INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell \& Howell Information and Learning

300 North Zeeb Road, Ann Arbor, MI 48108-1346 USA
800-521-0600

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EXISTENCE AND STABILITY OF SOLITARY-WAVE SOLUTIONS OF EQUATIONS OF BENJAMIN-BONA-MAHONY TYPE

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the
degree of
DOCTOR OF PHILOSOPHY

By

LEI ZENG

Norman, OkIahoma
2000

UMí

UMI Microform9972518

Copyright 2000 by Bell \& Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Titie 17, United States Code.

Bell \& Howell Information and Learning Company 300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346
(C)Copyright By LEI ZENG 2000

All Rights Reserved

EXISTENCE AND STABILITY OF SOLITARY-WAVE SOLUTIONS OF BENJAMIN-BONA-MAHONY-TYPE EQUATIONS

A DISSERTATION
APPROVED FOR THE DEPARTMENT OF MATHEMATICS

ACKNOWLEDGEMENTS

First, I wish to thank Dr. John Albert, my advisor, for his guidance, patience and support during the course of my graduate program at the University of Ok lahoma. I feel very fortunate to have him as my advisor. Without him, the completion of this thesis would absolutely be impossible.

Second, I wish to thank my advisory committee members Dr. Kevin Grasse, Dr. Ruediger Landes, Dr. Luther White and Dr. Musharraf Zaman for their time, assistance and guidance through the years.

Third, I wish to thank the Mathematics Department for giving me a great eduacation and providing me financial support during the course of my graduate study.

Finally, I wish to thank my mother, Yinan Li, my father, Qingqun Zeng, and my wife Fang Deng for their support, encouragement and love.
I. INTRODUCTION 1
II. STABILITY THEORY FOR $p<2 r$ 9
III. STABILITY THEORY FOR GENERAL p 36
IV. FURTHER RESULTS 44
REFERENCES 49

Chapter I

INTRODUCTION

This paper is concerned with the existence and stability of solitary-wave solutions of the equations of the form

$$
\begin{equation*}
u_{t}+f(u)_{x}+M u_{t}=0 \tag{1.1}
\end{equation*}
$$

where $u=u(x, t)$ and f are real-valued functions, and M is a Fourier transform operator defined by

$$
\widehat{M u}(k)=m(k) \widehat{u}(k)
$$

where circumflexes denote Fourier transform and $m(k)$ is a even and real-valued function. The condition on $m(k)$ assures that the operator M takes real-valued functions to real-valued functions.

Equation (1.1) describes mathematically the unidirectional propagation of nonlinear dispersive waves. A prototypical example of an equation of type (1.1) is the well-known Benjamin-Bona-Mahony equation

$$
\begin{equation*}
u_{t}+u_{x}+u u_{x}-u_{x x t}=0 \tag{1.2}
\end{equation*}
$$

which occurs when $f(u)=u+\frac{u^{2}}{2}$ and $m(k)=k^{2}$. Equation (1.2) was proposed in [BBM] as a alternative to the Korteweg-de Vries equation ([KdV])

$$
\begin{equation*}
u_{t}+u_{x}+u u_{x}+u_{x x x}=0 \tag{1.3}
\end{equation*}
$$

for modelling water waves of small amplitude and large wave length. In all these equations, u denotes a wave amplitude or velocity, x is proportional to the physical distance and t is proportional to the elapsed time.

If the non-linear terms of equations (1.2) and (1.3) are replaced by $u^{p} u_{x}$ for $p>0$, the resulting equations (called the generalized KdV and generalized BBM equations) read

$$
\begin{equation*}
u_{t}+u_{x}+u^{p} u_{x}+u_{x x x}=0 \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{t}+u_{x}+u^{p} u_{x}-u_{x x t}=0 . \tag{1.5}
\end{equation*}
$$

A solitary-wave solution of a wave equation such as (1.1) is a traveling wave solution of the form $u(x, t)=\phi_{c}(x-c t)$ where ϕ_{c} is a localized wave profile function, which in general depends on the wavespeed c. (Usually the condition that ϕ_{c} be localized is interpreted to mean at least that $\phi_{c}(x) \rightarrow 0$ as $|x| \rightarrow \infty$.) Such a solitary wave solution is said to be stable if for every $\epsilon>0$, there exists a $\delta>0$ such that if

$$
\left\|u_{0}-\phi_{c}\right\|<\delta
$$

then the solution of (1.1) with $u(\cdot, 0)=u_{0}$ satisfies

$$
\inf _{y \in \mathbb{R}}\left\|u(\cdot, t)-\phi_{c}(\cdot+y)\right\|<\epsilon
$$

for all $t \in \mathbb{R}$. (Here the norm is that of a Banach space in which the initial-value problem for the equation is well-posed.)

The first rigorous proof of the stability of solitary waves for an equation like (1.1) was given for the KdV equation by Benjamin ([B]), and Benjamin's proof was subsequently improved by Bona to allow less restrictive hypotheses ([Bo]). Later it was proved by Weinstein ([W1]) that the generalized KdV equation has stable solitary waves for all $p<4$.

A more general class of equations of KdV type of the form

$$
\begin{equation*}
u_{t}+f(u)_{x}-M u_{x}=0 \tag{1.6}
\end{equation*}
$$

was investigated by Bona, Souganidis and Strauss ([BSS]). They showed that, if the solitary-wave solutions exist for wavespeeds ranging over an interval and a certain linear operator associated with the solitary wave has one negative simple eigenvalue and a simple zero eigenvalue, then whether or not a solitary wave is stable is determined by the convexity of a certain function of the solitary wave speed. When applied to (1.4), their results show that all solitary-wave solutions of (1.4) are stable if $p<4$ and all are unstable if $p>4$. (The case $p=4$ is still open; cf. [W2]) The stability theory of [BSS] for (1.6) has been extended to equations of type (1.1) by Souganidis and Strauss ([SS]). In particular, in [SS] it is shown that for the generalized BBM equation (1.5), all solitary waves are stable when $p \leq 4$, and when $p>4$, there is a critical value of solitary wave speed $c_{\boldsymbol{r}}>1$, such that the solitary wave is stable for wave speed $c>c_{r}$ and unstable for $1<c \leq c_{r}$.

In circumstances when the assumptions of the theory in [BSS] and [SS] can be verified, the results of these papers give sharp conditions for determining the
stability or instability of solitary-wave solutions of equations (1.1) and (1.6). However the verification of these assumptions does not seem to be easily accomplished for general classes of symbols $m(k)$ of the Fourier multiplier operator M; nor is it easy in general to check whether the condition for stability holds for a given solitary wave.
P.-L. Lions developed a general method to solve a class of variational problems which do not satisfy the compactness conditions required for classical methods of solution ([L1],[L2]). The centerpiece of this method is the concentration compactness lemma, which states that every sequence of positive L^{1} functions whose L^{1} norms are held constant has a subsequence with one of the three properties: vanishing, dichotomy or compactness (cf. Lemma 2.6). Lions and Cazenave observed in [CL] that the method could be used to prove existence and stability of solitary waves for the nonlinear Schrödinger equation. The method has since been adapted by different authors to handle a variety of model equations for water waves ([A], [dBS1], [dBS2], [CB], etc.).

The typical setting for applying this method involves a constrained variational problem whose functional to be minimized and constraint functional are invariants of motion of the equation in question. The Euler-Lagrange equation of the variational problem is the equation to be satisfied by the solitary wave profile functions. The concentration compactness lemma is used to determine if the set of minimizers exists. If so, it is a set which consists of solitary wave profile functions
and which is stable in the sense that if the initial data is close to the set, then the solution to the initial-value problem will remain close to it for all time. This notion of stability is in general broader (possibly weaker) than that mentioned above in that it asserts the stability of a set consisting of possibly different solitary wave profile functions rather than the stability of the set of translates of a individual solitary wave solution. If it is known that the set of minimizers consists of only translates of discrete solitary wave profile functions, then the two notions of stability coincide.

Albert ([A]) and Albert and Linares ([AL]) used the concentration compactness method to study the solitary-wave solutions of equation (1.6) and obtained existence and stability results for a general class of functions $m(k)$. We apply the method to equation (1.1) and obtain similar results, which can be summarized as follows.

Suppose $f(u)=u+\frac{u^{p+1}}{p+1}$, where $p>0$ is an integer, and p and $m(k)$ satisfy the following conditions:

A1. there exist positive constants A_{1} and $r>\frac{p}{2}$ such that $m(k) \leq A_{1}|k|^{r}$ for $|k| \leq 1 ;$

A2. there exist positive constants A_{2}, A_{3} and $s \geq 1$ such that $A_{2}|k|^{s} \leq$ $m(k) \leq A_{3}|k|^{s}$ for $|k| \geq 1 ;$

A3. $m(k) \geq 0$ for all values of k;

A4. $m(k)$ is infinitely differentiable for all nonzero values of k, and for each
$j \in\{0,1,2, \ldots\}$ there exist positive constants B_{1} and B_{2} such that

$$
\begin{equation*}
\left|\left(\frac{d}{d k}\right)^{j}\left(\frac{\sqrt{m(k)}}{k}\right)\right| \leq B_{1}|k|^{-j} \quad \text { for } \quad 0<|k| \leq 1 \tag{1.7a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(\frac{d}{d k}\right)^{j}\left(\frac{\sqrt{m(k)}}{k^{\frac{1}{2}}}\right)\right| \leq B_{2}|k|^{-j} \quad \text { for } \quad|k| \geq 1 \tag{1.7b}
\end{equation*}
$$

Then we prove below in Theorem 2.2 and Corollaries 2.3-2.5 that for every $q>0$ there exists a non-empty set of G_{q} consisting of solitary-wave profile functions g with

$$
\int\left[\frac{g^{2}}{2}+\frac{g^{p+2}}{(p+1)(p+2)}\right] d x=q
$$

and for every $\epsilon>0$ and $g \in G_{q}$ there exists a $\delta>0$ such that if

$$
\left\|u_{0}-g\right\|_{\frac{\alpha}{2}}<\delta
$$

then the solution $u(\cdot, t)$ of equation (1.1) with $u(x, 0)=u_{0}$ satisfies

$$
\inf _{g \in G_{q}}\|u(\cdot, t)-g\|_{\frac{R}{2}}<\epsilon
$$

for all values of t. (Here $\|\cdot\|_{\frac{\&}{2}}$ denotes the norm in the L^{2}-based Sobolev space $\left.H^{\frac{\frac{2}{2}}{2}}(\mathbb{R}).\right)$

We remark that conditions A1-A4 are satisfied, for example, if $m(k)=a_{1}|k|^{b_{2}}+a_{2}|k|^{b_{2}}+\ldots+a_{n}|k|^{b_{n}}$ where $a_{1}, \ldots, a_{n}>0 ; 2 \leq b_{1}<b_{2}<\ldots<b_{n}$, and $p<2 b_{1}$. In particular, Theorem 2.2 applies to the generalized BBM equation (1.5) in which $m(k)=k^{2}$, when $p<4$.

If condition A1 is replaced by the condition that $m(k)$ be a non-decreasing function of $|k|$, then for any integer $p>0$, there exists a $q \geq 0$ such that the above existence and stability result holds for all $q>q_{0}$. Moreover, if $f(u)=\frac{u^{p+1}}{p+1}$, then condition A1 can be dropped, so that for every positive integer p, G_{q} exists for all $q>0$ if $m(k)$ satisfies conditions A2-A4. If p is odd, G_{q} also exists for all $q<0$.

We will use the method of concentration compactness to establish the existence and stability result when $m(k)$ satisfies conditions A1-A4 in Chapter 2. Our variational problem bears similarities to that in [CB], in which the existence of solitary-wave solutions of Benjamin-type equations is studied, and we adapt some ideas of theirs in dealing with vanishing and dichotomy. Our assumptions (1.7a) and (1.7b) on $m(k)$, like those in [A], are a result of resorting to Theorem 35 of [CM], which provides commutation estimates for the associated Fourier multiplier operator M. In Chapter 3, we prove an existence and stability result for the case when $m(k)$ is a non-decreasing function of $|k|, p$ is a an arbitrary positive integer, and $\boldsymbol{m}(k)$ satisfies conditions A2-A4. Then we apply our result to the generalized BBM equation (1.5). We recover the above-mentioned stability results of Souganidis and Strauss, except that for $p>4$ our method fails to apply to solitary waves with wavespeeds c in the range $c_{r}<c<\frac{p}{4}$. Finally, in Chapter 4, we discuss the situation when $f(u)=\frac{u^{p+1}}{p+1}$, and give an example of how, by using techniques from [AL] and [CB], our method may be applied in cases where the Fourier multiplier operator M has a symbol that is not everywhere positive.

The notation used in this paper is the standard notation used in the literature on partial differential equations. The set of all real numbers is denoted by \mathbb{R} and that of all natural numbers by \mathbb{N}. The support of a function f is denoted by $\operatorname{supp} f$, and B_{R} denotes the ball of radius R in \mathbb{R} centered at zero. If A and B are two subsets of \mathbb{R}, the distance between them is defined to be $\inf \{|x-y|, x \in$ A and $y \in B\}$ and is denoted by $\operatorname{dist}(A, B)$. If X is any Banach space and $T>0$, then $C(0, T ; X)$ is the space of continuous mappings of the interval $[0, T]$ into X. The value $T=\infty$ is allowed in this definition. If k is a positive integer, $C^{k}(0, T ; X)$ is the subspace of $C(0, T ; X)$ of functions whose first k derivatives also lie in $C(0, T ; X)$; also $C^{\infty}(0, T ; X)=\cap_{k=1}^{\infty} C^{k}(0, T ; X)$. We use $|\cdot|_{p}$ for the norm in $L^{p}(\mathbb{R})$ and $\|\cdot\|_{s}$ for the norm in the L^{2}-based Sobolev space $H^{s}(\mathbb{R})$. An integral over the set of all real numbers is denoted by \int, while an integral over a subset of \mathbb{R}, say $[a, b]$, is denoted by $\int_{[a, b]}$. The Gamma function $\Gamma(s)$ is defined for any s with $\operatorname{Re} s>0$ by

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s-1} d t .
$$

Finally if α is a quantity depending on a small parameter $\epsilon>0$, we write $\alpha \sim \epsilon$ if $\lim _{\epsilon \rightarrow 0} \frac{\alpha}{\epsilon}$ exists and is non-zero, $\alpha=o(\epsilon)$ if $\lim _{\epsilon \rightarrow 0} \frac{\alpha}{\epsilon}=0$, and $\alpha=O(\epsilon)$ if there exists a constant C such that $|\alpha| \leq C \epsilon$ for sufficiently small ϵ.

CHAPTER II

STABILITY THEORY FOR $p<2 r$

In this Chapter, we establish the existence of the stable set G_{q} consisting of solitary-wave profile functions for any $q>0$, assuming that $f(u)=u+\frac{u^{p+1}}{p+1}$ and that A1-A4 hold for p and $m(k)$.

For information on well-posedness of the equation (1.1), we refer readers to [AB]. Here we merely state the following theorem which is a consequence of Theorem 2 of $[A B]$.

Theorem 2.1. If $u_{0} \in H^{\frac{t}{2}}(\mathbb{R})$, then there exists a unique global solution $u=u(x, t)$ of (1.1) with $u(x, 0)=u_{0}$ such that for $0<t<\infty$, the map $t \mapsto u(x, t)$ Lies in $C^{\infty}\left(0, \infty ; H^{\frac{6}{2}}(\mathbb{R})\right)$.

Several invariants of the equation (1.1) can be established by standard arguments. In particular, it is easy to show that if $u(x, t)$ is the solution described in Theorem 2.1, then the functionals defined by

$$
\begin{equation*}
E(u)=\int\left(u^{2}+u M u\right) d x \tag{2.1}
\end{equation*}
$$

and

$$
Q(u)=\int F(u) d x
$$

where $F^{\prime}(x)=f(x)$ and $F(0)=0$, satisfy $E(u)=E\left(u_{0}\right)$ and $Q(u)=Q\left(u_{0}\right)$ for all
$t \in \mathbb{R}$. In this Chapter, since $f(u)=u+\frac{u^{p+1}}{p+1}$, we define

$$
\begin{equation*}
Q(u)=\int\left[\frac{u^{2}}{2}+\frac{u^{p+2}}{(p+1)(p+2)}\right] d x . \tag{2.2}
\end{equation*}
$$

A solitary-wave solution to equation (1.1) is a solution of the form $u=\phi_{c}(x-c t)$. The wave profile function ϕ_{c} then needs to satisfy

$$
\begin{equation*}
f\left(\phi_{c}\right)=c\left(\phi_{c}+M \phi_{c}\right) \tag{2.3}
\end{equation*}
$$

Equation (2.3) can be obtained by substituting $u=\phi_{c}(x-c t)$ into (1.1) and observing that the resulting equation is true for all values of x and t.

Next we define a variational problem whose Euler-Lagrange equation corresponds to (2.3). For any $q>0$, define

$$
I_{q}=\inf \left\{E(u) \left\lvert\, \quad u \in H^{\frac{6}{2}}(\mathbb{R}) \quad\right. \text { and } \quad Q(u)=q\right\}
$$

and

$$
G_{q}=\left\{\left.u \in H^{\frac{1}{2}}(\mathbb{R}) \right\rvert\, \quad Q(u)=q \quad \text { and } \quad E(u)=I_{q}\right\}
$$

i.e., G_{q} is the set of minimizers of I_{q}. A minimizing sequence for I_{q} is any sequence $\left\{u_{n}\right\}$ in $H^{\frac{t}{2}}(\mathbb{R})$ that has the property

$$
Q\left(u_{n}\right)=q \quad \text { for all } n
$$

and

$$
\lim _{n \rightarrow \infty} E\left(u_{n}\right)=I_{q} .
$$

We can now state our main existence and stability theorem.

Theorem 2.2. Suppose the assumptions A1, A2, A3 and A4 are satisfied by p and $m(k)$. Then G_{q} is nonempty for every $q>0$. Moreover, for every minimizing sequence $\left\{u_{n}\right\}$, there exists a sequence of real numbers $\left\{y_{n}\right\}$, such that $\left\{u_{n}\left(\cdot+y_{n}\right)\right\}$ has a subsequence that converges in $H^{\frac{t}{2}}(\mathbb{R})$ to an element $g \in G_{q}$.

Before proving Theorem 2.2, let us see how it implies the existence and stability of solitary-wave solutions. The arguments which follow are standard, and can be found in, e.g., [A], [dBSI] and [CL].

Corollary 2.3. If $\left\{u_{n}\right\}$ is a minimizing sequence for I_{q}, then $u_{n} \rightarrow G_{q}$ in $H^{\frac{t}{2}}(\mathbb{R})$, i.e.,

$$
\lim _{n \rightarrow \infty} \inf _{g \in G_{q}}\left\|u_{n}-g\right\|_{\frac{f}{2}}=0
$$

Proof. We first show

$$
\lim _{n \rightarrow \infty} \inf _{\substack{g \in G_{q} \\ y \in \mathbb{R}}}\left\|u_{n}(\cdot+y)-g\right\|_{\frac{c}{2}}=0
$$

If this is not true, then for some $\epsilon>0$, there exists a subsequence $\left\{u_{n_{k}}\right\}$, such that

$$
\inf _{\substack{g \in G_{\boldsymbol{q}} \\ y \in \mathbb{R}}}\left\|u_{n_{k}}(\cdot+y)-g\right\|_{\frac{⿺}{2}} \geq \epsilon .
$$

But $\left\{u_{\pi_{h}}\right\}$ is itself a minimizing sequence, so the above inequality contradicts Theorem 2.2.

Now for any $y \in \mathbb{R}$ and $g \in \boldsymbol{G}_{q}$,

$$
\left\|u_{n}(-+y)-g\right\|_{\frac{5}{2}}=\left\|u_{n}-g(--y)\right\|_{\frac{L}{2}} .
$$

Since $g(--y)$ is also in G_{q}, our equality follows.

Corollary 2.4 (existence of solitary waves). G_{q} consists of solitary wave profiles.

Proof. We must show that elements of G_{q} are solutions of (2.3) for some c. If $g \in G_{q}$, then by the Lagrange multiplier principle (see e.g., $[\mathrm{Lu}]$), there exists a $\lambda \in \mathbb{R}$ such that

$$
\delta E(g)=\lambda \delta Q(g),
$$

where $\delta E(g)$ and $\delta Q(g)$ are the Frechet derivatives of E and Q at g. For any $\phi \in H^{\frac{1}{2}}(\mathbb{R})$,

$$
\delta E(g) \phi=\lim _{\epsilon \rightarrow 0} \frac{E(g+\epsilon \phi)-E(g)}{\epsilon}
$$

and

$$
\delta Q(g) \phi=\lim _{\epsilon \rightarrow 0} \frac{Q(g+\epsilon \phi)-Q(g)}{\epsilon} .
$$

Substituting (2.1) and (2.2) into the above equations and simplifying, we get

$$
\delta E(g) \phi=\int(2 g+2 M g) \phi d x
$$

and

$$
\delta Q(g) \phi=\int\left(g+\frac{g^{p+1}}{p+1}\right) \phi d x .
$$

Hence

$$
\int(2 g+2 M g) \phi d x=\lambda \int\left(g+\frac{g^{p+1}}{p+1}\right) \phi d x
$$

for all $\phi \in H^{\frac{\varepsilon}{2}}(\mathbb{R})$. It follows that

$$
2 g+2 M g=\lambda\left(g+\frac{g^{p+1}}{p+1}\right)
$$

We see then that g is a solitary wave profile function with wave speed $\frac{2}{\lambda}$.

Corollary 2.5 (stability of solitary waves). G_{q} is a stable set in the following sense: for every $\epsilon>0$ and $g \in G_{q}$, there exists a $\delta>0$ such that if

$$
\left\|u_{0}-g\right\|_{\frac{1}{2}}<\delta
$$

then the solution $u(x, t)$ of (1.1) with $u(x, 0)=u_{0}$ satisfies

$$
\inf _{g \in G_{q}}\|u(\cdot, t)-g\|_{\frac{⿺}{2}}<\epsilon
$$

for all $t \in \mathbb{R}$.

Proof. Suppose the theorem is false; then there exist a $g_{0} \in G_{q}$ and $\epsilon_{0}>0$, such that for every $n \in \mathbb{N}$, we can find $\phi_{n} \in H^{\frac{1}{2}}(\mathbb{R})$ and $t_{n} \in \mathbb{R}$ such that

$$
\left\|\phi_{n}-g_{0}\right\|_{\frac{1}{2}}<\frac{1}{n}
$$

and

$$
\inf _{g \in G_{q}}\left\|u_{n}\left(-, t_{n}\right)-g\right\|_{\frac{c}{2}} \geq \epsilon_{0}
$$

where $u_{n}(\cdot, t)$ is the solution of (1.1) with $u_{n}(\cdot, 0)=\phi_{n}$. Since $\phi_{n} \rightarrow g_{0}$ in $H^{\frac{\tilde{x}}{2}}(\mathbb{R})$, then $Q\left(\phi_{n}\right) \rightarrow q$ and $E\left(\phi_{n}\right) \rightarrow I_{q}$. Hence $Q\left(u_{n}\left(\cdot, t_{n}\right)\right) \rightarrow q$ and $E\left(u_{n}\left(\cdot, t_{n}\right)\right) \rightarrow I_{q}$. Now choose $\alpha_{n} \in \mathbb{R}$ such that $Q\left(\alpha_{n} v_{n}\left(-, t_{n}\right)\right)=q ;$ then $\alpha_{n} \rightarrow 1$. Thus

$$
\lim _{n \rightarrow \infty} E\left(\alpha_{n} u_{n}\left(\cdot, t_{n}\right)\right)=\lim _{n \rightarrow \infty} \alpha_{n}^{2} E\left(u_{n}\left(\cdot, t_{n}\right)\right)=I_{q} ;
$$

i.e., $\left\{\alpha_{n} u_{n}\left(\cdot, t_{n}\right)\right\}$ is a minimizing sequence of I_{q}. Therefore, by Corollary 2.3, for sufficiently large n there exists $g_{n} \in G_{q}$ such that

$$
\left\|\alpha_{n} u_{n}\left(\cdot, t_{n}\right)-g_{n}\right\|_{\frac{2}{2}}<\frac{\epsilon_{0}}{2} .
$$

So

$$
\begin{aligned}
\epsilon_{0} \leq\left\|u_{n}\left(\cdot, t_{n}\right)-g_{n}\right\|_{\frac{1}{2}} & \leq\left\|u_{n}\left(\cdot, t_{n}\right)-\alpha_{n} u_{n}\left(\cdot, t_{n}\right)\right\|_{\frac{2}{2}}+\left\|\alpha_{n} u_{n}\left(\cdot, t_{n}\right)-g_{n}\right\|_{\frac{2}{2}} \\
& <\mid 1-\alpha_{n}\| \| u_{n}\left(\cdot, t_{n}\right) \|_{\frac{1}{2}}+\frac{\epsilon_{0}}{2} .
\end{aligned}
$$

Contradiction is then reached when we let $n \rightarrow \infty$.
We now proceed to prove Theorem 2.2 using the method of concentration compactness. Key to the proof is the following lemma of P.-L. Lions.

Lemma 2.6 [L1]. Let $\left\{\rho_{n}\right\}$ be a sequence in $L^{1}(\mathbb{R})$ satisfying:

$$
\rho_{n} \geq 0 \text { on } \mathbb{R} \text { and } \int \rho_{n} d x=\mu
$$

where $\mu>0$ is fixed. Then there exists a subsequence $\left\{\rho_{n_{k}}\right\}$ with one of the three following properties:

1) (compactness) there exists a sequence $y_{k} \in \mathbb{R}$ such that for every $\epsilon>0$, there exists $R<\infty$ satisfying for all $k \in \mathbb{N}$:

$$
\int_{y_{k}+B_{R}} \rho_{n_{k}}(x) d x \geq \mu-\epsilon_{;}
$$

2) (vanishing) for all $R<+\infty$,

$$
\lim _{k \rightarrow \infty} \sup _{y \in \mathbb{R}} \int_{y+B_{R}} \rho_{\pi_{k}}(x) d x=0
$$

or
3) (dichotomy) there exists $\bar{\mu} \in(0, \mu)$ such that for every $\epsilon>0$, there exist $k_{0} \geq 1$ and two sequences of positive functions $\rho_{k}^{(1)}, \rho_{k}^{(2)} \in L^{1}(\mathbb{R})$ satisfying for $k \geq k_{0}:$

$$
\begin{aligned}
& \left|\rho_{n_{k}}-\left(\rho_{k}^{(1)}+\rho_{k}^{(2)}\right)\right|_{1} \leq \epsilon \\
& \left|\int \rho_{k}^{(1)} d x-\bar{\mu}\right| \leq \epsilon \\
& \left|\int \rho_{k}^{(2)} d x-(\mu-\bar{\mu})\right| \leq \epsilon \\
& \operatorname{dist}\left(\operatorname{supp} \rho_{k}^{(1)}, \operatorname{supp} \rho_{k}^{(2)}\right) \rightarrow \infty .
\end{aligned}
$$

Remark. In the above Lemma, as remarked in [CB], the condition $\int \rho_{n}(x) d x=\mu$ can be replaced by $\int \rho_{n}(x) d x=\mu_{n}$ where $\mu_{n} \rightarrow \mu>0$.

Before applying Lemma 2.6, we need some preparation.

Lemma 2.7. If $\left\{u_{n}\right\}$ is a minimizing sequence, then there exist $M>0$ and $N>0$ such that $N \leq\left\|u_{n}\right\|_{\frac{e}{2}} \leq M$ for all n.

Proof. By assumptions A2 and A3 on $m(k)$, there exist positive constants C_{1} and C_{2} such that

$$
C_{1}\left(1+k^{2}\right)^{\frac{t}{2}} \leq 1+m(k) \leq C_{2}\left(1+k^{2}\right)^{\frac{t}{2}} \quad \text { for all } k \in \mathbb{R} .
$$

So for any $u \in H^{\frac{\epsilon}{2}}(\mathbb{R})$,

$$
\begin{equation*}
C_{1}\|u\|_{\frac{5}{2}}^{2} \leq E(u)=\int\left[1+m(k)\left\|\left.\widehat{u}(k)\right|^{2} d k \leq C_{2}\right\| u \|_{\frac{5}{2}}^{2}\right. \tag{2.4}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} E\left(u_{n}\right)=I_{q}$ and $C_{1}\left\|u_{n}\right\|_{\frac{1}{2}}^{2} \leq E\left(u_{n}\right),\left\{u_{n}\right\}$ is bounded in $H^{\frac{1}{2}}(\mathbb{R})$.
To bound $\left\|u_{n}\right\|_{\frac{c}{2}}$ from below, we write

$$
\int\left[\frac{u_{n}^{2}}{2}+\frac{u_{n}^{p+2}}{(p+1)(p+2)}\right] d x=q .
$$

So

$$
\frac{1}{2} \int\left|u_{n}\right|^{2} d x+\frac{1}{(p+1)(p+2)} \int\left|u_{n}\right|^{p+2} d x \geq q
$$

hence

$$
A\left\|u_{n}\right\|_{\frac{2}{2}}^{2}+B\left\|u_{n}\right\|_{\frac{1}{2}}^{p+2} \geq q,
$$

where the Sobolev imbedding theorem has been used, and A and B denote positive constants independent of n. We then have

$$
\left\|u_{n}\right\|_{\frac{2}{2}}^{2}\left(A+B\left\|u_{n}\right\|_{\frac{1}{2}}^{p}\right) \geq q .
$$

Therefore

$$
\left\|u_{n}\right\|_{\frac{2}{2}}^{2} \geq \frac{q}{\left(A+B M^{p}\right)}
$$

so the desired N exists.

Lemma 2.8. $I_{q}>0$.

Proof. By Lemma 2.7 and (2.4),

$$
I_{q}=\lim _{n \rightarrow \infty} E\left(u_{n}\right) \geq \lim _{n \rightarrow \infty} C_{I}\left\|u_{n}\right\|_{\frac{2}{2}}^{2} \geq C_{1} N^{2}>0 .
$$

Lemma 2.9. If $q_{2}>q_{1}>0$, then $I_{q_{2}} \geq I_{q_{1}}$.

Proof. For any $\epsilon>0$, there exists a function $\phi \in H^{\frac{2}{2}}(\mathbb{R})$ such that $Q(\phi)=q_{2}$ and $E(\phi)<I_{q_{2}}+\epsilon$. Since $Q(a \phi)$ is a continuous function of $a \in \mathbb{R}$, then by the intermediate value theorem we can find $A \in(0,1)$ such that $Q(A \phi)=q_{1}$. Hence

$$
I_{q_{1}} \leq E(A \phi)=A^{2} E(\phi)<E(\phi)<I_{q_{2}}+\epsilon .
$$

Since $\epsilon>0$ is arbitrary, it follows that

$$
I_{q_{1}} \leq I_{q_{2}}
$$

Lemma 2.10. If $\left\{u_{n}\right\}$ is a minimizing sequence, then there exists a $P>0$ such that

$$
\int u_{n}^{p+2} d x \geq P
$$

for sufficiently large n.

Proof. Since $\left\{u_{n}\right\}$ is a minimizing sequence for I_{q}, it is also a minimizing sequence for $\bar{I}_{q}=\inf \left\{\bar{E}(u) \left\lvert\, u \in H^{\frac{\alpha}{2}}(\mathbb{R})\right.\right.$ and $\left.Q(u)=q\right\}$, where

$$
\begin{aligned}
\bar{E}(u) & =E(u)-2 Q(u) \\
& =\int\left[u M u-\frac{2}{(p+1)(p+2)} u^{p+2}\right] d x
\end{aligned}
$$

Next we will show that $\bar{I}_{q}<0$. To see this, let ϕ be a function such that $Q(\phi)=q$, $\int \phi^{p+2} d x>0$, and $\widehat{\phi}(k)$ is non-zero only in the set of values of k for which the inequality $m(k) \leq A_{1}|k|^{r}$ of assumption AI holds. (This can be done, for example, by letting $\phi(x)=\frac{a \sin \omega x}{\omega x}$, whose Fourier transform satisfies $\widehat{\phi}(k)=\frac{a \pi}{\omega}$ for $|k|<\omega$
and $\widehat{\phi}(k)=0$ for $|k|>\omega$, and appropriately choosing a and ω.) For any $\theta>0$, choose $\alpha>0$ such that $\phi_{\theta}(x)=\alpha \phi(\theta x)$ satisfies $Q\left(\phi_{\theta}(x)\right)=q$. Then

$$
\int\left[\frac{1}{2} \alpha^{2} \phi^{2}(\theta x)+\frac{\alpha^{p+2}}{(p+1)(p+2)} \phi^{p+2}(\theta x)\right] d x=q,
$$

i.e.,

$$
\alpha^{2} \int \frac{1}{2} \phi^{2}(y) d y+\alpha^{p+2} \int \frac{\phi^{p+2}(y)}{(p+1)(p+2)} d y=\theta q .
$$

Now

$$
\begin{aligned}
\bar{E}\left(\phi_{\theta}(x)\right) & =\int m(x)\left|\widehat{\phi}_{\theta}(x)\right|^{2} d x-\frac{2 \alpha^{p+2}}{(p+1)(p+2)} \int \phi^{p+2}(\theta x) d x \\
& =\frac{\alpha^{2}}{\theta} \int m(y \theta)|\widehat{\phi}(y)|^{2} d y-\frac{2 \alpha^{p+2}}{(p+1)(p+2) \theta} \int \phi^{p+2}(y) d y \\
& \leq \frac{A_{1} \alpha^{2}}{\theta^{1-r}} \int|y|^{\Gamma}|\widehat{\phi}(y)|^{2} d y-\frac{2 \alpha^{p+2}}{(p+1)(p+2) \theta} \int \phi^{p+2}(y) d y .
\end{aligned}
$$

Letting $\theta \rightarrow 0$, we see $\alpha^{2} \sim \theta$; so $\frac{\alpha^{2}}{\theta^{1-1}} \sim \theta^{r}$ and $\frac{\alpha^{p+2}}{\theta} \sim \theta^{\frac{2}{2}}$. Since $p<\frac{r}{2}$, θ^{r} is a higher order infinitesimal than $\theta^{\frac{2}{2}}$. So $\bar{E}\left(\phi_{\theta}(x)\right)$ can be made less than 0 for sufficiently small θ. Hence $\bar{I}_{q}<0$.

The proof of the Lemma now follows by contradiction. Indeed, suppose the conclusion of the Lemma to be false. Then

$$
\liminf \int u_{\pi}^{p+2} d x \leq 0,
$$

and consequently

$$
\begin{aligned}
\bar{I}_{q} & =\lim _{n \rightarrow \infty} \int\left[m(x)\left|\widehat{u}_{n}(x)\right|^{2}-\frac{2}{(p+1)(p+2)} u_{n}^{p+2}\right] d x \\
& \geq \lim \sup \left(-\frac{2}{(p+1)(p+2)} \int u_{n}^{p+2} d x\right) \\
& =-\liminf \frac{2}{(p+1)(p+2)} \int u_{n}^{p+2} d x \\
& \geq 0,
\end{aligned}
$$

which contradicts the result of the preceding paragraph.

Lemma 2.11. For every $q_{1}>0$ and every $q_{2}>0, I_{q_{1}+q_{2}}<I_{q_{1}}+I_{q_{2}}$.

Proof. We first show that for $\theta>1$ and $q>0, I_{\theta q}<\theta I_{q}$. Let $\left\{\phi_{n}\right\}$ be a minimizing sequence for I_{q}. Choose $\alpha_{n}>0$ such that $Q\left(\alpha_{n} \phi_{n}\right)=\theta q$; then

$$
\begin{equation*}
\alpha_{n}^{2} \int \frac{1}{2} \phi_{n}^{2} d x+\alpha_{n}^{p+2} \int \frac{\phi_{n}^{p+2}}{(p+2)(p+1)} d x=\theta q \tag{2.5}
\end{equation*}
$$

Since

$$
\begin{equation*}
\int \frac{1}{2} \phi_{n}^{2} d x+\int \frac{\phi_{n}^{p+2}}{(p+1)(p+2)} d x=q \tag{2.6}
\end{equation*}
$$

we have

$$
\alpha_{n}^{2}=\theta-\frac{\alpha_{n}^{2}\left(\alpha_{n}^{p}-1\right)}{q(p+1)(p+2)} \int \phi_{n}^{p+2} d x
$$

Thus

$$
\begin{align*}
I_{\theta q} & \leq E\left(\alpha_{n} \phi_{n}\right)=\alpha_{n}^{2} E\left(\phi_{n}\right) \\
& =\left[\theta-\frac{\alpha_{n}^{2}\left(\alpha_{n}^{p}-1\right)}{q(p+1)(p+2)} \int \phi_{n}^{p+2} d x\right] E\left(\phi_{n}\right) . \tag{2.7}
\end{align*}
$$

Since $\left\{\phi_{n}\right\}$ is a minimizing sequence for I_{q}, then by Lemma 2.10, $\int \phi_{n}^{p+2} d x \geq P$ for some $P>0$ when n is sufficiently large. We see, from (2.5) and (2.6), that there exists $\epsilon>0$ such that $a_{n} \geq 1+\epsilon$ for sufficiently large n. Hence by (2.7) there exists an $A>0$ such that, again for sufficiently large n,

$$
I_{\theta q} \leq(\theta-A) E\left(\phi_{\pi}\right)
$$

Letting $n \rightarrow \infty$ in the above inequality we obtain

$$
I_{\theta q} \leq(\theta-A) I_{q}<\theta I_{q} .
$$

Now, assuming without loss of generality that $q_{1} \geq q_{2}$, we can use the result of the preceding paragraph to write

$$
\begin{aligned}
I_{q_{1}+q_{2}} & =I_{q_{1}\left(1+\frac{q_{2}}{q_{1}}\right)} \\
& <\left(1+\frac{q_{2}}{q_{1}}\right) I_{q_{1}} \\
& \leq I_{q_{1}}+\frac{q_{2}}{q_{1}}\left(\frac{q_{1}}{q_{2}} I_{q_{2}}\right) \\
& =I_{q_{1}}+I_{q_{2}} .
\end{aligned}
$$

Let \sqrt{M} be the Fourier transform operator defined by

$$
\widehat{\sqrt{M} u}(k)=\sqrt{m(k)} \widehat{u}(k) .
$$

Then for a minimizing sequence $\left\{u_{n}\right\}$,

$$
\begin{aligned}
E\left(u_{n}\right) & =\int\left[u_{n}^{2}(x)+m(x)\left|\widehat{u}_{n}(x)\right|^{2}\right] d x \\
& =\int\left[u_{n}^{2}(x)+\sqrt{m(x)} \widehat{u}_{n}(x) \sqrt{m(x)} \widehat{\widehat{u}}_{n}(x)\right] d x \\
& =\int\left[u_{n}^{2}+\left(\sqrt{M} u_{n}\right)^{2}\right] d x
\end{aligned}
$$

Let $\rho_{n}=u_{n}^{2}+\left(\sqrt{M} u_{n}\right)^{2}$ and $\mu_{n}=\int \rho_{n} d x$. Then by Lemma 2.8, $\mu_{n} \rightarrow$ $\mu>0$, where $\mu=I_{q}$. By Lemma 2.6 and the remark following it, there exists a subsequence of $\left\{\rho_{n}\right\}$, still denoted by $\left\{\rho_{n}\right\}$, for which vanishing, dichotomy or
compactness holds. In what follows, we will eliminate vanishing and dichotomy, and we will see that compactness then leads to Theorem 2.2.

To eliminate the case of vanishing, we need the following lemma from [CB].

Lemma 2.12. Let $1 \leq p<\infty$ and $1 \leq q<\infty$. If $\left\{u_{n}\right\}$ is bounded in $L^{q}(\mathbb{R})$, $\left\{u_{n}^{\prime}\right\}$ is bounded in $L^{p}(\mathbb{R})$, and for some $R>0$,

$$
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}} \int_{|x-y| \leq R}\left|u_{n}(x)\right|^{q} d x=0
$$

then for all $r>q, u_{n} \rightarrow 0$ in $L^{r}(\mathbb{R})$.

Lemma 2.13. Vanishing does not occur.

Proof. If it does, then for every $R>0$,

$$
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}} \int_{|x-y| \leq R} \rho_{n}(x) d x=0 ;
$$

thus

$$
\lim _{n \rightarrow \infty} \sup _{y \in \mathbb{R}} \int_{|x-y| \leq R} u_{n}^{2}(x) d x=0
$$

Since $\left\{u_{n}^{\prime}\right\}$ is obviously bounded in $L^{2}(\mathbb{R})$, by Lemma 2.12, $u_{n} \rightarrow 0$ in $L^{p+2}(\mathbb{R})$, and this contradicts Lemma 2.10.

The following lemma is needed to eliminate dichotomy (cf. Lemma 4.2 of [A]).

Lemma 2.14. Under the assumptions made above on $m(k)$, there exists a positive constant A such that for every f in $H^{\frac{6}{2}}(\mathbb{R})$ and every C^{∞}-function θ
which has L^{∞}-derivatives of all orders,

$$
|[\sqrt{M}, \theta] f|_{2} \leq A\left(\sum_{i=1}^{S}\left|\frac{d^{i} \theta}{d x^{i}}\right|_{\infty}\right)\|f\|_{\frac{1}{2}},
$$

where $S=\left[\frac{s}{2}\right]+1$, the brackets denoting the greatest integer function, and $[\sqrt{M}, \theta] f$ is defined to be $\sqrt{M}(\theta f)-\theta(\sqrt{M} f)$.

Proof. Since $C_{0}^{\infty}(\mathbb{R})$ is dense in $H^{\frac{1}{2}}(\mathbb{R})$, it suffices to prove this lemma for $f \in C_{0}^{\infty}(\mathbb{R})$.

Choose $\chi(k) \in C_{0}^{\infty}(\mathbb{R})$ such that $\chi(k)=1$ for $|k|<1$ and $\chi(k)=0$ for $|k|>2$. Let $m_{1}(k)=\chi(k) \sqrt{m(k)}, m_{2}(k)=(1-\chi(k)) \sqrt{m(k)}$. Define M_{1} and M_{2} by $\widehat{M_{1} u}(k)=m_{1}(k) \widehat{u}(k)$ and $\widehat{M_{2} u}(k)=m_{2}(k) \widehat{u}(k)$; then $\sqrt{M}=M_{1}+M_{2}$.

Write $M_{1}=\frac{d}{d x} T_{1}$; the symbol of T_{1} is then given by

$$
\sigma_{1}(k)=\frac{m_{1}(k)}{i k}
$$

It follows from (1.7a) that

$$
\sup _{k \in \mathbb{R}}|k|^{j}\left|\left(\frac{d}{d k}\right)^{j} \sigma_{1}(k)\right|<\infty
$$

for all $j \in\{0,1,2 \ldots\}$. Now Theorem 35 of [CM] implies that there exists a positive constant C such that for every $\theta \in C_{0}^{\infty}(\mathbb{R})$ and f in $H^{\frac{1}{2}}(\mathbb{R})$,

$$
\left|\left[T_{1}, \theta\right] f^{\prime}\right|_{2} \leq C\left|\theta^{\prime}\right|_{\infty}|f|_{2}
$$

Hence

$$
\begin{aligned}
\left|\left[M_{1}, \theta\right] f\right|_{2} & =\left|T_{1} \frac{d}{d x}(\theta f)-\theta T_{1}\left(\frac{d f}{d x}\right)\right|_{2} \\
& \leq\left|T_{1}\left(\theta^{\prime} f\right)\right|_{2}+\left|\left[T_{1}, \theta\right] f^{\prime}\right|_{2} \\
& \leq\left\|T_{1}\right\|\left|\theta^{\prime}\right|_{\infty}|f|_{2}+C\left|\theta^{\prime}\right|_{\infty}|f|_{2} \\
& =A\left|\theta^{\prime}\right|_{\infty}|f|_{2}
\end{aligned}
$$

where $A=C+\left\|T_{1}\right\|$.
Write $M_{2}=\left(\frac{d}{d x}\right)^{S} T_{2}$; the symbol of T_{2} is then given by

$$
\sigma_{2}(k)=\frac{m_{2}(k)}{(i k)^{S}}
$$

It follows from (1.7b) that

$$
\sup _{k \in \mathbb{R}}|k|^{j}\left|\left(\frac{d}{d k}\right)^{j} \sigma_{2}(k)\right|<\infty
$$

for all $j \in\{0,1,2, \ldots\}$. Again by Theorem 35 of $[\mathrm{CM}]$, there exists $C>0$ such that

$$
\left|\left[T_{2}, \theta\right] f^{\prime}\right|_{2} \leq C\left|\theta^{\prime}\right|_{\infty}|f|_{2}
$$

for every $\theta \in C_{0}^{\infty}(\mathbb{R})$ and f in $H^{\frac{1}{2}}(\mathbb{R})$. Hence

$$
\begin{aligned}
\left|\left[M_{2}, \theta\right] f\right|_{2} & =\left|T_{2}\left(\frac{d^{S}(\theta f)}{d x^{S}}\right)-\theta T_{2}\left(\frac{d^{S} f}{d x^{S}}\right)\right|_{2} \\
& =\left|\left[T_{2}, \theta\right]\left(\frac{d^{S} f}{d x^{S}}\right)+T_{2}\left(\sum_{i=1}^{S} a_{i}^{S} \frac{d^{i} \theta}{d x^{i}} \frac{d^{S-i} f}{d x^{S-i}}\right)\right|_{2} \\
& \leq A\left(\sum_{i=1}^{S}\left|\frac{d^{i} \theta}{d x^{i}}\right|_{\infty}\right)\left(\left.\sup _{0 \leq i \leq S-1}\left|\frac{d^{i} f}{d x^{i}}\right|\right|_{2}\right) \\
& \leq A\left(\sum_{i=1}^{S}\left|\frac{d^{i} \theta}{d x^{i}}\right|_{\infty}\right)\|f\|_{\frac{1}{2}} .
\end{aligned}
$$

where a_{i}^{S} are constants which come from Liebniz' rule, and A is a positive constant independent of θ and f.

Now

$$
\begin{aligned}
\|\left.[\sqrt{M}, \theta] f\right|_{2} & =\left|\left[M_{1}, \theta\right] f+\left[M_{2}, \theta\right] f\right|_{2} \\
& \leq A\left|\theta^{\prime}\right|_{\infty}|f|_{2}+A\left(\sum_{i=1}^{S}\left|\frac{d^{i} \theta}{d x^{i}}\right|_{\infty}\right)\|f\|_{\frac{\frac{1}{2}}{}} \\
& \leq A\left(\sum_{i=1}^{S}\left|\frac{d^{i} \theta}{d x^{i}}\right|_{\infty}\right)\|f\|_{\frac{4}{2}},
\end{aligned}
$$

which concludes the proof.

Lemma 2.15. Assume the dichotomy alternative of Lemma 2.6 holds for ρ_{n}. Then for each $\epsilon>0$ there is a subsequence of $\left\{u_{n}(x)\right\}$, still denoted by $\left\{u_{n}(x)\right\}$, a real number $\bar{q}=\bar{q}(\epsilon)$, a natural number n_{0}, and two sequences of functions $\left\{u_{n}^{(1)}\right\}$ and $\left\{u_{n}^{(2)}\right\}$ in $H^{\frac{1}{2}}(\mathbb{R})$ satisfying $u_{n}=u_{n}^{(1)}+u_{n}^{(2)}$ for all n and for $n \geq n_{0}$:

$$
\begin{aligned}
& Q\left(u_{n}^{(1)}\right)-\bar{q}=O(\epsilon), \\
& Q\left(u_{n}^{(2)}\right)-(q-\bar{q})=O(\epsilon), \\
& E\left(u_{n}\right)=E\left(u_{n}^{(1)}\right)+E\left(u_{n}^{(2)}\right)+O(\epsilon),
\end{aligned}
$$

where the constants implied in the notation $O(\epsilon)$ can be chosen independently of n as well as ϵ. Furthermore,

$$
\begin{equation*}
C_{2}\left\|u_{n}^{(1)}\right\|_{\frac{1}{2}}^{2} \geq \bar{\mu}+O(\epsilon) \tag{2.8a}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{2}\left\|u_{n}^{(2)}\right\|_{\frac{2}{2}}^{2} \geq \mu-\bar{\mu}+O(\epsilon) \tag{2.8b}
\end{equation*}
$$

where C_{2} is the second constant in (2.4), and $\bar{\mu}$ is as defined in Lemma 2.6.

Proof. We follow the general lines of the proof of Theorem 2.5 in [CB]. By assumption, for every $\epsilon>0$, we can find a number k_{0} and sequences of positive functions $\left\{\rho_{n}^{(1)}\right\}$ and $\left\{\rho_{n}^{(2)}\right\}$ in $L^{1}(\mathbb{R})$ satisfying for $n \geq k_{0}$:

$$
\begin{aligned}
& \left|\int \rho_{n}^{(1)} d x-\bar{\mu}\right| \leq \epsilon, \\
& \left|\int \rho_{n}^{(2)} d x-(\mu-\bar{\mu})\right| \leq \epsilon, \text { and } \\
& \left|\rho_{n}-\left(\rho_{n}^{(1)}+\rho_{n}^{(2)}\right)\right|_{1} \leq \epsilon .
\end{aligned}
$$

Moreover, without loss of generality (see the proof of Lemma 2.6 in [L1]), we may assume that $\rho_{n}^{(1)}$ and $\rho_{i 2}^{(2)}$ satisfy

$$
\begin{aligned}
& \operatorname{supp} \rho_{n}^{(1)} \subset\left(y_{n}-R_{n}, y_{n}+R_{n}\right) \\
& \operatorname{supp} \rho_{n}^{(2)} \subset\left(-\infty, y_{n}-4 R_{n}\right) \cup\left(y_{n}+4 R_{n}, \infty\right)
\end{aligned}
$$

where $y_{n} \in \mathbb{R}$ and $R_{n} \rightarrow \infty$. We then have

$$
\int_{R_{n} \leq\left|x-y_{n}\right| \leq 4 R_{n}} \rho_{n} d x \leq \epsilon
$$

hence

$$
\int_{R_{n} \leq\left|x-y_{n}\right| \leq 4 R_{n}}\left[u_{n}^{2}+\left(\sqrt{M} u_{n}\right)^{2}\right] d x \leq \epsilon
$$

Choose $\zeta, \phi \in C^{\infty}(\mathbb{R})$ such that $0 \leq \zeta(x), \phi(x) \leq 1$ for all $x ; \zeta(x)=1$ if $|x| \leq 2 ; \zeta(x)=0$ if $|x| \geq 3 ; \phi(x)=0$ if $|x| \leq 2 ; \phi(x)=1$ if $|x| \geq 3 ;$ and $\zeta+\phi=1$
for all $x \in \mathbb{R}$. Define $\eta \in C^{\infty}(\mathbb{R})$ so that $0 \leq \eta \leq 1, \eta(x)=1$ for $2 \leq|x| \leq 3$, and $\eta(x)=0$ for $|x| \leq 1$ and $|x| \geq 4$. Let $\zeta_{n}(x)=\zeta\left(\frac{x-y_{n}}{R_{n}}\right), \phi_{n}=\phi\left(\frac{x-y_{n}}{R_{n}}\right)$, and $\eta_{n}(x)=\eta\left(\frac{x-y_{n}}{R_{n}}\right) ;$ and define $u_{n}^{(1)}=\zeta_{n} u_{n}, u_{n}^{(2)}=\phi_{n} u_{n}$, and $w_{n}=\eta_{n} u_{n}$.

Since $Q\left(u_{n}^{(1)}\right)$ is bounded, there exists a subsequence of $u_{n}^{(1)}$, still denoted by $u_{n}^{(1)}$, and a $\bar{q}=\bar{q}(\epsilon)$ such that $Q\left(u_{n}^{(1)}\right) \rightarrow \bar{q}$. Then, for sufficiently large n,

$$
Q\left(u_{n}^{(1)}\right)-\bar{q}=O(\epsilon)
$$

Now let

$$
f(s)=\frac{s^{2}}{2}+\frac{s^{p+2}}{(p+1)(p+2)} \quad \text { for } s \in \mathbb{R}
$$

and write

$$
\begin{aligned}
Q\left(u_{n}\right) & =\int_{\left|x-y_{n}\right| \leq 2 R_{n}} f\left(u_{n}\right) d x+\int_{\left|x-y_{n}\right| \geq 3 R_{n}} f\left(u_{n}\right) d x+\int_{2 R_{n} \leq\left|x-y_{n}\right| \leq 3 R_{n}} f\left(u_{n}\right) d x \\
& =\int_{\left|x-y_{n}\right| \leq 2 R_{n}} f\left(u_{n}^{(1)}\right) d x+\int_{\left|x-y_{n}\right| \geq 3 R_{n}} f\left(u_{n}^{(2)}\right) d x+\int_{2 R_{n} \leq\left|x-y_{n}\right| \leq 3 R_{n}} f\left(u_{n}\right) d x
\end{aligned}
$$

$$
\begin{equation*}
=Q\left(u_{n}^{(1)}\right)+Q\left(u_{n}^{(2)}\right)+\int_{2 R_{n} \leq\left|x-y_{n}\right| \leq 3 R_{n}}\left[f\left(u_{n}\right)-f\left(u_{n}^{(1)}\right)-f\left(u_{n}^{(2)}\right)\right] d x \tag{2.9}
\end{equation*}
$$

We now claim that the last integral on the right-hand side of the preceding equation is $O(\epsilon)$. To see this, first note that

$$
\begin{align*}
& \left|\int_{2 R_{n} \leq\left|x-y_{n}\right| \leq 3 R_{n}}\left[f\left(u_{n}\right)-f\left(u_{n}^{(1)}\right)-f\left(u_{n}^{(2)}\right)\right] d x\right| \leq C \int\left[\left|w_{n}\right|^{2}+\left|w_{n}\right|^{p+2}\right] d x \\
& 2.10) \quad \leq C\left(\left\|w_{n}\right\|_{\frac{1}{2}}^{2}+\left\|w_{n}\right\|_{\frac{p}{2}}^{p+2}\right) \tag{2.10}
\end{align*}
$$

Therefore it suffices to show that $\left\|w_{n}\right\|_{\frac{1}{2}}^{2}=O(\epsilon)$. To see this, write

$$
\begin{aligned}
C_{1}\left\|w_{n}\right\|_{\frac{i}{2}}^{2} & \leq E\left(w_{n}\right) \\
& =\int\left[w_{n}^{2}+\left(\sqrt{M} w_{n}\right)^{2}\right] d x \\
& =\int\left[\left(\eta_{n} u_{n}\right)^{2}+\left(\sqrt{M}\left(\eta_{n} u_{n}\right)\right)^{2}\right] d x
\end{aligned}
$$

The first term is small since

$$
\int\left(\eta_{n} u_{n}\right)^{2} d x=\int_{R_{n} \leq\left|x-y_{n}\right| \leq 4 R_{n}} \eta_{n}^{2} u_{n}^{2} d x \leq \epsilon
$$

To estimate the second term, write

$$
\int\left[\sqrt{M}\left(\eta_{n} u_{n}\right)\right]^{2} d x
$$

$$
\begin{equation*}
=\int\left(\left[\sqrt{M}, \eta_{n}\right] u_{n}\right)^{2} d x+2 \int \eta_{n} \sqrt{M} u_{n}\left[\sqrt{M}, \eta_{n}\right] u_{n} d x+\int \eta_{n}^{2}\left(\sqrt{M} u_{n}\right)^{2} d x \tag{2.11}
\end{equation*}
$$

The last integral on the right-hand side of (2.11) may be estimated as

$$
\int \eta_{n}^{2}\left(\sqrt{M} u_{n}\right)^{2} d x \leq \int_{R_{n} \leq\left|x-y_{n}\right| \leq 4 R_{n}}\left(\sqrt{M} u_{n}\right)^{2} d x \leq \epsilon
$$

For the other two terms on the right-hand side of (2.11), we apply Lemma 2.14, observing that $R_{n} \rightarrow \infty$ and $\left\{\sqrt{M} u_{n}\right\}$ is bounded in $L^{2}(\mathbb{R})$. It follows then from (2.11) that we can make $\int\left[\sqrt{M}\left(\eta_{n} u_{n}\right)\right]^{2} d x$ a quantity of size $O(\epsilon)$ for sufficiently large n. This completes our proof that $\left\|w_{n}\right\|_{\frac{5}{2}}=O(\epsilon)$ for large n, and from (2.9) and (2.10) we can now conclude that

$$
Q\left(u_{n}\right)=Q\left(u_{n}^{(1)}\right)+Q\left(u_{n}^{(2)}\right)+O(\epsilon) .
$$

It then follows that

$$
Q\left(u_{n}^{(2)}\right)=q-\bar{q}+O(\epsilon) .
$$

To prove the assertion of the Lemma concerning $E\left(u_{n}\right)$, begin by writting

$$
\begin{aligned}
E\left(u_{n}\right) & =E\left(u_{n}^{(1)}+u_{n}^{(2)}\right) \\
& =E\left(u_{n}^{(1)}\right)+E\left(u_{n}^{(2)}\right)+2 \int u_{n}^{(1)} u_{n}^{(2)} d x+2 \int u_{n}^{(1)} M u_{n}^{(2)} d x .
\end{aligned}
$$

We now estimate the last two terms in the above equation. The third term is small since

$$
\int u_{n}^{(1)} u_{n}^{(2)} d x=\int_{2 R_{n} \leq\left|x-y_{n}\right| \leq 3 R_{n}} \zeta_{n} \phi_{n} u_{n}^{2} d x \leq \epsilon
$$

The last term is estimated as follows:

$$
\begin{aligned}
\int u_{n}^{1} M u_{n}^{2} d x & =\int \zeta_{n} u_{n} \sqrt{M}\left(\sqrt{M} \phi_{n} u_{n}\right) d x \\
& =\int \sqrt{M}\left(\phi_{n} u_{n}\right) \sqrt{M}\left(\zeta_{n} u_{n}\right) d x \\
& =\int\left[\sqrt{M}, \zeta_{n}\right] u_{n}\left[\sqrt{M}, \phi_{n}\right] u_{n} d x+\int\left[\sqrt{M}, \zeta_{n}\right] u_{n}\left(\phi_{n} \sqrt{M} u_{n}\right) d x \\
& +\int \zeta_{n} \sqrt{M} u_{n}\left[\sqrt{M}, \phi_{n}\right] u_{n} d x+\int \zeta_{n} \phi_{n}\left(\sqrt{M} u_{n}\right)^{2} d x
\end{aligned}
$$

The last term in the preceding expression is less than ϵ since

$$
\int \zeta_{n} \phi_{n}\left(\sqrt{M} u_{n}\right)^{2} d x \leq \int_{2 R_{n} \leq\left|x-y_{n}\right| \leq 3 R_{n}}\left(\sqrt{M} u_{n}\right)^{2} d x
$$

while the remaining terms are $O(\epsilon)$ because of the presence of the commutation factors, as explained earlier in the proof.

Hence

$$
E\left(u_{n}\right)=E\left(u_{n}^{(1)}\right)+E\left(u_{n}^{(2)}\right)+O(\varepsilon) .
$$

It remains to prove (2.8). For (2.8a), we write

$$
\begin{aligned}
C_{2}\left\|u_{n}^{(1)}\right\|_{\frac{1}{2}}^{2} & \geq E\left(u_{n}^{(1)}\right) \\
& =\int\left[\left(u_{n}^{(1)}\right)^{2}+\left(\sqrt{M} u_{n}^{(1)}\right)^{2}\right] d x \\
& =\int\left[\left(\zeta_{n} u_{n}\right)^{2}+\left(\sqrt{M}\left(\zeta_{n} u_{n}\right)\right)^{2}\right] d x \\
& =O(\epsilon)+\int \zeta_{n}^{2}\left[u_{n}^{2}+\left(\sqrt{M} u_{n}\right)^{2}\right] d x \\
& =O(\epsilon)+\int \zeta_{n}^{2} \rho_{n} d x \\
& =O(\epsilon)+\int_{\left|x-y_{n}\right| \leq R_{n}} \rho_{n} d x+\int_{R_{n} \leq\left|x-y_{n}\right| \leq 4 R_{n}} \zeta_{n}^{2} \rho_{n} d x \\
& =\int \rho_{n}^{(1)} d x+O(\epsilon) \\
& \geq \bar{\mu}+O(\epsilon)
\end{aligned}
$$

In obtaining the third equality in the above derivation, we used equation (2.11) with η_{n} replaced by ζ_{n}, and the fact that the first two terms on the right side of
(2.11) are quantities of size $O(\varepsilon)$ as $R_{n} \rightarrow \infty$. Similarly,

$$
\begin{aligned}
C_{2}\left\|u_{n}^{(2)}\right\|_{\frac{a}{2}}^{2} & \geq E\left(u_{n}^{(2)}\right) \\
& =\int\left[\left(u_{n}^{(2)}\right)^{2}+\left(\sqrt{M} u_{n}^{(2)}\right)^{2}\right] d x \\
& =\int\left[\left(\phi_{n} u_{n}\right)^{2}+\left(\sqrt{M}\left(\phi_{n} u_{n}\right)\right)^{2}\right] d x \\
& =O(\epsilon)+\int \phi_{n}^{2}\left[u_{n}^{2}+\left(\sqrt{M} u_{n}\right)^{2}\right] d x \\
& =O(\epsilon)+\int \phi_{n}^{2} \rho_{n} d x \\
& =O(\epsilon)+\int_{\left|x-y_{n}\right| \geq 2 R_{n}} \rho_{n} d x+\int_{n} \leq\left|x-y_{n}\right| \leq 4 R_{n} \\
& \phi_{n}^{2} \rho_{n} d x \\
& =\int \rho_{n}^{(2)} d x+O(\epsilon) \\
& \geq \mu-\bar{\mu}+O(\epsilon)
\end{aligned}
$$

which concludes our proof.

Lemma 2.16. Assume that dichotomy holds for ρ_{n}. Then there exists $q_{1} \in$ $(0, q)$ such that

$$
I_{q} \geq I_{q_{1}}+I_{q-q_{1}}
$$

Proof. Let $\bar{q}=\bar{q}(\epsilon)$ be the function defined in Lemma 2.15. Since $Q\left(u_{n}^{(1)}\right)$ is bounded, the range of values of $\bar{q}(\epsilon)$ remains bounded as $\epsilon \rightarrow 0$. Therefore, by restricting ourselves to a sequence of values of ϵ tending to zero, and choosing an appropriate subsequence of this sequence, we may assume that $\bar{q}(\epsilon)$ tends to a limit q_{1} as $\epsilon \rightarrow 0$.

We wish to show that $q_{1} \in(0, q)$. To see this, begin by observing that it follows from

$$
E\left(u_{n}\right)=E\left(u_{n}^{(1)}\right)+E\left(u_{n}^{(2)}\right)+O(\epsilon)
$$

that

$$
\begin{equation*}
I_{q}=\liminf E\left(u_{n}\right) \geq \liminf E\left(u_{n}^{(1)}\right)+\liminf E\left(u_{n}^{(2)}\right)+O(\epsilon) . \tag{2.12}
\end{equation*}
$$

Suppose now that $q_{1} \leq 0$. Then for large n we have

$$
Q\left(u_{n}^{(2)}\right)=q-q_{1}+O(\epsilon) .
$$

Let $\bar{u}_{n}^{(2)}=\sigma_{n} u_{n}^{(2)}$, where σ_{n} is chosen so that $Q\left(\tilde{u}_{n}^{(2)}\right)=q-q_{1}$. Then $\sigma_{n}=1+O(\epsilon)$ and

$$
E\left(u_{n}^{(2)}\right)=\frac{1}{\sigma_{n}^{2}} E\left(\bar{u}_{n}^{(2)}\right) \geq \frac{1}{\sigma_{n}^{2}} I_{q-q_{1}} \geq \frac{1}{(1+O(\epsilon))^{2}} I_{q},
$$

where the last inequality is due to Lemma 2.9. It follows from (2.12) that

$$
I_{q} \geq \liminf E\left(u_{n}^{(1)}\right)+\frac{1}{(1+O(\epsilon))^{2}} I_{q}+O(\epsilon) .
$$

But from (2.8a) we have

$$
\liminf E\left(u_{n}^{(1)}\right) \geq C_{1} \liminf \left\|u_{n}^{(1)}\right\|_{\frac{1}{2}}^{2} \geq \frac{C_{1}}{C_{2}} \bar{\mu}+O(\epsilon) .
$$

Hence we conclude that

$$
I_{q} \geq \frac{C_{1}}{C_{2}} \bar{\mu}+\frac{1}{(1+O(\epsilon))^{2}} I_{q}+O(\epsilon),
$$

and taking the limit as $\epsilon \rightarrow 0$ gives

$$
I_{q} \geq \frac{C_{1}}{C_{2}} \bar{\mu}+I_{q}>I_{q}
$$

which is a contradiction.
On the other hand, if it were true that $q_{1} \geq q$, then we would have $Q\left(u_{n}^{(1)}\right)=$ $q_{1}+O(\epsilon)$ for large n, and an argument similar to that in the preceding paragraph would show that (2.12) implies
$I_{q} \geq \lim \inf E\left(u_{n}^{(2)}\right)+\frac{1}{(1+O(\epsilon))^{2}} I_{q_{1}}+O(\epsilon) \geq \frac{C_{1}}{C_{2}}(\mu-\bar{\mu})+\frac{1}{(1+O(\epsilon))^{2}} I_{q}+O(\epsilon)$,
and hence

$$
I_{q} \geq \frac{C_{1}}{C_{2}}(\mu-\bar{\mu})+I_{q}>I_{q}
$$

which is another contradiction. This completes the proof that $q_{1} \in(0, q)$.
Finally, we see from the above arguments that

$$
I_{q} \geq \frac{1}{(1+O(\epsilon))^{2}} I_{q_{1}}+\frac{1}{(1+O(\epsilon))^{2}} I_{q-q_{1}}+O(\epsilon)
$$

and taking the limit in the above equation as $\epsilon \rightarrow 0$ gives

$$
I_{q} \geq I_{q_{1}}+I_{q-q_{1}}
$$

as desired.

Lemma 2.17. Dichotomy does not occur.

Proof. This follows immediately from Lemma 2.11 and Lemma 2.16.

We can now complete the proof of Theorem 2.2. Let $\left\{u_{n}\right\}$ be any minimizing sequence for I_{q}. Then by Lemmas 2.6, 2.13, and 2.17, we know that compactness occurs. That is, there exists a sequence of real numbers $\left\{y_{n}\right\}$ such that for any $\epsilon>0$, one can find $R>0$ for which

$$
\int_{\left|x-y_{n}\right| \leq R} \rho_{n} d x \geq \mu-\epsilon \quad \text { for all } n
$$

or, in other words,

$$
\int_{\left|x-y_{n}\right| \geq R} \rho_{n} d x \leq \epsilon
$$

and hence

$$
\int_{\left|x-y_{n}\right| \geq R} u_{n}^{2} d x \leq \epsilon
$$

Let $\bar{u}_{n}(x)=u_{n}\left(x+y_{n}\right)$; then

$$
\begin{equation*}
\int_{|x| \geq R} \bar{u}_{n}^{2} d x \leq \epsilon \tag{2.13}
\end{equation*}
$$

Since $\left\{\bar{u}_{n}\right\}$ is a bounded sequence in $H^{\frac{2}{2}}(\mathbb{R})$, then by the Rellich lemma, on every bounded interval I there exists a subsequence of $\left\{\bar{u}_{n}\right\}$ that converges to a function in $L^{2}(I)$. This fact, together with (2.13), enables us to carry out a Cantor diagonalization procedure to extract a subsequence of $\left\{\bar{u}_{n}\right\}$ that converges to a function g in $L^{2}(\mathbb{R})$.

To see this, let $\epsilon=\frac{1}{k}, k \in \mathbb{N}$. Then there exists $\boldsymbol{r}_{k}>0$ such that

$$
\int_{\left[-r_{k}, r_{k}\right]^{e}} \tilde{u}_{\pi}^{2} d x \leq \frac{1}{k}
$$

for all n. By Rellich's lemma, for $k=1$, there exist a function g_{1} and a subsequence of $\left\{\bar{u}_{n}\right\}$, denoted by $\left\{\bar{u}_{1, n}\right\}$, such that $\bar{u}_{1, n} \rightarrow g_{1}$ in $L^{2}\left[-r_{1}, r_{1}\right]$ and

$$
\int_{\left[-r_{1}, r_{1}\right]^{e}} \bar{u}_{1, n}^{2} d x \leq 1 \quad \text { for all } n
$$

Inductively, for any $k \in \mathbb{N}$, there exist a function g_{k} and a subsequence of $\left\{\bar{u}_{k-1, n}\right\}_{n \in N}$, denoted by $\left\{\bar{u}_{k, n}\right\}_{n \in N}$, such that $\tilde{u}_{k, n} \rightarrow g_{k}$ in $L^{2}\left[-r_{k}, r_{k}\right]$ and

$$
\int_{\left[-r_{k}, r_{k}\right]^{e}} \bar{u}_{k, n}^{2} d x \leq \frac{1}{k} \quad \text { for all } n .
$$

Now for each $k \in \mathbb{N}$, choose n_{k} so that $\bar{u}_{n_{k}}$ belongs to the subsequence $\left\{\bar{u}_{k, n}\right\}_{n \in \mathbb{N}}$ and satisfies

$$
\left\|\bar{u}_{n_{k}}-g_{k}\right\|_{L^{2}\left[-r_{i}, r_{i}\right]} \leq \frac{1}{k}
$$

We claim that the sequence $\left\{\bar{u}_{n_{k}}\right\}_{k \in N}$ is Cauchy in $L^{2}(\mathbb{R})$. Indeed, for $k, l \geq K$, we have

$$
\begin{aligned}
\left|\tilde{u}_{n_{k}}-\bar{u}_{n_{l}}\right|_{2}^{2}= & \int\left|\bar{u}_{n_{k}}-\bar{u}_{n_{l}}\right|^{2} d x \\
= & \int_{\left[-r_{K}, r_{K}\right]}\left|\bar{u}_{n_{k}}-\bar{u}_{n_{l}}\right|^{2} d x+\int_{\left[-r_{K}, r_{K}\right]^{c}}\left|\bar{u}_{n_{k}}-u_{n_{l}}\right|^{2} d x \\
\leq & 2 \int_{\left[-r_{K}, r_{K}\right]}\left|\bar{u}_{n_{k}}-g_{K}\right|^{2} d x+2 \int_{\left[-r_{K}, r_{K}\right]}\left|\bar{u}_{n_{t}}-g_{K}\right|^{2} d x \\
& +2 \int_{\left[-r_{K}, r_{K}\right]^{c}}\left(\bar{u}_{n_{k}}\right)^{2} d x+2 \int_{\left[-r_{K}, r_{K}\right]^{c}}\left(\bar{u}_{n_{l}}\right)^{2} d x \\
\leq & \frac{2}{K^{2}}+\frac{2}{K^{2}}+\frac{2}{K}+\frac{2}{K},
\end{aligned}
$$

which proves the claim. Therefore $\left\{\bar{u}_{n_{k}}\right\}$ converges in L^{2} to some $g \in L^{2}(\mathbb{R})$.

We will now show that $g \in G_{q}$ and that a subsequence of $\left\{\bar{u}_{n_{k}}\right\}$ converges to g in $H^{\frac{t}{2}}(\mathbb{R})$. To do this, first note that $\left\{\bar{u}_{n_{k}}\right\}$ also converges to g in $L^{p+2}(\mathbb{R})$, since

$$
\begin{aligned}
\left|\bar{u}_{n_{k}}-g\right|_{p+2} & \leq A\left\|\bar{u}_{n_{k}}-g\right\|_{\frac{2}{2}} \\
& \leq A\left\|\bar{u}_{n_{k}}-g\right\|_{0}^{1-\frac{1}{2}}\left\|\bar{u}_{n_{k}}-g\right\|_{\frac{1}{2}}^{\frac{1}{2}} \\
& \leq A\left\|\bar{u}_{n_{k}}-g\right\|_{0}^{1-\frac{1}{2}},
\end{aligned}
$$

where we have used standard Sobolev imbedding and interpolation theorems and the fact that $\left\{\bar{u}_{\pi_{k}}\right\}$ is bounded in $H^{\frac{1}{2}}(\mathbb{R})$. Since $Q\left(\bar{u}_{n_{k}}\right)=q$ for all k, it follows that $Q(g)=q$. Also, since $\left\{\tilde{u}_{n_{k}}\right\}$ is bounded in $H^{\frac{1}{2}}(\mathbb{R})$, then some subsequence of $\left\{\tilde{u}_{n_{k}}\right\}$, which we also denote by $\left\{\bar{u}_{n_{k}}\right\}$, converges to g weakly in $H^{\frac{1}{2}}(\mathbb{R})$. But from assumptions A2 and A3 on $m(k)$, it follows easily that the map $u \mapsto E(u)^{\frac{1}{2}}$ defines a norm on $H^{\frac{1}{2}}(\mathbb{R})$ which is equivalent to the standard norm. It then follows that

$$
E(g)^{\frac{1}{2}} \leq \liminf E\left(\tilde{u}_{n_{k}}\right)^{\frac{1}{2}} ;
$$

so

$$
E(g) \leq \liminf E\left(\bar{u}_{n_{k}}\right)=I_{q} .
$$

Hence $g \in G_{q}$, and

$$
\lim _{n \rightarrow \infty} E\left(\bar{u}_{n_{k}}\right)^{\frac{1}{2}}=I_{q}^{\frac{1}{2}}=E(g)^{\frac{1}{2}} .
$$

It now follows from the fact that $\left\{\bar{u}_{n_{k}}\right\} \rightarrow g$ weakly in $H^{\frac{1}{2}}(\mathbb{R})$, the norm equivalency, and the preceding equality that $\left\{\tilde{u}_{n_{k}}\right\} \rightarrow g$ in $H^{\frac{2}{2}}(\mathbb{R})$.

CHAPTER III

STABILITY THEORY FOR GENERAL \boldsymbol{p}

In this Chapter, we prove the following theorem.

Theorem 3.1. Suppose p is an arbitrary positive integer, and suppose the assumptions A2, A3 and A4 are satisfied by $m(k)$. Suppose also that $m(k)$ is a non-decreasing function of $|k|$. Then there exists $q_{0}=q_{0}(p) \geq 0$ such that for all $q>q_{0}, G_{q}$ is non-empty, and is stable in the sense of Corollary 2.5. (q_{0} is defined in Lemma 3.3 below.)

To prove Theorem 3.1, a new argument will be required to establish analogues of Lemma 2.9, 2.10, and 2.11. We have the following three lemmas.

Lemma 3.2. For $\theta \geq 1$ and $q>0, I_{\theta q} \leq \theta I_{q}$ and $\bar{I}_{\theta q} \leq \theta \bar{I}_{q}$.

Proof. Let $\left\{\phi_{n}\right\}$ be a minimizing sequence for I_{q} and let $\psi_{n}(x)=\phi_{n}\left(\frac{x}{\theta}\right)$. Then $Q\left(\psi_{n}(x)\right)=\theta q$ and a computation gives

$$
E\left(\psi_{n}(x)\right)=\theta E\left(\phi_{n}(x)\right)-\theta \int\left[m(x)-m\left(\frac{x}{\theta}\right)\right]\left|\widehat{\phi}_{n}(x)\right|^{2} d x .
$$

Since $m(k)$ is a non-decreasing function of $|k|$, we have

$$
E\left(\psi_{n}(x)\right) \leq \theta E\left(\phi_{n}(x)\right),
$$

and hence

$$
I_{\theta q} \leq \theta I_{q} .
$$

Now since $\bar{I}_{q}=I_{q}-2 q$, then $\bar{I}_{\theta q} \leq \theta \bar{I}_{q}$ for all $\theta \geq 1$ and $q>0$.

Lemma 3.3. For all $q>0, \bar{I}_{q} \leq 0$. Moreover, either there exists a $q_{0}>0$ such that $\bar{I}_{q}=0$ for $0<q<q_{0}$ and $\bar{I}_{q}<0$ for all $q>q_{0}$, or $\bar{I}_{q}<0$ for all $q>0$ (in which case we define $q_{0}=0$). In either case, the conclusion of Lemma 2.10 holds for any minimizing sequence of I_{q}, provided $q>q_{0}$.

Proof. First we show that $\bar{I}_{q} \leq 0$ for all $q>0$. To see this, let ϕ be a positive function in $H^{\frac{1}{2}}(\mathbb{R})$ such that $\frac{1}{2} \int \phi^{2} d x=q$. Define $\phi_{n}(x)=\frac{1}{\sqrt{n}} \phi\left(\frac{x}{n}\right)$. Then

$$
Q\left(\phi_{n}\right)=\frac{1}{2} \int \phi^{2} d x+\frac{1}{(p+1)(p+2) n^{\frac{2}{2}}} \int \phi^{p+2} d x,
$$

so $Q\left(\phi_{n}\right) \rightarrow q$ as $n \rightarrow \infty$. But

$$
\bar{E}\left(\phi_{n}\right)=\int m(k / n)|\widehat{\phi}(k)|^{2} d k-\frac{1}{(p+1)(p+2) n^{\frac{p}{2}}} \int \phi^{p+2} d x,
$$

and the first integral on the right-hand side tends to zero as $n \rightarrow \infty$ by the Dominated Convergence Theorem, while the second integral also tends to zero as $n \rightarrow \infty$. Therefore $\lim _{n \rightarrow \infty} \bar{E}\left(\phi_{n}\right)=0$, which shows that $\bar{I}_{q} \leq 0$.

Now let $S=\left\{q>0 \mid \bar{I}_{q}=0\right\}$. If S is empty, then $\bar{I}_{q}<0$ for all $q>0$, so we may assume S is nonempty. We claim that S is bounded above. To see this, fix a positive function ϕ in $H^{\frac{4}{2}}(\mathbb{R})$. For $q>0$, choose $a=a(q)>0$ such that $Q(a \phi)=q$. Note that $a(q) \rightarrow \infty$ as $q \rightarrow \infty$. Now

$$
\bar{E}(a \phi)=a^{2} \int \phi M \phi d x-\frac{2 a^{p+2}}{(p+1)(p+2)} \int \phi^{p+2} d x
$$

and hence $\bar{E}(a \phi)<0$ when q is sufficiently large. This shows that $\bar{I}_{q}<0$ for large q, as desired.

Now let $q_{0}=\sup S$. Then it is easy to see from Lemma 3.2 that $\bar{I}_{q}=0$ for $0<q<q_{0}$ and $\bar{I}_{q}<0$ for $q>q_{0}$.

Finally, if $q>q_{0}$, then in either case $\bar{I}_{q}<0$, from which the conclusion of Lemma 2.10 follows as shown in the proof of Lemma 2.10.

Lemma 3.4. If $q>q_{0}, q_{1}>0, q_{2}>0$ and $q_{1}+q_{2}=q$, then $I_{q}<I_{q_{1}}+I_{q_{2}}$.

Proof. We shall show $\bar{I}_{q}<\bar{I}_{q_{1}}+\bar{I}_{q_{2}}$, from which the Lemma follows immediately, since $\bar{I}_{q}=I_{q}-2 q$.

We may assume that one of $\bar{I}_{q_{1}}$ and $\bar{I}_{q_{2}}$ is less than 0 , say $\bar{I}_{q_{1}}$. (Otherwise, since $\bar{I}_{q}<0$, then $\bar{I}_{q}<\bar{I}_{q_{1}}+\bar{I}_{q_{2}}$ is obvious.) Then the conclusion of Lemma 2.10 holds for any minimizing sequence of $\bar{I}_{q_{1}}$. Therefore we can use the same argument as in the first part of the proof of Lemma 2.11 to show that $I_{\theta q_{1}}<\theta I_{q_{1}}$ for all $\theta>1$. Hence if $q_{1} \geq q_{2}$, then

$$
\begin{aligned}
\bar{I}_{q} & =\bar{I}_{q_{1}+q_{2}} \\
& =\bar{I}_{q_{1}\left(1+\frac{q_{2}}{q_{1}}\right)} \\
& <\left(1+\frac{q_{2}}{q_{1}}\right) \bar{I}_{q_{1}} \\
& =\bar{I}_{q_{1}}+\frac{q_{2}}{q_{1}} \bar{I}_{q_{1}} \\
& \leq \bar{I}_{q_{1}}+\frac{q_{2}}{q_{1}} \frac{q_{1}}{q_{2}} \bar{I}_{q_{2}} \\
& =\bar{I}_{q_{1}}+\bar{I}_{q_{2}} .
\end{aligned}
$$

If $q_{1}<q_{2}$, then by Lemma 3.2, $\bar{I}_{q_{2}} \leq \frac{q_{2}}{q_{1}} \vec{I}_{q_{1}}<0$ and we can just interchange q_{1} and q_{2} in the above argument.

With Lemma 3.4 in hand, we can now complete the proof of Theorem 3.1 by following the proof of Theorem 2.2 and its corollaries. Lemmas 2.7 and 2.8 remain valid in our present situation, and in place of Lemma 2.11 we have Lemma 3.4. We can now rule out vanishing using Lemmas 2.12 and 2.13 as before (the proof of Lemma 2.13 is still valid, because when $q>q_{0}$ we can substitute Lemma 3.3 for Lemma 2.10). To rule out dichotomy, we note that Lemmas 2.14, 2,15, and 2.16 still hold; and Lemmas 3.14 and 2.16 show that dichotomy leads to a contradiction, provided $q>q_{0}$. The proof then concludes as before.

As an illustration of the application of Theorem 3.1, as well as some of its limitations, we will in the remainder of this Chapter consider the example of the generalized BBM equation (1.5), repeated here for convenience:

$$
u_{t}+u_{x}+u^{p} u_{x}-u_{x x t}=0 .
$$

The functionals of the variational problem associated with this equation are

$$
E(u)=\int\left[u^{2}+\left(u_{x}\right)^{2}\right] d x
$$

and

$$
Q(u)=\int\left[\frac{u^{2}}{2}+\frac{u^{p+2}}{(p+1)(p+2)}\right] d x
$$

and the functional \bar{E} now becomes

$$
\bar{E}(u)=\int\left[\left(u_{x}\right)^{2}-\frac{2 u^{p+2}}{(p+1)(p+2)}\right] d x
$$

For the generalized BBM equation, if the set of minimizers G_{q} is non-empty in $H^{1}(\mathbb{R})$ for some $q>0$, then for any $g \in G_{q}$, we have (see Corollary 2.4)

$$
\begin{equation*}
-c g^{\prime \prime}+(c-1) g-\frac{g^{p+1}}{p+1}=0 \tag{3.1}
\end{equation*}
$$

where c is used for $\frac{2}{\lambda}$. That is, g is a solitary wave profile function with wavespeed c and will be rewritten as ϕ_{c} in what follows.

For each $c>1$, equation (3.1) has a solution which is unique up to a translation and is given by

$$
\phi_{c}=\sigma \operatorname{sech}^{\frac{2}{p}}(\tau x)
$$

where

$$
\sigma=\left[\frac{c-1}{2}(p+1)(p+2)\right]^{\frac{1}{p}}
$$

and

$$
\tau=\frac{p}{2} \sqrt{\frac{c-1}{c}}
$$

For ease of notation in what follows, we denote $Q\left(\phi_{c}\right)$ by $Q(c)$ and $\bar{E}\left(\phi_{c}\right)$ by $\bar{E}(c)$. A computation gives

$$
Q(c)=\frac{1}{p}\left[\frac{(p+1)(p+2)}{2}\right]^{\frac{2}{p}}\left[\sqrt{c}(c-1)^{\frac{4-p}{2 p}} I\left(\frac{4}{p}\right)+\sqrt{c}(c-1)^{\frac{p+4}{2 p}}\left[\left(\frac{2 p+4}{p}\right)\right]\right.
$$

and

$$
\bar{E}(c)=\frac{4 \sigma^{2} \tau}{p^{2}} k(p) I\left(\frac{4}{p}\right)-\frac{2 \sigma^{p+2}}{(p+1)(p+2) \tau} I\left(\frac{2 p+4}{p}\right)
$$

where

$$
I(p)=\int \operatorname{sech}^{p}(x) d x
$$

and

$$
k(p)=\frac{\int \operatorname{sech}^{\frac{4}{p}} x \tanh ^{2} x d x}{\int \operatorname{sech}^{\frac{4}{p}} x d x}
$$

From [PW] and [GR], we see that

$$
I(p)=\frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{r}{2}\right)}{\Gamma\left(\frac{r+1}{2}\right)}
$$

and

$$
k(p)=\frac{p}{4+p}
$$

With the help of the above identities, one can show that $\vec{E}(c)<0$ when $c>\frac{p}{4}$, $\bar{E}(c)=0$ when $c=\frac{p}{4}$, and $\bar{E}(c)>0$ when $c=\frac{p}{4}$.

Suppose $p<4$. By Theorem 2.2, G_{q} exists for all $q>0$. In this case $Q(c)$ is an increasing function on $(1,+\infty], \lim _{c \rightarrow 1} Q(c)=0$ and $\lim _{c \rightarrow \infty} Q(c)=+\infty$. So for any $q>0, G_{q}$ consists of only translates of ϕ_{c} with the unique speed c determined by $Q(c)=q$. It then follows that the solitary waves are individually stable for all $c>1$.

Next, suppose $p=4$. Then $Q(c)$ is again an increasing function on $(1,+\infty)$, with

$$
q_{0}=\lim _{c \rightarrow 1} Q(c)=\frac{1}{p}\left[\frac{(p+1)(p+2)}{2}\right]^{\frac{2}{p}} I\left(\frac{4}{p}\right)
$$

and $\lim _{c \rightarrow \infty} Q(c)=+\infty$. Since $Q(c)>q_{0}$ for all $c>1$, then G_{q} is empty for all $q \leq q_{0}$. For $q>q_{0}$, there exists a unique solitary wave profile with speed $c>\frac{p}{4}=1$ such that $Q(c)=q$. It then follows from $\bar{E}(c)<0$ that $\bar{I}_{q}<0$. Hence, by Theorem 3.1, G_{q} is non-empty for all $q>q_{0}$ and solitary waves are individually stable for all $c>1$.

Finally, suppose $p>4$. Differentiating $Q(c)$ with respect to c gives

$$
Q^{\prime}(c)=2(p+4)\left[\frac{(p+1)(p+2)}{2}\right]^{\frac{2}{p}} I\left(\frac{4}{p}\right) \frac{(c-1)^{\frac{4-3 p}{2 p}}}{\sqrt{c}}\left[(8 p+16) c^{2}-8 p c-p^{2}\right]
$$

The only solution to $Q^{\prime}(c)=0$ that is greater that 1 is

$$
c_{r}=\frac{p}{2 p+4}\left(1+\sqrt{\frac{4+p}{2}}\right)
$$

and we see that $Q^{\prime}(c)>0$ when $c>c_{r}$ and $Q^{\prime}(c)<0$ when $1<c<c_{r}$. So $Q(c)$ decreases on ($1, c_{r}$), achieves minimum value at c_{r} and increases on ($c_{r},+\infty$); and for any $q>q_{r}=Q\left(c_{\tau}\right)$, there are two numbers c_{1} and c_{2} such that $1<c_{1}<c_{r}<c_{2}$ and $Q\left(c_{1}\right)=Q\left(c_{2}\right)=q$. Also note that when $p>4$

$$
c_{0}=\frac{p}{4}>c_{r}=\frac{p}{2 p+4}\left(1+\sqrt{\frac{4+p}{2}}\right)
$$

It is now clear that G_{q} does not exist for all $q<q_{r}$. If $q>q_{0}=Q\left(c_{0}\right), \bar{I}_{q}<0$; so G_{q} exists. Of the two solitary wave speeds c_{1} and c_{2} with the property that $1<$ $c_{1}<c_{r}<c_{2}$ and $Q\left(c_{1}\right)=Q\left(c_{2}\right)=q>q_{0}$, only c_{2} satisfies $\vec{E}\left(c_{2}\right)<0$. Therefore G_{q} consists of only translates of the solitary wave profile with wavespeed c_{2} and it follows that all solitary waves with wavespeed greater then c_{0} are individually stable. Our next claim is that $\bar{I}_{q}=0$ for $0<q \leq q_{0}$. For if not, by Lemma 3.3, \bar{I}_{q} would be negative and G_{q} would be non-empty and contain translates of a solitary wave profile of wavespeed c satisfying $\bar{E}(c) \geq 0(\bar{E}(c) \geq 0$ for $q<q 0, \bar{E}(c) \geq 0$ for $q=q_{0}$), which is a contradiction. It then follows that G_{q} is empty for $q<q_{0}$ and non-empty for $q=q_{0}$. Thus we can extend our stability result by including
c_{0} into the range of wavespeeds of stable solitary waves. (Again, there are only translates of the wave profile of speed c_{0} in $G_{q_{0}}$, since if c is the other wavespeed with $Q(c)=q_{0}$, then $\bar{E}(c)>0$.)

As mentioned in the introduction of this paper, in the case that $p>4$, it was proved by Souganidis and Strauss that the solitary waves are stable for all $c>c_{r}$ and unstable for $c \leq c_{r}$. We have, using a different approach, recovered the stability result for wavespeeds greater than or equal to c_{0}. Since G_{q} does not exist for $q<q_{0}$, our method is not able to show the stability of solitary waves for wavespeeds greater than c_{r} and less than c_{0}. On the other hand, we have completely solved the variational problem associated with the generalized BBM equation for all positive integer values of p and all $q>0$. It is also interesting to observe that while solitary waves with wavespeed greater then c_{r} are stable, the profile functions of those with speed greater than or equal to c_{0} are minimizers of the variational problem and the profiles of those with speed less than c_{0} are not.

CHAPTER IV

FURTHER RESULTS

If $f(u)=\frac{u^{p+1}}{p+1}$, equation (1.1) reduces to

$$
\begin{equation*}
u_{t}+u^{p} u_{x}+M u_{t}=0 \tag{4.1}
\end{equation*}
$$

We are to minimize

$$
E(u)=\int\left(u^{2}+u M u\right) d x
$$

where $u \in H^{\frac{2}{2}}(\mathbb{R})$ is subjected to the constraint

$$
Q(u)=\int \frac{u^{p+2}}{(p+1)(p+2)} d x=q .
$$

As before, we let G_{q} stand for the set of minimizers of $E(u)$ subject to this constraint.

Theorem 4.1. Suppose $f(u)=\frac{u^{p+1}}{p+1}$, and $m(k)$ satisfies assumptions A2, A3, and A4. Then for every $q>0, G_{q}$ is nonempty, and is a stable set of solitary-wave solutions of (4.1), in the sense of Corollary 2.5. If \boldsymbol{p} is odd, then the result also holds for all $q<0$.

Proof. If $q>0$, then all the lemmas that have been proved in Chapter 2 are still valid. The first condition was used to prove Lemma 2.10 and is no longer necessary, since the lemma is obviously true. It is straightforward to modify the proofs of Lemma 2.7, 2.11, and 2.15. The proofs for the other lemmas remain
unchanged. The theorem then follows in the same way as Theorem 2.2 and its corollaries.

For p odd and $q<0$, one simply notes that $\left\{u_{n}\right\}$ is a minimizing sequence for I_{q} if and only if $\left\{-u_{n}\right\}$ is a minimizing sequence for I_{-q}; the result then follows from the result for $q>0$.

The proofs of the stability results we have stated so far have relied on assumption A3, the non-negativity of the symbol $m(k)$. We now give an example showing how the theory may be adapted to a situation in which A3 does not apply. Consider the equation

$$
\begin{equation*}
u_{t}+u_{x}+u u_{x}+M u_{t}=0 \tag{4.2}
\end{equation*}
$$

where the symbol $m(k)$ is given by $m(k)=k^{2}-\alpha|k|$ for $\alpha<2$. The variational problem for this equation is to minimize

$$
E(u)=\int\left(u^{2}+u M u\right) d x
$$

over the set all $u \in H^{1}(\mathbb{R})$ satisfying the constraint

$$
Q(u)=\int\left(\frac{u^{2}}{2}+\frac{u^{3}}{6}\right) d x=q
$$

As before, we let G_{q} denote the set of minimizers, if any exist.

Theorem 4.2. For every $q>0, G_{q}$ is nonempty, and is a stable set of solitary-wave solutions of (4.2).

Proof. For this $m(k)$, there again exists $C_{1}>0$ and $C_{2}>0$ such that

$$
C_{1}\left(1+k^{2}\right) \leq 1+m(k) \leq C_{2}\left(1+k^{2}\right)
$$

for all $k \in \mathbb{R}$. So Lemma 2.7, with a replacement of $H^{\frac{2}{2}}(\mathbb{R})$ norm by $H^{1}(\mathbb{R})$ norm, and Lemma 2.8 are still true.

Let

$$
\begin{aligned}
\bar{E}(u) & =E(u)-2\left(1-\frac{\alpha^{2}}{4}\right) Q(u) \\
& =\int\left[\left(k-\frac{\alpha}{2}\right)^{2}|\widehat{u}(k)|^{2}-\frac{4-\alpha^{2}}{12} u^{3}(k)\right] d k
\end{aligned}
$$

and

$$
\bar{I}_{q}=\inf \left\{E(u) \mid \quad u \in H^{1}(\mathbb{R}) \quad \text { and } \quad Q(u)=q\right\}
$$

We claim that $\bar{I}_{q}<0$. To prove this, it suffices to find a function ϕ such that $Q(\phi)=q$ and $\bar{E}(\phi)<0$. We construct such a ϕ following the lines of similar constructions in [AL] and [An]. To begin with, we consider the case when q is small. Let

$$
\phi=\phi_{\epsilon}=a h(\epsilon x)\left(\cos k_{0} x+\epsilon\right)
$$

where

$$
h(x)=\frac{1}{1+x^{2}}
$$

$\epsilon=q^{2}, k_{0}=\frac{\alpha}{2}$, and a is chosen such that $Q(\phi)=q$. By considering the behavior of both sides of the equation of $Q(\phi)=q$ for small ϵ, one finds that $a \sim \epsilon^{\frac{3}{4}}$
as $\epsilon \rightarrow 0$ (cf. the proof of equation (3) in [AL]; the presence of the cubic term in our expression for $Q(u)$ does not affect this estimate). Therefore, the general computation made in the proof of Theorem 2 of [AL] applies without modification in this case, and shows that

$$
\int\left(k-\frac{\alpha}{2}\right)^{2}|\hat{\phi}(k)|^{2} d k=O\left(\epsilon^{\frac{5}{2}}\right),
$$

while

$$
\int \phi^{3} d x \geq A \epsilon^{\frac{9}{4}}
$$

for sufficiently small ϵ, where $A>0$. Hence there exists ϵ_{0} such that $\bar{E}\left(\phi_{\epsilon}\right)<0$ for $\epsilon \in\left(0, \epsilon_{0}\right]$. This proves that $\bar{I}_{q}<0$ for $q \in\left(0, q_{0}\right]$, where $q_{0}=\epsilon_{0}^{2}$. Now let $\phi=\phi_{\epsilon_{0}}$, and let q be given such that $q \geq q_{0}$. Since $\int \phi^{3} d x>0$, and $Q(\phi)=$ $\int\left(\frac{\phi^{2}}{2}+\frac{\phi^{3}}{6}\right) d x=q_{0}$, we can find $\beta \geq 1$ such that $Q(\beta \phi)=q$. Then

$$
\begin{aligned}
\bar{E}(\beta \phi) & =\int\left[\beta^{2}\left(k-\frac{\alpha}{2}\right)^{2}|\widehat{\phi}(k)|^{2}-\beta^{3}\left(\frac{4-\alpha^{2}}{12}\right) \phi^{3}(k)\right] d k \\
& \leq \beta^{2} \int\left[\left(k-\frac{\alpha}{2}\right)^{2}\left[\left.\widehat{\phi}(k)\right|^{2}-\left(\frac{4-\alpha^{2}}{12}\right) \phi^{3}(k)\right] d k\right. \\
& =\beta^{2} \bar{E}(\phi) \\
& <0
\end{aligned}
$$

and it follows that $\bar{I}_{q}<0$.
Now let $\left\{u_{n}\right\}$ be any minimizing sequence for the constrained variational problem, and define $\rho_{n}=u_{n}^{2}+\left(u_{n}\right)_{x}^{2}$ so that $\int \rho_{n} d x=\left\|u_{n}\right\|_{1}^{2}$. By passing to a subsequence, we may assume there exists $\mu>0$ such that $\int \rho_{n} d x \rightarrow \mu$. The
proof of Lemma 2.9 goes through as before, and since we have established above that $\bar{I}_{q}<0$ for all $q>0$, then the argument in the last paragraph of the proof of Lemma 2.10 shows that the statement of Lemma 2.10 still holds. This is enough for the proof of Lemma 2.13 to be carried out as before, so we have shown that vanishing does not occur for $\left\{u_{n}\right\}$.

To complete the proof of Theorem 4.2, then, it remains only to show that dichotomy can not occur for $\left\{u_{n}\right\}$. For this, we first note that Lemma 2.11 and its proof remain valid. Next. instead of using the proof of Lemma 2.15, we can use the argument given in the proof of Theorem 2.5 of [CB] to show that the conclusion of Lemma 2.15 still holds in the present situation. Finally, the proof of Lemma 2.16 proceeds as above in Chapter 2, and thus dichotomy is ruled out.

REFERENCES

[A] J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, Contemporary Mathematics 221 (1999), 129
[AB] J. P. Albert and J. L. Bona, Comparisons between model equations for long waves, J. Nonlinear Sci. 1 (1991), 345-374
[AL] J. P. Albert and F. Linares, Stability of solitary-wave solutions of long-wave equations with general dispersion, Mat. Contemp. 15 (1998), 1-19.
[An] J. Angulo Pava, Existence and stability of solitary wave solutions of the Benjamin equation, J. Differential Equations 152 (1999), 136-159.
[B] T. B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London Ser. A 328 (1972), 153-183.
[BBM] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A 272 (1972), 47-78.
[Bo] J. Bona, On the stability theory of solitary waves, Proc. Roy. Soc. London Ser. A 344 (1975), 363-374.
[BSS] J. L. Bona, P. E. Souganidis and W. A. Strauss, Stability and instability of solitary waves of KdV type, Proc. R. Soc. Lond. A 411 (1987). 395-412.
[CB] H. Chen, J. L. Bona, Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations, Adv. Differential Equations 3 (1998),

51-84.
[CL] T. Cazenave and P.-L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), 549-561.
[CM] R. Coifman and Y. Meyer, Au delà des opérateurs pseudo-dífférentiels, Asterisque no. 57, Société Mathématique de France, Paris, (1978).
[dBSI] A. de Bouard and J.-C. Saut, Remarks on the stability of generalized KP solitary waves, Contemporary Mathematics 200 (1996), 75-84.
[dBS2] A. de Bouard and J.-C. Saut, Solitary waves of generalized KadomtsevPetviashvili equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 211-236.
[GR] I. S. Gradshetyn and I. M. Ryzhik, Tables of integrals, series and products, Academic Press, (1980).
[KdV] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 (1895), 422-443.
[L1] P. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincaré 1 (1984), 109-145.
[L2] P. Lions, The concentration compactness principle in the calculus of variations. The locally compact case, part 2, Ann. Inst. H. Poincaré 4 (1984), 223-283.
[Lu] D. Luenberger, Optimization by vector space methods, Wiley and Sons, New York, (1969).
[PW] R. L. Pego and M. I. Weinstein, Eigenvalues, and instabilities of solitary waves, Phil. Trans. R. Soc. Lond. A 340 (1992), 47-94.
[SS] P. E. Souganidis and W. A. Strauss, Instability of a class of dispersive solïtary waves, Proc. R. Soc. Edinb. A 114 (1990), 195-212.
[W1] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Communs. pure appl. Math. 39 (1986), 51-68.
[W2] M. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. in Partial Differential Equations 11 (1986). 545-565.

