
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of th is reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and teaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

UMI

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

SIMULATION OF SMALL-ANGLE SCATTERING

PATTERNS VIA A MONTE-CARLO TECHNIQUE

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial flilfiliment o f the requirements for the

degree o f

Doctor o f Philosophy

By

Bryan Carl McAlister
Norman, Oklahoma

2000

UMI Number: 9977954

UMI
UMI M icroform 9977954

Copyright 2000 by Bell & Howell Information and Learning Com pany.
All rights reserved . This m icroform edition is p ro tected against

unauthorized copying u n d er Title 17. United S ta te s C ode.

Bell & Howell Inform ation and Learning C om pany
300 North Z eeb Road

P .O . Box 1346
Ann Arbor, Ml 48106-1346

© Copyright by Bryan Carl McAlister 2000
All Rights Reserved

SIMULATION OF SMALL-ANGLE SCATTERING
PATTERNS VIA A MONTE-CARLO TECHNIQUE

A Dissertation APPROVED FOR THE
SCHOOL OF CHEMICAL ENGINEERING

AND MATERIAL SCIENCE

Dedicated to

My fam ily :
Kenneth and Rosemary McAlister

Laurie Westlake and Denton McAlister

My wife:
Shon Bower

IV

ACKNOWLEDGEMENTS

I worked full time as a chemical engineer through most o f my graduate school

experience. This was in no way a trivial task because of the demands that job and

school make on your time. 1 would not suggest this to anyone because o f the various

pitfalls that serving two masters brings. Because o f this I feel three key figures

deserve much credit; Dr. Brian Grady, Dr. Jeff Harwell and Howard Caplinger. I also

need to make mention of the “coffee breaks” with my brother Denton.

I cannot say enough about Dr. Brian Grady. He has been an excellent choice

for a graduate advisor. Brian has given me a lot of opportunity to grow as both a

person and as an engineer. Under him I have been a teaching assistant, I have

presented at many national conferences and I have taught a class. Brian’s approach

with me has been more o f a mentor and less as a boss. He has shown a lot of

confidence in me and the other students that have worked for him. I need to point out

that although I was his first graduate student, I was by no means his first to graduate. I

sincerely appreciate his patience.

I want to say “thank you” to Dr. Jeff Harwell for allowing me to work full time

while going to graduate school. As I mentioned earlier, I would not suggest this to

anyone else, but I have survived and it has made me a much more complete person

and has given me a very unique understanding about both industry and academia. Dr.

Harwell showed his wisdom by having me to finish all course work before attempting

any research. If I had tried to do things the normal route, course work and research

simultaneously, 1 doubt 1 would have ever completed this degree.

Howard Caplinger was the Senior Chemical Engineer 1 worked with while at

Dayton Tire. Not only has been very helpful in allowing my schooling to continue, he

has also been very instrumental in my successes at Dayton Tire. Very few people are

fortunate enough to work with someone who offers so much freedom in the workplace

especially to a newly graduated engineer. 1 am very glad 1 was able to work with him

and leam from his experience.

Some o f my best memories here at the University o f Oklahoma are the times

Denton and 1 met for coffee. These “coffee breaks” normally entailed the discussion

o f a whole gambit o f topics. It was a great experience. Not only did we discuss every

day topics, but also we were able to discuss each other’s research topics and see them

through each other’s eyes. 1 honestly believe that he and 1 could solve all the world's

problems over a cup o f coffee and maybe the occasional lai ge chocolate chip cookie.

VI

TABLE OF CONTENTS

1. Fundamentals of Small-Angle Scattering and Monte-Carlo Simulation 1

1.1. Introduction 1
1.2. General Scattering Theory 4
1.3. Analysis o f Scattering Data and Goals o f this Research 8
1.4. General Monte-Carlo Theory 13
1.5. Experimental Constraints 17
1.6. References 18

2. SAXS Simulation of Single Particle Systems 20

2.1. Introduction 20
2.2. Theoretical Background 22
2.3. Simulation Technique and Technical Considerations 23
2.4. Comparisons 26
2.5. Objects and Orientations Without Analytical Solution 33
2.6. References 38

3. SAXS Simulation of Particles with More Than One Electron Density 39

3.1. Introduction 39
3.2. Theoretical Background and Description of Method 40
3.3. Results 42
3.4. References 54

4. SAXS Simulation of Multiple Particle Systems 55

4.1. Introduction 55
4.2. Dense Multiple Particle Systems 56
4.3. References 65

5. Conclusions And Future Work 67

5.1. Single Particle Systems 67
5.2. Multiple Particle Systems 69
5.3. Analyzing Experimental Data 70
5.4. References 71

VII

Appendix A. Sample Random Number Generators 72

A. 1. Sample Random Number Function 1 72
A.2. Sample Random Number Function 2 73
A.3. Sample Random Number Function 3 74
A.4. Sample Random Number Function 4 75

Appendix B. FORTRAN Programs Used in Chapter 2 76

B. 1. Sphere 76
B.2. Prolate Spheroid 82
B.3. Cylinder 88
B.4. Tilted Cylinder 94
B.5. Elongated Hexagon 102
B.6. Bundled Cylinders 114

Appendix C. FORTRAN Programs Used in Chapter 3 123

C .l. Core/Corona 123
C.2. Core/Shell 130
C.3. Layered Cylinder 138

Vlll

LIST OF FIGURES

1.1. Scattering Experimental Setup 3

1.2. Representation of S and So 4

1.3. Illustration of system for Equation 1.1 6

1.4. Illustration of system for Equation 1.3 7

1.5. SAXS photograph of drawn Linear Polyethylene 13

1.6. Sphere Visualization 14

2.1. Sphere: Rs = 2.0 nm: Rl = 0.985 for simulation time of 30 minutes. 28

2.2. Rl as a function o f simulation run time and the number of scattering 29
points generated. Sphere A: Rs = 0.5 nm. Sphere B: Rs = 1.0 nm.

2.3. Picture of a scattering object, coordinate axes and the scattering 31
vector, q .

2.4. Prolate Spheroid: major axis = 2.0 nm, minor axis = 1.0 nm, 31
(j) = 7t/6, n/3: Rl = 0.998, 0.972 respectively and simulation run times
were each 30 minutes.

2.5. Cylinder: H = 0.5 nm, Rc = 0.5 nm, (p = ti/6, ti/3: Rl = 1.0, 1.0 33
respectively and simulation run times were each 30 minutes.

2.6. Tilted Cylinder: H = 4.0 nm, Rc = 2.0 nm, (p = ti/4, o = n/6,7i/3: 35
simulation times were 30 minutes.

2.7. A. Elongated Hexagon: H = 2.0 nm, Ri,ex = 2.0 nm, (p = rt/6, jt/3: 36
simulation times were each 30 minutes. B. Seven Bundled Cylinders:
H = 4.0 nm, Rbundied = 2.0 nm (each cylinder), (p = n/6, t i / 3 : simulation
times were each 30 minutes. Small diagrams o f each morphology

are included.

IX

2.8. Elongated Hexagon compared to Seven Bundled Cylinders: 37
Elongated Hexagon: H = 3.0 nm, Rhcx = 3.0 nm, (p = n/4: Seven
Bundled Cylinders: H = 3.0 nm, Rbundicd = 1.0 nm (each cylinder),
(p = n/4: simulation times were each 30 minutes. Small diagrams
of each morphology are included.

3.1. Visual interpretations: a. Core/Corona Sphere Model; 44
b. Core/Shell Sphere Model; Centro-Symmetric Layered Cylinder.

3.2. Core/Corona: Rc„re = 2.0 nm, Rcorona = 2.4 nm, m = -0.1: 45
Rl = 0.972 45 minute simulation run time.

3.3. Core/Shell: Rcore = 1.5 nm, Rsheii-inncr = 2.0 nm, Rshdi-ouia = 2.5 nm, 45
a = 0.75: Rl = 0.980, 30 minute simulation run time.

3.4. Diagram o f cylindrical scattering object, coordinate axes. 47

3.5. Layered Cylinder: Rc = 1.0 nm, H = 3.0 nm, Hpnmary = 0.200 nm, 49
Hsccondary = 0.185 nm, (p = 7i/4, to = 0.00, 0.25,0.50,0.75, 1.00:
30 minute simulation run time for each curve.

3.6. Layered Cylinder: Rc = 1.0 nm, H = 3.0 nm, Hpnmao = 0.200 nm. 50
Hsecondao = 0.185 nm, (p = t i /4 , ÜJ = 0.00, -0.25, -0.50, -0.75, -1.00:
45 minute simulation run time for tn = -0.25, -0.50, -0.75, -1.00;
30 minute simulation run time for ra = 0.00 (extended run time because
of “negative scattering”).

3.7. Layered Cylinder: Rc = 1.2 nm, H = 2.6 nm, Hpnmary = 0.20 nm, 53
Hsccondary = 0.05 nm (z = 0.25), 0.10 nm (z = 0.50), 0.15 nm (z = 0.75),
ip = 7i/8, tsj = 0.25: 30 minute simulation run time for each curve.

3.8. Layered Cylinder: Rc = 1.2 nm, Hpnmary = 0.20 nm (z = 1.0), 53
0.10 nm (z = 2.0), 0.025 nm (z = 8.0), Hsccondary = 0.20 nm , «P = 37i/8,
cj = 0.25: 30 minute simulation run time for each curve.

5.1. One "cell” o f the double diamond surface. 68

5.2. Three-dimensional double diamond array. 69

CHAPTER 1 Fundamentals o f Small-Angie Scattering

and Monte-Carlo Simulation

1.1 Introduction

Electromagnetic radiation can be used to obtain information about materials

whose dimensions are on the same order as the radiation wavelength. X . An ordinary

glass o f milk vividly illustrates this principle. In normal visible light, i.e. that emitted

from a household fluorescent bulb, a glass o f milk appears as a continuous, milky

white fluid, thus the name milk. However, place the same glass o f milk in an

ultraviolet "black" light and it appears as an emulsion o f particles because the

wavelength of the “black” light is similar to the dimensions of the butterfat that is

emulsified in milk. Another example o f how radiation illuminates length scales

similar to that o f the radiation wavelength is the blue appearance o f the sky. Density

fluctuations in the earth's atmosphere are small and are therefore closer to the

wavelength o f the blue portion of the visible light spectrum. Thus, the color o f

scattered sunlight and the appearance o f the sky are blue. If no gases were present in

the earth's atmosphere at all then our sky would appear black like that o f the moon

(Guinier, 1984).

Around the turn o f the 20“* century, Rdntgen discovered radiation with

wavelength much smaller than that o f visible light. Rdntgen named this high-energy

radiation “x-rays " because o f their unknown nature (Classer, 1945). Soon after this

discovery, von Laue and his associates discovered that crystals scatter x-rays in

distinct patterns (von Laue, 1950). It was quickly recognized that these patterns give

direct insight into the structure o f the materials that caused the scattering. Since these

early discoveries, many technical advances made x-ray scattering one of the most

powerful characterization tools available for both homogenous and heterogeneous

materials. Today, scattering from x-rays, neutrons and light is used by scientists in

many different disciplines to study a vast range o f materials ranging from polymers to

proteins.

Small-Angle Scattering (SAS) experiments commonly appear as shown in

Figure 1.1 and generally follow this procedure; irradiate a sample with some type of

radiation (x-rays, neutrons or light), measure the resulting scattering pattern, then

determine the structure that caused the observed pattern. Scattering patterns are

caused by the interference of secondary waves that are emitted from various structures

(electrons for x-rays and light, or nuclei for neutrons) when irradiated. Scattering of

x-rays is caused by differences in electron density, scattering o f neutrons is caused by

differences in scattering power o f different nuclei and scattering o f light is caused by

differences in refractive index. Since the larger the diffraction angle the smaller the

length scale probed, wide angle x-ray scattering (WAXS) is used to determine crystal

structure on the atomic length scale while small-angle x-ray scattering (SAXS) or

small-angle neutron scattering (SANS) is used to explore microstructure on the

colloidal length scale (Kratky & Porod, 1949). Light is used similarly but because the

wavelength o f light is much greater than that o f x-rays or neutrons, light scattering is

used for much larger structures like the phases in blends o f elastomers or particle size

distributions.

Generator
Pin Holes

Monochromator

J
Sample

Detector

Beam Stop

Figure 1.1. Scattering Experimental Setup

Unlike an electron micrograph, small-angle x-ray scattering patterns do not

give morphological information directly. The result o f a SAXS experiment is

essentially the intensity o f the Fourier transform of the electron density and must be

interpreted in order to determine morphology. One fundamental problem with any

scattering experiment is that two different morphologies can, in theory, give identical

scattering patterns. Generally, one cannot reconstruct the exact microstructure

uniquely from a SAXS pattern because in a scattering experiment only the scattered

radiation intensity can be measured and all phase information is lost. Therefore, one

cannot be absolutely sure that a scattering pattern is due to a particular morphology.

Still however, usually something is known about the system in question, so that it is

often (but not always!) reasonable to assume that if a particular model is shown to fit

the scattering pattern, then the model is a correct description o f the morphology.

Nevertheless, many different approaches exist to extract morphological information

from a SAXS pattern.

1.2 General Scattering Theory

When x-rays o f known wavelength are scattered, a scattering vector, q , can be

defined that is equal to — (S -). Ih is important definition is based on the

wavelength of radiation, X, and unit vectors in the incident and scattered x-ray

directions, respectively. So and S. As shown in Figure 1.2, the angle between So and S

I I ^ T tis 20. Thus the resulting magnitude of the scattering vector, q , is equal to — sin 8 .
X

The scattering vector is the basis for all scattering equations.

sin0q=

Figure 1.2. Representation o f S and S,

Incoherent or Compton scattering, which is virtually nonexistent at small

angles, refers to scattered waves that have changed phase and wavelength (Alexander,

1969). Neglecting Compton scattering (no phase change and no wavelength change),

the coherent scattering o f x-rays [1(3)] by a single fixed particle is mathematically

represented by Equation 1.1 which is the fundamental scattering equation (Schmidt.

1995). In Equation 1.1, 1̂ (q) is the scattered intensity o f a single electron measured

in identical conditions as l (q) . As shown in Figure 1.3, tj and Ik are the scattering

powers o f the j ”' and k'*’ atoms respectively. Also in Figure 1.3, rj and rk are a vectors

from some arbitrarily chosen origin to the center o f the j'*’ and k‘*' atoms respectively.

Kq) n n
T ÿ T = Ë Ë c o s [q ' ([j - [k)] E q u a t io n 1.1

The square root o f the right hand side of Equation 1.1 is known as the form

factor, Fk. Form factors have been derived analytically for many simple geometries.

For example, the form factor for a sphere o f radius Rs, is given in Equation 1.2

(Guinier & Foumet, 1955). This expression was derived by Lord Rayleigh and is

often denoted as O(qR) when used in complex scattering expressions. Some of the

form factors with analytical expressions include cylinders (circular and oval cross

sections), spheroids (prolate and oblate), spherical shells, concentric spherical shells,

parallelepipedons, infinitely thin rods and infinitely flat circular disks. A more

exhaustive list can be found in the work o f Pedersen (1997).

Kg)

ic(q)
= [F,(q,R.)r = s in (q R .) - (q R .)c o s (q R .)

(qR.)'
Equation 1.2

Scattering
Particle

Arbitrary
Origin

Figure 1.3. Illustration o f system for Equation 1.1

As particle density increases (particle volume divided by total volume), inter­

particle interference becomes a factor, i.e. the scattering pattern depends on the

locations of the individual particles. At high particle densities inter-particle

interference can dominate the scattering curve. The Debye Equation describes

scattering from multiple particle systems with inter-particle interference included. The

Debye Equation is analogous to Equation 1.1 and is given in Equation 1.3. Equation

1.3 is based on the form factors o f N different particles and a vector from the centers

o f the j*** and k“* scattering particles, R,̂ - R j , as shown in Figure 1.4.

Equation 1.1 is based on scattering “points” and Equation 1.3 is based on

scattering particles. Scattering “points” have no finite volume while scattering

particles do have finite volume. Therefore when simulating scattering by choosing

points, scattering “points” can be chosen randomly while the centers o f scattering

particles cannot, since the latter is limited by the fact that no two particles can occupy

the same space.

Kq) ^
7 T ; = EZFk(q)Fj(q)cos[q'(Rk -R,)]
i , (q) k T - - - -- ---------- -

E q u a t io n 1.3

System of
N Particles

Arbitrary
Origin

Figure 1.4. Illustration o f system for Equation 1.3

Occasionally, it is desired determine scattering from a collection o f anisotropic

particles whose orientation is random. An example of this would be a dilute,

quiescent solution o f particles. Equations 1.4 and 1.5 result from Equations 1.1 and

1.3 respectively, after orientation averaging. In these equations q is the magnitude o f

the scattering vector, |q |. rjk is the magnitude o f the “point” to “point” vector, |r, -r^ .|,

and Rjk is the magnitude of the particle center to particle center vector, R^ - Rj .

E ,u a , i o „ 1 .5

1.3 Analysis o f Scattering Data and Goals o f this Research

There are many analytical methods used to analyze scattering patterns from

both single and multiple particle systems. At low q, the Guinier Law can be used to

estimate the radius o f gyration o f the scattering particle (Clatter & Kratky, 1982). The

Guinier Law works well with most single particles with the exception o f very

anisotropic particles. At high q, the Porod Law can be used to estimate the total

surface area o f all scattering particles regardless o f shape (Guinier, 1994). The Porod

Law assumes a two-phase system with sharp interfaces and works for multiple particle

systems as well.

Generally, analyzing an entire scattering pattern requires significant effort, and

a number o f different methods are used to analyze data. The purpose here is not to

familiarize the reader with all these methods but rather to describe the most commonly

used approaches. The reader should note that the Monte-Carlo methods described in

this thesis can be used to calculate entire scattering patterns, and Monte-Carlo methods

are applicable to almost any type of system; however these methods are very time

consuming and hence should only be used when alternatives do not exist.

Morphologies without Interparticle Interference

Structural parameters from simple single-particle spherical morphologies can

be determined in a matter o f seconds using a least squares fit o f Equation 1.2. In other

words, a scattering curve is calculated from Equation 1.2, then it is smeared (see

Section 1.5) and compared to the experimental scattering pattern. This process is

repeated until the calculated scattering curve most closely matches the experimental

one, i.e. the sum of the squares of the differences between the experimental scattering

points and the calculated scattering points is minimized. Essentially all real

examples o f identical single particles with perfect alignment are objects that also have

analytical solutions, i.e. cylinders or spheroids, and can be solved with essentially the

same procedure.

The first step in this research was to simulate scattering from these simple

systems to prove that a Monte-Carlo method can in fact be used to simulate scattering.

The most important outcome o f this part o f the research was in learning how to

properly perform these simulations. The existence of analytical solutions allowed me

to pinpoint errors in the code, allowed for the determination o f simulation times

required, and also aided in the choice o f a random number generator. Chapter 2

describes this effort in detail, and was the basis for a paper published in the Journal o f

Applied Crystallography.

If single particles are allowed to have a distribution o f sizes or orientations,

then the situation becomes quite complicated. Analytical methods can be used if

spheres have a distribution o f sizes and such methods have been applied to systems of

Al-Li precipitates (Pedersen, 1993). Anisotropic objects with random orientation fall

into two categories. Scattering patterns from some objects with random orientation

(discs, cylinders, spheroids) have analytical solutions. Cylinders for example have

been used to model dilute solutions o f hemoglobin (Foumet, 1951). Some objects

with random orientation do not have analytical descriptions o f the scattering pattern;

these systems require Monte-Carlo simulations developed elsewhere and described in

more detail in Chapters 2 and 4. If the orientation of anisotropic objects is non-

random, i.e. a fibrinogen system under shear, then there are no other approaches other

than the Monte-Carlo approach given in this thesis to describe the complete scattering

pattern. Chapter 3 describes this effort in detail, along with an effort to describe single

particle systems with more than 2 electron densities. Other than spherical objects,

systems with more than 2 electron densities do not have analytical solutions.

The ultimate goal o f this research is to develop a Monte-Carlo method that is

able to fit real experimental data using the approach given in this thesis. For the

simplest systems, i.e. identical single particles that are infinitely symmetric (spheres)

or identical single particles with perfect alignment, this goal could currently be

reached if a suitable least-squares routine were developed. The former could probably

10

be coded and run on a fast PC, while the latter is obviously more time-consuming

because an entire two-dimensional pattern is necessary. On a PC, many weeks would

be required to Ht a two-dimensional scattering pattern with a Monte-Carlo model,

which is too far long to be of practical use. However a high-speed supercomputer

could perform this function in a reasonable amount of time. Practically, there is no

reason to develop such a routine for these systems because simpler methods exist to

analyze scattering data from these systems.

For both multiple-electron density systems and anisotropic objects with

preferred orientation, there would be definite practical benefit in developing least-

square routines to fit real experimental data. Systems such as elongated micelles, and

voids in elongated polymers presumably would scatter without interparticle

interference, and currently there are no good methods to analyze data from such

systems. However, the many weeks o f simulation time for a perfectly oriented system

could possibly increase by an order o f magnitude for a system with non-perfect

orientation.

Morphologies with Interparticle Interference

Dense multiple particle systems (both with and without preferred orientation)

are covered in Chapter 4. Dense multiple particle systems are the most common

example o f “real” systems and have two-dimensional SAXS patterns like that shown

in Figure 1.5. Analysis o f scattering from dense multiple particle systems is

extremely difficult. Normally, if the dense multiple scattering systems are comprised

11

of spheres then the analytical expression derived by Zemicke and Prins can be used as

described in Chapter 4. Because no other approaches exist, scattering from systems of

dense anisotropic scattering particles has to be analyzed using a Monte-Carlo method.

Monte-Carlo data analysis for systems of dense anisotropic scattering particles is done

using Equation 1.3 or Equation 1.5. One problem in simulating scattering from dense

anisotropic systems is that Equation 1.3 is valid for only a single arrangement of

particles and thus, a large number o f particles are required in the simulation. Equation

1.3 is also a fimction o f a double summation over all scattering particles. Comparing

small systems of 100 particles and 1000 particles, the 1000 particle systems would

take 100 times longer to calculate using Equation 1.3. To generate the entire

scattering pattern from a single arrangement o f particles would take nearly a year for

system with tens o f millions o f particles, which I think is the size required for accurate

statistics. Another problem is that it can be very difficult to get high particle densities

by merely placing particles. In our lab it has taken several days to get particle densities

near 0.4 for approximately 1 million spheres by random placement. An alternative to

random placement is given in Chapter 4, but the procedure is still quite time-

consuming. These demands make computer simulation o f scattering from these kinds

o f systems impossible.

To give the reader a better understanding why a Monte-Carlo methods might

be a good tool to analyze scattering data, the general ideas o f Monte-Carlo techniques

need to be explored. This section should help the reader understand why a Monte-

Carlo technique is a much more time-consuming approach to SAXS data analysis.

12

#

Figure 1.5. SAXS photograph of drawn Linear Polyethylene

1.4 General Monte-Carlo Theory

Generally, a Monte-Carlo method is a technique to solve a complex problem by

the observation of a random process whose parameters are based on the complex

problem (Buslenko et al., 1966; Niederreiter, 1992). Monte-Carlo methods are

therefore based on the sampling o f the devised random process. The following

description should clarify this definition.

13

Consider the task o f choosing points in space to simulate a sphere with a radius

equal to 10 cm. The points in space, once chosen, will then be used as scattering

points. One quickly realizes that a real sphere is a continuous object while a sphere

simulated via ‘"points in space” is nothing more than a concentration o f discrete points.

At first thought, it may seem easiest to accomplish this goal by either building a

sphere from spherical shells or from a grid o f points, however, a Monte-Carlo method

can also be employed. Figure 1.6 is a visualization o f these three ideas.

Shell Method

Grid Method

Monte-Carlo Method

Figure 1.6. Sphere visualization

14

To build a sphere from spherical shells the following must be done.

1. Select an origin.

2. Build a very small shell around this origin with points in space.

3. Continue to build larger shells that are equidistant and concentric about the

origin until the radius of 10 cm is met.

To use a grid approach the following must be done.

1. Arrange a grid o f points larger than 20 cm x 20 cm x 20 cm and choose the

center o f the grid as the origin.

2. Choose every point whose distance from the origin less than or equal to 10 cm.

3. Use the chosen points in space as scattering points.

Using a Monte-Carlo method, this problem would be approached in the following

manner.

1. For some box larger than 20 cm x 20 cm x 20 cm, choose the center as the

origin.

2. Randomly select points inside (or on the surface) the box.

3. If the distance between the origin and random point is less than or equal to 10

cm then use the random point as a scattering point.

There are problems with the “shell” and “grid” methods that the Monte-Carlo

method overcomes. In the “shell” method the problem is that the distance between the

discrete shells causes aitifacts in the scattering pattern. Also, it is very difficult to get

a constant point density with this method. In other words, as the shells get smaller the

15

number o f points that are needed per shell is a function o f the cube root o f the radius,

hence how does one maintain that the number o f points is a whole number. In the

“grid” method, artifacts caused by the regular grid can be seen in the scattering. Also,

the exterior o f the sphere is very rough because the sphere is made from a cubic grid

of points, this gives poor scattering results because the scattering curve is very

sensitive to what happens at the edge. Therefore, the act o f choosing random points to

simulate the sphere is by far the most appropriate choice.

However, true randomness is impossible to achieve with random number

generators normally available on computers. To best illustrate the non-random

behavior, one could use a spreadsheet program to draw four random numbers between

zero and 100. The expected average o f the four numbers should be approximately 50

with an approximately even distribution. If the first number drawn is roughly 20, the

second number drawn is roughly 80 and the third number drawn is roughly 60, the

spreadsheet will force the fourth number to be approximately 40. In other words, the

(not so random) random number generator approximately forces the correct average

and expected distribution. Using FORTRAN, random number generation is much

better but of course there is the tradeoff with computer run time. In other words the

better the randomness o f the number generator the longer the computer run time.

It should be fairly obvious that using a Monte-Carlo approach to analyze

scattering data takes significant more time than using an available theoretical model.

For this reason, Monte-Carlo approaches should only be used as a “last resort”.

16

1.5 Experimental Constraints

Whatever the method of data analysis, there are a number o f practical

experimental constraints that must be considered; for example, only a certain range of

q values can be utilized. The SAXS bound at lower q values is the beam because the

beam has a finite cross section. In other words, the intensity of the main beam is much

larger than the scattered intensity at very small q values. Actually, extending the

usable angular range to angles very close to the beam is quite difficult and is the

subject o f a significant body o f literature on camera design. The upper SAXS bound

r 4% \
is usually between 0 = 3° and 0 = 5° q = — sin0 . The upper SAXS bound is

\ ^ J

usually dependent on the dynamic range o f the detector because the intensity of the

SAXS pattern typically decreases as a function o f q .̂ This upper bound can be

extended by moving the detector and collecting for longer times, but for most

morphologies the effort is not worth the benefit.

In a SAXS experiment, smearing o f the scattered radiation occurs which

results in a loss o f resolution. This smearing is the result o f basically three things; the

finite size o f the x-ray beam, the finite size of the “pixels” on the detector and the

polychromaticity o f the beam. The size o f the beam is the most important effect and is

determined by the collimation geometry; both slits and pinholes are commonly used.

Thus, corrections must be made for the pinholes or the width and heights o f the slits.

Smearing can also occur because o f the finite size o f the detection element i.e. a two-

dimensional detector has pixels with finite area. In a scattering experiment, each of

17

these pixels “sees” the Intensity over a small range o f q values. Smearing of these

two types is easily corrected with equations given in the literature (Lake, 1967;

Register & Cooper, 1988; Barker & Pedersen, 1995). Finally, any deviation from

mono-chromaticity can smear the scattered radiation. This type of smearing is

usually ignored for two reasons. First, most beams use crystal monochromators and

hence this effect is small. Second, it is extremely difficult to measure a wavelength

polydispersity even in systems with filters rather than crystals, and hence it is ignored.

Scattering patterns given throughout this thesis are not smeared because

smearing can be easily incorporated into curve fitting routines. Therefore, the curves

in this thesis must be smeared to match real data. Or conversely, real data must be de­

smeared to match the scattering curves presented in this thesis (of course smearing is

much easier than desmearing!).

1.6 References

Alexander, L. E. (\ 9 6 9) X - R a y D i f f r a c t i o n M e t h o d s i n P o l y m e r S c i e n c e . New York:
John Wiley & Sons, Inc.

Barker, J. G. & Pedersen, J. S. (1995). J A p p I C r y s t 28, 105

Buslenko, N. P., Golenko, D. I., Shreider, Yu. A., Sobol, I. M. & Sragovich, V. G.
(1966). T h e M o n t e C a r l o M e t h o d , translated by G. J. Tee, translation edited
by D. M. Parkyn. Oxford: Pergamon Press Ltd.

Foumet, G. (1951). B u l l S o c F r a n ç M i n é r a l E t C r i s t 74, 39

Glasser, 0 . (1945). D r . IV . C . R o n t g e n . Springfield: C. C. Thomas

Glatter, O. & Kratky, O. (1982). Editors. S m a l l - A n g l e X - R a y S c a t t e r i n g . New York:
Academic Press

18

Guinier, A. (1984). T h e S t r u c t u r e o f M a t t e r . London: Edward Arnold Ltd.

Guinier, A. (1994). X - R a y D i f f r a c t i o n I n C r y s t a l s , I m p e r f e c t C r y s t a l s , a n d A m o r p h o u s
B o d i e s , translated by P. Lorrain & D. Lorrain. New York: Dover Publications.

Guinier, A. & Foumet, G. (1955). S m a l l - A n g l e S c a t t e r i n g O f X - R a y s , translated by C.
B. Walker. New York: John Wiley & Sons, Inc.

Kratky, O. & Porod, G. (1949). J Co// S c i 4, 35

Lake, J. A. (1967). A c t a C r y s t 23, 191

von Laue, M. (1950). H i s t o r y o f P h y s i c s , translated by R. Oesper. New York:
Academic Press

Niederreiter, H. (1992) R a n d o m N u m b e r G e n e r a t i o n a n d Q u a s i - M o n t e C a r l o
M e t h o d s . Philadelphia: Society For Industrial And Applied Mathematics

Pedersen, J. S. (1993). P h y s R e v 8 47, 657

Pedersen, J. S. (1997). A d v C o l l I n t e r f a c e S c i 70, 171

Register, R. A. & Cooper, S. L. (1988) J/Ip/?/ C r y s t 21, 550

Schmidt, P. W. (1995). M o d e r n A s p e c t s o f S m a l l - A n g l e S c a t t e r i n g , edited by H.
Brumberger. Boston: Kluwer Academic Publishers

19

CHAPTER 2 SAXS Simulation o f Single

Particle Systems

2.1 Introduction

One method to extract morphological information from a SAXS pattern is to

use a Monte-Carlo method to model the scattering from a given object, smear the

modeled scattering and then compare it to real scattering data. Using this approach,

one assumes a morphology and calculates the scattering pattern by using a Monte-

Carlo method to generate random scattering points (Stockel et al., 1980; Hansen, 1990;

Henderson, 1996). Previously, modeling methods have focused on statistically

isotropic systems (systems where a random distribution o f orientations exist) that are

found in solution and powder diffraction. This type o f system allows the use of

rotationally averaged scattering curves, greatly simplifying the simulation by requiring

the generation o f only a one dimensional electron distribution. These previous

simulation methods have calculated the rotationally averaged scattering curves by

generating the correlation function, y(r) (Debye and Bueche, 1949), or the pair-

distance distribution function, P(r) (Guinier & Foumet, 1955; Glatter, 1979), which are

related by the following equation, P(r)=r'y(r). These functions were then integrated

with their associated intensity functions, shown below [q=(47ï/X) sin 0], (Debye and

20

Bueche, 1949; Feigin and Svergun, 1987) to calculate the rotationally averaged

scattered intensity curves.

I(q) = 4nV j r 'y (r) ^ — ^dr Intensity Function (correlation function)
0 4^

I(q) = - I P(r) dr Intcnsit>’ Function (pair distribution function)
4TfJ qr

The following chapter describes a novel method o f modeling SAXS data that is

similar to the previously mentioned Monte-Carlo methods. Although inherently more

time consuming because of the requirement for non-rotationally averaged scattering

curves, the method presented here is distinct in that it simulates scattering for oriented

systems. This method directly calculates the general scattering function from basic

small angle scattering (SAS) principles and hence eliminates the use o f simplifications

such as a particle's inhomogeneity distribution (Feigin and Svergun, 1987) or chord

distribution (Glatter & Kratky, 1982) which are advantageous to rotationally averaged

scattering pattern simulations. This method’s only requirement for the calculation of

the entire scattering curve in a two dimensional scattering plane is that the scattering

object must be centrosymmetric. However, exact centrosymmetric match between the

actual scattering object and the model is not required as long as the deviations from

centrosymmetry are small compared to the scattering object’s dimensions (Glatter &

Kratky, 1982). Thus, this technique is ideal for morphologies or orientations where an

exact analytical solution for the scattering does not exist. Furthermore, the technique

21

presented here can be applied to small angle neutron scattering (SANS) with only

minor changes in nomenclature.

In order to establish a foundation for this technique, this chapter presents

simulations o f scattering from single particle systems. Accuracy will be verified by

calculating scattering patterns using different simulation times for objects that possess

analytical solutions. Simulated scattering curves will then be compared to the

respective exact theoretical solution, thus providing evidence as to the accuracy and

accessibility o f this method. Furthermore, scattering for three objects without

theoretical scattering solutions will be given to demonstrate the capabilities o f this

technique.

2.2 Theoretical Background

Equation 1.1 could be used to simulate x-ray scattering from single particles

systems, however, the resulting simulations would be very time consuming because of

the double summation to be evaluated. Instead, by assuming that the scattering object

is centrosymmetric with respect to electron density and the origin is chosen as the

center o f symmetry. Equation 1.1 can be simplified as shown below (Guinier &

Foumet, 1955). This simplification arises from the fact that for every vector from the

centrosymmetric center to the k"' point, Oxk, there exists an equal and opposite vector

within the system, -Oxi . A discrete version of Equation 2.1 was used to simulate

scattering from all oriented single particles given within this chapter.

22

7 ^ = f(Pk - Po)cos(q • Qx„)j = [Pk (q,shape)]' Equation 2.1

Where pk and po are the electronic densities o f the k'** atom and the media in

which the single particle is immersed. F,̂ (q) is designated the form factor o f the

scattering particle and is a function o f both q and the shape of the scattering object.

2.3 Simulation Technique and Technical Considerations

As was pointed out, past Monte-Carlo simulations were developed by either

generating the correlation function or the pair distribution function and then

integrating the associated intensity function. Scattering from rotationally averaged

particles allows for integration in the 6 and ((> directions before requiring the

implementation o f the r direction distribution function in the scattering equation,

which greatly simplifies simulation techniques by requiring a distribution only in a

single direction. Therefore, random points inside the scattering object need only to be

chosen until the r direction distribution function becomes numerically continuous.

The technique presented here however, is for oriented systems. Oriented systems

demand the development o f a distribution in all directions, namely, the r, 6 and (|)

directions.

This technique simulates scattering by the following method.

A. Draw a box around the scattering object.

B. Generate x, y, z random coordinates inside the box through a Monte-Carlo method.

23

c . Test to see i f the random coordinates are inside or on the surface of the particular

morphology being investigated.

D. Coordinates which pass the test given in part B are used as scattering points.

These points are used to generate the scattering array which is comprised o f 401 q-

points equally distributed between 0.0 and 7.1 nm ‘. Coordinates which fail the

test given in part B are rejected.

E. This iteration is repeated for a given amount of time.

F. When the predetermined run time is over, the scattering array is then normalized

by the intensity at q =0 which is equal to the total number o f scattering points used

to calculate the scattering array. Finally, the logto is taken o f the scattering array.

Simulation accuracy is dependent on scattering point density and how smooth

and continuous the scattering point distribution is developed. Because the scattering

pattern is being simulated by scattering from many discrete scattering points and not a

continuum (solid particle), simulation accuracy improves with increased scattering

point density. Increasing scattering point density in the model is achieved by simply

increasing the computer run time, which increases the number o f iterations and thus

the number o f scattering points. The smoothness o f the scattering point distribution is

dependent upon the quality o f the random number generator.

The accuracy o f scattering simulation is also dependent on the smoothness and

continuity o f the scattering point distribution relative to the shape o f the object. A

sphere for instance is infinitely symmetrical and requires a more fully developed

24

scattering point distribution than a “less” symmetrical object such as a flat disk.

Additionally, because the scattering object is assumed to be centrosymmetric for any

scattering point chosen its symmetrical “sister” is also chosen to eliminate any

variation caused by nonsymmetrical scattering points. A scattering pattern that has a

bigger range of intensity variation over the chosen angular range necessarily also requires

more simulation run time in order to obtain better agreement between the simulated and

actual data.

A quantitative measure o f the each simulation's accuracy was calculated using

the coefficient of determination. The coefficient of determination approaches unity as

a simulated scattering curve approaches the theoretical scattering curve. The

coefficient of determination is designated R and has the following definition

(Mendenhall & Sincich, 1992).

R = l — , Equat i on 2.2

In this equation, y, is the simulated i"' data point, ÿ, is the analytical solution

for the i'** data point and n is the total number o f data points. In this thesis logio(yi) and

logio(ÿj) has been substituted for yi andÿ ,, respectively. To distinguish between the

coefficient o f determination and the logarithmic expression used in this thesis, Rl will be

used when referring to the latter.

Although using the logarithmic form o f this expression changes the meaning of

the coefficient o f determination, this substitution was made because almost all scattering

25

curves are presented and analyzed in a semi-logarithmic format. Using the logarithmic

form also has the advantage o f providing a better representation o f the error in the

simulation over the entire q-range because the scattering intensity can vary over many

orders o f magnitude. The disadvantage of using the logarithmic form is that this presents

difficulties for scattering curves that have zero intensity at finite q, such as a sphere. If

one o f the 401 simulated q-points is near a zero intensity point, an extremely large

number o f simulated points will be required to perfectly simulate a scattering curve.

Hence in a plot of Rl vs. simulation run-time, Rl will seem to asymptote at a value

which depends on the number of simulated q-points and is not equal to unity.

All simulations presented in this chapter were compiled with Microsoft’s

FORTRAN Powerstation Version 4.1. The computer utilized was an IBM clone

computer equipped with a 200Mhz MMX Pentium chip and 72 megabytes of RAM

running Microsoft’s Windows95. The particles that were simulated and compared to

analytical scattering curves were spheres, prolate spheroids and cylinders. These

geometries were chosen primarily because of their symmetry and because each

morphology presents unique problems in modeling. Additionally, these morphologies

are commonly found in many systems.

2.4 Comparisons

Sphere

The analytical solution for small angle scattering from a sphere o f radius Rj,

can be derived by rotationally averaging Equation 2.1.

26

-4nr'dr Equation 2.3
1. (9) s V

In Equation 2.3, r is the distance from the sphere’s center and p(r) is the

electronic density function which is a constant for r < Rs and zero for r > Rs. The

resulting analytical form factor can be derived (Rayleigh, 1911).

Fk Equation 2.4
(qR .)

Figure 2.1 compares simulated scattering data with the analytical solution.

Clearly, the simulated data agrees very well with the analytical solution. Figure 2.1

represents scattering from a sphere where Rs equals 2.0 nm. The run time for this

simulation was approximately 30 minutes and Rl was equal to 0.985.

Although the scattering from a sphere is not anisotropic, scattering from spheres

was simulated because this morphology requires the greatest number o f scattering points

and hence provides the most rigorous test of this technique. Therefore, this simulation

was used to set the minimum run-time required in order to produce an acceptable fit for

all o f the objects simulated in this thesis. According to Figure 2.2 and using an arbitrary

safety factor of 2, 30 minutes of run-time or roughly 1,000,000 simulated points are

required to adequately simulate the scattering pattern from an arbitrary object. Just to be

sure, this run-time was verified with simulations o f both prolate spheroids and cylinders.

27

c/5
g

1
O

c/3

0

-2

■4

6

8
 Theoretical Scattering

I " Simulated Scattering

-10

Figure 2.1. Sphere: Rs = 2.0 nm: Rl = 0.985 for
simulation time o f 30 minutes.

Spheres o f two different radii are shown in Figure 2.2 to illustrate the concept

discussed previously, the presence o f zero-intensity q-points will cause the Rl value to

be far-removed from one and this curve does not seem to approach unity. The scattering

curve for a 0.5 nm sphere does not go to zero in this angular range, hence the much

higher Rl values and the clear slow increase with simulation time of Rl. Although the

data points are not shown, simulations of the scattering pattern for the 1.0 nm radius

sphere for many days shows that the Rl values seem to approach unity.

2 8

0 .9 9 9 9

0 .9 9 9 8

0 .9 9 9 7

0 .9 9 0 0 0

0 .9 8 0 0 0

0 .9 7 0 0 0

I

20 4 0 6 0 8 0

M inutes

100 120

1x10" 2x10" 3x10"

Scattering Points

4x10"

Figure 2.2. Rl as a function of simulation run time and the number of
scattering points generated. Sphere A; Rs = 0.5 nm. Sphere B: Rs = 1.0 nm.

Prolate Spheroid

The analytical solution for small angle scattering from a prolate spheroid

comes from direct integration o f Equation 4 using a geometrical expression for the

radius. If the prolate spheroid is defined to have a major axis, 2va, and two minor

axes, 2a, with one of the minor axis aligned with the beam (x direction), then the

following solution exists (Guinier & Foumet, 1955).

29

Y = a^cos" ((j>) + V* sin’ ((j>) Equation 2.5

Equation 2.6
(q f)

Referring to Figure 2.3, a prolate spheroid is oriented such that the minor axes

coincide with the x and y directions while the major axis coincides with the z

direction. Also the angle in the detector plane (Z) is designated <j). In the above

equation and as shown in Figure 2.3, ({) is the angle between the minor axis (y

direction) and the projection of q on the detector plane. Thus for any <j> chosen,

scattering in that particular “slice” can be calculated. If many angles for (j) are

simulated the two dimensional scattering pattern can be generated. However, only 4»

values from 0 to 7t/2 need to be considered since the scattering in the other quadrants

can be easily determined from symmetry.

The simulations shown in Figure 2.4 are o f the same prolate spheroid, having a

major axis equal to 2.0 nm and a minor axis equal to 1.0 nm. The only difference

between the two curves is the “slice” of the two dimensional scattering pattern which

is calculated. The two “slices” shown in Figure 2.4 are <(» equals ti/6 and n/3. These

simulations each represent approximately 30 minutes o f computer run time with Rl

values equaling 0.998 and 0.972 respectively.

30

X-Ray
Beam ^ p ro jec ted

scattering
object

Z = slice
Detector

c/3
c

7 3

I
O

Figure 2.3. Picture o f a scattering object, coordinate
axes, scattering vector and slice angle, z .

0

■2

-4

-6

Theoretical Scattering8

Simulated Scattering

- 10

0 1 4 6

Figure 2.4. Prolate Spheroid: major axis = 2.0 nm, minor axis = 1.0 nm,
(j> = 7t/6,7t/3: Rl = 0.998,0.972 respectively and simulation

run times were each 30 minutes.

31

Cylinder

If a cylinder is defined to have a radius Rc, length 2H and its cylindrical axis

parallel to the detector plane, then the following equation is the form factor (Guinier &

Foumet, 1955).

E qua.io„2,7
q ‘R,Hsin((p)cos(<p)

Referring to Figure 2.3, a cylinder is oriented such that the cylinder axis

coincides with the y direction. Also the angle in the detector plane (Z) is designated

(p. In the above equation and as shown in Figure 2.5, (p is the angle between the

cylinder axis (y direction) and the projection o f q in the detector plane. Only <p values

from 0 to 7t/2 need to be considered since the scattering in the other quadrants can be

easily determined from symmetry. Figure 2.5 shows that the simulated scattering data

correlates extremely well with the analytical result for a cylinder where Rc equals 0.5

nm and H equals 0.5 nm. The two “slices” represented in Figure 2.5 are (p equals 7t/6

and n/3. Again, each curve represents computer run times of approximately 30

minutes and both simulations Rl values are practically equal to unity. Additionally,

the cylinder simulation routine could easily be used to simulate scattering from

infinitely long cylinders (H=oo) and infinitely thin disks (H=0).

32

c
(U

"O

I
o

C/D

0

•2

3
— Theoretical Scattering

Simulated Scattering
I- 4

Figure 2.5. Cylinder: H = 0.5 nm, = 0.5 nm, <p = n /6 , n / 3 : R l = 1.0,
1.0 respectively and simulation run times were each 30 minutes.

2.5 Objects and Orientations Without Analytical Solution

This technique can be used to simulate scattering from centrosymmetric objects

whose orientation or geometry make the analytical solution extremely difficult or

impossible to derive. Three examples have been chosen to demonstrate this; a tilted

cylinder, an elongated uniaxial hexagon and a bundle o f seven cylinders o f the same

radius and length.

33

Tilted Cylinder

The tilted cylinder’s orientation is such that the tilting causes one end of the

cylinder to be closer to the detector than the other end of the cylinder. The cylinder

modeled in this maimer had R« equal to 1.0 nm and H equal to 2.0 nm. With (p having

the same definition as the “ideal” cylinder as earlier, c is defined as the angle o f tilt,

which is the angle between the “ideal” orientation (cylinder axis coincides with the y

axis) and the actual cylinder axis orientation. In Figure 2.6, both curves represent (p

equals n/4 with differing angles o f tilt (o). The two values for o are n/6 and n/3. Both

o f these simulations required approximately 30 minutes o f computer run time.

Elongated Hexagon and Bundled Cvlinders

Fibers or fibrils could be modeled as an elongated hexagon or as bundled

cylinders. For both of these simulations the only deviation from the nomenclature o f a

tilted cylinder is definition o f the radius (Rc). Rhex for an elongated hexagon is the

radius o f a circle circumscribed about the hexagon and Rbundicd for bundled identical

cylinders is the radius o f one o f the cylinders. Figure 2.7 shows simulations o f two

different <p “slices” o f both an elongated hexagon and seven identical bundled

cylinders along with a small diagram of each scattering object. The two “slices” for

both models are <p equals ti/6 and n/3. The elongated hexagon modeled had no tilt (a

equals zero), Rhcx equal to 2.0 nm and H equal to 2.0 nm. The bundled cylinders

modeled also had no tilt, H equal to 8.0 nm and Rbundicd equal to 4.0 nm. Simulations

were also done o f an elongated hexagon and a dimensionally comparable bundle of

34

seven cylinders. Figure 2.8 shows these simulations which were both o f an untilted (o

equals zero) (p “slice” equaling tt/4. For the elongated hexagon, Rhcx equals 3.0 nm

and H equals 3.0 nm. The bundled cylinders had Rbundicd equal to 1.0 nm and H equal

to 3.0 nm. As expected the simulations deviate only at higher values o f q. All o f these

simulations represent approximately 30 minutes o f computer run time.

c/3
s

- o

I
o

0

-2

-4

-6

8

 0 = 71/6

 • 0=71/3
- 10

1-I
0 64

Figure 2.6. Tilted Cylinder: H = 4.0 nm, Rc = 2.0 nm, cp = rt/4, o = tt/ô,
7i/3; simulation times were 30 minutes.

35

-10

- 1 6 -r

q [n m ’ 1

Figure 2.7. A. Elongated Hexagon: H = 2.0 nm, Rh« = 2.0 nm, cp = ti/6 , n/3:
simulation times were each 30 minutes. B. Seven Bundled Cylinders: H =

4.0 nm, Rbundied = 2.0 nm (each cylinder), (p = n/6, n/3: simulation times were
each 30 minutes. Small diagrams o f each morphology are included.

36

- 10

 Elongated Hexagon
— - Seven Bundled Cylinders

-14

q [nm'']

Figure 2.8. Elongated Hexagon compared to Seven Bundled Cylinders:
Elongated Hexagon: H = 3.0 nm, Rhcx = 3.0 nm, tp = 7t/4: Seven Bundled

Cylinders: H = 3.0 nm, Rbundicd = 1.0 nm (each cylinder), tp = n/4:
simulation times were each 30 minutes. Small diagrams o f each

morphology are included.

37

2.6 References

Debye, P. & Bueche, A. M. (1949). J A p p l P h y s 20, 518

Feigin, L. A. & Svergun, D. 1. (1987). S t r u c t u r a l A n a l y s i s b y S m a l l - A n g l e X - R a y a n d
N e u t r o n S c a t t e r i n g . New York: Plenum Press

Clatter, O. (\ 9 7 9) . J A p p l C r y s t 12, 166

Clatter, O. & Kratky, O, (1982). Editors. S m a l l - . A n g l e X - R a y S c a t t e r i n g . New York:
Academic Press

Cuinier, A. & Foumet, C. (1955). S m a l l - A n g l e S c a t t e r i n g O f X - R a y s , translated by C.
B. Walker. New York: John Wiley & Sons, Inc.

Hansen, S. (1990). J A p p l C r y s t 23, 344

Henderson, S. { \ 9 9 6) . B i o p h y J 1 9 , 1618

Mendenhall, W. & Sincich, T. (1992). S t a t i s t i c s f o r E n g i n e e r i n g a n d t h e S c i e n c e s . San
Francisco: Dellen Publishing Company

Rayleigh, Lord (1911). P r o c R o y S o c A 84, 25

Stockel, P., May, R., Strell, I., Cejka, Z , Hoppe, W., Heumann, H., Zillig, W. &
Crespi, H. (1980). E u r J B i o c h e m 112,411

38

CHAPTER 3 S AXS Simulation o f Particles with More

Than One Electron Density

3.1 Introduction

In polymer science, cylindrical bodies such as fibers and fibrils with periodic

axial structure or regular paracrystalline lattice distortions have been of interest since

the 1950’s and much effort has been devoted to collecting and understanding small-

angle scattering (SAS) data from these systems (Bear & Bolduan, 1950; Hay & Keller,

1967; Pope & Keller, 1975; Gottlicher et al., 1983; Shibayama & Hashimoto, 1986;

Stribeck, 1989; Rule et al., 1995; Murthy et al., 1996). Many approaches have been

utilized in these previous studies, but most have generated scattering curves from

paracrystalline macrolattice methodology. Paracrystalline macrolattice methodology

calculates scattering from close packed scattering clusters, which are finite lamellar or

cylindrical crystallites, and then averages them about the fiber axis. The approach here

assumes widely separated systems o f layered cylinders, so that the effect of

morphological changes in the primary scattering objects (individual lamellae) can be

qualitatively understood. Thus, the intent o f this chapter is to establish the ability to

model SAS from heterogeneous materials and help give the researcher insight to

scattering phenomena from fibrillar systems.

As in Chapter 1, scattering curves are generated with the use o f random

scattering points and the single centrosymmetric particle equation (Equation 2.1). The

39

other requirements are the knowledge of the electron density ratio between the phases,

a mathematical description o f how the phases vary along the fiber axis and the fiber

dimensions. To use Equation 2.1 there must also be a point that is the center of

symmetry with respect to electron density. For a layered cylinder, this assumption

only requires that the cylinder radius and lamellar thickness vary in some ordered,

symmetric way (no variation, sinusoidal etc.). Strictly speaking, to satisfy

centrosymmetry the ends o f the fibril must also be identical. However, if the cylinder

is longer than the length scale being probed by the radiation (i.e. the cylinder is 100

nm or greater), then the influence of the fibril ends is small and can be ignored and the

assumption o f centrosymmetry is satisfied in practice. Since essentially all fibril

morphologies would be expected to be longer than 100 nm, the assumption of

centrosymmetry should not be a significant restriction. Another important note is that,

although all the cross sections o f layered cylinders presented in this chapter are

circular, this technique can also be easily adapted for any cross section geometry

desired.

3.2 Theoretical Background and Description o f Method

As in Chapter 2, Equation 2.1 was used to simulate scattering patterns

presented in this chapter. However, the scattering object is an oriented cylinder that

contains the alternating lamellae like that o f a fibril.

'(a) _
'.(a)

J (P k - P .) “ s (a '2 ï O = [f i .(a ’*'“ P®)] Equation 2.1
\V J

40

Oriented systems require the development o f a scattering point distribution in

three dimensions. The scattering point distribution is generated by randomly choosing

(x,y,z) coordinates, then scattering intensity is calculated for each point. Scattering

patterns are usually presented normalized to the scattering at zero angle. The

simulation technique and code was able to simulate scattering from systems o f

multiple electron densities with only minor modifications from the code used in

Chapter 2. A scattering array was developed for each electron density separately (i.e.

from each lamellar phase in the cylinder). The array for the secondary phase was

scaled at the end o f the simulation as seen in Equation 3.1 and added to the array for

the primary phase, this made the final scattering array.

(^(9 ~ ®)pnmaiy ^pnmaiy)i(q)
i.(q)

i(q)
+ < CJ

pnmaiy (1(9 = 0):secondary secondary

I(q)
I e (q)

Equation 3.1
see ondary

Where m is defined as follows.

„ j p = - p .) , p k
(p i-p o) p;

The primary phase, pi, is selected as the phase with the largest absolute value

o f the electron density difference relative to the surrounding media, i.e. |p ̂ - Pol •

Thus, tD varying from -1 to 1 encompasses all possible morphologies o f this type, tn

constant equal to 1 the scattering pattern should be that o f a regular cylinder.

Scaling at the end, according to Equation 3.1, significantly reduced the

computational time required vs. scaling scattering from each random coordinate

41

continuously through the simulation. The term in brackets in Equation 3.1 was

required to ensure that the random coordinates were chosen in the two phases

according to the proper volumetric proportions. This term noticeably affected the

simulated pattern only in those cases where a volumetrically small phase had a large

electron density difference relative to the other phases, or when the scattering

intensities from phases with electron density differences o f opposing sign were

approximately equal.

As in Chapter 2, the goodness of fit between simulated scattering curves and

their analytical counterparts was quantitatively determined by using a deviant o f the

coefficient o f determination (Rl) and all scattering simulations utilized CuKa as the

wavelength o f radiation (15.4242 A). The FORTRAN code was compiled with

Microsoft® Fortran Powerstation 4.1 running on an IBM compatible computer.

Unlike Chapter 2, the computer utilized in Chapter 3 was comprised of a 450Mhz

Pentium II™ processor with 128 Mbytes o f RAM.

3.3 Results

Spherical Models

Two different scattering models with scattering patterns having analytical

solutions were simulated to demonstrate that this technique can accurately predict

scattering patterns from objects with greater than two electron densities. The spherical

models are the Core/Corona model (also known as the Ionic Cluster and the Depleted

42

Zone Core/Shell model) and the Core/Shell model. Schematics are shown in Figure

3.1 and there respective analytical solutions are given in Equations 3.2 and 3.3

(MacKnight et al., 1974; Roche et al., 1980; Yarusso & Cooper, 1980). Equation 3.2

and Equation 3.3 are based on the form factor for a sphere, d>(x),which is given in

Equation 3.4, the volume of the sample illuminated by the x-ray beam, V, and the

average sample volume per scattering particle, Up.

M = ^ { y [(p ; - P i) R M 9 R i) + P'=Ri®(gR=)]} Equation 3.2

'(9) V
‘. (9) " ,

^ { p ;R ;o (q R ,) + r t [R;<D(qR,) - R ;® (qR ,)]} 1 Equation 3.3
3

^ 3 [s in (x) - (x)c o s (x)] Equation 3.4

(x)

Figure 3.2 and Figure 3.3 compare simulated scattering data to analytical

scattering data for the Core/Corona and the Core/Shell models. In Figure 3.2 the

core/corona has values for R| = 2.0 nm and Ri = 2.4 nm. The value for pi was chosen

to be negative, thus the value for m is also a negative number, cj = -0.1. The

simulation run time for Figure 3.2 was 45 minutes because o f the “negative” electron

density which essentially adds in negative scattering. This is an important result which

is believed to be general: an object which has electron density differences o f opposing

sign(s) can significantly increase run-times necessary for an accurate result. The

43

resulting Rl = 0.972. In Figure 3.3 the core/shell has values o f Ri = 1.5 nm, Rz = 2.0

nm and R3 = 2.5 nm while tn = 0.75. The simulation run time was 30 minutes and

gave a resulting Rl = 0.980.

m m

a. Core/Corona

Core/Shell

Arbitrary Electron Density 1 [p,]

Arbitrary Electron Density 2 [p:]

Media Electron Density [p o]

Figure 3.1. Visual interpretations: a. Core/Corona Sphere Model;
b. Core/Shell Sphere Model; Centro-Symmetric Layered Cylinder.

44

s

I
O

c/3

0

-2

•4

-6

-8
— Theoretical Scattering

Simulated Scattering

- 1 0

0 2 4 6

q [nm]
Figure 3.2. Core/Corona: Rcorc = 2.0 nm, Rcorona = 2.4 nm,

CJ = -0.1 : Rl = 0.972 45 minute simulation run time.

I
u

c/3

0

-4

-6

-8
— Theoretical Scattering

Simulated Scattering

-10
2 40 6

q [nm ']
Figure 3.3. Core/Shell: Rcorc = 15 nm, Rshcii-mner = 2.0 nm,

Rshcii-outer = 2.5 nm, tn = 0.75: Rl = 0.980, 30 minute
simulation run time.

45

Cylindrical Model

Many dimensions must be defined when simulating scattering from a layered

cylinder. The analytical solution for a “regular” cylinder requires the following

information; the cylinder radius, R«, the half-length o f the cylinder, H, and the angle in

the detector plane between the projection of the cylindrical axis and the projection of

q . This angle is referred to as the “slice” and is given the symbol cp. In addition to

these quantities, knowledge o f the electron density ratio and the half-lengths of the

primary and secondary phases are required to simulate scattering for a layered cylinder.

Visual interpretations o f these variables are given in Figure 3.4 except for <p which was

given in Chapter 2 (“slice” angle in Figure 2.3).

The rest o f this section is devoted to comparing different changes in

morphology, and is designed to give the experimenter important insights into

determining morphological characteristics if it is known that the scattering object is of

a layered-cylinder type.

Case 1 : Changing a

In patterns o f semicrystalline polymer fibers that are often described by this

type o f morphology, the electron density o f the one phase (the crystalline phase) is

typically known, while the electron density o f the second phase and the matrix are

often unknown. Scattering cannot be used to determine these two values

independently, but allowing the latter to assume some value, this method can be used

to differentiate the electron density o f the second lamellar phase. Likewise, knowing

46

the electron density o f the second lamellar phase will allow for determining the

difference in the electron density between the crystalline and the matrix phase.

secondarySegment containing
centrosymmetric

prim ary

Arbitrary Electron Density 1 [pi]

Arbitrary Electron Density 2 [p:]

Media Electron Density [p o]

Figure 3.4. Diagram o f cylindrical scattering object.

47

Figure 3.5 illustrates that the general shape o f the normalized patterns

(intensity at zero scattering angle is set to one) are similar at low q but show

increasing variation as q increases. These variations along the scattering curves are

caused by two different components; (p and a . In scattering pattern variation caused

by (p, variation is nearly absent when (p equals t i /2 but becomes very pronounced as the

(p approaches 0. Hence, if a difference in pattern shape at n i l occurs between two

samples, it is not simply a case o f different lamellar electron density, some change in

morphology must have occurred (different lamellar width or different arrangement of

fibrils relative to one another). Similarly in scattering pattern variation caused by tn,

the variations become more prominent as c j decreases, i.e. variation for negative tn

values is substantially greater than for positive m values. Absolute intensities scale

with the difference in the relevant electron density differences as expressed by cj, i.e.

as C3 decreases absolute intensities decrease also.

Comparisons of Figure 3.5 and Figure 3.6 show that the introduction of

"negative scattering" (tn < 0) i.e. the case where one lamellar phase has an electron

density greater than the surrounding matrix and the other lamellar phase has an

electron density less than the surrounding matrix, makes the scattering pattern

extremely sensitive to the actual electron density differences. Hence, if what one

thinks to be identical samples have very different scattering patterns, then this could be

indicative o f "negative scattering".

48

c

 ta = 0.00
 ta = 0.25
 ta = 0.50
 ta = 0.75

ta = 1.00
-12

0 2 4 6

Figure 3.5. Layered Cylinder: R« = 1.0 nm, H = 3.0 nm, Hp„mary = 0.200 nm,
Hseeondaiy = 0.185 nm, (p = 7t/4, ta = 0.00,0.25,0.50,0.75, 1.00:

30 minute simulation run time for each curve.

49

CJ = 0 .0 0

CJ = -0 .25
CJ = -0 .5 0
CJ = -0 .7 5
CJ = -1 .0 0

0

q[nm‘]

Figure 3.6. Layered Cylinder: R« = 1.0 nm, H = 3.0 nm, Hpnmary = 0.200 nm,
Hsecondary = 0.185 nm, (p = 7i/4, CJ = 0.00, -0.25, -0.50, -0.75, -1.00: 45 minute
simulation run time for o = -0.25, -0.50, -0.75, -1.00; 30 minute simulation
run time for ta = 0.00 (extended run time because o f “negative scattering”).

50

Case 2: Cylinder Radius

If scattering for a cylinder of unknown dimensions is being analyzed and the

cylinders are aligned in the same direction, the scattering slice o f cp = n i l can be used

to determine the radius o f the cylinder by simply matching the curves because changes

in electron density affect this curve only very slightly, as was stated previously.

Case 3: Distribution o f Cvlinder Orientations

To simulate a distribution of cylinder orientations, one can simply add the

scattering patterns from individually simulated cylinders, since it is assumed that the

cylinders are widely separated. This method allows one to choose a distribution of

cylinder axes where each cylinder has a different tilt angle. In fact, one can also alter

the tilt angle relative to the detector plane randomly as well, although all the

simulations in this chapter were for cylinder axes parallel to the detector plane. Only

highly oriented systems were considered, a range of distributions was developed from

an orientation function equal to one (f = 1.0) to an orientation function equal to 0.923

(f = 0.923) as defined in Equation 3.5.

3 (c o s -8) - l
f = —-------- — Equation 3.5

When otherwise identical cylinders have different orientations, the result is

similar to smearing; i.e. the position of the maximums and the poles do not change but

the features become less abrupt. The changes that do occur are dependent on the

distribution and cp. O f course, as the orientation function decreases the amount of

51

broadening increases. More surprising perhaps, broadening becomes more

pronounced as <p approaches ti/ 2 although some broadening still occurs at (p = 0 .

Case 4: Changing Thickness

The parameter z was defined so that changes in lamellar thickness can be

analyzed. This parameter is simply equal to the half-length of the secondary phase

divided by the half-length of the primary phase. Although z can vary from zero to

infinity, in the simulations z was varied from 0 to 8.0. Lamellar thicknesses were

assumed to be identical, although using unequal lamellar thickness would not be a

problem as long as centrosymmetry is maintained.

As can be seen in Figure 3.7 and Figure 3.8 the effect o f changing the lamellar

thickness o f either phase can be seen to increase with increasing q . Further, changes

in the scattering curves increase as cp approaches 0. As before, changes are also more

pronounced with decreasing ta.

52

c/3

§

*o

Io
c/3

z = 0.25
z = 0.500

■2

-4

-6

-8

- 1 0
10 4 6

q[nm ']
Figure 3.7. Layered Cylinder: Rc = 1.2 nm, H = 2.6 nm, Hprimar> = 0.20 nm,

Hsccondary = 0.05 nm (z = 0.25), 0.10 nm (z = 0.50), 0.15 nm (z = 0.75), (p = 7t/8,
CJ = 0.25: 30 minute simulation run time for each curve.

c/3

s

I
U

C/3

0

-4

-6

8

-10

q[n m ‘]

Figure 3.8. Layered Cylinder: Rc = 1.2 nm, Hpnmary = 0.20 nm (z = 1.0),
0.10 nm (z = 2.0), 0.025 nm (z = 8.0), Hsecondafy = 0.20 nm , cp = 3jt/8,

CJ = 0.25: 30 minute simulation run time for each curve.

53

3.4 References

Bear, R. S. & Bolduan, O. E. A. (1950). A d a C r y s t 3 ,236

Gôttlicher, K., Fronk, W. & Wilke, W. (1983). C o l l & P o l y m S c i 261, 126

Hay, 1. L. & Keller, A. (1967). J M a t S c i 2, 538

MacKnight, W. J., Taggart, W. P. & Stein, R. S. (1 9 7 4) J P o l y m S c i , P o l y m S y m p 45,
113

Murthy, N. S., Bednarczyk, C., Moore, R. A. P. & Grubb, D. T. (1 9 9 6) . J P o l y m S c i B .
P o l y m P h y s 34, 821

Pope, D. P. & Keller, A (\ 9 1 5) . J P o l y m S c i , P o l y m P h y s E d 13, 533

Roche, E. J., Stein, R. S., Russell, T. P. & MacKnight, W. J. (\ 9 % Q) J P o l y m S c i ,
P o l y m P h y s E d 18. 1497

Rule, R. J., MacKerron, D. H., Mahendrasingam, A., Martin, C. & Nye, T. M. W.
(1995). M a c r o m o l e c u l e s 28, 8517

Shibayama, M. & Hashimoto, T. (1986). M a c r o m o l e c u l e s 19. 740

Stribeck, N. (1989) C o l l & P o l y m S c i 267, 301

Yarusso, D. J. & Cooper, S. L. (1983) M a c r o m o l e c u l e s 16, 1871

54

CHAPTER 4 S AXS Simulation o f Multiple

Particle Systems

4.1 Introduction

The underlying purpose o f this research is to basically “fill in the gaps” of the

current SAXS modelling techniques. As an example, the Centro-Symmetric method

can calculate non-rotationally averaged scattering curves, while the Pair-Distance and

Correlation-Function methods cannot. Thus, this method can be used with oriented

systems to give more structural information (no information is lost because of artificial

rotational averaging of the experimental pattern). Also, unlike the Correlation

Function and the Pair-Distance methods, this technique can also be used with

morphologies with more than two electron densities as illustrated in Chapter 3. This

intent to “fill in the gaps” should therefore be extended to multiple particle systems.

At the end of Chapter 3, multiple particle systems were introduced. The

treatment o f scattering from systems with more than one particle is very similar to

treatment of scattering from single particles when the concentration o f particles is low

enough that inter-particle interference can be ignored. The scattering from a system of

perfectly aligned identical particles or spheres with like radii is just the number of

particles times the scattering from one particle. In this situation a normalized

scattering curve would be identical to that o f one particle. However, most “real”

systems have a distribution o f both sizes and alignments.

55

This complication significantly lengthens simulation time but does not really

complicate simulating SAS for widely separated particles. Like the distribution of

widely separated, uniaxially oriented cylinders given in Chapter 3, a random sample

size (the larger the better) with the appropriate distribution(s) must be numerically

generated. The scattering from each object (or rotationally averaged object) is

calculated and then averaged. If the scattering pattern is anisotropic, then this

procedure must be followed for the desired “slice” of the overall two-dimensional

scattering pattern.

What can be done to simulate scattering patterns from systems where

interparticle interference cannot be ignored? Models exist to compute the intensity in

various angular regions, i.e. the Guinier model at low scattering angles and the Porod

model at high scattering angles. These types o f models will not be explored in this

thesis; the interested reader is referred to the books by Guinier and Foumet (1955) and

Clatter and Kratky (1982) for a complete description. This chapter only considers

methods that take a given morphology, and calculate the scattering pattern using

numerical techniques.

4.2 Dense Multiple Particle Systems

Inter-particle interference becomes a factor at moderate concentration and then

dominates at high concentration. Simulating scattering from more densely

concentrated particle systems is more difficult than simulating scattering from single

particle systems because as the particle concentration increases, the positions o f the

56

particles become less random. Thus, when the system o f particles becomes dense

(liquid like) the positions have very little randomness (Compton & Allison, 1935).

One equation to describe scattering from densely concentrated particle systems

can be written if the scattering objects are spherically symmetric. Zemicke and Prins

(Zemicke & Prins, 1927; Debye & Menke, 1930) developed an expression, which is

shown in Equation 4.1, to calculate scattering patterns from an analytical expression if

the radial distribution function P(r) is known. P(r) describes the average number of

particles whose centers lie between the distance r and r + dr from the center of a

random particle. The number of particles is 47rr‘P(r)dr (Guinier, 1963).

i(q)
ic(q)

N [F jq ,R)]- 1 + ^ j (P (r) - l)4 7 ir - ! ^ ^ d r Equation 4.1

Without an assumed sphere interaction model, the Zemicke and Prins Equation

is limited to calculating the radial distribution function from scattering data as in the

work of Gingrich (1943). The radial distribution function itself can be useful;

however this approach holds little predictive abilities without a thermodynamic model

for sphere interaction. In fact, a significant body o f literature exists on the simulation

o f radial distribution functions given a thermodynamic model o f sphere interaction;

the application o f these models to scattering problems is described in the paragraph

below.

Perçus-Yevick hard sphere interactions (Thiele, 1963; Wertheim, 1963) have

been used effectively by researchers to describe scattering from multi-particle systems

57

(Hayter & Penfold, 1981; Kinning & Thomas, 1984; Pedersen, 1994; Pedersen &

Gerstenberg, 1996; Bertram, 1996). Using the Perçus-Yevick formulation,

morphological parameters are determined from a SAS scattering pattern by simply

fitting data to an analytical expression. Other spherical systems have also been

modeled including permeable spheres and two component mixtures (Lebowitz, 1964;

Blum & Stell, 1979; Blum & Stell, 1980; Salacuse & Stell, 1982). Systems that can

also be accomodated are those with polydispersity of radii and systems that change

from monodisperse radii to polydisperse radii (Vrij, 1979; Pedersen, 1993). However,

the Zemicke and Prins Equation cannot be extended to systems o f particles that are not

spherical because the radial distribution function is a function of distance a n d

orientation (Clatter & Kratky, 1982).

The Debye Equation (Equation 1.3) and the Zemicke and Prins Equation

(Equation 4.1) are related as shown in Equation 4.2. The first term on the right hand

side o f Equation 4.2 is an “extra” term that does not appear in Equation 4.1. This term

is the intensity from a particle with volume equal to the overall scattering volume and

electron density equal to the average electron density in this scattering volume. The

fact that Equation 4.1 does not contain this term does not limit the effectiveness o f the

Zemicke and Prins approach, since the resulting scattered intensity from this “particle

volume” is effectively zero for all scattering angles because this “particle volume” is

much larger than the particles of interest (Foumet, 1951; James, 1982). This term is

critically important in understanding just how scattering from multi-particle systems is

simulated as described below.

58

^ ^ F|. (q, R)Fj(q, R) = Equation 4.2
k J l A K ^ j k)

[(F,(q, R))]’ I ^ + N [((q,R)>]’ [l + H](P(r) -1)4m- 5!!<3E) dr
VV A '^ jk ' ' l ' ' l L 0 qr

Numerical simulation o f systems with inter-particle interference using the

Debye Equation is complicated not only by the fact that some sort o f expression for

interparticle distance and particle orientation must be generated using a

thermodynamic model, but also by the fact that in some cases the particles move in

relation to one another, i.e. in solution. These movements are by no means random,

which means the local arrangements are also not random. In fact, it is not necessary

for the particles to move in order for this problem to arise, since spatial variations are

in this case no different than temporal variations since the characteristic dimension of

the x-ray beam is usually orders o f magnitude larger than the characteristic dimension

of the scattering object. However, if the positions o f the particles are fixed with

respect to one another and the radial distribution function goes to something other than

exactly I at r=oo, then the Debye Equation can be used without any adjustments to

numerically simulate the scattering pattern. In fact, if the radial distribution function

goes to zero at infinite distance, i.e. the collection o f small particles forms a large

object with finite size, then either the Debye approach or any o f the three approaches

given earlier (the Correlation Function Method, the Pair-Distance Method and the

Centro-Symmetric Method) can be used if the appropriate assumptions are met. If the

59

Debye approach is used. Equation 7 is particularly well suited, since many of these

systems are in solution and require rotational averaging.

Equation 1.3 is rather easy to model but, because o f the double integral, can be

very time consuming if many particles are used. Some procedures can be used to

substantially shorten computer run time (Clatter & Kratky, 1982; Perkins & Sims,

1986; Pantos & Bordas, 1994). Additionally, this technique is able to simulate

scattering from morphologies with more than two electron densities (Pantos et al.,

1996). Finally, the Debye Equation has been used to calculate a form factor that then

was used with the Zemicke and Prins Equation to give the analytical scattering curve

for high-density micelles (Oster & Riley, 1951).

Using the Debye Equation to simulate scattering from systems with random

placement and orientations o f particles is a difficult and time-consuming task. The

first step is to place and orient the particles, which can be done using some random

procedure according to a given thermodynamic interaction (hard sphere etc.). The

fundamental problem with random systems is that an extremely large box is required

to truly have a random system, i.e. all oscillations o f P(r) are eliminated. In other

words, the placement o f the first few particles will have a large infiuence on the final

morphology. For obvious reasons, it is much more efficient to use many different

simulation boxes to generate the scattering pattern than to use one large box. Even so,

the numerical simulation time goes up at least 3-4 orders o f magnitude versus that

required for the case o f non-random systems. Still however, some excellent examples

60

o f using this type o f procedure have been described in the literature (Sjôberg, 1999;

Sjôberg & Mortensen, 1994; Sjôberg & Mortensen, 1997).

Simply stated, the approach of Sjôberg and Mortensen has the following steps.

For some chosen volume, particles are randomly placed one at a time so that they are

not overlapping. To account for any inhomogeneities near the volume surface,

periodic boundary conditions are used (Metropolis et al., 1953; Wood & Parker,

1957). To accommodate for the many different arrangements o f particles. Equation

1.5 is not used. Rather Equation 1.3, the Debye Equation is modified so it is no longer

comprised of a double summation. The modification is simply done with the use of

the cosine difference identity. The resulting equation is a function based on a single

summation and is given in Equation 4.3. In this modified Debye Equation, R,. is the

vector from the center of the chosen scattering volume to the center o f the k"' particle.

Equation 4.3 is then calculated for one “slice” o f the two-dimensional scattering

pattern. The result from Equation 4.3 is then used with Equation 4.4 to give the

rotationally averaged scattering curve for this configuration o f particles. This process

is repeated many times (-10^) so that many particle arrangements can be generated.

Each time, the same number o f particles, N, is selected in the scattering volume and

the same “slice” o f the three dimensional scattering curve is generated. The

rotationally averaged scattering curves for each particle arrangement are then averaged

to give a “total scattering” curve.

= j Z F k (q)co s(q .^)j + |Ç F ^ (q) s in (q .^) | Equation 4.3

61

I(q) I '
L(q) 4% J f

6«0<p«0

1(g)
ic (q)

d(psin9d6 Equation 4.4

Since the box is o f finite size, the “volume scattering” must be subtracted from

the calculated “total scattering” curve (the average of all results from Equation 4.4).

To make this correction, the same “slice” o f scattering from a particle shaped like the

original chosen scattering volume must be calculated. For example, if the chosen

scattering volume is a cube with edge length X, the scattering from the same “slice”

that was used with the volume of particles must be calculated for a cube with edge

length X. This calculated “volume scattering” is then multiplied by the number o f

particles squared (N^) and then subtracted from the “total scattering” to give the

“corrected scattering” curve. This “corrected scattering” curve is usually then

normalized by N, the number o f particles.

The result at this point is a corrected scattering curve that has an intensity o f

zero at q = 0 because the intensity o f the “total scattering” at q = 0 is N ' while the

intensity o f the “volume scattering” at q = 0 is one, N* - (N‘* I) = 0. This result is not

correct and the reason represents a fundamental limitation o f numerically simulated

patterns. In all cases, scattering is calculated from morphologies where the positions

o f individual particles are rigidly fixed. In real systems, this is not true except for

perfect crystals at absolute zero. Hence, Sjôberg and Mortensen (1994) have

recalculated the scattering at q = 0 with a known isothermal compressibility to give a

more correct value. However, at best this result is approximate since the simulation

62

itself is only valid for values o f q > 2ti / L , where L is the characteristic scattering

length, i.e. the edge o f the cube.

One significant complication not considered by these authors is the closer

packing of particles. This problem significantly complicates the initial placement o f

particles. Numerical experiments in our lab show that the maximum packing density

that can be achieved with random placement o f identically-sized hard spheres is

approximately 0.40, which is far below what is commonly encountered in many

densely packed systems. One simple technique which has been used successfully in

our lab to achieve a higher packing density is to start with a perfectly ordered set o f

spheres (i.e. BCC or FCC), slightly expand the box used to achieve a given packing

density, and then move the particles randomly. After sufficient movement time, a

scattering pattern can be calculated. This type o f approach is also ideal for multiple

simulations, since one can simply move the particles again for long enough to erase

the memory of the previous arrangement, and recalculate the scattering patterns.

Code was written to perform simulations, i.e. scattering from densely packed

spheres. The difficulty in this “motion” approach is that at high concentrations,

particle movements require much computer run time because o f the very small step

size required. Thus, sufficient movements to erase similarities to previously chosen

particle arrangements took several days on a personal computer. Since approximately

10 ̂simulations would be necessary to obtain proper statistics, no results are presented

because the simulation time was much too long. The process to obtain non-identical

random distributions could probably be refined. However we don't believe the time

63

could be reduced by a factor of approximately 10 \ which is what is required to

calculate the scattering pattern in a reasonable time.

Rotationally averaged scattering curves are not always desired. For instance,

consider a system such as several fibers. In essence this is a close packed system of

many cylinders (fibrils). A scattering experiment with these fibers stretched between

two fixed points would obviously give a very anisotropic scattering curve.

To calculate the scattering from oriented systems, the technique just reviewed

should be used with a few modifications. Each time the particles are placed in the

scattering volume, their orientation will be approximately known. In the fiber

example, this means that the cylinders might have a Gaussian distribution along the

axis o f orientation. Equation 4.3 could then be used to calculate the scattering for a

single “slice” of the two-dimensional scattering curve for this arrangement of

particles. Obviously, Equation 4.4 would be ignored. After repeating the particle

movement/scattering “slice” calculation process many times (-10^), the scattering

would be averaged. The result is one “slice” o f the anisotropic, two-dimensional

scattering curve. The intensity o f the “volume scattering” would still have to be

subtracted to yield the scattering curves. To generate the whole pattern this entire

process would have to be repeated for many “slices” (many different scattering vector

arrays would have to be used). However, the difficulties described for densely-packed

spheres become even more important, because the concentration where objects cannot

be randomly placed is much lower for anisotropic objects than for spheres.

64

4.3 References

Blum, L. & Steil, G. { \ 9 1 9) . J C h e m P h y s 71,42

Blum, L. & Stell, G. (1980). P h y s 72, 2212

Bertram, W. K. (1996). J A p p l C r y s t 29, 682

Compton, A. H. & Allison, S. K. (1935). X - R a y s i n T h e o r y a n d E x p e r i m e n t . New
Jersey; D. Van Nostrand Company, Inc.

Debye, P. & Menke, H. (1930). P h y s i k Z 31,419

Foumet, G. (1951). B u l l S a c F r a n ç M i n é r a l E t C r i s t 74,39

Gingrich, N. S. (1943). R e v M o d P h y s 15,90

G latter, O. & Kratky, O. (1982). Editors. S m a l l - A n g l e X - R a y S c a t t e r i n g . New York:
Academic Press

Guinier, A. (1963). X - R a y D i f f r a c t i o n i n C r y s t a l s , I m p e r f e c t C r y s t a l s , a n d A m o r p h o u s
B o d i e s . San Francisco: W. H. Freeman and Company

Guinier, A. & Foumet, G. (1955). S m a l l - A n g l e S c a t t e r i n g O f X - R a y s . New York: John
Wiley & Sons, Inc.

Hayter, J. B. & Penfold, J. (1981). M o l e c P h y s 42, 109

James, R. W. (1982). T h e O p t i c a l P r i n c i p l e s O f T h e D i f f r a c t i o n O f X - R a y s .
Connecticut: Ox Bow Press

Kinning, D. J. & Thomas, E. L. (1984). M a c r o m o l e c u l e s 17, 1712

Lebowitz, J. L. (1964). P h y s R e v 133, A895

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E.
(1953). JChem Phys 21, 1087

Oster, G. & Riley, D. P. (1951). A c t a C r y s t 5, 1

Pantos, E. & Bordas, J. (1994). P u r e A p p l C h e m 66, 77

Pantos, E., van Garderen, H. F., Hilbers, P. A.J., Beelen, T. P.M. & van Santen, R. A.
(1996). J M o l e c S t r u c t 383, 303

65

Pedersen, J. S. (1993). P h y s R e v B 47, 657

Pedersen, J. S. (1994). J A p p l C r y s i 27, 595

Pedersen, J. S. & Gerstenberg, M. C. (1996). M a c r o m o l e c u l e s 29, 1363

Perkins, S. J. & Sims, R. B. (1986). E u r J B i o c h e m 157, 155

Salacuse, J. J. & Stell, G. (1982). JC /iew P h y s 77, 3714

Sjoberg, B. (1999). J A p p l C r y s t 32,917

Sjoberg, B. & Mortensen, K. (1994). B i o p h y s C h e m 52. 131

Sjoberg, B. & Mortensen, K. (1997). B i o p h y s C h e m 65, 75

Thiele, E. (1963). J C h e m P h y s 39, 474

Vrij, A. (1979/ J C h e m P h y s 71, 3267

Wertheim, M. S. (1963). P h y s R e v L e t t 10, 321

Wood, W. W. & Parker, F. R. (\ 9 5 1) . J C h e m P h y s 27, 720

Zemicke, P. & Prins, J. A. (1927). Z P h y s i k 4 1 , 184

66

CHAPTER 5 Conclusions and

Future Work

5.1 Single Particle Systems

The Centro-Symmetric method is a very powerful SAXS simulation tool for

single particle systems. Unlike other methods, the centro-symmetric method has the

ability to simulate scattering from oddly-shaped or oddly-oriented morphologies.

Additionally, relatively short computer run times o f approximately 30 minutes on a

standard personal computer are needed to fully calculate an isotropic scattering pattern

from one spherically symmetric object. If the particle is not spherically symmetric,

then the simulation time will be governed by the number o f “slices” required; a day

would be required to simulate a pattern in 2° increments. If a system has particles with

a distribution o f sizes and or orientations, longer times are required; still though an

entire scattering pattern can be accurately simulated from these types o f systems in a

few weeks at most.

Bi-continuous morphologies were mentioned in the text, but no simulations

were performed. Many different types o f materials show bi-continuous

morphologies, including surfactants and block copolymers. Block copolymers exhibit

bi-continuous morphologies like the double diamond (cubic phase Q224). gyroid*

(cubic phase Q 230) and possibly the Schoen surface (cubic phase Q 229) which has not

yet been observed in copolymer systems but has in surfactant systems (Bates &

67

Fredrickson, 1999; Bénédicte & O’Brien, 1997). These systems are difficult to

classify (Hajduk et al., 1995) and pose a challenge to SAXS simulations because o f

their unusual repeat structures. For example. Figure 5.1 is one “cell” o f a double

diamond surface. In a phase separated copolymer system, this surface could represent

the interface between the two phases. Looking at it on a larger scale, this “cell” would

repeat three dimensionally as shown in Figure 5.2. Thus, the question in simulating

SAXS from these types o f systems is how many “cells” are needed to correctly model

the morphology.

Figure 5.1. One “cell” o f the double diamond surface.

68

Figure 5.2. Three-dimensional double diamond array.

5.2 Multiple Particle Systems

Obviously the largest shortcoming in this research is the current inability to

simulate dense multiple particle systems. However, the future might remedy this

situation. Personal computers should have the ability to simulate SAXS from dense

multiple particle simulations efOciently in 10 to 15 years.

69

5.3 Analyzing Experimental Data

The overall goal o f this research is to develop a new method to analyze

experimental data based on the approach given in this thesis. The approach given in

this thesis is missing two steps, one of which is trivial. As was pointed out at the end

of Chapter 1, smearing was not included in the simulations. Using simulated SAXS

data to analyze “real” scattering data demands that smearing be included. Either the

method o f Lake (Lake, 1967) or Clatter’s enhanced version of Lake’s method (Clatter,

1974) is a simple way to incorporate smearing into these routines.

The second non-trivial step would be to develop a least-squares fitting routine

to fit simulated data to real experimental data. Except in the simplest o f systems, l(q)

is almost certainly a very complicated function o f morphological variables. Hence,

finding the absolute minimum rather than a relative minimum would be non-trivial

and would almost certainly require some randomly directed search algorithm. Further,

even the single-particle approach is too long to implement on a PC, because o f the

multiple simulations involved. However, on today’s supercomputers, one could write

code to fit real data using Monte-Carlo simulations o f the scattering pattern from

morphologies with no interparticle interference, especially if the random number

routine were adjusted. If the speed o f PC’s continues to double every 18 months, then

this code could probably run on a desktop computer in 5-10 years. However, to fit

experimental data from systems where P(r)->1 at r->ao using Monte-Carlo techniques

will probably not be possible for many years.

70

5.4 References

Bates, F. S. & Fredrickson, G. H. (1999). P h y s T o d a y 52-2, 32

Bénédicte, A. D. & O’Brien, D. F. (1997). M a c r o m o l e c u l e s 30, 3395

Clatter, O. (1974). J A p p l C r y s t 7, 147

Hajduk, D. A., Harper, P. E., Gruner, S. M., Honeker, C. C., Thomas, E. L. & Fetters,
L. J. (1995). M a c r o m o l e c u l e s 28,2570

Lake, J. A. (1967). A c t a C r y s t 23, 191

71

APPENDIX A Sample Random Number Generators

A. 1. Sample Random Number Function 1

FUNCTION ranO(idum)
INTEGER idum,IA,IM,IQ,IR,MASK
REAL ranO,AM
PARAMETER (IA=16807,IM=2I47483647,AM=1./IM,IQ=127773.IR=2836,

♦M ASK-123459876)
INTEGER k
idum=ieor(idum,MASK)
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (Idum.lt.O) idum=idum+IM
ranO=AM*ldum
idum=ieor(idum,MASK)
return
END

72

A.2. Sample Random Number Function 2

FUNCTION ranl(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV
REAL ranI,AM,EPS,RNMX
PARAMETER (IA= 16807,IM =2147483647, AM= 1 ./IM,IQ= 127773 ,IR=2836,

♦NTAB=32,NDIV= 1 +(IM-1)/NTAB,EPS= ! ,2e-7,RNMX= 1 .-EPS)
INTEGER j,k,iv(NTAB),iy
SAVE iv,iy
DA TA iv /N'FAB*0/, iy /O/
if (idum.le.O.or.iy.eq.O) then
idum=max(-ldum, 1)
do II j=NTAB+8,I,-l
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.O) idum=idum+IM
if (j.le.NTAB) iv(j)=idum

II continue
iy=iv(l)
endif
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (idum.lt.O) idum=idum+IM
j=I+iy/NDIV
iy=iv(j)
iv(j)=idum
ran I =min(AM * iy ,RNMX)
return
END

73

A .3. Sample Random Number Function 3

FUNCTION ran2(idutn)
INTEGER idum,IM 1 ,IM2,IMM I ,IA 1 ,IA2,IQ I ,IQ2,IR 1 ,IR2,NTAB,NDI V
REAL ran2,AM,EPS,RNMX
PARAMETER (IMI =2147483563,IM2=2147483399,AM= I ./IMI ,IMM I =IM I -1

* IAI =40014,1A2=40692,IQ I =53668,IQ2=52774,IR 1=12211 ,IR2=3 791,
*NTAB=32,NDIV= 1+IMM1 /NTAB,EPS= 1.2e-7,RNMX= 1 .-EPS)

INTEGER idum2J,k,iv(NTAB),iy
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.O) then
idum=max(-idum,I)
idum2=idum
do II j=NTAB+8,I,-I
k=idum/IQI
idum=IA 1 *(idum-k*IQ 1)-k*IR 1
if (idum.lt.O) idum=idum+IMI
if (j.le.NTAB) iv(j)=idum

11 continue
iy=iv(I)
endif
k=idum/IQI
idum=IAl*(idum-k*IQI)-k*IRI
if (idum.lt.O) idum=idum+IMI
k=idum2/IQ2
idum2=I A2*(idum2-k* IQ2)-k* IR2
if (idum2.It.O) idum2=idum2+IM2
j=l+iy/NDIV
iy=iv(j)-idum2
iv(j)=idum
if(iy.lt.I)iy=iy+IMMI
ran2=min(AM*iy,RNMX)
return
END

74

A.4. Sample Random Number Function 4

FUNCTION ran3(idum)
INTEGER idum
INTEGER MBIG,MSEED,MZ
REAL ran3,FAC
PARAMETER (MBIG= 1000000000,MSEED= 16 1803398,MZ=0,FAC= I ./MBIG)
INTEGER i,iff,ii,inext,inextp,k
INTEGER mj,mk,ma(55)
SAVE iIT,inexl,inexlp,ma
DATA iff/O/
if(idum.It.0.or.iff.eq.O)then
iff=I
mj=MSEED-iabs(idum)
mj=mod(mj,MBIG)
ma(55)=mj
mk=I
do 11 1=1,54
ii=mod(21*1,55)
ma(ii)=mk
mk=mj-mk
if(mk.lt.MZ)mk=mk+MBIG
mj=ma(ii)

11 continue
do 13 k=I,4
do 12 1=1,55
ma(i)=ma(i)-ma(I +mod(i+30,55))
if(ma(i).It.MZ)ma(i)=ma(i)+MBiG

12 continue
13 continue

inext=0
inextp=31
idum=I
endif
inext=inext+I
if(inext.eq.56)inext=I
inextp=inextp+l
if(inextp.eq.56)inextp=I
mj=ma(inext)-ma(inextp)
if(mj.lt.MZ)mj=mj+MBIG
ma(inext)=mj
ran3=mj*FAC
return
END

75

APPENDIX B FORTRAN Programs Used in Chapter 2

B.l . Sphere

CC This file will model a sphere through random numbers,
use portlib
real *8 s, si, timespent
Integer*4 iter, 1, number
Intcgcr*4 m, n, count, seed
Integer ia l, ia2, iat, ibl, ib2, ibt,

+ iel, ie2, iet, id I, id2, idt,
+ iel, ie2, iet, if], if2, ift,
+ ja l,ja 2 ,ja t ,jb l ,jb 2 ,jb t ,
+ je l,je 2 ,je t ,jd l ,jd 2 ,jd t ,
+ je l , je 2 ,je t , j f l , j f2 ,j f t ,
+ kal, ka2, kat, kb 1, kb2, kbt,
+ kel, ke2, ket, kd 1, kd2, kdt,
+ kel, ke2, ket, k f l , kf2, kft

Real*8 OR, A(1,401), Pi, lamda, Qi, dev,
+ Qk, Bragg, zeta, final, B(1,118), ran2,
+ x l,x 2 , x3, x4, x5, x6, y l,y 2 , y3, y4,
+ y5, y6, z l, z2, z3, z4, z5, z6, R l, R2,
+ R3, R4, R5, R6

CC Initilization o f some of the varibles and the constants.
Do 1 n=0,400
A(l,n)=0.0

I Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda
eount=0

CC Input statements.
Print*, 'Sphere Scattering Simulation Through Random Numbers.'
Print*, 'Enter the overall radius o f the sphere [nm].'
Read*, OR
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*,seed

76

s=rtc()
CC Iteration Loop

Do 10 1=1,iter
number=seed+l

CC Draw Random Numbers
Do2m =0,117
B(1 ,m)=ran2(number)

2 continue

ial=idint(10*8(1,100))
ia2=idint((100*8(1,100))-(10* ia 1))
iat=10*ia2+ial

ibl=idint(10*B(l,101))
ib2=idint((100*8(1,101))-(10* ib 1))
ibt=10*ib2+ibl

id =idint(l 0*8(1,102))
ic2=idint((100*8(1,102))-(10* i d))
ict=10*ic2+id

idl=idint(10*8(l,103))
id2=idint((100*8(1,103))-(10* id 1))
idt=10*id2+idl

iel=idint(l 0*8(1,104))
ie2=idint((100*8(1,104))-(10* i d))
iet=10*ie2+iel

ifl=idint(10*8(l,105))
if2=idint((100*8(1,105))-(10* in))
ift=10*il2+ifl

jal=idint(10*8(l,106))
ja2=idint((100*8(1,106))-(10*ja 1))
jat=10*ja2+jal

jbl=idint(10*8(l,107))
jb2=idint((100*8(1,107))-(10*jb 1))
jbt=10*jb2+jbl

jd= idint(10*8(l,108))
jc2=idint((100* B(1,108))-(10*jc 1))

77

jct=l0*jc2+jcl

jdl=idint(10*8(1,109))
jd2=idint((100*8(1,109))-(10*jd 1))
jdt-10*jd2+jdl

jel=idint(10*B(l,110))
je2=idint((100*8(1,110))-(10*je 1))
jet=10*je2+jel

jfl=idint(10*8(1,111))
jf2=idint((100*8(1,11 l))-(10*jn))
jft=10*jl2+jn

kal=idint(10*8(l,112))
ka2=idint((100*8(1,112))-(10* ka 1))
kat=10*ka2+kal

kbl=idint(10*8(l,113))
kb2=idint((100* 8(1,113))-(10* kb 1))
kbt=10*kb2+kbl

kcl=idint(10*8(1,114))
kc2=idint((100*8(1,114))-(10*kc 1))
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115))
kd2=idint((100*8(1,115))-(10*kd 1))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116))
ke2=idint((100*8(1,116))-(10*ke 1))
ket=10*ke2+kel

kfl =idint(l 0*8(1,117))
kf2=idint((100*8(1,11 ?))-(10*kfl))
kft=10*kf2+kn

X1 =2.00002*OR* B(1 ,iat)-1.00001 *0R
x2=2.00002*OR* B(1 ,ibt)-1.00001 *0R
x3=2.00002*OR*B(l,ict)-l .00001 *0R
x4=2.00002*OR*B(l,idt)-l .00001 *0R
x5=2.00002*OR* B(1 ,iet)-1.00001 *0R
x6=2.00002*OR* B(1 ,ift)-1.00001 *0R

78

yl=2.00002*OR*B(lJat)-1.00001*OR
y2=2.00002*OR*B(ljbt)-1.00001 *0R
y3=2.00002*OR*B(l Jet)-1.00001*0R
y4=2.00002*OR*B(lJdt)-l .00001 *0R
y5=2.00002*OR*B(lJet)-1.00001*OR
y6=2.00002*OR*B(l jf t)-l .00001 *0R
z 1 =2.00002* OR* B(1 ,kat)-1.00001 * OR
z2=2.00002*OR*B(l,kbt)-1.00001 *0R
z3=2.00002*OR*B(l ,kct)-l .00001 *0R
z4=2 00002*OR*B(1 ,kdt)-1.00001 *0R
z5=2.00002*OR*B(l,ket)-1.00001 *0R
z6=2.00002*OR*B(1 ,kft)-1.00001 *0R

R 1 =dsqrt((.\ 1 * *2)+(y 1 * *2)+(z 1**2))
R2=dsqrt((x2* *2)+(y2* *2)+(z2* *2))
R3=dsqrt((x3 * *2)+(y3 * *2)+(z3 * *2))
R4=dsqrt((x4**2)+(y4**2)+(z4**2))
R5=dsqrt((x5 * * 2)+(y 5 * * 2)+(z5 * * 2))
R6=dsqrt((x6* *2)+(y6* *2)+(z6* *2))

CC Test points
if(R l.LE.O R) then
Do 3 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x 1 +Qk*zl)

3 continue
count=count+l
endif

if(R 2.L E .0R)then
Do 4 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x2+Qk*z2)

4 continue
count=count+l
endif

79

if (R3.LE.OR) then
Do 5 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dccs(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(l ,n)+2*dcos(Qi*x3+Qk*z3)

5 continue
count=count+l
endif

if (R4.LE.0R) then
Do 6 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(l ,n)+2*dcos(Qi*x4+Qk*z4)

6 continue
count=count+l
endif

if (R5.LE.0R) then
Do 7 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x5+Qk*z5)

7 continue
count=count+l
endif

if (R6.LE.0R) then
Do 8 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x6+Qk*z6)

8 continue
count=count+l
endif

10 Continue

print*, '----------
print*, 'Radius'

80

print*, OR
print*, '----------------- '
print*, 'Iterations'
print*, iter
print*, '----------------- '
print*, 'Number o f Points'
print*, count
print*, '----------------- '

fmal=A(l,0)

Do 101 n=0,400
A(1 ,n)=dlog 10((A(1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*. Iterations Per Seconds'
print*, dev

Do 102 n=0,400
write (15,*) A (l,n)

102 Continue

dev=l
End

Random Number Function Goes Here

81

B.2. Prolate Spheroid

CC This file will model spheroidal scattering through random numbers,
use portlib
real*8 s, si, timespent
Integer* 4 iter, 1, number
Integer* 4 m, n, count, seed
Integer ia l, ia2, iat, ib l, ib2, ibt,

+ i d , ic2, ict, id l, id2, idt,
+ ie l, ie2, iet, ifl, iI2, ift,
+ ja l , ja 2 ,ja t ,jb l ,jb 2 ,jb t ,
+ jc l,jc 2 , jc t,jd l,jd 2 ,jd t ,
+ je l , je 2 ,je t , j f l , j f2 ,j f t ,
+ kal, ka2, kat, kbl, kb2, kbt,
+ kcl, kc2, ket, kd 1, kd2, kdt,
+ kel, ke2, ket, k f l, kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length,
+ Qi, Qk, Bragg, zeta, 8(1,118), ran2, cu tl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, final

CC Initilization o f some of the varibles and the constants.
Do 1 n=0,400
A(I,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda
count=0

CC Input statements.
Print*, 'Prolate Spheroid Scattering SimuIation(Random Numbers.)’
Print*, 'Enter A [nm] (half o f the major axis).'
Read*, length
Print*, Enter B [nm] (half o f the minor axis).'
Read*, OR
Print*, Enter the slice desired of the cylinder [nm].'
Print*. '(Pi/3 times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, 'Enter a seed for the random numbers.'
Read*,seed

82

cut2=cutl* Pi/3.0
s=rtc()

CC Iteration Loop
Do 10 1=1,iter
number=seed+l

CC Draw Random Numbers
Do 2 m=0,117
B(1 .m)=ran2f number)

2 continue

ial=idint(10*B(l,I00))
ia2=idint((100* B(1,100))-(10* ia 1))
iat=10*ia2+ial

ibl=idint(10*B(l,101))
ib2=idint((100* B(1,101))-(10* ib 1))
ibt=10*ib2+ibl

icl=idint(10*B(l,102))
ic2=idint((100* B(1,102))-(10* id))
ict=l0*ic2+icl

idl=idint(10*B(l,103))
id2=idint((100* B(1,103))-(10* id 1))
idt=10*id2+idl

iel=idint(10*B(l,104))
ie2=idint((100*B(1,104))-(10* ie 1))
iet=10*ie2+iel

in=idint(10*B(l,105))
iO=idint((100* B(1,105))-(10*ifl))
ift=10*if2+ifl

jal=idint(10*B(l,106))
ja2=idint((100* B(1,106))-{ 10*ja 1))
jat=10*ja2+jal

jbl=idint(10*B (l,l07))
jb2=idint((100*B(1,107))-(10*jb 1))
jbt=10*jb2+jbl

83

jcl=idint(10*B(l,108))
jc2=idint((100*8(1,108))-(10*jc 1))
jct=10*jc2+jcl

jd l= idint(l 0*8(1,109))
jd2=idint((100*8(1,109))-(10*jd 1))
jdt=10*jd2+jdl

jel= idint(10*8(l,llG))
je2=idint((100*8(1,110))-(10*je 1))
jet=10*je2+jel

jfl= id in t(1 0 * 8 (l,lll))
jf2=idint((100*8(1,11 l))-(10*jfl))
jft=10*jf2+jn

kal=idint(l 0*8(1,112))
ka2=idint((100*8(1,112))-(10*kal))
kat=10*ka2+kal

kbl=idint(10*8(l,113))
kb2=idint((100* 8(1,113))-(10*kb 1))
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114))
kc2=idint((100*8(1,114))-(10*kcl))
kct=10*kc2+kcl

kdl=idint(10*8(1,115))
kd2=idint((100*8(1,115))-(10*kd 1))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116))
ke2=idint((100*8(1,116))-(10*ke I))
ket=10*ke2+kel

kfl=idint(10*8(l,117))
kf2=idint((100*8(1,11 ?))-(10*kfl))
kft=10*kf2+kn

XI =2.00002*OR*B(1 ,iat)-1.00001 *0R
x2=2.00002*OR*8(1 ,ibt)-l .00001 *0R
x3=2.00002*OR* 8 (1 ,ict)-1.00001 *0R
x4=2.00002*OR*8(1 ,idt)-1.00001 *0R

84

x5=2.00002*OR* B(1 ,iet)-1.00001 *0R
x6=2.00002*OR*B(1 1.00001 *0R
y 1=2.00002* length* B(1 ja t)-l .00001 * length
y2=2.00002*length*B(l Jbt)-1.00001 * length
y3=2.00002* length*B(1 je t) -1.00001 * length
y4=2.00002*length*B(1 jd t) -1.00001 * length
y5=2.00002* length*B(1 je t) -1.00001 * length
y6=2.00002*length*B(l jf t)- l .00001 *length
zl=2.00002*OR*B(l,kat)-1.00001*OR
z2=2.00002*OR*B(l,kbt)-1.00001 *0R
z3=2.00002*OR*B(1,ket)-1.00001 *0R
z4=2.00002*OR*B(l,kdt)-1.00001 *0R
z5=2.00002*OR*B(1,ket)-1.00001 *0R
z6=2.00002*OR*B(l,kft)-1.00001 *0R

R 1 =(((x 1 /OR)* *2)+((y 1 /length)* *2)+((z 1 /OR)* *2))
R2=(((x2/OR)**2)+((y2/length)**2)+((z2/OR)**2))
R3=(((x3/OR)**2)+((y3/length)**2)+((z3/OR)**2))
R4=(((x4/OR)**2)+((y4/length)**2)+((z4/OR)**2))
R5=(((x5/OR)**2)+((y5/length)**2)+((z5/OR)**2))
R6=(((x6/OR)**2)+((y6/length)**2)+((z6/OR)**2))

CC Test points
if (R l.LE. 1.0) then
Do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(deos(2*zeta)-1)
Qi=Bragg*deos(eut2)*dsin(2*zeta)
Qk=Bragg*dsin(eut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*deos(Qi * x 1 +Qj * y 1 +Qk* z 1)

14 eontinue
eount=eount+1
endif

if(R2.LE.1.0) then
Do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(deos(2*zeta)-1)
(^=Bragg*deos(eut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x2+(^*y2+Qk*z2)

24 eontinue
eount=eount+l
endif

85

if(R3.LE.1.0)then
Do 34 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(l,n)=A(l,n)+2*dcos(Qi*x3+Qj*y3+Qk*z3)

34 continue
count=count+1
endif

if(R4.LE.1.0) then
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 * zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x4+Qj *y4+Qk*z4)

44 continue
count=count+1
endif

if (R5.LE.1.0) then
Do 54 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(l,n)=A(l,n)+2*dcos(Qi*x5+Qj*y5+Qk*z5)

54 continue
count=count+l
endif

if(R6.LE.1.0) then
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x6+Qj*y6+Qk*z6)

64 continue
count=count+l
endif

86

10 Continue

print*, '----------------- '
print*, 'Iterations’
print*, iter
print*, '----------------- '
print*, "Number o f Points'
print*, count
print*, '----------------- '

finai=A(l,G)

Do 101 n=0,400
A(1 ,n)=dlog 10((A(1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, CPU Time (seconds)'
print*, timespent
print*. Iterations Per Seconds'
print*, dev

Do 102 n=0,400
write (15,*) A (l,n)

102 Continue

End

Random Number Function Goes Here

87

B.3. Cylinder

CC This file will model a cylinder through random numbers,
use portlib
real*8 s, si, timespent
lnteger*4 iter, 1, number
Integer*4 m, n, count, seed
Integer ial, ia2, iat, ib l, ib2, ibt,

+ ici, ic2, ict, id l, id2, idt, iel, ie2, let, ifl, if2, ift,
+ j a l , ja2, jat, jb I , jb2, jbt, jc 1, jc2, jet, Jd 1, Jd2, jdt,
+ Jel,Je2, je t,Jfl,Jf2 ,Jft, kal, ka2, kat, kbl, kb2, kbt,
+ kc 1, kc2, kct, kd 1, kd2, kdt, ke 1, ke2, ket, k f l , kf2. kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cutl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, S 1, S2, S3, 84, 85, 86, final

CC Initilization o f some o f the varibles and the constants.
Do 1 n=0,400
A(l,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda
count=0

CC Input statements.
Print*, Cylinder Scattering Simulation Through Random Numbers.'
Print*, 'Enter the radius o f the cylinder [nm].'
Read*, OR
Print*. Enter half the length o f the cylinder [nm].'
Read*, length
Print*, Enter the slice desired o f the cylinder [nm].'
Print*, (Pi times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*,seed
cut2=cutl*Pi
s=rtc()

CC Iteration Loop
Do 101=1,iter

88

number=seed+l
CC Draw Random Numbers

Do 2 m=0,l 17
B(1 ,m)=ran2(number)

2 continue

iaI=idint(10*B(l,100))
ia2=idint((100* B(1,100))-(10* la 1))
iat=10*ia2+ial

ibl=idint(l0*B (l,10l))
ib2=idint((100*B(1,101))-(10*lb I))
ibt=10*ib2+ibl

icl=idint(10*B(l,102))
ic2=idint((100* B(1,102))-(10*icl))
ict=10*ic2+icl

idl=idint(10*B(l,103))
id2=idint((100* B(1,103))-(10* id 1))
idt=10*id2+idl

iel=idint(10*B(l,104))
ie2=idint((100* B(1,104))-(10* ie 1))
iet=10*ie2+iel

ifl=idint(10*B(l,105))
if2=idint((100* B(1,105))-(10* in))
ift=10*if2+in

jal=idint(10*B(l,106))
ja2=idint((100*B(1,106))-(10*jal))
jat=10*ja2+jal

jbl=idint(10*B(l,107))
jb2=idint((100* B(1,107))-(10*jb 1))
jbt=10*jb2+jbl

jcl=idint(10*B(l,108))
jc2=idint((100*B(1,108))-(10*jcl))
jct=10*jc2+jcl

jdl=idint(10*B(l,109))
jd2=idint((100* B(1,109))-(10*jd I))

89

j d t = 1 0 * j d 2 + j d l

jel=idint(10*B(l,110))
je2=idint((100* B(1,110))-(10*je 1))
jet=10*je2+jel

jfl= id in t(10*B (l,lll))
jf2=idint((100*B(l,l 1
jft=10*jf2+jn

kal=idint(10*B(l,112))
ka2=idint((100* B(1,112))-(10*ka 1))
kat=10*ka2+kal

kbl=idint(10*B(l,113))
kb2=idint((100* B(1,113))-(10*kb 1))
kbt=10*kb2+kbl

kcl=idint(10*B(l,114))
kc2=idint((100* B(1,114))-(10*kc 1))
kct=10*kc2+kcl

kdl= idint(10*B (l,ll5))
kd2=idint((100*B(1,115))-(10*kd 1))
kdt=10*kd2+kdl

kel=idint(10*B(l,116))
ke2=idinl((100* B(1,116))-(10* ke 1))
ket=10*ke2+kel

kfl =idint(10*8(1,117))
kf2=idint((100*8(1,11 ?))-(10*kfl))
kft=10*kf2+kn

X 1=2.00002*OR* 8(1,iat)-1.00001 *0R
x2=2.00002*OR*8(1 ,ibt)-1.00001 *0R
x3=2.00002*OR*B(l,lct)-1.00001*OR
x4=2.00002*OR*8(1 ,idt)-1.00001 *0R
x5=2.00002*OR*8(l ,iet)-l .00001 *0R
x6=2.00002*OR*8(1 ,ift)-1.00001 *0R
y 1 =2.00002* length* 8(1 ja t) -1.00001 * length
y2=2.00002* length* 8(1 jb t) -1.00001 *length
y3=2.00002*length* 8(1 je t) -1.00001 * length
y4=2.00002* length* 8(1 jd t) -1.00001 * length

90

y5=2.00002*length*B(l Je t)>1.00001 * length
y6=2.00002* length* B(1J ft)-1.00001 * length
z 1 =2.00002 *OR* B(1,kat)-1.00001 *0R
z2=2.00002*OR* B(1 ,kbt)-1.00001 *0R
z3=2.00002*OR* B(1 ,kct)-1.00001 *0R
z4=2.00002*OR* B(1 ,kdt)-1.00001 *0R
z5=2.00002*OR*B(l,ket)-1.00001 *0R
z6=2.00002*OR*B(l,kft)-l.00001 *0R

Rl=dsqrt((xl **2)+(zl **2))
R2=dsqrt((x2 **2)+(z2**2))
R3=dsqrt((x3 * *2)+(z3 * *2))
R4=dsqrt((x4**2)+(z4**2))
R5=dsqrt((x5**2)+(z5**2))
R6=dsqrt((x6**2)+(z6**2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points
if (Sl.LE.length) then
if(Rl.LE.O R) then
Do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x 1+Qj*y I +Qk*zI)

14 continue
count=count+l
endif
endif

if (S2.LE.length) then
if (R2.LE.0R) then
Do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg *(dcos(2 *zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x2+Qj *y2+Qk*z2)

91

24 continue
count=count+l
endif
endif

if (S3.LE.length) then
if (R3.LE.0R) then
Do 34 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qi=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x3+Qj*y3+Qk*z3)

34 continue
count=count+l
endif
endif

if (S4.LE.Iength) then
if (R4.LE.0R) then
Do 44 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x4+Qi*y4+Qk*z4)

44 continue
count=count+1
endif
endif

if (SS.LE.length) then
if (R5.LE.0R) then
Do 54 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta>-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x5+Qj*y5+Qk*z5)

54 continue
count=count+l
endif
endif

92

if (S6.LE.length) then
if(R 6.LE .0R)then
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x6+Qj*y6+Qk*z6)

64 continue
count=count+l
endif
endif

10 Continue
print*, '----------------- '
print*, 'Iterations'
print*, iter
print*, '----------------- '
print*, 'Number o f Points'
print*, count
print*, '----------------- '
final=A(l,0)
Do 101 n=0,400
A(1 ,n)=(A(1 ,n)/final)**2

101 Continue
sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*. Iterations Per Seconds'
print*, dev

Do 102 n=0,400
write (15,*) A(l,n)

102 Continue

End

Random Number Function Goes Here

93

B.4. Tilted Cylinder

CC This file will model t-cylinder scattering through random numbers,
use portlib
real*8 s, si, timespent
Integer*4 iter, 1, number
Integer*4 m, n, count, seed
Integer ia l, ia2, iat, ib l, ib2, ibt, i d , ic2, ict, id l, id2, idt,

+ iel, ie2, let, ifl, if2, ift, ja l, ja2, jat, jb l , jb2, jbt,
+ j d , jc2, jet, jd 1, jd2, jdt, je 1, je2, jet, j f l , j f2, jft,
+ kal, ka2, kat, kb 1, kb2, kbt, kc 1, kc2, kct, kd 1, kd2, kdt,
+ k e l, ke2, ket, k f l , kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length, gamma,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cu tl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, S 1, S2, S3, S4, S 5 ,86, final, alpha,
+ beta, dist, xprime, yprime, zprime, ease

CC Initilization o f some of the varibles and the constants.
Do 1 n=0,400
A(l,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda
count=0

CC Input statements.
Print*, Cylinder Scattering Simulation Through Random Numbers.'
Print*, 'Enter the radius o f the cylinder [nm].'
Read*, OR
Print*, 'Enter half the length of the cylinder [nm].'
Read*, length
Print*, 'Enter the slice desired o f the cylinder [nm].'
Print*, '(Pi times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*, seed
Print*, Enter the tilt angle.'
Print*, (Pi times this number.)'
Read*, gamma

94

beta=gamma*Pi
cut2=cutl*Pi
s=rtc()

CC Iteration Loop
Do 10 1=1,iter
number=seed+l

CC Draw Random Numbers
Do 2 m=0,117
B(1 ,m)=ran2(number)

2 continue

ial=idint(10*8(1,100))
ia2=idint((100*8(1,100))-(10* ia 1))
iat=10*la2+ial

ibl=idint(10*8(l,101))
ib2=idint((100*8(1,101))-(10* ib 1))
ibt=10*ib2+ibl

i d =idint(l 0*8(1,102))
ic2=idint((100*8(1,102))-(10* ic 1))
ict=10*ic2+icl

idl=idint(10*8(l,103))
id2=idint((100*8(1,103))-(10*id 1))
idt=10*id2+idl

iel=idint(l 0*8(1,104))
ie2=idint((100*8(1,104))-(10* ie 1))
iet=10*ie2+iel

ifl=idint(10*8(l,105))
if2=idint((100*8(1,105))-(10* iH))
ift=10*iO+ifl

jal= idint(l 0*8(1,106))
ja2=idint((100*8(1,106))-(10*ja 1))
jat=10*ja2+jal

jbl=idint(10*8(1,107))
jb2=idint((100*8(1,107))-(10*jb 1))
jbt=10*jb2+jbl

jcl=idint(10*8(l,108))

95

jc2=idint((100*B(1,108))-(10*jc 1))
jct=10*jc2+jcl

jdl=idint(10*B(l,109))
jd2=idint((100*B(1,109))-(10*jd 1))
jdt=10*jdi+jdl

jel=idint(10*B(1.110))
je2=idint((100* B(1,110))-(10*je 1))
jet=10*je2+jel

jn = id in t(1 0 * B (l,lll))
jf2=idint((100*B(l,11 l)H 10*jfl))
jft=10*jf2+jn

kal=idint(10*B(l,112))
ka2=idint((100*B(1,112))-(10*ka 1))
kat=10*ka2+kal

kbl=idint(10*B(l,113))
kb2=idint((100*B(1,113))-(10*kb 1))
kbt=10*kb2+kbl

kcl=idinl(10*B(l,114))
kc2=idint((100* B(1,114))-(10*kc 1))
kct=10*kc2+kcl

kdl=idint(10*B (l,il5))
kd2=idint((100* B(1,115))-(10* kd 1))
kdt=10*kd2+kdl

kel=idint(10*B(I,116))
ke2=idint((100* B(1,116))-(10* ke 1))
ket=10*ke2+kel

kfl= idint(10*B (l,ll7))
kf2=idint((100*8(1,117))-(10*kfl))
kft=10*kf2+kn

X1 =2.00002*OR* B(1 ,iat)-1.00001 *0R
x2=2.00002*OR*B(1 ,ibt)-l .00001 *0R
x3=2.00002*OR*B(1 ,ict)-1.00001 *0R
x4=2.00002*OR*B(1 ,idt)-l .00001 *0R
x5=2.00002*OR*B(l ,iet)-l .00001 *0R

96

x6=2.00002*OR*B(l,ift)-1.00001*OR
y 1 =2.00002* length* B(1 ja t) -1.00001 * length
y2=2.00002* length* B(1 jb t) -1.00001 * length
y3=2.00002*length* B(1 je t) -1.00001 * length
y4=2.00002*length* B(1 jd t) -1.00001 * length
y5=2.00002*length*B(l je t) -1.00001 * length
y6=2.00002*length*B(I j A)-1.00001* length
zl =2.00002*OR*B(1 ,kat)-1.00001 *0R
z2=2.00002*OR* B (l,kbt)-1.00001 *0R
z3=2.00002*OR*B(l,kct)-1.00001*0R
z4=2.00002*OR*B(1 ,kdt)-1.00001 *OR
z5=2.00002*OR*B(1 ,ket)-1.00001 *0R
z6=2.00002*OR*B(l,kft)-1.00001*OR

Rl=dsqrt((xl**2)+(zl**2))
R2=dsqrt((x2**2)+(z2**2))
R3=dsqrt((x3 * *2)+(z3 * *2))
R4=dsqrt((x4**2)+(z4**2))
R5=dsqrt((x5 * *2)+(z5 * * 2))
R6=dsqrt((x6**2)+(z6**2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points

if (S 1 .LE.length) then
if(Rl.LE.O R) then
if (yl.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(xl/yl)
end if
dist=dsqrt((xl**2)+(yl**2))
xprime=dist* dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=zl
Do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)

97

Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi *xprime+Qj * yprime+Qk* zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

14 continue
count=count+l
endif
endif

if (S2.LE.Iength) then
if(R2.LE.0R)then
if(y2.EQ.0.0)then
alpha=Pi/2
else
alpha=datan(x2/y2)
end if
disl=dsqrt((x2 * * 2)+(y2 * * 2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(aipha+beta)
zprime=z2
Do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi * xprime+Qj * yprime+Qk* zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

24 continue
count=count+l
endif
endif

if (S3.LE.length) then
if (R3.LE.0R) then
if(y3.EQ.0.0)then
aIpha=Pi/2
else
alpha=datan(x3/y3)
end if
dist=dsqrt((x3 * *2)+(y3 * *2»
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 34 n=0,400
zeta=Pi*n/(36*400)

98

Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2'"zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(1 ,n)=A(I ,n)+2*dcos(ease)

34 continue
count=count+l
endif
endif

if (S4.LE.iength) then
if (R4.LE.0R) then
if (y4.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x4/y4)
end if
dist=dsqrt((x4**2)+(y4**2))
xprime=dist*dsin(alpha+beta)
yprinte=dist*dcos(aipha+beta)
zprime=z4
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Q=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qi*yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

44 continue
coimt=count+l
endif
endif

if (SS.LE.length) then
if (R5.LE.0R) then
if (yS.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(x5/yS)
end if
dist=dsqrt((x5**2)+(y5**2))
xphme=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z5

99

Do 54 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi *xprime+Qj *yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

54 continue
count=count+l
endif
endif

if (S6.LE.length) then
if(R6.LE.0R) then
if (y6.EQ.00) then
alpha=Pi/2
else
alpha=datan(x6/y6)
end if
dist=dsqrt((x6**2)+(y6**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2 * zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi * xprime+Qj *yprime+Qk* zprime
A(1 ,n)=A(1 ,n)+2 *dcos(ease)

64 continue
count=count+l
endif
endif

10 Continue
print*, '----------------- '
print*, 'Iterations'
print*, iter
print*, '----------------- '
print*, 'Number o f Points'
print*, count
print*, '----------------- '

fmal=A(l,0)

100

Do 101 n=0,400
A(1 ,n)=dlog 10((A(1 ,n)/final)**2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*, 'Iterations Per Seconds'
print*, dev

Do 102 n=0,400
write (15,*) A(l,n)

102 Continue

End

Random Number Function Goes Here

101

B.5. Elongated Hexagon

CC This file will model elongated hexagon scattering through random numbers,
use portlib
real*8 s, si, timespent
Integer*4 iter, 1, number
lnteger*4 m, n, count, seed
Integer ia l, ia2, iat, ib l, ib2, ibt, i d , ic2, ict, id l, id2, idt,

+ ie l, ie2, let, ifl, iO, ift, ja l , ja2, jat, jb l , jb2, jbt,
+ jc 1, jc2, jet, jd 1, jd2, jdt, je I , je2, jet, j n , j O, j ft,
+ kal, ka2, kat, kbl, kb2, kbt, kcl, kc2, kct, kdl, kd2, kdt,
+ k e l, ke2, ket, k f l, kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length, gamma,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cu tl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, SI, S2, S3, S4, S5, S6, T l, 12, T3,
+ 14, T5, T6, U 1, U2, U3, U4, U5, U6, V 1, V2,
+ V3, V4, V5, V6, PI, P2, P3, P4, P5, P6, final,
+ alpha, beta, dist, xprime, zulu, yprime, zprime, ease, ang

CC Initilization o f some o f the varibles and the constants.
Do 1 n=0,400
A(l,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda
count=0
ang=Pi/6
zulu=dsqrt(dble(3.0))

CC Input statements.
Print*, Elongated hexagon Scattering Simulation [Random].'
Print*, Enter the radius o f the hexagon [nm].'
Read*, OR
Print*, Enter half the length o f the hexagon [nm].'
Read*, length
Print*, Enter the slice desired o f the hexagon [nm].'
Print*, (Pi/3 times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers '

102

Read*,seed
Print*, 'Enter the tilt angle.'
Print*, '(Pi/3 times this number.)'
Read*, gamma
beta=gamma* Pi/3.0
cut2=cutl* Pi/3.0
s=rtc()

CC Iteration Loop
Do 10 1=1,iter
number=seed+l

CC Draw Random Numbers
Do 2 m=0,l 17
B(1 ,m)=ran2(number)

2 continue

ial=idint(10*8(1,100))
ia2=idint((100*8(1,100))-(10*ia 1))
iat=10*ia2+ial

ibl=idint(10*8(l,101))
ib2=idint((100*8(1,101))-(10* ib 1))
ibt=10*ib2+ibl

i d =idint(l 0*8(1,102))
ic2=idint((100*8(1,102))-(10* id))
ict=10*ic2+id

idl=idint(10*8(l,103))
id2=idint((100*8(1,103))-(10* id 1))
idt=10*id2+idl

iel=idint(l 0*8(1,104))
ie2=idint((100*8(1,104))-(10*ie 1))
iet=10*ie2+iel

in=idint(10*8(l,105))
if2=idint((100*8(1,105))-(10*10))
ift=10*if2+ifl

jal=idint(10*8(l,106))
ja2=idint((100*8(1,106))-(10*ja 1))
jat=10*ja2+jal

jbl=idint(10*B(l,107))

103

jb2=idint((100*8(1,107))-(10*jb 1))
jbt=10*jb2+jbl

jcl=idint(10*B(l,108))
jc2=idint((100*8(1,108))-(10*jc 1))
jct=10*jc2+jcl

jdl= idint(l 0*8(1,109))
jd2=idint((100*8(1,109))-(10*jd 1))
jdt=10*jd2+jdl

je l=idint(l 0*8(1,110))
Je2=idint((100*8(1,110))-(10*Je 1))
Jet=10*Je2+Jel

jn= id in t(l 0*8(1,111))
J 0 = i d i n t ((1 0 0 * 8 (l , l l l)) - (1 0 * j n))
Jft=10*jf2+jn

kal=idlnt(l 0*8(1,112))
ka2=idint((100*8(1,112))-(10*ka 1))
kat=10*ka2+kal

kb l=idint(10*8(1,113))
kb2=idinl((100*8(1,113))-(10*kb 1))
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114))
kc2=idint((100*8(1,114))-(10*kc 1))
kct=10*kc2+kcl

kdl=idint(10*8(l,115))
kd2=idint((100*8(1,115))-(10*kd 1))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116))
ke2=idint((100*8(1,116))-(10*ke 1))
ket=10*ke2+kel

kfl =idint(l 0*8(1,117))
kf2=idint((100*8(1,117))-(10*kfl))
kft=10*kf2+kfl

X1 =2.00002*08* 8(1 ,iat)-1.00001 *0R

104

x2=2.00002*OR* B(l,ibt)-1.00001*0R
x3=2.00002*OR* B(l,ict)-1.0000 l*OR
x4=2.00002*OR* B(l,idt)-1.0000 l*OR
x5=2.00002*OR*B(l,iet)-1.00001*OR
x6=2.00002*OR*B(I ,ift)-1.00001 *0R
y 1 =2.00002* length* B(1 Jat)-1.00001 * length
y2=2.00002*length*B(l Jb t)-1.00001 * length
y3=2.00002* length* B(1 Jet)-1.00001 * length
y4=2.00002* length* B(1 Jd t)-1.00001 * length
y5=2.00002*length* B(1 Jet)-1.00001 * length
y6=2.00002* length* B(1J ft)-1.00001 * length
zl =2.00002*OR* B(1 ,kat)-1.00001 *0R
z2=2.00002*OR* B(1 ,kbt)-1.00001 *0R
z3=2.00002*OR*B(1 ,kct)-1.00001 *0R
z4=2.00002*OR*B(l,kdt)-1.00001 *0R
z5=2.00002*OR*B(1 ,ket)-1.00001 *0R
z6=2.00002*OR*B(l,kft)-l.00001 *0R

Rl=dabs(xl)
R2=dabs(x2)
R3=dabs(x3)
R4=dabs(x4)
R5=dabs(x5)
R6=dabs(x6)
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)
Tl=dabs(zl)
T2=dabs(z2)
T3=dabs(z3)
T4=dabs(z4)
T5=dabs(z5)
T6=dabs(z6)

if(Rl.EQ.O.O)then
Ul=Pi/2
else
U l=datan(Tl/R l)
end if

105

if (R2.EQ.0.0) then
U2=Pi/2
else
U2=datan(T2/R2)
end If

if(R3.EQ.0.0) then
U3=Pi/2
else
U3=datan(T3/R3)
end if

if(R4.EQ.0.0) then
U4=Pi/2
else
U4=datan(T4/R4)
end if

if(R5.EQ.0.0) then
U5=Pi/2
else
U5=datan(T5/R5)
end if

if(R6.EQ.0.0) then
U6=Pi/2
else
U6=datan(T6/R6)
end if

CC Test points

if (S 1 .LE.length) then
if (Ul.LE.ang) then
Vl=OR*dcos(ang)
if(R l.L E .V l)then
if (yl.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(xl/yl)
end if
dist=dsqrt((x 1 * *2)+(y 1**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)

106

zprime=zl
Do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2'*‘zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi* xprime+Qj * yprime+Qk* zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

14 continue
count=count+l
endif
else
Pl=OR-(Rl/zulu)
if(T I.L E .P l)then
if (yl.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(xl/yl)
end if
dist=dsqrt((x 1 * *2)+(y 1**2))
xpri me=di St * dsin(al pha+beta)
yprime=dist*dcos(alpha+beta)
zprime=zl
Do 15 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 *zeta)-1)
Cü=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi * xprime+Qj * yprime+Qk* zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

15 continue
count=count+l
endif
endif
endif

if (S2.LE.length) then
if (U2.LE.ang) then
V2=OR*dcos(ang)
if(R2.LE.V2) then
if (y2.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x2/y2)

107

end if
dist=dsqrt((x2*"‘2)+(y2**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z2
Do 24 n=0,400
zeta=Pi"‘n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg'*dsin(cut2)*dsin(2*zeta)
ease=Qi * xprime+Qj * ypri me+Qk* zpri me
A(1 ,n)=A(1 ,n)+2*dcos(ease)

24 continue
count=count+l
endif
else
P2=OR-(R2/zulu)
if (T2.LE.P2) then
if(y2.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(x2/y2)
end if
dist=dsqrt((x2**2)+(y2**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z2
Do 25 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(I ,n)=A(1 ,n)+2*dcos(ease)

25 continue
count=count+1
endif
endif
endif

if (S3.LE.length) then
if (U3.LE.ang) then
V3=OR*dcos(ang)
if(R3.LE.V3)then

108

if (yS.EQ.O.O) then
alpha=PI/2
else
alpha=datan(x3/y 3)
end if
dist=dsqrt((x3* *2)+(y3 * *2))
xprime=dist*dsin(aipha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 34 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

34 continue
count=count+1
endif
else
P3=OR-(R3/zulu)
if(T3.LE.P3)then
if (yS.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(x3/yS)
end if
dist=dsqrt((x3* *2)+(y3 * *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 35 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2* zeta)-1)
Qi=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+(^*yprime+Qk*zprime
A(I ,n)=A(1 ,n)+2*dcos(ease)

35 continue
count=count+l
endif
endif
endif

109

i f (S4.LE.length) then
if (U4.LE.ang) then
V4=OR*dcos(ang)
if (R4.LE.V4) then
if (y4.EQ.0.0) then
alpha=Pi/2
else
aipha=datan(x4/y4)
end if
dist=dsqrt((x4**2)+(y4* *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z4
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

44 continue
count=count+l
endif
else
P4=OR-(R4/zulu)
if(T4.LE.P4) then
if (y4.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x4/y4)
end if
dist=dsqrt((x4**2)+(y4**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z4
Do 45 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

45 continue
count=count+l

110

endif
endif
endif

if (SS.LE.length) then
if (U5.LE.ang) then
V 5=OR*dcos(ang)
if(R5.LE.V5)then
if (yS.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(xS/yS)
end if
dist=dsqrt((xS**2)+(yS**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z5
Do S4 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

S4 continue
count=count+1
endif
else
PS=OR-(RS/zulu)
if(TS.LE.PS)then
if (yS.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(xS/yS)
end if
dist=dsqrt((xS**2)+(yS**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=zS
Do S S n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
(Ü=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2 * zeta)

111

ease=Qi * xprime+Qj *yprime+Qk* zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

55 continue
count=count+l
endif
endif
endif

if (S6.LE.length) then
if (U6.LE.ang) then
V 6=OR*dcos(ang)
if(R6.LE.V6) then
if (yô.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(x6/y6)
end if
dist=dsqrt((x6**2)+(y6**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Cü=Bragg*clcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

64 continue
count=coiuit+1
endif
else
P6=OR-(R6/zulu)
if(T6.LE.P6) then
if (y6.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x6/y6)
end if
dist=dsqrt((x6* * 2)+(y6* *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 65 n=0,400

112

zeta=P i "■ n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk'*zprime
A(1 ,n)=A(1 ,n)+2*dcos(ease)

65 continue
count=count+l
endif
endif
endif

10 Continue
print*, '----------------- '
print*, 'Iterations'

print*, iter
print*, '----------------- '
print*, 'Number of Points'
print*, count
print*, '----------------- '
final=A(l,0)

Do 101 n=0,400
A(1 ,n)=dIog 10((A(1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*, 'Iterations Per Seconds'
print*, dev

Do 102 n=0,400
write (15,*) A(l,n)

102 Continue

End

Random Number Function Goes Here

113

B.6. Bundled Cylinders

CC This file will model fiber scattering through random numbers,
use portlib
real*8 s, si, timespent
lnteger*4 iter. I, number
lnteger*4 m, n, count, seed
Integer ial, ia2, iat, ib l, ib2, ibt, i d , ic2, ict, id l, id2, idt,

+ ie l, ie2, iet, ifl, iO, ift, ja l , ja2, jat, jb l, jb2, jbt,
+ jc I , jc2, jet, jd 1, jd2, jdt, je 1, je2, jet, j f l , jO , jft,
+ ka l, ka2, kat, kbl, kb2, kbt, kcl, kc2, kct, kd l, kd2, kdt,
+ kel, ke2, ket, k f l , kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length, gamma,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cutl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, SI, S2, S3, S4, S5, S6, final, alpha,
+ beta, dist, xprime, yprime, zprime, ease 1, ease2,
+ ease3, ease4, easeS, eased, ease?, f l , f2 ,13
CC Initilization of some of the varibles and the constants.

Do 1 n=0,400
A(l,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda
count=0

CC Input statements.
Print*, 'Fiber Scattering Simulation Through Random Numbers.
Print*, 'Enter the radius o f the innermost cylinder [nm].'
Read*, OR
Print*, 'Enter half the length of the fiber [nm].'
Read*, length
Print*, Enter the slice desired o f the fiber [nm].'
Print*, '(Pi/3 times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*, seed
Print*, Enter the tilt angle.'
Print*, '(Pi/3 times this number.)'
Read*, gamma

114

beta=gamma* Pi/3.0
cut2=cutl* Pi/3.0
s=rtc()
n=2*OR*dcos(Pi/6)
0=2*0R*dsin(Pi/6)
D=2*OR

CC Iteration Loop
Do 10 1= Liter
number=seed+l

CC Draw Random Numbers
Do 2 m=0,l 17
B(1 ,m)=ran2(number)

2 continue

ial=idint(10*8(1,100))
ia2=idint((100*8(1,100))-(10* ia 1))
iat=10*ia2+ial

ibl=idint(10*8(l,l01))
ib2=idint((100* 8(1,101))-(10* ib 1))
ibt=10*ib2+ibl

icl=idint(l 0*8(1,102))
ic2=idint((100*8(1,102))-(10* id))
ict=10*ic2+icl

idl=idint(10*8(l,103))
id2=idint((100*8(1,103))-(10* id 1))
idt=10*id2+idl

iel=idint(l 0*8(1,104))
ie2=idint((100* 8(1,104))-(10* ie 1))
iet=10*ie2+iel

ifl=idint(10*8(l,105))
if2=idint((100*8(1,105))-(10*ifl))
ift=10*if2+ifl

jal=idint(10*8(l,106))
ja2=idint((100*8(1,106))-(10*ja 1))
jat=10*ja2+jal

jbl=idint(10*8(l,107))
jb2=idint((100*8(1,107))-(10*jb 1))

115

jbt=l0*jb2+jbl

jcl=idint(10*8(1,108))
jc2=idint((100*8(1,108))-(10*jc 1))
jct=10*jc2+jcl

jdl= idint(l 0*8(1,109))
jd2=idint((100*8(1,109))-(10*jdl))
jdt=10*jd2+jdl

jel=idint(10*8(1,110))
je2=idint((100*8(1,110))-(10*je 1))
jet=10*je2+jel

jf l= id in t(1 0 * 8 (l,lll))
jf2=idint((100* 8(1,11 l))-(10*jfl))
jft=10*jf2+jn

kal=idint(10*8(l,112))
ka2=idint((100*8(1,112))-(10* ka 1))
kat=10*ka2+kal

kbl=idint(10*B(l,113))
kb2=idint((100*8(1,113))-(10*kb 1))
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114))
kc2=idint((100*8(1,114))-(10* kc 1))
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115))
kd2=idint((100*8(l,115))-(10*kdl))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116))
ke2=idint((100*8(1.116))-(10*ke 1))
ket=10*ke2+kel

kfl =idint(10*8(1,117))
kf2=idint((100*8(1,11 ?))-(10*kfl))
kfl=10*kf2+kfl

xl=2.00002*OR*B(l,iat)-l .00001 *0R
x2=2.00002*OR*B(l ,ibt)-1.00001 *0R

116

x3=2.00002*OR*B(1 ,ict)-1.00001 *0R
x4=2.00002*OR*B(1 ,idt)-l .00001 *0R
x5=2.00002*OR* B(1 ,iet)-1.00001 *OR
x6=2.00002*OR* B (l,ift)-1.00001 *0R
yl=2.00002*length*B(l ja t) -1.00001 * length
y2=2.00002*length*B(l jb t) -1.00001 * length
y3=2.00002* length* B(1 je t) -1.00001 * length
y4=2.00002* length* B(1 jd t) -1.00001 * length
y5=2.00002*length*B(l je t) -1.00001 * length
y6=2.00002* length* B(1 jf t) -1.00001 * length
z 1 =2.00002*OR* B(1 ,kat)-1.00001 *OR
z2=2.00002*OR*B(l,kbt)-1.00001 *OR
z3=2.00002*OR*B(l,kct)-1.00001 *0R
z4=2.00002*OR*B(1 ,kdt)-1.00001 *0R
z5=2.00002*OR*B(l,ket)-1.00001 *0R
z6=2.00002*OR*B(l ,kft)-l .00001 *0R

Rl=dsqrt((xl**2)+(zl**2))
R2=dsqrt((x2**2)+(z2**2))
R3=dsqrt((x3**2)+(z3**2))
R4=dsqrt((x4**2)+(z4**2))
R5=dsqrt((x5* *2)+(z5 * *2))
R6=dsqrt((x6* *2)+(z6* *2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points

if (S 1 .LE.Iength) then
if(R l.LE.O R)then
if(yl.EQ.O.O)then
alpha=Pi/2
else
alpha=datan(xl/yl)
end if
dist=dsqrt((xl **2)+(yl **2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha-t-beta)
zprime=zl
Do 14 n=0,400

117

zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2'*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi*xprime+Qj*yprime+Qk*zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+0)
ease3=Qi * (xprime+fl)+Qj * yprime+Qk* (zprime-O)
ease4=Qi*xprime+Qj*yprime+Qk*(zprime+D)
ease5=Qi*xpnme+Q)*yprime+Qk*(zphme-0)
ease6=Qi*(xprime-fl)+Qj *yprime+Qk'"(zpriiiie+f2)
ease7=Qi*(xprime-fl)+Qi*yprime+Qk*(zprime-f2)
A(1 ,n)=A(1 ,n)+2*dcos(ease 1)+2*dcos(ease2)+

+ 2 * dcos(ease3)+2 * dcos(ease4)+2 * dcos(ease5)+
+ 2*dcos(ease6)+2*dcos(ease7)

14 continue
count=count+l
endif
endif

If (S2.LE.length) then
if(R2.LE.0R) then
if(y2.EQ.0.0)then
alpha=Pi/2
else
aipha=datan(x2/y2)
end if
dist=dsqrt((x2**2)+(y2**2))
xprime=dist*dsin(aipha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z2
Do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg"'dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi*xprime+Qj*yprinie+Qk*zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+f2)
ease3=Qi*(xprinte+fl)+Qj*ypiime+Qk*(zprinie-f2)
ease4=Qi*xprime+Qj*yprime+Qk*(zprime+f3)
ease5=Qi *xprime+Qj *yprime+Qk* (zprime-f3)
ease6=Qi*(xprime-fl)+Qj *yprime+Qk*(zprime+f2)
ease7=Qi*(xprime-fl)+Qj *yprime+Qk*(zprime-f2)
A(1 ,n)=A(1 ,n)+2*dcos(ease 1)+2*dcos(ease2)+

+ 2*dcos(ease3)+2*dcos(ease4)+2*dcos(ease5)+

118

+ 2*dcos(ease6)+2"‘dcos(ease7)
24 continue

count=count+l
endif
endif

if (S3.LE.Iength) then
if(R3.LE.OR)then
if (y3.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x3/y3)
end if
dist=dsqrt((x3 * *2)+(y3 * *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 34 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
C^=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)"‘dsin(2*zeta)
ease 1 =Qi*xprime+Qj*yprime+Qk*zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj*yprime+Qk*(zprinie-f2)
ease4=Qi * xprime+Qj * yprime+Qk* (zpri me+O)
ease5=Qi*xprime+Qi*yprime+Qk*(zprime-f3)
ease6=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime+f2)
ease7=()i*(xprime-fl)+(^*yprime+Qk*(zprime-f2)
A(1 ,n)=A(1 ,n)+2*dcos(ease 1)+2*dcos(ease2)+

+ 2 * dcos(ease3)+2 * dcos(ease4)+2 * dcos(ease5)+
+ 2*dcos(ease6)+2*dcos(ease7)

34 continue
count=count+l
endif
endif

if (S4.LE.Iength) then
if (R4.LE.0R) then
if (y4.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x4/y4)
end if

119

dist=dsqrt((x4**2)+(y4**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z4
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qi=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi* xprime+Qj *yprime+Qk* zprime
ease2=Qi*(xprime+fl)+Qj‘‘‘yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime-f2)
ease4=Qi* xprime+Qj *yprime+Qk*(zprime+G)
ease5=Qi*xprime+Qj*yprime+Qk*(zprime-f3)
ease6=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime+f2)
ease7=Qi* (xprime-fl)+Qj "‘yprime+Qk* (zprime- f2)
A(1 ,n)=A(1 ,n)+2*dcos(ease 1)+2*dcos(ease2)+

+ 2*dcos(ease3)+2*dcos(ease4)+2*dcos(ease5)+
+ 2*dcos(ease6)+2*dcos(ease7)

44 continue
count=count+l
endif
endif

if (S5.LE.Iength) then
if(R5.LE.0R) then
if(y5.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x5/y5)
end if
dist=dsqrt((x5**2)+(y5**2))
xprime=dist*dsin(aipha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z5
Do 54 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2 * zeta)-1)
(^=Bragg*dcos(cut2)*dsin(2 * zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi*xprime+(^*yprime+Qk*zprime
ease2=Qi*(xprime+fl)+Cij*yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj *yprime+Qk*(zprime-f2)
ease4=Qi ♦ xprime+(^ *yprime+Qk*(zprime+D)

120

ease5=Qi ♦xprime+Q *y prime+Qk* (zprime-O)
ease6=Qi'*'(xprime-fl)+Qj*yprinie+Qk*(zprime+f2)
ease7=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime-f2)
A(1 ,n)=A(I ,n)+2*dcos(ease 1)+2*dcos(ease2)+

+ 2 * dcos(ease3)+2 * dcos(ease4)+2 * dcos(ease5)+
+ 2*dcos(ease6)+2*dcos(ease7)

54 continue
count=count+l
endif
endif

if (S6.LE.length) then
if (R6.LE.0R) then
if (yô.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(x6/y6)
end if
dist=dsqrt((x6**2)+(y6**2))
xprime=dist* dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi *xprinte+Qj * yprime+Qk* zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime-f2)
ease4=Qi * xprime+Qj * yprime+Qk*(zprime+f3)
ease5=Qi*xprime+Qj*yprime+Qk*(zprime-D)
ease6=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime+f2)
ease7=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime-t2)
A(1 ,n)=A(1 ,n)+2*dcos(ease I)+2*dcos(ease2)+

+ 2 * dcos(ease3)+2 * dcos(ease4)+2 * dcos(easeS)+
+ 2*dcos(ease6)+2*dcos(ease7)

64 continue
count=count+l
endif
endif

10 Continue

121

print*, '----------------- '
print*, 'Iterations'
print*, iter
print*, '----------------- '
print*, 'Number o f Points'
print*, count
print*, '----------------- '

final=A(l,0)

Do iü l n=ü,4üü
A(1 ,n)=dlog 10((A(1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, CPU Time (seconds)'
print*, timespent
print*. Iterations Per Seconds'
print*, dev

Do 102 n=0,400
write (15,*) A (l,n)

102 Continue

End

Random Number Function Goes Here

122

APPENDIX C FORTRAN Programs Used in Chapter 3

C .l. Core/Corona

CC This file will model a core/corona through random numbers,
use portlib
real*8 s, si, timespent
lnteger*4 iter, 1, number
lnteger*4 m. n
Integer ial, ia2, iat, ib l, ib2, ibt,

+ i d , ic2, ict, id l, id2, idt, iel, ie2, iet, ifl, if2, ift,
+ j a l , Ja2, Jat, J b l, Jb2, Jbt, Jc 1, Jc2, Jet, Jd 1, Jd2, Jdt,
+ je l , Je2, Jet, jf l,J f2 , Jft, kal, ka2, kat, kb l, kb2, kbt,
+ kc l, kc2, kct, kd 1, kd2, kdt, ke 1, ke2, ket, k f l , kl2, kft

Real*8 O Rl, 0R 2, A(1,401), Pi, lamda, Qi, dev,
+ Qk, Bragg, zeta, final 1, 8(1,118), ran2,x 1, x2, x3, x4, x5,
+ x6, y l, y2, y3, y4, y5, y6, z l, z2, z3, z4, z5, z6, R l, R2,
+ R3, R4, R5, R 6 ,11,12,13, C(1,401), final2, final3, H, 12,13

CC Initilization of some o f the varibles and the constants.
Do 1 n=0,400
A(l,n)=0.0
C(l,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda

CC Input statements.
Print*, Corona Sphere Scattering'
Print*, 'Enter the radius o f the core [nm].'
Read*, ORl
Print*, Enter the radius o f the corona [nm].'
Read*, 0R 2
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter the ratio o f the electron denisty'
Print*, 'of the outer shell to the core (assume 1.0).'
Read*, 11
s=rtc()

CC Iteration Loop
Do 10 1=1,iter
number=l

123

CC Draw Random Numbers
Do 2 m=0,l 17
B(1 ,m)=ran2(number)

2 continue

ial=idint(10*8(1,100))
ia2=idint((100*8(1,100))-(10* ia 1))
iat=10*ia2+ial

ibl=idint(10*8(l,101))
ib2=idint((100* 8(1,101))-(10 * ib 1))
ibt=10*ib2+ibl

id =idint(l 0*8(1,102))
ic2=idint((100*8(1,102))-(10* ic 1))
ict=10*ic2+icl

idl=idint(10*8(l,103))
id2=idint((100*8(1,103))-(10* id 1))
idt=10*id2+idl

iel=idinl(l 0*8(1,104))
ie2=idint((100*8(1,104))-(10* ie 1))
iet=10*ie2+iel

in=idint(10*8(l,105))
if2=idint((100*8(1,105))-(10* ifl))
ift=10*if2+ifl

jal= idint(l 0*8(1,106))
ja2=idint((100*8(1,106))-(10*ja 1))
jat=10*ja2+jal

jbl=idint(10*8(l,107))
jb2=idint((100*8(1,107))-(10*jb 1))
jbt=10*jbi+jbl

jcl=idint(10*8(l,108))
jc2=idint((100*8(1,108))-(10*jcl))
jct=10*jc2+jcl

jd l= idint(l 0*8(1,109))
jd2=idint((100*8(1,109))-(10*jd 1))

124

j d t = 1 0 * j d 2 + j d l

je l=idint(10*8(1,110))
Je2=idint((100*8(1,110))-(10*Je 1))
Jet=10*je2+Jel

jfl=idint(10*8(1, 111))
J f2=idint((100*8(1,111))-(10*j n))
Jft=10*Jf2+Jfl

kal=idint(l 0*8(1,112))
ka2=idint((100*8(1,112))-(10* ka 1))
kat=10*ka2+kal

kb l=idint(10*8(1,113))
kb2=ldint((100*8(1,113))-(10* kb 1))
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114))
kc2=idint((100*8(1,114))-(10*kc 1))
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115))
kd2=ldint((100* 8(1,115))-(10*kd 1))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116))
ke2=idint((100*8(1,116))-(10*ke 1))
ket=10*ke2+kel

kfl=idint(10*8(l,117))
kO=idint((100*8(1,117))-(10* kfl))
kft=10*kf2+kfl

X1 =2.00002*OR2*8(1 ,iat)-1.00001 *0R2
x2=2.00002*OR2*8(1 ,ibt)-1.00001 *0R2
x3=2.00002*OR2*B(1 ,ict)-1.00001 *0R2
x4=2.00002*OR2*8(1 ,idt)-1.00001 *0R2
x5=2.00002*OR2*8(1 ,iet)-l .00001 *0R2
x6=2.00002*OR2*8(1 ,ift)-1.00001 *0R2
y 1 =2.00002*OR2*8(1 ja t)-1.00001 *0R2
y2=2.00002*OR2*8(1 jb t)-1.00001 *0R2
y3=2.00002*OR2*8(1 je t)-1.00001 *0R2
y4=2.00002*OR2*8(l jd t)-1.00001 *0R2

125

y5=2.00002*OR2*B(1 je t) -1.00001 *0R2
y6=2.00002*OR2*B(l Jft)-1.00001 *0R2
zl=2.00002*OR2*B(l,kat)-1.00001*OR2
z2=2.00002*OR2*B(l,kbt)-l.00001*OR2
z3=2.00002*OR2*B(1 ,kct)-1.00001 *OR2
z4=2.00002*OR2*B(1 ,kdt)-1.00001 *0R2
z5=2.00002*OR2*B(1,ket)-1.00001 *0R2
z6=2.00002*OR2*B(1 ,kft)-1.00001 *0R2

R 1 =dsqrt((x 1 * *2)+(y 1 **2)+(zl * *2))
R2=dsqrt((x2**2)+(y2**2)+(z2**2))
R3=dsqrt((x3**2)+(y3**2)+(z3**2))
R4=dsqrt((x4**2)+(y4**2)+(z4**2))
R5=dsqrt((x5**2)+(y5**2)+(z5**2))
R6=dsqrt((x6**2)+(y6**2)+(z6**2))

CC Test points
if(R l.L E .0R 2)then
if(R l.L E .O R l)then
Do 3 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x 1+Qk*zl)

3 continue
else
Do 13 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x 1 +Qk*zl)

13 continue
endif
endif

if(R2.LE.OR2)then
if(R 2 .L E .0R l)then
Do 4 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x2+Qk*z2)

4 continue

126

else
Do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsln(2 * zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x2+Qk*z2)

14 continue
endif
endif

if(R3.LE.OR2)then
if(R 3 .L E .0R l)then
Do 5 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x3+Qk*z3)

5 continue
else
Do 15n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x3+Qk*z3)

15 continue
endif
endif

if(R4.LE.OR2)then
if(R 4 .L E .0R l)then
Do 6 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x4+Qk*z4)

6 continue
else
Do 16 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2*zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x4+Qk*z4)

16 continue
endif

127

endif

if (R5.LE.OR2) then
if(R 5 .L E .0R l)then
Do 7 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x5+Qk*z5)

7 continue
else
Do 17 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x5+Qk*z5)

17 continue
endif
endif

if(R6.LE.OR2) then
if(R 6 .L E .0R l)then
Do 8 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2 * zeta)
A(1 ,n)=A(I ,n)+2*dcos(Qi*x6+Qk*z6)

8 continue
else
Do I8n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 * zeta)-1)
Qk=Bragg*dsin(2*zeta)
C(I ,n)=C(I ,n)+2*dcos(Qi*x6+Qk*z6)

18 continue
endif
endif

10 Continue
print*, '----------------- '
print*, 'Radius o f the Core'
print*, ORl
print*, '----------------- '
print*, 'Radius o f the Corona'

128

print*, OR2
print*, ’----------------- '
print*, 'Iterations'
print*, iter
print*, '----------------- '
final 1=A(1,0)
final2=C(1,0)

fl=4*Pi*(ORl**3)/3
f2=4*Pi*(OR2**3)/3
f3=f2-n
12=11* final I*t3/final2
13=12/n
Do 101 n=0,400
C(l,n)=C(l,n)*13

101 Continue
Do 102 n=0,400
A (l,n)=A(l,n)+C(l,n)

102 Continue
final3=A(1,0)
Do 103 n=0,400
A(l,n)=A(l,n)/final3

103 Continue
Do 104 n=0,400
A(l,n)=(A(l,n))**2

104 Continue
Do 105 n=0,400
A(l,n)=dloglO(A(l,n))

105 Continue
sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, CPU Time (seconds)'
print*, timespent
print*. Iterations Per Seconds'
print*, dev
Do 106 n=0,400
write (15,*) A(l,n)

106 Continue
dev=l
End

Random Number Function Goes Here

129

C.2. Core/Shell

CC This file will model a sphere with an outer shell through random numbers,
use portlib
realms s, si, timespent
Integer* 4 iter, 1, number
Integer*4 m, n
Integer ia l, ia2, iat, ibl, ib2, ibt, i d , ic2, ict, id l, id2, idt,

+ ie l, ie2, iet, ifl, iO, ift,ja l,ja2 , jat, jb l , jb2, jbt, jc l,jc 2 , jet,
+ jd l , jd2, jdt, je l , je2,jet, jf l , jt2 , jft, kal, ka2, kat, kb l, kb2,
+ kbt, kc 1, kc2, kct, k d l, kd2, kdt, ke 1, ke2, ket, k f l, kG, kft

Real*8 O R l, 0R2, 0R3, A(1,401), Pi, lamda, Qi, dev,
+ Qk, Bragg, zeta, final 1, 8(1,118), ran2, x l, x2, x3, x4, x5
+ x6, y l, y2, y3, y4, y5, y6, z l, z2, z3, z4, z5, z6, R l, R2, R3
+ R4, R5, R 6 ,11,12,13, C(1,401), final2, final3, H, 12, f3 ,14
CC Initilization of some of the varibles and the constants.

Do 1 n=0,400
A(l,n)=0.0
C(l,n)=0.0

1 Continue
Pi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda

CC Input statements.
Print*, Corona Sphere Scattering'
Print*, 'Enter the radius o f the core [nm].'
Read*, ORl
Print*, Enter the inner radius o f the corona [nm].'
Read*, 0R 3
Print*, Enter the outer radius o f the corona [nm].'
Read*, 0R 2
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter the ratio of the electron denisty'
Print*, 'of the outer shell to the core (assume 1.0).'
R ead*,11
s=rtc()

CC Iteration Loop
Do 10 1=1,iter
number=l

CC Draw Random Numbers
Do 2 m =0,117
B(I ,m)=ran2(number)

2 continue

130

ial=idint(10*8(1,100))
ia2=idint((100*8(1,100))-(10*ia 1))
iat=10*ia2+ial

ibl=idint(10*8(l,101))
ib2=idint((100* 8 (1,101))-(10* ib 1))
ibt=10*ib2+ibl

icl=idint(l 0*8(1,102))
ic2=idi nt((100*8(1,102))-(10* ic 1))
ict=10*ic2+icl

idl=idint(10*8(l,103))
id2=idint((100*8(1,103))-(10* id 1))
idt=10*id2+idl

iel=idint(l 0*8(1,104))
ie2=idint((100*8(1,104))-(10* ie 1))
iet=10*ie2+iel

ifl=idint(10*8(l,105))
if2=idint((100*8(1,105))-(10* ifl))
ift=10*if2+in

jal= idint(l 0*8(1,106))
ja2=idint((100*8(1,106))-(10*ja 1))
jat=10*ja2+jal

jb l= idint(l 0*8(1,107))
jb2=idint((100*8(1,107))-(10*jb 1))
jbt=10*jb2+jbl

jcl=idint(10*8(l,108))
jc2=idint((100*8(1,108))-(10*jc 1))
jct=10*jc2+jcl

jdl=idint(10*8(l,109))
jd2=idint((100*8(1,109))-(10*jd 1))
jdt=10*jd2+jdl

je l= id in t(10*8(l,l 10))
je2=idint((100*8(1,110))-(10*je 1))
jet=10*je2+jel

131

K»

N N
4 ̂ Ut

I IN> K)

ii
♦ *

CP CD

il
N) tO

ô ô
S B

• *
00 00

0 \ LA 4k u t W *—
I l I I I I I I I I I I

KJ KJ t o l o l o t o

X X % X X %
0 \ Lfl 4 ̂ Ul to '—■

I l I I I I I I I I I Ito lO to to to to

§§ to to
Ô Ô
S B

* *
CD CD

II
ii
« *

OD CD

II
ii
« *

CD CD

II
ii

* *
CD CD

i ito to
Ô 6
BB
« *

CD 0 3

i ito to
6 6
BB

* *
00 00

iiii • • • • • • • • • •

i i l i i i i i i i i i
O O O O S O O O O O O O O O O O

* * * * *

ô o ô o ^ o o o o o u o o ô ô o
g B g S S 2 5 ? 5 g g S B g S B 5

X" 7T 7T

Î S ?
O O . C l

5 l i

00 —

7T
3

2T 2T n n n
111
0 0.0.
g f 5 5-

i V00 —

Ov
0\ ■

O
*

?T

S E E
111
0 0.0.

iii
LA '

E

E E E
111
0 0. 0.
M Iip00 —

o
*

E

X- X- 7T
O - O " O ' 'TT to —

0 0.0.

H
ut

X"
O'

X" X" X"C9 p C3
Ï J . Ï
0 0.0.

CO —

to
to '

o
*

E

m .
0 0. 0.
L* 5 ' 5 '

= 1 103 ~

o
*

z5=2.00002*OR2*B(1 ,ket)-1.00001 *0R2
z6=2.00002*OR2*B(l .00001 *OR2

Rl=dsqrt((x 1 **2)+(y 1 •♦2)+(zl **2))
R2=dsqrt((x2**2)+(y2**2)+(z2**2))
R3=dsqrt((x3**2)+(y3**2)+(z3**2))
R4=dsqrt((x4**2)+(y4**2)+(z4**2))
R5=dsqrt((x5 * *2)+(y5 * *2)+(z5 * *2))
R6=dsqrt((,x6**2)+(y6**2)+(z6**2))

CC Test points
If (R l.LE.O R l) then
Do 3 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 * zeta)-1)
Qk=Bragg*dsin(2*zeta)
A(I ,n)=A(I ,n)+2*dcos(Qi*x 1 +Qk*zl)

3 continue
end if

if(R l.G E .0R 3)then
if(R l.L E .0R 2) then
do 13 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x 1 +Qk*zl)

13 continue
endif
endif

if(R2.LE.O Rl)then
Do 4 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(I ,n)=A(1 ,n)+2*dcos(Qi*x2+Qk*z2)

4 continue
endif

if(R2.GE.OR3)then
if(R2.LE.OR2) then
Do 14 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)

133

O n Os LA LA

n o

n
g iîî
i
/O

S’

I
I

22
S g

i l
II

A) g
*

ii

n o
§ . §

>00

l î î i

III
'I l

I
I I

>2.
O

Ozr
*

llIPff
 5 5 SP ?n fts !?H. » rë -* 3

Os O * O

g
i f fîî

*
X
w

ozr
*

G,

PS 70ut ut
H b
M m

i l
il

u w

a m

il
o? r

*

&

i*

5
UJ
G\«
4̂

8
i S

s*

- - 5 - 5 Œô̂|
f i
l a

*

&
O? r

*

K>

endif

lf(R 5 .L E .0R l)then
Do 7 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg* dsin(2* zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x5+Qk*z5)

7 continue
endif

if(R5.GE.OR3)then
if (R5.LE.OR2) then
Do 17 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
C(1 ,n)=C(1 ,n)+2*dcos(Qi*x5+Qk*z5)

17 continue
endif
endif

if(R 6 .L E .0R l)then
Do 8 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A(1 ,n)+2*dcos(Qi*x6+Qk*z6)

8 continue
endif

if(R6.GE.OR3)then
if(R6.LE.OR2) then
Do 18n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qk=Bragg*dsin(2* zeta)
C(1 ,n)=C(l ,n)+2*dcos(Qi*x6+Qk*z6)

18 continue
endif
endif

10 Continue

135

print*, '*---------------------------*'
print*, 'Radius o f the Core'
print*, ORl
print*, '*--------------------------- *'
print*, 'Inner radius o f the Corona'
print*, 0R3
print*, '*--------------------------- *'
print*. Outer radius o f the Corona'
print*, 0R 2
print*, '*--------------------------- *'
print*, 'Number of Iterations'
print*, iter
print*, '*--------------------------- ♦'
fm all=A(l,0)
fina!2=C(l,0)

fl=4*Pi*(ORl**3)/3
f2=4*Pi*(OR2**3)/3
f3=4*Pi*(OR3**3)/3
f4=f2-G
12=11* final 1* f4/final2
13=12/n

Do 101 n=0,400
C(l,n)=C(l,n)*13

101 Continue
Do 102 n=0,400
A(l,n)=A(I,n)+C(l,n)

102 Continue
fmal3=A(l,0)
Do 103 n=0,400
A(l,n)=A(l,n)/final3

103 Continue
Do 104 n=0,400
A(l,n)=(A(l,n))**2

104 Continue
Do 105 n=0,400
A(l,n)=dloglO(A(l,n))

105 Continue
sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, CPU Time (seconds)'
print*, timespent

136

print*, 'Iterations Per Seconds'
print*, dev
print*, final 1
print*, final2
print*, fl
print*, f4
print*, 13

Do 106 n=0,400
write (15,*) A(l,n)

106 Continue
dev=l
End

Random Number Function Goes Here

137

C.3. Layered Cylinder

CC This file will model a layered cylinder through random numbers,
use portlib
real*8 s, si, timespent
Integer*4 iter, 1, m, n
Integer ia l, ia2, iat, ib l, ib2, ibt, ic i, ic2, ict, idl, id2, idt,

+ ie l, ie2, iet, ifl, if2, ift, ja l , ja2, jat, jb l , jb2, jbt,
+ jc 1, jc2, jet, Jd 1, Jd2, Jdt, Je 1, Je2, Jet, j f l , J12, J ft,
T ka l, ka2, kat, kb l, kb2, kbl, kcl, kc2, kcl, kdl, kd2, kdt,
+ ke 1, ke2, ket, k f l , kf2, kft

R eal*80R l, 0R 2, half!, A(1,401), 8(1,118), C(1,401),
+ Pi, lamda, dev, 11,12,13,14,15,16,17, m l, m2, Qi,
+ Qj, Qk, Bragg, zeta, ran2, cutl, cut2, x l, x2, x3, x4,
+ x5, x6, y 1, y2, y3, y4, y5, y6, z l , z2, z3, z4, z5, z6,
+ R1,R2, R3, R4, R5, R6, R12, SI, 82, S3, S4, S5, S6, n l,
+ final 1, final2, final3, t l , t2 , t3, t4, t5, volume 1,
+ volume2, ratio 1, ratio2, ratio3, check 1, check2, check3

CC Initilization of some o f the varibles and the constants.
Do 1 n=0,400
A(l,n)=0.0
C(l,n)=0.0

1 Continue
Fi=3.1415927
lamda=. 154242
Bragg=2*Pi/lamda

CC Input statements.
Print*, Layered Cylinder Scattering Simulation.'
Print*, 'Enter the half length of the fiber [nm].'
Read*, halfL
Print*, Enter half the length of the main segment [nm].'
Read*, 11
Print*, Enter the radius o f the main segment [nm].'
Read*, ORl
Print*, Enter half the length o f the secondary segment [nm].'
Read*, 12
Print*, Enter the radius o f the secondary segment [nm].'
Read*, 0R2
Print*, Assuming the electron density o f the main segment to be.'
Print*, one. Enter the ratio o f the secondary segment.'
Read*,R12
Print*, Enter the slice desired o f the cylinder [nm].'

138

Print*, '(Pi times this number.)'
Read*, cutl
Print*, 'Enter the number o f iterations desired.'
Read*, iter
cut2=cutl*Pi
s=rtc()
13=(2*11)+(2*12)
ml=ll/13
m2=(ll+2.0*12)/13

CC Iteration Loop
Do 10 1= Liter

CC Draw Random Numbers
Do 2 m=0,117
B(l,m)=ran2(l)

2 continue

ial=idint(10*B(l,100))
ia2=idint((1 GO* B(1,100))-(10* ia 1))
iat=10*ia2+ial

ibl=idint(10*B(l,101))
ib2=idint((100*8(1,101))-(10* lb 1))
ibt=10*ib2+ibl

icl=idint(10*B(l,102))
ic2=idint((100*B(1,102))-(10*ic 1))
ict=10*ic2+icl

id l=idint(10*8(1,103»
id2=idint((100*8(1,103))-(10*idl))
idt=10*id2+idl

iel=idint(l 0*8(1 ,104»
ie2=idint((100* B(1,104»-(10*ie 1))
iet=10*ie2+iel

in =idint(l 0*8(1 ,105»
if2=idint((100*8(1,105))-(10*ifl))
ift=10*if2+in

ja l =idint(10*8(1,106»
ja2=idint((100*B(1,106))-(10*Jal))
Jat=10*Ja2+Jal

139

jbl=idint(10*8(1,107))
jb2=idint((100*B(1,107))-(10*jb 1))
jbt=10*jb2+jbl

jcl= idint(l 0*8(1,108))
jc2=idint((100*8(1,108))-(10*jc 1))
jct=10*jc2+jcl

jdl=idint(10*8(l,109))
jd2=idint((100*8(1,109))-(10*jd 1))
jdt=10*jd2+jdl

je l=idint(l 0*8(1,110))
je2=idint((100* 8(1,110))-(10*Je 1))
Jet=10*je2+jel

Jfl=idint(10*8(1, 111))
Jf2=idint((100* 8(1,111))-(10*j n))
Jft=10*Jf2+jfl

kal=idint(l 0*8(1,112))
ka2=idint((100*8(1,112))-(10*kal))
kat=10*ka2+kal

kb l=idint(l 0*8(1,113))
kb2=idint((100* 8(1,113))-(10* kb 1))
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114))
kc2=idint((100* 8(1,114))-(10*kc 1))
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115))
kd2=idint((100*8(1,115))-(10*kd 1))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116))
ke2=idint((100*8(1,116))-(10*ke 1))
ket=10*ke2+kel

kfl =idint(l 0*8(1,117))
k£2=idint((100* 8(1,117))-(10* kfl))
kft=10*kG+kfl

140

X1 =2.00002*B(1 ,iat)-1.00001
x2=2.00002* B(1 ,ibt)-1.00001
x3=2.00002*B(1 ,ict)-1.00001
x4=2.00002* B(1 ,idt)-1.00001
x5=2.00002* B(1 je t) . 1.00001
x6=2.00002*B(1 jf t) . 1.00001
y I =2.00002* B(1 ja t) . 1.00001
y2=2.00002 * B(1 jb t) -1.00001
y3=2.00002* B(1 je t) -1.00001
y4=2.00002* B(1 jd t) -1.00001
y5=2.00002*B(l je t) -1.00001
y6=2.00002*B(ljft)-l.00001
z 1 =2.00002 * B(1 ,kat)-1.00001
z2=2.00002*B(1 ,kbt)-1.00001
z3=2.00002*B(1 ,kct)-1.00001
z4=2.00002 * B(1 ,kdt)-1.00001
z5=2.00002*B(l,ket)-l.00001
z6=2.00002*B(1 ,kft)-1.00001

R 1 =dsqrt((x 1 * *2)+(z 1**2))
R2=dsqrt((x2* *2)+(z2* *2))
R3 =dsqrt((x3 * *2)+(z3 * *2))
R4=dsqrt((.x4**2)+(z4**2))
R5 =dsqrt((x5 * *2)+(z5 * *2))
R6=dsqrt((x6**2)+(z6**2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points
if (S I.LE. 1.0) then
if (Rl.LE.1.0) then
14=haifL*yl
15=14/13
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.l7.GE.m2) then
do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
()j=Bragg*dcos(cut2)*dsin(2*zeta)

141

Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x 1 *0R1)+(Qk*zl *0R1)+(Qj*14)
A(1 ,n)=A(1 ,n)+2*dcos(n 1)

14 continue
else
do 15 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Q«*xl*OR2)+(Qk*zl*OR2)+(Qj*14)
C(1 ,n)=C(1 ,n)+2*dcos(n 1)

15 continue
endif
endif
endif

if(S2.LE.1.0)then
if(R2.LE.1.0) then
14=halfL*y2
15=14/13
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.l7.GE.m2) then
do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)* dsin(2 * zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x2*ORl)+(Qk*z2*ORl)+(Qj^l4)
A(1 ,n)=A(1 ,n)+2*dcos(n 1)

24 continue
else
do 25 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x2*OR2)+(Qk*z2*OR2)+(Qj*14)
C(1 ,n)=C(1 ,n)+2*dcos(n 1)

25 continue
endif
endif
endif

142

if(S3.LE.1.0)then
if(R3.LE.1.0) then
14=halfL*y3
15=14/13
16=dabs(15)
17=16-dlnt(16)
if (17.LE.ml .or.l7.GE.m2) then
do 34 n=0,400
zeta= PI * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
n 1 =(Qi ♦ x3 ♦ OR 1)+(Qk* z3 *0R 1)+(Qj * 14)
A(1 ,n)=A(1 ,n)+2*dcos(n 1)

34 continue
else
do 35 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
n 1 =(Qi *x3 *OR2)+(Qk*z3 •0R2)+(Qj ♦ 14)
C(1 ,n)=C(1 ,n)+2*dcos(n 1)

35 continue
endif
endif
endif

if(S4.LE.1.0) then
if(R4.LE.1.0) then
14=halfL*y4
15=14/13
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.l7.GE.m2) then
do 44 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x4*ORl)+(Qk*z4*ORI)+(Qj*14)
A(1 ,n)=A(1 ,n)+2*dcos(n 1)

44 continue
else

143

do 45 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x4*OR2)+(Qk*z4*OR2)+(Qj*14)
C(1 ,n)=C(1 ,n)+2*dcos(n I)

45 continue
endif
endif
endif

if(S5.LE.1.0) then
if(R5.LE.1.0)then
14=halfL*y5
15=14/13
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.17.GE.m2) then
do 54 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
(Jj=Bragg‘''dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x5*ORl)+(Qk*z5*ORl)+(Qj*14)
A(1 ,n)=A(1 ,n)+2 *dcos(n 1)

54 continue
else
do 55 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
CÜ=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x5*OR2)+(Qk*z5*OR2)+(Qj*14)
C(1 ,n)=C(1 ,n)+2*dcos(n 1)

55 continue
endif
endif
endif

if(S6.LE.1.0)then
if(R6.LE. 1.0) then
14=hal(L*y6
15=14/13

144

16=dabs(15)
I7=l6-dint(16)
if(l7.LE.ml.or.l7.GE.m2) then
do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x6*ORlHQk*z6*ORl)+(Qj*14)
A(1 ,n)=A(1 ,n)+2*dcos(n I)

64 continue
else
do 65 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsln(cut2)*dsin(2*zeta)
n 1 =(Qi*x6*OR2)+(Qk*z6*OR2)+(Qj *14)
C(1 ,n)=C(1 ,n)+2*dcos(n 1)

65 continue
endif
endif
endif

10 Continue
final 1 =A(1,0)
final2=C(1,0)
tl=halfL/13
t2=dint(tl)
l3=tl-t2
t4=t3*13
t5=ll+(2*12)

if(t4 .L E .ll)lhen
volume l=(4*t2*ll*0R l)+(2*t4*OR 1)
volume2=4*t2*12*OR2
elseif (t4.GT.t5) then
volumel=(4*t2*ll*ORl)+(2*ll*ORI)+2*ORl*(t4-t5)
volume2=(4*t2*12*OR2)+(4*12*OR2)
else
volume 1 =(4*t2*ll *0R1)+(2*l 1 *0R1)
volume2=(4*t2*12*OR2)+2*OR2*(t4-l I)
endif

145

ratio 1 =R 12*final 1 *volume2/final2
ratic2=ratio 1 /volume 1
ratio3=ratio2/R12
check 1 =volume I /OR 1
check2=volume2/OR2
check3=(check 1 +check2)/2.0

do 102 n=0,400
C(l,n)=C(l,n)*ratio2

102 continue
do 103 n=0,400
A (l,n)=A(l,n)+C(l,n)

103 continue
final3=A(l,0)

do 104 n=0,400
A(l,n)=A(l,n)/final3

104 continue
do 105 n=0,400
A(l,n)=((A(l,n))**2)

105 continue
do 106 n=0,400
A(l,n)=dloglO(A(l,n))

106 continue
sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*, 'Iterations Per Seconds'
print*, dev
print*, '-----------'
print*, halfL
print*, check3
print*, '-----------'
print*, ratio3
do 107 n=0,400
write (15,*) A (l,n)

107 continue

End

Random Number Function Goes Here

146

