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ABSTRACT

Attenuation is a potentially very important seismic attribute for seismic exploration and 

reservoir characterization. In order for attenuation to be utilized successfully as an 

attribute, it must first be reliably extracted from the seismic data and separated from 

scattering effects. Existing methods meet fatal difficulties in measuring attenuation from 

both surface seismic data and vertical seismic profile (VSP) data.

Intrinsic attenuation measurement from VSP using spectral ratios is seriously affected by 

scattering, coupling variations, and difficulties in first-arrival isolation. An algorithm to 

estimate intrinsic attenuation from VSP data where reliable seismic impedance logs are 

available effectively handles these problems. Using the available impedance profile 

calculated from well logs. VSP synthetics including up-going and down-going waves, 

multiples and attenuation are calculated. The scattering effect is removed iteratively by 

matching real spectral ratios with synthetic spectral ratios. Numerical modeling of infinite 

bandwidth and band limited cases shows that this method is accurate, effective and robust 

providing coupling variations are frequency-independent over the seismic bandwidth. 

Application to real VSP data from offshore Gulf of Mexico block Eugene island 354 

shows high attenuation associated with potential gas pay.

Existing methods of attenuation estimation from surface seismic data suffer from wavelet 

extraction and scattering removal. An inversion method is developed to solve these 

problems. Instead of trying to extract the wavelet directly from the seismic trace and 

subsequently separate scattering effects, a full waveform forward modeling and damped

XI



generalized linear inversion (GLI) algorithm to invert Q from the surface seismic trace 

are employed. The forward theory includes all the multiples and attenuation in the 

synthetic, thus allowing direct separation of the intrinsic Q from scattering effects. The 

employed forward inelastic wave theory also allows dispersion effects to be accounted 

for and does not require a constant Q model. Employment of the robust damped GLI 

algorithm produces a stable and accurate inversion result. Numerical modeling studies 

show that the Q profile can be recovered even if the initial model is not near the correct 

answer.
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CHAPTER 1. INTRODUCTION

1.1 ATTENUATION AND ITS IMPORTANCE

It had been recognized that seismic attenuation can potentially be used as a direct 

hydrocarbon indicator (e.g. Mitchell, 1996) or as an indicator of fluid mobility (e.g., 

Castagna, 1998). However, related measurement of seismic attenuation in the field with 

surface seismic data has proven to be elusive. The purpose of this dissertation is to 

investigate new methods for seismic attenuation measurement.

Seismic attenuation is the amplitude decrease of the seismic wave with propagation 

distance. Attenuation of P-waves is a well-known seismic attribute and oil companies 

have used seismic attenuation as a direct hydrocarbon indicator for many years. Studies 

have been performed to understand the mechanism of the attenuation (e.g., Ricker. 1952; 

McDonal et al., 1958; Futterman, 1962; Jones 1986; Biot, 1956; White, 1975; O ’Connel 

and Budiansky. 1977; Mavko and Nur, 1979; Palmer and Traviolia, 1980; Murphy et al., 

1986; Dvorkin and Nur 1993) and its utility in reservoir characterization (e.g., IClimentos 

and McCann, 1990; Akbar et al., 1993). However, the attenuation mechanism in porous 

media is not completely understood. Laboratory measurements (Gardner et al. 1964; 

Frisillo and Stewart, 1980; Spencer, 1979 and 1981; Clark et al., 1980. 1981; W inkler 

and Nur, 1979 and 1982; Murphy, 1982 and 1983; Jones and Nur 1983; Jones, 1983 and 

1986; Tittmann et al. 1983; Bourbie and Zinszner, 1984; Turgut et al., 1990; Frisillo and 

Thomsen 1992; Tutuncu et al., 1995; Batzle et al., 1996) and some of the field



measurements (M eissner,l983; Kan et al., 1983; Raikes and White, 1984; Houck, 1987; 

Jacobsen, 1987; Yamamoto et al., 1995; Sames et al., 1997) indicate that the attenuation 

is frequency-dependent and closely related to the interaction between the pore fluid and 

the solid. In particular, the attenuation peaks at some frequency that depends on rock and 

fluid properties. However, it is generally not possible to predict the frequency at which 

this attenuation peak occurs from first principles and empirical observations must be 

relied upon. There is a growing body of evidence (Castagna. 1998) that this may occur 

between seismic and sonic frequencies in hydrocarbon reservoirs. Other lessons from the 

literature include:

1. Wave propagation is linear (independent of strain amplitude) at seismic strain and 

upper crustal conditions. This has been documented by several experiments at 

variable pressures, fluid saturations, and temperatures (W inkler and Nur. 1982; 

Murphy, 1983; Jones, 1983).

2. Attenuation in vacuum-dry rocks is negligible (Q of hundreds or thousands) 

compared to typical Q values from the upper crust, even at low pressures (Clark et al., 

1980, 1981; Murphy, 1983). Attenuation is virtually independent of frequency in dry 

rocks (Spencer, 1981).

3. .Attenuation is strongly affected by the fluid saturation, the properties of the pore 

fluid, and the seismic frequency (Gardner et al., 1964; Frisillo and Stewart, 1980; 

Spencer, 1981; W inkler and Nur, 1982; Murphy, 1983; Jones and Nur. 1983;



Tittmann et al. 1983; Bourbie and Zinszner, 1984; Jones. 1986; Turgut and 

Yamamoto, 1990; Frisillo and Thomsen 1992; Tutuncu et al., 1995; Batzle., 1996). 

In particular, attenuation peaks between seismic and sonic frequencies and the effect 

is most pronounced for rocks which are partially gas saturated.

4. .A.ttenuation./dispersicn can be significant enough to be detected above seismic 

frequency band. The effect is most pronounced for gas saturation. Seismic velocities 

in hydrocarbon reservoirs can be as much as 15% slower than sonic log velocities 

(Castagna, 1998), and related directly to fluid viscosity. In addition, in situ P-wave 

attenuation measurements compiled by Castagna et al. (1993) show a slight tendency 

for permeable sands to exhibit higher attenuation than impermeable shales. An 

attenuation profile in a South Texas clastic section measured by Kan et al. (1983) also 

exhibits anomalously high attenuation over an interval corresponding to a known gas 

reservoir.

5. Attenuation may be an important parameter in determining permeability. Klimentos 

and McCann (1990) measured the attenuation coefficients o f compressional waves in 

42 sandstones at confining pressure of 40 MPa (equivalent to a depth of burial of 

about 1.5 km). The results show that for these samples, compressional wave 

attenuation at I MHz and 40 MPa is related to clay content and porosity by an 

empirical formula. On the other hand, Klimentos and McCann show a strong 

systematic relation between clay content and permeability. Based on these results, 

Akbar et al. (1993) conclude that attenuation is the key factor in determining



permeability. They examined the relationship between attenuation and permeability 

using a 3-D theoretical model based on the squirt-flow mechanism. They find that the 

permeability-attenuation relation is characterized by an attenuation peak that shifts 

towards lower permeabilities as frequency decreases. Therefore the attenuation of a 

low-frequency wave decreases with increasing permeability. This result is similar to 

the experimental result of Klimentos and 'vleCann (1990). However, 3iot theory 

( 1956) predicts the opposite effect.

Based on these theoretical and empirical studies, the following hypotheses appear to be 

reasonable: (1) attenuation can be a potential hydrocarbon indicator for seismic 

exploration, (2) seismic fluid mobility/permeability detection observation using the 

attenuation/dispersion may be possible, and (3) acoustic fluid mobility/permeability 

logging may be feasible.

1.2 DIFFICULTIES IN MEASURING ATTENUATION

Should the hypotheses presented in the previous section be proved true, attenuation has 

such important potential application that it must be considered a very promising seismic 

attribute for seismic exploration and reservoir characterization. However, the practical 

application of attenuation/dispersion is not so well developed. There are only a few 

unsuccessful attempts in seismic exploration (Mitchell et al., 1996; Dasgupta et al., 

1998). For quantitative rock/fluid characterization, attenuation has only been 

demonstrated to be useful under very special circumstances (such as rock permeabilities



much higher than the majority of oil reservoirs, see Yamamoto et al., 1995). The main 

reason for the failure of seismic attenuation as a geophysical attribute is the lack of a 

reliable estimation method from surface seismic data, VSP data and even full waveform 

well log data (Anderson, R. G. and Castagna, J. P., 1984).

Theoretically, there are at least five different methods to directly measure Q from seismic 

data; spectral amplitude ratio, peak-peak and first-peak amplitude ratio, rise time, pulse 

broadening, and the Futterman causal attenuation operator o f an attenuating signal. In 

practice, attenuation measurement is measured mainly by spectral ratios. All these 

methods suffer the following difficulties:

We refer to attenuation caused by pore fluid and rock fabric as intrinsic attenuation; 

Attenuation caused by the fine layering effect (the O ’Doherty and Anstey (1971) effect) 

is called scattering attenuation. What we are interested in is the intrinsic attenuation. 

However the attenuation we measure is generally the total effect of scattering and 

intrinsic attenuation. We call this apparent attenuation. Since both intrinsic and 

scattering attenuation have a very similar effect on wave propagation, the first difficulty 

is to separate them from each other. Although, many authors have addressed this problem 

(Kan, 1981; Spencer, 1985; Kang et al., 1994), no accurate methods have been proven. 

Another difficulty is the extraction of the wavelet spectra because o f the effect of earth 

response and the limited resolution of classical spectral analysis.



For the seismic frequency range, there are two means of measuring seismic attenuation in 

the field; (1) from vertical seismic profiles (VSP), and (2) from surface seismic data. 

Both of these methods have similar problems.

1.3 PURPOSES

With respect to the above difficulties in measureing attenuation from seismic data, in this 

dissertation, methods for measuring attenuation from surface and VSP data will be 

investigated. For VSP data, an iterative scattering removal method is proposed. For the 

surface seismic data, the Generalized Linear Inversion (GLI) method is proposed. The 

proposed algorithms will try to properly separate intrinsic and layering induced 

attenuation, and try to solve the wavelet extraction difficulty.

In the GLI method, we will use the proposed synthetic theory to account for the scattering 

effects by assuming the impedance profile is known (from a well log) as is the source 

wavelet, and use a damped generalized linear inversion (GLI) method to invert for the 

intrinsic attenuation. This synthetic theory is applicable to I-D media and can include all 

the multiples and attenuation in the synthetic trace. We will call it full waveform forward 

modeling in the following sections. This method will address two classical difficulties: 

the separation of intrinsic and layering induced attenuation and wavelet extraction. 

Modeling studies show this method is effective even with AGC filtered seismic data. In 

Chapter 4, the method and its modeling results will be detailed.



In the iterative scattering removal method for VSP data, the current spectral ratio method 

is improved to extract intrinsic attenuation from VSP data. Usually, VSP spectral ratio 

methods are seriously affected by scattering, coupling variations, and difficulties in first 

arrival isolation. Our method solves these problems, using the available impedance 

profile calculated from well logs. We calculate VSP synthetics which include up-going 

and down-going waves, multiples, geometrical spreading and attenuation. The scattering 

effect is removed iteratively by matching real spectral ratios with synthetic spectral 

ratios. This method does not have the first arrival isolation problem because it allows up 

and down-going and multiple arrivals within the analysis window. It also effectively 

reduces the coupling variation effects. In Chapter 5, we will describe the method, test it 

with synthetic data and apply it to real data.

1.4 OUTLINE OF DISSERT.ATION

There are 6 chapters in this dissertation. Chapter I is the introduction.

In Chapter 2, wave propagation theory in an attenuating medium is presented. The wave 

equation in attenuating media is derived, and the plane wave solution is given. Then 

scattering and intrinsic attenuation and their features are discussed. Finaly, the boundary 

conditions of plane wave propagation are derived. This chapter is the theoretical 

foundation of this dissertation.



In Chapter 3, the existing Q measurement techniques and existing difficulties are 

reviewed. First, the five basic techniques principally available are introduced. These 

methods are: (1) the measurement of spectral amplitude ratio, (2) peak-peak and first- 

peak amplitude ratios, (3) rise time, (4) pulse broadening, and (5) the Futterman causal 

attenuation operator o f an attenuating signal. The current progress and remaining 

problems m Q estimation are reviewed. Tlie representative methods for VSP data are. (I) 

the spectral ratio method by Kan et al. (1981) attempts to solve the scattering problem; 

(2) the inversion algorithm by Kang and McMechan (1994) tries to separate scattering 

attenuation by using an assumed additive relation; (3) the inversion method by Amundsen 

and Mittet (1994) addresses the coupling problem. The representative methods for 

surface seismic data are: (1) the power spectral ratio method (Raikes and White, 1984) 

and (2) the matching (inversion) technique (White, 1980; Lamb, 1998).

In Chapter 4, a full waveform GLI inversion method is proposed to solve the difficulties 

in measuring attenuation from surface seismic data. First, the full waveform synthetic 

theory is presented. Then, the GLI inversion technique is introduced. Finally, the 

numerical modeling is carried out. Since the forward theory includes all the multiples and 

attenuation in the synthetic, the new method allows direct extraction o f the intrinsic Q 

from the seismic trace while taking into account scattering effects. The employment of 

the robust damped GLI algorithm will produce more stable and accurate inversion results. 

The numerical modeling verifies the correctness and feasibility of this method.



In Chapter 5, an iterative scattering-removal method to measure intrinsic attenuation from 

Vertical Seismic Profile (VSP) data is introduced. The full waveform VSP synthetic 

theory is briefly described. Then the detailed iterative procedure is given. This is 

following by numerical modeling and real application. This method greatly improved the 

existing spectral ratio method by allowing scattered events in the analysis window, 

thereby avoiding the first-arrival -isolation problem. This method, using the linear 

properties of seismic spectral ratios, is free from receiver sonde coupling problems unless 

the variations in coupling are frequency dependent over the seismic bandwidth. By using 

VSP synthetics that include up-going and down-going waves, multiples and attenuation, 

the scattering effect is removed iteratively by matching real spectral ratios with synthetic 

spectral ratios. Numerical modeling shows the accuracy and advantages of this method. 

Application to real VSP data confirms that high attenuation is associated with potential 

gas pay.

Chapter 6 contains discussion and conclusions. The complementary features, importance 

and potential of VSP and surface seismic methods are discussed.



CHAPTER 2. WAVE PROPAGATION IN AN 
ATTENUATING MEDIUM

In this chapter, the basic theory of seismic attenuation is introduced. The plane wave 

equation in an attenuating medium is derived. Intrinsic and scattering attenuation are 

defined and their relationship with other seismic and rock physics parameters such as the 

velocity, dispersion, frequency, quality factor etc., is discussed. Finally a derivation of 

boundary conditions in a l-D elastic medium is given, which will be very important for 

forward synthetic modeling.

2.1 WAVE EQ U A T IO N  IN ATTENUATING M ED IU M

2.1.1 Stress

Stress is the force per unit area exerted on a particle in a medium (Aki and Richards, 

1980). It is a tensor, with 9 components; six of which are independent.

A particle within a medium can be considered as a tetrahedral volume (Figure 2.1). Three 

of the faces are normal to the rectangular coordinates axes and the fourth face has its 

outward-directed normal n in an arbitrary direction. The nine components of stress ( 7T )

are defined as the three stress components acting on each of the three faces normal to the 

axes. 7̂  is the j component of the stress that act on the face normal to the i axes. Due to

symmetry: 7̂  = 7 ,,, there are six independent components expressed in the matrix

10



X3

T(n)

X2

-XI

-X2

T(-X3)
i

-X3

XI

Figure 2.1 Tetrahedral volume in the rectangular coordinates system, T is stress, 
-  X j (j=1,2,3) is the normal to the face, the normal of the fourth face is n.

T  =

T r TCT jy C

T . 7L

(2 . 1)

In abbreviated subscript notation;

T , T s

T  = T 'z T .

7 s L T z .

= 7; T ,

or (2.2)

(2.3)
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2.1.2 Strain

In regular Cartesian coordinates, the strain ( 5,̂  ) is defined as (Aki and Richards, 1980):

I
+

(fa:. ;
(2.4)

where i,j=I,2,3, and t/, or U , is the component of the particle displacement along axes i 

o rj.

Due to symmetry, the strain tensor can also be expressed in similar abbreviated subscript 

notation as stress:

5, ^6 ^5
s  = or (2.5)

^ 3 .

s'" = •̂ 2 ^3 S ,] (2.6)

Strain components in abbreviated subscripts are related in a simple way to particle 

displacement components:

12



or

where

and

5 .

à U  ,

dx
d U  .

dy 
d U  .

dz
dU  , dU .

dz ^ d \
dU , dU .

d: dx
dU  ,

d \ dx

(2.7)

s=v„u (2 .8 )

U = (2.9)

V ,  =

■ d
dx

0

0
d y

0 0

d
0

d
d z

dz
0

2 _ d
_ d y d x

0

0

d z

d \
d _

d x

0

(2 . 10)
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2.1.3 Newton’s law

Consider a vibrating material particle of arbitrary shape with volume ôv and surface area 

6s. The forces associated with its vibration are body force fSv and surface force

f . T -ds  = f v T t i v  (2.11)
• t̂Sr Jav

From Newton’s second law (force = mass times acceleration), then:

T • d s  + F tfv  = p  ^ - ^ d v
at

à - V
=  W ( V T  + ? ) d v  = (2.12)

at
d - \ ]

=> V T  + F  = / ] -----
d t ^

2.1.4 H ooke’s law

According to Hooke’s law, in an elastic medium, stress is linearly proportional to the 

strain

^ 7  =  i,j,k,l=x,y,z . (2.13)

where C is the stiffness tensor, T  is stress and S is strain. The symmetry: 

î,ki -  = C „y, will reduce the number of independent constants to 36. And with the

symmetry: [he constants are further reduced to 21. This is the maximum

number of constants for any medium.

14



In abbreviated subscripts:

Abbreviated subscript original subscript: ij

1 XX

2 yy

3 zz

4 yz, zy

5 zx. xz

6 xy, yx

The general form of Hooke’s law is therefore

7; =  =  1 ,2 ,3 ,4 0 ,6  or T  =  C S  (2.14)

2.1.5 Extension of Hooke’s law in attenuating medium

Materials observing Hooke’s law, do not have internal energy loss. Ideal materials of this 

kind do not exist in nature, let alone in the solid earth, where the attenuation of seismic 

energy is an established fact.

A material is said to be linearly viscoelastic if stress components are linearly related to 

strain components at a given time and the principle of linear superposition holds. Rocks 

are generally linear viscoelastic for strains induced by far-field seismic waves. The ideal 

Hooke’s law relation:?^ = C y S ,, can be modified to include damping by adding terms

containing time derivatives of strain. That is:

15



dî

where are viscosity constants.

2.1.6 W ave equation in a ttenuating  m edium

From N ew ton's law

r ,  =  +  77,^.—  (2 .15)

„  9 - \ ]  (7W
V T  + F = = /? -—  (2.16)

From H ooke’s law

d S
T = C S + 77 (2 .17)

d
Let: r  =  C + 77 , then Hooke’s law is

o  t

Since

Then

d T  d S  
T = rS and =  r (2.18)

r) S
S =  V , U  =  %W (2.19)

d T  
~ ^ =  ^  (2.20)

where W  is the particle velocity. Equation (2.16) and (2.20) constitute the acoustic field 

(t, v) equations, from where we can get the field wave equation.
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From the equation (2.16), we have

^  ,  â ' - W

Substituting this equation (2.21) into (2.20), yields the velocity wave equation:

BY  - W
■ V  ( r  v.W ) =  P4-

J f :

( 2 .22 )

2.2 PLANE WAVE  SOLUTION IN ATTENUATING MEDIUM

In a I-D medium, assuming body force F =0. the wave equation (2.22) become:

<-23)

where c is the Young’s modules, r| is the viscosity, p is the density. Assume W = 

X(x)T(i). .According to Fourier transformation principle, T(t) is the superposition of 

over frequency, where œ is angular frequency. Substituting e"“ into the equation (2.23) 

for T(t), gives:

B -
( c  + i c o r } ) - ^ X { x )  =  - p c ü - X  (2.24)

The solution to this equation obtained using the root method is:
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%(%) =  (2.25)

where k = yjpco' I (c + icurj) is the wave number as in the elastic case, but here k is 

comple.x and is called the complex wave number.

Thus, the single plane wave solution for the wave equation (2.22) can be written in the 

form of

W ( x . t )  =  (2.26)

The complex wave number can be written in the formal

k  = j 3 - i a  (2.27)

where /8 is the real wave number defined as

-  (Ü
P  = y   (2.28)

phase

and is the phase velocity. Then the solution is

= (2.29)

Thus, in an attenuating (linear viscoelastic) medium, the wave will propagate along the x 

direction with exponentially attenuated amplitude. The attenuation factor will be the form 

of exp(-ox).
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2.3 A TTEN U A TIO N /D ISPER SIO N  AND Q

In an attenuating medium, the attenuation (amplitude decay) of a plane-wave seismic 

pulse as a function of position, z . can be described by:

A(c) = A(0)g-"= (2.30)

where A(z) = signal amplitude at position z, A(0) = initial amplitude, and a  = attenuation 

coefficient.

The attenuation of a seismic wave results from the viscoelasticity of the material. The 

mechanism for this viscoelasticity is not yet fully understood. General experience is that, 

a propagating seismic wave will lose energy as a result of internal friction and the 

amplitude will be attenuated. The total effect of the internal friction that can occur within 

a material is described by the unitless parameter Q. called the Quality Factor, defined as 

(Aki and Richards, 1980)

where E is the energy stored in one cycle, œ is the angular frequency and -  A£ is the 

energy lost in one cycle. For a medium with linear stress-strain relationship, the wave 

energy is proportional to its amplitude squared. Then

- ^  = - —  0 .3 2 )
Q(ûJ) M

From this definition, the attenuating solution of a wave propagating in attenuating 

medium with Q can be derived. Assuming V is the phase velocity and w is the angle 

frequency
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œ

and

À = —  (2.33)

dz

Then

(2.34)

dz 2VQ

The attenuating solution to the above equation is

A ( : ) = Aq exp (ÜZ (2J6)IVQ

comparing the equation (2.36) and (2.30), the Q and attenuation relationship in a linearly

viscoelastic medium is:

CO B
(2.37)

Dispersion is the frequency dependence of seismic velocity. If the seismic phase velocity 

in a medium is a function of frequency, i.e. V=V(w), we say the medium is dispersive. It 

has been shown (Futterman, 1962) that in a medium where wave propagation is linear 

and causal, the presence of attenuation requires the phase velocity to be a function of 

frequency, i.e. attenuation is a necessary and sufficient condition for dispersion.The 

relationship of frequency-dependent phase velocity to frequency-dependent attenuation is 

known as the dispersion-attenuation relationship. If a function is causal, its real and 

imaginary parts are related by the Hilbert relationship (Bracewell, 1965), and the 

dispersion-attenuation relationship may be written in terms o f the Kramers-Kronig 

integrals (Kanamori and Anderson, 1977) as
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1 1
y .

Y! Q{û} )dcü
(2.38)

—  {(O —Cü)

where V . is the high-frequency value of phase velocity, and P stands for the Cauchy 

principal value of the integral.

For the constant Q model, the real part of the complex wavenumber in equation (2.27) is 

expressed as the sum (Bickel and Natarajan, 1985)

„ (Ü (Ü CO

where colV^ is a pure delay term with phase velocity Vq associated with the reference 

frequency (o .̂

Therefore, to measure the attenuation coefficient, amplitudes of Fourier frequency 

components are typically measured at two locations. The ratio of these amplitude spectra 

eliminates the initial amplitude dependence. Thus, at a given frequency:

A ( - , ) /  A ( : J  =  (2.40)

hence,

a = {z. ln [A (z , ) /  A ( - o ]  (2.41)

It is often assumed that the quality factor (Q) is constant across the seismic frequency 

band. This assumption is generally supported for P-waves by spectral ratio measurements 

which indicate that the attenuation coefficient is linearly proportional to frequency 

(McDonal et al.; 1958). This requires that the product Q times velocity be constant (see 

equation 2.37). If velocity is only slowly varying with frequency (Spencer, 1981;
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Murphy, 1982) as is commonly assumed for the seismic frequency band. Q is 

approximately constant. Then from equation 2.37, Q is obtained from

= ( 2 « )

because is the linear slope of a  over angular frequency. This slope can be estimated

from equation (2.41). If we assume V and Q are approximately frequency independent 

over the bandwidth of the data, Q can then be obtained from the slope if V is known.

2.4 SCATTERING .ATTENUATION/DISPERSION AND Q

It has long been recognized that sediment layers with thickness much less than a seismic 

wavelength affect a wave by slowing it slightly and decreasing its amplitude. This effect 

is similar to inelastic attenuation. We refer to this effect as scattering induced 

attenuation/dispersion. A beautifully written paper by O ’Doherty and Anstey (1971) 

provides the best introduction to this subject.

There are five factors that affect the amplitude of a seismic wave signal. They are (I) 

spherical divergence, (2) absorption, (3) the reflection coefficient of the reflecting 

interface, (4) the cumulative transmission loss at all interfaces above this, and (5) the 

effect of multiple reflections. Among the five, the absorption causes the intrinsic 

attenuation and the last three causes the scattering attenuation. Scattering attenuation and 

qualify factor are defined in similar way as for intrinsic attenuation and Q.



Of the five factors affecting amplitude, spherical divergence is easy to correct in a 

structurally simple earth. The familiar law of conservation of energy, when applied to a 

spherical wavefront emanating from a point source in uniform lossless material, tells us 

that the intensity diminishes as the inverse square of the radius of the wavefront. 

Translated into the type of measurements made in seismic work, this says that the 

pressure amplitude of the seismic wave is inversely related to the distance traveled.

The process of reflection and transmission at interfaces do not involve any loss of energy, 

merely a redistribution of it in the forward and backward directions. We know that 

energy reflected from an interface is not available to be transmitted through it. If the 

reflection coefficient of an interface is R, the transmission coefficient will be I-R for 

particle velocity amplitude (see next section about boundary condition). Clearly, the 

larger the reflection coefficient, the greater is the transmission loss. The transmission loss 

is not the only reason for scattering attenuation (if it is, the signal will be decayed away to 

nothing so quickly as to be useless). In fact, multiples, especially the fine layer multiples, 

offset most of the transmission losses. The effect of multiple reflections is the least well 

understood of the factors affecting amplitude. However, observation shows that multiple 

paths having an even number of bounces can have the effect of delaying, shaping and 

magnifying the pulse transmitted through a layered sequence and transmission loss with 

multiples causes the similar amplitude decay to intrinsic attenuation. O’Doherty and 

Anstey (1971) gave an approximate relationship between the amplitude spectrum 

T{(o) of the transmitted pulse and the power spectrum R{ù}) o f the reflection coefficient 

series:

23



T(Cü) = e~’̂ ‘̂̂ '̂ (2.43)

where t is travel time. This is the well-known O ’Doherty-Anstey formula, which has been 

rederived by Banik etc. (1985) and Shapiro etc. (1993) in different ways.

Generally we are interested in the attenuation caused by internal friction, which is called 

intrinsic attenuation. But what we can measure from spectra ratios is the total attenuation. 

Separating the two attenuations is necessary if measured attenuation is to be related 

directly to rock properties.

2.5 BOUNDARY CONDITIONS OF PLANE WAVE PROPAGATION

2.5.1 General definition of boundary conditions

In acoustic problems, we assume the interfaces between different solid media are usually 

firmly bonded together, so that there is no slippage or separation of one with respect to 

the other. This means the particle displacement velocity must be continuous across the 

discontinuity surface. That is

W  = W  (2.44)

where W is the particle displacement velocity just above the surface and W ' the particle 

displacement just below.
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Boundary conditions o f stress field can be derived by assuming a small dislike volume, 

enclosing an area ds of the interface surface (Figure 2.2).

Figure 2.2, Continuous s tre ss  model

Assuming body force F and particle velocity W, N ew ton’s law gives:

( T -  T ' ) n < i 5  + F h d  s = ^ p  + p ' ] h d s

(2.45) 

As h —> 0 ,

Ffids  —> 0

p  + p ' \  m  
dx hds  —> 0

(2.46)

So
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T*n=T «n (2.47)

2.5.2 Plane wave solution in isotropic and homogenous media

In isotropic and homogeneous media, the constitutional relation is

C =

C,: Q: 0 0 0

C,: q , 0 0 0

C,: C.z Cu 0 0 0

0 0 0 C.. 0 0
0 0 0 0 Q 0
0 0 0 0 0

(2.48)

And C,, = C,, -2C ^4. Assuming a plane wave propagating along the x direction, since

the field can varv only with x. only the partial derivative —— is non zero in field
a x

equauon

V T  +  F  =  / 7 ^

Æ L
dt = r • ( v , w )

(2.49)

So the equations can be reduced as follows: 

From

Then
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From

Then

and

d x
f z i
dx

f z i
dx

d W ^

d W ^

d W .  
d t '

(2.50)

= P

d T

d t
= r V . W ^ = C (  V , W )

dT
dt (2.51)

^^1
■ = S l

d w
X

dt d x

-  ^ 1 2

d w
X

dt d x

= ^ 1 2

d w
X

dt d x

^ ^ 4  _ 
dt  - 0

^ ^ 5
= ^ 4 4

d w  _
dt d x

-  ^ 4 4

d w V
dt d x

2.52)
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From:
d t

=  0 - 4  T j =  0 (2.53)

From:

dx
d \ y ^

P - 5 T

H l . - r  
I â t  -  3x

£ u , ^
P  dx  " (2.54)

This is the compressional wave equation, thus

W^{x, t)  =W^q6
lW{t-

(2.55)

with phase velocity

C„
(2.56)

and

± T , = + W , ^ f c ^

± r ,  = + d p c ^ (2.57)

± T ,  =

From :

i [ L - r  ^  
I A  -  *
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Then

c„
P  dx- à -

This is the y-polarization wave equation with velocity

(2.58)

(2.59)

From:

Then

Æ  dw.
■ â r = ^ ' i r

dr, .  dw.
dt  -  dx

C „  <?-VK

P  dx'- ~ à -

This is the z-polarization wave equation with velocity

k ) . =  ± 7 ; = + w , ^

(2.60)

(2.61)

2.5.3 Boundary conditions o f plane wave propagation in a 1-D medium

Applying the above boundary conditions (2.44) and 2.47) to a plane interface with 

normally incident plane compressional waves, boundary conditions are simplified.

For the incident wave (2.55-2.57)
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The reflected waves are

i M OX-O)(7; ) .  =(/x:„)=s<. 

( n )

( n )

, M o/r - r t )

And the transmitted waves are

( w \  = B ' e ‘

( r , ) ,  = B - e - - ' - '

Ç ,. .................  (2.64)
V .

( r , ) ^  = -

( r , ) ^  = -

Since only one stress component, = T^. is involved in the boundary condition 

equation, from the equation (2.44) and (2.47)

K ( 0 ) ) , + K ( 0 ) ) ,  = ( « ', '( 0 ) ) ^

/ , . (2.65)
(t; ( 0 ) ) ,+ ( 7 ; ( 0 ) ) ,= { 7 ;  (O))^
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That is

A + 5  =  5 '

(2.66)
-(/x:„)=(A-s) = -(pr„) = 8'

Solution of these equations for B and B'  gives the particle velocity reflection and 

transmission coefficients

-

4  =

(2 .66)

(‘n (0 ) ) ,  ( ^ 'c „ ) U ( p c „ ) =

The stress reflection and transmission coefficients and

(2.67)

So. boundary conditions expressed in reflection and transmission coefficients are:

For the particle velocity case:

l + ( 2 .68 )

For the stress case:

l + f ? r = 4  (2.69)
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Hence, if we define the reflection coefficient as

R = (2.70)
yj p  C\  ̂ + -y/pC,,

the boundary conditions are.

In the panicle velocity case

T = \ - R  (2.71)

In the stress case

r = I  + /? (2.72)
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CHAPTER 3. REVIEW OF Q MEASUREMENT 
TECHNIQUES

There are at least five different methods to directly measure Q from seismic data. These 

methods are: (I) the measurement of spectral amplitude ratio, (2) peak-peak and first- 

peak amplitude ratios. (3) rise time, (4) pulse broadening, and (5) the Futterman causal 

attenuation operator of an attenuating signal. Badri and Mooney (1987) analyze and 

compare these methods, and applied them to their experimental data in unconsolidated 

sediment near Wenover, Utah. They conclude that different computational techniques can 

result in different Q values for the same type of materials; rise-time and pulse-broadening 

methods are probably source-dependent; a correct geometrical spreading factor appears to 

be sufficient to account for the observed amplitude decay with distance, which makes the 

Q value computed from Futterman the operator in their study questionable. Their 

conclusions suggest that the Q values computed from the spectral-ratio method are 

probably the most reliable.

To measure Q, there are two typical difficulties. One is to separate intrinsic Q and 

scattering Q. The other is to extract the wavelet or isolate the arrival. Badri and Mooney 

(1987) did not address these difficulties in their paper. However, these difficulties are the 

key problems in application of the attenuation in hydrocarbon exploration and reservoir 

characterization. Spencer (1985) summarized and analyzed the difficulties in Q 

measurement from VSP data by examining related techniques to solve these problems. In 

this chapter, we will first introduce the basic techniques in Q measurement, then present
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progress in Q measurement techniques, strategies and finally discuss remaining 

difficulties in attacking these problems.

3.1 BASIC TECHNIQUES IN Q MEASUREMENT

From section 2.3. m an attenuating medium, the attenuation (amplitude decay) of a 

seismic pulse as a function of position, z, is described by:

A (:) = A (0 )e '*  (3.1)

where A(z) = signal amplitude at position z, A(0) = initial amplitude, and a  = attenuation 

coefficient. In the above equation, we assume that the attenuation coefficient a(co) is

linearly dependent upon frequency within a limited bandwidth. This linear dependence of

a  leads to a further assumption in which Q is approximately frequency-independent over 

the frequency range under consideration. If these assumptions are approximately valid, 

then the spectral components for angular frequency u) at depths z l and z2 are related by 

the expression

A ( : J / A ( : : )  = g""=''=:' (3.2)

The expression (3.2) can be used either in the time domain or in the frequency domain. 

This gives us five possible methods to use in attempting to measure attenuation.
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3.1.1 Peak amplitude ratio method

If we choose to apply equation (3.2) in the time domain, we can use either (a) the ratio of 

peak-to-peak amplitude of the first motion, or (b) the ratio of peak amplitude of the first 

motion of the waveform recorded at the more distant location to the amplitude at the 

reference location. Note that the time-domain applieation can be used only if we make 

some additional assumptions. The most important assumption is that the portion of the 

signal under consideration at the second location was originally the same portion of the 

signal at the first location. Also, it is assumed that factors such as geometrical divergence 

have been properly accounted for.

3.1.2 Spectral ratio method

In the frequency domain, the various methods of analysis all rely on equation (3.2) 

which can be manipulated in several ways. Converting to logarithms of the amplitude 

ratios, expression (3.2) can be written as

a  = ( : .  - : , ) " '  ln[A(- , ) /  A ( : j ]  (3.3)

With this equation, we can obtain a  and hence

(3.4)

The Q value can be computed from the inverse slope of the line fitted through the data 

points within the specific bandwidth. Substituting expression (3.4) into equation (3.3), 

gives
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(c, ln[A(-, ) /  A(C, )\ = œ 12VQ (3.5)

Equation (3.5) is an equation of a straight line with slope (I / 2VQ) . If the velocity of the 

medium is known and Q is assumed to be independent o f frequency, Q can be determined 

from the following

e  = 3 ^  0 6 )

where s is the slope of the line fit.

The spectral-ratio method requires at least a moderate bandwidth for the source 

waveform, since it requires measurement of spectral slope versus frequency and also 

requires a reasonably high signal-to-noise ratio in the frequency band for analysis.

3.1.3 Rise-time method

Q can also be computed from a rise-time method. Gladwin and Stacey (1974) defined the 

rise time as the ratio of the maximum peak amplitude to the maximum slope of the initial 

portion of the signal after the first arrival. This definition can be fitted with an equation of 

the form

T = (CIQ )t  + T, (3.7)

where T is the rise time at the point of measurement and 7  ̂ is the rise time of the pulse at 

the source. C is a fixed constant close to 0.5, and t is the traveltime between the source
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and the point of measurement. Kjartansson (1979) has derived a value of 0.485 for C for

signal detection.

Equation (3.7) simply represents a linear relationship between the rise time T and the 

travel time t, with {C/Q) as the slope and as the intercept. The Q value measured in 

this method is very sensitive to the slope of the fitted Une through the data points.

3.1.4 Pulse-broadening method

The fourth method in computing Q in an attenuating medium is the pulse-broadening 

method. It is based on the assumption that pulse broadening is due to inelastic attenuation 

in the medium and that Q is approximately independent of frequency. As proposed by 

Gladwin and Stacy (1974) and Kjartansson (1979), the broadening is proportional to the 

travel time and is related to Q by the equation

À  =  { C I Q ) t  + À^ (3 .8)

where À is the pulse width at the measurement point, h) is the pulse width at the source, 

and t is the traveltime between the source and the point of measurement. C is a fixed 

constant with value C=0.5.

The pulse width can be measured in several ways. The first approach is based on 

measuring the pulse width of the first quarter of a cycle after the first break, which can be
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defined as the time lapse between the first break and first peak amplitude. The second 

approach is based on measuring the pulse width of the first half-cycle after the first break. 

The pulse width for a half-cycle can be defined as the time lapse between the first arrival 

of the first break and the first zero crossing. The first approach, pulse width of the first 

quarter-cycle, is preferable because some of the interference can be avoided. This 

approach is especially favorable if the signal under consideration includes several 

arrivals.

3.1.5 Futterman causal attenuation operator

A fifth method to estimate Q in an attenuation medium is the Futterman causal 

attenuation operator. This method is based on simulating a synthetic seismogram through 

an attenuating medium by propagating an observed signal through a perfectly elastic 

medium and modifying it with a filter. The filter is based on an operator proposed by 

Futterman (1962). It has the important characteristic of satisfying the physical condition 

of causality.

The ultimate goal of this method is to arrive at a Q value for which the shape and content 

of the synthesized waveform will match those of the observed waveform at some desired 

distance. This Q value is then considered to be a reasonable estimate of Q for the in-sitii 

materials. The input parameters required for this filter are velocity, quality factor Q, 

distance to a reference receiver, waveform at the reference receiver, and distance to the 

receiver at the point of observation. If the com puted waveform does not match the
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observed waveform at distance R. the input parameter Q is then modified. A typical 

corrective procedure would be to perturb the param eter Q of the filter to improve the 

match, keeping other parameters fi.xed. Such a procedure can be made systematic and 

thus suitable for implementation on the computer. The Q value used in this process can 

be limited to a geologically plausible range. This iterative procedure makes no effort to 

obtain a perfect match between the observed and computed signals, especially if the 

observed signals show a high degree of complexity in appearance. Nevertheless, by 

comparing the computed signals for a range of plausible Q values, one can arrive at an 

optimum match in shape, amplitude, and frequency content between the observed and 

synthetic signals.

The synthetic seismograms can be computed from the inverse Fourier transform of the 

expression

F,^{R,co) = F^,{Rlcü)H{R,Cü) (3.9)

where H(R, (o) is the transfer function of the Futterman operator and F^,(/?l,ty) is the 

Fourier transform of the observed signal at the reference station at distance R1 from the 

source. If a good match is observed, the Q value used to arrive at such a match will be 

considered a reasonable estimate of the attenuation property of the sediments at the site 

under consideration. The transfer function of the Futterman operator is given by the 

expression
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H{R,Cü) =

x e x p C — )

1.0 for  0 < |û;i < cJq

[

0.0 for \ûJ\ > œ

fo r  Cüo < \ü)\ < ù)

(3.10)

where Vg is the wave velocity at frequency which is the reference frequency taken at

the lowest frequency value that can be resolved in the signal, m is the highest frequency 

for sampled data. The RI/R2 term is a geometrical spreading factor to compensate for 

spherical-wave expansion.

3.2 PROGRESS IN Q ESTIMATION

The basic techniques in Q estimation described in the previous section are theoretically 

feasible. However, practical difficulties include scattering-removal (including multiples 

on local reflectivity), wavelet or first arrival isolation, and geophone coupling variations. 

Although these problems have not been completely solved since then, some important 

progress has been made. In this section, we describe present attempts to solve these 

problems for V S? and seismic data.
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3.2.1 Progress in estimating Q from VS?

Three typical methods are introduced here. The spectral ratio method by Kan et al. (1981) 

attempts to solve the scattering problem. The inversion algorithm by Kang and 

McMechan (1994) tries to separate scattering attenuation by using an assumed additive 

relation. The inversion method by Amundsen and Mittet (1994) addresses the coupling 

and first arrival problem by directly inverting frequency-dependent complex wavenumber 

or propagation velocity.

Method by Kan et al. (1981)

By assuming that the eanh is laterally homogeneous and that the offset of the VSP source 

is negligible, the frequency domain response of the direct P-wave arrival {A(f, z)) can be 

written as (Kan, 1981)

= (3.11)

where /  is frequency, :  is the geophone depth, and S{f, z) is the far field source spectrum 

which may vary from shot to shot. The earth response, E(f, z) is written

E { f , z )  = G ( / , : ) e x p [ - (% (/,:):]  (3.12)

Here, the effects of intrabed multiples and transmission losses are lumped together in 

G(f,z). Using the (2-attenuation relation a { f )  = / f l Q V  (equation 2.37), then
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The quality factor Q is the intrinsic Q which is assumed to be independent o f frequency. 

Before estimating the attenuation, correction of the VSP data for spherical divergence 

(the z ‘ factor in equation (3.11)) is applied and fi.xed depth monitor measurements of the 

source signatures are used to equalize the source variation to a common amplitude for all 

depths {s ( f ) ) .  Converting the absolute values of these corrected data to a decibel scale, 

equation (3.13) becomes:

a ( f , z )  =  ( 7 { f )  +  g i f  . z )  - c f z l  QV  (3.14)

where <T(/) = 201og,o[S(/)], g  = 201og,jG | a n d  c  =  20^1og,q e  .

By assuming that multiple and transmission effects over a sufficiently large depth interval 

represent small modulations of the dominantly linear decrease of a(f,  z )  with increasing z, 

the observations a(f,  z )  may be fitted with equation (3.14) by neglecting these 

modulations thereby yielding the estimate o f Q'‘ which characterizes the attenuation.

The assumption that the multiple and transmission effect result only in a small 

modulation is a poor approximation ever over large intervals.
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Method by Kang and McMechan (1994)

For estimation and separation of intrinsic and scattering Q contributions, the composite 

apparent Qp (or Qs ) is first measured as a function of frequency (cü) from the primary P 

(or S) waves. This is done directly from the definition (Aid and Richards. 1980)

f / z \ /  \ f mL/ tJ. lOj

where Ef cü) is the energy in a propagating wave at any reference point in space and time. 

Multiple observations can be averaged at each Cü to increase the measurement stability 

and reliability.

Separation of scattering and intrinsic contributions is based on the additive relation 

(Daninty, 1981; Rovelli, 1982; Richards and Menke, 1983; Hough et al.. 1988; Hoshiba 

et al.. 1991; Mayeda et al.. 1992; Frazer. 1994)

where Q, is the total composite Q . Qsc is the scattering Q contribution, and is the 

intrinsic Q contribution.

Kang et al. assumes that Qin is frequency independent and that Qsc is frequency 

dependent. Using the above equation, Kang et al. solve for the optimal model parameters
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from observations at different frequencies. Qin as one of model parameters is estimated 

concurrently.

Estimation of scattering Q as a function of frequency, and subsequent estimation of the 

average scatterer size A and the velocity deviation a  associated with the scatterers, are 

based on the model of Blair (1990) as described by Tang and Bums (1992). The key 

relationship is

Q - \ K . D )  = f ia ' - y (D)" ' ‘ ----------------------------------------------------- (3.17)
[ l+KAr iD) \

where K is wavenumber (=w/V). D is the spatial dimension (=1, 2, 3). a  is the standard 

deviation of the medium fluctuations as a percentage of the unperturbed model values, A 

is the dominant scatterer size (which is analogous to the correlation distance in the 

fractal model), and P and y are coefficients that depend on scatterer shape and D, 

respectively. Other less general representations of scattering Q have been used by 

Rovelli (1982), Richards and Menke (1983), and Hough et al. (1988).

The questionable validity of the assumptions involved in employing this method (the 

additive relation and the frequency dependency assumption) cast doubt on the validity of 

the estimations.

44



Method by Amundsen and Mittet (1994)

This method uses an inversion strategy to estimate the inelastic attenuation. The scheme 

is restricted to zero-offset vertical seismic profiling (VSP) data acquired in a medium 

with plane horizontal layers. The real VSP data are filtered to satisfy this assumption. The 

filter is designed to remove all energy except for the direct downgoing wave and the 

primary reflected wave from each interface.

The wavefield is determined uniquely by a frequency-dependent complex propagation 

velocity in each layer. Both frequency-dependent phase velocities and quality factors can 

be determined from the complex propagation velocities. If we know the complex 

velocities or the complex wavenumbers, then the complex wavenumber in layer n has the 

relationship

where c, is the complex propagation velocity, is the phase velocity, and is the 

absorption coefficient. Since the image and real part are respectably equal in complex 

equation (3.18). the phase velocity and attenuation coefficient (or quality factor) can be 

calculated. For example, if 

= K +//„. then

ûr,(ty) = / ,  (3.19)

C r W ) = ^  (3.20)
K.
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The complex propagation velocity is obtained by an inversion algorithm. The inverse 

problem in this method is formulated as an optimization problem where the least-squares 

objective function F (m )

F (m ) = ^ ||A V '‘>||;̂  (3.21)

is minimized in each iteration with respect to the model parameter vector m  of length M.

= [/n, ,/n ,, rriy,] . (3.22)m = ,/n,.

The asterisk (*) denotes complex conjugate and k the iteration index. The parameter 

vector m is partitioned to include the frequency-dependent propagation velocities c and

frequency-independent coupling factors a. that is, m = [c^,a^|^, where C )  denotes

transpose. The number of elements in c is equal to [number of layers] times [number of 

the frequencies], and the number of elements in a is equal to [number of receivers]. 

Elements c, represents complex propagation velocity element c,(ty) in layer f for a

given frequency tu. Similarly, the data are represented as elements of a vector V of length 

N,

V = [y ,,K  V,f,  (3.23)

where N is equal to [number of receivers] times [number of frequencies]. Element V, 

represents particle velocity data element V{z^,ctj) at receiver position for a given 

frequency cu. Since we assume that the geophone-to-formation coupling is unknown, this
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coupling may be included in the forward modeling. Then the difference between the 

observed data and the predicted data A in iteration k is given by

-  V " ' (3.24)

where A'*’ is a diagonal matrix with elements composed of the elements in vectors a '“  . 

Using a Gauss-Newton method to solve the minimization equation, the parameter update 

vector in iteration k is obtained as A m '* '. The model parameters are given as

m “ *" = m * + A m ' ‘’ . (3.25)

This method takes advantage of the parameterization technique in inversion theory. It 

estimates the frequency-dependent complex propagation velocity and the coupling factors 

by partitioning them into the to-be-inverted vectors. The frequency-dependent quality 

factor and the frequency-dependent phase velocity are calculated from the complex 

wavenumber. Since the coupling factors are included in the to-be-inverted variables, 

coupling effects are removed.

The disadvantage of this method is that it requires all the multiples and up-going waves 

in real data to be filtered to satisfy the assumption.
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3.2.2 Progress in estimating Q from surface seismic data

Two methods are typically used in estimating Q from surface seismic data, the power 

spectral ratio method (Raikes and White, 1984) and the matching (inversion) technique 

(White. 1980; Lamb. 1998).

Estimation from power spectral ratios

This method estimates Q from the power spectral ratios of the reflection signals in two 

time intervals of surface seismic data. Assuming P ,( / ) a n d  P ,( / ) a r e  the power spectra 

in two separate time gates on the seismic section at r, and r , .  this method gives:

l n ( P : ( / ) /  P .( / ) )  = 2 1 n |A ,( /) /  A ,( / ) | (3.26)

= -2 ;zf(r, - i ^ ) /  Q

This equation follows from the relation:

P s ( f ) = \ M f t  Pr i f )  (3.27)

between the power spectrum P J J )  of a seismic reflection signal s, and the

power transfer function | a ( / ) | ’ of the seismic wavelet a. and the power spectrum 

Pr(f )  of the reflectivity sequence r, from which the signal derives. It is assumed that the
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spectral coloring of the reflectivity either does not change between the two intervals or is 

compensated and that no other frequency-dependent effects are operating.

The power spectra can be estimated in various ways. One way would be to use multiple 

coherence analysis (White, 1973). This separates the signal and noise spectra on the basis 

of the short range, trace-to-trace coherence of their spectra! components. Alternatively, 

the random noise in the data could be attenuated by applying a spatial filter such as a 

Karhunen-Loeve filter or a signal-preserving f-.x filter (Harris and White, 1991) to the 

aligned reflection signal. The alignment of signals is very important because timing jitter 

would cause a loss of coherent spectral power at high frequencies. The other way to 

estimate power spectra is to use autocorrelations and timing jitter will not cause a loss of 

power spectra if autocorrelations are used.

Raikes and White (1984) think that the assumption that the spectrum of the reflection 

sequence is stationary over the analysis windows is a poor assumption and modified this 

method by using an estimate of the reflectivity from well log data. If the /? , ( / )  and 

/ ? , ( / )  are the calculated reflectivity spectrum from the portions of the reflectivity trace 

corresponding to gates I and 2, the spectral and spectral ratios can be corrected by

(3.28,
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Although we do not extract the wavelet in this method, calculating the reflectivities over 

the corresponding window and selecting the proper window size are difficulties. Small 

windows will exhibit strong Gibbs phenomena and will be most colored by local 

reflectivity. Nulls in the reflectivity spectrum will be magnified for equation (3.28). This 

method also assumes the multiples are previously removed by processing.

Estimation by matching seismic data and synthetic seismograms

This method estimates attenuation by extracting the seismic wavelets in the two intervals 

by matching the seismic data to well-log synthetic seismograms. The matching technique 

is described by White (1980) and Lamb (1998).

Given the reflection coefficient time series and the processed seismic trace at the well 

position, D, we can attempt to find the wavelet by the objective function:

■V,

0 { W } = X ( s , (3.29)

where W represent the wavelet with a length o f 2 N* +1, the {ty}are user assigned 

weight functions, and S is the synthetic seismogram, given by

'V.

for 1 <= I <=Nt (3.30)
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R is the refection coefficient series (expressed in time), N, is the number of elements in 

the time series.

dO
Setting = 0 to get a least squares solution to the problem, yields the least square

estimation of the wavelet. Transforming to the frequency domain, the spectral ratio is 

used to estimate the Q.

This method tries to extract the wavelet over a small window and will suffer from 

windowing problems. It also can not consider the scattering attenuation properly and it 

has the similar time matching problem as the power spectral method.
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CHAPTER 4. FULL WAVEFORM GLI INVERSION 
METHOD FOR SURFACE SEISMIC DATA

4.1. INTRODUCTION

To properly measure attenuation from surface seismic data, scattering removal and time- 

varying wavelet extraction are necessary. From Chapter 3, it is evident that, due to the 

difficulty of scattering separation in surface seismic data, existing methods avoid doing 

so, by assuming multiple effects are removed by processing. Nevertheless, these methods 

still suffer from wavelet extraction problems. In this chapter, an inversion method 

designed to solve these difficulties is described.

Instead of trying to extract the wavelet directly from the seismic urace and subsequently 

separating scattering effects, a full waveform forward modeling and damped generalized 

linear inversion (GLI) is used to invert Q from the surface seismic trace. Since the 

forward theory includes all the multiples and attenuation in the synthetic, it allows direct 

extraction of the intrinsic Q from the seismic trace while taking into account scattering 

effects. The employment of the robust damped GLI algorithm will produce more stable 

and accurate inversion results. GLI has some powerful features that are very helpful to 

the estimation problem. It allows parameterization of known quantities and unknown 

variables in the inversion scheme. This feature allows the application of constraints to the 

inversion results. It can also reduce effects of some unknowns such as scale factors and 

filters by assuming they are to-be-inverted variables. The impedance profile and source
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wavelet are assumed to be known. In addition, the seismic trace should be specially 

processed to preserve the multiples and amplitude information.

In the following section, the details of the forward modeling theory, the GLI scheme, 

damping technique and parameterization are described. A feasibility study is conducted.

T k  a  m * I 1 1 r r  f U o f  n f t o r »  i  » o  o n  n n n  k  A  a l r n o o ^  » » f v r »  w »
A tlW t( Wti iWi IWCii ** U WAAtt WW 4 W W • W A W V* M4444WOC 44W1Ü

the inversion method. Even .ACC filtering will not affect the results.

4.2. FORWARD MODELING THEORY

Based on the general principles of delay, continuity, and energy conservation, elastic 1-D 

seismogram synthesis including multiples (Claerbout, 1976) can be combined with 

viscoelastic theory to produce synthetic seismograms including all the multiples and 

attenuation.

4.2.1 Assumptions

The following assumptions are made:

a. 1-D layered inelastic media.

b. Normally incident elastic waves o f both pressure and shear type.

c. Constant Q.
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4.2.2 C ontinuity  p rincip le  and energy conservation

Consider a horizontal interface between two media. M l and M2. If a plane wave of unit 

amplitude is incident on the boundary, there will be a transmitted wave of amplitude t (or 

t )  and reflected amplitude c ( or o') as depicted in Figure 4.1.

.Ml

M2

Figure 4.1. W aves incident on an interface, reflected t (or t), transmitted c ( or c l

Ordinarily there are two kinds of variables used to describe seismic waves, and both of 

these can be continuous at a material discontinuity. One is a scalar like pressure, or 

stress. The other is velocity which is a vector. In acoustic problems, we assume the 

interfaces between different solid media are usually firmly bonded together, so that there 

is no slippage of one with respect to the other. According to the continuity  principle, the 

particle displacement velocity and the vertical component o f the stress must be 

continuous across the discontinuity surface (for detailed derivation see, the boundary 

condition description in Chapter 2). The boundary condition across the interface in the 

case of Figure 4.1 can be given as
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f =  l  +  c  and t = l  + c for the scalar variable (pressure) (4 .1 )

or I = / + C and  1 = f + C for the vector variable (velocity) (4 .2 )

Energy of the wave is proportional to the squared wave amplitude. The proportionality 

factor depends upon the medium in which it is measured. According to Claerbout (1976), 

when particle velocity is measured, the scale factor is called the impedance I. When 

pressure is measured, the scale factor is called the admittance Y. In the pressure case, if 

we denote the factor of the top medium by Yi and bottom by Yz, then the statement of 

energy conservation that the energy before incidence equals the energy after incidence is

K l -  = K c -  +  y;r- (4 .3 )

Solving for c from equation (4.1) and (4.3) gives

Y . - Y

which gives two important equations for later use

c' = -c and l - c ’ =fr '  (4.5)
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In Chapter 2, we also prove that in the particle velocity case, we will get the same results 

as (4.5), but

c = (I1-I2)/(II+I2). (4.6)

4.2.3 Up and  down going wave

We know that all waves obey the wave equation and the basic solution to the 1-D scalar 

equation (see wave equation in Chapter 2) is

U(f) = % ]a ,g " " -" ' (4.7)

where co is angular frequency and k is the wave number. Mathematically we call the first 

part the downgoing wave if the x direction is downwards, the second is the upgoing 

wave, because the waves represented by the two parts will propagate in opposite 

directions.

Physically, in acoustics, one deals with pressure P and the vertical component of particle 

velocity W (not to be confused with wave velocity v). Another possible definition 

(Claerbout, 1976) for U (upgoing) and D (downgoing) is

D=(P+W/Y)/2 (4.8)
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U=(P-W A0/2 (4.9)

with the inverse relations

P=D+U (4.10)

W=(D-U)Y (4. II)

From this definition, we can see the relation t= I+c associated with continuity of pressure 

and the relation r=I-c associated with vertical component of particle velocity. The 

relation f=I+c says the pressure P is the same on either of the interface. The relation r=I-c 

says that D-U is the same on either side of the interface.

Mi

D'
c' t'

' Ü  D

c t

Figure 4.2. W aves incident and reflected from an interface in term s of up 

and down going waves.

No matter what definition of up and down going wave is used, the boundary conditions 

establish the relation between the waves across a boundary. Referring to Figure 4.2, we 

have

U ' =  f U - r c 'D  (4.12)

D  =  cU  +  r 'D '  (4.13)
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which may be arranged in matrix form

0] ' u ' ' - 1 c' ' u '
D 0 D

(4.14)

Now multiplying by the inverse of the left-hand matrix

_ 1 ' l 0 " ■-1 c ' u '
D c - f j _ 0 _D

_ i ■-1 c ' u '
t -  c cc' --tt ' D

(4.15)

Finally substituting equation (4.5) into equation (4.15), yields an equation to extrapolate 

the waves from the medium M l to the medium M2.

'U 1 ‘l c ' u '
p t c 1 p

(4.16)

Let us now consider the layered medium shown in Figure 4.3. For this arrangement of 

layers, equation (4.16) may be written

'u 1 ■ I c .- 'u'
p . . .  ’  ^ 1 _p (4.17)

58



Tu, iDi

TU'i iD'i

T u , iD ,

Tu': iD ':

Tu, • in .

Figure 4.3. Layered medium model (different from Goupilaud-type layered 
medium, this model does not require that layers have equal travel time.)

4.2.4 Wave theory in an attenuating medium

With equation (4.17), if we also know how to extrapolate the primed wave to non-primed 

wave, we will be able to extrapolate the waves from the bottom to the top or verse versa 

layer by layer. Actually, this can be done by applying the wave theory in an attenuating 

medium described in Chapter 3.

As discussed in Chapter 3, in an attenuating medium, the one-dimensional solution to the 

scalar wave equation yields the following expression for a plane wave propagating along 

the x-axis

(4.18)

where the complex wavenumber is defined as
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k = 0 - i a  = (4.19)

For different attenuation models, the complex wavenumber k has different expressions. 

For the constant Q model, the real part o f the wavenumber in equation (4.19) is expressed 

as the sum (Bickel and Nataxjan, 1985)

^ Ù) CÜ  ̂ (Ü
(4.20)

where cü / is a pure delay term with phase velocity Vq associated with the reference 

frequency

Based on this theory, let us consider the layered medium shown in Figure 4.3 again. 

Suppose the thickness of kth layer is x .̂ This gives the kth layer a relation between 

primed and unprimed waves (as shown in Figure 4.3) at any frequency.

D[ =
(4.21)

which mav be arranged in the matrix form if we assume z = e'®*

' u ' ' H z  O le / '

p k . 0
(4.22)
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Combining equation (4.22) with equation (4.17), we get an equation to extrapolate the 

waves from one layer to another layer.

'u I ' I  c , ' ' H z , 'u'
D 0 \ D

U
D

(4.23)

4.2.5. Z transform to Fourier transform

Equation (4.23) is derived in the time domain. To realize this extrapolation in the time 

domain, we need a specific assumption like an equal-time-interval layer model. Even so, 

it is still difficult to find a method to realize (4.23) for an attenuating medium. This 

section will show that equation (4.23) is also correct in terms of frequency domain.

The Z transform is defined as

BiZ)  = Y .b ,Z ' (4.24)

The substitution Z = e““ gives the Fourier transform in discretized form
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B(a» = ^ b , e ‘-  (4.25)

In the terms of the discretized function, the Z transform and the Fourier transform have 

the same properties. As in the Z transform, where the inverse Z transform merely 

identifies coefficients of various powers of Z with different points of time, the inverse 

Fourier transformation is ju st like identifying coefficients of powers of Z. So. when we 

write the expression

B(Z)  = + 6[Z + 6 ,Z ' H—  (4.26)

we have both a time function and its Fourier transform. If we plot the coefficients (bo, b,, 

b:, ....). we plot the time function. If we evaluate and plot (4.26) at numerous real O), then 

we have plotted the transform. Thus, equation (4.23), the propagation equation, is correct 

in terms of both time and frequency domain. Here we understand that U and D are 

evaluated at given frequency cu in equation (4.23).

4.2.6 Getting the waves from the reflection coefficients

A layered material may be specified by giving the reflection coefficient at each interface. 

Considering the basic reflection seismic geometry shown in Figure 4.4, alternate 

descriptions are to give any one of the scattered waves R(z) and E(z).
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o

\
Figure 4.4. Basic reflection seismology geometry. Impulse of unit amplitude going downward is 
initiated. The earth sends back -R(z) to the surface. Since the surface is perfectly reflective, the 
surface sends R(z) back into the earth. Escaping from the bottom of the layers is a  wave E(z).

Suppose there are k interfaces in the geometry. From the equation (4.23), we have

0

= n

1 /^ 4 '1 /

_ c j t ^ / ' t .^1

I / ZJ; / ' t l R
1 ^  J _[ + /?

F ,: '
R . I + R

- i M  ' - I ' - l  '  ‘ I - R  

l + R

(4.27)

From the first simultaneous equation we may solve for R

/? = (4.28)

The second equation of (4.27) gives the escaping wave as
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-  FpF,[
F  = (4.29)

1̂1

R and E are evaluated at a given frequency, so it is understood that R(Z)=R(o)) and 

E(z)=E(Q)}. Using the inverse Fourier transformation gives the time functions for R and

R{i) -  ^R(co)e''‘̂ dûJ

 ̂ -  (4.30)

E{ t )  ^ E {(ü )e ' “̂ <1(0

Note that since R(cu) and E(cü) are discrete and bandlimited when we realize the method, 

there will be sampling and windowing effects for both R(t) and E(t). These are classical 

signal analysis problems which can be mitigated somewhat by evaluating R(cu) and E(co) 

at a sufficiently fine sampling rate and sufficiently broad bandwidth. Please also note 

that here R(t) is the response of the layered strata to an impulse. For a general source s(t), 

R(t) must be convolved with s(t).

4.2.7. Synthetic examples

Model studies were used to test the forward modeling algorithm. Figure 4.5-Figure 4.8 

show both the models and their synthetic results.
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Figure 4.5 shows a one-layer model. In this model, the source is an impulse and Q of the 

first layer is 50. We can see repeated multiples exhibiting the proper impulse response for 

wave propagation in a constant Q medium.

Figure 4.6 is also a one-layer model case, but with a theoretical mixed-phase wavelet as 

the source, and compared the two different cases when Q=1000 and Q=50. This 

comparison clearly shows the attenuation and dispersive properties of a wavelet traveling 

in constant Q medium. After passing the attenuating medium, the amplitude of the 

wavelet is seriously attenuated and the pulse is broadened and phase shifted.

Figure 4.7 is a three-layer model. The source is an impulse and Q for second layer is 30. 

This Figure shows the repeated multiples and reasonable attenuation as well as dispersion. 

We also can see that some reflections wrap around when the window is too small.

Figure 4.8 is also a three-layer case with a theoretical mixed-phase wavelet as the source, 

the second layer designed as the potential reservoir and compute seismograms when Q is 

set to 1000 and to 10. This figure shows significant shift and attenuation of the wave 

after passing through the reservoir.

65



O '

0.10
Oft

s1=120 01=50
0.08

200 ft

.2=40 02=1000

0.06

■a
3 0.04

cx

0.02

0.00

- 0.02

-0.04
0.150.00 0.05 0.10 0.20 0.25 0.30 0.35 0.40 0.500.45

Tim e (s)

F igure 4.5. Syntfietic trace for ttie one layer model . Impulse source, 0=50. 
s i , and s2  are slow ness (ps/ft).



o»■-J

5.00E-01
0 feet

s i  = 120, Q?4.00E-01
200 ft

3.00E-01
02=1000
s2=40

2.00E-01
0)

T3

2
•■= 1.00E-01

I
O.OOE+00

1000 ft

-1.00E-01

-2.00E-01

-3.00E-01
0 0.05 0.150.1 0.2 0.25 0.350.3 0.4 0.45 0.5

■0=1000
0= 50

tim e (s)

F igure 4.6. Comparison of one layer model when 0=1000 and 0=50. s i and s2 are 
slow ness (ps/ft).



o\
00

s1 = 120, 01 = 1000
2000.4

s2=40. 02=30

5000.3

s3=120, 03=1000

0)•o
I
CL

I
S4=40, 04=1000

- 0.2

-0.3
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

time (s)

Figure 4.7. Impulse source, three layer model, 0=30. s i ,  s2, s3and s4 are 
slow ness (ps/ft).



s

4.00E-01

first reflection from 
second layer3.00E-01

2.00E-01

1.00E-01

O.OOE+00

a
<  -1.00E-01

s1=50, 01=1000
-2.00E-01 200

500-3.00E-01

s3=50, 03=1000

fisrt reflection 
from first layer

-4.00E-01 800 ft
s4=150, 04=1000

-5.00E-01
0.050 0.1 0.2 0.30.15 0.25 0.35 0.4

tim e (s)

F igure 4.8. Comparison of three layer model when 0= 1000  and 10. s i ,  s2, s3and s4 are 
slow ness (fis/ft).



4.3 DAiMPED GENERALIZED LINEAR INVERSION

4.3.1 Inversion problem definition

Our goal is to estimate Q from the seismic trace near a borehole. With our forward 

model, all wc need is an inversion algorithm. The inverse problem is described as; given 

the observed seismic trace at the borehole, velocity profile (or impedance profile) and 

source wavelet, to invert the Q profile. Mathematically, this is equivalent to: minimize an 

objective function that can be defined by (Meju, 1994)

= = i l Y - Y f  I=I,2,3,..,n (4.31)

where Y = ( % , K , %  T,) is the observed seismic trace, and Y '= ......1^0is

the predicted trace by theoretical model. Theoretically, Y ' is function of the independent

parameter vector m = (m ,,m ,..... m^ ) , i.e. Y ' = / ( m ) .  The independent parameter

vector consists of all the unknown independent variables needed for forward modeling. In 

our model, the impedance profile and the source wavelet are known. The unknowns, m, 

constitute the Q profile. We may also want to put other parameters into m, such as scale 

factors, filters etc, if they are not known. The problem is that the more unknowns in 

inversion, the more uncertainty in the results. So, generally we intend to limit the 

unknowns to as few as we can.
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The independent parameter vector, m, is inverted by iteratively minimizing the objective 

function. For the linear predictive function / ,  Y = Gm where G is the coefficient 

matrix. Then the objective function becomes

0  = (Y — Gm) (Y — Gm) (4.32)

where T means transpose of the matrix. The well known least-squares solution for the 

parameters estimates (denoted by m' ) is given by

m '= [G ^ G l‘‘G^Y (4.33)

Q inversion is nonlinear, so, the predictive function can not be expressed in the form of

Y' = G m . To solve the nonlinear problem, we have to turn to a generalized method

which linearizes the nonlinear problem by expanding function /  in a Taylor series and 

writing the Taylor series through the linear terms

Y' = / o + P J  (4.34)

where /g  is the initial prediction, 5 is the first order correction vector to the initial 

parameter vector m, P is the sensitivity matrix and

>(nxkl _
j
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Now 5 appears linearly in the prediction of Y 'and  therefore can be found by the 

standard least-squares method of setting I dS^ = 0 ,  for all j. Thus 5 is found by

solving

( P ^ P ) J = P ^ d  and J = ( P ^ P ) - ' P ^ d  (4.36)

where d = ( Y -  .

Solving for correction vector 5 from equation (4.36) gives the optimum correction. Once 

the correction vector is known, it is a simple matter to solve for the corrected parameter 

vector m.

m = m„ + J  (4.37)

where m„ represent the initial guess of the parameter vector m.

Equation (4.37) is an approximation since the Taylor series predictive function is 

truncated to the first order to linearize the function. This makes the solution for the 

correction vector from equation (4.36) an approximation, and the solution for m in 

equation (4.37) must also be an approximation. This approximate error can be reduced by 

using the corrected initial guess from equation (4.37) as a next initial guess in equation 

(4.36) and iterating through the problem again. This iterative procedure is outlined in 

Figure 4.9. The iterative loop of Figure 4.9 will gave an error that is decreasing in a 

roughly exponential manner with each iteration if the initial guess lies within the region 

of convergence. The error computed with each iteration is defined by the new objective 

function d>. The loop is continued until the error drops below some predetermined level
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or until a new correction vector fails to give an improvement over the previous iteration’s 

error. This is called Generalized Linear Inversion (OLD (Marquardt, 1963; Cooke et. al. 

1983; Meju, 1994).

0  = 11 Y-Y'lp 

small enough
yes

no

done

Update Q 
profile

Observed seismic 
trace Y

Full waveform 
synthetic trace: Y

Set 3<tv9m = 0 
Solve correction vector

Impedance profile from well 
log and user supplied Q profile

Figure 4.9. The chart flow for inversion iteration procedure
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4.3.2 Parameterization

With the impedance and the wavelet known, the basic parameter left unknown is Q. The 

Q profile must be discretized into the independent parameter vector m . We will represent 

Q profile by a serious o f Q value and interval thickness as shown in Figure 4.10.

Figure 4.10. Example of a  discrete Q profile

The Q profile is listed as Q value and interval pairs repeated from top to the bottom, i.e. 

m  should be in the form of
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m = ( 2 , , D , , Q , ,D , ..... Qt ' D J  (4.38)

Since the seismic trace is affected by Q slightly, we will not use either the sonic interval 

or the seismic sample interval as the Q interval but rather will consider geological and 

geophysical data first to make the Q intervals as large as reasonable. The Q intervals are 

nul required to be equal. Both the interval thickness and the interval Q will be inverted by 

the method.

4.3.3 P aram eters  o ther than Q profile

Since the forward modeling assumes that the reflectivity and the source wavelet are 

known, the only other parameters left are the scale factors. There are two types of scale 

factors, one is a constant factor generally caused by instrument gain and processing; 

another is time varient scale factors caused by processing such as AGC. Since the 

reflectivity and source wavelet are known, the constant scale factor can be incorporated 

into wavelet. The time variable factors will be circumvented by parameterizing them in 

the inversion. For example, we can assume the window length of the AGC as unknown 

and add that to parameter vector to be inverted. Then the independent parameter vector 

m becomes

m = ( 2 i . Dl, (22, D ,..... ) (4.39)
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4.3.4 Sensitivity matrix

To compute the sensitivity matrix in the inversion method, it is necessary to take partial 

derivatives o f the synthetic seismic trace with respect to each boundary location, and 

each interval Q value. Also needed are the partial derivatives of the synthetic with respect 

to tile icalc factor. Computation and bio rage of these derivaiives is the most time and 

computer memory consuming operation encountered in generalized linear inversion. 

Sometimes it even is impossible to calculate the matrix analytically because the forward 

modeling theory is too complicated. Fortunately, generalized linear inversion is a very 

robust process and will allow one to use approximations to these partial derivatives that 

may not be exact, but are computationally more efficient than the exact derivatives. In 

fact, the error introduced by these approximations is probably less than the error due to 

truncating the Taylor series expansion. A number of different approximation techniques 

are available to generate the desired derivatives. Here we will use finite difference 

method. This numerical technique is a left-finite difference;

d SU )  ( 5 ( m , + A m , ) - S ( m , )

 z ; -------------

where S(t) represents the trace value at time t. The m; represent the ith parameter. A/n. 

is the finite difference.
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4.3.5 Damping technique

In practice, it is found helpful to correct the parameter vector, m. by only a fraction of the 

correction vector as pS , 0<P<=I; where P is called the damping factor, otherwise the 

extrapolation may be beyond the region where the function /  can be adequately 

represented by équation (4.34), and would cause divergence of the iterates. This is done 

by solving equation (4.36) with a modified least-squares-error procedure. The 

modification consists of the addition of the damping factor to the classical least-squares- 

error solution which gives

i P ^ ?  + j 3 l ) S = ? ^ d  and J = ( P ^ P  + )g I ) - 'P " 'd  (4.41)

where I is the identity matrix. The damping factor, p, reflects the local linearity of the 

error surface and can be calculated analytically as discussed by Marquardt (1963) or it 

can be chosen in an empirical manner. Here we determine our damping factor according 

to the suggestion by Marquardt (1963) as follows

1. let C>I, say C=IO

2. let P denote the value of P from the previous 

iteration. Initially let P=1.0 for example.

3. compute d>(>^ and $ ( /? /  C)

4. if $ ( / ) /C ) < =  $ ( /g ) . let P=P/C

5. if $ ( / ) /C ) >  $ ( /g ) , let P=PC
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4.3.6 SVD solution to matrix equation

To solve the matrix equation, a widely used matrix solution method (singular value 

decomposition or SVD ) developed by Lanczos(1961) is used here.

According to S \T ). an n x n  or n x i  (n>=k) matrix P, say. can be factored into a

product of three other matrices: P = UAV^, where and are respectively the

data space and parameter space eigenvectors, and A is a k x k  diagonal matrix 

containing at most r nonzero eigenvalues of P, with r < k .  These diagonal entries in 

A ( / l , , /L , . . . .  ) ttre termed the singular values of P. This factorization is known as the

SVD of P. If the eigenvalues of a matrix are small, the matrix is said to be ill- 

conditioned. The SVD method is popular in geophysical data analysis because it is 

robust mathematically and stable numerically. It also provides other vital information on 

the state of the model and data thus enabling model resolution covariance studies.

Apply SVD to equation (4.41) in terms of the SVD of P

P ^ P  + ya = V AÜ  ̂  •  U A V  "■ + ySl = V( A- -h ;SI) (4.42)

and the least-squares generalized inverse is

(P ^ P  -h P ^  =  V (A - VAU"^ = V (A - + y3[)'‘ A U ^ (4.43)
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so that the least-squares solution is given by

J  = ( P ^ P  + ■' P ^ d  = V ( A ' + A U  (4.44)

4.3.7 U niqueness and  resolution

Once the correction vector has been computed from equation (4.44), it is possible to 

compute the resolution matrix as defined by Backus and Gilbert(I968):

R = P - 'P  (4.45)

The matrix R is a measure of the uniqueness of the solution. When R is the identity 

matrix, the solution is unique. When R is not the identity matrix it indicates just which 

parameters are not well resolved. If the nth element of the nth row (that is the element 

that lies along the diagonal of R ) is one, then the nth param eter in the solution is unique. 

When this element is not unity, the adjacent elements indicate just how well resolved the 

nth parameter is com pared to its neighbors. For example, if the elements of the nth row of 

R is all zeros except for n-I, n, n-H elements which are all 1/3, then the nth parameter in 

the solution is ill-resolved with respect to the n-1 and n4-l parameter.
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4.4 FEA SIB ILITY  STUDY

To test the performance of the inversion algorithm, we carried out model studies. As 

shown in Figure 4.11, this is a four layer 1-D model.

u ri
200 FT

500 FT

800 FT

1000 FT

Q 1=1000. S 1=0.00005 s/ft

Q2=50. 52=0.00015 s/ft

Q3=LOOO. 53=0.00005 s/ft

Q4=1000. 54=0.00015 s/ft

Figure 4.11. 1-D four layer model

In our test study, we generate synthetic traces based on the parameter profile shown in the 

Figure 4.11 using full waveform forward modeling. This synthetic will be treated as the 

original field trace. Then the following numerical inversions are carried out.

In first model inversion, we change Q2 and H2 from 10 and 300 to 50 and 250 

respectively and other parameters do not change. Using the changed parameter profile as 

the initial model, we try to use the inversion algorithm to extract the original profile. 

This is to test how sensitive our inversion algorithm to both the interval thickness and the 

Q value. The result is shown on Figure 4.12. We see that for the model in Figure 4.11, if
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we just change the target layer parameters in certain reasonable range (Q from 10 to 20, 

A // = 50 ), the Q profile can be perfectly recovered.

In the second, third and fourth model inversion examples. We just change Q of layer 2 

and let the boundary free to see how well this algorithm can resolve the Q value. We 

change Q2 troni 10 to 50 in second example. We can see the Q2 still can be recovered 

perfectly (Figure 4.13). Then we change the Q2 from 10 to 100 in third example. The 

results (Figure 4.14) show a little tradeoff in thickness identification and both the 

thickness and the Q value are recovered very well. Finally we just change the Q2 from 10 

to 1000 in the fourth example. The results (Figure 4.15) show more tradeoff of thickness 

than does example 3, but both the thickness and Q value are still recovered very well.

The above four tests assume our seismic traces are not processed and that the multiples 

and the amplitude all are preserved. In fact, seismic field data are processed and generally 

the amplitude cannot be preserved. To model the facts, we add a “light” AGC to our 

forward model to simulate processed data. In the inversion process, it is supposed we 

just know that the seismic trace is AGC-filtered, but we do not know what AGC is used. 

In this case, we employ the powerful feature o f the inversion algorithm, the 

parameterization. What we do is that we assume the length of the AGC filter used is an 

unknown and parameterize it into the parameter vector. Then we change the Q2 from 10 

to 1000 as in example 4 and repeat the inversion procedure again. The inverted Q profile 

is shown on Figure 4.16 with the initial and original profile. Figure 4.16 shows that the 

inversion result of filtered data is as good as the result of unfiltered data in example 4.
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This means our inversion algorithm will be very robust even working with filtered data if 

we parameterize variables of the processing methods into the independent parameter 

vector.
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CHAPTER 5. ITERATIVE SCATTERING-REMOVAL 
METHOD FOR DOWNHOLE ATTENUATION 

MEASUREMENTS USING VSP’S

5.1 IN TRO D U CTIO N

In Chapter 3, a general description of the methods to measure attenuation from VSP data 

were given. Although these methods are feasible in theory, they have various difficulties 

when applied. Typical difficulties are scattering-removal. first arrival isolation and 

coupling variations. Existing methods include: (1) Spectral ratio method of Kan et al. 

(1981) which tries to solve the scattering problem by averaging spectra; (2) The inversion 

algorithm of Kang and Me Meehan (1994) which tries to separate scattering attenuation by 

using an additive relation (or assumption); (3) The inversion method of Amundsen and 

Mittet (1994) which address the coupling problem. All of these methods address certain 

aspects of the problem but none have completely solved the problem. Some of these 

methods have been improved in solving scattering problems. All these techniques suffer 

from the necessity to isolate the direct down-going arrival, although in principle, the 

inversion method could be extended to include the full VSP seismogram.

The method described here is a modification of Kan’s spectral-ratio method in principle 

and in technique, but is akin to extension of the inversion method in that it allows 

scattered events in the analysis window, thereby avoiding the first-arrival-isolation 

problem. This method, using the linear properties of seismic spectral ratios, is free from 

receiver sonde coupling problems unless the variations in coupling are frequency
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dependent over the seismic bandwidth. Using the available impedance profile calculated 

from well logs, VSP synthetics that include up-going and down-going waves, multiples 

and attenuation are calculated. The scattering effect is removed iteratively by matching 

real spectral ratios with synthetic spectral ratios.

Numencal modeling of infinite bandwidth and band limited cases shows that this method 

is accurate, effective and robust. Application to real VSP data from offshore Gulf of 

Mexico block Eugene Island 354 shows high attenuation associated with potential gas 

pay.

In this chapter, the modified spectral ratio method will first be described as will the 

presentation of VSP synthetics. The attenuation extraction method will then be tested by 

numerical modeling. Finally, the method is applied to real data from offshore Gulf of 

Mexico block Eugene Island 354 and the attenuation profile is compared to the available 

well log data.

5.2 ITER A TIV E SC A TTER IN G  REM O VA L M ETH O D

Supposing that the earth is laterally homogeneous and that the offset o f the VSP source is 

negligible, the amplitude spectrum of a windowed VSP trace at depth c, A ( f , a , z ) , can 

be written as

A { f , a , z )  = S { f , z ) E { f , a , z ) T { f , z )  (5.1)
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where f  is frequency, a  is the attenuation coefficient, c is the geophone depth, and S(f, z) 

is the field source spectrum which may vary from shot to shot. T(f, z) is the recording 

system transfer function. The earth response, E { f , a,  z),  is written as

E ( f , a . z )  = C ( / , a . : ) e x p [ -  c r ( / ,c ) : ]  (5.2)

Here, the effects of spreading, intrabed multiples and transmission losses are lumped 

together in G ( f , a , z ) .  Using the constant Q-attenuation relation where the attenuation

coefficient, a , is given by a ( f , z )  = J f  f Q i z W i z ) , gives

A (/. Q, z) = S{f . z )T{f , z )G(f ,  Q, z) expj^- - (5.3)

where V is velocity, and Q is the quality factor which can be assumed to be independent 

of frequency in the seismic frequency range (McDonal et al., 1958). In fact, Q need not 

be constant with frequency, only the product QV,  however, we expect V to vary only 

slightly over the seismic band. The amplitude spectral ratio a { f , Q)  for depths and 

is given by:

a ( f ,  Q) = (J{f) + t { f )  + g { f , Q )  + (5.4)
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where a( f , Q)  = ln (A ( / .2 ,c , )  /

A: = : ,  - : r  

a[f)  = \ r {s , i f ) /S , ( f ) l

g i f  ,Q) = \n[Ci f  .Q,z,) / G i f  , Q, z , ) \  

t( f )  = In iT i f  .z. ) / T i f  .z.))

The recording system effect. T(fz), includes two parts; the instrument filter and geophone 

coupling. The filter from the same instrument can be assumed invariant with small depth 

changes. If. in addition, the coupling effect is independent of frequency or the frequency 

dependence does not vary. r ( / )  is zero or a constant.

Suppose the waveform spectra have been corrected by the source signature S(f). Given 

K  = / QV . we have

a i f . Q )  = g i f , Q )  + K f + t i f )  (5.5)

We can replace g i f  .Q ) with g i f  ,Q. )  which is the spectrum where there is no 

intrinsic attenuation ( ) and make an initial Q estimation from:

c i i f , Q ) - g i f . Q , )  = K f T c i f )  (5.6)

Using this initial Q estimation from K, we can calculate the synthetic spectral ratio a 'as
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a (/.O) = (5.7)

This a 'i s  different from the true spectral ratio a. Subtracting equation (5.7) from (5.5). 

gives

a ( / . Q ) - a  ( / . ( 2 „ J  = . ?( / . ( 3) - . ?( / . Q „ , + f ( / )  (5.8)

Modeling shows that gif-Q)-g(f-Q,,„„uut'> approximately a linear function of the 

frequency. Thus equation (5.8) can be rewritten as

a ( / .0 )  -  a ( / . 0 , ^ J  = W  +f ( / )  (5.9)

where is the attenuation parameter we wish to determine, a ( f  ,Q) is the synthetic

spectral ratio calculated assuming 2 = 0 , , , ^ , .  AÂT is the estimated slope deviation of the 

synthetic spectral ratio from the true spectral ratio, and

= (5.10)

From equations (5.5) -  (5.9). the intrinsic attenuation can be estimated in the following 

way: Assuming the impedance profile is known from well logs, the synthetic spectral 

ratio can be calculated. If the synthetic spectral ratio of non-intrinsic attenuation 

g ( / . 0 _ )  is used as the scattering effect term g { f , Q  ) in equation (5.5). an estimation of
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Q from the slope K from equation (5.6) is obtained. This estimation is not exactly the true 

intrinsic Q, but deviates somewhat because the multiples have experienced different 

attenuation than primaries arriving in the same window. So, if this Q is used to calculate 

the synthetic amplitude spectral ratio, this ratio will be different from the correct spectral 

ratio, and the slope AK in equation (5.9) will be an estimate of the deviation from the true 

slope. Using this estimated deviation of slope to correct the former estimation, gives an 

improved estimate of Q. Applying this correction iteratively converges to the true Q 

value. Thus. Q can be iteratively estimated from the amplitude spectral ratio at c, and

The following procedure is used to estimate Q:

1. Calculate the VSP spectra within predefined analysis windows (preceding the tube 

wave and other non-modeled events) on the VSP data at the target depths, compute 

frequency spectra and perform source signature normalization.;

2. Calculate the spectral ratio between two depths from real data as S I;

3. Generate the synthetic spectra at the target depths;

4. Calculate the spectral ratio from synthetic data assuming no intrinsic attenuation as 

SO;

5. Subtract the logarithmic spectral ratios as ln(5, ) -  In(So). This is referred to as the 

contrast spectral ratio.

6. Estimate the intrinsic Q using the slope K of ln(S,) -  In(Sg) versus/,

7. Calculate the spectral ratio from synthetic data assuming intrinsic attenuation has a 

value of the estimated Q from step 6 as S2 ;
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8. Compare SI and 52, if the two curves have discrepancy below a predefined 

threshold, the iteration stops;

9. Use the difference of ln(S, ) -  ln(5, ) to estimate the slope deviation AAT ;

10. Use AK  to correct the former estimate of Q and repeat the procedure from step 6 

using the corrected Q.

As down-going and up-going events are affected by the Q profile outside the depth range. 

Cl and C;, the iterations must proceed simultaneously for all depth ranges.

Note that this method does not use the wavelet spectrum but the spectrum of the response 

signal (the VSP trace) to calculate the spectral ratio. This avoids wavelet extraction 

difficulty. The synthetic calculation already includes the up- and down-going waves in 

the VSP trace; there is no need to filter out up-going waves and multiples as is done by 

Amundsen and Mittet ( 1994). In fact, all arrivals become part of the signal, and do not 

confound the spectral ratios by introducing spectrum notches that may vary in frequency 

between depths. Synthetic studies show that the technique converges without requiring an 

initial Q profile starting model.

It is obvious that the key to this method is the synthetic VSP. In the following the full 

waveform synthetic VSP modeling algorithm is described.
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5.3 SY N TH ETIC  V SP

In Chapter 4. Claerbout’s method is modified to include inelastic non-Goupillaud media 

for surface seismic forward modeling. Here the method is extended to permit VSP 

synthetics that include inelastic non-Goupillaud media and geometric spreading. Tube 

waves are not modeled and are assumed to be suppressed by filtering or outside the 

analysis window.

5.3.1 M edium  model

The synthetic VSP method assumes a I-D layered inelastic medium and normally 

incident waves. A layered medium can be specified by giving the reflection coefficient 

and the transmission coefficient at each interface and the thickness for each layer. Figure

5.1 shows the general I-D medium, where t is the transmission coefficient, c is the 

reflection coefficient, x is the thickness. U refers to the up-going wave and D refers to the 

down-going wave, is the thickness of the kth layer, and are the transmission and

reflection coefficients at the kth interface for incidence from below the interface, and 

Cj are the transmission and reflection coefficients at the kth interface for incidence from 

above the interface, and refer to the up and down-going wave at the top of the kth 

layer just below the (k -l)th  interface. and refer to the up and down-going wave at 

the bottom of the kth layer just above the kth interface.
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Figure 5.1. The general 1-D medium model. refer to the thickness of the kth layer.

refer to the transmission and reflection coefficient at the kth interface from up to 

down. f j. Cj refer to the transmission and reflection coefficient at the kth interface from 

down to up. t / j , D j refer to the up and down-going wave at the top of the kth layer just

below the (k-1) the interface. U^ r e f e r  to the up and down-going wave at the bottom 
of the kth layer just above the kth interface.
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5.3.2 Propagation equation

According to the continuity principle and energy conservation principle.

U
D r r.  i n

-I<-1  ‘  u  ‘ -IL J t

u
(5.11)

According to wave theory in an attenuating medium and geometrical spreading

I

D: = —

1̂ '- 
I D

I T / :  0”

-t . 0 D
(5.12)

where —  compensate the geometrical spreading, a  is the attenuation coefficient and 3
■̂k

is the wave number. The later two are related to quality factor Q and velocity V by

a  = 7Jf I Q V (5.13)

(5.14)

Combining equation (5.11) with equation (5.12) gives the propagation equation including 

attenuation and the geometrical spreading.
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1 / C ^ z ^ / t ^ x ^

(5.15)

5.3.3 Synthetic VSP

Considering the basic seismic geometry shown in Figure 5.2, the earth sends the up-going 

reriectivity series -R to the surface. The surface is free and returns the down-going 

reflectivity R back into earth. E is the escaping wave at the bottom layer. Suppose there 

are k interfaces in the geometry. From the propagation equation (5.15),

— R 
l + R

[ ~ R i

(5.16)

Solving equation (5.16) gives the reflected wave at the surface and the transmitted wave 

at the bottom in the frequency domain:

R =
1 2

£  =
F |  I F 2 2  F , ; F ; |

Fn - Fp.

(5.17)

(5.18)
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Figure. 5.2. 1-D seismology geometry. The impulse is initiated at the surface. The 
earth sends back refection -R to the surface. The surface is free and returns R back 
into earth. E is the escaping wave at the bottom layer.
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Equation (5.17) and (5.18) can be transformed into the time domain by Fourier 

transform:

R ( t )  = —  \ R i û » e - ““'dûJ
- i  

1 **
r-» /  ,  \  ________  1 / . . \ /  . .
a y i  ) =■ - —  \ CL \^uj ) t  d u t

I K  ^

(5.19)

Equation (5.17) and (5.18) give the reflected seismic wave R at surface and transmitted 

wave E at the bottom if impedance and Q are known. Knowing R in the first layer, the 

up-going wave U and down-going wave D at any interface K can be calculated using the 

following equation.

r ^ - i _ p / : , r ,  / f , — R
_  Cj / f j /f* ■■■[c,/f, /r ,  _ l + R

— R
l + R

(5.20)

The VSP spectrum at interface K is equal ).

5.4 NU1VŒRICAL EXAMPLES

Two numerical examples using VSP synthetics are presented to demonstrate the 

performance of the proposed method. One has an infinite bandwidth source signal, while
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the other is band limited. In both cases, the source signal passes through a set of 300 

synthetic layers that are I foot thick and have random velocities. The density is taken to 

be constant and is set to given value. Q estimation is carried out on the synthetic trace.

In the infinite band case, the source is an impulse that has an infinite frequency range and 

a constant amplitude. After the impulse passes through the modeled layers, its spectrum 

is attenuated and distorted. Figure 5.3 compares the spectra o f the transmitted waves in 

cases of intrinsic Q=°«>. 100 and 10 and illustrates how attenuation and multiples are 

interacting. The amplitude reduction due to Q attenuation is much greater at frequencies 

where multiples are constructive (spectrum peaks) and less where the multiples are 

destructive (spectrum valleys). In this case, the transmitted wave spectrum at the bottom 

of the section is divided by the impulse spectrum at the top o f the section to get the 

spectral ratio. Figure 5.4 shows the difference between the theoretical and synthetic 

scattering-only spectral ratios for Q=IO. Note that, due to multiples, the regression fit to 

the contrast spectral ratio differs from the correct line. The slope of the predicted line 

from the contrast spectral ratio is used to obtain an initial estimate of Q. The iterative 

procedure described in the previous section is followed to remove the scattering effects 

and to get the correct Q. First, the Q obtained by linear regression of the contrast spectral 

ratio from Figure 5.4 is used to estimate the synthetic ratio with attenuation. This 

synthetic ratio is different from the theoretical ratio because the predicted Q used is not 

the true Q. Figure 5.5 compares the theoretical spectral ratio for Q=10 with that from the 

synthetic generated using the first estimated Q. The estimated slope deviation (0.0018; 

see Figure 5.6) is then used to correct the former Q estimate. These steps are repeated
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until after 6 iterations, the estimated Q is close to the correct value. Figure 5.7 shows the 

real spectral ratio and the last predicted synthetic spectral ratio. The iterative results are 

listed in Table 5.1. Figure 5.8 shows the estimated constant Q lines in each iteration, the 

correct constant Q line and the difference of the observed and synthetic scattering-only 

(Q=oo) spectral ratios. The iterative procedure works effectively to remove the scattering 

effects.

Table 5.1. S tep results of Q estimation using iterative scattering-removal method for infinite band 
case

Iteration # K-slope estimated Q estimated AK-slope
correction

1 0.0033 6.67 0.0018
2 0.0015 14.67 •0.0012
3 0.0027 8.15 0.0008
4 0.0019 11.6 •0.0005
5 0.0024 9.17 0.0003
6 0.0021 10.5

In the limited band case (Figure 5.9), the iterative method also works well. The spectral 

ratio is calculated by dividing the transmitted wave spectrum at the bottom of the section 

by the wave spectrum at the top of the section. Taking the spectral ratio with Q=IO as the 

observed spectral ratio and the spectral ratio with Q=<» as the synthetic scattering-only 

spectral ratio. Figure 5.10 shows the subtraction of the observed spectral ratio and the 

synthetic scattering-only spectral ratio, the predicted trend from the subtracted curve and 

the correct line for Q=10. The scattering effects once again cause the linear regression fit 

to be erroneous. Following the iterative procedure, scattering is removed and a
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satisfactory Q value is estimated after 5 iterations. The iteration results are listed in Table 

5.2. Figure 5.11 shows the estimated constant Q lines for each iteration, the correct 

constant Q line for Q=IO and the spectral ratio difference.

Table 5.2. Step results or û  estimation using iterative scattering-removal method tor limited band 
case

Iteration # K-slope estimated Q estimated AK-slope correction
1 0.0029 7.49 0.0015
2 0.0014 15.7 -0.001
3 0.0024 9.2 0.0006
4 0.00234 9.4 0.0005
5 0.0023 9.57

To test that the method is unaffected by frequency independent coupling effects, synthetic 

tests were made where the VSP traces were multiplied by different scalars from location 

to location. The Q estimation was unaffected.

5Ô .\PPLIC.\TION TO REAL DATA

The method was applied to real VSP data (Figure 5.12) from well D l l  of the Eugene 

Island 354 Field, offshore Gulf of Mexico. This is a multi-shot VSP survey. The source 

signature is normalized for every trace in the frequency domain. The spectra are summed 

at each depth to get the average spectrum. The estimation method is applied to the 

average spectra from depths 4980.5 to 10175 feet where only a heavily edited sonic log is
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available. Some error in Q estimation is expected due to lack of impedance information 

above 4980.5 ft. Anomalous spectral traces are removed. Then the spectra are scanned 

visually. Depth zone boundaries were set by spotting locations where the spectral 

amplitudes were obviously attenuated differently. The iterative correction was applied 

simultaneously to the entire profile. That is, a gross Q-profile prediction by estimating the 

Q for each section from simple spectral ratio differences within that section was first 

obtained. Then the entire predicted Q profile was used to calculate the new synthetic VSP 

data. The new predicted VSP spectral ratio differences and the real spectral ratio 

differences gave a depth dependent profile correction, and the correction procedure was 

repeated. After only three repetitions, the iterative error fell below l.Oe-4. Table 5.3 lists 

the iterative results from each step. Figure 5.13 shows the computed intrinsic attenuation 

profile compared with related well log data. The attenuation profile correlates with 

independent well log information such as gamma ray and resistivity logs. At a depth of 

6825 feet, a potential reservoir exhibits anomalously high attenuation. Q values of 10 and 

under are estimated in much of the section at and immediately below the prospective pay 

zone, which is plausible if free gas occurs in the interval.
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Table 5.3. Step results of Q estimation using iterative scattering-removal method for real VSP 
data

G ross Q 
estimation

Iteration 1 Iteration 2 Iteration 3

Md D(KB) K Q DK Q DK Q DK Q
5325 0.0007 196.6 0 196.6 0 196.6 0 196.6
5825 0.0007 73.2 0.0002 56.9 -0.00003 58.9 7E-07 58.8
6825 0.0045 23.5 -0.0006 27.2 0.0003 25.2 -0.0001 25.8
7325 0.0126 4.7 -0.0039 6.9 0.0015 5.86 -0.0005 6.16
7825 0.006 9.5 -0.0006 10.6 0.0002 10.2 -0.00009 10.4
8325 0.0063 8.4 -0.0011 10.1 0.0003 9.58 -0.00008 9.72
8825 0.002 27.7 -0.0008 46.1 0.0004 34.6 0.00003 34
9275 0.0058 8.8 -0.0001 9.0 -0.0003 9.5 0.0001 9.33

10175 0.006 16.6 0.0004 15.5 -6E-06 15.5 -0.00002 15.6
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CHAPTER 6. DISCUSSION AND CONCLUSION

Accurate estimation of intrinsic attenuation from both surface seismic and VSP data is 

needed for attenuation research and calibration of attenuation based direct hydrocarbon 

indicators. In fact both measurements are difficult. However, as VSP data has the benefit 

of more information from the borehole in the form of sonic and density logs, it is easier to 

e.Ktract accurate estimates of intrinsic attenuation from VSP data. Accurate measurement 

of attenuation from VSP’s can not only help us to understand the relationship between the 

attenuation and fluid content, but also can verify the techniques of attenuation 

measurement from surface seismics. Thus starting with a VSP is an easy way to combat 

various difficulties in attenuation measurement and application.

Since measurements in a borehole generally are accurate in the depth direction but have 

small lateral penetration, large errors can be introduced by interpolation between and 

extrapolation from well locations. In contrast, surface seismic measurements are laterally 

continuous. Therefore, integrated application o f information from both seismics and VSP 

should improve the estimation of intrinsic attenuation and then reservoir properties.

The iterative scattering-removal Q estimation method from VSP data is more accurate 

than conventional spectral ratio methods. This method can compensate for traditional 

difficulties such as scattering, coupling and first arrival isolation, and at the same time 

allow accurate estimation of the intrinsic attenuation. The research presented here 

represents significant progress in attenuation measurement from VSP data. This method 

will be an important means o f calibration of surface seismic attenuation attributes. It has
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already confirmed anomalously high attenuation in a likely hydrocarbon zone, and will 

be an effective tool for the study of attenuation using field data. Further studies to 

establish the statistical relationship between intrinsic attenuation and reservoir 

characteristics can be expected. Accurate estimation of attenuation also provides 

important support for attenuation estimation from surface seismic data. However, the 

iterative scattering-removal method is not perfect yet. It will be re fn ed  during practical 

application. The current method is susceptible to errors caused by early arriving tube- 

waves or shear-waves (due to mode conversions in the borehole), and could be improved 

by incorporating these events into the forward modeling. Improved understanding of 

how the signal/noise ratio and windowing and sampling phenomena affect the spectral 

ratio is needed to further improve attenuation estimates.

.Application of attenuation as an exploration and development tool requires reliable 

measurement of Q from surface seismic data. The full waveform GLI inversion method is 

an important attempt in measuring Q from surface seismics. M ost of the existing 

methods are restricted because they cannot solve the wavelet and scattering problems. 

The inversion method addresses these problems by directly inverting Q from the seismic 

trace. The method requires that multiples not be attenuated by processing. It can perfectly 

recover the Q values in simple models even if there is not a well-defined initial Q profile. 

This promising result implies that we can simplify our inversion model and focus on the 

formations of interest to obtain the correct intrinsic attenuation. Case studies are needed 

to further test the full waveform inversion method and to extend attenuation 

measurements from the borehole.
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