, called a feature vector. The result is that to search the set of
images in the database in response to a query, the CBIR system can search all of the
extracted feature vectors. To illustrate, consider a CBIR system that allows searching
based on the colors in images. In such a system, a histogram can be created for each
image where each bin contains the number of pixels of a particular color in that image.
When normalized, each bin represents the percentage of pixels of a particular color in the
image. So, as long as each image 1s represented by such a histogram, the users can query
the database requesting the images that have a specified percentage of pixels containing a
certain color. An example of such a query is “Retrieve all images that are 25% blue.”
Similar histogram methods are used by numerous CBIR systems including ([Steh, 2000],
[Djer, 1997], [Gray, 1995], [Hafn, 1995], [Orte, 1998], [Park, 1999], [Scla, 1997}).

Some queries that are commonly presented to a CBIR system request the images
in the database that are most similar to an input query image. Queries of this type are
called nearest neighbor queries ((Bozk, 1999], [Falo, 1996]). To process them, a feature
vector is generated from the input query image, and is then compared to the feature
vectors representing the stored images in the database. The similarity between the query
image and an image in the database is determined by measuring the similarity between
their two representative feature vectors. So, in response to a nearest neighbor query, the

CBIR system returns the images corresponding to the feature vectors that are the most

similar to the feature vector of the input query image.

Once the images and feature vectors are in the database, locating the nearest
neighbors of a goal or query object has the worst case requirement of computing the
distance between it and every other object in the database [Fagi, 1998].
Multidimensional indexes, such as the R-tree [Gutt, 1984] and its variants ([Brow,
1998a], [Gaed, 1998]) have been used to reduce the number of distance computations.

Because color is used so frequently in CBIR systems, this dissertation focuses on
searching images using color. It should be noted, however, that there are other properties
that are also used frequently. Many systems allow users to query images using feature
vectors based on texture ([Djer, 1997], [Kell, 1995], [Smit, 1995]) and shape ([Boue,
1999], [Djer, 1997], [Eaki, 1998], [Park, 1997]). As with color, these feature vectors are
extracted from the images in the database and are subsequently used to process nearest

neighbor queries.

1.1.3. Problem Statement

The preceding sections indicate that two requirements of an MMDBMS are to
store images efficiently and facilitate searching images based on their content,
specifically color. A problem arises when using virtual images when considering
searching because the existing techniques for searching images by color are based on
images stored in a binary format. The goal of this research is to develop algorithms for
performing color-based searching of virtual images. Specifically, this dissertation will
propose algorithms for processing color-based range queries and performing similarity

searches of virtual images using color histograms to represent image content.

This research in this dissertation is most suitable for applications in which users
frequently create new images that are similar to each other, and all of the images in the
database are searched by color only. An example of this type of application is an online
retail-clothing database, which permits users to search for images of clothes that match
colors contained in their real-world apparel. An example query in this application would
be to “Search for pants that match the colors contained in this tie”. This application
would benefit from storing photos of similar clothing designs virtually. The similarity
exists due to the fact that designers usually create multiple versions of the same designs.

Considering only color for searching images, the applicability of this research is
limited since most of the real-world applications require retrieving of images based on
other properties such as texture and shape in addition to color. However, since there is no
existing work that addresses content-based search for images that are stored virtually, this

research serves as a starting point for this area.

1.2. Organization of the Dissertation

Chapter 2 discusses the current research in performing CBIR in conventional
multimedia database management systems.

Chapters 3-5 present the proposed techniques for performing color-based
searching. Chapter 3 presents an algorithm for identifying the colors within a virtual
image, Chapter 4 presents the algorithm for processing nearest neighbor queries, and
Chapter 5 proposes a data structure that can be used for speeding up the query processing.

Chapter 6 proposes two additional approaches for searching images using color.

Both approaches convert the virtual images into a binary format so that they can be

searched using conventional techniques.

Chapter 7 presents an analysis of each proposed algorithm and compares it to the
conventional approach for processing retrieval queries that use conventional approaches.
The comparisons are based on expected permanent storage space, average insertion time,
average searching time, and retrieval accuracy. In addition, Chapter 8 presents a
prototype system used to verify the results from the performance evaluations. Finally,

Chapter 9 concludes the dissertation and provides areas for future work.

CHAPTER 2

SURVEY OF RELATED RESEARCH

This dissertation focuses on performing image retrieval in a Multimedia DataBase
Management System (MMDBMYS) that uses virtual images. Consequently, it is related to
two main areas of research. The first area concerns the existing techniques used to
perform Content-Based Image Retrieval (CBIR) using color histograms. The second area
contains the research that is related to the usage of editing operations in images. Both

areas are reviewed in this chapter.

2.1. Content-Based Image Retrieval Systems

There are numerous CBIR systems that exist in the literature, but the retrieval
techniques used by those systems are different than the query processing algorithms
proposed in this research. The reason is that the proposed algorithms use the editing
operations contained inside virtual images to improve retrieval efficiency. Still, there are
some aspects of this research that are shared by those systems that retrieve only images

stored in a conventional binary format. These aspects are reviewed in this section.

2.1.1. Identifying Features

The first aspect addressed in CBIR systems is identifying the features used to
determine the content of an image. Three features that are used frequently are color
([Steh, 2002], [Anna, 2000], [Djer, 1997], [Hafn, 1995], [Orte, 1998], [Lin, 2001], [Scla,

1997]), texture ([Anna, 2000], [Djer, 1997], [Kell, 1995}, [Mehr, 1995]), and shape

10

([Boue, 1999], [Djer, 1997], [Eaki, 1998], [Oria, 2000], [Park, 1997]) because they can
be extracted from most images ([Asla, 1999], Park, 1997]).

The features that should be extracted from images depend on the expected user
queries of the applications. For example, in the application called ARTISAN (Automatic
Retrieval of Trademark Images by Shape ANalysis) [Eaki, 1998], users are expected to
pose queries that search for images of trademarks in the database that are similar to an
arbitrary input shape. Consequently, the features that the underlying MMDBMS must
extract are based on the shapes contained in its data objects. In addition, since the
trademarks stored in the database are typically black and white, the users are not expected
to pose queries that look for trademarks containing certain colors. Thus, it is not
important for ARTISAN’s underlying MMDBMS to extract features based on color out
of its trademarks. Similar issues arise in CBIR systems that retrieve features that are
more specific to a particular set of images. For example, in applications used to compare
pictures of people’s faces ([Bach, 1993], [Wu, 1994]), users will want to retrieve faces
from the database based on features such as eye color or nose length. Consequently,
these features are used to determine the content of each image instead of color, shape,
and texture.

This research developed query processing algorithms that use color for
representing the content in an image. As a result, the proposed algorithms are for
applications whose underlying databases contain images that are expected to be retrieved

using color.

11

2.1.2. Feature Extraction Techniques

The next aspect of performing CBIR consists of the techniques used to extract the
features from images. When retrieving images using shape-based features, CBIR
systems typically extract and identify the boundary of each shape using some
representation such as a Freeman or chain code [Gonz, 1993]. These codes use a numeric
value to represent each direction encountered as it traces the boundary of a shape.
Alternatively, to retrieve images using texture-based features, a CBIR system may
compute one or more co-occurrence matrices for each image [Gonz, 1993], which count
the number of times pixels with different intensities are positioned near each other.

The focus of this dissertation is on color-based features. For such features, one
common method of searching images is to create a histogram for each image where each
bin contains the number of pixels of a particular color in its corresponding image. For
example, if a system stored only black and white images, it would need histograms with
two bins, one representing black and the other representing white. Given an image with
10 total pixels, 7 of which were black, its corresponding histogram would have a value of
7 in the bin representing the black color and a value of 3 in the bin representing the white
color.

Often images in a system are of different sizes, where the size of an image is its
total number of pixels. In order to compare images, systems usually normalize their
histograms, meaning that the total number of pixels in each bin is divided by the total
number of pixels in the entire image. Each bin, then, represents the percentage of pixels
in the image that contain its corresponding representative color. So, for the example

black and white image used earlier, a normalized histogram would have a value of .7 in

12

the bin representing the black color and .3 in the other bin. Thus, a histogram can be
computed counting the number of pixels that occur for each color defined by a system,
then normalizing these values by dividing each of them by the total number of pixels in
the image ([Swai, 1991], [Smit, 1995}).

‘When each image is represented by a histogram, the users can query the database
requesting the images that have a specified percentage of pixels containing a certain
color, such as “Retrieve all images that are at least 25% blue”. Similar histogram
methods are used by numerous CBIR systems including ([Djer, 1997, [Gray, 1995],
[Hafn, 1995], [Orte, 1998], [Park, 1999], [Scla, 1997]). An example of using the
histogram method to retrieve images is displayed in Figure 2-1. In the figure, there are
several images of flags stored along with example histograms extracted from them. In
response to the query “Retrieve all images that are at least 25% blue”, the system can
directly access the percentage of pixels in each flag that is blue. As a result, the system

would return the first and third flags.

Black Blue Yellow Red White

00 033 00 033 033
00 00 00 025 075

{
{
|
]
]
i
o
|

h 00 030 00 033 034

033 0.0 033 033 0.0

Figure 2-1. Example Histograms Extracted from a Set of Images [Flag, 2003]

13

Note from the above example that the number of bins in a histogram is directly
related to the number of different colors recognized by the system. How the colors are
identified varies from system to system. The different categories of variations [Smit,
1995] of identifying the colors used in histogram bins are reviewed in the remainder of

this section.

2.1.2.1. Color Models

The first type of variation concerns the model used to represent the colors in an
image. There are several models that express each color as a set of three or four values.
Each of these expressed colors should correspond to one histogram bin. One of the most
common models is the RGB (Red, Green, Blue) model, which represents each color as a
combination of red, green, and blue wavelengths of light [Gree, 1995]. For example,
combining red light and green light produces the color yellow, combining all
wavelengths together produces the color white, and the absence of all wavelengths
produces the color black. Typically, each wavelength can have a value between 0 and
255 [Gree, 1995], so the RGB color model can express a total of (2%)® different colors.

Another common model is the CMYK model, which is an acronym for Cyan,
Magenta, Yellow, and blacK [Gree, 1995]. Each color in this model is expressed as a
combination of these four colors. The results of these combinations mimic the results
that occur when combining ink [Gree, 1995]. Thus, the color black is obtained by adding
high values of each of the four colors of the model, while white is represented as zero

values for each of them.

14

Other color models were designed to separate the values that specify the tint of a
color from the values that specify how light or dark it is [Gonz, 1993]. One example of
such a model is the Hue, Saturation, Value (HSV) model ([Park, 1999], [Orte, 1998]).
The first value, Hue, is represented as a value from 0 to 359, which indicates the tint of
the color. For example, the color red is represented as a value of 0, and the color blue is
represented as 240. The Saturation axis represents the amount of gray in the color. The
last component, Value, represents how light or dark the color is. Another such model is
the Luv color model developed by the Commission Internationale de 1’Eclairage (CIE)
[Park, 1999]. The first value, L, represents how light or dark the color is. The remaining

two values, u and v, are combined to represent the tint of the color.

2.1.2.2. Quantization

The second variation to identifying the colors used in the CBIR system is the
method used to quantize the color space represented by the selected model. As stated
earlier, the RGB model expresses a total of (2% different colors. The result is that a
histogram that tracks the number of pixels that contain each of these expressed colors will
have 16M bins. To reduce the number of bins in the histogram, several colors can be
grouped together. For example, the colors with the RGB values of (0, 0, 0) and (0, 0, 1)
can be grouped together in the same bin since humans cannot perceive the difference
between them. An important issue, then, is how to quantize the color space in order to
group similar colors together since many distinct values in the various color models are

perceptually similar.

15

e, || [e, ||
M, M, M,
d d, d,

Figure 2-2. Quantization Function for Mapping Color Model Values to Histogram Bins

A common method of quantizing the color space is to evenly divide each axis
using some system-defined number of partitions, called uniform quantization [Park,
1999]. A formula for quantizing values of a 3-axis color model such as RGB or HSV is
displayed in Figure 2-2. The method used in the formula is to divide each axis in the
model into equal-sized partitions, and then assign a group number for an intensity value
based on the set of partitions that contain it. In the formula, each d; represents the
number of partitions used for the i™ axis, so the number of partitions in the first axis is dj,
the number of partitions for the second axis is d,, and the number of partitions in the third
axis is d;. Note that the total number of different combinations of partitions are D =
d;xdyxds. Since each combination of partitions maps to a single histogram bin, there will
be D number of bins in the resulting histogram.

Let CM; represent the number of different values that can be used for the i™ axis
of the color model of the system. For example, in the HSV model, the first axis, H, can
have a value from 0 to 359. So, it can have 360 different colors. Each of the last two
axes, S and V, can have values from 0 to 100, which means they can each have 101
different colors. So, if the system uses the HSV model, CM; equals 360, CM; equals
101, and CM3; equals 101.

Given the above variables, the formula displayed in Figure 2-2 maps an intensity

value in a 3-axis model to a single bin number. Let the intensity value be (I;, I, I3) where

16

each I; represents the value for the i™ axis in the model. To illustrate the use of the
formula, let the system use the HSV color model where, as indicated before, (CM;, CM,,
CM;) = (360, 101, 101). Now, assume the system wants to divide the color space of the
color model into 15 divisions along the H axis, 9 divisions along the S axis, and 9
divisions along the V axis as in [Park, 1999]. This means that (d;, d, d3) = (15, 9, 9).
With these values, applying an HSV color (I, I, I3) = (240, 0, 50) to the formula yields a

value of floor(240/360/15)x81 + floor(0/101/9)x9 + floor(50/101/9) = 819.

System, Reference Color Space | Color Space Partitioning |
BIC ([Steh, 2002], [Steh, 2000]) | _ RGB R-4 G_4 B-4
MARS
([Orte, 1998], [Orte, 1997]) HSV H-8 5-4 V-0
VisualSEEK,
([Smit, 1996], [Smit, 1996]) HSV H-18 §-3 V-3
[Pass, 1996] RGB R-4 G-4 B-4
[Gray, 1995] CIE-Luv L-8 u-8 v-8
OBIC, RGB,HVC | R—16 G-16 B-16

([Hafn, 1995], [Flic, 1995])
[Gong, 1994] HVC H-8 Vv-8 C-8
Table 2-1. Partitioning Methods of CBIR Systems that Use Color Histograms

Table 2-1 provides a list of partitioning methods utilized by systems that use color
histograms to retrieve images. The first column contains the names of the image retrieval
systems and their associated references. The second column describes the reported color
space used to retrieve images. The third column describes the reported number of times
each axis in the color space was divided during testing or implementation. An entry R -
4, G — 8, B — 6 means that the Red axis in the RGB model was divided into 4 sections, the
Green axis was divided into 8 sections, and the Blue axis was divided into 6 sections,

which would create a histogram with (4 x 8 x 6) = 192 bins.

17

2.1.3. Feature Representation

Once the desired features have been extracted from each image, the next aspect to
address is how to represent the features in the CBIR system. Many systems compute a
set of descriptors, which are properties of the features extracted from each image.
Determining the similarity of features, then, can be performed by comparing their
corresponding sets of descriptors. To illustrate, consider the QBIC (Query By Image
Content) system developed by IBM ([Falo, 1994], [Flic, 1995], [Hafn, 1995]). After the
system identifies the shape of an object in an image, QBIC computes an 18-dimensional
set of descriptors of the shape that includes such properties as the number of pixels
contained in the entire shape called the area, and the number of pixels contained in the
shape’s boundary called the perimeter. Alternatively, for texture, QBIC computes a 3-
dimensional set of descriptors, which represent the coarseness, contrast, and
directionality of the texture within an image [Falo, 1994]. Other descriptors computed
from a co-occurrence matrix representing the texture of an image include the maximum
value in the matrix, called the maximum probability, and the sums of the squares of the
matrix values, called the uniformity [Gonz, 1993].

For color, some systems compute and store a representative set of values based on
the color histograms extracted from an image. For example, [Gong, 1994] only stores the
20 histogram bins with the most pixels. In VisualSEEK ([Smit, 1995], [Smit, 1996]),
instead of storing a histogram, the system stores the set of colors that appear most
frequently in a given image, which is referred to as a Color Set. The system in [Pass,
1996] uses Color Coherence Vectors (CCVs), which are histograms where each bin

contains two values instead of one. The first value represents the number of pixels in the

18

bin that are a part of an object in the image, and the second value represents the number

of pixels that are not.

2.1.4. Defining Image Similarity

The next aspect of performing CBIR is to define some criteria for satisfying a
similarity search, which means that there must be some method of defining how similar
one image is to another one. In systems that represent features using a vector of values,
such as a color histogram, each image’s vector represents a single point in some
multidimensional space ([Cheu, 1998], [Falo, 1996], [Gros, 1997]). A common approach
for those systems is to use a metric axiom based function [Sant, 1999] that computes the
distances between two such multidimensional points as a basis to measure similarity. For

two normalized n-dimensional vectors, X = (Xj, ..., Xa) and y = (yi, ..., Yn), typical

n 14
examples of metric functions include the L,, Distances, 1"{ >(x,—y,) [Jaga, 1997], and
i=1

the Histogram Intersection, Zmin(x,., v;) [Swai, 1991]. Another category of similarity

i=1
measurements called set-theoretic functions computes the similarity as a function of the
numbers of features that are identical in both images, different in both images, and

contained in one image but not in the other [Sant, 1999].

2.1.5. Access Methods
Another important, but often overlooked, aspect of performing content-based
image retrieval is the access method used to speed-up query processing. When

performing CBIR using color histograms, it should be possible to retrieve the images

19

based on any of the bins in the histogram. Traditional indexes for relational DBMSs like
the B-tree and its variants [Come, 1979] are insufficient because they use a single value
to represent a data record. Consequently, multiple indices would have to be created and
maintained by the system in order to search images using different histogram bins. It is
also not desirable to create a single key to represent each histogram by concatenating the
values in its bins. The reason is that it would be difficult to search for images based on
the bins listed last in the concatenated keys [Kuma, 1994].

Due to the above problems in using a B-tree for multidimensional data, much of
the existing research for indexing CBIR systems surrounds developing multidimensional
access methods. One of the more popular categories of such data structures contains
variations of the R-tree [Gutt, 1984] where each node corresponds to a section of a
multidimensional data space. The idea is that multidimensional vectors that are similar to
each other should be near one another in the data space. These indices divide the data
space into several regions and provide algorithms to let the query processing module
quickly identify the regions that contain vectors that satisfy a given retrieval query. The
technique used to identify the regions is to correlate them to nodes in a tree where a node
and its descendants correspond to a region and its subregions.

Many variations of the R-tree are listed in ([Brow, 1998a], [Falo, 1996], [Gaed,
1998]). These variants can be categorized based on how they partition the data space.
One category divides the entire multidimensional space into a grid. Examples include the
K-D-B-tree [Robi, 1981], hB-tree [Lome, 1990], G-tree [Kuma, 1994], BV-tree [Free,
1995], and MB'-tree, [Dao, 1996]. These trees differ from each other by the methods

they use to divide the data space along each of its dimensions. Another category clusters

20

the data together using Minimum Bounding Regions [MBRs], which includes the R"-tree
[Sell, 1987], R*-tree [Beck, 1990], P-tree [Jaga, 1990], TV-tree [Lin, 1994], X-tree
[Berc, 1996], SS-tree [Whit, 1996], and SR-tree [Kata, 1997]. This category of trees
differ from the previous one in that by computing the MBR of the vectors stored in each
node, its trees only partition the portion of the multidimensional space where data
elements exist. This allows them to eliminate large portions of unused space quickly.
Their common disadvantage is that MBRs must be computed and maintained for each of
their internal nodes. The third category of multidimensional indexes differs from the first
two in that its trees cluster the vectors based only on how similar they are to each other.
This category includes the VP-tree [Yian, 1992], GNAT (Brin, 1995], M-tree [Ciac,
1997], and MVP-tree ([Bozk, 1999], [Bozk, 1997]).

A database management system that uses virtual images will contain images
stored conventionally as well. Thus, the system must contain techniques for retrieving
conventional images as well as virtual images, which means that it must address each of

the above aspects.

2.2. Virtual Image Editing Operations

This dissertation proposes a method of using the semantic information contained
within the editing operations of virtual images to enhance CBIR. One task necessary to
implement this research is to define the set of editing operations that may be used in the
virtual images. This research adopts the set of editing operations that have been
suggested to handle virtual images in database management systems ([Grue, 1996],

[Spee, 1995], [Spee, 1998]). The set of operations are based on an algebra [Ritt, 1996]

21

for images similar in function to the relational algebra for conventional data. The set
consists of five editing operations called Define, Modify, Combine, Mutate, and Merge.
The description and implementation of these operations as according to [Hu, 1999]

follow in the subsequent paragraphs.

2.2.1. Define (x4, y1, X2, ¥2)

The Define operation does not change an image by itself, however it is used to
identify regions in an image that will then be edited by subsequent operations. For
example, to edit a particular region of an image, the Define operation first identifies the
region, and then the following operations perform the actual changes. In this research,
the implementation of the Define operation restricts it so that only rectangular regions

may be identified.

Defined Rectangle Specified by Parameters

[
uaLnndinn

Figure 2-3. Rectangle Corresponding to Define(32, 96, 224, 288) [Flag, 2003]

The parameters of the Define operation identify the upper left (x;, v1) and lower

right (x2, y2) coordinates of the rectangular region, which is called the Defined Rectangie

22

(DR). For example, Define {60, 100, 200, 250) specifies a rectangle ranging from the
coordinates (60, 100) to (200, 250). An example of the rectangle created by the Define

operation is displayed in Figure 2-3 where the dotted rectangle indicates the DR.

2.2.2. Mutate (M3, Miz, M3, My, My, My3, M3, M3;, M33)

The Mutate operation changes the positions of the pixels within an image. The 2-
D coordinates (x, y) of each pixel are mapped into a 3-D vector (x, y, 1)'. This vector is
then multiplied by a 3x3 mutation matrix, which is specified in the parameter of the
Mutate operation. This produces a new set of coordinates (x’, y°, 1)' for the pixel, which

translate to the image position {x’, y°).

M, M, M,] [20 00 00
M, M, M,|=/00 1.0 0.0
M, M, M,| |00 00 10

Figure 2-4. Matrix Corresponding to Mutate (2,0, 0,0, 1,0, 0,0, 1)

Base Image Derived Image

Figure 2-5. Effects after Applying Mutate(2, 0, 0, 0, 1, 0, 0, 0, 1) [Flag, 2003]

23

The Mutate operation can be used to perform combinations of rotations, scaling,
and translation operations [Gonz, 1993]. To provide a specific example of the
implementation of the Mutate operation, Mutate (2.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)
multiplies the (x, y, 1)' vector of the coordinates of each pixel in the current DR by the
matrix displayed in Figure 2-4. This matrix scales the DR by a factor of 2 in the x-
direction. Figure 2-5 illustrates the results of applying this operation on a DR enclosing

the star in the upper left corner of the base image.

2.2.3. Modify (Redmin, Redpax, Redpew, Greenyin, Greenpmay, Greengew, Bluepp,
Bluenax, Bluepew)

The Modify operation changes the colors of the pixels in a defined region as
illustrated in Figure 2-6 which changes all blue pixels in the DR to green. It changes only
those pixels in the defined region whose intensity values are within a specified range.
Consequently, the parameters of the Modify operation describe the range of intensity
values and the new color. Assuming that the intensity value of each pixel has a Red,
Green, and Blue component, the parameters specify a new color and a range of values for
each of the three components. So, there are 9 parameters to the Modify operation called
Runin, Rimaxs Roew> Gminy Gmax> Gnew> Bmin, Bmax, and Bhpew, where the operation changes the
color of only those pixels whose red intensity component is between R, and Ry, green
intensity component is between Gy, and Gmax, and blue intensity component is between
Bimin and Brax. The new color of the pixels after applying the operation will be (Ryew,
Grew> Bnew). As an example in the RGB color model, Modify ((0, 50, 200), (75, 125,

100), (200, 255, 25)) changes all pixels in the current Defined Rectangle that have a Red

24

axis component between 0 and 50, a Green axis component between 75 and 125, and a

Blue axis component between 200 and 255 to (200, 100, 25).

ll

Base Image Derived Image

Figure 2-6. Effects after Applying Modify(0, 0, 0, 0, 0, 255, 255, 255, 0) [Flag, 2003]

In order to allow the tinting of an image, the implementation of the Modify
operation allows one or more of the color axes to remain unchanged. For example, one
method of tinting an image red is to change the Red intensity component to 255 and
leaving the blue and green intensities unchanged. To specify that an intensity component
should not be changed, the parameters set the minimum value of the range greater than
the maximum value. As another example in the RGB color model, Modify ({0, 255,
255), {1, 0, 0), (1, 0, 0)) changes all pixels in the current DR that have a Red axis
component between 0 and 255, which will be all pixels. After applying this example, a

pixel with the color (Ry, Gy, By) will be changed to have the color (255, Gy, By).

2.2.4. Combine {Cy1, Crz2, C135 C21, Caz, Ca3, Cs1, C32, C33)
The Combine operation can be used to blur images as displayed in Figure 2-7.

Similarly, to the Modify operation, the Combine operation changes the intensity values of

25

the pixel in the DR. Unlike Modify, however, it computes the pixel’s new value to be the
weighted average of its intensity and the intensities of its 8-neighbors. The weights are
supplied as the parameters. Figure 2-8 shows an example of applying Combine (1, 2, 1,
2,4, 2 1, 2, 1) that computes the new intensity value of each pixel in the DR as the

average of its neighbors using the matrix of weights displayed in Figure 2-7.

Cc, C, C,1[1 21
C, C, Cnl=l2 4 2
C, C, Cul |1 21

Figure 2-7. Matrix of Weights Corresponding to Combine (1,2, 1,2, 4,2, 1,2, 1)

ORLAHOMA

Base Image Derived Image

Figure 2-8. Effects after Applying Combine(1, 2, 1, 2,4, 2, 1, 2, 1) [Flag, 2003}

2.2.5. Merge (Target Image, xp, yp)

Unlike the previous operations, Merge is a binary operation. It is used to combine
two images as illustrated in Figure 2-9. The contents of the current Defined Rectangle
are copied onto a target image starting at a given coordinate position (xp, yp). The

coordinate position and the name of the target image are the parameters of the Merge

26

operation. An example is Merge {(image2, 100, 120), which copies the current DR onto
image2 beginning at the point (100, 120). The crop operation can be implemented using
this operation by specifying an empty target image. This has the effect of copying the

current DR onto an empty image.

Figure 2-9. Effects after Applying Merge(image2, 100, 120) [Flag, 2003}

2.3. Virtual Image Retrieval

The work in [Aars, 1999] determines whether a virtual image satisfies a retrieval
query by identifying the features of the image at the time that it is inserted into the
database. Those features are then used to process the subsequent retrieval queries. In
addition, the technique attaches a score to each feature representing the amount of it that
it is contained in the image. This allows the technique to determine when features are
present in an image even after another image is pasted on top of it as a resuit of the
Merge operation. The score ranges from O to 100 where a higher score indicates that

more of the feature is contained in the image.

27

CHAPTER 3

TECHNIQUES FOR PROCESSING COLOR-BASED RANGE QUERIES

This chapter proposes an algorithm that can be used to process color-based range
queries in a MMDBMS that uses virtual images. The specific type of range query that
the algorithm addresses is “Retrieve all images that are between PCT,, and PCTpax
percent of color Cy”, where PCTin and PCTrgx represent percentages and Cq represents
a color in the RGB model. This type of query is useful for searching databases that
contain images of objects that users want to access by color. Examples of these databases
include clothing apparel, where users may pose the query “Retrieve all images of ties that
contain no red” or “Retrieve all images of accessories that are dark brown”, and
automobiles where users may pose the query “Retrieve all images of cars that are at least
50% white”.

As described in Chapter 2, one method of processing the query used in many
existing systems ([Djer, 1997, [Gray, 1995], [Hafn, 1995], [Orte, 1998], [Park, 1999],
[Scla, 1997]) is to extract the color histogram from each image and store it in the
underlying database management system. The extracted histograms are then searched in
response to a retrieval query, allowing the system to return the images that correspond to
the selected histograms. Note that this means the system should have the ability to
identify the image that corresponds to a given histogram, which can be accomplished by
storing an image id in each histogram.

This approach uses the above color histogram technique to handle images stored

conventionally, but proposes an alternative technique for retrieving virtual images. This

28

is because extracting histograms from virtual images can be inefficient for two reasons.
First, the existing feature extraction techniques typically operate on images stored in a
binary format, so the virtual images must be instantiated before their features can be
extracted. This can be inefficient since the instantiation process is slow. Second,
extracting and storing the features of virtual objects along with the features of their bases

may result in storing redundant data.

Image A Color Histogram

- Black Blue Red Yellow White
00 033 033 00 033

Image A Rotated 90° Color Histogram

’ - Black Bluie Red Yellow White
i 00 9033 033 00 033

i
i

Figure 3-1. Sample Histograms Extracted from Similar Images {Flag, 2003]

To illustrate the second reason, consider Figure 3-1, which contains two similar
images with the second image being created by rotating the first. Rotating an image only
changes the locations of its pixels, meaning that it does not change the intensity values of
the pixels. Consequently, both similar images should contain the same distribution of
colors, which implies that the color histograms extracted from both should be the same.

Since the histograms are the same, it would be redundant to store both of them. If the

29

second image were stored virtually, then the rotation operation that was used to create it
would be contained within its description. By being able to identify that an image is a
rotated version of another image, the underlying database management system can infer
during the processing of a retrieval query that the color histogram of the rotated image is
identical to the histogram of the first image. This would allow the system to save space
by storing only the color histogram of the first image.

The previous example illustrates the overall strategy used in this approach for
processing range queries in virtual image retrieval systems. To be able to save storage
space by using virtual images and at the same time avoid performance degradation due to
image instantiation, this approach proposes to search images based on color using the
semantic information in the description of virtual images instead of using the
conventional approach of feature extraction. Since this semantic information is
composed of a reference to a base image and a sequence of editing operations along with
their parameters, the proposed searching algorithm is dependent upon a specific set of
image editing operations. Because of this, it is important to identify desirable properties
of such a set, which is performed in the next section. The remainder of the chapter is
organized as follows: Section 3.2 describes the algorithm for processing range queries
which requires the query processor to identify the colors of a virtual image, which is
described in more detail in Section 3.3. Section 3.4 describes the rules used to develop

the algorithm in Section 3.3, and Section 3.5 provides an example of the entire algorithm.

30

3.1. Properties of a Set of Image Editing Operations

The work in this research uses the set of five operations called Define, Modify,
Mutate, Merge, and Combine ([Grue, 1996], [Spee, 1998], [Spee, 2000]) presented in
Chapter 2. The following subsections describe algorithms for identifying and testing for

desirable properties for such a set of image editing operations.

3.1.1. Ability to Transform Images

Since the sequence of editing operations used in a virtual image are for
transforming a base image into another one, the one property of a set of image editing
operations involves its ability to perform this transformation. Specifically, the set of
operations should be able to transform any given image into another [Brow, 1997]. The
proposed method to test for this property is based on reducing the definition of an image
to a set of pixels where a pixel is defined as an entity with a 2-dimensional (x, y) location
and an intensity value in the 3-dimensional RGB color model. Given this definition of an
image, it is possible to convert one image, A, to another, B, by applying the image

transformation algorithm displayed in Figure 3-2.

Step 1. Let |A| represent the number of pixels in image A

Step 2. Let |B| represent the number of pixels in image B

Step 3. if |A| > |B|

Step 4. remove |A| — |B| pixels from image A

Step 5. else

Step 6. add B| — |A] pixels to image A

Step 7. For each pixel in A

Step 8. Set location of pixel in A to match corresponding pixel in B

Step 9. Set intensity of pixel in A to match corresponding pixel in B
Figure 3-2. Algorithm for transforming image A into image B

31

The transformation algorithm of changing image A into image B is decomposed
in the above figure into steps that can be performed by common image editing operations,
and it consists of two major tasks. The first task is to alter the number of pixels in image
A so that it has the same number of pixels in image B, which is accomplished in steps 1
through 6. This allows each pixel in A to have a corresponding pixel in B. The second
task is to modify each pixel in A so that it has the same intensity value and location of its
corresponding pixel in B, which is accomplished in steps 7 through 9.

By demonstrating that a set of editing operations can be used to perform the
image transformation algorithm, the set is shown to have the ability to transform a given
image into any other image. There are three major steps that alter an image in the
algorithm, which are adding a pixel, removing a pixel, and modifying a pixel. The ability
to modify a pixel consists of two steps itself, changing its location and changing its
intensity value. So, one method of demonstrating that the set of editing operations can
perform any transformation from one image to another is to demonstrate that it can be
used to perform all 4 major steps, adding an image, removing an image, changing a
pixel’s location, and changing a pixel’s intensity.

Consider applying the above test to the set of editing operations Combine, Mutate,
Merge, and Modify. Pixels can be removed using the Merge operation by merging a DR
that consists of all of the pixels in the image except the ones to be removed onto an empty
image. Pixels can also be removed using the Mutate operation by moving the pixels in
the DR onto other pixels in the image. The same operations can be used to add pixels to
an image as well. The Merge operation accomplishes this by pasting an image onto

another image in a position that causes the second image to extend its borders.

32

Alternatively, the Mutate operation adds pixels by enlarging the DR. Changing the
Jocation of a pixel can be performed by the Mutate operation, which moves pixels from
one (X, y) location to another. In addition, changing the intensity value of a pixel can be
performed by either the Modify operation or the Combine operation as described in
Chapter 2.

The above information, summarized in Table 3-1, implies that the set Combine,
Mutate, Merge, and Modify can perform each of the four major tasks of the image
transformation algorithm, which means that they can be used to transform an image into
any other image. Note that the Define operation was not tested since it only specifies

pixels within an image and does not actually alter it.

Image Transformation Algorithm Steps | Corresponding Image Editing Operations
Add a pixel to an image Merge or Mutate

Remove a pixel from an image Merge or Mutate

Change location of a pixel Mutate

Change intensity of a pixel Modify or Combine

Table 3-1. Operations Used to Perform Steps of Image Transformation Algorithm

3.1.2. Minimizing the Set of Editing Operations

Since, as demonstrated in the last section, the set of editing operations, Combine,
Mutate, Merge, and Modify can be used to transform an image into any other image, the
algorithms proposed in this research retrieve virtual images composed of only those
operations. Another potentially desirable property of such a set is that all of the elements
in the set are needed for it to perform all possible image transformations. A set that has
this property is called minimal. Thus, for a set of image editing operations to be minimal,

no subset of it can be used to perform all possible image transformations. As with the

33

previous property, this research has developed a test to determine if a set of editing
operations is minimal [Brow, 1998]. Here, a set of editing operations is defined to be
minimal if the set can perform each of the steps in the image transformation algorithm

and no proper subset of the set has this property.

Step 1: Let S be a set {Oy, Oy, ..., On}, where each O is an image editing operation.

Step 2: Show S can perform every step in the transformation algorithm

Step 3: Fori=1toN

Step 4: LetS’=S - {Oy}.

Step 5: Show S’ cannot perform all steps in the image transformation algorithm
Figure 3-3. Algorithm for Testing if a Set of Editing Operations is Minimal

From the previous observation, a method of testing if a set of editing operations is
minimal is to first demonstrate that it can perform all of the steps in the image
transformation algorithm. The next task is to remove a single operation from the set and
test to see if the remaining set of operations can perform all of the steps of the algorithm.
If it can, then the original set is not minimal. This task must be repeated for each of the
editing operations in the image set. This algorithm is presented in Figure 3-3.

Consider testing whether the set of editing operations, Combine, Mutate, Merge,
and Modify is minimal. Since the set can perform each of the steps in the image
transformation algorithm, the remaining task is to remove each operation individually and
test the remaining set of operations against the transformation algorithm. When the
Combine operation is removed from the set, the subset of the three remaining editing
operations, Merge, Mutate, and Modify can perform each of the four tasks required by
the image transformation algorithm as illustrated in Table 3-1. Thus, the original set of

five editing operations is not minimal.

34

Alternatively, consider a set of operations consisting of only Mutate and Modify.
To apply the testing algorithm of Figure 3-3 to the set, it is necessary to first demonstrate
that the set can be used to perform all image transformations. From Table 3-1, the
Mutate operation can add a pixel, remove a pixel, and change a pixel’s location while the
Modify operation can change a pixel’s intensity value. So, Mutate and Modify can
perform all image transformations.

The next step of the testing algorithm is to determine if any subset of Mutate and
Modify can perform all image transformations. When Mutate is eliminated, only the
Modify operation remains. That operation cannot add a pixel to an image, so it cannot
perform all possible image transformations. When Modify is eliminated from the testing
set, only the Mutate operation remains. This operation cannot change the intensity value
of a pixel, which means that it also cannot perform all possible image transformations.
Thus, no subset of Mutate and Modify can perform all image transformations, which
means that the set is minimal.

When developing a query processing algorithm for virtual images, there are
potential advantages for using a minimal set of editing operations such as simplifying the
query processor and optimizer by reducing the number of possible operations. This
research developed a query processing algorithm for the original set of operations Define,
Combine, Mutate, Merge, and Modify, however. The reason is that the number of editing
operations within each virtual image may become too large if the set of recognized
operations is restricted.

To illustrate the above reason, consider blurring an image through the use of the

Combine operation. Each pixel in the DR is changed to a new value that is computed

35

using the intensities of its neighbors. Thus, several pixels with identical intensity values
may be changed to different intensity values in a single Combine operation.
Alternatively, the Modify operation can only change pixels with identical intensity values
to the same new value, so it would take several different Modify operations to duplicate

the blurring effect.

3.2. Algorithm for Processing Range Queries

The proposed algorithm is based on defining rules for determining how editing
operations affect the colors contained in a virtual image if it is instantiated. Specifically,
the algorithm determines how many pixels of the query color may be added to or
removed from the base image after applying each of the associated editing operations to
it. One of the benefits of this approach is that the proposed algorithm can be used to
identify colors in a virtual image that are not present in its base image.

As a real-world example, consider Figure 3-4 in which the flag of Italy is stored
as a transformation of the flag of France. The description of the Italian flag changes all
of the blue pixels in the French flag to green. The result is that the image stored virtually
will have green pixels in it, while its base image will only have red, white, and blue
pixels. The proposed algorithm can identify that there are green pixels in the virtual

image by examining the parameters of the Modify operation.

36

Base Image

Define (0 0 256 128)
Modify (0 255 00 255 255 0 255 0)

Virtual Image

Instantiated Virtual Image

Black Blue Green Red White | Black Blue Green Red White
00 033 00 033 033 00 00 033 033 033

Color Histogram of Base Image | Color Histogram of Virtual Image

Figure 3-4. Colors in a Virtual Image not Present in its Base Image [Flag, 2003]

Figure 3-5 displays the proposed algorithm for processing range queries, which
consists of three main tasks. The first task is to identify the desired histogram bin from
the given query. This is accomplished in the first three steps of the algorithm, which are
the same in both the proposed algorithm and the conventional approach since both need
to determine the desired histogram bin. The second task is to determine Bs, the set of
binary images that satisfy the query. This can be accomplished using existing query
processing techniques such as color histograms ([Hafn, 1995], [Orte, 1998], [Park,
1999]), which are suitable for handling images stored in a binary format. The third task
in the algorithm is to determine Vs, the set of virtual images that satisfy the query when
they are instantiated. This is accomplished by examining the description of each virtual
image and determining the effects that its sequence of editing operations may have on the
histogram of its base. Although it may be impossible to identify the exact value

contained in a histogram bin, the rules allow the image retrieval system to establish

37

maximum and minimum bounds. To summarize, the proposed algorithm of processing
range queries includes techniques to identify minimum and maximum bounds on the

values of the histograms bins for virtual images.

/* Initialize the parameters of the given query */

1. Initialize the Results set to <.

2. Analyze the given query in order to identify the desired query range [PCTmin,
PCTmax] and query color Cq.

3. Use the quantization function (Figure 2-2) on the query color to determine the
desired Histogram Bin HB.

/* Use histograms to identify the binary images that satisfy the given query */
4. For each histogram tuple extracted from a binary image,
4.1. If the value in bin HB is within the query range [PCTin, PCTmax],
4.1.1. Add the image ID in the histogram tuple to the Results set.

/* Use the proposed rules to identify the virtual images that satisfy the given query*/
5. For each virtual image in the database,
5.1. Execute the Bounds() function to obtain the minimum and maximum bounds
(BOUNDin, BOUND,) 0on the percentage of pixels that can be in bin HB.
5.2. If the range formed by the estimated bounds intersects the query range,
5.2.1. Add the ID of the virtual image to the Results set.

/* Retrieve the identified images to the user. Any virtual images must first be
instantiated. */
6. Display the images corresponding to the IDs contained in the Results set.

Figure 3-5. Proposed Algorithm for Processing Range Queries in a Virtual Image
Retrieval System
If the range formed by these minimum and maximum bounds intersects the range
[PCTmin, PCTmax] specified in the query, the proposed algorithm considers that the virtual
image satisfies the query. This strategy may lead to retrieving images that do not satisfy
the query since it is possible for the query range to intersect the minimum and maximum

bounds, but not to completely overlap it. Since the purpose is to retrieve all images that

38

satisfy the query to the user, this research adopts the policy that it is preferable to falsely
retrieve an image as opposed to incorrectly omitting one.

The key step in the proposed retrieval algorithm displayed in Figure 3-5 is Step
5.1. The BOUNDS procedure determines if a virtual image satisfies a given query using
a set of rules that indicate how an image editing operation affects the minimum and
maximum bounds on the percentage of pixels that may be of color Cq in an image. The
rules are defined for the set of editing operations Define, Combine, Modify, Mutate, and
Merge that were described in Chapter 2. The BOUNDS algorithm is presented in the

next section.

3.3. Algorithm for Determining Bounds on Bin HB in a Virtual Image

The algorithm for determining the bounds on bin HB in a virtual image V; is
displayed in Figure 3-6. The goal of the algorithm is to compute the maximum and
minimum bounds on the percentage of pixels that may be of color Cq. The range formed
by the maximum and minimum bounds can then be compared to the range requested by
the query, which will indicate if V; satisfies the query. For example, if the algorithm
determines that no more than 50% of the virtual image is in the bin corresponding to
white (RGB color [255, 255, 255]), the system knows that V; cannot satisfy the query

“Retrieve all images that are between 50% and 100% color [255, 255, 255]”.

39

BOUNDS

/* Use the base image of V; to initialize the [BOUND,,;,, BOUND,,,,] range, which is the
number of pixels that can be in bin HB, and imageSize, which is the total number of pixels in
Vi*/

Let B; represent the base image of V;

Let H; represent the histogram corresponding to base image B;

Initialize ImageSize as the number of pixels in base image B;

Initialize BOUND,x as ImageSize x the value in bin HB of histogram H;

Initialize BOUND,y;, to the same value as BOUND ¢

SNk W

/* Sequentially access each operation in the virtual image */
6. For each operation OP in V;

/* The Define Operation does not change an image, so it does not alter the [BOUND,y,;,
BOUND,,,,] range or imageSize. Instead, the algorithm must compute and track the
number of pixels in the DR.*/
6.1. If OP is Define(xy, yi1, X2, ¥2)
6.1.1. Let DR_Size = (|x; — Xa|) % (ly1 — ¥2|), which is the number of pixels in the
Defined Rectangle.
6.1.2. Execute the NEW LIMIT algorithm to compute limits on the number of
pixels that may change before the next Define operation.

/* Update the [BOUND,;, BOUND,,] range and imageSize variables for each
operation other than Define. */
6.2. Else

6.2.1. Compute BOUND;,, using the proposed rules for operation OP

6.2.2. Compute BOUND;, using the proposed rules for operation OP

6.2.3. Compute ImageSize using the proposed rules for operation OP

/* Check if operation OP can change more pixels than the limits computed
previously. */
6.2.4. If New Limit column for OP is "Yes"
6.2.4.1. Execute NEW LIMIT to compute new limits on the number of pixels
that may change before the next Define operation

/* Convert the boundary range on the number of pixels in bin HB to the percentage of pixels
in bin HB. */

7. BOUND;,,x = BOUND,,, / ImageSize

8. BOUND,;, = BOUND,,;, / ImageSize

NEW LIMIT

/* Some operations only affect the DR. Two such operations in succession will still only
affect the DR. The purpose of this method is to compute limits on the number of pixels that
may change after applying the above operations in succession. Note: The variables Temp
and Temp ., are used within the proposed rules.*/

1. Tempu, = MAX(BOUND,,;, — DR_Size, 0)

2. Tempmyx = MIN(BOUND,,, + DR_Size, ImageSize)

Figure 3-6. Algorithm for Determining Bounds on bin HB in a Virtual Image

40

The BOUNDS algorithm computes the bounds on the percentage of pixels in bin
HB by examining each operation in the description of the current virtual image. So, it
iteratively computes new values for the bounds for each operation in the description. The
algorithm performs this computation using rules that will be presented in the next section.
The remainder of this section describes the purpose of each step in the BOUNDS
algorithm in more detail.

Step 1 of the algorithm is to identify the base B; of the virtual image. To identify
B;, the system must read the description of V; and access the referenced base image that is
contained in the first line of the description. If this base image is itself a virtual image,
then the system must recursively read its description to obtain its base image. This
process is repeated until a binary base image is identified. The identification of the base
image leads directly to Step 2, which identifies the histogram of the base image.

Steps 3, 4, and 5 initialize the variables that will continually be updated by the
proposed rules during the execution of the BOUNDS algorithm. Specifically, Step 3 of
the algorithm computes imageSize to be the size of the base image B;, where the size of
an image is defined as the number of pixels it contains. The proposed algorithm, then,
requires that the sizes of the binary images are stored in the database. Steps 4 and $
initialize BOUND;, and BOUND s« to the number of pixels that are in bin HB in the
base image. This bound is computed by accessing the histogram corresponding to B; and
multiplying the value in the bin HB by imageSize. Although they are initialized to the
same value, BOUNDy,;, and BOUND,,x may spread apart as the algorithm proceeds.

With the bounds initialized, Step 6 of the algorithm contains a loop that accesses

the editing operations in the description of the virtual image in order. When a Define

41

operation is encountered, the system knows that the subsequent operations will act on the
rectangle specified in the parameters of the operation. The Modify and Combine
operations only affect pixels inside the Defined Rectangle (DR), which means that
successive applications of these operations can only change those pixels. Consequently,
the algorithm computes the number of pixels contained in the DR and uses it to compute
minimum and maximum limits on the numbers of pixels that may change until the next
Define operation in the virtual image description is encountered. Thus, the maximum
number of pixels that can change after successive Modify and Combine operations is
equal to DR_Size. Consequently, the algorithm computes the limit on the minimum
bound after the application of successive Modify and Combine operations as BOUND,;,
— DR _Size, and stores this value in the variable Tempm,. Similarly, the algorithm
computes the limit on the maximum bound as BOUND,,x + DR_Size and stores this
value in the variable Tempmax. These computations are performed in the NEW LIMIT
procedure.

With the exception of the Define operation, the editing operations in ([Grue,
1996], [Spee, 1998], [Spee, 2000]) make changes to the pixels in a virtual image. So,
when an operation other than Define is encountered in the BOUNDS algorithm, the
algorithm adjusts the maximum and minimum bounds on the number of pixels in bin HB
in Steps 6.2.1 and 6.2.2 as well as the variable imageSize in Step 6.2.3. The adjustments
are made based on the rules defined for each operation that will be presented in the next
section. In addition, the BOUNDS algorithm checks each operation in Step 6.2.4. to
determine if it can affect pixels outside the current DR. If so, it executes the procedure

NEW LIMIT to update the limit variables Tempmi, and Temp ax.

42

After the algorithm has accessed all of the editing operations in Vj, it has its final
minimum and maximum bounds on the number of pixels that are in bin HB. Steps 7 and
8 convert these values to percentages by dividing them by the total number of pixels in
the image, which is in imageSize. The BOUNDS algorithm returns these values back to
the algorithm in Figure 3-5, so that it can utilize these percentages to determine if the

resulting virtual image could satisfy the given range query.

3.4. Derivation of Bounds

As described in the previous section, the proposed algorithm continually adjusts
the image size and the maximum and minimum Bounds on the number of pixels that are
in bin HB based on the editing operations listed in the description of the virtual image.
These adjustments are listed in Table 3-2. The bounds for the editing operations are
dependent on their associated parameters, so the “Parameters Conditions” column in the
table describes the conditions that the parameters must meet to apply the corresponding
bounds. The “Update Limit” column of the table is used to indicate which operations can
affect the pixels outside of the Defined Rectangle and will therefore need to update the
limit variables Tempy,, and Tempmax. The following sections explain how each of the

bounds is derived.

43

Editi".g Parameters Conditions | Minimum Bound | Maximum Bound Image Size N.e“.’
Operation Limit
Combine Al BOUNDriin BOUNDmax ImageSize No

HB ¢ Quantize (R,
Gnewa Bnew)
. AND , .
Modify HB ¢ Quantize BOUNDmin BOUNDmax ImageSize No
(Rmin:Rmax, Gmin:Gmam
Bmin:Bmax)
HB EGQ““]‘;‘ZC)(R"CW’ MAX[Tempmn, o
MX}\IDMW where
. a=MAX(0, BOUNDmax ImageSize No
HB € Quantize
BOUND#min—
(Rmin:Rmaxa Gmin:Gmax, DR Size)
Bmin:Bmax) _
HB GGQ“"“;;‘ZG)(R"W’ MIN[Tempnas, o
"X’ND"“’ where
. BOUNDmin a=MIN(ImageSize, ImageSize No
HB e Quantize
. BOUNDmin+
(Rmin:Rmax, Gmin-Gmax; DR Size)
ijn:Bmax) _
HB e Quantize (Rey, MIN[Tempnas, o]
Gnew, Bnew) h
AND e .
. BOUND#min o=MiN(ImageSize, ImageSize No
HB ¢ Quantize
BOUNDmin+
(Rmin:Rma)u Gmin:Gmaxa DR Size)
Bmin:BmaX) ~
T ; BOUNDminx|M11x | BOUNDmaxx|M11x ImageSize
Mutate ImageSiz DR_Size Mz Mz «Mi1xMz] Yes
MAX[Tempmin, o] | MIN[Tempmax, o]
where where
Rigid Body o=MAX(0, o=MIN(ImageSize, | ImageSize No
BOUNDmin" BOUNDmax+
DR_Size) DR_Size)
Otherwise BOUNDnmin BOUNDmax ImageSize No
MAX[0, DR_Size
Merge Targetis NULL - (ImageSize - M'ND[BROgi':E?]"““’ DR.Size | Yes
BOUNDmin)] -
MAX|0, DR_Size | MIN(BOUNDmax, [MAX((xp+X2—
— (ImageSize — DR_Size) x1), height) —
; BOUNDmin)] + MIN(xp,0)+1] x
Target is Not NULL N MIN(TargetH, [MAX((ys#yz— Yes
MAX(0, TargetHB | MAX(0, TargetSize | yi), width) -
- DR_Size) - DR_Size)) MIN(yp,0)+1]

Table 3-2 — Rules For How Editing Operations Affect Bounds on Histogram Bins

44

3.4.1. Combine (Cy;, Cy2, Cy3, Ca1, C22, Ca23, C31, C32, C33)

The Combine operation changes the intensity values of only the pixels in the
Defined Rectangle using the weighted average of the intensity values of the pixels'
neighbors. Since the operation only affects the pixels in the DR, the BOUNDS algorithm
does not need to update the temporary limit variables Tempni, and Tempmax. The
parameters to the Combine operation are the weights used in computing the weighted
average. This definition of the Combine operation leads to the following observations:

1. The Combine operation does not add or remove pixels from an image.
2. If a pixel has the same intensity value as all of its neighbors, it will not be

changed as a result of the Combine operation.

To derive the rule governing how the Combine operation affects the size of an
image, meaning the number of pixels it contains, consider observation 1. Since no new
pixels are added or removed from an image, the number of pixels must stay the same.
Consequently, one rule for the effect of the Combine operation is that the image size
remains the same.

To dertive the maximum and minimum bounds on the value in bin HB, consider
observation 2. This observation implies that if there is a homogenous region inside an
image, only the pixels on the boundary of the region can change color. Because of this
operation, the algorithm assumes that the number of pixels in bin HB will remain the
same after the application of the Combine operation. Consequently, two more rules for
the effect of the Combine operation are that the minimum and maximum bounds on the

value in bin HB remain the same.

45

To summarize, let the number of pixels in an image be imageSize, the minimum
bound on the value in bin HB be BOUND,,,i,, and the maximum bound on the value in
bin HB be BOUND,x. The expressions for these values after applying a Combine
operation according to the proposed rules are:

¢ Size ofimage: imageSize
¢ Minimum Bound on HB: BOUNDmin
e Maximum Bound on HB: BOUNDmax

3.4.2. Modify (Rpmins Rmaxs Ruews Gmins Gmaxs Gnews Bmins Bmaxs Bnew)

Like the Combine operation, the Modify operation changes the intensity values of
some of the pixels in the Defined Rectangle. Also like the Combine operation, the
BOUNDS algorithm does not need to update the temporary limit variables Tempy,, and
Tempmax since the operation can only affect the pixels in the DR. The parameters of the
operation specify which pixels get changed and what their new intensity values will
become. This leads to the following observations:

3. The Modify operation does not add or remove pixels from an image.

4. The pixels that will change colors as a result of the operation are specified in the
parameters.

5. Since only the pixels that are in the Defined Rectangle can change, the maximum
number of pixels that can change as a result of this operation is equal to the size

of the Defined Rectangle. This value is stored in DR_Size.

Observation 3 is similar to Observation 1. So, one rule for the Modify Operation

1s very similar to a rule for the Combine operation. Specifically, since no new pixels are

46

added or removed as a result of the Modify operation, one of its rules specifies that the
image size remains the same.

To derive the rules for how the Modify operation affects the bounds on the
number of pixels within bin HB, it is necessary to consider Observations 4 and 5.
Observation 5 indicates that the bound on the number of pixels that can change color is
equal to DR_Size. This means that if there are x pixels in bin HB before the application
of the Modify operation, then there will be at most x + DR_Size pixels and no fewer than
x — DR_Size pixels in the bin after its application.

Observation 4 indicates that these bounds may be improved by examining the
parameters of the operation. In the operation Modify (Rmin, Rmax, Ruews Gmins Gmax> Guews
Binin, Bmax> Brew), the only pixels that change are ones with Red values in the range [Ruin,
Rmex], Green values in the range [Guin, Gmax], and Blue values in the range [Bmin, Bmax]-
These pixels are changed to the color (Ruew, Grews Brew). S0, the rules for determining the
effects of the Modify operation should examine the parameters to identify the colors of
the pixels in the DR that change and the new color that the pixels will become. Note that
since the query is based on the number of pixels in histogram bins that represent
quantized colors, the colors in the parameters of the Modify operation must be quantized.

Consider when no colors with a Red intensity value within [Ryin, Rmax], a Green
intensity value within [Gmin, Gmax], and a Blue intensity value within [Bumin, Bmax] quantize
to bin HB. This means that no pixels which map to bin HB will change in the image, so
the value in bin HB will not decrease. Based on this information, one rule is that if
Quantize(Ry, Gx, By) # HB for all {Ry, Gy, Bx | Rx€[Rmin,'Rmax]s Gx€[Gmin, Grmaxls

Bx €[Bmin, Bmax]}, then the minimum bound on HB stays the same.

47

Now consider when Quantize(Rpew, Gnew, Bnew) €quals HB. This means that the
pixels within the Defined Rectangle may be changed to a color that quantizes to bin HB.
Since there are DR_Size pixels in the Defined Rectangle, the maximum bound on HB
may increase by DR_Size. Note that this also implies that the minimum bound on HB
should stay the same.

Next, consider when Quantize(Rpew, Grew, Bnew) does not equal HB. This means
no pixels in the Defined Rectangle will be changed to a color that quantizes to bin HB.
So, the maximum bound on HB should stay the same. However, pixels whose colors do
quantize to bin HB may change their colors if their Red intensity values are in the range
[Rmin,:Rmax], Green intensity values are in the range [Gmin, Gmax], and Blue intensity
values are in the range [Bmin, Bmax]- . In such a case, the minimum bound on HB should
decrease by DR_Size.

To summarize, the rules for the Modify operation are dependent on its parameters.
As with the Combine operation, let the number of pixels in an image be imageSize, the
minimum bound on the value in bin HB be BOUNDy;,, and the maximum bound on the
value in bin HB be BOUND,x. The expressions for these values after applying a

Modify operation according to the proposed rules are:

If (QuantiZG(Rnew, Gnew, Bnew) == HB), then
» Size ofimage: imageSize
e Minimum Bound on HB: BOUNDxin
¢ Maximum Bound on HB: BOUNDma + DR_Size

If (Quantize(Rnew, Gnew, Bnew) #* HB) and
(Quantize(Rx, Gx, Bx) # HB for alf {Rx, Gy, Bx | RxE[Rmin,ZRmax], GXE[Gmin, Gmax], BXE[Bmin, Bmax]}), then
e Size ofimage: imageSize
e Minimum Bound on HB: BOUNDpin
e Maximum Bound on HB: BOUNDmax

48

If (Quantize(Rnew, Gnew, Bnew) # HB) and
3 {Rx, Gx, Bx | RxE[Rmin,:Rmax], GXE[Gmin, Gmax], BXG[Bmin, Bmdx] and (Quantize(Rx, Gx, Bx) == HB)}, then
e Size ofimage: imageSize
e Minimum Bound on HB: BOUNDmi» — DR_Size
e Maximum Bound on HB: BOUNDmax

3.4.3. Mutate (M;1, My3, M3, M3, M33, M3, M3;, M2, M33)
The Mutate operation changes the location of the pixels in the Defined Rectangle.
By moving a pixel from one area in an image to another area, the Mutate operation has
the ability to overwrite pixels in other areas of the image. In addition, it can move the
pixels to new locations outside the current image. This information leads to the
following observations:
6. Since the Mutate Operation can overwrite pixels in various areas of an image, it
can change pixels outside of the Defined Rectangle.
7. Since the Mutate Operaﬁon can move pixels to new locations, it has the capability
to enlarge or shrink an image. Thus, it can alter the number of pixels that are

contained within an image.

Because pixels outside the DR can change as indicated in Observation 6, it is
difficult defining rules for the Mutate operation. Observation 7 indicates that the effects
of the operation can vary based on its parameters. Thus, the algorithm assumes that the
effects of most Mutate operations are unknown and consequently, does not update the
bound variables.

The rules that are defined in the BOUNDS algorithm for the Mutate operation are
for specific conditions of its associated parameters. One such rule occurs when the

Defined Rectangle contains the entire image. Since all of the pixels are affected in this

49

situation, the distribution of colors in the image should remain constant, except for
extreme cases such as shrinking an image down to one pixel. A rule then is that when the
entire image is in the Defined Rectangle, the minimum bound for HB, maximum bound
for HB, and image size should be changed by the scaling factors of the mutation matrix
{Mi: and My;). In addition, the temporary limit variables Tempmn and Tempmax should
be updated since pixels outside the DR have been changed.

Another rule occurs when the mutation matrix is a rigid body transformation,
meaning that it consists of only translations and rotations. In this situation, the
transformation moves one section of an image to another area in the image. Although
possible, it is assumed the image size stays constant. The original location of the pixels
will be changed to some default color, currently RGB value (0, 0, 0), as displayed in

Figure 3-7.

Oklahoma Flag with Flag after Application of
Defined Rectangle Mutate (1’ O: 07 O’ 17 '807 03 0> 0’ 1

Figure 3-7. Results after Application of a Mutate Operation that Translates the DR

To develop a rule for the above situation, consider a pixel in the Defined
Rectangle. The pixel retains its intensity value when it is moved to another location in

the image. The pixel at the new location is lost, while a pixel with the color (0, 0, 0) is

50

added. So, the effect of the operation is that the histogram bin corresponding to (0, 0, 0)
may gain pixels while all the other histogram bins may lose pixels. The maximum
number of pixels that are replaced is equal to the number of pixels in the Defined
Rectangle. So, the rule for this situation is that both the minimum and maximum bounds
may be altered by the value in DR_Size, and the total number of pixels in the image will
not change. Also, since the maximum number of pixels that are replaced is equal to the
number of pixels in the DR, the temporary limit variables Temppmi, and Tempmax do not
have to be updated.

To summarize, the algorithm assumes that the effects of the Mutate operation are
unknown and therefore, does not update the bounds and image size. The rules that are
defined for the Mutate operation are dependent on its parameters like the Modify
operation. Given the same variable definitions as in the previous operations, the new

values of the bounds and image size are:
If (DR contains entire image), then
o Size ofimage: imageSize x (Mi1 x Mz2)

o Minimum Bound on HB: BOUNDwin x (M11 x M22)
e Maximum Bound on HB: BOUNDmax x (M11 x M)

If the transformation is a rigid body transformation, then
e Size ofimage: imageSize
e Minimum Bound on HB: BOUNDmin ~ DR_Size
e Maximum Bound on HB: BOUNDmax + DR_Size

3.4.4. Merge (Target Image, xp, yp)
The Merge operation combines the Defined Rectangle of the base image and the
Target Image. If the Target Image is NULL, then the Merge operation simply crops the

Defined Rectangle out of the current image. Thus, the Merge operation affects all of the

51

pixels outside of the Defined Rectangle. Since pixels outside the DR can be affected, the
BOUNDS algorithm must update the values of Tempmin and Tempmax.

Since the Merge operation combines two images, the following observations can
be made:

8. To identify the minimum number of pixels possible in bin HB after applying the
Merge operation, it is necessary to identify the minimum number of pixels that
could possibly be in the DR and in the Target Image.

9. To identify the maximum number of pixels possible in bin HB after applying the
Merge operation, it is necessary to identify the maximum number of pixels that
could possibly be in the DR and in the Target Image.

10. The size of the resulting image will be equal to the size of the Target Image,
unless the DR is copied onto a position that causes the image to grow.

11. If the Target Image is NULL, the size of the resulting image will be equal to the

size of the DR.

Observations 8 and 9 indicate that is necessary to identify the minimum and
maximum possible number of pixels in bin HB contained within the DR and Target
Image in order to identify the new bounds on that value. Observation 10 indicates that is
necessary to identify where a DR is pasted in a Target Image to determine its size.
Finally, Observation 11 indicates that it is necessary to check if the Target Image is
NULL when developing the rules.

Depending on where the DR is located in the image, the number of pixels in it

that are in bin HB can fluctuate. For example, consider that the amount of white pixels in

52

a DR specified in an image is half red and half white as in Figure 3-8. If the DR is small,
as in Figures 3-8A and 3-8B, it is possible that it may contain all white pixels or no white
pixels. So, the number of white pixels in it could be anywhere from DR_SIZE to zero.
Alternatively, if the DR is large, it would be impossible for it to contain only white pixels

as in Figure 3-8C, and it would be impossible for it to contain no white pixels as in

Figure 3-8D.
o 1|0
DR Containing DR Containing No
Only White Pixels White Pixels
C D
DR Containing as DR Containing as
Many White Pixels as Few White Pixels as
Possible Possible

Figure 3-8. Defined Rectangles that have Varying Numbers of White Pixels

The formulae for determining the minimum and maximum number of pixels in
bin HB within a Defined Rectangle, then, are dependent upon the size of the DR and the
number of pixels in bin HB within the base image. The minimum number of pixels is
equal to the number of pixels in the DR minus the number of pixels in the image that are
not in bin HB. Using the above variables, this value is computed as DR _Size —
(ImageSize — BOUNDy,;in). The maximum number of pixels in bin HB within a DR is

equal to the minimum of the number of pixels in the DR and the number of pixels in bin

53

HB in the entire image. Using the above variables, this value is MIN(BOUND py,
DR Size).

Similar reasoning can be used to compute the formulae for the minimum and
maximum numbers of pixels in bin HB within the Target Image. The difference is that
the formulae must compute how many of the pixels in bin HB within the target are
covered by the DR. Again, this will be dependent upon the size of the DR and the
number of pixels in bin HB within the Target Image. Let TargetSize represent the
number of pixels in the Target Image and TargetHB represent the number of pixels in bin
HB within the Target Image. The minimum number of pixels in bin HB within the
Target Image after the application of the Merge operation is equal to the number of pixels
in the DR subtracted from the number of pixels in bin HB in the Target Image before the
operation. Using the above variables, this expression is TargetHB — DR Size. The
maximum number of pixels in bin HB in the Target Image after a Merge operation is
equal to the minimum of the number of pixels in the Target Image before the operation
and the number of pixels in the Target Image not covered by the Defined Rectangle. This
value can be expressed as MIN(TargetHB, TargetSize — DR_Size). Since each of the
above expressions represents the number of pixels that are mapped to bin HB, the value
cannot be negative. Thus, each of the expressions should be bounded below by zero.

In a Merge operation, the DR is copied into the Target Image, so the size of the
resulting image will be equal to the size of the Targetimage. The only exceptions occur
when the DR is copied into a position that will make the resulting image larger than the
target. One such example is illustrated in Figure 3-9 where the DR is pasted in the lower

right corner of the Target Image. Figure 3-9A displays a Target Image. Figure 3-9B

54

displays a DR being copied onto the lower right corner of the Target Image. Figure 3-9C
displays that the resulting image must add pixels in order for the resulting image to be

rectangular.

Figure 3-9. Results of a Merge Operation Larger than the Target Image

©.0) . (0, width)

Figure 3-10. Coordinates in an Image Resulting from Merge (Target, x,, yp)

Let height represent the number of rows in the Target Image and width represent

the number of columns. This information will have to be stored in the database. The

position that the DR will be copied into the Target Image is given in the parameters of the

55

Merge operation. To find the size of the resulting image, it is necessary to find the
coordinates of the resulting image as in Figure 3-10.

If the image grows as in Figure 3-10, the new lower right coordinates would be
(xp + the height of the DR, y, + the width of the DR). The height and width of the DR
can be computed from the parameters of the Define operation, which should still be in
memory from Step 6.1 of the BOUNDS algorithm. The height is (x2 — X;), and the width
is (y2—y1). So, the new lower right coordinates of the image would be (x,+x2 — X1, y,ty2
—vy)). Alternatively, if the image grows as in Figure 3-11, the new upper left coordinates

of the image would simply be (x;, ¥p).

Xp, ¥p)

(height, 0) (height, width)

Figure 3-11. Other Possible Coordinates Resulting from Merge (Target, Xp, Yp)

Using the above information, the size of the resulting image would be the product
of the height and width of the resulting virtual image. Using the above parameters of the
Merge operation, these values are expressed as:

Height: MAX((x, + x2 — X1), height of target) - MIN(x,, 0) + 1.
Width: MAX((y, + y2 — y1), width of target) — MIN(y,, 0) + 1.

56

To summarize, the rules for the Merge operation are dependent on its parameters.
Given the same variable definitions as in the previous operations, the new values of the

bounds and image size are:

If target is NULL, then

e Size ofimage: DR_Size

e Min Bound on HB: MAX(DR_Size — (ImageSize — BOUNDmin), 0)
e Max Bound on HB: MIN(BOUNDmex, DR_Size)

if target is not NULL, then

e Size ofimage: (MAX{(xp + x2 - x1), height of target) — MIN(xp, 0) + 1) x (MAX((yp + y2 - 1), width of target) -
MIN(yp, 0} + 1)

¢ Min Bound on HB: (MAX(DR_Size — (ImageSize — BOUNDmi), 0)) + (MAX(TargetHB — DR_Size, 0))

e MaxBound on HB: (MIN(BOUNDmax, DR_Size)) + MIN(TargetHB, MAX((TargetSize - DR_Size), 0))

3.5. Range Query Procéssing Example

This section provides a specific example of using the algorithm in Figure 3-6 on a
set of virtual images. For example, consider a system that uses the RGB color model,
and uniformly divides each axis in half when quantizing the color space. So, in the
quantization function presented in Chapter 2, (di, d, d3) =(2, 2, 2) and (CM;, CM,, CM3)
= (256, 256, 256). This also means that each color histogram extracted from a binary
image will have a total of 2° = 8 bins.

The underlying database contains 4 binary images called B1, B2, B3, and B4, and
4 edited images, called V5, V6, V7, and V8, meaning that the database has 8 total
images. Based on this quantization scheme, Table 3-3 contains the four histograms
extracted from the binary images in the example database along with the identifiers to
their associated images. Table 3-4 contains the descriptions of the 4 virtual images. In
addition, the database stores that each binary image contains 100 pixels arranged as 10

rows and 10 columns.

57

The specific range query used has values of 50 for PCTyn, 100 for PCTpay, and
(255, 255, 255) for color Cq, which is the color white. This means that the example
range query is equivalent to “Retrieve all images that are at least 50% white”. Using the
parameters of the quantization function described earlier, color Cq maps to histogram bin

7, so HB equals 7.

Histogram ID | Image ID | Bino | Bin4 | Binz | Bins | Bing | Bins | Bing | Binz
H1 B1 01010110710 010604
H2 B2 056105 010} 0] 010710
H3 B3 08/ 0} 0 |00} 0} 002
H4 B4 0 {10} 0] 0)]0} 0 04]06

Table 3-3. Histograms for the Binary Images in the Example Database

V5: B2 Vé: B3
Define (0, 0, 9, 4) Define (0, 0, 4, 3)
Merge (NULL, 0, 0) Modify (0, 100, 255, 0, 100, 255, 0, 100, 255)
Combine (1,2,1,2,4,2,1,2, 1)
V7. B4 V8: B4
Define (0, 0, 9, 0) Define (0,0, 9, 2)
Mutate (1,0,0,0,4,0,0,0, 1) Modify (0, 255, 255, 0, 255, 255, 0, 255, 255)

Table 3-4. Descriptions of Virtual Images in the Example Database

Vs: B2

Define (0, 0, 9, 4)

Merge (NULL, 0, 0)

When the BOUNDS algorithm is applied to V5, the first two steps of the
algorithm identify B2 as the base image and H2 as its histogram. The next three steps
identify imageSize, BOUNDax, and BOUND,,;;,. The imageSize variable is set to 100,

since there are 100 pixels in B2. Both BOUND,,x and BOUNDy, are set to the product

58

of the value in bin 7 in the histogram of B2 and imageSize. Since bin 7 has a value of 0,
this product is also 0.

Step 6 processes the editing operations in V5. Since the first operation is Define
(0, 0, 9, 4), the variable DR_Size is set to the number of pixels in the DR, which is (|0 —
9|+ 1) x (J0— 4|+ 1)=50. In addition, Tempm, is set to 0, and Tempmay is set to 50.

The algorithm then applies the rules in Table 3-2 for the second operation Merge
(NULL, 0, 0). This operation crops 50 pixels from the base image. Applying the rules in
Table 3-2 for this operation, the algorithm sets BOUND, to MAX[0, 50 — (100-0)],
which equals 0, and sets BOUND,,,x to MIN[0, 50], which also equals 0. Next, the
algorithm sets the imageSize variable equal to DR_Size, which is 50. Finally, the Merge
operation does affect pixels outside the DR, so the algorithm updates the temporary
minimum tempma, to MAX(0 — 50, 0) = 0 and the temporary maximum temp,.x to MIN
(0 + 50, 50) = 50.

The last two steps convert BOUND,in and BOUNDy,« to percentages by dividing
them by imageSize. So, BOUND,, equals 0/ 50 = 0, and BOUND,,.,x equals 0 / 50 = 0.
The result of the BOUNDS algorithm, then, is that the percentage of pixels that are white
in V5 will be in the range [0, 0], which means that it will not have any white pixels. This
is to be expected since the description of V5 implies that it is created by cropping 50 of
the pixels in image B2, and B2 does not have any white pixels. Since the range [0, 0]

does not intersect the query range [.5, 1], V5 would not be returned to the user.

59

Vé: B3
Define (0, 0, 4, 3)
Modify (0, 100, 255, 0, 100, 255, 0, 100, 255)
Combine (1,2, 1,2,4,2, 1,2, 1)

When the BOUNDS algorithm is applied to V6 for the same query, the first two
steps of the algorithm identify B3 as the base image and H3 as its histogram. The
imageSize variable is set to 100, since there are 100 pixels in B3. The next two steps set
BOUND,.,x and BOUND;, to the product of bin 7 in the histogram of B2 and
imageSize. Since bin 7 in Histogram H3 has a value of 0.2, the initial values of both
BOUND,,;i, and BOUND..x are 20.

Step 6 processes the editing operations in V6. Since the first operation is Define
(0, 0, 4, 3), the variable DR_Size is set to the number of pixels in the DR, which is (|0 -
4+ 1) x (|0 — 3| + 1) =20. Since the subsequent editing operations until the next Define
operation may only alter these 20 pixels, the limit Tempmi, 1s set to (BOUNDy;, — 20),
which is 0, and Tempm,y is set to (BOUND,x + 20), which is 40.

Next, the algorithm applies the rules in Table 3-2 for the second operation Modify
(0, 100, 255, 0, 100, 255, 0, 100, 255). This operation converts the pixels with intensify
values in between 0 and 100 in all three color axes to white, the query color. So, this
operation may create new white pixels. As a result, the rules in Table 3-2 do not change
the values of BOUND., and imageSize, so they remain equal to 20 and 100,
respectively. The rules do compute a new value for BOUNDpay, which is equal to
MIN[40, MIN(100, 20 + 20)] = 40. The Modify operation does not change pixels outside

the DR, so Temppi, and Temp.x are not updated.

60

For the third operation, Combine (1, 2, 1, 2, 4, 2, 1, 2, 1), the rules in Table 3-2 do
not change the values of BOUND;, BOUND;,, or imageSize. Consequently, they
remain equal to 20, 40, and 100, respectively. As before, the Combine operation does not
change pixels outside the DR, so Tempm;, and Tempmax are not changed.

When the algorithm finishes processing all of the operations, the last two steps
convert BOUND,,;;, and BOUND,..x to percentages of imageSize. So, BOUND i, equals
20 / 100 = 0.2, and BOUNDy,x equals 40 / 100 = 0.4. The result of the BOUNDS
algorithm, then, is that the percentage of pixels that are white in V6 will be in the range
[.2, .4]. Since this range does not intersect the query range [.5, 1], V6 would not be

returned to the user.

V7: B4
Define (0, 0, 9, 0)
Mutate (1, 0,0,0,4,0,0,0, 1)

When the BOUNDS algorithm is applied to V7 for the same query, the first two
steps of the algorithm identify B4 as the base image and H4 as its histogram. The
imageSize variable is set to 100, since there are 100 pixels in B4. The next two steps set
BOUND.x and BOUNDy,;, to the product of bin 7 in the histogram of B4 and
imageSize. Since bin 7 in Histogram H4 has a value of 0.6, both BOUNDy,, and
BOUND ., are set to 60.

Since the first operation is V7 is Define (0, 0, 9, 0), the variable DR_Size is set to

the number of pixels in the DR, which is (0 — 9] + 1) x (J0 — O] + 1) = 10. So, the next set

of operations until the next Define operation will alter these 10 pixels. Consequently, the

61

limit Tempmin is set to (BOUND,y;, — 10), which is 50, and Tempp,y is set to (BOUNDmax
+ 10), which is 70.

Next, the algorithm applies the rules in Table 3-2 for the second operation Mutate
(1, 0, 0, 0, 4, 0, 0, 0, 1). This operation enlarges the DR by a factor of 4 in the y-
direction. The system does not have enough information to know which pixels are
increased, so the rules in Table 3-2 do not change the values of BOUND i, BOUNDax,
or imageSize. Thus, they remain 60, 60, and 100, respectively. Since the effect of the
Mutate operation is unknown, the algorithm does not change Temp,i, and Temp pax.

The last two steps of the algorithm convert BOUND,,, and BOUND, to
percentages of imageSize. So, both bounds are set equal to 60 / 100 = 0.6. The result of
the BOUNDS algorithm, then, is that the percentage of pixels that are white in V6 will be
in the range [.6, .6]. Since this range does intersect the query range [.5, 1], V7 is returned

to the user

V8. B4
Define (0, 0, 9, 2)
Modify (0, 255, 255, 0, 255, 255, 0, 255, 255)
Since V8 has the same base image as V7, the first five steps of the algorithm will
produce the same values. So, as in V7, imageSize, BOUND;,,x, and BOUND;, will
equal 100, 60, and 60, respectively.

Since the first operation is V7 is Define (0, 0, 9, 2), the variable DR_Size is set to

the number of pixels in the DR, which is (|0 — 9] + 1) x (|0 — 2{ + 1) = 30. In addition,

62

Temppin is set to (BOUNDy, — 30), which is 30, and Temppax is set to (BOUNDmax +
30), which is 90.

Next, the algorithm applies the rules in Table 3-2 for the second operation Modify
(0, 255, 255, 0, 255, 255, 0, 255, 255). This operation changes all of the pixels in the DR
to white. As a result, the rules in Table 3-2 do not change the values of BOUNDy,, and
imageSize, so they remain equal to 60 and 100, respectively. The rules do compute a
new value for BOUND,.,,, which is equal to MIN[90, MIN(100, 60 + 30)] = 90. Finally,
the Modify operation does not change the pixels in the DR, so Tempmin and Tempmax do
not change.

The last two, steps of the algorithm convert BOUNDyi, and BOUND,y to
percentages of imageSize. So, BOUNDy, is set equal to 60 / 100 = 0.6, and BOUND s«
is set equal to 90 / 100 = 0.9. The result of the BOUNDS algorithm, then, is that the
percentage of pixels that are white in V8 will be in the range [.6, .9]. Since this range
does intersect the query range [.5, 1], V8 is returned to the user.

To summarize, the proposed algorithm for processing range queries in a virtual
image retrieval system will return three images in response to the query “Retrieve all
images that are at least 50% white” for the sample database. Image B4 will be returned
using conventional histogram techniques. Images V7 and V8 will be returned as a result

of the values generated from the BOUNDS algorithm.

63

CHAPTER 4

TECHNIQUES FOR PROCESSING NEAREST NEIGHBOR QUERIES

This section proposes an algorithm for processing nearest neighbor queries in an
image retrieval system that uses virtual images. The specific type of query that the
algorithm addresses is “Retrieve the k images that are nearest to image), where k is a
whole number, and Q is the query image. The goal of this approach is to process the
nearest neighbor queries utilizing the rules presented in the previous chapter. By meeting
this goal, this approach avoids having to instantiate the virtual images since instantiation

takes a long time.

4.1. Algorithm for Processing Nearest Neighbor Queries

As described in Chapter 2, conventional systems typically extract and store
features of the images in the database as they are inserted. The distance between one of
these stored images and the query image Q is based on the comparison of the features
extracted from them. This implies that one of the first steps of the retrieval algorithm is
to identify and extract the features of Q. This is also the first step in the proposed
retrieval algorithm for virtual images.

The proposed approach is similar to the algorithm for processing range queries in
that it consists of two other main tasks. The first is to use conventional methods to
identify the k binary images that are the closest to the query image based on comparing
their respective histograms. The second step is to examine the description of each virtual
image and infer if any of them are closer to the query image than the binary images.

Again, this means that the system will have to infer the values in the histogram bins for a

64

virtual image, which it does by repeatedly performing range queries on the bins.
Consequently, the proposed method of processing nearest neighbor queries utilizes the
rules presented for the range queries in the last chapter in order to determine the distance
between a virtual image and the query image.

As both the conventional and proposed algorithms for finding the nearest k
images to a query image proceed, they need to store the k closest known images at each
step. This is accomplished through the maintenance of an array called NEAREST in
which the i element of the array contains two values, the identifier of the i™ closest
image to Q and its distance to Q. These values are referred to as NEAREST[i].image and
NEAREST]i].distance, respectively. So, to determine if an image is one of the k closest
neighbors to Q, it can be checked to see if it is smaller than NEAREST[k].distance. This
value, then, is always stored in another variable called smallest.

The algorithm for processing nearest neighbor queries is shown in Figure 4-1.
The first two steps extract the color histogram from the query image, and the next two
steps initialize the NEAREST array and the variable smallest to infinity. The next step
processes each binary image in the database by comparing their histograms to the one
extracted from Q. So, at the completion of Step 4, the NEAREST array will contain the k
closest binary images to Q.

The key step in the algorithm is the next step, Step 6, which identifies the virtual
images whose distance from the query image is less than the smallest known distances.
This step executes the procedure called VIRTUAL NN, which updates the NEAREST
array based on the computed distances of the virtual images. So, when the procedure

finishes, the NEAREST array will contain the k closest images to the query image

65

irrespective of how they are stored, and that allows the subsequent step to simply display
the images in NEAREST. The VIRTUAL NN procedure is described in the next

section.

/* Binary images are compared using histograms, so extract the histogram from the
query image. */

1. Identify parameters (k, Q) from given query

2. Extract the color histogram from image Q and represent it by variable HQ

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i" element of the array
contains the identifier of the i" known closest image and its distance to Q. The following
code initializes the array. */
3. Fori=1tok

3.1. Set the image field of the i element in NEAREST to null

3.2. Set the distance field of the i" element in NEAREST to infinity
4. Set smallest equal to the distance field of the k™ element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database
5.1. Compute d, the distance between H and HQ.
5.2. if @ < smallest
5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k™ element in NEAREST

/* Identify virtual images that may be among the k closest */
6. Call VIRTUAL_NN to find the virtual images that should be in NEAREST

/* Retrieve the identified images to the user. Any virtual images must first be
instantiated. */
7. Display the images contained in the first k image fields of the NEAREST array.

Figure 4-1. Proposed Algorithm for Processing Nearest Neighbor Queries

4.2. Algorithm for Determining the Distances from Q to the Virtual Images
This section describes the algorithm for computing the distances the query image

Q and all of the virtual image in the database. The goal of the algorithm is to compute

66

these distances without having to instantiate any of the virtual images. To accomplish
this goal, the algorithm utilizes the rules presented in the last chapter by executing
multiple range queries. These range queries provide values that are used to compute the
distances from Q to the set of virtual images.

The 1dea for the proposed nearest neighbor query processing algorithm is based
upon submitting a query to the image retrieval system that requests the images that are
the most similar to an all black query image, QB. If an image I in the database is 70%
black, then the Histogram Intersection of the query image and I is HI(QB, I) =.7. So, the
number of black pixels in an image directly relates to the value of the Histogram
Intersection between that image and QB. Another way, then, of satisfying the given
nearest neighbor query is to find images that are mostly black, which is very similar to
the type of range queries processed in the preceding chapter.

The above example indicates that it may be possible to process some nearest
neighbor queries by processing various range queries. So, the technique used by the
proposed algorithm displayed in Figure 4-2 is to identify and execute such range queries
in response to a submitted nearest neighbor query. The algorithm works by repeatedly
identifying the bins with the largest values in the histogram of the query image and then

performing range queries on those bins.

67

VIRTUAL NN

/* Initialize the variables used to find the distance between the Query image Q and the virtual images

pctRemaining represents the percentage of the histogram of Q that has not been tested
Remaining contains the set of virtual images that may be among the k-nearest neighbors
TotalSum([V] represents the computed Histogram Intersection of V and Q
numberBins represents the total number of colors within Q
queryBins represents the bin numbers of the colors contained within Q
index represents the bin number of the current color being processed™/

1. pctRemaining = 1.00

2. Remaining = Set of Virtual Images in database

3. For each virtual image V in Remaining

3.1. TotalSum[V]=0

4. Let queryBins represent the nonzero bins of HQ in sorted order

5. Let numberBins represent the number of nonzero bins in HQ

6. index=0

7. While (index < numberBins) AND (Remaining # &)

/* Identify the parameters of the range query using the next color in queryBins, called

currentBin. The query should return those virtual images whose percentage of pixels are close to

the value in currentBin. */

7.1. Let currentBin = the next bin in queryBins

7.2. Let match = the value of the currentBin bin in the histogram of the query image

7.3. Reduce pctRemaining by match since we are using that portion of the histogram

7.4. PCT, = MAX(0, match — smallest), which is the minimum percentage of pixels in
currentBin that a virtual image can have and be a k-nearest neighbor.

7.5. PCTx = MIN(1, match + smallest), which is the maximum percentage of pixels in
currentBin that a virtual image can have and be a k-nearest neighbor.

/* Apply the rules to each virtual image that has not yet been eliminated. */
7.6. For each virtual image V left in Remaining
7.6.1. Apply the BOUNDS algorithm on V for the above range query parameters.

/* If the virtual image can satisfy the above query, its known distance to the query image
should be modified with this new information. Those images that cannot satisfy the above
range query cannot be closer than the known nearest neighbors. */
7.6.2. if V satisfies the above range query

7.6.2.1. increase TotalSum[V] by MIN (match, F(BOUND i, BOUND 1))
7.6.3. else

7.6.3.1. Remove V from Remaining

/* Eliminate the virtual image if there is not enough percentages left to match. */
7.6.4. if TotalSum[V] + pctRemaining < 1—smallest
7.6.4.1. Remove V from Remaining

/* Use the values computed in the TotalSum array as the Histogram Intersection between the query
image and virtual images not eliminated. Compute the distances using these Histogram Intersection
values and update the NEAREST array. */
8. For each virtual image V in Remaining
8.1. Use TotalSum[V7] as the histogram intersection of Q and V
8.2. Compute the distance from Q to V as 1 — the histogram intersection of Q and V
8.3. If the distance from Q to V < smallest
8.3.1. insert (distance, V) into NEAREST so that the array remains sorted based on the
distance fields.
8.3.2. Set smallest equal to the distance field of the k™ element in NEAREST

Figure 4-2. VIRTUAL NN Algorithm for Query Processing of Virtual Images

68

4.2.1. Algorithm Steps

Steps 1-6 initialize the variables used in the algorithm. The variables
pctRemaining, Remaining, TotalSum[V], queryBins, numberBins, and index respectively
represent the unused percentage of the query histogram, the set of virtual image IDs not
yet eliminated, the histogram intersection of the virtual image V and the query image, the
IDs of the nonzero bins of the query histogram in sorted order, the number of [Ds in
queryBins, and the current element of queryBins.

Step 7 is the main loop of the algorithm. It repeatedly generates range queries
based on the values in queryBins. Each iteration of the main loop represents one range
query performed by the algorithm. When a set of bounds are computed for a virtual
image V using the rules presented in the previous chapter, the minimum bound is added
to TotalSum([V]. For example, if the BOUNDS algorithm in the last chapter computes
that the value of the current histogram bin for a virtual image will be in the range [.2, .5],
0.2 is added to TotalSum[V]. Again, this sum represents the histogram intersection
between Q and V. The virtual images that cannot be one of the k nearest neighbors to Q
will be eliminated from consideration by removing their IDs from the variable
Remaining. The values in the TotalSum array are used along with the pctRemaining
variable to determine which virtual images cannot be one of the nearest neighbors to Q.

Steps 7.1 and 7.2 identify the value of the query histogram at the current bin
number in queryBins. Step 7.3 indicates that part of the query hisfogram is being used by
reducing pctRemaining, which represents the unused portion of that histogram. Steps 7.4
and 7.5 compute the boundaries of the range query for this iteration. If a virtual image

matched the query image exactly, then the percentage of pixels in currentBin would be

69

equal to the variable match. So, the generated range query should look for images that
have that match pixels in currentBin. Now, consider if the match is 60%, and the k™
smallest known distance is 20%. If the percentage of pixels of the virtual image in
currentBin is known to be less than 40% or more than 80%, then the image is more than
20% different from the query image. This means that the virtual image cannot be one of
the k nearest neighbors. Consequently, the algorithm should search for virtual images
that have a value in currentBin between 40% and 80% in that situation. Thus, PCTyn
and PCTn.x should be defined to be match — smallest and match + smallest, respectively.

Step 7.6 contains a loop that applies the rules for the range query for each virtual
image in remaining. Step 7.6.1 applies the query range with the parameters [PCTyin,
PCTax] as computed earlier. The variable currentBin represents the quantized query
color.

Steps 7.6.2 and 7.6.3 perform actions based on whether the current virtual image
V satisfies the query. As indicated before, if V cannot satisfy the query, then it cannot be
one of the k nearest neighbors of Q. Consequently, it is removed from the list of virtual
images in Remaining. If V can satisfy the query, then the algorithm increases the value in
TotalSum[V]. The reason is that the computation of the Histogram Intersection between
two images is accomplished by adding the sums of the minimum values in each of their
respective bins. Since the algorithm computed that there is some value, x, in bin
currentBin for V that is between BOUND, and BOUNDm,, TotalSum[V] should be
increased by the minimum of x and match, which is the percentage of pixels in bin

currentBin for Q.

70

Since the BOUNDS algorithm only produces bounds on the value x, the algorithm
in Figure 4-2 needs a method of producing an exact value for x. If the range computed by
the BOUNDS algorithm is large, then it is unknown whether MIN(x, match) reflects the
actual value added for bin currentBin when computing the Histogram Intersection of Q
and V. Alternatively, if the computed range is small, then MIN(x, match) should be very
close to the actual value added for bin currentBin. So, to produce an exact value for x,
the algorithm in Figure 4-2 uses a function on the computed bounds that increases as the
difference between BOUND,,,x and BOUND,,,i, decreases. Specifically, it computes x as
BOUND iy X (1 = (BOUND 5 — BOUND).

Step 7.6.4 checks the total in TotalSum for the virtual image. Since the algorithm
only adds the minimum bounds computed by the range query rules, the Histogram
Intersection total may be so small that the image will not be closer than smallest. In this
case, the virtual image should be removed from Remaining.

Step 8 is the final step of the algorithm. The algorithm updates the NEAREST
array according to the values for in TotalSum for each virtual image left in Remaining.

So, when this step completes, NEAREST will contain the k closest images to Q.

4.3. Nearest Neighbor Query Processing Example

This section illustrates the use of the algorithm in Figure 4-1 by processing an
example query “Retrieve the 3 images that are the most similar to BI”’. The query will be
processed using the database of 4 binary and 4 virtual images presented in the previous
chapter for range queries. Table 4-1 presents the histograms of the binary images along

with their distances to Q using the formula DIST(Q, X) =1 — HI(Q, X).

71

“'Stfg’a"‘ '"‘,gge Bino | Bins | Bin, | Bins | Bine | Bins | Bing | Bins D';‘;’fe
H1 BT T 0 1 01 0101 00 |06 04] 0
H2 B2 1051051 01T 01 0] 0 |01 o0 1
H3 B3 1081 0 1 010 0100 [0z2] =8
Ha B 1 01 0 01 01 00 0406 2

Table 4-1. Histograms of the Binary Images in the Example Database

The first four steps of the algorithm compute the parameters of the nearest
neighbor query and initialize the NEAREST array and smallest to infinity. Using the
example query defined earlier, k equals 3, and Q equals B1. The NEAREST array would

appear as in Row 1 of Table 4-2, where each distance field is infinity and each image

field is NULL.
Row NEAREST1 | NEAREST 1. ;NEAREST 2. | NEAREST 2. | NEAREST3. | NEAREST3,
b distance - image - distance “'image - distance: image
1 o) 1) o &) o %]
2 0 B1 @ & o0 %)
K] 0 B1 1 B2 o0)
4 0 B1 .8 B3 1 B2
5 0 B1 2 B4 8 B3
6 0 B1 2 B4 2 V7

Table 4-2. States of NEAREST Aﬁay as Nearest Neighbor Algérithm Proceeds

Step 5 of the algorithm in Figure 4-1 contains a loop that processes each of the
binary images stored in the database. It uses conventional techniques to identify the k
closest binary images meaning that it compares the previously extracted histograms of the
images to the histogram of Q.

Table 4-1 indicates that the distance from the query image to B1 is 0, which is
because the query image is B1. So, the variable d is set to 0 in Step 4.1, and is compared
to the variable smallest in Step 4.2. Since 0 is less than smallest, the value 0 and image

B1 are added to the NEAREST array in sorted order based on distance. So, after

72

processing the histogram for B1, the NEAREST array would appear as in Row 2 of Table
4-2. Note that smallest is set equal to NEAREST[3].distance, so it still equals infinity.

The next pass through the loop in Step 5 processes image B2. The distance from
Qto B2 is 1, and this is le;ss than smallest. So, the value 1 and image B2 are added to the
NEAREST array. The result is after processing the histogram for B2, the NEAREST
array would appear as in Row 3 of Table 4-2.

The third pass through the loop in Step 5 processes B3, which is a distance of 0.8
from Q. Again, this is less than smallest, so 0.8 and B3 are added to NEAREST. The
result is that the NEAREST array would appear as in Row 4 of Table 4-2. Note that
when smallest is set equal to NEARET[3].distance in Step 4.2.3, it becomes equal to 1.

The algorithm now processes the last binary image, B4. The distance from it to Q
is 0.2, and this is less than smallest. So, as with the previous images, the value 0.2 and
B4 are added to the NEAREST array in sorted order. Since the NEAREST array only
needs to track the k closest images, this removes B2 from it leaving the array to appear as
it does in Row 5 of Table 4-2.

So, at the conclusion of Step 5, the NEAREST array contains the 3 closest images
to Q, B1, B4, and B3. The variable smallest is set to the third closest distance, which is
0.8. So, Step 6 will execute the VIRTUAL NN algorithm to identify the virtual images
whose distances to Q are smaller than 0.8. That algorithm begins by initializing
pctRemaining to 1, Remaining to {V5, V6, V7, V8}, and TotalSum[V;] to O fori=5to 8.

For Step 4, the histogram of Q is <0, 0, 0, 0, 0, 0, 0.6, 0.4>. The nonzero bins of
Q, then, are bins 6 and 7. The variable queryBins contains the ordered list of nonzero

bins in Q, so queryBins is {6, 7}. The variable numberBins represents the number of

73

bins in queryBins, so numberBins is set to 2 in Step 5. Finally, index is initialized to 0 in
Step 6.

The main portion of the VIRTUAL NN algorithm is the loop in Step 7. Since
index is less than numberBins, and Remaining is not empty, the loop executes. Step 7.1
sets currentBin to queryBins[0], which is 6, and Step 7.2, sets the variable match to the
current bin in the query histogram, which is 0.6. Next, Step 7.3 subtracts that total from
pctRemaining, causing pctRemaining to now equal 1 — 0.6 = 0.4. This initial processing
allows the algorithm to compute PCT,;, and PCT,.. The former is equal to the
maximum of 0 and match — smallest. The latter is equal to the minimum of 1 and match
+ smallest. Since the variable smallest is comparatively large for a percentage, PCTmin
and PCTpx are 0 and 1, respectively.

Step 7.6 performs the range query for the range [0, 1] and bin number 6. After
applying the rules for V5, the resulting bounds are [0, 0]. Since this range is in the query
range [0, 1], V5 satisfies the query, Consequently, TotalSum{V5] is increased by MIN(O,
0)=01in Step 7.6.2.1. Step 7.6.4 tests the value of TotalSum[V5] + pctRemaining, which
is 0 + 0.4, and compares it to 1 — smallest, which is 0.2. Since the former value is greater,
V5 is not removed from the Remaining set.

After applying the rules for V6, the resulting bounds are [0, 0] as they are for V5.
The rest of the loop of Step 7 has the same values, then, which means that V6 is also kept
in the Remaining set. When applying the rules for V7, however, the resulting bounds are
[.4, .4]. Now, TotalSum[V7] is increased by MIN(0.4, 0.6), which equals 0.4. Since
TotalSum[V7] + pctRemaining equals 1, it is greater than smallest, which means that V7

is also kept in Remaining.

74

Finally, when applying the rules for V8, the resulting bounds are [.1, .4].
TotalSum[V8] is increased by MIN(0.1, 0.6), which is 0.1. TotalSum[V8] +
pctRemaining is 0.5, which is greater than 1 — smallest. So, V8 is kept in Remaining.

After the first iteration of the loop in Step 7, TotalSum only changed for the
virtual images V7 and V8. So, the algorithm has currently computed the histogram
intersections for V7 and V8 to be 0.4 and 0.1, respectively. The histogram intersections
for V5 and V6 are still 0.

At this point, the algorithm processes the loop of Step 7 for the next bin listed in
queryBins. So, for the second and final iteration of the loop, currentBin becomes bin 7.
The value of bin 7 in the query histogram is 0.4, and match is set to this value in Step 7.2.
Since all of the query histogram is now being used, pctRemaining reduces to 0 in Step
7.3. Finally, Steps 7.4 and 7.5 set the range query parameters to [0, 1]. Again, the
parameters are high because the percentage in the variable smallest is 0.8.

Now the algorithm processes range queries for bin 7 using the query range [0, 1].
The rules for V5 generate a bound of [0, 0], which means that TotalSum[V5] is again
increased by 0. Now, when Step 7.4 tests the value of TotalSum[V 5] + pctRemaining, it
is 0 which means that it is less than 1 — smallest. Consequently, V5 is removed from
Remaining in Step 7.6.4.1.

The range query rules for V6 generate a bound of [0.2, 0.2]. Now, TotalSum[V6]
is increased by 0.2, which sets it at 0.2. When Step 7.4 tests the value of TotalSum[V6] +
pctRemaining, it gets 0.2 + 0 = 0.2. Since this value is not greater than 1 — smallest, V6

is also removed from Remaining.

75

The rules for V7 generate a bound of [0.6, 0.6]. TotalSum[V7] is increased by
MIN(0.6, 0.4) = 0.4. So, TotalSum[V7] is now 0.8. Step 7.6.4 compares the sum of this
value and pctRemaining to 1 — smallest. Since the former is greater, V7 1s kept in
Remaining. |

The rules for V8 generate a bound of [0,6, 0.9]. This means that TotalSum[V§] is
increased by MIN(0.6, 0.4) = 0.4, which brings its total to 0.5. Like V7, this value added
to pctRemaining is greater than 1 — smallest, so V8 is kept in the Remaining set.

So, when Step 7 terminates, there are only two images left in the set Remaining,
V7 and V8. The algorithm now moves to Step 8, whose purpose is to adjust the
NEAREST array with the known distances. The values in TotalSum are used as the
Histogram Intersection between the virtual image and the query image, so HI(V7, Q) is
0.8, and HI(V8, Q) is 0.5. This means that Dist(V7, Q) is 0.2 and Dist(V8, Q) is 0.5. So,
after inserting these values in the NEAREST array, the result would appear as in Row 6
of Table 4-2. This means that the proposed algorithm returns B1, B4, and V7 as the 3

closest neighbors to Q.

4.4. Discussion of Example

Note that from the example in the previous section, the final values of TotalSum
for V5, V6, V7, and V8 were 0, 0.2, 0.8, and 0.5, respectively. These values represent
the computed Histogram Intersection between the images and the query image, B1. The
purpose of this section is to present the reasons for these totals using the descriptions of

the example virtual images presented in Chapter 3.

76

From the histogram of the query image, 60% of its pixels are mapped to bin 6,
and 40% of its pixels are mapped to bin 7. Recall from the previous chapter that the
color (255, 255, 255) also mapped to bin 7 in the example virtual image retrieval system.
So, the algorithm should return those virtual images whose descriptions indicate that they
have pixels whose intensities are mapped mostly to bins 6 and 7.

Virtual image V5 is created by cropping 50 pixels from its base image B2.
According to the histogram displayed in Table 4-1, this image does not have any pixels in
bins 6 or 7, so V5 does not have any pixels in those bins, either. As a result, the
histogram intersection between V5 and B1 should be 0, which is the value generated by
the proposed algorithm.

According to the description of virtual image V6, it is created as a transformation
of its base image B3. This image has 20% of its pixels in bin 7, but no pixels in bin 6.
The description of V6 indicates that it may change up to 20% of the pixels in B3 to the
color (255, 255, 255), so it may have even more pixels in bin 7. Consequently, the
proposed algorithm computes the histogram intersection of Q and V6 to be higher than
the histogram intersection of Q and VS5, which implies that V6 is more similar to Q than
VS§.

Virtual images V7 and V8 are created as transformations of base image B4, which
is only a distance of 0.2 from the query image. By reviewing the histograms in Table 4-
1, it can be seen that for image B4 to match image Bl1, it needs to increase the number of
pixels in bin 6 and decrease the number of pixels in bin 7. I[mage V8 is created by

changing a portion of B4 to the color (255, 255, 255), which maps to bin 7. As a result, it

77

can only increase the number of pixels in bin 7, which means that it cannot be any closer
to B1 than B4.

Alternatively, the description of V7 implies that it increases a portion of B4.
Since the proposed algorithm cannot determine the effects of this operation, it assumes
that the resulting image will have the same histogram as the base image. The result is
that V7 is computed to be only a distance of 0.2 from the query image. So, V7 is

assumed to be the closest image to Q out of all of the virtual images.

78

CHAPTER 5

DATA STRUCTURE FOR SPEEDING UP RETRIEVAL PROCESSING

As described in Chapter 2, systems that use conventional approaches such as
histograms to retrieve images are able to process submitted retrieval queries without
having to access each image in the underlying database. This is frequently accomplished
by using an index such as an R-tree [Gutt, 1984] or other type of access method that
clusters the data elements into sections of the multidimensional data space of the
histograms. Searching is then performed by accessing nodes in the data structure that
represent those sections. By quickly identifying sections of the multidimensional space
that cannot contain any histograms of images that satisfy the given query, the query
processing algorithm can avoid accessing the data elements contained in those sections.

In contrast to the histogram-based approaches, the rule-based algorithms for
processing retrieval queries contain steps for determining if each virtual image satisfies
the given query and should therefore be retrieved from the database. The steps involve
accessing a set of rules for each image editing operation stored in the description of a
virtual image in order to determine bounds on the percentage of pixels whose intensities
quantize to a given bin. So, the proposed algorithms must access every virtual image in a
database as well as every editing operation within a virtual image description to process
the given queries. As an alternative, the following sections propose an approach for
processing retrieval queries that does not have to access every editing operation contained
in the database yet still produces the same results as the algorithms proposed in the

previous chapters.

79

5.1. Properties of Rules for Editing Operations

To present the proposed technique for reducing the number of editing operations
that have to be accessed ini order to process range queries, it is first necessary to consider
the characteristics of the rules that are applied for each operation. Each rule produces
new maximum and minimum bounds on the percentage of pixels that may be in a given
histogram bin for a virtual image. The virtual image is retrieved if these computed
bounds intersect the desired range specified by the query. The algorithm produces these
bounds by computing three values, the maximum number of pixels that are in the
histogram bin, the minimum number of pixels that are in the histogram bin, and the total
number of pixels in the virtual image. So, some characteristics of the proposed rules can
be determined by finding characteristics in these three values.

Several of the proposed rules only increase the maximum bound and decrease the
minimum bound on the percentage of pixels contained in the desired histogram bin for a
virtual image. These rules accomplish this by only increasing the maximum bound,
BOUND..x, and decreasing the minimum bound, BOUND,n, on the number of pixels in
the bin, while keeping the total number of pixels, imageSize, in the virtual image
constant. The result is that these rules will only widen the range specified by the
minimum bound and maximum bounds. Rules that exhibit this characteristic are called

bound-widening rules, and they are presented in the following section.

5.1.1. Bound-Widening Rules

In the proposed range query processing algorithm, there are rules presented for

the four editing operations Combine, Modify, Mutate, and Merge. The following

80

theorems will review the rules for each of the operations and determine if they are bound-
widening. In each section, the variables beforemin and beforenm,x will respectively
represent the values of the percentages BOUNDyin/imageSize and BOUND,./imageSize
before applying the rule for the particular editing operation. Similarly, the variables
aftery,, and aftery,, will respectively represent the values of the percentages after
applying the rule. Therefore, to demonstrate that a rule is bound-widening, it is necessary

to prove that beforem, 2 aftermyi,, and beforemay < aftermax.

Theorem 5.1. The rule for the Combine operation is a bound-widening rule.

Proof: Let the values of beforemin and beforemax equal BOUND,;,/imageSize and
BOUND,./imageSize, respectively. The only rule for the Combine operation does not
change the values for the BOUNDpjn, BOUND,y, and imageSize variables. So, after
applying the rule, the values of aftern, and afterm,x will also equal BOUNDir/imageSize

and BOUND ., /imageSize. Thus, beforeq, 2 afteryin, and beforen,, < afterp,y.

Theorem 5.2. The rules for the Modify operation are bound-widening rules.

Proof: There are several rules proposed for the Modify operation depending on the
values in its parameters. None of the rules changes the value of imageSize. So, it is
possible to define the value of afteryi; to be newny/imageSize where newn,;, represents
the new value of the variable BOUND,;, after the application of the rules for Modify.
Since beforemi, equals BOUNDyn/imageSize, beforemin > aftern, can be proven by

showing BOUND iz 2 n€Win.

81

Only one of the proposed rules changes the value of BOUNDyy;,, and it sets it
equal to MAX[tempmin, MAX(0, BOUNDyir—DR_Size)]. This expression has three
terms, teMpPmin, 0, and BOUNDy,r—DR_Size. So, after applying the rule for the Modify
operation, newmi, may have one of four possible values, BOUNDn, tempp, 0, or
BOUND,;,~DR_Size. BOUND,;, represents the number of pixels with intensities that
quantize to bin HB, so it will always be greater than or equal to 0. In addition, DR_Size
represents the number of pixels in the Defined Rectangle, so it can never be negative.
This means that BOUNDy,;, is always greater than or equal to BOUNDm,-DR_Size.
Thus, it can quickly be shown that newy,, will be less than or equal to BOUNDy,y, if
neWmin equals BOUND,i, 0, or BOUND,;—DR_Size.

Now consider if newy, equals tempy,n, which represents a limit on how far the
value of BOUND,i, may decrease. The BOUNDS algorithm always maintains that
tempmin 18 less than or equal to BOUNDy,, by computing it as BOUNDy;,—DR_Size
every time BOUNDy,, could be set to a value lower than it. So, if newy, is equal to
tempmin, then newnmin will be less than or equal to BOUNDmin. The result is that every
possible value for newn,, is less than or equal to BOUND,i,, which means beforemin >
aftermin.

Let newnmax equal the new value of the variable BOUND ., after the application of
the rules for Modify. As with the minimum bounds, beforemax < aftermax can be proven
by showing BOUNDp.x £ newma. The rules for the Modify operation change the
BOUND,.x variable to the expression MIN[tempn,, MIN(imageSize,
BOUND.x*DR_Size)], which means that the only possible values for newpn, are

BOUND11ax, BOUNDx+DR _Size, imageSize, and tempmax.

82

If newmax is BOUND ., then it will be greater than or equal to BOUNDp,y.
Since, DR _Size is never negative, the same 1is true if newmsy equals
BOUND.xt*DR_Size. Since BOUND,,«x represents the number of pixels in a virtual
1image that quantize to bin HB, it can never be greater than the total number of pixels in
that virtual image. So, BOUND,x will always be less than or equal to imageSize.
Finally, as with tempp, for BOUNDp,, tempm.x represents a limit on how much
BOUND,.x may increase, which implies that the BOUNDS algorithm always keeps
tempmax greater than or equal to BOUND .

Since every possible value for newm. 1s always greater than or equal to
BOUNDyax, beforemax < afterna.x. Thus, the value of BOUND,/imageSize never
increases, and the value of BOUND,,,,x/imageSize never decreases, which means that all

of the rules for the Modify operation are bound-widening.

Theorem 5.3. The rules for the Mutate operation are bound-widening rules.
Proof: Consider the rule for the Mutate operation when the imageSize variable is equal
to the DR_Size. The proposed rule changes the values in the BOUND;,, BOUND 4,
and imageSize variables by multiplying them by the same constant. So, both of the
values BOUND i /imageSize and BOUND,x/imageSize remain the same after the
application of the rule. As a result, beforey, equals aftermin, and beforey., equals
aftern.x, which means that the rule for the Mutate operation when imageSize equals
DR _Size is bound-widening.

When a rigid body transformation is specified in the parameters of the Mutate

operation, the rule keeps the imageSize variable constant. In addition, it changes

83

BOUNDyin to MAX[tempin, MAX(0, BOUNDyix—DR_Size)] and BOUNDpmax to
MIN[tempmax, MIN(imageSize, BOUNDm+DR_Size)], which means that it never
increases BOUNDmi, and never decreases BOUND 5« as explained in the theorem for the
Modify operation. Since imageSize remains constant, the value of BOUNDyn/imageSize
never increases, and the value of BOUND,,/imageSize never decreases, which means
that the rule for a rigid body transformation is bound-widening.

Finally, the remaining rule for the Mutate operation keeps BOUNDpp,
BOUNDmax, and imageSize constant. Therefore, the value of BOUNDyn/imageSize
never increases, and the value of BOUND;,,,/imageSize never decreases, which again
means that this rule is bound-widening. Thus, all three proposed rules for the Mutate

operation are bound-widening.

Theorem 5.4. The rule for the Merge operation when the target parameter is NULL is
bound-widening.

Proof: When the target parameter of the Merge operation is NULL, the rule changes the
value of imageSize, BOUNDy,y, and BOUNDy,,. Let the values of beforen, and
beforem.x equal BOUND,in/imageSize and BOUND,,,, /imageSize, respectively. The
values of imageSize, BOUNDy,x, and BOUNDy;, after the rule for the Merge operation
is applied must be determined in order to determine aftery,, and afterm,y.

When the parameters of the Merge operation specify a NULL target image, the
variable imageSize changes to DR_Size. The new value of BOUND,,, is MAX]O,
DR _Size — (imageSize — BOUNDp,)], which contains two possible terms, 0 and
DR _Size — (imageSize — BOUNDy,in). So, the value of aftermi, may either be 0/DR_Size,

which is 0, or (DR_Size — (imageSize — BOUND,;,))/imageSize.

84

Consider the first case when aftern, is 0. Since O is the smallest possible value
for the value in bin HB, beforenmi, = 0. Thus, if afterm, is 0, beforen,, > aftery.

Alternatively, consider when aftern, is (DR_Size - (imageSize -
BOUND;»))/imageSize, and compare it to beforemn, BOUNDmin/imageSize.
Multiplying both expressions by DR _Size gives beforemin a value of (BOUNDp, x
DR_Size)/imageSize and afterm, a value of DR_Size — (imageSize — BOUND,,). Next,
subtracting DR _Size from both expressions gives a total of (BOUNDy, x
DR_Size)/imageSize — DR_Size for beforemin and a total of BOUND;, — imageSize for
aftermin.

The variable beforey, is now equivalent to (BOUNDpi, x DR_Size)/imageSize —
(imageSize x DR_Size)/imageSize, which equals (BOUNDpin x DR_Size) — (imageSize
x DR_Size))/imageSize. By factoring DR _Size in the numerator, beforemin can be
expressed as DR_Size/imageSize x (BOUNDy, - imageSize).

The only difference between the two variables is that beforey,, is multiplied by
DR_Size/imageSize. A Defined Rectangle is always created by cropping a portion of the
image, so the number of pixels in the Defined Rectangle will always be less than or equal
to the number of pixels in the image, which means DR _Size < imageSize. So,
(DR_Size/imageSize) < 1. Similarly, BOUND,;, will always be less than or equal to the
number of pixels in the image, so (BOUNDy,, — imageSize) < 0. The result is that
multiplying (BOUNDy,;» — imageSize) by (DR_Size/imageSize) gives a value that is
greater than or equal to (BOUNDy,, — imageSize). Thus, beforemin = afterm,.

The above paragraphs indicate that beforemin = afterm, irrespective of whether

BOUND,,,» becomes 0 or DR_Size — (imageSize — BOUNDy,,). Now, consider the

85

maximum bound specified by the rule, which sets BOUNDy, to the minimum of
BOUND.x and DR Size. The result is that afterp,, will equal either
BOUND.,x/DR_Size or DR_Size/DR_Size.

For the first case, since DR Size < imageSize, BOUNDy, /DR Size 2>
BOUND.x/imageSize. So, if aftermax equals BOUND . /DR_Size, beforemax < aftermax.
Alternatively, if the second case is true, then afterm,x equals DR_Size/DR_Size, which
means it equals 1. Since this value represents a bound on the percentage of pixels whose
intensities quantize to bin HB, its maximum possible value is 1. Thus, beforema.x must be
less than or equal to 1, which means beforemay < aftermax.

So, irrespective of whether aftern,x equals BOUNDm,/DR_Size or
DR_Size/DR_Size, beforemsx < afterms. In addition, beforemin > aftermi, as described
earlier, so the rule for the Merge operation when the target parameter is NULL is bound-

widening.

Theorem 5.5. The rule for the Merge operation when the target parameter is not NULL
is not bound-widening.
Proof: When the target parameter of the Merge operation is not NULL, the associated
rule may update the value of imageSize, BOUND s, and BOUNDy;in. Let the values of
beforemn and beforen,x equal BOUNDy,n/imageSize and BOUND,,,x/imageSize,
respectively. The values of imageSize, BOUND ,x, and BOUND,;, after the rule for the
Merge operation is applied must be determined in order to determine aftermi, and aftermay.
It is possible that this rule for the Merge operation does not change the value of

imageSize when the base image and the target image are the same size. The rule for the

86

BOUND;.x variable changes its value to the sum of MIN(TargetHB, MAX(0, TargetSize
—DR_Size)) and the minimum of BOUND.x and DR_Size. The first term could equal 0
if TargetHB is 0. This would mean that the new value of BOUNDm, would be
MIN(BOUND,.x, DR_Size). So, when DR_Size < BOUNDy.y, the value of aftermax
would be DR _Size/imageSize. Since DR _Size < BOUNDy,x, DR_Size/imageSize <
BOUND,,..x/imageSize, which means that after,.x < beforemsx. Thus, the rule for the

Merge operation when the target parameter is not null is not bound-widening.

5.1.2. Technique for Speeding up Retrieval Query Processing

To illustrate the importance of bound-widening rules, consider applying the
proposed range query processing algorithm to a virtual image V where all of the rules for
the editing operations in its description are bound-widening. When the BOUNDS
algorithm completes, the BOUND,j, and BOUND,,,,x values are divided by imageSize to
obtain the minimum and maximum percentages. If the range [BOUND,;/imageSize,
BOUND../imageSize] intersects the desired query range [PCTpin, PCThax], then the
virtual image is returned by the query processing algorithm.

The BOUNDS algorithm begins by initializing both BOUND,,;;, and BOUND, .4«
to the value in histogram bin HB corresponding to the base image of V and initializing
imageSize to be the total number pixels in the base image of B. So, if the percentage of
pixels in bin HB in the base image of V is basePercentage, and the total number of pixels
in the base 1s baseSize, then the initial values of BOUNDyin, BOUND ., and imageSize

are basePercentage x baseSize, basePercentage x baseSize, and baseSize, respectively.

87

This means that the initial maximum and minimum percentages generated by the
BOUNDS algorithm are equal to (basePercentagexbaseSize)/baseSize = basePercentage.

Now, consider if the base image of V satisfies the given query. This means that
basePercentage, which is the value in bin HB, is within the desired query range [PCTy;,
PCTmax]. Let Finaly,, and Finalm., represent the values of BOUNDy,./imageSize and
BOUND..x/imageSize after the application of the BOUNDS algorithm. Since all of the
rules for the editing operations in the description of V are bound-widening rules, the
value Final;, will be less than or equal to the initial value of BOUND,/imageSize, and
the value Finaln,x will be greater than or equal to the initial value of
BOUND;..x/imageSize. Both initial values were basePercentage, so the range [Final,,
Final;,.x] contains basePercentage. Since this value is also within [PCTpn, PCTrax], the
ranges [Finalyin, Finaly,] and [PCTmin, PCTmax] must intersect. Thus, V would be
retrieved by the proposed range query processing algorithm.

The above information implies that if a virtual image has a base image that
satisfies the given query and has only editing operations that correspond to bound-
widening rules, then the proposed algorithm will retrieve the virtual image. This
determination can be made without the BOUNDS algorithm being executed, meaning
that the rules for the editing operations do not have to be applied. Therefore, with the
above information, it is possible to develop an algorithm that will produce the same

results as the proposed range query processing algorithm without applying the rules to

each editing operation in the descriptions of the virtual images in the database.

88

5.2. Proposed Data Structure

To avoid applying some of the rules in the description of a virtual image V, a data
structure is needed that stores whether the base image of V satisfies a given query and
whether the editing operations in the description of V have bound-widening rules.
Consequently, this section proposes a data structure that will store this information. The
proposed data structure consists of two different components called the Main Component
and the Unclassified Component.

The Main Component contains a list of the virtual images whose descriptions
contain editing operations that have only bound-widening rules proposed for it. These
virtual images are clustered together based upon the base images that are listed in the first
lines of their respective descriptions, meaning that two virtual images are clustered
together if and only if they have the same base image. Each cluster contains the
histogram identifier corresponding to its associated base image. Therefore, each element
of the Main Component is composed of a tuple <H_id, V_list> where

H id — Histogram identifier

V_list — List of identifiers of virtual images that are derived from the base image

corresponding to H_id

Using the Main Component, the system can identify images that satisfy a given
range query by accessing each stored histogram identifier and checking if the associated
binary image has a value in the desired bin that is within the query range. If so, the
system can immediately return the identifier of the binary image as well as the identifiers
in V_list.

Some of the virtual images may have descriptions that contain at least one editing

operation whose corresponding rule is not bound-widening. The identifiers of such

89

virtual images are stored in the Unclassified Component. To process these identifiers, the

system must apply each of the rules to determine the minimum and maximum bounds on

the number of pixels whose intensities quantize to the desired bin of the range query. So,

the system will execute the BOUNDS algorithm for each virtual image identifier in the

Unclassified Component.

5.2.1. Creation of Proposed Data Structure

The proposed data structure can be constructed as images are inserted into the

database. Each time a binary image is inserted, the identifier for its corresponding

histogram should be added to the Main Component. The list of histogram identifiers

should be kept sorted to make it easier to search for a specific histogram.

/* Identify the histogram of the base image of the input virtual image V */
1.
2.

/* Analyze all of the operations in V to determine if they are all bound-widening. */
3.

/* If all operations in V are bound-widening, add V to the Main Component, otherwise,
add it to Unclassified. */
4,

5.

Identify the base image using the first line of the syntax of virtual image V
Access the histogram corresponding to the base image

While ((V has more ops) and (hist # UNCLASSIFIED))
3.1. Access the rule for the next operation in V
3.2. If the rule is not bound-widening

3.2.1. Mark the virtual image V as unclassified

If V has been marked as unclassified

4.1. Append the identifier of V to the Unclassified Component

else

5.1. Find location in Main Component referring to the base image

5.2. Append the identifier of V to the list of virtual images at the above location

Figure 5-1. Insertion Algorithm for Proposed Data Structure

Each time a virtual image is inserted into the database, the system needs to

determine whether it should be added to the Main Component or the Unclassified

90

Component. To make this determination, the description of the virtual image must be
analyzed in order to identify if it contains any rules that are not bound-widening. If so,
then the identifier of the virtual image is added to the Unclassified Component. If all of
the rules are bound-widening, then the identifier is added to the cluster in the Main
Component corresponding to the base image contained in its description. An algorithm
for performing this insertion is displayed in Figure 5-1.

Figure 5-2 displays the states of the proposed data structure as each element of the
example database is inserted into the system. Figures 5-2a-d display the data structure as
the binary images B1, B2, B3, and B4 are inserted into the underlying database, and
Figures 5-2¢-h display the data structure as the virtual images V5, V6, V7, and V8§ are
inserted. So, after binary image B1 is inserted into the database in Figure 5-2a, its
histogram ID is added to the Main Component with a NULL V_list. After binary image
B2 is inserted in Figure 5-2b, the Main Component has two histogram identifiers H1 and
H2 with both of their corresponding V_list entries set to NULL. This pattern continues
through Figure 5-2d, which displays the Main Component having the four histogram
identifiers corresponding to the four binary images in the database.

Figure 5-2¢ displays the data structure after V5 is inserted into the database. The
only editing operation in the description of V5 is the Merge Operation with a NULL
target parameters, so all of its rules are bound-widening. Thus, the image ID of V5
should be added to the Main Component. It is added into the cluster of the V_list
corresponding to H2 since H2 is the histogram ID corresponding to the base image of V5.
Figure 5-2f displays the data structure after V6 is inserted into the database. Again, all of

its editing operations correspond to rules that are bound-widening, so it is added to the

91

Main Component to the cluster corresponding to its base image. This pattern continues
through Figure 5-2h in which virtual image ID V8 is added to the cluster of H4 since the
base image of V8 is B4. If any of the virtual images contained an editing operation that
was bound-widening, its ID would have been added to the Unclassified Component

instead of the Main Component.

Main Unclassified Main Unclassified
Component Component Component Component
Hl NULL o

Figure 5-2a

e

Figure 5-2¢ Figure 5-2d
Main Unclassified Main Unclassified
Component Component Component Component
7
¢
= 4
Figure 5-2¢ Figure 5-2f
© ©
Figure 5-2¢g Figure 5-2h

Figure 5-2. Example Data Structure as Images are Inserted into Database

92

5.3. Range Query Processing Algorithm

The proposed data structure arranges the virtual images based on whether all of
their rules are bound-widening. This section presents an algorithm in Figure 5-3 that uses
the proposed data structure to avoid applying some of the rules for the editing operations
stored within the descriptions of the virtual images in the database. The first three steps
of the algorithm are used to identify the desired histogram bin from the query, and they
are the same as the steps for the range query processing algorithm proposed in Chapter 3
that does not use the data structure.

The fourth step in the algorithm sequentially accesses each cluster in the Main
Component and checks to see if its corresponding histogram satisfies the given query. If
so0, the binary image identifier in the histogram as well as the virtual image identifiers in
the associated list are all added to the satisfying set, which is performed in Steps 4.2.1-
4.2.3. Note that the virtual images in the associated list are retrieved without having to
execute the BOUNDS algorithm, which means that the rules do not have to be applied for
the editing operations in their descriptions. Alternatively, if the histogram does not
satisfy the query, then the BOUNDS algorithm must be performed on each element in the
associated virtual image list in order to determine if it should be retrieved by the
algorithm.

The fifth step sequentially access every virtual image whose identifier is in the
Unclassified Component and executes the BOUNDS algorithm in order to determine
whether each satisfies the given query. If so, then the identifier is added to the set of
retrieved images, results. When this step ends, the results set will contain all of the

images that satisfy the given query, so the final step of the algorithm is to display them.

93

/* Initialize the parameters of the given query */

1. Setresults=

2. Compute parameters (PCT i, PCTyay, Co) from query syntax

3. Compute Histogram Bin (HB) from query color Cq using quantization formula

/* Identify virtual images in Main Component that satisfy the query */
4. For each element <H_id, V_list> in the Main Component

/* Determine if the binary image of each element satisfies the given query. */
4.1. pixels = the value in bin HB of histogram H_id

/* If the binary image does satisfy the query, all elements of V_list satisfy the
query as well */
4.2. If ((pixels > PCT) and (pixels < PCTray))

4.2.1. B =image ID corresponding to H_id

4.2.2. AddB toresults

4.2.3. Add the elements in V_list to results

/* If the binary image does not satisfy the query, the BOUNDS algorithm
must be applied to each virtual image referenced in V_list to determine if it
satisfies the query.. */
4.3. else
4.3.1. ForeachVinV_list
4.3.1.1. Execute the BOUNDS algorithm for V
4.3.1.2. If bounds overlap [PCT i, PCTinax]
4.3.1.2.1. AddV to set results

/* The BOUNDS algorithm must be applied to each virtual image in the
Unclassified Component to determine if it satisfies the query. */
5. For each element V in the Unclassified Component
5.1. Execute the BOUNDS algorithm for V
5.2. If bounds overlap [PCTn, PCTax]
5.2.1. AddV toresults

/* Display the retrieved images by rendering the binary images and instantiating
the virtual images. */
6. Display images in results set

Figure 5-3. Range Query Processing Algorithm Using Proposed Data Structure

Histogram ID | Image ID | Bino | Bin1 | Binz | Bing | Bing | Bins | Bing | Binz
H1 B1 0 1]0][00 | 0] 00604
H2 B2 05105/ 0] 0000710
H3 B3 081 01011000002
H4 B4 0 0] 0[O0 1] 0] 00406

Table 5-1. Histograms of the Binary Images in the Example Database

94

5.3.1. Range Query Processing Algorithm Steps

The following example illustrates using the proposed data structure to process the
example range query "Retrieve all images that are at least 50% white". The query Is
applied to the example database used in Chapter 3. The histograms of the binary images
in the database are displayed in Table 5-1.

As indicated earlier, the first three steps of the range query processing algorithm
that uses the proposed data structure are the same as the algorithm proposed in Chapter 3.
The first step initializes the satisfying set SQ to be empty. The next step identifies the
parameters of the example query, which produces PCTmin equal to 0.5, PCTmax equal to
1.0, and Cq equal to (255, 255, 255). Finally, the last step quantizes color Cq to bin
number 7.

Step 4 processes the images contained in the Main Component by executing a
loop for each existing <H id, V_list> tuple. The first tuple is <H1, NULL>, which
means that H_id equals H1 and V_list is NULL. Step 4.1 accesses bin 7 of histogram H1
and sets pixels equal to its value, which is 0.4. Since this value is not within the query
range [0.5, 1], the else condition in Step 4.3 executes. Step 4.3.1 executes a loop for each
element in V_list, but since it is NULL, there are no elements. So, the loop does not
execute.

The second tuple in the Main Component is <H2, V5>. Since H_id is H2, Step
4.1 sets pixels to the value in bin 7 of histogram H2, which is 0. As before, this value is
not within the query range [0.5, 1], so the else condition of Step 4.3 executes. Since set

V_list contains V5, Step 4.3.1 executes for it. Step 4.3.1.1 executes the BOUNDS

95

algorithm for V5 yielding a range of [0, 0] as it did in Chapter 3. This range does not
overlap the query range, so V5 is not added to set SQ.

The third tuple in the Main Component is <H3, V6>. The variable H_id is now
H3, so 4tep 5.1 sets pixels to the value in bin 7 of that histogram, which is 0.2. As in the
previous tuples, this value is not in the query range [0.5, 1], so Step 4.3.1 executes for
each element in the variable V _list. The variable contains V6, so the BOUNDS
algorithm executes for the associated virtual image in Step 4.3.1.1. As indicated in
Chapter 3, the result of applying the algorithm is the range [0.2, 0.4]. Since this range
does not intersect the query range, V6 is not added to set SQ.

The last tuple in the Main Component is <H4, V7 V8>. The variable H_id is now
H4, so Step 4.1 sets pixels to the value in bin 7 of that histogram, which is 0.6. Unlike
the previous tuples, this value is within the query range [0.5, 1], so Step 4.2.1 executes.
This step obtains the identifier B4 from the current H_1d, and then Step 4.2.2 adds it to
set SQ. Finally, Step 4.2.3 adds all of the elements in V_list to the satisfying set, so V7
and V8 are added to set SQ.

The fifth step in the algorithm processes the virtual images that are contained in
the Unclassified Component. The algorithm executes the BOUNDS algorithm for each
virtual image identifier contained within the Unclassified Component. Figure 5-2h
displays the contents of the proposed data structure using the example database. In the
figure, the Unclassified Component is NULL, which means that it does not contain any
virtual image identifiers. Consequently, the loop in Step 4 does not execute.

When Step 5 terminates, set SQ contains B4, V7, and V8, which are the images

that satisfy the given query. Again, these are the same results as produced by the

96

algorithm proposed in Chapter 3. This algorithm concludes by displaying the images in
set SQ for the user.

To summarize, when using the proposed data structure to process the range query
"Retrieve all images that are at least 50% white" on the example database, the BOUNDS
algorithm only has to be executed for VS and V6. This is in contrast to the proposed
range query processing algorithm in Chapter 3, which must execute the BOUNDS

algorithm for all of the virtual images, V5, V6, V7, and V8.

97

CHAPTER 6

HISTOGRAM-BASED APPROACHES FOR SEARCHING BY COLOR

The approach presented in the previous chapters presents an approach for
processing content-based searches using rules based on the description of virtual images.
As with the rule-based approach, each of the approaches in this chapter extract and store
histograms from the binary images in the database. These approaches, however, differ in

how they process images stored virtually.

6.1. Virtual Storage with Instantiation while Searching (VSIS) Approach

The first approach for searching virtual images based on color is called the Virtual
Storage with Instantiation while Searching (VSIS) approach, and its strategy is to convert
virtual images into a binary format during searching. Once the images are instantiated,
the query processor can extract histograms from them as in the conventional approach.
The VSIS algorithm for processing range queries is displayed in Figure 6-1, and its first
four steps are the same as in the rule-based algorithms for processing range queries since
they process binary images in the same manner. Step 5 of the VSIS algorithm for
processing range queries is a loop that executes once for each virtual image. In the loop,
the virtual image is instantiated, and then its histogram is extracted so that it can be
checked to determine if it is within the desired query range. The instantiated versions of

those that do satisfy the query are saved so that they can be retrieved in the final step.

98

/* Identify the desired histogram bin from the parameters of the range query */
1. Initialize Results to &

2. Compute parameters (PCT pin, PCTmax, Co) from given query

3. Compute Histogram Bin (HB) from query color Cq

/* Search stored histogram bins */
4. For each histogram tuple stored in the database
4.1 If bin HB is within query range [PCT n, PCTpuax]
4.1.1 Add image ID stored in histogram tuple to Results

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
5. For each Virtual Image
5.1 Instantiate Virtual Image
5.2 Extract Histogram from Instantiated Image
5.3 If bin HB is within query range [PCT n, PCToax]
5.3.1 Add image ID stored in histogram tuple to Results
5.3.2 Save Instantiated Image for Step 6

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure 6-1. VSIS Algorithm for Processing Range Queries

The VSIS algorithm for processing nearest neighbor queries is displayed in Figure
6-2, and the first five steps are similar to the rule-based approach since it again processes
binary images in the same manner. Step 6 of the VSIS algorithm is a loop that executes
once for each virtual image in the database. During each iteration, the algorithm
instantiates the virtual image, extracts a histogram from it, and computes the distance
between that histogram and the one extracted from the query image. The final step of the
above algorithm displays the k nearest images. As with the range query processing
algorithm, since the virtual images have already been instantiated, the VSIS algorithm

can simply load and display each instantiated virtual image that satisfies the query.

99

/* Identify the parameters of the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i" element of the array
contains the identifier of the i" known closest image and its distance to Q. The following
code initializes the array. */
3. Fori=1tok

3.1. Set the image field of the i element in NEAREST to null

3.2. Set the distance field of the i element in NEAREST to infinity
4. Set smallest equal to the distance field of the k™ element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database
5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest
5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k" element in NEAREST

/¥ Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
6. For each Virtual Image
6.1. Instantiate Virtual Image
6.2. Extract Histogram H from Instantiated Image
6.3. Compute d, the distance between H and HQ.
6.4. if d < smallest
6.4.1. Obtain the object id associated with H and call it image
6.4.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
6.4.3. Set smallest equal to the distance field of the k" element in NEAREST
6.5. Save Instantiated Image for Step 7

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 6. */
7. Display first k images contained in NEAREST array

Figure 6-2. VSIS Algorithm for Processing Nearest Neighbor Queries

6.2. Virtual Storage with Instantiation during Insertion (VSII) Approach
The second approach in this chapter is the Virtual Storage with Instantiation

during Insertion (VSII) approach, which again saves space by storing edited images

100

virtually. This approach differs from VSIS in that it instantiates the virtual images and
extracts histograms from them when they are inserted into the database. This is
performed at insertion time so that the extracted histograms can be stored. After
extraction, the instantiated images are discarded leaving only the virtual images and their
associated histograms.

Since histograms are extracted from every image stored in the database in both
approaches, the VSII algorithms for processing retrieval queries are the same as the
conventional algorithms. The only difference is that the VSII algorithms may retrieve
images stored virtually, which means that they must be instantiated before they can be
displayed.

The VSII algorithm for processing range queries is displayed in Figure 6-3. The
first three steps are used to initialize the variables and identify the parameters used by the
query, and they are the same as in the VSIS and rule-based algorithms. The fourth step
starts a loop that will execute once for each image in the database irrespective of how it is
stored. Each iteration of the loop retrieves the current image identifier and determines if
the value in the desired bin of its corresponding histogram is within the query range. The
final step is to display the retrieved images which requires instantiating any virtual

images that were identified in the previous step.

101

/* Identify the desired histogram bin from the parameters of the range query */
1. Initialize Results = &

2. Compute parameters (PCT yn, PCT yax, Cq) from query

3. Compute Histogram Bin (HB) from query color Cq

/* Search stored histogram bins */
4. For each histogram stored in the database
4.1. If bin HB is within query range [PCTpn, PCTmax]
4.1.1. Add image ID stored in tuple to Results Set

/* Render all retrieved images */
5. Display images contained in Results set

Figure 6-3. VSII Algorithm for Processing Range Queries

The VSII algorithm for processing nearest neighbor queries is displayed in Figure
6-4. These first four steps are the same as in the VSIS and rule-based approaches.
Specifically, the first step identifies the parameters used by the query, the second step
extracts a histogram from the query image, and the third and fourth steps initialize the
variables used to track the k nearest distances. Step 5 of the VSII algorithm for
processing nearest neighbor queries is a loop that executes once for each histogram tuple
stored in the database. The algorithm computes the distance between the current
histogram tuple and the histogram extracted from the query image during each pass
through the loop. Since histograms are extracted for all images, both the virtual and
binary images have been processed when the loop completes, so the final step of the

algorithm is to display the k nearest images.

102

/* Identify the parameters of the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i" element of the array
contains the identifier of the i" known closest image and its distance to Q. The following
code initializes the array. */
3. Fori=1tok

3.1. Set the image field of the i" element in NEAREST to null

3.2. Set the distance field of the i™ element in NEAREST to infinity
4. Set smallest equal to the distance field of the k™ element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database
5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest
5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k™ element in NEAREST

/* Render all retrieved images */
6. Display the images contained in the first k image fields of the NEAREST array.

Figure 6-4. VSII Algorithm for Processing Nearest Neighbor Queries

103

CHAPTER 7

PERFORMANCE EVALUATION OF ALGORITHMS

This chapter presents a performance evaluation of the proposed algorithms for
retrieving images in a multimedia database management system that uses virtual images.
First, this chapter presents the probability that the proposed rules for retrieving virtual
images will produce an error. Next, this chapter compares the proposed approaches with
the conventional approach for processing retrieval queries based on in terms of storage

space and execution time.

7.1. Error Probabilities

Two types of errors can occur when processing image retrieval queries. The first
type is known as a false positive, and it occurs when the algorithm retrieves an image that
does not satisfy the query. The second type is known as a false negative, and it occurs
when an image that satisfies the query is not retrieved by the algorithm. The first type of
error affects the precision of the algorithm since precision is computed as the number of
retrieved and relevant images divided by the number of retrieved images [Falo, 1996].
The second type of error affects the recall of the algorithm since recall is computed as the
number of retrieved and relevant images divided by the number of relevant images in the
database [Falo, 1996].

Figure 7-1 illustrates a false positive and a false negative. In the figure, there are
two lines with each representing the percentage of pixels [0-1] in a virtual image V that

are of color Cq. The point marked “Actual” represents the actual percentage of pixels

104

that are of color Cq in V when it is instantiated. The range marked [PCTin, PCTinar/
represents the range desired by the given query. The range marked “Computed Bounds”
represents the boundary range [BOUND i, BOUNDax], Which is computed using the
rules of the proposed algorithm for processing range queries. The top line in Figure 7-1
illustrates a false positive error that occurs when Actual does not lie within the [PCT
PCT,.] range specified by the query, but that query range does intersect the range
formed by the Computed Bounds, which means the rule-based algorithm retrieves the
image. The bottom line in Figure 7-1 illustrates a false negative error which occurs when
Actual does lie within the [PCT,n, PCT,q/ range specified by the query, but the query
range does not intersect the range formed by the Computed Bounds, which means the

rule-based algorithm does not retrieve the image.

Actual [PCT,;, PCT,,] Corryd Bounds

N
—— == —

0 False Positive 1

Actual [PCT;,PCT,,] Computed Bounds
|

0 False Negative i

Figure 7-1. Types of Image Retrieval Errors

7.1.1. Probability of False Positives
This section will present the probability that a retrieved virtual image V is a false

positive. In order to stay consistent with the variables presented in Figure 7-1, let Query

105

represent the percentage range specified by the given query, which means that Query =
[PCTmin, PCTmax]. In addition, let Actual represent the percentage of pixels that are of
color Cq in V when it is instantiated, and let Bounds represent the range formed by the
maximum and minimum produced by the rules of the proposed algorithm, which means
that Bounds = [BOUNDi, BOUND,,,,x]. Using these variables, a false positive occurs
when Query and Bounds intersect, but Actual ¢ Query.

The rule-based algorithm only returns an image when Query and Bounds
intersect, which means that when an image is returned, the probability that it is a false
positive is the probability that Actual ¢ Query. To calculate this value, it is necessary to
define the values that Actual can have. Since Actual is a percentage, it can have any
value between 0 and 1. Using this information, assume that Actual can be any value in
that range with equal probability, meaning that it follows the uniform probability
distribution. Since the possible values are between 0 and 1, the density function of

Actual, f{Actual), is 1/(1 — 0) = 1 [Mend, 1992].

f(Actual)
1
0 N~
Query
Actual

Figure 7-2. Uniform Probability Distribution Function for Actual

106

The probability that Actual ¢ Query is equal to 1 — the probability that Actual €
Query. To find this probability, it is necessary to find the area under the portion of the
curve marked Actual in Figure 7-2. The area of this rectangle equals its width since its
length = 1. Since Query represents the range [PCTrmin, PCTrax], the width is PCTax —
PCTmin. This means that the probability that Actual € Query is PCTyax — PCTmin, so the
probability that Actual ¢ Query is as follows.

1 — (PCTnax — PCTnin)

f(Actual) Query
o i
(BOUNDmaX HHEHH
_BOUND..,) . %
-_—

i eases

0 A A A 1
PCT PCT

min max

BOUND,, BOUND,,,

Actual

Figure 7-3. Uniform Probability Distribution Function when Actual € Bounds

The probability that Actual ¢ Query can be reduced by restricting the range of
values that Actual may occupy. If it is known that Actual € Bounds, then the width of the
probability distribution function for Actual is BOUNDyax — BOUNDin, and the height of
the function is 1/[BOUND,x — BOUND,;] [Mend, 1992] as illustrated in Figure 7-3.

To compute the probability that Actual does not lie within Query, it is necessary to

107

compute the area of the region of the probability density function that does not contain
Query. That area is 1 — the area of the region that contains the intersection of Query and
Bounds. The height of the intersection is as follows.

1
BOUND,_ - BOUND,,,

max

In addition, the width of the intersection is as follows.

Min(BOUND, . ,PCT__)— Max(BOUND

max ? max min ?

PCTmin)

Consequently, the area of the intersection is represented by the following expression.

Min(BOUND

max ? max

BOUND,_ - BOUND,,,

PCT..)~ Max(BOUND

min ?

Thus, the area of the region that does not contain Query is the following.

_ Min(BOUND,

max ?

BOUND,. - BOUND,,,

PCT_,) — Max(BOUND

min 2

X PCT,,)

7.1.2. Probability of False Negatives

This section identifies the probability that a virtual image that was not retrieved
by the rule-based algorithm is a false negative. As in the previous section, let Query
represent the percentage range specified by the given query, let Actual represent the
percentage of pixels that are of color Cq when the virtual image is instantiated, and let

Bounds represent the range formed by the maximum and minimum bounds produced by

108

the rules of the proposed algorithm. Using these variables, a false negative occurs when
Query and Bounds do not intersect, but Actual € Query. Note that this also implies that
in a false negative, Actual ¢ Bounds.

To compute the probability that a false negative occurs, consider that although
Actual cannot be within the range Bounds, it may be anywhere else within [0, 1] with
equal probability. Thus, since Bounds is represented by the range [BOUNDyin,
BOUND.x], the probability distribution function for Actual will appear as in Figure 7-4.
The width of the function is as follows.

1~ (BOUND,,, — BOUND,,,)

In addition, the height of the function is represented by the following expression.

1
1- (BOUND,,, — BOUND,,)

The probability that Actual is in query represents the probability that a false negative
occurs, and it is equal to the area of the rectangle identified by Query in Figure 7-4,
which is equal to the following expression.

(PCT

max

— PCT.,. }x(1- BOUND,,, +BOUND,,)

109

Actual
fidetual Query Computed

1/ —
(1-BOUND,,,,
+BOUND,,;.)

0 | ' 1
PCT_. PCT,__ BOéNDmin B\OlH\IDma

Actual

X|

Figure 7-4. Uniform Probability Distribution Function when Actual ¢ Bounds

7.2. Execution Time and Storage Space

In this section, the proposed algorithms are compared to similar sequential
algorithms for conventionally retrieving images using color. The conventional approach
is the Binary Storage with Histograms (BSH) approach, which stores all of the images in
the database in a traditional binary format and retrieves them using conventional
histogram techniques. The following sections compare the approaches based on
permanent storage space, image insertion time, range query processing time, and nearest
neighbor query processing time. Table 7-1 displays the parameters that are used in each

analysis along with their descriptions.

110

Parameter Description

N Number of Images in the Database

NBinary Number of Binary Images in the Database

Nvirya Number of Virtual Images in the Database

Nr Expected Number of Retrieved Images

NRainary Expected Number of Retrieved Images that are Binary

NRvirtual Expected Number of Retrieved Images that are Virtual

Nop Average Number of Operations within a Virtual Image

Naounds Expected Number of Times BOUNDS is executed for Nearest Neighbor Query
TRange Average Time needed to Identify Parameters of Range Query

Thn Average Time needed to Identify Parameters of Nearest Neighbor Query
Thccess Average Time needed to Access an Image

Tinstant Average Time needed to Instantiate a Virtual Image

Toisplay Average Time needed to Display an Image

Textract Average Time needed to Extract a Histogram from a Binary Image

Thist Average Time needed to Access and Compare Histogram Bins

Toist Average Time needed to Compute the Distance Between Two Histograms
Thase Average Time needed to Identify the Base image of a Virtual Image

Tsize Average Time needed to Identify the Number of Rows and Columns of an Image
T aSize Average Time needed to Access the Stored Numbers of Rows & Columns
TBounds Average Time needed to Execute the BOUNDS algorithm on a virtual image
Tirtual N Average Time needed to Execute the Virtual_NN algorithm

Trule Average Time needed to Apply a Rule for an Editing Operation

Top Average Time needed to Apply an Editing Operation to an Image

Trype Average Time needed to Determine if an Image is Binary or Virtual

Tas Average Time needed to Add an Image ID to the Set of Satisfying Images
Tas Average Time needed to Add a Binary Image to the Database

Tav Average Time needed to Add a Virtual image to the Database

Tan Average Time needed to Add a Histogram to the Database

Sginay Average Size of Binary Images in the Database

Sviryal Average Size of Virtual Images in the Database

Shist Average Size of Histogram Extracted From Binary Images

Table 7-1. Parameters Used in Performance Evaluation

111

7.2.1. Binary Storage with Histograms Approach (BSH)

The BSH algorithms are for systems that store all images in a binary format. A
histogram from each image as it is inserted into the database, and the histogram is stored
along with the object ID of the image. For range queries, searching is performed by
accessing the extracted histograms and checking the appropriate bins representing the
query color. When processing nearest neighbor queries, a histogram is extracted from the
query image and compared to the histograms stored in the database to identify the ones

that are the most similar.

7.2.1.1. Permanent Storage Space for BSH Algorithms

The above description implies that a system that uses the BSH algorithms to
retrieve images will need space to store all of the images in a binary format and will need
space to store their associated histograms. Using the variables from Table 7-1, the total
space used by the binary images is N x Sginary, and the total space used by the histograms
is N x Sy;st. Thus, the total permanent storage space used by BSH is as follows.

(N xSgar) +(NXSh,)

Binary

7.2.1.2. Average Insertion Time for BSH Algorithms

The BSH algorithm for inserting images is displayed in Figure 7-5. Since all
images are stored in a binary format in this approach, histograms can be extracted from
them. So, the first step to inserting an image is to extract its histogram from it. The next
steps are to store the image and the histogram in the database. Using the variables in

Table 7-1, the average time it takes to perform Step 1 is Tgxract, the average time it takes

112

to perform Step 2 is Txp, and the average time it takes to perform Step 3 is Tan. So, the
average total time it takes to insert an image using the algorithm is as follows.

T,

Extract

+T+T,,

/* Since all images are binary, extract a histogram from each image when it is inserted into the
database. */

1. Extract histogram from given image
2. Store image in database using image ID
3. Store histogram and image ID in database using Histogram ID

Figure 7-5. BSH Algorithm for Inserting Images

7.2.1.3. Average BSH Range Query Processing Time

The BSH algorithm for processing range queries is displayed in Figure 7-6. The
first three steps are used to initialize the variables and identify the parameters used by the
query, and they are the same for each of the BSH, VSIS, VSII, and rule-based algorithms.
The time it takes to complete these steps is represented by the variable Trange.

The fourth step starts a loop that will execute once for each image in the database,
so it will execute N times. Each iteration of the loop retrieves the current image identifier
and determines if the value in the desired bin of its corresponding histogram is within the
query range. The average time it takes to access and compare a histogram bin to a range
is represented by the variable Ty, and the average time it takes to add an image
identifier to the set of retrieved images is Tas. The comparison of the histogram bin will
occur N times, while adding an image identifier to the set of retrieved images will occur
Nr times. Thus, the total time it takes to complete Step 4 on average is as follows.

(Nx Ty)+ (NgxT)

113

The final step in the BSH algorithm for processing range queries is to display the
retrieved images. Since all of the images in the database are already in a binary format,
the average time it takes to load and display a single image is Tpisplay + Taccess: Since Ng
images are retrieved, the total average time for Step 5 is as follows.

+T

Access)

N, x(I,

isplay

This means that the total time it takes to execute the BSH algorithm for processing range
queries is represented by the following expression.

+7T

(T;Iange)+(NxTHist)+(NRXTAS)+(NRX(TD Access))

isplay

/* Identify the desired histogram bin from the parameters of the range query */
1. Initialize Results = J

2. Compute parameters (PCTn, PCTax, Cq) from query

3. Compute Histogram Bin (HB) from query color Cq

/* Search stored histogram bins */
4. For each histogram stored in the database
4.1. If bin HB is within query range [PCT i, PCTax]
4.1.1. Add image ID stored in tuple to Results Set

/* Render all retrieved images */
5. Display images contained in Results set

Figure 7-6. BSH Algorithm for Processing Range Queries

7.2.1.4. Average BSH Nearest Neighbor Query Processing Time

The analysis for the time taken to process a nearest neighbor query considers the
average time needed to identify the parameters of the query, the average time needed to
extract a histogram from an image, the average time needed to compute the distance

between two histograms, and the average time needed to instantiate or display an image.

114

Although there are other steps in the algorithm such as comparison and assignment
statements, the average time used to perform those steps are considered negligible in
comparison to the average times used to perform the steps listed earlier.

The BSH algorithm for processing nearest neighbor queries is displayed in Figure
7-7. These first four steps are the same for each of the BSH, VSIS, VSII, and rule-based
approaches. Specifically, the first step identifies the parameters used by the query, the
second step extracts a histogram from the query image, and the third and fourth steps
initialize the variables used to track the k nearest distances. Since the average time it
takes to initialize the variables is considered negligible, the average time it takes to

complete the first four steps is Tnn + Textract-

/* Identify the parameters of the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i" element of the array
contains the identifier of the i"* known closest image and its distance to Q. The following
code initializes the array. */
3. Fori=1tok

3.1. Set the image field of the i element in NEAREST to null

3.2. Set the distance field of the i element in NEAREST to infinity
4. Set smallest equal to the distance field of the k™ element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database
5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest
5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
5.2.3. Setsmallest equal to the distance field of the k™ element in NEAREST

/* Render all retrieved images */
6. Display the images contained in the first k image fields of the NEAREST array.

Figure 7-7. BSH Algorithm for Processing Nearest Neighbor Queries

115

Step 5 of the BSH algorithm for processing nearest neighbor queries is a loop that
executes once for each histogram tuple stored in the database, which means that it
executes N times. The algorithm computes the distance between the current histogram
tuple and the histogram extracted from the query image during each pass through the loop
in Step 5.1. Each distance computation takes an average of Tpis time, so the total time
for Step 5.1 is N x Tpig. The remainder of the loop is considered negligible.

The final step of the above algorithm displays the k nearest images. Since each of
the images in the database is stored in a binary format, the algorithm can load each image
before displaying it. Thus, the total average time used te perform Step 6 is as follows.

T

Access)

NR x (TDisplay +
Therefore, the average time it takes to execute the BSH algorithm for processing nearest
neighbor queries is represented by the following expression.
(TNN + TExtract) + (N X TDist) + (NR X (TDisplay + TAccess))
7.2.2. Virtual Storage with Instantiation while Searching (VSIS) Approach
This section presents the analysis of the VSIS algorithms that were proposed in
the previous chapter. These algorithms store derived images virtually and search them by

instantiating them at the time queries are submitted to the system.

7.2.2.1. Permanent Storage Space for VSIS Algorithms
A system that uses the VSIS algorithms to retrieve images will need space to store

virtual images, binary images, and histograms from the binary images. Using the

116

variables from Table 7-1, the total space used by the virtual images 1S Nvirtual X Svirtar, the
total space used by the binary images 1S Npinary X Sginary, and the total space used by the
histograms is Npinary X Smist. Thus, the total permanent storage space used by the VSIS

algorithms is as follows.

(Nirtat + Svirtuar) + (N Bingry % (S Binary T Shise))

7.2.2.2. Average Insertion Time for VSIS Algorithms

The VSIS algorithm for inserting images is displayed in Figure 7-8. If the
inserted image is binary, a histogram must be extracted from it before it is added to the
database. Consequently, the first step to inserting an image is to determine whether it is
virtual or binary. The average time it takes to perform this step is Tyye. If the image is
binary, then the next steps are to extract its histogram, and store the image and histogram
in the database. Using the variables in Table 7-1, the average time it takes to perform
these steps 1S Texwact + Tap + Tan. So, the average total time it takes to insert a binary
image using the BSH algorithm is equal to the following expression.

T,

Extract + TAB + TAH

Out of the N images in the database, these steps will be performed Ngipary times.
Alternatively, if the image is virtual, the average time it takes to insert it is Tay. This
case will occur Nvirmua times. Thus, the total average time it takes to execute the VSIS
insertion algorithm is represented by the following expression.

(N X TType) + (NBinary X (TExtract + TAB + TAH)) + (N

N

xTyy)

Virtual

117

/* Histograms should be extracted from any binary images inserted into the database, while
virtual images can be inserted without extracting any values */
1. If image is binary
1.1 Extract the histogram from given image
1.2 Store the image in the database using its identifier
1.3 Store the histogram and image identifier together in the database
2. Else
2.1 Store virtual image in database using its identifier

Figure 7-8. VSIS Algorithm for Inserting Images

/* Identify the desired histogram bin from the parameters of the range query */
1. Initialize Results to &

2. Compute parameters (PCT i, PCTyux, Co) from given query

3. Compute Histogram Bin (HB) from query color Cq

/* Search stored histogram bins */
4. For each histogram tuple stored in the database
4.1 If bin HB is within query range [PCT i, PCTpax]
4.1.1 Add image ID stored in histogram tuple to Results

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
5. For each Virtual Image
5.1 Instantiate Virtual Image
5.2 Extract Histogram from Instantiated Image
5.3 If bin HB is within query range [PCT i, PCTax]
5.3.1 Add image ID stored in histogram tuple to Results
5.3.2 Save Instantiated Image for Step 6

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 5. */
6. Display images contained in Results set

Figure 7-9. VSIS Algorithm for Processing Range Queries

7.2.2.3. Average VSIS Range Query Processing Time
The VSIS algorithm for processing range queries presented previously is

displayed again in Figure 7-9, and its first three steps are the same as in the BSH

118

algorithm for processing range queries. The time it takes to complete these steps is
represented by the variable Trang. The fourth step is also the same as in the BSH
algorithm in that it starts a loop that will execute once for each binary image in the
database. Since there are only Npinary images stored in the binary format, the loop will
only execute Nginary times. Each iteration of the loop behaves as in the BSH algorithm, so

the total average time it takes to complete Step 4 is as follows.

(N

Binary % Ty) +(N RBinary % Ty)

Step 5 of the VSIS algorithm for processing range queries starts a loop that
executes once for each of the Nyyywa virtual images. Step 5.1 instantiates the current
virtual image, and Step 5.2 extracts a histogram from it. The total average time to
complete these steps 1S Tinstant + TExtract. Step 5.3 is similar to Step 4.1 in that it compares
the value in the desired bin to the query range, which takes an average of Ty time.
Thus, the total average time it takes to complete Steps 5.1 through 5.3 is as follows.

N,

Virtual

+7,

Extract

x (7,

Instant

+THist)
The number of virtual images that will be added to the satisfying set is represented by the
variable Ngryirua, S0 the total time Step 5.3.1 will use on average is Nryiruat X Tas.

Therefore, the total average time for Step 5 is equal to the following expression.

(NVirtunl‘ X (]']

ns tan ¢

+7T,

getraee T Lrise)) T (N xTys)

Virtual

The final step in the VSIS algorithm for processing range queries is to display the

retrieved images. The virtual images in the database were converted into a binary format

119

in Step 5.2, so all of the retrieved images are in binary format. Consequently, the average
time it takes to load and display the retrieved images is the same as in the BSH algorithm
for processing range queries, which is as follows.

Nox Ty + T,

isplay Access)

Thus, the total time it takes to execute the above VSIS algorithm is as follows.

+ T,

(TR) + (N x THist) + (NR Extract

(N

xT,o)+ (N,

Virtual

x(T,

ns tan t

+ THist)) +

ange Binary Binary

1 X TAS) + (NR x (TDisplay + TAccess))

RVirtua

7.2.2.4. Average VSIS Nearest Neighbor Query Processing Time

The VSIS algorithm for processing nearest neighbor queries is displayed again in
Figure 7-10, and its analysis is similar to the analysis of the BSH algorithm in that it only
considers the average time needed to identify the parameters of the query, the average
time needed to extract a histogram from an image, the average time needed to compute
the distance between two histograms, and the average time needed to instantiate or
display an image. Consequently, the total average time it takes to complete the first four
steps of the VSIS algorithm is as follows.

T +T,

nn Extract

120

/* Identify the parameters of the nearest neighbor query. */
1. Identify the parameters k and Q from given query
2. Let HQ be Histogram Extracted from the Query Image Q

/* As the algorithm proceeds, the system must track the known k nearest neighbors at all
times. This information is kept in the NEAREST array. The i element of the array
contains the identifier of the i" known closest image and its distance to Q. The following
code initializes the array. */
3. Fori=1tok

3.1. Set the image field of the i™ element in NEAREST to null

3.2. Set the distance field of the i™ element in NEAREST to infinity
4. Set smallest equal to the distance field of the k"™ element in NEAREST

/* Identify k closest binary images using their histograms stored in the database. */
5. For each histogram tuple, H, stored in the database
5.1. Compute d, the distance between H and HQ.
5.2. if d < smallest
5.2.1. Obtain the object id associated with H and call it image
5.2.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
5.2.3. Set smallest equal to the distance field of the k™ element in NEAREST

/* Determine the virtual images that satisfy the query by instantiating them and
extracting their histograms. Then, process the histograms in the same manner as for the
binary images. */
6. For each Virtual Image
6.1. Instantiate Virtual Image
6.2. Extract Histogram H from Instantiated Image
6.3. Compute d, the distance between H and HQ.
6.4. if d < smallest
6.4.1. Obtain the object id associated with H and call it image
6.4.2. Insert d and image into the NEAREST array so that the array remains
sorted based on the distance fields.
6.4.3. Set smallest equal to the distance field of the k™ element in NEAREST
6.5. Save Instantiated Image for Step 7

/* Render all retrieved images since any retrieved virtual image was converted to a
binary format in Step 6. */
7. Display first k images contained in NEAREST array

Figure 7-10. VSIS Algorithm for Processing Nearest Neighbor Queries

Step 5 of the algorithm is a loop that executes once for each histogram tuple
stored in the database, which means that it executes Nginary times. The algorithm

performs a distance computation in Step 5.1, so the average total time used to perform

121

Step 5.1 is Npinary X Tpis. As in the BSH algorithm for processing nearest neighbor
queries, the remainder of the loop is considered negligible.

Step 6 of the VSIS algorithm is a loop that executes once for each virtual image in
the database. During each iteration, the algorithm instantiates the virtual image, extracts
a histogram from it, and computes the distance between that histogram and the one
extracted from the query image. Thus, each iteration through the loop requires an
average of time equal to the following expression.

T,

Ins tant

+T

Extract + ‘T Dist
Consequently, the total average time required by Step 6 is represented as follows.

NVirtual X (]}ns tan¢ + T + TDist)

Extract

The final step of the above algorithm displays the k nearest images. Since this
algorithm instantiates all of the virtual images in Step 6, each of the retrieved images is in
a binary format. Thus, the VSIS algorithm can simply load and display each binary
image as with the BSH algorithm. The total average time used to perform Step 7, then is
the same as in the BSH algorithm, which is as follows.

+7

Access)

Ny x (T,

isplay

Therefore, the average time it takes to execute the VSIS algorithm for processing nearest

neighbor queries is as follows.

(TExtract) + (NBinary x TDixt) + (NVirtual x (Tlns tant + TExtract + TDist)) + (NR X (TDiSpla)' + TAccess))

122

7.2.3. Virtual Storage with Instantiation while Inserting (VSII) Approach

In this approach, the derived images are stored virtually while the base images
remain stored in a binary format. This approach differs from the VSIS approach in that
histograms are extracted and stored for the virtual images upon insertion which means

that they must be instantiated at that time as well.

7.2.3.1. Permanent Storage Space for VSII Algorithms

The above description implies that a system that uses the VSII algorithms to
retrieve images will need space to store images stored in virtual and formats as well as
the histograms extracted from them. Using the variables from Table 7-1, the total space

used by the virtual images is Nyirwal X Svirual, the total space used by the binary images is

NBinary X Spinary, and the total space used by the histograms is N x Syis.. Thus, the total
permanent storage space used by the VSII algorithms is as follows.

(N

Binary

X SBinary) +(N,

irtaat % Svirta) + (N X Spi)
7.2.3.2. Average Insertion Time for VSII Algorithms

The VSII algorithm for inserting images is displayed in Figure 7-11. In order to
extract a histogram from each image inserted into the database, an image stored in a
virtual format must first be instantiated. So, as with the VSIS algorithm for inserting
images, the first step is to determine whether it is virtual or binary, which takes an
average time of Tyyp.. The insertion of binary images in the VSIS algorithm is the same
as in the VSII algorithm, so the average total time it takes is as follows.

T,

Extract

+T 5 +T,y

123

Alternatively, if the image is virtual, the algorithm stores it, instantiates it, extracts a
histogram from it, and stores the histogram. This takes a total average time as follows.

T, + T + 7T

Instant Extract +T, AH
Binary images will be added Ngipary times, and virtual images will be added Ny times.
Thus, the total average time it takes to execute the VSII insertion algorithm is as follows.

(N X TType) + (NBinary X (TExtract + TAB + TAH)) + (NVirtual X (TAV + ‘Tlnx tan¢ + TExtract + TAH))
N

/* Histograms should be extracted from any binary images inserted into the database */
1. If image is binary

1.1 Extract the histogram from given image

1.2 Store the image in the database using its identifier

1.3 Store the histogram and image identifier together in the database

/* Virtual images must be instantiated before histograms can be extracted from them and
subsequently inserted into the database. */
2. Else

2.1 Store virtual image in database using image ID

2.2 Instantiate virtual image

2.3 Extract histogram from image

2.4 Store histogram and virtual image ID in database

Figure 7-11. VSII Algorithm for Inserting Images

7.2.3.3. Average Retrieval Query Processing Times for VSII Algorithms

Since histograms are extracted from every image stored in the database in both
approaches, the VSII algorithms for processing retrieval queries are the same as the BSH
algorithms displayed in Figures 7-6 and 7-7. The only difference is that the VSII
algorithms may retrieve images stored virtually, which means that they must be

instantiated before they can be displayed. Consequently, the average times it takes to

124

execute the VSII retrieval algorithms are the same as the times it takes to execute the
corresponding BSH retrieval algorithms with the exception of displaying the images.

The BSH algorithms only have to load the Ny retrieved images before displaying
them, which means that require an average displaying time equal to as follows.

+7T

Access)

NR x (TDisplay
In the VSII algorithms, the Ngpinary binary images can be treated in the same manner
giving a total of time equal to the following expression.

N RBinary x (T Display + T Access)

The Nrvima virtual images must be instantiated before they can be displayed, which

means the average time to display them is as follows.
NRVirtual X (TDispIay + T'I

nstant)

Thus, the total average time needed to display all of the retrieved images in the VSII

retrieval algorithms is equal to the following expression.

NRBirmry X ((TDispIay + TAccess)) + (NR Virtual X (TDispIay + Tlns tant))

This implies that the VSII range query processing algorithm takes an average of time

equal to the following expression.

(TRange) + (N x THis() + (NR x TAS) + (NRBinary x (TDisplay + TAccess)) + (NRVirtual X (TDispIay + Tlns tan¢))

125

In addition, the VSII nearest neighbor query processing algorithm takes an average of

time equal to the next expression.

(TNN + TExtmct) + (N X stt) + (RBinary (Dzsp[ay Access)) + (NRVzrtunI (TDispIay Instan¢))

7.2.4. Rule-Based Approach
This section presents the analysis of the rule-based algorithms that were proposed
in the previous chapters. These algorithms use histograms to search the binary images

that are stored in the database and the proposed rules to search the virtual images.

7.2.4.1 Permanent Storage Space for Rule-Based Algorithms
In the rule-based algorithms, the Nginary binary images are processed in the same
manner as the BSH algorithms, which means that histograms are extracted from each of

them. Thus, the total space used for the binary images is as follows.

(NBinary X SBinary) + (NBinary X SHist)

The Nvima virtual images are processed using their descriptions, so it uses Nyirual X
Sviwal Space. In addition, the algorithms require storing the numbers of rows and
columns of each binary image in the database, so the rule-based algorithms require an
extra 2 x Npinary Space. Thus, the total permanent storage space required by the rule-
based algorithms is as follows.

(N

Binary

x (S

Binary

+ SHtst + 2)) + (NVtrtuaI SVirtual)

126

7.2.4.2 Average Insertion Time for Rule-Based Algorithms

The rule-based algorithm for inserting images is displayed in Figure 7-12, and it is
similar to the VSIS algorithm for inserting images. The difference is that the numbers of
rows and columns in a binary image must be identified and stored when one is inserted
into the database. The average time it takes to identify these values is represented by the
variable Tsi,e. The average time to insert a binary image in the VSIS algorithm is as
follows.

T,

Extract

+T s +T,,

Also, the average time to insert a binary image in the rule-based algorithm is as follows.

T,

Extract

+]1AB +TAH +]:S‘ize
Consequently, the total average time it takes to execute the rule-based insertion algorithm
is equal to the following expression.

(N X TType) + (NBinary X (TExtract + TAB + TAH + T:S’ize)) + (NVirtual X];V)
N

/* Histograms should be extracted from any binary images inserted into the database */
1. If image is binary

1.1 Extract the histogram from given image

1.2 Extract and store the numbers of rows and columns for use by BOUNDS

1.3 Store the image in the database using its identifier

1.4 Store the histogram and image identifier together in the database

/* Virtual images are inserted into the database correctly. */
2. Else
2.1 Store virtual image in database using image ID

Figure 7-12. Rule-Based Algorithm for Inserting Images

127

7.2.4.3. Average Rule-Based Range Query Processing Time

The rule-based algorithm for processing range queries was presented in Chapter 3.
The first three steps of the algorithm identified the parameters of the query and initialized
the variables, which takes an average of Trang time. Step 4 of the algorithm was the
same as Step 4 of the VSIS algorithm for processing Range queries, which means that the

average time to complete it will be the same as the following time of the VSIS algorithm.

N

Binary x THist) + (NRB X TAS)

inary

Step 5 of the algorithm executed the BOUNDS procedure for each virtual image in the
database. The average time to execute the BOUNDS procedure is represented by the
variable Tpoundgs, Which means the total average time executing the procedure will be
Nvirtwal X TBoungs. In addition, Nryvirua images are expected to be retrieved, and that will
take an additional Nrvirwal X Tag time.

The last step of the rule-based range query processing algorithm displays the
retrieved images. As with the VSII algorithm, the virtual images must be instantiated
before they can be displayed. Consequently, the average time needed to display the
retrieved images in the rule-based algorithm is the same as in the VSII algorithm, which
is as follows.

(N

RBinary

X (T Display +7, Access)) + (N RVirtual X (T Display + Tlns tant))

So, the total average time needed to execute the rule-based algorithm for processing

range queries is represented by the following expression.

128

(TRange) + (NBinary X Hxsr) + (NRBmary X TAS) + (NVirmal Bounds) + (NRVmuaI X TAS) +
(NRBinmy x (TDisplay Access)) + (NRVmuaI x (TDl:play Ins tan¢))

7.2.4.4. Average Rule-Based Nearest Neighbor Query Processing Time

The rule-based algorithm for processing nearest neighbor queries was presented in
Chapter 4. The first four steps of the algorithm are the same as in the previous algorithms
for the BSH, VSIS, and VSII approaches, and they take an average of Tyn + Texgract time.
Step 5 of the algorithm is a loop that is the same as in the VSIS algorithm. Thus, the
average total time used to complete the loop is Nginary X Tpist, @s in the VSIS algorithm.
Step 6 of the rule-based algorithm executes the VIRTUAL NN procedure, which takes
an average time of Tvima nn. The last step of the rule-based algorithm displays the

retrieved images, which again requires an average of time as follows.

(NRBinary X (TDisplay + TACCess)) + (NRVirtuaI X (TDisplay lns tant))

Thus, the total average time used to execute the rule-based algorithm is represented by
the following expression.

Ty +T, +(N, ginary % pis)+ 1 Virwal _ NN T

Extract

(N RBinary X (T Dtsplay Access)) + (N R Vmual (T Drsplay Ins tan?))

7.3. Comparison of Approaches

This section compares the performance of each of the above approaches for
retrieving virtual images. The comparisons are performed using relationships between
the variables in Table 7-1. For example, since each image must be stored in either a

virtual or a binary format, N = Nginary + Nvirtal, and Nr = NRrginary T Nrvirwal. In addition,

129

this section assumes that the average size of a binary image is much larger than the
average size of a virtual image, so Sginary > Svirwa. Finally, this section assumes that the
technique used to instantiate a virtual image involves accessing the base image stored
within the first line of its description, then applying each of the associated editing
operations. Thus, the average time used to instantiate a virtual image, Tinstant, can also be

represented by the following expression.

TAccess + (NOp X TOp)

7.3.1. Comparison of Permanent Storage Space

Table 7-2 compares the total amount of storage space used by the various
approaches. The table decomposes the terms presented earlier into the amount of space
used to store binary images, the amount of space used to store virtual images, the amount
of space used to store the extracted histograms, and the amount of space used to store the
numbers of rows and columns of the binary images. These totals are represented by the

"Binary Images", "Virtual Images", "Histograms", and "Sizes" columns, respectively.

Approach | Binary Images | Virtual Images | Histograms Sizes
BSH N X Shinary 0 N % Shist 0
VSIS NBinary X SBinary Nvirtual X Svirtual NBinary X Sist 0
vsiI NBinary X SBinary | Nvirtual X Svirtual N X Spist 0

Rule-Based | Npinary X SBinary | NVirtual X Svirtual | Npinary X SHist | Ninary X 2

Table 7-2. Comparison of Total Space Used by Each Approach

Since Sginary 18 €xpected to be much larger than Svina, the BSH algorithms are
expected to use much more space than the BSH, VSIS, and VSII algorithms. This is

because the BSH algorithms store all images in a binary format while the other

130

algorithms store Svima Of the images virtually. In addition, since N > Ngigary, the
following expression is true.

(N X SHist) > (NBinary X SHist)

The above expression also means that the BSH and VSII algorithms are expected to use
more space to store the histograms extracted from images than the rule-based and VSIS
algorithms.

When comparing the VSIS, VSII, and rule-based algorithms, all three are
expected to use the same space to store the images. The VSII algorithms, however, are
expected to use the following amount of additional space to store the histograms than the
other two approaches.

(N X SHi:t) - (NBinnry X SHist)

The above expression can be simplified to Nyira X Suist. The rule-based algorithms are
expected to use 2xNpinary more space than the other approaches to store the numbers of
rows and columns in each binary image. Thus, the VSIS algorithms are expected to use
the least space, followed by either the rule-based algorithms or the VSII algorithms

depending on whether Nviryal X Stiist OF 2XNpinary is smaller.

7.3.2. Comparison of Average Insertion Time
Table 7-3 compares the average insertion time produced by each of the four
approaches. The table decomposes the times presented earlier into the average time

needed to determine whether an image is virtual or binary, the average time needed to

131

insert a binary image, and the average time needed to insert a virtual image for each
approach. These times are represented by the "Type of Image", "Binary Images", and

"Virtual Images" columns, respectively.

Approach | Type of Image | Binary Images Virtual Images

BSH 0 Textract + Tap + Tan 0

VSIS Ttype TExtract + TAB + TAH TAV

vsil Lype TExtract + TAB + TAH TAV + TInstant + TExtract + TAH
Rule-Based Teype Textract + Tap + Tan Tav

Table 7-3. Comparison of Average Insertion Times for Each Approach

When comparing the average insertion times for each approach, assume that the
values Tgxiract aNd Tinstant Should be much larger than the values Tav, Tag, Tan, and Tipe.
Thus, the latter values are assumed to be negligible. Since all N images are binary in the
BSH algorithms, the total time for insertion should be N x Tgxraer. Thus, the average
insertion time should be Tgyract.

Alternatively, the total insertion time for the VSII approach should be as follows.

(NBinary X T Exlract) + (N Virtual X (Tlns tan ¢ + T Extract))

This implies that the average insertion time should be equal to the following expression.

NBW")’ X TEX”““ + NVirtual X (]-'Ins tan¢ + TExtract)
N

The above expression can be simplified as follows:

N inar; N irtua
[—_BN—l X TExtract) + ('——;\IL] x (Tlns tan¢t + TExtracf))

132

N

Binary

+ N Virtual N

XT + Virtual XT

N Extract N Ins tant

T +(_]\£‘_/.’l'.’ia_l_x]"l

Extract ns tan ¢)
N

Since the above expression is greater than Tgypraer, the average time needed to insert an
image using the VSII algorithms is longer than the corresponding time for the BSH
algorithms.

The average times to insert an image using the VSIS and rule-based algorithms
are the same, according to Table 7-3. Since the total insertion time is expected to be
Nainary X Texiract, the average insertion time should be as follows.

N Binary x T

Extract
N

Thus, the average time used to insert an image using the VSIS and rule-based algorithms

is expected to be shorter than the other algorithms.

7.3.3. Comparison of Average Times for Processing Range Queries

Table 7-4 compares the average time used to process a range query using the four
approaches. The "Param" column represents the average amount of time used to identify
the parameters of the range query, the "Hist" column represents the average amount of
time used to access a histogram bin and compare it to the query range, the "Results"

column represents the average amount of time used to add an image ID to the results set,

133

the "Display Binary" column represents the average amount of time used to display a

binary image, and the "Display Virtual" column represents the average amount of time

used to display a virtual image.

Approach | Param | Hist Virtual Results Display Binary Display Virtual
BSH TRange N X 0 Nr x Tas N (Thcsess + 0
Thist Toisplay)
Nainary X | Nvirtual X (Tinstant Nrsinary X (Taccess + | Nrvirtuat X (TAccess +
VSIS TRange THist + TExtract) NR * TAS TDispIay) TDisplay)
VS | Trarge | M | Nugax Tuar | NexTag | oo > (Taoomss # | Naveua x (Taccos +
TH|st TDlspIay) Tlnstang
Rule- Nainary % . NRainary X (Taccess + | NRvirtual X {Taccess +
Based TRange Thist Nvrual * Teouncs Nr x Tas TDispIay) Tlnstant)

Table 7-4. Comparison of Average Times for Processing Range Queries

The time used to identify the parameters and the time used to retrieve an image ID
are not included in the comparison since they are the same for all four approaches. The
time used to access and compare a histogram bin to the query value should be small, so
those values should be considered negligible, which means that the "Hist" column is not
included in the comparison. Thus, when comparing approaches, consider only the
columns for processing virtual images and displaying images.

When comparing how long it takes the query processor is to identify the images
that satisfy a given query for each approach, then it is not necessary to compare the time
it takes to display an image. Given that assumption, the only column contributing to the
comparison is the average time taken to process virtual images. The VSII range query
processing algorithm checks histograms for the virtual images, so its average time should
be the same as the time for the corresponding BSH algorithm. The average time used by

the rule-based algorithm is based on the average time needed to execute the BOUNDS

algorithm, which is represented by the following expression.

134

T,

Base + TSize + (NOp X TRule)
The average time used by the VSIS algorithm is based on the average time needed to
instantiate an image, which is as follows.

T,

Base

+T

Access + (NOp X TOp)
Assuming that the variables Tsize and Taccess are comparable, and To, should be much
larger than Tgrye, the average time for executing the VSIS algorithm should be much

larger than the rule-based algorithm.

7.3.4. Comparison of Average Times for Processing Nearest Neighbor Queries

Table 7-5 compares the average time used to process a nearest neighbor query
using the four approaches. The "Extraction" column represents the average amount of
time used to extract a histogram from the Query Image, the "Binary” column represents
the average amount of time used to compute the distance between the query histogram
and the histograms extracted from the binary images, the "Virtual" column represents the
average amount of time process the virtual images, the "Display Binary" column
represents the average amount of time used to display a binary image, and the "Display

Virtual” column represents the average amount of time used to display a virtual image.

135

Approach | Extraction | Binary Virtual Display Binary Display Virtual
N x NR x (Taccess *
BSH Textract Tos 0 Toisiay) 0
NBinary Nvirtual X (Tinstant + Nrginary X (T access + NRvirtual % (T Access +
VSIS Tecrat x Toist Textactt Toist) Toisplay) Tpisplay)
vSi Textract NBina,ry Nvirtuar X Tist Neginay x (Thes + Nl (Thoss +
x Toist TDlsplay) Tlnstant)
NBinary _ Nrainay % (Taccess + | NRvitual X (TAccess +
Rule-Based Textract x Toist Tvirtual_NN Toispiy) Tinstant)

Table 7-5. Comparison of Average Times for Processing Nearest Neighbor Queries

The time used to extract the histogram from the query image is not included in the
comparison since it is the same for all four approaches. As with the comparison for the
range query, if the goal of the algorithm is to identify the nearest images to a given query
image, it is not necessary to include the average time used to display the images. Thus,
the comparison between the four approaches is based on the columns for processing the
binary and virtual images.

Both the BSH and VSII algorithms are expected to take the same time to process
a nearest neighbor query, which is N x Tp;. The VSIS algorithm is expected to use time
equal to the following expression.

(N inary X Tpiee) + (N, x (T,

Virtual Instant + T Extract + T Dist))

inary
The above expression simplifies as follows.
(N X TDist) + (N X (I'Ins tant + TExtract))

Virtual

Thus, the average time to execute the VSIS algorithm for processing nearest neighbor
queries should be longer than the times for the BSH and VSII algorithms.
The expected time used by the rule-based algorithm to process nearest neighbor

queries is represented by the following expression.

136

(NBinary X TDist) + (TVirtual _NN)

The expected time used by the BSH and VSII algorithms can be expressed as follows.

(N

Binary

X TDist) + (N

Virtual x TDISt)
Thus, the comparison of the approaches depends on whether it takes longer to execute the

VIRTUAL NN procedure or make Nyim,, distance computations.

7.3.5. Summary of Comparisons

The above comparisons demonstrate the rule-based algorithms provide many
benefits when considering permanent storage space, insertion time, and retrieval time.
By storing editing images virtually, the rule-based algorithms use less permanent storage
space than the BSH algorithms. Because they avoid instantiating the virtual images, the
rule-based algorithms are relatively fast in inserting virtual images unlike the VSII
algorithms. For the same reason, the rule-based algorithms are relatively fast in

processing retrieval queries unlike the VSIS algorithms.

7.4. Analysis of Proposed Data Structure

A data structure is presented in Chapter 5 that can be used to reduce the time it
takes to process a range query using the rules proposed in Chapter 3. The purpose of this
section is to analyze the algorithms presented for the data structure in order to compare
their performance against the performance of the proposed rule-based algorithms. Table

7-6 lists additional variables that are used in the performance evaluation.

137

Parameter Description

Nuzin Number of virtual images that contain only operations with bound-widening rules
Nundass Number of virtual images that have an operation whose rule is not bound-widening
Tiain Average Time needed to Access an Element of the Main Component

Tunclass Average Time needed to Access an Element of the Unclassified Component
Thdamain Average Time needed to Add an Element to the Main Component

Tadounclass Average Time needed to Add an Element to the Unclassified Component

Sip Average Size of an |dentifier

Table 7-6. Additional Variables Used in Evaluation of Data Structure

7.4.1. Permanent Storage Space for Proposed Data Structure

The proposed data structure is to be used by the underlying database management
system along with the images and histograms. Thus, utilizing the proposed data structure
will result in using more space than is needed by the rule-based algorithms. Specifically,
the permanent storage space is equal to the storage space used by the rule-based
algorithms added to the space needed to store the data structure.

The permanent storage space required by the ru]e-bésed algorithms is as follows.

(NBinary x (S + SHist + 2)) + (N x SVirtual)

Binary Virtual

To determine the space needed by the proposed data structure, consider that the Main
Component will contain exactly one histogram identifier for each binary image in the
database. In addition, the identifier of each virtual image will be added to either the Main
Component or the Unclassified Component, which means that each identifier will be
added exactly once to the data structure. Thus, the data structure will contain a total of N
identifiers, which means that the total amount of permanent storage space expected to be

used by the algorithms for the proposed data structure is as follows.

138

(N ginary X (S + S84 T 2)) + Nyiniar X Svirnia) + (N X Sp)

Binary

7.4.2. Average Insertion Time for Proposed Data Structure

Since the purpose of the proposed data structure is to arrange the image identifiers
in order to speed up processing of the retrieval queries, it is expected that the average
time to insert into a system that utilizes the data structure will be longer than the average
time to insert into a system that does not utilize it. This section presents an analysis of
the time it takes to insert an ID into the proposed data structure.

To insert an ID for an image into the proposed data structure, it is first necessary
to determine the type of image it references, which should take Ty, time. If the image is
binary, the identifier of its histogram is added to the end of the Main Component, which
should take Tagamain time. If the image is virtual, the insertion algorithm presented in
Chapter 5 is executed.

The first two steps of the insertion algorithm identify the base image and its
associated histogram, which takes Tpas time. The third step is a loop that executes for
each editing operation within the description of the virtual image. During each step, the
rule for the editing operation is checked to determine if it is bound-widening. The
average time taken for this step can be represented by the variable Tgrye, so the total time
used by this step is expected to be Nop x True. If the loop 1dentified a rule that was not
bound-widening, the final step of the algorithm is to add the identifier of the virtual
image the Unclassified Component, which takes Tadqunciass time. Alternatively, if all of
the rules were bound-widening, the final step is to add the identifier to the Main

Component in the list of the appropriate histogram identifier. Adding the identifier

139

should take Taddmain time, while identifying the histogram identifier should take the

following time.

Binary
> X Ttain

Out of N images, the insertion of a binary image should occur Ngjnary times, and
the insertion of a virtual image should occur Ny, times. So, the average time needed to
insert an identifier into the proposed data structure is equal to the following expression

where o is the average time to insert a virtual image.

T 4 N pinary % T s tiain + Ny X2
type N N

A total of Nuain of the virtual images will be added to the Main Component, while Nynciass

of them will be added to the Unclassified Component. So, o equals the next expression.

N Ng; N,
M, Binary Uncl
TBase + (NOp x TRule) + X TAddMain + (2 X TMain) + A X (TAddUnclass)

Virtual

Virtual

7.4.3. Average Range Query Processing Time for Proposed Data Structure

The algorithm for processing a range query using the proposed data structure has
the same first three steps as the previously presented algorithms. Thus, the average time
needed to execute them is Trange. Step 4 accesses each element in the Unclassified
Component and executes the BOUNDS algorithm. Thus, the total time expected to be
taken by Step 4 is Nuncass X Toungs: In addition, during the execution of this query

processing algorithm, the same number of images should be retrieved as in the rule-based

140

algorithm. Thus, the total time used to add image identifiers to the set of satisfying
images will be Ng x Tas.

Step 5 accesses each of the Npinary histograms in the Main Component. Steps 5.1
and 5.2 access the desired histogram bin and compare it to the query range, which takes
This time. This implies that Steps 5.1 and 5.2 are expected to take a total of (Nginary X
Thyist) time.

If the histogram bin falls within the query range, which should occur Ngginary
times, all of the elements in V_list are retrieved. If the histogram bin is not within the
query range, which should occur Nginary — NRrBinary times, the BOUNDS algorithm is
executed for each element in the list. Since there are Nginary binary images and Nuain
virtual images represented in the Main Component, each V_list is expected to have
Nmain/Npinary Virtual image identifiers. Thus, the BOUNDS algorithm will be executed
the following number of times.

N NMain

RBinary)

(N

inary -
Binary

The final step of the algorithm for processing range queries using the proposed
data structure displays the retrieved images. This is expected to take the same amount of
time as in the rule-based algorithm since the images in the database are stored in the same
format. Thus, the average time for displaying the retrieved images is as follows.

(NRBinary X (T

Display

+ TAccess)) + (NRVirtual X (TDisplay + ‘Tlns tant))

141

To summarize, the average time used to process a range query using the proposed

data structure is equal to the following expression.

N, .
M
X TBounds) +

T,

Range

+(N,

Unclass Baunds

)+ (N,

inary

X Ty) + (N

Binary - RBinary)
Binary

(N X TAS) + (NR (TDisplay Access)) + (NRertual X (TDispi'ay + Tlns tant))'

Binary

This is in comparison to the average time used by the rule-based algorithm to process a

range query, which is as follows.

(TR) + (NBinary Hxst) + (N xT S) + (NVtrtual TBaunds) +
(N RBinary X (T Display Access)) + (N RVirtual x (T Drsplay Ins tan¢?))

ange

Eliminating the terms (TRange)a (NBinary X THist), (NR X TAS): and (NRBinary X (TDisplay +
Taccess)) T (NRvirtual X (Tpisplay + Tinstant) from both expressions yields the following values
representing the average time used for the data structure and the average time used by the

rule-based algorithm, respectively.

N, .
Main
(N Unclass Bounds) + ((N Binary N RBinary) x N Bounds)
Binary
N Virtual X T Bounds

The average time used for the proposed data structure can be simplified in the

following manner.

N, .
Main
(N Unclass + (NBinary - RBinary) X) X T Bounds
Binary
(N N, =Ny x-Natan o
Unclass Main RBinary N Bounds
Binary

142

Let (NrBinary*Nmain/NBinary) be represented by the variable B, and note that p > 0. Since
Nvirtual €quals Nunciass T Nuain, the average time used for the proposed data structure is

equivalent to the following expression.

(NVirtual - ﬂ) x TBounds

Since the average time used by the rule-based algorithm is Nvyirual X Tgounds, it 1S greater

than the average time used by the proposed data structure.

143

CHAPTER 8

A PROTOTYPE VIRTUAL IMAGE RETRIEVAL SYSTEM

In order to confirm the analysis presented in the previous chapter, several
prototype image retrieval systems were developed during this research. This chapter
describes the implementation of these systems including the development environment
and the resulting user interface along with a diagram of the information flowing between
the modules of the systems. In addition, this chapter provides a performance evaluation
of the prototype systems that illustrate their various strengths and weaknesses.

The structure of the remainder of the chapter is as follows. Section 8.1 describes
the implementation of the prototypes virtual image retrieval systems. Section 8.2
describes the performance parameters used in this research, and Section 8.3 presents the

results of processing range and nearest neighbor queries with the prototypes.

8.1. Implementation

The prototype virtual image retrieval system [Brow, 2001] developed as a result
of this dissertation is a web-enabled prototype accessible from the URL
http://www.cs.ou.edu/~lbrown. The system processes the retrieval queries on the web
server on the network of the School of Computer Science at The University of Oklahoma
and sends the results as a web page to the client of the user. It was developed using the
Perl language on a SUNsparc workstation using the Unix operating system, and does not

use any commercial software for managing the databases. It does use utilities from the

144

http://www.cs.ou.edu/~lbrown

pbmplus [PBMP, 2003] package, however, to convert binary images between the text-
based ppm format and more commonly used formats such as gif and jpeg.

The prototype, called the Virtual image Retrieval System (VRS), implements the
rule-based algorithms presented in Chapters 3 and 4. In addition, additional prototypes
were constructed in order to implement the alternative approaches to retrieving virtual
images. One prototype stores all of the images in a binary format and implements the
conventional histogram algorithms. This prototype is referred to as the Binary Storage
with Histograms prototype (BSH). Another prototype, which is called the Virtual
Storage with Instantiation while Searching Prototype (VSIS), stores edited images
virtually and instantiates them during retrieval query processing in order to utilize
histograms. The final prototype, called the Virtual Storage with Instantiation while
Inserting (VSII) Prototype, stores edited images virtually but instantiates them at the time
they are inserted in the database in order to extract their histograms. Afterwards, the
histograms are stored in the database while the instantiated version of the virtual images

is discarded.

8.1.1. Prototype Structure

Figure 8-1 displays the components of the VRS and illustrates how they interact.
Specifically, the figure contains the model for a DataBase Management System (DBMS)
that uses virtual images. In the figure, users interact with various interfaces in order to
perform the different tasks common to DBMSs. When users enter an image stored in a
binary format into the system through the insertion interface, it must be sent to the feature

extraction module before it is stored in the underlying database. The feature extraction

145

module extracts the color histogram from the binary image and stores it in the database as
well. When users enter a virtual image into the database, they will have to access an
editing interface that allows them to add or remove image editing operations. To
summarize, the DBMS must provide interfaces to allow users to interact with the three
types of data items stored in the database, images represented using a conventional

format, values of features extracted from those images, and images stored virtually.

Insertion Feature

Interface Extraction
A

}

o Update I

Interface
Similarity
Searching
4 | Retrieval » Random |, o Access .
@ Interface Searching Method Binary
Images
Range
Searching
Deletion

Interface

Virtual Images

—* Editor

Figure 8-1. Components of the Virtual Image Retrieval System Prototype

When users want to update or delete an image from the system, they must first
identify the image through the update or deletion interface. Once the image is identified,
it must be located in the database using the random searching module. The module may

utilize an access method such as an index in order to make the searching more efficient.

146

The image may be stored in a conventional format or stored virtually, so the access
method must be able to access both data sets.

When the user submits a query through the retrieval interface, the DBMS should
locate those images that satisfy it. The query may be a random query in which a specific
image is requested, a range query in which images that have features within certain
values are requested, or a similarity search which requests the images that are similar to a
given query image. To locate the images that satisfy these queries, the searching modules
must be able to access ‘the virtual images, conventional images, and features. Again,
these modules should use some type of access method in order to make searching more
efficient. In addition, in order to determine if the images in the database are similar to a
query image, the similarity search module will need to send the query image to the

feature extraction module.

8.1.2. Queries and Images

The VRS prototype allows users to retrieve images using the two different types
of queries described in Chapters 3 and 4 of this dissertation. The first type is the range
query “Retrieve all images that are between PCT,;, and PCT,. percent of color Cp”,
where PCTy,in and PCT. represent percentages and Cq represents a color in the RGB
model. For example, if PCTy, is 10, PCTax is 100, and Cq is (255,0,0), then the query
is to retrieve all images that are between 10% and 100% of color (255,0,0), which is
equivalent to retrieving all images that are at least 10% red. The second type of query is
a nearest neighbor of the form “Retrieve the k images that most resemble Q based on

color”, where k represents a number, and Q represents a query image.

147

The prototype retrieves images from data sets obtained from various sites on the
Internet ([Flag, 2003], [Helm, 2003]). Each data set consists of images stored as gif files.
The first data set contains a collection of images of flags around the world [Flag, 2003],
and the second contains a collection of images of college football helmets [Helm, 2003].
Many of the images in the flag data set are very similar, such as the flags of France and
Italy. In addition, some of the flag images are closer views of portions of other flag
images. In the collection of images from the Helmet Project, many images only differ in
the color of the facemask or logo. Again, this means that several of the images in that

data set are similar.

8.1.3. User Interface

To submit the range query described in the previous section to the VRS, users
must access the screen displayed in Figure 8-2. This screen allows the user to populate a
form by entering values for PCTpmin, PCTmax, and Cq. The values for PCTyn and PCTypa
are restricted to integers between 0 and 100. The color Cq is expressed as a value in the
RGB color model, so the user must enter a value between 0 and 255 for each of the Red,
Green, and Blue axes of that model. In addition, the interface requires the user specify
the data set to search since there are multiple data sets in the system.

Upon submission of the form, the prototype executes the rule-based range query
processing algorithm. Upon completion of the algorithm, the system generates and
displays a web page back to the user containing the set of retrieved images. Specifically,
the system displays the thumbnail of each retrieved image along with its associated

filename in the web page. An example of such a page is shown in Figure 8-3.

148

O

| Atimages that are betmen 50.and 100 parcent (255.255,0)

H

UNST052.gf

NIUEOG1.gf

MALS009.gif

i

fod

fisker: ?d

Figure 8-2. User Interface for Submitting Figure 8-3. User Interface for Displaying

Range Queries to Prototype Retrieved Images

Since the prototype retrieves both virtual and binary images, the creation of the
thumbnails differs. For binary images, the thumbnail is a version of the image reduced to
40x40 pixels. Since the prototype does not store an instantiated version of a virtual
image, it cannot display a reduced version of that image, so the prototype displays a
defauit picture for each virtual image it retrieves. When users click the thumbnail of a
binary image, the system generates a web page containing the full size of the image.
Alternatively, when users click the default picture corresponding to a virtual image, the
system instantiates the image and displays a web page containing the derived image as

displayed in Figure 8-4. An additional feature of the query results page displayed in

149

Figure 8-3 is that users can view the description of a virtual image by clicking on its

filename as displayed in Figure 8-5

Lt/ Lys-bin/ms

Figure 8-4. User Interface for Displaying Figure 8-5. User Interface for Displaying
an Instantiated Virtual Image the Description of a Virtual Image

Users must specify a query image in order to submit a nearest neighbor query. In
the VRS prototype, users can specify a query image using the browsing interface as
displayed in Figures 8-6 and 8-7. In the first figure, the prototype allows users to specify
the desired data set by selecting a random image displayed from each set. When users
click on one of the images, the prototype randomly chooses 25 images and displays them
as shown in the second figure. At this point, users may select any one of the 25 random
images to be the query image by clicking its image. In order to select from a different set
of images in the data set, users may regenerate the web page, which will again randomly

choose 25 images.

150

http://vww(.cs.DU.edu/~bown

Figure 8-6. User Interface for Selecting a Figure 8-7. User Interface for Browsing
Data Set Images of a Data Set

Figure 8-8. User Interface for Submitting Nearest Neighbor Queries

151

When one of the 25 random images is clicked, the prototype uses it as the query
image and generates the nearest neighbor query form that allows users to specify a value
for k. An example of this form is displayed in Figure 8-8. After the query is submitted,
the prototype executes the rule-based nearest neighbor retrieval algorithm and generates a
web page containing the list of images that satisfy the query as shown previously in

Figure 8-3.

8.2. Performance Parameters

The prototype developed in the previous section was used to compare and
evaluate the performance of the four different image retrieval algorithms described
earlier. The tests were conducted using three different sets of images collected from the
Internet. The first set represents a set of college football helmets [Helm, 2003], and the
second set represents a set of flags of countries [Flag, 2003]. Although these data sets
represent real-world data, they have certain biases in them that may affect the test results,
so a third image set was used in the performance evaluation. This final set was created as
a collection of images representing various application areas including business, law
enforcement, weather forecasting, and space exploration [Rand, 2003].

The default values for the variables used in the performance evaluations are listed
in Tables 8-1 and 8-2. The variables N, Npinary, Nvirwat, and No, will vary for each data
set, so their default values will differ as well. This is also true for the variables Nyain and
Nunclass: Alternatively, the variables Nr, Nrginary, Nrvirtual, and Npoungs are dependent on

the query posed to the prototype, so they are not given default values.

152

Param Description Default Value
551 (Helmet)
N Number of Images in the Database 817 (Flag)
500 (Random)
391 (Helmet)
Nainary Number of Binary Images in the Database 466 (Flag)
5 (Random)
160 (Helmet)
Nvirtyal Number of Virtual Images in the Database 351 (Flag)
485 (Random)
Nr Expected Number of Retrieved Images Query-Dependent
NRbinary Expected Number of Retrieved Images that are Binary Query-Dependent
NRvirual Expected Number of Retrieved Images that are Virtual Query-Dependent
4.56 (Helmet)
Nop Average Number of Operations within a Virtual Image 4.99 (Flag)
2.11 (Random)
NBounds Expected No. of Times BOUNDS is executed for Nearest Neighbor Que Query-Dependent
TRange Average Time needed to ldentify Parameters of Range Query 0
Tan Average Time needed fo Identify Parameters of Nearest Neighbor Query | 0
Thccess Average Time needed to Access an Image 0
Tinstant Average Time needed to Instantiate a Virtual Image Thase + Taccess + (Nop x Top)
Toisplay Average Time needed to Display an Image 0
Texiract Average Time needed to Extract a Histogram from a Binary Image 1.49
Thiist Average Time needed to Access and Compare Histogram Bins 0.000025
Toist Average Time needed to Compute the Distance Between Histograms 0.0017
Thase Average Time needed to |dentify the Base Image of a Virtual Image 0.00032
Tsize Average Time needed to Identify the No. of Rows & Columns of an Image | 0.00066
Thasize Average Time needed to Access the Numbers of Rows & Columns 0.000083
Tgounds Average Time needed to Execute the BOUNDS algorithm Toase + Tacoess + {Nop x True
Tviwa N | Average Time needed to Execute the Virtual_NN algorithm Nagounds x TBounds
Trule Average Time needed to Apply a Rule for an Editing Operation 0.00028
Top Average Time needed to Apply an Editing Operation to an image 1.58
Trype Average Time needed to Determine if an Image is Binary or Virtual 0.00018
Tas Average Time needed to Add an Image ID to the Set of Satisfying Images | 0
Tas Average Time needed to Add a Binary Image to the Database 0
Tav Average Time needed to Add a Virtual Image to the Database 0
Tan Average Time needed to Add a Histogram to the Database 0
7281.88 (Helmet)
Seinary Average Size of Binary Images in the Database (in bytes) 6204.28 (Flag)
11396.6 (Random)
131.04 (Helmet)
Svirtual Average Size of Virtual Images in the Database (in bytes) 137.16 (Flag)
70.27 (Random)
190.74 (Helmet)
Shiist Average Size of Histogram Extracted From Binary Images (in bytes) 228.27 (Flag)
190.40(Random)

153

Table 8-1. Default Values of Parameters Used in Performance Evaluation

Param Description Default Value
14 (Helmet)
NMzin Number of virtual images that contain only operations with bound-widening rules 207 (Fiag)
425 (Random)
146 (Helmet)
Nunclass Number of virtual images that have an operation whose rule is not bound-widening | 144 (Flag)
70 (Random)
Tain Average Time needed to Access an Element of the Main Component 0.00005
Tundlass Average Time needed to Access an Element of the Unclassified Component 0
T AddMain Average Time needed to Add an Element to the Main Component 0.0025
Taddunclass | Average Time needed to Add an Element to the Unclassified Component 0.0010
Sip Average Size of an Identifier (in bytes) 18.21

Table 8-2. Default Values of Data Structure Parameters used in Performance Evaluation

All of the Time (T) variables are expressed in seconds. Some of the expected
times are directly dependent on a data set. For those variables, a default time is given for
each of the flag and helmet data sets. The default values for each of the Time variables
were determined by executing the prototype for each action. In addition, the Size (S)
variables are all dependent upon the data sets. Thus, a default value, which is expressed
in bytes, is given for each of the three data sets.

Table 8-3 describes the dynamic parameters used in the evaluation. The
percentage of virtual images was varied in the tests that evaluated the execution time and
permanent storage space of the algorithms. The query parameters were varied in the tests

that evaluated the retrieval accuracy.

Param | Parameter Range of Values | Default Value
Py fﬁvri:l:'r;'t\?)ge of Images in the Database Stored Virtually 852:2 ?;lz Ig;et) Zg:ﬁ’ ?;; Ig;et)
. 0-95% (Random) 99% (Random)
Width (F;ag?: :p;e&t_’lnis by parameters of range query 5.75 25
K rl;l:g:;&o;ig;ges requested by parameters of k-nearest 5100 25

Table 8-3. Dynamic Parameters used in Performance Evaluation

154

8.3. Performance Evaluation Results

This section presents the results of the various sets of tests performed to measure
the accuracy, execution time, and permanent storage space of the four different
approaches to image retrieval: Rule-based, BSH, VSIS, and VSIL. The first set of tests
examines how the permanent storage space is affected by varying the percentage of
images in the database that are stored virtually. This test will illustrate one of the main
advantages of using virtual images over the BSH approach. The second set of tests
examines the effect of the same parameter on the time needed to execute retrieval
queries. The third set of tests examines the effect of the percentage of virtual images in
the database on the time needed to insert edited images. The final set of tests examines
how the parameters of each query affect the retrieval accuracy of the rule-based

algorithms.

8.3.1. Permanent Storage Space

The first test measured the permanent storage space required by the conventional
BSH approach and the approaches that utilize virtual images while varying the
percentage of images stored virtually and keeping the total number of images constant.
The results of the test for the helmet, flag, and random data sets are displayed in Figures
8-9a, 8-9b, and 8-9c, respectively. Each figure indicates that the virtual approaches

consume much less space than the BSH approach.

155

Permanent Storage Space (Helmet Data Set)

45
_ £y A A
=
s —+—VRS
§ —A—BSH
@ —g—Vsis
& —¢- Vsl
[e]
» 3 - 3

2-5 T T T T T

0 0.05 0.1 0.15 0.2 0.25 0.3

Percentage of Images Stored Virtually

Figure 8-9a. Space Savings vs. Percentage of Images Stored Virtually (Helmet Data Set)

Permanent Storage Space (Flag Data)
Q
Q
[34]
) —4+—VRS
> _ —A—BSH
o —&-VSIS
5 4
- —¢-VSIl
c 3.5
£
4
3 T T T T
0 0.1 0.2 0.3 0.4
Percentage of Images Stored Virtually

Figure 8-9b. Space Savings vs. Percentage of Images Stored Virtually (Flag Data Set)

156

Permanent Storage Space (Random Data)

A
ZX yAnY 73 Z

- -
H (o]
§

D>
B

12
10 4- ——VRS
A BSH
_5-VsIs
6 \ﬁ\ — VSl

Permanent Storage Space (MB)
[0 ¢]

o N b

, [, ,\xz

0.2 0.4 0.6 0.8 1

Percentage of Images Stored Virtually

o

Figure 8-9c. Space Savings vs. Percentage of Images Stored Virtually (Random Data Set)

Because the binary images compose the largest portion of the total space used by
the approaches, the difference in space is directly related to the percentage of images that
are stored virtually. For the helmet data set, the virtual approaches store 29% fewer
binary images than the BSH approach, and they use 28% less space. Similarly, for the
flag data set, the virtual approaches store 43% fewer binary images than the BSH
approach, and they use 41% less space. Finally, the virtual approaches store 99% fewer
images than the BSH approach for the random data set, and they use 99% less space.
Since the percentage of images stored virtually directly affects the space saved, it can be
concluded that applications that need to reduce the amount of space consumed by data
will benefit by storing as many images as possible virtually. Such applications include

those that archive data or transmit data across a network.

157

8.3.2. Retrieval Time

The next set of tests compared the time required to process retrieval queries using
the algorithms for the various approaches. To determine the average time used by the
VRS prototype to process range queries, 27 queries were executed with random values
for the query parameters PCTmin, PCTmax, and Cq for each data set. This number of
executions permitted computing the mean average time with a relative error below 0.1.
Similarly, 27 queries were executed with random values for the query parameters Q and k
to determine the average time used to process nearest neighbor queries.

Figures 8-10a, 8-10b, and 8-10c show the results for the helmet, flag, and random
data sets, respectively. These results compafe the time taken by the VSIS and rule-based
approaches for processing nearest neighbor queries against the percentage of images
stored virtually. Each of the illustrates demonstrates the main disadvantage of the VSIS
approach, namely that it requires much more time than the other methods to process the
retrieval queries. For example, the rule-based algorithm is an average of 99.40% faster
than the VSIS approach for the helmet data set, an average of 99.87% faster than the
VSIS approach for the flag data set, and an average of 99.95% faster than the VSIS

approach for the random data set.

158

600

Nearest Neighbor Query Time (Helmet Data Set)

500

400

300

200

100

Execution Time (Seconds)

0 0.05

— (| joun | 1
r | LT - T

0.1 0.15 0.25

Percentage of Images Stored Virtually

[
J

i

T

0.2

—=- VRS
—m— VSIS

0.3

Figure 8-10a. Searching Time for Nearest Neighbor Query vs. Percentage of Images

Stored Virtually (Helmets)

7000

6000

5000

4000

3000

2000

Execution Time (Seconds)

1000
0

Nearest Neighbor Query Time (Flag Data Set)

./:, [fam] fom!] -
T | - =T | — | - 1= T

0 0.1 0.2 0.3 0.4

Percentage of Images Stored Virtually

1
g =

—= VRS
—m— VSIS

Figure 8-10b. Searching Time for Nearest Neighbor Query vs. Percentage of Images

Stored Virtually (Flags)

159

Nearest Neighbor Query Time (Random Data Set)

FLAQO0 - - <o i e e -

12000
10000 — /./
8000 /./ —3-VRS
6000 —m— VSIS
2000]
0 -/ 5 = 5 =

0 0.2 0.4 0.6 0.8

Percentage of Images Stored Virtually

Execution Time (Seconds)

-~

Figure 8-10c. Searching Time for Nearest Neighbor Query vs. Percentage of Images
Stored Virtually (Random)

Similar results are obtained when the execution time for the rule-based and VSIS
approaches are presented for the range query. These results are in Figures 8-11a, 8-11b,
and 8-11c for the helmet, flag, and random data set, respectively. During the testing, the
rule-based approach was an average of 99.39% faster for the helmet data set, 99.99%
faster for the flag data set, and an average of 99.99% faster for the random data set when

compared to the VSIS approach.

160

Range Query Time (Helmet Data Set)

600 — ~
500 //‘
400 S
300 /'/ —&-VRS
/./ —m-VSIS
200 /./

100

0 -/; 58—

0 0.05 0.1 0.15 0.2 0.25 0.3

Percentage of Images Stored Virtually

Execution Time (Seconds)

|
I

]

T

Figure 8-11a. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Helmets)

Range Query Time (Flag Data Set)

7000 e mm e

6000 -

5000 /.
4000 /./ —5—VRS
3000] |- VSIS

Execution Time (Seconds)

O./l-‘l./ - o |) 1 foom)
= —t T o jam § =1 3

0 0.1 0.2 0.3 0.4

Percentage of Images Stored Virtually

Figure 8-11b. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Flags)

161

Range Query Time (Random Data Set)

14000

12000
10000 - /.,
8000 ——Rule
6000] /'/ —m-VSIS
4000 /'/
2000
0 -/ = = —F = =
1

0 0.2 0.4 0.6 0.8
Percentage of Images Stored Virtually

Execution Time (Seconds)

Figure 8-11c. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Random)

The results of all of the above figures indicate that the VSIS approach behaves
worse as more images are stored virtually unlike the rule-based approach. The reason for
this behavior is that the each virtual image is instantiated as a part of the VSIS approach.
Consequently, an increase in the percentage of images stored virtually means an increase
in the number of instantiations performed during query processing.

Tests were also conducted to compare the time required by the rule-based
algorithm for processing retrieval queries to the time required by the BSH and VSII
approaches which are histogram-based. The first test measured the average execution
times of the different approaches for processing nearest neighbor queries. The results of
the test are displayed in Figure 8-12a, 8-12b, and 8-12¢ for the helmet, flag, and random

data sets, respectively. They indicate that the rule-based algorithms get slower as the

162

percentage of virtual images increases.
algorithms remain constant since they search N feature vectors irrespective of the
percentage of images that are stored virtually. Thus, the rule-based algorithm does
execute slower than the histogram-based ones.

algorithms were 21.04% faster for the helmet data set, 16.72% faster for the flag data set,

and 14.06% faster for the random data set.

In contrast, the time of the histogram-based

On average, the histogram-based

Nearest Neighbor Query Time (Helmet Data Set)
1.6 ———
— 1.4 1 e
(72}
2 L
S 1.2)/ !
1]
8 1 K]
£ 08
=
"g_ 0.6
3 04
5
w 0.2 _
0 T T T T T
0 0.05 0.1 0.15 0.2 0.25 0.3
Percentage of Images Stored Virtually

——VRS
—A—BSH
—> VSl

Figure 8-12a. Searching Time for Nearest Neighbor Query vs. Percentage of Images

Stored Virtually (Helmets)

163

Nearest Neighbor Query Time (Fiag Data Set)

3.5 — -

’%T 3 - \] _’/
e R " T
']
)
o 2
£
- 15 -
c
2
5 1
O
x
X 0.5

0 T T ¥ T

0 0.1 0.2 0.3 0.4

Percentage of Images Stored Virtually

—— VRS
——BSH
—>— VSl

Figure 8-12b. Searching Time for Nearest Neighbor Query vs. Percentage of Images

Stored Virtually (Flags)

Nearest Neighbor Query Time (Random Data Set)

4 .
35 A
(2]
T /
g ? V4 ’
Q,"’ 25 . /X\ ¥
g 5 M r
E "
o
3
¥
w 0.5

0 T T T T

0 0.2 0.4 0.6 0.8 1

Percentage of Images Stored Virtually

—+— VRS
—A—BSH
—¢ VSl

Figure 8-12c. Searching Time for Nearest Neighbor Query vs. Percentage of Images

Stored Virtually (Random)

164

The next test indicates one of the causes of the slower execution time of the rule-
based approach by measuring the average time needed to process range queries. The
results of this test are displayed in Figures 8-13a, 8-13b, and 8-13c, respectively, and they
demonstrate that the rule-based algorithm requires substantially more time to execute
than the histogram-based algorithms. The reason for the increase in time is that the rule-
based algorithm applies a rule for each editing operation in a virtual image to determine
the colors in an image while the other approaches simply access a single histogram value.
The rule-based algorithm for processing k-nearest neighbor queries uses this range query
algorithm repeatedly which means that if the time needed by this algorithm could be
reduced, it would reduce the time needed by the rule-based k-nearest neighbor query

processing algorithm.

Range Query Time (Helmet Data Set)

0.18

0.16 /'_
014 o

0.12 |

// —+—VRS

' —A—BSH
0.08 - :

—>¢ VSl

o
—_

0.06
0.04
0.02

Execution Time (Seconds)

0 0.05 0.1 0.15 0.2 0.25 0.3

Percentage of Images Stored Virtually

Figure 8-13a. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Helmets)

165

Range Query Time (Flag Data Set)

0.4
= 0.35
2
5 03
9
@ 0.25 1 ——VRS
[}
E 02- —A—BSH
[
£ 0.15 —— Vsl
S
o
[
b
w

0.1
KKK —HK— K
0.05
O T T T T
0 0.1 0.2 0.3 0.4

Percentage of Images Stored Virtually

Figure 8-13b. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Flags)

Range Query Time (Random Data Set)

0.25 - - i S e e e

m /'
[o]
Q
Q
® 015] . ——VRS
Q
E / _A—BSH
E 0.1 ' —%—VSli
%
g 005 % * KX
0 T T T T
0 0.2 0.4 0.6 0.8 1

Percentage of Images Stored Virtually

Figure 8-13c. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Random)

166

Speeding up the rule-based query processing algorithm is one of the goals of the
data structure proposed in Chapter 5. The next test compared the average execution time
of the rule-based algorithm for processing range queries with and without that data
structure. As with the previous tests, the average execution time is measured against the
percentage of the images in the database that are stored virtually.

The results of the above test are displayed in Figures 8-14a, 8-14b, and 8-14c¢ for
the flag, helmet, and random data sets, respectively. They indicate that the average
execution time of the proposed data structure is smaller than the average execution time
without it. Specifically, using the proposed data structure allows the rule-based approach
to process the range queries an average of 33.07% faster for the helmet data set, an
average of 22.08% faster for the flag data set, and an average of 18.03% faster for the
random data set. The reason for the improvement is that the data structure processes the

queries while avoiding the application of some of the rules for virtual images.

167

Range Query Time (Helmet Data Set)

0.18
0.16

P=

0.14

/B/

0.12

0.1

-
=z

0.08

—8—w/out Data Structure
—m— with Data Structure

0.06

0.04

Execution Time (Seconds)

;/-/'

0.02

0

T T T T T

0.05 0.1 015 0.2 0.25 0.3

Percentage of Images Stored Virtually

Figure 8-14a. Searching Time for Range Query vs. Percentage of Images Stored Virtually

(Helmets)

Range Query Time (Flag Data Set)

0.4

0.35

——w/out Data Structure

—m— with Data Structure

Execution Time (Seconds)

0.1 0.2 0.3 0.4 0.5

Percentage of Images Stored Virtually

Figure 8-14b. Searching Time for Range Query vs. Percentage of Images Stored Virtually

(Flags)

168

Range Query Time (Random Data Set)

0.25 S

M
-g 0.2 //a
o
(3]
E ’ —g+—w/out Data Structure
= —m— with Data Structure
= 01 —
2
S /i/.
$ 0.050 S
)
w /
0 T T T

0 0.2 0.4 0.6 0.8 1
Percentage of Images Stored Virtually

Figure 8-14c. Searching Time for Range Query vs. Percentage of Images Stored Virtually
(Random)

8.3.3. Insertion Time

The next set of tests compared the time required to insert images using the various
approaches for retrieving images. The time calculated for inserting images into the
database was determined as the time needed to extract the features from the images stored
in a conventional binary format. Figures 8-15a, 8-15b, and 8-15¢ show the results of
comparing the insertion time of the rule-based and VSII approaches for the helmet, flag,
and random data sets, respectively. Each of the figures demonstrates the main
disadvantage of the VSII approach, namely that it requires much more time than the other
approaches since it instantiates virtual images to extract their features. For example, the
rule-based algorithm is an average of 51.56% faster for the helmet data set, an average of
71.59% faster for the flag data set, and an average of 92.28% faster for the random data

set over the VSII approach.

169

1000
900
800
700
600
500

200
100

Insertion Time (Seconds)

Insertion Time (Helmet Data Set)

400 {———
300 ¥

—8— VRS
- Vi

0

T T T T T

0.05 0.1 0.15 0.2 0.25

Percentage of Images Stored Virtually

0.3

Figure 8-15a. Insertion Time vs. Percentage of Images Stored Virtually (Helmets)

Insertion Time (Seconds)

Insertion Time (Flag Data Set)

|

T T T

0.1 0.2 0.3

Percentage of Images Stored Virtually

0.4

—=- VRS

- Vi

Figure 8-15b. Insertion Time vs. Percentage of Images Stored Virtually (Flags)

170

Insertion Time (Random Data Set)

14000 /‘
12000 -
10000 - l/

8000
6000 -

4000 / ~~~~~~
2000 - /./

0 _l = —8 = =

L4 T —

0 0.2 0.4 0.6 0.8

Percentage of Images Stored Virtually

—=3—VRS
—- Vi

Insertion Time (Seconds)

L

Figure 8-15c. Insertion Time vs. Percentage of Images Stored Virtually (Random)

When comparing the times required to insert images using the BSH approach and
the rule-based and VSIS approaches, it is sufficient to note that the insertion time is
computed as the time needed to extract histograms from the binary images. BSH stores
all images in a binary format while the rule-based and VSIS approaches store only those
that are not edited. Thus, BSH stores more binary images than the rule-based and VSIS,
which means that it must extract more histograms. Consequently, it can be determined
that BSH will take longer than the rule-based and VSIS approaches without testing the
prototypes. The difference in the times will be directly proportional to the number of

images in the rule-based and VSIS approaches that are not stored in a binary format.

171

8.3.4. Retrieval Accuracy

The results of the tests in the previous sections indicate that the rule-based
algorithms use much less permanent storage space than the BSH algorithms, require
much less retrieval time than the VSIS algorithms, and require much less insertion time
than the VSII algorithms. Thus, the rule-based approach is the only one among the four
that does not perform poorly in at least one of the three areas, permanent storage space,
retrieval query processing time, and insertion query processing time. The VSII and VSIS
approaches, however, have an advantage over the rule-based approaches in that they use
histograms to compare and retrieve images. Thus, they will produce the same results in
response to retrieval queries as the BSH approach. The purpose of the tests in this
section is to illustrate the difference between the results of the rule-based approach and
the histogram-based approaches.

The metrics used to determine the accuracy of the rule-based algorithms in the
following set of tests were precision and recall. Precision is the number of relevant
images retrieved divided by the total number of images retrieved, and recall is the
number of relevant images retrieved divided by the total number of relevant images in the
database [Falo, 1996]. Since the k-nearest neighbor specifies the number of images
obtained from the database by the retrieval algorithms, both the precision and the recall
of the algorithms will be the same. To illustrate, consider if an algorithm retrieves x of
the k relevant images, where x is some number less than or equal to k. The result is that
the recall of the algorithm would be x/k. In addition, the algorithm returned k images as
well, which means that only x of those k images are relevant. Thus, the precision of the

algorithm would also be x/k.

172

8.3.4.1. Accuracy of Rule-Based Nearest Neighbor Query Processing Algorithm

This set of tests compared the precision and recall of the various approaches for
processing nearest neighbor queries of the type “Retrieve the k images that are the most
similar to the query image ()", where k is an integer and Q is a image stored in a binary
format. The number of images that are retrieved should affect the accuracy of the rule-
based algorithm, so the first test measured the precision and recall against the number of
images retrieved by the algorithm, which is k. The values of k ranged from 5 to 50 for
the flag and helmet data set, and from 5 to 100 for the random data set.

The results of this test are displayed in Figures 8-16a, 8-16b, and 8-16¢ for the
helmet, flag, and random data sets. The results indicate that the histogram-based
algorithms perform slightly better than the rule-based algorithm in terms of retrieval
accuracy. Specifically, the rule-based algorithm retrieved 12.36% fewer relevant images
than the histogram approaches for the helmet data set, 25.57% fewer relevant images for
the flag data set, and 11.22% fewer relevant images for the random data set.

The above results also indicate that the rule-based algorithm performs better when
users search for many images that are similar to a query image than when users search for
the a smaller number of images. Thus, the rule-based algorithm is more appropriate
when a user can pose a query requesting many images of flags that are similar in color to
the U.S. flag instead of requesting the image of the flag that is most similar to it. An
example application that requires retrieving many images is one for law enforcement
where a query may be posed that requests pictures of all suspects that are similar to a
drawing formed by a sketch artist. Because of the uncertainty in the drawing, the system

should retrieve many images of suspects that may be similar.

173

Recall/Precision

Nearest Neighbor Recall/Precision for Helmet Data Set

0.9
0.8 —
0.7

——VRS
—A—BSH
~B—-VSIS
—>— VSl

0.6 4o SR
0.5 4— — i !
0.4

0.3
0.2
0.1
0 1 , . .
5 15 25 35 45

Number of Retrieved Images

Figure 8-16a. Retrieval Accuracy vs. Number of Retrieved Images (Helmets)

Recall/Precision

Nearest Neighbor Recail/Precision for Flag Data Set

——VRS
—A— BSH
—B-VSIS
—>¢- VSl
0.1
0 T T T T
5 15 25 35 45

Number of Retrieved Images

Figure 8-16b. Retrieval Accuracy vs. Number of Retrieved Images (Flags)

174

Nearest Neighbor Accuracy (Random Data Set)

| VRS
—A—BSH
-3 VSIS
—¢— VSl

Precision

O T T T T
0 20 40 60 80 100

Number of Images Retrieved

Figure 8-16c. Retrieval Accuracy vs. Number of Retrieved Images (Random)

8.3.4.2. Accuracy of Rule-Based Range Query Processing Algorithm

One of the factors affecting the retrieval accuracy of the rule-based algorithm for
processing k-nearest neighbor queries is the retrieval accuracy of the range query
processing algorithm. The next set of tests measured that accuracy in order to identify
the cause of the results of the previous test. Since the rule-based range query processing
algorithm works by computing bounds on the percentage of pixels that may be of the
desired query color, and it retrieves an image if those bounds intersect the range [PCT iy,
PCTmax], then the range specified in the query will affect whether the algorithm retrieves
an image. Thus, the query range affects the precision and recall of the rule-based
algorithm. Consequently, the next test measures the precision and recall against the

width of the query range [PCTpin, PCTax] as it increased from 5 to 75

175

Range Recall/Precision for Helmet Data Set

0.8 -
c
0
£ 0.6 T
o —a— Precision
o
o —— Recall
= 0.4
3 /
(]
(4
0.2
o T T T T T T
5 15 25 35 45 55 65 75
Width of Range Query (PCTmax-PCTmin)
Figure 8-17a. Precision and Recall vs. Width of Range Query (Helmets)
Range Recall/Precision for Flag Data Set
1
0.8
c
0
2 oo m— - e .
o —a— Precision
o —— Recall
8
(]
(4

T T T T T T

15 25 35 45 55 65 75
Width of Range Query (PCTmax-PCTmin)

Figure 8-17b. Precision and Recall vs. Width of Range Query (Flags)

176

Range Recall/Precision for Random Data Set

—4— Precision
—— Recall

Recall/Precision

0 + T 7 T T T T
5 15 25 35 45 55 65 75

Width of Range Query (PCTmax - PCTmin)

Figure 8-17c. Precision and Recall vs. Width of Range Query (Random)

The results of the above test are displayed in Figures 8-17a, 8-17b, and 8-17¢ for
the helmet, flag, and random data sets respectively. The results display the precision and
recall for the rule-based approach since it is the only approach that is not histogram-
based. Since the recall is much higher than the precision in each of the tests, the results
indicate that the rule-based algorithm retrieves most of the images that should be returned
as aresult of the query along with many more images that should not be retrieved.

The reason for the above result can be determined from the behavior of the rules.
After applying the rules to the editing operations in a virtual image, the rule-based
algorithm produces an interval [BOUND i, BOUND,,,x]. This interval should enclose
the actual percentage of pixels in the virtual image that are of the query color. Since the
actual percentage of pixels is not known, however, the algorithm retrieves the image if

[PCTmmin, PCTmax] intersects this interval. Thus, it is possible that the intervals intersect,

177

but the actual percentage of pixels that are of the query color is not within [PCTypn,
PCTn.x]. Since the actual percentage is not within this interval, the image is not relevant
to the given query. Because the intervals intersect, however, the rule-based algorithm
would retrieve the image. Thus, the algorithm would retrieve an image that is not
relevant, which decreases its precision.

Another conclusion that is implied by the above results is that the rule-based
algorithm tends to have higher rates of precision and recall as the query interval grows.
Since it is easier for the bounds computed by the rules to intersect the query range if it is
large, it is expected that the rule-based algorithm will retrieve more images with larger
query ranges. Since the algorithm retrieves more images with larger query ranges, it is
expected that the recall of the algorithm should improve and the precision of the
algorithm should decline as the query range grows. The results also show that the
precision is low when the query range is small, however. The reason why is that there
are fewer images that can be matched by the rule-based algorithm.

The above results imply that the rule-based range query processing algorithm is
more effective when used with queries with larger ranges. Thus, the rule-based algorithm
is more appropriate when users search for images with a general amount of color than
when they search using the precise amount of color. For example, the rule-based
algorithm is more appropriate when a user can pose a query requesting the images of

flags that are at least 50% red instead of requesting images that are exactly 75% red.

178

8.4. Performance Evaluation Summary

The performance evaluation conducted in the previous section measured the
differences on the metrics of space, time, and accuracy when using the various
approaches for processing queries in retrieval systems that store images virtually. This
section summarizes the advantages and disadvantages of each approach.

The Binary Storage with-Histograms (BSH) algorithms have the advantage of
being simple. All images can be stored in the same format so the underlying database
management system only needs to manipulate one type of image. The disadvantage of
the algorithms is that they consume the most space of the four approaches since no
images are stored virtually. The BSH algorithms also extract histograms from all images
during insertion, so this approach is also slower than the rule-based approach when
inserting images.

Considering the above discussion, the BSH algorithms are best suited for
applications that are most dependent on retrieval query processing time and not space or
insertion time. Thus, the algorithms are the most appropriate for applications with static
data sets that are searched frequently, such as medical diagnostic applications where an
image taken from a patient may be compared with images of known diseases. The BSH
algorithms are also appropriate for data sets that do not contain sets of images that are
similar, since they do not store images virtually.

The virtual algorithms have various advantages and disadvantages. One of the
advantages of the Virtual Storage with Instantiation while Searching (VSIS) algorithms is
that they save space by storing images virtually. In addition, the algorithms do not store

or extract any information from virtual images when they are first inserted, so the VSIS

179

algorithms are as fast as the rule-based algorithms when inserting images. Another
advantage of the VSIS algorithms is that they are histogram-based, so they produce the
same results as the conventional BSH algorithms.

The main disadvantage of the VSIS algorithms is that they are extremely slow
when processing retrieval queries since they instantiate all of the virtual image and
extract their histograms. This means that these algorithms are not appropriate for
applications that allow users to perform content-based searches frequently. Thus, the
VSIS algorithms are best suited for applications in which users may constantly create and
add new images to the database but rarely retrieve them. Thus, the algorithms are more
useful for applications that simply archive data.

The Virtual Storage with Instantiation while Inserting (VSII) algorithms extract
histograms from all images like the BSH algorithms, so they share some of the same
advantages. Specifically, the BSH algorithms process the retrieval queries as quickly as
the BSH algorithms, and those queries produce the same results. In addition, the VSII
algorithms store images virtually, so they use less space than the BSH algorithms.

The main disadvantage of the VSII algorithms is that they are extremely slow
when inserting virtual images into the underlying database management system since
they instantiate the images before extracting their features. Thus, these algorithms are
not appropriate for applications in which users will frequently update the database by
adding new images. Alternatively, the VSII algorithms are most appropriate for many of
the same applications as the BSH algorithms, which are applications with static data sets

that are frequently searched. The difference is that the VSII algorithms should be used

180

with those applications that store edited images, such as one that displays standard
automobile models that differ only in color.

The rule-based algorithms implemented in the VRS prototype have the advantage
that they require the significantly less space than the BSH algorithms, just as the VSIS
and VSII algorithms. The main contribution of the rule-based algorithms, however, is
that they do not instantiate images during the processing of insertion or retrieval queries.
The result is that they are significantly faster than the VSIS algorithms when retrieving
images and significantly faster than the VSII algorithms when inserting images. A
potential disadvantage of the rule-based algorithms, however, is that they do not produce
the same results as the BSH algorithms when processing retrieval queries. As indicated
in the previous section, the algorithms are better suited for queries when users want to
retrieve many images.

Considering the above information, the rule-based algorithms are best suited for
applications where users insert and retrieve images frequently, and need to reduce the
amount of space used by those images. Also, users should pose less-specific queries, or
queries that request many images to be retrieved. Applications with these characteristics
include databases for web-based stores where users want to browse many images of
products that are updated quickly.

Tables 8-4a, 8-4b, and 8-4c summarize the comparison of the four approaches to
retrieving images. The first column specifies the approach used and the remaining
columns specify the metrics used for comparison. Each cell in the table describes the
performances of the prototypes during the tests with the maximum percentage of images

stored virtually, which are 29% for the helmet data set, 43% for the flag data set, and

181

data set, and 8-4c¢ is for the random data set.

50% for the random data set. Table 8-4a is for the helmet data set, 8-4b is for the flag

Storage Space | Insertion Time N?arest Nearest
Approach (MB) (sec) Neighbor Neighbor
Time (sec) Accuracy
Rules (VRS) 2.97 239.65 1.34 46%
BSH 4.12 33791 1.00 53%
VSIS 2.96 239.65 554.74 53%
VSII 2.99 891.65 1.00 53%

Table 8-4a. Comparison of Alternative Approaches (Helmet)

Storage Space | Insertion Time Nt‘:arest Nearest
Approach (MB) (sec) Neighbor Neighbor
Time (sec) Accuracy
Rules (VRYS) 3.08 817.72 3.09 34%
BSH 5.26 1414.21 2.33 45%
VSIS 3.07 817.72 5727.79 45%
VSl 3.15 7139.65 233 45%

Table 8-4b. Comparison of Alternative Approaches (Flag)

Storage Space | Insertion Time N?arest Nearest
Approach (MB) (sec) Neighbor Neighbor
Time (sec) Accuracy
Rules (VRS) 0.09 6.54 233 73%
BSH 14.36 876.9 2.29 83%
VSIS 0.09 6.54 12174.96 83%
VSII 0.15 13049.23 2.29 83%

Table 8-4c. Comparison of Alternative Approaches (Random)

182

CHAPTER 9

CONCLUSION

9.1. Summary and Conclusions

MultiMedia DataBase Management Systems (MMDBMSs) focus on the storage
and retrieval of images and other types of multimedia data. One requirement of these
systems is to provide users a method of performing content-based searching of the
multimedia data objects. Common techniques used by MMDBMSs to satisfy this
requirement, such as feature extraction, usually assume that the data objects are stored in
a conventional binary format.

In data sets that contain edited images, storing the edited images virtually allows
them to be stored using a smaller amount of space when compared to storing them in
conventional binary formats. The goal of this dissertation was to develop and evaluate
multiple algorithms for performing content-based image retrieval of virtual images. In
the following sections, the main points of the dissertation are summarized which includes

the results of the performance evaluations.

9.1.1. Algorithms for Processing Range Queries

The first contribution of this research is the development of algorithms for
processing range queries of the type “Retrieve all images that are between PCT,,;, and
PCTax percent of color Cp” for a multimedia database management system that uses

virtual images, where PCTri, and PCT . represent percentages and C represents a color

183

in the RGB model. Three different approaches are presented for processing the above
query type. The first approach uses the semantic information in virtual images to process
the query. The benefit of this approach is that it is able to process queries of the above
type without having to instantiate any of the virtual images by utilizing their descriptions.
The algorithm has two major steps. The first step identifies the images stored in
conventional binary formats that satisfy the user’s query using conventional histograms.
The second step in the algorithm identifies the virtual images that satisfy the query by
computing the maximum and minimum bounds on the percentage of pixels that may be
of color Cq for each virtual image when it is instantiated. The bounds are computed
using a series of rules, which are presented in Chapter 3. Once the bounds for a virtual
image have been computed, they can then be compared to the range formed by the query
arguments PCTin and PCTy,y to determine if the virtual image satisfies the query.

The second algorithm for processing range queries is the Virtual/Instantiation-
Searching (VIS) approach. This approach utilizes conventional histogram techniques to
retrieve virtual images by converting the images to a binary format during searching.

The final algorithm for processing range queries is the Virtual/Instantiation-
Insertion (VII) approach. This approach also utilizes conventional histogram techniques
to retrieve virtual images. The difference between this approach and the VIS approach is
that instantiation is performed when the virtual images are inserted into the database.
After each instantiation, the color histogram is extracted from the instantiated image and

stored in the database.

184

9.1.2. Algorithms for Processing Nearest Neighbor Queries

The second contribution of this dissertation is the development of algorithms for
processing nearest neighbor queries of the type “Retrieve the k images that most resemble
Q based on color” for an MMDBMS that uses virtual images, where k represents a
number and Q represents a query image. These features are assumed to be extracted from
each of the binary images as they are inserted into the MMDBMS.

This dissertation presented three different approaches to processing the query, as
for the processing of range queries. The rule-based approach utilizes the rules presented
earlier in order to determine the colors that are contained within the virtual image without
instantiating it. The VIS approach again instantiates the virtual images during retrieval in
order. to process the nearest neighbor queries using the conventional histogram
techniques. Finally, the VII approach instantiates the virtual images during insertion and
stores histograms extracted from each image in order to utilize the conventional

histogram techniques later during retrieval.

9.1.3. Data Structure for Speeding up Query Processing

The third contribution of this dissertation is the development of a data structure
that can be used to speed up the rule-based range query processing algorithm presented in
Chapter 3. The data structure is able to save time by avoiding the processing of some of
the descriptions of the virtual images. It accomplishes this by utilizing properties of
some of the proposed rules for computing the minimum and maximum bounds on the

percentage of pixels in a virtual image that are of a given color. Specifically, many of the

185

rules are bound-widening meaning that they do not increase the minimum bound, and
they do not decrease the maximum bound. Since the base image of a virtual image is
used to initialize the minimum and maximum bounds, a virtual image whose operations
correspond to bound-widening rules will satisfy a given query if its base also satisfies the
query.

The proposed data structure contains two components. The first component
contains a list of the binary images in the database. Each binary image is associated with
the list of virtual images that all have the binary image as their base images and all
contain only operations that correspond to bound-widening rules. The second component
contains those virtual images that have at least one operation that does not correspond to

a bound-widening rule.

9.1.4. Performance Evaluation

In Chapter 8, this dissertation provides the results of a performance evaluation
comparing the conventional Binary-Histogram (BH) approach for processing retrieval
queries to the rule-based, VII, and VIS approaches for processing retrieval queries with
virtual images. The performance evaluation demonstrates that the BH approach uses the
most space since it does not store edited images virtually. In addition, the average times
used to insert an image using the VIS and rule-based approaches are expected to be
shorter than the other approaches since they do not perform any processing on virtual

images when they are inserted. Alternatively, the VII approach takes a long time to insert

186

a virtual image since it instantiates the image to produce a binary version and then
extracts a color histogram from the image to store into the database.

The performance evaluation also demonstrated that the rule-based approach
requires much less time than the VIS approach for processing retrieval queries since the
proposed approach avoids instantiating virtual images. Thus, the rule-based algorithms
can process both insertion and retrieval queries quickly unlike the VIS and VII
approaches while maintaining the space savings over the BH approach by storing edited
images virtually.

The final result of the performance evaluation demonstrates that the rule-based
approaches do not always produce the same results as the other approaches when
processing retrieval queries. This is the trade-off when utilizing the rule-based approach

instead of the other approaches to processing virtual images.

9.2. Directions for Future Research

Several areas of research are related to the work presented in this dissertation.
One such area is to extend the work by developing techniques for retrieving images using
other features besides color, such as retrieval by texture and retrieval by object shape.
The reason is that although there are many applications that may benefit from virtual
images, most of the real-life applications require searching based on texture and shape in
addition to color. The development of these techniques is dependent on defining new
rules for determining how editing operations affect texture and shape.

Another open research area concerns optimization of editing operations. When a

virtual image is created inefficiently, its description may be very large. Many

187

consequences may occur when a data set contains several virtual images with large
descriptions. One such consequence is that virtual images with large descriptions require
more space, which means that the space savings gained by using virtual images
decreases. Another consequence is that the bounds computed by the algorithms are
adjusted for each editing operation in the description of the virtual images. Thus, having
a data set with large numbers of operations in the descriptions may degrade the retrieval
accuracy of the algorithms. Finally, one method of instantiating a virtual image is to
access the base image and apply the sequence of editing operations in the description of
the virtual image on the base. If the descriptions are large, then it will take longer to
apply the sequence of editing operations, which means that instantiation will be slower.
Consequently, displaying the retrieved virtual images will also be slower.

Given the above problems, an MMDBMS that uses virtual images must avoid
storing ones with unnecessarily long descriptions. This means that when users create
virtual images inefficiently, the MMDBMS needs to be able to optimize the sequence of
editing operations [Grue, 1996]. Further research is needed to develop methods of
automatic optimization.

Another open research area is to evaluate the effect of using algorithms that are
hybrids of the rule-based and histogram-based algorithms presented in this dissertation in
order to obtain the advantages of both. For example, one such hybrid approach could
store histograms corresponding to some of the virtual images in order to optimize the
permanent storage space and query processing time. An open issue, then, in creating
such a hybrid approach is how to determine which histograms to store that optimize those

metrics.

188

[Aars, 1999]

[Anna, 2000]

[Asla, 1999]

[Bach, 1993]

[Beck, 1990]

[Berc, 1996]

[Blan, 1997]

[Boue, 1999]

[Bozk, 1997]

[Bozk, 1999]

[Brin, 1995]

[Brow, 1997]

[Brow, 1998]

[Brow, 1998a]

[Brow, 2001]

[Cheu, 1998]

REFERENCES

Aars, Michael, “Automatic Feature Extraction Using Specifications of Images”,
Master’s Thesis, Baylor University, 1999.

Annamalai, Melliyal, et al., “Indexing Images in Oracle8i”, Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, May
2000, pp. 539-547.

Aslandogan, Y. Alp and Clement T. Yu, “Techniques and Systems for Image and
Video Retrieval”, IEEE Transactions on Knowledge and Data Engineering,
Volume 11, Number 1, January/February 1999, pp. 56-63.

Bach, Jeffrey R., Santanu Paul, and Ramesh Jain, “A Visual Information System
for the Interactive Retrieval of Faces”, IEEE Transactions on Knowledge and
Data Engineering, Volume 5, Number 4, August 1993, pp. 619-628.

Beckmann, Norbert, et al, “The R'-tree: An Efficient and Robust Access
Method for Points and Rectangles”, Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, May 1990, pp. 322-331.
Berchtold, Stefan, Daniel A. Keim, and Hans-Peter Kriegel, “The X-Tree: An
Index Structure for High-Dimensional Data”, Proceedings of the 22nd
International Conference on Very Large Databases, 1996, pp. 28 - 39.

Blanken, Hans, “Introduction”, Multimedia Databases in Perspective, Chapter 1,
P. M. G Apers, H. M. Blanken, and M. A. W. Houtsma (Eds.), Springer, 1997,
pp. 3-11.

Bouet, Marinette, Ali Khenchaf, and Henri Brand, “Shape Representation for
Image Retrieval”, Proceedings of the 7" ACM International Conference on
Multimedia, 1999, pp. 1-4.

Bozkaya, Tolga and Meral Ozsoyoglu, “Distance-Based Indexing for High-
Dimensional Metric Spaces”, Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, May 1997, pp. 357-368.
Bozkaya, Tolga and Meral Ozsoyoglu, “Indexing Large Metric Spaces for
Similarity Search Queries”, ACM Transactions on Database Systems, Volume
24, Number 3, September 1999, pp. 361-404.

Brin, Sergey, “Near Neighbor Search in Large Metric Spaces”, Proceedings of
the 21st International Conference on Very Large Databases, 1995, pp. 574-584.
Brown, Leonard, Le Gruenwald, and Greg Speegle, “Testing a Set of Image
Processing Operations for Completeness”, Proceedings of the 2nd Conference on
Multimedia Information Systems, April 1997, pp. 127-134.

Brown, Leonard and Le Gruenwald, “Determining a Minimal and Independent
Set of Image Processing Operations for a Multimedia Database System”,
Proceedings of the 1998 Energy Technology Conference and Exhibition,
February 1998, pp. 1-6.

Brown, Leonard and Le Gruenwald, “Tree-Based Indexes for Image Data”,
Journal of Visual Communication and Image Representation, Volume 9, Number
4, 1998, pp. 300-313.

Brown, Leonard and Le Gruenwald, “A Prototype Content-Based Retrieval
System that Uses Virtual Images to Save Space”, Proceedings of the 27"
International Conference on Very Large DataBases (VLDB), 2001, pp.693-694.
Cheung, King Lum and Ada Wai-chee Fu, “Enhanced Nearest Neighbour Search
on the R-tree”, ACM SIGMOD Record, Volume 27, Number 3, September 1998,
pp.16-21.

189

[Ciac, 1997]

[Come, 1979]

[Dao, 1996]

[Djer, 1997]

[Eaki, 1996]

[Eaki, 1998]

[Fagi, 1998]

[Falo, 1994]
[Falo, 1996]

[Flag, 2003]
[Flic, 1995]

[Free, 1995]

[Gaed, 1998]

[Gong, 1994]

[Gongz, 1993]

[Gray, 1995]

[Gree, 1995]

[Gros, 1997]

[Grue, 1996]

Ciaccia, Paolo, Marco Patella, and Pavel Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces”, Proceedings of the 23rd
International Conference on Very Large Databases, 1997, pp. 426-435.

Comer, Douglas, “The Ubiquitous B-Tree”, ACM Computing Surveys, Volume
11, Number 2, June 1979, pp. 121-137.

Dao, Son, Qi Yang, and Asha Vellaikal, “MB"-Tree: An Index Structure for
Content-Based Retrieval”, Multimedia Database Systems, Chapter 11, Kingsley
C. Nwosu, Bhavani Thuraisingham, and P. Bruce Berra (Eds.), Kluwer Academic
Publishers, Boston, 1996, pp.298-317.

Djeraba, Charbane et al., “Retrieval and Extraction by Content of Images in an
Object Oriented Database”, Proceedings of the 2nd Conference on Multimedia
Information Systems, April 1997, pp. 50-57.

Eakins, John P., Kevin Sheilds, and Jago Boardman, “ARTISAN — A Shape
Retrieval System Based on Boundary Family Indexing”, SPIE Volume 2670
Storage and Retrieval for Image and Video Databases IV, 1. K. Sethi and R. C.
Jain (Eds.), SPIE Press, Bellingham, Washington, 1996, pp. 17-28.

Eakins, John P., Jago Boardman, and Margaret E. Graham, “Similarity Retrieval
of Trademark Images”, IEEE Multimedia, Volume 5, Number 2, April-June
1998, pp. 53-63.

Fagin, Ronald, “Fuzzy queries in Multimedia Database Systems”, Proceedings of
the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 1998, pp. 1-10.

Faloutsus, C. et al, “Efficient and Effective Querying by Image Content”,
Journal of Intelligent Information Systems, Volume 3, 1994, pp. 231-262.
Faloutsus, Christos, Searching Multimedia Databases by Content, Kluwer
Academic Publishers, Boston, 1996.

images from http://www.flags.net, accessed on January 7, 2003.

Flickner, Myron. et al., “Query by Image and Video Content: The QBIC
System”, IEEE Computer, Volume 28, Number 9, September 1995, pp. 23-31.
Freeston, Michael, “A General Solution of the n-dimensional B-tree Problem”,
Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, 1995, pp. 80-91.

Gaede, Volker and Oliver Glinther, “Multidimensional Access Methods”, ACM
Computing Surveys, Volume 30, Number 2, June 1998, pp. 170-231.

Gong, Yihong et al, “An Image Database System with Content Capturing and
Fast Image Indexing Abilities”, Proceedings of the International Conference on
Multimedia Computing and Systems, IEEE Computer, May 1994, Volume 27,
Number 5, pp. 121-130.

Gonzales, Rafael C. and Richard E. Woods, Digital Image Processing, Addison-
Wesley Publishing Company, Reading, MA, 1993.

Gray, Robert S., “Content-Based Image Retrieval: Color and Edges”, Technical
Report, Dartmouth University, Identification Number PCS-TR95-252, March
1995, available at URL: http://attcomm.dartmouth.edu/~rgray/#papers.
Greenberg, Adele Droblas and Seth Greenberg, Fundamental Photoshop,
McGraw-Hill, Inc., Berkeley, 1995.

Grosky, William, “Managing Multimedia Information in Database Systems”,
Communications of the ACM, Volume 40, Number 12, December 1997, pp. 73-
80.

Gruenwald, Le and Greg Speegle, “Research Issues in View-Based Multimedia
Database Systems”, Proceedings of the 2nd World Conference on Integrated
Design and Process Technology, December 1996, pp. 331-336.

190

http://www.flags.net
http://attcomm.dartmouth.edU/~rgray/%23papers

[Gutt, 1984]

[Hafn, 1995]

[Hear, 1997]
[Helm, 2003]
[Hu, 1999]

[Jaga, 1990]

[Jaga, 1997]

[Kata, 1997]

[Kell, 1995]

[Klas, 1997]

[Kort, 1991]

[Kuma, 1994]

[Lin, 1994]

[Lin, 2001]

[Lome, 1990]

[Mehr, 1995]

[Mend, 1992]

[NASA, 2003]
[Oria, 2000]

Guttman, Antonin, “R-trees: A Dynamic Index Structure for Spatial Searching”,
Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, 1984, pp. 47-57.

Hafner, James et al., “Efficient Color Histogram Indexing for Quadratic Form
Distance Functions”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Volume 17, Number 7, July 1995, pp. 729-736.

Hearn, Donald and M. Pauline Baker, Computer Graphics C Version, Prentice
Hall, Upper Saddle River, N.J., 1997.

Images from http://inside99.net/Helmet_Project/index.htm, accessed on January
7,2003.

Hu, Shaowen, “Instantiation of the Logical Model Language”, Baylor University,
Master’s Thesis, 1999.

Jagadish, H. V., “Spatial Search with Polyhedra”, Proceedings of the 6th
International Conference on Data Engineering, 1990, pp. 311-319.

Jagadish, H. V., “Content-Based Indexing and Retrieval”, The Handbook of
Multimedia Information Management, Chapter 3, William L. Grosky, Ramesh
Jain, and Rajiv Mehrotra (Eds.), Prentice Hall, 1997, pp.69-93.

Katayama, Norio, and Shin'ichi Satoh, “The SR-Tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries”, Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, May 1997, pp. 369-
380.

Kelly, Patrick M., Michael Cannon, and Donald R. Hush, “Query by Image
Example: The CANDID Approach”, SPIE Volume 2420 Storage and Retrieval
for Image and Video Database III, 1995, pp. 238-248.

Klas, Wolfgang and Karl Aberer, “Multimedia and its Impact on Database
System Architectures”, Multimedia Databases in Perspective, Chapter 3, P. M.
G. Apers, H. M. Blanken, and M. A. W. Houtsma (Eds.), Springer, New York,
1997, pp. 31-62.

Korth, Henry F. and Abraham Silberschatz, Database System Concepts,
McGraw-Hill, Inc., New York, 1991.

Kumar, Akhil, “G-Tree: A New Data Structure for Organizing Multidimensional
Data”, IEEE Transactions on Knowledge and Data Engineering, Volume 6,
Number 2, April 1996, pp. 341 - 347.

Lin, King-Ip, H. V. Jagadish, and Christos Faloutsos, “The TV-Tree: An Index
Structure for High-Dimensional Data”, VLDB Journal, Volume 3, 1994, pp 517-
542,

Lin, Shu, et al., “An Extendible Hash for Multi-Precision Similarity Querying of
Image Databases”, Proceedings of the 27" International Conference on Very
Large Databases, 2001, pp. 221-230.

Lomet, David B. and Betty Salzberg, “The hB-Tree: A Multiattribute Indexing
Method with Good Guaranteed Performance”, ACM Transactions on Database
Systems, Volume 15, Number 4, December 1990, pp. 625-658.

Mehrotra, Rajiv and James E. Gary, “Similar Shape Retrieval in Shape Data
Management”, IEEE Computer, Volume 28, Number 9, September 1995, pp. 57-
62.

Mendenhall, William, and Terry Sincich, Statistics for Engineering and the
Sciences, Dellen Publishing Company, San Francisco, 1992.

Images from http.//nix.nasa.gov/browser.html, accessed on January 7, 2003.
Oria, Vincent et al., “DISIMA: A Distributed and Interoperable Image Database
System”, Demonstration, Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, May 2000, p. 600.

191

http://inside99.net/Helmet_Project/index.htm
http://nix.nasa.gov/browser.html

[Oria, 2001]

[Orte, 1997]

[Orte, 1998]

[Park, 1997]

[Park, 1999]

[Pass, 1996]

[Pbmp, 2003]
[Rand, 2003]

[Ritt, 1996]

[Robi, 1981]

[Rous, 1995]

[Sant, 1999]

[Scla, 1997]

[Seid, 1997]

[Sell, 1987]

[Shas, 1990]

[Smit, 1995]

[Smit, 1996)

Oria, Vincent et al., “Similarity Queries in the DISIMA Image DBMS”,
Proceedings of the 9th ACM International Conference on Multimedia, October
2001, pp. 475-478.

Ortega, Michael et al., “Supporting Similarity Queries in MARS”, Proceedings
of the 5" ACM International Conference on Multimedia, 1997, pp. 403-413.
Ortega, Michael et al,, “Supporting Ranked Boolean Similarity Queries in
MARS?”, IEEE Transactions on Knowledge and Data Engineering, Volume 10,
Number 6, November/December 1998, pp. 905-925.

Park, Youngchoon and Forouzan Golshani, “ImageRoadMap: A New Content-
Based Image Retrieval System”, Proceedings of the 8th International Conference
on Database and Expert System Applications, September 1997, Lecture Notes in
Computer Science, Volume 1308, Springer, pp. 225-239.

Park, Du-sik et al.,, “Image Indexing using Weighted Color Histogram”,
Proceedings of the 10" International Conference on Image Analysis and
Processing, 1999, pp.909-914.

Pass, Greg, Ramin Zabih, and Justin Miller, “Comparing Images Using Color
Coherence Vectors”, Proceedings of the 4" ACM International Conference on
Multimedia, 1996, pp. 65-73.

http://www.acme.com/software/pbmplus/, accessed January 7, 2003.

Images from Attp://nix.nasa.gov/browser.htmil, http://www.toyota.com,
http://c2.com/~ward/plates/, http.//www.cs.ou.edu/~database/members.htm, and
http.//www.weathergallery.com/tornado-gallery.shtml, accessed January 7, 2003.
Ritter, Gerhard X. and Joseph N. Wilson, Handbook of Computer Vision
Algorithms in Image Algebra, CRC Press, Boca Raton, 1996.

Robinson, John T., “The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes”, Proceedings of the 1981 ACM SIGMOD
International Conference on Management of Data, April 1981, pp. 10-18.
Roussopoulos, Nick, Stephen Kelley, and Frédéric Vincent, “Nearest-Neighbor
Queries”, Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, pp. 71-79.

Santini, Simone and Ramesh Jain, “Similarity Measures”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Volume 21, Number 9, September
1999, pp. 871-883.

Sclaroff, Stan, Leonid Taycher, and Marco La Cascia, “ImageRover: A Content-
Based Image Browser for the World Wide Web”, Technical Report TR97-005,
Boston University, Boston, 1997.

Seidl, Thomas and Hans-Peter Kriegel, “Efficient User-Adaptable Similarity
Search in Large Multimedia Databases”, Proceedings of the 23 International
Conference on Very Large Databases, 1997, pp. 506-515.

Sellis, Timos, Nick Roussopoulos, and Christos Faloutsos, “The R+-Tree: A
Dynamic Index for Multidimensional Objects”, Proceedings of the 13th
International Conference on Very Large Databases, 1987, pp. 507-518.

Shasha, Dennis and Tsong-Li Wang, ‘“New Techniques for Best-Match
Retrieval”, ACM Transactions on Information Systems, Volume 8, Number 2,
April 1990, pp. 140-158.

Smith, John R. and Shih-Fu Chang, “Single Color Extraction and Image Query”,
IEEE Proceedings of the International Conference on Image Processing, October
1995, pp.528-531.

Smith, John R. and Shih-Fu Chang, “VisualSEEK: A Fully Automated Content-
Based Image Query System”, Proceedings of ACM Multimedia 1996, pp. 87-98.

192

http://www.acme.com/software/pbmplus/
http://nix.nasa.gov/browser.html
http://www.toyota.com
http://c2
http://www
http://www.weathergallery.com/tornado-gallery.shtml

[Spee, 1995]

{Spee, 1998]

[Spee, 2000]

[Steh, 2000]

[Steh, 2002]

[Wall, 1991]

[Whit, 1996]

[Wu, 1994]

[Yian, 1992]

Speegle, Greg, “Views of Media Objects in Multimedia Databases”, Proceedings
of the International Workshop on Multimedia Database Management Systems,
August 1995, pp. 20-29.

Speegle, Greg, Xiaojun Wang, and Le Gruenwald, “A Meta-Structure for
Supporting Multimedia Editing in Object-Oriented Databases”, Proceedings of
the 16th British National Conference on Databases, July 1998, Lecture Notes in
Computer Science, Volume 1405, Springer, pp. 89-102.

Speegle, Greg et al, “Extending Databases to Support Image Editing”,
Proceedings of the IEEE International Conference on Multimedia and Expo,
August 2000, pp.235-238.

Stehling, Renato O., Mario A. Nascimento, and Alexandre X. Falcdo, “On
‘Shapes’ of Colors for Content-Based Image Retrieval”, Proceedings of the 2000
ACM Workshops on Multimedia, November 2000, pp. 171-174.

Stehling, Renato O., Mario A. Nascimento, and Alexandre X. Falcio, “A
Compact and Efficient Image Retrieval Approach Based on Border/Interior Pixel
Classification”, Proceedings of the 11" International Conference on Information
and Knowledge Management, November 2002, pp. 102-109.

Wallace, Gregory K., “The JPEG Still Picture Compression Standard”,
Communications of the ACM, Volume 34, Number 4, April 1991, pp. 30-44.
White, David A. and Ramesh Jain, “Similarity Indexing with the SS-tree”,
Proceedings of the 12th International Conference on Data Engineering, 1996,
pp. 516-523.

Wu, Jian Kang, and Arcot Desai Narasimhalu, “Identifying Faces Using Multiple
Retrievals”, IEEE Multimedia, Volume 1, Number 3, Summer 1994, pp. 27-38.
Yianilos, Peter N., “Data Structures and Algorithms for Nearest Neighbor Search
in General Metric Spaces”, Proceedings of the 3™ Annual ACM-SIAM
Symposium on Discrete Algorithms, 1992, pp. 311-321.

193

