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ABSTRACT

The interaction problem concerning bridges subjected to dynamic vehicle 

loading has received considerable attention. The difficulty common to a 

tremendous amount of efforts involves finding a suitable way to treat the dynamic 

coupling between the bridge and the vehicle. To be more general, skew bridges 

subjected to multi-axle vehicles are considered in the dissertation.

The vibration of orthogonally stiffened skew plates is smdied by using the pb-2 

Rayleigh-Ritz method. By minimizing the Rayleigh quotient, the natural 

frequencies and mode shapes are obtained. The dimensionless natural frequencies 

of orthogonally stiffened skew plates with different boundary conditions are 

determined. Since this problem has not been previously studied, the conventional 

finite element method is used as a comparative check. Numerical results have 

been presented here for different skew angles, edge ratios, and stiffener height- 

plate thickness ratios. The results provide rich information to better understand 

the dynamics of existing orthogonally stiffened plate structures and provide 

design information.

Then a semi-analytical method is proposed to study the vibration of the bridge 

under moving vehicles with the use of mode superposition. The response is 

expressed as the sum of the contribution of different modes. The normal 

coordinates can be solved explicitly. An iterative approach has been developed to 

treat the coupling between the bridge and the vehicle.



A general method is proposed to model multi-axle tractor-trailer type vehicles. 

As an example, a three-axle vehicle is considered. The vehicle model consists of 

two rigid mass and six wheel masses with eleven degrees of freedom (DOF), 

which include heave, pitch, and roll motions. The equations of motion are derived 

with the use of the principle of virtual work. Newmark's method is used to predict 

the dynamic response of the vehicle.

An existing highway bridge, the Walnut Creek Bridge, is considered. By using 

the pb-2 Rayleigh-Ritz method, its natural frequencies and mode shapes are 

obtained and compared with test results. Simulations are conducted for the 

Walnut Creek Bridge due to moving vehicles. The dynamic amplification factors 

are computed and compared with test results. The bridge/vehicle interaction 

problem is further discussed with examination of the effects of the bridge entrance 

and surfece roughness. In this study, different irregularities are used, including 

perfectly smooth, the measured profile at the Walnut Creek Bridge entrance, and 

four types of road surface roughness for very good, good, average and poor roads 

according to the International Organization for Standardization (ISO) 

specifications. Other fectors examined are the vehicle characteristics including 

vehicle type, axle spacing, vehicle model and speed, and the bridge characteristics 

including damping, span length and skew angle. The effect of traffic condition is 

also investigated. Further research is recommended.
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CHAPTER ONE ^

ESTRODÜCTION

The dynaniic response of stmctures subjected to various moving loads is one 

of the earliest problems in the field of structural dynamics. The interaction 

problem concerning bridges subjected to dynamic vehicle loading has received 

considerable attention. The trafSc has been increased significantly over time. 

Most existing bridges are subjected to heavier traffic than they were designed for. 

Meanwhile, with the development in construction and material areas, more 

flexible bridges with less weight have been designed and are in service. This has 

made it increasingly important for engineers to better understand the interaction 

between bridges and vehicles, and to estimate accurately the dynamic effects of 

vehicle on the serviceability of existing bridges and in the design of new bridges.

1.1 Comprehensive review of the bridge/vehicle interaction study

The importance and difficulty of the bridge/vehicle interaction (BVI) 

problem has led to a large amount of research work. Over the past 150 years, 

extensive research and experiments have been conducted to understand the bridge

' Figures and Tables o f each chapter are listed at the end o f that chapter.



dynamic response to moving vehicles. This section provides a comprehensive 

review of the research that has been done. Only some of the tremendous amount 

of work is discussed. The chronological review following provides more detailed 

references.

Various types of models have been developed for bridges. In the literature, 

bridges were modeled as a beam of single span (Timoshenko, 1922a and 1922b; 

Biggs et al., 1957; Humar and Kashif, 1993) or multiple spans (Wen and Toridis, 

1962; Palamas et al., 1985). Grillage (Tan et al., 1998; Zeng et al., 1999) or plate 

models without stiffeners (Gupta and Traill-Nash, 1980; Taheri and Ting, 1990) 

or with stiffeners (Yener and Chompooming, 1994; Green et al., 1995) were 

introduced to study the vibration of bridges. Three dimensional (3D) models were 

usually developed \&ith discrete methods such as the finite element method (FEM) 

(Bishara et al., 1993; Patten et al., 1999). The plate idealization was used only in 

studies of simple-span bridges, whereas the single-beam idealization was 

employed in studies of simple-span bridges and multiple-span continuous bridges. 

One dimensional (ID) beam representation was simple, but its limitation was 

apparent. Although ID representation was efficient to study qualitatively the 

characteristic of a bridge and to identify critical parameters for BVI study, two 

dimensional (2D) plate modeling provided more accurate representation of a 

bridge. For instance, studies have shown the importance of the torsion mode 

(Marchesiello et al., 1999), which usually would have been ignored in ID



representation. 3D modeling was more detailed oriented. The supporting 

conditions could be more easily involved, but the computation is more expensive.

Various models have been developed for vehicles as well. In earlier literature, 

moving force and moving mass approximations were considered (Timoshenko, 

1922a and 1922b; Inglis, 1934; Inbanathan and Wieland, 1987). Later on, more 

practical models, including multiple mass systems (Ginsberg et al., 1976), and 

tractor-trailer vehicle with different numbers of axles, considering planar motion 

(Gupta and Traill-Nash, 1980) or 3D motion (Wang et al., 1996), were developed. 

The most general model (Fafard et al., 1997) involved degrees of freedom (DOF) 

in three dimensions for three rigid bodies and five axles. The models for vehicles 

were improved yet more complicated. The loading could include multiple 

vehicles (Wang et al., 1996). The vehicles were usually assumed to be moving at 

a constant speed, but the braking and acceleration of the vehicles were also 

discussed (Gupta and Traill-Nash, 1980; Chompooming and Yener, 1995).

Various methods were employed, which could be categorized into continuous 

methods and discrete methods. Continuous methods included series expansion 

(Stokes, 1849; Wilson, 1973), the Rayleigh-Ritz technique (Marchesiello et al., 

1999), the Galerkin method (Nelson and Conover, 1971), modal expansion (Chiu 

et al., 1971) and the method of superposition (Gorman and Garibaldi, 1999). 

Additional references can be found in Ting and Yener (1983) and GangaRao 

(1984). Discrete methods, such as the finite strip method (Cheung and Cheung,



1972), the finite difference method (Mulcahy et al., 1979), and the FEM (Taheri 

and Ting, 1990) were used by many researchers. No method is general. Each of 

the various techniques has its limitation and advantages. Continuous methods 

have more restrictions in including details of bridge superstructures or supporting 

conditions, while they have the advantage of an overview of the dynamic 

characteristics of the structure and formulation in forced vibration. An analytical 

model treats a group of bridges. Discrete methods have advantages for free 

vibration analysis. They can be very detailed for an individual bridge. With the 

availability and popularity of commercial packages, such as the finite element 

packages, it is convenient to obtain solutions for natural frequencies and mode 

shapes of bridges. However, extreme difficulty arises in forced vibration study, 

especially interaction analysis, where the coupled forced and loading locations are 

time variant and unknown a priori. Bridge/vehicle interaction elements have been 

developed to sooth the stress for the coupling study with the use of the FEM 

(Yang and Lin, 1995; Yang and Yau, 1997).

Extensive studies were conducted to identify the parameters that have critical 

effects on the bridge dynamic response to the traffic load. The important factors 

included:

1. Vehicle parameters, which include damping in vehicle suspensions 

and interleaf friction in the springs (Eichmann, 1954; Heywood, 

1996), axle weight and spacing (Ginsberg et al., 1976).



2. Characteristics of bridge superstructures, which include dimension 

and geometrical shape, span length, number of spans, stiffening 

conditions, and supporting conditions. These characteristics were 

often represented by the natural frequencies and mode shapes of the 

superstructure. In addition, bridge damping (Swannell and Miller, 

1987) and bridge surface irregularities (Dodds and Robson, 1973; 

Wang et al., 1996) were included.

3. Initial conditions (Veletsos and Huang, 1970), vehicle speed (Tan et 

al., 1998), number of vehicles (Hawk and Ghali, 1981; Yener and 

Chompooming, 1994), traveling path (Spyrakos, 1998), and braking 

and acceleration of vehicles (Gupta and Traill-Xash, 1980).

4. Pavement irregularities at the abutments (Hopkins and Deen, 1970), 

mass ratio of vehicle to bridge, and frequency ratio of vehicle to 

bridge (Humar and Kashif, 1993),

It was concluded that the initial oscillation of vehicles (especially the initial 

displacements), matching of bridge and vehicle natural frequencies, and 

irregularities of bridge surface and approaches are most critical (Chompooming 

and Yener, 1995; Green et al., 1995).

12 Chronological review of the bridge/vehicle interaction study



The first reported research in bridge vibration appears to be the publication 

by Willis (1849). It discussed the causes of the collapse o f the Chester Railway 

Bridge and formulating the equations of motion based on the model of a point- 

mass crossing with a constant velocity on a massless but flexible beam. Stokes 

(1849) obtained an exact solution in closed form by using power series expansion 

for Willis' differential equation. Robinson (1887) extended Willis' problem by 

including the mass of the beam.

In the early 20th century, the research emphasized the seeking of an 

analytical, closed form solution. Among them, Timoshenko and Inglis have to be 

mentioned for their classical efforts devoted to vibration study of the bridge. 

Timoshenko discussed the forced vibration of a beam under a moving, constant 

force (1922a) and a moving, pulsating force (1922b). He identified important 

parameters, including mass ratio, resonance, and road surface irregularities, which 

influenced bridge dynamics. Inglis (1934) summarized the previous woric and 

proposed a mathematical treatise on vibrations, which was cited frequently.

Since the 1950s, great efforts have been put forward to studying vibration of 

bridges due to movmg vehicle loading. In 1956, the Highway Research Board 

published a bulletin that contained a survey of all the significant research to that 

time. Both analytical and experimental studies were conducted on the effects of 

dynamic loading and impact Most of the works can be found in the survey papers 

by Wright and Green (1959), Ting et al. (1975), Huang (1976), GangaRao and



Haslebacher (1981), and GangaRao (1984). To name a few, Ayre et al. 

investigated the vibration of a two-span beam under a moving constant force 

(1950a) and a moving alternating force (1950b). Edgerton and Beecroft (1955) 

studied the dynamics of continuous plate girder bridges. Suer (1955) studied the 

dynamic response of simple-span highway bridges to moving vehicle loads. Tung 

et al. (1956) summarized the highway bridge impact problems. In the 1960s, Wen 

(1960) studied the dynamic response of beams traversed by two-axle loads. Hirari 

(1963) modeled the bridge as orthotropic plates with two opposite edges free and 

the other two simply supported. With the application of high-speed computers, 

great progress was made in bridge/vehicle interaction study. Yamada and Kobori 

(1965) studied the bridge impact due to random moving vehicles. Lee (1974) 

investigated the effect of vehicle braking on the dynamic response of a single­

span bridge. Ginsberg et al. (1976) conducted a parametric study of the interaction 

of bridges and moving vehicles. Discrete methods gained more popularity in the 

1970s (Sridharan and Mallik, 1979), particularly, the finite element method (Fam 

and Trukstra, 1975; Alexandridis, 1977; Olsson, 1985). Mulcahy et al. (1979) 

applied the finite strip approach to study the dynamic response of bridge decks. 

Since the 1980s, more attention was paid to identify the parameters that have 

critical effects on the bridge dynamic response. The parameters included multiple 

vehicle loading (Hawk and Ghaili, 1981), truck suspensions (Green et al., 1995;



Heywood, 1996; Collop and Cebon, 1997), and surface irregularities (Palamas et 

al., 1985; Inbanathan and Wieland, 1987; Coussy et al., 1989).

More recently, researchers developed more accurate models for 

bridge/vehicle interaction problem. Vehicle suspensions, pavement roughness, 

bridge self-weight, and bridge construction details were included in the modeling 

(Cole and Cebon, 1992; Wang et al. 1993). Tan et al. (1994) developed a 3D 

vehicle model to study the bridge/vehicle interaction, while Collop and Cebon 

(1997) studied the effects of road-friendly suspensions. Wang and Huang (1992) 

provided a computer modeling analysis to evaluate bridge dynamic response. 

Gorman and Garibaldi (1999) employed the method of superposition to model the 

bridge deck. Marchesiello et al. (1999) modeled the bridge as a plate, subjected to 

moving vehicle with multiple DOF. The models were more reliable. It was shown 

that it is necessary to include the torsion mode in the model for sufficient 

accuracy. The simulation results of dynamic response of bridges agreed better 

with experimental results. Nevertheless, the models got more complicated and 

computational costs more expensive.

As the difficulty in treating the coupling became apparent, various techniques 

were proposed to solve the dynamic coupling between the bridge and vehicles. 

Yang and Yau (1997) developed a bridge/vehicle interaction element to solve the 

dynamic coupling problem. Yener and Chompooming (1991) formulated the



dynamic coupling for a discrete bridge model. Green and Cebon (1997) proposed 

an integral method to study the dynamic interaction between bridges and vehicles.

By reviewing the publications in the last few years, one can deduce a trend of 

the study of the bridgeVehicle interaction. More emphasis has been placed on 

proposing methods with good convergence, high accuracy, and economic 

computation to treat the vehicle/bridge interaction (Yang and Yau, 1997; Tan et 

al., 1998; Hoffineister and Sedlacek, 2000). Meanwhile, many bridge design 

codes, including the .American Association of State Highway and Transportation 

OfScials (AASHTO) Specifications (1989) and the Ontario Code (1983), have 

adopted the same impact formula in terms of the span length and firequency of 

vibration. This formula has been shown to be oversimplified and, in many cases, 

to misrepresent the dynamics involved in the bridge/vehicle interaction (Yang et 

al., 1995). Many studies suggested necessary revisions for current bridge design 

codes or traffic regulations (Carr and Moss, 1982). Considerable efforts are being 

put forward to providing more practical design codes (Fafard et al., 1998; 

Spyrakos, 1998).

13 Vibration of stiffened plates

The superstructure of a girder bridge consists of a deck, girders, and 

diaphragms. A stiffened plate is a plate stiffened by discrete elements. The analog



between a girder bridge and a stiffened plate motivates the author to employ the 

stiffened plate theory to study the bridge/vehicle interaction. The following 

section provides a brief review of stiffened plate vibration study.

The widespread use of stiffened structural elements in engineering began in 

the nineteenth century, mainly with the application of steel plates for hulls of 

ships and with the development of steel bridges and aircraft structures. With 

bending and buckling being the other two, vibration is one of the three most 

important engineering problems associated with stiffened plates in that many 

stiffened plates are designed to resist vibration due to dynamic loads. These 

stiffened elements, representing a relatively small part of the total weight of the 

structures, substantially influence their strength and performance under different 

loading conditions. Because these structural systems can be very complex, all of 

the techniques of analysis proposed have included certain approximations or have 

been restricted to certain type of systems. Although a variety of techniques have 

been proposed to study the vibration of stiffened plate systems, none is 

completely satisfactory. There exists no exact solution for a general system. The 

more general the system, the greater the degree of approximation.

All methods may be generally categorized into two groups. In the first 

category are those methods in which the plate and the stiffeners are replaced by an 

equivalent system, which is then analyzed. In the second category are those 

methods that consider the discrete nature of the stiffeners.

10



A brief literature survey reveals that the most common method used in the 

early literatiure was to replace a stiffened plate with an equivalent structurally 

orthotropic plate. The differential equation for the free vibration of a thin 

naturally orthotropic plate with uniform thickness was established by Voigt 

(1910). More than thirty years later, Lekhnitskii (1947; translation in English, 

1968) published a monograph which summarized all materials about transverse 

vibration of anisotropic plates available at that time. Since then, the problems of 

the transverse vibration of orthotropic plates have been treated in the literature 

rather extensively. Comprehensive references may be found in the book by 

Troitsky (1976). Many studies of stiffened rectangular plates have been carried 

out by using various methods such as the Rayleigh-Ritz method, the Galerkin 

method, the finite element method, and the finite difference method. Mukheijee 

and Mukhopadhyay (1986) provided a comprehensive review of related research. 

To name a few of more recent developments in vibration study of stiffened 

rectangular plates, Chattopadhyay et al. (1992) developed a so-called 

isoparametric quadratic plate bending element for free vibration analysis of 

eccentrically stiffened composite plates. The proposed elements had the capability 

to deal with plates with irregular shapes and arbitrarily located stiffeners. Palani et 

al. (1992) proposed two isoparametric finite element models for static and 

vibration analysis of plates/shells with eccentric stiffeners. The models were 

applicable for both thin and moderately thick plates by including transverse shear

II



deformations. Mukherjee and Chattopadhyay (1994) proposed a dynamic element 

method to study the vibration of stiffened plates. Economic improvement was 

shown for a given accuracy. Chen et al. (1994) presented a spline compound strip 

method, in which the displacement function was formed by revising the cubic B- 

splines with plate shape functions. Jin (1997) studied the dynamics of stiffened 

plates by using the boundary element method to treat the panel components and 

using the finite element method to treat the stiffening components. The proposed 

technique was suitable for stiffened plates with arbitrary shapes and with arbitrary 

boundary conditions. Bedair and Troitsky (1997) investigated the natural 

frequencies of concentrically and eccentrically simply supported stiffened plates. 

Barrette et al. (2000) presented a vibration study of stiffened plates with 

hierarchical finite elements with a set of local trigonometric interpolation 

functions. The stability and convenience for symbolic manipulation of the 

trigonometric functions made them potentially attractive for vibration analysis. 

Zeng and Bert (2000) extended the differential quadrature method to investigate 

the natural frequencies of rectangular stiffened plates.

Conversely, vibration studies on stiffened skew bridge are not so extensive. In 

the study of the free vibrations of skew plates with stiffeners running parallel to 

two parallel edges, the effects of the stiffeners were smeared over the plate to 

obtain an equivalent isotropic skew plate with uniform thickness (Srinivasan and 

Ramachandran, 1986) or to obtain an equivalent orthotropic plate (Naruoka et al..

12



1967; Thangam Babu and Reddy, 1971; Dokainish and Kumar, 1973). It was 

desirable to adopt a suitable technique for the combination of the plate and the 

beam. Srinivasan and Munaswamy (1978) investigated the dynamic 

characteristics of the stiffened skew plates by using the finite strip method. 

Mizusawa et al. (1979) determined the natural frequencies by using the Rayleigh- 

Ritz method with B-spline functions as coordinate functions. The problem of 

stiffened skew cantilever plates was solved by Liu and Chen (1992) by using the 

finite element method. Xiang et al. (1995) presented a formulation for the free 

vibration study of stiffened skew Mindlin plates, using the Rayleigh-Ritz method 

with Ritz functions consisting of a set of two-dimensional polynomials.

Nevertheless, no literature has been found on the vibration study of an 

orthogonally stiffened skew plate (OSSP) -  a skew plate with stiffeners running 

orthogonal to two parallel edges, as illustrated in Figure 2.1.a. An OSSP, 

however, can be found to be of practical importance in various engineering 

structures. For example, a girder bridge, constructed with a skew angle to 

accommodate the orientation of the creek passing underneath, has girders running 

parallel to two edges and diaphragms running orthogonal to the other two edges.

In the analytical study of a PSSP -  a stiffened skew plate with stiffeners running 

parallel to two parallel edges, oblique coordinates are usually employed. Such 

coordinates are capable and convenient to describe both the plate and the 

stiffeners. For an OSSP, an oblique coordinate system is convenient for the plate;

13



however, the Cartesian coordinate system is more suitable for the description of 

the stiffening elements. This introduces more difficulty and extra computational 

effort to deal with an OSSP. This has challenged the author to study the vibrations 

of such orthogonally stiffened skew plate structures, then would the 

bridge/vehicle interaction analysis be possible.

The recently developed pb-2 Rayleigh-Ritz method was proposed as an 

alternative to the conventional numerical methods. It is a full-field energy 

technique, which eliminates the need for discretization and thus a large number of 

degrees of freedom. The key to the pb-2 Rayleigh-Ritz method is the definition of 

the trial functions, which are the product of two-dimensional orthogonal 

polynomials. The basic trial functions are enhanced with boundary conditions 

(simply supported, free, or clamped). The acquired accuracy can be obtained by 

increasing the number of terms of the orthogonal polynomials. Very recently, 

Chakraverty et al. (1999), with over 150 references, gave a comprehensive survey 

of the research that has been done for vibration analysis o f various structures 

using the pb-2 Rayleigh-Ritz method. To name a few of the tremendous amount 

of work, Liew and Lam (1990) studied the vibration of skew plates. Liew and 

Wang (1993) used this method for general plate analysis. Xiang et al.(1995) 

studied the vibration of stiffened skew Mindlin plates. Karunasena et al. (1996) 

presented a free vibration study of thick arbitrary quadrilateral plates.
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The pb-2 Rayleigh-Ritz method, with the FEM as a comparative check, is 

used in the present study.

1.4 Bridge/vehicle interaction analysis by stiffened plate theory — An 

overview of dissertation

Clearly, so much research towards the solution of a seemingly well-defined 

boundary-Zinitial-value problem indicates that there is common difficulty in 

various efforts. The difficulty involves finding a suitable way to treat the 

dynamic coupling between the bridge and the vehicle. In the dissertation, the 

author uses the skew stiffened plate theory to solve the bridge/vehicle interaction 

problem.

First of all, the present work studies the vibration of orthogonally stiffened skew 

plates by using the pb-2 Rayleigh-Ritz method. The first Ritz function is defined 

to satisfy both the geometry conditions of the bridge edges and the pier supports. 

The higher terms of the 2D orthogonal functions are generated by using the 

Gram-Schmidt orthogonalization process. The total energy of the plate and the 

stiffeners is derived and expressed in terms of the 2D orthogonal functions. By 

m inim izing  the Rayleigh quotient, the natural frequencies and mode shapes are 

obtained by solving the eigenvalue problem. The convergence and accuracy are 

dependent upon the number of terms used in the truncated series. The
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dimensionless natural frequencies of orthogonally stiffened skew plates with 

different boundary conditions are determined. Since this problem has not been 

previously studied, the conventional FEM is used as a comparative check. The 

agreement between these two methods is very good. With additional favorable 

comparison with available publications, it is concluded that the pb-2 Rayleigh- 

Ritz method can provide accurate solution. Numerical results have been presented 

for different skew angles, edge ratios, and height-thickness ratios, which will be 

defined later. The results provide rich information to better understand the 

dynamics o f existing orthogonally stiffened plate structures and provide design 

information.

A semi-analytical method is proposed to study the forced vibration of the bridge 

under moving vehicles with the use of mode superposition. The mode shapes are 

normalized according to the mass matrix such that the modes are decoupled. This 

procedure results in a few uncoupled equations for the normal coordinates, which 

have explicit analytical solutions and will be solved simultaneously. The response 

is expressed as the sum of the contribution of different modes. The excitation 

from vehicle axles is assumed to be constant in a small time increment. An 

iterative approach has been developed to treat the coupling between the bridge 

and the vehicle.

A general method is proposed to model multi-axle tractor-trailer type vehicles. 

As an example, a vehicle model for a tractor with semi-trailer is developed.
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Without lack of generality, three axles are considered. The vehicle model consists 

of two rigid masses and six wheel masses with eleven DOF, which include heave, 

pitch and roll motions. The equations of motion are derived with the use of the 

principle of virtual work. Separate models are developed for AASHTO (1989) 

standard H series trucks, HS series trucks, and a so-called Rock Truck that was 

used in the bridge field test. The Newmark method is used to predict the dynamic 

response of the vehicle.

The vibration theory of orthogonally stiffened plates is then extended to study 

the vibration of an existing highway bridge, the Walnut Creek Bridge, on 

Interstate Highway 1-35 near Purcell, Oklahoma. The four-span girder bridge is 

modeled as a continuous stiffened plate with point supports at the interval piers. 

With the use of the Rayleigh-Ritz pb-2 method, the natural firequencies and mode 

shapes are obtained.

Simulations are conducted for the Walnut Creek Bridge due to a moving Rock 

Truck. The bridge/vehicle interaction problem is further discussed with 

examination of the effects of the bridge entrance and surface roughness. Different 

irregularities are used in the study, which include perfectly smooth, the measured 

profile at the Walnut Creek Bridge entrance, and four types of road surface 

roughness generated finm power spectral density function for very good, good, 

average, and poor roads according to the International Organization for 

Standardization (ISO) specifications.
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More general discussions on the bridge/vehicle interaction are conducted by 

employing the AASHTO standard trucks. The effects of influencing factors on the 

dynamic amplification factor are investigated. Those factors are the vehicle 

characteristics including axle weight, axle spacing, vehicle model and speed, and 

the bridge characteristics including damping, skew angle, and span length. The 

effect o f traffic condition is also investigated.

Further research is recommended in the last section.
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CHAPTER TWO 

FREE VIBRATION ANALYSIS OF 

DISCRETELY STIFFENED SKEW PLATES

The stiffened plate vibration problem may be solved using either the energy 

functional or the governing partial differential equations. Both approaches can be 

attempted using standard analytical and numerical techniques. Among the 

methods are the finite element method, the finite difference method, the boundary 

element method, the differential quadrature method, the Rayleigh method, the 

Galeridn method, and the Rayleigh-Ritz method. In the present study, the 

Rayleigh-Ritz technique is adopted due to its efficiency and simplicity in 

numerical complementation.

The Rayleigh-Ritz method is a generalized one of the Rayleigh approximation 

approaches. The Rayleigh method is based on the principle that a system vibrating 

in one of its natural modes interchanges its energy between its potential and 

kinetic forms without energy dissipation. By using a trial function for the mode 

shapes, which satisfies at least the geometric boundary conditions, and with the 

assumption of harmonic motion, the minimization of the difference between the 

maximum potential energy and maximum kinetic energy yields the vibration 

frequencies and corresponding mode shapes. Ritz generalized the Rayleigh
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method by assuming a set o f admissible functions with independent coefficients. 

The frequencies and mode shapes could be obtained by a similar minimizing 

procedure. The Rayleigh-Ritz method is a full-field energy technique, which 

eliminates the need for discretization and thus a large number of degrees of 

freedom. It provides upper bound solutions for natural frequencies.

The most commonly used trial functions are the beam functions, the spline 

functions, and the beam characteristic orthogonal polynomials. Among these 

functions, the beam characteristic orthogonal polynomials yield the best results 

for rectangular plates with any combinations of boundary conditions (Liew et al. 

(1998). However, their application to plates in other shapes, for instance, a skew 

plate, may not be convenient. Thus, many intensive investigations have been 

focused on the use of two-dimensional polynomials associated with appropriate 

basic functions in the vibration analysis of plates.

The key to the pb-2 Rayleigh-Ritz method is the definition of the trial 

functions, which are the product of two-dimensional orthogonal polynomials. The 

basic trial functions are enhanced with boundary conditions such as simply 

supported, free, or clamped. The point support and line support can be included 

accordingly. The accuracy and the rate of convergence of the Rayleigh-Ritz 

method depend on the choice of the basic function and the finite number of 

approximation functions. The required accuracy can be obtained by increasing the 

number o f terms of the orthogonal polynomials. Furthermore, since the
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polynomial functions allow differentiation and integration to be carried out in an 

exact way, they are also easy to be implemented in computer code, and thus the 

computational accuracy is enhanced.

2.1 Formulation for the pb-2 Rayleigh-Ritz Method

The geometry of an isotropic elastic thin skew plate with orthogonal stiffeners is 

shown in Figure 2.1.a. For free vibration, the displacement of such a plate is a 

harmonic function of time,

=  (2 .1) 

where W{x,y) is the mode shape, and o  is the natural frequency in rad/s. W(x,y) 

can be expressed in terms of two-dimensional orthogonal polynomials as

W {x,y) = f_C ,à,{x,y) (22)

where m is the total number of the terms used for desired accuracy, C, are 

independent coefficients, <i>,(x,y) are the two-dimensional orthogonal

polynomials. The starting polynomial è.(x,y) is formed by the product of 

geometric boundary expressions. Then a recursive formula is used to obtain the 

subsequent polynomials (Bhat, 1987; Liew and Lam, 1990). Although an oblique 

coordinate system is convenient to describe the skew plate, it introduces extra 

difficulty and complexity in describing the stiffeners. So the Cartesian coordinate
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system (x-y) is employed as the physical coordinate, meanwhile, a unit square 

domain (s-t) is introduced as a calculation domain for the plate.

A skew domain can be represented by three parameters a, b and , as shown in

Figure 2. La. The special case of ô =90° represents the rectangular domain. To 

generate a general set o f orthogonal 2D polynomials, the following mapping is 

employed:

X = as ̂ b t  cos(o ) (2.3)

y = brsin(<p) (2.4)

where x  and y  are coordinates for the physical domain, and s and t are mapped 

coordinates for calculation as shown in Figure 2.I.e. The relations between the 

partial derivatives are:

( l = - ( l  (2-5)a

where a comma denotes partial differentiation. The inverse transform from s-t 

domain to x-y domain can be carried out as:

s  = - ------^  (2.7)
a atan((j))

 ̂ èsin(<i))

The starting polynomial is given by
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n-l

where J~[ denotes the product of the terms. Suitable are taken for

different boundary conditions:

(1) for a simply supported edge,

r x - a  at edge x = a
o{x,y) = < y - b  at edge y  = b (2.9a)

[y - c x - d  at edge y = cx-rd

(2) for a clamped edge,

I (% -u)' at edge x = a
o(x,y) =  ̂ { y - b f  at edge y  = b (2.9b)

\ { y - c x - d Y  at edge y  = c x ~ d

(3) for a free edge,

cp(x,y) =  l (2.9c)

(4) for a single, simple point support in the plate domain at (xg, Vg ),

9  >•) = (^ -  ̂ 0 )* ^  O' -  yo f  (2.9d)

(5) for a simple line support in the plate domain zi y  = c x ~ d ,

<D{x,y) = y - c x - d  (2.9e)

The starting polynomial 6,(x,y) is first transformed into s-t domain aso,(s,r). 

After forming o, (s,/), the other functions can be obtained as

<j),(s,r) = (s-aj.)i>:(5,t) (2.10)
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Applying the Gram-Schmidt orthogonalization process gives

(2.11)

where 6 is the Kronecker delta function.

Multiplying Equation (2.10) by 02(5,?) and integrating in the plate domain 

results in

Similarly, the recursion formula for higher terms (m >3) can be derived as:

9m {s, 0  = /m (f, Ï )i>; {s, 0  -  Î Î  (5 , 0  (2.13)
/=!

with

"mj -  hTi : r i  :

where is ± e  generating function, m = ^^-rl, ...

and p  is the degree of the polynomials. For example, the first six generating 

functions are:

/,(5 ,/)= l,fo r  p  = 0, 

f2{s,t) = s, /3(5,r) = / ,f o r /?  = 1,

= f^{s,t) = st, f^{s,t) = t^ ,iox p  = l .

24



After the necessary functions are generated in the s-t domain, they could be easily 

transformed into the x-y domain.

2.2 Minimization of the Rayleigh quotient

The original Rayleigh method is based on Rayleigh’s principle, which can be 

stated as (Rao, 1995)

The frequency o f vibration o f a conservative system vibrating about an 

equilibrium position has a stationary value in the neighborhood o f a natural 

mode. This stationary value, in fact, is a minimum value in the neighborhood o f 

the fundamental natural mode.

For an iV degree-of-freedom system, the kinetic energy T is given by

T = - ÿ fM x
2 (2.15)

and the potential energy U is given by

U = -x ^ K x
2 (ZI6)

with M  and K  being the system mass and stif&ess matrices, respectively, x being

the displacement vector of the generalized coordinates, and ( /  denotes the 

transpose.

To find the natural frequency of the mode <ùj , one assumes harmonic motion
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x{t) = X je '^ - ‘
(2.17)

with Xj being the exact real eigenvector.

Then the maximum kinetic energy is

( , i s )

and the maximum potential energy is 

U ^ = - X ‘KX.
J  J

2 ' ' (2.19)

For a conservative system, . By equating Equations (2.18) and (2.19),

one has

'  X ]M X j (2.20)

The right-hand-side of Equation (2.20) is known as the Rayleigh quotient.

When applied to continuous systems, it is convenient to leave the quotient 

expressed in terms of energies. For convenience, define 7%̂  as

TTf _ atax
(2.21)

The Rayleigh quotient can then be expressed as .

According to Rayleigh’s principle, the Rayleigh quotient is minimized to 

provide a minimum value of the natural frequency. The original Rayleigh method
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gives an upper-bound approximation of the lowest natural frequency. Detailed 

proof was given by Newland (1989), for example.

In the Rayleigh-Ritz method, the approximate modal function w(x,>‘) is 

chosen as

Rayleigh quotient is then

2 _ ^aux(Q '^2’—)CO-

(2.22)

^aix (Q ’ ̂ 2 ’—) (2.23)

which can be rewritten as

(2.24)

Differentiating with respect to C,- gives

** a ;  (2 js )

According to differential calculus, co is a minimum when

5C, (2.26)

which occurs when

- o j - £ ^  = o
5C, ÔC. (2.27)

Finally we have
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5C, (2.28)

which frequently appears in technical papers with Rayleigh-type methods.

23  Eigen solutions for vibration of an OSSP

The total energy of a stiffened plate is the sum of the total energy of the plate 

and that of the Bemoulli-Euler beam stiffeners. By assuming N'x X-type 

(perpendicular to x-axis) stiffeners (with and A^) and Ny Y-type

(perpendicular to y-axis) stiffeners (with p , £,,, /  , ,  and Ay ), the strain energy U 

and the kinetic energy T of the system can be expressed as:

U = U y ^ L \  (2.29)

T = T^^T^  (2.30)

with, for a thin plate of isotropic material,

^'p "  I J t  k  ^ ^  2v [w^Wyy )-r 2(1 - V  )w ; ]s6a/y (2.31)
Ox ^

(232)
,=I -  ;=I -

T p = ^ ^ ^ w ‘dxdy (2.33)
Qx -

28



(2-34)
i, -  :=: i, -

where p is the density of the plate, h is the plate thickness, v is the Poisson’s 

ratio, and D is the plate flexural rigidity given by 

Fh^

with £  being the Young's modulus of the plate.

Substitution of Equation (2.1) into Equations (2.31) to (2.34) yields

-2 (1 - vK^1&A- (2.36)

.  1 Vv

I 4" 4  ;  1 1 f 6  (2.37)
“ 1=1 1 — 1=1 '

(2.38)

n »  = | “ i  f . j p . ' i . ’r '  , . . d y ^ f , \ p , A , W ^ \ . , d x  (2.39)

Substituting Equation (2.2) into Equations (2.34) to (2.39) gives

= y  +  2 ( l  - V i
2  ̂1=1 ;■=! y

(2.40)
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I 0-41)

* = i  i  ,  ' = )  y = i  J

r , «  = ^ a  = ff p /.£ tc ,c ,ç .,ç ,* r fv  (2.42)
a, ;=:

%jP.4ÎÊcC,«.G,_A 1

" T .  (2-«)
■  ^Zjp.-4ZZcA#_.,.&'

 ̂ i=! i,, 1=1 >=! j

Applying the Rayleigh-Ritz minimization procedure to the difference between the 

maximum strain energy and the maximum kinetic energy with respect to the 

independent coefficients Q

■ ( ’̂nsax - ^ )  = 0, : = 1,2,...,m (2.44)
dC

leads to the eigenvalue problem

=0 (2.45)

where

n r  y - j f n  I ,  ,

+ 4 4 i  I "  4 4 1  j *
*=U. *=’‘4

(2.46)
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M,. =
.V, ■■

P , 4 Z  4 " ! - P j 4 Z j 9 '9 ;  . àx (2.47)
£1̂ *=‘ i, ' *=’•

or

KC =(ù'M C  (2.48)

where C = {C,,..., C„ .

Apparently, AT and M  are symmetric matrices. Eigen-solutions of Equation 

(2.45) provide the natural frequencies and mode shapes of the orthogonally 

stiffened skew plates.

To minimize the truncation error introduced in numerical computation, the 

double integral in the skew domain is carried out by transforming it into the 

calculation domain, while the single integral is carried out in the x-y physical 

domain. The mapping relations are as follows:

fr T:jcrYy\a -V a

(*)
X

i lol " - p '  cosô(9 ,^ô^^, .1̂ ' (cos*Ô sin- ô)(è,.^ô^,,

U 2 u -(U c o s* q  -vsin'ô)i),^,<i)^^, -2ucosq((i),^,ô^.^ j

(2.49)

= pu* sin(<i) (2.50)
n.

with u being the edge ratio and defined by u = 6 /a .
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2.4 Normalization of the eigenvectors with respect to the mass matrix

All the eigenvectors form the modal matrix, which is denoted by V. The 

column of the modal matrix Vj is the eigenvector corresponding to the mode. 

Equation (2.48) can be rewritten as:

KVj = a ‘MV^ (2.51)

Multiplied by , Equation (2.51) becomes

(2.52)

Similarly,

V^KV_=(ù-VjMV: (2.53)

Take the transpose of Equation (2.52)

VfK^V.=(0-VlM^V.  (2.54)

Since K  and M  are symmetric,

K ^ = K , M ^ = M  (2.55)

Subtraction Equation (2.54) from Equation (2.53) gives

( c o ; -o -y / .W '=0 (2.56)

thus

F/A /F =0 for i î t y  (2.57)

32



Similarly,

V j K V ^ = Q î o x i ^ j .  (2.58)

Finally, if / = 7 , we let

(2.59)

Vl KV. =K:  (2.60)

Equations (2.57) to (2.60) define the orthogonality of the eigenvectors of 

Equation (2.45).

The eigenvectors can be normalized with respect to mass as:

V lM V .= \ (2.61)

=co; (2.62)

with

K = (2.63)

2.5 Convergence of solutions

The results converge differently for various boundary conditions. Skew plates 

with cross central stiffeners with boundary conditions as shown in Figure 2.2 

were taken to study the convergence. A dimensionless natural frequency is 

defined as:



“ • ÿ v f

A Poisson's ratio of v =0.3, o =50°, b! a = \ ,  f j h = A  and ejh = l have been 

used in the computation. The stiffeners in a plate are assumed to have the same 

geometry and share the material properties with the plate. Tables 2.1 to 2.3 

provide the convergence patterns of the lowest six dimensionless natural 

frequencies Cl for CFFF, SFSF, and FSFS (C—Clamped, S—Simply supported F- 

-Free, see Figure 2.2) stiffened skew plates. It is apparent that more terms are 

required for higher frequencies. The convergence study indicates that p = \0 is 

necessary for the lowest six frequencies to converge. Thus ^  = 10 is used in 

subsequent frequency calculations to ensure the satisfactory accuracy of the 

solutions.

A general finite element code, Pro/MECHAMCA, by Parametric Technology 

Corporation, was used to perform the modal analysis. The plate was represented 

by triangular and quadrilateral shell elements, while the stiffeners were 

represented by two-node beam elements. The function AutoGEM was used with 

Multi-Pass adaptive convergence method. AutoGEM automatically generates 

elements that provide accurate results when Pro/MECHANTCA analyzes the 

model. By using Multi-Pass, the structure engine performs calculations and 

increases the polynomial order for each element edge until the difference in the 

results of the last two calculations is within the convergence percentage specified
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A frequency convergence of 1% was specified for the lowest ten natural 

frequencies. Actually it turned out that the lowest six frequencies converge within 

0 . 1%.

Close agreement can be found between these two methods (see Tables 2.1 

through 2.3).

2.6 Numerical results and discussion

To better understand the vibration characteristics of OSSP structures and to 

provide useful information for design of such structures, the lowest four 

dimensionless natural frequencies of two typical OSSP, with one central stiffener 

(see Figure 2.1.a) and with cross central stiffeners (see Figure 2.2), are discussed. 

For comparative purposes, corresponding skew plates without stiffeners are 

included. Three different types of boundary conditions, i. e., CFFF, SFSF, FSFS, 

are studied. For each boundary condition, studies were conducted to investigate 

the variation of the natural frequencies with skew angle o , edge ratio bja,  and 

height-thickness ratio / / A .  In all calculations, the stiffeners were assumed to be 

the same in each OSSP, and with e/A = 1. The eccentricity of the stiffeners was 

considered.

2.6.1 Frequencies vs. skew angle o



Figures 2.3 through 2.5 present the frequency variation with skew angle è for 

CFFF, FSFS, and SFSF skew plates with no stiffener (a), with one X-type 

stiffener (b), and with cross stiffeners (c). The ratios 6/u = 1 and //A  =4 are 

assumed. The reason for the selection of a ratio /  /A = 4 will be apparent in the 

discussion of the effect of ratio f j h .

Figure 2.3.a presents the results obtained by using the pb-2 Rayleigh-Ritz 

method and the finite element method. They are compared with Leissa’s (1969) 

results that were obtained by Claassen (1963). Very good agreement is shown. It 

can be concluded that the present study gives accurate results.

For the CFFF plates, the effect of stiffeners is apparent. The introduction of 

stiffeners increases the frequencies. The second mode is more sensitive to skew 

angle than other modes. For FSFS and SFSF plates, the effects of stiffeners and 

skew angle are slight, while the effects are more substantial on higher modes.

1.62 Frequencies vs. edge ratio bja

Skew plates with different stiffener distributions as (a), (b) and (c), with 

0  =45 ' ,  f f h  = A, and various bja axe considered. The variation of frequencies 

with edge ratio b/a is plotted in Figures 2.6 through 2.8 for CFFF, SFSF, and 

FSFS plates respectively. The trends of the frequency variation vs. edge ratio are 

similar for the boundary supports CFFF and FSFS. As the edge ratio gets smaller.
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the frequencies increase significantly. However, this is not seen in SFSF plates. 

This difference is because of the geometry and the supports of the plates. The 

constraints are in the longer edge. When the plates get narrower, the twisting 

constraint or stiffening effect gets much more significant and increases the 

frequencies substantially. Meanwhile, in SFSF plates, the longer edges are free. 

The bending modes are more critical. Compared to the other boimdaiy conditions, 

SFSF plates have lower frequencies. Again, the figures show that the introduction 

of stiffeners has less effect on lower modes.

2.63 Frequencies vs. height-thickness ratio f  jh

Skew plates with different stiffener distributions as (b) and (c) and with 

h/u = 1, 0  = 45’, and various / jh  are considered. The variation of frequencies 

with f j h  is plotted in Figures 2.9 through 2.11 for CFFF, SFSF, and FSFS 

plates, respectively.

It should be noted that a ratio of / /A  > 6 is not practical, where local buckling 

would be a problem. Here buckling is not considered. Ratios up to 10 are 

considered for the purpose of showing the trend of frequency variation.

Figures 2.9 to 2.11 show that for / //z  < 2 , the introduction of stiffeners does 

not affect the frequencies significantly. They are close to those of the 

corresponding skew plates without any stiffeners (This clarifies the reason for
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choosing f j h = A  in the other parameter studies). It is because the stiffeners 

occupy only a small part of the total weight They provide the structure with more 

stiffiiess effect than mass effect For those boundary condition sets considered in 

the present study, the effects of Y-type stiffeners are more significant than those

of X-type stiffeners. The frequencies vary slightly with f j h  for plates with X- 

type stiffeners, except the second mode of CFFF plates. However, for those plates 

with cross stiffeners, the variation is more apparent.

2.7 Summary

The free vibrations of orthogonally stiffened skew plates are extensively 

investigated. The parametric study indicates that the light-weight stiffeners 

provide more stiffiiess effect than mass effect to a structure. Usually, the stiffeners 

have larger effect on higher modes. Skew plates with various shapes (different 

skew angle and edge ratio) are discussed. Relatively higher frequencies are 

observed with higher skew angle or smaller edge ratio. The effect of the geometry 

of the stiffeners is investigated by varying the height of cross section. Deeper 

stiffeners provide more stiffiiess.
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Figure 2.1: (a) Skew plate with a stifTener orthogonal to two parallel edges (OSSP);
(b) Skew plate with a stifTener parallel to two parallel edges (PSSP);
(c) Square calculation domain.

CFFF FSFS SFSF

Figure 2.2: Skew plates with cross stiffeners and various boundary conditions 
(C-clamped, F—Free, S-Simply supported)
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Figure 23: Variation of frequency vs. skew angle ({> for CFFF plates
( — pb-2 Rayieigh-Ritz; FEM)
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Figure 2.4: Variation of frequency Q vs. skew angle (j> for FSFS plates
( — pb-2 Rayleigh-Ritz; — FEM)
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Figure 2.5: Variation of frequency H vs. skew angle (j> for SFSF plates
( — pb-2 Rayleigh-Ritz; FEM)
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TABLE 2.1: Convergence of dimensionless frequency H for CFFF skew

plates with cross stiffeners

p Mode
1 2 3 4 5 6

2 1.4153 2.6118 7.1550 11.5535 14.5985 69.3942
3 1.3722 2.5693 6.0096 9.4408 11.0088 18.7626
4 1.3549 2.5434 5.2211 8.5829 10.4502 15.7487
5 1.3401 2.5239 4.8302 8.2372 9.0687 14.5700
6 1.3236 2.5133 4.7020 7.9459 8.8752 12.6259
7 1.3151 2.4947 4.6012 7.7127 8.8038 12.3436
8 1.3072 2.4738 4.5861 7.6281 8.7794 11.8152
9 1.3055 2.4665 4.5732 7.5240 8.7633 11.7673
10 1.3012 2.4556 4.5613 7.4867 8.7245 11.6821

FEM' 1.1756 2.5700 4.4540 6.6434 8.8848 11.8217
* 144 elements
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TABLE 2.2: Convergence of dimensionless frequency Q for FSFS skew

plates with cross stiffeners

P Mode
1 2 3 4 5 6

2 3.6996 4.8545 11.6824 20.1060 29.5365 76.2183
3 3.1878 4.8414 11.5781 14.5592 20.0899 28.0309
4 3.1865 4.6517 10.0598 14.3210 15.5468 24.6556
5 3.0533 4.6457 10.0547 12.3637 15.3689 22.9465
6 3.0478 4.5833 9.9176 12.3271 14.3879 19.0273
7 2.9792 4.5786 9.8965 12.0272 14.3549 18.2036
8 2.9775 4.5466 9.8440 11.9685 14.0032 17.9742
9 2.9548 4.5435 9.8238 11.7575 13.9768 17.1225
10 2.9545 4.5328 9.7649 11.7258 13.8278 17.0623

FEM’ 2.9424 4.3001 9.5528 11.1750 13.4463 19.0114
* 144 elements
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TABLE 23: C onvergence of dimensionless frequency O for SFSF skew

plates with cross stiffeners

P Mode
1 2 3 4 5 6

2 3.7337 6.3725 9.2113 20.6470 23.6733 57.3194
3 3.7233 5.3915 9.1260 12.0063 21.2051 23.3553
4 3.4608 5.3192 8.5857 11.9450 19.1594 21.2865
5 3.4512 4.1983 8.5319 9.6277 19.0060 19.9421
6 3.4032 4.1594 7.8617 9.5745 15.9686 19.7275
7 3.3949 3.9975 7.8401 9.2607 15.9177 17.7181
8 3.3811 3.9899 7.6273 9.2485 15.4685 17.7036
9 3.3768 3.9330 7.5712 9.0959 15.4170 16.8274
10 3.3758 3.9302 7.5712 9.0931 15.3651 16.6208

FEM’ 3.2994 3.8556 7.2715 8.8807 14.4896 15.9862
* 144 elements
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CHAPTER THREE 

TRANSIENT VIBRATION ANALYSIS

Both analytical and numerical methods can be used to find the transient 

response of a system to an arbitrary excitation. Some of these methods are 

convolution integral, Laplace transformation, and numerical integration of the 

equations of motion. In a discrete system with finite number of DOFs, numerical 

integration is extensively used. When the bridge is modeled as a continuous 

system with infinite number of DOFs, the convolution integral is widely used. 

Green (1990) proposed an analytical technique to solve for the transient response 

of a continuous bridge subjected to moving vehicle excitation. The equations of 

motion of the bridge were written in a certain form. The present study proposes a 

semi-analytical method with mode superposition to find the transient response. In 

the proposed method, a few uncoupled equations need to be solved. The need for 

the convolution integral, which requires large computer storage space and 

computation time, is eliminated.

In a discrete system, the equations of motion are decoupled by the modal 

matrix to obtain the solution of forced vibration in terms of the normal 

coordinates of the system. In this section, the mode superposition technique is 

applied to continuous systems by expanding the deflection in terms of the normal 

modes of the system. Under certain initial conditions, only one mode is excited
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w{x, y , r) = FT (x, y (3.1)

where PF.(x,y) is the undamped mode shape for the y* mode, normalized with 

respect to the mass matrix. By representing the solution to the general problem in 

terms of fVj{x,y)

A x ,  y, 0  = S  yyjj (0 (3 -2)

where (/) is the response of the normal coordinate and N„, is the number of 

modes employed in the approximation.

The generalized coordinate qj{t) can be determined from Lagrange's 

equation by first establishing the potential and kinetic energy in terms of the 

generalized coordinate q̂  (f).

With Equation (3.2), Equations (2.15) and (2.16) can be rewritten as

^  (=1 — 1=1 y=l

= = 7 Z Z « . ? , (3.4)
“■ 1 = 1 Jb\ — :*I y=I

To consider the damping of the system, the damping matrix is expressed as a 

linear combination of the mass and stiffiiess matrices:

C =cuW -rgk (3.5)
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where a  and (3 are constants which are identified from modal tests. This type of 

damping is known as proportional damping or Rayleigh damping. Then 

Rayleigh's dissipation function R can be defined as (Rao, 1995)

^  /=I J = \  ^  (=I y=I

The virtual work due non-conservative force, namely, the tire forces P{x,y,t) is

S PT = JJ P{x, y, î^wdxdy = j j  P{x, y, t ) ^  (x, y'^q^dxdy
n. Ox

= I I  {x,y)dxdy = ^ 5 q j Q j  (r)
y=i n,, y -

(3.7)

thus the generalized force is

Qj (r) = j j P{x, y, t)W (x, y)dxdy, / = 1,2,..., N„ (3.8)
Ox

When the excitation is the tire force applied at point {xj-,y j- ),

P{x, >-,0 = 5 (.t -  X X ̂  (y -  )p(xf, y  (3.9)

one has

Qj{^)=P/(xf ,y/ .^yf^j (xf,yf ) ,  y = i,2,...,.v„ (3.10)

Lagrange's equation, in this case (Rao, 1995), can be written as

dt'^oqj) oqj oqj c q . 

which gives
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= j  = \ X - , N ,  (3.12)

By writing

(3.13)

where is the modal damping ratio for the normal mode. Equation (3.12) can 

be rewritten as

Rj (0 4 j = Oj {t) (3.14)

It can be seen that each of the .Vn equations represented by this expression is 

uncoupled from all of the others. If the damping matrix is not proportional, the 

equations of motion would be coupled by the damping matrix, and the equations 

must be solved simultaneously. The solution of Equations (3.14), when < 1, 

can be expressed as

9; (0 = c o s (0 ^ ./)^ -4 ^ s in (o ^ ./)  i*y(0)
_ (3.15)

-r —  sin(<D, ̂  t)q. (O)+ —  {  (x  ̂s in ^  ̂   ̂{t -x  )]tfx

where

For constant Oj, the integral in Equation (3.15) can be carried out explicitly as
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= k .y  - e^'* ' Ï j(^j sin(o,./)-cû,.^. cos(o,./)]
qj(ùj

(3.16)

In the case in which the generalized forces are not known a priori, an iterative 

procedure is necessary. Provided the normal coordinates and their associated 

velocities in an earlier time step, with the generalized forces predicted, the normal 

coordinates and the corresponding velocities can be obtained by Equation (3.15). 

The solved normal coordinates and velocities are initial conditions for the next 

time step. The generalized forces for the next time step will be predicted by 

exciting the vehicle with the updated deflection and velocity of the bridge. This 

procedure is referred to as an explicit technique here.

Green (1990) proposed an alternative way to analyze the forced vibration, by 

using a convolution integral. The dynamic behavior of multi-span continuous 

bridges is governed by (Xewland, 1989),

m {x ,y y ^ x ,y , t ) ^  C {vv{x,y,r)}-i- = f{x ,y , t )  (3.17)

where m{x,y)  is the distributed mass per unit area, I  is a differential stiffiiess 

operator with respect to the spatial variables, C is a viscous damping operator 

with respect to the spatial variables, and f { x ,y \ t )  is the force transmitted by the 

vehicle onto the bridge.
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It can be shown (Newland, 1989) that the response of a system governed by 

Equation (3.17) to an input applied at a specified position on the

bridge, (x ̂ , y ^ ), is given by the convolution integral:

= h{x, y,Xy, y'r , t - z  )/{x, y,z ')dz (3.18)

where h{x,y,Xj.,y is the impulse response Junction at position (x,y) for an 

impulse applied at position (xy,y,.). Therefore, to solve Equation (3.17), the 

appropriate impulse response functions need to be determined.

Equation (3.14) described the response of the system in mode j .  For each 

mode, the modal impulse response Junction, hj{t), can be determined by setting 

Oj {t) = 5 (r), where 5 (r) is the Dirac delta function. By doing so, one obtains: 

q. {l)*iija,qj (fhajqj  (0 =  5 (l) (3.19)

Solving Equation (3.19) results in a special case o f q ;(t), namely 

which could be expressed by:

hj (t) = sin(o^ / )  (3.20)

when < 1.

The impulse response function for the bridge can be expressed in terms of 

mode shapes and modal impulse response functions hj{t) as (Green, 1990);
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h[x, y ,x^ ,y^ , î ]  = ' (̂s>j (x, y ^ j  [xy ,y^)hj (r) (3.21)
y=i

The forcing function for a vehicle with N/ tires can be described in terms of 

the dynamic tire loads

/ { x ^ ,y ^ , i )=  ^ 5 ( x y - x , ^  (y/ (3.22)
k=l

where (x^,y\) is the position of the Ic'̂  tire force. The forcing function is zero 

except at the position of contact points, where it is equal to the instantaneous tire 

force Fi(/).

Substimting Equations (3.19) to (3.22) into the convolution integral, Equation 

(3.18), yields:

w(x, y, r) = £  ̂ 0 , (x, >-)J' h„ (f- :)(). (x* (x \  y* (x ) X  ( 'K : (323)
ksl n=l

Compare these two techniques, the advantages of the explicit one are 

apparent. To use the convolution integral in the BVI problem, the coupled forces 

and the mode shapes at all contact points need to be stored. Assuming the time

n (n + 1)period is divided into -V time intervals, there will be —^ — - integrals to obtain

the time history of a single point of the bridge. Meanwhile, the calculation of the 

displacements of the contact points adds extra computational efforts. An

v (a^* i)
additional contact point requires another — --------  integrals. When there are
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more than one vehicles traveling on the bridge, the required computational time 

and computer storage space are substantially increased The author tried to use the 

convolution integral to predict the dynamic response of the bridge. The integral 

was carried out in the time domain. Unfortunately, the long computational time 

and high requirement of the computer memory allocation and storage space 

prevented the author from obtaining satisfectory results. Eventually, a frequency 

domain method was proposed by (Green and Cebon 1994) to reduce the 

computational time and decrease the necessary computer storage.

By using the explicit prediction, there are only N  computations to predict the 

normal coordinates. The normal coordinates need to be stored. However, usually 

only a few modes (five modes in the present study) are necessary to accurately 

describe the dynamic response, so the storage requirement is low. The 

displacement of a point is obtained by summing the mode shape values at this 

point, weighted by the normal coordinates. Additionally, the displacements at an 

earlier time step act as the initial conditions for the next time step; in this case, the 

problem is easier to be complimented with computer programming and saves a lot 

of computer temporary storage space. Therefore, the explicit method is used in the 

present study.
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CHAPTER FOUR 

VEHICLE MODELING AND DYNAMICS

4.1 Vehicle models

There is a w de variety of configurations o f vehicles, including the tractor 

with or without trailers and with different axle spacings and weights. The standard 

vehicles used by the American Association of State Highway and Transportation 

Officials (AASHTO) for highway bridge design are H trucks and HS trucks. They 

are designated H or HS followed by a number indicating the gross weight in tons 

of the standard truck. The H loadings consist of a two-axle truck as illustrated in 

Figure 4.1 for truck H 20-44 and for truck H 15-44. For readers' interest, "44" 

denotes the same designation as in the 1944 Edition of the design code. H trucks 

have a fixed spacing. The HS loadings consist of a tractor truck with semi-trailer 

as illustrated in Figure 4.2. The axle spacing is variable, from 14 ft to 30 f t

Without loss of generality, a tractor with a semi-trailer is modeled. For a 

tractor with a trailer, where there are more than three axles, or a H truck where 

there are two axles, a similar method can be used to obtain the equations of 

motion without difficulty.
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The body of a tractor with a semi-trailer is treated as two rigid masses, which 

represent the tractor (iVf,) and the semi-trailer (A/,). Each of them was assigned 

degrees of freedom (DOF) of vertical displacement (Z '.Z î), pitching rotation 

about the transverse axis (9 .,8 ,), and rolling rotation about the longitudinal axis 

( a . ,a ,) ;  see Figure 4.3. The supporting tire-suspension system for each axle is 

modeled as spring-dashpot system and six lump masses, each of which was 

assigned one DOF of vertical displacement (r,., i = 1...6). The points supporting 

the vehicle body are numbered as s ', i = 1...6, as shown in Figure 4.3, as well as 

the vehicle geometry.

The principle of virtual work is applied to derive the equations of motion. 

The forces include gravitational forces (M.g, M^g, m^g, z = 1...6), inertia 

forces and moments {M jZ j ,  , y = 1,2;, z = 1...6),

suspension forces ( F', z = 1..6 ), and tire forces ( f ] , z = I ..6 ) as

(4.M .6)

fy = (zy -  W (i, c, (i, -  w, k , X . ! = 1 -6  (4.7-4.12)

The virtual work done can be obtained by

S K  ♦
;=l <='. J = l  ^ ^ 2 3 )

4 £ / ^ é > , .  4- £ f,5(z; - z, ) - £ f ,5(z, -«y,) = 0
y=l J ~ l  1=1 1=1
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The displacement vector is defined in terms of basic coordinates by

■”  l ~ ;  5 - 2  » “ 3 ’ > " 5 ’ “ 6 ’ “ I ’ ” 2 ’ “ 5 }

With the constraint that three points determine a plane, the other displacements 

and rotations are related to basic coordinates as below;

= z [ - z '2 ~z\  (4.15)

Z.' = [b. -  a, )z; -r b-,z[ -r (4.16)

Z1 =d^C.z'. -r<3iC,Z.' -a^C^z'^ -Td,C.z[ -r/fg (4.17)

0 ; = ^ “  (4.18)
‘b

a . = ± Y ± 1  (4.19)

0, = (4.20)

a ,  (4.21)

where the dimensions a„ 6., c, and di (i=l,2), la, h, 4, and la are shown in Figure 

4.3. Then eleven equations of motion can be derived from Equation (4.13) as:

m / Z j  ~ ( c , .  - r c ^ ) z . - k ^ / j - k ^ W j  - c , . w .  - r m . j  =  0

y = l,...,6 (4.22-4.27)
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- a ,) z 2  -rb^z, T-a^Z;]— -z[)-k^^z,  -c,[Z; -r(Àr,g ^k^,)z[ ~

^ 4 - - 6 ) ^ b , M , g  = 0

a,cM:{d,cX,^a^cX -d.c.z .  ^g]

- z ; ) .& ( z %  _ z ; ) _ f ^ ( a , z ;  _a ,z ; ^a2z: - ^ 2%;)
Q(\ ‘k /„

^ k e  ^ , 2  ) - 2  ^ k «  ^ c,2  -  C  ̂(z.' ^ z; -  z J  -  (z.' -r z; -  z  ̂) = 0

d .c M ^ d .c . z .  - a ,c , z \  - a . c X  -rd.c.z, - z , )

CL> Igtt
- - ^ ( a . z ;  - a , z :  - a . i f ;  - a , z : ) - l ( , i h  " C ^ z ,  " ^ , 3 : 3  = 0

(4.2S)

fk29)

(4.30)

d,c,M.[d.c,z. ^a ,c {z : -a ,c ,z^  ^d ,c ,z \  - g ] - ^ ( z ;  - ; : )

- û . r '  ^ a , z :  - a , z ; ) - ^ , . z ,  - c , , i ,  ^ c , , i :  = 0

û.c,.W,[<f,c.z.; -ra.c,if: ^a,c,iî; -rrf.c.z; -^g]-% (z; -if;)
?ô

û,Af,[(è. -a ;)z :  ^é-z.; ^a,iî; ^ g ] - ^ ^ ( a .z ;  -a .z: ^a,z: -a ,z ; )
‘c

-c,jZj 4- ,̂;)z; ^(c,s +c^)z; +c^(z,; -z :  - z : - ^ J = o

(4J1)

(4.32)

63



Equations (4.22) to (4.32) can be rewritten in matrix form as:

~ -r K̂ .Z,. = Fi^-rG^ (4.33)

where M .̂, Ĉ ., and K̂ . are the vehicle mass, stiffiiess, and damping matrices, 

respectively, is the instantaneous coupled force vector at the points where the 

tires contact the bridge, and G,. is the gravity force vector. The explicit 

expressions for them are listed in Appendix I.

The parameters of the standard H and HS trucks are summarized in Tables

4.1 through 4.4.

A vehicle involved in the Walnut Creek Bridge test is Rock Truck, which 

was so called in that what it carries is rock. There is a quarry located south of the 

test site; it provides much of the gravel needed in the Oklahoma City area. The 

freight loading is considered to evenly fill the trailer to 3/4 the trailer height, 

which weighs approximately 20,000 kg. The total static weight of the test truck is 

36,320 kg. The rolling inertia of the trailer is approximately 9,000 kg-m" and 

1,500 kg-m" for the tractor. The Rock Truck is close to an HS 20-44 truck. The 

physical parameters for the vehicle are listed in Table 4.5.

4.2 Effect of rolling inertia on frequencies
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The vehicle frequencies can be obtained by solving Equation (4.33) for 

eigensolutions. The natural frequencies are compared with the test results in Table 

4.6. It is interesting to note that: 1) the introduction of rolling DOF doesn't affect 

the lowest pitch and heave frequencies, i.e. rolling is uncoupled from pitch and 

heave in low modes; 2) with relatively small rolling inertia, the rolling mode is a 

higher frequency one than a pitch or heave mode, which might not be so essential 

as the lower modes. However, when the rolling inertia is getting larger, the rolling 

frequency can be as low as second lowest, in other words, it is getting more 

critical in vehicle dynamics; 3) The rolling inertia introduced by the tractor /„, is 

not so essential as the trailer inertia is apparent is much larger than 

since the trailer is loaded with freight. Table 4.6 shows that the rolling frequency 

of the tractor usually is higher than that of the pitch/heave modes. However, the 

rolling frequency of the trailer could easily fall into the pitch/heave frequency 

range. Due to the lack of measurement of the rolling inertia, an example is taken 

here to show its magnitude. The vehicle QS-660, which is the standard vehicle for 

evaluation and design of bridges in the Canadian province of Quebec (Massicotte 

and Picard, 1990), has a semi-tractor with weight of 40,775 kg, with tractor 

weighing 9,060 kg and trailer weighing 28,994 kg (Fafard et a l,  1998). The 

rolling inertias for the tractor and the trailer are 3,020 kg-m" and 9,661 kg-m", 

respectively. The rolling rotation DOF can not be ignored since its frequency falls 

into the range of the bridge frequencies, usually in the range of 2~5 Hz.
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43 Solving the equations of motion numerically

In the bridge/vehicle coupling problem, the equations of motion for the 

bridge and vehicle must be solved simultaneously; thus, a direct integration 

method must be used to solve the equations of the vehicle. In the dissertation, the 

Newmark ^-method (Newmark, 1959) with a  = 1/6 and p = 1/2 is used. In the 

Xewmaiic P-method, the acceleration between two instants of time is assumed to 

vary linearly. It's noted that at time u, the displacement vector is calculated

first, followed by the acceleration vector Z.. . , and finally the velocity vector Z.. . . 

The resulting expressions for the displacement, velocity, and acceleration vectors 

are written as (Rao, 1995):

(4.34)

t . - ,  )2 ., a; 4- pz .,.. a; (4.35)
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-  ~ 7 .  N2  —  - i  --- ----------- (4.36)
« ( A f r " "  oAf "  I2 a

An algorithm named VehicIePack (Appendix II) has been developed to 

predict the instantaneous response of the vehicle.
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Figure 4.1: Standard H trucks
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TABLE 4.1: Properties of standard H 20-44 truck

OT, = = 250kg , = Wj = l,OOOAg, M. = 16,910Àrg, k .̂ = = 4 x 10* .V/m,

^si ~^is “ .̂'5 = 8 x I 0*.V/m, =k,(  ̂ = 2.25X10*.V/m,

c,. — c^2 =  Cj5 =  0^4 =  =  c, ,  =  c,j — — 2 x l O  A • 5/ m

/g, = 2 .4xI0 '% -m %  /g. =9xlO^Â:g-TO*, = 1.83m, = 4.27/n,

a. =1 — 0, = 0.50, 6. = 1 -  6 , = 0.65
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TABLE 4.2: Properties of standard H 15-44 truck

m. =m^= 250kg, m, = /Wj = l,OOOAg, M. = \2,6Z3kg,

^s: ~^s6 =4xlO*.V/m, =k.^ =2.25xlO '’-V/m,

k ^ 2  ~  ^ s S  ~  ~  ^ t S  — 8x 10̂  A'/wi ,

C;: = C ;2  = ^ ;<  = ^ , 6  =  = C f :  =  ^:5 = ^ ,6  = 2x10*  N ' S / m  

/g. = 1.8xlO '^g-m ‘ , Ig,. = 6.750kg • m ', =1.83/72, = 4.27m,

a. = I - = 0.50, = I — 6, = 0.65
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TABLE 43: Properties of standard HS 20-44 truck

/n, = Wj = 250Â:g, = m. = = 1,000%,

M, =3323% , =27,821%

k . = k ■ =4xlO^/V’/m, k. = k - = 2.25>c 10*.V/m,
S  • a O /  ̂ i i  i O  « ^

= % = '̂,4 = % = % = % = = '̂,5 =8x10 A/m,

= c,4 = C,J = = c,. = c,, = c,3 = C.4 = C.j = c.g =2xlO%V-s /m ,

/a: = 1 4 , 0 5 5 % /g, = 24,934%-/?z\ =1,108%-;»% = 9,274%-m%

le=lit = 1.83m, /j = 4.27m, = 4.27 ~ 9.14m,

a. = 1 — a, = 0.50, 6, = 1 -  6 , = 0.3, c  = 1 -  c, = 0.50, (f. = 1 — i/, = 0.50



TABLE 4.4: Properties of standard HS 15-44 truck

nu =m(̂  = 150kg, = m~ = = 1 ,0 0 0 ^ ,

.Vf; = l,A92kg, M-, = 20,866%

 ̂ . = i- = 4x 10* Nlm . k . = k , = 2.25 x lO" A/”/m .>♦ jO . - »0 ‘ ‘

k̂ 2 ~ ~ ^si ~ ^si ~ :̂2 ~ ~ ~ :̂5 = 8 ^ 1 0  A/m ,

= c,: = c,3 = c ,. =c,j =c.i = c ,3 = c.3 = c,, =c.j =c,g = 2 x I0 \V s /m , 

/g. = 10,541% m \  4 , =18,700% m \  4 . =831% m \  4 , = 6,955% m", 

4 = 4 =  1.83m, 4  = 4.27m, 4  = 4.27 ~ 9.14m,

a. = 1 -  <2, = 0.50, b. = I -  b2 = 0.3, c. = I — c, = 0.50, , = 1 — (/, = 0.50
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TABLE 4.5: Properties of the Rock Truck

m. 250kg, nu=m^ = 1000% , m .= m .=  194kg 

M. = 4,232%, M , = 2.8 x 10' %  

k., =k.c = 42 \.5 \0N jm . k.. = k.. = 1.854.996jV/m , k.. =k.^ =643,613A^/m 

k., = %  = 473,85l.V/m, k.2 = %  = 4,132,964.V/m, k.. = %  = 5,583,154A'/m 

Cj. = c ,j = 2,065N -s /m , c ,̂ =c,, = =c^j = 8,750iV-5/m, 

c.. = c ,5 = 437.5;V-5/'m, c,, = =c,j = 1,750.V-5/m,

4 . = 5.260kg• m~, /g, =1.26x10^% m \

4 , = 1.5xl0'’% -m ’ , =9x10"%  m'

/g = 2.29m, /j = 4.71m, = 5.84m, 4  = 2.44m

= 1 -  a, = 0.50, 6. = 1 —6; = 0.39, c  = 1 — c, = 0.48, d. = I —d, = 0.50
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TABLE 4.6: Rock Truck natural frequencies vs. rolling inertia

Rolling inertia 
(kg-m-)

Vehicle natural frequencies (Hz) 
1 2 3 : 4  5

1.63 2.28 ; 2.68 8.66 9.84

4 , =1000, 4 , = 0  1.63 2.28 2.68 7.48 9.84

4 , = 2000 , 4 , = 0 1.63 2.28 2.68 6.20 9.84

4 . =3000, 4 , = 0  1.63 2.28 2.68 5 32

4- =0, 4 :  = 3000

9.78

/ , = 0 ,  / , = 3 0 0 0  1.63 2.28 2.68 3.79 8.66
1.63 2.28 2.68 2.94 8.66

/  , = 0, /  , =  10000 1.63 2.08 2.28 2.68 8.66

4 , =1000, 4 , =3000 1.63 2.28 2.68 3.79 7.48

4 . =1000, 4 , =5000 1.63 2.28 2.68 2.94 7.48

4 . = 2000, 4 , =5000 1.63 2.28 2.68 2.94 6.20

4 , =1500, 4 , =9000 1.63 2.19 2.28 2.68 6.79
Test 1.62' 2.26“ 2.68"

'Fatten, 1997.^
' trailer pitch; “ tractor pitch; '  entire vehicle heave; - not measured.
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CHAPTER FIVE 

TREATING DYNAMIC BRIDGE/VEHICLE INTERACTION

As discussed pre\iously. there is a common difficulty in the many studies in 

finding a suitable method to deal with the kinematic coupling term, which arises 

in the mathematical formulation of the problem (Ting et al., 1975). To illustrate 

the kinematic relationship involved, consider the interaction of a bridge due to a 

moving vehicle where the system is modeled as a Bemoulli-Euler beam carrying a 

single mass particle. The governing differential equation for the beam can be 

written as

=/(% ,:) (5.1)cx ct

where is the deflection of the beam at point x and at time t, E l is the flexural 

rigidity of the beam, m is the mass per unit length of the beam, dxiàf(x,t) is the 

reaction force exerted by the mass particle mo. When the mass is at position ?(/), 

the interaction îoxc&f(x,t) can be written by Newton's second law as:

/(x ,r)  = - m o j ^ » ^ ^ - ÿ ^ j ô ( x - x )  (5.2)

Since the force is convective, i.e., the particle position is time-dependent, the 

explicit form of the second complete derivative with respect to w(x,t) is
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d 'w  _ c~w (S ^  c 'w  , f  cEc\ d‘v/ d^x dw 
d r  c r  \ d t j B x 0 t  \,dt j  ex' d r  ox

The mathematical difEculty involves dealing with the Dirac delta function and the

mixed derivative on the right hand side of Equation (5.3). By assuming that the

vehicle travels at a constant speed, the right hand side of Equation (5.3) is

simplified, but the mixed derivative can not be avoided unless the vehicle were

not moving. This is one reason why many studies are limited to the case of

moving loads with constant speeds.

To fully consider the basic kinematic characteristics, the analysis becomes 

considerably involved, which was demonstrated by Stanisic et al. (1974). As they 

concluded, the exact analytical solution is almost beyond hope. In most of the 

existing studies, the relationship described in Equation (5.3) was replaced with the 

satisfaction of the equilibrium and compatibility conditions at the interface. This 

is somehow an analog to a black box problem. What it does is more important 

than how it works that out.

Due to the various methods used, various types of governing differential 

equations have been obtained for the coupled system.

1. Coupled equations with an infinite number o f DOF for the bridge and a 

few DOF for the vehicles. They are generally obtained by modeling the 

bridge as a beam. The system is then solved by analytical methods, such
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as the infinite series expansion method. Timoshenko and Young (1955) 

gave details of early applications.

2. Coupled equations with a few DOF for both the bridge and the vehicle. 

They are normally obtained by prescribing the bridge a given mode 

shape. The system can be solved analytically or numerically without 

difficulty, due to the small number of DOF involved. More details can 

obtained by referring to Jacobsen and Ayre (1958).

3. Coupled equations with large number of DOF for either the bridge or the 

vehicle. Usually, such equations are obtained when the bridge is treated 

as a discrete system, for example, with use of the finite element method. 

The vehicle model can be very complicated, but can be expressed in a 

matrix form. The coupled equations are solved by direct time integration, 

namely step-by-step method, such as Runge-Kutta, Newmark, and 

Wilson-0 methods. Chu et al. (1979) gave all the formulas in detail.

4. Two uncoupled sets of equations for the bridge and the vehicles, 

respectively, and with the compatibility and equilibrium conditions at the 

interface between the bridge and vehicles included. The two sets of 

equations are solved separately and the interfece conditions are satisfied 

in an iterative wav.
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The first two methods can be used only when the bridge has a simple shape. 

Nowadays, sophisticated models are deemed necessary for the bridge and the 

vehicles. Hence these two methods are rarely used today.

The third method is not recommended due to some apparent inconvenience. 

For instance, a single parameter change, either in the bridge or the vehicles, 

requires an update of the whole system; the more vehicles on the bridge, the more 

coupled DOF and also the more DOF in the coupled equations for the system; etc. 

.\11 these inconveniences render the coupled equations very difficult to solve in 

view of memory allocation or computational effort.

This fourth method was first used by Veletsos and Huang (1970). Since then, 

it has been widely used. Usually these equations are solved by direct time 

integration. However, more recently. Green (1990) developed an involution 

integration procedure. Green and Cebon (1994) developed a calculation procedure 

in the firequency domain. Similar iterative methods have been used by other 

researchers. Hawk and Ghali (1981) proposed a similar procedure, called the 

"iterative dynamic substructuring method (IDSM)". They compared their method 

with solutions obtained by Runge-Kutta-Nystrom numerical integration and found 

good agreement.

The fourth technique is employed in the present study. The bridge and 

vehicle is considered as two separate structures connected at the time-dependent 

contact points. The interaction is considered in an iterative way, in which the
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equilibrium and compatibility conditions are satisfied. The input to the vehicle is 

the roughness of its travel path, or more precisely, the displacements and the 

velocities of what the tires contact. When a vehicle travels on a bridge, the input 

is the sum of the irregularities of the pavement surface and the deflection of the 

bridge. The input excites the vehicle and results in dynamic tire forces, which in 

turn act as inputs to the bridge. The bridge deflects accordingly. The interactive 

force coupled the dynamic response of the vehicle to that of the bridge. An 

iterative procedure is used to realize this, and an algorithm, BVPack (included in 

Appendix III), has been developed to simulate the interaction. The algorithm 

incorporates the equations describing the dynamics of the bridge and the 

equations for the vehicle, which are solved simultaneously in the procedure. The 

procedure for a single vehicle moving at a constant speed over a bridge is 

described as followed:

(i) Initialization of the program, including identifying the bridge and vehicle 

parameters, time increment, initializing memory allocation, etc.;

(ii) Obtain the mode shapes of the bridge;

(iii) Obtain the equilibrium conditions for the bridge and the vehicle and take 

them as the starting conditions;

(iv) The vehicle is excited by the bridge entrance profile. The tire forces at the 

entrance are predicted;



(v) With the tire forces as inputs to the bridge, carry out the computation 

described in Equation (3.15) and obtain the dynamic response of the 

normal coordinates;

(vi) Use mode superposition to obtain the displacements and velocities of the 

contact points;

(vii) Running VehicIePack to update the dynamic response of the vehicle and 

predict the new tire forces;

(viii) Steps (iv) to (vi) are repeated until the vehicle has passed over the entire 

bridge.

(ix) Compute the bridge response at an arbitrary point by use of Equation 

(3.2).

If there are more vehicles running over the bridge, a similar procedure is

carried out to simulate the interaction.
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CHAPTER SIX 

HIGHWAY BRIDGE/VEHICLE INTERACTION ANALYSIS

The dynamic effect resulting from the passage of vehicles is of most concern 

in the design of highway bridges in that it provides a measure for the dynamic 

interaction between a bridge and moving loads. To allow for such a dynamic 

effect, it is required that the static load be increased by a dynamic allowance 

factor, which is known as the impact factor. The impact factor (also known as 

dynamic index and dynamic amplification factor) reflects a ratio of the maximum 

dynamic response to the maximum static response of the bridge. Usually, it is 

defined by

/ ( % ) = ( / , - / , ) / / ,  (6 .1) 

where Id is the maximum dynamic response and Is is the maximum static response 

of the bridge.

Many bridge design codes, including the Standard Specifications for 

Highway Bridges (1989) by the American Association of State Highway and 

Transportation Officials (AASHTO) and the Ontario Highway Bridge Design 

Code by the Ministry of Transportation and Communication (1983), have adopted 

the same impact formula for various dynamic responses, and have related the 

impact factor to a single parameter of the bridge, such as the span length or
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fundamental frequency of vibration. For example, AASHTO provides a formula 

for the impact factor, which is only a function of the length of the span. The 

formula is written as

where I  is "the length in feet of the portion of the span that is loaded to produce 

the maximum stress in the member". The maximum allowance of I  is 0.3. This 

approach to design is certainly an oversimplification and, in many cases, 

misrepresentation of the complex physical phenomena involved in the vehicle- 

bridge/vehicle interactions. The literature demonstrated that the dynamic 

amplification of vehicle loads depends on a wide range of factors including the 

velocity and dynamic properties of the moving vehicle, the dynamic properties 

and supporting conditions of the bridge, and the roughness of the road pavement

Recently the use of the term impact has been dropped in some codes; the 

Ontario Highway Bridge Design Code (1983) deleted the term in 1979 and other 

countries have followed. The Australian Draft Bridge Design Specification (1987) 

uses the term dynamic-load allowance. The definition of the dynamic factor or 

dynamic amplification factor remains the same.

In this chapter, the terminology of dynamic amplification factor (DAF) is 

employed and defined as:

DAF = I J I ,  (6.3)
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The influence of various factors on DAF is extensively investigated.

6.1 Model of the bridge entrance and surface roughness

The effects of the roughness of the bridge entrance and surface will be 

examined shortly. A pavement profile may be considered as a realization of a 

random process that can be described by a power spectral density (PSD) function 

(Wang et al., 1996):

^ V‘
= ! (6.4)

where S(y ) is the PSD value (m’’/cycle) for the pavement evaluation, y is the 

wave number or the spatial firequency (cycle/m), Ar is the roughness coefficient 

(m‘’/cycle), and Yq is the discontinuity firequency, which takes the value of 1/ 2% 

(cycle/m). .According to International Organization for Standardization (ISO) 

specifications (Dodds. 1972), the roughness coefficient Ar takes the value of 

5 X10"^, 20 X10" ,̂ 80 X10"  ̂, and 260 x 10"  ̂for the classes of very good, good, 

average and poor roads, respectively.

When modeled as a stationary Gaussian random process, a sample road 

pavement profile can be generated as (Solnes, 1997)

r(x) = 2  y l-^ ifn W  cos(/,x + 0  J  (6.5)
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where N  is a large number that defines the number of the data points generated 

and is taken as in the simulation, /„ = (« -  1/2)a/‘ is the firequency, A/" is 

the fi'equency increment, which is a measure of the desired or possible firequency 

resolution, and 0 „ are random phase angles, independent and uniformly 

distributed firom 0 to 2: r .

Sample profiles according to the four classes of roads are shown in Figures

6.1 to 6.4. The roughness profiles of the bridge approach and surface are 

generated by the same procedure. The end of the bridge is assumed to be perfectly 

smooth.

62  Modal parameters of the Walnut Creek Bridge

The Walnut Creek Bridge (Figure 6.5) is located on 1-35 and crosses Walnut 

Creek near Purcell, Oklahoma. It has four spans and consists of five 122 m long 

continuous steel girders. It is supported by three sets of piers. The bridge deck is 

skewed at 45° to the longitudinal central line of the roadway. The composite 

concrete deck is 11.6 m wide, including two lanes of traffic, west lane and east 

lane, carrying north bound traffic. The lane locations are shown in Figure 6 .6 . The 

deck is stiffened with diaphragms at 6.1 m intervals. The diaphragms are 

perpendicular to the longitudinal central line of the bridge.
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In the pb-2 Rayleigh-Ritz method, the bridge superstructure is idealized as an 

orthogonally stiffened skew plate, as shown in Figure 6.7. The following features 

have been assumed:

1. The bridge deck is made of linearly elastic isotropic materials with 

uniform thickness such that the thin plate theory is valid. Shear 

deformability and rotatory inertia are ignored. Two edges are simply 

supported while the other two (the long side edges) are free.

2. The girders are continuous wide-flange I-beams without rotatory inertia 

and shear deformability.

3. The pier supports are simple point supports.

4. The concrete deck is made of high strength concrete. All steel members 

are made from high-strength, low-alloy structural steel.

5. Small deflections are assumed so that the linear strain-displacement 

relations may be used.

Following the same procedure as previously discussed, the lowest five 

frequencies are obtained and compared with test results in Table 6.1, where the 

modal damping ratios are also included. The lowest six mode shapes are 

illustrated in Figure 6 .8 . The first two modes are mainly bending. The torsion 

mode appears from the third mode. Higher modes are combinations of bending 

and torsion.
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63  The Walnut Creek Bridge subjected to Rock Truck

By using the procedure described previously, the dynamic amplification 

factors of the Walnut Creek Bridge due to a moving Rock Truck at different 

locations can be obtained. The west lane and east lane with the truck relative 

location on the bridge are shown in Figure 6 .6 . The truck is assumed to be 

traveling on the east lane at the posted speed of 29.2 m/s (65 mph) for dynamic 

analysis. For static analysis, the vehicle is modeled as six dead weights moving at 

a low speed 0.45 m/s (1 mph).

The bridge responses at the second mid-span points in the central girder (#3) 

due to static and dynamic excitation are demonstrated in Figures 6.9. Figures

6 .10.a and 6 .10.b show the contribution of various modes to the bridge response. 

Figure 6.10.a illustrates the variation of the first six normal coordinates with time. 

Those modes higher than the fifth have substantially smaller amplitudes. Figure

6.10.b shows the deflection of the fourth mid-span on the central girder (Figure 

6.7) vs. the superposition of different number of modes. The representation by the 

summation of the lowest five modes and the lowest ten modes are so close that 

the difference can hardly be distinguished. It is apparent that the lowest five 

modes are enough to describe the bridge response accurately. It is noted that the 

torsion mode appears at the third mode; thus, it is important to consider the 

torsion effect of a bridge.
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According to the impact factor formula defined by AASHTO (1989), the 

Walnut Creek Bridge, with L=\OQ f t , results in an impact factor of 0.22, or a 

DAF of 1.22. Table 6.2 lists the DAF at the four mid-span points along the central 

girder with sampled irregularities of bridge entrance and surface according to 

perfect (0), very good (VG), good (G), average (A) and poor (P) roads. It is 

apparent that the roughness results in larger bridge dynamic response. The poor 

entrance with poor surface results in the largest DAF.

In general, with the bridge entrance in the same class of roads, the roughness 

of the bridge surface causes slightly larger dynamic increment. The effect is not 

significant. With perfect entrance, the poor surface results in approximately 0.8 

percent higher DAF than the perfect surface. With poor entrance, the poor surface 

results in approximately 3.8 percent higher DAF than the perfect surface. The 

effect of the roughness of the bridge surface may be considered negligible. 

However, with perfect surface, the poor entrance results in approximately 16.8 

percent higher DAF than the perfect entrance. With poor surface, the poor 

entrance results in approximately 20.3 percent higher DAF than the perfect 

entrance. Thus, the effect of the bridge entrance roughness is noticeably more 

significant than that of the bridge surface. Many previous researchers agreed that 

the initial conditions of the vehicle affect substantially the dynamic response of 

the bridge. The effect is evident in the current study.
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Table 6.3 compares the effects of bump type and depressed type profile for 

bridge entrance. The DAF along the central girder (#3) and the east girder (#1) are 

listed. The bridge entrance profile was meastired by Patten et al. (1999). Figure 

6.11 illustrates the depressed type roughness measured (WCB). The analytical 

DAF are close to those obtained from tests. A bump type profile has been 

generated by simply revising the sign of the measured profile (-WCB). The 

bump-type profile causes larger DAF at the first and second mid-span points and 

smaller DAF at the other two mid-span points. However, the largest DAF often 

occurs at the first and second mid-span points. The bump-type profile tends to 

result in worse dynamic response of the bridge. In general, a dump-type or 

depressed-type profile yields larger DAF than the profiles generated as random 

processes.

Figure 6.12 demonstrates the bridge response at the fourth mid-span of the 

central girder, with and without the consideration of the bridge damping. The 

appearance of damping lowers the peak of the deflection.

6.4 Parametric studies of dynamic amplification factor

In this subsection, several examples are studied to illustrate the effects of 

vehicle characteristics, bridge layouts, and traffic conditions. The vehicle 

parameters chosen for the sensitivity studies include axle weight, axle spacing,
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and speed. The bridge parameters chosen are those that could be directly and 

easily retrieved from a review of bridge layouts, including span length and skew 

angle. The effects o f multiple trucks are investigated as well. In the following 

illustration, the roadway surface irregularities are excluded.

6.4.1 Effects of vehicle type and axle spacing

In this subsection, for the purpose of illustration, four standard trucks are 

chosen. The trucks are assumed to be traveling on east lane at a speed of 30 m/s. 

The minimum axle spacing of 14 ft is chosen for the HS trucks. In Figure 6.13, 

the DAF are plotted for the four mid-span points along the central girder. In 

general, HS trucks result in larger DAF and HS 20-44 yields the largest DAF. 

However, the changes of DAF at different locations are not similar. The effect of 

axle spacing on DAF is plotted in Figure 6.14, where the spacing of the HS 20-44 

truck varies within its allowance. As the spacing increases, the DAF decreases 

slightly in the investigated range; however, the change is not significant Figure 

6.14 indicates that the pattern of variation of DAF with axle spacing for different 

locations at the bridge is not generally the same. The HS 20-44 standard truck is 

chosen in the discussions hereafter.

6.4.2 Effects of vehicle model and speed
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As discussed in Chapter Three, rolling motion of the vehicle introduces a 

frequency close to the natural frequency of the bridge. In a 3D model of the 

vehicle, there exists a coupling between the wheels of any axle, in addition to the 

coupling between the axles as in the case of a 2D model. Thus, the tire forces are 

dependent upon the heaving, pitching and rolling of the vehicle. Figure 6.15 

compares the DAF vs. vehicle speed. It shows that 3D model produces small 

difference for speed under 40 mph. However, for higher speeds, the difference 

between the DAF from these two vehicle models becomes significant. Further, the 

2D model generally yields higher values of DAF. Figure 6.15 also indicates 

higher DAF for higher speed, especially in the range of 40 to 80 mph.

6.43 Effect of traffic condition

For the purpose of examining the DAF under various traffic conditions, six 

traffic patterns are considered. As indicated in Figure 6.18, Case 1 refers to one 

vehicle running on the east lane, while in Case 2, one vehicle running on the west 

lane. In Cases 3 to 6 , two vehicles are considered. Case 3 considers two vehicles 

running side by side. In Case 4, one vehicle leads the other. Case 5 considers two 

vehicles with one-span length in between, and Case 6 considers two vehicles 

running on adjacent spans. In all cases, HS 20-44 trucks running at the speed of 

30 m/s is assumed.
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6.4.4 Effect of span length

In Figure 6.18 , the maximum DAF of the central girder is plotted against L in 

order to make a comparison with the impact factor defined by AASHTO 

(50/(Z, -r-125)-i-l). The span length varies from 70 ft to 120 ft (21.3 m to 36.6 m). 

It is surprising to note that the simple formula actually provides a very good 

evaluation of the dynamic factor, although only one parameter is considered.

6.4.5 Effect of skew angle

The skew angle of a bridge is one of the most critical parameters that affect 

the natural frequencies of the bridge. However, Figure 6.19 indicates that the 

variation of DAF vs. skew angle fi-om O' to 60' is not significant, although it 

increases slightly with increasing skew angle.
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Figure 6.9: Bridge dynamic and static response at the second 
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Figure 6.11: The Walnut Creek Bridge entrance profile (measured)
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Figure 6.12: Bridge response at the fourth mid-span point 
on the central girder
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Figure 6.14: DAF vs. axle spacing along the central girder
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Figure 6.16: Traffic conditions: (a) Case 1; (b) Case 2; (c) Case 3; 
(d) Case 4; (e) Case 5; (f) Case 6 .
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TABLE 6.1: Natural frequencies (Hz) and modal damping ratios 

of the Walnut Creek Bridge

Mode pb-2
Rayleigh-Ritz

Test Test
damping

1 2.63 2.50 0.024
3.04 3.02 0.014

3 3.22 3.20 0.016
4 3.67 3.57 0.018
5 3.93 3.85 0.014
6 4.58 4.21 0.014

Patten et al., 1999
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TABLE 6JZ: DAF with different roughness conditions
along the central girder

Mid-span points 
Entrance Surface First Second Third Fourth

0 0 1.1837 1.2341 1.0105 1.0918
0 VG 1.1836 1.2378 1.0112 1.0938
0 G 1.1836 1.2390 1.0115 1.0944
0 A 1.1835 1.2403 1.0118 1.0951
0 P 1.1832 1.2441 1.0127 1.0972

VG 0 1.1925 1.2736 1.0128 1.1114
VG VG 1.1918 1.2787 1.0150 1.1139
VG G 1.1916 1.2804 1.0158 1.1148
VG A 1.1915 1.2821 1.0166 1.1156
VG ? 1.1910 1.2876 1.0193 1.1183

G 0 1.1912 1.3102 1.0314 1.1293
G VG 1.1919 1.3172 1.0356 1.1327
G G 1.1922 1.3197 1.0371 1.1338 ;
G A 1.1926 1.3222 1.0386 1.1350 :
G P 1.1938 1.3301 1.0435 1.1387

A 0 1.2064 1.3797 1.0767 1.1614
A VG 1.2105 1.3924 1.0856 1.1670
A G 1.2120 1.3968 1.0887 1.1690
A A 1.2135 1.4014 1.0920 1.1710 ,
A P 1.2187 1.4160 1.1025 1.1774

P 0 1.2155 1.4416 1.1332 1.1896
P VG 12227 1.4605 1.1473 1.1977
P G 1.2253 1.4673 1.1524 1.2006
P A 1.2280 1.4743 1.1577 1.2035
P P 1.2368 1.4967 1.1746 1.2129
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TABLE 63: DAF with different entrance profiles

  _____ Mid-span points on central girder

-WCB 0 1.8483 1.7889 : 1.4602 : 1.1953
WCB 0 1.5487 1.3852 ! 1.5068 1.3642

Test^ 1.55 1.20 1.52 1.22
Mid -span points on eastern girder

-WCB 0 1.9160 1.6674 1.1560 . 13723
WCB 0 1.7219 1.5007 ; 1.4791 1.4301

Test* 1.57 1.30 1.04 1.41
Patten, 1997
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The present work proposed a semi-analytical method to study the 

bridge/vehicle interaction problem. A skew bridge was modeled as a plate with 

stiffeners running parallel and orthogonal to two opposite edges. The vibration of 

such plates was first studied by using the pb-2 Rayleigh-Ritz method. The 

influence of skew angle, edge ratio, and stiffener height-plate thickness was 

examined. It was shown that the light-weight stiffeners provide more stif&ess 

effect than mass effect to the plate structure. The stiffeners affect the higher 

modes more significantly. Relatively higher frequencies are observed with larger 

skew angle or smaller edge ratio. Without consideration of buckling, deeper 

stiffeners yield higher frequencies.

A general model was developed for trucks with trailers. The model had 

eleven degrees of freedom and included three-dimensional motion including 

heave, pitch, and roll. The principle of virtual work was employed to derive the 

equations of motion.

A semi-analytical technique was proposed to deal with the dynamic 

interaction. The proposed semi-analytical technique substantially decreases the
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computation cost and was shown to be efBcient in dealing with the bridge/vehicle 

interaction problem with an iterative procedure. In the preceding chapter, the 

effects of the following factors on the dynamic amplification factor of a bridge 

due to moving vehicles were examined; bridge damping, bridge entrance 

roughness, bridge surface roughness, span length, skew angle, vehicle axle 

weight, axle spacing, vehicle model, vehicie speed, and traffic condition. Among 

these factors, the bridge entrance roughness, span length, vehicle speed and traffic 

condition influenced the bridge dynamic response relatively more significantly.

12  Recommendations

Usually the bridge deck is made of reinforced concrete, which has 

mechanical behavior close to orthotropic material. It is worth studying the 

bridge/vehicle interaction problem by remodeling the bridge superstructure as an 

orthotropic stiffened plate.

The bridge'vehicle interaction problem can be viewed in the fi-equency 

domain. It was claimed that when the natural frequencies of the bridge and the 

vehicle are close, resonance occurred. The author disagreesz. For instance, model 

the bridge as a one-DOF mass-spring system (SI) with natural frequency of

■^mlk. When an identical mass-spring system (S2), modeling the vehicle 

excitation, is connected with it in series, it results in a two-DOF system (S3). The
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le  He
resonance frequencies of system S3 are i — — ! , or 0.618,;'— and

( 2  y \  m V m

1.618.;— , which are away from the natural frequency of the one-DOF system. 
V m

Moreover, the resonance frequency is defined for external excitation. The two- 

DOF system S3 vibrates wildly when an ideal external excitation has the same 

frequency of one of natural frequencies of system S3. It does not mean that the 

excitation from system S2 causes system SI to vibrate at resonance when their 

frequencies are close.

When resonance is a concern, it is worth having a look at the frequency 

changes of the coupled system as the vehicle travels across the bridge. The natural 

frequencies vary with the vehicle's position on the bridge. To the author's 

knowledge, no one has looked at the frequencies of the coupled system in this 

way. The natural frequencies of the bridge are not changed by the vehicle, and 

vice versa. What are changed are the frequencies of the coupled bridge/vehicle 

system.

It was concluded that the initial condition of the vehicle upon the entrance to 

the bridge is very critical. Lots of work has been done to show this. Usually, the 

simulation is conducted with the vehicle running on a profile. After it is excited, it 

passes over the bridge. The present woric treats the initial condition in a similar 

way. However, this raises the question: can we directly look at the vehicle
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condition at the entrance and propose an index, such as the vehicle initial energy 

plus Rayleigh's dissipation function, to evaluate the initial conditions 

quantitatively?

Some research proposed more practical formulas for DAF evaluation. Most 

of them include the span length, vehicle speed and bridge frequency (Yang et al., 

1995). As the derivation of a formula that is valid for various bridges due to all 

kinds of conditions, more comprehensive work should be carried out to test the 

proposed formulas.
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Appendix I

Vehicle coupled force vector, and gravity vector, 

stiffness, damping, and mass matrices

Coupled force vector.

=

+ c,^w „J

_Kŝ 5 ^ ,K i VVs ,0,0,0,0 j

Gravity vector

— 77%̂ , -m ,  ,-7M. , -m .  ,-/Mg ,, I
i x gG =

-(6, - Û 2 -à -cM ^ ,-a,c,M 2 - a-,M. 

with g  being the gravity acceleration.

Symmetric Stiffiiess matrix:

K,=

[ C- t̂i + -fesi/ 0, 0, 0, 0 , 0, -%s:, 0, 0, 0, 0] ,

[ 0 ,  Jc-2 +  kg21  0 /  0 /  0 /  Of  0 ,  -  k s 2  f 0 ,  0 ,  0 ] ,

[ 0 ,  0 ,  Je»3 + ^Cs3/ 0 ,  0 ,  0 ,  0 ,  0 ,  “ lCs3,  0 ,  0 ]  ,

[ 0 ,  0 ,  0 ,  k^4 + lCs4, 0 /  0 ,  0 ,  0 ,  0 ,  - lCg4, 0 ]  ,

[ 0 ,  0 ,  0 ,  0 ,  Jcts + k g s ,  0 ,  0 ,  0 ,  0 ,  0 ,  -ICss] ,

[ 0 ,  0 ,  0 ,  0 ,  0 ,  k z e  +  k s 6 ,  -ks6, k g s ,  0, 0, -̂ Cgg] ,

0 , 0, 0, 0, - k g 6 t  k g ç  + k g x ,  - k g s ,  0, 0 , ICgg] ,

[ 0 ,  - k s 2 ,  0 ,  0 ,  0 ,  k s 6 ,  - k s 6 .  kg2 + k s6 ,  0 ,  0 ,  -kgg] ,

[ 0 ,  0 ,  “ l t g3 , 0 ,  0 ,  0 ,  O f  0 /  kg21  0 ,  0 ]  ,

[ 0 ,  0 /  0 ,  ~ k g ^ / 0/  0 ,  0 ,  Of  0 /  k g ^ f  0 ] ,

[ 0 ,  0 ,  0 ,  0 ,  — k g ^ f  ~ k g s f  k g s f  ~ k g ç f 0 ,  0 /  k g g  +  k g s ] ] ;
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Symmetric Damping matrix:

Replacing "kT with "c" in stiffiiess matrix gives damping matrix Cy. 

Symmetric mass matrix:

Afv=

[ [mi, 0 ,  0,  0 ,  0,  0,  0,  0,  0,  0,  0 ] ,

[ 0 ,  m2, 0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0] ,

[ 0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0] ,

[ 0 ,  0 ,  0, TOi, 0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0] ,

[ 0 ,  0 ,  0 ,  0 ,  i l ls,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ] ,

[ 0 ,  0 ,  0 ,  0 ,  0 ,  Itk, 0 ,  0 ,  0 ,  0 ,  0] ,

[ 0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  (Mv) 7 , 7 /  (Wv)s,7; 0 ,  0 ,  (Wv) 1 1 , 7 ]  /

[ 0 , 0 ,  0 , 0 ,  0 , 0 ,  (Mv) 3 , 7 ,  (My) 8 , 8  ,  (My) 9 , 8 ,  (My) 1 0 , 8 ,  (My) 1 1 , 3 ] , 

[ 0 , 0 ,  0 , 0 ,  0 , 0 ,  0 ,  (My) 9 , 8 ,  (My) 9 , 9 ,  (My) 1 0 , 9 ,  (My) 9 ]  ,

[ 0 , 0 ,  0 , 0 ,  0 , 0 ,  0 ,  (My) 1 0 , 8 ,  (My) 1 0 , 9 ,  (My) 1 0 , 1 0 ,  (My) 1 1 , 1 0 ]  ,

[ 0 , 0 ,  0 , 0 ,  0 , 0 ,  (My) 1 1 , 7 ,  (My) 1 1 , 8  ,  (My) H ,  9 ,  (My) H ,  1 0  ,  (My) n ,  n ]  ] ;

with

( ^ v ) 7 , 7  = ^ 2 ^ !  -^~fr •

( ^ v ) s .7
‘i

( ^ v ) n .7  

( ^ v ) s . s  = (^ 1
*i ‘a ‘e

( K L  = a,c,c^d^M J  -  ;
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( K  ):o.s =a,c ,c^d ,M ^  .
C

(^v)n.s -(^ : ~<22)c,M, +a,a^c\M2 ~ ~ f^ ^  ’
<2 *C

(A ^v)oa = (^ ^ ,C ,)‘ jW ,

K X o ., +^al A
/;

{M ,},,, = a ,c ,c ,d ,M , - - '°/*=  ;

(-^v)„.io = a 2 C ,C , d ,M ,  ;
*C

Xu I = a ;c ;M  2 4- 4- — -ralM..
I: I: * •
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Appendix II

Computer code VehiclePack written in Matlab®

% VehiclPackO numerically integrates the equations of motion 

% of vehicle by using Newmaric’s method.

function [F vb,Xv_out^vd_out^vdd_out]=... 

VehiclePack(Xcon,dtime^v_ini^vd_ini^vdd_ini,M_v,K_v,C_v,G_v,F_v);

% input of VehiclePack:

% Xcon: displacement and velocity of contact points

% [wl,w2 ,...,wld,w2d,...]

% dtime: time increment

% Xv_ini: initial displacement vector

% X vdjni: initial velocity vector

% Xvd_ini: initial acceleration vector

% M_v: mass matrix of vehicle

% K_v: stiffiiess matrix of vehicle

% C_v: damping matrix of vehicle

% G_v: gravity force vector

% F_v: interactive force vector

% output of VehiclePack:

% Fvb: tire forces vector

% Xv_out: displacement vector

% Xvd_out: velocity vector

% Xvdd_out: acceleration vector
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alpha=l/6;beta=l/2; % two constants in Xewmark's method

Xv_out=inv(M_v/alpha/dtime^2-rC_v*beta/ alpha/dtime-rK_v) *... 

(G_v-!-F_v*Xcon4-M_v*(Xv_ini/aIpha/dtime^24-Xvd_ini/aIpha/dtime4-. 

( 1/2/alpha-1 )*Xvdd_ini)-rC_v*(Xv_ini*beta/alpha/dtime-r... 

(beta/aipha-i)’'Xvd_ini-r(beta/alpha-2)*dtime/2*Xvdd_mi)); 

Xvdd_out=(Xv_out-Xv_ini)/aIpha/dtime^2-Xvd_ini/alpha/dtime-...

Xvdd_ini*( I /2/alpha-1 );

Xvd_out=Xvd_ini-K 1 -beta)*dtime*Xvdd_ini-!-beta*dtime*Xvdd_out;

Fvb 1 =F_v*(Xcon-[Xv_out( 1:6);Xvd_out( 1:6)]);

Fvb=Fvb 1(1:6);
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Appendix III

Computer code BVPack written in Matlab*®

% As an example, Rock Truck running on the west lane %

% at the speed of 30 m/s with Poor bridge entrance %

% is simulated by the following program. %

% by Huan Zeng, November, 2000. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all;close all;

Nmode=5;

for i=l:Nmode 

eval([’load W’num2str(i) '.pm']); 

end

load KKO.pm;load MMO.pm;

[Vector,Value]=eig(KKO,MMO); 

wO=sqrt(diag(V alue));

[wO,w_ind]=sort(wO) ;

wO=real(wO);

w=wO;

% modal damping from test

ksi=[0.024,0.014,0.016,0.018,0.014,0.014,0.022,0.025,0.022,0.025];
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TO=clock;

T_DOF=ll;T_DOF2=22;

C0N_D0F=6; CON_DOF2=12; % Contact points

ib2kg= l/2.202;ft2m= 12“'ü.0254;m2m=0.0254;

alpha=pi/4;ta=tan(alpha);sa=sin(alpha);ca=cos(alpha);

b=34*ft2m;

a=400*ft2m;

L=a;

L_prol=a/4;

L_pro2=b*sin(alpha);

L_pro3=a/4;

L_pro=Ljpro 1 -rLjpro2-i-L-i-L_pro3 ;

VehicleDyn; % retinn matrix, K_v, C_v, F_v, and G_v;

VELOCITY=30;T_CONTACT=I7VELOCITY;

T_pro 1 =L_pro 1AŒLOCITY ; 

T_pro2=L_pro2/VELOCITY ; 

T_pro3=Ljpro3/VELOCITY; 

T_pro=Ljpro/VELOCITY ;

dtime=T_CONTACT/5000;

N_pro l=fix(T_pro 1 /dtime);
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N_pro2=fîx(Tjpro2/dtime);

N_pro3=fix(T_pro3/dtiine);

N_pro=fix(T_pro/dtùne);

% generate sample profile 

Ar_VG=5e-6; % Very Good 

Ar_G=20e-6; % Good 

Ar_A=80e-6; % Average 

Ar_P=256e-6; % Poor

?key='VGVG';

Zprofile=psd(N_pro,L_pro,Ar_VG);

plot(Zprofile);

ZO=[ones(COX_DOF, I );zeros(CON_DOF, 1 )];

T_FEs'AL=Tjpro;

time=0;dtime;T_FINAL;

NSTEP_FINAL=length(time);

% Travel path

XF=2eros(6 ,NSTEP_FINAL);

YF=zeros(6 ,NSTEP_FINAL);

B l=3*b/4*sin(alpha);

B2=b/2*sin(alpha);
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q=zeros(Nmode,N'STEP_FINAL);

q_dot=q;

%%% Initialization %%%

Xcon=zeros(CON_DOF2,1 );

Zv_ini=[-0.03196770851071 -0.02175054828472 ... 

-0.01309502313343 -0.01309503434948 ...

-0.02175054781848 -0.03196771169376 ...

-0.06208659296437 -0.06492270869329...

-0.11458805762317 -0.11458829300190 -0.06492270708460]’; 

Zvd_ini=zeros(T_DOF, I );

Zvdd_ini=inv(M_v)*(G_v-rF_v*Xcon-C_v*Zvd_ini-K_v*Zv_ini);

Z=zeros(CON_DOF2,l);

% Initial coupled force;

Fvb l=F_v*(Xcon-[Zv_ini(l :6);Zvd_ini( 1:6)]); 

Fvb=zeros(6,NSTEP_FDsAL);

Fvb(:,l)=Fvbl(l:6);

L12=4.7;L23=5.7; 

y 1 =zeros( 12,N STEP_FIX AL);

%% Coupling Loop

for Itime=2:(NSTEP_FINAL-2) 

if((Itime)<(Njpro 1 ))

Xcon=Zprofile(Itime)*ZO;
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yl(:,Itiine>=XcorL;

% Response o f Vehicle 

[Fvb(; Jtime-i-1 )^v_mi^vd_ini^vdd_mi]=... 

VehiclePack(Xcon,dtimeyZv_ini^vd_mi^vdd_mi,... 

M_vJK._v,C_v,G_v,F_v); 

bb(: Jtime)=[Fvb(:,Itime-i-l );Zv_ini] ;

elseif(time(Itime)<r jpro 14-T_pro 1 -i-T_CONT ACT)

% 1,6: front axle 

% 2,5: middle axle 

% 3,4: rear axle

XF( 1 ,ltime)=VELOCITY*time(Itime)-L_pro 1 -b*sin(alpha)/2; 

XF(2,ltime)=XF(l ,ltime)-L 12;

XF(3,ltime)=XF(2,Itime)-L23 ;

XF(6,ltime)=VELOCITY*time(Itime)-b*sin(alpha)/4;

XF(5,Itime)=XF(6,Itime)-L12;

XF(4 Jtime)=XF(6,ltime)-L23 ;

YF(1 ,Itime)=B 1 ;YF(2,Itime)=B 1 ;YF(3,Itime)=B 1 ; 

YF(4,Itime)=B2;YF(5,ltime)=B2;YF(6,Itime)=B2;

forLX=l:CON_DOF 

if XF(iX,ltime)<0 : XF(iX,Itime)>L 

XF(iX,Itime)=0;

YF(iXJtime)=0;

Fvb(iX,Itime)=0;
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Z(iX,l)=l;

end

end

% Bridge response

forn=l:Nmode 

for IL=1:6

%delmen(IL, 1 )=get_xy(Wn,XF(IL,Itime),YF(IL,Itime)); 

eval(['delme'nuni2str(n) '(IL, 1 )=get_xy(W’num2str(n)

'^(IL,Itime),YF(IL,Itime));']); 

end 

end

Xcon=Z*Zprofile(Itime);

forn=l:Nmode

eval(['delme=delme'num2str(n)

Qi=sum(delme.*Fvb(:,Itinie));

q(n,Itime)=z 1 _quad2(Qi,dtime,w(n)^i(n),q(nJtiine-1 ),q_dot(n,Itinae-1 )) ; 

q_dot(nJtinie)=zl_quad_dot2(Qi,dtinie,w(n)Jcsi(n),q(n,Itüne- 

l),q_dot(nJtime-l));

Xcon=Xcon-r[deIme*q(nJ[tnne);delme*q_dot(n,Itime)];

end

yl(:Jtinie)=Xcon;

% Response of Vehicle
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[Fvb(: ,Itime-r 1 )^v_im^vd_ini^vdd_ini]=...

V ehiclePackpCcon,dtime^v_mi,Zvd_mi^vdd_mi,... 

^ _ v,K_v,C_v,G_v,F_v); 

bb(:,Itimer 1 )=[Fvb(:,Itiine^ 1 );Zv_mi] ; 

else

% free vibranon of bridge 

for n=l :Nmode 

Qi=0;

q(n,Itime)=2 1 _quad2(Qi,dtiine,w(n)dcsi(n),q(n,Itime-1 ),q_dot(n,Itime-1 )); 

q_dot(n,Itiine)=2 1 _qiiad_dot2(Qi,dtime, w(n)dcsi(n),q(n,Itime- 

I),q_dot(n,Itime-I)); 

end

Xcon=[ones(CON_DOF, I );zeros(COX_DOF, 1 )] *Zprofile(Itime);

yl(:,Itime)=Xcon;

% Free Vibration of Vehicle

[Fvb(:,Itiinerl)yZv_iniyZvd_ini,Zvdd_ini]=VehiclePack(Xcon,dtime,Zv_ini,Zvd_ 

ini,Zvdd_ini,M_vJEC_v,C_v,G_v,F_v); 

bb(: Jtime^I )=[Fvb(: Jtime^I );Zv_ini];

Fvb(:,Itimer 1 )=zeros(CON_DOF, 1 ); 

end % if

end % Itime
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bb(:Jtime^2)=[Fvb(:,Itime^l);Zv_mi];

T5=cIock;

RUNTIME0=Tf(4:6)-T0(4:6);

disp([’ Running time is about: 'nxm2str(RUNTIME0(l)). 

"hours "niirri2str(RUNTIME0(2)) ' minutes "... 

num2str(RUXTIME0(3)) ' seconds'])

get_deflect;

%%%%% END OF MAIN PROGRAM %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% get_deflection subroutine %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

yQ=zeros(20,NSTEP_FINAL); % stors time history of 20 locations.

% G# 1,1st mid-span 

ptx(l)=L'8;pty(l)=0;

% G#l, 2nd mid-span 

ptx(2)=L/4-pU8;pty(2)=0;

% G#I, 3rd mid-span 

ptx(3)=2*L/4-rL/8;pty(3)=0;

% G#l, 4th mid-span
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ptx(4)=3*L/4-i-L/8;pty(4)=0;

% G#2

ptx(5:8)=ptx(l :4)-rb/4*cos(aIpha); pty(5:8)=b/4*sin(alpha)*ones(l,4);

% G#3

ptx(9:12)=ptx( 1 ;4)-rb/2*cos(alpha); pty(9:12)=b/2*sin(alpha)*ones( 1,4);

%G#4

ptx(l 3; 16)=ptx( 1:4)-r3*b/4*cos(alpha); pty(l 3:16)=3*b/4*siii(alpba)*ones( 1,4); 

% G#5

ptx( 17:20)=ptx( 1:4)-rb*cos(alpha); pty( 17:20)=b*sin(alpha)*ones( 1,4);

for u= 1:20 

for n=l:Nmode 

eval(['temp(u^)=get_xy(W’num2str(n) ’,ptx(u),pty(u));']); 

end 

end

for u= 1:20 

for n=l:Nmode 

qXY(n,:)=temp(u^)*q(n,:); 

end

yQ(u,:)=sum(qXY(l :Xmode,:)); 

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% PSD fimction %

%%%%%%%%%%%%%%%%%%%%%%%%%%%

fimction PSD_retum=PSD(N,L^t)

w0=l/2/’pi;

fimn=l/L; finax=2.5e4; 

x=L/N:L/N:L; 

dw=(finax-finin)/N' ; 

the=rand( 1 ,N)*2*pi; 

temp=2eros( 1 ,N);w=temp;r=w;

tbrn=l:N  

w(n)=(n-1 /2)*dw; 

end

fori=l:N

forn=l:N

temp{n)=sqrt(4*At*(w(n)/wO)^(-2)*dw)*cos(w(n)*x(i)-rthe(n));

end

PSD_retum(i)=sum(temp);

end
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