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CHAPTER 1 Fundamentals o f  Small-Angie Scattering

and Monte-Carlo Simulation

1.1 Introduction

Electromagnetic radiation can be used to obtain information about materials 

whose dimensions are on the same order as the radiation wavelength. X .  An ordinary 

glass o f milk vividly illustrates this principle. In normal visible light, i.e. that emitted 

from a household fluorescent bulb, a glass o f milk appears as a continuous, milky 

white fluid, thus the name milk. However, place the same glass o f  milk in an 

ultraviolet "black" light and it appears as an emulsion o f particles because the 

wavelength of the “black” light is similar to the dimensions of the butterfat that is 

emulsified in milk. Another example o f  how radiation illuminates length scales 

similar to that o f the radiation wavelength is the blue appearance o f the sky. Density 

fluctuations in the earth's atmosphere are small and are therefore closer to the 

wavelength o f the blue portion of the visible light spectrum. Thus, the color o f 

scattered sunlight and the appearance o f  the sky are blue. If no gases were present in 

the earth's atmosphere at all then our sky would appear black like that o f the moon 

(Guinier, 1984).

Around the turn o f the 20“* century, Rdntgen discovered radiation with 

wavelength much smaller than that o f visible light. Rdntgen named this high-energy 

radiation “x-rays " because o f their unknown nature (Classer, 1945). Soon after this



discovery, von Laue and his associates discovered that crystals scatter x-rays in 

distinct patterns (von Laue, 1950). It was quickly recognized that these patterns give 

direct insight into the structure o f the materials that caused the scattering. Since these 

early discoveries, many technical advances made x-ray scattering one of the most 

powerful characterization tools available for both homogenous and heterogeneous 

materials. Today, scattering from x-rays, neutrons and light is used by scientists in 

many different disciplines to study a vast range o f materials ranging from polymers to 

proteins.

Small-Angle Scattering (SAS) experiments commonly appear as shown in 

Figure 1.1 and generally follow this procedure; irradiate a sample with some type of 

radiation (x-rays, neutrons or light), measure the resulting scattering pattern, then 

determine the structure that caused the observed pattern. Scattering patterns are 

caused by the interference of secondary waves that are emitted from various structures 

(electrons for x-rays and light, or nuclei for neutrons) when irradiated. Scattering of 

x-rays is caused by differences in electron density, scattering o f neutrons is caused by 

differences in scattering power o f different nuclei and scattering o f light is caused by 

differences in refractive index. Since the larger the diffraction angle the smaller the 

length scale probed, wide angle x-ray scattering (WAXS) is used to determine crystal 

structure on the atomic length scale while small-angle x-ray scattering (SAXS) or 

small-angle neutron scattering (SANS) is used to explore microstructure on the 

colloidal length scale (Kratky & Porod, 1949). Light is used similarly but because the 

wavelength o f light is much greater than that o f x-rays or neutrons, light scattering is



used for much larger structures like the phases in blends o f elastomers or particle size 

distributions.

Generator
Pin Holes

Monochromator

J
Sample

Detector

Beam Stop

Figure 1.1. Scattering Experimental Setup

Unlike an electron micrograph, small-angle x-ray scattering patterns do not 

give morphological information directly. The result o f a SAXS experiment is 

essentially the intensity o f  the Fourier transform of the electron density and must be 

interpreted in order to determine morphology. One fundamental problem with any 

scattering experiment is that two different morphologies can, in theory, give identical 

scattering patterns. Generally, one cannot reconstruct the exact microstructure 

uniquely from a SAXS pattern because in a scattering experiment only the scattered 

radiation intensity can be measured and all phase information is lost. Therefore, one 

cannot be absolutely sure that a scattering pattern is due to a particular morphology.



Still however, usually something is known about the system in question, so that it is 

often (but not always!) reasonable to assume that if a particular model is shown to fit 

the scattering pattern, then the model is a correct description o f the morphology. 

Nevertheless, many different approaches exist to extract morphological information 

from a SAXS pattern.

1.2 General Scattering Theory

When x-rays o f  known wavelength are scattered, a scattering vector, q , can be 

defined that is equal to —  (S -  ). Ih is  important definition is based on the

wavelength of radiation, X, and unit vectors in the incident and scattered x-ray 

directions, respectively. So and S. As shown in Figure 1.2, the angle between So and S

I  I  ^ T tis 20. Thus the resulting magnitude of the scattering vector, q , is equal to — sin 8 .
X

The scattering vector is the basis for all scattering equations.

sin0q=

Figure 1.2. Representation o f S and S,



Incoherent or Compton scattering, which is virtually nonexistent at small 

angles, refers to scattered waves that have changed phase and wavelength (Alexander, 

1969). Neglecting Compton scattering (no phase change and no wavelength change),

the coherent scattering o f  x-rays [ 1(3 )] by a single fixed particle is mathematically

represented by Equation 1.1 which is the fundamental scattering equation (Schmidt. 

1995). In Equation 1.1, 1̂  (q) is the scattered intensity o f a single electron measured

in identical conditions as l ( q ) . As shown in Figure 1.3, tj and Ik are the scattering

powers o f the j ”' and k'*’ atoms respectively. Also in Figure 1.3, rj and rk are a vectors 

from some arbitrarily chosen origin to the center o f the j'*’ and k‘*' atoms respectively.

Kq) n n
T ÿ T  =  Ë Ë c o s [ q ' ( [ j  -  [k ) ]  E q u a t io n  1.1

The square root o f the right hand side of Equation 1.1 is known as the form 

factor, Fk. Form factors have been derived analytically for many simple geometries. 

For example, the form factor for a sphere o f  radius Rs, is given in Equation 1.2 

(Guinier & Foumet, 1955). This expression was derived by Lord Rayleigh and is 

often denoted as O(qR) when used in complex scattering expressions. Some of the 

form factors with analytical expressions include cylinders (circular and oval cross 

sections), spheroids (prolate and oblate), spherical shells, concentric spherical shells, 

parallelepipedons, infinitely thin rods and infinitely flat circular disks. A more 

exhaustive list can be found in the work o f Pedersen (1997).



Kg)

ic(q)
= [F,(q,R.)r = s in (q R .) - (q R .)c o s (q R .)

(qR.)'
Equation 1.2

Scattering
Particle

Arbitrary
Origin

Figure 1.3. Illustration o f system for Equation 1.1

As particle density increases (particle volume divided by total volume), inter­

particle interference becomes a factor, i.e. the scattering pattern depends on the 

locations of the individual particles. At high particle densities inter-particle 

interference can dominate the scattering curve. The Debye Equation describes 

scattering from multiple particle systems with inter-particle interference included. The 

Debye Equation is analogous to Equation 1.1 and is given in Equation 1.3. Equation

1.3 is based on the form factors o f N different particles and a vector from the centers

o f the j*** and k“* scattering particles, R,̂  -  R j , as shown in Figure 1.4.



Equation 1.1 is based on scattering “points” and Equation 1.3 is based on 

scattering particles. Scattering “points” have no finite volume while scattering 

particles do have finite volume. Therefore when simulating scattering by choosing 

points, scattering “points” can be chosen randomly while the centers o f scattering 

particles cannot, since the latter is limited by the fact that no two particles can occupy 

the same space.

Kq ) ^
7 T ;  = EZFk(q)Fj(q)cos[q'(Rk -R,)]
i , ( q)  k T  -  -  - -- ---------- -

E q u a t io n  1.3

System of 
N Particles

Arbitrary
Origin

Figure 1.4. Illustration o f system for Equation 1.3

Occasionally, it is desired determine scattering from a collection o f anisotropic 

particles whose orientation is random. An example of this would be a dilute,



quiescent solution o f  particles. Equations 1.4 and 1.5 result from Equations 1.1 and

1.3 respectively, after orientation averaging. In these equations q is the magnitude o f

the scattering vector, |q |. rjk is the magnitude o f the “point” to “point” vector, |r, -r^ .|, 

and Rjk is the magnitude of the particle center to particle center vector, R^ -  Rj .

E ,u a , i o „ 1 .5

1.3 Analysis o f  Scattering Data and Goals o f  this Research

There are many analytical methods used to analyze scattering patterns from 

both single and multiple particle systems. At low q, the Guinier Law can be used to 

estimate the radius o f gyration o f the scattering particle (Clatter & Kratky, 1982). The 

Guinier Law works well with most single particles with the exception o f very 

anisotropic particles. At high q, the Porod Law can be used to estimate the total 

surface area o f all scattering particles regardless o f shape (Guinier, 1994). The Porod 

Law assumes a two-phase system with sharp interfaces and works for multiple particle 

systems as well.

Generally, analyzing an entire scattering pattern requires significant effort, and 

a number o f different methods are used to analyze data. The purpose here is not to 

familiarize the reader with all these methods but rather to describe the most commonly 

used approaches. The reader should note that the Monte-Carlo methods described in



this thesis can be used to calculate entire scattering patterns, and Monte-Carlo methods 

are applicable to almost any type of system; however these methods are very time 

consuming and hence should only be used when alternatives do not exist.

Morphologies without Interparticle Interference

Structural parameters from simple single-particle spherical morphologies can 

be determined in a matter o f seconds using a least squares fit o f Equation 1.2. In other 

words, a scattering curve is calculated from Equation 1.2, then it is smeared (see 

Section 1.5) and compared to the experimental scattering pattern. This process is 

repeated until the calculated scattering curve most closely matches the experimental 

one, i.e. the sum of the squares of the differences between the experimental scattering 

points and the calculated scattering points is minimized. Essentially all real 

examples o f identical single particles with perfect alignment are objects that also have 

analytical solutions, i.e. cylinders or spheroids, and can be solved with essentially the 

same procedure.

The first step in this research was to simulate scattering from these simple 

systems to prove that a Monte-Carlo method can in fact be used to simulate scattering. 

The most important outcome o f this part o f the research was in learning how to 

properly perform these simulations. The existence of analytical solutions allowed me 

to pinpoint errors in the code, allowed for the determination o f simulation times 

required, and also aided in the choice o f a random number generator. Chapter 2



describes this effort in detail, and was the basis for a paper published in the Journal o f 

Applied Crystallography.

If single particles are allowed to have a distribution o f sizes or orientations, 

then the situation becomes quite complicated. Analytical methods can be used if 

spheres have a distribution o f sizes and such methods have been applied to systems of 

Al-Li precipitates (Pedersen, 1993). Anisotropic objects with random orientation fall 

into two categories. Scattering patterns from some objects with random orientation 

(discs, cylinders, spheroids) have analytical solutions. Cylinders for example have 

been used to model dilute solutions o f hemoglobin (Foumet, 1951). Some objects 

with random orientation do not have analytical descriptions o f the scattering pattern; 

these systems require Monte-Carlo simulations developed elsewhere and described in 

more detail in Chapters 2 and 4. If the orientation of anisotropic objects is non- 

random, i.e. a fibrinogen system under shear, then there are no other approaches other 

than the Monte-Carlo approach given in this thesis to describe the complete scattering 

pattern. Chapter 3 describes this effort in detail, along with an effort to describe single 

particle systems with more than 2 electron densities. Other than spherical objects, 

systems with more than 2 electron densities do not have analytical solutions.

The ultimate goal o f this research is to develop a Monte-Carlo method that is 

able to fit real experimental data using the approach given in this thesis. For the 

simplest systems, i.e. identical single particles that are infinitely symmetric (spheres) 

or identical single particles with perfect alignment, this goal could currently be 

reached if a suitable least-squares routine were developed. The former could probably

10



be coded and run on a fast PC, while the latter is obviously more time-consuming 

because an entire two-dimensional pattern is necessary. On a PC, many weeks would 

be required to Ht a two-dimensional scattering pattern with a Monte-Carlo model, 

which is too far long to be of practical use. However a high-speed supercomputer 

could perform this function in a reasonable amount of time. Practically, there is no 

reason to develop such a routine for these systems because simpler methods exist to 

analyze scattering data from these systems.

For both multiple-electron density systems and anisotropic objects with 

preferred orientation, there would be definite practical benefit in developing least- 

square routines to fit real experimental data. Systems such as elongated micelles, and 

voids in elongated polymers presumably would scatter without interparticle 

interference, and currently there are no good methods to analyze data from such 

systems. However, the many weeks o f simulation time for a perfectly oriented system 

could possibly increase by an order o f magnitude for a system with non-perfect 

orientation.

Morphologies with Interparticle Interference

Dense multiple particle systems (both with and without preferred orientation) 

are covered in Chapter 4. Dense multiple particle systems are the most common 

example o f “real” systems and have two-dimensional SAXS patterns like that shown 

in Figure 1.5. Analysis o f scattering from dense multiple particle systems is 

extremely difficult. Normally, if the dense multiple scattering systems are comprised

11



of spheres then the analytical expression derived by Zemicke and Prins can be used as 

described in Chapter 4. Because no other approaches exist, scattering from systems of 

dense anisotropic scattering particles has to be analyzed using a Monte-Carlo method. 

Monte-Carlo data analysis for systems of dense anisotropic scattering particles is done 

using Equation 1.3 or Equation 1.5. One problem in simulating scattering from dense 

anisotropic systems is that Equation 1.3 is valid for only a single arrangement of 

particles and thus, a large number o f particles are required in the simulation. Equation

1.3 is also a fimction o f a double summation over all scattering particles. Comparing 

small systems of 100 particles and 1000 particles, the 1000 particle systems would 

take 100 times longer to calculate using Equation 1.3. To generate the entire 

scattering pattern from a single arrangement o f particles would take nearly a year for 

system with tens o f millions o f particles, which I think is the size required for accurate 

statistics. Another problem is that it can be very difficult to get high particle densities 

by merely placing particles. In our lab it has taken several days to get particle densities 

near 0.4 for approximately 1 million spheres by random placement. An alternative to 

random placement is given in Chapter 4, but the procedure is still quite time- 

consuming. These demands make computer simulation o f scattering from these kinds 

o f systems impossible.

To give the reader a better understanding why a Monte-Carlo methods might 

be a good tool to analyze scattering data, the general ideas o f Monte-Carlo techniques 

need to be explored. This section should help the reader understand why a Monte- 

Carlo technique is a much more time-consuming approach to SAXS data analysis.

12
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Figure 1.5. SAXS photograph of drawn Linear Polyethylene

1.4 General Monte-Carlo Theory

Generally, a Monte-Carlo method is a technique to solve a complex problem by 

the observation of a random process whose parameters are based on the complex 

problem (Buslenko et al., 1966; Niederreiter, 1992). Monte-Carlo methods are 

therefore based on the sampling o f the devised random process. The following 

description should clarify this definition.

13



Consider the task o f choosing points in space to simulate a sphere with a radius 

equal to 10 cm. The points in space, once chosen, will then be used as scattering 

points. One quickly realizes that a real sphere is a continuous object while a sphere 

simulated via ‘"points in space” is nothing more than a concentration o f discrete points. 

At first thought, it may seem easiest to accomplish this goal by either building a 

sphere from spherical shells or from a grid o f points, however, a Monte-Carlo method 

can also be employed. Figure 1.6 is a visualization o f these three ideas.

Shell Method

Grid Method

Monte-Carlo Method

Figure 1.6. Sphere visualization
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To build a sphere from spherical shells the following must be done.

1. Select an origin.

2. Build a very small shell around this origin with points in space.

3. Continue to build larger shells that are equidistant and concentric about the 

origin until the radius of 10 cm is met.

To use a grid approach the following must be done.

1. Arrange a grid o f points larger than 20 cm x 20 cm x 20 cm and choose the 

center o f  the grid as the origin.

2. Choose every point whose distance from the origin less than or equal to 10 cm.

3. Use the chosen points in space as scattering points.

Using a Monte-Carlo method, this problem would be approached in the following 

manner.

1. For some box larger than 20 cm x 20 cm x 20 cm, choose the center as the 

origin.

2. Randomly select points inside (or on the surface) the box.

3. If the distance between the origin and random point is less than or equal to 10 

cm then use the random point as a scattering point.

There are problems with the “shell” and “grid” methods that the Monte-Carlo 

method overcomes. In the “shell” method the problem is that the distance between the 

discrete shells causes aitifacts in the scattering pattern. Also, it is very difficult to get 

a constant point density with this method. In other words, as the shells get smaller the

15



number o f  points that are needed per shell is a function o f the cube root o f the radius, 

hence how does one maintain that the number o f points is a whole number. In the 

“grid” method, artifacts caused by the regular grid can be seen in the scattering. Also, 

the exterior o f the sphere is very rough because the sphere is made from a cubic grid 

of points, this gives poor scattering results because the scattering curve is very 

sensitive to what happens at the edge. Therefore, the act o f choosing random points to 

simulate the sphere is by far the most appropriate choice.

However, true randomness is impossible to achieve with random number 

generators normally available on computers. To best illustrate the non-random 

behavior, one could use a spreadsheet program to draw four random numbers between 

zero and 100. The expected average o f the four numbers should be approximately 50 

with an approximately even distribution. If the first number drawn is roughly 20, the 

second number drawn is roughly 80 and the third number drawn is roughly 60, the 

spreadsheet will force the fourth number to be approximately 40. In other words, the 

(not so random) random number generator approximately forces the correct average 

and expected distribution. Using FORTRAN, random number generation is much 

better but of course there is the tradeoff with computer run time. In other words the 

better the randomness o f the number generator the longer the computer run time.

It should be fairly obvious that using a Monte-Carlo approach to analyze 

scattering data takes significant more time than using an available theoretical model. 

For this reason, Monte-Carlo approaches should only be used as a “last resort”.

16



1.5 Experimental Constraints

Whatever the method of data analysis, there are a number o f practical 

experimental constraints that must be considered; for example, only a certain range of 

q values can be utilized. The SAXS bound at lower q values is the beam because the 

beam has a finite cross section. In other words, the intensity of the main beam is much 

larger than the scattered intensity at very small q values. Actually, extending the 

usable angular range to angles very close to the beam is quite difficult and is the 

subject o f a significant body o f literature on camera design. The upper SAXS bound

r  4% \
is usually between 0 = 3° and 0 = 5° q = — sin0 . The upper SAXS bound is

\  ^  J

usually dependent on the dynamic range o f the detector because the intensity of the 

SAXS pattern typically decreases as a function o f q .̂ This upper bound can be 

extended by moving the detector and collecting for longer times, but for most 

morphologies the effort is not worth the benefit.

In a SAXS experiment, smearing o f the scattered radiation occurs which 

results in a loss o f  resolution. This smearing is the result o f basically three things; the 

finite size o f the x-ray beam, the finite size of the “pixels” on the detector and the 

polychromaticity o f  the beam. The size o f the beam is the most important effect and is 

determined by the collimation geometry; both slits and pinholes are commonly used. 

Thus, corrections must be made for the pinholes or the width and heights o f the slits. 

Smearing can also occur because o f the finite size o f the detection element i.e. a two- 

dimensional detector has pixels with finite area. In a scattering experiment, each of
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these pixels “sees” the Intensity over a small range o f q values. Smearing of these 

two types is easily corrected with equations given in the literature (Lake, 1967; 

Register & Cooper, 1988; Barker & Pedersen, 1995). Finally, any deviation from 

mono-chromaticity can smear the scattered radiation. This type of smearing is 

usually ignored for two reasons. First, most beams use crystal monochromators and 

hence this effect is small. Second, it is extremely difficult to measure a wavelength 

polydispersity even in systems with filters rather than crystals, and hence it is ignored.

Scattering patterns given throughout this thesis are not smeared because 

smearing can be easily incorporated into curve fitting routines. Therefore, the curves 

in this thesis must be smeared to match real data. Or conversely, real data must be de­

smeared to match the scattering curves presented in this thesis (of course smearing is 

much easier than desmearing!).
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CHAPTER 2 SAXS Simulation o f  Single

Particle Systems

2.1 Introduction

One method to extract morphological information from a SAXS pattern is to 

use a Monte-Carlo method to model the scattering from a given object, smear the 

modeled scattering and then compare it to real scattering data. Using this approach, 

one assumes a morphology and calculates the scattering pattern by using a Monte- 

Carlo method to generate random scattering points (Stockel et al., 1980; Hansen, 1990; 

Henderson, 1996). Previously, modeling methods have focused on statistically 

isotropic systems (systems where a random distribution o f orientations exist) that are 

found in solution and powder diffraction. This type o f system allows the use of 

rotationally averaged scattering curves, greatly simplifying the simulation by requiring 

the generation o f only a one dimensional electron distribution. These previous 

simulation methods have calculated the rotationally averaged scattering curves by 

generating the correlation function, y(r) (Debye and Bueche, 1949), or the pair- 

distance distribution function, P(r) (Guinier & Foumet, 1955; Glatter, 1979), which are 

related by the following equation, P(r)=r'y(r). These functions were then integrated 

with their associated intensity functions, shown below [q=(47ï/X) sin 0], (Debye and
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Bueche, 1949; Feigin and Svergun, 1987) to calculate the rotationally averaged 

scattered intensity curves.

I(q) = 4nV j r 'y ( r ) ^  — ^dr Intensity Function (correlation function)
0 4^

I(q) = -  I  P(r) dr Intcnsit>’ Function (pair distribution function)
4TfJ qr

The following chapter describes a novel method o f modeling SAXS data that is 

similar to the previously mentioned Monte-Carlo methods. Although inherently more 

time consuming because of the requirement for non-rotationally averaged scattering 

curves, the method presented here is distinct in that it simulates scattering for oriented 

systems. This method directly calculates the general scattering function from basic 

small angle scattering (SAS) principles and hence eliminates the use o f simplifications 

such as a particle's inhomogeneity distribution (Feigin and Svergun, 1987) or chord 

distribution (Glatter & Kratky, 1982) which are advantageous to rotationally averaged 

scattering pattern simulations. This method’s only requirement for the calculation of 

the entire scattering curve in a two dimensional scattering plane is that the scattering 

object must be centrosymmetric. However, exact centrosymmetric match between the 

actual scattering object and the model is not required as long as the deviations from 

centrosymmetry are small compared to the scattering object’s dimensions (Glatter & 

Kratky, 1982). Thus, this technique is ideal for morphologies or orientations where an 

exact analytical solution for the scattering does not exist. Furthermore, the technique
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presented here can be applied to small angle neutron scattering (SANS) with only 

minor changes in nomenclature.

In order to establish a foundation for this technique, this chapter presents 

simulations o f scattering from single particle systems. Accuracy will be verified by 

calculating scattering patterns using different simulation times for objects that possess 

analytical solutions. Simulated scattering curves will then be compared to the 

respective exact theoretical solution, thus providing evidence as to the accuracy and 

accessibility o f this method. Furthermore, scattering for three objects without 

theoretical scattering solutions will be given to demonstrate the capabilities o f this 

technique.

2.2 Theoretical Background

Equation 1.1 could be used to simulate x-ray scattering from single particles 

systems, however, the resulting simulations would be very time consuming because of 

the double summation to be evaluated. Instead, by assuming that the scattering object 

is centrosymmetric with respect to electron density and the origin is chosen as the 

center o f  symmetry. Equation 1.1 can be simplified as shown below (Guinier & 

Foumet, 1955). This simplification arises from the fact that for every vector from the 

centrosymmetric center to the k"' point, Oxk, there exists an equal and opposite vector 

within the system, -Oxi . A discrete version of Equation 2.1 was used to simulate 

scattering from all oriented single particles given within this chapter.
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7 ^  = f(Pk -  Po)cos(q •  Qx„ )j  = [Pk (q,shape)]' Equation 2.1

Where pk and po are the electronic densities o f the k'** atom and the media in 

which the single particle is immersed. F,̂  (q) is designated the form factor o f the 

scattering particle and is a function o f both q and the shape of the scattering object.

2.3 Simulation Technique and Technical Considerations

As was pointed out, past Monte-Carlo simulations were developed by either 

generating the correlation function or the pair distribution function and then 

integrating the associated intensity function. Scattering from rotationally averaged 

particles allows for integration in the 6 and ((> directions before requiring the 

implementation o f the r direction distribution function in the scattering equation, 

which greatly simplifies simulation techniques by requiring a distribution only in a 

single direction. Therefore, random points inside the scattering object need only to be 

chosen until the r direction distribution function becomes numerically continuous.

The technique presented here however, is for oriented systems. Oriented systems 

demand the development o f a distribution in all directions, namely, the r, 6 and (|) 

directions.

This technique simulates scattering by the following method.

A. Draw a box around the scattering object.

B. Generate x, y, z random coordinates inside the box through a Monte-Carlo method.
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c .  Test to see i f  the random coordinates are inside or on the surface of the particular 

morphology being investigated.

D. Coordinates which pass the test given in part B are used as scattering points.

These points are used to generate the scattering array which is comprised o f 401 q- 

points equally distributed between 0.0 and 7.1 nm ‘. Coordinates which fail the 

test given in part B are rejected.

E. This iteration is repeated for a given amount of time.

F. When the predetermined run time is over, the scattering array is then normalized 

by the intensity at q =0 which is equal to the total number o f scattering points used

to calculate the scattering array. Finally, the logto is taken o f the scattering array.

Simulation accuracy is dependent on scattering point density and how smooth 

and continuous the scattering point distribution is developed. Because the scattering 

pattern is being simulated by scattering from many discrete scattering points and not a 

continuum (solid particle), simulation accuracy improves with increased scattering 

point density. Increasing scattering point density in the model is achieved by simply 

increasing the computer run time, which increases the number o f iterations and thus 

the number o f scattering points. The smoothness o f the scattering point distribution is 

dependent upon the quality o f the random number generator.

The accuracy o f scattering simulation is also dependent on the smoothness and 

continuity o f the scattering point distribution relative to the shape o f the object. A 

sphere for instance is infinitely symmetrical and requires a more fully developed
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scattering point distribution than a “less” symmetrical object such as a flat disk. 

Additionally, because the scattering object is assumed to be centrosymmetric for any 

scattering point chosen its symmetrical “sister” is also chosen to eliminate any 

variation caused by nonsymmetrical scattering points. A scattering pattern that has a 

bigger range of intensity variation over the chosen angular range necessarily also requires 

more simulation run time in order to obtain better agreement between the simulated and 

actual data.

A quantitative measure o f the each simulation's accuracy was calculated using 

the coefficient of determination. The coefficient of determination approaches unity as 

a simulated scattering curve approaches the theoretical scattering curve. The 

coefficient of determination is designated R and has the following definition 

(Mendenhall & Sincich, 1992).

R = l — , Equat i on 2.2

In this equation, y, is the simulated i"' data point, ÿ, is the analytical solution 

for the i'** data point and n is the total number o f data points. In this thesis logio(yi) and 

logio( ÿj ) has been substituted for yi andÿ ,, respectively. To distinguish between the

coefficient o f determination and the logarithmic expression used in this thesis, Rl will be 

used when referring to the latter.

Although using the logarithmic form o f this expression changes the meaning of 

the coefficient o f determination, this substitution was made because almost all scattering
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curves are presented and analyzed in a semi-logarithmic format. Using the logarithmic 

form also has the advantage o f providing a better representation o f the error in the 

simulation over the entire q-range because the scattering intensity can vary over many 

orders o f magnitude. The disadvantage of using the logarithmic form is that this presents 

difficulties for scattering curves that have zero intensity at finite q, such as a sphere. If 

one o f the 401 simulated q-points is near a zero intensity point, an extremely large 

number o f simulated points will be required to perfectly simulate a scattering curve. 

Hence in a plot of Rl vs. simulation run-time, Rl will seem to asymptote at a value 

which depends on the number of simulated q-points and is not equal to unity.

All simulations presented in this chapter were compiled with Microsoft’s 

FORTRAN Powerstation Version 4.1. The computer utilized was an IBM clone 

computer equipped with a 200Mhz MMX Pentium chip and 72 megabytes of RAM 

running Microsoft’s Windows95. The particles that were simulated and compared to 

analytical scattering curves were spheres, prolate spheroids and cylinders. These 

geometries were chosen primarily because of their symmetry and because each 

morphology presents unique problems in modeling. Additionally, these morphologies 

are commonly found in many systems.

2.4 Comparisons

Sphere

The analytical solution for small angle scattering from a sphere o f radius Rj, 

can be derived by rotationally averaging Equation 2.1.
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-4nr'dr Equation 2.3
1. ( 9 ) s  V

In Equation 2.3, r is the distance from the sphere’s center and p(r) is the 

electronic density function which is a constant for r < Rs and zero for r > Rs. The 

resulting analytical form factor can be derived (Rayleigh, 1911).

Fk Equation 2.4
(qR .)

Figure 2.1 compares simulated scattering data with the analytical solution. 

Clearly, the simulated data agrees very well with the analytical solution. Figure 2.1 

represents scattering from a sphere where Rs equals 2.0 nm. The run time for this 

simulation was approximately 30 minutes and Rl was equal to 0.985.

Although the scattering from a sphere is not anisotropic, scattering from spheres 

was simulated because this morphology requires the greatest number o f scattering points 

and hence provides the most rigorous test of this technique. Therefore, this simulation 

was used to set the minimum run-time required in order to produce an acceptable fit for 

all o f the objects simulated in this thesis. According to Figure 2.2 and using an arbitrary 

safety factor of 2, 30 minutes of run-time or roughly 1,000,000 simulated points are 

required to adequately simulate the scattering pattern from an arbitrary object. Just to be 

sure, this run-time was verified with simulations o f both prolate spheroids and cylinders.
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Figure 2.1. Sphere: Rs = 2.0 nm: Rl = 0.985 for 
simulation time o f 30 minutes.

Spheres o f two different radii are shown in Figure 2.2 to illustrate the concept 

discussed previously, the presence o f zero-intensity q-points will cause the Rl value to 

be far-removed from one and this curve does not seem to approach unity. The scattering 

curve for a 0.5 nm sphere does not go to zero in this angular range, hence the much 

higher Rl values and the clear slow increase with simulation time of Rl. Although the 

data points are not shown, simulations of the scattering pattern for the 1.0 nm radius 

sphere for many days shows that the Rl values seem to approach unity.
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Figure 2.2. Rl as a function of simulation run time and the number of 
scattering points generated. Sphere A; Rs = 0.5 nm. Sphere B: Rs = 1.0 nm.

Prolate Spheroid

The analytical solution for small angle scattering from a prolate spheroid 

comes from direct integration o f Equation 4 using a geometrical expression for the 

radius. If the prolate spheroid is defined to have a major axis, 2va, and two minor 

axes, 2a, with one of the minor axis aligned with the beam (x direction), then the 

following solution exists (Guinier & Foumet, 1955).
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Y = a^cos"  ((j>) + V* sin’ ((j>) Equation 2.5

Equation 2.6
( q f )

Referring to Figure 2.3, a prolate spheroid is oriented such that the minor axes 

coincide with the x  and y directions while the major axis coincides with the z 

direction. Also the angle in the detector plane (Z ) is designated <j). In the above 

equation and as shown in Figure 2.3, ({) is the angle between the minor axis (y 

direction) and the projection of q on the detector plane. Thus for any <j> chosen,

scattering in that particular “slice” can be calculated. If many angles for (j) are 

simulated the two dimensional scattering pattern can be generated. However, only 4» 

values from 0 to 7t/2 need to be considered since the scattering in the other quadrants 

can be easily determined from symmetry.

The simulations shown in Figure 2.4 are o f the same prolate spheroid, having a 

major axis equal to 2.0 nm and a minor axis equal to 1.0 nm. The only difference 

between the two curves is the “slice” of the two dimensional scattering pattern which 

is calculated. The two “slices” shown in Figure 2.4 are <(» equals ti/6 and n/3. These 

simulations each represent approximately 30 minutes o f computer run time with Rl 

values equaling 0.998 and 0.972 respectively.
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Figure 2.4. Prolate Spheroid: major axis = 2.0 nm, minor axis = 1.0 nm, 
(j> = 7t/6,7t/3: Rl = 0.998,0.972 respectively and simulation 

run times were each 30 minutes.
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Cylinder

If a cylinder is defined to have a radius Rc, length 2H and its cylindrical axis 

parallel to the detector plane, then the following equation is the form factor (Guinier & 

Foumet, 1955).

E qua.io„2,7
q ‘R,Hsin((p)cos(<p)

Referring to Figure 2.3, a cylinder is oriented such that the cylinder axis 

coincides with the y direction. Also the angle in the detector plane (Z ) is designated 

(p. In the above equation and as shown in Figure 2.5, (p is the angle between the 

cylinder axis (y direction) and the projection o f q in the detector plane. Only <p values

from 0 to 7t/2 need to be considered since the scattering in the other quadrants can be 

easily determined from symmetry. Figure 2.5 shows that the simulated scattering data 

correlates extremely well with the analytical result for a cylinder where Rc equals 0.5 

nm and H equals 0.5 nm. The two “slices” represented in Figure 2.5 are (p equals 7t/6 

and n/3. Again, each curve represents computer run times of approximately 30 

minutes and both simulations Rl values are practically equal to unity. Additionally, 

the cylinder simulation routine could easily be used to simulate scattering from 

infinitely long cylinders (H=oo) and infinitely thin disks (H=0).
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Figure 2.5. Cylinder: H = 0.5 nm, = 0.5 nm, <p = n /6 , n / 3 :  R l = 1.0,
1.0 respectively and simulation run times were each 30 minutes.

2.5 Objects and Orientations Without Analytical Solution

This technique can be used to simulate scattering from centrosymmetric objects 

whose orientation or geometry make the analytical solution extremely difficult or 

impossible to derive. Three examples have been chosen to demonstrate this; a tilted 

cylinder, an elongated uniaxial hexagon and a bundle o f seven cylinders o f the same 

radius and length.
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Tilted Cylinder

The tilted cylinder’s orientation is such that the tilting causes one end of the 

cylinder to be closer to the detector than the other end of the cylinder. The cylinder 

modeled in this maimer had R« equal to 1.0 nm and H equal to 2.0 nm. With (p having 

the same definition as the “ideal” cylinder as earlier, c  is defined as the angle o f tilt, 

which is the angle between the “ideal” orientation (cylinder axis coincides with the y 

axis) and the actual cylinder axis orientation. In Figure 2.6, both curves represent (p 

equals n/4 with differing angles o f  tilt (o). The two values for o  are n/6 and n/3. Both 

o f these simulations required approximately 30 minutes o f computer run time.

Elongated Hexagon and Bundled Cvlinders

Fibers or fibrils could be modeled as an elongated hexagon or as bundled 

cylinders. For both of these simulations the only deviation from the nomenclature o f a 

tilted cylinder is definition o f the radius (Rc). Rhex for an elongated hexagon is the 

radius o f a circle circumscribed about the hexagon and Rbundicd for bundled identical 

cylinders is the radius o f one o f the cylinders. Figure 2.7 shows simulations o f two 

different <p “slices” o f both an elongated hexagon and seven identical bundled 

cylinders along with a small diagram of each scattering object. The two “slices” for 

both models are <p equals ti/6 and n/3. The elongated hexagon modeled had no tilt (a  

equals zero), Rhcx equal to 2.0 nm and H equal to 2.0 nm. The bundled cylinders 

modeled also had no tilt, H equal to 8.0 nm and Rbundicd equal to 4.0 nm. Simulations 

were also done o f an elongated hexagon and a dimensionally comparable bundle of
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seven cylinders. Figure 2.8 shows these simulations which were both o f an untilted (o 

equals zero) (p “slice” equaling tt/4. For the elongated hexagon, Rhcx equals 3.0 nm 

and H equals 3.0 nm. The bundled cylinders had Rbundicd equal to 1.0 nm and H equal 

to 3.0 nm. As expected the simulations deviate only at higher values o f q. All o f these 

simulations represent approximately 30 minutes o f computer run time.

c/3
s

- o

I
o

0

-2

-4

-6

8

  0 = 71/6

  • 0=71/3
- 10

1-I
0 64

Figure 2.6. Tilted Cylinder: H = 4.0 nm, Rc = 2.0 nm, cp = rt/4, o  = tt/ô, 
7i/3; simulation times were 30 minutes.
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Figure 2.7. A. Elongated Hexagon: H = 2.0 nm, Rh« = 2.0 nm, cp = ti/6 , n/3: 
simulation times were each 30 minutes. B. Seven Bundled Cylinders: H =

4.0 nm, Rbundied = 2.0 nm (each cylinder), (p = n/6, n/3: simulation times were 
each 30 minutes. Small diagrams o f each morphology are included.
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Figure 2.8. Elongated Hexagon compared to Seven Bundled Cylinders: 
Elongated Hexagon: H = 3.0 nm, Rhcx = 3.0 nm, tp = 7t/4: Seven Bundled 

Cylinders: H = 3.0 nm, Rbundicd = 1.0 nm (each cylinder), tp = n/4: 
simulation times were each 30 minutes. Small diagrams o f each 

morphology are included.
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CHAPTER 3 S AXS Simulation o f  Particles with More 

Than One Electron Density

3.1 Introduction

In polymer science, cylindrical bodies such as fibers and fibrils with periodic 

axial structure or regular paracrystalline lattice distortions have been of interest since 

the 1950’s and much effort has been devoted to collecting and understanding small- 

angle scattering (SAS) data from these systems (Bear & Bolduan, 1950; Hay & Keller, 

1967; Pope & Keller, 1975; Gottlicher et al., 1983; Shibayama & Hashimoto, 1986;

Stribeck, 1989; Rule et al., 1995; Murthy et al., 1996). Many approaches have been 

utilized in these previous studies, but most have generated scattering curves from 

paracrystalline macrolattice methodology. Paracrystalline macrolattice methodology 

calculates scattering from close packed scattering clusters, which are finite lamellar or 

cylindrical crystallites, and then averages them about the fiber axis. The approach here 

assumes widely separated systems o f layered cylinders, so that the effect of 

morphological changes in the primary scattering objects (individual lamellae) can be 

qualitatively understood. Thus, the intent o f this chapter is to establish the ability to 

model SAS from heterogeneous materials and help give the researcher insight to 

scattering phenomena from fibrillar systems.

As in Chapter 1, scattering curves are generated with the use o f random 

scattering points and the single centrosymmetric particle equation (Equation 2.1). The
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other requirements are the knowledge of the electron density ratio between the phases, 

a mathematical description o f how the phases vary along the fiber axis and the fiber 

dimensions. To use Equation 2.1 there must also be a point that is the center of 

symmetry with respect to electron density. For a layered cylinder, this assumption 

only requires that the cylinder radius and lamellar thickness vary in some ordered, 

symmetric way (no variation, sinusoidal etc.). Strictly speaking, to satisfy 

centrosymmetry the ends o f the fibril must also be identical. However, if the cylinder 

is longer than the length scale being probed by the radiation (i.e. the cylinder is 100 

nm or greater), then the influence of the fibril ends is small and can be ignored and the 

assumption o f centrosymmetry is satisfied in practice. Since essentially all fibril 

morphologies would be expected to be longer than 100 nm, the assumption of 

centrosymmetry should not be a significant restriction. Another important note is that, 

although all the cross sections o f layered cylinders presented in this chapter are 

circular, this technique can also be easily adapted for any cross section geometry 

desired.

3.2 Theoretical Background and Description o f  Method

As in Chapter 2, Equation 2.1 was used to simulate scattering patterns 

presented in this chapter. However, the scattering object is an oriented cylinder that 

contains the alternating lamellae like that o f a fibril.

'(a) _ 
'.(a)

J (P k - P .) “ s ( a '2 ï O  = [f i .(a ’*'“ P®)] Equation 2.1
\V J
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Oriented systems require the development o f a scattering point distribution in 

three dimensions. The scattering point distribution is generated by randomly choosing 

(x,y,z) coordinates, then scattering intensity is calculated for each point. Scattering 

patterns are usually presented normalized to the scattering at zero angle. The 

simulation technique and code was able to simulate scattering from systems o f 

multiple electron densities with only minor modifications from the code used in 

Chapter 2. A scattering array was developed for each electron density separately (i.e. 

from each lamellar phase in the cylinder). The array for the secondary phase was 

scaled at the end o f  the simulation as seen in Equation 3.1 and added to the array for 

the primary phase, this made the final scattering array.

(^(9 ~  ®)pnmaiy ^pnmaiy )i(q)
i.(q)

i(q)
+  < CJ

pnmaiy ( 1(9 = 0):secondary secondary

I(q)
I e ( q )

Equation 3.1
see ondary

Where m is defined as follows.

„ j p = - p . ) , p k
(p i-p o )  p;

The primary phase, pi, is selected as the phase with the largest absolute value 

o f the electron density difference relative to the surrounding media, i.e. |p  ̂ -  Pol •

Thus, tD varying from -1 to 1 encompasses all possible morphologies o f this type, tn 

constant equal to 1 the scattering pattern should be that o f a regular cylinder.

Scaling at the end, according to Equation 3.1, significantly reduced the 

computational time required vs. scaling scattering from each random coordinate
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continuously through the simulation. The term in brackets in Equation 3.1 was 

required to ensure that the random coordinates were chosen in the two phases 

according to the proper volumetric proportions. This term noticeably affected the 

simulated pattern only in those cases where a volumetrically small phase had a large 

electron density difference relative to the other phases, or when the scattering 

intensities from phases with electron density differences o f opposing sign were 

approximately equal.

As in Chapter 2, the goodness of fit between simulated scattering curves and 

their analytical counterparts was quantitatively determined by using a deviant o f the 

coefficient o f determination (Rl) and all scattering simulations utilized CuKa as the 

wavelength o f radiation (15.4242 A). The FORTRAN code was compiled with 

Microsoft® Fortran Powerstation 4.1 running on an IBM compatible computer.

Unlike Chapter 2, the computer utilized in Chapter 3 was comprised of a 450Mhz 

Pentium II™ processor with 128 Mbytes o f RAM.

3.3 Results

Spherical Models

Two different scattering models with scattering patterns having analytical 

solutions were simulated to demonstrate that this technique can accurately predict 

scattering patterns from objects with greater than two electron densities. The spherical 

models are the Core/Corona model (also known as the Ionic Cluster and the Depleted
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Zone Core/Shell model) and the Core/Shell model. Schematics are shown in Figure

3.1 and there respective analytical solutions are given in Equations 3.2 and 3.3 

(MacKnight et al., 1974; Roche et al., 1980; Yarusso & Cooper, 1980). Equation 3.2 

and Equation 3.3 are based on the form factor for a sphere, d>(x),which is given in 

Equation 3.4, the volume of the sample illuminated by the x-ray beam, V, and the 

average sample volume per scattering particle, Up.

M  = ^ { y [ ( p ; - P i ) R M 9 R i )  + P'=Ri®(gR=)]} Equation 3.2

'(9 ) V 
‘. ( 9 ) " ,

^ { p ;R ;o (q R , ) + r t  [R;<D(qR, ) -  R ;® (qR , )]} 1 Equation 3.3
3

^  3 [s in (x ) - (x )c o s (x ) ]  Equation 3.4

(x )

Figure 3.2 and Figure 3.3 compare simulated scattering data to analytical 

scattering data for the Core/Corona and the Core/Shell models. In Figure 3.2 the 

core/corona has values for R| = 2.0 nm and Ri = 2.4 nm. The value for pi was chosen 

to be negative, thus the value for m is also a negative number, cj = -0.1. The 

simulation run time for Figure 3.2 was 45 minutes because o f the “negative” electron 

density which essentially adds in negative scattering. This is an important result which 

is believed to be general: an object which has electron density differences o f opposing 

sign(s) can significantly increase run-times necessary for an accurate result. The
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resulting Rl = 0.972. In Figure 3.3 the core/shell has values o f Ri = 1.5 nm, Rz = 2.0 

nm and R3 = 2.5 nm while tn = 0.75. The simulation run time was 30 minutes and 

gave a resulting Rl = 0.980.

m m

a. Core/Corona

Core/Shell

Arbitrary Electron Density 1 [p,]

Arbitrary Electron Density 2 [p:]

Media Electron Density [ p o ]

Figure 3.1. Visual interpretations: a. Core/Corona Sphere Model; 
b. Core/Shell Sphere Model; Centro-Symmetric Layered Cylinder.
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Figure 3.2. Core/Corona: Rcorc = 2.0 nm, Rcorona = 2.4 nm, 

CJ = -0.1 : Rl = 0.972 45 minute simulation run time.
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Figure 3.3. Core/Shell: Rcorc = 15 nm, Rshcii-mner = 2.0 nm, 

Rshcii-outer = 2.5 nm, tn = 0.75: Rl = 0.980, 30 minute 
simulation run time.
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Cylindrical Model

Many dimensions must be defined when simulating scattering from a layered 

cylinder. The analytical solution for a “regular” cylinder requires the following 

information; the cylinder radius, R«, the half-length o f the cylinder, H, and the angle in 

the detector plane between the projection of the cylindrical axis and the projection of 

q . This angle is referred to as the “slice” and is given the symbol cp. In addition to

these quantities, knowledge o f the electron density ratio and the half-lengths of the 

primary and secondary phases are required to simulate scattering for a layered cylinder. 

Visual interpretations o f these variables are given in Figure 3.4 except for <p which was 

given in Chapter 2 (“slice” angle in Figure 2.3).

The rest o f this section is devoted to comparing different changes in 

morphology, and is designed to give the experimenter important insights into 

determining morphological characteristics if it is known that the scattering object is of 

a layered-cylinder type.

Case 1 : Changing a

In patterns o f semicrystalline polymer fibers that are often described by this 

type o f morphology, the electron density o f the one phase (the crystalline phase) is 

typically known, while the electron density o f the second phase and the matrix are 

often unknown. Scattering cannot be used to determine these two values 

independently, but allowing the latter to assume some value, this method can be used 

to differentiate the electron density o f the second lamellar phase. Likewise, knowing
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the electron density o f the second lamellar phase will allow for determining the 

difference in the electron density between the crystalline and the matrix phase.

secondarySegment containing 
centrosymmetric

prim ary

Arbitrary Electron Density 1 [pi]

Arbitrary Electron Density 2 [p:]

Media Electron Density [ p o ]

Figure 3.4. Diagram o f cylindrical scattering object.
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Figure 3.5 illustrates that the general shape o f the normalized patterns 

(intensity at zero scattering angle is set to one) are similar at low q but show

increasing variation as q increases. These variations along the scattering curves are 

caused by two different components; (p and a .  In scattering pattern variation caused 

by (p, variation is nearly absent when (p equals t i /2  but becomes very pronounced as the 

(p approaches 0. Hence, if a difference in pattern shape at n i l  occurs between two 

samples, it is not simply a case o f different lamellar electron density, some change in 

morphology must have occurred (different lamellar width or different arrangement of 

fibrils relative to one another). Similarly in scattering pattern variation caused by tn, 

the variations become more prominent as c j decreases, i.e. variation for negative tn 

values is substantially greater than for positive m values. Absolute intensities scale 

with the difference in the relevant electron density differences as expressed by cj, i.e. 

as C3 decreases absolute intensities decrease also.

Comparisons of Figure 3.5 and Figure 3.6 show that the introduction of 

"negative scattering" (tn < 0) i.e. the case where one lamellar phase has an electron 

density greater than the surrounding matrix and the other lamellar phase has an 

electron density less than the surrounding matrix, makes the scattering pattern 

extremely sensitive to the actual electron density differences. Hence, if  what one 

thinks to be identical samples have very different scattering patterns, then this could be 

indicative o f "negative scattering".
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  ta = 0.00
  ta = 0.25
 ta = 0.50
 ta = 0.75

ta = 1.00
-12

0 2 4 6

Figure 3.5. Layered Cylinder: R« = 1.0 nm, H = 3.0 nm, Hp„mary = 0.200 nm, 
Hseeondaiy = 0.185 nm, (p = 7t/4, ta = 0.00,0.25,0.50,0.75, 1.00:

30 minute simulation run time for each curve.
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CJ =  0 .0 0

CJ =  -0 .25  
CJ = -0 .5 0  
CJ = -0 .7 5
CJ =  -1 .0 0

0

q[nm‘]

Figure 3.6. Layered Cylinder: R« = 1.0 nm, H = 3.0 nm, Hpnmary = 0.200 nm, 
Hsecondary = 0.185 nm, (p = 7i/4, CJ = 0.00, -0.25, -0.50, -0.75, -1.00: 45 minute 
simulation run time for o  = -0.25, -0.50, -0.75, -1.00; 30 minute simulation 
run time for ta = 0.00 (extended run time because o f “negative scattering”).
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Case 2: Cylinder Radius

If scattering for a cylinder of unknown dimensions is being analyzed and the 

cylinders are aligned in the same direction, the scattering slice o f cp = n i l  can be used 

to determine the radius o f the cylinder by simply matching the curves because changes 

in electron density affect this curve only very slightly, as was stated previously.

Case 3: Distribution o f Cvlinder Orientations

To simulate a distribution of cylinder orientations, one can simply add the 

scattering patterns from individually simulated cylinders, since it is assumed that the 

cylinders are widely separated. This method allows one to choose a distribution of 

cylinder axes where each cylinder has a different tilt angle. In fact, one can also alter 

the tilt angle relative to the detector plane randomly as well, although all the 

simulations in this chapter were for cylinder axes parallel to the detector plane. Only 

highly oriented systems were considered, a range of distributions was developed from 

an orientation function equal to one (f = 1.0) to an orientation function equal to 0.923 

(f = 0.923) as defined in Equation 3.5.

3 (c o s -8 ) - l
f  = —--------  —  Equation 3.5

When otherwise identical cylinders have different orientations, the result is 

similar to smearing; i.e. the position of the maximums and the poles do not change but 

the features become less abrupt. The changes that do occur are dependent on the 

distribution and cp. O f course, as the orientation function decreases the amount of
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broadening increases. More surprising perhaps, broadening becomes more 

pronounced as <p approaches ti/ 2  although some broadening still occurs at (p =  0 .

Case 4: Changing Thickness

The parameter z was defined so that changes in lamellar thickness can be 

analyzed. This parameter is simply equal to the half-length of the secondary phase 

divided by the half-length of the primary phase. Although z can vary from zero to 

infinity, in the simulations z was varied from 0 to 8.0. Lamellar thicknesses were 

assumed to be identical, although using unequal lamellar thickness would not be a 

problem as long as centrosymmetry is maintained.

As can be seen in Figure 3.7 and Figure 3.8 the effect o f changing the lamellar 

thickness o f either phase can be seen to increase with increasing q . Further, changes

in the scattering curves increase as cp approaches 0. As before, changes are also more 

pronounced with decreasing ta.

52



c/3

§

*o

Io
c/3

z  = 0.25  
z  = 0.500

■2

-4

-6

-8

- 1 0
10 4 6

q[nm ']
Figure 3.7. Layered Cylinder: Rc = 1.2 nm, H = 2.6 nm, Hprimar> = 0.20 nm, 

Hsccondary = 0.05 nm (z = 0.25), 0.10 nm (z = 0.50), 0.15 nm (z = 0.75), (p = 7t/8, 
CJ = 0.25: 30 minute simulation run time for each curve.
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Figure 3.8. Layered Cylinder: Rc = 1.2 nm, Hpnmary = 0.20 nm (z = 1.0), 
0.10 nm (z = 2.0), 0.025 nm (z = 8.0), Hsecondafy = 0.20 nm , cp = 3jt/8, 

CJ = 0.25: 30 minute simulation run time for each curve.
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CHAPTER 4 S AXS Simulation o f  Multiple

Particle Systems

4.1 Introduction

The underlying purpose o f this research is to basically “fill in the gaps” of the 

current SAXS modelling techniques. As an example, the Centro-Symmetric method 

can calculate non-rotationally averaged scattering curves, while the Pair-Distance and 

Correlation-Function methods cannot. Thus, this method can be used with oriented 

systems to give more structural information (no information is lost because of artificial 

rotational averaging of the experimental pattern). Also, unlike the Correlation 

Function and the Pair-Distance methods, this technique can also be used with 

morphologies with more than two electron densities as illustrated in Chapter 3. This 

intent to “fill in the gaps” should therefore be extended to multiple particle systems.

At the end of Chapter 3, multiple particle systems were introduced. The 

treatment o f scattering from systems with more than one particle is very similar to 

treatment of scattering from single particles when the concentration o f particles is low 

enough that inter-particle interference can be ignored. The scattering from a system of 

perfectly aligned identical particles or spheres with like radii is just the number of 

particles times the scattering from one particle. In this situation a normalized 

scattering curve would be identical to that o f one particle. However, most “real” 

systems have a distribution o f both sizes and alignments.
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This complication significantly lengthens simulation time but does not really 

complicate simulating SAS for widely separated particles. Like the distribution of 

widely separated, uniaxially oriented cylinders given in Chapter 3, a random sample 

size (the larger the better) with the appropriate distribution(s) must be numerically 

generated. The scattering from each object (or rotationally averaged object) is 

calculated and then averaged. If the scattering pattern is anisotropic, then this 

procedure must be followed for the desired “slice” of the overall two-dimensional 

scattering pattern.

What can be done to simulate scattering patterns from systems where 

interparticle interference cannot be ignored? Models exist to compute the intensity in 

various angular regions, i.e. the Guinier model at low scattering angles and the Porod 

model at high scattering angles. These types o f models will not be explored in this 

thesis; the interested reader is referred to the books by Guinier and Foumet (1955) and 

Clatter and Kratky (1982) for a complete description. This chapter only considers 

methods that take a given morphology, and calculate the scattering pattern using 

numerical techniques.

4.2 Dense Multiple Particle Systems

Inter-particle interference becomes a factor at moderate concentration and then 

dominates at high concentration. Simulating scattering from more densely 

concentrated particle systems is more difficult than simulating scattering from single 

particle systems because as the particle concentration increases, the positions o f the
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particles become less random. Thus, when the system o f particles becomes dense 

(liquid like) the positions have very little randomness (Compton & Allison, 1935).

One equation to describe scattering from densely concentrated particle systems 

can be written if the scattering objects are spherically symmetric. Zemicke and Prins 

(Zemicke & Prins, 1927; Debye & Menke, 1930) developed an expression, which is 

shown in Equation 4.1, to calculate scattering patterns from an analytical expression if 

the radial distribution function P(r) is known. P(r) describes the average number of 

particles whose centers lie between the distance r and r + dr from the center of a 

random particle. The number of particles is 47rr‘P(r)dr (Guinier, 1963).

i(q)
ic(q)

N [F jq ,R )]- 1 + ^  j (P ( r ) - l )4 7 ir - ! ^ ^ d r Equation 4.1

Without an assumed sphere interaction model, the Zemicke and Prins Equation 

is limited to calculating the radial distribution function from scattering data as in the 

work of Gingrich (1943). The radial distribution function itself can be useful; 

however this approach holds little predictive abilities without a thermodynamic model 

for sphere interaction. In fact, a significant body o f literature exists on the simulation 

o f radial distribution functions given a thermodynamic model o f sphere interaction; 

the application o f these models to scattering problems is described in the paragraph 

below.

Perçus-Yevick hard sphere interactions (Thiele, 1963; Wertheim, 1963) have 

been used effectively by researchers to describe scattering from multi-particle systems
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(Hayter & Penfold, 1981; Kinning & Thomas, 1984; Pedersen, 1994; Pedersen & 

Gerstenberg, 1996; Bertram, 1996). Using the Perçus-Yevick formulation, 

morphological parameters are determined from a SAS scattering pattern by simply 

fitting data to an analytical expression. Other spherical systems have also been 

modeled including permeable spheres and two component mixtures (Lebowitz, 1964; 

Blum & Stell, 1979; Blum & Stell, 1980; Salacuse & Stell, 1982). Systems that can 

also be accomodated are those with polydispersity of radii and systems that change 

from monodisperse radii to polydisperse radii (Vrij, 1979; Pedersen, 1993). However, 

the Zemicke and Prins Equation cannot be extended to systems o f particles that are not 

spherical because the radial distribution function is a function of distance a n d  

orientation (Clatter & Kratky, 1982).

The Debye Equation (Equation 1.3) and the Zemicke and Prins Equation 

(Equation 4.1 ) are related as shown in Equation 4.2. The first term on the right hand 

side o f Equation 4.2 is an “extra” term that does not appear in Equation 4.1. This term 

is the intensity from a particle with volume equal to the overall scattering volume and 

electron density equal to the average electron density in this scattering volume. The 

fact that Equation 4.1 does not contain this term does not limit the effectiveness o f the 

Zemicke and Prins approach, since the resulting scattered intensity from this “particle 

volume” is effectively zero for all scattering angles because this “particle volume” is 

much larger than the particles of interest (Foumet, 1951; James, 1982). This term is 

critically important in understanding just how scattering from multi-particle systems is 

simulated as described below.
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^ ^  F|. (q, R)Fj(q, R) = Equation 4.2
k  J l A K ^ j k )

[(F,(q, R ))]’ I ^  + N [( (q,R)>]’ [l + H](P(r) -1  )4m- 5!!<3E) dr 
VV A '^ jk  ' ' l  ' ' l  L 0 qr

Numerical simulation o f systems with inter-particle interference using the 

Debye Equation is complicated not only by the fact that some sort o f expression for 

interparticle distance and particle orientation must be generated using a 

thermodynamic model, but also by the fact that in some cases the particles move in 

relation to one another, i.e. in solution. These movements are by no means random, 

which means the local arrangements are also not random. In fact, it is not necessary 

for the particles to move in order for this problem to arise, since spatial variations are 

in this case no different than temporal variations since the characteristic dimension of 

the x-ray beam is usually orders o f magnitude larger than the characteristic dimension 

of the scattering object. However, if the positions o f the particles are fixed with 

respect to one another and the radial distribution function goes to something other than 

exactly I at r=oo, then the Debye Equation can be used without any adjustments to 

numerically simulate the scattering pattern. In fact, if the radial distribution function 

goes to zero at infinite distance, i.e. the collection o f small particles forms a large 

object with finite size, then either the Debye approach or any o f the three approaches 

given earlier (the Correlation Function Method, the Pair-Distance Method and the 

Centro-Symmetric Method) can be used if the appropriate assumptions are met. If the
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Debye approach is used. Equation 7 is particularly well suited, since many of these 

systems are in solution and require rotational averaging.

Equation 1.3 is rather easy to model but, because o f the double integral, can be 

very time consuming if many particles are used. Some procedures can be used to 

substantially shorten computer run time (Clatter &  Kratky, 1982; Perkins &  Sims, 

1986; Pantos & Bordas, 1994). Additionally, this technique is able to simulate 

scattering from morphologies with more than two electron densities (Pantos et al., 

1996). Finally, the Debye Equation has been used to calculate a form factor that then 

was used with the Zemicke and Prins Equation to give the analytical scattering curve 

for high-density micelles (Oster & Riley, 1951).

Using the Debye Equation to simulate scattering from systems with random 

placement and orientations o f particles is a difficult and time-consuming task. The 

first step is to place and orient the particles, which can be done using some random 

procedure according to a given thermodynamic interaction (hard sphere etc.). The 

fundamental problem with random systems is that an extremely large box is required 

to truly have a random system, i.e. all oscillations o f P(r) are eliminated. In other 

words, the placement o f the first few particles will have a large infiuence on the final 

morphology. For obvious reasons, it is much more efficient to use many different 

simulation boxes to generate the scattering pattern than to use one large box. Even so, 

the numerical simulation time goes up at least 3-4 orders o f magnitude versus that 

required for the case o f non-random systems. Still however, some excellent examples
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o f using this type o f procedure have been described in the literature (Sjôberg, 1999; 

Sjôberg & Mortensen, 1994; Sjôberg & Mortensen, 1997).

Simply stated, the approach of Sjôberg and Mortensen has the following steps. 

For some chosen volume, particles are randomly placed one at a time so that they are 

not overlapping. To account for any inhomogeneities near the volume surface, 

periodic boundary conditions are used (Metropolis et al., 1953; Wood & Parker,

1957). To accommodate for the many different arrangements o f particles. Equation 

1.5 is not used. Rather Equation 1.3, the Debye Equation is modified so it is no longer 

comprised of a double summation. The modification is simply done with the use of 

the cosine difference identity. The resulting equation is a function based on a single 

summation and is given in Equation 4.3. In this modified Debye Equation, R,. is the

vector from the center of the chosen scattering volume to the center o f the k"' particle. 

Equation 4.3 is then calculated for one “slice” o f the two-dimensional scattering 

pattern. The result from Equation 4.3 is then used with Equation 4.4 to give the 

rotationally averaged scattering curve for this configuration o f particles. This process 

is repeated many times (-10^) so that many particle arrangements can be generated. 

Each time, the same number o f particles, N, is selected in the scattering volume and 

the same “slice” o f the three dimensional scattering curve is generated. The 

rotationally averaged scattering curves for each particle arrangement are then averaged 

to give a “total scattering” curve.

= j Z  F k (q )co s(q .^ )j + |Ç F ^ ( q ) s in ( q .^ ) |  Equation 4.3
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I(q) I '
L(q) 4% J f

6«0<p«0

1(g)
ic ( q )

d(psin9d6 Equation 4.4

Since the box is o f finite size, the “volume scattering” must be subtracted from 

the calculated “total scattering” curve (the average of all results from Equation 4.4).

To make this correction, the same “slice” o f scattering from a particle shaped like the 

original chosen scattering volume must be calculated. For example, if the chosen 

scattering volume is a cube with edge length X, the scattering from the same “slice” 

that was used with the volume of particles must be calculated for a cube with edge 

length X. This calculated “volume scattering” is then multiplied by the number o f 

particles squared (N^) and then subtracted from the “total scattering” to give the 

“corrected scattering” curve. This “corrected scattering” curve is usually then 

normalized by N, the number o f particles.

The result at this point is a corrected scattering curve that has an intensity o f 

zero at q = 0 because the intensity o f the “total scattering” at q = 0 is N ' while the

intensity o f the “volume scattering” at q = 0 is one, N* -  (N‘* I) = 0. This result is not

correct and the reason represents a fundamental limitation o f numerically simulated 

patterns. In all cases, scattering is calculated from morphologies where the positions 

o f  individual particles are rigidly fixed. In real systems, this is not true except for 

perfect crystals at absolute zero. Hence, Sjôberg and Mortensen (1994) have 

recalculated the scattering at q = 0 with a known isothermal compressibility to give a

more correct value. However, at best this result is approximate since the simulation
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itself is only valid for values o f q > 2ti / L , where L is the characteristic scattering

length, i.e. the edge o f the cube.

One significant complication not considered by these authors is the closer 

packing of particles. This problem significantly complicates the initial placement o f 

particles. Numerical experiments in our lab show that the maximum packing density 

that can be achieved with random placement o f identically-sized hard spheres is 

approximately 0.40, which is far below what is commonly encountered in many 

densely packed systems. One simple technique which has been used successfully in 

our lab to achieve a higher packing density is to start with a perfectly ordered set o f 

spheres (i.e. BCC or FCC), slightly expand the box used to achieve a given packing 

density, and then move the particles randomly. After sufficient movement time, a 

scattering pattern can be calculated. This type o f approach is also ideal for multiple 

simulations, since one can simply move the particles again for long enough to erase 

the memory of the previous arrangement, and recalculate the scattering patterns.

Code was written to perform simulations, i.e. scattering from densely packed 

spheres. The difficulty in this “motion” approach is that at high concentrations, 

particle movements require much computer run time because o f the very small step 

size required. Thus, sufficient movements to erase similarities to previously chosen 

particle arrangements took several days on a personal computer. Since approximately 

10  ̂simulations would be necessary to obtain proper statistics, no results are presented 

because the simulation time was much too long. The process to obtain non-identical 

random distributions could probably be refined. However we don't believe the time
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could be reduced by a factor of approximately 10 \ which is what is required to 

calculate the scattering pattern in a reasonable time.

Rotationally averaged scattering curves are not always desired. For instance, 

consider a system such as several fibers. In essence this is a close packed system of 

many cylinders (fibrils). A scattering experiment with these fibers stretched between 

two fixed points would obviously give a very anisotropic scattering curve.

To calculate the scattering from oriented systems, the technique just reviewed 

should be used with a few modifications. Each time the particles are placed in the 

scattering volume, their orientation will be approximately known. In the fiber 

example, this means that the cylinders might have a Gaussian distribution along the 

axis o f  orientation. Equation 4.3 could then be used to calculate the scattering for a 

single “slice” of the two-dimensional scattering curve for this arrangement of 

particles. Obviously, Equation 4.4 would be ignored. After repeating the particle 

movement/scattering “slice” calculation process many times (-10^), the scattering 

would be averaged. The result is one “slice” o f  the anisotropic, two-dimensional 

scattering curve. The intensity o f the “volume scattering” would still have to be 

subtracted to yield the scattering curves. To generate the whole pattern this entire 

process would have to be repeated for many “slices” (many different scattering vector 

arrays would have to be used). However, the difficulties described for densely-packed 

spheres become even more important, because the concentration where objects cannot 

be randomly placed is much lower for anisotropic objects than for spheres.
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CHAPTER 5 Conclusions and

Future Work

5.1 Single Particle Systems

The Centro-Symmetric method is a very powerful SAXS simulation tool for 

single particle systems. Unlike other methods, the centro-symmetric method has the 

ability to simulate scattering from oddly-shaped or oddly-oriented morphologies. 

Additionally, relatively short computer run times o f approximately 30 minutes on a 

standard personal computer are needed to fully calculate an isotropic scattering pattern 

from one spherically symmetric object. If the particle is not spherically symmetric, 

then the simulation time will be governed by the number o f “slices” required; a day 

would be required to simulate a pattern in 2° increments. If a system has particles with 

a distribution o f  sizes and or orientations, longer times are required; still though an 

entire scattering pattern can be accurately simulated from these types o f systems in a 

few weeks at most.

Bi-continuous morphologies were mentioned in the text, but no simulations 

were performed. Many different types o f materials show bi-continuous 

morphologies, including surfactants and block copolymers. Block copolymers exhibit 

bi-continuous morphologies like the double diamond (cubic phase Q224). gyroid* 

(cubic phase Q 230) and possibly the Schoen surface (cubic phase Q 229) which has not 

yet been observed in copolymer systems but has in surfactant systems (Bates &
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Fredrickson, 1999; Bénédicte & O’Brien, 1997). These systems are difficult to 

classify (Hajduk et al., 1995) and pose a challenge to SAXS simulations because o f 

their unusual repeat structures. For example. Figure 5.1 is one “cell” o f a double 

diamond surface. In a phase separated copolymer system, this surface could represent 

the interface between the two phases. Looking at it on a larger scale, this “cell” would 

repeat three dimensionally as shown in Figure 5.2. Thus, the question in simulating 

SAXS from these types o f systems is how many “cells” are needed to correctly model 

the morphology.

Figure 5.1. One “cell” o f the double diamond surface.
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Figure 5.2. Three-dimensional double diamond array.

5.2 Multiple Particle Systems

Obviously the largest shortcoming in this research is the current inability to 

simulate dense multiple particle systems. However, the future might remedy this 

situation. Personal computers should have the ability to simulate SAXS from dense 

multiple particle simulations efOciently in 10 to 15 years.
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5.3 Analyzing Experimental Data

The overall goal o f this research is to develop a new method to analyze 

experimental data based on the approach given in this thesis. The approach given in 

this thesis is missing two steps, one of which is trivial. As was pointed out at the end 

of Chapter 1, smearing was not included in the simulations. Using simulated SAXS 

data to analyze “real” scattering data demands that smearing be included. Either the 

method o f Lake (Lake, 1967) or Clatter’s enhanced version of Lake’s method (Clatter, 

1974) is a simple way to incorporate smearing into these routines.

The second non-trivial step would be to develop a least-squares fitting routine 

to fit simulated data to real experimental data. Except in the simplest o f systems, l(q) 

is almost certainly a very complicated function o f morphological variables. Hence, 

finding the absolute minimum rather than a relative minimum would be non-trivial 

and would almost certainly require some randomly directed search algorithm. Further, 

even the single-particle approach is too long to implement on a PC, because o f the 

multiple simulations involved. However, on today’s supercomputers, one could write 

code to fit real data using Monte-Carlo simulations o f the scattering pattern from 

morphologies with no interparticle interference, especially if the random number 

routine were adjusted. If the speed o f PC’s continues to double every 18 months, then 

this code could probably run on a desktop computer in 5-10 years. However, to fit 

experimental data from systems where P(r)->1 at r->ao using Monte-Carlo techniques 

will probably not be possible for many years.
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APPENDIX A Sample Random Number Generators

A. 1. Sample Random Number Function 1

FUNCTION ranO(idum)
INTEGER idum,IA,IM,IQ,IR,MASK 
REAL ranO,AM
PARAMETER (IA=16807,IM=2I47483647,AM=1./IM,IQ=127773.IR=2836, 

♦M ASK-123459876)
INTEGER k
idum=ieor(idum,MASK)
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if (Idum.lt.O) idum=idum+IM
ranO=AM*ldum
idum=ieor(idum,MASK)
return
END
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A.2. Sample Random Number Function 2

FUNCTION ranl(idum)
INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
REAL ranI,AM,EPS,RNMX
PARAMETER (IA= 16807,IM =2147483647, AM= 1 ./IM,IQ= 127773 ,IR=2836, 

♦NTAB=32,NDIV= 1 +(IM-1 )/NTAB,EPS= ! ,2e-7,RNMX= 1 .-EPS)
INTEGER j,k,iv(NTAB),iy 
SAVE iv,iy
DA TA iv /N'FAB*0/, iy /O/ 
if (idum.le.O.or.iy.eq.O) then 
idum=max(-ldum, 1 ) 
do II j=NTAB+8,I,-l 
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k 
if (idum.lt.O) idum=idum+IM 
if  (j.le.NTAB) iv(j)=idum 

II continue 
iy=iv(l) 
endif
k=idum/IQ
idum=IA*(idum-k*IQ)-IR*k
if  (idum.lt.O) idum=idum+IM
j=I+iy/NDIV
iy=iv(j)
iv(j)=idum
ran I =min( AM * iy ,RNMX)
return
END
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A .3. Sample Random Number Function 3

FUNCTION ran2(idutn)
INTEGER idum,IM 1 ,IM2,IMM I ,IA 1 ,IA2,IQ I ,IQ2,IR 1 ,IR2,NTAB,NDI V 
REAL ran2,AM,EPS,RNMX
PARAMETER (IMI =2147483563,IM2=2147483399,AM= I ./IMI ,IMM I =IM I -1 

* IAI =40014,1A2=40692,IQ I =53668,IQ2=52774,IR 1=12211 ,IR2=3 791, 
*NTAB=32,NDIV= 1+IMM1 /NTAB,EPS= 1.2e-7,RNMX= 1 .-EPS)

INTEGER idum2J,k,iv(NTAB),iy 
SAVE iv,iy,idum2
DATA idum2/123456789/, iv/NTAB*0/, iy/0/
if (idum.le.O) then
idum=max(-idum,I)
idum2=idum
do II j=NTAB+8,I,-I
k=idum/IQI
idum=IA 1 *(idum-k*IQ 1 )-k*IR 1 
if (idum.lt.O) idum=idum+IMI 
if (j.le.NTAB) iv(j)=idum 

11 continue 
iy=iv(I) 
endif
k=idum/IQI
idum=IAl*(idum-k*IQI)-k*IRI 
if (idum.lt.O) idum=idum+IMI 
k=idum2/IQ2
idum2=I A2*(idum2-k* IQ2)-k* IR2
if (idum2.It.O) idum2=idum2+IM2
j=l+iy/NDIV
iy=iv(j)-idum2
iv(j)=idum
if(iy.lt.I)iy=iy+IMMI
ran2=min(AM*iy,RNMX)
return
END
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A.4. Sample Random Number Function 4

FUNCTION ran3(idum)
INTEGER idum 
INTEGER MBIG,MSEED,MZ 
REAL ran3,FAC
PARAMETER (MBIG= 1000000000,MSEED= 16 1803398,MZ=0,FAC= I ./MBIG) 
INTEGER i,iff,ii,inext,inextp,k 
INTEGER mj,mk,ma(55)
SAVE iIT,inexl,inexlp,ma 
DATA iff/O/
if(idum.It.0.or.iff.eq.O)then
iff=I
mj=MSEED-iabs(idum)
mj=mod(mj,MBIG)
ma(55)=mj
mk=I
do 11 1=1,54 
ii=mod(21*1,55) 
ma(ii)=mk 
mk=mj-mk
if(mk.lt.MZ)mk=mk+MBIG
mj=ma(ii)

11 continue 
do 13 k=I,4 
do 12 1=1,55
ma(i)=ma(i)-ma( I +mod(i+30,55)) 
if(ma(i).It.MZ)ma(i)=ma(i)+MBiG

12 continue
13 continue 

inext=0 
inextp=31 
idum=I 
endif
inext=inext+I
if(inext.eq.56)inext=I
inextp=inextp+l
if(inextp.eq.56)inextp=I
mj=ma(inext)-ma(inextp)
if(mj.lt.MZ)mj=mj+MBIG
ma(inext)=mj
ran3=mj*FAC
return
END
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APPENDIX B FORTRAN Programs Used in Chapter 2 

B.l .  Sphere

CC This file will model a sphere through random numbers, 
use portlib
real *8 s, si, timespent 
Integer*4 iter, 1, number 
Intcgcr*4 m, n, count, seed 
Integer ia l, ia2, iat, ibl, ib2, ibt,

+ iel, ie2, iet, id I, id2, idt,
+ iel, ie2, iet, if], if2, ift,
+ ja l,ja 2 ,ja t ,jb l ,jb 2 ,jb t ,
+ je l,je 2 ,je t ,jd l ,jd 2 ,jd t ,
+ je l , je 2 ,je t , j f l , j f2 ,j f t ,
+ kal, ka2, kat, kb 1, kb2, kbt,
+ kel, ke2, ket, kd 1, kd2, kdt,
+ kel, ke2, ket, k f l , kf2, kft

Real*8 OR, A( 1,401), Pi, lamda, Qi, dev,
+ Qk, Bragg, zeta, final, B( 1,118), ran2,
+ x l,x 2 , x3, x4, x5, x6, y l,y 2 , y3, y4,
+ y5, y6, z l, z2, z3, z4, z5, z6, R l, R2,
+ R3, R4, R5, R6

CC Initilization o f some of the varibles and the constants.
Do 1 n=0,400 
A(l,n)=0.0 

I Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda 
eount=0

CC Input statements.
Print*, 'Sphere Scattering Simulation Through Random Numbers.'
Print*, 'Enter the overall radius o f the sphere [nm].'
Read*, OR
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*,seed
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s=rtc()
CC Iteration Loop

Do 10 1=1,iter 
number=seed+l

CC Draw Random Numbers 
Do2m =0,117 
B( 1 ,m)=ran2(number)

2 continue

ial=idint( 10*8(1,100)) 
ia2=idint(( 100*8(1,100))-( 10* ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*B(l,101)) 
ib2=idint(( 100*8(1,101 ))-( 10* ib 1 )) 
ibt=10*ib2+ibl

id  =idint(l 0*8(1,102)) 
ic2=idint(( 100*8(1,102))-( 10* i d  )) 
ict=10*ic2+id

idl=idint(10*8(l,103)) 
id2=idint(( 100*8(1,103))-( 10* id 1 )) 
idt=10*id2+idl

iel=idint(l 0*8(1,104)) 
ie2=idint(( 100*8(1,104))-( 10* i d  )) 
iet=10*ie2+iel

ifl=idint(10*8(l,105)) 
if2=idint(( 100*8(1,105))-( 10* in  )) 
ift=10*il2+ifl

jal=idint(10*8(l,106)) 
ja2=idint(( 100*8(1,106))-( 10*ja 1 )) 
jat=10*ja2+jal

jbl=idint(10*8(l,107)) 
jb2=idint(( 100*8(1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl

jd= idint(10*8(l,108)) 
jc2=idint(( 100* B( 1,108))-( 10*jc 1 ))
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jct=l0*jc2+jcl

jdl=idint( 10*8(1,109)) 
jd2=idint(( 100*8(1,109))-( 10*jd 1 )) 
jdt-10*jd2+jdl

jel=idint(10*B(l,110)) 
je2=idint(( 100*8(1,110))-( 10*je 1 )) 
jet=10*je2+jel

jfl=idint( 10*8(1,111)) 
jf2=idint(( 100*8(1,11 l))-(10*jn))
jft=10*jl2+jn

kal=idint(10*8(l,112)) 
ka2=idint(( 100*8(1,112))-( 10* ka 1 )) 
kat=10*ka2+kal

kbl=idint(10*8(l,113)) 
kb2=idint(( 100* 8( 1,113 ))-( 10* kb 1 )) 
kbt=10*kb2+kbl

kcl=idint( 10*8(1,114)) 
kc2=idint(( 100*8(1,114))-( 10*kc 1 )) 
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115)) 
kd2=idint(( 100*8(1,115))-( 10*kd 1 )) 
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116)) 
ke2=idint(( 100*8(1,116))-( 10*ke 1 )) 
ket=10*ke2+kel

kfl =idint(l 0*8(1,117)) 
kf2=idint(( 100*8(1,11 ?))-( 10*kfl )) 
kft=10*kf2+kn

X1 =2.00002*OR* B( 1 ,iat)-1.00001 *0R  
x2=2.00002*OR* B( 1 ,ibt)-1.00001 *0R  
x3=2.00002*OR*B(l,ict)-l .00001 *0R  
x4=2.00002*OR*B(l,idt)-l .00001 *0R  
x5=2.00002*OR* B( 1 ,iet)-1.00001 *0R  
x6=2.00002*OR* B( 1 ,ift)-1.00001 *0R
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yl=2.00002*OR*B(lJat)-1.00001*OR 
y2=2.00002*OR*B(ljbt)-1.00001 *0R  
y3=2.00002*OR*B(l Jet)-1.00001*0R 
y4=2.00002*OR*B(lJdt)-l .00001 *0R  
y5=2.00002*OR*B(lJet)-1.00001*OR 
y6=2.00002*OR*B(l jf t)-l .00001 *0R  
z 1 =2.00002* OR* B( 1 ,kat)-1.00001 * OR 
z2=2.00002*OR*B(l,kbt)-1.00001 *0R  
z3=2.00002*OR*B(l ,kct)-l .00001 *0R  
z4=2 00002*OR*B( 1 ,kdt)-1.00001 *0R 
z5=2.00002*OR*B(l,ket)-1.00001 *0R  
z6=2.00002*OR*B( 1 ,kft)-1.00001 *0R

R 1 =dsqrt((.\ 1 * *2)+(y 1 * *2)+(z 1**2)) 
R2=dsqrt((x2* *2)+(y2* *2)+(z2* *2)) 
R3=dsqrt((x3 * *2)+(y3 * *2)+(z3 * *2)) 
R4=dsqrt((x4**2)+(y4**2)+(z4**2)) 
R5=dsqrt((x5 * * 2)+(y 5 * * 2)+(z5 * * 2 )) 
R6=dsqrt((x6* *2)+(y6* *2)+(z6* *2))

CC Test points
if(R l.LE.O R) then 
Do 3 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x 1 +Qk*zl )

3 continue 
count=count+l 
endif

if(R 2.L E .0R )then 
Do 4 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x2+Qk*z2)

4 continue 
count=count+l 
endif
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if (R3.LE.OR) then 
Do 5 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dccs(2*zeta)-l) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A(l ,n)+2*dcos(Qi*x3+Qk*z3)

5 continue 
count=count+l 
endif

if (R4.LE.0R) then 
Do 6 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A(l ,n)+2*dcos(Qi*x4+Qk*z4)

6 continue 
count=count+l 
endif

if (R5.LE.0R) then 
Do 7 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x5+Qk*z5)

7 continue 
count=count+l 
endif

if  (R6.LE.0R) then 
Do 8 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x6+Qk*z6)

8 continue 
count=count+l 
endif

10 Continue

print*, '----------
print*, 'Radius'
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print*, OR
print*, '----------------- '
print*, 'Iterations' 
print*, iter
print*, '----------------- '
print*, 'Number o f Points' 
print*, count 
print*, '----------------- '

fmal=A(l,0)

Do 101 n=0,400
A( 1 ,n)=dlog 10((A( 1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, 'CPU Time (seconds)' 
print*, timespent 
print*. Iterations Per Seconds' 
print*, dev

Do 102 n=0,400 
write (15,*) A (l,n)

102 Continue

dev=l
End

Random Number Function Goes Here
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B.2. Prolate Spheroid

CC This file will model spheroidal scattering through random numbers, 
use portlib
real*8 s, si, timespent 
Integer* 4 iter, 1, number 
Integer* 4 m, n, count, seed 
Integer ia l, ia2, iat, ib l, ib2, ibt,

+ i d ,  ic2, ict, id l, id2, idt,
+ ie l, ie2, iet, ifl, iI2, ift,
+ ja l , ja 2 ,ja t ,jb l ,jb 2 ,jb t ,
+ jc l,jc 2 , jc t,jd l,jd 2 ,jd t ,
+ je l , je 2 ,je t , j f l , j f2 ,j f t ,
+ kal, ka2, kat, kbl, kb2, kbt,
+ kcl, kc2, ket, kd 1, kd2, kdt,
+ kel, ke2, ket, k f l, kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length,
+ Qi, Qk, Bragg, zeta, 8(1,118), ran2, cu tl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, final

CC Initilization o f some of the varibles and the constants.
Do 1 n=0,400 
A(I,n)=0.0 

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda 
count=0

CC Input statements.
Print*, 'Prolate Spheroid Scattering SimuIation(Random Numbers.)’ 
Print*, 'Enter A [nm] (half o f the major axis).'
Read*, length
Print*, Enter B [nm] (half o f the minor axis).'
Read*, OR
Print*, Enter the slice desired of the cylinder [nm].'
Print*. '(Pi/3 times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, 'Enter a seed for the random numbers.'
Read*,seed
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cut2=cutl* Pi/3.0 
s=rtc()

CC Iteration Loop
Do 10 1=1,iter 
number=seed+l

CC Draw Random Numbers 
Do 2 m=0,117 
B( 1 .m)=ran2f number)

2 continue

ial=idint(10*B(l,I00)) 
ia2=idint(( 100* B(1,100))-( 10* ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*B(l,101)) 
ib2=idint(( 100* B( 1,101 ))-( 10* ib 1 )) 
ibt=10*ib2+ibl

icl=idint(10*B(l,102)) 
ic2=idint(( 100* B( 1,102))-( 10* id  )) 
ict=l0*ic2+icl

idl=idint(10*B(l,103)) 
id2=idint(( 100* B( 1,103 ))-( 10* id 1 )) 
idt=10*id2+idl

iel=idint(10*B(l,104)) 
ie2=idint(( 100*B( 1,104))-( 10* ie 1 )) 
iet=10*ie2+iel

in=idint(10*B(l,105)) 
iO=idint(( 100* B( 1,105))-( 10*ifl )) 
ift=10*if2+ifl

jal=idint(10*B(l,106)) 
ja2=idint(( 100* B( 1,106))-{ 10*ja 1 )) 
jat=10*ja2+jal

jbl=idint(10*B (l,l07)) 
jb2=idint(( 100*B( 1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl
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jcl=idint(10*B(l,108)) 
jc2=idint(( 100*8(1,108))-( 10*jc 1 )) 
jct=10*jc2+jcl

jd l= idint(l 0*8(1,109)) 
jd2=idint(( 100*8(1,109))-( 10*jd 1 )) 
jdt=10*jd2+jdl

jel= idint(10*8(l,llG )) 
je2=idint(( 100*8(1,110))-( 10*je 1 )) 
jet=10*je2+jel

jfl= id in t(1 0 * 8 (l,lll))  
jf2=idint((100*8(1,11 l))-(10*jfl))
jft=10*jf2+jn

kal=idint(l 0*8(1,112)) 
ka2=idint(( 100*8(1,112))-( 10*kal )) 
kat=10*ka2+kal

kbl=idint(10*8(l,113)) 
kb2=idint(( 100* 8( 1,113 ))-( 10*kb 1 )) 
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114)) 
kc2=idint(( 100*8(1,114))-( 10*kcl )) 
kct=10*kc2+kcl

kdl=idint( 10*8(1,115)) 
kd2=idint(( 100*8(1,115))-( 10*kd 1 )) 
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116)) 
ke2=idint(( 100*8(1,116))-( 10*ke I )) 
ket=10*ke2+kel

kfl=idint(10*8(l,117)) 
kf2=idint(( 100*8(1,11 ?))-( 10*kfl ))
kft=10*kf2+kn

XI =2.00002*OR*B( 1 ,iat)-1.00001 *0R 
x2=2.00002*OR*8( 1 ,ibt)-l .00001 *0R  
x3=2.00002*OR* 8 ( 1 ,ict)-1.00001 *0R 
x4=2.00002*OR*8( 1 ,idt)-1.00001 *0R
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x5=2.00002*OR* B( 1 ,iet)-1.00001 *0R  
x6=2.00002*OR*B( 1 1.00001 *0R
y 1=2.00002* length* B(1 ja t)-l .00001 * length 
y2=2.00002*length*B(l Jbt)-1.00001 * length 
y3=2.00002* length*B( 1 je t) -1.00001 * length 
y4=2.00002*length*B( 1 jd t) -1.00001 * length 
y5=2.00002* length*B( 1 je t ) -1.00001 * length 
y6=2.00002*length*B(l jf t)- l .00001 *length 
zl=2.00002*OR*B(l,kat)-1.00001*OR 
z2=2.00002*OR*B(l,kbt)-1.00001 *0R 
z3=2.00002*OR*B( 1,ket)-1.00001 *0R 
z4=2.00002*OR*B(l,kdt)-1.00001 *0R 
z5=2.00002*OR*B( 1,ket)-1.00001 *0R 
z6=2.00002*OR*B(l,kft)-1.00001 *0R

R 1 =(((x 1 /OR)* *2)+((y 1 /length)* *2 )+((z 1 /OR)* *2)) 
R2=(((x2/OR)**2)+((y2/length)**2)+((z2/OR)**2)) 
R3=(((x3/OR)**2)+((y3/length)**2)+((z3/OR)**2)) 
R4=(((x4/OR)**2)+((y4/length)**2)+((z4/OR)**2)) 
R5=(((x5/OR)**2)+((y5/length)**2)+((z5/OR)**2)) 
R6=(((x6/OR)**2)+((y6/length)**2)+((z6/OR)**2))

CC Test points
if (R l.LE. 1.0) then 
Do 14 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(deos(2*zeta)-1 )
Qi=Bragg*deos(eut2)*dsin(2*zeta)
Qk=Bragg*dsin(eut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*deos(Qi * x 1 +Qj * y 1 +Qk* z 1 )

14 eontinue
eount=eount+1 
endif

if(R2.LE.1.0) then 
Do 24 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(deos(2*zeta)-1 )
(^=Bragg*deos(eut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x2+(^*y2+Qk*z2)

24 eontinue
eount=eount+l
endif
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if(R3.LE.1.0)then 
Do 34 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
A(l,n)=A(l,n)+2*dcos(Qi*x3+Qj*y3+Qk*z3) 

34 continue
count=count+1 
endif

if(R4.LE.1.0) then 
Do 44 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 * zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x4+Qj *y4+Qk*z4) 

44 continue
count=count+1 
endif

if (R5.LE.1.0) then 
Do 54 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
A(l,n)=A(l,n)+2*dcos(Qi*x5+Qj*y5+Qk*z5) 

54 continue
count=count+l
endif

if(R6.LE.1.0) then 
Do 64 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x6+Qj*y6+Qk*z6) 

64 continue
count=count+l
endif
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10 Continue

print*, '----------------- '
print*, 'Iterations’ 
print*, iter
print*, '----------------- '
print*, "Number o f Points' 
print*, count 
print*, '----------------- '

finai=A(l,G)

Do 101 n=0,400
A( 1 ,n)=dlog 10(( A( 1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, CPU Time (seconds)' 
print*, timespent 
print*. Iterations Per Seconds' 
print*, dev

Do 102 n=0,400 
write (15,*) A (l,n)

102 Continue

End

Random Number Function Goes Here
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B.3. Cylinder

CC This file will model a cylinder through random numbers, 
use portlib
real*8 s, si, timespent 
lnteger*4 iter, 1, number 
Integer*4 m, n, count, seed 
Integer ial, ia2, iat, ib l, ib2, ibt,

+ ici, ic2, ict, id l, id2, idt, iel, ie2, let, ifl, if2, ift,
+ j a l , ja2, jat, jb  I , jb2, jbt, jc 1, jc2, jet, Jd 1, Jd2, jdt,
+ Jel,Je2, je t,Jfl,Jf2 ,Jft, kal, ka2, kat, kbl, kb2, kbt,
+ kc 1, kc2, kct, kd 1, kd2, kdt, ke 1, ke2, ket, k f l , kf2. kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cutl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, S 1, S2, S3, 84, 85, 86, final

CC Initilization o f some o f the varibles and the constants.
Do 1 n=0,400 
A(l,n)=0.0 

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda 
count=0

CC Input statements.
Print*, Cylinder Scattering Simulation Through Random Numbers.' 
Print*, 'Enter the radius o f the cylinder [nm].'
Read*, OR
Print*. Enter half the length o f the cylinder [nm].'
Read*, length
Print*, Enter the slice desired o f the cylinder [nm].'
Print*, (Pi times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*,seed
cut2=cutl*Pi
s=rtc()

CC Iteration Loop
Do 101=1,iter
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number=seed+l 
CC Draw Random Numbers 

Do 2 m=0,l 17 
B( 1 ,m)=ran2(number)

2 continue

iaI=idint(10*B(l,100)) 
ia2=idint(( 100* B( 1,100))-( 10* la 1 )) 
iat=10*ia2+ial

ibl=idint(l0*B (l,10l)) 
ib2=idint(( 100*B( 1,101 ))-( 10*lb I )) 
ibt=10*ib2+ibl

icl=idint(10*B(l,102)) 
ic2=idint(( 100* B(1,102))-( 10*icl )) 
ict=10*ic2+icl

idl=idint(10*B(l,103)) 
id2=idint(( 100* B( 1,103 ))-( 10* id 1 )) 
idt=10*id2+idl

iel=idint(10*B(l,104)) 
ie2=idint(( 100* B( 1,104))-( 10* ie 1 )) 
iet=10*ie2+iel

ifl=idint(10*B(l,105)) 
if2=idint(( 100* B( 1,105))-( 10* in  ))
ift=10*if2+in

jal=idint(10*B(l,106)) 
ja2=idint(( 100*B( 1,106))-( 10*jal )) 
jat=10*ja2+jal

jbl=idint(10*B(l,107)) 
jb2=idint(( 100* B( 1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl

jcl=idint(10*B(l,108)) 
jc2=idint(( 100*B( 1,108))-( 10*jcl )) 
jct=10*jc2+jcl

jdl=idint(10*B(l,109)) 
jd2=idint(( 100* B( 1,109))-( 10*jd I ))
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j d t = 1 0 * j d 2 + j d l

jel=idint(10*B(l,110)) 
je2=idint(( 100* B( 1,110))-( 10*je 1 )) 
jet=10*je2+jel

jfl= id in t(10*B (l,lll)) 
jf2=idint((100*B(l,l 1
jft=10*jf2+jn

kal=idint(10*B(l,112)) 
ka2=idint(( 100* B( 1,112))-( 10*ka 1 )) 
kat=10*ka2+kal

kbl=idint(10*B(l,113)) 
kb2=idint(( 100* B( 1,113 ))-( 10*kb 1 )) 
kbt=10*kb2+kbl

kcl=idint(10*B(l,114)) 
kc2=idint(( 100* B( 1,114))-( 10*kc 1 )) 
kct=10*kc2+kcl

kdl= idint(10*B (l,ll5)) 
kd2=idint(( 100*B( 1,115))-( 10*kd 1 )) 
kdt=10*kd2+kdl

kel=idint(10*B(l,116)) 
ke2=idinl(( 100* B( 1,116))-( 10* ke 1 )) 
ket=10*ke2+kel

kfl =idint( 10*8(1,117)) 
kf2=idint(( 100*8(1,11 ?))-( 10*kfl ))
kft=10*kf2+kn

X 1=2.00002*OR* 8(1,iat)-1.00001 *0R  
x2=2.00002*OR*8( 1 ,ibt)-1.00001 *0R  
x3=2.00002*OR*B(l,lct)-1.00001*OR 
x4=2.00002*OR*8( 1 ,idt)-1.00001 *0R  
x5=2.00002*OR*8(l ,iet)-l .00001 *0R  
x6=2.00002*OR*8( 1 ,ift)-1.00001 *0R  
y 1 =2.00002* length* 8( 1 ja t) -1.00001 * length 
y2=2.00002* length* 8(1 jb t) -1.00001 *length 
y3=2.00002*length* 8( 1 je t) -1.00001 * length 
y4=2.00002* length* 8( 1 jd t) -1.00001 * length
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y5=2.00002*length*B(l Je t)>1.00001 * length 
y6=2.00002* length* B( 1J  ft)-1.00001 * length 
z 1 =2.00002 *OR* B( 1,kat)-1.00001 *0R 
z2=2.00002*OR* B( 1 ,kbt)-1.00001 *0R 
z3=2.00002*OR* B( 1 ,kct)-1.00001 *0R 
z4=2.00002*OR* B( 1 ,kdt)-1.00001 *0R 
z5=2.00002*OR*B(l,ket)-1.00001 *0R 
z6=2.00002*OR*B(l,kft)-l.00001 *0R

Rl=dsqrt((xl **2)+(zl **2))
R2=dsqrt((x2 **2)+(z2**2))
R3=dsqrt((x3 * *2)+(z3 * *2)) 
R4=dsqrt((x4**2)+(z4**2)) 
R5=dsqrt((x5**2)+(z5**2)) 
R6=dsqrt((x6**2)+(z6**2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points
if (Sl.LE.length) then 
if(Rl.LE.O R) then 
Do 14 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x 1+Qj*y I +Qk*zI ) 

14 continue
count=count+l
endif
endif

if (S2.LE.length) then 
if (R2.LE.0R) then 
Do 24 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg *(dcos(2 *zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x2+Qj *y2+Qk*z2)
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24 continue
count=count+l
endif
endif

if (S3.LE.length) then 
if (R3.LE.0R) then 
Do 34 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qi=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x3+Qj*y3+Qk*z3) 

34 continue
count=count+l
endif
endif

if (S4.LE.Iength) then 
if (R4.LE.0R) then 
Do 44 n=0,400 
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A( 1 ,n)+2*dcos(Qi*x4+Qi*y4+Qk*z4) 

44 continue
count=count+1
endif
endif

if  (SS.LE.length) then 
if (R5.LE.0R) then 
Do 54 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta>-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A(1 ,n)=A( 1 ,n)+2*dcos(Qi*x5+Qj*y5+Qk*z5) 

54 continue
count=count+l
endif
endif
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if  (S6.LE.length) then 
if(R 6.LE .0R )then 
Do 64 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x6+Qj*y6+Qk*z6)

64 continue
count=count+l
endif
endif

10 Continue
print*, '----------------- '
print*, 'Iterations' 
print*, iter
print*, '----------------- '
print*, 'Number o f Points' 
print*, count
print*, '----------------- '
final=A(l,0)
Do 101 n=0,400
A( 1 ,n)=( A( 1 ,n)/final)**2

101 Continue 
sl=rtc() 
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, 'CPU Time (seconds)' 
print*, timespent
print*. Iterations Per Seconds' 
print*, dev

Do 102 n=0,400 
write (15,*) A(l,n)

102 Continue

End

Random Number Function Goes Here
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B.4. Tilted Cylinder

CC This file will model t-cylinder scattering through random numbers, 
use portlib
real*8 s, si, timespent 
Integer*4 iter, 1, number 
Integer*4 m, n, count, seed
Integer ia l, ia2, iat, ib l, ib2, ibt, i d ,  ic2, ict, id l, id2, idt,

+ iel, ie2, let, ifl, if2, ift, ja l, ja2, jat, jb l ,  jb2, jbt,
+ j d ,  jc2, jet, jd  1, jd2, jdt, je 1, je2, jet, j f l , j f2, jft,
+ kal, ka2, kat, kb 1, kb2, kbt, kc 1, kc2, kct, kd 1, kd2, kdt,
+ k e l, ke2, ket, k f l , kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length, gamma,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cu tl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, S 1, S2, S3, S4, S 5 ,86, final, alpha,
+ beta, dist, xprime, yprime, zprime, ease

CC Initilization o f some of the varibles and the constants.
Do 1 n=0,400 
A(l,n)=0.0 

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda 
count=0

CC Input statements.
Print*, Cylinder Scattering Simulation Through Random Numbers.' 
Print*, 'Enter the radius o f the cylinder [nm].'
Read*, OR
Print*, 'Enter half the length of the cylinder [nm].'
Read*, length
Print*, 'Enter the slice desired o f the cylinder [nm].'
Print*, '(Pi times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*, seed
Print*, Enter the tilt angle.'
Print*, (Pi times this number.)'
Read*, gamma
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beta=gamma*Pi
cut2=cutl*Pi
s=rtc()

CC Iteration Loop
Do 10 1=1,iter 
number=seed+l 

CC Draw Random Numbers 
Do 2 m=0,117 
B( 1 ,m)=ran2(number)

2 continue

ial=idint( 10*8(1,100)) 
ia2=idint(( 100*8(1,100))-( 10* ia 1 )) 
iat=10*la2+ial

ibl=idint(10*8(l,101)) 
ib2=idint(( 100*8(1,101 ))-( 10* ib 1 )) 
ibt=10*ib2+ibl

i d  =idint(l 0*8(1,102)) 
ic2=idint(( 100*8(1,102))-( 10* ic 1 )) 
ict=10*ic2+icl

idl=idint(10*8(l,103)) 
id2=idint(( 100*8(1,103))-( 10*id 1 )) 
idt=10*id2+idl

iel=idint(l 0*8(1,104)) 
ie2=idint(( 100*8(1,104))-( 10* ie 1 )) 
iet=10*ie2+iel

ifl=idint(10*8(l,105)) 
if2=idint(( 100*8(1,105))-( 10* iH )) 
ift=10*iO+ifl

jal= idint(l 0*8(1,106)) 
ja2=idint(( 100*8(1,106))-( 10*ja 1 )) 
jat=10*ja2+jal

jbl=idint( 10*8(1,107)) 
jb2=idint((100*8(1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl

jcl=idint(10*8(l,108))
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jc2=idint(( 100*B( 1,108))-( 10*jc 1 )) 
jct=10*jc2+jcl

jdl=idint(10*B(l,109)) 
jd2=idint(( 100*B( 1,109))-( 10*jd 1 )) 
jdt=10*jdi+jdl

jel=idint(10*B(1.110)) 
je2=idint(( 100* B( 1,110))-( 10*je 1 )) 
jet=10*je2+jel

jn = id in t(1 0 * B (l,lll)) 
jf2=idint((100*B(l,11 l)H 10*jfl)) 
jft=10*jf2+jn

kal=idint(10*B(l,112)) 
ka2=idint(( 100*B( 1,112))-( 10*ka 1 )) 
kat=10*ka2+kal

kbl=idint(10*B(l,113)) 
kb2=idint(( 100*B( 1,113))-( 10*kb 1 )) 
kbt=10*kb2+kbl

kcl=idinl(10*B(l,114)) 
kc2=idint(( 100* B( 1,114))-( 10*kc 1 )) 
kct=10*kc2+kcl

kdl=idint(10*B (l,il5)) 
kd2=idint(( 100* B( 1,115))-( 10* kd 1 )) 
kdt=10*kd2+kdl

kel=idint(10*B(I,116)) 
ke2=idint(( 100* B( 1,116))-( 10* ke 1 )) 
ket=10*ke2+kel

kfl= idint(10*B (l,ll7)) 
kf2=idint(( 100*8(1,117))-( 10*kfl ))
kft=10*kf2+kn

X1 =2.00002*OR* B( 1 ,iat)-1.00001 *0R  
x2=2.00002*OR*B( 1 ,ibt)-l .00001 *0R  
x3=2.00002*OR*B( 1 ,ict)-1.00001 *0R  
x4=2.00002*OR*B( 1 ,idt)-l .00001 *0R  
x5=2.00002*OR*B(l ,iet)-l .00001 *0R
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x6=2.00002*OR*B(l,ift)-1.00001*OR 
y 1 =2.00002* length* B( 1 ja t) -1.00001 * length 
y2=2.00002* length* B( 1 jb t) -1.00001 * length 
y3=2.00002*length* B( 1 je t) -1.00001 * length 
y4=2.00002*length* B( 1 jd t) -1.00001 * length 
y5=2.00002*length*B(l je t) -1.00001 * length 
y6=2.00002*length*B( I j  A)-1.00001* length 
zl =2.00002*OR*B( 1 ,kat)-1.00001 *0R  
z2=2.00002*OR* B (l,kbt)-1.00001 *0R  
z3=2.00002*OR*B(l,kct)-1.00001*0R 
z4=2.00002*OR*B( 1 ,kdt)-1.00001 *OR 
z5=2.00002*OR*B( 1 ,ket)-1.00001 *0R  
z6=2.00002*OR*B(l,kft)-1.00001*OR

Rl=dsqrt((xl**2)+(zl**2))
R2=dsqrt((x2**2)+(z2**2))
R3=dsqrt((x3 * *2)+(z3 * *2)) 
R4=dsqrt((x4**2)+(z4**2))
R5=dsqrt((x5 * *2)+(z5 * * 2 )) 
R6=dsqrt((x6**2)+(z6**2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points

if (S 1 .LE.length) then 
if(Rl.LE.O R) then 
if (yl.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(xl/yl) 
end if
dist=dsqrt((xl**2)+(yl**2)) 
xprime=dist* dsin(alpha+beta) 
yprime=dist*dcos(alpha+beta) 
zprime=zl 
Do 14 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
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Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
ease=Qi *xprime+Qj * yprime+Qk* zprime 
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

14 continue
count=count+l
endif
endif

if (S2.LE.Iength) then
if(R2.LE.0R )then
if(y2.EQ.0.0)then
alpha=Pi/2
else
alpha=datan(x2/y2) 
end if
disl=dsqrt((x2 * * 2)+(y2 * * 2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(aipha+beta)
zprime=z2
Do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi * xprime+Qj * yprime+Qk* zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

24 continue
count=count+l
endif
endif

if (S3.LE.length) then
if (R3.LE.0R) then
if(y3.EQ.0.0)then
aIpha=Pi/2
else
alpha=datan(x3/y3) 
end if
dist=dsqrt((x3 * *2)+(y3 * *2»
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 34 n=0,400
zeta=Pi*n/(36*400)
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Qi=Bragg*(dcos(2*zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2'"zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
ease=Qi*xprime+Qj*yprime+Qk*zprime 
A( 1 ,n)=A( I ,n)+2*dcos(ease)

34 continue
count=count+l
endif
endif

if  (S4.LE.iength) then 
if  (R4.LE.0R) then 
if  (y4.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(x4/y4) 
end if
dist=dsqrt((x4**2)+(y4**2))
xprime=dist*dsin(alpha+beta)
yprinte=dist*dcos(aipha+beta)
zprime=z4
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Q=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qi*yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

44 continue
coimt=count+l
endif
endif

if (SS.LE.length) then 
if  (R5.LE.0R) then 
if (yS.EQ.O.O) then 
alpha=Pi/2 
else
alpha=datan(x5/yS) 
end if
dist=dsqrt((x5**2)+(y5**2))
xphme=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z5

99



Do 54 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi *xprime+Qj *yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

54 continue
count=count+l
endif
endif

if (S6.LE.length) then 
if(R6.LE.0R) then 
if (y6.EQ.00) then 
alpha=Pi/2 
else
alpha=datan(x6/y6) 
end if
dist=dsqrt((x6**2)+(y6**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2 * zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
ease=Qi *  xprime+Qj *yprime+Qk* zprime 
A( 1 ,n)=A( 1 ,n)+2 *dcos(ease)

64 continue
count=count+l 
endif 
endif 

10 Continue
print*, '----------------- '
print*, 'Iterations' 
print*, iter
print*, '----------------- '
print*, 'Number o f Points' 
print*, count 
print*, '----------------- '

fmal=A(l,0)
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Do 101 n=0,400
A( 1 ,n)=dlog 10(( A( 1 ,n)/final)**2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*, 'Iterations Per Seconds'
print*, dev

Do 102 n=0,400 
write (15,*) A(l,n)

102 Continue

End

Random Number Function Goes Here

101



B.5. Elongated Hexagon

CC This file will model elongated hexagon scattering through random numbers, 
use portlib
real*8 s, si, timespent 
Integer*4 iter, 1, number 
lnteger*4 m, n, count, seed
Integer ia l, ia2, iat, ib l, ib2, ibt, i d ,  ic2, ict, id l, id2, idt,

+ ie l, ie2, let, ifl, iO, ift, ja l , ja2, jat, jb l ,  jb2, jbt,
+ jc 1, jc2, jet, jd  1, jd2, jdt, je I , je2, jet, j n , j O, j ft,
+ kal, ka2, kat, kbl, kb2, kbt, kcl, kc2, kct, kdl, kd2, kdt,
+ k e l, ke2, ket, k f l, kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length, gamma,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cu tl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, SI, S2, S3, S4, S5, S6, T l, 12, T3,
+ 14, T5, T6, U 1, U2, U3, U4, U5, U6, V 1, V2,
+ V3, V4, V5, V6, PI, P2, P3, P4, P5, P6, final,
+ alpha, beta, dist, xprime, zulu, yprime, zprime, ease, ang

CC Initilization o f some o f the varibles and the constants.
Do 1 n=0,400 
A(l,n)=0.0 

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda 
count=0 
ang=Pi/6
zulu=dsqrt(dble(3.0))

CC Input statements.
Print*, Elongated hexagon Scattering Simulation [Random].'
Print*, Enter the radius o f the hexagon [nm].'
Read*, OR
Print*, Enter half the length o f the hexagon [nm].'
Read*, length
Print*, Enter the slice desired o f the hexagon [nm].'
Print*, (Pi/3 times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers '
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Read*,seed
Print*, 'Enter the tilt angle.'
Print*, '(Pi/3 times this number.)' 
Read*, gamma 
beta=gamma* Pi/3.0 
cut2=cutl* Pi/3.0 
s=rtc()

CC Iteration Loop
Do 10 1=1,iter 
number=seed+l 

CC Draw Random Numbers 
Do 2 m=0,l 17 
B( 1 ,m)=ran2(number)

2 continue

ial=idint( 10*8(1,100)) 
ia2=idint(( 100*8(1,100))-( 10*ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*8(l,101)) 
ib2=idint(( 100*8(1,101 ))-( 10* ib 1 )) 
ibt=10*ib2+ibl

i d  =idint(l 0*8(1,102)) 
ic2=idint(( 100*8(1,102))-( 10* id  )) 
ict=10*ic2+id

idl=idint(10*8(l,103)) 
id2=idint(( 100*8(1,103 ))-( 10* id 1 )) 
idt=10*id2+idl

iel=idint(l 0*8(1,104)) 
ie2=idint(( 100*8(1,104))-( 10*ie 1 )) 
iet=10*ie2+iel

in=idint(10*8(l,105)) 
if2=idint(( 100*8(1,105))-( 10*10)) 
ift=10*if2+ifl

jal=idint(10*8(l,106)) 
ja2=idint(( 100*8(1,106))-( 10*ja 1 )) 
jat=10*ja2+jal

jbl=idint(10*B(l,107))
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jb2=idint(( 100*8(1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl

jcl=idint(10*B(l,108)) 
jc2=idint(( 100*8(1,108))-( 10*jc 1 )) 
jct=10*jc2+jcl

jdl= idint(l 0*8(1,109)) 
jd2=idint(( 100*8(1,109))-( 10*jd 1 )) 
jdt=10*jd2+jdl

je l=idint(l 0*8(1,110))
Je2=idint(( 100*8(1,110))-( 10*Je 1 )) 
Jet=10*Je2+Jel

jn= id in t(l 0*8(1,111))
J 0 = i d i n t ( ( 1 0 0 * 8 ( l , l l l ) ) - ( 1 0 * j n ) )
Jft=10*jf2+jn

kal=idlnt(l 0*8(1,112)) 
ka2=idint(( 100*8(1,112))-( 10*ka 1 )) 
kat=10*ka2+kal

kb l=idint( 10*8(1,113)) 
kb2=idinl(( 100*8(1,113))-( 10*kb 1 )) 
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114)) 
kc2=idint(( 100*8(1,114))-( 10*kc 1 )) 
kct=10*kc2+kcl

kdl=idint(10*8(l,115)) 
kd2=idint(( 100*8(1,115))-( 10*kd 1 )) 
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116)) 
ke2=idint(( 100*8(1,116))-( 10*ke 1 )) 
ket=10*ke2+kel

kfl =idint(l 0*8(1,117)) 
kf2=idint(( 100*8(1,117))-( 10*kfl )) 
kft=10*kf2+kfl

X1 =2.00002*08* 8( 1 ,iat)-1.00001 *0R
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x2=2.00002*OR* B(l,ibt)-1.00001*0R 
x3=2.00002*OR* B(l,ict)-1.0000 l*OR 
x4=2.00002*OR* B(l,idt)-1.0000 l*OR 
x5=2.00002*OR*B(l,iet)-1.00001*OR 
x6=2.00002*OR*B( I ,ift)-1.00001 *0R  
y 1 =2.00002* length* B( 1 Jat)-1.00001 * length 
y2=2.00002*length*B(l Jb t)-1.00001 * length 
y3=2.00002* length* B( 1 Jet)-1.00001 * length 
y4=2.00002* length* B( 1 Jd t)-1.00001 * length 
y5=2.00002*length* B( 1 Jet)-1.00001 * length 
y6=2.00002* length* B( 1J ft)-1.00001 * length 
zl =2.00002*OR* B( 1 ,kat)-1.00001 *0R  
z2=2.00002*OR* B( 1 ,kbt)-1.00001 *0R  
z3=2.00002*OR*B( 1 ,kct)-1.00001 *0R  
z4=2.00002*OR*B(l,kdt)-1.00001 *0R  
z5=2.00002*OR*B( 1 ,ket)-1.00001 *0R  
z6=2.00002*OR*B(l,kft)-l.00001 *0R

Rl=dabs(xl)
R2=dabs(x2)
R3=dabs(x3)
R4=dabs(x4)
R5=dabs(x5)
R6=dabs(x6)
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)
Tl=dabs(zl)
T2=dabs(z2)
T3=dabs(z3)
T4=dabs(z4)
T5=dabs(z5)
T6=dabs(z6)

if(Rl.EQ.O.O)then
Ul=Pi/2
else
U l=datan(Tl/R l) 
end if
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if (R2.EQ.0.0) then
U2=Pi/2
else
U2=datan(T2/R2) 
end If

if(R3.EQ.0.0) then
U3=Pi/2
else
U3=datan(T3/R3) 
end if

if(R4.EQ.0.0) then
U4=Pi/2
else
U4=datan(T4/R4) 
end if

if(R5.EQ.0.0) then
U5=Pi/2
else
U5=datan(T5/R5) 
end if

if(R6.EQ.0.0) then
U6=Pi/2
else
U6=datan(T6/R6) 
end if

CC Test points

if (S 1 .LE.length) then
if (Ul.LE.ang) then
Vl=OR*dcos(ang)
if(R l.L E .V l)then
if (yl.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(xl/yl) 
end if
dist=dsqrt((x 1 * *2)+(y 1**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
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zprime=zl
Do 14 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2'*‘zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi* xprime+Qj * yprime+Qk* zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

14 continue 
count=count+l 
endif
else
Pl=OR-(Rl/zulu) 
if(T I.L E .P l)then  
if (yl.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(xl/yl) 
end if
dist=dsqrt((x 1 * *2)+(y 1**2))
xpri me=di St * dsin(al pha+beta)
yprime=dist*dcos(alpha+beta)
zprime=zl
Do 15 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 *zeta)-1 ) 
Cü=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
ease=Qi * xprime+Qj * yprime+Qk* zprime 
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

15 continue 
count=count+l 
endif
endif
endif

if (S2.LE.length) then
if (U2.LE.ang) then
V2=OR*dcos(ang)
if(R2.LE.V2) then
if (y2.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x2/y2)
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end if
dist=dsqrt((x2*"‘2)+(y2**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z2
Do 24 n=0,400
zeta=Pi"‘n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg'*dsin(cut2)*dsin(2*zeta)
ease=Qi * xprime+Qj *  ypri me+Qk* zpri me
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

24 continue 
count=count+l 
endif
else
P2=OR-(R2/zulu) 
if (T2.LE.P2) then 
if(y2.EQ.O.O) then 
alpha=Pi/2 
else
alpha=datan(x2/y2) 
end if
dist=dsqrt((x2**2)+(y2**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z2
Do 25 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A( I ,n)=A( 1 ,n)+2*dcos(ease)

25 continue 
count=count+1 
endif
endif
endif

if (S3.LE.length) then 
if (U3.LE.ang) then 
V3=OR*dcos(ang) 
if(R3.LE.V3)then
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if (yS.EQ.O.O) then
alpha=PI/2
else
alpha=datan(x3/y 3 ) 
end if
dist=dsqrt((x3* *2)+(y3 * *2))
xprime=dist*dsin(aipha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 34 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

34 continue 
count=count+1 
endif
else
P3=OR-(R3/zulu) 
if(T3.LE.P3)then 
if (yS.EQ.O.O) then 
alpha=Pi/2 
else
alpha=datan(x3/yS) 
end if
dist=dsqrt((x3* *2)+(y3 * *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 35 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2* zeta)-1 ) 
Qi=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
ease=Qi*xprime+(^*yprime+Qk*zprime 
A( I ,n)=A( 1 ,n)+2*dcos(ease)

35 continue 
count=count+l 
endif
endif
endif
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i f  (S4.LE.length) then
if (U4.LE.ang) then
V4=OR*dcos(ang)
if (R4.LE.V4) then
if (y4.EQ.0.0) then
alpha=Pi/2
else
aipha=datan(x4/y4) 
end if
dist=dsqrt((x4**2)+(y4* *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z4
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

44 continue 
count=count+l 
endif
else
P4=OR-(R4/zulu) 
if(T4.LE.P4) then 
if (y4.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(x4/y4) 
end if
dist=dsqrt((x4**2)+(y4**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z4
Do 45 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

45 continue 
count=count+l
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endif
endif
endif

if (SS.LE.length) then
if (U5.LE.ang) then
V 5=OR*dcos(ang)
if(R5.LE.V5)then
if (yS.EQ.O.O) then
alpha=Pi/2
else
alpha=datan(xS/yS) 
end if
dist=dsqrt((xS**2)+(yS**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z5
Do S4 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

S4 continue
count=count+1
endif
else
PS=OR-(RS/zulu) 
if(TS.LE.PS)then 
if (yS.EQ.O.O) then 
alpha=Pi/2 
else
alpha=datan(xS/yS) 
end if
dist=dsqrt((xS**2)+(yS**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=zS
Do S S n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
(Ü=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2 * zeta)
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ease=Qi * xprime+Qj *yprime+Qk* zprime 
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

55 continue
count=count+l
endif
endif
endif

if (S6.LE.length) then 
if (U6.LE.ang) then 
V 6=OR*dcos(ang) 
if(R6.LE.V6) then 
if (yô.EQ.O.O) then 
alpha=Pi/2 
else
alpha=datan(x6/y6) 
end if
dist=dsqrt((x6**2)+(y6**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Cü=Bragg*clcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease=Qi*xprime+Qj*yprime+Qk*zprime
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

64 continue
count=coiuit+1
endif
else
P6=OR-(R6/zulu) 
if(T6.LE.P6) then 
if  (y6.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(x6/y6) 
end if
dist=dsqrt((x6* * 2)+(y6* *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 65 n=0,400
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zeta=P i "■ n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
ease=Qi*xprime+Qj*yprime+Qk'*zprime 
A( 1 ,n)=A( 1 ,n)+2*dcos(ease)

65 continue
count=count+l
endif
endif
endif

10 Continue
print*, '----------------- '
print*, 'Iterations' 

print*, iter
print*, '----------------- '
print*, 'Number of Points' 
print*, count
print*, '----------------- '
final=A(l,0)

Do 101 n=0,400
A( 1 ,n)=dIog 10(( A( 1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s
dev=(dble(iter))/timespent
print*, 'CPU Time (seconds)'
print*, timespent
print*, 'Iterations Per Seconds'
print*, dev

Do 102 n=0,400 
write (15,*) A(l,n)

102 Continue

End

Random Number Function Goes Here
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B.6. Bundled Cylinders

CC This file will model fiber scattering through random numbers, 
use portlib
real*8 s, si, timespent 
lnteger*4 iter. I, number 
lnteger*4 m, n, count, seed
Integer ial, ia2, iat, ib l, ib2, ibt, i d ,  ic2, ict, id l, id2, idt,

+ ie l, ie2, iet, ifl, iO, ift, ja l ,  ja2, jat, jb l, jb2, jbt,
+ jc I , jc2, jet, jd 1, jd2, jdt, je  1, je2, jet, j f l , jO , jft,
+ ka l, ka2, kat, kbl, kb2, kbt, kcl, kc2, kct, kd l, kd2, kdt,
+ kel, ke2, ket, k f l , kf2, kft

Real*8 OR, A(7,401), Pi, lamda, Qi, dev, length, gamma,
+ Qj, Qk, Bragg, zeta, 8(1,118), ran2, cutl, cut2,
+ x l, x2, x3, x4, x5, x6, y l, y2, y3, y4, y5,
+ y6, z l, z2, z3, z4, z5, z6, R l, R2, R3, R4,
+ R5, R6, SI, S2, S3, S4, S5, S6, final, alpha,
+ beta, dist, xprime, yprime, zprime, ease 1, ease2,
+ ease3, ease4, easeS, eased, ease?, f l , f2 ,13
CC Initilization of some of the varibles and the constants.

Do 1 n=0,400 
A(l,n)=0.0 

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda 
count=0

CC Input statements.
Print*, 'Fiber Scattering Simulation Through Random Numbers. 
Print*, 'Enter the radius o f the innermost cylinder [nm].'
Read*, OR
Print*, 'Enter half the length of the fiber [nm].'
Read*, length
Print*, Enter the slice desired o f the fiber [nm].'
Print*, '(Pi/3 times this number.)'
Read*, cutl
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter a seed for the random numbers.'
Read*, seed
Print*, Enter the tilt angle.'
Print*, '(Pi/3 times this number.)'
Read*, gamma
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beta=gamma* Pi/3.0 
cut2=cutl* Pi/3.0 
s=rtc()
n=2*OR*dcos(Pi/6)
0=2*0R*dsin(Pi/6)
D=2*OR 

CC Iteration Loop
Do 10 1= Liter 
number=seed+l 

CC Draw Random Numbers 
Do 2 m=0,l 17 
B( 1 ,m)=ran2(number)

2 continue

ial=idint( 10*8(1,100)) 
ia2=idint(( 100*8(1,100))-( 10* ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*8(l,l01)) 
ib2=idint(( 100* 8( 1,101 ))-( 10* ib 1 )) 
ibt=10*ib2+ibl

icl=idint(l 0*8(1,102)) 
ic2=idint(( 100*8(1,102))-( 10* id  )) 
ict=10*ic2+icl

idl=idint(10*8(l,103)) 
id2=idint(( 100*8(1,103 ))-( 10* id 1 )) 
idt=10*id2+idl

iel=idint(l 0*8(1,104)) 
ie2=idint(( 100* 8( 1,104))-( 10* ie 1 )) 
iet=10*ie2+iel

ifl=idint(10*8(l,105)) 
if2=idint((100*8(1,105))-( 10*ifl )) 
ift=10*if2+ifl

jal=idint(10*8(l,106)) 
ja2=idint((100*8(1,106))-( 10*ja 1 )) 
jat=10*ja2+jal

jbl=idint(10*8(l,107)) 
jb2=idint(( 100*8(1,107))-(10*jb 1 ))
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jbt=l0*jb2+jbl

jcl=idint( 10*8(1,108)) 
jc2=idint(( 100*8(1,108))-( 10*jc 1 )) 
jct=10*jc2+jcl

jdl= idint(l 0*8(1,109)) 
jd2=idint(( 100*8(1,109))-(10*jdl )) 
jdt=10*jd2+jdl

jel=idint( 10*8(1,110)) 
je2=idint(( 100*8(1,110))-( 10*je 1 )) 
jet=10*je2+jel

jf l= id in t(1 0 * 8 (l,lll))  
jf2=idint(( 100* 8(1,11 l))-(10*jfl)) 
jft=10*jf2+jn

kal=idint(10*8(l,112)) 
ka2=idint(( 100*8(1,112))-( 10* ka 1 )) 
kat=10*ka2+kal

kbl=idint(10*B(l,113)) 
kb2=idint(( 100*8(1,113))-( 10*kb 1 )) 
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114)) 
kc2=idint(( 100*8(1,114))-( 10* kc 1 )) 
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115))
kd2=idint((100*8(l,115))-(10*kdl))
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116)) 
ke2=idint(( 100*8(1.116))-( 10*ke 1 )) 
ket=10*ke2+kel

kfl =idint( 10*8(1,117)) 
kf2=idint(( 100*8(1,11 ?))-( 10*kfl )) 
kfl=10*kf2+kfl

xl=2.00002*OR*B(l,iat)-l .00001 *0R 
x2=2.00002*OR*B(l ,ibt)-1.00001 *0R
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x3=2.00002*OR*B( 1 ,ict)-1.00001 *0R  
x4=2.00002*OR*B( 1 ,idt)-l .00001 *0R  
x5=2.00002*OR* B( 1 ,iet)-1.00001 *OR 
x6=2.00002*OR* B (l,ift)-1.00001 *0R  
yl=2.00002*length*B(l ja t) -1.00001 * length 
y2=2.00002*length*B(l jb t) -1.00001 * length 
y3=2.00002* length* B( 1 je t) -1.00001 * length 
y4=2.00002* length* B( 1 jd t) -1.00001 * length 
y5=2.00002*length*B(l je t) -1.00001 * length 
y6=2.00002* length* B( 1 jf t ) -1.00001 * length 
z 1 =2.00002*OR* B( 1 ,kat)-1.00001 *OR 
z2=2.00002*OR*B(l,kbt)-1.00001 *OR 
z3=2.00002*OR*B(l,kct)-1.00001 *0R  
z4=2.00002*OR*B( 1 ,kdt)-1.00001 *0R  
z5=2.00002*OR*B(l,ket)-1.00001 *0R  
z6=2.00002*OR*B(l ,kft)-l .00001 *0R

Rl=dsqrt((xl**2)+(zl**2))
R2=dsqrt((x2**2)+(z2**2))
R3=dsqrt((x3**2)+(z3**2))
R4=dsqrt((x4**2)+(z4**2))
R5=dsqrt((x5* *2)+(z5 * *2))
R6=dsqrt((x6* *2)+(z6* *2))
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points

if  (S 1 .LE.Iength) then
if(R l.LE.O R )then
if(yl.EQ.O.O)then
alpha=Pi/2
else
alpha=datan(xl/yl) 
end if
dist=dsqrt((xl **2)+(yl **2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha-t-beta)
zprime=zl
Do 14 n=0,400

117



zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2'*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi*xprime+Qj*yprime+Qk*zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+0)
ease3=Qi * (xprime+fl )+Qj * yprime+Qk* (zprime-O )
ease4=Qi*xprime+Qj*yprime+Qk*(zprime+D)
ease5=Qi*xpnme+Q)*yprime+Qk*(zphme-0)
ease6=Qi*(xprime-fl )+Qj *yprime+Qk'"(zpriiiie+f2)
ease7=Qi*(xprime-fl)+Qi*yprime+Qk*(zprime-f2)
A( 1 ,n)=A( 1 ,n)+2*dcos(ease 1 )+2*dcos(ease2)+

+ 2 * dcos(ease3 )+2 * dcos(ease4)+2 * dcos(ease5 )+
+ 2*dcos(ease6)+2*dcos(ease7)

14 continue
count=count+l
endif
endif

If (S2.LE.length) then
if(R2.LE.0R) then
if(y2.EQ.0.0)then
alpha=Pi/2
else
aipha=datan(x2/y2) 
end if
dist=dsqrt((x2**2)+(y2**2))
xprime=dist*dsin(aipha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z2
Do 24 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg"'dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi*xprime+Qj*yprinie+Qk*zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+f2)
ease3=Qi*(xprinte+fl)+Qj*ypiime+Qk*(zprinie-f2)
ease4=Qi*xprime+Qj*yprime+Qk*(zprime+f3)
ease5=Qi *xprime+Qj *yprime+Qk* (zprime-f3 )
ease6=Qi*(xprime-fl )+Qj *yprime+Qk*(zprime+f2)
ease7=Qi*(xprime-fl )+Qj *yprime+Qk*(zprime-f2)
A( 1 ,n)=A( 1 ,n)+2*dcos(ease 1 )+2*dcos(ease2)+

+ 2*dcos(ease3)+2*dcos(ease4)+2*dcos(ease5)+
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+ 2*dcos(ease6)+2"‘dcos(ease7)
24 continue

count=count+l
endif
endif

if (S3.LE.Iength) then
if(R3.LE.OR)then
if  (y3.EQ.0.0) then
alpha=Pi/2
else
alpha=datan(x3/y3) 
end if
dist=dsqrt((x3 * *2)+(y3 * *2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z3
Do 34 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
C^=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)"‘dsin(2*zeta)
ease 1 =Qi*xprime+Qj*yprime+Qk*zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj*yprime+Qk*(zprinie-f2)
ease4=Qi * xprime+Qj * yprime+Qk* (zpri me+O)
ease5=Qi*xprime+Qi*yprime+Qk*(zprime-f3)
ease6=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime+f2)
ease7=()i*(xprime-fl)+(^*yprime+Qk*(zprime-f2)
A( 1 ,n)=A( 1 ,n)+2*dcos(ease 1 )+2*dcos(ease2)+

+ 2 *  dcos(ease3 )+2 * dcos(ease4)+2 * dcos(ease5 )+
+ 2*dcos(ease6)+2*dcos(ease7)

34 continue
count=count+l
endif
endif

if (S4.LE.Iength) then 
if (R4.LE.0R) then 
if (y4.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(x4/y4) 
end if
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dist=dsqrt((x4**2)+(y4**2))
xprime=dist*dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z4
Do 44 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
Qi=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi* xprime+Qj *yprime+Qk* zprime
ease2=Qi*(xprime+fl)+Qj‘‘‘yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime-f2)
ease4=Qi* xprime+Qj *yprime+Qk*(zprime+G)
ease5=Qi*xprime+Qj*yprime+Qk*(zprime-f3)
ease6=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime+f2)
ease7=Qi* (xprime-fl )+Qj "‘yprime+Qk* (zprime- f2 )
A( 1 ,n)=A( 1 ,n)+2*dcos(ease 1 )+2*dcos(ease2)+

+ 2*dcos(ease3)+2*dcos(ease4)+2*dcos(ease5)+
+ 2*dcos(ease6)+2*dcos(ease7)

44 continue
count=count+l
endif
endif

if (S5.LE.Iength) then 
if(R5.LE.0R) then 
if(y5.EQ.0.0) then 
alpha=Pi/2 
else
alpha=datan(x5/y5) 
end if
dist=dsqrt((x5**2)+(y5**2))
xprime=dist*dsin(aipha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z5
Do 54 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2 * zeta)-1 )
(^=Bragg*dcos(cut2)*dsin(2 * zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi*xprime+(^*yprime+Qk*zprime
ease2=Qi*(xprime+fl)+Cij*yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl )+Qj *yprime+Qk*(zprime-f2)
ease4=Qi ♦ xprime+(^ *yprime+Qk*(zprime+D)
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ease5=Qi ♦xprime+Q *y prime+Qk* (zprime-O ) 
ease6=Qi'*'(xprime-fl)+Qj*yprinie+Qk*(zprime+f2) 
ease7=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime-f2) 
A( 1 ,n)=A( I ,n)+2*dcos(ease 1 )+2*dcos(ease2)+

+ 2 *  dcos(ease3 )+2 * dcos(ease4)+2 * dcos(ease5 )+
+ 2*dcos(ease6)+2*dcos(ease7)

54 continue
count=count+l
endif
endif

if (S6.LE.length) then 
if (R6.LE.0R) then 
if (yô.EQ.O.O) then 
alpha=Pi/2 
else
alpha=datan(x6/y6) 
end if
dist=dsqrt((x6**2)+(y6**2))
xprime=dist* dsin(alpha+beta)
yprime=dist*dcos(alpha+beta)
zprime=z6
Do 64 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
ease 1 =Qi *xprinte+Qj * yprime+Qk* zprime
ease2=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime+f2)
ease3=Qi*(xprime+fl)+Qj*yprime+Qk*(zprime-f2)
ease4=Qi * xprime+Qj * yprime+Qk*(zprime+f3 )
ease5=Qi*xprime+Qj*yprime+Qk*(zprime-D)
ease6=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime+f2)
ease7=Qi*(xprime-fl)+Qj*yprime+Qk*(zprime-t2)
A( 1 ,n)=A( 1 ,n)+2*dcos(ease I )+2*dcos(ease2)+

+ 2 * dcos(ease3 )+2 * dcos(ease4)+2 * dcos(easeS )+
+ 2*dcos(ease6)+2*dcos(ease7)

64 continue
count=count+l
endif
endif

10 Continue
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print*, '----------------- '
print*, 'Iterations' 
print*, iter
print*, '----------------- '
print*, 'Number o f Points' 
print*, count 
print*, '----------------- '

final=A(l,0)

Do iü l n=ü,4üü
A( 1 ,n)=dlog 10(( A( 1 ,n)/final)* *2)

101 Continue

sl=rtc()
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, CPU Time (seconds)' 
print*, timespent 
print*. Iterations Per Seconds' 
print*, dev

Do 102 n=0,400 
write (15,*) A (l,n)

102 Continue

End

Random Number Function Goes Here
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APPENDIX C FORTRAN Programs Used in Chapter 3

C .l. Core/Corona

CC This file will model a core/corona through random numbers, 
use portlib
real*8 s, si, timespent 
lnteger*4 iter, 1, number 
lnteger*4 m. n
Integer ial, ia2, iat, ib l, ib2, ibt,

+ i d ,  ic2, ict, id l, id2, idt, iel, ie2, iet, ifl, if2, ift,
+ j a l , Ja2, Jat, J b l, Jb2, Jbt, Jc 1, Jc2, Jet, Jd 1, Jd2, Jdt,
+ je l ,  Je2, Jet, jf l,J f2 , Jft, kal, ka2, kat, kb l, kb2, kbt,
+ kc l, kc2, kct, kd 1, kd2, kdt, ke 1, ke2, ket, k f l , kl2, kft

Real*8 O Rl, 0R 2, A( 1,401), Pi, lamda, Qi, dev,
+ Qk, Bragg, zeta, final 1, 8(1,118), ran2,x 1, x2, x3, x4, x5,
+ x6, y l, y2, y3, y4, y5, y6, z l, z2, z3, z4, z5, z6, R l, R2,
+ R3, R4, R5, R 6 ,11,12,13, C( 1,401), final2, final3, H, 12,13

CC Initilization of some o f the varibles and the constants.
Do 1 n=0,400 
A(l,n)=0.0 
C(l,n)=0.0 

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda

CC Input statements.
Print*, Corona Sphere Scattering'
Print*, 'Enter the radius o f the core [nm].'
Read*, ORl
Print*, Enter the radius o f the corona [nm].'
Read*, 0R 2
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter the ratio o f the electron denisty'
Print*, 'of the outer shell to the core (assume 1.0).'
Read*, 11 
s=rtc()

CC Iteration Loop
Do 10 1=1,iter 
number=l
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CC Draw Random Numbers 
Do 2 m=0,l 17 
B( 1 ,m)=ran2(number)

2 continue

ial=idint( 10*8(1,100)) 
ia2=idint(( 100*8(1,100))-( 10* ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*8(l,101)) 
ib2=idint(( 100* 8( 1,101 ))-( 10 * ib 1 )) 
ibt=10*ib2+ibl

id  =idint(l 0*8(1,102)) 
ic2=idint(( 100*8(1,102))-( 10* ic 1 )) 
ict=10*ic2+icl

idl=idint(10*8(l,103)) 
id2=idint(( 100*8(1,103))-( 10* id 1 )) 
idt=10*id2+idl

iel=idinl(l 0*8(1,104)) 
ie2=idint(( 100*8(1,104))-( 10* ie 1 )) 
iet=10*ie2+iel

in=idint(10*8(l,105)) 
if2=idint(( 100*8(1,105))-( 10* ifl )) 
ift=10*if2+ifl

jal= idint(l 0*8(1,106)) 
ja2=idint(( 100*8(1,106))-( 10*ja 1 )) 
jat=10*ja2+jal

jbl=idint(10*8(l,107)) 
jb2=idint(( 100*8(1,107))-( 10*jb 1 )) 
jbt=10*jbi+jbl

jcl=idint(10*8(l,108)) 
jc2=idint(( 100*8(1,108))-( 10*jcl )) 
jct=10*jc2+jcl

jd l= idint(l 0*8(1,109)) 
jd2=idint(( 100*8(1,109))-( 10*jd 1 ))
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j d t = 1 0 * j d 2 + j d l

je  l=idint( 10*8(1,110))
Je2=idint(( 100*8(1,110))-( 10*Je 1 )) 
Jet=10*je2+Jel

jfl=idint( 10*8(1, 111))
J f2=idint(( 100*8(1,111 ))-( 10*j n  )) 
Jft=10*Jf2+Jfl

kal=idint(l 0*8(1,112)) 
ka2=idint(( 100*8(1,112))-( 10* ka 1 )) 
kat=10*ka2+kal

kb l=idint( 10*8(1,113)) 
kb2=ldint(( 100*8(1,113 ))-( 10* kb 1 )) 
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114)) 
kc2=idint(( 100*8(1,114))-( 10*kc 1 )) 
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115)) 
kd2=ldint(( 100* 8( 1,115))-( 10*kd 1 )) 
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116)) 
ke2=idint(( 100*8(1,116))-( 10*ke 1 )) 
ket=10*ke2+kel

kfl=idint(10*8(l,117)) 
kO=idint(( 100*8(1,117))-( 10* kfl )) 
kft=10*kf2+kfl

X1 =2.00002*OR2*8( 1 ,iat)-1.00001 *0R2 
x2=2.00002*OR2*8( 1 ,ibt)-1.00001 *0R2 
x3=2.00002*OR2*B( 1 ,ict)-1.00001 *0R2 
x4=2.00002*OR2*8( 1 ,idt)-1.00001 *0R2 
x5=2.00002*OR2*8( 1 ,iet)-l .00001 *0R2 
x6=2.00002*OR2*8( 1 ,ift)-1.00001 *0R2 
y 1 =2.00002*OR2*8( 1 ja t)-1.00001 *0R2 
y2=2.00002*OR2*8( 1 jb t)-1.00001 *0R2 
y3=2.00002*OR2*8( 1 je t)-1.00001 *0R2 
y4=2.00002*OR2*8(l jd t)-1.00001 *0R2
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y5=2.00002*OR2*B( 1 je t) -1.00001 *0R2 
y6=2.00002*OR2*B(l Jft)-1.00001 *0R2 
zl=2.00002*OR2*B(l,kat)-1.00001*OR2 
z2=2.00002*OR2*B(l,kbt)-l.00001*OR2 
z3=2.00002*OR2*B( 1 ,kct)-1.00001 *OR2 
z4=2.00002*OR2*B( 1 ,kdt)-1.00001 *0R2 
z5=2.00002*OR2*B( 1,ket)-1.00001 *0R2 
z6=2.00002*OR2*B( 1 ,kft)-1.00001 *0R2

R 1 =dsqrt((x 1 * *2)+(y 1 **2)+(zl * *2)) 
R2=dsqrt((x2**2)+(y2**2)+(z2**2)) 
R3=dsqrt((x3**2)+(y3**2)+(z3**2)) 
R4=dsqrt((x4**2)+(y4**2)+(z4**2)) 
R5=dsqrt((x5**2)+(y5**2)+(z5**2)) 
R6=dsqrt((x6**2)+(y6**2)+(z6**2))

CC Test points
if(R l.L E .0R 2)then  
if(R l.L E .O R l)then  
Do 3 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x 1+Qk*zl )

3 continue 
else
Do 13 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l) 
Qk=Bragg*dsin(2*zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x 1 +Qk*zl )

13 continue 
endif 
endif

if(R2.LE.OR2)then 
if(R 2 .L E .0R l)then  
Do 4 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x2+Qk*z2)

4 continue
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else
Do 14 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsln(2 * zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x2+Qk*z2)

14 continue 
endif 
endif

if(R3.LE.OR2)then
if(R 3 .L E .0R l)then
Do 5 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x3+Qk*z3)

5 continue 
else
Do 15n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x3+Qk*z3)

15 continue 
endif 
endif

if(R4.LE.OR2)then 
if(R 4 .L E .0R l)then  
Do 6 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A( 1 ,n)+2*dcos(Qi*x4+Qk*z4)

6 continue 
else
Do 16 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x4+Qk*z4)

16 continue 
endif
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endif

if (R5.LE.OR2) then 
if(R 5 .L E .0R l)then  
Do 7 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x5+Qk*z5)

7 continue 
else
Do 17 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x5+Qk*z5)

17 continue 
endif 
endif

if(R6.LE.OR2) then 
if(R 6 .L E .0R l)then  
Do 8 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2 * zeta)
A( 1 ,n)=A( I ,n)+2*dcos(Qi*x6+Qk*z6)

8 continue 
else
Do I8n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 * zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
C( I ,n)=C( I ,n)+2*dcos(Qi*x6+Qk*z6)

18 continue 
endif 
endif

10 Continue
print*, '----------------- '
print*, 'Radius o f the Core' 
print*, ORl
print*, '----------------- '
print*, 'Radius o f the Corona'
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print*, OR2
print*, ’----------------- '
print*, 'Iterations' 
print*, iter
print*, '----------------- '
final 1=A( 1,0) 
final2=C( 1,0)

fl=4*Pi*(ORl**3)/3
f2=4*Pi*(OR2**3)/3
f3=f2-n
12=11* final I*t3/final2 
13=12/n
Do 101 n=0,400 
C(l,n)=C(l,n)*13

101 Continue
Do 102 n=0,400 
A (l,n)=A(l,n)+C(l,n)

102 Continue 
final3=A( 1,0)
Do 103 n=0,400 
A(l,n)=A(l,n)/final3

103 Continue
Do 104 n=0,400 
A(l,n)=(A(l,n))**2

104 Continue
Do 105 n=0,400 
A(l,n)=dloglO(A(l,n))

105 Continue 
sl=rtc() 
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, CPU Time (seconds)' 
print*, timespent
print*. Iterations Per Seconds' 
print*, dev 
Do 106 n=0,400 
write (15,*) A(l,n)

106 Continue 
dev=l 
End

Random Number Function Goes Here

129



C.2. Core/Shell

CC This file will model a sphere with an outer shell through random numbers, 
use portlib
realms s, si, timespent 
Integer* 4 iter, 1, number 
Integer*4 m, n
Integer ia l, ia2, iat, ibl, ib2, ibt, i d ,  ic2, ict, id l, id2, idt,

+ ie l, ie2, iet, ifl, iO, ift,ja l,ja2 , jat, jb l ,  jb2, jbt, jc l,jc 2 , jet,
+ jd l ,  jd2, jdt, je l , je2,jet, jf l ,  jt2 , jft, kal, ka2, kat, kb l, kb2,
+ kbt, kc 1, kc2, kct, k d l, kd2, kdt, ke 1, ke2, ket, k f l, kG, kft

Real*8 O R l, 0R2, 0R3, A( 1,401), Pi, lamda, Qi, dev,
+ Qk, Bragg, zeta, final 1, 8(1,118), ran2, x l, x2, x3, x4, x5
+ x6, y l, y2, y3, y4, y5, y6, z l, z2, z3, z4, z5, z6, R l, R2, R3
+ R4, R5, R 6 ,11,12,13, C( 1,401), final2, final3, H, 12, f3 ,14
CC Initilization of some of the varibles and the constants.

Do 1 n=0,400
A(l,n)=0.0
C(l,n)=0.0

1 Continue 
Pi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda

CC Input statements.
Print*, Corona Sphere Scattering'
Print*, 'Enter the radius o f the core [nm].'
Read*, ORl
Print*, Enter the inner radius o f  the corona [nm].'
Read*, 0R 3
Print*, Enter the outer radius o f  the corona [nm].'
Read*, 0R 2
Print*, Enter the number o f iterations desired.'
Read*, iter
Print*, Enter the ratio of the electron denisty'
Print*, 'of the outer shell to the core (assume 1.0).'
R ead*,11 
s=rtc()

CC Iteration Loop
Do 10 1=1,iter 
number=l 

CC Draw Random Numbers 
Do 2 m =0,117 
B( I ,m)=ran2(number)

2 continue
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ial=idint( 10*8(1,100)) 
ia2=idint(( 100*8(1,100))-( 10*ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*8(l,101)) 
ib2=idint(( 100* 8 ( 1,101 ))-( 10* ib 1 )) 
ibt=10*ib2+ibl

icl=idint(l 0*8(1,102))
ic2=idi nt(( 100*8(1,102))-( 10* ic 1 ))
ict=10*ic2+icl

idl=idint(10*8(l,103)) 
id2=idint(( 100*8(1,103 ))-( 10* id 1 )) 
idt=10*id2+idl

iel=idint(l 0*8(1,104)) 
ie2=idint(( 100*8(1,104))-( 10* ie 1 )) 
iet=10*ie2+iel

ifl=idint(10*8(l,105)) 
if2=idint(( 100*8(1,105))-( 10* ifl ))
ift=10*if2+in

jal= idint(l 0*8(1,106)) 
ja2=idint(( 100*8(1,106))-( 10*ja 1 )) 
jat=10*ja2+jal

jb l= idint(l 0*8(1,107)) 
jb2=idint(( 100*8(1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl

jcl=idint(10*8(l,108)) 
jc2=idint(( 100*8(1,108))-( 10*jc 1 )) 
jct=10*jc2+jcl

jdl=idint(10*8(l,109)) 
jd2=idint(( 100*8(1,109))-( 10*jd 1 )) 
jdt=10*jd2+jdl

je l= id in t(10*8(l,l 10)) 
je2=idint(( 100*8(1,110))-( 10*je 1 )) 
jet=10*je2+jel
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z5=2.00002*OR2*B( 1 ,ket)-1.00001 *0R2 
z6=2.00002*OR2*B(l .00001 *OR2

Rl=dsqrt((x 1 **2)+(y 1 •♦2)+(zl **2)) 
R2=dsqrt((x2**2)+(y2**2)+(z2**2)) 
R3=dsqrt((x3**2)+(y3**2)+(z3**2)) 
R4=dsqrt((x4**2)+(y4**2)+(z4**2)) 
R5=dsqrt((x5 * *2)+(y5 * *2)+(z5 * *2)) 
R6=dsqrt((,x6**2)+(y6**2)+(z6**2))

CC Test points
If (R l.LE.O R l) then 
Do 3 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg* (dcos(2 * zeta)-1 ) 
Qk=Bragg*dsin(2*zeta)
A( I ,n)=A( I ,n)+2*dcos(Qi*x 1 +Qk*zl )

3 continue 
end if

if(R l.G E .0R 3)then 
if(R l.L E .0R 2) then 
do 13 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l) 
Qk=Bragg*dsin(2*zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x 1 +Qk*zl )

13 continue
endif 
endif

if(R2.LE.O Rl)then 
Do 4 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
A( I ,n)=A( 1 ,n)+2*dcos(Qi*x2+Qk*z2)

4 continue 
endif

if(R2.GE.OR3)then 
if(R2.LE.OR2) then 
Do 14 n=0,400 
zeta=Pi * n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l)
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endif

lf(R 5 .L E .0R l)then  
Do 7 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg* dsin(2* zeta)
A( 1 ,n)=A( 1 ,n)+2*dcos(Qi*x5+Qk*z5)

7 continue 
endif

if(R5.GE.OR3)then 
if (R5.LE.OR2) then 
Do 17 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
C( 1 ,n)=C( 1 ,n)+2*dcos(Qi*x5+Qk*z5)

17 continue 
endif 
endif

if(R 6 .L E .0R l)then  
Do 8 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-l ) 
Qk=Bragg*dsin(2*zeta)
A(1 ,n)=A( 1 ,n)+2*dcos(Qi*x6+Qk*z6)

8 continue 
endif

if(R6.GE.OR3)then 
if(R6.LE.OR2) then 
Do 18n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qk=Bragg*dsin(2* zeta)
C( 1 ,n)=C( l ,n)+2*dcos(Qi*x6+Qk*z6)

18 continue 
endif 
endif

10 Continue
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print*, '*---------------------------*'
print*, 'Radius o f the Core' 
print*, ORl
print*, '*--------------------------- *'
print*, 'Inner radius o f the Corona' 
print*, 0R3
print*, '*--------------------------- *'
print*. Outer radius o f the Corona' 
print*, 0R 2
print*, '*--------------------------- *'
print*, 'Number of Iterations' 
print*, iter
print*, '*--------------------------- ♦'
fm all=A(l,0)
fina!2=C(l,0)

fl=4*Pi*(ORl**3)/3
f2=4*Pi*(OR2**3)/3
f3=4*Pi*(OR3**3)/3
f4=f2-G
12=11* final 1* f4/final2 
13=12/n

Do 101 n=0,400 
C(l,n)=C(l,n)*13

101 Continue
Do 102 n=0,400 
A(l,n)=A(I,n)+C(l,n)

102 Continue 
fmal3=A(l,0)
Do 103 n=0,400 
A(l,n)=A(l,n)/final3

103 Continue
Do 104 n=0,400 
A(l,n)=(A(l,n))**2

104 Continue
Do 105 n=0,400 
A(l,n)=dloglO(A(l,n))

105 Continue 
sl=rtc() 
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, CPU Time (seconds)' 
print*, timespent
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print*, 'Iterations Per Seconds'
print*, dev
print*, final 1
print*, final2
print*, fl
print*, f4
print*, 13

Do 106 n=0,400 
write (15,*) A(l,n)

106 Continue 
dev=l 
End

Random Number Function Goes Here
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C.3. Layered Cylinder

CC This file will model a layered cylinder through random numbers, 
use portlib
real*8 s, si, timespent 
Integer*4 iter, 1, m, n
Integer ia l, ia2, iat, ib l, ib2, ibt, ic i, ic2, ict, idl, id2, idt,

+ ie l, ie2, iet, ifl, if2, ift, ja l ,  ja2, jat, jb l ,  jb2, jbt,
+ jc 1, jc2, jet, Jd 1, Jd2, Jdt, Je 1, Je2, Jet, j f l , J12, J ft,
T ka l, ka2, kat, kb l, kb2, kbl, kcl, kc2, kcl, kdl, kd2, kdt,
+ ke 1, ke2, ket, k f l , kf2, kft

R eal*80R l, 0R 2, half!, A( 1,401), 8(1,118), C( 1,401),
+ Pi, lamda, dev, 11,12,13,14,15,16,17, m l, m2, Qi,
+ Qj, Qk, Bragg, zeta, ran2, cutl, cut2, x l, x2, x3, x4,
+ x5, x6, y 1, y2, y3, y4, y5, y6, z l , z2, z3, z4, z5, z6,
+ R1,R2, R3, R4, R5, R6, R12, SI, 82, S3, S4, S5, S6, n l,
+ final 1, final2, final3, t l , t2 ,  t3, t4, t5, volume 1,
+ volume2, ratio 1, ratio2, ratio3, check 1, check2, check3

CC Initilization of some o f the varibles and the constants.
Do 1 n=0,400 
A(l,n)=0.0 
C(l,n)=0.0 

1 Continue 
Fi=3.1415927 
lamda=. 154242 
Bragg=2*Pi/lamda

CC Input statements.
Print*, Layered Cylinder Scattering Simulation.'
Print*, 'Enter the half length of the fiber [nm].'
Read*, halfL
Print*, Enter half the length of the main segment [nm].'
Read*, 11
Print*, Enter the radius o f the main segment [nm].'
Read*, ORl
Print*, Enter half the length o f the secondary segment [nm].' 
Read*, 12
Print*, Enter the radius o f the secondary segment [nm].'
Read*, 0R2
Print*, Assuming the electron density o f  the main segment to be.' 
Print*, one. Enter the ratio o f  the secondary segment.' 
Read*,R12
Print*, Enter the slice desired o f the cylinder [nm].'
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Print*, '(Pi times this number.)'
Read*, cutl
Print*, 'Enter the number o f iterations desired.'
Read*, iter
cut2=cutl*Pi
s=rtc()
13=(2*11)+(2*12)
ml=ll/13
m2=(ll+2.0*12)/13

CC Iteration Loop
Do 10 1= Liter 

CC Draw Random Numbers 
Do 2 m=0,117 
B(l,m)=ran2(l)

2 continue

ial=idint(10*B(l,100)) 
ia2=idint(( 1 GO* B(1,100))-( 10* ia 1 )) 
iat=10*ia2+ial

ibl=idint(10*B(l,101)) 
ib2=idint(( 100*8(1,101 ))-( 10* lb 1 )) 
ibt=10*ib2+ibl

icl=idint(10*B(l,102)) 
ic2=idint(( 100*B( 1,102))-( 10*ic 1 )) 
ict=10*ic2+icl

id l=idint( 10*8(1,103» 
id2=idint(( 100*8(1,103))-(10*idl )) 
idt=10*id2+idl

iel=idint(l 0*8(1 ,104» 
ie2=idint(( 100* B( 1,104»-( 10*ie 1 )) 
iet=10*ie2+iel

in  =idint(l 0*8(1 ,105» 
if2=idint(( 100*8( 1,105))-( 10*ifl )) 
ift=10*if2+in

ja l  =idint( 10*8(1,106» 
ja2=idint(( 100*B( 1,106))-( 10*Jal )) 
Jat=10*Ja2+Jal
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jbl=idint( 10*8(1,107)) 
jb2=idint(( 100*B( 1,107))-( 10*jb 1 )) 
jbt=10*jb2+jbl

jcl= idint(l 0*8(1,108)) 
jc2=idint(( 100*8( 1,108))-( 10*jc 1 )) 
jct=10*jc2+jcl

jdl=idint(10*8(l,109)) 
jd2=idint(( 100*8( 1,109))-( 10*jd 1 )) 
jdt=10*jd2+jdl

je l=idint(l 0*8(1,110)) 
je2=idint(( 100* 8( 1,110))-( 10*Je 1 )) 
Jet=10*je2+jel

Jfl=idint( 10*8(1, 111))
Jf2=idint(( 100* 8( 1,111 ))-( 10*j n  )) 
Jft=10*Jf2+jfl

kal=idint(l 0*8(1,112)) 
ka2=idint(( 100*8( 1,112))-( 10*kal )) 
kat=10*ka2+kal

kb l=idint(l 0*8(1,113)) 
kb2=idint(( 100* 8( 1,113 ))-( 10* kb 1 )) 
kbt=10*kb2+kbl

kcl=idint(l 0*8(1,114)) 
kc2=idint(( 100* 8( 1,114))-( 10*kc 1 )) 
kct=10*kc2+kcl

kdl=idint(l 0*8(1,115)) 
kd2=idint(( 100*8(1,115))-( 10*kd 1 )) 
kdt=10*kd2+kdl

kel=idint(l 0*8(1,116)) 
ke2=idint(( 100*8( 1,116))-( 10*ke 1 )) 
ket=10*ke2+kel

kfl =idint(l 0*8(1,117)) 
k£2=idint(( 100* 8( 1,117))-( 10* kfl )) 
kft=10*kG+kfl
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X1 =2.00002*B( 1 ,iat)-1.00001 
x2=2.00002* B( 1 ,ibt)-1.00001 
x3=2.00002*B( 1 ,ict)-1.00001 
x4=2.00002* B( 1 ,idt)-1.00001 
x5=2.00002* B( 1 je t) . 1.00001 
x6=2.00002*B( 1 jf t) . 1.00001 
y I =2.00002* B(1 ja t) . 1.00001 
y2=2.00002 * B( 1 jb t) -1.00001 
y3=2.00002* B( 1 je t) -1.00001 
y4=2.00002* B( 1 jd t) -1.00001 
y5=2.00002*B(l je t) -1.00001 
y6=2.00002*B(ljft)-l.00001 
z 1 =2.00002 * B( 1 ,kat)-1.00001 
z2=2.00002*B( 1 ,kbt)-1.00001 
z3=2.00002*B( 1 ,kct)-1.00001 
z4=2.00002 * B( 1 ,kdt)-1.00001 
z5=2.00002*B(l,ket)-l.00001 
z6=2.00002*B( 1 ,kft)-1.00001

R 1 =dsqrt((x 1 * *2)+(z 1**2)) 
R2=dsqrt((x2* *2)+(z2* *2))
R3 =dsqrt((x3 * *2)+(z3 * *2)) 
R4=dsqrt((.x4**2)+(z4**2))
R5 =dsqrt((x5 * *2)+(z5 * *2)) 
R6=dsqrt((x6**2)+(z6**2)) 
Sl=dabs(yl)
S2=dabs(y2)
S3=dabs(y3)
S4=dabs(y4)
S5=dabs(y5)
S6=dabs(y6)

CC Test points
if (S I.LE. 1.0) then 
if (Rl.LE.1.0) then 
14=haifL*yl 
15=14/13 
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.l7.GE.m2) then 
do 14 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
()j=Bragg*dcos(cut2)*dsin(2*zeta)
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Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
nl=(Qi*x 1 *0R1 )+(Qk*zl *0R1 )+(Qj*14) 
A( 1 ,n)=A( 1 ,n)+2*dcos(n 1 )

14 continue 
else
do 15 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Q«*xl*OR2)+(Qk*zl*OR2)+(Qj*14)
C( 1 ,n)=C( 1 ,n)+2*dcos(n 1 )

15 continue 
endif 
endif 
endif

if(S2.LE.1.0)then 
if(R2.LE.1.0) then 
14=halfL*y2 
15=14/13 
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.l7.GE.m2) then 
do 24 n=0,400 
zeta=Pi*n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)* dsin(2 * zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
nl=(Qi*x2*ORl)+(Qk*z2*ORl)+(Qj^l4) 
A( 1 ,n)=A( 1 ,n)+2*dcos(n 1 )

24 continue 
else
do 25 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x2*OR2)+(Qk*z2*OR2)+(Qj*14)
C( 1 ,n)=C( 1 ,n)+2*dcos(n 1 )

25 continue 
endif 
endif 
endif
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if(S3.LE.1.0)then 
if(R3.LE.1.0) then 
14=halfL*y3 
15=14/13 
16=dabs(15)
17=16-dlnt(16)
if  (17.LE.ml .or.l7.GE.m2) then 
do 34 n=0,400 
zeta= PI * n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
n 1 =(Qi ♦ x3 ♦ OR 1 )+(Qk* z3 *0R  1 )+(Qj * 14) 
A( 1 ,n)=A( 1 ,n)+2*dcos(n 1 )

34 continue 
else
do 35 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
n 1 =(Qi *x3 *OR2)+(Qk*z3 •0R2)+(Qj ♦ 14)
C( 1 ,n)=C( 1 ,n)+2*dcos(n 1 )

35 continue 
endif 
endif 
endif

if(S4.LE.1.0) then 
if(R4.LE.1.0) then 
14=halfL*y4 
15=14/13 
16=dabs(15)
17=16-dint(16)
if  (17.LE.ml.or.l7.GE.m2) then 
do 44 n=0,400 
zeta=Pi * n/(36*400) 
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
nl=(Qi*x4*ORl)+(Qk*z4*ORI)+(Qj*14) 
A(1 ,n)=A( 1 ,n)+2*dcos(n 1 )

44 continue 
else
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do 45 n=0,400
zeta=Pi * n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l )
Qj=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x4*OR2)+(Qk*z4*OR2)+(Qj*14)
C( 1 ,n)=C( 1 ,n)+2*dcos(n I )

45 continue 
endif 
endif 
endif

if(S5.LE.1.0) then
if(R5.LE.1.0)then
14=halfL*y5
15=14/13
16=dabs(15)
17=16-dint(16)
if (17.LE.ml.or.17.GE.m2) then
do 54 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l)
(Jj=Bragg‘''dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x5*ORl)+(Qk*z5*ORl)+(Qj*14)
A( 1 ,n)=A( 1 ,n)+2 *dcos(n 1 )

54 continue 
else
do 55 n=0,400
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 )
CÜ=Bragg*dcos(cut2)*dsin(2*zeta)
Qk=Bragg*dsin(cut2)*dsin(2*zeta)
nl=(Qi*x5*OR2)+(Qk*z5*OR2)+(Qj*14)
C( 1 ,n)=C( 1 ,n)+2*dcos(n 1 )

55 continue 
endif 
endif 
endif

if(S6.LE.1.0)then 
if(R6.LE. 1.0) then 
14=hal(L*y6 
15=14/13
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16=dabs(15)
I7=l6-dint(16)
if(l7.LE.ml.or.l7.GE.m2) then 
do 64 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-1 ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsin(cut2)*dsin(2*zeta) 
nl=(Qi*x6*ORlHQk*z6*ORl)+(Qj*14)
A( 1 ,n)=A( 1 ,n)+2*dcos(n I )

64 continue 
else
do 65 n=0,400 
zeta=Pi*n/(36*400)
Qi=Bragg*(dcos(2*zeta)-l ) 
Qj=Bragg*dcos(cut2)*dsin(2*zeta) 
Qk=Bragg*dsln(cut2)*dsin(2*zeta) 
n 1 =(Qi*x6*OR2)+(Qk*z6*OR2)+(Qj *14)
C( 1 ,n)=C( 1 ,n)+2*dcos(n 1 )

65 continue 
endif 
endif 
endif

10 Continue 
final 1 =A( 1,0) 
final2=C( 1,0) 
tl=halfL/13 
t2=dint(tl) 
l3=tl-t2 
t4=t3*13 
t5=ll+(2*12)

if(t4 .L E .ll)lhen
volume l=(4*t2*ll*0R l )+(2*t4*OR 1 )
volume2=4*t2*12*OR2
elseif (t4.GT.t5) then
volumel=(4*t2*ll*ORl)+(2*ll*ORI)+2*ORl*(t4-t5)
volume2=(4*t2*12*OR2)+(4*12*OR2)
else
volume 1 =(4*t2*ll *0R1 )+(2*l 1 *0R1 ) 
volume2=(4*t2*12*OR2)+2*OR2*(t4-l I ) 
endif
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ratio 1 =R 12*final 1 *volume2/final2 
ratic2=ratio 1 /volume 1 
ratio3=ratio2/R12 
check 1 =volume I /OR 1 
check2=volume2/OR2 
check3=(check 1 +check2)/2.0

do 102 n=0,400 
C(l,n)=C(l,n)*ratio2

102 continue
do 103 n=0,400 
A (l,n)=A(l,n)+C(l,n)

103 continue 
final3=A(l,0)

do 104 n=0,400 
A(l,n)=A(l,n)/final3

104 continue
do 105 n=0,400 
A(l,n)=((A(l,n))**2)

105 continue
do 106 n=0,400 
A(l,n)=dloglO(A(l,n))

106 continue 
sl=rtc()
timespent=sl-s 
dev=(dble(iter))/timespent 
print*, 'CPU Time (seconds)' 
print*, timespent 
print*, 'Iterations Per Seconds' 
print*, dev
print*, '-----------'
print*, halfL 
print*, check3
print*, '-----------'
print*, ratio3 
do 107 n=0,400 
write (15,*) A (l,n)

107 continue

End

Random Number Function Goes Here
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