
INFORMATION TO USERS

This manuscript has baen rsproducad from tha microfilm mastar. UMI films 
tha taxt diracUy from tha original or copy submitted. Thus, soma thasis and 
dissertation copias ara in typewriter taca. whiia others may be from any type of 
computer printer.

Tha quality of th is reproduction is dependant upon tha quality of tha 
copy submNtad. Broken or indistinct print, colored or poor quality iilustrations 
and photographs, print Waadthrough, substandard margins, and improper 
alignment can adversely affsct reproduction.

in tha unlikely event that tha author did not send UMi a complété manuscript 
and there are missing pages, these wiH be noted. Also, if unauthorized 
copyright material had to be removed, a  note will indicate the deletion.

Oversize materials (eg ., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand comer and continuing 
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6” x 9” black and white 
photographic prints are available for any photographs or illustiations appearing 
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Infonnation and Learning 
300 North Zaeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

umt





UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE

DIGITAL SIGNAL PROCESSING ON THE UNIT 
SPHERE VIA A RAMANUJAN SET OF ROTATIONS 

AND PLANAR WAVELETS

A Dissertation 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

degree of 

Doctor of Philosophy

By

MOHAMED ALLAU 
Norman, Oklahoma 

2000



UMI Number. 9975791

UMI*
UMI Microform9975791 

Copyright 2000 by Bell & Howell Information and beaming Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Beil & Howeli information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor. Mi 48106-1346



©Copyright By M OHAM ED ALLALt 2000 

AU Rights Reserved



DIGITAL SIGNAL PROCESSING ON THE UNIT SPHERE 

VIA. A RAMANUJAN SET OF ROTATIONS AND PLANAR WAVELETS

A DISSERTATION 

APPROVED FOR THE GRADUATE COLLEGE

Approved By



ACKNOWLEDGEMENTS

Praise be to Allah, Lord of the worlds who made this work possible. I 

praise Him for His favors and ask Him to increase His grace and generosity.

I would like to thank my two advisors Professors Victor DeBninner and 

Tomasz Przebinda for their advice, guidance, and assistance throughout this 

work. Indeed, words are inadequate to express my deep gratitude and appre­

ciation to them for being a constant source of encouragement and patience 

throughout my graduate studies.

Additionally, many thanks are due to Professor Joseph Havlicek for a 

very careful revision of this work. I thank Professors Leonid Dickey, John 

Cheung, and Gerard Walschap for their willingness to serve on my committee.

Many people whom I talked to gave very useful pointers and provided 

additional encouragement. For this I am indebted to Professors Murad 

Ôz^din, Paul Goodey and Leonard Rubin.

Very special thanks go to my dear friend Mostafa El Hamly from the 

Afeteorology Department. His kindness and help during my stxy in Norman 

have made the years here even more memorable.

I could not have completed this dissertation without the support, en­

couragement and understanding of my wife Farah Sabri.

Finally, I  wish to dedicate this dissertation to my father ^ussine, to 

my mother Fatima, to my brothers Youssef and Tank and to my sister 

Imane. Without their love, support, encouragement and primers through­

out the years, I  would never have made it this far.

IV



TABLE OF CONTENTS

Chapter 1: In troduction.............................................................................. 1

Chapter 2: Interpolation on the unit s p h e re .............................................8

2.1 Positive definite fu n c tio n s........................................................8

2.2 Strictly positive definite functions ......................................... 11

2.3 Examples of strictly positive definite fu n ctio n s...................... 18

2.4 The interpolation problem .................................................... 19

Chapter 3: A Ramanujan set of ro ta tio n s ...............................................20

Chapter 4: Equidistribution on the unit sp h e re ..................................... 25

4.1 Equidistribution via a Ramanqjan set of rotations ............... 25

4.2 Numerical results .....................................................................28

Chapter 5: Covering the unit sphere ...................................................... 31

Chapter 6: One dimensional w av ele ts...................................................... 42

6.1 Wavelets on the real line ..........................................................43

6.2 Two wavelet-based indices for abrupt changes detection . . .  50

Chapter 7: Two dimensional w avelets...................................................... 58

Chapter 8: Compression on the unit sphere ...........................................61

8.1 Dnage com pression.....................................................................61

8.2 Pseudocode for com pression......................................................63

8.3 An example of data compresàon on the unit sphere . . . .  65

8.4 A graeral method for spherical com pression............................ 72

Chapter 9: Concluding remarks ..............................................................83

V



References.................................................................................................. 85

Appendix A: Code for generating points on the unit sphere .................89

Appendix B: Code for firequency-hopped signals ................................... 91

Appendix C: Code for chirp s ig n a ls ..........................................................97

VI



Chapter 1 
Introduction

The past four decades have witnessed a phenomenally rapid development 

of methods in digital signal processing in mathematical, statistical, biomed­

ical, and engineering communities. Wavelets, for example, in the Euclidean 

space have been proven particularly powerful for compressing images p-J-L], 

for detecting transient patterns and singularities [M-H], for estimating sig­

nals of complex structures from noisy measurements [Do], and for multiscale 

dynamic modeling and forecasting of time series [L-Hj.

Similar applications, including data compression, singularity detection, 

interpolation, function estimation, also demand methods for hanHlmg spher­

ical data that occur in computer graphics, climatology and environmental 

sciences.

The direction that we took in our doctoral work was to contribute to 

research in the field of digital signal processing on the sphere. Our studies 

center on interpolation, equidistribution, covering and compression on the

Because this dissertation is an interdisciplinary work in Mathematics and

Electrical and Computer Engineering, it represents a  ̂ nthesis of ideas from

the described fields of science and enpneejing.
1



First, we study the problem of interpolating data on the sphere. Data 

interpolation problems, where the underlying domain is the sphere, arise in 

many areas such as geophysics where the unit sphere is taken as a model of 

the earth. In recent years there has been a great deal of interest in radial 

basis functions (RBF’s) as a tool for interpolation. Normally, a radial bar 

sis function is the composition of a univariate function with some sort of a 

distance function. That is to say, an RBF is a function of only the distance 

between points on the unit sphere. The interest in RBF’s was inspired by the 

observation [EV] that in the bivariate setting, they are among the most effec­

tive methods for interpolation and approximation of scattered data. Their 

use was also encouraged by the fact that radial basis methods are extremely 

eaay to program in any number of variables [D-Mi].

The problem of interpolation on the sphere is stated in Chapter 2 of this 

thesis where it is shown that it is related to the notion of strictly positive 

definite functions. We give first definitions of positive definite functions in 

the case of the real line and in the case of the m-sphere. Then after defining 

strictly positive definite functions, we give a sufiScient condition for a zonal 

function to be a strictly positive definite.

Li 1992, Xu and Cheney [X-C] showed that if all of the Legendre coeffi­

cients of a zonal function on a sphere are positive, then the strict positive
2



definiteness is guaranteed. However, in 1997, Schreiner [S] proved the same 

result with the weakened hypothesis that finitely many Legendre coefficients 

can be zero. A major result of this thesis is that we have proven the same 

result as a consequence of a more general representation-theoretic result, 

namely for compact groups using tools from the Representation Theory.

The other major direction of this thesis is to compress square integrable 

functions on the unit sphere. The main tools used in this analysis are a 

Ramanqjan set of rotations and planar wavelets. Ramanqjan sets of rotations 

are introduced in Chapter 3 and our focus is on 5 ^ , a special set firom the 

Ramanujan set of rotations. Starting with a point on the digital sphere lying 

on none of the coordinate axes and using 5 ^  we can generate points on the 

sphere. The equidistribution of these generated points is studied in Chapters 

4 and 5.

We show the uniformity of this distribution in terms of quadrature on 

the sphere. E\irthermore, the method of expanding a function into a Fourier 

series in terms of specific functions such as spherical harmonics or radial basis 

functions amounts to the problem of evaluating the expansion coefficients by 

integration. Hence, an approximate integration can be simply performed 

ly  the computation of the mean of the functional values at those points 

generated



ùi the algorithm proposed in Chapter 8, the method of covering the sphere 

hy means of spherical caps of fixed radius is needed. Therefore we derive in 

Chapter 5 a precise formula to cover the unit sphere with a given radius. To 

find the optimal number (the m inim al number of spherical caps) required is 

still an open problem.

In Chapters 6 and 7 one dimensional and two dimensional wavelets are 

introduced. Wavelets, simply put, are scaled and translated copies of a par­

ticular window function called the mother wavelet. They have proven to 

be a powerful and flexible tool for computations and data reduction. Their 

power lies in the fact that they only require a small number of coefiScients 

to represent general functions and large data sets accurately. This allows 

for compression and efficient computations [D-J-L], [C-M-Q-W]. Classically, 

wavelet constructions have been employed on infinite domains (such as the 

real line R or the plane R^). Since most practical computations are con­

fined to finite domains, a number of boundary constructions have also been 

developed.

The representation of a signal by means of its spectrum or Fourier trans­

form is essential in solving many problems both in pure mathematics and 

in applied science. However, it is in some instances not the most natural or

useful way of representing a signal. The Fourier transform contains informer
4



tion about the frequencies of the entire signal, but does not show how they 

vary with time, fri contrast, wavelet analysis provides a simple and effective 

approach for dealing with the local aspects of a signal.

Li particular, we will study in Chapter 6 a common problem in signal pro­

cessing which is the ability to detect abrupt changes in very short segments 

that are not strictly stationary. A method based on time-frequency repre­

sentations (TFRs) for detecting abrupt spectral changes in noisy signals was 

recently introduced [L-D]. The paper presents a stationarity index derived 

from the spectrogram of the signal.

Our proposed method in this dissertation is an improvement to pre­

vious method by deriving the stationarity index from the spectrogram of the 

wavelet coefficients of the signal or from the coefficients themselves rather 

than from the spectrogram of the signal. We have considered this modifi­

cation due to the frtct that the wavelet transform is a useful tool for non- 

stationary signal analysis that has found maiy applications in time-frequency 

analysis pi) and transient detection ^-H ]. After defining the new modified 

stationarity indices, we consider two kinds of signals from [L-D], namely test 

signals presenting very short frequency-hopped segments and chirp signals 

corrupted with noise. Comparisons between the original method and the

new method are performed for different levels of noise.
5



The problem of constructing a wavelet-like theory for the sphere in a 

Euclidean space, has attracted a lot of interest in the last five years [S-S], 

[F-W]. However, wavelet type constructions for more genaal mani&lds have 

only recently been attempted and are still in their infancy. Although from 

a topological point of view the sphere, 5^ Ç R^, appears to be a simple 

manifold, wavelet techniques from do not easily extend to the unit sphere 

as there is no single diart mapping it diffeomorphically onto some open 

domain in R^.

A number of works extend to the discrete wavelet scheme based on 

a multiresolution analysis, using adapted interpolation methods and splines 

functions [D-D-S-W]. This approach is in general motivated by numerical 

considerations, but often leads to diflSculties around the poles. Others [P-S- 

T], [F-W] exploit the geometry of the sphere, as encoded in the system of 

spherical harmonics, but as a result their analyzing functions are poorly lo­

calized. However, since the construction of wavelets on general open domains 

in R? or on manifolds is still an open problem, many numerical applications 

have to assume simple and often unrealistic geometries. Major difficulties 

arise from the fact that no more Fourier transform techniques are available 

unless the underlying domain is the entire plane R? or the torus RP/Z".

We do not construct in this thesis a wavelet-like theory for the sphere
6



such as the multiresolution analysis discussed in Chapters 6 and 7. Rather, 

we construct an algorithm using planar wavelets and the Ramanujan set of 

rotations to compress functions on the unit sphere. The details about 

the algorithm are to be found in Chapter 8.



Chapter 2 
Interpolation on the Unit Sphere

We are motivated by the problem of Interpolating scattered data on the 

unit sphere umng radial basis functions (RBFs) that are only functions of the 

distance between points on the unit sphere. The interpolation problem can 

be solved if we introduce the notion of strictly definite positive functions.

In this chapter we define strictly positive definite functions and give suf­

ficient conditions for their existence. Furthermore, we relate them to the 

interpolation problem.

2.1 Positive definite functions

First, we recall the definition of the one-dimensional Fourier transform.

D efinition 2.1.1. Let f  be a real or complex function of one real variable 

with f  € L \R ), which means that the Lebesgue integnU |/(x)(dx exists

and is finite. The Fourier transform of f ,  denoted by f ,  is a function defined 

by

where t stands for the imaginary unit.

Here we only mention the fact that if also /  € then /  can be
8



recovered ficom /  by means of the following inversion formula:

The proof is usually done by a limit argument; see [R] for one.

Definition 2.1.2. A function /  ; R -> R is called positive definite i f  we 

have, for any numbers a ? i , € R, and n , r „  6 R,

n

$ 2  -  ®fc) > 0.
i,k=l

Let us note that this concept can be related to the perhaps better known 

notion of positive definite matrices. Namely, fior xi, . . . ,S n  € R, define the 

n X n matrix A  =  A(f;xi,  X2 , %n) by setting Oj* =  f ( x j  — r»). Then /  

being positive definite means that A is a positive semidefinite matrix for any 

choice of xi, ...r*; that is, r^A r > 0 for any real colmnn vector r  € R" 

(hi analogy with the terminology for matrices, it would perhaps be more 

appropriate to say "a positive semidefinite function” Instead of “ positive 

definite function,” but we stick to the traditional terminology.)

Nontrivial examples of positive definite functions are not obvious. The 

following lemma gives a method for producing some using the Fourier trans­

form.

Lemma 2.1.3 [Sa]. Suppose that a real function (p ^  ^  is the Fourier
9



transform of a nonnegative real function ij} E Then (p is positive

definite.

Proof. Let x i, ...x% 6 R, and n , € R be given. We calculate

"  1 roo
^  TjTkfpiXj -  Xfc) =  f  ^ (0  53  
J,k=i i,fc

J

Since all the Xj and ry are real, the sum in the second pair of parentheses 

is the complex coiyugate of the one in the first pair of parentheses, and we 

obtain

" I /■**2 3  TjTkViXj -  Xfe) =  - ^  /  V » ( 0
y,ik=i J-oo

Hence, the lemma is proven. □

5 3
3

d e> o .

Example 2.1.4. The function h{x) =  e"'^' is positive definite as it is the 

Fourier transform of the function e~<~.

Let us generalize this notion to S ^ .  We denote by S™ the unit sphere in 

the Euclidean space R"*+ .̂ The usual geodesic distance on S"*̂  is denoted 

by dm- Thus

dm(®, y) -  arccos(x - y)

where (x - y) is the usual dot product in R?*+ .̂
10



A continuous function ^ ; [0, ir] R is scdd to be positive definite on 

if, for any n  € N and for any set of n points xi ,X2 , i n  the n x n 

matrix A having elements Aij =  g{dm{xi, X j ) )  is nonnegative definite:

n  n
c^ A c  =  5 ^  5 ^  CiCjg{dm{xiy Xj))  > 0 ,  c =  ( c i , c , » )  6  R*.

»=l jasl

Schoenberg [Sc] has shown that if the function g admits the uniformly con­

vergent series expansion

OO
9(t) =  5 ^  knPnicoe 0 , t e  [0, ît],

n=0

in terms of certain Legendre (or Gegenbauer or ultraspherical) polynomials, a 

sufficient condition for the positive definitness of g is that hn > 0, n =  0,1,...

2.2 S trictly  positive definite functions

If the matrices A in the previous definition are positive definite for all

n and for all sets of n distinct points xi,xg, ...,Xn in 5 ^ , we s«y that g is

stricUy positive definite on S ^ .

In 1992, Xu and Cheney [X-C] showed that if all of the Legendre coef-

ficimits of a zonal function on a sphere are pomtive, then the function is

strictly positive definite, hi 1997, Schreiner [S] proved the same result with

the weakened hypothesis that finitely many Legendre coefficients can be zero,

but there is a problem in the proof of lemma 4.1 [S], see p-S].
11



We have proven the same result as a consequence of a more general 

representation-theoretic result [A-P].

Let G be a compact group, and let H C G he & closed subgroup, such 

that the quotient G /H  is infinite. Let /  : G C be a continuous function, 

invariant under the left and r i^ t  translations by elements of H. We denote 

the space of all such functions by C(H\G/H).

D efinition 2.2.1. A function f  is strictiy positive definite if and only if

n
5 2  > 0 (2.2.1)
i,j=i

fiar any finite set {xi, x g , X n }  Ç G such that the cosets x iff, x a i f , x„H C 

G /H  are distinct, and any complex numbers ci,ca, ...,0», not all equal to 

zero.

Let G denote the unitary dual of G, 7.3]. This is the set of equiva­

lence classes of irreducible unitary representations of G. For convenience, we 

choose an irreducible representation for each such class, and identify G with 

the set of these representations. Recall the Fourier transform

/(ir) =  ir(/) =  f  7 t ( x ) / ( x ) d x  ( i r e G), (2.2.2)
Jg

where /  is any absolutely integrable function on G with respect to the Haar

measure dx. Thus each w(f) is a linear map on the finite dimensional Hilbert
12



space where the representation tt Is realized. Let 

ir(h)v — V, h € H} be the subspace of ff-fixed vectors. Let {G/H) =  {ir € 

G] #  0}. By the FVobenius reciprocity theorem, {G/H) Is the subset of 

G, consisting of representations which occur in L^{G/H), see [K, 8.4].

Proposition 2.2.2. A function f  € C{H\G/H)  w BtricUy positive definite 

*f If i f )  >  0 for all V € {G/H), and ?t(/)|^h > 0 for all but finitely many 

ire  {G/H).

Here > Q” means that the operator ir(/) is positive semi-definite, 

i.e. (ir(/)ü,ü) > 0, for any v € and the statement ‘*it(/)|k« > 0” 

means that the restriction of the operator ir{f) to is positive definite, 

i.e. {ir{f)v, v) > 0, for any v 6 \  {0}.

Proof. With the notation (2.2.1), let ^  be a bounded measure on G defined 

by

f  0(®)d/i(x) =  /  tf{xih)dh,
Jg Jb(=1

where ^  is a continuous function on G, and dh is the Haar measure on H, 

normalized so that the total measure of f f  is 1. Notice that the support of 

(i is contained in XiH, which (by our assumption) is a proper subset of 

G.
13



The Fourier transform of /i is defined as in (2.2.2):

(̂m) = I (ir 6 G).
Jg

Recall the Fourier inversion formula, p(, 12.2] or p -R , 27.40]:

(̂z) = 53 d(ir)tr(ir(<ti)i((x)*) 6 C(G), x  € G),
w€<5

where d(ir) =  dim ltg. If each operator ir(^) is positive semi-definite (rr(^) > 

0) then the above Fourier series is absolutely, and hence uniformly, convergent 

to the continuous function (see [H-R, 34.9]). Hence,

S(xT^Xj) = 5 3  d ( ir ) t r ( i r ( f ) i r (x T % y )
ir€Ô

= 5 2  4ir)<r(ir(%)ir(/)ir(r^)").
1T6Ô

Notice that ir(h)ir(f) =  ir(f) = ir(/)ir(h) for all h € ff. Hence ir(f) =  

j^N ir(/) =  w (/)Pkh, where = f^ir(h) dh is the orthogonal projection 

on H f .  Therefore,

f ( x î % )  =  5 3  (2-2-3)
»6(G/JT)

After multiplying both sides of (2.2.3) by CiCj and summing over the indices 

i, j ,  we see that

^  CiCif(xî%)  =  5 2  ‘̂ (̂ )̂ *‘(’f(^)A<*r»r(/)(w(/*)-P«fir)*)-

14



Since ir(fi) — the proposition shall follow as soon as we check that

ir(/i) ^  0 for infinitely many ir E (C r /H ) .  (2.2.4)

Suppose n(ir) =  0 for all but finitely many ir € {G/H). Then, by Fourier 

inversion, [H-R, 27.40], ft coincides with a finite linear combination of matrix 

coefficients of irreducible unitary representations of G. Therefore, the space 

of all left translates of is finite dimensional. Hence, there are finitely many 

elements yi, ya,..., y^ E G, such that U^isuppfj, =  G, where auppfi stands 

for the support of n. Thus G — VjXiH, contrary to our assumption

that the set G /H  is infinite. □

Suppose that (G,H) is a Gelfand pair, [D, 22.6.2]. Then for each ir E G 

and each /  E C{H\G/H),  the operator ir(/) is a constant multiple of the 

projection ir(/) =  A,t(/)Pkw.

Corollary 2.2.3. If{G, H) is a Gelfand pair, then a function f  E C{H\G/H) 

is strictly positive definite »/A ,(/) > 0 for all but finitely many ir E {G/H).

As is well known, [D, 20.11.4, 22.6.3], (50(n), SO{n — 1)) is a Gelfand 

pair, and the quotient space SO{n)/SO{n—1) coincides with the unit sphere 

in R?. F\irthermore, in this case, the scalars A*(/) can be expressed in terms 

of Legendre polynomials. We explain this in some detail.

Consider the Euclidean space equipped with the usual dot product. Let
15



en =  ( 0 , 0 , 0 , 1 )  € R? be the “north pole” of the unit sphere S"” '’ Ç K*. 

Let G =  SO(n) be the group of isometries of the dot product, and let i f  Ç G 

be the stabilizer of 6%. The restriction to the first n —1 coordinates identifies 

H  with SO{n — 1).

It is customary in representation theory to normalize the Haar measure 

on any compact group to have the total mass 1. Then the total mass of our 

homogeneous space G/H  is also 1. On the other hand the dot product in 

R? forces a normalization of the rotation invariant measure w on the sphere 

5 "“  ̂so that the area of the sphere =  fsn-i Hence,

f  <K<r) M ”) =  IS"-'I f  *(aen) dg (0 6 C(S"->)).
js» -! Ja

Therefore the map

£ > (G /H )a i;-» 0 6 £ > (S "-‘), 0G>e„) =  ( j 6 G )

is an isometry. This isometry is suijective and commutes with the action of 

the group G on both spaces. As is well known, [Mû], the space 

decomposes into a direct sum of irreducible subspaces:

m=0

where stands for the space of spherical harmonics of degree m.

Let Km denote the representation of G on the space =  L\S^~^)m -
16



Then the subepace is one dimensional, and is spanned by the Legendre 

(unction:

~  ■Pm(Cn * <̂ ) (<T € S" ^),

where P m  is the Legendre polynomial of degree m, (see ^ û ,  Lemma 2, page 

16]). Notice that a function /  € C{H\G/H) is uniquely determined by a 

continuous function F  on the interval [—1,1] by the formula

f{g) = F(en'9en) (ff€G).

Notice that f{g) = F{cn • gCn) =  • e«) =  F(en • =  f{g~^)-

hi these terms, the constants which occur in the Corollary 2.2.3 can be 

calculated as follows (see [Mu, Lemma 1 on page 15, and formula (§4.6) on 

page 29]):

^ m (/) — (/)-^w»(Sn) =  ffm(/)-f'm(Sn)

=  f  f ( g ) L m ( g ~ ^ e n ) d g = : ^  f  F { e n ' g e n ) P m i e n ‘ g ^ ^ e n ) d g  
Jg Jg

=  gen)dg= F{t)Pm(f)(l ~  t ') '" '’»'" dt.

Thus, ly  the Corollary 2.2.3, the integral kernel operator on L^(5"~^) cor­

responding to the integral kernel F(q, <r) =  F(q*<r), (q, a  6 S""^), is strictly 

positive definite if >  0 for all m >  0, and the inequality is strict for all 

but finitely many m. Hence, the result of Schreiner [S] is generalized.

We will now list a number of examples of strictly positive definite functions

which have been studied ly  many authors.
17



2.3 Examples o f stric tly  positive definite fim ctions 

Exam ple 3.3.1. Radial basis functions (RBFs)

1 . Gaussians, Hardy multiquadratic, inverse Hardy multiquadratic, and 

completely monotic functions of (Micchelli [Mi]).

2 . Compactly supported RBFs (Narcowicb and Ward [N-W], Wendland 

[We], Schaback and Wu [S-W], and Wu [Wu]).

Exam ple 2.3.2. Periodic basis functions (PBFs)

1 . Periodic functions having positive Fourier coefficients.

Exam ple 2.3.3. Spherical basis functions (SBFs)

1 . exp(cos(0)). Here and below B =  B(p,q) is the geodesic distance on the 

m-sphere between points p and g.
oo *  ______

2 . 53 53 «I,m'l,m(p)ll,m(9)» where the ij.m’s are spherical harmonics on
IstOmsl
0{,m > 0, and d{ is the dimension of the space of spherical harmonics of 

order I.

3 . 53 +  l,cos(tf)), oj > 0 (Xu and Cheney pC-C]).
IkO

&cample 2.3.4. Strictly positive definite functions on 50(3)

1 . 7  > 0 (Gutzmer [Gu]). are Euler angles, and

F (^ ,^ ,0 ) :=cosycos^ — (1 — sm ysin^)cos6 —sin6(siny+sim ^).
18



2.4 Interpolation problem

We will see now how the notion of strictly positive definite functions is 

related to the interpolation problem.

Assume that a function F  : 5*  ̂ R is known at finitely many distinct 

points r jn € S ^  and one looks for an interpolant Fi„t of the form

~  5 3  C,-g(dro(C) ̂ j))i (  ^ ^

satisfying the interpolation conditions FintiVi) — F(%), i  — Then

the linear system to be solved is

^a(dm(riurii)) . . .  g{<U{vN,m))\ f  Cl \  /  f (%)

I I I 1 =  I i
. . .  f l ( d m ( » 7 A r i » 7 j v ) ) /  V c a t /  \F(tiff)

If g ia strictly positive definite then the matrix is positive definite, i.e. 

the interpolation problem is solvable. The numerical inversion is stable and 

can be effected ly  a variety of well-understood methods, including iterative 

procedures and the Cholesl^ factorization.

The problem of completely characterizing functions which are strictly pos­

itive d^n ite  on the sphere remains open [F-S].

19



Chapter 3 
A Ramanujan Set of Rotations

ÙI order to study covering, equidistribution and compresûon on the unit 

sphere, we shall introduce a special set called the Ramaniqan set of rotations 

due to Lubotzl^ et al. [L-P-S].

Consider the three dimensional Euclidean vector space 1^ with the usual 

dot product, and the corresponding norm of a vector:

« • y =  ®iyi +  xaya +  ®3y3« =  Vx-®,

(® =  (xi,®2,®3),y =  (yi.ya.ya) eR®).

Let ^  =  {® € R?; |x| =  1} be the unit sphere and let da denote the usual

rotation invariant measure on defined by

f  /(x )d x =  f  f  f(ra)dar^dr, 
JR» Jo Js^

where /  Is a continuous compactly supported function on ^

We are interested in the Hilbert space L^{S^) of square integrable func­

tions on the sphere, with the usual scalar product:

(/, s) =  /  /W a W  da (/,y  € L \ ^ ) ) .
Js*

The corresponding norm of a function /  6  is || /  ||=  VCTTT)» The

group G = 50(3) of proper rotations preserving the dot product, acts on
20



this space as follows:

= /(7 -V) (7  6 G, <r e S», /  € L»(S»)). (3.1)

Each operator p(7 ) defined in (3.1) is unitary. For any f ,g  € L^{S^) the func­

tion G S'y -¥ <y) € C is continuous. Moreover, p(7 i)p(7 a) =  p(7 i7 a)

for any 7 1 ,7 a € G. In other words, (p,£^(5^)) is a unitary representation 

of the group G, see [K]. As such, it decomposes into a Hilbert direct sum of 

irreducible representations. Since this decomposition resembles the decom­

position L*(R) =  J2jez ^  shall describe it briefly.

Let V  =  V(JB^) denote the space of complex valued polynomial functions 

on Xf. A polynomial f  € V  \s called homogeneous of degree n if f{rx) = 

r**/(®) for all r  € R and all x  6  R?. Let A =  denote the

Laplacian. A polynomial f  GVia  called harmonic if A / =  0. Let HVn G "P 

denote the subspace of harmonic polynomials which are homogeneous of 

degree n =  0 ,1 ,2 ,.... Let Hn denote the space of functions on obtained 

by restricting the elements of HPn to S^. The theory of spherical harmonics 

asserts that L^(S^) is a Hilbert direct sum of the finite dimensional subspaces 

Hni

L»(S») =
nsO

and that the restriction pn of the representation p to %» is irreducible, fisr
21



each n 0 , 1 , 2 ,.... Moreover, dim'Hn =  2 n + 1 . For more details and proofe 

see ^ ü ].

Let S  Ç 50(3) be a finite symmetric set. In other words, the number 

of elements of 5, denoted by |5| =  2JV, is even and 7  € 5 if and only 

if 7 "^ € S. Let (Tsf){x) = I%Ygg/(7 r ) , where /  6  We would

like to approximate the projection Pho by ^ T s  for suitable S. The first 

problem is to agree on a way to measure the error for such an approximation. 

For an operator T : L*(S*) L^(S*) let || T || be the operator norm of T.

Explicitly, || T || is the supremum of the numbers || T{f) ||, where /  € L^{S*) 

and II /  11= (J\f{x)\^dx)^ =  I. We agree that our approximation is best 

when the norm

II l l f T s I I

is minimal. Furthermore, let u(x) =  1, x € S^, denote the unit function. 

Thus Hq =  Cu. The orthogonal projection • ^*(5*) —► “Ho is given by:

ftfa / =  ( ^  /(*) <i® )u ( /  € t»(S»)).

Theorem  3.1 [L-P-S]. For any finite symmetric set S  C 50(3)

l l i ^ r , - p « , | |> 2 '/ '® ] |" - .
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Â set where the equality holds Is called a R am antdan set. Let p be 

a prime, equal to 1 modulo 4. Then there exists in [L-P-S] an explicitly 

described Ramanqjan set, Sp, with |5p| =  p + 1 .

Let Sp be & Ramanujan set, Sp — and let

Q SO{d) denote the set of reduced words of length at most Af =  1,2,3,... 

in Sp (by reduced we mean all the obvious cancellations such as 7 7 "^ have 

been carried out). We shall verify that

Proof,

We prove the fact by induction.

For M  =  1 , |S ‘ | =  1.

Suppose that |S ^ | — To construct from we

multiply the elements of S ^  of length M  by elements of Sp without redun^ 

dancy. This amounts to adding p new elements to S ^ .  Therefore,

|S " + '|= p . ( |S " |- |S " - > |)  +  |S " |.

But,

p * ( is i 'i  -  l « r ‘ D =  p •
p^+* +p^+^ —p) — p —p^+^ —p ^  +P^ 4-p 

p - 1
pU+2_pU

p - 1
23



Hence,
, p " + > + p " - p - l

I* ' I  +  J Z I
pW+2 + p « + l_ p _ l  

P — 1

Consequently, the (act is proven. □

Theorem  3.2 [L-P-S].

Tsm -  P-Ho
^ / W

Exam ple 3.3. For p = 5, the construction can be described quite concisely. 

Ss = { A , where vl, B, C are rotations about the X, 

Y , and Z  axes, each through an angle of arccos(—|) .  So |5 ^ | =  |( 5 ^  — 1). 

5 ^  =  {A, B, C, A - \  B - \  C - \A A , AB, AC, A B ~ \ A C ~ \ ...}. The set 

contains §(5^ — 1) elements of rotations.

This construction is just the simplest one from an infinite family; for each 

prime p congruent to 1 modulo 4, there is a construction involving p +  1 

generator rotations, which corresponds to ways of writing p as the sum of 

four squares of integers with the first addend being positive and odd ^P -S j.
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Chapter 4 
Equidistribution on the Unit Sphere

Of practical importance is the problem of generating equidistributed points 

on the sphere. The problem of generating a large number of points on the 

sphere has many applications in various fields of computation such as quad­

rature, placing grids on tomography, coding theory, etc. See [SI], [C], 

and [T], for example.

The advantage of an equidistributed points system lies in the fact that 

relatively few samplings of the data are needed, and approximate integration 

can be performed by computation of a mean value, i.e. the arithmetical 

mean.

4.1 Equidistribution via a Ramanujan set o f rotations

We will use the set discussed in Example 3.3 to generate points on 

the unit sphere. A stereographic projection can be used to relate points in 

the complex plane C to points on the sphere. To every point (  =  ((i, (a, (3 )^ 

on the unit sphere, except the north pole (0 ,0 , 1)^, we associate a complex 

number

6  +  •&z  =
1 — ̂ 3

Under this stereographic projection the fractional linear transfiurmations in
25



the complex plane correspond to rotations on the sphere. Taking this into 

account, it is convenient to actually compute with points in C and to use 

fractional transformations instead of rotations. The A, B, C  correspond to 

the linear fractional transformations defined by the matrices:

The process of projecting our points onto the complex plane and then pulling 

them back to the unit sphere goes as follows:

Let (  = ((1,(̂ 3 , ( 3)^ be a point on the unit sphere, except the north pole 

(0,0,1)^. We associate to it by means of the stereographic projection

1 - 6  '

The rotation group S0{3i) is mapped onto SU(2), with homographie action 

on C :

“  +  ( “ ‘ )e5CT(2).cz + d 

So z transforms to z as
_ az +  6
Z  =   T .cz +  d

The final step in the process is to project z back to the unit sphere via the 

inverse stereographic projection.

We get then the rotated point f  =  (fi, where

i= |2
a ,  (  2 IR (z )  2@(z) |zr - 1 .
(6 , 6 ,6 ) ( j  |g|2 » 1 ^  |^ |2  > J ^  |^|2 )-
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yaxit xaxic

Figure 1. 200 points generated using

In order to visualize the distribution of the points on the sphere, we made 

sample plots of these points for the initial point ( ^ ,  € S^. Using

the stereographic projection, this point correponds to ^  6  C

K the initial point lies on one of the coordinate axes, then the resulting 

distribution of points displays an undesirable amount of qrmmetry. There­

fore, we need to fix a starting point p €  lying on none of the coordinate
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yaxis K*d#

Figure 2. 1000 points generated using

Theorem 3.2 gives the quadrature error bound for the Ramanqjan set and 

it is near-optimal for the numerical integration of functions on 5^, as we will 

see in the next two examples.

4.2 Numerical results

Example 4.2.1.
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We discuss the integration of a discontinuous function, namely the char­

acteristic function given by

1 if & < 1 ,

■[̂ 0  elsewhere 

for fixed (o € 5*.

The exact value of the integral is the area of the spherical cap (the inter­

section of S* with half spaces) of radius 1 -  h, so

f  * (o) =  2 ît(1  -  h).
Js^

To test our distribution, we choose different values for h and (o =  (^ »

Using the Ramaniqan set of rotations to approximate the integral, we 

have

Z  X h ( i (  = « » )M O  = i - f c

N o. o f p o in ta h s a s s h = O .S h s a s
so 0 .K 0.08 0.10
100 0.02 0.14 0.19
ISO 0.02 0.14 0.1933
200 0.02 0.15 0.19
2S0 0.02 0.152 0.184
300 0.0233 0.15 0.1933
350 0.0229 0.14 1 0.1971
400 0.025 0.1425 0.205

E x a c t vaiiM 0025 0.1 029

Table 1. Example 1
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Table 1 gives an impression of the numerical results. The smaller the 

radius 1 — h Is, the better results we get. Even th o u ^  the function is 

discontinuous, we are getting acceptable results using only a few generated 

points.

This example deals with the integration of the function

.8in(r)
L

cos(( • r(o) dw(() =  4ir-
5» r

Using the set we approximate the integral by

^  cos(7 ^ • r(o) »  cos(e• r^o)M C  =

For the numerical tests, we take three different values for r  and (o =  (0,0,1)^. 

Table 2 shows the results. The function is smooth for «tnall r  and that 

explains the good results for r  =  0 .1 .

No. of points f s 1 r s  .5 fs.1
50 0A419 0.9587 0.9983
100 0.8548 0.9822 0.9985
150 0.8509 0.9612 0.9984
200 0.8477 0.9803 0.9984
250 0.8497 0.9809 0.9984
300 0.852 0.9609 0.9984

Exact valus 0.8815 0.9887 0J083

Table 2. Example 2
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Chapter 5 
Covering of the Sphere

The material that follows had as its inspiration two sources. One is the 

fact that covering the unit sphere with n spherical caps that possess the 

smallest possible radius is still a challenging and unsolved problem. The 

centers of such an extremal system of caps are then the positions for the n 

fuel depots that may be placed on any spherical planet so that the distance 

of any point on the surface from the nearest depot is as small as possible.

The other source for thinking about covering the unit sphere with spherical 

caps of radius h is the multiresolution analysis on S^, especially if one wants 

to have a nested sequence of covers with a specific radius.

This led to the investigation of the general question: how many spherical 

caps of radius h do we need to cover the unit sphere? We are looking for 

an explicit formula for the number of spherical caps needed and an exact 

positioning of the centers of the spherical caps that cover the whole unit 

sphere without giving any preferences to any region on the sphere.

We will use in this dissertation the Ramanujan set of rotations only in 

the case when p =  5. Let A Ç be a spherical cap with center y € 5^ and 

radius h.

The area |A| =  2xh. Denote by xa  the characteristic function of A. In
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order for the set{'yA}^ggM to cover the whole unit sphere, one has to make 

sure that for every z  € 5^, there exists at least one spherical cap, say 7 i4 , 

where 7  6  such that x  € yA.

Theorem  6.1. Let Cm =  5^(A f + 1  +  ^ ) ,  and fet fc =  . Then,

for every cap A C  and for all x £ S ^  we have

I
\gM\ ^  X7a(®) 
' « I 7€5."

Cm (5.1)

Proof. Here we follow an argument in [L-P-S] making it more precise at 

various points.

Let A Ç 5^ be a spherical cap with center y € and radius h. The area 

|A| =  2wh. Denote by xa  the characteristic function of A. Let Au A 2 be 

two spherical caps about y with the radii h — 2e and h +  2e, respectively. 

Therefore, |Ai| =  2ir(h -  2e), and |Aa| = 2îr(h +  2e). We have

I [Ay I — |A| I =  2 ir |(h ±  2e) -  h| =  4we, {v =  1 , 2 ).

For e > 0 let kg{z, be the point-pair invariant

1 if d(z,() < e .

0  otherwise.

Define k * f{z) by

k * f{z) =  f  k{z, i)f{l^)dx. 
Js^
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We get

E  iXA.*ke)(rfx)-\A \

765,*̂

Let

Zu = 5 3  (XX, ♦ fce)(7® )-|^"|l^ i/| 
t^ss*

Then

3fT E  (XJtv • *e)(7l) -  |A|
|S f l 7€5^'

f„ +  4ire.

The Legendre polynomials Pn{x) are defined as

« ■ w = 2^ £ r ( * * - ‘r -

Also PniX) — 1 and

+  ||A„| -  |A||

+  4ire.

(5.2)

L
^Pmix)Pn{x)dx ^  2n+T^™’"*

Now, we need to estimate I v  By (2.9) in [L-P-S], we have

lu =
oo

msl

where kA^m) =  2 ir/J^  Pm(»)<i® and kt{m) =  j]j^ ,i^ (a ;)d r. Rn-

thermore, the are simultaneous eigenvectors for the averaging operator
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Ts, and for the operator defined by kg. We now use the inequality (see [L> 

P-S], page 161)

< Cm  .

Therefore,

* * 1- . I

m=l \j\<m

By the Cauchy-Schwartz inequality, we obtain

lil<"» \\}\<m /  \lil< m  /

Furthermore,

5 2  for all z € 5*.
Iil<m 27T

Consequently,

1/ <C*jv 5 ^ \ke{m)kA^{m)^~ .
tiv=l

2m + 1

The next step in the proof is to bound kA^ (m) and k, (m) from above. Recall 

that

(2m +  l)Pm(x) =  i^+ i(x ) -  il_ i(* ) .

Using the above equation, kA^(m) and ke(m) can be rewritten as
 ̂ 2 ir

L ,(m ) =  2 m T i -  -Pm-iCcospu)!

=  ( 2 « i  +  # _ c o . e )  •

To bound kA^{m) and from above, we need the following lemma.
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Lemm a 5.2. For 0 <0 < n, we have the following inequtüity 

|Pm-l(C0S(d)) -  P„»+i(cOS(0))| <

Proof. Recall a result of Stieltjes ([Sz], Theorem 7.33, page 165)

|P„(co8(«)| < (0 < « < »). M

Bernstein’s theorem ( [Sz], Theorem 1.22.1, page 5) states that for any 

trigonometric polynomial g(9) of degree n, we have

iy(^)l < n . ^ m ^ ^ (0 < ^ < 2ir). (5.4)

Let 0 < 6o < y. We see from (5.3) that

|P,(cosW| :). (5.5)

Let cos(0) =  coa{Oo) cos(u). Then by (5.5) for all real u

|P„(co.(«o) c«(„))| < (5.6)

Hence, (5.4) and (5.6) imply

|cos(tfo) sin(n)Ĵ (cos(6o) cos(u))| < (5.7)

Equivalently, for < ^ <  f  >

-C06̂ («). Kc<I8(«))| < ^  - (5.8)
V y/Stn{Vo)
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Given 0 < 7  < ^ set % =  6  =  7 . Then (5.8) implies

|i^;(c08(7))l < ^

But

C08*(|) -C08*(7) =  8in*(7 ) -  sin^(^) =  8in^(|)(4cos^(|) -  1) > 8in ^ (|). 

Hence, by (5.9),

« (co s(7 ))l < y f  (S-1»)

Rom ([Sz], (1), page 360) we have

-  P .+ ,( i)  =  ; ^ ^ ( l  -  ^)PM- (5.11)

By combining (5.10) and (5.11) we get

|P,-.(C»(7))-P«+1(C06(7))1 <

_  2 n +  1 1 f2  sin^(7 )
n +  1 \/n V  IT (8in(?))t

But

So

8in(7 ) = 2sin(|)co8(|).

2cos(J) ^
sin(̂ ) 8in(7 ) 8in(7 )

Therefoie

,2n + l 1 1
i

36
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(Consequently, for 0  < 7  < | ,

|P„.,(cm (7 )) -  i>„+i(cos(7 ))| < (5.13)

Hence, the lanina is proven. □

Ufflng the previous lemma and setting  ̂ we have the following

inequalities

27T
1 V m -

2?rt
2 m +

Similarly
 ̂V ^sin(e)

(2 m + 1) (1  -  cos(e) ) >/m

Also, &g(m)| < 1 for aU m, to conclude that

Iu< C ni ^  |tg(m )L„(m )|
l<m<i m>i

|2m + 1 
2ir

< Cm

- C u t

E t  t® y jsin(e) 1
2 .^  f l  — coarell f2m  4-

E _ î  I f  >/8iP(g) ^   1_

,!<»<J +  I)™

Notice that for the first part of the sum we have

E
l  ^  1 .  1 1

Furthermore, for the second part we have the following two inequalities:

\ / 8in(6 ) ^
(1  -  cos(e)) -  ÿ  e§
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E l  1 ^ 1 1  7  l u  _ 1  1 ^  G
(2 m +  l)m  ~ 2  ^  m2 -  2 y  x* 2  1  -  1 ~  2

m > i  m > i  ( i ) _ i  *

Hence,

Iv <  CAft =  c „ « ( i + o ^ . (5.14)

By combining (5.14) with (5.2) we get

^  E  ixA ,* K )(r fx )-\A \
l€S£‘

Set t  =  t ( j  + 1) =  It is easy to verify that, for any ®i,..., x» € S^,

we have

Y 2 (XAi * fce)(®r) <  5^XA(Xr) <  (XX, * t,)(Xr).
r=l r=l r=l

Ù1 conclusion.

1^1 -  Z  XA(?Z)
7 6 S5"

< r â î r t 4 = +  4ire.
ISj"! V Ï

The previous inequality Is valid for every e, such that 0 < e < 1, so the 

following inequality

1^1 -  Y ,
7€5^

(5.15)

still holds.
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4S3.9

Figure 3. The graph of J{x) for &i = 1 and = 1 

Lemma 5.3.

I
C u

Proof. Let J(e) =  kie + where e > 0. The graph of J(e) is shown 

in figure 3 . The minimum of J(e) occurs at eo =  ( ^ ) ) ,  and min J(e) =  

J(so) =  ^  our case, ki = 4k and fca = Therefore, the

lemma follows. □

Combining (5.15) and Lemma 5.3, Theorem 5.1 is proven. □



Furthermore, in order to use Theorem 5.1 to guarantee the covering of the 

sphere, we need the following Lemma 5.4.

Lemma 5.4.

<|A|=» U  74  =  5*.
76Si'

Proof. Ab 'jA C  5*, then 7 4  Ç 5*. Now, letting z  € 5* we have

< 1̂ 1 => XyAix) #  0.
7€Sg*'

So, we can see that there exists a 7  € such that Xj a Ĉ ) = 1. This is 

equivalent to saying that x  € 7 4 . As 7 4  C , the lemma follows. □

Based on this fact and on Theorem 5.1, we reach a covering if

Is f  (M + 1  +  ^

IS i'l  ̂ T
< 2irh. (5.16)

As n =  1(5^ — 1), then M  =  logg(^ + 1 ), and 5 ^  =  ^ |n  + 1 . hiequality 

(5.16) can be simplified as follows

1 +

The left hand side of (5.17) is less than

2 ( 1  +  ^ )  logs **
n

and so we have proven the following Proposition 5.5.
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Proposition 5.5.

I f n 8(MaJies the following inequality

logn ^  >/5(log5)ff=>
y /n  I 2 y/2 {VE + 1) (16 4- >/ir)

then the sphere covering

U  7A  =  S » .
-y€S"

ia guaranteed.
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Chapter 6 
One Dimensional Wavelets

Digital signal processing requires mathematical tools to transform multi- 

frequency (multiresolutional) time-varying signals for data compression, pat­

tern recognition, and digital filtering.

Domain transforms such as the Fast Fourier Transform (FFT) and the 

Discrete Cosine Transforms (DOT) had been at the forefront of signal trans­

formation and analysis until the introduction of the wavelet transform in the 

early 1980s.

Wavelet theory involves representing general functions in terms of simpler, 

fixed building blocks at different scales and positions. This has been found 

to be a useful approach in several different areas.

In the early 80’s, Strdmberg discovered the first continuous orthogonal 

wavelets [St]. This was done in the context of trying to further understand 

Hardy spaces, as well as other spaces used to measure the mze and smoothness 

of functions. And long before this were results by Haar [Ha], E^ranldin [F], 

and others.

Lemarié and Meyer [L-M], independent of Strdmberg, constructed new

orthogonal wavelet expansions. With the notion of multiresolution analysis,

introduced ly  Mallat and Meyer, a systematic framework for understanding
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these orthogonal expansions was developed [M]. It also provided the connec­

tion with quadrature mirror filtering. Daubechies [Da] gave a construction 

of wavelets, nonzero only on a finite interval and with arbitrarily high, but 

fixed, regularity.

Unlike the Fourier transform, which decomposes a signal into component 

frequencies, a wavelet transformation uses template matching to choose a 

waveform closely matching the original signal. The end-result of the pro­

cess, if not the mechanics, is similar to using look-up table functions. Far 

fewer terms are required to represent a signalwhile retaining a high degree 

of accuracy.

6.1 Wavelets on the real line

Let L^(R) denote the Hilbert space of complex valued square integrable 

functions on the real line R. The scalar product in this space is defined by

U<a) = j m W ) < l t  (/ ,j€£>(R)). (6.1.1)

Définition 6.1.1. A wavelet is a Junction ip{t) € L (̂R) such that the family 

of functions

^i,k := -  k),

where j  and k are arbitrary integers, is an orthonomud basis in the Biibert 

space f  (R).
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A muUiresoiution of L^(R) is a sequence Vj, j  € Z , of closed sid>spaces 

Vj Ç ü*(R), such that

(o) f{t) belongs to Vq if and only if f{ t  — 1) belongs to Vq,

(b )V iC V j+ ifo ra llj€ Z ,

(c) f( t)  belongs to Vj if  and only if f{2t) belongs to Vj+i for all j  6  Z,

(<o n
i= —oo

+00

(e) the closure of ( J
oo

( /)  there is a function ^ € Vb, such that the set 

{0(t — fc)}, fc 6  Z, M an orthonormal basis of Va.
(6.1.2)

The function <ft is usually called the scaling function. Clearly the functions

ibj,k(t) = V^(f>i2H-k) (jfeeZ) (6.1.3)

form an orthonormal basis of Vj for each j  € Z.

It will be good to give at this point some interesting examples of multires­

olution analyses.

Exam ple 6.1.2. Haar System (1910)

Let V} — { ÂU functions in .L (̂R) constant on all intervals (jk +1)2"^],

for k E Z}. And let
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■c1 if t e [0 , 1),
# )

otherwise.

{0(t -  &)}*€% is an orthonormal basis for V q , and {Vj}jçz k  a multireso­

lution analysis.

Exsunple 6.1.3. Splines System, due to P. Lemarié and G. Battle.

The vector space V q  is the set of functions which belong to n 

and equal to a cubic polynomial on each interval [&, Ar -f 1], /b € Z. It is well 

known that there exists a unique cubic spline € Vq sudi that for every 

k e Z
 ̂ 1 if k=0 , 

0(fc) 
fc#0.= {Lo if

Any function /( t)  e  V q  can be decomposed in a unique way,

/(() =  5 ^ Cfc0 (t -  k). 
fc=—oo

But, as 0(0) =  I  then f{k) — c&. Therefore /( t)  can be written uniquely as

OO
m =  E

Jbs—OO

One can easily show that the sequence of vector spaces {Vj}j^z built with

property (c) of (6 .1 .2 ) is a multiresolution analysis of .L^(R).
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Let Wj denote the orthogonal complement of Vj in Vj+i, so that for each

j  6 Z,

Vj+i = V je W j  (6.1.4)

is an orthogonal sum decomposition. The main result of the theory of 

wavelets is that given any multiresolution, there is a function ip e Wq such 

that for each j  € Z {ip{t — k)},k € Z is an orthonormal basis for Wq. 

Moreover,

=  y/^ip{2H - k )  (fee Z) (6.1.5)

is an orthonormal basis of W j .  Thus in effect the set

ipi,k{t)^y/^ip{2H-k)  C7,feeZ) (6.1.6)

is an orthonormal basis of L^(R).

It has been shown that one can derive a wavelet orthonormal basis from 

any multiresolution analysis. However, the converse is not true. Let ip{p) be 

the function whose Fourier transform is given by

{1 if ^  < |u;| < ir or 4»r < |fa/| < 4îr +7 7

0 otherwise.The translates and dilates

(y/^ip(^t  — ^))(fcj)6Z* 
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form an orthonormal basis of D^(R). This counterexample due to Y. Meyer 

is a wavelet that is not related to any multiresolution analysis.

The beauty of the subject is that the functions (ft and ^  are completely 

determined by a single sequence of numbers h[t], X; € Z, which in the most 

interesting cases has finitely non-zero terms. The relevant relations are the 

"two-scale dilation equations”:

J +00

“^ ^ (0  =  5 3  
fc=-oo

,  +00

-  k)
fc=-oo

ÿ[fc] =  ( - l ) i - * / i [ l - f c ] ,  & (5 25.

(6.1.7)

The sequences h[k] and , h € Z, are, respectively, the low-pass filter 

and the high-pass filter of a two-channel multirate filter bank [Ma], and the 

function rjf is called a wavelet.

Next we process the signal in terms of a given multiresolution. A digital 

signal is a sequence of real numbers oo[k], k € Z, which is identified with a 

function /( t)  in ly  the formula:

m  =  E  « « M #  -  *)• (6 .1 .8 )
ik=—00 

47



Let the projections of /  onto Vj+i and onto Wj+i be given by

+00

U  («-I-»)

ib=—00

Then the relations between the sequences involved are very simple:

+00

(o)o [̂p]= 5^ -  2p]of+i[&],
k=—oo 

+00

(6) dj-\p] =  ^  # -  2p]o,+i[fc], (6.1.10)
&=—00

(c)«i+i[pl=  5 ^  fc[p-2fclo,[fe]+ 5 ^  g\p-2k]dj[k].
* = —00 * = —00

The first formula (6.1.10.a) describes the projection Vj+i 9 Pvj+if Pvjf ^  

Vj. The difierence Pvj+if — iV>/ =  Pw^J is the “detail” signal described 

in (S.l.lO.b). The formula (6.1.10 c) describes the reconstruction of Pvj^if 

firom iV j/ and iV f/. hi the case when the low-pass filter h[k]̂  k € Z, 

has finite support, the operations (6.1.10) can be precisely implemented for

computation. The computations are relatively simple and can be performed

quickly. Given a particular application, one designs an appropriate multires­

olution, i.e. chooses the correct filter bank.

Now, we take a look at some important properties of wavelets. 

Orthogonality: Orthogonality is convenient to have in many situations,

e.g., it directly links the £^-norm of a function to the norm of its wavelet
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coefficients by

V i.*

In the biortbogonal case these two quantities are only equivalent. Another 

advantage of orthogonal wavelets is that the fost transform is a unitary trans­

formation (i.e., its adjoint is its inverse). Consequently, its condition number 

is equal to 1, which Is the optimal case. This is of importance in numeri­

cal calculations. It means that an error present in the initial data will not 

grow under the transformation, and that stable numerical computations are 

possible.

Com pact support: If the scaling function and wavelet are compactly sup­

ported, their corresponding filters H  and G are finite impulse response filters, 

so that the summations in the fast wavelet transform are finite. This obvi­

ously is of use in implemmitations. If they are not compactly supported, a 

fast decay is desirable so that the filters can be approximated reasonably by 

finite impulse response filters.

Sym m etry: If the scaling function and wavelet are symmetric, then the 

filters have generalized linear phase. The absence of this property can lead 

to phase distortion. This is important in signal processing applications. 

Sm oothness: The smoothness of wavelets plays an important role in com­

pression applications. Compression is usually achieved by setting small co-
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eËdents to zero. If the original function represents an image and the 

wavelet is not smooth, the error can easily be detected visually. Also, a 

higher degree of smoothness corresponds to better frequency localization of 

the filters. Finally, smooth basis functions are desired in numerical analysis 

applications where derivatives are involved.

As could be expected, it is not possible to construct wavelets that have 

all these properties and there is a tradeoff between them.

6.2 Two wavelet-based indices for abrupt changes detection

In this section, we will develop a new method based on the wavelet trans­

form (WT) to detect abrupt changes in non-stationary noisy signals. We 

will show that the wavelet transform alone or when combined with the short 

time Fourier transform (STFT) provides a more accurate index of stationar- 

ity than the STFT alone (as given in pL-D]), especially for very noisy signals.

One common problem in signal processing is the ability to detect abrupt 

changes in very short segments of not strictly stationary signals. A method 

based on time-frequency representations (TFRs) for detecting abrupt spec­

tral changes in noisy signals was recently introduced |^D ]. This paper presents 

a stationarity index derived from the spectrogram of the signal. They show

that the Kolmogorov distance is the best choice for a stationarity index. K
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there is no change in the frequency content of the signal the index of station- 

arity is close to zero, but if a change occurs, then the index of stationarity 

sharply peaks.

We propose in this section an improvement to this previous method by 

deriving the stationarity index from the spectrogram of the wavelet coef­

ficients of the signal or from the coefiBcients themselves rather than from 

the spectrogram of the signal. We have considered this modification due 

to the frtct that the wavelet transform is a useful tool for non-stationary 

signal analysis that has found many applications in time-frequency analysis 

[FI], transient detection [M-H] and speech processing [K-Bj. After defining 

the new modified stationarity indexes, we consider two kinds of signals from 

pLrD], namely test signals presenting very short frequency-hopped segments 

and chirp signals corrupted with noise. Comparisons between the original 

method and the new method are performed for diflTerent levels of noise.

H ie short time Foiurier transform (STFT) is most suitable for time-frequency 

analysis of narrow-hand signals whose frequencies are subject to strong but 

slow time-evolution. However, most of the signals of interest to scientists 

and engineers, from cardiograms and seismograms to stock market quota­

tions and turbulent velocity fields, do not resemble simple tunes and have a

much rufiior structure whidi often includes the appearance of a wide range
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of scales [S-W].

The STFT and the wavelet transform (WT) are subject to the same time- 

frequency constraint, namely the Heisenberg uncertainty relation

A t . A / > i

where At and A / represent uncertainty in both time and frequency. The 

fundamental difference between these two approaches is how the resolution 

properties vary throughout the time-frequency plane. There is a classical 

time and frequency resolution trade-off that underlies the structure of the 

spectrogram: the choice of an analyzing window of short duration ensures 

a good time localization, but at the expense of a poor frequency resolution 

(by Fourier duality), and vice-versa. Moreover, once an analyzing window 

has been chosen, the resolution capabilities of the spectrogram remain fixed 

for all time and frequency parameters [F-V-R]. One major advantage of the 

WT is that it has a high frequemy resolution at low frequency and a high 

time resolution at high frequency.

Let U be the signal generated from the wavelets coefiBcients of the original 

signal. Denote by SPEC  the spectogram of U. For each time t, two sub- 

images SPECI{t;r, f )  and SP E C II{t;r ,f)  are extracted from SPEC  as 

follows:

S P E C I i t ; T j ) ^ S P E C i t - w i - T j )
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and

SPECII{t\ r ,  / )  =  SPEC{t + T , / )

where w is the width of the sub im a^ and r  € [0, u;]. After normalizing the 

obtained subimages, define the modified stationarity index as kllows:

N M
M Sl{t) = 5 ;  5 ;  I\S P E C m  i, j)  I -  \SPECn(t-, i, j)  11

*=1 J=1

where (AT, Af) — size {SPEC!) =  size {SPECII).

The major drawback of the original and the proposed hybrid method 

is that a spectrogram is used to determine the distances between the sub­

images. Therefore we consider as a direct method the stationarity index as 

the wavelet level 1 coefficients of the signal (without invoking the spectro­

gram of the wavelet transform of the signal).

In all test series, 512 data length signals have been generated via MAT- 

LAB with a sampling frequency /« =  1 kHz. The signal-to-noise ratio was 

varied from 0 dB to 6 dB.

A. Test signals generation:

The first series contains signals presenting three frequence-hopped bound­

aries at time samples 180, 210, and 240 (30 samples per segment). The 

signal in each segmmit is composed from a single tone. Let us define a fi-

mte tone as s (/; [ti, ta]), where /  is the normalized ficecjuency and [ti, ta] the
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time duration. Hence, the signals with abrupt changes consist of four tones: 

s(0.2; [1,179]), s(0.3; [180,209]), s(0.25; [210,239]), and s(0.2; [240,512]). In 

the second series, finite duration oscillating tones were generated. Define a 

finite duration oscillating tone as s(/e;[tiita])i where /c is the central fre­

quency and [ti, ta] the time duration. The signals with abrupt changes consist 

then in three oscillating tones: s(0.2; [1,179]), s(0.3; [180,209]), s(0.25; [210,239]), 

and s(0.2; [240,512]).
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Figure 4. Test signals with SNR=6dB and their corresponding station^ 

arity index.
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B. R esults:

Figure 4 and Figure 5 present the spectograms of the first series that has 

the abrupt frequency changes at 0.18, 0.21, and 0.24 with SNR of 6 and 0 

dB respectively.
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idwiin
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Ttma
0 .4 0.1

SNR-OdB
oa oa

T in »
0 4

Figure 5. Test signals with SNR?=OdB and their corresponding station̂  

arity index.

All three methods show good detection and localization of the firequency-

hopped times at 6dB SNR. But with 0 dB SNR, the hybrid and the direct

method (using the Daubechies-4 wavelets) show a much better ability to
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detect the firequency-hope by forming higher peaks in the stationarity index 

around the time of the abrupt frequency change.
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F ig u r e  6. Stationarity index of the second series with SNR=OdB.

fri the second series, the signals with abrupt changes consist of three os­

cillating tones. The original method f*il« to detect the time positions of the 

sudden changes. In direct contrast, our hybrid and direct methods show

peaks in the SI at the times of ab n ^ t changes even with an SNR of OdB
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Maani Mean 2 Means Stdl Std2 StdS
Hybrid nwihod 180.5 209.3 240.2 3.9 3.5 3.8
Original method 179.7 209.9 240.2 5.4 5.2 4.6

Table 3. Statistical Results: Mean Values and Standard Deviations of 

the Boundaries Localization {100 recorda}

(see Figure 6). We observe that the hybrid and direct methods have lower 

variance than the original method of Laurent and Doncarli.
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Chapter 7 
Two Dimensional Wavelets

To pass from the one>variable situation to a multivariable situation, we 

can form tensor products. This is a very general concept which we will use 

in its most simplest form.

Given n  functions of one variable f^{x) for j  = 1,..., n we will form the 

function of m variables ® /*  ® ... ® / ” =  ® P  defined as

n

® f ^ i x u x d ) = n  f^{xj).
fir

furthermore, if we have n closed subspaces X j  C L2 (R) for j  =  1,2,..., n we

can form a closed subspace of 2a(R?) denoted by ® X j  or by ® Xg ®
i=i

... ® Xn  and defined as the closed linear span in Xg(R?) of all functions of 

the form •... • / ” (®n) where 6 X j  for all j  =  1,2, ...,n.

Before we introduce 2D wavelets, let us use the following example as an 

introduction.

Exam ple 7.1. Two-dimensional Haar wavelet

A natural choice is to use squares in the plane R^. Let Vq be the space of

all functions in 2^(If  ) which are constant on each square (n, n-i-1) x {k, Ar+I).

When we divide each square into four equal squares we obtain the space

of all functions in Lg(lP) which are constant on all squares ( j ,  x
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( | ,  . Thus to complement to Vi we need three functions on each

square (n, n +1) x (ib, Ü; + 1). These three orthogonal functions can be given 

as

V>a(®,y) =  0(®)*V>(y), 

^3(®,y) =  V»(®)-V»(y),

where ^(x) and ^(x) are respectively the Haar wavelet and scaling function 

defined in the previous chapter. Clearly these functions are in Vi. The 

functions ^y(x — k ,y —I) fat aH k, I G Z  and j  =  1,2,3 form an orthonormal 

system.

We will follow the procedure indicated in the previous example for the 

general setting.

Suppose that on R we are given two multiresolution analyses, say ... c 

V li  CV^ c V ^ c  ... with scaling functions ^ (x ) and corresponding wavelets 

^{(x) where i =  1,2. The subspaces Fj c LaÇB^) are d^ned [Woj] as

F j ^ V } 9 V f .

The sequence of subspaces (f})yez has the following properties:

... C fL i c Fo C Fi c ... (7.1)



y  ü i =  (7.2)

n  Fi =  {0} (7.3)
iez

f{x, y) € Fj /(2®, 2y) 6 Fj+i (7.4)

/(x , y) 6 Fo /(x  -  1, y -  1) 6 Fo (7.5)

The system {^i(x -  t)^a(y -  f)}(&,()ez=

is an orthonormal basis in Fo. (7.6)

If we write © Wq for t =  1,2 then we infer that

Fi =  =  (Pÿ © WÎ ) ® (Vo* © IVo* )

= (Vi 8 Vo») ® (Vo‘ ® W„»)(WJ 8 Vo») ® (Wi 8 Wg)

=  Fo ® (V„‘ 8  Wo») ® (W j 8  Vo») ® (Wo* 8  W ,»).

We also infer that

{^i(x -  fc)V»a(y — 0}*,<€Z is an orthonormal basis in ® Wq 

{ 0 1  (® — t)0a(y — f)}»,(ez is an orthonormal basis in Wq ® Vq*

{0i(x — t)0a(y -  l)}jk,ie^ is an orthonormal basis in Vÿ ® W j

Using (7.1)-(7.6) we get three functions 0 1 = 0 1 ® 0a, 0a =  0 1  ® 0a and

^  =  0 1  ® 0a such that the system {0{(2^x — k, 2^y—I)} with j, k J e Z  and

i s  1,2 ,3 is an orthonormal basis in 2^(#P).
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Chapter 8 
Compression on the Unit Sphere

One of the most common applications of wavelet theory is data compres­

sion. There are two kinds of compression schemes: lossless and lossy. In 

the case of lossless compression one is interested in reconstructing the data 

exactly, without any loss of information. We consider here lossy compres­

sion. This means we are ready to accept an error, as long as the quality after 

compression is acceptable. With lossy compression schemes we potentially 

can achieve much higher compression ratios than with lossless compression.

8.1 Image compression

Let us take the case of digitized images. The compression ratio is defined 

as the number of bits the initial image takes to store on the computer divided 

by the number of bits required to store the compressed image. This is easy to 

understand when we consider the fact that to store a moderately large image, 

say a 512 x 512 pixels, 24 bit color image, takes about 0.75 MBytes. This is 

only for still images; in the case of video, the situation becomes even worse. 

Then, we need this kind of storage fiar each frame, and we have something like 

30 frames per second. This is just one reason why compression is important.

First, let us define, somewhat mathematically, what we mean by an image.
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Let us for simplicity discuss an L x  L ffay scale image with 256 =  2  ̂gray 

scales (i.e., 8 bit). This can be considered to be a piecewise constant function 

defined on a square

f{x, y) =  pij 6  N, for * < X < t + 1  and j  < y < J + 1 and 0 < i , j  < I ,

where 0 < pij < 255. Let us fix an orthogonal wavelet ip. Given an integer 

M > 1, we try to find the ’’best” approximation of /  by using a representation

=  ^Cikipjk(x,y) 
jk

with M  nonzero coefficients Cjk’

The basic reason why this potentially might be useful is that each wavelet 

picks up information about the image /  essentially at a given location and 

at a given scale. Where the image has many interesting features, we can 

expand many coefficients, and where the image is smooth we can use fewer 

coefficients and still achieve a high quality approximation. In other words, 

the wavelet transform allows us to focus on the most relevant parts of / .  Now, 

to give this a mathematical meaning we need to agree on an error measure. 

Ideally, for image compression we should use a norm that corresponds as 

closely as possible to the human eye [D-J-L]. However, let us make it simple 

and discuss the case of L^.
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So we are interested in finding an optimal approximation minimizing the 

error \\f — /mUi,»- Because of the orthogonality of the wavelets,

ill

is an equivalent measure. A moment’s thought reveals that the best way 

to pick M  nonzero coefiScients cy*, making the error as small as possible, is 

by simply picking the M  coefiScients with largest absolute value, and setting 

Cjk =  (/, for these numbers. This then yields the optimal approximation

s T -

We can summarize wavelet image compression using the norm in three 

steps:

1. Compute coefiScients ci,...,C m  representing an image in a normalized 

two-dimensional wavelet basis.

2 . Sort the coefiScients in order of decreasing magnitude to produce the se­

quence C0 (̂i), • • •,

3. Starting with m =  m, find the smallest ih for which 5Z^m+i(^(»))* — 

where £ is the allowable error.

8.2 Pseudocode for compression

The pseudocode below outlines an efiScient method that uses a binary

search strategy to find a threshold below which coefficient sizes are deemed
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negligible. The procedure takes as input a one-dimensional array of coef­

ficients C (with each coefficient corresponding to a two-dimensional basis 

function) and an error tolerance e. For each guess at a threshold r , the algo­

rithm computes the square of the I?  error that would result firom discarding 

coefficients smaller in magnitude than r . This squared error s is compared 

to at each iteration to decide whether the binary search should continue in 

the upper or lower half of the current interval. The algorithm halts when the 

current interval is so narrow that the number of coefficients to be discarded 

no longer changes.

procedure Compress (C: array [l..m] of reals; e: real) 

rjnin min{|C7[<]|}

T m a s  < -  m oz{|C [«]|}

do

 ̂ (Tmin 'Jmo*)/2

« 4 — 0

fiar > 4- 1 to  m do

If |C[*]| < r  then«4-«4-(C [i])*

end for

if s <  e* th en  Tmtn ^  r  else Tmax ^  f  

mxtll Ifnm ** ^mos
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for * 4- 1 to  in» do 

if |C[»]| < r  th en  C7[<] <- 0 

end for 

end procedure

However, DeVore et al. |p-J-L] suggest that the V- norm is best suited 

to the task of image compression.

8.3 A n exam ple of d a ta  com pression 

on th e  unit sphere

The most well known spherical wavelets, namely by Freeden and Wind- 

heuser [P-W] and Schroder and Sweldens [S-S] assume regular gridpoints. In 

practice, the observed data are often irregularly distributed. Such scattered 

data are often encountered in global environmental studies, based on ground 

stations or on satellites [Le], [V-G-L]. To overcome this problem of irregular­

ity, one can use the strictly positive definite functions studied in Chapter 2 

to interpolate the scattered data in order to have regular data available.

In applications such as climatology, the earth is often regarded as a sphere

of unit radius so that a meteorological variable T(n), such as the sea level

pressure or the surface air temperature, can be treated as spherical field. In

this expression, n := [co60cos0,cos^sln.0,sin0]^ denotes the unit vector
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that points to a location on the earth firom the center of the sphere, with <j> 

and 9 being the latitude and longitude of the location.

In many applications, the field T(n) is observed only at a finite number 

of observing sites. If the observations denoted by are firee

of measurement error, then Ty =  T(ny). A more realistic model is Ty =  

T(ny)+£y, where cy represents the additive noise. We wiU ignore the additive 

noise because it does not affect the presentation of the proposed methodology.

The data contains the monthly sea-level pressure (SLP) firom January 1871 

to December 1994 in millibars. The monthly grid resolution is 5 degrees x 

10 degrees (longitude, latitude). Therefore there are 72 x 36 =  2592 grid­

points. The data are organized in full 360 degree latitude circles beginning 

at 90S and stepping northward to 90N. Along each circle (there are 36 cir­

cles) there are 72 points, the first value on a latitude line is matched to OE 

longitude, and the last value is 355E (or equivalently 5W) longitude.

Let us briefly review some basic &cts about the SLP. The pressure mear

sured at each weather station is adjusted to the corresponding temperature

at sea level in order to monitor properly horizontal changes in pressure. For

any site above sea level, this adjustment is performed by assuming that a col-

mnn of air, with a particular temperature profile, exists between the elevation

of the station and sea level. Using this temperature profile, the conversion
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to sea level pressure is calculated by increasing the station pressure by 10 

millibars for every 100 m of elevation. Therefore, the approximate equation 

to reduce the measured pressure at a station to sea level is

f  (sea level) =  ^(observed) 4- • h

where h is the height above sea level.

Figure 7. Searlevel pressure across the United States

The chart in figure 7 is useful for finding regions of high and low pres­

sure systems. The solid contours represent pressure contours (isobars) in 

millibars. The isobars have an interval of 4 millibars. The wind speed is

directly related to the distance between the isobars. The closer they are
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together, the stronger the pressure gradient, and the stronger the wind. Low 

and high pressure systems can also be located from the map above. Low 

pressure systems are located in the regions of the lowest pressure, while 

high pressure systems are located in the regions of highest pressure. A high 

pressure center is where the pressure has been measured to be the highest 

relative to its surroundings. That means, moving in any direction away from 

the ‘'High” will result in a decrease in pressure. A high pressure center also 

represents the center of an anticyclone and is indicated on a weather map by 

an “H”.

A low pressure center is where the pressure has been measured to be the 

lowest relative to its surroundings. That means, moving in any horizontal 

direction away from the "Low” will result in an increase in pressure. Low 

pressure centers also represent the centers of cyclones. A low pressure center 

is indicated on a weather map by an ‘T ” and winds flow counterclockwise 

around a low in the northern hemisphere. The opposite is true in the southern 

hemisphere, where winds flow clockwise around an area of low pressure. 

January 1986 and August 1986 will be the two cases used in the analysis.

After this brief introduction of SLP, our attention will be on compressing

the available SLP data. A compactly supported blorthogonal spline wavelet

"Bior3.9” is used in this analysis. After compresràig our data, we show the
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surfaces and contours of the original and approximated data; we have plotted 

also the surface of the details.
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F ig u r e  8. SLP surface plots for January 1986

For the case of January 1986,69% of the wavelet coefficients are set to zero, 

and the percentage of the original signal’s energy preserved is 100%. For the 

case of August 1986, the percentage of the wavelet coefficients that are set 

to zero is 70%, and the percentage of the original signal’s energy preserved is 

100%. Note that, even though the compressed signal is reconstructed using 

only 30% of the original signal, there is almost no detectable deterioration 

in the image quality of the two surfaces or the contour plots. The detail 

projection surfaces are very low compared to the original surfaces.



F ig u r e  9. SLP detail surface for January 1986
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F ig u r e  10. SLP contour plots for January 1986

As one can see firom the figures and percentages, the previous analysis
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F ig u r e  11. SLP surface plots for August 1986
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F ig u r e  12. SLP contour plots for August 1986

pves satisfactory results, however thîa approadi is practical only when the
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F ig u r e  13. SLP detail surface for August 1986 

data are grided and no concentrations around the poles are observed. In the 

next section we discuss this issue.

8.4 A general method for spherical compression

Let us briefly review recent constructions of wavelets on manifolds with 

special emphasis on the sphere.

The approach of Schroder and Sweldens [S-S] is based on a quasi-uniform 

icosahedral triangulation of the sphere. It allows a fast wavelet transform 

with computational cost growing linearly in the number of grid points. Nu­

merical experiments show very good results for applications concerning the

compression and fitting of data. Nevertheless, the scaling functions in their
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approach cannot be evaluated exactly unless at the grid points, and it is not 

clear whether their construction yields a stable L^-basis.

JaSard and Meyer [J-M] construct orthonormal wavelet bases on very 

general class of domains in R?. This idea applies as well to manifolds, but it 

uses an explicit orthonormalization procedure which requires Gram matrices 

to be inverted. The wavelets have good global support but do not allow for 

a fast wavelet transform.

To our knowledge, up to now the only discrete construction that exploits 

the topological structure of the sphere, in particular its rotational invari­

ance, and requires neither a fixed coordinate system nor triangulation, has 

been undertaken by Freeden and his co-workers (see [F-S] and the references 

therein). They construct radially symmetric wavelets with arbitrary smooth­

ness. A fast wavelet transform is described in [Sc]; the extension to closed 

surfaces is given in ^-Sj. Dahlke et al. |p-D-S-W] follow a tensor product 

approach using exponential splines. Their construction is based on a fixed 

chart for the sphere. It yields C^-wavelets, but suffers from some problems at 

the poles when projecting functions onto the wavelet spaces, and the com­

puter implementation seems to be difficult. This approach is extended to 

stable blorthogonal spherical wavelets in Weinreich’s Ph.D. thesis [Weij. In

a similar spirit, Potts et oL [P-S-T] use tensor products of trigonometric
73



and algebraic polynomials to construct interpolatory spherical wavelets with 

global support that allow a 6 st wavelet transform. Again the poles are ex­

ceptional points since the underlying grid accumulates there. Hence, as in 

p-D-S-W], these wavelets are not able to detect singularities at the poles.

Dahmen and Schneider [D-S] developped a very powerful, but abstract 

method for the construction of wavelet bases on smooth manifolds. The 

concept of stability and efficiency of mutiscale transforms is discussed there 

in great detail, but their construction of wavelets relies on some prerequisites 

that are hard to realize for general manifolds. The theoretical background 

for their work can be found in [Da]; also in [C-D-P] some applications are 

given.

In addition to the discrete constructions, there are some papers on contin­

uous wavelet transforms on the sphere. Dahlke and MaaB [D-M] construct 

wavelets on tangent bundles of spheres. Torresani [To] exploits the Weyl- 

Heisenberg group representation. Finally, Holschneider’s approach [Ho] is 

based on dilations and rotations using stereographic projections.

We propose a method for compressing fonctions on the sphere based solely

on a Ramanqjan set of rotations and planar wavelets. This method was

inspired by the foot that a rigourous method needs to perform uniformly

well independently of the location of the support of the function on the
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sphere, and for functions supported in a small (relatively flat) subset of S^, 

this method should be similar to the one obtained from the theory of wavelets 

on , which is described in chapter 7.

The 2-sphere can not be embedded homeomorphically into the Eu­

clidean plane R? For, if a topological mapping of onto a subset M of 

existed, then M  would be, lilœ S^, compact and simply connected and conse­

quently isomorphic to the closed disk. The Euler number of the disk (%= 1), 

however, differs from that of the sphere (% =  2 ). Thus there is no atlas of 

which consists of only one chart. To put it another way, every chart of 

the sphere has a singularity. This fact, known to cartographers for many 

centuries, complicates the positioning of points on the sphere considerably.

Let

S P : S ^ \  {North Pole} -► R^

be the stereographic projection, (see [Mu]). Let $  be an orthonormal basis of

constructed using tensor products of some orthogonal wavelet basis

of L*(R), (see Chapter 7). Let SP*{^) Ç L*(5*) be the orthonormal basis

of L^{S^) obtained by pulling back the functions from $  to the sphere,

and normalizing them appropriately, using the Jacobian of the stereographic

projection. Then SP*{^) is an orthonormal basis of L'^{S^). However, the

members of this basis supported near the South Pole look very different
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than the members supported near the North Pole as the North Pole is a 

singular point. Di order to avoid this singularity we shall rotate the North 

Pole, using a well distributed set of rotations, namely a Ramanujan set of 

rotations discussed in Chapter 3 of this thesis. What follows is a description 

of our new method for compressing functions on the unit sphere.

Let F ((i,^ 2 , 6 ) be a function belonging to L^{S^). We project it onto 

the complex plane via the stereographic projection SP. Let us find first the 

Jacobian J  of this transformation, taking into consideration the fact that 

( i +  (2  +  3̂ =  1
1

J  = dx Ox
5|T Sfe Oy Oy

Furthermore, we have

Using this fact we have the following expression for J

J  —

(1- 6 F  î ï ^  

(i—ls)* (1—(ar

After simplification we get

J  =
- 1

^3 (1  — ( 3)^
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The previous expression can be written in terms of z = ^  we write

(3  in terms of z as

then an expression of |J | in terms of z is 

The new function on the complex plane is

where z =  x +  iy and |z| =  y/x^ +y^.

Using the two dimensional wavelets on the plane we can therefore expand 

/  in terms of the wavelet basis in L^(R^). For any function /  € JD̂ (R̂ ) we 

have

3

/(®> y) =  ^̂ <(2^® -  k, 2^y -  f))^i(2 'x  -  k, 2^y - 1)

where ^1  =  ® V’a» ^ 2  =  ^ 1  ® <h and ^ 3  =  ® V>2 with j, t ,  f E Z. Refer

to Chapter 7 for the definition of tpu ^2 , and ^3 .

Decomposing the function we get

/(®. y)=Ao (®, y)+ (®, y)

where A ^ ,  and are respectively the approximation function and the

detail function on the plane. As no rotation is performed, we have used
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7o =  id. The next step in the algorithm is to rotate the function F  on the 

unit sphere and then project it to the complex plane, but as the rotation 

group S0{2) is mapped onto 517(2), with homographie action on C:

az 
^ ^ c z  +

we will project F  first onto the plane and then use the above transformation 

which is much easier to implement than the regular 3 x 3  rotations on the 

sphere. The scheme goes as follow:

where z = Furthermore, the matrix belongs to 6 517(2)

and it corresponds to reduced words formed by Ap, Bp, and Cp discussed in 

4.1.

We decompose this new rotated function into the wavelet basis functions 

to get this time the approximation and detail functions and where 

7 y belongs to the Ramanujan set S ^ .  We choose the set and not any 

other arbitrary set of rotations for the main reason that this set generates a 

uniform distribution on the sphere. Moreover we derived a precise formula in 

Proposition 5.5 that provides us with the number of spherical caps of radius 

h needed to cover the whole unit sphere. We have then

m { z ) , ^ { z ) )  =  A,,(»(5),9f(z)) +D.,,(»(5),3(z))
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where
_ ajZ +  hi
^  CjZ +  d j ^

and

(%

Suppose that we stop this process at level M, then we need to pick the 

rotation that will assure the best approximation, say 7 jo. We may choose 

7jo 8 0  that

l|A,*,(»(i),3(f))|| = ||A ,,(»(i),3(2))||.

Using the following decomposition

/(S (l), 3(i)) =  (»(i), 3(z)) + (Stiz), 3(*)),

the details and approximations at the first level of resolution are at hand, 

we can compress now the function on the plane based on the procedure of 

8.2 to get /((% (i),^(z)) as the compressed function.

The original f  is defined on the unit sphere, hence the com­

pressed function needs to be projected and rotated back on the sphere. This 

time, the rotation will proceed the projection because we are still processing 

signals on the complex plane. K

az + bz  = cz + d 
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then

—dz + b
Z  —  z  " •cz — a

The rotation 7 ,0 “  ̂ is associated with ( ) which satisfy
V Çjb “ ib /

f  ®io ^ b  ^  /  “ 4 jb ^30 \
\Cio d j o J  \  ^ 3 0  - < ^ 3 0  J

where ^  ^ is the matrix associated with 7 /0 . Note that both matri-

y  b«longtoSU(2).

The function /  is now a function of R(z) and 9(z) where z =

The final step in the algorithm is to use the inverse stereographic pro­

jection to pull back the function /  to the unit sphere. The Jacobian of the 

inverse stereographic projection is

J  = —(3 (1  — 6)^-

Finally, the compressed function F  on the unit sphere is

i + i i z | i " i + i i z | i " i + M ' '  | / ( z ) |r  

For the algorithm to perform uniformly well independently of the location 

of the support of the function on the sphere we shall show that functions 

supported on a small region Q of ^  benefit firom the proposed algorithm.

This will follow from the next theorem.
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Theorem  8.4.1. The algorithm described above is based on a finite set of 

numbers ( finite impulse response filters). Suppose a function f  € L^{S^) 

is supported in a spherical cap Qh> of radius h centered at ^ E S^. let 0  

denote the spherical cap of radius 2h centered at the south pole (0,0, —1)^. 

Let M  > Q be the smallest integer satisfying the following inequdity:

" - S o " - ’ -

Then there is a rotation 7 0  € such that 'yoiln Q O. In particular, our 

algorithm will approximate the function f  as well as if f  was supported in 

0 . As a consequence, the performance of the algorithm does not depend on 

the location of the support of the function f .

Proof. The main components of our algorithm are the three matrices Ap, 

Bp, and Cp described in 4.1, and the wavelet finite impulse response filters 

on the plane. Therefore, the algorithm is based on a finite set of numbers.

We have shown in Proposition 5.5 that if Af is the level of rotations of 

S ^ ,  then it suffices that n satisfies the following inequality for the covering 

of the unit sphere to be achieved

logn
y/n 12>/2(a/5 + I)(16+v̂  ’ 2

So
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Hence

»Ç U 7»»
1t€5b"

Since the radins of O is twice larger as the radius of 0^ we see that there is 

a 7 0  6 5 ^  such that

Tofifc Q O.

Therefore, the performance of the algorithm is chedœd for any arbitrary 

region on the unit sphere. □

S2



Chapter 9 
Concluding Remarks

This dissertation presents contributions to research in the field of math­

ematics and digital signal processing on the sphere. The main goal is two 

fold: (i) Study interpolation, equidistribution and covering on the sphere 

using mathematical tools such as the representation theory, (it) Develop an 

algorithm umng planar wavelets and the Ramanujan set of rotations to 

compress functions on the unit sphere.

We give first definitions of positive definite functions in the case of the 

real line and in the case of the m-sphere. Then after defining strictly positive 

definite functions, we give a sufiScient condition for a zonal function to be a 

strictly positive definite. A major result of this thesis is that we have proven 

Shreiner’s result as a consequence of a more general representation-theoretic 

result, namely for compact groups using tools from the Representation The­

ory.

The other major direction of this thesis is to compress square integrable

functions on the unit sphere. The main tools used in this analysis are a

Ramanujan set of rotations and planar wavelets. Ramanujan sets of rotations

are introduced and our focus is on a special set from the Ramanujan set

of rotations. Starting with a point on the digital sphere lying on none of the
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coordinate axes and using points on the sphere are generated. Examples 

showing the performance of the uniformily of the equidistribution of these 

generated points is studied in terms of quadrature on the sphere.

An important application to time-frequency representations is presented. 

The proposed method is to detect abrupt spectral changes in noisy signals. 

The performance of the proposed method is shown in different experiments. 

The results clearly justify the new approach. A precise formula to cover the 

unit sphere with a given radius is derived. Furthermore, using this formula, 

an algorithm to compress functions on the unit sphere is developed.

For further research, completely characterizing functions which are strictly 

positive definite on the sphere needs to be investigated. Furthermore, an 

optimal formula for covering the sphere should be targeted. Moreover, the 

algorithm needs to be implemented for practical problems. Addressing these 

types of questions using the available algorithm will possibly generate insight 

and help compress signals on the unit sphere efiSdently.

84



R e f e r e n c e s

[A-P] Allali, M. k Pizebinda, T., Strictly Poaitive Definite Fmctiona on a Compact Group, lb  appear in Proceedings of the AMS.

[C] Oui, J., Finite Pointset Methods on the Sphere and their Application m Physical 
Geodesy, Ph.D. thesis, University of Kaiserslautern, Geomathematics Group, Ger­
many.

[C-D-P] Camker, J . and Dahmen, W. k Pena, J., Local Décomposition of R̂ nable Spaces 
and Wavelets, Appi. Comput. Harm. Anal. 3 (1996), 127-153.

[C-M-Q-W] Coifman, R., Meyer, Y., Quake, S., k Wickerhauser, M , Signtd Processing 
and Compression With Wave Packets, Proceedings of the International Conference 
on Wavelets (1989), Y. Meyer, ed., Masson, Paris.

[D] Dieudonné, D., Eléments d’Analyse, Gauthier-Villars Editeur, Paris/Brurxelles/Montréal,
1975.

[Da] Daubechies, I., Orthonormal Bases of Compactly Supported Wavelets, Comm. Pure 
Appl. Math. 41 (1988), 909-996.

[Do] Donoho, D , De-noising by Soft-thresholding, IEEE Ttans. Inform. Theory 41 (1995), 
613-627.

[D-D-S-W] Dahlke, W., Dahmen, W., Schmitt, B. k Weinreich, L, Multiresolution Anal­
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A PPEN D IX  A

CO DE FO R  GENERATING PO IN TS ON TH E U N IT SPHERE 

function x=lps(n)

% Thu program generates points on the unit sphere 

% using S ^ . It uses the matrices A p ,  B p  and C p  

% defined in section 4.1. 

n=input(’How m ai^ levels?’)

% Produces matrices A p ,  B p  and C p  and their inverses. 

R (:,:,l)=(l/sqrt(5))*[l+2i 0;0 l-2i];

R(:,:,2)=(l/sqrt(5))*(l 2;-2 1];

R(:,:,3)=(l/sqrt(5))*(l 2i;2i 1];

R(:,:,4)=inv(R(:,:,l));

R(:,:,5)=inv(R(:,:,2)) ;

R(:,:,6)=inv(R(:,:,3)) ;

% Starting point 

x(l)= (l+ i)/(sqrt(3)-l);

%  Generates points up to level n 

for m =l:(6" - 1)/6.0 

for j= l:6  

if m od(m -l,6)=0 

k=s6;

k=srem(m>l,6);

end



if abs(k-j)==3 

x(6*m-5+j)=0; 

else

a=R(l,lij)*x(m )+R(l,2J)); 

b=R(2,l J)*x(m) +R(2,2J) ; 

x(6*m-5+j)=a/b; 

Mag=l+(ab8(x(6*m-5+j)) )*; 

a=(2*real(x(6*m-6+j)))/Mag; 

b=(2*imag(x(6*m-5+j) )) /Mag; 

c=(Mag-2)/Mag; 

y(:,:,6*m-5+i)=[a,b,c]; 

end 

end 

end
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APPENDIX B 

CODE FOR FREQUENCY-HOPPED SIGNALS

function si=hopp(p)

%This program measures the stationarity index of discrete data.

% The signal is freqoency-hopped signal at t =  180, 210 and 240.

% SS =  output 

% t  =  time 

% f =  frequency

%  create a  set of data with abrupt changes-frequency hopping 

1= 0:1000;

k=linspace(0,pi,512); 

y l=sin( .2*k*1000) ; 

y2=sin(.3*k*1000) ; 

y3=sin(.2S*k*1000) ;

8 l= [yl(l,1:179) zeros(l,(512-179))]; 

s2=[zeros(l,179) y2(l,180:209) seros(l,(512-209))]; 

s3=[seros(l,209) y3(l,210:239) aeros(l,(512-239))];

84=(zeros(l,239) y l(l,240:512)]; 

ss=sl+s2+s3+s4;

% We introduce here Gaussian none. 

wn=randn(sise(512)); %white noise 

ssl=ss/norm(ss); 

wnl=wn/norm(wn) ;

PS8=88l«8Sl’;
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Pwn=wnl*wnl’;

SNR=lÛ*loglO(P88/Pwn),di8p(‘dB’)

% The signal is corrupted with noise 

SS=ssl+wnl;

%  Plot the spectrogram of the signal

subplot(2,2,l) ,8pecgram(SS,512,1000,baxcar(lS) ,12)

titleCSpectrogram') ;

xlabel('Time’)

ylabel(*FVequen<y’)

%  Calculates Kolmogorov distance

[B,F,T]s=specgram(SS,512,1000,baxcar(lS),12);

m=sise(F)

n=size(T)

disp(*Wait------- ’)

Bn=B/norm(B);

disp(‘Wait......... ’)

if p= = l 

for i=2m

dl(:,l)=ab6(abs(Bn(;,i))>abs(Bn(:,i>l)));

si(i,l)=ssum(dl,l);

end

siae(si)

else

for isspui>p
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for k= l:p

dl(:,l)=abe(abs(Bn(;4+k))-ab8(Bn(:,(i-p+k)))); 

dllBum(k,l)=8iun(dl,l) ;

si(i,l)=suin(dllBain,l) ;

end

size(dllsum);

[u,v]=size(8i);

end

subplot(2,2,2) ,pk>t(T(2S:(u-S) ),si(25:(u-S), 1) ) 

axis tight

title(‘Origmal Method’) 

xlabel('Time’)

yIabel('Lidex of Stationarity’)

%  Continuous wavelet analysis 

%  Uses "Daubechies-4’’

M=cwt(SS,l;6,‘db4’);

%  perform Kolmogorov on wavelet coefficient d l

[b,f,t]=8pecgram(M(2,:),512,1000,boxcar(15),12);

ml=size(f);

nl=size(t);

disp(‘In the process of calculation. Wait ’)

bn=b/norm(b); %normahse each row 

if p = l
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for i=2:nl 

dl(:,l)=ab8(abs(bii(:,i))-ab8(bn(:4-l))): 

si(i,l)=8um (dl,l);

end

for i=p:nl-p 

for k=l:p

d l(:,l) =ab6(abs(bn(:,i+k) )-abs(bn(:,(i-p+k) ) ) );

dllsiim (k,l)=suin(dl,l):

end

n(i,l)=sum (dll8uni,l);

end

size(dllsum);

[u,v]=size(si);

end

subplot(2,2,3),plot(t(2S:(u-5)),8i(25:(u-5),l)) 

axis tight

title(‘Hybrid Method*) 

xlabel('Time')

ylabel(‘Index of Stationarity’) 

b=cwt(SS,l:l,*db4’) ;

[ml,nl]=siae(b);

d»p(‘In the process of calculation. Wait— .*)
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bn=b/norm(b); ^normalize each row 

if p = = l 

for i=2:nl 

dl(:,l)=abs(ab6(ba(:,i))*abs(bn(:,i-l))); 

si(i,l)=;sum(dl,l); 

end

else

for i=p:nl>p 

for k=l:p

dl(;,l)=ab6(abs(bn(:,i+k))-abs(bii(:,(i-p+k))));

dll8um (k,l)=sum (dl,l):

end

si(i,l)=sum (dllsum ,l);

end

size(dllsum);

[u,v]=size(8i);

end

subplot(2,2,4),plot((20:(u-5))^(20:(u>5),l)) 

axis tight

titleCDiiect Method’] 

xlabel('Time’)

ylabel(‘bidex of Statiboarity’) 

axis tight
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dispCpress enter to continue’)

pause

end
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APPENDIX C 

CODE FOR CHIRP SIGNALS

function h=chiipl(p)

% This program measures the stationarity index of discrete data.

%  The signai is a chirp with abrupt changes at t  =  180, 210 and 240. 

% SO =  output 

% t =  time 

% f =  frequency

% creates a set of data with abrupt changes-chirp 

t=0:0.001:4;

yl=chirp(t,100,l,200,’q*);

y2=chirp(t,200,1,300,’q’): 

y3=chirp(t,250,l,400,*q’) i 

sl=[yl(l,3001:3179) zeros(l,(612-179))]; 

s2=[seras(l,179) y2(l,3001:3030) zeros(l,(512-209))I; 

s3=[zeros(l,209) y3(l,3001:3030) zeros(l,(512-230))]; 

s4=[seros(l,239) yl(l,3240:(3240+SIl-239))l; 

ss=sl+s2+s3+s4;

% to vary the SNR of the data 

for 1=1:2

wn=randn(siae(512));

ssl=i*SB/norm(ss);

wnl=wn/norm(wn);

Pss=ssl«ssl’;
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Pwn=wnl*wnl';

SNR=10*logl0(P88/Pwn) ,disp(‘dB’)

% The signal is corrupted with noise 

SO=ssl+wnl;

% calculates the Kolmogorov distance p ,F ,T ]= sp ec g ra m (S O ,512,1000,boKcar(15),12);

m=size(F)

n=size(T)

disp(‘Wait........ ')

Bn=B/norm(B); %normatize each row

disp(‘Wait........ ’)

if p = = l 

for i=2:n

dl(:,l)=abs(abs(Bn(:4)]-abs(Bn(:,i-l)));

si(i,l)=sum (dl,l);

end

else 

for i=pm>p 

for k ^ l:p

d l(:,l) =abs(abs(Bn(:,i+k))-ab8(Bn(:,(i-p-i-k) )) ) ; 

dllsum (k,l)=sum (dl,l); 

end

si(i,l)=sum (dllsum ,l) ; 

end
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size(dll8iim);

[u,v]=size(8i);

end

8ubpIot(2,2,2),pbt(t(2S:(u>5])^(25:(u-S),l)] 

axis tight

title(‘Origuial Method’) 

xlabel(‘Time’)

ylabei(*Index of Stationarity’)

% Uses “daubechies-4”

M=cwt(SO, l:6/db4’) ;

subplot(2,2,l)iSpecgram(M(l,0,512,1000,boxcar(15),12);

title( ’Spectrogram’)

xlabel(’Time’)

ylabelCRequency’)

% perform Kolmogorov on wavelet coefficient d l 

(b,f,t]=specgram(M(l,0,512,1000,boxcar(15),12) ; 

nl=size(T)

disp('In the process of calculation. Wait ’)

bn=b/norm(b); %normalize each row 

if p = l  

for i=2m l 

dl(:,l)=abs(abs(bn(:,i))-abs(bn(:4-l))); 

si(i,l)=sum(dl,l); 

end



for l= p u ilp  

for k=l:p

dl(:,l)=ab8(abs(bn(;,i+k))-ab8(bn(:,(i-p+k)))); 

dllsum (k,l) =sum (dl,l) î 

end

m(:,l)=8nm(dll8um,l);

end

size(dllsum);

[n,v]=size(si);

end

subplot(2,2,3),plot(t(25:(ur5)),8i(25:(u-S),l)) 

axis tight

title(‘Hybrid Method’) 

xlabel(‘Time’)

ylabei(‘Index of Stationarity’)

[b/,t]=8pecgrain(M(2,0,512,1000,boxcar(15),12); 

bn=b/norm(b); ^normalize each r o w  

if p = = l 

for i=2:nl 

dl(:,l)=abs(aba(bn(:,i) )-abs(bn(:4-l)) ); 

si(i,l)=sum (dl,l); 

end
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size(si);

else

for i=p:nl-p 

for k=l:p

dl(:,l)=abs(ab8(bn(:,i+k))-abs(bn(:,(i-p+k)))); 

dllsum (k,l)=sum (dl,l) ;

end

si(i,l)=8um(dll8um,l) ;

end

size(dll8uni);

[u,v]=size(8i);

end

8ubplot(2,2,4),pIot(t(25:(u>5) ) ,si(25:(u-5) ,1) ) 

axis tight

title(‘Direct Method’) 

xJabel('Time’)

ylabel('Index of Stationarity’) 

dispCpress enter to continue’) 

pause 

end
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