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Abstract

The intent of this dissertation is to investigate continuous time pricing models for 

commodity derivative contracts that consider mean reversion. The motivation for pricing 

commodity futures and option on futures contracts leads to improved practical risk 

management techniques in markets where uncertainty is increasing. In the dissertation 

closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian 

motions are developed for futures contracts. These solutions are obtained through risk 

neutral pricing methods that yield tractable expressions for futures prices, which are 

linear in the state variables, hence making them attractive for estimation. These 

functions, however, are expressed in terms of latent variables (i.e. spot prices, 

convenience yield) which complicate the estimation of the futures pricing equation. To 

address this complication a discussion on Dynamic factor analysis is given. This 

procedure documents latent variables using a Kalman filter and illustrations show how 

this technique may be used for the analysis. In addition, to the futures contracts closed 

form solutions for two option models are obtained. Solutions to the one- and two-factor 

models are tailored solutions of the Black-Scholes pricing model. Furthermore, since 

these contracts are written on the futures contracts, they too are influenced by the same 

underlying parameters of the state variables used to price the futures contracts. To 

conclude, the analysis finishes with an investigation of commodity futures options that 

incorporate random discrete jumps.
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Chapter 1 

Introduction

Recently, energy markets have exhibited turbulent behavior in energy prices. Crude oil 

prices tripled over the last three years, natural gas prices increased 350% and heating oil 

was selling over $100 per barrel. The volatile market conditions have caused an 

increased interest in the use of financial instruments linked to the price of commodities, 

such as futures, options on futures and commodity-linked bonds. These instruments are 

the main vehicles for hedging price risk, and the ability to price these instruments is 

becoming an increasingly important problem in financial economics. The purpose of this 

study is to investigate the pricing ability of continuous time models for commodity 

futures contracts and options on commodity futures.

Early commodity asset pricing models (see Schwartz (1982), and Brennan and 

Schwartz (1985)) assume all the uncertainty in a commodity’s futures prices is 

summarized by the commodity’s spot price. The pricing solution to these one-factor 

models is the well known cost of carry formula: J{t,t)  = e^'~"^^S(t) . The formula states 

the price of a futures/forward contract is a function of r, the spot rate of interest, Ô, the 

spot (marginal) convenience yield, and S(t) , the spot price. Empirical evidence (Fama 

and French (1987), Brennan (1991), and Bessembinder et al (1995)) suggest that 

modeling the commodity spot price as a geometric Brownian motion is not so 

unreasonable, whereas assuming a non-stochastic convenience yield is questionable. 

Gibson and Schwartz (1990), develop a more realistic model for commodity futures 

contracts by including a second factor, a stochastic convenience yield. Their two-factor



model presumes futures prices are a function of a geometric Brownian motion spot price 

and mean reverting convenience yield. Schwartz (1997) extends the two-factor model by 

introducing a third stochastic factor, the instantaneous interest rate. Hilliard and Reis 

(1998) offer a new pricing equation for Schwartz (1997) by introducing jumps in the risk- 

adjusted spot price of the commodity.

For these three models, closed form solutions are obtained. These closed form 

solutions greatly simplify the comparative statics, and yield precise specifications ready 

for estimation. There is, however, one problem with estimating the pricing equations for 

commodity futures contracts. That is, frequently the factors or state variables are not 

directly observable. Futures contracts are traded on several exchanges and their prices 

are easily observed. Commodities do not trade on organized exchanges making it 

difficult to observe the actual spot prices. In addition, the spot prices in many cases are 

so uncertain that the corresponding futures contract closest to maturity is used as a proxy. 

The instantaneous convenience yield, which is not a traded good, is even more difficult to 

observe. As a result, standard econometric techniques cannot be applied to futures 

contracts written on commodities.

Dynamic factor analysis is an empirical tool well suited to handle the latent 

variable estimation problem. This statistical procedure is an expectation maximization 

algorithm (EM) that uses the state space form so that the Kalman filter component can be 

used.' The Kalman methodology generates conditional forecasts of a latent stochastic 

process at various points in time. The Kalman output for the unobserved state variable is 

then used in a maximum likelihood estimation, so the parameters for the model can be 

acquired. In short, the EM algorithm is a powerful technique capable of documenting the



time series behavior of a latent process, as well as, the parameter estimates for a futures 

pricing equation.

In addition to commodity futures, market participants also use options on futures 

contracts as hedging instruments, and thereby, have a growing interest in pricing them. It 

is natural to ask why people choose to trade options on commodity futures rather than 

options on the underlying commodity. The main reason appears to be that a futures 

contract is, in many circumstances, more liquid and easier to trade than the underlying 

commodity. Furthermore, a futures price is known immediately from trading on the 

futures exchange, whereas the spot price of the commodity is not so readily available.

In the finance literature, models for commodity futures options are natural 

extensions of the original work of Black and Scholes (1973) and Merton (1973). The 

earliest work for pricing options on futures is presented by Black (1976). Black 

presumes commodity prices behave identically with a stock which pays a constant 

dividend yield, and his model is therefore analogous to the Black-Scholes model. The 

problem with Black’s work is that we know from current futures pricing models that 

economists find the assumption of a non-stochastic convenience yield to be too 

restrictive. In light of this existing research, Hilliard and Reis (1998) and Miltersen and 

Schwartz (1998) develop option models that allow for a stochastic convenience yield. 

Miltersen and Schwartz’s approach uses the methodology of the Heath-Jarrow-Morton 

(1991), whereas, Hilliard and Reis use a traditional equilibrium approach. Furthermore, 

Hilliard and Reis (1998) also investigate a commodity futures option model that allows 

for discrete random jumps. The authors observe that commodity prices may not fit the 

presumed dynamics of the Black-Scholes model and may therefore not be an accurate



model for pricing options on futiires contracts. Their model subsumes the work of 

Merton (1976) and Bates (1988, 1991, and 1996) and applies it to commodity futures 

options. In this dissertation, we investigate and develop pricing models for futures 

options given the existing futures models discussed in the literature.

The analysis is organized as follows. In chapter 2, the market fundamental for oil, 

natural gas and heating oil are described. Derivations for the proposed futures pricing 

models are presented in chapter 3. Chapter 4 develops the methodology for pricing 

options written on commodity futures contracts. Chapter 5 presents simulations of the 

theoretical prices for both the futures and option models developed in the dissertation and 

chapter 6 concludes the analysis.



Endnotes

' The Kalman Filter technique is well treated in the control literature and the interested 

reader is referred to Appendix A for an in depth discussion. In addition, other references 

for the Kalman Filter can be found in Anderson and Moore (1979), Harvey (1989), or 

Hamilton (1991) for details.



Chapter 2 

World Crude Oil Market

A fundamental tenet in economics posits that spot prices are the outcome of the 

intersection between market supply and demand schedules. Over the last six years, 

idiosyncratic supply and demand shocks from individual energy markets have created 

turbulent behavior in their respective spot prices. Noted in chapter 1, crude oil prices 

tripled over the last three years, natural gas prices increased 350% and heating oil was 

selling over $100 per barrel. These volatile market conditions have caused an increased 

interest in the use of financial instruments linked to the price of commodities, such as 

futures, options on futures and commodity-linked bonds. These instruments are the main 

vehicles for hedging price risk, and the ability to price these instruments is becoming an 

increasingly important problem in financial economics. The intent of this chapter is to 

better understand the time-series behavior of energy spot prices as it pertains to valuing 

contingent claims written on the energy commodities. In particular, I detail the economic 

characteristics for the crude oil spot market.'

2.1 Crude Oil

In a general it can be said that crude oil, a nonrenewable natural resource, is the 

world’s most consumed energy resource. Individuals who rely highly on energy for 

transportation, power and heat are naturally the largest suitors for crude oil. Globally, 

these consumers are the industrialized countries, or the OECD countries. In addition, 

individuals who have a natural endowment of oil produce oil. Crude producers are 

located all over the globe and the volume of production from region to region is



conditional on the logistics of a particular region. In the following analysis, we detail the 

supply, inventory, demand, and their impact on the world’s crude oil spot prices

2.2 Supply

Prior to the 1800’s, crude oil production was only a fraction of today’s supply. 

This was due impart to the available sources of oil at that time. That is, the world’s crude 

oil supply originated only from small isolated pools, where oil seeped to the Earth’s 

surface from underground reservoirs. With limited technology, gathering and distributing 

oil from these reservoirs was an arduous and timely process, which restricted a 

producer’s ability to supply oil. During the 1800’s, however, the world’s crude oil 

supply underwent dramatic changes. It started in 1859, when Edwin L. Drake 

successfully drilled the first underground oil well. The discovery marked the first time an 

individual had produced oil from an underground oil reserve. Soon after the discovery, 

these producers realized that these underground reserves were not only greater in volume 

than existing above ground reserves but located around the globe as well. As a result, 

more and more reserves were tapped and the supply of world crude oil flourished.

Today, the production of crude oil originates from several regions around the 

globe. Oil production from these regions depends on their geological attributes. For 

example, identifying and extricating oil from land-based reservoirs is easier and less 

expensive than a identifying and extricating oil from a reserve found at the bottom of the 

sea. Additionally, underground oil formations, where the oil is concentrated in pools 

rather than diffused throughout the rock formation, is also easier to find and produce. 

Therefore the exploration and extraction costs for land-based formations, of concentrated



pools, are in general considerably lower than sea based reserves with diffused oil. 

Consequently, some regions will have a natural production advantage over others.

Globally, crude oil production can be dichotomously categorized into OPEC 

(Organization of Petroleum Exporting Countries) and non-OPEC output. OPEC is an oil 

cartel of eleven member nations (Algeria, Indonesia, Iran, Iraq, Kuwait, Libya, Nigeria, 

Saudi Arabia, the United Arab Emirates, and Venezuela) that started in 1960.^ Total oil 

production from these eleven member nations constitutes OPEC production. Moreover, 

non-OPEC production is the total output from the world’s remaining oil producing 

countries. Upon casual observation we see that there are fundamental differences in the 

production for these two production groups.

The eleven member cartel enjoys a comparative advantage in oil production. The 

cartel claims eighty percent of the World’s proven oil reserves^, which is roughly 814 

billion barrels of oil. Most of these oil reserves are characterized as large land based 

concentrated pools of oil, where the marginal cost of producing the oil ranges between 

$1.50 a barrel to $5.00 a barrel of oil. Furthermore, as testimony to their production 

ability, experts estimate that OPEC could produce oil continuously for the next eighty 

years.** This is significant for experts also claim that all non-OPEC producers could only 

produce oil continuously for the next fifteen years. Simply non-OPEC producers do not 

possess the production ability that OPEC has.

Realizing their comparative advantage in the world oil market, the cartel works 

collusively in an effort to safeguard revenues. That is, the cartel tries to influence oil 

prices through organized production quotas. With its production quotas in place, OPEC’s 

contribution to the world’s oil supply has been roughly forty percent over the last nine



years. As OPEC limits its oil production, the cartel enjoys relatively higher oil prices. 

Introductory economic theory suggests that in the face of higher prices, non-OPEC 

production should increase because it is now economical to do so. The reality, however, 

is that most non-OPEC production cannot significantly augment its oil production 

because they are either running at near capacity or it is simply too costly to produce. This 

inability of the non-OPEC producers to meet increased demand gives OPEC, in part, the 

ability to control world crude oil prices.

While OPEC controls a vast portion of the world’s oil, they are not the only 

source of oil. Over the last nine years sixty percent of the world’s aimual production 

comes from non-OPEC sources and in total, non-OPEC producers own twenty percent of 

the world’s proven oil reserves. The majority of non-OPEC production originates from 

three distinct regions: North America, Asia, and Europe. Logistically, non-OPEC 

production is unlike OPEC production. That is, the oil reserves are not all land-based, 

and the oil is typically diffused throughout the ground. Exploring and drilling for oil is 

therefore on average more costly than OPEC production. The marginal costs average 

between $10 a barrel to $20 a barrel of oil, and depending on the price of oil, some wells 

are currently unprofitable to produce.

Regionally, the world’s largest oil producer outside OPEC is North America. The 

region holds sixty-seven billion barrels in proven reserves and produces roughly twelve 

million barrels a day. The United States, the second largest oil producing country in the 

world, accounts for almost 60 percent of the North American production followed by 

Mexico and Canada respectively. Following North American production is Asia where 

the primary source for Asian oil is the former Soviet Union. The former Soviet Union



owns sixty billion barrels of oil reserves and produces nine million barrels a day. Russia 

ranks third in world oil production and is the largest oil exporter outside of OPEC. Other 

notable Asian producers are China and India, who contribute three million and less than a 

million barrels a day, respectively. North Sea production, off the coast of the United 

Kingdom and Norway, is Europe’s main artery for oil production. Oil production 

between Norway and the United Kingdom is evenly split, with production totaling 

roughly six million barrels a day.

2.3 Inventories

In addition to the production of the world crude oil, portions of the global oil 

supply are not consumed, but held in stock. There are two categories of oil reserves, 

discretionary stocks and strategic stocks. The difference between the two categories is 

ownership. Discretionary stocks are inventories held by industry participants, and 

strategic stocks are reserves held by governments. The Energy Intelligence Groupé 

estimates there are seven to eight billion barrels of oil held in total reserve with the 

majority held in strategic reserves.

Governments hold strategic inventories for precautionary reasons. That is, 

governments, mainly of the industrialized countries, hold strategic reserves to protect 

themselves from adverse price shocks due abrupt supply shortages. The United States 

owns the largest strategic oil reserve, and started building reserves in 1975 with the 

Energy Conservation Policy Act (EPCA). The EPCA commits up to four billion barrels 

of crude oil to be held in reserve. Other industrialized countries, who also wish to 

dampen the impact of price spikes, hold similar reserves. In total, roughly ninety percent 

of the world’s oil storage is held in strategic reserves.
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The remaining ten percent of the world’s oil inventories are held in discretionary 

stocks. Although minor in volume, discretionary stocks provide an important function 

for the world’s oil market. First, discretionary stocks help smooth market disturbances 

between market supply and demand imbalances. Second, discretionary stocks also reveal 

valuable information about current and future market conditions/prices. Current market 

conditions are monitored by the volume of crude oil through these storage facilities. For 

instance, if there is greater inflow than outflow, then participants witness greater 

production than demand and inventories will rise. Market participants notice the excess 

supply and prices adjust accordingly. In addition, market participants make informed 

forecasts about future market conditions from existing inventory levels. For example, if 

there is a low level of inventories going into a peak consumption period then expected 

future spot prices will ratchet upward in anticipation of the scarce supply.

On the whole, global crude oil stocks historically follow seasonal variations. 

These inventories are typically drawn down in the winter and rebuilt in the spring. In the 

winter, the need for heating fuels (heating oil, propane, and kerosene) in the Northern 

Hemisphere increases. At current production rates, the increased need for these middle 

distillates causes pressure on the current oil supply. To ease the burden on current 

production, crude oil stocks are drawn down causing storage levels to fall during the 

winter months. When the heating season passes and the demand for oil subsides these 

inventories are usually replenished. In short, this pattern creates a tendency for world oil 

prices to be high in the fall and low in the spring.

2.4 Demand

11



In similar form to supply the world’s demand for oil also underwent dramatic 

changes. The 1800’s were marked with new discoveries and technological advances that 

lead to increase the market for crude oil. In 1880, scientists found that the molecular 

composition of crude oil was simply a mixture of hydrocarbons. The discovery enabled 

scientists to separate oil into finer parts. That is, scientist used a sophisticated distillation 

process, which progressively heated crude oil, to produce different grades of fuel at 

different temperatures. These grades of fuel (natural gas, gasoline, diesel, heating oil, 

and asphalts) are called distillates. These distillates are distinguished by their viscosities 

(viscosity is the property of resistance to flow in a fluid or semifluid). Gasoline is less 

viscous than diesel, which is less viscous than heating oil. The viscosity of the various 

distillates dictates how fast these fuels bum and how they may by used. Thus, the 

scientists’ discovery created an even greater uses for oil and thus, greater demand.

Furthermore, this discovery was timely because in 1889 two Germans, Gottlieb 

Daimler and Wilhelm Maybach, invented the first combustible engine (automobile). This 

new invention ran on straight run gasoline or kerosene, thereby creating a new use for oil. 

In addition, further refinements to the combustible engine and the mass production of the 

automobile enhanced the need for oil. Inevitably, as transportation became more 

widespread the need for oil became more and more pronounced.

The discussion above illustrates that the global need for energy directly influences 

the demand for crude oil. Industrialized countries produce the greatest amount of 

economic activity, and thereby, have the greatest need for energy. As expected, the 

countries of the Organization for Economic Cooperation and Development (OECD) 

consume two thirds of the world’s daily oil consumption. The primary use of oil in these

12



OECD countries is for transportation, heating and power. The United States is 

responsible for twenty five percent of the world’s daily oil consumption. The United 

States depends on private vehicles to travel relatively long distances, and uses more oil 

for transportation than for heat and power. Per capita, the United States stands alone in 

its consumption of oil, whereby the average individual consumes almost 3 gallons per 

day. Japan, the world’s second largest consumer, utilizes nine percent of the world’s oil. 

European consumption is evenly spread among the nations, and amounts to eight percent 

of world’s daily oil consumption. Transportation in Europe and Asia is far less than the 

United States and oil is used more for power generation and heating. The per capita 

consumption rates reflect the lower oil utilization and equal 1.4 gallons per day. 

Although these consumption rates are lower than the United States, they significantly 

exceed the consumption of developing countries, which typically run 0.2 gallons per day 

per capita.

Discussed earlier, the demand for oil exhibits seasonal trends. The reason stems 

fi'om the regional concentration of the OECD countries. Globally most OECD countries 

are located in North America, Asia and Europe, all of which are in the Northern 

Hemisphere. Thus during the Northern Hemisphere’s cold winter months all 

industrialized countries have a collective need for heat, thereby causing significant 

increases for the demand of oil. In general, there is a swing of three to four million 

barrels per day (some 5 percent) between the 4th quarter of the year, when demand is the 

highest, to the 3rd quarter, when it is the lowest. Again, as a result, crude prices tend to 

peak during the winter months and fall off in the summer.

2.5 Prices
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Throughout the latter part of the nineties, world crude oil prices^ were subject to 

turbulent price swings. For instance, the thirty year historical average price of a barrel of 

West Texas Intermediate (WTI) is $19, and over a four year period prices for WTI crude 

oil were as low as $11 per barrel and as high as $38 a barrel (see Figure 1, page 17). 

These price swings are attributed to changes in market demand caused by abnormal 

weather, and market supply shocks.

Starting in 1996, crude oil prices were $22.50 a barrel. The price of oil was above 

its historical average of $19 due in part to a hard winter that increased the need for oil. 

But, beginning in 1997 the world economy witnessed the start of a global recession 

brought on by what economists labeled “the Asian financial crisis”. The Asian financial 

crisis started with Thailand commercial banking system. Thai banks issued loans to 

many risky Asian corporations who were eventually defaulted on their loans. Default on 

these loans caused the Thailand banks to fold, which in turn, adversely impacted 

Thailand’s economy. This financial effect propagated to other Asian countries affecting 

their economies and pushing them into a recession as well. Not everyone felt the 

financial distress from Asia. Some countries like the United States and Germany 

continued to experience high economic output, but on the whole, total world output 

declined. In response to falling global demand, world crude oil prices started to collapse.

Independent of the global recession, the weather during 1997 and 1998 

contributed further to reduce the demand for oil. Temperatures during the 1997 and 1998 

winter periods were abnormally high. These aberrant conditions led to unusually low oil 

consumption during the peak consumption period. The industrialized countries simply 

had little need for heat and so little need for oil.

14



In addition to the demand shocks discussed above, there were shocks to 

production that contributed to the price collapse as well. These production shocks were 

the result of OPEC nations exceeding their production quotas. During the price decline, 

all the OPEC nations were losing revenues, and in order to recoup their losses, the cartel 

members covertly exceeded their quotas. The result was a world oil glut. Prices 

continued to fall and it was not until March 1998 before OPEC met and decided to 

collectively cut production. At this time, however, these initial production cuts were 

offset when Iraqi oil was allowed to trade under United Nations Security Council 

Resolution 986. By January 1999 global crude oil prices fell to a record level of $11 a 

barrel.

In April 1999, the global economy started showing signs of recovery from the 

Asian financial crisis. In reaction to increased world demand, the price of crude oil 

started increasing as well. In fact, crude oil prices actually tripled over the next year and 

a half. Over this time period, OPEC production cuts remained intact and the world’s oil 

supply became inadequate to meet the growing need for world oil. OPEC production 

cuts and increased world demand, however, were only partially responsible for the 

dramatic price increase.

Weather conditions prior to 1999 and low inventory levels also contributed to the 

upswing in crude oil prices. The winters prior to 1999 created acute shortages in middle 

distillates. In fact, petroleum stocks for industrialized countries were at their lowest 

levels since the middle 1980’s. Anticipating the upcoming peak consumption months for 

heating oil and diesel, and with petroleum stocks at all time lows, oil companies 

increased runs in their refineries to fill the petroleum reserves. With the current world oil

15



production fixed, crude oil storage withdrawals were necessary to mitigate any price 

spikes due to the sudden increases in the demand for oil. Consequently, increased 

distillate production caused shortages in oil stocks for the OECD countries leading up to 

the winter o f2000. Starting the 2000 winter season crude stocks were below average and 

remain below average throughout the entire winter. In addition to the low storage levels, 

the winter temperatures for 2000 were abnormally low. The cold temperatures caused 

atypically high demand forcing the price of crude upward. The world price of crude oil 

spiked to an all time high of $38 a barrel.
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Figure 1

This graph displays the time series for the WTI futures contracts listed on NYMEX. The 
bold line is for the nearby futures contract and the lighter line is the 18-month contract
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Endnotes

' All information and statistics were found from the Department of Energy’s Energy 

Information Administration (EIA) website. This site is located at www.eia.doe.gov.

 ̂ The Organization of Petroleum Exporting Countries (OPEC) was formed at a 

conference held in Baghdad on September 10-14, 1960. There were five original 

members: Iran, Iraq, Kuwait, Saudi Arabia, and Venezuela. Between I960 an 1975, the 

organization expanded to 13 members with the additions of Qatar, Indonesia, Libya, 

United Arab Emirates, Algeria, Nigeria, Ecuador, and Gabon. Currently OPEC consists 

of eleven members with Ecuador and Gabon withdrawing their membership in 1992 and 

1995 respectively.

 ̂ Proven reserves are the known reserves stocks. For example, reserves in Russia and 

China exist but the degree in which they exist in uncertain. These levels are not proven 

and thus not reported.

 ̂These figures are the production-to-reserve ratios reported by the EIA.

 ̂Energy Intelligence Group is an independent information company that specializes in 

providing the highest quality business intelligence on the global oil and gas industries. 

There internet site is www.energyintel.com.

® Fundamentally, no single price for world crude oil exists. Market participants, instead, 

monitor spot market activity through three different benchmarks, OPEC basket. North 

Sea Brent crude and West Texas Intermediate (WTI). The OPEC basket made up of 

seven crude oils: Algeria’s Saharan Blend, Indonesia’s Minas, Nigeria’s Bonny Light, 

Saudi Arabia’s Arab Light, Dubai’s Fateh, Venezuela’s Tia Juana Light, and Mexico’s
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Isthmus. Brent Crude and WTI crude are both light sweet crude oils unlike the OPEC 

crudes, which tend to be sour (higher sulphur content), and are generally priced more 

than the OPEC crudes. In addition to the high quality grade, both WTI and Brent crude 

are appealing benchmarks because they also trade on futures markets. WTI futures trade 

on the New York Mercantile Exchange (NYMEX), while Brent futures trade at the 

International Petroleum Exchange (IPE). Organized trading for these benchmarks 

enhances the ability for market participants to monitor spot market trading.
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Chapters

Commodity Forward and Futures Pricing Models

The focus of the present study is to compare models of the stochastic behavior of 

commodity prices in terms of their ability to value existing derivative contracts. The 

purpose of this chapter is to intuitively derive three futures pricing models. We start with 

a simple one-factor model, where we presume that all the variability in a commodity’s 

futures price is determined entirely by a mean reverting spot price. Since the futures 

contract derives its value from an underlying commodity this model should work 

reasonably well. Modeling spot prices this way, however, we may be too restrictive in 

our presumption about movements in the spot price. We have no reason to believe that 

all commodity spot prices follow a mean reverting process. From the finance literature, 

(see Bessembinder et al (1995), Fama and French (1987), (1988)), there is evidence that 

inventories follow seasonal trends. With this in mind, we look at a second model where 

we consider the futures price to be a function of the spot price and a stochastic 

convenience yield. The convenience yield as defined by Brennan and Schwartz (1985) is 

the flow of services net of storage costs that accrues to an owner of the physical 

commodity, but not to the owner of a contract for future delivery.* Thus, if inventories 

oscillate seasonally then so will the convenience yield. For our purpose, the two-factor 

model should bring greater flexibility and realism to modeling conunodity futures prices. 

To conclude, we go one step further by considering a three-factor model in which 

different prices for forwards and futures are found. This model includes the effects of a 

stochastic interest rate to the two-factor model.

20



To begin, we need to review the basic definitions of and distinctions between 

futures and forward contracts. A futures/forward contract is an agreement to buy or sell 

an asset at a certain time in the future for a certain price. An investor who agrees to buy 

has what is termed a long futures/forward position and an investor who agrees to sell has 

what is termed a short position. The price agreed to by the two parties is known as the 

futures/forward price. Now, forward contracts are negotiated directly between two 

parties, while futures trade on an organized exchange. As a result, forward contracts are 

not standardized where futures contracts are. Delivery of the underlying asset for a 

forward contract is specified at a unique date, and delivery or final cash settlement 

usually takes place. In contrast, futures have a range of delivery dates and they are 

usually closed out prior to delivery.

The role of the futures exchange is to organize trading so that contract defaults are 

minimized. In an effort to control default, futures exchanges require investors at the time 

they enter a contract to deposit funds into a margin account. At the end of the trading 

day, the account is adjusted, or marked to market to reflect the investor’s gain or loss. If 

the account falls below some reserve level the exchange gives a margin call. When the 

call is received, the investor must deposit a sum of money making up the difference 

between the current balance and the initial margin. If the account appreciates above the 

initial margin the investor is allowed to withdraw the gain. These transactions occur at 

the close of each day, and they protect an investor from others defaulting on the contract. 

In opposition to the futures, forward contracts require no margin account.

3.1 One Factor Model
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In a seminal paper, Black (1976) developed a pricing formula for a futures 

contract written on an spot commodity. This pricing formula is an extension of the Black 

and Scholes’ (1973) option pricing model and Black’s cost of carry solution is,

This simple pricing model is economically appealing for two reasons. One, it is arbitrage 

free, and two, the equation is obtained free from an investors’ preferences. It is simply a 

powerful result. A more general and sometimes a simpler approach, however, can be 

used to obtain the same closed form solutions. This alternative method entails altering 

the true probability distribution for a particular stochastic process, and then computing a 

risk-neutral conditional expectation. This methodology is called equivalent martingale 

measures and is the method used in this study to price contingent claims.

There are useful implications in financial modeling from using equivalent 

martingale measures.^ One, the risk neutral processes are purged of any risk premiums 

associated with their expected return. As a result, market participants may price an asset 

by simply discounting its forecasted future value by the known riskless rate of return. 

Second, these risk-neutral expectations are related to the arbitrage-free pricing method 

used by Black-Scholes. Therefore, any contingent claim that is priced under an 

equivalent martingale measure will itself be preference and arbitrage free.

The link between the risk-neutral expectation method of solution and the 

arbitrage-free method is established by the Feynman-Kac theorem.^ Intuitively, this 

theorem shows that a correspondence between a certain class of conditional expectations 

and partial differential equations exists. A necessary condition for such a correspondence 

to exist is the underlying stochastic process needs to be Markovian. This condition is not
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too restrictive for in finance, its widely accepted by economists that asset prices follow a 

Markov process.

We are now ready to derive a pricing model using an equivalent martingale 

measure. Presume the commodity spot price follows a geometric Brownian motion'*

dS(t) = + aS(t)dZ^(t) . (1)

To obtain a solution for the futures contract price, a version of the Feynman-Kac theorem 

is invoked, and for tractability the market price of spot price risk is assumed to be 

constant.^ The Feynman-Kac solution for the futures price is

F(S(T),T) = E;(S(T)), (2)

where F(S(T),T) is the futures price for delivery at time T, and S(T) is the commodity 

spot price at time T. The expectation is taken with respect to the risk-adjusted 

distribution for the spot price.

Stated earlier, equation (2) is the price to be paid for the commodity at time T. 

This price is simply the risk neutral forecast of today’s spot price. Since the forecast of 

the spot price is preference free, we may obtain today’s spot price by simply discounting 

the value by the riskfree rate of return. Since the risk-neutral spot price appreciates by 

the risk free rate, the discounted expected value will equal today’s spot price. We can 

then say that the risk neutral process for the spot price is tingale then the futures price at 

time T will equal the today’s spot price appreciated over the holding period by the risk 

free rate of return. This result is shown below by solving the expectation on the right- 

hand side of equation (2).
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To start, let A'(f) = ln(S(t)). Since %(r) is a twice-continuously differentiable 

function of S(0 and continuously differentiable in /, then using Ito’s lemma we can write 

the increment of A (̂r) as

Now substitute in expression (3) the expressions for dS(f) and

^ ( 0  = ^  W ) d r + ,

dX (t) = /idt + adZ^ { t ) - - a ^ d t .
2

ûMf(0 = I . 2/ / - - O '  \dt + adZ,0).  (4)

Equation (4) is the stochastic differential equation that depicts the salient time series 

characteristics of the logarithm of the spot price process. This movement is separated

- r + ' ’
into two parts. There is a drift equal to | / / - —a  \dt, and an innovation term given by 

adz,if).

Our objective is to find a solution for the spot price process that satisfies equation 

(2). By inspection of equation (1) the commodity is not risk free. Hence, the expected 

gross appreciation in the commodity’s spot price is depicted as

5(0

This gross return will on average be greater than the gross riskless rate of return. That is, 

on average
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(! + /?)> (1 + r)

otherwise investment in the risky asset would not occur. The difference between R and r  

is A.. Z = R - r ,  represents the risk premium associated with the variability in the 

commodity’s spot price. By definition X, is greater than zero and embedded in the mean 

return for S{t). As a result, discounting the expected value of the terminal spot price by a 

risk-free discount factor will not yield a martingale.® We must somehow find a way to 

purge X from S(t) in order to price a futures contract according to expression (2). To 

achieve this objective we transform the probability distribution for S(t) using the 

Girsanov theorem.’ The Wiener process in (4) is transformed to

dZ ,(t)  = d Z ] ( t ) - M t ,  (5)

and we rewrite the stochastic differential equation for X{t) above as a new risk-adjusted 

process:

dX(t) = + a(dZ](t )  -  Adt).
\  A J (6)

Gibson and Schwartz (1990) show that the market price per unit of spot price risk A can 

be solved. They argue the spot sale of a commodity is a contract for the immediate 

delivery of a commodity and in equilibrium this contract must satisfy the same partial 

differential equation as the contingent claim.^ Their solution for the market price of spot 

price risk is

A =  — . (7)
c

Substituting equation (7) into equation (6) and rearranging yields
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dX{t) = jt// + O- dz]{t) -

dX(t) = r -  + adZlit).

Now integrate over equation (8) from r to 7  to obtain

\dX(u) = /^ r -  + <7 / dZ*(u),

(8)

X (T ) -X { t )  = r - ] - a A { T - t )  + cr]dZ]{u),
2. j  I

X{T) = X { l ) * \ r - ^ < A T - l ) + J \ d z : { u ) .

Raising e to equivalent exponential powers, equation (9) yields

(9)

\ r - \ - a A ( T - l ) * a ] d Z ] ( u )
S(T) = S(t)e^ "  ̂ ' (10)

We now have a risk-adjusted expression for the terminal spot price. Recall from equation 

(2), the futures price is equal to the risk-adjusted expected spot price, E*{SÇT)). The

question is how do we evaluate the expected value for the spot price? Consider the 

following. If

y  = ln5’, 

e*' = S ,

4 M  .

Furthermore, if  /( /)  ~ N(jJt,a^t) then
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£ . k “ ]= fe =e "  cfy(0,

r 1 % 1
f , [ / " '] =  J -7 = W ^  '  "■' ■ (II)

-ooV2;r<TV

The exponent is not a perfect square, but can be completed into one by multiplying the 

right-hand side of (11) by

Substituting the above expression into (11) yields

Since  ̂ is independent of the variable of integration, it is a constant with respect

to V(i) , and can pass through the integral. Rewriting the equation above we obtain

-«V2-

*y(0
dy(0 . (12)

Working on the exponent for the term inside the integral in equation (12), we can rewrite 

the exponent as

fjt + —

2

cr^/

a h

^y(/)—/it] ——(-2y(t)cr^t + 2/rfo’*/ —<r^t)

cr*/
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-  ̂  -  2yiS)a^t + -  crV)

-  j  ((y(0)^ -  2y(/)/rf+ -  2y{f)a'^t + 2/rf<7 /̂ -  <7 “/)

(TV

(TV

-  ̂  ((y(Oy -  2 X 0 (^  + cr^t)+ )

<7̂ t

-^ j[y (0 -( /^ + o -^ 0 r

(T̂ /

Thus, we may rewrite equation (12) as

■’■' <^C) ■ (13)-iV2;r(TV

Since

-«V ^o-v

integrates to one for a normal random variable with mean 0  + at^ and variance . The 

expected value of Y{t) maybe expressed as

. (M)

For my model, we are interested in E* J where X(t)  = In S(t) . Therefore, we need

X(t)  = ln5(0
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, X i l )  _ S(t)

= S(T)

Since X(T)  follows a Gaussian distribution we may write the expected value as

e ; ^ ' ’>]=Er,[s(T)\=e (15)

The first moment for X{T) is

r /  , \  T
e :[X(T)\=E', X «)+  r - - < r ’ {T -l)+ a \d Z ',(u )

^  ^  t

£ ; [ j f ( r ) ] = ^ ( 0 + f r - i < r O ( r - < ) . 

The second moment of X{T) is

v;  [%(T)]=e : [at(o -  e : (x (i))J ,

(16)

v:Ix (t )]=e ; X ( t ) + î r - —cr̂

v;[x {T)]‘ e : '\dZ](u) (17)

Before we go further, we must be capable of evaluating the integral in expression (17). 

This is not a straight forward matter and can be quite difficult. The reason is the integral 

in equation (17) is stochastic, meaning it is not a smooth function. Since the function we 

are considering is not smooth, no limit exists. Consequently, we may not use the 

standard Riemann integral to evaluate expression (17). We need to find another method 

for evaluating equation (17).
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To evaluate expression (17) we invoke the use of Ito’s isometry/ Ito’s isometry

states

j m d w ( t ) j g ( t ) d w ( o  = <7i j g i o m d t (18)

where dW(t) ~ N(0,(r4t). The right hand side of expression (18) is a smooth function 

of time. Ito’s isometry shows that the square of a stochastic integral reduces to a well 

know Riemann sum. Therefore, with the result in (18), the variance for a stochastic 

process is stated as

(19)

dW{t) ~ N(0,cr^V7). This result is for dW(t) ~ A/"(0,<7„>/F), however, we have dZ]{f)\

where dZ]{f) ~ N{Q,4t) . Substituting the results from equation (19) into equation (17) 

yields

t

V;[X(T)] = a \ T - t ) .

Substitute equations (14) and (20) into equation (15) yields

(20)

(21)

Equation (21) states that the risk neutral expectation of the spot price at time T  is simply 

the future value of today’s spot price appreciated by the known riskless rate of return. 

Just as we discussed above, this makes sense. The expectation in expression (21) is taken
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with respect to risk-adjusted probability distribution. The spot price is purged of any risk 

premium associated with it, and thereby, the drift will equal the risk free rate. We see 

that if we discount the risk-adjusted expected value for the spot price we get a martingale. 

The best forecast we have for tomorrows price will be today’s spot price. The futures 

price is then

FiS{T),T) = S{t)e'^^-'K (22)

Equation (22) is Black’s well known cost of carry solution.

Given Black’s cost of carry solution, we see that the futures price for a 

commodity contract is simply the expected value of a risk-adjusted spot price. While 

solution is arbitrage free and a function of the expected spot price, it may not be a 

reasonable depiction of a commodity’s futures price. The underlying spot price is 

assumed to follow a geometric Brownian motion. Intuitively, this time series behavior 

does not seem consistent with commodity spot prices. Consider figure 1. This figure 

shows the time series behavior of both the nearby and eighteen month futures price 

contract for crude oil over the last six years. Allowing the nearby contract to proxy for 

the spot price, and the eighteen-month contract to proxy the expected spot price, we can 

see some systematic behavior in these time series. One, the spot price is more volatile 

than expected spot prices, and two, the spot price seems to oscillate around it’s long run 

mean. Does this make economic sense?

Schwartz (1997) argues, in an equilibrium setting, we would expect when prices 

are relatively high, supply will increase since higher cost producers of the commodity 

will enter the market putting downward pressure on prices.'*  ̂ Conversely, when prices 

are relatively low, supply will decrease since some of the higher cost producers will exit

31



the market, putting upward pressures on prices. The impact of relative prices on the 

supply of the commodity will induce mean reversion in commodity prices. The mean 

reverting nature of commodity prices has been considered in a series of recent articles 

(Gibson and Schwartz (1990) Cortazar and Schwartz (1994), Schwartz (1997), and 

Miltersen and Schwartz (1998), Brennan (1991) and Bessembinder et al (1995)). The 

evidence suggests that an alternative spot price process should be considered when 

pricing commodity futures. Consider the following model.

Presume the commodity spot price follows a mean reverting stochastic process

-  = k{ju- \nS)dt + adz, (23)
S

where S  is the spot price, // is the long run expected return for the spot price, k  is the 

speed of adjustment factor measuring the degree of mean reversion to the long run mean 

return, cr is the diffusion coefficient, and dZ, is the increment of a standard Brownian

motion." Equation (23) illustrates the tendencies of commodity prices to revert to their 

long run mean.'^ That is, if the logarithm of the spot price is higher than the long run 

retum the bracketed term in equation (23) is negative putting downward pressure on the 

incremental movement in price. Hence, the spot price reverts back toward its average 

and the rate of this adjustment is determined by k. The solution to a commodity’s futures 

price given the stochastic differential equation in equation (23) is again given by 

Feynman-Kac in expression (2). Therefore, we need to solve for the futures price under 

an equivalent martingale measure.

To find a solution to the above stochastic differential equation, we start by 

rewriting the spot price in terms of its logarithm. We let X  = ln5, where X  is a twice
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differentiable function of S  and continuously differentiable with respect to time. Using 

Ito’s Lemma, and the transformation the differential for the logarithm of the spot price is

dX = X ,dS  + ̂ X J S ^ + X , d t  + X„dt^ , (24)

where and Xg^ are the partial derivatives with respect to spot price and X , , X„ are

the partial derivatives with respect to time. Substituting for Xg,Xgg,X„dSsxià.{dSj 

into equation (40) we obtain

Rearranging the terms in equation (25) yields

dX  = A(p -X )dt-¥  adZj - —a^dt,

dX

2

dt + adZ,,

dX = [k(a-X)]dt + adZ„  (26)

^ 2
where a  = . Equation (26) follows a mean reverting process of the Omstein-

Uhlenbeck type. Note, the difference between equation (23) and equation (26). Equation 

(23) is a nonlinear function with respect to the state variable (the spot price), and equation 

(26) is a linear. The advantage of rewriting the spot price process is an immediate 

textbook solution exists for equation (26) (this result is illustrated below). Once we have 

the solution for (26) then we have the solution for (23). This solution leads us to

F (5 (r ) ,r )  = £;(S(D ). (27)
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Again, F(S(T),T) is the current price of a futures contract expiring at time T, and£*[] is 

the expectation operator under an equivalent probability measure.

Under standard arbitrage assumptions, the dynamics of the Omstein-Uhlenbeck 

process under the equivalent martingale measure can be written as

dX  = [A:(a* -  X ^ t  + <sdZ] (28)

where a* = a - À ,  X is the market price of risk (assumed constant) and dZ] is the

increment of a standard Brownian motion under the equivalent martingale measure. 

Indexing equation (28) in consideration to time, expression (28) is rewritten as

dX{t) = [A:(a* -  X{t))\lt + csdZ] ( t) . (29)

Rearranging equation (29)

dX(0 + kX(t)dt = k a d t  + cdZ] (/), 

and multiplying both sides of the expression above by yields

e**{dX{t) + kX{t)dt) = e**(kadt + adZ]{t)) . (30)

The left-hand side of equation (30) is the algebraic expression for the total differential of

e'^Xit). For example, taking the total differential of e^X(t)  yields

d[e^X{t)] = ^ ^ ^ d t  + ,
 ̂ dt dX{t)

d\e^X{t)\ = ke^X{t)dt + e'^dX{t) .

Replacing the left-hand side of equation (30) with the left-hand side of the expression 

above yields

d[e^X(t)\=e'“[ka‘’dt + adZ](t)) . (31)
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Integrating over equation (31)

\d[e^X{u)]^ \e ^ k a d u  + a \e^dZ]{u ) ,
/  /  /

which yields

r T

e^X{u)[ = a f e * “kdu + afe'^dZ;(u) .
t /

Evaluating the left-hand side and integrating the drift term of the above yields

T

e^^X{T)-e^X{t) = a e ' ^ [  +afe*^dz;(u) .
t

Normalizing on X{J)  yields

X{T) = + ae'*'’ \e'“dZ] (u),

or

X(,T) = eX(t) + a* (1 -  0) + ae“"  je^dZ*, (u) (32)
/

where 6 = , The expression for X(T) is the solution for the stochastic differential

equation in equation (28). A solution for the risk-adjusted spot price process is available 

by taking the exponential of the left-hand side and right-hand side of equation (32)

S(T) = exp
< r
ex {t)+ a *(1 -  0) + ae~" \e^dZ] if) (33)

From equation (27), we know the futures price is a function of the risk-adjusted expected 

spot price. With the result presented in equation (15), we need to find the first and 

second moments for equation (32).
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Taking the risk neutral conditional expected value of equation (32) at time r = 0

yields

El[X{T)]=El e^^X it)  + a*(l -  \e^dZ]{u) (34)

The expected value ofdZ*(«) is zero, thereby making E* ae -kT [e '-d Z 'M =  0 .

El [%(T)] = a* + (%(0) -  a* (35)

The conditional variance for logarithm of spot price evaluated at r = 0 under the

adjusted probability measure is

V ;[X (J )]= E I\X (T )-E I(X {T )^ .  (36)

Substituting in for X{T) ,El{X(J')) and simplifying terms, the risk neutral variance is

V;[X(T)\=El ae ■kT fe '“dz;(u)

K [X (T )]= a 'e-’‘’’E; je ‘-dZ:(u) (37)

In order to evaluate equation (37), we must integrate the right-hand side. The integral in 

equation (37) however, is stochastic and itself a random variable. That is, dZ is nowhere 

differentiable and the integral techniques in deterministic calculus cannot be applied. 

The integral in equation (37), however, is a square integrable second order stochastic 

process and is defined in the sense of Ito. Thus, we may use Ito’s isometry, to evaluate 

equation (37).
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2*r —
t '

2 k 0
r ; [ x ( r ) ] = a V

Now substitute equations (35) and (38) into (15) 

Bo‘[S(r)]=exp + o '(l-e -* ’')+ — fl-e -" ’'] 
Ak

(38)

(39)

Substitution of equation (39) into equation (27) gives an analytical solution for the 

futures price. The futures price is

F[5(7’) ,r ]  = exp ln5(0) + a  (l-e-*")+  ̂ [ l  - (40)

Expression in (40) is the solution to the partial differential equation shown in 

appendix B. This result is not a surprise. As discussed earlier, the Feynman-Kac solution 

for the risk-neutral futures price is an implicit solution to a corresponding partial 

differential equation. This result is explicitly shown through using the differential form 

of Ito’s Lemma and applying the Girsanov transformation to the driving Wiener process. 

Illustrating,

 ̂ a s(o  2 dS{t)dS{t) ^d t

(41)
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Substituting expressions for dS{t) and [dSCOp into equation (41) yields

= F,dt + F, (k{M -  InS{t))S{t)dt + aS(t)dZ, ( O ) lS(t)f d t . (42)

Rearranging terms in (42) yields

= [5^ '» ‘̂ '[S « r+ ^ ',* (^ -ln S (0 )S (< ) + F ,V ( + aS(()^-,<e,(0 ■ (43)

Expression (43) is the stochastic differential for the futures price under the true 

probability distribution for the futures price. We need a risk-adjusted process. Applying 

the Girsanov theorem, the Brownian motion term, dZ,(t), becomes dZ]{t)-Xdt. The 

transformed futures process is

= |^iF„o-^[5(/)f +F,Â:(//-ln5(0)S(0 + F, jd / + o S ( / ) F , ( < ( 0 - M ) .  (44)

Rearranging,

<(f[5(r).r]=fiF„<r=[S(0r+J=-,*0/-A '<T-lnS(0)S(/) + F,j<* + oS«)F,dZ;(<).

(45)

X
Note in the expression above that A' = —. Under the risk neutral probability measure, 

equation (45) is a martingale. That is, the expected value of (45) is zero. This means 

E][dF] = E: |^ |F „ o - '[ 5 (0 r + F ,* 0 / - r a - ln 5 ( / ) )S ( 0 -F r j^ t  + o S ( 0 F ,< ( 0  =0

|^ iF „a* [S (/)r+ F ,^ (//-A 'r7 -ln 5 (0 )5 (0 -/v ]rf^ j + ̂ ; k ( 0 W * ( 0 ] = 0 .= e :
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^ [ ^ F s s C T ^ [ S { t ) ^ + F s k { M - ^ ' < 7 - \ n S i t ) ) S { t ) - F r y t  +  a S i t ) F s E : [ d Z ^ ^

= [-Fss<^^ [^(Of -  In 5(/))5(0 -  Fr V / = 0

From the expression above, we see the only way for the risk adjusted futures contract to 

be a martingale is for the drift term to equal zero. That is

^F ,y[S{t)]^+ F ,k(M -X '< T-\nS{t))S{t)-F ,= 0.  (46)

This expression is identical to the partial differential equation above and illustrates that 

the Feynman-Kac solution is indeed the probabilistic solution to the partial differential 

equation obtain from a standard arbitrage free pricing model. The futures price obeys the 

stochastic differential equation

dF[S{T),tj]  = aS{t)F,dZ]{t) . (47)

3.2 Two Factor Model

In section 3.1 we derived the solution for commodity futures prices where the only source 

of uncertainty in the futures price was the spot price. Theoretical solutions were derived 

for two cases. The first case presumed the spot price process followed a geometric 

Brownian motion, the second presumes an Omstein-Uhlenbeck mean reverting process. 

If the spot price is the only determinant for futures prices these models should work 

reasonably well.

The question under consideration now is whether the one factor model is a 

reasonable model for pricing commodity futures contracts. For a storable commodity, the 

one factor model may not capture all the information compounded in the expected spot 

price. That is, holding inventories of the physical commodity has benefits, and when the
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benefit is expressed in percentage terms it is called a convenience yield. The 

convenience yield as defined by Brennan and Schwartz (1985) is the flow of services net 

of storage costs that accrues to an owner of the physical commodity, but not to the owner 

of a contract for future delivery. When a market participant takes ownership of the 

* physical commodity, the owner chooses where it is stored and when it is liquidated. 

Naturally, the owners o f the physical commodity must feel there are benefits from 

ownership that are not obtained by holding a futures contract. In lieu of the storage costs, 

the benefits may include the ability to profit from temporary local shortages or the ability 

to keep production process running in the event of a supply disruption. Thus, if  there is a 

net benefit to storing a commodity, any model that prices a futures contract must consider 

this impact.

Earlier studies attempting to price contingent claims written on storable 

commodities (Schwartz (1982) and Brennan and Schwartz (1985)) adjust Black’s cost of 

carry model to include a convenience yield. For tractability, these models presume the 

convenience yield, is a constant proportion of the commodity’s price. Following 

Black’s derivation, these studies determine Black’s augmented cost of carry model as

F{S{t),T) = S{t)é'-^^^-'^ . (48)

The futures price for Black’s augmented model is simply the original futures price 

discounted by the convenience yield. The owner of the futures contract does not receive 

the benefit from owing the physical before time T. Therefore, the terminal spot price is 

lowered by the percentage lost from holding the contract as opposed to holding the 

physical commodity.
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The method of solution used to determine equation (48) is the traditional Black- 

Scholes method. Alternatively, we may derive this expression using an equivalent 

martingale measure. To apply this method, we need to alter the stochastic differential 

equation for the spot price process underlying the futures price. For our problem, the 

spot price process is the same as expression (1), and is

dS{t) = /jS{t)dt + aS{i)dZj{t) .

To alter the distribution for the spot price, we must alter the distribution for the 

innovation term. Thus, transforming the spot price via the Girsanov theorem, the 

Brownian motion term becomes

dZXt) = d Z ] i t ) -M t .

Furthermore, Gibson and Schwartz (1990) (see Appendix B) show that the market price 

of spot price risk, X , for this model is

(49)
or

Substituting expression (49) into the transformation of the Brownian motion above yields

dz,{t) = « < )  .

The risk-adjusted spot price process becomes

= (r -  5)dt + adZ](t) . (50)
5(0 '

Recall the Feynman-Kac solution for the futures price. This is 

F (5 (r),7 ) = £;(5(7’)).

Following the argument for the derivation in section 3.1, the solution for the current 

system is
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= . (51)

Expression (51) is the same as the futures price stated in equation (48). Again, the 

solution discounts the value of the futures contract that matures at time T hy S . 

Intuitively, the owner of a long futures contract is compensated for the losing the benefits 

of physical ownership. Note, if the convenience yield was negative then the investor with 

the short position will be compensated for the cost of storing the physical commodity.

The result above naturally begs the question, is it reasonable to assume that the 

convenience yield for a commodity will remain constant? There is evidence in the 

literature (Fama and French (1987), Brennan (1991), Gibson and Schwartz (1990) and 

Schwartz (1997)) that supports the need for a stochastic convenience yield when pricing 

futures contracts. In light of the empirical research, we now consider a two-factor model 

that includes a mean reverting stochastic convenience yield.

Consider the two-factor model presented by Gibson and Schwartz (1990). They 

presume the spot price and convenience yield follow the joint stochastic process below

dS(t) = /iS(Od/ + o,S(t)dZ, (0  (52)

dô{t) = k{a -  0{t))dt + o r/Z , (/) (53)

where p is the instantaneous expected retum in the spot price, and a ,  is the diffusion 

coefficient, k  is the speed of adjustment parameter for the convenience yield, 5{t) 

around its instantaneous long run mean, a .  dZ,{t)màdZ^{t) are correlated increments 

to standard Brownian motions. Cov,[dZ,(/)dZj(/)]= where /?„ is the correlation 

coefficient between the two Brownian motions.
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The spot price process follows a geometric Brownian motion, indicating the drift 

and diffusion coefficient change proportional to the level of the spot price. The 

convenience yield is presumed to follow a mean reverting process of the Omstein- 

Uhlenbeck type. This specification allows for both positive and negative yields. This is 

an appealing characteristic, in that the owner of the physical is compensated when net 

storage costs are positive, and penalized when they are negative.

The advantage of the two-factor model is it allows greater flexibility in modeling 

futures prices. This increased flexibility, however, comes at a cost. For instance, recall 

the derivation for the one-factor model. There we calculate the risk adjusted expected 

value of the expected spot rate to find an expression for the commodity’s futures price. 

Presently, we want again want to solve the risk neutral expected spot price, but this must 

now consider the distribution for both the spot price and the convenience yield. This 

adds greater complexity to the model. Let us now work on the two-factor model.

Invoking the Feynman-Kac theorem, we know the futures price for the two-factor 

model is given as

F(SiT),S(T),T) = E;{Sr),  (54)

where T is maturity. S(T) is the commodity spot price at maturity. ^(T) is the 

convenience yield, E'[  ] is the expectation operator under a transformed probability 

measure. In order to calculate the expectation in expression (54), we need solutions for 

the commodity spot price, S(T),  the convenience yield, S(T),  and the cumulative yield, 

%(T)as well.
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Working with the spot price, let Y{t) = \nS(t). Since Y(t) is a twice- 

continuously differentiable function of S(t) and time, we may write the stochastic 

differential for Y(t) as

d r^ i)= r ,dS (i)-^Y „ [ds(oY .

Substituting in for 7,, 7 „ , dS(t) and [dS'(/)f I have

m ) =

= ̂ jdt + a,dZ, (/) - 1  a ]d t ,

1 2
dt + (T,dZ,it) (55)

Now, integrating both sides of equation (55)

jdY(u) = jj^^- io - ’ji/« + f<T,dZ,(u), 

Y(T) -  Y(t) = du + j<T,dZ, («),

F(r) = r(<) + ï//-i<T,= du + ]<T,dZ,(u) (56)

Raising e to equivalent powers, expression (56) becomes

S(T) = S(Oe
] < * < + / («)

(57)
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Similar to the one factor model, it seems permissible to evaluate equation (54). 

This is incorrect. The reason is the convenience yield affects spot price levels due to 

changes in inventory levels of the commodity. That is, as inventories drop so too does 

the availability of the commodity. In this case, the commodity is becoming increasingly 

scarce. Consequently, the reduction in inventory causes an increase in the spot price. 

The percentage increase in the spot price due to limited inventories is called the 

convenience yield. Since this yield in subsumed in the spot price, it is then linked to the 

commodity’s expected retum. Therefore, when we evaluate the expected value of S(T) , 

we must consider the impact that the convenience yield has on the expected spot price. 

This leads us to finding solutions for the convenience yield â(T) and the cumulative 

yield, X(T).

Starting with equation (53) and rearranging yields 

dS  (0  = kadt -  kS  {i)dt + cr^dZ^ (t) ,

dâ(0  + kS{t)dt = kadt + a^dZ^ (t) . (58)

Multiply both sides of equation (58) by e**

[dS(t) + kS(t)dt] = e^ikadt + a,dZ^ (/)]. (59)

We can rewrite the left-hand side of equation (59). Consider the function c*'^(r). The 

total differential is

= ke^S{t)dt + e^dô{t) . (60)
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The reader should note that the LHS of expression (59) is equal to the RHS of equation 

(60). Therefore, we may replace the LHS of equation (59) with the LHS of equation 

(60). This yields

d[e^0{t)]=e'^kadt + e^<T,dZ^{t) . (61)

Integrating over equation (61)

T r T
jd(e^S(u)}= ka je^du  + a , (u) ,
t / /

r
e'^ô(u)[ = ae '^[  +cr, \e^dZ,{u),

t

T

e*^6{T) -  e*'J(0 = a e"  - a e ^ + ct, \e^dZ , («),
/

T

e"S{T) = e^0(t) + -ae'^ + a , \e^dZ^ (u),
/

S(T) = e^-"ô(t)+ ae"-"  -ob*'’*'’ + \e^dZ,(u)^
t

S(T) = e-*c-')<5(r) + a -  je^dZ , (u) ,
/

r
<5(7) = 0S(t) + (1 -  0)a  + («) , (62)

/

where 0 = .

We now have solutions for 5(7’) and 5(7’). Anticipating the evaluation of the 

expectation in expression (54), we need to find the first and second moments for the 

terminal spot price and convenience yield. From equation (20), I know the incremental
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spot price in equation (57) is lognormal with mean dt and variance cr.dt. In

addition, from Levy’s theorem we know the convenience yield is normally distributed 

with mean // and variance . We obtain values for jii and by taking the 

conditional expectation and variance of equation (62). The conditional expectation is

f,=E,(s(r>),

= « ( 0  + (1 -  »)ar+ o - . e - " ' [dZ,(u)],
/

E{S{T)]=G0(t)-^{^-e)a .

The variance is defrned as

V,[SiT)]=E,[S(T)-E,(S(TM,

(63)

V,[S(T)]=^E, a ,e -kT j e ^ d Z M

Using Ito’s isometry

L<

(  T

or:
V I

V I

_Lg2*»
2k
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- ^ U k T - 2 k T  _ ^ 2 k t - 2 k T \

2k ^

= | i ( i - « 0  • (w)

To review, we started with the stochastic differential equations for the spot price 

and convenience yield, and then developed solutions for S{T) and S{T). Furthermore, 

we have characterized the distributions for S{T) and 0{T). Continuing, our next step is 

to find an expression for the cumulative convenience yield X {T ). The reason for finding 

a cumulative yields is that the solution for S{T) is found over a holding period T - t .  We 

are not just interested in the convenience yield at a particular time. Instead, we are 

interested in knowing the accumulated convenience yield for the entire holding period.

We define the cumulative convenience yield as

X (t)^ \ô {u )d u ,  (65)
0

where %(0) = 0. Recall equation (53)

dS{t) = k{a -S{t))dt + a^dZ^ ( i) .

Equation (53) implies

jdS{u)= ^k{a-S(u))du+ jar^dZ^(u),

/ dS(u) = ka(T  -  /) - \S(u)du + J<j^dZ^{u) . (66)

It follows that
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S{T )-ô{t) = ]dS{u) , (67)

X {T )-X it)= \S {ü )d u .  (68)
/

Inserting equations (67) and (68) into (66) we obtain

5{T) -  0{t) = ka(T - t ) -  k(X{T) -  X{t)) + ]a ,dZ , (u) . (69)
/

We may further substitute the expression for S(T), equation (62), into equation (69) to 

obtain

ÛS(t) + (1 -  6)a  + er,e-^^]e^dZ^(u) -  S(t) = ka{T -  t)-k {X (T )  -  X{t))+ ]ff,dZ,{u) .

Our objective is to find a solution for XiJT) • Thus, we normalize the expression above 

on X{T).

T T

k{X(T) -  XiO) = ka{T - t)+  ja^dZ, (u) + S(0  -  0S(t) -  (1 -  û)a -  je^dZ^ (u) ,
I t

X (T )= = X ( l)+ a (r - th T ( l-6 M t) -a )+ T f< r ,d Z ,(u ) - j< r ,e -" ] e ‘-dZ,(u)-O0)k k '  k  '

In the absence of arbitrage opportunities, and if the futures price is a martingale, 

then the Feynman-Kac theorem states that the futures price today is

F (S in S (T ),t,T )  = F { S in m ,T )P i t^ T )  = E:(S{T))P(t,T) , (71)

where P(t,T) is the price of a risk-fi-ee pure discount bond at time t maturing at time T. 

Recall in the one factor model, we always found what the futures price is at time T. Here
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we are now discounting the futures price by the risk free rate to obtain today’s price of a 

futures contract maturing at time T. To find the value today, we can discount the 

expected spot price by the known riskless rate of retum because the futures price in 

expression (71) has been risk-adjusted.

In order to apply equation (71), we need to convert the stochastic processes for 

the spot price and convenience yield into equivalent martingales using the Girsanov 

theorem. The relation between the true probability measure and the martingale 

probability measure is

dZ,{t) = d Z ](t)- dt.

dZ,(t) = d Z l i t ) - M t ,

(72)

(73)

where dZ](t)anddZl(t) are the transformed Wiener processes under the equivalent 

martingale probability measures. The coefficients on the dt terms are the market risk 

premiums associated with spot price and convenience yield respectively. Notice the risk 

premium for the spot price is expressed analytically. Gibson and Schwartz (1990) derive 

this value presuming the spot contract for the commodity complies with the models 

partial differential equation. The convenience yield is non-traded asset and its market 

price of risk cannot be solved analytically. As a consequence, we simply denote the 

market risk premium for the convenience yield with a A

Working on an expression for the right-hand side of equation (71), we take 

equation (72) and substitute it into equation (53) obtaining

5(7’) = 5(0exp 1 2
« 0 - 1 du
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Given the risk transformation of the spot price process, we see the convenience yield is 

now introduced into the spot price dynamics, as it should. The convenience impacts the 

expected retum for the spot price, hence, when we use the risk premium to adjust the 

Brownian motion for the spot price, we bring the convenience yield into the analysis. 

That is, the convenience yield is one component of the total instantaneous retum for the 

spot price and therefore a part of the market price of risk for the spot price. Rearranging 

the above yields

S(T) = iS(/)exp 1 2 {T-,)+crJdZ:(u)-(7, l d u -\S (u )d u . (74)

Rearranging terms in (73) and inserting equation (68) into (73) yields

5(7’) = S(/)exp 1 2 (7- -  ()+ <T. \d z:(u ) -  (X(T) -  X i,)) (75)

Note, as we sum over the spot price to obtain the terminal value of 5(7), the cumulative 

convenience impacts this value. This is as we expected.

Now, the transformed stochastic process for the spot price, S(T) in equation (75), 

is still not a martingale. We have only risk-adjusted the spot price process and not the 

convenience yield process. Since the terminal spot price is a function of this state 

variable we need to transform the convenience yield as well. Taking equation (73) and 

substituting it into equation (70) we obtain

X(T) = X(t) + a {T -t)+  l { l - 0 X â ( t ) - a )

^ U a X d K { u ) -M u ) - \< T ,e -"  \e^[d Z l{u )-M u ). (76)

Substitute the RHS of (76) into equation (75)
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S(T) = S(t)exp\

+ ja J d Z :(u )- ja /{d u -ja ,e -" ]e ^ d Z l(u )  + ]-a,;ie-"]e'“du-X(t) 
k ’ k  f  k • k  y

(77)

Now, focusing our attention to the last bracket term in equation (77) we may write the 

expression as

a ( r  -  /)+ —(l -  0 \S it)  -  a)+ —<T \̂dZ  ̂(m) -  —cr^Àu 
k k  t k

k t k  k

Rearranging terms and evaluating the integrals yields

a ij'-t)+ —{[-9\ô { t) -a ) -—<Tc^{T-t) + -j^ (e*̂  -  e** )

+ iff, Jrfz; («) -  iff.e-" /« - « x ) .
k , K ^

J  (l ”  ̂ X^(0 “  ff ) + fff “  ̂  ffc-l j ( ^  ”  0  + ̂  ff'e'lO ~ ̂ )

+ i  ff, / <  («) -  i f f , e - "  J e -d z ;  (X).

i L o - f f + i f f / f f , z l ( r - f )

+iff/jdz;(x)-iff.x-“'je''dz;(x).

Substituting the expression above back into equation (77), the terminal spot price may be 

written as
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5 (r)  = 5(0exp 1 2 
^ 2 ^ ’

Rearranging and grouping terms yields

5(r) = 5(/)exp - 1 2 1 ,—O' —r + oc— o  À
2 k

+  < 7 ,  J <  W  - i < 7 .  / < « ; ( ! , )  +  / « * • <  ( U ) (78)

From expression (71), we are interested in the discounted futures price. Therefore we 

multiply equation (78) by P(t,T) to obtain

P(/,7’)5(r) = 5(t)exp - 1 2 1 2 -<T, + a - jo ^ À

+ <T, (u)-1 (7 . jrfz; («)+ i  <7.£-" p r f z ;  ( » ) | . (79)

Simplifying equation (79), we have

P(7,r)5<7) = S(7)exi{z],

where

1 2 I 2 - o ,  + a - jO ^ X {T - 1)- —|^^(0 - a  + — j(l -  0)

(80)

+  ( 7 ,  î < ( » )  - i < 7 .  J « u ) + i ( 7 . e - * '  / e * ” < ( « ) .  ( 8 1 )

I  ^  I  ^  I

Given the result in equation (80) and (81), we may write equation (71) as 

F(SinSiT)Jj)=E;{P{t ,T)S(T)) ,

53



:£;(5(0exp(2)), 

:S(OK(exp(z)) . (82)

From expression (81), we know f  is a function of two standard Brownian motions. 

Given this, we know z is normally distributed and from equation (14), we may write 

(82) as

F ( s ( r ) ,x ( r ) , f , r ) = s ,e x p ^ Â + jà ^ j  " (83)

Where p and â  are the mean and variance respectively for z , The mean is defined

1 2 1 2 + a
k \  k  J

/ K t K t

The reader should note that since we discounted the terminal spot price before taking the 

expectation, expression (84) is without the appreciation term found in the earlier pricing 

models. The variance is defined
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■ 2 \ l < T j d Z : ( u ^ a , e " ] e ‘- d Z l i u ^  . (85)

Using Ito’s isometry to evaluate the six terms in equation (85), we have

=af(<r,Sdu] = a f ( l XT - l )  = a f ( T - 0 ,  (86)

£ , f i < 7 j < ( „ ) ]  = fiT < r.= f(l) /* ')  = f i l ’a = ( r -< ) ,  (87)
\ k  t )  \ k j  \  I J y k j

\ / J J \  f y J

E* [a ,\dZ ]{u^ jC T ,\dZ l(u^  = jor,cT,pJdu  = jcr^<x,p^{T-t) ,

K [  = jcr^a-,p^e-^^ie*“du ,
\  I A k  I J k I

(88)

(89)

U J
O’cO-.PcO-^). (90)

e ;

f i V
<kj

(91)

Substitute equations (86) - (91) into equation (85) to obtain

= tr^{T -t)+  ^ j  cr ^( r - 0 + ” 0
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U J

Collecting and rearranging terms in the expression above yields

0'-'
( r - 0 + 2

( fx 'Ÿ  / I Y ^

(92)

Now, substituting equations (84) and (92) into (83) yields

F(5(7’),(^(7’),r,7’)= 5(0exp  - — +(x—

1H— 
2

LV

( T - 0

+ 2
f ' / l Ÿ

<^c^sPc -  T
\ 3  ^

_ 2 (1 — û)+

(1 -0

. (93)

Rearranging terms in the expression above yields

F{SiT),S(T),t,T) = S(t)exp ■a +

^ (0 -  Of + ̂  (cr ;̂i -  cr^cr, j

{ T - t)

2 \  
_ 2 (1 - 0

(94)

Equation (94) is the solution to the partial differential equation below

+iF«<r> + F.S(<Xr-̂ (0)
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+ Fs[k{cc - S{t)) - X<7,)-^F, - r F  = 0 . (95)

This is a nice result. As we saw in chapter 2, oil inventories fluctuated and 

influenced the spot price of oil. In particular, these oil reserves seem to follow a mean 

reverting pattern. It is this phenomenon we wish to capture, so we may price commodity 

futures contracts more accurately. The expression developed in equation (94) is a 

powerful result. That is, we now have an analytical solution that captures movements in 

the futures prices not just from one source but two: the spot price and the convenience 

yield. We should expect, the two-factor model to price commodity futures contracts 

more accurately than a one factor model.

It is easy to verify equation (94) as a solution to (95). Finding the partial 

derivatives of F{S(T),S(T),t,T) we have

F,=exp{£}, (96)

F„= 0, (97)

F s = -

{ I -O fF  , (99)

+ + S (t)0 -a 0  + j(T^À0-j(7^<T^p„û

al0^ F . (101)

Insert equations (96)-(101) into (95) yields
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i)
+ S«)exp(f)(r-<S(O) + ( i ( a - « ( O ) - A < T j - ^ 0 I - 9 ) P

1 1 1 ^ 1V 1o r -—<TjA + —cr^<T,/7„- — — <rl+5(t)9-ad+ —<r̂ Xd 
fc k 2 \K J k

:a’ F - r F  = Q. (102)

Performing the arithmetic above, the equality in equation (100) holds. Therefore, 

equation (94) is a solution to the partial differential equation in (95).

Once again, the result above is expected. The partial differential equation in (95) 

is implied in the transformed futures price given by the Feynman-Kac solution. Consider 

the following illustration. Take the total differential of the discounted value for the 

futures

d e - 'F O ^ .^  ^ d e-"F ()
'■dF(),de-'' dF{ )

= Fde-''+e-''dF{ ),

= F{-r)e-''dt + ). (103)

If F{S{T),0(T \t,T ) is a twice differentiable function with respect to 5(/), 5{t) and 

time, we may use Ito’s lemma to write the increment of F{SiX)iS{T),t,t) as

= -re-''F d t+ e '"  \F,dt + F,dS{t) + 1  F„ [^£5(0? + F,sdS{t)dS{t)

+ \ F „ [ d S ( t ) f * F ,m ^  ■ (104)
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Substituting the dynamics for the state variables in equation (104) yields

= -re-'^Fdt + e~'‘{F,dt + F, ( ^ { t)d t  + (7,S{t)dZ, {t))+^F„<r][S{t)Y dt

+ Pss<^c^sPcsS(t)dt+~FssCrldt + Fg(k(a - 5{t))dt + (j,dZ ^{t)^ . (105)

The expression in (105) is not a risk adjusted process. The Girsanov theorem provides 

the risk neutral transformations for the driving Wiener processes in (105). These are

o .
(106)

dZ,it) = d Z l ( t ) - M t . 

Substituting (106) and (107) into (105) yields

(107)

= -re-'‘Fdt + e-'‘ F dt + F.
JJ

+ [S«r dt + F ^ < T ,tr ,p ^ sm  + -F ^ a ld t

F, {k(a -  S(t))dl+ o -,(< (< ) -  . (108)

Rearranging terms in (108) yields

d { e -" F { S (n S (T )p j) )= e -" U F „ tr ; lS ( l) f+ F ,,S ( l) ,T ,,T ,p „ + ^ F ^ ;

+ F ,5(t)(r- 0{t)) + Fg{k{a- 0(t))-  Acr )̂+ F, - rF)dt

+ cr,S(t)F,dZ:0) + a,FgdZ:it)} . (109)

If (109) is a martingale, then the expected value must be zero. This implies

E;[d(e-''F{S(T),S(nt,T))]=E: ^F ,gS{t)a,a,p„ ^^Fgga]

+ F,S(0(r - ̂ (0) + F , W a  -  5(0) -  Aa J  + F, -  rF)d/
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+ 0-,

= £
f /

+ F,S«Xr-F(()) + F,(*{a-F(0)->l<Tj+F,-rF)rff)]

+ e -" < r .5 (0 F X l« /)J +  « - 'V X X ,1 <  W j = 0 ,

+ F,S{t){x- 5(t)) + Fg{k{a -d{t))-X<rJ)+ F, - rF)dt} = 0. 

Therefore, the drift term’s coefficient must equal zero. That is,

iF„cr’[S(Or +F„S(<)<T,ff,F» +F,S(0(r-F(0)

+ Fg{k(a -  5{t)) -  /l<Tp)+F, - r F  = 0 .

This is identical to expression (95). This result is expected. Recall, the Feynman-Kac 

theorem shows a correspondence between a conditional expectation and a particular class 

of partial differential equations. We took the solution of a risk neutral conditional 

expectation and were able to obtain the associate partial differential equation. Thus, we 

have illustrated that both method yield the same result.

3.3 Three-factor model

So far we have two cases that model the stochastic behavior of commodity prices 

that take into account mean reversion. We now consider a third model by extending the 

two-factor model to include a stochastic interest rate. Up to now, we have held interest 

rates constant, and as such, we have treated forward and futures contracts 

synonymously.*^ This will no longer be the case. Since futures prices are marked to
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market each day a variable interest rate will necessarily change the value of the futures 

contract over time. Therefore, new pricing solutions for both the forwards and futures 

contracts need to be derived.

3.31 Forward Prices

Consider the following joint stochastic process for the spot price, convenience 

yield and interest rate

dS{t) = (r(0  -  5{t))S{t)dt + a,S{t)dZ] (/), (110)

dS{t) = k  (a  -  0(t)) -A a ,)d t + o ,dZ \ (r), (111)

(  . \
dr{t) =

where a,,o^and a , are the diffusion coefficients for the commodity spot price, the 

convenience yield and the interest rate processes, respectively, and k^ are the speed of 

adjustment factors for the convenience yield, S{t), and interest rate rit), a  is the long 

run mean for the convenience yield. dZ]{t), dZ]{t) and dZ*{t) are the risk-adjusted 

increments of standard Brownian motions for the spot price, convenience yield and 

interest rate respectively. Cov]^Z]{f)dZl{t)\= p,^dt, Cov,\^Z]{i)dZ].{t)\= p„ d t, and 

Cov, [ifZ* {t)dZl ( r ) J  = p ^ d t . , p „ , and /?„ are the correlation coefficients between the

risk-adjusted Wiener processes above. /(^ ,/)  is the instantaneous forward rate, and 

f ,  {s,t) is the derivative of the instantaneous forward rate with respect to maturity.’’

Notice in the specification above, the model starts with the risk-adjusted processes 

for the state variables. The current presentation is different than the derivations for the 

one-factor and two-factor model. Recall in those derivations the state variables are not
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adjusted until we find solutions to the respective stochastic differential equations. It turns 

out that the timing of the risk-neutral transformation does not alter the solution for the 

pricing equation. That is, we could have easily started with the risk-adjusted state 

variables and still arrived to the same solution. With this said, we start with the risk- 

neutral state variables and derive solutions to both forward and futures prices.

The pricing equation for the three-factor forward contract is given by the 

Feynman-Kac solution

J(.S (J),S (T)A T),T ) = e ; ( S ( T ) ) - ^ .  (113)

Expression (113) shows the forward price to be the future value of the risk-adjusted 

expected spot price. In the earlier models, we expressed the futures/forward price to be 

the risk-adjusted expected value. For each of those models we presume the interest is 

deterministic, here it is not. Our model needs to account for random movements in the 

interest rate. This is discussed below.

To model the forward price, we start with the transformation

T
X(t) = \viS{t)-\r(y)dv. This transformed process for the forward price is different

t

from the process used in the derivation for the two-factor model, where we use 

X(t) = In S(t) . The reason for the asynunetric treatment between the two-factor model 

and the three-factor model is due to the trading practices of a forward contract. Forward 

contracts are instruments that are directly negotiated between two parties. Since these 

instruments do not trade on an exchange, they are not marked-to-market, which means 

random changes in the interest rate will not impact the forward price. Therefore, if we
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allow interest rates to move randomly, then we must account for this when modeling the 

forward price.

A natural question then is why model forward contracts with a variable interest 

rate? In a financial market interest rates fluctuate randomly. Any model that treats 

interest rates as a constant, fails to incorporate a facet of known market behavior to their 

model. For the present case, interest rates are random but as we will see they do not 

impact the price of a forward contract.

Expression (113) shows the forward price is simply the risk-neutral expected 

value of the spot price. To evaluate this expression, we start with the transformation

T
X{t) = \T iS it)-\r{v)dv. Applying Ito’s lemma to the transformation, the stochastic

/

differential fbr.^r) is shown to be

dX(t) = X ,dS(l)+ ^X „ [dS(t)Y -d Jr(v)c?v

m )  -  ̂ [ « 0  -  s m m + o-,s(0rfz; w ] -  i f  , jr(v)dv
Lr

dt + a ,d Z ]{ t)-d jr{v)dv
L /

(114)

We integrate over equation (114) to obtain

\dX{y) = \ r{v)dv - f S  (y)dv -  -  (T* J dv+ cr, / dZ* (v) -  J r(v)dv,
I t I 2 I I I

T  T  ,  T  T  T

X (T )-X ( t)=  jr(v )d v- jS(v)dv--< r^ jdv + cr, J</Z*(v)- jr(v)dv.

X(T) = \n S (t)~ < T ^ (T -t)- lS (v )d v  + a , jd Z ^ v ) . (115)
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The distribution oîX(X) is normal, and in this case, the solution for the forward price is

(116)
P(t,T)

Expression (116) shows the solution for the forward contract as a function of the first and 

second moment of ̂ (7). Therefore, we need the mean and variance of A(7). The 

expected value ofX(T) is

£;[jT (r)]=  t a S ( 0 - i o f ( r - / ) - (117)

To solve the integral in equation (117) we need the solution for the risk-neutralized 

convenience yield. The solution is found as follows,

dS{t)  =  f e  ( «  -  Sit)) -X a ,)d t + a,dZ\  ( / ) ,  

dSif) +  k^S{t)dt =  {k^a -  X<7̂ )dt + (X^dZlit) ,

e'‘‘‘[dôit)  +  K5it)dt]  =  -  X<r,)dt +  o - , < ( 0 j ,

d[sit)e^<‘ J  =  e*-' [(Ka -  Xo, )dt +  a.dZ]  ( / ) J ,  

J i / [ ÿ ( s ) e * ‘ ^ ]  =  je’‘‘̂ (Ka -  X(T̂ )ds +  o ;  J e * ' V Z j ( j ) ,

-e* ''
Xcr.

r x .

S(v) = e-^‘ '̂'-‘̂ Sit) + \ a — ^
X<7, 1 r  Xa.^

C  J

Of-- g-*.(v-0 +o-^e-*.‘’J e V ^ 2 ; ( s ) .  (118)

Taking the expected value of (118) and plugging it into (117) yields

E\ [Jf (7)] = In SCO -  i  <7,=<r -  () -  Î
2, t

dv.
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’ \viS{t) — -^o'  ̂(T — t) — g-*c(v-OF
[ K ) If

(r-()

>lcr. -i)

A<t, '

v“ - T .

V K  y V /V

r - k ( r ) ) . (119)
c y

1-e'*'^
where r = T - t  and H^{r) = ----------. The variance for equation (116) is

r 1  ̂ T '
K lX ('n ]= v;U n S (l)-^a J (T -i)- jâ (v )d v+ < r,jd z:(,v )

= K;|^j5(v)ivj + r ;L f< (v ) l-2 C o v ;r p (v )r fv ,a ,J < (v ) l. (120)

63



The variance for X(T) follows from Ito’s isometry and the variances of the risk 

neutralized convenience yield and spot price. The variance for the spot price is

Working on the variance for the convenience yield 

Switching the order of integration’®

= V

=v;

L c

Now using Ito’s isometry we obtain

(121)

erf _  . 2o-f
= ^ ( T - 0 -

(Tf . 2af

j’g-*.(r-D _g-*c(r-oJ_j_^ç_____ ^g-2*.(r-n _g-2*.<r-oJ^
k.

\ ^ K  j
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\ K j v2*.y

2kl

= -S- ̂  -  4  (l -  -  2),2kl

K  K

= Tf- ̂  -  Tr(> -  "■*" ) -  ̂ ( 1  -  2*“ "  + ).
K  K

__ rc T -
2t.

(122)

The covariance between the spot price and convenience yield is

Cov̂ ĵ J 5{v)dv,cr,\dZ]{v^ = Cov,*ĵ J e*‘'dZl(s)dv,cr, Jt/Z‘(v)j,

= Cov;pc*«>,e-*‘V w /Z ;(5),(T j< (v)j,

=  Covi M  dZlis),<7,]dZ:iv)
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=cov;
K  '

Using Ito’s isometry we get

= J(l -  ) is ,

^S<^cPc.

^t^ePc.

k.

Substituting (121), (122) and (123) back into (120) yields 

v;[x(T)]=

(123)

Taking the expressions in (119) and (124), and substituting into expression (113) yields

AS(T),S(.T). r(T),T) = ex|H In S(() -  -
2cr,'l A a ,)

\  V
r - S(t) a  +

I j
K ( r ) )

1
+  -  

2 \L

Rearranging the above yields 

J ( S i n S i n r ( n T )  = S(t)exp f  M l
/

— «  . r -
< > V

â ( 0 - a + i ^ k ( T ) )

1
+  -  

2

68



= 5(/)exp-^
'k M  Àcr̂

V K  K

P(t,T) ’

= 5 (0 ex p ]-
K a - X a ,

r - f ( / ) -
K a -X a r,

k.
k w )

1H— 
2

= *^(0 exp|(i7, (r) - -ô (t)H c(j)

1
 ̂ 2  K ^ s < ^ c P c s O-c^cW 1

' k ] -  k] 4^. P i t J Ÿ
V /

:5 (0 e x p |( / / ,( r ) - r )
k la - k X a ^ ^

- s m M )

= 5(/)exp
k]a  -  k,Xa^ -  ̂  + k^a,<j,p^

Finally we obtain
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JiSit),ô{t),riT),T) = S{t)&xp
4L

Simplifying

J(S(f).S(t),r(T),T) =
■* v>-* /

(125)

where A(r) = exp
-K ^ < ^ c - - f  + Pcs<̂ ,<̂ cK < K ( r )

4L

Expression (125) is identical to the solution for the two-factor pricing model (expression 

(94)). This should make sense. We stated earlier that the trading practice of a forward 

contract makes its price invariant to the interest rate process. Therefore in the face of a 

variable interest rate, we model the forward price by taking the interest rate out of the 

model up front. Since the forward contract is modeled independent of the interest rate, 

the solution we derive is identical to the two-factor model, as it should be. We now, turn 

our focus to modeling the futures price given a stochastic interest rate..

3.32 Futures Prices

For the three-factor futures price we use the joint stochastic process for the 

forward contract above. This is

dS(t) = (r(t) -  S(t))S(t)dt + <T,S(t)dZ] (0 , 

dS{t) = [L ia  -  5 { t)) -X a M t  + < r /z ;( r ) ,

(126)

(127)
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dr{t) =
/  2 \
/ ( ^ , 0 + K R s ,t)  + ̂ ( l - ) - Kr{t) dt + o-,rfz;(0. (128)

IKr

The Feynman-Kac solution for the futures price is

F(S(t),S(O J) = E;(S(T)) = . (129)

Expression (129) is different from (113). A futures contract and unlike the forward 

contract it is marked-to-market. Therefore, random movements in the interest rate will 

impact the futures price so we do not amend the spot price process.

In order to find a solution for the terminal spot price let G{t) = ln5'(/). The 

diffusion for G{t) follows from the transformation, Ito’s lemma, and the risk-adjusted 

dynamics given for the spot price in equation (126) and is

</G(()-c,rfS(/)+ic„[<iS(or,

dG(t) = - ^ [ « 0  -  S { l ) ) S m  + cr,S(()dZ; (<)]- ;  
o\t) I [ I m Y

dG{t) = dt + a,dZ](t). (130)

Now integrate over equation (130)

jdG(v) = f r(y)dv - \S ( y ) d v - —a] fdv  + c r j dZ] (v ),
I I I 2 I I

T T j r r
G(T) -  G(0 = |r(v)dv -  J<J(v)dv jdv + c ,  JdZ;(v).

G{T) = \nS{t)-]-< T]{T-t)-\5 iv)dv+  Jr(v)rfv+<7, \dZ]{y). (131)
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Similar to the forward price model, the distribution of G(J) is normal, thereby giving the 

solution for the futures price as

F{,S(T),5{nr(T),T) = (132)

The solution for F{S{T),5{T),r(J'),T) involves the expected value and variance of G{T). 

The expected value of G{T) is

E:[G{T)] = lnS(t) — cr^iT - t ) -  j£;[^?(v)}/v+j£;[r(v)c/v]. (133)
2 t t

To compute equation (133), solutions for the risk-neutralized convenience yield and spot 

interest rate processes are needed. From expression (118), we have the expression for the 

convenience yield. This is

^(v) = J(r) + L  -  -  L  -  j (f ) . (134)

Thus, we only need to find a solution for the risk-neutral interest rate.

The arbitrage free dynamics of the spot interest rate in expression (128) is a 

special case of the Heath, Jarrow and Morton (1992) m o d e l . T h e  Heath, Jarrow and 

Morton (HIM) model is an arbitrage free model of the term structure of interest rates. To 

develop their model, HIM work directly with the forward rates. From this model, the 

arbitrage-free dynamics for the instantaneous spot rate can be determined. Therefore, we 

need to understand how to model the forward rate dynamics.

To obtain an arbitrage free process for the instantaneous forward rate we consider 

the relationship between the forward rates and a default free zero coupon bond. Once the 

relations!)!^ between the pure discount bond price and forward rates is found, the risk 

neutral dynamics for the default free bonds can be used to determine the process for the
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forward rates. Given the forward rate process, we may then find the spot rate since the 

spot rate is simply the nearest forward rate. Let us proceed with the model of the 

instantaneous forward rate.

The relationship between the default free discount pure bond prices

7] < r ”" , with maturity 7] and forward rates f ( t ,T )  is

P ( t ,T ) ^ e ‘ . (135)

Note that there is no expectation operator involved in this expression, because the 

are all forward rates observed at time /. They are rates on forward loans that will begin at 

future dates u > t  and last an infinitesimal period du. Assume that for a typical bond with 

maturity T  we are given the following stochastic differential equation

dP {tJ)  = fi{tJ ,P )P {tJ)d t^< T{tJ ,P )P {tJ)dV {t), (136) 

where dV{t) is a Wiener increment under the true probability measure. Now, bonds are 

traded assets. Thus they have an expected return and volatility measure that may be 

estimated. In addition, the prices must adhere to a no arbitrage rule and we may define 

the risk premium associated with these stocks. But most importantly, since bond prices 

are financial instruments that are arbitrage fi*ee there exists an equivalent probability 

measure for these fixed income securities. Therefore, in a risk neutral world with 

application of the Girsanov theorem, the drift coefficient can be modified as in the case of 

the Black-Scholes firamework

dP{t,T) = r{t)P{tJ)dt + <j{t,T,P)P(t,T)dZ;{t), (137)
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where r{t) is the risk-free instantaneous spot rate, and dZ](t) is the new incremental 

Weiner process under the risk-neutral probabilities. Note, the unknown drift in the bond 

dynamics is eliminated.

Given the stochastic differential equations for the bonds we can get the arbitrage 

free dynamics for the forward rates. Begin with

/ ( i . r . r t  A) = ■ (138)
\1 +A} —i

where a noninfinitesimal interval 0 < A is used to define the non-instantaneous forward 

rates, f ( t ,T ,T  + A), for a loan that begins at T and ends at T +A. This is done by 

considering two bonds that are identical in all aspects, except for their maturity, which 

are A apart.

Now, to get the arbitrage free dynamics of forward rates, apply Ito’s lemma to the 

right hand side of (138), and use the risk-adjusted drifts whenever needed. Working on 

the first expression in the numerator of (138) yields

d [ U > iP ( l ,T ) ] ^ j^ d P ( , .T ) - — ^ d P \ l . T )  (139)

Substituting in for the risk-adjusted dynamics of P(J,T) into (139) 

d [io g P (i,T )]= -^ ir(i)P (i.r)< it+ a (i.T ,p )P (i.r)d z;(t))

1
2 P \t,T )

Simplifying the expression above yields

</[iogP(<,r)]=f/-(()-io-=((,r,p)U +C T((,r,/>)dz;(o. (140)

Now working on the second term in the numerator of (138)
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Substituting in for the risk-adjusted dynamics of P{t,T + A) into (141) yields

4 io g P (/,r+ A )]= -^^^-i^ (r(< )P ((,r+ A )rf(+ < r« ,r+ A ,/> )P ((,r+ A )< e;(o )

Simplifying yields

4logP(/,7’ + A)] = |^r(0-^<T '(/,7’ + A,P)jd/ + o-(/,r,P)dZ ;(/). (142)

It is important to realize that the first terms in the drift of the Stochastic differentials for 

P(t,T) and P(t,T  + A) are the same because the dynamics under consideration are 

arbitrage-fi-ee. Under the risk-neutral probabilities, discount bonds with different 

maturities will have expected rates of returns equal to the risk free rate r. This is 

essentially the same argument used in switching to the known (constant) risk ft̂ ee rate r  in 

the drift of the stock price process utilized in the Black-Scholes derivation.

Now substitute the expressions (140) and (142) into the stochastic differential of 

expression (138), and cancel the drift terms, r(t), to obtain

df^l,T,T+à) = ■^(a\l,T+^P(l,T  + &y)-a'^t,T,P^I,T)))^l

i(< T ((.r+ A .P (i.r+ A ))-< T (/,r,p (/.r))> iz ;((). (M3)

This is the final result of applying Ito’s lemma to (138). Expression (143) is the arbitrage 

free dynamics of a forward rate on a loan that begins at time T  and ends A period later.
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Now, if we can let A ^  0 we will obtain the dynamics of the instantaneous

forward rate. To do this, note that the way expression (143) is written. On the right hand

side, we have two terms that are of the form

g (x + A )-g (x )
A

In expressions like these, letting A 0 means taking the standard derivative of g(x) with 

respect to x. Writing these terms in brackets separately and then letting A -> 0 amounts 

to taking the derivative of the two terms on the right hand side with respect to T. Doing 

this gives

I im ^ ( a ^ ( / , r  + A ,P(t,7 + A ))-o-^(/,r,P (r,r)))

J ) )

l im |( a ( / , r  + A, P { tJ  + A)) -  a{tJ ,P (t,T )))
A->0

■[ dT

Putting these together in expression (143) we get the corresponding stochastic differential 

equation for the instantaneous forward rate 

lim d /(t,r,7  + A) = <//(r,7’),

or

<//((.D = .  (144)

Expression (144) is the HIM risk neutral dynamics for the instantaneous forward rate that 

is arbitrage free. To reach this result the relationship between a bond price and forward
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rates is obtained using an arbitrage argument. Then the arbitrage free dynamics are 

written for P{t,T) . Given the Stochastic differentials for the bond prices, we derive the 

dynamics for the instantaneous forward rate. This process (expression (144)) is arbitrage 

free, and the risk neutral drift for f{ t ,T )  is

d(r(t,T,Pit,T)j
ÔT

The instantaneous diffusion coefficient is

da{tJ,P{t,T))
^ dT

The expression is the volatility for the forward rate which is

given above. Analytically the forward rate volatility is equal to the partial derivative of 

time Ps pure discount bond volatility with respect to maturity. Intuitively, this means the 

forward rate’s volatility is a portion of the total volatility for P{t,T). As the notation 

suggest, the expression a(t,T,P(t,T)) is the volatility of a pure discount bond at time t 

maturing at time T. Furthermore, we may rewrite this term. Recall from expression 

(135) that the price of pure discount bond is

-f/(»,«)*(
P { t ,T ) ^ e '

Since the price of a pure discount bond is a function of the forward rates, its variability is 

caused by these forward rates. Thus the volatility for the pure discount bond may be 

written as

(7{t,T,P{t,T)) = .
I uU
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We have an expression for the risk-neutral forward rate process and now turn our 

attention to the spot rate. The question is what does the above dynamics for the forward 

rates imply for the spot rate? The question is relevant because the spot rate corresponds 

to the nearest infinitesimal forward loan, which formally stated is

r{t) = f i t , t )

for all t. The expression for the spot rate will extend from the stochastic process for the 

instantaneous forward rate. Working with expression (144), we take the integral for 

f{ t ,T )  to obtain

f ( t , D  = / ( 0 .D  + w ,
du ÔT

Next, select 7  = / to get a representation for the spot rate rif)

‘rdais,t,Pis,t))
dt

'cd<ris,u,Pis,u))
f du

du d!s+ J-
*fdcris,t,Pis,t))

dt
dZlis).

(145)

Expression (145) is the general expression for the risk neutral spot rate for the HIM 

model. We can consider a subset of the HJM processes for the instantaneous forward 

rate. Let us presume that the volatility of the forward rates is an exponentially dampened 

volatility structure. That is.

This representation exploits the fact that the near term forward rates are more volatile 

than distant forward rates. Implicit in the model is that the same Wiener process impacts 

all forwards. This seems incongruent with certain theories for the terms structure, but the 

volatility process stated above allows for difference in the volatilities of different forward
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rates. Given the volatility above we may write the forward rate dynamics in equation 

(144) as

or

<//(r,v) = + £r^e-*'(''-'Wz;(0. (146)

To obtain the solution for the spot rate process we may directly use equation (145) or 

follow the derivation above. Fol l owi ng the derivation above to obtain the spot rate 

process, we integrate over expression (146)

]df{s,v)ds = + f<r,g-*'('"')dZ;(v),
I I $

/ (v ,v ) - / ( / ,v )  =
kr

4-jo-,e-* '(-V z;(f),
I

Kv) = /(» , V)+ ^ { l -  -  «-“ '<-'>)+ ][<r,e-‘-< -'dz ; w ,
fĈ ZfĈ J

= /(<, v)+ - ^ ( 2 - - 1  + «-"-(-'>)+ o;c-*-' y - ‘dZ',(s),
ZK, s

= / ( / ,  v) + ̂ ( 1  -  + g-z*X-'))+ o-,e‘*'’'je*'"dZ;(s). (147)
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The solution for the instantaneous spot rate, expression (147), is an artifact o f the 

presumed dynamics of the forward rate, and the stochastic differential for the spot rate is 

stated in equation (128). To understand the solution in equation (147) we need to 

understand equation (128).^' Equation (128) is a specific form of a linear stochastic 

differential equation with a time varying coefficient.«That is, equation (128) describes 

the dynamics for the stochastic differential dr(t) around its mean, where the mean itself 

is time varying. Movements in the mean of the instantaneous spot rate are due to shifts in 

the term structure. As the term stmcture shifts over time, it pulls the mean of the spot 

rate with it. We see from the HJM model that these movements in the spot rate mean are 

not unexpected. Expression (144) shows that once the dynamics of the term structure are 

known the instantaneous drift is known too. While the expected movements in the mean 

spot rate are known, the actual movements in the spot rates are random. The process in 

(128) simply describes how the spot rate oscillates around its time varying mean.

We have solutions for the convenience yield and spot interest rate in expressions 

(134) and (147), and we may now solve the integrals in equation (133). We start with the 

convenience yield. From expression (118), we know that

' \  J \  j

Working on the spot interest rate we have

jE;[r(v)}/v = ](  f( t ,v )  + i ( l  -  
/ \  2k^ )

= ]f{t,v)dv + J - ^ ( l  -
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= J / f c  - M k ' " ' " ' ' * + ,
i Z>K  ̂ t 2A  ̂ /

= f / « , v ) r f v + ^ r - ^ [ 2  -  -  e-“ "].

= - 2),

= ( / « , v ) * . ^ . - ^ ( l - e - ‘. ' ) - ^ ( l - . - v ) P ,

q-r^r(r)
2k! 2k! Ak. ’

= j / « , v ) < / v - ( A / , ( r ) - r ) ^ - H ^ ^ .

Now substitute the results above into (133) we obtain

£ ; [ G ( r ) ] = l n S ( < ) - i < T ; ( r - ( ) - [ « - ^ l r - U o - a + ^ W w )
\  c /  V y

+ f / (A v) /̂v -  (/f, (r) -  r ) ^  -  — . (148)

The variance of G(7) is

r;[C(r)]=r;p«(v)*j+r;[<T,/<(v)j+P;-[/r(v)*l-2Cov;rj%)rfv,a,|<(v)]
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+ 2Cov*|^|r(y)dv, or, J dZ] (v) j  -  2Cov*^J J(v)rfv, Jr(v>/vj. (149) 

We know from expressions (121), (122) and (123) in the three-factor forward model that

(V) = 0-,T,

<j : <7:h I{x)

(150)

(151)

and

Cov] U w v ,  <T, fdz;(v )l =  -  h M  .
.1 < J  «C

(152)

Therefore, we need to find expressions for the remaining terms. Starting with the 

variance for the interest rate.

K I r(v>/vj = ove"*'*'/e*'VZ*(j)dvj.

Switching the order of integration

= K

= K

Using Ito’s isometry we may write the above expression as
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K, I

t

2a i
kK j

^-iXr-r) _ g-*xr-o ^  _J_  ^-2*xr-r) _g-2*X7--o j
K  y ^ K j

\ K j

2 /  1 \

k '  e . \ K j

k] k l \ K , k ^ y i k , ,

2A

)-  ̂  (l -  2e-*" + ),

2k.

2^.
(153)
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iZ \{s \o , \d Z \{s )

= Cov
cr.

.K •

Using Ito’s isometry yields

K  ,

<^s^rPn
/ r n
( T - t ) -

\

/ f l ]

U r j
( T - t ) -

\

(g-*Xr-r) _g-tr(r-oj

The covariance between the convenience yield and spot rate is

The covariance between the spot interest rate and the spot price is

Cov’Î J r{y)dv,<T, \ rfZ’(v) j  = Cov,*|̂ J cr^e~ '̂''je*'’dZl (s)dv, cr, J dZ‘, (s)

= Cov;[je*'^ jc7,e-*'VvrfZ;(5).crJrfZ:(5)j,

(154)

Cov;|^j<5(v)JvJr(v>/vj = Cov;[^jo-,e-*'‘’je*''t/Z;(j)</vJ<T,e-*'’'{e*''^/Z;(5>/vj,

= Cov;ne*"'f(T,e-*'WZ;(j)je*''f(T,e-*'VwfZ;(f)l,
Lf J I S  J
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= Cov,

=^  Cov; [ î(i -  e-̂ '’'-" >z; (î), J (i -  )<z; w j

Using Ito’s isometry we obtain

kck^ I

= ^c^rPrc I _ g-*xr-j) _ g-*,(r-») ^  ^
k c k r  I

K K

_ O'cO'rA

( r  _  / )  _  ± ( l  _  g - t ( T - , )  ) _  ±  ( i  _  e - * .( ^ - 0  ) +  _  g - 4 ( r - , ) g - t ( r w )  )
Jç k  ' /j» -1- /iF ' *K + K

K K  L
-  W -  W+r - r r  (i )

^r+^c

^c^rPrc r(k ,+ k , )
K K . K + k c ^r+^c K + K

<̂ c<̂ rPrc t( K + K )
K  + K k X

A K * K )  H X r t K * K )
K K K K

-^c<^rPro \ ( H X r ) - r ) K  ,
K-^K . K K

-Ĉ cĈ rPrc \ ( H M ) -
K + K K

K K K K  K K K K

K k,

-<^c^rPr
K + K

 ̂ ( g .W - r ) )  ^

K K

-<̂ c<̂ rPrc ' K W - r )

K + K *-
(155)
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Now substitute expression (150)-(155) into (149) to obtain the variance

cr, cr
v : [ a iT )h + cr;r+

_ (r))l + » ,  (r) ) '

- 2
K + K

+ H ,  {t)H ,  ( t) (156)

Using the expected value and variance for G{T) in expressions (148) and (166) we can 

obtain the formula for the three-factor futures price. Substituting (148) and (166) into 

equation (129) yields

F{S{T\5(jr\r{T),T)  = < ( e ‘'<">) =

F(5(n< 5(r),r(7 ’),7’) = exp ln 5 '(r )-—c r ^ ( r - / ) -
I k

 ̂ Acr ^
\

<5(0 a +  ,
I  ^0 )

T

\ f ( t , v ) d v - [ H ^ { T ) - T ]
2 K  4k,

1
+  -  

2 \ \
+ or;r

C  J

K  2k  ;  I

+  2
V K

- 2 -<̂ c<̂ rPn
K + K k.

W

Jj
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■ expi lniS'(/)— O'/ (T —t') —^ k la  k^Xar^ "

V *c y
r -

K  K

<  cT//y/(r)
2^/

1
+  — 

2 \ \
+ o-/r

(T/ CT/^/(Tr
2A,

- 2
r / K

- 2 '-Oc<JrPrc r K w - r )  K w - T ) )  1
\V

,  ^r+^c
h - -, 1

L '^r «c J,/ /

= expjln *5(0 -  ̂  (T/r + ( //, (r) -

(T/ <T/^/(f)
2 tf 4it.

2it; # .

-<^c^rPn
K + K
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= exp ln^(0 + K ( T ) - r
kl a  -  k^Xa + K<̂ s<TcPa

IhM
4k,

<̂c<̂rPr.
K + K k^

^ ^ ^ ^ ( t - / / , ( t)) j  exp{-<5(0//e(O}exp|+J/0,v)f/v|,

= S(/)exp
{He (f) -  r f  k la  -  k̂ X<T, -  ^  + Pe,<T,aX

<y]Hl(s) 
4k,

K + K
K ( ; M + K . w - : ) L ^ X r ) / f X r )

^ ! ^ ( r  -  H, (r))l -  (H Xt) -  r ) ^  -  / f ,  (r)5(/)}
P(t,T)

Simplifying the above, we have

f  (S(D,5(r),r(r),r)=«((M W W AW CrK "-''"’ -r ^ , (i57)

where ^ (r) = exp
(Heir) -  r l  k la  -  k,X<Tc ~  + Pa^s<^A

crlHlir) 
4k,

(158)

jD,(r) = exp fTeCTrP.
K + K

ir)H,  (r) (159)
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£>2(r) = exp

D3(r) = exp
K  2k,

(160)

(161)

The closed form solution for the three-factor futures pricing model inculcates a large 

amount of information. First, we see it is a function of the current spot price, current 

convenience yield, the current price of the pure discount bond maturing at time T. In 

addition the risk neutral drift and diffusion terms for the each state variable is 

compounded into the futures price. The solution is more general than the one and two 

factor solutions and we see that the three-factor futures equation can reduce to the two- 

factor futures/forward equation. That is, when D, (r) = D; (r) = (r) = 1 the three

factor solution is the same as the two-factor solution.

What do the coefficients D,(r),£>2( ’̂)> A (^ )  capture. The term jD ,( t)  is a 

premium or a discount depending on the correlation between the interest rate and the 

convenience yield. If the two processes seem to move in tandem with one another then 

D,(r) will be positive, putting a premium on the futures price. The term Z>2(^) &

premium or the discount due to the correlation between the spot price and interest rates. 

This will work in the same as D, ( r ) .

Expression (161), Dj(r), introduces the premium or discount applied to the

futures price due to the volatility of the interest rate. The interest rate volatility is an 

exponentially dampened function. For very short time periods this expression is greater 

than one, thereby adding a premium to the futures price. As the time to maturity
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increases this expression is decreasing and in particular is less than one. The indication is 

that as time to maturity goes up greater discounts are applied to the futures price due to 

decreased volatility..
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Endnotes

' Economists have extensively studied the impact of a convenience yield upon 

commodity markets. Some of the most noticeable work in this area is Working (1948), 

Brennan (1958) and Telser (1958).

 ̂A more detailed discussion of equivalent martingales measures is found in Appendix C.

 ̂For the conditional expectation method of solution we do not construct an arbitrage free 

portfolio directly. We presume that we may alter the probability distribution for a 

random process. This altered process becomes a martingale and Harrison and Kreps 

(1979) and Harrison and Pliska (1979) show that if  assets follow a martingale process 

then no arbitrage opportunities exist with this asset.

* For the model to be consistent with the general efficient market hypothesis of Fama 

(1970) and Samuelsone (1965b), the dynamics of the un^ticipated part of the asset price 

motions should be a martingale. That is, the innovation term should follow a random 

walk. These price vibrations for example, are due to a temporary imbalance between 

supply and demand, changes in the capitalization rates, changes in economic outlook, or 

other new information that causes marginal changes in the asset’s value. A good 

candidate to model this behavior is geometric Brownian motion. The properties of this 

process in an economic context are discussed in Cootner (1964), Samuelson (1965a, 

1973), Merton (1971,1973a, 1973b), and Merton and Samuelson (1974).

 ̂ This is equivalent to assuming in a general equilibrium framework that the 

representative investor has a logarithmic utility function. In this special case, the 

marginal utility of wealth is independent of wealth. Consequently, the market price of 

risk which is the covariance between the change in the spot price with the rate of change
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in the marginal utility is constant. Under the above assumption, the derivation for the 

market price of risk in a general equilibrium framework is done by Cox et al (1985a, 

1985b). Gibson and Schwartz (1990) make the same assumption for the representative 

agent.

 ̂The astute reader will notice that the futures price in equation (2) is not discounted. The 

futures price is said to equal the expected spot price. This is the price to be paid at the 

terminal date of the contract. If we wanted to know the futures price today we would 

have to discount the expected spot price. Thus, if the spot price has a risk premium 

embedded in it, then discounting the expected spot price by the known riskless rate of 

return would not yield a Martingale.

 ̂Refer to appendix C for a more formal discussion.

 ̂A discussion of the Gibson and Schwartz (1990) model is found in Appendix B 

 ̂A formal discussion of Ito’s isometry and stochastic calculus is presented in Appendix 

D. A more serious reader might find Nefrci (2000), Hoel et al (1972), or Kushner (1995) 

a better presentation.

For the cautious reader the above argument is presented in the analysis as a review for 

past literature and only serves as a point of departure for later models. This argument 

assumes that in equilibrium the market always clears. That is supply and demand both 

adjust simultaneously to reach a market clearing price. The price swings discussed 

above, however, could be indicative of aberrant demand conditions that temporarily alter 

market prices. That is, during abnormal weather conditions we would see an increase in 

demand that occasions a shift along the supply curve forcing prices up. Supply in the 

short term will be reasonably fixed and therefore will not adjust. Once the abnormal
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conditions fade demand will return to its normal level and prices will fall. The price 

movements are in this case are strictly due to demand not supply.

"  This is modeled used in Schwartz’s (1997) Journal of finance presidential address.

" The reader should note we are using the log of the spot price in expression (23) to 

capture the tendency of spot prices to revert around their mean. This is necessary 

because the process is geometric. That is, both the left and right hand sides of expression 

(23) are expressed in terms of returns. Thus we need to use the log of the spot price to 

model the deviations around the expected return.

This joint process is the model introduced by Gibson and Schwartz (1990). Derivation 

of their pricing equation is found in appendix B. The closed form solution for this model 

is found in Bjerksund (1991).

Since the spot commodity is a traded good we can state its risk premium analytically. 

We use the equilibrium condition for the futures contract to develop this quantity. The 

market price of risk for the convenience yield however, is not possible to express 

analytically. The convenience yield is not a traded good and we do not know its form. 

The parameter À will remain in the analysis and must be estimated. In another analysis 

by Miltersen and Schwartz (1998), they use the method by Heath et al (1992) to bring the 

term structure of convenience yields into the analysis. This makes there results 

independent of the market price of convenience yield risk. Their result however, is only 

good for instruments that have long term maturities. Futures have maturities of just over 

a year, and do not lend themselves to this type of model. Thus, we use the previous 

method mentioned above.
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We can characterize the distribution of the futures price by finding the convolution 

between the pdfs for the spot price and convenience yields’ Brownian motions. To 

demonstrate consider two random variables X and Y with pdfs given as and

f y iy ) .  Let Z  = X  + Y ,  then /^(^)=  j/,(x )/^ (z -jf)c tc , which is called the

convolution of f^{x) and f A y ) .  Let /,(%) = exp and

rexp 
y \ 20-

, then what can we say about Z? I f  X  ~ N(0,(t^) and
y

Y ~ i\T(0,l) then Z = Z  + r  ~ W(0,<r' +1). Proof

fx*y (0  = \ fx  i^)fy if -  X)dx

= f sIlTCcr
-exp

I
expf i f - y f \dx

« /

<7

v2\'\X- ( / - x )
dx. (1)

Rewriting the term inside the exponential we have

cr 1 cr^

= + -2ÉC + X* —

(2)
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Now let c =
Vi + <T

, then the right hand side of expression (2) becomes

-2 tx  + c^t^ +/^

= ̂ —- c t j  + ( l - c ^ y

x - c  t

Substituting this back into the integrand in expression (1)

\ \

2 c- V V
dx

JJ

1 "f

JJ

1 f  ( l - c '> = l exp --i------ ^
Im r 2

jexp

ok exp
\

dx

-exp ( l 1 1
2 j Ĵ27̂c

1

JJ

dx.
JJ

The integrand now sums to one and the above reduces to

4 3

exp i l ) . (3)
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We can rewrite (1 -c^ ) this is

In addition we may also write

-  = (l + c r ')^ .  
c

Substituting these expressions into equation (3) we obtain

 ̂ ^expf - — (4)
■^2;r(l+ cr^) L 2(1+ cr^)

Expression (4) is the pdf of a random variable that is normally distributed with a mean of 

zero and a variance equal to 1 + cr^,

We have priced futures and forward contract and treated them as the same contract. 

With the marking to market for futures contract one may think the price of a futures 

contract is different from a forward contract. Cox et al (1981), and Jarrow and Oldfield

(1981) show when interest rates are constants forwards and futures prices are the same.

Consider the following example.

Suppose that futures contract lasts for n days and that F (i)  is the futures price at 

the end of the day i (0 < / < n). Define 5  as the risk-free rate per day (assumed constant). 

Consider the following strategy.

1. Take a long futures position of e 'a t  the end of day 0. The beginning of the 

contract.

2. Increase a long position to at the end of day 1.

3. Increase a long position to at the end of day 2.
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And so on.

By the beginning of day i, the investor has a long position of e*®. The profit 

(possibly negative) from the position on day i is

{ F ( i ) - F ( i - l ) y .

Assume that this is compounded at the risk-free rate luitil the end of day n. Its value at 

the end of day n is

(Ffi )  -  F (i - 1  = {F(i ) -  F(i  - 1  ;)e"'

The value at the end of day n of the entire investment horizon is therefore

l-l

That is,

[(F(n ) - F ( n -!))■¥ ( F ( n - l ) - F ( n - 2 ) ) + - ^ -  + ( F ( l ) - F ( 0  = (F(n )  -  F(0

Since F (n) is the same as the terminal asset price, S(T ),  the terminal value of the 

investment strategy can be written

{ S (T ) -F (0 )y '^ .

An investment of F (0 )  inn  risk-free bond combined with the strategy just given yields 

F(0)e”̂  - \ - ( S ( T ) - F ( 0 = S(T)e"^ 

at time T. No investment is required for all the long futures positions described. It 

follows that an amount F (0)  can be invested to give an amount S (T )e ”̂  at time T.

Suppose next that the forward price at the end of day 0 is J (0 ) .  By investing 

J(0)  in a riskless bond and taking a long forward position of e* forward contracts, an
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amount S(T)e"^ is also guaranteed at time T. Thus, there are two investment strategies, 

one requiring an initial outlay of F(0),  the other requiring an initial outlay of J(0 ) ,  that 

yield S ( T at time T. It follows that in the absence of arbitrage opportunities

J ( 0 ) ^ F ( 0 )

In other words, the futures price and the forward price are identical. Note that in this 

proof there is nothing special about the time period of one day. The futures price based 

on a contract with weekly settlements is also the same as the forward price when 

corresponding assumptions are made.

For the cautious r e a d e r , 7) is the derivative of the forward rate with respect to the 

maturity. As the maturity changes so does the forward rate.

'*To understand how we may switch the order of integration we need to review some 

basic properties of the double integral. We start with a bounded region Q  in the xy-plane. 

We assume that is a basic region. That is, we assume that boundary of n  consists of a 

finite number of arcs y  = q>{pC), or x = yr{y). Now, we want to define the double 

integral

a

To do this, we surround by a rectangle R. We now extend/ to all of R by setting/ 

equal to zero outside of This extended function of /  is bound on R, and it is 

continuous on all of R except possibly at the boundary of Û. In spite of these possible 

discontinuities,/is still integrable on R\ that is, there still exists a unique number /  such 

that
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L^(P)<I<U^(P)

for all partitions P  of R. Where Lj.(P) is the lower sum and Uf(P) is the upper sum. 

This number/is by definition the double integral

jjf(x,y)dxdy
R

We define the double integral over jO by setting

ljf(x ,y)dxdy = j j f (x ,y )d xd y . 
a  R

I f /is  nonnegative over the extended/is nonnegative on all o f R. The double integral

gives the volume of the solid trapped between the surface z = f { x ,y ) ,  and the rectangle 

R. But since the surface has height 0 outside of Ü, the volume outside of is 0. It 

follows then that

\\fi.x,y)dxdy
n

gives the volume of the solid T bounded above by z = f ( x ,y )  and below by

volume o f  T = ^^f{x,y)dxdy. 
a

The double integral

JJldrdy =  JJdxdy
a  a

gives the volume of a solid of constant height 1 over D. In square units this is the area of

a

Area o f  Q  = jjdkdy. 
n

If an integral
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\f{x )dx
a

proves difficult to evaluate, it is not because of the interval [a,b] but because of the 

integrand f .  Difficulty in evaluating a double integral

\\fi.x,y)dxdy
o

can come from two sources: from the integrand/ and from the base region Even such 

a simple looking integral as jjldxdy is difficult to evaluate if /2is complicated.

To evaluate the double integral we use the iterated integral approach. 12 is a basic 

region and we know that the double integral exists. The fundamental idea is that the 

double integral over sets of this structure can be reduced to a pair of ordinary integrals.

To evaluate the double integral above we do the following. The projection of jO 

onto the x-axis is a closed interval [a,b] and consists of all points o f (x,y) with

a < x < b  and q)̂ ( x ) ^ y ^ •

Then

j l f(x ,y )dxdy  = J jf(x ,y)dydx
a a P|(x)

Here we have to first calculate

\ f ( x ,y )d y

by integratingXx,y) with respect to y  from ç), (x) to ^^(x) . The resulting expression is a 

function of x alone, which we then integrate with respect to x from x = u to x = b. We
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could have solved the double integral another way. That is, we can switch the order of 

integration and obtain the same result. Consider the following. The projection of onto 

the x-axis is a closed interval [a,b] and consists of all points of (x.y) with

a < y < b  and Çy{y) ^  x  ̂  ç^{y) .

Then

\\fi.x,y)dxdy  = J ^f{x,y)dxdy
n  a

This time we first calculate

j f (x ,y )d x
pdy)

by integrating^,yj with respect to x from ^,(y) to ^%(y). The resulting expression is a 

function of x  alone, which we then integrate with respect toy  from y = a toy = 6.

Let us consider an example to elucidate the discussion above. Take the region jO, 

which is bounded by the functions y  = x^ {x = y'^^) and y  = x^'* (x  = y**). We want to 

evaluate the double integral

-y^)dxdy.
n

The projection of Ï2 onto the x-axis is the closed interval [0,1] and jQcan be characterized 

as the set of all (x,y) with

O ^ x ^ l  and x^ ^ y ^ x " ^ .

Thus,
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I x"*
-y^)dydx=  J  -y^)iydx  

a  0 *2

= r A / / 4 _  2 ^ 7 /2 ^ 1 ^ 7 1 '
[21 7 21 Jo

8 2 1 1  
21 7 21 7 '

We can also switch the order of integration to achieve the same result. The projection of 

/2onto the y-axis is the closed interval [0,1] and i2can be characterized as the set of all 

(x.y) with

0<j /<: l  and y^

Thus,

I y :

-y^)dydx=  |  -y^)ixdy  
a  0 /

■If
dy

dy
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8 2 1 1  
21 7 21 7 '

If liquid bonds that determine the term structure are all influenced by the same 

unpredictable Wiener process fF/, the respective prices must somehow be related to each

other as suggested by the pricing relation:

- j r ,d s

e '

The classical approach to pricing interest rate sensitive securities is an attempt to extract 

these arbitrage relations from the B(t,T) and then summarize them within an arbitrage- 

free spot rate model. This is indeed a complicated task of indirect accounting for a 

complex set of arbitrage relations between market prices. The Heath-Jarrow-Morton 

(1992), or as known as HIM approach, attacks these arbitrage restrictions directly by 

bringing the forward rates to the forefront. The risk-adjusted diffusion process for the 

HIM forward rate is

df(t,T) = Mfit,T)dt + crf(t,T)dZ\t).

We can describe the movements of the above diffusion process with a binomial lattice 

model. To construct the lattice we use

f ( t  + Æ,T) = -
f( t ,T )  + jUf(t,T)At+(jy(r,T)V27 

f( t ,T )  + -  CTf (f,nV 2F ’

Where //y (/, T) = tanh(m(/, T))®’/  (̂ , T) ,

e" -g -"
tanh(m(/, T)) = —— — , and
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û){t,T)= ^a-f{t,s)ds.

We start with a flat term structure

/(0 ,0 ) = r(0) = .1,/(0,1) = .l,/(0 ,2 ) = .1,....

and let At = \ and <ry(/,T) = 0.02. The correction term //y (r,r) is found by the

following

a it, T) = = ( T - t -  \)cTj
«+I

û)(0,D = ( l-0 - l)( .0 2 )  = 0, 

û)(0,2) = (2 -0 -l)( .0 2 ) = .02. 

Substituting the above into

yields

e" -e ""
tan h (# ,T ))  = —---- —

e

tanh(û)(0,l)) = ^ ^ = 0,
e +e

tanh(ûj(0,D) = ^ 2 -0  = .019997334.

Therefore

jUfit,T)At =  twib.iait,T))cTj^it,T)At

IS

///(0,1)(1) = tanh(0(O,l))(.O2)(l) = (0)(.02)(1) = 0

Mfi0,2)il) = tanh(©(0,2))(.02)(l) = (0.019997334)(.02)(1) = 0.0004.
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The forward rates at time t = 1 are

K1) « = / ( U ) „ = . 1  + 0 + .02 = .12,

/(1,2)„ = . 1 + 0.0004+.02 = . 1204, 

K 1L = /(U )< ,= .1  + 0.02 = .08,

/(l,2)rf = . 1 + 0.0004 -  .02 = .0804,

The forward rates at time t = 2 are

r(2)^ = /(2 ,2 )_  =.1204 + 0 + .02 = .1404, 

r(2 )^  = /(! ,! ) ,,  = .0804 + 0+ .02 = .0804, 

r(2)* = /(U ) ,„  =.0804 + 0 + .02 = .1004, 

r(2)^  = /(2 ,2 )^  =.1204 + 0 -.0 2  = .1004.

r(2)^  = .1404

r(l)„ = .12 
/(1,2)„ = .1204

r(0) = .l
/(0 ,l)  = .l r(2)^= .1004
/(0 ,2 ) = .I 

r(l), = 08
/(1,2)^ = .0804

r(2)^= .0604
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Given the lattice above we can calculate the price of the pure discount bonds. The bonds 

are given by

The corresponding pure discount bond prices at time t = 0 are 

f  (0,1) = l e '  = .904837418, 

f  (0,2) = lg-'(") =.818730753, 

f  (0,3) = Ig- = .740818221.

Bond prices at time t =1 are

P(l,2)„ = le -"  = .886920437,

f(l,3), =lg-("*"°") = .786313315, 

f(l,2)^ =le-®* =.923116346, 

f(l,3)^ =le-(08*08M) = .851803045.

Bond prices at time t = 3 are

P(2,3)„„ = le -" ^  = .869010608, 

f(2,3),^ = le - “̂  = .904475603,

P(2,3)^ = le -“"  = .941387903.

The lattice for the bond prices is
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.886920437

.786313315

.869010608

.904837418

.818730753

.740818221
.904475603

.923116346

.851803045

.941387903

The bond prices above are arbitrage free. Hence, we may calculate the price of a bond 

today under an equivalent martingale measure. That is

P ( tJ )  = E][P(t + /^,T)]P{t,t + At) .

The price of a three year pure discount bond is 

/>(0,3) = £.'[P(23)]P(0.2),

P(0,3) = |(p‘ + ( l - / X p '  + (l -

P(0.3)=ri(.869010608)+i(.9044750603)+i(.941387903)j(.818730753)
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f (0,3) =  .740818221.

Note, the correction term is needed to insure no arbitrage opportunities exist. If

we did not use this correction term then we cannot live up to the no arbitrage condition. 

Consider the following. Let

/ ( r  + Ar,r) =
/(r,r)+o-^(/,r)VÂ7

The lattice for the forward rates would be

r(2 ) . = .14

/•(1)„ =.12 
/(1,2)„ = .12

r(0) = .l
/(0 ,l)  = .l r(2 )^= .1 0
/(0,2) = .l

r(l)j = .08 
/(1,2), = .08

'■(2) da = .06

The possible prices of a discount bond at time t = 2 maturing at time t = 3 are 

P(2,3)^ = le-'"  = .86358235,

= le" = .904837418,
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P(2,3)^ = le-"” =.941764534.

The price of a three year discount bond under an equivalent martingale is

P(0,3)=|^^(.86358235)+|(.904837418)+|(.941764534)j(.818730753) 

f (0,3) = .739932364.

This price is not equal to the three year discount bond price using today’s term structure. 

Thus the above process permits arbitrage opportunities.

20 Using equation (145),

0 5/ [J  du J J dt

to derive the spot rate we have.

Kv) = /(t,v)+J<Ty(j,v) ja-p(s,y)dy ds+ j<T^(s,v)dZXs)

If <Tf(s,v) = then the above may be written as

r(v) = / ( / , v) + ds + •

Evaluating the expression above yields

/  \

\  K J
r(v) = /( / ,v )  + + \a,e^'^^-‘^dZ*{s) ,

= /(^ v )  +
V K  J ,

= /(^ v )  +
V y
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= Æ v )  +

\ ^ r y / \  r / /  t

= /( / ,v )  + ̂ (e-*'(' ' -’'>-e-*'<’"'^)— - e ' “ ' ’̂'"'^)+ /o-,e-*'<’’-"Wz;(f),
2 .̂

= /(<.v) + ̂ ( l  - e - ‘-<’-'>)- ̂ ( l  - e - ” ' ' ’">)+ j<T,e-*'<’- t e ; ( î ) .

, 2  _ 2 2 ^2
= / ( '.v )  + ̂ - ^ e - ‘- < '- '> - : ^ + ^ e - " '< ’-'>+ ja ,e - * - '- ' '< W .

= / ( / ,  v) + - ^ ( 2  -  -1  + g-2*X-,))+ ̂  g-*,v Je* .v z ;(j) ,

= /(f,v ) + ̂ (1 -  2e-*'('"-') + a,e"*'>*'VZ;(j).

The expression immediately above is the same as equation (147), where we derived this 

expression from (145) not (146).

During the development of the instantaneous spot rate process, we relied extensively 

on the HIM methodology. This method uses the arbitrage free bond price dynamics to 

determine the forward rate dynamics. It turns out that the only input to determine the 

forward rate dynamics is the volatility of the term structure. Once we have the volatility 

then we have the forward rate dynamics which includes the instantaneous spot rate. The 

derivation for this process is economically appealing, insightful and promotes the use of 

this specification in developing asset pricing models. The forward rate dynamics used in

110



the HJM model, however, is not unique to them. These stochastic differential equations 

are a particular class of time varying coefficient stochastic processes used extensively in 

the engineering literature.

As we have already seen an economic derivation of the instantaneous spot rate 

from the HJM perspective, we now concentrate on the intuitiveness of this derivation 

from a mathematical perspective. The purpose for using a time varying coefficient 

stochastic process to model forward rate movements is it allows the forward rate to revert 

around its mean while its average moves over time. HJM realizes that as new 

information arrives each period the term structure changes. The actual magnitude of the 

change may depend of the forward rate itself, on its maturity date, and on other factors. 

The change in the forward rate need not be constant for all maturities. Given these 

asymmetric changes in the forward rate, we could expect forward rates to oscillate around 

their means and for their averages to move across time as well. Thus, the use of a time 

varying coefficient stochastic process would be a natural selection to model this behavior.

What follows is the derivation of the instantaneous spot rate (expression 147) 

using the general specification of the time varying coefficient process. In addition, we 

will be capable of deriving the stochastic differential of the instantaneous spot rate 

(expression 128).

Let dynamics of the instantaneous spot rate be described as

dr{t) = + m'(t) -  k,r{t))dt + odW{t) (1)

where m{t) = / ( / , v) + ; ^ ( l - ,
2k^
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=  f{t ,v)  + ^ ( l  - (2)

Given the above specification, we may restate the stochastic differential for the 

instantaneous spot rate. To accomplish this, we must first find mXt) . This is

m'it) =
f{t,v)  + - ^ ( l  -  

2^.
dv

a .
(3)

Using equations (2) and (3) in (1), we can obtain equation (128) in chapter 3. This is 

done as follows

dr{t) =  ̂ ^ f( t ,v )  + ̂ ( l  - 2g-*'*'-") + g-“ '<'-*’>)l + / , ( / ,V) + - ^g -2 * '( '-)
2k  ̂ J k̂

-  k^r{t))dt + adW{t) ,

I  K K

-  -  K K t^ d t  + adWit) ,

A  (A  V) +  , V) +  : ^  +  - k ^ r { À d t  +  a d W { t ) ,
I K )

dt + adWit),

A(t,v )  + k j ( t , v )  + ̂ ( l  ^^r(OV/ + adW(t) .
2A:,

(4)
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Equation (4) is the stochastic differential we wanted to find. We may now derive 

expression (147). This is

dr{t) = + m \t)  -  k^r{t))dt + adW(t) ,

dr(t) + k^r(t)dt = {k^m(t) + m'(t))dt + adW{t) , 

e*'' {dr{t) + k^r{t)dt) = e*'' + m'{t))dt + adW{t)),

d{r(t)e'‘'')= e*'' {{k,m(t) + «'(/)>* + adW(t)),

£/(r(/)e*'' )= (e*''A:,w(0 + + oe^'‘dW(t) ,

ci(r(/)e*'' )= i/(e*''/M(r})+ ae'‘'‘dW(t),

jd{r(s)e'‘'’ )= ]d{e'‘'^m(s))+<T'je'‘'^dfV(s) ,
0 0 0

d(r(j)e*'' = d(e*'"w(5)]|' + or je*'^dîV(s) ,
0

r
rCOe*'' -  r(0)e*'® = e*''m(0 -  e*'®m(0) + c  .

0

Recall that

thus m(0) = /  (0,0) + 0.

Using the expressions above we find

r(r)c*'' - r (0 )  = e*''
2 \ / 

+ -/(0 .0)+£T

r(r)e*'' = e*''
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r 2 \ t
+ +c7fe*'^dfF(s),

ZfC,

r(0  = / ( 0 ,0  + (l -  e‘*'' H  + ^  ,
K )  0

r(t) =

r(0  =

(l -  e'*'' )" j  + e-̂ '‘cr]e''’dWis),

f (0 , t )  + ̂  (l -  2e'*'' + e'" '' )j + .

This is equivalent to equation (147) in chapter 3.

(5)
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Chapter 4

Commodity Futures Option Pricing Models

The focus of our analysis to this point is centered on pricing commodity futures contracts. 

We begin with a simple mean reverting spot price and then add greater complexity by 

introducing a stochastic convenience yield as well as a random interest rate. In each of 

these models, we note that the solutions to the underlying systems of stochastic 

differential equations are themselves random processes. Consequently, there is an 

implicit price dynamic inherent in the futures price, which we may state formally (This 

was detailed in chapter 3 for the one- and two-factor models). Once the futures price 

dynamics are in place, we may begin to price option contracts written on the commodity 

futures contract. The objective of this chapter is to develop a pricing model for these 

options.

The theoretical underpinnings of the option models in this chapter are predicated 

on the original work of Black and Scholes (1973). Anticipating the use of the Black- 

Scholes methodology we begin with a review of this analysis. As we reflect on Black- 

Scholes work, we explore two different approaches used in the literature to derive the 

Black-Scholes formula. The first approach is the traditional arbitrage methodology used 

in the Black-Scholes analysis. The second method is a partial expectation model working 

with an equivalent martingale measure. Once we conclude our review, the remaining 

analysis for this chapter proceeds with the partial expectation method of solution.

In the final section of this chapter, we extend the above option models by 

introducing the effects of a discrete random jump to the futures price process. 

Occasionally, commodities are influenced by aberrant market conditions, whereby, prices
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tend to exhibit discrete jumps. For the case of crude oil, these aberrant conditions may 

arise because of the weather, war, or other political unrest in a particular country. This 

evidence suggests commodity prices may not follow a geometric Brownian motion all the 

time, which leads us to investigate other means of pricing futures options. Therefore, the 

remaining portion of this chapter investigates jump-difhision models in the finance 

literature and their ability to price options written on commodity futures.

4.1 Black-Scholes Option Pricing Model

The Black-Scholes option pricing model prices options that are written on a non­

dividend paying stock. To derive this formula, we need to understand how the 

underlying asset behaves. That is, we need to know the salient time series characteristics 

of the stock price. Black-Scholes posit that the stock prices follow a geometric Brownian 

motion, which we formally describe as

^  = /«*+orfZ(0. (1)
ù[f)

where p  is the mean return and a  is the diffusion coefficient. dZ{t) is the increment of 

a standard Brownian motion. Given the return dynamics of the stock price we can now 

say something about the derivative security written on it.

Suppose an option contract can be written as a twice-continuously differentiable 

function of the stock price and time, namelyC(j,f). If the stock price follows the 

dynamics described in expression (1) then the option return dynamics can be written in a 

similar form as

^ £ ^  = f, ,d t*a ,dZ (l) ,  (2)
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where is the mean return and cr̂  is the diffusion coefficient.' The term dZ(t) is the

increment of a standard Brownian motion, and later we will discuss the nature of this 

innovation term.

Equation (2) is a general expression for the return dynamics of the option 

contract. We know the option is a function of the stock price so it too must follow a 

stochastic differential equation with drift and diffusion ar̂ , but it need not follow a 

geometric Brownian motion. We may determine the actual drift and diffusion terms for 

the option by formally developing the stochastic differential equation in expression (2). 

We use Ito’s lemma to develop this dynamic. Invoking Ito’s lemma the increment for the 

option contract is

dC{S,t)=C,dS{t) + ̂ C j d S { t ) f  +C,dt,

= C, \/iS(t)dt + aS(t)dZ(t)]+ 1  [5(/)f dt + C,dt,

dt + aS{t)C,dZ{t). (3)

Expression (3) is the stochastic differential of the call option’s price. To express these 

movements in terms of returns we divide the left-hand side and the right-hand side by 

C(S,t). That is,

dC{S,t)
C(S,r)

+/̂ (0C, +C, 1/c(5,/) dt + [aS{t)CjC{S,t)}iZ{t).

(4)
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Expressions (4) and (2) are expressed in the same units (returns) and they are describing 

the behavior of the same process. Hence, they are equal and we can equate the drift and 

diffusion terms in both expressions. We obtain

= ^ C ,y [ S ( t ) Y  +MS(t)C, +C,

a ,= a S { t )C jC (S , t ) .  (6)

Earlier in equation (2) we did not formally define the innovation term. We now see that 

the Brownian motion in equation (4) is the same as the Brownian motion in the spot price 

shown equation (1). Thus, the call option is driven by the same innovation term as the 

spot price.

With the return characteristics for the stock and option contract in place, consider 

the following investment strategy. We hold portions of the stock, the option, and a 

riskless asset in a portfolio, where the portfolio weights are denoted as w,, W2,andu^

respectively. The portfolio weights sum to one, =1, and the value of the portfolio

is denoted as A(i). Since the portfolio is a function of both the stock and the option, we 

may express the return dynamics of the portfolio as a stochastic process. This dynamic is 

expressed in similar fashion as the stock return dynamics. Formally,

(7)
A{t)

where is the mean return and is the diffusion coefficient. For now we define 

dZ{t) as the increment of a standard Brownian motion, with an expected value of zero

and a variance of V/ • Below, we will see that this term is the linear combination of the 

individual asset diffusion coefficients.
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Since the portfolio is a linear combination of the three assets, its drift and 

diffusion terms are linear combinations of the drift and difftision coefficients of the 

individual assets. The drift term is expressed as

Using the constraint w, + Wj + W3 = 1 and the fact that the expected return on the riskless 

asset is equal to r  the above expression is rewritten as

= w,// + Wj//, + (1 -  w, + Wj)r,

+ + r  (8)

The diffusion coefficient for the portfolio is

cr  ̂ +

By definition = 0 so we are left with

o-̂  =w,0- + W2O-, (9)

The variance of the portfolio is a function of the volatilities for the underlying asset and 

the derivative security.

We now have the dynamics of the portfolio. In obtaining the drift and diffusion 

terms we simply took the linear combination of the underlying assets coefficients. This 

property is of interest to an investor. The reason lies in the diffusion term. The diffusion 

term for the portfolio is the sum of the two diffusion coefficients for the option and stock 

processes. These terms are not unrelated. Both the stock and option processes are driven 

by the same iimovation term. Such dependence makes it possible for an investor to take 

offsetting positions in these assets to eliminate the randomness from the portfolio. 

Therefore, an investor may strategically choose a weighting scheme so that the diffusion
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coefficient equals zero or cr^=0.  Consequently, if the portfolio in expression (7) is 

risk-free, then the return to this portfolio over the investment horizon should equal the 

riskless rate of return. That is,//^ = r . Hence, we can write expressions (8) and (9) as

cr  ̂ =w,cr + W20-, = 0 ,

or

^ = w, ( / / -  r) + W2 (//, -  r) = 0

= W,Or + W2<7̂  = 0 .

We may express the above system in the following form

(10)

(11)

> - r r »i O'

X . 0
( 12)

The system of equations in (12) is known as a homogeneous equation system. There are 

two possible solutions to this system. The first is called the trivial solution where the 

weights are all equal to zero, w /j = 0. This solution, however, is not a viable solution 

since by definition there must be some investment. The second solution and more 

appropriate is the non-trivial solution where the portfolio weights are all non zero, 

w /j 0. The only way to obtain a nontrivial solution from a homogeneous system of 

equations is if the coefficient matrix is singular. That is.

M - r  M c - f = 0
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The above condition implies that the row vector - r ]  is a multiple of the row

vector consequently one of these two equations is redundant. Dealing with the

first equation we see

+ - r )  = 0.

W, = -^ 2
(a -'")

Now substituting this expression into the second equation we have

-w .-(jUç-r)
iM -r )  

iM c-rŸ \
I

cr + wjcT. = 0 ,

CT + 0-, =  0 .

We are looking for the non-trivial solution w* ^ 0 .  The only way the equation above 

equals zero is if the expression inside the brackets equals zero. This implies

I ( A - r ) ,

' (M c-rŸ

W + (T. =0 ,

(Me-'') (13)

The non-trivial solution for the homogeneous system of equations in expression (12) is

r , - r
(14)
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where y, = Sf =[<r,<Tj]. To illustrate the above consider the expression

w, = -^2

Substitute this expression into

w*cr+W2<T<. = 0 ,

- w . a  + ŵ cr  ̂ = 0 .

If w\ = — ——, then expression (15) becomes

(15)

(T + k = o ,

-r)iMc - f )  
crXt^-r)

CT + O’c =0,

=  0 .
C  J

Recall from expression (13), that

(16)

Therefore, expression (16) reduces to

=  0 .

The result above shows that the optimal weighting scheme.

n - f
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is a solution to the above system of homogeneous equations.

Now substituting expressions (5) and (6) into expression (13) we obtain

ic „ < T = [s (o r+ /tf (o c ,+ c ,
H ~ r  _

<7 ■ ctS(OC,/C(S,<)

- r .
aC{S,t) C{S,t)

= \ c y [ S { t ) ] ^  + C ,-rC (S ,t),
a  2.

0 /-r)S (()C , = jC^<r'[S(t)f +/iS(()C, +C, -rC (S ,(),

- m ) C ,  +/iS(7)C, + ic„ < 7 ’ [S (0r +7S(()C, +C, - rC (S ,()= 0 ,

ic .< T ’ [S(Or +C,rS(0-7C(S,()+C, = 0 . (17)

Expression (17) is a partial differential equation for an option contract written on a stock 

whose price follows a geometric Brownian motion. This is a unique result in that we can 

now express the option dynamics deterministically. That is, earlier we begin with a 

stochastic differential equation for option prices, but after using a no arbitrage condition, 

we eliminate the randomness from the option price movements. This allows us to find a 

pricing formula for the call option. We only need the necessary boundary conditions to 

solve the partial differential equation numerically or analytically. For the Black-Scholes 

model, the boundary conditions for the option are

C(0,r) = 0, (18)

C(5,0) = max[0,S(T) -  X],  (19)
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where X  is the exercise price of the option and x - T - t  is the time to maturity. 

Intuitively, expressions (18) and (19) are contractual clauses for an option contract. 

Expression (18) states that anytime the spot price is zero, which implies that no market 

exists for the asset, the option will be worthless. Expression (19) states that when the 

option matures the value of the option will equal the greater of the two amounts, S{T )-X  

or 0. The function (solution) that satisfies (17), (18), and (19) is

C{S,t) = S{t)N{d, ) -  e-"XN{d^ ) , (20)

1 d  —where N{d{) = - ^ t e  ^dz,  (21)
v2;r

J, = rV7, (22)

d2=d^-<r->fr. (23)

Expression (20) is the well known Black-Scholes pricing formula for a call option. The 

expression is a function of the underlying stock price, the exercise price, the volatility of 

the stock price, the risk free rate of interest and time to maturity.

The derivation for the Black-Scholes option pricing formula presented above is 

the traditional partial equilibrium model presented in many financial economic textbooks. 

From the above analysis, we see that the Black-Scholes method of solution is capable of 

pricing options with a partial differential equation that is the predicate of an arbitrage 

portfolio. There is, however, an alternative method to obtaining the Black-Scholes 

solution. We may develop the Black-Scholes option pricing solution via a partial 

expectation model where the expectation is taken with an equivalent martingale measure.
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The Black-Scholes methodology of option pricing exploits a partial differential 

equation implied by an arbitrage-free portfolio. Recall, from chapter three, that recent 

methods of derivative pricing do not necessarily exploit partial differential equations, 

instead they rest on converting prices of such assets into martingales. This is done 

through transforming the underlying probability distributions of the assets.^ We know, 

for instance, that the spot price process

^ ^  = Mdt + adZ(t),

can be transformed using the Girsanov theorem. The Girsanov theorem is a method for 

changing the probability distribution for a continuous time stochastic process. Invoking 

the theorem, the Brownian motion for the spot price above maybe written as

dZ(t) = d Z \ t ) - M .

In chapter three, expression (7) shows the market price of risk for the spot price to be

M -r

The risk adjusted Brownian motion becomes

dZ{t) = d Z \ t ) ~ f i - r \dt.

Substituting the risk adjusted Weiner process into the spot price process yields

dSit)
S{t)

dSit)
S(t)

= #  + (r|^dZ'(r)-

= f jd t - i j i - r ) d t  + adZ*{t),

^ = r d , * c d Z \ , ) . (24)
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We have successfully altered the drift term for the spot price by altering the underlying 

probability distribution. As a result, we see that the spot price now trends at a known 

rate, r, as opposed to an unknown rate, / / .  As we will see below, this has useful 

implications for pricing any contingent claim written on the spot price.

The spot price process in equation (24) is a geometric Brownian motion under an 

equivalent martingale measure. An alternative representation of expression (24) can be 

obtained. Let H(t) = ]nS(t,T). The transformation, and Ito’s lemma yield the following 

process for the increment of H(t)

d H ^ H sd S  + ̂ H ssdS \

dH = -iS)[rdt + a d Z \ t ) ) - - ^ [ s ^ ( j ^ d t ) ,
S  2 S

dH = rdt + adZ*(t)-^<r^dt,

d H = ^ r - ^ c 7 ^ y t  + adZ'(t).

Integrating over the above expression yields

jdH  = ^ - ^ a ^ ^ d s  + ^adZ'(js),

H{T) -  H{t) = + \ a d Z \ s ),

H{T)-H{t) = ̂ -^a^yr-t)+\adZ\s) 

H{T) = H i t ) + ^ r - ^ a ^ y +  jadZ* ( f ) ,
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(25)s(r> = 5(/)exp[r(r)],

^ 1 \  îf ,
where Y(T) = r — k  + jorfZ* ( j) , and r = T - t  is the time to maturity. Expression

V 2  y  ,

(25) shows that the log returns, In ' S{TŸ  
. S(t) )

= 7(7'), for the spot price are normally

distributed with a mean of f r - — ]r and a variance of cr^t? Furthermore, the

conditional forecast for the spot price is

£;[5(70] = 5(Oe". (26)

The derivation for expression (26) is as follows. From expression (25), we know 

5 (r)  = 5(0exp[7(7’)].

Taking the expected value of the above we have

fi;[S(r)]=£;[S(/)exp[l'(r)]l. (27)

It is shown in chapter three on page 28, that if the variable 7(7) is normal, then the spot 

price is log-normal with a mean equal to

£;[5(2-)]=s(oexp e;[y(X)]+\r;[Y(.T)^. m

Substituting the mean and variance of 7(7) into the above yields

E;[5(7-)]=5(/)exp <T^\ + —CT̂ T

(29)£ ;[5 (T )l= 5 (0 e" .

This is agrees with expression (26).

Under an equivalent martingale measure, the price o f a European call option 

written on the risk-adjusted spot price can be expressed as
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C{S,t) = [C(5,r)], (30)

where C{S,t) is the price of the call option today, and C(S,T) is the call option at a 

terminal date T. Letting t = 0 and substituting in for the risk-adjusted terminal call price 

we get

C(S",0) = e-'^El[mdx(S{T)-X,0)l 

= -X<ü)\

= g-'"' X  -  X I S{T) >: x \+  E[ [O | S{T) < %])

= X  [5(0)g’'<'’> -  X I > x \ +  El [o 15'(0)g’’<''> < x \

X
c- 'U e :

5(0)
+ El [01 / ' "  < ^  1

S(0).

5(0)g"('")-% I y(T)> In
5(0) / J

+ ̂ 0* 0 |y (T )< ln
\S{0))  

(31)

Expression (31) shows the price of the call option to be a linear combination of partial 

expectations. The first partial expectation operator in expression (31) considers the 

probability that the spot price is greater than the exercise price at maturity. Formally, this 

is

f '{%<5(T)^oo},

where P* is an equivalent martingale probability. Transforming the variable then 

constitutes the following

15(0) 5(0) y
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P l l n
\

^In( 5(7)'I
U (0 )j

Since In ' S(T)

U ( 0 ) ,

. m j

= Y(T), the above becomes

^00

P l i n
y m .

^ y ( T ) ^ o o k (32a)

The second partial expectation operator in expression (31) considers the probability that 

the spot price is less than the exercise price at maturity. Formally, this is 

P*{-oo:^5(r)<X },

where P* is an equivalent martingale probability. Again, transforming the variable then 

constitutes the following

S(0) S (0 ) l ’

p N - o o ^ l n S(T)
S(0)J 

P ' J - o o ^ y ( T ) ^ l n

^In
'  X  '  
.5(0),

(32b)
I5 (0 ) jj

Given the probability statements in expressions (32a) and (32b), we can rewrite the linear 

combination of two partial expectation operators in expression (31) as

Inf— 1

C(S,0) = e~'^ J (0)dP'+e-'^ J(5(0)e'<’’>-ZjtfP*

K s )

where dP* is the risk-neutral probability measure and is equal to

(33)
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dP* =
yJlTtCr^T

exp

r f  
y(T)

\ h r ' } J )

20-T
d y i j ) . (34)

Equation (33) expresses the option payoff as the discounted expected value of the 

terminal option price. The expectation in expression (33), however, is given with 

nontraditional notation. Typically, when one takes the expected value of a random 

variable Z they express this quantity as

E[z ]= ]zfiz)dz. (35)

where y(z) is the probability density function of the random variable Z. This is not what 

we have in expression (33). Expression (33) is equivalent to saying

E[Z]= ]zdP. (36)

The question is what is dPl Consider a normally distributed random variable Z at a fixed 

time t with a mean of zero and unit variance. Formally,

Z ~ ^ (0 , I ) .

The probability density function/(z) of this random variable is given by

h ïïr
(37)

We are interested in the probability when Z falls near a specific value z .  Since the 

normal distribution is a continuous distribution the probability of Z taking on a specific 

value is zero. Therefore, if we want to find the likelihood of witnessing a specific value 

for Z, we need to choose a small interval. A, around a value z and then calculate the 

integral of the density function over this region. This is
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( t+Ia ,

1 1 ^  f  1

z - - A < Z ( = z ) < z  + - A \ =  \ - j L = e ^ d z .
2 2 j  J  Æ

— A

(38)

Now if the region around z  is small then^z) will not change very much as Z varies from 

z - ^ A  to z + ̂ A .  This means we can approximate/(z) by / ( z )  during this small 

interval and write the integral above as

1 4 '%  1/  - = e   ̂ dz = Y— e 
z_l&V2;r yJlTT ,-.iA

2 2

1 e 2 A. (39)

The probability above is a mass and described this way corresponds to a measure that is 

associated with possible values of Z  in small intervals. For an infrnitesimal interval, 

which we write A as dz, these measures are denoted by the symbol dP. Given the 

distributional characteristics of the random variable Z, the probability measure is denoted 

as

dP = - ^ i ^ ^ ^ ^ d z .

We have a normally distributed variable, Z, with a probability measure dP.

The probability measure above is for the actual probability distribution of Z. The 

question remains, how do we transform the probability distribution of Z to alter its mean? 

Consider the frmction

1 2
^(z)=e " 2 

If we multiply dP by ^(z), we obtain
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1 1 2 1 2
dP* =dP4{z) = - ^ e ^   ̂ dz,

■sJIjt

d p - = - ^ e ' ^ " “̂ dz.
V2^

Integrating over expression above yields

]dP' = ] -^e~ ^^^~ ' ‘̂ dz = l .
-ao - 0 0  y  2^

From the integral above, we see that dP* is also a probability measure. It turns out that 

by multiplying dP by ^(z), and then switching to P*, we succeeded in changing the 

mean of Z. Note, that in this particular case, the multiplication by ^(z) preserved the 

shape of the probability measure. In fact, dP* is still a bell shaped, Gaussian curve with 

the same variance as dP, but dP and dP' are different measures. They have different 

means and they assign different weights to intervals on the z-axis.

Returning to expression (34), we see that this expression is the probability 

measure for the variable Y(J). This measure is risk adjusted. This is imderstood given 

the mean for 7(7). That is, under the synthetic probability measure the mean for 7(7) is

^ r - ^ c r ^ j z ,  where as the actual mean of 7(7) given the true probability distribution is

Continuing with expression (33), we substitute into the risk adjusted probability 

measure and obtain
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/ ( 4 )  1
C(S.O) = e -"  I (O) , ‘ exp

y{T)~

2(t T̂
dy(T)

+ I f e ^ ^ e x p
JL) 'Jlna^T

{sm)

y i ^ ~ \

20-T
dy{T). (40)

The first term in expression (40) is equal to zero leaving us with

f

y{T)~
C{Sfi) = e~'^ ] (5(0)g^<^>-x) ■ exp

JJL]  V 2 « rr 'r
U (0 )j

20-T
dy(T).

(41)

Expression (41) can be split up into two different integrals. For ease of exposition, the 

brackets of the exponential in expression (41) are acknowledged with a dot

— i= exp[-fe;(r)- / e ~ ' ^ X ---- -! e - ^ S ( 0)e> ------

U(0)j
^2n<x^T

ex p [# (T ). (42)

We start with the second integral in expression (42). Consider the transformation

of 7(7)

7(71
Z = { - y .

rVr
(43)

If we wish to write the integral in (41) as a function of Z, we must adjust the limits. 

Recall that the likelihood the option will be in the money is given as
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f N i n
5(0) J

<y(T)<oo

If we subtract the risk adjusted mean of Y and divide by the standard deviation this yields

In
X  '  

5(0), { ' ■ 4
O' |T Y{T)~ 
— — < -------- •^00

From equation (43) we have

In
P*\ ^ Z ^ o o (44)

If we change the variable of integration in the above to dz, then the limits of integration

In
for this problem become

15(0) j  I  2 .

]  J _

ajf

and 00, making the integral

exp - ^ z ^ J d z . (45)

Expression (45) is the risk-adjusted partial expectation for the second term in expression

(42), We know this expectation is risk adjusted by inspection , of the lower limit. Here

we see the mean value for the log return is The actual mean value is

The normal distribution is a symmetrical distribution. A property any normal 

distribution states that we can write
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-i

j f iz )d z =  f/( z )d z .
L -oo

Using the above property, expression (45) may be rewritten as

Y  1

(46)

^[2jt
exp — z 

2
dz.

Consequently, the upper limit in expression (45) can be rewritten. Rewriting yields

In(  X  1 r
U (0 )J 7 ;

o-Vf

f  1
In M -ln ^ (O )-

ln5(0)-ln(jr)+ r — <T

CTyff

I X  J
rrV f

We define the above result as

.Ê h H fi
< 7 ^

Thus, equation (31) can be expressed as 

Furthermore, expression (45) becomes

dz.

(47)

(48)

(49)
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-e-'^XNid^) (50)

We now turn to the first integral in expression (41), which is

I  e-^ s(o y ''' I ‘ e x p []» (r ) .

K é i]  ^

We know from expression (43) that

Y(T)
Z =

ct4 t

The integral above may be written in terms of the variable Z. The limits for the integral

In
in terms of Z are

f  ^  1 /

U (0 )J V

rV f
and 00. Substituting the limits into the

integral above and changing the probability density function we have

1

ir
ajf

2
dz.

The limits for the integral above is written in terms of the variable Z, however, the 

variable 7(7) is still in the integral. We need to standardize this variable. First we 

recognize that the lower limit in the expression above is equal to

In

-^2  =•

{  ^  1 (  1 zlU(0)J r  2*̂  J
o-V f

Therefore, we can express the integral as

(51)

(52)
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Now working on standardizing the variable Y(T) we multiply the above expression by 1,

exp((  1 ( (  \ 2r — a
2 J

T  exp -

which yields

e~'^e 5(0) / exp — z 
2

dz.

This is equal to

e '^e ’S(0) f « dz. (53)

We know

Z =

which is equal to

Z a V f  = y(7’) - ^ r - ^ o r ' j r . (54)

Substituting (54) into (53) yields

e~'^eH " ’) S(0) J
- r f l

gZ(rVf _1 - - Z ^
2

dz. (55)

Working on the term inside the integral in equation (55), we combine the exponents. 

This yields

e e
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)"5(0) J ^ e x p | ^ - l z '  + l(2)zorV r

j - ^ e x p [ - l ( z "  -2 2 o-Vt ) 
-dj VZ/r L 2

fife,

(56)

The exponential term inside the integral in expression (56) can be completed into a 

square. To do so we need to multiply (56) by

exp '(T ^ f c r ^ fexp ---------
2 2

This yields

ÎÜ -£Ü  ̂ (r_Vlr ,  1
e 2 g 2 2 J S{Q)  J  -p=rexp

-rfj yj2ff

^  £ Ï  ( r - l a A r  « Z E I  1e e 2 2 ) J g 2 ___exp

- l( z " -2 z o -V r )

- 2 zo -Vt )

^  fr-iaOr , 2 2 ; crn) J
-rfj -Jik

e~'^e 2 e'>  ̂ 5'(0) / - ^ • e x p j ^ - ^ c r ^ T ' - 2z(rVFj dz,

e-'^5(0)e dz,

(57)

or

e~'^S{0)e'  ̂ J - j i= e x p  
-rfj 'Jiff

jdk. (58)

Examining expression (58), we see that the integral is no longer for a standard normal 

variable. The mean has been moved to the left by a y / f  units. If we let W = Z -  a y lx , 

dwthen we see that —  = 1. In addition, when z = oo then w = « , and when 
dz
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In
z  = -

f  ^  1
/

U (0 )J V
r #

then

In
w = -

- f r - l a O r

rV f
- < T # .

Therefore, using dw as the variable of integration makes expression (58) equal to

1 exp - —w^ \dw,
. 2 J ’J j-----

where the probability density function is now for a standard normal variable. Using the 

symmetry property of the normal distribution allows us to write the above as

exp 1 2 —  w 
2

dw.

e~'^S{Qi)e'^ /  - ^ e x p

The upper limit in expression (59) is equal to 

d  ̂ =d% +(Xyff,

1 2 — w 
2

dw. (59)

d  ̂ - * ( ? ) •
/  1 \  
r - - c r ^ T

2 y
+ <7

o-T
r # '

rVr

Given the above, expression (59) reduces to

(60)
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SQS)N{d^). (61)

Now replacing the integrals in expression (41), with expressions (50) and (61)

yields

C(5,0) = S{0)N{d^)-e~'^XN{d^), (62)

where

and

=(/, - c r V r . (64)

Expressions (62), (63), and (64) are identical to the Black-Scholes option pricing model. 

The unique result of the analysis is that the derivation is conducted under a partial 

expectation model as opposed to the standard arbitrage methodology. Notice, during the 

derivation there is no explicit use of an arbitrage formula and no partial differential 

equation needs to be solved. This result is not a complete surprise in that we know from 

the Feynman-Kac theorem that a correspondence exists between a certain class of 

conditional expectations and a set of partial differential equations.

4.2 One-factor model

In order to price a European call option written on a commodity futures contract, 

we must first understand the dynamics of the futures price. Recall from chapter three, in 

the one-factor model we use a mean reverting spot price to price a futures contract. The 

spot price process is given by expression (23) and is
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^  = k{ji-\nS)dt + a d z ,.
u

This process may be altered by applying the Girsanov theorem. The risk adjusted process 

becomes

^  = /fcCn-  \nS)dt + a{dZ] - Mt),
i3

= kijLi -c rX - \nS)dt + adZ],

= k{a -\nS)dt + adZ], (65)

where a  = f i -aX.  To determine the process followed by a futures price under a mean 

reverting spot price, we assume the futures price is a twice continuously differentiable 

function with respect to S and time t. Next, we use Ito’s lemma and the risk-adjusted 

differential spot price to determine the futures price differential. This is,

dF = F,dS + + F,dt , (66)

where F̂  F„ and F, are the partial derivatives of the futures price with respect to the 

spot price and time. Substituting in for dS and ( d S f , equation (66) becomes

dF = F, [k(a -  In S^dt + o5i/z; ]+ 1  F„ [cT^S d̂t\+ F,dt . (67)

Rearranging the terms in equation (67) yields

dt + F,SadZ]. (68)dF = ̂ F,(k[a - ln 5 ) s ) - i - iF „ 5 V  +F,

Expression (68) is the risk-neutral dynamics for the futures price. If there are no 

arbitrage opportunities, the equivalent martingale measure converts the futures price
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dynamic into a martingale. Implicitly, this no arbitrage constraint implies that the 

instantaneous drift in expression (68) equals zero. Formally this is

F , ( t ( a ' - l n S » + i F . S V + F ,  = 0 . (69)

Closer inspection of the equation above shows that this expression is equal to the 

fundamental partial differential equation used in the arbitrage free method of Black- 

Scholes.'* This is not a surprise. A no arbitrage condition in the Black-Scholes analysis 

explicitly constrains the expected movements in the futures price to equal zero. Under a 

risk neutral probability measure, the expected movements in the futures price is implicitly 

constrained by a no arbitrage condition to equal zero. Since both models are pricing the 

same asset, we should expect the two constraints to be identical, and they are. 

Furthermore, the Feynman-Kac theorem shows us a correspondence between a class of 

condition expectations and a set of partial differential equations.

Given the drift term in expression (68) is zero we have*

dF = F,SadZ]. (70)

Now recall from expression (40) in chapter three, the solution to the one-factor futures 

model is

F[S(r),r]=exp e -* 'ln i(0  + a ’( l - e '* ') + —4k

= S (ty  ’ exp (71)

Expression (71) is the solution to the martingale process stated in expression (70). 

Taking the partial derivative of F[S(7’),7’] with respect S  equals
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F, =e-*"5’(0*'‘' ' ' exp (72)

Substituting expression (72) into equation (70) yields

dF = e"‘̂ S(ty  -ex p SadZ],

= e S(ty  exp adZ:,

= Fe-'^adZ (73)

Let us define a parameter cr̂ . such that

cTpdZ*P=e-'‘̂ adZ]. (74)

Note, that the Weiner processes in expression (74) are identical. That is, dZ], =dZ]. 

This is true since the only source of uncertainty in the futures price comes from the spot 

price. The distinction is made here to correlate the innovation term with the dynamics of 

the futures price and not the spot price.

Equation (74) represents the term structure of the volatility for a commodity’s 

futures price. In general, expression (74) states that the futures volatility is the dampened 

spot price volatility over the investment horizon of the contract.^ The degree to which the 

spot price volatility is diminished depends on the time to maturity and the spot price’s 

reversion parameter. Should this be expected? Consider Figure 3 on page 289 in chapter 

five. This figure shows the behavior of the one-factor futures price at different times to 

maturity and levels of mean reversion, when the spot price is below its long run mean. 

The figure shows that as the time to maturity increases the difference between the futures 

price and the spot price’s long run mean diminishes. The reason, given a relatively long
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time horizon, the spot price has the time to revert to its mean. Since the futures price is 

equal to the risk-adjusted expected spot price, any turbulence in the spot price today 

should not significantly alter this value. Thus, implying the volatility of spot price 

movement should be greater than the volatility of the futures price. Furthermore, if the 

propensity for the spot price to revert to its mean increases, the spot price trends to its 

mean faster. Therefore, one should naturally expect that as the speed of reversion 

increases, the futures price should become less volatile as well. In a final note, at 

maturity the futures price volatility equals cr, the spot price volatility. This is true, since 

by definition the futures price equals the spot price when r  = 0

Given equation (74), expression (73) simplifies to

dF = FapdZ*p. (75)

Equation (75) is the risk-neutral retum dynamics for a conunodity’s futures price. The 

stochastic differential is shown to follow a geometric Brownian with no drift. 

Consequently, the futures price is a martingale process, and the best forecast for the 

terminal futures price is today’s futures price.

We have the dynamics for the futures price process and now want to consider 

valuing options written on these futures contracts. Expression (75) shows that the futures 

price follows a geometric Brownian motion. Upon casual observation, one should expect 

that we may invoke the Black-Scholes model to price these options. There is one 

fundamental difference. In the Black-Scholes model, the options are priced on 

underlying spot price process, which is given exogenously. In our analysis, however, the 

futures price dynamic is constructed endogenously. Given this complication, we do note 

that the futures price dynamics in expression (75) are free from the level of the spot price.
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In addition, the futures price dynamics are explicitly only a function of the spot price 

volatility, speed of adjustment parameter and time to maturity. This is the case because

(TpdZ'p =e-*W Z ;.

Now, these parameters are deterministic as well as given exogenously. Therefore, for the 

purpose of pricing options on futures, we may treat the futures price dynamics as an 

exogenous process and apply the Black-Scholes methodology to price the options.

From expression (75), we may summarize the futures price as follows. Let 

H  = \n F , where H  is twice difiFerentiable in F. With this transformation and Ito’s 

lemma, the increment of/f is  expressed as

dH = HpdF + ̂ HppdF^

= W /  + . (76)

Integrating over equation (76) yields

t

4k
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F{T) = F(/)exp -  ̂  [l -  ]+ o-

F(T) = F(/)exp[y(T)], (77)

1 r ,  r
where Y(X) = ----- c r ^ [ l - e " ^ * ^ ^ ' ' ^ J + o - . Expression (77) is the alternative

Ak ,

expression for the dynamic expressed in equation (75), and thereby, honors the constraint 

in expression (69), The expected value of F{T) is given as

The expected value of F{T) is a function of the mean and variance of 7(7), Therefore, 

we need to evaluate the both the mean and the variance of 7(7), The expected value of 

7(7) is

The variance of 7(7) is

(79)

Substituting equations (79) and (80) into expression (78) yields

=  F ( / ) e x p [ 0 ] ,

•1 ],

(80)
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= m -  (81)

We can see that the expected value of the terminal futures price, F(T), is simply today’s 

futures price, as we expected.®

Before we start to price the options we need to make one final note. Options on 

futures often expire prior to the futures contract expiration. For energy contracts on the 

New York Mercantile Exchange, the futures options expire three business days prior to 

the futures expiration date. This has important implications for pricing the options. 

Recall in the Black-Scholes model, volatility is a parameter we need to value the options. 

If the futures option expires prior to the futures contract, then the volatility of the futures 

contract over the life of the futures option is to be used when pricing the option. The 

futures price volatility is

Let t equal current time, T̂  equal the maturity date of a call option, and T  equal the 

maturity date of a futures contract, with 7] The volatility of the futures contract 

over the maturity of the option contract is

-2*(r-i)
2k

= (82)

Now define V* [7(7’, )] s  v*. is the appropriate volatility for pricing options written on

commodity futures. The expected value of 7(7]) is
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1 2
=  V .

2
(83)

+ — 
2 2

The expected futures price at the options expiration is 

^ /[^(^i)l=^(O exp

= F(/)exp[0],

= m .  (84)

We know the futures price is a martingale process and that today’s price is the best 

forecast for the terminal futures price. The difference between expressions (84) and (81) 

is the time horizon, where T^< T. Expression (84) states the value for the expected 

futures price at time , and expression (81) states the value for the expected futures price 

at time T. Both equations yield the same result. The expected futures price at both time 

periods is equal to today’s futures price. This is not surprising since the futures price 

follows a martingale process.

Under an equivalent martingale measure the price of a European option written on 

the risk-adjusted futures contract can be expressed as

C(5,0 = e'^‘"'-'><[C(5,r,)], (85)

where C{S,t) is the price of the option today, and C(6^,7j) is the risk adjusted option at 

a terminal date 7]. Substituting in for the risk-adjusted terminal call price we get 

C (F ,t) = e-"' E] [m ax(F(r,)- jr,0)].
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= e '" ' e ; [max(F(Oe’'<'’'> -

= e-"' \e* -X \F (T ^)>  x \+  E] [O | F(7] ) < X]}

= e‘"‘ [e * \F{t)e^^ '̂  ̂ -  X  | > x \ +  E] [o | F{t)e^''^'^ < x \

— e ‘

+£,*
m . F (0 .

' K F{t)e^^^'^-X\Y{T,)>]n r ^  j +e : 0|y(71)<ln
r % Y

L m j . l^ (o J .

(86)

Expression (86) shows the call price is a linear combination of two partial expectations. 

The first partial expectation in expression (86) considers the probability that the spot 

price is greater than the exercise price at maturity. Formally, this is 

P*{^^F (r,)^oo}

where P* is an equivalent martingale measure. Transforming the variable then 

constitutes the following

fN ln (  X  1
^In r F ( r ,) l

[ m j I m  J
^00

Since In = y(T, ), the above expression becomes

{ X  \P ^ ln
I m J

£y(7;)^co  . (87a)

149



The second partial expectation in expression (86) considers the probability that the spot 

price is less than the exercise price at maturity. Formally, this is

Transforming the variable then constitutes the following

F (0  F it)] '

P

F N -o o ^ y (7 ;)^ ln
i m .

(87b)

Given the statements in expressions (87a) and (87b), we can rewrite the expectation in 

(86) as

C(F,r) = e"" f '  (0>/P‘ + e '" ' ]{fit)e^^^^  ̂-  x)dP'

where dP* is the risk-adjusted probability measure denoted as

[y (î:)+ 5 > '’]

(88)

dP* = exp
2v"

dyiT,). (89)

r, is the time to maturity for the option contract. Again, note in expression (88), we are 

using an equivalent probability measure to evaluate the expectation in equation (86) (this 

is discussed on page 130). The first term in expression (88) is equal to zero leaving us 

with
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C (F ,0  = e '" ' /  - x ) - fL = Q x p

4 4 ) )
Æ 2v" rfv(7i). (90)

Expression (90) can be split up into two different integrals. For ease of exposition, the 

brackets of the exponential in expression (90) are acknowledged with a dot.

•Jlnv V z
(91)

We start with the second integral in expression (91). Consider the transformation of 

Y(T,)

K(r,) + i v
z = ■ (92)

If we wish to write the integrals in (91) as a function of Z, we must adjust the limits. 

Now subtract the mean of Y and divide by the standard deviation yields

P*
In .2 1 ,

+ r  Y(T,) + i-v
 < --------- é--- ^00

From equation (92) we have

P*
In

^ 2  <00 (93)

Thus, if  we change the variable of integration in the above to dz, then the limits of

/

In
integration for this problem become and 00, making the integral
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■e"^X f - T L e x p f - - ; dz.

Recall the symmetry property of the standard normal distribution. This is

Jl/(z)dz=  ff( z )d z .
L “CO

Thus, expression (94) is reduced to

dz

- e - " 'X  ] 1 rexp - - z ^
2

dz.
J  J '  ~ ~

-CO ’yĵ TC

The upper limit in expression (96) can be alternatively expressed as

In '  X  '

. m )
+ -v ^  

2

#14
We define the upper limit as

Thus, expression (96) reduces to

which equals

(94)

(95)

(96)

(97)

(98)

(99)
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-e'^'XNid^).

Now working on the first integral in expression (91), we start with

(100)

1
rexp

1 2
X31) + - v

2v'
dyçr,).

We may change the variable of integration. Changing the variable the above integral 

may be rewritten as

dz. (101)

The limits for the integral in expression (101) are in terms of Z. We still have Y(T^) in 

this expression and must account for this. The lower limit for the above integral is 

simply -  . Therefore we my reduce the limit to

1 exp (102)

Transforming the variable Y{T^) we multiply the above expression by 1, 

e x p ( - iv ’)e x p (iv = ), (103)

which yields

: >'F(0 J exp

This is equal to

: ’F it) I É
- rf l

(104)
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We know

1 2

Z  = •

which is equal to

1 2z v = y (z ;)+ ^ v

Substituting (105) into (104) yields

e 'e' F ( 0 / e " - ^ e x p eiz.
-rf, V2;r

Combining the exponents inside the integral above yields

g-"ig( 2 ^f(r) r_ _ l= g " 'ex p [-—
-rf, V2^ L 2 J

( - r ’) 1 ;(2)«

2 J  _ ^ e x p ^ - ^ z ^  + ^ (2 )z v jife ,

2 j* ̂ ^ e x p j^ - |( z ^  -2zv) d z .

(105)

(106)

(107)

The exponential term inside the integral in expression (107) can be completed into a 

square. To do so we push

exp
V
T

(108)

inside the integral in expression (107). This yields
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'F{t) J  ̂ ^-ÿl=rexp[-— -2zv) 
-</j 's}'2,7t L 2

'F (0  J - ^ e x p [ - - v ^  - - ( z ^  -2zv)
L 2 2^ {

2zv+v^)

cfe, 

tfe, 

dk,

or

e '" ‘F (0  J - 7=  exp 
-</j v2;r

dz. (109)

The integral in expression (109) is no longer for a standard normal variable. We see that 

then mean of Z  has been moved to the left by v units. If we let ÎV = Z - v  then we see 

dwthat —  = 1. When z = ao then w = oo, and when 
dz

then

w  =  —  -------   V,

W =  - r f2 - V .

Therefore, using dw as the variable of integration makes expression (109) equal to

e""‘F(0 / - ^ e x p r w M c l w .  (110)
-rf,-v 'j'l.jt L 2 J

Using the symmetry property of the normal distribution allows us to write the above as
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r " 'F ( 0 Î  - iL e x p
-«o \ a 7V

1 2 —  w 
2

dw. (111)

The upper limit is equal to

C?, =û?2 + v . 

In
+ v,

In
  \

(112)

Given the above, expression (111) reduces to

e-'^'F(t)N(d^). (113)

Now replacing the integrals in expression (91), with expressions (100) and (113) yields 

C(F, t) = e-"' F(t)N(d^ ) -  e '" ' ) , (114)

where

d, = 4TH-' (115)

and

dj = d ^ -v . (116)

Equation (116) is the price of an option written on a commodity futures contract, whose 

price is governed by the process stated in expression (75).

4.3 Two-factor model
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In the above analysis, we were concerned with pricing an option contract written 

on a futures contract, whose price was entirely summarized by a mean reverting spot 

price. Our next step is to price options on futures, where the futures contract is a function 

of two state variables, the spot price and convenience yield. Let F{S(T),S(T),t). If F  is 

a twice differentiable function with respect to the spot price, the convenience yield and 

time, we may use Ito’s lemma to write the increment of F  as

dF = F,dt + F ,dS(l)+ jF „ \dS(l)f+ F ^dS(t)dS(t)+ ^F si]ftS(t)Y+ F ,dâ{l). (117)

We need to substitute the stochastic differentials for the spot price and convenience yield 

into expression (117). In chapter three on page 42, we see that the system of stochastic 

differential equations for the two-factor futures model is

dS(t) = MS(t)dt + a,S{t)dZ, (/) (118)

dS{t) = k(a -  S{t))dt + a,dZ, (/). (119)

Substituting the dynamics for the state variables into equation (117) yields

<lF=F,dl + F,OiS(<)<* + tr,S(l)dZ,(l))+^F„a;lS(,t)f‘lt

+F,^,<r,p^Sm  + jF^a^dl + F ,(*(o + a^dZ^). (120)

The expression in (120) is not a risk adjusted process. The Girsanov theorem provides 

the risk neutral transformations for the driving Wiener processes in (120). These are

dZ,(l) = d Z H l ) - - ~ - - ~ ' ' d t,  (121)

dZ^(t) = d Z ] { t) -M t. (122).
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The coefficients in front of the dt terms in expression (121) and (122) are the market 

prices of risk for the spot price and convenience yield respectively. The asymmetric 

treatment between the two coefficients is due to the convenience yield being a non-traded 

good. That is no market exists for this state variable. The convenience yield is a latent 

variable that is subsumed in the spot price, and since there is no market for the 

convenience, we do not have an analytical description of its market price of risk. In this 

case, the market price of risk is denoted simply by À , and is presumed to be constant. 

Substituting (121) and (122) into (120) yields

dF = F.dt + F. d z ] ( t ) - t± É i î } - L d t
JJ

+ \^ ss^s  dt + F,s(T^cT^p„S(i)dt + j  Fsscrldt

F,[k{a-0{t)]dt^-<TXdZ:(t)-Mt)j . 

Rearranging terms in (123) yields

(123)

dF =

+ F ,S m t-S ( l) )  + F,k + F dt

+ (x,S(t)F,dZ:(t) + cr,F,dZ:(t) . (124)

Expression (124) is the risk adjusted dynamic for the futures price. In a risk neutral 

world the futures price is a martingale process. Again, this implies that the drift term 

must equal zero. That is,

+ F „ S (rK tr ,p „  * p , s m - m )
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■^Fsk cc—ô(f) — — ^  =0  . 
fC J

(125)

We see that the expression above is identical to the partial differential equation given by 

the arbitrage method. This is not a surprise since both methods use a no arbitrage 

condition to constrain the expected movements of the futures price. Furthermore, the 

Feynman-Kac theorem illustrates the correspondence between a risk-adjusted expectation 

and the Black-Scholes particular partial differential equation.

The dynamics of the futures price follows the stochastic differential equation

below

dF = <r,S{t)F,dZ:{t) + <J,F,dZ:{t). (126)

This expression may be simplified by substituting in for the partial derivatives of the 

futures price. Recall the two-factor futures price from chapter three on page 56 equals

F(S{T),S{T),T) = Sit)^xip CC + -(cT^X-(T^CT,Pc)+^^ J ( T - t )

n^ (/) -  a  + — (o-j/l -  /?„ ) + f J (1 -m

where 0  = e . The partial derivative of the futures price with respect to the spot price is

F̂  = exp
2U.

(r-i) 

( i - e )

159



The partial derivative of the futures price with respect to the convenience yield is 

F , = - \ ^ \ - e ) F ^ - H S r ) F ,  (128)

fl-c"*’’)
where H^ir) = ^ ^ . Substituting expressions (127) and (128) into (126) yields

dF{t) = o,FdZ] (/) -  {r)FdZl (t). (129)

We define another standard Weiner process and a diffusion parameter, (7p, such that

a ,d Z \i t )  ^  c7,dZ]{t)-a,H^{T)dZ](t). (130)

Then equation (129) can be written as

dF {t)^ <7,Fdr.it), (131)

where a .  = + <r]H]it)- l a ,a ^ p j i ^  (r) . Equation (130) represents the term

structure of the volatility for a commodity futures price. Here the volatility depends on 

the volatility of the spot price, the volatility of the convenience yield, the correlation 

between the spot price and convenience yield, the speed of adjustment parameter and the 

time to maturity. The speed of adjustment parameter enters the volatility term for the 

futures because of the volatility for the convenience yield is dampened by the mean 

reversion process. That is, over time we should expect the volatility of the convenience 

yield to decrease because the state variable reverts to its long run mean. Furthermore, as 

the speed of adjustment increases the volatility should decrease. This occurs because the 

convenience yield will begin revert back towards its mean much faster.
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Looking at the volatility in expression (131) it is interesting to note, that in this 

model, the volatility does not depend on the level of the spot price or the convenience 

yield. The dynamics of the futures price is only a function of the deterministic 

parameters for the state variables. As a consequence, we may treat the futures price as an 

exogenous process when pricing options written on the futures contract.

The first step to pricing options written on commodity futures is to determine 

what process the futures price follows. We have this process and it is given by 

expression (131). This process may be alternatively written. Consider the following. 

Let H  = \j\ F , where H  is twice differentiable in F. With this transformation and Ito’s 

lemma, the increment of / f i s  expressed as

dH = HpdF + ]^Hp^dF^

= -icrJrf(+<T,<iZ;((). (132)

We want to find an expression for the futures price at the time of maturity for the option 

contract. To do this, we integrate over equation (132) from f to 7j. This yields

^dF[ = - -  \crlds + fcr^dZ^ ,

/ /

f f(r ,)  = ff(0 --fc r^^d s+ f< r^d z;  ,
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' 1 \
2 ,

^(7i) = F(Oexp 

^•(7;) = F(()exp[l'(r,)], (133)

where Y(T^) = —  Jcr^cfe + Xa^dZ] .. Expression (133) is the alternative expression for
2 ( t

the dynamic expressed in equation (131). This expression is identical in form to 

expression (77). An important difference between these expression (77) and (133) is the 

treatment of the volatility term. Currently, the diffusion is a function of the spot price 

and the convenience yield, where as, the diffusion term in expression (77) is a function of 

the spot price volatility only. The reason for the difference is due to the set up of the 

model. The first model presumes all the uncertainty in the futures price is summarized by 

a mean reverting spot price and the second model presumes two factor influence the 

futures price.

Following the derivation of the option contract in the one factor model, we may 

find the expected futures price at the option’s maturity. To determine this value, we need 

the mean and variance of H{T). The mean is

. (134)
^  I

The variance equals

T,
K * -  (135)
t

Let s  Xa^ds, then the terminal futures price at the option’s expiration equals
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= exp

= exp[//(0], 

= F(t). (136)

Again, the reader should note that the expected futures price at time 7] is today’s futures 

price.

Now, if we can evaluate the integral of the diffusion coefficient for the futures 

price process, then we can price the option contract following the procedure above.

Solving the integral, s  becomes

s  jcTpds,
/

= / W  + (r) -  2p,^<T,<T^H  ̂iT))ds,
/

= / +  / a lH l {r)ds -  j2p,^a ,a ,H ^ (r)ds . (137)

Solving the individual integrals we obtain 

\cr]ds = <r]{T^-t), (138)

ds.
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t c t c

^ ( T ;  _f) + f^(g-2Ur-r,) _g-2A .(r-,))_^(g-t(r-r,) _g-*.(T-,))
2k- k.

(T; _ /)  + _L(g-«c(r-7-.) _g-2*c(r-o _g-*.(r-o j
2k,

(139)

(140)

Substituting expressions (138)-(140) into (137) yields

2^,

2p«o-,o-,
(141)

We have the expected terminal futures price, therefore we are ready to price an 

option contract written on a commodity futures contract. The option price is

C(F,t) = e"'F{t)N{,d^)-e~'^'XN{d^), (142)

where

In M V i ,

V
(143)

and
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d ^ = d y - v .  (144)

Expression (142) is the price of an option contract written on a commodity futures 

contract, whose price is influence by a stochastic spot price and convenience yield. We 

see the difference between the one- and two-factor option models is the volatility term 

used in expression (142). For the one-factor model the volatility term is given by 

expression (82) in section 4.2 above. This is

The two-factor volatility is given by expression (141) above, and is more complex than 

expression (82). That is, the introduction of a stochastic convenience yield increases the 

sophistication of the option model by adding another source of uncertainty. The first 

model is not a special case of the second model. The one factor model shows that the 

uncertainty in the futures market comes entirely from a mean reverting spot price. The 

second model allows uncertainty from two sources. One is the spot price which follows a 

regular geometric Brownian motion, and the other source is the convenience yield which 

is said to mean revert. The advantage of the second model is it allows for greater 

flexibility and realism in modeling commodity prices.

4.4 Three-factor model

Following the practice of chapter three, further rigor is added to the analysis by 

considering the addition of a stochastic interest rate to the two-factor model. Recall from 

chapter three, the following system of stochastic differential equations is used to price a 

futures contract

dSlf) = (r(/) -  S(t))S(t)dt + <7,S(t)dZlit) , (145)
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dôif) = {k, (a -  â(0) ~^cr,)dt + a ,dZ\ (t) , 

dr(t) =

(146)

/  2 > 
f ,(s ,t)  + k j ( s , t )  + ̂ { l - ) - k X t )  dt + (X,dZl(t) . (147)

Note, that we start with the risk-adjusted processes. We posit that the futures price is a 

twice-continuously differentiable function with respect to the spot price, convenience 

yield, interest rate and time, namely F (S,S ,r ,t) . Using Ito’s lemma, the dynamics of the 

futures price may be expressed as

dF{l} = F,dS(l)+^F„[dS(l)f +F,dtf(() + iF « [rf^ (O f + F X O + |F „ [ * ( O r

F,dt + FjgdSdS + F„dSdr + F^gdrdS.

Substituting the stochastic differentials into (148) yields 

= |f„< t,= [5(0]’ dt + ̂ F^tr^dl *^F„a^,dl

(148)

+ F,l(,iil)-Sit))S(t)dl+aS(,l)dZHt))

+ F„ ((*, (a  -S(l))-Xtr,)dl+<r,dZ] (t))

+ F.
( f  2 \  \

fX sA  + ̂ ./(^ ,0  + ( l Kr{f) dt + r r /z ;( r )

+ F,gS{t)a,<j,pJt + F,,S{t)<y,(T^p„dt + F ,g a ,a ^ p j t

+ F,dt.

Rearranging the above yields

m )  = ̂ F ^ a ] [ S ( t ) ^ + ] ^ F ^ a l * F „ ^ a l * F , ( m - m S ( l ) ) * F , ( K ( a - S i l ) ) - X tT , )
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+ f J / ,  f e o + K A ^ ,  0 + ^  (i -  ) -  + f,,S(0<t,<t. A ,

+ F„S(t)a,<7,p,, +F,^<r,(T,/7„ +F,]c3?/

+ F,aS{t)dZ] it) + F^a.dZ] (t) + (0  (149)

Expression (149) is the risk-adjusted stochastic differential for the three-factor futures 

price. In a risk neutral world the futures price is a martingale process. From page 142, 

we see this implies that the drift term above equals zero, thereby reducing expression 

(149) to

dF(t) = F,a,S(t)dZ:(t) + F,<x,dZ:(t) + F.cr^dZ; (/). (150)

Furthermore, we may simplify the above expression by substituting in for the partial

derivatives of F(t). Recall from chapter three section three page 88, we found the futures

price to equal

F (S(r,,S (.T )A T),T )  = (151)

where A(t) = exp
f e ( r )  -  r j  k^a -

(152)

Z),(r) = exp
k .  +  k .

(153)

£>j(r) = expj^-(//,(r)-r) ^ -

(154)

(155)
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where = ^ ^  and H^(r) = ̂  The partial derivative of the futures
K

price with respect to the spot price is

F, = (156)

The partial derivative of the futures price with respect to the convenience yield is

P, = -H , (t-)S(OA(t)D, (t)D, (r)A  (r) exp(- H . (r)<y(/))— ^ .
i \ t y l  )

Fs = -H ,iT )F (S iT ) ,S (n r(T ) ,T )  (157)

The partial derivative of the futures price with respect to the interest rate is

F, = A  (r)S(t)A(r)D, (r)D, (t)D, (r) exp(- H, •

F ^ = H ,( T ) F ( S ( r ) M T ) A n T )  (158)

Substituting (156)-(158) into (155) yields

dF(t) = <T,S(l)dZ:(OAm (T)D,(l)D ,(T)exp{-H ,(T)S(t))-^
I )

+ ty ,d Z :( ti-H A )F ^S (T ) ,S (T )A T ),T ))

■KT,dZ;(liH,(T)F(.S(.T),S(T)AT),T)). (159)

The first term in expression (159) may be reduced to the diffusion coefficient, the risk- 

adjusted Brownian motion, and the futures price. For ease of exposition the notation for 

the futures price is reduced to F(t). Expression (159) becomes

dF(t) = F{t)<T,dZ](t) -  F (0 //,(T )< T ,<  (/) + F(t)Hr ( r ) a / Z ; ( 0 ' . (160)
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Define {r)dZp = a,dZ] (/) -  (T)cr^dZ^ (0  + (T)cr^dZ* ( t) . The futures price 

volatility is the linear combination of the normally distributed innovation terms for the 

state variables underlying the futures price. The above becomes

^ = < T , ( i - ) r f z ; ( o .  (161)

Let f f  = lnF(l), where H  is twice differentiable in F(t). With this transformation and 

Ito’s lemma, the increment of H  is expressed as

dH = H ,dF{t)^-^H ,,[dF{t)^

= ~ a l d t  + apdZ'p{t). (162)

Working with expression (162), we may find the futures price at the maturity of the 

option contract. That is, we integrate over equation (162) fi'om / to 7,. This yields

I':,
]d H := ~ \< T ld s+ \< 7 ,d r ,,

I r, r,
H{T,)~H(t) = - -  jcrlds + l<x,dZ; ,

j r, T,
H(T,) = j< T > +  \<T,dZ; ,

F(7,) = F(/)exp
1 \  \  

--\<x\ds+]aFdZ*p

F (r.) = F(/)exp[y(7,)], (163)
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where Y(J^) = —  jcrlds+  ^cTpdZ] ,. Expression (163) gives the terminal value of a

futures price at the maturity of the option contract.

Following the derivation of the option contract in the one factor model, we need 

the expected futures price at the option’s expiration. This is equal to

The risk-adjusted conditional mean of 7(7]) is

2 ,

and the risk-adjusted conditional variance is

v :W ,)]= ]< T lds .  (166)
/

The expected futures price is £,*[F(7’|)]=  F (t). The volatility of the futures price is 

s  \crj.ds. Therefore, all we need is the expression for = jcr^ds, and we may
t t

solve for the option price. Solving the integral, = jeXpds becomes

= I W  + (f) + O-r^r (*■) -  (^)
t

+ (t) -  la ,a ,p „ H ^  (r)H^ (r))fa

=  \  a ] d s  +  /  a ] H ]  { t)d s  +  /  (t)
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-  2 {r)ds + 2 {t)ds

-  }20’r <̂c PcrHr (^ )*  • (167)

From our analysis of the volatility term in the two-factor option model on page 164, we 

know

\<r]ds = <7]{T^-t), (168)

\<rlHl{r)ds = ^
2k.

]2p,,a ,a ,H ,(r)ds  = (Tj

(169)

(170)

Solving the remaining integrals in expression (167) yields

}ctX 'W & =  j
l K

ds.

= J
/ LK  K

ds,

/ K . K

2/:,

2k.

(171)
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]2p,,cT,CT,H,(r)cfs =

_ ^ ^ _ ^Psr<̂ sO-r ( -̂Â T-r.) _g *Xr-,))

2Ar0-.0"r
A:. (172)

J2a, cr, p„H, {t)H, (r)ds = (l -  )is
, K K

=  ^ c ^ r P r c  V j  _  g-*,(r-i) _  g-*xr-j) ^  g-txr-j)g-*c(7--j) ̂

K K  r

^r+^c
(173)

Substituting expressions (168)-(173) into (167) yields

v '= a ' ( 7 ; - 0  + (T; _ /)  + J_(g-«c(r-r,) _g-2*xr-o)_^^g-*xr-r,) _g-*.(r-o)

4 2Ar,

(T; - / ) - —

'^<̂ cOrPn
KK (t; - o
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+ _L_(e-*,(r-r,)g-*.(r-r,) _ ^-*,(r-/)g-*,(r-/) j (174)

Equation (161) shows the futures price follows a geometric Brownian motion. In 

addition, we have the expected value of the two-factor futures price. Therefore, we are 

ready to price the option written on the futures contract.

Unlike the first two option models, we are unable to use the Black-Scholes 

methodology to price an option contract written on the three-factor futures price. For the 

one- and two-factor option models we proceed as follows. Under an equivalent 

martingale measure the price of a European call option written on the risk-adjusted 

futures contract can be expressed as

C{F,t) = (175)

where C{F,t) is the price of the call option today, and C{F,T^) is the risk adjusted call 

option at a terminal date 7]. Substituting in for the risk-adjusted terminal call price we 

get

CiF,t) = e-"' E] [max(F(r, ) -  X,0)],

= c“"' E] [max(F(r)g"('!) -  Xfi)\.

= e-"' [F(/)e’'<'''> -X \F ( T ,) >  x \ +  E] [O | F(T; ) < %]}

= c“"' {̂ ; [F(f)e"('^) -  X I F(t)e''(^')  ̂x \ +  E] [o | < x \

= e-"' + e ; [o ^  1
F{t)_ m .

=  e " " ‘ -X \Y { T ,)> \n r X  Ï + £ ; 0 |y (7 i)< ln f ^ l l l (176)

The linear combination of partial expectations in expression (176) may be rewritten as
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4 ^ 1\^(0 ) OQ / V
C(F,t) = e-"' / (0>/P*+e""' -  x)dP‘

where dP* is the risk-adjusted probability measure denoted as

(177)

dP' = exp
2v'

(178)

With the introduction of a stochastic interest rate to the model the risk-neutral expectation 

of the option becomes

C{F,t) = E; e ' max(F(r)g''(^') -% ,0) (179)

The expectation above cannot be evaluated because the interest process is correlated to 

the options payout. Casual observation of expression (160) shows that the futures price 

movements are a function of the interest rate process, thereby making the futures price 

process correlated with the interest rate process. If the two components are independent 

then the expectation could be evaluated. To illustrate this problem consider the following 

example.

Consider to random variables X  and Y. Each random variable has two 

observations, which we denote as [x,,^;], and with marginal probabilities

denoted by f{ x ,)  and / ( y j ;  where / = 1,2. If A'and Y are independent then

E{XY) = E{X)E{Y). (180)

To see this we know that
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E{XY) = i:Y.xyfix,y), (181)
y y

where / (x,y) is the joint probability density function for X  and Y. We may rewrite the 

double sum as

= x^y^f{x^,y^)+X2ylf{x2,y^)+x^yJ{x^,y2)+X2y2f{x2,y2)^ (182)

Since X  and Y are independent the joint density function can be rewritten as the product 

of the marginal density functions. This is

= )y, / (y,  ) + k / k  ) + ) / k  ) + ^ z / k  k / k  )• ( 183)

Simplifying expression (183) yields

= E [ x \ f j { y , ) + E [ x ] y j M .  (184)

Factoring out the expected value of X  yields

= k [ ^ & , / k ) + ) ' z / k ) ]

^E [x ]e [y ]. (185)

We see that if X  and Y are independent then the expectation of the product of X  and Y  is

-̂r(s)b
equal to the product of the individual expectations. If X  is analogous to e ' and Y  to

the futures price, then we may use the above result to evaluate the expectation. The result 

is good only if  the two variables are independent, and for our model this is not applicable. 

The option price, which is a function of the futures price, and interest rates are correlated. 

Therefore, we need to consider the expectation for two correlated variables. Let X  and Y 

be two dependent variables. What is E{XY) equal to? By definition

E{XY) = I .Y xy f{x ,y ) .  (186)
y y
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We may rewrite the double sum as

= x^y^f{^vy^)+x^y^f{x2,yx)+x^yJ{x^,y^)+x^yJ{x^,y^). (187)

We may further rewrite the above by rewriting the joint densities as follows 

= x^yJ(x^)f(y^  Ix^)+ x^y j(x^)f{y^ | )

+ x^yj{x^)f{y^  Ix^)+ x^y j(x^ ) f{y^  | ). (188)

Simplifying the expression above yields

= )/(y , I ) /(y ; IX, )

+^2y,/k)/(y, I ̂ 2)+^2^2/k)/(y21 ̂ 2)- (is9)

Factoring yields

= \^i)+y2fb'2\>i2)]-

= x ,f{x^)E[Y\X  = x , ] + x j ( x , W \ X  “ X-,]. (190)

The expression above cannot be simplified any further. The expectation for the 

multiplicative interaction between two correlated random variable X  and Y  does not 

simplify to simple expression. This is why we may not find a closed for expression for 

the Black-Scholes model when the interests is stochastic.

4.5 Merton’s Model

In section 4.1 of this chapter, we use the Black-Scholes method of solution to 

price options written on commodity futures. The Black-Scholes methodology presumes 

that the only source of uncertainty is the underlying security, whose price is said to 

follow a geometric Brownian motion. In consideration of this observation, if we want to 

invoke the Black-Scholes methodology, we must first show that the stochastic process for 

the futures price is indeed a geometric Brownian motion. Using Ito’s lemma and the fact 

that the futures price is twice continuously differentiable function of time and other state
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variables, we do show the futures price follows a geometric Brownian motion. This 

result allows us to use the Black-Scholes model to price options written on commodity 

futures. The question we investigate now is whether or not the assumption about the 

price movements for commodities is a fair characterization. If not, we need an alternative 

method for pricing options.

Casual observation of the time series behavior of commodity spot prices show 

these prices typically do not resemble a geometric Brownian motion all the time. That is, 

commodity spot prices often move in small increments but occasionally exhibit random 

price spikes. These price spikes are usually due to aberrant market conditions causing 

sudden changes in either market supply or demand schedules. Therefore, these random 

price jumps create another source of uncertainty in the spot market.

Another interesting side effect of random price spikes in spot prices is the impact 

they have on futures prices. Futures prices are a function of spot prices and are 

necessarily influenced by these discrete price movements. If we witness spot price 

jumps, we can therefore believe that the futures price will not fit the assumed dynamics 

of the Black-Scholes model. In light of these casual observations, we need to find a 

model capable of pricing options that incorporates random discontinuous jumps.

Merton (1976) develops an option pricing model for stock options that 

incorporates random jumps. His model is a simple modification of the Black-Scholes 

model. Merton’s model represents the asset’s price dynamic with an equation that allows 

unpredictable changes fi-om two categories: normal events and rare events. Normal price 

vibrations occur in a continuous fashion and are modeled by the increment of a standard 

Wiener process, dZ{t) . Rare events, however, occur sporadically and induce a discrete
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random jump in the spot price. To model these abnormal price vibrations, Merton uses a 

Poisson process, which he defines as dq{t).

We can be more specific. It is clear from Merton that changes in the asset’s price 

are due to a mixture of normal and rare events. If we witness a rare event (a jump) the 

stock price experiences a discrete jump. Typically, the size and time of this event are 

unknowns. For now, however, if a jump occurs we assume that jump in the commodity’s 

price is of size 1. The jump size can be characterized by any type of distribution, and 

later we will change this assumption, but for ease of exposition we analyze the case for 

jump size of one. At any instant t - \ ,  one has

with probability M t-I:<]() ^( ) with probability 1 -  Adt

where dt is an infinitesimal interval of time and À is the mean number of arrivals per unit 

of time. À does not depend on the information set available at time / -1. We let

àq{t) = q { t ) -q { t - \ ) ,  (191)

where dg(t) represents the number of jumps that occur over an infinitesimal interval dt. 

The size of each of these jumps is 1, and they occur with a constant rate X . Remember, 

the size of the jump need not be restricted to jump size 1, but for this example the number 

of jumps is restricted to one over the interval dt.

We are interested in modeling discrete random jumps in asset prices that occur 

over time. It seems natural to model this behavior with a Poisson counting process.® A 

Poisson process has the following properties. One, during a small interval of time dt, at 

most one event can occur with probability very close to 1. Two, the information set up to 

time t does not help to predict the occurrence (or the nonoccurrence) of the event in the
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next time interval. Lastly, the events occur at a constant rate À . In fact, the Poisson 

process is the only process that satisfies all these conditions simultaneously, thereby, 

making it a good candidate for modeling jump discontinuities.W e do, however, need 

to make some modifications.

In the absence of arbitrage, market equilibrium suggests that we can find a 

stochastic process such that all properly discounted asset prices behave as martingales. 

Because of this, martingales have a fundamental role to play in practical asset pricing. 

Currently, we are interested in modeling discrete random jumps in asset prices, while 

maintaining the property of a martingale. When modeling asset prices in continuous time 

we presume that the total change in an asset’s price is composed of two terms. One is the 

conditional expected drift the other is the unpredicted movements. These unpredictable 

movements are labeled innovations and their expected value is equal to zero. In the 

earlier models, these innovations are modeled with a Weiner process, dZ{t). Now we 

need a process to model innovation terms stemming from discrete random jumps. The 

process dq{t) in expression (191) seems to be an appropriate candidate for modeling 

jumps but it has a nonzero mean. That is,

E, [dq{t)] = M t\  + (1 -  Mt)Q = Àdt . (192)

We do not know when the jump will occur, and sometimes we will not know the size of 

the jump, but this does not mean that we do not have some expectation about the jump. 

In the expression above, we see there is an expected movement in the asset price 

associated with the jump. This means dq{t) is not completely unpredictable, therebjr, it 

is not a candidate for being an innovation term used in pricing assets. Therefore, if we
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plan to use a jump process dq{t) to model random jumps in the spot price we need to

modify dq{t) to take out its trend. Consider the modified variable

N{t) = {q(t)-M ).  (193)

The increments dN(t) will have a zero mean. For instance, if

dNit) = (dq{t)-M t).  (194)

then the expected value is

E,[dN{t)] = E,[dq{t)-Mt],

= E,[dq{t)]-E,[Mt\,

= E,[dq{t)]~ M ,

— [lA^r+0(1—A</r)]— Xdt,

= M - M .  (195)

Hence, dN(t) is an appropriate candidate to represent unexpected jumps in asset prices.

The example above considers the impact of a Poisson process characterized by 

jumps of size one. Let us relax this assumption and consider the influence of a random 

jump size. We assume the following structure for jumps. Between jumps, N(t) remains 

constant. At jump times r = 1,2,3,-- it varies by some discrete and random amount. We 

assume that there are k  possible types of jumps with sizes denoted by a,,i = 1,2,- .

Again the jumps occur at a rate of Z . Once a jump occurs the jump size is selected 

randomly and independently. The probability of selecting a particular jump size is given 

by p ,.

The expected random jump size is stated as
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E[A]=ia,p,.  (196)
M

Now, the modified variable N{t) is redefined and given as

= (197)

and the increment of N{t) is given by

dN(f) = dq(t) -  X Y  OiPidt. (198)
<-i

Taking the expected value of expression (198), yields

E,[dN(t)]^ E,[dqit)]-Xj:a,p,dt.
i=l

The expected movement for N(t) is equal to the linear combination of the expected 

change in q(t) and a constant. The expected change in q(t), E, [dq{t)\, is a function of the 

expected arrival of the jump, X, and the expected size of the jump, E\a\ .  Expression 

(196) gives the expected size of the jump for q{t). Considering these observations, we 

may rewrite the expectation E, [dq(t)]. Rewriting and substituting into the above yields

k # ) ]  = [XE[A]it + 0(1 -  Xdt)]-xi,aip,dt
im\

= X'ZciiPidt-XY.aiPidt. (199)
/•I i~i

We see from above, that the introduction of a random jump size alters the form of the 

analysis, but not the essence of the analysis. The variable dN(t) is still a viable 

candidate for modeling discrete random jumps in asset prices, and in particular, it allows 

for random jump sizes. On a last note, the random jump size need not follow a discrete
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distribution. We could allow the random jump sizes to follow a continuous distribution 

without changing the analysis as well.

Given the above, we can observe how Merton constructs a model for options that 

incorporates both normal and rare events. The normal events are governed by the 

continuous Gauss Wiener process and the rare events by a Poisson process. Formally, we 

state this dynamic as

= adt + adZ{t) + dN{t) . (200)

Substituting in for dN{t) we get

^ ^  = adt + adZ(t) + d q { t ) - m t ,
S(t)

= {a -A k )d t  + adZ(t) + dq(t), (201)

where a  is the instantaneous expected return on the stock, a  is the difhision parameter 

for stock price conditional on no jumps occurring. dZ is the increment of a standard 

Brownian motion, g is a Poisson process. X is the mean number of arrivals per unit of 

time and k denotes the expected percentage change in the asset’s price due to the 

occurrence of a jump. In terms of the examples above, the jump sizes are in returns and 

k  = E\a\ ,  where n, 3 4̂ for i = 1 ,2 ,- A. In addition, the jump process and the Wiener 

process are statistically independent at every instant t.

To understand expression (201), we may look at the equation a little differently. 

We may write (201) in a more cumbersome form as

= (a  -  Xk)dt + oriZ (f) if a Poisson event does not occur, (202a)

= {a -X k )d t  + adZ{t) + { Y - \ )  if a Poisson event does occur. (202b)
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Note the last term in equation (202b). Merton labels (7-1) as the impulse response 

function. This expression characterizes the percentage change in an asset’s price the 

instance a jump is witnessed. We recall that the expected movements in the price returns 

for S(t) are composed of both a , the instantaneous drift and Àk , the expected discrete

change. As we move through time the spot price is trending according to a  and ÀJc. 

The movements in the spot price given by the last term in (202b) is the actual percentage 

change in S(t) specific to a Poisson event occurring.

To illustrate the notion above, consider the following. Let X be a function of the 

spot price. Applying Ito’s lemma for a jump-diffusion, the increment of X  may be 

written as

dX = X , d S ^ ^ + ^ X , d S l ^ + X ( ï ) - X .

Let % = Inj", then the above becomes

dX = ^ ( a -  M)Sdt + aSdZio)— —̂ a^S^dt + ln S Y - \n S ,
S 2iS

dX = ( a -  Ak)dt + adZ(t) ~ c x ^ d t  + I n ^ y

\
dt + adZ{t) + \n{ï),dX = 1 .2Of—— CT j  — AJc

]dX = ] [ [ a - ] - a A - 2 k \ s - ^  tx]dZ{s) + 1  ln(y, ),I  ̂ J J • V"'

X ( T ) -X ( t )  =

X{T) = X{t) +

X k V r  -  0  + <r]dZ(s) + f  ln(y, ),
\  2 J )  I y-i

a - ^ a A -  Ait V  -  0  + <r]dZ{s) + 1  ln(7, ),
\  2 )  )  I j-\
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S(T) = 5 ( / ) e x p | | ^ | ^ a - / )  + a-]dZ(s) + p n { Y j ) | . (203)

The above analysis considers the movements in the spot price given n jumps have 

occurred. Now lets consider the movement of the stock price over just one interval of 

time. That is, let / = 0 and T= 1. The expression above becomes

5(1) = 5(0)exp||^^a "  - 0 )  + o-\dZ(s) + In r | . (204)

The one period return is

' - a A - M5(0)exp 
J5(0) _  If ( “ 4 ‘

I
(1-0) + ajdZis)  + In 7  ̂  -  5(0)

—---------------J---------. (205)
5(0) 5(0)

The one period return is influence by the instantaneous movements in the spot price and 

the discrete random jump. If we restrict the instantaneous movements to be zero then we 

have

5(0 )7 -5 (0 )
5(0) ’

^ (0 )(7 -l)
5(0) ’

= (7 -1 ) . (206)

Expression (206) shows the percentage change in the spot price due to a random jump 

occurring over an interval of time. Now if 7 =  1 then expression (206) would equal zero 

indicating no jump has occurred over the interval, thereby, leaving the spot process to 

trend according to it instantaneous drift and diffusion. If, however, a jump has occurred 

7  will take a value other than one and the actual percentage change in the spot price is 

given by (7-1). Therefore we may define Aras k  = Y - I  and k s&k = E\Y - 1].
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Given the return dynamics of the spot price, we want to investigate the impact it 

has on a call option written on the underlying security. If the option is twice- 

continuously differentiable function of the stock price and time, namely, C{SY,t), then 

the option return dynamics can be written in a similar form:

+ dq^. (207)

In expression (207), the expectation on the jump component is taken with respect to the 

size and Àdt represents the probability that the jump occurs over the infinitesimal 

interval dt.

Equation (207) is a general expression for the dynamics of an option’s price. We 

now formally state this price dynamic. Using Ito’s lemma for the continuous part and an 

analogous lemma for the jump component, the increment of the option price is written as

dC = + C,dt + C(SY,t) -  C{S,t) . (208)

The first three expressions in equation (208) are the changes in C{SY,t) due to 

continuous movements in the spot price. The last two terms in equation (208) represent 

the discrete jump in C{SY,t). Now, substituting in for and rearranging yields

dC = dt + C ,d S ^ + C (S Y , t ) -C (S ,I ) .  (209)

Our goal is to formally state the stochastic differential equation for an option contract. 

This process will have a drift term and two innovation terms. The first innovation term 

introduces small random movements from continuous price vibrations the other 

innovation term introduces large price vibrations from discrete jumps. Observing 

expression (209), the last two terms illustrate the actual level change in the option’s price
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due to a jump. We can convert this change into an innovation by taking the trend out of 

the jump term in equation (209). To do this we add and subtract the mean jump size to 

expression (209) and obtain

dC =

+ C(SY,t) -  C(S,t)-ÀE[C(SY,t)- C(S,t)]dt + ÀE[C(SY,t) - C(5,/)>*. (210) 

Rearranging the above yields

dC = + XE[C{SY,t) -  C{S,t)^t  + C, dt + C ,dS^^

+ C{SY,t) -  C(S,t) -  ÀE[C{SY,t) -  C{S,t)^t  (211)

Expression (211) is becoming more representative of stochastic process for the option 

price. That is, the last three terms in expression (211) represent the unpredictable 

changes in an option’s price due to witnessing a jump occur. These movements are 

called the jump innovations. Note, that even though we took the trend out of the actual 

change in the option’s price caused by the jump the expected change in the option’s price 

is still considered in the analysis. This expression is now in the drift term. Finishing the 

stochastic differential we substitute in for obtain

dC = + ÀE[C(SY,t) -  C(5,0]+ C, j j /  + C,[(a -  Zk)Sdt + aSdZ(t^

+ C{SY,t) -  C (5,0  -  AE[C{,SY,t) -  C { S j) ] i t .

= C„cr^S^ + C, (a  -  ̂ Jc)S + XE[C{SY,t) -  C(5,/)]+C, jd / + C,aSdZ{t)

+ C{SY,t) -  C(5,/) -  XE[C{SY,t) -  C{S,t)}lt. (212)

Dividing the left-hand side and the right-hand side of the above by C(SY,t) yields
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dC
C{SY,t)

+ C ,{a -X k )S  + ̂ [C { S Y ,t ) -C iS ,t ) ]+ C ^
-A __________________________________________________________________ J  A *

c (5 r ./) C{SY,t)

Define

=

cr, =

, C{SY,t)-C{S,t) XE{C{SY,t)-CjS,t)] 
C{SY,i) C{SY,t)

^  +C ,(a-A& )S + â e [C(SY,0 -  C(S,0]+ C, j

(213)

C{SY,t)

C,oS
C{SY,tŸ

^  E[C(SY,t)-C(S,t)]
C(SY,t)

C(SY ,t)-C (S ,t)
 C(SY,D ■

Substituting expressions (214) -  (217) into (213) yields

dC

(214)

(215)

(216) 

(217)

C(SY,t)
= a^dt + a^dZ + dq^ -  Àk^dt,

= («g -  )dt + a^dZ + dq^. (218)

Equation (218) is equal to equation (207), and we have formally defined the coefficients.

Expression (218) shows the drift term for the option price is broken into two 

parts. The first component, , is expected instantaneous movements in the stock price

generated by the Gaussian process and the second component, Xk^, is the expected 

discrete change due to the jump process. Furthermore, the expected discrete change from 

the jump involves two parts. The first is the expected arrival time of the jump, A, and
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the second is the mean size of the jump denoted by . Therefore, to determine the 

expected movement in an option’s price, we need the instantaneous drift, the expected 

time of the jump, and the expected size of the jump.

Now consider the following investment strategy where we hold the stock, the 

option and a risk-ftee asset as we did in the Black-Scholes analysis. The return dynamics 

for the portfolio are

dA ——  = (a^-XkA)dt + cr^dZA+dq^. (219)
A

Again, since the portfolio is a linear combination of the assets, the instantaneous return to 

the portfolio is equal to the linear combination of those assets’ instantaneous returns. 

That is,

= w^a + + w^r.

Since the weights of a portfolio must sum to one, we rewrite the above as

='W^{a-r) + WjCa, - r) + r . (220)

The diffusion coefficient is equal to

= w,cr + w2<T<,. (221)

Equations (220) and (221) give the instantaneous drift and diffusion for the portfolio. 

The last term we need to specify is the jump term in equation (219). From expression 

(202b) we see that when a Poisson event occurs we have the term (T-1). In similar form 

to expressions (202a) and (202b), we may express equation (218) as

^  = (a , -  ̂ , ) d t  + crcdZ(f) (222a)

= (a . -  ̂ c ) d t  + ff,rfZ(0 + (T, -1 ) ,  (222b)
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where equation (222a) states the option dynamics if no Poisson event occurs and equation 

(222b) states the dynamics if  a Poisson event occurs. In addition, the portfolio’s dynamic 

may also be written in the same form as the spot and option price. This is,

^  = ( ,a , - ik , )d i+ < 7 ,d Z M  (223a)

= ( a , - M , ) d t  + cT,dZJO + (y, -1 ), (223b)

where equation (223a) states the portfolio’s dynamics if no Poisson event occurs and 

equation (223b) states the dynamics if a Poisson event occurs. From expression (202b) 

and (223b), the jump component for the portfolio equals

( r , - i )  = w , ( r - i ) + w , ( y , - i ) . (224)

Substituting in for (Ŷ  -1 ) yields

( Ï ,  - l )  = w ,(V - l)  + w, (C (sr ,0  -  C (S ,0 ) fC (S r ,0 . (225)

We have characterized the terms for the dynamics of the portfolio and now want to find 

an investment strategy that makes the portfolio risk-free. If we make the portfolio risk- 

free then the return to the portfolio must equal the risk-fi-ee rate of return. This is the 

method we followed in the Black-Scholes analysis.

Recall, we obtained an expression for the portfolio’s instantaneous return and 

showed that it equals

- r  = w,(//-/") + W z(//^-r) = 0.

The diffusion term for the portfolio equals

= 0 .

This homogeneous system of equations gives us the Black-Scholes weighting scheme, 

where the weights equal
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w, = — and W; = —-----,

Under current assumptions, the Black-Scholes weighting scheme, unfortunately, 

will not make the current portfolio with jumps riskless. To see this, we need to take a 

closer look at equation (224). Inspection of expression (224)

(r , -1 )  = w ,( r - i ) + w 2 ( c ( 5 y ,o - c ( 5 ,o ) /c ( 5 r , / ) ,  (226)

shows there does not exist a set of portfolio weights that will eliminate the ‘jump’ risk. 

For example, suppose the weights are set equal to the Black-Scholes model, then the 

return characteristics for equation (219) would be

A

The asterisks indicates the portfolio under the Black-Scholes weighting scheme. With 

the Black-Scholes weights, w,* and w^, the diffusion term, <r ,̂ is equal to zero. 

Therefore, we have

^  = + . (227)
A

Expression (227) is void of the Brownian motion term because the Black-Scholes weights 

eliminate the uncertainty associated with the diffusion term in equation (201). These 

weights, however, do not eliminate the uncertainty associated with the jump process. 

Recall that

WjV + wjcTg = 0 .

This implies

(228)
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Using equations (169) in (167) yields

(r; =  + (229)
<T

Substituting the expression for the option’s diffusion term in expression (215) into the 

above yields

(yj -1) = - l )  + wl{C(SY,0 - C(S,t))/C{SY,t),
<T

= -U'i {sc, IC(SY,OXy  -1) + w; {C(SY,t) -  CiS,0)/C(SY,t),

= -H'; {sc, (Y -  l) /aSY ,t))+  w; (C(5r,/) -  C(S,t))/C(SY,t),

= wl{{C{SY,t)-C{S,t))-SC,{Y-\))/C{SY,t),

= w; {{C(SY,t) -  C(S,t))-SC ,(Y  -  l))/C(SY,0 . (230)

Now by strict convexity of the option price in the stock price, 

C iS Y , t ) - C ( S ,0 - C , iS Y -S ) ,  

is positive for every value of Y. That is.

CiSY.t)

C{S.t)

SYS

The condition for strict convexity states

C(SY,t)-C{S,t)
S ( Y - l )

C(SY,t)- C(S,t) > C,(S,t)S(Y- 1),
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C (S Y ,t) -C (S ,t) -C ,(S ,t) (S Y -S )  > 0 . (231)

This is the statement above. If wl is positive, then (Tj -1 ) will be positive and the 

unanticipated return on the portfolio will always be positive. If is negative then the 

unanticipated return will always be negative. In short, there will always be some 

arbitrage opportunity. If we cannot eliminate the risk associated with the jump diffusion 

we cannot make the return to the portfolio equal to the risk-free rate of return.

Currently the problem we are faced with is to find a partial differential equation 

for a contingent claim written on an underlying asset whose price follows a mixed jump- 

diffusion process. We can construct a partial differential equation for a call option, 

however, we need the trend for the equation to equal the risk-free rate of return.** To do 

this, Merton turns towards the original Black and Scholes (1973) model. In their original 

work Black and Scholes show that their result is obtainable from both a partial 

equilibrium model, or in a general equilibrium under the Capital Asset Pricing Model 

(CAPM). Merton assumes that the CAPM holds, thereby, taking advantage of this 

model. The CAPM analysis presumes that stock price movements are a function of two 

components, idiosyncratic and non-idiosyncratic risks. Identifying this result, Merton 

posits that information from a market arrives one of two ways. The first is a continuous 

stream of news where this information has a marginal impact on stock prices. The 

second is the introduction of sudden non-trivial news that has an instantaneous, non­

marginal impact on stock prices. If the latter type information is firm specific, then it 

may have little impact on stocks in general. These sudden jumps in prices from firm 

specific news are then deemed to be idiosyncratic and can therefore be diversified away.
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In return, the jump component will be uncorrelated with the market portfolio, and 

therefore does not need to be priced.

Returning to the portfolio in expression (168), the only source of uncertainty in 

the return dynamics is the jump component. Under the CAPM, the jump represents only 

non-systematic risk, and therefore, is ignored. Thus, under the CAPM, the return 

dynamics o f the portfolio are

dA
—  = a ^d t . (232)
A

The portfolio is risk-free and has a beta of zero. Zero beta portfolios have a return equal 

to the risk-free rate of return. This implies a ^= r .  Substituting in for yields

= w, a  + +w^r = r .

Rearranging the above yields

= w ,  +  WjQTj +  [l -  w ,  -  W2 J r  = r  

=w, - r ) + r  = r

a ^ - r  = w^{ot-r) + W2{ac-r) = 0. (233)

Recall from the Black-Scholes methodology in section 4.1 of this chapter, the portfolio’s 

diffusion term is given by equation (11) and is

= w,(T + =0.

Thus, solving the homogeneous system of equations, we obtain portfolio weights equal to

a - r  , , a ^ - r• u ~ r  j  «
w, = ', and W2 =

Black and Scholes show that these portfolio weights are equal. This is
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(234)
a  a .

Making the necessary substitutions into equation (234), we obtain

+C ,(a-;iife)5+C , +AE[C{SY,t)-C{S,t)yC{SY,t)
a - r

- r

{a -r )a S C jC {S Y ,t)  _

aSCjC{SY,t)

+ C ,{ a -  Xic)S + C, + XE[C{SY,t) -  C(5,/)]
- r .

a- C{SY,t)

(a -r )S C ,  = ^ C „ o - '5 ' + C ,{a -2 k )S +  C, +XE[C{SY,t)-C(,S,t)]-rC{SY,t)

+ C, (r -  }ji)S + C, + ÀE[C{SY,t) -  C (5 ,/)]- rC{SY,t) = 0. (235)

Equation (235) is the partial differential equation for a contingent claim written on a 

stock whose price follows a mixed-difflision process. This expression does not depend 

on the true mean return for the stock. Instead, as in the Black-Scholes case, the mean is 

equal to the known rate of interest, r. Moreover, (233) reduces to the Black-Scholes 

equation if A = 0. It is important to note that even though the jumps represent pure non- 

systematic risk, the jump component does affect the equilibrium option price. This is 

seen by the fourth term in expression (235). Inspection of the stochastic process in 

expression (201) indicates that this is true. That is, the expression shows the stock price 

follows a mixed jump diffusion process. Press (1967) shows that the distribution for any 

stock price at some time T will have a mixed Poisson-Gaussian distribution as opposed to 

having just a Gaussian distribution like the Black-Scholes model. We should expect the 

option price to be influenced by these jumps and from expression (235) we see this is 

correct.
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Merton has developed the partial differential equation for an option whose price 

incorporates idiosyncratic jumps. To find the value of the call option we need the 

boundary conditions. These are

C(0,r) = 0, (236)

C(SY,0) = max[0,57  -  Z ] . (237)

Given (174), (175) and (176) the value of call option is

(238)
n»0 Tl\

where E„{p{SY„,t)) is the solution to the Black-Scholes option model conditional on n 

jumps occurring over the life of the option, and z  is the time to maturity.'^ The random 

variable, is defined as the product of n independently and identically distributed 

random variables, each being identically distributed to the random variable Y in 

expression (202b). is the expectation operator over the distribution of Y„.

Expression (238) is a general solution for an option written on a stock whose price 

follows a mixed jump diffusion process. There is a special case for Merton’s model 

where a closed form solution exists. The closed form solution is found when Y„ (where

7„ = Yj ) is jointly log-normally distributed. Under this assumption we have the

following. Recall Â s £ [ T -1]. This implies 7  = 1 + A. If we let 7  be log-normally

distributed with mean ^7 “  j  and a variance of rj  ̂ then the log of 7, In 7  = ln(l + k) ,

is said to be normally distributed with mean y  and a variance of The product of n

independently distributed log-normal variables Y„ = ly is jointly log-normal with a
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mean and a variance . Given these distributional characteristics, we

can find a closed form solution for expression (238).

Expression (238) is a Poisson weighted sum of the Black-Scholes option prices 

conditional on n jumps occurring. If we can find a solution to the Black-Scholes 

expression then we can find a closed form solution for expression (238). Consider the 

following

= (r-À k)d t + adZit) + dq{t) . (239)

Note, the instantaneous drift for the spot price has changed from a  to r. This is due to 

Merton treating the jumps as idiosyncratic risk and making the return to the arbitrage 

portfolio equal to the riskless rate of return. Let A" = ln 5 . With this transformation and 

applying Ito’s lemma for a jump diffusion the stochastic differential for % may be written

as

àX  = X , d S ^  + ̂ X ^ d S l ^  + In Sy -  In S .

= - ( ( r  -  U )Sdl  + aSdZio)— + In iy  - l n 5 ,
S IS

— {r — Zk')dt + cdZ{t) — c^dt + Inf—
2 V •5 >

\ r - - a r ^  - X k  d/ + orfZ(0 + ln(y), 
A 2 y y

\dX  = -X k \d s  + a  \dZ{s) + ̂  )’
)  I y-i
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fr -  l o - O  -  ; W : y  - / )  + O - + X  l n(yj ,
^ /  y t y-i

X{T) = X{t) +

S(T) = 5(0 exp

r - ^ c r ^ j ~ X k i T - t )  + crldZis) + '^\n(Yj),
I M

 ̂ 1  ̂r — <7 -  j ( r  -  0 + J \d Z {s ) + g  in(y, ) | ,

5 ( r )  = 5(0exp{5(7’)}, (240)

where ^(T) = ^ " j  - j ( T - 0  + (TpZ(j) + f  ) '

The terminal stock price depends on the instantaneous movements and the 

discrete random jumps. The expected value of the spot price will then depend on the 

instantaneous return, the average jump size and the probability of n jumps occurring. The 

infinite sum in expression (238) considers the probability of n possible jumps occurring 

in the spot price over the time interval considered. Therefore, we are left with finding the 

expected terminal stock price given the distributional characteristics of the instantaneous 

movements and for the size of the jump. This is

£*[5(7’) |/ i  jumps\ = çxç E]\X(X)\n jum ps\+ ^V*\X {T)\n jum ps^ .  (241) 

Thus, the mean and variance ofX{T) are

E] \X  (T) I n jumps\ =% (t) +

= 2f(0 +

- A ^ j ( r - / ) + |£ „ [ ln ( y ,) ] ,
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= X{t)  + r - / l ^ + — I r - —(<7V + /J7 ^) (242)
< ^ /  2

v ;  [X(T) I n Jumps] -  ct’ J *  + É  [ in ^  )].
/ y-1

y=i

= <T̂ T + nr]^. (243)

Plugging the expected value and variance for X(T) back into the expected spot price we 

get

E*\S{T)\njumps\ = ex.̂  A'(/) + ̂ r -; i^ + — jr-^(cr^r + /i7 ^)+^(cr^r + /i7 ^)j,

= exp X{t)+  r - A ^ + — Ir
I I )  )

= 5(0 exp r - A i F + ^ k  . (244)
vv

Equation (244) is the expected terminal stock price conditional on n jumps occurring.

Following the derivation in section 4.1, we can price can find the Black-Scholes 

solution for this model. We know from equation (20) of this chapter that the Black- 

Scholes formula is

where

=

C(5,0  = 5 ( 0 W ,  ) -  e-'^XN{d^ ) ,

(j 4 t

and

=d^ - a y f r .
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We may tailor the Black-Scholes solution above to fit the characteristics of the 

spot price for the current model. Under a risk-neutrality the Black-Scholes option price 

may be expressed as

C(S, t \n )  = [C(SY, T) | n jumps], (245)

where C{S,t \ n) is the price of the Black-Scholes call option today, and C{S,T | n) is the 

price of Black-Scholes call option at a terminal date 71 Substituting in for the risk- 

adjusted terminal call price we get 

C{S,t I n) = e'"E', [max(5'(7) -  %,0)| n jumps],

= e'"£,*[max(5'(0e®^^^ -% ,o)| n jumps],

= e-'^[E][s{t)e^^^'>-X\S{T)>X,n jumps]+E][0\S{T)<X,n jumps'^

= e '"  {£:; -  X I ^ X ,n  jumps]-¥ E] [o I S{t)e^^ '̂> < X ,n  jumps\

X
= e

e " \ E ]

Sit)
,n jumps + E, 0 \e B (T) < -^y n J u m p s

S(t)e“̂ ^̂  - X \B iT ) > I n f  X  ' ,n jumps +e ; 0 |5 (7 )< ln
f  X  '

,n jumps

(246)

From expression (246), we see that the price of a call today is simply the linear 

combination of two partial expectations conditioned on n jumps occurring. The first 

partial expectation considers the option when it is in the money and the second is for the 

option when it is out of the money. Presuming n jumps have occurred, we may formally 

write the probability of the option expiring in the money. This is
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where P* is an equivalent martingale probability. Transforming the variable then 

constitutes the following

m  s(t)

pN ln
(  X  1 /

<ln
U ( o J V.

S(T)

Since In
5(0

VS(t).

= B (T), the above becomes

PN ln ^ p ( r ) ^ o o L

The second partial expectation operator in expression (246) considers the probability that 

the spot price is less than the exercise price at maturity. Formally, this is 

P *{-o o ^5 (r)^2 r} ,

where P* is an equivalent martingale probability. Again, transforming the variable then 

constitutes the following

p - L o O ^ S
S(() S( / ) J’

P 'j - o o ^ ln
l â -

p N -o o ^ P (P )^ ln

Given the probability statements above, the linear combination of the partial expectations 

in expression (246) may be written as
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K w ]  « /  \
C (5,fl«) = e '"  J (0)rfP + e“"  j(S(Oe‘<''>-A'JrfP* 

where c?P* is the probability measure and is equal to

(247)

dP' =
yj2;r{a^T + nTj^)

exp

b(T)- r - À k +  —  |r -  -

2[(7^T + n?j^
JJ db{T).

The use of the probability measure dP' in expression (247) is the same as the 

analysis in section 4.1 expression (33), with one fundamental difference. The probability 

measure in expression (247) is not completely risk adjusted. The spot price is said to 

trend at the known riskless rate of return because of the assumptions made by Merton. 

Merton presumes that the jumps are diversifiable, thereby obtaining a zero beta portfolio. 

Since this portfolio trends at the known riskless rate we develop the model in a pseudo 

risk neutral world. The jump risk is ignored but still impacts the options equilibrium 

price. In the probability measure, we see that the actual jump parameters are used and 

not the risk-adjusted parameters. Hence, we are working with a pseudo risk-neutral 

measure.

Continuing with expression (247), we substitute in the probability measure and 

obtain (for ease of exposition, the brackets of the exponential are acknowledged with a 

dot)

K w )
C (S ,r|n ) = e-" J (o) 1

^27c{a^r + nr]^)
exi
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+ « '"  I - f f ^ r  (248)

The first term in expression (248) is equal to zero leaving us with 

Expression (249) can be split up into two different integrals.

exp[.}f6(T). (249)

I exp[.]d6(T)- ] e~'^X
■i2n[ah + nr]^)

exip [ # ( n

(250)

We start with the second integral in expression (250). Consider the 

transformation of 5(7)

5 (7 ) -

Z = ■
r - ; j F + ^

V p T  + n ^
(251)

If we wish to write the integral in (250) as a function of Z, we must adjust the limits. 

Currently, we are considering the probability that the spot price is greater than the 

exercise price at maturity.

(  x \
PN ln

5(0 j
^ 5 (7 )^ o o k (252)
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Recall that B{T) has a mean of
z  )  2

\r and a variance of

0-2 L . Subtracting the mean of B{T) and dividing by the standard deviation

yields

P ' \
B ( p - E [ B ( T )] ^ 

^{a^T + n?]^) -^[a^r + nTi^)
(253)

From equation (251) we have

In
f X̂
U(oj A

•y/(cr̂ T + n77 )̂
<Z<00 (254)

If we change the variable of integration in the above to dz, then the limits of integration

XIn

for this problem become 

the integral

U ( o . / /
ĵ[cr^T + nTJ^)

and 00, making

1- e ' " X  J -T = exp (255)

"Vp^+npy

The normal distribution is a symmetrical distribution. A property of the standard 

normal distribution states that we can write

J / ( 2)<fe= f / ( z )d z . (256)
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Using the above property, expression (255) may be rewritten as

Vpr+v] 
- e " X  !

h ^ - 2 -
dz (257)

Consequently, the upper limit in expression (255) can be rewritten. Rewriting yields

In
f ,

O': 4 - ^

^ ( a h  + riTj^)

ft
In .AT — lniS(/) —

/ /

lni5(r) — I n + r - À k  + ny'] 1 2 \

/ /

]

We define the above result as

,  # ) • ( ( '-
« 2  = --------------------------------

T j  2

2 \

/ /
^ ( a h  + nij^]

Thus, equation (255) can be expressed as

- e - ” X d z .

Furthermore, expression (260) becomes

(258)

(259)

(260)
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- e '^XNid^)  (261)

Now working on the first integral in expression (250), we start with the variable

In

Z. The limits for the integral are

therefore we have

f  X  )
/

U( o J \ yJ
y][cr^T + nTj^)

and 00,

1
exp dz. (262)

V(<T*r+«7*)

The limits for expression (262) are in terms of Z, however we still have b{T) inside the 

integral. We need to transform the variable 5(7), First we recognize that the lower limit 

in the expression above is equal to

, 2

In

- d i  =

X_

M ) )

^J[a T + nrj^)

Therefore we can express the integral as

-di V2/r
exp — z  

2
dz. (263)

Now we start working on 5(7). Multiplying expression (263) by 1,

exp
\ / Y

r exp -
/> \ A t HI

yields

e""e 1 r  1 z i ,= e x p |- - Z  dz.
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This is equal to

e“"e dz. (264)

We know

B{T)-
Z  =

r j  2 J)

which is equal to

1/  2 \ \  
U + H _ | |

H  '■J 2 ^ ) )
r .  (265)

Substituting (265) into (264) yields

e '" e
-il V2;r

- - z ^
2

dz. (266)

Working on the term inside the integral in equation (266), we combine the exponents. 

This yields

'S'(0 I
- i l  V2Æ

e“"e

c “" e

dz.

dz. (267)

206



The exponential term inside the integral in expression (267) can be completed into a 

square. To do so we need to multiply (267) by

exp k ! i± M ! ] ] e x p r _ k ! i ± H ! ^ (268)

This yields

-rfj v2;r L 2

e e "^(0 I g  ̂ ; ^ e x p | ^ - - 2 z^ (tx \ + nîj^))

dz

dz.

e”"e
( (  /■-^+—llr 0 0 1
II r ) ) s ( t ) f ^ C X p  

-4 V2;r
- —(cr^r + zi;/^)-—(z  ̂-2z^{o'^T + nT}^)^ dz.

(  r-AÎ+—Ir 0 0 1
e-"5(/)e^ î - 7= e x p

-</j v2;r
- i ( z ^  -2z-y/(or^r + /i7^)+(o-^r+ /i7^)] ck.

or

e-"5(/)e'
fr-^+—Ir oo 1I rJ f __!. ^T + nrj^ t dz. (269)

Examining expression (269), we see that the integral in equation (269) is no longer for a

standard normal variable. The mean has been moved to the left by ^jya^T+mf) units. 

To express the probability density ftmction in terms of a standard normal variable we 

need to redefine the variable of integration. If we let IK = Z -  ̂ j[â ^T + n7J^), then we see 

dw
that —  = 1. In addition, when z = oo then w = oo, and when 

dz
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In

z  = ■ 4 ) j J)

then

In
w = -^[a^T  + nrj^I

yl[a^T + nrj^)

Therefore, using dw as the variable of integration makes expression (269) equal to

V  T  J
X rexpJ r—  ’

-d2—i](cr̂T+ntĵ ) V2%

where the probability density function is now for a standard normal variable. Using the 

symmetry property of the normal distribution allows us to write the above as

< /z + V F ^ r + n ^  1 f  1

i  Æ ' + i

( r - A i ^ H L ld .  1 r  ,  1
e "S(t)e^  ̂  ̂ J -^ = e x p  — w \dw.

-<*> s I tv . 2  J

The upper limit in expression (270) is equal to 

d, = ^2 + ^j{a'^r + nT]^),

w dw.

' < f ) * r j  2

Kfl*
yl(a^T + nîj^)

• + V (Ô rÇ 7 n ^ ,

\ \

/y
V(<tV  + «77 '̂

. {(T̂ T + nrj^) 

]̂[cr^T + nT}^)

(270)
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yj[a^T + nTj^]
(271)

Given the above, expression (270) reduces to

(272)

Now replacing the integrals in expression (250), with expressions (261) and (271)

yields

(r-xk^ar-l
C(S,t\n) = e-'^S(t)e<  ̂  ̂ N{d^)-e~'^XNid:,), (273)

where

d̂  -
\ X  ) J  2

(274)

and

d; =df--J{cr^T + nTj^). (275)

Substituting the conditioned Black-Scholes solution into Merton’s expression 

yields a closed form solution. This is

n-O n\

■
5(/)exp

.
r — Àk 4—— |T )^(d| ) — XN{d2 ) (276)

Expression (276) is a closed form solution for an option contract written on a stock 

whose price follows a mixed jump-difhision process. Furthermore, it is assumed that the 

jump size follows a log-normal distribution. To obtain this solution Merton follows the 

argument originally presented in Black and Scholes (1973) seminal work. With 

complications arising from discontinuous breaks in the spot price dynamics, Merton must
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make additional assumptions. First, he states the capital asset pricing model holds. 

Secondly, he treats jump occurrences as idiosyncratic risk that is not priced by the CAPM 

model. With these assumptions in place, Merton is capable of allowing the option price 

to trend at the riskless rate of return. This in turn, yields a general solution for the option 

contract. If we presume. Jumps sizes are log-normally distributed, we obtain the closed 

form expression given by equation (276).

Merton’s analysis leads to a unique and insightful result. By incorporating 

discrete random jumps in a price process, he gives greater flexibility and reality to the 

model. We have already seen where the Black-Scholes analysis is capable of pricing 

options on futures contracts, where the futures price is found to follow a geometric 

Brownian motion. Casual observations of commodity spot and futures prices, however, 

indicate this is not a realistic assumption. These prices often exhibit price spikes and 

would therefore not follow a geometric Brownian motion all the time. In light of this 

evidence, we need a model that does incorporate jumps in the underlying commodity 

price. Merton’s model is a possible candidate for our analysis. The only problem with 

Merton’s analysis is his treatment of jumps. That is, he presumes they are idiosyncratic 

and therefore diversifiable. It is unrealistic to believe that a conunodity’s price spikes are 

anything but systematic and therefore does not fit the assumptions of Merton’s model. 

As a result, we need an option pricing model which allows for systematic jumps in 

commodity prices.

4.6 Bates* Model

In Merton’s work, he assumes the jump risk in a stock’s price is diversifiable, 

which permits returns on the otherwise risk-free replicating portfolio to be equal to the
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risk-free rate. The assumption is important in that it allows Merton a means of obtaining 

a fundamental partial differential equation for pricing options written on the underlying 

stock. The question remains whether Merton’s assumption of diversifiable jump risk is 

reasonable. Recently, some literature has developed to consider this phenomenon. In 

particular, Bates (1988, 1991) notes that the stock market crash in October of 1987 is 

evidence that asset prices are prone to exhibit significant random discrete jumps. 

Furthermore, these jumps manifest themselves in the S&P 500 index. It is hard to accept 

that jumps in the S&P 500 index can be seen as idiosyncratic. Therefore, in 

consideration of asset price behavior. Bates constructs a model for pricing contingent 

claims, where asset prices incorporate systematic jumps in the diffusion processes.

Bates notes that introducing systematic jumps to asset prices introduces new 

forms of risk, namely jump risk. The challenge to modeling this behavior when pricing 

options is that the jump risk is embodied in option prices, but this risk is not directly 

priced by any instrument currently traded in financial markets. In the Black-Scholes 

analysis, the only sort of risk that is considered is the regular price vibrations of the 

underlying security. Since the stock price is a tradable asset, the underlying risk premium 

is said to be

a

where ji is the instantaneous expected return, r is the riskless rate of return, and a  is the 

diffusion coefficient. Under the proposed model of Bates, to price options written on 

stock prices one will need a risk premium for normal price vibrations and a risk premium 

for large discrete price vibrations as well. The result is that the Black-Scholes arbitrage- 

based methodology caimot be used. To model this phenomenon, one must impose
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restrictions on preferences and technologies in order to price those forms of risk, and 

consequently to price options. Bates extends the Cox, Ingersoll, Ross (1985a) general 

equilibrium framework, by including a jump process, to examine how options can be 

priced under jump risk.

The general framework for Bates’ model is as follows. There are a large number 

of infinitely lived consumers, with identical preferences, endowments, and information 

sets. Each consumer seeks to maximize a lifetime expected utility function of the form

E,]e-<>‘U{C,J,)clt (277)
0

subject to initial wealth and initial underlying state of the economy Yq. U(C,, ) is 

assumed strictly concave in the consumption flow C.

There are N  investment opportunities in real assets available to every investor. 

The model is a pure capital growth model where it is assumed that labor is unnecessary in 

production. The return on each investment follows a state-dependent jump-diffusion 

process

^  = [a, (r) -  ZE, {k,)\ll + g,(r)dZ + k ,( ï)dq , (278)
‘ I

where a,(Y) is the state-dependent instantaneous expected return on the process. Z is an

(N+K)xl vector of independent standard Weiner processes. N  is the number of 

investment opportunities and K  is the number of state variables, in the Kxl vector Y. 

gi(Y) is a lx(N+K) state-dependent vector reflecting the sensitivity of returns to the 

various shocks, g is a Poisson counter with intensity À, and k/(Y) is the random 

percentage jump size conditional on the Poisson-distributed event occurring. The state
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dependent distribution of k^{Y) has a mean of Ey{k) conditional on state Y. The

movement of the K-dimensional vector of state variables Y is determined by a system of 

stochastic differential equations of the form

dY  = tw(y) -  XEy (a t)} *  + <7y {Y)dZ + ̂ Ydq (279)

where //(7) is the state-dependent drift in Y, (TyiY) is a Kx(N+K) matrix giving the 

state-dependent sensitivities of the underlying state variables, and AY  is a Kxl vector of 

random increments to the state variables conditional on the Poisson-distributed event 

occurring. The Poisson shock is assumed to affect all investment opportunities and 

underlying state variables simultaneously, and is therefore systematic and non- 

diversifiable risk.

At each instant, each consumer chooses a consumption flow and an investment 

strategy to maximize expected utility over the consumer’s remaining lifetime given the 

state of the economy. Solving this maximization problem yields a general capital asset 

pricing model for jump diffusions. Excess returns on any investment are generated by 

the security’s content of various forms of systematic risk. These are 1) market risk 

conditional on no jumps, 2) technological risks (shifts in the investment opportunity set) 

conditional on no jumps, and 3) jump risk, which includes both market and technological 

risks. In theorem three of his analysis. Bates shows the asset pricing model implies that 

options on non-dividend paying stocks are priced as if investors are risk-neutral. The 

system of stochastic differential equations for the asset price, wealth, and the state 

variables are

y  = [r -  (*;)}* + ff ,JZ '+  k\dq (280)
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dW
W

where

dt + <j„dZ* + klrdq* (281)

dY = \ju{Y) -  XEy (A y )-(^y{W, y)]cfr + o-y {Y)dZ* + LY'dq* (282)

0y(fY,Y) = -Cov(dJyy jjyy , d Ÿ  ) (283)

and jumps occur with frequency X{W, Y) = (IV + k,yW,Y + AY)) ^
Jffr

are Nxl vectors and dy is a Kxl vector. Ey denotes the expectation operator conditional 

on state Y relative to the true joint probability density function of \k^,kyy,^Y\ denoted 

f i k , , k „ ,L Y \Y ) .  E^y  denotes the expectations operator conditional on state[iy,y] 

relative to the marginal weighted joint probability distribution function of \k ,,k„ ,ùY\

/ (A: ; , ^; , Ay'  I y) = — . (284)

Note that the beginning analysis defines P  as the price of any asset available for 

investment. The analysis now uses S  for the asset price, because we are interested in 

pricing options written on a stock price.

Bates' asset pricing model is capable of pricing options under varying 

assumptions. The Black-Scholes solution is attainable by imposing three restrictions on 

the model. In particular if there are no jumps, the underlying asset’s price volatility is not 

a function of other underlying state variables Y, and the risk-free rate is nonstochastic. 

The Black-Scholes model reflects the fact that the assumptions ensure that the option 

contains only one form of systematic risk, namely the underlying asset. Bates, however, 

has a model that involves forms of risk that are not directly price by the market; jump
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risk. Consequently, Bates shows it is necessary to derive prices for these forms of risk 

from restrictions of preferences and on distributions. For jump risk models, the price of 

risk is reflected in the modified jump frequency parameter X(W ,Y)  and the modified 

jump size distribution f(k*,kly,AY' 17 ). To find an option price with systematic jump 

risk we need to make the following assumptions: 1) the representative agent has a log 

utility, 2) the underlying asset price follows a jump-diffiision o f the type state above, with 

constant volatility and random state-independent percentage jump amplitude ,3 )  

wealth follows a similar jump-diffusion process, with state-independent random 

percentage jump amplitude but with possible state independent volatility, 4) one plus

the percentage jump amplitudes in the underlying asset price and wealth have a joint log­

normal distribution, and 5) the instantaneous risk-free rate is nonstochastic. With the 

above assumptions, the option prices depend only on the underlying asset price and time, 

and are evaluated using a risk-neutral jump-diffrision with log-normal random jumps

^  = [r -  XE* [k] )]* + G,dZ* + k]dq ' ,
U

where the terms are defined above and

ln(l + ̂ ;)~ iV r.

where y* is the risk adjusted mean jump size. Bates (1991) notes for options on futures 

contracts the jump diffusion process becomes

—  = - X e ' (it; )dt + adZ*+ kpdg ' , (285)
F
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where a  is the instantaneous variance conditional on no jumps; dZ* is the increment of 

a standard Brownian motion under a risk-adjusted probability measure; k*f is the risk- 

adjusted random percentage jump conditional on a Poisson distributed event occurring;

(1 + ̂ f ) is log-normally distributed: ln(l + ̂ ^ ) ~ i \ ^ ^ y * À* is the modified

frequency of Poisson events; and q* is a Poisson counter with intensity X:  

Pr{dq*(t) = 1) = X d t , ?t{dq'(t) = 0) = 1 -  X d t . Define = E*[kp ). From Press

(1967) and Merton (1976) (expression (276)) the option price written on a futures 

contract that follows a jump diffusion is

C(FY,t) = e-"  ) -  XN(d, )].
n«0 n\

where b{n) =

(286)

In
\ \

-X F p  + ^-T-
T

T + ̂ (<T^r + neo^)

4<T^T + n<jÔ
and

d, =d,

(287)

(288)

This result is shown below for the process in expression (285).

The process in equation (285) resembles a geometric Brownian motion most of 

the time, but on average X  times per year the price jumps discretely by a random 

amount. Working on the futures price, let H(t) = InF(f). The transformation, and Ito’s 

lemma yields the following process for H(t)
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dH = H,dF^^ +H(Fr,t)-H(F,0,

d H = —( f  )(- Z'k'rdl+ a d Z \ t ) ) - V < * )+  l a F Y - ln F ,
F  I F

dH  = (—A kpdt + oz/Z (f))—— , 

dH = XFp + ad Z \t)  + ln(y)

]dH  = j f -X F p  V-̂  + a ] d Z \s )  + tln (y ,),
t l \  1  )  t M

H(T) -  Hit) = ] ( -  X %  -  V  + <j]dZ\s) +1  ln(y, ), 
i \  2 y / /-I

HiT)  -  Hit) = 1̂ - X F p - 1 e r :  j(T  -  /) + <t|z/Z*(5) + f  ln(y, ).

i / ( r )  = H it)+ ( -  XFp - - c rO r  + a ] d Z \s )  + 1 ln(y,),
V 2 J I M

F ( r )  = F(/)exp[5(r)]r(«), (289)

where BiT) = \ - X k p  - - t r O r  + o-Jz/Z’C^), and y(«) = J ][y ,. Expression (289) is an

alternative representation for the futures price process. Here the futures price is given for 

a particular time conditional on the instantaneous trend, movements in the Weiner 

process and n jumps. F(7) is a random variable. The uncertainty underlying F(7) is 

introduced by the movements in the Weiner process and the size of the jumps. While 

F(7) may be random, we do, however, have some expectation about the futures price at 

time T. This expectation is given as‘̂
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E : [ F m ] = t ^ — ^ ^ ^ ^ : ( F { T ) \ n J u m p s %  (290)
n=0 n\

where E{F(T) | n jumps) is the conditional expectation of the continuous movements of 

F(7) over the interval Expression (290) is simply the Poisson weighted sum of n 

expected values of F{T). The form of E{F{T) | n jumps) will depend on the distribution 

of the continuous components of F(T).

To determine the distribution of the futures price at time T, we look at expression

(289). The two sources of randomness are the Brownian motion and the jump size. The 

Brownian motion is by definition normally distributed, and the distribution for the jump 

size is presumed to be log-normal. The continuous futures price vibrations are log­

normal. Therefore, the conditional expected value on the right-hand side of expression

(290) is found as

The conditional mean of H(T) is

e ; Ih (T) I n jumps] = + E\ [\n{Y, )],
/-I

=  H ( t ) +

= H ( t ) + \ ^ X k ; - ^ c r ^ y  + n (292)

The conditional variance of H{T) is

r;[H(T)\« jumps] = r; [<7? dZ- (i)l+Ê v: [ln()̂  )].
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Recall the jump term and the Wiener process are uncorrelated.

V, \H (T) I n Jumps] = cr V  + E
M

= + no)^. (293)

Note that the expressions for the conditional mean and variance of H(T) are identical in 

form for Bates and Merton models. The two models, however, are fundamentally 

different. One, Merton presumes idiosyncratic jumps, while Bates does not. Secondly, 

the parameters for the jump process in the Bates model are risk-adjusted, whereas, 

Merton uses the actual parameter values. Continuing, we substitute expressions (292) 

and (293) into (291) to obtain

EJ[F(T) I n Jumps] = exp

= exp

=  e x p [ / f  ( / )  -  A ' k ^ r  +  « y *  J ,

= exp 1/(0+ - X k ;  +

= FCOexp - X k ; + ^
L\

(294)

Expression (290) is the expected futures price at time T  for the continuous 

movements conditioned on n jumps occurring over the interval (T-t). Rewriting 

expression (294) in a more simplified manner yields

E] IE(T) I n Jumps] = F(Oe“ "’" (295)
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where b{n) -  - X k  * + . Taking the result from equation (295) and substituting it into
X

expression (290) yields

K[F{T)]= Ê - - (296) 
<i»o n\

which is the risk-adjusted expected futures price at time T  contingent on n jumps 

occurring over the investment horizon. With the characteristics of the futures price in 

place, we are ready to begin pricing call options written on the futures contract.

Expression (285) is the return dynamics for futures prices. This expression is 

very similar to Merton’s price dynamics. As noted above, there are subtle differences 

between the two expressions. One, the instantaneous drift in Bates’ expression is zero 

and two, the Bates’ formula is a risk-neutral process allowing for systematic price and 

jump risk. The form of Bates’ option pricing formula in expression (286) is identical to 

the form of Merton’s (1976) formula (expression (276)) with the difference being the 

treatment of the jump parameters. Merton’s formula incorporates the actual parameters 

for the idiosyncratic jump distribution, whereas. Bates has the modified systematic jump 

parameters. To find a closed form solution to Bates, we need the Black-Scholes solution 

conditioned on n jumps occurring over the investment horizon.

In a risk neutral world, the price of a European call option written on the risk- 

adjusted futures contract can be expressed as

C(F,/1 n) = e-'^^-^E][C{F,T \n jumps)], (297)

where C{F,t | n) is the price of the call option today, and C{F,T\ n) is the risk adjusted 

call option at a terminal date T. Substituting in for the risk-adjusted terminal call price 

we get
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C(F, t \n )  = e~"E' [max(F(T) -  X,0) | n Jumps] , 

From expression (289), we have the futures price at time J  written as 

F(T) = F(t)exp[B(T)]ï(n),

(298)

1where B{T) = \ - X k p — r  + cr/dZ*(5), and Y{n) = Y \^ t -  We now define G{T)

as G(7’) = f - ^ c r M r  + or/i/Z*(j) + 21n(F j, where In(j^) is normally distributed

with mean y* -^ (o ^  and variance of <ô . That is, we move the jump component back

into the exponential of the futures price in expression (289). The max function in 

expression (298) can be rewritten as

C(F,r I n) = e - " [e ][F(t)e°^^^ - X  | F{T) > X,njumps\+ E][01 F{T) < X ,n  jumps%

= e-'^[E][F(t)e^^^^-X\F{t)e°^^^ > X ,n  jumps\-¥ E]^\F(t)e°^'^^ < X ,n  jumpsl.

= e-rr,E' G (T)

F{t)

F{t)e^^^^-X\G{T)>\n

+e :

,n jumps +e : F ( ty
n jumps

 ̂ X  ^

Fit).
n jumps

'  X  '
0 |G (T )< ln

L m j
,n jumps (299)

From expression (299), we see that the price of a call today is simply the linear 

combination of two partial expectations conditioned on n jumps occurring. The first 

partial expectation considers the option when it is in the money and the second is for the 

option when it is out of the money. Conditioning on n jumps occurring, we may formally 

write the probability of the option expiring in the money. This is
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p '{x< F (T )< oo],

where P* is an equivalent martingale probability. Transforming the variable then 

constitutes the following

Since In^F{TŸ
F it) ,

= G{T), the above becomes

fN ln
F it))

The second partial expectation operator in expression (299) considers the probability that 

the spot price is less than the exercise price at maturity. Formally, this is 

P '{ - oq̂ F { T ) ^ X ] ,

where P* is an equivalent martingale probability. Again, transforming the variable then 

constitutes the following

F (o  m l '

co^ln ( FiT)'] ^In f ^  1

1-

f l-o o :^ G (T )^ ln X
F it))

Given the probability statements above, the linear combination of the partial expectations 

in expression (299) may be written as
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C{F,t\n)  = e
Inf— ]

f  ̂ (0>fP* + -x)dP*

4 4 ) )

(300)

where

dP' =
^2jr[<r^r + nco^)

exp
g(T) -  f b(n)r -  - (<r^r + no)^)

2 (<rV + /iû)^j
t/g(r). (301)

Note that Bates’ model is a risk neutral pricing model. In light of this observation the 

expectation operator in expression (300), is taken with respect to the equivalent 

probability measure, d P \  and not the actual probability distribution. This notion is 

discussed in section 4.1 expression (31). Combining (300) and (301) we have

C (F ,t\n) = e-
4 4 ) ) 0

exp
I g{T) -  b{n)T -  ̂  (cr^r + «û>̂  ) 

2{ar^r-\-na^)
dg{T)

\(T^z+ncr)

a^r + nco^,

~ ^ ^ T  + nû)^ ̂

The first term in expression (302) is equal to zero leaving us with

dg(T)

(302)
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C{F,t\n) = e I = ^ e x p
cr^T + n(o^)

g(T) -  ̂ 6 (/i)r -  ̂  (<7̂ T + /jû)  ̂)j j

~2^^r + nû)^ ̂
dg{T)

(303)

Expression (303) can be split up into two different integrals. For ease of exposition, the 

brackets o f the exponential in expression (303) are acknowledged with a dot.

lcr^r + /iû)*j in(^) yl27r(a^T + nû> )̂
exip [ - k ( n

(304)

We start with the second integral in expression (304). Consider the transformation of 

G(T)

Z  =
G(T) -  j b(n)T -  -  (cr V  + n )

V 2 (305)
yJ[cr̂ T + nû> )̂

If we wish to write the integrals in (304) as a function of z, we must adjust the limits. 

Currently, we are considering the probability that the spot price is greater than the 

exercise price at maturity. Formally, this is

X  1
fN ln

. m )
^G (T )^o o \. (306)

Recall G(T) has a mean of 6 (n)r -  ) and a variance of (<T*r + /m)^). If we

subtract the mean of G(T) and then divide by the standard deviation, this yields
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y j [ a h  +  n û J^ ) -Jia^T + nû}^)

From equation (305) we have

/
In - ^ 1  - f b(n)T -  - [a^T + nû)^)

^ h  + neô
(307)

Thus, if we change the variable of integration in the above to Z, then the limits of

In
integration for this problem become 

the integral

(  X  1 /

I m J \
6(n)r-^(<(T^T + nCD̂

]
and 00, making

-e~ ”X  J - = e x p

(̂âT+ntû )

dz.

Recall the symmetry property of the normal distribution

J/(z)ife=  \ f{ z )d z .
L —00

Using the property above, we may rewrite expression (308) as

J(<r’r+n<u*)
-e - '^ X  i

v & 4 - r ' )

The upper limit in (310) can be rewritten. This is,

(308)

(309)

\dz. (310)
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In

In + ^è(« )r-^(< 7V  + /iûJ^jj

V^^Ç+nû)^

We define the upper limit as

c7̂ T + neo^^

Using expression (311) in (310) yields

f 1- e - ' ^ X  f-7==exp
i Æ

- - z ^
2

cfe.

which equals

-e -" X N {d ,) ,

Now working on the first integral in expression (304), we start with

1

■^2n{pr^T + ncd^)
exip [ - f e (n .

(311)

(312)

Changing the variable of integration for the integral above to dz we must change the 

limits. This is

1
exp dz

The limits of integration are for the variable Z, but we still have g(7) inside the integral. 

We need to transform this variable. First, the lower limit can be rewritten. This is
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1
-</î

Working on the variable g(7) we multiply the above expression by 1. This yields

exp^6 (/i)r -  ̂  [cr^T + )j 

Further simplification yields

exp K n ) r ~ { icr^t + nco^,

e~"e
'Jin  L 2-rfl

dz.

This is equal to

e""e
[b{n)r-Ha^r+ttia^^ « f g(r)-[ +miû  )] j 1

 ̂ - 7 =  exp
-di i j ln

— z  
2

We know

Z =
G(T) -  j b(n)T -  ̂  [a^T + nto^)

\  2 y
■<j<r̂T + ncû^

which is equal to

z \^ a ^ r  + n(o^ )= G{T) -  b (n )r - - (c rV  + nn;^)
\  2

Substituting (315) into (314) yields

e '" e

e""e

I  * e x p f - i z ’ L ,
-</j ■yjln L 2 J

( ., ., ,4 f rw o )  .  1 r
1  2 \

(313)

dz. (314)

(315)

dz. (316)

The exponential term inside the integral in expression (316) can be completed into a 

square. To do so we need to multiply (316) by
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f<rV +
“ I —

na>
exp (317)

This yields

'/  1 exp[- i(z ^  -  2zÆ V W  + 
-« \1 i t  L 2 ))■dz

or

e~” F  /  -^= r expj^- “  “  -̂ JcT̂ T + rKO^J dz. (318)

The integral in expression (318) is no longer for a standard normal variable. Its mean has

been moved to the left by ^ff^T+ncD^ units. We can restate the integral in terms of a

standard normal variable. If we let w = z -  V<T̂ r + «<û  then we see that —  = 1. When
dz

z = 00 then w = oo, and when

In
z = ■

-  ̂ 6(/i)r -  J  (<ĵ  r  + / I )

\<r^T + nû)^
then

W = ---    J :
ylcr^T + nû)^

cr^T + nû)^.

— yj[<ĵ T + nco^).

The first term in the expression above is -d%, thus we have

' = - ^ 2 - -Æw-

Rewriting expression (318) in terms of W reduces to

‘ e x p f - i
-rfj-VffV+iïâ?‘vZ/r L 2

dw. (319)
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Using the symmetry property of the normal distribution expression (319) can be rewritten

as

rfj+Vo-’r+na»' 1 T 1
w dw .

/  -^ = e x p

The upper limit is equal to

e x
4(y^r + na^

+ no) ,

1

■\l(T̂ r + nû)^

+( b(n)T + -{<T^T + nco^)

+ ncD

yl<T̂ T + nO)̂

(320)

(321)

Given the above, expression (320) reduces to

e-"F(Oe*^"’'AT(J,), (322)

Now replacing the integrals in expression (304) with expressions (312) and (322) yields 

C(F,/1 n) = e-"F(/)c*<"»^N(d, ) -  e'^XN{d^  ) ,  (323)

where b{n) =
• \

(324)

In
di = . X  J

+ 1 b(n)T + -(cr^ r + ncô  )

'J<T̂ T + neoî
(325)
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and

■\Jcr̂ T + nû)^ . (326)

Substituting expression (323) into Merton’s solution, expression (276), results in Bates’ 

solution for an option contract written on an asset that follows a jump diffusion process. 

The expression is

C(FY,t) = t  — -^[e-'T (r)e"C )'#((/, ) -  e-'^XN{d^ )].
»=o n!

Further, simplifying the above yields

C{FY,t) = e~" t  ^ ^- ,  [F(Oe*<"̂ ^Â (cf,) - XN{d^)]. (327)
n«o n!

Expression (327) is a closed form solution for an option contract written on futures price 

which is influenced by systematic jumps. To obtain the result. Bates has to make 

restrictions on preferences, technology, and distributions. This pricing formula is similar 

to Merton (1976) with the difference being the treatment of the jumps. Merton’s formula 

presumes the jumps are idiosyncratic and has the actual parameters for the jump 

distribution in his equation. Alternatively, Bates allows for systematic jumps and has the 

risk-adjusted parameters in his formula. The Bates model is a more realistic depiction of 

commodity markets, and thereby, is a plausible model for pricing options written on 

commodity futures.

4.7 Hilliard and Reis (1998)

Hilliard and Reis (1998) investigates the pricing of options on commodity futures 

under stochastic convenience yields, interest rates and jumps in the spot price. The 

development of Hilliard and Reis’ model draws on Bates’ (1988, 1991) to provide a
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medium for pricing commodity futures options. Offering support for their choice, they 

state that commodity prices occasionally exhibit large discrete changes due to weather 

and other significant events. On average, one may expect that these jumps would have a 

non-zero mean. The implication is that the jumps systematically impact commodity 

prices and therefore cannot be ignored. The systematic nature of these discrete random 

jumps rules out Merton’s (1976) model for pricing options written on commodity prices, 

since Merton presumes that the jumps are idiosyncratic. The assumption implyies the 

mean jump is zero and the risk is therefore ignored. Alternatively, Bates’(1988, 1991) 

model deals specifically with systematic jumps in the asset’s price, thereby, making it a 

natural candidate for pricing options on commodity futures.

The option model given by Hilliard and Reis, is an extension to their three-factor 

futures model. The system of stochastic differential equations used by the authors is 

given below

^  = (r( 0  -  S(t) -  X k ' y t  + a ,d Z ](t)+ k 'd q \  (328)

d S { t)  = -  0{t)) - X ( 7 , ) d t +  C T j Z l i t )  , (329)

dr(t) = f ,  (*,<) + k J M + ^ ( l  -  ) -  * ,r( 0 dt + <T,dZ]{t). (330)

where X , k*, and dq' are described by Bates (1988,1991).The authors replace the spot 

price process in there three factor model

dS(t) = (r(/) -  Sit))S(t)dt + <T,S{t)dZ]{t) , (331)

with expression (328) There is a problem with this system. In expression (328), the 

authors are using the results from Bates’ model to begin their analysis. The parameters
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for Bates are the outcome of a general equilibrium model. That is, these parameters are 

determined endogenously. The problem here is that Hilliard and Reis wish to use these 

parameters exogenously. Furthermore, the authors are using Bates’ parameters in a 

model that allows for a stochastic convenience yield and random interest rates. Bates’ 

model never considered the impact of a convenience yield and he held the interest rate 

constant. The construction of Hilliard and Reis’ model is not valid in terms of Bates’ 

model.

Over looking the observation above, the authors posit that the futures price is a 

function of the above joint stochastic process (equations (331), (329) and (330)). Using 

Ito’s lemma the authors express the increment for the futures price as

à m  = i [ r f S ( 0 ] ’ + 1 N o r  \F „ [d r(l)f F ,dS(t)+ F A ( t)

F,dt + F^gdSdS+ F„dSdr + F^gdrdS.

Substituting the differentials into (332) yields

dF(t) = j f . c r f  [S (0r d! + ^ j F ^ l d l  + 1

+ F ,{ ir ( l ) -S ( .i ) - ir )S ( l )d i  + tr,S(t)dZ',{i)) 

+ F, ((*, (a -S (} ) ) -X a ,)d i*  a ,d z \  (/))

(332)

+ f . / ,  ( i , 0  + + ̂ ( l  -  ) -  *.'-(,) Y + a ,d z:(f)

+ FssSit)<^,<^cP,cdt + F„S{t)cT,cT,p„dt + F^gG.G^pJt 

+ F,dt + F^S(t)k*dg\

Rearranging the above yields
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dF(f) = iF „aM S (O r + F .((r(0 -5 (0 )S (0 )

(  I  '

+ F,gS(t)cr,<T,p,,+F„S{t)(T,(y,p„ + F.gO.a^p^^ + F, ]it

+ cr,S(t)dZl(0  + <T,dZl(0  + <T/Z; (/) -  F , S m T d t  + F,S(t)k*dq . (333)

Under a risk neutral measure the bracket term in (333) should equal zero, thereby, 

reducing expression (333) to

dF{t) = F,a,Sit)dZ] (t) + F ,a,dZ: (t) + F^a^dZ; (t) -  F ,S(t)X F dt + F,S(t)k'dq . (334) 

Expression (334) is the stochastic differential reported by Hilliard and Reis. This 

price dynamic is incorrect. There are two faults with the above and it begins with the 

authors’ use of Ito’s lemma. Hilliard and Reis’ treatment of Ito’s lemma for the futures 

price is consistent if and only if the futures price is a function of continuous state 

variables. For the current case this is not true. Given the last two terms in expressions 

(333) and (334), we see that the authors do include the jump in the differential for the 

futures price. The correct version of Ito’s lemma for their problem is

rfF = [ d S ^ J d t + ^ F j d S i f ) ^ \ F j d r ( t ) ^  + F ,d S ^  + F,dS(.t) + F,dr(»

+ F,dt* F ^ d S ^ d e + F ,d S ^^d r  + F , M S + ^ (« n O  -  F ( S , ( ) (335)

The author’s, however, ignore this rule and simply introduce the jump into the futures 

price dynamic through the stochastic differential for the spot price. Again, this is shown 

by the last two terms in expression (333). Next, Hilliard and Reis set the risk adjusted 

drift of the futures price equal to zero. First, this operation is true only when no jumps 

are present. Secondly, the authors pull the term F^S(t)XPdt out of the drift before
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setting the drift to zero. This is mathematically inconsistent with theory of stochastic 

calculus.

The importance of the model is predicated on the futures price being influenced 

by random discrete jumps in the commodity’s spot price. The authors should have 

developed the stochastic differential in expression (335) and not expression (332). The 

difference between these two differentials is the treatment of the jump. The last two 

terms in expression (335) indicate the impact in the futures price given a jump in the spot 

price. This change is a discrete change in the futures price. Expression (332) omits this 

term. To introduce the jump into the futures stochastic differential, the authors include it 

with the diffusion of the spot price when they make their substitutions into (332). Notice 

that this term is multiplied by the infinitesimal change in the futures price. This is 

completely inconsistent with how the futures price is changing given a jump in the spot 

price. That is, anytime a jump occurs there will be a discrete change in the futures price 

and not an infinitesimal change. The operation in expression (332) is simply an invalid 

operation.

After developing their stochastic differential for the futures price, Hilliard and 

Reis state that the jump in the futures price is exactly the same as the jump in the spot 

price. By making such a statement, the authors wish to take advantage of the results 

derived by Bates. Hilliard and Reis’ statement, however, is incorrect. By definition the 

futures price is a contingent claim, whereby, it derives it value from an underlying spot 

commodity. In chapter three, we show that the futures price is a function of the spot 

price. We cannot believe that the actual jump in the spot commodity is the same in the 

futures price, because the jump should be introduced through some functional

234



relationship. Indeed, inspection of the last term in expression (335) shows this to be 

correct.

Continuing with Hilliard and Reis, the authors fiirther simplify expression (334) 

by substituting in for the partial derivatives of their three factor futures model F{i). To do 

this the authors claim that futures prices are unchanged when a jump component is added 

to the spot price diffusion. That is, Hilliard and Reis argue that the futures price is simply 

the risk adjusted expected spot price and this value is the same whether the jump 

diffusion is added to the analysis or not. The authors verify this by taking the expectation 

of

and

This is

dS{t)
Sit)

(r(0  -  Sit) - X k ') d t  + adZ] (/) + k 'd q \

o(J)

e ;
dSjt)
S(t)

= E; [(r(/) -  S(t) - X k ' ) d t  + adZ\ it)  +  k'dq*],

= (r(/) -  Sit) -  x r  )dt + E] [adZ] (/)]+ <  [k'dq ],

e : dSit)
Sit)

= irit) -  Sit) - X k  )dt + X k  dt 

= ir it) -S it) )d t.

= £ ;[(r(()-5 (0 ¥ < + « < z;(0 ]. 

= ir it)-S it))d t.

(336)

(337)

235



The authors state that since the expectation in expression (336) is the same as the 

expression in (337), the jump does not alter the risk-adjusted expected spot price. This is 

simply not correct. Recall from Merton’s (1976) model that he presumes the jumps were 

diversifiable. This implies that the jumps are idiosyncratic and do not impact the market 

portfolio. Consequently, this allows him to ignore the risk associated with the jumps 

when it comes to pricing an option, but the jumps did impact the price of the option. 

Press (1967) shows that the expected value for the spot price at time T given the 

dynamics in expression (331) is

E, [S(r)]= ]s(X )f(s (T ))is \n ju m p s\
B»o n\ L-oo J

This expectation above is not the same as the risk adjusted expected value for the

terminal three-factor futures price given in chapter three. Here, the jump component does

alter the expected value, and in fact the only way for this value to equal the expected

value of the three-factor model is if /I = 0 .

If we presume Hilliard and Reis’ assumptions about the futures price are correct, 

then taking the partial derivatives of equation (151) with respect to the spot price, 

convenience yield and interest rate yields

F. = A (T )D ,M D ,( ! - )D ,(T )e x p (- / t ,( r )S (0 ) j^ ,  (338)

F ,= - H ,( T )S ( t ) A ( r ) D ,( r ) D ,(T ) D ,( r ) e x p ( - f f jT m ) -^ ^ .  (339)

F ,= H ,(r )S ( t )A ( r )D ,( r )D ,(T )D ,( r )e x p ( -H ,(m O ) j^ -  (340)

Substituting (338)-(340) into (335) yields
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âF(t) = o - ,S (0 < (()A r)A  W A W i’jW “ p(- H , i r m ) ) - r ^
■* VJ-* /

+ t7,J2;(/)f-/r,(r)5(0^(r)A(r)AW(î-)exp(-i/,(r)J(0)—^

+ c r ,< (0 [ // ,( r )5 (0 ^ ( r )D ,( r )Z ) ,( r )D 3 ( r )e x p ( - /f ,( r ) (y (0 ) -^ )

-  5(0^(r)Z), ( f ) D ;  ( T ) D ,  ( T )  exp(- / / ,  ( r ) ^ ( 0 ) - ^ / ^ V /
r \t^ l )

+ S m ( .r )D M D ,(T ) D ,( j : ) e x i ( -H X t)S O ) ) - ^ k - d q \  (341)
■* V»-* J

Simplifying

dFit) = Fit)a,dZ]{t) -  F{t)H cij)^càK{t) + F{t)HXr)(JrdK{ty

-F { t)X k 'd t + F {t)k 'd q . (342)

Define cr  ̂(r)f/Z^ = (t) -  (r)a^dZ^(f) + {r)(X^dZ] {t) . The above becomes

m o
F (0

m o

= (Tf (r)(/Z^ (/) -  X k 'd t  + k* dq'

= -X k 'd t  + £7^ (r)£/z; (/) + k*dq\ (343)
F(0

Hilliard and Reis (1998) daim to bave found a process for tbe futures prices wbicb is 

consistent with Bates (1991). Provided this observation, tbe authors use Bates’ solution 

to price options written on tbe futures contract. As we discussed above, there are a 

couple of problems with Hilliard and Reis’ assertions about tbe futures price process in 

equation (343). First, tbe percentage jump in the futures price will not be tbe same as tbe 

spot price. Tbe only time this statement would bold is if there is no time left to maturity. 

Then, for this case by definition tbe futures price would equal tbe spot price. Secondly, it
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is true the futures price is linear in the spot price, but this does not translate to a perfect 

correlation in movements. The futures price is a function of the spot as well as other 

variables (time to maturity, convenience yield and interest rates). The movement in the 

spot price is one component of the futures price, and there is no reason to expect the 

futures price to behave identically with the spot price. In fact, Samuelson (1965) asserts 

the futures price volatility should be less than the spot. To conclude, the authors derive a 

result based on incorrect assumptions and mathematic operations. Any results derived 

from this analysis are tenuous at best.

4.8 One-factor jump-diffusion model

We see the analysis of Hilliard and Reis (1998) is flawed. If, however, one 

overlooks the problems with the methodology posited by these authors, we may use their 

insight to derive pricing models for the different futures prices derived in chapter three. 

Let us start with a one-factor model, where the futures price is influence only by the spot 

price. According to Hilliard and Reis, the spot price process is

^  = [k(a -  In S )-  X T  \lt + adz] + Tdq*, (344)
O

where / ‘now represents the percentage jump in the spot price, k  represents the speed of 

adjustment for the spot price around its mean. The futures price is a twice continuously 

function of the spot price and time. Using Ito’s lemma for the continuous part and 

analogous lenuna for the jump part, the increment of the futures price may be expressed 

as

= + + F ,d t* F iS Y ,l)-F (S ,t) .  (345)
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Substituting the expressions for the increments of the spot price into (345) and

rearranging yields

= I F„a^S^dt + F,)[k[a - I n 5")-X T ^ d t  + aSdZ] ]+ + F {SY ,t)- F (5 ,t) ,

dF = ^  F„cr^S^ + F, [k[a -  In 5 ) -  AV* + F, dt + F.aSdZ*

+ F(SY,t) -  F (S,t)-ÀE [F (SY ,t) -  F(S,t)}it + ;iF [F (5r,/) -  F (S ,t)} lt,

dF = +F,(k(a -ln5)-A V *)S ' + F, + XE[F{SY,t)~F{S,t)] dt + F.aSdZ\

+ F{SY,t) -  F (5 ,/) -  ;iF [F(5r,/) -  F {S ,t)}it.

The expression above is the risk adjusted dynamic for the futures price. In a risk neutral 

world the futures price is a martingale process. Again, this implies that the drift term 

must equal zero, thus the expression above reduces to

dF = F ,a S d Z ]+ F {S Y ,t)-F {S ,t)-X E [F {S Y ,t)-F {S ,t)\lt. (346)

Under the assumption that the jump does not alter the pricing formula for a futures 

contract, the partial of the futures price with respect to the spot price is

This is given by expression (72) on page 143. Substituting the partial derivative into 

equation (346) yields

adZ:

+ F{SY,t) -  F (S,t) -  AF[F(57,0 -  F (5 ,/)]d /,
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dF = e-“̂ S^'' exp adZ.

+ F(SY,t) -  F(S,t) -  ÀE[F(SY,0 -  F (S ,t) \i t ,

dF = + F{SY,t) -  F (5 ,0  -  XE[F{SY,t) -  F(5,0]rf/ •

Dividing the left-hand side and right-hand side of expression (347) yields

€ . - , - ‘• ^ 7  . F(Sr,l)-F(S.I) ZElHSy,0-F(S,Q],.
F  ̂ F  F  ’

dF
= g -* w z ; + J'^dq' -  X j^ d t ,

(347)

dF
(348)

Expression (348) is equivalent to Bates (1988, 1991). Therefore, we may use Bates’ 

option pricing model to price options written on conunodity futures.

The option price according to Bates (1988, 1991) is

C(FY,t) = t  — 7  [F(/)e*<">-iV(y,) - XN(d , )],
n«0 n\

(349)

where b{n) = (350)

7*
• \

- av; + r  + ^(<rV + /iû)^)

sJcr^T + nco^

and

(351)

(352)
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We need to tailor this expression according to the price dynamic given in equation (348). 

The bracket term in expression (349) is the Black-Scholes option pricing formula. Once 

this value is evaluated, we then have a solution for the option.

To price the option we first need to determine the terminal futures price. Recall 

the terminal futures price we are interested in is the futures price when the option expires 

and not when the futures expires. Let (t) = In F (f) . The transformation, and Ito’s 

lemma for a jump diffusion yields the following process for H{t)

d H = H ,d F ^  + H (F Ï,I ) -H (F ,I) ,

dH = — (F )(- XTpdt-t- e-‘’adZ‘ (())- V<)+ b iF Y - ln F ,
F  2 F

dH  = (- XT^dt + e-*^orfZ* ( /) ) - i(e " '* V  V /)+ l n ^ : y j ,

dH  = [ -  XTp -  -  + adZ' (0 + ln(y)
V 2 y

]dH  = 5f-  XTp Xls + cr]e'^^^-^^dZ\s) + Z ln(l' ),
t l \  2 J I M

= V  + o-îe-*^''''‘</Z*(5) + iln (y ;),
/V. 2 J I i~\

= -X J;(T , Jg-*‘''-^WZ*(j) + iln (y ,).
2 I I M

Recall from section 4.2 that v* = . Therefore the above reduces to
I

r.
ff(T,) = H{t) + -XjpTy  + ie-^^^-‘^adZ \s) + t\ti(Y ,),

2 I  M

F (r.)  = F(/)exp[^-A*j;r, - lv :+ |g - * c - 'W z '( s ) jy ( n ) ,
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F(7;) = F(0exp[a]r(«), (353)

where or = | - —v  ̂+ , and y(/i) = ]^ y 'j . Again, the terminal
V 2 / y /„i

futures price, given in equation (353) is still a stochastic process. We may obtain a 

solution for (353), by finding the expected terminal futures price.

The expected terminal futures price is

E*[ f (T^)\n jumps] = exp E*[H(T^)\n jumps] + ̂ V*[H(T,) | « ju m p s^ . (354) 

The conditional mean of H{T^) is

E:[H(.T,)\njmnps\=Hit) + - X j ; r ,  - i v "  +Z£;[ln()',)].
Z /«I

Recall on page 215 that ln(l+^^)~ N ^ '  j ,  and that Y = \ + k*p. Therefore

the expectation operator £*[ ] yields

= H { t ) - x r p t , - U u i
2 M

f  * 1Y — ct)V  2  )

(355)

The conditional variance of H{T^) is

y:lH(T,)l«pmps]=y;
(.1

Recall the jump term and the Wiener process are uncorrelated. Continuing, 

V;[H{T{) I n jumps] = +
M
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= v^+ 'Z .û)\
M

= +nû)^. (356)

Substituting expressions (355) and (356) into (354) yields

E* [ f  (Ti)\n Jumps] = exp

exp rr/ \ “7* # 1 2 1 2  ̂ 9 1 iH (t)^ À  ^ n y  — V + — V — n<o H— nû)

= exp[//(/) -  X jpT i + ny* J,

exp H{t) +
I J

= F(t)exp 

= F(Oexp[&(n)r,], (357)

where b(n) = ~ X j p + ^ ^ .  Expression (357) is the expected futures price for the

instantaneous movements in the futures price given n jumps have occurred. Recall, the 

instantaneous volatility for the one-factor model in section 4.2 is given by expression 

(82). This is

2k ^

Substituting this expression into expression (356) yields

V;[H{T) I n jumps] = )+ nœ^.
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(358)

Expression (358) is the volatility of the futures price over the life o f the option contract. 

Expressions (357) and (358) give us the characteristics of the terminal futures price at the 

time of expiration of the option contract. Using these expressions in Bates’ option 

pricing formula yields

C{FY,t) = Pit, T ) t ^ ‘ [F(r)g"C)" N{d^ ) -  XN{d^ )], (359)
n*0 n\

where 6 (n) = — À J p +  —̂ 1 ,  (360)
J

^ ------7 T = ^ = -------------------- ^ , (361)
Vv +nû)

and

d^= d ^~  yjv^ +nct)^ . (362)

Expression (359) is the option pricing formula for an option written on a futures contract, 

whose price follows the jump-diffusion in expression (348).

4.9 Two-factor jutnp-diffusion model

In chapter three section 3.2 on page 38, we show that if the futures price is 

influenced by more than one state variable (the spot price), then a different solution exists 

for the futures price. In particular, we investigate the effect a stochastic convenience 

yield has on the futures price. In section 4.3 of this chapter, we price options written on a 

two-factor futures price. Now, we investigate an option pricing model that considers the 

two-factor futures price, where the futures price is influenced by a stochastic convenience
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yield and a jiimp-diffusion spot price. Again, we assume that the assumptions from 

Hilliard and Reis are applicable. The system of stochastic differential equations is

dS(t) = (r -  â(t) - X r ) d t  + <J,dZ] (t) ̂ f d q  (363)
S(t)

dS{t) = k{a -  0{t))dt + (T /Z ; (/). (364)

If the futures price is function of the spot price, convenience yield, and time, namely 

F(SY,S,t), then using Ito’s lemma, we may express the futures price dynamic as

dF = ^ F „ c7 ^ S ^ d t-^ F X r-S ( t)-X r)sd t + cr,SdZ:]+^F^<rldt

+ Fs k(« -  3{t))dt + (TjZ]{t)\+ F,sP,c<^,<rJt + F,dt

+ F {SY ,t)-F {S ,t). (365)

We may rewrite expression (365) by adding and subtracting X E [F {SY,t)-F iS ,t)\it. 

This yields

dF =  ^F„cr]S^dt +  F, [(r -  S{t) -  X T  +  c r , SdZ]\+^F ^aldt

+ Fs \k(a -  ô(t))dt + (T/Zj (/)]+ F,sP„cr,<T,dt + F,dt

+ F{SY,t) -  F{S,t) -  XE[F{SY,t) -  F {S,t)\it + XE[F{SYj) -  F {S,t)]it. 

Substituting in for the increments of the spot price and convenience yield and rearranging 

the above yields

dF = ]^F„a]S^dt + ̂ FssCrldt +  F , (r -  S(t) -  X T  )sdt + Fs [k(a -  S(t))di\

+ F,sP,c<r,cr,dt + F,dt + XE[F{SY,t) -  F(5,/)]rf/ + F,<r, SdZ\ + F^c^dZ) (/)

+ F(5T,0 -  F(5,/) -  XE[F{SY,t)-F{S,t)]it,
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dF = i  F „ a]S ' + 1  + F, (r -  #(/) -  A V  + F ,i ( a  -  Æ(/))

+ + F,+/l£[F(Sy,() -F(S,O lk/r + F ,(T ,a z ; + F ,a ,dZ-M

+ F (S y ,/) -F (S ,0 -Z E [F (S r ,0 -F (S ,/) ] i* . (366)

Expression (366) is the risk adjuste<i dynamic for the futures price. In a risk neutral 

world the futures price is a martingale process. Again, this implies that the drift term 

must equal zero, thereby, making the above equal to

dF =  F,(7^SdZ] + F,<7,dZl{t) + F {SY ,t)-F{S ,t)-^^E [F {SY ,t)-F {S ,t)}it.  (367)

The above expression may be further reduced, by substituting in for the partial 

derivatives of the two-factor futures price reported by expression (94) in chapter three. 

These partial derivatives are given by expressions (127) and (128) above. The partial 

with respect to the spot price is

Ps =exp{-

1
+  -  

2

1 2 1 , -<T,

L\
( 7 - 0

(368)

The partial derivative of the futures price with respect to the convenience yield is

(369)

where H^(r) Substituting expressions (368) and (369) into (367) yields
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dF = 5(0exp{- 1 2 1 , -CT, + o - - c r .A ( r - / ) - — S ( t ) - a  + ̂ t 7 j ^ ~ 0 )

-'^T^c^sPcs  + ( ^  I <̂c ( T - t )

+ 2 i] (T.dz:

-  H ,{r)Fa,dZ]{t) + F{SY,t) -  F (S ,t) -  AE[F(SY,t) -  F (S ,t)} lt, 

dF = F a , dZ\ (0  -  H ,{t)F a ,dZ l {t) + F{SY,t) -  F{S,t) -  ZE[F{SY,t) -  .

(370)

Dividing the left-hand side and right-hand side of expression (370) by F  yields

dF
F{S,t)

dF
F(S,t)

= <T,dZ:(t) -  H^{T)a,dZ]{t) + J',dq -  X j \ d t ,

= -^ V ;A  + < T ,< (0  -  H ^{r)aJZ]{t)  + , (371)

Now if we let

a,dZ*,{t) = a ,d Z ]{ t)-H ,{ t)a ,,d Z l{ t) ,

then, expression (371) becomes 

dF
= ->lV;y/ + apdZ*p +Jpdq* .

(372)

(373)
F{S,t)

Equation (373) is the price dynamic for a futures price, which is influenced by a 

stochastic convenience yield and a jump-diffusion spot price process.
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Given the dynamic, expression in (373), we may find the terminal futures price. 

With this, Let H  = \n F . The transformation and Ito’s lemma gives

dH = ^ - ^ H ,,[ d F ^ J  + H {F Y ,t)-H {F ,t) ,

dH  = Hp [- XTpFdt + OpFdZ'p ]+ 1  Hppa^F^dt + In FT -  In F , 

dH = — \^X JpF dt + <T pFdZp\+ -p ^ a lF ^ d t  + I n - ^ ,  

dH = -XJpdt + cTpdZ'p + In7,

dH = • X J p  —— Idt + O 'pdZ^ + In 7,

\ d H = ^ -  X J 'p - ^ o l  ds+ jopdZ;  + £  In 7, ,
I ( \  J I

n J r.
H iT ^)-H (t) = - X j ; i T , - 0 - \ - o ld s +  \o p d Z ;  + £ ln 7 ,

12 , (-1

•flH(T,) = H ( 0 - X j ;(T^ - / ) -  j-o^pds+ jo p d z ;  + £ l n 7 , .
<2 I j.|

F(7,) = F (0 exp

where a  =

- X j ; ( T ^ - t ) -  \^ o ld s +  jo p d Z ;  7(n),
t I

F(7i) = F(/)exp[a]7(/i), (374)

n , \
-X jp iJ i  - t )  -  ^—olds+  jopdZ*p and 7(n) = f^ 7 y . Under a risk neutral

measure the expected futures price is
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The expected value of H{T^) is

E:[HiT,)\njumps]=H{t)-Xj;{T,-t)-]]-<Tlds + tE'„^nY,]
I 2 M

t 2 2 J

. 2
(376)

The conditional variance of //(7 ,) is

K[H (T,)lnJum ps]=v; ]a-„àZ'(s)
M

Recall the jump term and the Wiener process are uncorrelated.

K'lH(T,) In jmnps] = T/ [J (<r, rfZ, (j) -  H , (r)a,dZ , w ) l + Ë  K." [ln(y, )]
J  J '='

= / + /  (T^H^ (r)ds -  / 2p,^<r,<r^H  ̂(r)ckl +
J  I I J /-I

Substituting the results from equations (138)-(140) into the above yields

K [H {T^)\n jumps] = <r]{T̂  - 1)

(T; _e-«c(^-o)_ A(e-*c(r-7-.)

Recall from expression (141) on page 164 of this chapter that

+ (377)
<-i

v '= (T ^ (7 ;-o +
2h, ^
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(T;

Therefore, we may reduce (377) to

V* [H(T; ) I « + S  û ) \
/-I

= + /2Û)̂ . (378)

Substituting expressions (376) and (378) into (375) gives us a expected futures price as

. 1£* [F(7j ) I n jumps] = exp

= exp

— A J/r(T\—t ) — v^ + ny  + —

H{t) — A J f  (7] — ̂ ) + ny — H— —n —ûĵ  h— ncûî
2 2

= exp[/7(/)- X j p {T̂  - / )  + » / j, 

= F(/)exp[-A*7^r, + ny'\.

= F(/)exp 7*- x j :+-
LV ‘I y

= F(/)exp[h(n)r,], (379)

where b(n) = Equation (379) is the expected futures price at time Jj given

that n jumps occurred. Substituting expression (379) into Bates’ formula yields

C(FY,t) = e-"' t N ( d ^ ) - X N { d , ) ] ,  (380)
<1-0 nï

where b(n) = -  Xj*p +
'■I y

(381)
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1̂ =

f f

1̂ /
r,+i(v'+/iûï")

(382)

and

d ^ = d ^ -  4^~¥nc? . (383)

Expression (380) is the option pricing formula for an option written on a futures contract, 

whose price follows the jump-diffusion in expression (373).

4.10 Three-factor jump-diffusion model

The last model we consider is a three-factor jump diffusion model presented in 

Hilliard and Reis (1998). Here the futures price is a function of the following system of 

stochastic differential equations (these were stated earlier on page 231) 

dSit)
Sit)

= (r(0  -  0{t) -  X j* )d t  + <T,dZ]it) + r d q *,

dSit) = k  icc -  Sit)) -  )dt + dZ] it) , 

drit) =

(384)

(385)

/  _ 2  \
+ dt + o ,d Z '(0 .  (386)

The inclement of the futures price can be expressed using Ito’s lemma. This is

= +^-,dS(()s^. + V rf(r)+ f ,< * -(r)

F,dt + F,sdSdS+F„dSdr + F^gdrdS + F (5y ,/) -  F(5’,r ) . (387)

Substituting the stochastic differentials in expression (384)-(386) into (387) yields

dF(t) = I f . r r ;  [ s ( r ) .^  f  rfr + i  F^cr]d, + I f ^ r r^ d r

+ f ,  ((r(0 - S ( 0  -  X k ' ) s m + <T,S(r)<iz;(r))
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■ F, ((*. (a  -  SO)) -  + cr,dZl (())

+F. / ,  M + K A s . i ) + ^ ( i  -  ) -  *,/•(<) V + ( 0
\ \

+ F,gS(t)cr^ar^p„dt + F„S{t)(T,<T,p„dt + F,gCT,cr^p„dt 

+ F,dt + F {S Y ,t)-F {S ,t).

Rearranging the above yields

dF{t) = + \ f ^ I  + F X {.r (t)-S O )-n -)S O ))

f  2 >
+ F,(K  (a  -  ̂ (0) -  A ,crJ+ f | / ,  {s,t) + k j { s , t )  + ̂ ( l  -  ) -  Kr{t)

+ F,sS{t)a,a^p^^ + F,^S{t)<y,(r,p„ + F,s<r,a^p,, + F, \it  

+ F,(x,S{t)dZ]it) + F,a,dZ]{t) + f :(T /z ;(r)  + F(5y,r) -  F{S,t)

+ A£[F(5y,0 -  F(5,0]ûfr -  XE[F{SY,t) -  F {S ,t)^ t ,

dF{t) = + ^ /^ o r j  +F ,((r(0-< y(0-A ’A*)5(0)

* F X K (c‘ - S ( i))-X,<jX+ F,

•^FssS{t)(T,<T,p„+F„S{t)a,a^p„ +F,s<Jr<^,p„ +F, ■¥XE[F{SY,t)-F{S,t)\it]fit 

+ F,a,S{t)dZ]{t) + Fscr^dZlit) + F,<T,dZl(t) + F(57,/) -  F(S,t)

-  A£[F(SY,t) -  F ( 5 ,0 ] * . (388)

Under risk neutrality, the futures price is a martingale process implying the drift term in 

(388) is equal to zero. Expression (388) reduces to

dF(t) = F,a,S(t)dZ: (/) + F,a,dZ: (/) + (0 .
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+ F{SY,t) -  F{S,t)-^E[F{^SY,t) -  F {S ,t)\it, (389)

Using the partial derivatives in equations (338)-(340) in (389) yields

•* V » ̂  /

+ <7,dz: (of -  (l)S(t)AiT)D, ( r)A W A  W  « K -  A  

+ A  w m m ,  W A  W A  Wexp(-  a

+ F(5y, t) -  F (5 ,0  -  XE[F{SY, t) -  F(5, r)}/t.

Rearranging the above, we obtain

rfF(() = A S . < K « < ) W ( ) A { « - K < ( < ) + A S .O  A ( î - K « 0  

+ F (S y ,/) -F (S ,( ) -^ [F (5 n O -A S .< )] i i '

Dividing the expression above by F  yields

= cd K  ( ') + A  « + A  ( T k <  (')

, F ( 5 r , f ) -F ( ^ ,0  XE[F{SY,t)-F{S,t)\lt 
F(S,t) F(S,t)

- ^ ^  = adZ:(t) + H,(T)<7,dZ:(t) + H X T h d Z ;(0  + j ; d g - - X f^ d t .  (390)

If we let GpdZ],{t) = adZ]{t) + Hc{v)cr^dZl(t) + H^{r)(T,dZ]{t), then expression (390) 

reduces to

^ ^  = - a ; d l  + a ,d Z - ,( t)* j;d q  . (39D

The dynamics of the futures price is similar form to the one- and two-factor models. 

Thus, we know the expected futures price is of the form
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\njum ps\ = F{t)c\^[b{n)r^], 

where b(n) = -XJ*p The volatility for the log returns. In

+nco^, where expression (141) on page 164 of this chapters states 

= j a l d s ,

is equal to

/  = ](adZ:(t) + H,{r)cj,dZ:(t) + H Xr)cr,dZ;(t)yds,

(T; _ ;)  + _L(e-«e(r-r.) _g-2*e(r-o)_^(^-*.(r-r,) _g-*.(r-o)
2k

(T; _ /)  + _L(e-2*e(r-r.) _g-2*,(r-oJ_^(g-*,(r-7i) _^-*AT-oj
2k,

‘̂P,c^s<^c

'2-P,r<̂ ,CTr
K

<̂ c<̂ rPrc
K K

 ̂ (g-txr-Tl) _g-*e(r-o) (g-*,(r-r,) _g-*,(r-o j

(392)

In the one- and two-factor models, once we found the expected futures price, we could 

begin to price the option. In our present case, we may not follow the arguments 

presented in the one- and two-factor models. Currently, the model allows for stochastic 

movements in interest rates. From section 4.4, we know that no closed form solution
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exists for the Black-Scholes formula when interest rates are random. The reason is due to 

the correlation between the interest rate and the futures price. The expectation cannot be 

evaluated. Since Bates’ model relies on the Black-Scholes solution, no closed form 

solution exists for this model either.

In contrast to the observation noted in the three factor model, Hilliard and Reis 

report a pricing formula for the three-factor jump-diffusion model. They state the option 

pricing formula is as follows

C(FY,t) = ^prob*(n jumps)E/
I  r(v)dv

e ' max[F (r ,, r)  -  A’,0] | n jumps

C(FY,t) =
/i«0 n\

jr(v)dv

e ' f ( f , , N(d, 7; )N(d, )

where b(n) =

(393)

(394)

jr{v)dv

e' F (r ,,r )

In

d, =■

XP(t,T)
+ \b(n)T^ + -(v^ +n(0^)

+nû)^

and

(395)

</2=</,-Vv^ + n û 7 . (396)

Note, the authors essentially value the option by allowing only the futures price to be 

influenced by the stochastic interest rate. To arrive to a closed form solution, the authors
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claim they need to evaluate E]
J r ( v ) d v

e ' F (r ,,r ) . They state that since futures prices are

not influenced by jumps, the solution of E]
j r ( v ) d v

e ' F(T |,r) is also not affected by

jumps in the futures price. Thus, this expectation can be taken with respect to the interest 

rate process and the futures price process without the jumps. That is, instead of using 

expression (391), the authors use the following diffusion for futures

(397)

Now, finding a solution for E'
r(v)A>

e' F ( r„ r ) let G(/) = In F ( r , , r) -  Jr(v)dv. With

the transformation, Ito’s lemma and the risk-adjusted diffusion for the futures price, the 

diffusion for G{t) is

dG{t) = G,dt + GpdF + ̂ G^^dF^ -  d Jr(v)Jv

[F (/)f {t)dt -  ̂  r{v)dv

(r)dt + (Xp {r)dZ'p (/) -  d Jr(v)</v (398)

Now integrating over (398) we get

jdG(v) = —  j a l  (v)dv + jap  (v)dZp (v) -  jd  jr(y)dv
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G{T,)-G{t) = -]-\<xl{v)dv+  Jor^(v)£/z;(v)- ]r{v)dv.

1
G(T; ) = G{t) -  -  Jcr  ̂{v)dv + Jcr  ̂(v)</Z  ̂(v) -  Jr(v) J v . (399)

Hilliard and Reis claim that the distribution of GÇ^ )̂ is normal, which implies that the 

expected value of the futures price is given as

= e (400)

The expectation in expression (400) is not the same as the expectation

J  r(v)dv

e ' F (r ,,f )

The expectation above is for the product of two dependent random variables. These 

variables are the interest rate and futures price and we know they are dependent since the 

futures price is a function of the interest rate. From section 4.4, we know this expectation 

caimot be evaluated. Now, looking at the expectation in expression (400), we see that 

this is the expectation of a single log-normal random variable. Hilliard and Reis are 

evaluating the expected value for the futures price independent of the interest rate. Later 

in their analysis they will claim that the right hand side of expression (400) is equal to

J r ( v ) *
e ' F (r ,,r )

This outcome will be shown in expression (412) and it is incorrect.

Continuing with Hilliard and Reis, the expected value of G{T^) is
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e ;  [C(T; )] = In F (/) -  i  ] a l  (vMv -  Je; [r(v)]rfv. (401)

Now recall from chapter 3 section 3.32 on page 80 we show that

Î  £ , •  [ r ( v ) ) i v  =  Î  / « ,  V )d v  -  ( f f ,  ( r ,  )  -  r ) ^  -

Substituting this result into (401) yields

ff,- [C( j; )] = In ff(0  -  i  Î  (v)dv -  } / « ,  v)dv + (ff, (r, ) -  f , ) ^ + ■  (402) 
/  / / 4A.

The variance of G{T^) is

K'lom]=y; /cTf(v)c/Z’ (v) ■K j r(v)dv -2Cov* io-p(v)dZp(v),lr(v)dv

(403)

From equation (170) in section 3 of chapter three Hilliard and Reis have

Jr(v)f/v (404)

The variance of the log returns for the futures price is found by invoking Ito’s isometry.

v : '^(7p(y)dZ*p{y) (405)

The last thing the authors need to work on is the covariance term. Recall 

(Tyr (r) j z ;  = a,dZ] (0  -  H , {r)a,dZ] (/) + H , (r)<r,dz; (t) .

Therefore

(Tf = (r) + cr^Tf  ̂(r) -  2o-, <r, p„H^ (f) + 2<r, cr, p„H^ (r)

-2a^<T^PcrH,{t)H^(r).
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Now the covariance term in (403) can be written as

Cov; \ap{y)dZ*p(y),\r{v)dv =Cov, j a-^dZ^v),jr(v)dv\ 
L' ' J L' ' J

-c o v ; jH,ir)cT,dZ,

+ Cov* IH , {t)cT,dZl (v), \ r{v)dv . (406)

We need expressions for the individual terms on the right-hand side of expression (406). 

Recall from equation (171) in chapter 3

C ov < r j« v ) j r ( v ) r f v
t t

Therefore, the above is expressed as

7i 7i
, \dZ]{y), Jr(v)rfvC ov (407)

Now working on the second term on the right-hand side of expression (406)

Cov; V ,( r ) c r ,« v ) ,J r (v ) i /v  = C m \]H ,(T )a ,d Z ',{v )!\a ,e -'’’ ]e''‘dZl{s)dv

Switching the order of integration yields

= Cov,

Integrating the second integral in the second term above yields

= Cov;

Substituting into the above for (r, ) and factoring gives
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k.k.

Using Ito’s isometry yields

(̂ r<̂ cPn
K K

K K

<̂ r<̂ cPn
^rK

fg-I^AT-TO _ g - * A T - o j _ " i '  
\ K /

g-K(1\-Ti) _g'*r(îi-0

<̂ r<̂cPr.
k X n -

/  , \  , \  r,

V^cj I

f̂ r̂ cPrc - Hr i j x) -
(̂kc*k,)T̂ -kJ-k,T, _  ̂ (k̂ +k,)l-kJ-k,T,

K K 1̂
1 K ] ( K + K )

<̂ r<̂ cP.
K K h - H M -

' 'g-kciT-Ty) _  g-t.f \  g-*.(r-r,) _  g(*.+*,)»-*/-*,r,
(408)

Working on the third and final term on the left-hand side of equation (406) yields

Cov, îff,(j-K<(v),îr(v)rfKj = a>r;rî/f,(r)CT,<(v),ÎCT,e-*''je'̂ dz;(î)rfv

Switching the order of integration of the iterated integral in the expression above yields

= C k y ;n g ,(f)(r ,< g ;w j« ^ i< T ,e -^ V W Z ;w l.
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Integrating the second integral in the above expression we obtain

= Cov;

= cov;

Using Ito’s isometry we get

A?

2A:.

ĝ-*,(r-r.) _g-M) |g-(*,r-r.) _g2W,(r*ri)J

Substitute expressions (409)-(407) into (406) to obtain

2k.
(409)

Cov; jop(v)dZ'i,(v), jr(v)dv

( * .+ W

"I

^  J

0-2 r (g-*,(2--2i) _  g-*,r ) fg-(*,r-T,) _  2v*,(r+r,)]-j

i r h ^ ^ — T
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(410)

Now substitute expressions (404), (405) and (410) into (403) to obtain the variance

KIG(T,)]=
2K

- 2

o-rO-cA,
K K

r L

K  )  ( K  -* -K )

L - * r ( r - r , )  _  - * , r  \  r - ( * ,T - r . )  _  2 * ,» -* ,( r + r ,)  T
 ^ _ J + J £ --------- ^ ------------1

k. 2k.

(411)

Lastly, substitute (402) and (411) into (400) to obtain

J  r(y)dv
e ' F ( r ,,r ) = F(/) ex p j-  ̂  j  a], (y)dv -  \ f { t ,  v)dv + [h  ̂(r, ) -  r,

I

O-rO-cFn

r , - i / , ( r , )  

The above expression reduces to

^g-*,(r-r.) _g-M ) J

k. 2k.

e :
J r ( v ) *

e ' F (r„ r) = F(/)exp-
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<̂ r<̂ cPn
K K

_g-V

( M Â )

/fc:

L-»r(r-r,)_ -m ) r-(*,r-r,) _  2M-*,(r+r.)

which further reduces to

jr (v)dv

e' F(r,,r)

_  _-*cr

k!

(^ T + w

-(*,r-?i) _ g 2v-*,(r+r,)|

2k.

Simplifying the expression

= F{t)P{t,T)Z{t,T),
jr(v)dv

e' (4 1 2 )

where Z{t,T) = expj- -  H ,(r, ))

<̂ r(̂ cPr>
Kkc

ifc;

2*̂ -t,(r+r,)

Substituting expression (412) into the solution for the option price yields

C(FY,t) = P ( t,r ) j ;f - I (^ [F (O Z (r ,r )e * < " > ^ ‘iV(d,)-A3V(d2)], (413)
<1-0
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where b{n) =
f

1̂ V
(414)

d, =
+fh(w)z’i + —(v*

Vv  ̂+«û>^
(415)

and

d . = d , - + /IÛ) (416)

The solution presented in expression (413) is the three-factor jump-diffusion option 

formula given by Hilliard and Reis. The solution is based on the assumption that the 

futures price is influenced by the stochastic interest rate, while the option is not. The 

model is a contradiction of terms and the result is tenuous at best.
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Endnotes

‘ The cautious reader should note while the spot price follows a geometric Brownian 

motion, the option price need not be Brownian motion. The option is a function of the 

spot price, and as such it too will he a stochastic process. But, this only means it will 

have a drift and diffusion term. We can characterize its return process by dividing the 

stochastic differential by its level. This leads to expression (2).

 ̂The reader is directed to Appendix C for a review of equivalent martingale measures.

 ̂This result is shown in chapter three on pages 26 to 28.

 ̂The partial differential equation for the Black-Scholes analysis is

|F .<T =[5(0r + F,rS(l) + F , -  F(S(l).l)r  = 0 .

For the current model that considers a mean reverting spot price, the above partial 

differential equation would be

+ F ,(i(a ' - ln s))s (0  + f ,  -F(5((),/)'- = 0.

’ This result is consistent with Samuelson’s (1965) assertion that changes in the futures 

price is equal to zero.

* This result is consistent with Samuelson’s (1965) hypothesis that a commodity’s futures 

price volatility is increasing as maturity decreases.

 ̂ It can be demonstrated that when the underlying spot price follows a geometric 

Brownian motion process, the futures price will too follow a geometric Brownian motion. 

Under this circumstance the volatility of the futures price will be the same as the spot 

price.
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* The result of the expected growth rate in a fiitures price in a risk-neutral world is zero, 

is a very general one. It is true for all futures prices. It applies in the world where 

interest rates are stochastic as well as the world where they are constant. We see from 

expression (62), that since the expected growth rate in futures is zero

f (o = ê ;[f (7’)],

where F{T) is the futures price at the maturity of the contract, F{i) is the futures price a 

time /, and E* is the risk neutral expectation operator. At expiration, we know that 

F(T) = S (T ) , where S(T) is the spot price at time T. It follows that

F (()= £ ;[F (r)]= s ;[s (7 ')] .

From equation (23), we know that

£ ;[s (D ]= s(()« " .

Substituting this into the above yields

F(t) = S (O e '\

The above means that for all assets the futures price equals the expected future spot price 

in a risk neutral world.

’ In the financial derivatives literature, economists use the Poisson process to model 

discontinuous jumps in asset prices. The Poisson process is well suited for modeling this 

phenomenon. To understand why, we develop a fundamental analysis of the Poisson 

distribution.

The Poisson distribution is the limiting form of the binomial distribution. The 

binomial distribution is the probability distribution associated with random variable that 

has only two possible outcomes; a success or failure. The probability of witnessing a
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success is measure by p  and the likelihood of a failure is measure by (1-p). Given a finite 

number of repeated trials, k, the probability of witnessing a certain number of successes,

IS

?x{xX p ) = C (1)

We shall investigate the limiting form of the binomial when k->co, p - ^ 0 ,  while kp 

remains constant. The reason for analyzing the limiting case, is due to the phenomenon 

we wish to model. We want a model that allows for discrete random jumps in asset 

prices. Over a small interval of time, we could witness several jumps, although, the 

likelihood of wimessing more than one jump period is negligible. The limiting form of 

the binomial distribution is one way to model this behavior. It allows for an infinite 

number of occurrences and the probability of witnessing these occurrences is small; all 

the while keeping the average rate of occurrence constant.

Continuing with the analysis, let kp = À.  This implies p  = — , and we can write
k

Vr{x\k,p) = C
k ) (4)

k-x
(2)

Expression (2) and (1) are equal. Expression two is just another may of writing the 

probability of the binomial. We can rewrite equation (2) to obtain

» \ k - x  , ,  / « \ % /  , \ k - x

I  k )  x \ { k - x y \ k )  \  k j

x! L k J

This expression may be rewritten. First, note that
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i t !

i k - x ) \

Thus, using equation (3) expression (2) becomes

'  k ( k - m - 2 ) - ( k - x + i ) L
x ! ( i t - x ) ! r l  k )  x\ r  I

Recognizing that

expression (4) can be expressed as 

k\
x\ { k -x y .k ’̂

r, X \ k i k - \ ) { k - 2 ) - \ k - x  + \) ( .  A T 1
I ' - i j  t

(3)

(4)

(5)

If we let ^ 00, we obtain the pdf for the Poisson distribution. Taking the limit of (5) as

A -> 00 yields the following. The first term on the right-hand side of (5) is free of k  and 

therefore remains unchanged. The second term, however, does change. Consider the 

ratio

y t ( / t - l ) ( i t - 2 ) - ( i t - x  +  l )

This is also

k ( k - \ ) { k - 2 y - { k - x  + \)
=  1

(Now, recall the property, lim(a,, 6, ) = lim(n, ) lim(6, ) and lim,_,. 1 —
V n)

fixed c

(6)

= 1. For any
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liml

Therefore, the limit of expression (6) as ̂  oo is

liml
i ' 4

(7)

We now to turn our focus to the third term on the right-hand side of (5), We want to 

know

l i m f l - - ]  =?

Consider

Take the natural log of X„ to obtain

ln(x„) = /iln 1

Rearranging yields

I
n

Now using rhopital’s rule, we get

dn

~ a i
n

dn

(8)
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1+
1 1 _ 2

n

n

1 +
1 ’

n + \

As « 00, the above becomes

n + l
1 .

Therefore,

1 Ï
l i m % ,  =  l im l 1 +  — = e (9)

Now consider,

Take the natural log of to obtain

l n ( y „ )  =  n l n
\

Rearranging yields

n

Using rhopital’s rule, we get
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dn

d -
n

dn

n

n

1

1 - 1 ’
n

n - l

As n -> 00, the above becomes

n - l

Therefore,

nlimF = lim 1 —
n-MO /i-»ool f j

= e -I (10)

Thus, it follows that
\  n j

• e" '. For our analysis, we want to know

lim
* - ♦ 0 0

\cLet , and rewrite the above as
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*-»4 n')

We can use the result of equation (10) to write

lim
k-¥oo

Equation (11) is the limit for the third term in expression (5). We are now left with 

finding the limit for the last term in expression (5). This is

(.2)

This follows immediately fi-om lim(a„,Z>„) = lim(a„)lim(Z>„) and lim. 1 - - ]  = 1. 
\  nJ

Substituting expressions (7), (11) and (12) into (5) gives the limiting ftmction of the 

binomial pdf. It is

Pr(*;/l) = 4 W e '" ( l ) .xl

- 4 r

Equation (13) is the probability density ftmction of the Poisson distribution. The mean 

and the variance of the Poisson distribution are given by

M = ^  (14)
and

cr^=A. (15)

We can show that the mean and variance for the Poisson is in fact À . Working 

on the mean we take the expected value of X, which follows a Poisson distribution. That 

is,
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(16)

where p(x) is the probability of realizing a value ofX.. By definition, '^p{x)  = 1. Note
%=0

that the first term in the sum of expression (16) will equal zero when x = 0 and hence

(17)
* = 1  X '

The expression in equation (17) can be further reduced to

m - t ^ y  m

As it stands, the quantity above is not equal to the sum of a probability function, p{x), 

over all values of x. We can, however, change it to the proper form by factoring a k  out 

of the expression and letting z = x - \ .  Then the limits of summation become z = 0, 

when X = 1 and z = oo when x = oo. Factoring k  out of expression (18) yields

Now, changing the variables in equation (19) we get

=  (20)

Note, the summation in expression (19) is the probability function for a Poisson random 

variable, Z, and by definition sums to one. Therefore, the expected value of E[%], 

equals the parameter A, that appears in the expression for the Poisson probability 

function.

The variance of a Poisson distribution is by definition expressed
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y[X\='t(l‘- E [ x f  p(x) = f ^ i x - E [ x f ^ .  (21)
X=0 J[aO ^

We rewrite equation (21) as

= Ê  k f W  -  2xÉ[x]p(,X) + ( g [ #  pw ).
x«0

I'M=I; a: V w - Ê +2 ( 4 #  p w .
JK«0 x»0 x»0

r [x]= 2 AT vw  - # ] 2  2*pW+( # F  2  pw >
x-O *»0 *«0

Vlx] = £  a: V(a:) - 2g[%]E[M+ ( 4 #  0).
x-0

4-r]= 2 -'V(a:)-2{4^F + (4 # ,
K-O

y [x ]= ' tx ^ p (x ) - {4 x f ,
JT-O

V[X]^ ̂ x ^ ] - ( 4 x f . (22)

We know what the expected value of a Poisson random variable equals. The key to 

finding the variance is evaluating the term

To evaluate e \x ^  J  let us first consider the expected value of A'(A' - 1). This is

e [x (x  - i ) ] = -  x \= e [x ^ \ - e [x ],

which leads to

e [x ^\=^E[x (X -\)]+ E [x ]. (23)

Following through, we have
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E[x ( X - \ ) ] = '^ x(x - \ ) ^ .  (24)
x=0

When X  is equal to zero and one the first and second term are also zero, thus we have 

É [ x ( X - \ ) ] = Ÿ x ( x - \ ) ^ .  (25)
x=2

We can factor out the first two terms in expression (25). This leaves us with

x - 2  V

Now factor two X ’s out of the sum in equation (26) and let z = x - 2 .  This yields

É[X(X-1)] = > } Ÿ ^ .  (27)
1-2 Z!

The last term in expression (27) is the sum of a Poisson probability distribution and by 

definition equals one. Therefore, we have

E[x { X - \ '^  = X \  (28)

Substituting the result in equation (28) into expression (23) yields

e [x ^ \= e [x (x - \)]+ e [x ],

e [x ^ \=x^ + e [x ],

e [x ^\=X^+X.  (29)

We may now determine the variance of a Poisson random variable by substituting the 

result fi*om equation (29) into expression (22). This is
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y [ x ] = 4 ’^^]-(E[xf,

V [ x ] = A } + À - { E l x f ,

V[ x ] =À^+À- ( i y ,

V[X]=X.  (30)

Thus, the variance for a Poisson random variable is the single parameter, ; i , that appears 

in the expression for the Poisson probability distribution. The results given in 

expressions (20) and (30) agree with the earlier statement of equations (14) and (15).

Although the Poisson distribution has been derived as a limiting form of the 

binomial distribution, it has many applications which have no direct connection with the 

binomial. For example, the Poisson distribution can serve as a model for the number of 

successes that occur during a given time interval. This is true when (1) the number of 

successes occurring in non-overlapping time intervals is independent; (2) the probability 

of a single success occurring in a very short time interval is proportional to the length of 

the time interval; (3) the probability of more than one success occurring in such a short 

time interval is negligible. These properties are consistent with economists’ assumptions 

for movements in market prices. Hence, the Poisson distribution seems to be a good 

candidate for modeling discontinuous jumps in a commodity’s spot price over some short 

interval of time.

Modeling jumps with a Poisson process we know that / ( q  = 11 ^ = 0) is not the same as 

f { q  = 2 |^  = l ) = / ( ^  = 2 |q  = 0). That is, the probability of wimessing more than one jump 

over an interval dt dramatically decreasing. Some observers may suggest that the probability of 

wimessing further jumps could possibly be conditioned on the occurrence of a jump. That is, the
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probability of witnessing successive jumps over the interval dt is conditional on prior 

jumps occurring during the interval. In this case, the Poisson distribution would not be a 

good model for jump behavior in asset pricing.

" To equate the options instantaneous drift equal to the risk-free rate of return Merton 

relies on the CAPM. Harrison and Kreps (1979) and Harrison and Pliska (1981) show 

under very general conditions, that in the absence of arbitrage opportunities, there exists a 

risk neutral probability measure. Rendleman and Carabini (1979) give empirical support 

that no arbitrage opportunities exist in the Treasury bill futures market. They indicate 

that when brokerage costs, bid-ask spreads and borrowing costs are taken into 

consideration, no pure arbitrage opportunities can be found.

"  The characterization of Merton’s solution comes from Press (1967). Press derives 

moments, pdf and cdf for a mixed jump diffusion process. The solution in Merton (1976) 

is just a stylized result of Press (1967).

" Refer to Chapter 3 pages 26 through 28 for a proof of this result.

This result is shown in Press (1967)

" An excellent reference for this is found in Neftci (2000). For a more rigorous treatment 

of Ito’s lemma, readers should consult Merton (1990) and Kushner (1995).
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Chapter 5 

Simulations

In chapters three and four, we developed closed form solutions for commodity futures 

and options on futures. These solutions greatly simplify the comparative statics and 

estimation of these contingent claims written on commodity spot contracts. The purpose 

of this chapter is to examine the pricing behavior of these models. Simulations for the 

futures prices and option prices are presented below.

4.1 One-factor Futures model

Using equation (56) from chapter 3,

F[S(r),7-]=exp

we calculate theoretical futures prices for various choices of spot price, speed of 

adjustment, and time to maturity. The results of these simulations are presented in Table 

1, and there are a few causal observations worth noting.

In panel A of table 1, we see that when the initial level of the spot price is close to 

its long-run mean, the difference between the theoretical futures price and the long run 

mean spot price is small. This is expected. That is, we know the spot price is mean 

reverting, thus when the spot price reaches its mean, its tendency is to rest there. The 

futures price is consistent with this expectation.

Second, as the speed of adjustment k  increases the difference between the 

theoretical futures price and the long run mean spot price is decreasing. This is simply 

illustrates that as the mean reversion becomes stronger there is a greater tendency for the
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spot price to revert to its mean, and the futures price should as well. In fact, if  it = «  the 

theoretical futures will equal its risk-adjusted mean.

Additionally, as the maturity increases the difference between the theoretical 

futures price and the long run mean spot price is decreasing. Intuitively, as the 

investment horizon for the spot commodity increases, the spot price is allowed greater 

opportunity to revert to its mean. If this is the case, the futures price should reflect this 

behavior and indeed the behavior in the theoretical futures prices is consistent with our 

expectations.

The one-factor futures model shows that futures price is only influenced by an 

underlying spot price process. As a consequence, the pricing behavior of the futures 

contract should resemble the spot price’s characteristics. Illustrations of the one-factor 

futures prices behavior is presented in Figures 2, 3, and 4 and we note that the futures 

price does behave to our expectations.

4.2 Two-factor Futures model

Theoretical futures prices, which are influenced by a stochastic spot price and 

convenience yield, are calculated using equation (109) in chapter 3. This expression is

F (S{T ),S{T ),tj) = S{t)exp + or] ( f - t )

f 1 r i Ÿ  )
â ( t ) - a  + -(cr^A -cr^a^p„)+ ^jJ  crj (1 -^ )

/  2
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Tables 2, 3 and 4 compares prices computed by the two-factor formula above with 

Black’s well known cost of carry model

f{S (r).^ (r).» .î’)=5(<)exp[(r-<y)r].

Two points are noteworthy from Table 2 (the results are the same for Tables 3 and 4).

Differences arise between the two models above depending on the level of the 

convenience yield. When the initial level of convenience yield is close to its long-run 

mean or equal to it, theoretical futures price computed by Black’s model and two-factor 

model are not significantly different. In addition, when S, moves away from its long-run

mean (above or below), the difference between the two prices increases. This is expected 

since Black’s model treats the convenience yield as a constant. That is, regardless of the 

current position of the convenience yield. Black’s model will always use the long run 

mean to value the futures contract. The two-factor model, on the other hand, incorporates 

the movements of the convenience into its price. Thus, when the convenience yield 

deviates from its mean, we see differences in the futures prices generated by the two 

models.

The next observation worth noting is when the speed of adjustment k increases. 

In this case, the difference in prices between Black’s model and the two-factor model 

decreases. In Black’s model, the convenience yield is presumed constant and maintained 

at it long run level throughout the entire life of the contract. The two factor model, 

however, allows for random movements in the convenience yield and will therefore yield 

different prices for the futures contract when the convenience deviates from its mean. 

The difference between the two models is decreasing as the mean reversion becomes 

stronger in the convenience yield. This occurs because the convenience yield reverts to
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its mean quicker, and when the value of the convenience yield reaches its mean, the two- 

factor futures price equals the price computed by Black’s model. Note that when k = <n 

the two-factor model becomes blacks cost of carry solution.

In summary, the difference in theoretical prices between the Black model and 

two-factor model arise due to the treatment of the convenience yield. Black’s model 

hold’s it constant and the two-factor allows for random movements. We see that price 

difference between the two models occur when deviation of the convenience yield from 

its mean increases. Furthermore, this difference decreases as the speed of adjustment 

increases. These differences are illustrated in Figures 5 through 13.

4.3 Three-factor Futures model

Using expression (157) from chapter three,

F ( S ( T ) .S ( r ) A T ) .T )  =

f e ( r )  -  r'̂ k^a -  -  ^  + p„cr,o-A j  ^ 2 ^ 2

where A(T) = exp
4L

D ,(t )  = exp
K + K

t e ( f ) - r )  . t e W - r ) )

Z>3(r) = exp
2k.
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we calculate theoretical prices for the three-factor futures model. These prices are 

calculated given various parameter values for the spot price, convenience yield and 

interest rate. These values are reported in Tables 5 through 16.

The three factor model is a simple extension of the two-factor, whereby a 

stochastic interest rate is added. With that said, the two-factor model is nested in the 

three factor model. That is, if we hold the interest rate constant, the three-factor futures 

model reduces to the two-factor model. Furthermore, looking at the tables 5 through 16, 

we see that for a particular interest rate and speed of adjustment, the futures price 

behavior is consistent with the two factor model. For instance, in table 5 section one we 

see that as the speed of adjustment for the convenience yield increases the futures price 

tends to pull toward a central value. Moreover, as the mean reversion in the convenience 

becomes stronger the futures price tends revert much faster. This behavior is identical to 

the two-factor futures model.

Differences between the three-factor model and the two-factor model are seen by 

the interaction between the interest rate and both the convenience yield and spot price. 

This behavior is given by expressions (159) -  (161). Expression (159), D ,(r), indicates 

the premium or discount that is applied to pricing futures contracts due to the correlation 

between the interest rate and the convenience yield. When the correlation between the 

interest rate and convenience yield are zero this term is equal to one. That is no premium 

or discount is applied. When the value is positive (for our case we have the correlation 

equal to 0.5), this term is less than one, telling us that the futures price is discounted. 

Intuitively, since the interest rate goes up the convenience yield rises as well. The futures 

price is being discounted from increases in the convenience, in addition, the futures price
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is being further discounted by increases in the interest rate. This accounts for the time 

value of money, being lost by the recipient of the futures contract. That is, the individual 

who holds the futures contract not only loses the ability to take advantage of selling the 

commodity when the convenience yield increases, but also misses out on the time value 

of money. When the correlation between the convenience yield and interest rate is 

negative, we see the opposite is true.

Expression (160),D%(T), introduces the premium or discount applied to the 

futures price due to the correlation between the interest rate and the spot price. When the 

correlation is zero this value is equal to one. That is, no premium or discount is enacted 

since random movements in the interest rate do not seem to influence movements in the 

spot price. When the correlation is positive (for this example it is 0.5) the coefficient is 

greater than one, thus adding a premium to the futures price. When it is negative the 

coefficient is less than one, thereby, discounting the futures price.

Expression (160), introduces the premium or discount applied to the

futures price due to the volatility of the interest rate. The interest rate volatility is an 

exponentially dampened function. For very short time periods this expression is greater 

than one, thereby adding a premium to the futures price. As the time to maturity 

increases this expression is decreasing and in particular is less than one. The indication is 

that as time to maturity goes up greater discounts are applied to the futures price due to 

decreased volatility.

5.4 One-factor Option Model

Theoretical option prices are calculated using expressions (114) through (116) 

from chapter four. This is
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C (F ,0  = ,

where

d\ =■

and

^2 =^i -V-

In addition, the prices generated by the one-factor model are compare with theoretical 

option values that are calculated using the Black-Scholes pricing formula, which is 

C{F,t) = e'^'F{t)N{d,)-e'^^XN{d , ) ,

where

«I — I— >

and

d ^= d ^-  c r ^ .

There are a few observations worth noting.

First, the option prices from the Black-Scholes model are always greater than the 

option prices from the one-factor model. We expect this since the spot price is said to 

mean revert. In chapter four, we show that the diffusion for the futures price dynamic is 

an exponentially dampened process, and the rate of depreciation is a function of time and 

the speed of adjustment. The prices reported in Tables 14, IS and 16 (and illustrated in 

Figures 14 -  19), reflect this phenomenon. As maturity decreases the one-factor prices 

converge to the Black-Scholes prices. At maturity the two prices are equal, since at this 

point the futures price equals the spot price.
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A second observation about the behavior of the one-factor option price is that as 

the speed of adjustment parameter increases, the price difference between the two models 

increases. This is expected since the futures price volatility is inversely related to the 

speed of adjustment. Additionally, we see this discrepancy is between the one-factor 

model and the Black-Scholes model is further magnified when the maturity increases.

Lastly, we see that when the instantaneous volatility for the spot price increases 

the price difference between the models increases. This price difference is more 

pronounced the longer the option has to mature. Since the futures price volatility is a 

function of the spot price volatility, we should expect the futures price volatility to 

increase as the spot volatility increases, and it does. The increase in the futures price 

volatility is not uniform across maturities though. The futures price volatility is 

exponentially dampened over time and with respect to the speed of adjustment. 

Therefore, as the time to maturity increases we see the volatility is exponentially 

decreasing.

5.5 Two-factor Option Model

Theoretical option prices are calculated for the two-factor model and reported in 

Tables 17, 18, and 19. The pricing formula is given by expression (142), in chapter four 

and is

C (F ,0  = e-"'F(OiV(d,)-e-"'A3V(J2),

where

and
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=û?i -V .

The one-factor model is not a special case of the two factor model, but there are 

similarities between the two models. Both pricing models show that when the speed of 

adjustment increases volatility decreases. Furthermore, when the time to maturity 

increase the volatility decreases. These similarities are due to the mean reverting 

behavior in commodity prices.

Differences between the one-factor and two-factor model occur due to the 

treatment of mean reversion in the model. The one-factor model captures mean reversion 

entirely from the spot price, where as, the two-factor model introduces mean reversion 

through a stochastic convenience yield. The volatility for the two factor model is 

decreasing with respect to time and speed of adjustment, but unlike the one-factor model, 

the volatility is converging to a particular value and not zero. In addition, the two-factor 

option volatility is influenced by the correlation between the spot price and the 

convenience yield. As the correlation increases the volatility for the option price 

decreases. This is expected since the convenience yield is mean reverting. That is, as the 

correlation increases the spot price must be exhibiting mean reverting tendencies itself, 

which should further dampen the price volatility. Observations of the option prices in 

Tables 17 through 19 illustrate this point. Furthermore, the difference between the two- 

factor option prices, where /? = 0 and p  = 0.166, is decreasing as the speed of 

adjustment for the convenience yield increases. That is, as the tendency for the 

convenience yield to revert back to its mean gets stronger the volatility to the futures 

price converges to the volatility of the spot price. As a consequence, both cases are 

converging to the same volatility term, and therefore, to the same option price.
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Table 1

The values below list the futures prices for a one-factor model. Spot prices follow a 
mean reverting process dS(t) = k(ji -  In S(t)'^(t)dt + aS(t)dZ{t) . Parameter values are 
set for // = ln(20), a=  0.334, and the futures pricing equation is

F[S,7-] = exp

A. Spot Price = 20 Speed of Adjustment
0.5 5 7 10 12 15

time to maturity
0.000 20.000 20.000 20.000 20.000 20.000 20.000
0.083 19.998 19.987 19.984 19.982 19.981 19.981
0.250 19.985 19.943 19.946 19.953 19.958 19.965
0.500 19.945 19.906 19.925 19.945 19.954 19.963
0.750 19.891 19.894 19.921 19.944 19.954 19.963
1.000 19.828 19.890 19.921 19.944 19.954 19.963
1.250 19.761 19.889 19.920 19.944 19.954 19.963

B. Spot Price =15 Speed of Adjustment
0.5 5 7 10 12 15

time to maturity
0.000 15.000 15.000 15.000 15.000 15.000 15.000
0.083 15.176 16.534 17.020 17.619 17.643 18.400
0.250 15.504 18.365 18.973 19.439 19.504 19.830
0.500 15.942 19.442 19.753 19.807 19.925 19.960
0.750 16.323 19.760 19.891 19.792 19.960 19.963
1.000 16.653 19.852 19.915 19.746 19.963 19.963
1.250 16.940 19.878 19.920 19.697 19.963 19.963

C. Spot Price = 25 Speed of Adjustment
0.500 5.000 7.000 10.000 12.000 15.000

time to maturity
0.000 25.000 25.000 25.000 25.000 25.000 25.000
0.083 24.771 23.155 22.635 22.017 21.691 21.300
0.250 24.334 21.260 20.734 20.322 20.181 20.070
0.500 23.731 20.274 20.060 19.975 19.965 19.965
0.750 23.188 19.999 19.945 19.947 19.954 19.963
1.000 22.702 19.920 19.925 19.945 19.954 19.963
1.250 22.267 19.898 19.921 19.944 19.954 19.963

287



Figure 2

Theoretical Futures Prices for a One-Factor Model
When the Spot Price is Equal to the Long Run Mean
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Figure 3

Futures Prices for a One-Factor Model
Spot Price Below Long Run Mean
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Figure 4

Futures Prices for a One-Factor Model
Spot Price Above Long Run Mean
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Table 2

This table illustrates the difference between Black’s cost of carry model and a two-factor 
model with a stochastic spot price and mean reverting convenience yield. Black’s cost of 
carry model is F (S (r) ,r)  = • Parameter values are: a  = 0.1, where
a  = E(â(t)), cr, =0.393, cr̂  = OA, X = 0 ,p = 0  r  = 0.15, and 5'(/) = 20.

C.C. Model 
20.252

Three Month

Speed of Adjustment
Ô 0.5 1.876 5 7 10 15

0.010 20.685 20.619 20.513 20.468 20.420 20.371
0.030 20.588 20.536 20.455 20.420 20.383 20.345
0.050 20.491 20.455 20.397 20.372 20.345 20.318
0.070 20.395 20.373 20.338 20.324 20.308 20.292
0.090 20.299 20.292 20.280 20.276 20.271 20.265
0.100 20.251 20.252 20.252 20.252 20.252 20.252
0.110 20.204 20.211 20.223 20.228 20.234 20.239
0.130 20.109 20.131 20.165 20.180 20.196 20.213
0.150 20.015 20.050 20.108 20.133 20.159 20.186
0.170 19.921 19.971 20.050 20.085 20.122 20.160
0.190 19.828 19.891 19.993 20.038 20.086 20.134

C.C. Model 
20.506

Six Month

Speed of Adjustment
S 0.5 1.876 5 7 10 15

0.0100 21.339 21.114 20.848 20.764 20.690 20.630
0.0300 21.151 20.977 20.771 20.706 20.649 20.602
0.0500 20.965 20.842 20.695 20.649 20.608 20.575
0.0700 20.780 20.707 20.619 20.592 20.567 20.547
0.0900 20.597 20.573 20.544 20.535 20.527 20.520
0.1000 20.506 20.506 20.506 20.506 20.506 20.506
0.1100 20.416 20.440 20.469 20.478 20.486 20.493
0.1300 20.236 20.308 20.394 20.421 20.445 20.465
0.1500 20.058 20.176 20.319 20.365 20.405 20.438
0.1700 19.881 20.046 20.244 20.308 20.364 20.411
0.1900 19.706 19.916 20.170 20.252 20.324 20.384

C.C. Model 
20.764

Nine Month

Speed of Adjustment
S 0.5 1.876 5 7 10 15

0.010 21.967 21.530 21.132 21.031 20.952 20.889
0.030 21.694 21.358 21.050 20.972 20.910 20.861
0.050 21.424 21.186 20.968 20.912 20.868 20.834
0.070 21.158 21.016 20.886 20.853 20.827 20.806
0.090 20.895 20.848 20.805 20.794 20.785 20.778
0.100 20.763 20.765 20.764 20.764 20.764 20.764
0.110 20.635 20.681 20.724 20.735 20.743 20.750
0.130 20.379 20.515 20.643 20.676 20.702 20.723
0.150 20.125 20.350 20.562 20.617 20.661 20.695
0.170 19.875 20.187 20.482 20.559 20.619 20.668
0.190 19.628 20.025 20.402 20.500 20.578 20.640
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Figure 5

Three Month Theoretical Futures Prices from Table 2

A. Delta is below its long-run mean 5  = 0.01
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Figure 6

Six Month Theoretical Futures Prices from Table 2

A. Delta is below its long-run mean ^  = 0.01
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Figure?

Nine Month Theoretical Futures Prices from Table 2

A. Delta is below its long-run mean ^  = 0.01
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Table 3

This table illustrates the difference between Black’s cost of carry model and a two-factor 
model with a stochastic spot price and mean reverting convenience yield. Black’s cost of 
carry model is > Parameter values are; a  = 0.1, where
a  = E(S{t)), a-j =0.393, or^=0.1 ,/l = 0,yO=0.766 r  = 0.15,and 5(0 = 20.

C.C.Model
20.252

Three Month

Speed of Adjustment
s 0.5 1.876 5 7 10 15

0.010 20.683 20.617 20.512 20.452 20.401 20.349
0.030 20.586 20.535 20.454 20.404 20.363 20.322
0.050 20.489 20.453 20.395 20.356 20.326 20.296
0.070 20.393 20.372 20.337 20.308 20,289 20.269
0.090 20.297 20.290 20.279 20.260 20.251 20.243
0.100 20.192 20.250 20.250 20.250 20.236 20.233
0.110 20.202 20.210 20.221 20.212 20.214 20.217
0.130 20.108 20.129 20.164 20.164 20,177 20.190
0.150 20.013 20.049 20.106 20.117 20.140 20.164
0.170 19.919 19.969 20.049 20.069 20.103 20.138
0.190 19.826 19.889 19.992 20.022 20.066 20.112

C.C.Model
20.506

Six Month

Speed of Adjustment
S 0.5 1.876 5 7 10 15

0.010 21.332 21.108 20.844 20.760 20.688 20.628
0.030 21.144 20.971 20.767 20.703 20.647 20.600
0.050 20.958 20.836 20.691 20.646 20.606 20.573
0.070 20.773 20.701 20.616 20.588 20.565 20.546
0.090 20.590 20.567 20.540 20.531 20.524 20.518
0.100 20.389 20.499 20.500 20.502 20.503 20.504
0.110 20.409 20.434 20.465 20.475 20.483 20.491
0.130 20.229 20.302 20.390 20.418 20.443 20.464
0.150 20.051 20.171 20.315 20.362 20.402 20.436
0.170 19.874 20.040 20.241 20.305 20.362 20.409
0.190 19.699 19.911 20.166 20.249 20.321 20.382

C.C.Model
20.764

Nine Month

Speed of Adjustment
S 0.5 1.876 5 7 10 15

0.010 21.951 21.518 21.125 21.026 20.948 20.886
0.030 21.678 21.346 21.043 20.966 20.906 20.858
0.050 21.408 21.175 20.961 20.907 20.864 20.831
0.070 21.142 21.005 20.879 20.847 20.822 20.803
0.090 20.879 20.836 20.798 20.788 20.781 20.775
0.100 20.592 20.749 20.753 20.757 20.759 20.760
0.110 20.620 20.669 20.717 20.729 20.739 20.748
0.130 20.363 20.504 20.636 20.670 20.698 20.720
0.150 20.110 20.339 20.556 20.612 20.657 20.692
0.170 19.860 20.176 20.475 20.553 20.615 20.665
0.190 19.613 20.014 20.396 20.495 20.574 20.637
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Figures

Three Month Theoretical Futures Prices from Table 3

A. Delta is below its long-run mean ( ̂  = 0.01 )
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Figure 9

Six Month Theoretical Futures Prices from Table 3

A. Delta is below its long-run mean ^  = 0.01
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Figure 10

Nine Month Theoretical Futures Prices from Table 3

A. Delta is below its long-run mean ^  = 0.01
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Table 4

This table illustrates the difference between Black’s cost of carry model and a two-factor 
model with a stochastic spot price and mean reverting convenience yield. Black’s cost of 
carry model is F ( S ( r ) , r )  = . Parameter values are; a  = 0.1, where
a  = E(S(t)), a,  =0.393, a-j = 0.1,2 = 0.198,/? =0.766 r  = 0.15, and 5(/) = 20.

Speed of Adjustment
C.C.Model

20.252

Three Month

C.C.Model
20.506

Six Month

Ô 0.5 1.876 5 7 10 15
0.010 20.684 20.618 20.513 20.463 20.414 20.364
0.030 20.587 20.536 20.454 20.415 20.376 20.337
0.050 20.490 20.454 20.396 20.366 20.339 20.311
0.070 20.394 20.373 20.338 20.318 20.301 20.284
0.090 20.299 20.291 20.280 20.270 20.264 20.258
0.100 20.153 20.251 20.251 20.251 20.247 20.246
0.110 20.203 20.211 20.222 20.223 20.227 20.231
0.130 20.109 20.130 20.165 20.175 20.190 20.205
0.150 20.014 20.050 20.107 20.127 20.153 20.179
0.170 19.921 19.970 20.050 20.080 20.116 20.153
0.190 19.827 19.891 19.993 20.033 20.079 20.126

Speed of Adjustment
5 0.5 1.876 5 7 10 15

0.010 21.337 21.112 20.846 20.762 20.690 20.629
0.030 21.149 20.975 20.770 20.705 20.648 20.602
0.050 20.963 20.840 20.694 20.648 20.607 20.574
0.070 20.778 20.705 20.618 20.591 20.567 20.547
0.090 20.595 20.571 20.543 20.534 20.526 20.519
0.100 20.313 20.504 20.504 20.505 20.505 20.505
0.110 20.414 20.438 20.467 20.477 20.485 20.492
0.130 20.234 20.306 20.392 20.420 20.444 20.465
0.150 20.055 20.174 20.318 20.364 20.404 20.437
0.170 19.879 20.044 20.243 20.307 20.363 20.410
0.190 19.704 19.914 20.169 20.251 20.323 20.383

C.C.Model
20.764

Nine Month

Speed of Adjustment
Ô 0.5 1.876 5 7 10 15

0.010 21.961 21.526 21.130 21.030 20.950 20.888
0.030 21.396 21.688 21.353 21.048 20.970 20.909
0.050 21.419 21.182 20.966 20.910 20.867 20.833
0.070 21.153 21.012 20.884 20.851 20.825 20.805
0.090 20.890 20.844 20.802 20.792 20.784 20.777
0.100 20.480 20.759 20.760 20.762 20.762 20.763
0.110 20.630 20.677 20.721 20.733 20.742 20.749
0.130 20.373 20.511 20.641 20.674 20.701 20.722
0.150 20.120 20.347 20.560 20.615 20.659 20.694
0.170 19.870 20.183 20.480 20.557 20.618 20.667
0.190 19.623 20.022 20.400 20.498 20.577 20.639
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Figure 11

Three Month Theoretical Futures Prices from Table 4

A. Delta is below its long-run mean ( S  = 0.01 )
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Figure 12

Six Month Theoretical Futures Prices from Table 4

A. Delta is below its long-run mean S  = 0.01
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Figure 13

Nine Month Theoretical Futures Prices from Table 4

A. Delta is below its long-run mean J  = 0.01
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Table 5

This table shows theoretical values for the one month, three-factor futures model.
Parameters for the model are Ac =A r *̂ (0 = 20, r  = .15, a  =.393,
A  = <T, = .l and A = 0.198

k, -  0,5

= 5

t  = io

0.5

Speed of Adjustment 
1.876 5 10

0.03 20.202 20.194 20.181 20.164
0.05 20.169 20.163 20.153 20.141
0.07 20.136 20.132 20.126 20.118
0.09 20.103 20.101 20.098 20.095
0.1 20.086 20.085 20.085 20.084

0.11 20.070 20.070 20.071 20.073
0.13 20.037 20.039 20.044 20.050
0.15 20.005 20.008 20.016 20.027
0.17 19.972 19.977 19.989 20.005

Ô 0.5 1.876 5 10

0.03 20.198 20.191 20.177 20.160
0.05 20.165 20.160 20.150 20.138
0.07 20.132 20.129 20.122 20.115
0.09 20.100 20.098 20.095 20.092
0.1 20.083 20.082 20.081 20.081
0.11 20.067 20.067 20.068 20.069
0.13 20.034 20.036 20.040 20.047
0.15 20.001 20.005 20.013 20.024
0.17 19.969 19.974 19.986 20.001

5 0.5 1.876 5 10

0.03 20.197 20.190 20.176 20.159
0.05 20.164 20.159 20.149 20.137
0.07 20.131 20.128 20.122 20.114
0.09 20.099 20.097 20.094 20.091
0.1 20.082 20.081 20.080 20.080

0.11 20.066 20.066 20.067 20.068
0.13 20.033 20.035 20.039 20.046
0.15 20.000 20.004 20.012 20.023
0.17 19.968 19.973 19.985 20.001
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Table 6

This table shows theoretical values for the six month, three-factor futures model.
Parameters for the model are Psc=Psr=Pcr=^y Sit) = 20 , r = .15, a,=

—. 1 and A —= 0.198

Speed of Adjustment
5 0.5 1.876 5 10

0.03 21.257 21.049 20.828 20.698
0.05 21.070 20.913 20.751 20.657
0.07 20.884 20.778 20.675 20.616
0.09 20.701 20.643 20.599 20.575

k, = 0.5 0.1 20.609 20.576 20.562 20.555
0.11 20.518 20.510 20.524 20.535
0.13 20.337 20.377 20.449 20.494
0.15 20.158 20.245 20.374 20.453
0.17 19.981 20.114 20.299 20.413

Ô 0.5 1.876 5 10
0.03 21.204 20.996 20.775 20.646
0.05 21.017 20.860 20.699 20.605
0.07 20.832 20.725 20.623 20.564
0.09 20.648 20.591 20.547 20.523

k , = 5 0.1 20.557 20.524 20.510 20.503
0.11 20.466 20.458 20.472 20.483
0.13 20.286 20.326 20.397 20.442
0.15 20.107 20.194 20.322 20.401
0.17 19.930 20.064 20.248 20.361

S 0.5 1.876 5 10
0.03 21.209 21.001 20.780 20.652
0.05 21.022 20.866 20.704 20.611
0.07 20.837 20.731 20.628 20.570
0.09 20.654 20.597 20.553 20.529

A:, = 1 0 0.1 20.562 20.530 20.515 20.508
0.11 20.472 20.463 20.477 20.488
0.13 20.291 20.331 20.402 20.447
0.15 20.113 20.200 20.328 20.407
0.17 19.935 20.069 20.253 20.366
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Table 7

This table shows theoretical values for the one year, three-factor futures model.
Parameters for the model are = p„  = 0, S{t) = 20, r  = .15, a^=.393,
cTg = a ^ = .l  and À = 0.198

Speed of Adjustment

= 0.5

k = 5

t = 1 0

s 0.5 1.876 5 10

0.03 22.640 21.974 21.529 21.354
0.05 22.286 21.777 21.444 21.312
0.07 21.938 21.581 21.359 21.269
0.09 21.596 21.387 21.274 21.227
0.1 21.426 21.291 21.232 21.205

0.11 21.258 21.195 21.190 21.184
0.13 20.926 21.004 21.106 21.142
0.15 20.600 20.816 21.022 21.100
0.17 20.278 20.629 20.939 21.058

S 0.5 1.876 5 10
0.03 22.467 21.807 21.365 21.192
0.05 22.117 21.611 21.281 21.150
0.07 21.771 21.417 21.196 21.107
0.09 21.431 21.224 21.112 21.065
0.1 21.263 21.129 21.070 21.044

0.11 21.097 21.034 21.029 21.023
0.13 20.767 20.845 20.945 20.981
0.15 20.443 20.657 20.862 20.939
0.17 20.124 20.472 20.779 20.897

S 0.5 1.876 5 10
0.03 22.473 21.813 21.371 21.197
0.05 22.122 21.617 21.286 21.155
0.07 21.777 21.422 21.202 21.113
0.09 21.437 21.230 21.118 21.071
0.1 21.269 21.134 21.076 21.049

0.11 21.102 21.039 21.034 21.028
0.13 20.773 20.850 20.951 20.986
0.15 20.448 20.662 20.867 20.945
0.17 20.129 20.477 20.785 20.903
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Tables

This table shows theoretical values for the one month, three-factor futures model.
Parameters for the model are p„  = p„  = .5, p̂  ̂ = 0.766, S{t) = 20, r  = .15, cr, = .393,
cr, =cr. = .l and X = 0.198

= 0.5

k = 5

=10

Speed of Adjustment k  ̂
0.5 1.876 5 10

0.03 20.201 20.193 20.178 20.161
0.05 20.168 20.161 20.151 20.138
0.07 20.135 20.130 20.123 20.115
0.09 20.102 20.099 20.096 20.093
0.1 20.086 20.084 20.082 20.081

0.11 20.069 20.068 20.069 20.070
0.13 20.037 20.037 20.041 20.047
0.15 20.004 20.006 20.014 20.025
0.17 19.971 19.976 19.987 20.002

<5 0.5 1.876 5 10
0.03 20.197 20.189 20.175 20.158
0.05 20.164 20.158 20.147 20.135
0.07 20.132 20.127 20.120 20.112
0.09 20.099 20.096 20.093 20.089
0.1 20.082 20.080 20.079 20.078

0.11 20.066 20.065 20.065 20.067
0.13 20.033 20.034 20.038 20.044
0.15 20.001 20.003 20.011 20.021
0.17 19.968 19.972 19.983 19.999

â 0.5 1.876 5 10

0.03 20.196 20.188 20.174 20.156
0.05 20.163 20.157 20.146 20.134
0.07 20.130 20.126 20.119 20.111
0.09 20.098 20.095 20.092 20.088
0.1 20.081 20.079 20.078 20.077

0.11 20.065 20.064 20.064 20.065
0.13 20.032 20.033 20.037 20.043
0.15 19.999 20.002 20.010 20.020
0.17 19.967 19.971 19.982 19.998
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Table 9

This table shows theoretical values for the six month, three-factor futures model.
Parameters for the model are p„ = 5 , p ^ -  0.766, S(t) = 20, r  = . 15, cr, = .393,
cr„ =£7 = .l and À = 0.198

Speed of Adjustment

k, -  0.5

= 5

/t =10

Ô 0.5 1.876 5 10
0.03 21.228 21.005 20.794 20.682
0.05 21.041 20.869 20.717 20.641
0.07 20.856 20.734 20.641 20.600
0.09 20.672 20.600 20.566 20.559
0.1 20.581 20.533 20.528 20.538

0.11 20.490 20.467 20.490 20.518
0.13 20.309 20.334 20.415 20.477
0.15 20.131 20.203 20.340 20.437
0.17 19.953 20.072 20.266 20.396

Ô 0.5 1.876 5 10
0.03 21.155 20.932 20.721 20.609
0.05 20.968 20.796 20.645 20.568
0.07 20.784 20.662 20.569 20.527
0.09 20.600 20.528 20.494 20.486
0.1 20.510 20.462 20.456 20.466

0.11 20.419 20.396 20.419 20.446
0.13 20.239 20.264 20.344 20.405
0.15 20.061 20.133 20.269 20.365
0.17 19.884 20.002 20.195 20.324

8 0.5 1.876 5 10
0.03 21.151 20.928 20.717 20.605
0.05 20.965 20.793 20.641 20.564
0.07 20.780 20.659 20.566 20.523
0.09 20.597 20.525 20.490 20.483
0.1 20.506 20.458 20.453 20.462

0.11 20.416 20.392 20.415 20.442
0.13 20.236 20.260 20.340 20.402
0.15 20.058 20.129 20.266 20.361
0.17 19.881 19.999 20.191 20.321
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Table 10

This table shows theoretical values for the one year, three-factor futures model.
Parameters for the model are = .5, = 0.766, 5(/) = 20, r  = .15, <r, = .393,
a , =<T, = .l and X = 0.198

Speed of Adjustment

= 0.5

/t, = 1 0

Ô 0.5 1.876 5 10

0.03 22.513 21.851 21.493 21.384
0.05 22.161 21.655 21.408 21.341
0.07 21.815 21.460 21.323 21.299
0.09 21.474 21.267 21.239 21.256
0.1 21.306 21.172 21.196 21.235

0.11 21.139 21.076 21.154 21.214
0.13 20.809 20.887 21.071 21.171
0.15 20.484 20.699 20.987 21.129
0.17 20.164 20.513 20.904 21.087

Ô 0.5 1.876 5 10

0.03 22.242 21.583 21.224 21.114
0.05 21.895 21.389 21.140 21.071
0.07 21.553 21.197 21.056 21.029
0.09 21.216 21.006 20.972 20.987
0.1 21.050 20.912 20.931 20.966
0.11 20.885 20.817 20.889 20.945
0.13 20.559 20.630 20.806 20.904
0.15 20.238 20.445 20.724 20.862
0.17 19.922 20.261 20.642 20.820

Ô 0.5 1.876 5 10

0.03 22.221 21.561 21.201 21.091
0.05 21.874 21.367 21.117 21.048
0.07 21.533 21.175 21.034 21.006
0.09 21.196 20.985 20.950 20.964
0.1 21.030 20.891 20.909 20.943
0.11 20.865 20.796 20.867 20.923
0.13 20.540 20.610 20.784 20.881
0.15 20.219 20.424 20.702 20.839
0.17 19.903 20.241 20.620 20.797
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Table 11

This table shows theoretical values for the one month, three-factor futures model.

-  0.5

k ,= 5

A. =10

•del are p„ = p„ = -0.5, = 0.766, 5(0 = 20, r  =
and A = 0.198

Speed of Adjustment
Ô 0.5 1.876 5 10

0.03 20.198 20.190 20.176 20.158
0.05 20.165 20.159 20.148 20.135
0.07 20.132 20.128 20.121 20.113
0.09 20.099 20.097 20.093 20.090
0.1 20.083 20.081 20.080 20.079

0.11 20.067 20.066 20.066 20.067
0.13 20.034 20.035 20.039 20.045
0.15 20.001 20.004 20.011 20.022
0.17 19.969 19.973 19.984 19.999

5 0.5 1.876 5 10
0.03 20.195 20.187 20.173 20.155
0.05 20.162 20.156 20.145 20.132
0.07 20.129 20.125 20.118 20.110
0.09 20.096 20.094 20.090 20.087
0.1 20.080 20.078 20.077 20.076
0.11 20.064 20.063 20.063 20.064
0.13 20.031 20.032 20.036 20.042
0.15 19.998 20.001 20.008 20.019
0.17 19.966 19.970 19.981 19.996

5 0.5 1.876 5 10
0.03 20.194 20.186 20.172 20.154
0.05 20.161 20.155 20.144 20.132
0.07 20.128 20.124 20.117 20.109
0.09 20.096 20.093 20.089 20.086
0.1 20.079 20.077 20.076 20.075

0.11 20.063 20.062 20.062 20.063
0.13 20.030 20.031 20.035 20.041
0.15 19.997 20.000 20.007 20.018
0.17 19.965 19.969 19.980 19.995
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Table 12

This table shows theoretical values for the six month, three-factor futures model.

k. = 0.5

=  10

>del are p„ = p„ = -0.5, Ac = 0.766, S(t) = 20, r  =
and X = 0.198

Speed of Adjustment k̂
ô 0.5 1.876 5 10

0.03 21.140 20.916 20.703 20.590
0.05 20.953 20.780 20.627 20.550
0.07 20.769 20.646 20.552 20.509
0.09 20.586 20.513 20.476 20.468
0.1 20.495 20.446 20.439 20.448

0.11 20.404 20.380 20.401 20.428
0.13 20.225 20.248 20.327 20.387
0.15 20.047 20.117 20.252 20.347
0.17 19.870 19.987 20.178 20.306

5 0.5 1.876 5 10
0.03 21.106 20.883 20.671 20.559
0.05 20.920 20.748 20.595 20.518
0.07 20.736 20.614 20.520 20.477
0.09 20.553 20.480 20.445 20.437
0.1 20.462 20.414 20.407 20.416
0.11 20.372 20.348 20.370 20.396
0.13 20.192 20.216 20.295 20.356
0.15 20.015 20.085 20.221 20.315
0.17 19.838 19.956 20.147 20.275

Ô 0.5 1.876 5 10
0.03 21.120 20.897 20.686 20.573
0.05 20.934 20.762 20.610 20.533
0.07 20.750 20.628 20.534 20.492
0.09 20.567 20.494 20.459 20.451
0.1 20.476 20.428 20.422 20.431

0.11 20.386 20.362 20.384 20.411
0.13 20.206 20.230 20.309 20.370
0.15 20.028 20.099 20.235 20.330
0.17 19.852 19.969 20.161 20.289

310



Table 13

This table shows theoretical values for the one year, three-factor futures model.
Parameters for the model are p „ = p ,^ = - Q .5 ,  p,^= 0.166, S{t) = 20, r  = .15,
cr, =.393, <7̂  =£7  ̂= 1  and X -  0.198

Speed of Adjustment 
5  0.5 1.876 5 10

k. = 0.5

&r=5

&r=10

0.03 22.190 21.521 21.153 21.038
0.05 21.844 21.328 21.069 20.996
0.07 21.503 21.136 20.985 20.954
0.09 21.167 20.946 20.902 20.912
0.1 21.001 20.852 20.861 20.891

0.11 20.837 20.758 20.819 20.870
0.13 20.511 20.571 20.737 20.828
0.15 20.191 20.387 20.655 20.787
0.17 19.876 20.203 20.573 20.745

Ô 0.5 1.876 5 10
0.03 22.120 21.459 21.097 20.984
0.05 21.774 21.266 21.013 20.942
0.07 21.434 21.075 20.930 20.900
0.09 21.100 20.885 20.847 20.859
0.1 20.934 20.791 20.805 20.838

0.11 20.770 20.698 20.764 20.817
0.13 20.446 20.512 20.682 20.775
0.15 20.127 20.327 20.600 20.734
0.17 19.812 20.145 20.518 20.693

5 0.5 1.876 5 10
0.03 22.152 21.491 21.130 21.018
0.05 21.806 21.298 21.046 20.976
0.07 21.466 21.107 20.963 20.934
0.09 21.130 20.917 20.879 20.892
0.1 20.965 20.823 20.838 20.871
0.11 20.800 20.729 20.797 20.850
0.13 20.476 20.543 20.714 20.809
0.15 20.156 20.358 20.632 20.767
0.17 19.841 20.175 20.550 20.726
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Table 14

This table shows the theoretical option prices for the one-factor futures model.

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.021 0.005

cr = 0.1 20 2.038 1.964
= 0.006 25 6.659 6.659

30 11.415 11.415

15 1.272 0.841
a  = 0.393 20 3.866 3.320

= 0.098 25 7.543 7.131
30 11.805 11.561

Other Parameter Values: r = 0.05, Strike Price = 18, k = 0.5, Maturity of One year

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.002 0.001

cr = 0.1 20 1.990 1.973
= 0.004 25 6.827 6.827

30 11.704 11.704

15 0.681 0.525
a  = 0.393 20 3.167 2.956

=0.061 25 7.160 7.043
30 11.785 11.742

Other Parameter Values: r = 0.05, Strike Price = 18, k = 0.5, Maturity of Six months

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.000 0.000

(T = 0.1 20 1.992 1.992
yp- = 0.001 25 6.971 6.971

30 11.950 11.950

15 0.042 0.038
<T = 0.393 20 2.196 2.184
V* = 0.012 25 6.972 6.972

30 11.950 11.950
Other Parameter Vîflues: r = 0.05, Strike Price = 18, k = 0.5, Maturity of One month

312



Figure 14

These graphs illustrate the difference between the Black-Scholes model and the one-
factor model across maturities when k = 0.5, cr = 0.1 r  = 0.05 and%= 18.
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Figure 15

These graphs illustrate the difference between the Black-Scholes model and the one-
factor model across maturities when k = 0.5,a  = 0.393, r  = 0.05 and%= 18.
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Table 15

This table shows the theoretical option prices for the one-factor futures model.

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.021 0.001

<T = 0.1 20 2.038 1.930
= 0.004 25 6.659 6.659

30 11.415 11.415

15 1.272 0.569
a  = 0.393 20 3.866 2.961

= 0.067 25 7.543 6.909
30 11.805 11.466

Other Parameter Values: r = 0.05, Strike Price = 18, k = 1.0, Maturity of One year

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.002 0.000

O' = 0.1 20 1.990 1.963
= 0.003 25 6.827 6.827

30 11.704 11.704

15 0.681 0.406
a  = 0.393 20 3.167 2.786
f  = 0.049 25 7.160 6.965

30 11.785 11.721
Other Parameter Values: r = 0.05, Strike Price = 18, k= 1.0, Maturity of Six months

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.000 0.000

O' = 0.1 20 1.992 1.992
=0.001 25 6.971 6.971

30 11.950 11.950

15 0.042 0.035
O' = 0.393 20 2.196 2.174
V* = 0.012 25 6.972 6.972

30 11.950 11.950
Other Parameter Values: r = 0.05, Strike Price = 18, k = 1.0, Maturity of One month
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Figure 16

These graphs illustrate the difference between the Black-Scholes model and the one-
factor model across maturities when A = 1.0, tr = 0.1, r  = 0.05 andX = \%  -  0.006.
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Figure 17

These graphs illustrate the difference between the Black-Scholes model and the one-
factor model across maturities when ^ = 1.0, cr = 0.393, r  = 0.05 and %= 18.
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Table 16

This table shows the theoretical option prices for the one-factor futures model.

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.021 0.000

<7 = 0.1 20 2.038 1.903
= 0.001 25 6.659 6.659

30 11.415 11.415

15 1.272 0.061
C7 = 0.393 20 3.866 2.150

= 0.0154 25 7.543 6.662
30 11.805 11.415

Other Parameter Values: r = 0.05, Strike Price = 18, k = 5.0, Maturity of One year

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.002 0.000

<7 = 0.1 20 1.990 1.951
= 0.0009 25 6.827 6.827

30 11.704 11.704

15 0.681 0.062
<7 = 0.393 20 3.167 2.202

= 0.0153 25 7.160 6.830
30 11.785 11.704

Other Parameter Values: r = 0.05, Strike Price = 18, k = 5.0, Maturity of Six months

Option Parameters Futures Price Black-Scholes One-factor Model
15 0.000 0.000

cr = 0.1 20 1.992 1.992
= 0.0005 25 6.971 6.971

30 11.950 11.950

15 0.042 0.015
<7 = 0.393 20 2.196 2.106

= 0.008 25 6.972 6.971
______________________ 30_______________11.950_____________ 11.950

Other Parameter Values: r = 0.05, Strike Price = 18, k = 5.0, Maturity of One month
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Figure 18

These graphs illustrate the difference between the Black-Scholes model and the one-
factor model across maturities when A = 5.0, cr = 0.1, r  = 0.05 andX =  IS = 0.006.
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Figure 19

These graphs illustrate the difference between the Black-Scholes model and the one-
factor model across maturities when ^ = 5.0, a  -  0,393, r  = 0,05 and X = \Z .
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Table 17

This table shows the theoretical option prices for the two-factor futures model. 

Option Parameters Futures Price Two-factor Model
a, = 0.393 15 1.289

=0.1 20 3.886
v̂  = 0.157 25 7.559
A c  = 00 30 11.816

or, = 0.393 15 1.104
=0.1 20 3.656

=0.131 25 7.376
Ac = 0/766 30 11.698

Other Parameter Values: r =0.05, Strike Price = 18, k = 0.5, Maturity of One year

Option Parameters Futures Price Two-factor Model
= 0.393 15 0.685

or, =0.1 20 3.172
= 0.078 25 7.162

A c  = 0.0 30 11.786

a, = 0.393 15 0.620
OTg =0.1 20 3.085

=0.071 25 7.112
A c  = 0.766 30 11.766

Other Parameter Values: r = 0.05, Strike Price = 18, k = 0.5, Maturity of Six months

Option Parameters Futures Price Two-factor Model
a, = 0.393 15 0.042
(Tg = 0.1 20 2.196

= 0.012 25 6.972
A c  =  0.0 30 11.950

a , = 0.393 15 0.041
= 0.1 20 2.191

= 0.013 25 6.972
p„ -  0.766 30 11.950

Other Parameter Values: r = 0.05, Strike Price = 18, k = 0.5, Maturity of One month
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Table 18

This table shows the theoretical option prices for the two-factor futures model.

Option Parameters Futures Price Two-factor Model
a, = 0.393 15 1.284
<T̂ =0.1, 20 3.880

=0.156 25 7.555
Psc =  0 0 30 11.813

<j, = 0.393 15 1.125
= 0.1, 20 3.682

=0.134 25 7.396
Ac = 0.766 30 11.711

Other Parameter Values: r = 0.05, Strike Price = 18, k = 1.0, Maturity of One year

Option Parameters Futures Price Two-factor Model
a, = 0.393 15 0.684
A  =0.1, 20 3.171

= 0.078 25 7.162
Psc =  0.0 30 11.786

<7, = 0.393 15 0.624
=0.1, 20 3.091

= 0.071 25 7.115
Psc = 0.766 30 11.767

Other Parameter Values: r = 0.05, Strike Price = 18, k = 1.0, Maturity of Six months

Option Parameters Futures Price Two-factor Model
cr, = 0.393 15 0.042
cr, =0.1, 20 2.196
V* =0.013 25 6.972
Psc =  0.0 30 11.950

cr, =0.393 15 0.041
cr, =0.1, 20 2.191

v '=  0.013 25 6.972
Psc = 0.766 30 11.950

Other Parameter Values: r = 0.05, Strike Price = 18, k = 1.0, Maturity of One month
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Table 19

This table shows the theoretical option prices for the two-factor futures model.

Option Parameters Futures Price Two-factor Model
= 0.393 15 1.274

O’c =0.1 20 3.868
=0.155 25 7.545

P,c = 00 30 11.807

cr, = 0.393 15 1.206
cr̂  =0.1 20 3.783

=0.145 25 7.476
Ac = 0.766 30 11.761

Other Parameter Values: r = 0.05, Strike Price = 18, k = 5.0, Maturity of One year

Option Parameters Futures Price Two-factor Model
£T, = 0.393 15 0.682
CTj, = 0.1 20 3.169

v^= 0.077 25 7.160
A c  =  0 . 0 30 11.785

cr, = 0.393 15 0.647
= 0.1 20 3.121

v^= 0.074 25 7.133
A c  =  0 . 7 6 6 30 11.774

Other Parameter Values: r = 0.05, Strike Price = 18, k = 5.0, Maturity of Six months

Option Parameters Futures Price Two-factor Model
cr, = 0.393 15 0.0424

(Tg =0.1 20 2.196
f  =0.013 25 6.972
A c  = 0.0 30 11.950

<T, = 0.393 15 0.0401
(Tg =0.1 20 2.192

= 0.013 25 6.972
p,c = 0.766 30 11.950

Other Parameter Values: r = 0.05, Strike Price = 18, k = 5.0, Maturity of One month
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Chapter 6 

Conclusion

It has been noted that over the last few years energy markets have exhibited turbulent 

behavior. In particular. Crude oil prices tripled, natural gas prices increased three 

hundred and fifty percent, and heating oil once sold for over $100 per barrel. These 

volatile market conditions have caused an increased interest in the use of financial 

instruments, such as futures, and options on futures. These instruments are the main 

vehicles for hedging price risk, and the ability to price these instruments is now an 

increasingly important problem in financial economics.

In this dissertation, we develop models of the stochastic behavior of commodity 

prices that take into account mean reversion, in terms of their ability to price commodity 

contingent claims. These pricing equations are foimd imder a risk neutral economy using 

equivalent martingale measures. Our analysis begins with the derivation of three closed 

form solutions for futures/forward contracts. In all three models, the logarithm of the 

futures/forward price is linear in the state variables. Moreover, the difference between 

the models depends on the volatility term. The one-factor model implies that the 

volatility of futures prices will converge to a value of zero and the futures price will 

converge to a fixed value as matiuity increases. The two- and three-factor models, 

however, imply that the futures price volatility will decrease but converge to a fixed 

value different fi'om zero, while the futures price converges to some fixed rate of growth.

After developing solutions for future/forward contracts, it is shown that each of 

these futures contracts have an implicit price dynamic. Development of these price 

dynamics reveal that futures prices follow a martingale process with an exponentially
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dampened volatility. The stochastic differential for the futures price is then used to price 

options written on the underlying futures contract. These pricing formulas incorporate 

discounts in the option prices due to the term structure of volatility implicit in the futures 

price. The discounts applied to the one-factor option prices are greater than the discounts 

for the two-factor model, since the one factor futures price volatility converges to zero 

and not some finite number.

To conclude our analysis we consider the option pricing model for jump-diffusion 

developed by Hilliard and Reis (1998). Our analysis indicates that the option pricing 

model posited by Hilliard and Reis is founded on mathematical irregularities. To begin, 

the authors assert that the form of the futures price is invariant to the presence of a jump 

process. This is incorrect in that the presence of a Jump process in the futures price 

dynamics transforms the distribution of futures prices into a mixed Poisson Gaussian 

distribution. This is not the same as a standard normal distribution that is used when no 

jump process is present. Furthermore, Hilliard and Reis state that the jump process in the 

spot price is the same as the jump process in the futures price. The jump process for the 

futures price cannot be the same as the spot price since the futures price is a function of 

the spot price. Lastly, Hilliard and Reis unilaterally impose the general equilibrium 

results from Bates’ (1988) model in their analysis. This is a problem since Bates does not 

consider a model that includes a mean reverting convenience yield or a stochastic 

interest. In short, Hilliard and Reis’ jump diffusion option model is built on unstable 

foundations and the results from their analysis are tenuous at best.
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Appendix A

Dynamic Factor Analysis

This appendix is composed of two sections, the first describes the Kalman filter and the 

second describes the expectations maximization (EM) algorithm. The EM algorithm 

utilizes the Kalman filter in the estimation procedure, and is therefore, discussed first.

A.1 Kalman filter

Introduction

In 1960, R. E. Kalman provided an alternative method of formulating the least 

squares filtering problem using state-space methods. Engineers, especially in the field of 

navigation, were quick to see the Kalman technique as a practical solution to a number of 

problems that were previously considered intractable using the Wiener methods. The 

Wiener solution of the optimal filter problem is a filter weighting solution. In effect this 

tells us how the past values of the input should be weighted in order to determine the 

present value of the output, that is, the optimal estimate. Unfortunately, the Weiner 

solution does not lend itself very well to problems with large amounts of data. The two 

main features of the Kalman formulation and solution of the problem are (1) vector 

modeling of the random processes under consideration and (2) recursive processing of the 

noisy measurement (input) data.

When working with practical problems involving discrete data, it is important that 

our methods be computationally feasible as well as mathematically correct. A simple 

example will illustrate this. Consider the problem of estimating the mean of some 

unknown constant based on sequence of noisy measurements. Assume that our estimate
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is to be the sample mean and that we wish to refine our estimate with each new 

measurement as it becomes available. That is, think of processing the data on-line. Let

the measurement sequence be denoted as z„Z2» z, where the subscript denotes the

time at which the measurement is taken. One method of processing the data would be to 

store each measurement as it becomes available and then compute the sample mean in 

accordance with the Weiner algorithm (in words):

1. First measurement z, : Store z, and estimate the mean as:

m, =z,

2. Second measurement z% : Store Z; along with z, and estimate the mean as

3. Third measurement Zj : Store ẑ  along with z, and z% estimate the mean as

- _Z,+Zz+Z3 —--------------

4. And so forth.

Clearly, this would yield the correct sequence of sample means as the experiment 

progresses. It should be clear that the amount of memory needed to store the 

measurement keeps increasing with time, and also the number o f arithmetic operations 

needed to form the estimate increases correspondingly. This would lead to obvious 

problems when the total amount of data is large. Thus, consider a simple variation in the 

computational procedure in which each new estimate is formed as a blend of the old 

estimate and the current measurement. To be specific, consider the following algorithm:
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1. First measurement ẑ  : Store z, and estimate the mean as:
m̂  =z,

store /râ, and discard z,.

2. Second measurement Zj : Compute the estimate as a weighted sum of the previous 

estimate w, and the current measurement Zj :

.  1 . 1
^2 = -m i+ -Z 2

store and discard Zj.

3. Third measurement Zj : Compute the estimate as a weighted sum of and Zj :

. 2 . 1

store ihj and discard z,.

4. And so forth. It should be obvious that at the n*** stage the weighted sum is

= - -------'”«-1 + - Z .

Clearly, the above procedure yields the same identical sequence of estimates as 

before, but without the need to store all the previous measurements. I simply use the 

result of the previous step to help obtain the estimate at the current step of the process. In 

this way, the previous computational effort is used to good advantage and not wasted. 

The second algorithm can proceed ad infinitum without a growing memory problem. 

Eventually, of course, as n becomes extremely large, a round-off problem might be 

encountered. However, this is to be expected with either of the two algorithms.

The second algorithm is a simple example of a recursive mode of operation. The 

key element in any recursive procedure is the use of the results of the previous step to aid
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in obtaining the desire result for the current step. This is one of the main features of 

Kalman filtering, and one that clearly distinguishes it firom the weighting-fimction 

(Weiner) approach, which requires arithmetic operations on all past data.

In order to apply the recursive philosophy of the Kalman filter to estimation of a 

stochastic process, it is first necessary that both the process and the measurement noise be 

modeled in state space form. The state space form is an enormously powerful tool, which 

opens the way to handling a wide variety of time series models. Once a model has been 

put in state space form, the Kalman filter may be applied. The general state space form 

applies to a multivariate time series, y« containing N elements. This time series 

represents our observations of the world. These observable variables are related to an 

mxl vector, x, known as the state vector, via a measurement equation.

y, =Mx, + v, (A.1)

where M is an Nxm matrix and Vt is an Nxl vector of serially uncorrelated disturbances 

with mean zero and covariance matrix R«. That is,

E(v,) = 0 and Kar(v,) = R, . (A.2)

The elements of the state vector x* are not directly observable and are determined by the 

state or transition equations

x,^, = A x ,+ D w ,  (A.3)

where A is an mxm transition matrix and Wt is an mxl vector of serially uncorrelated 

disturbances with mean zero and covariance matrix Qt. That is,

£(w ,) = 0 and Var(w,) = Q ,. (A.4)

The inclusion of the matrix D in firont of the disturbance term, is to some extent, 

arbitrary. The disturbance term could always be redefined so as to have a covariance
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matrix DQ,D'. Nevertheless, the representation in (A.3) is often more natural when v* is 

identified with a particular set of disturbances in the model.

The specification is completed by assuming that the initial vector %« has mean p 

and covariance matrix E, where

E = £[(x„ -  p)(x, -  p)'] (A.5)

Note that this state space configuration is different from the conventional 

autoregressive series because x, is not observable, v, and w, can be thought of as

observation and model noise respectively. M, R, A, D and Q are assumed to be non­

stochastic.

In the trivial case when M = I„, then equation (A.4) reduces to y, = x, + v ,.

Under the assumption that v, = , X, = M"'y, and is observable. When M is not the

identity matrix, then the measurement equation for N = 2 and m = 3 is given by:

1̂1 1̂2 <̂13
■*1

+
72. Û2I 2̂2 «23,

/3 .
72.

Expanding the first element of y, yields,

y  I = «11̂ 1 + 0|2^2 + + V, (A.6)

I can use these confounded observations on y« to determine the mean of the three 

state variables, x„ x% and x,. Determining the mean of each state variable at time t  is the 

goal of the Kalman filter. The Kalman filter estimate is denoted by:

|y « ,y „ ......•»yt) = Xf.f
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Deriving the Kalman filter depends upon several properties of conditional 

probabilities. A review of these properties follows. The results from this review will be 

utilized in the derivation of the Kalman filter.

Review o f  Conditional Probabilities

Suppose I have two jointly distributed random vectors x and y. For simplicity 

also assume the random variables in this section have zero means. The dimension of x is 

3x1 and y is 2x1. What is the “best” estimate of x in terms of y? The question is simple 

econometrics and is solved by:

2̂ = >1*

.4 .
y2.

or X = b y . The variance of the estimation error is given by

£ [(x -b y ) '(x -b y )]  {A.1)

which is a scalar. Because I want the “best” estimate of x, I will find the minimum of the 

estimation error by taking the derivative of equation (A.7) with respect to b and setting it 

equal to zero. This requires passing a derivative through the expectation operator. I 

know a derivative can pass through the expectation operator by the following example.

Assume f { z )  = 3z^ O ^ z ^ l .  The expected value of/(z) is

I I 3
E(z) = jzf{z)dz = jz{3z^)dz = —z*

3
4

The derivative of the expected value is 

dE{z)
dz dz
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Therefore, taking the expected value and then the derivative of f(z) yields an answer of 3.

To verify that a derivative can pass through and expectation operator, I will 

reverse the order of the operations. I will calculate the derivative first and then integrate 

or apply the expectations operator. If I obtain the same result using both methods, then I 

am assured that the derivative can pass through an expectation operator.

dljz3z^dzj
. .z^dz = 3 z i = 3

dz dz

The result obtained using both methods is identical, and therefore, this example shows 

that the derivative can pass through the expectations operator. Now, I will return to the 

original goal of minimizing the estimation error so that I can obtain the best linear 

estimate for x.

The variance of the estimation error in equation (A.7) can be rewritten as

£(x'x + x'by+y'b'x + y'b'by). (A.8)

Minimizing with respect to b by taking the derivative of (A.8) and setting it equal to zero 

yields:

£(-2xy' + 2byy') = 0.

Solving for b yields b = E(xy’)E(yy')'^ = , where 2 ^  and are covariance

matrices since x and y have zero means. Our best guess for x is

E(xy’)E(yy’y^ y = by = x (A.9)

or

î  = (A.10)

The estimation error is denoted x = x - x  and its variance-covariance is given by
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£(xx') = Æ :[(x-x)(x-xy]

which can be expanded as;

J?[xx'-2xx' + xx'].

Utilizing (A. 10), this expression for the variance of the estimation error can be rewritten 

as:

or

£ [ h ' + -  2E ,E ^y* '].

Earlier, I made the assumption that all random variables are distributed with zero 

mean. Therefore, E(yy'E^) = I and = E(yx '). Using these facts and distributing the 

expectations operator reduces the above expression to:

£( xx' ) - E ^ E ; ; e ^ = E ( xx')

or

e „ - e ^ e ; ;e ^ = e (xx'). (A.11)

The best linear estimate would ensure that the Cov(x,y) = 0. Does my derived 

estimate exhibit this quality? Utilizing the fact that these random variables have zero 

mean, this covariance is given by:

Cov(ï,y) = E (i -  i.y ')  = E(xf- -  = E „ - Z „  = 0.

Therefore, the least squares estimator is orthogonal to the estimation error.

Consider the case where y and z are uncorrelated, but they both impact x. The 

mean of x is given by £(x  | y,z) which can decomposed into:
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E {x\y ,z) = E {x \y )  + E {x \z)  

because y and z are uncorrelated. Let me illustrate the observation above by setting

w = (y ',z ') '. (A. 12)

Applying (A. 10) to determine £(x | w) yields

(A. 13)

where

Syy 0 '

.  0 ^ZZ.
-  

and

E „  = £ (im ')  = £ [x (y ',z ')]= £[iy ';jz '] = lE „ :E „J . (A.14)

Note that the cross products are zero because I have defined y  and z to be uncorrelated. 

Using (A, 12), (A. 13) and (A.14) the best estimate for x can be written in the spirit 

of my prior derivation as:

0 -1

or

x = E ^S ;Jy  + E „ E ; 'z .

The equation above illustrates that £ (x |y ,z )  = £ (x ly )  + £ ( x |z )  when y and z are 

uncorrelated.

The last item to consider before deriving the Kalman filter is the observation that

^(y|Xi»Xî) = ^(y|XpX2)
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where x, has been orthogonalized with respect to x% to yield x , . The first half of 

establishing the observation made above is to recall that from ordinary least squares 

(OLS) that our best guess at £(y | x,,x%) is given by:

(A.15)

and establishing the second half of the observation is a matter of showing that the 

mathematical expression that estimates E(y |x,,x%) also estimates £ ( y | x , , X j ) .

Assume y = p,x, +P2X2 +® where x, and x% are uncorrelated. I first obtain y 

under these conditions and then move on to the more realistic case where x, and x% may 

be correlated. Recall that the vector x is in deviation form. The regression coefficients 

for this model are estimated by:

A

A .
= (x'x)"‘x'y =

and since = 0 , Â  &nd ̂ 2  reduce to:

0

R
"  E ' :

Therefore the estimate of the mean of y conditional on x, and x% is simply:

(A. 16)

which corresponds to my best guess for the quantity {£(y | x, ) + £(y | x, )}.
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When the constraint that x, and are uncorrelated is relaxed, the estimator for

and p^ are given by:

A

A j
= (x'x)’‘x'y =

T ^ i y '

or

'Z ^ l 'Z x ^ y - '^ x ^ X 2 '^ X 2 y

Z ^ Œ ^ 2 - ( Z % )
, x ,+ - .  *2-

Which is my best guess at f(y |x ,,x % ). Note that this is the same result obtained in 

(A. 15) but it cannot be reduced to (A. 16) because of the correlation between x, andx%. 

Therefore, I have shown the first half of establishing that the mathematical expression 

that estimates E(y | x ,, X2) also estimates E(y | x^x^). I now focus on the second half, 

which is to establish that these two mathematical expressions are equivalent.

Define the results of orthogonalizing x, with respect to x% is x, :

where

X, = x ,- ;« 2

(A.17)

The mean of y conditional on x, and x% is given by:

E(y I Xj.x,) = ^ ^ x , (A. 18)

by extrapolating from (A. 16) since x, and x% are uncorrelated. Recall that it is my goal to 

show that the expression above is mathematically equivalent to (A. 15).
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Substituting x, = x , into equation (A. 18) yields:

(A.19)

which is my best guess at E{y | x,,x%). Substituting the definition of y  from (A.17) into 

(A.19) yields:

f .
I" ' ■ Z ;

.2 ■*2

' Z ;
.2 '‘2

X.  -
X|X2

I ' Z;
.2 ^ 2

which is my best guess at £(y  | x, ,X j). Multiplying the numerator and denominator of 

the first term by , distributing the summation sign and simplifying yields:

'  z ^ =  ’ j  z ^

which is the operational equivalent to E(y | x^X j).

Combining terms of x% yields:

Z 4 4 ' Z : ^ 4 y - Z 4 4 Z 4 y l

Z ^ 2  Z ^ 2 ,  Z : ^ : ' - ( Z 4 4 y  J

(A.20)

My goal is to be able to write (A.20) as (A. 15). The coefficient on x, are 

identical in both equations and do not require any work. On the other hand, the 

coefficients on x% are not identical. I will now try to rewrite the second term of (A.20) as
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the coefficient of in (A. 15). Rewriting the coefficient of Xj in (A.20) in tenns of a 

common denominator yields:

1 1

which can be further reduced to:

'Z x ^ 'Z x l

and is exactly the coefficient of %% in (A. 15). Therefore, I have been able to reduce 

(A.20) so that it is identical to (A. 15). That is, the expression that would be used to 

operationally interpret

^ (y |x ,,X 2) and E ( y |x , ,x J  (A.21)

are the same. I will apply the same aspects of this analysis to my derivation of the 

Kalman filter.

Derivation o f  the Kalman filter

The goal of the Kalman filter is to estimate the conditional mean of x ,. Define

K t  = %  Ixo, ,y,)

as the estimate made at time t of the state variable at time /. Define the new information 

of the innovation contained in y, as:

y...-i =y.-y,.,-i (A.22)

where ÿ, «.j is the forecast made at time t-1 for y at time t. The Kalman filtered estimate 

can be partitioned into:
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K t  = I Yo, ,y,-!.ÿv-,) (A.23)

which states that mean of x, is conditional on historical information and the innovation

or the orthogonalized component y ,,.,. Because the innovation is orthogonal to the

historical information, equation (A.23) can be decomposed into;

Xu = %  lYo, + %  ly,.,-!)' (A.24)

Equation (A.24) states that the forecast for x, is dependent on the old information

available and some new information contained in y, , y , . Clearly, the analogy can be

drawn from the first few pages of this appendix. The forecast for x, will be a weighting

scheme consisting of old and new information that are independent or each other.

I have completed all the necessary preliminary work and now focus on the 

derivation of the Kalman filter, by definition, I can rewrite (A.22) as:

y.,t-i =y.-^(y. lyo, ,y,_i)-

My goal is to be able to rewrite the filtered estimate as a function of a previous estimate 

and the expected value of x, conditional on the innovation. That is, I want to rewrite 

(A24) as:

= A x , + ^ ( x ,  I y„_, ) (A.25)

To effect this refinement, I must first refer back to the original transition equation. Recall 

that the transition equation was defined as:

x,+, =A x,+D w ,

and therefore,

X,  = Ax,_, +Dw,_,
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must be true. The expectation of which yields:

Xt.t-1 = A x..,,_ ,+0 (A.26)

since w, is distributed with a mean of 0. Using (A.26), I can rewrite the mean of x,

conditional on y , , ..... ,y,_, as:

A£(x,_, I y„,....... ,y,_,) + 0. (A.27)

The filtered estimate becomes:

K t = Ax.-i.t-i +  I ) (A.28)

which accomplishes our goal. Equation (A.28) states that I am able to partition the 

forecast into last periods forecast weighted by the transition matrix A and a new forecast 

based on last periods innovation.

The forecast error of x , i s  given by:

= x . “ V i -  (A-29)

Using (A.26) and the definition of the transition equation, the right hand side of (A.29) 

can be rewritten as:

V i =  A x ,_,  + D w ,_,  - A x , . ,  ,_,

V i  =A (x,_,-X ,_,,_,)+ Dw,_,.

The variance of the forecast of x ,̂_, is defined as P , a n d  is given by:

^ [(a (x,-i.,-, ) + Dw,_, Xa (x.-,,,-, ) + Dw,_, ) J = (A.30)

Expanding the left hand side of (A.30) yields,

AP..,,.,A ' + D Q ..,D '= (A.31)

since the x , _ , a n d  w, are uncorrelated.
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The second term of (A.25) states that the forecast or estimate of x^, depends on 

E(x^ I ÿ , • Using results from (A. 10), I can rewrite this conditional expectation as:

^ (*11 yf,t-i ) “  ^v^ÿÿyt,t-i • (A.32)

Equation (A.32) states that my filtered estimate is dependent on the covariance of the 

state variable with the innovation and the variance of the innovation itself. I will now 

rewrite each part of the right hand side in terms of what I know, matrices M, A, D, R and 

Q so that the estimate is tractable. Restating the definition of the iimovation in equation 

(A.22) is helpful at this point and is given by:

y,.,-i = y , -yi.t-1-

Utilizing the original description of the measurement equation and substituting for y, 

(A.23) can be rewritten as:

y...-i =yt-M V i-

Further substitution for y, yields:

and combining terms:

ÿt.i-1 =M x, + v,-M x^,_

ÿt.i-1 = M(x, -  x^„, ) + V ,  (A.33)

and finally.

ÿt.t-1 =MXm-i + v,. (A.34)

Equation (A.34) implies that the innovation is dependent on the estimation error of x,

which is intuitive given our state space system.

The variance-covariance matrix of (A.34) is given by:
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+ V, Xm e„-, + V, ) ']= 4 m ï „_,ï ;,.,m ' + v,v; ]

Where the cross products disappear since x, and v, are independent. This equation can 

be further simplified by invoking a definition from (A.30):

= M P„.,M ' + R (A.35)

That is, I have now defined the inverse of the middle term of (A.32).

l ; ;= [ m p ,.. ,m '+ r ]-' (A.36)

Working on the first term of (A.32), , and using (A.33):

(m(x, -  x^._,) + v, ) j = ^ [x ,(Mx .̂_, + V,  )  ] .

Rewriting the expressions above yields:

4(* . *M-i )m ' + X, v; J = *M-i )m 'J

since x, and v, are orthogonal. Rewriting x, in terms of x , a n d  x ,y ie ld s :

= £[(x,.,_i +Xm-iXxm-iW -

Finally, the covariance between the Kalman and the innovation is:

= 4 ( î ..,-.ï ;,-.)m ']=  (A-37)

since a standard property of least squares is that the estimator and error are orthogonal.

I am now ready to define the Kalman filter. Recall from (A.24) that the Kalman

filter estimate is:

K t = ^ (x , lyov..*.,y,-,)+^(x, I y,.,-,)•

346



Substituting results from (A. 10) and (A.24), the Kalman filtered estimate can be rewritten

as:

*M “ *M-I

Further substitution using results from (A.36) and (A.37) yields:

=*,.-1 + (A.38)

Equation (A.38) computes the Kalman filter estimate and is usually written in terms of a 

Kalman gain matrix K ,, which is defined as:

K, = (p„_,M')[mP„.,M' + r }-' . (A.39)

Finally,

x.,t = *t.e-i + K, (y, -  Mx^„, ) (A.40)

which is the final version of the Kalman filter estimate.

That is, the filtered estimate of the state vector is the sum of the predicted value of 

X at time t conditional on information available at time t-1 and a correction term, which is 

the product of the gain matrix K, and the observation residual, which provides new 

information on the evolution of the system.

It is imperative that I find the variance of my estimation error for use in the EM 

algorithm.

*1.1

From (A.40):

X... = x ,-x ,.,_ i-K ,(y ,-y ^ ,_ ,) . 

Using (A.22), this can be rewritten:

x,.« = V i
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The variance of the estimation error, £(x^,x^,) is

) + )k '. -  K , E K , ) -  )k ;

Using the results from (A.35) and (A.37) this reduces to:

4 v .»m-i ) + k ,{m p „_,m ’+ r )k ; - k ,(m p ^ . , ) - ( p „ . ,m ')k ; (a .4i )

This complex expression for the variance of the estimation can be simplified using the 

definition of the Kalman gain matrix. The second term of (A.41) reduces to:

k ,(m p „ .,m '+ r )k ; = k ,(m p „ .,m ’+ r Xm p „ , ,m '+ r )-'m p ; . .  = k ,m p ;,.,

afrer substitution from (A.39). In addition, note that by definition, the first term in (A.41) 

is P^,_,. Therefore, (A.41) reduces to:

Pw, - p ,._,m 'k ; - k .m p ; . ,  = p ,._, - p „ .,k ,m

or simply:

P „ .,( I-K ,M ). (A.42)

The derivation of the Kalman filter is complete. The Kalman filter can best be 

summarized pictorially. Figure A.1 describes the algorithm, which I have just derived.
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Figure A.1

1, Enter prior estimate and error covariance

K . =(p„.,M')pVIP„..M'+R]-'

5. Compute Kalman Gain

P.+M =A P„A ' + Q,

2. Update estimate with innovation 

K t = X M -i+ K ,(y ,-M x„.,)
4. project ahead

3. Compute error covariance for updated estimate 

P „ .,( I-K ,M )
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A simple scalar example is provided to clarify the derivation and to illustrate the 

recursive nature of the Kalman filter.

Consider the following system.

y, = ^ /+ v ,

where in this simple system A = M = D =1. In addition assume

F(w,) = Q = l F(v,) = R = 2 V(x„) = l

The Kalman filter estimate given by (A.40) is:

*M= V i + K , ( y , - M V i )  

or using (A.38) and the fact that M=l:

K t = K t-i  + + R ) ' ' ÿ w - i  •

The variance of the estimation error, P , f r o m  (A.31) is:

+DQ,_,D = + Q i_i

when A=D=1 in my scalar example.

Using the equation above but changing notation from vector to scalar which is

appropriate for this example, I can derive Kalman filter estimates beginning at time /= /.

Time / = 1

.  1 . 1  
4 .1  " 2 ^ ' -  2 ^ '

Time t = 2

^ . o = ^ o . o  +  0  =  l  +  l  =  2

^ = 4 . o  +  ( 2 ) ( 2  +  2 ) - ‘ ( y , - x , o )
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= K o + ^ (y i~ K o )

2̂,2 ~ 2̂,1 ^2  (ĵ 2 •̂̂ 2,1 )

•̂ 2.1 = ^ l.I  =

fl.  I
J^ ..o  + 2 ^ ,

A., =/!.,( -̂™')+0 = 2fl-|]+l = 2

AT, =2(2 + 2 ) - '= i

1 .  1 ^ 1  1 .  1 l . ^ l ^ l
^2.! =  2  •>1.0 + 2  J*! + J 2 ' 2 - J - > I , 0 - J . I ' i = ^ ^ 1 . 0 + J 2 ' |  + 2 > ’2

Time / = 3

A,3 -  ■̂3.2 + ■̂ ,2(^,2 ■*■ (̂ 3 ^3,2)

■̂3.2 ~ ^2,2 ~ ^̂ 2,2

■̂3,3 “  -̂ 2,2 ■*■ ̂ .2(^.2 ■*■ 0̂ 3 -̂ 2,2)

^ , 2  -  2̂,2 ■*■ Q

P „ = /5 .,( / - iW )  = 2 f l - i l j  = 2 -  I = l

P32 = 1  +  1 =  2
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A , 3 -  A . 2  +  2 ( 2  +  2 ) " ' ( v 3  -  % 2 ,2 )  =  7 - ^ 2  ■ ^ ■ ^ 38 8 ■ 4 '  2 ‘

It is important to note that as I iterate through the Kalman filter, the most recent 

observation is weighted more heavily and the initial estimate is given the least weight. 

Intuitively, this is what you would expect to yield the most accurate estimate.

A.2 The EM  Algorithm

Building on the state space model and the Kalman filter discussed in Part I, the 

EM algorithm used in this research will now be discussed. The state space model 

developed earlier is repeated here in scalar format.

Measurement Equation: y ,= a x ,+  v,

Transition Equation: =<(tK,+w,

Where v, and w, are distributed with mean zero and K(v,) = r  and V(w,) = g. The 

initial value of x^may be assumed to be a random variable with mean //gand .

The estimation of the parameters involved in the specification of the state space 

model above can be accomplished using maximum likelihood under the assumption that

Xg,w,  Wy. and v,, ,Vj. are jointly normal and uncorrelated variables. The EM

algorithm proceeds by successively maximizing the conditional expectation of the 

likelihood fiinction.

Consider the joint likelihood function defined L(x,v) given by:

-y/2^0

e
_V2:w

r(y,-a»i)
e ' (A.43)

Let ^represent the parameters Clearly, it is much easier to maximize the

natural logarithm of L{x,v,6) than the function directly. Consider:
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In I  oc - l i n  q-0 -  -  In ̂  -  - I n  /• -  -  Y  —̂ ly (Z (_ _ ^ — l( fo _ ifo )_
2 ® 2 ^ 2 2 ^  q 2 ^  r 2 a ,

(A.44)

While lnX(x,v,^) involves the parameters in a convenient form, they still cannot be 

maximized directly since x, is not observed. The role of the Kalman should now be

clear. It is the Kalman filter output that allows maximization of (A.44). Recall that the 

Kalman filter documents otherwise unobservable variables. Using the Kalman filter 

output, I am able to maximize (A.44) and solve for the appropriate parameters.

If ^ is and E, denotes the expectation under 6,, then the function:

E,[\nL{x,v,e\y)] (A.45)

can be written in terms of the Kalman filter output. From here on , the time subscripts in 

(A.45) are assumed and will not be explicitly noted.

Working on the expectation of (A.45) term by term, I will rewrite (A.44) so that I 

can obtain the maximum likelihood estimators for the unobservable parameters. 

Evaluating the expectation of the first term of (A.44) involving x, :

= - — (xf + x j  -  ̂ (x^i + xj_i ) f  ] (A.46)
2 ^  q

by involving x j  = x j  - x [ , the Kalman error defined in Part I of this appendix. Recall 

that xJ is the expectation of x at / given y^ ,y^. xandx, are independent of one

another because a standard property of a least squares estimator is that it is orthogonal to 

its estimation error. Consequently, (A.46) can be written as:

_ _L  H x i r + ^ \ xj:,ÿ +2x! x i  - 2 # %

2q \ -  2^Jxj_y -  2#,^x^| -  2<^Jxl^ + 2^^x,C,x,[,
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To illustrate the point that a least squares estimator is orthogonal to its estimation error, 

consider the following:

the OLS analog of which is:

(y -  xp) xp = y'xp -  p'x'xp

y'xp -  ((x'x)"‘ x'y)x'xp = y'xp -  y'xp = 0

where y' is Ix T and x is Txk and p is W .

Invoking this property, (A.47) reduces to:

-  —  E'zi^xJŸ  -l< ^ jx j_ ^ .  (A.48)

Passing the expectation operator through the summation sign in (A.48) yields:

_ \ ^ Ÿ ^ E { x J Ÿ  + ^^E (x l,Ÿ  +</>^E{xUŸ-2<pE{x]xU)
2q 1-2(ZlE(x/%)

(A.49)

Realizing that E(xJ ) = xJ and applying the summation across terms reduces (A.49) to:

(A.50)

where now terms are written in terms of variance and covariances of the Kalman filter 

estimate and error across time. In summary, I have started with equation (A.46), the 

expectation of the first term of (A.44) involving x, and rewrote it in terms of what is 

known, the Kalman filter output. The benefit of (A.50) is that I can maximize it with 

respect to the parameter of interest. In much the same fashion, I will be rewriting the 

remaining two terms of (A.44) and ultimately solving for the parameters, and r.
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Similarly, evaluating the second term of (A.44) involving x, yields:

\ y r ( y ,- a x ] Ÿ
2 ^  r

= - oxf Y  = - axf -  dxj"Y (A.51)

where I have taken the expectations operator through the summation sign and utilized the 

definition of the Kalman error. Expanding the last equation in (A.51) yields:

+ aH x^Y  +2a^xfx^]

Utilizing the fact that:

(1) xandx are independent of one another,

(2) £(3c) = 0.

(3) E ix l)  = xJ,

and

(A.52)

(4) e [ -  2y, ca j J  =  -2 y ,a E ^J  J  since a and y, are known,

equation (A.52) can be reduced to:

)  ̂ ]• (A.53)

This term of (A.44) has also been rewritten in terms of the Kalman filter output, 

specifically the variance of the Kalman filter error. Therefore, this term can also be 

maximized with respect to the parameter of interest.

Evaluating the last term of (A.44) yields: 

l ( x .
2 (7»

355



= - ^ e [xI - / /o f  +2x1x1 -2n^x^] (A.54)
20*o ^Cq

by substitution of x^ = x f - x J . Utilizing E(jc,^) = 0 and the fact that x^  is 

independent of x^ and //q , equation (A.54) can be rewritten in terms of variances:

-  - —  |e[îo  ̂-  Ao f  + ^^0 0̂ ]) (A.55)
ZO'o

This term of (A.44) has also been rewritten in terms of the variance of the Kalman filter 

error.

Therefore, the last terms of (A.44) have been transformed from terms that were 

intractable into terms that can be directly maximized. These terms can be combined, 

maximized and solved for the appropriate parameter(s) because they are written in terms 

of what is known, the output from the Kalman filter. By combining equations (A.50), 

(A.53) and (A.55), and using them in place of (A.44), I can describe the natural log of the 

likelihood function in terms which can be statistically evaluated when maximized with 

respect to the parameters of interest. Consequently, the function can be solved for the 

parameters, ^ ,gandr.

Taking the partial derivative of (A.50), (A.53) and (A.55) with respect to (ft yields:

- 2 Z ( î , X , ) - 2 l f c ï / ) }  (A.56)

Setting (A.56) equal to zero and solving for <!> I obtain:

or more simply.
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■1 (A.57)'MJJ
Equation (A.57) states that the coefficients of the lagged state variables in the transition 

equations are dependent on the variance and covariance of the Kalman filter estimate and 

the error across time.

Similarly, taking the derivatives of (A.50), (A.53) and (4.55) with respect to ç and 

setting it equal to zero yields:

r  1
 H •

2f 2q'
=  0 .

Substituting (A.57) into the expression above yields:

- L .  _ L
2 q ^ 2 q

=  0 .

Combining terms and multiplying by 2q^ yields:

-T q  + ̂ ( i y  -  Æ  A" %  ) + E  %  ) f  = 0 -

Finally solving for q:

? -----------------------------------------------------------f •

This equation states that the variance of the transition equation is dependent on the 

variance of the Kalman filter estimate and the covariance of the Kalman filter estimation 

error across time.

Lastly, the derivative of (A.50), (A.53) and (A.55) with respect to r  is given by: 

Setting the expression equal to zero and solving for r  yields:
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T

This equation states that the variance of the measurement equation is dependent on the 

variance of the Kalman filter estimation error.

In summary, I have solved for the three parameters of interest by rewriting terms 

of (A.44) in terms of the Kalman filter output and maximizing the resulting equation. 

The term fi’om (A.54) involving cTq and involves only a single observation.

Therefore, I can regard x„ as fixed, so that o-g = 0  and p ^ - X q.

The overall procedure can be regarded as simply alternating between the Kalman 

and the multivariate normal maximum likelihood equations. Summarizing the overall 

procedure:

1. Initialize ,^ ,q ,r  and set cr„ = 0.

2. Use the Kalman to calculate the Kalman estimate, variance of the estimation error 

and the covariance of the estimation error across time:

xJ , e [x,^x^  )and ) respectively.

3. Evaluate the following log likelihood with the initial parameters from (1) and the 

results from the Kalman:

y k )
(A.58)

This is also known as the score. The evaluation of (A.58) follows fi'om the fact 
that:

y, = ax, + V, and x, = + w,_,
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with f, defined as:

£ ,= y ,- a x j

e, =ax, +v, - a x j

e, =a(x, - x f )+ v , .

Clearly, I want to minimize our prediction error, x, - x f  and the estimation error, 

V,. Both errors are summarized by s, which has a mean of zero and a variance 

of:

E[ef ]= o^e ][x, - xJ J J+ V[v,] = a ^E ^J xJ ]+ V\y, ] = a ^ E ^ J x J ]+ r 

The likelihood function I want to maximize is:

n i
1

The relevant log likelihood function is then proportional to:

2 ^  •’ 2 ^  r(£,)

Which is a parsimonious way of writing the log likelihood function (A.44) since 

s, is the “total error”.

4. Update ^,qand r  using the maximizing equations (A.50), (A.53) and (A.55) 

respectively.

5. Use the new parameters to get new Kalman filter output

x J ,E (^ J 'r j)  and
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6. Recalculate the log likelihood function and determine if it improves enough to 

continue. If the score has not improved “much”, then it is said that the EM 

algorithm has converged. For example, the convergence criterion used in this 

research was set at .0001. That is, the first four decimal places of the score had to 

remain unchanged to attain convergence.

The remaining portion of this appendix is a simple example of the EM algorithm. 

This example presents an iterative computation of maximum likelihood estimates when 

the observations can be viewed as incomplete data. Each iteration consists of an 

expectation step followed by a maximization step, hence the EM algorithm. The 

attraction of the EM algorithm is due to its simplicity when applied to a wide range of 

examples. In particular, when the underlying complete data come from an exponential 

distribution whose maximum likelihood estimators are easily computed. Therefore, the 

maximization step of the EM algorithm is also easily computed.

Consider 197 animals, which have characteristics that are distributed multinomial 

into four categories, so that the observed data consists of:

= 0 25,18,20,34).

A genetic model for the population specifies cell probabilities as:

(
where 0 < ;r < 1.

To illustrate the EM algorithm, I represent (yi,y2>3'3>>'4) incomplete data from a five

category multinomial population were the cell probabilities are:

( l  I 1 1  1 1  1 ^
,2 '4 ^ '4  4 ^ ’4 4 ^ ’4 ^ J ‘
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The idea being to split the first of the four original categories into two categories. Thus, 

the complete data consists of:

where

y, =x, +%2, yi = ^ 3, ^3 =J^4. y* =^5 

The complete data specification of the probability density fimction (pdf) is:

/ ( • k )
1 1 1 Y Y 1 1 Y Y l  1

4 4 ^ J  [ 4  4 ;  U ^ >
(A.59)

Clearly, this pdf is similar to the binomial pdf which is given by:

Summing over the multinomial to obtain the expected value will take place over 

values of x  ̂ and In particular, the set (125,0), (124,1), ..., (0,125). Recall that 

Xj,X4 , and Xj are known. For the multinomial, the expected value is given by:

( ^ I  ^ 2  '̂ f k |  > ■^2 k 3  > " ^ 4  > " ^ 5  »

The expectation step estimates the sufficient statistics of the complete data 

(x,, X 2 , X 3 , X 4 , X j ) given the observed data G ^ i > 3^2 > > '3  » >^4 ) • This means that before 1 can 

maximize /(x„X 2,Xj,X4,X5), 1 need to determine the Æ(x,) and E{x^) and insert that 

into /(x,,X2,Xj,X4,Xj). That is, (A.59) will be given by:

where £(x, ) = x, and E{x2 ) = X2 .

361



If I need E{x) from '^ x f ( x )  with f ( x )  = C I would find the

maximum likelihood estimator of p  and multiply by n. The derivation follows. The 

binomial is give by:

f ( x )  = C 

The natural logarithm of which is:

In f ( x )  = InC + x ln p  + ( n - x)ln(l -  p ) .

Differentiating with respect to p:

and setting equal to zero:

d \n f(x )  _ x  . ( / i - x ) ,  „  
dp p  ( l - p )

X _  j n - x )

p ~ ( y - p )

Rearranging terms:

{ \ -p ) x  = (n -x )p

and finally the estimate of/> is:

p  = ~ .
n

Then my best guess at the expected value of x  would be n p .

Given this result, how would I allocate 125 between x, and Xj given this 

expected value framework:
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Maximizing the natural log of the conditional probability density function from (A.59) 

yields:

In /( • |; r )  = ln +x, Inp, +(125-x,)lnp2 +X; ln| —- - ; r  |

+ X. Inf- - -;rl + x . Inf — ;rl
U  4 j  l4  J

where p  ̂and are the probability of observing x, and Xg respectively if y  ̂ is observed. 

Therefore, p, = l - p ; .  Differentiating with respect to p, and setting this equal to zero 

yields:

iL + S 3 £ z f i l= o  
Â 0 -A )

X, (125-X , )

P. (1 -Â )

^ i( l -Â )  = 0 2 5 -x ,)p ,

X, =125p,

My best guess at E(x^) would be 125p,, and my best guess at E(x;) would be 125p%.

It is easy to see the similarity to the binomial distribution in these results. From the 

original specification, I know that:

and
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Pi =
/ 4 ^

The first iteration will be based on the initial value of 7t. Using this initial estimate, 1 can 

calculate my best guess at the expected value of and as:

£(x,) = 125

E(xJ = 125

With Jc, « E{x^) and Jĉ  *-^(^2) i" place, I can now maximize f{x^,x2 ,x■^,x^,x^) with 

respect to ;r. To obtain another tc I compute the following:

f i x  I z )  = _ A _ i
x,!.,.jCj!v2^

.34

Maximizing In / ( x |; r )  begins with:

In n!
+ x, l n -  + Jc, In. I ail ~r ]

Xji.-JCj! 2

and taking the derivative:

-;r | + 181n 
14 j

1

— ;rl + 201nf— +341nf—
U  4 J U  4 j  [ 4  )

1 20
a in /(x |; r )  H 4 J / Y  4 j

d z  1 1 1 1 1
( 4 ) 4 ; )

—z   z   z
4 4 4 4 4

1■z

Now setting it equal to zero and solving for z  :

(l-;r)Jc2 -1 8 ;r-2 0 ;r  + 34(l-;r) = 0

;r =
X2 + 3 4

Xj +18 + 20 + 34
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The EM algorithm for this example is defined by cycling back and forth between the 

expression for and n  where is the initial estimate for n  :

x \ =125

7tu =
a ; +34

" jcf+18 + 20+34

x \ =125
L /2 " /4 " »

i f +34
'  jc*+ 18 + 20 + 34

If I substitute:

x{ =125

into

x f +34
x f +18 + 20 + 34

and let then the result is a quadratic equation in n .

125

7t~-

+ 34

125 + 18 + 20 + 34

or
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7 t =  -
125 ^ > rj+ 3 4 (l^  + ̂ s - )

+(l8 + 20 + 3 4 ) ( ) /+ j^ ;r )

Combining terms of n  ;

Using the quadratic formula yields;

197 ;r^ -l5 ;r-68  = 0.

15 + V225 + 53584
 « .0268 .

394

I have just solved for the maximum likelihood estimate; .6268 is the actual n . Testing 

the accuracy of the EM algorithm against this value, I set the initial estimate o i n  to

equal to Vi. Using the scheme outlined above, five cycles of the EM algorithm yield the

following results:

Ttf̂  = .60824 
7t̂  = .624321 

=.6264888 
n , = .626777 
7t!  = .626815

After only three cycles, the algorithm’s output is accurate to within three decimal places. 

This highly encouraging result is only a simplistic example of how powerful the EM 

algorithm is at finding maximum likelihood estimates.

If the distribution is unimodal and mild regularity conditions hold, then the 

parameter yielded by the EM algorithm obtains either a global or local maximum. 

Successive steps in the iteration always increase the likelihood function. Maximum 

likelihood estimates of the parameters using the EM algorithm are consistent and 

asymptotically normal.
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Appendix B 

Arbitrage Pricing Equations

This appendix shows the derivation for the valuation equations obtained through standard 

arbitrage portfolio methods.

B.1 One factor model

The commodity spot price follows a mean reverting process

dSit) = k {p -  lnS{t))S(t)dt + aS{t)dZ,{t) (Bl)

where k is the speed of adjustment parameter, p is the long run expected return for the 

spot commodity, cris the diffusion coefficient, and dZ^it) is the increment of a standard

Brownian motion. Assume the price F(S,r) of futures contract is a twice continuously 

differentiable function of S(t), we can use Ito’s lemma to define the instantaneous price 

change. The notation on the F(S,t) is suppressed for the remainder of the analysis

dF = FsdS(t) + ̂ F^[dS{t)f -  F,dt . (B2)

where t  = {T-t) is the term to maturity. Substituting in (B2) for dS{t) and [dS(/)f yields

dF = Fs(k{fi-\tiS{t))S{t)dt + aS{t)dZ ,{t)y^F ssa\S{t)^dt-F ,dt . (B3)

Rearranging terms in (B4) yields

dF = + Fsk{p- \nS{t))S{t)~F)^dt + aS{t)FsdZ,{t) . (B4)

Expressing as the instantaneous return yields

dF
—  = }dt + sdZ^ (/) (B5)
F
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where -  ln^(f))S'(r) -  f ] . j / f  and s = aS(t)Fs IF .

Under standard arbitrage assumptions, we can construct an arbitrage portfolio with two 

time varying futures contracts. For ease of exposition, we express them only in terms of 

their respective maturities, F(l) and F(2). The arbitrage portfolio is given as

f  = x,F(l) + %2F(2). (B6)

We may express the instantaneous return for the portfolio as

Substituting the corresponding instantaneous returns for the futures contracts firom 

equation (B5) into (B7) yields

^  = 4  + s^dZ, (O)+ {y^dt + s^dZ, (t)).

Rearranging terms in the expression above

^  = k ? '. + ̂ 2^2 + ̂ 2^2 • (B8)

For the rate of return on the portfolio to non-stochastic (riskless) the coefficients on 

dZ^t) must be equal to zero. That is

= 0 . (B9)

In addition, with no initial investment the rate of return must be equal

^1^1+^2X2 = 0 - (BIO)

From the arbitrage pricing theory (APT) we know the following 

= 0 = 0.

368



With the above APT assumptions we way write equations (B9) and (BIO) in matrix 

notation

’  n  p i ' O'
0

Ax = 0.

The linear system above is a homogeneous system. One of two solutions exist for this 

system. The first is the trivial solution where x = 0. The other is the non-trivial solution. 

The existence of a non-trivial solution implies the row vectors of A are linear dependent. 

Thus, algebraically it follows

r  = ^  . (Bll)

where / and5 are 1x2 vectors. Substituting in the partial differential equation, (Bll), for 

/ands  yields

1 >
+ Fsk{/i -  lnS(t))S(t) -F , IF  = XaS{t)FslF . (B12)

Simplifying,

|F^<7^[5'(0r+i=i^C“ -A f7 - ln 5 ( /) )S (0 - /;= 0  . (B13)

B.2 Gibson and Schwartz (1990) two factor model

The presentation is the two factor model derived Gibson and Schwartz (1990). The first 

factor is the spot price of the commodity and the second factor is the instantaneous 

convenience yield, S. These factors are assumed to follow the joint stochastic process:

dS = fJSdt + (T̂ SdẐ  (B14)

dS  = k(a -  S)dt + cr/Z ; (B15)

where the increments to the standard Brownian motion are correlated

369



dZ^dZ^=f3dt, (B16)

a  is the long run convenience yield, k is the speed of adjustment for S around its long run 

mean. Equation (B14) is a standard geometric Brownian motion characterizing the 

commodity spot price, while the stochastic convenience yield described in equation 

(B15), follows an Omstein-Uhlenbeck stochastic process. The system describe above is 

similar to Brennan and Schwartz (1979) and Brennan and Schwartz (1982).

Assume the price B(S,S,t) of an contingent claim is a twice continuously 

differentiable function of S and S, we can use Ito’s lemma to define the instantaneous 

price change.

dB = BsdS + Bidb-B^dt+^BssdS^ +^B^db^ +BadSdb. (B17)

Substituting in equation (B17), the expressions for dS, dS. d ^  and d ^  we obtain 

= B^{/iSdt + ̂ T̂ SdẐ )+ Bg{k{a -  S)dt + cr^dZj)-B^dt + ̂ BggCjfS^dt

+ ̂ bgscrldt + b^gSpcTiCTidt

where x is the time to maturity.

Rearranging the above

BgpS + Bgk(a -S )-B ^ +  —BggCTiŜ  +~^3s^2 +

+ cr̂ SBgdẐ  + (j^BgdZ  ̂ .

Now rewriting the above in the form of the instantaneous return we get

—  = )dt + ŝ dẐ  + SgdZ;
B

dt

(BIS)

(B19)
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where y = B s i x S + B ^ k ( a - S ) ~ B ^  + - B s g G ^ S ^  - ^ ^ B ^ i s \  ■̂B̂ Sçxŝ <S2 IB

^\SBsj ,= -  ■

B 
and

Sj -
B

Under standard arbitrage assumptions, we can construct an arbitrage portfolio 

with three time varying contingent claims. For ease of exposition, I suppress the notation 

for the contingent claims and express them only in terms of their respective maturities, 

5(1), 5(2) and 5(3). The arbitrage portfolio is given as

5  = x,5(I) + X25(2) + %35(3). (B20)

We may express the instantaneous return for the portfolio as

Substituting the corresponding instantaneous returns for the contingent claims from 

equation (B19) into (B21) yields

^  =  x^{y^dt■^s^^dZ^ + S2idZ2)+X2iy2^^+ f  ^ +S2idZ2).

Rearranging terms in the expression above

y  = k y , + X2Ï2 +  ̂ ^3 + (V u + ̂ 2̂ 12 + + (x,S2, + %  + % )dZ% .

(B22)

For the rate of return on the portfolio to non-stochastic (riskless) the coefficients on 

dZf and (fZ; must be equal to zero. That is

+%2f,2 +%3f|3 = 0  (B23)
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+ ̂ 2 J22 + ̂ 3̂ 23 -  0 • (B24)

In addition, if the rate of return is non-stochastic then it must be equal to the riskless rate 

of return, r

^iYi+^2Y2+^3Y3 ='*' (B 25)

From the arbitrage pricing theory (APT) we know the following

'^ x ,  =l ~Y1^ i^2i ~q

Z ^ 'Y , or X^/(Y , - 0  = 0 - 

With the above APT assumptions we way write equations (B23), (B24) and (B25) in 

matrix notation

Y , - r  7 2 - r  J j - r 'x , ' "O'
J , ,  J |2 S,j X2 = 0

S2 1  ^22 ' 2̂3 / 3 . 0

Ax = 0.

One plausible solution to the above is the trivial solution

X,' O'
X2 = 0

3 . 0

This solution, however, is not feasible because we require some investment. The other 

solution to the homogeneous system is the nontrivial solution. For a homogeneous 

system to have a nontrivial solution the coefficient matrix must equal zero. This implies 

that the row vectors in the coefficient matrix are linear dependent. Thus, we can express 

as,

y - r  = + ^ 2 ^ 2  (B26)
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where y, s, and ̂ 2  are 1x3 vectors.

Now substitution o f y, si and Sz into equation (B26) yields

BgfiS +  Bgk{a  - 5 ) - B ^ +  ~ B ss^ \ + —BggCrl + B^gSpcx^a^

1 ^\BBg , , ^iBs

(B27)

We can reduce the above by solving for X,. The spot contract (B(S,0)=S), must 

also satisfy equation (B26). The total expected return p, to the owner of the commodity 

derives from two sources, namely the convenience yield Ô and the expected spot price 

change p . One can define the market price per unit of spot price risk A, by solving the 

partial differential equation for S. Thus, if B(S,0)=S and the partial derivatives B ^ l  and 

Bg=0, then we may rewrite (B26) as follows

P s - r  = Â{7̂

Further, if the total expected return of the spot price derives from two sources, the 

convenience yield and the expected price change p, then we can derive 1 , as

^  = <̂ ± £ )_ r . (B28)
O',

Substituting equation (B28) into equation (B27) yields
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Bgf£ + Bgk{a-S)-B^  + — ■̂—Bgs<rl +5,^5pcr,cT2 j - r f f  =

\ f i  + S)-x'
\  0-,

OT|iS&̂ + À20'2Bg.

Moving the terms on the right hand side to the left hand side and rearranging yields

+ BgSir-S) +Bg{k(a- â )~ ^2 (7 2 ) - Bj - rB = 0 .

(B29)

Equation (B29) is the valuation equation. For a futures contract the partial differential 

equation is

+F,gSpa^cT2 +^FggCrl + F ,5 (r-J )  + F , ( A : ( a - =0  . (B30)
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Appendix C

Risk Neutral Pricing Methods: Partial Differential Equations and Equivalent
Martingales

With the use of stochastic calculus, modem finance has developed two major 

methods for pricing contingent claims. The first and better known method utilizes a 

partial differential equation. The second method (which is used in my analysis) requires 

transforming underlying processes into martingales. Both methods are addressed in this 

appendix.

C. 1 Partial Differential Equations

We begin with a general discussion to the partial differential equations approach to 

pricing contingent claims. The derivations for the various futures pricing models used in 

the analysis are shown in appendix B. These derivations show how the dynamics of the 

underlying state variables and a no arbitrage condition produce a partial differential 

equation that the futures price must follow. Given this expression, we use some 

necessary boundary conditions to determine the pricing formula for a particular futures 

price. The purpose of this section is to intuitively describe the above method of solution 

used for pricing a contingent claim.

The intent of our analysis is to determine the price of a derivative security and 

how its behaves over time. For our purpose here we will determine the value of a call 

option whose price is solely determined by an underlying stock price. With this said, for 

us to say something about a call option, we must know how the underlying stock price 

behaves. Therefore, we begin by positing a model that characterizes the dynamics of the 

underlying stock price, S(f), and from there we determine the dynamic behavior of the
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call option. Accordingly, we assume that the stochastic differential of the stock 

price, obeys the stochastic differential equation

dS{t) = ^lS(t)dt + aS{t)dZit) /e[0,oo), (Cl)

where // is the instantaneous return on the stock and a  is the diffusion coefficient. 

dZ{t) is the standard increment of a Brownian motion. Suppose the option price can be 

written as a twice-continuously differentiable function of the stock price and time, 

namely F{S,t). If the stock price follows the dynamics described in (Cl), then the 

option’s return dynamics can be written in a similar form as

dF{t) = ^i,F{S,t)dt + cr^F{S,t)dZ{t), (C2)

where fip is the instantaneous return on the option and Cp is its diffusion coefficient. 

Note, F{S{t\t) is the notation used to denote the derivative security’s price written on 

the underlying stock. dF{t) is the total change in the option’s price over an infinitesimal 

interval, and F, is the partial derivative of F{S(t),t) with respect to time.

Using Ito’s lemma and the stock price dynamics given in (Cl), we may 

alternatively express the increment for the derivative security as

rfF(<) = F,dS(,t)+^FjdS(t)f+F,dt.

Substituting in for the stochastic differentials and rearranging yields, 

dF(t) = F,dt + + F ,i^ (t)d t + aSit)dZ{t))

dF{t) = dt^F,aS{t)dW{t). (C3)
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If we know the functional form for F{S(t),t) then we could take the partial derivatives 

F,, F, and to obtain the exact stochastic differential equation that governs the 

dynamics of the option price. The functional form is not known, however, we can 

determine it.

Given the expressions in (C2) and (C3) we can define the drift and diffusion terms 

for the option in (C2) as

+F, IF , (C4)

(j ,= ( t SF JF  (C5)

Notice from equation (C3), the same Weiner increment that drives S{t) also 

describes the movements in F{S{t),i). We would expect this as F{S(t),t) derives its 

value from S{t) . Since dF{f) and dS{t) have the same source of underlying uncertainty 

we can form a risk free portfolio in continuous time. Let P(t) dollars be invested in the 

stock, 5'(/), the option, F(5(/),/), and a riskless asset with a return r per unit time. The 

portfolio’s investment strategy is in portions w„u^,andu^ of the assets above

respectively, where Ew/ = 1. The return dynamics to the portfolio are expressed as:
;-i

dP{t) = PpP{t)dt + <TpP{t)dZ(t) , (C6)

where jUp is the instantaneous return on the portfolio and <jp is the diffusion coefficient 

for the portfolio. The value of this portfolio changes as time passes due to changes in 

F{S(t),t) and of S(t). The drift and diffusion terms for the portfolio are linear 

combinations of the drift and diffusion terms of the individual assets held in the portfolio. 

The drift term is
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//p =W,//+W2/^f H-Wj//,.

Now using the constraint w, + Wj + W3 = 1 and the fact that the expected return on the 

riskless asset is equal to r  we obtain

Up = w,// + ŵ Hp + (1 -  w, + W;)/-,

//f =M/,(//-r) + W2(//p -  r) + r (C7)

The diffusion coefficient for the portfolio is

Op = w,o- + WjCp + Wjcr,.

By definition <r, = 0 so we are left with

Op = WyO + WjO-p (C8)

If the portfolio in expression (C6) is risk-fi-ee, this means Op = 0 . If the portfolio is 

riskless and there are no arbitrage opportunities then the drift term for this portfolio must 

equal the risk-free rate of return. That is, //p = r . Therefore, we can write expressions 

(C7) and (C8) as

//p = w/,(//-r) +W2(//p-/-) + /-= r 

Op =  W,0-+WjO-p =  0,

or

/ / p - r  = w ,(//-r)  + W2(//p-r) + r = 0 

Op =Wy0-\rW20p = 0 ,

We may express the above system of equations in the following form

(C9)

(CIO)

- r  H p -r r *1 0
0  Op S . 0

(Cll)
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The system of equations in (C ll) is known as a homogeneous equation system. There 

are two possible solutions to this system. The first is called the trivial solution where the 

weights are all equal to zero,w/j = 0. This solution, however, is not a viable solution

since by definition there must be some investment. The second solution and more 

appropriate is the non-trivial solution where the portfolio weights are all non zero, 

0. The only way to obtain a nontrivial solution from a homogeneous system of 

equations is if the coefficient matrix is singular. That is.

H - r  fXp-r = 0 .

The above condition implies that the row vector - r \  is a multiple of the row

vector [<T,cr ]̂; consequently one of these two equations is redundant. Dealing with the 

first equation we see

w, = - w
(M -r)

Now substituting this expression into the second equation we have

(C12)

(C13)

We are looking for the non-trivial solution w,* 0. The only way the equation above

equals zero is if the expression inside the brackets equals zero. This implies
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( A f - r )  ( / / - r )
(CM)

The non-trivial solution for the homogeneous system of equations in expression (12) is

_ Y i - r (CIS)

where / ,  =  \  = [< 7 ,cT i^ ] .  To illustrate the above consider the expression

(M -r)
w, =-w%

Substitute this expression into

w[a + w\<yp =0 ,

-  w* — —a  + = 0 (C16)

then expression (15) becomes

O'" J (J i-r)
<T +

V ''F
\M F - r Ÿ
\  j

<̂F =0 ,

<T +
((M F-r)]
\  J

Of = 0 ,

{^iF-rŸ
\  ^F )

(C17)
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Recall from expression (C l4), that

CTp <7

Therefore, expression (16) reduces to

a-p

The result above shows that the optimal weighting scheme.

w ; = - ^ ,  (CIS)

Now substituting expressions (C4) and (C5) into expression (CIS) yields

lF{S{t),t)-r
M -r

<7 aS(l)FJF(S(l),l)

■O ' - ' - t e y .  .  + m ) F ,  + F ,-F (S (l),t)r ,
O’ I

(p -  r)S(l)F, = iF„<r“[S(Of + pS(t)F, + F ,- F(S(t).t)r,

+ -F(S((),()r = 0 . (C19)

Equation (Cl9) is the partial differential equation for pricing call option written on the 

underlying stock whose price follows (Cl), The solution to this equation, F{S(t),t), is 

the unknown we wish to find. While the exact form of F{S(t),t) is not known, we do 

know that the linear combination of the partial derivatives is equal to zero (expression 

(Cl9)), In addition, at time T we know that F{S(t),T) must equal some known value 

G(S(t),T), which is called a boundary condition. This value indicates some plausible
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condition that must be satisfied by F{S(t),T) at time T. Once the necessary boundary 

conditions are stated, standard methods of solution exists for solving (Cl9). One well 

known example of the partial differential equation pricing method is the Black-Scholes 

option pricing model. While the example is illustrated for pricing options on stocks the 

analysis can be easily generalized to price other contingent claims written on any 

underlying asset.

The astute reader should notice that the solution, F{S(t),t), to expression (C19) is 

also the solution to equation (C3). The question is, what do we gain from using 

expression (Cl9) over equation (C3). One, we invoke a no arbitrage condition to find a 

deterministic equation describing the expected movement of the derivative security. 

Two, as mentioned above, standard well known techniques exist for solving these 

equations. However, it is possible to solve the stochastic differential equation in equation 

(C3) and this method is discussed next.

C.2 Equivalent Martingale Measures

Recent methods of derivative asset pricing do not necessarily exploit partial 

differential equations implied by arbitrage free portfolios. They implicitly use a non­

arbitrage condition to convert prices of such assets into martingales. This is done through 

risk-adjusting the probability distributions of an underlying diffusion process using the 

tools provided by the Girsanov theorem. Once the distribution for the process is 

transformed the asset becomes a martingale. Thus, we will show that the fair market 

value of the commodity today will equal its risk-adjusted expected value.

Changing the means
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There are two ways one can change the mean of a random variable. The first 

method involves operating on the realizations of the random variable. The second, and 

counterintuitive method, leaves the realizations of the random variable unchanged, and 

operates on the probabilities associated with the realizations of the random variable. 

Both operations lead to a change in the original mean, while preserving other 

characteristics of the original random variable.

Example 1: Operating on the individual realizations

The most common method used in econometrics and statistics for changing the 

mean of a random variable is to simply add a constant to the random variable. For 

example, let % denote a random variable. The expected value of%is

E[x ] = 0. (C20)

We can alter the mean of%by creating a new variable Z. Let Z = X  + a. Given the new 

random variable Z , the expectation will be such that

E[z]=E[x]-\-a = a. (C21)

A simple example will illustrate the point above. Let AT have the following distribution

jf, =10 /(x ,)  = ^

Jf2=-3 /(^2) = J

^ 3 = - l  /(^3) = J

We can calculate the expected value of ATas a weighted average of its possible values:

= (C22)
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Now, suppose we would like to change the mean of X  using the method outlined above. 

More precisely, suppose we would like to calculate a new random variable with the same 

variance but with a new mean of one. We call this random variable Z and let

Z = X - \ .  (C23)

Using the formula in (C22) but with Z instead of X  we have

E \X ] = -[lO -  1]+ - [ -  3 -  1]+ -[-1  - 1] = 1. 

Did the variance stay the same? The variance for X  is

(C24)

r [ ^ ] - j [ l 0 - 2 p + - [ - 3 - 2 ] ^ + - [ - l - 2 f  = ~ -  (C25)

The variance of Z is

+ - [ - 4 - i r  + - [ - 2 - l f  = ^ .  (C26)

We were able to alter the mean for the random variable while keeping the variance 

unchanged. However, we can accomplish this objective in a different fashion. That is, 

instead of operating on the random variable itself we can alter the mean by transforming 

the distribution of the random variable.

Example 2: Operating on the Probability Distribution 

Consider the first example. X  is defined

X, =10 /(x ,)  = |

Xj=-3 /(X2) = i

Xj=-1 /(%3) = ̂
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98
It is clear that E{X)  = 2 and the V{X) = — . Now we want to transform X  so that its

mean becomes one, while leaving the variance unchanged. To find a new set of 

probabilities we can use the following information

= / ( a:;)[101+ /(% )[-3]+  /(x ;)[-l] = 1 (C27)

98v [ x ] = K x ] i\  0 -  i f +/(% ;)[- 3 -  i f + 1  -  i f = Y

M ) ^ f { x \ )  + f{x l)  = \ 

The system of equations can be rewritten as

10 -3 - I 1
81 16 4 = 98/3
1 1 1 1

Solving the system above for the probabilities yields

/ ( 4 )  = /(x j)  = ̂ •

Now calculating the mean of % under the new probabilities yields 

The variance of X  under the new probabilities is

^ * M  = |^ [ l O “ i r + ^ [ “ 3 - l f  + ^ [ - l - l f
98
3

(C28)

(C29)

(C30)

(C31)

Just as we did in the first example, we transformed the mean of X. The key here is we 

accomplished our objective by transforming the probability distribution for A', and not its 

realizations.
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One may wonder how the above method is useful in valuing financial assets. 

Consider the following. Let r be the risk-free rate of return. A typical risky asset S{t) 

must offer a rate of return R greater than r  on average otherwise there will be no reason to 

hold the risky asset. We may write this as

jF,[5(/ + l)]>(l + r)5(/). (C32)

On the average, the risky asset will appreciate faster than the growth of a risk-free 

investment. This inequality can be rewritten as

- | - £ , [ S ( (  + 1)]>5(/). (C33)

Here the left-hand side represents the expected future price discounted at the risk-free 

rate. For some X > 0,

; ^ £ , [ S «  + l)]=S(l)(l + -l). (C34)
(I + r)

Note that the positive constant can be interpreted as a risk premium. Transforming the 

above

= + + (C35)
byt)

The term on the left-hand side of this equation represents the expected gross return, 

E, [l + /?]. This means that

£,(l + /î) = (l + r)(l + A), (C36)

which says that the expected return on a risky asset must exceed the risk-free return 

approximately by X :

E ,{R )^r + X, (C37)

in the case where r and X are small enough that the cross product term can be ignored.

386



Under these conditions, A is the risk premium for holding the asset for one

period, and is the risk-free discount factor. The problem of the financial analyst is

to obtain the fair market value of the asset today. That is, the analyst would like to 

calculate S(t). One way to do this is to exploit the relation

1 = S(t) (C38)
(l + R)

by calculating the expectation on the left-hand side. Evaluating the expectation in (C38), 

however, requires knowledge of the distribution of R, and this requires knowledge of the 

asset’s risk premium À . The problem is the investor rarely, if ever, knows this value of
O

À before obtaining the fair market value of the asset. Therefore, implementing (C38) 

will go nowhere in terms of calculating S(t). .

In theory, we would like to price assets according to expression (C38). We have 

seen that the inability to properly identify an asset’s expected return leaves us to find an 

alternative method for pricing assets. Examination of expression (C37) shows that the 

expected return of an asset is a function of the risk-free rate of return and a risk premium. 

If we are capable of purging the latent risk premium from the asset’s expected return, 

then the risky asset’s expected return would equal the known risk-free rate of return. 

Subsequently, equation (C38) would then be a viable method for pricing a risky asset.

As we discussed earlier, we know it is possible to alter the mean of a random 

variable by altering its probability distribution. Asset returns are stochastic and presumed 

to follow a log-normal distribution. If we possessed knowledge of the return distribution, 

we could then use an equivalent probability measure to evaluate the return of the asset. 

The transformation would allow us to purge the risk premium from the asset’s expected
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return. The idea is to alter the distribution of R to equate the expected return to the risk 

free rate of return. In doing so we have taken the risk premium out of the asset and we 

may now use the known risk-free rate to discount the transformed forecast of the next 

period’s asset price. The new expression is

1
E, -Sit + l) = 5(0. (C39)

.(1 + r)

The process provides us with an /(0-adapted forecast of today’s asset price. This value is 

equal to the fair market value of the asset. That is, this price reflects what the asset 

should sell for today. The forecasted fair market value could be different from the actual 

price in the market. If so arbitrage opportunities exist and agents would to act 

opportunistically.

We can demonstrate the notion above with a heuristic example. Consider a risky 

asset whose fair market price is 5(t) = 100. Over the next interval of time, dt, the assets 

price will take on one of three values 5(/ + dt) = 100, 5(/ + rf/) = 110 or S(t + dt) = 120. 

Each realization for the asset’s spot price is equally likely. In addition to the risky asset, 

there is a risk-free asset that returns five percent over an interval of dt. Given the 

terminal payoffs for S(t) and its probability distribution we know the expect payoff for 

S{t + dt) is

£,[5(/ + dt)] = lOO^lj+1 lO^lj + 120^lj = 110. (C40)

We see the expected return on the risky asset is

Sjt + dt)

m  .

100-100
100
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Given the actual expected return, we may find the actual value of the asset using 

expression (C38), The asset price is equal to the next period expected price discounted 

by it expected return. This is

= = = (C42)

Notice in order to find the fair market value of S(t) we needed to know the true 

probability distribution for S(t) in order to determine its expected return. In a financial 

market, it is rare for agents to know the expected return before we know the true value for 

S(t). Therefore utilizing (C42) will typically go nowhere.

One the other hand, we can alter the mean of S{t) without having to use the 

expected return for S(t). That is, we will find a risk-adjusted probability distribution for 

S(t) then find the risk neutral forecast for S(t) and discount it by the known risk-fi'ee rate 

of return. This too should yield a fair market value for S(t). To find the risk-adjusted 

probabilities we need to solve the following set of equations

Of (si) + W is l )  + 20/(53*) = 5 (C43)

25/(5,*) + 2 5 /(j’) + 225/ ( 53')  = 66 (C44)

/(sD  + A sD  + f i s D ^ l .  (C45)

Equation (C43) is the condition that the new mean of S{t) under the risk-adjusted 

probabilities must equal the risk-firee return. Equation (C44) states that the variance of 

the asset remains unchanged. Lastly, Expression (C45) is the constraint that the 

probabilities must sum to one.

Solving the system of equations for the risk adjusted probabilities yields 

/ ( 5 , * )  = .705, / ( 5 ; )  = .09, / ( 5 , * )  = .205.
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The risk adjusted forecast for S(t + dt) is

E;[S(t + dt)] = 100(.705) +110(.09) + 120(.205) = 105. (C46)

Discounting the forecast by the risk-free rate yields
0

5(r) = A M ± ^  = i2 1  = ioo. (C47)
1.05 1.05

The solution in (C47) is equal to the solution in (C42). We have found the fair market 

value for S(t) and we did it using a risk-adjusted probability distribution. In addition, the 

variance of the asset has remained the same. That is,

V'[S(t + dt)\ = (100 - 105)"(.705) + (110 - 105)'(.09) + (120 - 105)'(.205) = 66.

Thus far, all our examples have been for discrete random variables. Naturally, 

one would question if we can alter the probability distribution for a continuous random 

variable. The answer is yes.

Consider a normally distributed random variable z(i):

z(O~W(0,l). (€48)

The state space is continuous and the probability density /(^(O) of this random variable 

is given by the well known expression

. (C49)

Suppose we are interested in the probability that z(t) falls near a specific value z . Then, 

this probability can be expressed by first choosing a small interval A > 0, and next by 

calculating the integral of the normal density over the region in question

p f j - - A < z ( 0 < z  + - A l =  I -^e~^^'^'^^dz(t). (€50)I 2 2 J
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Now, if the region around z is small then f{z{t)) will not change very much as z{t) 

varies from to z + ̂ A . This means we can approximate /(z (0 ) by /(z )  during

this interval and write the integral on the right-hand side as

2 2

1
g :  A (C51)

The probability in equation (C51) is a “mass” represented by a rectangle with base A 

and height /(z (t)). Visualized this way, probability corresponds to a measure that is 

associated with possible values of z(t) in small intervals. Probabilities are called 

measiu'es because they are mappings from arbitrary sets to nonnegative real numbers. 

For infinitesimal A, which we write as cfe(/), these measures are denoted by the symbol 

i/P(z(0),or

d?(z) = ~ d z { t)  < z{t) < z + j  • (C52)

This can be read as the probability that the random variable z(f) will fall within a small 

interval centered on z and of infinitesimal length dz{t). The sum of all such 

probabilities will then be given by adding these dlP(z(/)) for various values of z . 

Formally, this is expressed by the use of the integral

JdF(z(0)=l. (C53)
—00

Given expression (C48), the probability measure for z{t) is denoted as
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dP(z{t)) = . (C54)
V2;r

Therefore we state that we have a normally distributed variable, z(t) , with a probability 

measure dP{z(t)).

The question remains, how do we transform the probability distribution of z{t) to 

alter its mean. Consider the function

f(z('))= . (C55)

If we multiply dP{z(t)) by we obtain

V2;r

dP*{z(t)) = 1 (C56)

Integrating over expression (C51) yields

]dP\z{f))=  J - ^ e  dz(t) = 1.
—00 —00 27T

From the integral above, we see that expression (C5I) is also a probability measiue. It 

turns out that by multiplying dP{z(ti) by ^(z(/)), and then switching to P*, we 

succeeded in changing the mean of z{t). Note, that in this particular case, the 

multiplication by ^(z(/)) preserved the shape of the probability measure. In fact, 

expression (C56) is still a bell shaped, Gaussian curve with the same variance. But 

dP{z{t^ and d P \z{ t^  are different measures. They have different means and they 

assign different weights to intervals on the z-axis.
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To illustrate the above discussion, we calculate the probability measures for 

dP{z(t)) and dP*{z(t)) at various points for z(t) . In particular, we consider intervals for 

z(t) equal to .01 or A = .01, and we let z(t) = 0, z(t) = 1.5, and z(t) = 3. Under the 

true probability measure for z(t) we have

Therefore, the values for dP{z(t)) at z(t) = 0, z(t) = 1.5, and z(t) = 3 are

dP{z(t) = 0) = (.01) = 0.0039904,
yJlTt

dP(z{t) = 1.5) = (.01) = 0.0012955,
v2;r

dP(z{t) = 3) = (.01) = 0.0000443.

Under an alternative probability measure, where the mean is equal to three and the 

variance is one, we have

dP'(z{t)) = (.01).
yj27t

The corresponding measures at z{t) = 0, z(f) = 1.5, and z{t) = 3 are

dP*(z(t) = O) = (.01) = 0.000443,
V2%"

dP'(z{t) = 1.5) = (.01) = 0.0012955,
•\l27t

dP*(z{t) = 3) = (.01) = 0.0039904.
V2;r
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We know the correspondence between the two measures dP{z(t)) and dP*{z{t)) is 

^{z(0), which is

4{z{t)) = e  2 _

This function evaluated at z(t) = 0, z(t) = 1.5, and z{t) = 3 is

^(z(t) = 0)= e^  2 =0.01110,

4(z(0 = 1.5) = = 1.00000,

3(3)_l3:
^(z(r) = 3)=e 2 =90.01713.

Now, these values for ^(z(/)} alter the probability distribution for z(t) . That is, if we 

want the mean of z(t) to be equal to three instead of zero, then we must change the 

measure of z(t) at each value. Thus, if the mean of z(t) is three the measure for z(t) at 

z(t) = 0 must equal 0.0000443. But the true measure is 0.0039904. To obtain the 

desired probability measure we multiply the true measure, 0.0039904, by ^(z(t)), 

0.01110. The transformation yields a new measure for a normally distributed variable 

with mean of three and a variance of one. Notice that as z(i) moves further to the right 

the adjustment factor moves as well. This occurs because the probability measures are 

changing as well.

From above we know the correspondence between the new probability measure 

dP*(z(0) and the original measure, cfP(z(/)}, is the function i(z(t)). We can give an 

interpretation to ^(z(/)}. Formally,

dP*=4{t)dP. (C57)
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We can rewrite this as

dP*
=  f ( 0 ,  (C58)dP

which can be regarded as a derivative. This derivative is called the Radon-Nikodym 

derivative and reads as, the “derivative” of the measure P* with respect to P is given by 

^(0. Simply put ^(f) is a ratio of two probability measures for a given value of z{t). 
We see that as z{t) changes so will the probability measures. 4(0  captures this change, 

hence it is regarded as a derivative of one measure with respect to the other.

Note, in order to write the ratio in (C40) meaningfully, we need the probability 

mass in the denominator to be different from zero. To perform the inverse 

transformation, we also need the numerator to be different from zero. Recall the 

numerator and the denominator are probabilities assigned to infinitesimal intervals dt. 
Hence, in order for the Radon-Nikodym derivative to exist, when P' assigns a nonzero 

probability to dz{t), so must P, and vice versa. If this condition is satisfied, then 4(0 
would exist, and we can always go back and forth between the two measures using the 

relations

dP'=4it)dP  (C59)

and

dP = 4(ty^dP \ (C60)

This means that for all practical purposes, the two measures are equivalent, thereby, they 

are called equivalent probability measures.

Girsanov theorem
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In our example above, we saw how to transform the probability distribution for a finite 

sequence of random variables. In applications of continuous time finance, the examples 

provided thus far would be of limited use. Continuous finance deals with continuous or 

right continuous stochastic processes and we need a method for altering the distribution 

for such a process. The Girsanov theorem provides the conditions under which the 

Radon-Nikodym derivative, ^(/), exists for cases where z{t) is a continuous stochastic 

process. Transformations of probability measures in continuous finance use this theorem. 

The Girsanov theorem states;

i  I f
^ X { u ) d W { u y - ] x ( u f d u

If the process = ' is a martingale with respect to

information sets /(/), and the probability P, then fV*(t), defined by

/

fV‘(0  = fV(0 -  fx(u)du t e [0,T], (C61)
0

is a Wiener process with respect to /(/) and with respect to the probability 

measure P ’(T), given by

P-(T,A) = E % ? ( T ) ] ,  (C62)

with A being an event determined by 7(7) and L being the indicator 

function of the event.

Consider the following heuristic example. Let dS(t) denote incremental changes in an 

asset price. Assume that these changes are driven by infinitesimal shocks that have a 

normal distribution, so that we can represent S(t) using the stochastic differential equation 

driven by the Wiener process fV(t)

dS(t) = Mdt + adW(t) (C63)
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fF(t) is assumed to have the probability distribution P, with

dP[fF(0] = . (C64)

Clearly S(i) is not a martingale if the drift term /idf is nonzero. Taking the 

integral of (C64) from 0 to t we get

S(/) = S(0 )+ ^\d s  +(7 \dW{s) .

Now let 5(0) = 0 and 1^(0) = 0 , the above becomes

S(t) = 0  + àW{t).

I f  s > t  then we can write

E, [5(f + s)] = //(/ + s) + aE, [W(t + s)~  W(t)]+ afV(t)

= //(t + s) + a-fF(t)

= fJt + <TW{t) + ̂

= 5(0 + f ts .

It is clear that 5(0 is not a martingale. We can however convert 5(0 into a martingale by 

using the Girsanov Theorem to switch to an equivalent measure P* so the drift of 5(0 is 

zero. To do this we need to come up wi± a function ^ (0 , and multiply it by the original 

probability measure associated with 5(0. The density for 5(0 is given by

P̂[5(/)] = ~ i = = e  dS(0. (C65)
yjlncr^t

To switch to a new probability measure P* such that under P*, 5(0 becomes a 

martingale, we need to multiply dP[5(/)] by
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=  (C66)

This yields

dP[S(t)^{t) = '] — -■  ̂ dS(t) . (C67)

Rearranging yields

dP* [5(/)] =  ̂ .
'JlTTCr̂ t

(C68)

Expression (C68) is an equivalent probability measure for the spot price process. Under 

this new measure S(i) where is a normally distributed a mean of zero and difhision of at. 

Under the new probability measure we have removed the drift from the spot price without 

having to estimate it. This is a incredibly convenient for we are not burdened by the 

unobserved risk premium embedded in the expected return. The dynamics of the spot 

price may now be expressed in terms of a new driving term d W \ t ) .

Recall under the Girsanov theorem d W \t)  is defined

d W \t )  = dWit) -  X{t)dt , (C69)

and for our example X{t) = — . The composition of the last term in expression (C69) is
a

a function of the drift coefficient. That is, X{f) measures how much the original mean 

will be changed. This is seen by substituting the expression for X{t)  above into (C69) 

and then using (C69) in the process for S{i) to obtain

dS{t) = fidt +

Rearranging yields

(C70)
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dS{t) = a d W \t ) .  (C71)

We see the mean of S{t) has changed and now under P*, S{() is a martingale.

In more general terms, the Girsanov theorem states that if we are given a Wiener 

process W{t), then multiplying the probability distribution of this process by ^(t), we

can obtain a new Wiener process W \t )  with probability distribution P*(t). The two 

processes are related to each other through

d W \t )  = dW{t) -  X ( t)d t . (C72)

That is, W*{t) is obtained by subtracting an I{t) adapted drift from W{t). If %(/) = A 

Then X(f)  in the Girsanov theorem plays the same role as /I didin the simpler examples 

above. Again, it measures how much the original mean will be changed.

Consider the Wiener process W*{t). There is something counter-intuitive about 

this process. It turns out that both W*{t) and W{t) are standard Wiener processes. 

Thus, they do not have any drift. Yet they relate to each other by (C37)

dW* (t) = dW(t) -  X (t)d t , (€73)

which means that at least one of these processes must have nonzero drift if X(t) is not 

identical to zero. The point here is IV* (t) has zero drift under P*, whereas, W(t) has 

zero drift under P. Hence, IV* (t) can be used to represent unpredictable errors in 

dynamic systems given that we switch the probability measures from P  to P*. Also, 

because W*(t) contains a term - X ( t ) d t , using it as an error term in lieu of W(t) would 

reduce the drift of the original stochastic differential equation under consideration exactly
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by -X { t)d t .  If the X{t) is interpreted as the time dependent risk premium, the 

transformation would make all risky assets grow at a risk-free rate.
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Appendix D 

Stochastic Calculus

In this appendix we illustrate the integration techniques used to determine the mean and 

variance for second order stochastic processes.

The asset pricing models in our analysis presumes that the dynamics of the 

underlying state variables follow particular stochastic differential equations. The 

dynamic specification for these state variables has implications for valuing the financial 

assets under consideration. In particular, the asset pricing models need the mean and 

variance of the individual state variables to price the financial assets. The specification 

given to the dynamic increment impacts the distribution of the state variable at time t and 

thus the its mean and variance. To obtain the mean and variance of the state variables we 

need to understand the properties of the stochastic differential equations. Consider

dX{t) = a{t)dt + f{t)dW (t),  (Dl)

where a{t) is the drift coefficient,

J{t) is the diffusion coefficient,

dZ(t) is the increment of a Gauss Wiener process, and

ffXOis N~(0,^/^).

X(t) is a stochastic process. It has an expected drift of a(f)dt with unpredictable 

movements driven by dW(t). The corresponding integral representation is

\dX{s) = \a{t)ds + \f(t)dW {s)
0 0 0
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X(t)  = %(0) + a(t)t + !fit)d fV(s) . (D2)
0

If we are to find the mean and the variance of X(t) we must be capable of evaluating the

/
integral in expression (D2). That is, we must evaluate a stochastic integral.

To do this we must consider some properties of a Gauss Wiener process.

A Gauss Wiener process is a stochastic process that describes the highly irregular 

movements of a particle suspended in a liquid. This motion is often referred to as 

Brownian motion named after the scientist who was first to study this phenomenon. We 

can describe this motion. Let the location of a particle be described by a Cartesian 

coordinate system whose origin is the location of the particle at time / = 0. Then the three 

coordinates of the position of the particle vary independently, each according to a 

stochastic process W(t), -c o < t  <co, satisfying the following properties:

(i) W(0) = 0.

(ii) W(t) -  W(s) has a normal distribution with mean 0 and variance 
(T^(/-j’)for s ^ t .

(iii) are independent for all

(iv) El{W(s) -  W(a)XW(0 -  W(a))] = a l  min(j - a , t - a ) .

Here a l  is some positive constant. Given its irregular motion the Wiener process is a 

continuous, nowhere differentiable function. The integral

I m d W i t )  (D3)
a

does not exist in the usual sense. Nevertheless, it is possible to give meaning to this 

integral. One way of doing so is to define the integral as
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s->0 a \
(D4)

provided the indicated limit exists. To see that this limit does indeed exist and to 

evaluate it explicitly, we observe that

\ m [  ,
a  V € J a I J

b  /  1
dt = ] f { t ) \ -  ]w \s)d s

a V f  I
dt.

Now

Therefore

dt

j / ( , ) [ ^ E £ ± ^ ± E 2 )  jr f ,= ,

or

‘’̂ f J W{t + e) + W{tŸ
a  \  ^  J

Integrating the right-hand side by parts

a d t  \  €  I J
(D5)

Mvl - ju d v . (D6)

j t*S
where u = — jw(s)ds,  v = f ( t )  and dv = f ’(t)dt.

We have
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Since the Wiener process has continuous sample functions, it follows that the right-hand 

side of (D7) converges to

m m t - l r m m -  m
a

Thus we are led to define

a

as the limit of the right-hand side of (D7) as f - > 0 ,  that is, by the formula

= m w { b )  -  m w { a )  - i r m m . m
a a

Note that the right side of the above expression is well defined and that it agrees with the 

usual integration by part formula.

Since the Wiener process is a Gaussian process, it follows from property (i) and 

property (ii) that

] f( l)d W (0
a

is normally distributed with a mean of zero. Taking the expectation and noting that we 

can interchange the expected value and integration, we obtain

To compute the variance for W(t) we need to show that i f  a and c(t) is another 

continuously differentiable sample function of W(t) on [a,b], then

4 i m d n i ) f g ( t ) d w ( i ) ] = a i ‘i f ( t ) g m -  ( d h )
La a J  a
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The above result is called Ito’s isometry. To start the proof we rewrite (Dl 1). We need 

to add and subtract

]nt)W{,a)dt (D12)
a

from (D9). This yields

j / W ( 0  = / ( W ( 6 ) - / W ( a ) - J / W ( # + ) / W ( a X r - j / W ( n X r . ( D i 3 )
a a a a

Rearranging the above gives

\f{t)W{t)  = m W i b )  -  m W i^ a )  -  \f(b)W{a) -  f{a )W {a )] -] f \ t ) (W { t)-  W{a))it
a a

or

= m ( W { b )  -  W {a))-] f\t)(W {t) -  W{a))lt. (DM)
a a

Given the result above we have

]g{t)W{t) = g{b)(W{b) -  W{a))-]gXt)(W{t) -  W{a))it. (D15)
a a

Now we need want to find

£  \n t)dW (l)\g{t)dW (t)  
L« a

Or

- ^ n b i W ( b ) - W ( a ) i g X l i W ( l ) - f r ( a ) ) i i \
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-  E]^gib){W(b) -  W{à))\f\t)(Wit) -  W{à))lt^

+ E\g{b)(W{b) -  W { a ) )m { ^ (b )  -  W{a))]. (D16)

We will evaluate the right side of (D16) by breaking it up into four separate terms. We 

begin with

(DIT)

The above expression can be rewritten as 

E ^ f\ t ) {W { t)  -  W{d)^t\g\t){W{t) -  W{a))it\^

= \ m \ g ' { t ) E l W { t )  -  W (a)XnO  -  W(a))}ltdt. (D18)
a a

The right-hand side of the above can be written as

= f W  -  IKWXgC) -  '» ' ( " #  - (DI9)a

To show this result, consider the following. We know from property (iv)

E[{^{s) -  W(a)XW(t) -  W(a))] = <rl mm{s - a , t - a ) .

Now writing the right-hand side of (D18) as

= \ns)\g \t)E[{}V{s)  -  W{a)\W{t) -  W{a))^tds. (D20)
a a

and using the property for the Wiener process we get 

-  W{a)\W{t) -  W{d)^tds  =
a a

f '{s ) \  g '(r)m in (f-n ,t -  a)(itds. (D21)
0 o

Now rewrite the inner integral as
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= }(/ -  a)g \t)d t + ( s -  a)j g '(t)d t . (D22)

Now integrating the first integral by parts yields

u = g(t) , V = ( / - a ) , and dv = dt

= ( ( -  o)g(0\l -  ÎgiOdt + { s -  a)f g'{t)dt. (D23)
a s

Integrating the above we get

= (t -  a)g{t)\[ -  ]g(t)dt + (j -  a){g(b) -  g(j)),
a

= { s -  o)g(s) ~ (a~  a)g(a) -  } g(t)dt + (j -  a^gib) -  g{s)),
a

= (^ -^ )g (b )- jg (0 (^ f ,
a

= (024)
a

Thus the left-hand side of (D18) equals

(d 25)
a a

Interchanging the order of integration gives

= <^ll{g(.b) -  g(0)f f '(s)dsdt ,
a t

= <rÛigW)-g{t) ïf(b)-m)lt.  (D26)
a

This is also equal to

= o-;jfe(0-«(A)X/'W-/W)ft. (027)
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Therefore we can write (D18) as

4 î/ '(< K » '(0 -» '(a ) ) i4 « '(0 (» '» -» '(< i)y < ]  = < T ;j(g (l)-« (6))(/(/)-/(é)V (.(D 28)
La a J a

Now observe

-  E \^m {W (b)  -  W{a)i gX O inO  -  W{a))lt\^. (D29)

Interchanging the order of integration and the expectation the above expression is equal 

to

= -m ]g 'i t )E [ (W {b )  -  W{a)lW{t) -  W { a )y t . (D30)
a

Using the property E ^ ( s )  -  fV(a)yW(t) -  W(a))] = crl min(f - a , t - a )  the above can 

be written as

= - a l f ( b ) j g ' m - a ) d t .  (D31)
a

Now we use integration by parts to obtain

= -  a)g(t)\l -  ! ,

= -<rlf(b)^(b -  a)g(b) -  ,

= - < r l m ‘ig{b)-g (t)d t.  (D32)
a

Consequently 

Similarly we find that
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- g{̂ g(6)W) - r(a))|/'(<)(»'(l) - W'(o)>*] = <yûg(l>if(>) -  / ( # . (D34) 

Lastly we note 

- W(a))f(biwm -  r(o))] = g(bmb)B^W{b) - Ŵ a)tŴ b) -  ir(a))].
(D35)

This is equal to

g(b)f(b)Eÿir(b) -  tr(a)Xlf'(b) -  >F(a))] = g(é)/(6)o-^ ((. -  „ ) , (D36)

or

g(b)/(b)£l(fV(b) -  W{a)\W{b) -  W{a))] = . (D37)
a

Now plug (D28), (D33), (D34), and (D37) into (D16) we get

4 ‘lf(l)dW(t)ig(l)dn‘)] = -  g(é)X/(') -  + o-if/(« (g (0 -  g(«M
La J a a

+ < r i f g ( 6 ) ( / ( o - /w ) '> +<t; Î « w / (* V ' • (D38)a a

The above reduces to

E \‘lf( l)dW (l) j  g(l)dW(l)] = crl‘i f ( O g m .  (D39)
.a a J a

This is what we wanted to show. The above is called Ito’s isometry and is very powerful 

result. To see this, note that the term on the left-hand side of (D38) is composed of two 

stochastic integrals. That is the integrals contain random variables. In fact, as of time t-l 

the term

is a random variable, and the sum
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/-O

is an integral with respect to a random variable. The integral itself is thus a random 

variable and cannot be evaluated using rules of deterministic calculus. Evaluating these 

integrals is simply not easy, but we do not have to evaluate these integrals. Ito’s isometry 

shows that the multiplication of two stochastic integrals is an integral over the well 

defined continuous diffusion coefficients with respect to time. The right-hand side of 

(D39) is deterministic and can be evaluated using standard Riemann sums.
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Appendix E 

A  Discussion of the Feynman-Kac Formula

In financial economics, contingent claim pricing models often use equivalent martingale 

measures to price a financial asset. These probability measures are useful in that they 

provide an arbitrage-free conditional forecast for the terminal spot price of an underlying 

asset. Given this forecast, economists can use this analytical solution to price any 

derivative security. This method of solution for the price of a derivative security is 

motivated by the Feynman-Kac formula. The Feynman-Kac formula shows there is a 

correspondence between a class of conditional expectations and a set partial differential 

equation. This is useful in that if a known conditional expectation exists for the partial 

differential equation, then we may use this forecast to value the contingent claim instead 

of solving the partial differential equation. That is, if the forecast is easy to calculate then 

it is beneficial to value the asset via the conditional expectation as opposed to dealing 

with a partial differential equation.

The purpose of this appendix is to illustrate Feynman-Kac by example. That is 

we will show how the conditional expectation is linked to a particular partial differential 

equation by mechanically deriving the partial differential equation from a conditional 

expectation. Three examples are considered. The first example is for a model with 

deterministic discount rates and a random cash flow. The second example deals with a 

stochastic discount factor and a known cash flow. The final example and more 

meaningful one considers both a stochastic discount factor and a random cash flow.
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Example 1 Deterministic discount rate and random cash flow

Consider the function F(x(t)) of a random process jc(/) 6 [0,oo) defined by the 

conditional expectation

F ( x m  = Eo (El)
Lo

where ^ > 0  represents a constant instantaneous discount rate, g(x(s)) is some 

continuous payout that depends on the value assumed by the random process x(t) . E , \ \  

is the expectation conditional on the information set /( /) . The process x(t) obeys the 

stochastic differential equation

dx{t) = fidt + adZif) , (E2)

where // and c  are known constants. F(x(/)) is interpreted as the expected value of 

some discounted fiiture cash flow g(x(s)) that depends on the random variable x (s). 

For now we focus on the case of a deterministic discount factor and show how we obtain 

a corresponding partial differential equation for the conditional expectation in equation 

(El). Once we have this result, we will turn our focus to random discount factors.

We obtain a partial differential equation that corresponds to the expectation in 

(El) in several steps. We proceed in a mechanical way, to illustrate the derivation. First, 

consider a small time interval 0 < A and split the period [0,oo) into two. One being the 

immediate future, represented by the interval [0, A], and the other represented by [A,oo). 

The integral inside the expectation in equation (El) can be rewritten as

00 À «0
fe'^g(x(s))ds = fe~^g(x(s))ds + fe~^g(x(s))ds.
0 0 A

Thus, expression (El) can be alternatively written as
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F(jc(0)) = ^ / 1̂ / e'^g{x{s))ds + J e"^g(x( j . (E3)

Expression (E3) offers some insight to the relationship between the conditional 

expectation and a related partial differential equation. Both the conditional expectation 

and partial differential equations yield forecasts for the state variable. We are interested 

in finding the correspondence between the two forecasts, which yield the same result. 

Looking at equation (El), we see the forecast is for the entire investment horizon. 

Expression (E3) breaks this forecast into two intervals; the immediate future and the 

remaining time horizon. Intuitively, this is similar to the makeup of a stochastic 

differential equation. That is, the dynamics of the state variable are given by an 

instantaneous drift, indicating the immediate expected movement, and a diffusion term, 

dictating unexpected movements. Comparing the characteristics of a stochastic 

differential equation to expression (E3), we may say in very general terms that the 

integrals in expression (E3) is an approximation of the dynamics of g(x(t)).

Continuing our analysis, the next step involves some elementary transformations 

that are intended to introduce the future value of F(x(i)) to the right-hand side of

expression (E3). Multiply and divide the second term in expression (E3) by . This 

yields

F(x(0)) = £o W ^ ) ) d k j ,

F(x(0)) = £ ,  . (E4)
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Recall the recursive property of conditional expectations. When conditional expectations 

are nested, it is the expectation with respect to the smaller information set that is relevant. 

Thus, if we have I{t) ç  I{s) , we can write

This permits us to rewrite expression (E4) as

f(x(0)) = E, /  e~^g{x{s))ds + (E5)

Recognizing the second term inside the inner brackets on the right-hand side of 

expression (E5) as F(x(A)), we rewrite (E5) as

F(x(0)) = E, \e~^ g{x{s))ds + (E6)

Now, grouping all terms on the right-hand side of equation (E6) yields

]e-^g(x(s))ds + e'^^^^FWA)) j  -  F(x(0)) = 0.

Note, F(x(t)) is a known value of F( ) at time 0. Since the expectation is taken with 

respect to / ( /) ,  we know that

f ( 4 0 ) = £ , [ W ) ) ] .

Therefore we may move F(x(0)) in expression (E6) inside the expectation operator. 

This yields

+ e-^<"^F(x(A)) -  F(x(0))j = 0. (E7)

Now, add and subtract F(x(A)) to the left-hand side of expression (E7). This yields 

Fo + e-^<"’F(x(A)) -  F(x(0)) + F(x(A)) -  F(x(A)) j  = 0.
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Rearranging the above yields

]e-^g{x{s))ds + -  i)f(x(A)) + F(x(A)) -  F(x(0)) = 0. (E8)

The term inside the brackets in equation (E8) describes the movement of the stochastic 

process. We are interested in understanding the movement for an infinitesimal interval, 

therefore we take the derivative of (E8) with respect to A . That is,

l im y 4  \]e-^g{x{s))ds + [e-^^^  ̂- i)f(x(A)) + F(x(A))- F(x(0))l = 0 (E9)
A-»0 A [_0 J

The first term is the derivative with respect to the upper limit of a Riemaim integral. That 

is

\ e~^ g{x{s))ds = g{x{s))ds,
& -» o  A  0  o A  0

g{x{s))ds = (l)g"^g(x(A))|^_^

= e‘^®gWO)).

= & (# ) )  E(IO)

The second term, is in fact, a standard derivative of evaluated at x = 0

A—>0 A A—>0 2a

6A la-0

=

=  - > » .  ( E l l )
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The last term, involves the expectation of a stochastic differential and hence requires the 

application of Ito’s lemma. That is,

F(x(A)) -  F(x(0)) = F^dx + ̂ F„dx^ + F, A ,

F(x(A)) -  F(x(0)) = F,[oA + ot/Z(A)]+ ̂ F ^ rr 'A  + F,A ,

F(x(A)) -F (x(0)) = F^\//A + or/Z(A)]+^F^cr'A + F,A ,

F(x(A)) -  F(x(0)) = \^F,n + ̂ F „ a ^  + F, jA + orfZ(A)

Thus,

lim—[F(x(A)) -  F(x(0))] = lim—A-+0 A A-»0 A
PxF + -F„(t ^+F, A + or/Z(A)J,

1hm— 
A-»0 A

1
+ +^/ A + adZ{ù^ = Fj ĵj +—F„a^ +F, + lim—(oz^(A)).

A-*0 A
(EI2)

Substituting expressions (ElO), (El 1), and (E12) into (E9) yields

lim—F q 
A-»0 A

]e-P‘g{x{s))ds + -  i)f(x(A)) + F(x(A)) -  F(x(0)) j

g(x(0))-yaP(x(0))+F,// + l F „ a '  +F, +Hm^(orfZ(A))j = 0 (E13)= F,

Distributing the expectation operator in expression (El 3) yields

g(x(O))-;0F(x(O))+F,// + iF „ o - ' +F, +limy[oF,(^Z(A))] = 0,
2 A-»o A

^(x(0))->9F(x(0))+F,// + iF „cr^  +F, = 0 ,

416



+ - PF(x{^))+8ix{0)) = 0. (E14)

Expression (El4) is the desired partial differential equation we wanted to reach. This 

partial differential equation corresponds to the expectation of the present value of a cash
o

flow Stream g(x(s)). If this present value is given by the conditional expectation shown 

above, then it cannot be an arbitrary function of x(t) . That is, its behavior over time 

must satisfy some constraints due to the expected future behavior of x(t). These 

constraints lead us to the partial differential equation.

Example 2 Stochastic interest rate and a known cash flow

Consider the price of a pure discount default free bond, P{t,T) , in a no-arbitrage 

setting. Assume that the instantaneous spot rate r(t) is a Markov process and write the 

price of the bond with a par value of $1, using the familiar formula

r

p(t,T)=E;

T

le (E15)

with

P(T,T) = l.  (E16)

Here the expectation is taken with respect to an equivalent probability measure, which is 

conditioned on an information set available at time /, namely /( /) .  This is assumed to 

include the current observation on the spot rate r(/). If r(t) is a Markov process P(t,T) 

will depend on the latest observation of r(t) . Because we are in the risk-neutral world, 

as dictated by the use of the assumed probability measure, the r(t) process will follow 

the dynamics given by the stochastic differential equation
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dr{t) = [a (r(0 ,0 -^ ,6 (r(0 ,0> // + 6(r(0,/)rf»^*(/), (E17)

where W \t )  is a Wiener process under the risk neutral measure. The X, is the market 

price of interest rate risk defined by

H -r i t )X, =■ (E18)

with // and a  being short-hand notation for the drift and diffusion components of the 

bond price dynamics

dP = ^ædt + <rPdW\t). (E19)

Note the Weiner term in expression (El9) is the same as the Weiner term in expression 

(E17).

We again have a conditional expectation and a process that is driving it, just as in 

the previous case. This means that we can apply the same steps used there and obtain a 

partial differential equation that corresponds to P{t,T). Yet, in the present case, this 

partial differential equation may also have some practical use in pricing bonds. It can be 

solved numerically, or if a closed-form solution exists, analytically.

The same steps will be applied in a mechanical way. First, split the interval [/,7] 

into two parts to write

y  ^- jr(s)tb
e '

f  Î "il- jr{s)tb
e '**

A \  A

(E20)

Second, try to introduce the future price of the bond, /*(/ + A,7’) , in this 

expression. In fact, the second exponential on the right-hand side can easily be 

recognized as P{t + A,T) once we use the recursive property of conditional expectations. 

Using
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we can write

P{t,T) = E]

f  t*à \  
- jr(s)ds

e '

/ ' T \
- jr(s)ds

e

as

P(t,T) = E;
- jr(s)ds

e '

LV V

- jr(s)ds
Q t+A

P(t,T) = E]

y  MA \
- jr(s)di

e ' Pit + A,T)

J

(E21)

In the third step, group all terms inside the expectation sign on the right-hand side of 

expression (E21)

Now, add and subtract P{t + A,T) from the right-hand side of expression (E22)

/  /*A \
• jr(i)dt

y  M A  N 
- \r(s)ds

e ' Pit + A J ) - P i t ,T ) =  0 . (E22)

A J

P(t + A J ) ~  Pit, T) -  Pit + A, r )  + Pit + A, T) = 0 ,

y  MA
- fr(s)dt

e ' -1 Pit + A,T) + Pit + A ,r) -  Pit,T) = 0. (E23)

A

To frnd the instantaneous change we take the derivative of equation (E23) with respect to 

A. That is
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y  <*A
- j r ( s )d t

e ' - 1 P(t + A, 7) + Pit + A, 7) -  P(t, 7)

A

lim— A->0 A

The first expression in equation (E24)

lim— 
A-»0 A

= 0. (E24)

7  ‘Ÿ  ^- \Hs)ds

e ' -1 P(/+A ,7)

A J

is the derivative with respect to the upper limit of a Riemann integral. Alternatively, the 

expression above can be written as

f  t*A \  
- \ r ( s ) d s

d

/  i*t
-  j r ( s )d i

■e ; e ' -1 P(/ + A,7) = e ;
5A

e ' -1 P(t + A J ) >

\  J - ;

r  ̂ i*à ^ - r -1
Ô - J r(s)di -  \r{s)ds

ÔA
e ' -1 P(t + A,T) = e ; - r ( r  + A)e ' P(t +  A,T)

\  / A»0_

= K -r(t)e  ' P{t,T)

= E' [- r(0(c'"''’‘'‘'”)P(/,r)J 

= £ ;[-r(0 (e '’)P(/.r)J

= £;[-r(0P«.7l] (E25)

Next, we apply Ito’s lemma to the second term of equation (24) and take the expectation

lm\E;[Pit + E,T)-P(t.ri[=\im\e\pMP,dr+\p„drA,
A-»o A A-*o A L 2

A-»o A L 2 J
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A-»0 A |_L Z

= E ' ^ , + P M m , l ) - ^ K r ( t ) , t ) ) + ^ P „ m t ) . t f  ■ (E26)

Substitute equations (E25) and (E26) into (E24) yields

K  ^P„bir(l),t)UPXam,l)-X,imt)A)-i-(mt,T)*p} = 0.

Distributing the expectation operator yields

+ /> ,(û (r(0 ,0 -^ ,^ (K 0 ,0 )-K 0 ^(^7 ’) + /î  = 0  (E27)

Equation (E27) is the partial differential equation for an arbitrage-free valuation model 

for pure discount bonds with no default risk, where the only source of uncertainty is with 

a stochastic interest rate process. Here the cash payout at maturity is a known amount, 

the par value of the bond. We cannot use this model if the future cash flow cash flow 

was uncertain. We can, however, combine the first two examples. That is, we can 

develop the relationship between the conditional expectation for a random interest rate 

and stochastic cash flow and the corresponding partial differential equation 

Examples Stochastic discount factor with a stochastic cash flow  

We have two cases where the existence of a certain type of conditional expectation led to 

a corresponding partial differential equation. In the first, case there was a random cash 

flow stream depending on an underlying process x(f) but the discount rate was constant. 

In the second case, the instrument paid a single, fixed cash flow at maturity, yet the 

discount factor was random. Our purpose now is to combine the above two cases and 

derive a partial differential equation that corresponds to the conditional expectation
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e ' g{x(u))du (E28)

Expression (E28) represents the price of an instrument that makes variable cash flow 

payments at times u e [t,T] , and hence needs to be evaluated using the random discount 

factor

-J r{s)(b

e ' , (E29)

at each u. Here we cannot directly apply the expectation operator in (E28) because the 

interest process is correlated with g{x(u)). If the two components are independent then 

the expectation could be evaluated. To illustrate this problem consider the following 

example.

Consider to random variables X  and Y. Each random variable has two 

observations, which we denote as and [y,,}/;], with marginal probabilities

denoted by / ( x j  and / ( y j ;  where i = 1,2. If % and T are independent then

To see this we know that

E(XY) = E(X)E(Y).

E(XY) = 'Z I .xy fix ,y ) ,  
y y

(180)

(181)

where f ( x , y )  is the joint probability density function for Z an d  T. We may rewrite the 

double sum as

= X^y^f(x^,y^)+x^y^f{x2,y^)+x^y2f(x^,y2)+xiy2f{x2,y2). (182)

Since X  and Y  are independent the joint density function can be rewritten as the product 

of the marginal density functions. This is
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= x j ( x y ) y j { y x )+ x j / f e ) y x f M + x ^ y j { x ^ ) f { y t ) + x j { x ^ K / k ) .  (183) 

Simplifying expression (183) yields

= k / k  )+x̂ f(x̂  )ly,/k, )+k / k  )+jfz /k  )]y2/k ) •
= ( 1 8 4 )  

Factoring out the expected value of % yields

= E[x ]e [y I  (185)

We see that if X  and Y  are independent then the expectation of the multiplicative 

interaction of X  and Y is equal to the multiplicative of the individual expectations. If X  is

analogous to e' and Y  to g\x{u)), then we may use the above result to evaluate the 

expectation.

The result above is good only if  the two variables are independent, and for our 

most financial assets this is simply unrealistic. Therefore, we need to consider the 

expectation for two correlated variables. Let A" and Y  be two dependent variables. What 

is E{XY) equal to? By definition

E{XY) = Y,Y.xyf{x,y). (186)
y y

We may rewrite the double sum as

= x^yJ(x^,y^)+x^yJ(x^,y^)^\■x^yJ(x^,y^)+x^yJ(x^,y^). (187)

We may further rewrite the above by rewriting the joint densities as follows

= )/k i I ̂ 1 )+Ĵ zA'i/k )/ki I ̂ 2 )

+ x^yJ(x^ ) / k  I )+^zJ'z/k ) / k  U2 ) • (188)

423



Simplifying the expression above yields

= x^y f̂{x )̂f{y  ̂ \x^)+x^yJ{x^)f{y^ |x,)

+ J^2>'i/fe)/(yi IX2)+x^yj{x^)f{yj^ 1 (189)

Factoring yields

l4 )+ A /(y z  \^2)+yif(y2\*i)]-

= x ,/(x ,)£ [l' \ X  = x,]+ x j ( x , W  I . f  = :(:]. (190)

The expression above cannot be simplified any further. The expectation for the 

multiplicative interaction between two correlated random variable X  and Y does not 

simplify to simple expression. This is why we may not find a closed for expression for 

the Black-Scholes model when the interests is stochastic.
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