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Abstract

This thesis investigates some o f the effects o f  anisotropy upon seismic exploration 

for oil and gas. In particular, the effects o f anisotropy upon amplitude versus offset 

(AVO) and seismic interpretation are examined.

The AVO studies were accomplished by developing two reflection coefficient 

programs. The first program computes the reflection across a boundary between two 

transversely isotropic media with vertical axes o f  symmetry (VTI). Although the 

equations for this program have been published, this thesis corrects important 

typographical errors in the published paper. The second program computes the reflection 

across the boundary o f two arbitrary anisotropic media. The computer implementation 

published here was developed specifically for this thesis work.

The VTI reflection coefficient program is used to evaluate several approximate 

reflection coefficient formulas. A method o f using three parameter cross-plotting is 

developed that can be used to consider the role o f  anisotropy in AVO studies and 

improve the accuracy o f  the interpretation.

The derivation and computation o f the reflection coefficient for general 

anisotropic media is described along with software written to implement the computation. 

This program is then used to compare the reflection response over a fractured reservoir 

model with a single set o f  fractures with the response over a reservoir w ith two fracture 

sets. The results clearly indicate that shear waves show the greatest potential for 

exploration o f fractured reservoirs using AVO methods.

XVI



A case history AVO study is applied to data collected In the G ulf o f  Mexico to 

Identity the Important parameters for a bright reflector using published empirical 

relationships between parameters. Inversions for Vp/Vs are found to be dependent on 

assured anisotropic parameters.

Finally, ray tracing through simple anisotropic models is used to evaluate the 

effects o f  anisotropy upon seismic processing. The results indicate that by ignoring 

anisotropy, a number o f  processing artifacts can be produced that will mislead the 

interpreter.
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Chapter 1 

Introduction

Reflection and transmission o f  plane waves at a plane boundary between two 

media are one o f the most fundamental problems in wave propagation. One significant 

application o f  reflection-coefficient studies is analysis o f  amplitude variations with 

offset (AVO).

In the past 15 years, AVO analysis, utilizing an isotropic earth model, has been 

widely used as a hydrocarbon indicator in the oil industry. However, subsurface 

formations are invariably anisotropic. It is intuitively obvious that the angular 

dependence o f  elastic wave velocities should modify the reflection and transmission 

coefficients (Wright, 1984, 1987; Thomsen, 1993). By ignoring the existence o f 

anisotropy, the conventional isotropic AVO techniques may be erroneous.

Seismic anisotropy is one o f the major problems facing the new frontiers o f 

exploration for oil and gas. This dissertation addresses important problems where 

seismic anisotropy needs to be taken into account.

1.1 Typical problem from the real world

Two typical anisotropy-related reservoir reflections can be easily recognized as 

described below:

1 ) Most reservoirs are surrounded by shales, which are usually highly 

anisotropic. During some shallow, surface-to-borehole field tests, it was found that the

1



near-surface shales behave approximately like transversely isotropic solids with a 

vertical axis o f  symmetry (VTI) (Robertson et, al., 1983).

2) Some reservoirs are naturally fractured. Laboratory measurements have 

shown that parallel fractures and aligned cracks can cause significant azimuthally 

velocity anisotropy (Nur, 1971; Hudson, 1981). In simple situations, this kind o f model 

can be treated as a transversely isotropic medium with a horizontal axis o f rotational 

symmetry (HTl).

Under each condition above, the anomaly ‘signature’ o f  hydrocarbons on AVO 

can be seriously distorted by the eftect o f the anisotropy.

1.2 Solution Approach

Theoretical and laboratory studies (Thomsen, 1986; Vernik, 1992; Tsvankin, 

1996) have shown that other anisotropic effects, such as non-hyperbolic moveout, 

higher attenuation, also exist in the data processing and interpretation. When seismic 

waves pass through an anisotropic rock, the anisotropy may influence or change the 

characteristics o f  the waves. For example, the traveltime may increase, the AVO 

responses may change, the recorded seismic traces may have less high frequency 

content, and the travel time and AVO trends may display azimuthal variations.

The underlying hypothesis o f  this dissertation is that anisotropy exists in the real 

world, and it is significant, observable, and measurable. Through an understanding o f 

anisotropic effects on seismic wave propagation and data processing, interpretation and 

analysis can be improved.



Conventional AVO analysis is based on approximate isotropic reflection 

coefficients. Under certain kinds o f anisotropic conditions, it has been modified using 

Thom sen’s anisotropic parameters (Banik, 1987; Thomsen, 1993; Ruger, 1997; and 

Wei, 1993). These reflection approximations simplify the dependence o f the reflection 

response upon the parameters. However, they may introduce larger errors beyond a 

certain range o f  incident angles. The exact solution for reflection coefficients at 

interfaces o f  anisotropic media is very complicated, but it is useful, and sometimes 

necessary. Other anisotropic effects, such as non-hyperbolic moveout, and higher 

attenuation, also exist in the data processing and interpretation.

1.3 Major Accomplishments

The objective o f  this research is to theoretically study the anisotropic effects on 

amplitude-versus-offset (AVO).

My approaches can be summed up as follows:

1 ) Study and rederive the exact reflection coefficient for VTI case following 

Daley and Hron’s (1979) derivation. Correct printing errors in the publication, program 

it and verify the output using energy flux method.

2) Compare the exact reflection coefficients with some existing approximate 

coefficients. It is important to realize which approximation is more accurate at different 

boundary conditions.

3) Study AVO crossplotting using exact P-P reflection coefficients under VTI 

condition. An improved approximation is given in this dissertation that better accounts 

for the TI elastic properties across the reflecting boundary.



4) Program ray-tracing through VTI models, and study the anisotropic effects 

on the stacked sections. The result shows false AVO anomalies on far-trace stacked 

sections which can be misinterpreted as persuasive hydrocarbon indicators.

5) Study and derive the exact reflection coefficient for general anisotropic case 

using Rokhlin’s (1986) method, and make a numerical program to compute the 

coefficients.

6) Application o f the anisotropic AVO study on synthetic fracttued models and 

real data.

With this research work, 1 wish to synthesize fundamental theoretical tools to 

provide a basis for dealing with the anisotropic effects on AVO.

1.4 Thesis Outlines

This dissertation is organized as follows;

Chapter 2 provides an overview o f the physical principles that leads to the 

boundary conditions under the supposition o f a rigid contact between the media. As a 

first step to study the anisotropic AVO, this chapter also gives a review on the reflection 

and transmission coefficients and the AVO analysis in isotropic media. Finally, it 

introduces the notations of anisotropic medium which is used throughout the thesis.

The theoretical background o f  AVO analysis is the study o f the change o f  the 

reflection coefficients as a function o f  angle of incidence upon the reflector. Chapter 3 

rederives the exact reflection and transmission coefficients for transverse isotropic 

media with vertical symmetry axes (VTI), and corrects some mistakes that are in the 

published literature on this topic. Then, some popular reflection coefficient



approximations are discussed and comparison studies are made between the exact and 

approximate reflection coefficients.

A VO  interpretation can be facilitated by crossplotting AVO intercept (A), 

gradient (B) and curvature (C) terms. However, this popular technique is challenged by 

the existence o f  anisotropy. In chapter 4, the effects o f  transverse anisotropy on angle 

dependent reflectivity is discussed. Recognition o f  anisotropic behavior on AVO 

crossplots can  help avoid AVO interpretation errors. Empirical corrections that result in 

more accurate crossplot interpretation are also introduced for specific circumstances.

C hapter 5 discusses the anisotropic effects on full and partial stacks. Non- 

hyperbolic m oveout resulting from localized variations in anisotropy can create many 

misleading artifacts such as apparent faults, folds, channels, flat spots, dim spots, bright 

spots, and A VO  anomalies on fully and partially stacked seismic sections.

In current exploration practice, it sometime requires an AVO study over a 

general anisotropic model, e.g.. a model with multiple aligned sets o f fracture. In 

Chapter 6. a  numerical solution o f  the reflection-transmission problem for general 

anisotropic media is presented. For programming purpose, detailed algorithm and basic 

equations are all given for each steps. Some numerical problems that can occur during 

computation are also discussed.

Finally, one of the conclusions in this thesis is that the exact reflection 

coefficients and the corresponding A VO analysis methods are very significant for the 

modem seism ic exploration. As application o f these useful tools. Chapter 7 presents a 

synthetic azim uthal AVO study over fractured models. Chapter 8 shows a case study on



extraction o f some petrophysics parameters o f  a reservoir by using the exact AVO 

trend.



Chapter 2 

Principles and Notations

In this chapter, I review the AVO principles in isotropic media and the 

anisotropic notations and terminology which will be used through out the dissertation.

Reflection and transmission o f  plane waves at a plane boundary between two 

elastic isotropic media is one o f  the most fundamental problems in wave propagation. 

An exact solution for this problem was given by Zoeppritz (1911). Then, because the 

solution is so complex algebraically, many later attempts were made to find 

approximate expressions that give a more intuitive picture o f  the reflection coefficient 

(e.g., Shuey, 1985).

Since Ostrander (1982,1984) demonstrated that the variation in F-wave 

reflection coefficient versus angle o f  incidence is controlled by the contrast in Poisson" s 

ratio across the reflection plane, the technique o f  AVO analysis has been used 

extensively in the seismic exploration for hydrocarbon-bearing reservoirs (Castagna and 

Buckus. 1993, Fatti et al., 1994, Rutherford and Williams, 1989). However, most o f  the 

previous AVO analysis work implicitly assumes that rocks are isotropic, which is often 

invalid. Anisotropic effects on AVO have been considered by many authors (e.g.,

Banik, 1984, Thomsen, 1986, Ruger, 1995 Tsvankin, 1996).

2.1 Basic characteristics and notations of isotropic media



In a linear elastic system, the stress tensor Tjj, strain tensor Eki and elastic 

stiffness tensor Cyu Satisfy the generalized Hooke’s law:

= 1, 2 , 3  ( 2.1)

Because stress and strain are symmetric and each has only six independent 

components, equation (2.1 ) can be written as:

x , = C u S j  / . J  = 1. 2, ..., 6  (22)

where ij or kl is mapped into 1 or J according to the following rule (Auld, 1973):

ij or kl: 11 22 33 23 = 32 31 = 13 12 = 21

I  or J: [ 2 3 4 5 6  (2 J)

Here, Cu is a 6X6 symmetric matrix which can have at most 21 independent 

elements. This notation for the elastic stiffness is used in both the engineering and the 

geophysical literature.

Two different types o f body waves propagate in isotropic media. They are P 

(compressional) waves and S (shear) waves. P-waves cause the medium to alternatively 

undergo compression and rarefaction, and S-waves generate a transverse particle 

motion.

One o f  the important characteristics o f an isotropic medium is that its stiffness 

matrix C,j can be written in the following simple form by using the notation o f  Love 

(1934):



c  =

Q ] ( Q 3 - Q 4) ( C j j - c ^ )

C33

c 33

c

c 44

.(2.4)

The above 6x6 matrix is symmetric. Only the non-zero components in the upper 

triangle are shown. Notice that it has only two independent parameters:

C 3 3  =  A  +  2 ^ . ( 2 i )

and

Q4 = M . (2.6 )

where A and p  are Lame parameters

Poisson's ratio is another important elastic constant in AVO analysis for 

isotropic media. Poisson s ratio ct is related to Vp/Vs by:

1

a  =

- 1

( K
I K ,

(2.7)

- 1

2.2 AVO analysis on isotropic media

Conventional AVO analysis is based on approximate isotropic reflection 

coefficients o f  Shuey's (1985):



R ;; ie )= R o  +
Act

( l - c r f j
s i n '9  + - - ^ t a n ‘ 0 s in ‘ 0  

2  a„
.(2 .8)

in which

1 Au Ap

Act "i _ 1 I -  3ct A a
2 1-CT 0L

.(2.9)

. ( 2 .10)

where 0  is the incident angle, oo is the average f-w ave velocity across the interface, 

and CT is the average Poisson's ratio. The parameter differences across the boundary are: 

A a= a 2-a i, Ap=pi-pi, and Act=CT2-CTi.

This equation can be written in the form:

R(9) = A + 0sin* 0 + Csin* 0 tan ’ 0 . (2.11)

As discussed in more detail in Castagna and Backus (1993), the main advantage 

o f this representation is that each term is responsible for a different angular range. The 

coefficient A is the normal-incidence reflection coefficient, while B describes the initial 

slope o f  the reflection-coefficient curve. The "curvature term" C becomes important 

when the incidence angle is larger (>2 0 °).

Rutherford and Williams (1989) suggested a classification o f  3 types o f  gas-sand 

reflections based on their AVO characteristics, which was complimented by a 4'*’ type 

o f  sand discussed by Castagna et at (1997). Castagna et al (1998) also built up a
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framework for standard isotropic AVO interpretation utilizing crossplots o f Shuey’s 

coetTicients in equation (2 .1 1 ).

2.3 Existance of anisotropy

Over the past 20 years, numerous laboratory experiments indicate that many 

rocks are anisotropic (e.g., Thomsen, 1986, Levin, 1979, etc.). For example, shales are 

ususlly anisotropic. Here, anisotropy is defined as the variation o f  seismic velocity 

depending on the direction in which it is measured (Sheriff, 1991). Further studies also 

show that, when a layered sequence o f different media is probed with an elastic wave of 

wavelength much longer than the typical layer thickness, the wave propagates as though 

it were in a homogeneous, but anisotropic medium (Backus, 1962).

Phase velocity and group velocity are important concepts for anisotropic media. 

The phase velocity is the velocity perpendicular to a surface o f constant phase in an 

anisotropic medium. The group velocity is the velocity with which the energy in a 

wavetrain travels (Sheriff, 1991). The phase velocity (Vp) and group velocity (Vg) are 

related by:

=  (112)

where n is a unit vector along the wave normal.

The relationship between ray angle and phase angle is illustrated in Figure 2.1. 

The wave vector points in the direction o f  maximum rate o f increase in phase. At any 

location the wave vector is perpendicular to the wave front. The ray vector, however, 

points from the source to the wave front, which is the direction o f  energy propagation.
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Point Source

Wave Front

Ray Direction

Wave Front Normal

Figure 2.1 The relationship between phase angle and group angle

In an anisotropic medium, the wave front is not spherical, and the phase angle 0  is 

usually different from the ray angle <|) except in the symmetry planes.

The formula to calculate the ray angle (j). given by Berryman ( 1979). is:

1 dv 
tan 8  + -  —

V dQ

.(2.13)

Regarding anisotropy associated with lithology. laboratory measurements 

suggests that many shales have significant intrinsic anisotropy, which is caused mainly 

from a laminated/lenticular texture o f  clay aggregates (Vernik and Liu, 1997). Vemik 

( 1992) also noticed that kerogen has a dramatic effect on anisotropy even in

12



microcrack-free shales. The experimental data of Homby (1995) indicates that some 

shales may exhibit a much stronger SV-wave anisotropy than P-wave anisotropy.

During shallow, surface-to-borehole field tests, it has been found that the near- 

surface shales behave approximately like transversely isotropic solids with a vertical 

axis o f symmetry (Robertson et, al., 1983). Thomsen ( 1986) further suggested that 

transverse isotropy, the simplest anisotropic case, can be applied broadly in geophysical 

exploration circumstances. In this case, the sedimentary rock has one distinct symmetry 

axis (usually perpendicular to bedding), while the other two directions are equivalent to 

each other forming a plane o f isotropy.

2.4 Characteristics of transverse anisotropy and Thomsen's parameters

Using the notation o f  Love (1934), the stiffness tensor C in transversely 

isotropic media can be expressed as follows:

C„ ( C „ - 2 C ^ )  C,3

C,3

Q ,
c  = .(2.14)

The matrix is symmetric, and has five independent components among the 

twelve nonzero components; ie., Ci i, C 13 , € 3 3  .C44, and Côô-

For weak anisotropy, Thom sen’s parameters (1986), as functions o f  the five 

elastic components, are:
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= ...................................................................................................................

= j y  ......................................................................................... '-•**>

e =  (2.17)_C,j

................................................................................................................-^44

and

..............................................................................(2.19)
-^33V^M ^44/

Vpo is the vertical P-wave velocity. Vso is the vertical SH-wave velocity. The 

physical meaning o f  e and y in weak anisotropic media are P-wave and SH-wave 

anisotropy, respectively. Banik (1987) explained the physical meaning o f  6 by 

introducing SV-wave anisotropy defined as below:

e.  (220)

where. P is the vertical SV-wave phase velocity, and P45 is the SV-wave phase velocity 

at an angle o f  45 degrees to the axis o f symmetry. Then, Ô can be expressed as:

S ^ s - e . ^   ( 2 .2 1 )
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As Banik (1987) noticed, this equation indicates that Ô is the relative 

competitiveness between P-wave e and the SV-wave anisotropy Ej.

Using Thomsen's (1986) anisotropic parameters, the phase velocities o f P-, SV-, 

and SH-wave can be expressed as follows:

Vp(9)  = Qo(l + d  sin* 0 cos* 0 + esin^ 0)  (2.22)

.(223)

and

^;>.(fl) = f t ( l  + y s in -0 )  ................................................................................................ (2.24)

where ao is the vertical P-wave velocity, Po is the vertical S-wave velocity. Notice the 

anisotropic notations separate the influence o f the anisotropy from the "isotropic" 

quantities, i.e., P- and S-wave phase velocities along the symmetry axis.

2.5 Anisotropic effect on AVO

Anisotropy affects AVO in a number o f  ways.

2.5.1. Reflection coefficient

A direct influence upon AVO can result from the anisotropic effects on the 

reflection coefficients. When the media across an interface are anisotropic, incident and 

reflected waves have directionally-dependent wave speeds and can no longer be thought
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o f  as purely longitudinally or transversely polarized. In addition, the direction o f the 

wave normal, the particle movement and the energy flux do not coincide with each 

other. Using continuity o f stress and displacement at the anisotropic interface, a 

theoretical derivation o f  the exact solution for reflection and transmission coefficients, 

o f  VTI and general anisotropic media, will be given in following chapters.

2.5.2. Energy Radiation Patterns

According to Tsvankin (1995), AVO signatures (e.g., AVO gradient) can be 

significantly distorted by the redistribution o f  energy along the wavefront o f  the wave 

travelling down to the reflector and back up to the surface. Significant anisotropy above 

the target horizon may be rather typical o f sand-shale sequences commonly encountered 

in AVO analysis.

2.5.3. Polarization vector

Tsvankin (1996) also pointed out that the deviations o f  the polarization vector 

from its "isotropic" direction may cause distortions o f  radiation patterns in anisotropic 

media. Helbig and Schoenberg (1987) showed that for "abnormal" media that have 

negative C 13+C4 4 , the P-wave polarization vector can even become perpendicular to the 

phase-velocity vector. Thus, the polarization vector can have an indirect influence on 

AVO analysis.

2.5.4. Normal Moveout
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Velocity anisotropy may significantly enhance deviations from hyperbolic 

moveout (Tsvankin et. a!., 1994). The nonhyperbolic moveout cannot be removed by 

using conventional first-order isotropic processing software. In terms o f  AVO analysis 

on near and far stacked sections, a model study has shown that this anisotropic 

nonhyperbolic effect may produce strong AVO anomalies for reasonable anisotropic 

values (Chen et. al.. 2000).
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Chapter 3

Exact and Approximate P-wave Reflection in VTI Media

The behavior o f  elastic waves in anisotropic media is much more complicated 

than in isotropic media. In this chapter. First, the exact reflection coefficients are 

derived for the simplest anisotropic model -  a transversely isotropic homogeneous 

medium with a vertical symmetry axis. This part o f the chapter corrects some typophial 

errors that are in the published literature on this topic. Then, some popular reflection 

coefficient approximations are analyzed, and the comparison studies are made between 

the exact and approximate reflection coefficients.

3.1 Exact reflection and transmission coefflcients in VTI media

In order to understand AVO in VTI media, the exact solution for the VTI 

reflection and transmission coefficients, assuming an incident P-wave, are rederived 

using Daley and Hron’s mathod and notations. The final form o f  the solution is verified 

as it is in the literature (see equation (17) o f  Daley and Hron (1977), Page 6 6 8 ). 

However, many typographical errors have been found in the published solutions and the 

corrected version is given placing next to corrected equations.

3.1.1 Wave-flelds in VTI media

To be consistent with Daley (1977), Figure 3.1 shows an incident quasi-P wave 

and its 4 reflected and transmitted quasi-P and quasi-SV waves with the same notations

18



from Daley. The positive polarization directions are also defined as show n in Figure

3.1. The sign convention o f  the positive direction is that the horizontal polarization 

component points in the direction o f  horizontal slowness (Aki and Richard, 1980). As 

described by Daley ( 1977), all relevant displacement vectors are assigned an integral 

value, V. between 0 - 4 ,  with: v = 0 for the incident quasi-P wave; v = 1 for the reflected 

quasi-P wave; v = 2 for the transmitted quasi-P wave; v = 3 for the reflected quasi-SV 

wave; v = 4 for the transmitted quasi-SV wave.

For a given angular frequency co, the particle displacement vector o f  the (unit 

amplitude) plane wave incident in the [X, Z] plane can be written as:

-

/  I • /I \ { «**4( /, sm 0 , ) -10. * pi * pi .(3.1)

where 1, m denote components o f  the polarization vector projected onto  a coordinate 

system fixed with the ray. Positive Z is in the direction o f ray propagation and positive 

X is such that X Y=Z Vp is the phase velocity o f  the P wave. The generated wave 

modes are:

y

f / ,  =

t / j  -  /?|3

/, sin 8 , 

m, cos8 ,;

^ /j sin 8 3

- /W3 COS8 3 /

suiS, COI0,,

(^4 -  ^14
sine , 'I

\m^ c o s d j
.(3.2)
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► X

Figure 3.1 Geometry o f  wave -fron t normals and displacement vectors o f 

incidence P-wave and all four reflected and transmitted P-waves 

and SV-waves at the interface o f  two VTI layers
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Here, R u , R u , R u , R u  denote the amplitudes o f  the scattered wave modes and Vs is the 

phase velocity o f SV wave.

As noticed, the phase velocities Vp and Vs, and polarization vectors, 1 and m for 

each wave in the above expressions are functions o f  the medium and the phase angle.

3.1.2 Phase velocity and polarization in VTI medium

The equations o f  motion in an elastic medium in Cartesian coordinates, 

neglecting body forces are:

= ^ 2. 3)  (33)

where, Uj is the displacement vector component; c,jki is elastic stiffness tensor; p is 

density. The double dot over the Uj represents the 2"** order time derivative o f the 

displacement (particle acceleration).

One o f the solutions o f equation (3.3) can be expressed in the form:

W, = ( / /  ' .......................................................................................................(3.4)

where Uj is vector amplitude component o f the wave, V is phase velocity, n^ is the 

directional cosine o f the wave-front normal. Substitution (3.3) into the equations o f 

motion (3.1) yields the Christoffel equation form as:

( r . - 5 j f / . = 0  ...........................................................................................................(3 J)
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where F,k is the Christoffel matrix: r,k= (c,jki/p)s, S| = â kiSj s,. It is a 3X3 matrix 

determined only by the direction o f plane wave propagation and the elastic constants o f 

the medium. The slowness vector component Sj at a given point and direction (specified 

by the normal component o f n j  are related to the phase velocity by the relation:

s, = ^   (3.6)

Since the strain energy is positive definite, f,k is positive definite. Thus, the 

three eigenvalues o f  T,k are all positive. Each eigenvalue corresponds to a quasi-P and 

the other two quasi-shear waves. Using the Voigt notation (See eq. (2.3)) to transform 

a.jki to Amn. the Christoffel equation (3.5) can be written as a function o f  the horizontal 

slowness pi and vertical slowness S3 (with s," + S3* =1/V") as:

det
•̂ 1 ‘‘̂11 ■*3 ‘*(<5 ^  ■̂1.3 •'̂ 55 )

0  + i ’j .-155 — A  0

■*" '^5 5 ) 0  -̂ 1 “̂55 ■*■'̂ 3‘"(33 ~

= 0  (3.7)

The solution o f  equation (3.7) yields the three eigenvalues:

A, = ^ { x  + V x - - 4 l } *

A , = ^ { x - V r - 4 l } *

~ ^66 “*■ -̂3 •̂ 55  (3.8)

where

K  = (i4,| + .^ 5 )^ 1  + ( ^ 3 3  + ^ 3  )"^3

L  =  4^^- îi- î +  ^3^3 )( +  A j j S j  ) — (i4j3 +  )  Jj Sj
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Substitution o f  (3.6) into (3.8) (with the eigenvalues equal to 1) yields the phase 

velocities o f  the quasi-P and quasi-SV waves:

....................................................................(3.9)

3\i — ■*' ■'(is (.9,1 — .4),)) ~ Q\ ............................................................... (3.10)

where 

r  = sin= 0

■i = -( -i,  + "1., ) “  ( ■‘^,1 ~ - i ,  )( I + '•!,) -  2 - i ,  )

4  = ( 4 i  +  4 :  - - 4 , )  - 4 4 ,  +  4 ' )

The quasi-P and quasi-SV polarization (normalized eigenvectors in equation 

(3.5)) can be obtained by substituting the phase velocities back into the Christofel 

equation (3.5):

[{Q~  4 ] + 4 ; ) /  sin~0 ] + [i4„ + 4 , + 2 ^ „ ]  

2Q

vm =
4 i  + COS'0 ] + [/In + /I 33 

2Q
.(3.11)
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3.1.3. Boundary conditions

W ithout energy loss, the reflection and transmission coefficients o f  a plane- 

wave at an interface between two media, isotropic or anisotropic, are computed using 

the two physical principles (Aki and Richard, 1980):

1 ) The displacement amplitudes in the two media are equal at the boundary. In 

other words, the media are in welded contact. This condition is also referred to as 

“kinematic” boundary conditions.

2) The sum o f the tractions acting on the boundary have to be zero. Expanding 

the traction in terms of the stresses, this assumption leads to the required continuity of 

normal and shear components o f  stress across the boundary. This condition is also 

referred to as “dynamic” boundary conditions.

Thus, the continuity o f the x component o f  displacement yields:

£ p „ „ m ,c o s 0 , s in 8 , = c o s e ^ - 'Z S „ m ,  cos0 „ + £ ( - 1)"“’p j ,  s in 0 ,
v«| v«3 v«0

.........................................................................................................................(3.12)

Continuity o f  the z component o f  displacement yields:

Ê ( -  s in 0 „ + £ ( -  \Ys„,m^ cos0 , = P J ^  s in 0 „ l Y S J ^  s in 0 ,
v«l v«3 v*3

2

- Z ( - 0 '  COS0, ............................................................................. (3.13)

Continuity o f  shear stress:
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f C ', \ '[ l .*m .)sm 2B .P „  A  cos= 9 . - f ,  s i n 'e . K

^  2V. V.V»I

C C , + '% ) « n 2 8 . C  j .

2K

( - 1 ) '^ " '"  COS' 0 ,  -  / ,  s in -  0 ,  )p „

dx - S
C-„- '(;.< -w ,)sin2e ,5 . 

2V.

âz âx
.(3.14)

Continuity o f  normal stress:

1=1 I 'll w-3 V

,  k c % ' + k < : ' » - y S ' k s ' e . k  ^ L , . ,
&

a

+c■ i , i ^ k ) - . . .  [ ' . c | ; ' + k c » - ' . C W s ' A . k
33 V..

.(3.15)

Equation (3.12) -  (3.15) represent the continuity o f  displacement and stress 

requirements used to find the reflection coefficient between VTI media (Daley, 1977)

3.1.4 Algebraic expression of reflection coefflcients

Let sinGi =x, and follow the Daley’s variable notations as follow:
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V J V ,= n ,

f  = COS 8 , = ( l - . r * ) ' ’

( )  =  COS0, = ( 1 - x 7 « ’ ) '  *

S = COS0, =  (l -  '  *

R = cosQ^ = ( l  -  k \ x ' I n ' )

c ' : ' = q : ' = A

- m A f  = 5

1V cos- 0 , - / 3  sin- 0 3 ) = Ü),
K3 /, + m,

—  —  ̂ COS' 04 -  /4 sin ’ 04 ) = o .
K, /, + /n,

^  { / , C | r  +  -  / ;C Ï Î ' C0S= f t  ) )  =  £ ,

/, +/n,  
' / ,  + m ,

= / .(3.16)

26



Substitution o f  (3.16) back into the equations (3.12) ~ (3.15) yields the four 

linear equations below (written in matrix form):

X
- / ,  X

/, n

p
m , m ,

^ x P A û J .

- G , ô , .r (7 e .

- m
- R

A.û),

— Ô-,xR

^n -  .r

/(n P

Rv. P,xP

Ru. .

.(3.17)

where Ru is the P-wave reflection coefficient, R 12 is the P-wave transmission 

coefficient, R u  is the SV-wave reflection coefficient, R u is the SV-wave transmission 

coefficient. Using Cram er’s method, the solution o f  (3.17) can be written as:

f  /? i i  -
-  Ê  + E, + £ , + -  E; -  E^

D

_ E^ + £|(j
D

U |4  =
^ 1 1  ^ 1:

D
.(3.18)

where E| ~ E u  and D are given explicitly as follows:
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fE, = T,Ty-

E ,  =  T J , P Q  

E, = r y p R  

E ,  =  T J , x - P Q R S  

Ê  = TJ,.QS

E, = r y , R S

E .= 2 T y P R  

E , = 2 T j y Q  *

£,. = - 2 x T y P R S  

E , ,= -2 x T J ,P  

E , = - 2 x T y P Q S  

E , , = 2 x T j y

= £| + £ i + £3 + +  £ j + £ j  (3.19)

and

28



71 = -
n i

7 ; = A:®: + A nm,

r , = A

T ; = e . - 7 ^  +

/ ,  « / ,

nr. + k.x —
V m,V

m^ g;.r~ /,
/ ,  M /,

^  -  A ^
‘ 1 M

m, Â:-,.v//^
nr, —  + —------

\  ' m, nm. J

r „ = e , ^ + A x -
fM,

.(320)
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A FORTRAN90 subroutine (See Appendix I) was written to calculate the exact 

reflection coefficients for reflected P-wave and SV-waves when provided a P-wave 

incident upon a boundary between two T1 media. Using Daley's model parameters 

shown in Table 3.1 (Daley, 1979. p.36). Figure 3.2 shows the P and SV reflection 

coefficients and transmission coefficients when a P-wave is incident. The angle o f 

incidence refers to the group angle o f  the incident P-wave. The basic shapes o f  the 

curves in Figure 3.2 agree with those published in Daley's (1979) work (compare 

Daley's figure 3 to figure 6 ). The results in this thesis plotted have a finer sampling of 

the incidence angles than D aley’s and yield a more detailed version o f the curves shown 

in Daley and Hron (1979).

For a plane wave incident on the boundary between two VTI media, the energy 

o f the incident wave is distributed between all the reflected and refracted phases. An 

energy-flux method was used in order to verify conservation o f energy for the reflection 

and transmission coefficients.

It should be noted Thomsen's definition for the anisotropic parameter e is used

here:

g = X 1 0 0 % ^  ^ ^ ^ x l 00%  (321)
^33 ^ 0

where, C u  and C33 are the elastic tensors on horizontal and vertical direction. Vp(7i/2) 

and oo are the horizontal and vertical P-wave phase velocity respectively.

This definition is different from Daley's (1979):
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.(322)

Thus, a different set o f  anisotropy parameter e (0%, 5.48%, 11%, 16.53%,

21.32%) is listed here corresponding to Daley's e (0%, 5%, 10%, 15%, 20%) for the five 

models.

Table 3.1 Daley's model parameters

Curve

No.

Vp,(90^

(m/s)

«01

(nvs)

Poi

(m/s)

Pi

(g/cm')

V,:(90")

(m/s)

Oy;

(m/s)

Po:

(m/s)

P;

(g/cm ')

A,

(%)

E|

Co)

1 2310 2310 1330 2.04 3360 3060 1770 2.21 0 0
2 2370 2250 1330 2.04 3360 3060 1770 2.21 5 5.48

3 2430 2200 1330 2.04 3360 3060 1770 2.21 10 11

4 2480 2150 1330 2.04 3360 3060 1770 2.21 15 16.53

5 2520 2110 1330 2.04 3360 3060 1770 2.21 20 21.32

3.2 Approximations under VTI condition and their assumptions

By differentiating the exact expression for R,i (see equation (3.18)) and ignoring 

the high-order terms, much previous work (e.g., Banik; 1986, Ruger, 1995; Thomsen, 

1993; etc.) has been done on P-wave reflection approximations.

The approximations have been applied widely for modeling o f  VTI media.

These equations are important because they simplify the dependence o f  the reflection 

response upon the parameters. However, the approximations differ in their sensitivity to 

the elastic parameters and can yield different results for the same model. Therefore four
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approximations, which come from the work o f  Banik (1987), Thom sen (1993), Ruger 

(1997), and Chen (1995), are examined below.

For convenience in the comparison, all the equations are expressed using the 

same variables. Hence, the 4 approximations can be written in the original form: 

Banik (1987):

2  p
. , 1 Aa ,

sin‘ 6 + — —  ta n ' 0 
2 a„

.(323)

Chen (1995)

........................................................................ .(3.24)

Thomsen (1993)

Aa
a„

f 2 A, AG,

i f A a

-  + A5

+ Ae -  A5 sin ' 8  tan ' 8

s in ' 8

.(325)

R uger(1995)

Aa r 2 A , y  AG«
On V Og 7

+ A5 sin ' 8

1
" ^ 2

A a

VOn
■ + Ac sin^ 8 tan - 8  ......................................................................(326)
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where 6 is the incident angle, oo is the P-wave vertical velocity, /3o is the 51^-wave 

vertical velocity, p  is average density, Zo = poo is the average vertical P-wave 

impedance, and Go = pPn~ is the average vertical shear modulus. The difference between 

isotropic parameters across the boundary are: Aa = a i  - a , ,  Ap = p? - pi, Ap = p2 - pi, 

AZ = Zi - Zi, AG = Gi - G i. The differences in anisotropy across the boundary are 

written as Ae = (e: - Ei), AÔ = (Ô2 - Ô1).

All the approximations discussed are valid under the following assumptions:

A a 3
a  0

A Po
Po

A p
<

P

< < 1

< < 1

| e  I <  <  1

V I5 | < <  1  ( 3 . 2 7 )

Ignoring the terms that depend upon anisotropy (e , Ô), Thompsen and Ruger's 

results use the same set o f  isotropic parameters (eg. AZ(/Za AGiy'Go) and the 

expressions are identical. On the other hand, the isotropic parts o f  Banik's and Chen's 

equations are identical, use another set o f  isotropic parameters (eg. Ap/p, A)3(/j3o). The 

following approximation can be used to relate the work o f  Thompen and Ruger to that 

o f  Banik and Chen:
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f  Z, a„

AGg 2APo ^  Ap
G A, .(3.28)

Figure 3.3 shows that, when the contrast is small (Aoo/ao < 0.2, APo/Po <0.2, and 

Ap/p < 0.2), the error o f  these transformation is negligible. This means, with small 

contrast isotropic models, Banik's and Chen's approximations should be almost the 

same as those described by Thomsen and Ruger.

When equations (3.28) for the AZq/Zo and AGo/Go terms are substituted into 

Thomsen's and Ruger's approximations, the differences between the four 

approximations are seen to be in the anisotropic portions o f  the equations:

Banik (1986)

2 v
l - 4 % s i n ' 8

a : Po 2 COS-9 Oq aô A,
.(329)

Thomsen (1993

r

2 v a„ ;  po 2 COS' 8  ttq a„ f t

+ ^ AS + ^ ( A e  -  A 5 )s in -8 tan ‘ 8 .(330)
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R uger(1995)

-  V

^ Qr  ̂
l - 4 ^ s i n ' 0

On Po 2 C O S -9 a« Oo A)
sin* 0  1 . , ,
 AÔ + — Aesin* 9 tan" 9T .(331)

C h e n (1995)

2 v
l - 4 ^ s i n ' 9

On Po 2 cos -0  Oo Oo A,
+ A5 -  Ae sin ' 9 (332)

After collecting terms in the order o f  Aoo/cto, APo/Po, or Ap/p, it is easy to find 

that Banik's equation, in which the only anisotropic term is (A0/2)sin0, is the simplest o f 

the approximations, as the other three approximations have additional terms which 

depend upon e.

3.3 Comparison studies

Here the approximate and the exact results are compared to find the 

circumstances under which the various equations are most applicable.

Using Banik’s, Thomsen’s, Ruger’s and Chen’s approximations, four 

FORTRAN90 subroutines (see Appendix C) were written to calculate the approximate 

PP reflection coefficients across a boundary between two TI media. All o f  the original
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equations are used in the programming. Model studies are performed in both isotropic 

and anisotropic situations, using a wide range o f  model parameters.

3.3.1 Model test in isotropic media

From the analytical discussion above, for any incident angle in isotropic models, 

the four approximations should generally agree with each other. Here, the incident 

medium with the parameters o f (aoi. Poi. poi. etc.) and the reflecting medium with (Oo2 , 

Po2 . po2 , etc.) are assumed. Table 3.3 lists 4 isotropic portions o f  the models with the 

same density values for both incident and reflecting media, but with the P-wave and 

SV-wave velocities alternated so that the models stand for four categories o f  isotropic 

situations (Table 3.2):

Table 3.2 Categories of Isotropic Models

Model 1 

Model 2 

Model 3 

Model 4

From Incident to Reflecting

Vp Increase Vs Increase 

Vp Increase Vs Decrease 

Vp Decrease Vs Increase 

Vp Decrease Vs Decrease

Abbreviation

PiSi

PiSd

PdSi

PdSd
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Table 3.3 Isotropic model parameters

«01

(m/s)

Poi

(m/s)

Pi

(g/cm^)

«02

(m/s)

Po2

(m/s)

P2

(g/cm^)

Model 1 2 0 0 0 1 2 0 0 2.15 2500 1400 2.15

Model 2 2 0 0 0 1400 2.15 2500 1 2 0 0 2.15

Model 3 2500 1 2 0 0 2.15 2 0 0 0 1400 2.15

Model 4 2500 1400 2.15 2 0 0 0 1 2 0 0 2.15

Figure 3.4a - d. show the PP reflection coefficients (including Daley's and the 

other 4 approximations) corresponding to Model 1 - 4 respectively. The results show: 1 ) 

The four approximate reflection coefficient curves almost lay on top o f  each other. This 

also confirms that the transformation from AZq/Zo and AGq/Go to Aoo/oto, APo/Po, and 

Ap/p are applicable imder small contrast situations. 2) For small incidence angles, the 

four approximations are close to the exact solution. As the incidence angle increases, all 

approximations begin to stray from the exact one. It should be noticed that the deviation 

point, beyond which approximations are not valid at all, is different for the 4 categories 

o f models considered.
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3.3.2 Model test in anisotropic media

Banik (1987) suggests that Ô is roughly the difference between the P-wave and 

SV-wave anisotropies o f  the medium:

^  =  (33 2 )

Here, Gp is P-wave anisotropy (the same as Thomsen's (1986)), and G, is the SV- 

wave anisotropy as defined by Banik (1987). Banik's G, is the SV-wave anisotopy 

comparing vertical SV Propagation with SV propagation at an angle o f 45 degree.

The 4 isotropic model parameters (Table 3.3) are also used as a basis in this part 

o f the study. The anisotropic parameters are listed on the figures. Figure 3.5 -3 .8  show 

the test result o f  Models 1 -  4 respectively. In these tests, it should be noticed that:

1 ) The incident medium is always anisotropic and the reflecting medium is 

isotropic.

2) In the incident medium, the P-wave anisotropic parameter G* is set equal to

0 .2 .

3) In Figure 3.5a -  3.8a show a strong SV-wave anisotopic situation, 

where Ep =0.2, g* =0.2, and Ô = Ep - Gs =0. Figure 3.5b -  3.8b show an elliptical 

anisotropic situation (Gp =0.2, E, =0.1, and 5 = O.I). Figure 3.5c -  3.8c show an elliptical 

anisotropic situation (Gp = Ô = 0.2, Gs =0), in which there is no SV-wave anisotropy 

(Thomsen, 1986).

Figures 3.5 show that Ruger’s approximation performs better than the others in 

the PiSi (i.e. P-wave increase, S-wave increase) case. As we can see from Figures 3 .5 a -  

3.6c, Ruger’s curve approaches Daley’s exact solution over a  larger range o f  incidence
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angles. This was found to be true for a wide range o f  other models not shown here with 

other sets of anisotopic parameters.

The same comparisons are made in Figures 3.6 -  3.8. The results show that 

Banik's approximation performs better for a large angular range in these 3 cases, which 

correspond to PiSd, PdSi, and PdSd isotropic situations . Thus Banik's equation works 

for a wider range o f basic isotropic starting models.

Notice that Tomsen's approximation varies between Ruger's and Banik's as 

shown in Figures 3.5-3.8. As noted by Ruger (1997), the only difference between 

Thomsen's and Ruger's equations is an extra term (Aô/2)*sin‘6"‘tan*0 apparently due to 

an algebraic error by Thomsen. So, whenever A6=0 across the boundary, Thomsen's 

approximation is equal to Ruger's. It should also be noticed that when A6=Ae across the 

boundary then Thomsen's approximation is equal to Banik's. See the Figures 3.5b -  

3.8b to compare the results for intermediate values o f  Aô.

Note that Chen's approximation does not work well in all o f  these tests.

More tests are needed for all possible param eter sets, however, thus far it seems 

that Ruger's approximation deals with anisotropy parameters better than the others 

under the PiSi condition, while Banik ' performs better in the other 3 isotropic situations 

(i.e, PiSd, PdSi, and PdSd) over a wide angular range.

3.4 Conclusions

Daley’s solution is the exact result under the condition that all o f  the elastic 

constants (a total o f  ten considering both media) and densities o f the TI media are
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known. However, a number o f typographical errors have been corrected in the solutions 

published by Daley and Hron (1977 & 1979).

For the isotropic situation, all 4 approximations perform exactly well for small 

contrasts in elastic parameter and small angles o f  incidence.

For anisotropic situations, the tests show that different approximations work 

better for different categories of variations in isotropic base parameters. Under the PiSi 

condition, Ruger’s approximation deals with anisotropy parameters better than the 

others. However in the other 3 isotropic base modes (i.e., PiSd, PdSi, and PdSd),

Banik's yield a better approximation result for wide angular range and Ruger's 

performs the best at small angle. Thus, although Banik's work was earlier and perhaps 

simpler than the later publications, his results seem to be superior to the others for many 

models.
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C h ap te r  4

T h ree-P aram eter AVO C rossplo tting  in A nisotropic M edia

The objective o f this chapter is to study the effects o f  transverse anisotropy on 

angle dependent reflectivity. This problem is important because large mistakes can be 

made in the interpretation by neglecting the effects o f TI anisotropy.

Amplitude versus offset (AVO) interpretation can be facilitated by crossplotting 

AVO intercept (A), gradient (B) and curvature (C) terms. However, anisotropy, which 

exists in the real world, usually complicates AVO analysis. Recognition o f  the 

anisotropic behavior on AVO crossplots can help avoid AVO interpretation errors.

As opposed to predictions made using 3-term (A, B, and C) approximations to 

the exact anisotropic reflection coefficients for transversely isotropic media, it is found 

that anisotropy has a non-linear effect on an A versus C crossplot while causing slope 

changes and differing intercepts on A versus B or C crossplots. Empirical corrections 

that result in more accurate crossplot interpretation are introduced for specific 

circumstances.

4.1 In troduction

Crossplotting o f AVO intercept (A) and gradient (B) (eg. Castagna et al., 1998) 

can be a useful seismic lithologie analysis tool. Shuey’s (1985) approximation to the 

Zoeppritz reflectivity equations for reflected P-waves can be written as:
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z
AG
G

Aa
a

s i n '0 tan* 0 .(4.1)

—
Biso

____>

A|S0
(intercept) (gradient)

G iso 
(curvature)

where Rpp is the P-wave reflection coefficient as a function o f  average incidence angle 0, 

a  is the average vertical P-wave velocity, p is the average vertical SV-wave velocity, p 

is the average density, Z = p a  is the average vertical P-waveimpedance, G = pP" is the 

average vertical shear modulus. The difference between parameters across the boundary 

are denoted as: Aa = az - a i ,  AZ = Zi - Z |, AG = Gi - G |.

By crossplotting AVO intercept (A) and gradient (B), Fig 4.1 shows an example 

o f  the typical AVO analysis method under isotropic assumption. The deviations form the 

background petrophysical trends, as would be caused by hydrocarbons, cause deviations 

from the background A versus B trend (note that the A-B trend o f  the gas sands does not 

pass through the origin) (Castagna, 1998). It should be noticed that the curvature (C) is a 

higher order coefficient that becomes increasingly important as 0 increases. It is 

theoretically possible to subtract C from A to isolate density contrasts. In this way, there 

is the potential for distinguishing commercial gas accumulations from higher-density 

low gas-saturation.

Unfortunately, this method has met with mixed success in practice due to the 

poor signal/noise ratio o f  the C term (Swan, 1993) and the effects o f  anisotropy. In this 

chapter, the complications caused by local anisotropy (transverse isotropy) at the target 

are investigated. The exact and approximate reflection coefficients are also compared. In 

order to simplify the analysis, elliptical anisotropy is assumed.
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The main conclusion o f  this research is that AVO gradient and curvature depend on 

absolute anisotropy in addition to anisotropy contrasts. Existing isotropic 

approximations may be particularly inadequate for the curvature term.

4.2 Anisotropic Effects on A vs. B and A vs. C crossplots

Crossplotting o f A, B and C parameters can be a useful AVO analysis tool 

(Smith, 1996). In this section, we define some anisotropic corrections to the B and C 

terms for isotropic media. These corrections will be used later to quantify the effects o f 

anisotropy on A vs. B and A vs. C crossplots.

Daley and Hron ( 1977) derived the exact equations for reflection coefficients as a 

function o f  angle o f  incidence, R(0), in VTI media. Since then, numerous linearized 

approximations o f  R(0) have been derived (Ruger 1997, Banik 1987, Thomsen 1986, 

etc.). Among these, Ruger's approximation is particularly useful and can be expressed in 

Shuey’s (1985) form:

Z
Aa (2py AG
a I  a J G

+ Aô
Aa

Sin* 0 + — ----+ Ae
2 L a

sin* 0 tan* 0 ....(42 )

^Rug
(intercept)

^Rug
(gradient)

("Rug
(curvature)

Using the isotropic terms A^o, Bjso and Cjso, this approximation can be rewritten 

in the following form:
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= A o

......................................................................................................... (43)

where B,so and C,so are Shuey’s isotropic coefficients and ABRug and ACRug are 

anisotropic corrections. From equation (4.2):

.............................................................................................................. (44)

where 5 and e are Thomsen’s anisotropy parameters. AÔ and As are the differences in 

anisotropy parameters across the boimdary (value for top medium minus value for 

bottom medium). Equation (4.5) means that only contrasts in anisotropy parameters 

effect gradient and curvature.

For the purpose o f comparing and judging the anisotropic corrections, “exact” 

AVO parameters are computed as described below:

For an interface between two TI media, the exact reflection coefficient Re« 

versus angle values are generated using Daley and Hron’s equations. Then, a multiple 

non-linear regression in the form of:

^ ^ ( 0 )  = + 5 ^ ( s in - 0 )  + C ^ (s in ^ 0 ta n -0 )  ....................................................(4.5)
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is used to curve fit the R«xt samples out to an incidence angle o f  30°. Figure 4.3 shows an 

example where the results o f  the fit yield the “exact” AVO parameters Bext, and 

Cexi, which are, o f  course, not exact but a good three-term fit to the exact equation.

The difference between BRug and Bext (or CRug and Ccxi), if  there is any, is an 

indication o f  difference between Ruger’s approximation and the true reflection 

amplitude. Equation (4.6) is a good representation o f the true reflection coefficient 

behavior, which we expect to be the case, for small parameter contrasts and small angles 

o f  incidence.

4.3 Procedure for building a synthetic model

In order to evaluate the effects o f  anisotropy upon AVO crossplots, a synthetic 

layered model o f  the earth was generated using well logs. This synthetic example is 

meant to be illustrative only. To simplify the analysis, anisotropy was assumed to be 

elliptical. A crossplot o f  the y-ray and SP logs was used to classify the Ethologies and 

quantitatively assign values for anisotropy. High anisotropy (larger value o f ô  and e ) was 

assigned to the more shale-prone portions o f  the log and lower anisotropy to the sand- 

prone portions o f  the log. Using this approach, anisotropy values o f  0, 0 .1 ,0 .2 , 0.3 were 

assigned to layers in units according to their location on the SP versus y-ray crossplot. 

Table 4.1 shows all the possible anistropic boundary contrast types allowed in this 

synthetic model study. The sonic log was used to obtain P-wave velocities and the shear- 

wave velocity was predicted using either a constant Vp/V$ ratio or the mudrock trend 

(Castagna et al., 1985).
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Once the layered model o f  the earth was constructed, the A, B and C terms for 

each reflector were computed using the “exact” and approximate methods, and the 

computed values o f  A, B, and C were crossplotted. The discussion o f these results is 

given in the next section.

4.4 The empirical correction to Ruger’s approximation

Even for angles o f  incidence less than 30°, large errors may result from analytical 

approximations, obtained by neglecting higher-order terms in the expansion o f the exact 

reflection coefficient equations. Thus, corrections to existing approximations may be 

desired. We found empirical corrections, ABemp and ACemp, to Ruger’s approximation to 

be useful for specific circumstances. These are introduced to the B and C terms as 

follows:

= S ., + + A B_

................................................................................ (4.6)

where ABemp and ACemp are empirical anisotropic corrections.

By observing the difference between Ruger’s AVO parameters and the "exact" 

ones, which are dependent on anisotropy variation, the empirical relationship between 

ABemp or ACemp with Ô and e were found using trial and error to obtain the forms:

f  A 5,^ = :  + 6 ,A 6)

+ c^Ae +  c.A^e + Cj(Ae)- ....................................................................(4.7)
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Table 4.1 Anisotropic Boundary Contrast Types

Difference of Anisotropy Contrast Types

-0.3 0.3/0

-0.2 0.3/0.1 0.2/0

-0.1 0.3/0.2 0.2/0.1 0.1/0

0 0.3/0.3 0.2/0.2 0.1/0.1 0/0

0.1 0.2/0.3 0.1/0.2 0/0.1

0.2 0.1/0.3 0/0.2

0.3 0/0.3

where bi, bi, Co, ci, ci, and C3 . are regression coefficients that are functions of the 

compressional-to-shear-wave velocity ratio (VpA^s). and Ô and e are the average 

Thomson parameters across the interface. The empirical corrections depend on the 

changes in anisotropy as well as the average anisotropy across the reflecting boundary.

4.5 Observations

For the simple case o f  constant compressional-to-shear-wave velocity ratio 

shown in Figure 4.3, regression lines are plotted for each group defined by constant AÔ. 

The regression passes through the origin when AÔ is zero, but has an increasing B- 

intercept as the magnitude o f  AÔ increases. The lines for different AÔ are not parallel nor
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symmetrical about the AÔ = 0 line. In contrast, Roger’s equation predicts that these lines 

should be parallel and spaced at equal intervals with a smaller magnitude B-intercept 

when AÔ is positive, but a larger magnitude B-intercept when AÔ is negative at A = 0 

(see Figure 4.4). Examination o f Ruger’s equation in Figure 4.4 indicates that increasing 

anisotropy affects the B-intercept, but not the slope, on an A versus B crossplot.

For the B term correction, the dependence on the average Ô value across the 

boundary is evident in Figure 4.5, which crossplots all the exact and approximate A-B 

pairs with A0=0 and a constant Vp/V, (=1.8). BRug keeps the same slope which almost 

agrees with Bext for isotropic layers. On the other hand, Bex, exhibits a slope variation as 

Ô changes. The correction dependence on Ô is contained in the empirical factor b |, while 

the factor b? controls a similar slope correction related to AÔ.

With the same synthetic model used to generate Figure 4.5, all the "exact” and 

approximate A-C pairs are crossploted in Figure 4.6. It clearly shows that a C term 

correction dependent on the average e value is necessary. In addition to larger slope 

changes, the non-linearity o f  each group o f Aex,- Cex, pairs suggests a higher-order 

correction associated with A. The co coefficients effects non-linearity also. Notice in 

Figure 4 that the isotropic/isotropic Aex, - Cex, group (circles in Figure 4.6) also is non

linear, with the ARug - CRug pairs forming a tangent line to the trend at A=0. Non-linear 

regression shows that a cqA* term can be introduced (equation 4.8) to improve the fit o f 

ARug- CRug to the exact isotropic/isotropic trend. This coA^ correction is thus also needed 

for isotropic approximations to the Zoeppritz equations (eg. Shuey, 1985; Aki and 

Richards, 1980). We empirically find that Co is approximately unity for the cases studied.
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With constant Vp/V; ratio (=1.8), we find by regression that the empirical 

coefficients are b,=-0.68, b2=1.75, co=1.00, ci=8.42, cz=26.69, and C 3= 0 .8 6 . Figure 4.7 

shows that the empirical Aemp vs. Bcmp fit the “exact” A ext vs. Bext trends well under two 

kinds o f anisotropic conditions. Compared with the performance o f  Roger's ARug vs. 

CRug in Figure 4.6. Figure 4.8 shows a distinct improvement in approximating C using 

the empirical equations (equation 4.8). These coefficients will vary with Vp/V, ratio. 

However, for the special case o f  rocks that follow the mudrock trend and Gardner 

relation, the empirical coefficients were found to be simple scalars with bi=-0.74. 

b2=1.04. Cü=1.00. ci=6.67. c:= 10.86 and C3=0.81. Figure 4.9 shows that the Bemp (solid 

circle) trend fits the Bext (solid line) well. Figure 4 .10 is a crossplot o f Cext vs. Cemp (solid 

circle) and CRug (open circle). The empirical predictions fall, for the most part, close to 

the diagonal (solid line) indicating that the exact C term is well approximated. Only 

boundaries in which some anisotropy was involved (at least the upper or lower medium 

was anisotropic) are shown in Figure 4.9 and 4.10. The two figures indicate that, under 

mudrock and elliptical TI assumptions, the empirical equations (4.8) can provide a good 

approximation for the PP reflection coefficient.

4.6 Conclusions and Discussion

In this synthetic model study, four important conclusions are fotmd:

1) Anisotropy above and below an interface effects the AVO gradient (B) and 

curvature (C). On an A versus B crossplot, anisotropy may cause large changes in the 

B-intercept (which can be mistaken for Poisson’s ratio deviations) and may also cause 

minor changes in slope.
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2) On an A versus C crossplot, large differences may occur in both C-intercept 

(which can be mistaken for density contrasts), slope, and curve shape. According to 

Shuey’s equation, an A versus C crossplot should be linear with a slope o f  one.

3) Even in the isotropic case, distinct curvature appears in the A versus C 

crossplot, which is not predicted by Shuey's equation. An A* term must be added to the 

C-term to obtain linearity in the isotropic case. Deviation from this slope can be a direct 

indication o f anisotropy.

4) Empirical approximations provide insight into anisotropic effects on AVO.

Ignoring signal-to-noise problems, our results for a synthetic model suggest that,

even for reasonable velocities and anisotropic parameters. Ruger’s approximation is 

probably not sufficient for a quantitative A vs. C crossplot interpretation, even if C could 

be extracted reliably from the seismic data. Empirical corrections to Ruger’s equation 

were obtained, suggesting that the three-parameter Shuey form may be adequate for 

fitting anisotropic (elliptical TI) AVO effects, for the case o f elliptical TI. Recalibration 

and/or form modification o f these empirical equations for other anisotropy or Vp/V, 

conditions is expected to be necessary.
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Figure 4.7 A versus B crossplot for a constant Vp/V; ratio o f  1.8 with two cases 
o f  different Aô. Symbols are AVO coefficients obtained by 
non-linear regression o f  the exact Daley and Hron (1977) curves. 
Lines represent approximate B calculated from Ruger's 
approximation or our empirical equation.
Case 1- AÔ = 0 and S = 0.3 above and below the interface: Square: 

Daley exact. Solid lines: empirical. Grey line: Ruger.
Case 2- Aô = 0.2 and Ô = 0.2 above and isotropic medium below 

the interface: Circle: Daley exact. Long-dashed lines: 
empirical. Short dashed line: Ruger’s.
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o  Exact C-isG/iso
A Exact C-0.1/0.1
O Exact C-0.2/0.2
+ Exact 00.3/0.3

Empr. C-iso/iso
—"Enrpr. C-0.1/0.1 

Empr. C-0.2/0.2
-  -  Empr. C-0.3/0.3

AVO Coefficient A

Figure 4.8 A versus C crossplot for a constant Vp/V, ratio o f  1.8 with 
Ae = 0. Lines represent approximate C calculated from the 
empirical equation. Solid line: isotropic media. Long-dashed 
line: e = 0.1 above and below the interface. Gray line: s  = 0.2 
above and below the interface. Short-dashed line: e = 0.3 above 
and below the interface. Symbols are AVO coefficients obtained 
by non-linear regression o f  the exact Daley and Hron (1977) 
curves. Circle: isotropic media. Triangle: e = 0.1 above and 
below the interface. Diamond: e = 0.2 above and below the 
interface. Plus Sign: e = 0.3 above and below the interface.
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Figure 4.9 Comparison o f B extracted from 3-term fit to exact Daley and 
Hron ( 1977) curves for mudrocks and approximate B 
calculated from Ruger (1997) equation (open circles) and 
empirical equation (solid circles). The diagonal represents 
perfect agreement between approximate and “exact” B.
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Figure 4.10 Comparison o f C extracted from exact Daley and Hron (1977) 
curves for mudrocks and approximate C calculated from Ruger 
(1997) equation (open circles) and empirical equation (solid 
circles). The diagonal represents perfect agreement between 
approximate and “exact” C.
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Chapters

Anisotropic Effects on Full and Partial Stacks

5.1 Introduction

Anisotropic effects on seismic stacked sections are often ignored during 

conventional processing. Using anisotropic ray-trace models, this paper shows that 

many interpretation pitfalls may appear on stacked sections simply due to the existence 

o f  anisotropy.

Simple models, which consist o f a localized transversely isotropic (TI) block 

embedded in a layered isotropic medium, are used. The symmetry axis o f  the TI blocks 

is assumed to be vertical in all models. Geologically, these models might apply to local 

changes in layering (apparent aniostropy) or local changes in shale properties (intrinsic 

anisotopy).

5.2 Method

Ray-tracing is used to generate the anisotropic P-wave seismic synthetic data 

assuming (Fagin, 1991):

1 ) Reflection raypaths are in the plane o f  the seismic section.

2) Reflection arrival times and lateral position are not subject to image ray 

effects.

The P-wave reflection coefficient during ray-tracing is calculated by Ruger's 

approximation (equation (3.22)) (Ruger, 1997). Using approximations will result in
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incorrect reflection coefficients for large angles o f  incidence. However, the equation is 

adequate for demonstration purposes.

The models consist o f three-horizontal-layers over a half space (Figure 5.1). A 

VTI block is embedded in either the first layer (for a near-surface VTI case study), or 

the second layer (for the deeper VTI case study). Table 5.1 lists the parameters o f the 

models. The anisotropy o f  the VTI block is described by using anisotropy coefficients e 

and 5 (Thomsen, 1986). In the VTI block, the vertical velocity is always set equal to 

the isotropic velocity o f  the same interval. The e value is set to be 10% for a weak 

anisotropy case, and 30% for a strong anisotropy case. Elliptical anisotropy is assumed 

in all the VTI blocks, so that S= a. Although elliptical anisotropy is not physically 

realistic, some o f  the artifacts in processing should be similar to actual observations.

The forward modeling is performed by assembling 48-fold synthetic data across 

the whole line (offset range: 0 -  2350m. offset interval: 50m). The near stack is made o f 

the 24 near traces, and the far stack made o f  the 24 far traces. Random noise is added to 

the model data to simulate a realistic stacked section.

5.3 Anisotropic Effects on CDP Gather and Velocity Spectrum

The effect o f  anisotropy upon CDP gathers is important because it distorts the 

moveout curve and directly affects the estimated stacking velocity spectrum.

For VTI media, the phase and group velocities change with angle o f  propagation 

through the medium. As a result, ± e  near trace stack, the far trace stack, and the full 

stack can only be fit by the hyperbolic moveout curve over a limited range o f  offsets. 

The problem is one o f  attempting to fit the true non-hyperbolic moveout with an
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Model 1

Model 2

Figure 5 .1 Model geometries (parameters defined in Table 1)
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T able 5.1 M odel Inform ation

1 st layer 2 nd layer 3rd layer VTI block

Vp (m/s) 1700 2 0 0 0 3000 1700

Vs (m/s) 850 1 0 0 0 1500 850

M odel 1 Density (g/cm'*) 1 . 6 2 2.4 1 . 6

epsilon 1 0 % -3 0 %

delta 1 0 % -3 0 %

Thickness (m) 800 1 0 0 0 1 2 0 0 800

Vp (m/s) 1700 2 0 0 0 3000 2 0 0 0

Vs (m/s) 850 1 0 0 0 1500 1 0 0 0

M odel 2 Density (g/cm^) 1 . 6 2 2.4 2

epsilon 1 0 % -3 0 %

delta 1 0 % -3 0 %

Thickness (m) 800 1 0 0 0 1 2 0 0 1 0 0 0

assumed hyperbolic formula. This means that noise is introduced to the full or partial 

stack as a result o f  ignoring the anisotropy. This section describes how this non- 

hyperbolic noise affects the CDP gather and ultimately the interpretation.

Figure 5.2 shows 3 CDP gathers plotted on top o f each other for a 30% near

surface anisotropy case similar to model 1. CDP gather I shows a  perfect hyperbolic 

curve, meaning all the raypaths are within the isotropic region. However, CDP gathers 2 

and 3 show that, due to the anisotropy, the curves are non-hyperbolic. This means part, 

or all o f  the raypaths o f  the CDPs pass through the anisotropic region.
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Increasing Oflset

1000

2000

Figure 5 2 Three superimposed CDP gather showing the effects o f anisotropy on reflector 

moveout

( I = CDP gather in isou-opic region; 2 = pan of CDF gather in isouopic region 

while the other in anisotropic region; 3 = CDP gather in anisotropic region)
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It is obvious that this near-surface anisotropy has stronger effects on shallow 

reflections. As a result we can see only small non-hyperbolic m oveout remaining on the 

far end o f  the second event in Figure 5.2.

Because o f the existence o f  non-hyperbolic effects, picking a proper stacking 

velocity through conventional processing software without higher order corrections is 

difficult or impossible. An overestimate o f velocity can usually result from the 

influence o f  anisotropy. Figures 5.3a and 5.3b show a comparison o f velocity picks 

between purely isotropic and local anisotropic conditions. The very high velocity pick 

from Fig 5.3b results from the influence o f near surface anisotropy.

5.4 Anisotropic Effects on Full and Partial Stacks

Stacking o f  events with non-hyperbolic moveout can produce apparent 

structures and responses including faulting, flat spots, folds, amplitude anomalies and 

AVO artifacts. Figures 5.4a and 5.4b are near-trace and far-trace stacks for 10% weak 

anisotropy in the TI block in model I . After careful velocity picking, the anisotropic 

effect on the near- trace stack (Figure 5.4a) is almost removed. However, a pseudo

structure on the far-stack results from the improperly removed anisotropic effect. Figure

5.5 is a full-stacked section o f  the boxed portion o f  Figure 5.4b, in which a mild 

structure with a flat spot can be observed. This phenomenon is only a result o f  localized 

near-surface weak anisotropy. The pseudo flat spot is caused by the near offset traces 

which are correctly moved out, while the structure is due to far offset traces that have 

had too much NMO applied.
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Figure 5.3 a Semblance velocity analysis on isotropic CDP gather
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Figure 5 4b Far trace stack (10% anisotropy. Model 1)
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Figure 5 5 Full stack (10% anisotropy. Model 1)
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By introducing stronger anisotropy o f  30%, the effect on the near-trace stack 

becomes more serious and cannot be removed totally (Figures 5.6a and 5.6b). On the 

near-trace stack, an amplitude anomaly is observed irrespective o f  the chosen velocity. 

On the far-trace stack, this stronger anisotropy creates not only a structure for the 

shallow reflections, but also two apparent faults on the deep reflections.

If the near-surface anisotropy is totally ignored and only a constant RMS 

velocity is applied, some apparent channels may be introduced on the full-stack section 

as in Figure 5.7.

5.5 Depth Dependence of Anisotropic Effects

In this section, we make comparisons between the effects o f a buried VTI block 

with those o f  a near-surface block. Figures 5.8a and 5.8b show the near and far trace 

stack when there is a buried VTI block with weak 10% anisotropic effects (model 2). 

While there is no effect on the near stack, on the far stack the middle part o f the second 

reflection, corresponding to the bottom VTI block, is slightly pulled up and the 

amplitude is increased. Compared with Figures 5.4a and 5.4b where the TI block was at 

the surface with the same degree o f anisotropy, the effects o f  anisotropy are 

significantly reduced.

Figures 5.9a and 5.9b show the effects o f 30% anisotropy (model 2) on the near

trace and far-trace stack. If compared with Figures 5.6a and 5.6b (the near-surface 

version o f  this model), the anisotropic effect is reduced on both near and far stacks. 

However, on the far stacks, twin events show up. This means that the anisotropic effect 

is still strong enough to cause artifacts. Two apparent faults, although small, appear on
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Figure 5 6a Near trace stack (30% anisotropy. Model 1)
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Figure 5 6b Far trace stack (30% anisotropy. Model I)
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82



** ** w *» n M w M m Ml tit uj iM m tw tit in

1000

2000

CDP Num

Rgure 5.8a. Near trace stack (10% anisotropy, Model 2)

83



CDP Number

' I  1000

V
E

2000
False AVO Anomaly

Figure S. 8b Far stack (10% anisotropy, Model 2)

84



the deeper event. On the full stack section in Figure 5.10a, the middle portion o f the 

second reflection, corresponding to the bottom o f  the VTl block in model 2, appears to 

be a strong AVO anomaly (an anomalous AVO decrease can be observed on Figure 

5.9a and 5.9b). Figure 5.10b shows the resulting apparent flat spot on the full stack.

In summary, the effect o f  a localized VTl block diminishes rapidly with depth if 

the anisotropy is weak (around 10%). However for large but feasible anisotropy, 30% 

for exam ple, false structures and hydrocarbon indicators may result.

5.6 Conclusions and Discussion

Conventional processing software that assumes hyperbolic moveout may 

produce false structures and false responses below anisotropic regions due to improper 

removal o f  NMO. Thus, anisotropy effects can create pitfalls for interpreters on stacked 

and partially stacked sections. These pitfalls include pseudo faults, anticlines, channels, 

amplitude anomalies, and flat spots. The interpreter should be particularly suspicious o f 

structures evident on full or far-offset stacks that do not appear on near-offset stacks.

There are quality control methods (eg. Inspecting NMO corrected gathers) to 

mute the improperly flattened events. However, when far offset information is 

important, muting is not a viable solution. Even higher-order moveout corrections may 

not entirely correct these problems and complete anisotropic processing may be 

necessary. Short o f this, automatic detection o f  non-hyperbolic moveout may provide a 

useful diagnostic for identifying such pitfalls.
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Figure 5.9a Near trace stack (30% anisotropy, Model 2)
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Figure 5.9b Far trace stack (30% anisotropy, Model 2)
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Chapter 6

Reflection and Transmission Coefflcients in General Anisotropic Media

Up until this point, the discussion has focused on AVO analysis in VTl media -  

the simplest type o f anisotropy. In current exploration practice, however, it has become 

necessary to consider more complicated (general anisotropic) models o f  the Earth’s 

structure in order to obtain synthetic seismograms that are more consistent with actual 

field data. For example, multiple aligned sets o f fracture can cause general anisotropy 

(Schoenberg, 1995, Hudson, 1980).

In this chapter, a numerical solution o f the reflection-transmission problem for 

general anisotropic media is presented. The chapter begins with an overview o f the 

approach used and then proceeds to give more detail about the individual steps required.

6.1 Theoretical overview for computing reflection and transmission coefficients

The nature o f wave propagation in general anisotropic media is significantly 

different from that in isotropic media. The basic differences can be stated as following 

(Rokhlin, 1986):

1 ) For an arbitrarily selected direction in an anisotropic material, the 

propagation o f  three different elastic waves is possible -  a quasi-P wave and two quasi- 

SV waves. For special directions called acoustic axes, the velocities o f  two quasi-S 

waves coincide.

2) The polarization for each o f  the waves is uniquely determined by the
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direction o f  wave propagation. Only for propagation along acoustic axes can the quasi-S 

wave be arbitrarily polarized as in an isotropic material.

3) Each o f  the waves has different phase and group velocities. The group 

velocity is greater than or equal to phase velocity and its direction does not coincide 

with the wave normal.

Figure 6.1 shows a plane wave incident upon a boundary between two general 

anisotropic media (with incident phase angle 0 and azimuthal angle (|)). The components 

o f  particle displacement can be expressed as:

u, =  (6.1)

where Uk is a component o f the displacement vector, A is the amplitude o f  the wave, Pk 

is the component o f  polarization vector, K = Kn = (m/V)n is the wave number, V = Vn 

is the phase velocity, n is the unit vector perpendicular to the wave front, and r is the 

position vector.

A 5-step algorithm is described below for numerically calculating the exact 

reflection and transmission coefficients for a boundary between two anisotropic media 

with no restrictions upon the symmetries o f  the two media.

6.2 Step 1 - Calculate the phase velocity of the incident wave

Given the wave normal for the incident wave n, the Christoffel equation (3.5) 

for general anisotropic case can be expressed in the form below:

91



Figure 6 .1 The angle between the slowness vector o f  the incident wave and 

vertical axis X 3 is defined as incident phase angle 0. The azimuthal 

angle (j> is defined with respect to the X | axis.

.(6.2 )

where V is the phase velocity o f  the incidence wave, and aijy = Cijki /p. Thus, for a given 

wave direction (phase angle) expressed by n, the phase velocity can be obtained 

numerically by solving the equation (6.2). The steps for determining the phase velocity 

are described below.
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1) Set (Bik) = (ajjkinjnO, (i, j ,  k, 1 = 1,2, 3 and sum over repeated indices), then

3 3

= Z  Z  V " ; '* /  = 1,2,3)  (63 )
yl 1=1

2) Expand equation (6.2) into the form of:

Q + C ,F -  + C ,(F - ) -  + Q ( K :) ' = 0   (6.4)

where

fCfj = — ^31^13^2: ~ ^23^32^11 “  ^21^12^33

C| = ^31^13 + ^2)8^2 ■*■ ^21^12 “  ^11^33 “  ^33^22 “  ^2241

C2 = ^ll + B22 + 3̂3

c , = l   (63)

3) Solve for the phase velocity V o f the incidence by solving cubic polynomial 

(6.4) for V^. Take the square root o f this solution to obtain the phase velocity. The 

phase velocity (V) and the wave normal n are used in the next step to construct the 

slowness o f the incident wave.

6.3 Step 2 - Calculate the 3 reflected and 3 transmitted slowness

This step is used to find the direction and phase velocity for all reflected and 

transmitted waves.

The method for calculating the reflected and transmitted slowness is based upon 

the concept o f  slowness surface. The slowness in a direction is defined as the inverse o f 

the phase velocity in that direction. The slowness surface is defined as the loci o f  the
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endpoints o f  the slowness vectors. The slowness concept is useful because Snell’s law 

predicts that the component o f the slowness parallel to the reflection boundary is the 

same for all transmitted and reflected waves. However, the application o f the slowness 

surface to solution of the reflection problem in general anisotropic media is significantly 

different from the problem in isotropic media (Edmund, 1971). In the isotropic case, the 

slowness surface consists o f two concentric spherical sheets, the inner one representing 

the P wave and the outer sphere the two coincident SV waves. For the anisotropic case, 

we find three general shaped surfaces, one for each o f  the wavemodes.

Figure 6.2 shows a plane wave incident onto a plane boundary (with unit normal 

n) between two anistrotrpic media. Let m" represent the slowness vector o f the incident 

wave and m represent the reflected and transmitted slowness vectors. The superscript i 

usually runs from 1 through 6, but may be more or less in certain cases, to account for 

all waves present. The origin o f the coordinate system is assumed to lie on the 

boundary, then the equation o f the boundary plane becomes r-n = 0 ( r  = x,i + x j  + x,k is 

the wave position vector).

Using the same ideas discussed in Chapter 3, continuity o f  displacement and 

traction across the boundary can be expressed as:

'•wj" -  w,'*’ = 0, at x,n,=0

= 0, at x,n,=0 ............................................................................... .(6.6)

where u / \  Ui'^\ and are the total displacements and stresses due to the

combination o f  all waves in regions (1) and (2), respectively.
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mi

Figure 6.2 An example o f the possible waves reflected (mi. mz,m3 ) and

transmitted (ni4 . m*. mg) by an incident quasi-P wave mode mo. 

Notice that all the slowness vectors have the same horizontal 

component b.

One o f the important assumptions for these boundary conditions is that the 

frequency and phase o f the reflected and transmitted waves must be equal to that o f the 

incident wave. This assumption yields:
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= m'jXj =•■•= fo r  a ll  x,n, = 0  (6.7)

where the mj are the slow ness components. Xj are com ponents o f  position vector.

The equation (6.7) can be rewritten into the form below:

(m“ -w j').r^  = 0 , fo r  all = 0   ( 6 .8 )

where i stands for all possible types o f reflected and transmitted waves (in general 

1,2 , . . .  6 ).

The physical meaning o f equation (6 .8 ) is that the difference between any two 

slowness vectors o f the incident wave and the permissible reflected and transmitted 

waves must be parallel to the normal n. In other words, the component o f the slowness 

parallel to the boundary plane is the same for all incident reflected and transmitted

waves (Snell’s law). Thus, as indicated in flgure 6.1, the two slowness components 

parallel to the boundary, mi and m 2 satisfy the following equations:

= mi = m; = ■■■ =  (6.9)

The third component m 3 ' (i = 1, 2 , . . . ,  6 ) o f  the slowness vectors that are 

perpendicular to the boundary plane are the only unknowns. These unknown 

components can be found solving the sixth-order equation (another form o f  Christoffel 

equation) in m 3:
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A = -  5^ ) = 0......... ..........................................................................................(6.10)

Equation (6 .10) represents a 3 by 3 matrix which has to be expanded in order to 

set up the sixth order polynomial. The approach developed here is:

1 ) Determine the matrix element

Each element o f the matrix in equation (6 .10) is a second order polynomial in 

m3 (the unknown slowness component). The second order polynomial o f the ik'*’ 

element o f (6 . 1 0 ) can be written in the notation below;

Q m ,- + -  5,* ( i ,k  = 1,2,3) ...........................................(6.11)

where

< A* =(^^,1*3+^-3*. K  +(a,:*3

= (a„* 2 +û,,*,)m,m 3 +5,* (f,Ar = 1,2,3)  (6.12)

2) Expand the equation (6 .10)

Using the above notations, the equation (6.10) can be written as:

A =
C||/?i3 + D\^mj + f | |  A 2 A s ^  A 3

Ci/Wj* + A , m3 + A , C^mj’ + Dy^rn  ̂ + £ „  + D y ^  + A 3

Cj,m3 + A i ^  AI A 2 ^  A 2 A 3

= 0  ....(6.13)
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The expansion o f  equation (6.13) is algebraically very complicated. To simplify 

the process for programming purposes, a simplified procedure to divide the expansion 

into six algebraically similar parts is used. Equation (6.13) can be expended using:

A = + .4“’* = 0  (6.14)

where

/'.4“’ = (Ciiffij- + D^^n^-¥ )(C,m,* + + £ 3 3)

. 4 ' * '  =  ( C , , m ;  +  D , , m 3  +  £ ,_ ,  ) ( C , ^  + + £ , 3  ) ( C 3 , m ;  +  D 3 , / m ,  +  £ 3 ,  )

. 4 ' ”  =  ( C 3 , m ;  +  D , , / « 3  +  £ 3 ,  ) ( C , m ;  +  + £ , ,  ) ( C 3 ; m ;  +  +  £ 3 ,  )

,4 '^’ = (-C ,,m ; -  Dji/n, -  £,, KCj.m; + + £ ,, ){C,ym; + + £ , 3  )

-4*̂ ' = (Cy^mÿ + + £ ,, ){-C2ifn^ -  -  £ ,, ){C\^in^ + + £ , 3  )

.4 '*' = (C,|AM3 + + £ ,| )(C|,/M3 + + £ ,, — D33/M3 — £ 3 3  )

......................................................................................... (6.15)

Each o f the above expressions can be written in a general sixth polynomial form

as:

.4“’ = (f;,m ; + f;:/n3 + f;, )(£ ,/« ; + £„m, + £^)(£„/n ; + £,,m, + £„)

= Go''’ + G ,"’m3 + G ,''’m; + G / ' ’̂ ^ + G / '’m  ̂ + G , ' '%  + G ^^ 'X   (6.16)

Where the F,j represent the polynomial coefficients used in equation (6.15) and 

the G j  are given below:
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r e ; "  = F,,F,,F,,

^ 1  ~ ^ 3^ 23^32 ^ 3^ 22^33  '*' ^ 2^ 23^33

^ 2  ~ ^ 3 2̂3^31 ■*■ ^ 3^22^32  ^ 2^23^32 ^ 1^23^33 + ^ 3^21^33 "*" ^ 2 ^22^33

{ ^ 3  -  ^ U ^ IZ ^ 'A  ■*■ ^ 2 ^23^31 1̂1 2̂3^32 1̂5^21^32 ^ 2^ 12^32 ^ 1^22^33 ^12^21^33

^ 4  -  ^11^2 3 ^31  ■*■ ^13^ 2 1 ^ 3 1  ^12^2 2 ^ 3 1  ^11^2 2 ^ 3 2  ^ 12^ 2 1 ^ 3 2  + ̂ 11^ 2 1 ^ 3 3

=  (6.17)

Finally, collecting the parameters o f  different powers o f  m3 leads to the 

following 6 * order equation:

.4 = Z<3."' + Z C | " S  + i C : " X  + Ë G ,"'m : + X o . ' S *
/«I f«l («I <«| f > ]

+ Z < ^ 5 " * " » 3 + Z C X  = 0   (6.18)
/«■I <»l

3) Solve the unknown m3 (vertical component o f slowness) from the sixth order 

polynomial (6.18). There will be six solutions. However, only the physical solutions 

(usually three out o f  the six for one medium), that satisfy the conservation o f  energy 

flux away from the boundary, are used.

The above procedure must be carried out twice, once for the incident medium 

and the one for transmission medium. Assuming an incident wave propagating 

downward upon an interface, the three reflected slowness vectors should point into the
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upper medium (with positive signs), while the three transmitted slowness vectors point 

into the lower medium (with negative signs). At the critical angle the appropriate ray 

must be parallel to the interface (Edmund, 1970).

Once the slowness for each wave is determined, the direction and phase velocity 

o f  the wave can be determined. The next step described below concerns the polarization 

vector for each o f the reflected and transmitted waves.

6.4 S tep 3 - C alculate polarization  fo r each wave

In each direction o f  wave propagation (defined by the slowness vector) n = 

m/|m|, three polarization vectors should be found (one quasi-P and tw o quasi-S) 

corresponding to the three slowness vectors o f different wave modes. So, if one 

reflected or transmitted slowness vector m has been determined, the polarization o f  the 

wave mode can be calculated by determining eigenvectors for the Christoffel equation:

[a„ um ,m ,-8 ,^)p ,= Q   (6.19)

where the mj are the components o f the slowness vector, ayu = c,jki /p  (cyki: elastic 

constant; p: density), and Pk is the component o f  the polarization vector 

corresponding to the input slowness.

The procedure for calculating the polarization vector is described below:

1 ) Set up the eigenvalue matrix

Set (H,k) = (aijkimjmi-ô ik), (i, j ,  k, 1 = 1,2, 3), then
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3 3

= Z - Û. ('■’ j  = 1’2,3)  (6.20)
/■!

2) Compute the polarization component value

Equation (6.19) usually has two non-zero eigenvalues. This means that it has 

two non-linear equations that can be used for calculating polarization components. A 

part o f the computation problem is to choose which two equations to use. The third 

equation comes from the definition o f the normalized polarization: ZPt* = 1. Suppose 

the fth andyth (i. j c  [1. 2. 3]: i qtj) equations o f (6.19) are non-linear, then the final 

equations chosen for computing a polarization vector are:

A +  / / „ P ,= 0

X = 0

 (621)

The absolute value o f  the polarization components can be solved explicitly

using:

P  =

-\j\ + Af' + A2

4
■Jl + Af +

............................................................................................................

where
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_ I ^ y 2

The solution to (6.21 ) requires the use o f  pivoting (reference) to avoid 

numerical problems.

The solution (6.22) can be applied to directly compute the polarization vectors 

providing all wave phase velocities are different in the wave propagation direction. 

However, in some cases when the two S wave velocities coincide, the equation (6.19) 

has only one non-zero eigenvalue and the solution (6.21) can not be used for calculation 

o f  the polarization vector. Wave directions with this property are called acoustic axes, 

and the polarization vector o f the quasi-S wave may not be uniquely determined. Thus, 

it may have any direction in the plane perpendicular to the displacement direction o f the 

quasi-P wave.

In this situation, the desired displacement o f  the quasi-S wave has to satisfy only 

one condition: it must lie in the plane whose normal coincides with the displacement o f 

the quasi-P wave. A procedure is given below to find one proper set o f  polarization 

vectors for the two quasi-S waves based on the principle: The three polarization vectors 

(one quasi-P and two quasi-S) must be orthogonal to each other:

a) Find tlie quasi-P wave polarization P̂*** along the direction o f  quasi-S 

slowness m by solving the equation (6.19).
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b) Set one quasi-S wave polarization P̂ **’ orthogonal to (parallel to the XY

plane):

_  n ( / »
r/Dcn _

p ," " =  '

^ /^ ‘" = 0   (6.23)

c) Find the other quasi-S wave polarization P'**' by letting it orthogonal to both 

P‘*” and P'*" (perpendicular to the XY plane):

n(  >l) nip)
  - ^

p r* ’ =

^ ( /^ '’' ’p , '” ) ' + (/»""p ,‘'” )- + (p ;" 'p y ' -  p v " p ^ '" Ÿ  

7 ( /v ” ’p3''” )* +(/>‘" ’p ; '” )- + (/^ ""p ‘'’' -  p,'

pi'll pi pi _ pi'll pi pi
VP"-' = -----------  -  -L:.-- ' ■ -  .(624)

^ ( P " i ’Pj'Pi)- + (/»‘’"P ;'’')- +(/>*'"/’<'” -P * " '/» ''" ) -

6.5 Step 4 - Select the right sign for the polarization components

The numerical solution o f  the direction cosine Pk does not give an indication that 

it points in the right direction. The correct signs must be selected for defining the 

polarization direction using the following rules:
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1 ) For the reflected and transmitted quasi-P wave, the positive polarization 

direction is selected such that the dot product o f P (polarization vector) and m 

(slowness vector) is positive:

P- m > 0  (6.25)

2) For the reflected and transmitted quasi-S wave, the vector N that is normal to 

the incident plane has to be found first. Then, the positive polarization direction is 

defined such that the dot product o f P  and N is positive.

■N = mx n

■P -N > 0   (6.26)

where n is the unit vector normal to boundary plane (Z = 0).

In summary, for reflected and transmitted waves, we have to in general compute 

the polarization o f all three wave types in the directions o f the reflected and transmitted 

waves in order to handle problems with acoustic axes where the quasi-S polarity can be 

anywhere within a plane.

6.6 Step 5 - Calculate reflection and transmission coefficients

Assuming an incidence wave with unit amplitude, the boundary conditions (6.7) 

can now be written in the form o f six linear algebraic equations (Rokhlin, 1985):

v*l

+ 1  = 0  (1 = U J )  ....................................................(6 J7 )
vm\
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where the Pj are the polarization components, and the mj are the slowness components. 

R'' stands for a reflection or a transmission coefficient depending on the integer value o f 

V between 1 - 6. These coefficients have the following meaning: v = 0 - incidence 

wave; v = 1 - reflected quasi-P wave; v = 2 - reflected quasi-S wave 1 ; v = 3 - 

reflected quasi-S wave 2; v = 4 - transmitted quasi-P wave; v = 5 - transmitted quasi-S 

wave 1 ; v = 6 - reflected quasi-S wave 2. The C''j3ti are the elastic constants o f incident 

medium (if v = 0. 1. 2, 3). or reflecting medium (if  v = 4, 5, 6).

For convenience, the equations in (6.25) can be written in terms of a set o f linear 

equations for the unknown reflection and transmission coefficients in the form:

(L o  + = ^ (m,M = 1.2 6)  (6.28)

where

r Ln = Pnm I'” = L2,3; M = 0,1,2,3)

L n = - P n m  (/M = 1.2.3; M = 4,5,6)

i i
= Z  Z  &  (/» = 4.5.6; n = 0.1.2.3)

<•1 k-\

3 3

 ̂L n = ~Z Z C - 3)3i,"»«*C = 4,5,6; n = 4,5,6)  (629 )
<*1 k̂ \

The six reflection and transmission coefficients can be obtained by solving the 

six linear equations (6.28).
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The last quantity that is calculated for each wave is the energy flux vector. The 

energy flux E i s a  vector having the direction o f  energy flow at a point with a 

magnitude equal to the amount o f  energy flowing per unit area perpendicular to E. The 

energy flux E and be expressed as:

...........................................................................................................(630)

The component normal to the reflection boundary is used to verify that 

conservation o f energy is obeyed (used as a confidence check for the reflection 

coefficients).

A FORTRAN90 subroutine (See Appendix IV) was written to calculate the 

exact reflection coefficients for reflected quasi-P wave and quasi-S waves when the 

incident angle (with the wave mode) is specified upon a boundary between two 

anisotropic media. Figure 6.3 presents the flowchart o f  this calculation procedure.

6.7 Sum m ary

In this chapter, the basic equations are derived which can be used for 

determination o f  reflection and transmission coefficients in the general anisotropic case. 

Consideration o f wave propagation in the acoustic-axis directions (direction for which 

velocities o f  both transverse waves are equal to one another) is included in the general 

algorithm. The discussions also involve some o f the numerical problem that can occur 

during computation. Specifically the determination o f  polarization is more difficult 

because o f  numerical problems and polarity conventions.
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Chapter 7

Synthetic AVO Study of Fractured Reservoir Models 

With Multiple Fracture Sets

7.1 Introduction

One of the problems facing modem seismic exploration is the use P-wave AVO 

analysis for characterizing fractured reservoirs. Cores and well logs offer methods of 

describing fractures but these approaches often suffer from scale effects. The seismic 

method offers the best approach to characterizing the reservoir at approximately the 

same scale as that required for predicting reservoir properties. In this chapter the AVO 

effects from a fractured reservoir are studied with a view toward identifying those 

approaches best suited for identifying the properties o f  fractured reservoirs.

In the first part o f  this chapter, the popular concept o f fracture density is 

introduced along with the model for the fracture compliance for a single set o f  fractures. 

The assumption will be used that the excess compliance due to different crack sets can 

be added. The advantage o f  this approach is that, when the assumptions used apply, this 

approach can be accomplished without the need for a detailed analysis o f core and 

scaling up to the reservoir scale.

The second part o f  the chapter examines the azimuthal AVO variations o f  two 

fractured models using the exact reflection coefficient method described Chapter 6. 

Model 1 is designed containing a single fracture set, and Model 2 with two fracture sets. 

The interesting result here is that the single fracture set model presents a stronger
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azimuthal AVO variation. Here certain problems are identified with the interpretation. 

Suggestions are made in the conclusions regarding approaches that can be used when 

multiple fracture sets exist.

7.2 Relating fracture density to the elastic compliance

One useful approach in the geophysical literature for describing crack models is 

via the use o f crack or fracture “sets” (e.g., Schoenberg and Sayers. 1995). Each set is a 

number o f parallel cracks that all have the same normal. The results o f  each crack set 

(compliance or permeability) is then simply added (neglecting any interaction) as if the 

results were additive. This approach will be the preferred method in exploration and 

development when the detailed information on individual fracture statistics is not 

available.

Typically the anisotropy introduced by a crack set is proportional to a quantity 

described by geophysicists as “the crack density” . A brief derivation o f  the important 

equations is given below.

The excess compliance o f a fractured rock due to fractures can be computed 

using averages o f  strains and stresses over a selected volume (Horri and Nemat-Nasser, 

1983). Oda et al. (1984) used this approach to derive an expression for the compliance 

o f  a fractured rock. The basic idea is to assume that the average or effective strain 

measured on the surface o f a volume is due to the average strain over the matrix 

material that contains the fractures and the average strain over the voltune o f  the 

fractures.
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............................................................................................................... (7.1)

Equation (7.1) can be rewritten in the form (Horri and Nemat Nasser, 1983)

j   (7-)
; u ( u /  i  i O u i i L . )  “ V - ' /

where Sjjki with the superscipt M represents the compliance tensor without fractures (the 

background or matrix) and Syti with superscript C is the excess compliance due to the 

presence o f the fractures. These compliances are the inverse o f the elastic stiffness 

constants typically used in geophysical exploration literature. The 6*s in the above 

expression are the components o f the displacement discontinuities across the cracks and 

the x ,'s can be written in the following form:

..............................................................................................................................

where A is the aperture o f  the fracture and nj is the j'*’ component (j = 1, 2, 3) o f  the 

normal to the fracture. Writing the integral in equation (7.2) as a summation, equation 

(7.2) and (7.3) yield the following relationship for the average excess strain due to N 

penny-shaped cracks with diameter (D) and aperture A

/I.  (7.4)

110



The excess strain associated with each crack is multiplied times the volume o f 

the crack in a weighted sum. Simplifying the above expression leads to the following 

equation for the excess strain due to the presence o f  fractures.

. (7 i )

Now the assumptions used at this point are:

1 ) There is a simple linear relationship between the traction applied to the 

surface o f  the crack and the displacement discontinuity across the crack.

2) The stress acting upon the crack is the same average stress applied to the 

volume being studied (neglecting the crack interaction).

For example, Oda et al. (1974) assumed a relation o f  the following form

Ô, = K^Da,^n^ .............................................................................................................(7.6)

across the crack surfaces where the constant o f proportionality between the

displacement and the traction is assumed to be proportional to the diameter (D) o f  the

penny-shaped cracks. The constant o f proportionality (Ko) can be pressure dependent. 

Substitution o f  (7.6) into (7.5) leads to the following expressions for the average strain 

over the cracks

............................................................................................. (7.7)

where

............................................................................................ (7.8)
TouU
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is Oda’s fabric tensor. By adding two copies o f  the expressions within equation (7.7) 

and changing the summation indices, equation (7.7) can be written in the form

S, = + f , A  + ...........................................................(7.9)

Thus the contribution o f the fractures to the compliance o f the matrix rock, i.e.,

the excess compliance due to the cracks, is given by

+ F A  + f a  +...................................................................................(7.10)

where the fabric tensor Fjk is given in equation (7.8). For a single set o f parallel (scalar)

cracks (penny-shaped with diameter D), the excess compliance can be written in the 

form (modified from Schoenberg and Sayers, 1995 and Oda, 1983)

+ ô^,n^n, + ................................................... (7.11)

where e is the crack density, i.e., the number o f  cracks per unit volume multiplied times 

the diameter (D) cubed. The constant Ko is assumed to be dependent upon the elastic 

properties o f  the rock that is fractured. The product Zo=Koe will be referred to here as 

the specific compliance o f the crack set.

Equation 7. II describes “scalar” cracks where the tangential and normal stresses 

have the same constant o f  proportionality. A more general relationship accoimting for 

the shear (Zt) and normal (Zn) components o f traction and displacement has been
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described by Schoenberg and Sayers (1995). The calculations in this thesis uses values 

o f  Zn and Zt described in the papers by Hudson (1980,1981).

Based on equation (7.11), a FORTRAN90 subroutine (See Appendix 5) was 

completed to compute the compliance matrix caused by each set o f fracture. This 

program is also capable o f  assembling arbitrary models o f  fractures and convert the 

total compliance into the elastic stiffness.

7 J  Synthetic fractured reservoir models and method

Two models o f fractured reservoirs are set up for synthetic azimuthal AVO 

studies in this thesis. The matrix material o f  the reservoirs is assumed to be a limestone 

with 10% porosity, and the overlying seal layer is assumed to be a shale. Both incident 

and transmitted layers are assumed isotropic before fracture sets are added to the 

models. Table 7.1 lists the petrophysical parameters used as the background o f the 

models. All o f these parameters are set within the range o f  the laboratory and empirical 

relationships between Vp, V; and p described by Castagna, et. al.. (1993).

Table 7.1 Model Matrix Information

Reservoir Matrix Overlying Shale

Vp (m/s) 5877 3700

Vs (m/s) 3039 1982

Density (g/cm^) 2.44 2.41

Porosity 10%
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Figure 7.1a XiXi-plane sketch o f fracture’s orientation in model 1

Figure 7.1b XiXz-plane sketch o f fracture’s orientation in model 2
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All fracture sets in the models discussed are assumed to be vertical and 

perpendicular to the reflection boundaries (X 1-X 2 plane). Model 1 is assumed to have 

one set o f  fractures at an azimuth o f 0° (normal pointing parallel to the Xi axis). Model 

2 has two sets o f  fractures at azimuths o f  0° and 60°. Figure 7.1 a and 7.1 b show the 

XiXi-plane sketches o f  models 1 and 2. The crack density o f  the fracture set in model 1 

is set equal to 0.1. For the purpose o f  a comparison study, the total crack density in 

model 2 is also set as 0.1%, with the crack density o f  each fracture set equal to 0.05%. 

Table 7.2 shows all the fracture information described above.

The exact solution o f  the reflection coefficient between general anisotropic 

media is used for the study presented here. The advantage o f  this approach is that any 

errors from using approximate (conventional ) AVO modeling can be avoided.

An incident P-wave is assumed for each model. The three expected reflections 

are a quasi-P (PP) wave, a quasi-in-plane-S (PSI) and a quasi-out-of-plane-S (PSO) 

wave. The incidence phase angle range for the study is varied between 0° to 45°. The 

azimuthal variation o f  amplitudes with angle o f  incidence is observed at four different 

azimuth angles - 0°, -30°, -6G°and -90°, respectively.

According to Hudson (1980, 1981), one vertical set o f  the fractures can 

introduce transverse isotropy with a horizontal symmetry axis (HTI), while multiple sets 

o f fractures can cause arbitrary anisotropy.

7.4 Azimuthal interpretation of AVO from reservoir top

Figures 7.2 and 7.3 show the exact azimuthal PP reflection amplitudes from 

models 1 (single fracture set) and 2 (two fracture sets), respectively. First o f  all.
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Table 7.2 Model Fracture Information

Crack Density Azimuthal Angle Dip Angle

Model 1 fracture set # 1 0.1 0 90

Model 2 fracture set # 1 0.05 0 90

fracture set #2 0.05 60 90

comparing these two figures, there are only slight differences on the normai-incidence 

PP reflection coefficients, showing that the total crack density may be the primary 

factor related to fractures that influences the zero-offset PP reflections.

Secondly, the azimuthal variations o f  the PP reflection can be only clearly 

observed within each curve family when the incidence angles exceed 25". Note that 

model 1 shows more azimuthal AVO than model 2. Note also that, in Figure 7.3, the 

azimuth -90" curve is identical to the azimuth -30" curve. It is found that, in these two 

situations, that the incidence plane happens to be along the orientation direction o f one 

o f  the fracture sets. The P-wave sees the same fractured property because the two 

fracture sets have the same crack density.

Figure 7.4 and 7.5 show the out-plane shear reflections amplitudes from models 

1 and 2, respectively. The interesting points for these two figures are:

1 ) Compared with Figure 7.2 and 7.3, the azimuthal variation o f  the converted
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PS reflections is much more sensitive to fractures than PP reflections. Even at small 

incidence angles. Figure 7.4 and 7.5 show a distinct azimuthal AVO response for both 

Models 1 and 2.

2) The normal incidence reflections are always zero for all quasi-S waves 

because all the fracture sets are vertical. There is no converted shear wave when the P- 

wave is normally incident upon the reflection surface for the model assumed.

3) In Figure 7.4 for model 1. notice that the azimuth -90° and 0° AVO curves 

are zero. With only one set o f  vertical fractures at azimuth -90°. the reservoir model can 

be treated as an HTI medium (Hudson .1980, 1981) with two symmetry planes. One o f 

the symmetry planes is the isotropic plane at azimuth -90° and the other one is an 

effective VTI plane at azimuth 0° direction (Tsvankin, 1995, 1996). This modeling 

work shows that the shear wave reflection can be used to find the orientation o f  the 

fracture set under the condition that only one fracture set exists.

4) In Figure 7.5 for model 2, a zero-reflection curve is also observed. This 

reflection curve happens at the azimuth -60°, which equally splits the two fracture 

systems. It is also noticed that the two reflection curves o f  the azimuths -90° and -30° 

show up as mirror images o f  each reflected about the azimuth -60° curve.

These observations indicate that the azimuth -60° plane acts as a symmetry plane, but it 

is not parallel, or perpendicular, to any fracture sets. In this model, the azimuth -60° 

plane can be misinterpreted as an ‘apparent effective’ orientation o f  one fracture set.

Figures 7.6 and 7.7 show the quasi in-plane shear reflections for models 1 and 2, 

respectively. Once again, as in the out-of-plane S-wave case, the in-plane S-wave 

reflection curves show strong azimuthal variations for fracture models under small
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incidence angle conditions. Even more importantly, the azimuthal AVO 

variations are larger than those o f out-of-plane S-wave curves (compare to Figure 7.4 

and 7.5). Another observation is that the azimuthal AVO from the single fracture set 

model (Model 1 ) is larger than those o f the two-fracture set model (Model 2).

7.5 Conclusions

The azimuthal variation o f the converted PS reflections is more sensitive to 

fractures than PP reflections. The evidence is that, under small incidence angle 

conditions, the S-wave reflection curves show distinct azimuthal AVO variations. 

However, the azimuthal variations o f  the PP reflection due to fractures can be only 

clearly observed when incidence angle is large (greater than 25° for the models in this 

synthetic study).

It is found that, with the same total crack density, a model containing a single 

fracture set presents the largest variation on azimuthal AVO. Multiple fracture sets tend 

to weaken the azimuthal anisotropic effects.

With large offset data, the large azimuthal variation in P-wave reflections may 

indicate the existence o f  fractures zone. The larger the relative amplitude variations 

with azimuth, the greater the possibility for a single fracture set.

The out-of-plane S-wave azimuthal AVO can be used to identify symmetry 

planes that may indicate an orientation direction o f  one fracture set. However, the 

symmetry plane, under particular situations, may not directly be related to any 

orientation directions o f the fracture sets. Theoretically, in a fractured area, if  there is 

no PS reflection at normal incident angle, the firacture sets should be vertical to the
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reflection boundary. AVO modeling using the exact reflection coefficient modeling 

developed in this thesis is a useful tool for studying methods for detecting fiacture 

properties. Based upon this study, S-waves have the greatest potential for studying 

fracture properties.
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Chapter 8

Case Study: Determine Petrophysics Parameters Using Exact AVO trend

The variation o f  seismic reflection amplitude with offset is dependent on 

intrinsic rock parameters such as compressional-wave velocity (Vp), shear-wave 

velocity (Vs), density, and anisotropy, etc. (Castagna and Buckes, 1993). In this 

chapter, a case study o f  anisotropic modeling o f  real AVO behavior is performed to 

investigate tradeoffs between anisotropic and conventional AVO parameters.

8.1 Data

The AVO analysis is performed on a deep-water G ulf o f  Mexico seismic 

dataset. The event o f interest is indicated by an arrow in the stacked section (Figure 8.1 ) 

where a clear amplitude anomaly is observable. This anomaly is selected as the research 

target for this thesis. It happens at a shallow depth (two-way travel-time % 1625ms) 

where AVO techniques are expected to be robust if  the mute occurs at sufficiently far 

offset. The lithologie column o f  the shallow portion consists exclusively o f sands and 

shales.

Figure 8.2 shows the CDP gathers across the anomaly. Between the times 1600- 

1700 ms, amplitude increases with offset for all five CDP gathers. The maximum offset 

o f  this gather is 817 m. Table 8.1 lists semblance velocity analysis results from the 

nearest velocity analysis. Figure 8.3 illustrates the picked semblance velocity o f  thick 

layers increasing with time.
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Table 8.1 Semblance Velocity Table at CDP No. 1000

Two Way Time 
(ms)

Sem blance Velocity 
(m/s)

424 1480.6

922.7 1532.1
1293.7 1562.5
1653.2 1614
2035.9 1716.9
2372.2 1834.6
2708.4 1937.5
3021.5 2084.6

8.2 Strategy

For extracting petrophysical parameters using measured AVO. the strategy 

below is developed:

8.2.1 Extract AVO trend from data

One o f the important AVO techniques is to investigate the relative variation o f 

trace amplitudes within a CDF gathers. This requires that the all trace amplitudes have 

to be preserved and recovered. In figure 8.2, the CDP gathers are already a result o f 

careful data processing, with high signal-to-noise ratio and recovered relative seismic 

amplitudes. An amplitude-vs-offset measurement is made on the central CDP shown in 

Figure 8.2, which shows a distinct amplitude increase with offset (Figure 8.4a).
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The incidence angle corresponding to each offset must be found before 

computing the synthetic reflection coefficients. As the first step, comparison is made 

between the time depth on CDP gathers (Figure 8.2) and layering from semblance 

velocity values in Table 8.1. This work reveals that the target reflector lays on the 

fourth reflective velocity boundary. Using the semblance velocity table (Table 8.1), the 

interval velocities o f each layer can be obtained from Dix equation (Dix, 1955):

, /  I ' /7ri.t..V.V V' ' /  / O l \
Km = J  — ............  (8-1)

where V,nt is the interval velocity between N'*’ and N-1^ reflection boundary. Vnm.N and 

Vrms.N-i are the RMS velocities for the N*** and N-1^ reflection boundary respectively, 

and tN(0) and tN-i(O) are the corresponding two-way-times to the reflectors.

The assumptions at this point are that:

1) The lithology o f  these four thick layers are basically isotropic and 

homogenous.

2) All the four reflective boundaries are horizontal.

Conventional angle-of-incidence calculation are not sufficient for these data as 

the receivers are ocean bottom labels and the water depth is great. Thus, given an offset 

length, an isotropic ray-tracing procedure is applied iteratively to find the corresponding 

incidence angle upon the target boundary. The amplitude-vs-offset (AVO) measurement 

(Figure 8.4a) is then converted into amplitude-vs-angle (AVA) measurement (Table 

8.2). Figure 8.4b presents the extracted AVA data, which shows the amplitude increase 

with incidence o f  angle.
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Table 8.2 PP Reflction Amplitude Measurement at CDP No. 1011

Offset (m) Angle of Incidence PP reflection

0 0 2.05468
36 0.868467 2.0577188

73 1761122 2.0632474
131 3.160712 2.079468
196 4.741999 2.1086063
231 5.587397 2.1290944
295 7.146384 2.1752441
331 8.017215 2.2061386
395 9.591071 2.2698359
430 10.451585 2.3094206
495 12.053468 2.3918455
531 12.940638 2.442481
595 14.535267 2.5412731
631 15.437664 2.601779
695 17.038331 2.7181184
717 17.601439 2.760704
796 19.613913 2 9245629
817 20.155236 2.9709992
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8.2.2 Set up the synthetic models

Different synthetic reflection models are set up for comparison studies under the 

following assumptions:

The magnitude o f  reflection is determined by petrophysical parameters across 

the target boundary. These parameters, such as Vp, density, and anisotropy, etc., 

may not agree with the thick-layer’s petrophysical

properties extracted from the seismic data.

1 ) The target reflector is a consequence o f  a sand reservoir overlaid by a thin 

layer o f  shale.

2) The reservoir is isotropic, but its P-wave and S-wave velocities may vary

due to porosity change, fluid content and properties change, etc.

3) The shale is expected to exhibit high intrinsic anisotropy. This assumption 

result from the preferred orientation o f micas and clay minerals in shales, fine 

laminations, and low aspect ratio pores.

According to the assumption, the Shale’s P-wave velocity is set to be the same 

as the fourth layer interval velocity. The S-wave velocity and density are obtained from 

Castagna’s equations (afier Castagna, et. al., 1993):

F, ( m / 5) = 0.771"^-867.4  (82)

and (Gardner, 1974);

p  ( * g /m ')  = 1.741K/'  (83)
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8.2.3 Petrophysics parameter extraction

The theoretical AVA response is computed by using the exact general 

anisotropic procedme (as described as Chapter 6) for each set o f  petrophysics 

parameters. All model comparison studies are accomplished on the basis o f 

normalization with the normal-incident-reflection amplitudes o f  the extracted data.

The normalized extracted AVA curve is compared to the theoretical curve 

family, which are from models with the same Vp value, but with different V/Vp ratio. 

For a given P-wave velocity Vp, one V^/Vp ratio can be selected from the model which 

has the closest synthetic AVA trend. To repeat this procedure by varying the P-wave 

velocity Vp can yield a number o f V /V p ratio such that each pair o f  Vp and V/Vp ratio 

generates a petrophysical parameter fit to the extracted AVA data. The Vp and V;/Vp 

ratio pairs are then crossplotted into a so-called ‘petrophysics-fit* curve. The 

intersection point o f  this petrophysics-fit curve and the classic lithology-related (Vp V, 

relationship) curves (Castagna, et. al., 1993) indicates reasonable values o f  Vp and V, 

for the reservoir.

8.3 Observations

For limiting the search range for the petrophysical parameters, model tests are 

first designed to find out a reasonable range o f  P-wave velocity (Vpz) o f  the reservoir. 

Asstuning Vs/Vp « 0.5, a variation o f  Vpj is allowed between 80% -120%  ofV p, (P- 

wave velocity o f  the overlying shale layer). Then, the theoretical AVA trend for each 

model can be obtained by using exact reflection coefficient calculations. After 

normalizing each curve with its own normal-incident-reflection amplitudes, Figure 8.5
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shows a group o f  synthetic model AVA trends (each Vp2 with a difference o f 5% VpO 

compared w ith the extracted data. It shows clearly that, when Vp2 <Vpi, the synthetic 

amplitude increases with angle o f  incidence which agrees with the extracted data AVA 

trend. As the first result in this case study the P-wave velocity o f  reservoir should be 

smaller than the overlying shale layer.

With a knowledge o f  Vp2 variation range, model tests can be applied for 

searching the value pairs o f  Vp2  and V ^/ Vp2 using iterative procedure as described in 

section (8.2.3). Setting Vp2 = .9 Vpi as an example. Figure 8.6 compares the synthetic 

models (with different V^/Vp ratio) to the extracted data, and presents a good curve fit 

when V;2/Vp2 = .45. The value pair (Vp2 = .9 Vp, and Vs2/Vp2 = .45) is then selected for 

setting up a possible petrophysical relationship. All the value pairs o f  Vp2 and V;2/Vp2 

can be crossplotted into a petrophysical-fit curve as shown in Figure 8.7. The values o f 

Vp2 and Vs2 /Vp2 can be determined by reading the intersection point o f  this 

petrophysics-fit curve and an empirical Vp -V, trend for sand (Castagna, et. al., 1993) in 

Figure 8.7. If  the overlying shale layer is isotropic, the petrophysics parameter 

extraction result in this case study is: Vp2 = 1742 m/s, Vs2 = 557 m/s.

Under the assumption that shales are usually anisotropic, more model tests are 

conducted by adding anisotropic parameters to the overlying shale layer. To simplify 

the discussion, elliptical anisotropy is assumed in this model study. By varying only 

anisotopic parameters. Figures 8.8 -  8.10 show distinct anisotropic effects on the 

synthetic AVA trends. In this case study, it happens that incrementally adding 10% 

anisotropy to the overlying shale causes a 5% drop in V*/Vp ratio inverted target 

interval.. Figure 8.11 shows the anisotropic effects (from the overlying shale) on the
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petrophysical-fit result. For example, assuming the overlying shale has 20% anisotropy, 

the result o f petrophysical parameter extraction changes to: Vp2 =1671 m/s, V$2 = 485 

m/s. Compared with parameter extraction result from Figure 8.7, this result is a 4% drop 

in Vp and 13% drop in Vs. Thus, the anisotropy from the overlying shale may have a 

larger effect on the Vs extraction than the Vp extraction.

Compared with the isotropic curve, the three anisotropic ones in Figure 8.11 also 

indicate an increasing influence from the degree o f  anisotropy o f  the overlying shale.

8.4 Conclusions

Due to the close relationship between the rock petrophysical properties and its 

seismic response, it is possible to derive the petrophysical parameters from the AVO 

analysis. The strategy described in this chapter is sensitive in extracting P-wave and S- 

wave velocities. This method is believed applicable in the exploration practice, 

particularly in the case where only seismic data is available.

The first group o f  model tests should be designed to find out a reasonable range 

o f P-wave velocities o f  the reservoir for the purpose o f  limiting the search scope o f the 

petrophysics parameters. This will constrain the inversion for Vs and Vp pairs.

The computation procedure for exact reflection coefficients is a necessary and 

powerful tool in this strategy. Exact synthetic models provide a solid basis for 

comparison and may be extended to a wider range o f  incidence angle.

Anisotropy from overlying shale or underlying sand has an effect on the 

extraction o f reservoir parameters. The effect increases with increasing degree o f 

anisotropy. It is also noticed that the anisotropic effect on V, extraction o f  the reservoir
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can be much stronger than the extraction o f  Vp. However, anisotropy is usually weak, 

especially in shallow, deep-water shale. An estimation o f local anisotropic parameter 

(o f shale) may be enough for extraction o f  the reservoir’s petrophysical parameters.

141



a i

0.09

«■o
S a œ
a
E
<
§0.07

1
( § a o 6
a.
û .

ao6

X
0
0
A
□

+
X

V ^ 2 S %
WV*x30%
WV|x3S%
>M\^4QP/o
VaA^46%
\ ^ S 0 %
\WV&59%
DaÉa

It ft t  I II

a o 4 "1—

5

+ 
+ -

s :
S 0 
0 0 
X X

+ 
+ -

"  0

â X

X X

OO

XX

10 15

An^ecflnddenœ

oO

oO

XX

— 1—  

20

Figure 8.8 Comparison between synthetic AVA curves (with 10% anisotropy) 

and the data.
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C h ap te r  9 

Conclusions and  Discussions

The results o f  this thesis represent a contribution to the present understanding o f 

the effects of anisotropy on AVO analysis. The exact reflection coefficient results 

derived in his thesis make AVO modeling more realistic in complex fracture system.

Daley’s exact reflection coefficient in VTl media is rederived in this thesis. A 

number o f typographical errors are corrected in the solutions published by Daley and 

Hron (1997 & 1979). Under the condition that all o f the elastic constants (a total o f  ten 

considering both media) and densities o f the VTI media are known, the exact reflection 

coefficients can be obtained in straightforward manner from a series of algebraic 

expressions.

A unified algorithm for solving the exact reflection coefficients in general 

anisotropic media is developed. Consideration o f wave propagation in the acoustic-axis 

directions is also included in the general algorithm. This algorithm is a numerical 

solution, and many numerical problems have to be handled properly during the 

computation. Some discussions on solving the problems are included in this thesis.

Separate computer programs have been completed, for both VTI (using 

corrected Daley’s solution) and general anisotropic media, to calculate the exact 

reflection coefficients for reflected quasi-P wave and quasi-S waves when the incident 

angle (with the wave mode) is specified upon a boundary between two anisotropic
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media. These algorithms provide basic tools for most o f  the research work 

accomplished in this thesis.

Approximate equations have been applied widely for modeling of VTI media 

under the assumption that the elastic contrast across the reflection interface is small and 

the anisotropy is weak. These approxim ate equations are important because they 

simplify the dependence o f  the reflection response upon the parameters. Four published 

P-wave reflection approximations in VTI media (Baniks, 1986, Ruger, 1995, Thomson, 

1993, Wei, 1995) have been analyzed by comparing them to the corrected exact Daley’s 

solution. Some interesting results are: 1) Under isotropic conditions, all four 

approximations perform the sam e for any incidence angle, and they are only good 

approximations when the incidence angle is small. 2) Under anisotropic situations, 

different approximations work better for different categories o f  isotropic base models. 

Banik's approximation over a w ider range o f incidence angles seem to be superior to 

the others for many models. R oger’s approximation is more accurate at small incidence 

angles.

It has been widely accepted th a t , under isotropic conditions in the Earth’s crust, 

crossplotting o f AVO intercept (A) and gradient (B) can be a useful seismic lithologie 

analysis tool. However, anisotropy exists in the real world. Using a synthetic model 

study, this research work shows that anisotropy can complicate the application o f the 

powerful AVO technique.

It is well known that anisotropy above and below an interface effects the AVO 

gradient (B) and curvature (C): 1 ) On an A versus B crossplot, anisotropy may cause 

large changes in the B-intercept (which can be mistaken for Poisson’s ratio deviations)
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and may also cause minor changes in slope. 2) On an A versus C crossplot, large 

differences may occur in both C-intercept (which can be mistaken for density contrasts), 

slope, and curve shape. According to Shuey’s equation, an A versus C crossplot should 

be linear with a slope o f  one. 3) Even in the isotropic case, distinct curvature appears in 

the A versus C crossplot, which is not predicted by Shuey's equation. An A" term must 

be added to the C-term to obtain linearity in the isotropic case. Deviation from this 

slope can be a direct indication o f  anisotropy.

Through the study o f  anisotropic effects on AVO crossplotting, an empirical 

correction to Ruger’s approximation is introduced. This empirical approximation 

results in a more accurate crossplot interpretation, and thus provides insight into 

anisotropic effects on AVO.

Anisotropic effects on seismic stacked sections are often ignored during 

conventional processing that assumes hyperbolic moveout. This can create pitfalls for 

interpreters on stacked and partially stacked sections due to improper removal o f NMO. 

These pitfalls include pseudo faults, anticlines, channels, amplitude anomalies, and flat 

spots. There are quality control methods (eg. inspecting NMO corrected gathers) to 

mute the improperly flattened events. However, when far offset information is 

important, muting is not a viable solution. Even higher-order moveout corrections may 

not entirely correct these problems and complete anisotropic processing may be 

necessary. As a suggestion from this work, the interpreter should be particularly 

suspicious o f  structures evident on full or far-offset stacks that do not appear on near- 

offset stacks.
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A synthetic AVO study over fractured reservoir models reveals that the 

azimuthal variation o f the converted PS reflections is more sensitive to fractures than 

PP reflections. Assuming background material is isotropic, fractures can be ‘seen’ from 

azimuthal converted PS AVO even under small incidence angle conditions.

AVO modeling using the exact reflection coefficient approach developed in this 

thesis is a useful tool for detecting fracture properties. It is found that a model 

containing a single fracture set presents the largest variation on azimuthal AVO while 

multiple fracture sets with different azimuths and the same total crack density has a 

reduced azimuthal response. Multiple fracture sets tend to weaken the azimuthal 

anisotropic effects. It is also realized that the out-of-plane S-wave azimuthal AVO can 

be theoretically used to find any vertical symmetry planes that may be an indication o f 

the orientation direction o f one fracture set.

Petrophysical parameters, such as the P-wave velocity, S-wave velocity, and 

density, etc., are important information for hydrocarbon exploration. Here, a strategy is 

completed to extract from the AVO analysis the P-wave (Vp) and S-wave (V J velocity 

o f  the reservoir. The theoretical basis o f  this work is that there exists a tight relationship 

between the rock petrophysical properties and its seismic response (Castagna, et al., 

1993). Anisotropy from overlying shale has an effect on the extraction o f  reservoir 

parameters. It is noticed that the effect on extraction o f  Vj can be much stronger than 

the effect upon extraction o f Vp.

Finally, from the experience gained during this thesis research, it is suggested 

that anisotropic effects should be included in any AVO analysis o f  field data. The exact
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reflection coefficients in either VTI or general anisotropic conditions are powerful and 

efficient tools for making these AVO studies.
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Appendix I: FORTRAN90 Subroutine for Calculation of Exact P-wave and 

Reflection and Transmission Coefficients

* * * * * * * * * * *

Name: Daley_coefficient
Description: This subroutine is to calculate the exact P- 

wave reflection and transmission 
coefficients in TI media assuming P-wave 
incidence. Given the incident and reflecting 
TI media, it takes the incidence angle (Ib) 
as input. Then, it use Daley's equations to 
compute the reflection and transmission 
coefficients of P- and AV-wave. SH waves are 
not considered in this program.
During the computation, two other 
subroutines, ” compute_L_M" and 
"compute_Velocity_Angle", are called.

Input: Ib - P-wave incidence phase angle
Output: Rll - P-wave reflection coefficient

R12 - P-wave transmission coefficient
R13 - SV-wave reflection coefficient
R14 - SV-wave transmission coefficient

Global Variables:
VPvl - Vetical P-wave velocity of incident 

medium (aj
VSvl - Vertical S-wave velocity of incident 

medium (Pi)
Epl - Thomsen anisotropic parameter e of 

incident medium 
Esl - Thomsen anisotropic paramter y of 

incident medium 
Dltl - Thomsen anisotropic parameter Ô of 

incident medium 
del - density of incident medium (pi)
VPv2 - Vertical P-wave velocityof reflecting 

medium (a;)
VSv2 - Vertical S-wave velocity of 

reflecting medium (P?)
Ep2 - Thomsen anisotropic parameter s of 

reflecting medium 
Es2 - Thomsen anisotropic paramter y of 

reflecting medium
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Dlt2 - Thomsen anisotropic parameter Ô of
reflecting medium

de2 - density of reflecting medium (p:)
pi = 3.1415926

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine Daley_coefficient(Ib,Rll,R12,R13,Rl4)
Implicit None

Real, Intent(INOUT) : : Ib
Complex, Intent(OUT) : : Rll,R12,R13,R14

Real :: Vpl,Vp2,Vs3,Vs4 
Vpl - P-wave reflection velocity 
Vp2 - P-wave transmission velocity 
Vs3 - SV-wave reflection velocity 
Vs4 - SV-wave transmission velocity

Complex :: R1,R2,R3,R4 
R1 - Sine of P-wave reflection angle
R2 - Sine of P-wave transmission angle
R3 - Sine of SV-wave reflection angle
R4 - Sine of SV-wave transmission angle

Real : : Cill,C133,C113,C155 
Cill, C133, C113, C155: Elastic stiffness of incident 

! media

Real : : Crll,Cr33,Crl3,Cr55 
! Crll, Cr33, Crl3, Cr55: Elastic stiffness of
! reflecting media

! All parameters below are same as in Daley Page666-667
Complex : : 11,12,13,14,ml,m2,m3,m4

I

Real : : x,n,kl,k2
Complex : 
Complex : 
Complex : 
Complex :

P,Q,S,R 
bl,b2,dl,d2,wl,w2,ebl,eb2,1 
T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12 
E1,E2,E3,E4,E5,E6,E7,E8,E9,E10,E11,E12,D

Call compute_Velocity_An(Ib,Vpl,Vp2,Vs3,Vs4,Rl,R2,R3,R4)

Call l_m_compute(VPvl,VSvl,Epl,Dltl,Rl,11,ml)
Call l_m_compute(VPv2,VSv2,Ep2,Dlt2,R2,12,m2)
Call l_m_compute(VPvl,VSvl,Epl,Dltl,R3,13,m3)
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Call l_m_compute(VPv2,VSv2,Ep2, Dlt2, R 4 ,14,m4 )

Ci33=del*VPvl**2 
Cill=(l+2*Epl)*0133 
C155=del*VSvl**2
Cil3=SQRT((0133-0155)*( (l + 2*Dltl) *013 3-0155))-0155

Or33=de2*VPv2**2 
Orll=(l+2*Ep2)*Or33 
Or55=de2*VSv2**2
Orl3=SQRT((Or33-Or55)*( (l+2*Dlt2) *Or3 3-Or55))-Or55 

X =R1
n =Vpl/Vp2 
kl=Vs3/Vpl 
k2=Vs4/Vp2 
P =Sqrt(l.-Rl**2)
Q =Sqrt(l.-R2**2)
S =Sqrt(l.-R3**2)
R =Sqrt(l.-R4**2)

bl = 0155 
b2 = Or55
dl = 13*0133-m3*0113 
d2 = 14*Or33-m4*Orl3
wl = Vpl/(Vs3*(11+ml))* ( (m3 + 13)*S**2-13) 
w2 = Vpl/(Vs4*(11+ml))*( (m4 + 14)*R**2-14 ) 
ebl= 11*0113+(ml*0133-11*0113)*P**2 
eb2= (12*Orl3+(m2*Or33-12*Orl3) *Q**2) * (Vpl/Vp2)
1 = (12+m2)/ (11+ml)

TI = eb2 - ebl*12/(n*ll)
T2 =-(b2*w2*kl*13/ml - bl*wl*k2*14/ (n*ml))
T3 = b2*w2 + bl*14*k2*x**2/(n*ml)
T4 =-(eb2*m3/ll + dl*12*x**2/(n*ll) )
T5 = bl*(wl + kl*13*x**2/ml)
T5 = eb2*m4/ll + d2*12*x**2/(n*ll )
T7 = b2*l - bl*m2/ml 
T8 =-(d2*m3/ll - dl*m4/ll)
T9 = b2*(w2*m2/ml + l*14*k2*x**2/(n*ml))
T10= ebl*m3/ll + dl*x**2 
Tll=-(ebl*m4/ll + d2*x**2)
T12= bl*wl*m2/ml + b2*l*13*kl*x**2/ml

El = Tl*T2*x**2
E2 = T3*T4*P*S
E3 = T5*T6*P*R
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E4 = T7*T8*P*Q*R*S*x**2
E5 = T9*T10*Q*S
E6 = T11*T12*R*Q
E7 =2*T5*T11*P*R
E8 =2*T3*T10*P*S
E9 =2*T7*Tll*P*Q*R*x
E10=2*Tl*T3*P*x
Ell=2*T7*T10*S*Q*P*x
E12=2*Tl*T5*P*x

D = E1+E2-E3+E4-E5+E6

Rll = (-E1+E2-E3+E4+E5-E6)/D 
If (Real(R2)>=1.) Then 
R12=0 
Else 

R12 = (E7-E8)/D 
End If 

R13 = (E10-E9)/D
If (Real(R4)>=1.) Then
R14=0
Else

R14 = (E11-E12)/D 
End If

End Subroutine Daley coef
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Name: compute_L_M
Description: This subroutine calculates the 1 and m

values which define the polarization
direction of particle displacement. The
values of 1 and m are different corresponding
to reflected P-wave, reflected SV-wave,
transmitted P-wave and transmitted SV-wave.

Input: Vp - Vertical P-wave velocity
Vs - Vertical S-wave velocity
epsilon - Anisotropic parameter

(Thomsen, 1986)
delta - Anisotropic parameter

(Thomsen, 1986)
Rr - Sine of wave propagation angle

Output: values of 1 and m
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine l_m_compute(Vp,Vs,epsilon,delta,Rr,1,m)
Implicit None

Real, Intent(IN) : : Vp,Vs,epsilon,delta 
Complex, Intent(IN) : : Rr 
Complex, Intent(OUT) : : 1,m 
Complex : : All,A33,A13,A55,Al, A2,Q

A33=Vp**2
All=(l+2*epsilon)*A33 
A55=Vs**2
A13=SQRT( (A33-A55) * ( (l + 2Melta) *A33-A55) ) -A55 
Al=2*(A13+A55)**2-(A33-A55)* (A11+A33-2*A55) 
A2=(A11+A33-2*A55)**2-4 *(A13+A55)**2 
Q=SQRT((A33-A55)**2+2*Al*Rr**2+A2*Rr**4)

If (Rr==0.) Then
1=SQRT(((Q-A33+A55)/O.000001+(A11+A33-2*A55))/(2*Q)) 

Else
1=SQRT(((Q-A33+A55)/Rr**2+(A11+A33-2*A55)) /(2*Q))

End If

If (Rr==(1.0,0.0)) Then
m=SQRT(((Q-A11+A55)/O.000001+(A11+A33-2*A55))/(2*Q)) 

Else
m=SQRT(((Q-A11+A55)/ (1-Rr**2)+ (A11+A33-2*A55)) / ( 2 * 0 ) ) 

End If

End Subroutine l_m_compute
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Name: compute_Velocity_Angle
Description: This subroutine calculates the 4 velocities 

(reflected P, transmitted P, reflected SV, 
and transmitted SV) and 4 corresponding sine 
values of the wave propagation angles.

Input : 
Output :

Ip - P-wave incident phase angle
VI - P-wave reflection velocity
V2 - P-wave transmission velocity
V3 - SV-wave reflection velocity
V4 - SV-wave transmission velocity
sinRl - Sine of P-wave reflection angle 
SinR2 - Sine of P-wave transmission angle 
SinR3 - Sine of SV-wave reflection angle 
SinR4 - Sine of SV-wave transmission angle

Subroutine compute_Velocity_Angle(Ip,Vl,V2,V3,V4,&
sinRl,sinR2, sinR3,sinR4)

Implicit None

Real, Intent(INOUT) 
Real, Intent(OUT) :; 
Complex, Intent(OUT)

: : Ip
VI, V2, V3,V4
: : sinRl,sinR2,sinR3,sinR4

Real, Dimension(4) Vr,Rr,U,V
Real : : VH,VV 
Real : : Vi (phase vel 
Real : : z,zl,E 
Integer : : j
Real : : fil,fl2,Ail,Ai2,Aill,A133,Ai55,Ail3 
Real : : frl,fr2,Arl,Ar2,Arll,Ar33,Ar55,Arl3,Vrph

U(l)=VPvl
U(2)=VPv2
U(3)=VSvl
U(4)=VSv2
V(l)=Sqrt(l+2*Epl)*VPvl 
V(2)=Sqrt(l+2*Ep2)*VPv2 
V(3)=Sqrt(l+2*Esl)*VSvl 
V(4)=Sqrt(l+2*Es2)*VSv2

Ai33=Vpvl**2 
Aill=(l+2*Epl)*Ai33 
Ai55=VSvl**2
Ail3=SQRT((Ai33-Ai55)*((l+2*Dltl) *Ai33-Ai55))-Ai55
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Ar33=Vpv2**2 
Arll=(l+2*Ep2)*Ar33 
Ar55=VSv2**2
Arl3=SQRT((Ar33-Ar55)* ( (l+2*DIt2)*Ar33-Ar55))-Ar55

Ail=2*(Ail3+Ai55)**2-(Ai33-Ai55)* (Aill+Ai33-2*Ai55) 
Ai2=(Aill+Ai33-2*Ai55)**2-4*(Ail3+Ai55)**2 
Arl=2*(Arl3+Ar55)**2-(Ar33-Ar55)* (Arll+Ar33-2*Ar55) 
Ar2=(Arll+Ar33-2*Ar55)**2-4*(Arl3+Ar55)**2

fil=Ai33+Ai55+ (Aill-Ai33)*Sin(la)**2
fi2=Sqrt((Ai33-Ai55)**2+2*Ail*Sin(la)**2+Ai2*Sin(la)**4) 
Vi=Sqrt((fil+fi2)/2.)

Do j=l,4 
VH=V( j )
VV=U(j )

If(j==l) Then 
R r (j )=Sin(Ip)
V r (j )=Vi

Else If (j==2) Then

z=0
Do

frl=Ar33+Ar55+(Arll-Ar33) *z**2
fr2=Sqrt((Ar33-Ar55)**2+2*Arl*z**2+Ar2*z**4)
Vrph=Sqrt((frl+fr2)/2.)
zl=(l./Vi*SIN(Ip))*Vrph
E=ABS(zl-z)

If (E<0.000001) Then 
Rr ( j)=z 
V r (j)=Vrph 
Exit 

Else 
z=zl 

End If 
End Do

Else If (j==3) Then

z=0
Do

frl=Ai33+A155+(Aill-Ai33)*z**2
fr2=Sqrt((Ai33-Al55)**2+2*Ail*z**2+A12*z**4)
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Vrph=Sqrt((frl-fr2)/ 2 .) 
zl=(l./Vi*SIN(Ip))*Vrph 
E=ABS(zl-z)

If (E<0.000001) Then 
R r (j )=z 
V r (j)=Vrph 
Exit 

Else 
z=zl 

End If 
End Do

Else If (j==4) Then

z=0
Do

frl=Ar33+Ar55+(Arll-Ar33)*z**2
fr2=Sqrt((Ar33-Ar55)**2+2*Arl*z**2+Ar2*z**4
Vrph=Sqrt((frl-fr2)/2.)
zl=(l./Vi*SIN(Ip))*Vrph
E=ABS (zl-z)

If (E<0.000001) Then 
R r (j)=z 
V r (j )=Vrph 
Exit 

Else 
z=zl 

End If 
End Do

End If 
End Do

VI =Vr(l)
V2 =Vr(2)
V3 =Vr(3)
V4 =Vr(4)

sinRl=Rr(1) 
sinR2=Rr(2) 
sinR3=Rr(3) 
sinR4=Rr(4)

End Subroutine compute_Velocity_Angle
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Appendix II: FORTRAN90 Subroutines for Calculation of Approximate P-wave 

Reflection coefficient

T i r * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * '* '* * * * * * * * * * '* * * * * * * * * '* * * * *
Name: Banik_coef / Thomsen_coef / Ruger_coef

/ Wei_coef
Description: Each individual subroutine calculates the

approximate P-wave reflection coefficient in 
TI media. Given the incident and reflecting 
TI media, it takes the incidence angle and 
the acoustic parameters of the two TI media 
as input, and get the reflection coefficient 
as output

Input :

Output :

Ib
aOl

bOl

del

- P-wave incidence phsse angle
- P-wave velocity of incident 

medium (ai)
- Vertical S-wave velocity of 

incident medium (Pi)
- density of incident medium (pi)  

epsilonl - P-wave anisotropic parameter of
incident medium (Cpi)

- anisotropic parameter of incident 
medium (ôi)

- Vertical P-wave velocity of 
reflecting medium (az)

- Vertical S-wave velocity of 
reflecting medium (P2 )

epsilon2 - P-wave anisotropic parameter of 
reflecting medium (Gpz)

- anisotropic parameter of 
reflecting medium (Ô2 )

- density of reflecting medium (P2 )
- Approximate P-wave reflection

deltal

a02

b02

delta2

de2
Rpp

coefficient
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine Banik ( Ip,aOl,bOl,deltal, a02,b02,delta2 Rpp)

Real, Intent(IN) 
Real, Intent(IN) 
Real, Intent(IN) 
Real, Intent(OUT)

I p
a01,b01,deltal 
a02,b02,delta2 
: Rpp
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Real :: da, db, dde,ddelta 
! da=a02-a01, db=b02-b01, dde=de2-del,dd=d2-dl

Real : : I, aO, bO, de 
! a0=(a01+a02)/2,b0=(b01+b02)/2,de=(del+de2)/2

a01=Vpvl
b01=Vsvl
deltal=Dltl

a02=Vpv2
b02=Vsv2
delta2=Dlt2

da =a02-a01 
db =b02-b01 
dde=de2-del 
ddelta=delta2-deltal

aO = (a01+a02)/2 
bO = (b01+b02)/2 
de = (del+de2)/2

Rpp=0.5*(1-4* (bO/aO*Sin(Ip))**2)*dde/de+da/&
(2*Cos (Ip)**2*a0)+ 4*(bO/aO*Sin(Ip))**2*db/bO + & 
ddelta/2*Sin(Ip)**2

End Subroutine Banik

Subroutine Thomsen(Ip, aOl,bOl,epsilonl,deltal,& 
a02,b02,epsilon2,delta2,Rpp)

Real, Intent(IN) 
Real, Intent (IN) 
Real, Intent(IN) 
Real, Intent(OUT)

I p
aOl,bOl,epsilonl,deltal 
a02,b02,epsilon2,delta2 
: Rpp

Real : : da, db, dde,dea,ddelta 
! da=a02-a01, db=b02-b01, dde=de2-del,dd=d2-dl,
! dea=epsilon2-epsilonl

Real : : aO,bO,de 
! a0=(a01+a02)/2,b0=(b01+b02)/2,de=(del+de2)/2

Real :: ZO,GO,dZ,dG
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a01=Vpvl
b01=Vsvl
epsilonl=Epl
deltal=Dltl

a02=Vpv2
b02=Vsv2
epsilon2=Ep2
delta2=Dlt2

da =a02-a01 
db =b02-b01 
dde=de2-del 
dea=epsilon2-epsilonl 
ddelta=delta2-deltal

aO =(a01+a02)/2 
bO =(b01+b02)/2 
de = (del+de2)/2

ZO =de*aO 
GO =de*b0**2 
dZ =de2*a02-del*a01 
dG =de2*b02**2-del*b01**2

Rpp=dZ/(2*Z0)+0.5* (da/aO-{2*bO/aO)**2*(dG/GO)+& 
ddelta)*Sin(Ip)**2+0.5*(da/a0-(ddelta-& 
dea))*(Tan (Ip)*Sin(Ip))**2

End Subroutine Thomsen

Subroutine Ruger(Ip, aOl,bOl,epsilonl,deltal,& 
a02,b02,epsilon2, delta2,Rpp)

Real, Intent(IN) 
Real, Intent(IN) 
Real, Intent(IN) 
Real, Intent(OUT)

I p
a01,b01, epsilonl,deltal 
a02,b02,epsilon2,delta2 
; Rpp

Real : : da, db, dde,dea,ddelta 
! da=a02-a01, db=b02-b01, dde=de2-del,
! dd=d2-dl,dea=epsilon2-epsilonl

Real : : aO,bO,de
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!a0=(a01+a02)/2,b0=(b01+b02)/2,de=(del+de2)/2

Real : : ZO,GO,dZ,dG

a01=Vpvl
b01=Vsvl
epsilonl=Epl
deltal=Dltl

a02=Vpv2
b02=Vsv2
epsilon2=Ep2
delta2=Dlt2

da =a02~a01 
db =b02-b01 
dde=de2-del 
dea=epsilon2-epsilonl 
ddelta=delta2-deltal

aO =(a01+a02)/2 
bO =(b01+b02)/2 
de = (del+de2)/2

ZO =de*aO 
GO =de»b0**2 
dZ =de2*a02-del*a01 
dG =de2*b02**2-del*b01**2

Rpp=dZ/(2*Z0)+0.5*(da/aO-(2*b0/a0)**2*(dG/GO)+& 
ddelta)*Sin(Ip)**2+0.5*(da/aO+dea)*&
(Tan(Ip)*Sin(Ip))**2

End Subroutine Ruger

I _____________________________________________________________________

Subroutine Wei(Ip, aOl,bOl,epsilonl,deltal,& 
a02,b02,epsilon2,delta2,Rpp)

Real, Intent(IN) : : Ip
Real, Intent(IN) : : aOl,bOl,epsilonl,deltal
Real, Intent (IN) : : a02,b02,epsilon2,delta2
Real, Intent(OUT) :: Rpp

Real : : da, db, dde ,ddelta,dea
! da=a02-a01, db=b02-b01, dde=de2-del,dd=d2-dl
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Real : : I, aO, bO, de
!aO=(a01+a02)/2,bO=(b01+b02)/2,de=(del+de2)/2

a01=Vpvl
b01=Vsvl
epsilonl=Epl
deltal=Dltl

a02=Vpv2
b02=Vsv2
epsilon2=Ep2
delta2=Dlt2

da =a02-a01 
db =b02-b01 
dde=de2-del 
dea=epsilon2-epsilonl 
ddelta=delta2-deltal

aO = (a01+a02)/2 
bO = (b01+b02)/2 
de = (del+de2)/2

Rpp=(dde/de+da/aO)Z2.-2*(bO/aO)**2*(dde/de+&
2*db/b0)*Sin(Ip)**2+da/aO*Tan(Ip)**2/2+& 
(ddelta-2*dea)/2*Sin(Ip)**2

End Subroutine Wei
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Appendix III. Error Correction for Daley and Hron’s Papers

Error correction in Daley and Hron's 1977 paper 

Error Correction
Page 663, last line

a'- = { « - 0 '+ 24"'sine.
+ 4 ‘ ’ s i n - 0 , } ‘ -

Page 667, line 1

cos 8; = 0  = (l
1 :

g ' "  = + 2 /if"  Sin-e.

+ x r ' s i n ' 8 j ' -

cos Ô2 = Q =
f I :

1 - 4V n' )

Page 667, line 2

cos 8. = 5  =
/  1  \  -

. ' - a

Page674, line 31

A, = — |aT + VK" - 1}

cos 8, = 5  = (l -  k^x ' )

Page 674, line 31 

A , = —^K K'  -  Z ,- j

Page 675, line 14

A —

—  (  - ^ 3 3  ^5  ) (  ■ ^ l 1 ■ ^ 3 3  —  2 - ^ 5 5  )

Page 675, line 33 

£ , = 2 r,7 ;oP g

- 4 l ]

Af — 2(/4|3 + X;;)

“ ( ^ 3 3  - ^ s K A i - * - ^ 3 3  - 2 /1;;)

172



Error correction in Daley and Hron's 1979 paper

Error Correction
Page 31, line 32

a, = P. - b- )(or; - b; )]' ' a, = p, {[(ox; - b; ){az; - b; )]' ' -  b;
Page 32, line 12

Ô, =  =  p . a z f l , ^ ,  -  a , m , ^ .

Page 32, line 24

= 7; = A / - A ^
‘i
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Appendix IV. FORTRAN 90 Subroutine for Calculation of Exact Quasi-P and 

Quasi-S Reflection and Transmission Coefficients

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Name: BndryRefietion
Description: Given the incident and reflecting general

anisotropic media, this subroutine takes the 
incidence wave normal as input, and computes 
the exact P-wave, fast SV-wave, slow SV-wave 
reflection and transmission coefficients.
The computation takes the following five 
steps :

Stepl: Calculate slowness of incident wave
—  Subroutine "PhaseVelocity" is 

called
Step2: Calculate 3 reflected and 3 

transmitted slowness vectors
—  Subroutine "SlownessOnZ" is 

called
Step3: Calculate polarizations for each 

waves
—  Subroutine "Polarization" is 

called
Step4: Select signs for polarizations

—  Subroutine "Polar_Sign" is 
called

StepS: Calculate reflection coefficients
—  Subroutine "BndryCondition" is 

called
Input: Aij - elastic stiffness tensor of incident

medium
Bij - elastic stiffness tensor of reflecting 

medium
Nij - unit vector of incident wave normal 

Output: Rj - one dimensional array of 6 coefficients.
1-3: Refl. Coef. of P,F,S 
4-6: Tran. Coef. of P,F,S

Subroutine BndryRefletion (Aik, Bik, Nij, R j )
Implicit None

Real(8), intent(IN), Dimension (3,3,3,3) :: Aik,Bik 
Complex(8), Intent(IN), Dimension (3) :: Nij
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Complex(8), Intent(OUT), Dimension (6) : : Rj

Real(8), Dimension (3) : : Mine
Complex(8), Dimension (3) : : Min,Mpl,Mfl,Msl,Mp2,Mf2,Ms2

! incidence slowness and 3 Refl. and tran. slowness 
Complex(8), Dimension (3) : : Pine, Ppl,Pf1, Psl
Complex(8), Dimension (3) : : Pp2,Pf2,Ps2

line, polarization and 3 refl. and tran. Polar. 
Complex(8), Dimension (3) : : Mpt,Mft,Mst,Ppt,Pft,Pst
Complex(8), Dimension (3) :: Nijt,AvgS

! for F=S (slowness) case 
Complex(8), Dimension (3,3) : : Ml,Mm,PI,Pm,Pju,pjb

! for Polar Sign 
Complex(8), Dimension (7,3) :: Pk,Mk

!P : polarization M: slowness 
!l-3: Refl. P,F,S 4-6: Tran. P, F, S 7: inc 

Complex(8) : : diff ! for F=S: meagure diff. Sf-Ss
Real (8) : : adiff
Complex(8) : : V1,V2,V3 ! for P, F, S
Real : : tick 
integer : : i,j,k,1

!Stepl: Calculate the slowness of incident wave

Call PhaseVelocity (Aik,Nij,VI,V 2 ,V 3 )

(assuming P incidence 
Minc(l)=Real(Nij(1)/VI)
Mi n e (2)=Real(Nij(2)/VI)
Mi n e (3)=Real(Nij(3)/VI)

(Print *, "V123",VI
I____________________________________________________________________
(Step2: Calculate the 3 reflected and 3 transmitted 
( slowness

tick=l.
( tick=l: incident medium

Call SlownessOnZ(Aik,Mine,tick,Mpl,Mfl,Ms1)

tick=0.
( tick=0: transmitting medium

Call SlownessOnZ(Bik,Mine,tick,Mp2,Mf2,Ms2)
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I __________________________________________________________________________________________________________________

!StepS: Calculate polarizations for each waves

! Compute polarization for incident wave 
Call Polarization(Aik,Mpl,Pplj 
Call Polarization(Bik,Mp2,Pp2)

(Calculate the 2 S polarizations under 2 conditions:
! 1) 2 S have diffrent slownesses;
! 2) 2 S have the same slowness value

! Compute polarizations for 3 reflected waves 
diff=Mfl(3)-Msl (3)
adiff=Sqrt(Real(diff)**2+Imag(diff)**2)
If (adiff<l.E-010) Then 

Do i=l,3
AvgS(i)= (Mf1 (i)+Msl(i))/2._8 
Mfl(i)=AvgS(i)
Msl(i)=AvgS(i)

End Do

Do i = l,3
Nijt(i)=AvgS(i)/Sqrt(AvgS(1)**2+AvgS(2)**2+& 

Avg S (3)**2)
End Do

Call PhaseVelocity (Aik,Nijt,VI,V2,V3)
Do i=l,3

Mpt(i)=Nijt(i)/VI 
End Do

Call Polarization(Aik,Mpt,Ppt)
Call Polarization_FeqS(Ppt,Pfl,Psl)

Else
Call Polarization(Aik,Mfl,Pfl)
Call Polarization(Aik,Msl,Psl)

End If

I Compute polarizations for 3 transmitted waves 
diff=Mf2(3)-Ms2(3)
adiff=Sqrt(Real(diff)**2+Imag(diff)**2)
If (adiff<l.E-010) Then

Do i=l,3
AvgS(i) = (Mf2(i)+Ms2(i) )/2._8 
Mf2(i)=AvgS(i)
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M s 2 (i)=AvgS (i) 
End Do

Do i=l,3
Nijt(i)=AvgS(i)/Sqrt(AvgS(1)**2+AvgS(2; 

Av g S (3)**2)
End Do

'2+&

Call PhaseVelocity (Bik,Nijt,VI,V2,V3)
Do i=l,3

M p t (i )=Nij t Ù }/VI 
End Do

Call Polarization(Bik,Mpt,Ppt)
Call Polarization_FeqS(Ppt,Pf2,Ps2)

Else
Call Polarization(Bik,Mf2,Pf2)
Call Polarization(Bik,Ms2,Ps2)

End If

! change to complex slowness for incident wave 
Do i=l,3

M i n (i }=Minc(i)
End Do
Call Polarization(Aik,Min,Pine)

!Step4: Select signs for polarizations

! Save upgoing and downgoing slowness vectors and 
! polarization vectors in different matrices 

Do i=l,3
Ml(l,i)=Mpl (i) 

i)=Mfl (i)
=Msl(i)
=Mp2(i)
=Mf2(i)
=M s 2 (i )
=Ppl(i)
=Pfl(i)
=Psl(i)
=P p 2 (i)
=Pf2(i)
=Ps2(i)

Ml (2 
M l (3,1 
Mm( 1, i 
Mm(2,i 
Mm(3,i 
Pl(l,i 
Pl(2,i 
Pl(3,i 
P m (1,i 
Pm(2,i 
Pm(3,i 

End Do
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! Choose polarization signs 
Call Polar_Sign(Ml,PI, Pju) 
Call Polar_Sign(Mm,Pm,Pjb)

!Step5: Calculate reflection coefficients

Do i=l,3
Mk(l,i)=Mpl(i)
Mk(2,i)=Mfl(i)
Mk(3, J.) =Msl ( i )
Mk(4,i)=Mp2(i)
Mk(5,i)=Mf2(i)
Mk(6,i)=Ms2(i)
M k (7,i)=Minc(i)

End Do

Do i=l,3
Pk(l,i)=Pju(l,i)
Pk(2,i)=Pju(2,i)
Pk(3,i)=Pju(3,i)
Pk(4,i)=Pjb(l,i)
Pk(5,i)=Pjb(2,i)
Pk(6,i)=Pjb(3,i)
P k (7,i)=Pinc(i)

End Do

Call BndryCondition(Aik,Bik,Mk,Pk,Rj) 

End Subroutine BndryRefletion
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Name: PhaseVelocity
Description: Given the incident wave normal, this

subroutine calculates the phase velocities
of quasi-Pwave, fast quasi-S wave, and
slow quasi-S wave along the direction

Input: A - elastic stiffness matrix
Ni - unit vector of incident wave normal

Output: Vp - P wave phase velocity
Vfs - Fast SV wave phase velocity
Vss - Slow SV wave phase velocity

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine PhaseVelocity (A, Ni,Vp, Vsf,V s s )
Use MATH_UTIL, ONLY: CUBIC

! CUBIC: Subroutine to solve cubic polynomial 
Implicit None

Real (8), Intent(IN), Dimension (3, 3,3,3) : : A
Complex(8), Intent(IN), Dimension (3) : : Ni 
Complex(8), Intent(OUT) : : Vp, Vsf,Vss

Complex(8), Dimension (3,3) : : B 
Complex(8) : : C0,C1,C2,C3 
Complex(8) : : R1,R2,R3 
Real(8), Dimension(3) : : Vtemp 
Real (8) : : MaxV,MidV,MinV
Integer : : i,j,k,1

Do 1=1,3 
Do k=l,3

B(i, k)=0 
Do j=l,3 

Do 1=1,3
B(i,k)=B(i,k)+A(i, j,k,l) *Ni(j) *Ni(i: 

End Do 
End Do

End Do 
End Do

C3=(-l. 8,0. 8)
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C2=B(1,1)+B(2,2)+B{3, 3)

C1=B(3,1)*B(1,3)+B(2,3)* B (3, 2)+ B (2,1)* B (1,2)- & 
B(1,1)*B(3,3)-B(3,3)*B(2,2)-B(2,2)*B(1,1)

C0=B{1,1)*B(2,2)*B(3,3)+B(l,2)*B(2,3)* B {3,1)+& 
B(l,3)*B(2,l)*B(3,2)-B(3,l)*B(l,3)*B(2,2)-& 
B(2,3)*B(3,2)*B(1,1)-B(2, 1) *B(1,2)*B(3,3)

Call CUBIC{C3,C2,C1,C0,R1,R2,R3)

Vtemp(1)=Real(Rl )
Vtemp(2)=Real(R2)
Vtemp(3)=Real(R3)

MaxV=Vtemp(1)
MinV=Vtemp(1)
MidV=0

Do 1 = 1,3
If (MaxV<Vtemp(i)) Then 

MaxV=Vtemp(1)
End If

If (MinV>Vtemp(i)) Then 
MinV=Vtemp(i )

End If 
End Do

j=0
Do 1=1,3

If (Vtemp(1)<MaxV .and. Vtemp(1)>MlnV) Then 
MldV=Vtemp(1)

Else If (Vtemp(1)==MlnV) Then 
j=j + l 

End If 
End Do

If (Vsf==0 .and. j==2) MldV=MlnV

Vp=Sqrt(MaxV)
Vsf=Sqrt(MldV)
Vss=Sqrt(MlnV)

End Subroutine PhaseVelocity
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, * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
Name: ABCcompute
Description: This subroutine calculates the A, B, C (3X3)

matrices, which collect the parameters of
different powers of m3 (Z component of 
slowness). The A, B and C matrices are used
to build the 6*̂  ̂ order polynomial for the 
slowness vectors.

Input: Ci] - elastic stiffness matrix
ml - X component of incident slowness
m2 - Y component of incident slowness

Output: A - parameter of square of m3
B - parameter of m3
C - parameter of constant

Subroutine ABCcompute (Cij,ml,m2,A,B,C)
Implicit None

Real(8), Intent(IN), Dimension(3,3,3,3) : : Cij
Real(8), Intent(IN) : : ml,m2
Real(8), Intent(OUT), Dimension(3,3) : : A,B,C

Integer : : i,j,k,1

Do i=l,3 
Do k=l,3

A(i,k)=Cij (i,3,k,3)

B(i,k)=Cij(i,1,k,3)*ml+Cij(i, 2, k, 3)*m2 + &
Cij (i, 3, k, 1) *ml+Cij (i,3,k,2)*m2

C(i,k)=Cij(i,1,k,2)*ml*m2+Cij(i,1,k,1)*ml**2+&
Cij(i,2,k,2)*m2**2+Cij(i,2,k,1)*ml*m2

If (i==k) C(i, k) =C(i, k)-l._8

End Do 
End Do

End Subroutine ABCcompute
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* * * * * * * * * * * * * * * * * * * * * * * * * * *

Name: Diagonal
Description: This subroutine takes one set of m3's

parameters with diagonal expressions as 
input, and calculates the coefficients in 
front of different powers of m3, (see equ. 
(6,15) - (6.17) in thesis)

Input: G - 3X3 matrix collected m3's parameters of
diagonal expression 

Output: EE - one-dimensional array parameters in
front of different powers (from 6 to 0)
of m3

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine Diagonal(G,EE)
Implicit None

Real(8), Intent(IN), Dimension(3,3) : : G 
Real(8), Intent(OUT), Dimension(7) : : EE

! equ. in (6.17)
EE(1)=G(1,1)*G(2,1)*G(3,1)

! 2"'" equ. in (6.17)
EE(2)=G(1,1)*G(2,2)*G(3,1)+G(1,2)*G(2,1)*G(3,1)+&

G(l,1)*G(2,1)*G(3,2)

! 3"̂  equ. in (6.17)
EE(3)=G(1,1)*G(2,3)*G(3,1)+G(1,3)*G(2,1)*G(3,1)+&

G(l,2) *G(2,2) *G(3, 1)+G(1,1) *G(2,2) *G(3,2)+& 
G(1,2)*G(2,1)*G(3,2)+G(1,1)*G(2,1)*G(3,3)

! 4'̂*' equ. in (6.17)
EE(4)=G(1,3) *G{2,2) *G(3, 1)+G(1,2) *G(2, 3) *G(3, l)+&

G(l,l) *G(2,3)*G(3,2)+G(1,3) *G(2, 1) *G(3,2)+&
G(l,2)*G(2,2)*G(3,2)+G(1,1)*G(2,2)*G(3,3)+&
G(l,2) *G(2, 1) *G(3, 3)

! 5*̂  ̂ equ. in (6.17)
EE(5)=G(1,3) *G(2,3) *G(3, 1)+G(1,3) *G(2,2) *G(3,2)+&

G(l,2) *G(2, 3) *G(3, 2)+G(l, 1) *G(2, 3) *G(3, 3) +& 
G(1,3)*G(2,1)"G(3,3)+G(1,2)*G(2,2)*G(3,3)

! 6*̂  ̂ equ. in (6.17)
EE(6)=G(1,3) *G(2,3) *G(3,2)+G(1,3) *G(2,2) *G(3,3)+&
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G(l,2) *G(2, 3) *G(3, 3)

! 7^^ equ. in (6.17)
EE(7)=G(1, 3)*G(2,3)*G(3,3)

End Subroutine Diagonal
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Name :
Description:

Input :

Output :

SlownessOnZ
Given an incident slowness and the reflected 
(or transmitted)medium parameters, this 
subroutine calculates the three reflected (or 
transmitted) slownesses (P, FS, and SS). 
During the computation, three other 
subroutines, ABCcompute, Diagonal, and Cubic, 
are called.
AIJ - elastic stiffness matrix 
Mi - slowness of incident wave
tic - flag to indicate incident or reflecting 

medium
Sp - slowness of P-wave
Sf - slowness of fast SV-wave
Ss - slowness of slow SV-wave

Subroutine SlownessOnZ(AIJ,Mi,tic,Sp,Sf,S s )
Use MATH_UTIL, ONLY: CUBIC 
Implicit None

Real(8), Dimension (3,3,3,3),Intent(IN) : : AIJ 
Real(8), Dimension (3),Intent(IN) : : Mi 
Real, Intent(IN) : : tic
Complex(8), Dimension (3),Intent(OUT) : : Sp,Sf,Ss

Real (8) 
Real (8), 
Real (8) , 
Real (8),

: PP, Fsv,Ssv 
Dimension (3,3) 
Dimension (3,3) 
Dimension (7)

Aa,Bb,Cc
Dl, D2, D3, D4, D5, D6 
E1,E2,E3,E4,E5,E6,E7

Complex(8) : : S1,S2,S3
Real(8), Dimension(3) : : Stmp
Real (8) 
Integer 
Logical

MaxS,MidS,MinS 
i,j,k,1,flag,z 
tf

Call ABCcompute(AIJ,Mi(1),M i (2),Aa,Bb,Cc]

Do i=l,3
Dl(i,l)=Aa(i,i)
Dl(i,2)=Bb(i,i)
Dl(i,3)=Cc(i,i)

End Do

D2(l,l)=Aa(l,2)
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D6(3,3)=Cc(2,3]

Call Diagonal(Dl,El) 
Call Diagonal(D2,E2) 
Call Diagonal(D3,E3) 
Call Diagonal(D4,E4) 
Call Diagonal(D5,E5) 
Call Diagonal(D6,E6)

Building coefficients for order polynomial 
Do 1=1,7

E7(8-i)=El(i)+E2(i)+E3(i)-E4(i)-E5(i)-E6(i) 
End Do

Solve 6^^ order using cubic 
Call CUBIC(E7(7),E 7 (5),E 7 (3),E 7 (1),51,32,S3 !

Identify 3 slowness types 
Stmp(1)=Real(SI )
Stmp(2)=Real(S2)
Stmp(3)=Real(S3)

MinS=Stmp(1)
MaxS=Stmp(1)
MidS=0

Do i=l,3
If (MinS>Stmp(i: 

MinS=Stmp(i ) 
End If

Then

If (MaxS<Stmp(i) 
MaxS=Stmp(i) 

End If 
End Do

Then

j=0
Do i=l,3

If (Stmp(i)>MinS .And. Stmp(i }<MaxS) Then 
MidS=Stmp(i)

Else If (Stmp(i)==MaxS) Then 
j=j + l 

End If 
End Do

If (MidS==0 .and. j==2) MidS=MaxS
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Sl=MinS
S2=MidS
S3=MaxS

Sp(l)=Mi(1)
S p (2)=Mi (2)
S p (3)=Sq r t (51)
Sf(l)=Mi(1)
S f (2)=Mi (2)
S f (3)=Sq r t (32)
S s (1)= M i (1)
S s (2)=Mi (2)
S s (3)=Sq r t (S3)

If (tic==l) Then 
Sp(3)=-Sp(3)
S f (3)= - S f (3)
S s (3)=-Ss (3)

End If

End Subroutine SlownessOnZ
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Name: PolarizationRoots
Description: This subroutine solves MX =0; and 

Xl**2 + X2**2 +X3**2 =1 
To minimize error in the solution, it 
automatically picks the two non-linear 
equations. It also selects the biggest root 
and solves it first, and then solves the 
other two.

Input: M - 3X3 matrix
Output: X - 3 unknowns

Subroutine PolarizationRoots (M,X)
Implicit None

Complex(8), Intent(IN), Dimension(3,3) : : M 
Complex(8), Intent(OUT), Dimension(3) : : X

Complex (8), Dimension(9,2,3) : : D !
Complex(8), Dimension(9) : : DD 
Complex (8) : : A1,A2,B
Integer : : i, j, k, 1

! columm do not change, in the order of M

! No. 1 & 2 equitions 
Do i=l,2 

Do j=l,3
D(l,i,j)=M(i, j)

End Do 
End Do

! No. 2 & 3 equitions 
Do i=l,2 

Do j=l,3
D(2,i,j)=M(i+l,j)

End Do 
End Do

! No. 1 & 3 equitions 
Do i=l,2 

Do i=l,3
D(3,i,j)=M(2*i-l,j)

End Do
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End Do

I __________________________________________
! columm change from 123 to 312

! No. 1 & 2 equitions 
Do i=l,2

D(4,i, l)=M(i,3) 
D(4,i,2)=M(i,l)
D(4, i,3)=M(i,2)

End Do

! No. 2 & 3 equitions 
Do i=l,2

D(5,i,1)=M(i+l,3) 
D(5,i,2)=M(i + l,l)
D(5,i,3)=M(i+l,2)

End Do

! No. 1 & 3 equitions 
Do i=l,2

D(6,i,l)=M(2*i-l,3) 
D(6,i,2)=M{2*i-l,l) 
D(6,i,3)=M(2*i-l,2)

End Do

! columm change from 123 to 231

! No. 1 & 2 equitions 
Do i=l,2

D(7,i,l)=M(i,2) 
D(7,i,2)=M(i,3) 
D(7,i,3)=M(i,l)

End Do

! No. 2 & 3 equitions 
Do i=l,2

D(8,i, l)=M(i + l,2) 
D(8,i,2)=M(i + l,3) 
D(8,i,3)=M(i+l,l)

End Do

! No. 1 & 3 equitions 
Do i=l,2

D(9,i,l)=M{2*i-l,2) 
D(9,i,2)=M(2*i-l,3)
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D(9,i,3)=M(2*i-l,1)
End Do

B=0
Do, i=l,9

DD(i) = (D(i,2,3)*D(i,l,2)-D(i,l,3)*D(i,2,2))

If (Abs(DD(i))>Abs(B)) Then 
B=DD(i) 
k=i 

End If

End Do

A1 = (D(k,1,1)*D(k,2,2)-D(k,1,2)*D(k,2,1))/B 
A2 = -(D(k,l,l)*D(k,2,3)-D(k,2,l) *D{k,l,3) )/B

If (k<=3) Then
X(l) = Sqrt(1/(1+A1**2+A2**2))
X(2) = A2*X(1)
X(3) = A1*X(1)

Else If (k>3 .and. k<=6) Then
X(3) = Sqrt(1/(1+A1**2+A2**2))
X(l) = A2*X{3)
X(2) = A1*X(3)

Else If (k>6 .and. k<=9) Then 
X(2) = Sqrt(1/(1+A1**2+A2**2))
X(3) = A2*X{2)
X(l) = A1*X{2)

End If

End Subroutine PolarizationRoots
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Name: Polarization
Description: Given a wave slowness and the medium

parameters, this subroutine calculates the
corresponding polarization.
During the computation, another subroutine,
PolarizationRoots, is called

Input: Ai] - elastic stiffness matrix
Mi - wave slowness vector

Output: Pi - wave polarization vector
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

Subroutine Polarization(Aij,Mi, Pi)
Implicit None

Real(8), Intent(IN), Dimension(3,3,3,3) : : Aij
Complex(8), Intent(IN), Dimension(3) : : Mi
Complex(8), Intent (OUT), Dimension(3) : : Pi

Complex(8), Dimension(3,3) : : D 
Integer : : i, j , k,1

Do i=l,3 
Do k=l,3

D(i, k) = (0._8, 0._8)
Do j=l,3 

Do 1=1,3
D(i,k)=D(i,k)+Aij (i, j,k,l) *Mi(j) *Mi(l)

! D(i,k) is equivalent to Hik in equ. (6.20) of the thesis 
End Do 

End Do

End Do 
End Do

D(l, 1)=D(1,1)-l._8 
D(2,2)=D(2,2)-l._8 
D(3,3)=D(3,3)-1._8

Call PolarizationRoots(D,Pi)

End Subroutine Polarization
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Name: Polarization_FeqS
Description: This subroutine sets the two orthogonal SV

polarization when a P polarization is given.
This subroutine is called only when fast S
slowness is equal to slow S. The three
polarizations are orthogonal to each other.

Input: Pp - polarization of P-wave
Output: Psl - polarization of one SV

Ps2 - polarization of the other SV
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine Polarization_FeqS(Pp, Psl, Ps2)
Implicit None

Complex(8), Intent(IN), Dimension(3) : : Pp
Complex(8), Intent(OUT), Dimension(3) : : Psl,Ps2

Complex(8), Dimension(3) : : Ptmp
Real(8) : : P

P=Abs(Real(Pp(3)))
If (Abs(P-1)<l.E-007) Then 

Psl(1)=1._8 
P sl(2)=0._8 
P sl(3)=0._8 
P s2(1)=0._8 
P s2(2)=1._8 
Ps2(3)=0._8 

Else
Psl(1)=- P p (2)/Sqrt(Pp(l)**2+Pp(2)**2)
Psl(2)=Pp(l)/Sqrt(Pp(l)**2+Pp(2)**2)
P sl(3)=0

Ptmp(l)=Psl(2)*Pp(3)
Ptmp(2)=-Psl(1)*Pp(3)
Ptmp(3)=Psl(l)*Pp(2)-Psl(2)*Pp(l)

Ps2(1)=Ptmp(1)/Sqrt(Ptmp(1)**2+Ptmp(2)**2+Ptmp(3)**2) 
Ps2(2)=Ptmp(2)/Sqrt(Ptmp(l)**2+Ptmp(2)**2+Ptmp(3)**2) 
Ps2(3)=Ptmp(3)/Sqrt(Ptmp(l)**2+Ptmp(2)**2+Ptmp(3)**2) 

End If

End Subroutine Polarization_FeqS
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Name: Polar_Sign
Description: This subroutine selects the right sign for

each input polarization.
Input: Mic - slowness vector

Pic - polarization vector
Output: Pjc - corrected polarization vector
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine Polar_SigniMic,Pic,Pjc)
Implicit None

Complex(8), Intent(IN), Dimension(3,3) : : Mic,Pic
Complex(8), Intent(OUT), Dimension(3,3) : : Pjc

Real(8), Dimension(3,3) : : Mi,Pi (Real part of Mic,Pic 
Real(8), Dimension(2,3) : : Nrml ! 1 : fast 5; 2: slow S 
Real(8), Dimension(3) : : dotP 
Real (8) : : dot2,dot3 
Integer : : i,j

Do i=l,3 
Do j = l,3

Mi(i,j)=Real(Mic (i,j))
Pi(i, j)=Real(Pic (i,j) )

End Do 
End Do

dotP(l)=Mi(1,1)*Pi(1,1)+M i (1,2)*Pi(1,2)+Mi(l,3)*Pi(1, 3)

If (dotP(l)>=0) Then 
Do 1=1,3

Pjc(1,i)=Pic(1,i)
End Do

Else If (dotP(l)<0) Then 
Do i=l,3

Pjc (1,1) =-Pic (1,1)
End Do 

End If

If (Mi(2,1)==0._8 .And. M i (2,2)==0._8) Then 
N r m l (1,1)=0._8 
N r m l (1,2)=0._8 
N r m l (1,3)=1._8 

Else

193



Nrml(l,l)=-Mi(2,2)/Sqrt(Mi(2,1)**2+Mi(2,2)**2) 
Nrml(l,2)=Mi(2, 1)/Sqrt(Mi(2,1)**2+Mi(2,2)**2) 
N r m l (1,3)=0._8 

End If

If (Mi(3,1)==0._8 .And. Mi(3,2)==0._8) Then 
N r m l (2,1)=0._8 
Nrml(2,2)=0._8 
Nrml (2,3)=1._8 

Else
N r m l (2,1)=-Mi(3,2)/Sqrt(Mi(3,1)**2+Mi(3,2)**2) 
Nrml (2,2)= Mi(3,1)/Sqrt(Mi(3,1)**2+Mi(3,2)**2) 
N r m l (2,3)=0._8 

End If

dotP(2)=Nrml(1,1)* P i (2,1)+Nrml(1, 2)* Pi(2, 2)+& 
Nrml(1,3)* P i (2, 3)

dotP(3)=Nrml(2,1)* P i (3,1)+Nrml(2, 2)* Pi(3, 2)+& 
Nrml(2, 3)* P i (3,3)

dot2=Abs(dotP(2) ) 
dot3=Abs(dotP(3))

If (dot2==0._8 .And. dot3==0._8) Then 
Do i=2,3 

Do j = l,3
Pjc(i,j)=Pic(i,j)

End Do 
End Do 

Else
If (dot2<=dot3) Then

If (Pi(2,2)>=0) Then 
Do i=l,3

Pjc(2,i)=Pic(2,i)
End Do

Else If (Pi(2,2)<0) Then 
Do i=l,3

Pjc(2,i)=-Pic(2,i)
End Do 

End If

If (Pi(3,3)<=0) Then 
Do i=l,3

Pjc(3,i)=Pic(3,i)
End Do
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Else If (Pi(3,3)>0) Then 
Do 1=1,3

Pjc(3,i)=-Pic(3,i) 
End Do

End If

Else If (dot2>dot3) Then

If (Pi(2,3)<=0) Then 
Do 1=1,3

Pjc(2,l)=Plc(2,l) 
End Do

Else If (PI(2,3)>0) Then 
Do 1=1,3

Pjc(2,l)=-Plc(2,l) 
End Do

End If

If (Pl(3,2)>=0) Then 
Do 1=1,3

Pjc(3,1)=Plc(3,1) 
End Do

Else If (Pl(3,2)<0) Then 
Do 1=1,3

Pjc(3,1)=-Plc(3,1) 
End Do

End If

End If 

End If

End Subroutine Polar Sign
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Name: LinearSolution
Description: This subroutine calculates the roots of 6

linearized equations with six unknowns in the 
following form:

AilXl+Ai2X2+Ai3X3+Ai4X4+Ai5X5+Ai6X6+Ai7=0 
(i=l,2,...6)

This routine is used to solve for reflection/
transmission coefficients from boundary
conditions.

Input: A - 6X7 matrix parameters
Output: X - one dimension array of 6 unknowns
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine LinearSolution(A,X)
Implicit None

Complex(8), Intent(IN), D i m e n s i o n (6,7) : ; A
Complex(8), Intent(OUT), Dimension(6) : : X

Complex(8), Dimension(6,7) : : B
Complex(8), Dimension(7) : : Btmp
Complex(8) : : C, D
Integer : : i,j,k,1

Do i=l,6 
Do j=l,7

B(i, j)=A(i, j)
End Do 

End Do

If (B(l,7)==(0.,0.) .And. B (2,7)== (0.,0 . ) .And. &
B(4,7)==(0.,0.) .And. B (5,7)==(0.,0.)) Then

X(l) = (B(3,7)*B(6,4)-B(6,7)*B(3,4))/(B(3,4)*B(6,l)-& 
B(6,4)*B(3, 1) )

X(2)=(0._8,0._8)
X(3)=(0._8,0._8)
X(4) = (B(6,7)*B(3,l)-B(3,7)*B(6,l))/(B(3,4)*B(6,l)-& 

B(6,4)*B(3,1))
X(5)=(0._8,0._8)
X(6)=(0._8,0._8)

Else

Do k=2,6
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Do i=k-l,6
If (B(i,k-1)/=0._8) Then 

Exit
Else ! to avoid a 'O' diagonal element

Do j=l,7 
Do l=i,5

Btmp(j)=B(l,j)
B(l,j)=B(l+l,j)
B (1 + 1, j)=Btmp(j )

End Do 
End Do 

End If 
End Do

Do i = k, 6
C=B(i,k-1)/B(k-1,k-1)
Do j=l,7

B{i,j)=B(i,j)-B(k-l,j)*C 
End Do 

End Do 
End Do

X(6)=-B(6,7)/B(6,6)
Do i = l,5

D=-B(6-i,7)
Do j=l,i

D=D-B(6-i,7-j)*X(7-j)
End Do
X(6-i)=D/B(6-i,6-i)

End Do 
End If

End Subroutine LinearSolution
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Input :

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Name: BndryCondition
Description: By matching the boundary condition (of

horizontal displacement and normal stress) 
between two general anisotropic media,this 
subroutine calculates the 6 exact reflection 
and transmission coefficients.
During the computation, another subroutine, 
"LinearSolution", is called.
Ai] - elastic stiffness matrix of incident 

medium
Bij - elastic stiffness matrix of reflecting 

medium
- 7X3 two dimensional array of slowness 

vectors (inci. P, refl. P, FS, and SS, 
tran. P, FS, and S S .}

- 7X3 two dimensional array of 
polarization vectors (inci. P, refl. P, 
FS, and SS, tran. P, FS, and SS.)

- one dimensional array of 3 reflection 
and transmitted coefficients.
1-3: Refl. Coef. of P,F,S

Output :

Mi

Pj

Ri

4-6: Tran. Coef. of P,F,S
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * : * * * * * * * * * *

Subroutine BndryCondition(Aij,Bij,M i ,Pj,Ri) 
Use math_util 
Implicit None

Real (8), Intent (IN), Dimension(3,3,3,3) 
Complex(8), Intent(IN), Dimension(7,3) 
Complex(8), Intent(IN), Dimension(7,3) 
Complex(8), Intent(OUT), Dimension(6) :

: Aij,Bij 
Mi
Pj

Ri

Complex (8), Dimension(6,7) 
Integer : : i,j,k,l,m,n

Dij

Do m=l,3 
Do n=l,7

If(n>=4 .and. n<=6) Then 
Dij(m,n)=-Pj(n,m)

Else
Dij (m, n) =Pj (n,m)

End If 
End Do 

End Do
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Do m=4,6 
Do n=l,7

Dij (m,n) =0 
Do 1=1,3 

Do k=l, 3
If (n<=3) Then ! refl P,F,S

Dij {m,n)=Dij (m, n) +Ai j {m-3,3,k,i)*&
Mi(n,k)*Pj (n,i)

Else If (n>3 .And. n<=6) Then ! tran P,F,S

Dij (m,n)=Dij{m,n)-Bij (m-3,3,k,i)*&
Mi(n, k)*Pj (n,i)

Else If (n==7) Then ! for inci. Wave

Dij (m, n) =Di j (m, n) +Ai j (m-3,3,k,i)*&
Mi(n, k) *Pj (n,i)

End If 
End Do 

End Do

End Do 
End Do

Call LinearSolution(Dij, Ri)

End Subroutine BndryCondition
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Appendix V. FORTRAN 90 Subroutine for computing the elastic stiffness matrix of 

fractured medium and VTI overlying medium

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Name :
Description :

Output :

MediaParameters
This subroutine determines the elastic 
stiffness matrices of both the incident 
medium (VTI) and the reflecting medium 
(general anisotropy from multiple sets of 
fractures). Values of medium parameters (like 
velocity density, fracture porosity, etc) 
are defined inside the subroutine. Calling 
this subroutine will return the two stiffness 
matrices without any input.
During the computation, three subroutines, 
CrackCompliance, Linear6RealSlsn, and 
Cij_Cijkl are called. Another subroutine, 
Transformation_properties, can be called if 
coordinate system rotation is needed.
Ajk - 3X3X3X3 four dimensional array of

elastic stiffness of incident medium 
Bjk - 3X3X3X3 four dimensional array of

elastic stiffness of reflecting medium

Subroutine MediaParameters(Aj k,Bj k)
Implicit None

Real(8), Intent(OUT), Dimension (3,3,3,3) :: Ajk,Bjk

Real (8), Dimension (6,6) : : Ci,Cj,Sj 
! C j : stiffness matrix; S j : compliance matrix

Real (8) : : PVl,SVl,epslnl,dltl,gammal,del 
! incident medium parameters

Real(8) : : PV2,SV2,epsln2,dlt2,gamma2,de2 
! reflecing medium background parameters

Real (8) : : poro,Vpma,a,b,c 
! matrix parameters

Real(8), Dimension (3,3,3,3) : : Ajkr, Bjkr
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I

I

Real(8), Dimension (3,3) : : V2H
Logical : : Rotation 
for coordinate system rotation

parameters below are for fractured zone
Integer : : K 
k sets fracture

Real (8), Allocatable, Dimension (:) : : cd,azi,dip
cd : crack density
azi: azimuthal angle
dip: dip angle

Real(8), Dimension (6,6) : : Sfk
6X6 compliance matrix for kth set of fracture

Real (8), Dimension (6,6) :: Sb
6X6 compliance matrix for background medium

Real (8), Dimension (6) : : Sbi,Cji 
storing temp column vector of Sb and Cj

Real (8), Dimension (6) : : UntI
column of unit matrix

Real (8) 
Real (8) 
integer

cll,c33,cl2,cl3,c44,c66 
dll,d33,dl2,dl3,d4 4,d66

! Allocate space for crack set parameters 
K=2
Allocate (cd(1 :K))
Allocate (azi(l:K))
Allocate (dip(l:K))

Define Thomsen (198 6) parameters for incident medium 
PV1=2500._8 ! in m/s
SV1=1250._8 
del=2600._8 
epslnl=0._8 
dltl=0._8 
gammal=0. 8
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! Define Thomsen (1986) parameters for transmitted medium 
Vpma=6530._8 
poro=0.1_8 
a=-0.05508_8 
b=1.01677_8 
c=-1.03049_8

PV2=Vpma*(1._8-poro) ! in m/s
SV2= (a* (PV2/10C0 ._8) **2-t-b* ( PV2/1000 . _8 ) +c ) *1000._8
de2=2.71_8 *(1,_8-poro)
epsln2=0._8
dlt2=0._8
gamma2=0._8

cd(l)=0.05_8 
a z i (1)=0._8 
dip(l)=90._8 
cd(2)=0.05_8 
a z i (2)=60._8 
d i p ( 2 ) = 9 0 . _8

! Compute stiffness components for incident medium 
c33=del*PVl**2 
cll=(l+2*epslnl)*c33 
c44=del*SVl**2 
c66=(l+2*gammal)*c44
cl3=SQRT(2*dltl*c33*(c33-c4 4 ) + (c33-c44)**2}-c44 
cl2=cll-2*c66

! Compute stiffness components for transmitting medium 
d33=de2*PV2**2 
dll=(l+2*epsln2)*d33 
d44=de2*SV2**2 
d66=(l+2*gamma2)*d44
dl3=SQRT(2*dlt2*d33*(d33-d44) + (d33-d44)**2)-d44 
dl2=dll-2*d66

I __________________________________________________

'.Calculate incident stiffness matrix

Do i=l,6 
Do j = 1,6

If (i==j) Then
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If (i<=2) Then
C i (i,j)=cll/del 

Else If (i==3) Then 
Ci(i,j)=c33/del 

Else If (i>=4 .and. i<6) Then 
Ci (i,j)=c44/del 

Else
Ci (i,j)=c66/del 

End If
Else If (i/=j .and. i<=3 .and. j<=3) Then 

If (i==3 .or. j==3) Then 
C i (i,j)=cl3/del 

Else
Ci(i,j)=cl2/del 

End If
Else

Ci(i,j)=0._8
End If 

End Do 
End Do

ICalculate reflecting background stiffness matrix

Do i = l,6 
Do j = 1,6

If (i==j) Then 
If (i<=2) Then 

Cj (i,j)=dll 
Else If (i==3) Then 

Cj (i,j)=d33 
Else If (i>=4 .and. i<6) Then 

Cj (i,j)=d44 
Else

Cj (i,j)=d66 
End If

Else If (i/=j .and. i<=3 .and. j<=3) Then 
If (i==3 .or. j==3) Then 

Cj (i,j)=dl3 
Else

Cj(i,j)=dl2 
End If 

Else
Cj(i,j)=0._8

End If 
End Do
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End Do

I _______________________________________________________________________________
! convert background stiffness matrix to compliance matrix

! Great a unit vector 
Do i=l,6

Do j = 1,6
If (]==!) Then 

Un t I (j)=1-_8 
Else

UntI{j )=0._8 
End If 

End Do

! Find column of matrix
Call Linear6ReaISIsn(Cj,UntI, Sbi)

! Build column of compliance matrix for background 
Do j=l,6

Sb(i,j)=Sbi(j)
End Do

End Do

I _______________________________________________________________________________

ICompute the total compliance matrix of reflecting medium

Sj=Sb 
Do i = l,K

Call CrackCompliance(PV2,SV2,de2, cd(i),& 
azi(i),dip(i),Sfk)

Sj=Sj+Sfk 
End Do

! convert the total compliance matrix back to total 
[stiffness matrix

Do i=l,6

Do j=l,6
If (j==i) Then 

U n t K  j)=l._8
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Else
Un t I (j )=0._8 

End If 
End Do

Call Linear6RealSlsn(Sj,UntI,Cji;

Do j=l,6
Cj(i,j)=Cji(j)/de2 

End Do

End Do

Transform the 6X6 stiffness matrices into 3X3X3X3 Cijkl 
stiffness tensor

Call Cij_Cijkl (Ci,Ajk)
Call Cij_Cijkl(Cj,Bjk)

I _____________________________________________________________________

! Make a coordinate system rotation if necessary

Rotation = "F"
If (Rotation=="T") Then 

V 2 H (1,1)=0._8 
V2H(1,2)=0._8 
V2H(1,3)=-1._8 
V2H{2,1)=0._8 
V2H(2,2)=1._8 
V 2 H (2,3)=0._8 
V2H(3,1)=1._8 
V2H(3,2)=0._8 
V2H(3,3)=0._8

Call Transformation_properties (Ajk,V2H,Ajkr)
Call Transformation_properties (Bjk,V2H,Bjkr)
Ajk=Aj kr 
Bj k=Bjkr 
End If

End Subroutine MediaParameters
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Name: ij_m
Description: This subroutine transfers the subscripts (ij,

or kl) of 3X3X3X3 elastic tensor 
Cijkl into the subscripts (m) or (n) of the 
6X6 matrix form.

Input: i - the first or third subscribe of Cijkl
j - the second or fourth subscribe of Cijkl 

Output: m - ij's or kl's corresponding value of m or
n in Cmn

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Subroutine ij_m(ii, jj ,mm)
Implicit None

Integer, Intent(IN) : : ii,jj 
Integer, Intent(OUT) : : mm

If (ii==l .And. jj==l) Then 
mm=l

Else If (ii==2 .And. jj==2) Then 
mm=2

Else If (ii==3 .And. jj==3) Then 
mm=3

Else If ( (ii==2 .And. jj==3) .OR. &
(ii==3 .And. jj==2)) Then

mm=4
Else If ((ii==l .And. jj==3) .OR. &

(ii==3 .And. jj==D) Then
mm=5

Else If ((ii==l .And. jj==2) .OR. &
(ii==2 .And. jj==D) Then

mm=6 
End If

End Subroutine ij_m
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Name: CrackCompliance
Description: Given one set of fracture parameters, this 

subroutine calculate the elastic compliance 
matrix corresponding to the fracture set 
according to Schoenberg and Sayers (1995) 
model.

Input: Vp - background P-wave velocity
Vs - background S-wave velocity 
dnsty - background density 
crkde - crack density
azimu - azimuthal angle of fracture set 
dipag - dip angle of fracture set (measured 
from horizontal.

Output: Sk - elastic compliance of the fracture
set

Subroutine CrackCompliance(Vp,Vs,dnsty,&
crkde,azimu,dipag,Sk)

Implicit None

Real (8), Intent (IN) : : Vp, Vs, dnsty, crkde, azimu, dipag 
Real (8), Intent(OUT), Dimension (6,6) : : Sk

Real (8), Dimension (3) : : Ni 
Real(8), Dimension (3, 3,3,3) : : Sij
Real(8) 
Real (8) 
Integer

g,pi,Zn,Zt,dtN,dtT,Mb,rb, lamda,mu
DTik,DTjk,DTil, DTjl
ifjfk,l,m,n

pi=3.1415926_8
N i (1)=Sin(dipag*pi/180)*Cos(azimu*pi/180) 
N i (2)=Sin(dipag*pi/180)*Sin(azimu*pi/180) 
N i (3)=Cos(dipag*pi/180)

! Background elastic constants 
mu=dnsty*Vs**2 
lamda=dnsty*Vp**2-2*mu 
Mb=lamda+2 *mu 
rb=lamda/Mb

g=(Vs/Vp)**2 
dtN=4*crkde/(3*g*(1-g) ) 
dtT=16*crkde/(3*(3-2*g))
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Zn=dtN/(Mb*(1-dtN)) 
Zt=dtT/ (mu*(1-dtN))

Do i=l,3 
Do j=l,3 

Do k=l,3 
Do 1=1,3

If (i==k) Then 
DTik=l._8 

Else If (i/=k) Then 
DTik=0._9 

End If

If (j==k) Then 
DTjk=l._8 

Else If (j/=k) Then 
DTjk=0._8 

End If

If (i==l) Then 
DTil=l._8 

Else If (i/=l) Then 
DTil=0._8 

End If

If (j==l) Then 
DTjl=l._8 

Else If (j/=l) Then 
DTjl=0._8 

End If

Sij(1,j,k,l)=(Zt/4)* (DTik*Ni(1)*Ni(j)+ &
DTjk*Ni(1)*Ni(i)+DTil*Ni(k)*Ni(j}+ & 
DTjl*Ni(k)*Ni(i))+ &
(Zn-Zt)*Ni(i)*Ni(j)*Ni(k)*Ni(l)

Call ij_m(i,j,m)
Call ij_m(k,l,n)
Sk(m,n)=Sij(i, j, k, 1)

End Do 
End Do 

End Do 
End Do

End Subroutine CrackCompliance
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* * * * * * * * *

Name: Linear6RealSlsn
Description: This subroutine calculates the root of 6

linearized equations with six unknowns in the 
following form:

AilXl+Ai2X2+Ai3X3+Ai4X4+Ai5X5+Ai6X6 = Yi 
(i=l,2,...6)

The routine is used to find the inverse of 
6X6 stiffness and compliance matrices.

Input: A - 6X6 matrix parameters
Y - one dimensional array of 6 values at the 

right side of the linearized equation
Output: X - one dimension array of 6 unknowns

Subroutine Linear6RealSlsn(A,Y,X) 
Implicit None

Real(8), Intent(IN), Dimension(6,6i 
Real(8), Intent(IN), Dimension(6) 
Real (8), Intent(OUT), Dimension(6)

Real (8), Dimension(6,7) 
Real(8), Dimension(7) : 
Real (8) : : C, D
Integer : : i,j,k,1

: B 
Btmp

Do 1=1,6 
Do j = l,6

B(i, j)=A(i, j)
End Do 
B(i,7)=Y(i)

End Do

Do k=2,6
Do i=k-l,6

If (B(i,k-1)/=0._8) Then 
Exit

Else ! to avoid a 'O' diagonal element
Do j=l,7 

Do 1=1,5
Btmp(j )=B (1,j)
B(l,j)=B(l+l,j)
B (1 + 1, j )=Btmp(j)
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End Do 
End Do 

End If 
End Do

Do i = k, 6
C=B(i,k-l)/B(k-l,k-l)
Do j=l,7

B(i,j)=B(i,j)-B(k-l,j)*C 
End Do 

End Do

End Do

X(6)=B(6,7)/B(6,6)
Do i=l,5

D=B(6-i,7)
Do j=l,i

D=D-B(6-i,7-j)*X(7-j)
End Do

X{6-i)=D/B(6-i,6-i)

End Do

End Subroutine Linear6RealSlsn
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Name: Cij_Cijkl
Description: This subroutine transform a 6X6 Cij stiffness

matrix into a 3X3X3X3 Cijkl stiffness tensors 
Input: Cij - 6X6 two dimensional array of elastic

stiffness
Output: Cijkl - 3X3X3X3 four dimensional array of

elastic stiffness

Subroutine Cij_Cijkl(C,AIJ) 
Implicit None

Real(8 Intent ( IN ) ,
Real(8 t Intent(OUT),

AIJ 1 1, 1,1) =C 1, 1
AIJ 1 1, 1,2)=C 1,6
AIJ 1 1, 1,3) =C 1,5
AIJ 1 1,2, 1)=C 1,6
AIJ 1 1,2,2)=C 1,2
AIJ 1 1,2,3)=C 1,4
AIJ 1 1,3,1)=C 1,5
AIJ 1 1,3,2)=C 1,4
AIJ 1 1,3,3)=C 1,3

AIJ 1 2, 1, 1)=C 6,1
AIJ 1 2, 1, 2)=C 6, 6
AIJ 1 2, 1,3)=C 6,5
AIJ 1 2,2,1)=C 6, 6
AIJ 1 2,2,2)=C 6,2
AIJ 1 2,2,3)=C 6,4
AIJ 1 2,3,1)=C 6,5
AIJ 1 2,3,2)=C 6,4
AIJ 1 2,3,3)=C 6,3

AIJ 1 3, 1, 1)=C 5,1
AIJ 1 3,1,2)=C 5,6
AIJ 1 3, 1,3)=C 5,5
AIJ 1 3,2,1)=C 5,6
AIJ 1 3,2,2)=C 5,2
AIJ 1 3,2,3)=C 5,4
AIJ 1 3,3,1)=C 5,5
AIJ 1 3,3,2)=C 5,4
AIJ 1 3,3,3)=C 5,3

Dimension (6,6) : : C
Dimension (3,3,3,3) : AIJ
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AIJ(3,2,3,2)=C(4,4)
AIJ(3,2,3,3)=C(4,3)

AIJ(3,3,1,1)=C(3,1) 
AIJ(3,3,1,2)=C(3,6) 
AIJ(3,3,1,3)=C(3,5) 
AIJ(3,3,2,1)=C(3,6) 
AIJ(3,3,2,2)=C(3,2) 
AIJ(3,3,2,3)=C(3,4) 
AIJ(3,3,3,1)=C(3,5) 
AIJ(3,3,3,2)=C(3,4) 
AIJ(3,3,3,3)=C(3, 3)

End Subroutine Cij Cijkl
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Name: Transformation_properties
Description: This subroutine calculates the new elastic

stiffness matrix after a coordinate system 
rotation

Input: C - elastic stiffness matrix before system
rotation

Aij - new coordinate rotation matrix 
Output: Cp - elastic stiffness matrix after system

rotation

Subroutine Transformation_properties (C,Aij,Cp)
Implicit None

Real(8), Intent(IN), Dimension (3,3,3,3) : : C 
Real (8), Intent(IN), Dimension (3,3) : : Aij 
Real(8), Intent(OUT), Dimension (3,3,3,3) : : Cp

Integer : : m,n,o,p,i,j,k,1

Do m=l,3 
Do n=l,3 

Do 0=1,3 
Do p=l,3

Cp (m, n, o, p) =0 
Do i=l,3 

Do j=l,3 
Do k=l,3 

Do 1=1,3

Cp(m,n,o, p)=Cp(m,n,o,p)+Aij(m,i)*&
Aij (n, j ) *Aij (o,k) *Aij (p, 1) *& 
C(i, j,k,l)

End Do 
End Do 

End Do 
End Do

End Do 
End Do 

End Do 
End Do

End Subroutine Transformation properties
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