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Abstract

This dissertation describes the results of research that covers two distinct areas relevant to 

the held of physics: atomic theory and applied numerical analysis. In the first phase of this 

research the avoided crossings of diamagnetic hydrogen were examined with dimensional 

perturbation theory, resulting in a systematic means of understanding the appearance of 

these avoided crossings and where they will occur in the energy spectrum. In the second 

phase of this research we turned our attention to the field of approximation theory, develop­

ing a more accurate technique for summing divergent perturbation series at specific values 

of the independent variable. The two phases of research were finally related by applying 

this new techique to the diamagnetic hydrogen problem, with improved convergence and 

accuracy when summing the perturbation energy series.
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The following advances in research form the basis of this dissertation:

• We first extended previous results of various researchers, most notably M. Dunn, 
D.K. Watson, T.C. Germann, and D R. Herschbach, for calculating the energy levels 
and branch-point structure of diamagnetic hydrogen to the odd-parity states. These 
results appear in Ref. (A)

• The fact that avoided crossings appear in the energy spectrum of diamagnetic hydro­
gen while the magnetic quantum number m is held fixed and the field strength B  is 
swept is well-known. However, we demonstrated in Ref. (Q  that avoided crossings 
appear when B  is held fixed and the magnetic quantum number m swept.



•  Also in Ref. (C) we demonstrated that the locations of these two types of avoided 
crossings (that is, the avoided crossing when B  is held fixed and m  is swept and the 
avoided crossing when m is held fixed and B  is swept) are intimately related.

•  In this same article, by plotting the trajectories of the square-root branch points 
(which connect the ener^  levels that are attempting to cross) we established a sys­
tematic means of predicting the location of avoided crossings, even hidden avoided 
crossings. This technique was successful for both types of avoided crossings.

•  As the field strength B  is swept, the square-root branch points move on the complex- 
pararaeter plane. We established in Ref. (D) a characterization of this motion that 
is analytic for all field strengths, even through regions of field strength where the 
motion is highly non-smooth.

•  Avoided crossings can range from broad avoided crossings (indicative of a very 
strong interaction between energy levels) to narrow avoided crossings (correspond­
ing to a very weak interaction). In Ref. (D) we explained the broadness of avoided 
crossings in terms of the behavior of the square-root branch points in light of second- 
order, degenerate perturbation theory.

•  The summing of divergent perturbation series is an important area of research in ap­
plied numerical analysis, and has important implications in perturbation theory. In 
Ref. (E) we developed a new numerical technique for summing divergent perturba­
tion series at particular values of the independent variable that is a dramatic improve­
ment over Padé summation, considered to be one of the most robust and powerful 
techniques available.

•  The perturbation series of diamagnetic hydrogen created by dimensional perturbation 
theory is highly divergent for most field strengths and states. In many cases the 
series can still be summed to a finite, and accurate, result using Padé summation. 
In Ref. (F) we successMly applied this new numerical technique to the perturbation 
series of diamagnetic hydrogen and noted its often dramatic improvement over Padé 
summation.

•  Because the perturbation parameter in dimensional perturbation theory is inversely 
proportional to |m|, it was commonly thought that dimensional perturbation theory 
would not be nearly as effective at low values of |m|. In Ref. (F) we demonstrated and 
explained why dimensional perturbation theory actually increases in effectiveness as 
\m\ is lowered.

•  Dimensional perturbation theory is a natural for studying circular Rydberg states. In 
this same paper we showed that dimensional perturbation theory remains effective 
for highly non-circular states as well.

So let’s get on with the show!



What the Critics are Saying about Branch-Point 
Structure’

Bomb! Lowest rating!
— L. A. Times

We are treated to one scene after another where the energy levels approach each other as if 
to cross, only to avoid each other at the very last moment. The hrst time this happens may 
be frightening to some readers (yeah, right!), but by the end of the dissertation all these 
“terrifying” confrontations come off as big yawners.

— The Daily Grad

Two thumbs down. Waaaaaaay down.
— Siskel (or Ebert)

The scene where the branch points annihilate is completely tasteless and gratuitous. Having 
the branch points co-exist in peace would have not changed the story line one iota, but gore 
is what sells these days.

— Dissertation Digest

El stink-a-roo! I hope the readers kept their receipt.
— Rex Reed

This solves the mystery of what happened to Milli Vanilli.
— The Globe

Muddled plot. Halfway through the dissertation the characters of the wave functions ex­
change identities, producing a puzzling mess.

— Thesis Illustrated

The quadratic |Bp(x^ +  y^) [term] is unimportant for a one-electron atom.
— J. J. Sakurai, Modem Quantum Mechanics.

A beautiful piece of work, destined to enchant future generations more. John Walkup has 
created a masterful dissertation. He’s good looking, too.

— An admirer of his work who wishes to remain anonymous.
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Chapter 1

The Diamagnetic Hydrogen Problem and its Applications

Those wanting a stark contrast between the words simple and easy need look no further 

than the diamagnetic hydrogen problem. While simple in description — after all, it is 

nothing more than a hydrogen atom placed in a constant magnetic field — such a problem 

is certainly not easy to solve. In fact, the problem has defied all attempts at an analytic 

solution[8, 9, 10, 11, 12, 13, 14, 15]. At large field strengths the effects of the diamagnetic 

term, which is proportional to begin to have tremendous effects on the wave functions 

of the system. The Schrodinger equation can now no longer considered to be separable, 

and once the field strength reaches roughly 10® T the effects of the magnetic field and 

the Coulombic attraction between the electron and proton become comparable. At this 

point even minor changes in the external field strength can have drastic effects on the wave 

function characteristics.

Fortunately, recent progress has managed to illuminate some of the more dominate 

characteristics of diamagnetic hydrogen, especially in the limits of very small and very 

large B. In the small-field limit an approximate symmetry was discovered that allows one 

to meaningfully label the energy levels, even past the point where the energy levels from 

competing n-manifolds begin to mix. In the (very) large-field limit the system separates (at 

least to a good approximation) so that the motion of the electron due to the magnetic field 

contributions can be effectively separated from the motion due to the Coulombic attraction. 

In Chap. 2 we will introduce the physics of the diamagnetic hydrogen in the weak and



strong field limits. This research, however, mostly focused on the behavior of the system 

in the intermediate-field region. Therefore, in Part II of this dissertation, starting with 

Chap. 4, we begin discussing our original research on diamagnetic hydrogen in this very 

complicated part of the energy spectrum.

10°

Figure 1.1: The low-lying energy spectrum of diamagnetic hydrogen calculated by Ruder 
et a/.[6] In this figure (3 = 1 corresponds to 4.701 x 10® T. Some level crossings appear 
since this spectrum includes both even and odd parity states. Note the avoided crossings 
appearing between energy levels in the intermediate field-strength region (roughly 10®-10® 
T). In this region, the diamagnetic hydrogen problem is particularly difficult.



1.1 How strong is “strong”?

The Hamiltonian describing a hydrogen atom in a constant, external magnetic held B  can 

be expressed in terms of the five most frequently discussed contributions;

^ to ta l  =  H ke +  Hcoixl +  Hso  +  H b  +  H b2 , ( 1 .1 )

where

•  Hke is the contribution from the kinetic energy of the electron,

•  ^Coui represents the Coulombic attraction between the electron and proton,

•  Hso is the spin-orbit coupling of the electron,

•  Hb is the linear Zeeman term, which is proportional to m B, where m  is the magnetic 

quantum number,

•  is the diamagnetic term, which is proportional to where p is the radial 

distance to the electron from the z-axis.

Here, we are ignoring those contributions that are extremely weak in comparison to the 

above terms, such as the hyperhne structure correction and the Lamb shift. Furthermore, 

there are two other relativistic corrections besides the spin-orbit coupling H so, namely the 

Darwin term and the relativistic correction to the kinetic energy, that we are ignoring for 

now but are discussed in Appendix A.

In most physics textbooks the diamagnetic term, because of its inherent difficulty, is 

rarely discussed in great detail. (See the quote by J. J. Sakurai in the “Critical Reviews” 

section on p. 3.) Therefore, weak and strong fields are usually defined according to the 

relative strengths of the linear Zeeman term and spin-orbit coupling. A strong magnetic 

field is usually considered to be a field such that the linear Zeeman effect is so large that 

spin-orbit coupling can be treated as a small perturbation (the Paschen-Bach effect). Weak



fields, on the other hand, usually denote fields where the effects of the external field can be 

treated as a perturbation in relation to the spin-orbit coupling (it is in this region where the 

anomalous Zeeman ^ e c t  becomes apparent). This is illustrated in the upper half of Fig. 

1.2 .

Anatnolous Zeeman Paschen.6ackEfrect Quadratie Zeeman 
(Otamagnetlc)

W eak Strong Intense

(Upper) Typical definitions of field strength found in the literature.

Coulombic limit I n,k mixing
Complicated 
Tanoeof 
Avoided Crossings

Landau iimit

a
W eak IntermediateQ iiiusiiiicuiaw ^  Strong

(Lower) Definitions of field strength used in this research.

Figure 1.2: (Upper half) Typical descriptions of field strength intensity used in many quan­
tum textbooks. The letters in the upper half refer to specific values: For (a) see Table A.2 
in Appendix A. (Lower half) Descriptions of field strength intensity used in this disser­
tation. The value of field strength that corresponds to pt. (c) is much stronger than that 
corresponding to pt. (a) in the upper figure.

For a summary of the relative strengths of many of these physical effects, see Appendix

A.

In this research we focus solely on the effects of the diamagnetic term, so we will de­

scribe the strength of external magnetic fields somewhat differently. Since the linear Zee­

man term (which can also be defined to include the spin contribution of the electron) simply 

shifts the energy levels without affecting their behavior as a function of field strength, we

8



will largely neglect this effect. This does not imply that the energy shifts of the linear 

Zeeman term are so small as to be negligible. Rather, we consider the effects of the linear 

Zeeman term on the energy spectrum, no matter how large they may be, unimportant for 

the purpose of this research.

A weak field in this research is defined as being sufficiently small that energy levels 

belonging to different n-subspaces do not mix. Roughly, this mixing can be said to occur 

when the Lorentz force due to the external magnetic field is comparable to the attractive 

Coulombic attraction between the two particles. For the situations where the atom is either 

highly excited or is in a circular state (that is, when |m| is maximized), then we can assume 

that the electron is in a roughly circular orbit and rotating around the proton at the cyclotron 

frequency ujc =  eB/m^. Setting the Lorentz force equal to the Coulombic force,

&g2
evB = —Y,  (1.2)

where k is the Boltzmann constant, and noting that v  =  rwc =  reB/m^  we find

=  ^  =  ^  = (1.3)
Con®

From the Virial theorem for a Coulombic potential energy function we can show that

{h) = H )  '
we get (with Z  = I)

( 1.5)

Therefore, in Fig. 1.1 we can define

5(c) % , (n »  1 o rn  >  m ) . ( 1.6)



The special held strength B  =  235 000 T will become important later, as it defines the 

characteristic field strength used in this research. Note that this boundary depends strongly 

on the energy level of the hydrogen atom, and ranges firom roughly 50,000 T for first 

excited state (n — 2) down to 6 T for the excited states we are considering heavily in this 

research (n =  34). (The rules of thumb for defining weak and strong fields in this research 

do not really apply to the ground state, which does not undergo avoided crossings with 

higher-lying states, as seen in Fig. 1.1.) Clearly, for highly-excited states, extremely strong 

magnetic fields are not necessary in order to experience the complicated mixing of energy 

levels of diamagnetic hydrogen.

Intermediate field strengths, therefore, begin where this mixing of different energy lev­

els begins. The onset of the strong-field region, as seen in Peg. 1.2, is gradual and difficult to 

define precisely. A commonly used description relies on the applicability of the adiabatic 

approximation. Qualitatively, the adiabatic approximation maintains that in sufficiently 

strong fields, the coupling between the p and z  degrees of freedom becomes sufficiently 

weak that the frequency 0 ,  of motion along the z  axis due to the Coulombic attraction is 

so much lower than the frequency Qp along the x, %/-plane due to the force of the mag­

netic field that the former motion can be considered to be static with respect to the latter. 

For highly excited states, Angelié and Deutsch[17] used a WKB approximation to derive a 

condition that states the adiabatic approximation is valid when

which roughly means

B{T) »  (1.8)

where n = Tiz -\-Up -I- |m | + 1  and Uz and Up are the excitation levels (nodes) along the z-axis 

and x,y-plane, respectively. Unfortunately, none of the states considered in this research 

are sufficiently excited to where this approximation is valid. In summary, for the states 

considered in this research the strong-field region is not clearly defined.
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1.2 Assumptions and justifications

At this point we consider which justifications we should make concerning certain interac­

tions that may or may not be ignorable in regards to the scope of this research. Since this 

research is only concerned with fields on the order of roughly 10 T and above, we will only 

concern ourselves with those terms in the Hamiltonian that are not negligible for this region 

of field strengths.

1.2.1 Finite proton mass

Traditionally, the zero-field hydrogen problem is solved by assuming a separation between 

the internal and external coordinates of the system. However, an external magnetic field 

couples these two motions, and the question is now whether the center-of-mass motion can 

still be considered negligible.

Using a variational calculation, Virtamo and Simola demonstrated that the center-of- 

mass motion cannot be disregarded for astrophysically-large field strengths. However, 

O’Connell disagreed[99], and it was not until Wunner, Ruder, and Herold[lOO] examined 

the problem that the matter appeared to have been settled — the center-of-mass motion 

indeed cannot be disregarded for sufficiently large field strengths, such as those found 

on neutron stars. (See also Baye and \^ncke. Ref. [82].) The greater the value of |m|, 

the more noticeable the effect — irrespective of whether the momentum of the combined 

system is nonzero[l(X)]. Furthermore, for nonzero system momentum the motional Stark 

effect appears, as was mentioned in Sec. 1.4.2. Naturally, the extreme condition occurs 

with positronium in an external magnetic field, since for this system the center-of-mass is 

located directly between the two particles. This situation has been discussed in great detail 

by Schmelcher[84j.

In this research we are mostly concerned with studying the underlying mathematical 

structure of the energy spectrum of diamagnetic hydrogen. Therefore, center-of-mass cor­

rections have been ignored because, while they may shift the energy values a significant
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amount in the strong-field limit, they do not affect the dynamics of the energy spectmm to 

a sufficient degree to warrant inclusion. At this time dimensional perturbation theory has 

not been applied to the problem of finite proton mass and very few theoretical calculations 

have been performed that incorporate these effects[100, 82, 85]. It remains an issue for 

future investigation.

1.2.2 Relativistic effects

By expanding each component of the electron spinor in terms of Landau orbitals (in the rel­

ativistic treatment of the diamagnetic hydrogen problem the spin-up and spin-down states 

are no longer uncoupled), Lindgren and Virtamo[86] transformed the Dirac equation into 

an infinite set of ordinary differential equations, which they then solved numerically. For 

the ground state in a field strength of roughly 10  ̂ tesla they found that the energy shifts 

amounted to a mere However, these energy shifts become larger for higher-excited

states. (Relativistic effects for motion parallel to the magnetic field are especially small 

and can almost always be ignored for field strengths below I0^° T, well below the field 

strengths considered in this research.)

We must keep in mind that relativistic effects in this research have been ignored, even 

though the system is certainly relativistic for sufficiently strong magnetic fields. However, 

we are mostly interested in examining the avoided crossings in the intermediate-field re­

gion, where relativistic corrections are minor.

1.3 The importance of the diamagnetic hydrogen problem

Until the 1970s there were few practical reasons to study diamagnetic hydrogen. After all, 

the field strengths at the point where the diamagnetic term becomes important are roughly 

200,000 T, far beyond available laboratory strengths. (For continuous field strengths, 100 T 

is considered to be on the fringes of what is possible with current technology, while the use 

of explosives can only push the field strengths over KXX) T for a few milliseconds[19,20]).
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Instead, the motivation for such research was based on the challenge of overcoming the 

mathematical difficulty of obtaining a complete solution. However, since then enormous 

field strengths have been discovered in the hydrogenic atmospheres of certain white dwarfs 

and neutron stars. To understand the atmospheres of both objects (examples of which are 

known to contain large amounts of hydrogen) an understanding of the energy spectrum of 

diamagnetic hydrogen is essential.[8, 9, 10, 21]

However, despite the “impossibility” of achieving sufficiently strong field strengths, 

natural laboratories have been created for studying the diamagnetic hydrogen problem. One 

way to observe the effects of the diamagnetic term is to effectively “lower” the Coulom­

bic Interaction between the electron and proton. Naturally, the charge of the electron and 

proton are fundamental and not variable, but in solid state physics it is possible in some 

situations to simulate a weak Coulombic attraction by applying a much weaker field to an 

electron/hole pair (exciton). In this situation, a laboratory-strength magnetic field (roughly 

a few tesla) can mimic the effects of a much larger field (say, roughly 10® T) on an Isolated 

hydrogen atom.[22, 23, 24,25]

Another way to produce diamagnetic hydrogen effects is to excite the electron to very 

large orbits so that the Coulombic interaction is relatively weak in comparison to the ex­

ternal field force. [This can be verified with Eq. 1.6.] In such a system, called a Rydberg 

state, minor changes in the magnetic field strength can have dramatic effects on the wave 

functions of the atom which means that, for all practical purposes, the diamagnetic term has 

become dominant. Circular Rydberg states, which are Rydberg states with the magnetic 

quantum number m increased to its maximal value, m =  n — 1, have become important be­

cause they are relatively long-lived and the effects of the external field occur at even lower, 

laboratory-accessible, field strengths.[26,27,28]

The rest of this chapter discusses these applications of diamagnetic hydrogen in more 

detail, followed by a discussion of previous attempts to solve the problem. In Chap. 2 we
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will discuss the energy level spectrum in both the weak-field limit (Sec. 2.1) and strong- 

field limit (Sec. 2.2).

Once the diamagnetic hydrogen problem is sufficiently discussed we begin discussing 

the scope of this research, which is broken into two parts: In Part I, which makes up the 

majority of this research, dimensional perturbation theory is applied to reveal important 

characteristics of the mathematical structure of the avoided crossings of diamagnetic hy­

drogen. Part H examines a new technique in applied numerical analysis developed in this 

research for summing divergent perturbation series. In the final chapter of Part II, a connec­

tion is made between these two disparate issues by applying this new numerical technique 

to sum the perturbation series corresponding to certain energy levels of diamagnetic hydro­

gen.

1.4 Applications I: Astrophysics

The presence of magnetic fields in stellar atmospheres is certainly not unusual, but for the 

most part such field strengths typically measure less than a tesla, well below the region of 

interest in this research. However, there are two main astrophysical objects, white dwarfs 

and neutron stars, that deserve mention here because the chemical makeup of their atmo­

spheres and the presence of enormous magnetic field strengths are directly related to this 

research in diamagnetic hydrogen. Of these two astrophysical objects, white dwarfs are 

the most relevant to this research, and for this reason most of the following discussion is 

centered around white dwarfs.

1.4.1 White dwarfs

As of 1997 there were roughly 2000 known examples of white dwarfs[l] in the Universe. 

These astrophysical objects represent the most common end-point of stellar evolution (neu­

tron stars and black holes being the other end-points). Most white dwarfs fall into two main
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types, denoted DA and DB. Both DA and DB white dwarfs have exceptionally pure atmo­

spheres; hydrogen for DA and helium for DB. The purity of their atmospheres is caused 

mainly by the lack of convectional currents (such as stellar winds, convection, and cir­

culation) which allows the enormous gravitational field strengths, roughly 10  ̂ cm/s^, to 

separate the elements by mass, leaving hydrogen (and helium in the case of Type DB white 

dwarfs) to make up essentially the entire atmosphere.

On a small number of white dwarfs the presence of magnetic fields up to 10° T and 

electric fields up to 10  ̂V/m have been discovered, although all well-identified examples 

are confined to those with hydrogen atmospheres. The idea that large electric and magnetic 

field strengths exist on white dwarfs has been postulated to conserve total magnetic field 

flux as the radius of the star contracts, since this flux is roughly proportional to BIÏ^, where 

R  is the radius of the star. As the star shrinks towards the dimension of a white dwarf the 

global field strength must increase quadratically.

Because the surface temperatures of white dwarfs is relatively low, and because there 

is an absence of convective currents, the motion of the atoms with respect to the external 

magnetic field is relatively unimportant. For this reason diamagnetic hydrogen research is 

particularly applicable to this system. There is an important complicating factor, however, 

from the fact that the magnetic field of a white dwarf is not uniform but rather, like the 

Earth’s magnetic field, strengthens near the poles. This tends to broaden the spectral lines.

The large electric fields present in the atmospheres of white dwarfs are caused by free 

electrons and ions in the atmosphere as well, but the overwhelming contribution from these 

electric fields is due mainly to those components parallel to the magnetic field.[29] By 

including only the parallel contribution of the electric field, the azimuthal symmetry (the 

symmetry about the axis parallel to the magnetic field) is maintained.[30, 31] As we will 

now see, this is not the case for neutron stars.
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1.4.2 Neutron stars

It was the discovery of extremely large magnetic fields on the surface of a neutron star in 

the binary system of Hercules X-1 (see Fig. 1.3) by Triimper er a/. [32] that prompted much 

of the research in diamagnetic hydrogen. In comparison to white dwarfs, the magnetic 

fields often found on neutron stars[2] are larger by many orders of magnitude, with fields 

up to 10* T detected. However, unlike white dwarfs, the surface temperatures of neutron 

stars are extremely high, causing the motion of the atoms with respect to the magnetic 

field in the atmosphere to be considerable. Since the electron and proton are oppositely 

charged, the opposing magnetic field forces caused by the motion of the atom tends to try 

and separate the two particles, thus acting as if the two particles were placed in an electric 

field orthogonal to the magnetic field. This effective Stark effect (called the motional Stark 

effect) requires an understanding of the behavior of hydrogen in a crossed electric and 

magnetic field.[33, 34] This is a complicating matter, since the additional electric field 

destroys the azimuthal symmetry of the diamagnetic hydrogen problem.
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Figure 1.3; Computer simulation of a voyage around the neutron star Hercules X-1.[3]

1.5 Applications II: Solid state physics

An example of a quantum defect occurs when one atom in a crystal lattice is in an excited 

state. Since the states associated with each lattice atom are strongly coupled, this negative 

charge densiQr can be effectively passed around to neighboring atoms. The hole that is left 

behind also represents a state of the atom, and this hole can be passed ffom one lattice site
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to another as well. In this sense, the electron-hole interaction (called an exciton) resem­

bles a hydrogen atom, with similar spherical symmetry and discrete, bound energy levels. 

However, in this case the Coulombic attraction between the electron and hole is typically 

weaker than for the hydrogen atom. Furthermore, the effective mass of the electron and 

hole are much less than their hydrogenic counterparts, so external perturbations such as 

magnetic fields have greater effect on this system than on hydrogen. In this sense, the ex­

citon models the diamagnetic hydrogen problem but at much lower field strengths, which 

makes it feasible to study in the laboratory.

1.6 Applications HI: Rydberg states of atoms

Highly-excited (large n) states of atoms, called Rydberg atoms[35, 36, 37], are natural 

systems to study the effects of external magnetic fields because the diamagnetic term in 

the Hamiltonian is proportional to and therefore proportional to the orbital area, which 

scales as n‘‘. One of the earliest experiments on the effects of magnetic fields on hydrogen 

concerned Rydberg states.[38] Furthermore, the correspondence principle states that atoms 

excited to large values of n should share many properties of classical systems.[39,40,41] 

In this research, our focus was mainly on circular Rydberg states because they are very 

amenable to theoretical examination with dimensional perturbation theory, the method of 

choice in this research.

1.6.1 Circular Rydberg states

When the magnitude of the magnetic quantum number |m| is maximized for a given n shell, 

the electron probability distribution takes on the shape of a torus with a radius proportional 

to m^. The torus becomes more distinct as the atom is excited to higher levels of n — both 

the uncertainty in the radius and angular position (that is, the spherical coordinate 6  defined 

with respect to the z-axis) tend to 0 as n increases towards infinity. This torus is naturally 

centered about the origin, so there is minimal probability that the electron will habitually
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come to within close distances of the nucleus. Therefore, in studying circular Rydberg 

states we are not restricted to hydrogen alone, since the non-penetration of orbitals closer 

to the nucleus means that atoms in circular Rydberg states are, for all practical purposes, 

hydrogenic.

Because these states have maximal values of the magnetic quantum number \m\ they are 

of special interest to this research since the perturbation parameter we use in dimensional 

perturbation theory is inversely proportional to |m|. However, circular Rydberg states have 

some other unusual properties that have aroused much interest in general:

• From an experimental point of view, circular Rydberg states are relatively long-lived. 

The lifetime of such a state is roughly seconds[27], so even states with

n =  10 have a lifetime of 10 microseconds.

• Since the angular uncertainty A 6  is small, circular Rydberg states are highly planar, 

which means that they are highly anisotropic with respect to external perturbations. 

Therefore, circular states of atoms are useful for studying the role of orientation in 

collisions involving Rydberg atoms. For example, much attention has been paid to 

the effect of the orientation of the two bodies in ion/atom collisions. It has been 

shown for cases where the atom is in a circular Rydberg state that the cross section 

for charge transfer in such a collision is maximized when the orbital plane is parallel 

to the relative velocities of the two bodies (in other words, when the incoming ion 

sees an “edge view” of the incident circular Rydberg target).[42,43]

• Although the correspondence principle, which relates the behavior of systems in the 

limit of small H to classical mechanics, is well-accepted in quantum theory, experi­

mental verification is difficult. To explore this relationship it is necessary to construct 

wave packets that behave like classical systems. Schrodinger[44] first proposed that 

hydrogenic states constructed to exhibit quasi-classical properties would travel along
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a Kepler elliptical orbit in accordance with Ehrenfest’s theorem[45], and many re­

searchers have attempted to computationally construct such systems.[40,41] Circular 

Rydberg states, because the electronic motion is largely confined to a circular-type 

orbit, are therefore important systems for studying this region where the distinctions 

between classical and quantum mechanics blur.[46]

• Since the radius is proportional to m^, maximizing the magnetic quantum number m  

reduces the effect of the Coulombic interaction for a given value of n. This means 

that states of maximal |m| are highly sensitive to small changes in external perturba­

tions, such as an external magnetic field. (Keep in mind that the diamagnetic term 

is proportional to the average orbital area, which increases as \m\ becomes larger.) 

This reduces the region of field strength at which the complicated mixing of energy 

eigenstates occurs to laboratory-accessible levels.

1.7 A brief review of diamagnetic hydrogen research

The numerical and theoretical research on the diamagnetic hydrogen problem is vast, and 

therefore we focus in this section mainly on work that has direct implications on the re­

search discussed in this dissertation. There are two teams of researchers in particular — 

the French team of Delande and Gay and the German team of Rosner, Wunner, Herold, and 

Ruder — that have dominated much of the literature on diamagnetic hydrogen, so we will 

discuss their contributions in separate sections towards the end of this chapter.

Perhaps the earliest work on the diamagnetic hydrogen problem was by Schiff and 

Snyder[47], who applied first-order perturbation theory to the low-field limit. Other work 

on the energy levels and transitions of diamagnetic hydrogen, at least for field strengths 

below 10  ̂T, was performed by, among others. Smith et a/.[48], Brandi et a/.[23], and 

Garstang[9]. The latter is particularly important, since his contribution contains a com­

prehensive review of the previous research on diamagnetic hydrogen. The first large-scale
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calculation of energy levels was by Praddaude[49], who expanded the wave function in 

Laguerre polynomials; numerical results were presented for the first 14 energy levels for 

the n =  1,2, and 3 subspaces. Beginning with the zero-field case, Cabib, Fabri, and Fiorio 

expanded the eigensolutions of the Hamiltonian in spherical harmonics and recast the re­

sults into a set of difference equations which were then solved numerically for the ground 

and first-excited state.[2S] Pokatilov and Rusanov used a variational approach, assuming 

exponential dependence on the trial wave functions, that proved successful in the low field 

limit for the Is, 2s, and 2p states.[50]

Canuto and Kelly[51] extended the scope of this research for fields larger than 10  ̂T by 

relying on an adiabatic approximation, discussed in Chap. 2. By introducing a trial wave 

function that combined the spherical symmetry (good at low field strengths) and cylindrical 

symmetry (good at large field strengths) Rau and Spruch[52] established upper bounds for 

the energy levels at arbitrary values of the magnetic field. In this same research they were 

also one of the first to establish a correspondence between the low-field and high-field 

quantum numbers. For large field strengths an early variational approach was performed 

by Yafet, Keyes, and Adams[S3] using wave functions having a Gaussian shape, which is 

a good approximation in the large field limit.

As mentioned in Sec. 1.4.2, by discovering enormous magnetic field strengths in neu­

tron stars Triimper[32] deserves credit for initiating much of the next phase of research in 

diamagnetic hydrogen. In 1979 Simola and Virtamo, using an approach similar to that of 

Canuto and Kelly, focused on a few low-lying (n <  5) states and calculated their energy 

levels and even established the correct correspondence diagram between the low-field and 

high-field limits. Bender, Mlodinow, and Papanicolaou[54] used semiclassical perturba­

tion theory to derive expressions for the ground state energy levels in each |m| subspace. 

Semiclassical treatments were also used by DuVemois, Boorstein, and Uzer[55] to calcu­

late widths of avoided crossings, and by Angelié and Deutsch[l7] to investigate quantum 

number assignments in the weak-field and strong-field limits. Starace and Webster[56]
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calculated rigorous upper and lower bounds for low-lying states using an adiabatic approx­

imation for fields below 10® T. This work was extended to fields above 10® T by Liu and 

Starace[S7]. Later, Shertzer and colleagues calculated highly accurate lower bounds on the 

binding energies of the ground state[58] and lowest-lying excited states[59]. For Rydberg 

levels of diamagnetic hydrogen in the weak-field region, Falsaperla and Fonte[60] pro­

vided rigorous bound-state error estimates for both the energy levels and wave functions. 

To match the low-field and high-field regions Wintgen and Friedrich[4, 61] diagonalized 

the Hamiltonian in the complete basis of two-dimensional harmonic oscillators. This work 

is discussed in more detail later.

1.7.1 Delande and Gay

From a purely theoretical view, D. Delande and J. C. Gay have long been involved in vari­

ous approaches to the diamagnetic hydrogen problem, and their early work has been some 

of the most important. Delande and Gay were one of the first, along with Zimmerman 

et a/. [62] and Clark and Taylor[63], to observe exponentially small avoided crossings be­

tween states originating fi-om different n-manifolds.[64] This suggested the possibility that 

there existed within the structure of the diamagnetic hydrogen problem a hidden symme­

try that allowed these energy levels to (nearly) cross. Later, they would follow the works 

of Solov’ev[65] and Herrick[66] in deriving a term in the Hamiltonian that was, within a 

particular n-space, a first-order invariant with respect to energy. [67] The existence of this 

operator is crucial to understand these small avoided crossings in the low-field spectrum 

of diamagnetic hydrogen. Their group theoretical approach is probably the most straight­

forward and robust of the three approaches, and in Sec. 2.1 and Appendix B we discuss 

their approach in detail. They quickly followed this important contribution with a more 

generalized treatment of the derivation which extended the application to a wider variety of 

perturbing potentials.[68] In 1986 they used their group-theoretical approach to calculate 

many of the energy levels of diamagnetic hydrogen, although only for very large values of
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the principle quantum numbern.[13] They even applied a supersymmetric factorization of 

Rydberg atoms in parallel electric and magnetic fields. [30]

1.7.2 Rosner, Wunner, Herold, Ruder

From a numerical standpoint, the contributions of Rosner, Wunner, Herold, and Ruder are 

vast. After all, by expanding the eigensolutions in a spherical basis for low field strengths, 

and a cylindrical basis for large field strengths, they were the first to compile a comprehen­

sive list[69] of highly accurate (low-lying) energy levels as functions of 5  for B <  10̂  

T. Ruder, Wunner, and Herold (along with F. Geyer) extended this work to a larger num­

ber of energy levels and published the seminal Atoms in Strong Magnetic Fields,[6 \ which 

is the most comprehensive study of diamagnetic hydrogen to date. They also made an 

early attempt at providing reasonably accurate energy levels in the intermediate field region 

which successfully connected the energy levels at the two extremes.[70] One of the earliest 

perturbation treatments of diamagnetic hydrogen was by Ruder, Wunner, Herold, and M. 

Reinecke.[71] The general problem of two charged bodies Interacting in a homogeneous 

magnetic field was studied by Herold.[72] This team also used an asymptotic potential en­

ergy function to find approximate solutions of the diamagnetic hydrogen problem for the 

strong-field region.[73] We already mentioned the contribution of Wunner, Kost, and Ruder 

in numerically computing many of the circular states of diamagnetic hydrogen.[74]

Much of Rosner, Wunner, Herold, and Ruder’s attention has concentrated on astro­

physics, especially white dwarfs. In Ref. [75] they focused their efforts on the (well- 

studied) white dwarf Grw+70°8247 by comparing results derived firom its energy spectrum 

to wavelengths and dipole strengths of diamagnetic hydrogen in the field strength region 

from 15 to 35 kT. Wunner and Ruder calculated even more properties, including oscillator 

strengths, transition probabilities, and sum rules, for field strengths corresponding to neu­

tron stars.[76] At roughly the same time, these two researchers approximated their earlier.
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highly accurate, energy values with polynomial approximants. These approximants are ca­

pable of providing accurate energy values for field strengths of roughly 10® to 10® T for 

the 13 lowest-lying states of diamagnetic hydrogen.[77] Using numerical wave functions, 

Rosner, Wunner, Herold,and Ruder were able to calculate sum rules and energy values of 

diamagnetic hydrogen and compare their results to variational treatments.[78]

1.7.3 Books and review articles

The first comprehensive review of the problem of atoms in high magnetic fields was that of 

Garstang[9], followed rapidly by Bayfield[79] who expanded the focus to include excited 

states of atoms in both magnetic and electric fields. Since then there have been many books 

published that focus heavily on the diamagnetic hydrogen problem. The most important is 

probably Atoms in Strong Magnetic Fields[6], which we mentioned in Sec. 1.7.2. Atoms 

and Molecules in Strong External Fields\%\ is relatively current (1998) and is especially 

noteworthy for its in-depth discussions of the astrophysical applications of this research. 

Friedrich’s Theoretical Atomic FAyjJcs[80] discusses the physics of the diamagnetic hy­

drogen problem for large field strengths in detail, while Rydberg Atoms[S 1] and Rydberg 

States o f Atoms and Molecules[36] extend the discussion to Rydberg states.
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Chapter 2

The Energy Level Spectrum of Diamagnetic Hydrogen

A graphical depiction of the diamagnetic hydrogen atom is shown in Fig. 2.1. Because 

of the cylindrical symmetry of this system we only need to consider motion in the p and 

z degrees of freedom because the quantum mechanical equations of motion are invariant 

under rotations in the angle 0 .

The Schrodinger equation for a hydrogenic atom placed in a constant magnetic field is 

given in a.u. by[87]

(2.1)

Figure 2.1: The geometry of the diamagnetic hydrogen problem. The magnetic field B 
points along the z-axis. Notice that cylindrical coordinates defined by (p, z, (f>) are natural 
coordinates to use in this system.
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Section 2.1 addresses the challenging problem of describing the energy spectrum of 

diamagnetic hydrogen in the low-field limit. In contrast. Sec. 2.2 describes the high-field 

limit, which in many ways is much simpler. Finally, in Sec. 2.3 we will briefly discuss 

the intermediate-field region. Once we formulate dimensional perturbation theory in Chap. 

3, we will be prepared for a discussion of the original research in this dissertation, which 

begins in Part H.

2.1 Energy level spectrum in the low-field limit.

In a weak magnetic field there is very little mixing between different n levels that arise from 

a hydrogenic expansion of the wave function. Therefore, n is an approximate quantum 

number in the very-weak field region. The diamagnetic term though, strongly mixes states 

of the same n but difierent Z.[88] Using Lie algebra (see Appendix B), we can demonstrate 

that in a given n shell, the diamagnetic term is a first-order invariant in the Hamiltonian. 

More specifically, in Eq. (2.1) may be replaced as follows:

 ̂ +  3 - I -  Z), (2.2)

where

E =  4^2 -  5A, (2.3)

is the first-order invariant and is the component of the Runge-Lenz vector (often called 

the eccentricity vector)

A  =  ( - 2jE)-^/2 i ( L  X p  — p X L) 4- Z f (2.4)

along the direction of the external field. The three components of A  are three of the six 

generators of the SO (4) Lie algebra of the zero-5 field hydrogen atom. (The other three 

generators are the Cartesian components of the orbital angular momentum L).
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The operator E was independently derived using three different methods. Herrick[66] 

used a momentum-space representation of the diamagnetic hydrogen problem to derive E, 

but this treatment is long and involved. Solovév[65], on the other hand, relied on a semi- 

classical treatment. In Appendix B, I describe how Delande and Gay[67, 68] used the 

isomorphism between the SO (4) Lie algebra of the Coulomb problem and the 80(2,2) Lie 

algebra of the two-dimensional harmonic oscillator to derive E, as I found their treatment 

to be the most straightforward.

The diamagnetic term breaks the S0(4) group dynamical symmetry of the zero jB-fieid 

hydrogen in such a way that the quantum number £ associated with the angular momentum 

operator L‘- is no longer a good quantum number. However, since E commutes with the 

zero 5-fieid Hamiltonian, in a given n  shell the operator E commutes with the diamag­

netic Hamiltonian, so in the weak-held limit the eigenvalues s of E afford an approximate 

quantum number to replace the angular-momentum quantum number £.

2.1.1 Vibrator and rotator States

Classically, the Runge-Lenz vector A  determines the orientation and shape of the orbit. 

The length of A is directly related to the eccentricity e by

6 =  (-2E)^/^|A | (2.5)

(A perfect circle corresponds to 6 =  |A| =  0.) The direction of A  is from the nucleus 

towards the perihelion of the orbit.

The fact that E is constant provides a constraint on the rotation dilation of the Runge- 

Lenz vector. Although the length of A, and the lengths of its components along the x, y- 

plane and z-axis, can vary quite considerably, the precession of A  about its average position 

in the p, z-plane is rather small, as shown in Figs. 2.2 and 2.3. The eigenvalue

s = A A ^ - 5 A l  (2.6)
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Figure 2.2: Variation of the A, and Ax components of the Runge-Lenz vector A  for n = 18 
and m =  0 for different values of s' and Ar, where s' is the eigenstate s of E scaled as 
s/{n^ -  1). Clearly, neither A±, Aj, nor |A| is even close to being constant, but the 
precession of A  (depicted by the small cone emanating from the origin) is very small for 
all values of s'. Notice that as k  gets large, corresponding to a vibrator state, A  begins to 
migrate towards the z-axis. From Ref. [4].
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k = 0, s = 1214.48Rotator State

 ̂ k = 8, s = 255.17

Rotator State

k=16,  s = —245.48

Vibrator State

Figure 2.3; A three-dimensional pictorial of the variation in the orientation of the Runge- 
Lenz vector corresponding to three situations depicted in Fig. 2.2. Because of the azimuthal 
symmetry of the system, the Runge-Lenz vector is free to rotate about the z-axis. However, 
neither its length, nor the length of any of its components, can be considered close to 
constant for all three situations. In (a) the precession of A  about its average position in the 
p, z-plane is mostly in the z-direction, whereas in the other extreme (c) this precession is 
mostly in the direction perpendicular to the z-axis. fri all three cases, the magnitude of the 
precession of A  as the tip of A  rides along the surface 4A^—5 A | is roughly the same, and 
confined to relatively limited motion.
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need not be integral; but it is restricted by the requirements[4]

A ^ < n ^ - \m \ { \m \  + l ) - l ,  (2.7)

and

0 < \Az\ < n — |ml — 1 (for n  — \m\ even.), (2.8)

1 < |v4z| <  n — |ml — 1 (for n  — |m| odd ). (2.9)

The lower lying (s < 0) states are termed v/fcra/or states and, not surprisingly, the wave 

functions are localized along a line parallel to the field, with the result that the orbital area 

is small — the diamagnetic shifts will be small as well.

The spacing between levels corresponding to different values of s are not equal. In 

fact, the spacing reaches a minimum at s =  0. The transition between the two patterns of 

electron localization becomes increasingly narrow as n  becomes larger.

As long as states belonging to different n shells remain well-separated in energy, the 

states will be dominated by a contribution from a single hydrogenic function labeled by 

n  and s. However, as the field is sufficiently increased, rotator states from one n-shell

will cross into the vibrator states of the n-shell above. This gives rise to avoided crossings

between rotator and vibrator states and these are seen to be narrow, particularly at higher 

n.[90] In this case the region of field strength at which the states become mixed in n and 

s becomes small, so on either side of the avoided crossing there is little mixing between 

states of differing values of n  and s. Therefore the n, s labeling of states can be continued 

diabatically across avoided crossings into the overlapping n region.[4]

It is not surprising that avoided crossings between vibrator and rotator states would be 

narrow, indicative of very little interaction between the two states except when they are 

very close together in energy. After all, with their radically different electron localizations 

(one localized along the z-axis, the other along the plane perpendicular to this axis) we
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would not expect a great deal of interaction between the two states. However, the avoided 

crossings between rotator states of different n  are narrow as well, and clearly this cannot 

be explained in terms of electron localization.

Wintgen and Friedrich[4, 61] were the first to explain the narrow avoided crossings 

between rotator states by introducing a more convenient quantum number k  to label the 

states in a given (m, n) shell. In many ways the k  quantum number takes on the same 

role for diamagnetic hydrogen as i  does in the zero-field case. For example, k  takes on 

all integer values from 0 (the state of largest a) to a fixed upper bound (the state of lowest 

s), although in this case the upper bound is n — |m| — 1. Conversely to s, states having 

small values of k are rotator states and have relatively high energy, whereas large values 

of k  denote vibrator states and relatively low energy. The nodal structure remains the 

same, with k = 0  corresponding to the maximum number of nodes along the x, y-plane 

and maximal k  corresponding to the maximal number of nodes about the z-axis. This is 

summarized in Figs. 2.4 and 2.5. The approximate respective energy shifts as functions of 

field strength are given by Herrick[66] as

A E  =  ^^A(A + 1) +  -  3m^ 4- , (rotator states), (2.10)

A E  = [^2\/5n(2cr +  jml + 1)

—3(2cr + \m\ + 1)  ̂— -h ij , (vibrator states), (2.11)

where Bq =  2.35 x 10® T, A =  n — 1 — fc and

2<j = n — \m\ — \ — k , (for odd n — m — A:), (2.12)

2(T =  n — |m| — 1 — fc, (for odd n — m — A:). (2.13)

Also, k determines the parity of the system in a similar manner as t, that is

7r =  ( - l ) * .  (2.14)
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Figure 2.4: Wave functions for various values of the (approximate) quantum number k  for 
n =  8, m =  0, from Ref. [5]. Notice that as k increases, there is a transfer of nodes from 
the z-axis to the x, y-plane. We can see clearly why it would appear that there would be 
very little overlap between the rotator and vibrator states.
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Figure 2.5: An example of how the energy levels of diamagnetic hydrogen corresponding 
to particular values of the (approximate) quantum number k spread with increasing held 
strength in the weak-held region. Only the even-parity (even-6) subspace is shown. For 
clarity, some k labels have been omitted.

In the weak-held region, the k quantum number is merely a way of relabeling the states in 

a given n-manifold (however, states with different values of n  but the same value of k  will 

have differing values of a). Wintgen and Friedrich demonstrated that the Hamiltonian for a 

magnetic held that is weak but strong enough to allow n mixing is approximately separable 

into blocks that are diagonal in k, and that the off-diagonal elements between blocks of 

differing values of k are very small. This means that the “spectral repulsion” between 

states with differing values of k  arising from these very small off-diagonal elements will 

also be very small, that is, avoided crossings will be very narrow. See Figs. 2.6 and 2.7
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Figure 2.6: Low-Held energy spectrum of diamagnetic hydrogen for relatively small val­
ues of n. Notice the very broad avoided crossing on the lower left, and that the avoided 
crossings become narrower as n increases. From Ref. [5].

Off-diagonal matrix elements connecting vibrator states whose values of k differ by 2 

are the exception — they are appreciable (off-diagonal matrix elements connecting vibrator 

states are generally larger than other matrix elements). Thus k remains a good quantum 

number until the the magnetic field has risen sufficiently that vibrator states start to cross. 

Wintgen and Friedrich have provided rough estimates as to when this is likely to happen, 

with the result that the magnetic field at which vibrator states begin to cross is roughly five 

times that at which the states of adjacent n  manifolds begin to cross —  well within the 

region of n mixing.

At this point, we have a reasonable understanding of the low-field energy spectrum of 

diamagnetic hydrogen. We have two quantum numbers, n and k, that adequately label the 

characteristics of the wave functions even beyond the point at which levels from different 

a-subspaces begin to mix. We now turn our attention to the strong-field limit
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Figure 2.7: Same as Fig. 2.6, but for higher values of n.[5]

2.2 Energy level structure and continuum threshold in the 
strong and infinite field limit.

In this section we will see that the energy levels in the strong field limit have a structure that 

resembles that of a free electron in a magnetic field (the Landau problem). However, su­

perimposed on that structure is a Coulombic structure caused by the Coulombic attraction, 

which dominates in the region along the field axis. In Sec. 2.2.1 we derive the Hamiltonians 

that describe the motion along the field axis (the z-axis) and along the plane perpendicular 

to that axis (the p-axis) in the limit of infinite field strength. In Sec. 2.2.1.1 we will see that 

the motion in the p-plane produces a structure that closely resembles the Landau problem, 

and in Sec. 2.2.1.2 we go a step further and describe the threshold energy determined by 

that motion. In Sec. 2.2.1.3 we consider motion along the z-axis.

Up to this point, we will have been considering the motion along the two respective 

degrees of freedom as independent of each other, which applies when the field strength is
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Figure 2.8: Evolution of the \Nmu) =  |004) large-held probability densities of diamag­
netic hydrogen at various field strengths. (From Ref. [6]. The quantum numbers N  and v 
are defined in Secs. 2.2.1.1 and 2.2.1.3, respectively). Note how the wave function becomes 
“squeezed” onto the z-axis as the field strength increases.

infinitely large. In Sec. 2.2.2, however, we describe how lowering the field strength to finite 

values couples the two degrees of freedom and affects the resulting energy spectram.

2.2.1 The B oo limit.

It is convenient to rewrite the Schroedinger equation in Eq. (2.1), which describes a hydro­

genic atom in a magnetic field oriented along the z axis, as

kl M l
$(p, z, 0 ) =  E ^ p ,  z, (f>) (2.15)

so that it is easier to analyze the p- and z-dependence of the potential energy in the limit of 

a large magnetic field.

As the magnetic field increases in strength it “squeezes” the wave functions towards the 

z-axis, as can be seen in Figs. 2.8 and 2.9. Consequently we expect the expectation value
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{p) to decrease rapidly compared to (z) as the magnetic field strengthens. Therefore the 

Coulombic potential energy

V{p,z) = ----- ===== =  — +  ~  ÏTT (2-16)

as B  -* oo, uncoupling the p and z degrees of freedom in the potential energy. The 

Schroedinger equation in this limit then separates in p and z, as

—E<r,m̂ (T,m{p) 1 (2.17)

Rx{z) = E^Rx(z), (2. 18)

where $(p, z, <f>) =  f2(p)i2(z)e~*"’‘̂ , and a  and A represent the set of good quantum num­

bers (besides m) for each respective degree of freedom.

These results can be understood from a more physical approach. Since the force exerted 

on the electron by the magnetic field is given by

Fg =  —V  X B =  —B v  X z, (2.19)

then the magnetic field would not normally affect the motion of the electron along the z- 

axis; rather it tends to provide a centripetal force that draws the electron in closer to the 

z-axis. The Coulombic interaction, which is a function of both p and z, couples the two 

degrees of freedom. In the z,t/-plane, the region in which the Coulomb interaction is sig­

nificant compared to the magnetic interaction shrinks to 0 as B oo, so this coupling 

disappears for infinitely strong B-fields. Therefore, as far as motion in the x,y-plane is 

concerned, the system in this limit models the two-dimensional motion of an isolated elec­

tron in a constant magnetic field. Furthermore, the force acting along z is purely Coulombic 

in this limit and the system along this axis is thus modeled by a one-dimensional hydrogen 

atom, as implied in Eq. (2.18).
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Figure 2.9: Contour view of the nodal structure and probabili^ density of a number of 
states at low and high field strengths. (The 2so state appears to have passed through an 
avoided crossing, since its nodal structure has changed.) From Ref. [6].
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2.2.1.1 Energy spectrum related to motion in the x-y plane in the limit B -+ oo.

To understand the spectrum in the large-held limit it is necessary to consider the familiar 

Landau problem, which we now describe.

Consider an isolated electron restricted to an x-y-plane and subjected to a constant 

magnetic held B  = Bk. For maximum separability of the Hamiltonian we choose the axial 

gauge

1 B
A =  - - r  X B =  y (-2 /Î +  ij) . (2.20)

The resulting Hamiltonian

B^o
pi + B{xpy -  Wx) +  —r

A21
(2 .21)

commutes with the angular momentum operator Lg. Therefore, and H  share a complete 

set of eigenfunctions.

(2.22)

(2.23)

{a again represents the complete set of good quantum numbers besides m) so that the time- 

independent Schroedinger equation can be written

(2.24)

which exactly matches our previous result in Eq. (2.17), thus demonstrating that in the inh- 

nite B-held limit the motion along the r,y-plane is indeed modeled by an isolated electron 

in a constant magnetic held.
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The Schroedinger equation in Eq. (2.17) for the isolated electron in a magnetic field is 

identical to the Schroedinger equation for a two-dimensional isotropic harmonic oscillator.[80, 

91] Aj far as motion in the x,y-plane is concerned, a hydrogen atom in an infinite magnetic 

field behaves like a two-dimensional, isotropic, harmonic oscillator. The energy eigenval­

ues of this system are well-known:[80,91]

=  ^ (2 iV -f|m |+ T n-f-l), AT =  0 ,1 ,2 ,... , AT -  m =  0 ,1 ,2 ,.. .  , (2.25)

where the Landau channel number N  denotes the excitation of the (quantized) energy levels 

corresponding to radial motion perpendicular to the magnetic field and therefore counts the 

number of radial nodes in the Landau eigenfunction. As usual we drop the linear Zeeman 

term mB 12:

=  y  (2 #  + \m\ -h 1). (2.26)

2.2.1.2 Threshold energy and energy spectrum in the B —» oo lim it

The threshold energy Et  is the maximum total energy the electron can have and remain 

completely bound (that is, the minimum energy an electron can have once expelled from 

the atom). The total energy E  of the electron has two contributions, one from the radial 

motion, £?Ar,m. and one firom the Coulombic interaction. Eg (we will derive the exact form 

of Eg in Sec. 2.2.1.3). The radial energy Eî r.m in Eq. (2.26) increases as N  increases, and 

since N  is unbounded the bound state spectrum extends all the way to Ejv.m —*■ oo.[92] 

Therefore the electron is completely bound regarding motion along the x,y-plane. But it is 

possible for the electron to escape to ±oo along the z-axis as long as it has enough energy 

to overcome the Coulombic potential energy. However, the energy contribution from the 

Coulombic interaction. Eg, has no effect on the overall threshold energy of the electron for 

two reasons:

1. Eg vanishes as z oo.
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2. Ez is always negative (attractive), but the threshold energy is the maximum energy of 

a bound electron.

Since the energy contributions from the Coulombic interaction are always negative and 

extend up to 0, the overall energy levels of the system will always line up below 

the Landau threshold £?Ar,m for any given values of N  and |m|. (See Fig. 2.10.) We can 

therefore expect the Landau energy in Eq. (2.26) to also be the continuum threshold for the 

system in a given {iV,[m|} subspace. Furthermore, as previously stated, the solutions to 

the Schroedinger equation in Eq. (2.1) are uncoupled in regards to motion along the z andp 

directions in the limit B  —>■ oo. Therefore in this limit a system in an excited Landau state 

(that is, N  >1) cannot de-excite simply by transferring energy to motion along the z-axis. 

Therefore the Landau threshold is also the overall continuum threshold E r  for a given |m| 

subspace; that is.

Et  =  =  -^ (2 #  +  \m\ 4-1) oo). (2.27)

A state in a given Landau level iV > 1 has a finite probability of de-exciting to a state of 

lower N . This de-excitation can provide enough kinetic energy to motion along the z-axis 

to ionize the atom, so thatany excited Landau state is also a resonant state. Therefore, the 

overall threshold for completely bound energy levels has to assume N  = 0. However, these 

de-excitations can only occur when a potential energy exists in the system that couples 

excitations in the two degrees of freedom, which we will later consider by lowering the 

magnetic field strength so that the Coulombic interaction along the x-y plane is no longer 

negligible.

2.2.1 J  Morion along the z axis In the limit B  —*oo.

The potential energy function

V(z) =  (2.28)
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Figure 2.10: Schematic of the large-held energy spectrum of diamagnetic hydrogen at two 
unspecified values of the magnetic field strength. The vertical axis represents the energy, to 
no particular scale. Here, we concentrate on a particular subspace of \m\ and parity. Notice 
that the excited Landau levels (iV > 1) rise uniformly as B  increases since these threshold 
energies are directly proportional to B. On the other hand, the ground state Landau level 
threshold is not a function of B.  As explained in Sec. 2.2.1.3, the hydrogenic levels line up 
under each Landau threshold, with energy levels associated with large principal quantum 
numbers u lying highest in energy.
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in the wave equation in Eq. (2.18) is singular at z = 0, so a careful analysis of the eigen- 

solutions is required. A rough sketch of the wave functions can be made by considering 

the qualitative solutions to the modified potential V(z) in Fig. 2.11. Since the following 

arguments are qualitative, we will not concern ourselves with the exact functional depen­

dence of V{z). Note that the parameter a determines how singular the potential energy is 

at the origin, with a —♦ 0 corresponding to the true Coulombic limit, which coincides with 

the one-dimensional hydrogenic atom with the potential energy in Eq. (2.28). Here, we 

will observe the evolution of the wave function as a is reduced to 0. [From here on, those 

variables denoted with a breve accent will correspond to properties associated with the 

modified potential V{z)].

Since we do not know the mathematical form of V(z) we simply write the Schroedinger 

equation as

d^R
V -  e ] R{z), (2.29)

where we use R{z) to denote the wave function corresponding to motion along the z-axis. 

The modified potential, V{z), has the same symmetry as V(z) but is everywhere finite and 

continuous, so we can expect the bound energy levels to correspond to even-parity and 

odd-parity solutions and be finite and continuous everywhere.

We now consider the situations where the wave function has even-parity and odd-parity 

separately.

Even-parity solutions

First, we consider the case where the even-parity solution to the modified potential does 

not have a node at z =  0. If this is the case then [K(0) — E]A(0), where R{0) ^  0, so that 

as K(0) —* —oo the kinetic term cPRfdz^ diverges. The Coulombic wave function R{z) 

in this case must therefore have a discontinuity at the origin.

Suppose instead that the even-parity state does have a  node at the origin. If the wave 

function is smooth, then the slope at the origin must be 0, given that the state we are
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considering has even parity. If the potential energy is finite at the origin, which is the case 

for the modified potential, then not only are R{0) and dR{Q)/dz equal to 0, but so are all 

higher-order derivatives. In this case, the Coulombic wave function remains zero (flat) as 

it propagates past z =  0 in either direction, which means that the wave function is 0 at 

all points — a completely unphysical result. Since we are concerned here with a physical 

system, which cannot truly have a singularity at the origin, then regardless of the value of 

i?(0), the even-parity wave functions o f the one-dimensional hydrogenic atom must have a 

discontinuity in their slopes at the origin. [93]

Odd-parity solutions

The requirement that A(0) =  0 for odd-parity states means that no matter how negative 

y ( 0) becomes, the quantity [1̂ (0) — E]A(0) on the right-hand side (and hence cPR/dz^) 

always remains finite. Therefore odd-parity states are smooth throughout the full range of 

2, even in the limit a —► 0.

As a is reduced the average depth of the potential energy across all values of z  lowers, 

so we can expect the energy levels to be correspondingly lower. This effect will be more 

dramatic for even-parity wave functions because for these states the electron is more local­

ized at 2 =  0, the location of the largest decrease in potential energy. Therefore we expect 

even-parity energy levels to lower more than odd-parity energy levels as a decreases. In 

fact, as we approach the Coulombic limit, any given even-parity energy level will eventu­

ally coincide with the odd-parity energy level that was once directly below it on the energy 

scale.[94] Therefore, a one-dimensional hydrogenic atom is two-fold degenerate. (This is 

also shown in Fig. 2.11) This rule does not include the ground state, which will be treated 

at the end of this section and in Appendix C.

In the Coulombic limit the degenerate even-parity and odd-parity wave functions at a 

given energy level will take on the same form, albeit of different parity[94]. (By “same 

form” I mean that the probability density associated with the two wave functions are iden­

tical, but the wave functions alone have opposite parity. See Fig. 2.11.) The inner nodes
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(a)

The first excited 
even and odd-parity 
states of the 
truncated potential.

(b)

(c)
V(z)

We recover the 
eigensolutions 
corresponding to the 
original one-dimensional 
Coulomb potential.

Figure 2.11: The role the modified potential V*{z) (denoted V{z) in the text) plays in 
modeling the one-dimensional hydrogen atom. (Here V'{z) is simply a qualitative sketch 
and has no specified functional dependence. Similarly, the wave functions are hand drawn, 
not results of exact computation.) As a -+ 0 the even-parity and odd-parity wave functions 
tend towards degeneracy and take the same shape (albeit of opposite degeneracy.)
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(the two closest to z =  0) of the even-parity state eventually combine to form a double node 

at the origin. As a consequence, the probability density |i2(z)p for degenerate even-parity 

and odd-parity states are identical for a one-dimensional hydrogenic atom.

More interestingly, in the Coulombic limit the ground state ceases to be observable[95, 

96], as is shown in Appendix C.

To summarize, as the bottom of the well in the modified potential energy V (z) drops to 

—oo (thus reproducing the one-dimensional Coulomb potential):

1. The energy levels all lower until the even-parity energy levels (except the ground 

state) fall to the same level as the odd-parity levels directly below them. Therefore, 

the energy levels become two-fold degenerate.

2. The even-parity wave functions tend to the “same form” as their degenerate odd- 

parity partners, only of opposite parity. The probability density of the two degenerate 

states become identical.

3. The original ground state ceases being an observable, although this is of no conse­

quence to this research, as the jB ^  oo limit is inherently unphysical.

We can now go back and investigate the solutions to the pure Coulombic Schroedinger 

equation in Eq. (2.18). It is convenient to make the substitutions

2z
E  =  x  = (2.30)

where i/ is a dimensionless quantity.[97] The Schroedinger equation, which is now

^

admits solutions[94] only if i/ is a positive integer; that is, u = 1 ,2 ,3 , The eigenfunc­

tions are

(odd parity) A^(z) =  Aze"'^l/"Z,J(2|z|/y), (2.32)
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(even parity) Ru(z) =  A\z\e (2.33)

where A  =  \ / 2 /[v^{uXf] is a normalization constant and L/(z) are associated Laguerre 

polynomials. We can readily see that R{z) has the same form for both odd-parity and even- 

parity states, except that z in the odd state is replaced by |z| in the even state. This reaffirms 

that the odd-parity and even-parity wave functions have the same form, but opposite parity. 

The energy eigenvalues

y =  1 ,2 ,3 ,... (2.34)

are not only quantized but are identical in value to those of the three-dimensional hydro­

genic atom. Therefore, one-dimensional Coulomb eigenvalues form a Rydberg series, with 

their own continuum threshold at E  =  0. The principal quantum number u denotes the

excitation level for motion along the z axis and counts the number of nodes in the eigen­

functions in Eqs. (2.32) and (2.33).

The methodology above for finding the solutions to the Schroedinger equation does not 

include the ground state,[94]

g-kl
R i,-,q{z) = lim —-=■. (2.35)

u->o sjv

But as previously stated, the ground state is unphysical in the limit B oo, although this 

is of little concern since infinite magnetic field strengths are likewise unphysical. For a 

detailed analysis of the ground state see Appendix C.

2.2.2 The strong (but finite) field limit

The eigenfiinctions Qi^,m(p) in Eq. (2.17) are the so-called Landau eigenstates and are 

functions of the magnetic field strength. (Their exact form is given in Appendix D.) For
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large B  it is practical to solve the Schroedinger equation in Eq. (2.1) by expanding $(p, z) 

in the Landau eigenbasis:

(2.36)
AT=0

where we call 5f/(z) the Landau channel wave functions.

By substituting our expansion into the Schroedinger equation we And

^  1 ^  fi/v,„(p)5Ar(2)
N

=  E  ^  (2.37)

which becomes

1 a z
T T  ^N,m —2 dz^

f2iv.m(p)H^(z) = E ^ 0 ^ ,m W 5 ^ ( z ) .  (2.38)
iV iV

Multiplying by Q%,^{p), integrating over all radial space, and taking advantage of the 

orthonormal nature of the Landau eigenbasis produces

ia^ 5 „iV £̂ iV,m -  Z ''^E /v (z) [  
N -/O

pdp =  EEAr(z). (2.39)

We then define Vff j^,{z) so that

AT

(2.40)

where

% '( z )  =  -  / '
■/o

pdp. (2.41)
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In Appendix D we show that in the limit of large \z\ the coupling potential be­

comes roughly diagonal, approaching that of a one-dimensional Coulombic potential, that 

is,

^  , (2.42)

where Es,m is the Landau energy. The second order correction to Eq. (2.42) above is 

proportional to the Landau energy, but this correction falls off by a factor of 1/5^, so 

that In the limit of large held strengths the Coulomb potential V(r) becomes increasingly 

modeled by a one-dimensional hydrogenic atom. It Is straightforward to show from the 

results in Appendix D that the higher-order terms in are inversely related to even 

larger powers of B, and therefore fall off even faster as B is increased.

The appearance of the coupling potential V^jy,(z) in Eq. (2.40) means that for any 

given value of |m| the energy levels corresponding to the p and z degrees of freedom are 

directly coupled. As a result, a state excited to (say) N  = I can de-excite by transferring 

energy into motion along the z-axis, thus allowing the possibility of pushing the electron 

into the continuum if this transferred energy is great enough to overcome the Coulombic 

interaction. It is well-known that any Landau channel de-excitation satisfies this condition 

for a sufficiently strong B-field.[98] Therefore the threshold energy for finite fields 

requires that AT =  0 in Eq. (2.27), so that

Bt  =  Bo,m =  y d n il +  1) (2.43)

is the true threshold energy for a hydrogen atom in a strong (but finite) magnetic field.

As we previously stated, for a given |m| subspace the iV =  0 energy levels are ordered 

below the continuum threshold and are truly bound states. (See Fig. 2.10.) The higher 

energy levels are still ordered below but we have learned that for finite field strengths 

these levels correspond to resonant states, that is, they tend to autoionize,[98] and this 

autoionization is due solely to presence o f the two coupled degrees offreedom.
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2.2.2.1 Motion along the z axis in the strong field limit

For large B  the electron is highly localized at a radial distance Pm so we can, for all practical 

purposes, consider the radial variable p in the Coulomb potential to be constant.

—Z  —Z
V{p, z) =  ■ 7 - ^ ^ -  «  , - p . (Pm =  constant) (2.44)

If Pm is sufficiently small {B is sufficiently large) then the radical

\ /z ^ + P ^  =  y  (kl +  Pm)^[l -  2\z\pm!{\z\ +  PmY\ «  \z\ + Pm, (2.45)

since 2\z\pm falls off faster than (|z| +  pmY ^  Pm becomes small. Therefore,

which is of the form of a one dimensional hydrogenic atom but with the potential truncated 

to a finite depth of —Zjpm at the origin, as shown in Fig. 2.11. The description of the 

eigensolutions for this potential is similar to the modified Coulomb potential described 

earlier. The larger the magnetic field strength, the smaller the value of pm and the more the 

potential resembles the one-dimensional Coulomb potential.

The energy levels of the truncated potential,

(2.47)

still form a Rydberg-like series, except that the nonintegral principal quantum number i/  is 

slightly larger than the corresponding quantum number u. We call the difference between 

t /  and the integral quantum number u for the true Coulomb potential the quantum drfect 

5û  Thus 5  ̂= i/ - u ,  with 5  ̂> 0. Naturally, 0 as p^ 0 (and hence B  oo).
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As long as B  is finite there exists a physically meaningful ground state solution[96] to 

the truncated potential.

where pm = y/ZB{2\m\ + 1)/2. In the Coulombic limit, this energy level drops to 

Eu>-̂ o -* —00 and becomes unphysical, as previously discussed.

2.3 The intermediate field region

The region between the weak-field and strong-field region has always been difficult to 

understand because the wave functions of the system undergo rapid changes as the field 

strength is adiabatically swept through the many avoided crossings that appear throughout 

this region. More specifically, the physical characteristics of the wave functions, which 

denote the state of the system, re-organize when the field strength is swept past an avoided 

crossing, thus interchanging the nodal structures between the plane perpendicular to the 

field and the z-axis. This can be seen in Fig. 2.12, where nodes that originally appeared 

along the r , ^-plane for low field strengths begin to appear mainly along the z-axis.

Caveat: When we speak of “sweeping the magnetic field” we are specifi­
cally talking about changing the field strength adiabatically, that is, infinitely- 
slowly. In this sense, we are not really changing the magnetic field by any 
finite rate, but rather independently solving the time-independent Schrodinger 
equation for the system at every possible value of B. Otherwise, we would 
have to consider the possibility of transitions between energy levels as the field 
is swept through the avoided crossing region. This situation is discussed in 
Appendix E.

In the region of dense avoided crossings, the states of the system become linear su­

perpositions of many eigenstates and are impossible to label with any sort of meaningful 

quantum numbers. However, the nodal structure in the two limits of field strength can be 

correlated, regardless of what takes place between these two regions. To understand how.
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B = 8kT

Figure 2.12: Transformation of the even-parity nodal structure of diamagnetic hydrogen as 
a function of field strength. Here, m =  1 and the vertical axis is p\'^{p, z)|^. (a) Zero-field 
limit, where n =  5 and fc =  0 (rotator state), (h) B  = 8  kT. (c) B  = 35 kT. In this last case 
the state is in an autoresonant state, as described in Sec. 2. From Ref. [4].

we now consider a low-lying section of the energy spectrum. For simplicity, we will focus 

on the even-parity, m =  0 subspace.

2.3.0.2 The correlation between quantum numbers in the low and high-field regions.

In Fig. 2.13 we show a schematic representation of the behavior of the three lowest energy 

levels of diamagnetic hydrogen. The nodal structure of the ground state (n =  1) energy 

level does not change as the field strength changes because this state does not undergo any 

avoided crossings with other states, so we instead concentrate on the n =  2 and n  =  3 

energy levels.

At low fields, the n =  2 subspace only has one fc-level, fc =  0 (remember that k  only 

takes on values from 0 to n — m — 1, which means that k  can only be 0). This is a rotator
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State, so the nodal structure is distinctly laid out on the x, y-plane. As B  is increased, this 

level rises in energy. The n =  3 subspace above it has two levels, k = 0 and k = 2 (we 

are ignoring the Ar =  1 level, since it belongs to the odd-parity subspace). The A; =  0 

(rotator) level rises with increasing held strength to undergo avoided crossings with levels 

originating above it. The n = 3,k = 2 vibrator level drops in energy until it encounters 

the n =  2, A: =  0 level directly below it, upon which an avoided crossing between the two 

levels occurs (circled region in Fig. 2.13.

N=1
pragraukxi

v=0

k= 0
n=3

k= 2

v=4

v=2

k= 0
n= 1 N=0

v=0

a

Figure 2.13: Evolution of a few low-lying states as the held strength is swept through the 
intermediate region. The broadness of the AA: =  2 avoided crossing (large circle) is greatly 
understated, since this avoided crossing is so broad as to be hard to distinguish (that is, 
a hidden avoided crossing). The boxed regions group Landau levels having the same AT. 
Note that the nodal structure is preserved if we follow the dotted line (the diabatic curve) 
from the low-held region to the high held region. This would require changing the held 
strength at an inhnite rate, as explained in Appendix E. The roughness of the lines owes to 
the unsteady hand of the graphics artist[101].

53



Since the two levels have relatively little nodal overlap (one is a vibrator state, the other 

a rotator state), it would be tempting to think that the avoided crossing between these two 

levels would be narrow. However, for this interaction, AAr =  2, and we saw in Sec. 2.1.1 

that this avoided crossing is an exception — the avoided crossing between these two levels 

is actually very broad, so broad in fact that the avoided crossing is an example of a hidden 

avoided crossing. In the region of the avoided crossing the nodal structures of the two 

levels interchange, so that the nodes that originally appeared on the x, y-plane at low held 

strengths transfer to the z-axis at some point in the avoided crossing region. What was once 

a rotator state is now largely a vibrator state, being doubly excited {u =  2) along the z-axis 

at some point in the avoided crossing region. And since the excitation is now along the 

z-axis, the energy lowers with increasing held strength and the state becomes completely 

bound (because in this case N  =  0).

The lowest-lying n =  3 state, on the other hand, has its excitation along the z-axis 

transferred to the x, y-plane upon passing through the avoided crossing. It will not main­

tain this nodal structure, however, because now its energy will rise with increasing held 

strength where it will undergo yet another avoided crossing with a state directly above it in 

energy (small circle in the hgure), switching nodal characteristics yet again. When it hnally 

reaches the large-held limit, after passing through these two avoided crossings, it will end 

up forming the next-highest excited (i/ =  4) state in the iV =  0 subspace. The energy level 

that it interacted with in the last avoided crossing will now have a nodal structure much like 

the original n =  2 low-held state, which means its excitation is along the z, y-plane. After 

passing through an inhnite number of avoided crossings, it goes on to form the lowest-lying 

excited Landau level, denoted iV =  I, i/ =  0.[I02]

In Fig. 2.13 the diabatic energy level is indicated with a dotted line. This would be the 

progression of the energy level if we were to sweep the magnetic held inhnitely fast so that 

the probability of tunneling through the barrier between the two energy levels was unity. In
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this case, the nodal structure of the state would be maintained throughout the entire range 

of field strength.

The example above is as simple as it gets in the intermediate field-strength region. We 

can see that trying to track the nodal structure of higher-lying energy levels is going to 

be exceptionally difficult, especially if we consider that not all avoided crossings In the 

energy spectrum are going to be discernible. However, dimensional perturbation theory 

provides a systematic means o f tracking the energy levels o f diamagnetic hydrogen through 

the intermediate-field strength region and determining when, and where, avoided crossings 

must occur, even when hidden. So in the next chapter we turn our attention to the theoreticla 

basis of dimensional perturbation theory. From there we begin Part H, our discussion of the 

original research in this dissertation.
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Chapter 3 

Dimensional Perturbation Theory and its Application to 
Diamagnetic Hydrogen

To analyze the avoided crossings appearing in the energy spectrum of diamagnetic hy­

drogen we use dimensional perturbation theory[103], which in the system we are con­

sidering is equivalent to angular-momentum (jm|) perturbation theory[54]. However, un­

like angular-momentum perturbation theory this method is applicable to a wider range 

of more complex problems. To date dimensional perturbation theory has been applied 

to such diverse fields as statistical mechanics, nuclear and particle physics, quantum op­

tics, and atomic and molecular physics[103, 104, 105, 106]. In atomic and molecular 

physics alone, dimensional perturbation theory has been applied to the atomic 2üeeman 

and Stark effects[103, 106, 107], van der Waals coefficients[108], the hydrogen atom in 

parallel electric and magnetic helds[109, 110], two-electron and many-electron atoms, 

ions and molecules! 103, 111], quasistationary states! 106, 109, 112], potential scattering 

problems! 107, 113], and density functional theory,[l 14], to name just a few. Further­

more, projects are currently underway using this theory to compute the rotational spectra 

of molecules! 115] and virial coefficients and phase transitions in the electronic structure of 

atoms and molecules! 116].

Dimensional perturbation theory is not only a potent method for calculating energies 

and other properties of many quantum-mechanical systems[I03,117], but it also provides 

a natural way of examining avoided crossings in diamagnetic hydrogen energy levels.
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With this method, the magnetic field and Coulomb potential are both incorporated into 

the Hamiltonian at zeroth-order to such an extent that we can directly associate avoided 

crossings appearing in the E-versus-g spectrum with degeneracies arising at zeroth order.

Therefore, this method establishes an orderly means of examining the compli­

cated energy spectrum of diamagnetic hydrogen.

Also, all angular momentum-dependence of the problem is contained within the pertur­

bation parameter, which we denote in this research as Ô. Changing m merely amounts to 

resumming the energy series at a different value of Ô, which is considerably easier than a 

new calculation required by other methods. This greatly simplifies examining energy levels 

as a function of angular momentum.

3.1 Formulation of the dimensional perturbation theory

The basic steps involved in all dimensional scaling methods, including dimensional pertur­

bation theory, is to generalize the system to D spatial dimensions and subsequently scale 

the physical variables to remove the leading D-dependence[103]. In the case of dimen­

sional perturbation theory the scaled Schrodinger equation is expanded in a perturbation 

series about a value of D; this expansion allows an analytic solution. With diamagnetic 

hydrogen (as for many systems) the infinite-dimensional limit serves this purpose well. 

To find the energy corresponding to the three-dimensional system the perturbation series 

is simply summed at the value D =  3 because all D-dependence is incorporated into the 

perturbation parameter.

The generalization of the Schrodinger equation describing a hydrogenic atom in a con­

stant magnetic field B  to D dimensions is[103]

{4 " f }
K =  D  -h 2|m[ — 1, (3.2)
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where the time-independent wave function $(/3, z) is dimensionaily scaled as z) =  

z). Here, p and z  are the D-dimensional generalization of the usual cylindrical 

coordinates, and the remaining D — 2 angular coordinates have been factored out to yield 

the centrifugal potential term. Note that D and |m| only enter the Schrodinger equation 

through K.

To obtain a useful infinite-dimensional limit some of the physical quantities must be 

dimensionaily scaled;

p =  4 >  ^ = 4 .  E  = B = (3.3)

Note that the conversion between B  and B  in three dimensions is[l 18]

For example, 100 scaled units roughly equates to 75 T in three dimensions when |m| =  33. 

With these scaled quantities the Schrodinger equation has the form where

Note that we introduced the perturbation parameter

D + 2 \ m \ - l

into the Hamiltonian. It is important to note that, as with k, all D- and m-dependence is 

accounted for in S.

As K —» 00 (f 0) all derivative terms in the Hamiltonian vanish, producing an “elec­

trostatic” problem; the electron settles to the minimum of the Iimj_o Veff{p, ^  located at 

(p, z) = (pm, 2m =0). We denote the energy in the large k limit, i.e. limj_o Zm),
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by Eoo- Therefore, in the large « limit (large D  and/or |m| limit) the electron of energy Eoo 

is constrained to a hypercircle of radius p=pm perpendicular to the z  axis.

Using dimensionally-scaled displacements, xi  and xa, the origin is shifted to this min­

imum by means of the relations

p — Pm + , Z  = 6 ^X2 . (3.8)

The Schrodinger equation is then expanded in powers of 5s,

OO

Ê  = È o c + ' ^ É 2iS^^\ (3.9)
i = 0

OO

M(p, z) =  ^  ?(,(xi, Xa)(^Ki, (3.10)
i = 0

00

$ (^ z )  =  $o(Xi,X2) +5^$i(Xi,X2)<^5 . (3.11)
1=1

By equating powers of f  ? we obtain an infinite set of coupled differential equations,

p
y ^ { H j —Ej)^p-j  = 0 , É2i+i=0, p =  0 ,1 ,2 ,----- (3.12)
j=0

The general form of Hj is given in Refs. [105, 119]. Equations (3.9)-(3.12) can then be 

solved for the expansion coefficients Ei and $j(xi,X2). Of immediate importance is the 

solution for zeroth-order (harmonic) wave functions. When p =  0 in Eq. (3.12) we obtain 

(Ko-^ o )  ̂ 0= 0, where

has been put into the same form as a two-dimensional simple harmonic oscillator (SHO) 

by defining the so-called Langmuir oscillation frequencies
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Both the large-K limit (p =  p^. z  =  z^) and the harmonic zeroth-order wave functions 

$0 (which describe quantum fluctuations about the large-K limit) not only automatically 

adapt as B  changes, but they adapt in a way that is sensitive to the interplay between 

the Coulombic and diamagnetic potentials. Therefore, dimensional perturbation theory is 

applicable to the entire range of magnetic field strengths, not just to the high- or low-fleld 

regions.

Since Eq. (3.12) for p =  0 is a two-dimensional SHO equation for $o(a:i, xa). then to 

this harmonic order the energy is simply

E  % Eoo ^Ejq , (3.15)

where

^0 =  Eoo +  ^ Ü/2 — 2^  • (3.16)

We assign the ket

11/1 ^2 ) =^o(xi,X 2 ) = h^(^yLJ[xi)h^(y/üJ^X2 ) (3.17)

to represent the “unperturbed” harmonic basis, where the Ui are the quantum numbers of the 

SHO eigenfunctions /ty.(z). The quantum numbers ui and t/g are the number of nodal lines 

in the z direction and nodes in the p direction, respectively. The basic topology of nodal 

lines is preserved at finite k  with the provision that states are traced diabatically across 

avoided crossings. (Tracing the energy levels diabatically means following the dotted line 

in Fig. 2.13.) Therefore we use the quantum numbers ui and U2  to label the nodal structure 

of the state corresponding to a particular energy level.

We are now in a position to meaningfully assign quantum numbers that describe the 

nodal structure of diamagnetic hydrogen in both limits of field strength, hi the low-field 

limit:
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•  The principle quantum number n = ui-\-k-\-\m \-\-l.

•  In terms of vu  we have therefore i/i =  n — fc — |m| — 1.

•  U2  = k.

•  Therefore, 1 /2 determines the parity of the system, tt, =  (—1)* ,̂ with even values of 

U2 corresponding to even-parity, and so on.

•  For circular states, n =  |m| -h 1, so in this case Ui = U2  = 0. Therefore, for a given

m  subspace the circular state will always be labeled \u\, 1/2) =  |0 ,0). (This is true in

both limits.)

In the B —» 00 limit,

•  The Landau channel number N  is simply N  = ui.

The Coulomb quantum number u is given by u = IN T [^^], where INT[x] denotes

the integer part of x, rounded down.

• Note that taking only the integer part will guarantee that that the odd-parity and even- 

parity wave functions of the one-dimensional hydrogen problem have the same nodal 

structure because u counts the number of nodes along the 2-axis. For example, both 

the 2/2 =  3 and 2/2 =  4 states correspond to 2/ =  2, and thus have one node along the 

2-axis. (See Fig. 2.11.)

The correlation between the low-field and high-field states of diamagnetic hydrogen is 

summarized in Fig. 3.1.

Therefore, the quantum numbers 2/1 and 2/2 of the harmonic-order, dimensional 

perturbation theory Hamiltonian provide meaningful labels of the wave func­

tions of diamagnetic hydrogen in both limits of field strength.
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Figure 3.1: A correlation diagram, which we originally published in Ref. [ 135], that demon­
strates how the quantum numbers ui and t/2  order the energy at the two extremes of field 
strength. The upward arrows point to level crossings that correspond to Fermi resonances, 
as discussed in Chap. 4.
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B = 8 kT

B = 35kT

Figure 3.2: Same as Fig. 2.12 but labeled instead with the ui and t/g quantum numbers 
of dimensional perturbation theory. Again, m =  1, with even-parity. (a) Zero-held limit, 
where n =  5, fc =  0. Using the prescription in this chapter for dehning ui and U2 we have 
i/i =  n — — [ml — 1 =  3 and U2  = k  = 0, therefore this state is the 1/2) =  |3,0) state, 
(b) 5  =  8 kT. This is the region of intermediate held strength, and assigning meaningful 
quantum numbers is impossible, (c) B =  35 kT. This is the high-held limit. By examining 
Fig. 3.1 and following the |30) state adiabatically we hnd that this situation corresponds to 
the 114) state, signifying one node in the radial direction and four nodes in the ^-direction.

In Fig. 3.2 we show an example of how the quantum numbers ui and 1/2 count the nodes in 

the p and z directions.

The system parity Ttj, which refers to rehection in the z  coordinate, is determined by 

the value of U2  — even parity states correspond to even values of 1/2 î likewise for odd parity 

states. Although we largely limit the following discussion to odd parity states, the response 

of the system described by Eq. (3.1) to adiabatic changes in B, most importantly the energy 

spectra and branch point trajectories as functions of B, are qualitatively the same no matter 

which parity we choose to consider.
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In the next section we discover a one-to-one correspondence between the avoided cross­

ings in the E-versus-B and the B-versus-[Tn| spectra. To illustrate this relationship, we only 

need to look at a couple of avoided crossings in each of the B-versus-B and B-versus-|m| 

spectra in detail. Because the perturbation parameter S in Eq. (3.7) is especially small 

when \m\ is large, dimensional perturbation theory is particularly easy to apply to circu­

lar Rydberg states[l 19]. For that reason, we now apply dimensional perturbation theory 

to circular and near-circular states of diamagnetic hydrogen[120] and see how the system 

energy B(B, |m|) responds as both the magnetic field strength B (Sec. 4.2) and angular 

momentum |m| (Sec. 4.3) independently change.
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Partn

Singularity Structure and Its Relation to Avoided 
Crossings of Diamagnetic Hydrogen
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Chapter 4 

Avoided Crossings of Diamagnetic Hydrogen as Functions 
of Magnetic Field Strength and Angular Momentum

The material in this chapter is largely derived from J.R. Walkup, M. Dunn, D.K. Watson, 
and T.C. Germann, Physical Review A 58,4668-4682 (1998).

We have shown that the coupling between the two degrees of freedom in the diamag­

netic hydrogen problem creates a markedly different energy ordering in two important ex­

tremes of B: For fî =  0 the energy spectrum is hydrogenic, while at sufficiently large B  

the energy levels divide into a series of Landau channels. These channels are supported by 

the same radial wave functions which describe motion perpendicular to a magnetic held as 

found with a free electron in a magnetic held. Between these two limits of B  the interplay 

between the Coulombic and diamagnetic contributions creates a complicated, often highly 

irregular, energy spectrum. Each energy level is perturbed from above and below by ad­

jacent levels as the system evolves from the hydrogenic to Landau limits so the response 

of the system as B is increased is necessarily quite complex. Even for very low B  the 

diamagnetic term generates f-mixing in each hydrogenic n-manifold.

The most distinctive feature of the response of the energy spectrum to adiabatic changes 

in the B-held is an intricate array of avoided crossings, which provide the mechanism for 

state reordering with energy B  as B is changed. By this we mean that the nodal structures 

of the states exchange diabatically as the system is taken through the avoided crossings by 

varying the external magnetic field.[I2I] However, the appearance of avoided crossings is 

not restricted merely to variations in B. hi the particular system we have chosen to study,
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the magnetic quantum number m is a conserved quantity because of the separability of the 

azimuthal degree of freedom. We show that avoided crossings also appear in the energy 

spectrum as m of the system is incremented in value. (Actually, m  is treated in this research 

as a continuous real parameter, interpolated between integer values.) As when B  is varied 

for hxed m, the nodal structures of the states diabatically exchange across the avoided 

crossings [122].

Avoided crossings are not always easy to distinguish. Some are so narrow that energy 

levels superficially appear to actually cross. (Energy levels with the same parity and m  

cannot cross because of the Wigner-von Neumann non-crossing rule[l23]). On the other 

hand, some avoided crossings are so broad that they are not easily discernible. These are 

termed hidden avoided crossings[124, 125]. Regardless of whether they are hidden or not, 

the nodal structure of the states still exchange diabatically across the avoided crossings. 

Because of this very important physical effect, it is important to have a strategy to predict 

the existence of avoided crossings and where they occur, hidden or not. In this chapter we 

offer such a strategy, which relies on understanding the mathematical structure resulting 

from degeneracies between energy levels. Furthermore, we can use the same mechanism 

that explains the appearance of avoided crossings in the E-versus-5 spectrum to understand 

those appearing in the £?-versus-|m( spectrum. Therefore, this mechanism directly relates 

the response of the energy to independent changes in B  and \m\.

In this chapter we examine the degeneracies of diamagnetic hydrogen for two charac­

teristic energy-level interactions, and from this information we explain the existence and 

locations of some low-lying avoided crossings appearing in its energy spectrum. In Sec. 4 .1 

we consider a simple example in which a system parameter is varied adiabatically. We then 

explain how the resulting avoided crossing in the energy spectrum is related to square-root 

branch point degeneracies appearing in the complex parameter-plane. Using the resulting 

energy series, in Sec. 4.2 we plot energy levels as functions of magnetic field strengths at 

two different orders in dimensional perturbation theory —  harmonic (zeroth) order, which
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corresponds to Eq. (3.13), and higher (28th) order, which corresponds to p =  28 in Eq. 

(3.12). We show that we can relate the avoided crossings appearing in the energy spectrum 

to energy degeneracies appearing at harmonic order, as expected.

In Sec. 4.3 we instead fix B  and plot energy levels as the angular momentum \m\ is 

changed. We show that the avoided crossings appearing in this situation are directly re­

lated to those appearing in the E-versus-B spectmm. As demonstrated in this chapter, 

this relationship is illuminated by examining the anatomy of the branch-point degeneracies 

connecting the two energy levels in question. We use this anatomy in Sec. 4.4 to predict 

the appearance of avoided crossings in both types of spectra.

We expect the analysis in Sec. 4.4 to apply to all avoided crossings appearing through­

out the energy spectra (both E-versus-B and E-versus-m) of diamagnetic hydrogen. How­

ever, there is one small subset of avoided crossings that demands expanded treatment, and 

we consider this subset of avoided crossings in Sec. 4.5.

This chapter focuses solely on examining the odd-parity states of diamagnetic hydro­

gen. As we explain in Sec. 4.6, all results apply to the even-parity states equally well.

4.1 Energy degeneracies and avoided crossings

To Illustrate the relationship between energy degeneracies and avoided crossings, we use 

an example much like the one discussed by Bender and Orszag[126]. Consider the time- 

independent Schrodinger equation of a simple two-level system,

W'^± =  E=^$±, (4.1)

where

n = [  1. (4.2)
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Here we consider b as a parameter that we will vary continuously while keeping all other 

parameters fixed in value. (In this sense, 6 is analagous to B  or |m| in this research, de­

pending on which parameter is varied while the other one is held fixed.) Equations (4.1) 

and (4 .2) model a general quantum mechanical problem in those regions where only two 

states interact strongly enough to warrant consideration. If d =  —6, then these equations 

model a well-known Landau-Zener problem, where b is associated with a linearly-varying, 

time-dependent magnetic field, and c measures the splitting between energy levels caused 

by a constant magnetic field oriented perpendicular to the first. (See Appendix E and refer­

ences therein.) The energy eigenvalues as functions of b are plotted in Fig. 4.1 which shows 

an avoided crossing centered about b = d. As b —» ±oo, the energies and E~ and the 

eigenstates and limit to the c =  0 solutions.

with energy Ei = b  and

01 = I J I (4.3)

02 = I ° I (4.4)

with energy E2  = d. Thus when b is sufficiently far from the avoided crossing, the en­

ergies and eigenstates are approximated by the c =  0 energies and eigenstates. We use 

01 and 02 to label the physical characteristics of the finite b eigenstates away from the 

avoided crossings. Since the energy ordering of the c =  0 eigenstates 01 and 02 is difierent 

from one extreme value of b to the other, the states must exchange physical characteristics 

diabatically somewhere in the spectrum —  across the avoided crossing. If the physical 

characteristic of the state defined by 02 is associated with the upper energy level E~  when 

b -c d, then 0i will be associated with the lower level However, this ordering of states 

reverses for b » d ,  so the physical characteristics of both energy levels exchange across the 

avoided crossing.
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c = 0

Re(b)

KJ d

Figure 4 .1 : Energy levels E+ (lower level) and E~ (upper level) arising from Eq. (4.1), with 
h treated as a parameter. Note that the physical characteristics of the states, defined as either 
01 or 02, exchange diabatically as the system progresses through the avoided crossing. In 
other words, if we (infinitely slowly) increase b from J  to K , the state corresponding to 
the level would transform from 0% to 02 in the avoided crossing region. For c =  0 the 
system becomes separable, so at this limit the energy levels (shown by dot-dashed lines) 
cross at 6= d. The inset shows the square-root branch points lying in the complex-6 plane 
that connect the two energy levels.
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In this example the avoided crossing is clearly visible in the energy spectrum, but as we 

stated previously such is not always the case. Yet the existence of hidden avoided crossings 

remains physically important since the physical characteristic of each interacting energy 

level exchanges when the system passes through the avoided crossing. Therefore, it is 

important to hnd a distinguishing characteristic of the system that signihes the locations of 

avoided crossings, whether they are hidden or not.

From Eqs. (4.1) and (4.2) we can write the secular equation in the form

{E -  E + )(E  -  E~) = E ^ ~  (E+ +  E~)E  +  E+E" =  0, (4.5)

where

E"*" + E~ = b + d and E'^E" — bd — <?. (4.6)

The avoided crossing occurs when the parameter 6, restricted to the real line, passes closest 

to the complex value of b where the two eigenenergies are degenerate. According to Eqs. 

(4.6), in order for E+ =  E~ the parameter 6 must satisfy ti^—2db-{-4cr+cP=0, that is

—d ±  2ic. (4.7)

Note that the degeneracies occur at complex values of 6; physical (real-valued) energies 

cannot cross as 6 is held on the real line and swept past the degeneracy points. (The Schwarz 

Reflection Principle[l27] ensures that degeneracies occur at complex-conjugarc values of 

6.) Rather, as shown in Fig. 4.1, we see an avoided crossing centered about b = d because 

the energies come closest to degeneracy when b is closest to d.

The analytic solutions for the eigenenergies are

E± =  i  [6 +  d ± \ /6 2 -2 d 6  +  4c2-t-d2], (4.8)
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thus we find square-root branch-point singularities at the points where the energies are 

degenerate[ 128]. In other words, the two square-root branch points provide a signature for  

the appearance o f avoided crossings. (See the inset in Fig. 4.1.)

A square root appeared in Eq. (4.8) because we considered an interaction between only 

two levels. When three levels interact, one might think that the degeneracies would be 

marked by both cube-root as well as square-root branch points. However, as explained by 

Bender and Orszag, higher-order, three-state degeneracies at which cube-root singularities 

can occur are extremely unlikely[126]. This reasoning applies to degeneracies and higher- 

order singularities involving more than three states as well. Therefore, as a general rule 

avoided crossings will be marked by the nearby presence of square-root branch points no 

matter how many states effectively interact[129].

Naturally, we cannot properly describe diamagnetic hydrogen with a simple 2x2 ma­

trix equation; rather we require an infinite-dimensional matrix equation, limited to finite di­

mensions for practicality. Dimensional perturbation theory, when formulated in the matrix 

method[105] (the method used for large-order calculations in this research), automatically 

furnishes matrix equations of finite dimension at finite order. But as we increase the rank of 

the matrix equation it is natural to question what happens to the square-root branch-point 

structure of the system. There are at least four possibilities[I26];

1. The square-root branch points stabilize and

(a) remain well separated from each other or

(b) form a sequence that becomes denser and denser towards some limiting point.

2. The square-root branch points coalesce to form more complex singularities in the 

limit of infinite-dimensional matrices.

3. The square-root branch points move to infinity.

4. A square root branch point present when the matrix equation is of a certain dimen­

sionality is not present at other dimensionalities.
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We are only interested in avoided crossings which stabilize as the dimension of the matrix 

equation is increased, and thus we rule out square-root branch points which behave as in 

items 3 and 4. As we shall see, for the energy level interactions considered in this research 

the nearby square-root branch point degeneracies behave as in item la.

Finally, we note that for simple two-level systems Eq. (4.7) requires that real-valued 

branch points must exist at the same location on the real axis.[130] However, for higher 

ranking matrix equations this requirement no longer applies — real-valued branch points 

can exist at two different points on the real line.

4.2 Energy as a function of magnetic field strength

We saw in Chap. 3 that in the harmonic limit the Hamiltonian of the diamagnetic hydrogen 

atom reduces to

This harmonic limit (that is, the limit corresponding to the zeroth-order Hamiltonian 'Hq) 

is not only mathematically useful but incorporates many feamres of the three-dimensional 

system. In fact, the harmonic Hamiltonian incorporates the effects of B  to such an ex­

tent that the ordering of states, with respect to energy, correlates exactly with that in three 

dimensions in both the small-B and B  -* oo limits. This is a key result, because if the 

harmonic energy spectrum has the same basic structure as the exact spectrum, then we 

maintain the same energy-level ordering as higher-order corrections are incorporated, mak­

ing the spectrum easier to examine. This is a major advantage of dimensional perturbation 

theory over many traditional methods.

The harmonic Hamiltonian H q  is also completely separable in p  and z, that is the p  and 

z degrees of freedom are uncoupled. This has important consequences for the harmonic 

energy spectrum which results from Eq. (3.13). As shown in Fig. 4.2 (for odd-parity states):
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1. The harmonic energy levels do not interact and actually cross.

2. The most distinct characteristics of the harmonic spectrum are the numerous Fermi 

resonances[l3l, 132] (degeneracies), that appear at certain values of B, some of 

which we indicate with vertical lines in the figure. (See also Fig. 3.1 in Chap. 2.) 

These values of 5  are determined by the Fermi resonance condition iu i  =  ku 2 , 

where i  and k are any two integers [124]. For example, as highlighted in the figure, 

the (11) and (05) states are degenerate at harmonic order near B  =  320, where the 

ratio wi/wg =  4. Therefore, we say that these two states, even at converged orders, 

are related through a 4:1 Fermi resonance (see below). To determine which states co­

incide with a given Fermi resonance, consider two states (a b) and | c d) (the variables 

b, c, and d here are unrelated to the same variables in the previous section). The har­

monic energy levels of these two states cross at the X :Y  Fermi resonance provided 

that Xa+ Yb= Xc-{-Yd. For example, the (15) and (41) harmonic levels cross at the 

4:3 Fermi resonance, since 4 1 + 3 5 = 4 4 4 - 3 - 1 .  We show more examples in Table 

4.1. In Figs. 4.2 and 3.1 we highlight energy-level crossings at two particular Fermi 

resonances — a 2:1 Fermi resonance (wi =  2wg) between the (03) and (11) states, 

and a 4:1 Fermi resonance (wi =  Aui) between the (05) and (11) states. Although 

the (11) and (03) states are not the only states that interact through a 2 :1 Fermi reso­

nance, we will only consider these two states when we discuss this particular Fermi 

resonance. Along the same lines, we will only discuss the interaction between the 

111) and (05) states when we focus on the 4:1 Fermi resonance.

At finite \m\, terms in the Hamiltonian which couple the p and z degrees of freedom are 

no longer negligible. Therefore level crossings become forbidden by the von Neumann- 

Wigner non-crossing rule and are replaced by avoided crossings. The avoided crossing 

center at finite |m| is displaced from the harmonic crossing because of the |m|-dependence 

of the energy levels. As an example, in Fig. 4.3 the 4:1 crossing highlighted in Fig. 4.2 

is displaced from B  =  320.8 (the harmonic level crossing) to B = 138.4 (the avoided
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Figure 4.2: Harmonic (zeroth-order) energy levels as functions of B  for diamagnetic hy­
drogen. The vertical axis measures binding energy in mRyd for \m\ =  33. The vertical 
lines denote some prominent degeneracies (Fermi resonances) appearing in the spectrum. 
The crossings explicitly discussed the most in this chapter are highlighted in bold circles; 
one associated with a 4:1 Fermi resonance at B  =  320.8 and the other with a 2:1 Fermi 
resonance at B =  32.1. Only levels corresponding to the ten lowest hydrogenic (B =  0) 
shells are shown.
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Table 4.1: Fermi resonances and corresponding interacting states appearing in the 
harmonic-order energy spectrum in Fig. 4.2, with the lowest energy interactions appearing 
highest in the table. The (scaled) magnetic field strength at which each resonance appears 
is given In parentheses, rounded to the nearest whole number. Each entry corresponds to an 
individual interaction, many of which involve more than two states. Any even-parity states 
that are degenerate to those listed were omitted. Also, some of the higher-lying Fermi

8:7 (5) 6:5 (6) 4:3 (9) 3:2 (13) 8:5 (16) 12:1 (32) 8:3 (79) 3:1 (118) 4:1 (321)

|09)|7i) 107)151} |05)|31) |07)|41) (09)151) 103)111) (09)131) (07)121) (05)111)

|19>|81> 117)161) 115)141) 117)151) |19)|61) 105)121) (19)141) (09)123) 107)113)

|09)|53) |07)|33) |09)|43) (07)115)

(23)131)

(17)131) (09)

(15)121)

|27)|71) |25)|51) 127)161) (09)117)

(25)133)141)

(19)133) 117)123)

119)163) 117)143) 119)153) (19)(27)

(35)143)151)

(27)141) (19)

(25)131)

crossing). In Fig. 4.4 we show the avoided crossing in Fig. 4.3 in more detail. We can see 

that the two energy levels do not cross. Despite this shift in location, we can still associate 

the avoided crossing with the 4 :1 Fermi resonance because the location of the avoided 

crossing gradually shifts to the location of the level crossing (associated with the 4 :1 Fermi 

resonance) as |m| —»oo.

Therefore, even though the spectrum of diamagnetic hydrogen contains a 

complex arrangement of avoided crossings, we can use the harmonic energy 

spectrum to assign each avoided crossing to a particular Fermi resonance.

We now turn our attention to the avoided crossings that appear between two energy 

levels when we plot the energy as a function of angular momentum. We show that not only 

is there a clear relationship between the E-versus-B and the E-versus-|m| spectra, but that 

we can understand this relationship by examining the branch points that connect the two 

energy levels.
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Figure 4.3: Harmonic (p =  0) and convergent (p =  28) energy levels of the |m| =  33 |05) 
and 111) states related to the 4:1 Fermi resonance degeneracy highlighted in Fig. 4.2. Note 
the shift of the minimum energy separation to lower B  in the convergent spectrum.

77



4.3 Energy as a function of angular momentum

In Fig. 4.4 an avoided crossing in the E-versus-B spectrum appears[133] at B =138.4 when 

the angular momentum is fixed at |m |=33. From Eq. (3.4) this corresponds to B =  103.4 

tesla.[I34] We now consider \m\ as a continuous real parameter and see how the system 

energy responds as B is held fixed at 103.4 tesla and |m| is changed.

4:1 Fermi Resonance
Iml =  3 3

0 5 )00

1 3 8 . 4 ( 1 0 3 . 4  T )

1 0 5 )

1 5 09 0  1 0 0 2008 0 2 5 0

( S c a l e d )  M a g n e t i c  F i e l d  S t r e n g t h ,  B

Figure 4.4: Detail of the converged (p — 28) energy levels shown in Fig. 4.3. The nodal 
structure of the wave function, which is represented by \u1 U2 ), is exchanged diabatically 
as the magnetic field sweeps past the avoided crossing. Note the avoided crossing center 
occurs at B =  138.4, which is equivalent in this case (|m( =33) to B =  103.4 tesla (noted in 
parentheses).

Consider Fig. 4.5, which shows the same two energy levels for the 4:1 Fermi resonance 

as |m| is changed. With B =103.4 tesla, the avoided crossing occurs near |m| =  |mol =  33, 

rounded to the nearest integer. Therefore, there is a strong correspondence between avoided

78



crossings appearing in the E-versus-B spectra and those appearing in the B-versus-|m| 

spectra — if \m\ is fixed at [mol while B  is swept, an avoided crossing appears at some 

value B = B q. Correspondingly, if B  is fixed at B q while \m\ is swept, an avoided cross­

ing appears at (or very near) |mo|. This correlation between the avoided crossings in the 

E-versus-B and the E-versus-|m| spectra points to the existence of nearby degeneracies 

which cause an avoided crossing whether we sweep B or |m|. We discuss this in detail in 

the next two sections.

Before moving on, we should note that the avoided crossings that appear in the E- 

versus-|m| spectrum are harder to find than those appearing in the B-versus-B spectrum. 

One reason for this is the leading Boo in Eq. (3.9) which does not affect the dynamics of the 

problem (that is, which state is associated with each energy level), but because of its |m|- 

dependence tends to mask the appearance of the avoided crossing. Therefore subtracting 

this term from the energy series does not affect where an avoided crossing appears, but 

rather makes the avoided crossing more visible. The subsequent energy series has a leading 

5 that is also a function of |m| but, as in Boo, does not affect the dynamics of the problem. 

Therefore, we factor this term out of the series as well. The result is a rescaling of the series 

as B(Rescaled) =  (B — Boo)/5 whenever we calculate the energy with respect to changes 

in |m|. Also, for these cases we use total energies, not binding energies. Therefore, the 

vertical axes on such plots change accordingly.

4.4 Energy level characterization and avoided crossings

In the next chapter we argue that the behavior of the branch points as functions of B for 

both the 4:1 and 2:1 Fermi resonance indicates that the energy levels of a two-state Fermi 

resonance has the following analytic form:

B t(f, B) =  B.(f, B) ±  EbiS, B ) y / s - S ^ { B ) y / 6 - L  (B ). (4.10)
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100
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A n g u l a r  M o m e n t u m ,  I m l

Figure 4.5: In contrast to Fig. 4.4, here we plot £  as a function of |m|, not B, with B  held 
fixed at 103.4 tesla. Note that the avoided crossing is centered about |m| =33 (rounded to 
the nearest integer). Note the change in scaling for the vertical axis.
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For the rest of this discussion keep in mind that S is directly related to \m\ in three dimen­

sions through the relation S = l / { 2  + 2\m\). The branch-point locations S^{B) and S-{B)  

are solutions of the equation

B)=E+{ 6 , B ) - E . { 5 , 5) =  0 (4.11)

for fixed B. (See Sec. 4.1.)

The branch-point trajectories in the complex &plane are shown for a 4:1 and a 2:1 

Fermi resonance in Figs. 4.6 and 4.7, respectively. Notice that the branch points for the 4:1 

Fermi resonance in Fig. 4.6 are initially complex conjugates of one another and approach 

the origin as B  increases towards the value 5  =  320.8. (This is the same value of B  which 

corresponds to the 4:1 Fermi resonance.) As B  increases beyond this value the branch 

points form on the negative real axis and head towards -oo, although at slightly different 

rates.

The branch-point structure of the 2:1 Fermi resonance in Fig. 4.7 looks more com­

plicated. Here, the branch points are complex-conjugate until 5  % 25.1, at which point 

they coalesce onto the negative real axis. As B  further Increases one of the branch points 

will head towards -oo  while the other will head towards the origin, reaching that point at 

5  «  32.1. (This value of B  corresponds to the 2:1 Fermi resonance.) From there the latter 

branch point reverses direction and both branch points will then be moving towards —oo.

As required, when S equals either l+ (5 ) or J_(5) the energies E+ and 5_  become 

equal (degenerate). Note that ô- =  (5+)* unless the branch points lie on the real axis (again, 

a consequence of the Schwarz Reflection Principle.) Thus when Ô lies on the real axis (the 

physically relevant situation) and the branch points lie off the real axis in the complex 

plane, 5 is symmetrically placed between the complex conjugate pair of branch points and 

the term \ / s  -  5+{B) y fs  -  f_ (5 ) in Eq. (4.10) is just the distance in the complex plane 

from the point 6  to either of the two branch points.
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Figure 4.6: Branch point structure of diamagnetic hydrogen in the complex J-plane relating 
to the 4:1 Fermi resonance involving the |11) and |05) states[7]. The numbers near each 
branch point refer to the corresponding value of B. Note that the locations of the branch 
points are particular to a given value of B, and that they move to the left as B  increases. 
Due to the scaling of the axes, the branch points on the negative real axis appear to be 
located at the same point. They are however separated, and this separation increases for 
increasing B.
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2:1 Fermi Resonance
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Figure 4.7: Branch-point structure of diamagnetic hydrogen relating to a 2:1 Fermi reso­
nance involving the |11) and |03) states, for field strengths up to B =  30. As in Fig. 4.6, 
the numbers near each branch point refer to B. The number in the parentheses refers to 
the corresponding value of B  in tesla for \m\ =  33 and D =  3. The arrows on the real axis 
indicate the direction the branch points move with increasing magnetic field strength. The 
arrow closest to the origin will reverse direction once that branch point reaches the origin 
(at B  % 32.1). The unmarked branch points close to the origin correspond to (from left to 
right) B = 28 and B  = 30. The points on the real axis correspond to (from left to right) 
|m| =44, \m\ =33, and [ml =  17, and are referenced in Table 4.3.
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In Sec. 4.1 we argued that avoided crossings will occur close to complex-conjugate, 

square-root branch point degeneracies present in the complex parameter-plane. We will 

now use the energy level characterization in Eq. (4.10) to sharpen our understanding of the 

relationship between the locations of avoided crossings and the branch point structure of 

diamagnetic hydrogen. First we consider in Sec. 4.4.1.1 avoided crossings as |m| is swept 

while the magnetic held strength is fixed. Dimensional perturbation theory is naturally 

formulated in terms of the scaled field strength B and so automatically provides results for 

fixed 5 . From an experimental point of view, investigating the response of the system to 

changes in \m\ for fixed B  would appear to be quite feasible, although obviously \m\ is 

limited to integer values. As \m\ is changed, the unsealed field strength will have to be 

appropriately altered [see Eq. (3.4)].

In Sect. 4.4.1.2 we also consider the case of avoided crossings as \m\ is swept while the 

unsealed field strength B  is held constant.

4.4.1 The 4:1 Fermi resonance: Avoided crossings as \m\ is swept

4.4.1.1 Scaled field strengths held constant

We define the center of the avoided crossing ^^S(B) to be the value of S where is a 

minimum. While there is no reason to believe that the E& term in Eq. (4.10) should remain 

constant over any appreciable range of angular momentum or magnetic field strengths, the 

avoided crossing for the 4:1 Fermi resonance is so narrow in both spectra that we can expect 

Eb not to vary significantly from one side of the avoided crossing to the other. (We will 

see that this assumption fails for the broad avoided crossings of the 2:1 Fermi resonance.) 

Therefore, the center of the avoided crossing occurs when the distance from the summation 

point Ô (that is, the value of 6  at which we are evaluating the perturbation series) to the 

branch points is a minimum, that is

^% B ) =  % e(4(B )). (4.12)
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Therefore, as long as the branch point is held fixed (that is, when B  is held fixed) and 

\m\ is swept, we can state the following:

Since Eb is roughly constant over the avoided crossing region, the avoided 

crossing appears whenever the summation point f  reaches the vicinity of 

the real component of the branch-point locations on the complex-J plane.

We now use this result to predict the locations of avoided crossings appearing in the E- 

versus-|m| spectrum. In Fig. 4.8 the energy levels of the |11) and |05) states are plotted 

as functions of |m|, but this time for fixed B, not B. Now consider the summation point 

P in Fig. 4.9, which corresponds to \m\ =  26 in three dimensions. (Figure 4.9 is the same 

as Fig. 4.6, but for lower values of B.) If we sum the energy series about this point, we 

determine the resulting energies by referring to the energy levels in Fig. 4.8 that intersect 

line P. In fact, with the use of Eq. (4.12) we can understand the entire dependence of E  on 

|m| by fixing B  and sweeping the summation point ô (therefore sweeping |m|) along the 

real axis in the complex &plane. For example, suppose we fix 5  =  140, therefore fixing 

the branch-point locations at points C in Fig. 4.9, and sweep \m\ from point P to point R. 

An avoided crossing occurs when we reach point Q, because at that point 3fîe(5±) coincides 

with the summation point 5. We can verify this result by referring to Fig. 4.8.

4.4.1.2 Unsealed field strengths held constant

As stated earlier, the locations on the complex f-plane of the branch points that connect 

the two energy levels are purely functions of B. However, since the relationship between 

B  and B  in Eq. (3.4) involves |m|, the branch points cannot be fixed in location in the 

complex J-plane while |m[ (that is, 5) is swept with B  constant.

85



1
210

200

190

I TT f ~l • 1 1 1 1 ' I - r ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- -

|05>
^  105)

-

B = 140
-

- I l l y -

_lZ-J_1—1_

P
i—i 1 1.1_1—1—

Q
. 1 L.J-J- 1 1 1 1 1_1_1_1 1 L .L,_L_

R
—1—1—1_1—

20 25 30 35 40 45

A n g u l a r  m o m e n t u m ,  I m l

50 55

Figure 4.8: Energy as a function of angular momentum for the 4 :1 Fermi resonance. Here, 
instead of fixing B, as in Fig. 4.5, we fix B  instead. As in Fig. 4.5 we rescaled the vertical 
axis.
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However, it turns out that Eq. (4.12) also applies when the unsealed field strength B, 

is held fixed, with B  replaced by B  in the equation. To see this, Eq. (4.10) needs to be 

re-expressed in terms of B  (rather than B), and the solutions S±{B) of the equation

A E { 5 ,B ) = 0  (4.13)

calculated for fixed B  [rather than the S±{B), the solutions of Eq. (4.11) for fixed B]. This 

is done in Appendix F with the result

E±(J,B) =  Ea{6,B) ± Eb{5,B)y/S-5+(B) y / 6 - 6 . { B ) .  (4.14)

Compare this with Eq. (4.10). Analogously to Eq. (4.10), when 6 lies on the real axis and

the branch points lie off the real axis in the complex plane, the term ^/S — S^{B) y/5 — f_(B) 

in Eq. (4.14) is just the distance in the complex plane from the point S to either of the two 

branch points with B  held fixed.

Thus assuming that Ef,{6, B) in Eq. (4.14) is constant under changes in |m| throughout 

the region spanning the avoided crossing, then the center of the avoided crossing occurs 

when the distance from the point S to the branch points S±{B) is a. minimum, that is

^°5(5) =  sRe(5±(B)). (4.15)

Therefore, as long as the branch point is held fixed (B is held fixed) and \m\ is swept, we 

can make the following assertion:

I f  Eh is roughly constant, the avoided crossing appears whenever the sum­

mation point S reaches the vicinity of^^8{B), the real component o f the 

branch-point locations on the complex-5 plane. [See Eq. (4.12).}

A good approximation for Re{5±{B)), the real part of the solutions of Eq. (4.13) 

for fixed B, may be obtained from the positions of the branch points in the complex
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Table 4.2: Avoided crossing locations in the E-wersus-B spectrum for the 4:1 Fermi reso­
nance. The summation points corresponding to [mj =  26, 33, and 50 are illustrated in Fig.

4:1 Fermi Resonance
\m\ 3te(S=̂ ) 5 “ B (T)“ B ‘> B(T)^
26 0.019 120 179 116.7 174.1
33 0.015 140 105 138.4 103.4
50 0.010 180 40 180.0 39.9

“ Predicted value from scanning Fig. 4.6.

^ Com puted value from Padé sum m ing Eq. (3.9) for the two energy levels.

plane for fixed B, the solutions ^±(.6 ) of Eq. (4.11). In Appendix F we show that since 

|SRe(j±(5))| »|Qfm(l±(.5))|, Eq. (4.15) implies the approximate relationship

^^5 ^[sRe(4(B))]' B ^  «  5R e(4(S)), (4.16)

where we remind the reader that B  =  S^B. Therefore, we can predict the locations o f 

avoided crossings in the E-versus-\m\ spectrum for fixed B  by merely glancing at the 

branch-point structure connecting the two energy levels in the complex 5-plane for fixed 

B. For example, in Fig. 4.9 we see that the real part of the branch-point locations corre­

sponding to B =  140 is at roughly the same location as the summation point corresponding 

to \m\ =  33. At this value of |m| and B, the physical field strength is B = 107.6 tesla. 

Therefore we would expect an avoided crossing to appear at B = 107.6 tesla when \m\ is 

fixed at 33. This is close to where the avoided crossing appears in Fig. 4.5, at 5  =  103.4 

tesla.

Next we consider avoided crossings as the magnetic field strength, either scaled or 

unsealed, is swept while |m| is unchanged.
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Figure 4.9: Another view of the data in Fig. 4.6, the branch-point structure of the 4:1 Fermi 
resonance, plotted at lower values of B. The values of |m| shown correspond to D =3 and 
are referenced in Table 4.2 and the text. The numbers near each branch point refer to the 
corresponding values of B. The number in parentheses refers to the magnetic field strength 
B  in tesla for Iml =33. The vertical line at |m| =33 is referred to in the text.
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4.4.2 The 4:1 Fermi resonance: Avoided crossings as the magnetic 
field strength is swept

Let us hold \m\ (or equivalently S) constant on the real line and sweep B. An avoided 

crossing appears at that value of B  for which AE(S, B) is a  minimum. Suppose Eb in Eq. 

(4.10) is constant under changes in B  throughout the region spanning the avoided crossing.

Thus from Eq. (4-iO) the avoided crossing occurs when the branch-point 

trajectories in the complex plane pass closest to the summation point S.

By examining the horizontal and vertical scaling in Figs. 4.6 and 4.9 we see that the 

gradient of the branch-point trajectories remains quite small, so to a good approximation 

the point of closest approach occurs when

Ue{0±{B))=5. (4.17)

Therefore if Èb is roughly constant over the avoided crossing and the slope of the branch­

point trajectories to the real line is small, |sRe(^i(5))| »  |3f?n(l±(5))|, then when the 

real part of the branch points, Re(J±(B)), reaches the summation point S the separation 

between the two energy levels is close to a minimum. To a good approximation we can say 

that the center of the avoided crossing has been reached. For example, if we fix |m| =  33 

(point Q in Fig. 4.9) and sweep B, we should get an avoided crossing near B  =  140. The 

crossing actually occurs at B =  138.7, as we saw in Fig. 4.4.

As seen in Eq. (3.3), any result for which |m| is held fixed equally applies to either 

sweeping B  or B, since B  and B  are then directly proportional.

In Table 4.2, we predict the locations of avoided crossings for both scaled and physical 

magnetic field strengths for three difierent fixed values of |m|. From this table we see 

that the branch-point structure of the 4:1 Fermi resonance provides a convenient way of 

accurately determining such avoided crossing locations.

To conclude:

90



It is possible to predict the locations of avoided crossings in the E-versns-|m| 

spectrum for fixed B  (or B) and the E-versus-B (or B) spectra for fixed |m| by 

merely glancing at the branch-point structure connecting the two energy levels 

in the complex ^-plane.

4.5 The 2:1 Fermi resonance

Having established the relationship between avoided crossings and branch-point structure 

by focusing on the 4:1 Fermi resonance, we now direct our attention to the 2:1 Fermi 

resonance. By examining Figs. 4.10 and 4.11 we can see that the same correspondence 

between the two spectra that exists for the 4:1 Fermi resonance applies to the 2:1 Fermi 

resonance as well: (1) An avoided crossing appears at 5  =  14.0 T for |m| fixed at \m\ =33. 

(2) With B  fixed at 5  =  14.0 T an avoided crossing appears at |m| =  34. Notice that since 

the avoided crossing appears at \m\ =34 and not |m| =33, the correspondence between the 

two plots is not as precise as it was for the 4:1 Fermi resonance. More on this below.

The repulsion between the |11) and |03) states is quite strong, therefore the avoided 

crossing is actually spread out over a large region of magnetic field strength. Therefore 

we should not expect Eb in Eq. (4.10) to remain nearly constant throughout the avoided 

crossing region. However, our previous discussion relied on a roughly constant Et, so we 

now see how our results apply to the 2:1 Fermi resonance.

4.5.1 Avoided crossings as \m\ is swept

4.5.1.1 Scaled field strengths held constant

In Fig. 4.12 energy is plotted as a function of |m|, with the scaled magnetic field strength 

fixed to 5  =  15. According to the argument in the previous section, an avoided crossing 

should appear when the summation point reaches the real part of the branch points corre­

sponding to 5  =  15. According to Fig. 4.7, this should be near \m\ =33 (note the vertical 

line that runs through the |m| =33 summation point and the branch point corresponding to
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Figure 4.10; Detail of the interaction between the |03) and 111) states, associated with a 2:1 
Fermi resonance, at higher order (p = 28) in perturbation theory. As in Fig. 4.4, the number 
in parentheses refers to the magnetic held strength in tesla when |m| =33.
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Figure 4.11: Same as Fig. 4.5, except for a 2:1 Fermi resonance. Here we fix B =  14.0 
tesla. The avoided crossing here is close to \m\ =34, rounded to the nearest integer. As in 
Fig. 4.5, we rescaled the vertical axis.
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B  =  15). However, Fig. 4.12 shows that the avoided crossing appears at |m| =  19.0. The 

only approximation that went into Eq. (4.12) was that Eb was nearly constant, so at this 

point we can conclude that for the 2:1 Fermi resonance Eb changes significantly over the 

region of the avoided crossing. This means that the first term

^  =  (4..S,

is appreciable in comparison to the second.

------------- 1----------- r--------- 1-------- r —I----------- --------------------1--------------------- 1----------------

-^ 0 3 )

- ^ — " " n o T ) -

B = 15

/ i l l )
I _ _i_ j— 1— __i-------------------------------1—  1
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40 5 0

Figure 4.12: Energy levels corresponding to a 2:1 Fermi resonance as \m\ is swept. Here 
we hold the scaled magnetic field B  fixed. The dashed line is the difference between the 
two energies, scaled to fit on the same plot. The minimum (avoided crossing) occurs at 
\m\ = 19.0. Note that even though the vertical axis has been rescaled, this avoided crossing 
is still very hard to distinguish.
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For 5  =  15 the fact that Eb varies significantly over the avoided crossing region is easily 

shown. From a plot of £5 as a function of 5 (that is, |m|) over the avoided crossing region 

(see Fig. 4.13) we see that Eb roughly has the form

Eb =  —CiS +  C2 , (4.19)

where Ci «  344 and Q  «  65.3. Substituting this expression into Eq. (4.18) and noting that 

S± % .0147 ±  .0393 for B  =  15, we find that the ratio of the first term to the second term in 

Eq. (4.18) lies roughly anywhere between .25 and 1 from one end of the avoided crossing 

to the other. Therefore the first term in Eq. (4.18) containing dEb/dS cannot be ignored, so 

Éb is not sufficiently constant throughout the avoided crossing region.

With the linear approximation of Eq. (4.19), the relationship in Eq. (4.18) shows that 

d{AE)/dS  =  0 places the avoided crossing center at |m| % 19.3, which is very close to 

the exact value of |m| =  19.0 (see Fig. 4.12). Therefore by merely taking into account the 

next term of the Taylor series expansion of Èb with respect to S, we accurately obtain the 

position of the avoided crossing at the 2:1 Fermi resonance.

4.5.1.2 Unsealed field strengths held constant

In the previous section we found that the same relationship for predicting the appearance of 

avoided crossings for fixed scaled field strength also applied to fixed unsealed field strength 

because the approximation lSRe(^±(fî))l »  |3^m(l±(5))| applied. In Fig. 4.7 we can see 

that such an approximation does not apply to the 2; 1 Fermi resonance.

4.5.2 Avoided crossings as the magnetic field strength is swept

When sweeping the magnetic field strength (scaled or unsealed) for the 4:1 Fermi resonance 

we simplified the predictions of avoided crossings by noting that the trajectories of the 

branch points were nearly parallel to the real axis. Therefore, for this interaction the closest 

distance between the branch point and the summation point simply coincided with the

95



2:1 Fermi R esonance

B = 15

50 -
I t n l = l 2l m l = 2 0 lml=15lml=4G lml=30

0.04 0.0450.025 0.03 0.0350.020.0150.01

A n g u l a r  M o m e n t u m ,  I m l

Figure 4.13: The Eb term in Eq. (4.10) plotted as a function of 5 over the range of the 
avoided crossing in Fig. 4.12. The corresponding values of \m\ are shown for reference 
(D =  3). The extreme left of the plot corresponds to |m| =  50, whereas the extreme right 
corresponds to |m| =  10.
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summation point located at the real part of the branch point. A glance at Fig. 4.7 shows that 

this simplification will not hold for the 2:1 Fermi resonance. However, finding the branch 

point that is closest to the summation point from a plot of the branch-point trajectory is not 

too difficult as long as the real and imaginary axes are scaled the same, as in the figure. 

Here we can see that for |m| =  33 the branch point coinciding with B % 23 is closest to 

the summation point, so we expect to find an avoided crossing at roughly B =  23 if we fix 

\m\ =33. However, Fig. 4.10 shows that the avoided crossing actually appears at B =18.7. 

By plotting as a function of B in Fig. 4.14, and noting that Eb increases by roughly a 

factor of 4 over the range of the avoided crossing, we can verify that Eb varies considerably 

over the region of the avoided crossing for this interaction, so such a discrepancy is not 

unexpected.

2:1 Fermi Resonance

0 . 9

0.8

0 . 7

0.6

Iml = 330 . 5

0 . 4

0 . 3
3 5 4 52 5 3 0 4 0 5 0201 5

( S c a l e d )  M a g n e t i c  F i e l d  S t r e n g t h ,  B

Figure 4.14: The Éb term in Eq. (4.10) plotted as a function of B over the range of the 
avoided crossing in Fig. 4.10. Clearly Eb is not constant over this range of field strengths.
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Table 4.3: Avoided crossing locations in the E-versus-B spectrum for the 2:1 Fermi reso­
nance. The summation points corresponding to |m| =  17, 33, and 44 are illustrated in Fig.
4.7. The that corresponds to each \m\ assumes £?=3.________

2:1 Fermi Resonance
m ^e{S^) B  “ B(T) “ B  * B(T)
17 0.028 19 96 13.0 65.5
33 0.015 23 17 18.7 14.0
44 0.011 25 8 21.6 7.0

Predicted value from scanning Fig. 4.7.

^ Com puted value from Padé sum m ing Eq. (3.9) for the  two energy levels.

Just as for the 4:1 Fermi resonance between the |11) and |05) states, we summarize 

in Table 4.3 comparisons between expected and calculated results corresponding to those 

summation points shown in Fig. 4.7, the branch-point structure of the 2:1 Fermi resonance 

between the |11) and |03) states. Despite the discrepancy in assuming a constant Eb, the 

predicted values are still fairly close to those found by our computer calculations (by sum­

ming the energy series with the matrix method) for a wide range of |m|.

4.6 Even parity states

All calculations in this chapter focused on odd-parity states. However, even-parity energy 

levels and branch-point trajectories are essentially the same as for odd-parity states. As 

examples we show the even-parity branch-point structure of a 4:1 and 2:1 Fermi resonance 

in Figs. 4.15 and 4.16. Comparing these figures to Figs. 4.6 and 4.7 it appears that, except 

for slight shifts in locations, the branch-point structures are essentially the same. Therefore, 

the energy level characterization in Eq. (4.10) applies to both even- and odd-parity states.
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Figure 4.15: Same as Fig. 4.6, except this time we show the even-parity branch-point struc­
ture involving the |10) and |04) states.

This is not surprising, since dimensional perturbation theory shows that at harmonic 

(zeroth) order the location of the Fermi resonances, which determines the location of de­

generacy at higher order and thus the location of branch points, is the same for either 

parity. (Watson et al. include a plot of the harmonic-order even-parity energy levels as a 

function of B, although at a different value of |m|[135]). Because of this similarity in the 

harmonic-order spectra, between the two parities, the even-parity energy levels share the 

same qualitative features as their odd-parity counterparts. Some examples of even-parity 

counterparts to the odd-parity E-versus-B spectra are shown in Watson et a/., again for a 

different value of Iml.
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Figure 4.16: Same as Fig. 4.7, except this time we show the even-parity branch-point struc­
ture involving the |10) and |02) states. The branch points close to the origin and lying on 
the negative real axis correspond to (from left to right) 5 = 2 8  and B =30.

4.7 Discussion

Although we have explicitly analyzed only the situation involving two strongly interacting 

states (two-state Fermi resonances), Table 4.1 shows that three and more strongly interact­

ing states (three- and more-state Fermi resonances) are common in the eigenvalue spectrum 

of diamagnetic hydrogen. Heiss and Steeb[I36] have studied the analytic characterization 

of branch points of the eigenvalues associated with avoided crossings of three and more 

strongly interacting states in finite-dimensional matrix eigenvalue problems. They find that 

in this case Eq. (4.10) correctly characterizes the branch point structure of the eigenval­

ues in the neighborhoods of the branch points. Thus although infinite-dimensional matrix 

equations can in principle involve more complex branch point characterizations involving
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States with complex energies (rescnances)[l37], we expect that Eq. (4.10) will still cor­

rectly parameterize the energy involving three and more strongly interacting states in the 

neighborhood of branch points that will produce avoided crossings. Therefore the analysis 

performed in this chapter should apply to all avoided crossings of diamagnetic hydrogen.

The ability to predict and understand the appearance of avoided crossings is aided by the 

assumption that the Et term in Eq. (4.10) is constant over the range of the avoided crossing. 

The avoided crossing pertaining to the 4:1 Fermi resonance was sufficiently narrow to 

satisfy this assumption, but we saw that because of the broad avoided crossing in the 2:1 

Fermi resonance this condition failed. Therefore, predicting the positions of the avoided 

crossings for the 2:1 Fermi resonance is somewhat involved. However, the broadness of 

the 2:1 Fermi resonance is the exception rather than the rule. The quantum numbers ui 

and Vo, denoting the nodal structure of the states, are related to the low-held quantum 

numbers n and k by \ui, U2 ) = \n — k — \m\ — 1, k), where k orders the states with respect 

to energy in each n hydrogenic manifold in the low B-held limit. As we stated in Sec. 

2.1, Wintgen and Friedrich[15, 4, 61] hnd that only states with k (= uo) quanta that differ 

by 2 can exhibit a broad avoided crossing. In this case the Fermi resonance condition 

associated with these avoided crossings implies that, for the X :Y  Fermi resonance, the 

ratio 2 X /Y  must be an integer. Since X  must be larger than Y  (w% must be larger than wg), 

the only allowed Fermi resonance[138] thatsatishes the \Ak\ = 2  condition is the 2:1 Fermi 

resonance. Note from Table 4.1 that not even all 2:1 Fermi resonances satisfy this condition. 

Therefore, not all 2:1 Fermi resonances are expected to be broad. Furthermore only avoided 

crossings involving two vibrational states (large k) are broad; this condition further reduces 

the number of broad avoided crossings of the 2:1 Fermi resonance. Therefore the ability 

to predict the locations of avoided crossings based only on examining the positions of the 

branch points that connect the two levels should have broad applicability throughout the 

spectra of diamagnetic hydrogen.
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Chapter 5

Branch point Structure of Diamagnetic Hydrogen

Largely derived from J R. Walkup, M. Dunn, O.K. Watson, J. Math. Phys. 41, 218-239 
(2000).

Until now we have been mostly concerned with the avoided crossings that appear in the 

energy spectrum of diamagnetic hydrogen. But avoided crossings in energy level spectra 

as system parameters are adiabatically varied are prevalent in all areas of quantum physics. 

They are often viewed as the result of a residual interaction which couples states which 

would otherwise cross. When the interaction is introduced, the degeneracies move off the 

real line into the complex parameter-plane. Therefore, as the parameter is varied along 

the real line, a near-degeneracy occurs in the vicinity of these degeneracies in the complex 

plane; that is, an avoided crossing appears. Nevertheless, the states diabatically exchange 

physical characteristics across an avoided crossing, so the ordering of the states with respect 

to their physical characteristics still follows the pattern set when the residual interaction is 

turned off.

Near an avoided crossing, if we can ignore the perturbing influence of all other states 

on the two states involved in the crossing, the problem reduces to a two-dimensional, ma­

trix eigenvalue equation. This naturally produces a square-root branch point structure in 

the eigenvalue at the degeneracy points; that is, the energy is a two-branched function of 

the parameter, with the physical energies lying on the real axis of a two-sheeted Riemann 

surface. Analytic continuation of the system parameter by 2tt around a square-root branch 

point takes one onto the other sheet, one starts on the real axis of one of the sheets, the
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physical energy of one of the states transforms in a continuous fashion into the energy of 

the other state — the energies interchange.[136, 124] Since the eigenvalue determines the 

eigenvectors, the wave functions also interchange under the transformation. As more dis­

tant states are included, the size of the matrix-eigenvalue problem increases, so the order of 

the secular equation increases as well. This raises the possibility that higher-order branch­

points/degeneracies may appear. However, Bender, Happ, andSvetitslqr[139] demonstrated 

that this is extremely unlikely. Therefore, as a general rule avoided crossings are signaled 

by square-root branch points.

Hidden avoided crossings[124, 125, 140, 141, 142, 143, 144] are nearly impossible to 

spot in the energy spectrum, yet the physical characteristics of the states still exchange 

diabatically across these avoided crossings.! 124] However, hidden crossings are easily 

identified by the presence of nearby branch-point degeneracies in the energy function for 

complex values of the system parameter. Therefore, important information is obtained by 

studying the branch-point degeneracies for complex values of the system parameter — ex­

amples include the works of Solov’ev, Ovchinnikov, and others in low-energy heavy-ion 

collisions! 125, 145]). This information could be missed or more difficult to obtain through 

other approaches.

5.0.1 Distribution of branch points on the complex parameter-plane

With the energy real-valued for real values of the system parameter, the Schwartz reflection 

principle! 127] has an important consequence for the branch-point distribution of the single­

parameter system: Branch-point degeneracies must appear as complex-conjugate pairs. 

Therefore, avoided crossings in single-parameter problems result from nearby complex- 

conjugate, square-root branch-point degeneracies.

If a system has more than one parameter, however, the extra degrees of freedom in the 

combined parameter space make it possible to find specific real values for all parameters 

(a conical section) for which neighboring states are degenerate for real energy. However,
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this seldom occurs. If one of the parameters does not correspond to one of these specific 

values, then at least one parameter must be complex-valued for neighboring states to be 

degenerate (albeit at a complex energy).

Consider the situation where one parameter is varied while the others are held constant. 

Furthermore, consider u as a parameter that has been continued off the real axis into the 

complex plane. Regarding the avoided crossings caused by these degeneracies:

1. If u is the parameter being adiabatically varied, then the situation is the same as the 

one-parameter problem discussed above.

2. If a different parameter v is being varied, then the degeneracies in the complex u- 

plane move in response to adiabatic changes in v. When they pass close to the point 

on the real axis at which u has been fixed, then the nearby degeneracy causes a near­

degeneracy to appear in the energy levels for real values of all parameters. In other 

words, at this value of u an avoided crossing between energy levels appears at real 

values of all system parameters.

In Chap. 4 we showed specific examples where both situations occur.

The avoided crossings as one parameter is varied depend on the values of the other pa­

rameters, which are held constant. Since avoided crossings are the result of nearby degen­

eracies for complex values of the parameter, we can study this dependence by examining 

the trajectories of the degeneracies, with the other parameters held to physical (real) values. 

These degeneracies have a square-root branch-point structure for the same reasons as the 

single-parameter problem considered above.[I46]

5.0.2 Emergence of an alternative branch point structure

Heiss and Steeb determined the square-root branch point structure of the symmetric-matrix 

eigenvalue problem, which only permits real eigenvalues.[136] The analytic form of the 

square-root branch points uncovered by Heiss and Steeb conforms to this requirement, in
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that the branch points only connect states with real energy to other states with real energy 

when the branch points are off the real axis. However, this same analytic form of the 

symmetric-matrix eigenvalue problem permits the square-root branch points to connect 

states with real energies to those with complex energies, but only when the branch points 

are on the real axis (which does not occur with real-valued, symmetric-matrix, eigenvalue 

problems). This situation corresponds to a bound state in a short-range potential crossing 

into the continuum to become a resonant state as the parameter u  is varied along the real 

axis around a branch point at the continuum threshold. [147] This does not correspond to 

the case of interest here where two branch points are complex-valued, causing avoided 

crossings between two bound states.

The existence of complex energies for the “infinite-dimensional” problem, and the pos­

sibility that square-root branch points connect states with real energy to states with com­

plex energy opens up another possibility for the analytic structure of the energy that is 

not present for the finite-dimensional problem limited to real eigenvalues. It represents 

an additional analytic structure that the “infinite-dimensional” problem can have over the 

finite-dimensional problem, and as we will see in Sec. 5.1, the branch points which connect 

states with real energies to states with complex energies can also cause avoided crossings 

between two states with real energies.

We derive the two analytic structures in the next section and determine which is present 

in a particular quantum-mechanical problem in Sec. 5.4. This is explored through our 

example of a dimensional perturbation treatment of diamagnetic hydrogen. Given the two 

possible analytic structures for the general quantum-mechanical problem, one way to see 

which is correct is to traverse a path around a branch point that is away from the real u-axis 

by 2ir, beginning and ending on the real u-axis. If, starting with a real energy, we obtain a 

complex energy, then this alternative analytic structure must be present near the square-root 

branch point. That such an alternative branch-point structure connecting states with real 

energies to states with complex energies exists within quantum mechanics is demonstrated
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by the example of the Hg problem in the Bom-Oppenheimer approximation, as studied by 

Solov’ev, Ochinnikov, and others.[145] Defining the distance between the two hydrogen 

nuclei as R, they found that taking a path in the complex A-plane around the branch point 

at the ends of the S-series of branch points in the complex /2-plane does indeed take one 

from states with real energy to states with complex energy.

However, one is not always in a position to traverse such a path in the Riemann sheet 

structure of the problem. An example occurs with perturbation theory in the parameter u. 

The analytic structure does not immediately emerge from a power series, since partial sums 

of the series are single-valued functions of u, and may not converge even if they are asymp­

totic series. Asymptotic series are often “summable” with Fade approximates, but they too 

are single-valued functions and “sum” multi-valued functions by limiting themselves to a 

single branch through the introduction of branch cut discontinuities.[124] Furthermore, to 

sum a perturbation series with maximum accuracy and/or for all branches of the original 

function one needs to know the analytic structure of the original function beforehand so 

that one can choose an approximate that possesses the same analytic structure.

In Sec. 5.4 we use quadratic Fade approximates and analytical methods to determine 

from a perturbation series which of the two analytic structures is present in a given problem.

5.1 Analytic structure of degeneracies

Consider an atomic system whose energy E  is a function of at least two variables u and v, 

where u is the parameter that is continued off the real axis and v is the external, real-valued, 

parameter. (Note that this is exactly Situation 2 in Sec. 5, with the same nomenclature.) We 

define the branch points to be located at values ui(v) and U2 {v) on the complex u-plane. 

Near the branch point ui we expand and resum the energy series about ui as

O O

E{u, v) =  k̂{v) (u — = a-h b y/u — Ui, (5.1)
fc=0

106



where a and b are sums over even and odd powers of Ck(u — respectively, and u is a 

function of u. One branch point is paired with another, so expanding a and b about U2 (v) 

and resumming the series we obtain

E{u, v) =  A 4" (7 \/u  — 111 4" E  \Ju — Ug +  G yjii — uiy/u  — ug, (5.2)

where the coefficients A, C, F, and G are functions of u and u.

This function has four branches connected by square-root branch points, so here the 

energy is defined on a u-domain consisting of a four-sheeted Riemann surface. Near the 

avoided crossing caused by the branch points at Ui and ug, the energies of the states are 

real on the positive, real u-axis. Therefore, if Eq. (5.2) is to represent the functional form 

of the energy of the two states involved in an avoided crossing, then on at least two of the

four sheets the energy must be real on the positive, real u-axis. Note that — ui-^u -  uo 

is real-valued when u is on the positive, real axis and when the branch points are either 

complex conjugate or both lie on the negative real axis. Therefore the first and last terms 

are real on the positive, real u-axis of all four sheets if A  and G are real on the positive, real 

u-axis. The sum of the second and third terms is real on the positive, real u-axis of two of 

the four sheets, with

F{u, v) =  C*(u, v) (5.3)

when til and ug are complex conjugate[148] and with C  and F  real when the branch points 

lie on the negative real axis. Given these criteria, we obtain the general energy structure

i;) =  A ±  \/u  — til 4- F \/u  — ugj 4- G y /u  — u i\/u  — tig. (5.4)

The energies on the other two branches are complex for positive, real u and complex- 

conjugate values of tii and ug.
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An exception to the four-sheeted structure outlined above occurs if C(n, v) and F(u, v) 

were identically 0. Then Eq. (5.2) defines a two-sheeted energy function. The energies of 

the two interacting states are then given by the reduced energy structure

E"^{u, v) = A ± G  y/u — u i\/u  — U2 , (5.5)

evaluated on the positive, real u-axis. This has the analytic form we expect from a finite- 

matrix problem. With a Hamiltonian that is self-adjoint for real u, the eigenenergies must 

be real for positive, real u. As discussed in the introduction, avoided crossings arise from 

the proximity of nearby branch points at which the two states are degenerate in energy. 

However, for the general energy structure, Eq. (5.4), the branch points represent degenera­

cies between two states, but only one of which has a real energy on the positive, real u-axis. 

Despite this, the genera! energy structure can also feature avoided crossing-like structures 

near the branch points,[149] as shown by the solid lines in Fig. 5.1.

It is important to note that a high-order examination of the perturbation series will not 

differentiate between the two analytic structures because both structures have the same 

high-order behavior.[ 150]

We have shown that there are two different possible analytic structures of the energy 

near an avoided crossing in “infinite-dimensional” matrix problems. The functional forms 

of both structures provide a means of determining which structure is correct for a given 

avoided crossing:

1. If Eq. (5.4) is correct, then E+ -h E~ is a function with two branches and two branch 

points. On the other hand, if Eq. (5.5) is correct then E+ - I -  E " is a function with 

only one branch and no branch points.
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Figure 5.1: Avoided crossings occurring between energy levels resulting from the general 
energy structure, Eq. (5.4), for A =  1, G =  0.1, and =  1.0 ±  0.02i. The solid lines 
correspond toC  =  1+ i and F  = 1 —i, whereas the dashed lines correspond to C =  F  =  1.
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2. One characteristic feature of Eq. (5.5) is that at the coalescence point Vc, where the 

two branch points are at the same location (that is, the point Vc where %(%) =  

U2 {vc) = Uc), the energy reduces to

f?*(u, Vc) =  A{u, Vc) ±  G{u, Vc) (u — Uc). (5.6)

Therefore, we lose the square-root nature of the energy function; the two branch 

points annihilate at Vc. In Eq. (5.4), however, square-root branch points at Vc remain 

in the second and third terms. Therefore, we can also distinguish between these two 

possibilities by the presence or absence of branch point annihilation at the coales­

cence point.

To see how this may be implemented in a specific example, we now reconsider our 

dimensional perturbation treatment of the diamagnetic hydrogen problem.

5.2 Diamagnetic hydrogen

In a recent paper[124] we examined some branch-point degeneracy trajectories for the Bar- 

banis Hamiltonian, which has two nontrivial parameters.[151] In Chap. 4 we examined 

in detail a similar situation with the diamagnetic hydrogen problem. With Z  held con­

stant this is not normally regarded as a two-parameter problem. However, in dimensional 

perturbation theory (see Chap. 3) the dimensionality of space is regarded as a continu­

ous parameter.[l 19, 103, 107, 152] For two-particle problems, dimensionality and angular 

momentum enter the problem in equivalent and interchangeable ways. Therefore we can 

consider the diamagnetic hydrogen problem as a function of two parameters, the external 

(scaled) magnetic field B  and the magnetic quantum number |m|.

In dimensional perturbation theory, the magnetic field and Coulomb potential are both 

incorporated into the zeroth-order Hamiltonian to such an extent that we can directly asso­

ciate avoided crossings appearing in the E-versus-B spectrum with degeneracies arising at
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zeroth order (Sec. 5.3). Therefore, this method establishes an orderly means of examining 

the complicated energy spectrum of diamagnetic hydrogen.

In Chap. 4 we used the positions of the branch points in the complex m-plane,[I53] 

together with the analytic structure imparted by the branch points to the energy function in 

the complex m-plane, to determine the position of the avoided crossings, whether hidden 

or not. One purpose of this chapter is to establish this analytic structure.[154]

As with the Barbanis system, the branch-point trajectories in the complex m-plane as 

a function of field strength exhibit nonanalytic behavior where the branch points coalesce 

onto the real axis (Sec. 5.5). (Here, m  is the parameter continued off the real line, whereas 

the field strength is the parameter not continued off the real line.) A second purpose of this 

chapter, once we have determined the analytic form of the energy in the complex m-plane, 

is to find a smooth parameterization underlying the nonanalytic behavior of the branch 

points (Sec. 5.6), that is, to uncover the nature of the singularity in the trajectory of the 

branch points as a function of field strength. As we will see in Sec. 5.6, the singular behav­

ior of the branch-point trajectories in the complex m-plane as a function of field strength 

arises quite naturally from the analytic form of the energy in the complex m-plane. There 

is no need to further invoke any additional singular behavior. Despite the common singu­

larity at the coalescence points, the branch-point trajectories and their behaviors through 

the coalescence points can be markedly different. In Sec. 5.7 we study this dissimilarity by 

deriving analytic expressions for the motion of branch points as a function of field strength 

near the coalescence points. For the two branch-point-pair trajectories studied in detail in 

this chapter, we show that, despite the differences in their trajectories, they share a conunon 

structure.

5.3 Avoided crossings and Fermi resonances

At small 5 (which is the same as large D  and large |m|) the Coulombic, diamagnetic, and 

kinetic terms of the Hamiltonian all contribute, so the smaII-6 solution is sensitive to the

III



interplay between these terms as 5  is changed. Therefore, we can understand much of the 

basic structure of the avoided crossings from the behavior of the smalW solution, as we 

will see shortly. Note that much of the following has been discussed in more detail in Chap. 

4.

j Ol )
1 0 3 )
1 0 5 )80

100 3 0 0  5 0 0  1 0 0 0  2 0 0 010 3 0

B

Figure 5.2: Harmonic-order energy levels of diamagnetic hydrogen. Note that the 2:1 and 
4:1 Fermi-resonance degeneracies involving the |11) state, extensively discussed in this 
chapter, are circled. For clarity, we only show the lowest-lying states. The 111) energy level 
(solid line) crosses even more higher-lying energy levels (at 6 :1 ,8 :1 ,... Fermi resonances) 
as it rises toward the continuum. For a more complete spectrum, see Fig. 4.2 in Chap. 4.

As we stated in Chap. 4, there is a clear relationship between the E-versus-B and E- 

versus-|m| spectra. Consider the situation where B  is held constant at some value Bq. A s 

5 is adiabatically varied the avoided crossing occurs at some value 6 =  6q. N ow  if S is held 

constant at Jo while B  is adiabatically varied, the avoided crossing will occur at roughly 

Bq. This relationship was explained in Chap. 4 from the analytic structure of the branch
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points and the positions of the branch points in the complex <f-plane. In the next section we 

establish the analytic structure of these branch points. We focus on the same two avoided 

crossings that we focused exclusively on in Chap. 4 (see Fig. 5.2):

•  The 4:1 Fermi resonance (wg= 4  w j between the |05) and 111) states near B =  320.8.

•  The 2:1 Fermi resonance (wz=2wi) between the |03) and |11) states near B = 32.1.

Both are the lowest-lying crossings for their respective field strengths. These are also the 

first two crossings that the |11) state encounters as it rises toward the continuum as B  

increases. They are markedly dissimilar. The avoided crossing for the 2:1 Fermi reso­

nance is a good example of a hidden avoided crossing, whereas the 4:1 avoided crossing 

is so narrow as to look almost like a level crossing. Furthermore, we already know that 

although both avoided crossings have different branch point stmctures, underlying their 

branch-point structures is a conunon characterization between the branch-point trajectories 

as functions of field strength and the resulting avoided crossings.

5.4 Analytic Energy structure of diamagnetic hydrogen

In Sec. 5.1 we derived two basic criteria for determining the analytic energy structure of 

an avoided crossing. We now apply these criteria to determine whether the general energy 

structure or the reduced energy structure applies to the avoided crossings of diamagnetic 

hydrogen we consider in this chapter. At this point, we remind the reader that the parame­

ters S and B  of the diamagnetic hydrogen problem correspond to the parameters u  and v in 

Sec. 5.1, respectively.

5.4.1 Quadratic Padé analysis of the 2:1 and 4:1 Fermi resonances

We can use quadratic Padé approximants, which can naturally approximate functions with 

one or two branches[155] (see Appendix G) to distinguish which of Eqs. (5.4) or (5.5) is 

correct. Like linear Padé approximants, quadratic Padé approximants are more accurate
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when the branch points are closer to the origin, so to ensure that the quadratic Fades pick 

up any branch points that may be present in B) -\-E~ (S, B) one should look for these 

branch points when B  is such that they are close to the origin. As shown in Appendix H, at 

least one of the branch points is close to the origin when B  is close to the Fermi resonance. 

However, after examining the quadratic Padé approximants for the E+(0, B) -i- E"(0, B) 

series near both Fermi resonances, we find no branch points which converge on the origin 

as the Fermi resonance condition is approached. Therefore, according to Criterion I in 

Sec. 5.1, this indicates that the reduced, and not the general, energy structure correctly 

parameterizes the energies of the states involved in both the 2:1 and 4:1 Fermi resonances.

5.4.2 Analytic investigation of the energy structure of the 4:1 Fermi 
resonance

Upon applying degenerate perturbation theory to the 2:1 Fermi resonance states at exact 

degeneracy in Appendix H, we obtain a series in powers of 6^^ ;̂ this leads us to conclude 

that the energies have a square-root branch point at the origin. Naively, we would expect the 

same result and conclusion to hold for the 4; 1 Fermi resonance. In Appendix I, however, 

we show that this is not so, since the zeroth-order states turn out not to be a superposition 

of the |11) and |05) harmonic states, but rather either the |11) or the |05) harmonic state 

individually. Therefore, in this case the coefficients of the odd powers of 5^^  ̂ in the energy 

series are 0, just as the coefficients of the odd powers of in the energy series derived 

from nondegenerate perturbation theory are 0 (see the text following Eqs. (3.9) and (3.11)).

Although the coefficients of the nondegenerate energy series rise without bound, indi­

cating that at least one branch point is converging onto the origin at exact resonance (see 

Sec. 5.4.1 above, as well as Sec. 5.5.2 below), using degenerate perturbation theory we find 

no branch points at the origin at exact degeneracy. The two branch points must therefore 

annihilate at the origin, as in Eq. (5.6). Therefore, according to Criterion 2 in Sec. 5.1, this 

rules out Eq. (5.4) for the energies of the 4:1 states.
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Hence the independent arguments of Secs. 5.4.1 and 5.4.2 both agree and we conclude 

that the reduced eneigy structure, Eq. (5.5), rather than the general energy structure, Eq. 

(5.4), correctly describes the analytic energy structure of the states for both Fermi reso­

nances.

5.5 Branch-point trajectories of diamagnetic hydrogen

We determined that Eq. (5.5) correctly characterizes the branch-point structure of the ener­

gies of the 2:1 and 4:1 Fermi resonances states. Now we apply quadratic Padé approx­

imants, which naturally approximate functions with two branch points connecting two 

branches (see Appendix G), to determine the branch-point trajectories of this energy struc­

ture in the complex J-plane as we adiabatically vary B  along the real axis.

5.5.1 2:1 Fermi resonance

In Fig. 4.7 we show the branch-point trajectories of the 2:1 Fermi resonance involving the 

111) and |03) states. (We denote the branch points as 5^,) Here, the branch points are 

complex conjugate until B  reaches roughly 25.1, at which point the branch points coalesce 

onto the negative real axis. From there one branch point travels toward —oo, while the other 

travels toward the origin. In Sec. 5.4.1 and Appendix I we demonstrated through degenerate 

perturbation theory the existence of a branch point at the origin at the 2:1 Fermi-resonance 

degeneracy. The branch point that travels toward the origin from the coalescence point 

reaches the origin at J5 =  32.1, the value of B  at the 2:1 Fermi-resonance degeneracy. 

Once we increase B  beyond this value both points travel toward —oo (this last step is not 

demonstrated in Fig. 4.7).

5.5.2 4:1 Fermi resonance

In Fig. 4.6 we show the branch points that connect the 111) and |05) states, associated with 

a 4:1 Fermi resonance, for various values of B. ff we start out with B < 320.8, we see
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that the branch points initially are complex conjugate and lie in the positive half-plane of 

the complex J-pIane. As we increase B, the branch points sweep toward the left in the 

complex plane until they simultaneously reach the origin at roughly 5=320.8 ; this value 

of B  corresponds to the 4:1 Fermi-resonance degeneracy. As we saw in Sec. 5.4.2, there 

are no branch points at the origin at the exact 4:1 Fermi resonance condition, so the branch 

points annihilate when they reach this point (denoted by an open square in the figure). This 

means that the two energy levels at the 4:1 Fermi-resonance degeneracy are not actually 

connected by square-root branch points. For B > 320.8 the branch points reappear and 

separate on the negative real axis, all the while traveling toward —oo as we increase B.

5.6 Smooth parameterization of the branch point trajec­
tories through the coalescence points

Section 5.5 clearly shows that the branch-point trajectories display nonanalytic behavior 

at the coalescence points. In this section we identify a parameterization of the energy 

function which is smooth and apparently analytic through these coalescence points; this 

in turn provides a smooth parameterization for the branch-point trajectories and makes 

explicit the nature of the singularity in the branch-point trajectories.

5.6.1 The parameterization

If we define two functions

/3 (B )  =  , j (B )  =  ^S * (B )S - { B ) ,  (5.7)

we can re-express Eq. (5.5) as

E^{5, B) =  A ±  (5.8)

where the coefficients A  and G are functions of 6 and B.
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A priori there is no more reason to expect /? and 7  to be smooth —  or even analytic 

— functions of B  than there is for the branch point locations we saw that S^{B)

are indeed nonanalytic at the coalescence point. However, we plot p{B) and 7 (B) in Figs.

5.3 and 5.4 and we see that, for both the 4:1 and 2:1 Fermi resonances, both functions 

are smooth, apparently analytic, functions of B  even as the branch points move through 

the coalescence point and Fermi-resonance degeneracy. This means that the branch-point 

positions In the complex J-plane are given by the roots of the quadratic equation

à^-h2p5-h'y^ = Q, (5.9)

where the nonanalytic behavior of the roots with B  is solely determined by the quadratic 

nature of the equation rather than any nonanalytic behavior of the parameters in Eq. (5.9). 

Therefore, Eq. (5.5) automatically determines the positions of the branch points from the 

last term of the reduced energy structure, Eq. (5.9); that is, the nonanalytic behavior of the 

branch points at the coalescence points is naturally explained from the analytic structure 

of the energy in the complex ^-plane in terms of smooth, apparently analytic, functions /3 

and 7 . The analytic structure of the energy in the complex f-plane alone determines the 

nonanalytic behavior of the branch points as a function of B I

Note that if the general energy structure, Eq. (5.4), correctly parameterized the analytic 

structure of the energy, then the above economy of explanation would not hold since the 

terms in the brackets on the right side of Eq. (5.4) could not be expressed in terms of jd and 

7  without the introduction of additional singularities.

5.6.2 Determining branch point trajectories by the smooth parame­
terization of the energy

The solutions of Eq. (5.9),

=  -/3(S) ±  \ / [ / 3 ( S ) P - M B ) P  , (5.10)
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Figure 5.3: Branch point parameters P =  — +  S~)/2 and 7  =  ±y/5-^S~, where J* are 
the branch points in Fig. 4.7, plotted as functions of B  for the 2:1 Fermi resonance. Note 
the smooth trajectories of both parameters through the coalescence point and the Fermi 
resonance.

allow us to understand the trajectories of the branch points in Figs. 4.7 and 4.6 in Chap. 

4 from the behavior of the smooth parameters p{B) and 7 (B) in Figs. 5.3 and 5.4. Since 

both P and 7  are real, the branch points 8^ either both lie on the real axis or are complex 

conjugate. This also means that 7  ̂ and P^ are always positive, regardless of the held 

strength. The field strength Be at which the branch points coalesce onto the real axis 

corresponds to p^ =  7 .̂ Across the branch-point singularity in Eq. (5.10) at Be, the branch 

points discontinuously change their behavior as — 7  ̂ changes sign. Therefore, for 

the purposes of this analysis it is convenient to divide the branch-point trajectories into two 

separate regions of field strength: B<Be  and B  > Bg.
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Figure 5.4: Same as Fig. 5.3, except for the 4:1 Fermi resonance. As in Fig. 5.3, both 
parameters are smooth functions of B, even through the Fermi resonance (which coincides 
with the coalescence point for this interaction).

We initially consider B < Be and allow it to increase adiabatically. For the 2:1 Fermi 

resonance in Fig. 4.7, < 7  ̂when B < Be. Therefore, the branch points form complex-

conjugate pairs straddling the positive real axis. Initially, /? < 0, so the branch points lie 

in the positive half-plane. As /3 increases to 0 as we increase B, the value of — 7  ̂

approaches 0 but remains negative. Therefore, the branch points approach the imaginary 

axis with a falling imaginary component, crossing the axis when P = 0. The parameter p  

becomes increasingly positive as we increase B, while 7  continues to fall, so the branch 

points continue to sweep toward the left in the negative half-plane. During this time the 

imaginary component continues to shrink until P ^= Ÿ ’ at Bcr at which point they coalesce 

onto the negative real axis.
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When 5  >  Be the quantity 0  ̂ — >  0, so firom Eq. (5.10) the branch points

lie on the real axis. Since 0  > y/0^—- ^ ,  both branch points must be negative. The

parameter 7 continues to fall as B  increases past Be, so — 72 rises in value faster 

than /?. Therefore, while S~ travels in the negative direction from the coalescence point, 

initially travels toward the origin. However, 7  ̂has a minimum value of 0 at the Fermi 

resonance, so bounces off the origin at the Fermi resonance and then follows S~ In the 

negative direction.

The nonanalytic behavior of the 4:1 Fermi-resonance, branch-point trajectories of Fig.

4 .6  is similarly explained from the plots of 0(B) and 7(B) in Fig. 5 .4 . In this case the 

coalescence point, 0 = ^, coincides with the Fermi resonance, 7 =  0. The parameters 

0 and 7  are almost straight lines passing through the origin with opposite gradient, so 

0^ -  7  ̂ = {0 -  l){0 +  7 ) in the radical of Eq. (5 .10) is not readily determined from 

Fig. 5.4 . The quantity {0 — 7 ) is close to a straight line, but with twice the gradient of 0. 

Therefore (/) — 7) < 0 for B < Be, whereas (/? -  7 ) > 0 for B > Be. The quantity 

{0 + 1) > 0, with a minimum of 0  at the coalescence points (see Fig. 5 .5 ). Therefore, 

since 0̂  — 7- < 0 for B < Be, the branch points of the 4:1 Fermi resonance, as for the 

2:1 Fermi resonance, are complex conjugate in the complex &plane for these values of B. 

Because — 7  ̂ > 0 when B >  Be, both branch points of the 4:1 Fermi resonance lie on 

the negative real axis for these values of B. Since (/? +  7 ) 0, both branch points travel 

in the negative direction more or less as a pair centered around the point - 0 .

5.7 Analytic behavior of the branch points at the coales­
cence points

Although we found a common singularity structure in the branch-point trajectones of both 

the 2:1 and 4:1 Fermi resonances, the trajectories of Figs. 4.7 and 4.6 differ significantly. 

Given the above smooth parameterization we can investigate this further and determine
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Figure 5.5: Plot of the sums/?+ 7  and (/?+7 ) /(5  —5 ) as functions of B for the 4:1 Fermi 
resonance.

from Eq. (5.10) the precise nonanalytic behavior of the branch points through the coales­

cence points. At the coalescence point B = Be and P{Bc) = 7 (5 c) =  a, so we can expand 

f3 and 7 as

p = a + b { A B ) + c { A B f  + ' ^^,  'Y = a -  e { A B ) f  { A B f  +  ̂ , (5.11)

where A B  = B — Be. Substituting /? and 7  into Eq. (5.10) we find to lowest order that

^  =  - a  -  6 (AB)  -  c(A5)2 ±  {ABY'^[2a  [(6 -I- e) +  (c -  f){AB)]

-h {AB)[{b^ -  ê )  +  2{bc-h e f ) { A B ) ] Y \  (5.12)
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Therefore to second order in the branch points of the 2:1 Fermi resonance in the

neighborhood of the coalescence point behave as

8^ = - a - b  (A5) ±  {ABŸ^^y/2a{b +  e). (5.13)

Now we consider the 4:1 Fermi resonance. Figure 5.4 shows that a =  0. From Eqs. 

(5.11) we get

^ i ^  =  (6 - e )  +  (c +  /)(A 5 ) +  . . - ,  (5.14)
A B

from which Fig. 5.5 shows that 6 =  e. Therefore, to fourth order in (AJ5)^/^ Eq. (5.12) 

becomes

6^ =  (AB)  [ -6  - c { A B )  ±  (A 5 )'/V 2 6 (c  +  /) ]  (5.15)

for the 4:1 Fermi resonance in the neighborhood of the coalescence point/Fermi resonance.

Equations (5.13) and (5.15) reveal the square-root branch point singularities which ac­

count for the nonanalytic behavior at Be of the branch-point trajectories in the complex 

5-plane for the 2:1 and 4 :1 Fermi resonances, respectively. They also make it clear where 

the differences in the branch-point trajectories develop. Surprisingly, the right side of Eq. 

(5.15) has the same form as the right side of Eq. (5.13) except that it is multiplied by 

A B  =  (B -  Be). Hence the plot of 6^(B)f[B  — Be) for the 4:1 Fermi resonance should 

look similar in structure to the plot of 5^(B) for the 2:1 Fermi resonance. Comparing Figs.

5.6 and 4.7 we see that this is indeed the case; the branch points travel in opposite directions 

along the real axis as B is raised past the coalescence points. The branch point traveling 

in the negative direction then reverses direction and follows the other branch point in the 

positive direction.[I56]
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Figure 5.6: Plot of — Be) for the 4:1 Fermi resonance, for field strengths up
to B =  329. The coalescence point here occurs at the 4: 1 Fermi resonance, which occurs 
roughly at B =  320.8. The unmarked branch-point locations for 5~ (open circles) on the 
real axis are, from left to right, B =  323, 321, 325, 327, 329. Note that at B =  321 the 
branch point S~ lies practically on top of the coalescence point, whereas the other branch 
point has already moved a significant distance to the right. Once the field is strengthened 
beyond Be, the S~ branch point initially travels toward the left, subsequently reversing 
its direction and traveling in the same direction as S'^. Compare to Fig. 4.7 and note the 
similarity in the branch point trajectories.
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Local Optimization of the Summation of Divergent Power 
Series: A New Approach in Applied Numerical Analysis

124



Chapter 6

Local Optimization of Economized Rational Approximants

Until now this dissertation has focused mainly on states of large |m|, and one question re­

maining is whether dimensional perturbation theory can produce meaningful calculations 

of energy at much lower |m| for a given scaled field strength B. Upon further investiga­

tion, simple Padé summation proves effective in summing the energy series of diamagnetic 

hydrogen, but for some states and field strengths this summation diverges. The attempt to 

find a better approximant resulted in an entirely new technique in applied numerical anal­

ysis. This new technique not only sums the perturbation series of diamagnetic hydrogen in 

many instances where Padé summation fails, but its effectiveness transcends our scope of 

research in atomic physics to include general problems in numerical analysis.

This chapter describes the problem of summing divergent perturbation series, and how 

this new technique often can overcome this problem. In the next chapter, we will see how 

this technique was successfully applied to the perturbation series in this research.

6.1 The problem of summing a divergent power series
The bulk of the following was accepted for publication in Journal o f Mathematical Physics 
and will appear in the July or August, 2000 issue.

The divergence of perturbation series is an important hindrance to progress in many 

fields of physics. Fortunately, there are many methods[I26, 157, 158, 159] available that 

can often transform perturbation series into approximants that converge to accurate results.
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Padé approximants[160] can incorporate singularities into their structure that the original 

perturbation series cannot, and for this reason have long been a favored method of approx­

imation. They tend to have remarkable short-range accuracy (that is, when the distance 

from the origin to the point of evaluation is small), but somewhat poorer long-range ac­

curacy. Therefore, although they almost always yield better results than directly summing 

the perturbation series and often converge when direct summation completely fails, we will 

see shortly that they can still produce fhistratingly poor or meaningless results at larger dis­

tances away from the origin. An example is discussed in detail later in this chapter, namely 

the exponential function f{x)  =  1/(1 +  e*) evaluated at x =  6000. In this case, not only 

are the Padé approximants inaccurate, they do not even appear to converge to the correct 

value. (We will see how this research rectifies this situation later.)

Various extrapolation methods can extract accurate results from poorly converging se­

quences by extrapolating the sequence out to infinity, [126] but these frequently fail with 

poorly convergent Padé sequences since they tend to be quite irregular in their conver­

gence. Other rational polynomial approximants[157] can perform significantly better than 

Padé approximants, but rarely share their rugged versatility.

In the field of applied computing one is usually interested in evaluating a function re­

peatedly within a certain range of the independent variable x. Because computers can only 

add, subtract, multiply and divide, rational functions of polynomials are the most complex 

functions which can be directly evaluated on a computer.[162] Therefore computers use 

rational polynomial approximants to approximate more complex functions to a high degree 

of accuracy. The Padé approximant, being one example, is hampered by its relatively poor 

long-range accuracy. Fortunately, there are methods that transform Padé approximants by 

sacrificing their superior short-range accuracy so as to lower the maximum error over the 

entire evaluation range. One such method is economization. Padé approximants can be
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economized[162, 163] to produce an approximant, called an economized rational approx- 

imant (ERA), that guarantees a lower maximum error throughout a specific range of the 

independent variable.

With perturbation theory, however, one is usually more concerned with evaluating the 

perturbation series at a particular value of x  which is known beforehand. In such cases it 

is beneficial to minimize the error at that specific value of x, rather than to minimize the 

maximum error over the entire range. In this chapter, we introduce a method for optimizing 

ERAs[164] to minimize the error at a specific value of the independent variable. We chose 

to optimize ERAs because:

1. They are capable of providing a more accurate summation of the perturbation series 

than Fade approximants when the point of evaluation is far from the origin.

2. They contain a parameter that allows one to change the convergence of the resulting 

sequence in a continuous fashion.

In Sec. 6.2 we review the economization of power series and in Sec. 6.3 we briefly review 

the process of economization of Fade approximants. In Sec. 6.4 we demonstrate how to 

optimize ERAs to produce a convergent sequence which reduces the error at a specific value 

of the independent variable, even when the original Fade sequence behaves erratically. We 

then test this method on six basic functions in Sec. 6.5. Finally, in Sec. 6.6 we discuss 

various details of the numerical procedure used in optimization and suggest an explanation 

for its success.

6.2 Economization of a power series

In approximation theory one often derives an approximate representation of a function (an 

approximant), specified by iV + 1  parameters, that have been derived from the first N  + l  

coefficients of the power series. Such a representation may be, for example, the original 

power series truncated at the iVth order, S^, or a Padé approximant where m and
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k  are the respective orders of the numerator and denominator polynomials and m-\-k = N. 

Economization involves finding an alternative representation for the function containing 

N  + l  parameters that possesses the same functional form as the initial approximant, but 

also incorporates information present in the higher orders of the original power series to 

minimize the maximum error of the new approximant over a specified range of x. In 

other words, one has an economy of representation: An accuracy is obtained which would 

otherwise be achieved by taking the original approximant to higher order, which would 

require more than N  + l  parameters to specify.

In this section we consider the economization of a power series representation. This 

may be achieved by subtracting from S^+i (the original power series truncated at order 

iV +  1) a suitable polynomial V n^ i of the same order such that the leading orders cancel. 

In other words,

iV +l Af

Sff+i =  ^  — Vn+1 — (6 -1)
t=0 t=0

where o' denotes the resulting expansion coefficient of x \  Naturally, the goal is to pick 

T’.v+i so that the maximum error of the new Nth order series representation over a speci­

fied range x  is significantly reduced. We can satisfy this requirement with the Chebyshev 

polynomial I such that[161, 162, 163]

Qj/V+l ^  \ JV4-1
"Pn +i — 2c/v+i 2̂ +̂! 'Pn +i > 2^iv+i(x/o!) =  -  +  P/v(3:/o), (6.2)

where ptf{x/a) is a polynomial of order N  and a  is an arbitrary scaling parameter.[16S] If 

we apply the transformation

=  CiX* = >  C s  =  Srf+i  -  r ^ + i ( x / a )
»=o

N N
=  ^  C jx‘ -  P n { x / a )  =  5 ^  C-X*, (6.3)

i=0 t=0
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we produce an economized power series representation Cn of order N  provided a is chosen 

sufficiently small and x  lies within the region —a  <  x <  a. When a  =  0 we recover the 

original representation Sn+i-

The maximum error of this new iVth-order polynomial, C^, for finite a  Is nearly the 

same as the maximum error of the (JV +  l)th order polynomial S^+i and considerably 

less than S^i. In Fig. 6.1(a) the errors for the power series and economized power series 

expansion of /(x ) =  e® are shown for values throughout the range —I <  x < 1. Here we 

have set a  =  1, which guarantees that the economization principle will apply throughout 

the range shown in the figure.[ 162] As we can see, the maximum error of C3 is only slightly 

larger than S^, but is considerably smaller than 63. However, we emphasize that in certain 

regions, especially near the origin, even provides a better representation of the function.

Again, the errors we discussed previously correspond to maximum errors throughout a 

specified range, and do not indicate in any way how the errors will compare at a specific 

value of X . Economizing the power series represents a trade-off; the error will be larger in 

some regions, but there is a guarantee that the maximum error of the entire region will be 

lower.

For those interested in finding an analytic approximation for a function in power series 

form that is valid for a specific range of the independent variable x  and is as economic in its 

expression as possible, insuring that the maximum error is as small as possible is essential. 

However, in most applications of perturbation theory it is desirable to minimize the error 

at a particular value o f the independent variable x, irrespective of the effects this has on 

the maximum error throughout the range. We will denote this value xq. The fact that the 

parameter a is arbitrary and continuous allows us, in principle, to raise a  from 0  until it 

reaches a value that minimizes the error at xq. This is illustrated in Fig. 6.1(b), which is a 

closeup of Fig. 6.1(a) near xo =  0.42. At this xq the error in C3 fo ra  =  1 is significantly 

larger than 54. However, if we had instead increased a  to the value a  =  0.61, the resulting 

error in C3  would have been considerably lower than S 4 .
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Figure 6.1: (a) Comparison between the error of the third and fourth order power series 
expansions, Sz and 64, and the third order economized representation C3  for the function 
f{x) = e^, where we have highlighted a specific value of the independent variable xo at 
X =  0.42. The maximum error of Cz is considerably lower than Sz, and compares favorably 
with 54. However, the error is larger in some regions of x, especially near the origin, (b) A 
closeup of the circled region in the first figure. When ao approaches 0.61 we see that the 
error of Cz{x) reduces dramatically at xq. Notice that increasing a  further to a  =  I leads 
to considerable error at xq. (S3 not shown.)
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From here on, we designate the value of a  that reduces the error at xq to a minimum as 

ao. Finding ao when the original function is not known is the goal of this research, but we 

first describe how the process of economization is applied to problems where the function 

is approximated by a Padé approximant.

6.3 Padé and economized rational approximants

When the original power series Ss  diverges it is often beneficial to replace it with a more 

suitable representation such as a Padé approximant:

where the order N  = m  + k. The coefficients are chosen so that the Padé approximant 

and its first N  derivatives coincide with those of the original power series representation at 

the origin. We can economize the Padé approximant in much the same way as we econ­

omized the power series in the previous section. The corresponding economized rational 

approximant Cm,k is[162]

/v-i
Pm{x) + E  7i+l-P»(ï) +7o

*S'iv+i(x) ---- < ~  ’ (6 .5 )

Qk{x) 4-  jj+iQj-ii^)
3=0

where

7j+i =  7o =  , (y =  (6.6)

and ti is the Chebyshev coefficient of x*. The coefficients {dj} are given by

k
di =  > (6.7)

3=0
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where {q} are simply the expansion coefficients of the original power series and k  is the 

power of the leading coefficient of Qk- As for the Padé approximants and

k are the orders of the polynomials of the numerator and denominator respectively and 

m + k  =  N . To calculate the ERA from Eq. (6.5) Padé approximant of the form in Eq. (6.4) 

must be chosen and generated, producing the terms Pi, Qu and 6,. From the coefficients 

{6j} we can determine the coefficients[166] {d,} and, therefore, calculate the parameters 

7o and 7j+i.

Like Padé approximants Pm,k> the ERAs Cm,k are specified by (m -h 1) +  A: =  iV +  1 

parameters. When a  is reduced to 0, the ERA Cm,k is identical to the Padé approximant 

Pm,k- The ERAs are economized in the same sense as for the economized power series 

of Section 6.2. For the Padé approximants these N  parameters are derived from 

the first AT +  1 coefficients of the power series; however, the AT +  1 parameters specifying 

Cm,k are derived from the first AT +  2 coefficients of the power series so that the maximum 

error over - a  <  x <  a  is minimized. The {N  +  2)th coefficient, Cn+i, of the power series 

is needed to calculate the 7 .̂ (A proof that Cm,k economizes the Padé approximant Pm,k 

for sufficiently small a  is given in Ralston[l62].)

In Fig. 6.2 we compare the error between a Padé approximant and the corresponding 

ERA for the function f{x)  =  Iog(l +  x) when a  =  1. As expected, the ERA has a lower 

maximum error throughout the range - 1  <  x < 1, and for some values is significantly 

more accurate.

As in Section 6.2, instead of using ERAs to minimizing the maximum error over a range 

of X specified by a, we can use ERAs to minimize the error at some specific value xo of 

the independent variable x by choosing a suitable value for a. We now turn our attention 

to finding the appropriate value of a.
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f(x) = log(l+x)
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0.2 0.4 0.6 0.8

Figure 6.2: The error of the Padé approximant P4,4(x) and the corresponding economized 
Padé approximant (ERA) 64,4(2:) for the function f (x)  =  Iog(l +ar). Here, a  =  1. Notice 
that the overall maximum error of 64,4 is much lower than Pi,4, at least over the interval 
shown. Outside this interval the error in 6 4 ,4 ( 2 :) diverges as well.

6.4 Optimizing the scaling parameter

There appears to be no definitive prescription in the literature for determining the optimal 

value of a, which we denote of an ERA, that minimizes the error at a point xq. We 

based our method for finding ao{m, k) on three assumptions:

1. If the optimized ERA provides a good representation of the original function at a 

particular point, then, for sufficiently large iV, the value of the optimized ERA will 

converge smoothly towards the correct value as the order is increased towards the 

maximum order, N, of the power series. Therefore the values of the sequence of 

optimized ERAs will fit closely to the function of the form Qa{^ )  =  A(1 — g-^'(^)).
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where g{N) is a smooth function such that g{N) —» oo as jV — oo and A  is the fully 

converged {N  oo) value of the summed power series.

2. We also require that limAr-oo exp [—uN] g{N) =  0 for all i/ > 0. Therefore, in the 

vicinity of AT =  Nq we can expand g{N) in a Taylor series about iVb and write

g ^ i N )  =  A  (l-e-»!"»’ exp[-s'(i\r)U,AJV{l+[s"(JV)/(29'(AT))]„„AJV+...})) 

a A ( l - e - ’" B ) , (6 .8)

where A N  = N  -  Nq, B  = exp [iVo5'(^)Uo ~  9 i^o )], s =  g'iN)]^^, and the 

approximation holds when No is sufficiently large and N  is in the vicinity of Nq . 

Hence we determine the value of a  =  ao{m',k') which optimizes the accuracy of 

each Cjn',k‘ in a sequence of approximants m' =  (m +  i),k' = {k+  i), where i is an 

integer, as follows. We require that the values of a sequence of optimized ERAs at 

large N  = m ' + k/ locally fit close to a function of the form

J^A.B.,W = A ( l - e - ’^ B ) ,  (6.9)

where A, B, and a are arbitrary fitting parameters, regardless of the nature of the 

original series (convergent, or divergent).

3. If 0 ! for the [m, k] approximant is optimized when a  =  ao{m, k ) , then the opti­

mal value of a  for all approximants [(m -t- i), {k +  i)] of the same sequence near 

[m, k \ , where i can be positive or negative and not too far from zero, will be close 

to 0-0 (m, Ar). Therefore, when locally fitting a sequence to a function of the form

each approximant may be assumed to have the same value of a.

The basis for optimizing a  can now be easily summarized;

The optimal value of a  is that which produces the closest fit to the function 

o f the form J^a,b,s{N) where A, B  and s > 0  are determined by the f i t
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Since the functional form J^a,b ,s{^ )  for the optimal convergence emerges locally at large 

orders, T a,bA ^ )  should be fitted to the last available terms of the sequence where this be­

havior is most strongly manifested. Four terms of the sequence are the minimum necessary 

to determine the four quantities o-o. A., B  and s specifying the optimal fit. At this point we 

can detail an algorithm for optimizing a:

1. Select a sequence of ERAs specified by the integer p, where p = m — k, for some 

initial value of a.

2. For this value of a  find the value of A, B  and s which maximizes the fit of J^a,bA ^ )  

to the last four terms of the ERA sequence.

3. Choose a new value for a  and repeat Step 2.

The value of a  which maximizes the fit is designated ao, from which the last and most 

accurate approximant in the sequence is generated. In the rest of the chapter we refer to 

this last approximant of an optimized sequence as the optimized ERA and denote it by

In practice we perform step 2 through a least-squares fit to the last four terms of the 

sequence by minimizing ~  (A — respect to the linear

parameters A  and 5',where B ' =  AB. We use the coefiicient of determination Rr to 

quantify the accuracy of the fit, where is the square of the multiple correlation coefficient

R, and is given by

The coefficient of determination clearly runs between 0 and 1, and a perfect fit corre­

sponds to =  1. The maximizing of the fit with respect to the non-linear parameter s is 

achieved by maximizing R^ with respect to s. The optimal parameter ao is that value of a  

for which the maximum value of R^ with respect to s, is maximized.[I67] In Appendix J, 

I provide the source code (written in Mathematia) for the optimization process.
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Figure 6.3: The role optimization plays in reducing the error of an ERA to a minimum. 
The function here is f (x )  =  1/(1 -I- e®) in the asymptotic region. As a  is swept across ao 
we see that the error reduces to a minimum at a value very close to ao. This minimization 
of error occurs in much the same way as choosing an optimal value for a  reduces the error 
of a power series, as we found by comparing Figs. 6.1(a) and 6.1(b).

As in Fig. 6.1 and the discussion in Sec. 6.2, we can see in Fig. 6.3 [in this case, for 

f{x)  =  1/(1 -h e^)] how optimization reduces the error of the ERAs: As a  is swept from 

0, the error reduces until it reaches a (near) minimum at ao, corresponding to a sequence 

having the closest fit to an exponential function. Beyond ao the error begins to increase.

This procedure is illustrated in Figs. 6.4(a)-(d) for f{x)  =  tanh.(x). At a  =  0 (the 

Padé sequence) the highest-ordered term appears to be reasonably accurate, but the lower- 

ordered terms do not converge towards the correct value in a smooth fashion. As a  is 

increased, the lower-ordered terms begin to drop in value so as to create a monotonie se­

quence that ultimately fits very closely to an exponential line. Finally, at some value of a
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the terms line up very precisely to the exponential line. Once this point is reached the corre­

sponding value for a  is designated ao and we can then determine whether this (optimized) 

ERA is more accurate than the original Padé approximant.

1.02

1 (a ) xo=6

i \
■ 1 \  a  = 0(Pnde)

1 \  R* = 0.9742

V \  _ .....

(b)

1 a =2.948 
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0 = 00=4.662 
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Figure 6.4: (a)-(d) Economized rational sequences as the parameter a  is varied from 0 
(equivalent to the Padé sequence) to 4.662 (corresponding to the optimized economized 
rational sequence). Note the change and refinement of the vertical axis. The function being 
approximated here is f{x)  =  tanh(i) at xq =  6, with the actual value represented by the 
horizontal solid line. For each a, the second solid line corresponds to the best exponential 
fit The coefficient of determination, R^, is maximized at ao*

Before we summarize our results in the next section, we should note that ERAs which 

originally (that is, when a  =  0) have oscillatory convergence do indeed tend towards
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monotonie convergence as a  is increased towards its optimal value. This can be seen in 

Figs. 6.4(a)-(d). (For a discussion of similar behavior, see Ref. [168].)

6.5 Results

We tested this method for determining oo on the Padé approximants generated from power 

series of six known functions:

/(x) =  l /(H -e * ) ;  (6.11)

/(z )  =  W = r ( l / % ) ;  (6. 12)
\ / 2 k x

/(x) =  e*; (6.13)

/(x) = lo g ( l+  x) ; (6.14)

f{x) =  arctan(x) ; (6.15)

f{x)  =  tanh(x). (6.16)

The power series of the second function is an asymptotic series. We now summarize the 

results.

1. Enhanced accuracy and convergence. The most dramatic improvement over Padé 

approximants involved the test function f{x)  =  1/(1 +  e^), which has a radius of 

convergence of ir (there are poles at x =  ü t t) .  At xq =  6000 the optimized ERAs 

were more accurate at 2nd order (m = k = 1) than the Padé approximants at 16th 

order. From the results shown in Fig. 6.5 and the right-hand columns of Table 6.1, the 

Padé approximants do not even appear to be converging to the correct value. The op­

timization of the asymptotic series in Eq. (6.12) improved the accuracy to nearly the 

same extent, as shown in Table 6.2 and Fig. 6.6. As we see in Table 6.3 and Fig. 6.7, 

improvement in convergence of /(x ) =  at xo =  8 — where the low-order Padé 

approximants are essentially worthless —  was also remarkable. Even at 16th order 

(Table 6.4 and Fig. 6 .8, for Xq =  10) optimization produces an ERA with an absolute
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error of only 5 x 10“ ,̂ compared to the Padé approximant error of 1837. Even more 

noteworthy in the table and figure is the improvement over dual-parameterized Euler 

transformations, considered to be highly effective for summing the power series of 

this function.[169] We also show in Tables 6.5 and 6.7 the optimization results for the 

functions f{x)  — log(l -t- x) and f{x) = arctan(r), respectively. In these cases the 

improvement over Padé approximants is less dramatic, but nonetheless significant.

2. Precision. Nearly all the fits were very precise, larger than =  0.999 999 999 9 in 

some cases. (The coefficient of determination, R~, is noted in each table.)

3. Trantformation o f alternating sequences towards monotonie sequences. We already 

saw in Figs. 6.4(a)-(d) how the optimization process transforms an alternating Padé 

sequence into a monotonie sequence. Analogous behavior was noticed by Le Guil- 

lou and Zinn-Justin when they optimized (using a different method) sequences of 

Borel-Leroy transformations.[168] In each case where the Padé approximants were 

altematingly convergent, the optimization process found a value for oo which coin­

cided with a monotonically convergent sequence. For example, the Padé sequence 

for f{x)  =  arctan(z) converges altematingly towards the correct value. Yet there 

exists a value ao that not only produces a sequence that is monotonically convergent, 

but as seen in Table 6.7 and Fig. 6.9 the error of each approximant is significantly 

lower than the Padé approximant at all orders. This behavior was repeated for the 

test functions f{x)  =  (Table 6.3) and f{x)  =  tauh.(x) (Table 6.6).

4. Stability with respect to the point o f evaluation. The optimization method appears 

to offer significant improvement no matter which value of xq is chosen, up to the 

point where both Padé approximants and optimized ERAs fail to converge. Table 

6 .1 shows that in some cases the improvement in accuracy (as measured by the num­

ber of additional decimal places of accuracy), in comparison to the original Padé 

approximant, actually increases for larger xq.
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5. Stability with respect to order It is important that this optimization method not be 

confined to a few select (and subjective) choices of order. In each test the optimized 

ERAs provided significant improvement over Padé approximants no matter which 

maximum order is chosen. An example is found by comparing the data in Table

6.3 for /(x ) =  e^, as well as Table 6.4 for the same function. Upon individually 

optimizing each ERA for each order near N, the resulting values converge smoothly 

to the correct value, as seen in Table 6.8 and Fig. 6.10 for the tanh(x) function 

and in Fig. 6.11 for the asymptotic series generated firom Eq. (6.12). This indicates 

that optimizing the ERAs at each order produces a sequence that reflects the global 

behavior of the fit. Table 6.8 clearly shows how the parameters of the local fitting 

functions T a,bA ^ )  adjust to provide a local approximation to Ga{N) for different 

values of N. This characteristic is especially evident when examining the optimized 

sequence of the atomic perturbation series in the next section.
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Table 6.1: Dramatic improvement in low order convergence and accuracy of a Padé ap­
proximant Pm,k by optimizing the corresponding economized rational approximant (ERA) 

The function here is / ( i )  =  1/(1 4- e^), evaluated at the two points, xq = 6 and 
Xo =  6000. (See also Fig. 6.5.) The last row in the table designates the error of the highest

Xq =  6 ; Exact Value: 0.002472623157 Xo =  6000 ; Exact Value: w
\m/k\ P m ,k

/o a o  a  
^ m . k [m/A:] Prn,k

/n a o  b 
^m .fc

[1 / 1 1 - 1.0000000 0.24105856 [1/ 1) -1499.5 0.41447
[2 / 2 ] 0.12500000 0.021910077 [2/ 2] 0.49950 0.26411
[3/3] -0.021739130 0.0011931096 (3/3) -249.50 0.11724
[4/4] 0.0050761421 0.0024686256 [4/4] 0.49833 0.035395
[5/5] 0.0022727273 0.0024781024 [5/5] -99.501 0.0076689
[6/ 6] 0.0024837600 0.0024726212 [6/ 6] 0.49650 0.0012793
[7/7] 0.0024721536 0.0024726186 [7/7] -53.073 0.00015866
[8/ 8] 0.0024726386 0.0024726231 [8/ 8] 0.49400 0.000025680
Error -1.54602(-8) 1.68212(-12) -0.49400029 -0.000025680

^ 00=8.757, fl=*=0.999 9995, .^A,B,,(iV)=0.0024726209+0.1049650717 

^  0 0  =529.71, RZ =0.999 96, .7^^.B.,(iV)=-0.000030701+0.045665 exp(-

exp[—sN ), 3=9.860. 

-siV), 3=1.78.

Table 6.2: Padé and ERA values for the asymptotic power series generated from Eq. (6.12) 
at Xo =  5. The errors are plotted in Fig. 6.6, and in Fig. 6.11 we show the results when the 
Padé approximants are optimized individually at each successive order. Note that a partial 
sum of the asymptotic series is optimally truncated at the zeroth order term, and so is unity.

Exact Value: 1.380290405
[m/k] P71,fc ^m.Ar

[5/5] 1.4354227 1.3865357
[6/ 6] 1.3220338 1.3753524
[7/7] 1.4236428 1.3794838
[8/ 8] 1.3335364 1.3786878
[9/9] 1-4163588 1.3789340

[10/ 10] 1.3409803 1.3790855
[11/ 11] 1.4113652 1.3791569
[12/ 12] 1.3462210 1.3792392
[13/13] 1.4077065 1.3793082
[14/14] 1.3501264 1.3793661

Error 0.030164 0.00092430
 ̂ 00=1.089, R*=0.99999999, J^A.B,.(^=I-3796669-0.0006082153e3cp(-sAr). s=0.176.
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Figure 6.5: Errors of the Padé approximants Pm,k and optimized ERAs for the asymp­
totic region of f{x)  =  1/(1 -I- e*) derived from Table 6.1. The vertical axis is log scaled, 
so the differences in error are enormous. The conversion from an alternating sequence to 
a monotonie sequence is very clear. Note that the Padé approximants do not appear to be 
even converging to the correct value.
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Figure 6.6: Same as Fig. 6.5, except for the asymptotic series generated by the Gamma 
function in Eq. (6.12) at xo =  5. Again, the vertical axis is log scaled, so the differences in 
error are considerable. These error results were calculated from the data in Table 6.2.
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Table 6.3: Another comparison between Padé approximants and optimized ERAs. Here, 
f{x)  =  at Xo =  8 and both the diagonal and off-diagonal sequences are tabulated. The
errors for the diagonal sequence are plotted in Fig. 6.7.__________________

Exact Value: 2980.957987
m/k\ Pm,k W [m/k] Pm,k W
[0/ 0| 1.00000 1.00000 [1/ 0] 9.00000 25.5324
fl/ll -1.66667 8.12615 [2/ 1] - 10.2000 241.537
f2/ 2l 4.44286 192.552 [3/2] 23.9333 1603.42
[3/31 -18.0769 2988.20 [4/3] -99.3871 2982.66
[4/4] 101.952 2995.58 [5/4] 486.046 2985.83
[5/5] -1212.05 2979.09 [6/5] 7444.92 2980.62
Error 4193.01 1.87293 -4463.96 0.334190

^ 00=8.123, «2=0.99997, fA.B,.(^)=2987.62-3.36136x 10= exp(-aW ), s=14.

 ̂ «0=8.132, «2-0.999 99, 5U,B,,(Af)=2983.23-3.33404xl0® exp(-syV), 3=7.790.

Table 6.4: Same as Table 6.3, except at higher order and at xq = 10. (See Fig. 6.8.) Since 
Qo here differs somewhat from that In Table 6.3, the resulting sequence at all orders differ 
as well. Yet, the error remains significantly lower at nearly all orders than the Padé approx­
imants, demonstrating that the optimization method Is stable with respect to order. Here, 
we Include the results from applying a dual-parameterized Euler transformation (PET).

Exact Value: 22026.46579
N [iV,iV-h2] PET" [m/k] Pm,k iOQO b

'^m.k
2 61.000000 [2,4] -32.750000 [1/ 1] -1.5000000 5.2913740
4 644.33333 [4,6] (complex) [2/ 2] 3.3076923 91.029420
6 2866.5556 [6, 8] (complex) [3/3] -10.428571 8427.3527
8 7330.8413 [8, 10] 201718.49 [4/4] 45.375000 19093.040

10 12842.305 [10, 12] 29468.144 [5/5] -269.64516 22106.611
12 17435.192 [12,14] 23450.497 [6/ 6] 1866.0847 22026.513
14 20188.171 [14,16] 22325.434 [7/7] -205032.75 22026.360
16 21430.835 [16,18] 22085.476 [8/ 8] 20189.229 22026.471

Error 595.631 59.010 1837.2370 -4.908(-3)
^C om puted from  th e  algorithm  discussed in  A ppendix  K .
b 00=10.064, «2=0.999998, W=22026.415+65608.939 exp(-3iV), 3=6.707.
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Figure 6.7: Errors for /(x ) =  e® at xq = 8  (see Table 6.3. In this example, the best 
exponential fit of the ERA sequence is not completely monotonie, which explains the rise 
in error (exaggerated by the vertical log scaling) at iV =  8. Again, the vertical axis is log 
scaled so the difference in accuracy between the two approximates is considerable.
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Figure 6.8: A comparison of the dual-parameter Euler transformation (PET[N,N+2]), Padé 
approximants, and optimized ERAs for f{x)  =  at xq =  10. The horizontal line corre­
sponds to the exact value of /(x ). Notice that if Prj  were taken to be the converged result 
(a seemingly converged result at low orders) the error would be considerable. On the other 
hand, the optimized ERAs are significantly more accurate for nearly all orders, even when 
compared to PETs. See Table 6.4.
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Table 6.5: Here, f{x) =  Iog(l + x) at xp =  5. The error is halved.
Exact Value: 1.791759469
[m/k] P71,fc /̂ oto a

[1/1] 1.4285714 1.5060643
[2/2] 1.7213115 1.7404539
[3/3] 1.7787115 1.7829493
[4/4] 1.7893952 1.7902805
[5/51 1.7913354 1.7917137
[6/5] 1.7916838 1.7917189
\Vf\ 1.7917460 1.7917528
[8/8] 1.7917571 1.7917594
Error 2.3912(-6) 1.0988(-6)

^ ao= l.l< U , «=*=0.999999996, .TA,fl,,{iV)=l.7917595-G.0G14867123 exp(-sA f), 3=1.800

Table 6.6: The function tanh(r) at xq =  6. Note the precise fit, which is surprising given 
the low-order erratic behavior of the original Padé approximants.

Exact Value: 0.99998772
[m/k] P 71,A: /̂OLQ a

'-'m.k
[1/11 6.000000 -10.524225
[2/2] 0.4615384 0.57148464
[3/3] 1.3246753 0.87461628
[4/4] 0.9235352 0.96829300
[5/5] 1.0174904 0.99718535
Error -0.0175028 0.0028023

00=4.065, «2=0.999999993, fA .B .,(/V )=10I01293-1.4199726exp(-3N ), 3=1.1747.
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Table 6.7: Here, f{x)  =  aictaa(a;) at xq =  4. Notice that optimizing Cm,k again trans­
forms the alternating Padé sequence into a monotonie sequence, which is apparent when

Exact Value: 1 .3 2 5 8 1 7 7

[m/k] Pm,k ioao a

(i/ii 4 .0 0 0 0 0 0 0 2 .3 3 1 5 1 7 3

(2 /2 ) 0 .6 3 1 5 7 8 9 0 .9 1 2 9 3 2 2

[3 /3 ] 1 .9 8 7 4 2 1 4 1 .2 9 1 1 0 7 4

[4/4] 1 .0 2 3 6 4 2 5 1 .2 0 2 3 3 9 6

[5 /5 ] 1 .5 4 4 3 0 9 5 1 .2 7 2 1 5 7 5

[ 6 /6 ] 1 .2 0 5 8 4 4 4 1 .2 8 7 3 3 8 2

(7/T| 1 .4 0 3 8 4 1 2 1 .3 0 0 8 1 6 9

[8 /8 ] 1 .2 8 0 0 4 0 1 1 .3 1 2 6 9 4 4

Error 0 .0 4 5 7 7 7 5 7 9  0 .0 1 3 1 2 3 2 2 6

00=1.582, R2=o.999 9994, fA .B ,.(^ )=14040869-0 .14911241exp(-siV ), 3=0.1224.

0.3

f(x) = arctan(x); Xq = 4
«0 = 1.582S 0.2 

u
I
Ô  o .l
.a
<

mjc

-O.l

- 0.2

-0.3
12 16148 10
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Figure 6.9: Error comparison between Padé approximants and optimized ERAs for f {x)  =  
arctan(x) at xq =  4. The conversion from alternating to monotonie convergence here is 
very apparent. The relevant data is tabulated in Table 6.7.
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Table 6.8: A comparison of the convergence of the optimized ERAs as the parameter a  
is individually optimized at each order, for f{x)  = tanli(x) at xq =  6. Notice that ao, 
s (the exponential fitting parameter), and are roughly the same at all orders, and that 
the values of the resulting approximants converge asymptotically towards the correct value, 
suggesting that this method of optimizing the ERAs is stable with respect to order. This 
data is plotted in Fig. 6.10. The errors for the Padé approximants at each order are also

Ebcact Value: 0.99998772

[m/fc] c . A B a Error(Pm.t) Error(C“%)

[5/5] 0.9971854 1.010129 -1.42033 1.175 0.999 9999872 —1.8 (—2 ) 2 .8 (-3 )

[6/6] 0.9991068 1.000052 -1.23328 1.793 0.999999 9988 3 ,0 (-3 ) 8 .8 (-4 )

(7/71 0.9998925 1.000050 -0.205655 1.795 0.999 9999995 —4.0(—4) 9 .5 (-5 )

[8/8] 0.9999752 0.9999930 -0.0549783 2 . 0 1 0 0.999 9999991 4 .5 (-5 ) l.2 (-5 )

[9/9] 0.9999869 0.9999880 -0.00798239 2.189 0.999 9999984 —4.1(—6 ) 9 .K -7 )
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Figure 6.10: A comparison of the convergence of the optimized economized rational ap­
proximant s (solid circles) with Padé approximants (open circles) for /(x ) =  tanh(x) at 
Xo =  6. Here, each term of the optimized economized rational approximant sequence has 
been optimized individually (see item 5 of Sec. 6.5). The value of otq corresponding to each 
order is shown in parentheses. The exact value of /(x ) is shown by the horizontal line. The 
data appears in Table 6.8.

6.6 Discussion

One means of determining whether a result is likely to be accurate is to examine the con­

vergence of the sequence of approximants as the order is increased to its maximum value. 

Erratic behavior in convergence is a good indication that the highest-ordered approximant 

may not be a satisfactory representation of the function at the point it is being evaluated. 

In this case, accurate results could merely be the fortunate result of a numerical artifact.
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Figure 6.11: Another example of individual optimization, but for the asymptotic series 
generated by the Gamma function [see Eq. (6.12)]. Again, the numbers in parentheses 
correspond to the ao for each particular order. In this case, the exponential ht is not only 
precise locally, but also appears to apply globally as well. The equation of the line shown 
is given by 1.37942898 -  0.0008876041 exp[-0.641iV].
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In optimizing the economized rational approximants (ERAs), the resulting sequence is re­

quired to be almost smooth and monotonically convergent, which raises confidence that the 

optimized ERA is providing a satisfactory representation of the system.

A few remarks on the numerical process are in order. We used the minimum number of 

points needed to determine A, B, s and a . As can be seen from Fig. 7.2 in Chap. 7 we can 

sometimes take many more than four points and still provide an accurate exponential fit. 

Generally though, the more terms that are included, the lower and the less accurate are 

the results at the relatively low orders considered in this chapter. This is to be expected since 

in general, as we noted above, the fitting function J^a,bA ^ )  will be valid only locally, not 

globally, around N  =  Nq. Since the least-squares fit used in this chapter weights all points 

equally, any additional terms of the sequence used in the fit could lower and result in 

a less than optimal a  for the last approximant of the sequence. Even if the fitting function 

happens to be globally appropriate [as appears to be the case for the log(l -t- x) function], 

there is the possibility that the earlier terms of a sequence have non-negligible finite-# 

corrections to the large-# exponential behavior of the error. Again since the least-squares 

fit weights all points equally, any additional earlier terms of the sequence used in the fit 

could lower Keeping the number of terms of the sequence used in the fitting xo the 

minimum number of four guards against these errors.

In general, the fitting parameter A  [that is, limiv_oo7^A.B,a(#)] will not be the con­

verged value of the sequence since valid only locally, not globally. However,

if R^ is exceptionally large as with the function f{x)  =  log (1 + x) (see Table 6.5), A  can 

be more accurate than the last approximate, implying that the fitting function, ,Fa,b,s(#), 

may well be globally valid for this function.

As a  is increased there will usually be multiple regions of a  where the last four ap­

proximants line up close to an exponential line. As an example, in Table 6.9 we tabulate 

the values of the diagonal optimized ERAs for the function f{x)  =  exp(x) at the next and 

slightly larger value of a  at which this occurs. Again, the optimized ERAs converge to the
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correct answer, somewhat more slowly than at the smaller value of or (see Table 6.3), but 

still significantly better than the performance of the Padé approximants. We have found 

that the smallest value of a  for which the last four points line up close to an exponential 

line yields the largest value of B? and the most accurate results. This is perhaps to be 

expected since ERAs “spread the error” without systematic favor in the region from the 

origin to a: «  a . The larger the value of a , the larger the region the error is “spread” over, 

so the larger the average error becomes for x < a. Therefore one would expect the best 

results to be obtained for the smallest value for which the last four points line up close to 

an exponential line. However, as the above discussion makes clear, this smallest value of 

a  cannot be much smaller than the value of x at which the series is being summed. As 

Padé approximants sometimes appear to converge to the wrong value (an example appears 

in Fig. 6.5) it would not be surprising if this were true of optimized ERAs as well. Indeed, 

if one chooses an “optimal” value of a which is too large, even though the last four points 

are lining up around an exponential line, the sequence of ERAs appear to converge to the 

wrong result.

In order to further understand what is taking place during the optimization process we 

examined the effects the optimization process has on the singularity structure of the ERAs. 

As seen in Fig. 6.12 for the entire function /(x ) =  e*, at qq the poles appear to be located 

such that the distance of the closest pole to the point of summation is roughly maximized. 

Since has no singularities except at infinity, the poles mark isolated regions at which 

the ERAs locally fail. Therefore the optimization process moves the poles so that they 

are, as a whole, sufficiently far firom the point of evaluation that their disturbing effects are 

minimized. If a is chosen large enough, then the poles in Fig. 6.12 move far to the right 

of the summation point and we might imagine that yet better results would be obtained. 

However, as we have noted above, the overall error at the summation point, xq, of an ERA 

generally becomes very large when a  :$> xo, and this works against the reduction of the 

error resulting from moving the poles well away from the summation point.
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Table 6.9: Diagonal Padé approximants and optimized ERAs for the function /(x ) =  e* at 
Xo =  8. However, here the next largest value of a  which optimizes the convergence is used. 
This table should be compared with the results of Table 6.3 and Fig. 6.7 where the smaller 
and most optimized value of a  is used. Note that the convergence, though still better than 
for Padé approximants, is significantly worse than for the optimized ERAs at the smallest 
value of a  at which the last four terms of the sequence line up close to an exponential line.

Exact Value: 2980.957987
[m/k Pm,k /^Qo a ^m.k
(0/0| 1.00000 1.00000
[1/11 -1.66667 3.97462
[2/2] 4.44286 97.3388
[3/3] -18.0769 1877.56
[4/4] 101.952 2658.54
[5/5] -1212.05 2999.70
Error 4193.01 -18.7424

“ 00=9.541, =0.999 999 92, .?^,s,,{A^)=3266.61-7232.74 exp(-sA f), s=0.8251.
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Figure 6.12: The [5/5] poles of the Padé and economized rational approximants. Those 
poles joined by common movement as a  is changed are joined by a solid line. The zeroes 
of the approximants all lie in the negative half-plane and have been omitted. The function 
f{x)  =  was chosen here since it is an entire function for which the optimization process 
is especially effective. As we can see, as a  increases from 0 the poles sweep towards the 
right. In this case, it seems as if ao corresponds to the instance when the poles are, on 
average, the farthest distance from the point at which we are evaluating the series.
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Chapter 7 

Physical Application: Summing the Dimensional 
Perturbation Energy Series of Diamagnetic Hydrogen at 
Low \m\

We now demonstrate the effectiveness of the procedure as it pertains to a physical problem, 

when the original function is not known beforehand. The majority of the following results 

were submitted for publication by J. R. Wallcup, M. Dunn, and D. K. Watson and accepted 

for publication by Physical Review A.

At the beginning of this dissertation I mentioned that circular Rydberg states of dia­

magnetic hydrogen are useful because they provide insight into the theoretical framework 

of Rydberg atoms at laboratory-accessible values of B. Dimensional perturbation theory 

has been shown[135, 170] to be highly effective for calculating energy levels of circular 

Rydberg states in this region of B. Since all m-dependence for a given B  is incorporated 

into a perturbation parameter that varies inversely with |m|, we would expect dimensional 

perturbation theory to be especially effective for large values of |m|. However, this princi­

ple only applies when comparing states having the same scaled held strength B. For a fixed 

physical held strength B  the perturbation series coefhcients corresponding to a lower value 

of |m| are, in general, smaller than those corresponding to larger values of |m |. Therefore, 

despite the fact that the perturbation parameter is larger for small values of |m|, the smaller 

coefficients may result in better convergence. After all, for a given state, the perturbation 

series coefficients are purely functions of B, and not |m|. However, hxing the physical
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Table 7.1: Strong convergence of partial sums S^r and Padé approximants Pm,k for the 
ground state and lowest-lying m = —2 state (3d_2) energies (in a.u.) of diamagnetic 
hydrogen at 5  =  470 T. All four states were chosen because they are examples of circular 
states. The Padé approximants belong to the diagonal sequence, so m  = k = AT/2. The

N
m  =  

Siv
0 (ls )

Prn,k
771 =  —

S n

2 (3d) 
Pm,k

m — -
Sn

■4 (5p)
P 71,fc

771 =  —24 ( n  =  25) 
Sn  Pm,k

0 1.001999 1.001998 0.1170302 0.1170032 0.049 3843 0.0492663 0.0130 7608 0.01307608

I L.OOl 998 --- 0.1170032 --- 0.0492652 --- 0.01273243 —
2 1.001998 1.001998 0.1170033 0.1170033 0.049 2663 0.0492663 0.01274333 0.01274300

3 1.001998 --- 0.1170033 ---- 0.0492663 ---- 0.01274298 ---
4 1.001998 1.001998 0.1170033 0.1170033 0.0492663 0.0492663 0.01274299 0.01274299

E r 1.001998 0.1170033 0.0492663 (none  given)

field strength B  and varying \m\ requires varying 5 . [See Eq. (3.3).] Therefore, for a given 

fixed value of B  these coefficients become functions of |m|.

In Table 7.1 we show that not only does dimensional perturbation theory remain effec­

tive as m  is reduced for fixed B, but that its effectiveness slightly improves. For example, 

at this field strength the partial sums and Padé approximants for the Iso and 3d_2 states 

actually converge to 12 significant figures by second order. (!) For the same field strength 

the convergence at |m| =  24 was roughly seven digits by fourth order.

Large n states are “more elliptical” when m  is small, so we would expect dimensional 

perturbation theory to be effective for a smaller number of states at low values of |m|. 

However, in Table 7.2 we show that, even for \m\. =  0, at sufficiently low field strengths 

dimensional perturbation theory remains effective for highly noncircular states. Note from 

Fig. A1.2a in Ref. [6] that the field strength represented in the table is Just below the region 

of significant n-mixing of states.

In Table 7.3 we show that the perturbation series for diamagnetic hydrogen can be 

summed quite effectively for m =  0 for most values of B, especially for smaller field 

strengths.[171] In the large field region, the perturbation series often fails to converge
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Table 7.2: The first six excited states of the m =  0 manifold. Again, B  =  470 T. Since the 
partial sums diverge for these states, only the Padé approximants Pm,k are listed.

[m/k] 2so 3do 3so 4do 4so 5go
(O/Oj 1.0019990 1.0019990 1.0019990 1.00199900 1.0019 9900 1.0019 9900

[ i / i j 0.2019918 0.0019949 0.0009891 -0.08891664 -0.0889 2133 -0.1408 6285

[2/21 0.2519807 0.1130958 0.1130690 0.06447038 0.06444002 0.0419 7663

[3/31 0.2519 729 0.1130406 0.1122709 0.06483287 0.0646 8243 0.04205545

[4/4| 0.2519 720 0.1130710 0.1129648 0.06436796 0.0641 7057 0.04188974

[5/51 0.2519 720 0.1130697 0.1129545 0.06435124 0.06396809 0.04175191

[6/6| 0.2519 720 0.1130698 0.1129548 0.0643 5178 0.06398137 0.04177365

[7/7j 0.2519 720 0.1130698 0.1129547 0.06435189 0.0639 8127 0.04177746

[8/81 0.2519 720 0.1130698 0.1129547 0.06435167 0.06398170 0.04177553

E r 0.2519 720 0.1130698 0.1129547 0.06435166 0.06398170 0.04177604

even using Padé approximants. However, the sequence of Padé approximants can be 

economized[162, 163] into a new sequence of approximants (economized rational approx­

imants, hereafter denoted ERAs) which can be optimized by adjusting a parameter to mini­

mize the error for particular values of the physical parameters B  and \m\. As seen in Table 

7.3 and Figs. 7.1 and 7.2, the values of these optimized ERAs provide reasonably accurate 

energy values, even when the original Padé approximants fail to converge. (See Chap. 6.1 

and Ref. [172].)

Finally, we note that the precision of the Padé approximants in Table 7.3 is defined 

by the number of digits that agree with the next lowest-ordered approximant, whereas the 

precision of the optimized ERAs depends largely on the fit of the ERA sequence to an 

exponential line (as explained in Chap. 6.1). It is difficult, therefore, to compare the pre­

cisions of these two methods, so the results found using optimized ERAs were expressed 

using seven significant figures in all cases.
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Table 7.3: Energy levels for |m| =  0 at various field strengths. Here, /3 =  1 corresponds 
to 4.7 X 10® T. The energies of Ruder, et a i are given in parentheses. To the left of 
each value the summation method is noted, with partial summation denoted Sn, Padé sum­
mation Pm,kj and optimized economized rational approximants C^^., where o-o and the 
optimization method is described in Chap. 6.1. The indices indicate the minimum order at 
which convergence was achieved. Padé summation was used once partial summation failed 
to converge to seven significant figures by 50th order (quadruple precision). Similarly, the 
optimization method was used once Padé summation failed to converge to seven significant 
figures by the same order. (For practical reasons optimization was always performed using 
the largest-ordered economized rational approximant available, in this case € 2 5 ,2 5 , given 
the limited number of power series coefficients at hand.) For a discussion of the precision 
of the results found using optimized ERAs, see Sec. HI.

p I s o /IO O O )^ 2 s o / |0 0 2 ) 3 d o V |0 0 4 )

5 (-4 ) Si 1.001000(1.000999) P*A 0.2509930 (0.2509930) ft,5 0.1121008(0.1121008)

5 (-3 )

5(-2)

Sn

Sn

1.009950(1.009950)

1.095053(1.095053)

Pa,6 

P12.12

0.2593031 (0.2593031) 

0.2961494 (0.2961783)

Po,9

, (̂0.0407)
‘'25,25

0.1200958(0.1200958)

0.1500983(0.1498760)

5 ( - l ) P4..1 1.662338(1.662338) — (Not found) (0.3209379) ---- (Notround)^ (0.13202)

5 Pio.io 3.495594(3.495594) /^(o.oso)
^25,25 0.4178979 (0.41777) ---- (Not found)  ̂ (0.154286)

50 Pis,16 7.579610(7.5781) r.(0.05l)
‘'25,25 0.5120457(0.512339) -(0.038T)

‘'25,25 0.1749461 (0.1737679)

500 15.32482(15.3241) r.(004i)
‘'25,25 0.5772800 (0.5917099) ^(0.0498)

‘'25,25 0.1975335 (0.1887047)

*The asym ptotic large-Reid s ta te  has the  form \nmu), where n  and m are the principle and  m agnetic 

quantum  numbers and v  counts the  num ber of nodes along the  field axis. See Ref. [Sj, Sec. 3.1.2.

^For th is  state , Ruder el al. used a  linear com bination o f th e  3db and  3so s ta tes as their initial s ta te . On 

the o ther hand, all in itial s ta tes  in  th is research were pure sta tes.

*^At th is field strength  neither Padé approxim ants o r optim ized ERAs successfully converge. T h is  does 

not appear to  be due to  a  lim itation o f optimized ERAs, b u t ra ther due to a  lim itation o f  th e  non­

degenerate perturbation  series evaluated a t a  finite num ber o f  decimal places. We th ink  th a t  th e  m ethod 

o f almost-degenemte pertu rbation  theory will greatly  improve th e  results. This is an  avenue o f  fu ture 

investigation.
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Figure 7.1: The energy of the lowest-lying m =  - 2  state of diamagnetic hydrogen for 
B  =  329 MT. The horizontal line corresponds to the multi-conhgurational Hartree-Fock 
calculation of Ruder (Ref. [17]). Note that the ERAs have been optimized individually.
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Figure 7.2: Same as Fig. 7.1, but for the ground state at 5  =  705 kT. Here we show that 
we can often incorporate many elements of the sequence into the optimization process. The 
horizontal line corresponds to the energy calculated by Ruder, et al. As in the other figures, 
the optimized ERAs are shown by solid dots, with the best-fitting exponential fit shown by 
a solid line.
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Part IV

Epilogue
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7.1 Summary

In the largest part of our research we examined two types of spectra. In one, the magnetic 

quantum number \m\ was held constant while the magnetic field B  changed adiabatically, 

and in the other the magnetic held was held constant while the angular momentum changed 

adiabatically. We found that the location of the avoided crossings appearing in the E- 

versus-B spectra are directly related to the locations of those appearing in the B-versus- 

\m\ spectra, and that this correspondence points to a degeneracy in the energy levels that 

provides the mechanism for the appearance of avoided crossings in both spectra.

The branch points that connect the energy levels are the mathematical basis of such a 

mechanism[l29], and by understanding this basis we have found it possible to predict the 

locations of avoided crossings in both spectra. By successfully characterizing the energy 

levels in terms of these branch points through Eq. (4.10), a simple relationship that merely 

requires visually examining the branch-point trajectories of the system as functions of B  

was found that could be used to predict the locations of avoided crossings in both spectra.

The new technique for summing divergent power series developed in this research was 

found to improve upon Padé approximants in every test case considered. In many instances 

the improvements over Padé approximants was dramatic. We have shown that such im­

provements appear when summing the perturbation series of physical systems (in this case, 

diamagnetic hydrogen) as well.

7.2 Future endeavors

My dissertation research is just the start.

Probability transitions of diamagnetic hydrogen for time-dependent fields

My first goal is to extend my research on diamagnetic hydrogen to compute transition 

probabilities when the external field B  varies with time across an avoided crossing. Such
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research is largely unexplored, so the ability to calculate such transition probabilities would 

be a significant step in research involving diamagnetic hydrogen, which has numerous ap­

plications in such fields as solid-state physics and astrophysics. Using a semi-classical 

treatment, Landau and Lifshitz[173] proposed a useful way of making such calculations 

when the field strength varies sufficiently slow in comparison to the classical period of the 

electron. This method requires integrating around the square-root branch point on the com­

plex B  plane at which the two interacting energy levels are degenerate. (See Appendix E 

for a more detailed discussion.)

Dimensional perturbation theory should be ideal for making such calculations. First, 

using dimensional perturbation theory we have an analytic means of precisely determining 

the locations of such avoided crossings, even when their approaches are so shallow as to 

make the crossings imperceptible. Dimensional perturbation theory also provides a simple 

way to find the exact locations of these square-root branch points on the complex B  plane. 

Furthermore, since all m-dependence is incorporated in the perturbation parameter, where 

m  is the magnetic quantum number, transition probabilities for a given value of m can be 

easily extended to other value of m — the energy series for a given field strength are the 

same, changing m only requires summing the series at a different value of the perturbation 

parameter.

I have already made progress in performing these calculations, and the remaining work 

appears to be straightforward.

Avoided crossings in the Stark spectrum of Rydberg atoms

Another goal is to examine the avoided crossings that appear in the Stark effect for Ryd­

berg atoms when the excited electron interacts with the core electrons. With diamagnetic 

hydrogen we were able to establish a correlation diagram that allows one to track a par­

ticular energy level as it is adiabatically swept from very low to very high field strengths, 

even through the complicated tangle of avoided crossings in the intermediate field region.
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Dimensional perturbation theory, which has been successfully applied to the Stark effect, 

should prove useful in finding a similar correlation diagram for the Stark effect as well. 

Such a correlation diagram can help establish the location of hidden avoided crossings in 

the energy spectrum.

7.2.1 Approximation theory

Initially, I would like to build multi-point Padé approximants of a perturbation series by 

minimizing the error at many values of the independent variable. If successful, this will 

create a Padé-type approximant having reasonably small errors for an extensive range of the 

independent variable. Then I would like to apply the same optimization technique that we 

found to be successful with Padé approximants to other types of approximants that employ 

“arbitrary convergence parameters,” such as Borel-Leroy transformations. Finally, I would 

like to investigate the role such optimization plays when summing asymptotic series. For 

the asymptotic series we considered in this research, this optimization technique provided 

dramatic improvement over Padé approximants. (In fact, the Padé approximants appeared 

to be converging to the wrong value, whereas the optimized ERAs not only converged to the 

correct value but also very strongly.) Neither research project should employ formidable 

mathematics, so students of either physics or mathematics may be able to take the lead in 

such research.
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Appendix A 

A Brief Review of Important Quantum-Mechanical 
Corrections to the Energy Spectrum of Hydrogen

When discussing such ejects as fine structure, the anomalous Zeeman effect, and so on, 

few textbooks provide calculations for large values of the quantum numbers. The purpose 

of this appendix is to provide the reader an understanding of how these effects compare 

in magnitude for the values of quantum numbers used in this research and to understand 

at which values the field strengths become dominant. Many of our calculations involve 

circular Rydberg states having |m| =  33, so in this appendix we will consider the cases 

where n = 3A,i = 33, and m =  ±33, as well as many of the quantum numbers associated 

with low-lying states. However, we will not discuss how these energy shifts are derived, 

since many textbooks do so in quite adequately.fi 74]

We must keep in mind that the following does not incorporate the effects of an enor­

mously strong magnetic field. For field strengths of the order 10^° T the Dirac equation 

for diamagnetic hydrogen must be solved numerically, as discussed in Sec. 1.2.2. In the 

weak-held region, the following serve as a rough guide for the energy corrections due to 

these effects.
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A l  Fine Structure

The fine structure is composed of three effects, the first of which is the relativistic correction 

to the kinetic energy,

where p and are the momentum and mass of the electron and c is the speed of light. The 

correction (in eV),

(AB)ke =  1 3 . 6 ^  ( j  -  ; (eV), (A.2)

always lowers the energy by a small amount (it can never be 0). Its greatest contribution

occurs when n  is small and Z  is large.

The Darwin term

only shifts the energy when the atom is in a £ =  0 state. This energy shift is given by (in 

eV)
Ẑ OL̂

(A£;)d =  13.6— ;(eV). (A.4)

If nonzero, this term always shifts the energy up.

The spin-orbit coupling is now calculated independently because its relative strength 

in comparison to the Zeeman effect determines the field region at which the anomalous 

Zeeman effect becomes dominated by the Paschen-Back effect. (There is little point in 

tabulating the energy shifts for the other two interactions, since they are never much larger 

in magnitude than the spin-orbit coupling, whereas the spin-orbit coupling can dominate 

for those atoms that feature strong coupling between the two angular momenta.)
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Table A.I: Energy corrections due to spin-orbit coupling. The asterisk denotes the max­
imum shift possible for any set of quantum numbers. Energies are measured in electron-

n e mi j (AE)so
I 0 0 1/2 •1.5 X 10-^(0.122)

34 0 0 1/2 3 X 10"^ (2 X 10-=)
34 33 33 67/2 8 X 10"^2(7 X 10- 8)

A.1.1 Spin-orbit coupling

The third relativistic effect we consider is the spin-orbit coupling term,

(^)so  =  S ,^(r) =  , (A.5)

which shifts the energy by

for J =  £ -  5. Notice that depending on the value of j ,  this energy shift can go either up or 

down.

The energy shifts for various quanta are tabulated for the spin-orbit coupling in Table 

(A.1).

A.1.2 The relative importance of the spin-orhit effect

If the field strength is much weaker than the spin-orbit coupling term in Eq. (A.5) then the 

Zeeman effect can be treated as a  perturbation. In Table A.2 the field strengths at which 

threshold is crossed (denoted B(&) in Fig. 1.2) are tabulated for various quantum numbers 

of interest. Note that even the largest threshold field strength possible is far below the field
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Table A.2; The field strength at which the effects of the external magnetic field become 
stronger than spin-orbit coupling. The data in this table determine the value of (a) in Fig. 
1.2. For the lowest lying (n > 3) states and the states of special interest in this research 
(n =  34) only those quantum numbers are shown that produce the smallest and largest 
values of 5(a).

n i rrij Bfa)(T)
2 I 1/2 “0.0624
3 2 5/2 ""0.0008

34 1 1/2 “6.4 X 10-®
34 33 65/2 ""3.5 X 10-"-

strengths of interest in this research, showing that for our purposes spin-orbit coupling is 

completely negligible. This especially applies to circular Rydberg (large n, maximal \m\) 

states.
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Appendix B 

Lie Algebra and Group Theory of the Hydrogenic Atom

The low-held energy spectrum we are attempting to understand pertains to fixed |m|. Un­

fortunately, although it does commute with the Hamiltonian and therefore preserves n un­

der all operations, the SO (4) Lie algebra does not conserve m  under all operations because 

not all the operators contained within this algebra commute with L-. There is, however, 

a different Lie algebra that does conserve m  under all operations, the 80(2,2) Lie al­

gebra. Unfortunately, the 80(2,2) Lie algebra does not conserve the principle quantum 

number n under all operations because it contains operators that do not commute with the 

HamiItonian.[176] However, there exists in both algebras a subset of operators that preserve 

both n and m, and there is an isomorphism between these two subsets of operators. As we 

will see, this isomorphism allows us to express the perturbation Hamiltonian H ' <x as a. 

first-order invariant operator which is diagonal in each n-subspace.

B.l Lie algebra

If we consider elements A, B, and C of a vector space we can denote a “product” between 

these two elements as [A © j5]. In general, a Lie algebra of a vector space containing 

elements A, B, and C  is defined according to the followingconditions[I77]:

1. If we define D =  [A 0  B], then D  is also a member of the same vector space,

2. [(aA 4- bB) 0  C] =  a[A 0  C} -I- b[B 0  C\ for any constants a and 6 ,
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3. [A 0  A] =  0,

4. [A 0 [5 0 C ]1  +  [5 0 [C 0 A ]]  +  [C 0 [A 0 5 ] ]  =  0 .

In this appendix the elements A, B, and C  will be quantum-mechanical operators, 

and therefore these elements do not necessarily commute. Therefore, we now define the 

product [A 0 5] to be the commutator of the operators A and B,

[A, B] =  AB  — BA. (B.l)

Note that we do not have to worry about items 2, 3, and 4 any longer since they are auto­

matically satisfied when the product [A 0  B] is defined as the commutator [A, B\.

B.2 The S 0 ( 4 )  Lie algebra

A Lie algebra is defined according to the commutator relationships obeyed by the operators 

that form the basis of the algebra. The most important for our purposes is the S0(4) Lie 

algebra. The operators that comprise the basis of an SO (4) Lie algebra are given as[178]

Djk =  -Xjdxk + Xkdxj {j < k = 1 ,2 ,3 ,4 ,5 ,6), (B.2)

where dxj =  d/dxj,  so that we can define

=  D2 3  — —X2ÔX3 Xzdx2, (B.3)

-F a  =  Diz =  -xidx3 + x ^ d x i , (B.4)

Fa =  £>12 =  —xidx2 -h X2ÔX1 , (B.5)

—Hi =  D u  =  —xi9x4 + X4ÔX1 , (B.6)

—= 2  =  D 24  =  —X2^X4 +  X4ÔX2 , (B.7)

—Ha =  Da4 =  —xsdx^ 4- X4^Xa. (B.8)
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(The numerical subscripts and negative signs above are assigned to make the following as 

simple to follow as possible.) We can show that these operators form a basis for a Lie 

algebra by applying the conditions in Sec. B .l. Our work is simplified because we now 

generate a rule that can be applied to nearly all possible commutator relationships formed 

by the operators Ft and Hi defined above (those that it cannot are clearly 0 by inspection). 

We begin with

[Da b , D a c ] =  [ - X a ^ x b  +  x b Ôx a , - x a Ôx c  +  x c Ôx a ] f  

=  [ x A d x B , X A d x c ]  f  +  [ x c d x A , X A d x B ]  f  

+  [x a Ox c , x b Ôx a ] f  +  [x b Qx a  , x c Ôx a ] f ,  (B.9)

where /  =  / { x a , x b , xc ). The first and last terms in Eq. (B.9) are 0. For the first nonvan­

ishing term we get

[ x c d x A ,  X a ÔXb ] f  =  X c  [dXA, Xa ÔXb ] f  +  [xc ,  X a Ox b ] ÔXa /

=  - X c  [x a Ox b , ÔXa ] f  -  [x a Ôx b , d x c ]  ô x a /

=  - x c X a [dxB,  ô x a ] f  - X c  [x^, dx,i] ô x b / .  (B. 10)

For the second nonvanishing term in Eq. (B.9) we get (using similar operations) x c Ox b  — 

x b Ox c - Therefore, we now have a general rule that will prove very convenient for comput­

ing the commutation relationships satisfied by the operators in Eqs. (B.3)-(B.8):

[D a b , D a c \ =  —x b Ôx c  +  x c Ox b - (B .ll)

The above rule defines the nontrivial part of the Lie algebra. It is not a general rule for all 

Lie algebras, only the Lie algebra pertaining to Eqs. (B.8).

Using Eq. (B.l 1) we can immediately write down the commutation relations

[ri,F2] =  r3 ,  [F2,Fal =  F i,  [F3,F i] =  F2, (B.12)
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[Ei.Eg] = P 3 , [=2, =3] =  T i, [Ea,5i] =  r 2 , (B.13)

[Fi, 52] =  - 5 a , [F2, Ha] =  - H i , [Fa, Hi] =  -H 2 , (B. 14)

[Hi, F2] =  Ha, [H2, Fa] =  H i, [Ha, Fi] =  H2 . (B.15)

Note that there was no real need to write down the commutation relations in Eq. (B.15) 

since they are a direct result of those in Eq. (B.14). Those commutation relationships that 

do not have the pattern of subscripts in Eq. (B.l 1) can be deduced by mere inspection of 

the subscripts in the commutation relationships:

[Fi,Hi] = 0 ,  [F2,H2] =  0, [Fa, Ha] =  0 . (B.16)

Clearly, unless an index is repeated on the left-hand side of Eq. (B.ll), the commutator 

will be 0. We can represent the above commutators in terms of the Levi-Cevita tensor 6̂ *, 

and, therefore, cross products:

[Fi,Fj] =  eyjtFfc, F X F =  F ; (B.17)

[Hi, Hj] =  CijjfcFjfe, S  X E =  F ; (B. 18)

[Hi, Fj] =  CÿfcHfc, S  X F =  S . (B. 19)

Finally

[F i,H i]=0, F S  =  0 , (B.20)

which can be deduced by inspection.

We can see from Eqs. (B.12)-(B.16) that the set of operators H and F satisfy the first 

condition for a Lie algebra in Sec. B.l, and therefore provide a basis for an S0(4) Lie 

algebra as well. We will later see that the hydrogenic problem, under certain limitations 

which we will discuss, contains the appropriate generators to produce operators that satisfy 

the above commutation relations and, therefore, provide a basis for an 80(4) Lie algebra.
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B.3 The Casimir operator

All semi-simple[179] Lie algebras, which include all the Lie algebras considered in this 

appendix, contain one or more Casimir operators, which commute with all other operators 

in the Lie algebra. Casimir operators are important because they are guaranteed, according 

to Schur’s lemma[180], to have a fixed numerical value in a given Lie algebra. Even more 

importantly, the set of Casimir operators of a Lie algebra completely characterize the Lie 

algebra. For the Lie algebra above the Casimir operators are F S  and F^.

B.4 The direct-sum representation of the S O (4 )  Lie algebra

By a quick look at the commutation relations in Eq. (B.12) we can verify that the set of 

operators F, form an SO (3) algebra of their own (a. subalgebra) because the product of any 

two members of F produces a member of F (remember, that “product” here is defined as the 

commutator). However, by examining the commutators in Eq. (B.13) it is clear that, based

on the same condition, the operators 5  do not form a Lie subalgebra. However, we can

recast the operators F and 5  to produce a new set of operators A and T that form individual 

80(3) subalgebras and the direct sum of these subalgebras form an 80(4) Lie algebra. 

Consider the operators

Ai =  i (Fi +  —1 +  îF2 +  2 —2) I (B.21)

^2 =  i (Ft -l- Cl — 2F2 — i Co) , (B.22)

A3 =   ̂(Fa -f C3) , (B.23)

i (Fi — Hi -t-zFa — 2C2) , (B.24)

T 2 =  i  (Fi -  Hi -  iV2 +  i =2) , (B.25)

^3  — i  (Fa — —3) • (B.26)
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The commutation relations involving A, are

[As, Ai] =  A i, [Aa, As] =  Ag, [Ai, Ag] =  2As. (B.27)

so that the operators A, clearly form an SO(3) Lie algebra which we denote which is a 

subalgebra of the 80(4) Lie algebra. Furthermore,

[Ts,Til =  T i,  [Tg,Ts] =  Tg, [Ti,Tg] =  2Ts. (B.28)

so the operators T , also form another SO (3) subalgebra of SO (4), which we call At . More 

importantly, since

[Ai, Tj] = 0  for all possible i and j  (B.29)

then the two subalgebras Aa and At are completely independent of each other. In this

situation, we say that the two subalgebras directly sum to produce an SO (4) Lie algebra:

A a ® A t  =  S0(4). (B.30)

Note, however, that neither set of operators Ai nor Tj are angular momenta, that is, they do 

not obey angular momentum-like commutation relationships.

Note: In this disseration I define an angular momentum operator as any Her- 
mitian operator, generally denoted J , that obeys the commutator relationships 
defined by J  x J  =  J . The physical (that is, orbital) angular momentum oper­
ator is usually denoted L and satisfies the relationship L x L =  zL. Notice the 
sudden appearance of the imaginary number i. For a more detailed discussion 
of what constimtes angular momentum see Ref. [181].
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B.5 The hydrogenic prohlem

It is well-known to students of quantum physics that the hydrogenic Halmiltonian (with h 

and the reduced mass of the electron set equal to 1)

H ^ - Ç  + Z / r  (B.31)

commutes with the orbital angular momentum operators Lx ,  L y ,  Lg.  What is not as widely 

known is that H  also commutes with the three components of the Runge-Lenz vector of 

Eq. (2.4),
a  =  ( - 2æ;)-^/2 ^(L X p -  p X L) +  Z f (B.32)

Note that we are using the dilated (energy-scaled) Runge-Lenz vector. Many 
authors, such as Engleheld[178], do not include this energy dependence because 
they are interested in deriving the energy eigenvalues of hydrogen that force 
the operators that form the basis of the Lie algebra to obey the commutator 
relationships of angular momenta. That is not the aim here, so by applying the 
knowledge that the zero-held energy of hydrogen is E  = - 1 / (2n‘̂ ) and scaling 
the Runge-Lenz vector accordingly, we will produce a basis of the S0(4) Lie 
algebra that consists of angular momentum operators.

In quantum mechanics A  is a (Hermitian) vector operator because it satishes the com­

mutation relations

[Ji, A j]  =  i A k  (B.33)

with any angular momentum operator J , which for our specihc purposes is the orbital 

angular momentum operator L:

[L i,A i]=0, (B.34)

[Li,Aj]=iAk,  (B.35)

[At, Aj\ =  i Lk . (B.36)
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(A complete derivation of this commutator is given in Englefieid[I78], Appendix A.) We 

know that L satisfies [Lu L j \  = i L k  so L is analogous to F  in Sec. B.2. From Eqs. (B.I3>- 

(B.IS) it is clear that A  is analogous to 2 .

From our earlier discussion we should be able to form operators from L and A that are 

analogous to A and T  and that form 80(3) subalgebras of 80(4). However, we can go 

one step further and derive two Hermitian operators, which we call F  and G, that not only 

form 80(3) subalgebras of 80(4), but also individually satisfy the commutation relations 

of angular momentum operators.

First let us assume (using hindsight) that F  and G have the basic form

F  =  i(L  +  A ), G =  i ( L - A ) .  (B.37)

We can start with the commutator

[■^1 ~  [i-^r "F l[Ly -t” ^Ay]

=  ^  ([^Z , Ly]  +  [Lx,  Ay] — [Ly, A j]  +  [Ax,  A y])

= ^ { L z  + Az)

= iFz. (B.38)

Performing the same operations on the other compenents of F  leads to the general relation

F x F =  iF. (B.39)

The same relationship as Eq. (B.39) holds for G  as well. Therefore, the components of F 

are generators of an 80(3) Lie algebra.

Therefore, the components of F  and G  are generators of an 80(3) Lie algebra.

Most importantly, F  and G  are both angular momenta, so we know beforehand 

that the Casimir operators of each subalgebra are F^ and G^, respectively.
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It is straightforward to show that

[F i,G ,]= 0 , [Fi,Gj] = 0. (B.40)

Therefore, all elements of F  commute with all elements of G, so the subalgebras of F  and 

G directly sum to an S0(4) Lie algebra of the hydrogenic atom:

SO(3)p ©SO(3)g =  SO(4). (B.41)

We mentioned earlier that although this SO (4) Lie algebra does not preserve the mag­

netic quantum number m, it does preserve the principal quantum number n. It should then 

be possible to construct a set of raising and lowering operators that allow one to step up 

and down in m  while, at the same time, keeping the quantum number n, fixed. Since F  and 

G  are angular momenta, they have the same form of raising and lowering operators as L, 

that is,

F * = * ( F , ± F „ ) ,  G ^ = i { G , ± G y ) .  ( B A D

Note that F* and G* commute with the Hamiltonian, which coincides with our statement 

that when acting on a state of the system all four operators preserve n.

We are also in a position to now establish the relationship between the two quantum 

numbers of interest, n and m, and the generators of the SO (4) Lie algebra. Since F  is an 

angular momentum, the corresponding Casimir operator F^ has an eigenvalue / ( /  +1) [in 

the same way that the eigenvalue of is f  (£ +1)]. Furthermore,

=  }(n“ - l )  =  / ( /  +  !). (B.43)
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Clearly, the same relationship applies for G^. So we now have a prescription for relating 

the principle quantum number n  with the operators of the 80(4) Lie algebra:

p2 =  q 2 =  j ( n - l ) , (B.44)

n 2 /  + 1 ,  (B.45)

n*-*2g + l .  (B.46)

For m, we have simply Fg-\-Gz = Lz. Therefore

n 2 f  1, Fz-\- Gz tti . (B.47)

B.6 The S0(2,1) Lie algebra

So far, we have only considered the zero-held hydrogenic problem. This system was de­

scribed using the commutation relationships pertaining to the 30(4) Lie algebra, which is a 

symmetry algebra of the zero-held hydrogenic atom since all of its elements commute with 

the Hamiltonian. However, inserting the hydrogenic atom into a magnetic held produces 

an extra term in the Hamiltonian, the diamagnetic term, that breaks the 80(4) symmetry 

because a particular direction (usually dehned as the z axis) is singled out, so many of the 

generators of the 80(4) Lie algebra no longer commute with the Hamiltonian. Further­

more, even in the zero-held case many of these operators do not commute with Lj, so the

80(4) Lie algebra does not preserve the magnetic quantum number m  either.

As we mentioned at the start of this appendix, we will hnd it convenient to express 

the Schrodinger equation in a basis that can be generated by operators that preserve m. 

Consider the transformation of the Schrodinger equation in dilated (scaled according to the 

energy) semi-parabolic coordinates

=  (-2£)^/'‘V F T I ,  =  { - 2 E Y '^ y / 7 ^ ,  $ (r) =  . (B.48)
v 27T
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The resulting Schrodinger equation

f  I d  2 1 ^ , 4 \  ^ _

In introductory physics it is well-known that the Schrodinger equation of a two-dimensional 

simple harmonic oscillator (SHO) is

SO the Schrodinger equation of a hydgrogenic atom, in dilated semi-parabolic coordinates, 

behaves exactly like two independent particles bound in a two-dimensional simple har­

monic oscillator potential. The diamagnetic term mixes the two coordinates ^ and u, but 

we will concern ourselves with this later.

For the two-dimensional SHO of Eq. (B.50), Englefield[178] derived the set of Hermi­

tian operators

= K

that generate the S 0 (2 ,1) Lie algebra, defined by

[5i, 5a] =  —iS2 , [5a, S';] =  i S i , [52,5i] =  iS^. (B.54)

The Casimir operator is given by

52 =  5 f - t - 5 | - 5 |  =  i ( l - m 2 ) .  (B.55)
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Although a bit pedantic, we will also note that for the coordinate u:

T, =  J  ( l  +  . (B.58)

The corresponding Casimir operator is clearly

=  T f  +  T i  - T i  = \ { l -  m^). (B.59)

The two Lie algebras in this section clearly commute — they directly sum to produce 

the S0(2 ,2) Lie algebra.

B.7 The S0(2,2) Lie algebra and its application to diamagnetic 

hydrogen

Going back to earlier in the chapter we noted that because [Fi, Lz] ^  0 for all i (nor 

does [Gi, Lz\ for that matter), we could not expect the operators corresponding to the 

S0(4) Lie algebra to conserve m. However, we would like to examine the energy spectrum 

of diamagnetic hydrogen in a single m-subspace, and the important point to note about the 

S0(2,2) Lie algebra that we just determined is that it is a representation of the zero-held 

hydrogen problem, expressed in dilated semi-parabolic coordinates, that preserves m  under 

all operations.

At this point we have reached a crossroads. On the one hand, we have a SO (4) Lie 

algebra representation of diamagnetic hydrogen that preserves n  under all operations, but 

not m. On the other hand, we have a 80(2,2) representation of the same problem that 

preserves m  under all operations, but not n. However, there is an overlap between the two
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Lie algebras that consists of a subset of operators that preserve both m  and n. It turns out 

that this subset describes an isomorphism between the two subsets of operators;

^  - F ^ G ^ , (B.60)

Sz ~^Tz *-*Ti = 2 f  1, (B.6 I)

Sz -  Tz*-* Fz — G z , (B.62)

771 Fz +  Gz • (B.63)

In terms of the S0(2 ,2) Lie algebra the diamagnetic term is given by

V(IJ., V )  =  + i x V )  =  +  s . ) { T ,+ %){S..+ r ,  +  & + r , ) .  (B.64)

Note that all operators in V{fj., u) preserve m, but not n. However, we now apply first-order 

perturbation theory to the Hamiltonian. By expanding V (^, u) and discarding all terms that 

do not preserve n, the result will be guaranteed to be a first-order invariant. So to first-order 

in 5^, we have

u) ^ ( 5 =  +  Tz)(S^ +  +  GSzTz + 25+T" +  2S~T^ ) . (B.65)

This expression for the diamagnetic term, although not exact, preserves both quantum 

numbers. Since there is an isomorphism between the operators in Eq. (B.65) and the m, 

77-preserving operators in the 80(4) Lie algebra, we can simply re-express the potential 

energy in Eq. (B.65) in terms of those operators:

u) =  ^ ( 3 n ^  + l - 4 F ^ - G l  + -  4F+G" -  4F-(3+) (B.66)
I d

=  +  4A^ -  5A^). (B.67)

Finally, we have derived the first-order invariant of the diamagnetic hydrogen problem, 

which is expressed in Chap. 2 as Eqs. (2.2) and (2.3).
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Appendix C 

Description of the Ground State of the One-dimensional 
Hydrogenic Atom.

Suppose we are given a normalizable function xi^)  defined over the interval (0, oo). We

will now show that the scalar product (i?|x) of this function with the ground state of the

one-dimensional hydrogenic atom vanishes. The following follows the treatment of An­

drews. (Ref. [96].) Here we use the shorthand notation (setting the Bohr radius ao =  1)

= Um (Cl)fc—0 y/k

We first break the integration over all space into two parts by choosing a positive value a 

such that

(&-oix) =  {R.^o\x)r+ (&-oix):,, (C.2)

where the notation (- • ‘)l means to integrate from b to c.

Next we label each integral term as

h  =  ) fz =  (-Rfc-oX)^- (C-3)

The Schwarz inequality states that for each integral,

lAi' < ( x ix r . \h ?  < (xix)«. (C.4)
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Since

rafc/21 rO‘K f i  1 1 1
=  U m -_ ( =  j ( l - e - » )  =  j —  < | ,  (C.5)

then

Also, since

lAI' < j ( x l x r -  (C.6)

( i î , .o |i ï ._ .) ï ,  =  Um i  / “  i x  =  L - "  (C.7)
fc—0 K Jak/2 ^

then

141' < j e - “(xlx)S, < i s - ( x lx ) .  (C.8)

Now consider the I/2P term. Since %(r) is normalizable, (xlx) =  where iV > 0 is

finite. Therefore, we can always find a sufficiently small value of e and a sufficiently large

value of a =  A such that

141' < f  e - '' < j£, (C.9)

no matter how small we choose e. With a = A  then k can always be made small enough 

(remember that Ar 0) so that

141' < j ( x i x r  < (C.10)

Now we can consider the square of the scalar product (A&-o|x),

l(H.-.lx>l' =  l 4 + 4 l ' .  (C.11)
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However, by examining our previously determined results

I/1+ / 2P =  |/ ip  +  |/2 |^ ± 2 |/ i ||/ , | < i£ ± 2 |/ i | |/2 | < € (C.12)

we can see that

l(% -o |x )|'< E . (C.I3)

Since we are free to choose e as small as we wish we therefore have found that

{R,^o\x)-*0, (C.14)

which means there is no overlap between the ground state of a one-dimensional hydrogenic 

atom and any normalizable function.

The consequences of this result are two-fold:

1. In a one-dimensional Coulombic basis, the expansion coefficient cq of a normalizable 

function %(z) is given by

Co =  (i2fc-o|x) • (C.15)

Therefore cq =  0, regardless of the choice of x(z) so the ground state is not needed 

for completeness in the set of one-dimensional hydrogenic wave functions.

2. Since any operator O in Hilbert space operates on normalizable functions to produce 

other normalizable functions; that is

(C.16)

then the matrix element

=  (C.I7)
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so the matrix element of any Hermitian operator taken between the ground state and 

any normalizable function vanishes.

With the above results in mind, we can safely conclude that the ground state o f the one­

dimensional hydrogenic atom is nonphysical. However, we must keep in mind that this 

result does not hold for finite B-fields, since the potential energy function describing motion 

along the 2-axis in finite fields is not truly Coulombic.
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Appendix D

The Coupling Potential.

The following is a detailed derivation of the results found in J. Simola and J. Viertamo, J. 

Phys. B 11, 3309 (1978) and H. Friedrich, Phys. Rev. A 26, 1827 (1982).

Here we study the coupling potential [Eq. (2.41) in Sec. 2.2.1], which links the excited 

states corresponding to motion along the x,y-plane and along z, in the limit of large |z|. 

We will find that for large \z\ the coupling potential assumes a diagonal form approaching 

that of a one-dimensional Coulombic potential

V{z) =  - j l .  (D.l)

This means that the coupling potential becomes asymptotic to the z-axis as |z| ->oo, which 

implies an infinite number of bound states for motion along the z-axis. Furthermore, we

will see that V{z) models the behavior of the electron more effectively as the magnetic

field strengthens.

We rewrite the coupling potential as

=  j T  (D.2)

where Ç= Bp^l2, x=  y /B f2  z, and PN,m{^) is related to the Landau wave function by[183]

«Km =  (D.3)
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The exact form of PN,m{0 is[183]

(Ç) = _JL _ "“f ( = i ) l _ « ____ S ! _
v/SDV! ^  H (AT-fc)!(S-<:)n

min(5,iV)

=  X )  (D.4)
fc=0

where S  = N —m.

For large |i |  (in other words, large |z|) we can expand the denominator in Eq. (D.2) as

v fW  = ( H  = r S ^ ‘ 0 )  ■

where we let Ck =  (~l)*(2fc-l!l)/2*'fc!. We note that Co =  1 and Ci =  - | .  Now the 

coupling potential is

=  A  E  c J ^  r  P jv ',„ K )P ^ „ K ) <<? . (D.6)
1^1 Jt=0 L /  -/o

The polynomials Pi^,m{0 ate orthonormal when integrated with the factor thus

r  PN>ra{^)PN,miO =  6^,,,^. (D.7)
Jo

If we fix the value of N' we can find the values of N  for which V^,j^f{z) is nonzero. With 

N'  fixed the only way for integral

1 =  rP«.,m K )Piv,m K )?'”"Ç‘’e-«4Ç= / ” i ’«>(e)J'«/,„(Ç)Ç'""e-«<iÇ, (D.8)
Jo Jo

in Eq. (D.6) to be nonzero is for Piv'mCO to be of equal or higher order than Pv,m(Ç) C*'=  

Piv,m(0- The polynomial Piv'm(Ç) is of the order 0{N')  =m in(5 ' N') —k  and Fyv,m(C) =  

PAr,m(Ç) is of the order 0 {N )  =min(5, N). Therefore we require

vaia{S,N)<mm{S\N')—k .  (D.9)
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If m < 0 then min(5, N )= N  and min(S' N') =  N', Thus

(for 1 ^ 0 )  k > N ' - N . (DAO)

Now suppose m > 0 so that min(5, N )= S = N —m  and min(5", N') =  N '—m. We find the 

same result as above.

We could just as easily focused on N  rather than N '. In this case must be of

equal or higher order than Since N' and N  are essentially dummy variables,

we can see that in this case

(for /  f  0) k > N -  N ( (D.ll)

We can combine these two results to find that only if

\N' - N \ > k . ( DM)

this means the summation in Eq. (D.6) can be started at k=  |iV'—iV|:

Now it is desirable to change back to the original p and z  coordinates so that

E
k=\N'-N\

y . (D.l3)

P ^N ',m (p)^N ,tn .(p )pd iP

N

k = \ N ' - N \  

00

k=\N'-N\
(D.14)
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D.l Diagonal approximation

In the diagonal (adiabatic) approximation {N = N ')  the first two terms are

2
\z\

(D.I5)

If we factor 8/B^ out of the expectation value In the last term we note that this 

transforms into the expectation value of the Landau potential energy function

R2 
=  -g-p". (D.16)

Thus

The virial theorem states that for time-independent Hamiltonians, (V) =  (T) =  |( T  -h V) 

if the potential energy function V  is of second order.[184] Therefore

^  “ R  (^  “  ^  ~ R  (^  ”

Remember that the Landau energy £Jiv,m »s linearly proportional to B. [See Eq. (2.25).] As 

stated in the main text, for sufficiently large \z\, in the diagonal approximation the coupling 

potential approaches the one-dimensional Coulombic potential. Furthermore, the second 

order correction is proportional to the Landau energy, but this correction falls off by a 

factor of 1/5^. Therefore, in the limit of large field strengths the Coulomb potential V{r) 

becomes increasingly modeled by a one-dimensional hydrogenic atom.
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D.2 Off-diagonal approximation

We still have yet to consider the off-diagonal (nonadiabiatic) terms. These occur when 

k = \N '-N \^ 0 .  From Eq. (D.14) we have for N  — N ' = 1,

% v ( z )  =  - g  ^
1̂1 fc=i ^

=  [  ^ n'{p) ^ n {p) dp + [  Çïl^,{p)Çls{p) P̂  d p -----
\ \̂ L-" Jo ^ Jo

r  e - « r  P v ' ,m ( 0 ^ iV .m ( e K 'r fe  +  • •
Jo

4C,
+ — (D.19)

Each Integral is simply a constant with respect to z and B, so we can see that as B —» oo 

all of the off-diagonal terms vanish. Therefore, In the limit of Infinite field strengths the 

coupling potential uncouples in terms of the p and z degrees of freedom.
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Appendix E

The Landau-Zener Transition Probability

The contents of this chapter were written for my Specialist’s exam in December, 1997. I 
include this work because it is relevant to future research that is discussed in this disserta­
tion.

E.l A simplified model

As with many systems, the easiest way to understand the fundamentals of Landau-Zener 

tunneling is to consider a simple example. The simplest system that displays many of the 

most important points about Landau-Zener tunneling is a spin-half particle (an electron for 

example) suspended in two crossed magnetic fields, one of which is varying with time. At 

first, we will consider only one field, which will be held constant, and add in the second 

(also constant) field as a complicating factor. Then, we will consider what happens when 

the first field varies with time.

E.1.1 The unpertubed (uncoupled) system: Electron in a constant 
magnetic field

Consider an electron suspended in a magnetic field that points in a direction we define 

as the z-axis. (The « symbol means pointing along the z-axis.) We first assume that the 

total spin vector of the electron points in the -t-z direction. We define this spin orientation 

as spin-wp and denote the spin-up eigenstates of this unperturbed system with the spinor
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x \  =  (1,0). If we define the zero-point energy as that energy when =  0, then the total

unperturbed energy of the spin-up electron is given by

(E.1)

where fi, the magnitude of the magnetic moment of the electron, is a positive constant.[ 188] 

Since this energy is proportional to the magnetic field strength, then if we sample the energy 

at different values of B̂  ̂ we will trace a straight line of positive slope, as shown in Fig. 

E.l.[l89]

r
u

0

Bit0

Figure E.l: Energy levels and Ei relating to Eqs. (E.l) and (E.2).

Now consider the same system, but with the spin vector pointing in the —z direction 

(spin-down). The spin-down unperturbed eigenstate is described by the spinor x \  =  (0.1)* 

In this case,

El =  -flB^^, (E.2)
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and the energy similarly traces out a straight line when sampled at different values of 

but with a negative slope. In Fig. E.1 we show both energy levels together. The two levels 

cross at a physical (real) value of Bn which we call a level crossing, which occurs here at

Bii — 0.

The Hamiltonian for this system is given by

/B |, O N
H o -  n S ‘ B = nB^Sz =  Q - B  ) '  (E .3 )

where S =  is the total spin-vector of the electron, so that the time-independent 

Schrodinger equation is
/B„ 0 \

"(o =

Note from Eq. (E.4) that the two unperturbed eigenstates x i  and Xi are not coupled, since

(XilW o|xT>=0, (E.5)

which is why the two energy levels cross without affecting each other.

At this point, the level crossing between the two energy levels is not very interesting. 

However, let us consider what happens if we include a second magnetic field to the system.

E.1.2 The perturbed (coupled) system: electron in two crossed and 
constant magnetic fields

Suppose we directed a second constant magnetic field B_i perpendicular to B„. Now the 

Hamiltonian is

(E.6)
/  B» BI \

H —fiS~B = fiB^Sz + fiB^,Sx = fii I
\  ~ "11  /

and therefore the time-independent Schroedinger equation is
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(We could have chosen Sy instead of Sx. Neither the x — or y-axis  is preferred over the

T
u

0

Bn - »0

Figure E.2: The coupled energy levels E+ and relating to Eq. (E.8). Note that the lower 
curve is associated with and the upper curve for all values of

other due to the symmetry of the unperturbed system.) Since the perturbed Hamiltonian 

H  is not diagonal, then the eigenstates of H  are not the same as the eigenstates xu of 

Hq. However, we can find the eigenstates in Eq. (E.7) by diagonalizing H, producing the 

following values for the physical parameters:

t  [5 ,, +  + B l

(E.8)

(E.9)

(E.10)

where N{B^, B^) is the normalization factor, which ensures that the probability of finding 

the electron with either spin up or down is one. Note that and are orthogonal.
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If we sample the energy E+ in Eq. (E.8) at different values of B,, (remember B±, is 

a constant) then we will trace out the upper curve shown in Fig. E.2. Not only is this 

curve not a straight line, but at B =  0 the energy, which was initially decreasing, begins 

to increase. The curve for E -  has just the opposite effect, as shown by the upper curve in 

the same plot. Not only do the two energy levels not cross[190] they appear to repel each 

other. This phenomenon is known as an avoided crossing.

The behavior just discussed is entirely consistent with the Wigner-von Neumann no­

crossing theorem,! 184] which states that two energy levels cannot cross if their respective 

states are (I) coupled by the Hamiltonian of the system and (2) of the same parity. (Actu­

ally, two levels can cross even if they satisfy both criteria. As shown in Sec. E.5, however, 

such a crossing would be very unlikely.) We show in Sec. E.5 that the xn and states 

all have the same parity. However, in the perturbed system the two eigenstates are coupled, 

unlike the unperturbed system. Therefore when the perpendicular field B±, is applied to 

the system, the resulting Hamiltonian couples the two eigenstates and so avoided crossings 

replace level crossings.

208



t
u

0

0

Figure E.3: A view of the energy levels in Figs. E.l and E.2 superimposed. The points A, 
B, C, D, and F are referred to in text.

We can get a better understanding of what is happening if we superimpose the uncou­

pled energy levels in Fig. E. 1 with the coupled energy levels in Fig. E.2, as shown in Fig. 

E.3. We can see that for sufficiently large both the perturbed and unperturbed energy 

levels are nearly the same value. In fact, if we examine the Hamiltonian in Eq. (E.7) it is 

not hard to see why: the Hamiltonian becomes nearly diagonal when IB,, | » \B±]. Since in 

this limit the coupled Hamiltonian becomes nearly the same as the uncoupled Hamiltonian, 

then we can also say that in this limit the eigenstates in Eqs. (E.9) and (E.IO) approach 

the appropriate unperturbed eigenstates xu-

In summary, H  —̂ H qos —» ±oo. As B^ —» +oo:

» . XT, » - X i E u  E . Ey. (E.II)

209



Similarly, as B,, — —cxd:

 ̂Xi >  ̂XT '  ̂ — *-Ej. (E .l2)

If we keep in mind that the perturbed eigenstates can be expanded in terms of the 

unperturbed eigenstates xu, for example

=crX t+CiX i, (E.l 3)

where the coefficients are functions of then we can even describe what this means 

physically by thinking of the statistical nature of the problem in terms of ensembles. If we 

start the system out at pt. A in Fig. E.3 the character of the system, which we define as 

being either spin-up or spin-down, will be nearly all spin-up, with a little spin-down mixed 

in. In terms of ensembles, we say that when B̂  ̂ points in the negative z-direction and 

has enormous strength in comparison to Bj., we can prepare the system such that nearly 

all of the systems in the ensemble will be expected to be spin-up, with the remaining few 

spin-down. If we take this system but fix the magnetic field at a less negative value, (for 

example, pt. B in Fig. E.3) we will find more spin-down states included in the ensemble. 

When we reach the avoided crossing center, exactly half the states will be spin-up and the 

other half spin-down. Finally, if we fix B„ at pt. C most of the states will be spin-down. 

So we can say that the character of the system (spin-up or spin-down) switches across the 

avoided crossing center.

The energy level curves corresponding to E± are called the adiabatic curves of the 

system, and the are the adiabatic states. Conversely, the unperturbed energy levels 

are called the diabatic curves of the system, and the xu states the diabatic states.

Up to this point, we have only considered constant magnetic fields, with the system 

evaluated at different values of B,. Now we will see what happens when B„ varies with 

time.
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E.1.3 Time evolution of the perturbed and unperturbed systems

Consider the magnetic field B,, to be a function of time. If a system described by the 

perturbed Hamiltonian K{t) is initially started at to in the (say) perturbed eigenstate 

then at some later time t  the system will be in the state

^ t ) = U { t , t o ) ' ^ + { t o ) ,  (E .1 4 )

where U{t, to) is the time-evolution operator of the system. Using arguments detailed in 

Sec. E.6, we can show that when the magnetic field is changed as a function of time, the 

state $(() has a nonzero probability of being the state at time t, rather than the initial 

state In other words, the overlap

($_((.)!$+(()) =  ( $ _ ( ( ,) !%  (E.15)

is in general nonzero as long as the system evolves with time. (As also shown in Sec. 

E.6, this overlap vanishes as the evolution of the system becomes increasingly adiabatic 

— the time it takes to go from tg to t becomes infinite.) Since this possibility applies to 

infinitesimally small changes in time as well, then changing with time causes continual 

mixing between the two states, and therefore there is a chance that in this situation the state 

will transform from what was initially the state to the state, and even back again.

The question now becomes “If we sweep the magnetic field Bn at a particular rate, what 

is the probability that the system will be found in the same state long after the avoided 

crossing has been traversed?” We will see that not only does the answer depend on the 

relative magnitudes of the diagonal and off-diagonal elements of the Hamiltonian, but it 

will also depend on how fast we sweep the magnetic field. Even later, we will find even 

more considerations to include when we further generalize the problem.
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E.1.4 The Landau-Zener probability

The probability for the system to remain in the same unperturbed (diabatic) state as the 

system evolves past an avoided crossing was first derived by Zener.[192] The treatment by 

Wannier is similar, and it is this treatment that we will consider in the following.[193] Both 

assume a linear relationship between the variable parameter and time.

We can always express the initial state of the system as a linear combination of spin-up 

and spin-down unperturbed eigenstates,

^ (t) =  ct(t)xî + q (f)X i. (E.16)

If we are sufficiently far from the avoided crossing we can approximate the initial state of 

the system as being purely spin-up or spin-down, as evidenced by the relations in (E.l 1) 

and (E.12). Let us assume that at t  ̂ -t-oo the system is in the spin-up state xt, that is 

|cf(+oo)| =  1 and |c^(-t-oo)| =  0.[194]

The probability that the system will be in the xt state a tt  -o o  (pt. A in Fig. 

E.3) is given by |c+(-oo)p. Assuming that changes linearly with time, B,, =  Xt, the 

Hamiltonian becomes
/A t  Bx \

=  - aJ -

To find |c |(—oo)p we must now consider the time-dependent Schrodinger equation,

where we have set ^  =  1. (The magnetic fields will be measured in energy units.) Writing 

out the equations resulting firom the above we find

Xtĉ  4- BxC; =  , —Atc  ̂ -f BxC| =  (E.19)
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Solving for q  in the first equation and substituting it into the other we obtain a second-order 

differential equation.

a special type of confluent hypergeometric equation called a parabolic cylinder equation. 

The exact form of the two solutions for c ,̂ given in terms of Whittaker functions [195], are 

of little concern to us; instead we are more interested in their asymptotic forms. Only one 

of the (asymptotic) solutions,

Ct(É) ~   ̂ ( _ o o ,  (E.21)

obeys the boundary condition that a tt  —» -foo the system is in the state xt- This asymptotic 

solution is also valid for t -* —oc provided we make the substitution[ 193]

- t  (E.22)

Upon doing so, our asymptotic relation becomes

c,(i) ~   ̂ (E.23)

Therefore, the Landau-2kner transition probability is

P (î)  =  |cî(-oo)l^ =  exp
x B l
4AA

(E.24)

As we can see, the probability of remaining in the same state increases as the coupling 

field B±, vanishes . This is expected since the Hamiltonian becomes nearly diagonal for 

sufficiently small B^, and so the system behaves almost like the unperturbed system. Like­

wise, the probability of remaining in the same state increases as A (the sweep rate of the 

magnetic field) increases. This is the diabatic (or sudden) limit, and results firom having the 

magnetic field change so rapidly that the character of the state, defined by the orientation
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of its spin vector in relation to the z-axis, never has a chance to switch. (Wannier called 

this the “inertial path.”[193])

As A 0 the probability P ( î ) vanishes and the system will be found in the other state, 

Xx, at P|| —+ —oo. In other words, the system will follow the upper curve in Fig. E.3 to pt. 

F, switching character across the avoided crossing. This is the adiabatic limit because it 

corresponds to such a slow evolution of the system that time can be treated like an ordinary 

parameter in the lime-independent Schrodinger equation. In other words, in this limit we 

are not solving a time-dependent problem but rather an infinite number of time-independent 

problems, each evaluated at a difierent value of

Note also that P(T) -+ 0 as /i —» 0, the classical limit; barrier penetration is a purely 

quantum-mechanical effect.

Notice that in order for the system to be found in the same spin-state as P,, is swept 

from —oo to -Foe (or in the other direction) the nonphysical (classically forbidden) region 

between the two coupled energy levels must be traversed. This tunneling between levels is 

the basis behind the term Landau-Zener tunneling.

There is a physical description of our results that is useful. The electron in our system 

is being acted upon by two perpendicular magnetic fields, one which points along the z- 

axis, P||, and another perpendicular to the z-axis, Pj.. If P„ is sufficiently large, then the 

effects of P i  are minimized and the electron (essentially) reacts as if it is only acted upon 

by P||. In this situation, we can (in effect) start the electron in a spin-up state, and assume 

that the net magnetic field points in the -t-z-direction. In other words, we are starting the 

system near pt. D in Fig. E.3. However, if P„ is weakened at a finite rate, the effects of 

P i  become more prominent and the electron’s spin vector begins to precess about the total 

magnetic field B i  In this situation, there is an increased probability that the electron 

will be found in the spin-down state. Once P,, has changed direction it begins to grow 

in magnitude, and the state of the system becomes increasingly spin-down. The slower 

the field is weakened, the more likely the system will be able to evolve accordingly, and
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therefore the more more likely the systenLwUl be found in the spin-down state once the 

avoided crossing has been traversed. In this case the system is approaching the adiabatic 

limit, following the lower curve in Fig. E.3.

However, if the magnetic field direction is changed rapidly, the spin-vector will not 

have a chance to change direction accordingly, and electron will be "caught" in the state 

where Its spin vector points in the positive 2-direction (spin-up). This corresponds to the 

fact that as A 00 the system remains in the same state — the diabatic limit. This is why 

Wannier called this evolution of the system the “inertial path.”

The Landau-Zener transition probability refers only to initial and final conditions at 

± 00. However, if we start the system in the x\ state at a very negative value of tg, we 

can calculate the probability |c(()|^ of remaining in the same state as a function o f time 

by numerically solving the time-dependent Schrodinger equation in Eq. (E.18). We can 

see in Fig. E.4 that in certain situations the probability to remain in the original state can 

oscillate as is changed. As seen in the figure, the probability of remaining in the same 

unperturbed state as the avoided crossing is traversed vanishes as 7 =  h X /B \ becomes 

small, corresponding to the large and small A and h. limits, as we previously discussed.
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0.854 y=20

0.533 y = 5

0
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Figure E.4: The probability to remain in the original diabatic state as the magnetic field B,; 
is swept linearly with time, where 7  =  hX /B \. Note that the horizontal axis is expressed 
in terms of the ratio between B,, and Bx, where Bx is fixed according to the value of 7 . 
The resulting data represents a numerical solution of Eq. (E.18) with the initial condition 
that C|(—00) =  1. A very similar plot is shown in Mullen, et a/.[19l]

E.2 A More general model

Before we examine a more general model we should first discuss the effects each term in 

the Hamiltonian matrix has on the physical properties of the system. First, if a constant 

term C  is added to both diagonal elements.

VBx - b J  Bx - B „ + c y ’
(E.25)
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0

Bii ->0

Figure E.5: Effects on the energy levels due to a shift in the diagonal elements of the 
Hamiltonian, shown in Eqs. (E.25) and (E.26).

the effect will be an overall shifting up or down by a value C of the energy levels, 

as shown in Fig. E.5. The transition probabilities we are concerned with depend only on 

energy level separation, therefore we can ignore these terms if they appear. Note that 

adding a term to both diagonal elements is the same as including a time-dependent phase 

factor to both eigenstates.

n n + c i , (E.26)

where 1 is the identity matrix. We can take advantage of this freedom to include or ignore 

such a phase factor whenever it is convenient.
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Figure E.6: Effects on the energy levels due to a shift in the off-diagonal elements of the 
Hamiltonian, shown in Eq. (E.27).

If a term C is added to the off-diagonal elements.

(B \ —Btt A (E.27)

this will either sharpen or flatten the avoided crossing without shifting the center of the 

crossing, as shown in Fig. E.6. We can even quantify this effect by nothing that the separa­

tion between energy levels at B,, =  0, at least in this simple example, is 2B_i. (This relation 

is roughly true for most Landau-Zener problems. In fact, it is one of the assumptions that 

we will use later to derive the Landau-Zener probability.

Finally, if each diagonal element is changed by the same constant factor

- B j
r B ,+ C  Bx \  
V Bx —(B|, -t- C) y

(E.28)
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the only effect will be a shifting of the avoided crossing with respect to B,,, as shown in 

Fig. E.7. In this case, the transition probability will be unchanged, as long as the values of 

B|, on the horizontal axis are adjusted accordingly.

T
u

0

Bn0

Figure E.7: Effects on the energy levels due to a shift in the diagonal elements of the 
Hamiltonian, shown in Eq. (E.28).

With this discussion in mind we can now consider a more genral problem and how 

the generalizations effect the results for the Landau-Zener transition probability. A typical 

example of a more general problem[196] is where an unperturbed system is described by a 

Hamiltonian H q such that, at any particular value of the variable parameter s .

H q{s ) ^ i {s ) =  Bi(s)0i(s), Ho{s)<f>2 {s) =  B2(s)^2(s). (E.29)

In the simple model, the uncoupled spin eigenstates xn  would correspond to 0i,2 and B,, 

would correspond to the variable parameter s. Another definition of s that commonly ap­

pears is the distance between two atoms or molecules in a scattering process. Note that here
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the unperturbed states are functions of s, whereas in the simple model the unperturbed spin- 

states were constant for all 5,|. The two eigenstates where i  refers to the two degrees of 

freedom, are linearly independent since both are solutions of the same differential equation. 

Therefore we would expect level crossings between the two corresponding energy levels. 

However, unlike the simple model we cannot necessarily expect the unperturbed energy 

levels to be linear functions of the variable parameter.

Now suppose the system is perturbed by another Hamiltonian SH{s) which couples the 

two degrees of freedom (in a manner similar to the coupling created by J5i, except here 

the coupling term is a function of s). Let us define the total Hamiltonian (which Lubin et 

a/. [196] call the adiabatic UaxmXiomza) as

Ha[s) = HQ{s)^5H{s) (E.30)

and the corrected energies as

Si = {(l)i\Ha\(t>l), £ 2  = {(t)2\Ha\(l>2)- (E.31)

The relationship between the corrected energies and the unperturbed eigenenergies Ei is

£i = Ei + {çi\5H\(j)i), (E.32)

so the £i are simply first-order corrections to the unperturbed energies Ei. The g, are not the 

adiabatic energies of the system, which result from a diagonalization of the total Hamil­

tonian, so we expect some mixing to enter the time-independent Schroedinger equations 

corresponding to 0i and <̂2. We can therefore, for 0i, assume an equation of the form

Ha{s)(f)i{s) =  ei(s)0i(s) -f £12(5)02(5), (E.33)
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where 612(g) represents the amount of mixing contributed by the state 02(s)- It is straight­

forward to show that the complementary equation is

Ha{s)M s) =  62(s)<̂ 2(s) +  (E.34)

By projecting 02 onto Eq. (E.33) we find that

^12(5) =  (02(a) I  101(a)) =  (02(a) |<fff(s) I0 i(s)). (E.35)

The actual eigenstate of Ha will be a linear combination of 0% and 02,

'P(s) =  Ci(s)0i(s) -h 02 (a)02(a), (E.36)

so the time-dependent Schrodinger equation, H a^ =  ih.d'^/dt, becomes

^fa(a)(Ci(s)0i(s) -FC2(s)02(a)) =  ï /i^ (C i(s )0 i(s )  -h C2(5)02(a)), (E.37)

such that

Oi(s) ^6i(s)0i(s) + 6i2(a)02(a)j + 02(a) ̂ 62(a)02(a) -t- a*2(a)0i(a)j (E.38)

= i/ig(o((s)0i(s) -fOi(s)0Ua)) -h2/is(o (̂5)02(a) -f O2(s)0^(a)), (E.39)

where primes indicate di^erentiation with respect to s. By projecting both 0i(s) and 02(g) 

onto the above equation we obtain two coupled differential equations,

%Ag(0I(g) (01(g) 10l(a))Oi(g) -b (01(g) 10^(g)>O2(g)) =  6i(g)0i(g) -h 6l2(a)C2(a),

(E.40)

ihs(C 2 {s) -h (02(a) 102(a))O2(g) -h (02(a) 10i(a))Oi(g)^ =  62(a)02(a) - f 6i2(a)Oi(g).

(E.41)
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In matrix form

\  I  e * 2  -  I  ( ^ 2 )  \  / C ' A

V C a/ \^ i2  — z/is(^i I <̂2) Sg — %/W(̂ 21 ^ 2) /  vC a/

The (01 |0'i) and (02102) terms in the Hamiltonian are purely imaginary, since

(01 |0l) =  -(0'l I0l) =  -(01 |0'l)*- (E.43)

Therefore, we can set (say) (01 \((>[) = ia(s), where a(s) is real-valued. As demonstrated 

in Eq. (E.25), the eigenstates are only defined up to an arbitrary s-dependent phase, which 

we can demonstrate by inserting the mapping 0i(s) -* 0j(s)e‘®̂®̂ into the Schroedinger 

equation above and ignoring the constant added to the diagonal terms.[l97] Therefore a(s) 

is arbitrary as well, so we choose a(s) in such a way that

£i(s) =  î/is(02102). (E.44)

(This is also discussed in Schiff.[l98]) Using the same reasoning, we can set £2 (3 ) = 

ihs{(j>i 10i) so that the matrix equation becomes

. . d  f ^ i \  (  ^1 —^2 5*2 "  %/î (<Ai 102) \  /C A

\ c j  “  - ( ^ i - S a )  / I c J '   ̂ ’

At this point no approximations have been made as long as the system is truly two-level. 

The above relation is a general formulation of the Landau-Zener problem involving two 

interacting energy levels, as long as only one parameter is being varied. Let us now sum­

marize how the two systems — the general model and the simple model introduced earlier 

— differ:
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1. The unperturbed energy levels of interest are not necessarily the eigenenergies of the 

unperturbed Hamiltonian, but rather the first-order corrections to those eigenenergies. In 

the simple model, there was no difference between the two energies since

Ej = El +  I  Sx I  <f>i) =  (E.46)

In fact, the unperturbed energy levels do not necessarily cross for a physical value of the 

variable parameter (see Mullen era/. [202] for an example), but we will assume they do.

2. The corrected energies £{ in the general model are not necessarily linear functions of 

the variable parameter.

3. The uncoupled eigenstates <j>i are in general functions of the variable parameter, 

unlike the spin-states in the simple model.

4. An extra term iàs{<f>i | is subtracted from the off-diagonal elements of the Hamil­

tonian in the general model. This term didn’t appear in the simple model since the spin 

eigenstates were not functions of B,,. From our previous discussion, and from Fig. E.6, we 

expect that this added term will narrow or widen the barrier between the two energy levels, 

therefore affecting the Zener probability amplitude.

The Hamiltonian used by Wannier and Zener, from which the Zener probability was 

derived, is of the form

( t  x r

where Hn  was a linear function of time and H 12 was a constant. Such a form is a naturally 

developed in the earlier problem of a half-integer spin placed in a magnetic field, mainly 

because in the simple model the unperturbed spin-states were field-independent and the 

coupling Hi2  constant. At this point, neither assumption has been used. Therefore, to put 

the Hamiltonian in Eq. (E.4S) in this form, some approximations will have to be employed:

1. The rate of change of the variable parameter is nearly constant. In other words, à can 

be replaced by A, a constant. (In the simple model A corresponded to dB^Jdt.) If s is an
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externally controlled parameter, such as in the simple model, then we can specify this 

requirement — no assumption is needed.

2. We assume that a region szen centered about the point where ei = e-i (which we 

define to be s =  0) exists such that ei -  eg is large in comparison to \Ec\ outside this 

region. Even if the unperturbed energy levels Si{s) have shallow approaches, we assume 

that we can always enlarge the region of interest to encompass szen* This condition could 

be violated if there are multiple avoided crossings placed close to each other, or if the 

avoided crossing center is displaced significantly from s =  0. Mullen and colleagues[19l] 

estimated the sizes of szen in both the diabatic and adiabatic limits. We will discuss their 

results shortly.

Therefore, the Hamiltonian in Eq. (E.45) is essentially diagonal for all s outside the szen 

region. Since uncoupled Hamiltonians cannot induce transitions between adiabatic states, 

we can assume that all of the transitions occur within szen, and therefore only concern 

ourselves with the Hamiltonian describing the system within this region.

3. Other than £i -  £2. all parameters have slow s-dependence. We can therefore ignore 

their derivatives with respect to s, and also approximate each parameter by its first nonva­

nishing term in their expansion about s =  0. For £1 — gg we assume that its s-dependence 

is at most not much greater than linear. Therefore, we can ignore any second-order (or 

higher) derivatives of this term.

From the second assumption both £1 — £2 and the coupling term £c =£12 — iha{<!)i \ 

in Eq. (E.45) can be replaced by the first nonvanishing term in its expansion about s =  0. 

Since we assumed that £1 and £2 cross at s =  0 then

£i -  £2 «  K(0) -  £^(0)] s =  77s, (E.48)
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where ri =  e^(0) — e^(0). Furthermore, as long as we can ignore the (0i | term then we 

can approximate £c as £̂12(0). Using the above assumptions, our Hamiltonian is now of the 

form

m A F ' L r " »  (E .# ,
\ ^ 2 /  \^i2(0) — r is j  yC z/

This is the matrix equation solved in the simple model and by Zener and Wannier. From

our previous result for the simple model, we can see that if we started the system in the

state at i  - +  —o c ,  then the probability of remaining in the same state at t  —> 00 is

P (l)  =  exp 7r[gi2p
hr}X

(E.50)

Notice that the rate at which the corrected energies £i and £ 2  approach each other, given 

by 77, now becomes an important factor when determining the Zener probability amplitude. 

The steeper the rate, the more chance the system has of tunneling through the barrier and 

thus remaining in the same state.

E.3 The implications of Zener’s assumptions

We will now relax some of Zener’s assumptions and see what physical effects will occur 

when evaluating the Zener probability amplitude. As long as we do not violate any of 

Zener’s three assumptions, then we should be able to simply modify the Zener probability 

amplitude accordingly.

The first assumption we will relax is the requirement that (^11 be negligible. We 

can see the impact that this term has on the Schrodinger equation by transforming the 

Schrodinger equation to a new basis. Let us first reexpress the coupling terms in the original 

Hamiltonian. Since they are complex-valued and complex-conjugate, we can redefine them 

using DeMoivre’s theorem as,

e*(a) =  \ £ c { s ) \ £ c { s )  =  l£c(s)| (E.51)
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where ec =  eia — ihX{<f>i{s) [ <̂2(3)), and 

'AA|Wa)|4&^(5))|-
0 (s) =  tan -I

ki2(s)| , kc(s)| =  V\ei2(s)\^ + nx^H M s) 14W )I".

(E.52)

The subsequent matrix can be simplified by transforming the expansion coefficients with 

respect to the same phase.

Cl -* , C2  -> (E.53)

The freedom to redefine the expansion coefficients in this manner relies on the fact that 

\Ci\- and |C2|  ̂— the probabilities of being in the respective states (pi and ct>2 — are invari­

ant under such a transformation. In this new basis the Schrodinger equation becomes

itiX
d f^i ~ ^2 + ^XQ'{s,X) kc(5)| \  /Cl

ds \ c . kc(«)l
. (E.54)

Zener 
c =±(.2+.2i) 

c =+.2—.2i 
c =^.2+.2i

T

eu

0
K0

Figure E.8: The Zener probability, Eq. (E.S7), to remain in the same diabatic state, when 
the coupling (0i(O) | <̂2(0)) is nonzero. In the key, c stands for the value of {( î(0) 11̂2(0)), 
expressed as a complex number. The Zener transition corresponds to (^i(O) | <̂2(0)) =  0.
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From Eqs. (E.52) can see that if (<f>i{s) | ^2(3)) is nonzero, then the second term in the 

radical for can become large in the large X limit. At this point, we cannot approximate 

612 «  £12(0) and one of 2fener’s assumptions fails. However, because of the square root in 

the definition of |gc(^) I  we know that as long as | (< î(s) | not too much larger than

l îal then |ec(s) will not increase by a significant factor. In fact, Lubin et a/.[196] defined 

the characteristic sweep rate Ac as

-  fti(«i(i)‘i k ( s » r

If (01 (s) 102(a)) 7̂  0, we can still satisfy Zkner's assumptions as long as the sweep rate is 

not increased significantly over Ac. Obviously the diabatic limit (which relied on A —» 00) 

does not apply in this situation. We can even predict what effect this will all have if we 

assume that we can ignore the variations of (0i(s) 102(a)) with respect to a. (In other 

words, the overlap between 01 (a) and 02 (a) is not zero, but it is still roughly constant.) In 

that case, we can still expand 612 about a =  0, producing

£i2(a) % £12(0) -  iA/i(0i(O) 102(0)). (E.56)

Since Zener’s assumptions still hold, we can simply modify the result in Eq. (E.50) to 

incorporate (he new off-diagonal terms,

P ( l ) = « p  - î ( !£ l^ -2 I m (£ :„ { O ) (* (O )U ' , (O ) ) - )+ M (0 i(O )k i (O ) )p )  .

(E.57)

In this case, the probability is no longer a monotonie function of A but we must keep in mind 

that the above result is not valid for A »  Ac, and Ac is the point at which the probability 

begins to decrease. What I found surprising in this research was how varied the effects that 

the relative strength of the second term in Eq. (E.56) had on the transition probability, as 

demonstrated in Fig. E.8.
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Figure E,9: Effects on the energy levels due to linear relationship between 0 ' and s, as 
shown in Eq. (E.60).

Now suppose that the magnitude of the coupling term in Eq. (E.4S) is ^independent, 

but the phase is not. In other words.

6 c { s )  =  |£ c | e
ie{s) led =  constant. (E.58)

By looking at the Hamiltonian in Eq. (E.54) we can see that the adiabatic energy levels 

will be the same, no matter what functional dependence 0(a) has on a, since the adiabatic 

levels are found by setting A =  0 and solving the time-independent Schrodinger equation. 

If 0 '(a) is a constant, then the Zener transition probability amplitude will be given by Eq. 

(E.50). As we learned earlier in Eq. (E.28) and Fig. E.7, all that will occur is a shift in the 

avoided crossing center with respect to the variable parameter. However, if 0 '(a) is a linear 

function of a, that is 0 '(a) =  6a where 6 is a constant, then all we have to do is redefine the 

diagonal terms as

7/a — *■ (7/ 4- 6)a. (E.59)
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The Zener transition probability is modified accordingly, so that

îr|ei2pP (l) =exp
.  fiiv + b)X. (E.60)

So in this example, two different systems can have the exact same adiabatic spectrum but 

completely different transition probabilities, depending on the value of 6. See Fig. E.9.

E.4 Discussion

We have seen that the simple model of an electron suspended in a magnetic field has many 

hidden assumptions that makes deriving the Landau-Zener transition probability fairly sim­

ple. When a more general system is considered, not only do the first-order corrections to 

the unperturbed energy levels become an important consideration, but the nature of the 

coupling between the off-diagonal terms can have large effects on the transition probabiliy. 

Two different systems can have the same adiabatic levels and still exhibit great differences 

in transition probabilities.

E.5 Parities of the Spin-up and Spin-down Eigenstates
This section was originally the first appendix in the original Specialist Exam writeup.

To find out how the parities of the spin-up and spin-down eigenstates relate we apply 

the lowering operator S_ to the spin-up state:

(E.61)

Applying the parity operator II to both sides,

nS'-Xr =  fiHXi. (E.62)
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and noting that the the parity operator is unitary, H =  11̂ , we find

n s_ ii"^ iix i =  n5_n^iix i =  hUxi — »■ ■S’-IIx t =  (e.63)

because the raising operator is invariant under a unitary transformation. Because the eigen­

states of S: have definite parity, then we can define nj and such that

H xt =  tttX t H x i  =  n x i -  (E .6 4 )

From Eq, (E.63) we obtain T^S-Xt =  But 5_Xt =  àxi,  so tt^^xi =  ^Tr̂ Xi-

Therefore

7 r |= 7 T |, (E .6 5 )

and we have shown that the parity of the Xt and xi states are the same. Since the perturbed 

eigenstates and are simply linear combinations of these unperturbed spin-states, all 

which have the same parity, then we can also say that and also have the same parity.

Now we can discuss the Wigner-von Neumann no-crossing theorem. For a two-level 

system the time-independent Schrodinger equation will be of the form

where s is a variable parameter. The eigenvalues are

Ei{s) = ^  i v ( f f u W - J Ï 22W P  +  |if i2W|^. (E.67)

For the two energy levels to become degenerate, the square-root term must vanish. How­

ever, the radical is a sum of squares, so the only way for the square-root to vanish at some 

value of the variable parameter s is for (I) Hn{s) =  ^ 22(5) and (2) Hnis)  =  0. However, 

if the two states $1 and $2 are of the same parity, then in general the second condition is 

not satisfied and we cannot expect to find a value of s where the energies are degenerate.

230



(It could be that a value of s exists such that H n  and Hn — H 2 2  =  0, which would pro­

duce a level crossing between two levels correspondint to coupled states of the same parity. 

But this is an unlikely occurrence.) In that case, we expect avoided crossings, not level 

crossings. However, if the two states are not coupled by the Hamiltonian, then the second 

condition is already satisfied. In that case, any value of s where H u =  JÏ22 will be location 

of a level crossing.

In summary, the energy levels corresponding to states of the same parity that are cou­

pled by the Hamiltonian of the system will not cross for any physical (real) value of the 

variable parameter.

E.6 The Adiabatic Limit
This section was originally the second appendix in the original Specialist Exam writeup. It 
is mostly the work of Martin Dunn, and I take little credit for it.

The proof that a time-varying parameter induces transitions between adiabatic states 

relies on one assumption — in the adiabatic limit no such transitions take place. Even 

though this assumption is expected, I will now offer a proof of this assumption.

The time-dependent Schrodinger equation for the system we are considering is

( c  ®.68)

where A is the sweep rate in the relation s = Xt and s is the variable parameter. (In the

simple model, Bj_ would correspond to the off-diagonal term c and would correspond

to a.) In general, we can always express the state $(() in terms of a time-dependent phase 

factor, which will also be a function of the sweep rate A. Therefore, we write

^ ( A ,( ) = e - '^ ) $ ( A ,t ) ,  (E.69)
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where ($ | $) =  1 to conserve probability. Therefore

$(A, t) +  —$(A,f) (E.70)

j ) )  x> +  x ' + X>. ■

Now our time-dependent Schrodinger equation is (canceling the exponential terms)

Since the Hamiltonian is Hermitian it can always be diagonalized by a real, orthogonal, 

unitary matrix U, therefore

/E^{s)  0 \
V 0 E .{ s )J

£7(5)$±(A ,-)=  H\ U{s)^±(K j )

■i>)
(E.73)

Since (‘5± | =  1 then

lim
A—*0

=  0, (E.74)

and we lose the last term in the time-dependent Schrodinger equation in this limit. We now 

have two uncoupled differential equations.

E±{s) — hX-j-ct -h ihX—  
as as

(E.75)

where (C7$)^ (U^)^  — 1. The phase factor a  is completely arbitrary, so we choose a 

particular value of a  such that (U^)^  =  1. Then

(d/ds)(C7$)± =  0 (E.76)

and

E±(^s) — fiX— ot 
cLs

=  0. (E.77)
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From Eqs. (E.74) and (E.76) we can see that

lim =  0 (E.78)
A - o  ds

and our time-dependent Schrodinger equation becomes in the limit A —> 0

( c  =  ^±W $±(0,oo). (E.79)

But

a = -^ j^^E:t is ' )ds ' ,  (E.80)
d E±{s) 

-a =
ds hX

which is infinite as A -+ 0. Therefore, in the adiabatic limit

“ M .  (E.81)\  phase J \wavefunction J

In the adiabatic limit, the state of the system does not switch to another state, but rather is 

nothing more than the original state multiplied by an infinite phase factor.

Now consider the system to be in the adiabatic state 'î'i when the parameter of the 

system s is at some initial value Sq. We assume that s is varying infinitely slowly (adiabati-

cally). If the system evolves adiabatically, then at some later value of s we assume that the

system will be in the same state In other words, the adiabatic evolution operator Ua 

takes us from our initial state at So to the same state at s

^ l(s) =  Ua{So, s)^l(So) (E.82)

If the system varies nonadiabatically, then at some later value of time the system will be 

found in the state

$(f) =  % f j $ i ( ( . )  (E.83)
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If we can show that the final state ^(t) is not the same as then we have shown 

that the final state must be a mixture of and some other state. Therefore, we will have 

shown that the time-evolution operator mixes the states as time evolves in the system.

If the final states for both the adiabatic and nonadiabatic evolutions are the same, then 

the two evolution operators must be proportional to each other, so at the most they can vary 

by some time-dependent phase

=  (E.84)

The two Hamiltonions describing the system at different values of t do not commute, so 

the exact form for the time-evolution operator is rather complicated. However, the first two 

terms in the expansion of the time-evolution operator are not complicated:

U{t, £„) =  1 -  i  r  H{t') dt'. (E.85)
^ Jto

If U{s,So) is indeed proportional to U{t,to), then the two operators must commute. 

However, they in do not. This can be seen by examing the commutation between U{s, So) 

and the first two terms in U{t, to).

^  0. (E.86)

Even if the above commutation relation does equal 0 for some time t, it certainly cannot 

equal 0 for all time. Naturally the above relies on only the first two terms of U{t, to), but 

if it fails to commute for the first two terms it would be extremely unlikely that it would 

commute for the sum of all the terms in the expansion.

Therefore, the adiabatic and nonadiabatic evolution operators cannot be simply propor­

tional to each other, and therefore the final state when the system evolves nonadiabatically 

cannot be purely $  i . Therefore, varying the external parameter with time mixes the states.
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Appendix F

Avoided Crossings as |m| is Swept while the Unsealed Field 
Strength B is Held Constant: Details

Originally appeared as the Appendix in J R. Walkup, M. Dunn, D.K. Watson, Phys. Rev. A 
58,4668-4682(1998).

F.l Rewriting the energy level characterization in Terms 
of the Unsealed Field Strength and the Solutions of Eq. 
(4.11) for Fixed Physical Field Strength

When re-expressed in terms of B  and 6, the S±{B) of Eqs. (4.10) and (4.11) are functions 

of both B and Ô (see Eq. (3.3)), that is S±{B,S). Consider expanding ^±(S,5) about a 

point Sc while B  is held fixed, where Sc is a solution of Eq. (4.13) for fixed B. Then

{5 -  4 )
S=ScdS

-1-higher order terms in (5 — Sc) . (F.l)

Now S±(B, Sc) =  S±(Bc) is the solution of AE(S, Be) = 0 — AB(S, B) (see Eqs. (4.11) 

and (4.13)), that is S±(B, Sc) =  Sc, where c = ± . Therefore

S=ScdS

-fhigher order terms in (5 — 0±). (F.2)
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This means that

v/<5 - 4 ( B )  =  V A ( B , i ) ( i - 4 ( B ) )  (F.3)

where A{B,  5) is finite at ̂  =  S±{B), and Eq. (4.10) becomes

B) =  Ea{5, B) ±  EbiS, B ) y / S - 5 ^ { B )  y / S - 5 . { B ) ,

(see for example Eq. (4.10)) where the J±(B) are solutions of Eq. (4.13).

F.1.1 Derivation of the approximate relationship of Eq. (4.16) from 
Eq. (4.13)

A good approximation for the 5îe(^±(5)), the real part of the solutions of Eq. (4.13) for 

fixed B, may be obtained from the positions of the branch points in the complex plane for 

fixed B, the solutions S±(B) of Eq. (4.11). Equation (4.12) determines where an avoided 

crossing will be found as B  held fixed. According to Eq. (3.3) this corresponds to an 

unsealed magnetic field B  =  j^3fie(l±(S))j B. By using this value of B  in Eq. (4.13) 

we obtain the positions of the branch points in the complex 5-plane for this value of B. 

Therefore from Eq. (4.15) we obtain the position of the avoided crossings as 5  is held 

to this value. However, the value of B  at 5±{B), the branch-point position with B  held 

fixed, is not j^SRe(5i(5))j B  but rather |^5±(5)j B. Thus the S±{B) are the solutions of 

Eq. (4.13) with B  =  |^5i(5) j B. Nevertheless, these are close to ^lRe(5±(5))j B  since 

|%e(5j.(g))| »  |@m(5±(B))|. Therefore, assuming that the solutions of Eq. (4.13) are not 

extremely sensitive to the precise value of B,

^ [lR e(4 (5 ))]' B ^  «  4 (B ) . (F.4)

Therefore from Eq. (4.15)

% ([»e(4(B))]' b) =» »e{4(B)).
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Appendix G

Quadratic Padé Approximants

Originally appeared as Appendix A in J. R. Walkup, M. Dunn, and D. K. Watson, J. Math. 
Phys. 41, 216 (2000).

To analyze the divergent energy series we employ both linear Padés and quadratic 

Padés[18S]. Quadratic Padés have a functional form which enables them to incorporate 

explicitly square-root branch point singularities; in addition linear Padés S [ l / m \  (see be­

low) are determined by the requirement that

Q E — P 0,

where E  is the energy series, P  is an order polynomial, Q is an order polynomial 

with zeroth-order coefficient % =  1, and 0” means “asymptotic[126] to 0 up to and 

including order L+ M ' '  Therefore the energy series E  is asymptotic to the rational function 

of polynomials, or linear Padés,

S[L/M] =  ^  ,

up to and including order L -t- M. In other words.
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The value of S[i /m\ for a specific value of the perturbation parameter is the [L/M\ linear 

Padé sum of the energy expansion at that value of the perturbation parameter. By introduc­

ing a third polynomial R  of order N, we can determine the quadratic Padés S[L/ia/N\ from 

the equation

Q E~ — P E  R  0, 

where O' means asymptotic to 0 up to and including order L + M  + N  + 1. Therefore

p -  -  1 /  f  nE  ~  S[i,/m/n] , S[[,/m/n\ -  2 I Q 4 g  I • (G.l)

The square-root term in Eq. (G.l) requires that S[l/m/n\ be a multivalued function with 

two branches.[186] Equation (G.l) holds for only one of these two branches. The value of 

S[L/M/N] for some value of the perturbation parameter is the [L/M/N] quadratic Padé sum 

of the energy expansion at that value of the perturbation parameter. Although quadratic 

Padé summation is useful in its own right for summing series of functions with branch 

points, we simply use it to locate such branch points. The branch points are given by the 

zeros of -  4Q R , which have a stable position as L, M, and N  are varied in a regular 

fashion so that L + M  + N  + 1 increases.
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Appendix H

Verification of Branch Points at the Origin at the Fermi 
Resonance

Originally appeared as Appendix B in J.R. Walkup, M. Dunn, and O.K. Watson, J. Math. 
Phys. 41,216 (2000).

At the Fermi resonance, d' =  0 and E+(0, B) = E~{Q, B). Therefore, there are two 

possibilities:

1. At least one branch point is found at the origin. (The coefficient C{6, B) or F [8, B) 

in front of the nonzero \J5 -  S^(B) term in Eq. (5.4) must be 0. This possibility 

imposes no constraint on G(S, B)  in Eq. (5.5), since 5 -  8~{B) =  0.)

2. Neither branch point is found at the origin. (This requires that C((J, B) =  F {8, B) = 0  

in Eq. (5.4) and G{8, B) =Q in Eq. (5.5).)

To see which of these two possibilities is correct, we only need to examine the magnitude 

of the coefficients in the (^-expansions for E"^{8, B)  near the Fermi resonance. If the coef­

ficients diverge without bound as B  approaches the Fermi resonance, then at least one of 

the singularities approaches the origin and the first possibility is correct. This is what oc­

curs for both the 2:1 and 4:1 Fermi resonances (see Table H.l); one or more branch points 

converge onto the origin at the Fermi resonance.

For the 2:1 Fermi resonance, we can even show analytically the presence of a branch 

point at the origin when the 2:1 Fermi-resonance degeneracy condition between the |11)
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Table H.l: Fourth-order energy coefficients (see Eq. (3.9)) of the |11) state as functions of 
B  in the large-B limit. The numbers in parentheses indicate the power of ten multiplying 
the entry. _____________________________

fia ^(8)

10 000 1.3356583551610437 (6) 
20 000 9.2198129717014880(6) 
30 000 2.5008272699694642 (7) 
40 000 4.9098907630423283 (7) 
50 000 8.1664939726775076 (7) 
60 000 1.2278772158146093 (8)
70 000 1.7250282491805636 (8) 
80 000 2.3082038846347921 (8) 
90 000 2.9773544049674207 (8)

Note th a t th e  scaled Reid streng th s listed are extremely large physically, even for large values of |m|. 

From B=S^B, the  scaled streng th  B=IOOOO corresponds to  nearly 7500 tesla when |m |=33. A t |m |=0  this 

field strength  is on the o rder o f 10® tesla. (!)

and j03) states is met exactly. This can be achieved using degenerate perturbation the­

ory (see Appendix I), the required method when two zeroth-order states are degenerate. 

Although degenerate perturbation theory proceeds in almost exactly the same fashion as 

nondegenerate perturbation theory once the zeroth-order state has been determined, the 

fact that the zeroth-order state is a linear superposition of both the |11) and |03) states 

means that the usual arguments for the coefficients of the odd powers of in the energy 

series being 0 in nondegenerate perturbation theory break down for degenerate perturbation 

theory (see the text following Eqs. (3.9) and (3.11)). This confirms the presence of a  branch 

point at the origin when the 2:1 Fermi-resonance degeneracy condition is exactly satisfied.

The application of degenerate perturbation theory to the 4:1 Fermi resonance is a little 

different from the ordinary. See Sec. 5.4.2 and Appendix G.

240



Appendix I

Branch Point Behavior via Degenerate Perturbation 
Theory

Originally appeared as Appendix C in J.R. Walkup, M. Dunn, and O.K. Watson, J. Math. 
Phys. 41,216 (2000).

The harmonic Hamiltonian has the same form as a two-dimensional SHO, therefore we 

expand the perturbed states in the two-dimensional SHO basis \u1 U2 ). The |11) state is 

involved in both crossings under consideration. The other is either the |03) state (2:1 Fermi 

resonance) or the |05) state (4:1 Fermi resonance). Therefore, for the two-fold degeneracies 

we consider, we expand the nth perturbed eigensolutions to second order in as[187]

|<t„> = c ïï |l)+cS |2)+ ilf;c<« |m )+ if;ca |m ). E„ = E!!»+â^Ej,»+SEi^K
m=3 m=3

(1.1)
Here |1) =  111), |2) refers to either the |03) or the |05) state (depending on which crossing 

we are considering) and the |m) number all unperturbed states other than |1) and |2).

The first-order correction to the harmonic Hamiltonian, contains the following set

of annihilation/creation operators ô :

 ̂ , (1.2)

where Ii and I2 refer to diagonal operators operating on the first and second quanta, respec­

tively.
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Now consider first-order degenerate perturbation theory. Since there are no purely di­

agonal terms, =  7̂ 22 =0- Therefore En^ =  ± |w [2 I* For the 2:1 Fermi resonance, 

fO  because (11|7((^)|03) ^ 0 . However, (ll|7f(^)|05) =0.

For the 4:1 Fermi resonance (|2) =  |05)) we cannot determine either of the expansion 

coefficients or at first order since =  H22 =  ^12 =  ^ 21̂ =  0, so we now 

resort to the next order of perturbation theory to determine the zeroth-order states at the 

degeneracy.

The first-order perturbed wave function coefficients are given by

_(0)^(1) , (OWl)
(1.3)

■fi'n ■C'm

According to Eq. (1.2), there are only nine possible |m) for c im f 0:

\m) 6  (|01), |21>, 123), |41), |03), |13), |15), |17), |35)). (1.4)

The first five states in the set above are cormected by to |05), whereas the final four are

connected by to |11). It is important to note that no |m) state simultaneously connects

to both |05) and 111).

The second-order perturbation[l 19]

7̂ (2) _   ̂2-4 ^   ̂x\x l  + %2A ̂ 2 +  2̂,2 +  -̂ 2,0 (1.5)

contains the following annihilation/creation operators:

: {a jl,. «% , 5ÎI,, I,o |, I,H|. I ,3 |. 1,1,.}.

(1.6)

At second order we have the coupled equations[187]

(1-7)
m = 3 r = l  (=1
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where (s\i) =Sso For s corresponding to jll) ,

Z  « + +  cïï«S|> =
m =3

and for s corresponding to |05),

(1.8)

(1.9)
in=3

From Eq. (1.3), the first-order wave function coefficients c^m are functions of and 

c °̂2 . Therefore, the first term on the left side in Eq. (1.8) is given by

Z « = E
m =3 fii”’ - e S '

a  10)
m =3

But we know that = 0 , since cannot simultane­

ously connect \m) to |11) and |05>. Therefore

m =3 m =3 ~

m l I g(0)
7(0) _  "1 •

Similarly, the first term on the left side of Eq. (1.9) becomes

oo oo ! - , (
E j2) ^(1) ^  _ J 5

«”» 2m 2 ^  „(0) 
m =3 m =3 ^

Combining like coefficients of and in Eqs. (1.8) and (1.9) we find

(I. II)

(1.12)

V Æ M 22 cS
=  0, (1.13)

where

Mu =  Z  ^  + « u  - - B f . +  Wg' -
/ ( I )  12

pim=3 ^™m
(1.14)

m=3 "nm
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However, cannot connect stales |11) and |05) since none of the raising/lowering oper­

ators in raise or lower ui by only one quanta. This means that the matrix operator in 

Eq. (1.13) is diagonal with eigenvectors

Therefore, the zeroth-order wave functions of degenerate perturbation theory for the states 

of the 4:1 Fermi resonance at exact degeneracy are not composed of a linear combination of 

the |05) and |11) harmonic functions, but instead consists of only one of the two harmonic 

functions.

In summary, no branch points connect the two states at the 4:1 Fermi resonance. This 

explains the branch point annihilation at the Fermi resonance in Fig. 4.6. From the above 

arguments this branch-point annihilation should exist for the 6:1, 8:1, 10:1,... Fermi res­

onances as well, although this has not been confirmed. On the other hand, the interaction 

between the |11) and |03) states, which connect at first order, does not feature branch point 

annihilation at the 2:1 Fermi resonance, and therefore both mixing coefficients are nonzero 

for all field strengths.
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Appendix J

Optimization of Economized Rational Approximants: The
Mathematica Source Code

The source code below is an abbreviated version of the actual Mathematica code used to 

find the optimal value of a  (denoted “alpha” in the code). The values of the constants 

entered in this example find an approximate optimal ot in about a minute on a Pentium II 

computer. More precise values of ao would require finer meshes in both a  and s and would 

therefore take longer to complete. Note that the function we are optimizing in the code 

below is tanh(x), evaluated at xq — 4.

J.l OptimalAlpha.nb

Test of the Economized Rational Approximants (ERAs)

Some Preliminaries

ln[IJ:= N e e d s  [ " C a l c u l u s  ‘ F a d e ‘ " ] ?
/ n / ' 2 / : =  N e e d s  [ " S t a t i s t i c s  ' L i n e a r R e g r e s s i o n '  " ] ;

Now we define our test Junction (funcfxj) and the value of the parameter (xO) at which this 
function will be evaluated. The function era[a,nj is the [n/nj economized rational approximant 
evaluated at xO. The parameter (a) is the tunable ERA parameter denoted alpha in the text. 
Note that era[0,nj is equivalent to the [n/nJ Fade approximant. eraTablefalphaJ is a list of 
the rERAs up to some maximum order maxOrder. The variable numPrecision establishes 
the desired precision of certain subsequent calculations. To speed up the ensuing search, it is 
best to set the lower limit (n) in eraTablefalphaJ to be four less than the upper limit.

/ / i f i / : = m a x 0 r d e r = 1 4 ;  x O = 4 ;  n u m P r e c i s i o n = 2 0  ;
In[4J:~ f u n c  [ x _ ]  : = T a n h [ x ]  ;
InfSJ:- e r a  [ a _ ,  n _ l  : = E c o n o m i z e d R a t i o n a l A p p r o x i i t i a t i o n .  [
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f u n c [ x ] ,  { x ,  { - a ,  a } ,  n ,  n } I ;
/n/ ’5/ :=:  e r a T a b l e [ a _ l  : = T a b l e [ e r a [ a _ , n _ ] , { n ,  0 ,  m a x O r d e r } ] ;

fitEquationfsJ takes the sequence of ERAs and finds an exponential fit given a particular 
value of s in its exponential. The function Regressf J[[2]][[2]J calculates the regression for 
the chosen value of s and sets it equal to regressionfsj. ShowOutput[alpha,sJ is simply a 
formatting function for the output. It is easiest to understand simply by running the program 
and examining the output.

In[7]:= f i t E q u a t i o n [ s _ I  : = N u m b e r F o r m [ F i t  [
s e q u e n c e ,  - 1 ,  E x p [ - s  n ] , n ]  , n u m P r e c i s i o n  

r e g r e s s i o n  [ s _ ]  : =
R e g r e s s [ s e q u e n c e ,  - 0 . 1 ,  E x p [ - s  n ] , n ]  [ [ 2 ] ]  [ [ 2 ]  ] 

In[9]:= S h o w O u t p u t  [ a l p h a _ ,  s _ ]  : =
P r i n t [ N [ a ,  4 ] ,  , N [ s ]  , " F ( n )  =  " ,

f i t E q u a t i o n [ s ] ,  N [ s e q u e n c e ,  n u m P r e c i s i o n ]  ] ;

Now we calculate the sequence of ERAs. The variables alphal and alphaF are the initial and 
final values of alpha, which is incremented in steps of alphaStep in the outer Whilef] loop. 
The inner While[] loopo selects the best power law equation - expressed as an exponential 
Exp[-s nj - to fit the resulting table of values (notice that we do not try to fit the entire 
ERA sequence, only those values corresponding to the highest four orders). The variables si 
and sF are the initial and final values of the parameter s in the exponential, with sStep the 
increment. All are user-defined. Initially, it is best to set sF=sI and only sum over alpha. 
Then after examining the resulting plots for the range of alpha where convergence is roughly 
exponential the sum over s can be performed.

/«/■/O/.'s: a l p h a l  = 0 ;  a l p h a S t e p  =  1 ;  a l p h a F  = 1 0 ;
I n f l l J : - s i  =  2 / 1 0 ;  s S t e p  = 1 / 1 0 ;  s F  = 4 ;
In[ 12]:^ a = a l p h a l
/ n / ' / i / : =  W h i l e [ a  < =  a l p h a F ,  (*  O u t e r  l o o p .  * )  

s e q u e n c e  = T a k e [ e r a T a b l e [ a ] , - 4 ] ;
L i s t P l o t [ s e q u e n c e ,  P l o t R a n g e  - >  A l l ,

P l o t J o i n e d  - >  T r u e ] ; 
s = s l ;  r e g T e m p  = 0 ;
W h i l e [ s  < =  s F ,

I f [  r e g r e s s i o n [ s ]  > 0 . 9 9 9 9 9 9 9 ,
S h o w O u t p u t [ a ,  s ] ;

] ;
s + = s S t e p ;
r e g T e m p  = r e g r e s s i o n [ s ] ;

] ;
a + = a l p h a S t e p ;

]
P r i n t [ " C o m p l e t e " ] ;
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Appendix K 

The Matrix Method

A summary of the computer algorithm of Dunn, et a/. [105] used to generate the energy 

coefficients of the dimensional perturbation series. Note: This appendix is included for 

completeness for those that may want to implement it in the future - 1 was not involved in 

the development of this algorithm. Note that the source code, with subroutines and make 

hie, are included at the end of this appendix. This source code was originally written by 

Tim Germann, which I later modihed for my own purpose.

Main program

c  M a t r i x  M e t h o d  f o r  t h e  h y d r o g e n  a t o m  i n  a  m a g n e t i c  f i e l d  
c  w i t h  t w o  d e g r e e s  o f  f r e e d o m

PROGRAM MATRIX_H_MAG 
I M P L I C I T  NONE

i n c l u d e  ' q c o m m o n . h '

R E A L * 1 6  T 2 ( 9 6 , 9 6 ) ,  T 3  ( 9 6 )  , s q t ( 9 6 )  , R 2 ( 9 6 )

IN T E G E R  m a x ] , s t a t e ( 2 ) ,  i ,  j ,  n ,  i l ,  1 2 ,  k 
IN T E G E R  s m a x ,  i a r r ( 3 ) ,  i m i n ,  B 
LOGICAL e v e n E , s a v e w f
REAL* 1 6  e n e r g y , o m e g a ( 2 ) ,  t e m p , r h o , B r e a l  
c h a r a c t e r * 5  B c h a r  
c h a r a c t e r * 1  n s c h a r l ,  n s c h a r 2  
c h a r a c t e r * 1 8  f i l l y

COMMON / A R R A Y S /  U 1 , U 2  , U 3 , e n e r g y , p t r , T l , T 2 , T 3  , s q t ,  R2 
COMMON / W V F /  A ,  a s i z e

w r i t e { * ,  * )  ' s t a t e = ? '

247



r e a d ( * , * )  s t a t e ( 1 ) , s t a t e { 2 )  
s t a t e d )  =  s t a t e  ( 1 )  + 1  
s t a t e d )  =  s t a t e d )  + 1

c  ' C o e f f s '  i s  a  f i l e  c o n t a i n i n g  a  t a b l e  o f  B v a l u e s  a n d  
c  o r d e r  f o r  e a c h  v a l u e  o f  B 

o p e n ( u n i t = l ,  f i l e = ' B l i s t ' , f o r m = ' f o r m a t t e d ' , s t a t u s = ' o l d '  ) 
r e a d ( 1 , * )  
r e a d ( 1 , * )  
r e a d  d , * )  
r e a d ( 1 ,  * )  
r e a d d ,  *)

d o  2 0 0  k  = 1 , 5 9 9
c a l l  s e t u p  ( m a x ]  , s t a t e ,  o m e g a , B ,  r h o , B r e a l )

C I n i t i a l i z e  a r r a y s  s q t  a n d  R2  f o r  u s e  i n  r e c u r s i o n  
C . m u l t i p l i c a t i o n s

d o  i  =  1 , L E N
s q t ( i ) = q s q r t ( l . q O * i )
R 2 ( i ) = q s q r t ( l . q O * i * ( i + 1 )  ) 

e n d  d o

w r i t e ( n s c h a r l , 1 2 )  s t a t e ( 1 ) - 1  
w r i t e ( n s c h a r 2 , 1 2 )  s t a t e ( 2 ) - 1

w r i t e ( B c h a r , 1 1 )  B 
i f  ( B . I t . 1 0 0 0 0 )  B c h a r ( l d )  =  ' 0 '  
i f  ( B . I t . 1 0 0 0 )  B c h a r  ( 2 d )  = ' 0 '  
i f  ( B . I t . 1 0 0 )  B c h a r ( 3 : 3 )  =  ' 0 '  
i f  ( B . l t . l O )  B c h a r ( 4 : 4 )  = ' 0 '

1 1  f o r m a t ( 1 5 )
1 2  f o r m a t ( i l )

f i l l y  = ' e c o e f f q . ' / / n s c h a r l / / n s c h a r 2 / / B c h a r / / ' P ' 
w r i t e ( * , * )  f i l l y
o p e n ( u n i t = 1 3 , f i l e = f i l l y ,  f o r m =  '  f o r m a t t e d ' , s t a t u s =  ' u n k n o w n '  ) 
s m a x = s t a t e ( 1 )
i f  ( s t a t e ( 2 ) . g t . s m a x )  s m a x  =  s t a t e ( 2 )

a s i z e ( 0 )  = s m a x  
d o  i l  = 1 , s m a x  

d o  1 2  = 1 , s m a x
a ( 0 , i l , 1 2 )  =  0 .
T l ( i l , i 2 )  =  0 .  

e n d  d o  
e n d  d o
a ( 0 , s t a t e ( l ) , s t a t e ( 2 ) ) =  1 .
T 1  ( s t a t e d )  , s t a t e ( 2 )  ) =  1 .

j  =  0
d o  w h i l e  ( ( j . I t . m a x ] ) . a n d . ( a s i z e ( j ) . l e . L E N ) ) 

a s i z e ( j + 1 )  =  a s i z e ( j )  +  3 
3 = 3+1
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e n d  d o

i f  {j . 1 t . m a x j ) t h e n  
a s i z e ( j ) =  LE N 

c  w r i t e ( * ,  * )  '^NOTE: w a v e f u n c t i o n  t r u n c a t i o n  b e g i n s  w i t h  
c  . ' a ( ' , j , ' ) '

d o  i l  =  j + l , m a x j
a s i z e ( i l )  =  a s i z e ( i l - l )  -  3 
i f  ( a s i z e ( i l ) . I t . s m a x )  t h e n  

c  w r i t e ( * , * )  'W A R N IN G :  i n c o r r e c t  e n e r g y  c o e f f s  w i l l '
c  w r i t e ( * , * )  ' a p p e a r  b e g i n n i n g  w i t h  E ( ' , ( i l + 1 ) / 2 , ' ) '

m a x ]  = 2 * ( ( i l - l ) / 2 )  
e n d i f  

e n d  d o  
e n d i f

d o  n  = 1 ,  m a x ]
d o  i l  =  1 , a s i z e ( n )  

d o  i 2  = 1 , a s i z e ( n )
A ( n , i l , i 2 )  = 0 .  

e n d  d o  
e n d  d o  

e n d  d o

s a v e w f  = 0

w r i t e ( 1 3 , * )  s t a t e ( l ) - 1 , '  ' ,  s t a t e ( 2 ) - 1  
w r i t e ( 1 3 , * )  B
w r i t e ( 1 3 , * )  ' p m i n  =  ' , 0 ,  ' p m a x  = ' , m a x ] / 2
w r i t e ( 1 3 , * )
w r i t e ( 1 3 , * )  ' E n e r g y  c o e f f i c i e n t s . . . '
w r i t e ( 1 3 , * )  ' ----------------------  '
w r i t e ( 1 3 , 4 0 )  e n e r g y ( - 1 )  
w r i t e ( 1 3 , 4 0 )  e n e r g y ( 0 )

e v e n E  =  . F A L S E .

Q *******************
C * * * *  MAIN LOOP * * * *
Q  * * * * * * * * * * * * * * * * * * *

d o  9 0 0  n  =  0 ,  m a x ] - l  

C C o n f u t e  H *A  t e r m s  f r o m  A ( n )  t o  A ( n + 1 )  , A ( n + 2 )  ,

CALL c o m p u t e _ H _ A  ( n , m a x ]  + 2  )

C E x t r a c t  e n e r g y  c o e f f i c i e n t s  o n  e v e r y  o t h e r  i t e r a t i o n  

i f  ( e v e n E )  e n e r g y  ( ( n + 1 )  / 2 )  = - A ( n + l ,  s t a t e  ( 1 )  , s t a t e  ( 2 )  )

C F i n a l  c o r r e c t i o n s  t o  w a v e f u n e  t i o n  t e n s o r  

d o  j  =  1 , ( n + l ) / 2
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i  = n + l - 2 * j
d o  i l  = 1 ,  i m i n ( a s i z e ( i ) , a s i z e ( n + 1 ) ) 

d o  i 2  =  1 ,  i m i n ( a s i z e C i ) , a s i z e ( n + l ) )
i f  ( A ( i , i l , i 2 ) . n e . O . q O )  A ( n + l , i l , i 2 )  =

A ( n + 1 , i l , i 2 )  + A ( i , i l , i 2 )  * e n e r g y ( j )
e n d  d o  

e n d  d o  
e n d  d o

d o  i l  = 1 , a s i z e ( n + 1 )  
d o  i 2  = 1 , a s i z e ( n + 1 )

i f  ( A ( n + 1 , i l , i 2 ) . n e . 0 . q O )  t h e n
t e m p = o m e g a ( l ) * ( i l - s t a t e ( l ) ) + o m e g a ( 2 ) * ( i 2 - s t a t e ( 2 ) ) 
i f  ( t e i t ç ) . e q .  0 . q O )  t e m p  =  l . q O  
A ( n + 1 , i l , i 2 )  = A ( n + 1 , i l , i 2 )  /  t e m p  
i f  ( s a v e w f )  w r i t e ( 1 0 + n + l , * )  i l , i 2 , A ( n + 1 , i l , i 2 ) 

e n d i f
T l ( i l , i 2 )  =  A ( n + l , i l , i 2 )  

e n d  d o  
e n d  d o

i f  ( e v e n E )  t h e n
c a l l  i t i m e ( i a r r )  
w r i t e ( 1 3 , 4 0 )  e n e r g y ( ( n + 1 ) / 2 )  

e n d i f

e v e n E  = . n o t . e v e n E

9 0 0  c o n t i n u e  
w r i t e ( 1 3 , * )
w r i t e ( 1 3 , 5 0 )  o m e g a ( 1 )  
w r i t e ( 1 3 , 6 0 )  o m e g a ( 2 )  
w r i t e ( 1 3 , 7 0 )  o m e g a ( 1 ) / o m e g a ( 2 )  
w r i t e ( 1 3 , 8 0 )  o m e g a ( 2 ) / o m e g a ( 1 )  
w r i t e ( 1 3 , 9 0 )  r h o

2 0 0  e n d  d o

2 0 f o r m a t ( i 2 , ' : ' , i 2 , ' : ' , i 2 )
3 0 f o r m a t ( 7 x , d 4 1 . 3 3 )
4 0  f o r m a t ( 7 x , d 4 1 . 3 3 )
5 0  f o r m a t ( 9 x ,  ' w _ l  =  ' ,  f )
6 0  f o r m a t ( 9 x ,  ' w _ 2  =  ' ,  f )
7 0  f o r m a t ( 5 x ,  ' w _ l / w _ 2  =  ' ,  f  )
8 0  f o r m a t ( 5 x ,  ' w _ 2 / w _ l  =  ' ,  f  )
9 0  f o r m a t ( 5 x ,  ' r h o  =  ' ,  f )
1 4 2  f o r m a t ( 2 x , i 2 , 2 x , e , 3 x , i 2 , ' : ' , i 2 , ' : ' , i 2 )
9 5 5  f o r m a t ( 2 i 5 , e )

c l o s e ( u n i t = l )  
c l o s e ( u n i t = 1 3 )

e n d
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Header file: COMMON. H

C   c o n s t a n t s  ( m a x  o r d e r  i n  s q r t ( 1 / D )
c  a n d  a r r a y  d i m e n s i o n  ( L E N x L E N )  )

i n t e g e r  S I Z E ,  LEN 
C 2 0 t h  o r d e r ,  u p  t o  5 q u a n t a  o f  e x c i t a t i o n
C d a t a  S I Z E ,  L E N  / 4 0 , 6 6 /
C 2 5 t h  o r d e r ,  u p  t o  4  ( ? )  q u a n t a
c  d a t a  S I Z E ,  L EN  / 5 0 , 8 G /
C 3 0 t h  o r d e r ,  u p  t o  5  q u a n t a  o f  e x c i t a t i o n  

d a t a  S I Z E ,  LE N 7 6 0 , 9 6 /

C   w a v e f u n c t i o n  t e n s o r s  a n d  t e m p o r a r y  s t o r a g e
C A ( 0 :  S I Z E ,  L E N ,  LEN)
C 2 0 t h  o r d e r
C R E A L * 1 6  A ( 0 : 4 0 , 6 6 , 6 6 ) ,  T l ( 6 6 , 6 6 )
C I N T E G E R  a s i z e ( 0 : 4 0 )
C 2 5 t h  o r d e r
c  R E A L * 1 6  A ( 0 : 5 0 , 8 0 , 8 0 ) ,  T l ( 8 0 , 8 0 )
c  I N T E G E R  a s i z e ( 0 : 5 0 )
C 3 0 t h  o r d e r

R E A L * 1 6  A ( 0 : 6 0 , 9 6 , 9 6 ) ,  T l ( 9 6 , 9 6 )
IN T E G E R  a s i z e ( 0 : 6 0 )

C   p o t e n t i a l  e x p a n s i o n  c o e f f i c i e n t s
C  a n d  a s s o c i a t e d  p o i n t e r s
C F o r  o r d e r  k  i n  1 / D ,  U l  s h o u l d  b e  a l l o c a t e d  
C w i t h  k ( k + 4 )  e l e m e n t s .
C 2 0 t h  o r d e r
C R E A L * 1 6  U K 4 8 0 ) ,  U 2 ( 4 0 ) ,  U3 ( 2 : 4 0 )  , e n e r g y ( - 1 : 2 0 )
C I N T E G E R  p t r ( 4 0 )
C 2 5 t h  o r d e r
c  R E A L * 1 6  U K 7 2 5 )  , U 2 ( 5 0 ) ,  U3 ( 2 : 5 0 )  , e n e r g y  ( - 1 : 2 5 )
c  I N T E G E R  p t r ( 5 0 )
C 3 0 t h  o r d e r

R E A L * 1 6  U K 1 0 2 0 ) ,  U 2 ( 6 0 ) ,  U3 ( 2 : 6 0 )  , e n e r g y ( - 1 : 3 0 )  
I N T E G E R  p t r ( 6 0 )

Subroutine: SE T U P

SUB RO UT INE S E T U P ( m a x ] , s t a t e , o m e g a , B , r h o , B r e a l ) 
I M P L I C I T  NONE

i n c l u d e  ' q c o m m o n . h '

c  R E A L * 1 6  b n o m ( 0 : 7 9 , 0 : 7 9 ) , t w o f a c t ( 0 : 7 9 ) , r h o f a c t ( 0 : 7 9 )  
c  R E A L * 1 6  b n o m h a l f ( 0 : 7 9 )

R E A L * 1 6  b n o m ( 0  : 9 5 , 0 : 9 5 ) , t w o f a c t ( 0 : 9 5 ) , r h o f a c t ( 0  : 9 5 )  
R E A L * 1 6  b n o m h a l f ( 0 : 9 5 )
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R E A L * 1 6  ZERO, ONE,  t o i
DATA ZER O ,  ONE,  t o i  / O . q O ,  l . q O ,  l . q - 2 6 /

I N T E G E R  i , j , l ,  s t a t e ( 2 ) ,  n ( 2 )  , r ,  i t i a x j , p t r ,  B 
R E A L * 1 6  r h o ,  d r h o ,  f u n c ,  p r e f a c t ,  r h o i n v ,  o m e g a ( 2 ) ,  VO 
R E A L * 1 6  f a c t o j ,  f a c t O l ,  o m i n v ,  o m f a c t ,  B r e a l

c
COMMON / A R R A Y S /  U 1 , U 2 , U 3 , e n e r g y , p t r , T l , b n o m ,

1  t w o  f a c t , r h o  f a c t , b n o m h a l f
COMMON / W V F /  A ,  a s i z e

C I n p u t  v a r i o u s  p a r a m e t e r s  
o p e n ( u n i t = l , f i l e = ' ~ / t h e s i s / C o e f f B l i s t ' ,

1  f o r m = ' f o r m a t t e d ' , s t a t u s = ' o l d ' ) 
r e a d ( 1 , * )  B , m a x j  
w r i t e { * , * )  ' a '

B r e a l  = B * 1 0 0 0 . q 0  
c  I  am  u n s u r e  w h e t h e r  t h e  f o l l o w i n g  i s  c o r r e c t .  

n ( I )  = s t a t e ( l ) - l  
n { 2 )  = s t a t e ( 2 ) - l  
m a x ]  = m a x ]  * 2

C F i n d  m i n i m u m  o f  t h e  e f f e c t i v e  p o t e n t i a l  
c  I  c o m m e n t e d  o u t  t h e  r o o t s e e k i n g  f o r  a n d  u s e d  M a t h e m a t i c s  

r h o  = 0 . 5qO 
d r h o  = r h o
d o  w h i l e  ( q a b s ( d r h o / r h o ) . g t . t o i }

f u n c  = B r e a l * B r e a l * r h o * * 4  + 4 . q O * r h o  -  ONE 
d r h o  = - f u n c  /  ( 4 . q 0  * r h o * * 3  * B r e a l * B r e a l  +  4 . q O )  
r h o  = r h o  + d r h o  
w r i t e ( * , * )  r h o  

e n d d o
c  w r i t e ( * , * )  ' r h o ( m i n i m u m ) = ? '  
c  r e a d ( * , * )  r h o

C S e t  u p  p o w e r s  o f  2  a n d  r h o :

t w o f a c t ( O )  = ONE 
r h o f a c t ( O )  = ONE 
r h o i n v  = ONE /  r h o  

c  C h a n g e d  u p p e r  l i m i t  o f  d o  l i m i t  f r o m  m a x j + 2  t o  5 0  
d o  i  =  1 , m a x ] + 2

t w o f a c t ( i )  =  2 . q 0  * t w o f a c t ( i - 1 )  
r h o f a c t ( i )  =  r h o i n v  * r h o f a c t ( i - 1 )  

e n d d o
r h o f a c t ( m a x j + 3 )  =  r h o i n v  * r h o f a c t ( m a x j + 2 )  

c  T o  p r i n t  r h o f a c t O  
c  d o  i  = 1 ,  m a x j + 2  
c  w r i t e ( * , * )  r h o f a c t ( 4 )  
c  e n d d o
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c Evaluate analytic expressions
e n e r g y ( - 1 )  =  ( r h o f a c t  ( 2 )  + B r e a l * B r e a l * r h o * r h o )  / 8  . q O - r h o f a c t  ( 1 )  
w r i t e { * , * )  ' r h o f a c t { 2 )  =  r h o f a c t { 2 )  
w r i t e ( * ,  
w r i t e {* 
w r i t e (*  
w r i t e (*

* )  ' B r e a l  =  ' ,  B r e a l  
* ) '  r h o  =  ' ,  r h o
*)  ' r h o f a c t ( 1 ) = ' ,  r h o f a c t ( l )
* )  ' e n e r g y ( - 1 ) = ' ,  B r e a l * B r e a l  

o m e g a ( 1 ) = q s q r t ( 0 . 7 5 q 0  * r h o f a c t ( 4 )
- 2 . q O * r h o f a c t ( 3 ) + B r e a l * B r e a l / 4 . q O )  

o m e g a ( 2 ) = q s q r t ( r h o f a c t (3  ) )
VO = -  r h o f a c t ( 2 )  * O . S q O
e n e r g y ( 0 ) = V 0 + ( n ( l ) + 0 . 5 q 0 ) * o m e g a ( l ) + ( n ( 2 ) + 0 . 5 q 0 ) * o m e g a ( 2 )

C S e t  u p  a r r a y s  o f  b i n o m i a l  c o e f f i c i e n t s

d o  j  =  0 , m a x j + 2  
b n o m ( j , 0 )  = ONE 
d o  i  = 1 ,  j / 2

b n o m ( j , i )  =  b n o m ( j , i - 1 )  * ( j + O N E - i )  /  ( O N E * i )  
e n d d o
d o  i  = 0 ,  j / 2

b n o m ( j , j - i )  =  b n o m ( j , i )  
e n d d o  

e n d d o

b n o m h a l f ( O )  = ONE 
d o  j  = 1 ,  m a x j + 2

b n o m h a l f ( j )  = b n o m h a l f ( j - 1 )  * ( O . S q O  -  j )  /  ( O N E * j ) 
e n d d o

C P o t e n t i a l  e x p a n s i o n  c o e f f i c i e n t s

p t r ( l )  = 1 
d o  j  = 2 , m a x j

p t r ( j )  =  p t r  ( j - 1 )  + ( j + 3 ) / 2  
e n d  d o
p r e f a c t  = - r h o f a c t ( 2 )  /  t w o f a c t ( 3 )

d o  j  =  3 ,  m a x j  + 2

d o  1  = 0 ,  j / 2
U l ( p t r ( j - 2 ) + l )  =  ZERO 
d o  r  = 1 ,  j / 2

U K p t r ( j - 2 ) + 1 )  =  U K p t r ( j - 2 ) + 1 )  -  b n o m ( j - r , r ) *  
b n o m ( r ,  1 )  * t w o f a c t  ( j - 2 * r )  * r h o f a c t  ( j + 1 )  * b n o m h a l f  ( j - r )  

e n d d o  
e n d d o

U 1  ( p t r  ( j - 2 ) )  = U 1  ( p t r  ( j - 2 )  ) + p r e f a c t *  r h o  f a c t  ( j  ) *  {j  +ONE )
U 2 ( j - 2 ) = - 4 . q O * p r e f a c t * r h o f a c t ( j - 2 ) * ( j - O N E )
i f  ( j . g e . 4 )  U 3 {j - 2 ) = 3 > q O * p r e f a c t * r h o f a c t ( j - 4 ) * { j - 3 . q O )
p r e f a c t  =  - p r e f a c t
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e n d d o

C M u l t i p l y  b y  s q r t  ( l / 2 * o m e g a )  f a c t o r s  
C w h i c h  a p p e a r  i n  t h e  x  m a t r i c e s

o m i n v  = q s q r t  (ONE /  ( 2 . q O * o m e g a { l )  ) ) 
o m f a c t  =  o m e g a ( 1 )  /  o m e g a ( 2 )  
f a c t O j  =  o m i n v  /  ( 2  . q O * o m e g a ( l )  )

d o  j  = 3 ,  m a x j  + 2  
f a c t O l  =  f a c t O j  
d o  1  =  0 , j / 2

U 1 ( p t r ( j - 2 ) + 1 )  =  f a c t 0 1 * U l ( p t r ( j - 2 ) + 1 )  
f a c t O l  =  f a c t O l  * o m f a c t  

e n d d o
f a c t O j  = f a c t o j * o m i n v  

e n d d o

U 2 ( 1 )  =  U 2 ( 1 )  *  o m i n v  
f a c t O l  =  ONE /  (2  . q O * o m e g a ( 1 )  ) 
f a c t O j  = ONE 
d o  j  = 2 ,  m a x j

U 2 ( j )  =  f a c t O j * f a c t 0 1 * U 2 ( j )
U 3 ( j )  =  f a c t O j * U 3 ( j )  
f a c t O j  = f a c t O j  * o m i n v  

e n d d o

e n d

Subroutine: COMPUTE

C T h i s  s u b r o u t i n e  t a k e s  t h e  t e n s o r  T l ,  w h i c h  i s  i n i t i a l i z e d  
C w i t h  a  c o p y  o f  t h e  t e n s o r  a ( n )  p r i o r  t o  t h e  s u b r o u t i n e  
C c a l l ,  a n d  c o m p u t e s  a l l  p r o d u c t  t e n s o r s  o f  t h e  f o r m  
C
C / m l  m2 \
C I X  *  X  I a
C \  1  2  /  n
C
C w h i c h  c o n t r i b u t e  t o  a ( n + l ) , a ( n + 2 ) , a ( m a x j ) . T o
C f o l l o w  t h e  n o t a t i o n  i n  t h e  i m p l e m e n t a t i o n  s e c t i o n  o f  D u n n  
C e t  a l . ,  t w o k  i s  s e n t  t h e  v a l u e  m a x j + 2 .  ( T h e  p r o g r a m  
C c o u n t s  t h e  o r d e r  i n  1 / D  b e g i n n i n g  w i t h  t h e  E ( - l )  i n f i n i t e -  
C d i m e n s i o n a l  t e r m ,  b u t  t h i s  i s  u s u a l l y  r e f e r r e d  t o  a s  t h e  
C z e r o t h  t e r m .  B e n d e r  e t  a l .  b e i n g  o n e  e x c e p t i o n  t o  t h i s .
C T h e r e f o r e ,  t h e  s l i g h t  d i s c r e p e n c y  i n  c o u n t i n g  t e r m s . )
C

SUB ROUTINE c o m p u t e _ H _ A  ( n , t w o k  )
I M P L I C I T  NONE

i n c l u d e  ' q c o m m o n . h '

C  2 0 t h  o r d e r
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c  R E A L * 1 6  T 2 ( 6 6 , 6 6 ) ,  T 3 ( 6 6 ) ,  s q t ( 6 6 ) ,  R 2 ( 6 6 )
C 2  5 t h .  o r d e r
c  R E A L * 1 6  T 2 ( 8 0 , 8 0 ) ,  T 3 ( 8 0 ) ,  s q t ( 8 0 ) ,  R 2 ( 8 0 )
C 3 0 t h  o r d e r  

R E A L * 1 6  T 2 ( 9 6 , 9 6 ) ,  T 3 ( 9 6 ) ,  s q t ( 9 6 ) ,  R 2 ( 9 6 )

C   l o c a l  v a r i a b l e s
I N T E G E R  m l , m 2 , i l , 1 2 , m , a x i s l , a x i s 2 , l i m l , l i m 2 , n , t w o k , i m i n

COMMON / A R R A Y S /  U 1 , U 2 , U 3 , e n e r g y , p t r , T l , T 2 , T 3 , s q t , R 2  
COMMON / W V F /  A ,  a s i z e

C
C NO TE :  m2 l o o p  i s  o u t e r m o s t  t o  m i n i m i z e  
C t h e  n u m b e r  o f  ( m o r e  c o s t l y )
C /  2  \
C { I  * X I o p e r a t i o n s .
C \  2  /
C

a x i s 2  = a s i z e ( n )  
d o  m2 =  0 ,  t w o k - n ,  2 

C T 2  = T l
a x i s l  =  a s i z e ( n )  
d o  i l  =  1 , a x i s l  

d o  1 2  = 1 , a x i s 2
T 2 ( 1 1 , 1 2 )  =  T l ( i l , i 2 )  

e n d  d o  
e n d  d o

d o  m l  = 0 ,  t w o k - n - m 2  
m = m l + i t i 2 + n

i f  ( m 2 . e q . O )  t h e n
i f  ( m . l e . ( t w o k - 4 ) ) t h e n

C
C / m l  \
C a  = a  - V  I X * I  I a
C m+2 m+2 m l + 2 , m l  \  1  /  n
C

l i m l  =  i m i n  ( a x i s l ,  a s i z e  (m +2  ) ) 
l i m 2  =  i m i n ( a x i s 2 , a s i z e ( m + 2 ) )  
d o  1 1  = l , l i m l  

d o  1 2  = 1 , l i m 2
i f  ( T 2 ( 1 1 , 1 2 ) . n e . O . q O )  A ( m + 2 , i l , i 2 )  =  

A ( m + 2 , i l , i 2 )  -  U 3 ( m l + 2 ) * T 2 ( 1 1 , 1 2 )
e n d  d o  

e n d  d o  
e n d i f

i f  ( ( m l . n e . O )  . a n d .  ( m . l e .  ( t w o k - 2 )  ) ) t h e n
C
C / m l  \
C a  =  a  -  V  I X  * I  I a
C m  m m l , m l  \  1  /  n
C
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l i m l  =  i m i n  ( a x i s l ,  a s i z e  (m) ) 
l i m 2  =  i m i n ( a x i s 2 , a s i z e ( m )  ) 
d o  i l  =  1 , l i m l  

d o  i 2  =  l , l i m 2
i f  ( T 2 ( i l , i 2 ) . n e . O . q O )  A ( m , i l , i 2 )  = 

A ( m , i l , i 2 )  -  U 2 ( m l ) * T 2 ( i l , i 2 )
e n d  d o  

e n d  d o  
e n d i f  

e n d i f

i f  ( (ml+i t i2  ) . g e . 3 ) t h e n
C
C m 2 / 2  / m l  m2 \
C a  =  a  -  V  | x * x | a
C m - 2  m - 2  m l + m 2 - 2  , m l + m 2  \  1  2 /  n
C

l i m l  =  i m i n ( a x i s l , a s i z e ( m - 2 ) )  
l i m 2  = i m i n ( a x i s 2 , a s i z e ( m - 2 ) )  
d o  i l  =  l , l i m l  

d o  i 2  =  l , l i m 2  
i f  ( T 2 ( i l , i 2 ) . n e . O . q O )  A ( m - 2 , i l , i 2 )  =

A ( m - 2 , i l , i 2 ) - U 1 ( p t r ( m l + m 2 - 2 ) + m 2 / 2 ) * T 2 ( i l , i 2 )  
e n d  d o  

e n d  d o  
e n d i f

C /  \
C T  =  I X * I  I T  
C 2 \  1  /  2

d o  i 2  = 1 , a x i s 2  
d o  i l  =  2 , a x i s l

T 3 ( i l - 1 )  = s q t ( i l - l ) * T 2 ( i l , i 2 )  
e n d  d o
T 3 ( a x i s l )  =  0 .
i f  ( a x i s l . I t . L E N )  T 2 ( a x i s 1 + 1 , i 2 )  =  s q t ( a x i s l ) *

T 2 ( a x i s l , i 2 )  
d o  i l  =  a x i s l , 2 , - 1

T 2 ( i l , i 2 )  =  T 3 ( i l )  + s q t ( i l - 1 ) * T 2 ( i l - 1 , i 2 ) 
e n d  d o
T 2 ( l , i 2 )  =  T 3 ( 1 )  

e n d  d o
a x i s l  = a x i s l  +  1  
i f  ( a x i s l . g t . L E N )  a x i s l  = LEN 

e n d  d o

C /  2  \
C T =  I I  * X I T  
C l  \ 2 / 1

d o  i l  =  1 , a x i s l  
d o  i 2  =  3 , a x i s 2

T 3 ( i 2 - 2 )  =  R 2 ( i 2 - 2 ) * T l ( i l , i 2 )  
e n d  d o
i f  ( a x i s 2 . g t . l )  T 3 ( a x i s 2 - l )  =  0 .
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d o  1 2  = a x i s 2 ,  i m i n  ( a x i s 2 + 2 ,  LEN)
T 3 ( i 2 )  =  0 .  

e n d  d o
d o  1 2  = l , i i t i i n ( a x i s 2 , L E N - 2 )

T 3 ( 1 2 + 2 )  =  T 3 ( 1 2 + 2 )  +  R 2 ( 1 2 ) * T 1 ( 1 1 , 1 2 )  
e n d  d o
d o  1 2  = l , a x l s 2

T l ( l l , 1 2 )  =  ( 2 * 1 2 - 1 ) * T 1 ( 1 1 , 1 2 )  +  T 3 ( 1 2 )  
e n d  d o
I f  ( a x l s 2 . l t . LEN) T l ( 1 1 , a x l s 2 + l )  =  T 3 ( a x l s 2 + l )
I f  ( ( a x l s 2 + l ) . I t . L E N )  T l ( 1 1 , a x l s 2 + 2 ) = T 3 ( a x l s 2 + 2 )  

e n d  d o
a x l s 2  = a x l s 2  + 2 
I f  ( a x l s 2 . g t . L E N )  a x l s 2  = LEN 

e n d  d o  
r e t u r n  
e n d

f u n c t i o n  I m l n ( 1 , j )
I n t e g e r  l m l n , l , j  
I m l n  =  1
I f  ( j . l t . l )  I m l n  = j
r e t u r n
e n d

Make file

SOUR CES= H - m a g . f  s e t u p . f  c o m p _ H _ A . f  
# PROGRAM: H - m a g

# q u a d r u p l e  p r e c i s i o n  v e r s i o n  
S O U R C E S :  q H - m a g . f  q s e t u p . f  q c o m p _ H _ A . f  
PROGRAM: q H - m a g

O B J E C T S :  $ ( SOURCES : . f = . o )

#  - g  a l l o w s  d b x  d e b u g g i n g ,
#  - C  p r o d u c e s  c o d e  c h e c k i n g  a r r a y  b o u n d s  
# O P T I O N S  :  - g  - C
# T o  o p t i m i z e  d e b u g g e d  v e r s i o n  o f  t h e  c o d e  
O P T I O N S :  - 0 3

a l l  d e b u g  p r o f i l e :  $ (PROGRAM)

$ (PROGRAM ):  $ ( O B J E C T S )
t i l  $ ( O P T I O N S )  - o  $& $ (O B J E C T S )

% . o :  % . f
£11  $ ( O P T I O N S )  - c  $<

c l e a n :
r m  - f  $ (PROGRAM) $ ( O B J E C T S )  $ ( L I N T F I L E S )  $ (SOURCECODE)
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