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Chapter I

INTRODUCTION

This paper is concerned with the existence and stability of solitary-wave so-

lutions of the equations of the form
(1.1) ur + f(u)e + Mu =0

where u = u(z,t) and f are real-valued functions, and M is a Fourier transform
operator defined by

Mu(k) = m(k)a(k)

where circumflexes denote Fourier transform and m(k) is a even and real-valued
function. The condition on m(k) assures that the operator M takes real-valued
functions to real-valued functions.

Equation (1.1) describes mathematically the unidirectional propagation of
nonlinear dispersive waves. A prototypical example of an equation of type (1.1) is

the well-known Benjamin-Bona-Mahony equation
(1-2) Ut + Uz + YU — Uzze =0,

which occurs when f(u) = u + "2—2 and m(k) = k2. Equation (1.2) was proposed

in [BBM] as a alternative to the Korteweg-de Vries equation ([KdV])

(1.3) U + Uz + BBy + Uzez =0
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for modelling water waves of small amplitude and large wave length. In all these
equations, u denotes a wave amplitude or velocity, z is proportional to the physical
distance and ¢ is proportional to the elapsed time.

If the non-linear terms of equations (1.2) and (1.3) are replaced by wPu, for

p > 0, the resulting equations (called the generalized KdV and generalized BBM

equations) read

(1.4) Ut + Uz + UPUL + Ugez =0
and
(1.5) Uy + Uz + uPUL — Uger = 0.

A solitary-wave solution of a wave equation such as (1.1) is a traveling wave
solution of the form u(z,t) = ¢.(z — ct) where ¢. is a localized wave profile
function, which in general depends on the wavespeed c. (Usually the condition
that ¢. be localized is interpreted to mean at least that ¢.(z) — 0 as |z| = o.)
Such a solitary wave solution is said to be stable if for every ¢ > 0, there exists a

d > 0 such that if

l[luo — gell < &
then the solution of (1.1) with u(-,0) = ug satisfies
influ(1) ~ del- +9)l <

for all ¢ € R. (Here the norm is that of a Banach space in which the initial-value
problem for the equation is well-posed.)
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The first rigorous proof of the stability of solitary waves for an equation like
(1.1) was given for the KdV equation by Benjamin ([B]), and Benjamin's proof
was subsequently improved by Bona to allow less restrictive hypotheses ([Bo}).
Later it was proved by Weinstein ([W1]) that the generalized KdV equation has
stable solitary waves for all p < 4.

A more general class of equations of KdV type of the form
(1.6) ue + f(u)z — Muz =0

was investigated by Bona, Souganidis and Strauss ([BSS]). They showed that, if
the solitary-wave solutions exist for wavespeeds ranging over an interval and a
certain linear operator associated with the solitary wave has one negative simple
eigenvalue and a simple zero eigenvalue, then whether or not a solitary wave is
stable is determined by the convexity of a certain function of the solitary wave
speed. When applied to (1.4), their results show that all solitary-wave solutions of
(1.4) are stable if p < 4 and all are unstable if p > 4. ( The case p = 4 is still open;
cf. [W2]) The stability theory of [BSS] for (1.6) has been extended to equations of
type (1.1) by Souganidis and Strauss ([SS]). In particular, in [SS] it is shown that
for the generalized BBM equation (1.5), all solitary waves are stable when p < 4,
and when p > 4, there is a critical value of solitary wave speed ¢, > 1, such that
the solitary wave is stable for wave speed ¢ > ¢, and unstable for 1 < e <e,.

In circumstances when the assumptions of the theory in {BSS] and [SS] can
be verified, the results of these papers give sharp conditions for determining the
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stability or instability of solitary-wave solutions of equations (1.1) and (1.6). How-
ever the verification of these assumptions does not seem to be easily accomplished
for general classes of symbols m(k) of the Fourier multiplier operator M; nor is
it easy in general to check whether the condition for stability holds for a given

solitary wave.

P.-L. Lions developed a general method to solve a class of variational problems
which do not satisfy the compactness conditions required for classical methods of
solution ([L1],[L2]). The centerpiece of this method is the concentration compact-
ness lemma, which states that every sequence of positive L! functions whose L!
norms are held constant has a subsequence with one of the three properties: van-
ishing, dichotomy or compactness (cf. Lemma 2.6). Lions and Cazenave observed
in [CL] that the method could be used to prove existence and stability of solitary
waves for the nonlinear Schrédinger equation. The method has since been adapted

by different authors to handle a variety of model equations for water waves ([A],

[dBS1], [dBS2], [CB], etc.).

The typical setting for applying this method involves a constrained varia-
tional problem whose functional to be minimized and constraint functional are
invariants of motion of the equation in question. The Euler-Lagrange equation of
the variational problem is the equation to be satisfied by the solitary wave profile
functions. The concentration compactness lemma is used to determine if the set of
minimizers exists. If so, it is a set which consists of solitary wave profile functions
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and which is stable in the sense that if the initial data is close to the set, then
the solution to the initial-value problem will remain close to it for all time. This
notion of stability is in general broader (possibly weaker) than that mentioned
above in that it asserts the stability of a set consisting of possibly different soli-
tary wave profile functions rather than the stability of the set of translates of a
individual solitary wave solution. If it is known that the set of minimizers consists
of only translates of discrete solitary wave profile functions, then the two notions
of stability coincide.

Albert ([A]) and Albert and Linares ([AL]) used the concentration compact-
ness method to study the solitary-wave solutions of equation (1.6) and obtained
existence and stability results for a general class of functions m(k). We apply the
method to equation (1.1) and obtain similar results, which can be summarized as

follows.

Suppose f(u) = v + %’—_:1:, where p > 0 is an integer, and p and m(k) satisfy
the following conditions:

Al. there exist positive constants A; and r > % such that m(k) < A;|k|" for
Ikl < 1;

A2. there exist positive constants A, As and s > 1 such that Ay|k|* <
m(k) < As|k|® for (k] > 1;

A3. m(k) > 0 for all values of k;

A4. m(k) is infinitely differentiable for all nonzero values of k, and for each
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7 €{0,1,2,...} there exist positive constants B; and B; such that

o ()4

<Bilk|™? for 0<|K|<1,

and
(1.7b) (%)J<—-V;’:fk)) < Bk for [k[>L

Then we prove below in Theorem 2.2 and Corollaries 2.3 - 2.5 that for every ¢ > 0
there exists a non-empty set of G, consisting of solitary-wave profile functions g

with
2 gp+2

f[g?+(p+1)(p+2)] =4

and for every € > 0 and g € G, there exists a § > 0 such that if

”’UQ -g“';' < 51
then the solution u(-,t) of equation (1.1) with u(z,0) = uq satisfies
af lu0) —glly <

for all values of £. (Here |- ||; denotes the norm in the L2-based Sobolev space
H(R))

We remark that conditions AI-A4 are satisfied, for example, if
m(k) = a1 [k[®* + aa|k[’2 + ... + an[k|P where a;,...,an > 0;2<b; < by < ... < by,
and p < 2b;. In particular, Theorem 2.2 applies to the generalized BBM equation

(1.5) in which m(k) = k?, when p < 4.



If condition Al is replaced by the condition that m(k) be a non-decreasing

function of |k|, then for any integer p > 0, there exists a ¢>0 such that the above

uPtt

L then

existence and stability result holds for all ¢ > ¢g. Moreover, if f(u) =
condition Al can be dropped, so that for every positive integer p, G, exists for all

g > 0 if m(k) satisfies conditions A2-A4. If p is odd, G, also exists for all ¢ < 0.

We will use the method of concentration compactness to establish the exis-
tence and stability result when m(k) satisfies conditions A1-A4 in Chapter 2. Our
variational problem bears similarities to that in {CB], in which the existence of
solitary-wave solutions of Benjamin-type equations is studied, and we adapt some
ideas of theirs in dealing with vanishing and dichotomy. Our assumptions (1.7a)
and (1.7b) on m(k), like those in [A], are a result of resorting to Theorem 35 of
[CM], which provides commutation estimates for the associated Fourier multiplier
operator M. In Chapter 3, we prove an existence and stability result for the case
when m(k) is a non-decreasing function of |k|, p is a an arbitrary positive integer,
and m(k) satisfies conditions A2-A4. Then we apply our result to the generalized
BBM equation (1.5). We recover the above-mentioned stability results of Sougani-
dis and Strauss, except that for p > 4 our method fails to apply to solitary waves
with wavespeeds c in the range ¢, < ¢ < E. Finally, in Chapter 4, we discuss the
situation when f(u) = ‘;L_:-, and give an example of how, by using techniques from
[AL] and [CB], our method may be applied in cases where the Fourier multiplier
operator M has a symbol that is not everywhere positive.
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The notation used in this paper is the standard notation used in the literature
on partial differential equations. The set of all real numbers is denoted by R and
that of all natural numbers by N. The support of a function f is denoted by
supp f, and Br denotes the ball of radius R in R centered at zero. If A and B
are two subsets of R, the distance between them is defined to be inf{|z — y|,z €
Aandy € B} and is denoted by dist(A, B). If X is any Banach space and T > 0,
then C(0,T;X) is the space of continuous mappings of the interval [0,T] into
X. The value T = oo is allowed in this definition. If k is a positive integer,
C*(0,T; X) is the subspace of C(0,T;X) of functions whose first k& derivatives
also lie in C(0,T; X); also C®(0,T; X) = N{,C*(0,T; X). We use | - |, for the
norm in LP(R) and || - ||s for the norm in the L2-based Sobolev space H*(R). An
integral over the set of all real numbers is denoted by [, while an integral over a
subset of R, say [a, 8], is denoted by [ . The Gamma function [(s) is defined for

(a,8]
any s with Re s > 0 by

L(s) = / et dt.
0

Finally if a is a quantity depending on a small parameter € > 0, we write a ~ € if

im £ exists and is non-zero, @ = o(¢) if im £ = 0, and a = O(e) if there exists a
e—0 ¢ e—0 €

constant C such that |a| < Ce for sufficiently small e.



CHAPTER I1
STABILITY THEORY FOR p < 2r

In this Chapter, we establish the existence of the stable set G, consisting of
solitary-wave profile functions for any ¢ > 0, assuming that f(x) = v + %:TL and
that A1-A4 hold for p and m(k).

For information on well-posedness of the equation (1.1), we refer readers to

[AB]. Here we merely state the following theorem which is a consequence of The-

orem 2 of [AB|.

Theorem 2.1. If ug € H%(R), then there exists a unique global solution
u = u(z,t) of (1.1) with u(z,0) = ug such that for 0 < t < oo, the map ¢t — u(z, t)

lies in C*(0, co; H%(R)).

Several invariants of the equation (1.1) can be established by standard argu-
ments. In particular, it is easy to show that if u(z,%) is the solution described in

Theorem 2.1, then the functionals defined by
(2.1) E(u) = / (u? + uMu) dz

and
Q) = [ Pz,

where F'(z) = f(z) and F(0) = 0, satisfy E(u) = E(ug) and Q(u) = Q(ug) for all
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t € R. In this Chapter, since f(u) =u + %, we define

(22) Au) = / [112: N +152: T+ 2)} &-

A solitary-wave solution to equation (1.1) is a solution of the

form u = ¢.(z — ct). The wave profile function ¢. then needs to satisfy

(2.3) fl¢e) = c(¢c + Me).

Equation (2.3) can be obtained by substituting u = ¢.(z — ct) into (1.1) and
observing that the resulting equation is true for all values of z and ¢.

Next we define a variational problem whose Euler-Lagrange equation corre-

sponds to (2.3). For any q > 0, define
I =inf{E(x)| veH3R) and Q(u)=gq}

and
G ={veHiR)| Q(u)=g and E(u)=1IL};
i.e., G, is the set of minimizers of [,. A minimizing sequence for I, is any sequence
{un} in H%(R) that has the property
Qun) =¢ for all n
and
Jim E(u,) =1I,.

We can now state our main existence and stability theorem.
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Theorem 2.2. Suppose the assumptions Al, A2, A3 and A4 are satisfied by
p and m(k). Then G, is nonempty for every ¢ > 0. Moreover, for every minimizing
sequence {un}, there exists a sequence of real numbers {y, }, such that {un(-+yn)}

has a subsequence that converges in H%(R) to an element g € G,.

Before proving Theorem 2.2, let us see how it implies the existence and sta-
bility of solitary-wave solutions. The arguments which follow are standard, and

can be found in, e.g., [A], [dBS1] and [CL].

Corollary 2.3. If {u.} is a minimizing sequence for [, then z, — G, in
H%(R), ie.,

m inf [[un—gll; =0.

n—c0 g€Gy
Proof. We first show

Jim glgg'qllun(' +y) —glly =0.
yeR

If this is not true, then for some ¢ > 0, there exists a subsequence {un,}, such
that

B8 luna(-+9) —gllg 2 e
yeR
But {un,} is itself a minimizing sequence, so the above inequality contradicts

Theorem 2.2.

Now for any y € R and g € G,

len(- +v) —gllz = llun —g(- —v)ll5-
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Since g(- — y) is also in G, our equality follows. W

Corollary 2.4 (existence of solitary waves). G, consists of solitary wave

profiles.

Proof. We must show that elements of G, are solutions of (2.3) for some c.
If g € G, , then by the Lagrange multiplier principle (see e.g., [Lu]), there exists

a )\ € R such that

SE(g) = AéQ(g),

where §E(g) and §Q(g) are the Frechet derivatives of E and Q at g. For any

¢ € H3(R),

«—0

€

and

$Q(e)é = lim Ao+ =Qla)

Substituting (2.1) and (2.2) into the above equations and simplifying, we get

SE(g)$ = / (2 + 2Mg)p de

and

Qe = [(g+2

Hence

[Ca+2tgipdz=x [(g+2

12



for all ¢ € H7(R). It follows that

gP-H-

p+1

29 +2Mg = Mg+ )-

- . . . 2
We see then that g is a solitary wave profile function with wave speed . W

Corollary 2.5 (stability of solitary waves). G, is a stable set in the
following sense: for every € > 0 and g € G, there exists a § > 0 such that if
"uﬂ —glli < 57
then the solution u(z,t) of (1.1) with u(z,0) = uq satisfies
oS u(6) = glls <

forall t € R.

Proof. Suppose the theorem is false; then there exist a go € G, and g > 0,

such that for every n € N, we can find ¢, € H3(R) and ¢, € R such that
1
I4n — golly < =
and
giené; len(- tn) —gllg > €
where u,(-,t) is the solution of (1.1) with u,(-,0) = @,. Since ¢, — gg in H3(R),
then Q(¢n) — ¢ and E(¢n) = I;. Hence Q(un(-,tn)) = q and E(un(-,tn)) = I.
Now choose a, € R such that Q(anzx(-,tz)) = ¢; then a, — 1. Thus
. X T 2 . =T
nlggo E(antn(-ta)) = nh_{lgoanE(“n( vtn)) = Ig;
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i.e., {antn(-,ts)} is a minimizing sequence of I,. Therefore, by Corollary 2.3, for
sufficiently large n there exists g, € G, such that

lenn(-,ta) — gnllz < e_;

So

€0 < [[un(-tn) = gnllg < llun(-tn) — ann(, tn)“% + lantn(-, tn) _gn"§

€0
< |1 — anfllua(- tn)"% + 5"

Contradiction is then reached when welet n - co. W
We now proceed to prove Theorem 2.2 using the method of concentration

compactness. Key to the proof is the following lemma of P.-L. Lions.

Lemma 2.6 [L1]. Let {p.} be a sequence in L!(R) satisfying:

pn>0 on R and /pndzzp,

where g > 0 is fixed. Then there exists a subsequence {p,, } with one of the three
following properties:

1) (compactness) there exists a sequence yr € R such that for every € > 0,
there exists R < oo satisfying for all k € N:

/ pru(z)dz 2 1 — ¢
Yi+Br

2) (vanishing) for all R < +o0,



or
3) (dichotomy) there exists € (0, ) such that for every € > 0, there exist
ko > 1 and two sequences of positive functions pg),pg) € L(R) satisfying for

k > ko:

lone — (20 + 601 < ¢,

[z - (u-p)| <

. 1 2
dist(supp pi), supp pi)) — oo.

Remark. In the above Lemma, as remarked in [CB], the condition [ p,(z)dz =p
can be replaced by [ pa(z)de = pn where pp — g > 0.
Before applying Lemma 2.6, we need some preparation.

Lemma 2.7. If {u,} is a minimizing sequence, then there exist M > 0 and

N > 0 such that N < |lus]|g < M for all n.

Proof. By assumptions A2 and A3 on m(k), there exist positive constants C;

and C, such that
Ci(l + k)% <1+m(k) < Ca(1 + k%)% forallk €R.
So for any u € H%(R),

(24 Culllly < Blw) = 11+ m(RR(E)P dk < Cafulf-
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Since h_.En E(u,) = I; and Clll'u.nﬂz% < E(u,), {#n} is bounded in HZ(R).

To bound {|un|| s from below, we write

/ [u?i“L (p+1gij+2)] ==q

So

1 2 1 p+2
—_ n > ,

hence

+2
A”‘“n"fit + Bllunll‘; 24q,

where the Sobolev imbedding theorem has been used, and A and B denote positive

constants independent of n. We then have
lunll3 (4 + Blluall}) > ¢

Therefore
S S
”un”5 = (A'f'BMP)’

so the desired N exists. W
Lemma 2.8. I, > 0.
Proof. By Lemma 2.7 and (2.4),

I, = im E(un) > Lim Cillus|2 > CiN2>0. B
n—>o0

n—ro0

Lemma 2.9. If ¢ > ¢q1 > 0, then I, > I,.
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Proof. For any € > 0, there exists a fanction ¢ € HZ(R) such that Q(¢) = q2
and E(¢) < I, + €. Since Q(ag) is a continuous function of a € R, then by the

intermediate value theorem we can find A € (0,1) such that Q(A¢) = q1. Hence
I, < E(A$) = AE($) < E($) < ;s + <.
Since € > 0 is arbitrary, it follows that
[h S Iq:' u
Lemma 2.10. If {u,} is a minimizing sequence, then there exists a P > 0

such that

/uf‘"’z dz > P

for sufficiently large n.

Proof. Since {u,} is a minimizing sequence for I, it is also a minimizing

sequence for I, = inf{E(u)|u € H3(R)and Q(x) = ¢}, where

E(u) = E(u) — 2Q(u)

- / [uMu -3 1)2(p = u"+2] dz.

Next we will show that I; < 0. To see this, let ¢ be a function such that Q(¢) = g,

[¢**2dz > 0, and $(k) is non-zero only in the set of values of k for which the
inequality m(k) < A; |k|" of assumption A1 holds. (This can be done, for example,
by letting ¢(z) = 2524Z whose Fourier transform satisfies #(k) = &% for |k| < w

17



and $(k) = 0 for |k| > w, and appropriately choosing ¢ and w.) For any 8 > 0,

choose a > 0 such that @¢(z) = ad(fz) satisfies Q(¢s(z)) = q. Then

/ [£a2¢2(93) + a?t? ¢p+2(az)] de =q
2 (p+1)(p+2) ’

1Le.,

$**2(y)

1
a? / §¢2(‘!I) dy + aP*? _(p T £2)

dy = 0q.

Now

B(¢o(a)) = [ m(e)iFa(a)? do - @721)%;—2—) [#+20)de

—ﬁf 8)I3 () d [eHwa

=g | ™yhely)l ey = (+1)(p+2)8 yiey
Aja? ~ 2qPt?

< g [wrdwl e - oo [P w

. 2 +32 .
Letting § — 0, we see a® ~ §; so gi== ~ 0" and “’a ~ 0%. Since p< i 6

is a higher order infinitesimal than 6%. So E(#g(z)) can be made less than 0 for
sufficiently small 6. Hence I, < 0.
The proof of the Lemma now follows by contradiction. Indeed, suppose the
conclusion of the Lemma to be false. Then
Iiminf‘/uﬁ’;*'2 dz <0,

and consequently

L= jim [ [ - et de
zimew (~Gryry [ 4 e)

= —limt uPt2 dp

2
mf(p+1)(p+z)/ .

20,

18



which contradicts the result of the preceding paragraph. B

Lemma 2.11. For every q1 > 0 and every q2 > 0, I 44, < Iy, + I,

Proof. We first show that for § > 1 and ¢ > 0, Is; < 0I;. Let {¢,} be a

minimizing sequence for I,. Choose a, > 0 such that Q(a.¢») = 8q; then

(2.5) a, / £¢2 dz + o2+? A =4
- n [ 2%n n (p+2)(p+1) 7
Since
¢p+2
2.6 / 2 g + :
(26) 2? prp+2 =1
we have
2 P 1)
2=0_ an(an +2d.

sy g ) A

Thus

Igq < E(andn) = aiE(‘ﬁn)

_ al(af — 1) 2
(2.7 = [6 TR ¢t dz] E(¢n).

Since {¢»} is a minimizing sequence for I, then by Lemma 2.10, [ ¢2*2dz > P
for some P > 0 when = is sufficiently large. We see, from (2.5) and (2.6), that
there exists € > 0 such that a, > 1 + € for sufficiently large n. Hence by (2.7)

there exists an A > 0 such that, again for sufficiently large =,

Iog < (8 — A)E($n)-

19



Letting n — oo in the above inequality we obtain
Isq < (0 — A), < 61,

Now, assuming without loss of generality that g1 > g2, we can use the result

of the preceding paragraph to write

Igy4qa = u(1+32)
<(1+2),
q
2 Q1
<I, + =(=I
q1 a1 ¢ Qz)
= '[‘h + I‘lz' .

Let v/M be the Fourier transform operator defined by

VMu(k) = \/m(R)a(E).

Then for a minimizing sequence {u,},

E(un) = / [u2(2) + m(2)[n(2) ] do
= [62(@) + VmETan(@)/mi@Tin 2]l do
- / a2 + (VIun)?] dz.

Let pn = u2 + (VMu,)? and pgn = [pndz. Then by Lemma 2.8, p, —
g > 0, where g = I,. By Lemma 2.6 and the remark following it, there exists
a subsequence of {p,}, still denoted by {pn}, for which vanishing, dichotomy or
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compactness holds. In what follows, we will eliminate vanishing and dichotomy,
and we will see that compactness then leads to Theorem 2.2.

To eliminate the case of vanishing, we need the following lemma from [CB].

Lemma 2.12. Let 1 <p<ocand 1 < ¢ < 0. If {u,} is bounded in LI(R),

{x..} is bounded in L?(R), and for some R > 0,

fim sup / fun(z)|? dz =0,

lz—y|<R

then for all » > ¢, u, — 0 in L"(R).
Lemma 2.13. Vanishing does not occur.

Proof. If it does, then for every R > 0,

lim sup / pn(z)dz = 0;

lz—y|<R

thus

im sup / u2(z)dz =0.
le—yI<R
Since {u}} is obviously bounded in L?(R), by Lemma 2.12, u, — 0 in LP*?(R),
and this contradicts Lemma 2.10. W
The following lemma is needed to eliminate dichotomy (cf. Lemma 4.2 of

[A])-

Lemma 2.14. Under the assumptions made above on m(k), there exists
a positive constant A such that for every f in H%(R) and every C*°-function
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which has L°°-derivatives of all orders,

5. | dig
VM, 6f. <A =il ) Il
=1 oo

where § = [§] + 1, the brackets denoting the greatest integer function, and

[V, 6]f is defined to be VM(8f) — 8(VMF).

Proof. Since C§°(R) is dense in H 5(R), it suffices to prove this lemma for
f € C5°(R).

Choose x(k) € Cg°(R) such that x(k) = 1 for |[k| < 1 and x(k) = 0 for
|E| > 2. Let m1(k) = x(k)y/m(k),ma(k) = (1 — x(k))/m(k). Define M; and M,
by Myu(k) = my(k)a@(k) and Myu(k) = ma(k)@(k); then VM = My + Mo.

Write M; = ﬁTI; the symbol of T} is then given by

_ ma(k)
O‘I(k)—- ik .
It follows from (1.7a) that
A7 d\?
kP = k)| < oo,
| (&) @] <=

forall j € {0,1,2...}. Now Theorem 35 of [CM] implies that there exists a positive

constant C such that for every § € C°(R) and f in H%(R),

[[T1,6]f'la < Cl0'|co| fl2-
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Hence

T %(Gf ) — 6Ty (g{;)

< |Ta(6' f)lz +1[T1, 61 ']

I[Mla alflz =

2

< IT1lll6'|ool fl2 + Cl8'|ool f12

= Al0'|co| flas

where A =C + ||T4||.

Write My = (Ti')s T5; the symbol of T is then given by

ma(k
oo (k) = '(TZ()?)'
It follows from (1.7b) that
7 d\?
i =
suplét () 729 <o0

forall j € {0,1,2,...}. Again by Theorem 35 of [CM], there exists C > 0 such that

(T2, 6]f'l2 < Cl6'|wolfl2

for every § € C§°(R) and f in H%(R). Hence

Mz, 6]f]2 = |Ts (‘%’Tﬁ) _or, (%)

2

d5f S odigdS-if
T2, f(zs) + T (; &= )|,

5.1 dig & f
=4 (; dz* oo) (os?slg—l dz* 2)
S -
<4 (2 i ) 1£l5-
=1 oo
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where af are constants which come from Liebniz’ rule, and A is a positive constant

independent of 6 and f.

Now

I[VM, 6]fla = |[My,6]f + [Ma,6]fl2
. ° | dig
<Al + A Y 5=

=1 dz*
S
<A (Z ) N5,
=1 S

Lemma 2.15. Assume the dichotomy alternative of Lemma 2.6 holds for p,.

) I£1ls

d*6
dz?

which concludes the proof. W

Then for each € > 0 there is a subsequence of {un(z)}, still denoted by {un(z)}, a
real number § = §(¢), a natural number ng, and two sequences of functions {u,(,,,1 )}
and {uS?)} in H3(R) satisfying un = o) + 4l for all n and for n > ng:

Q) —a=0(e),

Q) - (g—) = O(e),

E(un) = E(u’) + E(u{)) + 0(e),
where the constants implied in the notation O(e) can be chosen independently of

n as well as e. Furthermore,

(2.8a) CalluP|} 2 £+ O(e)
and
(2.8b) Callu|l} > u— 5 +0(e),
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where C; is the second constant in (2.4), and  is as defined in Lemma 2.6.

Proof. We follow the general lines of the proof of Theorem 2.5 in [CB]. By
assumption, for every € > 0, we can find a number kg and sequences of positive

functions {p{'} and {pﬁ? )} in L}(R) satisfying for n > ko:

/pg)dz—ﬁl Ser

/pﬁf’dz—(ﬂ-ﬂ)l <e and

pn— (P + pif’)l1 <e

Moreover, without loss of generality (see the proof of Lemma 2.6 in [L1]), we may

assume that ps.,l ) and pg ) satisfy

supp p{Y) C (yn — Ry ¥n + Rn),

supp pt?) C (=00, Yn — 4Rn) U (¥ + 4R, ),

where y, € R and R, — 0c0. We then have

pndz < ¢
Rp<|z~yn|<tRn

hence

[ + (VMu,)*]dz <
Rp<Ljz—yn|<iR,

Choose (,¢ € C(R) such that 0 < ((z),f(z) < 1for all z; {(z) = 1 if
ol <2; ¢(z) = O i [e] > 3; §(z) =0 if |o] <2 §(e) =L i |2] > 3; and ( + 6 =1
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for all z € R. Definen € C®(R)sothat 0 < <1,p(z) =1for2 < |z] <3,
and 7(z) = 0 for [e] < 1 and [e] 2 4. Let (alz) = ((552), én = (5522), and
() = q(%); and define u} ) = Cntin, u? = Gnlin, and Wy = PpUy,.

Since Q(us,1 )) is bounded, there exists a subsequence of ul! ), still denoted by

uld , and a § = g(e) such that Q(u ) — . Then, for sufficiently large n,
Q(z) — g =0(e).

Now let

32 8p+2 " R
8) =—+ or s € K,
o) =g+ e e+

and write

Qu)= [ fuder [ fadde+ [ fwm)e

|z—yn|<2Rn |z—yn|>3Rn 2R, <|z~yn|<3Rn
/ fu)ds + / f(u®) dz + [ Flun) do
[z—yn|<2Rn [z—yn|>3Rn 2R.<|z—~yn|<3Rn

(29)
= +Qu® + [ [flu) - flD) - fu®)] do

2Rn<|z~yn|<3Rn
We now claim that the last integral on the right-hand side of the preceding

equation is O(e). To see this, first note that

[Flun) - D) = )] de| <C [ [hoal? + hioal?*?] o
2R, <|z—yn|<3Rn
(2.10) < C(l[wnuzg + I[wn“g-{.z)'
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Therefore it suffices to show that llwnll?i = O(€). To see this, write

Cullwall} < B(wn)
- / w2 + (VMw,)?] dz
= [ (o) + (VB (1000)) 1.

The first term is small since

/ (Mattn)?dz = / nuldz <e
Rp<|z—yn|<4Rn

To estimate the second term, write

[/ H )z
(2.11)
= '/([\/'JTJ-,T;,,.Iun)2 dz +2/nn\/ﬂ—lun[\/ﬁ,nnlun dz + /nﬁ(\/ﬂ—lun)zdz.

The last integral on the right-hand side of (2.11) may be estimated as

/ni(\/_M-un)zdz < / (VMuy,)? dz < e.

R.<|z—yn|<4R.

For the other two terms on the right-hand side of (2.11), we apply Lemma 2.14,
observing that R, — oo and {v/Mu,} is bounded in L?(R). It follows then from
(2.11) that we can make [[VM(7,un)]? dz a quantity of size O(e) for sufficiently
large n. This completes our proof that |[wy[l3 = O(e) for large n, and from (2.9)

and (2.10) we can now conclude that

Q(xa) = Q(x{)) + Q) + O(e).
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It then follows that

Qu) =g~g+0(9).

To prove the assertion of the Lemma concerning E(u,), begin by writting

E(un) = E@u{) +ul)

= B(ul) + E(u®) +2 / a1y ® dg 4 2 / WM de.

We now estimate the last two terms in the above equation. The third term

is small since

/ wlVu® de = / (ndnuidz < e
2Rn$|z-!lnl_<.3Rﬁ

The last term is estimated as follows:

/ ulMu? dz = / Cntin VM(V M dru,) dz
= [ VE(6 ) VB (Grin) do
= [WV3E, ulunl VB, bnlind + [(VOF, Glin( b0V ) do
+ / oV M un VI, fatin dz + / Cnbn(VHun)? do.

The last term in the preceding expression is less than e since

[t/ Hupazs [ (Vi) a,

2Rp <|z—yn|<3Ra
while the remaining terms are O(e) because of the presence of the commutation
factors, as explained earlier in the proof.
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Hence

E(un) = E(u{) + E(®) + O(e).

It remains to prove (2.8). For (2.8a), we write

Gl > BEd)
= [t + (VAP do
= [[(Goun? + (VEE(Grun))?] do
=0(9 + [ (2lud + (VBFun))do

=0(9 + [ (ipndz
= O(e) + / prndz + / 2 pndz
|2=yn[<Ra Rn<|z—yn|<4Rn

= / o dz + 0(e)

> &+ 0(e).

In obtaining the third equality in the above derivation, we used equation (2.11)
with 79, replaced by (,, and the fact that the first two terms on the right side of
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(2.11) are quantities of size O(€) as R, — oo. Similarly,

Collu@|} > EE®)
= [ + (VY de
= [(@nin? + (VB0 do
=0() + [ $2ful + (Viun)l do

= O(e /¢np'n.
= O(e) + / pndz + / 2 pp dz
[z=yn|22Rn RnaL|z—yn|<4Rn
/ () dz + O(e)
Z 2 g ﬁ' + 0(6)1

which concludes our proof. W

Lemma 2.16. Assume that dichotomy holds for p,. Then there exists ¢q; €

(0, g) such that

I‘I Z I‘ll +I1‘11’

Proof. Let § = §(€) be the function defined in Lemma 2.15. Since Q(u(l))
is bounded, the range of values of §(¢) remains bounded as ¢ — 0. Therefore,
by restricting ourselves to a sequence of values of € tending to zero, and choosing
an appropriate subsequence of this sequence, we may assume that g(e) tends to a
limit q; as e = 0.
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We wish to show that ¢; € (0,9). To see this, begin by observing that it
follows from

E(u,) = E@D) + E@®) + 0(e)

that
(2.12) I, = liminf E(u,) > lim inf E(u{") + lim inf E(u{?) + O(e).
Suppose now that ¢; < 0. Then for large n we have

Q) =q—aq +0(e).

Let 42 = o'nus,? ), where o, is chosen so that Q(iiSf )) =qg~—q1. Then o, = 1+0(e)

and
1 1

1
Ch = —_ g > -
E(un ) U%E(un ) pl U%Iq-QL Z (1 + 0(6))2 Iq,

where the last inequality is due to Lemma 2.9. It follows from (2.12) that

I, > liminf B(u®) + I + O(e).

_r
(1+0(e))?

But from (2.8a) we have
lim inf E(z{)) > C liminf |[«{V||2 > —gira + O(e).
? 2

Hence we conclude that

Ci_

1
>Zte . -
L2 e aropy

I +0(e),
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and taking the limit as € — 0 gives

Ci_
quc—zﬂ-{—.[q)[q,

which is a contradiction.
On the other hand, if it were true that ¢; > ¢, then we would have Q(ug‘)) =
q1 + O(¢) for large n, and an argument similar to that in the preceding paragraph

would show that (2.12) implies

I, > liminf B(u()) + I, +0(¢) 2 %(P —B)+ 7351, +Ole),
2

1 1
1+ 0(e))? A+ 0502

and hence

Ci _
I > 'C_z’(i‘—ﬂ') +1; > I,

which is another contradiction. This completes the proof that ¢; € (0, g).

Finally, we see from the above arguments that

1 1

L2 gro@r’=t tromp

I;—q, +O(e),
and taking the limit in the above equation as ¢ — 0 gives

Iy 2 Iy + Ig—g,,
as desired. W

Lemma 2.17. Dichotomy does not occur.

Proof. This follows immediately from Lemma 2.11 and Lemma 2.16. &

32



We can now complete the proof of Theorem 2.2. Let {v,} be any minimizing
sequence for I,. Then by Lemmas 2.6, 2.13, and 2.17, we know that compactness
occurs. That is, there exists a sequence of real numbers {y,} such that for any

€ > 0, one can find R > 0 for which

pnde > p—e foralln,

[z—yn|<R
or, in other words,
prndz <,
lz—yn|2R
and hence
wldz<e
lz—yn|2R
Let @n(z) = un(z + yn); then
(2.13) / didz <e

l=|2R
Since {#n} is a bounded sequence in H 3(R), then by the Rellich lemma, on every
bounded interval I there exists a subsequence of {Z,} that converges to a func-
tion in L2(I). This fact, together with (2.13), enables us to carry out a Cantor
diagonalization procedure to extract a subsequence of {#,} that converges to a
function g in L2(R).
To see this, let ¢ = %,k € N. Then there exists ry > 0 such that
Rdz <,
[—ri.rr]=
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for all n. By Rellich’s lemma, for £ = 1, there exist a function g; and a subsequence

of {@i,}, denoted by {@1 »}, such that @; , — g1 in L?[—r1,7,] and

@ ,dz <1 foralln.

(=71,

Inductively, for any & € N, there exist a function g and a subsequence of

{@k—1,n}nen, denoted by {i n}neN, such that &k n — gk in L?[—7, 7e] and

iii,n dz < for alln.

[—=rr,me]®

1
k
Now for each k € N, choose n; so that @,, belongs to the subsequence {#g n}nen
and satisfies
- 1
”u‘nk _gkllbz[—»rg,rg] S ;.
We claim that the sequence {&n, }ren is Cauchy in L?*(R). Indeed, for k,I > K,

we have

[ink - ﬁﬂz lg = / Iﬁ‘nk - ﬁ'nzlz dz

= |Gn, — Gn, |2 dz + / l'&'nk — Un, lz dz

(—rx.rx] (—rx.rxc]c
<2 [ lin-gxPdet2 [ |in-gxlis
[—rx.rx] [—rx.rx]
+2 / (in, )2 dz +2 / (@in,)? d
[~rx,rx]c [—rx.rx]c

2 2 2 2
S'—2+—+—+—-

which proves the claim. Therefore {iy, } converges in L? to some g € L(R).
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We will now show that g € G, and that a subsequence of {i, } converges to

g in H%(R). To do this, first note that {@i,, } also converges to g in L?*%(R), since

|, — glp+2 < Alltin, — g ll;
- 1-L, L
< Alfin, — glls™* lim, ~ ll§

- 1-3
< A"u‘nk - .‘I”o Yy

where we have used standard Sobolev imbedding and interpolation theorems and
the fact that {@n,} is bounded in H%(R). Since Q(&n,) = g for all k, it follows
that Q(g) = ¢. Also, since {#y, } is bounded in H%(R), then some subsequence of
{iin, }, which we also denote by {&y, }, converges to g weakly in H 3(R). But from
assumptions A2 and A3 on m(k), it follows easily that the map u —> E(u)¥ defines

a norm on H 7(R) which is equivalent to the standard norm. It then follows that
E(9)% < liminf E(@in,)%;
s0
E(g) < lim inf E(iin,) = Iy-

Hence g € G, and

lim E(in,) ¥ = If = E(g)*.

It now follows from the fact that {@,, } — g weakly in H%(R), the norm equiva-

lency, and the preceding equality that {@,, } — g in H3(R).
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CHAPTER III
STABILITY THEORY FOR GENERAL p
In this Chapter, we prove the following theorem.

Theorem 3.1. Suppose p is an arbitrary positive integer, and suppose the
assumptions A2, A3 and A4 are satisfied by m(k). Suppose also that m(k) is a
non-decreasing function of |k|. Then there exists gg = qo(p) > 0 such that for all
q > qo, G, is non-empty, and is stable in the sense of Corollary 2.5. (gq is defined

in Lemma 3.3 below.)

To prove Theorem 3.1, a new argument will be required to establish analogues

of Lemma 2.9, 2.10, and 2.11. We have the following three lemmas.
Lemma 3.2. For § > 1 and ¢ > 0, Iy, < 81, and Iy, < 61,.

Proof. Let {¢»} be a minimizing sequence for [, and let ¥.(z) = én(5)-

Then Q(#n(z)) = fq and a computation gives
E(ba(e) = 0E(6(2) —¢ [ [m(a) = m(3)] [$n(e)]| do.
Since m(k) is a non-decreasing fanction of |k|, we have
E($n(e)) < IE($n(z)),

and hence
Igq < 01,.
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Nowsincefq=1'q——2q,thenfgqSOI-, forall§ >1andg>0. N

Lemma 3.3. For all ¢ > 0, I, < 0. Moreover, either there exists a gg > 0
such that [, =0for0 < ¢ < go and I, < Oforall g > gg,or I; <O forall ¢ >0 (in
which case we define gqg = 0). In either case, the conclusion of Lemma 2.10 holds

for any minimizing sequence of I,, provided g > gq.

Proof. First we show that I, <0 for all ¢ > 0. To see this, let ¢ be a positive

fanction in H %(R) such that 3 [ ¢? dz = ¢. Define ¢n(z) = J=4(Z). Then

=1 [4 ! 2
Qe =5 [ 4ot iy [ 9720

so Q(¢n) — q as n — oco. But

B(6n) = [ mk/m) 30| di - r [#+de,

(p+ 1)(p+2)nz

and the first integral on the right-hand side tends to zero as n — oo by the
Dominated Convergence Theorem, while the second integral also tends to zero as
n — 0o. Therefore nli_x;%o E(¢n) =0, which shows that I, < 0.

Now let § = {g > 0|I, = 0}. If S is empty, then I, < 0 for all ¢ > 0, so
we may assume S is nonempty. We claim that S is bounded above. To see this,
fix a positive function ¢ in H%(R). For ¢ > 0, choose a = a(g) > 0 such that

Q(a¢) = q. Note that a(q) — oo as ¢ - co. Now

p) ap+2

(p+1)(p+2)
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and hence E(a¢) < 0 when g is sufficiently large. This shows that I, < 0 for large
q, as desired.

Now let go = sup S. Then it is easy to see from Lemma 3.2 that I; = 0 for
0 <q<gqoand I, <0 for g > gq.

Finally, if ¢ > qo, then in either case fq < 0, from which the conclusion of

Lemma 2.10 follows as shown in the proof of Lemma 2.10. W
Lemma 3.4. If ¢ > q0,q1 > 0,92 >0 and q1 + g2 =g, then I, < I, + ..

Proof. We shall show I, < I, + I,, from which the Lemma follows immedi-
ately, since I, = I, — 2q.

We may assume that one of I, and I, is less than 0, say I,. (Otherwise,
since I, < 0, then I, < I, + I, is obvious.) Then the conclusion of Lemma 2.10
holds for any minimizing sequence of I, . Therefore we can use the same argument
as in the first part of the proof of Lemma 2.11 to show that Iy, < 61, for all

8 > 1. Hence if ¢1 > q2, then

Iq = qu+qz

= q
01 (1+32)



If 1 < g2, then by Lemma 3.2, I, < g-fql < 0 and we can just interchange q1
and g2 in the above argument. W

With Lemma 3.4 in hand, we can now complete the proof of Theorem 3.1
by following the proof of Theorem 2.2 and its corollaries. Lemmas 2.7 and 2.8
remain valid in our present situation, and in place of Lemma 2.11 we have Lemma
3.4. We can now rule out vanishing using Lemmas 2.12 and 2.13 as before (the
proof of Lemma 2.13 is still valid, because when q > go we can substitute Lemma
3.3 for Lemma 2.10). To rule out dichotomy, we note that Lemmas 2.14, 2,15,
and 2.16 still hold; and Lemmas 3.14 and 2.16 show that dichotomy leads to a
contradiction, provided q > qg. The proof then concludes as before.

As an illustration of the application of Theorem 3.1, as well as some of its
limitations, we will in the remainder of this Chapter consider the example of the

generalized BBM equation (1.5), repeated here for convenience:

Ut + Uz + uPuUr — Uy = 0.
The functionals of the variational problem associated with this equation are
E(u) = / [4? + (uz)?] d=

and

uz up'*'z dz
o= [ |5+ GripTa)
and the fanctional E now becomes

B) = / [("”)z o +2f)P(;2+ 2)] -
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For the generalized BBM equation, if the set of minimizers G, is non-empty
in H(R) for some g > 0, then for any g € G4, we have (see Corollary 2.4)

p+1

g
3.1 —cq"+(c—1)g— =0
(3.1) cg" +(c—1)g —)

where c is used for §— That is, g is a solitary wave profile function with wavespeed
c and will be rewritten as ¢. in what follows.

For each ¢ > 1, equation (3.1) has a solution which is unique up to a transla-
tion and is given by

e = osech? (tz)

o= c—-1
12
_P c—1
7—2‘/ —

For ease of notation in what follows, we denote Q(¢.) by Q(c) and E(¢.) by

where

o~

and

E(c). A computation gives

Q(c)=11—,[(’°“)2(”+2’] [f(c—lrr‘r( D)+ vee— ) F IR

and

P2
B = “Zho(D) - o IR,

where
I{p} = / sech?(z) dz,
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and

_ sech? z tanh?z dz
He) = [sech?zdz
From [PW] and [GR], we see that
_ DE)Ir(E)
=T
and
N
k(p) = irs

With the help of the above identities, one can show that E(c) < 0 when c > 2,
E(c) =0 when c =2, and E(c) > 0 when c = 2.

Suppose p < 4. By Theorem 2.2, G, exists for all ¢ > 0. In this case Q(c)
is an increasing function on (1, +oc], ch_ﬂal Q(c) =0 and cﬁ_{:go Q(c) = +oo. So for
any q > 0, G, consists of only translates of ¢. with the unique speed ¢ determined
by Q(c) = q. It then follows that the solitary waves are individually stable for all
c> 1.

Next, suppose p = 4. Then Q(c) is again an increasing function on (1, +00),

with

: 1[(e+1)p+2)]7 , 4
o= liQ(e) = ; [EHHELD]7 13,

and cﬁ_{lgo Q(c) = +oo. Since Q(c) > qo forall ¢ > 1, then G, is empty for all ¢ < gq.
For q > qo, there exists a unique solitary wave profile with speed ¢ > £ = 1 such
that Q(c) = ¢. It then follows from E(c) < O that I; < 0. Hence, by Theorem
3.1, G, is non-empty for all ¢ > qo and solitary waves are individually stable for
alle>1.
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Finally, suppose p > 4. Differentiating Q(c) with respect to c gives

Q'(c) =2(p+4) [(p + 1)2(P+ 2)] ’ I(%)—"_‘"“(c -;)Z - [(8p + 16)c? — 8pc — p?] .

The only solution to @’(c) =0 that is greater that 1 is

and we see that Q'(c) > 0 when ¢ > ¢, and Q’(c) < 0 when 1 < ¢ < ¢r. So Q(¢)
decreases on (1, ¢,), achieves minimum value at ¢, and increases on (c., +00); and
for any ¢ > ¢» = Q(c,), there are two numbersc; and ¢; such that 1 < ¢; < ¢r < c2

and Q(c1) = Q(c2) = q. Also note that when p > 4

4 P 4+p
== = 1 —= .
=g 2p+4(+ 2)

It is now clear that G, does not exist for all ¢ < gr. If ¢ > go = Q(ca), I, < 0; so

G, exists. Of the two solitary wave speeds c; and c3 with the property that 1 <
1 < er < ¢z and Q(e1) = Q(c2) = ¢ > qo, only c; satisfies £(ca) < 0. Therefore
G4 consists of only translates of the solitary wave profile with wavespeed c; and
it follows that all solitary waves with wavespeed greater then ¢y are individually
stable. Our next claim is that I, = 0 for 0 < ¢ < gq. For if not, by Lemma 3.3, I,
would be negative and G, would be non-empty and contain translates of a solitary
wave profile of wavespeed c satisfying E(c) > 0 (E(c) > 0 for ¢ < g, E(c) >0
for ¢ = qo), which is a contradiction. It then follows that G, is empty for ¢ < qo
and non-empty for ¢ = gg. Thus we can extend our stability result by including

42



co into the range of wavespeeds of stable solitary waves. (Again, there are only
translates of the wave profile of speed ¢y in Gy, since if ¢ is the other wavespeed
with Q(c) = qo, then E(c) > 0.)

As mentioned in the introduction of this paper, in the case that p > 4, it
was proved by Souganidis and Strauss that the solitary waves are stable for all
¢ > ¢, and unstable for ¢ < ¢.. We have, using a different approach, recovered
the stability result for wavespeeds greater than or equal to cg. Since G, does not
exist for ¢ < qp, our method is not able to show the stability of solitary waves
for wavespeeds greater than ¢, and less than ¢g. On the other hand, we have
completely solved the variational problem associated with the generalized BBM
equation for all positive integer values of p and all ¢ > 0. It is also interesting to
observe that while solitary waves with wavespeed greater then c, are stable, the
profile functions of those with speed greater than or equal to ¢y are minimizers of

the variational problem and the profiles of those with speed less than ¢y are not.
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CHAPTER IV
FURTHER RESULTS
If f(u) = %, equation (1.1) reduces to
(4.1) uy + uPuz + Mus = 0.

We are to minimize

E(u) = /(u2 +uMu)dz

where u € H #(R) is subjected to the constraint

up+2

= | ——————dz =q.
As before, we let G, stand for the set of minimizers of E(u) subject to this con-

straint.

uPt?

%+ and m(k) satisfies assumptions A2, A3,

Theorem 4.1. Suppose f(u) =
and A4. Then for every ¢ > 0, G, is nonempty, and is a stable set of solitary-wave
solutions of (4.1), in the sense of Corollary 2.5. If p is odd, then the result also

holds for all ¢ < 0.

Proof. If ¢ > 0, then all the lemmas that have been proved in Chapter 2 are
still valid. The first condition was used to prove Lemma 2.10 and is no longer
necessary, since the lemma is obviously true. It is straightforward to modify the
proofs of Lemma 2.7, 2.11, and 2.15. The proofs for the other lemmas remain
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unchanged. The theorem then follows in the same way as Theorem 2.2 and its
corollaries.

For p odd and ¢ < 0, one simply notes that {u,} is a minimizing sequence for
I, if and only if {~u,} is a minimizing sequence for I_,; the result then follows
from the result for g >0. N

The proofs of the stability results we have stated so far have relied on as-
sumption A3, the non-negativity of the symbol m(k). We now give an example
showing how the theory may be adapted to a situation in which A3 does not apply.

Consider the equation
(4.2) Ut + vz +utiz + Mus =0

where the symbol m(k) is given by m(k) = k2 — al|k| for @ < 2. The variational

problem for this equation is to minimize
E(u) = /(u.2 +uMu)dz
over the set all u € H!(R) satisfying the constraint
Q) = [(5 +5)de =g
As before, we let G, denote the set of minimizers, if any exist.

Theorem 4.2. For every ¢ > 0, G, is nonempty, and is a stable set of

solitary-wave solutions of (4.2).



Proof. For this m(k), there again exists C; > 0 and C3 > 0 such that
Ci1(1 + k) <1+ m(k) < Ca(l +k?)

for all k € R. So Lemma 2.7, with a replacement of H 5(R) norm by H!(R) norm,
and Lemma 2.8 are still true.
Let
E(u) = E(w) - 21 - $)Q()

a - az
= [ 63w - 5w a

and

I, =inf{E(u)] veH'(R) and Q(u)=g}.

We claim that I, < 0. To prove this, it suffices to find a function ¢ such
that Q(¢) = g and E($) < 0. We construct such a ¢ following the lines of similar

constructions in [AL] and [An]. To begin with, we consider the case when ¢ is

small. Let
¢ = ¢ = ah(ez)(cos koz + €),
where
1
h(z) = 1122

e =¢?, kg = §, and a is chosen such that Q(¢) = ¢. By considering the behavior
of both sides of the equation of Q(¢) = ¢ for small ¢, one finds that @ ~ et
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as € = 0 (cf. the proof of equation (3) in [AL]; the presence of the cubic term
in our expression for @Q(z) does not affect this estimate). Therefore, the general
computation made in the proof of Theorem 2 of [AL] applies without modification

in this case, and shows that
~ 2 s
=22 )| @k =oety,
while
/&azm%

for sufficiently small ¢, where A > 0. Hence there exists e such that E(¢.) < 0
for € € (0,€]. This proves that I, < 0 for ¢ € (0,qo], where go = 3. Now let
® = @¢,, and let g be given such that ¢ > go. Since [¢3dz > 0, and Q(4) =

I (9.; + %8) dz = qp, we can find 8 > 1 such that Q(8¢) =q. Then

Bp#) = [ [0 - 2780 -0 (52) #00)]

<o [ le- 22 o) - (A52) £ an

=B’E(¢)

<0,

and it follows that I; < 0.

Now let {u,} be any minimizing sequence for the constrained variational
problem, and define pp, = u2 + (un)2 so that [pndz = ||u.||2. By passing to
a subsequence, we may assume there exists g > 0 such that [p,dz — p. The

47



proof of Lemma 2.9 goes through as before, and since we have established above
that I; < 0 for all ¢ > 0, then the argument in the last paragraph of the proof of
Lemma 2.10 shows that the statement of Lemma 2.10 still holds. This is enough
for the proof of Lemma 2.13 to be carried out as before, so we have shown that
vanishing does not occur for {u,}.

To complete the proof of Theorem 4.2, then, it remains only to show that
dichotomy can not occur for {u,}. For this, we first note that Lemma 2.11 and
its proof remain valid. Next. instead of using the proof of Lemma 2.15, we can
use the argument given in the proof of Theorem 2.5 of [CB| to show that the
conclusion of Lemma 2.15 still holds in the present situation. Finally, the proof of

Lemma 2.16 proceeds as above in Chapter 2, and thus dichotomy is ruled out.
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