INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, M 48106-1346 USA
800-521-0600

®

UMI

NOTE TO USERS

This reproduction is the best copy available.

UMI

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MAPPING OF MULTICAPABLE AND INTERDEPENDENT RESOURCE UNITS IN

PERT/CPM NETWORKS

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

MILAN MILATOVIC
Norman, Oklahoma
2000

UMI Number: 9968101

®

UMI

UMI Microform9968101
Copyright 2000 by Bell & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Leaming Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

MAPPING OF MULTICAPABLE AND INTERDEPENDENT RESOURCE UNITS IN

PERT/CPM NETWORKS

A DISSERTATION

APPROVED FOR THE SCHOOL OF INDUSTRIAL ENGINEERING

BY

Dr. Adedeji-B. Badiru
Dr. Shivakumar Raman

eV N

Dr. Theodore B. Trafalis

ﬂ L%M//Z—&_\

Dr. R. Leon Price

= AN

Dr. S. Lakshmivarahan

© Copyright by Milan Milatovié
All Rights Reserved

ACKNOWLEDGMENTS

What a relief! If you have gone through all of this, you know what I mean... Otherwise,
stretch your imagination.... In addition to the perfect harmony between Reason and
Randomness, this work would have definitely not converged to its current form without
the presence and full support from few people. Certainly the person that has taken the
most punches is Dr. Adedeji Badiru, my long time mentor, and now a very good friend.
His invaluable “lunch consultations™, expertise, and guidance into all aspects of academic
life has provided me with a priceless career toolbox. My sincere appreciation also goes
to Dr. Shivakumar Raman for friendly chats and advises in situations when I needed them
the most. Needless to say, I am honored to have had the opportunity to attend and
survive courses by Dr. Theodore Trafalis and Dr. S. Lakshmivarahan. Finally, I am
grateful to Dr. R. Leon Price for his time and comments which have enhanced this work.

Wait, I am not finished!!! A good work is well presented work. With that in mind, I am
indebted to Dr. Milorad Novicevié¢ for sharing many of his magic tricks with me. I also
feel very fortunate to have met and collaborated with many of my fellow students and
colleagues, especially Dr. Suat Kasap, Dr. Alexander Malyscheff and Dr. Danko Nikoli¢.
Finally, without a kind administrative help from Allison Richardson, Jean Shingledecker,
and Jane Smith this work would have been prolonged for several months.

At last, I am blessed to have been introduced to Olga’s heavenly cuisine that has
prevented me from completely digesting my spine during long working hours. I extend
my thanks to Iri¢anin family for their friendship throughout all these years, and my
parents who still ultimately hold the credit for my being and your reading pleasure of this
document.

iv

TABLE OF CONTENTS

L

I LITERATURE REVIEW ...ttt e

2.1 Knowledge Based Systems in Scheduling............cc.cccevvvininenn..
2.2 Uncertainty in Scheduling.................ccoooviiiiiiiiiiiieeieennn,
2.3 OR And Dynamic Programming Applications In

Project Scheduling...........ccooommniniiiiiiiiiiiiii e,
2.4 Resource Constrained Project Scheduling.....................c.oo
2.5 Branch and Bound Applications in Project Scheduling.................
2.6 Cost Considerations in Project Scheduling...............c..c..cocooei...
2.7 Activity Duration Issues in Project Scheduling..........................
2.8 Resource Leveling and Balancing in Project Networks.................
2.9 Resource Preferences and Discrimination of Resource Units

in Project Scheduling..............coo i

III. RESEARCH BACKGROUND. ...ttt

3.1 Problem Statement.ccovinrini it ittt aaeaaaan

IV.METHODOLOGYccttitiiiiiiiiiii ettt eee et eteaeeeeannenaannns

4.1 Project Resource Mapper: Classification, Representation and
Interdependencies among Project Resources and their
Mapping to Project Activities............coooeiiiiiiiiiimiiniiiieinianin.n.
4.1.1 Modeling of Resource Characteristics and
their Interdependencies.............ccoeeiiiiiiiiiiiiiiin
4.1.2 Dynamic and Resource Type-Specific Varying of
Mapping Utility Function...............o.oiiiiiin
4.1.3 Resource Time Effective Capabilities and
Interdependencies.............ooooeiiiiiiiiiiiiiiii
4.1.4 Resource Costs and Resource Interdependencies
based on CoStS. ...ouuiiiiiiiii e
4.1.5 Resource Preferences and Resource Interdependencies
based on their Preferences............c.cocniiiiiiii
4.1.6 Resource Availability in Resource-Activity Mapping........
4.2 Project Activity Scheduler: Prioritizing and Scheduling
ProJect ACHVItIES. ..o vnieeeiiiniii ittt eeieieinaenencaaaneaanaannananes
4.2.1 Initial Estimation of Project Activities Duration..............
4.2.2 Computing and Dynamic Updating of Activity Priorities....
4.2.3 Formulation of the Objective Function for Activity
Scheduling and Resource Balancing.............c..............

30

35
41

43

43

46

55

58

64

66

72

73
77

5.1 CONCIUSIONS. ...ttt ieit et et eeeeaeeseenneesareasaannnens 93
5.2 Major Research Contributions.................ccooiiiiieeiiinieennnnnnann. 92
S 3 FUtUre ReESEArCh. . .. vinniee ittt e e e ceeeeeeeneanns 95
AY2 B 24 21 3 33 23 050 (0 1 S 97

APPENDIX A. Complete Heuristic for Dynamic Mapping Resource Units to
Project ACtiVities..........oooiiiiiiiiiiiiiii i 104

APPENDIX B. Overview of PROMAP (Project Resource Mapper) Software.... 106

APPENDIX C. Examples of PROMAP Project Input and Output.................. 123
Example Project # 1: InputData...........cccceeeeenennaeni. 125
Example Project #1: Output............c.oooviiiininnnnn.. 147
Example Project # 2: InputData.............ccceevveeninnen.. 164
Example Project #2: Output.........c..covvvemiiiinenannnn. 179
APPENDIX D. Computer Codes for PROMAP Implementation................... 185

LIST OF

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure B1.
Figure B2.
Figure B3.
Figure B4.

Figure BS5.
Figure B6.

Figure B7.
Figure BS.
Figure B9.
Figure B10.
Figure B11.

Figure B12.
Figure B13.

FIGURES

CRD Network Analysis.........ccoceviiiiiiiiiineieiieieineeanns e
Resource Schedule Chart Based on Earliest Start Times..................
Modified Critical Resource Diagram...............cccceviveinieceeeneane.n.
Incorporating Resource Availability into Mapping Constraints..........
Example of Unbalanced Resource Loading Graphs........................
Example of a Project Schedule with the Loading Graph of
Resource Type Two Fully Balanced....................cooiiiiiiiiiin
PROMAP’Ss Main Menu........ccovniiiiiiiiiiiiiiieiieeaeeeeeann,
Project Menu Items.ccennmneenniiii e eeae
Window for Entering the Basic Project Data..................coocoiuail.
Use of List Boxes to Display Project Activities
and ResoUrce TyPes. . ccoveiniiiiiii i veeeeeiierc e reeeeieeeeenes
Text Box for Entering Availability of Resource Types..................
Pull-Down Menu that Facilitates the Entering of
Activity Precedence Relations............c...c.coiiiiiiiiiiiiiiiiiiinnann,
Window for Entering Functional Dependencies among Resources. . ..
Pull-Down Menu Items for Entering Specific Resource Data..........
Pull-Down Menu Items. ..ot
RunMenu Items.ooiniiiiii et
Choices of User Selected Objectives According to which
Resources are tobe Mapped.oooiiiiiiiiiiiiiiiiiie
Dialog Box for Entering Optimizing Utility Functions.................
Dialog Box for Entering Resource Centralizing Level.................

Figure B14.
Figure B15.
Figure B16.
Figure B17.

List Box for Selection of Resource Types to be Centralized...........
Items under Graph Menu. ...
Example Gantt Chart by PROMAP...............cooiiiiiiiiiiiiiinn.
Example of a Resource Loading Graph....................cooeiii
Figure B18. Example of Resource-Activity Mapping Grid...................ccoeee
Figure B19. Resource Units Utilization Bar Chart.................cooiiiieiienn
Figure B20. Example Cost Chart for Units of a Project Resource Type.............
Figure C1. Example of a Project Manager’s Mapping Strategy Input...............

Figure C2.
Figure C3.
Figure C4.
Figure C5.

Resource-Activity Mapping Grid for the Units of Resource Type 1...
Resource-Activity Mapping Grid for the Units of Resource Type 2...
Resource-Activity Mapping Grid for the Units of Resource Type 3...
Resource-Activity Mapping Grid for the Units of Resource Type 4...

Figure C6.
Figure C7.

Percentage of Resource Units Utilization for Type 1
Percentage of Resource Units Utilization for Type 2.....................
Figure C8. Percentage of Resource Units Utilization for Type 3.....................
Figure C9. Percentage of Resource Units Utilization for Type 4.....................
Figure C10. Total Relative Resource Units Costs for Resource Type 1
Figure C11. Total Relative Resource Units Costs for Resource Type 2.............
Figure C12. Total Relative Resource Units Costs for Resource Type 3.............
Figure C13. Total Relative Resource Units Costs for Resource Type 4.............

.....................

.............

vii

Figure C14. Resource Loading Graph for Resource Type 1.......................... 156

Figure C15. Resource Loading Graph for Resource Type 2...................oeene. 157
Figure C16. Resource Loading Graph for Resource Type3.......................... 157
Figure C17. Resource Loading Graph for Resource Type4..................ooeeae. 158
Figure C18. Project Activity Gantt Chart.............cccooeiiimiiiiiiiiiiniiiiineanns 158
Figure C19. Project Gantt Chart After Simplifying the Scheduling

and Mapping Strategies.oooeiieciiiiiiiii i 159
Figure C20. Resource Type 1 Loading Graph After Simplifying the

Scheduling and Mapping Strategies.coieiiiiiiiiiiinae. 160
Figure C21. Modified Mapping Strategy..........ccccevruiimiieiimmiiiiieiiniininnn 161
Figure C22. Project Gantt Chart when Resource Preferences
Prevail over Resource Capabilities.cccvveioieiiiiioiiiiiiiiiiiieiiiiineens 161
Figure C23. Resource-Activity Mapping Grid for Type 1 when

Resource Preferences Prevail over Resource Capabilities............... 162
Figure C24. Resource-Activity Mapping Grid for Type 2 when

Resource Preferences Prevail over Resource Capabilities.............. 163
Figure C25. Example Mapping Strategy........c.cccoevuiniminiiiiniiiiiiiiiinnen. 179
Figure C26. Project Gantt Chart for a Schedule Emphasized on

Resource Availability..........coovniveiiiiiiiiiiiieiiiiiiii i 180

Figure C27. Resource-Activity Grid for Type 1 of Strategy Emphasized

on Resource Availability..............ccoeiiiiiiiiii i 180
Figure C28. Resource-Activity Grid for Type 2 of Strategy Emphasized

on Resource Availability...............ocooiiiiiiii 181
Figure C29. Resource-Activity Grid for Type 3 of Strategy Emphasized

on Resource Availability..............cceviiiiiiiaiiiiiiiiii 181
Figure C30. Relaxed Resource Mapping Strategy Results in Shorter

Project DUIation..........coiniiiiiiiiieieeiiiie e iiiiiieieeeeeeaeaees 183
Figure C31. Resource Group 1 Assignments Resulting from a

Change in Strategyc.evueiiniiiniieniiiieiiieiiieeeaeenna 183
Figure C32. Resource Group 2 Assignments Resulting from a

Change in Strategycouiinieiiieiiiieieieieiieeaeeeaeenans 184
Figure C33. Resource Group 3 Assignments Resulting from a

Change IN SateZYciuuiiiniiiieeeeeiiieiaiiiaiiaeeeaenens 184

viii

LIST OF TABLES

Table 1. Example Project Data...........cocveinenueeieieieieiineinieeeeeeeeneannn. 39
Table 2. Example Representation of Time-Effective Capabilities

and Interdependencies to Seven Project Activities.......................... 74
Table 3. Initially Estimated Activity Durations.............cccceeuereneueennenennn... 76
Table C1. Basic Project #1 Data...........ccocoumeineeiiiiieeniiiieeieeiieeienn 125
Table C2. Time-Effective Capabilities For Resource Type 1........................ 126
Table C3. Time-Effective Capabilities For Resource Type 2..........c............ 127
Table C4. Time-Effective Capabilities For Resource Type 3....................... 129
Table C5. Time-Effective Capabilities For Resource Type4....................... 132
Table C6. Preferences for Resource Type 1.......cooceieiniiiiiiiiinniiiicaien. 134
Table C7. Preferences for Resource Type 2........ccceiuuiiiieiiienneiennneaennnnn. 135
Table C8. Preferences for Resource Type 3.......ccovuiviniiiiiiniiiieiinineinnnnn.. 137
Table C9. Preferences for Resource Type 4.......ccoociuiininiiiiiiinniiiininenn.n. 139
Table C10. Costs for Resource Type L........ccoiiiiniiniiiiinniiiiiiiiiieiaennee 141
Table C11. Costs for Resource TyPe 2........cuiineeimieeinniiieiiiiiieieaennann. 142
Table C12. Costs for Resource Type 3........ouiiiiimeiieiiiiiiiiiiiiiiiiiiinennes 144
Table C13. Costs for Resource Type 4.........ccciiiiiiiiiiiiiiiiiiiiiiiiieaas 146
Table C14. Basic Project #2 Data...........coviiniiiinnieeieiiiiiiiieeieenee, 164
Table C15. Time-Effective Capabilities for Resource Group 1..................... 165
Table C16. Time-Effective Capabilities for Resource Group 2..................... 166
Table C17. Time-Effective Capabilities for Resource Group 3..................... 168
Table C18. Preferences for Resource Group 1...........cooooiiiiiiiiiiiiiiin.. 170
Table C19. Preferences for Resource Group 2........ccccoouviiiniiiininiiiiinnnn.e 171
Table C20. Preferences for Resource Group 3...........ccocviviiniiniieiiniiinan.. 173
Table C21. Time Availability for Resource Group 1.............ccooeiiiiiiil. 176
Table C22. Time Availability for Resource Group 2..........c..coevieiniiiinnae.. 177
Table C23. Time Availability for Resource Group 3............c..coooiiiiiii.t. 178

ABSTRACT

Globalization of business activities, deregulation of industries, and technological
advances have greatly contributed to the increasing importance of project scheduling
approaches in knowledge rich economy. In this new economy, multifunctional
capabilities are becoming one of the most critical resource attributes that need effective
appropriation in resource constrained scheduling. As a result, the traditional scheduling
of project activities must be complemented with attentive mapping of human, social and
technical resources to interact in value creating ways, while still meeting the cutting edge
of both analytical rigor and managerial relevance. Therefore, the primary objective of
this research is the development of a generic project scheduling model that incorporates
1) resource characteristics, such as preferences, time-effective capabilities, costs and
availability of project resources, 2) possible performance interdependencies among
different resource groups, and proceeds to map the most relevant resource units to each
newly scheduled project activity. The principal challenge in this generic model
development is to make it applicable to realistic project environments which often
involve resource units with characteristics which may vary across activities, as well as
within a single activity relative to specific interactions among resources. The scope of
this research challenge increases when the actual duration, cost, and successful
completion of a project activity are considered to be potentially resource driven and
dependent on the choice of particular resource units assigned to it. Such successive

consideration of resource characteristics in resource allocation to activities is of extreme

practical relevance because it may likely also improve overall project duration, quality,

and cost.

The model developed in this study first schedules qualifying activities at each decision
instance, and then dynamically maps available and the most relevant resource units to
them. Before the resource-activity mapping occurs, resource units are classified into
groups based on their interactive dependencies. Those units, whose preferences or
performance on an activity depend on their interaction with units from other groups, are
mapped last. The actual mapping of resource units to activities is accomplished
according to a pre-specified arbitrary utility function which incorporates one or more of
the above resource characteristics. Due to the dynamic nature of project schedules, the
utility function may be held fixed throughout the mapping or be allowed to vary with
time by filtering out some of its additive components not associated with current
scheduling time. Similarly, the utility may be allowed to differ for different resource
groups by filtering out its components not associated with currently mapped resource
group. The procedure progresses until all project activities are scheduled and resource
units assigned to each of them. This model represents a crucial initial step towards a
comprehensive resource-activity based integration in project scheduling, which is a

particularly valuable managerial tool in knowledge-intensive industries.

I. INTRODUCTION

Traditional project scheduling techniques generally provide graphical and analytical
solutions which are primarily based on project activities. Resources, if limited in quantity
or availability, then impose appropriate constraints in scheduling of activities. The actual
assignment of resources to activities depends on the type and functionality of resources
themselves. In cases when resources have pre-specified assignments and responsibilities
towards one or more activities, their allocation is concurrently performed with the
scheduling of applicable activities. In other cases, an activity may only require a certain
number of (generic) resource units of particular type(s), which are assigned after the
scheduling of the particular activity. These two approaches coarsely represent the
dominant paradigms in project scheduling. The objective of this research is to propose a
new model and strategy which will shift these paradigms to facilitate a more refined
guidance for allocation and assignment of project resources. In other words, there is a
need for tools which will take into account behavior, multi-capability, interdependencies,
and bundling of resources and provide for effective resource tracking, control, interaction,

and, most importantly, resource-activity mapping.

The methodology developed in this research is based on several elemental modeling
assumptions. The principal assumption is that project environments often involve multi-
capable resource units with different characteristics. This is especially the case in
knowledge intensive settings and industries which are predominantly staffed with highly

trained personnel. The specific characteristics considered were resource preferences,

time-effective capabilities, costs, and availability. Each resource unit’s characteristics
may further vary across project activities, but also within a single activity relative to
interaction among resource units. Finally, resource preferences, cost, and time-effective
capabilities may also independently vary with time due to additional factors, such as
leaming, forgetting, weather, type of work, etc. Therefore, although we don’t exclude a
possibility that an activity duration is independent of resources assigned to it, in this
research, we assume that it is those resource units assigned to a particular activity that
determine how long it will take for the activity to be completed. This is, again, somewhat
contrary to a common practice, where an activity duration is pre-specified before having

any resource units assigned to it.

Based on the above assumptions, a comprehensive model has been developed and
implemented in this research to schedule projects by alternatively executing two specific
procedures. The first one prioritizes and schedules activities based on the current
availability of resources. The second procedure then immediately maps the most relevant
of the available resource units to the newly scheduled activities. The activity scheduler
prioritizes and schedules activities based on some of their basic attributes, which may
include attempts to centralize selected resource loading graphs based on activity resource
requirements. The particular attributes considered are the number of activity successors,
initially estimated shortest expected activity duration, and dynamically updated amount
of depleted activity slack. In addition to their attributes, activities may also be prioritized
and scheduled based on their resource requirements with respect to a manager’s attempt

to centralize certain pre-specified resource loading graphs. The resource mapper then

considers the above resource characteristics, incorporates interdependencies among
resource groups or types, and maps the available resource units to newly scheduled
activities according to a project manager’s or analyst’s pre-specified utility (objective)
function. Although the activity scheduler must ensure that enough resource units are
available for each candidate activity before it is scheduled, the resource mapper decides
which particular of those available units should be assigned to which activity. Since
project scheduling is a dynamic process, this utility function may be held constant
throughout the process, or allowed to vary with time. For example in the early
scheduling stages, a project manager may be more interested in satisfying resource
preferences as opposed to later project stages, where project’s timely completion may
require greater attention on resource time-effective capabilities. The utility function may
further differ for various resource groups (types) or specific units. For this purpose,
Kronecker's delta as well as window functions are used to keep the desired parts of the
utility function and filter out those additive components of the utility which are not

associated with a current time or resource group.

The scheduling strategy as illustrated above promotes a more balanced and integrated
activity-resource mapping approach. Mapping the most qualified resources to each
project activity, and thus preserving the values of resource, is achieved by proper
consideration or resource time-effective capabilities and costs. By considering resource
preferences and availability which may be entered in either crisp or fuzzy form, the model
enables consideration of personnel’s voice and its influence on a project schedule and

quality. Furthermore, resource interactive dependencies may also be evaluated for each

of the characteristics and their effects incorporated into resource-activity mapping.
Finally, by allowing flexible and dynamic modifications of scheduling objectives
(utility), the model permits managers or analysts to incorporate some of their tacit

knowledge and discretionary input into project schedules.

The model has been implemented in a software prototype, with its code, input format, and
sample outputs illustrated in the appendices. The output consists of five types of charts.
The more traditional ones include project Gantt chart, and resource loading graphs for
all resource groups or types involved in a project. More specific graphs include resource-
activity mapping grids, resource utilization and resource cost bar charts. Based on
inputted resource characteristics, their interdependencies, and the form of the objective,
the resource-activity mapping grid provides a decision support in terms of which units of
each specified resource group should be assigned to which particular project activity(ies).
Therefore, the resource-activity grids are, in effect, the main contributions of this study.
Unit utilization charts track the resource assignments and provide a relative resource
usage of each unit relative to the total project duration. Resource cost charts compare

total project resource expenditures for each resource unit.

The remaining of this dissertation is organized as follows: Chapter II presents extended
literature review that has been relevant and influential on this research. Chapter III
discusses the research background and the need for new approaches and models. Chapter
IV provides a detailed description of the model. Chapter V summarizes major research

contributions and provides recommendations for future research directions. Appendix A

4

presents an algorithmic summary of the model proposed and implemented in this
research. A brief overview of software developed to support the model is given in
Appendix B. Appendix C presents two example projects, their input data, and
elaboration of outputs relative to given objectives. Finally, the computer code used in the

model implementation is listed in Appendix D.

IIL. LITERATURE REVIEW

The process of scheduling is one of the basic constituents of every manufacturing,
production, management, and computer environment. Regardless of the environment in
which it takes place, scheduling is defined as allocation of (usually limited) resources
over time to perform a set of planned activities. A survey of some 400 top contractors in
construction, showed that 96.2% of them still use Critical Path Method (CPM) to some
degree for scheduling (Mattila and Abraham, 1998). Another survey of Associated
General Contractors of America revealed that scheduling is still the most important
technological component that needs improvement (Mattila and Abraham, 1998). During
the development of an expert system for job-shop scheduling, it was discovered that
human schedulers spend about 80-90% of their time in only identifying the constraints,
and only about 10-20% for the actual scheduling (Liebowitz and Potter, 1995). Park et al.
(1996) affirm that the main problems in automation of production scheduling is the lack
of an explicit representation scheme of scheduling knowledge to aid in the

communication between human schedulers and systems analysts.

In general, scheduling problems are associated with numerous conflicting objectives and
constraints, and an immense number of combinatorial options and selections. It is
traditionally an NP hard problem, that is. it cannot be solved by a polynomially bounded

algorithm. Thus, the challenge for the researchers remains open.

Studies in both operations research (OR) and artificial intelligence (4/) have contributed
their portion of techniques towards scheduling. Traditional OR scheduling methods
involve linear programming, branch and bound, and Tabu search. Contributions by A/
come from expert systems, fuzzy logic (as a special case of expert systems), neural
networks, simulated annealing, genetic algorithms, constraint satisfaction, hill climbing,
and connectionist methods. Thus, an additional problem a scheduler may face is having
to make a choice of mapping a particular scheduling problem to an adequate technique.
Tsang (1995) argues that the knowledge of which technique to apply and when, is at least

as critical as the expertise in the individual technique itself.

Previous literature surveys on A/ applications in scheduling can be found in Atabakhsh
(1991), Tsang (1995), and Wiers (1996). The following sections discuss some of the
recent applications of A7 techniques, followed by the advances and applications of OR in
scheduling. Expert and knowledge-based systems, including uncertainty in scheduling

are discussed next.

2.1 Knowledge Based Systems In Scheduling

As one of the oldest of techniques, expert systems have been widely used in scheduling
for many years. The popularity of expert systems stems primarily from the simplicity of
their implementation and understanding, since their structure is almost solely rule based.
A domain knowledge is generally embedded into an expert system in terms of rules and a

scheduler. The rules indicate which of the tasks or resources are eligible for scheduling,

while the scheduler then attempts to resolve possible conflicts and satisfy any constraints.
A major difficulty in the implementation of expert systems (not only in scheduling, but in
general), is the knowledge extraction from human experts. In addition, the actual
scheduling conflict resolver is also difficult and non trivial to develop. Many attempts,
however, to develop expert systems to tackle specific and custom problems exist, and

some of the latest attempts are described in this section.

As one of the primary and most executed operations at NASA sites, scheduling has
prompted a great need for development of more generic expert scheduling systems.
Liebowitz and Potter (1995) investigated objectives, requirements, resources, constraints,
processes, and scheduling domains for development of a generic scheduling system for
NASA centers, particularly for missions planning. Their previous survey of 250 papers
on expert scheduling systems in 1993 enumerated about 24 significant scheduling
approaches that were based on optimizing algorithms, about 20 different heuristics, and
two hybrid methods that incorporated both heuristics and algorithms. In their literature
review, they have come up with about 20 different objectives that are to be considered by

NASA'’s mission scheduling.

Liebowitz and Potter (1995) stressed several points necessary for the development of a
generic expert scheduling system for NASA purposes, but which are also relevant to
other industrial areas. First, regarding the objectives of scheduling, it is imperative to
maximize scheduled number of requests while minimizing “unhappiness” of a scheduler.

In addition, all (or a vast majority of) constraints must be satisfied, while the safety and

performance is maintained. Some of the objectives included due dates satisfaction,
satisfying maximum number of constraints, balancing loads among different stages of
assembly operations, maximizing the scheduling of high priority events over low priority
ones, minimizing the number of tardy jobs, minimizing inventory costs as well as project
duration, optimization of resource allocation, etc. Some major scheduling requirements
require a hierarchical architecture, ability to quickly, effectively and automatically
perform rescheduling, need for good user and system interface and portability, and a need
for having a variety of scheduling techniques available. Hierarchical architecture implies
that a part of overall scheduling is propagated to lower level schedules who have a
control of their own limited areas or departments. All requirements were grouped into
eight groups, some of them being general requirements, resource/constraints
requirements, activity requirements, output requirements, system interface requirements,
etc. Resources were classified as spatial (ones where time is a significant factor, such as
spacecraft orbits or viewing periods), and non-spatial such as cranes, crews, machines,
etc. Constraints were classified as precedence constraints (due to ordering of activities),
synchronization constraints, and non-time dependent constraints, such as capacity, safety,

etc. A long list of resources and constraints is also provided in the paper.

Hori et al. (1995) show how a composable scheduling knowledge can be elicited from
existing expert systems, thus enabling knowledge sharing and reuse. The authors propose
three problem solving patterns as abstract templates for component elicitation: divide and
merge (divide a given problem, invoke another component to receive solutions to divided

subproblems and merge them into a schedule hypothesis); transform and restore

(reformulate a problem structure, invoke another component, and restore the schedule
hypothesis obtained to the original problem space); check and modify (find an unexpected

situation such as a constraint violation in a schedule hypothesis, and modify it).

Recently, Sauer and Bruns (1997) have proposed a generic framework to facilitate
construction of knowledge based scheduling systems. Their framework is based on two
design principles: (1) combination of standard computer science components with
knowledge based concepts (heuristics, algorithms) and declarative knowledge
representation, and (2) explicit and transparent representation of knowledge that allows
for reuse and adaptation of scheduling algorithms. The authors argued that all scheduling
systems must possess an easy adaptation and advocate for a reusable representation of
scheduling knowledge. This stems from the fact that many advanced algorithms have
been designed for only specific problem instances, which do not allow reusing of any
components in future systems or transferring much of an algorithm into more general

scenarios.

Ntuen and Park (1995) have experimented in merging OR and A tools and proposed a
hybrid scheduling model for approaching non-structured scheduling problems (NSSP). In
NSSP, resources possess at least one, but generally more skills to perform a task.
Example would include a car mechanic who does a variety of tasks from tire repair to
engine rebuilding. Ntuen and Park (1995) have proposed their methodology to scheduling
of aircraft turnaround functions (4 7F). Examples of ATF are express plane inspection for

leaks and/or damage, refueling, ammunition loading and arming, etc. It is of interest to

10

coordinate these functions in a minimum time span. To accomplish it, Ntuen and Park
developed a model, named Task Oriented Planner, which is also of object oriented
structure. During a job schedule, the knowledge processing environment dynamically
creates a node for each resource which carries its class attributes. This method of
dynamic node creation allows for potential job preemption, resumption, as well as
dealing and assignment of idle resources. Thus, once a planning is achieved, the
scheduling module is activated which creates sub-hierarchies of knowledge bundles to

cluster jobs and resources according to priorities.

A joint project by Korea Advanced Institute of Science and Technology (KAI/ST) and
Daewo from 1991 to 1993 that involved development of an intelligent comprehensive
scheduling system for shipbuilding has been documented in an article by Lee et al.
(1995). The result was a Daewo Shipbuilding Scheduling (DAS) expert system launched
in January of 1994, which had significantly improved the production and quality of the
facility. Similar to the previous papers, this model was also based on hierarchical system

architecture.

Papers by Lee and Wu (1995) and Liou and Wu (1996) incorporated experts systems into
scheduling of academic courses. Lee and Wu (1995) designed their scheduler based on a
desirability map that indicates the degree of ‘wishfulness’ for a class to be assigned a
specific time block. The number obtained is a combination of a preference degree,
instructor’s priority, and a course weight itself. Conflicts were resolved by using a

breath-first search in conflict trees. A finished schedule allowed for interactive changes.

11

Rules in the expert system were extracted from the knowledge of faculty and staff. The
system was implemented in CLIPS, a C language based Integrated Production System,
established on forward chaining principles. The system had a total of 556 rules and was

actually tested at the National Sun-Yat University in Taiwan.

Liou and Wu (1996) proposed an alternative implementation of expert systems for
academic course scheduling. Courses, instructors, classrooms, and time periods were
represented as basic objects, each having a set of attributes assigned to it. The attributes
of each instructor included name, 1.D., position, mastering courses, list of preferences,
etc. The authors further developed a scheme of depicting objects and relationships
among them. The proposed scheme was graphically represented with relationships
grouped as “pyramids”, with the vertices being particular instructors, courses, and time
periods, and the edges being their interrelationships. Thus, each pyramid was interpreted
as an assignment of a course to an instructor for a particular classroom during a particular
time period. For example, credit hours taken by a particular instructor could easily be

assessed by accessing all edges sharing a particular vertex representing that instructor.

2.2 Uncertainty in Scheduling

Uncertainty in scheduling parameters has been considered and modeled extensively
within the past decade. Hapke et al. (1994) proposed a complete decision support system
for software project scheduling. The purpose of the so called Fuzzy Project Scheduler

(FPS) was to allocate resources, (primarily software engineers) among planned activities,

12

such as system design, GUI design, implementation of modular components, and
subsequently their integration. The uncertainty was assumed in activity durations, ready
times, and due dates. The actual system consisted of not only one scheduling heuristic.
Instead, activities were chosen based on one out of 12 different heuristic rules. In
addition, in order to generate even greater variety of feasible schedules, the authors also
implemented five different mutations to each of the 12 priority lists. Thus, the total of 60
different schedules were obtained from which the authors suggest selecting one with the
best solution. Since the solutions were represented in fuzzy numbers, one of the
previously available means was used to compare the magnitude of fuzzy number
obtained. Although the system results were characterized by possible high degrees of
uncertainty, that was exactly the purpose of it. In other words, the system’s solution did
incorporate both optimistic and pessimistic scenarios, carried them all the way through,

and accordingly, yielded similar output which contained a full possibility distribution.

Nasution (1994) proposed a more comprehensive method for carrying calculations in
fuzzy CPM. As opposed to previous research on this matter which either considered
earliest or latest allowable project times, Nasution proposed more relaxed methodology
which incorporated interactive subtraction of fuzzy times in the backward CPM
calclations, thus, enabling him to compute fuzzy slacks of all network activities. Since
fuzzy numbers have areas associated with them, Nasution suggested that any negative
parts of fuzzy numbers (obtained by fuzzy subtraction) should be ignored since they

likely carry no useful information.

13

Lorterapong (1994) extended fuzzy scheduling heuristics to incorporate resource
allocation within projects. The heuristic mainly breaks down the activities into subsets at
each time instant when a resource conflict occurs. Then, a simple procedure based on
activity slacks is used to evaluate each activity subset and determine its impact on project
duration. The author then extended this concept into a fuzzy space and incorporated

vagueness in the specification of time parameters.

Wu and Hadipriono (1994) used fuzzy logic to evaluate different factors on activity
durations in construction projects and scheduling. One of the prime objectives in project
management is to estimate duration of a project. On a smaller scale, estimation of
activity duration within a project may also be a non trivial task. In construction
scheduling, there are numerous factors that may and do affect activity durations. Some of
the most important ones include site location and condition, climate and weather (weather
being an instance of a climate), resources, management performance, material supply,
equipment performance, labor performance, etc. Too optimistic schedule may result in
project delays and penalties to the contractor. On the other hand, too pessimistic
calculations may produce resource idleness and increase in overhead costs. Thus, the
authors proposed an activity duration decision support system that applies fuzzy modus
ponens (forward chaining or data driven inference) to capture the impact of the above
factors in activity durations. It is interesting to note that the authors used a new
representation of fuzzy numbers to quantify linguistic descriptions of the above factor

values. More specifically, the authors proposed angular fuzzy sets to model the system.

14

Angular fuzzy sets were first proposed in 1990 by one of the authors, who used a
semicircle from -n/2 to +n/2 to represent the true values in the universe of discourse
(universal set over which fuzzy numbers are defined). The angle between a straight line
from the center of the circle and the horizontal represents a particular truth value.” The
authors do provide some operational and arithmetic possibilities using angular fuzzy

numbers.

2.3 OR And Dynamic Programming Applications In Project Scheduling

In their recent review of current project scheduling models and methods, Brucker et al.
(1999) attempt to standardize a common notation and a classification in project
scheduling, as well as close the still open gap between project scheduling and job shop
scheduling as its special case. The authors divided the methods into single-mode cases,
multi-mode cases, resource constrained problems with time lags, models with nonregular

objectives, and models with stochastic activity durations.

Branch-and-bound and heuristic approaches were the most common methods for solving
single-mode cases. Patterson et al. (1989) proposed a case of branch-and-bound algorithm
commonly referred to as the precedence tree. At each iteration, the procedure determines
a set of currently scheduled activities and those that that have just qualified for
scheduling. Oﬁe of the eligible activities is then selected and the next starting time is

computed. Once the dummy termination node is encountered, a complete schedule is

15

said to be found, and the procedure backtracks to the previous level and selects an
untested eligible activity. When all the eligible activities have been tested, the procedure
backtracks again to the previous level, until each branch from the root to a leaf has been
examined, and which in effect represents the permutations of the activity set that is

precedence feasible.

Delay Alternatives is another branch-and-bound procedure proposed by Christofides et al.
(1987), which at each time decision instance #., considers eligible activities, and subjects
them to resource constraints. Those activities whose requirements may be satisfied given
the current constraints and resource availabilities are scheduled, while the other activities
are delayed until the next decision instance. Once the schedule is completed, the
procedure backtracks and reconsiders the delayed activities. This method, as opposed to
the precedence tree, considers scheduling of activities in batches (as opposed to one at a
time), and it first computes the decision instance before deciding on eligible activities.
Variations to the above procedures include the method of Extension Alternatives as
proposed by Stinson et al. (1978) and the method of Block Extensions by Mingozzi et al.

(1998).

Heuristic methods that were initially proposed were priority-rule based, and had (still do)
advantage of being intuitive, easily implementable and of affordable computational effort.
Recent heuristics, however, in order to improve the objective, are shifting more towards
local constraint based analysis, truncated branch-and bound, and integer programming

heuristics (Brucker et al., 1999).

16

When a project manager is in control of being able to vary a project duration according to
how much penalty he or she is willing to pay for, we have a so-called time-cost trade off
problem. In effect, this type of problems are a part of multiobjective set up with distinct
budget and deadline problems merged together. In general, it is desirable to solve a
multiobjective problem for all possible scenarios of costs and deadlines, before making a

decision.

Fulkerson (1961) and Kelly (1961) proposed an activity on arc network and algorithm
which iteratively calculates a project cost curve, by a maximum flow computation which
takes the capacities as the slopes of linear cost functions of critical activities. Although
many improvements to this procedure have been proposed by today, the currently most
promising algorithms stilly rely on dynamic programming. Some of the alternative

approaches have been proposed by Bein et al. (1992) and Demeulemeester et al. (1996).

In multi-mode cases, each activity may be executed in one of several modes. The number
of different durations of a single activity that depend on the number of resource units
assigned to that activity will define the number of modes. There are exact and heuristic
procedures to approach problems of this sort. The exact algorithms are extensions of
single mode algorithms, such as the precedence tree which was adapted to a multi-mode
case by Sprecher and Drexl (1998). Modifications to delay alternatives method to

accommodate for mutli-modality were also proposed by Sprecher (1997).

17

Heuristic procedures have also been proposed for solving multi-mode scheduling
problems. Some of the methods are documented in Drexl (1991), and Slowinski et al.

(1994).

In 1998, Herroellen et al. published another survey of resource constrained project
scheduling techniques. Their emphasis was on depth-first branch-and-bound procedure
for preemptive resource-constrained scheduling models with generalized precedence

relations, and models that maximize the net present value of projects.

Some of the more significant papers and works on resource-constrained project

scheduling are discussed next.

24 Resource Constrained Project Scheduling

Ulusoy and Ozdamar (1989) conducted a study in which they investigated the influence
of actual project networks and/or resource characteristics on performance of heuristic
rules. A factorial design was used to classify problem types successfully solved by
particular heuristics. In addition to investigating six previously published heuristics, the
authors also proposed a new heuristic, named Weighted Resource Utilization Ratio And

Precedence (WRUP), defined as:

18

Priority = w(p)n(i) + W) 3. 20

where:

w(p) = precedence weight

w(r) = resource utilization, [1 - w(p)]

n(ij) = number of immediate successors of activity ij (assuming activity on node network)

R(k) = units available of resource type k per period.

Network/resource characteristics investigated in the study were the aspect ratio (the ratio
between the number of critical and non-critical activities), complexity ratio (the ratio of
the number of activities to the number of network events), resource utilization factor
which reflects global resource usage on a critical path, and dominant obstruction value as
an indicator of resource shortage. The experiments showed that WRUP heuristic
outperforms three out of six existing techniques, and has additional computational
advantages over the remaining heuristics, mainly in terms of the number of times a CPM

network needs to be resolved.

Khattab and Choobineh (1991) evaluated several of the existing priority rules and
proposed eight new rules, which they incorporated into a new scheduling heuristic,
referred to as the Search method. Search method solves each scheduling problem eight
times, once for each of the eight proposed priority rules. The method would then

recommend the schedule resulting in the shortest project duration. Due to its hybrid

19

nature, the method produced schedules of shortest duration the most often. The eight

priority rules used in the search method are:

activity time + time of all successors

activity resource + resources of all successors

2. total time of all successors

3. (activity time + time of all successors) - (total time of predecessors)

4. activity time + time of all successors

activity time + time of immediate successors

number of immediate successors

(time of immediate successors)/(resources of immediate successors)

(activity resource)/(activity time)

7. activity resource

activity time

activity resources

Although no priority rule above could be successfully used by itself, their combination

did outperform other single rule priority measures investigated at the time.

20

Davis et al. (1992) formulated a multiple criteria project scheduling problem with
objectives of minimizing project completion time as well as minimizing the over-
utilization of resources. The authors introduced a decision support framework and the
interactive procedure allowed a decision maker to iteratively observe and evaluate
tradeoffs between different objectives. Although restricted in size of problems it could
handle, the proposed procedure performed better than the existing goal programming
methods, mainly because the interaction between the decision maker was facilitated and

provided a better reflection of preferences and objectives.

Minciardi et al. (1994) proposed an event driven method and constructed a project
schedule by solving a sequence of successive instances of the same subproblem. Then,
additional heuristics were employed to generate feasible schedules for subproblem
instances in consideration. This led to a final schedule which determined a set of
decisions for assigning and sequencing of tasks over available resources. These decisions

were further inputted as constraints in the final timetabling optimization.

Nowicki and Smutnicki (1994) presented an altemnative decision support system, but its
implementation involved both so-called soft and hard constraints. Soft constraints could
be violated, and hard constraints were non-violated. The inclusive heuristic then

computed in deterministic time increments the set of schedulable tasks.

Considering the limitation of daily consumption of project resources, Ulusoy and

Ozdamar (1994) proposed a heuristic, referred to as the Local Constraint Based Analysis

21

(LCBA). LCBA is a two stage procedure, where the first stage checks whether all
activities have a sufficiently wide time span during which they can be run, and the second
stage employs a set of rules to prioritize qualifying activities and resolve any existing

resource conflicts.

Boctor (1996) presented a heuristic for non-preemptive project scheduling problem with
renewable resources and multiple execution modes. At each iteration, the proposed
procedure (does not schedule one activity at the time, but rather) evaluated schedulable
combinations of activities (including activity durations versus the number of resource
units employed) and selected a combination that maximizes a prespecified objective.
Whenever a feasible schedule existed, the procedure guaranteed its generation. The
heuristic was tested on a set of 240 randomly generated projects and it outperformed four

of the previously most acknowledged procedures.

Morse et al. (1996) evaluated resource constrained project networks by applying
combinations of at least two heuristics that would produce minimum project duration.
The authors selected 10 simple and existing priority rules and applied to the set of 108
previously generated project network problems. The heuristics used were shortest job
first, first come first served, latest finish time, minimum slack first, minimum early finish,
maximum slack first, longest activity first, ACTIM, ACTRES, and resource over time
(ROT). The project durations were computed by a package network program with

separate subroutines that allocated resources. An additional algorithm was then utilized to

22

determine which combination or subset of the above priority rules would yield the

shortest project duration.

Icmeli-Tukel and Rom (1996) proposed two models for scheduling resource constrained
projects with objectives of maximizing project quality. The quality was measured by the
amount of rework required and associated additional cost corresponding to it. The two
models were formulated as mixed integer programming problems except that they

contained additional constraints and variables in the objective function.

One of the most exploited OR procedures in project scheduling is the application of
branch-and-bound technique. A selection of papers in the area is briefly summarized in

the next section.

25 Branch and Bound Applications in Project Scheduling

Drexl (1991) used a branch-and-bound dynamic programming method which
incorporated Monte Carlo method for resolving conflicts between activities that compete
for limited resources. Carraway et al. (1991) extended the notion of dynamic resource
allocation to multiple interdependent projects. Li and Willis (1992) proposed an iterative
project scheduling, which during the procedure, scheduled a project both forwards and
backwards until the completion time could not be further improved. Initially, a project
was scheduled forward to compute a “forward” schedule. The duration obtained was then

used as a staring point for the backward schedule. The process continued until no further

23

improvement could be achieved. Belhe and Kusiak (1993) applied constrained project
scheduling problem in scheduling of design activities. However, instead of resorting to
the traditional branch-and-bound method, the authors approached the problem using the
beam search heuristic. This method is similar to branch and bound, except that beam
search heuristically determines the best paths and ignores the rest of the search space. De
Reyck and Herroelen (1998) incorporated branch-and-bound method for solving resource
constrained project networks with generalized precedence relations. Nazareth et al.
(1999) applied breadth first approach to solving resource constrained networks.
Additional dynamic programming approaches are also found in Elmaghraby (1993) and

Brucker et al. (1999).

2.6 Cost Considerations in Project Scheduling

Many papers address the issue of minimizing costs in project networks. Wu and Li
(1994) proposed a strategy of applying the cut set theory of networks in order to
determine activity sets to be shortened and the maximal shortening time such that the
overall project duration is reduced at minimal costs. The authors first applied the minimal
cut set method to select the set of activities to be crashed. This was accomplished by first
computing the conventional critical path, then eliminating all non-critical activities, and
finally identifying the minimal flow cut set. After the crashing activity set was identified,
Wu and Li proposed a new application of cut set parallel network, where they used the

cut set parallel difference method to determine the maximal permitting crashing time.

24

Analyzing instances of high interest rates and limited capital, Sung and Lim (1994)
considered scheduling resource constrained project networks with availability restrictions
on capital and renewable resources. The authors considered resource-duration
interactions in order to maximize the net present value of a project. Their proposed
heuristic consisted of two phases. In the first phase, the initial schedule was determined
and its associated net present value. The next phase then attempted to improve the initial

solution by solving all decomposed subproblems.

Demeulemeester (1995) further presented an optimal technique for minimizing resource
availability costs in time constrained project networks. The author perturbed the basic
resource constrained project scheduling problem (RCPSP) which searched for a solution
to the shortest project duration constrained to given project data and resource availability.
The newly defined problem presets the actual project duration and attempts to find a
feasible schedule subject to project data and available constraints. Demeulemeester

(1995) formulated the problem as follows:

min ic,‘ (a,)

k=1
subject to:
JisJj-dj forall(7,)) e H

£i=0

25

asT

Zr&Sak fork=1,...,m and =1,...,/n

i€§

The problem as formulated above is referred to as the resource availability cost problem
(RACP). The traditional resource-constrained project scheduling problem (RCPSP)
would not have imposed f, < T as its constraint, and the objective would be to minimize
Jn- The author however, did employ existing techniques for iterative solving RCPSP and

proposed their modification for solving RACP.

Demeulemeester et al. (1996) further presented two algorithms for optimally solving
discrete time/cost trade off problems. The algorithms were based on dynamic
programming, and were implemented with respect to three different objectives: (1)
completing the project as early as possible given the limitations of a single nonrenewable
resource; (2) minimizing resource usage given the constraints on total project duration;
and (3) computing total project time/cost trade off function, given the constraints on both

resources and total project duration.

De Reyck and Herroelen (1997) extended previous ideas and considered scheduling
problems with generalized precedence relations with the objective of maximizing net
present value. As a solution, the authors explored a depth-first branch-and-bound
algorithm in which the original project network is represented by nodes in the search tree

which also incorporated additional precedence relations. Resource conflicts were

26

approached through the concept of minimal delaying modes, and rules were employed to

filter out portions of the search tree.

2.7 Activity Duration Issues in Project Scheduling

The effects of variable or erroneous activity durations on project networks have also been
addressed in the literature. Sipos (1992) gave a thorough set of definitions and concepts
behind the analysis of activity durations in projects. Leachman and Kim (1993) proposed
and developed procedures that compute earliest and latest intensity curves of dependent
activities for correct modeling of variable duration activities and generalized precedence
relations. Yang (1996) identified uncertainties in projects as difficulties in estimation of
work contents of activities, unexpected wear conditions and delays, need for rework,
delivery failures and absenteeism. The author then formulated a research study to
examine the effects of erroneous estimation of activity durations in three project
environments, depending on the strength of the precedence relations, level of resource
availability, and magnitude of errors in estimating activity durations. Yang also quotes
the statistics that by the time of middle 1980’s many companies used less than 10% of the
advanced features available in their project management software, and out of 35 project
management software packages available by 1986, only two were found capable of

automatically generating feasible project schedules.

27

2.8 Resource Leveling and Balancing in Project Networks

Probably the two most important elements of any type of project, regardless of its scope
and area, are the proper planning and the amount and availability of resources necessary
for its completion. Thus, one of the most popular approaches to efficient resource
handling and cost reduction is the reduction in variability of resource usage. High
fluctuations in resource loading and frequent hiring and firing of employees traditionally
reduces short term project feasibility. Many overhead costs, such as administrative
procedures and training periods occur when hiring resources which may not get a proper
chance and time to generate pay-off revenues if being fired not long enough after being
initially contracted. Finally, a management practicing a frequent "hire-fire" policy might

not be able to attract as much of high quality resources (Seibert and Evans, 1991).

Resource leveling and allocation have been the focus of project management studies for
almost four decades now. A pioneering work in this area has been presented by Burgess
and Killebrew in 1962 who proposed and implemented a heuristic that minimizes the sum
of squares of activity levels. Later, a model that enumerated all possible solutions and
found an optimum was presented by Ahuja in 1976. An obvious problem with this
approach was that as the number of non-critical activities increased, the combinatorics of
the problem became too complex. For example, a simple project of only 15 non-critical
activities, each having a slack of only 10 time units would have exactly 10" possible
combinations! More lately, Easa (1989) formulated an integer LP which guaranteed

optimal solution but only for small to medium sized projects. In his work, the objective

28

was to minimize absolute deviations between resource requirements and desired

rectangular loading level.

Seibert and Evans (1991) considered several serial methods for time constrained resource
leveling. Serial methods rank activities based on some user defined rules and then
attempt to schedule them within the allowed resource constraints. If that is not possible,
the methods do exceed the constraints (since the overall project duration is held fixed),
but as uniformly as possible. They also propose a simple measure of how successful a
particular resource leveling is, by defining a utilization factor as a ratio of resource usage

level versus initial (unleveled) loading.

As a follow up on the above two articles, Bandelloni et al. (1994) proposed a resource
leveling technique based on non-serial dynamic programming modeling. Although not
completely relying on full enumeration, this method is also limited to small or medium

sized project networks.

Recently, another application of integer LP formulation in resource leveling for linear
schedules was developed by Matilla and Abraham (1998). Linear projects (frequently
arising in construction) contain repetitive activities which need to be performed on
several different locations. Thus, a proper distribution and work continuity of resources
must be obtained. Konstantinidis (1998) further proposed a model that would balance
resource loading graphs for nonrenewable, renewable, and doubly constrained resources

by eliminating as many interruption periods and costs band shifting activities between

29

their earliest start and latest completion times. Renewable resources are limited per
period, but are becoming again available each new period. Nonrenewable resources have
a fixed number of units allocated for the entire project. Doubly constrained resources are

constrained with respect to both per period and per total project basis.

29 Resource Preferences and Discrimination of Resource Units in Scheduling

Literature also presents work on scheduling projects by accounting for worker (resource)
preferences, qualifications, and skills, as decisive factors to their allocation. Roberts
(1992) argued that information sources for project planners and schedulers are
increasingly nonhuman, and stressed that planners must keep computerized tools for
project management and scheduling in line and perspective with human resources used by
projects. In other words, the author warns that too much technicalities may prompt and

mislead the managers into ignoring human aspects of management.

Franz and Miller (1992) considered a problem of scheduling medical residents to
rotations, and approached it as a large scale multi-period staff assignment problem. The
objective of the problem was to maximize the residents’ schedule preferences while
meeting the hospital’s training goals and contractual commitments for staffing assistance
(Franz and Miller, 1992). Thus, each resident’s schedule is different depending on
particular interests and departmental requirements. The authors formulated a problem as
a zero-one integer problem with a linear objective function indicating the preference

weight of a doctor i being assigned to rotation j during month k. The constraints were

30

the following: there must be a specific number of residents assigned to rotation j each
month k; each resident must serve a certain number of months in rotation j; all residents
must be assigned one rotation each month; and certain residents must serve in pairs. To
solve the problem, the authors proposed a decision support system built around the above
linear programming model. However, the solution was found by a continuous LP, after
which it was rounded to binary integers using a heuristic developed by the authors. The
heuristic measured the “tightness™ of each constraint set, and used it to calculate the so-
called rounding indicator ratio which indicated the direction towards which the variables

were to be rounded.

Gray et al. (1993) discussed the development of an expert system to schedule nurses
according to their scheduling preferences. Assuming consistency in nurses’ preferences,
an expert system was proposed and implemented to produce feasible schedules
considering nurses’ preferences, but also accounting for overtime needs, desirable
staffing levels, patient acuity, etc. The effort was driven by a previous study which
revealed that creating a 12-week schedule for 16 nurses may take up to 40 hours of a
human manual scheduling time (Kostreva and Genevier, 1989). In addition, scheduling
satisfaction was found to be one of eight most important measures of overall job

satisfaction (Mueller and McCloskey, 1990).

A more specific problem was addressed by Yura (1994), where the objective was to
satisfy worker’s preferences for time off as well as overtime, but under due date

constraints. The author broke down the problem into two subproblems. One was a

31

relaxed version where the objective is to satisfy worker’s preferences for days off, but it
excluded any overtime, while the second attempted to minimize the total overtime while
trying to satisfy worker’s preferences for days off. Both problems were formulated as
linear goal programming problems. The first one assumed that the overtime is
undesirable for employers, while the second one extended the idea by including the

overtime and was applied in cases of heavy work loads.

Badri et al. (1998) also utilized advantages of goal programming, but used it to formulate
a multiobjective problem to account for faculty preferences in university course
scheduling. The model provides a one-stage assignment using a zero-one goal
programming model, which was an improvement over the previously proposed model by
Badn (1996) that consisted of two stages (first one assigned faculty to courses at the
departmental level, the second one distributed these combinations to available time slots).
The model proposed by Badri et al. (1998), not only produced solutions in one stage, but
also attempted to accommodate for faculty preferences to teach certain courses and
during certain time intervals. The data structure was presented in the form of a matrix
with rows indicating course priorities, and entries with priorities for specific time blocks.
The constraints were classified into seven categories: a set of goals to ensure that all
required courses were offered; available teaching loads for each instructor; limitations in
classroom availability; faculty preferences for courses; limiting one of the preferences per
combination; and ensuring that an instructor was assigned to only one course per time

block. The model was successfully applied to course scheduling at the United Arab

32

Emirates University, and solved a problem of 252 decision variables, 66 goal constraints,

and 167 system constraints.

Campbell (1999) further considered allocation of cross-trained resources in
multidepartment service environment. Employers generally value more resource units
with various skills and capabilities for performing greater number of jobs. It is in those
cases when managers face challenges of allocating these workers such that the utility of
the assignment of workers to a department is maximized. The author used fractional
values, c;q to describe capabilities of each worker i to work in department d. In other
words, a cjq was set to one if a worker i is fully qualified to work in the department d, or
zero if the worker cannot work in the department d at all, and a fractional value between
zero and one if the worker can be assigned to a department, but he or she is not fully
qualified for the tasks involved. A binary value x;4 then indicated whether a worker was
assigned to a department or not. The author also defined a sum of capability values of

workers assigned to work in department d as:

1
Dy = Zcidxid
i=1

The utility of assigning workers to a department d was then simply a function of @y, i.e.,

. D
ud(@g). The overall objective was to maximize U =) u,(®,), subject to constraints
d=t

that each worker must be assigned to a single department as well as that all x;g7's must be

zeros or ones. The results of experiments showed that the benefits of cross-training

33

utilization may be significant. In most cases only a small degree of cross-training
captured the most benefits, and tests also showed that beyond a certain amount, the

additional cross-training adds little additional benefits.

34

HOI. RESEARCH BACKGROUND

The literature survey in the previous chapter showed an obvious need for a tool that
would effectively schedule, track, and control resource allocation to projects, but from the
perspectives of resource units themselves. Badiru (1993) proposed Critical Resource
Diagramming (CRD) which is a simple extension to traditional CPM graphs. In other
words, criticalities in project activities may also be reflected on resources. Different
resource types or units may vary in skills, supply, or be very expensive. This
discrimination in resource importance should be accounted for when carrying out their

allocation in scheduling activities.

Unlike activity networks, CRD’s use nodes to represent each resource units. Also, unlike
activities, a resource unit may appear more than once in a CRD network, specifying all
different tasks for which a particular unit is assigned to. Similar to CPM, the same
backward and forward computations may be performed to CRD'’s. Figure 1 illustrates
some of the CRD properties and features. Notice that resource unit 1 and resource unit 4
appear twice in the graph, meaning that they work on more than one project activity.
Thus, the actual interpretation of any computations may be different than that of a
conventional CPM network. Since units 1 and 4 worked on two different activities each,
that could also imply that the units may have been cross-trained to perform a variety of

tasks. ~

35

Figure 1. CRD Network Analysis (Badiru, 1993).

Critical resource path in Figure 1 is indicated by bolded arrows. Resource units on the
critical path have no slack time left for performing their jobs, and their delay would delay
the whole project. Badiru (1993) proposed several node classifications for analysis of
CRD’s: a node at which more than one arrow merges is defined as a bottleneck node; a
node whose task depends on the task(s) of its immediate predecessors is defined as a
dependent node; should such a node he on the critical path, it is referred to as the
critically dependent node; a node from which more than one arrow points out is defined
as a burst node. Obviously, delaying burst nodes increases chances of delaying the whole
project. RES 3 serves as an example of a bottleneck resource node. RES 6 is an example

of a critically dependent node.

36

|

n------.—_-_..__..—_--

!
I
1
1
]
'
'
]
t
'
1
1
[}
[}
I
]
J
i
'
]
L}
1
t
t
1
1
]
t
A

‘...._._-.__-—-......._———.._-...-_—-

a.------__,
Bf-------n-

POpF ~ ==~ - =

8
Tire

Figure 2. Resource Schedule Chart Based on Earliest Start Times (Modified from

Badiru, 1993).

Badiru (1993) further defined a resource scheduling chart as shown in Figure 2. Each
resource unit is represented by a horizontal bar, with a dark region indicating the interval
of a resource unit’s work. Badiru (1993) distinguished the above graph from a
conventional Gantt chart, in a sense that resource units do not have slack times since they
are assumed to be engaged throughout the project. In addition, it is pointed out that two
tasks for resource unit 1 have jobs which overlap for a four time unit period. On the other
hand, the two tasks for resource unit 4 are six time units “away” from each other. This

could be an indication that resource unit four might end up being idle for a period of time.

37

In a sense, resource scheduling chart increases the resolution of resource loading graphs,
such that it enables jobs and tasks of each particular resource unit to be monitored and

recorded.

CRD's are a simple extension and a complementary tool to the traditional CPM graphs,
that enhance the information on resource conflicts, and provide alternative insights into
resource distribution to jobs, project tracking and control. However, the model as
presented by Badiru (1993) and illustrated in Figures 1 and 2 is easily implementable
only in cases when resource units are pre-determined to work on specific activities only.
In any other case, when resource units are cross-trained or with varying qualifications, it
is very hard to define the precedence relationships as illustrated in Figure 1. Due to the
combinatorial nature of the problem, the model in Figure 1 is hard to reconstruct when

scheduling resource units without prior knowledge of their exact assignments.

Consider an example as partially adopted from Badiru and Pulat (1995), where a project
data is presented with only seven activities and two resource types. There are 10 total
resource units of type one units and 15 units of type two available for the project. The

activity precedence relations and resource requirements are given in Table 1.

38

Table 1. Example Project Data.

Resource Types
Activity Predecessor Typel Type2

QMEbAOS A
Oxnaxan

AN &N ANV
NNWO=8nO

B.DE

Assuming that resource units of both types are expected to perform differently if assigned
to different activities, we cannot presume the duration of any activity before we actually
decide which particular units of each type will be assigned to it. In the most complex
case, a project manager or analyst would have a table of size (10+15)x7 with its entries
representing preferences, costs, or time each resource unit would need to complete any of
the seven activities. Having the project in a form as presented above, the construction of

a CRD similar to the one in Figure 1 would be an enormous task.

Once each of the 25 resource units (10 units of type one and 15 of type two) are given

specific assignments as to which activities each of them is going to carry out, a

modification of the original CRD may be graphed as shown in Figure 3.

39

:\xxxxxx '.\'xx&
5o
©

b

b

©

v,
.
.
..
.

T\
) @ G : Z

e >

¥: g & &

; ::vz.mr.nxnnz'.:

s delofoTododolotoTodododaded

©d

IRRRHNHAHAHHAN,

2588 Q240 8 g0 !!El‘rl!!l‘

Figure 3. Modified Critical Resource Diagram.

The square nodes in Figure 3 represent activities, while the circles inside each activity
block illustrate particular resource units that are assigned to each activity. Activities on
the critical path are illustrated by the reinforced block boundaries. This implies that all
resource units assigned to activity G (i.e., circular nodes with a subscript G) are critically
dependent resource units (since they are all inside a block activity on a critical resource
path at which more than one arrow merges). In addition, notice that each of the resource
units assigned to activity G are also assigned to one of its immediate predecessors. In
other words, units 1, 6, 7, and 10 of type one and unit 15 of type two are also assigned to
activity E, while the units 2 and 5 of type one and unit 1 of type two are also selected to

work on activity B. Both activities, B and E are the immediate predecessors of activity G.

40

In addition, activity B is also on a resource constrained critical path. Thus, to avoid any
resource idleness and depressions in resource utilization graph, activity E should be well

planned and completed at about the same time as activity B.

Consistently with the definitions by Badiru (1993), resource units working on activity A4
are all referred to as the burst units, since activity 4 precedes more than one other
activity. Thus, these resource units bear somewhat greater responsibility for completing

their tasks on time in order to avoid delays in total project duration.

3.1 Problem Statement

The objective of this research is the development of a generic project scheduling model
capable of both effective and efficient mapping of multi-capable resource units to project
activities. Besides resource-activity mapping, the model must also be able to incorporate
a project manager’s tacit or discretionary knowledge which is provided ex ante and may
involve variables exogenous to the project itself. This is facilitated through a pre-
specified utility function which may be held constant during project scheduling or
allowed to vary across project parameters such as time, activity, resource type, and/or
resource characteristics (capabilities, preferences, cost, availability). The model

performing the above functions has been developed and implemented in a software

prototype.

41

The following chapter presents a model which facilitates an easier construction of
networks as shown in Figure 3. The methodology consists of an activity scheduler which
prioritizes activities, and a resource mapper which assigns the most adequate resource
units to each of the newly scheduled project activities. The actual implementation of the
model presented in the methodology is discussed in the appendices. Figure B18 from
Appendix B is an example of one of the outputs provided by the developed software
prototype. The particular so-called resource-activity grid in Figure B18 conveys the

same type of information as the CRD shown in Figure 3.

42

IV. METHODOLOGY

The methodology of this research represents an analytical extension of CRD discussed in
the preceding chapter. As previously mentioned, the design considerations of the
proposed model consist of two distinct procedures: activity scheduling and resource
mapping. At each decision instance during a scheduling process, the activity scheduler
prioritizes and schedules some or all candidate activities, and then the resource mapper
iteratively assigns the most adequate resource units to each of the newly scheduled
activities. Since the actual modeling of the resource mapper represents a true kemel of

this research, it will be discussed first.

4.1 Project Resource Mapper: Classification, Representation and

Interdependencies among Project Resources and their Mapping to Project Activities

Project resources are generally categorized into groups or types according to their
similarities and functionality. Dreger (1992) discusses five main types of resources:
capital, personnel, plant and equipment, materials and supplies, and space. Slowinski
(1981) further considers classification of resources into renewable and non-renewable.
Personnel, equipment and space are typically regarded as renewable since they can be re-
engaged as soon as activities that are currently employing them are completed. Capital
and, in many cases, materials and supplies are regarded as non-renewable since they are

usually available in fixed amounts for the total project.

43

The methodology in this research is primarily focused on renewable resources. In
addition, resources are not necessarily or solely categorized into types or groups
according to their similarities (i.e., into personnel, equipment, space, etc.), but more
according to hierarchy of their interdependencies. In other words, we assume that time-
effective capabilities, preferences, or even cost of any particular resource unit assigned to
work on an activity may be dependent on other resource units also assigned to work on
the same activity. Some or all of these other resource units may, in the similar fashion,
be also dependent on a third group of resources, and so on. Based on the above
assumptions, we model competency of project resources in terms of following four
resource characteristics: time-effective capabilities, preferences, cost, and availability.
Time-effective capability of a resource unit with respect to a particular activity is the
amount of time the unit needs to complete its own task if assigned to that particular
activity. Preferences are relative numerical weights that indicate personnel’s degree of
desire to be asSigned to an activity, or manager’s perception on assigning certain units to
particular activities. Similarly, each resource unit may have different costs associated
with it relative to which activities it gets assigned to. Finally, not all resource units may
be available to some or all activities at all times during project execution. Thus, times
during which a particular unit is available to some or all activities are also incorporated
into the mapping methodology. Each of the characteristics described may vary across
different project activities. In addition, some or all of these characteristics (especially

time-effective capabilities and preferences) may also vary within a particular activity

relative to resource interaction with other resources that are also assigned to work on the

same activity.

In this research, resources whose performance is totally independent of their interaction
with other units are grouped together and referred to as the type or group ‘“one” and
allocated first to scheduled activities. Resource units whose performance or competency
is affected by their interaction with the type or group “one” units are grouped into type or
group “two” and aassigned (mapped) next. Resource units whose competency or
performance is a function of type “two’ or both types “one” and “two” are grouped into
type “three’” and allocated to scheduled activities after the units of the first two types have

been assigned to them.

As previously indicated, these resource characteristics and interdependencies enable
modeling of personnel’s voice and/or manager’s apriori knowledge and propensity of
available resources. Prior to any assignment of resources to project activities, a manager
may specify a utility or objective function that incorporates some or all of the above
characteristics. Then, throughout the process of scheduling project activities, the model
will attempt to map specific resource units to each newly scheduled activity such that the
pre-specified utility or objective function is maximized. An example of a realistic utility
function would be manager’s desire to maximize personnel’s preferences while still
keeping the costs and project completion time as low as possible. Furthermore, this
utility function may be more accented or discriminatory towards one or more resource

types. For example, a manager may wish to maximize time-effective capabilities for all

45

resource groups in order to reduce project totai time, but minimize cost of only contract
workers which have been classified as resource type “three”. This type of utility function
would contain a component which would be nonzero only when units of resource type

three are mapped to newly scheduled activities.

Besides a possibility of being resource type-specific, a utility or objective function may
also vary with time. For example, in the beginning of a project, a manager’s objective
may consist primarily of cost and personnel preferences. In the later stages of the project,
however, timely project completion may become the most important factor. To facilitate
for this, a window function is used to filter out temporarily irrelevant additive

components of the utility function and hold them at zero.

The modeling of the above resource characteristics is discussed in the following sections.

4.1.1 Modeling of Resource Characteristics and their Interdependencies

After candidate activities at each scheduling decision instance have been scheduled, we
proceed to map available resource units to them such that a pre-specified utility or
objective function is locally optimized. This utility function may consist of only one of
the four resource characteristics (i.e., time-effective capabilities, preferences, costs, and

availability), but is usually a blend of two or more of them.

As previously discussed, all resources are grouped into types (or categories), not
necessarily or solely according to their similarities as traditionally done, but rather
according to certain interdependencies that may exist among some or all resource
characteristics. Those resource units whose characteristics are either constant or varied,
but only across different activities are grouped into type “one”. Resource units belonging
to higher indexed types may have their characteristics depend on units belonging to lower
indexed types. In this study, resources whose characteristics are independent of their
interaction with other units and vary only across activities are referred to as the drivers.
Resources of higher indexed types whose characteristics do vary not only across different
activities, but also within a single activity relative to their interaction with the drivers, are
referred to as the dependents. Notice that a particular resource unit may at the same time
be a driver to the units grouped in higher indexed types and be a dependent on those units
grouped in the lower indexed types. It should be also noted that no interdependencies
may exist among the resource units of the same type or group. Should that occur, the
particular resource type should be split such that the dependent units are placed into a
new subtype of higher index. All resource characteristics and interdependencies relevant
to the pre-specified utility function must be evaluated before any units are assigned to any

of the newly scheduled activities at each decision instance.

The most commonly used variables in this study are defined as follows:

i = project activity , such thati= 1, ...,/

47

I'= number of activities in project network.

Ic = decision instance, i.e., time moment at which one or more activities qualify to be
scheduled since their predecessor activities have been completed.

PR(i) = Set of predecessor activities of activity i.

Q(1¢) = Set of activities qualifying to be scheduled at ¢, i.e., Q(t.) = {i| PR(i) = O}.

J=resourcetypej, j=1,...,J.

J = number of resource types involved in the project.

R; = number of units of resource type ;j available for the project.
<j,k> = notation for k-th unit of type j.

P/ = number of resource units type j required by activity i.

u,’; * = a binary variable with a value of one if k-th unit of type j is engaged in one of the
project activities that are in progress at the decision instance ¢, and zero otherwise. All

Jk o

u]” ’s are initially set to zero.

t!'.k

/" = time-effective executive capability of kh unit of resource type j if assigned to

work on activity i.

p}* = preference of k-th unit of resource type j to work on activity i.
c/* = estimated cost of k-t unit of resource type j if assigned to work on activity i.

a;* (tc) = desired start time or interval availability of k-th unit of type j to work on

activity i at the decision instance f.. In many cases this parameter is invariant across

activities, and the subscript i may often be dropped.

48

The last four variables above represent resource characteristics which, when evaluated,
play decisive role in determining which units should be mapped to which project
activities. A project manager may consider one, more than one, or all of the four
characteristics when performing activity-resource mapping. For example, a manager may
wish to keep project costs as low as possible, while at the same time attempting to use
resources with the best time-effective capabilities, consider their availability, and even
incorporate their voice (in case of humans) or his/her own perception (in cases of human
or non-human resources) in the form of preferences. This particular case would require
the manager to come up with a general mapping utility function which will reflect the
trade-offs between these resource characteristics as objectives for each resource unit.
Mapping objective for each unit with respect to each activity is simply then a function of
temporal capabilities, costs, preferences, and temporal availability, represented as

follows:

j k ik jk ok jk
U= (" e pi" ")

In simpler cases when the information is, for example, available only on time-effective

capabilities and costs, while the preferences are either not available or neglected, and

assuming no restrictions on resource temporal availabilities, the mapping objective for

each resource unit with respect to an activity is then a function:

f k ik i &
U = f@!",c]™)

49

In general terms, a manager’s goal is always to maximize his or her utility function. It
should then be noted that the particular utility function above will only be maximized
when f(¢/*,c{*) is of such form that both costs and resource task times are minimized.

An example of a simple utility which is represented by minimizing resource costs only

would be:

U = —ci*

At each scheduling time instance, ., available resource units are mapped to newly
scheduled activities. This is accomplished by solving J number of zero-one linear integer
problems (i.e., one for each resource type), where the coefficients of the decision vector
correspond to evaluated utility or objective function for each unit of the currently mapped

resource type:

R, .
max Y > Uy -yt forj=1,..,J

heQ(r,) k=1
where:
yi* = binary variable of the decision vector.

Q(z.) = set of newly scheduled activities at decision instance #c.

50

A y/* resulting in a value of one would mean that k-th unit of resource type j is mapped

to i-th (ieQ(tc)) newly scheduled activity at 7,. The above objective in each of / number

of problems is subjected to four types of constraints, as illustrated below.

I) The first type of constraints ensure that each newly scheduled activity receives its

required number of units of each project resource type:

R,)

> yit=p} for i € Q(t¢) forj=1,...,J
k=1

IT) The second type of constraints prevent mapping of any resource units to more than

one activity at the same time at ¢:

Zyij'k <1 f0tk=1, ...,Rj forj=l"""l

i€Q(t,)

III) The third type of constraints prevent mapping of those resource units that are

currently in use by activities in progress at time #.:

Rl
Qult-yi*t=0 fori e Q(tc) forj=1,...,J

k=1

S1

IV) The fourth type of constraints ensures that the variables in the decision vector y/*

take on binary values:

y/* =0orl fork=1,.,R;, ieQ), forj=1,..,J

Therefore, in the first of the total of J runs at each decision instance ¢, available units of
resource type ‘“one” compete (based on their characteristics and pre-specified utility
function) for their assignments to newly scheduled activities. In the second run,
resources of type “two” compete for their assignments. Some of their characteristics,
however, may vary depending on the “winners” from the first run. Thus, the information
from the first run is used to refine the mapping of type or group “two” resources.
Furthermore, the information from either or both of the first two runs is then used in
tuning the coefficients of the objective function for the third run when resources of type
“three” are mapped. Mapping of the J-th type of resources may be affected by the
outcome of any of the previous J-1 runs. Since there may be up to / number of such
instances (if at each decision instance, only one candidate activity is scheduled), the total
of I x J mapping binary integer problems may have to be solved for a project. This is in
addition to up to / problems necessary to concurrently schedule candidate activities by the

activity scheduler (see Section 4.2).

It should be noted again that this model may only support interactive dependencies

between units of different resource types. Thus, dependent units must be in higher

52

indexed types, since their dependencies may be evaluated and incorporated into a utility
function only after their drivers (units in the lower indexed types or groups) have been
mapped. This is necessary in order to eliminate any non-linearites in the model. Should
a manager discover any interdependencies among resource units of the same type, the
type must be split in a manner that sub-dependents are regrouped into a higher indexed

subtype and all other higher indexed types shifted accordingly.

The solution to the above zero-one integer formulation is found using the Balas algorithm
(Rao, 1983), which takes advantage of the special structure of zero-one problems to
generate optimal solutions more efficiently. Although the procedure still relies on
enumeration, it pursues a smart approach to explicitly enumerate only a few solutions
explicitly, while the others are either automatically enumerated implicitly or the problem
proves infeasible. Balas subroutine used in this research is from the Zomlab toolbox at

http://www.ima.mdh.se/tom/

The algorithm starts by converting a general form of an LP zero-one problem to a more
standardized form, by forcing the objective function to be minimizing (i.e., changing its
sign, if it is a maximizing one), replacing all equality constraints by two inequality ones
of opposite types, multiplying all inequalities of type “>" by negative one to convert them
to the form of the “<” type, perturbing the decision variables from x; to (1-x;) when the
corresponding coefficients are negative in the objective vector, and finally introducing an

m-component nonnegative slack vector ¥. The problem then becomes:

53

http://www.ima.mdh.se/tom/

min f{X) = C'X

s.t
AX+Y=B
xj=0orl
Y>0

The algorithm starts with an initial partial solution with all free variables set to zero. A
partial solution is defined as the one with some (but not all) of the n variables of the
decision vector being assigned a value of one or zero. The variables not included in a
partial solution are referred to as the free variables. If each of the free variables of a
partial solution are assigned values, the partial solution becomes complete. An integer
problem with two or three binary variables may easily be enumerated explicitly to find an
optimal solution. Problem with more than three variables, however, would require an
explicit enumeration of 27 solutions. Balas method (Rao, 1983), starting with an initial
partial solution, tries to assign binary values to one free variable at a time and generate a
new series of partial solutions. When a completion of a partial solution gives a feasible
solution of objective function smaller than the current best solution, or when a
completion of a partial solution that will improve the infeasibility in the current solution
cannot be found, then the current partial solution is fathomed. Once a partial solution is
fathomed, all of its completions are also implicitly enumerated and can be discarded from

future iterations. Thus, as soon as a new partial solution is generated, the algorithm

54

attempts to fathom it, and proceeds to generate a new partial solution using the so-called
backtracking procedure, which simply refers to replacing one of the variables in the
current partial solution (which is fathomed) with its complement to generate a new partial

solution. The complete details of the algorithm are provided in full by Rao (1983).

The utility or objective function was previously introduced as common for all resource
types and throughout the entire project duration. In some instances, however, a manager
may wish to map resources according to a utility that varies with time. For example, she
or he may place a greater emphasis on preferences in the early stages, and timely project
completion in the later stages of a schedule. Similarly, some resource types are more
expensive than others. This may require a manager to pay a particular attention to cost in
mapping some resource type(s), and worry only about time-effective capabilities for all
other resource types. A combination, where a utility may vary with respect to both time
and different resource types is also possible. More detailed modeling and illustration of

varying utility functions is discussed in the next section.

4.1.2 Dynamic and Resource Type-Specific Varying of Mapping Utility Function

Mapping units of all resource types according to the same utility function or objective
may often be impractical and unrealistic. Cost issues may be of greater importance in
mapping some, while inferior to time-effective capabilities of other resource types. If a

utility function is fixed for all resource types, mapping may eventually produce undesired

55

assignments and results. Therefore, to accommodate the need for a resource-specific
utility function as mapping objective, we may formulate the utility function as additive
(Keeney and Raiﬁ‘a, 1992). In such a case, each of its components pertains to a particular
resource type and is multiplied by a Kronecker's delta function (Bracewell, 1978).
Kronecker’s delta then detects resource type whose units are currently being mapped and
filters out all utility function components, except the one that pertains to the currently

mapped resource type. Kronecker’s delta is represented as:

sG.sy=1 7 1=

0 if j#s

One of the most general forms that a resource-type driven utility function may take is

then as follows:

U= @/ cf* pi*af* e)+ X £,/ e pl* al* (1)) 6(s)

seS
where:
/: = Component of the utility that is common to all resource types.

/. = Component of the utility that pertains to a specific resource type.

S = Set of resource types whose mapping requires a specific utility.

56

As an example, consider again a case where all resource types would be mapped
according to their time-effective capabilities, except in the case of resource types “two”
and “three” where costs would also be of consideration, and in the case of type “five”,

resource preferences and availabilities would be considered:

U = () + f2(c]*)- 8.2+ £,(c]*)- 803 + f5(p*,2{* (1.))-8(.5)

The above example illustrates a case where mapping of resource units is performed
according to filtered portions of a manager’s utility function, according to grouping of
resources into types. Similarly, a utility function may be dynamically adaptive and
varying with project scheduling time. As previously indicated, some resource
characteristics may be of greater importance to a manager in the early scheduling stages
of a project rather than in the later stages. Such a utility function may be modeled as

follows:

ik j k N 3 j k fo N3 ik j & f.k
UE= fo @l et p*ai)+ f,al* et pi* al* (1)) - wtio.0t.)
se

where:

J, = Component of the utility that is common to all resource types.

/. = Component of the utility that pertains to a specific project scheduling interval.

57

t10styy = Specific time interval during which resource mapping must be performed
according to a unique function.

7 = Set of above defined time intervals for a particular project.

W5t ,t.) = Window function with a value of one if tc falls within the interval

[t;0:t;;), and zero otherwise:

1 if ¢,,<t <t;
W(tzo’t;”,[c)z Lo c HI

0 otherwise

As an example, consider a case where resource mapping in the early project stages is
performed considering time-effective capabilities, costs, as well as their activity
preferences. However, as the scheduling progresses, a manager’s objective may shift
largely towards timely completion of the project, rather than worrying as much about
costs, and especially preferences. In that case, the only important characteristic left to be
considered would be time-effective capabilities. The overall utility then may be modeled

as follows:

U= f@7*)+ f(ci*, p*) - w(0,30,2,)

or alternatively, depending on a manager’s actual objective:

58

UT* = f(c]*, pi*.17*)-m(0,30,2,) + £(2/*)-w(30,90,¢,)

where [0,30) and [30,90) are examples of the time ranges.

Finally, it is also possible to map different resource types according to different
objectives and at different times simultaneously, by simply combining the two concepts
above. For example, assume again that a manager forms his objective in the early stage
of the project based on resources’ temporal capabilities, costs, and preferences. In the
later stage, the manager drops the costs and preferences and considers only resource
capabilities, with the exception of resource type “three” whose costs should still remain in
consideration for mapping. An example of a utility that would account for this scenario

may be as follows:

Wi = f(c/*, pi* 17%) - w0.30,1,) + (£ (t7*) + f(c*)-5().3))- w(3090,1,)

As previously stated, the actual resource characteristics, that is, time-effective
capabilities, costs, preferences, and resource availability may also be invariant for each
resource unit regardless of its interaction with other units on a particular activity. On the

other hand, some of the characteristics may largely vary relative to resource interaction

59

with units of lower indexed resource types. Modeling resource characteristics and their

interactive dependencies for each are discussed in the following sections.

4.1.3 Time Effective Capabilities and Interdependencies

For resource units whose performance on a particular activity is independent of their
interaction with other units, that is, for the drivers, t/* is defined as the time it takes &*

unit of type j to complete its own task or process when working on activity i. Thus,
different resource units, if multi-capable, can be expected to perform differently on
different activities. Each dependent unit, on the other hand, instead of t/*, generally has
a set of interdependency functions associated with it. Each function describes unit’s
interactive depéndency on a particular driver for a particular activity. Thus, the maximum
possible number of dependency functions of any dependent resource unit equals the

number of activities times the total number of driver units for each activity.

Although time-effective interactive dependencies among resources may be expressed in
various forms, in this research we pay a particular attention to two forms, which due to
their simplicity, are expected to be the most commonly used ones: additive and
percentual interactive resource dependencies. Additive interaction between a dependent
and each of its driver resource unit indicates the amount of time that the dependent will

need to complete its own task if assigned to work in conjunction with a particular driver.

60

This is in addition to the time the driver itself needs to spend working on the same

activity:

(T 1)z = (/o4 + T34y yfoto

where:

<Jp.kp> € D’* | where D’* is a set of driver units (each defined by an indexed pair
<Jp,kp>) for a particular resource unit <j, &>.

(T /*); = z-th interactive time-effective dependency of &-th unit of type j on its driver
<Jjp.kp>, z=1, ..., size(D’*). The actual number of these dependencies will

depend‘ on a manager’s knowledge and familiarity with his/hers resources.

;7% = time needed in addition to ¢/>*> for k-th dependent unit of type j to complete its
task on activity i if it interacts with its driver unit j k.
ylo* = binary (zero-one) variable indicating mapping status of the driver unit

<Jp,k,>. It equals one if the unit <j,,k,> is assigned to activity i, and zero if
the unit < j,,k,> has been assigned to activity i. Therefore, each (7 /*), will
have a nonzero value only if y/>* is also nonzero (i.e., if the driver resource unit

3

< Jjp,kp> has been previously assigned to activity i).

61

The percentual interactive dependency is similarly defined as:

(T)z = tfea (1 T4 99) yiot

where 7,7* % is the percentage of time by which ¢/>** will be prolonged if the unit & of

typej interacts with its driver < j, ,k,>.

It should be noted that other interactive dependencies, besides additive and percentual,

are also possible and have been investigated in software implementation of the
methodology. For instance, dynamic dependencies, where values of 7 /* vary with time

are possible with an example model as follows:

fky _ ik ik ik - 2 2
(T])y= (2> + 1) yioe. w(t;,09t;”1tc)+(ti}0 >+ 1))’ijo S U (790 70 9 b

where:

w(ti,,ti-t.) = Window function with a value of one if ¢, fall within the interval

[¢;0,ty), and zero otherwise, as discussed in the previous section.

62

This dynamic representation of resource capabilities is especially useful in modeling the

effects of learning and forgetting in project scheduling and resource allocation.

Not all units of a dependent resource type need to have defined dependencies. Some
units may simply have fixed ¢/*. If neither t/* nor any dependency functions are
provided for a particular resource unit <j, &>, then the ¢/ of the unit is set to infinity and

the unit will not be assigned to activity i. As previously mentioned, the actual number of
interactive dependencies for a given resource unit generally depends on a manager’s
experience with the particular unit, and his/her knowledge of its interactions on previous
projects. When the number of interactive dependencies of a resource unit is nonzero, we

need to evaluate all of the dependencies and take their maximum for #/*:

jk __ .k
= max {(T/'7).}
n=l,.....n':¢(D"k)

The actual procedure that evaluates all T’s to obtain a single value for ¢/, for each unit

of a dependent resource type j, is implemented as follows:

63

For each newly scheduled candidate activity, i, at t;, DO
For each resource unit, k of the current dependent resource type, j, DO

max_function « max{(T/*),} forn =1, ..., size(DJ:k)

It iso
t/* « max_function

i

Else If t/* is nonempty

t/* « max(max_function, t}*)

1

End If
End If

If t/*is @ (T [*), is undefined for all f
t/* « o
End If

End DO
End DO

The above procedure is repeated for each newly scheduled project activity as many times
as there are resource types. t/* is, as previously mentioned, evaluated first for lower

indexed resource types, since it is those types that may serve as drivers to higher indexed

resource types or groups.
4.1.4 Resource Costs and Resource Interdependencies Based on Costs

Modeling cost characteristics follows a similar logic used for representation of temporal
capabilities and interdependencies. In place of t/*, we now define a variable ¢/*,

which represexits the cost (say, in Dollars) of k-th unit of resource type j if it gets assigned

to work on activity i. This value of ¢/* may be invariant regardless of a unit’s

interaction with other resources, or it may vary relative to interaction among resources,
and thus, implying cost interdependencies which need to be evaluated before any
mapping is performed (provided that the cost considerations are a part of a manager’s

utility or objective for mapping).

In cases when a cost of a resource unit for an activity varies depending on its interaction

with units of other (lower indexed) types, we define cost dependencies as:

(€)z =&/ " yjote

i i

where:

y{°*> = a binary variable indicating the status of the particular driver resource unit
< Jp,kp>, as defined in the previous section.

c~‘,-j * = interactive cost of k-th unit of type j on its driver <j,,k,>, with respect to
activity i.

(C /*)z = z-th evaluated interactive cost dependency of k-th unit of type j on its driver
<Jjp.kp>, z=1, ..., sizeD’*). The values of each (C /*), equals &’ * when y/o*
equals one, and zero otherwise. The actual number of these interactive cost dependencies

will again depend on a manager’s knowledge and information about available resources.

65

Given a set of cost dependencies, we compute the overall ¢/* as a sum of all evaluated

(C {*)z’s as follows:

D7+

o]
cf* = 2 ACH),

==l

Once evaluated, each c/* may be a part of a composite utility function as illustrated in

the previous section, or a single objective coefficient, in cases when resources are mapped

by minimizing costs only.

4.1.5 Resource Preferences and Resource Interdependencies Based onm their

Preferences

In pure economic analyses, preferences are often driven by monetary factors. In such
cases, preferences may simply be modeled as negative costs. In many other instances,
however, due to political, environmental, safety, or community standards, aesthetics, or
other similar non-monetary reasons, pure monetary factors may not necessarily prevail in
decision making. It is those other non-monetary factors that we wish to capture by
introducing preferences in resource mapping to newly scheduled activities. The actual
representation of preferences is almost identical to those of the costs. In other words,

resources may have constant preferences on activities regardless of their interaction, or

66

their preferences may vary with respect to any particular activity relative to which units
of other types have already been mapped to that activity. This latter scenario especially

pertains to human resources, and is represented by the following form:

(P)z = B * - ytote

where b',.j * is an interactive preference of k-th unit of typej on its driver < j, ,k,>, with
respect to activity i. (P /*)z is z-th evaluated interactive preference dependency of k-th
unit of type j, with respect to activity i. Finally, again identically to modeling costs,

p,-j * s computed as:

o]

plt =3B,

==l

Final resource characteristic, the availability, is discussed and modeled in the following

section.

4.1.6 Resource Availability in Resource-Activity Mapping

Having certain number of resource units of each type available for a project does not
necessarily imply that all of the units are available all the time for the project or any of its

activities in particular. Due to transportation, contracts, learning, weather conditions,

67

logistics, or other factors, some units may only have time preferences for when they are
available to start working on a project activity or the project as a whole. Others may
have strict time intervals during which they are allowed to start working on a particular

activity or the project as a whole. This latter, strictly constrained availability may be

easily accommodated by the previously considered window function, w(t,,,¢,,,t.).

Having too strictly defined intervals as above, during which resource units are available
to take on their tasks or engage into project may be too rigid of a constraint. In many
cases, especially for humans, resources may have a desired or “ideal” time when to start
their work or be available in general. If that desired time is not achievable, then certain
deviations are permissible and resources are flexible to become available at a time that
may be “somewhat” earlier or later than initially desired. This flexible availability may
simply be represented by fuzzifying the specified desired times using the following

function:

1
l+a(t, - 7/*)?

al*(t.)=

where:

7/* = desired time for k-th unit of resource type j to start its task on activity i. This

desirability may either represent the voice of project personnel (as in the case of

68

preferences), or manager’s perception on resource’s readiness and availability to take on a

given task.

a}*(¢.) = fuzzy membership function indicating a degree of desirability of <j, &>-th unit

to start working on activity i, at the decision instance /.

a = parameter that adjusts for the width of the membership function.

b = parameter that defines the extent of start time flexibility.

It should be noted that when no desirable times are specified, the value of z/* is by

default set to 7, thus holding the membership function at unity.

The crisp and fuzzified desired start times are depicted in the upper and lower subplots in
Figure 4, respectively. The effect of variations in the two membership parameters, a and
b, is also shown in the lower subplot of Figure 4. Notice that variations in the parameter
b, define the sharpness of the membership function’s peak. Varying the parameter a will

cause variation in the overall spread of the function.

69

Qisp ad Fezy Desired Sat Tire of Prgject Resaurces

o
N

Degree o Marrberstip
2 O
h_O

oO
I
i
L

Figure 4. Incorporating Resource Availability into Mapping Constraints.

The membership function, @/ (¢,), is in effect a unimodal function with a peak and sides

that approach, but never quite reach zero. This implies that a resource unit may be

employed virtually at any time, but with the highest “desirability” at the moment where
the function is at its peak. In cases when a/*(¢,) is modeled not as a fuzzy membership

function, but as a previously discussed window function, the region outside the function

indicates absolute unavailability of a resource unit to start a task or engage the project. It
is obvious that a/*(z,), once evaluated, serves as one of the resource characteristics that

may be used as a part of an overall manager’s utility function for mapping of resources to

70

activities. This utility function is then used as a coefficient vector in the zero-one integer
programming model that performs resource-activity mapping. Depending on the
mathematical form of the utility, it may happen that a zero value of the evaluated
al*(t.), if tc falls outside the (¢,0,t,;] range, may cause zeros in some coefficients of
the objective function. Due to the nature of linear programming, zeros in the coefficients
of the objective do not imply that corresponding variables in the solution will also take
the value of zero. In our case, that would mean that although we flagged off a resource
unit as unavailable, the solution may still map it to an activity. Thus, we need to strictly
enforce strict the interval (un)availability by adding information into constraints. For that
we perturbed the third mapping constraint which was previously set to prohibit mapping
of resource units at time 7, which are in use by activities in progress at that time. The

constraint was originally defined as:

Rl
Zu,’;*-y.j'k =0 forieQ(tc) forj=l,...,J
k=1

:

To now further prevent mapping of resource units whose a;/*(¢,) equals zero at f¢, we

modify the above constraint as follows:

R,)
3 (it +(1-a* @) yi* =0 forie Q) forj=1,...,J

k=1

71

This modified constraint now, not only filters out those resource units that are engaged in
activities in progress at f¢, but also those units which were flagged as unavailable at ¢,

due to any other reasons.

So far, at each #;, we map available resources categorized into types to newly scheduled
activities, such that units of lower indexed types are mapped first. Then based on that
outcome, units of higher indexed types are sequentially mapped by type by paying
attention to their dependencies on units of lower indexed types. The next section
discusses the actual activities, and how they are being prioritized and scheduled, before

we start mapping resource units to them.

4.2 ACTIVITY SCHEDULER: PRIORITIZING AND SCHEDULING

PROJECT ACTIVITIES

This chapter explains how activity duration is initially estimated before assigning
resources to it and refining its duration. It also discusses prioritizing and scheduling
project activities. Project activities are scheduled according to two criteria. The first one
is based on basic activity attributes: initially estimated duration, resource requirements,
and the dynamically updated amount of depleted slack at the decision instance ¢.. The
second criteria is a project manager’s pre-specified level of attempt to balance (centralize)

loading graphs of one or more resource types.

72

The following section discusses how durations of all project activities are initially

estimated.

4.2.1 Initial Estimation of Project Activities Duration

Traditionally, a project manager estimates duration of each project activity first, and then
assigns resources to it. In this study, although we don’t exclude a possibility that an
activity duration is independent of resources assigned to it, we assume that it is those
resource units assigned to a particular activity that determine how long it will take for the
activity to be completed. We further assume that resources even of the same
functionality may vary among themselves in terms of qualifications, knowledge, skill
level, and time-effective capabilities. Therefore, an activity duration may greatly be
affected by our particular selection of different resource units, although they may all be
capable of accomplishing the same type of work. Normally, more capable and qualified
resource units are likely to complete their tasks faster, and vice versa. Thus, activity

duration in this research is considered a resource driven activity attribute.

In this model, we first schedule activities, and then map resource units to them.
However, since activity duration is assumed to be resource driven, we then cannot really
schedule activities before knowing their duration. To resolve this issue, we initially only
estimate the most optimistic activity duration using the available information on time-
effective capabilities of driver resource units, that is, those whose performance is

independent of their interaction with other units. This information is used for developing

73

a preliminary unconstrained CPM schedule which is later dynamically refined as resource

units start to be mapped tr activities and duration of each activity becomes more precise.

The initial duration d; of a project activity is simply estimated by sorting the known ¢/*’s

of all driver resource units and then computing d; as following:

d, = max{tf°*="‘}, Sor ¥}

The computations of d;’s for a project of seven activities and two resource types is
illustrated in Tables 2 and 3.

Table 2. Example Representation of Time-Effective Resource
Capabilities and Interdependencies to Seven Project Activities.

Activities i=A | =B i=C | i=D | =E | i=F | i=G
pl (G=1) 1 2 4 1 3 2 4

Unit 1 1.5 400 | 50 1.5
Unit 2 23 | 6.00 34 26 | 450 | 1.6 1.3
Unit 3 1.7 4.6 3.3 5.00 | 1.0 | 4.7
Unit 4 2.1 4.8 750 | 5.0 | 2.8
Unit 1 - 2.0 y - T | T 3.0
Unit 2 - 25 T%? - 4.8 | 12?
Unit 3 - 5.1 - T | 40

Unit 4 - T - T

Unit 5 - 4.8 y - 50 | 60 | 2.7
Unit 6 - 5.2 TS - T2 | T2 | T3

74

Given the data in Table 2, we can easily compile it to estimate the initial duration, d; of

each activity, and tabulate the results as shown on the bottom of Table 3.

75

9L

Table 3. Initially Estimated Activity Durations.

Activities) A B C 7 D 7 E F G
Iy — uni 1 unit § 2 | uni 4 unit 1 {uni} 3 Jumit | 2 | unit 4
=1
P G=h t t t
3 : 3 146 1 {15 2 1140 3 11 2 113
4 |21 2 3 |33 1 2 145 2 (16| 1 |15
2 |23 1 2 |34 3 3 { 1 |5 ‘6 |28
1 4 4]4,‘_ § 4 4175 4 |5 10 |
tl'p'l L7 6.00 4.8 2.6 5.0 L6 4.7
i
Jogs = uni 0 unit | 4 | uni 1 unit{ O ftunmi| 3 {unit| 6 | uni 2
=2
Pi G=2) t t t

- 1 120 - - - - .

- 2 |25 - - - - N

- 5 |48 . - - - -

N 3 N R - N -

- 6 |52 - - - - -

R 2 . N . R N .
t‘Z,pf - s.1 - - - n -
max(t"p" tz,pf) d=17 d=6.0 d~48 dy=2.6 dg=5.0 d~=5.0 d~=4.7

TN

Once d; is estimated for each project activity, we use it as information for prioritizing
activities later in resource constrained scheduling. Modeling and strategy used in this

research for activity prioritization is discussed in the following section.

4.2.2 Computing and Dynamic Updating of Activity Priorities

At each decision instance f, (in resource constrained non-preemptive scheduling as
investigated in this study), activities whose predecessors have been completed enter the
set of qualifying activities, Q(zc). In cases of resource conflicts we often have to
prioritize activitieé in order to decide which ones to schedule. In this methodology we

prioritize activities based on two (possibly conflicting) objectives:

1. Basic Activity Attributes, such as the current amount of depleted slack, number of

successors, and initially estimated optimitic activity duration, d;.

[

Degree of manager’s desire to centralize (or balance) the loading of one or more pre-

selected project resource types.

Amount of Depleted Slack, Sitc), is defined in this research as a measure of how much
total slack of an activity from unconstrained CPM computations has been depleted each
time the activity is delayed in resource constrained scheduling due to lack of available
resource units. The larger the S;j(zc) of an activity, the more its has been delayed from its

unconstrained schedule, and the greater probability that it will delay the entire project.

77

Before resource constrained scheduling of activities (as well as resource mapping which
is performed concurrently) starts, we perform a single run of CPM computations to
determine initial unconstrained Latest Finish Time, LFT; of each activity. Then, as the
resource constrained activity scheduling starts, at each decision instance 7., we calculate

Si(tc) for each candidate activity (from the set Q(z.)) as follows:

t_+d. t +d.
Site) = ot = e 2% ie Q
iltc) LFT, LST, +d, Aee)

Si(tc), as a function of time, is always a positive real number. The value of its magnitude

is interpreted as follows:

e when Si(tc) < 1, the activity i still has some slack remaining and it may be safely
delayed;

e when Si(t;) = 1, the activity i has depleted all of its resource unconstrained slack and
any further delay to it will delay its completion as initially computed by conventional
unconstrained CPM;

e when Sj(tc) > 1, the activity i has exceeded its slack and its completion will be

delayed beyond its unconstrained CPM duration.

78

Graphical illustration of amount of depleted slack is shown in Figure 4.

>
>

Activity
Activity

t.+ d;pin< LFT, t.+d p, < LFT;

. < (I s

L, LFT, i’me .tc Lf‘Ti tl?nle

>
>

Activity
Activity

t.+d,,. > LFT,

i,min

[s - Il s>

i i >
t, LFT, time t. LFT, time

Figure 4. Graphical illustration of the Amount of Depleted Slack Measure.

Once calculated at each ¢,, the current amount of depleted, Si(zc), is then used in
combination with the other two activity attributes for assessing activity priority for
scheduling. (These additional attributes are the number of activity successors, as well as
its initially estimated duration d;). The number of successors is an important determinant
in prioritizing, because if an activity with many successors is delayed, chances are that

any of its successors will also be delayed, thus eventually prolonging the entire project

79

itself. Therefore, the prioritizing weight, w, , pertaining to basic activity attributes is

computed as follows:

F4 —_ . . gi " d:.
wP = Sj(tc) (max(g;)J (max(di))

where:

w/ = activity prioritizing weight that pertains to basic activity attributes.
¢; = number of successors activities of current candidate activity i.
max(¢;) = maximum number of activity successors in project network.

max(d,) = maximum of the most optimistic activity durations in a project network.

Notice that, as a project scheduling time progresses, w/ becomes largely dominated by
the value of S;(zc). In the early stages of a project, most activities are expected to have
plenty of slack left from their resource unconstrained schedule, forcing S;(¢c) to remain
less than unity (notice again that as long as Sj(tc) < 1, an activity / may be safely
postponed). However, as the scheduling time elapses, more activities deplete their
unconstrained slack, which increases the value of Sj(tc) for some of them far beyond

unity. Since the issue of timely project completion traditionally becomes increasingly

more important with time, S;j(t.) was left unscaled in the equation for w?.

80

The secondary objective that may influence activity prioritizing is a manager’s desire for
a somewhat centralized (i.e., balanced) resource loading graph for one or more resource
groups or types. This is generally desirable in cases when a manager does not wish to
commit all of the available project funds at the very beginning of the project (Dreger,
1992), or to avoid frequent hiring and firing or project resources (Badiru and Pulat,
1995), which may greatly affect overall project budget. Resource loading graphs are
generally illustrated by stairstep type of plots with time units on their x-axis, and number
of currently engaged project units on y-axis. In this research, we attempt to balance
(centralize) loading of pre-specified resources by scheduling those activities whose
resource requireméms will minimize the increase in the stairstep size in the early project
stages, and then minimize the decrease in the step size in the later stages. A completely
balanced resource loading graph contains no depression regions as defined by
Konstantinidis (1998), i.e., it is a nondecreasing graph up to a certain point at which it
becomes non-increasing. This should provide for a smooth loading graph, however with
a possibility of extended project duration. Generally, different resources are of different
importance to a manager, and he or she may not wish to attempt to balance the loading of
all resource types. Figure 5 shows a Gantt chart and resource loading graphs of sample
project with 7 activities and two resource types. Neither of the two resource type
loadings are obviously balanced. The same project has been re-run using the above
reasoning, and shown in Figure 6. Notice that the loading of resource type two is now
fully balanced. The loading of resource type one still contains depression regions, but to

a considerably lesser extent than in the previous figure.

81

The activity prioritizing weight that pertains to attempting to centralize resource loading

is computed in this research as follows:

where:

w; = prioritizing weight that incorporates activity resource requirements.

p/ = number of resource type j units required by activity i.

Rj = total number of resource type j units required for the project.

Notice that w” and w; are weights of possibly conflicting objectives in prioritization of

candidate activities for scheduling.

82

Prgectis covdesedatt =11.35

n- [] 1 | i
E o l _
1 1] 1
o 4 6 8
Tre
u T 1] |

A) | L1 1

Figure 5. Example of Unbalanced Resource Loading Graphs.

83

nL I i [| T L |
§] |
1 1 1 1 .
0 2 4 6 8 10
Tare
8 T T T T T]
55-]
o e]
1 1 1 I
0 2 4 6 8 0
Tive
1 1 1 t RN
_ I
IS -
1 4
L I 1 1 1
0 2 4 6 8 0 12
Teve

Figure 6. Example of a Project Schedule with the Loading Graph of Resource Type
Two Fully Balanced.

To further limit the range of w; between zero and one, we scale it as follows:

r

W = ———
max(w])

84

Notice that with w; being scaled as above, its contribution to activity prioritization may

be significant in comparison to w’ only in early project stages. As discussed previously,

the reasoning for such a scenario is that timely completion of a project (which is dictated

by Si(¢c)) traditionally becomes increasingly more important as the scheduling of a
project progresses. Thus, in cases when w’ and w; are compiled into a single additive
objective function for activity prioritization, w/ may prevail over w/ only at the
beginning of a scheduling process. Once computed, w” and w; are combined to form

the coefficients in the objective function based on which some or all (depending on
resource availability) of candidate activities at decision instance f, will be scheduled.

Modeling of this objective function, and constraints is discussed in the following section.

4.2.3 Formulating the Objective Function for Activity Scheduling and Resource

Balancing

With the two weights w? and w; defined and computed, we further use them as the

coefficients of activity scheduling objective function:

max(3 wr -x,.)+ W (Zﬁ-“{-x.-)]

iEQ('g) I'GQ(Q)

85

where:

x; = binary variable whose value becomes one if a candidate activity ie Q(t.) is
scheduled at ¢., and zero if the activity i is not scheduled at .
W = Decision Maker’s supplied weight that conveys the importance of resource

centralization (balancing) in project schedule.

Notice that W is a parameter that allows a manager to further control the influence of w?.

Large values of W will place greater emphasis on the importance of resource balancing.
However, to again localize the effect of W to the early stages of a project, we
dynamically decrease its value at each subsequent decision instance, 7. according to the

following formula:

I

dd. - Yd,

i=] ieH(t,)

Woew = Wold 7

>4,

i=]

where:

d;

i

The sum of all the most optimistic activity durations (as determined by

!
i=l

conventional resource unconstrained CPM computations) for all activities in project

network.

H(t,) = set of activities that have been so far scheduled by the time #¢.

86

In the previous section, it was proposed that one way of balancing resource loading was
to keep minimizing the increase in the stairstep size of the loading graph in the early
project stages, and then minimize the decrease in the step size in the later stages. The
problem with such a reasoning is that a continuous increase in the loading graph in early
stages may eventually lead to infeasibility due to limiting constraints in resource
availability. Therefore, an intelligent mechanism is needed that will detect the point
when resource constraints become binding and force the scheduling to proceed in a way
that will start the decrease in resource loading, as previously depicted in Figure 6. In
other words, we need to formulate a linear programming model whose constraints will
drive the increase in resource stairstep shaped loading function up to a point when
resource availability is reached. As soon as such a point is reached, the model must
adjust the objective function and modify (relax) the constraints to start minimizing the

stairstep decrease of resource loading.

The constraints to implement this procedure are modified from the traditional knapsack
problem. In conjunction with the above objective function, the constraints are formulated
to ensure that at each decision instance f,, maximal number of candidate activities are
scheduled, while satisfying activity precedence relations, preventing the excess of
resource limitations, and most importantly, flag off the moment Wwhen resource limitations
are about to be violated. To facilitate a computer implementation and prevent the

strategy from crashing, we introduce an auxiliary zero-one variable, ;, in this study

87

referred to as the peak flag. The value of l in the decision vector is zero as long as
current constraints are capable of producing a feasible solution. Once that is impossible,
all variables in the decision vector must be forced to zero, except }, which will then take
a value of one and indicate that the peak of resource loading is reached. At that moment,

the constraints that force the increase in resource loading are relaxed (eliminated).

The peak flag is appended to the previous objective function as follows:

max (3w -x,J-&- w(Zﬁ-w,.'-x,.)J -b2

€Q(z,) i€Q(r)

where:

b = arbitrary large positive number (in computer implementation of this study, b was

I
takenasb=) d,).

i=l

Thus, } is in effect, a dummy variable whose sole purpose is to prevent a computer
implementation of the above methodology from crashing. There are two types of
constraints associated with the above objective of scheduling project activities. The first
type simply serves to prevent scheduling of activities which would overuse available

resource units:

88

Yoix + [R,- zp,.f)} s(a,_ ZpijJ, j=1 ...,J

i€Q(t,) ieG(t.) i€G(e.)

where:
x; = candidate activity qualified to be scheduled at ¢,

G(t) = set of activities that are in progress at time 7.

(R ;= z p/) = difference between the total available units of resource type j (denoted
ieG(t,)
as Rj) and the number of units of the same resource type being currently consumed by the

activities in progress during the scheduling instant ¢.

Notice that (R i z p,’) appears on both sides of the constraint. On the right hand side

i€Gz.)
(RHS) of the inequality, it serves to simply prevent the infeasibility, that is, overuse of
available resources and force x;’s to zero in such a case. Its purpose on the left hand side
(LHS) is to hold } to zero for as long as the original problem is feasible. Notice that the
number of the above constraints for each problem is equal to the number of project

resource types, J.
The second type of constraints serves to force the gradual increase in the stairstep

resource loading graphs. In other words, at each scheduling instant 7., these constraints

will attempt to force the model to schedule those candidate activities whose total resource

89

requirements are greater or than equal the total requirements of the activities that have

just finished at z,. The constraints are formulated as follows:

Zo!xi+(zpif)l2(‘zp!}. jed

ieQ(r,) ieF (1)

where:

F (10) = Set of activities that have been just completed at 7.,
P = set of manager’s pre-selected resource types whose loading graphs are to be

centralized (i.e., balanced).

[Z p/ J = total resource type j requirements by all activities that have been completed
ieF (t,)

at the decision instance 7.

Similarly to the previous type of constraints, the term (Z p/ J , appears on both sides of

ieF (1)
inequality. On the RHS of the inequality, it forces the increase in the number of engaged
units of type j at each subsequent t,. On the LHS, it serves to set .Z to unity in cases
when further increase in the number of engaged type j units would exceed their total

availability for a project. In other words, when no candidate activities can be scheduled

90

at Z¢, such that the number of engaged resource units of type j at . is greater than the

number of engaged units at ¢, } becomes unity, thus indicating infeasibility.

The two types of constraints above form a mutual exclusivity for x;’s and l' , such that the
first type of constraints keep x;’s to zero when a problem is infeasible and } to zero when
a problem is feaéible. The second type of constraints sets } to unity in cases of
infeasibility. This mechanism provides a convenient facility to computer implementation
of the methodology by detecting a moment of infeasibility and preventing a program
from ever crashing. Notice that the set P is pre-selected by a project manager and may
have as many as J members, such that the total number of both types of constraints equals

J+ D, but may be up to 2xJ.

Finally, to ensure an integer zero-one solution, we impose the last type of constraints as

follows:
x;j=0orl, for ie Q(¢c)

As previously discussed, once } becomes unity, we adjust the objective function and
modify the constraints that will, from that point on, allow a decrease in resource loading

graph(s). Objective function for activity scheduling is modified such that the product
w/ - x, is not being subtracted from one any more, while the second type of constraints is

eliminated completely:

91

min (— Zw{-x‘.]-W(ZW‘.’-x,-J

ieQ (1) i€Q(t,)

subject to:

Zp,.j-x,. S(Rj.— Zp{) j=1...,J

i€Q,) i€G (1.)
x;=0orl

Since the second type of constraints is eliminated, resource loading function is now
allowed to decrease. The first type of constraints still remains in place to prevent any

overuse of available resources.

An algorithmic summary of the entire methodology, including both activity scheduling
and resource mapping to newly scheduled activities is listed in Appendix A. The
assessment of performance of the algorithm presented in this chapter and its

implementation are fully discussed in Appendix C.

92

V. SUMMARY

5.1 Conclusions

The model developed in this research represents an initial step towards a more
comprehensive resource-activity integration in project scheduling and management. It
provides for both effective activity scheduling based on dynamically updated activity
attributes, as well as intelligent iterative mapping of resources to each activity based on
resource characteristics and pre-selected shape of project manager’s objectives. The
model consists of two complementary procedures: an activity scheduler and resource
mapper. The procedures are altematively being executed throughout the scheduling
process at each newly detected decision instance, such that the final output is capable of
providing decision support and recommendations with respect to both, scheduling project
activities and resource assignments. This approach allows human, social, as well as
technical resources to interact and be utilized in value creating ways, while facilitating

effective resource tracking and job distribution control.

5.2 Major Research Contributions

The principal contribution of this research work is the development of a project

scheduling model that:

93

preserves principal resource values by providing more suitable job assignments and

task distributions.

allows incorporation of interactive dependencies among resources relative to any of

their characteristics.

facilitates effective resource tracking, resource utilization relative to the total project

duration, and relative resource cost comparisons.

allows for dynamic, yet intelligent resource assignment guidance by enabling a
project manager to express his or her tacit knowledge or discretionary input by pre-

specifying obiective functions.

the scheduling and mapping output provides complimenting decision support with
respect to both activities and resources, and it provides detailed recommendations of

which resource units should be assigned to each project activity.

the model is relevant for managerial practice while within the rigor of academic

standards and assumptions. It has been implemented with an idea to be an open

model, customizable, and applicable across various operational settings.

94

5.3 Future Research

Many feasible directions remain open for the future research. One should certainly
include modeling that would incorporate learning and forgetting effects into resource-
activity mappihg. Leamning generally implies improvement in efficiency by repeating an
activity (Badiru, 1995). Considering traditional learning curve analysis would require
information from past projects. However, the present model is already capable of
considering “local” learning/forgetting effects which only require manager’s estimate of
how much a resource unit’s performance on the current project may improve or worsen
by delaying an assignment for a later time. This can easily be modeled by applying
previously discussed window functions which are capable of filtering out
learning/forgetting information that is not associated with the current scheduling

(decision) instance.

Future research should also facilitate for pre-emptive scheduling. The current model does

not support or allow any splitting or prolongation of project activities.

A very relevant problem in knowledge intensive environments and critically skilled
settings is reassignment of people with a particular skill to accommodate the needs of a
new program 61’ project (Cooprider, 1999). In other words, an effective strategy is needed
for reallocation of those resources that have already been previously assigned to activities

and distributed.

95

Final stage would be the development of a strategy capable of resource-activity mapping
across multiple projects. In such a scenario, all previously discussed resource
characteristics could also vary across projects. Other factors such as location and

transportation would here also be of interest in problem modeling.

96

VL. REFERENCES

Ahuja, H. N. (1976). Construction Performance Control by Networks, John Wiley and
Sons, Inc., New York.

Atabakhsh, H. (1991). “A Survey of Constrained Based Scheduling Systems Using an
Artificial Intelligence Approach”, Artificial Intelligence in Engineering, Vol. 6, No.
2,p.58-73.

Badiru, Adedeji B. (1993). “Activity Resource Assignments Using Critical Resource
Diagramming”, Project Management Journal, Vol. 14, No. 3, p. 15 - 21.

Badiru, Adedeji B. (1995). “Incorporating Learning Curve Effects into Critical Resource
Diagramming”, Project Management Journal, Vol. 26, No. 2, p. 38 - 45.

Badiru, Adedeji B. and P. Simin Pulat (1995). Comprehensive Project Management:
Integrating Optimization Models, Management Principles, and Computers, Prentice
Hall, New Jersey, p. 162 - 209.

Badri, Masood A. (1996). “ A Two Stage Multi Criteria Model for Scheduling Faculty-
Course-Time Assignment”, European Journal of Operational Research, Vol. 96, p.
16 - 28.

Badri, Masood A., Donald L. Davis, Donna F. Davis, and John Hollingsworth (1998).
“A Multi-Objective Course Scheduling Model: Combining Faculty Preferences for
Courses and Times”, Computers in Operations Research, Vol. 25, No. 4, p. 303 -
316.

Bandelloni, M, M. Tucci, and R. Rinaldi (1994). "Optimal Resource Leveling using Non-
serial Dynamic Programming", European Journal of Operational Research, Vol. 78,
p. 162-177.

Bein, W. W, J. Kamburowski, and M. F. M. Stallmann (1992). “Optimal Reduction of
Two Terminal Directed Acyclic Graphs”, SIAM Journal on Computing, Vol. 21, p.
1112 -1129.

Belhe, Upendra and Andrew Kusiak (1997). “Dynamic Scheduling of Design Activities
with Resource Constraints”, IEEE Transactions on Systems, Man and Cybernetics -
Part A: Systems and Humans, Vol. 27, No. 1, p. 105 - 111.

Boctor, Fayez F. (1996). “A New and Efficient Heuristic for Scheduling Projects with

Resource Constraints and Multiple Execution Modes™, European Journal of
Operations Research, Vol. 90, p. 349 - 361.

97

Bracewell, Ronald N. (1978). The Fourier Transform and its Applications. McGraw-
Hill, Inc., New York, p. 97.

Brucker, Peter, Andreas Drexl, Rolf Mohring, Klaus Neumann, and Erwin Pesch (1999).
“Resource-Constrained Project Scheduling: Notation, Classification, Models, and
Methods™, European Journal of Operations Research, Vol. 112, p. 3 - 41.

Brucker, Peter, Sigrid Knust, Amo Schoo, Olaf Thiele (1998). “A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem”, European
Journal of Operational Research, Vol. 107, p. 272 - 288.

Burgess, A. R. and James B. Killebrew (1962). “Variation in Activity Level on a
Cyclical Arrow Diagram”, The Journal of Industrial Engineering, Vol. 13, No. 2, p.
76 - 83.

Campbell, Gerard M (1999). “Cross-Utilization of Workers Whose Capabilities Differ”.
Management Science, Vol. 45, No. 5, p. 722 - 732.

Carraway, Robert L. and Robert L. Schmidt (1991). “An Improved Discrete Dynamic
Programming Algorithm for Allocating Resources among Interdependent Projects™,
Management Science, Vol. 37, No. 9, p. 1195 - 1200.

Chang, T. C, and K. C. Crandall (1990). " An Algorithm for Solving Expected
Possibility and its Application in Construction Resource Allocation", Fuzzy Sets and
Systems, Vol. 34, p. 157-171.

Christofides, N., R. Alvarez-Valdes, J. M. Tamarit (1987). “Project Scheduling with
Resource Constraints: A Branch and Bound Approach”, European Journal of
Operational Research, Vol. 29, p. 262 - 273.

Cooprider, Curt (1999). “Solving a Skill Allocation Problem”, Production and Inventory
Management Journal, Third Quarter, p. 1 - 6.

Davis, K. Roscoe, Antonie Stam, and Ronald A. Grzybowski (1992). “Resource
Constrained Project Scheduling with Multiple Objectives: A Decision Support
Approach”, Computers in Operations Research, Vol. 19, No. 7, p. 657 - 669.

Demeulemeester, Erik (1995). “ Minimizing Resource Availability Costs in Time-
Limited Project Networks”, Management Science, Vol. 41, NO. 10, p. 1590 - 1598.

Demeulemeester, Erik L., Willy S. Herroelen, and Salah E. Elmaghraby (1996).

“Optimal Procedures for the Discrete Time/Cost Trade-Off Problem in Project
Networks”, European Journal of Operational Research, Vol. 88, p. 50 - 68.

98

De Reyck, Bert and Willy Herroelen (1998). “A Branch and Bound Procedure for the
Resource-Constrained Project Scheduling Problem with Generalized Precedence
Relations”, European Journal of Operational Research, Vol. 111, p. 152 - 174.

De Reyck, Bert, and Willy Herroelen (1998a). “An Optimal Procedure for the Resource-
Constrained Project Scheduling Problem with Discounted Cash Flows and
Generalized Precedence Relations”, Compuers in Operations Research, Vol. 25, No.
,p.1-17.

Doucette, Martin (1998). Microsofi® Project. IDG Books Worldwide.

Drexl, A. (1991). “Scheduling of Project Networks by Job Assignment”, Management
Science, Vol. 37, p. 1590 - 1602.

Drexl, Andreas (1991). “Scheduling of Project Networks by Job Assignment”,
Management Science, Vol. 37, No. 12, p. 1590 - 1602.

Easa, S. M. (1989). “Resource Leveling in Construction Optiomization”, Journal of
Construction Engineering and Management, Vol. 115, No. 2, 0. 302 - 316.

Ecker, Klaus -H. (1999). “Scheduling of Resource Tasks”, European Journal of
Operations Research, Vol. 115, p. 314 - 327.

Elmaghraby, Salah E. (1993). “Resource Allocation via Dynamic Programming in
Activity Networks”, European Journal of Operational Research, Vol. 64, p. 199 -
215.

Faaland, Bruce, and Tim Schmitt (1993). ‘“Cost-Based Scheduling of Workers and
Equipment in a Fabrication and Assembly Shop”, Operations Research, Vol. 41, No.
2,p.253 - 268.

Franz, Lori S. and Janis L. Miller (1993). “Scheduling Medical Residents to Rotations:
Solving the Large Scale Multiperiod Staff Assignment Problem”, Operations
Research, Vol. 41, No. 2, p. 269 - 279.

Fulkerson, D. R. (1961). “A Network Flow Computation for Project Cost Curves”,
Management Science, Vol. 7, p. 167 - 178.

Gray, Jennifer J. , Don MclIntire, and Herbert J. Doller (1993). “Preferences for Specific
Work Schedulers: Foundation for an Expert-System Scheduling Program”,
Computers in Nursing, Vol. 11, No. 3, p. 115-121.

Hapke, M., A. Jaszkiewicz, and R. Slowinski (1994). “Fuzzy Project Scheduling System
for Software Development”, Fuzzy Sets and Systems, Vol. 67, p. 101-117.

99

Herroelen, Willy, Bert De Reyck, and Erik Demeulemeester (1998). “ Resource-
Constrainted Project Scheduling: A Survey of Recent Developments”, Computers in
Operations Research, Vol. 25, No. 4, p. 279 - 302.

Hori, M., Y. Nakamura, H. Satoh, K. Maruyama, T. Hama, S. Honda, T. Takenaka, and F
Sekine (1995). “Knowledge-Level Analysis for Eliciting Composable Scheduling
Knowledge”, Artificial Intelligence in Engineering, Vol. 9, p. 253-264.

http://www.ima.mdh.se/tom (Website for TOMLAB v1.0 optimization environment
package)

Hussein, M. L. and M. A. Abo-Sinna (1995). "A Fuzzy Dynamic Approach to the
Mulitcriterion Resource Allocation Problem", Fuzzy Sets and Systems, Vol. 69, p.
115-124.

Icmeli-Tukel, Oya and Walter O. Rom (1997). “Ensuring Quality in Resource
Constrained Project Scheduling”, European Journal of Operations Research, Vol.
103, p. 483 - 496.

Keeney, Ralph L. and Howard Raiffa (1993). Decisions with multiple objectives:
preferences and value tradeoffs, Cambridge University Press, Cambridge, New
York.

Kelly, J. E. (1961). “Critical Path Planning and Scheduling: Mathematical Basis”,
Operations Research, Vol. 9, p. 296 - 320.

Khattab, Mostafa M. and F. Choobineh (1991). “A New Approach for Project Scheduling
with a Limited Resource”, International Journal of Production Research, Vol. 29,
No. 1, p. 185 - 198.

Konstantinidis, P. D. (1998). "A Model to Optimize Project Resource Allocation by
Construction of a Balanced Histogram", European Journal of Operational Research,
Vol. 104, p. 559-571.

Kostreva, M. M., and P. Genevier (1989). “Nurses Preferences vs. Circadian Rhythms in
Scheduling™, Nursing Management, Vol. 20, No. 7, p. 50 - 62.

Leachman, Robert C. and Sooyoung Kim (1993). “A Revised Critical Path Method for
Networks Including Both Overlap Relationships and Variable-Duration Activities”,
European Journal of Operational Research, Vol. 64, p. 229 - 248.

Lee,J.K.,K.J. Lee, J. S. Hong, W. Kim, E. Y. Kim, S. Y. Choi, H. D. Kim, O. R. Yang,

H. R. Choi (1995). “DAS: Intelligent Scheduling Systems for Shipbuilding”, 47
Magazine, Winter 1995, p. 78-94

100

http://www.ima.mdh.se/tom

Lee, S. J, and C. H. Wu (1995). “CLXPERT: A Rule-Based Scheduling System”, Expert
Systems with Applications, Vol. 9, No. 2, p. 153-164.

Li, K. Y. and R. J. Willis (1992). “An Iterative Scheduling Technique for Resource-
Constrained Project Scheduling”, European Journal of Operational Research, Vol.
56, p. 370 - 379.

Liebowitz, J. and W. E. Potter (1995). “Scheduling Objectives, Requirements, Resources,
Constraints, and Processes: Implications for a Generic Expert Scheduling System
Architecture and Toolkit”, Expert Systems with Applications, Vol. 9, No. 3, p. 423-
432.

Liou, Ay-Hwa Andy, and Ming-Tser Wu (1996). “Mapping Knowledge to Rules for
Scheduling Expert Systems”, Expert Systems with Applications, Vol. 10, No. % p.
341 - 350.

Mattila, K. G. and D. M. Abraham (1998). ‘“Resource Leveling of Linear Schedules
Using Integer Linear Programming”, Journal of Construction Engineering and
Management, Vol. 124, No. 3, p. 232 - 244.

Minciardi, R., M. Paolucci, and P. P. Puliafito (1994). “Development of a Heuristic
Project Scheduler under Resource Constraints”, European Journal of Operations
Research, Vol. 79, p. 176 - 182.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, and L. Bianco (1998). “An Exact Algorithm
for the Resource-Constrained Project Scheduling Based on a New Mathematical
Formulation”, Management Science, Vol. 44, p. 714 - 729.

Morse, Lucy C., John O. McIntosh, and Gary E. Whitehouse (1996). “Using
Combinations of Heuristics to Schedule Activities of Constrained Multiple Resource
Projects”, Project Management Journal, March 1996, p. 34 - 40.

Mueller, C. W. and J. C. McCloskey (1990). ‘“Nurses’ Job Satisfaction: A Proposed
Measure”, Nursing Research, Vol. 39, No. 2,p. 113 -117.

Nasution, S. H. (1994). “Critical Path Method”, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 24, No. 1, p. 48-57.

Nazareth, Terence, Sanjay Verma, Subir Bhattacharya, Amitava Bagchi (1999). “The
Multiple Resource Constrained Project Scheduling Problem: A Breadth-First
Approach”, European Journal of Operations Research, Vol. 112, p. 347 - 366.

Nowicki, E. and C. Smutnicki (1994). “A Decision Support System for the Resource

Constrained Project Scheduling Problem”, European Journal of Operations
Research, Vol. 79, p. 183 - 195.

101

Ntuen, C. A, and E. H. Park (1995). “ An Experiment in Scheduling and Planning of
Non-Structured Jobs: Lessons Leamed from Artificial Intelligence and Operational
Research Toolbox”, European Journal of Operational Research, Vol. 84, p. 96-115.

Park, S. J., J. W. Kim, and H. W. Kang (1996). “Heuristic Knowledge Representation of
Production Scheduling: An Integrated Modeling Approach™, Expert Systems with
Applications, Vol. 10, No. %, p. 325-339.

Patterson, J. H., R. Slowinski, F. B. Talbot, and J. Weglarz (1989). “An Algorithm for
General Class of Precedence and Resource Constrained Scheduling Problems”,
Advances in Project Scheduling by R. Slowinski and J. Weglarz (Editors), Elsevier,
Amsterdam, p. 3 - 28.

Rao, S. S. (1979). Optimization: Theory and Applications, John Wiley and Sons, New
York, p. 533 - 551.

Roberts, Stephen M. (1992). “Human Skills - Keys to Effectiveness”, Cost Engineering,
Vol. 34, No. 2, p. 17-19.

Sauer, Jurgen and Ralph Bumns (1997). “Knowledge-Based Scheduling Systems in
Industry and Medicine”, JEEE Expert, January-February 1997, p. 24-31.

Seibert, J. E., and G. W. Evans (1991). "Time-Constrained Resource Leveling", Journal
of Construction Engineering and Management, Vol. 117, No. 3, p. 503-520.

Sipos, Andrew (1992). “Duration Analysis”, Cost Engineering, Vol. 34, No. 2, p. 9 - 14.

Slowinski, R., B. Soniewicki, and J. Weglarz (1994). “DSS for Multiobjective Project
Scheduling subject to Multiple-Category Resource Constraints”, European Journal
of Operational Research, Vol. 79, p. 220 - 229.

Sprecher, A., and Drexl (1998). “Solving Multi-Mode Resource-Constrained Project
Scheduling Problems by a Simple, General and Powerful Sequencing Algorithm”,
European Journal of Operational Research, Vol. 107, 431 - 450.

Sprecher, A., S. Hartmann, and A. Drex]l (1997). “An Exact Algorithm for Project
Scheduing with Multiple Nodes”, OR Spektrum, Vol. 19, 195 - 203.

Stinson, J. P., E. W. Davis, and B. M. Khumawala (1978). ‘“Multiple Resource-

Constrained Scheduling Using Branch and Bound”, A/IE Transactions, Vol. 10, p.
252 - 259.

102

Sung, C. S., and S. K. Lim (1994). “A Project Activity Scheduling Problem with Net
Present Value Measure”, International Journal of Production Economics, Vol. 37, p.
177 -187.

Tsang, E. P. K. (1995). “Scheduling Techniques - A Comparative Study”, BT Technology
Journal, Vol. 13, January 1995, p. 16-28.

Ulusoy, Gunduz and Linet Ozdamar (1989). “Heuristic Performance and
Network/Resource Characteristics in Resource-Constrained Project Scheduling”,
Journal of Operational Research Society, Vol. 40, No. 12, p. 1145 - 1152.

Ulusoy, G. and L. Ozdamar (1994). “A Constraint-Based Perspective in Resource
Constrained Project Scheduling”, International Journal of Production Research,
Vol. 32, No. 3, p. 693 - 705.

Wiers, V.C.S (1997). “A Review of the Applicability of OR and AI Scheduling
Techniques in Practice”, Omega, Vol. 25, No. 2, 0. 145-153.

Wuy, R. W. K., and F. C. Hadipriono (1994). “Fuzzy Modus Ponens Deduction Technique
for Construction Scheduling”, Journal of Construction Engineering and
Management, Vol. 120, No. 1, p. 162-179.

Wu, Y. and C. Li (1994). “Minimal Cost Project Networks: The Cut Set Parallel
Difference Method”, Omega, International Journal of Management Science, Vol. 22,
No. 4, p. 401 - 407.

Yang, Kum-Khiong (1996). “Effects of Erroneous Estimation of Activity Durations on
Scheduling and Dispatching a Single Project”, Decision Sciences, Vol. 27, No. 2, p.
255 - 290.

Yura, Kenji (1994). “Production Scheduling to Satisfy Worker’s Preferences for Days

Off and Overtime Under Due-Date Constraints”, International Journal of Production
Economics, Vol. 33, p. 265 - 270.

103

APPENDIX A
Complete Heuristic for Dynamic Mapping Resource Units to Project Activities

A complete procedure that combines all the previously defined inputs and objectives to
perform dynamic mapping of project resources is described below:

Initialize y/* (variable that indicates which resource unit is mapped to which activity)

If activities’ duration is resource dependent
compute d; for each activity
Perform the unconstrained CPM to obtain EST and LST times

Initialize set of scheduled activities to zero

Initialize set of finished activities to zero (set of activities completed at each ¢.)

Initialize set of newl! yadded activities to zero (set of activities just scheduled at each ¢.)
Initialize set of in progress activities to zero (set of activities that are in progress at each

Ic)
Initialize time to zero

If resource centralizing is selected
Set the centralizing weight #rto user specified value
Set the centralizing direction to up (indicating the attempt to keep increasing. ..
...the resource loading until the peak is reached)

For each project activity, calculate the number of immediate successors (numsucc)...
... and scale it by a maximum number of immediate successors in the network

Until all the project activities are scheduled, DO
If scheduled is nonempty

Update time to the next instant corresponding to the smallest...
...activity duration from the scheduled set added to the current time
Update the set finished to include all activities that are completed...
...by the newly updated time
Reset the set newly added to zero
Update the set in progress to filter out the finished activities
Update the precedence relationships to exclude the finished activities...
...from in progress and allow the successors to be scheduled

At new time compose the candidate set of candidate activities...
...whose predecessors have just finished at time

104

If direction is set to up
Schedule_up activities from the cand set
Update the multiplier &7 (to a smaller value as previously discussed)

If peak flag, X becomes one
Modify the optimizing constraints that force the non-decrease...
...in resource loading
Reset the weight to its original user selected value
Reset the direction to down
else
Schedule_down the activities without additional constraints forcing the...
...non-decrease in resource utilization

Reset the newly_added set and fill it with activities scheduled at time

For each of the resource types starting from type one:
Map the resource units of the current type optimizing the user...
...selected or formulated objective

Update y/* and set it to one if unit & is mapped to activity i.

If activities’ duration is resource dependent
Update duration of each activity to the longest time any of the...
...mapped resource units would take to complete its task on that activity

Update the scheduled set
Update the in_progress activity set to include the newly added activities
Update the precedence relationship to account for newly added activities

End DO

105

APPENDIX B

OVERVIEW OF PROMAP (PROJECT RESOURCE MAPPER) SOFTWARE

To run PROMAP, type promap at the Matlab prompt. A menu window will appear as

shown in Figure B1, with three main menu titles: Project, Run, and Graph.

PRHOMAE Progecr e Jourc e Mapper r

Figure Bl. PROMAP’s Main Menu.

The Project menu has the following menu items: New Project, Open Project, Save

Project, and Close.

S PROMAE Project BeLourc e Mapiper i

Figure B2. Project Menu Items.

Just like in conventional software, New Project will prompt the user to enter the data for a

newly created project. Open Project will open a file that contains a previously stored

106

project data. Save Project will save the basic data of the currently opened or created

project.

By selecting New Project, a new window will appear prompting the user to enter the
basic project data: number of activities, number of resource types, number of units of

each resource type available for the project, activity requirements for the number of units

of each type, and activity precedence relations. The window is shown in Figure B3.

Figure B3. Window for Entering the Basic Project Data.

Once the user enters the number of activities and resource types, they appear in the list

boxes on the left hand side of the window as shown in Figure B4.

107

Figure B4. Use of List Boxes to Display Project Activities and Resource Types.

Each time the user enters the number of units available of each type, the number on the

left of the edit text box increases by one, as shown in Figure BS.

Figure BS5. Text Box for Entering Availability of Resource Types.
Activity requirements and precedences are entered in the same fashion, except that there

is a pull-down menu provided to target specific activities when entering the precedences

as shown in Figure B6.

108

b h i wd oh mh wh b = (DD N TN W N)

ONONAEWN=O

.-
B Activily
B Activity
B Activity
Activily
Activity
._
i Activity
Activity
Ach_viy
Ad!viy
Activity
m
Activily
i Activiy

Figure B6. Pull-Down Menu that Facilitates the Entering of Activity Precedence

Relations.

Once all the data has been entered the user should press Accept All and Exit the window.
As soon as the window in Figures B3 through B6 closes, a new window appears as shown

in Figure B7.

109

Figure B7. Window for Entering Functional Dependencies among Resources.

The list boxes on top of the window display activities, resource types, and the number of
resource units associated with each highlighted resource type. Below the list boxes are the
text edit boxes which will either display the activities and resources that the user has
highlighted or enable the user to manually enter the inputs. Reference Activity is simply
the activity i/ with respect to which dependencies are inputted. A more than one, and up
to the size of 7 activities may be entered. The user then must select dependent and driver

resources in the middle third of the window. If no driver resources are specified, the

110

program assumes that there either is no interaction, or that the currently entered resource

is a driver itself (and thus cannot depend on any other resources).

The lower third of the window is where the final project data are entered. The first pull-
down menu displays four items: Varying Resource Time Requirements, Desired
Resource Start Time, Resource Interval Availability (which refers to the Resource Time

Window), and Fixed Activity Duration. The choices are shown in Figure BS.

Figure B8. Pull-Down Menu Items for Entering Specific Resource Data.

’

Varying Resource Time Requirements refers to t/* 's. In cases when all the dependencies
are nonexistent or implicit, the user will resort to this option. Desired Resource Start
Time refers to 7/*. When a single number is entered for a Desired Start Time, it is then
assumed that a=1 and 5=2. Otherwise, the project manager may enter the parameters as
[a, b, 7/*] as a vector. Resource Interval Availability requires the user to enter a two

dimensional vector in the form of “ft7 o, tH] ", where t 0 and ¢ty refer to the strict time
box constraints. Fixed Activity Duration is a feature that pertains only to activities and
assumes that activity duration is independent of which resource units are mapped to it.

This feature is added to facilitate traditional project scheduling where the manager

111

estimates wﬁﬁw durations prior to resource assignment. At any time the user may enter
any number as a fuzzy number by typing fuz(a,b,c,d) where a, b, c, and d, are the edges
of a trapezoidal fuzzy number. The subroutine is smart enough to recognize a triangular
fuzzy number in cases when the user enters fiz(a,b,c). The number is defuzzified using a

formula proposed by Lee and Li (1988):

(-a*-b*+c* +d? —ab+cd)
3(—_a—b+c+d)

X =

Figure B9 displays the items under the lower pull-down menu. They actually enable the
user to enter the Zime Dependencies, Preferences, and Costs as defined in the
methodology. User may enter any number of the dependencies, preferences or costs and
they will be evaluated and compiled to determine the coefficients of the objective

function.

Figure B9. Pull-Down Menu Items.

Once all the project data has been entered, it may be saved before scheduling or for later

use. The data saved by Save Project or retrieved by Open Project include the number of

112

activities and resource types, project availability for each of the resource types,
precedence relations among activities, activity requirements for the units of each resource
type, and basic dependencies, costs, preferences, and time constraints as previously user-

defined.

Close Item under the Project Menu will terminate the program.

The menu Run has seven items: Schedule, Optimizing Objectives, Set Centralizing
Importance Level, Map and Centralize, Centralize Only, and Map Only. Schedule simply
schedules the activities, and depending on the user choice also centralizes and or maps

the resources to activities. The menu items under the Run are shown in Figure B10.

Figure B10. Run Menu Items.

When selected, Optimizing Objectives invokes a list dialog box which enables the user to
select one of the four objectives shown in Figure B11 and as defined in the methodology:

Time Effectiveness, Preferences, Costs, and Resource Availability. Alternatively, the user

113

may also select a Composite Utility Function, which will open another input dialog box

and prompt the user to enter the formula for the utility.

Sedeeo U D byesc tives

Figure B11. Choices of User Selected Objectives according to which Resources are

to be Mapped.

The utility function input dialog box is shown in Figure B12. The user is cautioned that
the variable pertaining to functional time dependencies must be called timedep, the
variable for preferences must be entered as pref, and the other two variables are cost and

starttime.

114

Compoate Hinhity Fune ton

tmedep + 2S5%prefinterval[0.30Ltme) -

Figure B12. Dialog Box for Entering Optimizing Utility Functions.

An example utility function is shown in Figure B12. The formula shows that the time
effectiveness will be the optimizing objective for all resource types, except for the type
two which, in addition, also requires the optimization of costs. kronecker is a subroutine,
named after Kronecker’s Delta Function (Bracewell, 1978) and used in this research to
compare the current resource type to the input, and if they are equal, the subroutine
returns the value of one, otherwise it becomes zero. Thus, the third part of the utility is
nonzero only during the mapping of resource type two. To facilitate for resource
preferences, a project manager may want to consider incorporating them into the utility,
but only for the first 30 time units when timing is not of exclusive importance. Thus, the
function interyal([ﬁ'om, to], time) is used to filter out those additive components of the

utility that are not associated with the current time, that is, current decision instance.

The next menu item under Run is Set Centralizing Importance Level. This, when selected
prompts the user to enter the weight, & for balancing the objective function when
scheduling activities. & was also discussed in methodology, and the dialog box is shown

in Figure B13. If omitted, the default value that Zstakes is zero.

115

- Balanaing Poaaty

Figure B13. Dialog Box for Entering Resource Centralizing Level.

By selecting the Resource Types to Centralize, the program invokes another list dialog
box that lists all the resource types and asks the user to select those whose loading the
program should attempt to centralize. In other words, the user is asked to define the
elements of the set 5, which was discussed in the methodology. The list box is shown in

Figure B14.

Figure B14. List Box for Selection of Resource Types to be Centralized.

116

The final three items under the menu Run are Map and Centralize, Centralize Only, and
Map Only. The first option will dynamically attempt to first, at each decision instance ¢,
schedule activities such that the resource loading is centralized, and them map the
resources units to each of the newly scheduled activities. The second option only
attempts to centralize the resource utilization and allocate enough resource units, but it
does not perfom the discrimination and mapping of distinct units to scheduled activities.
This speeds up the scheduling significantly, and is useful in cases when all the units are
generic, indistinguishable, and without specific costs, preferences, or dependencies. The
last option only maps the resources to activities but skips the attempt to centralize their

loading by suppressing £rto zero.

Finally, the menu title Graph offers the graphical solutions of the scheduled project. The

items under Graph are displayed in Figure B15.

PROMAE Projpect Be Loute oo Mapipes I

Figure B1S. Items under Graph Menu.

Gantt draws a traditional Gantt chart of a scheduled project as shown in Figure B16.

117

Figure B16. Example Gantt Chart by PROMAP.

Resource Loading draws the loading graph of each of the resource types. An example of

a somewhat centralized resource loading graph is shown in Figure B17.

118

Figure B17. Example of a Resource Loading Graph.

Resource-Activity Grid displays a grid chart for each of the resource types, showing
PROMAP’s recommendations on which resource unit of each type should be assigned to
which project activity. An example of resource-activity grid graph is shown in Figure
B18. It should be noted that graph in Figure B18 conveys the same type of information as
the network presented previously in Figure 3. For example, Figure B18 shows that the
project activity 11 has three units of type 2 assigned to it. Those resource units are: unit 1,

unit 2, and unit 6. Activity 13, for example, has resource units 3 and 5 assigned to it.

119

i ol el e Radili il T il siatadhaiiad it

TR nEk SERE R AR .
s ot B
R it st SELRT L

PR SRS IS U P Y T g .
1 ' ' '] !
b O e S e 3
]] !) 1] N
.. -pieiieiaiie s dhaiadndh) st R afintaind aabsianiie Sl
]] ' ' ' I
- -~ ---a---~r----pr----0
1 ! 1 ' t 1

i R e aisatiadiat i

e) s el i sl
[] t ! t I

i T R dittiil sttt mikatatiadied

Figure B18. Example of Resource-Activity Mapping Grid.
Unit Utilization shows the expected time each resource unit is expected to be employed

as a percentage of the total project duration. An example bar plot of unit utilization for a

particular resource type is shown in Figure B19.

120

Figure B19. Resource Units Utilization Bar Chart.

The bottom bars indicate the total time it takes each unit to complete all of its own project
tasks. The upper bars indicate the total additional time a unit may be locked in or engaged
in an activity by waiting for other units to finish their tasks. In other words, the upper bars
indicate the total resource idle time during which it cannot be reassigned to other
activities because it is blocked waiting for other units to finish their own portions of
work. This information is very useful in non-preemptive scheduling as assumed in this

study, as well as in contract employment of resources.

Finally, we may easily monitor the cost of each resource unit as a result of its mapping to

various activities. Figure B20 shows the total project cost for each unit of resource type

121

two. It should be noted that PROMAP displays similar plots for units of all resource

types involved in the project.

Figure B20. Example Cost Chart for Units of a Project Resource Type.

122

APPENDIX C
EXAMPLES OF PROMAP PROJECT INPUT AND OUTPUT

The two example projects in this section illustrate the power and capabilities of
PROMAP. Both examples provide the full format and structure of the data input, as well
as several output scenarios, each reflecting a result of a different scheduling-mapping
objective. Both examples are heavily modified and extended from Doucette (1998). The
first project consists of 18 activities, four resource types, and considers time-effective
capabilities, costs, and preferences as resource characteristics used for mapping decisions.
The second project has 22 activities, three resource types, and considers time-effective
capabilities, preférences, and resource availability as potential mapping objective
components. The input for both projects are classified and tabulated according to the
above characteristics, and ordered with respect to resource interdependencies (that is,
lower indexed resource data is displayed first). The first table for each project represents
basic project data, such as activity names, activity precedence relations, resource types,
availability of each resource type, and activity needs with respect to each resource type or

group. Each subsequent table represents specific characteristics of each resource group.

The output of each project includes a resource-activity mapping grid which provides a
recommendation of which resource units should be assigned to which activities. After
each run, the PROMAP provides as many of such grid plots as there are resource groups

or types in a project. The output also includes a Gantt chart showing the actual schedule

123

of all project activities. Further, the program’s output provides traditional resource
loading graphs which are dynamic indicators of resource usage for each resource group.
An overall resource utilization bar chart for each resource unit as a percentage of the
overall project duration is also tracked and available. Finally, the output also displays

relative total cost bar charts of each resource unit based on its utilization.

Tables C1 and C14 display basic project data for the two projects. Tables C1-C13
illustrate resource characteristics and their interdependencies for the first project. Tables
C15-C23 display resource characteristics and their interdependencies for the second

fictitious project.

124

YA

EXAMPLE PROJECT #1: INPUT DATA

Table C1. Basic Project #1 Data (Partially adopted from Doucette, 1998)

Type 1 Type 2 Type3 Typed
Utility Workers | Contractor Workers| Carpenters | Office Staff (including counsels)

Act. # Act. Name Predecessors Marx: 4 Max: 6 Max: § Max: 4

1 [Customer selections - I(sales)

2 |Write specifications 1 3(specs)

3 |Write contract 2 2(one cousel)

4 |Detail Plans 2 3(drafting)

§ |Excavation 5 2(excavation) 2

6 Footing/foundation 5 4(excavation) 1

7 |Water service 6 J(water) 1

8 ({Electrical service 6 2(electric) |

9 |Wood framing 7.8 5(framing) 1

10 |Roofing 78 3(framing) 1

11 |Plumbing lines 7.8 2(water) 3(mechanical) 2 1

12 |Fumace and A/C 78 3(mechanical) 1

13 |Electrical wiring 7.8 2(electric) 2(electric) 1

14 |Wallboard 910,11, 12,13, 14 3(wallboard) 1

15 |Stairway 9,10,11,12,13, 14 2 2(finish) 1

16 |Painting 14,15 4(painting) 1

17 |Trim and Final Corrections 16 2 2 2

18 |Contract and Admin. Closure 17 2

9C1

Table C2. Time-Effective Capabilities For Resource Type 1.

Utility Worker Utility Worker Utility Worker Utility Worker
Act. No. Act. Name 1(water) Z@Egr, electric) 3(electric, water) | 4(electric, water)

1 Cust. select.

2 Write specs

3 Write contract

4 Detail Plans

5 Excavation

6 Footing/found.

7 Water service 1 0.6 0.6 1

8 Elect. service - 1 1 1

9 Wood framing

10 Roofing

11 Plumb. lines 2.5 3 3 3

12 Fumace & A/C

13 Electric. wiring - 2 2 2

14 Wallboard

15 Stairway

16 Painting

17 Trim and Final

Corrections
18 Contract and

Admin. Closure

LTl

Table C3. Time-Effective Capabilities For Resource Type 2
Contractor Contractor Contractor Contractor Contractor Contractor
Act. No. | Act. Name I(excav., 2(excav., 3(excav., 4(excav., 5(electr., 6(paint.,mech
. mech)) mech.) paint., mech.) | electr., paint.) excav.) ., electr.)
1 Cust. select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation 2 2 2 2 2.1 3
6 Footing/found. 7 5 7 7 7.2 7.4
7 Water service
8 Elect. service
9 Wood framing
10 Roofing
11 | Plumb.lines | (7),~(r}] M=ty @M= M=y} M= | D=
)y)y +H)yy +1.5)y) +1.5)y;)y
(D),=(t}; (D=t} (D=(t}} (Dy=(t}} (D=t} (Dy=(ty;
)y)yt)yt +1.5)); +1.5));)y
(D),=@}} (T),=(t}} (D,=(t}; (D,=(}} (D=} (D=t}
+3)y)7 +3)y1} +3)yiy +3.8)y)7 +3.8)yy; +3)yyy
(D= (D)=t (D= (D=} M= | D=
+2)y, +2) 3! +2)y37 +2.6)y,; +2.6)y;; +2)y,!
12 Fumace & A/C 3 2.5 3 35 35 3.1

8¢l

Time-Effect. Capab. For Contractor Contractor Contractor Contractor Contractor | Contractor
Resource Type 2
Act. No. | Act. Name I(excav., 2(excav., 3(excav., 4(excav., 5(electr., 6(paint.,mec
mech.) mech.) paint., mech.) | electr., paint.) excav.) h,, electr.)
13 El.ef:tric' (Ds=(t; (D)s=(t); (D)s=(t,; (Ds=(t3 (Ds=(t33 (T)s=(t3
wirin
8 2y 129} 2y +29)y1) 2y | 22
(De=(t); (Ds=(ty; (Ds=(ty; (D=3 (D=3 (D=0t
+2)y1} +2.9).y:7 +2)p1} +2.9)-p12 +2)p12 +2.2) 1}
(D=(t13 (D=3 (Dy=(t); (D)=(t}3 (D=3 (D,=(t);
+0.5)y13 +0.5)y); +0.5)y)3 +04)y ;] 105y | 02y
(D)s=(t}y (Ds=(t 33 (Ds=(t,; (Ds=(t33 (Ds=(t,3 (Dy=(t,;
+0.5)y' +0.5)y' +0.5)p +0.4)y,4 +0.5)y,;’ +0.2)y,;
14 Wallboard
15 Stairway 3 3 3 3 3 3
16 Painting 17 14 13 13 13 17
17 Trim and Final 7 7 7 7 7 7
Corrections
18 Contract and
Admin.
Closure

6C1

Table C4. Time-Effective Capabilities For Resource Type 3

Time-Effect. Capab. For
Resource Type 3

Carpenter

Carpenter

Carpenter

Carpenter

Carpenter

Act. No. | Act. Name

| 1(frame, wall)

2 (frame,

wall)

3(finish, frame)

4(finish,
frame)

5(wall, frame)

Cust, Select.

Write specs

Write contract

Detail Plans

Excavation

Footing/found.

Water service

Elect. service

|| I NN &l W)=

Wood framing

20

22

—
(—}

Roofing

ottl

Time-Effect. Capab. For Carpenter Carpenter Carpenter Carpenter Carpenter
Resource Type 3
Act. No. | Act. Name 1(frame, wall) | 2 (frame, wall) | 3(finish, frame) 4(finish, 5(wall, frame)
_ _ . frame) .
11 Plumb. lines (D),=t lz;' (1 (T),=t fi' (1 (T),=t fi' (1 (T),=t 12‘-' (1 (T),=t fil (1
+0.15)p 2 +0.15)p 2 +0.15)-y 3! +0.15)-y} +0.15)-y !
(T),=t}}} (140, (T),=13* (1 (T),=t;; (1 (T),=t}; (1 (D)=t (1
lS)-yf,'2 +O.15)-yf;2 +0.15)-yf;2 +0.15)-yf;2 +0.15)-y,2;2
(Dy=t;7 (1 (D=t (1 (D)y=t;; (1 (Dy=t;;’ (1 ()=t 1
+0.15)y %’ +0.15)-p 2 +0.15)y +0.15)-y 2 +0.15)-y 3
(T),=t fi‘ (1 (T),=t fi‘ (1 (T);=t fi‘ {1 (T)=t lzi4 (1 (T)=t |2i4 (1
+0.15).y ¢ +0.15)y2"* +0.15)-p 24 +0.15)y:* +0.15)y]!
(Ms=t3’ (1 (D)s=t; (1 (D=t} (1 (D=1 (D=t} (1
+0.15)y % +0.15)y 2 +0.15)p2’ +0.15)y %’ +0.15)y ¥
(D=t} (1 (T)s=t};* (1 (T)s=t};-(1 (De=t"-(1 | (Ds=t};*-(140.1
+0.15)-p +0.15)-p 28 +0.15)y;;° +0.15)y;° 5)y.°
12 Fumn. & A/C
13 Electric.
wiring
14 Wallboard 6 7 7 7 7
15 Stairway 5 5 4 4 6
16 Painting

1¢l

Time-Effect. Capab. For Carpenter Carpenter Carpenter Carpenter Carpenter
Resource Type 3
Act. No. | Act. Name 1(frame, wall) 2 (frame, 3(finish, frame) 4(finish, 5(wall, frame)
4 _ wall) , A frame))
17 gﬁm a:',d Final | ()=t} (T)=(t}; (D)=t} (D)=t (D)=,
orrections
+yyh)yl +)yh +Hyyy +H)ylh
(Dy=(t}} (Dy=(t7} (D=(1}} (D=7 (Dy=(t};
)y +H)yi +H)y i +)yi)y
(D=0t} (M=t} (Dy=(t}; (Dy=(t}; (Dy=(t3;
)y +)yy)y Dy +H)y
(T)=(t 1254 (1), 0=(t 1254 (1)=(1254 (T),,=(t :-';4 (1), 0=(t |2-'1‘
+)yi! +)yi! +)yi!)y +Hyy!
(D||=(’|255 (Dn=(t|2'}s (Dn=(’|2';s (T)n=(‘|2';s (Dn:(’lz';s
+0.5)y 2’ +0.5)y 3’ +0.5)y %’ +0.5)y 5’ +0.5)y %’
(T),,=(t 1256 (1),,=(t 1256 (T)u:(‘nz%6 (T),,=(t 1256 (T),,=(t |256
+0.5).y 7 +0.5)y 1’ +0.5)y 5’ +0.5)p +0.5)y 1
18 Contract and
Admin.
Closure

(4%

Table CS. Time-Effective Capabilities For Resource Type 4

Time-Effect. Capab. For Office Staff Office Staff Office Staff Office Staff
Resource Type 4
Act. | Act. Name | 1(spec., draft) 2(spec., draft) 3(spec., draft) 4(couns., sales)
No.
1 Cust. Select. 7 7 7 7
2 Write specs 1 1.5 1 4
3 Write contract 0.8
4 Detail Plans 6 4 5 11
5 Excavation
6 gwt'gst/, (D),=(t5' +0.5)y¢' (D)=t (1 (D, =(t5"+0.5)ys" | (D=(t5"+1.5)y¢"
oundahon (D=2 +1.3)y 3 +0.15)y 2 (D=2 +0.5)yy3? | (1);=(12* +2.5)p2*
(D=t +0.4)y" | (D=0 +1.5)y" | (D=1 -(140.1)pe” | (T),=(e5" +1.4)p¢”
(T),=(t5* +1.4) (D=t (1 (D=0 +1.4)y
(T)y=(t*+0.4)y ;" +0.05)-y ¢ (Ds=(te* +1.7)y ¢
(Ds=(ts +1.7)y "
7 Water service
8 Electric. service
9 Wood framing
10 Roofing
11 Plumb. lines
12 Fum. & A/C
13 Electric. wiring

eel

Time-Effect. Capab. For Office Staff Office Staff Office Staff Office Staff
Resource Type 4
Act. No. | Act. Name 1(spec., draft) 2(spec., draft) 3(spec., draft) 4(couns., sales)
14 . | Wallboard
15 Stairway
16 Painting
17 g"m and Final (@)=t} (D=5 402y | (D=7 0.0y | (D=5 +2y}
orrections 140.25)y (M= +03)yE | (M= 4025y | (Dy=t} +2) 37
(D=t +0.2)y" | (D=5 +04)yy" | (D=7 +04)yy | (Do=(5+2)y
(M=t +0.4)y35" | (Dy=(ti7 +126)y3 | (Dy=(ti’+04yy5" | (D=} +2) !
M= 404y | (D= 112y | (D=7 +1.2y5 | (D=5 42y
(Dy=(t :-'/2 +0.3)y ::;2 (T),o=(t 13-'/4 +1.05)y 13";‘ (D),=(t |3"14 +1.05)y 1354 (D), =(t 1256 +2)y |2_.,6
(Ds=(ty; +02)y30 | (D=3 +1.10)y | (D=5 +110)y35 | (D),,=(t}) +1.5)y};
(Do=(t;; +0.35)y}’ (Dh=(t3; +1.1)y77
(T)is=(t7 +1.1)yy;
18 Contract and 2 3 3 2
Admin. Closure

vel

PREFERENCES

Table C6. Preferences for Resource Type 1.

Utility Worker Utility Worker Utility Worker Utility Worker
Act. No. Act. Name 1(water) 2(water, electric) 3(electric, water). | 4(electric, water)

1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/

Foundation
7 Water service 8 6 7 8
8 Electric. service 5 6 7 6
9 Wood framing
10 Roofing
11 Plumb. lines 8 8 7 7
12 Fumn. & A/C 5 7 6 7
13 Electr. wiring
14 Wallboard
15 Stairway
16 Painting
17 Trim and Final

Corrections
18 Contract & Admin.

Clos.

sel

Table C7. Preferences for Resource Type 2.

Contractor Contractor Contractor Contractor Contractor | Contractor
Act. No. Act. Name 1(excav., 2(excav., 3(excav., 4(excav., S(electr., 6(paint.,mec
_ _ mech.) mech.) | paint., mech.) | electr., paint.) excav.) h, electr.)
1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation 8 6 6 3
6 Footing/ 8 6 6 3
Foundation
7 Water service
8 Electric.
service

9 Wood framing
10 Roofing
11 Plumb. lines | () = 7.l 6 (P, =Ty

(D= 6y (=6}

(D,=5y}} (D= 5\,

(D= 6')’:'1‘ (D= 6'y:'l‘
12 Fum. & A/C |6 4 4 6

9¢1

Preferences for Resource Type | Contractor | Contractor | Contractor | Contractor | Contractor | Contractor
2
Act. No. Act. Name 1(excav., 2(excav., 3(excav., 4(excav., 5(electr., 6(paint.,mec
_ . mech.) mech.) . paint., mech.) | electr., paint.) excav.) h, electr.)
13 Electr. wiring | 3 4 3 (Ps=2y)! (D=3 (D=4}
(D= 7’)’:'32 (D= 8')’:'32 (D= 6'}’:'32
(D= 8')’:'33 (D= 7')’:'33 (D= 8'}’:'33
(D=8, (D.=8y,; D=1y
14 Wallboard
15 Stairway 7 6 3 4 2 8
16 Painting 2 2 9 6 5 8
17 Trim and 8 4 4 1 8 9
Final
Corrections
18 Contract &

Admin. Clos.

LEl

Table C8. Preferences for Resource Type 3.

Carpenter Carpenter Carpenter Carpenter Carpenter
Act. No. Act. Name 1(frame, wall) | 2 (frame, wall) | 3(finish, frame) | 4(finish, frame) | S(wall, frame)

1 Cust. Select.

2 Write specs

3 Write contract

4 Detail Plans

5 Excavation

6 Footing/

Foundation

7 Water service

8 Electric. service

9 Wood framing | 8 8 6 6 7

10 Roofing 7 7 8 8 5

n Plumb. lines | (),= 3.y} (D= 2y (=33 (D =4y} D=1y}
(D= 2‘)’|2|'2 (D= l'ylz;z (D,= 2')’31'2 (D= 4')’lziz (D= 7'}"2{2
(N,=8y |2i] (D:=9y |2i] (9,=8y |2iJ (D=Ty |2|'3 (D= 7'}’12iJ
(D= 6')’121'4 (D= l'ylzl'4 (D= 6')’121" (D= 2'}’121" (D= 7')’121"
(D= 4y} (Ds=Ty |2is (5= 4'}’|zis (Ns= 4')’12{5 (Ds= 7'.)’121'5
(D=6} (D= 4y, D=6y’ (D=3yi (De="Tyi!
(D= 4y, D=4y (D=4 D=4y D=4y}
(Pe=5y)} (Py= 5y} (Pe=5y); (Pe=5y)} (P=5y);
(Dy= 4'}':'13 (D= 4'}’:'13 (D= 4')’:'13 (D= 4')’:]3 (D= 4')’:'13
(D= 4')’:'1‘ (D= 4'}’:': (D= 4')’:'1‘ (D= 4')’:': (D= 4')’:'1‘

8¢l

Preferences for Resource Type 3 Carpenter Carpenter Carpenter Carpenter Carpenter
Act. No. Act, Name 1(frame, wall) | 2 (frame, wall) | 3(finish, frame) | 4(finish, frame) | S(wall, frame)

12 Fumn. & A/C

12 Fum. & A/C : :

14 Wallboard 5 5 5 6 8

15 Stairway D=6y D=6y D=1y D= 12y | D=6y
(D= 8')’1252 (D= 8'.)’|2s'2 (D= l')’lziz (D= 8')'1252 (Dy= 8‘}’125'2
(D= 2'Y12§3 (Dn=2y |2§3 (PD=8y |2§3 (D= 2‘)’1233 (D=2 1253
(D= 2'}’12;‘ (D= 2'}’1254 (D= lo‘)’tzé‘ (D= 2'y12;4 (‘211:2'}'125‘
(Ds= 4')’125'5 (Dhs= 4'}’125'5 (Dys= 4.},'2;5 (D= 2'Y|2§s (D= 4‘}’|2§5
(D= 6‘)’1256 (Ds6= 6')’1256 (D= 6'}'125'6 (D= 1')’12.';6 (D= 6‘y|2§6

16 Painting

17 Trim and Final | (), = 6.y} (Pi=6y1y (Du=6y77 (D=6 (D =675

Comections | =893 |@Du=89% D=8y} |(Du=8yy | (Bu=8yY

(D= 6y 1256 (D= 6y 12"16 (D= 6')’1256 (D= 6‘}’1256 (D= 6')’1256

18 Contract and

Admin. Closure

6¢1

Table C9. Preferences for Resource Type 4.

Office Staff Office Staff Office Staff Office Staff
Act. No. | Act. Name 1(spec.,draft) 2(spec.,draft) 3(spec.,draft) 4(couns.,sales)

1 | Cust. Select. 4 4 4 8

2 Write specs 7 7 6 3

3 Write contract 5 4 4 6

4 Detail Plans 7 6 7 3

5 Excavation 5 4 4 4

6 | Footing/ (P,=55" (Dy=Ty¢' (9,=4y¢ (9= 4y

Foundation (Br=4y? (9= 392 (D=4y} (P=297

(N:=2y i" (D=5y f." (D= 4'}’:" (D= 2‘}’:'4
(D=4 (D= 4y* (Dy=2y,"°

7 Water service 5 4 5 6

8 Electric. service 5 4 5 6

9 Wood framing 8 7 7 8

10 Roofing 8 7 7 8

11 Plumb. lines

12 Fum. & A/C

13 Electric. wiring

14 Wallboard

15 Stairway

16 Painting

orl

Preferences for Resource Office Staffl Office StafT Office Staff Office Staff
T
A);;:.e 4No. Act. Name 1(spec.,draft) 2(spec.,draft) 3(spec.,draft) 4(couns.,sales)
17 .| Trim and Final (Ds=5y5; (Di=5v1s (Ds=8yy; (D=2
Corrections (D= 4yY (D=2} (Pe=4y} (D= 13}
(D= 2’)’12&4 (Ds= 3')’126‘ (D= 6'}’126‘ (D= 2'}’364
(D=4 D=9y (Dy= 4y (D=2}
(Dy= 8‘)’13:':3 (Ds= 6')’?6‘ (Ds= 6')’1353 (Dy= 5‘}’:5]
(D= 6'}’13: (D= 6‘)’?;;‘ (D= 5'}’:6‘
18 Contract and 5 7 7 9

Admin. Closure

84

Table C10. Costs for Resource Type 1.

Costs for Resource Type | Utility Worker Utility Worker Utility Worker Utility Worker
Act. No. Act. Name 1(water) 2(water, electric) 3(electric, water) | 4(electric, water)
1 Cust..Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/
Foundation
7 Water service 4 5
8 Electric. service 6 5
9 Wood framing
10 Roofing
11 Plumb. lines 4 5
12 Furn. & A/C
13 Electr. wiring 6 5
14 Wallboard
18 Stairway
16 Painting
17 Trim and Final
Corrections
18 Contract & Admin.

Clos.

44!

Table C11. Costs for Resource Type 2.

Contractor | Contractor | Contractor | Contractor | Contractor | Contract
or
Act. No. | Act. Name 1(excav., 2(excav., 3(excav., 4(excav,, S(electr., 6(paint.,me
mech.) mech.) paint., mech.) | electr., paint.) excav.) ch, electr.)
1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation 4 4 5 5 6 8
6 Footing/ 4 4 6 5 6 8
Foundation
7 Water service
8 Electric.
service
9 Wood
framing
10 Roofing
It | Plumb.lines [(@ =11y [(@=9y1 [@=11y1 [@=14y} [(@=13y}i |(O=
(@:=10y}7 |(@=10y}7 | (@,=12y}} |(@:=14y}} |(@=14y}} |10¥y
@= 12y} |(@=12y | (9= 1yy |(@=16y | (@=16y} |(O:=
@= 14y} |(@=14y} | (@=169) | (=185} |(@=18y}t |V
(0=
Ny
(9=

13y

34

Costs for Resource Type 2 Contractor | Contractor | Contractor | Contractor | Contractor | Contract
or
Act. No. | Act. Name 1(excav., 2(excav., 3(excav., 4(excav., 5(electr., 6(paint.,me
mech.) mech.) paint., mech.) | electr., paint.) excav.) ch, electr.)
12 Fum. & A/C |6 4 4 7 8 8
13 Electr. wiring
14 Wallboard 7 6 7 4 S 4
15 Stairway 7 6 6 4 S 6
16 Painting 9 7 4 6 7 5
17 Trim and 5 5 4 4 4 4
Final
Corrections
18 Contract &
Admin. Clos.

124!

Table C12. Costs for Resource Type 3.

Carpenter Carpenter Carpenter Carpenter Carpenter
Act. No. Act. Name 1(frame, wall) | 2 (frame, wall) | 3(finish, frame) | 4(finish, frame) { 5(wall, frame)

1 Cust. Select.

2 Write specs

3 Write contract

4 Detail Plans

5 Excavation

6 Footing/

Foundation

7 Water service

8 Electric. service

9 Wood framing |7 3 4 6 5

10 Roofing 4 8 6 5 4

11 Plumb. lines (0,=10y* (0,= 8y’ (O,= 13y (0,=15p} (0= 14y}
(0,= 9)’1212 (0= lz')’lziz (0= 12y} (0,= M}ﬂzlz (< l3yf,2
(0,= 11y (O,= Ty}} (0= 14y} (0= 16y} (0= 15y}
(O=13y;} Q.= 14y} (©.;= 16y (9.~ 18'}’121" = 17y
(9= 13')’1215 Q= 14}’1215 (0= 16)'12|5 (0,= l8.)'121s 9= 17y|2|5
(0= 13y1" (0= Wyl | (0= 1695 | (0= 18yl | (0= 17y

341

Costs for Resource Type 3 Carpenter Carpenter Carpenter Carpenter Carpenter
Act. No. Act. Name 1(frame, wall) | 2 (frame, wall) | 3(finish, frame) | 4(finish, frame) | S(wall, frame)
12 Fumn. & A/C
13 Electr. wiring .
14 Wallboard 8 4 4 4
18 Stairway 7 7 7 4 6
16 Painting
17 Trim and Final 5 5 5 5
Corrections
18 Contract &
Admin, Clos.

4!

Table C13. Costs for Resource Type 4.

Costs for Resource Type 4 Office Staff Office Staff Office Staff Office Staff
Act. No. Act. Name 1(spec., draft) 2(spec., draft) 3(spec., draft) 4(couns., sales)
1 Cust. Select. 8. 7 8 . 6
2 Write specs 5 5 5 5
3 Write contract 7 6 6 6
4 Detail Plans 4 6 4 7
) Excavation 6 6 7 7
6 Footing/Foundation | 4 3 3 5
7 Water service 4 3 4 6
8 Electric. service 4 3 4 6
9 Wood framing 4 3 4 6
10 Roofing 4 3 4 6
11 Plumb. lines 4 3 4 6
12 Fumn. & A/C 4 3 4 6
13 Electr. wiring 4 3 4 6
14 Wallboard 4 3 4 6
15 Stairway 4 3 4 6
16 Painting 4 3 4 6
17 Trim and Final 6 7 5 6
Corrections
18 Contract & Admin. |6 6 6 6
Clos.

EXAMPLE PROJECT #1: OUTPUT

As previously described, PROMAP’s output is displayed through five different plots:
resource-activity mapping grid, total resource utilization bar charts, total relative

resource cost charts, and more traditional activity Gantt chart, and resource loading

graphs.

For the same project, the outputs may vary depending on project managers pre-specified
input parameters, such as his’her composite objective or utility function, and or intention
to only map resources, only centralize their resource loading graphs, or perform both

mapping and centralization simultaneously.

For example, consider a scenario where a project manager would be interested in
mapping resource units to project activities, but attempting to centralize the loading graph
of only resource type one. The mapping strategy would be to assign all resource units to
the most adequate activities based on resource time-effective capabilities. In addition to
that, the project manager might also want to put emphasis on satisfying project
personnel’s preferences, but only for the first 30 time units of the project (since the timely
project completion becomes crucial at any later time). Finally, since resource type or
group one was selected to have its resource loading graph centralized (or balanced), it is
likely that this resource type will be of the greatest budgetary consideration. Thus, the

manager’s mapping strategy might also include cost considerations.

147

The actual input reflecting the above strategy is shown in Figure C1.

— Compaate Tinlity Fand tion

§ nede +pifiervall0 0L me] - 10osthoneckeshpe. |

Figure C1. Example of a Project Manager’s Mapping Strategy Input.

As illustrated in Figure Cl, the additive objective function may also include subjective
weighting coefficients for some of its components. In the above example, the preferences
component was multiplied by seven, while the cost component was multiplied by a factor

of 10.
The Centralizing Importance Level, that is the weight &, was arbitrarily set to 10,000.

The five types of output charts are displayed in Figure C2 through B18. The first

displayed are resource-activity mapping grids:

148

1
"-—0——"'e"'--l'-"-l--""""'
]

' 1
AT T T TS T T AT T T T e s s S
'
]
i

B PR DR - -

! '
[S S S P IR
] 1 (T
1

\

e eemd - — -

]
]
]
1
1
i

el
- — .- - - —— -
P L TRl P —
-] - - — - -

—-——-—.o--—_-—
!

R S

- ""?‘“1""“?“"?“’

¥
dm b e mc e e d e - -
!

i

]

L}

1

]

]

P

i ' .
s Rttt Sttt SIS P R I R

1

B0 GO0 SRR S A

e

1
___..-_,_---_-.?.__--.._

I
t

...._0,___-

Bk T e e e Lol NP (NP -
' L -

'
EE e e i b R

B

-—_— - = - - - —— - -
B it wtatatatate
B S
B

-_-__-Q__-..__:---__..

]
[
1
1
-
1
1
1
'
]
1
1
)
J
1
1
|
'
-
1
\
'
t
-
1
'
l
i)
|
1
t
!

R - -~~~ e, m e - —-—-

Figure C2. Resource-Activity Mapping Grid for the Units of Resource Type 1

149

Figure C3. Resource-Activity Mapping Grid for the Units of Resource Type 2.

e R b L S -

D) R R SRR
]

)
[
|
t
L
|
'
'
)
[

@
'
t
1
1
1
t
1
'

®
[l
[
!
t
[
r
1
1
!
1

D SR SR N SN

e T T S ey S ——

d for the Units of Resource Type 3.

Gri

Figure C4. Resource-Activity Mapp

|
1
'
]
]
'
1
]
i
I
'
'
4
t
'
1
[}
]
]
4+
t
t
1
]
1
)
1
t
t
'
1
1

B i bttt Shldidid et

S 1Py U Sy G I - -

]] !
."—----1-"—‘—'- i

R i

g gy S SR .

] I .
mmemmO - ---@-----@-----a------ S

SO GO SRR IS S

Grid for the Units of Resource Type 4.

Figure C5. Resource-Activity Mapp

150

Next, the project manager may be interested in the total time utilization of each project
resource unit as shown in Figure C6-C9. Each bar indicates the total utilization of a
specific resource unit as a percentage of the total project duration. The blue colored
portion of a bar on the bottom (the darker one, if viewed in black and white mode) is the
percentage of time the unit will spend working on its own tasks. The red colored portion
of a bar (the lighter area) on top indicates any additional project time that the particular

resource unit is engaged in activities by waiting on other units to finish their portions of

tasks.

Figure C6. Percentage of Resource Units Utilization for Type 1.

151

Figure C8. Percentage of Resource Units Utilization for Type 3.

152

Figure C9. Percentage of Resource Units Utilization for Type 4.

The next set of output charts shown in Figures C10-C13 are the relative resource costs.

153

Figure C10. Total Relative Resource Units Costs for Resource Type 1.

Figure C11. Total Relative Resource Units Costs for Resource Type 2.

154

Figure C13. Total Relative Resource Units Costs for Resource Type 4.

155

The last two types of graphs are traditional ones in project schedules: resource loading

graphs and activity Gantt chart.

Figure C14. Resource Loading Graph for Resource Type 1.

156

Figure C16. Resource Loading Graph for Resource Type 3.

157

Figure C18. Project Activity Gantt Chart.

158

Resource centralization and attempting to satisfy resource preferences may enhance
personnel’s morale and motivation, but could also affect project’s duration. Assume that
the previous project is to be scheduled and resources mapped, but with a much simplified
strategy: without any centralization and considering resource time capabilities only. The

resulting output Gantt chart in Figure C19 indicates that, as a result of this relaxation, the

project will finish two time units early.

Figure C19. Project Gantt Chart After Simplifying the Scheduling and Mapping
Strategies.

Since we have “turned off” the centralization feature, the resource loading graph of type

1, now may, and as Figure C20 indicates, will have depression regions.

159

Figure C20. Resource Type 1 loading Graph After Simplifying the Scheduling and
Mapping Strategies.

In a more extreme case, where a project manager wishes to satisfy resource preferences
with a much greater bias than their capabilities, the project duration and resource-activity
mapping may produce significantly different outputs. Consider, for example, the
following mapping strategy as shown in Figure C21. The preferences are now 200 times
more valued than resource capabilities, and are being considered throughout the entire

project schedule (not for just first 30 time units as in Figure C1).

160

S L ompo ate Pty oo taon

Figure C21. Modified Mapping Strategy.

This strategy of heavily considering preferences will, as indicated in Figure C22,

substantially prolong the project schedule.

Figure C22. Project Gantt Chart when Resource Preferences Prevail over Resource
Capabilities

Notice that the project duration now exceeds 90 time units. Besides the Gantt chart, it

should also be expected that resource assignments are also affected and changed by

161

placing more emphasis on preferences. As shown in Figure C23, the resource-activity

mapping grid for resource type 1 show different assignments than the ones in Figure C2.

Figure C23. Resource-Activity Mapping Grid for Type 1 when Resource

Preferences Prevail over Resource Capabilities.

Finally, an important observation must be made. Table B1 shows that, for example,
activity eight requires two units or resource type one. In both Figures B2 and B23, the
activity eight is assigned two resource units. However, in Figure C2, those two units are
unit two and unit four, while in Figure C23 those units are unit two and three. In other
words, by changing mapping strategies, PROMAP may map different resources to the

same activity, however, the number of resource units of each type required by an

162

vity must remain unchanged. Similar observations may be made by comparing the

mapping grids in Figure C24 and Figure C3.

1
1
[}
1

T
[}
1
1
'
T
]
]
]
1

T
'
i
[}

I
1
1
!
1

1
t
]
!
]

1
'
1
1
|

’ -y - Al o e e R T) e

e St A SRR LR SEEE

..-__r.__-_e---_—

[
[

-_--.¢.---

i B . L i ey

- - - - o = . — e = = - - — -

1

it T s Dt

~--@---@--- D ---O---a----a----

D G ¢

'
—_————pm - ——

Figure C24. Resource-Activity Mapping Grid for Type 2 when Resource

Preferences Prevail over Resource Capabilities.

163

¥91

EXAMPLE PROJECT #2: INPUT DATA

Table C14. Basic Project #2 Data (Partial]ly adopted from Doucette, 1998)

. Grou
Free Lancers Free Lancers

. . NuView Productions MultiEye Media __Staff .
1 1st meeting w/ customer %
3 Develop proposal 2 2 2 1
4 Presentation to customer 3 i 2 1
5 Develop contract 4 1
6 Create detailed program outline S 2 1

8 Create multimedia engine 7
9 Create dummy graphics 7 1
10 Develop dummy interface 89 2 1
o 1

12 Develop graphics 1l 1
13 Develop multimedia pgrm. W/dummies 11 3
14 Shoot video 12,13 3 2
15 Capture narration 12,13 1
16 Offline edit 14,15 1

i i 1
18 Online edit 17 2 1
19 Final assemble 18 2 1
20 Bum gold CD-ROM's 19 2 1

N

22 Final revisions | 21 | 2 i 2 i 1 |

Table C15. Time-Effective Capabilities for Resource Group 1.

91

NuView Productions
Activity Activity Name Employeel Employee2 Employee3 Employee 4

1]1st meeting w/ customer
2 |Preliminary outline

Proposal Stage
3 |Develop proposal 2 2.5 1.8 2
4 |Presentation to customer 1 1 1 1
5 |Develop contract
6 |Create detailed program outline
7 |Write scripts

Development Stage
8 |Create multimedia engine
9 |Create dummy graphics
10 {Develop dummy interface
11 |Create preliminary tests

Production Stage
12 |Develop graphics
13 [Develop multimedia program
14 |Shoot video 2 2 2 2
15 |Capture narration 0.8 1 0.7 1.6
16 |Offline edit 1 09 0.9 1.1
17 |Final graphics

Post-Production
18 [Online edit 2 25 2 2
19 |Final assemble
20 |Burn gold CD-ROM's
21 |Beta test

Completion
22 |Final revisions 5 5 4 4

991

Table C16. Time-Effective Capabilities for Resource Group 2.

Res. Group 2: Multeye Media
Activity Activity Name Employeel Employee 2 Employee 3 Employee 4
1 1st meeting w/ customer
2 |Preliminary outline
Proposal Stage
3 [Pevelop proposal (M=, +0.5). 33" | M=t +0.5))" | M =(}* +0.6)- 3" | M = (1} +0.5). py"
g’ ”(:17 o | Ma= @ 04 p1 [M= +07) Y12 | =12 +0.7).)
SEADIT M2 40458 | =@ +07) 52 (M= +06) Y
L)
= +06) y? | D= +04). 5 M= (" +04)-y3* (D= (1" +0.4). y;*
(T,
= (1" +04) y*
4 |Presentation to customer 1 | 1 1
§ |Develop contract
6 |Create detailed program outline 6 7 7 5
7 |Write scripts
Development Stage
8 |Create multimedia engine 7] 5 8
9 |Create dummy graphics
10 |Develop dummy interface 3 5 3 3
11 |Create preliminary tests

L91

Time-Effective Capabilities

Res. Group 2: Multeye Media
Activity Activity Name Employeel Employee 2 Employee 3 Employee 4
Production Stage
12 |Develop graphics
13 |Develop multimedia program 12 15 14 14
14 |Shoot video
1§ [Capture narration
16 [Offline edit
17 [Final graphics
Post-Production
18 |Online edit
19 |Final assemble 5 7 5 8
20 |Bum gold CD-ROM's 1 1 1 1
21 |Beta test
Completion
22 |Final revisions 4 5

(Ms =133 -(1.15). 3,
(Me=1;7 -(1.10). y3;
(Mr=1;7 - (1.15). y};
(D=3 -(1.20). 3!

Ms =1 .1 .lS).y;‘zl
M= 133 -(115). 7
(=152 - (1.15). y22
(Me= 17 -(1.25). y33'

(s =13 -(1.15). y3;
(Me=137 -(1.15). y}7

(Ms =137 -(1.15). y3;
(D=2 -(1.15). y2

891

Table C17. Time-Effective Capabilities for Resource Group 3.

Staff
Activity Activity Name Larry Gloria Bud Susan
1 1st meeting w/ customer 0.5 0.5 0.5 0.5
2 |Preliminary outline 2 4 5 4
Proposal Stage
3 |Develop proposal (M), = (t,l" +1.5). y;.l (T), = (’;.n +1.5). y;.l 4 45
(42! 2) (g2 2)

(1), = (132 2-&- 1.05) -};32 (M), = (zl,z +1) -y32 2 M =@ +1). y;.l
(T)J=(’3’ +l'2)‘)'3' (T)!=("' +l.2)~y3' (’]‘)2_;(’;.2 +"2)y32.2
Mi= (6 +1.2). 337 [Da= (1} +1.2).p3?
(Ms= (1, + 0.8). y2* |(T)s= (t* +0.8).y2*

4 |Presentation to customer 1 1 1 1

5 |Develop contract 0.8 1.5 | 1

6 |Create detailed programoutline |), _ 21, (1 25). 2! | (T)y= 2" - (1.20)- y2* | (D=2 -(1.25) y*' | (M= 121 . (1.25) -y
(Th=15? - (1.25) y2? [(Th=17? -(1.20) - y2? [(Th= 137 . (1.20) - p2* [(Th=127 - (1.10) - y2?
(T = 12'3 (1 .25)-y62'3 (Th= t:'l (1 .25)°y:" (T = t:" -(1.15)- y:" (T)s= t:" -(l.lO)-yg'J
(Mo=15* -(1.25)- y2* |(Mo=12* .(1.25)- y2* [Dha=12* - (1.25) - y2* | M= 12* - (1.10) - 24

7 |Write scripts 8 7 4 5

Development Stage
8 Create multimedia engine
9 |Create dummy graphics 3 S S S

691

Time-Effective Capabilities

Res. Group 3: Staff
Activity Activity Name Larry Gloria Bud Susan
10 [Develop dummy interface M= +2).p2 | M= (2 +2).p2 | M= (2 +2).y2 | (D=2 +2). p»
(M= (@2 +1.5). y2? {(Du=(2* +1.5). y2 | Me= (¢27 +1.5). y3? | (Da= (2 +1.5). y2?
Ma= @ +1).p7° | M= +1).p37° | M= +1).977 | o= (] +1). ;"
(D= (2 +1.5). y3* [(Do=(3* +1.5). y;* | D= (¢7* +1.5). y3* | Moo= (¢4 +1.5). y3*
11 [Create preliminary tests 2 25 2 2
Production Stage
12 |Develop graphics 16 13 13 14
13 |Develop multimedia program
14 |Shoot video 1 1 1 1
15 [Capture narration
16 |Offline edit
17 |Final graphics 7 6 6 6
Post-Production
18 |Online edit Il 1 L wi(r 1 (A 1 1
Mu=15 -(1.30). yy (D=2, -(1.30). 33, | M =1, -(1.30). yy; | (D =1y -(1.30). y,,
Ms=067(1.20) yyr [(Mis= 62 -(1.20). y35 [(Do=07 -(1.20). y37 | Ma=167 -(1.20). y;7
(Mhe=132 -(1.20) .y [(Mis=137 - (1.20). y35 [(Mu=13 -(1.20). yi5 | D=1 -(1.20). y3?
(T)n=1;’; -(1.25).y;'2‘ (T)n=1;'; -(l.2§).y;'2‘ (T)u:lll‘; -(1.25)-}’;'; (T)u=1;'; -(l.2§).y;';
19 |Final assemble 5 4 3 4
20 |Bum gold CD-ROM's 1 1 1 1
21 |Betatest 12 12 15 15
Completion
22 |Final revisions 7 5 5 7

Table C18. Preferences for Resource Group 1.

oLl

NuView Productions
Activity Activity Name Employeel Employee2 Employee3 Employee 4

1 |lst meeting w/ customer
2 |Preliminary outline

Proposal Stage
3 Develop proposal 6 4 2 9
4 |Presentation to customer 6 1 2 8
§ |Develop contract
6 |Create detailed program outline
7 |Write scripts

Development Stage
8 |Create multimedia engine
9 |Create dummy graphics
10 |Develop dummy interface
11 |Create preliminary tests

Production Stage
12 |Develop graphics
13 |Develop multimedia program
14 |Shoot video 6 6 6 5
15 |Capture narration 7 8 9 9
16 |Offline edit 2 5 5 8
17 |Final graphics

Post-Production
18 |Online edit 4 6 7 9
19 |Final assemble
20 |Bum gold CD-ROM's
21 |Beta test

Completion
22 |Final revisions 5 6 7 7

IL1

Table C19. Preferences for Resource Group 2.
Multeye Media
Activity Activity Name Employeel Employee2 Employee3 Employee 4
1 Ist meeting w/ customer
2 [Preliminary outline
Proposal Stage

3 [Pevelop proposal @4yt | B2 | @7yt | @y
@7yt | @y | @8yt | @)1y
®)=4-y;" | @8-y | @)=8-p," | (B)=4-py’
P)=S-yy | BTyt [@yt | sy

4 Presentation to customer (P),=3- y;J (P),=2- y;J P)=7 y;J (P)=4- y;-l
P27 | Ty | ()8 yy " | (BT
Py=8-y;" | ®1=8-y;* | (P)=8-y;’ | (®)=4- y;’
®=9-yy* | ®=T-yt | =1 py* | (RS- py

S |Develop contract

6 |Create detailed program outline

7 |Write scripts

Development Stage

8 |Create multimedia engine 5 3 7 8

9 |Create dummy graphics

10 |Develop dummy interface 8 5 4 5

11 |Create preliminary tests

Production Stage

cLl

Preferences

Res. Group 2: | Multeye Media
Activity Activity Name Employeel Employee2 | Employee 3 | Employee 4

12 |Develop graphics
13 iDevelop multimedia program 6 S 7 6
14 |Shoot video
1§ jCapture namation
16 |Offline edit
17 |Final graphics

Post-Production
18 |Online edit
19 [Final assemble 6 5 5 6
20 |Bum gold CD-ROM's 4 4 4 5
21 |(Beta test

Completion
22 |Final revisions 7 6 7 7

gLl

Table C20. Preferences for Resource Group 3.

Staff Staff
Activity Activity Name Larry Gloria Bud Susan
1 |ist meeting w/ customer 6 4 7 8 .
2 |Preliminary outline 7 5 4 3
Proposal Stage

3 |Develop proposal @Sy | @2y | @3y ey
P73 | ®)=Sy7 | P8yt | (P)=8. p?
®)=8-y° | @)y=8-y | ®)=2-y | #)=4-p)?
@3- | @t | @y | @Sy
®)=3-y;" (P)s=3- y;"
(P)=2- y3? (P)=6- y;*
(P),=8- y;* (P)=8- ;"
(P)=9- y* (P)=3- y;*

4 Presentation to customer 6 7 7 9

S |Develop contract 5 3 5 2

6 Create detailed program outline (P)9=7 . y:-l (P)5=6 . y:-‘ 7 (P)9=7 . yjz'l
P)=4-y;* | (P)=6- y}? (P)=4- y3?
Ph=4-y;° | (P8 y;? (P),=4- y7*
(P)=9-y* | ()9 y2* (P)=9- y3*

7 |Write scripts 6 8 7 6

173!

Preferences

Staff Res. Group 3: Staff
Activity Activity Name Larry Gloria Bud Susan
Development Stage
8 |[Create multimedia engine
9 |Create dummy graphics 1 1 8 1
10 |Develop dummy interface 1 1 8 3
11 |Create preliminary tests 7 6 7 7
Production Stage
12 |Develop graphics 4 3 8 4
13 |Develop multimedia program
14 |Shoot video 3 5 6 4
15 |Capture narration
16 |Offline edit
17 |Final graphics 3 3 1 3
Post-Production
18 [Online edit 4 3 5 3
19 [Final assemble 3 3 3 3
20 |Bumn gold CD-ROM's 3 k| 3 3
21 |Betatest 7 5 7 9

SL1

Preferences

Staff Res. Group 3: Staff
Activity Activity Name Larry Gloria Bud Susan
Completion
22 |Final revisions (P),;=5- y;.l (P),=1- y;.l 5 7

P)=7y ;'2
(P)s=8- y,°
(P),=3- yy*
(®);=3- ;"
(P)=2- y;”
(P),=8- y;”
(P)=9- y 32 4

(P)=4- y}?
(P)=4- y1*
(P),;=9- ysu

9L1

Table C21. Time Availability for Resource Group 1.

NuView Productions
Activity Activity Name Employeel Employee2 Employee3 Employee 4
1 |lst meeting w/ customer
2 |Preliminary outline
Proposal Stage
3 [Develop proposal desired[5] desired[2,4,10) | desired[10) | desired[7)
4 |Presentation to customer desired[5) desired(2,4,10) | desired[10) | desired[8]
§ |Develop contract
6 |Create detailed program outline
7 |Write scripts
Development Stage
8 [Create multimedia engine
9 |Create dummy graphics
10 |Develop dummy interface
11 |Create preliminary tests
Production Stage
12 |Develop graphics
13 |Develop multimedia program
14 {Shoot video desired([5] desired(2,4,10] | desired{15] | desired[12)
1§ |Capture narration desired[5] desired[2,4,10] | desired[15] | desired[13]
16 {Offline edit desired[5] desired[2,4,10] | desired[15] | desired[16]
17 |Final graphics
Post-Production
18 [Online edit desired([5) desired[2,4,10] | desired[15] { desired[18]
19 |Final assemble
20 |{Bum gold CD-ROM's
21 |Beta test
Completion
22 |Final revisions desired(S) desired[2,4,10] [desired[15] | desired[20]

LL1

Table C22. Time Availability for Resource Group 2.

Multeye Media
Activity Activity Name Employeel Employee 2 Employee3 Employee 4

1 1st meeting w/ customer
2 |Preliminary outline

Proposal Stage
3 |Develop proposal interval(0,15] | interval[0,15] desired(7] desired(12)
4 |Presentation to customer interval[0,15) desired[9] desired[7)] desired(6]
S |Develop contract
6 |Create detailed program outline desired[14] desired[14] desired{10] desired(7]
7 |Write scripts

Development Stage
8 |Create multimedia engine desired[11] desired[11] desired[14] desired[10]
9 {Create dummy graphics
10 [Develop dummy interface interval{3,40] desired[25] | desired[3,4,20]
11 [Create preliminary tests

Production Stage
12 |Develop graphics
13 |Develop multimedia program desired[18] desired[28] desired[20] desired[20]
14 |Shoot video
15 |Capture narration
16 |Offline edit
17 |Final graphics

Post-Production
18 |Online edit
19 {Final assemble
20 |Bumn gold CD-ROM's
21 |Beta test

Completion
22 |Final revisions desired[40] desired[28] desired([28] desired[32]

8L1

Table C23

. Time Availability for Resource Group 3.

Stafl
Activity Activity Name Larry Gloria Bud Susan
1 [lst meeting w/ customer interval{0, 1000 | interval{0, 1000] {interval{0, 1000]interval{0, 1000}
2 |Preliminary outline interval[0, 1000 | interval{0, 1000) | desired[4) desired[7)
Proposal Stage
3 |Develop proposal desired[$) desired{7] desired[S] | interval[0,10)
4 |Presentation to customer
§ |Develop contract desired[8) desired[2] desired[10]
6 |Create detailed program outline
7 |Write scripts
Development Stage
8 Create multimedia engine
9 |Create dummy graphics desired{20) desired[28) desired[18) desired[30)
10 |Develop dummy interface desired[20] desired[28] desired[18) desired[30)
11 [Create preliminary tests
Production Stage
12 {Develop graphics
13 |Develop multimedia program
14 |Shoot video desired{28) desired[30] desired[30) desired[30)
15 |Capture narration
16 |Offline edit
17 |Final graphics desired[30] desired[30] desired[30] desired30]
Post-Production
18 |Online edit
19 |Final assemble
20 |Bumn gold CD-ROM's
21 |Betatest
Completion
22 |Final revisions

EXAMPLE PROJECT #2: OUTPUT

The structure of this project is similar to the previous one. However, the input data
differs in the fact that no information is provided on costs. Instead, resource-activity
mapping with respect to resource availability may become of interest since that data is
provided. With that respect, consider the following fictitious mapping strategy, as shown

in Figure C25.

o Compoate Ttty F e tiaon

¥ -5 * timedep + 100 * starttime + 20 * pre

Figure C25. Example Mapping Strategy.

Figure C2$ indicates that the primary mapping objective is satisfying resource choices
with respect to their availability, while the preferences and especially time capabilities
and dependencies are of secondary issues. This strategy will produce a Gantt chart as

displayed in Figure C26 and resource-activity grids as shown in Figures B27-B29.

179

Figure C26. Project Gantt Chart for a Schedule Emphasized on Resource

Availability.

!
!
|
|
)
b
1
|
|
!
t
©
'
!
|
|
|
[
+
1
!
f
|
]
!
T
|
'
'
i
1

B e g .

R o -

T-~-----

P T . e

[e e Y

D B i Tl i R

P R G e e B R

] 1
i i e R et alndi il o Tt dide i

[U PN I S

-1

(RN R RS U WP U A PR

' 1 i
. e TR

Figure C27. Resource-Activity Grid for Type 1 of Strategy Emphasized on

Resource Availabili

180

- - - - -

R e e
S A S DI A

|
|
)
|
[}
|
r
]
{
|
|
'
©
1
|
|
L}
]
'
+
'
|
1
J
L
!
1
!
1
I

B D T .

Bt e e e e et

St bt Sk A

LA

RN A R S A
-_--—.0._._—-_‘____-_'o_____.o..__--_

R ek st

iniatetiiet aiatddnds Safidadid sl Iadheatids

- - —- - -

- -t - - e wm o s - o - - - —
G U YU S GRS PR SR . |

-————.o.—_———‘_—_--_l——--—-

B

R
1

Q...__-

ittt Rttt e it il + Sl

i

B LT L pUAERp ISR H V-

__-__.?...___..

|
t
|
|
'
I
-
)
|
|
'
t
1
|
)
1
!
-
|
t
i
1
1
1
r
I
|
[
'
t

Figure C28. Resource-Activity Grid for Type 2 of Strategy Emphasized on

Resource Availability.

]
]

dmre - -
SRS

R it R il e il

IR TR SR AR S

U g S S

—e e, et - - - --

. Yoo _
R e e e

T LSy MU

dacoea-}

.9.-_-_-
e i

B LT L Uy K-
D e TR

R S
--___-Q_--_..-

-...-——-0._--—-‘--—-—-—

B R el R

_-___.Q.-_--_

-
1
G I QI QI i .

P G —
] .
__---e-_-—--

R
R s s

181

Figure C29. Resource-Activity Grid for Type 3 of Strategy Emphasized on

Resource Availability.

Assume now that the mapping strategy is changed and that the availability of resource
group or type 2 should be the only one considered. In addition, assume that preferences
are granted only to resource units in group three, but only the first 25 time units. The
time-effective capabilities are considered as previously, during the entire project

schedule. This new strategy (that is, mapping objective) may be modeled as follows:

-timedep + 100 * starttime * kronecker(restype,2) + pref * kronecker(restype,3) *

interval([0,25],time)

The output of the above objective in terms of project duration and resource-activity
mapping is shown in Figures B30-B33. Comparing Figures B26 and B30 we should
notice that the new project schedule with a relaxed resource mapping strategy results in
shorter project duration (i.e., in savings of over eight time units). Also by comparing the
previous with the following resource-activity mapping grids, we notice that resource
units assignments were also changed (although, as previously discussed, the required
number of units needed for each activity is always held constant, regardless of the

strategy).

182

Figure C30. Relaxed Resource Mapping Strategy Results in Shorter Project

Duration.

)
]
1
1
'
[}
-
'
1
1
1
1
L
i
1
'
)
'
t
-
|
1
)
I
!
1
r
'
]
)
)
]

e e LTS Py SRy S

e e d e m ==

PR S SR

J S G

B T

e R
- e d - - -

R il S

[U [. T

FR Y QPPN -

J T

R R i R
ik St halinbadndadnl dhaliatd et et s Sttt

L B e e T T AP iy NI RGPS SN

e

N

Figure C31. Resource Group 1 Assignments Resulting from a Change in Strategy

183

O

CITITNIIIIYIIIIL I

4

:

___---9—__--_____—_

- -

e R R it e

""“”""'

I e s e s

—cem--=d

R R e i

- -

4

_—--__?-‘____

e e R

EREE D L EEE R

B T N T L T

tegy.

Figure C32. Resource Group 2 Assignments Resulting from a Change in Stra

b m el - - —-

L
__..-—?-.————-

b

D R i B

[}
4
1
'
¥
1
!
t
1
1
[}
¥
[}
1
1
'
'

- - -

o------

PRI D U U0 S UG U IS g

i et Rl 3 e e o i k

R R el it =R NP~ - -

e R I e

-?._-.—--_

B T T e

[P P I e ety A,

N 4

Figure C33. Resource Group 3 Assignments Resulting from a Change in Strategy

184

APPENDIX D

COMPUTER CODES FOR PROMAP IMPLEMENTATION

function [al=amatrix(actneeds,cand, finished, reslimits, inprogress,
typeselect)

real=actneeds (cand, :
[row,col]=size(real)
first=zeros(row,1l);
second=ones (row, 1) ;

) '
.
(4

first=(reslimits-sum(actneeds (inprogress,:),1))"':

if isempty(typeselect)==
a=[real first];
else

modifiedreal=real (typeselect, :);
second=sum(actneeds (finished, typeselect),1l)';

a={real first; (-modifiedreal) -second]:
end

function [a]l=amatrixdown{actneeds, cand, finished, reslimits, inprogress)
real=actneeds (cand, :) ';

[row,col]=size(real);

first=zeros(row,1l);

first=(reslimits-sum(actneeds (inprogress,:},1})"';

second=sum(actneeds (finished, :),1)"';

a=[real first];

function [cand}=candidates (dynpred)

cand=find (sum(dynpred, 2)<1);

185

function {[scheduled]=chart (time, newlyadded, scheduled, actdur)

z=length(newlyadded') ;
timemat=time* (ones(1,z)):;
if isempty(newlyadded)==
temp=[newlyadded'; timemat;timemat+actdur (newlyadded)];
else
temp=[];
end
scheduled=[scheduled temp]:

function [numsucc]=children(pred)
[x,y]l=size(pred);
for g=l:x

numsucc (g) =sum(sum(pred==qg)) ;

end
numsucc=numsucc/max (numsucc) ;

function [b]=constraints(inprogress, finished,reslimits,actneeds,
typeselect)

if isempty{inprogress)==1
inprogress=zeros (sum(actneeds (inprogress, :),1)):
end

bceiling=reslimits-sum(actneeds (inprogress,:),1l):

if isempty(typeselect)==
b=[(bceiling)};
else

bfloor=sum(actneeds (finished, typeselect),1);

b=[(bceiling) (-bfloor)l;

end

186

function [b]=constraintsdown{(inprogress, finished, reslimits, actneeds)

if isempty(inprogress)==
inprogress=zeros (sum({actneeds (inprogress,:),1});
end

bceiling=reslimits-sum(actneeds (inprogress,:),1);

b=[(bceiling)];

function [est,lst]=cpm(actdur, pred)

numnodes=length (actdur) ;

numarcs=length(find(pred)):

f=ones (1, numnodes) ;
b=[];
c=(1;
a=zeros (numarcs, numnodes) ;
incr=1;
for i=1l:numnodes
for j=l:sum(any(pred(i,:),i))
c={c;pred(i,j) il;
test={i j pred(i,j)]:
b=[b -actdur(pred(i,j))]:
a(incr,pred(i,j))=1;
a(incr,i)=-1;
incr=incr+l;

end
end
a=[a;-eye (numnodes)];
b=[b zeros(l,numnodes)]:
est=1lp(f,a,b);

Fircing the termirnel activities
(Thecse with rnc successcrs)
terminal=[];
for m=1:numnodes
if isempty(find{pred==m))==
terminal=[terminal m];
end
end

"Firc2ing the meximal ZFT
eft=est+actdur’';

eftmax=max(eft);

Finding the ectivircy with meximal LST
termax=find (eft==eftmax);

cr terminal activities

"

*Cal_culating LET

187

addconst=zeros (length(terminal), numnodes):;

addb=[];

for m=1l:length(terminal)
addconst (m, terminal (m))=1;

addb (m) =eftmax—actdur(terminal (m)) ;

end

* Celculeting LST
f=-f;
a=[(addconst;a];
b=[addb b];
1st=1lp(f,a,b):;

figure;
abscis=[abscis scheduled(end)]:;
usage=[usage usage(:,end)];
for v=1l:length(reslimits)

subplot (length (reslimits)+1l,1,v), stairs(abscis,usage(v,:))

‘steilrsizbscis,usegss{v, 1)}

axis([0 scheduled(end) 0 reslimits(v)+1l]);

if v==

title(({'Project is completed at t =

num2str {scheduled (3,end)) 11);

end

xlabel ('Time"') ;
ylabel ('Resource Units')

end

T Y T v w W WY f v oW YW W WA WY TTT T ww v T

for r=1:length(actdur)

data(l, r)=scheduled (2, find(scheduled (1, :)==r));
end
data (2, :)=actdur;
subplot {length(reslimits)+1,1,length{reslimits)+1),
barh (data', 'stack'), colormap((l1 1 1;0 O 0]):
set(gca, 'color', ‘'white');
xlabel('Time"')
ylabel ('Activities"')

Rt R F_ctting the Fescourcse nits Assigrnent - -7~

if choice==3 | choice==

for restype=l:length(reslimits)

188

figure;
grid;
Xticks=l:reslimits (restype):;
yticks=1:numact;
axis ({0 reslimits(restype)+l 0 size(actneeds,1l)+1]);
set (gca, 'XTick',xticks);
set (gca, 'YTick',yticks):
hold;
for nact=1l:numact
vect=find([acttype(nact, restype).unit(:) .assigned]);
plot (vect,nact, ‘'ro');
end
title(sprintf('Mapping Resource Tyre $.0f Units to Project
Activities', restype)):
%xlabel {sprintf ('Resource Type t.0f Units',restype)):
ylabel ('Project Activities');

hold off;
end

for restype=1l:length(reslimits)
figure;

xticks=1l:reslimits (restype);
axis ({0 sum(reslimits)+1l 0 1]);
set (gca, 'XTick',xticks);
hold;
maxunittime=zeros(1l, reslimits(restype))
minunittime=zeros(l, reslimits(restype))
for nunit=l:reslimits(restype)
for nact=1l:numact

-
’
.
’

maxunittime (nunit)=maxunittime (nunit)+ (acttype (nact,restype) .unit (nuni
t) .assigned) *actdur (nact);

minunittime (nunit)=minunittime (nunit)+ (acttype(nact,restype).unit (nuni
t) .assigned) * (acttype (nact, restype) .unit {nunit) . tuned);

end
maxunittime (nunit)= maxunittime (nunit)/scheduled(3,end);
minunittime (nunit)= minunittime (nunit)/scheduled(3,end);

end

bar (maxunittime, 'r’);

bar (minunittime, 'b');

title(sprintf('Time Percentage of Resource Type %.0f Units Engagement
vs. Total Project Duration', restype)):;

xlabel (sprintf ('Resource Type %.0f Units',restype)):
ylabel (' Percentage of Total Project Duration'):;

hold off:;

end
end nend chcice

189

function ([fuzstart]=desstart (instart, time)

if length(instart)==
fuzstart=1/(1+ instart(l)*(time - instart(3))"~instart(2));
elseif length(instart)==1

fuzstart=1/(1l+(time - instart)*2);

end

functicn [pulse]=kronecker(restype, destype)
if destype==restype
pulse=1;
else
pulse=0; -
end

function (actdurl=duration(acttype, actneeds, numact, numres)

actdur=zeros(1l, numact) ;
for i=l:numact
for j=l:numres

if isfield(acttype(i,j).unit(:), 'tuned’')==1
actdriversort=sort ([acttype(i,j).unit(:).tuned]);
if length(actdriversort)<actneeds(i,j) |
isempty(actdriversort)
actdur(i)=max(actdur(i),0);
elseif actneeds(i,j)~=0 o
actdur (i)=max (actdur (i), actdriversort (actneeds(i,j)));
end “erc 1f length

ra Lf Isfi=_<

end

4

b

ty

O

[A

end j=l:runres

190

function fig = dynamo()

This Is the machire-generated representaticn cof a Hdarcdle Graphics
cbjec“
. end lts children. Ncte that harndle vzlues may change wher thess
cbjects
' are re-crezted. This may cause prcblems with any callbacks writter
te

cdeperd cr. the valve cf the hearndle at the time the cbjsct was saved.
Tc recpen this cbject, just type the rame of the M~file at the

prempt. The M-file and its assccliated MAT-file nmust be on wvcur path.
load dynamo

h0 = figure('Color',[0.8 0.8 0.8}, ...
'Colormap',mat0, ...
'MenuBar"', 'none’',
'Name', 'Welcome', ...
'NumberTitle', 'off', ...
'PointerShapeCData',matl, ..
'Position', [320 270 175 75], ...
'Tag', '"Figl');
hl = uicontrol('Parent',h0, ..
'Units’', 'points', ...
'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588]1, ...
'ListboxTop',0, ...
'Position’', [0 37.5 132 18.75], ..
'String', 'Resource Mapping Tool v.1.0', ...
'Style’, 'text', ...
'Tag', 'StaticTextcl’);

hl = uicontrol('Parent',hC, ...

'‘Units', 'points', ...

'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588], ...

'ListboxTop',0, .

'0051bwon',[0 18. 75 131.25 18.75],

'String', 'by', ...

'‘Style’, 'text', ...

'Tag', 'StaticText2');

hl = uicontrol('Parent',h0, ..

'Units’', 'points', ...

'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588], ...

'ListboxTop',0, ..

'Position’ ,[0 0 131 25 18.751, ...

'Strlng , 'Milan Milatovic', ...

tyle', 'text’',

'Tag’ ,'Stat1cText3)

if nargout > 0, fig = h0O; end

drawnow;

for i=1:600000
end

close;

191

function [prior]=floatweight (cand, lst,actdur,time)
for i=1:length (cand)
“pricri{i)=actdur{cand{i))/{lstl{carnd{i})~actduricandii:) -tima, ;

prior(i)=(time + actdur(cand(i)))/(actdur(cand(i))+lst(cand(i))):

end

function [crispl=fuz(a,b,c,d)

if nargin==

crisp=(-(a)*2 - (b)*2 + (¢c)*2 + (d)"~2 -(a*b) + (c*d))/(3*(~-a - b +
c +.d)):
elseif nargin==

crisp=(-(a)*2 + (c)”*2 - (a*b) + (b*c))/(3*(-a +c));
else

error ('Unrecognized Fuzzy Input');
end

function acttype=getarbitrary(reslimits, acttype, refact, typedep,
unitdep, funcstr)

for act=l:length(refact)
for tdep=1l:length(typedep)
for udep=l:length(unitdep)

if exist('acttype')== ‘firnging the ndex whers %o guc
“rz rewly 2Zzcscg functicn
dummy=eval('size(acttype(refact (act),
typedep (tdep)) .unit (unitdep(udep)).func,2)+1','1");
else
dummy=1;
end

O
rt
n

conditionleft=unitdep (udep); ‘maxing sure that unlts
particular res type &re rnct exceececd
conditionright=reslimits (typedep{(tdep)):

if conditionleft<=conditionright
acttype (refact (act),
typedep (tdep)) .unit (unitdep (udep)) . func{dummy}=funcstr;

else

break
end ‘enc 1f unltlep

192

end
end
end

function fig getdata ()

* This 1s the meachire-generated represerntaticn <f &
cbject
* end I1ts children. lNcte that handle values meay chargs
cbijscts
. are re-craztecd. This may cause prcblems with any
te
v cepencd cr. the value cf the handle zt the tims the -
Tc recparn this cbject, just type thke neme cf ths M-fl
MATLAZ
prempt. The K-Ifils anc lts asscclated MAT-fIls must b
load getdata
h0 = figure('Color',[0.8 0.8 0.8}, ..

‘Colormap',mato,
'MenuBar’', 'none', ...
'NumberTitle', 'off", .

‘Name', 'Enter Basic Project Data',...

'PointerShapeCData’,matl,

'‘Position', [71 132 678 392], ...
'Tag','Figl');
hl = uicontrol('Parent',h0, ...

'Units', 'points’,

'BackgroundColor', [0.752941176470588 0.752941176470588

0.7529411764705881,
‘ListboxTop', 0,

o o »

'Position', [248.25 18 246.75 255],

‘Style', 'frame’', ...
‘Tag', 'Framel');

c Listbowx

actlist_call={

‘h_actlist=£findokj(''Tag'"',
'h pred=findobj(''Tag'"',

''Listbox1'");"'...
"'EditText5'') ;...

'h_typelist=findobj (''Tag'',''Listbox2"'");'...
'n_actneedstext=findobj(''Tag'"',''StaticTextd"'');"'...

‘actvalue=get (h_actlist, ''value'');"'

o e .

'typevalue=get (h_typelist, ''value'');'...

'set (h_actneedstext, ''string’'’',sprintf (' 'Number

$.0f units required by activity %.0£:'"',typevalue,
‘predstr=num2str (actvalue);'...

'set (h_pred, ' 'string'’',
1:

hl

predstr) ;'

uicontrol ('Parent',h0, ...

'callback',actlist_call,...

‘Units', 'points’',
'‘BackgroundColor',[1 1

1],

'Position’', [22.5 16.5 90 240], ...

'String',"' ', ...
'max', 2,.--

193

of resource type
actvalue));'...

'Style', 'listbox', ...
'Tag', 'Listboxl', ...
'Value',1l);

xescurces Type Listbex

typelist_call={
'h_avail=findobj(''tag’'', ''EditText3'"');"'...
'h_numres=findobj(''Tag'’',''EditText2'");:"'...
'h_typelist=findobj(''Tag'', *'Listbox2"'*);"'..
'h_availtext=findobj(''Tag'',''StaticText3'")
'h_actneedsedit=findobj (''Tag'"', '"EditText4"'"
'h_actneedstext=findobj(''Tag'’', ''StaticText4
'h_actlist=findobj (''Tag'',''Listboxl'"'};"'...
'typevalue=get (h_typelisct, ''value'"'):'...
'reslimits=get (h_avail, ''userdata''};"'..
'actneeds=get (h_actneedsedit, ' 'userdata’

-~ Ny

-

Yot

'actvalue=get (h_actlist, ''value’'');'...

'set{h_availtext, ''string'',sprintf(''Units of resource ctype %.0f
available:'',cypevalue));'...

'if typevalue <= length(reslimits) & reslimits(typevalue}~=0,"'...

'set (h_avail, ''string'’',num2str{reslimits (typevalue)}));"'...

'else, set(h_avail,''string'',"""'"}:"'...

‘end;'. ..

'set (h_actneedstext, ''string'',sprintf(''Number of resource type
%.0f units required by activity %.0f:'',typevalue, actvalue));'

1;

hl = uicontrol('Parent',h0, ...
'Units', 'points', ...
‘callback’, typelist_call, ...
'BackgroundCoclor', {1 1 1}, ...
'Position', [135 16.5 90 2401, ...
'‘String',' ', ...
'max’', 2,...
'Style', 'listbox', ...
'Tag', 'Listbox2', ...
'Valve',1l);

lumber Zf actilvities ZIzlit

numactedit_call={
'h_numact=findobj(''Tag'’', ''EditTextl"'")
'h_actlist=findobj(''Tag'"','’'Listboxl'")
'h_popup=findobj(''Tag'', ' 'popupmenul’’);"'...
'numact=get (h_numact, ''String'');"'...
'numact=str2num(numact});'...
‘actstr=""'Activity 1"';'...
'for i=2:numact, actstr=[actstr sprintf(''|Activity
£.0£'',1i)):;,end;"'...
'set (h_actlist, ''string'’',actstr);’'...
'set (h_numact, ''userdata'’',numact);"'...
'‘for j=1l:numact, popstr(j)={sprintf(''Predecessors of Activity
$.0f"',3)}:;,ends . ..
'set (h_popup, ''string’'',popstr);’

1:

~
.
.
.

R Y}
.
.
.

194

hl = uicontrol ('Parent’, ho,
'Units', 'points', ...
'callback’',numactedit_call, ...
'BackgroundColor', {1 1 1], ...
'ListboxTop',0, ...
'HorizontalAlignment', 'left',...
'Position', [382.5 226.5 45 22.5], ...
'‘Style', ‘edit’, ...
'Tag', 'EditTextl"')

~

Nunber cf Rescurce Types Idit

numresedit call={
'h numres=findobj(''Tag'', ''EdictText2'");"...
'h:typelist=findobj("Tag","Listbon");’...
'numres=get (h_numres, ''Sctring''};"'...
'numres=str2num (numres;} ;'
'typestr="''Resource Type
'*for j=2:numres, typestr=

typestr sprintf(''|Resource Type

~— bt

+.0f"',3)):,end;"'. ..
'ser (h_typelist,''string'',typestr);'...
'set (h_numres, ' 'userdata'’',numres) ;"'
]z
hl = uicontrol('Parent',h0, ...

'Units’', 'points', ...

'callback', numresedit_call, ...
'BackgroundColor', [1 1 1], ...
'ListboxTop',0, ...
'HorizontalAlignment', 'left’, ...
'Position', [382.5 189 45 22.5], ...
'Style','edit', ...

'Tag', 'EditText2'):

Tunkber cf Xescurcs Type Avellable
typeavail call=(
'h_avail=findobj(''tag'',''EditText3'');"'...
'h_numres=findobj (''Tag'', ''EditText2"');"'...
'h typelist=findobj(''Tag'',''Listbox2'");"'...
'h_availtext=findobj(''Tag'',''SctaticText3"'');"'...

'reslimics=get(h_avail, ''userdata'');"'...

'typevalue=get (h_typelist, ''value'');'...

'avail=get (h_avail, ''string’'');"'...

‘avail=str2num(avail);"'...

‘reslimits(typevalue)=avail;"'...

'set (h_avail, ''userdata'’',reslimits);'...

'numres=get (h_numres, ' 'userdata'');'...

'if typevalue < numres, set (h_typelist, ''value’'',typevalue+l);'...

'set(h _avail, ''string'',"""'"):"...

'set(h—availtext,"string",sprintf("Units of resource type %.0f
available:'', typevalue+1l));'...

‘else,'...

'set (h typelist, ''value'’',1);'...

’set(h-availtext,"string","Units of resource type 1
available:"');'...

‘end;"'

1:

195

hl = uicontrol('Parent',h0, ...
‘callback', typeavail_call, ...
'‘Unics’', 'points', ...
'BackgroundColor', {1 1 1], ...
'ListboxTop',0, ...
'‘HorizontalAlignment', 'left',...
'Position', [382.5 151.5 45 22.5}, ...
'Style’', 'edit', ...
'Tag', "EditText3"');

Aactivity Rescurcs X2

g

gulrenents

actneeds_call={
'n_actneedsedit=£findobj(''Tag'', '"'EditTextd4""};'...
'h_actlist=findobj(''Tag'', ' 'Listboxl'');"'...
'h_typelist=findobj(''Tag'',''Listbox2'');'...
'h_actneedstext=findobj(''Tag'', ''StaticText4"'');"'...
'h_numres=findobj (''Tag'"', ' 'EdicText2'');"...
'h_numact=findobj (''Tag'"', ''EditTextl'");"'. ..
'h_dummy=findobj(''tag'', ''EditText3'");
'h_avail=findobj(''tag'', ''EditText3'");"'...
'h_availtext=findobj(''Tag'','’'StaticText3"'"');"'
'reslimits=get (h_avail, ''userdata'');"'...
'actvalue=get (h_actlist, '*value’'');"'...
'typevalue=get (h_typelist, ''value''};"'...
'actneeds=get (h_actneedsedit, ''userdata'');"'...
'line=get (n_actneedsedit, ''string’'');"'...
'actneeds (actvalue, typevalue)=strZ2num(line);'...
'set (h_actneedsedit, ''userdata'',actneeds);"'...
'numact=get (h_numact, ''userdata'');"'...
'numres=get (h_numres, ''string'');"'...
'numres=str2num(numres);'...
'if typevalue < numres, set{h_typelist,’''value'',6 typevalue+l);'...
'set (h _actneedsedit, ''string'’',"'""'");'...
'set(h_éctneedstext,"string",sprintf("Number of resource type

- ot

- e~

\

t.0f units required by activity %.0f:'',typevalue+l, actvalue})

‘availstr=num2str(reslimits{ctypevalue+l));*'...

'set (h_avail, ''string'',availstr);'...

'set(h:availtext,"string",sprintf("Units cf resource zype *.C
available'',typevalue+l));'...

‘else, '...

'set (h_typelist, ''value'',1);"...

'set (h_actneedsedit, ''string'’',"'""'");"'...

'if actvalue < numact, set (h_actlist, ''value'',actvalue+l);"'...

'typevalue=get (h_typelist, ''value'"');"'...

'set (h actneedstext, ''string'',sprintf(''Number of resource type
%.0f units required by activity %.0f:'',typevalue, actvalue+l));'...

'‘end;"'...

' end; [

17

. o o

rh

hl = uicontrol ('Parent',h0, ...
'Units’', 'points’', ...

196

'callback',actneeds_call, .
'BackgroundColor', [1 1 1}, ..
'ListboxTop',0, ...

'Position', [(382.5 106.5 45 22.5],
‘HorizontalAlignment', 'left’',
'Style’, 'edit', ...

'Tag’', 'EditText4"');

ACtIvity Predecesscrs zIdi

predec_call=([
'h ornd flndob]("Tag","EditTextS"),'...
'h actllst=f1ndob1("Tag","Listboxl")
'h_popup=findobj (' 'Tag'"', ' 'popupmenul’’}
'h_numact=findobj(''Tag'', ' 'EditTextl"'")
ored*get(n pred, '‘userdata'');'..
'activity=get (h_popup, ''value'');"'.
'line=get (h_pred, ''string'');"'...
'line=str2num(line) ;"
'pred(activity,l:length{line))=line;"'...
'set(h_pred, ''userdata'’,pred);'...
'numact=get (h_numact, ''string'"');"’
'numact=strZnum(numact);"'...

LTS YRR

'if activity < numact, set(h popup,''value'',activity+l);,"'

'‘else, set(h_popup,"value"Tl):,end;'
‘set(h _pred, ''string'’',''"'"};"

1;

hl = uicontrol('Parent’',h0, ...
‘callback',predec_call,
'Units', 'points’', ..
‘BackgroundColor', [1 1 1],
'ListboxTop',0,
'HorizontalAlignment', 'lefc’, ...
'Position', [382.5 69 105 22.5], ...
'‘Style’', 'edit’,
'Tag', '"EditText3");

hl = uicontrol (' Parent',ho

'Units', 'oeoints' ...

'chkgroundColor ,[0 752941176470588 0.752941176470588
0.7529411764705881,

'HorizontalAlignment', ‘rignhtc’,

'‘ListboxTop', 0, .

'POS’ulOﬂ ,[277 5 226 5 105 15), ...

'String',' Number of activities:', ...

'Style','text', ...

‘Tag’', 'StaticTextl');
hl = uicontrol('Parent’',hoO,

‘Units’', 'points', ...

'BackgroundColor',[O 752941176470588 0.752941176470588
0.752941176470588]), ...

'HorizontalAlignment', 'right', ...

'ListboxTop',0, ..

'Posztlon',[277 5 189 105 15], ...

'String’', 'Number of resource types:', ...

'Style’', "text', ...

'Tag', 'StaticText2');

197

hl = uicontrol ('Parent',h0, ...

'Units’', 'points', ...

'BackgroundColor', [0.752941176470588 0.752941176470588
0.752941176470588], ...

'HorizontalAlignment', '‘right’,

'ListboxTop',0, ..

'Position' ,[277 5 153 75 105 20.25]1, ...

'String','Units of resource type 1 available:', ...

'Style', 'text', ...

'Tag', 'StaticText3');
hl = uicontrol(Parent', ho,

'‘Units', 'points' ..

'BacxgroundColor',[O 752941176470588 0.752941176470588
0.752941176470588]), ...

'HorizontalAlignment', 'right*', ...

'ListboxTop',0, ...

'Position', {278.25 105.75 105 21}, ...

‘String’', 'Number of resource type 1 units required by activity 1i:',

'Style’, 'text’', .
'Tag', 'StaticTextcd ') ;

FopLn meng

popup_call=(

'h_popup=findobj(''Tag'"', ''popupmenul'’');"...
'h ored—rlﬂdooj("Tag","EditTextS");'
'activity=get (h_popup, ''value'');"'.

'pred=get (h_pred, °'‘'userdata'’);’

'if activity <= sizel(pred,l),'...
'line=pred(activity,:);"'
'line=num2str(line);"'...
'set(h_pred, ''string'',line);"'...
‘end; "'

1;

hl = uicontrol('Parent',hO, .en
'‘callback', popup call,
'Unics', 'points’ .
‘BcckgroupdColor ,[0 752941176470588 0.752941176470588
0.752941176470588],
'HorizontalAlignment',
'ListboxTop',0, ...
'Position', [255 69 127.5 15}, ...
'Sctring’, 'Predecessors of Activity 1:', ...
'Style', "popupmenu’,
'Tag', 'popupmenul’);

right', ...

hl = uicontrol(Parent', ho,

'Units', 'points’ .

'BackgroundColor ,[0 752941176470588 0.752941176470588
0.752941176470588], ...

'ListboxTop',0, .

'Position' ,[22 5 256 5 90 15]), ...

'‘String', 'Activities', ...

198

'Style', 'text', ...
'Tag', 'StaticTexté');
hl = uicontrol('Parent',h0, ...
‘Units’', 'points’ .
'BackgroundColo*’,[o 752941176470588 0.752941176470588
0.752941176470588]1, ...
'ListboxTop', 0,
'Position' [135 256 S 90 15], ...
'String’;'Resource Types', ...
'‘Style’, 'text', ...
'Tag', 'StaticText7"');

~ccept Pushbuttcern

accept_call=[

'h acceot—flndobj("Tag","Pushbuttonl");'.--
'h_exit=findobj(''Tag'',''Pushbutton2'');"
set(b_accep;,"userda;a",l);' .

'set (h_accept, ''string'', ''Done'"'); "'

1:

hl = uicontrol(‘'Parent',h0,
‘callback', accept_call,
'Uﬂits‘ 'points’',
lS;DOKTOD .0, .
'‘Position', [382. 5 22.5 45 22.5],
'String', 'Accept All',
'Tag','Pushbuttonl');

exit_call=(
‘h _exit=findobj(''Tag'', ''Pushbutton2'');"'...
'set (h _exit, ''userdata’'',1);"’
1;:

hl = uicontrol('Parent',hl,
'Units',‘points', . e
'‘callback', 'close’, ...
'LlstboxTop 0, .
'Position', [442 5 22.5 45 22.5],
'String', 'Exit', ...
'Tag',’?ushbuttonZ');

h_accept=findobj('Tag', 'Pushbuttonl');
h_exit=findobj ('Tag', 'Pushbutton2');

while ~length(get (h_accept, 'userdata')) &
~length(get (h_exit, 'userdata'))

drawnow
end

h_numact=findobj ('Tag', 'EditTextl’');

h™ _numres=findobj ("' Tag , "EditText2');

h avall =findobj ('tag’', 'EditText3');

h actneedsedlt flndobj(Tag', 'EditTextd"');
h_pred—flndobj(Tag', 'EditText5'");

numact=get (h_numact, 'userdata’');

199

numres=get (h_numres, 'userdata');
reslimits=get (h_avail, ‘'userdata’);
actneeds=get (h_actneedsedit, 'userdata'):;
pred=get (h_pred, 'userdata');

uiwait (h0);

if nargout > 0, fig = hO; end

200

?unc;ion [acttype] = getfunctions(numact,numres,reslimits, acttype)
- This I1s the machirne-geresrzted respresentaticn cf z Handls Graphiss
ckject

anc Its chilcdren. ncte thet hancle —values mz chanse wharn thess
cbj=schs

2re re-ctrzetnec. This mey seuss preobklems wlith oin sl lbacas ToTter
2

czpens I the wvazlus of the Fendle at ths rime the zkjlsch was szv=z.

Tc rseoper thls cbjsct, just type the name cf ths M-file at the
MRTLAZ
crenpt. The M-fils arnd its zssccieted MET-fille must be corn ycur parh

load getfunctions

actstr='Activity 1°';
for i=2:numact

actstr=[actstr '|Activity 'num2str(i)‘*']:;
end

restypestr='Type 1';
for j=2:numres

restypestr={restypestr '|[Type 'num2str(j)''];
end

unitstring='Unitc 1°';
for k=2:reslimits (1)

unitstring={unitstring '|Unit 'num2stxr(k)''];
end

h0 = figure('Color',[0.8 0.8 0.81, ...
'Colormap’',mat0, ...
'MenuBar', '‘none', ...
'Name', 'Resource Functional Dependencies', ...
'NumberTitle', 'off', ...
'PointerShapeCbhata’',matl, ...
'Position', [48 39 690 527], ...
'Tag', 'Figl"'):
hl = uicontrol('Parent',h0, ...
'Unitcs', '"normalized', ...
'BackgroundColor', [0.7529 0.75294 0.7529%4], ...
‘ListboxTop',0, ...
'Position’',mat2, ...
'Style’', 'frame', ...
'Tag', 'Frame2');
hl = uicontrol('Parenc',h0, ...
'‘Units', "normalized', ...
'BackgroundColor', [0.75294 0.75294 0.7529%4], ...
'ListboxTop',0, ...
'Position',mat3, ...
'Style', 'frame', ...
'‘Tag', 'Framed');
hl = uicontrol('Parent',h0, ...
'Units’', 'normalized', ...
'BackgroundColor', [0.75294 0.75294 0.75294]), ...

201

actlist_call=|

'ListboxTop',0, ...
'Position',matd4, ...
'Style’', "frame', ...
‘Tag', 'Framel');

'h_actlist=findobj(''Tag'',''Listboxl"'"');
'‘val=get (h_actlist,''Value'');"'...
‘val=num2str{val);"’
'h_actrefedit=findobi(''Tag"'’',
'set (h_actrefedit, ''string'’,
1:

val

hl = uicontrol ('Parent',h0,

restypelist_call=|

'limits=get (h_typelist, "userdata");'...
unlbscrlng—"Unﬂt 1.
for x=2: max(resllmlbs(val)),unitstring=[uni
£.0f'",x)):;,end;"’

hl

hl

LRI T el an]

'‘Unitcs', 'normalized?’, .
'callback', actlist_call,...
'BackgroundColor’', {1 1 1],
'‘Max', 2,
'Position
'Style', 'listbox', ...
'string',actstr, .
'Tag', 'Listboxl’,
'Value',1l);

Y PT L TST 20N

frm L}

'h typelist=findcbi(''Tag' ,"LlSCDOXZ");
"val= =get {(h_typelist, ''Value'');

'h_unitlist= flndobj("Tag","ListboxB");'
tset (h _unitlist, ''Value'',1);"'...
se;(h_unlblxst,"strlng",unitstring);'---

1:

= uicontrol ('Parent', ho,
'Units','normalized' e
'callback', restypelist_call, ...
'BcckgroundColor L1111,
‘Max',2, ..
'Position',
'Style', 'listbox', ...
‘string’, restypestr,...
'*Tag', 'Listbox2', ...
'Value',l);
20X

Ne e el .

= uicontrol('Parent' hO, ...

'Units', 'normalized', ..
'BackgroundColor ,[1 1 l], ee
‘Max',2, ...

202

"Edltlext7");'...
ys

', [0.05652 0.47438 0.188405 0.455407],

tstring sprintf(''lUnit

[0.404347 0.474383 0.1884057 0.455407],

'Position', [0.75217 0.474383 (0.1884057 0.455407]), ...
'Style’, 'listbox', ...

'string', unitstring, ...

'Tag’', 'Listbox3', ...

'‘Value',1);

NS T o T e

B PR) PR W

funcedit_call={|
'h_typedrvedit=findobj(''Tag'’',''EditTexté'")
'h_typedepedit=findobj(''Tag'’',''EditText5"'")
'h_accept=findobj(''Tag'',''Pushbuttond'');" .
'h_unitdrvedit=findobj(''Tag'"', ''EditText4"
'h_unitdepedit=findobj(''Tag'',''EditText3""’
'‘h_typelist=findobj(''Tag'',''Listbox2''):"'...
'h_unitlist=findobj(''Tag'', ''Listkbox3"'"'};
'h_refactedit=findobj(''Tag'"',''EditText7"'
'h_funcedit=findobj (''Tag'"',''EditTextl"'")
'h_actlist=findobj(''Tag'',''Listboxl'"');'...
'h_popupl=findobj(''Tag'’, ‘popupl’'*);"'..
'typedrvstr=qget (h_typedrvedit, ''string'');
'typedepstr=get (h_typedepedit, '*string'"'):
'unitdrvstr=get {(h_unitdrvedit, '’'string'"');
'unitdepstr=get (h_unitdepedit, ''string'');"'...
'refactstr=get (h_refactedit, ''string''};"'...
funcstr=get (h_funcedizt, ''string’''};"'...
'mede=get (n_popupl, ''Value''});'...
'refact=str2num(refactstr);'.
'typedrv=str2num{typedrvstr);
typedep=str2num(typedepstr) ;
‘unitdrv=strZnum(unicdrvstr);
'unitdep=str2num(unitdepstr);'...
'if mode==3, ...
'acttype=getarbitrary(reslimits, acttype, refact, typedep,
unitdep, funcstr);'...
‘else,"'...
'acttype=gettime(reslimits, acttype, refact, typedrv, unitdrv,
typedep, unitdep, funcstr, mode);'...
*if isempty({typedrv) | isempty(unitdrv),'...
'if uritdep<reslimits(typedep),'...
'‘set (h_unitdepedit, ''String'’',unitdep(end)+1);"'...
‘else,"'...
'set (h_unitdepedit, ''String’'',1);"'...

S N

~5 - -
- g
. — e
. - AT T
.
)
.
.

-« @ @ a3

'‘end;"'...
‘end;"'...
'end;'...

'set (h_accept, '‘userdara'',acttype);’...
'set (h_funcedit, *'string'',""'"");"'...

'if ~isempty(typedrv) & ~isempty(unitdrv),'...

'if unitdrv<reslimits(typedrv),'...

'set (h_unitdrvedit, ''String’',unitdrviend)+1};"'...
‘else,'...

'set (h_unitdrvedit, ' 'Scring'’,1);"'...

'‘end;'...

‘end;"®

1

203

©.0.1623188 0.355028 0.732608 02.33785S

hl = uicontrol('Parent',h0, ...
'callback', funcedit call,...
'Units’', 'normalized', ...
'BackgroundColor*', [1 1 1], ...
'HorizontalARlignment', 'lefz', ...
'‘ListboxTop',0, ...
'Position',[0.3188 0.055028 0.6261 0.03795}1, ...
'Style!’, edi ;e
'Tag', 'EditTextl");

CrF

tn
1

offset_call=[
‘h_offset=findobj("'Tag'"',''EditText2"'"');
'h_accept=findobi(''Tag'"', ''Pushbuttonds'’
'h™ _typedepedit=findobj(''Tag'’', ''EditTexc5
'‘h_unitdepedit=£findobj(''Tag’'',''EditText3
'h™ refactedlt findobj(''Tag'', ' 'EditText7"’
'h™. _actlist=findobj(''Tag'’', ''Listboxl’'");"'..
'n_typelist=findobj('*Tag*'*, ' 'Listbox2''};"'...
'h_unitlist=findobj (''Tag'',''Listbox3'');"'...
‘h™ _popupl=findobj (''Tag'’', ''popup2'');"'...
'popoption=get (h_popup2, ''Value'"');"'...
'acttype=get (h_accept, ''userdata’''});"'...
'typedepstr=get{p cypedepedi,,"s ring'');*'...
'acttype=get (h_accept, ''userdata'');'...
'unicdepstr= ge;(n unludegedlv,"strlﬂg Yit...
re*chst-get(h refacrtedit, "'string*'');"'...
'othe_sL:—get(h offsec,''string''i;"'...
‘ofisetparam=offsetstr;"'...
'‘refact=str2num(refactstr);"'...

)

-.~.-

Ny e s
- Ne Ne

et - wm w

'typedep=str2num{typedepstr);'...
'unitdep=strZnum(unitdepstr);'...

‘if popoption==1 | popoption==2 | popoption==3,"'...
'manualdur=0;"'...

'acttype=gettuned(reslimits, acttype, refact, typedep, unitdep,
offsetparam, pcpoption);’'...

'set (h_accept, ''userdata'',acttype);"'...

'unitval=get (h unitlist, ''Value'');"'...

‘typeval=get (h_typelist,''Value'');"'...

'actval=get (h_actlist, ''Value'");"'...

'if unitval < reslimits{typeval),'...

'set (h_unitlist,''Value'',unitval+l);'...

'set (h_unitdepedit, ''String'’',unitval+l);"'...

‘elseif actval < numact,'...

'set (h_actlist, ''Value'’',actval+l);"'

'set (h_refactedic, ''String'',actval+l);"'...

'set (h_unitlist, ''Value'',1);"'...

'set (h_unitdepedit, ''String'',1);"'...

‘else, ...

‘set (h_actlist,''Value'',1);"'...
'set (h_refactedit, ''String'',1);"'...
'end;"'...
'set(h_offset,"string","");'-..

‘elseif popoption==4,"'...
'if exist(''actdur'')==1 &
length(actdur) >numact,actdur=[];,end:"'...

204

‘actdur (refact)=eval (offsetparam);’'...
'manualdur=1l;"'...
'actval=get(h_actlist,"Value");'...

'if actval < numact,'...

'set (h_actlist, ''Value'',actval+l);'...
'set (h_refactedit, ''String’'',actval+l);’'...
'else,'...

'set (h_actlist, ''Value'',1);"'
'set (h_refactedit, ''String'’
‘end;"'...

'set (h_offset,''string'',"'"'"")
'‘end; "’

1:

e o
-

)

e

’

hl = uicontrol(‘'Parent’, ho,
'Units’', 'normalized', ...
'callback’', offset_call, ...
'BackgroundColor', (1 1 1], ...
'HorizontalAlignment', 'left’, ..
'ListboxTop',0, ...
'Position', [0.3188 0.11195 0.232 0.03795],
'Style’', 'Edit’, ...
'Tag', 'EditText2"');

o ..

. s -

hl = uicontrol('Parent',ho,
'Units', 'normalized', ...
'BackgroundColor',[1 1 1}, ...
'HorizontalAlignment', 'left’, ...
'string',1,...
‘ListboxTop',0, ...
'Position’',maté6, ...
'Sctyle', 'edic', ..
'Tag’, 'EditText3")

~e o

147

L R e |

hl = uicontrol('Parent',h0, ...
'Units', 'normalized', ...
'BackgroundColor', {1 1 1}, ...
'‘HorizontalAlignment', 'left', ...
'ListpboxTop',0, ...
*Position’', [0.5942028 0.2087286 0.347826 0.0379506), ...
'Style', 'edit’', ...
'Tag’, 'EditTextd ')

hl = uicontrol('Parent',h0, ...
‘Unitcs', 'normalized', ...
'BackgroundColor’, {1 1 1], ...
'HorizontalAlignment', 'left', ...
'‘ListboxTop',0, ...
'string’',1,..
'Position’',mat7, ...
'Style', 'edit', ...

205

‘*Tag', '"EditText5"');

~— ey e

=T TYPz ZRIVEZ ZDZ

n

hl = uicontrol(Parent',h0O, ...

'‘Units®, 'normalized', ...
'BackgroundColor (11 1], ...
'HorizontalAlignment', 'left’', ...

'ListboxTop',0, ... *

'POSl;lOﬂ ,[O 59420289 0.2846299 0.347826 O. 03795066],
Style','edic

'Tag’', "Edicz Tex;G),

STFIRINOT ACTIyITy oo

4]

hl = ulcontrol('vcrent',ho ...
‘Units', ‘normalized', ..
'BackgroundCo‘or' [1 1 l], .
'HorizontalAlignment' *lefr', ...
'‘string',1,...
'ListboxTop',0, .
'9051tlon',[0 160869565 0.37950664 0.7797 0.03795], ..
'Style’', 'edit .o
'Tag','EditText7');

SZT TYFRI ZERIVER PUSHEUTTCU

settypedrv_call=([

'h_typelist=findobi(''Tag'',''Listbox2"'");"...
'VGT—get’h gyoelis;,"Value");'
'val=num2str(val);"'

'h_typedrvedit=: lndObj("T g'',''EdicTexté6"'');"'...

'set (h _typedrvedit, ''string'',val);’
1:

hl = uicontrol(Parent',h0, ...
'Units', 'normalized', .
chlback settypedrv call
'LlstooxTop o,
'‘Position’', [0 30289 0.5692599 0.086956 0.0569259], ...
'String','Se; Driver', ...
'*Tag"', 'Pushbuttonl’);

{1

=T TYPZ ZEIPINI PUSHBUTTCHN

settypedep_call=([
'h_typelist=findobj(''Tag"'’', "L’SubOXZ")F'...
'val= =get (h_ tyoellsu,"Value")
‘val=num2str(val);'...
'n_typedepedit=findobj('’'Tag'',''EditText3"'");"'...
'set (h typedepedlt,"s;rlng" val);'
1

hl = uicontrol('Parent',6hoO,
'Units', 'normalized', ...

206

'callback', settypedep call,

'ListboxTop',0, ...

'Position', [0.3028985 0.4743833 0.086956 0.05692599], ...
'String’', 'Set Depen',

'Tag', 'Pushbutton2');

ST O S
o OTNIT ZRIVER

f'“

CSHBTTTON

setunitdrv_call=(

'h_unitlisc=findobj(''Tag'', ''Listbox3'"');"'...
Val—get(h unitlistc, ''Value'');"'...
'val=num2sctr(val);"'
'h_unitdrvedit={findobj(''Tag"', ''EditTexcd"'"');

'set (h_unitdrvedit, ''string'’',valj ;"

1;

hl = uicontrol('Parent’',h0, ...
'Units','normalized', .
'callback', setunitdrv_call, ...
'LlsfboxTop .0, ..
'Position’, (0. 65072 0.5692599 0.0869565 0.05692599],
'String’', 'Set Driver', ...
'Tag','Pushbutton3');

T CNIT ZEIPINIEINT PUSHBUTTCY

n
11

setunitdep_call=(
'h unitlist=findobj{''Tag'', ''Listbox3"'"');"
'val=get (h_uniclist, ''Value'') ;"'
‘val=num2sctrval);* .
'h_unitdepedit=findobj(''Tag’'', " ''EdicText3"'"') ;"
'set (h_unitdepedit,''string'',val);'

1;

hl = uicontrol('Parent',h0, ...
'Units', '"normalized', ...
‘callback', setunitdep call,...
'ListboxTop',0, ...
'Position', [0.6507246 0.4743833 0.0869565 0.05692599}, ...
'String', 'Set Depen', ...
'Tag', 'Pushbuttond');

P o R 32 B b laa T o S
=L PUSHETUTTCON

hl = uicontrol('Parent‘,hO, ..

'Units', '"normalized’',

'Calloack','close',

'ListboxTop',0, ...

‘Position', [0.840579710144927 0.113851992409867 0.101449275362319
0.0379506641366224],

'String’', "Exit', .

'Tag’', 'Pushbuttons');

Y -PUSHZUTTCON

W

~ARZITRA

207

arbitrary call={|
'h_refactedit=findobj(''Tag'’, ''EditText7"'")
'h_typedepedit=findobj(''Tag'’, ' 'EditText5"'"
'h_unitdepedit=findobj(''Tag'',''EditText3"'"
'h funced;t =findobj(''Tag'’', ''EditTextl"'");
'h_accept=findob3j (' 'Tag'’, ' 'Pushbutton9'")
'acttype=get (h_accept, ''userdata'"');"'..
'typedepstr=get (h_typedepedit, ''string’
'unitdepstr=get(h_unitdepedit,"string'
"e actstr=get (h_refactedic, ''string'');

funcstr=get (h ‘uncedlt,"strlng")"..

‘refact=str2num(refactstr);
'typedep=str2num(typedepstr);
'unitdep=scr2num(unitdepstr);'
'‘objselect=1;"'...
‘acttype=getarbitrary{ reslimicts,

unitdep, funcstr, objselect);'

'set (h_accept, '‘'userdata'',acttype);'
1:

TR

]
.t
’

)
)

1

~

acttype,

hl uicontrol ('Parent',ho,
'Units', 'normalized’',
'ListboxTop', 0,
'‘Position', [0.579710144927536 0.113851992409867

0.0379506641366224 1,

o e e

'*Tag', 'Pushbuttoné’);
=22 PUSHZETTTCXY

add_call=(
'n_typedrvedit=findobj(''Tag’'', ''EcicTexc6'"');".
'‘h_typedepeditc=findobj(''Tag'',''EditTex5"'"');:".
'h_unitdrvedic=£findobj (' 'Tag'', ''EcdicTexc4"'"');:".
'h unludeﬂedlt-flncooj("Tag",' EditText3''";:".
‘h refactedit=findobj{(''Tag'"', ''EditText7'");" ..
'b_funceqit=findobj("Taq","EditTextl");'--.
'h_accept=findobj(''Tag'"', ''Pushbuttons8’'');'...

‘acttype=get (h_accept, ''userdata'') ;"'
'typedrvstr=get (h_typedrvedit, ''string'"'
'typedepstr=get (h_typedepedit, ''string’
'unitdrvstr=get (h_unitdrvedict,''string’
‘unitdepstr=get (h_unitdepedict, ''string’
'refactstr=get (h_refactedit, ''string'');
funcstr=get (h_funcedit, ''string'');"'.
‘refact= str2num(refactstr)"...
'typed*v—strznum(tybedrvstr):'
'typedep=str2num(typedepstr);
'unitdrv=str2num(unitdrvstr);'..
'unitdep=str2num{unictdepstr);'..
'mode="'add'"';"

Ne N Ve W

) 1
l) '
l) T
l) L

.

. .

‘acttype=gettime(reslimits, acttype, refact, ty
typedep, unitdep, funcstr, mode);'...
‘set (h_accept, ''userdata'',acttype);'

1

208

0.101449275362319

percent_call=([
‘h_typedrvedit=findobj(''Tag'',''EditText6""’
'h_typedepedit=findobj(''Tag'',''EditText5""’
'h_unitdrvedit=findobj('‘'Tag'',''EditText4""’'
'h_unitdepedit=findobj(''Tag'',''EditText3""’ .
'h_refactedit=findobj(''Tag'',''EditText7'"');"'...
v

@ %o Ne we N,

'h_funcedit=findobj(''Tag'"',''EditTextl'"'};
'h_accept=findobj (''Tag'’', ' 'Pushbut on9"); “e
'acttype=get (h accept,"nserda»a")
'fynedrvstr get(n_;ypedrvedlh, strlﬂg")
typedepstr=get (h_typedepedit, ''string'"')
'unitdrvstr=get (h_unitdrvedit, ''string''}
‘unitdepstr= get(n_unltdepedlg,")
'‘refactstr=get (h_refactedict, ''string'’') ;"'
'funcstr=get (h_funcediz, ''string''};'...
‘refact=str2num{refactscr);"’
'tynedrv—s;rZwum(tyoec*vstr) '
typedep=st 2nun(tynedeos»r);'
'‘unictdrv=strZnum (unicdrvstr) ;"'
unltdep—stanum(unlcdepstr),'
'mode="'"'percent'';"'...
‘acttype=gettime(reslimits, acttype, refact, typedrv, unitdrv,
typedep, unitdep, funcstr, mode);'
‘set{h_accept, '‘'userdata'’',acttype);’

1;

. o e

accept_call=]|
'h_accept=findobj (''Tag'', ''Pushbutton8’'') ;"
'h_exit=£findobj(''Tag'', ''Pushbutton5'');"'...
'set(h_exic, ''userdata'',1l};"'...
'acttype pure=acttype;'...
'set (h_accept, ''string'',''Done'"');"’

1;

hl = uicontrol('Farent',h0,

'callback',accept_call,.

'Units', 'normalized’,

'List ooxTop 0, ..

'Position’, [O. 710144927536232 0.113851992409867 0.1C1449275362319
0.0379506641366224 1, ...

'string', 'Accept All',

'Tag', 'Pushbutton9');

[T T ne

hl = uicontrol('Parent’',hoO,
'Units', '"normalized', .
'Backg:oundColor « [O0. 75294 0.75294 0.752%941, ...
'FontWeight', 'bold’,
'HorizentalAlignment', 'left', ...
'‘ListboxTop',0, ...
'Position',mat8, ...
'String’', 'Dependents’',
'Style’', "text', ...
'Tag','StatlcTextl');

hl = uicontrol('Parent’',h0, ...
'Units’', "normalized', ..

209

'BackgroundColeor', [0.75294 0.75294 0.75294], ...
'FontWeight', 'bold', ...
'HorizontalAlignment', 'left', ...
'ListboxTop',0, ...
'Position',mat9, ...
'String', 'Drivers', ...
'Style', *text', ...
'Tag’, 'StaticText2');

hl = uicontrol('Parent',h0, ...
'Units’', 'normalized', ...
'BackgroundColor', [0.75294 0.75294 0.75294], ...
'HorizontalAlignment', 'right',
'ListboxTop',0, ...
'Position', [0.07536 0.28273 0.086956 0.03795],
'S**ing ,'Set Type(s):', ...

'Style', 'text!', .
'Tag’', 'S a;lcText?’),
hl = uicontrol ('Parent',ho,

'Units', '‘normalized', ...

'BackgroundColor', {0.75294 0.75294 0.75294], ...
'HorizontalAlignment', ‘right', ...

'ListboxTop',0, .

'POSltlon',[O 072463768 0.208728 0.086956 0.0379506],
'String', 'Set Unit(s):', ...

'Style','text', ces

'Tag', 'StaticText4');

hl = uicontrol('Parent',h0, ...
'Units', 'normalized’', ...
'BackgroundColor', [0.75294 (0.75294 (0.75294],
'HorizontalAlignment', 'right’,
'ListboxTor',0, ...
'Positicn', [0.0464 0.11195 0.2463 0.03795}, ...
'String', 'Varying Resource Time Req.|Desired Resource Start
Time|Resource Interval Availability{Fixed Activity Duration'
'Style’, 'vopupmenu’
'‘'Tag', 'popup2');

hl = uicontrol('Parent’',ho,

'Units', 'normalized', .

'BackgroundColor , [O. 75294 0.75294 0.75294]), ...
'ListboxTop',0, ...

'Position', [0.0464 0.0550 0.2463 0.0380], ...

'HorizontalALignment', 'right', ...

'String’', 'Additive Time Dependency|{Percentual Time
Dependency|Arbitrary Time Dependency|Preference|Cost’', ...

'Style', 'popupmenu',

'Tag', ‘popupl?');

hl = uicontrol('Parent’',hoO,
'Units', 'normalized', .
'BackgroundColor , [O. 75294 0.75294 0.75294}1, ...
'FontWeight', 'bold', ...
'ListboxTop',0, ...
'Position', [0.0579710144 0.9354838 0.1884057 0.0379506],

210

'String’', 'Activities', ...
'Style’', "text', ...
'‘Tag', 'StaticText7"');
hl = uicontrol(Parent',hO, ...
'Units’', 'normalized', ..
'BackgroundColor?, [O. 75294 0.75294 0.75294], ...
'FontWeight', 'bold', ...
‘ListboxTop',0, ...
'‘Position', [0.4043478 0.92979 0.18840579 0.03795], ...
'String’ ,'Resource Types', ...
'Style , "text
'Teg’, atlcTexte),
hl = uicontrol('Paren ', ho,
'Unicts', 'normalized', .
'BcckgroundCo1or , [O. 75294 0.75294 0.75294],
'FontWeight', 'bold', ...
'ListboxTop',O, ..
'Position', [0.753623188 0.929791 0.18840579 0.03795],
'String', 'Resource Units'
'Style', 'text', ...
'Tag','ScacicText9');
hl = uicontrol(Parent',hoQ,
'Units’, 'normalized', .
'BackgroundColor', [O. 75294 0.75294 0.75294},
'HorizontalAlignment', ‘right', ...
'ListboxTop',0, ...
'Position', [0.50724637 0.2846299 0.086956 0.03795066],
*String', 'Set Typel(s):', ...
'Style’, 'text', ...
'‘Tag’', ' taticTextB');
hl = uicontrol('Parentc', ho,
'‘Units’', 'normalized', .
'BacxgroundColor . [O. 75294117 0.75294117 0.75294117},
'HorizontalAlignment', 'right', ...
'ListboxTop*, 0,
'9051t10n' {o. 50724637 0.208728 0.086956 0.0379506],

'‘String', 'Set Un‘t(s):',
’SLY‘G' l?.ex
'Tag"’ 'S“atlcTex;4'),

hl = ulcontrol('Paren ,h0, ...
'Units', 'normalized', ..

'BackgroundColor ,[0 75294 0.75294 0.7529%94}), ...
'‘HorizontalAlignment', 'right', ...

'ListboxTop',0, .

'Position', (0. 02898 0. 38140417 0.131884 0.034155], ...
'String', 'Reference Activity:

‘Style’', 'text', ...

'Tag', 'StaticTextli0');

h_typelist=findobj('Tag', 'Listbox2');
set (h_typelist, 'userdata',reslimits);
h_actlist=findobj('Tag', 'Listboxl");
set (h_actlist, 'userdata’', numact);

h_exit=findobj('Tag’', 'Pushbuttond');

h_accept=findobj{'Tag', 'Pushbutton9’');

211

if exist('acttype')
set (h_accept, 'userdata',6acttype);
end

while ~length(get(h_exit, 'userdata’'))
drawnow
end

h_accept=findobj('Tag', 'Pushbutton9');
acttype=get (h_accept, 'userdata’)

uiwait (h0);

if nargout > 0, fig = h0; end

function acttype=gettime(reslimits, acttype, refact, typedrv,
unitdrv, typedep, unitdep, funcstr, mode)

for act=l:length(refact)
for tdep=1l:length (typedep)
for udep=1l:length(unitdep)
L ojump=0;
if isempty(typedrv) | isempty(unitdrv)
unitdrv=nan;
typedrv=nan;
end; ‘“end If Isempty{typedrv, Isengpty{unitcory’)
for tdrv=1l:length(typedrv)
for udrv=l:length(unitdrv)
o jump=junmg-1;
if exist('acttype')==1
dummy=eval ('size(acttype(refact(act],
typedep(tdep)) .unit (unitdep (udeg)) . func,2)+1','1");
else
dummy=1;
end

switch mode
case {1}

conditionleft=unitdep (udep):;

conditionright=reslimits (typedep (tdep)):;
if conditionleft<=conditionright

acttype (refact (act),
typedep {tdep)) .unit (unitdep (udep)) . func{dummy}=sprintf (*acttype(%.0f, 3%
.0f).unit (%.0f) .assigned* (acttype ($.0£f,%.0£).unit (%.0£f) .tuned +
$s) ', refact (act), typedrv(tdrv),unitdrv(udrv), refact (act), typedrv(tdrv)
;,unitdrv(udrv), funcstr);

else
break

end rnd I coraltiorn

¥

case {2}

212

conditionleft=unitdep (udep):

conditionright=reslimits (typedep (tdep)):
if conditionleft<=conditionright

acttype (refact (act),
typedep (tdep)) .unit (unitdep (udep)) . func{dummy}=sprintf('acttype (2.0£,$
.0f) .unit (%.0f) .assigned* (acttype(%.0f, %.0f) .unit (%.0f) .tuned* (%s
+l))',refact(act),typedrv(tdrv),unitdrv(udrv),refact(act),typedrv(tdrv
) runitdrv (udrv), funcstr) ;
else
break
end ° =g 1f ccnZitichn

case {4}
if exist('acttype')})==1

prefind=eval ('size(acttype(re

facti{act),
typedep (tdep)) .unit (unitdep(udep)) .pref,2)+1','1");
else
prefind=1;
end

conditionleft=unitdep (udep) ;
conditionright=reslimits(typedep (tdep)):
if conditionleft<=conditionright

if isfinite(typedrv) &
isfinite (unitdrv)

acttype(refact(act),
typedep (tdep)) .unit (unitdep(udep)) .pref{prefind}=sprintf('actcype(2.0f

,%.0f) .unit (%.0f) .assigned*(%s) ', refact (act), typedrv(tdrv) ,unitdrv (udr
v), funcstr);

else

acttype (refact(act),
typedep (tdep)) .unit (unitdep(udep)) .pref{prefind}=sprintf('ss’', funcstr)

’

end
else

end ° =2 1f ceonddintian

case {5}
if exist('acttype')==

costind=eval('size(acttype(refact(act),
typedep (tdep)) .unit (unitdep(udep)).cost,2)+1’,'1");
else
costind=1;
end

conditionleft=unitdep(udep);

conditionright=reslimits (typedep (tdep)):;
if conditionleft<=conditionright

213

if isfinite(typedrv) &
isfinite (unitdrv)
' acttype (refact (act),
typedep (tdep)) .unit (unitdep (udep)).cost{costind}=sprintf('acttype(%.0£
+8.Cf).unit(%.0£f) .assigned* (%s) ', refact (act), typedrv(tdrv),unitdrv (udr
v), funcstr);
else
acttype(refact{act),
typedep (tdep)) .unit (unitdep (udepj).cost{costind}=sprintf('ts’', funcstr)

’

end
else
break
end =n3 1f cerdinicn
end = =2ns switch

end
end
end
end
end

function acttype=gettuned(reslimits, acttype, refact, typedep,
unitdep, offsetparam, popoption)

if popoption==1

for act=l:length(refact)
for tdep=1l:length(typedep)
for udep=l:length(unitdep)
conditionleft=unitdep (udep) ;
conditionright=reslimits(typedep(tdep)):
1f conditionleft<=conditionright

'acttype(refact(act),
typedep (tdep)) .unit (unitdep (udep)) .tuned=eval (ocffsetparam) ;

else
break

end
end
end
end

elseif popoption==2
for act=l:length(refact)

for tdep=l1l:length(typedep)
for udep=1:length(unitdep)

214

conditionleft=unitdep (udep) ;
conditionright=reslimits (typedep(tdep)):
if conditionleft<—conditinnright
: tt pc(:~ra tiact:
p' cep;) .uni t\ur tccp(ucep,, start=sprintf{'{l/{l-{time -
cffs etparan!
acttype(refact(act),

t'pec
"2

s

.- m

typedep(tdep)).unit (unitdep (udep)).start=sprintf('desstart(%s, time)’',0

ffsetparam) ;

else
break

end
end
end
end

elseif popoption==

for act=1l:length(refact)
for tdep=1l:length(typedep)
for udep=1:length (unitdep)
conditionleft=unitdep (udep):;
conditionright=reslimits(typedep(tdep)):
if conditionleft<=conditionright

acttype (refact (act),
typedep (tdep)) .unit (unitdep (udep)) .start=sprintf('interval (%s, time) "',
ffsetparam);

else
break
end
end
end
end
end 1f popcoprnicon

function [wind)=interval (fromto, time)

if time < fromto(l)

wind=0;

elseif time >= fromto(l) & time <= fromto(2)
wind=1;

elseif time > fromto(2)
wind=0;

end

215

acttype=acttype_pure;
[acttypel=setassigned(acttype, numact, numres, reslimits):
s .éctriesds,pred,reslinits, actrestine. = readfile;

T _actdur.=cdureticriactrestine, actnseds, reslimits);

if exist('manualdur')==1 & manualdur==
if length(actdur)<numact
h_ooops=errordlg('Some of the Activity Durations are not
Specified!','I am Crashing...!"');
end
end

if exist ('manualdur')==
manualdur=0;
end

if manualdur==
[actdur]=duration(acttype, actneeds, numact, numres);

end

if exist('utilitcy')==0
utility=0;
end

if exist('optchoice')==0 | isempty(optchoice)==
errordlg('You did not specify which objective tc optimize. I am
going into default mode.',6 'Read my User Manual!!!!');
optchoice=1;
end

mindur=actdur;

(est, lst]=cpm(actdur,pred);
dynpred=pred;
‘welchrn=input /!
rorne .

<

3
)

[=3

oty ()
.. ‘I‘

th) (b

if exist('w')==0
w=0;
end

if exist('choice')==0
choice=1;
end

if choice==1 | choice==3
weight=0;

else
weight=w;

216

end

tic;
multiplier=weight;

scheduled=[];
newlyadded=[];
finished=[];
inprogress=[];
time=0;
direction=1;
abscis={];
usage=[};

[numsucc]=children(pred) ;
cessigrnec=zercsisizsi{actraestinme}};
rassignedsspearse{zercsi{nunact, sunires_inits: i ;
hf wait=waitbar (0, 'Please wait, I am steaming...');
while size(scheduled, 2)<length(actdur)

tcr k=1:1

waitbar(size (scheduled, 2) /length(actdur)):;
if isempty(scheduled)==0

time=min (scheduled (3, (find(scheduled (3, :)>time))));

finished=scheduled (1, find(scheduled (3, :)==time)):
newlyadded=[];
for z=l:length(finished)
inprogress (inprogress==finished(z))=[];
end

for i=l:length(finished)
if isempty(finished)==
dynpred(find (dynpred==finished (i)))=0;
end
end

end

[cand] =candidates (dynpred);

if isempty(cand)==
[prior]=floatweight (cand, lst,actdur, time);

A Y W T " X W W W W WK WEWE T T W W W E T W ww M AEN AT F T WA WY ENT NNV CTTFTTTEITYTTSXE

if direction==
scheduler;
if isempty(scheduled)==
¥ nultiplier=nultiplier-{lencthi{lst)-
_ercthischeduled(l, :});/_engthi{lst);
multiplier=multiplier* (sum(mindur)-
sum (mindur (scheduled (1, :))))/sum(mindur) ;

217

schedulerdown;

nme tipllersnultipller/Z;
direction=0;

end

else
schedulerdown
nultiplier=nultiplisx/2;

end

N T N W W W e ® W R W X W W W W W W W W E W T T T W W T M wET TR w TR T T T W W w

newlyadded=cand (find(x)):
end *i1f lsenpuyicand)==0

if isempty(newlyadded)==0;
nsert 'reschezuler' hers
if choice==3 | choice==
rescheduler:

if manualdur==0 & optchoice~=2 & optchoice~=3
(actdur]=updateactdur (actdur, newlyadded, acttype, reslimits):;
end "encd If marnuelgur==)
end
[(scheduled]=chart (time, newlyadded, scheduled, actdur);
inprogress=[(inprogress newlyadded']};
dynpred (newlyadded, :) =nan;

end
abscis={abscis time]; re=sded for rescurce lceding csreph
usage={usage sum(actneeds(inprogress,:),1l)"']:; reScel Lor =3
_ctzding graph
end "whil=s
close (hf wait):;
if optchoice~=2 & optchoice~=3
© scheduled T oun-remar« this fcr scheculed tec be displaysd

S edLmwlaazl

end

218

function
[cl=objective(prior,actneeds, reslimits,cand, actdur,multiplier, numsucc,
mindur)

durweight=mindur (cand) /max (mindur) ;
maxobj=prior.*numsucc(cand) . *durweight; ‘rumsuczicans: 1S

Sz .2l

[\
)

iy
g
1]
@]

minobj=actneeds(cand, :);

for s=l:length(reslimits)
minobj(:,s)=minobj(:,s)/reslimits(s);

end

‘minchbj=nu’ltipllier~{l-suninincbj,2;:"';
minobj=sum(minobj, 2) ';
minobj=minobj/max (minobj);
minobj=multiplier* (l-minobj):;

append = 2*sum(actdur);
c=fix ([(-minobj-maxobj) append]*10000);

function [c]=objectivedown(prior,actneeds,reslimits,cand,actdur,
multiplier, numsucc, mindur)

durweight=mindur (cand) /max (mindur);
maxobj=prior.*numsucc (cand) . *durweight;
minobj=actneeds(cand, :};
for s=l:length(reslimits)

minobij (:,s)=minobj(:,s)/reslimits(s);
end

minobj=sum(minobj,2) ';

minobj=minobj/max (minobi);
minobj=multiplier* (minobj):;

append = 2*sum(actdur);
c=fix ([(-minobj-maxobj) append]*10000);

219

function fig = promap/()

: : is the machine-generated reprssertaticrn of 2z Harnzle
te chilgrern cre thet hancle wzlues may ohanos wiesn
¢-Irzated. This may causs prcklems with z2ny czll’kacas
2 Ir. the walue cf the handle at the tinms the ckbjscto

TC recper this cbisct, just tyvps the name cf the M-file &t

FATLAE

L pronpt. The MM-file arc i1ts assccleted MAT-fils must be cr

dynamo;

clear

load promap

hO = figure(‘'Color',[0.8 0.8 0.8],
'Colormap',mat0, ...
'MenuBar’', 'none', ...
'Name', ' PROMAP:
‘NumberTitle', 'off"’,
'PointerShapeCData',matl,
*Positicn', (240 316 300 11,
'*Tag', 'Figl');

hl = uimenu('Parent',ho,
'Label’', '&Project', .
'Tag', 'project');

newproject_call=|

'getdata; ...

Project-Resource Mapper',...

'lf isempty(numact)==0 & isempty(numres)==0 &

isempty{reslimits)==0,"

'if ~exist(''acttype'')'...
'getfunctions (numact,

‘else;’'.

‘getfunctions (numact,

‘end;"'...
'end;"'

1z

h2 = uimenu('Parent’,hl,
'callback',newproject_call,
‘Lapel', 'a&New Project’,

'Tag', 'new');

open_call=[

[nam,pat}=uigetfile(''.matc'’,
'if nam~=0,°'...
‘nam=strcat (pat,nam); ‘.
'‘load(nam);'...

aumres,

numres,

PR

'acttype=acttype_pure;'

‘end;'

1:

h2 = uimenu('Parent’',hl,
'callback',open_call, ..
'Label’, '&Open Project',

.

-

reslimits);"'...

reslimits,acttype);'...

''Open Existing Project''

220

e v

- !
’

‘'Tag*, 'open');

save_call=|

' [namput, patput]=uipucfile (' 'projectdata.mat'’', ''Save Project
Data'"):;'...

'if namput~=0 & exist(''acttype_pure'')==1,'...

'namput=strcat(patput, namput);'...

'save(eval (' 'namput''), ''acttype_pure'’,
''actneeds'", ' 'numact'’, ' 'numres'', ''reslimits'', ''pred’'');'...

'end; "'

1;

h2 = uimenu('Parent',hl, ...
'caliback',save_call, ...
'Label’', '&Save Project', ...
'Tag', 'save') ;

h2 = uimenu('Parent',hl, ...
'callback', 'close’', ...
'Label’', '&Close’', ...
'Segarator’',‘on’', ...
‘Tag*, '£inish');

hl = uimenu('Parent',h0, ...
'Label', "&Run', ...
'T

L] L] L]
’ un');

N~

)
e}

schedule_call=[
'h_balandmap=findobj (' 'Tag'"', ''balandmap'');"'...
'h_balonly=findobj(''Tag'',''balanceonly'');"'...
'h_maponly=£findobj(''Tag'', ''maponly'’');"'...
'bm=get (h_balandmap, ''checked'');"'...
'bo=get (h_balonly, ''checked'");"'...

‘mo=get (h_maponly, ''checked'');"'...

'if strcmp(bm, ''off'')==1 & strcmp(bo,''0ff'')==1 &
strcmp (mo, ''off'')==1,"'...

'choice=1;"...

'‘end;"'...

'master;’

17

h2 = uimenu('Parent',hl, ...
‘callpack', schedule_call,...
'Label’', 'Scheé&dule’', ...
'Tag', 'schedule’);

optim_call=(
'choicesstring={"'"'Time
Effectiveness'', ''Preferences'', ''Costs'’', ' 'Resource
Availability'', ''Composite Utility Function''}:', ...
'{optchoice,uredul=listdlg(''Name'', ' 'Select
Objective'',''PromptString'', ' 'Map resources according

221

to...'',''SelectionMode'',''Single'', ''ListString'',choicesstring, ''Li
stSize'',[160,801);:',...

'if optchoice==5,utility=inputdlg(''Enter the Composite Utility
Function, U(timedep,pref,cost,starttime):'', ''Composite Utilicy
function'',1);,end;"’

1;

h2= uimenu('Parent',hl, ...
'callback',optim_call,...
'Label', '&0Optimizing Objectives', ...
'Tag', 'optimize');

ballevel call=(

'w=inputdlg{(''Enter the Resource Centralizing Priority Weight'',
''Balancing Priority"'',1,{''0"'}I);"'...

'if isempty({w)==1,"'...

'W=O,".-.

‘else, '...

‘w=str2num{char(w));"'...

‘end; '

1:

h2 uimenu('Parent',hl, ...

callback',ballevel call,...

Label', 'Set Centrelizing &Imporzance &level', ...
T

ag', 'level');

centrtype call=|
'numres=length(reslimits);"', ...

'for j=l:numres, restypestr(j)={sprintf(''Resource Type
£.0£'',3)}s;,end; " ...
'[typeselect, izbor]=listdlg(''PromptString'', ''Selecet Resource

Types'',''ListString'',restypestr, ''ListSize’'"', [160,160]);"
1;

h2=uimenu('Parent',hl, ...
'caliback’',centrtype call,...
'Label’', 'Resource &Types to Centralize',...
'Tag', 'choosetypes'):

balandmap_call=(
'h balandmap=£findobj(''Tag'',''balandmap’

]
'h:balonly=findobj("Tag","balanceonly");'
'h_maponly=findobj(''Tag'', ''maponly'');"'...
'h level=findobj(''Tag'','"level'");"'...
'omcheck=get (h_balandmap, ' 'checked'"');"'...
'if strcmp (bmcheck, ''on'')==1,"'...
'choice=1l;"'...

'set (h_balandmap, ''checked'’', ''off'");"'...
'set (h_level, ''enable'’',"'off"'"*);"'. ..

‘else, "...

'set (h_balandmap, ''checked'',"'on'");"'...
'set(h_level, ''enable'’,"'on"");"...
'‘choice=4;"'...

'set (h_balonly, '‘checked'',"'0ff£'");"'...
'set (h_maponly, ''checked'',''off"'");"'...

222

‘end; "’

h2 = uimenu('Parent',hl,
‘callback’, balandmap call, ...
‘Label’', 'Map &and Centralize',
'Separator', 'on', ...
‘Tag', 'balandmap');

balanceonly_ call=([
'h_balandmap=findobj ('*'Tag'', ''balandmap''};"'...
'h_balonly=£findobj('‘'Tag’'',''balanceonly’'');"'...
'h_maponly=findobj(''Tag'', ''maponly'');"'..
'h_level=findobj(''Tag'',''level"'’);'...
'bmcheck=get (h_balonly, ''checked'');'...
'if strcmp(bmcheck, 'fon'')==1,"...
‘choice=1;"'...
'set (h_balonly, ''checked'’', "’
'set(h_level,''enable'',"''0ff"");"...
‘else,'...
'set (h_balonly, ''checked’'',"'on'');".
'set (h_level, ''enable'’',"''on"'");".
'‘choice=2;"'...
'set (h_balandmap, ''checked'', ''off" .
'set (h _maponly, '"checked'',"'cff'"");"'...
'end; "'

h2 = uimenu('Parent’',hl,
'callback',balanceonly_call,...
‘Label’', '&Centralize Only', ...
'Tag', 'balanceonly’);

maponly call=[
'h_balandmap=£findobj (''Tag'',''balandmap’*');'...
'h palonly=findobj(''Tag'’', ''pbalanceonly’'");"'...
'h_maponly=findobj(''Tag'’', ''maponly''):"'..
'h_level=findobj(''Tag'',''level'");"'..
'bmcheck=get (h_maponly, ''checked'');"'...
'if strcmp{bmcheck, ''on''}==1,"...
‘choice=1;"'...
'set (h_maponly, ''checked’'', "'ofZ"");"'...
'set(h_level, ''enable'',"'off""};"...
‘else, '...
'set (h_maponly, "'checked'', "'on"'};"'...
'set (h_level, ''enable'',"'on"'"');"..
'‘choice=3;"'...
'set (h_balandmap, ''checked'', ''off'');"...
'set (h_balonly, ''checked'', "'off'');"...
‘end; '

223

h2 = uimenu('Parent',hl, ...
‘callback’',maponly_call, ...
'Label', '&Map Only',
'Tag', 'maponly’');

hl = uimenu('Parent’,hoO,
'Label', '&Graph’,
'‘Tag', 'grapch');

gantt_call=([

'figure; "...
'for r=1l:length(actdur),’'...
'data(l, r)=scheduled(2, find(scheduled(l, :)==r});"...

‘end;"'...

'‘data (2, :)=actdur;'.

‘bparh(data'’, ‘*stack''),'...

'‘colormap([1 1 1;0 0 C]):;"'...

'‘set(gca, ''color'', '‘'white’'');'...

'title({(''Project is completed at t = "'
num2str (scheduled(3,end))1]); '

'xlabel(''Time"'");"'...

'ylabel (' 'Activities''); "

1:

h2 = uimenu('Parent',hl,
'callback',gantt_call, ...

apel', 'Ga&ntt',

ag', 'gantt');

. o

-3

loading_call={
'abscis={abscis scheduled(end)];'...
'‘usage=[usage wusage(:,end)];'...
*for v=1l:length(reslimits),'...
*figure:;'...
'stairs(abscis,usage(v,:)):;'..
'yticks=1l:reslimits(v);'...
'‘set(gca, ''yTick'',yticks);"'...
‘axis ([0 scheduled(end) 0 reslimits(v)+11):;'...

'title (sprintf(''Resource Type %.0f Loading Graph'', v});'
‘xlabel (' 'Time'");"'...

'ylabel (' 'Resource Units'');'...

‘end; "’

1:

h2 = uimenu('Parent’',hl, ...
‘callback’', loading_call, ...
'Label', '&Resource Loading',
'Tag', 'loading');

unitmapping_call=([
'if choice==3 | choice==4,"'...
‘for restype=1l:length(reslimits),'

224

'figure;'...

'‘grid;"'...

'Xticks=l:reslimits(restype);:'...

'vyticks=1l:numact;'...

'axis ([0 reslimits(restype)+1 0 size(actneeds,1)+1]);"'...
'set(gca, ''XTick'',xticks);"'...

'set(gca, ''YTick'',yticks):'...

'hold;'...

'for nact=l:numact,'...
'vect=find([acttype (nact, restype) .unit(:).assigned]);"'...
'if ~isempty({vect)'...

'plot (vect,nact, ''ro'');:'...
‘end;"'...
'end;"'...

'title(sprintf{''Mapping Resource Type %.0f Units to Project
Activities'', restypel)):'...

'xlabel {sprintf{*'Resource Type 3.0f Units'®,restypejl; ...

'ylabel (' 'Project Activities'');'...

'hold off;"*...

'end;"'...

'end;"'...

1;

h2 = uimenu('Parent',hl, ...
'callback',unitmapping _call, ...
'Label', '§Unit Mapping', ...
'Tag', 'unitmapring');

util_call={[
'if choice==3 | choice==4,"'...
'for restype=l:length(reslimits),'...
'figure; ...
'Xticks=l:reslimits(restype);'...
'axis([0 reslimits(restype)+1l1 O 1]);'...
'set (gca, ''XTick'',xticks);"'...
'hold;'...
'maxunittime=zeros(1l, reslimits(restype))
'minunittime=zeros(l,reslimits(restype))
'for nunit=l:reslimits(restype),'...
'for nact=l:numact,'...

.’
ot
’

'maxunittime {nunit)=maxunittime {nunit)+ (acttype (nact, restype).unitc{nun
it) .assigned) *actdur(nact);"'...
'if isfinite(acttype(nact,restype).unit{nunitc).tuned)'...

'minunittime(nunitc)=minunittime (nunit)+(acttype(nacc, restype) . .unic{nun
it) .assigned) * (acttype(nact, restype) .unit(nunic).cuned);'...

'‘else'...

'‘minunitctime (nunit)=minunittime(nunic)+0;"'...
‘end;"'...

‘end;"'...

'maxunittime (nunit)= maxunittime{(nunit)/scheduled(3,end);"'...
'minunittime (nunit)= minunittime (nunit)/scheduled(3, end);
‘end;"'...

‘bar (maxunittime,''r"'');"'...

'bar (minunittime, ''b'');'...

225

'title(sprintf(''Time Percentage of Resource Type %.0f Units
Engagement vs. Total Project Duration'', restype));'...

'xlabel (sprintf(''Resource Typve %.0f Units'',restype)):;'...

'ylabel (''Percentage of Total Project Duration'');'...

'hold off;"'...

'‘end;"'...

'end; "

1:

h2 = uimenu('Parent',hl, ...
‘callback',util_call, ...

[\1]

'Lebel’', 'Unit Utili&zation', ...
'*Tag', ‘utilizacion');

unitcost_call = {
'warning off;'...
'if (optchoice==3 | optchoice==3) & (choice==3 | choice==4},"'...
'for restype=1l:length(reslimits),'...

figure;'...

xticks=1l:reslimits({restype);'...

set (gca, ''XTick'',xticks):;"'...

hold;'...

unitcost=zeros(l,reslimits(restype));'...

for nunit=i:reslimits(restype), ...

'for nact=1l:numact,'...

'if isfinite(acttype(nact,restype) .unitc(nunitc).mascercosc),'...

'uniccost (nunit)=unitcost(nunic)+(acttype(nact, restype) .unic(nunic) .as
signed) * (acttype (nact, restype) .unic(nunit) . .mastercosc):'. ..
'else, '...

'unitcost (nunitc)=uniccost(nunic)+0;"'...

'end;"'...
‘end;"'...
‘end;"'.. .
'bar(unitcost, ''g'');'...

‘title(sprintf(''Project Cost For Type %.0f Resource Units
restype));'...

‘xlabel (sprintf(''Resource Type %.0f Units'',restype));'...

'vlabel (' 'Total Unit Cost'");'...

'hold off;'...

‘end;"'...

‘end;'...

'warning on:;'

1

h2= uimenu('Parent’',hl, ...

‘callback',unitcost_call, ...

'Label', 'Total Unitc &Costs',...

'Tag', 'unit_costs’');

if nargout > 0, fig = h0; end

226

for restype=l:length(reslimits)
T restype=g;

[rc, acttype]=resobjective(acttype, restype, reslimits, newlyadded,
time, optchoice, utility):

[resmat, rcl=resmatrix(rc,

newlyadded, reslimits, restype, acttype, inprogress) ;
[rb,numeq]=resconstraints (newlyadded, restype, reslimits, actneeds);
optPar (13)=numeq;

optPar(1l)=0;

optPar(14)=1000000000;

rc=fix (rc*100000}); ‘ma«irg sure the cbhjecnivs coefiflglants ars
_rntegers ’

sol=balas (resmat,rb, rc,optPar)'; % see http://www.ima.mdh.se/tom/
Lfingd{scl}

if isempty(sol)
sol=zeros(1l,length(rc));
end “i1f ls=npuyvizc,

fromsol=1; LoL
tosol=0; v

for h=l:length(newlyadded)
tosol=tosol+reslimits(restype):

for g=l:reslimits(restype)
acttype (newlyadded(h), restype) .unit (g) .assigned=sol (fromsol};
fromsol=fromsol+l;

end

fromsol=tosol+l;
end
end ~fcr restyps=l:lengthirss’imits] whars g=restyps
function

[rb, numeqg]=resconstraints (newlyadded, restype, reslimits, actneeds)

-t s = -~ v e e v m oA e e T woww v -~
vcrr Zlimireting rescurle unlts that are In progress v : v
""’:‘E:-ZE‘S Cr.-'_/ CE YOW " TrTTTeEmTsYsws s ccvescccore o~
binprogress=0;
.............. rrv v re e AT YT Y Y e T E YR Y Y vy rrw T wm v

227

http://www.ima.mdh.se/tom/

"""" TrrITr-r- Zatisfying the neseds cf rewl.ya .
""""" wunbexr cf rcws equal to the lencthinew_yaczed)

W T T eww v T

"""" TTTT Zrnsurirng the urlguensss <f the variable zssigrmernt

T e N T T WY v W Y Y vy w Y W N T E e er vy e ww Y vw v T WYY YT TYTCY TV TYTSTYTY T v

rb=[{binprogress bneeds buniguel;
numeqg=length ([binprogress bneeds]);

function [resmat,

- r v r v v vw v -

P T

rc]l=resmatrix(rc,newlyadded, reslimits, restype, acttype, inprogress)

v~ o

TTYTTTey Ty~ Czlucleatinz the incdices
""""""" gerntifving rescurce urits that ars i grogr=ss

resinprogress=zeros(l,reslimits(restype)):;

for i=l:length(inprogress)
for j=l:reslimits(restype)

if acttype(inprogress (i), restype) .unit(j).assigned==1 &

isempty(inprogress)~=1
resinprogress(j)=1;
end ° =nad If

end
end

tempres=resinprogress;

for g=1:(length(newlyadded)-1)
resinprogress=[resinprogress tempresl];

end

Lol ~

(1)

[t

-2 e’
(023 <

CR N o

W

for z=1l:length(newlyadded)
for x=l:reslimits(restype)

if isfield(acttype (newlyadded(z),restype).unit (%),

'masterstart') ==1 &
acttype (newlyadded(z), restype) .unit (x) .masterstart==0

resinprogress((z-1)*reslimits (restype) + x)=1;

end

228

Srisp rescurce Za.cnzéer unaval_.zbloln

resinprogress=resinprogress + isinf(rc);

if sum(isinf(rc))~=0

end

T T T T Wt w v v e v e e T YT e ew e eY e e w wr T ew vwE T T v e v Yo e T " EwY T Yl e e r. o

~ o~~~

for i=l:length(newlyadded)
resneeds (i, from:i*reslimits (restype))=1;
from=from+reslimits (restype):;

end

T Y v T Y v ww T v

L R 4

for i=l:length(newlyadded)
unique={unique eye(reslimits(restype))]:;
end

resmat=[resinprogress; resneeds; unique];

function [rc, acttype]=resobjective(acttype, restype,
reslimits, newlyadded, time, optchoice, utility)
tfuncticr. [rcl=rescbjective{sctrestine, restvpe, res_imits,rewlyacdsd,;

re=[];

for i=1l:length(newlyadded)
for j=l:reslimits(restype)

funcheck=isfield(acttype (newlyadded (i), restype) .unit(j),
'func');

229

tunedcheck=isfield (acttype (newlyadded (i), restype).unit(j), 'tuned"’);
if funcheck==

numfuncs=eval ('size (acttype (newlyadded(i), restype) .unic (j).func,2)"'
)z

maxfun=0;
if
isempty(acttype (newlyadded (i), restype) .unit (j) . func)==1
Sttypeinewlvedasc i, resnype) Lunot rurex ', 'mlr
vEocezZ! L, 1) .unzt i, Lhtunsx]
maxfun=inf;

ena

for k=1l:numfuncs

funct=eval (acttype (newlyadded (i), restype).unit(j).func{k},inf);

if funct > maxfun
maxfun=funct;
end =g If

end ‘=2 fcr z=l:rnunmfuncs

th

if tunedcheck==
acttype (newlyadded (i), restype) .unit (j) . tuned=maxfun;
elseif tunedcheck==1 &
isempty (acttype (newlyadded (i), restype).unit(j).tuned)==
acttype (newlyadded (i), restype) .unit(j) . tuned=maxfun;
elseif tunedcheck==1l &
isempty(acttype (newlyadded (i), restype) .unit (j).tuned)==

acttype (newlyadded (i), restype) .unit (j) . tuned=max (maxfun, acttype (newlya
dded (i), restype) .unit (j) .tuned);

end ‘=ncd If tunedchecx==)
end ° =rd if funchecs==1

if funcheck==
if tunedcheck==

acttype{naewlyadded!i), raestype) .unit{j) . .turnecd=eval {'nin! actLype {New_ya
cged(i;,restype) .urit{l:j-

1;.tured] ', 'mirn{ acttypei{newl.vadded(i;, 1) .urit{:). .runed’ ' ;
sgefaulting the turnsed dureaticon if nct speczifised In any way

acttype(newlyadded(i),restype).unit(ﬁ).tuned=inf;
elseif tunedcheck==
if
isempty(acttype (newlyadded (i), restype).unit{j).tuned)==

ETTLypSinewlyacgdadii, restyps’ sunlitil) ctuned=eval ('nin: lactuiypeinewiva
ccescil),restyps) .unitilj-
1) .turec’) ', 'min{ acttype{nawliyacdded!{i:,). .unin{:). . tuned]} "}

acttype (newlyadded (i), restype) .unit (j) .tuned=inf;
end ¢ end lsemptyi{acttype)

230

end fend turedcheck
end ! end funcheck

if optchoice==
rc=[rc acttype(newlyadded(i),restype) .unit (j).tuned];

end
end * =z=nc for j=l res_imitsi{restyps
end = end fcr iI=l:length{newlvaddsd,
if optchoice==2 | optchoice==
for l:1length(newlyadded)

for j=l:reslimits(restype)

prefcheck=isfield(acttype(newlyadded (i), restype).unit(j),
'pref');
if ~isfield(acttype (newlyadded(i), restype).unit(j),
'masterpref') |
isempty(acttype (newlyadded (i), restype).unit(j) .masterpref)
acttype(newlyadded(l) restype) .unit (j) .masterpref=0;
end “end if Isfield

if prefcheck==1 &
isempty(acttype (newlyadded (i), restype) .unit(j) .pref)==

numprefs=eval ('size (acttype (newlyadded (i), restype).unit(j).pref,2}");
for k=l:numprefs

pref=eval (acttype (newlyadded (i), restype) .unit (j).pref{k},'C'};

acttype (newlyadded (i), restype) .unit(j) .masterpref=acttype (newlyadded (i
), restype) .unit (j) .masterpref + pref;

end "=t 1f pref:
if optchoice==
rc=[rc -acttype(newlyadded(l) restype) .unit (j) .masterpref];

end ‘erna

end ° =ncd If cptchcice==2Z (YZ3, I neecd It tc be checqed
twice!
end ferd for j=l:reslimitsirestype;
end erncd I=l:lengthi{nsw_yadded)
end rer.g cprcholce==2
if optchoice==3 | optchoice==

for i=1l:length(newlyadded)
for j=l:reslimits(restype)

costcheck=isfield (acttype (newlyadded (i), restype) .unit(j),
'‘cost'):

231

if costcheck==1 &

(~isfield(acttype (newlyadded (i), restype) .unit(j), 'mastercost') |
isempty(acttype (newlyadded (i), restype) .unit(j) .mastercost))

acttype (newlyadded (i), restype) .unit (j) .mastercost=0; °~ it
wa&s .masterccst=0;

elseif costcheck==0 &
(~isfield(acttype (newlyadded (i), restype) .unit (j), 'mastercost') |
isempty (acttype (newlyadded (i), restype) .unit (j) .mastercost))

acttype (newlyadded (i), restype) .unit (j) .mastercost=inf;
T wWes .mastexccst=l;

end *1rf lsfizlg

if costcheck==1 &
isempty(acttype(newlyadded (i), restype).unit(j).cost)==

numcosts=eval ('size (acttype (newlyadded (i), restype) .unit(j).cosc,2) ")
for k=1l:numcosts

cost=eval (acttype (newlyadded (i), restype) .unit(j) .cost{k}, inf);

o : = e s a5
“LC wes ...CCcst <, 0l

acttype (newlyadded (i), restype) .unit(j) .mastercost=acttype (newlyadded (i
), restype) .unit (j) .mastercost + cost;

end ‘end fcr
end ~=nd If costchecx

if optchoice==
rc=[rc acttype(newlyadded (i)

restype) .unit (j) .mastercost];
end ° =nd If cptcholice==C s, = S

, s TR mn e ke soon

s

end =r.g fcr j=l:reslimitsir=sst.c=e

end ernz I=l:l=rcthinsw_.vaaded;

end =rg cptcholice==_

if optchoice==4 | optchoice==5 | optchoice==1 | optchoice==2 |
optchoice==

for i=1l:length (newlyadded)
for j=l:reslimits(restype)

startcheck=isfield(acttype (newlyadded (i), restype) .unit(j),
'start');

if startcheck==0 |
isempty(acttype (newlyadded (i), restype) .unit(j) .start)==
acttype (newlyadded (i), restype) .unit (j) .masterstart=1;
else

acttype (newlyadded (i), restype).unit(j).masterstart=eval (acttype(newlya
dded (i), restype).unit(j).start);
end *enc Ir startchecx

‘if optchoice==
rc=[rc acttype (newlyadded (i), restype).unit(j) .masterstart];

232

[}
o]
[o
1]
o)
£
'
rt
@]
0
t
0
o g
O
' il
Q
1]
[l
"
£
:
14
tn
'
-
1]
13
0
)]
or
(m1
Q
o
0
(3
s
8
[$]
N
M
9]

twice!;

end “end for j=l:reslimits{restype’
end enc l=l:lerncgthinew.yvadded;
end ‘ernd cptchcice==4

if optchoice==

for i=1l:length (newlyadded)
for j=l:reslimits(restype)

timedep=acttype (newlyadded (i), restype) .unit (j) . tuned;

pref=acttype(newlyadded(i}, restype).unit(j).masterpref;
cost=acttype (newlyadded (i), restype).unit(j) .mastercost;
starttime=acttype (newlyadded (i), restype) .unit (j) .masterstart;

utility=char(utility);
composutility=eval (utility);

if isnan(composutility)
composutility=inf;
end

rc={rc —composutilityl];

end ernd for j=l:res’imitsi{restyps;
end enc L=l:lengthinswl.vadcecd;
end =n2 cprcholze==5

% Scheduler File

if ~exist('typeselect')
typeselect=[];
end

[b}=constraints(inprogress, finished, reslimits, actneeds, typeselect):;
[c]=objective(prior,actneeds, reslimits, cand,

actdur,multiplier, numsucc, mindur);

P e =amatrixlizctrneeds, card, firnished;;

[a]=amatrix (actneeds, cand, finished, reslimits, inprogress, typeselect):
x=balas(a,b,c,0); % see http://www.ima.mdh.se/tom/

% End Scheduler File

% Scheduler “Down” File
[bl=constraintsdown (inprogress, finished, reslimits, actneeds):;
[c]=objectivedown (prior, actneeds, reslimits, cand,
actdur,multiplier, numsucc, mindur);

[a}=amatrixdown (actneeds, cand, finished,reslimits, inprogress):;
x=balas(a,b,c,0); % see http://www.ima.mdh.se/tom/

$ End Scheduler “Down” File

function [acttypel=setassigned(acttype, numact, numres, reslimits)

233

http://www.ima.mdh.se/tom/
http://www.ima.mdh.se/tom/

for i=l:numact
for j=l:numres
for k=l:reslimits(j)
acttype(i,j).unit (k) .assigned=0;
end
end
end

function [actdur]=updateactdur (actdur, newlyadded, acttype, reslimits)

for w=l:length(newlyadded)

for rt=1;length(reslimits)
actdur (newlyadded (w)) =max (actdur (newlyadded (w)),

eval ('max ([acttype (newlyadded(w),rt).unit(:).tuned].* [acttype (newlyadd
ed{w),rt).unic(:) .assigned])’','0"));

end
end

234

