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ABSTRACT

In a “real” project management environment historical cost, schedule, and 

performance data are often not available. The lack of historical data requires the 

estimation of cost, schedule, and performance parameters. The uncertainties 

associated with parameter estimation results in inherent project risks. The 

identification and quantification of project risks associated with parameter 

estimation requires analytical tools that are effective and usable in project 

planning and control.

A review of risk identification and quantification methods revealed the 

need for additional methods to assess cost, schedule, and performance 

estimation. A risk model was developed using fuzzy set theory. The risk model 

was tested using a sample radar development project. The results obtained from 

the model proved that a practical approach incorporating subject-matter expert 

assessment and fuzzy set theory could be used to both identify and quantify 

project risks. Outputs from the model had sufficient fidelity for decision-makers 

to determine areas for additional surveillance and/or control.
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CHAPTER 1 

INTRODUCTION

Project management can be defined as the planning, scheduling and 

controlling of project activities and resources to achieve project objectives. A 

project can be very simple or extremely complex. Project management 

techniques are widely used in many areas including construction, manufacturing, 

marketing, transportation, and software development.

In this better, faster, and cheaper era, project managers face many 

challenges in their attempts to perform effective project management. Too many 

projects suffer because the cost, schedule and performance goals are 

unachievable. Unrealistic cost, schedule, and performance estimates and a 

failure to quantify and communicate the uncertainty of these estimates to 

managers and stakeholders often results in project failure. Project risks are 

seldom quantified in a manner that the estimators, management hierarchy and 

the customer mutually understand and accept. Estimate uncertainties often 

result in project cost and schedule overruns and degraded performance.

1.1 introduction to Cost Estimation

Cost estimation generally involves predicting labor, material, utilities or 

other costs over time. Empirically-based cost estimation models supporting 

project management began to appear in literature during the 1970s and 1980s. 

These cost models were derived from the collection and analysis of large



amounts of project data. Modelers used the data to fit a curve and analyze the 

parameters that affected the curve. The better the project cost data and cost 

model, the closer the predicted cost was to the final actual cost at project 

completion.

Statisticai modeis, usually in regression anaiysis form, have been used to 

predict project cost. A disadvantage of regression-based techniques is their 

requirement to define in mathematical form the cost function that best fits the 

available historical data.

When cost data are not available, non-statistical cost models are generally 

used. Non-statistical cost models are generally more judgmental than those 

based on regression analysis. The use of non-statistical cost models puts 

additional emphasis on the competence and credibility of the model developer 

and usually increases the skepticism of auditors and higher management.

1.2 introduction to Schedule Estimation

Schedules are an important part of any project plan. In classical project 

scheduling, network diagramming is a technique that uses rectangles to 

represent each activity. Each rectangle is connected to the rectangle or 

rectangles representing activities that succeed it in time. The critical path is found 

by determining each and every path, and then determining which path is of 

longest duration. The critical path determines the project’s duration. Research 

throughout the years has focused on the use of the beta distribution to model



variable activity times in the Program Evaluation and Review Technique (PERT). 

Justification for using a weighted average of optimistic, most likely, and 

pessimistic times is based on the beta distribution’s ability to handle skewness 

and its ease of use for computing the mean activity times.

Probabilistic PERT is a technique for including the risk or uncertainty 

inherent in the completion of every activity in a project. Uncertainty, or risk, in the 

completion of an activity can be expressed mathematically if the duration of each 

activity is considered to be a random variable. Therefore, the duration of the 

critical path in a network diagram can also be viewed as a random variable 

because it represents the sum of random variables.

1.3 Introduction to Performance Estimation

Performance in the context of this research addresses the technical 

attributes of product deliverables. Performance estimation is the measurement 

of how well the project will meet technical requirements. The difference between 

the plan and the actual measure represents a technical variance which is either 

bad, good or somewhere in between, depending upon the level of tolerance 

allowed. The quantification of the variance in terms of its overall impact on the 

technical development process is difficult to measure. Performance estimation 

techniques have lacked the ability to methodically collect and organize technical 

data. It is important to quantitatively measure performance to ensure that 

intended requirements are met. Performance estimation is an area that has



received little documented research attention in the context of project 

management.

1.4 Introduction to Cost, Schedule, and Performance Parameters

Each project has specific cost, schedule, and performance parameters. 

Examples of some of the parameters that may be of importance to project 

success are shown in Table 1. In sophisticated cost accounting systems, costs 

can be allocated to a number of categories such as fixed, variable, direct, 

indirect, sunk, etc. Schedule parameters are usually denoted in terms of time, 

such as hours, days, weeks or months. Performance parameters represent the 

technical requirements of the project. It is important to measure the degree of 

uncertainty in the estimates of these parameters to determine possible project 

impacts due to inherent risks associated with estimation.



Parameter Type Example

Cost Direct,

Indirect

Labor, material, taxes, insurance, 

depreciation, utilities, packaging, shipping

Schedule Durations, 

start, stop

Hours, days, weeks, months, years

Performance Operational Speed, weight, range, velocity, accuracy, 

receiver sensitivity, horsepower, etc....

Supportability Mean Time Between Failure (MTBF), 

modularity, expansion capability. Mean 

Time Between Maintenance (MTBM)

Producibility Critical material available, special 

manufacturing equipment available, special 

facility available, skilled people to build

Engineering

Processes

Staffing, design ability

Affordability Design to cost, life cycle cost

Table 1. Cost, Schedule, and Performance Parameters

1.5 Introduction to Project Risk Identification

Risk is a measure of the potential inability to achieve overall project 

objectives within defined cost, schedule, and performance constraints. Risk 

management is the act or practice of dealing with risk. It includes planning for 

risk, assessing (identifying and analyzing) risk areas, developing risk-control 

options, and monitoring risk. Figure 1 shows a risk management model.



Risk
Management

Risk Risk Risk Risk
Planning Assessment Handling Controlling

Risk Risk
Identification Analysis

Figure 1. Risk Management

Risk planning is the process of developing and documenting an organized, 

comprehensive, and interactive strategy, to address project uncertainties. Risk 

assessment is the process of identifying and analyzing critical program areas to 

identify impediments to meeting cost, schedule, and performance objectives.

Risk identification is the process of examining the project areas to determine the 

source of potential risks. Risk analysis is the process of examining each 

identified risk area or process to refine the description of the risk, isolating the 

cause, and determining the effects. Risk control is the process of identifying, 

evaluating, selecting, and implementing options in order to set risks at acceptable 

levels given project constraints and objectives. Risk monitoring is the process of 

systematically tracking and evaluating the effects of risk controlling actions 

against established metrics.



This research Is focused on the identification portion of risk assessment as 

it relates to project cost, schedule, or performance.

1.6 Introduction to Artificial Intelligence in Project Management

Managers of very large projects have found computer-aided decision 

support beneficial. In addition to multidimensional capacities for data 

manipulation, retrieval, and display, computers are an invaluable resource for 

trading off design alternatives, analyzing scheduling options, tracking resource 

availability, and developing project cost estimates. Computers have been used 

to build project scenarios by modeling specific problems to be solved.

Artificial intelligence is an area that holds great promise in providing 

additional assistance to the project manager. Artificial intelligence is a field that 

has experienced rapid growth and diversity in application and practice in the last 

decade. The repertoire of artificial intelligence techniques has evolved and 

expanded to include traditional symbolic methods such as knowledge-based 

systems, logical reasoning, symbolic machine leaming, search techniques, and 

natural language processing. Some of the newer fields include expert systems, 

neural networks, genetic algorithms, fuzzy systems, rough set theory, chaotic 

systems, and hybrid systems. This research focused on the use of fuzzy logic to 

quantify project risks due to uncertainty in cost, schedule, or performance 

estimates.



1.7 Research Objectives

A systematic risk Identification approach using expert judgement coupled 

with a risk quantification method was envisioned to have utility in project planning 

and control. Quantification of identified risks associated with cost, schedule, or 

performance estimates has received little attention in previous research. Some 

risk assessment research has been performed for cost and schedule using 

Monte Carlo simulation to address estimate variability using probability 

distribution functions.

There were two research objectives. The first objective was to develop a 

mathematical risk model. The second objective was to use the model to identify 

and quantify project risks. The model derived from this research effort resulted in 

the development of a fuzzy set risk model.
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CHAPTER 2 

LITERATURE REVIEW OF COST ESTIMATION

Cost estimation generally involves predicting labor, material, utilities or 

other costs overtime given a small subset of factual data. Statistical models, 

usually of regression form, have assisted with this projection. A neural network 

(NN) (see Appendix E) approach has been used on construction cost data to 

develop a parametric cost-estimating model for highway projects (Hegazy and 

Ayed, 1998). Traditionally, cost-estimating relationships (CER) are developed 

using regression analysis on historical data. A major disadvantage of regression- 

based techniques is their requirement to have a defined mathematical form for 

the cost function that best fits the available historical data. Another disadvantage 

of regression-based techniques is their unsuitability for handling large numbers of 

variables needed in construction projects. NNs are commonly used for difficult 

tasks involving intuitive judgment or requiring the detection of data patterns that 

elude conventional analytic techniques. Typical NNs consists of a group of 

processing elements organized into a sequence of layers with connections and 

weights between successive layers.

Hegazy and Ayed demonstrated that a NN could be developed using a 

spreadsheet program similar to the ones that are often used in construction cost 

estimation. Data from 18 highway construction projects in Newfoundland during 

a five year period were used to “train” the NN. The NN was developed using an 

Excel spreadsheet program. Excel macros were used to compare the results of



successive iterations of cost inputs and the resulting budget costs. The 

spreadsheet implementation by Smith and Mason (1997) demonstrated the 

practicality of using spreadsheet programs to develop adequate NN models for 

use in construction project management. A comparison with traditional 

implementations of a NN model was also performed by Smith and Mason (1997) 

to determine the adequacy of the spreadsheet implementation. The spreadsheet 

implementation was found to track closely with the more traditional 

implementation.

Smith and Mason (1997) described the trade-offs of using NNs for cost 

estimation in a variety of simulated environments. The study also included 

observations on the usability, accuracy and sensitivity of NNs versus regression 

analysis for cost estimation. A function in two variables using a simulated data 

set was selected so that sampling bias, sample noise and sample sizes could be 

controlled. A nonlinear function (z = 20x -h y  ̂+ xy + 400) with two independent 

cost driver variables, x and y, were used to determine the amount of output 

resources, z, required. The nominal range of x was 0 to 100 and of y was 0 to 

50. The experiment tested four factors: (1) the modeling method used to 

develop the CER; (2) the sample size available for CER construction; (3) the 

magnitude and distribution of data imperfections (noise); and (4) the bias of the 

sample. For each CER method, a full factorial experiment with five levels of 

construction sample size, three levels of noise and three levels of bias was 

created resulting in a total of 45 separate prediction models for each CER. A

10



total of 45 neural network models were built for the same experiment. Each NN 

consisted of two input neurons, one output neuron and two intermediate hidden 

layers with two neurons each. The following classical backpropagation algorithm 

was added to allow current weight changes to be based on past weight changes:

D p W ij =  r i ( a D p . iW i j  +  (1 -a )6 p jO p i)

where DpWij is the change in weight connecting neuron j to neuron i for input 

vector p, Opj is the output of neuron i for input vector p, 6pj is the error of the 

output of neuron i for input vector p times the derivative of the sigmoidal transfer 

function, rj is the training rate, and a is the smoothing factor. The results of these 

experiments indicated that when an a-priori CER is known, the regression model 

provides superior results. However, when an a-priori CER is unknown, the 

neural network approach is of nearly comparable precision. In addition, the NN 

was less dependent on the sample data used and more robust to the conditions 

of the problem, which was seen in lower variance across all factors. The results 

of this experiment suggested that an artificial NN may be an attractive substitute 

for regression analysis for cost estimation.

Douglis (1998) performed an analysis that focused on actual cost savings 

per project associated with using automated estimation and planning tools versus 

a manual approach. The analysis included a quantification of benefits that 

software executives received through the use of knowledge-based estimating 

tools. The knowledge-based estimation tools possessed the capability to 

develop a detailed task-level plan that considered project size, complexity,

11



classification, languages, technology, process, and environment. The cost 

savings were in the 2% to 7% range on an individual project basis. When 

multiplied by the number of project managers within the organization responsible 

for planning and the total number of project plans, great savings can potentially 

be realized. The analysis took into account two factors: the number of planning 

days currently required to develop a manual estimate and the anticipated time 

saved in planning based on using knowledge-based estimation tools. The 

response varied by organization based upon organization size, project size, and 

process discipline. The analysis focused on efficiency gains and savings derived 

from better project planning. The results from the analysis presented in this 

study indicated that potential savings for an organization could be achieved using 

knowledge based estimation tools. The projected savings from improved project 

planning through knowledge-based estimation tools will improve overall project 

efficiency.

Cost estimation is an integral part of the procurement process of major Air 

Force and Navy weapon systems. Despite this essential role, the cost estimation 

process often provides decision-makers and analysts with limited insight due to 

the complex nature of the cost models that typically contain 20-30 GERS and 50- 

100 variables.

In an effort to provide Air Force and Navy decision-makers and analysts 

with additional insight into cost estimation, Campbell (1995) demonstrated a 

methodology that: (1) identified the critical cost drivers of a cost model; (2)

12



estimated the effects of these cost drivers; and (3) approximated the variance of 

the cost model to support confidence inten/al estimation.

The Navy’s Tomahawk Baseline Improvement Program (TBIP) model is 

based on a model developed by the Program Analysis and Evaluation (PA&E) 

group of the Office of the Secretary of Defense. The PA&E model is a 

spreadsheet-based model that is used to estimate production, engineering, 

manufacturing, and development costs of the program. The PA&E analysts 

developed the model using a parametric approach based on CERs.

Using the TBIP model, a series of experiments were designed in 

conjunction with regression analysis to model the critical cost drivers. This model 

was different from the original cost model, due to the addition of confidence 

intervals. The estimation of the variance contained in the original cost model 

allowed the construction of confidence intervals for the revised model. A 

comparison of the intervals constructed using the revised model with those 

generated by the original model verified the model produced a close 

approximation to the original model and allowed the facilitation of “what-if 

analysis.

Automation was achieved by linking the cost model to a spreadsheet 

containing the appropriate orthogonal experimental design. The spreadsheet 

contained ±1 "s that represented the high and low settings of the factors. The 

cost model used the factor values and calculated the cost at each design point.

13



The cost was subsequently passed to a fourth spreadsheet that maintained the 

cost estimate for each run of the model.

The confidence interval estimate provided more useful information by 

capturing the uncertainty associated with the cost estimate. The confidence 

intervais related the uncertainty associated with the cost estimate through the 

width of the inten/al -  the wider the interval, the more uncertainty.

Lederer and Prasad (1992) conducted a study of the cost estimating 

practices reported by 115 computing managers and professionals. The objective 

of the study was to develop a better understanding of the cost estimating process 

in general. The accurate prediction of information systems development costs 

has been a critical issue for managers. The study results were presented as 

prescriptions to computing managers to enable them with a method to improve 

the accuracy of the cost estimating process.

Much of the prior research on cost estimating has focused on the study of 

algorithmic technique. Lederer and Prasad (1992) identified several factors that 

they believed affected systems development. These factors included system 

size and complexity, personnel capabilities and experience, hardware 

constraints, the use of modem software tools and practices, users’ understanding 

of information technology, the volatility of their requirements, and many others.

To use an algorithmic technique, the estimator quantified each factor for the 

proposed system based on historical data about past development projects or on

14



intuition and experience. The estimator then mathematically projected the cost of 

the new system based on the factors.

Lederer and Prasad (1992) suggested that to understand cost estimating, 

another research approach was needed. The suggested approach was to study 

the actual experiences of practicing computing managers and other computing 

professionals to obtain guidance in the cost estimating process. The approach 

included a questionnaire based on a previous case study of the cost estimating 

process. Respondents answered the questions in terms of what their 

organization defined as a “large project”. To define a frame of reference, an 

arbitrary cost figure of $50,000 was chosen for a “large project”.

The results of the study indicated that 84% of the respondents thought 

that cost estimating was very important. The respondents also reported that 

approximately 63% of all large projects, significantly overrun their estimates. 

Based on the results of the study Lederer and Prasad (1992) developed the 

following prescriptive guidelines:

1. Assign the initial estimating task to the final developers.

2. Delay finalizing the initial estimate until a thorough study has been 

accomplished.

3. Anticipate and control user changes.

4. Monitor the progress of the proposed project.

5. Evaluate project progress using independent auditors.

6. Use the cost estimate to evaluate project personnel.

15



7. Management should carefully study and approve the cost estimate.

8. Rely on documented facts, expert judgment, standards, and simple 

formulas rather than guessing, intuition, personal memory, and 

complex formulas.

9. Don't rely solely on cost estimating software for an accurate estimate.

The guidelines developed by Lederer and Prasad (1992) will likely result in 

improved cost estimation for computing managers that choose to adopt them.

Ting, et al (1999) developed a cost estimating methodology using the 

Multi-Attribute Utility Theory (MAUT) and fuzzy set theory. The use of fuzzy set 

theory for cost models and affordability applications was developed to address 

the problems of: (1) limited data for materials; (2) processes with limited empirical 

data; and (3) manufacturing processes with little or no previous manufacturing 

base. The methodology included the integration of a fuzzy set cost method and 

expert opinions to develop a cost model for incomplete or uncertain data. MAUT 

has been researched for many years. The main steps involved in applying 

MAUT to cost estimation are as follows:

1. Identify the objects of evaluation and the functions that the evaluation 

is intended to perform.

2. Identify a set of attributes that contributes to the overall product cost. 

Proper selection of attributes will increase the accuracy of cost 

estimation.

16



3. Construct a utility function for each level of attributes. The basic form 

of the utility function is: U(Xj'̂ ) = pU(Xj') + (1-p)U(x°): where U(Xî ) is 

the utility function of attribute i at a level, Xj' is the highest level giving 

the highest cost of attribute i; and Xj° is the lowest level leading to 

lowest cost of attribute i.

In conventional utility theory, the decision-maker’s preferences are taken 

as utility values. The utility values are obtained through the decision maker’s 

answers to the preference-query questions. The utility calculation is usually 

based on probability theory. The fuzzy set method was used to acquire utility 

values since the information was uncertain. In the traditional MAUT approach, 

the decision variables are deterministic and the utility values are crisp.

Therefore, the general MAUT method was unable to handle problems with 

incomplete and uncertain data. In applying the utility theory to costing, experts 

generally provide a range of utility values for a specific cost driver. Fuzzy set 

theory was used to obtain a sensible result. Based on this understanding, a new 

method, called the Fuzzy Multi-Attribute Utility (FMAU) method, which combines 

MAUT and fuzzy set theory, was developed to deal with the cost-estimation 

issue.

The FMAU method was found to be effective for the cost estimation 

examples where it was applied when information about an object was incomplete 

or uncertain. In addition, this method was found to be more efficient than other 

traditional cost models because it was not necessary to collect a great amount of

17



historical data. With FMAU, cost estimation was perfomned through a systematic 

procedure using the experts’ experiences and opinions. Because of the fuzzy 

operations on opinions from a number of experts, the subjectivity was reduced in 

estimating cost.

The empirical evidence supporting the use of learning cun/es for planning 

is well documented in the literature. Learning curve models attempt to explain 

the phenomenon of increasing productivity with experience. The first reported 

use of the learning cun/e phenomenon was by Wright (1936), and since then an 

extensive number of papers have reported its use in industrial applications and 

research settings.

Wright’s model assumed that costs decreased by a certain percentage as 

the number of produced units doubled. Extensions of Wright’s model to account 

for work-in-progress and for use in project control have also been proposed to 

consider typical data gathering problems and scenarios in industry settings. 

Wright’s leaming curve model, y = a x' ,̂ a log-linear model, is often referred to as 

the “cumulative average" model because y represents the average cost of all 

units produced up to the xth unit. These models are discrete in unit time for cost 

calculation.

Badiru (1992) presented a computational survey of various univariate and 

multivariate leaming cun/e models. The conventional univariate leaming curve 

expresses a dependent variable (e.g., production cost) in terms of an 

independent variable (e.g., cumulative output). The log-linear model is referred
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to as the conventional leaming curve model. The two basic forms of the log- 

linear model are the average cost function and the unit cost function. The 

average cost model specifies the relationship between the cumulative average 

cost per unit and cumulative production. The relationship indicates that 

cumulative cost per unit will decrease by a constant percentage as the 

cumulative production volume doubles. The model is expressed by the following 

equation;

yx = a x

where:

y = cumulative average cost of producing x units 

a = cost of the first unit 

X = cumulative production count 

b = the leaming curve exponent.

Figure 2 shows the graph of the log-linear leaming curve that is a 

hyperbola.
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Figure 2. Log-linear Learning Curve Model

Expression for Total Cost: Using the basic cumulative average cost function, the 

total cost of producing x units is computed as follows: 

y,c = a

Expression for Unit Cost: The unit cost of producing the xth unit is given by: 

yuc = a -  a(x -1)' '̂* '̂.

Expression for Marginal Cost: The marginal cost of producing the xth unit is 

given by:

ywc = d(ytc) / dx = (1 - b) (a x'*’)

Badiru (1992) also discussed the importance of extensions and 

modifications of conventional leaming curves to achieve realistic analysis of 

productivity gain. Quantitative and qualitative factors interact to compound the
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productivity analysis problem. Multivariate models have been determined to be 

useful for detailed cost and productivity analysis in many economic and 

production processes. Badiru (1992) performed a comparison of the univariate 

model to a bivariate model. The bivariate model provided a slightly better fit than 

the univariate model. The bivariate model also provided more detailed 

information about factor interactions and better utilization of available data.

Badiru (1992) suggested that the results of the computational experiment could 

be generalized to make a case for the appropriateness of multivariate models in 

many leaming curve analyses.

In either the cumulative average or unit cost approach, an approximation 

is required to convert one type of cost to the other. This approximation can 

create difficulties both in empirical studies of production costs and in formulating 

analytical models for production planning that include learning. The use of the 

continuous form of the log-linear model overcomes this discrete formulation 

problem. By making the assumption that leaming can occur continuously, 

leaming curve projections can be made from mid-units, thus eliminating any 

approximation error.

Smunt (1999) examined the continuous leaming approach for log-linear 

leaming curve models and its use in analyzing productivity trends in 

manufacturing databases. In particular Smunt (1999) presented the derivation of 

the mid-unit model, a continuous form of the log-linear leaming curve, which can 

accurately provide production cost estimates from either cumulative average
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costs or unit costs. The rate of Increase of the total cost function was described 

by the first derivative of that total cost function. The fact that the rate of increase 

of a total cost (TC) function can be defined as the addition of unit costs over time, 

the unit cost function became:

Yu(x) = d(TC) / d(x) = (1 -  b)(a)(x^).

The use of the mid-unit model requires the determination of the mid-unit 

for most calculations and for regression analysis. Normally, the mid-unit is 

calculated for a production batch so that average costs can be projected from 

one batch to another. In essence, the average cost for a batch is the unit cost for 

the mid-unit of the batch. Therefore, projection of a previous batch average cost 

simply requires that unit costs be projected from one mid-unit to another mid-unit.

Within any given batch where xg is a quantity at the end of the batch and 

Xi is the quantity prior to the beginning of the batch, the total cost of the batch 

(using the cumulative cost equation) and the unit cost were determined to be:

Total batch cost = ytc = (a)(x2 '̂̂ ) -  (a)(x/'^), and 

Unit cost = Yuc = (1 -  b)(a)(x'^).

Frequently, a production process will experience a change in the leaming 

rate. When a break in the leaming curve is expected, a method to project 

beyond this breaking point to a different leaming curve was needed. Smunt 

(1999) derived a formula to project on a “dog-leg” leaming curve. To derive the 

formula to project on a “dog-leg” leaming curve two separate projections were
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needed. First the projection from batch 1 to the breaking point (BP) and then 

from the BP to batch 2. The following equation projects from batch 1 to BP:

Yu(BP) = (BP'*̂ ) / (Xml) (average batch costi).

The following equation projects from BP to batch 2:

= (Y„(BP)).

The advantages achieved by Smunt through the continuous form of the 

log-linear leaming cun/e included computational speed and computational 

accuracy. The computational speed advantage was due to an increased ability 

to project all types of costs: unit; batch average; cumulative average; and total 

costs; from the continuous unit cost function. An additional advantage of being 

able to project from mid-unit to mid-unit was the ability to use regression analysis 

on available historical cost data. Smunt’s research showed that a log-linear 

leaming curve model provided good “fits” of empirical data for many products and 

processes.

The finance function at General Electric (GE) devised a method in the 

1960’s to figure costs caused or driven by activities, rather than the traditional 

method of assigning indirect and overhead costs to corporate functions such as 

marketing, production, or engineering, based on some measure such as labor 

(Johnson, 1992). This was found to be necessary because in some cases, labor 

costs did not vary directly with the majority of activities and, therefore, cost

23



allocations based on that measure were grossly inaccurate. GE also traced 

costs upstream to the driver of the activities. Usually, this was a cross-functional 

analysis because activities in one department would likely generate activities in 

other departments (Johnson, 1992).

Company management employed these costs, derived from activities, as 

management accounting information. By so doing, costs could be managed by 

controlling activities and drivers of activities that actually caused costs. This was 

a different approach than the use of standard product costing methods to control 

costs.

The new method was not taken as far as it could have been because all 

the activity costs were not totaled in order to get an estimated output cost. The 

resurgence of Activity Based Costing (ABC) in the 1980’s focused not only on the 

costs of activities and the drivers, but also on estimations of output costs from 

summing all the costs of the generators of activities. Vast improvements in 

computer capability made this much easier in the 1980’s than in the 1960’s 

(Johnson, 1992).

ABC attempts to assign overhead costs based on the activities that 

generate the costs, rather than arbitrarily assigning costs simply because the 

organization incurs them. Traditionally, overhead costs have been treated as 

having little or no causal relationship to levels of service. ABC, however, 

operates on the premise that many of the costs that are treated as overhead, are.
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in fact, variable costs. Examining overhead costs uncovered cause and effect 

relationships that linked activities with overhead.

The primary benefit of using ABC is to obtain more accurate costing. 

Advocates of ABC contend that most organizations have a poor idea of the 

actual costs of providing products or services. In most organizations, direct labor 

has declined as a major input for production and the volume of indirect costs has 

grown (Snyder and Davenport, 1997).

ABC can be an effective tool in an organization that produces more than 

one output (Rotch, 1991 ). If only one service or product results from work 

processes, then all the costs associated with that organization must be borne by 

the one product. In this case, budgeting is simpler because changes in activities 

will be passed on to the cost of the one output. To correctly assign costs to each 

product, the individual activity costs must be separated from the total and traced 

from the output back to the activity cost drivers. The ABC model provides 

visibility into the costs caused by activities upstream from the output.

There are two basic approaches to implement an ABC system. One is the 

top-down approach where the business processes are identified first, followed by 

the activities. The second approach is to start from the bottom by identifying 

activities first and then arranging them into business processes. The activities 

will normally be specified in detail for the departments and areas covered by the 

activity analysis. If the top-down approach is taken, it will ultimately require the
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detailed analysis at the lower level to validate, add, delete, change, and modify 

the initial definitions of activities and business processes.

Data must be collected in order to identify the resources the organization 

draws upon, the activities performed, and the products produced. There is also a 

need to identify the manner in which the activities consume the resources, and 

how products consume activities. There are many ways of gathering this type of 

data, all of which have advantages and disadvantages.

Activity centers are chosen on the basis of aggregating and dis­

aggregating cost information. Ideally, an activity center is a discrete part of the 

production process; for example, in a manufacturing environment, it could be a 

stamping plant or paint room. Sometimes activity centers are not so distinct, 

such as a workstation where multiple tasks are performed. If activity centers 

represent different stages in a manufacturing process, then the resources that go 

into them should be split into separate cost pools. The cost pools will represent 

how much of each resource is consumed by the defining activity. Multiple cost 

pools associated with a single activity center are grouped together to determine 

the total cost of that activity. The use of ABC affects project cost estimates from 

the standpoint of what is included in the project cost estimate.

The Air Force Research Laboratories (AFRL) implemented an ABC 

system in 1997. A study was conducted by the Air Force Institute of Technology 

(AFIT) and documented in a Thesis written by Memminger and Wrona (1999). 

The purpose of the study was to examine the initial implementation of an ABC
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system within AFRL. The study reviewed the initial purposes for implementing 

ABC within AFRL and determined whether or not the goals were attained.

Exploratory research was conducted to obtain qualitative data. The 

primary data collection technique that was used to gather data was personal 

inten/iews. A traceability matrix that included research objectives was used to 

develop the research questions. The traceability matrix led to investigative 

interview question development.

Problems were noted with AFRL’s current ABC system. First, when the 

system was initially designed, it was hampered by a rigid structure that was 

predetermined and there was insufficient training for the personnel in charge of 

development. The issue involved concerns with the implementation of the 

current ABC system. The resulting analysis showed that there were many steps 

that could have been taken to ensure a successful ABC system. The research 

concluded that ABC was a potentially beneficial tool that could have been used 

by AFRL if it had been developed and implemented in a different manner. ABC, 

as implemented, was not a beneficial tool at lower organizational levels within 

AFRL. In order to attain the full benefits of ABC, it was recommended that the 

ABC implementation be revised and include input from the lower organizational 

levels as necessary to achieve desired goals.

27



CHAPTER 3 

LITERATURE REVIEW OF SCHEDULE ESTIMATION

Throughout the years, research on schedule has centered on the use of 

the beta distribution to model variable activity times in the Program Evaluation 

and Review Technique (PERT). Project managers have accepted the 

assumption that the mean time and variance for each activity can be determined 

from three time estimates (optimistic, most likely and pessimistic) based on the 

beta distribution.

Probabilistic PERT has the ability to represent the critical path in the 

precedence diagram as a random variable. The expected time tj and the 

variance Sĵ  of each activity, Aj on the critical path, and the expected duration Te 

of the project is:

j
l E = I t i

i=1

where there are J activities on the critical path. The variance Sê  of the project is: 

Se'=  Z s f
i=i

If the probability density of an activity is not known a-priori but the project 

specialists believe that the duration of the activity will most often be between 

some optimistic value to and some pessimistic value tp and will most likely be
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completed at a time tm, then the probability density function is assumed to be a 

beta-distribution. The activity time for each activity is calculated using:

t j  —  t p  +  4  t m  +  t o  

6

and

Si = tgjJa 
6

Risk and uncertainty are directly related to the differences between the 

pessimistic and optimistic times tp and to. Probabilistic PERT shows both the 

critical path and the activities on the critical path that have high uncertainty or 

risk.

Many researchers have evaluated the use of the beta distribution for 

PERT analysis attempting to find theoretical justification for its use and/or to 

suggest other methods for calculating mean activity time. An early investigator, 

Grubbs (1962), criticized the use of the beta distribution, because the assumption 

is based primarily on empirical evidence. Famum and Stanton (1987) showed 

that the empirically-based assumption had a theoretical basis. Famum and 

Stanton had the belief that the activity means could be theoretically justified as 

(a + 4m + b) / 6 within some ranges of values for the three time estimates where 

a is the optimistic completion time, m is the most likely completion and b is the 

pessimistic completion. Famum and Stanton recommended a refinement of the 

activity means if the modal value falls outside of a specific range. A similar
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conclusion was suggested by Littlefield and Randolph (1987), and Gallagher 

(1987).

Famum and Stanton (1987) showed that the PERT estimate of the most 

likely or modal value, m%, can be converted to an estimate of the mean, px, using 

Px = (4 mx + 1) / 6 where o* could be estimated to be 1/6, if 0.13 < mx < 0.87.

The mean of the activity time, py, could be approximately estimated from 

Py = a + px (b -  a). If the estimated mode is near the upper or lower limits of the 

distribution, the mean and standard deviation should be calculated using the 

following rules; If m* < 0.13 then px can be estimated by p% = 2 / (2 + 1 / mx) and 

Gx can be estimated by o* =  [mx^ (1 - m%) /  (1  +  m%)]̂ '̂ .

Moitra (1990) suggested that the skewness of the data can impact the 

justification for accepting the beta distribution to determine mean activity times. 

Moitra found that when the degree of skewness is low, the beta distribution works 

well. However, if the degree of skewness is high, the beta assumption provides 

a broader distribution than the true one. Moitra suggested that a more general 

way of expressing the mean and standard deviation was to use:

p = (a + b + km) / (k + 2) and a = (b -  a) / c.

Weights of k = 4 and c = 6 result in the beta distributed mean activity times and 

standard deviations, which are optimal for a wide range of m values but not for 

extreme values of m as suggested by Famum and Stanton (1987). Along with the 

more generic formula for determining the mean activity times, Moitra (1990) 

recommended that information be solicited from the decision-maker regarding
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the amount of skewness; high, medium, or low. To accomplish this the decision­

maker would be asked to identify his uncertainty using a qualitative scale to 

determine the degree of skewness. Overall, the method attempted to obtain the 

level of confidence of the person making the estimates rather than arbitrarily 

setting the estimates based solely on the beta distribution.

Cottrell (1999) proposed a simplified variation of PERT. The proposed 

simplification of PERT was intended to reduce the number of time estimates 

were required for each task from three to two. The reduction of time estimates 

had dual objectives to decrease: (1 ) the level of effort needed to apply PERT; 

and (2) the required knowledge of activity durations. A symmetric duration 

normal distribution was a basic assumption adopted by Cottrell. The choice of 

the two values was made from the PERT parameters of a, m, or b. Moder (1983) 

reported that most time estimates are optimistic. The result is that actual project 

durations are generally longer than those forecasted. A more conservative 

estimate is to use m and b, where m is the mean. The simplified PERT 

technique reduced the level of effort and required knowledge associated with the 

time estimates due to the two estimates versus three. The remainder of the 

procedure was identical to the conventional method.

A comparison was made between the simplified PERT and the 

conventional PERT. The comparison involved 12 project networks. The 

indication was that the simplified PERT produced shorter expected project 

durations, but greater project duration variances. The simplified and
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conventional PERT means were compared. The activity duration means of the 

simplified PERT were shown to have a greater error than those computed using 

conventional PERT, especially when the distribution was highly skewed.

Shipley, et al (1997) proposed a methodology that did not rely on the beta 

distribution or any variation of the beta distribution to caiculate the expected 

project completion times. The methodology incorporated into the estimation of 

the activity means: (1) a measure of the decision maker’s level of confidence: 

and (2) the decision maker’s uncertainty reflected by a probability distribution. 

Shipley, Korvin and Omer (1997) developed the Belief in Fuzzy Probability 

Estimations of Time (BIFPET) methodology. The BIFPET methodology used 

human judgment instead of stochastic assumptions to determine project 

completion times. The BIFPET methodology adopted the PERT process of 

defining the activities and their precedence relations.

The person responsible for the completion of an activity specifies the 

optimistic, most likely, and pessimistic times. The person also supplies 

probabilities of these times being accurate.

Uretech Machinery Intemational, Inc. is a supplier of a full line of 

equipment for the flexible foam industry and was chosen to participate in the 

study to compare BIFPET to PERT. The activity supervisors on the shop floor 

assigned fuzzy probabilities to their estimated optimistic, most likely, and 

pessimistic completion times. The ranges of the time estimates were used in a 

fuzzy logic framework to determine expected completion times.
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With PERT, the standard deviation was calculated by evenly distributing 

the difference between pessimistic and optimistic time estimates. In the fuzzy 

probability process, weights were assigned to the difference between pessimistic 

and optimistic time estimates on the basis of the belief that the probabilities of 

completing the activities on time represented the true reality of the situation. The 

BIFPET methodology provided a more realistic completion schedule, when 

contrasted with PERT generated results due to the incorporation of inputs from 

activity supervisors.

In order to overcome the limitations of PERT and still quantify risk, Finley 

and Fisher (1994) proposed a project schedule estimator using Monte Carlo 

methods. The method involved using random numbers in calculations of a 

schedule estimate. Monte Carlo methods provided a means to overcome 

PERT’s singular focus on the critical path and also allowed for asymmetric 

duration distributions. Two shortcomings existed with duration estimates using 

the Monte Carlo methods. First, the problem of needing three duration estimates 

still existed. Secondly, the problem was how to simulate the correlation between 

activities.

Finley and Fisher (1994) used two techniques to overcome Monte Carlo 

shortcomings. The first technique was to run the Monte Carlo simulation only on 

the major milestones. This tended to lump many of the interdependent activities 

together and reduced the number of activities for which high and low durations 

needed to be estimated. The second technique was to consider only paths

33



through the network that may have an effect on the overall duration. These 

techniques were found to further reduce the simulation complexity and reduce 

the number of activities involved.

A hypothetical construction project to build a retail space in a shopping 

mail was used by Finley and Fisher (1994) to test the proposed techniques.

The project included 85 activities ranging from initial economic studies through 

detailed design and construction. The project’s Work Breakdown Structure 

(WBS) and activity network were developed with a commercially-available project 

management software package. The target project duration, as determined by 

the length of the critical path, was 335 days.

In developing the Monte Carlo simulation, the 85 activities and over 

100,000 possible paths were consolidated into 19 ranged elements and six 

paths. Two Monte Carlo models were used to simulate the network. The models 

were set up to randomly select a duration for each element and then sum the 

duration of each block in the abbreviated schedule. The first model only 

examined the critical path and simply summed the durations of the individual 

elements. This was repeated 1,000 times and the durations were cataloged until 

the probabilities of completing the projects were known for all possible durations. 

The second model was then created to consider all of the possible paths through 

the network. First, durations were randomly selected for the individual activities. 

Then, the longest path was found by running comparisons at points where paths 

diverged, ultimately picking the maximum of the two path durations. The
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durations were progressively summed until the longest path was determined.

The second model was also run with 1,000 sets of randomly selected numbers.

The simulation that considered only the critical path indicated that there 

was a 42.5 percent probability that the project duration would exceed 335 days. 

The “all-paths” simulation probability was 70 percent. On the other hand, both 

projects had a 99.95 percent chance of being completed in 367 days, because 

that was the sum of the maximum durations for the longest possible path. At the 

bottom end, the critical path simulation had a 99.95 percent probability of taking 

longer than 295 days, while the “all-paths” method number was 314 days. The 

main conclusion was that the probability of finishing early was substantially 

reduced, when all possible paths were considered. Finley and Fisher (1994) 

theorized that prioritizing risks to project schedules enabled managers to reduce 

the risk of overrunning the desired completion date for a project.

Li and Love (1997) developed a Genetic Algorithm (GA) (see Appendix F) 

to optimize time and cost in construction planning. Time-cost optimization 

problems in construction projects are characterized by the constraints on the time 

and cost requirements. These problems are difficult to solve because they do 

not have unique solutions. Typically, if a project is running behind the scheduled 

plan, one option is to compress some activities on the critical path, so that the 

target completion time can be met. If the durations of activities are compressed it 

is almost inevitable that the cost of these activities will be increased. Some 

activities can be expedited at a lower cost than others, therefore, when a choice
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of activities is presented, the cheaper ones should be compressed more than 

expensive ones. The objective of optimization is to find the minimum total direct 

costs for which the reduction in time can be achieved.

Two methods have been used in the past to solve time-cost optimization 

problems. One method required the visual identification of several activities on 

the critical path and the enumeration of possible alternatives for allocating 

reduction time to the activities. The cost of each of these alternatives was 

evaluated and the one with the minimum cost was selected as the final solution. 

The second method was based on linear programming. Linear programming 

was used to establish the total cost of a project as the objective function with the 

associated constraints.

These two methods had a common deficiency, which was the global 

optimality of solutions from these methods could not be guaranteed. As 

combinatorial optimization problems, time-cost optimization problems, have been 

solved using GAs. Recent research has shown that GAs are robust and have 

the capacity to efficiently search complex solution spaces. The robustness of 

GAs is attributed to their capacity to locate the global optimum in a multi-modal 

landscape. Therefore, GAs are less likely to restrict the search to a local 

optimum when compared with point to point movement, or gradient descent 

optimization techniques (Goldberg, 1989).

GAs are a set of tools based on natural selection and mechanisms of 

population genetics. GAs employ a random yet directed search for locating the
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globally optimal solution. Typically, a set of GAs requires a representation 

scheme to encode feasible solutions to the optimization problem. Usually a 

solution is represented as a linear string called a chromosome whose length 

varies with each application. Some measure of fitness is applied to the solutions 

to construct better solutions. There are three basic operators in the GA system: 

reproduction (or selection), crossover, and mutation. Reproduction is a process 

in which strings are duplicated according to their fitness magnitude. Crossover is 

a process in which the newly reproduced strings are randomly coupled, and each 

couple of a string partially exchanges information. Mutation is the occasional 

random alteration of the value of one of the bits in the string.

Initial experiments with the GA system enabled Li and Love (1997) to 

determine that the length of time required for convergence was mainly caused by 

mutation and crossover. Crossover was improved by not allowing two identical 

strings to exchange information, thus eliminating wasted computational time. To 

improve the performance of the mutation operation, the strings were evaluated 

against the objective function and the strings that had the lower costs were kept 

as better solutions.

A construction project was used to evaluate the performance of the 

improved GA and the basic GA. The building of a single residential house was 

the selected construction project. The project required the reduction of total 

project duration from 64 to 57 days. Initially, eight feasible solutions were 

manually prepared and encoded as strings for initial inputs to the basic GA and
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the improved GA systems. The best manual solution had a total cost of $18,550. 

After approximately 400 generations of genetic operations, the improved GA 

converged at a value of $15,670, while the basic GA converged at the same 

value after about 8,000 generations. The improved GA enhanced the viability of 

using GAs in cost and schedule estimation.

Lorterapong and Moselhi (1996) recognized that the estimation of 

construction project activity durations required expert knowledge. Lorterapong 

and Moselhi also recognized that statements made by these experts usually 

contained some level of imprecision. Previous studies have demonstrated the 

use of fuzzy set theory for quantifying the imprecision associated with the 

durations of project activities. These studies in large part did not address the 

processing of this information for the purpose of generating a complete schedule. 

Lorterapong and Moselhi proposed a network scheduling method based on fuzzy 

set theory. The proposed method incorporated a number of features that 

facilitated: (1) the representation of imprecise activity durations; (2) the 

calculation of scheduling parameters; and (3) the interpretation of the fuzzy 

results generated.

The Lorterapong and Moselhi (1996) method used traditional fuzzy set 

operations on an example schedule network to calculate the imprecise activity 

durations. A Monte Carlo simulation was also performed on the example 

schedule network. The results indicated that the proposed method was capable 

of providing schedules that could appropriately account for the nature, as well as
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the type of uncertainties normally encountered in construction projects. The 

results were in close agreement with those obtained using Monte Carlo 

simulation. A new method, called fuzzy network scheduling (FNET), was 

developed as a result of the experiment to model schedule uncertainties.
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CHAPTER 4 

LITERATURE REVIEW OF PERFORMANCE ESTIMATION

The concept of a technical parameter hierarchy has been proposed as a 

method to systematically establish a framework for technical performance 

baselining (Kuiick, 1999). The foundation of the technical performance baseline 

is the hierarchy that identifies all the measurable key technical elements and 

establishes their relative relationships and importance. The hierarchy is a 

comprehensive representation of the technical risk factors associated with the 

project. Typically medium and high risk areas are covered, however, low risks 

can also be included. Once the critical technical elements are identified in the 

form of measurable parameters, they are organized into a network similar to an 

organizational chart, with some parameters detailed further into “children". 

Typically, the highest level of the hierarchy represents the system level 

requirements for the project and the parameters underneath are “children". The 

highest level of the hierarchy can also represent operational requirements.

The technical parameter hierarchy provides a foundation for the technical 

performance baseline by identifying key technical parameters and establishing 

their relative importance. The hierarchy offers a structure to quantify the complex 

relationships between technical parameters.

As an example, a particular system might have a deployment life 

requirement of six hours. Key to this requirement is both the electrical and 

mechanical life of the system to be deployed. Integral to the electrical life ,might
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be the power consumption of the system, and the battery capacity. The 

parameter relationships are illustrated in Figure 3.

System Life

Mechanical
Life

Electrical
Life
fiS%

Battery
Capacity

60%

Power
Consumption

40%

Figure 3. Technical Parameter Hierarchy

In addition to representing the proper relationship between the parameters 

in the hierarchy, the relative importance of each parameter must be established. 

The relative importance is established through a scheme of weightings. This 

relative importance can also be used to express risk.

In the above example, electrical life is almost twice as important in 

meeting the system life requirement. This means that the mechanical system is 

not as critical to system operations or that the mechanical systems are not
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expected to fail as often. Weightings associated with “children” must always add 

up to 100 percent.

Weightings facilitate two important functions. First, technical scores are 

“rolled-up” through the hierarchy to achieve a summary technical score at any 

level. Second, the process of calculating a “composite” technical score for 

associated technical parameters can be used to facilitate performance 

quantification.

Kuiick (1998) proposed using the technical parameter hierarchy to assess 

technical risk. For each technical parameter in the hierarchy, a set of profiles 

was built to characterize the relative confidence of the estimator. The framework 

provided a method to organize the estimator’s uncertainty into confidence levels. 

Kuiick (1998) believed that this approach provided an enhanced technique to 

address technical uncertainty.

Kuiick (1998) also investigated the use of Bayesian probabilistic reasoning 

to measure uncertainty. Bayes’ Theorem (Appendix G) is a process of drawing 

inferences about objects or events where uncertainty exists. Bayesian 

techniques and networks have been used for years in diagnostic expert systems. 

A Bayesian network is constructed with one node used for each variable. For 

technical performance a Bayesian approach was proposed by Kuiick (1998) to 

provide a framework to measure technical performance. The nodes are 

connected by directional links. A link pointing from node A to node B indicated
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that A caused B partially or in total, that A and B are functionally related, or they 

are statistically correlated.

Once constructed, the network was used to determine the value of each 

parameter from the known information that was entered. Figure 4 shows an 

example Bayesian network with associated probabilities to achieve an optimal life 

system design.

Battery Cap 
High: 0.85 
Low: 0.15

System Life

Electrical 
Short: 0.45 
Long: 0.55

Mechanical 
Short: 0.35 
Long: 0.65

Power Con. 
High: 0.25 
Low: 0.75

Figure 4. Bayesian Network

Kulick's (1998) Bayesian approach used the relationship data to 

propagate probabilities of success to defined nodes of the network which were 

correlated to WBS elements. The relationships between the parameters and the
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WBS elements were used to determine the probability of success for each WBS 

element.

Anderson and Mason (1996) conducted research on the tradeoff between 

control system design risk and aircraft performance risk. The objective of the 

research was to determine the best overall design or the design that minimized 

design risks across several disciplines. The research was conducted on three 

different aircraft horizontal tail sizes ranging from a large tail to no tail at all.

From fundamental aircraft design theory, the largest tail size will be the easiest to 

control. On the other hand, considering overall aircraft performance, a smaller 

tail must be considered. Since control system design and aircraft performance 

estimation are traditionally two separate aerospace engineering disciplines the 

optimization problem falls into the category of Multidisciplinary Design 

Optimization (MDO).

In the past, the structures discipline of aerospace engineering has used 

vehicle weight as a good indicator of design risk. The aircraft performance 

discipline uses drag counts or range and endurance as appropriate design risk 

metrics. Anderson and Mason (1996) used a fuzzy logic inference engine to 

assign a numerical value representing control system design risk. The fuzzy 

logic system consisted of rules that were developed from specifications that the 

control system had to meet. Anderson and Mason (1996) considered flying 

qualities, ride comfort, turbulence rejection, and stability margins in the control 

system design.
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A model was designed to study horizontal tail sizing. Using the trimmed 

drag coefficient as a performance risk metric, a cost or objective function of the 

form J = Cd + |iR was chosen, where Co is the trimmed drag coefficient and R is 

the control system design risk. The weighting factor p was applied to the control 

risk value so that the relative influence of the two different metrics could be 

examined. The results of the analysis showed that the tailless configuration led 

to the lowest value for performance risk but the control design risk had the 

highest value. The MDO approach provided a numerical basis to perform 

tradeoff analysis of aircraft performance. The chosen design included a 

downsized horizontal tail that contributed to aircraft performance and the control 

system goals.

Simulation modeling and design of experiments (DOE) are two tools that 

industrial engineers use to improve their management of production systems.

The simulation model emulates an actual system to help determine the effects of 

changing parameters on performance. The DOE, or experimental design, is 

used to plan an experiment to allow data analysis by statistical methods.

Porcaro (1996) proposed the use of these two tools jointly to further improve 

performance analysis when it is impractical to run an actual system. DOE was 

proposed to generate the guidelines for the experiment, and as a method to 

analyze findings, while the simulation offered a way to implement the experiment. 

The study by Porcaro (1996) tested the effectiveness of these two tools to 

confirm their applicability.
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The scope of the project was limited to the chemical blackening line and 

the adjacent strip line for Snap on-Tools. The first steps were to define the scope 

and objectives of the project and to develop a functional description of the 

existing system. Performance measures and assumptions were then 

documented. The baseline model was developed to provide a basis for 

comparison. The process consisted primarily of a series of tanks. The product 

was loaded in cage-like barrels and sequentially dipped in each tank, where it 

was processed for a period of time. One operator was responsible for loading 

the barrels, moving them between tanks, timing the dip time at each tank, and 

unloading and packaging the product at the end of the process. The primary 

performance measures were the barrels processed (directly related to 

pounds/hour the plant measure): and operator idle time. The plant wanted to 

evaluate several different altematives to the current process, to determine the 

effect on the amount of product that could be processed. Eight possible 

configurations were examined by the plant project team for implementation. The 

results of the above scenarios were tabulated and graphed.

The baseline model indicated that the operator had sufficient time to 

complete all tasks involved. The reasons for performance problems were not 

due to basic system design. Significant performance improvements were 

determined to be possible through minor reconfiguration.

The DOE study brought out two points that were not evident in the initial 

study. The automated hoist had very little effect on production output and the
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extra locations per tank had almost no effect. Both of these points represented 

significant savings of $100,000, or more, in capital investment. The use of 

statistical experimental design highlighted the advantages of computer 

simulation. Simulation allowed the analyst to experiment with systems that were 

impractical to experiment with in real life. The dynamic models incorporated the 

random happenings that disrupted the real system. Furthermore, the information 

was much more representative of the real system than what could have been 

extracted from “static” analyses. The DOE techniques provided a front-end 

planning and analysis tool for the simulation project. The DOE helped define the 

project because it forced the consideration of performance measures, as well as 

the factors that affected them.

The Weibull distribution has been widely used as a failure model, 

particularly for mechanical components. This distribution has a varied shape and 

requires a fairly large sample size to produce accurate statistical estimators. In 

practice, sample sizes are almost always small and subjective judgement is 

applied, aided by a Weibull plot of the test data to determine the adequacy of the 

component design to meet reliability goals. The Weibull distribution is as follows:

f(0) = (P /8) ( X /0)^'' exp(-(X/ 0)'" for X > 0, P > 0, 0 > 0

Souza and Lamberson (1995) proposed a Bayesian procedure that 

incorporated past experience with design and development programs and actual

47



field performance data. The Bayesian approach was expected to provide a 

structure for the application of subjective judgement.

Most of the difficulties associated with performing a Bayesian reliability 

analysis concemed the identification, selection, and justification of the prior 

distribution. As a basis for this procedure Souza and Lamberson (1995) 

assumed that one source of input would be a subjective percentile estimate of 

the Weibull distribution. The input was to be obtained from the practitioner based 

on past experience from a particular testing scheme. Questions to the 

practitioner would be of the form, “When do you expect to start seeing failures?”. 

The response could be, “At about 6000 cycles.". Another source of input was 

proposed to be obtained directly from the results of past tests. As past tests 

results are accumulated and documented they could be combined in some 

fashion to yield a percentile estimate.

Prior knowledge or belief about a reliable life (X r) for an arbitrary and fixed 

reliability, R, was incorporated into the estimation process used by Erto (1982). 

The Weibull distribution, used by Erto (1982) and by Erto and Rapone (1984) 

was used to incorporate X r into the estimation process. The assumption was 

that an engineer or practitioner can express his knowledge or experience in 

terms of the reliable life (X r) of a certain design item.

Souza and Lamberson (1995) applied the Bayesian procedure using an 

example taken from Nelson (1982), where a more traditional statistical procedure 

was used to estimate the values and confidence intervals for the shape and scale
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parameters of a Weibull sampling distribution. The example was on the 

breakdown time of an insulating fluid. A purpose of the test was to assess 

whether the distribution was exponential. If the distribution was exponential the 

fluid has a constant failure rate consistent with engineering opinion that such 

fiuids do not age. The traditionai Weibuil approach was compared to the 

Bayesian approach and the results indicated that the Bayesian procedure 

validated the engineering opinion about the constant failure rate and the fact that 

such fluids do not age. The results also showed that the input voltage had an 

effect on the failure rates. The estimate of the expected value of 0 using the 

traditional approach tended to be closer to the results obtained by the Bayesian 

procedure.

The results obtained by Souza and Lamberson (1995) using the Bayesian 

approach to estimate the parameters of the Weibull sampling distribution, in the 

insulating fluid example, indicated that the use of the Bayesian statistic in 

reliability is not a well-defined process. The results also indicated that a certain 

level of knowledge about quantification of subjective information is required to 

use this method. Finally, how this approach is used in the future will depend on 

the formulation of the reliability hypothesis.
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CHAPTER 5 

LITERATURE REVIEW OF RISK IDENTIFICATION

Project risk Is defined as an undesirable event that diminishes the chance 

of achieving cost, schedule, and technical performance objectives. The project 

risks can be internai or external to the organization.

All projects have degrees of risks. The key to successful project 

management is not to wish risks away, be frightened by them, or to be too 

optimistic about them. Rather, risks must be identified and dealt with to achieve 

some level of success.

Failure to keep within the estimated cost, to achieve the required 

completion date, and to achieve the required technical requirements, are the key 

problems that all project managers attempt to avoid. Therefore, project 

managers should identify and assess potential risks, and develop response 

actions to control and manage the identified risks, in addressing these problems.

Bent and Humphreys (1996) described risk analysis as a tool or method 

for quantifying uncertainties and their inherent risk. Risk analysis is a formalized 

structured approach defining the uncertainties and assessing the probability of 

risk associated with each uncertain item and/or event. Risk analysis allows the 

project manager to qualify and quantify the sensitivity of risk to the major facets 

of the project, namely cost, schedule, and performance.

The tools of risk analysis vary from intuition or “gut feeling” and judgment 

to simple manual models, to computerized simulation models. The identification
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and proper management of risk is a vital ingredient of successful project 

execution. Many studies that have been performed, concluded that today’s 

project managers quite often have inadequate business skills, poor decision­

making capabilities, and inadequate risk management capabilities (Bent and 

Humphreys, 1996).

The decision-making process inherently contains varying degrees of 

certainty, uncertainty, and risk. Certainty only exists when the exact conditions 

and circumstances can be specified during the period of time covered by the 

decision. This is rare in the project management business. Risk occurs when it 

is possible to specify a degree of probability or possibility for a number of likely 

outcomes. It is common for probability or possibility estimates to be made with 

historical data, or, in its absence, by personal experience. Uncertainty is present 

when it is not possible to specify the relative likelihood of any outcome. This 

occurs most often in situations where there is no historical data available, or 

when the task is outside the experience of project personnel.

Several authors have formulated different risk management approaches. 

Cooper and Chapman (1987) identified a risk management approach that 

included a multiphased risk analysis covering identification, evaluation, control 

and management of risks. Hertz and Thomas (1983) proposed a logical 

sequence of steps consisting of risk identification, risk measurement, and risk 

evaluation. They linked risk management with strategic planning and 

management. Charette (1989) treated risk analysis and risk management as two
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separate concepts, and defined risk engineering as a process consisting of both 

risk analysis and risk management.

Risk identification, risk measurement, and risk assessment constitutes the 

basic set of tools required to identify potential risk factors and assess the impact 

of the consequences of identified risk factors. They are also used to assess the 

likelihood of occurrence of these consequences and to develop the 

corresponding risk profiles that are necessary for the accomplishment of project 

objectives. In risk evaluation, project managers are required to evaluate several 

decision altematives based on the risk profiles generated during risk 

identification, risk measurement, and risk assessment. A course of action is 

chosen to contain and control risks. The final phase -  risk control and monitoring 

-  is a method to periodically review project progress and to provide status to 

senior management and other personnel involved with project execution.

Project cost estimates generally contain a degree of uncertainty. To 

assess the uncertainty in a project's costs, the total costs needs to be broken 

down into parts. The uncertainty of each part can be identified and then the parts 

can be put together to get a picture of the project's risks associated with cost 

estimates. The standard way to breakdown a project is a Work Breakdown 

Structure (WBS) (Tumer, 1993). A WBS can be drawn up at any level of detail, 

from a simple top-level view down to the lowest level at which an individual can 

describe his or her work. The appropriate level of detail will vary, depending on 

the goals of the assessment. The appropriate level of detail for a cost risk
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assessment depends on several factors including the amount of time available to 

carry out the assessment, a specific area of concern, or an area that is critical to 

the success of the project.

Traditionally, cost estimates are point estimates. These point estimates 

may or may not accurately indicate the possible range of values that the “true" 

value may assume (Toakley, 1995). When estimating, the most common method 

of allowing for uncertainty is to add a percentage amount to the most likely 

estimate of the final cost. The amount added is usually called a contingency 

(Thompson and Perry, 1992).

Contingencies are often allowed in cost estimates. The objective of 

contingency allocations is to ensure that the estimated project cost is realistic 

and sufficient to meet any cost incurred due to risks and uncertainties.

Thompson and Perry (1992) pointed out several weaknesses in using a 

contingency amount. Some of the problems revolve around the fact that the 

percentage amount is, most likely, arbitrarily derived and not necessarily 

appropriate for the specific project. There is also a tendency to double count 

risks because some estimators are inclined to include contingencies in their best 

estimates. A percentage addition is a single-figure prediction of estimated cost, 

which can imply a degree of certainty that is not justified. The percentage allows 

for cost risks in terms of contingency, and tends to ignore schedule and 

performance risks.
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To alleviate the usually Inflated contingency estimates, Mak and Picken 

(2000) described the Estimating Risk Analysis (ERA) technique that has been 

adopted by the Hong Kong Government for all public works projects. ERA has 

been used to estimate the contingency of a project by identifying and costing risk 

events associated with a project. The starting point for ERA was the base 

estimate, which was an estimate of the known scope of the project. The 

contingencies determined by the ERA process are then added to the base 

estimate.

The first step in the ERA process is to identify project risk items. The risk 

items are then categorized as either (1 ) fixed; or (2) variable. Fixed risk events 

are those that either happen in total or not at all. If the event happens, the 

maximum cost will be incurred; if not, then no cost will be incurred. Variable risk 

events are events that will occur, but the extent that they will occur is uncertain. 

The cost incurred will be uncertain and variable.

The relationship between risk type and risk allowance is shown in Table 2.

Type of risk
Average risk 

aliowance
Maximum risk 

allowance

Fixed risk 

Variable risk

(Probability) X (max.cost)

Chance (percentage) of 
being exceeded 

(50% for example)

Maximum cost

Chance (percentage) of 
being exceeded 

(10% for example)

Table 2. Relationship Between Risk Ailowance and Risk Type
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For fixed risk, maximum cost Is Incurred If tfie event occurs. For variable risk, 

the probability of the event occurring Is multiplied by the maximum risk 

allowance. After the risk events are Identified the fixed and variable risks 

allowances are calculated.

In December 1997, a summary of completed projects were received by 

Mak and Picken from the Hong Kong Govemment. The summary Included the 

contract sum, original contingency, amount of additions, amount of omissions, 

final account amount, and start date of 332 building projects. Forty-five of these 

building projects used the ERA process to determine contingencies and 287 

were performed using the traditional method. The means and standard 

deviations were compared between the projects with ERA and those without 

ERA. An F-statlstlcal analysis showed that the F value (9.5412) was much 

higher than the critical value of F (1.7998) ata 1% significance level (p <

0.00001 ). Thus, the hypothesis that the variances of the two populations were 

equal, was rejected. The variances of the two populations indicated that the 

variability of contingency allowance for ERA projects was much lower with actual 

project costs.

Burchett (1994) studied the need for risk management models to assess 

risks In capital Investments In the construction of an extra-high voltage (EHV) 

transmission line project. Mak (1995) formulated a risk management model and 

examined Its ability to control and manage risks associated with a transmission 

system project to Improve operation and maintenance activities. Mok (1994)
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investigated the feasibility of applying risk management to cost estimates for 

building services installations, to improve the quality of estimating total building 

sen/ice installation costs. Leung (1994) developed a risk management model to 

evaluate and select project proposals that satisfied predetermined safety and 

reliability objectives, for projects at Mass Transit Railway Corporation of Hong 

Kong. Lo (1995) investigated the feasibility of applying a risk management 

model for improving electricity supply reliability in a distribution system. Yu 

(1996) developed a knowledge-based expert system to identify, evaluate and 

manage project schedule risks associated with an EHV substation construction 

project. Ntuen and Mallik (1987) designed a knowledge-based system (KBS) for 

project cost estimating that was used to assist cost engineers in choosing 

appropriate models.

Leung, et al (1998) developed an integrated KBS to assist project 

managers in identifying potential risk factors and the corresponding project risks. 

The risk identification KBS was established by incorporating a project risk 

identification model. The specific expert knowledge was represented using a 

rule-based fonward chaining search process. The rule-based structure took the 

form of an IF/THEN structure that logically related information contained in the IF 

part to other information contained in the THEN part. The working memory 

contained facts about the problem that were derived during the consultation. The 

inference engine was developed to work with the facts contained in the working 

memory and the domain knowledge was contained in the knowledge-base.
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In order to evaluate how the proposed system could be applied in a real 

engineering project environment, a prototype of a risk identification KBS was 

configured for an EHV transmission line construction project. The experience of 

senior project engineers was used to develop the KBS. The KBS was tested to 

identify potential risk factors. The results showed that the system could be used 

to provide project managers with useful information on risk factors that could 

enable the manager to take corrective actions to control and manage identified 

risk factors.

Riggs, et al (1994) addressed integrating cost, schedule, and technical 

risk for project management. The methodology they developed was based on 

using the Analytic Hierarchy Process (AHP) as a basis to elicit utility functions 

that represent the project manager’s relative preference for cost, schedule, or 

performance success. The process of formulating cost, schedule, and technical 

utility functions consisted of the following four steps:

(1) Quantifying technical (T), cost (C), and schedule (S) objectives 

for the utility function (TCS), using the AHP.

(2) Constructing the decision nodes and chance nodes for the 

logic tree associated with the decision process that eventually 

supported altemative selections.

(3) Assigning probabilities to the decision tree using AHP.

(4) Determining the series of decisions (path) that maximized the 

expected value for the decision tree.
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The logic tree was composed of chance event nodes, decision nodes, and 

terminal branches. Probabilities were assigned to each branch emanating from a 

chance node, and the branches emanating from each decision node represented 

different decisions that could be made. The terminal branches did not have any 

forks emanating from them and had either dollar values, x, or utility values, u(x), 

assigned to them. Once the logic tree was structured and the probabilities 

associated with each chance node assigned, the decision tree was “rolled-up". 

For chance events the expected value of that node was calculated based on 

mathematical expectation. For decision nodes, the branch that yielded the 

maximum expected value was the decision of choice. The final solution to the 

logic tree was the series of decisions that maximized the expected value for the 

tree.

In many project management situations, the intent is not to maximize 

profit, but rather to maximize some subjective preference for achieving 

technical/performance criteria, staying within cost/budget limitations, and meeting 

schedule milestones (Riggs, et al 1994). Technical (T), cost (C), and schedule

(S) outcomes were treated as either succeeding or failing, and were treated as 

binary variables:

T = technical success and T  = technical failure,

C = budgetary success and C’ = budgetary failure, and 

S = schedule success and S’ = schedule failure.
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The following eight possible outcomes collectively constituted the TCS utility 

functions:

1. TCS: u(TCS) = 1

2. TCS: u(T'CS) < 1

3. TCS: u(TCS) < 1

4. TCS': u(TCS') < 1

5. TCS: u(T'C'S) < 1

6. TCS’: u(T'CS') < 1

7. TCS': u(TC'S') < 1

8. TC S ’: u((TC'S') = 0

The utility for the most favorable situation (complete success) is defined as 

u(TCS) = 1, and the utility for the least favorable situation (complete failure) is 

u(T’C’S’) = 0. The remaining six utilities for those situations fall between

complete success and complete failure. A TCS questionnaire was designed to

elicit the relative weights for the objectives of technical, cost, and schedule. The 

results from the TCS questionnaire were used with the AHP process to calculate 

the importance (weight) of technical success (Wt), schedule success (Ws) and 

cost success (Wc). The resulting utility functions were defined as follows:

1. u(TCS) = Wt + Wc + Ws = 1

2. u(T’CS) = Wc + Ws

3. u(TC’S) = Wt + Ws

4. u(TCS’) = Wt + Wc
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5. u((T’C’S)=Ws

6. u(TCS') = Wc

7. u(TC’S’)= W t

8. u(TC'S') = 0

The utility vaiues were used with the decision tree to obtain the sequence of 

decisions that maximized the TCS utility function. The resulting software 

implementation provided a mathematically based technique that addressed the 

shortfall of risk identification tools.

Schedule uncertainty is derived from many of the same issues associated 

with cost uncertainty. Conventional schedule planning is based on activity 

networks that are analyzed to find the critical or longest possible path from start 

to finish. Schedule risk analysis operates in much the same way, but allows for 

uncertainty in the definition of the network, its durations, and its logical structure. 

A schedule risk model can be built entirely independently of the cost risk model, 

or the performance risk model, for the same project. However, especially where 

the main cost is labor, the two are usually closely related. Simple relationships 

between cost, schedule, and performance do not always hold. It is important to 

look at each estimate carefully and decide if there is a link between a cost, 

schedule, or performance estimate.

Cooper (1994) reported from a 1992 worldwide survey, that a majority of 

construction projects failed to achieve schedule objectives. A survey by Laufer 

and Stukhart (1992) of 40 U.S. construction managers and owners indicted that
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for scope and design objectives only 35% of the projects considered had low 

uncertainty and the remaining 65% had medium to very high uncertainty at the 

beginning of construction. Laufer and Howell (1993) also confirmed the finding 

that a majority of construction projects failed to achieve schedule objectives. 

They concluded that approximately 80% of projects at the beginning of 

construction possessed a high level of uncertainty. The amount of uncertainty in 

the internal and extemal environments of a project is an important factor in 

determining whether there will be a schedule overrun (Mulholland and Christian, 

1999).

Typically, the PERT technique has been used to develop project 

schedules and to compute the probability that a project will be completed on or 

before a scheduled time. The information from the PERT calculation can be 

used to determine the lower (5%) and the upper (95%) confidence limits of the 

schedule distribution of a project. An altemative to the probability statement and 

a descriptive method to convey the uncertainty in the project’s schedule is the 

cumulative density function (CDF).

To address the uncertainties associated with estimating project schedules 

Mulholland and Christian (1999) developed a computer-based system for the 

assessment of construction schedule risk. The system consisted of three key 

features: (1) a hypertext information system for schedule risk identification; (2) a 

spreadsheet to describe and evaluate project uncertainty: and (3) direct pictorial
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information to assist the decision makers in selecting a realistic project 

completion time.

The computer-based system consisted of a risk factor identification 

module that contained information acquired from experts and previous 

construction projects. Statistical techniques were embedded in an Excel 

spreadsheet. The output of the system included schedule confidence limits and 

the risk profiles of the critical-path activities. The knowledge base consisted of 

four risk dimensions, namely, engineering design, procurement, construction, 

and project management. The Excel spreadsheet was used to model schedule 

risk based on inputs for optimistic, likely, and pessimistic activity times. The 

system also used the relative importance of risks and expected activity time as 

inputs. The Excel spreadsheet model also provided a means for sensitivity 

analyses for the different outcomes. Sensitivity analyses were performed by 

varying one uncertain element at a time and examining the effect of the change 

in that element on the total project schedule. The system provided a structured 

approach to identify the sources of risk in a project. The results of the risk 

analyses were used to make assessments and to adjust the overall project 

schedule.

Technical performance risk assessment is the process of determining the 

likelihood that the estimated technical parameters can be achieved. The 

technical performance parameters are related to system hardware, software, 

human factors, and logistics.
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Software projects have been difficult to manage and too many of them end 

in failure. In 1995, annual U.S. spending on software projects reached 

approximately $250 billion and encompassed an estimated 175,000 projects 

(Johnson, 1995). In 1995, U.S. companies spent an estimated $59 billion in cost 

overruns on information system projects and another $81 billion on canceled 

software projects (Johnson, 1995). One explanation for the high failure rate was 

that managers were not taking prudent measures to assess and manage the 

risks involved in these projects.

Using a systematic approach, Keil, et al (1998) tapped the experience of 

more than 40 software project managers from around the world to identify a 

universal set of risk factors. The three most important risk factors were judged to 

be a lack of top management commitment to the project, a failure to gain user 

commitment, and a misunderstanding of the requirements. These and other 

identified risk factors were proposed for a checklist to be used to conduct future 

risk assessments of software projects.

One of the most interesting findings from this study was the fact that the 

risks perceived to be most important often lie outside the direct control of the 

project manager. Most of the participants in the study indicated their perceptions 

of risk were higher for those items over which they had little or no control.

Based on this observation, Keil, et al (1998) developed and presented a typology 

of project risk factors and used this to suggest possible risk mitigation strategies.
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One of the strengths of this approach was the focus on a higher-level risk 

framework by thinking about four distinct types of software project risk.

A comparison of the results with Boehm’s (1991), revealed that some of 

the most important risks identified by the Keil, et al (1998) were missing entirely 

from Boehm’s (1991) top 10 risk list. Boehm’s (1991) list focused on execution 

risks while the study of Keil, Cule, Lyytinen, and Schmidt (1998) was not 

restricted to project execution risks. The framework presented in this study 

encouraged managers to explore a broader set of factors in performing risk 

assessments. Looking to the future, the effectiveness of different strategies for 

managing each type of risk needs to be carefully assessed.

In construction, altemative types of equipment or material can accomplish 

the tasks and functions required for an operation. Therefore, in most project 

scenarios, a new technology or method has to compete with traditional 

technological altematives. Because of changes in the construction environment, 

the productivity and cost of a technology often exhibits great variability. This is 

especially true for unproven methods and products. Therefore, any effort to 

introduce a state-of-the-art technology to replace existing ones must address the 

inherent element of technical risk.

To address risk concems of builders, Chao and Skibniewski (1995) 

applied utility theory under uncertainty to evaluate a new construction 

technology. The approach was based on establishing a nonlinear utility function 

of cost to translate the uncertain outcomes of an altemative into utility
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measurements. The utility measurements were weighted by their corresponding 

probabilities and added together to produce a total utility score for the altemative. 

Although the utility function was assumed to model the value scale of a decision­

maker in a situation that involved risk, it was difficult to get required information to 

develop the form and parameters of the function.

Chao and Skibniewski (1998) developed a fuzzy decision support system 

that incorporated a risk factor for evaluating a new construction technology. The 

fuzzy logic approach, like other quantitative methods, was intended to streamline 

the decision analysis process and produce an evaluation according to the 

decision-maker’s value system and judgements. Using the concepts of fuzzy 

sets and fuzzy logic, the methodology presented by Chao and Skibniewski 

(1998) produced an evaluation guided by decision rules that reflected the 

builder’s priorities and concems. The decision rules also served as a company 

record for reference in future projects.

An advantage of applying fuzzy-logic-based decision analysis, rather than 

the utility theory approach, to new construction technology implementation was 

the use of verbal descriptions in the rules. The amount of calculation involved 

was as great in the fuzzy logic system as the utility theory approach, the use of 

computers made the fuzzy-logic-based decision system easier to use.
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CHAPTER 6 

LITERATURE REVIEW OF FUZZY LOGIC

The primary issues in the development of a realistic cost, schedule, and 

performance risk identification methodology involves the management of 

uncertainty. A proven means of handling uncertainty is through the concept of 

fuzzy logic. In 1965 Dr. Lofti Zadeh developed fuzzy set theory. The type of 

uncertainty that this theory was meant to handle has as its roots the type of 

imprecision and ambiguity, which is so prevalent in human communication and 

thought. In particular, fuzzy set theory frees us from the so-called law of 

contradiction and allows us to entertain conflicting propositions. Zadeh's original 

paper sparked the interest of many researchers woridwide, and this has resulted 

in the rapid development of the field.

The concept of fuzzy set theory differs from that of conventional crisp sets 

mainly in the degree by which an object belongs to a set. In crisp set theory, 

objects are either included or they are excluded from a set. In fuzzy set theory, 

objects are described in such a way to permit a gradual transition from being a 

member of a set to a nonmember. Each object contains a degree of membership 

ranging from zero to one, where zero signifies non-membership, one indicates 

full-membership, and values in between describe the degrees of partial 

membership.
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Theoretically, fuzzy numbers can take various shapes. In modeling real- 

life problems, linear approximations such as the trapezoidal and triangular fuzzy 

numbers are frequently used.

Crisp values can be regarded as a single value or set of values where the 

degrees of membership in the set assume a unit value and zero otherwise. 

Figure 5 shows an example of a crisp value for a single value, ti. In practice, 

project managers might not have, or in some cases, might not want to specify a 

sharp (crisp) boundary between the possible and impossible values. A smooth 

transition between these two values may be preferred. Fuzzy values can be 

generated by imposing fuzzy boundaries on each situation. The triangular 

distribution shown in Figure 6 represents the situation where the value, tg, is the 

most likely value between tg and t4 . The trapezoidal distribution shown in Figure 

7 represents a more imprecise situation, where the most plausible value falls 

between te and t?.

Degrees of membership 

1.0i

ti

Figure 5. Crisp Value
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Degrees of membership

1.0

0
ta t4

Figure 6. Fuzzy Triangle Approximation Value

Degrees of membership

1.0

0
t? ta

Figure 7. Fuzzy Trapezoidal Approximation Value

The triangular membership functions are of the form:

If x < a - b o r x > a  + b

A(x) = <
1 + X - a If a -  b < X < a 

b

1 - x - a  If a<X< a + b

where a and b are any real numbers.
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The trapezoidal membership functions are of the form:

0 if X < a or X > d

A(x) =
x - a  if a < X< b 
b - a

if b < X < c

X -d  if 0 < X< d 
c - d

where a < b < c < d.

Badiru (1992) defined a fuzzy set A as a set of objects specified over a 

sample space X. For the finite set X defined as:

X x̂ I Xji •••» Xp 

The fuzzy set A was represented by the linear combination:

A = U i ( X i ) ,  U 2 (X 2), . . Un(Xn),

where u is the grade of membership of x in A. In general, for a sample space of 

objects defined as X = (x), the fuzzy set A in X is a set of ordered pairs defined 

as:

A = {x, U a (x ) } ,  X e X.

A value of u a (x )  = 0 implies that x is not a member of A, while u a (x )  = 1 implies 

that X is completely contained in A. For values of u a (x )  between 0 and 1, x is a 

partial member of A.
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Fuzzy sets deal with the type of uncertainty that arises when the 

boundaries of a class of objects are not sharply defined. Membership in such 

classes is a matter of degree rather than certainty one way or another, and is 

specified mathematically by fuzzy sets. A fuzzy value is typically associated with 

a degree of belief of some expert. An increasingly prevalent view is that this 

method of encoding information is inadequate. Assigning an exact number to the 

expert’s opinion is too restrictive. The use of intervals is appropriate in some 

situations involving impreciseness. Kandel (1992) defined a fuzzy interval with a 

trapezoidal form. Kandel (1992) believed that an interval of values was more 

realistic.

Similar to the ordinary fuzzy case where values are in the unit interval, an 

algorithm is needed to check the equality of the expressions. The use of 

intervals is the simplest method for propagating uncertainty through 

mathematical calculations. Interval mathematics is an extension of real 

mathematics in which the standard operators (+, -, *, /) are applied to intervals of 

real numbers rather than to the real numbers themselves. The inten/als are 

carried out through all the calculations and result in an interval that bounds the 

answer.

Kandel (1992) extended the application of mathematical operations to 

intervals of real numbers, the following example for two intervals X = [X’, X”] and 

Y = [Y’, Y”] yield the following rules:
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Addition:

[X + Y] = [min(A), max(A)] 

where the set A is given by

A = (X’ + Y’, X' + Y". X" + Y', X" + Y”)

Subtraction:

[X -  Y] = [min(B), max(B)] 

where the set B is given by

B = (X' -  Y’, X’ -  Y”, X" -  Y', X" -  Y”)

Multiplication:

[X • Y] = [min(0, max(C)] 

where the set C is given by

C = (X’ * Y’, X' * Y”, X” * Y’, X" * Y”)

Division:

[X / Y] = [min(D), max(D)] 

where the set D is given by

D = (X’ / Y’, X’ / Y", X" / Y’, X” / Y”).

Yager (2000) proposed the use of fuzzy modeling as a tool for 

constructing customized (intelligent) decision making functions. These functions 

were constructed to provide a method to evaluate altemative courses of action in 

a way that reflected as much as possible the preferences of the responsible 

decision-maker. The fuzzy model was expected to provide a bridge between
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natural language expressions and formal mathematical representations that are 

useful for incorporating the kinds of concepts required for an intelligent decision 

valuation function.

The fuzzy system model used to construct the decision valuation functions 

incorporated both decision attitude and probabilistic information about the 

payoffs. Ai corresponded to a collection of actions available to a decision-maker. 

Ei was used to denote the fuzzy subsets, where Ei(j) indicated the possibility of 

state of nature j occurring if altemative i was selected. The object state of nature 

] under the selection of altemative i was characterized by both its probability of 

occurrence, Pj, and its payoff Cij. In general terms EiQ) = Function ((Pj, Cij, Ai)). 

Thus, the subjective possibility was a function of the probability and payoff, as 

well as the choice of the altemative selected.

In decision environments where no information was available regarding 

the probability of the states of nature, this method has been used to compare 

alternatives. Using this method, the decision-maker was required to provide a 

value a e [0, 1] indicating their degree of optimism. For a given altemative A|: 

Best(Ai) = MaXj[Cij]

Worst(Aj) = Minj[Cij]

The valuation of this altemative was obtained as a weighted average of the two 

extremes:

Vj = a Best(Ai) + (1 - a) Worst(Aj).
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The weighting was determined by the measure of optimism. An extension of this 

approach allowed the use of probabilistic information. In Yager’s approach the 

following two rule knowledge base described the decision-maker’s valuation 

function.

Rulei: For the altemative under consideration, if there existed a state of 

nature with a feasible chance and with a payoff close to maximal for that 

altemative then the valuation was that payoff.

Ruleg: For the altemative under consideration, if there existed a state of 

nature with a feasible chance and with a payoff close to minimal for that 

altemative then the valuation was that payoff.

Using these fuzzy rules and applying fuzzy systems modeling, the valuation of an 

altemative (Aj) was possible. The fuzzy subset Mi was close to the maximal 

payoff for this altemative, and the fuzzy subset Ni, was close to the minimal 

payoff for this altemative. The following is the valuation model for altemative A|:

V = auq + (1 - q)uq 
au + (1 - a)u

where u = Maxj[Mj(Cjj) F(Pj)], the degree of which there exists a feasible state of 

nature that has a payoff close to the maximal payoff of A|, and q is the value of 

Cij, where the value of u is achieved.

The primary purpose of Yager’s work was to show the potential for using 

fuzzy systems modeling, to allow the responsible decision-maker to specify the
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desired performance of a valuation function. The purpose of the work was not 

empirical but rather to introduce an additional tool for decision-makers.

Project selection is a very complex decision-making process and involves 

many factors. The problem of project selection is of significant interest in 

engineering management. Many of the project selection problems are 

associated with uncertainty. The uncertainty of subjective judgement is present 

during the selection process. Project selection can involve a high level of risk due 

to uncertainties in human judgment. To address the risk associated with project 

selection Machacha and Bhattacharya (2000) proposed the use of fuzzy logic to 

select projects. To solve the problem using fuzzy logic the variables were 

defined and a fuzzy graph was developed. The fuzzy graph contained the range 

of the variable on the X-axis and the degree that the variable was contained in 

the fuzzy set on the Y-axis.

Machacha and Bhattacharya (2000) performed a case study using a fuzzy 

logic system to aid in the selection of a software product. The fuzzy logic system 

had as its main objective, the selection of the optimal software product. While 

making a decision to buy software, a consumer generally is uncertain about the 

criteria to use to evaluate various altematives. An optimal decision corresponds 

to a selection that comes closest to meeting the consumer’s desired benefits and 

satisfaction. The decision mechanism is constrained by the uncertainty inherent 

in the determination of the relative importance of each attribute. The 

classification of altematives was addressed through an expert evaluation of the
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degree that each attribute was contained in each available option. The degree 

that the expert thinks a particular computer product was undesirable, acceptable, 

or desirable was reflected by the assignment of weights to the attributes. The 

attributes were the inputs to the fuzzy system.

The experts were asked to estimate the percentage of the attributes they 

considered to be best, good, or worst. Fuzzy values were assigned based on the 

percentages given by the experts. The fuzzy values and their linguistic 

parameters were set as follows: 70% to 100% were the "best" rating; 40% to 85% 

corresponded to a “good” rating; and 0% to 50% corresponded to the worst 

rating.

To manipulate the fuzzy numbers, a Qbasic program was written to 

handle the matrix that contained the fuzzy values. The implementation aided in 

the software selection process, but was very limited in that it only addressed 

linear relationships. The developers have plans to continue the development and 

include more than a one dimensional matrix. The example implementation 

provided reasonable results based on the intended purpose of the fuzzy logic 

system.
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CHAPTER 7 

CONCEPTUAL MODEL

7.1 Model Concept

The uncertainty associated with project cost, schedule, and performance 

estimates can be caused by a number of factors such as linguistic imprecision, 

unpredictability, lack of knowledge, and random errors, just to name a few. 

Uncertainty is inherent in most decision-making processes and the availability of 

data for deterministic and probabilistic models quite often do not exist. The 

identification of the sources of estimate uncertainty and the resulting effect are 

vital to project risk assessment. A model that considers expert judgement to 

address risk identification and quantification has utility in a “real" project decision 

environment.

The conceptual model for this research assumes that basic project 

management techniques have been used to organize the project. A Work 

Breakdown Structure (WBS) is typically the starting point to define the 

components of the project. It is also assumed that project estimates for cost, 

schedule, and performance have been made using a combination of the 

techniques described in the previous literature reviews.

The model uses project component (cost, schedule, or performance) 

estimates and expert judgments. The model must have the flexibility to handle 

the range of values associated with each of the cost, schedule, or performance 

parameters.
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Output from a model that considers expert judgement and previously 

developed risk decision levels must present the decision-maker with enough 

information to determine risk for each of the project parameters. The model 

requires enough output fidelity to specifically identify the risk associated with 

each of the project components. The steps contained in Figure 8 will be used to 

develop and demonstrate the model.

1. Use defined 
components

2. Develop 
risk ratings

3. Develop 
fuzzy sets

4. Integrate 
risk/fuzzy logic

6. Analyze 
results

5. Exercise 
model

Figure 8. Implementation Steps

An example project was used to provide a logical framework from which a 

mathematical model could be developed. The chosen project example is the
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development of an aircraft radar system. Cost, schedule, and performance 

estimates were used to demonstrate the concept. Project activities include 

system design, software development, hardware procurement, integration and 

testing, and production.

7.2 System Components

The WBS shown in Figure 9 contains the basic project components for the 

radar development example. Level zero is the overall radar development project. 

Level 1 shows the basic project components. Typically, software development is 

one of the most difficult to manage project components and, therefore, it is 

decomposed into greater detail.

Receiver
Logic

Module

Software
Development

Transmitter
Logic

Module

Control
Processor

Module

Signal
Processor
Module

Integration, 
Testing, and 
Acceotance

Radar
Integration

Proiect

Hardware
Procurement

System
Design

Figure 9. Radar integration Project WBS
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Project costs have been estimated for each major activity of the project. 

The costs for the project are summarized in Table 3. The costs for system 

design includes the man-hours, design support equipment such as computer 

aided design, circuit design, and simulation tools needed to accomplish the 

design. The costs associated with software development includes the man- 

hours, computers, etc. Commercially available hardware components are 

purchased. The hardware and software are subsequently integrated and tested.

ACTIVITY COMPONENT ESTIMATE
System Design Antenna 160,000

Transmitter 352,000
Power supply 79,000
Control data processor 400,000
Receiver 352,000
Signal processor 245,000
Displays 160,000

Software Development T ransmitter 270,000
Control data processor 536,000
Receiver 300,000
Signal processor 700,000

Hardware Procurement Circuit boards 250,000
Chassis 170,000
Power supplies 100,000
Signal processor 910,000
Antennas 825,000
Displays 200,000

Integration and test Hardware and Software 1,710,000

Production Fabricate 100 units 3,000,000

Table 3. Radar System Cost Estimates
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A high level schedule for the radar system example is shown in Figure 10. 

The schedule estimates represent required time in days for each of the major 

project components. System design precedes software development and 

hardware procurement. Integration and testing are required for the hardware and 

software. The production of 100 radar units begins after the system has been 

successfully integrated and tested.

The bold connector lines show the critical path for the project. The critical 

path for the project indicates that the project will take a total of 731 days to 

complete.

S/W
166

days

Integ.
120

days

Prod.
300
days

Design
145

days

H/W
90

days

Figure 10. Radar System Schedule Estimates

There are several critical system performance requirements associated 

with a radar system. The critical performance requirements that are of concern 

for the radar development project are shown in Table 4.
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PARAMETERS REQUIREMENTS
Transmitter range 35 nautical miles

Receiver range 35 nautical miles
Identification time 3 seconds
Location accuracy 10 feet

Weight < 45 lbs.
Size < 24” X 12” X 36”

MTBF 3000 hours

Table 4. Radar System Performance Attributes

Some of the areas to consider during risk Identification are shown in Table 

5. Based on the areas shown in Table 5, expert risk assessments of cost, 

schedule, or performance estimates can be performed.
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Risk Area Risk Consideration
Cost Requirements are too constrictive or identify specific 

solutions that force high cost.

Design is not cost effective.

Schedule Schedule is optimistic, “best case", rather than 
realistic.

Product is larger than estimated.

Contractor does not deliver components when 
promised.

Facilities are not available on time.

Proper personnel are not available.

Performance Design implications are not sufficiently considered in 
concept exploration.

System will not satisfy user requirements.

Design relies on immature technologies or “exotic” 
materials to achieve performance objectives.

Technology relies on complex hardware, software, or 
integration.

Operational requirements are not properly established 
or are vaguely stated.

Required operating environment is not sufficiently 
described.

Table 5. Risk Identification Considerations
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7.3 Risk Rating

A critical aspect of risk Identification and quantification is data collection. 

The two primary sources of data collection are interviews of subject-matter 

experts and analogy comparisons with similar systems. The framework for 

this research is based on risk assessments performed by subject-matter 

experts. Risk assessment requires the identification of both the likelihood and 

consequences of an event. The likelihood, as well as the consequences of 

risk events, are best defined as a range of possibilities. Generally, subject- 

matter experts relate to risks in linguistic terms. Table 6 shows risk likelihood 

criteria. The criteria provide a range of linguistic values to represent the 

likelihood of risks in the project estimates. The range of associated numerical 

values is shown in terms of percentages where: (1) the first number is the 

lower value of the range; (2) the second and third are the most likely range of 

percentages; and (3) the fourth value is the upper value of the range.

Level What is the Likelihood the Estimate 
Is Underestimated?

a Remote (0,1,3,5) %
b Unlikely (3,7,11, 15)%
c Likely (10, 17, 26, 35)%
d Highly likely (30, 38, 46, 55)%
e Near certainty ( > 50)%

Table 6. Likelihood Criteria
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Each project estimate that has a likelihood of occurrence also has an 

associated consequence. For the cost, schedule, and performance estimates, 

the magnitude of the impact is based on the subject-matter expert’s assessment. 

The values contained in the risk criteria should be derived from corporate policies 

and expert-judgments. The consequence criteria are contained in Table 7. Cost 

and performance are assumed to have the same project consequences for this 

example. The schedule for this project is not as critical as cost and performance.

Level
Given the Risk is Realized, What is the Magnitude of the Impact

Cost Schedule Performance
1 No impact 

(0, 1,3, 5)%
No impact 

(0, 4, 6,10)%
No impact 

(0,1, 3, 5)%
2 Small 

(Contingency 
funding needed 

to complete) 
(3, 5, 7, 9)%

Small 
(Additional time 

required to complete) 
(6,11,13, 18)%

Small
(Acceptable with some 

reduction in margin) 
(3, 5, 7,9)%

3 Medium 
(Funding beyond 

Contingency 
required)

(7, 10, 12 15)%

Medium 
(Not able to meet 

schedule minor slip 
in schedule required) 

(14, 20, 24, 30)%

Medium 
(Acceptable with 

significant reduction in 
margin)

(7, 10, 12, 15)%
4 Large 

(Significant funding 
needed)

(10, 17, 23, 30)%

Large 
(Key milestone or 

critical path impacted 
major slip needed) 
(20, 35, 45, 60)%

Large 
(Acceptable - no 
remaining margin) 
(10, 17, 23, 30)%

5 Catastrophic 
(Cannot complete 

due to funding 
shortfall)

(25, 100)%

Catastrophic 
(Cannot meet 

schedule need) 
(50,100)%

Catastrophic 
(Unacceptable 
performance) 
(25, 100)%

Table 7. Consequences Criteria
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7.4 Fuzzy Membership Sets

Fuzzy sets provide a methodology to Identify and quantify Identified risk. 

An assessment of both the likelihood and consequence of risks associated with 

project cost, schedule, or performance form the basis for the development of the 

fuzzy sets. The trapezoidal fuzzy membership function has a structure that can 

represent the range of values solicited from subject-matter experts. The range of 

values associated with cost, schedule and performance estimates can be easily 

represented by trapezoidal fuzzy sets. An advantage of the fuzzy approach is 

that each possible level does not have to be crisply defined. Intermediate levels 

can be accounted for through membership In more than one fuzzy set.

For the aircraft radar system project example, a determination by a 

subject-matter expert of the likelihood that the cost, schedule, or performance 

estimate Is understated Is required. Based on risk considerations similar to the 

ones contained In Table 5, the subject-matter expert makes an assessment of 

risk likelihood and consequence for each activity.

The overall risk rating criteria considers both likelihood and consequences. 

Using these risk ratings, activities that have high, moderate, or low risk can be 

Identified. Risk ratings shown In Table 8 were adopted from the Risk 

Management Guide for DoD Acquisition, Jan 2000.
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HIGH -  Unacceptable. Major disruption likely. 
Different approach required. Priority 
management attention required.

MODERATE -  Some disruption. Different 
approach may be required. Additional 
management attention may be needed.

LOW -  Minimum impact. Minimum oversight 
needed to ensure risk remains low.

Table 8. Overall Risk Rating Criteria
The risk rating matrix (Table 9) shows the resultant relationship between

likelihood and consequences. The high (H), medium (M), and low (L) risk ratings 

are determined by the values of “likelihood” and “consequences” shown in 

Tables 6 and 7. Table 9 also corresponds to the fuzzy rules developed earlier in 

the chapter. “Likelihood” and “consequences” are the inputs to the fuzzy logic 

system and the outputs are high (H), medium (M), or low (L).

L e
I

L M H H H

k
e d L M M H H
1
i c L M M M H
h
o b L L L M M
0
d a L L L L M

1 2  3 4
Consequences

Table 9. Risk Rating Matrix
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Figure 11 shows a conceptual fuzzy risk model that can “reason” or map 

inputs to outputs. The fuzzy rules for the model are of the form “IF A AND B, 

THEN C”. Inputs to the fuzzy system are “A” and “B”. “A” is the input for the 

likelihood fuzzy set and “B” is the input for the consequence fuzzy set. Once “A” 

and “B" are input, the degree of membership is determined for all of the 

combinations of fuzzy sets. A fuzzy operation is required to combine each of the 

subsequent fuzzy set outputs and obtain a crisp number. The process of 

determining this crisp number is called defuzzification. “C” is the consequence 

of the fuzzy rule “IF A AND B, THEN C”.

IF A, AND Bt THEN Ct

IF Az AND 02 THEN CzInput

A & B Defuzzify

IF Am AND Bm THEN C,

Figure 11. Fuzzy System Model

Generic fuzzy membership functions for likelihood of occurrence are 

shown in Figure 12. Likelihood of occurrence has five fuzzy sets (Figure 12),
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which are remote (R), unlikely (UL), likely (L), highly likely (UL), and near 

certainty (NC). The cost, schedule, and performance consequences 

membership functions are shown in Figures 13, 14, and 15. The consequences 

fuzzy sets for cost, schedule and performance are also divided into five fuzzy 

sets, which are no impact (NI), small (S), medium (M), large (L), and catastrophic 

(C).

Membership
NCUL HL

1.0

0.8

0.6

0.4

0.2

0.0
5 10 15 20 25 30 35 40 45 50 55

Percentage of Underestimation 

Figure 12. Likelihood of Occurrence Membership Functions
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Membership
fNS S

1.0

0.8

0.6

0.4
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5 10 15 20 25 30 35 40 45 50 55

Percentage of Underestimation 

Figure 13. Cost Consequence Membership Functions

Membership

1.0

0.8

0.6

0.4

0.2
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5 10 15 20 25 30 35 40 45 50 55

Percentage of Underestimation 

Figure 14. Schedule Consequence Membership Functions
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Figure 15. Performance Consequence Membership Functions

7.5 Fuzzification and Rules

Inputs are solicited from the subject-matter expert for both the likelihood 

that the estimate is understated and the resulting consequence. The degree of 

membership within the likelihood and consequence fuzzy sets are determined for 

subsequent application within the fuzzy rules.

Fuzzy rules are defined in simple language terms. Inherent to fuzzy 

rules, no decisions are required for breakpoints. There are also no decisions to 

be made about the functional form of the relationships. The subject-matter 

expert’s inputs for both likelihood and consequence are associated with the risk 

level through the fuzzy rules. The result of a rule (low, medium, or high) is based 

on the Risk Rating Matrix shown in Table 9. The rules for the radar system
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example are divided into three categories for cost, schedule, and performance. 

Example rules for cost, schedule, and performance are shown below:

Cost rules for likelihood and consequence of underestimation 

Rule 1: IF remote AND no impact THEN project risk is low.

Rule 2: IF remote AND small THEN project risk is low.

Rule 3: IF remote AND medium THEN project risk is low.

Rule 4: IF remote AND large THEN project risk is low.

Rule 5: IF remote AND catastrophic THEN project risk is medium.

Rule 6: IF unlikely AND no impact THEN project risk is low.

Rule 7: IF unlikely AND small THEN project risk is low.

Rule 8: IF unlikely AND medium THEN project risk is low.

Rule 9: IF unlikely AND large THEN project risk is medium.

Rule 10: IF unlikely AND catastrophic THEN project risk is medium. 

Rule 11 : IF likely AND no impact THEN project risk is low.

Rule 12: IF likely AND small THEN project risk is medium.

Rule 13: IF likely AND medium THEN project risk is medium.

Rule 14: IF likely AND large THEN project risk is medium.

Rule 15: IF likely AND catastrophic THEN project risk is high.

Rule 16: IF highly likely AND no impact THEN project risk is low.

Rule 17: IF highly likely AND small THEN project risk is medium.

Rule 18: IF highly likely AND medium THEN project risk is medium. 

Rule 19: IF highly likely AND large THEN project risk is high.
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Rule 20: IF highly likely AND catastrophic THEN project risk is high. 

Rule 21 : IF near certainty AND no impact THEN project risk is low. 

Rule 22: IF near certainty AND small THEN project risk is medium. 

Rule 23: IF near certainty AND medium THEN project risk is high. 

Rule 24: IF near certainty AND large THEN project risk is high.

Rule 25: IF near certainty AND catastrophic THEN project risk is high.

Schedule rules for likelihood and consequence of underestimation

Rule 26: IF remote AND no impact THEN project risk is low.

Rule 27: IF remote AND small THEN project risk is low.

Rule 28: IF remote AND medium THEN project risk is low.

Rule 29: IF remote AND large THEN project risk is low.

Rule 30: IF remote AND catastrophic THEN project risk is medium. 

Rule 31 : IF unlikely AND no impact THEN project risk is low.

Rule 32: IF unlikely AND small THEN project risk is low.

Rule 33: IF unlikely AND medium THEN project risk is low.

Rule 34: IF unlikely AND large THEN project risk is medium.

Rule 35: IF unlikely AND catastrophic THEN project risk is medium. 

Rule 36: IF likely AND no impact THEN project risk is low.

Rule 37: IF likely AND small THEN project risk is medium.

Rule 38: IF likely AND medium THEN project risk is medium.

Rule 39: IF likely AND large THEN project risk is medium.
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Rule 40: IF likely AND catastrophic THEN project risk is high.

Rule 41 : IF highly likely AND no impact THEN project risk is low.

Rule 42: IF highly likely AND small THEN project risk is medium.

Rule 43: IF highly likely AND medium THEN project risk is medium. 

Rule 44: IF highly likely AND large THEN project risk is high.

Rule 45: IF highly likely AND catastrophic THEN project risk is high. 

Rule 46: IF near certainty AND no impact THEN project risk is low. 

Rule 47: IF near certainty AND small THEN project risk is medium. 

Rule 48: IF near certainty AND medium THEN project risk is high. 

Rule 49: IF near certainty AND large THEN project risk is high.

Rule 50: IF near certainty AND catastrophic THEN project risk is high. 

Performance rules for likelihood and consequence of underestimation 

Rule 51 : IF remote AND no impact THEN project risk is low.

Rule 52: IF remote AND small THEN project risk is low.

Rule 53: IF remote AND medium THEN project risk is low.

Rule 54: IF remote AND large THEN project risk is low.

Rule 55: IF remote AND catastrophic THEN project risk is medium. 

Rule 56: IF unlikely AND no impact THEN project risk is low.

Rule 57: IF unlikely AND small THEN project risk is low.

Rule 58: IF unlikely AND medium THEN project risk is low.

Rule 59: IF unlikely AND large THEN project risk is medium.

Rule 60: IF unlikely AND catastrophic THEN project risk is medium.
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Rule 61 : IF likely AND no Impact THEN project risk Is low.

Rule 62: IF likely AND small THEN project risk Is medium.- 

Rule 63: IF likely AND medium THEN project risk Is medium.

Rule 64: IF likely AND large THEN project risk Is medium.

Rule 65: IF likely AND catastrophic THEN project risk Is high.

Rule 66: IF highly likely AND no Impact THEN project risk Is low.

Rule 67: IF highly likely AND small THEN project risk Is medium.

Rule 68: IF highly likely AND medium THEN project risk Is medium.

Rule 69: IF highly likely AND large THEN project risk Is high.

Rule 70: IF highly likely AND catastrophic THEN project risk Is high.

Rule 71 : IF near certainty AND no Impact THEN project risk Is low.

Rule 72: IF near certainty AND small THEN project risk Is medium.

Rule 73: IF near certainty AND medium THEN project risk Is high.

Rule 74: IF near certainty AND large THEN project risk Is high.

Rule 75: IF near certainty AND catastrophic THEN project risk Is high.

From the example radar system development project, a cost parameter 

will be used to demonstrate how the fuzzy model can be used to logically 

calculate project risks for a single parameter. The following parameter has been 

chosen to logically demonstrate the fuzzy model.

Cost: Antenna cost (from Table 3) = $160,000
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Subject-matter expert inputs are needed for the fuzzy model. The inputs 

based on the subject-matter expert’s assessment of the likelihood of the estimate 

being understated and the associated consequence are:

Cost: Likelihood (Table 5) = 40% likely underestimated 

Cost: Consequence (Table 6) = 27% more funding needed 

The likelihood that the cost is underestimated can be determined from the 

likelihood membership functions shown in Figure 12. The degree of membership 

that the input (A = 40) is contained in each of the fuzzy sets is 0 with the 

exception of the highly likely set, where it has a membership value of 1. The 

consequence of the cost being underestimated is determined from the subject- 

matter expert’s input (B = 27). Using the cost membership functions shown in 

Figure 13 the degree of membership is approximately 0.25 in the likely set, 0.6 in 

the catastrophic set, and 0 in all the other sets. Using the max and min fuzzy 

operators, C = max(1, min(0.25,1 ) = 1.0. From the previously developed fuzzy 

rules: If cost is “highly likely” understated AND consequence is “catastrophic” 

THEN project risk is “high”

Each of the project parameters for cost, schedule, and performance can 

be calculated using a fuzzy model similar to the one shown in Figure 11. The 

model provides the logical framework from which a generalized mathematical 

model was developed.
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CHAPTER 8 

METHODOLOGY

8.1 Methodology Goals

The research methodology contained In this chapter is a formalization of 

the project risk conceptual model presented in Figure 11, Chapter 7. The risk 

model includes both “likelihood” of occurrence and “consequence". Figure 16 

shows the generic risk rating classification levels based on “likelihood" and 

“consequence". The risk associated with each project estimate (cost, schedule, 

or performance) is categorized as low (L), medium (M), or high (H). The actual 

risk ratings are shown in Table 9 in Chapter 7.

L

k
e

h
o
0
d

Consequences (Outcomes)

Figure 16. Risk Classification
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Identifying the sources and nature of risks and the uncertainty associated 

with project activities is considered the first step in the risk assessment process. 

Risk identification requires a complete description of the risk events that might 

occur and attempts to answer the questions: “What can go wrong?” and What 

are the consequences?". The input-output relationships with respect to the 

project variables, and the effect of a myriad of consequences constitutes the 

heart of the risk identification model.

The classification of risk is based on both risk “likelihood” and 

“consequences”. The transition between low, medium, and high risk is gradual 

and the boundaries are generally not crisply defined for an actual project. Fuzzy 

sets offer a smooth and seamless transition between different levels of 

information granularity or levels of specificity. Increasing the number of fuzzy 

sets for the system’s variables provides greater granularity. Increased 

granularity moves closer to numerical models. Decreased granularity moves 

closer to qualitative models. The fuzzy model uses collected data and facts from 

subject-matter experts as the basis for fuzzy set formulation.

The fuzzy logic model is an aggregate of the linguistic labels for risk 

“likelihood” and “consequence”. The crux of the model is that the essential 

relationships between system variables are described in terms of fuzzy sets 

rather than numerical quantities.

A trapezoidal fuzzy set (TFS) can be represented by a quadruple (a, b, c, 

d), where a and d are the lower and upper bounds, b and c are the lower and
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upper modal values, respectively, and x is an element between a and d. The 

generic membership function for the TFS can be expressed as:

A(x) =
X -  a 
b - a

if x< a  or x> d  

if a < X < b

1 if b < X 2 c

x - d  if c < X< d
c - d

V

where a < b < c < d.

b dca

Figure 17. Trapezoidal Values

The magnitudes of the left spread, the middle plateau, and the right spread 

signify, collectively, the degrees of uncertainties associated with each TFS.
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There are a number of operations that can be performed on TFSs. The 

risk model was based on the following operations:

If M = (ai, bi, Cl, di) and N = (aa, bg, Cg, dg)

M Ç N iff Am(x) < An(x)

M © N = (ai + ag, bi + bg, Ci + Cg, di + dg)

M 0  N = (ai - ag, bi - bg, Ci - Cg, di - dg) 

max(M, N) = [v(ai, ag), v(bi, bg), v(ci, Cg), v(di, dg)] 

min(M, N) = M a i ,  ag), A(bi, bg), a (c i , Cg), A(di, dg)]

M n  N = {x, Am(x) a  An(x)]}

where © = fuzzy addition; 0  = fuzzy subtraction;

V = maximum; and a = minimum.

To develop the model, the following steps were required:

1. Define inputs to the model in terms of likelihood that estimates for cost, 

schedule, or performance are understated and the resulting 

consequence of the estimate.

2. Fuzzify the inputs by fetching their membership values from the fuzzy 

sets for the preconditions of the decision rules presented in Chapter 7.

3. Determine the firing strength of each fuzzy rule based on the fetched 

membership values.

4. Aggregate the firing strengths of all rules.

5. Defuzzify and present the resulting risk.
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8.2 Model Inputs/Outputs

The collected data, facts, and expert judgements about the project are 

transformed from a numerical estimate into the framework formed by fuzzy sets. 

This phase required the development of an input interface. The fuzzy sets 

(linguistic labels) were used to build the input interface and played a crucial role 

in anchoring all the available pieces of information into a processing context.

The input for the likelihood fuzzy sets is an expert judgement percentage (x) that 

the estimate (cost, schedule, or performance) is underestimated. The input for 

the consequence fuzzy sets for cost, schedule, or performance estimates is also 

a percentage (y).

Due to overlapping of the membership functions the crisp input may have 

membership in more than one fuzzy set. The rule base with preconditions that 

match the inputs to a non-zero membership value can also have more than one 

rule that meets the conditions.

The outputs from the model are the risk rating level crisp value (z), which 

gives the firing strength of the fuzzy rule. This value gives the subject-matter 

expert the risk level associated with the two input percentages for likelihood and 

consequences.
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8.3 Membership Sets

As presented in Chapter 7, risk likelihood is represented by the five fuzzy 

sets remote, unlikely, likely, highly likely, and near certainty using the trapezoidal 

distribution. The risks associated with cost, schedule, and performance 

estimates have possible membership in the five fuzzy sets. Figure 18 shows the 

five likelihood membership sets. Figures 19, 20, and 21 shows the membership 

sets for cost, schedule, and performance, respectively.

membership
UL HL NO

1.0

0.8

0.6

0.4

0.2

0.0

Percentage of Underestimation 

Figure 18. Likelihood of Occurrence Membership Functions

In this research, likelihood of occurrence linguistic mappings were defined as

follows:

101



Remote (R) -  In, I12, 113. lu 

Unlikely (UL) —121, 122. 123, 124 

Likely (L) —131, 132, I33,134  

Highly Likely (HL) -  Ui, U2 . Us. I44 

Near Certainty (NO) - 151. 152. 153.154 

Remote (R)

For X > Ii4 : f(x) = 0

For Ii2 < x <  Ii3 : f(x) = 1

For Ii3 < X < Ii4 : f(x) = (x - 114) / (lu —113)

Unlikely (UL)

For X  < I21 or X  > I24 : f(x) =  0

For I21 < X  < I22 ! f(x) = (x - 121) /  (I22 —121)

For I22 ^ X < I23 : f(x) = 1

For I23 < X < I24 ; f(x) = (x - 124) /  (I23 —124)

Likely (L)

For X < I31 or X > I34 : f(x) = 0

For I31 < X < I32 ; f(x) = (x - 131) / (I32 —131)

For I32 ^ X < I33 ; f(x) = 1

For I33 < X < I34 : f(x) = (x —134) / (I33 —134)

Highly Likely (HL)

For X < Ui or X > I44 ; f(x) = 0
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For Ui < X <  I42 : f(x) =  (X

For U2 ^ X < I43 ; f(x) = 1

For I43 < X < I44 : f(x) =  (X

N ear Certainty (NO)

For X < I51 or X > I54 f(x) = 0

For I51 < X < I52 : f(x) =  (X

For I52 ^ X < I53 : f(x) = 1

For I53 < X < I54 : f(x) =  (X

membership
| n i S M

1.0

0.8

0.6

0.4

0.2

0.0
C l2 Cgi C i4  Cgg Cg3 C31 C24 C32 C33 C41 C34 C42 C43 C51 Cs4 C52

Percentage of Underestimation 

Figure 19. Cost Consequence Membership Functions

The cost consequence linguistic mappings for this research were defined as

follows:
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N o  I m p a c t  ( N I )  - C n ,  C 1 2 . C 1 3 ,  c #

S m a l l  ( 8 )  —  C 2 1 , C 2 2 .  C 2 3 . C 2 4  

M e d i u m  ( M )  -  C31, C 3 2 ,  C 3 3 .  C 3 4  

L a r g e  ( L )  -  C 4 1 ,  C 4 2 , C 4 3 . C 4 4  

C a t a s t r o p h i c  ( 0 )  -  C51, C 5 2 . C 5 3 ,  C 5 4  

N o  I m p a c t  ( N l )

F o r  y  >  C 1 4  :  f ( y )  =  0

F o r  C 1 2  <  y  <  C i 3  ;  f ( y )  =  1

F o r  C i 3  <  y  <  c i 4  :  f ( y )  =  ( y  -  C 1 4 )  I ( c u  -  C 1 3 )

S m a l l  ( S )

For y < C21 or y > C24 : f(y) = 0

For C21 < y < C22 : f(y) = (y -  C21) / (C22 -  C21)

For C22 ^ y ^ C23 : f(y) = 1

For C23 < y ^ C24 : f(y) = (y -  C24) / (C23 -  C24)

M e d i u m  ( M )

F o r  y  <  C 3 1  o r  y  >  C 3 4  :  f ( y )  =  0

F o r  C 3 1  <  y  <  C 3 2  :  f ( y )  =  ( y - c 3 i ) / ( c 3 2 - c 3 i )

F o r  C 3 2  ^  y  ^  C 3 3  :  f ( y )  =  1

F o r  C 3 3  <  y  <  C 3 4  :  f ( y )  =  ( y  -  C 3 4 )  /  ( C 3 3  -  C 3 4 )

Large (L)

F o r  y  <  C 4 1  o r  y  >  C 4 4  ;  f ( y )  =  0
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For C41 < y < C42 :

For C42 ^ y ^ C43 :

For C43 < y ^ C44 :

Significant (8 )

For y < C51 or y > C54 i f(y) =  0 

For C51 < y < C52 :

For C52 ^ y ^ C53 :

For C53 < y ^ C54 :

f(y) =  (y — C41) /  (C42 — C41) 

f(y) = 1

f(y) =  (y — C44) /  (C43 — C44)

f(y) = (y -  C51) / (C52 -  C51) 

f(y) = 1

f(y) =  (y — C54) /  (C53 — C54)

membership

1.0

0.8

0.6

0.4

0.2

0.0
S 1 2  S , 3  S 2 1  S-14 S 2 2  S 2 3  S 3 1  S 2 4  S 3 2  S 3 3  S 4 1  S 3 4  S 4 2  S 4 3  S 5 1  S 4 4  S 5 2

Percentage of Underestimation 

Figure 20. Schedule Consequence Membership Functions

The schedule consequence linguistic mappings for this research were defined as

follows:

No Impact (Nl) - S n ,  S12. S13, s#
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Small (S) — S21, S22, S23, S24 

Medium (M) -  S31, S32, S33. S34 

Large (L) — S41, S42, S43, S44 

Catastrophic (C) -  S51, S52. S53. S54 

No Impact (NI)

For y > Si4 : f(y) = 0

For S12 < y < Si3 ; f(y) = 1

For Si3 < y < su : f(y) = (y - su) / (su -  S13)

Small (S)

For y < S21 or y > S24 : t(y) = 0

For S21 < y < S22 : f(y) = ( y -  S21) /  (S22 -  S21)

For S22 ^  y ^  S23 : f(y) = 1

For S23 < y < S24 : f(y) = (y ~ S24) / (S23 -  S24)

Medium (M)

For y < S31 or y > S34 : f(y) = 0

For S31 < y < S32 : f(y) = (y -  S31) / (S32 -  S31)

For S32 ^ y ^ S33 : f(y) = 1

For S33 < y < S34 : f(y) = (y -  S34) /  (S33 -  S34)

Large (L)

For y < S41 or y > S44 : f(y) = 0

For S41 < y < S42 ; f(y) = (y -  S41) / (S42 -  S41)
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For S42 ^ y ^ S43 :

For S43 < y ^ S44 :

Catastrophic (0)

For y < S51 or y > S54 : f(y) = 0 

For S51 < y < S52 - 

For S52 ^ y ^ S53 :

For S53 < y ^ S54 :

f(y) = 1

f(y) = (y -  S44) /  (S43 — S44)

f(y) = (y ~  S51) / (S52 -  S51)

f(y) = 1

f(y) = ( y -  S54) / (S53 -  S54)

membership

1.0

0.8

0.6

0.4

0.2

0.0
P12 P i 3 P21 P l4  P22 P23 P31 P24 P32 P33 P41 P34 p 42 P43 P s i  P44 P s 2

Percentage of Underestimation 

Figure 21. Performance Consequence Membership Functions

The performance linguistic mappings for this research were defined as follows: 

No Impact (Nl) -  pn, pi2, P13, Pu 

Small (8) — P21, P22, P23. P24
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Medium (M) -  pai, Paa. P a s ,  Ps4 

Large (L) — p#i, p42, P43, P44 

Catastrophic (C) -  psi, P52, Psa, Ps4 

No Impact (Ni)

For y > p i4 : f(y) = 0

For P12 ^ y ^ Pia : f(y) = 1

For P i 3 < y <  Pu : f(y) = (y - Pu) /  (Pu -  Pia)

Small (S)

For y < P21 or y > P24 : f(y) =  0

For P21 < y < P22 : f(y) = (y ~  P21) /  (P22 -  P21)

For P22 ^ y ^ P2a : f(y) = 1

For P23 < y ^ P24 : f(y) =  (y -  P24) /  (Paa -  P24)

Medium (M)

For y < p3i or y > P34 : f(y) = 0

For P31 < y < P32 : f(y) = (y -  Pai) / (Pa2 -  Pai)

For P32 < y ^ Paa : f(y) = 1

For P3a < y ^ Pa4 : f(y) = (y -  Pa4) /  (Paa -  Pa4)

Large (L)

For y < P41 or y > P44 ; f(y) =  0

For P41 < y < P42 : f(y) =  (y -  P41) /  (P42 -  P41)
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For P42 ^ y ^ P43 : f(y) = i

Forp43<y^P44 : f(y) = (y- P44) / (P43- P44)

Catastrophic (0)

For y < P51 or y > P54 : f(y) = 0

For P51 ^ y < P52 : f(y) = (y -  Psi) / (P52 -  Psi)

For ps2 ^ y ^ Ps3 : f(y) = i

For ps3 < y ^ Ps4 : f(y) = (y -  P54) /  (Ps3 -  P54)

Fuzzy inference requires the association of a fuzzy membership function 

with each implication. For the rule “IF A THEN B", a possible membership 

function is:

P a - , b ( u , V ) = min[pA(u), |iB(v)] 

where u and v span the universes of discourse corresponding to the terms A and 

B. It is important to note that | I a - * b ( u , v ) is a two-dimensional set.

Zadeh (1983) showed that fuzzy evidence can be propagated through a 

rule by using a compositional rule of inference (ORI). The goal of CRI is to infer 

a new membership function for the term B in the consequent of the rule. If the 

available data is Adata the CRI commonly found in the literature is:

Pb(v) = sup{min[pAdata(u), Pa^b(u, v)]} 

where u spans the universe of discourse for the term A and v is the same for the 

term B. In practice a faster way to implement CRI is to use the following: 

sup min[pAdata, Pa]
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and use the number that was obtained to truncate the membership function for 

the consequent term B. The number obtained from the sup-min operation above 

is the degree-of-match between Adata and A.

To achieve the goals of the risk model, fuzzy evidence must be 

propagated through multiple rules simultaneously and the results aggregated. 

There are two important questions that need to be resolved to develop the fuzzy 

risk identification model.

1) Is the order in which the rules are invoked important?

2) How can conclusions be drawn from all the rules that are fired from a 

given set of facts?

Lee (1990) developed three Lemmas to answer the questions of rule order and 

how conclusions can be drawn from multiple rules.

Lemma 1: If A can match the antecedents of rules R i ,  R a , . . . ,  R n , each 

rule being of the form Aj -> Bi, the overall conclusion from the rules satisfies the 

following distributive relationship:

B = A U R | = U A R j.
i=1 i=l

A set of rules that can be fired by a given fact is represented by the union 

operator. B is the fuzzy set obtained by aggregating the appropriately modified 

conclusion fuzzy sets B i ,  B g , . . . ,  B „ . The representation of a set of rules by a 

union operator is justified because the different rules represent altemative ways 

of asserting the conclusion. This lemma provides the framework to propagate a
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fuzzy fact through two different rules. The propagation should be performed 

separately and then take the fuzzy union of the conclusion fuzzy sets. This 

lemma is limited to multiple rules with only one term in each rule antecedent.

Lemma 2: Given two facts A and B corresponding to two different 

linguistic variables that can match the two facts in the antecedent of a single rule 

of the form “IF Ai AND Bi THEN Q", the conclusion fuzzy set for Q can be 

obtained by the following formula:

C i =  [ A  (A i -  C i)] n  [B  (B i -  C i) ] .

Lemma 3: Given two facts A and B corresponding to different linguistic 

variables that can match the two facts in each of rules R i ,  Rg, . . . ,  R n , each rule 

being of the form “IF A AND Bi THEN C i" , an overall conclusion can be drawn 

from the rules due to the following distributive relationship:

C  =  IJ [A  (A i C i)] n  [B  (B i C i) ] .
i=1

This lemma provides a basis for a final conclusion that is made by 

propagating the fuzzy evidence through each rule separately and then taking a 

fuzzy union of the resulting conclusions.

8.4 Fuzzy Decision Rules and Firing Strengths

Project risks associated with cost, schedule, and performance are 

determined by mathematical operations on the formulated fuzzy sets. A fuzzy 

decision rule has certain preconditions, which are to be matched with given facts, 

as well as certain consequences that result when the preconditions are met.
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Each precondition or consequence in a rule includes an instance of the fuzzy 

variable involved. The fuzzy rules defined in Chapter 7 have the general form: IF 

precondition-1 AND precondition-2 THEN consequence-1.

The parameter mapping framework for the fuzzy sets was presented 

earlier in this chapter. For the “likelihood" and "consequence" fuzzy sets the 

firing strength of rule i determines how much the fuzzy set will contribute to the 

risk event. Figure 22 shows the basic components of multi-rule firings. The 

likelihood (I), consequence (m), and the firing strength (f) for the rule are the 

preconditions and consequence of the fuzzy rule. The composite (F) is the max 

of the rules that have a positive firing strength.

I(xi) • m(vi)

l(X2) • m(V2)

f

max Zout

likelihood consequence firing strength composite 

Figure 22. Composite Membership Functions
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After the likelihood (x) and consequence (y) inputs are determined by the 

subject-matter expert, the next step is to determine the firing strength of the fuzzy 

rules. The firing strength is determined by the fetched membership values from 

the fuzzy sets based on the input percentages (x and y). From the input value x, 

the fetched membership vaiue is determined using the trapezoidal likelihood 

equations presented earlier. The fetched membership value is Ic for the 

likelihood cost function. Similarly, the fetched membership values are Is and Ip for 

schedule and performance, respectively. Risk likelihood (I) is determined by the 

following equations:

I = (x -  a) / (b - a), for a 3 X < b 

1 = 1, for b s X < c 

I = (x -  d) / (c -  d), for c < X ^ d 

where a and d are the lower and upper bounds; and b and c are the lower and 

upper modal values of the trapezoid.

Input (y) to the risk consequence membership functions is used to 

determine the fetched membership values of me, ms, and mp for cost, schedule, 

and performance, respectively. Risk consequences (m) are determined from the 

input value (y) using the following equations: 

m = (y -  a) / (b - a), for a ^ y < b 

m = 1, for b s y < c 

m = (y -  d) / (c -  d), for c < y < d
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where a and d are the lower and upper bounds: and b and c are the lower and 

upper modal values of the trapezold.

Since the two preconditions of a rule are connected by the AND relation, 

the product of multiplication of the corresponding memberships is used to 

represent the firing strengths shown beiow:

fc = Ic " me. for cost likelihood and consequence 

fs = Is • ms, for schedule likelihood and consequence 

fp = Ip • mp, for performance likelihood and consequence 

where Ic, Is, and Ip are the fetched likelihood membership values for cost, 

schedule, and performance, respectively; me, ms, and mp are the fetched 

consequence membership values for cost, schedule, and performance, 

respectively, fc, fs, and fp are the firing strengths of the likelihood and 

consequence rules; 0 < f < 1.

8.5 Aggregated Rule Consequences

The basic structure of fuzzy logic sets makes overlap of the rules 

inevitable. A crisp conclusion is required rather than a fuzzy set. To arrive at a 

definite conclusion, defuzzification is required for the aggregate consequence. 

The union operation is used to aggregate the overall consequence of executing 

all n rules. As shown in Figure 22 the union of the firing strengths (f) form the 

composite function. The fuzzy logic max operation is shown below:

F i = max(fi, fz. fn)
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where F| is the maximum firing strength of n rules, 0 ^ Fj ^ 1.

Fi represents a single risk output for a cost, schedule, or performance 

estimate. To aggregate total project risk for all the project estimates the project 

state for each estimate needs to be maintained. The risk state of the project is 

represented by a two dimensional vector that contains the risk level and firing 

strength for each of the project estimates. The risk state vector is:

R  =  { ( F i , K i ) , ( F 2, K a ), . . . ( F n ,  K n )} 

where F| is the identified risk firing strength; and K, is the risk rating for estimate i. 

The values contained in the risk state vector R represent the composite of risks 

for all project estimates.

Specifically, for cost, schedule, and performance project estimates, a state 

vector is needed for each. Three state vectors contain the information from 

which total project risk quantification can be obtained. The state vectors for cost, 

schedule, and performance are:

R c —  { (F c l  I K c l) i  (F c2 i K cz), . . • (Fen, Ken)}

R s =  { ( F s i ,  K g l) ,  (F s2 , Kgg), . . . (Fsn, Ksn)}

R p  — { (F p i ,  K p i) ,  (F p2 , Kpg), . . . (Fpn, K pn)}

The risk rating (K) has a value of L (low), M (medium), or H (high). The 

quantitative value (F) is a value in the range 0 ^ F < 1. The values of K and F 

provide the subject-matter expert with a risk rating and a quantitative measure of 

the inputs for likelihood and consequence. Overall project risks for cost, 

schedule, or performance are assumed at the highest risk rating level.
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CHAPTER 9 

MODEL IMPLEMENTATION

9.1 Risk Model Flowchart

Implementation of the risk model was based on the mathematical 

framework presented In Chapter 8. A flowchart of the model Is shown In Figure 

23. Risk likelihood (x) and consequence (y) are Inputs to the model. Both Inputs 

are percentages. The firing strength of the likelihood (I) Is determined based on 

the input x. Consequence firing strength Is determined from the Input y. The 

overall rule fuzzy strength (f) Is determined by the product of the likelihood (I) and 

the consequence (m). The aggregate (F) of all the fuzzy rules Is determined by 

the max fuzzy operator. Finally the crisp output Zout is determined from the max 

operation.

Each Iteration of the model produces firing strengths for likelihood (I), 

consequence (m), and a defuzzled crisp output (Zout)- Likelihood (I) and 

consequence (m) form the basis to determine the fuzzy rules that are “activated” 

based on the Inputs (x and y).

Twenty-five rules were required for the combinations of 5 likelihood and 5 

consequence fuzzy membership sets for cost, schedule, or performance. A total 

of 75 fuzzy rules were needed to represent the likelihood and consequences of 

cost, schedule, and performance.
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Input likelihood and
consequences
percentages

Accomplish defuzzification using 
max operation. Determine risk 
level and save in risk vector R

Aggregate the overall consequence 
of the fuzzy rules (F)

Determine the firing strength of the 
affected fuzzy rules (f)

Determine the firing strength of the 
risk likelihood (I) portion of the 
fuzzy rules

Structure fuzzy membership sets 
for risk likelihood and 
consequences (cost, schedule, 
performance)

Determine the firing strength of the 
risk consequence (m) portion of the 
(cost, schedule, performance) 
fuzzy rules

Figure 23. Risk Model Flowchart
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9.2 MATLAB Program

The risk model was Implemented using MATLAB. The MATLAB program 

that implemented the model is shown below.

■6 ruzzy KXSK yuanciricacion Program
% This program was developed to quantify likelihood and 
consequence 
%
% Likelihood
L = [0 0 3 5; 3 7 11 15; 10 17 26 35; 30 38 46 55; 50 60 
100 100];
% cost
C = [0 0 3 5; 3 5 7 9; 7 10 12 15; 10 17 23 30; 25 100 100 
100] ;
% Rules strengths
R = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ;  
RRC = [ 0 0 0 0 1 0 0 0 1 1 0 1 1 1 2 0 1 1 2 2 0 1 2 2 2 ] ;  
Rcf = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0]; 
% initialize cost risk vector
Rcl = blanks(25); % initialize cost risk vector 
n = 1; % initialize output counter
%

% Get ~ of estimates to evaluate
%

nest = input('Enter the number of input estimates > '); %
# estimates
%

% Get inputs for the program 
%
while n < nest+1
X = input('Enter Likelihood Percentage > 
likelihood percentage
Y = input(’Enter Cost Percentage > ’);
percentage
FL = [0 0 0 0 0]; % firings matrix for likelihood
FC = [0 0 0 0 0]; % firings matrix for cost
FS = [0 0 0 0 0]; % firings matrix for schedule
FP = [0 0 0 0 0]; % firings matrix for performance
Fmax =0; % fuzzy maximum of aggregated rules 
Indx =0; % fuzzy maximum rule index

' ) ; % input

% input cost
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Zout =0; % crisp output value
%
% Likelihood Firings 
%
for i = 1:5

if X > L(i,l) & X < L(i,2)
FL(i) = (X - L(i,D) / (L(i,2) - L(i,l)); 

end
V  T / <  0 \  r .  V ^ —  T / 4  3  \  .

^  ̂  **>■ -    \  ^  f  4^ /  S*  —  JmJ \  ^  /  f

FL(i) = 1; 
end
if X > L(i,3) Sc X < L(i,4);
FL(i) = (X - L(i,4)) / (L(i,3) - L(i,4)); 

end
end
%

% Cost Firings 
%
for i = 1: 5

if Y > C(i,l) & Y < C(i,2)
FC(i) = (Y - C(i,D) / (C(i,2) - C(i,l));

end
if Y >= C(i,2) & Y <= C(i,3);
FC(i) = 1; 

end
if Y > C(i,3) Sc Y < C(i,4);
FC(i) = (Y - C(i,4)) / (C(i,3) - C ( i , 4 ) ) ;

end
end
%

% Determine the firing strength of the rules based on the 
strength of the risk
% likelihood and the cost consequence.
%

k = 0 ; 
for i = 1:5 

for j = 1:5 
k = k + 1;
R{k)= FL{i) * FC(j) ;

end
end
%

% Determine the aggregated rule consequences 
%
for i = 1:25

119



if Fmax < R(i)
Fmax = R(i);
Indx = i;

end
end
%

% Determine crisp output value 
%
7  ̂1 ^  O  •

f

%

% Determine risk output from rules 
%
i = Indx;
if R(i) > 0 & RRC(i)

rule = i;
risk = 'L';

end
if R(i) > 0 & RRC(i)

rule = i;
risk = 'M‘ ;

end
if R(i) > 0 Sc RRC(i)

rule = i;
risk = ■H' ;

end
%

% Save risk level and firing strength 
%
Rcl(n) = risk;
Rcf(n) = Zout; 
n = n + 1 ; 
end
%

% Print Report 
%
disp(Rcl) 
disp(Ref)
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9.3 Risk Model Input

Data contained in the example presented in Chapter 7 were used as the 

inputs to the risk model. The trapezoidal fuzzy membership values for cost 

likelihood were presented previously in Table 6. Cost consequence membership 

vaiues were taken from Table 7.

For the radar system development example, 19 cost estimates were 

identified. A likelihood input (x) and consequence input (y) were required for 

each estimate. As shown by data in Table 10, software development and 

integration and test are historically higher risk activities. Although the data are 

for a radar system development project, the method is applicable for other 

applications where cost, schedule, or performance estimates are available.
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Component Estimate Likelihood
X

Consequence
Y

System design
Antenna 160,000 15 22
T ransmitter 352,000 10 25
Power supply 79,000 3 5
Control data processor 400,000 5 15
Receiver 352,000 8 15
Signal processor 245,000 6 10
Displays 160,000 5 10

Software development
Transmitter 270,000 25 30
Control data processor 536,000 33 40
Receiver 300,000 25 35
Signal processor 700,000 30 35

Hardware Procurement
Circuit boards 250,000 2 5
Chassis 170,000 2 7
Power supplies 100,000 3 5
Signal processor 910,000 5 10
Antennas 825,000 6 15
Displays 200,000 2 5

Integration and test
Hardware and software 1,710,000 10 25

Production
Fabricate 100 units 3,000,000 5 10

Table 10. Model Input Cost Data

Inputs for schedule likelihood (x) and consequence (y) for the radar 

example are shown in Table 11. Although a high level schedule was presented 

for the example consisting of only 5 milestones, the model can handle greater 

fidelity.
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Activity Timeline Likelihood
X

Consequence
Y

Design 145 days 5 10
Software 166 days 25 45
Hardware 90 days 5 7
Integration 120 days 10 14
Production 300 days 7 15

Table 11. Model Input Schedule Data

Project performance inputs for likelihood (x) and consequence (y) are 

shown in Table 12.

Parameter Attribute Likelihood
X

Consequence
Y

Transmitter range 35 nm 5 10
Receiver range 35 nm 5 10
Identification time 3 Sec. 2 7
Location accuracy 10 ft. 5 15
Weight <45 lbs. 5 5
Size 24X12X36 5 5
MTBF 3000 hrs 10 15

Table 12. Model Input Performance Data

9.4 Risk Model Output

Model outputs for a likelihood input value (x) of 15% and a cost 

consequence (y) of 22% for the system design of the radar antenna are shown in 

Table 13.
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Likelihood 
Input (x)

Consequence 
Input (V) Rule l(x) m(y) f F

15 22 1 0 0 0
2 0 0 0
3 0 0 0
4 0 1 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 1 0
10 0 0 0
11 0.7143 0 0
12 0.7143 0 0
13 0.7143 0 0
14 0.7143 1 0.7143 0.7143
15 0.7143 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 1 0
20 0 0 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 1 0
25 0 0 0

Table 13. Risk Model Output

Table 13 shows that for a likelihood Input value (x) of 15% and a cost 

consequence of Input value (y) of 22%, the firing strengths, and the resulting 

maximum value of 0.7143 for Rule 14. The risk rating associated with Rule 14 Is 

medium (M).
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The risk rating is saved in the cost risk state vector Rc parameters (Kd =

M and Fd = 0.7143). This process was repeated for each of the remaining cost 

estimates. Schedule and performance estimates are also computed using the 

same process. The resulting vectors R c, Rs, and Rp contain the risk rating levels

(K) and quantitative strengths (F) for cost, schedule, and performance estimates,

respectively.

Cost outputs for the 19 estimates are:

1 • Rd = (Kci = M; Fd = 0.7143)

2. R c2 =  (Kc2 = M; Fc2 = 0.7143)

3. Rc3 = (Kc3 = L; Fd = 1.0000)

4. Rc4= (Kd = M; Fd =0.3571)

5. Rc5 = (Kcs = M; Fc5 = 0.7143)

6 . Rc6 = (Kc6 = L; Fd = 0.7500)

7. Rc7 = (Kc7 = L; Fc7 = 0.5000)

8 . Rc8 = (Kc8 = H; Fc8 = 0.0667)

9. Rc9 = (Kc9 = H; Fc9 = 0.0750)

10. Rcio= (Kdo = H; Fdo = 0.1333)

11. Rdi = (Kdi = H; Fell = 0.0741)

12. Rc i2 =  (Kc i2 =  L; Fc i2 =  1 .0 0 0 0 )

13. R ci3 =  (Kc i3 =  L; Fc i3 =  1 .0000 )

14. Rcu= (Kci4 = L; Fcu = 1.0000)

15. Rds = (Kci5 = L; Fds = 0.5000)
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16. Rcl6= (Kci6 = M; Fci6 = 0.5357)

17. Rcl7= (Kci7 = L; Fci7 = 1.0000)

18. Rci8= (Kci8 = M; Fci8 = 0.7143)

19. Rcl9= (Kci9 = L; Fci9 = 0.5000)

Schedule outputs for the 5 estimates are:

1. Rsi = (Kss = L; Fsi = 0.4000)

2. Rs2 = (Kss = M; Fs2 = 1.0000)

3. Rs3 = (Ks5 = L; Fs3 = 0.3750)

4. Rs4 = (Ks5 = L; Fs4 = 0.8000)

5. Rss = (Kss = L; Fss = 0.6000)

Performance outputs for the 7 estimates are:

1. Rpi = (Kpi = L; Fpi = 0.5000)

2. Rp2 = (Kp2 = L; Fp2 = 0.5000)

3. Rp3 = (Kp3 = L; Fp3 = 1.0000)

4. Rp4 = (Kps = M; Fp4 = 0.3571)

5. Rps = (Kp5 = L; Fps = 0.5000)

6. Rp6 = (Kp6 = L; Fp6 = 0.5000)

7. Rp7 = (Kp7 = M; Fp7 = 0.7143)
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The risks associated with each of the cost, schedule, and performance 

estimates provide a detailed framework to assess project risks. Overall risk for 

cost, schedule, or performance corresponds to the highest level of risk identified 

for the estimates. Therefore, project cost risk is high (H), schedule risk is 

medium (M), and performance risk is medium (M).
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CHAPTER 10 

MODEL EVALUATION

10.1 Discussion

The fuzzy logic risk model developed In Chapter 8 and implemented in 

Chapter 9 offered a methodology for identifying and quantifying project risks 

associated with uncertainties in cost, schedule, and performance estimates. For 

the risk model developed in this research, analyses were performed to determine 

how the model would respond to independent inputs for likelihood (x) and 

consequence (y).

Inputs to the model can vary greatly depending on the application and the 

estimating ability of the subject-matter expert. Three situations were evaluated to 

determine the model’s ability to delineate project risks based on varied input 

estimates. The first situation is where the input values vary between the lower 

and upper range of possible input values. This situation was referred to as 

mixed. The second situation was where the estimates were good. Finally, the 

third situation was where the estimates were understated (bad). A uniformly 

distributed Monte Carlo simulation was used to determine the ability of the model 

to address these three situations. A graphical representation of the uniform 

distributions shown in Figures 24, 25, and 26 represents mixed, good, and bad 

estimates, respectively.
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Figure 24. Mixed Figure 25. Good Figure 26. Bad

The uniform distribution is:

1 / (b -  a) for a ^ X < b 

0 otherwise
f(x) =

p = (a + b) / 2 

= (b-a)^ / 12

There are three combinations of inputs for likelihood and consequence. A 

total of nine combinations were considered as shown below:

Likelihood Consequence

1. mixed mixed

2. good good

3. bad bad

4. mixed good

5. mixed bad

6. good mixed

7. bad mixed
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8. good bad

9. bad good

10.2 Mixed Likelihood and Mixed Consequence Estimates

The simulation generated, 1000 likelihood (x) and consequence (y) inputs 

were normalized to the full range of possible values specified by the fuzzy 

membership sets in Chapter 8. The inputs for likelihood and consequences are 

shown in Figures 27, and 28, respectively. The mean (p) and standard deviation 

(a) for the 1000 randomly generated cost inputs were: 

l(x): p = 30.4208; a = 17.2759

m(y): p = 14.7845; a = 8.8215

Risk levels determined by the fuzzy rules for the 1000 x and y inputs are shown 

in Figure 29. The risk levels were compared to the trapezoidal fuzzy set (TFS) 

values shown in Table 14. The top values and bottom values in each cell

correspond to the consequence and likelihood, respectively. With p = 30.4208

for X and p = 14.7845 for y a comparison with the fuzzy membership set values 

shown in Table 14 -  it is intuitively apparent that a preponderance of the risk will 

fall in the medium range (center of table).
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Figure 27. Mixed Cost Likelihood Input Values
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Figure 28. Mixed Cost Consequence Input Values
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Figure 29. Mixed/Mixed Cost Risk Levels
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0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 2 5 ,"0 50, 60, 50, 60, « 50, 60, “ 50, 60, « 50,60, "
d 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 2 5 ,"

30,38,46,55 30,38,46,55 30,38,46,55 30,38,46,55 30,38,46,55
0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 2 5 ,"

0 10,17,26,35 10,17,26,35 10,17,26,35 10,17,26,35 10,17,26,35

h 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 2 5 ,"U 3,7,11,15 3,7,11,15 3,7,11,15 3,7,11,15 3,7,11,15
a 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 2 5 ,"

0, 1,3,5 0, 1 ,3 ,5 0, 1,3,5 0, 1 ,3 ,5 0, 1,3,5
1 2 3 4 5

Consequences 

Table 14. Cost Fuzzy Trapezoidal Membership Values
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Figures 30 and 31 shows the inputs for likelihood and consequences, 

respectively. Figure 32 shows the schedule risk levels. The schedule likelihood 

and consequence values for 1000 iterations were: 

l(x): M = 30.2912; a = 17.4886 

m(y): p = 29.5689; a  = 17.6430

The risk levels compared with the schedule trapezoidal fuzzy sets shown 

in Table 15 indicate that about half of the risk were in the medium range as 

expected.

120
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40

20

20  30  40
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60

Figure 30. Mixed Schedule Likelihood Input Values
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100

20 30 40
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Figure 31. Mixed Schedule Consequence Input Values
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Figure 32. Mixed/Mixed Schedule Risk Levels
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e 0, 4, 6, 10 
50, 60, °°

6,11, 13,18 
50, 60,

14,20,24,30 
50, 60, «

20,35,45,60 
50, 60, “

50, « 
50,60, *

d 0,4, 6, 10 
30,38,46,55

6,11,13, 18 
30,38,46,55

14,20,24,30
30,38,46,55

20,35,45,60
30,38,46,55

50, «
30,38,46,55

c 0, 4, 6, 10 
10,17,26,35

6,11,13,18
10,17,26,35

14,20,24,30
10,17,26,35

20,35,45,60
10,17,26,35

50, ”

10,17,26,35

b 0, 4, 6, 10 
3,7,11,15

6,11,13,18
3,7,11,15

14,20,24,30
3,7,11,15

20,35,45,60
3,7,11,15

50, “ 
3,7,11,15

a 0,4, 6, 10 
0, 1,3,5

6,11,13,18 
0, 1,3,5

14,20,24,30 
0, 1,3,5

20,35,45,60 
0, 1,3,5

50, «
0, 1,3,5

1 2 3 4 !
Consequences

Table 15. Schedule Fuzzy Trapezoidal Membership Values

The performance simulation results were essentially the same as those 

from the cost simulation due to the same fuzzy trapezoidal membership values 

used in the example.

The risk levels when compared to the performance trapezoidal fuzzy sets 

also fell primarily in the medium range for the values shown in Table 16.
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0,1 ,3 ,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 25, «>6 50, 60, “ 50, 60, « 50, 60, « 50, 60, “ 50,60, “o
d 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 25, «

30,38,46,55 30,38,46,55 30,38,46,55 30,38,46,55 30,38,46,55
c 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 25, «

10,17,26,35 10,17,26,35 10,17,26,35 10,17,26,35 10,17,26,35

h 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 25, ~U 3,7,11,15 3,7,11,15 3,7,11,15 3,7,11,15 3,7,11,15

a 0, 1,3,5 3, 5, 7, 9 7,10,12,15 10,17,23,30 25, «
0, 1,3,5 0,1,3, 5 0, 1,3,5 0, 1,3, 5 0, 1,3,5

1 2 3 4 5
Consequences

Table 16. Performance Fuzzy Trapezoidal Membership Values

10.3 Good Likelihood and Good Consequence Estimates

The remainder of the analysis was focused on measuring the ability of the 

model to determine risk levels based on varied inputs. To reduce redundancy, 

cost was chosen as the parameter for comparison. The uniform distribution was 

normalized in the Monte Carlo simulation to represent the situation where the 

project has relatively good estimates. The uniform distribution for “good” 

estimates has predominant values towards the lower end of the fuzzy 

membership sets. Both risk likelihood and consequences are shown in Figures 

33 and 34, respectively. The associated values are: 

l(x): p = 10.1403; a  = 5.7586 

m(y): p = 5.5349; a  = 3.1455
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Figure 33. Good Cost Likelihood input Values
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Figure 34. Good Cost Consequence input Values
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The risk levels associated with likelihood and consequences are shown in 

Figure 35. The likelihood and consequence values result in risk levels primarily 

in the low range with a few in the medium range.

5 0 0 -

3 0 0 -

Risk Levels (1=Low, 2=M ed .. 3=Hlgh)

Figure 35. Good/Good Cost Risk Levels

10.4 Bad Likelihood and Bad Consequence Estimates

The situation where the project estimates are understated and the 

resulting consequences are “bad” will result in higher project risk. Figures 36 and

37 shows likelihood and consequences, respectively. The associated values are:

l(x): p = 40.0354; a = 11.6533

m(y): p = 20.3956; a  = 5.4583

138



140 ,

120

10O

30 35 40 45
P ercentage Input Values (x)

Figure 36. Bad Cost Likelihood Input Values
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Figure 37. Bad Cost Consequence Input Values
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Figure 38 shows the risk levels associated with bad likelihood and bad 

consequence. As expected the predominant risk levels are in the high range.

700

6 0 0 -

5 0 0 -

4 0 0 -

3 0 0 -

2 0 0 -

100 -

1 2  3
Risk Le\«ls (1=Low. 2 = M e d ., 3=High)

Figure 38. Bad/Bad Cost Risk Levels

10.5 Remaining Likelihood and Consequence Estimates Combinations

Figures 39 through 44 show the resulting risk levels derived from various 

combinations of mixed, good, and bad likelihood and consequence.
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Figure 39. Mixed/Good Cost Risk Levels
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Figure 40. Mixed/Bad Cost Risk Levels
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Figure 41. Good/Mixed Cost Risk Levels
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Figure 42. Bad/Mixed Cost Risk Levels
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Figure 43. Good/Bad Cost Risk Levels
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Figure 44. Bad/Good Cost Risk Levels
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Model results were consistent with the likelihood and consequence inputs. 

The corresponding statistical values and graphical representations revealed that 

the pragmatic approach of using expert judgment and fuzzy sets could be used 

to identify and quantify project risks associated with cost, schedule, and 

performance estimates. The five likelihood and consequence membership sets 

provided a reasonable and practical level of granularity. The values of the 

trapezoidal membership sets were easily modified to reflect the range of values 

used in the example radar development project.
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CHAPTER 11 

CONCLUSIONS

Cost, schedule, and performance are regarded as the "magical" 

combination that is continuously reviewed by project managers throughout the 

life cycle of their projects. These three factors form the basis for project control. 

Therefore, to achieve project success, each of these factors must be understood 

and properly estimated. This research effort was focused on the identification 

and quantification of project risk associated with the estimation of cost, schedule, 

and performance. The risk model developed using fuzzy membership sets 

identified and quantified project risks associated with all three of the project 

parameters. Although the literature indicated that a few researchers have 

addressed cost or schedule, their efforts have not addressed the combination of 

cost, schedule, and performance. The key to the success of the development of 

the model in this work was largely attributed to the implementation methodology 

that included the combination of fuzzy logic and project risk analysis.

Specifically, the model used fuzzy logic to address risk likelihood and the 

resulting potential consequences for the project estimates.

Since the risk model developed in this research effort is the only known 

tool that can capture total project risks due to cost, schedule, or performance 

estimates, it provides a unique practical method to assess project risk. The 

model also provides a tool to capture risk management corporate policies from 

subject-matter experts using fuzzy membership sets.
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The fuzzy logic risk model implemented using MATLAB was demonstrated 

and evaluated using Monte Carlo simulations. The evaluation showed that the 

model consistently identified project risks based on a variety of likelihood and 

consequence inputs.

11.1 Contributions

The model developed in this research contributed to project risk 

identification and quantification by providing:

1. A structured methodology to capture corporate risk policies using fuzzy 

membership sets.

2. A methodology to represent imprecise linguistic variables and an 

interpretation of the results of the fuzzy sets.

3. A practical seamless method to transition between varying levels of 

project risk.

4. A framework that can be easily adapted to achieve required risk 

identification and quantification granularity.

5. A consistent tool to identify project risks based on individual cost, 

schedule, or performance estimates.

11.2 Further Research

This research effort concentrated on the identification and quantification of 

project risks due to cost, schedule, or performance estimation. In the future the
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research should be conducted on actual projects and collected data. The 

collected data can be correlated with actual project results to further demonstrate 

the utility of the model.

The research treated cost, schedule, and performance independently and 

did not address any of the dependent project parameters. Further research 

efforts should also focus on the correlation between project parameters.
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APPENDIX A 

REGRESSION ANALYSIS

The purpose of regression analysis is to improve our ability to predict the 

next “real world” occurrence based on historical data. Regression analysis is 

defined as the mathematical nature of the association between two variables.

The association is determined in the form of a mathematical equation. The 

equation provides the ability to predict one variable on the basis of the 

knowledge of the other variable. The variable whose value is to be predicted is 

called the dependent variable. The variable about which knowledge is available 

or can be obtained is called the independent variable. The functional relationship 

can be described graphically (on a common X-Y coordinate system) by a straight 

line and mathematically by the common form: 

y = a + bx

where y = (represents) the calculated value of y - the dependent 

variable 

X = the independent variable

b = the slope of the line, the change in y divided by the 

corresponding change in x 

a and b are constants for any value of x and y
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A.1 Curve Fitting

There are two standard methods of curve fitting. In one method the 

analyst plots the data and fits a smooth curve to the data. This is known as the 

graphical method. The other method uses formulas or a “best-fit” approach 

where an appropriate theoretical curve is assumed and mathematical procedures 

are used to determine the “best-fit” curve. This is known as the Least Squares 

Best Fit (LSBF) method. The simplest model to handle is the straight line.

The LSBF method specifies the one line that best fits the data set. The 

method minimizes the sum of the squared deviations of the observed values of Y 

and calculated values of Y. For example, if the distances: (Y i. Yci.), (Yg - Yc2)> 

(Y3 - Yea), (Y4 - Yc4), etc., parallel to the Y-axis, are measured from the observed 

data points to the curve, then the LSBF line is the one that minimizes the 

following equation (see Figure A.1):

(Yi - Yci)' + (Y2 - Yc2)" + (Y3 - Yea)" + ... + (Yn - Ycn)"

y

X

Figure A.1. LSBF Line.
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The sum of the deviations from the observed value of Y, and the 

calculated value of Y - Yc squared, is a minimum; i.e., (Y - Yc)^ is a minimum. 

This same distance, (Y - Yc) is the error term or residual. Therefore, the LSBF 

line is one that can be defined as:

lE^ is a minimum because I  (Y - Yq)̂  = lE^

For a straight line,

Y = a + bx 

and, with N points,

(Xi,Yi.), (%2 , Yg), (X3 , Y3) , ... (Yn, Yn)

The sum of the squares of the distances is a minimum if, 

lY  = AN + BIX and 

IXY = AIX + BIX^

The arithmetic mean is the sum of the values of the independent variable 

divided by the number of observations or IX/n = .r and the sum of the “Ys” 

divided by the number of observations or lY /n = y . The parameters, a and b,

define a unique line with a Y-intercept of a and a slope of b. The values needed 

to solve for a and b, are shown in the spreadsheet below.
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X Y X*Y X^
Xi Yi X i 'Y i X / Yi"
X2 Y2 Xg'Yg X2" Y2"
X3 Y3 Xa'Ys Xa"" Y3"

- - - - -

- - - - -

IXn lYn KXn ' Yn) SXn" lYn"

Table A.1. Sums, Squares, and Cross Products

A.2 Correlation Analysis

The LSBF regression equations are used to determine goodness of fit. In 

order to make this determination, a check is made for the goodness of fit, the 

coefficient of correlation (R), and the related coefficient of determination (R^).

One indicator of the “goodness” of fit of a LSBF regression equation is 

correlation analysis. Correlation analysis considers how closely the observed 

points fall to the LSBF regression equation. The assumption is that the more 

closely the observed values are to the regression equation, the better the fit.

The coefficient of determination (R )̂ represents the proportion of variation 

in the dependent variable that has been explained or accounted for by the 

regression line. The value of the coefficient of determination may vary from zero 

to one. A coefficient of determination of zero indicates that none of the variation 

in Y is explained by the regression equation; whereas a coefficient of 

determination of one indicates that 100 percent of the variation of Y has been 

explained by the regression equation.
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In order to calculate the following equation is used:

{ ^ x y - n x y f
R- =

>'■ -  >’S  y">
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APPENDIX B 

WORK BREAKDOWN STRUCTURE (WBS)
A key strategy of effective planning is to partition a project into

manageable chunks that can be individually planned estimated and controlled. 

The WBS is a powerful tool for expressing the scope or extent of a project in 

simple graphic terms. It represents the project in terms of the hierarchy of 

deliverables and services it will produce. Tasks that are contained in the WBS 

collectively describe the total project. The tasks may involve physical objects, 

services and data. The WBS provides the link between the end objective and the 

operations required to achieve that objective. The WBS starts with a single box 

at the top, which represents the whole project. The project is then partitioned 

into its components with lower level boxes.

Although the WBS is typically used for component partitioning, it is 

proposed to be used to structure the project so that associated cost, schedule 

and performance estimates can be organized. By assigning a code to each WBS 

element, tracking can be achieved throughout the project life cycle.

The WBS is a graphical tool that displays the project’s statement of work 

making it easier to understand and communicate. The WBS is employed from 

the earliest stages of project planning. The WBS supports the principle of 

management through deliverables thus providing a map of what is to be 

produced.

The WBS can be used to partition the major project deliverables into 

smaller components to improve the accuracy of cost estimates. It has been used
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to provide a mechanism for collecting and organizing actual costs. Figure B.1 

shows a high level WBS. The box at the top represents the total system and is 

referred to as WBS level 0. Lower levels describe the project components in 

increasing detail and are numbered 1,2,3, and so on. The concept of WBS is 

important as it allows the designation of the level of detail from which cost 

estimates and other project information can be organized. The lowest levels of a 

WBS represent discrete deliverable items against which project parameters can 

be measured.

Hardware
Component

Sen/icesSystem A

The Project

Hardware
Component

System B

Software
Component

Software
Component

Figure 8.1. Work Breakdown Structure
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APPENDIX C 

ACTIVITY BASED COSTING (ABC)

Allocating costs in an ABC system is no different, in principle, than any 

allocation process. The steps involved are:

1. Select the products/services about which to gather costs;

2. Assign the direct costs;

3. Examine each overhead cost associated with the product/service to 

determine if some cost driver exists that predicts the overhead cost;

4. Apply any remaining overhead using some standard basis.

Activity based costing differs from traditional costing to the extent that it 

relies on multiple activity-related bases to allocate overhead instead of allocating 

overhead based on a simple algorithmic basis.

Traditional cost systems use a two-stage procedure to assign an 

organization's indirect and support expenses to outputs. Operating expenses are 

assigned first to cost pools and second, to the outputs of the production process. 

These traditional two-stage assignment procedures distort reported costs. The 

traditional systems assign costs from cost pools to outputs using volume drivers 

such as labor, machine hours, material purchases and units produced. Since 

many indirect and support resources are not used in proportion to the number of 

output units produced, these traditional systems provide inaccurate measures of

163



the cost of support activities for individual outputs. The traditional two stage 

approach is shown in Figure C.1.

Resources

First Stage

Cost Pools

Second S :aqe

Unit of Output

Figure 0.1. Traditional Two Stage Cost System

Activity based cost systems differ from traditional cost systems by 

assigning the usage of all organizational resources to the activities performed by 

these resources and then linking the cost of these activities to outputs such as 

products, services, customers and projects. In particular, activity-based systems 

measure more accurately the cost of activities not proportional to the volume of 

outputs produced. In manufacturing processes, four categories of activities can 

be identified: unit, batch, product and facility. The ABC approach is shown in 

Figure 0.2.
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First Stage

Second Stage

Resources

Outputs

Activities

Figure C.2. Activity Based Cost System

In ABC there is a hierarchy of operations. Each level is an aggregation of 

the ones below it. Executives make decisions about the highest level, such as 

what goals to set and where to make high-cost improvement investments. 

Managers and employees working in the lower levels contribute information and 

recommendations to guide decisions at the higher levels. They also determine 

how best to implement goals within their processes or activities.

An activity is a unit of work usually done by one or more persons 

belonging to the same office, branch or other small group. Within an activity 

there are discrete tasks. Tasks are made up of even smaller units of work called 

steps.

Every activity has inputs. Inside the activity, the inputs are transformed or 

converted into identifiable outputs: a product or service, and sometimes
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information on the output. The external components of the transformation 

include the people who do the work in the activity: the equipment, methods, and 

supplies they use; and the physical environment where the activity exists.

Activities have identifiable boundaries, or starting and ending points. They 

start when people inside the transformation component gain control over inputs, 

and stop when these same people hand over control of outputs to another 

activity, or to external customers.

All activities have customers and suppliers. An activity’s intemal customer 

is another activity inside the organization that receives output or information from 

the first activity. External suppliers are people and organizations outside an 

agency that provide it with materials, information, or sen/ices.
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APPENDIX D 

FUZZY LOGIC OPERATIONS

D.1 Operations on Fuzzy Sets

Operations on fuzzy sets are similar to operations on conventional sets. 

The following relationships hold for fuzzy sets A and B (Badiru, 1992):

Equality:

A = B if and only if Ua ( x ) =  U b (x ) ,  V x e X

Containment:

A Ç B if and only if u a ( x ) <  u b (X ), V x  e X

Intersection:

UAmB(x) = min { u a ( x ) ,  u b ( x ) }

Union:

Ua w b ( x ) = max{uA(x), u b (x ) }

Complement:

Ua ( x ) = 1 -  Ua (x )

The intersection of two fuzzy sets A and B creates the largest fuzzy set 

membership values that is a subset of both A and B. While the union of two
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fuzzy sets A and B creates the smallest fuzzy membership values that is a 

subset of A and B.

D.2 Operational Properties

Operational Properties for fuzzy sets A, B and 0  are shown below (Badiru,

1992):

Distributive property;

A u  (B n  C) = (A u  B) n  (A u  0)

A n  (B u  C) = (A n  B) u  (A n  0)

Associative property:

(A u  B) u  0 = A V (B u  C)

(A n  B) n  0 = A n  (B n  C)

Commutative property:

A n  B = B n  A 

A u  B = B u  A

Idempotence property:

A n  A = A 

A u  A = A

1 6 8



DeMorgan’s law:

U (A nB )'M  =  Ua' u B’(x )

U(Au8)'(x) = UAnB'(x)

Concentration:

GON(A) =

Dilation:

DIL(A) = A°-̂

D.3 Mapping Functions

In order to graphically represent fuzzy values, the actual characteristics of 

the membership functions must be simulated over a mapping function. A 

mapping function is a graphical representation of an element as it passes 

through the continuum of membership values. The goal of the mapping function 

is to describe subjective and ambiguous estimates in a membership domain in 

the range [0,1]. The mapping function provides a means to view the progression 

of changes in the state of given variables over a membership function.
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APPENDIX E 

NEURAL NETWORKS

A neural network Is an abstract computer model of the human brain. 

Similar to the brain, a neural network is composed of artificial neurons called 

units and interconnections. A neural network is viewed as a graph with neurons 

represented as nodes and interconnections as edges. Neural networks are quite 

different than expert systems and case-based reasoning. Neural networks are 

used to create new knowledge. These systems attempt to employ the same 

leaming-through-repetition technique that humans use. Given a series of 

examples, the neural network leams by inducing pattems that distinguish the 

examples from one another. Every neuron model consists of a processing 

element with synaptic input connections and a single output. The signal flow of 

neuron inputs, x,, is considered to be unidirectional as indicated by arrows, as is 

a neuron’s output signal flow. A general neuron symbol is shown in Figure E.1. 

This figure shows a set of weights and the neuron’s processing unit, or node.

Wi

Xi

f(w‘x)►Xg

Xn

Figure E.1. Neuron with Processing Node and Synaptic Connections
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There are two kinds of artificial neurons from which most networks are 

built. The two models differ mainly in the type of data they can handle, which is 

either binary or continuous. In the first case several discrete numbers -  Xi, xa, ... 

Xn -  enter the artificial neuron as inputs. Using the biological nen/e cell as a 

neuron from other neurons, in the mathematical model, the aggregation of inputs 

is represented by the weighted sum:

net = Wi Xi + Wa Xa + ... Wn Xn 

where the “weights” Wi, wa, ... W3, which can be any real numbers, measure the 

strength of the connection of each input to the neuron body. These numbers are 

also known as synaptic weights. In an artificial neuron, a typical threshold value 

is zero, and when it “fires" the combined inputs produce an output value f(net) =

1, if net is greater than zero; otherwise, it does not “fire” (f(net) = 0). The function 

f is called the neuron’s activation function.

A continuous neuron accepts any real numbers as inputs and it can 

respond with any number between 0  and 1 as output -  a continuous range of 

values, or graded response. The activation f(net) of the continuous neuron is 

also a function of the weighted sum net. Figure E.2 shows a graph of the 

discrete neural activation function. Figure E.3 shows a graph of the continuous 

activation function.
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f(net)

r
1 , if net > 0

f(net) =
. 0 , if net < 0

Figure E.2. Discrete Activation Function

f(net)

f(net) = 1

1 + exp(-Xnet)

E.3. Continuous Activation Function

The neuron output signal is given by the following relationship: 

0  = f ( w‘ X ) or o = f ( I  Wj Xi )
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where w is the weight vector defined as:

W =  [ Wi W2  Wn ] ‘

and X is the input vector defined as:

X =  [ Xi X2 ...............Xn ] '

The function f ( w* x ) is called an activation function and its domain is the 

set of activation values, net, of the neuron model. The variable net is defined as 

a scalar product of the weigh and input vector: 

net = w ‘ X

The activation function is an analog of the biological neuron’s membrane 

potential. The neuron as a processing node performs the operation of 

summation of its weighted inputs, or the scalar product computation to obtain net. 

The activation function is used to perform the non-linear operation f(net). Typical 

discrete activation functions that are used are as follows: 

f(net) = 2
-  1

1 + exp(-Xnet)

f(net) = sgn(net) = +1 , net > 0  

-1 , net < 0

The following activation functions are used for the continuous situation:

f(net) = 1_____

1 + exp(-Xnet)

173



f(net) = sgn(net) = +1, net > 0 

0, net < 0

The back-propagation algorithm is designed to train feed-forward networks 

composed of two or more layers of neurons, and connected so that the outputs 

from one layer become the inputs to the next one. In addition, the activation 

functions of the neurons must be continuous (to allow for the use of differential 

calculus). The algorithm derives its name from the fact that the weight 

adjustments dictated by the learning rules propagate “backwards”, from the 

output layer towards the input layer. Figure E.4 shows a network consisting of 

two layers.

Uii

'22

Figure E.4. Two Layer Network
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The three neurons in the first (or hidden) layer receive inputs yi and ya, and 

respond with intermediate, or hidden, outputs ẑ , za, and Z3. These are then 

passed on to the two neurons in the second (output) layer, which transform the Zj 

into the final outputs Oi and Oa according to the formulas:

Oi = f(Sj) for i = 1, 2 

where f if the neuron's activation function; Si is the weighted sum:

Si = Vii ẑ  + Via Za + Vi3 Z3

and Vik is the weight, or strength, of the connection joining the k-th input to the i-th 

neuron. The Zj are themselves computed in a similar way, by applying f to the 

weighted sum of the inputs and ya :

Zj = f(Uji yi + Ujaya), ]=  1, 2, 3

After a given input pattern y = [yi, ya] has been processed, the network 

responds with an output vector o = [0 1 , Oa]. The response error E is calculated by 

comparing o with the desired response, which is another vector d = [di, da]. E is 

defined by:

E = (di — Oi)  ̂+ (da — Oa)̂  

that is, the sum of the squares of the local errors dk -  Ok at each output neuron.
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In the simplest case, when E is a function of only two variables, and wg, 

the error can be visualized as surface in 3-dimensional space hanging above the 

2-dimensional weight plane. Starting at any given point on this surface, there is 

one direction that corresponds to the steepest climb, or, equivalently, to the 

fastest rate of increase in error. Mathematically, the direction defined by the 

gradient of the error is a 2-dimensional vector VE whose components are 

calculated using differential calculus (partial derivatives 5E / 5wi and 6E / ÔW2). 

The error decreases most rapidly in the direction opposite that of VE, which is 

that of the vector -VE. This is the direction of steepest descent. For the initial 

weight vector w, E(w) is the error for these particular weights.

The new weight vector w is dictated by the imperative to reduce the error 

as rapidly as possible. Thus, a weight increment Aw that moves the current 

weight w along the direction of steepest descent is computed. Starting with the 

output layer, the algorithm calculates the components of Aw layer by layer. The 

“error signal” travels backwards, from output to input, enters into the calculation 

of the weight increments, from which the algorithm’s name “back-propagation” is 

derived.

The back-propagation is an efficient technique for calculating the gradient 

error in one sweep through the network, working with only one input pattem at a 

time. By reducing the error the weights are adjusted (trained) to the best 

solution.
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APPENDIX F 

GENETIC ALGORITHMS

A genetic algorithm is an iterative procedure that consists of a constant- 

size population of individuals, each one represented by a finite string of symbols, 

known as the genome. Adaptation in natural populations aims at improving the 

fitness, and therefore the chances for sun/ival, of the group as a whole. Genetic 

algorithms, on the other hand, are mostly concerned with "breeding" one 

exceptional individual, whose “genetic code” would represent the optimal or near- 

optimal solution to a problem. In order to increase the likelihood of such a 

desirable event, the algorithm gradually improves the average quality of the 

entire “generation” of potential solutions, just as in the biological case.

An initial population of individuals is generated at random or heuristically. 

Every evolutionary step, known as a generation is decoded and evaluated 

according to some predefined quality criterion, referred to as the fitness function. 

To form a new population (the next generation), individuals are selected 

according to their fitness. Selection along cannot introduce new individuals into 

the population. New individuals are generated by genetically-inspired operators. 

The most popular ones are the crossover and mutation. Crossover is performed 

with probability p between two selected individuals, called parents, by 

exchanging parts of their genomes to form two new individuals called offspring.

The strategy of a genetic algorithm is based on the mechanisms of natural 

selection and evolution. Its implementation normally requires considerable
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computing resources to store the data, automate the operations, and speed up 

the evolutionary clock. After some preliminary steps (coding, selecting the initial 

solution pool, etc.), the evolutionary plan proceeds in a cyclic fashion, producing 

a new “generation” of potential solutions after each cycle. A combination of 

chance and controlled "reproduction" will favor the development of first-rate 

solutions in the long run, perhaps after thousands of generations. There is no 

guarantee that the model will actually reach an optimal or near-optimal solution. 

The case for the plan’s eventual success rests on statistical arguments rather 

than on exact mathematical proof.

Genetic algorithms are stochastic iterative processes that are not 

guaranteed to converge. The termination condition may be specified as some 

fixed, maximal number of generations or as the attainment of an acceptable 

fitness level.
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APPENDIX G 

PROBABILITY DISTRIBUTIONS

G.1 Beta Distribution

PERT analysis is based on the probabilistic properties of activity duration

being modeled by the beta probability density function. The beta distribution is

defined by two end points and two shape parameters. The beta distribution was

originally chosen because it is a reasonable distribution to model activity times

due to the end points and shape definition. The general beta probability density

function is as follows:

f(t) = r(a + P) . 1 . ( t -a )“ - ’ (b-t)!^-’

r(a)r(P) (b -a )“*P-’

for a < t < b and a > 0, p > 0

where a = lower end point of distribution 

b = upper end point of distribution 

a, p are the shape parameters for the distribution

The mean, variance and mode of the beta distribution are shown in the 

following equations:

|i = a + (b -  a) g 
g+  P
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= (b -  a)^  og_____
(a  + P + 1)(a + P)^

m = a(P -1 )  + b ( a - 1)

a  + P - 2

G.2 Triangular Distribution

The triangular probability distribution has been used as an alternative to 

the beta distribution in estimating activity times. The three parameters 

associated with the triangular distribution are minimum value (a), mode (m) and 

maximum (b). The triangular function is as shown:

f(t) = 2(t -  a) for a < t < m

(m -  a)(b -  a)

f(t) = 2(b - 1) for m < t < b

(b -  m)(b -  a)

where the mean and variance are defined as:

|i = a + m + b 

3
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( f  = a(a -  m) + b(b -  a) + m(m -  b)

18

G.3 Uniform Distribution

The uniform distribution is used when the extremes of an activity duration 

can be estimated. In this situation the assumption is that the intermediate values 

are equally likely to occur. The uniform distribution is defined as follows:

f(t) = 1  for a < t < b

b - a

f(t) = 0 otherwise

where the mean and variance are:

|i = a + b

= (b-a)^ 

12
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G.4 Bayes Theorem

Bi, 0 2 , , Bn is the set of events forming a partition of the sample space

S, where P ( B n )  #0, for i = 1, 2, ... , n, and if A  is any event of S such that P ( A k )  ^  

0; then for k = 1, 2, . . . ,  n:

P ( B k  I A )  =  P ( B k o A )

I  P ( B i o A )
i =  1

P (B k )  P ( A  iB k )

I  P (B i )  P ( A  I Bi)
i = 1
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