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Abstract

Radiative energy incident upon the earth’s surface is either absorbed by 

the earth, reflected back to the atmosphere, or converted into sensible (SH) and 

latent heat (LH) fluxes. This principle of conservation of energy defines the 

surface energy budget, Rn = SH + LH + GH where Rn is net radiation and GH is 

the ground heat flux. A common standard for representing the accuracy of 

measurement o f the energy budget is defined by the degree of “closure” (C) as 

defined by a percentage:

C = 100%
( R n - G H )

Eddy correlation  system s p rov ide  the only d irec t m ethod for 

independently measuring sensible and latent heat fluxes. U nfortunately, 

measurements using eddy correlation (EC) systems often have failed to close the 

energy budget (Rn SH + LH +GH). Previous field experiments such as FIFE, 

Monsoon-90, and SGP-97 have consistently underestimated closure. This lack of 

closure casts doubt on the accuracy of EC measurements. A systematic error in 

measurement o f the surface energy budget has profound implications for model 

and satellite verifications. The exact cause(s) for this systematic underestimate in 

closure is unknown.

The OASIS Project became operational I January 2000 and permits 

measurement of net radiation and ground heat flux as well as sensible and latent 

heat fluxes via eddy correlation at ten M esonet sites across Oklahoma. In this 

dissertation, the closure issue is investigated using over 5 million observations 

collected  during a one-year period from  the OASIS and ARM projects.

xi



Instrument error, a mismatch in source area, horizontal flux divergence, surface 

heterogeneity, and fetch are examined as possible sources o f error.

Results outline appropriate procedures for limiting instrument and system 

error in measurement o f the surface energy budget. A system atic error was 

identified from an examination o f closure at ten OASIS sites, and a comparison 

between an EC and Bowen ratio system recognized several specific problems. 

Problems with closure were found limited to measurement o f the latent heat flux, 

and several reasons for the underestimate in latent heat flux were identified.
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Chapter 1: Introduction

According to Brutsaert (1982), Anaximander of Miletos (ca. 565 B.C.) of ancient 

Greece was among the first to recognize the unifying bonds between the land and 

atmosphere. As recorded by Hippolytus, Anaximander spoke of the water cycle when he 

described “rains generated from the evaporation that is sent up from the earth toward under 

the sun" (Brutsaert 1982). His description is but one example of the interplay between 

components o f our climate system -  the atmosphere, lithosphere, cyrosphere, oceans, and 

biosphere - and it is as important to our understanding of meteorology today as it was 

during the days of ancient Greece.

Fortunately, modem meteorology more clearly understands these processes of 

energy exchange at the earth’s surface. Solar radiation impinges upon the top of the 

atmosphere where it is either reflected back into space, absorbed by the atmosphere, or 

transmitted to the earth’s surface. Radiative energy incident upon the earth’s surface is then 

either absorbed by the earth, reflected back to the atmosphere, or converted into sensible 

and latent heat energies at the surface. The principle of conservation of energy prevents the 

production or destruction of energy. Thus, the surface budget is conserved. The surface 

energy budget has the components:

Rn = SH + LH + GH + P (1.1)

It confines the 5 terms to equality where net radiation (Rn), sensible heat (SH), latent heat 

(LH), and ground heat (GH) dominate. Photosynthetic activity (P) remains negligible 

during the day and is less than 2% of the noctumal radiation budget (Fritschen and 

Simpson 1989). While components o f the surface energy budget vary widely on spatial 

and temporal scales according to surface heterogeneity, the total energy budget remains 

conserved across all land surface types. Such energetic processes play a critical role in 

momentum, heat, and moisture transfers between climate systems.



Despite these important influences, difficulties remain in the measurement of these 

basic meteorological parameters associated with the land surface. Precise measurements 

are difficult to obtain because of instrumentation error, system design limitations, and the 

empirical nature of corrective measures. Advection of meteorological parameters, 

topographical features, variable source regions, heterogeneity of soil and vegetation 

properties, and the nonstationarity of weather patterns severely limit the sample 

representativeness of observations on the meso- and regional scales.

The hypothesis of this study is that the surface energy budget can be closed even in 

complex terrain i f  instrumentation error, topography, heterogeneity, and sampling 

differences are addressed with care. This hypothesis will be investigated by integrating one 

year of data from the Oklahoma Atmospheric Surface-layer Instrumentation System Project 

(OASIS; Brotzge et al, 1999b), a component of the Oklahoma Mesonet (Brock et al, 1995), 

with topographical and vegetation data sets, and by conducting a series of field 

experiments.

First, a literature review outlines previous attempts at resolving the surface energy 

budget and explores hypotheses as to why closure remains an unresolved issue. Next, data 

used in the study are described in Chapter 3, Chapter 4 details instrumentation error and 

measurement limitations for each component of the energy budget. Chapter 5 quantifies the 

instmment measurement uncertainty associated with each of the components.

The final chapters explicitly examine closure in context with the known errors 

developed in Chapters 1 to 5. A detailed comparison of a Bowen ratio and eddy correlation 

system is described in Chapter 6. Next, closure is examined at ten Mesonet sites across the 

state to assess climatic influences. The influence of topography and fetch is explicitly 

investigated. Finally, Chapter 8 reviews possible causes for non-closure as proposed by 

the literature in lieu of results from Chapters 6 and 7. A summary of results and 

concluding remarks are provided in Chapter 9.



Chapter 2: Prior Field Experimentation and Theory

Introduction

Improved modeling and measurement of the surface energy budget have progressed 

through synergistic efforts over many years. More precise measurement of fluxes has 

enabled more realistic modeling. Improved modeling has prompted refined field 

measurements and field programs speeifically aimed at improving targeted areas of model 

performance. Because model development is dependent upon observations, 

instrumentation error must be minimized. In addition, site-specific errors must be limited 

because point observations normally are assumed (sometimes unjustifiably) to be 

representative o f the regional area (Shuttleworth 1991).

One physical requirement of every atmospheric model is that all energy incident 

upon the land surface must be conserved. Ideally, the observations reflect this 

conservation of energy, and the summation of all measured fluxes should equal zero. The 

challenge is to design observational systems that both minimize instrumentation error and 

limit microscale effects while best capturing regional land-surface and PEL properties.

2.1 Measurement of the Surface Energy Budget

The degree of “closure” of the energy budget is considered a common standard for 

representing the accuracy of any field experiment involving the energy budget. Closure 

provides a theoretical basis by which system error can be evaluated. Closure (C) is 

commonly defined as a percentage as:

^ ^ (SH+ LH) ^ (2.1)
( R n - G H )

where the sum o f the sensible (SH) and latent heat (LH) fluxes are divided by the net 

available energy, the difference between the net radiation (Rn) and ground heat flux (GH). 

Eq. (2.1) is considered a reliable measure because the numerator and denominator represent 

different source regions. Note, however, that C = 100% does not ensure perfect



observations; offsetting errors in 2 or more components also could lead to C = 100%. 

Nevertheless, as is shown in the scientific literature, even reasonable closure within 5% is 

difficult to obtain in many circumstances. In most cases, the SH and LH terms attained via 

eddy correlation techniques typically are underestimated relative to the net available energy 

(McNeil and Shuttleworth 1975; Shuttleworth et al. 1984; Dugas et al. 1991; Fritschen et 

al. 1992). Note that in some cases (e.g., during low flux periods), it is more appropriate to 

use the residual (R) of closure (Wm ’):

R = R n - G H - S H - L H  (2.2)

The first attempts at examining the surface energy budget used the Bowen ratio 

technique (Bowen 1926) which forces closure. The Bowen ratio is assumed proportional 

to the ratio of a vertical gradient of heat and moisture; it is obtained from measurements of 

temperature (T,, T,) and specific humidity (q,, q,) at two heights. The Bowen ratio is 

defined as:

where Cp is the specific heat of dry air, L, is the latent heat o f vaporization, and and 

are the eddy diffusivities for heat and water vapor, respectively (Ohmura 1982). The eddy 

diffusivities for heat and water vapor are assumed to be equal. The energy budget is 

estimated from:

where Rn and GH are measured independently, and SH is the residual of the energy 

balance.

Despite its continuing popularity, work by Fuchs and Tanner (1968), Blad and 

Rosenberg ( 1974) and Ohmura (1982) identified numerous possible errors in using the 

Bowen ratio method. Even Bowen recognized that the assumption of the equality of eddy 

diffusivities was not always valid (Bowen 1926). Ohmura identified three specific



operational limitations: 1) errors made in the Rn and GH terms are cumulative; 2) estimated 

fluxes could be of the wrong sign; and 3) estimated fluxes could be of the correct sign but 

o f the wrong magnitude. Indeed, the accuracy of the Bowen ratio method relies on the 

accuracy of the difficult-to-measure terms of Rn and GH (e.g., see Chapter 6).

With advances in PEL theory and instrumentation technology, other methods were 

developed to measure the surface energy budget. Monin-Obukhov theory allowed surface- 

layer profiles to be estimated from measured vertical gradients (Holtslag and Van Ulden 

1983; Halliwell and Rouse 1989). Improved computer hardware permitted direct sensing 

techniques, such as eddy correlation, where sensible and latent heat could be estimated 

directly (Suomi 1957). The use o f profile and direct measurement techniques now allow 

each of the four components of the energy budget to be estimated independently.

2.2 Sm all-scale Field Experiments

Large-scale mixing above forests limit vertical gradients in heat and moisture and 

inhibit the use of Bowen ratio methods. In an effort to measure fluxes above forest 

canopies, eddy correlation methods began to be used more frequently. McNeil and 

Shuttleworth (1975) were among the first to compare the eddy correlation (EC) method to 

the Bowen ratio (BR) technique. Examining flux measurements above a pine forest, they 

found a marked underestimate of the sensible heat of about 24% by the eddy correlation 

method when compared to the Bowen ratio technique. Although all four components of the 

surface budget were measured, unfortunately, closure of the energy budget was not 

explicitly reported.

Shuttleworth et al. (1984) conducted a similar study above an Amazonian forest. 

Using a sonic anemometer and infrared absorption hygrometer, the authors explicitly 

examined closure of the energy budget. In their study, several corrections were applied to 

the sonic data including the correction proposed by Webb et al. (1980) for density 

variational dependence, and the correction from Moore (1986) for humidity fluctuations.



Nevertheless, in an examination of 8 days of data. Shuttleworth et al. found a 6.5% 

underestimate in the sum of sensible and latent heat fluxes compared to the available energy 

(Rn - GH).

Verma et al. (1986) were among the first to perform an energy budget study above 

a deciduous forest. They. too. explicitly examined the issue of closure. Using eddy 

correlation to measure the sensible and latent heat fluxes, they found a closure between 70 

and 130%; only +/- 20% of the +/- 30% closure error could be accounted for by instrument 

uncertainty. Thus, at least 10% was not accounted for in the measurement process. A bias 

was not detected between the EC and BR methods, as other studies have confirmed. 

Verma et al. suggest such large errors in closure could be caused by either large error in the 

estimate of the canopy storage term or by the effects of complex terrain upwind of the site.

McMillen (1988) addressed the conclusions of Verma et al. by quantifying the 

problems of eddy correlation measurement in complex terrain. He identified several 

limitations of eddy correlation systems unique to inhomogeneous sites. McMillen found 

that the energy budget could be underestimated by as much as 30% without coordinate 

rotation to account for tilt error. Tilt error can be caused by either the tilt o f the sonic 

anemometer or by the slope of the terrain. He also determined from observations that 

closure was maximized (at 0.99) by using a time-averaging interval between 100 and 

500 s.

Dugas et al. (1991) reexamined the comparison between eddy correlation and the 

Bowen ratio techniques by using more advanced instrumentation. They compared four 

Bowen ratio systems, three eddy correlation systems, and a portable chamber system. The 

comparison was conducted over an irrigated wheat field to minimize surface heterogeneity. 

Eddy correlation estimates were corrected for density variation and oxygen dependence 

(Tanner et al. 1993). Still, the results were not unlike those found by McNeil and 

Shuttleworth ( 1975) and Shuttleworth et al. (1984); the EC estimates of sensible heat were 

18% and 31% less than those from the BR technique on two successive days of



comparison. Estimates of latent heat flux from the sonic were 23% and 33% less than 

those from the Bowen ratio technique.

Dugas et al. suggested four reasons for the underestimate produced by eddy 

correlation: I) The available energy (Rn - GH) was overestimated. However, the authors’ 

estimates of (Rn - GH) were consistent with those of other investigators; 2) Corrections to 

the frequency response of the sonic were needed as suggested by Moore (1986). This 

correction would have increased sonic SH by 5%; 3) The time constant of the

thermocouple (T) used to estimate SH may have been too slow and resulted in an 

underestimate of the flux; 4) The SH as measured by the Bowen ratio technique was too 

large due to the assumption that the heat and vapor diffusivities were equal, = K^. 

Because of large values of latent heat flux, much of the lack of closure was due to 

discrepancies in accurately estimating LH by the sonic.

Another comprehensive comparison between the Bowen ratio and eddy correlation 

methods was conducted by Barr et al. (1994) above a deciduous forest. Data were 

collected at a height o f 4 m above the canopy top. Corrections for wind and humidity 

fluctuations were applied to the sonic data, and a coordinate transformation o f the data was 

accomplished to minimize slope error. Data were limited by wind direction to minimize 

fetch and flow interference across instruments. Barr et al. found closure o f the energy 

budget to within 89%. Nevertheless, statistical analysis of the instrument error could only 

account for 6% of the 11% imbalance, leading to the conclusion that the lack o f closure was 

statistically significant.

Barr et al. cited two additional reasons for the underestimate from the eddy 

correlation method. First, the averaging period may have been too short, whereby low 

frequency contributions were not included as described by Kaimai et al. (1972). A second 

reason given by the authors concerned “dispersive flux” (Shaw 1985; Lee and Black 

1993). Eddy correlation assumes a mean vertical velocity of zero. However, given a 

strongly unstable environment, the vertical velocity could be much greater than zero in the



vicinity of a thermal or updraft. Thus, the EC method does not account for large-scale 

fluxes.

Several studies explicitly investigated the problem with EC underestimating closure. 

As described by Kizer and Elliott (1991), Tanner (1984) tested two EC systems using 

Lyman-alpha hygrometers and sonic anemometers. Closure was estimated at 75% and 

81%, respectively, from the two systems. Tanner cited a sensor separation of 20 cm 

between the hygrometer and sonic or air flow obstructions to the hygrometers as the most 

likely sources of error. Tanner et al. (1985) tested six EC systems, using two Lyman- 

alpha hygrometers and four krypton hygrometers. Closure estimates ranged between 69% 

and 102% with a mean closure of 89%.

Kizer and Elliott (1991) conducted a similar study using eddy correlation over a 

cultivated field of alfalfa. A CA-27 sonic anemometer and KH-20 krypton hygrometer, 

both manufactured by Campbell Scientific, Inc. (CSI), were mounted at a height of 1.8 m 

AGL and separated laterally by 20 cm. (Note that the same model instruments are being 

used by the OASIS Project; they also provided data for use in this dissertation.) Six 24- 

hour periods o f data were collected. A mean closure rate was estimated at 84% with a 

standard deviation of 3%. However, the mean closure improved to 95% with a standard 

deviation of 3% after a correction was applied for sensor separation.

2.3 Large-scale Field Projects

During the late 1980s and 1990s, large field projects were used to again investigate 

the closure issue. The First ISLSCP (International Satellite Land Surface Climatology 

Project) Field Experiment (FIFE) was a three-year study between 1987 and 1989 that 

examined the spatial and temporal variability of surface fluxes. The site was a 15 km' 

agricultural area located near Manhattan, Kansas. Some 22 sites were placed across the 

FIFE region and consisted of six different Bowen ratio systems and five different eddy 

correlation systems (Kanemasu et al. 1992). Several corrections were applied to the eddy



correlation data including coordinate rotation, sensor separation, frequency response 

errors, and the Webb et al. ( 1980) correction (Fritschen et al. 1992). Despite these careful 

considerations. FIFE results repeated those of previous studies: the eddy correlation 

method underestimated the aerodynamic fluxes (SH + LH) when compared to Bowen ratio 

estimates (Sellers and Hall 1992).

Individual comparisons among FIFE sites between the eddy correlation and Bowen 

ratio estimates revealed similar differences. One comparison used a one-dimensional sonic 

anemometer to determine that eddy correlation underestimated (SH + LH) by as much as 

24% (Fritschen et al. 1992). In this case, coordinate rotation could not be applied, and 

thus, errors due to slope could have affected sonic estimates. (For an explanation of 

coordinate rotation, see Chapter 4.4.) Other FIFE investigators who examined closure of 

the surface budget using eddy correlation methods found residuals as large as 160 Wm " 

(Nie et al. 1992). As summarized by Sellers and Hall (1992), comparative results from 

FIFE concluded that an apparent underestimate of (SH + LH) by eddy correlation “is most 

likely due to problems with ‘missing flux’ associated with the eddy correlation stations.”

The Monsoon ‘90 experiment (Kustas et al. 1991) examined the hydroclimatology 

of complex terrain across the 150 km" Walnut Gulch watershed near Tucson, Arizona. 

Flux measurements were made using profile, eddy correlation, and Bowen ratio 

techniques. As determined in previous studies. Monsoon ‘90 results revealed that (Rn - G) 

> (SH + LH), meaning either the available energy was overestimated or the aerodynamic 

fluxes were underestimated. Mean closure during a two-month period using the eddy 

correlation method ranged between 1 and 35 Wm " among five sites; RMS values of closure 

ranged between 30 and 75 Wm " (Stannard et al. 1994). In general, the flatter the site, the 

better the closure due to the assumption that the mean vertical velocity equals zero. Dyer 

(1981) found that the error of the sonic SH and LH was about 3% per degree of terrain 

slope. Stannard et al. also suggested that horizontal flux divergence and a mismatch of 

source areas could account for some nonclosure. Thom (1975) concluded that horizontal



flux divergence of sensible heat offsets that of latent heat and that the total flux divergence 

is limited. The source region of the available energy is restricted to the nadir viewing angle 

of the radiometer and to the soil around the flux plates. On the other hand, the source 

region of the sonic, as a function of the stability, roughness, wind speed and direction, 

may include a fetch in excess of I km upwind. Differences in the soil and vegetation 

properties between source regions introduce a significant source of error. However, 

Stannard et al. dismissed any mismatch between source areas; they claimed that the sonic 

delivers a fundamental underestimate in the aerodynamic fluxes. As might be expected, the 

flatter sites at the Walnut Gulch region in Arizona also contained the more homogeneous 

vegetation, so attempts were not made to separate the effects of surface homogeneity and 

slope.

The Hydrologie Atmospheric Pilot Experiment in the Sahel (HAPEX-Sahel) was a 

field program conducted during 1992 to examine atmospheric-land surface interaction 

across inhomogeneous surfaces (Lloyd et al. 1997). Both Bowen ratio and eddy 

correlation methods were applied. Because of the extreme heterogeneity of the terrain, 

vegetation, and soil properties, closure was not estimated hourly or even daily. Estimates 

across a three-day period closed the residual to within 3% of the daily totals, Lloyd et al, 

concluded that, as homogeneity increases under mote stable conditions, (e.g., wetter soils 

which lead to more homogeneity o f the soil moisture), the fetch footprint increases, A 

larger footprint includes greater surface heterogeneity. Thus, any flux average includes a 

large footprint area and the measurement becomes more representative of the region. 

Likewise, the higher above ground the measurement, the greater the footprint source 

region. Thus, the longer the averaging period and with increasing neutrality, the better the 

expected closure.

In a comprehensive study of the closure issue. Twine et al. (2000) examined the 

closure of the surface energy budget during the Southern Great Plains 97 (SGP-97) 

Hydrology Experiment. SGP-97 was conducted in north-central Oklahoma during June
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and July of 1997. Both eddy correlation and Bowen ratio measurements were acquired at 

11 sites across the SGP-97 region. Closure rates for the eddy correlation systems ranged 

between 67% and 83%. Residuals of the energy budget appear to be greater than 100 

Wm ■ (J. Norman, U. of Wisconsin, personal communication). Again, as indicated by 

previous studies, instrument error within data of the available energy (Rn - G), by itself, 

could not account for the lack of closure. Twine et al. also noted that closure increased to 

about 90% during dry conditions.

A summary of results from many previous field programs is listed in Table 2.1. As 

described, many results are similar and have remained so despite varying conditions and 

improvements and changes in instrumentation. While some observations indicated near 

perfect closure (McMillen 1988; Stannard et al. 1994), even these studies indicated a rather 

significant error variance. It is clear, from numerous studies documented in the scientific 

literature, that reasonable closure of the surface energy budget remains an elusive problem.

The OASIS Project differs from previous field studies in several ways that permit a 

unique and extensive examination of the closure problem. First, each o f the 10 super sites 

is equipped with two independent methods for measuring net radiation and sensible heat 

flux. Redundant instruments allow for improved quality assurance of the data. Second, 

each of the ten super sites are equipped with the same suite of instruments, all calibrated 

together to minimize site-specific error. Third, each of the super sites is located in a 

different climate region of Oklahoma. This spatial deployment permits examination of 

closure under a wide range of atmospheric conditions. In addition, the flux stations are 

permanent installations, which allow long-term trends to be investigated. Finally, one 

super site is co-located with a Bowen ratio system to provide an independent and direct 

comparison of sensible and latent heat flux. As a result of multiple sites, each with 

duplicate instrument and measurement techniques, and with sites spread across a range of 

climate zones, data are available to undertake perhaps the most comprehensive examination 

of closure yet possible.
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Table 2.1: Summary of field projects and results.

Author(s), 
Field Project

Year
of
Pub.

Land
Surface
Type

Method Period of Results 
Data
Collection

McNeil and 
Shuttleworth

1975 Pine
Forest

EC, BR 2 months SH: BR > EC by 24%

Shuttleworth et 
al.

1984 Amazon
Forest

EC 8 days Closure: 93%

Tanner 1984 Crops EC NA Closure: 75%, 81%

Tanner et al. 1985 Crops EC NA Closure: 69% - 102%, 
mean 89%

Verma et al. 1986 Deciduous
Forest

EC 6 days Closure: 70% to 130%

McMillen 1988 Complex
terrain

EC 1 day Closure: 99%

Dugas et al. 1991 Crops EC, BR, 
chamber

2 days SH: BR > EC by 
18%, 31%

LH: BR > EC by 
23%. 33%

Kizer and 
Elliott

1991 Crops EC 6 days
Closure: 84% (95%)

Stannard et al. 
(Monsoon ‘90)

1991 Complex
terrain

EC, BR, 
Profile

3 months Rn-G > SH+LH 
by 1-35 Wm - 
(RMS of 30-75 Wm ")

Fritschen et al. 
(FIFE)

1992 Crops EC, BR 15 days Closure: 81%

Nie et al. 
(FIFE)

1992 Crops EC 19 days Rn-G > SH+LH 
by < 160 Wm "

B arret al. 1994 Deciduous
Forest

EC 2 months Closure: 89%

Lloyd et al 
(HAPEX- 
SAHEL)

1997 Complex
terrain

EC, BR 32 days Total 3-day closure 
within 3%

Twine et al 
(SGP-97)

2000 Great
Plains

EC, BR 2 months Closure: 67% to 83% 
(Residuals>100 Wm ")

Brotzae
(OASIS)

*** Complex
terrain/
crops

EC 1 year Closure: 76% - 100%, 
mean 92%
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Chapter 3: Data

3.1 The OASIS Project

The Oklahoma Mesonet (Brock et ai. 1995) is a meteorological network of 115 

stations evenly spaced across the state. Each site measures solar radiation, air pressure, 

precipitation, wind speed and direction at 10 m, air temperature and relative humidity at 1.5 

m, and bare soil and sod temperature at 10 cm depth. A majority of sites also measure the 

supplemental parameters o f wind speed at 2 m and 9 m, air temperature at 9 m, soil 

moisture at 5, 25,60, and 75 cm depths, and bare soil and sod temperatures at 5 cm. The 

Mesonet was installed during 1992 and became operational on I January 1994.

During 1999, the Oklahoma Atmospheric Surface-layer Instrumentation System 

Project (Brotzge et al. 1999b) instrumented approximately 90 Mesonet sites with new 

sensors to enable routine measurements of the surface energy budget. These measurements 

include net radiation, sensible heat flux, and ground heat flux. The latent heat flux is 

estimated as the residual in the energy balance equation:

LH = Rn - SH - GH (3.1)

Net radiation is measured at 90 “standard” OASIS sites using the Kipp & Zonen 

NR-Lite (Brotzge et al. 1999a). Sensible heat flux is estimated using a profile technique, 

employing two temperature and two wind sensors and applying Monin-Obukhov theory 

(see Appendix A; Brotzge and Crawford 2000). Ground heat flux is estimated using a 

combination approach (Tanner 1960); the soil heat flux and soil heat storage are calculated 

separately. The soil heat flux is estimated using two HFT3.I heat flux plates manufactured 

by Radiation & Energy Balance Systems, Inc. (REES). The soil heat storage is estimated 

using two REBS platinum resistance temperature detectors (PRTDs), soil moisture 

estimated at 5 cm (using the CSl 229L), and knowledge of the soil properties at each site.

In addition to the 90 standard sites, 10 of the 90 OASIS sites were designated 

“super” sites (Fig. 3.1). These 10 super sites have additional instrumentation which are 

used to verify the accuracy of measurements from the standard instrumentation and
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methods. The analysis techniques used at the super and standard sites are discussed in 

detail in Chapter 4. Geographical information about each super site is listed in Table 3.1.

Besides the NR-Lite, each super site measures each component of the net radiation 

budget using the 4-component CNR I radiometer. Incoming and outgoing shortwave and 

longwave radiation each are measured explicitly. In addition, each of the 10 super sites 

directly estimate sensible and latent heat flux using an eddy covariance technique. A CSI 

CSAT3 sonic anemometer and Krypton hygrometer have been installed at 4.5 m; it samples 

at 8 Hz.

Because of the expensive cost and high maintenance requirements of the super site 

instrumentation, only 10 OASIS sites could be equipped with sonic anemometers, 4- 

component CNR 1 radiometers, and self-calibrating heat flux plates. Nevertheless, strategic 

placement o f the 10 super sites across Oklahoma allows for a diverse range of climates to 

be examined. The 10 super sites are designed to minimize instrumentation error; more 

specifically, data from these sites are aimed at model initialization and verification. It is at 

these 10 super sites where closure of the energy budget will be examined.

Meanwhile, the 90 standard sites allow for routine measurements of the energy 

budget across the entire state of Oklahoma, expanding the spatial coverage of these vital 

measurements across a large domain. Data from the standard site instrumentation will 

permit the development of an improved climatology, new land-atmosphere investigations, 

and studies of the precipitation budget and évapotranspiration. Most importantly, the 

standard methods for estimating net radiation and sensible heat flux provide an opportunity 

for a direct comparison with CN Rl and sonic measurements at the super sites. A detailed 

examination of the instruments and data collection techniques at the standard and super sites 

of OASIS is discussed below.
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Fig. 3.1: Ten OASIS super sites located in each of Oklahoma’s nine climatic regions.

Table 3.1: Geographical information of the ten super sites.

Site ID Latitude
(deg)

Longitude
(-deg)

Elevation (m) Slope
(deg)

Aspect
(deg)

Primary Land 
Use

Alv2 36.71 98.71 439.0 0.098 200.62 Agricultural
Bess 35.40 99.06 509.5 1.764 248.04 Pasture
Hois 36.69 102.50 1268.0 0.000 *** Scrub
Bum 33.89 97.27 226.4 0.806 238.28 Pasture
Fora 36.84 96.43 330.1 1.221 20.140 Grassland
Gra2 34.24 98.74 341.0 0.168 203.20 Airport/Scrub
Idab 33.83 94.88 110.0 0.055 73.177 Pasture
Mare 36.06 97.21 330.0 0.840 212.31 Pasture
Norm 35.26 97.48 360.0 0.000 *** Scrub
Stig 35.27 95.18 175.6 0.861 146.31 Pasture

*** No aspect calculated due to estimated slope of zero.
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3.2 N et R ad ia tio n

Net radiation is measured using a single net radiometer or is estimated as the sum of 

the net radiation budget using a 4-component radiometer system. Radiation is measured 

from the amount of energy incident upon a sensing element. The computed radiation is the 

sum of energy absorbed by the sensor and energy transferred to and from the sensor in the 

form of conduction and convective currents. Thermopiles or photoelectical devices are 

often used in construction of radiometers.

3.2.1 NR-Lite Net Radiometer

The NR-Lite net radiometer manufactured by Kipp & Zonen measures the sum of 

incoming and outgoing shortwave and longwave radiation. The sensor, mounted at 1.5 m 

AGL, is approximately I m south from the tower. Data are excluded during periods of 

precipitation and when dew is suspected. Observations are gathered every 3 seconds and 

averaged to yield 5-minute observations.

Prior to installation, each NR-Lite was standardized (calibrated to be consistent 

with) to an Eppley 4-component Precision Spectral Pyranometer/Precision Infrared 

Radiometer (PSP/PIR) system at the NCOM (Net Radiation Comparison) facility (Brotzge 

and Duchon 2000). A simple linear regression was applied to data from each NR-Lite with 

respect to the reference sensor. Individual calibration coefficients were applied to each unit 

during post-processing of the data. Brotzge and Duchon (2000) described details o f the 

calibration facility and process.

Brotzge and Duchon (2000) found that error is introduced during the day when 

wind speeds are greater than 5 ms '. A comparative study by Smith et al. (1997) used a 

wind tunnel to test 8 models o f radiometers for wind-induced error. Their study showed 

the NR-Lite to be the most sensitive to wind speed with an error of approximately 0.5%  

(ms ') '. Brotzge and Duchon developed a wind correction:
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Rn^,, = Rn ĥs- u <  5.0 ms (3.2)

Rn^,, = Rn„b, * [10  + a(u-5.0)], u > 5.0 ms ‘

where Rn„^, is the observed net radiation, u is the measured wind speed (ms '), and 

a=0.02I3, an empirical constant derived from comparisons of data from the NR-Lite and 

an Eppley reference. The wind speed correction was applied to the NR-Lite observations 

during post-processing unless other.vise specified.

3.2.2 C N R l 4 Component Net Radiometer

The Kipp & Zonen CN Rl is a 4-component net radiometer. It consists of two 

pyranometers (CM3s) and two pyrgeometers (CG3s), housed in a single unit. The unit is 

mounted at 1.5 m AGL about 2 m (6 feet) south from the tower. The pyranometers 

measure incoming and reflected shortwave radiation while the pyrgeometers measure 

incoming and emitted longwave radiation.

Each CNRl has its own calibration value that is applied in the datalogger; all four 

components o f the CNRl use the same calibration coefficient. In addition, the longwave 

radiation must be corrected for the temperature of the longwave sensor. The incoming and 

outgoing longwave radiation, LW^^ (W m ’). are a function of the temperature of the 

instrument and are corrected by;

LW^.„ = V/C + a T _ - ‘ (3.3)

where V is the respective measured voltage output. C is the factory-determined calibration 

factor. (T is the Stefan-Boltzmann constant, and T.^^ is the measured body temperature.

These temperature corrections are applied during post-processing of the data.

The net radiation data may become suspect when precipitation or dew occurs. In 

these circumstances, the CNRl heater may be used. Because dew is not directly measured 

via Mesonet instruments, the CNR I heater is used when conditions are favorable for dew
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formation (e.g., relative humidity > 95% and wind speeds < 3 ms '). All net radiation data 

are flagged as suspect when the heater is used and during precipitation events.

3.3 G ro u n d  Heat Flux

A combination method is used to estimate the total ground heat flux (Tanner I960). 

The combination approach includes separate estimates for the ground flux and storage 

terms:

GH  = -A (— ) -  Cdz. 
dz

d T ^
(3.4)

. d t ,

where X [W (m K) ‘] is the thermal conductivity, dT [K] is the temperature difference

across the plate, dz [m] is the plate thickness, C [J (m^ K) ‘] is the soil heat capacity, dz^ 

[m] is the depth of the soil layer, and d j j d t  [K m ‘] is the temporal rate of change in the 

integrated soil temperature between 0 and 5 cm (Fritschen and Gay 1979).

The soil heat flow is estimated from the first term in Eq. (3.4) using two soil heat 

flux plates. The temperature difference measured across the depth of a plate is equivalent to 

the vertical movement of heat within the soil. As described above, each of the 90 standard 

sites have two REBS HPT 3.1 heat flux plates installed at a depth of 5 cm. Thus, the 

arithmetic mean of data from the two sensors is used. Each plate has an individual 

calibration that is applied during post-processing.

The second term in Eq. (3.4) is the storage term and includes measurement of the 

integrated soil temperature within the top 5 cm layer. Like the heat flux plates, two REBS 

PRTDs are installed at each site and the mean value of observations from the two sensors is 

used. Each PRTD has an individual calibration that is applied during post-processing. The 

ground heat storage term also is a function of the soil heat capacity (C), defined by 

Fritschen and Gay ( 1979) as:

(: = 4. x.(:. + 4̂  x /:. OJ)
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and is a function of the heat capacity and volume fraction (X) of minerals (m). organic 

matter (o), water (w), and air (a). In this case, the heat capacity o f air is negligibly small 

compared to the remaining terms. The volume fraction of organic matter, X„, varies from 

site-to-site, but it is assumed to have a value of 3% at all sites. The volume fraction of

minerals, X^, is derived as a function of X  ̂and the soil porosity, 0, as:

where porosity is defined as a function of the soil bulk density, py, and particle density. 

Pm. as:

The heat capacity of organic matter is C„ = 2.51*10® [J (m^K) '], and the heat capacity of 

minerals is = 1.96*10® [J (m^K)"']. The heat capacity of water is determined by 

collocated soil moisture sensors buried at a depth of 5 cm. The matric potential sensor (the 

229L from CSl) measures the soil water potential. The soil water content is estimated from 

the matric potential measurement, as shown in Appendix B. The mean values of soil bulk 

density, soil porosity, and volume fraction of minerals are listed in Table 3.2 for each site.

Table 3.2: Soil bulk density (Py), soil porosity ((j)}, and volume fraction of minerals (X„) 

listed for the ten super sites.

Site
Pb 4)

,Alv2 1.35 0.49 0.48
Bess 1.35 0.49 0.48
Bois 1.40 0.53 0.44
Bum 1.60 0.60 0.37
Fora 1.55 0.58 0.39
Gra2 1.35 0.49 0.48
Idab 1.35 0.49 0.48
Mare 1.48 0.56 0.41
Norm 1.29 0.51 0.46
Stig 1.35 0.49 0.48
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3.4 Sensible H eat Flux

3.4.1 Profile Technique

At the 90 standard sites across the Mesonetwork. similar cup anemometers and 

thermistors are used to monitor vertical gradients in wind and temperature. Vertical 

gradients of heat and momentum are applied to Monin-Obukhov similarity theory to derive 

an estimate of the sensible heat flux (Brotzge and Crawford 2(XX)). Previous investigations 

demonstrated the accuracy of the gradient approach using Mesonet data (Brotzge 1997; 

Brotzge et al. 1998). The limitations and accuracy o f the gradient approach are examined 

further in Chapter 4.

3.4.2 Covariance Technique

The ten super sites also measure sensible heat flux using eddy correlation. Each of 

the super sites has a CSI CSAT3 sonic anemometer mounted at 4.5 m AGL and located 

~1 m south of the tower. Values of latent heat flux are estimated using a co-located 

Krypton hygrometer and are included in the estimate o f sensible flux to remove effects of 

moisture (see below and Chapter 4.4).

The CSAT3 sonic anemometer measures wind speed and air temperature using 

sound wave (sonic) theory. By measuring the speed o f sound between two points, the 

fluctuations of wind and temperature can be calculated. As described by Schotanus et al. 

(1983), the speed o f sound is proportional to the reciprocals of the measured time between 

the sonic axis as:

,3 .6)
r, r, /

where t, and t, are the time periods between the downward and upward facing sensors, 

respectively; c is the speed of sound, a  is the 3-dimensional angle between the wind vector

and sonic wave, and I is the path length o f the sonic wave. The speed of sound is defined 

as:
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c-  = K^r(l + 0.51f/) (3.7)

where y is the ratio of moist air at constant pressure to that at constant volume, R is the gas

constant for dry air. T is air temperature, and q is specific humidity. By combining Eqs. 

(3.6) and (3.7). the sonic temperature (T J can be derived as:

T. =
/-

4yR
1 1----1---- (3.8)

Note that T ,# T  because the sonic temperature is a function of the specific humidity. Thus,

as shown in Chapter 4, a correction must be applied to account for fluctuations in 

atmospheric moisture.

The CSAT3 is a 3-dimensional sonic array, and so all three dimensions of the wind 

field are determined. Wind speed components of u (east-west), v (north-south), and w 

(vertical) and temperature (T J are sampled at a frequency of 8 Hz and then averaged over 

5-minute intervals. Next, the 8 Hz sampling o f u. v. w. and T, are multiplied accordingly 

to yield the covariances of: u 'u ’. u V .  u ’w '. v’v '. v 'w ’. w ’w ’. u 'T / .  v 'T / .  w ’T ,'. and 

T /T ,’ where the ’ indicates a fluctuation from the 5 minute mean value. These covariances 

are calculated within the datalogger program and then averaged to yield the 5-minute mean 

values o f flux. The sensible flux is:

H  = p c y  r (3.9)

The momentum flux (r) and friction velocity (u*) also are calculated within the datalogger

from the semi-derived sonic variables using:

T =  p

II -

(3.10)

(3.11)
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3.5 L a ten t H eat F lux

At the standard sites, latent heat flux must be estimated as the residual of the energy 

budget. However, the super sites measure latent heat flux directly using the sonic 

anemometer and Krypton KH20 hygrometer. The Krypton hygrometer works using the 

principle that, at specific emission lines, the krypton gas is a very strong absorber (and 

emitter) of water vapor. The krypton emits at two specific emission lines; 123.58 nm and 

116.49 nm. The amount of absorption (emission) of krypton between the two points of the 

transducers is proportional to the water vapor density of the air [kg m'^].

Covariances are calculated from the fundamental parameters of the sonic winds and

temperature and the hygrometer water vapor density, p \ .  The latent heat is calculated 

using:

LE = L ,w 'p : (3.12)

where [J kg '] is the latent heat of vaporization. Like the sonic, the sampling of the 

hygrometer is at 8 Hz with five-minute averaging. The Krypton hygrometer is mounted 15 

cm  from the sampling volume of the sonic anemometer. The direct measurement of latent 

heat at the super sites provides a direct comparison to residual estimates obtained from 

using the standard methodology.
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Chapter 4: Instrumentation Error and Measurement Limitations 

Introduction

As demonstrated by the field experiments listed in Chapter 2, the instruments used 

in PBL and land-surface experiments have improved steadily with time, have become more 

complex, and ate more accurate. Nevertheless, measuring the components in the energy 

budget equation remains difficult. The problem of closure o f the surface energy budget is 

perhaps best defined as the resolving of four separate problems - namely, accurately 

measuring each of the four components of the surface energy budget. If each component 

of the budget is measured without error and i f  each component is representative o f  the same 

source region, then it is assumed that the surface energy budget is closed.

In this chapter, the instrumentation error and measurement limitations of each 

component of the energy budget are investigated. The specifications of all OASIS 

instruments are listed in Table 4.1. A summary of all known instrument errors and 

limitations are provided in Table 4.2. A complete outline of corrections applied during the 

generation of a research-ready OASIS data set also are listed in Table 4.2 and displayed in 

Figure 4.1.

4.1 Net Radiation

The surface energy budget is driven by net radiation. The net radiation budget may 

be defined as:

= S W J 1 - a )  - + LW,„ (4.1 )

where SW,„ (W m ') is the incoming shortwave radiation (wavelength (À) < 4 pm ), a  is the

surface albedo, e is the surface emissivity. o  (W m " K"*) is the Stefan-Boltzmann constant. 

T̂ ,̂  (K) is the skin temperature, and (W m ■) is the incoming longwave radiation (4 

pm < X <  100 pm; Peixoto and Oort 1992). The magnitude of shortwave radiation
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Table 4 .1; Specifications for OASIS instruments.

Sensor Height Inaccuracv Resolution

CNR 1 CM3 1.5 m +/- 10% (daily totals) 10-35 pV/W m -

C N R lC G 3 1.5 m +/- 10% (daily totals) 5-35 pVAVm -
NR-Lite 1.5 m NA 10 pVAVm-

HFT 3.1 -5 cm NA NA

PRTDs -5 cm NA 0.392 Q/°C

Thermistors, air 
(Thermometries)

1.5 m, 9.0 m 0.4°C 0.03°C

Cup anemometers 2.0 m, 9.0 m 2% reading 0.25 m s '

Wind direction 10 m 3° 0.05°
Thermistors, soil -5, -10, -30 cm 0.5°C 0.03°C
Pyranometer (LiCor 200) 1.5 m 5% reading 0.23 W  m -

Rain gauge 0.6 m 1% reading 0.25 mm

Barometer 0.75 m 0.4 mb 0.01 mb

dominates during the day and creates large-scale mixing and momentum transfer. 

Longwave radiation dominates at night, leading to radiational cooling of the surface and 

stabilization of the surface boundary layer. Despite its importance, however, net radiation 

remains among the most difficult atmospheric parameters to measure accurately. 

Unfortunately, a 5% error in the estimate o f net radiation during a typical summer afternoon 

becomes an approximate 35 Wm '  error in the closure of the surface energy balance.

The foremost difficulty in observing net radiation properly is the absence of a 

World Meteorological Organization (WMO) standard for longwave radiation (Ohmura et al.

1998). Because of the lack of a uniform standard, calibrations of net radiometers vary 

greatly among instrument companies. A number of field programs have quantified
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Table 4.2: Summary o f instrument errors and limitations.

Energy Budget 
Component

Instrument Problem Approximate Error Corrective Measure

Net Radiation Calibration < 13% NCOM calibration
Wind speed error -  5% / m s ‘ if 

U > 5 m s '
Brotzge correction

Cosine function > 20% if < 20° None
Precipitation, etc > 100 W m - Data unusable

Ground Heat 
Flux

Calibration Total error < 10% Lab calibration

Surface heterogeneity Variable Mean of 2 sensors

Sensible Heat 
(Profile)

Radiational heating -  10 - 15% Brotzge/Crawford
correction

Fetch Variable Limit data

Eddy correlation Flow distortion < 44%, (variable) Mask data 345° - 15°
Sensor separation -5%  /lO cm None
Tilt of the sensor -3%  / degree Coordinate axis 

rotation

Eddy Sensible 
Heat

Cp(T) < 10% Stull correction

Moisture contamination <20% Schotanus correction

Eddy Latent Heat Density variations < 10% Webb correction

Oxygen density <20% Oxygen correction

differences among radiometers of various manufacturers. Field et al. (1992) compared 

seven different models of radiometers used during FIFE. They found daytime radiation 

differences between manufacturers to be as large as 10 to 15%. Halldin and Lindroth 

( 1992) conducted a similar study when they evaluated six radiometer designs. Differences 

between these radiometers ranged between 6 and 20%. Stannard et al. ( 1994) briefly 

examined three radiometer models used during the Monsoon ‘90 experiment and found 

differences up to 14%. Smith et al. (1997) examined nine varieties of radiometers in 

preparation for the Boreal Ecosystem-Atmosphere Study (BOREAS) program. Differences 

among these models, representing seven different manufacturers, varied by up to 25%. In
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Fig. 4.1: Diagram outlining the post-processing routines applied to all OASIS flu.x data.
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preparation for the OASIS Project (Brotzge et al. 1999). Brotzge and Duchon (2000) tested 

four models of radiometers, representing three manufacturers, and found daytime 

differences among them of up to 75 Wm ’ (approximately 12%). Daily totals among model 

types varied by as much as 20%. Halldin and Lindroth concluded that much of the 

differences between radiometers were due to the lack of a stable, longwave reference 

standard.

Investigators also determined calibration differences among the same model types. 

Field et al. uncovered daytime differences of approximately 5 to 7%. Brotzge and Duchon 

(2000) measured daily mean differences of up to 25 Wm ’ among 7 NR-Lites; differences 

among sensors were less than 5% of the total net radiation and were within the 

manufacturer’s specifications. Many authors discovered that these differences result from 

different sensitivities at short and long wavelengths. This fact would cause radiation 

estimates to vary as a function of cloudiness as well as to create separate day and night 

calibrations. Smith et al. (1997) concluded that, because of the differences in the short- 

and longwave sensitivities, minimum errors in the measurement of net radiation remained at 

5 to 10% under conditions of variable cloudiness. Halldin and Lindroth noted changes of 

calibration with season as well.

A third, commonly observed error of net radiometry concerns the cosine response 

of the instrument. Differing response to short- and longwave radiation affects how the 

sensor reacts to beamed verses diffuse radiation. In addition, the material o f the sensor 

plate determines the reflectivity and absorption of radiation by the sensor body. These 

properties determine the sensitivity of the sensor to the angle of incidence of the radiation, 

commonly referred to as the cosine response. Flat polyethylene shields developed dunng 

the 1950’s (Tanner et al. 1960) produced erroneous observations because the sensors were 

highly reflective to beamed radiation from a low solar elevation angle. Brotzge and Duchon 

(2000) determined errors with the relatively flat NR-Lite was greater than 20% with the

solar elevation angles o f < 20° when compared to how the Eppley 4-component system
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responded. Halldin and Lindroth (1992) identified several radiometers among modem 

designs that were still impacted by some cosine response.

A fourth problem that limits accurate net radiometry is solar radiative heating of the 

pyrgeometers. A number of investigators have quantified the problem (Enz et al. 1975; 

Albrecht and Cox 1977; Halldin and Lindroth 1992) and have developed several 

corrections that may be applied (Alados-Arboledas et al. 1988; Duchon and Wilk 1994; 

Perez and Alados-Arboledas 1999). Brotzge and Duchon (2000) compared the longwave 

radiation o f the CN Rl used by OASIS with the reference net radiometer of the Eppley 

system. Measurement differences in incoming longwave radiation between systems varied 

between -30 and +50 W m '  depending upon which correction terms were included in the 

estimate (see Chapter 5).

Common operational problems included snow covering the sensor, precipitation, 

and ultraviolet (UV) degradation of the domes. Betts and Ball (1997) demonstrated during 

BOREAS, that short and longwave measurements were severely limited due to snow 

covering the sensors. Dust also can collect on the radiation sensor limiting the quality of 

the data. Brotzge and Duchon (2000) found that the NR-Lite used by OASIS was highly 

sensitive to rainfall; errors as large as 100 W m * were observed during precipitation. The 

sensitivity of the NR-Lite to rain is most likely due to its lack o f a dome. A radiometer 

dome shields the thermopile surface and keeps it dry. On the other hand, degradation of 

the polyethylene domes due to UV radiation is commonly observed and requires 

replacement after several months.

4.2 Ground Heat Flux

While only a small part of the daily total energy budget, the ground heat flux is a 

significant portion of the daytime energy budget, especially under bare soil conditions. 

Instrumentation error, theoretical assumptions and surface heterogeneity are known to 

affect the estimates of ground flux.
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The combination approach used by OASIS includes three major assumptions 

(Massman 1993). First, the specific heat capacity of the soil is assumed to remain constant 

with depth and in time. The heat capacity is a function of the soil moisture, but the OASIS 

technique includes soil moisture measurements which accounts for the variability of heat 

capacity. Nevertheless, vertical variations in soil water content and heat capacity variations 

are not known. Massman noted that absolute errors are typically greater in “soils with large 

vertical gradients” in the heat capacity and thermal conductivity. He found that the top 10 

cm o f soil often dries much faster than soils below this layer. If  the heat flux plate lies 

within or above this layer o f drying, then the heat flux could be substantially 

underestimated. This fact may be a problem when the plates are installed at 5 cm, and so 

Massman recommended plate placement at 10 cm.

Second, it is assumed that there is no horizontal heat flow. Massman determined 

that lateral heat flow is most severe nearest the surface and recommended placement of soil 

temperature sensors at 2.5 cm and 7.5 cm. He cautioned that a single integrating sensor, 

such as a PRTD, could be susceptible to lateral heating errors if placed too close to the skin 

surface. Lateral heat flow is especially dominant in bare soil and partial ground cover 

conditions.

Third, most combination techniques estimate the soil heat storage term using two 

single point measurements in the vertical layer. This approach assumes the soil layer is 

best characterized using an arithmetic mean of several observations. Massman (1993) 

demonstrated that this assumption may not be the best method and, in fact, may introduce 

errors up to 3% to 6%. Each measurement should be weighted according to the soil 

thermal properties; Massman recommended the mean weights of W, = 0.54 and W, = 0.45 

where W, is the measurement at 2.5 cm and W , is the measurement at 7.5 cm. The OASIS 

technique uses a single integrated thermistor between 0 and 5 cm . However, Massman 

found that this approach might be less accurate than the weighted point samples depending 

upon the magnitude of the vertical gradients o f soil temperature. Because of these three
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assumptions of the combination technique. Massman estimated a total error in measurement 

of between +/- 3% to 10%.

The most common and significant error in ground heat flux measurements occurs 

when the thermal conductivity of the soil does not match the thermal conductivity o f the 

heat flux sensor. Ideally, the flux plate should have the same conductivity as the mean 

properties of the soil. Fritschen and Gay (1979) found that the thermal conductivity of 

sand and clay soil ranges between 0.8 and 2.2 W (m K) ‘. The thermal conductivity of a 

heat flux plate made from plastic or glass could be as low as 0.17 W (m K) ‘, resulting in 

errors as high as 44%. When the thermal conductivity of the plate does not match the 

conductivity of the soil, heat flow may either be deflected around (or drawn towards) the 

sensor plate. This “deflection error” leads to an underestimate (overestimate) of the ground 

heat flux (Hukseflux 1999). A difference in thermal conductivity also may lead to 

“resistance error” by modifying the total thermal resistance in the soil layer (Hukseflux

1999).

The dependence of the ground heat flux upon the soil thermal conductivity is 

corrected as described by Fritschen and Simpson (1989). The correction is:

where is the measured heat flux by the plates, F = 1.92 is an empirical constant derived

as a function of plate disk shape (van Loon 1998), I is the width of the transducer, d is the 

diameter of the transducer, k, is the soil thermal conductivity, k, is the thermal conductivity 

of the transducer, and k^ is the conductivity of the medium used for calibration of the 

transducer. The soil thermal conductivity is estimated at each site as a function of the

measured bulk density, p j. and gravimetric soil water percentage. 0^. The soil thermal 

conductivity is defined as:

it, = 0.64+1.630.,, -O .5O 5exp(-170;)
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and the gravimetric soil water percentage is estimated as;

where 0 is the estimated soil water content, estimated as shown in Appendix B. Typical

corrections to the ground heat flux range as high 5%.

To minimize errors in using a heat flux plate. Fritschen and Gay (1979) 

recommended careful manufacture and calibration of the ground heat flux plates. First, the 

plates should be manufactured from a material that shares the same conductivity as the 

mean properties of the soil. The flux plates used by OASIS have a thermal conductivity of 

1.22 [W (mK) ']. Second, each sensor should be calibrated in a material with similar 

thermal conductivity as the soil properties. The conductivity of the calibration medium is 

0.906 [W (mK) ']. The thermal conductivity of the soil approaches the thermal 

conductivity of the plate during saturated conditions. Note that the thermal conductivity of 

the soil changes as a function of the soil moisture.

Another significant error in measuring ground heat 11 ux occurs because the heat flux 

plate itself impedes the vertical flow of heat and moisture in the soil layer (Tanner I960; 

van Loon et al. 1998). Tanner (I960) and Fritschen and Gay (1979) recommended a 

small, thin plate sensor to reduce error in the vertical flow of energy. To further minimize 

ground flux error, each plate must be in complete thermal contact with the soil. Air gaps 

between the plate and soil can lead to errors as great as 54% (Fritschen and Gay 1979). 

Yet another error involves a temperature dependency of the measurement. Standard

temperature dependency is about 0.2% K A typical range of 20 °C can lead to an 

approximate 4% error in ground heat fluxes (Hukseflux 1999).
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4.3 Sensible Heat Flux

4.3.1 Profile Gradient Approach

Three specific problems limit the accuracy of the gradient approach. First, gradient 

methods are sensitive to instrumentation error. A sensitivity test of the profile algorithm 

demonstrates the error to be a function of both the wind speed and temperature vertical 

gradients, and implicitly, a function of the stability. An error in the vertical temperature 

(wind speed) gradient can lead to an approximate 100 Wm - (30 Wm “) error in heat flux. 

Instrumentation error associated with the thermistors and cup anemometers could be 

assumed to have a Gaussian distribution when averaged across all 90 standard sites. 

However, instrumentation error observed at any single site could result in biased estimates 

of sensible flux.

Each instrument was carefully calibrated in the laboratory prior to field installation, 

and multiple sensors, such as the cup anemometers and thermistors, were paired and 

installed at the same site to minimize bias error between them. Quality assurance of the 

profile temperature and wind data provides some limits to the instrument errors. Spatial 

analysis of monthly means of temperature and wind speed reveals small biases at individual 

sites. In addition, like instrumentation, such as the Thermometries and HMP-35C, 

measure the same variable at the same height. By examining this comparison, some bias 

and temporal error can be identified and flagged. The wind profile is measured by two 

(three) cup anemometers at the standard (super) sites in addition to the propeller vane at 10 

m. Thus, irregularities in the vertical wind profile can be identified as well.

Second, radiational heating of the temperature shelter during sunny, light wind 

conditions produces heating of the temperature sensor (Richardson 1995). The air 

temperature is overestimated when the shelter of the temperature sensor warms. 

Operational corrections were developed independently by Anderson and Baumgartner 

(1998) and Brotzge and Crawford (2000). The Brotzge and Crawford method improves 

sensible heat fiux estimates by approximately 5 - 10%.
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A third problem with the gradient approach to estimate sensible heat is fetch. As 

vegetation height changes seasonally, fetch is affected accordingly. The taller the 

vegetation, the greater the turbulence and mixing near the surface. As a result, low level 

wind estimates become less reliable. As vegetation increases in height, the height of the 

sublayer increases, and if the vegetation grows tall enough, the low level wind monitor 

could find itself within the sublayer. In addition, some sites are within 100 m of trees and 

fence lines. While the choice o f site selection considered fetch carefully, limited 

obstructions still impact accurate estimates of flux when the wind is from certain directions 

at each site; these observations subsequently are flagged.

4.3.2 Eddy Correlation Approach

As shown in Chapter 2, failure to close the energy budget generally is associated 

with problems with EC instrumentation. Nevertheless, a greater understanding o f eddy 

covariance techniques has contributed to its widespread acceptance in the scientific 

community. Several limitations of eddy correlation such as flow distortion and frequency 

error have been identified (Dyer et al. 1982; Dugas et al. 199 T, Foken and Wichura 1996), 

and improved quality assurance routines have been developed (Kaimal and Gaynor 1991; 

Vickers and Mahrt 1997). In addition, universal corrections are routinely applied (Webb et 

al. 1980; Schotanus et al. 1983; Moore 1986; Tanner et al. 1993). First, the limitations of 

direct eddy flux measurements are discussed, followed by an examination of corrections 

applied to the OASIS data set. Finally, quality assurance routines are described which 

allow for quality control of direct flux estimates.

4.4 Eddy Correlation

4.4.1 Measurement Limitations

Technological advances have permitted more precise and accurate eddy flux 

measurements. The first eddy flux instruments were the ‘Evapotron’ (Swinbank 1951; 

Dyer 1961) and the ‘Fluxatron’ (Hicks 1970; McNeil and Shuttleworth 1975). These used
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propeller anemometers to measure the vertical component o f wind speed, and fast 

temperature sensors to measure temperature fluctuations. Me Bean (1972) found that the 

propeller anemometer introduced both frequency response errors and cosine function errors 

that could be as large as 25%. McNeil and Shuttleworth (1975) showed that the slow 

response of the propellers tended to underestimate the flux by as much as 24%. Advances 

in digital technology allowed for the development of sonic thermometry where wind and 

temperature fluctuations could be estimated simultaneously (Suomi 1957; Kaimal and 

Businger 1963; Kaimal and Gaynor 1991). Advantages o f the sonic include its improved 

resolution o f the vertical wind component, sampling over the same volume for both 

temperature and wind, and improved calibration (Kaimal and Gaynor 1991). Still, sonic 

measurements are restrained by the common assumptions and limitations of turbulence 

theory (Panofsky and Dutton 1984).

Theoretical S ensor Meteorological
requirem ents 
not satisfied

Configuration Problem s

hom ogeneily

stall onahly

coordinate
system
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I
 1
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boundary layers
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gravity waves
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Fig. 4.2: Diagram reproduced from Foken and Wichura (1996) listing possible errors with 

eddy correlation.
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Foken and Wichura ( 1996) and Panofsky and Dutton ( 1984) detailed many of the 

limitations and assumptions that accompanied turbulence measurements. A summary of 

such problems is given by Foken and Wichura and is reproduced in Figure 4.2. 

Researchers conveniently overlook many of these problems. Furthermore, the 

complexities of the sonic anemometer lead many to treat it as a “black box" (Foken and 

Wichura 1996).

Theoretical requirements of eddy correlation include stationarity and homogeneity. 

Stationarity requires that the sampling statistics do not change with time. Homogeneity 

means that the sampling statistics do not change in space. Stationarity and homogeneity are 

often used synonymously. Given a heterogeneous land surface, homogeneity cannot be 

observed. Sampling statistics may vary spatially according to changes in albedo, 

roughness, soil wetness, and vegetation structure among others. Likewise, stationarity 

may fail in a heterogeneous landscape. Roughness estimates vary with wind direction, 

which affect stationarity. Variations in the time series of data reflect spatial heterogeneity. 

The time series is directly reflective of the fetch represented, which is a function of the 

stability, wind direction, and surface roughness (Foken and Wichura 1996).

Turbulence measurements can be sensitive to sensor configuration problems if they 

have not been treated properly. Flow distortion from the mounting tower and sonic 

anemometer has been examined in several studies (Dyer 1981; Dyer et al. 1983). Dyer 

(1981) quantified and modeled the problem. He found typical errors in the momentum flux 

to be about 14% per degree of wind direction and caused by flow distortion. Typical error 

in the heat flux was limited to only 3% per degree. Dyer also developed corrective 

equations for both the momentum and heat flux as follows:

(4.2a)

w'6' = w'Q'cosO  + « :0 'ta n 0  (4.2b)
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where u ’,„ and w '^  are the distorted flow covariances. 0 is the polar coordinate, y = 7i/n

where n = m 7i V / a. m is the source strength. V is the flow velocity, r is the distance 

between the flow distortion source and the measurement, a is the assumed cylinder radius, 

and 0 is the angle of flow distortion. Wyngaard ( 1982) and Dyer et al. ( 1983) suggest that

flow distortion error may be as high as 20% but the exact error remains highly variable.

Tilt errors are another serious issue when dealing with sonic anemometry. If the 

sonic anemometer is titled relative to the actual airflow, then the measured vertical 

component is contaminated by the horizontal w ind component. Two errors may occur: 1) 

the sonic itself may not be level, and 2) the land surface may be sloping. Both errors 

introduce similar under- or overestimation o f the fluxes. To minimize the former error, 

electronic levels will be installed with each OASIS sonic. As the sonic responds to the 

wind, instantaneous corrections theoretically could be applied. Practically, the level is used 

to track long-term changes in the sonic tilt. To address the latter issue, a Digital Elevation 

Model (DEM) at 30 m spatial resolution was used to determine the land slope at each 

OASIS site (Table 3.1). The estimated slope value for the 900 m‘ region centered on the 

site was used to further examine the orographically induced flow (see Chapter 7). 

Operationally, tilt error is mathematically corrected by a process called coordinate axis 

rotation. This is described in detail later in this chapter.

Dyer ( 1981) found that tilt error closely resembled error created by flow distortion. 

Again, he devised a corrective formula that could be applied to the momentum and heat flux 

estimates:

u'w' = cos20 + ^sin20(i<;;,- -  w;;,-) (4.3a)

w'9 ' = n ' 9 ' cos 9 + It'9 ' sin 6 (4.3b)
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where the distorted (or in this case, ‘tilted’) flow are u’^ and w ’_̂ . and the tilt error is 0.

Dyer found these corrective equations to be very similar to those for flow distortion, again 

yielding an approximate 14% and 3% error for momentum and heat fluxes, respectively.

Sensor separation is another serious issue with dramatic implications for flux 

estimates. Eddy correlation measurements often require two separate sensors - one 

measuring the vertical wind component and the second measuring the scalar (temperature, 

humidity, or atmospheric gas). In the case of the OASIS data set, measurement of latent 

heat flux requires both the sonic anemometer to estimate the wind component and the 

Krypton hygrometer to measure water vapor fluctuations. The sensors are separated 

vertically by 15 cm. Koprov and Sokolov (1973) found the underestimate of flux was 

caused by the lateral separation o f sensors to be an approximate 10% (20%) error in 

momentum covariance and a 5% (10%) error in heat flux covariance at a sensor separation 

of 10 cm (20 cm).

Kristensen et al. (1997) conducted a comprehensive study of the sensor separation 

problem. The authors quantified the separation error as a function of measurement height 

and vertical and lateral sensor separation. The authors found that the higher above ground 

level (AGL) the flux measurement was taken, the smaller the error incurred by the sensor 

separation. The size of eddies increases with measurement height. The error caused by 

sensor separation decreases with eddy size. Kristensen et al. also realized that the error 

caused by sensor separation was asymmetric about the vertical. By placing the scalar 

sensor 20 cm above the anemometer, a flux error of 18% occurred. However, by placing 

the scalar sensor 20 cm below the anemometer, the flux error was only 2%. As expected, 

lateral sensor displacement was symmetric. Because of these results, OASIS placed its 

scalar component (the Krypton hygrometer) 15 cm below the sonic anemometer.

As shown in Figure 4.2. meteorological problems may unduly influence and affect 

flux estimates. Strongly stable nocturnal layers may create a very shallow surface layer of 

less than 10 m AGL. Gravity waves may propagate within these shallow inversions as
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well. The sonic anemometers for OASIS were mounted at 4.5 m AGL. This height was 

chosen to alleviate any problems with a shallow boundary layer; the height was less 

sensitive to very localized surface heterogeneity. Internal boundary layers can develop, 

given a change in surface heterogeneity within the flux footprint. When internal boundary 

layers occur, homogeneity and stationarity are seriously violated.

4.4.2 Corrective Measures Applied to Sensible Heat Flux

Because of the many serious issues that can arise when using eddy correlation, a 

number of corrections must be applied to the sonic data. Three corrections were applied to 

the sensible and latent heat fluxes in the OASIS data set; they are described below.

4.4.2.1 Moisture Dependence

The sensible heat flux is a function of the specific heat of air, Cp, which varies as a 

function of moisture. Thus, the kinematic moisture flux, as measured by the krypton 

hygrometer, must be included in the estimate of sensible heat flux to account for changes in 

the specific heat. The sensible heat flux is calculated as defined by Stull ( 1988):

H  = p C p(w T ' + 0 . 8 4 T ^ )  (4.4)

where (C p.^ ,,p  ̂* Cp ^  J  / (Cp ^  „,) = 0.84.

4.4.2.2 Correction of Schotanus et al.

Schotanus et al. (1983) demonstrated that the measured sonic temperature (T J. as 

shown in Eq. (3.8). is a function of both the specific humidity and normal velocity 

fluctuations:

r = r + o . 6 i ( / T - 4 - v , / .  (4.5)
c~
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Thus, to accurately compute the sensible heat flux as given by Eq. (3.9), one must remove 

the effects of both the humidity and velocity fluctuations. Schotanus et al. provide the 

correction;

= (4.6)
L'-

Because the krypton hygrometer automatically corrects for the normal velocity fluctuations. 

Eq. (4.6) is applied to the OASIS data set without using the second term.

4.4.2.3 Coordinate Axis Rotation

Eddy correlation estimates of heat flux are sensitive to tilt errors of the sonic 

anemometer. As described in a previous section, measurement of the vertical wind 

component can be in error when either the sonic is tilted relative to the flat ground or the 

ground surface is sloped. In either case, the measured wind components are not parallel to 

the mean air flow. To minimize flux error, the sonic anemometer must be exactly 

perpendicular to the mean air flow.

Methods have been developed to quantify and correct for sonic tilt error. Tilt error 

can be corrected through a process of coordinate axis rotation. First, as part of the quality 

control of the data for this study, a visual check o f the data was examined as described by

T. Horst (NCAR, personal communication, 1999). Elevation (a )  and azimuth (P) angles 

were computed for each time step as:

oc = Tan
w

I > Ï
VU' + v“

(4.7a)

^  = r a / r ' ( - J  (4.7b)

and then plotted as a function of wind direction. The results generally follow a sinusoidal 

curve which represent the sonic tilt error observed at the site. To quantify the error, a least 

squares fit is applied to the orthogonal wind components (u. v. and w) as:
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vv = a + bu + cv (4.8)

where a is the estimated offset in the measured vertical velocity. The dimensionless

coefficients o f b and c are used to compute the sonic lean angle (6) and the azimuth of the 

sonic lean angle (tp) as follows:

d = Ta^r '(^Jb--^c-^ (4.9a)

(p = Tan'' i— (4.9b)
\ b )

A sinusoidal fit to the plots made from Eqs. (4.7) can be plotted using Eqs. (4.9) as:

a  = d * c o s { P - (p ) .  (4.10)

Several examples of tilt error are plotted from data collected at the Bumeyville, 

Grandfield, Idabel and Marena sites and are shown in Figures 7.1 and 7.2. Negative 

values of elevation angle represent downward sloping winds (or negative vertical 

component contamination), and positive values represent upward sloping winds (positive

vertical component contamination). Values for a ,  P, 0 , and tp were computed from five-

minute observations o f data collected at each super site between 1 - 1 4  October 1999, 1 -  

14 January 2000, and 1 5 - 3 1  May 2000. Data were excluded from computations during

days with rain and when the observed wind direction was between 345° and 15°,

directions that cause flow distortions by the tower. The computed tilt errors for each site 

are listed in Table 7.2.

Finally, the computed sonic lean and azimuth angles are used to rotate the sonic 

measurements into the mean air flow. The complete method for sonic rotation of the 

covariances is shown in Appendix 3.
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4.4.3 Corrective Measures Applied to Latent Heat Flux

A number of corrections must be applied to the latent heat 11 ux derived from the 

eddy correlation method.

4.4.3.1 Correction of Webb et ai.

First, the covariance method estimates the density fluctuations of heat and moisture 

about an arbitrary mean. The heat and moisture fluxes, however, directly modify the 

density of the air. and thus affect the density fluctuations (Webb et al. 1980). A modified 

form of the correction for density variability is listed by Tanner et al. (1993) as;

LE = LEM 1.0 +
P - e

0.622I^P
P - e P -0 .3 1 8 e

(4.11)

where 3 is the uncorrected Bowen Ratio, e is the vapor pressure, P is the atmospheric

pressure. Cp is the specific heat at constant pressure, and L„ is the latent heat of 

vaporization. The second and third terms on the RHS of Eq. (4.11) represent the effects of 

the sensible and latent heat upon the density fluctuations, respectively. Tanner et al. 

demonstrated that the general impact of sensible heat is roughly 5 times greater than that of 

the latent heat and increases with increases in the Bowen ratio.

4.4.3.2 Oxygen Correction

A second correction that should be applied to the estimate of latent flux involves the 

dependence o f the sonic measurement upon the oxygen density of the air. The magnitude 

of oxygen absorption by the Krypton hygrometer is dependent upon both the sensible and 

latent heat fluxes. Thus, the correction is dependent upon the Bowen ratio. Tanner et al. 

( 1993) presented this correction as:

K. 4  /3LE = LE.. 1.0 + 0.23-
k . . .  T

(4.12)
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where k, is the oxygen absorption coefficient, k  ̂ is the water vapor absorption coefficient. 

T is the sonic-derived temperature. is the latent heat of vaporization, and P is the Bowen 

ratio.

4.4.3.3 Coordinate Axis Rotation

The same method of coordinate axis rotation applied to the sensible heat flux was 

applied to the latent heat flux. Details of the technique are described in Appendix 3.

4.5 Quality Control Measures

A series of quality control measures have been formulated in the literature to 

identify errors in eddy correlation data (Panofsky and Dutton 1984; Heiser and Sellers 

1995; Foken and Wichura 1996; Vickers and Mahrt 1997). Data should be limited to use 

only when the assumptions o f turbulence theory are not violated such as stationarity and 

homogeneity. Most tests involve examination of the covariance response functions and 

turbulence spectrum. Unfortunately, OASIS does not allow routine collection of the 8 Hz 

sampling; only five minute averages of covariance are recorded. This limited data set 

severely restricts quality assurance of the eddy correlation data. Nevertheless, several 

techniques are available which aid in minimizing instrumentation and sampling error in the 

data set.

The methods implemented in the generation of the complete OASIS data set are 

described below. Automatic routines were applied to all flux data. The routines were 

implemented easily into the data processing and were used primarily to identify 

instrumentation error. Manual routines were applied only on an “as needed” basis. The 

combination o f the automatic and manual routines allowed for identification of systematic 

errors that were not otherwise detected. Problems with nonstationarity. fetch, and surface 

inhomogeneity also were examined (see Chapters 7 and 8).
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4.5.1 Automatic Routines

4.5.1.1 Range Tests

Heiser and Sellers ( 1995) developed a system of quality control measures to ensure 

consistency in the data among FIFE sites and to limit erroneous data from the data stream. 

Among their quality control measures were the use of a range test to exclude those energy 

fluxes outside a range of physically plausible values. The OASIS data set was quality 

assured in a similar manner using their recommended ranges for energy fluxes:

-150 < R n <  1000 Wm - -100 < LE < 600 Wm ’ (4.13)

-200 < SH < 600 Wm - -150 < GH < 300 Wm "

Shafer et al. (2000) have developed similar range requirements for Mesonet data.

4.5.1.2 Step and Persistent Tests

Instrumentation and sampling error also may cause spurious jumps or spikes in the 

data stream. Some erroneous data values may remain within range limits, however. 

Arbitrary step functions were chosen to identify suspected data problems. A step function 

was defined as the change in value between two successive measurements. The step values 

used in the quality control of this data set were:

SW, in: > 800 Wm - LW, in: > 400W m  '

SW, out > 400 Wm - LW, out: >400 Wm '  (4.14)

SH: > 200 Wm - GH: > 100 Wm *

LH: > 200 Wm -

A persistence test also should be applied to identify erroneously repeated values. 

Because nocturnal values of flux are often repeated, only daytime estimates of flux were 

examined for persistence. Observations were excluded when successive flux estimates 

were identical.

Note that in development of the data set used in this dissertation, step and persistent 

tests were not automated. Visual inspection of the data identified problems when possible.
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However, future use of the data will include automated routines similar to those described 

by Schafer et al. (2000).

4.5.1.3 Miscellaneous Tests

Neither the sonic anemometer nor the Krypton hygrometer operates properly once 

the transducers are wet. Water on the transducers affects the transient signal. Thus, eddy 

correlation data, collected during o r just after precipitation, cannot be used. For this study, 

all EC data collected during days with precipitation were excluded.

Likewise, net radiation data collected during precipitation is affected by evaporative 

cooling from the sensor surface. WTiile the CN Rl sensor is designed to minimize such 

effects, the NR-Lite is not. Brotzge and Duchon (2000) demonstrated the large error 

associated with precipitation on the NR-Lite. Like the EC data, all data collected from the 

NR-Lite during days with precipitation were excluded. The CNR I is equipped with an on

board heating system to reduce precipitation error. Thus, only data collected during 

precipitation is not used.

Dew also is a problem for the NR-Lite. Thus, during conditions favorable for dew , 

such as relative humidity > 90% and wind speeds less than 3 ms ‘, data from the NR-Lite 

were not used. However, because the CNRl included use of a heater, the data were 

deemed suspect and reexamined manually. If no large outliers were detected, then the data 

were used.

Snowfall can cover the net radiation sensor as well and has posed a major problem 

in Field experiments in northern climates (Betts and Ball 1997). The winter climate in 

Oklahoma rarely includes snowfall, and yet snow events can limit the collection of net 

radiation. A statewide snowfall between 25 -  27 January 2000 was one such example; 

hence, net radiation data collected during that week were not used.
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4.5.2 Manual Quality Assurance

All data are initially quality assured by the automated routines. Then, the four 

components o f the energy balance are computed. Thirty-minute means are produced, and 

all data are visually inspected to detect obvious flaws.

While digital values of the data appear correct, an understanding of the physical 

processes of the energy budget dictates exclusion of the data during certain periods. For 

example, snowfall during 25 - 27 January inhibited accurate measurement of net radiation. 

All data collected during this period, while passing all automated routines, was manually 

excluded from the data stream. A second problem occurred when three krypton 

hygrometers failed completely. However, the failed sensors continued to measure noise, 

and the automated routines failed to exclude such data. Another problem occurred when 

gophers dug up several in-ground sensors at Stigler. Most sensors continued to measure 

correctly; unfortunately, the sensors were simply no longer buried. Only a manual 

inspection of the data revealed a rather erratic behavior by the soil temperature and moisture 

sensors.

More difficult problems involve fetch, surface homogeneity, and source area 

“mismatch” (see Chapters 7 and 8). Identification of these problems requires detailed study 

of the site, preferably prior to site installation. Once these problems are detected at a site, 

data should be excluded as a function of wind direction or time of year. For example, fetch 

could be limited from certain directions at a particular site, or the land-surface could be 

marked by strong heterogeneity during the growing season in which case data collected 

during these periods should be excluded.

All days of missing or bad data are listed in Tables 4.3a-b. The tables do not list 

data excluded during rainfall or days with only partial data missing. Unfortunately, 

replacement sensors for the krypton hygrometers were not readily available, and so the 

mere identification of a bad sensor did not necessarily mean a quick replacement. Long 

periods of missing data were observed at Foraker, Grandfield, and Norman. Problems
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with gophers at Stigler produced bad ground heat tlux data over most of the data collection 

period. Note that when any one component of the energy balance is not measured, then 

closure cannot be estimated during that penod of time at that site.

46



Table 4.3a: Periods of data during 1999 with complete days of missing or bad data.

Jun Jul Aug. Sept. Oct. Nov. Dec.

Rnet

Bum
Stig

225-238
244-248

G H

Norm
Stig

174-lSl
283-304 305-334 335-365

SH/LH

Fora
Gra2
Norm 254-273

302-304

274-304

305-334
321-334
305-334

335-365
335-365
335-365

Table 4.3b: Periods of data during 2000 with complete days of missing o r bad data.

Jan. Feb. Mar. Apr. May

Rnet

Alv2 25-34
Bois 27-31 32
Bum
Fora 27-30
Gra2 26-29
Idab 26-31 32-34
Mare 26-30
Norm 26-31 32-33

GH

Alv2
Stig 1-31 32-60

SH/LH

Fora 1-31 32-34
Gra2 1-31 32-60
Norm 1-31 32-60

98-104

72-90 91-121 122-140
61-81

61-90 91-121 122-138
61-83
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C hapter 5: Quantification of Instrum ent E rror

Introduction

Before closure can be methodically examined, an estimate of instrument error must 

be developed for each component of the energy budget. At that point, a system is 

considered “closed” only when the residual of the energy budget lies within the maximum 

error limitations presented by the independent components of the energy budget. A detailed 

examination o f instrument error allows measurement bias to be easily identified and 

corrected and allows random error to be minimized. This chapter quantifies instrument 

error for each component of the energy budget.

Failure to close the energy budget is caused by two primary sources of “error”: 

instrument error and system error. Instrument error is caused by problems with the 

engineering, maintenance and/or calibration of the instrument itself. This error is manifest 

as either random or systematic, static or dynamic (Richardson and Brock 2001). 

Fortunately, instrument error can be identified and can be reduced by instrument 

calibrations, field intercomparison between like instruments, and quality assurance routines 

(Schafer et al. 2000). System error is created when, despite the instrument itself working 

properly, the observation still does not represent “atmospheric truth”- the measurement 

intended by a human observer or an automated system. Poor instrument exposure, 

unrepresentative site location, and surface heterogeneity create system error; these errors 

are often difficult to recognize in a data stream. “Source area mismatch” is a system 

problem unique to estimating the surface energy budget and is created because the net 

radiometer and ground flux sensors measure a very localized footprint area whereas the 

sensible and latent flux sensors observe a much larger upwind region. Thus, the footprint 

region estimated by (Rn-GH) often is as much as a magnitude smaller than the area 

estimated for (SH-nLH).

In this chapter, instrument error is quantified when possible for each component of 

the energy budget through direct instrument intercomparison.
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5.1 Net Radiation

Net radiation is the largest component of the surface energy budget, and its correct 

measurement is critical to minimizing error. Thus, the net radiometer used by OASIS, the 

C N R l. was investigated for precision and accuracy. First, two C N R l radiometers were 

compared directly. Field intercomparisons between like instruments allow for an estimate 

of the instrument precision and permits verification of instrument specifications provided 

by the manufacturer. Second, radiation estimates from the C N R l were tested against 

observations collected from a second four-component net radiometer, the PIR/PSP system 

manufactured by Eppley. Comparing the C N R l to a second, independent system allows 

for an estimate of the differential bias for each component of the net radiation budget. The 

Eppley system has been cited as a field reference for radiation by other research programs 

(e.g., during FIFE; Field et al. 1992).

First, the four components of net radiation collected from two CNR Is were 

compared directly. One-minute data were collected during 1 - 3 1  March 1999 at the 

Norman Intercomparison (NCOM) facility. Both CNR Is were mounted at approximately 3 

m AGL, aligned east -  west and placed about 1 m apart. Data collected during rainfall and 

shortwave radiation data less than 10 W m " were excluded from the comparison. Five- 

minute averages for both sensors were compared and results are shown in Figs. 5. la-d and 

Tables 5.1 and 5.2.
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Table 5.1: Linear regression parameters from the comparison of two CNR is.

Variable Intercept Slope R '

Net radiation -0.564 1.009 1.000
Incoming Shortwave -0.612 1.004 1.000
Outgoing Shortwave 1.724 0.979 0.998
Incoming Longwave 1.162 0.998 0.998
Outgoing Longwave -2.684 1.010 0.999

Table 5.2: Difference statistics from the two CNRls (CN Rl #1 -  CN Rl #2; Wm ')•

Variable Mean, X Standard Confidence Sample size.
deviation, a limits at 95% # 5-min averages

Net Radiation -0.137 3.690 -7 .3 7 -7 .1 0 8916
Incoming Shortwave -0.957 3.415 -7.65 -  5.74 4169
Outgoing Shortwave 0.221 3.000 -5 .6 6 -6 .1 0 3652
Incoming Longwave -0.489 1.611 -3.65 -  2.67 8916
Outgoing Longwave -0.855 0.932 -2.68 -  0.97 8916
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Fig. 5. la-d: A comparison of the four components of net radiation obtained via two 

C N R ls. One-minute data were collected between 1 -3 1  March 1999.
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Fig. 5.2: A comparison of net radiation obtained via two C N R ls. One-minute data were 

collected between 1 -3 1  March 1999.

Results from comparing the two C N R ls revealed little relative difference between 

them. Nearly all components lie within 2%, and mean differences between components 

were within 1 W m '\ Confidence limits range between ■+■/- 8 Wm " for all components 

(Table 5.2). The results verify the consistency of measurements from the C N R l.

As shown by Halldin and Lindroth (1992) and Field et al. (1992), significant 

calibration differences may exist between radiation sensors from different models. Thus, 

to better determine its accuracy, the C N R l was compared with an independent net 

radiometer, the PSP/PIR system by Eppley. Data were collected during 7 May - 6 June 

1998 at the NCOM and Norman Radiation (NRAD) test facilities. The C N R l was new 

while the manufacturer had recalibrated the 4-component Eppley system in 1997. A Q *7 .1 

manufactured by REBS and an NR-Lite manufactured by Kipp & Zonen also were 

available. Five-minute averages of radiation were used for this intercomparison study.

First, the net radiation of the CNRl and Eppley were compared during situations 

when clear sky conditions were dominant (Fig. 5.3). Data from eight clear days and seven 

clear nights during May and June (DOY 130-132. 135, 148. 152-154) 1998. The 

comparison revealed that the CN Rl underestimated radiation by as much as 40 Wm" at 

midday relative to the Eppley system. However, a similar comparison between the Q*7.1 

and NR-Lite radiometers indicated that these radiometers underestimated radiation by as
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much as 75 W m '  and 100 Wm \  respectively, when compared to the Eppley (see Figs. 6a- 

c in Brotzge and Duchon 2000). Thus, either all three sensors, the C N R l. Q*7.1. and 

NR-Lite. underestimated net radiation, or the Eppley system used at NRAD overestimated 

net radiation, or all four sensors had some diumally-dependent error. Unfortunately, the 

“correct” net radiation is not known.
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O
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g
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=> NR-Lite #6 - Eppley 
Q*7.1 - Eppley
C N R l  - Eppl ey

200 400 600 800
Eppley (Wm )

Fig. 5.3: Radiometer type versus the 4-component Eppley system.

Next, individual components of the C N R l and Eppley were compared; differences 

revealed several systematic problems (Figs. 5.4 - 5.7 and Tables 5.3 and 5.4). Differences 

in the shortwave radiation (Fig. 5.6a) are symmetric about solar noon and may be simply a 

calibration error. Differences in incoming longwave radiation (Fig. 5.6b) show a clear 

dependence on the diurnal cycle as well. These differences in longwave radiation most 

likely result from different methods in dealing with heating of the pyrgeometer dome.

Differences in the outgoing shortwave (longwave) radiation from the C N R l and 

Eppley systems averaged less than 5% (1%). The shortwave radiation values from the
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CN Rl and Eppley were set to zero at night. Shortwave differences during the day may be 

due to small differences in albedo under the two sensors resulting from non-uniform 

surface properties such as vegetation type and soil moisture. Similar differences could 

likewise lead to small differences in longwave radiation. Nevertheless, the incoming and 

reflected shortwave measurements of the CNRl remained within 2.2% and 4.4% of the 

Eppley, respectively, and the longwave measurements of the C N R l remained within 2% of 

the Eppley. These estimates lie well within the CNRl specifications provided by the 

manufacturer.

Table 5.3: Linear regression parameters from the comparison o f data from a C N R l and an 

Eppley system. The CNRl is the independent variable (x), and the Eppley is the dependent 

variable (y).

Variable Intercept Slope R-

Net radiation -2.224 1.022 0.9985
Incoming Shortwave -0.389 1.044 0.9997
Outgoing Shortwave 1.303 0.980 0.9977
Incoming Longwave 3.127 0.9961 0.9889
Outgoing Longwave -2.886 1.0 2 1 0.9982

Table 5.4: Difference statistics estimated from the CNRl and Eppley systems.

Variable Mean, X Standard Confidence limits Sample size.
deviation, a at 95% # Observations

Net Radiation -0.873 10.946 -22.33 -  20.58 8792
Incoming Shortwave -9.531 10.878 -30.85 -  11.79 4948
Outgoing Shortwave -5.965 3.534 -1 2 .8 9 -0 .9 6 4948
Incoming Longwave 4.515 5.722 -6.70 -  15.73 2304
Outgoing Longwave 4.663 2.912 -1.04 -  10.37 2304
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Fig. 5.4: A comparison of four components o f net radiation produced by the C N R l and 

Eppley systems. Five-minute data were collected between 7 May and 6 June 1998.
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Fig. 5.5: A comparison of net radiation produced by the CN Rl and Eppley systems. Five- 

minute data were collected between 7 Mav and 6 June 1998.
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Fig. 5.7: Difference in net radiation between the CN R l and Eppley systems.
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Differences between the incoming longwave data from the Eppley and CN Rl were 

examined further by studying the effect of applying different radiative heating correction 

measures (Fig. 5.8). The Eppley pyrgeometers were manufactured with a single dome 

temperature sensor while a case temperature sensor was already installed. Thus, longwave 

estimates from the Eppley system included a case temperature (T^^) and dome temperature 

(Tjome)- The formula for the incoming or outgoing longwave radiation, Lw.^ (Wm '), was 

that proposed by Delaney and Semmer ( 1998), and is given by:

Lw„ = V/C + aT*.., - a o ( r ^  -  n „ )  -  bQ (5.1)

The first term on the right calculates the uncorrected longwave radiation where V is the 

measured voltage output, and C is the determined calibration factor. The second term 

corrects for an underestimate of longwave radiation by the pyrgeometer because it

CNR1-Epp (no 3,4) 

C N R '-E pp  (w/3) 

CNRI-Epp (w/4) 

CNRI-Epp (w/3,4)

-40
0 8 12 16 

Solar Time
20 24

Fig. 5.8: Differences between data from the K&Z CNRl and Eppley systems for incoming 

longwave radiation with and without corrections applied to the Eppley for solar heating. 

The 3'** and 4“' terms of Eq. (5.1) are defined in the figure as (3) and (4).
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reemits radiation that is proportional to the temperature of the top surface of the thermopile. 

In addition, ct is the Stefan-Boltzmann constant, and is the measured case temperature.

The third term accounts for the temperature difference between the dome and case where a 

= 2.5 is the dome opaqueness coefficient (A. C. De Ian y. 1998, personal communication). 

The last term subtracts contamination by shortwave radiation (shortwave radiation getting 

through the domes) where Q is the incoming shortwave radiation and b -  0.036 is an 

empirically derived coefficient (Alados-Arboledas et al. 1988).

Longwave estimates from the Eppley and CNRl were compared for the clear days 

o f the data set (Fig. 5.8). First, both the incoming longwave radiation from the Eppley and 

CN Rl were compared without correcting for dome heating or solar contamination, the 3"̂  

and 4“’ terms on the right hand side in Eq. (5.1). Daytime differences ranged up to 30 Wm 

\  Next, only the dome heating (and cooling) correction was applied. Differences 

decreased substantially to within +/- 15 Wm ’. The solar contamination term was also 

included but with less success, increasing the difference to +30 Wm ’. Inclusion of both 

terms 3 and 4 lead to even greater differences of nearly 50 Wm \  This examination 

suggests that only the dome heating correction term be included in Eq. (5.1). 

Nevertheless, applying both corrective terms can change the longwave estimates by as 

much as 60 Wm \

As further verification o f the accuracy of the 4-component C N R l, data from a 

CN Rl were directly compared against a 4-component SIRS (Solar Infrared Radiation 

System) in operational use by the ARM (Atmospheric Radiation Measurement) Program 

(Stokes and Schwartz 1994). As described in more detail in Chapter 6. a Mesonet and 

.ARM site near Foraker, Oklahoma, are co-located within 100 m which allow for direct 

comparisons between sites (see Fig. 6.1). For this study, data were compared for the 

periods 11 - 20 August 1999 and 24 February -  4 March 2000. Half-hourly data were 

examined. Because the CN Rl was replaced at the Foraker site during January 2000, 

results may vary between the August and February/March penods.
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Data collected during August revealed differences between instruments was limited 

to less than 9% for all radiation components (Figs. 6.2 -  6.5 and Tables 6.1 -  6.2). The 

largest absolute differences appeared in the incoming shortwave radiation. This 

observation is consistent with results from the Norman study described previously. 

Ironically, shortwave radiation is the simplest and most straightforward measurement to 

validate the calibration of a sensor against an international standard (Ohmura et al. 1998). 

The incoming shortwave radiation from the CNRl and SIRS were validated against the 

Mesonet's pyranometer measurement. The pyranometer itself is calibrated against the 

Eppley PSP, which is in use at the Norman intercomparison facility. Results indicated 

consistency between the pyranometer and SIRS during the two periods with mean 

differences of 13.2 Wm ’ and 15.8 W m \  respectively. Results from comparing data 

produced by the CNR 1 and the pyranometer appeared to improve between periods as the 

standard deviation decreased from 31.8 W m ' to 8.4 W m  '. This decrease may have 

resulted from replacement of the C N R l between the two data-collection periods.

Table 5.5: Linear regression statistics estimated using data from the CN Rl and SIRS and 

Mesonet pyranometer. Thirty-minute data were used.

Independent
Variable

Dependent
Variable

Intercept
(W m-)

Slope R"

11-20 August 
1999
24 February -  4 
March 2000

LiCor 200 
LiCor 200 
LiCor 200 
LiCor 200

C N R l
SIRS
C N R l
SIRS

-31.871
-10.33
-6.672
-9.617

1.0473
0.9947
0.9965
0.9842

0.9916
0.9965
0.9990
0.9961
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Table 5.6; Difference statistics produced using data from the CN Rl and SIRS and the 

Mesonet pyranometer. Thirty-minute data were used.

X (W m-) o  (Wm -) 95% Confidence Sample size. 
Interval # Obs

II - 2 0 CN Rl -  LiCor 200 -6.00 31.796 -68.32 -  56.32 266
August 1999 SIRS -  LiCor 200 -13.22 17.457 -4 7 .4 4 -2 1 .0 0 266
24 February - CNRl -  LiCor 200 -8.02 8.364 -2 4 .4 1 -8 .3 7 211
4 March 2000 SIRS -  LiCor 200 -15.77 17.035 -49.16 -  17.62 211

Differences between outgoing shortwave radiation were less than 15 Wm '  (a 

difference of about 1.6%). The differences in incoming shortwave radiation may indicate 

some heating of the pyrgeometer domes with either one or both shortwave sensors. 

Differences in albedo between the two sites may create some difference in reflected solar 

radiation. The longwave radiation data collected from the C N R l and SIRS indicated 

differences of less than 20 Wm * for all time periods, an approximate difference of less than 

9%. Spatial differences in surface properties between sites also could account for some 

variation in the emitted longwave radiation.

Data collected during February and March showed many of the same results as 

during August. However, significant differences were noted in the measurements of 

incoming shortwave radiation. While the magnitude of the differences between sites 

remained less than 60 W m *, the differences as a function o f time indicated a change 

between test periods. Likewise, differences between the two sets of outgoing shortwave 

radiation also showed change in the diurnal pattern. The February/March data set indicated 

measurements that were much larger in value from the CNR 1 relative to SIRS versus the 

differences indicated by the August data.

To summarize the results using the C N R l. tentative confidence limits were created 

for each component of the net radiation based upon differences observed when comparing 

data from the C N R l. Eppley and SIRS. These differences were used to formulate an
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expected mean “error", assuming the Eppley and SIRS data represent the “truth”. The total 

confidence limits are summarized:

Rn = Sw,„ - Sw^, + Lw,„ - (5.2)

5% 5% 2% 2% 3%

Note that during periods of minimal radiation (< 100 Wm ’). the percentage given in Eq. 

(5.2) is not used but is replaced by the constant eiTur value of 10 Wm .

5.2 Sensible and Latent Heat Flux

The precision of measurements of the sensible and latent heat fluxes could not be 

determined as with net radiation. Unfortunately, a pair of identical CSAT3 sonic 

anemometers or krypton hygrometers was not available for direct comparison. Instead, 

two separate field experiments were conducted in part to evaluate the accuracy of the eddy 

correlation technique estimated using Mesonet data. The accuracy of estimating the 

sensible and latent fluxes were determined from the O.ASlS-98 and OASIS-2000 field 

programs.

During OASIS-98 (McAloon et al. 1999), an ISFF (Integrated Surface Flux 

Facility) sonic anemometer was placed on a 10 m tower located approximately 10 m west 

of the Mesonet tower at Norman. This co-location allowed a direct comparison between 

the CSAT3 sonic anemometer used by OASIS and the ATI sonic anemometer used by the 

ISFF. Data were collected during an approximate 5 week period at the Norman Mesonet 

site between 1 July and 8 August, 1998. Data collected between 15 July and 5 August was 

used for this study. Data from eight clear days (DOY 196. 197. 200. 204. 207. 208. 211. 

and 212) were examined in closer detail. Data from the CSAT3 and ATI sonic 

anemometers were examined to identify any systematic error and to quantify the random 

error associated with each measurement.

First, five-minute data from the eight clear days were compared (Tables 5.7 and 

5.8). The Mesonet had a slightly lower sensible flux and latent flux by approximately 4%
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when compared to the NCAR measurements. A higher correlation was observed between 

the two sets of sensible tlu.x estimates than was found between the two sets of latent flux 

estimates. The standard deviation of error was significant at 41.3 Wm '  and 27.3 Wm \  

respectively. Results were similar using data from all sky conditions (a total of 22 days of 

data).

Table 5.7: Linear regression statistics estimated from the NCAR and Mesonet 

measurements of sensible and latent heat fluxes for both clear sky and all-sky conditions. 

Five-minute data were used.

Intercept (Wm ') Slope R"

Clear skies Sensible heat 1.984 0.9611 0.8984
Latent heat 6.931 0.9639 0.7760

All sky Sensible heat 2.439 0.9702 0.8941
conditions Latent heat 6.574 0.9545 0.7620

Table 5.8: Difference statistics estimated from the NCAR and Mesonet measurements of 

sensible and latent heat fluxes for both clear sky and all-sky conditions. Five-minute data 

were used.

X (W m -) cy (Wm-) 95% C.l. Sample 
size #

Clear skies SH, NCAR-Meso -1.19 41.3 -30.85 -  11.79 4948
LH. NCAR-Meso 5.18 27.3 -1 2 .8 9 -0 .9 6 4948

All sky SH. NCAR-Meso 0.21 39.8 -6.70 -  15.73 2304
conditions LH, NCAR-Meso 4.46 27.6 -1 .0 4 -  10.37 2304

Next, the diurnal averages of sensible and latent heat tlu.x were estimated to better 

identify systematic errors between the two systems (Fig. 5.9). As described above, five- 

minute data were used from the eight clear days during July. A histogram of the 

differences indicated a near-Gaussian curve about 0 Wm \  The majority of Mesonet values 

of sensible flux were overestimates by 0-10 Wm " and were underestimates for latent flux
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Fig. 5.9: Five-minute data collected at Norman, OK, during OASIS-98, between 15 July 

and 5 August 1998.

by 0-10 Wm ■ when compared to NCAR. However, true values were not known. Results 

were similar when all 22 days of data were considered. Thus, while large variance may be 

observed between any particular 5-minute period, over daily or even 30-minute periods, 

little bias is noted with either measurement of sensible or latent heat flux.
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As further verification of the consistency of sensible and latent fluxes measured by 

OASIS, ÜASIS-2000 (McAloon et al. 2000) was a second field study which examined the 

eddy correlation fluxes at five of the ten super sites. During OASIS-2000. ISET sonic 

anemometers were placed at several super sites for approximate 3 - 4  week periods. As 

during OASIS-98, the two sonic anemometers from NCAR and OASIS provided data for 

direct comparison of the relative accuracy between sensors. A 10 m tower from ISFF was 

approximately 10 m west o f each Mesonet site. Both sonic anemometers were mounted at

4.5 m. Sites at Foraker and Marena were tested during Phase 1 of the project, Stigler 

during Phase 2, Grandfield during Phase 3, and Alva during Phase 4. Thirty-minute data 

were used.

Flux data from this project are plotted in Figs 5.10 and 5.11 and in Tables 5.9 - 

5.12. Results indicate good agreement between the two systems. A comparison of 

sensible flux during the four phases of the field experiment revealed that Mesonet data at 

Stigler and Bessie differed significantly from the NCAR data. The other sites were within 

5% of the NCAR measurements. Stigler data was well behaved with a high correlation of 

0.968 and a low standard deviation. Only the site at Bessie provided poor quality data 

relative to the other sites; the Mesonet site underestimated fluxes by 8.3% relative to 

NCAR. A correlation of 0.864 and a large standard deviation of over 43 Wm* were 

evidence of the poorer quality data from Bessie. Complex topography at Bessie is likely 

responsible for such poor results (see Chapter 7).

Latent heat fluxes compared less favorably between the two systems. Some 

instrument problems with the NCAR krypton hygrometers were suspected at Stigler and 

Grandfield, and the data should not be used. Phase 1 of the project occurred before spring 

'green-up" of the vegetation, and thus, minimal latent heat flux was observed. As a result, 

a comparison of latent flux data between the two systems at Foraker and Marena was 

difficult. Results from Bessie were similar as the sensible flux comparison revealed a poor 

correlation between systems and an underestimate by the Mesonet of 13.3% when
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compared to NCAR. Only at Alva could the observed latent tlu.x by the two systems be 

described as “good”; even so, the Mesonet site estimated a lower flux by -  5% but the 

correlation was 0.956 between the two systems.

As observed in the data from OASIS-98 and OASIS-2000, the measurement of 

latent flux is more difficult and less accurate than is the measurement of sensible flux. 

Based upon results from the two field experiments, percentage of uncertainty associated 

with the sonic anemometer and the krypton hygrometer is assumed to be -  5% for sensible 

heat flux and 10% for latent heat flux. Because the exact sensible and latent fluxes were 

not known, the “correct” sensor value was not known and only a semi-objective percentage 

of uncertainty can be assigned,

5.3 Ground Heat Flux

Instrument error associated with the heat flux plates and PRTDs, provided by the 

manufacturer, are listed in Table 4,1, While instrument error is relatively small (< 5%), 

system error can lead to significant errors in estimating ground heat flux as described in 

Chapter 4, The most significant problem to measure accurately the ground flux is created 

by surface heterogeneity. This problem is discussed in detail in Chapter 8.
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Table 5.9: Difference in sensible heat flu.\ between the NCAR and Mesonet systems.

site Collection period Mean. X (Wm ') Standard deviation. Sample size, n 
(Day of Year) ^  (Wm ') 30-min. Obs)

Foraker 5 5 - 8 5 -0.98 18.1 892
Marena 5 5 - 8 5 3.13 24.1 780
Stigler 92,94, 104-116 -6.56 18.5 397

Grandfield 1 2 9 -1 5 1 2.15 19.7 740
Bessie 1 3 7 -1 5 1 10.94 43.0 636
Alva 156 - 182 -2.75 18.3 1008

Table 5.10: Difference in latent heat flux between the NCAR and Mesonet systems.

Site Collection period Mean, X (Wm *) Standard deviation. Sample size, n
(Day of Year) a  (Wm *) (#30-min Obs)

Foraker 5 5 - 8 5 -6.75 17.3 338
Marena 5 5 - 8 5 -7.18 20.4 749
Stigler 92,94, 104-116 -40.34 66.4 395

Grandfield 1 2 9 -1 5 1 -38.85 66.0 564
Bessie 1 3 7 -1 5 1 1.18 42.8 500
Alva 156- 182 0.65 32.7 1061

Table 5.11: Linear regression of sensible heat flux between NCAR and Mesonet systems.

Site Collection period Intercept (Wm *) Slope R '
(Day of Year)

Foraker 5 5 - 8 5 0.18 1.018 0.9791
Marena 5 5 - 8 5 -1.67 0.965 0.9364
Stigler 92,94, 104-116 2.50 1.122 0.9367

Grandfield 1 2 9 -1 5 1 -0.50 0.970 0.9766
Bessie 1 3 7 -1 5 1 -7.91 0.917 0.7469
Alva 156- 182 4.13 0.953 0.9376

Table 5.12: Linear regression of latent heat flux between the NCAR and Mesonet systems.

Site Collection period Intercept (Wm *) Slope R-
(Day of Year)

Foraker 5 5 - 6 5 1.39 1.343 0.7523
Marena 5 5 - 8 5 3.70 1.136 0.7487
Stigler 92.94. 104-116 19.80 1.505 0.5868

Grandfield 1 2 9 -1 5 1 12.58 1.578 0.6285
Bessie 1 3 7 -1 5 1 9.57 0.867 0.7945
Alva 156- 182 4.76 0.950 0.9138
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Chapter 6: Evaluation of Eddy Correlation and Bowen Ratio Systems 

Introduction

As listed in Table 2.1 of Chapter 2, prior studies evaluated the performance of co

located. surface layer measurement systems. A reliable method to measure the surface 

energy budget is critical to improve the evaluation and initialization of numerical models as 

well aS to develop new paiaineterizalion schemes.

The most significant contention centers on the accuracy of an eddy correlation (EC) 

system when compared to a Bowen ratio (HR) system. All studies that compared EC and 

HR systems concluded that (SH 4- LH)gR > (SH + LH)^^- In other words, the sum of 

aerodynamic fluxes are greater when measured from a BR system than when measured via 

an EC system (Dugas et al. 1991; Fritschen et al. 1992; Stannard et al. 1994; Lloyd et al. 

1997; and Twine et al. 2000). Even more disagreement arises when the fluxes are 

compared directly. Dugas et al. (1991) claimed that most differences between systems are 

due to differences in the measured latent heat flux. Twine et al. (2000) claimed the 

differences were evenly distributed between the latent and sensible heat fluxes as a function 

of the true Bowen ratio. To determine whether the sensible or latent fluxes are measured 

accurately w ould improve the estimates o f closure and provide insight into the use of EC 

and BR methods.

For this study, it was important to duplicate previous work comparing EC and BR 

systems. OASIS data collected from the Mesonet site at Foraker. Oklahoma, was 

compared directly against Bowen ratio data collected from the co-located Atmospheric 

Radiation Measurement (ARM) site.
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6.1. Description o f  the ARM Bowen Ratio Site and Instrum enta tion

The Mesonet site at Foraker is co-located with an ARM energy balance Bowen ratio 

(EBBR) system. The ARM site is -  100 m north-northwest of the Mesonet tower, which 

allows measurements of the energy budget to be compared. The site, located at ~ 36.841 

north latitude and 96.427 west longitude, is an extended facility site o f the ARM Program 

which began operating in June 1995. The site is equipped with an Energy Balance Bowen 

Ratio system. Solar Infrared Radiation Station (SIRS), Multi-Filter Rotating Shadowband 

radiometers (MFRSRs), and Soil Water and Temperature Sensors (SW ATS). The site is 

located in the Tallgrass Prairie Preserve in northcentral Oklahoma near Pawhuska. Native 

prairie grasses are the dominant vegetation; bison graze on much o f the nearby land. 

Typical soil type is silt loam. The site slopes downward from south to north; the ARM site 

is approximately 1-2 m lower in elevation than is the Mesonet site. An overhead view of 

the ARM and Mesonet site locations are shown in Fig. 6.1.

The EBBR system used by ARM directly measures net radiation, ground heat flux, 

and vertical gradients of temperature and relative humidity. Latent heat flux is estimated 

using Eq. (2.4); sensible heat flux is estimated as the residual of the energy budget. Net 

radiation is measured at a height of 3 m using the REBS’ model Q * 6 .1. Ground heat flow 

is estimated as the average o f data from five soil heat plate sensors, REBS’ model HFT- 

3.1s, which are buried at a depth of 5 cm. The ground heat storage term is computed from 

soil moisture estimated at a depth of 2.5 cm and the mean of data from five platinum 

resistance temperature detectors buried between 0 and 5 cm. Vertical gradients in air 

temperature and moisture are measured using temperature and humidity sensors mounted at 

heights of 2 and 3 m. An automatic exchange mechanism (AEM) switches the two 

temperature and humidity sensors vertically every 15 minutes to minimize systematic error 

due to instrument offset and drift. The average of data produced by two 15 minute 

averages yields a final 30-minute mean o f sensible and latent flux.
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Fig. 6.1: Overhead view of the ARM and Mesonet sites at Foraker site. The ARM site is 

marked by the bold X northwest of the Mesonet site. Map provided by the ARM Program.
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6.2. Com parison of EC and BR Systems

Eddy correlation estimates from the Mesonet site and Bowen ratio data from the 

ARM site were directly compared. Net radiation and ground heat tlu.x estimates also were 

compared as they represent the available energy for the Bowen ratio technique. Thus, the 

entire energy budget was examined. For this study, 5-minute data from Mesonet sites were 

averaged over 30-minute periods to match the EBBR data from ARM.

Two ten-day periods of data were chosen from the year long data set for a more 

detailed examination. Quiescent conditions prevailed during most of the two periods; partly 

to mostly clear skies dominated. Each period represented different synoptic conditions, 

however. The first period of data collected during 11 -  20 August 1999, represented an 

excellent “dry-down” period. Mostly clear and hot conditions prevailed. The second 

period of data, collected between 24 February and 4 March 2000, represented much wetter 

soil conditions. Partly to mostly sunny skies and cool temperatures prevailed along with 

several days of rainfall. The second test period coincided with the OASIS-2000 field 

project during which additional eddy correlation equipment provided by NCAR was 

installed at the site. No precipitation was recorded during the August period; data were not 

used when rain occurred during the February to March period. Shortwave data were not 

included if values were less than 10 Wm \

To evaluate properly the EC and BR techniques, it was critical to estimate the error 

associated with the available energy components, Rn and GH. as well as the sensible and 

latent heat components. The Bowen ratio method forces closure; the technique assumes the 

sum of the aerodynamic fluxes (SH + LH) are equal to the available energy (Rn -  GH). 

Subsequently, any error associated with the net radiation and/or ground flux affects both 

estimates of sensible and latent heat flux. To compare sensible and latent fluxes properly, 

the available energy must be examined as well.
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6.2.1 Net Radiation

The Mesonet site at Foraker has been designated as a super site of OASIS and is 

equipped with both the NR-Lite and four-component CNRl radiometers while the nearby 

ARM site is equipped with a REBS Q *6.i and SIRS system. Net radiation from the 

CNR I was estimated using the sum of four separate components of radiation. The 

longwave components were corrected by Eq. (3.3). The CNR I was replaced on 18 

January 2000 due to a faulty temperature sensor. The NR-Lite was corrected for the effects 

of wind as given by Eq. (3.2).

The ARM EBBR site is equipped with a REBS Q*6.1 net radiometer. In addition, 

the 4-component SIRS system is co-located at the site and is comprised of direct 

component and diffuse radiometers. The Q*6.1 was not corrected for wind speed. The 

direct shortwave component of SIRS was corrected by the cosine of the zenith angle.

The SIRS and CN Rl radiometers measure each component of the radiation budget 

explicitly and are considered more accurate instruments for observing net radiation than 

either the Q *6.I or NR-Lite sensors. Because the CNRl also is used for closure of the 

energy budget, a critical issue is the accuracy with which net radiation is measured. The 

four components of the radiation budget are examined during each collection period. 

Results are summarized in Tables 6.1 and 6.2 and Figures 6.2 -  6.5. Note that the CNRl 

was replaced between test periods so that similar results may not be expected between the 

August and February periods. However, a direct comparison between 1999 data from two 

CN Rls showed excellent agreement between the sensors (see Section 5.1).
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Table 6.1: Direct companson of the 4 components of the radiation budget as measured by 

the CNRl and SIRS instrumentation.

Variable Mean diff, X (Wm") Std. Dev. CT (Wm") Sample size, 
# 5-min obs

1 1 -2 0
Aug 1999

SW, in + 7.15 27.12 260
SW. out - 6.96 4.39 257
LW. in - 0.25 6.13 480

LW, out - 1.66 5.58 480
24 Feb -  4
Mar 2000

SW, in +7.55 21.88 152
SW, out +2.29 4.58 142
LW, in +2.28 4.39 386

LW, out +0.32 5.65 386

Table 6.2: Linear regression of data representing the 4 components of the radiation budget 

using the CNRl and SIRS instrumentation. The CN Rl is the independent variable, and 

the SIRS is the dependent variable.

Variable Intercept Slope R"
1 1 -2 0  Au2 

1999
SW, in 1.722 0.974 0.9973

SW, out -0.626 1.076 0.9974
LW. in 26.685 0.931 0.9691

LW, out 38.873 0.917 0.9899
24 Feb -  4 
Mar 2000

SW. in -3.21 0.987 0.9972
SW. out -0.43 0.972 0.9942
LW. in -13.40 1.039 0.9879

LW, out 32.37 0 9 1 1 0.9918
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The greatest uncertainty in data produced by the CNR 1 and SIRS radiometers was 

in the measurement of incoming solar radiation. The C N R l overestimated shortwave 

radiation by 2.6% and 1.3% when compared to SIRS during the respective periods. The 

SIRS system explicitly measures both the direct and diffuse incoming solar radiation and is 

considered a more accurate sensor. The overestimate by the CN Rl leads to an 

underestimate in closure. However, the C \^U m derestim ates  incoming shortwave 

radiation when compared to the 4-component Eppley system (see Section 5.1). Thus, the 

“true” radiation value is not known. It is possible that each CN Rl has variations in 

calibration accuracy; however, the two sensors that were compared revealed little difference 

in their measurements.
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from 24 February -  4 March 2000.

Variations in reflected shortwave radiation also were significant. However, such 

differences could be due to slight variations in albedo during this observing period, 

vegetation height and geometry, and vegetation coverage of the land surface. During the 

August period, a 7.6% underestimate in the reflected shortwave combined with a +2.6% 

overestimate in the incoming shortwave could lead to significant underestimates in closure. 

A slight underestimate in closure was observed during this period (Table 6.11). However, 

replacement of the CNR 1 by the SIRS sensor improved daily closure rates only by 1.4%; 

the average daily closure rate was still underestimated slightly at approximately 96.1%. A
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similar underestimate in closure was observed during the February/March period. The 

SIRS estimate increased closure by 4.7%.

Differences in the measurement of incoming longwave radiation were significant: 

the sensors overestimated by 6.9% during August but only slightly underestimated (3.8% ) 

during the February to March period. Differences o f 7 - 9% were observed in outgoing 

longwave radiation. However, these differences are attributed to observed differences in 

the features of land cover.

Differences in radiation between the C N R l and SIRS are plotted as a function of 

solar time (Figs. 6.3 and 6.3). During August some diurnal dependence was observed. 

The difference in shortwave radiation may be indicative of some slight calibration error by 

one or both sensors. The presence of this calibration error is consistent with radiation
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differences being symmetric about solar noon. During the February to March period, 

differences between systems were not significant as a fraction of the incoming net 

radiation. However, noteworthy differences in measurements of the incoming shortwave 

radiation were asymmetric about solar noon. Such differences could be attributed to either 

tilt off vertical by one of the sensors or by pyranometer heating due to radiation or both. 

Prior to solar noon, the C N R l underestimated shortwave radiation relative to the SIRS 

system; during the afternoon, the C N R l overestimated the radiation relative to SIRS, 

Thus, either the CNRl was tilted toward the west or one component of the SIRS system 

was tilted to the east or both. All four components of the CN Rl are combined into a single 

unit; thus, no tilt error is suggested by the reflected shortwave data. Accordingly, an 

eastward tilt of only a few degrees by the SIRS unit could account for the incoming 

shortwave being underestimated.

Net radiation from the REBS Q*6,I and the NR-Lite and the summed components 

of radiation from the CNRl and SIRS system were compared with each other. A result of 

this comparison of data from the two test periods is shown in Figures 6.6 -  6.7. The 

results also are summarized in Tables 6,3 and 6.4. Comparative results changed 

significantly between the two periods.

The net radiation difference between the CNRl and SIRS system decreased from 

4-5,4% during the August period to -0 .3%  during the February/March period. The very 

hot temperatures and strong radiational heating during August could have created some of 

the observed difference. Note that two different CNR Is were used during these two 

periods. A sensor problem occurred with the NR-Lite during the August period, data from 

this sensor were not included in the study. However, during the second study period, the 

NR-Lite measured within -0.6%  of the SIRS and within -0.4%  of the CN R l.

A year-long comparison between the CN Rl and NR-Lite revealed an approximate 

50-day period when the NR-Lite produced underestimated values of radiation. This period 

occurred between DO Y 218 and 250. The cause for this sudden underestimation is not
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Table 6.3: Companson o f data from the CNR I , SIRS. REBS Q *6.1, and NR-Lite for 11 

20 August 1999 and for 24 February -  4 March 2000.

Mean Diff. X Dev., a  
(Wm -) (W m -)

Sample Size, n

11 -  20 Au2
1999

C N R l-S IR S  + 10 .8 22.1 480
C N R l-R E B S  + 2 .0 36.0 479

C N R l-N R -L ite  + 41 .3 51.5 477
SIRS -  REBS - 8.8 18.3 479

SIRS - NR-Lite + 30.7 36.6 477
REBS - NR-Lite + 39.7 23.2 476

24 Feb -  11
Mar 2000

C N R l-S IR S  + 5 .5 11.9 386
C N R l-R E B S  + 6 .2 30.5 385

C N R l-N R -L ite  +5.1 7.2 386
SIRS -  REBS - 5.5 11.9 386

SIRS -  NR-Lite - 0.4 13.6 386
R E B S -N R -L ite  - 1.1 30.1 385

Table 6.4: Linear regression using data from the CN R l. SIRS. REBS Q *6.1. and NR-Lit

for 11 -  20 August 1999 and for 24 February -- 4 March 2000.

Dependent Independent Intercept Slope R '
variable variable

1 1 -2 0 C N R l SIRS 1.56 1.054 0.9964
Aug 1999

Q*6.1 SIRS 18.37 0.945 0.9981
Q*6.1 CNRl 17.61 0.893 0.9938

24 Feb -  4 CN Rl SIRS 5.69 0.997 0.9963
Mar 2000

Q*6.1 SIRS 8.43 0.858 0.9947
Q*6.1 CNRl 3.68 0.859 0.9941

NR-Lite SIRS 0.84 0.993 0.9952
NR-Lite CNRl -4.82 0.996 0.9987
NR-Lite Q*6.1 -8.71 1.154 0.9938
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Fig. 6.6: Comparison of net radiation data from the ARM SIRS and REBS radiometers 

with data from the Mesonet's CN Rl net radiometer. Half-hourly data were collected from 

11 -  20 August 1999.

known. The error does not appear to be a function of air temperature, relative humidity, or 

precipitation. However, rain showers a day prior to DOY 218 indicated a frontal passage 

which could have deposited residue and dust on the sensor. A second heavy rain event 

near DOY 250 appears to have cleaned the sensor and corrected the problem. This 

hypothesis cannot be verified. Nevertheless, data acquired during the first study period 

from the NR-Lite were in error and could not be used.

The REBS Q*6.1 appeared to deteriorate during the second period (Fig. 6.7) when 

compared to the performance of the other radiometers. During the August period, the 

Q*6.1 was within -5.5%  and -10.7%  relative to the SIRS and C N R l; during 

February/March, the Q*6.1 underestimated net radiation by -14.2%  and 14.1%.
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respectively. Yet, the performance of the REBS Q*6.1 is critical to evaluate the closure 

problem because radiation from the Q*6.1 is used by the EBBR system to estimate the 

fluxes of sensible and latent heat.
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6.2.2 G round  Heat Flux

The ground heat 11 ux is the sum of the soil heat flow near the surface and the time- 

integrated change in energy storage. The soil heat flow and the total ground flux were 

compared using data from the ARM and Mesonet systems. The soil water content 

measured at both sites was compared because the soil water content strongly modulates the 

storage term.

Soil heat flow is measured at the Mesonet and ARM sites using the same model of 

heat flux plate, the HFT3.1 manufactured by REBS. Two sensors were installed at the 

Mesonet site, while five sensors were installed at the ARM site. All sensors were installed 

at a depth of 5 cm. A comparison of data from all seven plates obtained during August and 

February/March is plotted in Figures 6.8 and 6.9.

Despite using the same instruments, large differences in measurements are noted 

between sites. The August data revealed that the five sensors installed at the ARM facility 

provided data with a damped diurnal cycle; a daily maximum of soil heat flow was -20  

Wm ". The Mesonet sensors produced data containing daily peak amplitude of 60 - 80 

Wm ". Nighttime values from the two Mesonet sensors reached a minimum of -2 0  to -4 0  

Wm^; ARM sensors reached a minimum of 0 to -10  Wm ". The February/March data were 

strikingly similar.

The much larger amplitude of soil heat flow at the Mesonet site may theoretically 

result from a distinct difference in soil and vegetation characteristics. A thicker and denser 

vegetation cover at the ARM site produced a damped diurnal cycle; less vegetation and 

more bare soil at the Mesonet site yielded a diurnal cycle with a larger amplitude. 

However, a visual inspection of the site did not indicate differences in vegetation between 

the sites. Dense vegetation covered sensors at both sites. The impact is that, if Mesonet 

sensors overestimate ground flux, the closure residual increases. Thus, large differences in 

soil heat flow indicate the difficulty and uncertainty in soil measurements, even when the 

same type of instrument is used.
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Next, measurements of the soil water content from the sites were compared. The 

ARM facility measures soil water content directly using five soil moisture sensors, a model 

SMP-2 manufactured by REBS. An average value of data from the five sensors is used. 

The Mesonet measures soil water potential using a single 229L manufactured by Campbell 

Scientific. Inc. (CSI). The soil water potential is converted to soil water content using 

empirical soil water retention curves, which are unique to each site. The Mesonet sensors 

are installed at a depth of 5 cm; soil moisture sensors at ARM sites are installed at a depth 

of 2.5 cm. All soil moisture observations were acquired at 30-minute intervals.

The August data captured a dry-down period when precipitation did not occur and a 

high evaporation rate was evident. On the other hand, soils during the February/March
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period remained nearly saturated as a result of several rain events. Direct comparisons of 

data from the ARM and Mesonet sites are shown in Figures 6.10 and 6.11. Large 

differences are noted in the data from the ARM and Mesonet sites, particularly during dry 

conditions.

Beginning with DOY 223 in 1999, the soil water content ranged between 18 and 

27% as measured by the ARM sensors; the Mesonet sensor estimated soil water content of 

28%. However, 10 days later, the soil water content at the ARM site ranged between 5% 

and 12%’; the Mesonet sensor still measured between 23 - 24%. It is possible that these 

differences are. in fact, real and that a distinct hydrologie difference exists between sites, 

because both sites are on sloped terrain. Nevertheless, much uncertainty remains in the
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accuracy o f  the conversion method from  soil water potential to soil water content (personal 

communication from K. Humes and J. Basara). Such large estimates of soil moisture from 

the Mesonet site “create” higher estimates of soil heat capacity when compared to data from 

ARM. As discussed by Lloyd et al. (1997), inhomogeneities in soil moisture alone can 

cause an under- or overestimate in energy closure.

The spring period remained saturated with soil water content ranging between 30% 

and 40% (Fig. 6.11). Although daily mean values of soil moisture from ARM and 

Mesonet were closer in value to each other than during August, the Mesonet observations 

did not respond as quickly to rain events as did the sensors from ARM. This circumstance
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Mesonet. Thirty-minute data were collected during 1 August -  31 December 1999.

could result from the fact that the ARM sensors were buried at 2.5 cm while the Mesonet 

sensors were installed at a 5 cm depth. This slight difference in depths could account for 

this difference in sensitivity to rain events. In addition, variations in ground cover also 

could have had some impact.

To better understand the variability in soil moisture observations between the ARM 

and Mesonet sites, a five-month comparison of soil moisture was examined (Fig. 6.14). 

Data were collected between 1 August and 31 December 1999. With two exceptions, soil 

moisture values from the two sites compared relatively well. Large differences were noted 

during the dry August period (approximately DOY 220 -  250) and during the wet period of 

December (after DOY 340). Calibration differences among sensors are the most likely 

cause for differences in soil moisture values observed during August. However, the 

difference in installation depth may have created the differences observed during December.
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The much shallower depth of 2.5 cm is more likely to dry quickly during the cool seasons 

than at lower depths.

The ground heat flux between sites was substantially different (Figs. 6.12 and 

6.13). The ground flux estimated at the ARM site was approximately half that measured at 

the Mesonet site. The higher values of soil heat flow at the Mesonet site combined with the 

larger estimated values of soil water content produced a much greater value of ground heat 

flux versus the ground flux estimated at the ARM site. While differences in vegetation 

density and percentage of ground cover could have contributed to variation in 

measurements between sites, differences were not visually evident. Both sites made use of 

the REBS HF 1-3.1 heat flux plate and both sets of sensors were installed at a depth of 5 

cm. At the ARM site, the energy storage term was determined using the mean of five 

PRTDs and soil moisture. The energy storage term at the Mesonet site was estimated using 

the mean value of data from two PRTDs and the soil moisture sensor. It is worth noting 

again that when Mesonet estimates of soil heat flux are overestimated, the closure residual 

increases.

The estimated values of available energy at the ARM and Mesonet sites are shown 

in Figures 6.15 - 6.18 and summarized in Table 6.5. Using data from the ARM site, the 

available energy was calculated using measurements of net radiation from the Q*6.1 and 

using measurements from the more accurate SIRS. Likewise, the available energy at the 

Mesonet site was estimated using measurements from the CNR I and SIRS radiometers. 

The comparison reveals that large values of ground flux from the Mesonet site versus small 

values of ground flux from the ARM site created available energy at the ARM site that was 

between 2 and 23% larger than estimates of available energy at the Mesonet site. The 

apparent underestimate of net radiation by the REBS sensor during February/March leads 

one to conclude that the actual difference in available energy as estimated by the two 

systems lies between 13 and 23%. Thus, if the available energy is underestimated at the 

Mesonet site, the residual of closure increases.
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Table 6.5: Linear regression based upon available energy measured at the .ARM and 

Mesonet sites during the August and February/March time periods.

Independent
variable

Dependent
variable

Intercept Slope R-

1 1 - 2 0 ^*^'CNRr^^’Meso -23.14 1.144 0.9893
Aug 1999

^ ^ ’CNRr^^’Meso ^ ’̂ ’SIRS'^^’ARM -43.43 1.208 0.9905
*̂̂ 'SIRS‘^ ^ ’.Meso ^ ^ ’Q-6 r ^ l ^ ’ARM -24.46 1.226 0.9944

^*^’SIRS‘^ ^ ’Meso ^•^’SIRS “  GH, -44.71 1.293 0.9945

24 Feb -  4 ^ ^ ’CNRr^^’Meso ^ ’̂ ’0*6 r ^ ^ ’AR.M -7.87 1.018 0.9849
M ar 2000

^ ^ ’CN Rr^^’Meso ^*^’S1RS'^^’ARM -19.77 1.181 0.9832
^ ^ ’SIRS'^^’Mcjo -2.30 1.018 0.9904

Rn,,;iP^-GH,4P^ -13.75 1.187 0.9929
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Fig. 6 .15a-b: Estimated available energy (Rn -  GH) at the ARM and Mesonet sites.
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Several questions remain. Do differences in available energy result from instrument 

error or from surface heterogeneity? Is it coincidental that differences in soil moisture 

correspond to significant differences in soil heat flow? Because of natural heterogeneity in 

surface properties, some variation was expected. Nevertheless, differences in available 

energy must be considered when the fluxes of sensible and latent heat are derived from 

different systems.

6 .2 .3  Sensible and Latent Heat Flux

Sensible and latent heat fluxes at the ARM site were calculated using the Bowen 

ratio technique (Eqs. 2.3 and 2.4). Sensible and latent heat fluxes at the Mesonet site were 

calculated using the methodology of Chapters 3, 4 and 5. All corrections were applied to 

the eddy correlation data unless otherwise stated. Days with rainfall were excluded from 

the data. In addition, Bowen ratio data were not used when -2 .0  < BR < -0.5 because 

small vertical gradients in temperature and moisture occasionally create spuriously large 

flux estimates (Ohmura 1982).

Based upon sensible and latent fluxes calculated using data from the Mesonet and 

from ARM, the response of these fluxes to changing synoptic and land surface conditions 

was unexpected. Despite the hot and dry conditions which prevailed during August, the 

Bowen ratio remained very low (approximately 0.19). On the other hand, during the cool, 

wet winter and spring period of February/March, the Bowen ratio remained very high

Table 6.6: Surface parameters measured during II  -  20 August 1999 and 24 February -  4 

March 2000.

Bowen ratio, 
Mesonet (ARM)

NDVI Soil water potential 
(kPa)

Soil water content 
(%)

11 -20 Aug 1999 0.19 (0.08) 0.56 -233.37 25.1
24 Feb -  4 Mar 2.52 (3.38) 0.19 -5.80 38.0

2000
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(approximately 2.52). In addition, soil moisture values during February/Pvlarch were much 

higher than dunng August. Thus, values of the Bowen ratio were opposite to what might 

have been expected (see Table 6.6).

A comparison of the NDVI imagery during these two periods revealed the 

overwhelming factor that led to such differences in the BR. A wet and warm period during 

June and July of 1999 created a very “green” land cover during August despite the drying 

soil. Evapotranspiration (ET) was very large as revealed by the large estimates of latent 

flux (Fig. 6.19). However, the senescence of winter created small values of latent flux 

during February/March because ET was near zero. The strong correlation between ET and 

NDVI has important implications when one estimates fluxes across large regions using 

satellite imagery. Such studies warrant further investigation.

The primary goal of this section is to determine whether any of the fluxes from the 

eddy correlation methodology -  either sensible or latent or both or neither -  were 

underestimated assuming Bowen ratio fluxes measured by the EBBR system were correct. 

In Chapter 7 it is shown that (Rn -  GH)gj. > (SH+LHIg^.. In Section 6.2.2 it was shown

that (Rn -  G H )^ ^  > (Rn -  GH)^^;^. To begin this determination, eddy correlation and

Bowen ratio data were compared without any adjustments made to the net available energy. 

These results are listed in Table 6.7 and 6.8 and are shown in Figures 6.19 and 6 .20. 

Next, the Bowen ratio data were recalculated assuming the net available energy measured 

using SIRS values for radiation. These results are listed in Tables 6.9 and 6.10 and 

Figures 6.21 and 6.22.

The EC and BR data during August revealed that the EC technique overestimated 

SH by 1.2% prior to EC corrections; after corrections, the difference increased to 12.5%. 

However, given the minimal values of sensible flux during August, the mean error was 

less than 20 Wm \  During February/March, the EC technique underestimated SH by about 

5.0% (4.1%) prior to (after) corrections. In spite o f the season, sensible heat flux
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increased to reach a daytime maximum of -  400 Wm '; the standard deviation of errors 

were less than 30 Wm

While SH flux differences between the two observing systems were relatively 

small, large discrepancies were observed in the measurement of latent heat flux. The EC 

method underestimated LH by 24.1% during August, even after all EC corrections were 

applied. During this period, LH was large and reached midday values o f 550 Wm \  As a 

result, LH flux errors were as large as 230 Wm ’.

Much smaller values of LH occurred during February/March (generally < 100 

Wm *). These low values led to more variable results in latent flux. The EC technique 

underestimated LH by 6.1% prior to applying corrections but overestimated LH by 21.5% 

after corrections were applied.

Several caveats should be mentioned. First, the krypton hygrometer was not 

regularly cleaned prior to II January 2(XX). Thus, some uncertainty exists as to the 

accuracy of the LH estimate prior to this time. Ultraviolet radiation emanating from the 

KH20 reacts with atmospheric constituents to form a residue on the windows of the 

sensor. This reaction is known as “scaling” and can lead to calibration changes as large as 

8% (Tanner 1988). However, changes in calibration only affect the mean values of 

moisture and do not affect the variance of moisture. The latent flux is estimated from the 

variance about the mean. The scaling problem is corrected simply by wiping the sensor 

windows clean. The OASIS Project has volunteers at each of the ten super sites who 

regularly clean the hygrometers once every two weeks. While scaling does not mean a 

measurement is incorrect or inaccurate, scaling can lead to much greater variance and noise 

in the data. To address this question, a one-year long data set of ARM and Mesonet tluxes 

was examined (see Section 6.4). An attempt was made to quantify the improvement in LH 

flux after routine cleaning of the sensor became established. However, little difference was 

noted in the quality of the data before and after the sensor was cleaned.
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The substantial differences between data from the REBS Q*6.1 and from the 

assumed-to-be more accurate SIRS system raised questions about the accuracy of BR 

tluxes. Differences between the two observing systems ranged between an underestimate

Table 6.7: Comparison of the ARM Bowen ratio and Mesonet eddy correlation estimates of 

sensible (SH) and latent heat (LH) with and without corrections (corr.) applied. All 

estimates using ARM data were based upon estimates of net radiation from the REBS 

sensor.

Variable Mean diff, X n^v  n  Sample size, n
(A RM -M eso) (W m ') cWm'^)

II  - 2 0  Aug 
1999

SH. no corr -9.2 23.3 450
SH, all corr -16.1 22.4 373
LH. no corr 53.0 65.4 450
LH, all corr 39.3 47.5 373

24 Feb -  4
Mar 2000

SH. no corr 1.7 27.3 446
SH. all corr 2.5 23.9 399
LH. no corr 1.0 19.8 403
LH, all corr -5.3 19.7 393

Table 6.8: Linear regression based upon sensible and latent heat fluxes from the ARM and

Mesonet sites (with and without sonic corrections applied). Mesonet data were assumed to

be the independent data (x) and ARM data were assumed to be the dependent (y) data.

Variable Intercept Slope R '

1 1 - 2 0  Au2 SH. no corr -8.76 0.988 0.898
1999

SH. all corr -11.83 0.875 0.916
LH. no corr 9.25 1.364 0.944
LH. all corr 6.38 1.241 0.974

24 Feb -  4 SH. no corr 0.43 1.050 0.973
M ar 2000

SH. all corr 0.42 1.041 0.971
LH. no corr -0.17 1.061 0.709
LH. all corr 0.39 0.785 0.756
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Figs. 6.19: Sensible and latent heat flux estimated during 1 1 - 2 0  August 1999 (with and 

without sonic corrections).

of 5.5% by the Q*6.1 during August to an underestimate of 14.2% during 

February/March. Assuming the SIRS system produced the most accurate data, estimates 

using SIRS data were substituted for the Q*6.I estimates to calculate SH and LH fluxes at 

the ARM site. The BR flux estimates were multiplied by the ratio (Rn;,gg-GH)/(Rngggg- 

GH) to adjust the available energy to a more correct value. Results are listed in Tables 6.9 

and 6.10 and shown in Figures 6.21 and 6.22.

The larger estimates of net radiation by SIRS increased the BR flux estimates of SH 

and LH particularly during the February/March period. Sensible flux differences between 

the ARM and Mesonet systems improved to 1.8% (14.1%) with (without) corrections 

during August, but worsened during the February/March penod to 23.1% (23.5%) with
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(without) corrections. Latent flux differences improved slightly during August to 23.6% 

(35.9%) and to -11.0%  (+53.5%) with (without) corrections during the February/March 

period.
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Figs. 6.20: Sensible and latent heat flux estimated during the period of 24 February and 4 

March 2000 (with and without sonic corrections).
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Table 6.9: Comparison of the ARM Bowen ratio and Mesonet eddy correlation estimates of 

sensible (SH) and latent heat (LH) with and without corrections (corr.) applied. This data 

have been adjusted using SIRS net radiation instead of REBS net radiation.

ARM( y) -  
MESO (X)

Mean diff, X 
(W m-)

Std. Dev. (T 
(Wm-)

Sample size, n

1 1 - 2 0  Aug 1999
SH, no corr -18.3 34.7 450
SH. all corr -25.5 31.2 373
LH, no corr 59.0 66.3 450
LH, all corr 46.1 49.8 373

24 Feb -  4 M ar
2000

SH, no corr 2.4 40.8 374
SH, all corr 1.7 40.4 372
LH, no corr 3.7 20.5 375
LH, all corr - 3.4 20.7 372

Table 6.10: Linear regression based upon sensible and latent heat fluxes from the ARM and 

Mesonet sites (with and without sonic corrections applied). Mesonet data were assumed to 

be the independent data (x), and ARM data were assumed to be the dependent (y) data. 

ARM data have been adjusted using SIRS net radiation instead o f REBS net radiation.

Variable Intercept Slope R"

1 1 - 2 0  Aug SH, no corr -22.31 1.141 0.852
1999

SH, all corr -26.06 1.018 0.862
LH, no corr 15.82 1.359 0.939
LH, all corr 13.88 1.236 0.967

24 Feb -  4 Mar SH, no corr -8.51 1.235 0.971
2000

SH. all corr -9.20 1.231 0.972
LH. no corr -4.25 1.535 0.739
LH. all corr -1.02 0.890 0.655
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6.3 Closure at the Foraker Mesonet site

Closure of the energy budget was investigated at the Foraker Mesonet site during 

the August and February/March periods. A detailed examination of the closure issue yields 

greater insight into the evaluation of the EC and Bowen ratio methods and provides clues to 

the errors associated with each component of the energy budget. Estimates of closure were 

computed for each set of 30-minute observations. All data from days when rain occurred 

were excluded from further analysis. Data also were excluded if (Rn-GFD < 50 Wm '  or if 

(SH+LH) < 50 Wm" as small values of flux creates spuriously large percentages of 

closure. Statistics of closure from the data are listed in Table 6. II .

Table 6.11: Mean closure rates for the Foraker Mesonet site during 1 1 - 2 0  August 1999 

and 24 February -  4 March 2000.

Mean closure 
(%)

Std Dev (%) Sample size, n 
(# 30 -m in  obs)

1 1 -2 0  Aug 
1999

C N R l, no corr 81.9 16.6 214
C N R l, all corr 94.7 13.3 178
SIRS, no corr 83.2 15.7 214
SIRS, all corr 96.1 13.0 178

24 Feb -  4 
Mar 2000

C N R l, no corr 87.7 11.4 132
C N R l, all corr 97.4 13.9 132
SIRS, no corr 91.9 16.5 129
SIRS, all corr 102.1 19.4 129

The corrections described in Chapter 4 were applied to the data set obtained from 

the Foraker site. The corrections include those developed by Stull ( 1988) and Schotanus et 

al. (1983) for sensible flux and those developed by Webb et al. (1980) and (Tanner et al. 

1993) for latent flux. The tilt correction to account for terrain slope also was included. In

addition, data were excluded when winds were from the north (330° -  30°) because the
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sonic anemometer and the krypton hygrometer are mounted south o f the tower. According 

to Dyer (1981) and Dyer et al. (1983), flow distortion from north winds significantly 

reduces the measured covariance of flux. When plotted as a function of wind direction, 

closure is reduced significantly when winds are from the north (Figs. 6.23a-b). In this 

situation, sensible and/or latent fluxes were underestimated due to flow distortion created 

by the tower.

Closure rates when estimated using the CN Rl ranged from 94.7% during August 

to 97.4% during the February/March after corrections were applied. After including all 

corrections, closure improved significantly by nearly 13% during August and nearly 10% 

during February/March. Because o f differences in net radiation between the two four- 

component systems, closure was recalculated using the SIRS data instead of the C N R l 

data. Closure improved by 1.4% and 4.7% during the respective periods. Even so. these 

results do not prove that the SIRS system is more accurate than the C N R l. Only if other 

components of the energy budget could be assumed to be accurate could the SIRS system 

be superior in accuracy to the C N R l. Nevertheless, such differences account for variation 

in closure estimates.

Despite the high estimates of mean closure in Table 6.11, the standard deviation of 

the observations remained between 10% and 20%. To explain this variability and using 

SIRS net radiation, the diurnal mean of closure was plotted at monthly intervals for the 

period September 1999 through May 2000. (The krypton hygrometer was out of order 

during November through January, and so no closure estimates could be computed during 

this time.) A strong diurnal dependence is evident (Figs. 6.36a-f). Early morning periods 

appear to have minimal closure. However, closure reaches its maximum at midday before 

decreasing dunng the late afternoon. Barr et al. ( 1994) detected a similar diurnal pattern in 

closure.

The diumal dependence of closure errors is not unexpected (Barr et al. 1994). It 

has been suggested that closure rates should be at their minimum values prior to mixing of
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Table 6.12: Daily-averaged value of closure at the Foraker Mesonet site dunng 11-20 

August 1999 and 24 February -  4 March 2000.

Mean closure (%) Std Dev (%) Sample size, n
Aua 1 1 -2 0  

1 9 9 9
C N R l, no corr 83.0 5.8 8
C N R l, all corr 89.5 7.5 6
SIRS, no corr 87.9 5.9 8
SIRS, all corr 94.6 8.0 6

24 Feb -  4 
Mar 2000

C N R l, no corr 84.2 5.0 7
C N R l, all corr 94.7 7.5 7
SIRS, no corr 90.2 5.9 7
SIRS, all corr 101.5 8.2 7

the boundary layer during the early to mid-morning hours. This then suggests the 

question- does closure improve when averaged over longer time periods? To address this 

question, mean closure was computed using 24-hour totals o f the four components. Data 

were excluded when 5 or more observations were missing or failed quality assurance 

routines. Data also were excluded during days with rainfall (e.g., DOY 56. 62, and 63) 

and during periods of northerly winds (e.g., DOY 225 and 231). The statistics of closure 

are listed in Table 6.12 and are shown in Figures 6.24a-b.

Daily averaged estimates of closure varied slightly from those computed using the 

30-minute observations. Closure estimates improved during the February/March period 

versus during the August period. Sonic corrections increased closure by approximately 6% 

during August and by 11% during February/March. Use of SIRS data improved closure 

an additional 5% during August and by almost 7% dunng February/March. Although 

closure rates near 100% are ideal, day-to-day variations are large and are difficult to 

explain.
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Figs. 6.23a-b: Closure estimated as a function of wind direction. When the winds were 

northerly (330° -  30°), closure of the surface energy budget decreased significantly.
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Figs. 6.24a-b: Daily mean closure estimated using 24-hour totals o f components in the 

energy budget.
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6.4 The EC and BR Systems -  A One Year Comparison

The ARM-Mesonet comparison reveals that closure varies widely during the day. 

The accuracy of the various net radiation sensors varied as a function of the time of day 

(e.g.. Figs. 6.3a versus 6.5a). Significant differences (> 40 Wm '), which varied with the 

diumal cycle, were observed in the ground heat flux between the ARM and Mesonet sites 

(Figs. 6.10 and 6.13). Thus, daily averaged values of closure yielded the most consistent 

estimates. Fortunately, daily totals of components in the energy budget have been found to 

be important for climatological and hydrological applications (Shuttleworth 1991).

Long-term trends in flux measurements should yield unique insights into the 

closure problem. Because previous field experiments have been limited to a few days or 

weeks (Table 2.1), seasonal variations have rarely been observed. Only one example has 

been documented (Barr et al. 1994). Nevertheless, large-scale changes in vegetation and 

surface wetness occur during the year, which could create an opportunity to improve our 

understanding of the closure problem. For instance, if errors with closure were only 

associated with the latent heat flux, annual trends in closure could be linked to changes in 

the measured Bowen ratio, soil moisture, rainfall, and Normalized Difference Vegetation 

Index (NDVI).

A year-long data set from the ARM and Mesonet sites at Foraker was examined. 

Net radiation, ground, sensible and latent heat fluxes were summed to produce daily totals 

in MJ m * day '. Thirty-minute data were used: if more than 4 o f the 48 observations were 

missing, that day of data was excluded. In this situation, missing data were interpolated to 

complete the time series.

The annual mean difference o f net radiation between the two observing systems 

was within 0.5 MJ m ’ day ' (as shown in Table 6.13 and Fig. 6.25). The trends of net 

radiation remained constant throughout the year (Fig. 6.26). The remarkable stability of 

these observing systems increased our confidence in the OASIS measurement of net
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and 31 May 2000.
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Figs. 6.26: Differences in net radiation and ground heat flux between the ARM and 

Mesonet sites during an annual cycle.

Table 6.13: Differences in measurement of net radiation, ground heat, sensible heat, and 

latent heat fluxes between ARM and Mesonet systems ( 1 June 1999 -  31 May 2000).

All units: MJ m '  day ' 
unless otherwise noted.

X a n(days) Min Diff Max Diff

Net radiation SIRS - CNRl -0.501 0.307 233 -2.10 0.48
SIRS - REBS -0.413 1.090 228 -2.94 1.41
SIRS - NR-Lite -0.458 0.280 114 -1.06 0.32

Ground heat ARM - Meso -0.211 0.639 167 -2.12 1.32
Sensible heat ARM/SIRS - Meso 0.951 1.477 87 -1.26 5.42

ARM/REBS - Meso 0.681 1.330 130 -2.06 4.92
Latent heat ARM/SIRS - Meso -0.607 1.292 80 -3.92 2.39

ARM/REBS - Meso 0.169 1.805 121 -4.03 4.96
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radiation.

Based upon an examination of closure results using radiometer data from the Q*6.l 

and NR-Lite radiometers (Table 6.13), mean differences compared to the SIRS averaged 

less than 0.5 MJ m" day '. However, long-term variations were noted. Annual trends 

from each system revealed significant errors (Fig. 6.26). The trend in results based upon 

the REBS measurement was significant, decreasing from a difference of approximately 

-1 .0  MJ m ’ day ' in September to nearly -2 .5  MJ m '  day ‘ by November. A dome 

replacement during December and a calibration correction appears to have corrected the 

difference based upon the Q*6.1 and SIRS systems. However, results based upon the 

REBS and SIRS diverged again from near 0 MJ m " day ' during January to +0.5 MJ m ’ 

day ' by May. Differences in results obtained using data from the NR-Lite and SIRS 

remained constant throughout the year; this comparison had the smallest standard deviation 

of difference from the SIRS (Table 6.13). One problem, perhaps dust on the sensor, 

created divergence between sensor observations during DOY 220 -  250. Sensor 

measurements converged following a heavy rain event (see Section 6.2.1).

Ground heat fluxes between the ARM and Mesonet sites (Fig. 6.25) revealed large 

amplitudes in the daily ground flux observed by the Mesonet. When the true ground flux is 

at a minimum, the residual of closure increases. The annual mean difference in ground heat 

flux between the ARM and Mesonet sites varied by -0.211 MJ m " day ' (Table 6.13). 

However, the annual cycle reveals a trend (Fig. 6.26). Differences are at a maximum 

during the summer months and appear related to the increase of net radiation. These 

differences could be real and may represent heterogeneity at the site. The ground flux 

estimates are consistent with the fact that the Mesonet site is sparsely vegetated and has 

more bare soil than does the ARM site. Such heterogeneity at a site could limit the accuracy 

of closure.
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Daily-averaged values of sensible and latent heat flux also were compared. The 

sensible and latent fluxes were estimated by the Bowen ratio system of ARM using the net 

radiation acquired by the Q*6.I and recalculated using data from the 4-component SIRS. 

A comparison of estimates from the Mesonet and ARM is shown in Figure 6.27a-b. Net 

radiation from SIRS did not become available until I September 1999. Thus, fluxes could 

not be recalculated during July and August, a period when latent heat flux was at its largest 

value during the annual period.

Differences were examined (Fig. 6.28) in the sensible and latent heat flux during an 

annual cycle at the ARM and Mesonet sites. Sensible heat flux differed the most during 

spring months, at a time when the Mesonet underestimated SH relative to values obtained at 

the ARM site. However, during the same period, the Mesonet overestimated latent heat 

flux relative to ARM. Thus, the sum of (SH + LH) was similar at both sites. It is the ratio 

of these fluxes, which produced different measurements. Closure estimates from the EC 

method were -100%  during the spring, which increased our confidence in measurements 

from the Mesonet. In estimating the Bowen ratio, it appears that the ARM system favored 

SH flux, while the Mesonet favored LH flux.

Large differences in latent heat flux were observed during the autumn period. The 

Mesonet underestimated latent flux by as much as 4 MJ m ’ day ' relative to values 

produced at ARM, and unlike the spring period, closure estimates were at their minimum 

values of the year. Values of sensible flux were small. Thus, differences in SH measured 

by both systems remained small. A period between DOY 200 -  250 coincided with very 

dry conditions but large values of latent flux resulted from large values of greenness or 

NDVI. As the soil dried during the period, LH fluxes declined, and closure improved. By 

DOY 250 closure estimates were -  100%.

Differences between the net available energy and aerodynamic fluxes using data 

from both sites are shown in Figure 6.29a-b. Note that the difference in values of the
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available energy between the two sites was ~ +/- 1.0 MJ m • day ' throughout the year. On 

the other hand, the difference in aerodynamic fluxes obtained by both systems varied as a 

function of the available energy and with changes of season.

An examination of daily estimates of closure at the Mesonet site at Foraker reflects 

the differences in observations between the ARM and Mesonet sites (Figs. 6.29 and 6.30). 

The percentage of closure, which seemed to be a function of the available energy, 

decreased to minimum values during the summer months. Closure estimated as a residual 

also shows a similar annual cycle and primarily reflects differences observed between the 

aerodynamic terms. Note that the residual appears to be inversely proportional to the 

Bowen ratio (Fig. 6.31a). To determine better the relationship between closure and the 

Bowen ratio, daily closure rates were plotted as a function of Bowen ratio (Fig. 6.3 lb). A 

systematic decrease in closure was noted when the BR < 1.0. However, when the BR > 

1.0. a rather large variance in closure about 100% was observed. .Although closure rates 

declined systematically with increasing moisture, other influences such as terrain and fetch 

appeared to adversely affect closure as well.

As differences between the .ARM and Mesonet observations decreased, closure 

rates improved (Fig. 6.32). This improved closure was expected because the Bowen ratio
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method forces closure, but an examination of the differences in observations allows for 

specific errors in closure to be identified better. Note that data from the SIRS were not 

available during much of the summer period when the residual o f closure was at its largest 

value. For this reason, the ARM estimates of closure were recomputed using data from the 

C N R l.

An analysis o f the site differences as a function of the closure residual shows that 

the error due to the measured available energies is generally limited to +/- 1 MJ m ’ day '. 

Thus, the lack of closure at the Foraker Mesonet site cannot be explained by the available 

energy when differences between the observing systems are greater than +/-I MJ m ’ day '. 

In other words, because differences in the available energy are limited to +/-1 MJ m '  day ', 

only those days when the residual of closure is less than 1 MJ m " day ' can a lack of 

closure be explained. For those days when the residual o f closure was greater than 1 MJ 

m'^ day ', the observation problem lies either with an underestimate in sensible heat or latent 

heat, or a combination of both.

A similar examination of the aerodynamic flu.xes as a function of the closure 

residual shows errors as large as 4 MJ m “ day '. Linear regression of the data revealed a 

minimal relationship between differences in net radiation versus closure (R‘ = 0.292). 

However, linear regression of the difference within the aerodynamic fluxes versus closure 

supported a much stronger correlation of 0.710 (0.451) when the CN Rl (SIRS) was used.

Diumal averaging of the sensible and latent fluxes from the ARM and Mesonet sites 

could yield new insight into which component of the energy budget remains in error when 

closure fails. Assuming the difference between the Bowen ratio and eddy correlation 

approaches to energy balance can be linked with failure to close the energy budget, 

examining differences between individual components of sensible and latent flux produced 

by the observing systems may conclusively identify which components are in error.
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The net radiation, ground heat, sensible and latent heat fluxes were averaged on a 

diurnal basis for each month during the period from 1 September 1999 through 31 May 

2000. The krypton hygrometer at Foraker did not operate during 29 October 1999 to 3 

February 2000, and so data was excluded during this period. All ARM data were excluded 

when the Bowen ratio was between -0 .5  and -2 .0  as large spurious fluxes could result 

(Ohmura 1982). All EC data were quality assured as described in previous sections.

First, net radiation from the 4-component radiometers and ground heat flux from 

both ARM and Mesonet sites (Fig. 6.33a-f) were averaged on a monthly basis. Little 

change is noted during the 9-month period. Daily difference in net radiation between the 

CN Rl and SIRS changed little during the year as shown in Figure 6.26.

Greater daytime differences between observing systems were observed in the 

ground heat flux. In fact, little correlation existed between ground flux estimates produced 

by the two observing systems (ARM and Mesonet). The Mesonet estimates of ground flux 

reach a maximum value near midday while ARM estimates of ground flux achieve a broad 

peak near dusk. At the ARM site, the maximum amplitude is less than 50 Wm \  Greater 

(more positive) values of ground flux at the ARM site during the night create daily 

differences of +/- I M J m^ between the ARM  and Mesonet systems (Fig. 6.26). Together, 

the greater midday estimates of net radiation at the Mesonet site combined with much larger 

estimates of ground flux to yield lower daily-averaged values of available energy when 

compared to similar estimates from ARM.

Next, the sensible and latent fluxes (Figs. 6.34 -  6.35) were estimated at the ARM 

and Mesonet sites. To minimize errors created by differences in the measurement of 

available energy, the BR fluxes measured by ARM were rescaled according to the available 

energy from the Mesonet. In this manner, all relative differences between observing 

systems could be attributed to the measurement of the sensible and latent fluxes.

The diumal cycles of sensible and latent heat were averaged on a monthly basis at 

the Mesonet and ARM sites (Figs. 6.34 -  6.35). Differences between observing systems
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versus closure rates (Figs. 6.36a-f) revealed several trends. First, sensible heat tlu.xes 

during the daytime were underestimated by the EC method compared to the BR method 

during five of the six months. On the other hand, latent heat tlu.xes were overestimated by 

the EC method compared to the BR method dunng the same tlve months. Only during 

September was the situation reversed when the EC method overestimated sensible flux and 

underestimated latent flux. This result is surprising because either (a) real differences exist 

between the two observing sites, or (b) the BR system overestimates the Bowen ratio, or 

(c) the EC system underestimates the Bowen ratio. The monthly-averaged Bowen ratios 

estimated from the EC and BR methods (Figs. 6.37a-0 clearly indicate strong diumal 

patterns.

Measured differences in soil water content and soil heat flow indicate actual 

differences in the energy budget at the two sites. A lower Bowen ratio is expected over the 

wet soil observed at the Mesonet site; likewise, a higher Bowen ratio is expected over the 

drier soil at the ARM site. If surface heterogeneity exists across an area of less than 100 m 

in width, the accurate measurement and modeling of the surface budget across a 

heterogeneous landscape could be impossible to achieve. In fact, if such heterogeneity 

exists, then measurement from a single tower is not representative of a larger scale region.

Tanner (1988) demonstrated how changes in surface properties upwind of an 

observing site create significant differences in Bowen ratio with height. Tanner mounted 

two sonic systems 4 m apart at a height of 1.35 m AGL. The ground surface directly 

beneath his sensors was wheat stubble; however, a soybean field was upwind of his site. 

The two sonic systems measured nearly the same Bowen ratio. On the third day of data 

collection, one of the sonic systems was lowered to a height o f 0.9 m. At this point, the 

second system measured a greater Bowen ratio because the system at 1.35 m was affected 

by the LH flux advected from the soybean field. On the other hand, the system at 0.9 m 

was dominated by sensible heat flux from the wheat stubble.
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Another cause of the observed differences between systems may be due to the 

theoretical assumptions imposed by the Bowen ratio system and not caused by 

heterogeneity of the landscape. The Bowen ratio technique assumes the eddy diffusivities 

of heat and water vapor are equal (K^ = K^). Several studies determined that 

during stable and neutral conditions (Motha et al. 1979; Lang et al. 1982; Dugas et al. 

1991).

Lang et al. (1981) determined a method to study eddy diffusivities when both BR 

and EC methods were available. The definitions used by Lang et al. are:

-

<yZ

(6.1a)

(6.1b)

H = pC^\vO  (6.2a)

A£ = p kw q  (6.2b)

Bowen ratios of flux (Pf) and gradient (P ) are formed from Eqs. (6.1) and (6.2), as

Xwq
(6.3a)

(6.3b)

Lang et al. demonstrated how the ratio of diffusivities of heat to vapor equals the Bowen 

ratio of tlux to gradient as defined by Eqs. (6.3):

(6 .4 )
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Because closure is near 100%. the BR and EC methods determine the behavior of 

the eddy diffusivities. From observations shown in Figures 6.34 -  6.35. the Bowen ratio

measured by the gradient BR method (in this case, P j  is greater than the Bowen ratio

measured from the EC method (pf), or Pf > p .̂ Thus, from Eq. (6.4), > K„. Motha et

al. (1979) demonstrated that K„ > occurs during the advection of sensible heat. Lang 

et al. further demonstrated that instances of sensible heat advection and inequality of 

diffusivities were accompanied by a downward-gradient o f sensible heat flux. In other 

words, an inequality of diffusivities occurs during instances of positive latent flux and 

negative sensible flux. In general, the ratio of K„ to decreases with increasing stability.

A second feature observed in the diumal cycles of flux (Figs. 6.34 and 6.35) is the 

rapid increase in latent heat flux at sunrise. This sudden jump in flux is particularly 

noteworthy during October, February, and March. The EC method often fails to measure 

this rapid increase, and failure to capture this feature results in a repeated underestimate of 

closure at sunrise. As shown in Figure 6.36, closure is often at its worst near sunrise and 

near sunset. This problem appears to be common to the ten super sites (see Chapter 7). 

This problem begets two questions: (1) Why does the EC method fail to measure a sudden 

increase in latent heat? (2) Is this rapid increase in latent flux real? If not, then is the BR 

method simply appropriating the available energy into its subsequent aerodynamic fluxes?

One cause of divergent behavior between observing systems arises from the height 

at which the sensors are located. The BR system is close to the ground and any vertical 

moisture gradient is sampled between 2 and 3 m. The sonic anemometer and krypton 

hygrometer of the EC system are mounted at a height of 4.5 m AGL. During the early 

moming hours, a stable boundary layer is dominant and an inversion could set up between 

2 m and 4.5 m. Low level moisture gradients very near the surface could be detected by 

the Bowen ratio system but missed by the EC technique.
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Finally, even the diumal estimates o f closure (Fig. 6.36) appear dependent upon the 

Bowen ratio (Fig. 6.37). Closure rates are -  100% during the mid- to late afternoon when 

Bowen ratios are the largest; closure rates are worst near sunnse and sunset when the ratio 

of sensible to latent flux diminishes. The error in closure appears to result from an 

underestimate of the latent heat tlux. Reasons for this underestimate are discussed in detail 

in Chapters 7 and 8.
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Fig. 6.33a-f: Net radiation and ground heat flux as measured at the ARM and Mesonet sites 

at Foraker between I September 1999 and 29 February 2000.
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Chapter 7: Closure Estimated at the 10 OASIS Super Sites 

Introduction

One unique aspect of this investigation is that the OASIS network provides an 

opportunity for studies of the closure budget which can be conducted simultaneously at ten 

sites located in ten unique and varying climate regimes. Such a diverse selection of site 

locations, each with variable land surface properties, permits explicit study of the effects of 

climate, topography, surface heterogeneity and fetch. If similarity in closure is uncovered 

among the ten sites, local effects can be eliminated as possible causes for non-closure. 

Because the EC methodology appears to underestimate terms of the energy budget on a 

systematic basis, all sites should measure a similar underestimate in closure. If the 

underestimate in closure is due to latent heat flux (proposed in Chapter 6). closure should 

vary with climate and be a function o f the Bowen ratio. These hypotheses are considered 

in this chapter. A one-year long data set has been collected from the ten super sites of 

OASIS and is the foundation for this chapter.

Data were collected between I June 1999 and 31 May 2000 from the ten OASIS 

super sites. All data were averaged over 30-minute periods, and all data were quality 

assured. If more than 4 of the 48 observations per day (each representing a 30-minute 

average) were missing, then that day of data was excluded from further analysis. 

Otherwise, missing data were interpolated from the time series. Twenty-four hour flux 

totals were summed for each of the four components of the energy budget.

7.1 Underestimation of Sensible and Latent Flux

The fundamental problem in estimating closure is the consistent underestimate of all 

aerodynamic fluxes -  sensible and latent heat -  when compared to the available energy of 

net radiation and ground heat flux. A majority of previous experiments, ranging from 

FIFE to SGP-97, support this conclusion (Fritschen et al. 1992; Nie et al. 1992: Twine et
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al. 2000). Thus, the primary focus of this research becomes identifying (and possibly 

correcting) the source(s) of this imbalance.

The initial step in identifying the source of closure imbalance becomes one of 

repeating previous results. The OASIS data set was e.xamined at each of the ten super sites 

to assess the underestimate of aerodynamic fluxes (SH+LH) when compared to the 

available energy (Rn-GH). If previous conclusions from the scientific literature were 

correct, closure should be less than 100% at each of the ten OASIS sites regardless of 

instrumentation or site conditions.

The question presents itself as a classical statistical problem. A simple one-sided 

hypothesis was evaluated with a rejection level (p) equal to 5%. A null hypothesis (H,) 

and an alternative hypothesis (Hy) were defined as:

H„: ( R n - G H ) <  (SH + LH)

H^: (Rn -  GH) > (SH + LH)

with the null distribution assumed Gaussian based upon plots of observed data. A two- 

sample t-test was applied with the two sets of data represented by (Rn-GH) and (SH+LH).

The two sets of data were serially correlated with the annual cycle of incoming solar 

radiation. A single parabolic curve was fitted to the data, and the annual trend was 

removed. In addition, the two sets of data were determined to be cross-correlated. For 

example, as the net radiation increased, the sensible and latent fluxes likewise increased. 

The following equation was used to determine statistical significance because of the 

correlation between data sets:

-------------  (7.1)

[ ( • ' t  ■^2

The variables \ ,  and x. are the sample means of (Rn-GH) and (SH+LH). respectively; s," 

and s." are the sample variances of each data set; p , ,  is the Pearson correlation between 

data sets; and n is the sample size common to both data sets (Wilks 1995). Because of the
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senal correlation observed In the data stream, the sample size. n. was replaced by an 

effective sample size, n ', which is estimated to be:

^ ~  P o (7.2)
I  +  P o

where p„ is the estimated autocorrelation (at lag zero) of the time series.

First, a data set composed of clear" days was generated from each of the ten sites. 

Clear and mostly clear days were manually selected at each site from the year-long data set. 

All cloud-contaminated days were excluded. Sample sizes ranged between 15 days at 

Stigler to 72 days at Idabel. Next, data were examined from all non-rain days. Sample 

sizes ranged between 57 days at Stigler to 173 days at Idabel,

Significance testing were conducted on data prior to instrument corrections being 

applied to the sonic data. The tests were repeated except with the corrections added. 

Results are listed in Table 7.1.

Table 7.1: Hypothesis test results for data collected from the super sites during clear and 

non-rain days; data in bold denote when the null hypothesis was rejected at the 5% level.

Site No corrections Corrections No corrections Corrections
Clear days only All non-rain days

Alva 1.725 1.090 5.485 2.857
Bessie 3.271 1.708 9.872 6.037

Boise City 1.806 1.620 5.586 4.062
Burney ville 1.741 4.050 3.984 0.785

Foraker 4.301 2.011 8.303 3.386
Grandfield 3.860 0.524 8.401 0.576

Idabel 2.555 2.288 10.517 7.534
Marena 2.906 0.821 9.444 3.797
Norman 1.059 0.113 6.170 0.671
Stigler 7.526 2.344 8.177 2.968
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The null hypothesis was rejected at all sites except Norman when only clear days 

were considered and without sonic corrections being applied. Thus. (Rn -  GH) is greater 

than (SH + LH). The sample size at Norman was most likely too small to reject the 

hypothesis. Data from all ten sites proved significant at the 5% rejection criteria (Z >  1.65) 

when all days were considered. After sonic corrections were applied, (Rn-GH) > 

(SH+LH) still held true at most sites. The null hypothesis was rejected at all but a few 

sites. As discussed in Section 7.5.2, Alva, Grandfield, and Norman have the flattest 

terrain of the ten sites. The results suggest that topography may cause some underestimate 

in closure. Nevertheless, this study repeats the results of previous work by demonstrating 

that, at a majority o f sites, (Rn-GH) > (SH+LH) even after appropriate instrument 

corrections are applied.

7.2 Tilt Correction

The correction for coordinate rotation accounts for sensor tilt (not properly leveled 

during installation) and for terrain slope. Coordinate rotation assumes planar rotation such 

that the u-v coordinates of wind are rotated to force w to equal zero. The details of this 

correction method are given in Appendix A.3.

Because the sensor tilt and terrain slope affect the EC measurements, each time the 

sonic anemometer is inspected for maintenance purposes could cause a new “tilt” to be 

observed in the observations. When considering a long-term data set o f EC measurements, 

the tilt due to terrain slope should remain constant during the period. However, a tilt 

correction at the beginning of a project may not be applicable after several months of field 

exposed to atmospheric elements and after several site visits by maintenance personnel.

The stability of the tilt correction during the year long data set was examined by 

quantifying the slope error separately over three periods of two-week duration. The bi

weekly periods were chosen near the beginning, middle, and end of the data set; in this 

way, changes to the tilt of the sensor could be noted. Weather during the three periods was
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generally fair with little precipitation. Data collected during days with rainfall were 

excluded from the calculations. Data also were excluded when the azimuth angle of the

wind was northerly (between 345° and 15°); the tower structure, located north of the 

sensor, obstructed proper ventilation to the anemometer. In addition, data were excluded 

when the estimated elevation angle of the sonic anemometer was > |4°[,

Sonic anemometer data were examined from the ten super sites during the periods 

of 1-14 October 1999; 1-14 January 2000; and 15-31 May 2000. Elevation and azimuth 

angles were computed from each set of measured u, v, and w components collected during 

each 5-minute period. These data are plotted for several selected sites for each 2-week

period (Figs. 7.1 -  7.2). Next, the sonic lean angle (0) and azimuth of the sonic lean angle 

((|)) were computed for each site (Table 7.2). As shown in Eq, (4,10), the sinusoidal fit of

what was used to correct the raw data, is a function of the 0 and 0 angles.

Remarkably, the tilt correction remained relatively stable throughout the three 2- 

week periods. Figures 7.1 -  7.2 suggests that few changes are evident in the sinusoidal fit 

during the three periods for each site. A review of Table 7.2 reveals little variation among 

the three periods in either the maximum amplitude of the elevation angle or the azimuth 

angle associated with the maximum amplitude of the elevation angle. In general, the flatter 

the terrain, the less variant the data. In fact, the flatter the terrain, the less change observed 

in the rotation coordinates among time periods as listed in Table 7.2. Overall, the data 

remained relatively “well-behaved” with time. Thus, it can be concluded that a single 

sinusoidal fit can be applied to an entire year-long data set. Note that during this period of 

data collection, no sonic anemometers were removed or replaced.
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Table 7.2: The calculated sonic lean angle and azimuth of the sonic lean angle for each 

super site for each selected time penod.

Sonic lean angle, 0 Azimuth of the sonic lean angle.
(degrees) 0 (degrees)

Oct 1-14 Jan 1-14 May 15-31 Oct 1-14 Jan 1-14 May 15-31
1999 2000 2000 1999 2000 2000

Alv2 0.88 0.63 0.62 85.13 62.4 77.98
Bess 1.78 1.93 1.46 -6.78 -2.16 15.85
Bois 0.29 0.45 0.65 47.29 41.77 23.44
Bum 1.01 1.05 0.81 -117.26 -110.82 -71.12
Fora 0.75 0.61 0.43 -171.37 -164.02 -123.58
Gra2 0.52 0.80 0.82 -33.69 -51.09 -12.39
Idab 1.02 1.08 0.70 -31.78 -50.00 -35.50
Mare 1.33 1.61 1.73 -22.60 -19.97 -15.34
Norm 0.42 0.58 0.55 1.95 5.52 7.25

Stig 1.07 0.83 1.07 73.47 68.56 70.97

The next question considered was how well the sinusoidal correction fit the sonic 

data. Although the estimated azimuth of the sonic lean angle was artificially restricted to lie

between +/- 4° to accurately estimate the sinusoidal fit, large variance in the data were

observed at several sites. Nevertheless, a qualitative inspection of plots from the three 

periods revealed that the sinusoidal fit represented the mean value at most sites. Data 

collected from Bumeyvilie and Marena, however, indicated a significant departure from the 

sinusoidal fit. Terrain at these two sites is similar, the fine-scale, sloped terrain created 

micro-scale affects for which the sinusoidal fit was not designed.
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7.3 Effect of Sonic C orrections

Results were examined as corrections were applied one-by-one to the sensible and 

latent heat fluxes. As described in Chapter 4. sensible heat fluxes were corrected for the 

effects of moisture (Schotanus et al. 1983). specific heat (Stull 1988), and tilt. Likewise, 

latent heat flux estimates were corrected for the effects of oxygen (Tanner et al. 1980). 

density variations (Webb et al. 1980) and tilt. The impact of each correction upon the 

aerodynamic flux is listed as the percentage of increase or decrease in the mean annual flux 

at each site (Tables 7.3 and 7.4).

Sensible heat fluxes decreased when corrected for variations in humidity 

(Schotanus et al. 1983). The temperature measurement by the sonic was determined to be a 

function o f atmospheric moisture. To acquire correct measurements of atmospheric 

temperature requires removal of this effect. The result is a reduction of the sensible flux 

from that measured by the sonic anemometer. The flux was reduced only 1.1% at 

Grandfield but by a larger 4.7% at Stigler.

Conversely, sensible heat flux increased as the specific heat of air increased (Stull 

1988), which in turn, increased as atmospheric moisture increased. The result is a greater 

sensible flux. Sensible heat fluxes increased from 1.3% at Bessie to as high as 7.3% at 

Stigler. Note that each correction is a tightly modulated function of atmospheric moisture. 

Because o f the moister climate in eastem Oklahoma, sites such as Foraker. Stigler, and 

Idabel incurred the greatest flux change from following the corrections. The small data 

sample collected at Stigler during the summer months may not be representative of an 

annual mean.

The net effect of these two corrections (Schotanus et al. and Stull) upon sensible 

flux was significant. Increases in flux ranged from 0.8% to 3.4%. The small effect of the 

corrections on sensible heat flux at Bessie most likely results from a poor site exposure. 

The wind fetch at the Bessie site is poor because of small hills and rolling terrain in nearly
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every direction; the site itself sits atop a large hill. The relatively large effect observed at 

Stigler results from the small sample used and its eastem Oklahoma location.

The corrections for oxygen and those proposed by Webb et al. increased estimates 

of latent heat flux (Table 7.4). The oxygen density of air affects fluxes of latent heat when 

measured by a krypton hygrometer. The greater the flux, the greater the underestimate of 

latent heat by the krypton. A correction to account for this underestimate increased the 

estimated latent heat flux at all sites. Values increased from 2.9% at Foraker to as much as 

10.7% at Boise City. The apparent large correction at Boise City was due to the smaller 

values of latent flux measured there compared to measurements at the more eastem sites.

Latent heat flux also is affected by density fluctuations caused by the fluxes 

themselves (Webb et al. 1980). The result is a significant underestimate in the 

measurement. The correction increased latent heat flux by 6.2% at Stigler to as much as 

12.0% at Grandfield.

The total net increase in latent heat flux from the two corrections ranged from 

10.3% at Stigler to a large 21.1% at Boise City. Overall, the impact of each correction on 

the measured flux remained consistent among the ten sites. Note the significant impact of 

the corrections on both the sensible and latent heat. Failure to include these corrections 

would lead to a significant underestimate in closure of the energy budget.

7.4 Mean Annual Closure Rates

Mean annual statistics of closure were examined for the ten super sites using data 

collected during clear days and on all non-rain days. Closure was examined at each site 

prior to and after sonic corrections were applied. Results for clear-sky conditions are 

summarized in Table 7.5. Table 7.5 lists the mean annual closure rate (X). the standard

deviation of closure about the mean (o). the range of closure during the year-long data set.
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Table 7.3; Mean annual statistics of the impact of sonic corrections on sensible heat flux at 

each of the ten super sites collected on non-ram days.

Site Schotanus et al. Stull correction (%) Schotanus et al. and
correction (%) Stull corrections (%)

Alva -2.8 4.5 2.2
Bessie -2.4 1.3 0.8

Boise City -1.4 2.2 2.1
Bumeyvilie -2.3 3.6 2.0

Foraker -2.5 4.0 2.2
Grandfield -IT 1.8 1.2

Idabel -3.4 5.6 2.4
Marena -2.7 4.4 2.4
Norman -2.5 3.2 2.1
Stigler -4.7 7.3 3.4

Table 7.4: Mean annual statistics o f the impact of sonic corrections on latent heat flux at

each of the ten super sites collected on non-rain days.

Site Oxygen Webb et al. correction Oxygen and Webb et
correction (%) (%) al. corrections (%)

Alva 3.3 7.2 10.7
Bessie 5.4 10.1 15.4

Boise City 10.7 8.4 21.1
Bumeyvilie 5.4 10.7 17.2

Foraker 2.9 8.4 11.3
Grandfield 5.8 12.0 18.0

Idabel 3.5 7.9 12.0
Marena 4.1 8.7 13.2
Norman 3.5 8.0 12.4
Stigler 3.5 6.2 10.3

the improvement in closure after the sonic corrections were applied (AX), the change in

standard deviation after the sonic corrections were applied (Act), and the sample size.

The annual mean value of closure estimates on clear days ranged between 68.2% at 

Bessie to 87.4% at Grandfield. Mean closure at most sites ranged between 80 - 88%. By
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Table 7.5: Mean annual statistics of closure at all ten super sites based upon data collected

during clear days and non-rain days. Italicized data have all corrections applied.

Site X (% ) a (% ) Range (%) A X (% ) A a (%) Sample size 
(# of days)

Alva 87.0 22.4 49.0 -  180.7 7.8 -3.3 71
94.8 19.1 56.2 -  161.7 54

Bessie 68.2 23.1 19.1 -  116.2 8.6 1.2 79
76.8 24.3 3 6 .5 -1 2 1 .8 54

Boise City 84.2 11.1 49.9 -  115.4 6.7 -0.3 67
90.9 10.8 6 8 .0 -1 1 5 .1 46

Bumeyvilie 84.0 11.9 43.8 -  136.2 8.2 0.3 84
9 Z 2 12.2 6 7 .4 -  120.9 65

Foraker 83.0 8.7 53.4 -  99.0 9.8 -1.4 58
93.2 6.1 76.4 -  106.2 42

Grandfield 87.4 7.1 70.8 -  107.5 10.8 1.1 57
98.2 8.2 82.1 -  120.6 51

Idabel 76.9 II.3 25.6 -  101.0 7.6 1.0 90
84.5 12.3 6 2 .0 -1 1 4 .9 72

Marena 85.0 10.1 63.3 -  137.0 6.9 -1.2 85
91.9 5.9 7 0 .8 -  110.5 63

Norman 86.7 12.4 45.5 -  107.2 14.0 1.7 41
100.7 14.1 73.0 -  125.6 33

Stigler 78.1 10.5 48.8 -  105.5 10.6 -1.3 22
88.7 9.2 7 8 .5 -1 1 7 .1 15

including the appropriate sonic corrections, closure improved 6.7% at Boise City to as 

much as 14.0% at Norman. The corrected closure rates ranged between 76.8% at Bessie to 

100.7% at Norman. Note that nearly all sites underestimated closure. The variance 

increased by 1.7% at Norman and decreased by 3.3% at Alva.

A comparison of information in Table 7.5 with that in Table 3.1 indicates a 

relationship exists between topography and closure (see Figs. 7.21 -  7.25). In general, it 

appears the flatter the site, the better the closure rate. This result is similar to findings by 

Stannard et al. (1991) observed during Monsoon-90. The effects of topography and 

instrument exposure - via stationarity and homogeneity - upon eddy correlation estimates 

still are not well understood. It is widely accepted that Monin-Obukhov theory fails in 

complex terrain; it may be that similar restraints should be adopted for use of eddy
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Table 7.6: Mean annual statistics of closure at all ten super sites based upon data collected

during non-rain days. Italicized data have all corrections applied.

Site X (% ) o(% 9 Range (%) A X (% ) A a (%) Sample size 
(# of days)

Alva 84.5 22.5 21.7 -  184.0 7.9 -3.8 150
92.4 18.7 4 3 .7 -1 6 1 .7 106

Bessie 69.3 24.1 16.4 -  119.7 7.5 3.3 166
76.8 27.4 17.2 -  136.5 106

Boise City 84.1 16.6 20.8 -  140.7 9.2 -0.2 138
93.3 16.4 68.0 -  187.4 90

Bumeyvilie 86.9 14.2 41.7 -  172.5 9.6 -0.7 206
96.5 13.5 67.4 -  124.6 149

Foraker 83.2 13.2 13.8 -  133.0 12.7 -3.1 161
95.9 10.1 67.3 -  129.0 108

Grandfield 88.5 7.2 70.8 -  107.5 11.0 2.1 126
99.5 9.3 7 8 .7 -  124.1 111

Idabel 77.9 14.5 25.6 -  164.3 7.6 2.0 216
85.5 16.5 36.9 -  120.8 166

Marena 83.1 15.3 20.8 -  176.2 7.9 -5.7 192
91.0 9.6 70.8 -  123.5 135

Norman 86.2 12.5 45.5 -  109.1 14.0 3.1 97
100.2 15.6 7 3 .0 -  138.9 78

Stigler 83.3 11.1 48.8 -  111.7 10.0 1.1 76
93.3 12.2 72.0 -  124.0 57

covariance techniques. A  discussion of the effect o f topography upon closure is detailed in 

Section 7.5.2.

When the full-year data set was limited to non-rain days (Table 7.6), closure rates 

were similar to the results obtained using only days that were clear. Closure estimates 

ranged between 69.3% at Bessie prior to sonic corrections to 100.2% at Norman after 

corrections. In general, closure rates improved slightly at most sites when only non-rain 

days were used. Even so. the results were more variable than observed on clear days.

7.5 Trends in Closure at the 10 Super Sites

Closure is a complex, summary of how well the overall surface energy budget is 

measured. Thus, many reasons exist for nonclosure at a particular site. Limitations with
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the instruments, site inhomogeneity, instrument exposure, and topographical effects 

contribute to increasing the observational error.

Closure rates were averaged over 24-hour periods at the ten super sites between 1 

June 1999 and 31 May 2000 (Tables 7.5 and 7.6) for clear days only and for non-rain days 

only. The results duplicated that which was uncovered in previous studies. Aerodynamic 

fluxes were underestimated relative to the available energy, (Rn - G) > (SH + LH), and 

thus, closure was underestimated. However, results using OASIS data represent an 

improvement over published results based upon FIFE and SGP-97 (Table 2.1).

OASIS permits closure to be examined on a variety of time scales: such that long

term systematic errors can be identified as well as short-term variability due to instrument 

error. To detect systematic errors, closure should be determined at multiple sites. Monthly 

to seasonal changes in closure at multiple sites will provide insight into the underlying 

causes for non-closure.

First, trends in closure were examined as a percentage [Eq. (2.1)] and as a residual 

of the energy balance [Eq. (2.2)]. During the winter months, closure rates are poor simply 

as a consequence of the low magnitude of the flux values. This lack of closure results from 

a deficiency in the closure equation itself: the percentage error is sensitive to the magnitude 

of the fluxes. The greater the values of flux, the less sensitive to error is the percentage of 

closure. Thus, the residual of error is important to examine as well.

Days on which rainfall occurred were excluded, as were days when winds were 

between 330 and 30 degrees. The interference by the tall tower significantly affected sonic 

estimates. Thirty-minute averages were calculated using the 5-minute observations. 

Because daily totals of flux were needed, at least 44 of the 48 observations per day (> 

92%) had to be available for that day of data to be included in the study. In addition, when 

a day of data was used, missing observations (up to 4) were interpolated from the time 

series. In this manner, a more accurate total of flux could be estimated for each day.
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A percentage of closure was estimated daily for each super site (Fig. 7.3a-j). 

However, several sites, those at Boise City and Stigler. were not installed until mid- 

October while several other sites. Grandfield and Norman, had equipment failures during 

the year (Table 4.3). When estimating closure as a percentage, days also were excluded 

when (Rn -  GH) < 1.5 MJ m '  day ' or when (SH + LH) < 1.5 MJ m " day '.

A review of the annual variation in the percentage of closure reveals similarity 

among the plots of data from the ten super sites. Bessie, Bumeyville, Grandfield. Idabel, 

Marena, and Norman exhibited the same annual pattern of closure. Low closure rates (< 

100%) during DOY 1 -  200 were followed by a 30 -  60 day period when closure was 

above 100%. Another period of low closure occurred during remaining days of the year. 

Data from sites at Boise City, Foraker, and Marena also showed a second period when the 

closure was near 100% (DOY I -  60). These three sites are the most northern of the ten 

sites studied.

A strong correlation among the ten sites in the annual trend of closure is evidence of 

an underlying systematic cause for non-closure. Because the pattern is so systematic and 

widespread, instrument exposure, terrain slope, and wind fetch unique to each site can be 

eliminated as the dominant factors in non-closure.

The daily closure rate was recalculated as the residual (MJ m " day ') and is shown 

in Figures 7.4a-j. As a residual, closure rates primarily reflect the annual cycle of incoming 

energy. However, a dramatic improvement in closure occurred between DOY 200 -  250 at 

the Bessie site; most other sites also recorded a similar improvement but in less dramatic 

fashion. Such a large shift in closure during mid-summer indicates that the closure 

problem was not caused by either net radiation or ground heat flux. Changes were not 

made to the net radiation sensors at this time. Furthermore, the total ground flux was not 

large enough to create the significant difference that was observed. An examination of the 

daily totals of net radiation and ground flux revealed little change beyond the annual cycle
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known to be in the year-long data set. Thus, the closure problem is contained within either 

the sensible and/or latent heat flux.

A review of the soil moisture and NDVI highlighted a drying, near-drought period 

between DOY 200 -250 during 1999. A lack of rainfall over most of the state during this 

period caused the upper levels of soil to dry significantly, which in turn, caused vegetation 

to wilt, increased stomata! resistance, and further dried the surface boundary layer. An 

examination of the daily totals of sensible and latent flux during the annual cycle revealed a 

dramatic increase in Bowen ratio during this same period of drying. In fact, closure rates 

became worse in the spring as the latent heat flux increased. During the period o f drought, 

closure improved as the latent heat flux decreased sharply.

Annual trends of closure, and sensible and latent heat flux varied widely among the 

ten super sites. Because of that fact and to determine the impact of sensible and latent 

fluxes upon closure, daily estimates of Bowen ratio were plotted against daily estimates of 

closure (Figs. 7.5a-j). As is evident at almost every site, closure rates approached o r even 

exceeded 100% as the Bowen ratio increased. The drier the site (i.e.. the greater the 

sensible heat flux), the better the closure. Closure appeared particularly poor when the BR 

was less than 1.0. When the BR exceeded 1.0, closure was at or above 100%.

Figure 7.5a-j implies that latent heat flux is the primary cause for non-closure. 

Indeed, several previous experiments determined excellent closure in arid conditions 

(Stannard et al. 1994; Unland et al. 1996; Wright et al. 1992). However, Twine et al. 

(2000) disagreed; they claimed non-closure was created by both sensible and latent heat 

fluxes. To correct for non-closure, one should divide the residual of energy by the 

measured Bowen ratio.

If the majority of the closure error lies with measurement of the latent heat tlux, the 

question remains; what is the cause of that error in the latent heat? Several hypotheses are 

proposed. First, routine cleaning of the hygrometer was not performed dunng 1999 at 9 of 

the 10 super sites. Failure to keep the krypton hygrometer clean increased the variance of
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all measurements. However, differences were not noted in the latent heat flu.x before and 

after the sensor was cleaned. The hygrometer at Idabel was cleaned on a regular basis 

during the entire period of study. Results from Idabel are the same as those from other 

sites. As a result, the real error lies within the latent heat flux.

A second reason latent heat flux was underestimated was caused by a physical 

separation o f the krypton hygrometer and sonic anemometer. Koprov and Sokolov (1973) 

determined a 10% underestimate in flux when the lateral separation of sensors was 20 cm. 

The OASIS hygrometer and sonic anemometer are separated vertically by 15 cm. 

Kristensen et al. (1997) theorized that, when the scalar sensor was 20 cm above the 

anemometer, an underestimate of 18% would occur. However, when the scalar sensor 

was 20 cm below the anemometer, an error of only 2% occurred. To minimize errors due 

to sensor separation, OASIS placed the krypton hygrometer, the scalar component, 15 cm 

below the sonic anemometer.

A further look into the details of Figures 7.5a-j reveals variability of closure even 

among data with high Bowen ratio estimates. Large variability o f these estimates within a 

site and among all sites is apparent. It appears as if topography may account for some 

degradation in closure. Stannard et al. (1991) demonstrated that, the flatter the site 

landscape, the better the closure. This situation appears to occur with OASIS data as well.

Results indicate that closure is strongly modulated by the Bowen ratio. During 

periods of high latent heat flux, closure was relatively low, and during very dry periods, 

closure was near or above 100%. To further explore this relationship, daily closure 

estimates were plotted versus the soil water potential (Figs. 7.6a-j). Soil water potential 

(kPa) is a measure of the amount of work needed to move a unit mass of water within the 

soil (Basara and Crawford 2000). In other words, it is a measure of the soil wetness. The 

drier the soil, the greater the soil water potential. In Figures 7.6a-j. the maximum value 

permitted (subjectively) was -1 0000 kPa; any observation greater in magnitude was 

assigned the value -lOOOO kPa. The more negative the observation, the drier the soil.
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The results within Figure 7.6 reflect those in Figures 7.2 -  7.5. The wetter the 

soil, the lower the closure rate. For saturated soils, closure generally remained less than 

100%: for drier soils, closure ranged from near 100% to 120%. Data from the sites at 

Alva. Boise City. Bumeyville. Foraker. Marena. and Norman had a linear relationship 

between closure and soil water potential. The drier the soil, the greater the percentage of 

closure.

Closure was overestimated when the soils were dry. This problem with closure 

could indicate an overestimate in the ground heat flux. More specifically, it is likely that the 

soil water content was overestimated, as revealed in the Mesonet/ARM comparison in 

Chapter 6 (Fig. 6.14). The conversion of soil water potential to soil water content may 

create a positive bias (or higher values). If the soil water content was estimated to be too 

high, then the ground heat flux would be overestimated. The problem would be 

particularly apparent during dry conditions. An overestimate in ground heat flux leads to 

an underestimate in the available energy (Rn-GH). and subsequently, an overestimate in the 

closure rate.

Figure 6.14 demonstrated how, during saturated conditions, estimates of soil water 

content remained high even during wet periods, and that ground flux estimates were 

overestimated as well. Thus, closure estimates were lower than indicated by the 

measurements. Thus, errors in the estimate of soil water content could explain the 

overestimate in closure during dry periods. Unfortunately, correcting for errors in the soil 

water content further decreases the closure rates.
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Diumal averaging of the data was designed to reveal information regarding 

systematic error. Five-minute data were averaged diumally for each month during the 

period between I June 1999 and 31 May 2000. Data from the 10 OASIS sites are shown 

in Figures 7.7 -  7.19.

Characteristics noted in the diumally averaged plots of closure include a common 

diumal pattern at -  half of the sites. For example, sites at Boise City, Foraker. Grandfield. 

Norman, and Stigler measured a maximum closure rate at midday and a minimum closure 

rate during the early moming and late aftemoon hours. Plots o f the diumally averaged 

estimates o f Bowen ratio at Foraker (Fig. 7.12) showed a strikingly similar pattem to the 

pattern of closure. The relationship between closure and Bowen ratio, as demonstrated in 

Figure 7.5, appears to hold even across the dium al cycle. As the Bowen ratio decreased to

< 1. closure rates declined. As BR > 1.0, closure rates improved to > 100%. This period

during the mid-aftemoon. a period with excellent closure ( -  100%), coincides with the

daytime period when the greatest mixing and the lowest correlation between 0 and q (R‘ô )

occurred (Barr et al. 1994). This increase in mixing of the PBL is due to the entrainment of 

warm, dry air above the boundary layer being mixed convectively to the surface.

All sites observed their lowest rate of closure during the early moming period prior 

to boundary layer mixing becoming established. This period of minimal Bowen ratio was 

followed by turbulent mixing that increased during the moming hours. As a result, dry air 

entrainment increased the Bowen ratio and increased closure rates.

A second characteristic was shared at Bessie. Bumeyville, Idabel. and Marena. At 

these sites, a minimum in closure occurred during the early moming hours, but closure 

estimates increased during the day to reach a maximum during the late aftemoon. In this 

scenario, the closure mean was asymmetnc about solar noon. An examination of diumal 

means o f net radiation, ground, sensible, and latent heat flu.xes uncovered an asymmetric
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diumal pattem in latent heat flux. Latent heat tlux was less than net radiation during the 

moming hours, but greater than net radiation during the late aftemoon hours.

An earlier comparison between the EC and BR methods suggested that the EC 

method was unable to capture latent heat flux during the early moming hours (Figs. 6.34a- 

f). This problem led to an apparent underestimate in closure during the moming period. It 

appears this problem may be widespread and not necessarily a function of site properties 

(Figs. 7.7 -  7.19). The problem may also result from the relatively high height (4.5 m) at 

which the EC sensors were installed. Perhaps a lower height for these sensors would 

alleviate the problem described above (Chapter 8).

A third common pattem is the month-to-month variation in closure at several sites. 

A close relationship between closure and the Bowen ratio at Bessie was evident during 

June through August 1999 as both the Bowen ratio and closure rates increased. During 

September and November, both Bowen ratios and closure rates decreased. A similar 

pattem was observed at Bumeyville, Grandfield, Idabel. Marena. and Norman.
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7.6 E x ternal F actors Influencing Closure

Several variables were examined to help explain the variance observed at the ten 

super sites. Closure assessed in light of the Bowen ratio, topography, and geographical 

location.

7.6.1 Bowen Ratio

The mean annual rate of closure at each site was plotted as a function of the mean 

annual of Bowen ratio (Fig. 7.20). Closure rates improved as the Bowen ratio increased. 

Some variance in closure resulted from differences in length of the data period. For 

instance, the data sample at Stigler and Norman was less than 80 days in length while the 

sample at Marena included 135 days of data. The site at Bessie was not included in Figure 

7.20 because of a poor closure rate, mostly likely the result of rough and hilly terrain.
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Fig. 7.20: Mean annual closure rate at each super site versus the mean annual Bowen ratio.
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The Bowen ratio also had a strong influence on daily closure rates (Fig. 7.5). The 

comparison between the BR and EC methods in Chapter 6 indicated a failure to measure 

latent heat flux correctly during certain periods of the day, particularly during the early 

moming and late aftemoon hours when the measured Bowen ratio was at a minimal value. 

Likewise, the annual cycle of closure at the ten sites showed remarkable improvement in 

closure rates during long-dry periods (Figs. 7.3 -  7.4). This result indicates that the 

energy budget is well measured during dry periods, but is poorly measured during periods 

when latent heating is at a maximum. Thus, the lack of an accurate measurement of latent 

heat flux is primarily responsible for the lack of closure.

7.5.2 Topography

Stannard et al. (1992) determined an inverse relationship between closure rate and 

topography with closure rates declining as surface roughness increased. A similar 

relationship was uncovered at the ten super sites. Topographical data at 30 m resolution 

was acquired from a digital elevation model of the United States Geological Survey. The 

average and standard deviation of elevation, slope, and aspect were calculated for each site. 

In addition, statistics of the topography were determined for the four cardinal directions (N, 

S, E, and W) from each Mesonet site so the effects of fetch could be investigated.

EC measurements are influenced by an upwind, land-surface area known as the 

“footprint” region. The size of the footprint area is a function of the height at which 

sensors were installed, atmospheric stability, and surface roughness. For a measurement 

height of 4.5 m and during stable conditions, the radius of influence extended beyond 0.5 

km from the site. However, during neutral and unstable conditions, 0.5 km was the 

maximum radius of influence. For this study, land characteristics were assessed within a 

circular area about each site that was 500 m in radius.

The annual mean closure plotted as a function of mean slope (Fig. 7.21) illustrates a 

weak inverse relationship. Several of the flattest sites with near-zero terrain slope -  like
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Norman, Grandfield, and Bumeyville - attained the greatest degree of closure. Likewise, 

three sites with the greatest terrain slope -  Bessie, Marena, and Stigler -  attained the worst 

closure rates. Note that Bessie and Idabel were not shown due to their poor closure rates. 

The worst closure rate was estimated at Bessie, a site with the greatest degree of terrain 

slope. Only the site at Idabel appeared as an outlier in Figure 7.21. Despite the relative 

flatness of the Idabel site, the closure rate at Idabel was much less than that observed at 

other flat sites. The low rate of closure at Idabel is likely caused by large values of latent 

heat flux (Fig. 7.20). Given its geographic location in southeast Oklahoma, nearby forests 

likely prevented a determination of the appropriate fetch to use in the Idabel computations. 

Roughness created by tall vegetation and trees create a similar effect to rough topography. 

Thus, the linear relationship between closure and terrain slope indicated that closure 

declined 2% per degree of terrain slope (Fig. 7.21). However, variance about the “best fit” 

relationship shows the relationship between mean slope and closure is weak.
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Fig. 7.21: Mean annual closure rates (%) as a function of the mean terrain slope (within a 

0.5 km radius of each Mesonet site).
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The correction for coordinate rotation removes much of the error due to the mean 

terrain slope. However, corrections are not possible in more complex topography. The

annual mean of closure versus the standard deviation (a ) of terrain slope revealed results

(Fig. 7.22) that were similar to those in Figure 7.21. Closure decreased at an average rate 

of 2% per degree of standard deviation of slope.

A t-test was performed to determine if the variance of slope had a significant impact 

on closure. The sites were stratified into two categories: those sites with a standard

deviation of terrain slope < 0.5° and those sites with a standard deviation of terrain slope > 

0.5°. The test for significance did not reveal a significant difference in closure between the
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Fig. 7.22: Mean annual closure rates {%) plotted as a function of the standard deviation of 

terrain slope (within a 0.5 km radius at each Mesonet site).
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two groups at the 10% confidence level. However, when data from the Idabel site were 

excluded, the t-test displayed a significant difference between the two groups. Likewise, a 

significant difference between the two groups occurred when data from Idabel and Bessie 

were excluded. Thus, a significant difference in closure is created by increased variance of 

topographical features.

The relationship between closure, elevation and terrain slope was investigated when 

wind direction was considered. The 5-minute observations of wind direction were 

stratified into one of 16 cardinal directions (e.g., N, NNE, NE, EN E...). Then, the 

prevailing wind direction in 30-minute time windows was determined (to match the time 

resolution of OASIS data). Unfortunately, topographical data had only been determined in 

four directions (N, S, E, and W). For Mesonet data to be compatible with this previous 

decision, the 30-minute means o f closure were stratified into one o f the four cardinal 

directions. These results, as a function of wind direction, are shown in Figures 7.23 -  

7.25.

When stratified by cardinal directions for the prevailing flow, the mean elevation at a 

site had limited influence upon closure (Fig. 7.23a-j). Closure rates observed from the 

flattest sites at Alva, Grandfield, and Norman varied little with prevailing direction. 

Likewise, closure rates varied greatest at sites where topography varied the most. Closure 

rates from sites at Bessie, Foraker, and Marena showed large variance in closure with 

changes in the prevailing wind direction. On the other hand, Idabel is nearly flat and yet 

the data revealed a large variance in closure with prevailing direction. The site at Stigler, a 

hilly site, showed little variation in closure versus changes in the prevailing wind direction.

The variance in elevation at a site seemed to have a stronger impact upon closure 

estimates (Fig. 7.24a-j). The most topographically variable sites - Bessie. Foraker, and 

Marena - had a strong negative correlation with the standard deviation in elevation. With 

increased variance in elevation, closure rates declined sharply. As the topography became 

more gently varying, closure rates improved. Data from several of the flatter sites (Alva.
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Norman, and Stigler) decreased their closure with increased vanability of the land-surface 

in one of the cardinal directions. Sites at Boise City. Bumeyville. and Idabel showed no 

relationship between the variance of the topography and closure.

In summary, the effects of topography upon closure are difficult to discern without 

more detailed study. Results should be repeated using geographical data with 16 

directions. In addition, the impact of nearby forests and tall grasses affect fetch, which 

may dampen or inhibit a clear topographical signal.
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7.5.3 G eographic Location

The climate and vegetation of Oklahoma are influenced by the geography of 

Oklahoma. Terrain slopes upwards from southeast toward northwest Oklahoma. Forests 

dominate eastern Oklahoma while agriculture and prairie grasses are more common in the 

western half. Native vegetation reflects the climate across the state with southeast portions 

receiving more than 1300 mm of rain per year and northwest portions receiving less than 

500 mm per year. The combined effects of a wetter climate and more variable terrain and 

forests in eastern Oklahoma produce poor closure rates (<90%) while a relatively dry 

climate, flat terrain and short grasses in western Oklahoma produce good to excellent 

closure rates (>90%). Closure rates as a function of longitude reflects a weak relationship. 

Closure rates only improve hardly at all from east to west across Oklahoma. The site at 

Bessie is an outlier in Figure 7.25. The poor closure rate at Bessie is reflective of steep 

terrain in that limited portion of western Oklahoma.
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C hapter 8; System E rro r

Introduction

Error by the observing system are created when, despite properly working 

instruments, the observation still does not represent the “real” atmosphere. A persistent 

systematic error in energy budget studies has been the fact that SH and LH fluxes are 

underestimated EC systems. Thus, this continued failure to close the energy budget has 

been an inextricable problem since EC systems were introduced. The origin of this 

systematic error is part o f an ongoing debate and likely has more than one source. 

Reasons for non-closure are most likely unique to each study. U nfortunately, the 

sensitivity of surface measurements to subtle variations in the design of instruments, 

fetch, topography, and surface heterogeneity have limited most short-term studies from 

solving this fundamental system error.

The OASIS data set was designed to provide long-term measurements from 

multiple sites so that system errors could be isolated. With that issue settled, other 

causes of closure error are considered. Reasons for non-closure have been suggested by 

many other investigators and each are considered in this chapter. These reasons include 

an overestimate of the available energy, a mismatch in source areas, horizontal flux 

divergence, surface heterogeneity, fetch issues, and instrument error.

8.1 The Overestimate of Available Energy

Sensible and latent heat fluxes are difficult parameters to measure accurately. 

Failure to close the energy budget has been synonymous with the underestimate of 

sensible and latent heat fluxes. Nevertheless, an overestimate of net radiation and/or an
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underestimate in ground heat flux can lead to a similar failure to close the energy budget 

(because less than 100% of the energy budget can be accounted for).

The pnmary concern that impacts closure is systematic errors (bias) with either 

measurement of net radiation or ground heat flux. A comparison of data from sim ilar 

instrum ents revealed only a minimal systematic bias with either measurement. As 

dem onstrated by Halldin and Lindroth (1992) and by Field et al. (1992) and as 

illustrated in Figures 5.3 and 6.6 -  6.7, significant differences in calibration were 

observed between different models of radiometers. Observations from the CNRl when 

com pared  to observations from  a 4-com ponent PS P /PIR  radiom eter system  

m anufactured by Eppley (Section 5.1) revealed how the C N R l underestim ated  net 

radiation by ~ 40 Wm * at midday. A second test compared the C N R l estimates with the 

SIRS estimates from the ARM site at Foraker. This study revealed how the C N R l 

overestimated  relative to SIRS by as much as 5% (Fig. 6.6). Unfortunately, the absolute 

“true” value of net radiation is unknown.

Systematic errors in ground heat flux are more difficult to  identify. Only at the 

co-located ARM site could the ground flux be independently evaluated against another 

system. Annual variations in ground heat flux between the two systems was -  +/- 1 MI 

m - day '. During the growing season, the Mesonet estim ates of ground flux were 

greater than estimates from ARM while during the cool season the Mesonet estimates 

were less than those from ARM. This overestimate in closure is likely caused by an 

overestim ate in soil m oisture during the dry period due. in part, to error in the 

conversion of matric soil water potential to soil water content (Fig. 6.14).
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The available energy measured at the Mesonet site at Foraker was nearly equal to 

the available energy measured at the ARM site (Figs. 6.16 -  6.18). The overestimate in 

radiation by the C N R l. when com pared to SIRS was com pensated by an equal 

overestimate in the ground heat flux at the Mesonet site. Thus, differences in available 

energy between the two observing systems were within +/- 1 MJ m ’ day ‘ (Fig. 6.32). 

The residual error from closure during the year ranged as high as +4 MJ m '  day *. Thus, 

only 25% of the closure error could be explained by an overestimate in available energy. 

Based upon a comparison of data from the Mesonet and ARM sites and based upon prior 

results in the scientific literature, error in the measurement o f net radiation and ground 

heat flux likely had only a small contribution to the closure error.

8.2 Mismatch in Source Areas and Horizontal Flux Divergence

One difficulty that occurs when estimating closure is to ensure that each of the 

four com ponents of the energy budget represent measurements from sim ilar source 

regions. This problem arises from the fact that observations of net radiation and ground 

heat flux are point measurements while the eddy covariance measurements are areal 

estimates. The technique of EC measures fluxes, which are sometimes influenced by 

land properties as far as one kilometer upwind.

A mismatch in source areas occurs when the available energy measured by the 

net radiometer and ground flux sensors is not equal to the available energy incident upon 

the larger area measured by the EC system (Stannard ei al. 1994). The problem  is 

created because the Rn and GH terms are point measurements acquired near the tower 

whereas the EC measurement represents an areal estimate from a much larger footprint.
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To limit these effects, previous scientific expenments used flat agricultural fields with a 

known roughness length (e.g., FIFE, Nie et al. 1992; SGP-97, Twine et al. 2000).

To minimize the problem of measuring fluxes from multiple source areas, each 

com ponent of the energy budget should be representative o f the landscape near the 

observation site. However, given the nature of the point measurements in the soil, this 

requirement is not possible to meet unless hundreds of ground flux plates and FRTDs 

are placed across an area that is 0.5 - I km in diameter. Because the measurement of 

net radiation represents a small footprint, the higher above ground the net radiom eter is 

placed, the greater the footprint area. In turn, the greater the surface area that is 

sam pled, the more surface heterogeneity can impact the radiation m easurem ent. 

Unfortunately, longwave radiation is em itted by molecules o f air. Thus, the higher the 

radiometer is mounted, the greater the radiation that is emitted by air molecules between 

the radiometer and ground surface emit longwave radiation.

Fortunately, the problem of m ultiple source areas is limited to relatively flat 

terrain. This concern does not greatly im pact data from the ten OASIS super sites. Yet, 

a mismatch in source areas becomes significant when m easuring energy components 

across sloped terrain. The varying aspects o f sloped terrain create large differences in 

available energy (Stannard et al. 1994).

A problem related to estimating closure is horizontal flu x  divergence. Horizontal 

flux divergence is created when energy from the flux of sensible or latent heat is 

advected into the source area under study. For example, an irrigated system upwind of a 

grazed site would create a greater influx o f latent heat into the source area and exceed 

the latent flux exiting the source area. Several studies demonstrated that local advection
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creates areas of vertical divergence of the aerodynamic fluxes (Brakke et al. 1978; Lang 

et al. 1983). These areas of advection are prominent at leading edge o f a discontinuity in 

surface properties. Typically, this type of discontinuity results from variations in 

vegetation type or height, roughness, or even surface wetness (Lloyd et al. 1997).

Stannard et al. (1994) listed several reasons why horizontal flux divergence does 

not have a significant impact upon closure. They suggested those areas producing large 

values o f sensible and latent heat flux tended to offset one another. Thus, areas with 

large values of sensible flux can only produce small values of latent heat flux, and vice 

versa. W et areas with large values of latent heat flux tend to be cooler and produce 

small values of sensible flux; dry areas produce large values of sensible flux and only 

small values of latent heat flux. Thus, the sum of SH and LH remains nearly the same as 

the available energy. Thus, flux divergence has a minimal im pact upon closure 

estimates.

8.3 Surface Heterogeneity

Surface heterogeneity is the primary reason why measurements from multiple 

source areas and estimates of horizontal flux divergence are often in error. Variations in 

the type, moisture, and temperature of soils, and vegetation height and type create 

significant differences in the thermal characteristics of soil and the fluxes of energy that 

result. For example, two heat flux plates separated by only a meter could measure the 

soil heat flow from two different surface regimes. Thus, the use o f at least three heat 

tlux plates and three PRTDs has been recommended by previous studies to account for 

surface heterogeneity (Fritschen and Gay 1979; Massman 1993). The Mesonet uses two 

heat flux plates and two PRTDs to measure soil heat flux.
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As the surrounding landscape become more uniform, closure estimates improve. 

Assuming that system atic errors do not occur in the instrum ents, differences in 

measurements obtained from several heat flux plates and several PRTDs provide a 

measure of heterogeneity of the surface vegetation and soil characteristics. For example, 

in a patchy landscape com posed of 50% bare soil and 50% vegetation, two flux plates 

and two PRTDs likely would measure different fluxes if one plate (and PRTD) sampled 

the bare soil while the other pair sampled the vegetated surface.

This hypothesis was tested by examining differences in the measurements from 

two PRTDs and two flux plates (Tables 8,1 and 8,2), The mean annual difference in soil 

heat flow as estimated by two flux plates is plotted in Figure 8.1, For heavily vegetated 

sites, both sets of sensors were expected to measure a sim ilar thermal regime. For 

example, little difference was noted between the two flux plates at Foraker and Idabel 

(Fig. 8.1). On the other hand, sparsely vegetated land-cover should increase the 

variability between sensor observations. Data from G randfield revealed large 

differences in the measurements from the two flux plates (Fig. 8,1), Furthermore, data 

from the western-most sites appeared to be more variable than did data from sites in 

eastern Oklahoma, This contrast was most likely a result o f sparse vegetation at the 

western sites. Unfortunately, using only two sets of sensors does not capture the spatial 

variability needed to quantify characteristics o f the landscape.

Because the mean annual closure varied systematically across Oklahoma, surface 

heterogeneity likely impacted closure estimates.

The scientific literature does not agree on which climate conditions create the 

greatest surface homogeneity. Lloyd et al. (1997) found that rainy periods with wet
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surface conditions and neutral surface layers produced better closure rates than were 

observed during drier periods. They concluded that drier periods led to greater surface 

heterogeneity and a more unstable surface layer. Thus, the areal extent of the footprint 

region was limited. On the other hand. Unland et al. (1996) determined that convective 

precipitation greatly impacted surface homogeneity at a desert site. Using a small 

network o f rain gages deployed across a 40 m x 50 m area during the monsoon season. 

Unland et al. discovered that rainfall varied by about 20% during convective storms and 

5% during the passage of frontal systems. They concluded that point samples of rainfall 

were not representative during convective periods.

Basara et al. (2001) exam ined the spatial variability of soil moisture at a 5 cm 

depth from 12 sample locations within a 20 m x 20 m plot. They found that variability 

in soil w ater content among the 12 sample locations was greatest during saturated 

conditions and least during wilting conditions. The small observing plot actually 

became more homogeneous during dry periods. Thus, the spatial variability of soil 

moisture observed at the Mesonet site near Norman supported the results from Unland et 

al.
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Table 8.1: The annual mean (X) and standard deviation (a ) o f integrated 

temperature (°C) as measured by the two PRTDs at each super site dunng 1 June 

1999 and 31 Mav 2000.

Prta
x r c )

Prtb Prta
a  C O  

Prtb
AX (°C) Aa (°C)

Alv2 16.99 16.46 9.55 8.91 0.53 1.12
Bess 19.19 18.78 9.83 10.04 0.41 0.84
Bois 10.41 10.24 7.75 6.72 0.16 1.44
Bum 20.0 20.0 9.12 8.59 0.01 1.25
For a 15.58 15.57 8.37 8.45 0.01 0.50
Gra2 19.87 20.32 10.01 11.06 -0.46 1.89
Idab 20.20 20.25 8.40 8.47 -0.05 0.61
Mare 18.43 17.71 9.12 8.57 0.71 0.90
Norm 19.25 19.48 9.83 10.30 -0.23 1.18
Stig 21.9 21.7 6.49 6.54 0.16 0.92

Table 8.2: The annual mean (X) and standard deviation (ct) of heat flux (W m ’) 

as measured by the two heat flux plates at each super site during 1 June 1999 and 

31 May 2000.

X (Wm ') 

Hf5a Hf5b

a  (Wm ') 

Hf5a Hf5b

AX
(W m ')

Act (Wm ')

Alv2 2.43 0.52 31.4 19.6 1.91 14.1
Bess 0.65 0.20 28.4 25.7 0.45 6.75
Bois -2.85 0.62 26.9 23.5 -3.47 8.27
Bum 0.74 0.97 19.9 23.3 -0.22 7.01
Fora 0.68 -0.82 29.5 29.2 1.50 5.48
Gra2 0.05 4.90 30.7 43.4 -4.86 15.81
Idab 1.27 2.82 20.0 24.6 -1.55 8.78
Mare 1.72 0.15 38.1 26.8 1.56 0.90
Norm -0.71 1.06 38.1 35.7 -1.77 7.75
Stig 5.87 2.53 48.0 34.4 3.34 17.3
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The presence o f plant material also com plicates this scenario. During dry 

conditions, vegetation can draw moisture from lower soil depths to create areas of high 

ET at the surface. The surface landscape can be considered homogeneous only during 

severe drought conditions when the volume of soil moisture diminishes below wilting 

levels or during periods o f senescence. Prior scientific results determ ined the best 

closure rates were measured in arid or semi-arid environments (Barr et al. 1994; Unland 

et al. 1996). However, the more arid sites also were among the flattest sites tested. As a 

result, the degree of closure could have been dependent upon either the aridity or the 

topography of the site.

The temporal variability of closure at the 10 super sites may have been impacted 

by changes in the landscape. The variability of closure was less when the Bowen ratio 

was small (<I.O). and greatest when the Bowen ratios was large (> 1.0). For example, 

the standard deviation of closure was 15.3 Wm '  when the BR < l.O and was 16.1 Wm * 

when BR > l.O. Thus. Lloyd et al. (1997) appear correct in their conclusions. During 

wet conditions, closure rates were less variable (despite a systematic underestimate in 

closure). During dry conditions, closure rates were more variable across Oklahoma as 

localized areas of surface heterogeneity impacted the estimates of flux estimates. While 

this hypothesis does not explain the systematic underestimate in closure when Bowen 

ratios were small, variability in the surface landscape could explain the large variability 

in closure when sensible heat flux is very strong. However, an F-test for significance 

(W ilks 1994) failed to support the existence of a significant difference in the variance 

among closure rates. An extended data set is essential to determine the impact of 

surface heterogeneity upon closure.
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8.4 Fetch

A fourth problem affecting closure is fetch which refers to the region upwind 

from the sensors that could impact measurements. For EC systems, an adequate fetch is 

critical to base study results on the assumptions of stationarity and homogeneity. 

Surface heterogeneity can invalidate the statistical assumptions and the accuracy of EC 

estimates. For instance, a mixture of short grasses and forests near a site can create large 

spatial vanations in roughness and, thereby, limit the homogeneity of the statistical 

sample.

Another problem  in using an EC system is the distortion o f air movement 

through the tower. Flow distortion of the wind field by the tower does impact flux 

estimates (e.g.. Fig. 6.23). Distortion of the wind field m inim izes the covariance 

between the vertical w ind and other scalar components. As a result, the wind field is not 

representative of the mean flow. Thus, EC fluxes are underestim ated when surface 

winds are from the north. Terrain and trees have a similar effect. The size, shape and 

height of the obstacle, its distance from the tower, wind speed and direction, and 

atmospheric stability determ ine their impact upon estimates of flux. Fritschen et al. 

(1992) found that com plex terrain and fetch issues create significant errors in sensible 

and latent fluxes.

The ten super sites were examined to assess when fetch m ight be a problem. 

Fetch was the main factor in determining which Mesonet sites would become a super 

sites. Only sites with the flattest, least obstructed fetch were chosen.

Closure was expected to vary significantly with wind direction. It also was 

expected to be significantly less than 100% when fetch problems arose. Thus, closure
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was assessed in light o f topography (Chapter 7). Lloyd et al. ( 1997) observed that the 

effects of fetch and heterogeneity decreased as measurements were averaged over long 

periods of time. For exam ple, closure rates at Bessie were poor because of the nearby 

sloped terrain. At Idabel, fetch problems arose from nearby trees and forests. However, 

on an annual and seasonal basis, variations in closure at different sites were similar.

8.5 Instrument Error

Instrument error is the most com mon cause for not being able to account for 

100% of energy (i.e., closing the energy budget). W hen EC systems were first 

introduced in the 1960s and 1970s, rapid-sampling temperature sensors were used with 

an array of vertically-mounted propeller anemometers to estimate sensible heat flux. 

O ften, latent flux was estimated as the residual. The minimal stall speeds o f the 

anemometer introduced problems as did the frequency response and the separation 

between the propeller and temperature sensor. The results were frequent underestimates 

of flux. As instruments and software improved, these problems had less and less impact 

on the estimates of flux. However, a num ber of instrument problems persist, and they 

were discussed in Chapters 3, 4. and 5.

The OASIS data set has been used to address the instrument problems described 

earlier. The key advantage of ten OASIS sites having the same set of instruments is that 

site-to-site variability can be investigated without having the problem of measurement 

bias between differing sensors. The disadvantage of using similar instruments is that a 

bias inherent in one measurement is repeated at all ten sites. Instrument problem s, 

which could lead to a systematic underestimate in EC tluxes, are discussed below. They
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include: frequency response, aliasing o f the data, height o f the measurements, and 

separation of the sonic anemometer and krypton hygrometer.

8.5.1 Frequency Response

Before high-speed digital technologies became readily available, adequate 

sampling of eddy covariance flux was difficult. Corrections often were included to 

account for high frequency flux that could not be measured by low frequency sampling. 

Thus, an EC system  must sample the range of measurements needed to create an 

accurate closure.

Within the surface boundary layer, energy transfer by eddies typically occurs at 

frequencies defined by:

f= n z /U  (8.1)

where f is the normalized frequency, n is cyclical frequency (Hz), z is the measurement 

height (m), and U is the mean wind speed (ms ‘; Verma, 1990). A range of frequencies 

typically measured by sonic anemometers is between 0.001 and 2.

To evaluate the OASIS configuration of sensors, a maximum frequency o f -  2 

was assumed. Because the sonic anemometers were installed at a height o f 4.5 m, n = 

(2)(U) / (4.5). The range of frequencies ranged between 0.44 Hz and 4.44 Hz when the 

mean wind speed was between 1 and 10 m s ', respectively. The CSAT3 sampled at a 

rate of 8 Hz, nearly twice the maximum required frequency required to prevent aliasing 

of the data. Thus, the sampling rate used by OASIS was adequate to capture the 

necessary range o f the turbulent spectrum. More stable conditions require use of a
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higher frequency for sampling, while less frequent sampling is required during more 

unstable conditions.

8.5.2 Sensor H eight

The height at which the EC sensors were installed affects the percentage of flux 

that can be observed. Installation of the sonic anemometer too high above ground or too 

low creates an underestimate of flux. Furthermore, the preferred height of installation is 

dependent upon the frequency response of the instrument, the mean wind speed, and an 

adequate fetch available to the sensor. The minimum height of installation (z„„„) is 

recommended to be:

(8.2)
n

where U is the mean wind speed and n is the sampling frequency (Verma 1990). Thus, 

the measurement height of 4.5 m seems adequate based upon Eq. (8.2) when wind 

speeds are less than 18 ms '. The maximum height of measurement is determined by the 

areal extent o f a homogeneous fetch which is available to the site. The greater the 

footprint area, the greater the maximum height can be. In general, a fetch-to-height ratio 

of 100:1 is used (Leclerc and Thurtell 1990). Thus, a measurement height of 4.5 m 

yields a fetch o f -  450 m in all directions around each site. While this ratio assumption 

is not valid in some situations, it is valid at most of the ten sites. The footprint of the 

aerodynamic flux defines the fetch-to-height ratio, which is a function of stability, 

roughness, and height at which measurements are acquired (Schuepp et al. 1990). 

During daytime convection created by radiational heating of the earth 's surface, the 

fetch-to-heisht ratio can be relaxed to much less than 100:1; durins stable conditions.
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the required fetch ratio is several times greater (Horst and Weil 1994). Thus, the 

validity of OASIS measurements (and closure) are dependent upon the stability at sites 

where a proper fetch can not be guaranteed.

8.5.3 Sensor Separation

Until recently, sensible heat flux had to be estimated using two separate systems. 

A set of propeller anem om eters were installed at various heights on an observation 

tower to measure the fluctuations in vertical wind speed. A fast-response temperature 

sensor was needed to measure the fluctuations in temperature. Using a new generation 

of sonic anemometers, eddy fluctuations in wind and temperature are made from the 

same volume o f space, eliminating sensor separation error when estimating sensible heat 

flux. However, two separate sensors still are required to estimate latent heat flux. The 

covariance between variables decreases as the distance between systems increases. As 

the measured covariance decreases, the estimated flux rates also decrease, which causes 

closure rates to become worse. The minimum separation distance between sensors is 

limited by flow distortion which causes one sensor to impact the measurements from 

another sensor.

Kaimal (1975) recommended that the maximum separation distance (d,) between 

sensors be limited to

(8.3)
o n

where z is the m easurem ent height and d is the displacement height as defined by 

surface vegetation. For OASIS, assuming a maximum displacement height of 1.0 m. the
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maximum separation distance should be less than 0.186 m. The sonic anemometer and 

krypton hygrometer used by OASIS are vertically separated by 0.15 m.

Kristensen et al. (1997) observed that the measurement errors due to the 

separation o f sensors is a function of the ratio of the distance between sensors to the 

scale of turbulence. The scale of turbulence increases with height. Thus, the ratio of 

separation o f the sensors to turbulence scale decreases relative to the turbulent eddies 

observed. Thus, the measurement error diminishes as a function of height. In addition. 

Kristensen et al. found asymmetry in the error when sensors are displaced vertically. 

Because measurement error is minimized when the scalar sensor (krypton hygrometer) 

is deployed below the anemometer, the krypton hygrometer was placed below the sonic 

anem ometer. For the sensor deployment used by OASIS, flux error due to sensor 

separation is estimated at less than 2%.

Measurement errors (in LH) created by the vertical separation of OASIS sensors 

decreases the degree to which closure can be attained. Because closure rates are 

strongly modulated by the Bowen ratio, sensor separation is a reason why closure is 

underestimated. However, care was taken to minimize problems measurement which 

resulted from sensor separation.

183



C hapter 9: Sum m ary and Concluding Rem arks

The hypothesis of this dissertation was that the surface energy budget can 

be closed even in complex terrain when instrumentation error, topography, surface 

heterogeneity, and sampling differences are addressed with care. To investigate 

the validity of this hypothesis, a year of data from the OASIS Project was collected 

and quality assured. Then, an exhaustive analysis o f the closure problem was 

completed using data from ten OASIS sites. A comparison between a Bowen ratio 

system of ARM and an eddy correlation system of OASIS perm itted a unique 

examination of the closure problem.

This dissertation is among the first attempts at explaining the causes for 

non-closure of the surface energy budget. Many previous works have examined the 

closure obtained from specific projects (e.g., Stannard et al. 1991; Nie et al. 1992; 

Lloyd et al. 1997; Twine et al. 2000), and many theories have been offered to 

explain consistent underestimates of flux. Yet, there has been little effort made to 

investigate why a system atic e rro r in closure is observed. In addition, no 

“climatology” of closure has ever been attempted. Few long-term studies had been 

conducted. The scientific com m unity needs to know when data is most reliable 

from field experim entation, and so a general knowledge o f closure becomes 

important. Because of high costs and technological limitations, most field studies 

were limited in time and space. With projects such as OASIS and ARM, long-term 

changes in closure have been examined for seasonally and spatially dependent bias.
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Results from model and satellite validation become suspect when long-term and 

spatial biases are detected.

A complete examination o f closure required development of the OASIS data 

set. Data collected over a period of 12 months from ten OASIS sites across 

Oklahoma were processed and quality assured. Quality assurance of the data 

included many sensor intercomparisons and field studies, such as OASIS-98 and 

OASIS-2000. The principal results from analyzing this data set are as follows.

1 . A m ulti-year study from  1998 to 2000 quantified differences in the 

measurement of net radiation among 5 independent radiation systems: the 

C N R l, PSP/PIR, and SIRS 4-component radiometers and the Q *6.i and 

NR-Lite net radiometers.

2. The field performance o f the new domeless NR-Lite was investigated and 

quantified for the first time (Brotzge and Duchon 2000). It was concluded 

that the perform ance o f  the NR-Lite was com parable to o ther net 

radiometers and could be used during long-term field studies.

3. Several algorithms used to correct for solar heating of pyrgeometers were 

compared (Brotzge and Duchon 2000).

4. Measurement uncertainty was quantified for each of the four components of 

the energy budget as estim ated by the OASIS super sites (see Chapter 5).

5. Investigation of the correction algorithms applied to sonic anemometer data 

revealed how the perform ance of eddy correlation methods varied with 

geography and climate (see Section 7.4).
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Once the data set was completed and measurement uncertainty quantified, 

closure was explicitly examined. First, the eddy correlation system used by OASIS 

was compared with the Bowen ratio system used by ARM. Differences between 

systems were related to variations in closure as measured at the OASIS site. 

Second, closure was observed at the ten super sites of OASIS. Systematic 

variations in closure among the ten sites were related to differences in climate, soil 

characteristics, and topography.

An exam ination o f the ARM and OASIS systems, located approximately 

100 m apart, revealed significant differences. Variations in ground fluxes, soil 

moisture, and Bowen ratio between sites highlighted problems associated with 

surface heterogeneity. Diurnal variations between the BR and EC systems revealed 

several reasons for the underestimate in closure by the EC system. Principal results 

from the BR/EC comparison are listed below.

I . Significant differences were observed in soil wetness and soil heat flow 

between the ARM and Mesonet systems (see Section 6.2.2). Seasonal 

variations in soil w etness were observed between the two system s, 

particularly during dry periods. Such differences could be caused by 

problem s in calibration or surface heterogeneity. Differences between 

systems measuring diurnal variations in ground heat flux were consistent 

with a more vegetated surface at the ARM site and a more bare soil cover at 

the Mesonet site.
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2. Little annual variation was noted in the differences between systems in 

either net radiation or ground heat tlux (Section 6.4). On the other hand, 

significant seasonal variations were noted between the ARM and Mesonet 

systems in measurements of sensible and latent fluxes.

3. Closure at the Mesonet site was estimated at less than 100% using the EC 

system. Closure approached 100% after boundary layer mixing during the 

late morning and afternoon. Closure was observed to be lowest during 

stable and transitional periods during the early morning and late afternoon.

4. The minimum closure rates observed daily by the EC system coincided with 

a lower estimate of latent heat when compared to the ARM BR system. The 

daily underestimate in closure appears to result from a failure by the EC 

system to correctly measure early-morning and late-aftemoon latent heat 

flux.

5 . The BR and EC systems partitioned available energy differently into 

sensible and latent heat fluxes (Section 6.4). The BR system favored a 

partitioning into sensible heat flux while the EC system favored latent heat 

flux. Either instrument error or erroneous theoretical assumptions behind 

the BR method could have created differences in the estimates of the Bowen 

ratio.

6. Flux comparisons highlighted a complex relationship between soil wetness, 

vegetation, and Bowen ratio (Section 6.2.3). A small BR was observed 

during August despite limited soil moisture while during February, a large 

BR was measured over saturated soils. In both cases, the measured BR

187



more accurately reflected évapotranspiration from vegetation quantified by 

NDVI estim ates. Such a relationship dim inishes the need for direct 

measurements of soil moisture.

Similarity in closure among the ten super sites of OASIS highlighted several 

results. Seasonal and diurnal variations were com bined with clim ate and 

topographical information to identify causes for the systematic errors in closure 

(Section 7.5). Results are listed as follows.

1. Estimates of closure were found to be a strong function of Bowen ratio. 

Closure was at or greater than 100% during periods with high sensible heat 

flux; closure was much less than 100% during periods of high latent heat 

flux. The mean closure rate was estimated at 98.7% when BR > 1.0; the 

mean closure rate was 86.6% when BR < 1.0.

2. Closure rates varied proportionally to the wetness o f the soil. During dry

periods, closure rates were near or above 100%; during wet periods, closure 

rates were lowest. Closure rates varied with BR and soil wetness because 

latent heat flux was underestimated.

3. Closure rates varied with topography at several sites. The more variable the

topography, the lower the closure rate. Topographical variability cannot be 

corrected by coordinate rotation.

The results of this dissertation provide a framework for conducting future 

tleld studies of the surface energy budget. Even when measurement uncertainty is
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m inim ized, system  errors can introduce sign ifican t and system atic bias.

Recommendations for future field programs include the following.

1. At least three different net radiation sensors should be used to minimize 

measurement uncertainty. As dem onstrated in Chapter 4, differences in 

treatm ent of sensor heating can lead to significant differences between 

measurements.

2. Multiple ground flux sensors should be used to measure soil heat flow, the 

integrated soil temperature, and soil moisture. As shown in Fig. 6.10, large 

differences in soil moisture are observed among the five sensors used by 

ARM. The exact number of sensors required has yet to be determined, and 

is most likely a function o f soil characteristics. It can be assumed that the 

greater the number of soil sensors used, the better the soil heterogeneity is 

measured.

3. The correction for the vertical separation of sensors described by Villalobos 

(1997) should be applied when possible. The study by Villalobos quantifies 

the effect of sensor separation and provides a ready correction. While this 

dissertation used the results from Kristensen et al. (1997) to reduce sensor 

separation errors, the magnitude of the errors is unknown.

4. Eddy correlation systems should be used at several measurement heights. 

M ultiple EC systems allow for vertical divergence to be quantified. In 

addition, differences in the measured Bowen ratio between heights permit 

different source regions to be identified (see Tanner 1988).
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Results of this dissertation have provided an explanation for the systematic 

underestimate in closure. It is assumed that closure is measured correctly very near 

the ground. However, the higher the measurements, the larger the source region 

and the greater the surface heterogeneity included in the measurement. The fetch 

area also is much greater during stable and transitional periods than during unstable 

conditions. Errors in closure are greatest during stable and transitional periods 

possibly due to the much larger footprint regions. Heterogeneity in surface 

properties com bined with the limitations in sampling frequency and averaging 

interval lead to an underestimate in closure. The underestimate in closure appears 

manifest in differences in measurement of latent heat flux primarily because of its 

importance during the stable and transitional periods. In addition, problems with 

sensor separation and sensor maintenance may reduce measurements of latent heat 

flux during stable and transitional periods. The exact cause for the underestimate in 

closure remains unknown. However, closure improved with increased PBL mixing, 

with decreased latent heat flux, and with flat terrain.

The hypothesis of this dissertation is that the surface energy budget can be 

closed even in complex terrain when instrumentation error, topography, surface 

heterogeneity, and sampling differences are addressed with care. This hypothesis 

cannot be rejected based upon the results described herein. Closure was found to be 

near 100% during those periods when systematic errors caused by measurement 

uncertainty, surface heterogeneity, and topography were minimized. Mean annual 

closure rates at 8 of the 10 super sites ranged between 90 and 100%, much higher 

than closure rates estimated by field programs such as R FE and SGP-97.
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The OASIS data set compiled for this study provides a unique data set 

available to the scientific com munity. M easurem ent uncertainty has been 

quantified through a senes of field e.xperiments. An analysis of closure increases 

confidence in the data that, during certain periods o f time, nearly all components of 

the energy budget are measured correctly. Such a data set can provide scientists 

with the most accurate data from which to conduct model and satellite verification.

The work from this dissertation also provides the scientific community with 

a model for conducting future energy balance studies. Recommendations are 

provided to limit instrum ent and system error. In addition, many competing 

theories concerning closure have been discussed, and ways to limit each of these 

errors are described.

Finally, results from this work should prompt greater awareness of using 

closure as a tool for quality control of energy balance data. This work has shown 

preferred diurnal and seasonal periods when the energy balance is measured nearest 

100%. Hopefully, this result will prom pt further research in identifying and 

limiting problems associated with measurement o f all energy budget components. 

Only when errors during stable and transitional periods and during high latent flux 

periods are reduced further can closure be systematically improved.
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Appendix

Appendix A; Profile gradient estimate o f sensible heat flux

Sensible heat flux is estim ated using Mesonet observations of air temperature at 

1.5 m and 9 m (z„ and z,,, respectively) and wind speed at 2.0 m and 10 m (z„, and z„,’ 

respectively). For the OASIS Project, a gradient profile method was chosen. This 

method is based upon Paulson (1970) and modified by T. Horst (1998, private 

communication). See Brotzge and Crawford (2000) for additional details.

The sensible heat flux, H [W m ’], can be derived for stable and unstable 

stratification as:

/ / = -pCp[«.0.]. (A .l)

where u. [m s '] is the friction velocity, 0. is a sealing temperature [°C], Cp [J deg ' kg '] is 

the specific heat at constant pressure, and p is air density [kg m^]. Next we solve for u. 

and 0.. W e begin with the in tegrated  form of the nondim ensional gradients of 

momentum and temperature as described by Paulson:

M.
u = (A.2)

(A.3)

where z„ [m] is the roughness coefficient, and nr, are the stability functions for 

momentum and heat, respectively, and L [m] is the Obukhov length. The von Karman 

constant (k) has been set to 0.40. Equations (2) and (3) are each applied at the two levels 

of measurement, z, and z. [mj. The finite difference between levels is then:

. 77M, -  It, = à u  = —  
k
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6 , - 0 ,  = A6? -  — ln( | -M  1 + 1// 'L

The values for u. and 0. may then be rewntten as:

lU =
kAU

/ /

(A.5)

(A.6)

e . = kAO

•n( y  ̂ + ¥n

Finally, by substitution of (6) and (7) into (1):

H = -pC^ k-AU AB/

(A.7)

(A.8)

The denominator % is defined as a function of stability. For unstable conditions,

(A.9)

and for stable conditions,

l n f ^ “ - /  1 +  /3% = “ul
{'■uZ ' •u l  )

T
(A. 10)

where P is set equal to 5. The stability functions for momentum (Vj/J and heat (t|/,) are 

defined by Paulson (1970) as:

=21n

= 21n

l + -t,u( l . 2 l + In
1 + X.u i I . Z l + IT an '

1 + -V

(A .I l)

(A. 12)

with

201



- Y
'•u( 1.2i

(A . 1 3 )

i - y
'■II i . : i (A.14)

where y= 16. and the Obukhov length is defined as:

L =
kgH

(A.15)

where g [ms ‘] is gravity, and [K] is the arithmetic mean temperature within the depth 

of the tower. Equation (13) (equation (14)) is applied at each level where wind speeds 

(temperatures) are measured, in this case at z„, and to yield x„, and x„, (z,, and z,, to 

yield x„ and x ,J.

For unstable conditions, z/L is equivalent to the Richardson num ber (z/L = Ri) 

when (|)h = as explained by Businger ( 1988):

I  = V  =
ln (z ,,/:„ )

(A. 16)

The Richardson number is calculated in finite difference form as:

Ri = — z.
^ e

(m J)-
(A.17)

where [m] is the geometric mean of the temperature measurement height, and A0 [K] 

and A U  [ms '] are the vertical temperature and wind speed gradients, respectively. The 

geometric mean of the measurement height, z„, is defined as:
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For stable conditions, ^ is generally not equal to Ri. Because the temperature and 

wind speed are not measured at the same heights (z„, # z,,). a quadratic form has been 

applied:

s =
- b  + \lb ' -  4ac

za

Derived from equations (A.2) and (A.3). it can be shown that.

a = - R i

" ' 1.

6 = In " 'V  - 2 / ? / In '•“V  /3 ûi )

c = - R i In '•“V
“-ul

If. however.

> Ri (:w:
•“m (s2  Tl )

then there is no solution, and the flux is undefined.

(A. 19)

(A.20)

(A.21)

(A.22)

(A.23)

Derived from Equations (A.2) and (A.3), Equation (A.4) is derived as follows: 

Given:

II. =
kAu

T. =
kAT

~r \

In l'.r :.,

ZZ. = ^  j j  T — ^  T
L T III ' ' T ii:
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^T + *'-(/■'£.)]
{^af Inf -r:,/

\ ' '-n.

If z/L > 0, then

k - £ -  Æ
L T ""  ( M

I n l  'r y .  I +  'P{-T2 -ri)/] = /?/J  Inf -V  ) + }/
/ L  " V /  Z„i / /  L

ln| "ry_ I + •n
'  P { - r z - - n

-RL

\
r

:
/

“

I n -  |  +  2 l n f  U - u :  : " i  ^
'•ul. ' • « 1 ,

-  - -  V'-w : - a l

V ' •m  /

In - 2R L  In ^‘•ri.
\ ' ( \

f - W , l n = i ï i
/ I ûl /

=  0

(  =
-b  ± 'Jb ' -  4ac

2a

b ' -  Aac = In'
( - ) 211 -  4/?C In

/ \ 
£ui In ^T2 ^  — h 4 /? / ; l n ^

/ \ 
^ul ' K '

I '•n ' '■al , '■ri 1 :m / I ûl / I /

4Ri„ In:
/ \

- / ( L
V ûl < '-m , V '
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Assuming and z^, = z.̂ ,. then

b ' -  Aac = In"
( -  \

= In’
/ \

 ̂ '•1 '~m K '•'n y V  '*m V  1̂ /

where

6 = In
/ \

-  '■1 /

^ z

la  = i p ^ z

J

In - I - 1

2 p  —
Az

In

If positive, then Ç =
RL
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Appendix B: Estimation of soil water potential and soil water content

A. Soil water potential

First, each sensor is applied an individual calibration slope (m) and intercept (b):

dT,.f + h

where dT_r is the reference sensor and is the individual sensor Second, the
temperature differential is converted to a soil water potential:

I
I// = -

a
dT ^.-dT ,

-0 .9

where \|/ is the soil water potential (kPa), dTj = 4.0 C. dT^ = 1.45 C. a = -0.01 kPa, and n 
= 0.77.

B. Soil Water Content

The soil water content is then empirically derived as a function of potential:

d. -G,
6 = 6 +

C - K )

where 0 is the soil water content (m^m^), 0, is the residual water content, 0, is the 
saturated soil water content, and a  and n are empirical constants.
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Appendix C: Coordinate axis rotation

Coordinate axis rotation is used to correct for the tilt error imposed by either the 

tilt of the sonic anemometer or the slope of the underlying topography. Observations of 

the orthogonal u, v. and w components of wind are rotated about an axis until the mean 

vertical wind speed is zero.

As shown in Section 4.a, a least-squares fit is applied to the data to determine 

three unknowns: a, b, and c. The equation

w = a + b u + c v  (C .l)

is used to determine a. b, and c. The observations of u, v, and w, are the 5-minute means 

of wind. From Eq. (C.l),  the values for a, b. and c are then used to determine the lean 

angle (0) and the azimuth of the lean angle (0) as follows:

0 = r a n '‘( v /6 '+ c - )  (C.2)

(p = T a n A ^  (C.3)
V b )

Once 0 and 0 are determined, the actual observations then can be rotated. First, a 

coordinate rotation matrix is developed from the values for 0 and p. The matrix 

components are developed as follows:

Y=sqrt(cos(0)‘ + sin(0)'cos(0)‘)

A[ l , i ]  = cos(0)/Y 
A[i.2] = 0
A[1.31 = -sin(0)cos(0)/y
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A[2.1] = (sin(0)sin((t)))(-sin(0))(cos(0)/Y)
A[2.2] = (c o s (0 ) (c o s (0)/y )

A[2,3] = - (sin(0)sint(})))(cos(0)/Y)

A [3,l] = sin(0)cos(({))
A[3.2] = sin(0)sin(4))
A[3,3] = cos(0)

Once the rotation matrix has been formed, the wind component means, scalar 

covariances, and wind covariances can be easily rotated into the actual mean wind. The 

wind component means and scalar covariances are rotated as follows:

Let B[a, a, a,] be the vector of wind component means u, v, w. The rotated vector of 

winds are found simply by vector-matrix multiplication:

D[b, bo b,] = [A] * B

The scalar covariances are rotated in a sim ilar fashion, e.g. with the vector B [a, a, a,] 

where a, = u’T ’, a, = v ’T ’, a,= w T '.

The wind covariances are rotated in a slightly more complicated manner since all 

three dimensions of wind speed must be rotated. A 3x3 matrix of wind speed covariances 

are formed as:

|S | =

The rotated matrix [D] is found by matrix multiplication as: 

[Dl = [ A f [B ] [ A ]  .

U 11 U V li w
, ,

V u V V V vv
, ,

w u W V vv vv
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