
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, t>eginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

UMT

NOTE TO USERS

This reproduction is the i3est copy avaiiable.

UMI

UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

MAPPING OF MULTICAPABLE AND INTERDEPENDENT RESOURCE UNITS IN

PERT/CPM NETWORKS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By

MILAN MILATOVIÙ
Norman, Oklahoma

2000

UMI Number 9968101

UMI
UMI Microform9968101

Copyright 2000 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Artx)r, Ml 48106-1346

MAPPING OF MULTICAPABLE AND INTERDEPENDENT RESOURCE UNITS IN

PERT/CPM NETWORKS

A DISSERTATION

APPROVED FOR THE SCHOOL OF INDUSTRIAL ENGINEERING

Dr. Adedeji3^^Badiru

Dr. Shivakumar Raman

Dr. Theodore B. Trafalis

Dr. R Leon Price

Dr. S. Lakshmivarahan

© Copyright by Milan Milatovic
Ali Rights Reserved

ACKNOWLEDGMENTS

What a relief! I f you have gone through all o f this, you know what I mean... Otherwise,
stretch your imagination.... In addition to the perfect harmony between Reason and
Randomness, this work would have definitely not converged to its current form without
the presence and full support fi*om few people. Certainly the person that has taken the
most punches is Dr. Adedeji Badiru, my long time mentor, and now a very good fiiend.
His invaluable “lunch consultations”, expertise, and guidance into all aspects o f academic
life has provided me with a priceless career toolbox. My sincere appreciation also goes
to Dr. Shivakumar Raman for fiiendly chats and advises in situations when I needed them
the most. Needless to say, I am honored to have had the opportunity to attend and
survive courses by Dr. Theodore Trafalis and Dr. S. Lakshmivarahan. Finally, I am
grateful to Dr. R. Leon Price for his time and comments which have enhanced this work.

Wait, I am not finished!!! A good work is well presented work. With that in mind, I am
indebted to Dr. Milorad Novicevic for sharing many o f his magic tricks with me. I also
feel very fortunate to have met and collaborated with many of my fellow students and
colleagues, especially Dr. Suat Kasap, Dr. Alexander Malyscheff and Dr. Danko Nikolic.
Finally, without a kind administrative help fi-om Allison Richardson, Jean Shingledecker,
and Jane Smith this work would have been prolonged for several months.

At last, I am blessed to have been introduced to Olga’s heavenly cuisine that has
prevented me from completely digesting my spine during long working hours. I extend
my thanks to Iridanin family for their fiiendship throughout all these years, and my
parents who still ultimately hold the credit for my being and your reading pleasure o f this
document.

IV

TABLE OF CONTENTS

ABSTRACT.. x

I. INTRODUCTION.. 1

n. LITERATURE REVIEW.. 6
2.1 Knowledge Based Systems in Scheduling... 7
2.2 Uncertainty in Scheduling.. 12
2.3 OR And Dynamic Programming Applications In

Project Scheduling... 15
2.4 Resource Constrained Project Scheduling.. 18
2.5 Branch and Bound Applications in Project Scheduling...................... 23
2.6 Cost Considerations in Project Scheduling... 24
2.7 Activity Duration Issues in Project Scheduling.................................... 27
2.8 Resource Leveling and Balancing in Project Networks...................... 28
2.9 Resource Preferences and Discrimination o f Resource Units

in Project Scheduling.. 30

III. RESEARCH BACKGROUND... 35
3.1 Problem Statement... 41

IV. METHODOLOGY... 43
4.1 Project Resource Mapper: Classification, Representation and

Interdependencies among Project Resources and their
Mapping to Project Activities.. 43

4.1.1 Modeling o f Resource Characteristics and
their Interdependencies.. 46

4.1.2 Dynamic and Resource Type-Specific Varying of
Mîqjping Utility Function... 55

4.1.3 Resource Time Effective U sabilities and
Interdependencies.. 58

4.1.4 Resource Costs and Resource Interdependencies
based on Costs.. 64

4.1.5 Resource Preferences and Resource Interdependencies
based on their Preferences.. 66

4.1.6 Resource Availability in Resource-Activity Mapping 67
4.2 Project Activity Scheduler: Prioritizing and Scheduling

Project Activities... 72
4.2.1 Initial Estimation of Project Activities Duration.................. 73
4.2.2 Computing and Dynamic Updating o f Activity Priorities.... 77
4.2.3 Formulation o f the Objective Function for Activity

Scheduling and Resource Balancing.. 85

V. SUMMARY.. 93
5.1 Conclusions... 93
5.2 Major Research Contributions.. 92
5.3 Future Research.. 95

VI. REFERENCES.. 97

APPENDIX A. Complete Heuristic for Dynamic Mapping Resource Units to
Project Activities.. 104

APPENDIX B. Overview o f PROMAP (Project Resource Mapper) Software.... 106

APPENDIX C. Examples o f PROMAP Project Input and Output......................... 123
Example Project # 1: Input Data.. 125
Example Project # 1 : Output... 147
Example Project # 2: Input Data.. 164
Example Project # 2: Output... 179

APPENDIX D. Computer Codes for PROMAP Implementation.......................... 185

VI

LIST OF FIGURES

Figure 1. CRD Network Analysis... 36
Figure 2. Resource Schedule Chart Based on Earliest Start Times........................ 37
Figure 3. Modified Critical Resource Diagram.. 40
Figure 4. Incorporating Resource Availability into Mapping Constraints............ 70
Figure 5. Example o f Unbalanced Resource Loading Graphs................................ 83
Figure 6. Example o f a Project Schedule with the Loading Graph o f

Resource Type Two Fully Balanced... 84
Figure B l. PROMAP’s Main Menu... 106
Figure B2. f rq/ecf Menu Items... 106
Figure B3. Window for Entering the Basic Project Data.. 107
Figure B4. Use o f List Boxes to Display Project Activities

and Resource Types... 108
Figure B5. Text Box for Entering Availability o f Resource Types......................... 108
Figure B6. Pull-Down Menu that Facilitates the Entering of

Activity Precedence Relations.. 109
Figure B7. Window for Entering Functional Dependencies among Resources.... 110
Figure B8. Pull-Down Menu Items for Entering Specific Resource Data............. I l l
Figure B9. Pull-Down Menu Items.. 112
Figure BIO. Run Menu Items... 113
Figure B l 1. Choices o f User Selected Objectives According to which

Resources are to be Mapped.. 114
Figure B12. Dialog Box for Entering Optimizing Utility Functions....................... 115
Figure B13. Dialog Box for Entering Resource Centralizing Level....................... 116
Figure B 14. List Box for Selection o f Resource Types to be Centralized.............. 116
Figure B15. Items under Graph Menu.. 117
Figure B16. Example Gantt Chart by PROMAP.. 118
Figure B 17. Example o f a Resource Loading Graph.. 119
Figure BIS. Example o f Resource-Activity Mzq)ping Grid...................................... 120
Figure B 19. Resource Units Utilization Bar Chart.. 121
Figure B20. Example Cost Chart for Units o f a Project Resource Type................. 122
Figure C l. Example o f a Project Manager’s Mapping Strategy Input.................... 148
Figure C2. Resource-Activity Mapping Grid for the Units o f Resource Type 1... 149
Figure C3. Resource-Activity Mapping Grid for the Units of Resource Type 2 ... 149
Figure C4. Resource-Activity Mapping Grid for the Units of Resource Type 3... 150
Figure C5. Resource-Activity Mapping Grid for the Units o f Resource Type 4 ... 150
Figure C6. Percentage o f Resource Units Utilization for Type 1............................. 151
Figure C7. Percentage o f Resource Units Utilization for Type 2 152
Figure C8. Percentage o f Resource Units Utilization for Type 3 152
Figure C9. Percentage o f Resource Units Utilization for Type 4 153
Figure CIO. Total Relative Resource Units Costs for Resource Type 1................ 154
Figure C l 1. Total Relative Resource Units Costs for Resource Type 2 154
Figure C12. Total Relative Resource Units Costs for Resource Type 3................ 155
Figure C13. Total Relative Resoiuce Units Costs for Resource Type 4 155

V ll

Figure C14. Resource Loading Gnyh for Resource Type 1.................................... 156
Figure CIS. Resource Loading Graph for Resource Type 2 157
Figure C16. Resource Loading Graph for Resource Type 3 157
Figure C l7. Resource Loading G r^ h for Resource Type 4 158
Figure C l8. Project Activity Gantt Chart.. 158
Figure C l9. Project Gantt Chart After Simplifying the Scheduling

and Mapping Strategies.. 159
Figure C20. Resource Type 1 Loading Graph After Simplifying the

Scheduling and M oping Strategies.. 160
Figure C21. Modified M oping Strategy.. 161
Figure C22. Project Gantt Chart when Resource Preferences
Prevail over Resource C^abilities... 161
Figure C23. Resource-Activity M oping Grid for Type 1 when

Resource Preferences Prevail over Resource C ^abilities.................. 162
Figure C24. Resource-Activity Mapping Grid for Type 2 when

Resource Preferences Prevail over Resource Capabilities.................. 163
Figure C25. Example Mq)ping Strategy.. 179
Figure C26. Project Gantt Chart for a Schedule Emphasized on

Resource Availability.. 180
Figure C27. Resource-Activity Grid for Type 1 o f Strategy Emphasized

on Resource Availability... 180
Figure C28. Resource-Activity Grid for Type 2 o f Strategy Emphasized

on Resource Availability... 181
Figure C29. Resource-Activity Grid for Type 3 o f Strategy Emphasized

on Resource Availability... 181
Figure C30. Relaxed Resource Mapping Strategy Results in Shorter

Project Duration... 183
Figure C31. Resource Group 1 Assignments Resulting fi'om a

Change in Strategy... 183
Figure C32. Resource Group 2 Assignments Resulting from a

Change in Strategy... 184
Figure C33. Resource Group 3 Assignments Resulting from a

Change in Strategy... 184

vm

LIST OF TABLES

Table 1. Example Project Data.. 39
Table 2. Example Representation o f Time-Effective C ^abilities

and Interdependencies to Seven Project Activities................................... 74
Table 3. Initially Estimated Activity Durations... 76
T a b le d . Basic Project #1 Data.. 125
Table C2. Time-Effective Capabilities For Resource Type 1................................. 126
Table C3. Time-Effective Capabilities For Resource Type 2 127
Table C4. Time-Effective Capabilities For Resource Type 3 129
Table C5. Time-Effective Capabilities For Resource Type 4 132
Table C6. Preferences for Resource Type 1.. 134
Table C7. Preferences for Resource Type 2 .. 135
Table C8. Preferences for Resource Type 3.. 137
Table C9. Preferences for Resource Type 4 .. 139
Table CIO. Costs for Resource Type 1... 141
Table C l 1. Costs for Resource Type 2 ... 142
Table C12. Costs for Resource Type 3... 144
Table C l3. Costs for Resource Type 4 ... 146
Table C14. Basic Project #2 Data... 164
Table C l5. Time-Effective Capabilities for Resource Group 1............................. 165
Table C16. Time-Effective Capabilities for Resource Group 2 166
Table C l7. Time-Effective Capabilities for Resource Group 3 168
Table C18. Preferences for Resource Group 1.. 170
Table C19. Preferences for Resource Group 2 ... 171
Table C20. Preferences for Resource Group 3... 173
Table C21. Time Availability for Resource Group 1.. 176
Table C22. Time Availability for Resource Group 2 ... 177
Table C23. Time Availability for Resource Group 3 ... 178

IX

ABSTRACT

Globalization o f business activities, deregulation o f industries, and technological

advances have greatly contributed to the increasing importance o f project scheduling

approaches in knowledge rich economy. In this new economy, multifunctional

capabilities are becoming one o f the most critical resource attributes that need effective

appropriation in resource constrained scheduling. As a result, the traditional scheduling

of project activities must be complemented with attentive mapping o f human, social and

technical resources to interact in value creating ways, while still meeting the cutting edge

of both analytical rigor and managerial relevance. Therefore, the primary objective of

this research is the development o f a generic project scheduling model that incorporates

1) resource characteristics, such as preferences, time-effective capabilities, costs and

availability o f project resources, 2) possible performance interdependencies among

different resource groups, and proceeds to map the most relevant resource units to each

newly scheduled project activity. The principal challenge in this generic model

development is to make it applicable to realistic project environments which often

involve resource units with characteristics which may vary across activities, as well as

within a single activity relative to specific interactions among resources. The scope of

this research challenge increases when the actual duration, cost, and successful

completion of a project activity are considered to be potentially resource driven and

dependent on the choice o f particular resource units assigned to it. Such successive

consideration o f resource characteristics in resource allocation to activities is o f extreme

practical relevance because it may likely also improve overall project duration, quality,

and cost.

The model developed in this study first schedules qualifying activities at each decision

instance, and then dynamically maps available and the most relevant resource units to

them. Before the resource-activity mapping occurs, resource units are classified into

groups based on their interactive dependencies. Those units, whose preferences or

performance on an activity depend on their interaction with units from other groups, are

mapped last. The actual mapping o f resource units to activities is accomplished

according to a pre-specified arbitrary utility function which incorporates one or more of

the above resource characteristics. Due to the dynamic nature o f project schedules, the

utility function may be held fixed throughout the mapping or be allowed to vary with

time by filtering out some of its additive components not associated with current

scheduling time. Similarly, the utility may be allowed to differ for different resource

groups by filtering out its components not associated with currently mapped resource

group. The procedure progresses until all project activities are scheduled and resource

units assigned to each o f them. This model represents a crucial initial step towards a

comprehensive resource-activity based integration in project scheduling, which is a

particularly valuable managerial tool in knowledge-intensive industries.

XI

I. INTRODUCTION

Traditional project scheduling techniques generally provide graphical and analytical

solutions which are primarily based on project activities. Resources, if limited in quantity

or availability, then impose appropriate constraints in scheduling o f activities. The actual

assignment o f resources to activities depends on the type and functionality o f resources

themselves. In cases when resources have pre-specified assignments and responsibilities

towards one or more activities, their allocation is concurrently performed with the

scheduling of applicable activities. In other cases, an activity may only require a certain

number o f (generic) resource units of particular type(s), which are assigned after the

scheduling of the particular activity. These two approaches coarsely represent the

dominant paradigms in project scheduling. The objective o f this research is to propose a

new model and strategy which will shift these paradigms to facilitate a more refined

guidance for allocation and assignment of project resources. In other words, there is a

need for tools which will take into account behavior, multi-capability, interdependencies,

and bundling o f resources and provide for effective resource tracking, control, interaction,

and, most importantly, resource-activity mapping.

The methodology developed in this research is based on several elemental modeling

assumptions. The principal assumption is tliat project environments often involve multi-

capable resource units with different characteristics. This is especially the case in

knowledge intensive settings and industries which are predominantly staffed with highly

trained personnel. The specific characteristics considered were resource preferences,

1

time-effective capabilities, costs, and availability. Each resource unit’s characteristics

may further vary across project activities, but also within a single activity relative to

interaction among resource units. Finally, resource preferences, cost, and time-effective

capabilities may also independently vary with time due to additional factors, such as

learning, forgetting, weather, type o f work, etc. Therefore, although we don’t exclude a

possibility that an activity duration is independent of resources assigned to it, in this

research, we assume that it is those resource units assigned to a particular activity that

determine how long it will take for the activity to be completed. This is, again, somewhat

contrary to a common practice, where an activity duration is pre-specified before having

any resource units assigned to it.

Based on the above assumptions, a comprehensive model has been developed and

implemented in this research to schedule projects by alternatively executing two specific

procedures. The first one prioritizes and schedules activities based on the current

availability o f resources. The second procedure then immediately maps the most relevant

o f the available resource units to the newly scheduled activities. The activity scheduler

prioritizes and schedules activities based on some of their basic attributes, which may

include attempts to centralize selected resource loading graphs based on activity resource

requirements. The particular attributes considered are the number o f activity successors,

initially estimated shortest expected activity duration, and dynamically updated amount

o f depleted activity slack. In addition to their attributes, activities may also be prioritized

and scheduled based on their resource requirements with respect to a manager’s attempt

to centralize certain pre-specified resource loading graphs. The resource mapper then

considers the above resource characteristics, incorporates interdependencies among

resource groups or types, and maps the available resource units to newly scheduled

activities according to a project manager’s or analyst’s pre-specified utility (objective)

fimction. Although the activity scheduler must ensure that enough resource units are

available for each candidate activity before it is scheduled, the resource mapper decides

which particular of those available units should be assigned to which activity. Since

project scheduling is a dynamic process, this utility fimction may be held constant

throughout the process, or allowed to vary with time. For example in the early

scheduling stages, a project manager may be more interested in satisfying resource

preferences as opposed to later project stages, where project’s timely completion may

require greater attention on resource time-effective capabilities. The utility function may

further differ for various resource groups (types) or specific units. For this purpose,

Kronecker’s delta as well as window functions are used to keep the desired parts of the

utility function and filter out those additive components o f the utility which are not

associated with a current time or resource group.

The scheduling strategy as illustrated above promotes a more balanced and integrated

activity-resource mapping approach. Mapping the most qualified resources to each

project activity, and thus preserving the values o f resource, is achieved by proper

consideration or resource time-effective capabilities and costs. By considering resource

preferences and availability which may be entered in either crisp or fuzzy form, the model

enables consideration o f personnel’s voice and its influence on a project schedule and

quality. Furthermore, resource interactive dependencies may also be evaluated for each

of the characteristics and their effects incorporated into resource-activity mapping.

Finally, by allowing flexible and dynamic modifications of scheduling objectives

(utility), the model permits managers or analysts to incorporate some o f their tacit

knowledge and discretionary input into project schedules.

The model has been implemented in a software prototype, with its code, input format, and

sample outputs illustrated in the appendices. The output consists o f five types o f charts.

The more traditional ones include project Gantt chart, and resource loading graphs for

all resource groups or types involved in a project. More specific graphs include resource-

activity mapping grids, resource utilization and resource cost bar charts. Based on

inputted resource characteristics, their interdependencies, and the form o f the objective,

the resource-activity mapping grid provides a decision support in terms o f which units of

each specified resomce group should be assigned to which particular project activity(ies).

Therefore, the resource-activity grids are, in effect, the main contributions o f this study.

Unit utilization charts track the resource assignments and provide a relative resource

usage of each unit relative to the total project duration. Resource cost charts compare

total project resource expenditures for each resource unit.

The remaining o f this dissertation is organized as follows: Chapter II presents extended

literature review that has been relevant and influential on this research. Chapter m

discusses the research background and the need for new approaches and models. Chapter

rv provides a detailed description of the model. Chapter V summarizes major research

contributions and provides recommendations for future research directions. Appendix A

presents an algorithmic summary o f the model proposed and implemented in this

research. A brief overview o f software developed to support the model is given in

Appendix B. Appendix C presents two example projects, their input data, and

elaboration of outputs relative to given objectives. Finally, the computer code used in the

model implementation is listed in Appendix D.

n . LITERATURE REVIEW

The process of scheduling is one o f the basic constituents o f every manufacturing,

production, management, and computer environment. Regardless o f the environment in

which it takes place, scheduling is defined as allocation of (usually limited) resources

over time to perform a set o f planned activities. A survey of some 400 top contractors in

construction, showed that 96.2% o f them still use Critical Path Method (CPA/) to some

degree for scheduling (Mattila and Abraham, 1998). Another survey o f Associated

General Contractors o f America revealed that scheduling is still the most important

technological component that needs improvement (Mattila and Abraham, 1998). During

the development o f an expert system for job-shop scheduling, it was discovered that

human schedulers spend about 80-90% of their time in only identifying the constraints,

and only about 10-20% for the actual scheduling (Liebowitz and Potter, 1995). Park et al.

(1996) affirm that the main problems in automation of production scheduling is the lack

o f an explicit representation scheme o f scheduling knowledge to aid in the

communication between human schedulers and systems analysts.

In general, scheduling problems are associated with numerous conflicting objectives and

constraints, and an immense number o f combinatorial options and selections. It is

traditionally an NP hard problem, that is, it cannot be solved by a polynomially bounded

algorithm. Thus, the challenge for the researchers remains open.

Studies in both operations research {OR) and artificial intelligence {AT) have contributed

their portion o f techniques towards scheduling. Traditional OR scheduling methods

involve linear programming, branch and bound, and Tabu search. Contributions by A I

come firom expert systems, fuzzy logic (as a special case of expert systems), neural

networks, simulated annealing, genetic algorithms, constraint satisfaction, hill climbing,

and connectionist methods. Thus, an additional problem a scheduler may face is having

to make a choice o f mapping a particular scheduling problem to an adequate technique.

Tsang (1995) argues that the knowledge o f which technique to apply and when, is at least

as critical as the expertise in the individual technique itself.

Previous literature surveys on A I applications in scheduling can be found in Atabakhsh

(1991), Tsang (1995), and Wiers (1996). The following sections discuss some o f the

recent applications o f AI techniques, followed by the advances and applications o f OR in

scheduling. Expert and knowledge-based systems, including uncertainty in scheduling

are discussed next.

2.1 Knowledge Based Systems In Scheduling

As one o f the oldest o f techniques, expert systems have been widely used in scheduling

for many years. The popularity o f expert systems stems primarily fi-om the simplicity o f

their implementation and understanding, since their structure is almost solely rule based.

A domain knowledge is generally embedded into an expert system in terms o f rules and a

scheduler. The rules indicate which o f the tasks or resources are eligible for scheduling.

while the scheduler then attempts to resolve possible conflicts and satisfy any constraints.

A major difficulty in the implementation of expert systems (not only in scheduling, but in

general), is the knowledge extraction from human experts. In addition, the actual

scheduling conflict resolver is also difficult and non trivial to develop. Many attempts,

however, to develop expert systems to tackle specific and custom problems exist, and

some of the latest attempts are described in this section.

As one o f the primary and most executed operations at NASA sites, scheduling has

prompted a great need for development of more generic expert scheduling systems.

Liebowitz and Potter (1995) investigated objectives, requirements, resources, constraints,

processes, and scheduling domains for development o f a generic scheduling system for

NASA centers, particularly for missions planning. Their previous survey o f 250 papers

on expert scheduling systems in 1993 enumerated about 24 significant scheduling

approaches that were based on optimizing algorithms, about 20 different heuristics, and

two hybrid methods that incorporated both heuristics and algorithms. In their literature

review, they have come up with about 20 different objectives that are to be considered by

NASA’s mission scheduling.

Liebowitz and Potter (1995) stressed several points necessary for the development o f a

generic expert scheduling system for NASA purposes, but which are also relevant to

other industrial areas. First, regarding the objectives of scheduling, it is imperative to

maximize scheduled number of requests while minimizing “unhappiness” o f a scheduler.

In addition, all (or a vast majority of) constraints must be satisfied, while the safety and

8

performance is maintained. Some o f the objectives included due dates satisfaction,

satisfying maximum number o f constraints, balancing loads among different stages of

assembly operations, maximizing the scheduling of high priority events over low priority

ones, minimizing the number o f tardy jobs, minimizing inventory costs as well as project

duration, optimization o f resource allocation, etc. Some major scheduling requirements

require a hierarchical architecture, ability to quickly, effectively and automatically

perform rescheduling, need for good user and system interface and portability, and a need

for having a variety o f scheduling techniques available. Hierarchical architecture implies

that a part o f overall scheduling is propagated to lower level schedules who have a

control o f their own limited areas or departments. All requirements were grouped into

eight groups, some o f them being general requirements, resource/constraints

requirements, activity requirements, output requirements, system interface requirements,

etc. Resources were classified as spatial (ones where time is a significant factor, such as

spacecraft orbits or viewing periods), and non-spatial such as cranes, crews, machines,

etc. Constraints were classified as precedence constraints (due to ordering of activities),

synchronization constraints, and non-time dependent constraints, such as capacity, safety,

etc. A long list o f resources and constraints is also provided in the paper.

Hori et al. (1995) show how a composable scheduling knowledge can be elicited from

existing expert systems, thus enabling knowledge sharing and reuse. The authors propose

three problem solving patterns as abstract templates for component elicitation, divide and

merge (divide a given problem, invoke another component to receive solutions to divided

subproblems and merge them into a schedule hypothesis); transform and restore

(reformulate a problem structure, invoke another component, and restore the schedule

hypothesis obtained to the original problem space); check and modify (find an unexpected

situation such as a constraint violation in a schedule hypothesis, and modify it).

Recently, Sauer and Bruns (1997) have proposed a generic fiameworic to facilitate

construction o f knowledge based scheduling systems. Their framework is based on two

design principles: (1) combination o f standard computer science components with

knowledge based concepts (heuristics, algorithms) and declarative knowledge

representation, and (2) explicit and transparent representation o f knowledge that allows

for reuse and adaptation of scheduling algorithms. The authors argued that all scheduling

systems must possess an easy adaptation and advocate for a reusable representation o f

scheduling knowledge. This stems from the fact that many advanced algorithms have

been designed for only specific problem instances, which do not allow reusing o f any

components in future systems or transferring much o f an algorithm into more general

scenarios.

Ntuen and Park (1995) have experimented in merging OR and A I tools and proposed a

hybrid scheduling model for approaching non-structured scheduling problems (NSSP). In

NSSP, resources possess at least one, but generally more skills to perform a task.

Example would include a car mechanic who does a variety o f tasks fix>m tire repair to

engine rebuilding. Ntuen and Park (1995) have proposed their methodology to scheduling

o f aircraft turnaround functions {ATF). Examples o f ATF are express plane inspection for

leaks and/or damage, refueling, ammunition loading and arming, etc. It is o f interest to

10

coordinate these functions in a minimum time span. To accomplish it, Ntuen and Park

developed a model, named Task Oriented Planner, which is also o f object oriented

structure. During a job schedule, the knowledge processing environment dynamically

creates a node for each resource which carries its class attributes. This method of

dynamic node creation allows for potential job preemption, resumption, as well as

dealing and assignment o f idle resources. Thus, once a planning is achieved, the

scheduling module is activated which creates sub-hierarchies o f knowledge bundles to

cluster jobs and resources according to priorities.

A joint project by Korea Advanced Institute o f Science and Technology {KAIST) and

Daewo from 1991 to 1993 that involved development o f an intelligent comprehensive

scheduling system for shipbuilding has been documented in an article by Lee et al.

(1995). The result was a Daewo Shipbuilding Scheduling {DAS) expert system launched

in January of 1994, which had significantly improved the production and quality o f the

facility. Similar to the previous papers, this model was also based on hierarchical system

architecture.

Papers by Lee and Wu (1995) and Liou and Wu (1996) incorporated experts systems into

scheduling of academic courses. Lee and Wu (1995) designed their scheduler based on a

desirability map that indicates the degree o f ‘wishfulness’ for a class to be assigned a

specific time block. The number obtained is a combination o f a preference degree,

instructor’s priority, and a course weight itself. Conflicts were resolved by using a

breath-first search in conflict trees. A finished schedule allowed for interactive changes.

11

Rules in the expert system were extracted from the knowledge o f faculty and staff. The

system was implemented in CUPS, a C language based Integrated Production System,

established on forward chaining principles. The system had a total of 556 rules and was

actually tested at the National Sun-Yat University in Taiwan.

Liou and Wu (1996) proposed an alternative implementation o f expert systems for

academic course scheduling. Courses, instructors, classrooms, and time periods were

represented as basic objects, each having a set o f attributes assigned to it. The attributes

of each instructor included name, I.D., position, mastering courses, list of preferences,

etc. The authors further developed a scheme o f depicting objects and relationships

among them. The proposed scheme was graphically represented with relationships

grouped as “pyramids”, with the vertices being particular instructors, courses, and time

periods, and the edges being their interrelationships. Thus, each pyramid was interpreted

as an assigmnent o f a course to an instructor for a particular classroom during a particular

time period. For example, credit hours taken by a particular instructor could easily be

assessed by accessing all edges sharing a particular vertex representing that instructor.

2.2 Uncertainty in Scheduling

Uncertainty in scheduling parameters has been considered and modeled extensively

within the past decade. H ^ k e et al. (1994) proposed a complete decision support system

for software project scheduling. The purpose o f the so called Fuzzy Project Scheduler

(FPS) was to allocate resources, (primarily software engineers) among planned activities,

12

such as system design, GUI design, implementation o f modular components, and

subsequently their integration. The uncertainty was assumed in activity durations, ready

times, and due dates. The actual system consisted o f not only one scheduling heuristic.

Instead, activities were chosen based on one out o f 12 different heuristic rules. In

addition, in order to generate even greater variety o f feasible schedules, the authors also

implemented five different mutations to each of the 12 priority lists. Thus, the total o f 60

different schedules were obtained from which the authors suggest selecting one with the

best solution. Since the solutions were represented in fuzzy numbers, one o f the

previously available means was used to compare the magnitude o f fuzzy number

obtained. Although the system results were characterized by possible high degrees of

uncertainty, that was exactly the purpose of it. In other words, the system’s solution did

incorporate both optimistic and pessimistic scenarios, carried them all the way through,

and accordingly, yielded similar output which contained a full possibility distribution.

Nasution (1994) proposed a more comprehensive method for carrying calculations in

fuzzy CPM. As opposed to previous research on this matter which either considered

earliest or latest allowable project times, Nasution proposed more relaxed methodology

which incorporated interactive subtraction of fuzzy times in the backward CPM

calclations, thus, enabling him to compute fuzzy slacks o f all network activities. Since

fuzzy numbers have areas associated with them, Nasution suggested that any negative

parts of fuzzy numbers (obtained by fuzzy subtraction) should be ignored since they

likely carry no useful information.

13

Lorterapong (1994) extended fuzzy scheduling heuristics to incorporate resource

allocation within projects. The heuristic mainly breaks down the activities into subsets at

each time instant when a resource conflict occurs. Then, a simple procedure based on

activity slacks is used to evaluate each activity subset and determine its impact on project

duration. The author then extended this concept into a fuzzy space and incorporated

vagueness in the specification o f time parameters.

Wu and Hadipriono (1994) used fuzzy logic to evaluate different factors on activity

durations in construction projects and scheduling. One of the prime objectives in project

management is to estimate duration o f a project. On a smaller scale, estimation of

activity duration within a project may also be a non trivial task. In construction

scheduling, there are numerous factors that may and do affect activity durations. Some of

the most important ones include site location and condition, climate and weather (weather

being an instance o f a climate), resources, management performance, material supply,

equipment performance, labor performance, etc. Too optimistic schedule may result in

project delays and penalties to the contractor. On the other hand, too pessimistic

calculations may produce resource idleness and increase in overhead costs. Thus, the

authors proposed an activity duration decision support system that applies fuzzy modus

ponens (forward chaining or data driven inference) to capture the impact o f the above

factors in activity durations. It is interesting to note that the authors used a new

representation o f fuzzy numbers to quantify linguistic descriptions o f the above factor

values. More specifically, the authors proposed angular Juzzy sets to model the system.

14

Angular fuzzy sets were first proposed in 1990 by one o f the authors, who used a

semicircle fiom -Ji/2 to +tc/2 to represent the true values in the universe o f discourse

(universal set over which fuzzy numbers are defined). The angle between a straight line

from the center of the circle and the horizontal represents a particular truth value.' The

authors do provide some operational and arithmetic possibilities using angular fuzzy

numbers.

2.3 OR And Dynamic Programming Applications In Project Scheduling

In their recent review of current project scheduling models and methods, Brucker et al.

(1999) attempt to standardize a common notation and a classification in project

scheduling, as well as close the still open gap between project scheduling and job shop

scheduling as its special case. The authors divided the methods into single-mode cases,

multi-mode cases, resource constrained problems with time lags, models with nonregular

objectives, and models with stochastic activity durations.

Branch-and-bound and heuristic approaches were the most common methods for solving

single-mode cases. Patterson et al. (1989) proposed a case o f branch-and-bound algorithm

commonly referred to as the precedence tree. At each iteration, the procedure determines

a set o f currently scheduled activities and those that that have just qualified for

scheduling. One of the eligible activities is then selected and the next starting time is

computed. Once the dummy termination node is encountered, a complete schedule is

15

said to be found, and the procedure backtracks to the previous level and selects an

untested eligible activity. When all the eligible activities have been tested, the procedure

backtracks again to the previous level, until each branch from the root to a leaf has been

examined, and which in effect represents the permutations of the activity set that is

precedence feasible.

Delay Alternatives is another branch-and-bound procedure proposed by Christofides et al.

(1987), which at each time decision instance tc, considers eligible activities, and subjects

them to resource constraints. Those activities whose requirements may be satisfied given

the current constraints and resource availabilities are scheduled, while the other activities

are delayed until the next decision instance. Once the schedule is completed, the

procedure backtracks and reconsiders the delayed activities. This method, as opposed to

the precedence tree, considers scheduling o f activities in batches (as opposed to one at a

time), and it first computes the decision instance before deciding on eligible activities.

Variations to the above procedures include the method o f Extension Alternatives as

proposed by Stinson et al. (1978) and the method o f Block Extensions by Mingozzi et al.

(1998).

Heuristic methods that were initially proposed were priority-rule based, and had (still do)

advantage o f being intuitive, easily implementable and o f affordable computational effort.

Recent heuristics, however, in order to improve the objective, are shifting more towards

local constraint based analysis, truncated branch-and bound, and integer programming

heuristics (Brucker et al., 1999).

16

When a project manager is in control o f being able to vary a project duration according to

how much penalty he o r she is willing to pay for, we have a so-called time-cost trade off

problem. In effect, this type of problems are a part o f multiobjective set up with distinct

budget and deadline problems merged together. In general, it is desirable to solve a

multiobjective problem for all possible scenarios o f costs and deadlines, before making a

decision.

Fulkerson (1961) and Kelly (1961) proposed an activity on arc network and algorithm

which iteratively calculates a project cost curve, by a maximum flow computation which

takes the capacities as the slopes o f linear cost functions o f critical activities. Although

many improvements to this procedure have been proposed by today, the currently most

promising algorithms stilly rely on dynamic programming. Some o f the alternative

approaches have been proposed by Bein et al. (1992) and Demeulemeester et al. (1996).

In multi-mode cases, each activity may be executed in one o f several modes. The number

of different durations o f a single activity that depend on the number o f resource units

assigned to that activity will define the number of modes. There are exact and heuristic

procedures to approach problems o f this sort. The exact algorithms are extensions of

single mode algorithms, such as the precedence tree which was adapted to a multi-mode

case by Sprecher and Drexl (1998). Modifications to delay alternatives method to

accommodate for mutli-modality were also proposed by Sprecher (1997).

17

Heuristic procedures have also been proposed for solving multi-mode scheduling

problems. Some o f the methods are documented in Drexl (1991), and Slowinski et al.

(1994).

In 1998, Herroellen et al. published another survey o f resource constrained project

scheduling techniques. Their emphasis was on depth-first branch-and-bound procedure

for preemptive resource-constrained scheduling models with generalized precedence

relations, and models that maximize the net present value o f projects.

Some o f the more significant papers and works on resource-constrained project

scheduling are discussed next.

2.4 Resource Constrained Project Scheduling

Ulusoy and Ozdamar (1989) conducted a study in which they investigated the influence

o f actual project networics and/or resource characteristics on performance o f heuristic

rules. A factorial design was used to classify problem types successfully solved by

particular heuristics. In addition to investigating six previously published heuristics, the

authors also proposed a new heuristic, named Weighted Resource Utilization Ratio And

Precedence (WRUP), defined as:

18

Priority = w{p)niij) + M O Ç

where:

"^(P) - precedence weight

w(r) = resource utilization, [1 - w(p)]

n(ij) = number o f immediate successors o f activity ij (assuming activity on node network)

R(k) = units available of resource type k per period.

Network/resource characteristics investigated in the study were the aspect ratio (the ratio

between the number o f critical and non-critical activities), complexity ratio (the ratio of

the number of activities to the number o f network events), resource utilization factor

which reflects global resource usage on a critical path, and dominant obstruction value as

an indicator of resource shortage. The experiments showed that WRUP heuristic

outperforms three out of six existing techniques, and has additional computational

advantages over the remaining heuristics, mainly in terms of the number o f times a CPM

network needs to be resolved.

Khattab and Choobineh (1991) evaluated several of the existing priority rules and

proposed eight new rules, which they incorporated into a new scheduling heuristic,

referred to as the Search method. Search method solves each scheduling problem eight

times, once for each of the eight proposed priority rules. The method would then

recommend the schedule resulting in the shortest project duration. Due to its hybrid

19

nature, the method produced schedules o f shortest duration the most often. The eight

priority rules used in the search method are:

I.
activity time + time o f all successors

activity resource + resources o f all successors

2. total time o f all successors

3. (activity time + time o f all successors) - (total time ofpredecessors)

4. activity time + time o f all successors

activity time + time o f immediate successors

number o f immediate successors

(time o f immediate successors)/(resources o f immediate successors)
6 . — ----------------------

(activity resource) /(activity time)

7. activity resource

8 .
activity time

activity resources

Although no priority rule above could be successfully used by itself, their combination

did outperform other single rule priority measures investigated at the time.

2 0

Davis et al. (1992) formulated a multiple criteria project scheduling problem with

objectives o f minimizing project completion time as well as minimizing the over

utilization o f resources. The authors introduced a decision support fiamework and the

interactive procedure allowed a decision maker to iteratively observe and evaluate

tradeoffs between different objectives. Although restricted in size of problems it could

handle, the proposed procedure performed better than the existing goal programming

methods, mainly because the interaction between the decision maker was facilitated and

provided a better reflection o f preferences and objectives.

Minciardi et al. (1994) proposed an event driven method and constructed a project

schedule by solving a sequence of successive instances o f the same subproblem. Then,

additional heuristics were employed to generate feasible schedules for subproblem

instances in consideration. This led to a final schedule which determined a set of

decisions for assigning and sequencing o f tasks over available resources. These decisions

were further inputted as constraints in the final timetabling optimization.

Nowicki and Smutnicki (1994) presented an alternative decision support system, but its

implementation involved both so-called soft and hard constraints. Soft constraints could

be violated, and hard constraints were non-violated. The inclusive heuristic then

computed in deterministic time increments the set o f schedulable tasks.

Considering the limitation of daily consiunption o f project resources, Ulusoy and

Ozdamar (1994) proposed a heuristic, referred to as the Local Constraint Based Analysis

2 1

(LCBA). LCBA is a two stage procedure, where the first stage checks whether all

activities have a sufBciently wide time span during which they can be run, and the second

stage employs a set o f rules to prioritize qualifying activities and resolve any existing

resource conflicts.

Boctor (1996) presented a heuristic for non-preemptive project scheduling problem with

renewable resources and multiple execution modes. At each iteration, the proposed

procedure (does not schedule one activity at the time, but rather) evaluated schedulable

combinations o f activities (including activity durations versus the number o f resource

units employed) and selected a combination that maximizes a prespecified objective.

Whenever a feasible schedule existed, the procedure guaranteed its generation. The

heuristic was tested on a set o f 240 randomly generated projects and it outperformed four

o f the previously most acknowledged procedures.

Morse et al. (1996) evaluated resource constrained project networks by applying

combinations o f at least two heuristics that would produce minimum project duration.

The authors selected 10 simple and existing priority rules and applied to the set o f 108

previously generated project network problems. The heuristics used were shortest job

first, first come first served, latest finish time, minimum slack first, minimum early finish,

maximum slack first, longest activity first, ACTIM, ACTRES, and resource over time

(ROT). The project durations were computed by a package network program with

separate subroutines that allocated resources. An additional algorithm was then utilized to

2 2

determine which combination or subset o f the above priority rules would yield the

shortest project duration.

Icmeli-Tukel and Rom (1996) proposed two models for scheduling resource constrained

projects with objectives o f maximizing project quality. The quality was measured by the

amount o f rework required and associated additional cost corresponding to it. The two

models were formulated as mixed integer programming problems except that they

contained additional constraints and variables in the objective function.

One o f the most exploited OR procedures in project scheduling is the application of

branch-and-bound technique. A selection of papers in the area is briefly summarized in

the next section.

2.5 Branch and Bound Applications in Project Scheduling

Drexl (1991) used a branch-and-bound dynamic programming method which

incorporated Monte Carlo method for resolving conflicts between activities that compete

for limited resources. Carraway et al. (1991) extended the notion o f dynamic resource

allocation to multiple interdependent projects. Li and Willis (1992) proposed an iterative

project scheduling, which during the procedure, scheduled a project both forwards and

backwards until the completion time could not be further improved. Initially, a project

was scheduled forward to compute a “forward” schedule. The duration obtained was then

used as a staring point for the backward schedule. The process continued until no further

23

improvement could be achieved. Belhe and Kusiak (1993) applied constrained project

scheduling problem in scheduling o f design activities. However, instead o f resorting to

the traditional branch-and-bound method, the authors s^proached the problem using the

beam search heuristic. This method is similar to branch and bound, except that beam

search heuristically determines the best paths and ignores the rest o f the search space. De

Reyck and Herroelen (1998) incorporated branch-and-bound method for solving resource

constrained project networks with generalized precedence relations. Nazareth et al.

(1999) applied breadth first approach to solving resource constrained networks.

Additional dynamic programming approaches are also found in Elmaghraby (1993) and

Brucker et al. (1999).

2.6 Cost Considerations in Project Scheduling

Many papers address the issue o f minimizing costs in project networks. Wu and Li

(1994) proposed a strategy o f applying the cut set theory o f networks in order to

determine activity sets to be shortened and the maximal shortening time such that the

overall project duration is reduced at minimal costs. The authors first applied the minimal

cut set method to select the set o f activities to be crashed. This was accomplished by first

computing the conventional critical path, then eliminating all non-critical activities, and

finally identifying the minimal flow cut set. After the crashing activity set was identified,

Wu and Li proposed a new application o f cut set parallel network, where they used the

cut set parallel difference method to determine the maximal permitting crashing time.

24

Analyzing instances o f high interest rates and limited capital. Sung and Lim (1994)

considered scheduling resource constrained project networks with availability restrictions

on capital and renewable resources. The authors considered resource-duration

interactions in order to maximize the net present value of a project. Their proposed

heuristic consisted o f two phases. In the first phase, the initial schedule was determined

and its associated net present value. The next phase then attempted to improve the initial

solution by solving all decomposed subproblems.

Demeulemeester (1995) further presented an optimal technique for minimizing resource

availability costs in time constrained project networks. The author perturbed the basic

resource constrained project scheduling problem {RCPSP) which searched for a solution

to the shortest project duration constrained to given project data and resource availability.

The newly defined problem presets the actual project duration and attempts to find a

feasible schedule subject to project data and available constraints. Demeulemeester

(1995) formulated the problem as follows:

subject to:

f i < fj - dj for all (i. y) 6 / f

f = 0

25

f n ^ T

fo r^ = 1 , m and t= \, ...,fn
ieS

The problem as formulated above is referred to as the resource availability cost problem

{RACP). The traditional resource-constrained project scheduling problem {RCPSP)

would not have imposed < T as its constraint, and the objective would be to minimize

fn- The author however, did employ existing techniques for iterative solving RCPSP and

proposed their modification for solving RACP.

Demeulemeester et al. (1996) further presented two algorithms for optimally solving

discrete time/cost trade off problems. The algorithms were based on dynamic

programming, and were implemented with respect to three different objectives: (1)

completing the project as early as possible given the limitations of a single nonrenewable

resource; (2) minimizing resource usage given the constraints on total project duration;

and (3) computing total project time/cost trade off function, given the constraints on both

resources and total project duration.

De Reyck and Herroelen (1997) extended previous ideas and considered scheduling

problems with generalized precedence relations with the objective o f maximizing net

present value. As a solution, the authors explored a depth-first branch-and-bound

algorithm in which the original project networic is represented by nodes in the search tree

which also incorporated additional precedence relations. Resource conflicts were

2 6

approached through the concept o f minimal delaying modes, and rules were employed to

filter out portions o f the search tree.

2.7 Activity Duration Issues in Project Scheduling

The effects o f variable or erroneous activity durations on project networks have also been

addressed in the literature. Sipos (1992) gave a thorough set o f definitions and concepts

behind the analysis o f activity durations in projects. Leachman and Kim (1993) proposed

and developed procedures that compute earliest and latest intensity curves of dependent

activities for correct modeling o f variable duration activities and generalized precedence

relations. Yang (1996) identified uncertainties in projects as difficulties in estimation o f

work contents o f activities, unexpected wear conditions and delays, need for rework,

delivery failures and absenteeism. The author then formulated a research study to

examine the effects o f erroneous estimation o f activity durations in three project

environments, depending on the strength o f the precedence relations, level o f resource

availability, and magnitude o f errors in estimating activity durations. Yang also quotes

the statistics that by the time o f middle 1980’s many companies used less than 10% o f the

advanced features available in their project management software, and out of 35 project

management software packages available by 1986, only two were found capable o f

automatically generating feasible project schedules.

27

2.8 Resource Leveling and Balancing in Project Networks

Probably the two most important elements o f any type of project, regardless of its scope

and area, are the proper planning and the amount and availability o f resources necessary

for its completion. Thus, one o f the most popular approaches to efficient resource

handling and cost reduction is the reduction in variability o f resource usage. High

fluctuations in resource loading and frequent hiring and firing o f employees traditionally

reduces short term project feasibility. Many overhead costs, such as administrative

procedures and training periods occur when hiring resources which may not get a proper

chance and time to generate pay-off revenues if being fired not long enough after being

initially contracted. Finally, a management practicing a frequent "hire-fire" policy might

not be able to attract as much o f high quality resources (Seibert and Evans, 1991).

Resource leveling and allocation have been the focus o f project management studies for

almost four decades now. A pioneering work in this area has been presented by Burgess

and Killebrew in 1962 who proposed and implemented a heuristic that minimizes the sum

of squares o f activity levels. Later, a model that enumerated all possible solutions and

found an optimum was presented by Ahuja in 1976. An obvious problem with this

approach was that as the number o f non-critical activities increased, the combinatorics o f

the problem became too complex. For example, a simple project o f only 15 non-critical

activities, each having a slack o f only 10 time units would have exactly 10'* possible

combinations! More lately. Basa (1989) formulated an integer LP which guaranteed

optimal solution but only for small to medium sized projects. In his work, the objective

28

was to minimize absolute deviations between resource requirements and desired

rectangular loading level.

Seibert and Evans (1991) considered several serial methods for time constrained resource

leveling. Serial methods rank activities based on some user defined rules and then

attempt to schedule them within the allowed resource constraints. I f that is not possible,

the methods do exceed the constraints (since the overall project duration is held fixed),

but as uniformly as possible. They also propose a simple measure o f how successful a

particular resource leveling is, by defining a utilization factor as a ratio o f resource usage

level versus initial (unleveled) loading.

As a follow up on the above two articles, Bandelloni et al. (1994) proposed a resource

leveling technique based on non-serial dynamic programming modeling. Although not

completely relying on full enumeration, this method is also limited to small or medium

sized project networks.

Recently, another application of integer LP formulation in resource leveling for linear

schedules was developed by Matilla and Abraham (1998). Linear projects (fi-equently

arising in construction) contain repetitive activities which need to be performed on

several different locations. Thus, a proper distribution and work continuity o f resources

must be obtained. Konstantinidis (1998) further proposed a model that would balance

resource loading graphs for nonrenewable, renewable, and doubly constrained resources

by eliminating as many interruption periods and costs band shifting activities between

29

their earliest start and latest completion times. Renewable resources are limited per

period, but are becoming again available each new period. Nonrenewable resources have

a fixed number o f units allocated for the entire project. Doubly constrained resources are

constrained with respect to both per period and per total project basis.

2.9 Resource Preferences and Discrimination of Resource Units in Scheduling

Literature also presents work on scheduling projects by accounting for worker (resource)

preferences, qualifications, and skills, as decisive factors to their allocation. Roberts

(1992) argued that information sources for project planners and schedulers are

increasingly nonhuman, and stressed that planners must keep computerized tools for

project management and scheduling in line and perspective with human resources used by

projects. In other words, the author warns that too much technicalities may prompt and

mislead the managers into ignoring human aspects o f management.

Franz and Miller (1992) considered a problem o f scheduling medical residents to

rotations, and approached it as a large scale multi-period staff assignment problem. The

objective o f the problem was to maximize the residents’ schedule preferences while

meeting the hospital’s training goals and contractual commitments for staffing assistance

(Franz and Miller, 1992). Thus, each resident’s schedule is different depending on

particular interests and departmental requirements. The authors formulated a problem as

a zero-one integer problem with a linear objective function indicating the preference

weight o f a doctor i being assigned to rotation j during month k. The constraints were

30

the following: there must be a specific number o f residents assigned to rotation j each

month kr, each resident must serve a certain number o f months in rotation y; all residents

must be assigned one rotation each month; and certain residents must serve in pairs. To

solve the problem, the authors proposed a decision support system built around the above

linear programming model. However, the solution was found by a continuous LP, after

which it was rounded to binary integers using a heuristic developed by the authors. The

heuristic measured the ‘̂ tightness” o f each constraint set, and used it to calculate the so-

called rounding indicator ratio which indicated the direction towards which the variables

were to be rounded.

Gray et al. (1993) discussed the development of an expert system to schedule nurses

according to their scheduling preferences. Assuming consistency in nurses’ preferences,

an expert system was proposed and implemented to produce feasible schedules

considering nurses’ preferences, but also accounting for overtime needs, desirable

staffing levels, patient acuity, etc. The effort was driven by a previous study which

revealed that creating a 12-week schedule for 16 nurses may take up to 40 hours of a

human manual scheduling time (Kostreva and Genevier, 1989). In addition, scheduling

satisfaction was found to be one of eight most important measures o f overall job

satisfaction (Mueller and McCloskey, 1990).

A more specific problem was addressed by Yura (1994), where the objective was to

satisfy worker’s preferences for time off as well as overtime, but under due date

constraints. The author broke down the problem into two subproblems. One was a

31

relaxed version where the objective is to satisfy woricer’s preferences for days off, but it

excluded any overtime, while the second attempted to minimize the total overtime while

trying to satisfy worker’s preferences for days off. Both problems were formulated as

linear goal programming problems. The first one assumed that the overtime is

undesirable for employers, while the second one extended the idea by including the

overtime and was applied in cases o f heavy work loads.

Badri et al. (1998) also utilized advantages o f goal programming, but used it to formulate

a multiobjective problem to account for faculty preferences in university course

scheduling. The model provides a one-stage assignment using a zero-one goal

programming model, which was an improvement over the previously proposed model by

Badri (1996) that consisted o f two stages (first one assigned faculty to courses at the

departmental level, the second one distributed these combinations to available time slots).

The model proposed by Badri et al. (1998), not only produced solutions in one stage, but

also attempted to accommodate for faculty preferences to teach certain courses and

during certain time intervals. The data structure was presented in the form of a matrix

with rows indicating course priorities, and entries with priorities for specific time blocks.

The constraints were classified into seven categories: a set o f goals to ensure that all

required courses were offered; available teaching loads for each instructor; limitations in

classroom availability; faculty preferences for courses; limiting one o f the preferences per

combination; and ensuring that an instructor was assigned to only one course per time

block. The model was successfully ^ p lie d to course scheduling at the United Arab

32

Emirates University, and solved a problem o f 252 decision variables, 66 goal constraints,

and 167 system constraints.

Campbell (1999) further considered allocation o f cross-trained resources in

multidepartment service environment. Employers generally value more resource units

with various skills and capabilities for performing greater number o f jobs. It is in those

cases when managers face challenges o f allocating these workers such that the utility of

the assignment o f woikers to a department is maximized. The author used factional

values, cid to describe capabilities o f each worker i to woric in department d. In other

words, a cid was set to one if a worker i is fully qualified to work in the department d, or

zero if the worker cannot work in the department d at all, and a fractional value between

zero and one if the worker can be assigned to a department, but he or she is not fully

qualified for the tasks involved. A binary value then indicated whether a worker was

assigned to a department or not. The author also defined a sum of capability values of

workers assigned to work in department d as:

/

1=1

The utility o f assigning workers to a department d was then simply a function o f cod, i s.,

D

^d(<^d)- The overall objective was to maximize U = ^ u ^ ic o j) , subject to constraints
d»\

that each woiker must be assigned to a single department as well as that all x fd ’s must be

zeros or ones. The results of experiments showed that the benefits of cross-training

33

utilization may be significant. In most cases only a small degree of cross-training

captured the most benefits, and tests also showed that beyond a certain amount, the

additional cross-training adds little additional benefits.

34

m . RESEARCH BACKGROUND

The literature survey in the previous chapter showed an obvious need for a tool that

would effectively schedule, track, and control resource allocation to projects, but from the

perspectives o f resource units themselves. Badiru (1993) proposed Critical Resource

Diagramming {CRD) which is a simple extension to traditional CPM graphs. In other

words, criticalities in project activities may also be reflected on resources. Different

resource types or units may vary in skills, supply, or be very expensive. This

discrimination in resource importance should be accounted for when carrying out their

allocation in scheduling activities.

Unlike activity networks, CRD 's use nodes to represent each resource units. Also, unlike

activities, a resource unit may appear more than once in a CRD network, specifying all

different tasks for which a particular unit is assigned to. Similar to CPM, the same

backward and forward computations may be performed to CRD ’s. Figure 1 illustrates

some o f the CRD properties and features. Notice that resource unit 1 and resource unit 4

appear twice in the graph, meaning that they work on more than one project activity.

Thus, the actual interpretation o f any computations may be different than that of a

conventional CPM netwoik. Since units I and 4 worked on two different activities each,

that could also imply that the units may have been cross-trained to perform a variety of

tasks. ^

35

Figure 1. CRD Network Analysis (Badiru, 1993).

Critical resource path in Figure 1 is indicated by bolded arrows. Resource units on the

critical path bave no slack time left for performing tbeir jobs, and tbeir delay would delay

the whole project. Badiru (1993) proposed several node classifications for analysis of

CRD 's: a node at which more than one arrow merges is defined as a bottleneck node; a

node whose task depends on the task(s) o f its immediate predecessors is defined as a

dependent node; should such a node he on the critical path, it is referred to as the

critically dependent node; a node firom which more than one arrow points out is defined

as a burst node. Obviously, delaying burst nodes increases chances of delaying the whole

project. RES 3 serves as an example o f a bottleneck resource node. RES 6 is an example

o f a critically dependent node.

36

Figure 2. Resource Schedule Chart Based on Earliest Start Times (Modified from

Badiru, 1993).

Badiru (1993) further defined a resource scheduling chart as shown in Figure 2. Each

resource unit is represented by a horizontal bar, with a dark region indicating the interval

o f a resource unit’s work. Badiru (1993) distinguished the above graph from a

conventional Gantt chart, in a sense that resource units do not have slack times since they

are assumed to be engaged throughout the project. In addition, it is pointed out that two

tasks for resource unit 1 have jobs which overlap for a four time unit period. On the other

hand, the two tasks for resource unit 4 are six time units “away” from each other. This

could be an indication that resource unit four might end up being idle for a period of time.

37

In a sense, resource scheduling chart increases the resolution o f resource loading graphs,

such that it enables jobs and tasks o f each particular resource unit to be monitored and

recorded.

CRD 's are a simple extension and a complementary tool to the traditional CPM graphs,

that enhance the information on resource conflicts, and provide alternative insights into

resource distribution to jobs, project tracking and control. However, the model as

presented by Badiru (1993) and illustrated in Figures 1 and 2 is easily implementable

only in cases when resource units are pre-determined to work on specific activities only.

In any other case, when resource units are cross-trained or with varying qualifications, it

is very hard to define the precedence relationships as illustrated in Figure 1. Due to the

combinatorial nature o f the problem, the model in Figure 1 is hard to reconstruct when

scheduling resource units without prior knowledge o f their exact assignments.

Consider an example as partially adopted from Badiru and Pulat (1995), where a project

data is presented with only seven activities and two resource types. There are 10 total

resource units o f type one units and 15 units o f type two available for the project. The

activity precedence relations and resource requirements are given in Table 1.

38

Table 1. Example Project Data.

Resource Types
Activity Predecessor Type 1 Type 2

A - 3 0
B - 5 4
C - 4 1
D A 2 0
E C 4 3
F A 2 7
G b . d . e 6 2

Assuming that resource units o f both types are expected to perform differently if assigned

to different activities, we cannot presume the duration of any activity before we actually

decide which particular units o f each type will be assigned to it. In the most complex

case, a project manager or analyst would have a table of size (10+lS)x7 with its entries

representing preferences, costs, or time each resource unit would need to complete any of

the seven activities. Having the project in a form as presented above, the construction of

a CRD similar to the one in Figure 1 would be an enormous task.

Once each o f the 25 resource units (10 units o f type one and 15 o f type two) are given

specific assignments as to which activities each of them is going to carry out, a

modification o f the original CRD may be graphed as shown in Figure 3.

39

1.7

s Start
u

Finish

|̂ r .r .r^ r.r.«

ecï) w
.̂r.Y.r.r.r.r.r.KKr.r.r.7ff w.r.y.rXr.y.r.y.r.r.r.r.r.';

Figure 3. Modified Critical Resource Diagram.

The square nodes in Figure 3 represent activities, while the circles inside each activity

block illustrate particular resource units that are assigned to each activity. Activities on

the critical path are illustrated by the reinforced block boundaries. This implies that all

resource units assigned to activity G (i.e., circular nodes with a subscript G) are critically

dependent resource units (since they are all inside a block activity on a critical resource

path at which more than one arrow merges). In addition, notice that each of the resource

units assigned to activity G are also assigned to one of its immediate predecessors. In

other words, units 1, 6, 7, and 10 o f type one and unit 15 o f type two are also assigned to

activity £ , while the units 2 and 5 of type one and unit 1 o f type two are also selected to

work on activity B. Both activities, B and £ are the immediate predecessors o f activity G.

40

In addition, activity B is also on a resource constrained critical path. Thus, to avoid any

resource idleness and depressions in resource utilization graph, activity E should be well

planned and completed at about the same time as activity B.

Consistently with the definitions by Badiru (1993), resource units working on activity A

are all referred to as the burst units, since activity A precedes more than one other

activity. Thus, these resource units bear somewhat greater responsibility for completing

their tasks on time in order to avoid delays in total project duration.

3.1 Problem Statement

The objective of this research is the development o f a generic project scheduling model

capable of both effective and efficient mapping o f multi-capable resource units to project

activities. Besides resource-activity mapping, the model must also be able to incorporate

a project manager’s tacit or discretionary knowledge which is provided ex ante and may

involve variables exogenous to the project itself. This is facilitated through a pre

specified utility function which may be held constant during project scheduling or

allowed to vary across project parameters such as time, activity, resource type, and/or

resource characteristics (capabilities, preferences, cost, availability). The model

performing the above functions has been developed and implemented in a software

prototype.

41

The following chapter presents a model which facilitates an easier construction of

networks as shown in Figure 3. The methodology consists o f an activity scheduler which

prioritizes activities, and a resource mapper which assigns the most adequate resource

units to each o f the newly scheduled project activities. The actual implementation o f the

model presented in the methodology is discussed in the appendices. Figure B18 from

Appendix B is an example o f one o f the outputs provided by the developed software

prototype. The particular so-called resource-activity grid in Figure B18 conveys the

same type o f information as the CRD shown in Figure 3.

42

rv. METHODOLOGY

The methodology o f this research represents an analytical extension o f CRD discussed in

the preceding chapter. As previously mentioned, the design considerations o f the

proposed model consist o f two distinct procedures: activity scheduling and resource

mapping. At each decision instance during a scheduling process, the activity scheduler

prioritizes and schedules some or all candidate activities, and then the resource mapper

iteratively assigns the most adequate resource units to each o f the newly scheduled

activities. Since the actual modeling o f the resource mapper represents a true kernel of

this research, it will be discussed first.

4.1 Project Resource Mapper'. Classification, Representation and

Interdependencies among Project Resources and their Mapping to Project Activities

Project resources are generally categorized into groups or types according to their

similarities and functionality. Dreger (1992) discusses five main types o f resources:

capital, personnel, plant and equipment, materials and supplies, and space. Slowinski

(1981) further considers classification o f resources into renewable and non-renewable.

Personnel, equipment and space are typically regarded as renewable since they can be re

engaged as soon as activities that are currently employing them are completed. Capital

and, in many cases, materials and supplies are regarded as non-renewable since they are

usually available in fixed amounts for the total project.

43

The methodology in this research is primarily focused on renewable resources. In

addition, resources are not necessarily or solely categorized into types or groups

according to their similarities (i.e., into personnel, equipment, space, etc.), but more

according to hierarchy o f their interdependencies. In other words, we assume that time-

effective capabilities, preferences, or even cost o f any particular resource unit assigned to

work on an activity may be dependent on other resource units also assigned to work on

the same activity. Some or all o f these other resource units may, in the similar fashion,

be also dependent on a third group o f resources, and so on. Based on the above

assumptions, we model competency o f project resources in terms o f following four

resource characteristics; time-effective capabilities, preferences, cost, and availability.

Time-effective capability of a resource unit with respect to a particular activity is the

amount o f time the unit needs to complete its own task if assigned to that particular

activity. Preferences are relative numerical weights that indicate personnel’s degree of

desire to be assigned to an activity, or manager’s perception on assigning certain units to

particular activities. Similarly, each resource unit may have different costs associated

with it relative to which activities it gets assigned to. Finally, not all resource units may

be available to some or all activities at all times during project execution. Thus, times

during which a particular unit is available to some or all activities are also incorporated

into the mapping methodology. Each o f the characteristics described may vary across

different project activities. In addition, some or all o f these characteristics (especially

time-effective capabilities and preferences) may also vary within a particular activity

44

relative to resource interaction with other resources that are also assigned to wodc on the

same activity.

In this research, resources whose performance is totally independent o f their interaction

with other units are grouped together and referred to as the type or group “one” and

allocated first to scheduled activities. Resource units whose performance or competency

is affected by their interaction with the type or group “one” units are grouped into type or

group “two” and aassigned (mapped) next. Resource units whose competency or

performance is a function o f type “two” or both types “one” and “two” are grouped into

type “three” and allocated to scheduled activities after the units of the first two types have

been assigned to them.

As previously indicated, these resource characteristics and interdependencies enable

modeling o f personnel’s voice and/or manager’s apriori knowledge and propensity of

available resources. Prior to any assignment o f resources to project activities, a manager

may specify a utility or objective function that incorporates some or all o f the above

characteristics. Then, throughout the process o f scheduling project activities, the model

will attempt to map specific resource units to each newly scheduled activity such that the

pre-specified utility or objective function is maximized. An example of a realistic utility

function would be manager’s desire to maximize personnel’s preferences while still

keeping the costs and project completion time as low as possible. Furthermore, this

utility function may be more accented or discriminatory towards one or more resource

types. For example, a manager may wish to maximize time-effective capabilities for all

45

resource groups in order to reduce project total time, but m inim ize cost o f only contract

workers which have been classified as resource type “three”. This type o f utility fimction

would contain a component which would be nonzero only when units o f resource type

three are m ^p ed to newly scheduled activities.

Besides a possibility o f being resource type-specific, a utility or objective function may

also vary with time. For example, in the beginning o f a project, a manager’s objective

may consist primarily o f cost and personnel preferences. In the later stages o f the project,

however, timely project completion may become the most important factor. To facilitate

for this, a window fimction is used to filter out temporarily irrelevant additive

components o f the utility function and hold them at zero.

The modeling o f the above resource characteristics is discussed in the following sections.

4.1.1 Modeling o f Resource Characteristics and their Interdependencies

After candidate activities at each scheduling decision instance have been scheduled, we

proceed to map available resource units to them such that a pre-specified utility or

objective function is locally optimized. This utility function may consist o f only one o f

the four resource characteristics (i.e., time-effective capabilities, preferences, costs, and

availability), but is usually a blend o f two or more o f them.

46

As previously discussed, all resources are grouped into types (or categories), not

necessarily or solely according to their similarities as traditionally done, but rather

according to certain interdependencies that may exist among some or all resource

characteristics. Those resource units whose characteristics are either constant or varied,

but only across different activities are grouped into type “one”. Resource units belonging

to higher indexed types may have their characteristics depend on units belonging to lower

indexed types. In this study, resources whose characteristics are independent o f their

interaction with other units and vary only across activities are referred to as the drivers.

Resources of higher indexed types whose characteristics do vary not only across different

activities, but also within a single activity relative to their interaction with the drivers, are

referred to as the dependents. Notice that a particular resource unit may at the same time

be a driver to the units grouped in higher indexed types and be a dependent on those units

grouped in the lower indexed types. It should be also noted that no interdependencies

may exist among the resource units o f the same type or group. Should that occur, the

particular resource type should be split such that the dependent units are placed into a

new subtype of higher index. All resource characteristics and interdependencies relevant

to the pre-specified utility fimction must be evaluated before any units are assigned to any

o f the newly scheduled activities at each decision instance.

The most commonly used variables in this study are defined as follows:

i = project activity i, such that /= 1, . . ., /

47

/ s number o f activities in project network.

tc = decision instance, i.e., time moment at which one or more activities qualify to be

scheduled since their predecessor activities have been completed.

PR[fy = Set o f predecessor activities o f activity i.

0{tc) = Set o f activities qualifying to be scheduled at tc, i.e., Q(tc) = {f| PRiO = 0 } .

j ~ resource typey, J = I,

J = number o f resource types involved in the project.

Rj = number o f units of resource type j available for the project.

<j,k> s notation for A:-th unit o f type J.

PI = number o f resource units type j required by activity /.

u j f = a binary variable with a value o f one if Ar-th unit o f type j is engaged in one of the

project activities that are in progress at the decision instance tc, and zero otherwise. All

u]* ’s are initially set to zero.

//•* s time-effective executive capability o f unit of resource type j if assigned to

work on activity i.

pj'^ = preference of k-th unit o f resource type j to work on activity i.

c/* = estimated cost of k-th unit o f resource type j if assigned to work on activity /.

ûf/'*(^c) = desired start time or interval availability of k-th unit o f type j to work on

activity i at the decision instance tc- In many cases this parameter is invariant across

activities, and the subscript / may often be dropped.

48

The last four variables above represent resource characteristics which, when evaluated,

play decisive role in determining which units should be ms^ped to which project

activities. A project manager may consider one, more than one, or all o f the four

characteristics when performing activity-resource m oping . For example, a manager may

wish to keep project costs as low as possible, while at the same time attempting to use

resources with the best time-effective capabilities, consider their availability, and even

incorporate their voice (in case o f humans) or his/her own perception (in cases o f human

or non-human resources) in the form o f preferences. This particular case would require

the manager to come up with a general mapping utility function which will reflect the

trade-offs between these resource characteristics as objectives for each resource unit.

Mapping objective for each unit with respect to each activity is simply then a function of

temporal capabilities, costs, preferences, and temporal availability, represented as

follows:

‘M/* = / (r /* ,c /* , /7 / ‘ ,«/•*(/,))

In simpler cases when the information is, for example, available only on time-effective

capabilities and costs, while the preferences are either not available or neglected, and

assuming no restrictions on resource temporal availabilities, the mapping objective for

each resource unit with respect to an activity is then a function:

‘U/* = / (r / * , c / ‘)

49

In general terms, a manager’s goal is always to maximize his or her utility function. It

should then be noted that the particular utility function above will only be maximized

when /(//■* is o f such form that both costs and resource task times are minimized.

An example o f a simple utility which is represented by minimizing resource costs only

would be:

At each scheduling time instance, tc, available resource units are mapped to newly

scheduled activities. This is accomplished by solving J number o f zero-one linear integer

problems (i.e., one for each resource type), where the coefficients o f the decision vector

correspond to evaluated utility or objective function for each unit o f the currently mapped

resource type:

max ^ 'y i* fory = l , . . . ,y
*=I

where:

y I* = binary variable o f the decision vector.

Q(f^) = set o f newly scheduled activities at decision instance Iq-

50

A yf* resulting in a value of one would mean that Ar-th unit o f resource type j is mapped

to /-th (/efi(rc)) newly scheduled activity at tc- The above objective in each o f 7 number

o f problems is subjected to four types of constraints, as illustrated below.

I) The first type o f constraints ensure that each newly scheduled activity receives its

required number o f units o f each project resource type:

2 W"* = Pi for (e Q(/c) fory = I,..., J
*=i

n) The second type o f constraints prevent mapping o f any resource units to more than

one activity at the same time at tc'.

for A:= I, fbry = 1, . . . , J
î nuc)

m) The third type o f constraints prevent mapping o f those resource units that are

currently in use by activities in progress at time tc'.

• y /’* = 0 for i e Q(tc) forJ = l , . . . ^ J
*=i

51

IV) The fourth type o f constraints ensures that the variables in the decision vector y/"*

take on binary values:

= 0 or 1 fo rÂ: = 1 , . . Rj, i e Q(/c), for

Therefore, in the first o f the total o f J runs at each decision instance tc, available units o f

resource type “one” compete (based on their characteristics and pre-specified utility

function) for their assignments to newly scheduled activities. In the second run,

resources o f type “two” compete for their assignments. Some o f their characteristics,

however, may vary depending on the “winners” fi’om the first run. Thus, the information

fi"om the first run is used to refine the mapping o f type or group “two” resources.

Furthermore, the information fi'om either or both o f the first two runs is then used in

tuning the coefficients o f the objective function for the third run when resources o f type

“three” are mapped. Mapping o f the /-th type o f resources may be affected by the

outcome o f any o f the previous J-\ runs. Since there may be up to I number of such

instances (if at each decision instance, only one candidate activity is scheduled), the total

of / X y mapping binary integer problems may have to be solved for a project. This is in

addition to up to / problems necessary to concurrently schedule candidate activities by the

activity scheduler (see Section 4.2).

It should be noted again that this model may only support interactive dependencies

between units o f different resource types. Thus, dependent units must be in higher

52

indexed types, since their dependencies may be evaluated and incorporated into a utility

function only after their drivers (units in the lower indexed types or groups) have been

mapped. This is necessary in order to eliminate any non-linearites in the model. Should

a manager discover any interdependencies among resource units o f the same type, the

type must be split in a manner that sub-dependents are regrouped into a higher indexed

subtype and all other higher indexed types shifted accordingly.

The solution to the above zero-one integer formulation is found using the Balas algorithm

(Rao, 1983), which takes advantage o f the special structure o f zero-one problems to

generate optimal solutions more efficiently. Although the procedure still relies on

enumeration, it pursues a smart ^p roach to explicitly enumerate only a few solutions

explicitly, while the others are either automatically enumerated implicitly or the problem

proves infeasible. Balas subroutine used in this research is from the Tomlab toolbox at

http://www.ima.mdh.se/tom/

The algorithm starts by converting a general form of an LP zero-one problem to a more

standardized form, by forcing the objective function to be minimizing (i.e., changing its

sign, if it is a maximizing one), replacing all equality constraints by two inequality ones

o f opposite types, multiplying all inequalities o f type "Z" by negative one to convert them

to the form of the type, perturbing the decision variables from x/ to (1-x/) when the

corresponding coefficients are negative in the objective vector, and finally introducing an

/M-component nonnegative slack vector Y. The problem then becomes:

53

http://www.ima.mdh.se/tom/

m inf(X) = C^X

s.t.

A X + Y = B

Xi = 0 or I

Y > 0

The algorithm starts with an initial partial solution with all free variables set to zero. A

partial solution is defined as the one with some (but not all) o f the n variables o f the

decision vector being assigned a value o f one or zero. The variables not included in a

partial solution are referred to as the free variables. If each o f the free variables o f a

partial solution are assigned values, the partial solution becomes complete. An integer

problem with two or three binary variables may easily be enumerated explicitly to find an

optimal solution. Problem with more than three variables, however, would require an

explicit enumeration o f 2^ solutions. Balas method (Rao, 1983), starting with an initial

partial solution, tries to assign binary values to one free variable at a time and generate a

new series of partial solutions. When a completion of a partial solution gives a feasible

solution o f objective function smaller than the current best solution, or when a

completion of a partial solution that will improve the infeasibility in the current solution

cannot be found, then the current partial solution is fathomed. Once a partial solution is

fathomed, all o f its completions are also implicitly enumerated and can be discarded from

future iterations. Thus, as soon as a new partial solution is generated, the algorithm

54

attempts to fathom it, and proceeds to generate a new partial solution using the so-called

backtracking procedure, which simply refers to replacing one of the variables in the

current partial solution (which is fathomed) with its complement to generate a new partial

solution. The complete details o f the algorithm are provided in full by Rao (1983).

The utility or objective function was previously introduced as common for all resource

types and throughout the entire project duration. In some instances, however, a manager

may wish to map resources according to a utility that varies with time. For example, she

or he may place a greater emphasis on preferences in the early stages, and timely project

completion in the later stages o f a schedule. Similarly, some resource types are more

expensive than others. This may require a manager to pay a particular attention to cost in

mapping some resource type(s), and worry only about time-effective capabilities for all

other resource types. A combination, where a utility may vary with respect to both time

and different resource types is also possible. More detailed modeling and illustration of

varying utility functions is discussed in the next section.

4.1.2 Dynamic and Resource Type-Specific Varying of Mapping Utility Function

Mapping units o f all resource types according to the same utility function or objective

may often be impractical and unrealistic. Cost issues may be o f greater importance in

mapping some, while inferior to time-effective capabilities o f other resource types. If a

utility function is fixed for all resource types, mapping may eventually produce undesired

55

assignments and results. Therefore, to accommodate the need for a resource-specific

utility function as mapping objective, we may formulate the utility function as additive

(Keeney and Raififa, 1992). In such a case, each o f its components pertains to a particular

resource type and is multiplied by a Kronecker’s delta function (Bracewell, 1978).

Kronecker’s delta then detects resource type whose units are currently being mapped and

filters out all utility function components, except the one that pertains to the currently

mapped resource type. Kronecker’s delta is represented as:

5(/'. s) =
1 i f J = s

0 i f J * s

One o f the most general forms that a resource-type driven utility function may take is

then as follows:

M /■* = / , W-*. c / ‘ a/-* (r.)) + 2; c/-*, p/-*, a " (r, » • ̂ O',
sgS

where:

f^ = Component o f the utility that is common to all resource types.

f = Component o f the utility that pertains to a specific resource type.

vS = Set of resource types whose mapping requires a specific utility.

56

As an example, consider again a case where all resource types would be mapped

according to their time-effective capabilities, except in the case o f resource types “two”

and “three” where costs would also be o f consideration, and in the case o f type “five”,

resource preferences and availabilities would be considered:

u{* = /« /• *) + h (fi*) ■ SQ.2) + f , (c/'*) • JO ,3) + / , (pi* ,aj* (t,)) ■ S (J^)

The above example illustrates a case where mapping o f resource units is performed

according to filtered portions of a manager’s utility function, according to grouping of

resources into types. Similarly, a utility function may be dynamically adaptive and

varying with project scheduling time. As previously indicated, some resource

characteristics may be o f greater importance to a manager in the early scheduling stages

o f a project rather than in the later stages. Such a utility function may be modeled as

follows:

where:

= Component o f the utility that is common to all resource types.

= Component o f the utility that pertains to a specific project scheduling interval.

57

= Specific time interval during which resource mapping must be performed

according to a unique function.

^ = Set o f above defined time intervals for a particular project.

= Window function with a value of one if tc falls within the interval

[tio >)« and zero otherwise:

1 i f t l o ^ i c < t H ,

0 otherwise

As an example, consider a case where resource mapping in the early project stages is

performed considering time-effective capabilities, costs, as well as their activity

preferences. However, as the scheduling progresses, a manager’s objective may shift

largely towards timely completion o f the project, rather than worrying as much about

costs, and especially preferences. In that case, the only important characteristic left to be

considered would be time-effective capabilities. The overall utility then may be modeled

as follows:

•tt/* = /(,/•*) + /(c/-*,/»/-*) • w(0,30,r,)

or alternatively, depending on a manager’s actual objective:

58

^ /■* = / (c / * , /»/•*, ti*) • Vt<0,30, f,) + / (f / ‘). h<30,90, t,)

where [0,30) and [30,90) are examples o f the time ranges.

Finally, it is also possible to map different resource types according to different

objectives and at different times simultaneously, by simply combining the two concepts

above. For example, assume again that a manager forms his objective in the early stage

of the project based on resources’ temporal capabilities, costs, and preferences. In the

later stage, the manager drops the costs and preferences and considers only resource

capabilities, with the exception o f resource type “three” whose costs should still remain in

consideration for mapping. An example o f a utility that would account for this scenario

may be as follows:

= / (c / * , p j*) • w(0,30.rj + (/(//•*) + / (c / ‘) • h<30,90,/,)

As previously stated, the actual resource characteristics, that is, time-effective

capabilities, costs, preferences, and resource availability may also be invariant for each

resource unit regardless of its interaction with other units on a particular activity. On the

other hand, some o f the characteristics may largely vary relative to resource interaction

59

with units o f lower indexed resource types. Modeling resource characteristics and their

interactive dependencies for each are discussed in the following sections.

4.1.3 Time Effective Capabilities and Interdependencies

For resource units whose performance on a particular activity is independent o f their

interaction with other units, that is, for the drivers, tj* is defined as the time it takes

unit of type j to complete its own task or process when working on activity i. Thus,

different resource units, if multi-capable, can be expected to perform differently on

different activities. Each dependent unit, on the other hand, instead of tj* , generally has

a set of interdependency functions associated with it. Each function describes unit’s

interactive dependency on a particular driver for a particular activity. Thus, the maximum

possible number o f dependency functions o f any dependent resource unit equals the

number o f activities times the total number o f driver units for each activity.

Although time-effective interactive dependencies among resources may be expressed in

various forms, in this research we pay a particular attention to two forms, which due to

their simplicity, are expected to be the most commonly used ones: additive and

percentual interactive resource dependencies. Additive interaction between a dependent

and each o f its driver resource unit indicates the amount o f time that the dependent will

need to complete its own task if assigned to work in conjunction with a particular driver.

6 0

This is in addition to the time the driver itself needs to spend working on the same

activity:

where:

G , where is a set of driver units (each defined by an indexed pair

< J d » for a particular resource unit <j. k>.

(̂ / ’*)z = z-th interactive time-effective dependency of t-th unit o f type j on its driver

z = 1, size(D^’*). The actual number o f these dependencies will

depend on a manager’s knowledge and familiarity with his/hers resources.

s time needed in addition to for A-th dependent unit o f type j to complete its

task on activity / if it interacts with its driver unit .

yjD^D = binary (zero-one) variable indicating mapping status o f the driver unit

< It equals one if the unit < JDfkp> is assigned to activity i, and zero if

the unit < j p , ku> has been assigned to activity i. Therefore, each (T / ’*)z will

have a nonzero value only if is also nonzero (i.e., if the driver resource unit

< Jp , kp > has been previously assigned to activity i).

61

The percentual interactive dependency is similarly defined as:

(T /•*)z = •(!+ %)■

where t /* % is the percentage o f time by which will be prolonged if the unit k o f

type j interacts with its driver < y ̂ >

It should be noted that other interactive dependencies, besides additive and percentual,

are also possible and have been investigated in software implementation o f the

methodology. For instance, dynamic dependencies, where values o f T / * vary with time

are possible with an example model as follows:

+ r,)- + h)' W""*''

where:

^^Loy^Hjy^c) = Window function with a value o f one if fall within the interval

[), and zero otherwise, as discussed in the previous section.

6 2

This dynamic representation o f resource capabilities is especially useful in modeling the

effects o f learning and forgetting in project scheduling and resource allocation.

Not all units o f a dependent resource type need to have defined dependencies. Some

units may simply have fixed //•*. If neither //■* nor any dependency functions are

provided for a particular resource unit <j, k>, then the //•* o f the unit is set to infinity and

the unit will not be assigned to activity /. As previously mentioned, the actual number of

interactive dependencies for a given resource unit generally depends on a manager’s

experience with the particular unit, and his/her knowledge o f its interactions on previous

projects. When the number o f interactive dependencies o f a resource unit is nonzero, we

need to evaluate all of the dependencies and take their maximum for f/"* :

(/■* = max (W) . }

The actual procedure that evaluates all T ’s to obtain a single value for t/’*, for each unit

of a dependent resource type j , is implemented as follows:

63

For each newly scheduled candidate activity, i, at fg, DO
For each resource unit, k o f the current dependent resource type,j, DO

maxJunction max{{T/*),^} fo r n = 1, size(L^'^)

I f t j * is 0
t j maxJunction

Else I f tj" ̂ is nonempty
t j <— max(maxJunction, t{*)

End I f
End I f

I f t j is 0 (T *) f is undefinedfor all f
t j <— 00

End I f
End DO

End DO

The above procedure is repeated for each newly scheduled project activity as many times

as there are resource types. / / ’* is, as previously mentioned, evaluated first for lower

indexed resource types, since it is those types that may serve as drivers to higher indexed

resource types or groups.

4.1.4 Resource Costs and Resource Interdependencies Based on Costs

Modeling cost characteristics follows a similar logic used for representation o f temporal

capabilities and interdependencies. In place o f t j , we now define a variable c/'*,

which represents the cost (say, in Dollars) of it-th unit o f resource type j if it gets assigned

to work on activity i. This value of cj* may be invariant regardless o f a unit’s

64

interaction with other resources, or it may vary relative to interaction among resources,

and thus, implying cost interdependencies which need to be evaluated before any

mapping is performed (provided that the cost considerations are a part o f a manager’s

utility or objective for mapping).

In cases when a cost o f a resource unit for an activity varies depending on its interaction

with units o f other (lower indexed) types, we define cost dependencies as;

(C / - ‘) Z = c ! * y / " * "

where:

yio^D = a binary variable indicating the status o f the particular driver resource unit

< J d as defined in the previous section.

c / ■* z interactive cost o f *^th unit o f type j on its driver < wi t h respect to

activity i.

(C /■*)z = z-th evaluated interactive cost dependency of t-th unit o f type j on its driver

< z = 1, ..., size(Z>''*). The values o f each (C / *)% equals c / ’* when

equals one, and zero otherwise. The actual number o f these interactive cost dependencies

will again depend on a manager’s knowledge and information about available resources.

65

Given a set o f cost dependencies, we compute the overall c{* as a sum o f all evaluated

(C /■*)z’s as follows:

J=I

Once evaluated, each c/"* may be a part o f a composite utility function as illustrated in

the previous section, or a single objective coefficient, in cases when resources are mapped

by minimizing costs only.

4.1.5 Resource Preferences and Resource Interdependencies Based on their

Preferences

In pure economic analyses, preferences are often driven by monetary factors. In such

cases, preferences may simply be modeled as negative costs. In many other instances,

however, due to political, environmental, safety, or community standards, aesthetics, or

other similar non monetary reasons, pure monetary factors may not necessarily prevail in

decision making. It is those other non monetary factors that we wish to capture by

introducing preferences in resource mapping to newly scheduled activities. The actual

representation o f preferences is almost identical to those o f the costs. In other words,

resources may have constant preferences on activities regardless of their interaction, or

6 6

their preferences may vary with respect to any particular activity relative to which units

o f other types have already been m ^p ed to that activity. This latter scenario especially

pertains to human resources, and is represented by the following form:

(P/-*)z =

where p j is an interactive preference o f it-th unit of type j on its driver < j a , >, with

respect to activity /. (P / *)z is z-th evaluated interactive preference dependency o f A:-th

unit o f type j , with respect to activity i. Finally, again identically to modeling costs,

p I ■* is computed as:

2=1

Final resource characteristic, the availability, is discussed and modeled in the following

section.

4.1.6 Resource Availability in Resource-Activity Mapping

Having certain number o f resource units of each type available for a project does not

necessarily imply that all o f the units are available all the time for the project or any o f its

activities in particular. Due to transportation, contracts, learning, weather conditions,

67

logistics, or other factors, some units may only have time preferences for when they are

available to start working on a project activity or the project as a whole. Others may

have strict time intervals during which they are allowed to start working on a particular

activity or the project as a whole. This latter, strictly constrained availability may be

easily accommodated by the previously considered window function, vv(r^ .

Having too strictly defined intervals as above, during which resource units are available

to take on their tasks or engage into project may be too rigid o f a constraint. In many

cases, especially for humans, resources may have a desired or "ideal" time when to start

their work or be available in general. If that desired time is not achievable, then certain

deviations are permissible and resources are flexible to become available at a time that

may be “somewhat” earlier or later than initially desired. This flexible availability may

simply be represented by flizzifying the specified desired times using the following

function:

l + a (r , - r / ‘)"

where:

r/'* s desired time for fc-th unit o f resource type j to start its task on activity i. This

desirability may either represent the voice of project personnel (as in the case of

68

preferences), or manager’s perception on resource’s readiness and availability to take on a

given task.

(f(.) = fuzzy membership function indicating a degree o f desirability o f <j. A>-th unit

to start working on activity /, at the decision instance tc-

a = parameter that adjusts for the width o f the membership function.

b = parameter that defines the extent o f start time flexibility.

It should be noted that when no desirable times are specified, the value o f r / ’* is by

default set to tc, thus holding the membership function at unity.

The crisp and fuzzified desired start times are depicted in the upper and lower subplots in

Figure 4, respectively. The effect o f variations in the two membership parameters, a and

b, is also shown in the lower subplot o f Figure 4. Notice that variations in the parameter

b, define the sharpness o f the membership function’s peak. Varying the parameter a will

cause variation in the overall spread o f the function.

69

Q8.

S Û6- .5
I Q4.

K

Oispand Rezy Ogarad S a t limscf Rqect f̂ BOJQBB

3 4 5 6
Time

« ■ - ' - »
7 8 9 10

08
g.

06

04

02

lifTB

Figure 4. Incorporating Resource Availability into Mapping Constraints.

The membership function, a / *(f^), is in effect a unimodal function with a peak and sides

that approach, but never quite reach zero. This implies that a resource unit may be

employed virtually at any time, but with the highest “desirability” at the moment where

the function is at its peak. In cases when is modeled not as a fuzzy membership

function, but as a previously discussed window function, the region outside the function

indicates absolute unavailability of a resource unit to start a task or engage the project. It

is obvious that or/'*(r^), once evaluated, serves as one of the resource characteristics that

may be used as a part of an overall manager’s utility function for mapping o f resources to

70

activities. This utility function is then used as a coefiBcient vector in the zero-one integer

programming model that performs resource-activity m oping. Depending on the

mathematical form o f the utility, it may happen that a zero value o f the evaluated

if falls outside the range, may cause zeros in some coefficients of

the objective function. Due to the nature o f linear programming, zeros in the coefficients

of the objective do not imply that corresponding variables in the solution will also take

the value o f zero. In our case, that would mean that although we flagged off a resource

unit as unavailable, the solution may still map it to an activity. Thus, we need to strictly

enforce strict the interval (un)availability by adding information into constraints. For that

we perturbed the third mapping constraint which was previously set to prohibit mapping

o f resource units at time tc which are in use by activities in progress at that time. The

constraint was originally defined as;

R.
X ~ 0 for / e Q(fc) fbry = 1,.
t=i

To now further prevent m op ing o f resource units whose equals zero at tc, we

modify the above constraint as follows:

+ (1 - (^)))-yi'^ = 0 for / e fory = \ , . . . , J

71

This modified constraint now, not only filters out those resource units that are engaged in

activities in progress at îq, but also those units which were flagged as unavailable at tc

due to any other reasons.

So far, at each tc, we map available resources categorized into types to newly scheduled

activities, such that units o f lower indexed types are mapped first. Then based on that

outcome, units o f higher indexed types are sequentially mapped by type by paying

attention to their dependencies on units of lower indexed types. The next section

discusses the actual activities, and how they are being prioritized and scheduled, before

we start mapping resource units to them.

4.2 ACTIVITY SCHEDULER: PRIORITIZING AND SCHEDULING

PROJECT ACTIVITIES

This chapter explains how activity duration is initially estimated before assigning

resources to it and refining its duration. It also discusses prioritizing and scheduling

project activities. Project activities are scheduled according to two criteria. The first one

is based on basic activity attributes: initially estimated duration, resource requirements,

and the dynamically updated amount o f depleted slack at the decision instance /^. The

second criteria is a project manager’s pre-specified level o f attempt to balance (centralize)

loading graphs o f one or more resource types.

72

The following section discusses how durations o f all project activities are initially

estimated.

4.2.1 Initial Estimation of Project Activities Duration

Traditionally, a project manager estimates duration of each project activity first, and then

assigns resources to it. In this study, although we don’t exclude a possibility that an

activity duration is independent o f resources assigned to it, we assume that it is those

resource units assigned to a particular activity that determine how long it will take for the

activity to be completed. We further assume that resources even o f the same

fimctionality may vary among themselves in terms of qualifications, knowledge, skill

level, and time-effective capabilities. Therefore, an activity duration may greatly be

affected by our particular selection o f different resource units, although they may all be

capable o f accomplishing the same type of work. Normally, more capable and qualified

resource units are likely to complete their tasks faster, and vice versa. Thus, activity

duration in this research is considered a resource driven activity attribute.

In this model, we first schedule activities, and then map resource units to them.

However, since activity duration is assumed to be resource driven, we then cannot really

schedule activities before knowing their duration. To resolve this issue, we initially only

estimate the most optimistic activity duration using the available information on time-

effective capabilities o f driver resource units, that is, those whose performance is

independent o f their interaction with other units. This information is used for developing

73

a preliminary unconstrained CPM schedule which is later dynamically refined as resource

umts start to be mapped to activities and duration o f each activity becomes more precise.

The initial duration di o f a project activity is simply estimated by sorting the known //•* ’$

o f all driver resource units and then computing di as following:

d. = max{r/°-*=^, fo r V/o}

The computations of d i’s for a project o f seven activities and two resource types is

illustrated in Tables 2 and 3.

Table 2. Example Representation of Time-Effective Resource

Activities f=/f /=/) i=E #=C

P i (7=1) 1 2 4 1 3 2 4

U n itl 1.5 4.00 5.0 1.5
Unit 2 2.3 6.00 3.4 2.6 4.50 1.6 1.3
U nits 1.7 4.6 3.3 5.00 1.0 4.7
Unit 4 2.1 4.8 7.50 5.0 2.8

Pi U=2) 0 4 1 0 3 3 2

U n itl - 2.0 ’W'2,\
■* C

- 7* 2,1
•* e

y 2 , l *■ F
3.0

Unit 2 - 2.5 ’p2,2
■* C - 4.8 7 * 2 ,2

•* C
U nits - 5.1 ’W'2,2

' C
- y 2.3

' E
4.0

Unit 4 - yZ.4■* C - 7*2,4
 ̂£

UnU5 - 4.8 •M'2,S
C

- 5.0 6.0 2.7
U nite - 5.2 'f'2.6

•* C - f’2,6
•* £

7*2 ,6
' £

7 * 2 ,6
' C

74

Given the data in Table 2, we can easily compile it to estimate the initial duration, di o f

each activity, and tabulate the results as shown on the bottom o f Table 3.

75

Table 3. Initially Estimated Activity Durations.
Activities A B C 0 iE i7 G

p I v =\)
uni

t
1 unit 2 uni

t
4 unit l uni

t
3 "unfîP "unîP 4

3 3 4.6 1 1.5 2 w J 4.0 3 1 “T" 1 3
4 2.1 2 m 3 3.3 1 2 4.5 2 1.6 1 1.5
2 2.3 I 2 3.4 3 3 1 5 • 6 2.8
I 4 4 m ï 4

— 1 4 7.5 4 5 10 *

*1
1.7 6.00 4.8 2.6 5.0 1.6 4.7

p / 0 = 2) uni
t

0 unit 4 uni
t

1 unit 0 uni
t

3 unit 6 uniï 2

- I 2.0 - - - -
- 2 2.5 - - - -
- 5 4.8 - - - -
- 3 - - - -
- 6 5.2 - - - -
- 2 - - - - -

U
- S.I - - - -

m a x C X v X)
i ,^ L 7 4 t=6.0

_____ 1

dff‘4.8
\

da=2.6 d ^ 5 .0 d ^ 5 .0 dd-4 .7

Once di is estimated for each project activity, we use it as information for prioritizing

activities later in resource constrained scheduling. Modeling and strategy used in this

research for activity prioritization is discussed in the following section.

4.2.2 Computing and Dynamic Updating o f Activity Priorities

At each decision instance tc (in resource constrained non-preemptive scheduling as

investigated in this study), activities whose predecessors have been completed enter the

set o f qualifying activities, Q(/c)- hi cases o f resource conflicts we often have to

prioritize activities in order to decide which ones to schedule. In this methodology we

prioritize activities based on two (possibly conflicting) objectives:

1. Basic Activity Attributes, such as the current amount o f depleted slack, number of

successors, and initially estimated optimitic activity duration, di.

2. Degree of manager's desire to centralize (or balance) the loading of one or more pre

selected project resource types.

Amount o f Depleted Slack, Sj{tc), is defined in this research as a measure o f how much

total slack o f an activity firom unconstrained CPM computations has been depleted each

time the activity is delayed in resource constrained scheduling due to lack o f available

resource units. The larger the Sjitc) o f an activity, the more its has been delayed from its

unconstrained schedule, and the greater probability that it will delay the entire project.

77

Before resource constrained scheduling o f activities (as well as resource mapping which

is performed concurrently) starts, we perform a single run o f CPM computations to

determine initial imconstrained Latest Finish Time, LFTi o f each activity. Then, as the

resource constrained activity scheduling starts, at each decision instance tc, we calculate

for each candidate activity (fixjm the set Q(tc)) as follows:

Si(tc), as a function o f time, is always a positive real number. The value o f its magnitude

is interpreted as follows:

• when SiXtc) < 1, the activity i still has some slack remaining and it may be safely

delayed;

• when Si(tc) = 1, the activity i has depleted all of its resource unconstrained slack and

any further delay to it will delay its completion as initially computed by conventional

unconstrained CPM',

• when SiXfc) > 1, the activity i has exceeded its slack and its completion will be

delayed beyond its unconstrained CPA/duration.

78

Graphical illustration o f amount o f depleted slack is shown in Figure 4.

>

I
S ftJ < 1

LFT; tune

<

LFT, tune

ts tc-^ LFTi

S f t j < 1

LFZ

>

Î > LFTi

time

S f tJ > 1

tg LFTi time

Figure 4. Graphical Illustration of the Amount of Depleted Slack Measure.

Once calculated at each tc, the current amount o f depleted, 5j(/c), is then used in

combination with the other two activity attributes for assessing activity priority for

scheduling. (These additional attributes are the number o f activity successors, as well as

its initially estimated duration d{). The number o f successors is an important determinant

in prioritizing, because if an activity with many successors is delayed, chances are that

any o f its successors will also be delayed, thus eventually prolonging the entire project

79

itself. Therefore, the prioritizing weight, w '^, pertaining to basic activity attributes is

computed as follows:

- Si(fc)* [— ^

where:

w f = activity prioritizing weight that pertains to basic activity attributes.

ÇI = number of successors activities of current candidate activity i.

max{ Çi) = maximum number o f activity successors in project network.

max(</.) = maximum o f the most optimistic activity durations in a project network.

Notice that, as a project scheduling time progresses, w f becomes largely dominated by

the value of Si{tc)- In the early stages of a project, most activities are expected to have

plenty o f slack left from their resource unconstrained schedule, forcing Si(tc) to remain

less than unity (notice again that as long as Siitc) < 1, an activity / may be safely

postponed). However, as the scheduling time el*q)ses, more activities deplete their

unconstrained slack, which increases the value o f Si(tc) for some o f them far beyond

unity. Since the issue o f timely project completion traditionally becomes increasingly

more important with time, was left unsealed in the equation for w f .

8 0

The secondary objective that may influence activity prioritizing is a manager’s desire for

a somewhat centralized (i.e., balanced) resource loading graph for one or more resource

groups or types. This is generally desirable in cases when a manager does not wish to

comimt all o f the available project funds at the very beginning o f the project (Dreger,

1992), or to avoid frequent hiring and firing or project resources (Badiru and Pulat,

1995), which may greatly affect overall project budget. Resource loading graphs are

generally illustrated by stairstep type o f plots with time units on their x-axis, and number

of currently engaged project units on y-axis. In this research, we attempt to balance

(centralize) loading o f pre-specified resources by scheduling those activities whose

resource requirements will minimize the increase in the stairstep size in the early project

stages, and then minimize the decrease in the step size in the later stages. A completely

balanced resource loading graph contains no depression regions as defined by

Konstantinidis (1998), i.e., it is a nondecreasing graph up to a certain point at which it

becomes non-increasing. This should provide for a smooth loading graph, however with

a possibility of extended project duration. Generally, different resources are of different

importance to a manager, and he or she may not wish to attempt to balance the loading o f

all resource types. Figure 5 shows a Gantt chart and resource loading graphs of sample

project with 7 activities and two resource types. Neither o f the two resource type

loadings are obviously balanced. The same project has been re-run using the above

reasoning, and shown in Figure 6. Notice that the loading o f resource type two is now

fully balanced. The loading o f resource type one still contains depression regions, but to

a considerably lesser extent than in the previous figure.

81

The activity prioritizing weight that pertains to attempting to centralize resource loading

is computed in this research as follows:

y=i «y

where:

w!" = prioritizing weight that incorporates activity resource requirements,

p / = number o f resource type j units required by activity i.

Rj = total number o f resource type J units required for the project.

Notice that wf and wT are weights o f possibly conflicting objectives in prioritization of

candidate activities for scheduling.

82

Rqectisomideedatt =11.35

TËre

10

0 2 64 8 t)

Figure 5. Example of Unbalanced Resource Loading Graphs.

83

isp

10-

5-

0

RqectisocrT|ielBdatt =11.17

The

8

10-

0 2 4 6 8 10

10

Figure 6. Example of a Project Schedule with the Loading Graph of Resource Type
Two Fully Balanced.

To further limit the range o f w!" between zero and one, we scale it as follows:

w. = w;
max(wr)

84

Notice that with w ' being scaled as above, its contribution to activity prioritization may

be significant in comparison to w f only in early project stages. As discussed previously,

the reasoning for such a scenario is that timely completion o f a project (which is dictated

by Si(ic)) traditionally becomes increasingly more important as the scheduling of a

project progresses. Thus, in cases when w f and w ' are compiled into a single additive

objective fimction for activity prioritization, w- may prevail over w/* only at the

beginning o f a scheduling process. Once computed, wf’ and wf are combined to form

the coefficients in the objective function based on which some or all (depending on

resource availability) o f candidate activities at decision instance tc will be scheduled.

Modeling of this objective function, and constraints is discussed in the following section.

4.2.3 Formulating the Objective Function for Activity Scheduling and Resource

Balancing

With the two weights wf and defined and computed, we further use them as the

coefficients of activity scheduling objective function:

r
max + W I %,)

85

where:

Xi = binary variable whose value becomes one if a candidate activity /e QOc) is

scheduled at and zero if the activity / is not scheduled at tc-

W = Decision Maker’s supplied weight that conveys the importance o f resource

centralization (balancing) in project schedule.

Notice that is a parameter that allows a manager to further control the influence of wj'.

Large values o f W will place greater emphasis on the importance o f resource balancing.

However, to again localize the effect o f ^ to the early stages o f a project, we

dynamically decrease its value at each subsequent decision instance, tc according to the

following formula:

^ n ew — ^ o ld

where:

1=1_____

1=1

ÿ 'd ; = The sum o f all the most optimistic activity durations (as determined by
1=1

conventional resource unconstrained CPM computations) for all activities in project

network.

= set o f activities that have been so far scheduled by the time tc-

86

In the previous section, it was proposed that one way of balancing resource loading was

to keep nunimizing the increase in the stairstep size of the loading graph in the early

project stages, and then minimize the decrease in the step size in the later stages. The

problem with such a reasoning is that a continuous increase in the loading g r ^ h in early

stages may eventually lead to infeasibility due to limiting constraints in resource

availability. Therefore, an intelligent mechanism is needed that will detect the point

when resource constraints become binding and force the scheduling to proceed in a way

that will start the decrease in resource loading, as previously depicted in Figme 6. In

other words, we need to formulate a linear programming model whose constraints will

drive the increase in resource stairstep shaped loading function up to a point when

resource availability is reached. As soon as such a point is reached, the model must

adjust the objective function and modify (relax) the constraints to start minimizing the

stairstep decrease of resomce loading.

The constraints to implement this procedure are modified fi-om the traditional knapsack

problem. In conjimction with the above objective function, the constraints are formulated

to ensure that at each decision instance tc, maximal niunber of candidate activities are

scheduled, while satisfying activity precedence relations, preventing the excess of

resource limitations, and most importantly, flag off the moment when resource limitations

are about to be violated. To facilitate a computer implementation and prevent the

strategy fi'om crashing, we introduce an auxiliary zero-one variable, 1 , in this study

87

referred to as the peak flag. The value o f 1 in the decision vector is zero as long as

current constraints are capable o f producing a feasible solution. Once that is impossible,

all variables in the decision vector must be forced to zero, except 1 , which will then take

a value of one and indicate that the peak o f resource loading is reached. At that moment,

the constraints that force the increase in resource loading are relaxed (eliminated).

The peak flag is appended to the previous objective function as follows:

max +W X,) - b l

where:

b = arbitrary large positive number (in computer implementation o f this study, b was

taken as 6 =).
lal

Thus, 1 is in effect, a dummy variable whose sole purpose is to prevent a computer

implementation o f the above methodology from crashing. There are two types of

constraints associated with the above objective of scheduling project activities. The first

type simply serves to prevent scheduling o f activities which would overuse available

resource units:

88

S p / - ^ / + ^y- Zp/U^[^y- 2 p /
V '= G ('r) / V <cG(/^) y'eQ(4)

7 = 7, ..., J

where:

X/ = candidate activity qualified to be scheduled at tc

G(fc) = set o f activities that are in progress at time tc-

= difference between the total available units o f resource type j (denoted

as Rj) and the number o f units o f the same resource type being currently consumed by the

activities in progress during the scheduling instant tc-

Notice that R j - 2 p /
'^G(,J y

appears on both sides o f the constraint. On the right hand side

(RHS) o f the inequality, it serves to simply prevent the infeasibility, that is, overuse of

available resources and force x/’s to zero in such a case. Its purpose on the lefi hand side

(LHS) is to hold ^ to zero for as long as the original problem is feasible. Notice that the

number o f the above constraints for each problem is equal to the number o f project

resource types, J.

The second type o f constraints serves to force the gradual increase in the stairstep

resource loading g r^ h s . In other words, at each scheduling instant tc, these constraints

will attempt to force the model to schedule those candidate activities whose total resource

89

requirements are greater or than equal the total requirements o f the activities that have

just finished at tc- The constraints are formulated as follows:

+ Z p /
<eO('c) \ i e F Oc) y

i Z p/ .J
J a

where:

^ (W = Set o f activities that have been just completed at t,c>

= set o f manager’s pre-selected resource types whose loading graphs are to be

centralized (i.e., balanced).

S p/ = total resource type J requirements by all activities that have been completed

at the decision instance tr

Similarly to the previous type o f constraints, the term S p/ , appears on both sides o f

inequality. On the RH S o f the inequality, it forces the increase in the number o f engaged

units of type j at each subsequent tc- On the LHS, it serves to set 1 to unity in cases

when further increase in the number o f engaged type j units would exceed their total

availability for a project. In other words, when no candidate activities can be scheduled

90

at tc, such that the number o f engaged resource units of type j at t* is greater than the

number of engaged units at t~, Ic becomes unity, thus indicating infeasibility.

The two types of constraints above form a mutual exclusivity for x/’s and i , such that the

first type o f constraints keep x/’s to zero when a problem is infeasible and i to zero when

a problem is feasible. The second type of constraints sets i to unity in cases of

infeasibility. This mechanism provides a convenient facility to computer implementation

o f the methodology by detecting a moment o f infeasibility and preventing a program

from ever crashing. Notice that the set ® is pre-selected by a project manager and may

have as many as J members, such that the total number of both types of constraints equals

7 + D, but may be up to 2x7.

Finally, to ensure an integer zero-one solution, we impose the last type o f constraints as

follows;

x/ = 0 or 1, for i € Q(tc)

As previously discussed, once 1 becomes unity, we adjust the objective function and

modify the constraints that will, from that point on, allow a decrease in resource loading

graph(s). Objective function for activity scheduling is modified such that the product

w!" • X, is not being subtracted from one any more, while the second type o f constraints is

eliminated completely:

91

f \ C \
m in - - w

(eO (»c) /

subject to:

< [r j - 2 ^ p /
î QUc) \, ,eG(,J y

7 = 1, . . . ,J

xi = 0 or 1

Since the second type o f constraints is eliminated, resource loading function is now

allowed to decrease. The first type of constraints still remains in place to prevent any

overuse o f available resources.

An algorithmic summary of the entire methodology, including both activity scheduling

and resource mapping to newly scheduled activities is listed in Appendix A. The

assessment o f performance o f the algorithm presented in this chapter and its

implementation are fully discussed in Appendix C.

92

V. SUMMARY

5.1 Conclusions

The model developed in this research represents an initial step towards a more

comprehensive resource-activity integration in project scheduling and management. It

provides for both effective activity scheduling based on dynamically updated activity

attributes, as well as intelligent iterative mapping of resources to each activity based on

resource characteristics and pre-selected shape o f project manager’s objectives. The

model consists o f two complementary procedures: an activity scheduler and resource

mapper. The procedures are alternatively being executed throughout the scheduling

process at each newly detected decision instance, such that the final output is capable of

providing decision support and recommendations with respect to both, scheduling project

activities and resource assignments. This approach allows human, social, as well as

technical resources to interact and be utilized in value creating ways, while facilitating

effective resource tracking and job distribution control.

5.2 Major Research Contributions

The principal contribution o f this research work is the development o f a project

scheduling model that:

93

0 preserves principal resource values by providing more suitable job assignments and

task distributions.

0 allows incorporation o f interactive dependencies among resources relative to any of

their characteristics.

0 facilitates effective resource tracking, resource utilization relative to the total project

duration, and relative resource cost comparisons.

0 allows for dynamic, yet intelligent resource assignment guidance by enabling a

project manager to express his or her tacit knowledge or discretionary input by pre

specifying objective functions.

0 the scheduling and mapping output provides complimenting decision support with

respect to both activities and resources, and it provides detailed recommendations of

which resource units should be assigned to each project activity.

0 the model is relevant for managerial practice while within the rigor o f academic

standards and assumptions. It has been implemented with an idea to be an open

model, customizable, and applicable across various operational settings.

94

5.3 Future Research

Many feasible directions remain open for the future research. One should certainly

include modeling that would incorporate learning and forgetting effects into resource-

activity mapping. Learning generally implies improvement in efficiency by repeating an

activity (Badiru, 1995). Considering traditional learning curve analysis would require

information from past projects. However, the present model is already capable of

considering “local” learning/forgetting effects which only require manager’s estimate of

how much a resource unit’s performance on the current project may improve or worsen

by delaying an assignment for a later time. This can easily be modeled by applying

previously discussed window functions which are capable o f filtering out

leaming/forgetting information that is not associated with the current scheduling

(decision) instance.

Future research should also facilitate for pre-emptive scheduling. The current model does

not support or allow any splitting or prolongation o f project activities.

A very relevant problem in knowledge intensive environments and critically skilled

settings is reassignment o f people with a particular skill to accommodate the needs of a

new program or project (Cooprider, 1999). In other words, an effective strategy is needed

for reallocation o f those resources that have already been previously assigned to activities

and distributed.

95

Final stage would be the development o f a strategy capable o f resource-activity mapping

across multiple projects. In such a scenario, all previously discussed resource

characteristics could also vary across projects. Other factors such as location and

transportation would here also be o f interest in problem modeling.

96

VI. REFERENCES

Ahuja, H. N. (1976). Construction Performance Control by Networks, John Wiley and
Sons, Inc., New York.

Atabakhsh, H. (1991). “A Survey o f Constrained Based Scheduling Systems Using an
Artificial Intelligence Approach”, Artificial Intelligence in Engineering, Vol. 6, No.
2, p. 58 - 73.

Badiru, Adedeji B. (1993). “Activity Resource Assignments Using Critical Resource
Diagramming”, Project Management Journal, Vol. 14, No. 3, p. 15-21 .

Badiru, Adedeji B. (1995). “Incorporating Learning Curve Effects into Critical Resource
Diagramming”, Project Management Journal, Vol. 26, No. 2, p. 38 - 45.

Badiru, Adedeji B. and P. Simin Pulat (1995). Comprehensive Project Management:
Integrating Optimization Models, Management Principles, and Computers, Prentice
Hall, New Jersey, p. 162 - 209.

Badri, Masood A. (1996). “ A Two Stage Multi Criteria Model for Scheduling Faculty-
Course-Time Assignment”, European Journal o f Operational Research, Vol. 96, p.
16-28 .

Badri, Masood A., Donald L. Davis, Donna F. Davis, and John Hollingsworth (1998).
“A Multi-Objective Course Scheduling Model; Combining Faculty Preferences for
Courses and Times”, Computers in Operations Research, Vol. 25, No. 4, p. 303 -
316.

Bandelloni, M, M. Tucci, and R. Rinaldi (1994). "Optimal Resource Leveling using Non
serial Dynamic Programming", European Journal o f Operational Research, Vol. 78,
p. 162-177.

Bein, W. W., J. Kamburowski, and M. F. M. Stallmann (1992). “Optimal Reduction of
Two Terminal Directed Acyclic Graphs”, SIAM Journal on Computing, Vol. 21, p.
1112-1129.

Beihe, Upendra and Andrew Kusiak (1997). “Dynamic Scheduling o f Design Activities
with Resource Constraints”, IEEE Transactions on Systems, Man and Cybernetics -
Part A: Systems and Humans, Vol. 27, No. 1, p. 105 - 111.

Boctor, Fayez F. (1996). “A New and Efficient Heuristic for Scheduling Projects with
Resource Constraints and Multiple Execution Modes”, European Journal o f
Operations Research, Vol. 90, p. 349 - 361.

97

Bracewell, Ronald N. (1978). The Fourier Transform and its Applications. McGraw-
Hill, Inc., New York, p. 97.

Brucker, Peter, Andreas Drexl, Rolf Mohring, Klaus Neumann, and Erwin Pesch (1999).
“Resource-Constrained Project Scheduling: Notation, Classification, Models, and
Methods”, European Journal o f Operations Research, Vol. 112, p. 3 - 41.

Brucker, Peter, Sigrid Knust, Amo Schoo, Olaf Thiele (1998). “A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem”, European
Journal o f Operational Research, Vol. 107, p. 272 - 288.

Burgess, A. R. and James B. Killebrew (1962). “Variation in Activity Level on a
Cyclical Arrow Diagram”, The Journal o f Industrial Engineering, Vol. 13, No. 2, p.
76 - 83.

Campbell, Gerard M (1999). “Cross-Utilization of Workers Whose Capabilities Differ”.
Management Science, Vol. 45, No. 5, p. 722 - 732.

Carraway, Robert L. and Robert L. Schmidt (1991). “An Improved Discrete Dynamic
Programming Algorithm for Allocating Resources among Interdependent Projects”,
Management Science, Vol. 37, No. 9, p. 1195 - 1200.

Chang, T. C., and K. C. Crandall (1990). " An Algorithm for Solving Expected
Possibility and its Application in Construction Resource Allocation", Fuzzy Sets and
Systems, Vol. 34, p. 157-171.

Christofides, N., R. Alvarez-Valdes, J. M. Tamarit (1987). “Project Scheduling with
Resource Constraints: A Branch and Bound Approach”, European Journal o f
Operational Research, Vol. 29, p. 262 - 273.

Cooprider, Curt (1999). “Solving a Skill Allocation Problem”, Production and Inventory
Management Journal, Third Quarter, p. 1 - 6.

Davis, K. Roscoe, Antonie Stam, and Ronald A. Grzybowski (1992). “Resource
Constrained Project Scheduling with Multiple Objectives: A Decision Support
Approach”, Computers in Operations Research, Vol. 19, No. 7, p. 657 - 669.

Demeulemeester, Erik (1995). “ Minimizing Resource Availability Costs in Time-
Limited Project Networks”, Management Science, Vol. 41, NO. 10, p. 1590 - 1598.

Demeulemeester, Erik L., Willy S. Herroelen, and Salah E. Elmaghraby (1996).
“Optimal Procedures for the Discrete Time/Cost Trade-Off Problem in Project
Networics”, European Journal o f Operational Research, Vol. 88, p. 50 - 68.

98

De Reyck, Bert and Willy Herroelen (1998). “A Branch and Bound Procedure for the
Resource-Constrained Project Scheduling Problem with Generalized Precedence
Relations”, European Journal o f Operational Research, Vol. I l l , p. 152 - 174.

De Reyck, Bert, and Willy Herroelen (1998a). “An Optimal Procedure for the Resource-
Constrained Project Scheduling Problem with Discounted Cash Flows and
Generalized Precedence Relations”, Compuers in Operations Research, Vol. 25, No.
1,p. 1 - 17.

Doucette, Martin (1998). Microsoft® Project. IDG Books Worldwide.

Drexl, A. (1991). “Scheduling of Project Networics by Job Assignment”, Management
Science, Vol. 37, p. 1590- 1602.

Drexl, Andreas (1991). “Scheduling o f Project Networics by Job Assignment”,
Management Science, Vol. 37, No. 12, p. 1590 - 1602.

Easa, S. M. (1989). “Resource Leveling in Construction Optiomization”, Journal o f
Construction Engineering and Management, Vol. 115, No. 2, 0.302 - 316.

Ecker, Klaus H. (1999). “Scheduling o f Resource Tasks”, European Journal o f
Operations Research, Vol. 115, p. 314 - 327.

Elmaghraby, Salah E. (1993). “Resource Allocation via Dynamic Programming in
Activity Networks”, European Journal o f Operational Research, Vol. 64, p. 199 -
215.

Faaland, Bruce, and Tim Schmitt (1993). “Cost-Based Scheduling o f Workers and
Equipment in a Fabrication and Assembly Shop”, Operations Research, Vol. 41, No.
2, p. 253 - 268.

Franz, Lori S. and Janis L. Miller (1993). “Scheduling Medical Residents to Rotations:
Solving the Large Scale Multiperiod Staff Assignment Problem”, Operations
Research, Vol. 41, No. 2, p. 269 - 279.

Fulkerson, D R. (1961). “A Network Flow Computation for Project Cost Curves”,
Management Science, Vol. 7, p. 167 - 178.

Gray, Jennifer J. , Don Mclntire, and Herbert J. Doller (1993). “Preferences for Specific
Work Schedulers: Foundation for an Expert-System Scheduling Program”,
Computers in Nursing, Vol. 11, No. 3, p. 115-121.

Hapke, M., A. Jaszkiewicz, and R. Slowinski (1994). “Fuzzy Project Scheduling System
for Software Development”, Fuzzy Sets and Systems, Vol. 67, p. 101-117.

99

Herroelen, Willy, Bert De Reyck, and Erik Demeulemeester (1998). “ Resource-
Constrainted Project Scheduling: A Survey o f Recent Developments”, Computers in
Operations Research, Vol. 25, No. 4, p. 279 - 302.

Hori, M., Y. Nakamura, H. Satoh, K. Maruyama, T. Hama, S. Honda, T. Takenaka, and F
Sekine (1995). “Knowledge-Level Analysis for Eliciting Composable Scheduling
Knowledge”, Artificial Intelligence in Engineering, Vol. 9, p. 253-264.

http://www.ima.mdh.se/tom (Website for TOMLAB vl.O optimization environment
package)

Hussein, M. L. and M. A. Abo-Sinna (1995). "A Fuzzy Dynamic Approach to the
Mulitcriterion Resource Allocation Problem", Fuzzy Sets and Systems, Vol. 69, p.
115-124.

Icmeli-Tukel, Oya and Walter O. Rom (1997). “Ensuring Quality in Resource
Constrained Project Scheduling”, European Journal o f Operations Research, Vol.
103, p. 483 - 496.

Keeney, Ralph L. and Howard Raiffa (1993). Decisions with multiple objectives:
preferences and value tradeoffs, Cambridge University Press, Cambridge, New
York.

Kelly, J. E. (1961). “Critical Path Planning and Scheduling: Mathematical Basis”,
Operations Research, Vol. 9, p. 296 - 320.

Khattab, Mostafa M. and F. Choobineh (1991). “A New Approach for Project Scheduling
with a Limited Resource”, International Journal o f Production Research, Vol. 29,
No. 1, p. 185 - 198.

Konstantinidis, P. D. (1998). "A Model to Optimize Project Resource Allocation by
Construction o f a Balanced Histogram", European Journal o f Operational Research,
Vol. 104, p. 559-571.

Kostreva, M. M., and P. Genevier (1989). “Nurses Preferences vs. Circadian Rhythms in
Scheduling”, Nursing Management, Vol. 20, No. 7, p. 50 - 62.

Leachman, Robert C. and Sooyoung Kim (1993). “A Revised Critical Path Method for
Networks Including Both Overlap Relationships and Variable-Duration Activities”,
European Journal o f Operational Research, Vol. 64, p. 229 - 248.

Lee, J. K ., K. J. Lee, J. S. Hong, W. Kim, E. Y. Kim, S. Y. Choi, H. D. Kim, O. R. Yang,
H. R. Choi (1995). “DAS: Intelligent Scheduling Systems for Shipbuilding”, A I
Magazine, Winter 1995, p. 78-94

100

http://www.ima.mdh.se/tom

Lee, S. J, and C. H. Wu (1995). “CLXPERT: A Rule-Based Scheduling System”, Expert
Systems with Applications, Vol. 9, No. 2, p. 153-164.

Li, K. Y. and R. J. Willis (1992). “An Iterative Scheduling Technique for Resource-
Constrained Project Scheduling”, European Journal o f Operational Research, Vol.
56, p. 370 - 379.

Liebowitz, J. and W. E. Potter (1995). “Scheduling Objectives, Requirements, Resources,
Constraints, and Processes: Implications for a Generic Expert Scheduling System
Architecture and Toolkit”, Expert Systems with Applications, Vol. 9, No. 3, p. 423-
432.

Liou, Ay-Hwa Andy, and Ming-Tser Wu (1996). “Mapping Knowledge to Rules for
Scheduling Expert Systems”, Expert Systems with Applications, Vol. 10, No. V* p.
341 - 350.

Mattila, K. G. and D. M. Abraham (1998). “Resource Leveling o f Linear Schedules
Using Integer Linear Programming”, Journal o f Construction Engineering and
Management, Vol. 124, No. 3, p. 232 - 244.

Minciardi, R., M. Paolucci, and P. P. Puliafito (1994). “Development o f a Heuristic
Project Scheduler under Resource Constraints”, European Journal o f Operations
Research, Vol. 79, p. 176 - 182.

Mingozzi, A., V. Maniezzo, S. Ricciardelli, and L. Bianco (1998). “An Exact Algorithm
for the Resource-Constrained Project Scheduling Based on a New Mathematical
Formulation”, Management Science, Vol. 44, p. 714 - 729.

Morse, Lucy C., John O. McIntosh, and Gary E. Whitehouse (1996). “Using
Combinations o f Heuristics to Schedule Activities o f Constrained Multiple Resource
Projects”, Project Management Journal, March 1996, p. 34 - 40.

Mueller, C. W. and J. C. McCloskey (1990). “Nurses’ Job Satisfaction: A Proposed
Measure”, Nursing Research, Vol. 39, No. 2, p. 113 - 117.

Nasution, S. H. (1994). “Critical Path Method”, IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 24, No. 1, p. 48-57.

Nazareth, Terence, Sanjay Verma, Subir Bhattacharya, Amitava Bagchi (1999). “The
Multiple Resource Constrained Project Scheduling Problem: A Breadth-First
Approach”, European Journal o f Operations Research, Vol. 112, p. 347 - 366.

Nowicki, E. and C. Smutnicld (1994). “A Decision Support System for the Resource
Constrained Project Scheduling Problem”, European Journal o f Operations
Research, Vol. 79, p. 183 - 195.

101

Ntuen, C. A., and E. H. Paric (1995). “ An Experiment in Scheduling and Planning of
Non-Structured Jobs: Lessons Learned from Artificial Intelligence and Operational
Research Toolbox”, European Journal o f Operational Research, Vol. 84, p. 96-115.

Park, S. J., J. W. Kim, and H. W. Kang (1996). “Heuristic Knowledge Representation of
Production Scheduling: An Integrated Modeling Approach”, Expert Systems with
Applications, Vol. 10, No. %, p. 325-339.

Patterson, J. H., R. Slowinski, F. B. Talbot, and J. Weglarz (1989). “An Algorithm for
General Class o f Precedence and Resource Constrained Scheduling Problems”,
Advances in Project Scheduling by R. Slowinski and J. Weglarz (Editors), Elsevier,
Amsterdam, p. 3 - 28.

Rao, S. S. (1979). Optimization: Theory and Applications, John Wiley and Sons, New
York, p. 533 - 551.

Roberts, Stephen M. (1992). “Human Skills - Keys to Effectiveness”, Cost Engineering,
Vol. 34, No. 2, p. 17-19.

Sauer, Jurgen and Ralph Bums (1997). “Knowledge-Based Scheduling Systems in
Industry and Medicine”, IEEE Expert, January-February 1997, p. 24-31.

Seibert, J. E., and G. W. Evans (1991). "Time-Constrained Resource Leveling", Journal
o f Construction Engineering and Management, Vol. 117, No. 3, p. 503-520.

Sipos, Andrew (1992). “Duration Analysis”, Cost Engineering, Vol. 34, No. 2, p. 9 - 14.

Slowinski, R., B. Soniewicki, and J. Weglarz (1994). “DSS for Multiobjective Project
Scheduling subject to Multiple-Category Resource Constraints”, European Journal
o f Operational Research, Vol. 79, p. 220 - 229.

Sprecher, A., and Drexl (1998). “Solving Multi-Mode Resource-Constrained Project
Scheduling Problems by a Simple, General and Powerful Sequencing Algorithm”,
European Journal o f Operational Research, Vol. 107, 431 - 450.

Sprecher, A., S. Hartmann, and A. Drexl (1997). “An Exact Algorithm for Project
Scheduing with Multiple Nodes”, OR Spektrum, Vol. 19,195 - 203.

Stinson, J. P., E. W. Davis, and B. M. Khumawala (1978). “Multiple Resource-
Constrained Scheduling Using Branch and Bound”, AIIE Transactions, Vol. 10, p.
252 - 259.

102

Sung, C. S., and S. K. Lim (1994). “A Project Activity Scheduling Problem with Net
Present Value Measure”, International Journal o f Production Economics, Vol. 37, p.
177- 187.

Tsang, E. P. K. (1995). “Scheduling Techniques - A Comparative Study”, B T Technology
Journal, Vol. 13, January 1995, p. 16-28.

Ulusoy, Gunduz and Linet Ozdamar (1989). “Heuristic Performance and
Network/Resource Characteristics in Resource-Constrained Project Scheduling”,
Journal o f Operational Research Society, Vol. 40, No. 12, p. 1145 - 1152.

Ulusoy, G. and L. Ozdamar (1994). “A Constraint-Based Perspective in Resource
Constrained Project Scheduling”, International Journal o f Production Research,
Vol. 32, No. 3, p. 693 - 705.

Wiers, V.C.S (1997). “A Review of the Applicability of OR and AI Scheduling
Techniques in Practice”, Omega, Vol. 25, No. 2, 0. 145-153.

Wu, R. W. K., and F. C. Hadipriono (1994). ‘Tuzzy Modus Ponens Deduction Technique
for Construction Scheduling”, Journal o f Construction Engineering and
Management, Vol. 120, No. 1, p. 162-179.

Wu, Y. and C. Li (1994). “Minimal Cost Project Networks: The Cut Set Parallel
Difference Method”, Omega, International Journal o f Management Science, Vol. 22,
No. 4, p. 401 - 407.

Yang, Kum-Khiong (1996). “Effects of Erroneous Estimation o f Activity Durations on
Scheduling and Dispatching a Single Project”, Decision Sciences, Vol. 27, No. 2, p.
255 - 290.

Yura, Kenji (1994). “Production Scheduling to Satisfy Worker’s Preferences for Days
Off and Overtime Under Due-Date Constraints”, International Journal o f Production
Economics, Vol. 33, p. 265 - 270.

103

APPENDIX A

Complete Heuristic for Dynamic Mapping Resource Units to Project Activities

A complete procedure that combines all the previously defined inputs and objectives to
perform dynamic mapping o f project resources is described below:

Initialize y /’* (variable that indicates which resource unit is mapped to which activity)
I f activities’ duration is resource dependent

compute di for each activity
Perform the unconstrained CPM to obtain EST and LST times

Initialize set of scheduled activities to zero
Initialize set o f finished activities to zero (set of activities completed at each tc)
Initialize set o f newl y added activities to zero (set o f activities just scheduled at each tc)
Initialize set o f in progress activities to zero (set of activities that are in progress at each
W
Initialize time to zero

If resource centralizing is selected
Set the centralizing weight ftrto user specified value
Set the centralizing direction to up (indicating the attempt to keep increasing...
.. the resource loading until the peak is reached)

For each project activity, calculate the number of immediate successors (numsucc)...
... and scale it by a maximum number o f immediate successors in the network

Until all the project activities are scheduled, DO
Uscheduled is nonempty

Update time to the next instant corresponding to the smallest...
.. activity duration fiom the scheduled set added to the current time
Update the set fin ished to include all activities that are completed...
. . .by the newly updated time
Reset the set newly added to zero
Update the set in progress to filter out the finished activities
Update the precedence relationships to exclude the finished activities...
.. .from in progress and allow the successors to be scheduled

At new time compose the candidate set of candidate activities...
.. whose predecessors have just finished at time

104

I f direction is set to up
Schedule j i p activities from the cand set
Update the multiplier &r(to a smaller value as previously discussed)

I f peak flag, x becomes one
Modify the optimizing constraints that force the non-decrease...
.. in resource loading
Reset the weight to its original user selected value
Reset the direction to down

else
Schedule_down the activities without additional constraints forcing the...
.. .non-decrease in resource utilization

Reset the newly added set and fill it with activities scheduled at time

For each o f the resource types starting from type one:
the resource units o f the current type optimizing the user...

.. selected or formulated objective
Update and set it to one if unit k is mapped to activity i.

If activities’ duration is resource dependent
Update duration o f each activity to the longest time any o f the...
.. .mapped resource units would take to complete its task on that activity

Update the scheduled set
Update the in_progress activity set to include the newly added activities
Update the precedence relationship to account for newly added activities

End DO

105

APPENDIX B

OVERVIEW OF PROMAP (PROJECT RESOURCE MAPPER) SOFTWARE

To run PROMAP, type promap at the Matlab prompt. A menu window will appear as

shown in Figure B l, with three main menu titles; Project, Run, and Graph.

} ’ f U) M /*•- f ' f ‘ [I 11 f * r I { {# • , (n J f » f M . J p I » ♦ ' f

Figure B l. PROMAP's Main Menu.

The Project menu has the following menu items: New Project. Open Project, Save

Project, and Close.

Figure B2. Project Menu Items.

Just like in conventional software. New Project will prompt the user to enter the data for a

newly created project. Open Project will open a file that contains a previously stored

106

project data. Save Project will save the basic data o f the currently opened or created

project.

By selecting New Project, a new window will appear prompting the user to enter the

basic project data: number o f activities, number o f resource types, number o f units o f

each resource type available for the project, activity requirements for the number o f units

o f each type, and activity precedence relations. The window is shown in Figure B3.

Figure B3. Window for Entering the Basic Project Data.

Once the user enters the number o f activities and resource types, they appear in the list

boxes on the left hand side o f the window as shown in Figure B4.

107

Resource Type 1
Resource Type 2
Resouce Type 3

Acttv«y2
AcüvSy 3
Activi^4
Activty 5
Activiy 6
Activity 7
Activity 8
Activfty 9
Activity 10
Activgyll
Activ#y12
Activity 13
Activity 14
ActivËy 15
Activ4y 16
Activiy 17
ActMty 18

Figure B4. Use of List Boxes to Display Project Activities and Resource Types.

Each time the user enters the number o f units available o f each type, the number on the

left o f the edit text box increases by one, as shown in Figure B5.

Figure B5. Text Box for Entering Availability of Resource Types.

Activity requirements and precedences are entered in the same fashion, except that there

is a pull-down menu provided to target specific activities when entering the precedences

as shown in Figure 86.

108

RMOutceTypel
Retouce Type 2
Retoutce Type 3

Aciiv«y2
A cM y3
Activiy 4
AcdvAy5
Activiy 6
A ctivé?
AcüviySAdKAyg
A cW ylO
A c M y ll
Activiy12
A cW y13
Adiv*y14
Acthn^lS
A dM b,16
ActKnty 17
Adiv#y18

Figure B6. Pull-Down Menu that Facilitates the Entering of Activity Precedence

Relations.

Once all the data has been entered the user should press Accept All and Exit the window.

As soon as the window in Figures B3 through B6 closes, a new window appears as shown

in Figure B7.

109

AcWyl
AcMy2
Adivi|y3

4

Ac«viy6
Acüviy7
ActiviyS
Activity 9
Activity 10
Activiy 11
Activiy12
Activity 13
Activity 14
Activity 15
Activity 16
Activilyl?
Activity 18

Figure B7. Window for Entering Functional Dependencies among Resources.

The list boxes on top o f the window display activities, resource types, and the number o f

resource units associated with each highlighted resource type. Below the list boxes are the

text edit boxes which will either display the activities and resources that the user has

highlighted or enable the user to manually enter the inputs. Reference Activity is simply

the activity i with respect to which dependencies are inputted. A more than one, and up

to the size o f / activities may be entered. The user then must select dependent and driver

resources in the middle third o f the window. If no driver resources are specified, the

110

program assumes that there either is no interaction, or that the currently entered resource

is a driver itself (and thus caimot depend on any other resources).

The lower third o f the window is where the final project data are entered. The first pull

down menu displays four items: Varying Resource Time Requirements. Desired

Resource Start Time. Resource Interval Availability (which refers to the Resource Time

Window), and Fixed Activity Duration. The choices are shown in Figure B8.

Figure B8. Pull-Down Menu Items for Entering Specific Resource Data.

Varying Resource Time Requirements refers to / / ’ 's. In cases when all the dependencies

are nonexistent or implicit, the user will resort to this option. Desired Resource Start

Time refers to r / ’*. When a single number is entered for a Desired Start Time, it is then

assumed that a=\ and b=2. Otherwise, the project manager may enter the parameters as

[a, b,] as a vector. Resource Interval Availability requires the user to enter a two

dimensional vector in the form o f "[t£o. fffZ/ , where t ^ o tf{j refer to the strict time

box constraints. F ixed Activity Duration is a feature that pertains only to activities and

assumes that activity duration is independent o f which resource units are mapped to it.

This feature is added to facilitate traditional project scheduling where the manager

111

estimates activity durations prior to resource assignment. At any time the user may enter

any number as a fuzzy number by typing Juz(a,b,c,d) where a, b, c, and d, are the edges

o f a tr^ezoidal fuzzy number. The subroutine is smart enough to recognize a triangular

fuzzy number in cases when the user enters Juz(a,b,c). The number is defiizzified using a

formula proposed by Lee and Li (1988);

_ (—o ' —b~ +c^ + —üb + cdy
3(-a - b + c + d)

Figure B9 displays the items under the lower pull-down menu. They actually enable the

user to enter the Time Dependencies, Preferences, and Costs as defined in the

methodology. User may enter any number o f the dependencies, preferences or costs and

they will be evaluated and compiled to determine the coefficients of the objective

function.

Figure B9. Pull-Down Menu Items.

Once all the project data has been entered, it may be saved before scheduling or for later

use. The data saved by Save Project or retrieved by Open Project include the number o f

112

activities and resource types, project availability for each o f the resource types,

precedence relations among activities, activity requirements for the units o f each resource

type, and basic dependencies, costs, preferences, and time constraints as previously user-

defined.

Close Item under the Project Menu will terminate the program.

The menu Run has seven items: Schedule, Optimizing Objectives, Set Centralizing

Importance Level, Map and Centralize, Centralize Only, and M ap Only. Schedule simply

schedules the activities, and depending on the user choice also centralizes and or maps

the resources to activities. The menu items under the Run are shown in Figure BIO.

Figure BIO. Run Menu Items.

When selected. Optimizing Objectives invokes a list dialog box which enables the user to

select one of the four objectives shown in Figure B11 and as defined in the methodology:

Time Effectiveness, Preferences, Costs, and Resource Availability. Alternatively, the user

113

may also select a Composite Utility Function^ which will open another input dialog box

and prompt thé user to enter the formula for the utility.

Coniposke UdKy Function

Figure B l l . Choices of User Selected Objectives according to which Resources are

to be Mapped.

The utility function input dialog box is shown in Figure B12. The user is cautioned that

the variable pertaining to functional time dependencies must be called timedep, the

variable for preferences must be entered as pref, and the other two variables are cost and

starttime.

114

I o 1 11 p (I . I U - I I t i 11 (y I I j r I r 111 I r I

Figure B12. Dialog Box for Entering Optimizing Utility Functions.

An example utility function is shown in Figure B12. The formula shows that the time

effectiveness will be the optimizing objective for all resource types, except for the type

two which, in addition, also requires the optimization of costs, kronecker is a subroutine,

named after Kronecker's Delta Function (Bracewell, 1978) and used in this research to

compare the current resource type to the input, and if they are equal, the subroutine

returns the value o f one, otherwise it becomes zero. Thus, the third part o f the utility is

nonzero only during the mapping of resource type two. To facilitate for resource

preferences, a project manager may want to consider incorporating them into the utility,

but only for the first 30 time units when timing is not o f exclusive importance. Thus, the

function interval([from, to], time) is used to filter out those additive components o f the

utility that are not associated with the current time, that is, current decision instance.

The next menu item under Run is Set Centralizing Importance Level. This, when selected

prompts the user to enter the weight, €t7 for balancing the objective function when

scheduling activities. Arwas also discussed in methodology, and the dialog box is shown

in Figure B13. If omitted, the default value that gy takes is zero.

115

Figure B13. Dialog Box for Entering Resource Centralizing Level.

By selecting the Resource Types to Centralize, the program invokes another list dialog

box that lists all the resource types and asks the user to select those whose loading the

program should attempt to centralize. In other words, the user is asked to define the

elements o f the set S, which was discussed in the methodology. The list box is shown in

Figure E l4.

Figure B14. List Box for Selection of Resource Types to be Centralized.

116

The final three items under the menu Run are Map and Centralize, Centralize Only, and

Map Only. The first option will dynamically attempt to first, at each decision instance tc,

schedule activities such that the resource loading is centralized, and them map the

resources units to each o f the newly scheduled activities. The second option only

attempts to centralize the resource utilization and allocate enough resource units, but it

does not perform the discrimination and mapping o f distinct units to scheduled activities.

This speeds up the scheduling significantly, and is useful in cases when all the units are

generic, indistinguishable, and without specific costs, preferences, or dependencies. The

last option only mtqis the resources to activities but skips the attempt to centralize their

loading by suppressing &rto zero.

Finally, the menu title Graph offers the graphical solutions o f the scheduled project. The

items under Graph are displayed in Figure B15.

I fi» M . j ppf t

Figure BIS. Items under Graph Menu.

Gantt draws a traditional Gantt chart of a scheduled project as shown in Figure B16.

117

Figure B16. Example Gantt Chart by PROMAP.

Resource Loading draws the loading graph of each o f the resource types. An example o f

a somewhat centralized resource loading graph is shown in Figure B17.

118

Figure B17. Example o f a Resource Loading Graph.

Resource-Activity Grid displays a grid chart for each o f the resource types, showing

PROMAP’s recommendations on which resource unit o f each type should be assigned to

which project activity. An example o f resource-activity grid graph is shown in Figure

B18. It should be noted that grt^h in Figure B18 conveys the same type of information as

the network presented previously in Figure 3. For example. Figure B18 shows that the

project activity 11 has three units of type 2 assigned to it. Those resource units are: unit 1,

unit 2, and unit 6. Activity 13, for example, has resource units 3 and 5 assigned to it.

119

Figure B18. Example of Resource-Activity Mapping Grid.

Unit Utilization shows the expected time each resource unit is expected to be employed

as a percentage o f the total project duration. An example bar plot of unit utilization for a

particular resource type is shown in Figure B19.

120

Figure B19. Resource Units UtUizntion Bar Chart.

The bottom bars indicate the total time it takes each unit to complete all o f its own project

tasks. The upper bars indicate the total additional time a unit may be locked in o r engaged

in an activity by waiting for other units to finish their tasks. In other words, the upper bars

indicate the total resource idle time during which it cannot be reassigned to other

activities because it is blocked waiting for other units to finish their own portions o f

work. This information is very useful in non-preemptive scheduling as assumed in this

study, as well as in contract employment o f resources.

Finally, we may easily monitor the cost of each resource unit as a result of its mapping to

various activities. Figure B20 shows the total project cost for each unit o f resource type

121

two. It should be noted that PROMAP displays similar plots for units o f all resource

types involved in the project.

Figure B20. Example Cost Chart for Units of a Project Resource Type.

122

APPENDIX C

EXAMPLES OF PROMAP PROJECT INPUT AND OUTPUT

The two example projects in this section illustrate the power and capabilities of

PROMAP. Both examples provide the full format and structure o f the data input, as well

as several output scenarios, each reflecting a result o f a different scheduling-mapping

objective. Both examples are heavily modified and extended fi"om Doucette (1998). The

first project consists o f 18 activities, four resource types, and considers time-effective

capabilities, costs, and preferences as resource characteristics used for mapping decisions.

The second project has 22 activities, three resource types, and considers time-effective

capabilities, preferences, and resource availability as potential mapping objective

components. The input for both projects are classified and tabulated according to the

above characteristics, and ordered with respect to resource interdependencies (that is,

lower indexed resource data is displayed first). The first table for each project represents

basic project data, such as activity names, activity precedence relations, resource types,

availability of each resource type, and activity needs with respect to each resource type or

group. Each subsequent table represents specific characteristics o f each resource group.

The output o f each project includes a resource-activity mapping grid which provides a

recommendation o f which resource units should be assigned to which activities. Afier

each run, the PROMAP provides as many of such grid plots as there are resource groups

or types in a project. The output also includes a Gantt chart showing the actual schedule

123

o f all project activities. Further, the program’s output provides traditional resource

loading graphs which are dynamic indicators of resource usage for each resource group.

An overall resource utilization bar chart for each resource unit as a percentage of the

overall project duration is also tracked and available. Finally, the output also displays

relative total cost bar charts o f each resource unit based on its utilization.

Tables C l and C14 display basic project data for the two projects. Tables C1-C13

illustrate resource characteristics and their interdependencies for the first project. Tables

C15-C23 display resource characteristics and their interdependencies for the second

fictitious project.

124

EXAMPLE PROJECT #1: INPUT DATA

Table Cl. Basic Project #1 Data (Partially adopted from Doucette, 1998)
Typel Type 2 Type 3 Type 4

Utility Workers Contractor Workers Carpenters Onice Staff (including counsels)
Act.# Act. Name Predecessors Max: 4 Max: 6 Max: 5 Max: 4

1 Customer selections - 1(sales)
2 Write specifications 1 3(specs)
3 Write contract 2 2(one cousel)
4 Detail Plans 2 3(drafiing)
5 Excavation 5 2(excavation) 2
6 Footing/foundation 5 4(excavation) 1
7 Water service 6 3(water) 1
8 Electrical service 6 2(elcctric) 1
9 Wood framing 7,8 5(framing) 1
10 Roofing 7,8 3(fiaming) 1
11 Plumbing lines 7,8 2(water) 3(mechanical) 2 1
12 Furnace and A/C 7,8 3(mechanical) 1
13 Electrical wiring 7,8 2(electric) 2(electric) 1
14 Wallboard 9,10,11,12,13, 14 3(wallboard) 1
15 Stairway 9,10, 11, 12, 13, 14 2 2(finish) 1
16 Painting 14,15 4(painting) 1
17 Trim and Final Corrections 16 2 2 2
18 Contract and Admin. Closure 17 2

Table C2. Time-Effective Capabilities For Resource Type 1.
Utility Worker Utility Worker Utility Worker Utility Worker

Act. No. Act. Name 1 (water) 2(water, electric) 3(electric, water) 4(electric, water)
1 Gust, select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/found.
7 Water service 1 0.6 0.6 1
8 Elect, service - 1 1 1
9 Wood flaming
10 Roofing
11 Plumb, lines 2.5 3 3 3
12 Furnace & A/C
13 Electric, wiring - 2 2 2
14 Wallboard
15 Stairway
16 Painting
17 Trim and Final

Corrections
18 Contract and

Admin. Closure

Table C3. Time-Effective Capabilities For Resource Type 2
Contractor Contractor Contractor Contractor Contractor Contractor

Act. No. A ct Name l(excav.,
mech.)

2(excav.,
mech.)

3(excav.,
paint., mech.)

4(excav.,
electr., paint.)

5(electr.,
excav.)

6(paint.,mech
,, electr.)

1 Gust, select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation 2 2 2 2 2.1 3
6 Footing/found. 7 5 7 7 7.2 7.4
7 Water service
8 Elect, service
9 Wood framing
10 Roofing
11 Plumb, lines

+2)^:;

+3)-ylf

+2).y;-;
^ 4 = 0 : ;
+2)-y!-;

+l.5)-y|;

+l-5)-y!f

+3.8).y:f

m 4=(/:r
+2.6).y;;

m ,= (C ;

+1.5)7%'

r7)2=(/:f

+1.5)7%'

(Th=itV̂
+3.8)7%'

+2.6)7%;

m,=(f%'

+1)7%;

+1)7%'

(ThHtV^
+3)7%;

^4=0%;

+2)7%;
12 Furnace & A/C 3 2.5 3 3.5 3.5 3.1

N>
~sl

N)
00

Time-Effect. Capab. For
Resource Type 2

Contractor Contractor Contractor Contractor Contractor Contractor

Act. No. Act Name 1 (excav.,
mech.)

2(excav.,
mech.)

3(excav.,
paint., mech.)

4(excav.,
electr., paint.)

S(electr.,
excav.)

6(paint.,mec
h., electr.)

13 Electric.
wiring

(Tjs=oi’;
+ 2)7 :

+2)-yi’/

+0.5).y;-/

i-o.syy',’;

+2.9).yK

+2.9).yl^

+0.5).yJ'/

+0.5).y|i^

+2)-y.j

+2).y,\'

+0.5).y;/

+0.5).y;^'

+2.9).y:

+2.9).y|':

^ 7= 0:3
+0.4).y|'/

m ,=(f|3'
+0.4).y|'/

(TJs=0','̂
+ 2)y |!

+ 2)7 |f

m 7=(C '
+0.5).y;/

+0.5)-y|i^

+2.2).y;j

+2.2).y|^:

+0.2).yl/

m ,= (c ;
+0.2).yJi^

14 Wallboard
15 Stairway 3 3 3 3 3 3
16 Painting 17 14 13 13 13 17
17 Trim and Final

Corrections
7 7 7 7 7 7

18 Contract and
Admin.
Closure

Table C4. Time-Effective Capabilities For Resource Type 3
Time-Effect. Capab. For
Resource Type 3

Carpenter Carpenter Carpenter Carpenter Carpenter

Act. No. A ct Name 1 (frame, wall) 2 (frame,
wall)

3(flnisb, frame) 4(flnish,
frame)

5(wall, frame)

1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/found.
7 Water service
8 Elect, service
9 Wood framing 17 20 22 21 21
10 Roofing 7 7 6 6 7

N)
VO

wO

Time-Effect. Capab. For
Resource Type 3

Carpenter Carpenter Carpenter Carpenter Carpenter

A ct No. A ct Name 1 (frame, wall) 2 (frame, wall) 3(finish, frame) 4(finlsh,
frame)

5(wall, frame)

11 Plumb, lines m ,= / ,Y d (T)rt]'ri\
+0.15).y,V +0.15).y,Y +0.15)),,Y +0.15)),,V +0.15).),,:,'

(Th=t]t-iy (Th=t]^i\ (Th=t]^i\
+0.15)y,V +0.15)y[;' +0.15)y,V +0.15).y,Y

(Th=t]fi\ (Th=t]ti\ m ,= /,Y '(i
+0.15).yfi^ +O.I5)y,V +0.15).y,V +0.15).y,V +0.15).),;,:

(1 (1

+0.15).y,V +0.15) y y +0.15).y,V +0.15).y,V +0.15).y,V
(Th=t]fi\ (Th=t]fi\ (T)s-t]f(\

+0.15).yfi* +0.15)yfi* +0.15).yfj* +0.15)yfi* +0.15)y;;:

r7)6=/,T (1+0.1

+O.I5).y,Y +0.15).),,Y +0.15)y,Y +0.15).yf;* 5)y,Y
12 Fum. & A/C
13 Electric.

wiring
14 Wallboard 6 7 7 7 7
15 Stairway 5 5 4 4 6
16 Painting

w

Time-Effect. Capab. For
Resource Type 3

Carpenter Carpenter Carpenter Carpenter Carpenter

Act. No. A ct Name 1 (frame, wall) 2 (frame,
wall)

3(finish, frame) 4(finish,
frame)

5(wall, frame)

17 Trim and Final
Corrections

m 7=o,V (T)n=it]^

+1)7:;'

m ,= (/ ,y

+i)-y,V +1)7,V +1)7:;'

+ i)y,V +1)7:;' +1)7:;'

m ,o = o y m ,o = (/y (TK={t]f
+i)y ,Y + i)y ,V +1)7,V +1)7:;'

m „ = (f ,y
+0.5)y?)* +0.5).yf;' +0.5)-y?^* +0.5)7:;' +O.S).y:f

(T)n=it]f (T)n=it]f
+ o .5)),y +0.5).yy +0.5).y,Y +0.5).y,V +0.5).y,T

18 Contract and
Admin.
Closure

Table C5. Time-Efiectlve Capabilities For Resource Type 4
Time-EfFect. Capab. For
Resource Type 4

Office Staff Office Staff Office Staff Office Staff

Act
No.

Act Name. l(spec., draft) 2(spec.y draft) 3(spec., draft) 4(couns., sales)

1 Cust. Select. 7 7 7 7
2 Write specs 1 1.5 1 4
3 Write contract 0.8
4 Detail Plans 6 4 5 II
5 Excavation
6 Footing/

Foundation

(T) ,H t ï -^Ayyl*
+0.15)y^'

m 3 = (fr+ i.4))'r
(TKHtl’̂ +OA)yl^

(V r t Y i m . i y y Y

■K).osyyl‘

(Th=itl'^+\A)y/

(T h H t l ^ n j y y l ^
1 Water service
8 Electric, service
9 Wood framing
10 Roofing
11 Plumb, lines
12 Fum. & A/C
13 Electric, wiring

WK)

ww

Time-Effect. Capab. For Office Staff Office Staff Office Staff Office Staff
Resource Type 4
Act No. Act Name l(spec., draft) 2(spec., draft) 3(spec., draft) 4(couns., sales)

14 Wallboard
15 Stairway
16 Painting
17 Trim and Final

Corrections 1+0.25).),:;'
m r o y + o .2) .) ,y
rrA=(ty+o.3).),y

m ,=(f,y+o.i)\yy
rrA=(ty+o.25).),y

rr;,=(/f;'+2).),,V

m ,= (ty+ 2) y
+0.2).),,y r?>,=(/y+o.4).),,v ^ ,= (/n + 0 .4).),y (7),=(ry+2).),y

m,=(fïi'+o.4).y,y rrA=(/;;'+1.26).),;;' m ,=(ry+o.4).),y r7>,o=(/y+2).),y

m r (fy + o .4)) /y m ,=(ry+i.2).),y r7),=(ty+i.2).),y r7)„=(/y+2).),y

m r(fy + o .3).) ,y r7>,o=(/y+i.o5).),y (7),o=(/y+i.o5).),y m ,2 = o y + 2)y y
m ,=(/y+o.2).),y r7)„= (/y+ i.io)),y m „ = (/y + i.io).v y f7)„=(r;;'+l.5).y;;'

m ,o=oy+o.35)),y ('7>„=oy+i.i).),y

m ,r (/ y + i . i) y y
18 Contract and

Admin. Closure
2 3 3 2

PREFERENCES

Table C6. Preferences for Resource Type 1.
Utility Worker Utility Worker Utility Worker Utility Worker

Act. No. Act Name 1 (water) 2(water, electric) 3(electric, water) 4(electric, water)
1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/

Foundation
7 Water service 8 6 7 8
8 Electric, service 5 6 7 6
9 Wood framing
10 Roofing
II Plumb, lines 8 8 7 7
12 Fum. & A/C 5 7 6 7
13 Electr. wiring
14 Wallboard
15 Stairway
16 Painting
17 Trim and Final

Corrections
18 Contract & Admin.

Clos.

w

Table C7. Preferences for Resource Type 2.
Contractor Contractor Contractor Contractor Contractor Contractor

Act No. Act Name l(excav.,
mech.)

2(excav.,
mech.),

3(excav,,
paint., mech.)

4(excav.,
electr., paint.)

5(electr.,
excav.)

6(paint.,mec
h, electr.)

1 Cost. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation 8 8 6 6 7 3
6 Footing/

Foundation
8 7 6 6 6 3

7 Water service
8 Electric.

service
9 Wood framing
10 Roofing
11 Plumb, lines 7 6 7y:,' 5

12 Fum. & A/C 6 6 4 4 5 6

w
LA

w
ON

Preferences for Resource Type
2

Contractor Contractor Contractor Contractor Contractor Contractor

Act No. Act Name 1 (excav.,
mech.)

2(excav.,
mech.)

3(excav.,
paint., mech.)

4(excav.,
electr., paint.)

5(electr.,
excav.)

6(paint.,mec
h, electr.)

13 Electr. wiring 3 4 3 (^s=2-y\i

r^7=8-y|f

r ^ .= 3 y ,'

r^3= 7'),%

r^4= 8y%

(^2=6-y\'^

r^ ,= 8-y.V
7y%

14 Wallboard
15 Stairway 7 6 3 4 2 8
16 Painting 2 2 9 6 5 8
17 Trim and

Final
Corrections

8 4 4 1 8 9

18 Contract &
Admin. Clos.

Table C8. Preferences for Resource Type 3.
Carpenter Carpenter Carpenter Carpenter Carpenter

Act. No. Act Name 1 (frame, wall) 2 (frame, wall) 3(finisli, frame) 4(finish, frame) 5(wall, frame)
1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/

Foundation
7 Water service
8 Electric, service
9 Wood framing 8 8 6 6 7
10 Roofing 7 7 8 8 5
11 Plumb, lines r ^ ,= 3 y ;;' r ^ .= 2-yJi' (^ \ = Sfn ' (^ ,= 4y (^ ^ = l y \ l

(^ 2= 2.y,Y (< ^ 2= ^ y r^2= 7.),;;'
r^ 3= 8 .y ff (•^3= 7-y r^3= 7-y?f

r^4= (^ 4= 2_v f^ 4= 7f%<

(•̂ 95= 4y;f (•^5= (•^5= '^ y]x
r^6=4-y,V (^6= 3-y

(^1= 47 I' (•^7=4-y|;' (̂ =̂̂ 4̂ y\'l <"^7= 4%y (^ 7= 4->'|','

57 If r^8= 5-y|f 5 y If (•^8= 5-y f-^7= S-J'lf

('•^9= 4-ylf r^9= 4-y|f ("^9= 4 y If (^ 9 = 4 y (^1= 4) /If

(•^ 10= 4 y |f (^w= 4-y|f (•^ 10= 4-y
4 (^1= 4) ' |f

w
>4

00

Preferences for Resource Type 3 Carpenter Carpenter Carpenter Carpenter Carpenter
Act No. Act. Name l(frame, wall) 2 (frame, wall) 3(finlsh, frame) 4(finish, frame) S(wall, frame)

12 Fum. & A/C
12 Fum. & A/C
14 Wallboard 5 5 5 6 8
IS Stairway •^11" •^8= 12yfi' •^8= Gy,V

(^,2= (^12= 8-^?/ r ^ ,= 8y%: r^9=8y,Y

(^n= 2-y,V (^u=2-yli 8y%' r^.o=2yfi^ ('•^10= 2y%f

r^u=2-y,V (^5,4= lOy.V G^1.= 2y,V (49,,=

r^.5=4-j',v t9 w = 4y,Y (^i2~ 2yfi* (•^12= 4y,V
r^,6= G f.y G^i6= Gy%* r^.3= i>',Y (^M= Gy%*

16 Painting
17 Trim and Final

Corrections
(^18= 8y^;*

f'9,7=G.y%'

(^M= 8-yn

('•^17= Gy%)

8 y y
(•^17= Gy,V

A9u= 8 y y
Gyy Gy,Y (■-̂ 19= Gyfy" (49,9= Gy;r

18 Contract and
Admin. Closure

Table C9. Preferences for Resource Type 4.
Office Staff Office Staff Office Staff Office Staff

A ct No. A ct Name 1 (spec.,draft) 2(spec.,draft) 3(spec.,draft) 4(couns.,sales)
1 Cust. Select. 4 4 4 8
2 Write specs 7 7 6 3
3 Write contract 5 4 4 6
4 Detail Plans 7 6 7 3
5 Excavation 5 4 4 4
6 Footing/

Foundation

(^i= 5^6*

('•^2= 4y*^ r^2=

r^4= 2-y l‘
7 Water service 5 4 5 6
8 Electric, service 5 4 5 6
9 Wood framing 8 7 7 8
10 Roofing 8 7 7 8
11 Plumb, lines
12 Fum. & A/C
13 Electric, wiring
14 Wallboard
15 Stairway
16 Painting

ê

Preferences for Resource
Type 4

Office Staff Office Staff Office Staff Office Staff

Act No. Act Name l(spec.,draft) 2(spec.ydraft) 3(spec.,draft) 4(couns.,sales)
17 Trim and Final (".^5= 8-yfi' r^5=2-y,V

Corrections
r^5=2y,Y r^ .= i-y.V

(^1= 6y,V r^7= 2 y y
r ^ = 4 - y y f^8=2-yfi‘

^•^8= (^ < r 6 y ,ï A^9= S'fw
('•^10= 6-y'i' ("^,0=

18 Contract and
Admin. Closure

5 7 7 9

Table CIO. Costs for Resource Type 1.
Costs for Resource Type I Utility Worker Utility Worker Utility Worker Utility Worker

A ct No. A ct Name 1 (water) 2(water, electric) 3(electric, water) 4(electric, water)
1 Cust.. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/

Foundation
7 Water service 4 5 5 5
8 Electric, service 6 5 6 5
9 Wood framing
10 Roofing
II Plumb, lines 4 5 5 5
12 Fum. & A/C
13 Electr. wiring 6 5 6 5
14 Wallboard
15 Stairway
16 Painting
17 Trim and Final

Corrections
18 Contract & Admin.

Clos.

Table Cl 1. Costs for Resource Type 2.
Contractor Contractor Contractor Contractor Contractor Contract

or
AçL No. Act. Name 1 (excav.,

mech.)
2(excav.,
mech.)

3(excav.,
paint., mech.)

4(excav„
electr., paint.)

5(electr.,
excav.)

6(paint.,me
ch, electr.)

1 Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation 4 4 5 5 6 8
6 Footing/

Foundation
4 4 6 5 6 8

7 Water service
8 Electric.

service
9 Wood

framing
10 Roofing
11 Plumb, lines

lo y if
(0 \= ^ ’yu
(02= lOylf

(0y=
(04= 14.yi;

(02= 12-rlf

(02=
(04=

(0x=

(02=
(02=
(04= 18')':';

(0r 13y:','

(02= 14')''n
(02= I6y i;
(04= 18-y',;

(0^=
10f%'
(02 =

(02 =
11)^;
(04=
13):;

Costs for Resource Type 2 Contractor Contractor Contractor Contractor Contractor Contract
or

Act No. Act Name 1 (excav.,
mech.) .

2(excav.,
mech.)

3(excav.,
paint., mech.)

4(excav.,
electr., paint.)

5(electr.,
excav.)

6(paint.,me
ch, electr.)

12 Fum. & A/C 6 4 4 7 8 8
13 Electr. wiring
14 Wallboard 7 6 7 4 5 4
15 Stairway 7 6 6 4 5 6
16 Painting 9 7 4 6 7 5
17 Trim and

Final
Corrections

5 5 4 4 4 4

18 Contract &
Admin. Clos.

t

Table C l2. Costs for Resource Type 3.
Carpenter Carpenter Carpenter Carpenter Carpenter

Act No. Act Name 1 (frame, wall) 2 (frame, wall) 3(finish, frame) 4(flnish, frame) 5(wall, frame)
! Cust. Select.
2 Write specs
3 Write contract
4 Detail Plans
5 Excavation
6 Footing/

Foundation
7 Water service
8 Electric, service
9 Wood framing 7 3 4 6 5
10 Roofing 4 8 6 5 4
11 Plumb, lines r^,=10-y,Y (0i= i3-)',y (0^= 15)',y (01= 14-)',y

r^2= 12)',y r^2= i2 y ,y (02= i4-)',y (02= 13y%:

(^3= M y" r^3= 7 y y (03= 14-yy (03= i 6 y y (03= 15-)'y

r^4= 13-y,V (^4= 14-y,V (04= l6-y,V (04= i s y .y (04= n -y .y

(^4= 14)',y (04= 16)',V (04= 18)',y (04= n -y .y

r^4= i3y;r f^4= 16 y y (04= is -y y (04= n - y y

Costs for Resource Type 3 Carpenter Carpenter Carpenter Carpenter Carpenter
Act. No. Act. Name 1 (frame, wall) 2 (frame, wall) 3(finlsh, frame) 4(finlsh, frame) 5(wall, frame)

12 Fum. & A/C
13 Electr. wiring
14 Wallboard 5 8 4 4 4
15 Stairway 7 7 7 4 6
16 Painting
17 Trim and Final

Corrections
5 5 5 5 5

18 Contract &
Admin. Clos.

Table Cl3. Costs for Resource Type 4.
Costs for Resource Type 4 Office Staff Office Staff Office Staff Office Staff

Act. No. A ct Name l(spec., draft) 2(spec., draft) 3(spec., draft) 4(couns., sales)
1 Cust. Select. 8 7 8 6
2 Write specs 5 5 5 5
3 Write contract 7 6 6 6
4 Detail Plans 4 6 4 7
5 Excavation 6 7 7
6 Footing/Foundation 4 3 3 5
7 Water service 4 3 4 6
8 Electric, service 4 3 4 6
9 Wood framing 4 3 4 6
10 Roofing 4 3 4 6
11 Plumb, lines 4 3 4 6
12 Fum. & A/C 4 3 4 6
13 Electr. wiring 4 3 4 6
14 Wallboard 4 3 4 6
15 Stairway 4 3 4 6
16 Painting 4 3 4 6
17 Trim and Final

Corrections
6 7 5 6

18 Contract & Admin.
Clos.

6 6 6 6

EXAMPLE PROJECT #1: OUTPUT

As previously described, PROMAJ*’s output is displayed through five different plots;

resource-activity mapping grid, total resource utilization bar charts, total relative

resource cost charts, and more traditional activity Gantt chart, and resource loading

graphs.

For the same project, the outputs may vary depending on project managers pre-specified

input parameters, such as his/her composite objective or utility function, and or intention

to only map resources, only centralize their resource loading graphs, or perform both

mapping and centralization simultaneously.

For example, consider a scenario where a project manager would be interested in

mapping resource units to project activities, but attempting to centralize the loading graph

o f only resource type one. The mapping strategy would be to assign all resource units to

the most adequate activities based on resource time-effective capabilities. In addition to

that, the project manager might also want to put emphasis on satisfying project

personnel’s preferences, but only for the first 30 time units o f the project (since the timely

project completion becomes crucial at any later time). Finally, since resource type or

group one was selected to have its resource loading graph centralized (or balanced), it is

likely that this resource type will be o f the greatest budgetary consideration. Thus, the

manager’s mapping strategy might also include cost considerations.

147

The actual input reflecting the above strategy is shown in Figure C l.

f . o i i i p r » . l U I I f i l i l V f u n < h t > n

-tmedep *7"pfeMnteiva%0.30Uime) - 10*cost1cronecker(reshipe,1)

Figure C l. Example of a Project Manager’s Mapping Strategy Input.

As illustrated in Figure C l, the additive objective function may also include subjective

weighting coefficients for some o f its components. In the above example, the preferences

component was multiplied by seven, while the cost component was multiplied by a factor

o f 10.

The Centralizing Importance Level, that is the weight t(/, was arbitrarily set to 10,000.

The five types o f output charts are displayed in Figure C2 through B18. The first

displayed are resource-activity mapping grids:

148

Figure C2. Resource-Activity Mapping Grid for the Units of Resource Type 1.

Figure C3. Resource-Activity Mapping Grid for the Units of Resource Type 2.

149

Figure C4. Resource-Activity Mapping Grid for the Units of Resource Type 3.

Figure C5. Resource-Activity Mapping Grid for the Units of Resource Type 4.

150

Next, the project manager may be interested in the total time utilization o f each project

resource unit as shown in Figure C6-C9. Each bar indicates the total utilization o f a

specific resource unit as a percentage of the total project duration. The blue colored

portion o f a bar on the bottom (the darker one, i f viewed in black and white mode) is the

percentage o f time the unit will spend woridng on its own tasks. The red colored portion

o f a bar (the lighter area) on top indicates any additional project time that the particular

resource unit is engaged in activities by waiting on other units to finish their portions o f

tasks.

Figure C6. Percentage o f Resource Units Utilization for Type 1.

151

Figure C7. Percentage o f Resource Units Utilization for Type 2.

Figure C8. Percentage of Resource Units Utilization for Type 3.

152

Figure C9. Percentage of Resource Units Utilization for Type 4.

The next set o f output charts shown in Figures C10-C13 are the relative resource costs.

153

Figure CIO. Total Relative Resource Units Costs for Resource Type 1.

Figure C ll. Total Relative Resource Units Costs for Resource Type 2.

154

Figure C12. Total Relative Resource Units Costs for Resource Type 3.

Figure €13. Total Relative Resource Units Costs for Resource Type 4.

155

The last two types o f graphs are traditional ones in project schedules: resource loading

graphs and activity Gantt chart.

Figure C14. Resource Loading Graph for Resource Type 1.

156

Figure C l5. Resource Loading Graph for Resource Type 2.

Figure C16. Resource Loading Graph for Resource Type 3.

157

Figure C l 7. Resource Loading Graph for Resource Type 4.

Figure C18. Project Activity Gantt Chart.

158

Resource centralization and attempting to satisfy resource preferences may enhance

personnel’s morale and motivation, but could also affect project’s duration. Assume that

the previous project is to be scheduled and resources mapped, but with a much simplified

strategy: without any centralization and considering resource time capabilities only. The

resulting output Gantt chart in Figure C l9 indicates that, as a result o f this relaxation, the

project will finish two time units early.

Figure C19. Project Gantt Chart After Simplifying the Scheduling and Mapping
Strategies.

Since we have “turned o ff’ the centralization feature, the resource loading graph o f type

1, now may, and as Figure C20 indicates, will have depression regions.

159

Figure C20. Resource Type 1 loading Graph After Simplifying the Scheduling and
Mapping Strategies.

In a more extreme case, where a project manager wishes to satisfy resource preferences

with a much greater bias than their capabilities, the project duration and resource-activity

mapping may produce significantly different outputs. Consider, for example, the

following mapping strategy as shown in Figure C21. The preferences are now 200 times

more valued than resource capabilities, and are being considered throughout the entire

project schedule (not for just first 30 time units as in Figure Cl).

1 6 0

I u i n p (* t h • I h i l 11 V (' J r I I I (I I r I

Figure C21. Modified Mapping Strategy.

This strategy o f heavily considering preferences will, as indicated in Figure C22,

substantially prolong the project schedule.

Figure C22. Project Gantt Chart when Resource Preferences Prevail over Resource
Capabilities

Notice that the project duration now exceeds 90 time units. Besides the Gantt chart, it

should also be expected that resource assignments are also affected and changed by

1 6 1

placing more emphasis on preferences. As shown in Figure C23, the resource-activity

mapping grid for resource type 1 show difTerent assignments than the ones in Figure C l.

Figure C23. Resource-Activity Mapping Grid for Type 1 when Resource
Preferences Prevail over Resource Capabilities.

Finally, an important observation must be made. Table B1 shows that, for example,

activity eight requires two units or resource type one. In both Figures B2 and B23, the

activity eight is assigned two resource units. However, in Figure C2, those two units are

unit two and unit four, while in Figure C23 those units are unit two and three. In other

words, by changing mapping strategies, PROMAP may map different resources to the

same activity, however, the number o f resource units o f each type required by an

162

activity m ust rem ain unchanged. Similar observations may be made by comparing the

mapping grids in Figure C24 and Figure C3.

Figure C24. Resource-Activity Mapping Grid for Type 2 when Resource
Preferences Prevail over Resource Capabilities.

163

EXAMPLE PROJECT #2: INPUT DATA

Table €14. Basic Project #2 Data (PartialIv adopted from Doucette. 1998)
Res. Croup 2 Res. GrouD 3

Free Lancers
Nu View Productions

Free Lancers
MuMEve Media

Activitv Activitv Name Max Ilaitx: J Max Units: d Max Units: 4
1 1st meeting w/ customer

Preliminarv outline
2

2 1 I

3 Develop proposal 2 2 2 1
4 Presentation to customer 3 1 2 1
5 Develop contract 4 1
6 Create detailed program outline 5 2 I
7 Write scripts 6 1

8 Create multimedia engine 7 3
9 Create dummy graphics 7 I
10 Develop dummy interface 8.9 2 I
11 Create preliminary tests 10 1

I ' l I I I I I I I I m i l S | , | . ' e

Develop graphics
Develop multimedia pgrm. W/dummies
Shoot video
Capture narration
Ofiline edit

18 Online edit 17 2 1
19 Final assemble 18 2 1
20 Bum gold CD-ROM's 19 2 I
2L. 2m
22 Final revisions J-

Table CIS. Time-EiTective Capabilities for Resource Group 1.
NuView Productions

Activity Activity Name Employed Employee 2 Employee 3 Employee 4
1 1st meeting w/ customer
2 Preliminary outline

Proposal Stage
3 Develop proposal 2 2.5 1.8 2
4 Presentation to customer 1 1 1 1
5 Develop contract
6 Create detailed program outline
7 Write scripts

Development Stage
8 Create multimedia engine
9 Create dummy graphics
10 Develop dummy interface
11 Create preliminary tests

Production Stage
12 Develop graphics
13 Develop multimedia program
14 Shoot video 2 2 2 2
15 Capture narration 0.8 1 0.7 1.6
16 Offline edit 1 0.9 0.9 1.1
17 Final graphics

Post-Production
18 Online edit 2 2.5 2 2
19 Final assemble
20 Bum gold CD-ROM's
21 Beta test

Completion
22 Final revisions 5 5 4 4

On
U l

Table C16. Time-Effective Capabilities for Resource Group 2.
Res. Group 2: Multeye Media

Activity Activity Name Employeel Employee 2 Employee 3 Employee 4
1 1st meeting w/ customer
2 Preliminary outline

Proposal Stage
3 Develop proposal

(T), = (/j-'+O.S) X"
(T):

= (C '+0.7)X "
(T),

= (f + 0 .6) X "
(T),

(T),=(fj'+0.5) X"
(T)i = (i[̂+0.4)

(T) j=(/]■’ + 0 .4)

(T)4 = (/]•'+0.4) .v!'"

(T)i =(/]•' +0.6) yj '

(T): = (i y +0.7)

(T), = (/]•'+0.7)

(T)4 = (/]•''+0.4) .yj ''

(T). =(/]•'+0.5) .yj '

(T): = (|j'^+0.7) X"
(T), =(/]•’ +0.6) .yi '

(T)4 = (/ y +0.4) X '

4 Presentation to customer 1 1 1 1
5 Develop contract
6 Create detailed program outline 6 7 7 5
7 Write scripts

Development Stage
8 Create multimedia engine 7 8 5 8
9 Create dummy graphics
10 Develop dummy interface 3 5 3 3
II Create preliminary tests

ON

Time-Eflective Capabilities
Res. Group 2: Multeye Media

Activity Activity Name Employeel Employee 2 Employee 3 Employee 4
Production Stage

12 Develop graphics
13 Develop multimedia program 12 15 14 14
14 Shoot video
IS Capture narration
16 Offline edit
17 Final graphics

Post-Production
18 Online edit
19 Final assemble 5 7 5 8
20 Bum gold CD-ROM’s 1 1 1 1
21 Beta test

Completion
22 Final revisions

(1.10)

(T).=4‘ .(1 .20),<

(% = ,} ;' (1.15) yl'j

(T).=/;;' (I.I5) X;'

4

(T).= (;; '.(1,15) Æ

5

(T),= ,;;.(i.i5)X)'
(T).= ,;;'.(1.15)y|;'

Table C17. Time-Effective Capabilities for Resource Group 3.
Stair

Activity Activity Name Larry Gloria Bud Susan
1 1st meeting, w/ customer 0.5 0.5 0.5 0.5
2 Preliminary outline 2 4 5 4

Proposal Stage
3 Develop proposal

(T). = (/]■ '+ !.5). 3̂ ;'

(Th = (i^ '+ 1 .0 5) 3/j '

(T),= (f : ' + l . 2) . X '

(T) 4 = (l f '+ I . 2) . y ; '

(T)5 = (/ , ' 'U 0 .8)

(T), = (/]■ '+ 1 .5)3 /; '

(T) : = (/ ; '+ 1) . 3 ; ; '

(T) r = (f ^ ' : + | . 2) X '

(t) 4 = (/ ; '^ + 1.2) 3/3’̂

(T)s=(/ ; • '+ 0.8). 3/;'*

4 4.5

(T)i = (i ; ' + 1) 3/;'

(T) : = (, ; : + 1.2) X '

4 Presentation to customer 1 1 1 1
5 Develop contract 0.8 1.5 1 1
6 Create detailed program outline

(T) 6 = i : ' . (i . 2 0) 3 ': " (T), = , : ' . (1 . 2 5) 3 ' : ' m , = f ^ '. (1 .2 5) .3 /^ '

(1 % = f .(1 .2 0) .3 ,J ': m : = l ^ : . (1 . 2 0) 3 ' : " (T) 4 = / : ' . (1 . 1 0) 3 ' : '

(T),= f : \ (1 . 2 5) . y : ' (T), = i J ' . (1 .2 5) 3 / ^ ' ' m 3 = / f ' . (i . i 5) 3 ' f ' (T), = f (1 .10) X '

(T % = i ; ^ . (1 .2 S) 3 'r (T)4 = l j" .(1 .2 5) 3 '! ' (T).= f ; ' . (1 .1 0) .3 , ; ^
7 Write scripts 8 7 4 5

Development Stage
8 Create multimedia engine
9 Create dummy graphics 3 5 5 5

s

Time-Effective Capabilities
Res. Group 3: Staff

Activity Activity Name Larry Gloria Bud Susan
10 Develop dummy interface

(T) j o = (f ; '+ 2) X ' ' m ,« = (f : ' '+ 2) X " (T), = (f : '+ 2) . X ' ' (T)7 = (/ : ' '+ 2) . y ; '

(T),i = (/ j ’̂ + 1 .5) (T)„ = (f ^ '+ 1 . 5) X ' ' (T),= (f : '+ 1 . 5) y f ' (T),= (f ^ ': + 1 .5) .y f '

(T),= (f^-) +1)

(T) „ = (f : " + | . 5)) , f ' ' ' * + 1.5) y l * (V y = H l * + l . 5) y l ‘* m ,o = (f ^ '+ i . 5)
11 Create preliminary tests 2 2.5 2 2

Production Stage
12 Develop graphics 16 13 13 14
13 Develop multimedia program
14 Shoot video 1 1 I 1
15 Capture narration
16 Offline edit
17 Final graphics 7 6 6 6

Post-Production
18 Online edit

(T)M=/j^' .(1 .30) X : (T), = , j^ '.(1 .3 0)) ,% (T) „ = 4 '. (1 .3 0) .^ l i '

m , (1. 20) (T) ,5 = 4 ^ (1 .2 0) .y ;i^ (T) ,o = f j^ :.(1 .2 0)) 'L ' = (1.20)) ,j,'

(T),6= t ; / - (i . 2 0) . y ; / (T),* = /;• / .(1 .2 0) . (T)„ = f |^ .(1 .20) (1.20)

(T) ,7 = f |^ '.(1 .2 5)y ^ ' (T) ,:= f |^ '.(1 .2 5) .y j^ ' (T) ,4 = f |^ (1 .2 5) .j ,% '
19 Final assemble 5 4 3 4
20 Bum gold CD-ROM's 1 1 1 1
21 Beta test 12 12 15 15

Completion
22 Final revisions 7 5 5 7

Table C l8. Preferences for Resource Group 1.
NuView Productions

Activity Activity Name Employeel Employee 2 Employee 3 Employee 4

1 1st meeting w/ customer
2 Preliminary outline

Proposal Stage
3 Develop proposal 6 4 2 9
4 Presentation to customer 6 1 2 8
5 Develop contract
6 Create detailed program outline
7 Write scripts

Development Stage
8 Create multimedia engine
9 Create dummy graphics
10 Develop dummy interface
11 Create preliminary tests

Production Stage
12 Develop graphics
13 Develop multimedia program
14 Shoot video 6 6 6 5
IS Capture narration 7 8 9 9
16 Offline edit 2 5 5 8
17 Final graphics

Post-Production
18 Online edit 4 6 7 9
19 Final assemble
20 Bum gold CD-ROM's
21 Beta test

Completion
22 Final revisions 5 6 7 7

• J
o

Table C l9. Preferences for Resource Group 2.
Multeye Media

Activity Activity Name Employeel Employee 2 Employee 3 Employee 4

1 1st meeting w/ customer
2 Preliminary outline

Proposal Stage
3 Develop proposal (p),=4 (P) r 2) , y (p) ,= 7 \p y (P),=4 .y U

(P)r=7 (P):=8 .pj': (P) := 7 X "

i?)y=4yl'^ (P),=8 (p),=8 \ p y (P)3=4

(?) , =5 y \ * (p)c7 (PXrl f j * (PX=5 f j '

4 Presentation to customer
(P),=3 W j ' (P),=2 f j ' (P),=7 X " (P)M \P y

(P).=2 f j ' " (P).=7 .p! " (P>6=8 .p I '" (P)6=7 .pU:

(P),=8 .vi ’ (P)f4 P) ' (P)7=8-pi' (P)7 = 4 'P "

(p) ,= 7) ,y (P) ,= l \p j ' (PhrS f j '

5 Develop contract
6 Create detailed program outline
7 Write scripts

Development Stage
8 Create multimedia engine 5 3 7 8
9 Create dummy graphics
10 Develop dummy interface 8 5 4 5
11 Create preliminary tests

Production Stage

to

Preferences
Res. Group 2: Multeye Media

Activity Activity Name Employeel Employee 2 Employee 3 Employee 4
12 Develop graphics
13 Develop multimedia program 6 5 7 6
14 Shoot video
15 Capture narration
16 online edit
17 Final graphics

Post-Production
18 Online edit
19 Final assemble 6 5 5 6
20 Bum gold CD-ROM's 4 4 4 5
21 Beta lest

Completion
22 Final revisions 7 6 7 7

Table C20. Preferences for Resource Group 3.
Stair Stair

Activity Activity Name Larry Gloria Bud Susan
1 1st meeting w/ customer 6 4 7 8 .
2 Preliminary outline 7 5 4 3

Proposal Stage
3 Develop proposal (P),=5

(P):=7
(P),=8

(P),=3
(Pk=3

(P>6=2

(P)7=8 X '

(̂)»=9yV

(P),=2 yl'

(P);=5
(P%=8 yj'
(P)4=7.X"

(P)r3->;-‘

(P);=8 .yj':

(P),=2 X '

(PXrl y j*

(P)r3y;'
(Ph=8'f}2

(P),=4 .y}'
(PXrS fl*

{fh=i-yV
(P)6=6%ŷ '
(P)7=8_ŷ '

(P),=3.X'

4 Presentation to customer 6 7 7 9
5 Develop contract 5 3 5 2
6 Create detailed program outline (P),=7 .V,' '

(P) ,o = 4),y

(P)„ = 4 X "

(P),:= 9 .X '"

(P)6=6 X '
(P)?=8 .Pj '

(P),=9.X'

7 (P),=7.X'

(P),o=4.X'

(P)ii=4-3^3’’

(P)u=9._x^-'
7 Write scripts 6 8 7 6

Preferences
s ta tr Res. Group 3: Staff

Activity Activity Name Larry Gloria Bud Susan

Development Stage
8 Create multimedia engine
9 Create dummy graphics 1 I 8 1
10 Develop dummy interface 1 1 8 3
11 Create preliminary tests 7 6 7 7

Production Stage
12 Develop graphics 4 3 8 4
13 Develop multimedia program
14 Shoot video 3 5 6 4
IS Capture narration
16 Ofiline edit
17 Final graphics 3 3 7 3

Post-Production
18 Online edit 4 3 5 3
19 Final assemble 3 3 3 3
20 Bum gold CD-ROM's 3 3 3 3
21 Beta test 7 5 7 9

Preferences
S tiff Res. Group 3: Staff

Activity Activity Name Larry Gloria Bud Susan
Completion

22 Final revisions (P)„=5\y;'

(P),4=7 X '

(P).i=8 ’

iPU=i-yl'*
(P),7=3 X '
(P),,=2

(P)„=8 X '
(P)»=9),:'"

(P),=7'X'

(P)m=4 X '

(P)u=4.X'
(P)u=9._y '̂

5 7

Table C21. Time Availability for Resource Group 1.
NuView Productions

Activity Activity Name Employeel Employee 2 Employee 3 Employee 4
1 1st meeting w/ customer
2 Preliminary outline

Proposal Stage
3 Develop proposal desired[S] desired[2,4,IO] desired[IO] desired[7]
4 Presentation to customer desired[S] desired[2,4,IO] desiredflO] desired[8]
5 Develop contract
6 Create detailed program outline
7 Write scripts

Development Stage
8 Create multimedia engine
9 Create dummy graphics
10 Develop dummy interface
11 Create preliminary tests

Production Stage
12 Develop graphics
13 Develop multimedia program
14 Shoot video desired[S] desired[2,4,IO] desired[15] desired[l2]
15 Capture narration desired[S] desired[2,4,IO] desired[15] desired[l3]
16 Offline edit desired[S] desired[2,4,10] desired[15] desired! 16]
17 Final graphics

Post-Production
18 Online edit desired[S] desired[2,4,IO] desired[lS] desired! 18]
19 Final assemble
20 Bum gold CD-ROM's
21 Beta test

Completion
22 Final revisions desired[S] desired[2,4,IO] desired[15] desired!20]

Table C22. Time Availability for Resource Group 2.
Multeye Media

Activity Activity Ntmc Employeel Employee 2 Employee 3 Employee 4
1 1st meeting w/ customer
2 Preliminary outline

Proposal Stage
3 Develop proposal interval[0,15] interval[0,lS] desired[7] desired[12]
4 Presentation to customer interval[0,lS] desired[9] desired[7] desired[6]
5 Develop contract
6 Create detailed program outline desired[14] desired[14] desired[10] desired[7]
7 Write scripts

Development Stage
8 Create multimedia engine desired[ll] desired[l 1] desired[14] desired[10]
9 Create dummy graphics
10 Develop dummy interface interval[3,40] desired[2S] desired[3,4,20]
11 Create preliminary tests

Production Stage
12 Develop graphics
13 Develop multimedia program desired[18] desired[28] desired[20] desired[20]
14 Shoot video
IS Capture narration
16 Offline edit
17 Final graphics

Post-Production
18 Online edit
19 Final assemble
20 Bum gold CD-ROM's
21 Beta test

Completion
22 Final revisions desired[40] desired[28] desired[28] desired[32]

-J'J

Table C23. Time Availability for Resource Group 3.
Stair

Activity Activity Name Larry Gloria Bud Susan
1 I St meeting w/ customer interval[0,1000 interval[0,1000] interval[0,1.000 interval[0,1000]
2 Preliminary outline interval[0,1000 interval[0,1000] desired[4] desired]?]

Proposal Stage
3 Develop proposal desired[S] desired[7] desired[S] interval[0,10]
4 Presentation to customer
5 Develop contract desired[8] desired[2] desired[10]
6 Create detailed program outline
7 Write scripts

Development Stage
8 Create multimedia engine
9 Create dummy graphics desired[20] desired(28] desired[18] desired[30]
10 Develop dummy interface desired[20] desired[28] desired[18] desired[30]
11 Create preliminary tests

Production Stage
12 Develop graphics
13 Develop multimedia program
14 Shoot video desired[28] desired[30] desired[30] desired]30]
15 Capture narration
16 Offline edit
17 Final graphics desired[30] desired[30] desired[30] desired30]

Post-Production
18 Online edit
19 Final assemble
20 Bum gold CD-ROM's
21 Beta test

Completion
22 Final revisions

'4
00

EXAMPLE PROJECT #2; OUTPUT

The structure o f this project is similar to the previous one. However, the input data

differs in the fact that no information is provided on costs. Instead, resource-activity

mapping with respect to resource availability may become o f interest since that data is

provided. With that respect, consider the following fictitious mapping strategy, as shown

in Figure C25.

(. (j r î i p t I . | l t • I 1 1 1 11 1 V' f u r n I I ' l r I

Figure C25. Example Mapping Strategy.

Figure C25 indicates that the primary m oping objective is satisfying resource choices

with respect to their availability, while the preferences and especially time capabilities

and dependencies are o f secondary issues. This strategy will produce a Gantt chart as

displayed in Figure C26 and resource-activity grids as shown in Figures B27-B29.

179

Figure C26. Project Gantt Chart for a Schedule Emphasized on Resource
Availability.

Figure C27. Resource-Activity Grid for Type 1 of Strategy Emphasized on
Resource Availability.

180

Figure C28. Resource-Activity Grid for Type 2 of Strategy Emphasized on
Resource Availability.

--------------------- ^ -----------------------L ----------------------------
t

------------ - - - 1 - --------------------------
1

1 1 T 1

1 1 1 1

------------------------- ^ --

--------------------------1 --- ± ----------------------------

1 (~ T !

__________' _ _ _ ' _ 1

1 1
_ — Ç --------------------------

T
1 1

-------------------------- 9
- - --------------------- ---------------------------------

V . ----------------------0 ----------------------------

Figure C29. Resource-Activity Grid for Type 3 of Strategy Emphasized on
Resource Availability.

1 8 1

Assume now that the mapping strategy is changed and that the availability o f resource

group or type 2 should be the only one considered. In addition, assume that preferences

are granted only to resource units in group three, but only the first 25 time units. The

time-effective capabilities are considered as previously, during the entire project

schedule. This new strategy (that is, mapping objective) may be modeled as follows:

-timedep + 100 * starttime * kronecker(restype,2) + pref * kronecker(restype,3) *

interval([0.25].time)

The output of the above objective in terms o f project duration and resource-activity

mapping is shown in Figures B30-B33. Comparing Figures B26 and B30 we should

notice that the new project schedule with a relaxed resource mapping strategy results in

shorter project duration (i.e., in savings of over eight time units). Also by comparing the

previous with the following resource-activity mapping grids, we notice that resource

units assignments were also changed (although, as previously discussed, the required

number of units needed for each activity is always held constant, regardless o f the

strategy).

1 8 2

Figure C30. Relaxed Resource Mapping Strategy Results in Shorter Project
Duration.

Figure C31. Resource Group 1 Assignments Resulting from a Change in Strategy.

183

Figure C32. Resource Group 2 Assignments Resulting from a Change in Strategy.

Figure C33. Resource Group 3 Assignments Resulting from a Change in Strategy.

184

APPENDIX D

COMPUTER CODES FOR PROMAP IMPLEMENTATION

function [a]=amatrix(actneeds,cand,finished, reslimits,inprogress,
typeselect)

real=actneeds(cand,:)';
[row,col]=size(real);
first=zeros(row,1);
second=ones(row,1);

first=(reslimits-sum(actneeds(inprogress,:),!))';

if isempty(typeselect)==1
a=[real first];
else

modifiedreal=real(typeselect, :);
second=sum(actneeds(finished,typeselect) , 1) ' ;
a=[real first; (-modifiedreal) -second];
end

function [a]=amatrixdown(actneeds, cand,finished,reslimits,inprogress)
real=actneeds(cand,:) ' ;
[row,col]=size(real);
first=zeros(row,1);
first=(reslimits-sum(actneeds (inprogress,;),!)) ';
second=sum (actneeds(finished,:),1) ';
a=[real first];

function [cand]=candidates(dynpred)
cand=find(sum(dynpred,2)<1);

185

function [scheduled]=chart(time,newlyadded,scheduled,actdur)
z=length(newlyadded*);
timemat=time*(ones(1,z));
if isempty(newlyadded)==0

temp=[newlyadded'; timemat;timemat+actdur(newlyadded)];
else

temp=[] ;
end

scheduled=[scheduled temp];

function [numsucc]^children(pred)
[x,y]=size(pred);
for g=l:x

numsucc(g)=sum(sum(pred==g));
end
numsucc=numsucc/max(numsucc);

function [b]=constraints(inprogress,finished, reslimits,actneeds,
typeselect)

if isempty(inprogress)==1
inprogress=zeros(sum(actneeds(inprogress, :),!));
end

bceiling=reslimits-sum(actneeds(inprogress, :),!);

if isempty(typeselect)==1
b=[(bceiling)];
else

bfloor=sum(actneeds(finished,typeselect), 1)

b=[(bceiling) (-bfloor)];
end

186

function [b] =constraintsdown {inprogress, finished, reslimits, actneeds)

if isempty(inprogress)==1
inprogress=zeros(sum(actneeds(inprogress,:),!));
end

bceiling=reslimits-sum(actneeds(inprogress,:),!);

b = [(bceiling)];

function [est,1st]=cpm(actdur,pred)
numnodes=length(actdur) ;

numarcs=length(find(pred));

f=ones(1,numnodes) ;
b= [] ;
c=[] ;
a=zeros(numarcs,numnodes);
incr=l;
for i=l:numnodes

for]=1: sum(any(pred(i,:),i))
c=[c;pred(i,j) i];
test=[i j pred(i,j)];

b=[b -actdur(pred(i,]))];
a(incr,pred(i,j))=1;
a(incr,i)=-l;
incr=incr+l;

end
end
a=[a;-eye(numnodes)];
b=[b zeros(1,numnodes)];
est=lp(f,a,b);

F i n d i n g t h e t e r m i n a i a c t i v i t i e s

’ (T h e s e w i t h n o s u c c e s s o r s)

terminal=[];
for m=l:numnodes

if isempty(find(pred==m))==1
terminal=[terminal m];

end
end
' F i n d i n g t h e n a n i n a i E F T

eft=est+actdur';
eftmax=max(eft);
: F i n d i n g t h e a c t i ' . ' r t y w i t h m a x i m a l 1 S T

termax=find(eft==eftmax);
I C a i c u l a t i n a 1 S T f o r t e r m i n a l a c t i v i t i e s

187

adclconst=2eros (length(terminal) , numnodes) ;
addb=[];
for m=l: length(terminal)

addconst(m,terminal(m))=1;
addb (m) =eftmax-actdur (terminal (m)) ;
end

' C a l c u l a t i n g I S "

f=-f ;
a=[addconst;a];
b=[addb b];
lst=lp(f,a,b);

P i e r c i n g C h e R e s o u r c e C t 1 1 1 c a r i o n G r a p h ;

figure;
abscis=[abscis scheduled(end)] ;
usage=[usage usage(:,end)] ;
for v=l:length(reslimits)

subplot(length (reslimits)+1,1, v), stairs (abscis,usage(v, :))
'■ s t a i r s (a b s c i s , u s a g e (v , : ;

axis([0 scheduled(end) 0 reslimits(v)+1]);
if v==l

title([['Project is completed at t = '
numZstr(scheduled (3,end))]]) ;

end

xlabel('Time') ;
ylabel('Resource Units')

e n d

P l c t t i n c t h e G a n t t C h a r t

for r=l: length(actdur)
data (1, r) =scheduled (2, find (scheduled (1, :) ==r)) ;

end
data(2, :)=actdur;
subplot(length(reslimits)+1,1,length(reslimits)+1),
b a r h (d a t a s t a c k '), colormap([1 1 1;0 0 0]);
set(gca, 'color', 'white');
xlabel('Time')
ylabel(’Activities')

- P l o t t i n g t h e R e s o u r c e U n i t s A s s i g n m e n t

if choice==3 | choice==4

for restype=l: length(reslimits)

188

figure;
grid;
xticks=l:reslimits(restype) ;
yt icks=l:numact;
axis([0 reslimits(restype)+1 0 size(actneeds,1)+1]);
set(gca,'XTick',xticks);
set(gca,'YTick*,yticks);
hold;
for nact=l:numact

vect=f ind ([acttype (nact, restype) . unit (:) . assigned]) ;
plot(vect,nact, ' r o ');

end
title(sprintf('Mapping Resource Type %.Of Unies to Project
Activities’, restype));
xlabel(sprintf('Resource Type %.Of Units',restype));
ylabel('Project Activities');
hold off;
end

for restype=l: length(reslimits)
figure;
xticks=l:reslimits(restype) ;
axis([0 s u m (reslimits)+1 0 1]);
set(gca,'XTick',xticks);
hold;
maxunittime=zeros (1, reslimits (restype)) ;
minunittime=zeros (1, reslimits (restype)) ;
for nunit=l:reslimits(restype)

for nact=l:numact

maxunittime (nunit) =maxunittime (nunit) + (acttype (nact, restype) .unit (nuni
t).assigned)*actdur(nact);
minunittime (nunit) =minuni11ime (nunit) + (acttype (nact, restype) . unit (nuni
t) .assigned) * (acttype (nact, restype) .unit (nunit) .tuned);

end
maxunittime (nunit) = maxunittime (nunit)/scheduled (3, end) ;
minunittime (nunit) = minunittime (nunit) /scheduled(3, end) ;

end
bar(maxunittime,'r ');

bar(minunittime, 'b');
title(sprintf('Time Percentage of Resource Type %.0f Units Engagement
vs. Total Project Duration', restype));
xlabel(sprintf('Resource Type %.0f Units',restype));
ylabel('Percentage of Total Project Duration');
hold off;
end
end vend choice

189

function [fuzstart]=desstart(instart,time)
if length(instart}==3

fuzstart=l/(1+ instart (1) * (time - instart (3))''instart (2)) ;
elseif length(instart)==1

fuzstart=l/(1+(time - instart)''2) ;
end

function [pulse]=kronecker(restype, destype)
if destype==restype

pulse=l;
else

pulse=0; •
end

function [actdur]“duration(acttype, actneeds, numact, numres)

actdur=zeros(1,numact);
for i=l:numact

for j=l:numres
if isfield(acttype(i,j) - unit(:),'tuned')==1

actdriversort=sort([acttype(i,j).unit(:).tuned]);
if length(actdriversort)<actneeds(i, j) I

isempty(actdriversort)
actdur(i)=raax(actdur(i) , 0) ;

elseif actneeds(i,j)~=0
actdur(i)=max(actdur(i),actdriversort(actneeds(i,j)));

end ' e n d i f l e n g t h

end 'era if isfieid
Ibreah

end 'fcr j = 1 :numres
end 'for

190

function, fig = dynamo {)
' This is the machine-generatec representation of a Handle Graphics object
•- and its children. Xote that handle values may change when these objects
• are re-created. This may cause problems with any callbacks written to
' cepend on the value of the handle at the time the object was saved.
1 To reopen this object, just type the name of the IH-file at the

prompt. The K-file and its associated tiAT-file must be on your path
load dynamo
hO = figure('Color',[0.8 0.8 0.8], ...

'Colormap',matO, ...
'MenuBar','none', ...
'Name','Welcome', ...
'NumberTitle','off', ...
'PointerShapeCData',matl,
' Position' ,'[320 270 175 75], ...
'Tag','Figl');

hi = uicontroK ' Parent', hO,
'Units','points', ...
'BackgroundColor',[0.75294117 6470588 0.752941176470588

0.752941176470588], ...
'ListboxTop', 0,
'Position',[0 37.5 132 18.75],
'String','Resource Mapping Tool v.1.0', ...
'Style','text', ...
'Tag','StaticTextl');

hi = uicontrol('Parent',hO, ...
'Units','points', ...
'BackgroundColor',[0.752941176470588 0.75294117 64 70588

0.752941176470588], ...
'ListboxTop',0,
'Position',[0 18.75 131.25 18.75],
'String', 'by',
'Style','text', ...
' Tag ', ' St’aticText2 ') ;

hi = uicontroK ' Parent', hO, ...
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588],
'ListboxTop',0,
'Position',[0 0 131.25 18.75],
'String','Milan Milatovic', ...
'Style','text', ...
'Tag','StaticText3');

if nargout > 0, fig = hO; end
drawnow;
for i=l: 600000
end
close;

191

function [prior]=floatweight(cand, 1st,actdur,time)

for i=l: length(cand)
' p r i o r (i ; = a c t c u r (cand (i)) / (1 s t (c a r . c (i)) - a c t d u r { cana ■ i ; : - t i n e : ;
prior(i) = (time + actdur(cand(i)))/(actdur(cand(i))+lst(cand(i))) ;

end

function [crisp]=fuz(a,b,c, d)
if nargin==4

crisp=(-(a)"2 - (b)^2 + (c)"2 + (d)"2 -(a*b) + (c*d))/(3*(-a - b +
c + d)) ;
elseif nargin==3

crisp= (-(a) ̂ '2 + (c)^2 - (a*b) + (b*c)) / (3* (-a +c)) ;
else

error('Unrecognized Fuzzy Input');
end

function acttype=getarbitrary(reslimits, acttype, refact, typedep,
unitdep, funcstr)

for act=l: length(refact)
for tdep=l: length(typedep)

for udep=l: length(unitdep)
if exist ('actrype') ==1 f i r . c i r . g t h e i n d e x x h e r e n i p u t

d h e n e w l y a c c e c f u n c t i o n

dummy=eval('size(acttype(refact(act),
typedep (tdepj)) . unit (unitdep (udep)) . f une, 2) el', ' 1 ') ;

else
dummy=l;

end
conditionleft=unitdep(udep); - m a k i n g s u r e t h a t u n i t s o f

p a r t i c u l a r r e s t v p e a r e n e t e x c e e d e d

conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

acttype(refact(act) ,
typedep(tdep)).unit(unitdep(udep)).func{dummy}=funcstr;

else
break

end - e n d i f u n i t d e p

192

end
end

end
function fig = getdata{)
' This is the machine-generated representation of a Handle Graphics
object

and its children. Xcte that handle values may change when these
objects

are re-created. This may cause problems with any callbacks written
to
i cepend on the value of the handle at the time the object was savec.

Tc reopen this object, just type the name of the ti-fiie at the
■ prompt. The h-fiie anc its associated t-ièT-tile must be on ycur path,
load getdata
hO = figure('Color',[0.8 0.8 0.8], ...

'Colormap',matO, ...
'MenuBar','none', ...
'NumberTitle', 'off, ...
'Name','Enter Basic Project Data',...
'PointerShapeCData',matl,
'Position',[71 132 678 392], ...
'Tag','Figl');

hi = uicontrol('Parent',hO,
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588], ...
'ListboxTop',0,
'Position',[248.25 18 246.75 255], ...
'Style', 'frame ', ...
' Tag', 'Frame1');

Activity lis theX

actlist_call=[
'h_actiist = findobj (' 'Tag'', ' 'Listboxl
'h_pred=findobj(' 'Tag ' ', ''EditTextS
'h_typelist=findobj (''Tag'', ''Listbox2
' h_actnee'ds text = f indob j (' ' Tag ' ', ' ' StaticText4
'actvalue=get(h_actlist,''value
'typevalue=get(h_typelist, ''value
'set(h_actneedstext,''string'',sprintf(''Number of resource type

%.0f units required by activity %.Of :'',typevalue, actvalue));'...
'predstr=num2str(actvalue) ; ' . . .
'set(h_pred, ' 'string'',oredstr) ; '
] ;

hi = uicontrol('Parent',hO, ...
'callback', actlist_call, . . .
' Units', 'points',
'BackgroundColor',[1 11],
'Position',[22.5 16.5 90 240], ...
' String', ' ', ...
'max', 2,...

193

'S t y l e l i s t b o x ', ...
'Tag','Listboxl’, ...
'Value',1) ;

■ Resource Tvpe Listbox
typelist_call= [

’h_avail=findobj(''tag'',''EditTextS
'h_numres=findobj (''Tag'',''EditText2
'h_typelist=findobj(''Tag’',''Listbox2
'h_availtext=findobj(''Tag'',''StaticTextS
'h_actneedsedit=findobj (''Tag'', ''EditText4
'h_actneedstext=findobj(''Tag'', ''StaticText4
' .h_actlist=f indob j (' 'Tag' ', ' ' Listboxl ' ');'...
'typevalue=get(h_typelist,''value
' resiiciits=get (h_avail, ' ' userdata
'actneeds=get(h_actneedsedit,''userdata
’actvalue=get(h_actlist,''value
'set(h_availtext,''string'',sprintf(''Units of resource type %.0f

available:'',typevalue)};'...
'if typevalue <= length(reslimits) & reslimits(typevalue)~=0,'...
'set(h_avail,''string'',num2str(reslimits(typevalue)));'...
'else, set(h_avail,''string
' end; '
'set(h_actneedstext,''string'',sprintf(''Number of resource type

%.0f units required by activity %.O f t y p e v a l u e , actvalue));'

hi = uicontrol('Parent',hO, ...
'Units','points', ...
'callback',typelist_call,.. .
' BackgroundColor', [1 11],
'Position',[135 16.5 90 240], ...
'String',' ', ...
'max', 2,...
'Style','listbox', ...
' Tag', 'Listbox2', ...
'Value',1);

L u m b e r o f a c t o v i r i e s Z c i t

numactedit_call=[
'h_numact=findobj(''Tag'',''EditTextl'');'...
'h_actlist=findobj(''Tag'',''Listboxl
'h_popup=findobj(''Tag'', ' 'popupmenul'');'...
' numact=get (h_numact, ' ' String ' '");'...
'numact=str2num(numact);'.. .
'actstr=''Activity 1 .
'for i=2:numact, actstr=[actstr sprintf('' I Activity

ï.Of',i}];, end; ' . . .
'set(h_actlist, ''string'',actstr) ; ' . . .
'set(h_numact, ' 'userdata'',numact);'...
'for j=l:numact, popstr(j)={sprintf(''Predecessors of Activity

%.Of'',j)};,end;'...
'set(h_popuo, ' 'string'',popstr) ; '

] ;

194

hi = uicontrol('P a r e n c h O , ...
'Units','points', ...
'callback’, numactedit_call, ..,
'BackgroundColor’,[1 11], ...
'ListboxTop',0, ...
' HorizontalAligrunent ', 'left',...
'Position', [382.5 226.5 45 22.5], ...
'Style','edit', ...
'Tag','EditTextl');

: Xunber of Resource Tvpes Edit
numresedit_call=[

'h_numres=findobj(''Tag'',''EditText2
'h_typelist=findobj(''Tag'',''Listbox2
'nunres=get(h_numres,''String
'numres=str2num(numres);'...
'typestr=' 'Resource Type 1 .
'for i=2:numres, typescr=[typestr sprintf('' I Resource Type

Î.Of' ' ,j)];,end; '. ..
'set(h_typelist, ' 'string'',typestr) ; ' . . .
'set(h_numres, ' 'userdata' ',numres);'

] ;

hi = uicontrol('Parent',hO, ...
'Units','points', ...
'callback', numresedit_call,...
'BackgroundColor',[1 11],
'ListboxTop',0, ...
'HorizontalAlignment','left',...
'Position', [382.5 189 45 22.5], ...
'Style','edit', ...
'Tag','EditText2');

Xumber cf Resource Type Available
typeavail_call=[

'h_avail=findobj (' 'tag' ', ' 'EditTextS
'h_numres=findobj(''Tag'',''EditTextS
'h_typelist = findob] (' 'Tag' ', ' ' ListboxS
'h_availtext=findobj(''Tag'',''StaticTextS'');'...
'reslimits=get(h_avail,''userdata
'typevalue=get(h_typelist,''value
'avail=get(h_avail, ''string' ');'...
'avail=str2num(avail); ' . . .
'reslimits(typevalue)=avail;'...
'set(h_avail, ''userdata'',reslimits);'...
'numres=get(h_numres, ''userdata
'if typevalue < numres,set(h_typelist, ''value'',typevalue+1);'...
'set(h_avail, ''string
'set(h_availtext, ''string'',sprintf(''Units of resource type %.0f

available :'',typevalue+1));'...
'else,'...
'set(h_typelist, ''value'',1);'...
'set (h_availtext, ''s t r i n g U n i t s of resource type 1

available
'end;'
];

195

hi = uicontroK ' P a r e n r h O , ...
'callback', typeavail_call, . . .
'Unizs','points', ...
'BackgroundColor',[1 11], ...
'ListboxTop',0, ...
' HorizontalAligrunent ', ' left ', . . .
'Position',[382.5 151.5 45 22.5], ...
'Style', 'edit', ...
'Tag', 'EditTextS');

■ Activity Resource Requirements

actneeds_call=[
'h_actneedsedit=findobj(''Tag'',''EditText4'');'
'h_actlist=findobj(''Tag'',''Listboxl
'h_typelist=findobj(''Tag'',''Listbox2
'h_actneedstext=findobj(''Tag'',''StaticText4'')
'h_numres=findobj (' 'Tag' ', ' 'EditTextS'') ; '
'h_numact=findobj (' 'Tag' ', ''EditText1'') ; '
' h_duituny=f indob j (' ' tag ' ' , ' ' EditTextS
'h_avail = findobj(' 'tag'', ''EditTextS
'h_availtext=findobj{''Tag'',''StaticTextS
' resli.Tiits=get {h_avail, ' ' userdata
'actvalue=get(h_actlist,''value
'typevalue=get(h_typelist,''value'');'...
'actneeds=get(h_actneedsedit,''userdata'');'...
'line=get(h_actneedsedit,’'string
'actneeds(actvalue, typevalue)=str2num(line) ; '...
'set(h_actneedsedit, ''userdata'',actneeds) ; ' . . .
'numact=get(h_numact,''userdata'');'...
'numres=get(h_numres,''string'');'...
'numres=str2num (numres);'...
'if typevalue < numres, set (h_typelist,''value' ', t y p e v a l u e + 1) .
'set(h_actneedsedit,''string
'set (h_actneedstext, ''string'',sprintf(''Number of resource type

î.Of units required by activity %.O f t y p e v a l u e + 1 , actvalue});'...
'availstr=num2str(reslimits(typevalue+1));'...
'set(h_avail, ' 'string'',availstr); '.. .
'set (h_availtext, ''string'',sprintf(''Units of resource type *.0:

available'',typevalue+1));'...
'else,'...
'set(h_typelist, ''value' ',1) ; ' . . .
'set(h_actneedsedit,''string
'if actvalue < numact, set(h_actlist, ''value'', actvalue + 1);'.. .
'typevalue=get(h_typelist,''value'');'.,.
'set(h_actneedstext,''string'',sprintf(''Number of resource type

%.0f units required by activity %.O f t y p e v a l u e , actvalue+1));'...
'end;'...
'end;'

] ;

hi = uicontrol('Parent',hO,
'Units','points', ...

196

'callback',actneeds_call, . . .
'BackgroundColor[1 11], ...
'ListboxTop',0,
'Position',[382.5 106.5 45 22.5],
'KorizontalAlignment', 'left',...
'Style','edit', ...
'Tag','EditText4');

■ ■ c t i v i t v P r e d e c e s s o r s z .

predec_call=[
'h_pred=findobj(''Tag'',''EditText5
'h_actlist=findobj(''Tag'',''Listboxl
'h_popup=findobj(''Tag'',''popupmenul
'h_numact=findobj(''Tag'',''EditTextl
'pred=get(h_pred, ' 'userdata'');'...
' activity=get(h_popup, ''value
'line=get(h_pred,''string
'line=str2num(line);'. . .
'pred(activity,1 : length(line))=line;'.. .
'set(h_pred,''userdata'',pred);'...
'numact=get(h_numact,''string'');'...
'numact=str2num(numact) ; ' . . .
'if activity < numact, set(h_popup,''value'',activity+1)
'else, set(h_popup,''value'',!);,end;'...
'set(h_ored,''string'','''');'

] ;

hi = uicontrol('Parent',hO,
'callback',predec_call, .. .
'Units','points',
'BackgroundColor',[1 11],
'ListboxTop',0, ...
'HorizontalAlignment','left',...
'Position',[382.5 69 105 22.5], ...
'Style', 'edit', ...
'Tag','EditTextS');

hi = uicontrol('Parent',hO, ...
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588], ...
'HorizontalAlignment','right', ...
'ListboxTop',0,
'Position',[277.5 226.5 105 15], ...
'String','' Number of activities : ', ...
'Style','text', ...
'Tag','StaticTextl');

hi = uicontrol('Parent',hO,
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588], ...
'HorizontalAlignment','right', ...
'ListboxTop',0,
'Position',[277.5 189 105 15],
'String','Number of resource types:', ...
'Style','text', ...
'Tag','StaticText2');

197

hi = uicontrol('P a r e n c h O ,
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588], ...
'HorizontalAlignment','right', ...
'ListboxTop',0,
'Position',[277.5 153.75 105 20.25],
'String', 'Units of resource type 1 available:', ...
'Style','text', ...
'Tag', 'StaticTextS');

hi = uicontrol('Parent’,hO, ...
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588], ...
'HorizontalAlignment','right',
'ListboxTop',0, ...
'Position’', [278.25 105.75 105 21],
'String', 'Number of resource type 1 units required by activity 1 :',
'Style','text', ...
'Tag','StaticText4');

F c p u p m e n u

popup_call=[
'h_popup=findobj{' 'Tag' ',''popupmenul'');'...
'h_pred=findobj(''Tag'',''EditTextS
'activity=get(h_popup, ''value' ');'...
'pred=get(h_pred, ''userdata
'if activity <= size(pred,1) ,'...
'line=pred(activity,
'line=num2str(line);'...
'set(h_pred,''string'',line);'...
'end;'

] ;

hi = uicontrol('Parent',hO, ...
'callback', popup_call,...
'Unies','points', ...
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588], ...
'HorizontalAlignment','right',
'ListboxTop',0,
'Position',[255 69 127.5 15],
'String','Predecessors of Activity 1:', ...
' Style ' , ''popupmenu ', ...
'Tag','popupmenul');

hi = uicontrol('Parent',hO, ...
'Units','points',
'BackgroundColor',[0.752941176470588 0.752941176470588

0.752941176470588],
'ListboxTop',0,
'Position',[22.5 256.5 90 15], ...
'String','Activities', ...

198

'Style','text’, ...
'Tag','StaticText6');

hi = uicontrol('Parent', hO, ...
'Units','points', ...
'BackgroundColor',[0.752941176470588 0.75294117 6470588

0.752941176470588],
'ListboxTop',0,
'Position',[135 256.5 90 15],
' String ',' ' Resource Types', ...
'Style', 'text', ...
'Tag','StaticText7');

I Accept Pushbutton
accept_call=[

'h_accept=findobj(''Tag'', ' 'Pushbuttonl'') ; '
'h_exit=findobj(''Tag'',''Pushbutton2
'set(h_accept,''userdata'
'set(h_acceot,''string'',''Done'');'

] ;

hi = uicontrol('Parent',hO, ...
'callback', accept_call,...
'Units','points', ...
'ListboxTop',0, ...
' Position'", [382.5 22.5 45 22.5],
'String','Accept All', ...
'Tag','Pushbuttonl');

exit_call=[
'h_exit=findobj(''Tag'',''Pushbutton2'');'
'set(h_exit, ''userdata'',1};'
] ;

hi = uicontrol('Parent',hO, ...
'Units','points', ...
'callback','close',...
'ListboxTop',0,
'Position',[442.5 22.5 45 22.5], ...
'String','Exit', ...
'Tag','Pushbutton2');

h_accept=findobj{'Tag','Pushbuttonl');
h_exit=findobj('Tag','Pushbutton2');
while ~length(get(h_accept,'userdata')) &
-length(get fh_exit, 'userdata'))

drawnow
end
h_numact=findobj('Tag','EditTextl');
h_numres=findobj('Tag','EditText2');
h_avail=findobj('tag','EditTextS');
h_actneedsedit=findobj('Tag','EditText4');
h_pred=findobj('Tag','EditTextS');
numact=get(h_numact,'userdata');

199

numres=get (h_numres, 'userdata');
reslimits=get(h_avail, 'userdata');
actneeds=get(h_actneedsedit, 'userdata');
pred=get(h_pred, 'userdata');
uiwait(hO);
if nargout > 0, fig = hO; end

200

function [acttype] = getfunctions(numact,numres,reslimits, acttype)
=. T h c s I S t h e m a c h i n e - g e n e r a t e d r e p r e s e n t a t i o n c f a H a n d l e G r a p h i c s

o b j e c t

a n d i t s c h i l d r e n . h c t e t h a t h a n d l e v a l u e s n a y c h a n g e w h e n t h e s e

o b j e c t s

: t e c . T h i s n a y c a u s e p r o b l e n s w . i n % n \ ■ ^ l . b o c - : s v . n _ t t - n

c e p e n c o n t h e v a l u e c f t h e h a r . c l e a t t h e t i n e t h e o b j e c t w a s s a v - c .

T c r e o p e n t h i s o b j e c t , j u s t t y p e t h e n a m e cf t h e K - f i l e a t t h e

p r o m p t . T h e K - f i l e a n d i t s a s s o c i a t e d K A . T - f i l e m u s t b e o n y c u r p a t h ,

load getfunctions

actstr='Activity 1';
for i=2:numact

actstr=[actstr '|Activity 'num2str(i)''];
end

restypestr='Type 1';
for j=2:numres

restypestr=[restypestr ' 1 Type 'num2str(j) ''];
end
unitstring='Unit 1';
for k=2:reslimits(1)

unitstring=[unitstring 'I Unit 'num2str(k) ''];
end

hO = figure('Color',[0.8 0.8 0.8], ...
'Colormap',matO, ...
'MenuBar','none',
'Name','Resource Functional Dependencies',..
'NumberTitle', 'off, ...
'PointerShapeCData',matl,
' Position' ,'[48 39 690 527], ...
'Tag', 'Figl');

hi = uicontrol ('Parent',hO,
'Units','normalized',
'BackgroundColor',[0.7529 0.75294 0.75294],
'ListboxTop',0, ...
'Position’,mat2, ...
'Style','frame', ...
'Tag','Frame2');

hi = uicontroK ' Parent', hO,
'Units','normalized',
'BackgroundColor',[0.75294 0.75294 0.75294],
'ListboxTop',0, ...
'Position',mats, ...
'Style','frame', ...
'Tag','Frame4'};

hi = uicontrol('Parent',hO,
'Units','normalized',
'BackgroundColor',[0.75294 0.75294 0.75294],

201

'ListboxTop',0,
'Position',mat4,
'Style','frame',
'Tag','Framel');

actlist_call=[
'h_actlist = findobj (' 'Tag'', ''Listboxl
'val=get(h_actlist,''Value
'val=num2str(val);'...
'h_actrefedit=findobj (' ' Tag'', ' 'EditText?'');'
'set(h_actrefedit, ''string'', val) ; '
] ;

hi = uicontrol(’Parent',hO, ...
'Units','normalized',
'callback', actlist_call, . . .
'BackgroundColor',[1 11], ...
'Max',2,
'Position',[0.05652 0.47438 0.188405 0.455407],
'Style','listbox', ...
'string',actstr,...
'Tag','Listboxl', ...
'Value',1);

restypelist_call=[
'h_typelist=findobj(''Tag ' ' , ' 'Listbox2
'val=get Ch_typelist, ''Value
'limits=get(h_typelist, ' 'userdata
'unitstring=''Unit 1 .
'for x=2:max(reslimits(val)) , unitstring=[unitstring sprintf('' I Unit

%.Of'',x)];,end;'...
' h_unitlist=findobj(''Tag'', ''ListboxB
'set(h_unitlist, ''Value'', 1) ; ' . . .
'set(h_unitlist, ''string'',unitstring);' . . .

] ;

hl = uicontrol('Parent',hO, . . .
'Units','normalized',
'callback', restypelist_call, . . .
'BackgroundColor',[1 11], ...
'Max',2,
'Position',[0.404347 0.474383 0.1884057 0.455407],
'Style','listbox',
'string', restypestr,...
'Tag','Listbox2', ...
'Value',1);

' UX:T LIST BOX

hl = uicontrol('Parent',hO,
'Units','normalized',
'BackgroundColor',[1 1 1], ...
'Max',2, ...

202

'Position', [0.75217 0.474383 0.1884057 0.455407],
'S t y l e l i s t b o x ', ...
'string', unitstring,...
'Tag','Listbox3', ...
'Value',1);

funcedit_call=[
'h_typedrvedit = findobj (' ' Tag ' ', ''EditText6'')
h_typedepedit=findobj(''Tag'',''EditTextS'')
h_accept=findobj(''Tag'',''Pushbuttons
h_unitdrvedit=findobj(''Tag'',''EditText4'')
h_unitdepedit=findobj(' 'Tag'', ''EditTextS ' ')
h_typeiist=findobj(''Tag'',''Listbox2
h_unirlist=findobj(''Tag'',''ListboxS
h_retactedit-findobj(''Tag'',''EditText7'')
h_funcedit=findobj(''Tag'',''EditTextl'');'
h_actlist=findobj(''Tag'',''Listboxl
h_popupl=findobj(''Tag'', ''popupl
typedrvstr=get(h_typedrvedit, ' 'string''); '.
typedepstr-get(h_typedepedit, ' 'string''); ' .
unitdrvstr=get(h_unitdrvedit,''string'');'.
unitdepstr=get(h_unitdepedit,''string'');'.
refactstr=get(h_refactedit,''string'
funcstr=get(h_funcedit,''s t r i n g .
rriode=get (h_popupl, ' 'Value' ');'...
re:act=str2nun(refactstr);'...
typedrv=str2num(typedrvstr);'...
cypedep=str2num(typedepstr);'...
unitdrv=str2num(unitdrvstr);'...
unitdep=str2nuin (unitdepstr) ; ' . . .
if mode==3, '...
'acttype-getarbitrary(reslimits, acttype, refact, typedep,

unirdep, funcstr);'...
' else, '...
'acttype=gettime(reslimits, acttype, refact, typedrv, unitdrv,

typedep, unitdep, funcstr, mode);'...
if isempty(typedrv) | isempty(unitdrv) ,'.. .
if unirdep<reslimits(rypedep),'...
set(h_unitdepedit,''String'',unitdep(end)+1);'...
else,'...
set(h_unitdepedit,''String'',!);'...
end;'...
end;'...
end;'...
set(h_accept, ''userdata'',acttype);'...
set(h_funcedit,''string
-f -isempty(typedrv) & -isempty(unitdrv),'...
if unitdrv<resiimits(typedrv),'...
set(h_unitdrvedit,''String'',unitdrv(end)+1);'
else,'...
set(h_urtitdrvedit,''String'',1);'...
end;'...
end; '

];

203

KG. 1623188 0.355029 0.782608 0.03795:
hi = uicontrol('Pa r e n t h O ,

'callback', funcedit_call, .
’U n i e s normalized', ...
'BackgroundColor[1 1 1],'HorizontalAlignment','left', ...
'L i s t b o x T o p 0,
'Position',[0.3188 0.055028 0.6261 0.03795], ...
'Style','edit', ...
'Tag','EditTextl');

OFFSET

:fset_call=[
'h_offset=findobj{''Tag'',''EditText2
h_accept=findobj(''Tag'', ' 'Pushbuttons' ') ; '
h_typedepedit=findobj(''Tag'',''EditTextS''
h_unitdepedit=findobj(''Tag'',''EditText3''
h_refactedit=findobj{''Tag'',''EditText7'')
h_actlist=findobj(''Tag'',''Listboxl
h_typelist=findobj(''Tag'',''Listbox2
h_unitlist=findobj(''Tag'',''ListboxB
h_popup2=findobj(''Tag'',''popup2
popoption=get(h_popup2,''Value'
acttype=get(h_accept,''userdata'');'...
typedepstr=get(h typedepedit,''string

or r

acttype=get(h accep: usercata)
'•■<3

r » f

)

unitdepstr=get(h_unitdepedit/''str
refactstr=get(h_refactedit,''string
offsetstr=get(h_offset,''string
offsetparam=offsetstr;'...
refact=gtr2num(refactstr);'. . .
typedep=str2num(typedepstr);'..
unitdep=str2num(unitdepstr);'..
if popoption==l I popoption==2
manualdur=0;'...
acttype=gettuned{reslimits, acttype,
jetparam, pcpoption);'...
set(h_accept,''userdata'',acttype);'...
unitval=get(h_unitlist,''Value'');'...
typeval=get(h_typelist,''Value'');'...
actval=get(h_actiist,''Value'');'...
if unitval < reslimits(typeval),'...
set(h_unitlist,''Value'',unitval+1);'...
set(h_unitdepedit, ' 'String'',unitval + 1);
elseif actval < numact,'...
set(h_actlist,''Value'',actval+1);'...
set(h_refact€dit,''String''
set(h_unitlist,''Value'',1)
set(h_unitdepedit, ' 'String''
else,'...
set(h_actlist,’'Value'',1)
set(h_réfactedit,''String'
end;'...
set(h_offset,''string'',''
elseif popoption==4,'...
if exist(''actdur'')==1 &

length(actdur)>numact,actdur=[];,end;'...

popoption==3,'...
refact, typedep, unitdep.

actval+1);
, 1) ; ' . . .

1) ; ' . . .

204

'actdur(refact)=eval(offsetparam);'...
'raanualdur=l;’...
'actval=get(h_actlist,''Value'
'if actval < numact,'...
'set(h_actlist, ''Value'', actval+1);'...
'set(h_refactedit, ''String'',actval + 1);'..
'else,'...
'set(h_actlist,''Value
'set(h_refactedit,''String
'end;'...
'set(h_offset,''string
'end;'

] ;

hl = uicontrol('Parent’,hO,
'Units','normalized', ...
'callback', offset_call,...
'BackgroundColor',[1 11], ...
'HorizontalAlignment','left', ...
'ListboxTop',0,
'Position',[0.3188 0.11195 0.232 0.03795],
'Style','Edit', ...
'Tag','EditText2');

hl = uicontrol('Parent',hO,
'Units','normalized',
'BackgroundColor',[1 11],
'HorizontalAlignment','left',
'string
'ListboxTop',0,
'Position',mat6, ...
' Style ', '.edit ', ...
'Tag','EditTextS');

hi = uicontrol('Parent',hO,
'Units','normalized',
'BackgroundColor',[1 11],
'HorizontalAlignment','left', ...
'ListboxTop',0,
'Position',[0.5942028 0.2087286 0.347826 0.0379506],
'Style','edit', ...
'Tag','EditText4');

hi = uicontrol('Parent',hO, ...
'Units','normalized',
'BackgroundColor',[1 11],
'HorizontalAlignment','left',
'ListboxTop',0, ...
'string',!,...
'Position',mat7, ...
'Style','edit', ...

205

'Tag', 'EditTextS') ;
SET TYPE TR:VE?. ET:T

hi = uicontrol('ParenthO,
'Units','normalized', ...
'B a c k g r o u n d C o l o r [1 11], ...
'HorizontalAlignment', 'left ’, ...
'ListboxToo',0, ...
'Position*', [0.59420289 0.2846299 0.347826 0.03795066] ,
'Style’, 'edit’, . . .
'Tag', 'EditTextS') ;

hi = uicontrol('Parent', hO,
'Units','normalized',
'BackgroundColor',[1 11], ...
'HorizontalAlignment', 'left', ...
'string',1,. . .
'ListboxTop',0,
'Position',[0.160869565 0.37950664 0.7797 0.03795],
'Style','edit', ...
'Tag','EditText7');

I P -

settypedrv_call=[
' h_typelist=f i.ndobj (' ' Tag ' ', ' ' Listbox2
'val=get(h_typelist, ''Value
' val=n’um2str (val) ; ' . . .
'h_typedrvedit=findobj(''Tag'',''EditTextS'');'...
'set(h_typedrvedit,''string'', val);'
] ;

hi = uicontrol('Parent',hO,
'Units','normalized',
'callback', settypedrv_call, ...
'ListboxTop',0,
'Position',[0.30289 0.5692599 0.086956 0.0569259],
'String','Set Driver', ...
'Tag','Pushbuttonl');

■ SET TYPE TEPETD PTSH5CTT0X
settypedep_call=[

'h_typelist=findobj(''Tag'' , ''Listbox2
'val=get(h_typelist,''Value
'val=num2str(val);'...
'h_typedepedit=findobj(''Tag'',''EditTextS'');'
'set(h typedepedit, ''string' ',val); '

hi = uicontrol{'Parent', hO,
'Units','normalized', ...

206

'callbacksettypedep_call, .. .
'ListboxTop',0, ...
'Position',[0.3028985 0.4743833 0.086956 0.05692599],
'String','Set Depen', ...
'Tag','Pushbutton2');

RIVER PUSH:

setunitdrv_call=[
'h_unitlist = findobj (' 'Tag'' , ''Listbox3
'val=get(h_unitlist,''V a l u e .
'val=num2str (val);'...
'h_unitdrvedit=findobj(''Tag'', ''EditText4
'set(h_unitdrvedit, ' ' string'',val);'
] ;

hi = uicontrol('Parent',hO,
'Units','normalized',
'callback', setunitdrv_call, .. .
'ListboxTop',0,
'Position',[0.65072 0.5692599 0.0869565 0.05692599], ...
'String','Set Driver', ...
'Tag','Pushbuttons');

setunitdep_call=[
'h_unitlist = findobj ' ' 'Tag'', ' 'ListboxS
'val=get(h_unirlist,''Value
'val=num2str(val);'...
'h_unitdepedit=findobj(' ' Tag ' ', ' 'EditTextS'');'...
'sec(h_unitdeoedit, ' ' string'',val);'
] ;

hi = uicontrol('Parent',hO,
'Units','normalized',
'callback', setunitdep_call, . . .
'ListboxTop',0,
'Position',[0.6507246 0.4743833 0.0869565 0.05692599], ...
'String','Set Depen', ...
'Tag', ' ?ushbutton4 ') ;
EXIT PUSH3UTTCX

hi = uicontrol('Parent',hO,
'Units','normalized',
'Callback','close', ...
'ListboxTop',0,
'Position',[0.840579710144927 0.113851992409867 0.1014 4 927 5362319

0.0379506641366224], ...
'String','Exit', ...
'Tag','Pushbuttons');

\ ARBITRARY -PUSHEUTTCX

207

arbitrary_call=[
'h_refactedit=findobj {''Tag'',''EditText?'')
'h_typedepedit=findobj (''Tag'',''EditText5' '
'h_unitdepedit=findobj (''Tag'',''EditText3''
'h_funcedit=findobj(''Tag'',''EditTextl'');'
'h_accept=findobj('' Tag ' ',''Pushbuttons'');'
'acttype=get(h_accept,''userdata
'typedepstr=get(h_typedepedit, ''string'');' .
'unitdepstr=get(h_unitdepedit,''string'');'-
'refactstr=get(h_refactedit,''string '
'funcstr=get{h_funcedit, ' ' string'
'refact=str2num(refactstr);'...
'typedep=str2nun(typedepstr) ; ' . . .
' unitdep=st;r2num (unitdepstr) ; ' . . .
'obj select = l;'...
'acttype=getarbitrary (reslimits, acttype, refacz, typedep,

unitdep, funcstr, o b j s e l e c t .
'set(h_accept, ' 'userdata'',acttype) ; '

hi = uicontrol('Parent',hO,
'Units','normalized',
'ListboxTop',0,
'Position',[0.579710144927536 0.113851992409867 0.10144 9275362319

0.0379506641366224], ...
'Tag','Pushbutton6');

add_call=[
'h_typedrvedit=findobj(''Tag'
'h_typedepedit=findobj(''Tag'
'h_unitdrvedit=findobj(''Tag'
'h_unitdepedit=findobj(''Tag'
' h refactedit = fi.ndobj (''Tag ' '

'EditText6'
'EditTextS'
'EditText4'
'EditTsxt3'
EditText?''

'h_funcedit=findobj(''Tag'',''EditTextl'')
'h_accept=findobj(''Tag'',''Pushbuttons'')
'acttype=get(h_accept, ''userdata '');'...
'typedrvstr=get(h_typedrvedit,''string' ')
'typedepstr=get(h_typedepedit,''string'')
'unitdrvstr=get(h_unitdrvedit,''string'')
'unitdepstr=get(h_unitdepedit,''string'')
'refactstr=get(h_refactedit, ' 'string'');'
'funcstr=get(h_funcedit,''string'');'...
'refact=str2num(refactstr);'
' typedrv=str2nuin (typedrvstr)
'typedep=str2num (typedepstr)
'unitdrv=str2num(unitdrvstr)
'unitdep=str2num (unitdepstr)
'mode=''add'';'...
'acttype=gettime(reslimits, acttype, refact, cypedrv,

typedep, unitdep, funcstr, mode);'...
'set(h_acceot, ''userdata'',acttype);'
] ;

208

''EditTextS'
''EditTextS'
''EditText4'
''EditTextS'
'EditText?''

'EditTextl'');
) ;

)

)

')
’ :
')
')
) ;

percent_call=[
'h_typedrvedit=findobj(''Tag'
h_typedepedit=findobj(''Tag'
h_unitdrvedit=findobj(''Tag'
h_unitdepedit=findobj(''Tag'
h_refactedit=findobj(''Tag''
h_funcedit=findobj(''Tag'','
h_accept=findobj (''Tag'',''Pushbutton9 '
actt^-pe=get (h_accept, ' 'userdata'
typedrvstr=get(h_rypedrvedit,''string'');'
typedepstr=get(h_typedepedit,''string'
unit.drvstr=get (h_unitdrvedit, ' ' string '
unirdepstr=get(h_unitdepedit,''string'
refactstr=get(h_refactedit,''string'')
funcstr=get(h_funcedit,''string'
refact=str2num (refactstr);'.. .
typedrv=str2num(typedrvstr) ; '- . .
:ypedep=str2num (typedepstr);'...
unirdrv=str2num (unitdrvstr) ; '. . .
unitdep=str2num (unitdepstr) ; '. . .
mode=''percent'
'acttype=gettime(reslimits, acttype, refact,

lypedep, unitdep, funcstr, mode);'...
'set(h_accept, ''userdata'',acttype);’
] ;

typedrv, unitdrv.

accept_call=[
'h_accept=findobj(''Tag'',''Pushbuttons'');'...
'h_exit=findobj(''Tag'',''Pushbuttons'');'...
'set(h_exit, ''userdata'',!);'...
'acttype_pure=acttype;'...
'set(h_accect,''
] ;

strina

hi = uicontrol('Parent',hO, ...
'callback',accept_call,...
' Units', 'normalized', ...
' ListboxTop',0, ...
'Position',[0.710144927S36232 0.1138S1992409867 0.1C144927S362319

0.0379506641366224],
'string','Accept All',...
'Tag','Pushbuttons');

hi = uicontrol('Parent',hO, .
'Units','normalized',
'BackgroundColor',[0.75294
'FontWeight','bold',
'HorizontalAlignment
'ListboxTop',0,
'Position',mats,
'String','Dependents', .
'Style','text', ...
'Tag', 'StaticTextl ') ;

hi = uicontrol('Parent',hO,
' Units','’normalized',

0.75294 0.75294],
left', ...

209

'BackgroundColor',[0.75294 0.75294 0.75294],
'FontWeight','bold', ...
'HorizoncalAlignment','left’, ...
'ListboxTop',0, .
'Position',mat9,
'String','Drivers'
'Style','text', .
'Tag','StaticText2');

hi = uicontrol{'Parent',hO,
'Units','normalized',
'BackgroundColor',[0.75294 0.75294 0.75294], ...
' HorizontalAlignment', 'right', ...
'ListboxTop',0, ...
' Position'*, [0.07536 0.28273 0.086956 0.03795],
'String', 'Set Type(s):', ...
'Style','text', ...
'Tag','StaticText3');

hi = uicontrol('Parent',hO,
'Units','normalized',
'BackgroundColor',[0.75294 0.75294 0.75294], ...
'HorizontalAlignment','right',
'ListboxTop',0, ...
'Position'*, [0.072463768 0.208728 0.086956 0.0379506],
'String','Set Unit(s):', ...
'Style','text', ...
'Tag','StaticText4');

hi = uicontrol('Parent',hO, ...
'Units','normalized',
'BackgroundColor',[0.7 5294 0.75294 0.75294], ...
'HorizontalAlignment','right', ...
'ListboxTop',0, ...
'Position'*, [0.0464 0.11195 0.2463 0.03795],
'String', 'Varying Resource Time Req.I Desired Resource Start

Time I Resource Interval AvailabilitylFixed Activity Duration',
'Style','popupmenu', ...
'Tag','popup2');

hi = uicontrol('Parent',hO, ...
'Units','normalized', ...
'BackgroundColor',[0.75294 0.75294 0.75294], ...
'ListboxToo',0, ...
'Position'*, [0.0464 0.0550 0.2463 0.0380],
'HorizontalAlignment','right',...
'String','Additive Time DependencyIPercentual Time

Dependency I Arbitrary Time Dependency 1 Preference I Cost',
'Style','popupmenu', ...
'Tag','popupl');

hi = uicontrol{'Parent',hO, ...
'Units','normalized', ...
'BackgroundColor',[0.75294 0.75294 0.75294], ...
'FontWeight','bold', ...
'ListboxTop',0,
'Position',[0.0579710144 0.9354838 0.1884057 0.0379506],

210

String*/'Activities’,
Style','text*, ...
'Tag*,'StaticTextV');

hi = uicontrol('P a r e n t h O ,
'Units','normalized*, ...
BackgroundColor*,[0.75294 0.75294 0.75294], ...
FontWeight*,'bold*, ...
ListboxTop*,0,
Position*,[0.4043478 0.92979 0.18840579 0.03795],
String*,'Resource Types',
Style *,* text *, ...
'Tag *, * StaticTextS *);

hi = uicontrol(*Parent*,hO,
'Units *,'normalized *, ...
BackgroundColor*,[0.75294 0.75294 0.75294], ...
F o n t W e i g h t b o l d * , ...
.istboxTop *,0,
Position',[0.753623188 0.929791 0.18840579 0.03795],
S t r i n g R e s o u r c e Units',
Style','text', ...
'Tag *, * StaticTextS *);

hi = uicontrol(* Parent',hO,
'Units *, 'normalized *,
BackgroundColor*,[0.75294 0.75294 0.75294],
HorizontalAlignment',* right *,
ListboxTop*,0,
Position*,[0.50724637 0.2846299 0.086956 0.03795066],
String*,* Set Type(s) :',
Style *, 'text', ...
'Tag *, * StaticText3 *);

hi = uicontrol(*Parent',hO,
'Units','normalized', ...
BackgroundColor*,[0.75294117 0.75294117 0.75294117],
HorizontalAlignment *, * right *,
ListboxToo *,0,
Position*^[0.50724637 0.208728 0.086956 0.0379506], .
String','Set Unit(s):',
Style *, 'text *, ...
Tag', 'StaticText4 *);

hi = uicontrol(*Parent',hO, ...
'Units *, ' normalized', ...
BackgroundColor*,[0.75294 0.75294 0.75294], ...
HorizontalAlignment *, * right *,
ListboxTop *,0,
Position*,[0.02898 0.38140417 0.131884 0.034155],
String',* Reference Activity:*, ...
Style *,* text *, ...
Tag*,'StaticTextlO’);

h_typelist=findobj(* Tag *,'Listbox2 *);
set(h_typelist, * userdata *,reslimits);
h_actlist=findob j (* Tag *, * Listboxl*);
set(h actlist, *userdata*, numact);

h_exit=findobj{* Tag', * Pushbuttons *);
h_accept=findobj{* Tag',* Pushbuttons')

211

if exist(•acttype')
set(h_accept, 'userdata',acttype);

end
while -length(get(h_exit, 'userdata'))

drawnow
end
h_accept=findobj('Tag', 'Pushbuttons');
acttype=get(h_accept,'userdata')
uiwait(hO);
if nargout > 0, fig = hO; end

function acttype=gettime(reslimits, acttype, refact, typedrv,
unitdrv, typedep, unitdep, funcstr, mode)
j ump=0;
s'.vicch node
case •' ' add '• }

for act=l; length(refact)
for tdep=l: length(typedep)

for udep=l: length(unitdep)
i junp=0;
if isempty(typedrv) | isempty (unitdrv)

unitdrv=nan;
typedrv=nan;

end; -end if isenpty(typedrv) isenpty; uniturv)
for tdrv=l;length(typedrv)

for udrv=l: length(unitdrv)
' junp=junp-1 ;
if exist('acttype')==1

dummy=eval('size(acttype(refact(act),
typedep(tdep)) .unit(unitdep(udep)) .fune,2}+1', '1') ;

else
dummy=l ;

end
switch mode

case {1}
conditionleft=unitdep(udep);

conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

acttype(refact(act),
typedep(tdep)) .unit(unitdep(udep)) .func{dummy)=sprintf(’ acttype(%.Of,%
,Of).unit(%.Of).assigned*(acttype(%.Of,%.Of).unit(%.Of).tuned +
%s) ',refact(act),typedrv(tdrv),unitdrv(udrv),refact(act) , typedrv(tdrv)
, unitdrv(udrv),funcstr);

else
break

end - end if ccncitiin
case {2}

212

condit;ionleft=unitdep (udep) ;
conditionright=reslimits(typedep(tdep));

if conditionleft<=conditionright
acttype(refact(act) ,

typedep(tdep)).unit(unitdep(udep)).func{dummy}=sprintf('acttype(%.Of,%
.Of).unit(%.Of).assigned*(acttype(%.0f,%.0f).unit(%.Of).tuned*(%s
+ 1)) ',refact(act),typedrv(tdrv) , unitdrv(udrv),refact(act) , typedrv(tdrv
),unitdrv(udrv),funcstr);

else
brealc

end ■ end if ccnditicr.
case {4}
if exist ('acttvpe')==1

prefind=eval('size(acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).pref,2)+1','1');

else
prefind=l;

end
conditionleft=unitdep(udep);

conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

if isfinite(typedrv) &
isfinite(unitdrv)

acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).pref(prefind}=sprintf('acttype(%.Of
,%.0f) .unit(%.Of) .assigned*(%s) ', refact(act),typedrv(tdrv) , unitdrv(udr
V) ,funcstr);

else
acttype(refact(act),

typedep(tdep)) .unit(unitdep(udep)) .pref(prefind}=sprintf('%s’, funcstr)
end

else
break

end - end if ccndi-icn

case {5}
if exist('acttype')==1

costind=eval('size(acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).cost,2)+1','1');

else
costind=l;

end
conditionleft=unitdep(udep) ;

conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

213

if isfinite(typedrv) &
isfinite(unitdrv)

acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).cost{costind}=sprintf('acttype(%.Of
,%.Cf) .unit(%.Of) .assigned* (%s) ', refact(act),typedrv(tdrv) , unitdrv(udr
v) ,funcstr);

else
acttype(refact(act),

typedep (tdep)) .unit (unitdep (udep)) . cost {cost ind} =sprintf (' i s ' , funcstr)
end

else
break

end ' end if cor.diticr.

end er.c sv.'itrr.

end
end

end
end

end

function acttype=gettuned(reslimits, acttype, refact, typedep,
unitdep, offsetparam, popoption)
if popoption==l
for act=l: length(refact)

for tdep=l: length(typedep)
for udep=l: length(unitdep)

conditionleft=unitdep(udep) ;
conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).tuned=eval(offsetparam);

else
break

end
end

end
end
elseif popoption==2

for act=l: length(refact)
for tdep=l: length(typedep)

for udep=l: length(unitdep)

214

conditionleft=unitdep(udep) ;
conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

acttype { refact (act ,
typedep(tdep;;.unit{unrtdep(udep;;.start=sprintf('(1/(1-(trne -
-S/ "2); ',offsetparam;;

acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).start=sprintf('desstart(%s,time) ', o
ffsetparam);

else
break

end
end

end
end
elseif popoption==3

for act=l: length(refact)
for tdep=l: length(typedep)

for udep=l:length(unitdep)
conditionleft=unitdep(udep) ;
conditionright=reslimits(typedep(tdep));
if conditionleft<=conditionright

acttype(refact(act),
typedep(tdep)).unit(unitdep(udep)).start=sprintf('interval(%s,time)',o
ffsetparam);

else
break

end
end

end
end

end if ccccoticr.

function [wind]“interval(fromto,time)
if time < fromto(1)

wind=0;
elseif time >= fromto(1) & time <= fromto(2)

wind=l;
elseif time > fromto(2)

wind=0;
end

215

m a s t e r s c h e d u l i n g f r i e

' S t a r t a n a I n i t i a t e t h e v a r i a b l e s

acttype=acttype_pure;
[acttype]=setassigned(acttype, numact, numres, reslimits);
‘ . a c t n e e d s , p r e d , r e s l i m i t s , a c t r e s t i n e] = r e a c t i l e ;

- [a c t d u r ; = d u r a t i c n (a c t r e s t i n e , a c t r . e e d s , r e s l i m i t s) ;

if exist('manualdur')==1 & manualdur==l
if length(actdur)<numact

h_ooops=errordlg('Some of the Activity Durations are not
Specified!','! am Crashing...!');

end
end
if exist('manualdur')==0

manualdur=0;
end
if manualdur==0
[actdur]^duration(acttype, actneeds, numact, numres);
end
if exist('utility')==0

utility=0;
end
if exist('optchoice')==0 1 isempty(optchoice)==1

errordlg ('You did not specify which objective to optimize. I a m

going into default mode.','Read my User Manual!!!!');
optchoice=l;

end
mindur=actdur ;
[est,1st]=cpm(actdur,pred);
dynpred=pred;

■ • . • . • a i g h t = i n p u c E n t e r t h e i m p o r t a n c e o f r e s o u r c e 1 - r v e l i n g) a

n o n n e g a t i v e n u r i f c e r ; ') ;

? e s o u r c e s D o n ’ ’ t B a l a n c e , b u t a s s i g n r e s o u r c e s B a l a n c e B . e s o u r c e s

a n a A s s i g n R e s o u r c e I ' n i t s ') ;

I h c i c e s 1 - S c h e d u l e O n l y , 2 - 5 a l a n c e O n l y , 3 - K a p O n l y , 4 - B a l a n c e a n c

hap
if exist('w')==0

w=0;
end
if exist('choice')==0

choice=l;
end

if choice==l I choice==3
weight=0;

else
weight=w;

216

end
tic;
multiplier=weight;
scheduled=[];
newlyadded=[];
finished=[];
inprogress=[];
time=0;
directional;
abscis=[];
usage=[];
[numsucc]=children(pred);
■ a s s i c r . e a = z e r c s (s i z e (a c t r e s t i n e) ; ;

' a s s i c r . e a = s p a r s e (z e r o s (n u n s c t , s u n { r e s l i n i t s]

hf_wait=waitbar(0,'Please wait, I am sceaming
while size(scheduled,2)<length(actdur)

f o r b = I : 1

waitbar(size(scheduled, 2)/length(actdur));
if isempty(scheduled)==0

time=min(scheduled(3, (find(scheduled(3, :)>time))));
finished=scheduled (1,find(scheduled(3,:)==time));
newlyadded=[];
for 2= 1 :length(finished)

inprogress (inprogress==finished (z)) = [] ;
end
for i=l:length(finished)
if isempty(finished)==0

dynpred (find (dynpred==finished (i)))=0;
end

end
end

[cand]=candidates(dynpred) ;

i f isempty(cand) = = 0

[prior] =floatweight (cand, 1st, actdur, time) ;

if direction==l
scheduler;
if isempty(scheduled)==0

k m u l t i p l i e r = n u l t i p l i e r ' ' { l e n g t h (1 s t)

l e n g t h (s c h e d u l e d (1 , :)) ; / l e n g t h { 1 s t) ;

multiplier=multiplier* (sum(mindur) -
sum (mindur (scheduled (1, :)))) /sum (mindur) ;

217

end ' i f i s e n p c y

if x(end)~=0
' d i s p r e a c h e d t h e r e s o u r c e p e a - ; a t t i n e

j c i r . c c c ’. - . T . r . c v ; .

multiplier=weight ;
schedulerdown;

m u l t i p i i e r = n u l t i p l i e r / 2 ;

direction=0;
end

else
schedulerdown

= n u l t i p l i e r = n u l t i p l i e r / 2 ;

end

newlyadded=cand(find(x));
end ■ 11 isenpty { cand ==0

if isempty(newlyadded)==0;

if choice==3 | choice==4
rescheduler;

if manualdur==0 & optchoice'-=2 & optchoice~=3
[actdur] =updateactdur (actdur, newlyadded, acttype, reslimits);

end end i f nanuaidur==0
end
[scheduled] =chart (time, newlyadded, scheduled, actdur) ;
inprogress=[inprogress newlyadded*] ;
dynpred(newlyadded,:)=nan;

end
abscis=[abscis time]; n e e c e d f o r r e s o u r c e leaci n o graph
usage=[usage sum (actneeds (inprogress, :), 1) '] ; n e e c e o f ; i r - = s c

e n d ' - . - . ' h i i e

close(hf_wait);
if optchoice-=2 & optchoice~=3

‘ s c h e d u l e d ' u n - r e n a r t h i s f o r s c h e d u l e d t c b e d i s f

e n d

218

function
[c]^objective(prior,actneeds,reslimits,cand, actdur,multiplier,numsucc,
mindur)
durweight=mindur(cand)/max(mindur) ;
maxobj=prior.‘numsucc (cand) . *durweight; -r.unsuuc ■; car.o; is alraaay
minobj =actneeds(cand, :);
for s=l:length(reslimits)

minobj(:,s)=minobj(:,s)/reslimits(s) ;
end
' nir.cbj=nuitipiier' (1-sun (nincbj , 2]] ' ;

minobj=sum(minobj,2)';
minobj=minobj/max(minobj);
minobj=multiplier*(1-minobj);

append = 2*sum(actdur);
c=fix([(-minobj-maxobj) append]*10000) ;

function [c] =objectivedown (prior, actneeds, reslimits, cand, actdur,
multiplier,numsucc, mindur)
durweight=mindur(cand)/max(mindur) ;
maxobj =prior. ‘numsucc (cand) . ‘durweight;
minobj=actneeds(cand,:);
for s=l: length(reslimits)

minobj(:,s)=minobj (:,s)/reslimits(s) ;
end

minobj =sum(minobj,2) ' ;
minobj=minobj/max(minobj);
minobj=multiplier‘ (minobj);

append = 2‘sum(actdur);
c=fix([(-minobj-maxobj) append]*10000) ;

219

function fig = promap()
IS the nachir.e-qer.erated représentâticr. of a Hancle Graphics

cb]ect
ana its children. dote that .hancle values nay ch any- wi.-r. th-se

objects
are re-createc. This na%- cause prcblens with any rallbac-is ■.-.•ritnen
ceper.c cn the value of the handle at the tine the cb]ect was savea.
Tc reopen 'this object, just type the name of the K-file at the
prcnpt. The K-file and its associated KAT-file nust be on your path

dynamo;
clear
load promap
hO = figure('Color',[0.8 0.8 0.8], ...

'Colormap',matO, ...
'MenuBar','none', ...
'N a m e P R O M A P : Project-Resource Mapper',...
'NumberTitle' , 'off', ...
'PointerShaoeCData',matl, ...
•Position',‘[240 316 300 1], ...
•Tag','Figl');

hl = uimenu('Parent',hO, ...
'Label','SProject', ...
'Tag','project');

newproj ect_call=[
'getdata;'...
'if isempty(numact)==0 & isempty(numres)==0 &

isempty(reslimits}==0,'...
'if -exist(''acttype'')'...
'getfunctions(numact, numres, reslimits);'...
'else;'...
'getfunctions(numact, numres, reslimits,acttype);'...
'end;'...
'end;'

] ;
h2 = uimenu('Parent',hi, ...

• callback',newproj ect_call, ...
'Label','&New Project', ...
'Tag','new');

open_call=[
' [nam, pat] =uigetfile (' ' * .m.at ' ', ' ' Open Existing Project'');'...
'if nam~=0,'...
•nam=strcat(pat,nam);'...
• load(nam);'...
'acttype=acttype_pure;'...
• end;'

] ;

h2 = uimenu('Parent', hi, ...
'callback',open_call, ...
'Label','&Open Project', ...

220

'Tag','open');

save_call=[
'[namput,patpuc]=uipucfile(' 'o r o j e c t d a c a . m a c S a v e Frojec

Data''};*'...
'if namput~=0 & exist(''acrtype_pure'')= = 1,'.. .
'namput=strcat(patput, namput); ' - - -
'save(eval(''n a m p u t a c t c y p e _ p u r e '',

''actneeds• 'numact'', ' 'numres' ', ' 'reslimits' ', ' 'pred
'end;'

] ;

h2 = uimenu('Parent',hi,
'callback',save_call, . . .
'Label', 'SSave Project',
'Tag','save');

h2 = uimenu('Parent',hi,
'callback', 'close', . .
'Label', 'SClose',
'Separator','on', ...
'Tag','finish');

hi = uimenu('Parent',hO,
'Label','&Run', ...
'Tag','run'};

schedule_call=[
'h_balandmap=findobj(''Tag'',''balandmap''};'...
'h_balonly=findobj(''Tag'', ''balanceonly
'h_maponly=findobj(''Tag'', ''maponly' '};'...
' bm=get (h_balandmap, ' ' checked '
'bo=get(h_balonly,''checked'');'...
'mo=get(h_maponly,''checked'');'...
'if strcmp(bm,''off'')==1 & strcmp(bo,''off'')==1 &

strcmp (mo, ' 'off ') ==1, ' . . .
'choice=l;'...
'end;'...
'master;'
] ;

h2 = uimenu('Parent',hi, ...
'callback', schedule_call, ...
'Label','Sche&dule', ...
'Tag','schedule');

optim_call=[
'choicesstring={''Time

Effectiveness'',''Preferences'',''Costs'',''Resource
A v a i l a b i l i t y C o m p o s i t e Utility Function''};',...

'[optchoice,uredu]=listdlg(''Name'',''Select
Objective'', ''PromptString'' , ''Map resources according

221

t o ' SelectionMode'','’Single’', ''ListString'',choicesstrina, ''Li
stSize'',[160,80]

'if optchoice==5,utility=inputdlgEnter the Composite Utility
Function, U {timedep,pref,c o s t , s t a r t t i m e) , ''Composice Utilizy
F u n c t i o n e n d ; '

] ;
h2= uimenu('Parent',hi,...

'callback',optim_call, .. .
'Label', '&Optimizing Objectives',...
' Tag', 'ope imi ze');

ballevel_call=[
'w=inputdlg(''Enter the Resource Centralizing Prioriey Weight'',

' 'Balancing Priority'',1,{'' 0 .
'if isempey(w)==1,'...
'w=0;'...
'else,'...
' v;=str2num(char (w));'...
'end;'

h2 = uimenu('Parent',hi,
'callback',ballevel_call, . . .
'Label','Set Generalizing Slmporeance SLevel', ...
'Tag','level');

centrtype_call=[
'numres=lengeh(reslimies);',...
'for i=l:numres, reseypestr(j)={sprinef(''Resource Type

%.Of'',j)};,end;'...
' [eypeselect,izbor]=listdlg(''PrompeString'', ' 'Selecet Resourc

Tyoes'', ' 'LiseString' ',reseyoeser, ''LiseSize'', [160,160]);'
] ;

h2=uimenu('Parene',hi,
'callback',centrtype_call, . . .
'Label','Resource &Types to Centralize',...
' Tag', 'choosetypes'};

balandmap_call=[
'h_balandmap=findobj(''Tag' ', ''balandmap''};'
'h_balonly=findobj (' 'Tag'', ''balanceonly''};'
'h_maponly=findobj (' 'Tag' ', ' 'maponly' ');'...
'h_level = findobj (' 'Tag'', ''level
'bmcheck=get(h_balandmap,''checked'');'...
'if strcmp(bmcheck, ''on'')==1, ' . . .
'choice=l;'...
'set(h_balandmap,''checked'',''off'');'...
'set(h_level,''enable'','' o f f ');'...
' else, '...
'set(h_balandmap,''checked'',''o n .
'set(h_level,''e n a b l e o n '');'...
' choice=4;'...
'set(h_balonly, ''checked'', ''o f f ');'...
' set (h_maponly, ' ' checked' ', ' ' o f f ');'...

222

'end;'

h2 = uimenu('P a r e n t h i , ...
'callback', balandmap_call,...
'Label','Map Sand Centralize',
' Separator', 'on ', ...
'Tag','balandmap');

balanceonly_call=[
'h_balandmap=fIndobj(''Tag'',''balandmap'');'
'h_balonly=fIndobj(''Tag'',''balanceonly'');'
'h_maponly=fIndobj(''Tag'',''maponly
'h_level=fIndobj(''Tag'',''level
'bmcheck=get(h_balonly,''checked'
'If strcmp(bmcheck,''on'')==1,'...
'cholce=l;'...
'set(h_balonly, ' 'checked'',''o ff ');'.. .
'set(h_level,''enable'',''off
'else,'...
'set(h_balonly,''checked'',''o n .
'set(h_level,''e n a b l e o n .
'cholce=2;'...
'set(h_balandmap,''checked'',''o f f ');'...
'set(h_maponly, ''c h e c k e d o f f .
'end;'

h2 = uimenu (■'Parent', hi, ...
'callback',balanceonly_call, . . .
'Label','^Centralize Only', ...
'Tag','balanceonly');

maponly_call=[
'h_balandmap=fIndobj(''Tag'',''balandmap'');'
'h_balonly=fIndobj(''Tag'',''balanceonly'');'
'h_maponly=fIndobj(''Tag'',''maponly'');'...
'h_level=fIndobj(''Tag'',''level
'bmcheck=get(h_maponly,''checked'');'...
' If strcmp(bmcheck, ''on'')=—1, '...
'cholce=l;'...
' set(h_maponly, ''checked'',''off'');'.. .
'set(h_level, ' 'e n a b l e o f f '');'.. .
'else, ' , . .
' set (h_miaponly, ' ' checked ' ', '' on '');'.. .
'set(h_level,''e n a b l e o n '');'...
'cholce=3;'...
'set(h_balandmap, ''c h e c k e d o f f '');'.. .
'set(h_balonly, ''checked'',''off'');'.. .
'end;'

223

h2 = uimenu('P a r e n t h i ,
'callback',maponly_call, ...
'Label', '&Map Only', ...
'Tag', 'maponly') ;

hi = uimenu('Parent',hO,
'Label','SGraph', ...
'Tag','graph');

gantt_call=[
'figure;'...
'for r=l; length(actdur),'...
'data(1,r)^scheduled(2,find(scheduled(1,:)==r))
'end; ...
'data(2,:)=actdur;'...
'barh(data'',''stack’
'colormap([1 1 1;0 0 0]);'...
'set(gca,''color'', ''white
'title([[''Project is completed at t = ''

num2str(scheduled(3,end))]]); ' . . .
'xlabel(''Time'');'...
'ylabel(' 'Activities' ') ; '

h2 = uimenu('Parent',hi,
'callback',gantt_call,
'Label','Ga&ntt', ...
' Tag', 'gantt');

loading_call=[
'abscis=[abscis scheduled(end)];'...
'usage=[usage usage(:,end)];'...
'for v=l: length(reslimits),'...
'figure;'...
'stairs(abscis,usage(v,:));'...
'yticks=l:reslimits(v);'...
'set(gca, ''yTick'',yticks) ; ' . . .
'axis([0 scheduled(end) 0 reslimits(v)+1]);'...
'title(sprintf(''Resource Type %.Of Loading Graph'', v));'
'xlabel (' 'Time' ');'...
'ylabel(''Resource Units'');'...
'end;'

] ;

h2 = uimenu('Parent',hi, ...
'callback',loading_call, . . .
'Label','^Resource Loading',
'Tag','loading');

unitmapping_call=[
'if choice==3 I choice— 4, ' . . .
'for restype=l: length(reslimits) , '

224

'figure;'...
'grid;'...
'Xuicks=l:reslimits(restype);'...
'yticks=l:numact;’...
'axis([0 reslimits(restype)+1 0 size{actneeds,1)+1]);'...
'set(gca, ''XTick'',xticks);' . . .
'set(gca, ’ 'YTick'’,yticks);' . . .
'hold;'...
'for nact=l:numact,'...
'vect=find([acttype(nact,restype).unit(:).assigned]);'...
'if -isempty(vect)'...
'plot(vect,nact, ''ro'');'.. .
'end;'...
'end;'...
'title(sprintf(''Mapping Resource Type %.Of Units to Project

Activities'', restype));'...
'xlabel(sprintf(''Resource Type %.0f units'',restype));'...
'ylabel(''Proj ect Activities'');'...
'hold off;'...
'end;'...
'end;'...

h2 = uimenu('Parent',hi, ...
'callback',unitmapping_call, . . .
'Label','SUnit Mapping', ...
'Tag','unitmapping');

util_call=[
'if choice==3 I choice==4, ' . . .
'for restype=l: length(reslimits), '...
' figure; '•. . .
'xticks=l:reslimits(restype);'...
'axis([0 reslimits(restype)+l 0 1]);'...
'set (gca, ''XTick'',xticks); ' . . .
'hold;'...
'maxunittime=zeros(1, reslimits(restype));'...
'rainunittime=zeros(1, reslimits(restype));'...
'for nunit=l:reslimits(restype),'...
'for nact=l:numact,'...

'maxunittime(nunit) =maxunittime(nunit) + (acttype(nact,restype).unit(nun
it).assigned)*actdur(nact);'...

'if isfinite(acttype(nact,restype).unit(nunit).tuned)'...
'minunittime(nunit)=minunittime(nunit)+ (acttype(nact,restype).unit(nun
it).assigned)* (acttype(nact,restype).unit(nunit).tuned);'...

'else'...
'minunittime (nunit) =minunittim.e (nunit) +0; ' . . .
'end;'...
'end;'...
'maxunittime(nunit)= maxunittime (nunit)/scheduled(3,end);'...
'minunittime(nunit)= minunittime (nunit)/scheduled(3,end);'...
'end;'. . .
'bar(maxunittime, '' r '');'...
'bar(minunittime, ''b '');'...

225

'title(sprintf(•'Time Percentage of Resource Type %.0f Units
Engagement vs. Total Project Duration'', restype));'...

'xlabel(sprintf{''Resource Type %.Of Units'',restype));'...
'ylabel(''Percentage of Total Project Duration'');'...
'hold off;'...
'end;'...
'end;'

] ;

h2 = uimenu('Parent',hi, ...
'callback',util_call, ...
'Label','Unit Utili&zation', ...
'Tag','utilization');

unitcost_call = [
'warning off;'..,
'if (optchoice==3 I optchoice==5) & (choice==3 I choice==4),'...
'for restype=l: length(reslimits),'...
'figure;'...
'xticks=l:reslimits(restype);'...
'set(gca,''XTick'',xticks);'...
'hold;'...
'unitcost=zeros(1,reslimits(restype));'...
'for nunit=l;reslimies(restype),'...
'for nact=l:numact,'...
'if isfinite(acttype(nact,restype) .unit(nunit) .mastercost), '...

'unitCOSt(nunit)=unitcost (nunit) + (acttype(nact,restype) .unit(nunit) .as
signed) * (acttype (nact, restype) .unit (nunit) ..mastercost) ; ' . . .

'else,'...
' uni tcost (nunit) =unitcost (nunit) -rO ; ' . . .
' end; ' .. ,
'end;'...
'end;'...
'bar(unitcost, ''g '');'...
'title(sprintf(''Project Cost For Type %.Of Resource Units'',

restype));'...
'xlabel(sprintf(''Resource Type %.Of Units'',restype));'...
'ylabel(''Total Unit Cost'');'...
'hold off;'...
'end;'...
'end;'...
'warning on;'

] ;
h2= uimenu('Parent',hi,...

'callback',unitcost_call,...
'Label','Total Unit &Costs',...
'Tag','unit_costs');

if nargout > 0, fig = hO; end

226

for restype=l:length(reslimits)
' restype=c;

[rc, acttype] =resobjective (acttype, restype, reslimits, newlyadded,
time, optchoice, utility);
[resmat, rc]=resmatrix(rc,
newlyadded,reslimits, restype, acttype,inprogress);
[rb,numeq]=resconstraints(newlyadded,restype, reslimits, actneeds);
optPar(13)=numeq;
optPar(1)=0;
optPar(14)=1000000000;
rc=f ix (rc*100000) ; : s u r e t h e c b j e r t r v e r o e f f r c r e r.ts a r e

_ r : t e g e r s

sol=balas (resmat, rb, rc, optPar) ' ; % see http://www.ima.mdh.se/tom/
f i r . d (sol)

^ a l u c l a t i n c t h e a s s i c n e d i n d i c e s

if isempty(sol)
sol=zeros(1,length(rc));

end :if isenpty'rc)
fromsol=l; f c r n e r i y f r e n r r

tosol=0; f c r n e r i y t c r r

for h=l: length(newlyadded)
tosol=tosol+reslimits(restype);
for g=l:reslimits(restype)

acttype(newlyadded(h) , restype).unit(g).assigned=sol (fromsol) ;
fromsol=fromsol+1;

e n d

fromsol=tosol+l ;
e n d

e n d f c r r e s t y p e = l : l e n g t h { r e s i i n i t s ; w h e r e q = r e s t y p e

function
[rb,numeq]=resconstraints(newlyadded,restype, reslimits, actneeds)

- - Z i i n i r . a t i n a r e s o u r c e u n _ t s t h a t a r e i n p r o g r e s s - - - - - - - - - - - '

binprogress=0;

227

http://www.ima.mdh.se/tom/

^ ' " ' ■ " S a t i s f y i n g t h e n e e d s c f n e w l y a d d e d a c t i v i t i e s

\ i : u n b e r c f r o w s e q u a l t o t h e l e n g t h (n e w l y a d c e d) - - - - - - - - - - - - - - - - - -

bneeds=actneeds (newlyadded,restype) ';

: - - - - - - - - - - - - - - - - - - e n s u r i n g t h e u n i q u e n e s s c f t h e v a r i a b l e a s s i g n n w

bunique=ones(1,reslimits(restype)) ;

rb=[binprogress bneeds bunique];
numeq=length([binprogress bneeds]);

function [resmat,
rc] =resmatrix(rc,newlyadded, reslimits,restype,acttype,inprogress)

' " - - - - - - - - - - - - - - - - C a l u c l a t i n g t h e i n a i c e s

: - ' I d e n t i f y i n g r e s o u r c e u n i t s t h a t a r e i n p r o g r e s s '

resinprogress=zeros(1,reslimits(restype));
for i=l: length(inprogress)

for j=l:reslimits(restype)
if acttype (inprogress (i), restype) .unit(j) .assigned— 1 &

isempty (inprogress) '-=1
resinprogress(j)=1;

end ‘ e n d i f

end
end

tempres=resinprogress ;
for g=l:(length(newlyadded)-1)

resinprogress=[resinprogress tempres];
end

- T a . - ' . i n g c a r e c f c r i s p r e s o u r c e c a i e r . c a r u n a v a i l a b i l i t y

for z=l: length(newlyadded)
for x=l:reslimits(restype)

if isfield(acttype(newlyadded(z),restype).unit(x),
'masterstart') ==1 &
acttype(newlyadded(z),restype).unit(x).masterstart==0

resinprogress((z - 1) *reslimits(restype) + x)=l;
end

228

end
end

l l i n i r . a t i n c u n i t s h a v i n g ' i n f a s o b j e c t i v e c c e t f i c i e n t s -

resinprogress=resinprogress + isinf(rc);
if sum (isinf(rc))-=0

end

c i C T l l V l t l l 6 : S ^ ■'

resneeds=zeros (length (newlyadded) , length (newlyadded) *reslimits (restype
)) ;
from=l;
for i=l: length(newlyadded)

resneeds(i,from:i*reslimits(restype))=1;
from=from+reslimits(restype);

end

 - - - - - - - - - - I n s u r i n g t h e u n i q u e a s s i g n m e n t c f r e s o u r c e u n i t s

unique=[];
for i=l: length(newlyadded)

unique=[unique eye(reslimits(restype))];
end

resmat=[resinprogress; resneeds; unique];

function [rc, acttype]=resobjective(acttype, restype,
reslimits, newlyadded, time, optchoice, utility)

f u n c t i o n [r c] = r e s c b j e c t i v e (a c t r e s t i n e , r e s t y p e , r e s i i n i t s , r e v . ' i y a a d e c ;

: a i u c i a t i n c t h e

rc=[];
for i=l: length(newlyadded)

for j=l:reslimits(restype)
funcheclc=isfield (acttype (newlyadded (i) , restype) .unit (j),

'fune');

229

tunedcheck=isfield(acttype(newlyadded(i),restype).unit(j),'tuned');
if funcheck==l

numfuncs=eval('size(acttype(newlyadded(i), restype) .unit(j) -func,2) '
) ;

maxfun=0;
if

isempty(acttype(newlyadded(i),restype).unit(j).func)==1

'acttype {r.ewLyacuec ' a , , 1 : . unat [:] . tunec; ' ' : ;
maxfun=inf ;

end
for k=l:numfuncs

funct=eval(acttype(newlyadded(i),restype).unit(j).func{k}, inf);
if funct > maxfun

maxfun=funct;
end ‘end if

end ' end for -;=1 : numfuncs
if tunedcheck==0

acttype(newlyadded(i),restype).unit(j).tuned=maxfun;
elseif tunedcheck==l &

isempty(acttype(newlyadded(i),restype).unit(j).tuned)==1
acttype(newlyadded(i),restype).unit(j).tuned=maxfun;

elseif tunedcheck==l &
isempty(acttype(newlyadded(i),restype).unit(j).tuned)==0
acttype(newlyadded(i),restype).unit(j)-tuned=max(maxfun,acttype(newlya
dded(i),restype).unit(j).tuned);

end - end if tunedchec!-;==0
end ' end if funchecu==l

if funcheck==0
if tunedcheck==0

acttype (newlyadded (i) , restype] . unit (j] . tur.ed=eval { ' nin ' (acttype {r.ewiya
cded(i;,restype) .unit(1 :j-
1 ; -tuned; ; ', 'min; (acttype(newlyadded(i) ,1) .unit(:) .tuned() ') ;
defaulting the tuned duration if not specified an any 'way

acttype(newlyadded(i),restype).unit(j).tuned=inf;
elseif tunedcheck==l

if
isempty(acttype(newlyadded(i),restype).unit(j).tuned)==1
acttype (newlyadced (a (, restype' . un: t (]) . tunec=eva 1 (’ nin ■; (act type (newlya
ddec ' i , restype) . uni t (1 :] -
1 ; .tuned;) ', 'min((acttype(newlyadded(i(,1) .uni t (:) .tuned() ') ;
acttype(newlyadded(i),restype).unit(j).tuned=inf;

end i end isempty(acttype)

230

end t e n d t u n e d c h e c K .

end ' e n d f u n c h e c k

if optchoice==l
rc=[rc acttype(newlyadded(i),restype).unit(j).tuned];
end

e n d : e n d f c r j = l : r e s l i n r t s (r e s t j ^ p e ;

e n d e n d f o r i = l : l e n g t h (n e w l y a d d e d ;

i f optchoice==2 I optchoice==5
f o r i=l:length(newlyadded)

f o r j=l:reslimits(restype)
prefcheck=isfield(acttype(newlyadded(i),restype).unit(j),

' p r e f ') ;

if "isfield(acttype(newlyadded(i),restype).unit(j),
'masterpref') |
isempty(acttype(newlyadded(i) , restype).unit(j) -masterpref)

acttype(newlyadded(i),restype).unit(j).masterpref=0;
end -end if isfield

if prefcheck==l &
isempty(acttype(newlyadded(i),restype).unit(j).pref)==0

numprefs=eval('size(acczype(newlyadded(i),restype).unit(j).pref,2) ’);
for k=l:numprefs

pref=eval(acttype(newlyadded(i),restype).unit(j).pref{k},’G ’);
acttype(newlyadded(i),restype).unit(j).masterpref=acttype(newlyadded(i
),restype).unit(j).masterpref + pref;

end 'end fcr k=l:nunprefs
end ‘end if prefcheck

if optchoice==2
rc=[rc -acttype(newlyadded(i) , restype) .unit(j) .masterpref];
end ■ end if cptchcice==2 (YES, 1 need it tc be checked

twcce: ;

end -end fcr j=1 ;reslimits(restype)
end " end i = l : length{newlyadded)
end 'end cptchcice==2

if optchoice==3 I optchoice==5
for i=l: length(newlyadded)

for j=l:reslimits(restype)
costcheck=isfield(acttype(newlyadded(i),restype).unit(j),

'cost’);

231

it

if costcheck==l &
(~isfield(acttype(newlyadded(i),restype).unit(j), 'mastercost') I
isempty(acttype(newlyadded(i),restype).unit(j).mastercost))

acttype(newlyadded(i) , restype) .unit(j) .mastercost=0;
was .masterCCSt=0;

elseif costcheck==0 &
('isfield(acttype(newlyadded(i), restype).unit(j), 'mastercost') I
isempty(acttype(newlyadded(i),restype).unit(j).mastercost))

acttype(newlyadded(i),restype).unit(j).mastercost=inf;
it was .masterccst = :j;

end 'if isfield

if costcheck==l &
isempty(acttype(newlyadded(i),restype).unit(j).cost)==0

numcosts=eval('size(acttvpe(newlyadded(i),restype).unit(j).cost,2}');
for k=l:numcosts

cost=eval(acttype(newlyadded(i) , restype).unit(j) .cost{k),inf);
' i t was . . . cost •; :< ;, 0 ; ;
acttype(newlyadded(i),restype).unit(j).mastercost=acttype(newlyadded(i
), restype).unit(j) .mastercost + cost;

end 'end fcr k=l:numccsts
end ":end if ccstchecd

if optchoice— 3
rc=[rc acttype(newlyadded(i),restype).unit(j) .mastercost];
end ' end if octchcice==3 ■'YIS, : need it tc be chere-rC

e n c e r . c r c r i = i : r e s l i m i t s % r e s t y p e :

e n d e n c i = l : l e n g t h (n e w l y a c d e d)

e n d e n c c p t c h c i c e = = 3

if optchoice==4 | optchoice==5 | optchoice==l | optchoice==2 |
optchoice==3

for i=l:length(newlyadded)
for j=l:reslimits(restype)

startcheck=isfield(acttype(newlyadded(i),restype).unit(j),
'start');

if startcheck==0 I
isempty(acttype(newlyadded(i),restype).unit(j).start)==1

acttype(newlyadded(i) , restype).unit(j) .masterstart=l;
else

acttype(newlyadded(i),restype).unit(j).masterstart=eval(acttype(newlya
dded(i) , restype) .unit(j) .start);

end ' e n d if s t a r t c h e c k

•if optchoice==4
rc=[rc acttype(newlyadded(i) , restype).unit(j).masterstart];

232

end ' end if cptchcice==4 (YES, : need it to be checked
t w i c e : ;

e n d ' e n d f o r j = l : r e s i i n i t s (r e s t y p e ' ,

e n d e n d i = l : l e n g t h (n e w l y a d d e d)

e n d ■ e n d c p t c h c i c e = = 4

if optchoice==5
for 1=1 :length(newlyadded)

for j=l:reslimits(restype)

timedep=acttype (newlyadded(i) , restype) .unit(j) - tuned;
pref=acttype (newlyadded(i), restype) -unit(j) .masterpref;
cost=acttype (newlyadded (i) , restype) .unit {j) .mastercost;
starttime=acttype (newlyadded (i) , restype) .unit(j) .masterstart;
utility=char(utility) ;

composutility=eval(utility) ;
if isnan(composutility)

composutility=inf;
e n d

rc=[rc -composutility];
e n d ' e n d f o r j = l : r e s i i n i t s (r e s t y p e)

e n d ' e n d 1 = 1 ; l e n g t h • n e v ; i y a d d e c)

e n d (e n d c p t c h c i c e = = 5

% Scheduler File
i f -exist('t y p e s e l e c t ')

typeselect=[];
e n d

[b]=constraints(inprogress, finished,reslimits, actneeds, typeselect);
[c]=objective(prior,actneeds,reslimits, cand,
actdur,multiplier,numsucc, mindur) ;

: [a] = a n a t r i % (a c t n e e d s , c a n d , f i n i s h e d) ;

[a] =amatrix (actneeds, cand, finished, reslimits, inprogress, typeselect) ;
x=balas(a,b,c,0); % see http://www.ima.mdh.se/tom/
% End Scheduler File
% Scheduler "Down" File
[b] =constraintsdown (inprogress, finished, reslimits, actneeds) ;
[c] =objectivedown (prior, actneeds, reslimits, cand,
actdur,multiplier, numsucc, mindur) ;
[a]=amatrixdown(actneeds, cand,finished, reslimits,inprogress);
x=balas(a,b,c,0); % see http://www.ima.mdh.se/tom/
% End Scheduler “Down" File
function [acttype]=setassigned(acttype, numact, numres, reslimits)

233

http://www.ima.mdh.se/tom/
http://www.ima.mdh.se/tom/

for i=l:numact
for j=l:numres

for k=l:reslimits(j)
acttype(i,j).unit(k).assigned=0 ;

end
end

end

function [actdur]=updateactdur(actdur, newlyadded, acttype, reslimits)

f o r w=l:length(newlyadded)
f o r rt=l: length(reslimits)

actdur(newlyadded(w))=max (actdur(newlyadded(w)),
eval('max([acttype(newlyadded(w) ,rt).unit(:).tuned] .*[acttype(newlyadd
ed(w),rt).unit(:).assigned])’,'0'));

end
end

234

