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ABSTRACT

Semi-active control is emerging as a promising technology for reducing 

undesirable vibrations in dynamic systems. At present, there is a significant worldwide 

effort to develop semi-active control systems for structures that resist seismic behavior. 

To get stability results and performance, however, past efforts have utilized linear control 

synthesis and analysis techniques, neglecting the nonlinear dynamics of semi-active 

actuators. An open problem in the literature is establishing the stability of semi-active 

control systems with nonlinear actuator dynamics. The main focus of this dissertation is 

on that open stability problem.

We develop and experimentally validate control laws that provide stable closed- 

loop behavior and good performance for semi-active control systems with nonlinear 

actuator dynamics. In particular, we treat variable orifice hydraulic semi-active actuators 

installed on a small-scale seismic structure subjected to seismic motions. First, we design 

and manufacture an experimental semi-active actuator specifically for the work herein. 

Next we develop a new dynamic model for the variable-orifice hydraulic semi-active 

actuator that accounts for laminar, turbulent and transition flow characteristics. After 

that, we formulate two general conditions to be met by the nonlinear dynamics of semi­

active actuators. This formulation covers a large class of semi-active control systems 

with nonlinear actuator dynamics. Then, we use the quickest descent Lyapunov method 

in developing the controller design for this large class. In a theorem, we prove that our 

controller provides stability for this new class of semi-active control systems with 

nonlinear actuator dynamics. This provides a solution to the open problem and is one of 

the major results o f this dissertation.

xviii



After treating the stability problem, we examine the performance of our 

controllers. We consider bounded-input/bounded-output (BIBO) stability for multiple 

bounded excitation disturbances. In a theorem, we establish a ball of ultimate 

boundedness (stable attractor) whose size is based on the upper bound of the 

disturbances. The performance of the closed loop semi-active system can be tuned by 

varying either state or modal penalties in a positive definite performance index Q. 

Simulation results using a variety of disturbance inputs are provided to demonstrate the 

effectiveness of the quickest descent control law for a variety of penalties. The best 

controller design was derived using a Q matrix that emphasized the lowest frequency 

mode of the structure and also the differential pressure state of the semi-active actuator. 

The system 1-norm and simulation results are used to establish that the guaranteed 

performance (i.e.. bound of the stable attractor) is too conservative by two orders of 

magnitude for the best performing controller. This part of the work of the dissertation 

opens up a new problem for future researchers on how to construct guaranteed 

performance bounds that are less conservative.

The response characteristics of the quickest descent Lyapunov controller are also 

demonstrated experimentally. A small-scale test structure outfitted with a single variable 

orifice semi-active actuator is excited using a single axis electro-hydraulic seismic 

motion simulator. Two seismic inputs are used to excite the test structure. One is band- 

limited white noise ground acceleration and the other is the North/South component of 

the 1940 El Centro earthquake. The tracking performance of the simulator is documented 

herein to assure the validity of the experimental data. The test results are compared to

XIX



force/velocity control law used by many semi-active researchers. The experimental work 

demonstrates that our quickest descent control design technique is a valuable tool for 

designing stable semi-active control laws that exhibit good performance against realistic 

seismic inputs. For a band limited white noise input the Lyapunov control law is able to 

reduce the maximum relative displacement between the ground and first floor of the test 

structure by 78% compared to a 54% reduction yielded by the force/velocity control law. 

The Lyapunov controller netted a 38% decrease for a component of the 1940 El Centro 

earthquake while the force/velocity control provided a 41% reduction.
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CHAPTER 1 

INTRODUCTION AND BACKGROUND

1.1 Introduction

Earthquakes are one of the most feared natural forces known to man. They can 

occur almost anywhere devastating vast areas in a matter o f seconds. According to 

statistics from the United States Geological Survey National Earthquake Information 

Center, an average of one great earthquake (magnitude greater than 8  on the Richter 

Scale), 18 major earthquakes (magnitudes 7-8) and 120 strong earthquakes (magnitudes 

6-7) occur worldwide each year. There are also more than 9000 minor seismic events 

(magnitudes 1-3) each day. When large earthquakes strike heavily populated areas, they 

result in a tremendous amoimt of property damage and loss of life. The 1989 Loma 

Prieta earthquake, which registered 7.2 on the Richter Scale, caused 6  billion dollars in 

damage and 63 deaths while injuring 3,757 others. The 6.7 magnitude Northridge quake 

in 1994 resulted in 57 deaths. 9.000 injuries and 20 billion dollars in damage. 

Approximately 9,000 buildings were seriously damaged in the 10-20 seconds of strong 

shaking which displaced 20,000 people from their homes. The 1995 Kobe earthquake 

was extremely devastating in terms of structural damage and casualties. The 6.9 

magnitude seismic event destroyed 100,000 buildings, killing 5,100 and injuring 27.000.

Civil structures are especially susceptible to the extreme loads resulting from 

strong seismic motions. Subsequently, many injuries and deaths attributed to earthquakes 

are caused by structural damage or collapse. While nothing can be done to prevent

1



earthquakes, researchers are continually striving to better understand how to reduce the 

effects of seismic motions on structures. The ultimate goal is low cost seismic resistant 

buildings and bridges, which maintain integrity in the event of an earthquake and prevent 

excessive acceleration levels that might lead to occupant injuries. A variety of passive 

structural designs have been developed which provide improved strength and dynamic 

response characteristics. There are two general passive techniques for reducing seismic 

damage. The first approach is to isolate the structure from ground motions. Numerous 

companies around the world manufacture seismic base isolators for such an application. 

The isolators essentially act as a low-pass filter on ground motions transmitted to the 

structure and tend to reduce the fundamental oscillatory frequency of the structure. Many 

seismic isolators incorporate lead cores to tailor the damping characteristics of the 

devices. .Another passive vibration control technique involves adding energy dissipating 

elements to a structure. Ductile components, which are designed to yield but not fail in 

the event of an earthquake, are commonly incorporated into buildings to transform 

vibration energy into heat and noise. A variety of other energy dissipating devices are 

commercially available for structures including viscous dampers and friction dampers.

Over the past twenty years, there has been considerable research on the use of 

motion control systems to mitigate structural vibrations. Many promising active, semi­

active and hybrid control strategies have been demonstrated as a result of this effort. Of 

these potential strategies, semi-active devices are well suited to the seismic response 

control problem because the power required to operate a semi-active actuator is small 

compared to the achievable control forces. Such devices can operate for several hours on 

batteries in the event of a power outage during an earthquake. Since large power sources



are not required for semi-active control systems, the hardware is comparable to passive 

dampers in terms of first cost and maintenance costs. Furthermore, in many cases, semi­

active controllers have been shown to exhibit comparable performance to active control 

systems.

While there has been a significant amount o f research in the development and 

testing of semi-active control devices for civil structures, little emphasis has been placed 

on tailoring analysis and control synthesis tools to the semi-active control problem. 

Although many semi-active actuators have nonlinear dynamic characteristics that couple 

with the structural dynamics, most researchers neglect the actuator dynamics and utilize 

linear control synthesis techniques. Since the dynamics of the structure and actuator 

couple, it is also appropriate to consider the coupled system realization for any stability 

analysis. To date, the stability problem for systems with non-linear semi-active control 

devices has not been adequately addressed in the literature.

The work presented here describes the development and testing of stable semi­

active control laws for seismic response reduction. The dissertation encompasses the 

design, modeling, construction, control algorithm development, stability analysis and 

experimental verification of a variable-orifice hydraulic semi-active control system for a 

small-scale three-story test structure. First, the design and selection of the experimental 

hardware is presented. Secondly, mechanistic models are developed for the test structure 

and the semi-active actuator. Next, a method for designing stable bi-state control 

algorithms based on Lyapunov's direct method is developed for a general class of semi­

active control systems. The closed loop semi-active system is shown to provide quadratic 

convergence to a stable attractor (ball of ultimate boundedness) centered at the origin for



bounded disturbances. The general control law and stability results are applied to a 

coupled realization of the structure and a single nonlinear semi-active actuator. 

Simulation results demonstrating the response characteristics of the structure with a 

variety of control laws and disturbances are presented and compared to the performance 

bounds generated for each control law. Finally, experimental results obtained with the 

scale seismic test structure are presented for several cases: a) a semi-active Lyapunov 

control law, b) a simple collocated energy minimization semi-active control algorithm, c) 

the semi-active hardware operated passively with the valve open, d) the semi-active 

hardware operated passively with the valve closed and e) the bare structure with no 

control hardware. The different test results are used to evaluate the performance of the 

semi-active Lyapunov control law.

1.2 Background

Yao (1972) introduced the concept of applying active control theory to the design 

of civil engineering structures. The work suggested that active control systems could be 

used to improve the safety of civil structures and possibly increase the allowable height 

of buildings. Since that time, the field of active structural control has gained considerable 

attention. The variable nature of active control systems would allow structures to adapt 

to changing load characteristics. Many devices including active tendon control systems 

(Chung, et al., 1988) and active mass dampers (Dyke, et al, 1996a, Sakamoto, et al. 1994) 

have been tested in scale laboratory experiments and full-scale structures. Although 

active control systems have shown exceptional abilities, there are a number of practical 

issues limiting widespread acceptance o f such devices. One of the primary limitations o f



active structural control systems is the reliance on tremendous amounts of external power 

to mitigate vibrations in a massive structure. For instance, since electrical service is often 

lost in large earthquakes, a local power source, such as a generator would be required to 

operate the control system, adding to the first cost and upkeep of the installation. The 

ability to input large amounts of energy into a structure also introduces questions about 

stability and system behavior in the event of a malfunction. While the United States has 

been reluctant to implement active control systems in actual structures, active mass 

dampers have been installed in three buildings in Japan and one in China. (Spencer and 

Sain, 1997)

Semi-active devices provide a compromise between passive and active control 

systems. An extensive amount of research has been conducted on applying semi-active 

control devices to improve the ride and handling characteristics of automobile 

suspensions since the concept was introduced. (Kamopp, et al. 1974) The work indicated 

that semi-active force generators could provide substantial performance gains over 

passive suspensions without the high cost and complexity of active control devices. 

Hrovat et al. (1983) first proposed the idea of semi-active structural control to mitigate 

wind-induced vibrations in a single degree of freedom building model using a semi-active 

timed mass damper. Simulations, which used a clipped linear quadratic control law and 

neglected actuator dynamics, indicate the semi-active system provided a 30% reduction 

in root mean square (RMS) displacement and a 24% reduction in RMS acceleration 

compared to a passive tuned mass damper system.

Since that initial work, numerous semi-active actuator devices, relying on a 

variety of technologies, have been proposed, designed and tested. The variety of devices



is illustrated in Figure I.l.  Ehrgott and Masri (1994), Gavin (1994) and Gavin, et al. 

(1996) investigated the design, modeling and performance of electrorheological (HR) 

fluid dampers for structural control. Spencer, et al. (1997) developed a model for a 

prototype magnetorheological (MR) fluid damper. Spencer, et al. (1998) reported the 

modeling and testing of a 200-kN MR damper designed for controlling full-scale 

structures. Akbay and Aktan (1990), Feng, et al. (1993), and Dowdell and Cherry (1994) 

have investigated semi-active variable friction dampers. Nagarajaiah and Mate (1998) 

developed and tested a continuously variable stiffness device. Harmonic shake table tests 

indicate the system is capable of effectively reduce the displacement and acceleration of a 

single degree of fireedom test structure. Mo, et al. (1996) and Patten, et al. (1998) 

developed a model for a variable orifice hydraulic semi-active vibration absorber 

(SAVA). Symans and Constantinou (1997) described the modeling and extensive testing 

of a semi-active device with variable linear damping characteristics. There are a variety 

of different hardware configurations for each type of semi-active actuator as well as a 

variety of methods to incorporate the devices in a structure.

A number of researchers have experimentally demonstrated the performance of 

semi-active control systems on realistic structures. Kobori, et al. (1993) and Kamagata 

and Kobori (1994) reported the installation of an active variable-stiffhess system on a 

full-scale three-story test structure. The control system is designed to maintain a non­

resonant structural state based on the excitation input to the structure. The system is 

shown to effectively reduce structural vibration.
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Patten, et ai. (1994) tested the performance of a variable orifice semi-active 

damper on a 1/12-scale three-story test structure. A bi-state Lyapunov control algorithm 

was used for the tests. The device provided a 54% reduction in interstory drift where the 

actuator was positioned.

Bobrow. et al. (1995) tested the performance of a variable orifice semi-active 

actuator on a three-story scale test structure. The actuator was filled with air rather than 

hydraulic oil to prevent large forces on the structure. A maximum energy dissipation 

algorithm was used to release the stored energy in the actuator by rapidly opening and 

closing the valve. The structure was excited by an electric motor with an eccentric mass. 

The system provided approximately a 50% reduction in peak acceleration.

Symans (1995) and Symans and Constantinou (1997) experimentally investigated 

the performance of a variable-orifice hydraulic semi-active damper on a planar small- 

scale structure. The dampers were designed to provide adjustable linear viscous damping 

characteristics. A clipped optimal controller and a sliding mode controller were designed 

for the structure. The actuator dynamics were not included in the control designs. The



performance of the control algorithms was experimentally obtained and compared to the 

response of the bare structure and the response of the structure with the dampers operated 

passively with a minimum damping ratio (4%) and with a maximum damping ratio 

(14%). The results indicate that both the control algorithms yielded similar performance 

gains but neither provided any improvement over the passive system configured for 

maximum damping.

Dyke (1996) and Dyke et al., (1996b) experimentally verified the performance of 

a MR damper control system on a planar three-story test structure. The system utilized 

clipped-optimal acceleration feedback controls designed using Hi/LQG control methods. 

The test structure was subjected to a scaled component of the 1940 El Centro earthquake 

with and without the MR damper. The control system provided a 75% reduction in the 

peak third floor displacement and a 48% reduction in peak third floor acceleration.

Patten (1998) and Patten, et al. (1999) reported experimental results for the first 

full-scale semi-active structural control system tested in the United States. The control 

system, installed on an interstate highway bridge near Purcell, Oklahoma, was designed 

to extend the service life of the bridge by reducing dynamic stresses induced by heavy 

vehicles. The system was shown to reduce the peak stress reversals in the bridge girders 

by 40%, extending the safe life of the structure by at least 50 years. Kuehn, et al. (1999) 

presented test data for a second-generation semi-active bridge stifFener system that does 

not protrude below the bottom flanges of the bridge beams. Fatigue calculations based 

on the experimental results indicate that the reduction in stress provided by the non­

protruding StifFener system will extend the safe life of the bridge by 40 years.



Niwa, et al. (1998) reported the first installation of a semi-active damper system 

in an actual building. The five-story structure includes eight actuators on the first four 

floors (two actuators per floor) oriented along the weak axis of the structure. Analytical 

results indicate the system provides an 80% reduction in maximum inter-story drift when 

subjected to a magnitude 8.4, artificial earthquake input. Kurata, et al. (2000) provide 

test results for the structure which was excited with a 100-kN eccentric mass exciter. The 

semi-active damper system provided an 80% reduction in peak deflection of the roof 

floor compared to the uncontrolled structural response.

A comprehensive description of the progress in the development of structural 

control techniques is provided in a special edition of the Journal of Engineering 

Mechanics. (Housner. et al.. 1997) Spencer and Sain (1997) chronicle recent 

developments in structural control systems including the implementation of such systems 

in full-scale structures and the different types and characteristics of actuators under 

investigation. Symans and Constantinou (1999) review the development of semi-active 

structural control systems with an emphasis on experimental work conducted in this area.

It is well known that stability is an essential characteristic for any active control 

system. Unfortunately, the stability problem for semi-active control systems is rarely 

addressed. Dyke, et al. (1998), Spencer, et al. (1998), and Jansen and Dyke (2000) assert 

that semi-active control systems are inherently stable in the bounded input - bounded 

output sense without proof. Corless and Leitmann (1997) proved that a variable stif&ess 

controller could destabilize a system if the control logic is improperly selected. Leitmann 

(1994) investigated the stability of control laws for a semi-active device with both 

variable linear damping and variable linear stiflhess characteristics. One of the control



laws was developed using Lyapunov stability theory. The Lyapunov controller was 

shown to be stable to a ball about the origin for a bounded excitation. The work treated 

both the case in which damping and stiffiiess could be regulated independently and the 

case where the stiffness and damping are regulated jointly. Neither paper included 

nonlinear actuator dynamics.

Although many complex actuator models have been developed for semi-active 

devices, researchers have not utilized these models for proving stability of the closed- 

loop systems. In fact, only a few researchers consider the actuator dynamics for the 

control synthesis. Patten et al. (1994. 1999) utilizes a control law aimed at minimizing 

the first derivative of a quadratic Lyapunov function. While the control law development 

incorporates nonlinear semi-active actuator dynamics, the resulting controller does not 

guarantee asymptotic stability because the system matrix used in the design has a zero 

eigenvalue.

The work herein presents a technique for designing quickest descent semi-active 

controllers based on quadratic Lyapunov functions. The resulting control laws are shown 

to provide quadratic convergence to a ball of ultimate boundedness for bounded 

disturbance inputs for a general class of semi-actively controlled systems. The 

performance of these control laws is demonstrated with simulation and experimental 

results for a small-scale three story seismic structure controlled with a single variable 

orifice semi-active actuator. This is the first work to establish stability for systems that 

incorporate nonlinear semi-active actuator dynamics.
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U  Organization of the Dissertation

First, the experimental hardware used in the experiments is described in detail in 

Chapter 2. The test stmcture. shake table, semi-active actuator, sensors and related 

electronics are included. The third chapter provides the development of detailed models 

for the semi-active actuator and test structure and the procedures used to identify the 

model parameters. A simplified nonlinear model of the semi-active actuator that 

accounts for laminar, transition and turbulent flow is also developed to assist in control 

synthesis. The fourth chapter includes the development of a quickest descent Lyapunov 

control design technique for coupled systems with nonlinear actuator dynamics. Stability 

is established for this control law provided the uncontrolled structure is stable provided 

the semi-active actuator satisfies two general conditions. Numerous simulation results 

for the three-story structure with a single semi-active actuator are also presented. The 

fifth chapter describes the experimental procedures and provides a comparison of 

experimental results for the following cases: a) no semi-active actuator, b) the semi­

active actuator valve fixed in the open position, c) the semi-active actuator valve fixed in 

the closed position, d) with a simple collocated force/velocity semi-active control law and 

e) with a quickest descent Lyapunov control law. The dissertation closes with 

conclusions on the analytical and experimental results and recommendations for future 

work.
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CHAPTER 2 

EXPERIMENTAL HARDWARE

The objective of the research reported here is to design, implement and test stable 

semi-active seismic response control systems for a small-scale structure within a 

laboratory setting. To insure the success of the experiment, each hardware component 

was carefully designed or selected to satisfy its specified function. This chapter provides 

a detailed description of the experimental hardware. Most of the components discussed 

herein were designed and manufactured at OU. First, the characteristics of the fully 

instrumented small-scale 3-story test structure used to validate the control performance 

are outlined. Second, the electro-hydraulic seismic motion simulator used to subject the 

test specimen to reference seismic motions is described in detail. (Kuehn. et al.. 1999) 

(Brock. 2000) A complete description of the hydraulic semi-active control actuator and 

related sensory hardware is provided next. Finally, the control electronics including the 

control computer, the interface hardware and signal conditioning circuitry are described.

2.1 Seismic Test Structure

A three-story test structure depicted in Figure 2.1 is used to demonstrate the 

effectiveness of the semi-active structural control system. The structure is a % scale 

single bay steel moment-resisting frame utilizing artificial mass simulation. The structure 

was designed to have the same frequency content as the model described by Soong, et al 

(1987) and a total weight within the capacity of the seismic shake table. The design of 

the test specimen allows the addition o f stiSeners and mass elements to obtain a variety
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of structural configurations. The structure includes fixtures to mount control actuators 

diagonally between each of the floors in the x-z plane and between the ground and first 

floor in the y-z plane. The actuator configurations for the experimental results provided 

herein are oriented along the x-z plane and are indicated in Figure 2.2. As shown in 

Figure 2.1. the motion of the structure was unconstrained except for a diagonal truss rod 

placed between the base and first floor to couple bending in the y-axis with torsion about 

the z-axis. The coupling provided a slight increase in the y-axis natural frequencies to 

offset them from the .r-axis frequencies. For the experiments here, the total mass of the 

structure was 360-kg with each floor having an equal mass of 120-kg. The acceleration 

of each floor of the structure was sensed with three ICS model 3028-002 piezo-resistive 

accelerometers. The accelerometer layout typical of each floor is shown in Figure 2.3. 

The relative .r-axis (control axis) displacements of the structure were measured using 

RDP Electrosense DC/DC LVDTs positioned diagonally between the floors.

80-cm 240-cm

80-cm

80-cm

60-cm

Figure 2.1: Three-story test structure
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Bare Frame Position 1 Position 2
Figure 2.2: Test configurations used to determine the performance of the semi-active 

control system.

30-cm

Figure 23: Typical accelerometer layout for each floor (red dots denote accelerometers) 

fo ri= I^  2"“ and 3̂*̂ floor
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2.2 Electro-hydraulic Seismic Motion Simulator

Experimental demonstration of seismic protection methods requires a means of 

subjecting a test structure to reference seismic inputs. Seismic motion simulators (shake 

tables) are commonly used to generate such motions within a laboratory setting. Even 

though many researchers have conducted work to improve the tracking fidelity of seismic 

simulators, the total problem has not been addressed. For any experimental data obtained 

using a seismic shake table to be meaningful, it is essential that the shaker precisely 

replicate the desired trajectory (both magnitude and phase) over the frequency spectrum 

of the reference input with the dynamic test structure installed on the table. Blondet and 

Esparza (1988) analytically investigated coupling effects between a seismic simulator and 

test structure. The work indicated the coupling degraded simulator tracking performance 

near the fundamental firequencies of the test structure and reduced stability margins of the 

shake table. A recent ASCE conference included two sessions devoted to the design and 

control of small-scale seismic motion simulators. Symans and Twitchell (1998) 

developed a linearized model of the coupled uniaxial shake table and single story test 

structure at Washington State University. That work failed to present phase data for the 

simulator. Trombetti. et al (1998) generated a transfer function realization for the l- 

degree-of-fi'eedom (DOF) simulator at Rice University to assist in tuning the simulator 

control gains. No closed loop performance data was provided. Spencer and Yang (1998) 

incorporated a transfer function iteration technique to improve the tracking response of 

the shake table at the University of Notre Dame. That work did not include a test 

structure on the simulator during testing.
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Since hydraulic systems typically exhibit nonlinear behavior, electro-hydraulic 

shake table controllers must either treat or be robust to the nonlinear dynamics. Newell, 

et al (1995) experimentally verified a Kalman filter based feedback controller by 

linearizing the simulator dynamics about a reference trajectory to obtain a time varying 

control gain set. The controller utilized an optimal reference trajectory obtained by 

minimizing acceleration tracking error but the experiment did not include a test structure. 

Dai, et al (1997) designed a nonlinear simulator control system based on a tensor 

formulation of a nonlinear regulator design. That work also neglected the test structure. 

Unfortunately, none of the aforementioned experimental work provided both magnitude 

and phase response characteristics for seismic simulators exciting a dynamic test 

specimen.

Regardless of the control or model identification technique, the simulator system 

must have sufficient authority to overcome the effects of reactive loads imparted by the 

test structure. To accurately replicate desired seismic motions, the simulator control 

system must either exhibit exceptional tracking performance and stability robustness in 

the presence of such disturbances or must include the dynamics of the test structure. The 

latter approach is less desirable for a simulator used to verify structural control systems 

because the dynamic characteristics of the controlled structure change each time the 

control system is modified and are often nonlinear. Therefore the shake table control 

would need to be tuned each time the structural control is varied. Work by Kuehn. et al 

(1998.1999) and Brock (2000) provides a detailed description of the development and 

testing of a robust, high fidelity control algorithm for the seismic simulator located in 

Fears Laboratory at the University o f Oklahoma. The results obtained using the OU
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simulator for the tests presented herein are reliable since the previous work referenced 

above demonstrated that the shake table could accurately reproduce both the magnitude 

and phase of a reference input with the same three-story structure.

The University o f Oklahoma seismic shake table shown in Photo 2.1 and in 

Figure 2.4 consists of a 635-kg welded steel motion platform (A) with a l.8 -m x l.2-m

Photo 2.1: University o f Oklahoma seismic motion simulator including test structure
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Figure 2.4: Seismic simulator schematic

horizontal footprint. The motion of the table is constrained to a single horizontal axis 

with Thomson 75-mm extra rigid precision linear bearings (B). The support frame (C) is 

constructed from W 12x65 wide flange I-beam that is bolted to reaction mass (D). The 

table is actuated with a fatigue rated 50-kN MTS hydraulic cylinder (E). The actuator has 

an effective piston area of 2.5x10^-mm" and ±75-mm dynamic stroke.

Hydraulic flow to the actuator is regulated with dual MTS 252 servo-valves. 

Each valve has a 57-lpm maximum flow rate at 21-MPa operating pressure. The 

hydraulic power unit for the simulator consists of a 37-kW 3-phase AC motor, which 

drives a Parker variable displacement piston pump with maximum flow rate of 95-lpm at 

21-MPa. The system includes 1-liter hydraulic accumulators mounted on the supply and
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return ports of the servovalve manifold as well as 0.5-liter and 7.6-liter accumulators at 

the pump to stabilize the supply pressure.

A variety of sensors are required to control and monitor the performance of the 

simulator system. The differential pressure between actuator chambers is monitored with 

an MTS differential pressure transducer with a bandwidth of DC to 1-kHz. The platform 

displacement is measured with an RDP Electrosense DC/DC LVDT that has a bandwidth 

of DC to 200-Hz. The table accelerations are sensed with ICS model 3028-002 piezo- 

resistive accelerometers. The accelerometers have flat frequency responses from DC to 

1-kHz.

The shake table was controlled with a personal computer (PC) based control 

system utilizing a Real Time Device's ADA3100 data acquisition module with 12-bit 

differential A/D and D/A for analog interfacing. Each A/D channel was outfitted with a 

second order low pass Butterworth filter to prevent aliasing. The break frequency of each 

filter was set at 500-Hz. The control system utilized a closed loop feedback/feed­

forward algorithm obtained by the optimization of a receding-horizon tracking 

performance index. The resulting digital control was implemented with a 2000-Hz 

update rate. The block diagram of the simulator control algorithm is depicted in Figure 

2.5. The seismic simulator tracking performance and robustness to test structure 

dynamics were experimentally verified. Figures 2.6 and 2.7 indicate the frequency 

response magnitude and phase of the simulator with and without a 360-kg flexible test 

structure for a banded white noise acceleration input. The time domain acceleration 

tracking response of the motion simulator with the test structure attached is shown in 

Figure 2.8. The reference input was the North/South component of the 1940 El Centro
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earthquake scaled by 50%. The results of Figures 2.6-2. 8  were obtained before adding 

semi-active control devices to the structure.
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Figure 2.5: Seismic simulator feedback/feed-forward control block diagram
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Figure 2.6: Seismic motion simulator acceleration frequency response magnitude with 

and without a 360-kg test structure
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Figure 2.7: Seismic motion simulator acceleration frequency response phase with and 

without a 360-kg test structure
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Figure 2.8: Seismic motion simulator acceleration tracking response of N-S component 

of the 1940 El Centro earthquake
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2 3  Semi-Active Actuators

The variable orifice hydraulic semi-active control device used for the work here is 

shown in Photo 2.2 and a cross section is depicted in Figure 2.9. The hardware consists 

of a hydraulic actuator (A), control valve (B), absolute pressure sensors (C), LVDT (D),

Photo 2.2: Semi-active hydraulic actuator assembly

Figure 2.9: Schematic representation of the variable orifice semi-active actuator

extension housing (E), quick disconnects (F) and spherical rod ends (G). The actuator 

(A) was designed and fabricated at OU specifically for the research presented herein. 

Design optimization studies conducted at the CSC (Cao, 1999, and Zhuang, 1999) have
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shown that semi-active control performance can vary significantly with variations in 

hardware parameters including piston area, actuator stroke, minimum valve orifice area 

and maximum valve orifice area.

The characteristics of the hydraulic actuator are critical to the performance of the 

semi-active control system. To objectively evaluate the performance of the semi-active 

hardware, the influence of actuator friction on the structural dynamics must be small. 

This is especially problematic for small-scale testing because the amount of friction is 

linearly proportional to the piston and rod diameters, not the effective piston area, which 

determines load capacity. For example. Parker Haimafin predicts its l25-kN rated "low 

friction” actuator to have approximately 550-N dynamic friction at 7-Mpa operating 

pressure while a I3-kN rated "low friction" actuator is predicted to have 250-N dynamic 

friction under the same conditions. The friction of the smaller actuator, which has the 

same bore and rod diameter as the actuators used for the work reported here, would 

clearly dominate the dynamics of the test structure. Several small-scale experiments at 

the CSC (Mo. 1996. Lee. 1998) have relied on low friction actuators intended for 

pneumatic and low-pressure hydraulic applications. Such actuators have desirable 

friction characteristics but are limited to peak pressures of 2-MPa. Rather than refine a 

commercially available product, the semi-active actuators were custom designed and 

fabricated by the author. The resulting double rod actuators have a dynamic stroke of 

±25-mm. a 38-mm diameter bore and a 25-mm diameter piston rod providing an effective 

area of 633-mm". The piston seal is a Parker P808 polytetrafluoroethylene (PTFE) piston 

ring with a nitrile o-ring energizer, while the rod seals are shore A-70 cast polyurethane 

o-rings with 2.4-mm diameter cross-section. The actuator was designed for a peak
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pressure of 10-MPa. Cyclic tests (10-mm amplitude 0.25-Hz sine wave) with no 

hydraulic oil in the semi-active device indicate the actuator provided a maximum 75-N of 

friction. (Figure 2.10^

u -20

-10 -5 0 5 10 15
Displacement (mm)

Figure 2.10: Dynamic friction of the actuator with no fluid subject to a 10-mm amplitude 

0.25-Hz sine wave input

Flow between the two chambers of the semi-active actuator is controlled by a 

Whitey Model SS-33VF4 ball valve. The valve has PTFE seats and a polished stainless 

steel ball to reduce actuating torque. The valve is rated at 40-MPa maximum pressure. A 

mapping of the valve orifice area as a function of rotation angle is provided in Figure 

2 . 11 .
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Figure 2.11: Valve orifice area vs. valve angle for the Whitey SS-33VF4 ball valve

Previous semi-active devices developed at the CSC used high performance DC 

motors to drive the semi-active control valves. Such systems require feedback control 

hardware to regulate the valve position. The work reported here utilized a Lucas Ledex 

Ultimag rotary actuator, model 1944644-027. to drive the valve. The Ultimag is a DC 

powered high-speed high-torque rotary actuator with ±22.5° o f stroke. The operating 

characteristics of the actuator are ideal for bi-state control of the valve, which ranges 

from maximum orifice area to fully closed in 45°. The cost of the device is comparable 

to a high performance DC motor and does not require feedback control. The Ultimag 

also provides better performance than rotary solenoids and since it is a double acting 

device, it does not require retum springs shich would tend to increase the actuation 

torque. The device is connected to the valve with a Helical Products flexible stainless

steel coupling which allows 5° angular misalignment and 0.25-mm parallel offset
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betweeen the actuator and valve shafts. The position of the actuator is monitored with a 

BEI shaft mounted incremental optical encoder. The actuator assembly, which is fitted 

with a heat sink, the helical coupling and optical encoder is shown in Photo 2.3. The 

actuator is driven with a National Semiconductor LMD18200 H-bridge rated at 3-A and a 

24-V DC power supply. The output of the LMD 18200 is controlled with TTL inputs. 

The valve system responses are indicated in Figures 2.11 and 2.12 for a variety of loads.

Photo 23: Ultimag rotary actuator with helical coupling
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Figure 2.13: Valve closing response time
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The pressure in each semi-active actuator chamber is sensed with a Measurement 

Specialties MSP-300 pressure transducer. The low cost sensors have a pressure range of 

0 to 7-MPa with an accuracy of ±70-kPa, a bandwidth from DC to 1-kHz and are 

temperature compensated from 0° to 55° C. The displacement of the actuator piston 

relative to the actuator body is measured with an RDP Electrosense DC/DC LVDT with 

±25-mm stroke. The LVDT has a bandwidth of DC to 200-Hz with 30-mV peak-to-peak 

output ripple. The LVDT is mounted inside the actuator extension housing.

The stiffness of the hydraulic fluid and subsequently, the effectiveness of the 

semi-active actuator are dictated by the amount of air mixed with the hydraulic fluid in 

the actuator. It is therefore advantageous to eliminate as much of the air from the device 

as possible. A gravitational bleeding assembly, which is connected to the actuator quick 

disconnects, was designed to fill the actuator with hydraulic fluid and bleed air from the 

system. The actuator was charged to a nominal pressure using a hydraulic accumulator 

that is connected to a quick disconnect on the actuator. The accumulator was 

disconnected form the system during testing. Actuator testing indicated the quick 

disconnects can be problematic if the pressure in either chamber becomes lower than 

atmospheric pressure. Under such conditions, the pressure imbalance will tend to force 

open the quick disconnect check valve, allowing outside air to infiltrate the chamber. 

Therefore, the quick disconnects should be capped to prevent unwanted air from entering 

the system.

The actuator is connected to mounting brackets on the test structure using Aurora 

spherical rod ends. The rod ends are lined with a PTFE fabric to eliminate backlash and
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reduce friction. The spherical connections also allow for up to 12° of angular 

misalignment.

2.4 Control Hardware

The semi-active structural control system was implemented digitally with a 200- 

MHz PC. A Real Time Device’s ADA3110 data acquisition board with 16 single-ended 

12-bit A/D channels was used to digitize the analog sensor data. The AD A3110 was used 

to digitize the outputs of ten accelerometers, two pressure sensors and three LVDTs. The 

outputs of the pressure sensors and LVDTs were filtered with second-order low-pass 

active Butterworth filters. The accelerometer outputs were amplified with custom-made 

signal conditioning circuits utilizing Analog Devices AD524 precision instrumentation 

amplifiers. A Hewlett-Packard HCTL-2020 was used to decode the output of the optical 

encoder used to sense the position of the Ultimag actuator. A Computer Board’s CIO- 

DI024 digital input/output board was used to import the digital output of the decoder 

circuit into the PC. The digital I/O channels on the ADA3110 were used to output TTL 

commands to the H-bridge circuit that drives the valve actuator.

The control software was designed to scan and save data from all the sensors as 

well as control the semi-active actuator. The control logic utilized LVDT and Pressure 

sensor data to determine the desired state of the semi-active valve and is discussed in 

Chapter 4. The software was written in Borland C and was compiled with a Phar-Lap 

DOS extender to allow multiple large arrays to be stored in high memory. The analog 

and digital inputs were sampled at 2000-Hz per channel using burst mode for the A/D 

conversions while the control was updated at 200-Hz.
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CHAPTER 3 

SYSTEM MODELING AND PARAMETER 

IDENTIFICATION

In order to design an effective structural control system, it is necessary to have an 

understanding of the dynamic characteristics of both the structure and the control 

actuator. Much of the structural control work in the literature neglects the dynamic 

coupling between the structure and the control actuator. The objective of this chapter is 

to develop dynamic models for both the test structure and the semi-active actuator, which 

can be coupled together for the control design process.

3.1 Structure Modeling and Parameter Identification

The three-story test structure is idealized as a lumped mass system with three 

degrees of freedom for each floor; displacement in the .r-direction, displacement in the y- 

direction and rotation about the z-axis. Since only the x-axis degrees of freedom are 

controllable for the actuator configurations considered in this dissertation (Figure 2.2), 

the control model developed for the structure includes only three degrees of freedom in 

the .r-direction.

The planar equations of motion for the three-story structure are expressed in terms 

of relative displacements between the floors as

= 5,0 Ap, + Doi/ (3.1)
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where is a 3x1 vector of floor-to floor relative displacements in the .r-axis. Apy is the

semi-active actuator differential pressure and <iis a scalar disturbance input representing 

a uniaxial ground acceleration. The mass, damping and stiffness matrices for the 

structure are represented by Q  and Ks respectively. The two 3 x 1 differential

pressure influence coefficient vectors and correspond to the two semi-active

actuator positions depicted in Figure 2.2. The values of and Bj^ were calculated

from the actuator installation geometry and the effective piston area o f the actuators. For 

the work presented herein, only one actuator is enabled for any given test and the other 

actuator differential pressure is set to zero. is the 3 x 1 ground acceleration influence 

coefficient vector.

The structural stiffness parameters were determined by static tests. A hydraulic 

actuator was used to apply constant loads between floors of the structure. The forces 

were measured with a Transducer techniques 9-kN load cell model SW0-2K. The 

relative displacements between floors were measured with RDP Electrosense LVDTs. 

The resulting floor-to-floor stiffness is 180-kN/m for the first floor. 184-kN/m for the 

second floor and 222-kN/m for the third floor.

Shake table tests were performed on the instrumented bare frame to determine the 

remaining model parameters. The structure was subjected to a 0.5-50-Hz band limited 

white noise ground acceleration input directed along the x-axis of the structure. The time 

histories for each charmel of data were recorded and used to compute frequency response 

functions for the structure. A least-squares algorithm was employed to identify the 

remaining model parameters from the frequency response data. The resulting system 

matrices are as follows:
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M , =
168 0  0  

177 177 0
193 193 193

kg

267 -7 6  0
0 76 -7 4
0 0 74

180 -184 O' 
0 184 -222
0 0 222

N -s
m

N
mm

S,. =[485 0 o f N

5  =[-485 485 O]

MPa

■f iV
MPa

Do =-[168 177 193f%  

Next, the system (3.1) is transformed into state space format

where

=

X  =  A , + D,t/

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1070 1100 0 -1 .59 0.46 0

1070 - 2130 1250 1.59 - 0.86 0.41
0 1030 -2 4 0 0 0 0.43 — 0.80

= [O 0 0 2.89 -2 .8 9 o r

0 0 -2 .8 9 5.62 - 2 .7 3 r

D s = [o 0 0 - 1 0 o r

( 3 2 )

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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States X1-X3 represent the relative displacements between floors in mm and states X4 -X6  are 

the corresponding relative velocities in mmls. The actuator differential pressures ûp, are 

in MPa and the disturbance input d  is in mis'. The state space system model (3.9) is used 

to approximate the structural dynamics throughout the work presented here. Magnitude 

and phase transfer functions of the system model (3.8) are compared to the 

experimentally obtained frequency response functions in Figures 3.1-3.6. The plots 

indicate that in spite of the simplifying assumptions, the model provides a reasonable 

approximation of the data obtained from the test structure.
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Figure 3.1: Comparison of experimental and analytical transfer function magnitudes for
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3.2 Semi-Active Actuator Model

The following section presents a detailed development of a lumped parameter 

dynamic model for the variable orifice hydraulic semi-active actuator. The semi-active 

actuator is represented schematically in Figure 2.9. It is assumed that the fluid in each 

actuator chamber is slightly compressible. The equation of state relating fluid density to 

variations in pressure and temperature in each chamber 1=1,2 is approximated by a first 

order Taylor Series (Merritt, 1967)

P , = P o  +
1 %

(Pt  ~ P o )  + (T.-To) (3.13)
p,
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where p„ pi and 7/ are the density, pressure and temperature respectively of the fluid in 

chamber / and po, po and To are nominal values of the density, pressure and temperature 

for the fluid. The isothermal bulk modulus of the fluid in each chamber is defined as

A =Po = -V
U p , J

i
T

(3.14)

Assuming the temperature in each actuator chamber is constant and the nominal values 

are at atmospheric pressure. Equation (3.13) can be reduced to the form

Pt  -  P q - P a t m ) (3.15)

Since it is impossible to extract all the air from the semi-active actuator, the fluid in the 

actuator is a mixture of hydraulic oil and air. Neglecting the elasticity of the actuator, the 

effective isothermal bulk modulus of the mixture in chamber i is defined as

1
A  = (3.16)

'otl
’̂lot P o tl  t̂ot Pair (PI )

where Vo,i and Va,r are the respective volumes of oil and air in the actuator at atmospheric 

pressure, v,o, is the nominal volume of the actuator and Poti and pair are the bulk moduli of 

the oil and air respectively. Assuming the bulk modulus of the oil is constant and the air 

in the system behaves as an ideal gas. Equation (3.16) can be simplified as

1
Pi

 ̂otl ^atr
(3.17)

^101 P a il  t̂ot Pi

Substituting Equation (3.17) into (3.15) yields the state relation

P i -  Po
KytotHoU t̂otPi j

(3.18)
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Equation (3.18) can be differentiated with respect to time to obtain

dp,
(it

( \ 
^oil ^air Patm

= A
1̂01 Poll ^ioeP7 dPi

1 + P , ~  Pa

P .

dt
(3.19)

Since the system pressure is typically much smaller than the effective bulk modulus, 

(3.19) is approximated as

dp,
dt = P ,

(  \  
^ 0,1  ^  ^air Patm

tot Poll ^io tP7
dp,
dt

(3.20)

Assuming there is no leakage from either chamber, the continuity relations for each 

chamber of the actuator can be expressed as (Merritt, 1967)

dm, dv, dp,
(3.21)

where m, is the mass of fluid in chamber /, pi is the fluid density in chamber /, and v, is 

the volume of chamber /. Equations (3.20) and (3.21) are combined to yield flow 

relations for each actuator chamber

dv-, V, dp-, 
— - +

dt ^2 dt

(3.22)

(3.23)

where q\ is the volumetric flow rate out of actuator chamber l .g i i s  the volumetric flow 

rate into chamber 2 and p]  is defined as

A ' =
1

^oil ^air Patm
(3.24)

^  tot P 0,1 ^ to tP Î
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The volume for each actuator chamber is defined as:

v’i = tv, +  <4pX„ (3.25)

V i = { v , - A p X ^  (3.26)

where v, is the total actuator volume, Ap is the effective piston area, and .r^ is the

displacement of the actuator piston from the mid-stroke point. Differentiating equations 

(3.25) and (3.26) with respect to time yields

1̂ = ApX^ (3.27)

(3 28)

where

(3.29)

Equations (3.22), (3.23), (3.27), and (3.28) can be combined to obtain flow equations for 

each chamber

~9l = ^p-' ŝa (3.30)
Pi

< l2 = -^p X sa + ^P 2  (3.31)
P2

Assuming there is no leakage from the valve, the mass flow rate through the valve

must equal the mass flow rate out of one actuator chamber and the mass flow rate into the

other chamber

A9i = Pv9v (3.32)

P2^l2 = PAv  (3.33)
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Assuming (1) that the valve acts as a symmetric thin-piate orifice, (2) the flow through 

the valve is incompressible and (3) the flow is steady, the energy loss through the valve 

can be expressed by the Torricelli equation (Dulay, 1988)

<?v = Cj(Re)/lv(/)sgn(p, -  P2)J— — —  (3.34)

where Cu is the valve discharge coefficient which is a function of the Reynolds number 

Re, the variable valve orifice area Av(i) is the control input and the signum function is 

defined as

sgn(a)s
1 if a  > 0
0 i f a  = 0 (3.35)

-1  if a  < 0

Assuming the peak chamber pressures are small compared to the bulk modulus of the 

hydraulic oil and the amount of entrained air in the system is small, equation (3.18) 

indicates that variations in fluid density are small. Therefore, the density of the fluid at 

the valve is assumed to be the density of the fluid at equilibrium and equation (3.34) can 

be approximated as

= Q(Re)X,(f)sgn(p, -  p . j M -  ^ '-1 (3.36)
'eif

Equations (3.18). (3.30)-(3.33) and (3.36) are used to simulate the behavior of the 

variable orifice hydraulic semi-active actuator.

3 3  Reduced Order Semi-Active Model

Assuming the density of the hydraulic fluid in the semi-active actuator is constant

4 0



p \ =  P l =  p , =  p (3.37)

Equations (3.30)-(3.34) and (3.37) can be combined to yield a reduced order model for 

the semi-active actuator

Vi

+C’̂ ^ sg n (p , - p i ) .
P \ - P i

^p^sa + C ^4 sg n (p , -  P i), 2|P.

(3.38)

(3.39)

Also, assuming the bulk modulus is constant and that the discharge coefficient can be 

expressed as a function of differential pressure. Equations (3.38) and (3.39) are combined 

to form a single equation in terms of the actuator differential pressure

Ap = -oA -aCj(Ap)A,  sgn(Ap),
2|Ap|

(3.40)

where

V, + Vi
ViVi

(3.41)

Letting u = A^. assuming that variations in actuator chamber volumes from nominal

values are small and noting that the actuator relative velocity is a function of the 

structural state variablex. Equation 3.40 can be rewritten as

where

y  = A^x-B^{Ap)Apu

Asa

P|Ap|

(3.42)

(3.43)

(3.44)
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and ocq is the value for or about equilibrium. For actuator Position 1 (Figure 2.2)

r  = [0 0 0 1.31 0 O] (3.45)

For actuator Position 2

r  = [0 0 0 0 1.31 O] (3.46)

Research by Mo (1996) and Patten, et al (1998) indicates that Equations 13.381 

and (3.39) predict slow decays in nominal chamber pressures, which is inconsistent with 

experimental results. Therefore, the reduced order model is not well suited for designing 

the semi-active actuator. However, that work also indicated that a simplified version of 

model (3.42) that treats only turbulent flow provides a good fit to experimentally 

obtained differential pressure data. Since differential pressure is closely related to the 

control force, model (3.42) is useful for designing the control logic and simulating the 

response characteristics of the controlled structure. The structural model (3.8) and the

semi-active actuator model (3.42) are combined to form a state space realization of the

system for the control design.

3.4 Semi-Active Parameter Identification

Several tests were conducted to determine model parameters for the semi-active 

actuator. A hydrometer was used to measure the specific gravity of the Shell Tellus ISO- 

46 hydraulic oil used in the semi-active actuator. The tests were conducted at room 

temperature and atmospheric pressure. The specific gravity of the oil was 0.864. A 

rotary viscometer was used to determine the viscosity of the oil. The measured kinematic
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viscosity of the oil is 42.3-cSt at 40°C compared to the nominal value of 46-cSt provided 

by the manufacturer.

A uniaxial electro-hydraulic load fiame was used to determine the response 

characteristics of the semi-active actuator to a variety of inputs. A Transducer 

Techniques load cell with a range of ±9-kN was placed in series with the actuator to 

measure the applied force. The pressures in each actuator chamber and the displacement 

of the actuator piston were also measured. The bulk modulus of the air/oil mixture in 

each actuator chamber was experimentally determined with load frame tests. The 

actuator was subjected to a 4-Hz ±0.4-mm amplitude sinusoidal input with the actuator 

control valve fully closed. The chamber pressure and piston displacement data were 

substituted into Equation (3.14) to calculate the bulk modulus of the air/oil mixture in 

each chamber. The chamber volume included the volume of oil in the tubing to the 

control valve. The bulk modulus of the oil and the volume fraction of air at atmospheric 

pressure were determined by performing a least-squares fit of the model given in 

equation (3.17) with the calculated the bulk modulus data. The bulk modulus of the oil 

was identified to be 9.0x10‘-MPa and 0.37% of the volume in chamber 1 consisted of air 

while 0.26% of the volume in chamber 2 consisted of air. According to the 

manufacturers data, the bulk modulus o f the hydraulic oil should be approximately 

1.4xlO^-MPa. The variation might be accounted for by considering the elasticity of the 

hydraulic actuator body. Figures 3.7 and 3.8 indicate the variation of the bulk modulus 

with pressure for each actuator chamber.
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3.5 Valve parameter identifîcation

A flow bench was set up to measure the flow discharge coefficient of the semi­

active flow control valve. The system utilized a variable displacement hydraulic pump 

driven by an electric motor to supply the hydraulic flow. Sensotec model LM/2345-08 

pressure sensors were installed to measure the head loss across the valve. A HofFer 

turbine flowmeter model H01/2xl/4-.l-4.5-UB-lMC3PA-MS was used to sense the flow 

downstream from the valve. The pressures and flows were measured as the flow rate 

through the valve was slowly varied. Tests were performed with the valve completely 

open, closed 30° and closed 45°. The test data were substituted into Equation 3.36 to 

calculate the discharge coefficient, which is plotted in Figure 3.9 as a function of the 

choke number. The choke number is a function of the Reynolds number Re, the 

hydraulic diameter of the orifice Dh and the length of the orifice L.
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Figure 3.7: Experimental effective bulk modulus vs. model for chamber 1
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CHAPTER 4 

SEMI-ACTIVE CONTROL DESIGN

4.1 Introduction

Semi-active devices, like passive elements, (e.g. dampers or springs) generate 

reaction forces to imposed motions. However, the response characteristics of semi-active 

actuators can be varied in real time by adjusting certain actuator parameters, (e.g. valve 

orifice area, magnetic field strength, etc.) The energy required to vary the properties of 

semi-active actuators is typically small compared to the energy stored or dissipated by the 

devices. A variety of linear control synthesis techniques have been used to develop semi­

active control laws for systems without treating the semi-active actuator dynamics that 

couple with the structural dynamics and are often nonlinear. Most control designs 

presented in the open literature either neglect actuator dynamics or treat the actuators as 

linear, variable parameter devices. Since most designs are based on simplified dynamic 

realizations, closed loop stability of the coupled semi-active control systems has been an 

open question.

The objective of this chapter is to address that open question and present a general 

control design methodology that guarantees stability for system models that include 

nonlinear semi-active actuator dynamics. First, a brief literature survey is presented that 

highlights the design techniques and assumptions used to develop semi-active control 

laws for structures. Second, a quickest descent semi-active control law is developed for a 

wide class of systems controlled with nonlinear actuators. The control objective is to
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instantaneously minimize the time rate of change of a quadratic function of the system 

state variable, which includes coupled actuator states. The controlled system (structure 

and actuators) is then shown to provide quadratic convergence to the origin for the 

undisturbed case and quadratic convergence to a ball of ultimate boundedness (stable 

attractor) for nonzero bounded distiu-bances. Finally, simulation results are presented to 

compare the response of the semi-actively controlled three-story structure for a variety of 

control gains and to make conclusions regarding the stability bounds obtained for each 

control.

4.2 Background

The earliest work in designing semi-active control algorithms for structures 

completely neglected the dynamics of the semi-active actuator. Hrovat. et al (1983) first 

proposed the use of semi-active control to reduce vibrations in buildings. The work 

included simulations o f a clipped linear quadratic controller aimed at reducing wind- 

induced vibrations in a single degree of freedom building model using a semi-active 

tuned mass damper. The analysis assumed that the actuator could provide any desired 

force up to a maximum value provided the force was dissipative. If the desired force was 

non-dissipative, the control force was set to zero. Kasturi and Dupont (1998) formulated 

a constrained optimal control to maximize energy dissipation with a semi-active damper. 

That work neglected the actuator dynamics also.

Most control designs treat semi-active actuators as instantaneously adjustable 

linear devices with either variable stiffiiess parameters, variable damping parameters or
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both. A number of researchers have focused on developing control strategies for devices 

in which only the damping was variable. Sadek and Mohraz (1998) present a variety of 

control strategies for structures with variable linear damping devices. The algorithms 

include a clipped LQR design, a generalized clipped LQR design including penalties on 

the acceleration of each degree-of-freedom, and a displacement-acceleration algorithm. 

The generalized clipped LQR algorithm provided the best response characteristics of the 

three algorithms. Symans (1995) and Symans and Constantinou (1997) used clipped 

LQR and Sliding mode control designs to mitigate seismic vibrations of a three-story 

structure equipped with linear variable dampers. Tests indicate a passive high damping 

configuration provided better performance than both of the semi-active controllers did. 

Symans and Kelly (1999) developed a fuzzy logic controller for a hybrid semi-active 

control system to seismically isolate a bridge. The semi-active actuators were modeled as 

linear viscous dampers with bounded variable damping coefficients.

Other researchers have developed controllers for semi-active devices in which 

only the stifftiess was adjustable. Kobori. et al (1993) developed a non-resonant open 

loop control law for a full-scale model building equipped with variable stiffness 

actuators. The actuators were regulated between two stiffness states based on the 

measured seismic excitation to the structure. Nagarajaiah and Mate (1998) utilized a 

maximum dissipativeness control switching logic for a continuously variable linear semi­

active stif&iess device.

Leitmann (1994) compared two control strategies for a semi-active device with 

both variable linear damping and variable linear stiffiiess characteristics. The first 

control strategy was aimed at minimizing the rate of change of system energy while the
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second was developed using Lyapunov stability theory. The work treated both the case 

in which damping and stiffiiess could be regulated independently and the case where the 

stiffiiess and damping are regulated jointly. Loh and Ma (1994) investigated the 

performance of controllers that vary linear damping and stiffness parameters for 

seismically excited buildings. The work compared the performance of optimal, 

instantaneous optimal and Lyapunov control strategies. The optimal control strategy 

provided significantly better reduction in peak floor displacements than the alternate 

controllers did. Singh, et al (1997) investigated the performance of a sliding mode 

control algorithm for a structure with variable linear damping and stiffiiess 

characteristics. Dyke (1996) and Dyke et al. (1996b) experimentally verified the seismic 

response characteristics of a planar three-story structure with a MR damper. Clipped- 

optimal acceleration feedback control algorithms were developed using Hi/LQG control 

design methods that did not include the semi-active actuator dynamics. A simple bi-state 

law on the voltage applied to the MR damper was used to track the desired control force.

In reality, many semi-active devices are characterized by nonlinear dynamics but 

only a few researchers treat the actuator dynamics in the control design, Patten et al. 

(1994) utilized a control law aimed at minimizing the first derivative of a quadratic 

Lyapunov function (Mohler. 1991) (Vincent and Grantham, 1997) to mitigate structural 

vibrations. The Lyapunov function includes terms weighting the differential pressure 

state variable associated with the semi-active actuator. The analysis did not prove 

stability. Lee (1998) tested a variety of semi-active control algorithms, including a 

Lyapunov control design, on a two degree-of-fireedom test structure. That work assumed 

the force of the semi-active actuator was limited and did not treat the coupled system
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dynamics in the subsequent stability analysis. Experimental results indicate that both the 

Lyapunov controller and a control logic that minimizes the product o f the actuator force 

and the actuator relative velocity are able to significantly reduce the dynamic response of 

the test structure. Both control algorithms provide similar response reductions compared 

to the no control case. The semi-active structural control design research in the 

Literature is categorized in Figure 4.1. None of the work has addressed the stability of 

systems with coupled nonlinear actuator dynamics.

No Dyncimics

Semi-active Control
L i n e a r  D y n a m i c s N onlinear Dynam ics

S  , r - U M b  .ID J  K r i '  I

Figure 4.1: Summary of semi-active structural control design research

4.3 General System Model with Nonlinear Semi-active Actuator Dynamics

Consider a class of semi-actively controlled linear systems

.r = /l,.r+ £ 5 ,^ A p , +D^d
1=1

with m semi-active actuators that satisfy nonlinear dynamics of the form

(4.1)

( 4 .2 )
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where As is an nxn Hurwitz matrix, x  is an «x 1 state vector, Ap, is the scalar state of the 

semi-active actuator, (/is a Lebesgue-measurable rx 1 disturbance to the system and As 

and ...... form a controllable pair. For / = 1.2,...,m, ^is a lx«

vector coupling the semi-active actuator to the system, B̂  ̂  ̂ is a scalar function of the

actuator state Ap, and u, is a scalar control input to tlie /*̂  actuator. Tlie variables Ap/, 

u„ i = 1,2, . . . , m , and dj, j  -  1,2 r . are bounded.

|4P,(0|<Ap^m«' = .............................................. (4.3)

V/, , = 1.2 m (4.4)

y = (4.5)

For / = 1.2 m . is a scalar function of Ap „ which satisfies the two conditions

Condition I:

Condition II:

lim ^ . a , ( ^ , ) ^ ,  =0V,-»o (4.6)

(4.7)

for some 0 ,> 0  such that the following matrix A is Hurwitz

A =
A. B.

(4.8)

where

A,„ =

-ÏU1
A..

and r  is a diagonal m x m  matrix with elements

('// U2, . . . , m
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Let S,,  i = 1,2,...,/w, be a set of constants such that Condition H is satisfied and (4.8) is 

Hurwitz. Equation (4.2) is modified by adding and subtracting the term S

/ = 1,2,..../7I (4.9)

Equations (4.1) and (4.9) are combined to obtain a state space realization of the coupled

system.

where

z = Az -¥YB,[s , ^p ,u, ^ ^ -  ^{àp,)àp,u, )+ Dd (4.10)
/=l

fl = [5, 5 , ... fi„] = (4.11)

D =
D.

(4.12)

and the augmented state vector is

.rfix I
ntxl

(4.13)

with =\ùip^ Ap2 ... Ap^]. In (4.3) the bound on Ap is due to physical

limitations of the semi-active actuator state. For example, the state for the semi-active 

hydraulic actuator described in Chapter 3 is differential pressure, which is limited to a 

safe operating limit. For variable orifice hydraulic actuators the limits on u are due to the 

geometry of the control valve.

In practice, a set of positive S , , i  = 1,2....,m, is needed to make A Hurwitz and

S, is usually selected as the greatest lower bound of B^^ (Ap  ̂).
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4.4 Quickest Descent Control Law

The energy in the coupled structure/actuator system is quantified by a quadratic 

Lyapunov function of the form

F(z) = z ’ Pz, z e  (4.14)

where P is a symmetric positive definite weighting matrix on the augmented state vector 

that is yet to be specified. (P is specified later as the solution to (4.22)) The rate of 

change of energy in the system can be represented as the first derivative of the function K 

with respect to time

V = z^Pz + z^Pz  (4.15)

Substituting the coupled state equation (4.10) into (4.15) results in

V[z) = z^[P A^A ^p)z  + f^lz^PB,àp,[ô,u,^^^ -B , , ^ { à p , )u )+ lz^ P D d  (4.16)
1 = 1

It can be seen that only one term on the right hand side of (4.16) is directly influenced by 

the control input u , . For quickest descent, the goal of the control is to minimize each 

term

2z^PB,B,,^{^p,)Ap,u,  (4.17)

for all / = 1.2,...,m,  subject to the constraints (4.4). Noting that 5 ^  , is non-negative,

the minimization is achieved by the control law for each input w,

-«>■1.1
The resulting bang-bang control algorithm is often referred to in the literature as a 

quickest descent controller (e.g., Vincent and Grantham, 1997) The following section
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provides a straightforward method for determining a matrix P that guarantees Lyapunov 

stability of the coupled actuator and structure.

4.5 Lyapunov Stability Analysis

Consider the Lyapunov function (4.14). For the positive definite matrix P let K,

denote a positive value and consider the resulting ellipsoid £,

£, :-^ P z  = K,} (4.19)

let be the largest value of F', such that Ê  does not contain a point z with some

component y  that violates the constraint (4.3). Also, define the operating space £ma\ as 

the ellipsoidal region

f™., (4.20)

The first time derivative of the Lyapunov function (4.16) can be rewritten as

P(z) = - z ^ 0 z  + '^2z^PB,Ap,{s ,u ,^^  -B^^{Ap,)u ,)+2:^PDd  (4.21)
/ = i

where 0  is defined as

0  = -(PA + A ^p)  (4.22)

At this point, P is determined by solving (4.22) for some specified positive definite 

matrix O. For A stable and O positive definite, there is a unique positive definite 

solution P to the Lyapunov equation (4.22). This value of P is used in equations (4.14)-

(4.18) to determine the control logic. The matrix Q is essentially a performance index 

for the control and can be designed using modal or state penalties. If it can be shown that
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V < - z ^ Q z ,  Q > 0  (4.23)

then all conditions for Lyapunov stability are satisfied for the system controlled by

(4.18). (Kalman and Bertram, 1960) The following lemmas and theorems show that

(4.23) holds for the appropriate space.

In Lemma 1, it is shown that the term in the summation on the right hand side of

(4.21) is non-positive.

Lemma 1: For the control law (4.18), the following inequality holds for all 

|4 ) , |^ A p ,^ ^ ,/  = L2 m:

, i^p, )u, )< 0 (4.24)

Proof; Note that if Ap, = 0 then (4.24) holds for any {Ap, ) satisfying Condition 1.

For the following, assume Ap, ^ 0 .

Case fa): z^PB,Ap, = 0

Since Ap, # 0 ,  z ^ PB, = 0  which satisfies (4.24).

Case (b): z^PB^Ap, <0

For this case u, = 0 . Therefore,

z ^ P B , A p ^ )“ / ( 4 . 2 5 )  

Since 6, is non-negative, (4.24) follows.

Case (c): z^PB^Ap^ > 0  and

For this case The left hand side of (4.24) can be rewritten as

z^PB.Ap, -B^^ {Ap, )M, )= z^PB,Ap,[s,-B„ . {Ap, )Xm« (4-26)
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From Condition n, (Api ) and (4.24) holds.

This concludes the proof of the lemma.

Lemma 2: For the control law (4.18), the following inequality holds for all

1 I — ^Pi max ’  ̂~ 1 ̂  •

t = 'P B , A p , { s , u , ^ - B „ A A p , ) u , ) < 0  (4.27)I max Mi
1=1

The proof of this lemma follows directly from Lemma 1.

Incorporating the inequality (4.27) of Lemma 2 into (4.21), it follows that

V < - z ’’Q= + 2z^PDd  (4.28)

Theorem 1: For the case in which the excitation to the system d = 0,  the control law

(4.18) provides quadratic asymptotic stability for the system (4.10) in the region

-  ^  ^max •

Proof: From Lemma 2, V < -z ^ O z  for the case d  = 0. This yields quadratic 

assymptotic stability since both P and O are positive definite.

For the nonzero disturbance case define

z ,= 2 Q - 'P D d ^ ^  (4.29)

and substitiute into (4.28) to obtain

V < -z ^ O z  + z''Qzj (4.30)

Denote the subspace o f disturbance vectors as

Sj =^d^ ,d j , . . . ,d^) : \d j \<dj^^ ,J  = l,2,...,r] (4.31)

and make the definitions

Ĵmax = max{z^ Q z j : z j =  2Q~^ PDd, d & S j ]  (4.32)
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( 4 3 3 )

Let be the minimiun value of cr such that the following condition holds for 

z e

i f  z ‘̂ Oz< then z'^Pz< a  (4.34)

Define die ellipsoid

E ^ = \ z ^ R - : 2 ' P z < y ^ \  (435)

It is assumed that .

Theorem 2; For Lebesgue measurable disturbances satisfying |d^(r)| < ,

j  = 1,2,....r . the control law (4.18) provides quadratic convergence to the ellipsoid .

In particular, if z e  E.., then
“ m ax

K ( z X - ( / l - l ) % _  (4.36)

where

i  > I (437)
‘̂ max

Proof; It suffices to show that (4.36) holds. Let z denote an arbitrary vector that does not 

belong to Ê .  ̂ and let d be some arbitrary disturbance vector in S j . Define Â and /

as follows

r  =  (4.39)y‘̂max
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Since z g and z .  e  , it follows that >1. > I and x < 1.
" m a x  " m a x

Since Q is positive definite, it can be decomposed into positive sqare root factors 

Q = fV^W.  Inequality (4.30) can be rewritten as

(4.40)

Since the second term is the dot product of two vectors, it can be rewritten as

(f^zy(fVz,) = cos(^) (4.41)

where 0 is the angle between Wz and Wzj. Using (4.38) and (4.39), the dot product

(4.41) becomes

(IKz) ̂  cos(6) (4.42)

Substituting (4.42) into (4.40) gives

^  - /I ' cosim (4.43)

Noting that /cos(û) < 1 and > 0. (4.43) satisfies

K(z) g -A: + A < -(A -1 ): (4.44)

which gives (4.36).

The ellipsoid provides a stable attractor (ball of ultimate boundedness) for 

the semi-actively controlled system (4.10) for disturbances satisfying the bound (4.5). 

When the disturbance vector is zero, the control law (4.18) provides quadratic asymptotic 

stability to the origin for any initial condition within the ellipsoidal region .

Consider the case where the disturbance input is a bounded scalar function of

time.

(4.4!)
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Let Vj be the minimum value of cr such that the following condition holds for zeR"^'"

i f  z^0z<2z^P^^max Pz<(j  (4.46)

Define the ellipsoid

E j = ^ e R " ^ ' "  : z ^ P z < V j \  (4.47)

It is assumed that .

Define the dipole

D j = ^ - . z ^ Q z < \ 2 z ^ P D d ^ \ \  (4.48)

It is apparent that D j cz Ej .

Lemma3: If z g Dj  then V <0 

Corollary I: K <0 for all z g Ej

Proof of Corollary: This follows from Lemma 3 since Dj <zEj.

Proof of Lemma 3: Rewriting the disturbance as d  = where |y| < 1 and inserting in 

(4.28) results in

V < -z ^ Q z  + 2yz^PDd^^^ (4.49)

Three cases are considered to determine the sign definiteness of the right hand side of 

(4.49).

Case (a): Suppose y  z ^P D d ^^  < 0 . Then F <0 since O is positive definite.

Case (b): Suppose y  z^  PDd > 0 and y > 0 .  Then z^  PDd > 0 and it follows that

since z g  z^Qz> 2 z ^ P D d which is substituted into the right hand side of (4.49) 

to obtain
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- z ^ Q z  + lyz^PDd  < ( /- l)z ^ O z (4.50)

which satisfies K <0 since 0 < /  < l .

Case (c): Suppose y z ^ P D d > 0 and y <0.  Then z ^ P D d <0 and since z ^ D j ,  

it follows from (4.48) that - z^O z<  I z ^ P D d which is substituted into the right hand

side of (4.49) to obtain

-  z^Oz + 2yz^PDd < - { /  + l)z^Qz (4.51)

which satisfies P <0 since - l < y  <0 .

Since r  was arbitrary for z e  E j ,  Lemma 3 follows.

4.6 Coupled Structure/Actuator System Realization

The structural model (3.8) and the semi-active actuator model (3.42) are 

combined to obtain a state space realization of the coupled system

z = Az+ {Ap)Apu) + Dd (4.52)

where

X

Ap

A = 4
.^sa ^max

5 = [0 0 0 0 0 0 i f

D =

(4.53)

(4.54)

(4.55)

(4.56)
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It is assumed that the actuator differential pressure àp is boimded as well as the valve 

orifice area u

|^ ( 0 |  < APmax (4.57)

0 < U{t) < «max (4.58)

The model can treat laminar, turbulent and transition flow by allowing the discharge 

coefficient in (3.44) to vary with differential pressure. For laminar flow

Q ( z ^ )  = t||Ap|/^ 0<|Ap|<Ap^ (4.59)

In the transition between laminar and turbulent flow

Q u  ̂  Q  (Ap) ^  ^ |Ap| < Apfc (4.60)

where Cj^  is obtained from (4.59) with àp = Ap^. In the turbulent region

Cj{Ap) = Cjk APh<\Ap\<Ap^^^ (4.61)

The value for Ap  ̂ is selected such that

Consider the laminar flow region where Ap ->• 0. Substituting (4.59) into (3.44) 

it is apparent that (Ap) satisfies Condition I (4.6). (Ap) also satisfies inequality

(4.7) of Condition H for a constant S  that satisfies

Q a  ^db0 < S  < S ^  = ag  J — min1
P 'max

(4.62)
.V A ^  VÂÂ,

For all of the flow regions, cfmax is the least upper bound satisfying (4.7).

Since the model satisfies Conditions 1 and II the stability results in Section 4.5 

hold for the coupled system realization (4.52).
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4.7 Lyapunov Performance Analysis

A variety of control cases were considered in an effort to tune the performance of 

the Lyapunov controller for a single semi-active actuator installed between the ground 

and first floor of the scale thrcc-story structure (Position 1 in Figure 2.2). Two 

techniques were used to determine P for the control logic in (4.18). The first relied on a 

modal canonical realization for the coupled system (4.52) with the modes ordered in 

descending frequency. The second method utilized the system model (4.52) directly. In 

all cases, 0  was a diagonal matrix and P was obtained by solving the Lyapunov equation

(4.22). For reference. Control Law 1 was a passive control configuration with the semi­

active actuator valve completely open. The diagonal elements of O and the associated 

values of PB used for the control logic (4.18) are provided in Tables 4.1 and 4.2.

The primary objective o f the control system is to minimize the peak inter-story 

drift to prevent the structure from yielding without exceeding the capacity of the semi­

active actuator assembly. Two measures were used to assess the performance of each 

controller. The first method compared the infinity norm of each state obtained with 

closed loop control with the infinity norms for the open valve case and a theoretical value 

of the infinity norm of system (4.52) that neglected the nonlinear actuator dynamics. The 

relative displacements {z\, zj and 2 3 ) and the differential pressure (z?) were of primary 

concern and the relative velocities (2 4 , 2 5  and 2 &) were secondary.

The second metric utilized a scalar performance index defined by

P /=  m ax(V z^^) (4.63)

where AT is a positive definite diagonal matrix defined as
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which again emphasizes the importance of the relative displacements and the actuator 

differential pressure.

Numerical simulations were conducted to assess the response characteristics of 

each controller using three different types of scalar disturbance inputs. The first two 

disturbance laws are based on the response of the structure and the resulting disturbance 

inputs are functions of the state vector. The third input is fixed for all the controllers.

Table 4.1: Modal control penalties and resulting gains

Test Q n 022 033 Q » e ,s g.6 Q n PB

2 1 1 1 1 1 1 1 [0.899-5.47 7.29 0.161 -0.0766 0.0301 0.287 ]'

3 ICO 1 1 1 1 1 1 [0.900 -5.47 7.29 0.162 -0.0766 0.0301 0.369]'

4 1 100 1 1 1 1 1 [1.67-174 328 2.17-3.90 3.11 7.29] ‘

5 1 1 100 1 1 1 1 [9.23 -208 378 2.62 -4.12 3.06 8.10]'

6 1 1 1 100 1 1 1 [0.144 -47.0 51.9 2.72 -1.90 -2.13 5.60]‘

7 1 1 1 I 100 1 1 [74.9 -116 4.12 5.09 -120  -2.77 7.56]'

8 1 1 1 1 1 100 1 [6.52-13.9 2.11 2.39 1.73 1.05 0.792]'

9 1 1 1 1 1 1 100 [1.93 -15.2 1.46 1.92 1.34 0.830 0.699] ‘

10 100 1 1 1 1 100 1 [6.52 -13.9 2.11 2.39 1.73 1.05 0.874]'

II 100 1 1 1 1 1 100 [1.93-15.2 1.46 1.92 1.34 0.830 0.781]'

12 100 1 1 1 1 100 100 [7.54 -23.7 -3.73 4.15 3.15 1.85 1.29]'
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Table 4.2: State control penalties and resulting gains

Test Qu 6 = 0 3 3 Q» 055 066 077 PB

13 I 1 1 1 1 1 1 [-0.0310 -1.35 2.19 0.0451 -0.0284 0.0206 0.0885]'

14 100 I 1 1 1 1 1 [0.0238 -1.35 2.19 0.0502 -0.0249 0.0224 0.0903]'

15 1 100 1 1 1 1 1 [-0.0316-1.40 2.18 0.0484 -0.0266 0.0223 0.0902]'

16 1 1 100 1 1 1 1 [-0.0315 -1.39 2 2 4  0.0463 -0.0284 0.0207 0.0898]'

17 1 1 I 100 1 1 1 [-0.738 0.740 0.106 1.72 0.00180 -0.00350 2.07]'

18 1 1 1 1 100 1 1 [-1.31 -45.3 49.8 1.59-1.45 1.74 3.66]'

19 1 1 1 1 1 100 1 [-1.17-93.4 173 1.27-1.45 0.359 3.27]'

20 1 1 1 1 1 1 100 [-0.0310-1.35 2.19 0.0451 -0.0284 0.0206 0.108]'

The objective of Disturbance Law I is to maximize the first time derivative of the 

Lyapunov function at each point in time.

i f=^PD>0

W m m  i f z ^ P D < Q
(4.65)

This logic is essentially the opposite of the quickest descent control law (4.18) and is 

referred to as a quickest ascent disturbance. This disturbance is not only dependent on 

the system states z but also on the matrix P.

Disturbance Law 2 is also state dependent and is prescribed by the following:

d  = max (4.66)

The final disturbance input was a 0.5-50-Hz band limited white noise ground 

acceleration that was identical for each controller. Each of the disturbance inputs had 1- 

m/s“ maximum amplitude.
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The infinity nonns for states z\-z^ are plotted in Figures 4.2-4.8 for each input and 

each semi-active controller. The figures indicate that modal control laws 8-12 provide 

consistently lower peak displacements that the other control laws for each disturbance 

input. State controller 17 provided a small first floor inter-story drift (3.9-mm) but z? 

exceeded 30-mm. Out of the state controllers, laws 14 and 15 had the best overall inter­

story drift characteristics but did not provide the same levels of reduction as modal 

control laws 8-12. Figure 4.8 indicates that the modal controllers provided much lower 

peak actuator differential pressures than the state controllers except for the white noise 

input.

The infinity norms for Disturbance 1 are presented in Tables 4.3 and 4.4. Since 

the disturbance is dependant on the value of P as well at the state, a different valve open 

test was conducted for each controller. The valve open test results are provided in Table

4.3 while the closed loop control results are given in Table 4.4. Modal control laws 8 and 

10 yielded the lowest maximum relative displacements (3.67-mm) compared to 3.76-mm 

for controllers 9 and 11. Controller 18 had the best displacement response characteristics 

of the state controllers with a maximum drift of 6.56-mm but required twice the peak 

differential pressure as the modal controllers. Modal controller 11 provided at least a 

67% reduction in drift and at least a 69% reduction in peak relative velocity over the open 

valve configuration.

The peak response characteristics for Disturbance Law 2 are siunmarized in Table 

4.5. This disturbance excites the system with the valve open (Control 1) much more than 

the other disturbance inputs by inputting a square wave at the fundamental frequency of 

the structure. However, the data indicates that the semi-active controllers were able to

6 5



effectively reduce the peak responses. Controller 15 offered the best performance of the 

state controllers with 5.66-mm peak drift and at least an 82% reduction over the open 

valve case. Control 11 had the best overall performance with a 3.11-mm maximum inter­

story drift and reductions of 96%. 94% and 79% for the first three floors respectively and 

required 25% less peak differential pressure than the state controller 15.

The Banded White Noise infinity norms are listed in Table 4.6. Control law 11 

provided the lowest maximum inter-story drift (1.10-mm) of the modal control laws 

while controller 14 had the best overall performance (1.02-mm). The state control law 

also only generated half of the differential pressure as gain set 11. Controller 14 also 

provided at least a 63% reduction in relative velocity compared to the valve open case 

while control law 11 netted only an 18% reduction in Z(,.

The second performance metric is summarized in Table 4.7 for each of the 

disturbances. The theoretical values of the performance index radius are based on the 

smallest K ellipsoids that contain the stability ellipsoid for the general disturbance 

case and the ellipsoid containing the dipole for the scalar disturbance input case. The 

simulated values are much smaller than the theoretical values (more than two orders of 

magnitude), which are expected since the stability analysis neglects the contribution of 

the semi-active actuator. The AT-norms indicate that control law 15 has the least AT-norm 

of the state controllers for Disturbance Laws 1 and 2 (11.5 and 8.00 respectively). Modal 

control law 11 provides the smallest ^-norm for Disturbance 1 (4.64) and Disturbance 2 

(4.95). Controller 14 performs the best for the white noise input with a AT-norm of 1.41 

compared to 1.70 for modal control 2.

66



The theoretical values for the radii of the attractor ellipsoid for the general

disturbance case and the ellipsoid E j  containing the dipole for the scalar disturbance

input case are compared to simulation data in Table 4.8. The data indicate that the radii 

obtained in the stability analysis are conservative in most cases with values up to five 

orders of magnitude larger than the values obtained by simulation. However, the theory 

provides a reasonable approximation for controllers 2 and 3 and differs only by a factor 

of approximately 3.

The simulation results indicate that a variety of performance gains can be 

achieved by varying the structure of the O matrix in the Lyapunov equation and the 

performance of each resulting control law depends on the disturbance input. The modal 

controllers performed considerably better than the state controllers for all disturbances 

except the white noise input. At present, the best technique for selecting the values of the 

O matrix is a trial-and-error process requiring time consuming numerical simulations to 

evaluate performance at each step, which is disturbance specific. However, good 

performance gains can be achieved with a minimal amount of tuning. Control law 11 

which placed an emphasis on the highest and lowest modes was able to reduce the 

maximum relative displacements between floors by at least 61% over the open valve 

results.
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Table 43 : Infinity norms for Disturbance Law 1 with valve open

Control Law IhIL

(mm)

IkzL

(mm)

k IL

(mm)

k IL

(mm/s)

k IL

(mm/s)

k IL

(mm/s)

IkIL

(MPa)

Bare Frame 5.33-10- 4.19-10- 1.96-10^ 7.40-lO-’ 6.05-10" 3.04-10" -

Theoretical 1.43-10' 1.22-10' 5.61-10" 2.02-10- 1.85-10" 1.12-10" 2.18-10"

2 1.42-10' 1.21-10' 5.47-10" 1.92-10- 1.80-10" 9.51-10' 2.18-10"

3 1.42-10' 1.21-10' 5.47-10" 1.92-10- 1.80-10" 9.51-10' 2.18-10"

4 1.29-10" 1.53-10" 1.33-10" 3.79-10' 5.48-10' 6.94-10' 4.32-10"'

5 1.21-10" 1.37-10" 1.27-10" 3.51-10' 5.70-10' 6.83-10' 3.98-10"'

6 4.85-10" 3.69-10" 1.60-10" 2.99-10* 2.92-10' 2.14-10' 3.41-10"'

7 4.85-10" 3.69-10" 1.60-10" 2.99-10' 2.92-10' 2.14-10' 3.41-10"'

8 1.42-10' 1.21-10' 5.46-10" 1.91-10- 1.80-10^ 9.50-10' 2.18-10"

9 1.42-10' 1.21-10' 5.49-10" 1.93-10- 1.81-10" 9.61-10' 2.20-10"

18 1.42-10' 1.21-10' 5.46-10" 1.91-10- 1.80-10" 9.50-10' 2.18-10"

19 1.42-10' 1.21-10' 5.49-10" 1.93-10- 1.81-10" 9.61-10' 2.20-10"

20 1.42-10' 1.21-10' 5.48-10" 1.92-10^ 1.80-10" 9.55-10' 2.19-10"

10 1.41-10' 1.21-10' 5.53-10" 1.95-10- 1.82-10" 9.82-10' 2.22-10"

11 1.42-10' 1.21-10' 5.51-10" 1.94-10- 1.82-10" 9.72-10' 2.21-10"

12 1.41-10' 1.21-10' 5.53-10" 1.95-10- 1.82-10" 9.78-10' 2.22-10"

13 1.41-10' 1.21-10' 5.53-10" 1.95-10" 1.82-10" 9.81-10' 2.22-10"

14 1.42-10' 1.21-10' 5.51-10" 1.94-10" 1.82-10" 9.72-10' 2.21-10"

15 1.40-10' 1.21-10' 5.54-10" 1.95-10" 1.82-10" 9.85-10' 2.22-10"

16 1.38-10' 1.20-10' 5.53-10" 1.95-10- 1.82-10" 9.86-10' 2.22-10"

17 1.41-10' 1.21-10' 5.53-10" 1.95-10" 1.82-10" 9.82-10' 2.22-10"
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Table 4.4: Infinity norms for Disturbance Law I with control

Control Law
h i
(mm)

h i
(mm)

IksIL

(mm)

IKIL

(mm/s)

IksL

(mm/s)

h i
(mm/s)

lk?L

(MPa)

Bare Frame 5.33*10̂ 4.19-10- 1.96-10^ 7.40-10-* 6.05-10" 3.04-1 O'* -

Theoretical 1.43-10* 1.22-10* 5.61-10** 2.02-10- 1.85-10" 1.12-10" 2.18-10*"

2 5.07-10" 3.49-10** 1.55-10** 3.12-10* 2.98-10* 1.75-10* 1.55-10**

3 5.09-10** 3.50-10** 1.55-10** 3.12-10* 2.99-10* 1.75-10* 1.63-10"

4 1.59-10* i.io-io' 5.05-10" 1.84-10- 1.66-10" 8.66-10* 6.43-10**

5 1.36-10* 9.39-10** 4.30-10** 1.50-10- 1.35-10" 7.04-10* 5.39-10**

6 8.45-10** 6.42-10*̂ 2.71-10** 8.67-10* 7.27-10* 4.75-10* 3.46-10"

7 4.81-10** 3.54-10** 1.64-10" 3.13-10* 2.75-10* 1.65-10* 1.26-10**

8 3.27-10** 3.67-10** 1.80-10** 5.05-10* 4.04-10* 3.10-10* 2.56-10**

9 3.76-10** 3.42-10" 1.79-10" 5.16-10* 3.77-10* 2.98-10* 2.57-10**

10 3.27-10** 3.67-10** 1.80-10" 5.05-10* 4.04-10* 3.10-10* 2.56-10"

11 3.76-10** 3.42-10** 1.79-10** 5.16-10* 3.77-10* 2.98-10* 2.57-10**

12 3.70-10** 3.62-10** 1.80-10** 5.52-10* 4.09-10* 3.31-10* 2.64-10**

13 5.97-10** 9.22-10** 4.36-10** 1.00-10- 1.57-10" 8.87-10* 7.00-10**

14 5.21-10** 1.03-10* 4.97-10** 9.26-10* 1.80-10" 1.04-10^ 7.75-10**

15 5.35-10** 8.51-10** 4.08-10** 8.99-10* 1.46-10" 7.95-10* 6.57-10**

16 5.98-10** 9.14-10" 4.36-10** 9.84-10* 1.56-10" 8.61-10* 6.91-10**

17 3.09-10** 3.01-10* 1.56-10* 8.93-10* 6.00-10" 3.11-10" 19.8-10"

18 6.56-10** 5.10-10** 2.58-10** 1.04-10- 9.46-10* 6.71-10* 5.59-10**

19 1.23-10* 8.70-10** 4.03-10" 1.48-10" 1.34-10" 7.25-10* 6.45-10**

20 6.05-10** 9.12-10" 4.33-10** 1.01-10" 1.54-10" 8.47-10* 7.08-10**
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Table 4.5: Infinity norms for Disturbance Law 2 with control

Control Law IkilL

(mm) (mm)

b IL

(mm)

ii--.il

(mm/s)

b IL

(mm/s)

b IL

(mm/s)

IbIL

(MPa)

Bare Frame 5.33-10^ 4.19-10- 1.96-10^ 7.40-10^ 6.05-10^ 3.04-10^ -

Theoretical 1.43-10' 1.22-10' 5.61-10“ 2.02-10- 1.85-10- 1.12-10- 2.18-10“

I 4.47-10' 3.32-10' 1.48-10' 5.26-10- 5.28-10- 3.06-10- 1.71-10“

2 6.79-10“ 6.60-10“ 3.08-10“ 8.93-10' 9.19-10' 4.72-10' 5.06-10“

3 6.97-10“ 6.67-10“ 3.11-10“ 9.08-10' 9.36-10' 4.78-10' 5.15-10“

4 1.57-10' 1.13-10' 5.24-10“ 2.01-10^ 1.63-10- 8.24-10' 6.00-10“

5 1.55-10' 1.14-10' 5.31-10“ 2.02-10- 1.61-10^ 7.98-10' 6.03-10“

6 1.19-10' 9.19-10“ 4.24-10“ 1.62-10- 1.27-10- 6.52-10' 6.29-10“

7 1.23-10' 1.04-10' 4.76-10“ 1.72-10- 1.46-10- 7.27-10' 5.12-10“

8 3.08-10“ 4.67-10“ 3.90-10“ 7.47-10' 1.14-10- 2.01-10^ 4.50-10“

9 3.27-10“ 3.37-10“ 3.28-10“ 6.20-10' 9.98-10' 1.65-10- 5.30-10“

10 1.87-10“ 2.52-10“ 3.82-10“ 5.98-10' 1.19-10- 1.90-10- 3.91-10“

11 1.64-10“ 1.93-10“ 3.11-10“ 5.53-10' 9.93-10' 1.62-10- 3.89-10“

12 3.00-10“ 4.32-10“ 4.19-10“ 7.84-10' 1.59-10- 2.19-10- 5.15-10“

13 5.36-10“ 5.89-10“ 2.81-10“ 6.55-10' 8.43-10' 5.21-10' 5.24-10“

14 4.66-10“ 5.98-10“ 2.91-10“ 5.65-10' 8.76-10' 4.50-10' 5.17-10“

15 5.29-10“ 5.66-10“ 2.73-10“ 6.64-10' 8.22-10' 5.27-10' 5.24-10“

16 5.37-10“ 5.87-10“ 2.81-10“ 6.64-10' 8.38-10' 5.26-10' 5.24-10“

17 2.37-10“ 2.00-10' 1.06-10' 6.92-10' 4.02-10^ 2.01-10- 1.42-10'

18 6.25-10“ 5.07-10“ 2.57-10“ 1.02-10- 9.02-10' 6.55-10' 5.78-10“

19 1.10-10' 8.11-10“ 3.75-10“ 1.40-10^ 1.19-10^ 6.23-10' 6.06-10“

20 5.38-10“ 5.90-10“ 2.83-10“ 6.80-10' 8.43-10' 5.22-10' 4.77-10“
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Table 4.6: Infinity norms for white noise acceleration disturbance with control

Control Law IhlL IkilL IhIL k lL ll-sL II-"6|L

(mm) (mm) (mm) (mm/s) (mm/s) (mm/s) (MPa)

Bare Frame 5.33-10- 4.19-10^ 1.96-10^ 7.40-10° 6.05-10° 3.04-10° -

Theoretical 1.43-10' 1.22-10' 5.61-10° 2.02-10° 1.85-10° 1.12-10° 2.18-10°

1 4.34-10° 3.38-10° 1.62-10° 6.02-10' 5.14-10' 3.29-10' 2.24-10'°

2 1.30-10° 1.08-10° 5.41-10'' 1.37-10' 1.58-10' 7.27-10° 9.52-10'

3 1.30-10° 1.08-10° 5.42-10'' 1.37-10' 1.57-10' 7.27-10° 9.50-10*'

4 2.00-10° 1.59-10° 7.60-10' 2.67-10' 2.51-10' 1.30-10' 9.46-10"'

5 1.97-10° 1.56-10° 7.09-10' 2.51-10' 2.36-10' 1.24-10' 9.34-10*'

6 1.90-10° 1.40-10° 6.07-10'' 2.18-10' 2.12-10' 1.21-10' 1.09-10°

7 1.61-10° 1.34-10° 6.46-10'' 2.00-10' 1.84-10' 9.61-10° 1.02-10°

8 9.89-10' 1.14-10° 6.75-10'' 2.84-10' 3.30-10' 2.26-10' 2.07-10°

9 1.09-10° 1.10-10° 6.23-10' 2.67-10' 2.94-10' 2.70-10' 2.10-10°

10 9.86-10 ' 1.14-10° 6.72-10'' 2.82-10' 3.32-10' 2.23-10' 2.08-10°

11 1.08-10° 1.10-10° 6.24-10' 2.68-10' 2.93-10' 2.70-10' 1.94-10°

12 1.05-10° 1.16-10° 6.44-10' 3.30-10' 3.61-10' 2.50-10' 2.13-10°

13 1.22-10° 9.73-10' 4.77-10'' 1.25-10' 1.91-10' 9.87-10° 1.12-10°

14 1.01-10° 1.02-10° 4.82-10' 1.03-10' 1.90-10' 9.42-10° 1.05-10°

15 1.14-10° 9.24-10' 4.53-10'' 1.15-10' 1.94-10' 9.48-10° 1.04-10°

16 1.20-10° 9.63-10' 4.70-10' 1.24-10' 1.92-10' 9.89-10° 1.06-10°

17 3.68-10' 1.51-10° 8.42-10'' 6.41-10° 3.18-10' 2.05-10' 1.24-10°

18 1.33-10° 1.00-10° 5.09-10' 1.52-10' 1.77-10' 1.16-10' 1.14-10°

19 1.73-10° 1.36-10° 6.41-10' 2.18-10' 2.27-10' 1.19-10' 1.05-10°

20 1.23-10° 9.68-10' 4.78-10'' 1.25-10' 1.89-10' 9.87-10° 1.09-10°
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Table 4.7: Theoretical performance index bounds versus maximum simulated values

SimulatedTheoretical Performance

Index Radius y z ^ K z maxiVz Kz

Disturbance Disturbance
Control Law Ball Dipole Random

Law 1 Law 2

9.14-10 8.88-10 6 2 2 9.47-10' 1.70-10'

8.88 10- 1.7!

7.71-10' 7.71 1.99 1.96 2.64

1.0 2 - 10' 7.69 1.70 1.95 2.62

1.44-10' 1.43 1.10 1.51 2.44

1.76-10 6.131.74 1.64 2.16

2.39-10' 2.39 4.73 6.82 2.14

1.80-10' 1.79 4.65 6.97 2.24

2.39-10 2.39 4.73 5.17 2.15

1.80 10 1.79 4.65 4.95 2.10

8.43-10 8.43 4.71 7.11

2.60-10' 2.44 1.25 8.07 1.55

2.39-10' 2.28 1.38 8.34 1.41

1.50-10' 1.36 1.15 8.00 1.45

1.54-10' 1.53 1.24 8.07 1.53

2.05-10' 9.37 3.91 2.66 2.07

1.42-10' 1.35 7.84 7.88 1.72

9.60-10' 8.98 1.51 1.36 226

5.03-10 4.72-10 124 8.12 1.56-10'
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Table 4.8: Attractor set radius versus maximum simulated values

Theoretical Attractor Set 

Radius

Simulated

m a x (V z ^ P z j

Control Law Ball Dipole
Disturbance 

Law 1

Disturbance 

Law 2
Random

2 2.59 10- 2.52-10- 5.08-10' 7.50-10' 1.39-10'

3 2.59 10- 2.52-10- 5.10-10' 7.62-10' 1.40-10'

4 2.18 10̂ 2.18-10" 2.43-10" 225-10" 4.40-10'

5 2.90 10̂ 2.18-10^ 1.95-10" 1.97-10" 3.82-10'

6 4.09 10" 4.06-10" 2.05-10" 1.60-10" 4.17-10*

7 4.98 10" 4.95-10" 6.30-10' 1.39-10" 2.12-10'

8 6.79 10" 6.78-10" 2.10-10" 1.86-10" 6.16-10'

9 5.10-10" 5.08-10" 2.77-10" 2.21-10" 6.28-10'

10 6.79-10" 6.78-10" 2.10-10" 1.31-10" 6.15-10'

11 5.10-10" 5.08-10" 2.77-10" 1.35-10" 6.27-10'

12 2.39-10" 2.39-10" 3.42-10" 2.57-10- 8.30-10'

13 7.27-10" 6.82-10^ 6.90-10' 426-10' 8.68-10'*

14 6.68-10" 6.36-10" 8.17-10' 4.74-10' 9.08-10"

15 4.18-10" 3.79-10" 6.78-10' 4.43-10' 8.79-10“

16 4.31-10" 4.26-10" 6.97-10' 4.35-10' 8.71-10"*

17 3.48-10^ 1.59-10" 1.42-10" 9.53-10" 7.57-10*

18 2.41-10" 229-10" 2.64-10" 2.57-10" 620-10*

19 2.72-10" 2.54-10" 2.76-10" 2.50-10" 4.75-10'

20 727-10" 6.82-10" 6.88-10' 4.33-10' 8.76-10"
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CHAPTER 5 

EXPERIMENTAL RESULTS

5.1 Introduction

The objective of this chapter is to present experimental results that demonstrate 

the performance of the semi-active Lyapunov controller developed in the previous 

chapter. Two seismic inputs were used to excite the test structure. The first input was a 

0.15-g RMS 0.5-50 Hz band-limited white noise ground acceleration while the second 

input was the North/South component of the 1940 El Centro earthquake. The El Centro 

input amplitude was scaled to 50%. The time scale of the earthquake input was not 

altered. Shake table tests were conducted on the test structure with three different 

configurations as indicated in Figure 2.2: 1) the bare fi-ame with no semi-active actuator 

attached (Bare Frame), 2) with a single semi-active actuator positioned diagonally 

between the ground and first floor (Position 1) and 3) with a single semi-active actuator 

located diagonally between the first and second floor (Position 2). Both passive and 

semi-active test data are compared with the response of the bare fi-ame in the following 

sections. The results indicate that the semi-active control system can significantly reduce 

the vibration amplitudes o f the seismically excited structure.

5.2 Passive Test Results

First, shake table tests were performed on the bare structure with no control

actuators attached using each of the input histories. The data obtained firom the bare
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frame tests are plotted in Figures 5.1-5.48 as the “Bare Frame” case and are used as a 

baseline to assess the effectiveness of the passive and semi-active control configurations.

Next, a single semi-active actuator was added to the test frame. The structural 

response was obtained with the actuator operated in a passive mode, (constant valve 

orifice area) Tests were performed with the actuator in Position I and Position 2. (Figure 

2.2) Two passive cases were investigated for each actuator position. In the first case, the 

semi-active actuator control valve was fully open. In the second case, the control valve 

was completely closed. In Figures 5.1-5.24 the “bare frame” case is plotted in blue, the 

"valve open” case is plotted in green and the "valve closed” case is plotted in red.

The frequency response function magnitudes of the relative floor-to-floor 

displacements for the broadband input are shown in Figures 5.1-5.6. The damping added 

by the semi-active actuator in the "valve open” case provides modest reductions in the 

first mode of the relative displacements. The "valve open” configuration provides at least 

a 25% reduction in first mode amplitude in Position 1 and an 18% reduction in Position 

2. As expected, the actuator provides greater amplitude reductions for the higher modes 

since the force generated by the actuator is velocity dependent. The "valve open” 

configuration provides at least a 54% reduction in second mode amplitude in Position 1 

and a 40% reduction in Position 2. When the control valve is closed, the actuator 

increases the stiffness of the structure virtually eliminating any relative motion in the 

position the actuator is installed in. The “valve closed” frequency response functions 

have only two clear peaks compared to thee peaks for the other cases. The frequencies 

are slightly higher when the actuator is in Position I. (3.0-Hz and 8.5-Hz compared to

2.5-Hz and 7.0-Hz for Position 2)
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The frequency response fimction magnitudes of the .r-direction accelerations are 

plotted in Figures 5.7-5.18. The figures indicate that in the 'Valve open” case, the 

damping provided by the semi-active actuator yielded sizeable reductions in acceleration 

at each natural frequency. In Position 1. the semi-active actuator provided at least a 24% 

reduction in first mode acceleration compared to the 13% decrease obtained with the 

actuator in Position 2. For the "valve closed” case, the first mode acceleration amplitude 

is similar to the “valve open” case when the actuator is in Position 1 but the second mode 

acceleration is greater than the “no control” case. In Position 2. the first mode 

acceleration is less than the “valve open” case and the second mode is similar in 

magnitude to the “no control” case.

The y-direction accelerations are provided in Figures 5.19-5.24. The frequency 

response functions indicate that the modes in the y-direction (which are close in 

frequency to the .r-axis modes) are excited even though the seismic input is directed along 

the .r-axis. The damping provided in the “valve open” tests reduced the third floor y-axis 

RMS acceleration levels by at least 25% in Position I and 18% in Position 2, When the 

control valve was closed, the y-axis accelerations were reduced in Position 1 but were 

magnified in Position 2. This is expected since the fundamental frequency in the y-axis is

2.5-Hz which coincides with the fundamental fi-equency in the .r-axis when the semi­

active actuator is in Position 2 with the valve closed.

The RMS and peak relative displacements, absolute accelerations and actuator 

differential pressures from the broadband tests are summarized in Tables 5.1 and 5.2. 

The data from the El Centro tests are provided in Tables 5.3 and 5.4. For the broadband 

tests conducted with the valve completely open, the actuator reduces peak inter-story drift

8 0



by at least 31% in Position 1 and 25% in Position 2. Likewise, the actuator with the 

valve completely open provided at least a 12% reduction in peak inter-story drift in 

Position 1 and a 4% reduction in Position 2. Similar results are obtained when the valve 

is closed, except that a significant amount of modal leakage to the y-axis occurs when the 

actuator is in Position 2. The results also indicate that the additional stiffhess in the 

"closed valve” case provides a tremendous local reduction in displacement but tends to 

increase acceleration levels throughout the structure.

Both the open valve configuration and the closed valve configuration provide 

certain desirable characteristics. The open valve configuration attenuates higher 

frequency modal amplitudes while the closed valve configuration minimizes local 

displacements. Unfortimately, both configurations have disadvantages as well. The open 

valve configuration is not particularly well suited to reducing local displacements and 

tends to amplify out-of-plane accelerations in certain instances. The closed valve 

configuration amplified both accelerations and relative displacements between floors 

without actuators. Since neither configuration is capable of both minimizing the 

maximum inter-story drift and reducing RMS acceleration levels both in and out of plane, 

it is assumed that better response characteristics can be achieved by modulating the semi­

active actuator valve between a maximum and minimtun valve orifice area according to 

some prescribed control logic. The following section presents test results for two control 

logic candidates.
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Figure 5.1: Frequency response function magnitude r, /c/ with actuator operated 

passively in Position 1.
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Figure 5.2: Frequency response function magnitude z, / d  with actuator operated

passively in Position 2.
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Figure 53 : Frequency response function magnitude z, / d  with actuator operated 

passively in Position 1.
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Figure 5.4: Frequency response function magnitude z^ l  d  with actuator operated

passively in Position 2.

83



Bare Frame 
Valve Open 
Valve C losed

Frequency (Hz)

Figure 5.5: Frequency response function magnitude z^l d  with actuator operated 

passively in Position 1.
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Figure 5.6: Frequency response function magnitude z^ l  d  with actuator operated 

passively in Position 2.
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Figure 5.7: Frequency response function magnitude x,, / J  with actuator operated 

passively in Position 1.
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Figure 5.8: Frequency response function magnitude x,, Id  with actuator operated

passively in Position 2.
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Figure 5.9: Frequency response ftmction magnitude x , 2  / ci with actuator operated 

passively in Position 1.
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Figure 5.10: Frequency response function magnitude with actuator operated

passively in Position 2.
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Figure 5.11: Frequency response ftmction magnitude Xii I d  with actuator operated 

passively in Position I .
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Figure 5.12: Frequency response ftmction magnitude Xi \ l d  with actuator operated

passively in Position 2.
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Figure 5.13: Frequency response function magnitude Xii Id  with actuator operated 

passively in Position I.
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Figure 5.14: Frequency response function magnitude Xj .̂ I d  with actuator operated

passively in Position 2.
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Figure 5.15: Frequency response fimction magnitude X3 , Id  with actuator operated 

passively in Position I .
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Figure 5.16: Frequency response function magnitude x-^\!d with actuator operated

passively in Position 2.
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Figure 5.17: Frequency response tunction magnitude X3 2  Id  with actuator operated 

passively in Position 1.
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Figure 5.18: Frequency response function magnitude Xjj / d  with actuator operated

passively in Position 2.
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Figure 5.19; Frequency response function magnitude v, Id  with actuator operated 

passively in Position 1.
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Figure 5.20: Frequency response function magnitude ÿx! d  with actuator operated

passively in Position 2.
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Figure 5.21: Frequency response function magnitude with actuator operated 

passively in Position 1.
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Figure 5.22: Frequency response function magnitude ÿ? with actuator operated

passively in Position 2.

92



4
 Bare Frame
  Valve Open
  Valve C losed

3 5

3
O)

2 5

7

0 5

0

Frequency (Hz)

Figure 5.23; Frequency response function magnitude V3 /c/ with actuator operated 

passively in Position I.
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Figure 5.24: Frequency response fimction magnitude d  with actuator operated

passively in Position 2.
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Table 5.1; RMS relative displacements and absolute accelerations for passive

configurations subjected to a broadband input.

Actuator Position Bare Frame Position I Position 2 Position 1 Position 2

Valve Configuration N/A Open Open Closed Closed

r, (mm) 3.30 2.00 2.30 0.10 3.80

% change - -39.4% -30.3% -97.0% -15.2“o

2:(mm) 2.70 1.60 1.90 2.90 0.20

% change - -40.7% -29.6% -7.4% -92.6%

z ,  (mm) 1.40 0.80 0.90 1.60 1.30

% change - -42.9% -35.7% -14.3% -7.1%

.r, (m/s’) 1.92 1.18 1.15 1.95 1.90

%  change - -38.5% -40.1% -1.6% -1.0%

■Vt (m/s’) 2.54 1.68 1.79 3.04 2.38

% change - -33.9% -29.5% -19.7% -6.3%

Xj  (m/s’) 2.99 1.92 2.03 3.47 2.95

% change - -35.8% -32.1% -16.1“,1 -1.3%

V, (m/s-) 0.46 0.46 0.34 0.41 0.59

% change - 0.0% -26.1% -10.9% -28.3“ »

ÿ ]  (m/s’) 0.31 0.27 0.25 0.20 0.61

%  change - -12.9% -19.4% -35.5% -96.8“ 0

Vj (m/s’) 0.52 0.39 0.37 0.29 0.79

% change - -25.0% -28.8% -44.2% -51.9“o

Ap (MPa) - 0.02 0.02 122 1.00
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Table 5.2: Peak relative displacements and absolute accelerations for passive

configurations subjected to a broadband input.

Actuator Position Bare Frame Position I Position 2 Position 1 Position 2

Valve Configuration N/A Open Open Closed Closed

11.20 7.50 8.00 0.50 10.60

%  change - -33.0% -28.6% -95.5% -5.4%

(mm) 8J20 5.50 6.10 10.50 0.50

% change - -32.9% -25.6% -28.0% -93.9%

rj (mm) 4.10 2.80 3.00 520 4.30

% change - -31.7% -26.8% -26.8% -4.9%

.r, (m/s’) 8.98 5.95 5.21 10.83 7.05

% change - -33.7% -42.0% -20.6% -21.5%

-Ü (m/s’) 9.59 7.31 7.74 13.31 8.47

%  change - -23.8% -19.3% -38.8% -11.7%

-tj (m/s’) 9.87 7.64 8.12 12.93 10.36

% change - -22.6% -17.7% -31.0% -5.0%

,V| ( m/s’) 1.87 2.06 1.38 1.67 2.45

% change - -10.2% -26.2% -10.7% -31.0%

( m/s’) 1.30 1.20 1.02 0.88 2.10

% change - -7.7% -21.5% -32.3% -61.5%

ÿ j ( m/s') 2.12 1.78 1.60 1.32 2.46

% change - -16.0% -24.5% -37.7% -16.0%

J p  (MPa) - 0.10 0.10 4.85 3.13
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Table 5 J : RMS relative displacements and absolute accelerations for passive

configurations subjected to the El Centro earthquake input.

Actuator Position Bare Frame Position I Position 2 Position 1 Position 2

Valve Configuration N/A Open Open Closed Closed

Cl (mm) 2.50 1.60 1.80 0.06 2.00

% change - -36.0% -28.0% -97.6% -20.0%

Cl (mm) 2.00 1.30 1.30 0.93 0.10

% change - -35.0% -35.0% -53.5% -95.0%

cj(mm) 1.00 0.60 0.70 0.50 0.70

%  change - -40.0% -30.0% -50.0% -30.0%

.r, (m/s’) 1.25 0.82 0.82 0.81 1.04

% change - -34.4% -34.4% -35.2% -16.8%

X j  (m/s’) 1.81 1.25 1.35 1.04 1.32

% change - -30.9% -25.4% -42.5% -27.1%

.r^(m/s’) 2.14 1.43 1.60 1.26 1.61

% change - -33.2% -252% -41.1% -24.8%

ÿ, (m/s’) 0.32 0.33 0.27 0.28 0.34

°'o change - -3.1% -15.6% -12.5% -6.3%

V’2 (m/s') 0.19 0.16 0.18 0.13 0.30

% change - -15.8% -5.3% -31.6% - 5 7 .9%

V3 (m/s') 0.32 0.24 0.26 0.20 0.40

% change - -25.0% -18.8% -37.5% -25.0%

Ap  (MPa) - 0.02 0.02 0.37 0.53
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Table 5.4: Peak relative displacements and absolute accelerations for passive

configurations subjected to the El Centro earthquake input.

Actuator Position Bare Frame Position 1 Position 2 Position I Position 2

Valve Configuration N/A Open Open Closed Closed

r, (mm) 12.60 10.60 12.10 0.60 11.30

% change - -15.9% -4.0% -952% -10.3%

::(m m ) 10.00 8.80 7.40 6.30 0.50

% change - - 12 .0% -26.0% -37.0% -95.0%

(mm) 5.10 4.30 4.00 3.10 4.10

% change - -15.7% -2 1 .6% -39.2% -19.6%

.r, (m/s’) 7.52 5.19 6.23 40.78 7.88

% change - -31.0% -17.2% -442.3% -4.8“ 0

X2 (m/s’) 10.09 10.55 10.75 9.23 8.79

%  change - -4.6% -6.5% -8.5% -12.9%

.tj (m/s’) 11.98 10.93 10.70 12.07 9.54

% change - -8 .8% -10.7% -0.8"0 -20.4%

V, (m/'s’) 1.69 1.88 1.67 1.35 5.89

%  change - ■ 1 i.:"o - 1.2 % -2 0 . 1% -248.5“ 0

ÿn (m/s’) 1.46 1.31 1.29 1.17 1.69

% change - -10.3% - 11.6 % -19.9% -15.8“»

V3 (m/s’) 1.92 1.82 1.69 1.14 1.96

% change - -52% - 12.0 % -40.6% -2 . l“ o

Ap (MPa) - 0 .1 0 0 .1 0 4.85 3.13

97



5.3 Semi-Active Test Results

Semi-active control tests were performed next using the quickest descent 

Lyapunov control algorithm developed in Chapter 4 and a collocated control designed to 

minimize the product of the actuator force and the actuator relative velocity. The 

Lyapunov control logic was based on the actuator differential pressure and the relative 

displacements and velocities between floors of the structure. Neither control law 

assumed any knowledge of the seismic disturbance input. Both control laws were tested 

with a single actuator first in Position I and then in Position 2. The control valve was 

modulated between 0° and 45° based on the control command. The data obtained from 

the semi-active control tests are plotted in Figures 5.25-5.48. The “bare frame” case is 

plotted in blue, the “force/velocity” control response is plotted in green and the 

"Lyapunov” control response is plotted in red.

The frequency response function magnitudes of the relative floor-to-floor 

displacements for the broadband disturbance input are provided in Figures 5.25-5.30. 

With the actuator in Position I, the Lyapunov control provides a 78% reduction in the 

peak first floor relative displacement compared to a 54% reduction for the force/velocity 

control. Both controllers decrease peak deflections by at least 46% between the 

remaining floors. In Position 2, the force/velocity control law yields at least a 39% 

reduction in peak inter-story drift compared to 48% for the Lyapunov control. The semi­

active actuator provides considerable reductions (at least 44%) in the higher frequency 

modal amplitudes regardless of the control law or actuator position since the force 

generated by the actuator is velocity dependent. In Position 2. both controllers essentially 

eliminate the third mode as seen in Figures 5.26,5.28 and 5.30.
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The frequency response function magnitudes of the .r-direction accelerations are 

plotted in Figures 5.31-5.42. Both controllers provide at least a 43% decrease in .r-axis 

acceleration at the natural frequencies when compared to the no control case. In Position 

L the force/velocity control law yields at least a 64% reduction in first mode amplitude 

on each floor compared to 55% for the Lyapunov control. Likewise, in Position 2, the 

force/velocity control lowered the first mode acceleration by at least 76% compared to 

43% with the Lyapunov control law. Figures 5.43-5.48 indicate the acceleration 

frequency response magnitudes in the y-direction. All semi-active control laws provided 

at least a 34% reduction of the third floor y-axis RMS accelerations over the bare frame 

case and an 8% reduction from the valve open case.

The RMS and peak relative displacements, absolute accelerations and actuator 

differential pressures from the broadband tests are summarized in Tables 5.5 and 5.6. 

The data from the El Centro tests are provided in Tables 5.7 and 5.8. All o f the semi­

active control configurations provide substantial reductions in maximum floor-to-floor 

displacements from the passive open valve configurations (at least 35% for the broadband 

input and 11% for the El Centro input). The semi-active actuator is able to provide more 

reduction in displacement between floors where the actuator is located. The results for 

Position 1 also indicate the Lyapunov control is much more effective in reducing relative 

displacement z\ than the force/velocity control for the banded wftite noise input (94% 

reduction compared to 58%). However, both controls offer comparable performance for 

the El Centro input, confirming that performance gains are input specific.

Both semi-active control laws have their advantages and disadvantages. The 

force/velocity control logic is computationally efficient and simple to implement since it
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relies on only two sensors per actuator (differential pressure and linear velocity). Since 

the actuator and sensors are collocated, the entire system including the control electronics 

can be incorporated into a single self-contained unit greatly simplifying the installation of 

the system. There are no parameters to tune for this simple control law and performance 

depends entirely on the control device parameters and the structure. However, Leitmann 

(1994) showed that such a control scheme for a linearly variable stiffness and damping 

controller did not guarantee stability of the closed loop system. The stability of the 

force/velocity controller has not been addressed for the actuator dynamics presented 

herein.

The Lyapunov control system is much more complicated than the force/velocity 

controller in that it requires full state information on the structure and the actuator to 

generate the control command. The state information must be directly measured or 

estimated on-line adding to the sensory hardware costs, the control processor capabilities 

and the number of data acquisition channels. The Lyapunov control also requires a 

suitable control model for designing a candidate Lyapunov function and estimating the 

system states. For large or complex structures a reduced order control model would be 

required to prevent the control synthesis and implementation from becoming unwieldy. 

The primary benefit to the Lyapunov control law is that stability has been established for 

the controller in Chapter 4. Likewise, the performance of the controller can be tuned by 

tailoring the Lyapunov function to the application without varying actuator parameters. 

The variability of the Lyapunov control law allows the semi-active control system to be 

optimized for a wide range of disturbance inputs.
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Figure 5.25: Frequency response ftmction magnitude r, Id  with semi-active control in 

Position I.
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Figure 5.26: Frequency response fimction magnitude z ^ i d  with semi-active control in

Position 2.
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Figure 5.27: Frequency response function magnitude r ,  /c/ with semi-active control in 

Position 1.
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Figure 5.28: Frequency response fimction magnitude z^ l  d  with semi-active control in

Position 2.
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Figure 5.29: Frequency response function magnitude z ^ /d  with semi-active control in 

Position 1.
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Figure 530: Frequency response function magnitude z ^ l d  with semi-active control in

Position 2.
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Figure 5.31: Frequency response function magnitude .v,, Ui with semi-active control in 

Position 1.
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Figure 5 J2 : Frequency response flmction magnitude d with semi-active control in

Position 2.
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Figure 5.33: Frequency response function magnitude .v,, /c/ with semi-active control in 

Position I.
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Figure 5 J4 : Frequency response function magnitude .r,. I d  with semi-active control in

Position 2.
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Figure 5 J5 : Frequency response tlmction magnitude x,, Id  with semi-active control in 
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Figure 5 J6 : Frequency response function magnitude x ^ / ^  with semi-active control in

Position 2.
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Figure 5.37: Frequency response function magnitude d  with semi-active control in 

Position I.
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Figure 538: Frequency response function magnitude d  with semi-active control in

Position 2.
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Figure 5.39: Frequency response function magnitude .if., Id  with semi-active control in 

Position 1.
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Figure 5.40: Frequency response function magnitude x^^ld  with semi-active control in

Position 2.
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Figure 5.41: Frequency response function magnitude .tj. Id  with semi-active control in 

Position 1.
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Figure 5.42: Frequency response function magnitude / d  with semi-active control in

Position 2.
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Figure 5.43: Frequency response function magnitude y^/cl with semi-active control in 

Position I.
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Figure 5.44: Frequency response function magnitude ÿ i / d  with semi-active control in

Position 2.
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Figure 5.45: Frequency response function magnitude with semi-active control in

Position 1.
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Figure 5.46: Frequency response function magnitude y 2 ^d  with semi-active control in

Position 2.
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Figure 5.47: Frequency response function magnitude Id  with semi-active control in 

Position I.
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Table 5.5: RMS relative displacements and absolute accelerations for semi-active

configurations subjected to a broadband input.

Actuator Position Bare Frame Position I Position I Position 2 Position 2

Valve Configuration N/A F/V Lyapunov F/V Lyapunov

2 i (mm) 3.30 1.40 0.20 1.80 1.70

% change - -57.6% -93.9% -45.5% -48.5%

Jz(mm) 2.70 1.20 120 1.20 1.20

% change - -55.6% -55.6% -55.6% -55.6%

zzlmm) 1.40 0.60 0.60 0.70 0.60

% change - -57.1% -57.1% -50.0% -57.1%

.r, (m/s’) 1.92 1.01 1.03 0.99 0.97

% change - -47.4% -46.4% -48.4% -49.5%

.ri (m/s’) 2.54 1.33 1.39 1.41 1.39

% change - -47.6% -45.3% -44.5% -45.3%

.t3 (m/s') 2.99 1.51 1.59 1.68 1.65

% change - -49.5% -46.8% -43.8% -44.8%

>‘i (m/s’) 0.46 0.40 0.44 0.21 0.29

% change - -13.0% -4.3% -54.3% -37.0%

v .d n /s ’) 0.31 0.24 0.25 022 0.22

%  change - -22.6% -19.4% -29.0% -29.0%

V3 (m/s’) 0.52 0.33 0.34 0.30 0.33

% change - -36.5% -34.6% -42.3% -36.5%

Ap  (MPa) - 0.06 0.06 0.07 0.07
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Table 5.6: Peak relative displacements and absolute accelerations for semi-active

configurations subjected to a broadband input.

Actuator Position Bare Frame Position 1 Position 1 Position 2 Position 2

Control Logic N/A F/V Lyapunov F/V Lyapunov

zi (mm) 11.20 5.10 2.40 6.40 5.50

% change - -54.5% -78.6% -42.9% -50.9%

::(m m ) 820 3.90 4.10 4.90 4.10

% change - -52.4% -50.0% -402% -50.0%

2; (mm) 4.10 2.10 2 2 0 2.50 2.10

%  change - -48.8% -46.3% -39.0% -48.8%

.t, (m/s-) 8.98 4.73 4.40 5.02 5.30

% change - -47.3% -51.0% -44.1% -41.0%

-ti (m/s') 9.59 5.51 5.75 6.26 5.52

% change - -42.5% -40,0% -34.7% -42.4%

(m/s’) 9.87 6.04 6.23 6.77 6.80

%  change - -38.8% -36.9% -31.4% -31.1%

V, (m/'s-) 1.87 1.60 1.99 1.03 1.14

%  change - -14.4% - 6 . 4 "  0 -44.9% -39.0%

V, (m/s-) 1.30 0.93 1.02 0.88 0.99

%  change - -28.5% -21.5% -32.3% -23.8%

V) (m/s’) 2.12 1.46 1.46 1.69 1.60

%  change - -31.1% -31.1% -20.3% -24.5%

J p  (MPa) - 0.42 0.45 0.45 0.45
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Table 5.7: RMS relative displacements and absolute accelerations for semi-active

configurations subjected to the El Centro earthquake input.

Actuator Position Bare Frame Position 1 Position 1 Position 2 Position 2

Valve Configuration N/A F/V Lyapunov F/V Lyapunov

zi (nun) 2.50 0.90 0.93 1.40 1.00

% change - -64.0% -62.8% -44.0% -60.0%

z:(mm) 2.00 0.70 0.72 0.40 0.80

% change - -65.0% -64.0% -80.0% -60.0%

zj (mm) 1.00 0.33 0.34 0.50 0.40

% change - -67.0% -66.0% -50.0% -60.0%

.r, (m/s’) 1.25 0.65 0.65 0.70 0.61

% change - -48.0% -48.0% -44.0% -52.1%

.if] (m/s’) 1.81 0.84 0.86 1.10 0.88

% change - -53.6% -52.5% -39.2% -51.4%

-tj (m/s’) 2.14 0.98 1.00 1.30 1.05

% change - -54.2% -53.3% -39.3% -50.9%

V, (m/s’) 0.32 0.29 0.31 0.13 0.25

%  change - -9.4% -3.1% -59.4% -21.9%

V; (m/s') 0.19 0.15 0.15 0.13 0.14

% change - -21.1% -21.1% -31.6% -26.3%

Pj (m/s’) 0.32 0.21 0.21 0.18 0.21

%  change - -34.4% -34.4% -43.8% -34.4%

J p  (MPa) - 0.04 0.04 0.05 0.05
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Table 5.8: Peak relative displacements and absolute accelerations for semi-active

configurations subjected to the El Centro earthquake input.

Actuator Position Bare Frame Position I Position 1 Position 2 Position 2

Control Logic N/A F/V Lyapunov F/V Lyapunov

*1 (mm) 12.60 7.40 7.70 9.40 7.90

%  change - -tl.3 % -38.9% -25.4% -37.3%

Cl (mm) 10.00 5.40 5.50 5.00 6.10

%  change - -46.0% -45.0% -50.0% -39.0%

: 3 (mm) 5.10 2.70 2.80 4.70 2.70

% change - -47.1% -45.1% -7.8% -47.1%

.r, (m/s') 7.52 6.71 8.23 6.71 9.31

% change - -10.8% -9.4*0 -10.8% -23.8*0

X2 (m/s’) 10.09 7.99 9.06 9.58 7.39

% change - -20.8% -10.2% -5.1% -26.8%

.rg(m/s') 11.98 6.95 6.96 10.52 7.49

% change - -42.0% -41.9% -12.2% -37.5%

V| (m 's’) 1.69 1.35 1.63 1.14 6.28

%  change - -20.1% -3.6% -32.5% -271.6*0

Vt (m/s’) 1.46 0.85 1.08 0.93 0.88

% change - -41.8% -26.0% -36.3% -39.7%

ÿ ) (m/s’) 1.92 1.28 1.37 1 28 1.23

%  change - -33.3% -28.6% -33.3% -35.994

J p  (MPa) - 0.49 0.89 0.86 0.62
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this dissertation, the open problem in the literature of designing feedback 

controllers that guarantee stability for seismic structures coupled with the nonlinear 

dynamics of semi-active actuators is investigated. There are two difficulties associated 

with this open problem. One was that the state matrix of the original coupled system 

possesses a zero eigenvalue. The zero eigenvalue made it impossible to directly construct 

a positive definite matrix P needed in a quadratic Lyapunov function to prove stability. 

A linear term was added and subtracted to the dynamics of the differential pressure state 

to avoid this difficulty. The resulting state matrix of the revised coupled system is 

Hurwitz (i.e.. all eigenvalues have negative real parts), which permits the construction of 

a positive definite matrix P needed in the quadratic Lyapunov function.

The second difficulty encountered was the presence of the non-quadratic term in 

the gradient of the Lyapimov function resulting from the nonlinear dynamics of the semi­

active actuator. This difficulty was addressed by establishing two general conditions 

(Section 4.3) to be met by the nonlinear dynamics that could help guarantee a negative 

gradient for the non-quadratic term and thus stability for the closed-loop semi-active 

control system. The nonlinear dynamics of semi-active actuators (in particular, variable- 

orifice hydraulic types that accoimt for laminar, turbulent and transition flow 

characteristics) are shown to satisfy these two general Conditions 1 and U. Furthermore, 

the two general conditions define a  wide class of semi-active control systems for which it
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is possible to construct a feedback controller that guarantees stability of the closed-loop 

system. In a theorem, it is established that the controllers designed using the quickest 

descent Lyapunov method guarantee stability for this wide class o f semi-active control 

systems with nonlinear actuator dynamics. For the zero disturbance case, it was shown 

that the quickest descent Lyapunov controller provides asymptotic stability to the origin 

within the operating range of the semi-active actuator. For the non-zero disturbance case, 

the controller provides asymptotic stability to a stable attractor whose size depends on the 

upper bound of the disturbances. This solution to the open problem in the literature is 

one of the major results of this dissertation. This is the first time stability has been shown 

for semi-active control systems with nonlinear actuator dynamics.

Simulation results are presented to demonstrate the ease of tuning the 

performance of our quickest descent controllers by using either state or modal penalties. 

Three disturbance inputs were used to assess the control performance for a variety of 

control designs. The modal control laws with an emphasis on the fundamental frequency 

of the structure and the mode associated with the semi-active actuator provided the best 

response characteristics with at least a 67% reduction in peak inter-story drift. The 

maximum simulated values of the states were much lower than the theoretical stability 

bounds confirmmg that the stability results are relatively conservative in that they do not 

take into consideration the effect of the semi-active actuator.

Experiments were also conducted to verify the performance of the control law. 

The three-story structure was subjected to both a banded white noise input and a 

component of the 1940 El Centro earthquake. For the white noise acceleration input with 

the actuator in Position I, the Lyapunov control law achieved a 78% reduction in
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maximum relative displacement between the ground and first floor compared to the bare 

frame response while a generic minimum force/velocity control provided a 54% 

reduction. In Position 2, the Lyapunov control law reduced the maximum relative 

displacement between the ground and first floor by 48% and the force/velocity control 

afforded a 39% reduction. Both controllers provided similar reductions in RMS 

acceleration. For the El Centro input, both control laws provided similar performance 

gains indicating that performance is input specific. Even though the force/velocity 

control is simple to implement, the ability to tune the performance of the Lyapunov 

controller along with the stability results make it a much more desirable alternative.

6.2 Recommendations

There are a number of obstacles that must be overcome before semi-active control 

systems become a feasible solution to the seismic response problem. For instance, a 

systematic approach is needed to optimize the performance of the semi-active control 

system. At the present time, numerical simulations must be conducted for each set of 

control gains to assess performance. The time and computer power required to optimize 

the control performance over the entire set of possible penalties is prohibitive for higher 

order systems. An effort should be made to develop control synthesis and analysis tools 

to aid in designing controllers for semi-active systems with nonlinear dynamics.

There is a need to improve methods for designing semi-active actuators for 

specific applications. This also would require the development of more efficient analysis 

techniques for nonlinear systems.
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Future work should also attempt to develop more complete system models. For 

instance, thermal effects have a significant effect on the behavior of the hydraulic fluid 

properties and additional performance gains may be possible if such variations are taken 

into account.

The stability bounds developed in Chapter 4 were typically much larger than the 

maximum values obtained in simulation. Tighter stability bounds might be obtained if 

the contribution of the control was incorporated into the analysis. Alternative Lyapunov 

functions might also provide tighter stability bounds.

In the interest of occupant safety, design codes need to be developed for 

controlled structures as well as control actuators and fixtures. Such codes should also 

require a stability analysis be conducted before any control system is implemented in an 

occupied structure.
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